

Trim Size: 152mm x 229mm Single Column Wang ffirs.tex V2 - 06/30/2017 12:14pm Page i�

� �

�

Real-Time Embedded Systems

Trim Size: 152mm x 229mm Single Column Wang ffirs.tex V2 - 06/30/2017 12:14pm Page ii�

� �

�

Quantitative Software Engineering Series

Lawrence Bernstein, Series Editor

The Quantitative Software Engineering Series focuses on the convergence
of systems engineering and software engineering with emphasis on quan-
titative engineering trade-off analysis. Each title brings the principles and
theory of programming in the large and industrial strength software into
focus. This practical series helps software developers, software engineers,
systems engineers, and graduate students understand and benefit from
this convergence through the unique weaving of software engineering case
histories, quantitative analysis, and technology into the project effort. You will
find that each publication reinforces the series goal of assisting the reader with
producing useful, well-engineered software systems.
Software Testing: Concepts and Operations
by Ali Mili, Fairouz Tchier

Enterprise Software Architecture andDesign: Entities, Services, and Resources
by Dominic Duggan

Oracle Database Performance and Scalability: A Quantitative Approach
by Henry H. Liu

Trustworthy Compilers
by Vladimir O. Safonov

Managing the Development of Software-Intensive Systems
by James McDonald

Software Performance and Scalability: A Quantitative Approach
by Henry H. Liu

Web Application Design and Implementation: Apache 2, PHP5, MySQL,
JavaScript, and Linux/UNIX
by Steven A. Gabarro

Software Measurement and Estimation: A Practical Approach
by Linda M. Laird, M. Carol Brennan

Trustworthy Systems through Quantitative Software Engineering
by Lawrence Bernstein, C. M. Yuhas

Real-Time Embedded Systems
by Jiacun Wang

Trim Size: 152mm x 229mm Single Column Wang ffirs.tex V2 - 06/30/2017 12:14pm Page iii�

� �

�

Real-Time Embedded Systems

Jiacun Wang

Trim Size: 152mm x 229mm Single Column Wang ffirs.tex V2 - 06/30/2017 12:14pm Page iv�

� �

�

This edition first published 2017
© 2017 John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this
title is available at http://www.wiley.com/go/permissions.

The right of JiacunWang to be identified as the author of this work has been asserted in accordance with
law.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products
visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content
that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
The publisher and the authors make no representations or warranties with respect to the accuracy or
completeness of the contents of this work and specifically disclaim all warranties; including without
limitation any implied warranties of fitness for a particular purpose. This work is sold with the
understanding that the publisher is not engaged in rendering professional services. The advice and
strategies contained herein may not be suitable for every situation. In view of on-going research,
equipment modifications, changes in governmental regulations, and the constant flow of information
relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and
evaluate the information provided in the package insert or instructions for each chemical, piece of
equipment, reagent, or device for, among other things, any changes in the instructions or indication of
usage and for added warnings and precautions. The fact that an organization or website is referred to in
this work as a citation and/or potential source of further information does not mean that the author or
the publisher endorses the information the organization or website may provide or recommendations it
may make. Further, readers should be aware that websites listed in this work may have changed or
disappeared between when this works was written and when it is read. No warranty may be created or
extended by any promotional statements for this work. Neither the publisher nor the author shall be
liable for any damages arising here from.

Library of Congress Cataloguing-in-Publication Data

Names: Wang, Jiacun, 1963- author.
Title: Real-time embedded systems / by Jiacun Wang.
Description: Hoboken, NJ, USA : Wiley, 2017. | Series: Quantitative software engineering series |

Includes bibliographical references and index. | Identifiers: LCCN 2017015038 (print) |
LCCN 2017030269 (ebook) | ISBN 9781119420705 (pdf) | ISBN 9781119420682 (epub) |
ISBN 9781118116173(hardback)

Subjects: LCSH: Embedded computer systems. | Real-time data processing. |
BISAC: TECHNOLOGY & ENGINEERING / Electronics / Microelectronics.

Classification: LCC TK7895.E42 (ebook) | LCC TK7895.E42 W36 2017 (print) |
DDC 006.2/2–dc23

LC record available at https://lccn.loc.gov/2017015038

Cover image: © spainter_vfx/Gettyimages
Cover design by Wiley

Set in 10/12pt Warnock by SPi Global, Chennai, India

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Trim Size: 152mm x 229mm Single Column Wang ftoc.tex V1 - 06/24/2017 11:59am Page v�

� �

�

v

Contents

Preface xiii
Book Layout xv
Acknowledgments xvii

1 Introduction to Real-Time Embedded Systems 1
1.1 Real-Time Embedded Systems 1
1.2 Example: Automobile Antilock Braking System 3
1.2.1 Slip Rate and Brake Force 3
1.2.2 ABS Components 4
1.2.2.1 Sensors 4
1.2.2.2 Valves and Pumps 5
1.2.2.3 Electrical Control Unit 7
1.2.3 ABS Control 8
1.3 Real-Time Embedded System Characteristics 10
1.3.1 System Structure 10
1.3.2 Real-Time Response 10
1.3.3 Highly Constrained Environments 11
1.3.4 Concurrency 12
1.3.5 Predictability 12
1.3.6 Safety and Reliability 13
1.4 Hard and Soft Real-Time Embedded Systems 13

Exercises 14
Suggestions for Reading 15
References 15

2 Hardware Components 17
2.1 Processors 17
2.1.1 Microprocessors 17
2.1.2 Microcontrollers 19
2.1.3 Application-Specific Integrated Circuits (ASICs) 19

Trim Size: 152mm x 229mm Single Column Wang ftoc.tex V1 - 06/24/2017 11:59am Page vi�

� �

�

vi Contents

2.1.4 Field-Programmable Gate Arrays (FPGAs) 19
2.1.5 Digital Signal Processors (DSPs) 20
2.1.6 Application-Specific Instruction Set Processors (ASIPs) 20
2.1.7 Multicore Processors 20
2.1.8 Von Neumann Architecture and Harvard Architecture 21
2.1.9 Complex Instruction Set Computing and Reduced Instruction Set

Computing 22
2.2 Memory and Cache 23
2.2.1 Read-Only Memory (ROM) 23
2.2.2 Random-Access Memory (RAM) 24
2.2.3 Cache Memory 24
2.3 I/O Interfaces 26
2.4 Sensors and Actuators 27
2.5 Timers and Counters 29

Exercises 30
Suggestions for Reading 31
References 31

3 Real-Time Operating Systems 33
3.1 Main Functions of General-Purpose Operating Systems 33
3.1.1 Process Management 34
3.1.2 Memory Management 36
3.1.3 Interrupts Management 39
3.1.4 Multitasking 39
3.1.5 File System Management 39
3.1.6 I/O Management 41
3.2 Characteristics of RTOS Kernels 42
3.2.1 Clocks and Timers 42
3.2.2 Priority Scheduling 44
3.2.3 Intertask Communication and Resource Sharing 45
3.2.3.1 Real-Time Signals 45
3.2.3.2 Semaphores 46
3.2.3.3 Message Passing 46
3.2.3.4 Shared Memory 46
3.2.4 Asynchronous I/O 47
3.2.5 Memory Locking 47
3.3 RTOS Examples 48
3.3.1 LynxOS 48
3.3.2 OSE 49
3.3.3 QNX 49
3.3.4 VxWorks 49
3.3.5 Windows Embedded Compact 50

Exercises 50

Trim Size: 152mm x 229mm Single Column Wang ftoc.tex V1 - 06/24/2017 11:59am Page vii�

� �

�

Contents vii

Suggestions for Reading 52
References 52

4 Task Scheduling 53
4.1 Tasks 53
4.1.1 Task Specification 54
4.1.2 Task States 56
4.1.3 Precedence Constraints 58
4.1.4 Task Assignment and Scheduling 59
4.2 Clock-Driven Scheduling 59
4.2.1 Structured Clock-Driven Scheduling 62
4.2.1.1 Frames 62
4.2.1.2 Task Slicing 65
4.2.2 Scheduling Aperiodic Tasks 66
4.2.3 Scheduling Sporadic Tasks 68
4.3 Round-Robin Approach 69
4.4 Priority-Driven Scheduling Algorithms 70
4.4.1 Fixed-Priority Algorithms 70
4.4.1.1 Schedulability Test Based on Time Demand Analysis 72
4.4.1.2 Deadline-Monotonic Algorithm 76
4.4.2 Dynamic-Priority Algorithms 76
4.4.2.1 Earliest-Deadline-First (EDF) Algorithm 76
4.4.2.2 Optimality of EDF 78
4.4.3 Priority-Driven Scheduling of Aperiodic and Sporadic Tasks 82
4.4.3.1 Scheduling of Aperiodic Tasks 82
4.4.3.2 Scheduling of Sporadic Tasks 85
4.4.4 Practical Factors 85
4.4.4.1 Nonpreemptivity 85
4.4.4.2 Self-Suspension 86
4.4.4.3 Context Switches 87
4.4.4.4 Schedulability Test 87
4.5 Task Assignment 89
4.5.1 Bin-Packing Algorithms 89
4.5.1.1 First-Fit Algorithm 90
4.5.1.2 First-Fit Decreasing Algorithm 91
4.5.1.3 Rate-Monotonic First-Fit (RMFF) Algorithm 91
4.5.2 Assignment with Communication Cost 92

Exercises 94
Suggestions for Reading 97
References 97

5 Resource Sharing and Access Control 99
5.1 Resource Sharing 99

Trim Size: 152mm x 229mm Single Column Wang ftoc.tex V1 - 06/24/2017 11:59am Page viii�

� �

�

viii Contents

5.1.1 Resource Operation 100
5.1.2 Resource Requirement Specification 100
5.1.3 Priority Inversion and Deadlocks 101
5.1.4 Resource Access Control 103
5.2 Nonpreemptive Critical Section Protocol 103
5.3 Priority Inheritance Protocol 106
5.3.1 Rules of Priority Inheritance Protocol 106
5.3.2 Properties of Priority Inheritance Protocol 109
5.4 Priority Ceiling Protocol 111
5.4.1 Rules of Priority Ceiling Protocol 112
5.4.2 Properties of Priority Ceiling Protocol 114
5.4.3 Worst-Case Blocking Time 116
5.5 Stack-Sharing Priority Ceiling Protocol 119
5.5.1 Rules of Stack-Sharing Priority Ceiling Protocol 119
5.5.2 Properties of Stack-Sharing Priority Ceiling Protocol 121

Exercises 122
Suggestion for Reading 125
References 125

6 Concurrent Programming 127
6.1 Introduction 127
6.2 POSIXThreads 128
6.3 Synchronization Primitives 133
6.3.1 Race Conditions and Critical Sections 133
6.3.2 Mutex 134
6.3.3 Condition Variables 137
6.3.4 Semaphores 142
6.4 Communication among Tasks 148
6.4.1 Message Queues 149
6.4.2 Shared Memory 155
6.4.3 Shared Memory Protection 157
6.5 Real-Time Facilities 162
6.5.1 Real-Time Signals 162
6.5.1.1 Blocking Signals 163
6.5.1.2 Dealing with Signals 164
6.5.2 Timers 165
6.5.3 Implement Periodic Tasks 169
6.5.3.1 Using sleep() Function 169
6.5.3.2 Using Timers 172
6.5.4 Implement an Application with Multiple Periodic Tasks 173

Exercises 173
Suggestions for Reading 177
References 177

Trim Size: 152mm x 229mm Single Column Wang ftoc.tex V1 - 06/24/2017 11:59am Page ix�

� �

�

Contents ix

7 Finite-State Machines 179
7.1 Finite State Machine Basics 179
7.2 Deterministic Finite Automation (DFA) 181
7.2.1 Moore Machines 182
7.2.2 Mealy Machines 184
7.3 Nondeterministic Finite Automation 188
7.4 Programming Finite-State Machines 188

Exercises 191
Suggestions for Reading 194
References 195

8 UML State Machines 197
8.1 States 198
8.2 Transitions 200
8.3 Events 201
8.4 Composite States 202
8.4.1 Hierarchy 203
8.4.2 Orthogonality 205
8.4.3 Submachine States 206
8.5 Pseudostates 206
8.5.1 History Pseudostates 206
8.5.2 Entry and Exit Points 208
8.5.3 Fork and Join Pseudostates 210
8.5.4 Terminate Pseudostates 210
8.6 UML State Machine of Antilock Braking System 211

Exercises 215
Suggestions for Reading 217
References 217

9 Timed Petri Nets 219
9.1 Petri Net Definition 219
9.1.1 Transition Firing 221
9.1.2 Modeling Power 222
9.2 Petri Net Properties 225
9.2.1 Behavioral Properties 225
9.2.1.1 Reachability 225
9.2.1.2 𝜔Markings 226
9.2.1.3 Reachability Analysis Algorithm 227
9.2.1.4 Boundedness and Safeness 229
9.2.1.5 Liveness 229
9.2.2 Structural Properties 230
9.2.2.1 T-Invariants and S-Invariants 230
9.2.2.2 Siphons and Traps 233

Trim Size: 152mm x 229mm Single Column Wang ftoc.tex V1 - 06/24/2017 11:59am Page x�

� �

�

x Contents

9.3 Timed Petri Nets 234
9.3.1 Deterministic Timed Petri Nets 234
9.3.1.1 Performance Evaluation Based on DTPNs 237
9.3.2 Time Petri Nets 240
9.3.2.1 States in a Time Petri Net 241
9.3.2.2 Enabling and Firing Conditions of Transitions 242
9.3.2.3 Firing Rules 243

Exercises 244
Suggestions for Reading 250
References 251

10 Model Checking 253
10.1 Introduction to Model Checking 253
10.2 Temporal Logic 254
10.2.1 Linear Temporal Logic 256
10.2.1.1 Syntax of LTL 256
10.2.1.2 Parse Trees for LTL Formulas 257
10.2.1.3 Semantics of LTL 258
10.2.1.4 Equivalencies of LTL Formulas 262
10.2.1.5 System Property Specification 263
10.2.2 Computation Tree logic 264
10.2.2.1 Syntax of CTL 264
10.2.2.2 Semantics of CTL 265
10.2.2.3 Equivalencies of CTL Formulas 268
10.2.3 LTL versus CTL 268
10.3 The NuSMVModel Checking Tool 269
10.3.1 Description Language 269
10.3.1.1 Single-Module SMV Program 269
10.3.1.2 Multimodule SMV Program 271
10.3.1.3 Asynchronous Systems 273
10.3.2 Specifications 274
10.3.3 Running NuSMV 275
10.4 Real-Time Computation Tree Logic 279

Exercises 285
Suggestions for Reading 290
References 290

11 Practical Issues 293
11.1 Software Reliability 293
11.1.1 Software Faults 293
11.1.2 Reliability Measurement 294
11.1.3 Improving Software Reliability 295
11.1.3.1 Fault Avoidance 295

Trim Size: 152mm x 229mm Single Column Wang ftoc.tex V1 - 06/24/2017 11:59am Page xi�

� �

�

Contents xi

11.1.3.2 Fault Removal 295
11.1.3.3 Fault Tolerance 295
11.1.3.4 Fault Recovery 296
11.2 Software Aging and Rejuvenation 296
11.3 Security 297
11.3.1 Challenges 297
11.3.2 Common Vulnerabilities 298
11.3.3 Secure Software Design 299
11.4 Safety 300
11.5 Power Conservation 301

Suggestions for Reading 302
References 302

Index 305

�

� �

�

xiii

Preface

Real-time embedded systems play a significant role in our daily life. These
systems are inside our cars, cell phones, and home electrical appliances. Indus-
trial process control, telecommunication, signal processing, vehicle navigation,
air traffic control, and space exploration all depend on real-time embedded sys-
tem technologies.The real-time embedded applicationmarket has been further
driven to a new high by recent advances in the information and communication
technology and by the emergence of Internet of things, ubiquitous computing,
and pervasive computing. Therefore, there is an increasing demand from the
related branches of industry for computer scientists and software engineers
who are particularly capable of real-time embedded system hardware and
software design and development.This textbook aims to prepare students with
the fundamental knowledge and skills that are needed to meet the challenges.
This book introduces the characteristics of real-time embedded systems, typ-

ical embedded hardware components, fundamental real-time operating system
features, well-known real-time task scheduling algorithms, and widely used
resource access control protocols. It also presents several formal approaches
for real-time embedded system design, modeling, analysis and critical property
verification. For those who are interested in real-time software development,
the text will familiarize themwith techniques and skills in concurrent program-
ming and real-time task implementation.

Monmouth University
West Long Branch, NJ
January 15, 2017

�

� �

�

xv

Book Layout

This book has four parts. Part 1 includes Chapters 1–3, which introduces the
fundamental concepts and characteristics of real-time embedded systems,
embedded system hardware basics, general operating systems, and real-time
operating systems. The automobile antilock braking system is used as an
example to show the components and characteristics of real-world real-time
embedded systems.
Part 2 includes Chapters 4–6, focusing on real-time system scheduling,

task assignment, resource access control, and real-time embedded system
programming. Clock-driven and priority-driven scheduling algorithms, as well
as several task assignment algorithms, are discussed in Chapter 4. Resource
sharing issues and some well-known resource access control protocols that
tackle the priority inversion and deadlock problems are presented in Chapter 5.
Real-time task implementation, intertask synchronization and communication,
and concurrent programming details are discussed in Chapter 6.
Part 3 is composed of Chapters 7–10, which introduces various modeling

and analysis techniques for real-time embedded systems. Among them,
finite-state machines are a traditional model of computation good for logic
circuits and software design and are introduced in Chapter 7. UML state
machines are an extension to traditional finite-state machines with hierarchy
and orthogonality and composed of a rich set of graphical notations. They
are introduced in Chapter 8. Petri nets are a high-level model, which is very
powerful for event-driven system modeling and analysis. Timed Petri nets
allow users to verify systems’ timing constraints. The theory and applications
of Petri nets and timed Petri nets are presented in Chapter 9. Model checking
is a technique that verifies system properties against a model using a software
tool. Model checking principles, the NuSMVmodel checker, and its underlying
temporal logic and description language are introduced in Chapter 10.
Chapter 11 alone is the final part of the book, which briefly discusses some

practical issues with real-time embedded system design and development,
including software reliability, aging, security, safety, and power consumption.

�

� �

�

xvi Book Layout

Audience

This book is primarily written as a textbook for undergraduate or graduate
courses in computer engineering, software engineering, computer science, and
information technology programs in the subject of embedded and real-time
systems. For students with certain level of familiarity with computer program-
ming, operating systems, and computer architecture, the book will extend
their knowledge and skills into the area of real-time embedded computing that
has profound influence on the quality of our daily life.
Portions of the book could be used as reading material for undergraduate

computer engineering, computer science, and software engineering capstone
courses or as a reference for students who are doing research in the area of
real-time embedded systems.
The book is also useful to industrial practitioners with real-time and

embedded software design and development responsibilities.

�

� �

�

xvii

Acknowledgments

This project was partially supported by Mexico’s CONACYT program
“Estancias Sabáticas en México para Extranjeros para la Consolidación
de Investigación.” Chapter 9 was written by Dr Xiaoou Li, Professor of
CINVESTAV-IPN, Mexico. In writing the book, I received constant help from
my colleague and friend over a decade, Dr William Tepfenhart, Professor of
Monmouth University. I discussed the contents of Chapters 6–8 intensively
with him, and his insights into the subjects greatly influenced the writing of
the three chapters. Dr Xuemin Chen, Professor of Texas Southern University,
reviewed the book proposal and offered good suggestions on the layout of
the book and contents of the first two chapters. Professor Lijun Chen, Xi’an
University of Posts and Telecommunication, reviewed the draft of Chapter 6
and provided her constructive comments. Mr Bin Hu, a master’s degree
student of Monmouth University, tested most of the programming projects
included in the book. I thank all of them for their generous help.

�

� �

�

1

1

Introduction to Real-Time Embedded Systems

Real-time embedded systems have become pervasive. They are in your cars,
cell phones, Personal Digital Assistants (PDAs), watches, televisions, and
home electrical appliances. There are also larger and more complex real-time
embedded systems, such as air-traffic control systems, industrial process
control systems, networked multimedia systems, and real-time database
applications. It is reported that in the Lexus LS-460 released in September
2006, there are more than 100 microprocessors embedded when all optional
features are installed. It is also estimated that 98% of all microprocessors are
manufactured as components of embedded systems. In fact, our daily life has
become more and more dependent on real-time embedded applications. This
chapter explains the concepts of embedded systems and real-time systems,
introduces the fundamental characteristics of real-time embedded systems,
and defines hard and soft real-time systems. The automotive antilock braking
system (ABS) is used as an example to show a real-world embedded system.

1.1 Real-Time Embedded Systems

An embedded system is a microcomputer system embedded in a larger system
and designed for one or two dedicated services. It is embedded as part of
a complete device that often has hardware and mechanical parts. Examples
include the controllers built inside our home electrical appliances. Most
embedded systems have real-time computing constraints. Therefore, they are
also called real-time embedded systems. Compared with general-purpose
computing systems that have multiple functionalities, embedded systems are
often dedicated to specific tasks. For example, the embedded airbag control
system is only responsible for detecting collision and inflating the airbag
when necessary, and the embedded controller in an air conditioner is only
responsible for monitoring and regulating the temperature of a room.

Real-Time Embedded Systems, First Edition. Jiacun Wang.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

�

� �

�

2 1 Introduction to Real-Time Embedded Systems

Another noteworthy difference between a general-purpose computing
system and an embedded system is that a general-purpose system has full-scale
operating system support, while embedded systemsmay or may not have oper-
ating system support at all. Many small-sized embedded systems are designed
to perform simple tasks and thus do not need operating system support.
Embedded systems are reactive systems in nature.They are basically designed

to regulate a physical variable in response to the input signal provided by the
end users or sensors, which are connected to the input ports. For example, the
goal of a grain-roasting embedded system is regulating the temperature of a
furnace by adjusting the amount of fuel being injected into the furnace. The
regulation or control is performed based on the difference between the desired
temperature and the real temperature detected by temperature sensors.
Embedded systems can be classified based on their complexity and perfor-

mance into small-scale, medium-scale, and large-scale. Small-scale systems
perform simple functions and are usually built around low-end 8- or 16-bit
microprocessors or microcontrollers. For developing embedded software for
small-scale embedded systems, the main programming tools are an editor,
assembler, cross-assembler, and integrated development environment (IDE).
Examples of small-scale embedded systems are mouse and TV remote control.
They typically operate on battery. Normally, no operating system is found in
such systems.
Medium-scale systems have both hardware and software complexities. They

use 16- or 32-bit microprocessors or microcontrollers. For developing embed-
ded software for medium-scale embedded systems, the main programming
tools are C, C++, JAVA, Visual C++, debugger, source-code engineering tool,
simulator, and IDE. They typically have operating system support. Examples
of medium-scale embedded systems are vending machines and washing
machines.
Large-scale or sophisticated embedded systems have enormous hardware

and software complexities, which are built around 32- or 64-bit microproces-
sors or microcontrollers, along with a range of other high-speed integrated
circuits. They are used for cutting-edge applications that need hardware and
software codesign techniques. Examples of large-scale embedded systems are
flight-landing gear systems, car braking systems, and military applications.
Embedded systems can be non-real-time or real-time. For a non-real-time

system, we say that it is correctly designed and developed if it delivers the
desired functions upon receiving external stimuli or internal triggers, with a
satisfied degree of QoS (Quality of Service). Examples are TV remote controls
and calculators.

Real-time systems, however, are required to compute and deliver correct
results within a specified period of time. In other words, a job of a real-time
system has a deadline, being it hard or soft. If a hard deadline is missed, then
the result is useless, even if it is correct. Consider the airbag control system in

�

� �

�

1.2 Example: Automobile Antilock Braking System 3

automobiles. Airbags are generally designed to inflate in the cases of frontal
impacts in automobiles. Because vehicles change speed so quickly in a crash,
airbags must inflate rapidly to reduce the risk of the occupant hitting the
vehicle’s interior. Normally, from the onset of the crash, the entire deployment
and inflation process is about 0.04 seconds, while the limit is 0.1 seconds.
Non-real-time embedded systems may have time constraints as well.

Imagining if it takes more than 5 seconds for your TV remote control to send
a control signal to your TV and then the embedded device inside the TV takes
another 5 seconds to change the channel for you, you will certainly complain.
It is reasonable that consumers expect a TV to respond to remote control
event within 1 second. However, this kind of constraints is only a measure of
system performance.
Traditional application domains of real-time embedded systems include

automotive, avionics, industrial process control, digital signal processing,
multimedia, and real-time databases. However, with the continuing rapid
advance in information and communication technology and the emergence of
Internet of things and pervasive computing, real-time embedded applications
will be found in any objects that can be made smart.

1.2 Example: Automobile Antilock Braking System

A distinguished application area of real-time embedded systems is automo-
biles. Automotive embedded systems are designed and developed to control
engine, automatic transmission, steering, brake, suspension, exhaustion, and
so on. They are also used in body electronics, such as instrument panel, key,
door, window, lighting, air bag, and seat bag. This section introduces the ABS.
AnABS is an automobile safety system. It is designed to prevent the wheels of

a vehicle from locking when brake pedal pressure is applied, which may occur
all of a sudden in case of emergency or short stopping distance. A sudden lock of
wheels will cause moving vehicles to lose tractive contact with the road surface
and skid uncontrollably. For this reason, ABS also stands for antiskid braking
system. The main benefit from ABS operation is retaining the directional con-
trol of the vehicle during heavy braking in rare circumstances.

1.2.1 Slip Rate and Brake Force

When the brake pedal is depressed during driving, the wheel velocity (the
tangential speed of the tire surface) decreases, and so does the vehicle velocity.
The decrease in the vehicle velocity, however, is not always synchronized with
the wheel velocity. When the maximum friction between a tire and the road
surface is reached, further increase in brake pressure will not increase the
braking force, which is the product of the weight of the vehicle and the friction

�

� �

�

4 1 Introduction to Real-Time Embedded Systems

0 20 40 60 80 100

Slip rate (%)

B
ra

k
in

g
 f

o
rc

e

C
o
rn

e
ri
n
g
 f
o

rc
e

Braking force

Cornering force

ABS ideal control region Figure 1.1 Relationship among the slip rate,
braking force, and cornering force.

coefficient. As a consequence, the vehicle velocity is greater than the wheel
speed, and the wheel starts to skid. The wheel slip rate, s, is defined as

s = V − 𝜔R
V

where V , 𝜔, and R denote the vehicle speed, wheel angular velocity, and wheel
rolling radius, respectively. Under normal driving conditions, V =𝜔R and
thus, s= 0. During severe braking, it is common to have𝜔= 0 and V > 0, which
translates to s= 1, a case of wheel lockup.
Figure 1.1 describes the relationship among the slip rate, braking force, and

cornering force. The continuous line in the figure represents the relationship
between the slip rate and braking force. It shows that the braking force is the
largest when the slip rate is between 10% and 20%. The braking distance is
the shortest at this rate. With further increase in slip rate, the braking force
is decreased, which results in a longer braking distance.The dashed line depicts
the relationship between the slip rate and cornering force. The cornering force
is generated by a vehicle tire during cornering. It works on the front wheels as
steering force and on the rear wheels to keep the vehicle stable. It decreases as
the slip rate increases. In case of a lockup, the cornering force becomes 0 and
steering is disabled.

1.2.2 ABS Components

The ABS is composed of four components. They are speed sensors, valves,
pumps, and an electrical control unit (ECU). Valves and pumps are often
housed in hydraulic control units (HCUs).

1.2.2.1 Sensors
There are multiple types of sensors used in the ABS. A wheel speed sensor is
a sender device used for reading a vehicle’s wheel rotation rate. It is an elec-
tromagnet illustrated in Figure 1.2. As the sensor rotor rotates, it induces AC
voltage in the coil of the electromagnet. When the rotation of the sensor rotor
increases, the magnitude and frequency of induced voltage increase as well.

�

� �

�

1.2 Example: Automobile Antilock Braking System 5

Figure 1.2 Wheel speed sensor.

S NTo ECU

Wheel speed sensor
Sensor rotor

Air gap

A deceleration sensor measures the vehicle’s rate of deceleration. It is a
switch type of sensor. It uses phototransistors that can be activated by light. In
a deceleration sensor, two Light-Emitting Diode (LEDs) aim at two phototran-
sistors that are separated by a slit plate. When the vehicle’s rate of deceleration
changes, the slit plate swings in the vehicle’s rear-to-front direction. The slits
in the slit plate act to expose the light from the LEDs to the phototransistors.
This movement of the slit plate switches the phototransistors ON and OFF.
The combinations formed by the two phototransistors switching ON and OFF
distinguish the rate of deceleration into four levels, which are sent as signals to
the ABS ECU.
A steering angle sensor (SAS) measures the steering wheel position angle

and rate of turn. The SAS is located in a sensor cluster in the steering column.
The cluster always has more than one steering position sensor for redundancy
and to confirm data. The ECU module must receive two signals to confirm the
steering wheel position. These signals are often out of phase with each other.
The SAS tells the ABS control module where the driver is steering the vehicle
while the body motion sensors tell it how the body is responding.
A yaw-rate sensor is a gyroscopic device that measures a vehicle’s angular

velocity around its vertical axis. The angle between the vehicle’s heading and
vehicle actual movement direction is called slip angle, which is related to the
yaw rate.
A brake pressure sensor captures the dynamic pressure distribution between

a brake pad and the rotor surfaces during actual braking.

1.2.2.2 Valves and Pumps
Auto brakes typically work with hydraulic fluid. The brake’s master cylinder
supplies fluid pressure when the pedal is applied. In a standard ABS system,
the HCU houses electrically operated hydraulic control solenoid valves that
control the brake pressure to specific wheel brake circuits. A solenoid valve is
a plunger valve that is opened and closed electrically. When power is applied
to the solenoid, a magnetic coil is energized, which moves the plunger.
There are multiple hydraulic circuits within the HCU, and each hydraulic

circuit controls a pair of solenoid valves: an isolation valve and a dump valve.
The valves have three operation modes: apply, hold, and release. In the apply
mode, both valves are open and allow the brake fluid to freely flow through the

�

� �

�

6 1 Introduction to Real-Time Embedded Systems

Hydraulic pressure

to brake caliper

Hydraulic pressure

from master cylinder

Isolation

valve
Dump

valve

Figure 1.3 Valves operate in the
apply mode.

No pressure flows

to brake caliper

Hydraulic pressure

from master cylinder

Isolation

valve
Dump

valve

Figure 1.4 Valves operate
in the hold mode.

HCU control circuit to the specific brake circuit, as illustrated in Figure 1.3. In
this mode, the driver is in full control of the brakes through themaster cylinder.
In the hold mode, both valves are in the closed position that isolates the

master cylinder from the brake circuit. This prevents the brake pressure from
increasing any further should the driver push the brake pedal harder. The
brake pressure to the wheel is held at that level until the solenoid valves are
commanded to change its position. This is illustrated in Figure 1.4.
In the release mode, the isolation solenoid valve is closed, but the dump valve

is open to release some of the pressure from the brake, allowing the wheel to
start rolling again. The dump valve opens a passage back to the accumulator
where the brake fluid is stored until it can be returned by an electric pump to
the master-cylinder reservoir. This is illustrated in Figure 1.5.
The pump is the heart of the ABS. Antilock brakes wouldn’t exist without

the hydraulic ABS pump. At the detection of wheel slip under heavy breaking,

�

� �

�

1.2 Example: Automobile Antilock Braking System 7

Hydraulic pressure

released from brake

Hydraulic pressure

from master cylinder

Isolation

valve

Dump

valve

Pressure pumped

to reservoir

Figure 1.5 Valves operate in the release mode.

the pump in theHCU sends the brake fluid back to themaster cylinder, pushing
one or both pistons rearward in the bore.The controller modulates the pump’s
status in order to provide the desired amount of pressure and reduce slipping.
All valves are open during normal braking. When a wheel locks up, the

braking pressure supplied to it should be reduced until it returns to spin.
The ABS hydraulic unit works by closing the solenoid valve leading to the
wheel that is locking up, thereby reducing the brake force the wheel receives.
This way, the wheel’s deceleration rate slows down to a safe level. Once that
level is achieved, the solenoid opens again to perform its normal function.

1.2.2.3 Electrical Control Unit
The ECU is the brain of the ABS. It is a computer in the car. It watches all
the sensors connected to it and controls the valves and pumps, as shown in
Figure 1.6. Simply put, if the ABS sensors placed at each wheel detect a lockup,
ABS intervenes within milliseconds by modulating the braking pressure at
each individual wheel. In this way, the ABS prevents the wheels from locking
up during braking, thus ensuring steerability and stability combined with the
shortest possible braking distance.
The ECU periodically polls the sensor readings all the time and determines

whether any unusual deceleration in the wheels occurs. Normally, it will take
a car 5 seconds to stop from 60mph under ideal conditions, but when there
is a wheel lockup, the car could stop spinning in less than 1 second. Therefore,
a rapid deceleration in the wheels is a strong indication that a lockup is
occurring. When the ECU detects a rapid deceleration, it sends a control
signal to the HCU to reduce the pressure to the brakes. When it senses the
wheels accelerate, then it increases the pressure until it senses the deceleration

�

� �

�

8 1 Introduction to Real-Time Embedded Systems

Wheel speed

sensor

Deceleration

sensor

Steering angle

sensor

Yaw-rate

sensor

Pressure

sensor

Electrical

control unit

ABS valve

driver

ABS pump

driver

Figure 1.6 Electrical control unit.

again. The deceleration–acceleration repetition occurs very quickly, with the
rapid opening and closing of the valves, until the tires slow down at the same
rate as the car. Some ABS systems can cycle up to 16 times per second.

1.2.3 ABS Control

ABS brake controllers pose unique challenges to the designers. The main dif-
ficulties in the design of any ABS controller arise from the strong nonlinearity
and uncertainty of the system to be controlled. First of all, the interaction
between the tire and the road surface is very complex and hardly understood.
Existing friction models are mostly experimental-based approximations of
highly nonlinear phenomena. The dynamics of the whole vehicle is also
nonlinear, and it even varies over time. In addition, ABS actuators are discrete,
and control precision must be achieved with only three types of control
commands: build pressure, hold pressure, or reduce pressure (recall the three
operation modes of solenoid valves).
Many different control methods have been developed for ABS. Research

on improved control methods is still continuing. The method applied in early
systems is threshold control, which is as simple as bang–bang control. It uses
wheel acceleration and wheel slip as controlled variables. Once the calculated
wheel deceleration or wheel slip is over one of the threshold values, the brake
pressure is commanded to increase, hold constant, or decrease. Since the brake
pressure is cyclically changed based solely on the binary states of the input
variables, wheel speed oscillations over time are less controllable.
A class of more advanced control methods uses a cascade closed-loop

control structure shown in Figure 1.7. The outer loop, which includes the

�

� �

�

1.2 Example: Automobile Antilock Braking System 9

Slip

regulator Vv(1 -Sd)

Vehicle

velocity

estimation

Wheel

velocity

control

Brake

chamber

Wheel

dynamics

Sd

Vv

Vw

Vwd

Figure 1.7 A Cascade control structure for ABS.

vehicle velocity estimation (Vv) and desired slip calculation, provides the com-
mand signal (Vwd) for the inner wheel velocity loop. For inner-loop control,
several mechanisms have been proposed. The PID controller, for example, is
one of such mechanisms. PID stands for proportional–integral–derivative.
PID controllers adopt feedback control law and are widely used in industrial
control systems. A PID controller continuously calculates an error value as
the difference between a desired set point and a measured process variable.
It is an integration of three control policies. With the proportional control
(P), the controller output is proportional to the error, which in our case is
Vwd. With the integral control (I), the controller output is proportional to the
amount of time the error is present, which eventually leads to a zero error.
With the derivative control (D), the controller output is proportional to the
rate of change of the error, which reduces the response time. It has been
shown that even for complex and changing surface types, good results can be
attained with the conventional PID control algorithms. In the recent years,
the well-known features of the conventional PID have been combined with the
robustness, self-tuning, or adaptability to nonlinear models of other control
methods, which highly enhanced the ABS performance.
No matter what control law is adopted, the feedback control loop can be

implemented as an infinite periodic loop:

set timer to interrupt periodically with period T;
DO FOREVER
wait for interrupt;
read sensor data;
compute control value u;
output u;
ENDDO;

Here, the period T is a constant in most applications. It is an important
engineering parameter. If T is too large, then the control variables will not get
adjusted quickly; if it is small, then it will result in excessive computation.

�

� �

�

10 1 Introduction to Real-Time Embedded Systems

1.3 Real-Time Embedded System Characteristics

The ABS example should have given us some idea about what a real-time
embedded system looks like and how it interacts with the larger system
it resides in to fulfill the specified function. This section discusses the
characteristics of general real-time embedded systems.

1.3.1 System Structure

A real-time embedded system interacts with its environment continuously and
timely. To retrieve data from its environment – the target that it controls or
monitors, the system must have sensors in place. For example, the ABS has
several types of sensors, including wheel speed sensors, deceleration sensors,
and brake pressure sensors. In the real world, on the other hand, most of the
data is characterized by analog signals. In order to manipulate the data using a
microprocessor, the analog data needs to be converted to digital signals, so that
the microprocessor will be able to read, understand, and manipulate the data.
Therefore, an analog-to-digit converter (ADC) is needed in between a sensor
and a microprocessor.
The brain of an embedded system is a controller, which is an embedded

computer composed of one or more microprocessors, memory, some periph-
erals, and a real-time software application. The software is usually composed
of a set of real-time tasks that run concurrently, may or may not be with the
support of a real-time operating system, depending on the complexity of the
embedded system.
The controller acts upon the target system through actuators. An actuator

can be hydraulic, electric, thermal, magnetic, or mechanic. In the case of ABS,
the actuator is the HCU that contains valves and pumps. The output that the
microprocessor delivers is a digit signal, while the actuator is a physical device
and can only act on analog input. Therefore, a digit-to-analog conversion
(DAC) needs to be performed in order to apply the microprocessor output to
the actuator. Figure 1.8 shows the relations among all these systemcomponents.

1.3.2 Real-Time Response

A real-time system or application has to finish certain tasks within specified
time boundaries. This is the character that distinguishes a real-time system
from a non-real-time system. The ABS is a typical real-time system. When the
sensors detect a dramatic deceleration of wheels, the system must act quickly
to prevent the wheels from being locked up; otherwise, a disaster may occur.
Moreover, the control law computing is also real-time: a cycle of a sensor data
processing and control value computing must be finished before the next cycle
starts; otherwise, the data to be processed will pile up. If a missile guidance
system fails to make timely corrections to its attitude, it can hit the wrong

�

� �

�

1.3 Real-Time Embedded System Characteristics 11

Figure 1.8 Structure of real-time
embedded systems. Controller

RTOS

Task 1 Task 2 Task n

Sensors Actuators

Target system

A/D D/A

…

target. If a GPS satellite doesn’t keep a highly precise measure of time, position
calculations based on its signal will simply be wrong.
Deadlines of real-time tasks are typically derived from the required respon-

siveness of the sensors, actuators, and the dynamics of the target that the
embedded system controls. Real-time systems are expected to execute all
tasks by their deadlines. However, “real-time” does not mean “real fast” or “the
faster, the better.” Take a cardiac pacemaker as an example. Obviously, if it
fails to induce current through the heart muscle at the right time, the patient’s
heart can go into fibrillation. However, if it induces current faster than normal
heart rhythm, it will cause problem as well.

1.3.3 Highly Constrained Environments

Real-time embedded systems are often run in highly resource-constrained
environments, which make the system design and performance optimization
quite challenging. Although some embedded systems, such as air-traffic control
systems and wireless mobile communication systems, run with very powerful
processors, a lot of them are equipped with 8-bit processors only. Examples
are the systems embedded in dishwashers, microwaves, coffee makers, and
digital watches. Most embedded systems are constrained in terms of processor
speed, memory capacity, and user interface. Many embedded systems operate
in an uncontrolled harsh environment. They have to survive excessive heat,
moisture, vibration, shock, or even corrosion. The ABS and automotive
embedded systems that control ignition, combustion, and suspension are such
examples. Therefore, embedded systems must be optimized in terms of size,
weight, reliability, performance, cost, and power consumption to fit into the

�

� �

�

12 1 Introduction to Real-Time Embedded Systems

computing environment and perform their tasks. Thus, embedded systems
typically require far more optimization than standard desktop applications.

1.3.4 Concurrency

Concurrency refers to a property of systems in which several computations
are executing simultaneously and potentially interacting with each other.
Embedded systems by design are closely interacting with their physical
environment. We have demonstrated this feature through the ABS analysis.
Physical environment is by its nature concurrent – multiple processes occur at
the same time. For example, the following events in the ABS can occur at the
same time:

• Wheel speed sensor event
• Deceleration sensor event
• Brake pedal event
• Solenoid valve movement
• Pump operation

Almost all of these events have strict constraints on the response time. All
deadlines should be met.
Because of the existence of multiple control processes and each process may

have its own control rate, many real-time embedded systems are multirate
systems. For example, a real-time surveillance system needs to process both
audio and video inputs, but they are processed at different rates.

1.3.5 Predictability

A real-time system must behave in a way that can be predicted in terms of all
timing requirements. For instance, it must be mathematically predictable if a
specific task can be completed before a given deadline. Factors that go into this
calculation are system workload, the power of processors, run-time operating
system support, process and thread priorities, scheduling algorithm, commu-
nication infrastructure, and so on. A real-time system such as an ABS, or an
airplane’s flight-control system, must always be 100% predictable, or human
lives are at stake.
Many real-time embedded systems contain heterogeneous computing

resources, memories, bus systems, and operating systems and involve dis-
tributed computing via global communication systems. Latency and jitter in
events are inevitable in these systems. Therefore, related constraints should be
specified and enforced. Otherwise, these systems can become unpredictable.
A term related to predictability is determinism. Determinism represents

the ability to ensure the execution of an application without concern that
outside factors, such as unforeseen events, will upset the execution in unpre-
dictable ways. In other words, the application will behave as intended in terms

�

� �

�

1.4 Hard and Soft Real-Time Embedded Systems 13

of functionality, performance, and response time, all of the time without
question.

1.3.6 Safety and Reliability

Some real-time embedded systems are safety-critical and must have high
reliability. Examples are cardiac pacemakers and flight control systems. The
term safety means “freedom from accidents or losses” and is usually concerned
with safety in the absence of faults as well as in the presence of single-point
faults. Reliability, on the other hand, refers to the ability of a system or
component to perform its required functions under stated conditions for a
specified time. It is defined as a stochastic measure of the percentage of the
time the system delivers services. Embedded systems often reside in machines
that are expected to run continuously for years without errors. Some systems,
such as space systems and undersea cables, are even inaccessible for repair.
Therefore, embedded system hardware and software are usually developed
and tested more carefully than those for general-purpose computing systems.
Reliability is often measured in failures per million operating hours. For

example, the requirement for a typical automotive microcontroller is 0.12
failures per million operating hours. The measurement is 37.3 for an automo-
tive oil pump. Failures could be caused by mechanical “wear-out,” software
defects, or accumulated run-time faults.

1.4 Hard and Soft Real-Time Embedded Systems

There are hard real-time systems and soft real-time systems. A hard real-time
system is a system in which most timing constraints are hard. A soft real-time
system is a system in which most timing constraints are soft.
A hard real-time constraint is a constraint that a system must meet. If the

deadline is missed, it will either cause the system failure or result in a zero
usefulness of the delivered service. On the other hand, a soft constraint is a
constraint that a system should meet, but when the deadline is occasionally
missed, it won’t cause any disastrous result, and the delivered service is still
useful to a certain extent.
Normally, a hard constraint is expressed deterministically. For example,

we may have the following constraints for the ABS:

• The wheel speed sensors must be polled every 15milliseconds.
• Each cycle, the control law computation for wheel speed must be finished in

20milliseconds.
• Each cycle, thewheel speed predictionmust be completed in 10milliseconds.

These constraints are hard because the sensor data, control value, and wheel
speed predicted value are all critical to the correct functioning of the ABS. It is

�

� �

�

14 1 Introduction to Real-Time Embedded Systems

Value

Hard
Soft

Deadline
Time

Figure 1.9 Value of hard and soft real-time tasks when deadline is missed.

also because these events are periodical. If the deadline of one cycle is missed,
the next cycle starts immediately, and thus, the late result becomes useless.
Soft constraints are often expressed statistically. For example, we may have

the following constraints for an automated teller machine (ATM):
• After a credit card or debit card is inserted, the probability that the ATM

prompts the user to enter a passcode within 1 second should be no less than
95%.

• After it receives a positive response from the bank that issued the card, the
ATM should dispense the specified amount of cash within 3 seconds at a
chance of no less than 90%.

The deadlines with these two constraints are soft, because a few misses of the
deadlines do no cause serious harm; only the degree of customers’ satisfaction
of using the system is negatively affected.
Figure 1.9 illustrates the value function of a real-time task in terms of

response time. If the task has a hard deadline, then its value drops to zero when
the deadline is missed. If the task has a soft deadline, then its value decreases
when the deadline is missed, but not to zero right way.
Many hard real-time systems also have soft constraints and vice versa.When

a timing constraint is specified as hard, then a rigorous validation is required.

Exercises

1 Give an example of real-time database application. Is it a hard or a soft
real-time system? Give your arguments.

2 Thecar enginemanagement system (EMS) is a real-time embedded system.
Read related online materials, and find out major hardware components of
the system and how they interact with each other to ensure the best engine
performance.

3 Give an example of real-time embedded systems in which an earlier
response than expected is as bad as a late response.

4 Give an example of a real-time embedded system that has both hard and
soft real-time constraints.

�

� �

�

References 15

Suggestions for Reading

Shin and Ramanathan [1] introduces the basic concepts and identifies the key
issues in the design of real-time systems. Axer et al. [2] summarizes the
current state of the art in research concerning how to build timing-predictable
embedded systems. A survey of ABS control laws is presented in Ref. [3].

References

1 Shin, K. and Ramanathan, P. (1994) Real-time computing: a new discipline of
computer science and engineering. Proceedings of the IEEE, 82 (1), 6–25.

2 Axer, P., Ernst, R., Falk, H. et al. (2012) Building Timing Predictable
Embedded Systems, ACM Transactions on Embedded Computing Systems.

3 Aly, A., Zeidan, E., Hamed, A., and Salem, F. (2011) An antilock-braking
systems (ABS) control: a technical review. Intelligent Control and
Automation, 2, 186–195.

�

� �

�

17

2

Hardware Components

This chapter introduces real-time embedded system hardware components.
Because real-time embedded systems range from small ones such as those in
coffeemakers and digital watches to big and sophisticated ones such as railroad
control systems andmobile communication switches, there is a big difference in
the set of hardware components used. Figure 2.1 shows a set of typical embed-
ded system hardware units.

2.1 Processors

The processors used in embedded systems vary with the need of computa-
tion power of individual embedded application. They fall into two general
categories, however. One is general-purpose microprocessors, and the other
is special-purpose processors. Microcontrollers and application-specific
integrated circuits (ASICs) are the most popular special-purpose processors.

2.1.1 Microprocessors

Many real-time embedded systems use general-purpose microprocessors. A
microprocessor is a computer processor on an integrated circuit. It contains
all, or most of, the central processing unit (CPU) functions. Figure 2.2 shows a
set of elements that are necessary for microprocessors to perform operations.
Amicroprocessor is designed to perform arithmetic and logic operations that

make use of small storage called registers. It has a control unit that is respon-
sible for directing the processor to carry out stored program instructions. It
communicates with both the arithmetic logic unit (ALU) and memory. All the
instructions that are fetched frommemory are stored in the instruction register
as binary values. The instruction decoder reads that values and tells the ALU
which computational circuits to energize in order to perform the function.The
ALU performs integer arithmetic and bitwise logic operations. These opera-
tions are the result of instructions that are part of the microprocessor design.

Real-Time Embedded Systems, First Edition. Jiacun Wang.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

�

� �

�

18 2 Hardware Components

TimerFPGA/ASIC Memory

Input interfaces Output interfaces

Actuators

Processor

Sensors

Figure 2.1 Real-time embedded system hardware components.

Registers

Arithmetic

logic unit
Control

unit

Instruction register

and decoder

Program counter

Microprocessor
Figure 2.2 Microprocessor
elements.

Program counter stores the address of the next instruction to be executed.
Microprocessors operate on numbers and symbols represented in the binary
numeral system.
The first commercial microprocessor Intel 4004 was invented by Federico

Faggin and his coworkers in the early 1970s. Intel 4004 is a 4-bit CPU released
by Intel Corporation. Before that, small computers had been built using racks
of circuit boards with many medium- and small-scale integrated circuits
(ICs). Microprocessors combined them into one or a few large-scale ICs.
This approach of CPU implementation overtook all other central processing
unit implementation methods quickly. Most modern microprocessors are
either 32-bit or 64-bit, although 128-bit microprocessors are also available.
Examples of general-purpose microprocessors include Intel 80x86, SPARC,
and Motorola 68HCxxx.
Microprocessors find applications where tasks are unspecific. For example,

they can be used for developing software, games, and websites, editing photos,
or creating documents. In such cases, the relationship between the input and

�

� �

�

2.1 Processors 19

output is not defined. They need a large number of resources, such as RAM,
ROM, and I/O ports. The embedded software can be tailored for specific tasks
that are designed for an embedded system.

2.1.2 Microcontrollers

Compared to a general-purpose microprocessor, a microcontroller is a
self-contained system with peripherals, memory, and a processor that is
designed to perform specific tasks. Microcontrollers are used in systems
where the relationship between the input and output is usually clearly defined.
Examples are a computer mouse, washingmachine, digital camera, microwave,
car, cell phone, and digital watch. Since the applications are very specific, they
have little demand on resources such as RAM, ROM, I/O ports, and hence, they
can be embedded on a single chip with the processor. This in turn reduces the
size and the cost. A microcontroller is cheap to replace, while microprocessors
are 10 times more expensive. Moreover, microcontrollers are generally built
using a technology known as complementary metal–oxide–semiconductor
(CMOS). This technology is a competent fabrication system that uses less
power and is more immune to power spikes compared to other techniques.
Examples of commonly used 16-bit microcontrollers for medium-scale

embedded systems are PIC24 series, Z16F series, and IA188 series. The most
common sizes for RAM are 1.5, 2, 4, 8, 16, and 32 kB.

2.1.3 Application-Specific Integrated Circuits (ASICs)

AnASIC is a highly specialized device and constructed for one specific-purpose
application only. It is used as a replacement to general-purpose logic circuitry.
It integrates several functions into a single chip and thus reduces the number of
overall circuits needed. ASICs are very expensive to manufacture, and once it
is made, there is no way to modify or improve, as the metal interconnect mask
set and its development are the most expensive and of fixed cost. If you want to
alter the instruction set, or do something similar, you have to modify the actual
silicon IC layout. The lack of programmability and high cost make ASICs not
suitable for use in the prototyping stage of system design cycle.
ASICs are widely used in communication, medical, network, andmultimedia

systems, such as cellular phones, network routers, and game consoles. Most
SoC (Systems-on-a-Chip) chips are also ASICs. A microcontroller can be
viewed as a type of ASIC that executes a program and can do generic things as
a result. For a given application, ASIC solutions are normally more effective
than the solutions based on the software running on microprocessors.

2.1.4 Field-Programmable Gate Arrays (FPGAs)

An FPGA is a programmable ASIC. It contains a regular grid of logic cells that
can be rapidly reconfigured, which facilitates fast prototyping of embedded

�

� �

�

20 2 Hardware Components

systems. FPGAs are commonly used during system design. They are usually
replaced in the final product with custom circuitry, such as ASIC chips, due to
higher performance and lower cost. When reconfigurability is an essential part
of the functionality of a real-time embedded system, FPGAs do appear in the
final product.
The first commercial FPGAwas developed by Xilinx in 1985.Modern FPGAs

are fabricated using the most advanced technology and enable implementation
of very high performance systems. For example, the latest Xilinx Virtex Ultra-
Scale is built on a 20-nm technology, introduced in May, 2014. The UltraScale
uses a 3D or stacked architecture that contains up to 4.4 million logic cells.
An FPGA can be used to solve any problem that is computable. Specific

applications of FPGAs include digital signal processing, software-defined
radio, ASIC prototyping, medical imaging, computer vision, speech recog-
nition, cryptography, bioinformatics, computer hardware emulation, radio
astronomy, metal detection, and a growing range of other areas. In 2013,
the market of FPGAs was $5.4 billion and is estimated to reach $9.8 billion
by 2020.

2.1.5 Digital Signal Processors (DSPs)

DSPs are designed for high-data-rate computations. DSPs implement algo-
rithms in hardware and offer high performance in repetitive and numerically
intensive tasks. DSPs are two to three times faster than the general-purpose
microprocessors in signal processing applications, including audio, video, and
communication applications.
Disadvantages include generally high cost. A recent study also indicates that

many commercially available DSPs lack adequate compiler support.

2.1.6 Application-Specific Instruction Set Processors (ASIPs)

ASIPs are an emerging design paradigm that offers an intermediary solution
between ASICs and programmable processors. Typically, ASIPs consist of cus-
tom integrated circuitry that is integrated with an instruction set tailored to
benefit a specific application.This specialization of the core provides a trade-off
between the flexibility of a general-purpose processor and the performance of
an ASIC.
Advantages of ASIPs include high performance and increased design

flexibility because later design changes can be accommodated by updating the
application software running on the ASIP.

2.1.7 Multicore Processors

Because of the fact that the processor clock speed is closely linked to the num-
ber of transistors that can fit on a chip, when transistor shrinking technology
began to slow down, improvement in increased processor speed also began to

�

� �

�

2.1 Processors 21

slow down.There is also a power wall issue.That is, as processors becomemore
capable (denser transistors on a chip), their energy consumption and heat pro-
duction increase rapidly as well. As a result, multicore processing has become
a growing industry trend. Most current systems are multicore. A multicore
processor is an integrated circuit to which two or more processors have been
attached for enhanced performance, reduced power consumption, and more
efficient simultaneous processing of multiple tasks.
Multicore is a sharedmemorymultiprocessor: all cores share the samemem-

ory. However, each core typically has its own private cache memory. Threads
of different cores run in parallel. Within each core, threads are time-sliced.

2.1.8 Von Neumann Architecture and Harvard Architecture

There are two fundamental computer architectures, namely von Neumann
architecture and Harvard architecture. Both architectures use stored program
mechanism, which keeps program instructions and data in read–write,
random-access memory (RAM). The difference is that the von Neumann
architecture uses common memory to store both data and instructions, and
thus, an instruction fetch and a data operation cannot occur at the same time
because they share a common bus. The Harvard architecture, on the other
hand, separates the storage of instructions from data. This way, the CPU can
both read an instruction and perform a data memory access at the same time.
The two architectures are illustrated in Figure 2.3.
The vonNeumann architecture shares single commonbus for instruction and

data, which results in a low performance as compared to the Harvard architec-
ture. It is often called the von Neumann bottleneck. Several approaches to over-
coming the vonNeumann bottleneck have been developed. One is to use cache
memory. We will discuss it later. Moreover, accidental corruption of program
memory may occur with the von Neumann architecture, because data mem-
ory and program are stored physically in the same chip. However, since data
memory and program memory are stored physically in different locations in

Memory

unit

(a) (b)

Control

unit

Instruction

memory
Control

unit

ALUALU

Data

memory

Figure 2.3 Two fundamental computer architectures. (a) von Neumann architecture and
(b) Harvard architecture.

�

� �

�

22 2 Hardware Components

theHarvard architecture, no chances exist for accidental corruption of program
memory.
Most DSPs use Harvard architecture for streaming data to achieve greater

and more predictable memory bandwidth.

2.1.9 Complex Instruction Set Computing and Reduced Instruction Set
Computing

An instruction set is a group of instructions that can be input to the proces-
sor. These instructions direct the processor in terms of data manipulation. An
instruction typically includes an opcode that specifies the operation to per-
form, such as add contents of memory to register, and zero or more operand
specifiers, which may specify registers, memory locations, or literal data. An
instruction set architecture serves as an interface to allow easy communica-
tion between the programmer and the hardware. It prepares the processor to
respond to all the user commands.
There are two prevalent instruction set architectures: complex instruction set

computing (CISC) and reduced instruction set computing (RISC). CISC pro-
cessors run complex instructionswhere a single instructionmay execute several
low-level operations. The primary goal of CISC architecture is to complete a
task in as few lines of assembly instructions as possible. Let us say we want to
multiply two numbers. A CISC processor would come prepared with a specific
instruction, say MULT. When executed, this instruction will load the two num-
bers from the main memory into two separated registers, multiply them in the
execution unit, and then store the product in an appropriate register or back to
memory. Thus, the entire task of multiplying two numbers is completed with a
single instruction such as
MULT A, B

MULT is a complex instruction. It operates directly on the computer’s memory
banks and does not require the programmer to explicitly call any loading or
storing functions. Executing a complex instruction may need multiple clock
cycles.
On the contrary, RISC processors only use simple instructions that can be

executed within one clock cycle. To perform a multiplication operation, for
example, the following simple instructions are required:
LOAD R1, A ; load A into register R1
LOAD R2, B ; load B into register R2
PROD R1, R2 ; multiply A and B, product saved in R1
STOR R1, A ; store A*B into a memory location

Examples of CISC processors are Intel x86 and SHARC. Examples of RISC
processors are ARM 7 and ARM 9.

�

� �

�

2.2 Memory and Cache 23

2.2 Memory and Cache

Memory is one of the basic components of embedded systems.The fundamen-
tal building block of memory is memory cell. The memory cell is an electronic
circuit that stores one bit of binary information, and it must be set to store a
logic 1 (high voltage level) and reset to store a logic 0 (low voltage level). Its
value is maintained until it is changed by the set/reset process. Memory is used
to store both programs and data.
One can envision memory as a matrix of bits, where the length of each row is

the size of the addressable unit of the memory. The total number of rows rep-
resents the memory’s capacity. Each row is implemented by a register and has
a unique address. Memory addresses typically start from 0 and grow upward.
Normally, memory is byte-addressable, meaning each register has 8 bits. Some
machines can process 32 bits a time, and the memory is implemented with
32-bit registers. We say the memory is 32-bit word-addressable.

2.2.1 Read-Only Memory (ROM)

ROM is used to store programs. While a program is running, the data in the
programmemory won’t change. ROM is a type of nonvolatile memory, and the
stored programwon’t be lost when the ROM is powered off. ROM is hardwired
and cannot be changed after manufacture.

PROM (Programmable Read-Only Memory) is similar to ROM except that
it is programmable. We can buy a blank chip and have a PROM programmer
program it to meet our requirements. But, once we program it, we can never
change it.

EPROM (Erasable Programmable Read-Only Memory) is also a nonvolatile
memory. What makes it distinct from ROM or PROM is that once pro-
grammed, an EPROM can be erased by exposing it to strong ultraviolet light
source (such as from a mercury-vapor light), and then a new program can be
written into it.

EEPROM (Electrically Erasable Programmable Read-Only Memory) is used
similarly to the hard drive in a personal computer, to store settings that might
change occasionally, which need to be remembered next time the computer
starts up. Essentially, it can be written, erased, rewritten electronically. No spe-
cial treatment is required to erase the data.

Flash is the latest ROM and the most popular technology used in today’s
embedded design. Flash memory is an electronic (solid-state) nonvolatile stor-
age medium that can be electrically erased and reprogrammed. Flash memory
is technically a type of EEPROM. Flash memory earned its name because of
its high speed (similarly to the flash of a camera) in erasing all the data from a
semiconductor chip.

�

� �

�

24 2 Hardware Components

2.2.2 Random-Access Memory (RAM)

RAM is the simplest andmost common form of data storage. RAM allows data
items to be read orwritten in almost the same amount of time irrespective of the
physical location of the data inside the memory. Unlike ROM, RAM is volatile,
which means a power off will erase all the data in the RAM. There are two
types of RAM that are widely used, namely static RAM (SRAM) and dynamic
RAM (DRAM).They use different technologies for data storage. SRAMuses six
transistors permemory cell, whereas DRAMuses only one transistor permem-
ory cell. Therefore, SRAM is more expensive to produce. However, SRAM cell
is a type of flip-flop circuit, usually implemented using field-effect transistors
that have high input impedance. It requires very low power when not being
accessed.
DRAMuses capacitive storage.The capacitor holds a high or low charge (1 or

0, respectively), and the transistor acts as a switch that lets the control circuitry
on the chip read the capacitor’s state of charge or change it. Since the capacitor
can lose charge, DRAM needs to be refreshed periodically. This makes DRAM
more complex and power-consuming. However, as this form of memory is less
expensive to produce compared to SRAM, it is the predominant form of mem-
ory used in embedded systems.
SDRAM (synchronous DRAM) is a type of DRAM that is synchronized

with the system bus. It is a generic name for various kinds of DRAM that are
synchronized with the clock speed that the microprocessor is optimized for.
SDRAM can accept one command and transfer one word of data per clock
cycle. It is capable of running at 133MHz, a typical clock frequency.

2.2.3 CacheMemory

Processor speed has significantly increased in recent years. Memory improve-
ments, on the other hand, have mostly been in terms of density – the ability to
storemore data in less space – rather than transfer rates.When a fast processor
works with a slowmemory, the overall speed is low, because nomatter how fast
the processor can work, its actual speed is limited to the rate of data transfer
from the memory.Therefore, a faster processor just means that it spends more
time being idle.
Cache memory technology is developed to overcome this problem. Cache

memory is a type of RAM that a microprocessor can access significantly faster
than it can access regular RAM. This memory is typically integrated directly
with the processor chip or placed on a separate chip that has a separate bus
interconnected with the processor. Cache memory is used to store program
instructions that are frequently re-referenced by software during operation,
whereas less frequently used data is stored in a big and low-speed memory
device. When the processor processes data, it looks first in the cache memory;
if it finds the instructions there, it does not have to do a more time-consuming

�

� �

�

2.2 Memory and Cache 25

Processor Cache
Main

memory

Word transfer Block transfer

Figure 2.4 Cache memory.

reading of data from regular memory. If not, a block of main memory, con-
sisting of some fixed number of words, is read into the cache, and then the
word is delivered to the processor. The other words in the block are likely to be
referenced in the near future due to the phenomenon of locality of reference.
Such a design increases the overall speed of the software execution.The idea is
illustrated in Figure 2.4.
Some CPUs have multilevel cache memory. They are referred to as L1 for

level one, L2 for level two, L3 for level three, and so on. A CPU directly works
with L1 cache.The goal of the L1 cache is to line up with the CPU so that it has
data to work on every processor cycle at the best. It is a small, high-speed cache
incorporated right onto the processor’s chip. The L1 cache typically ranges in
size from 8 to 64KB and uses the high-speed SRAM.The L2 cache is expected
to feed data to the L1 cache every few processor cycles, while the L3 cache can
feed data to the L2 cache at a further slower rate.The three levels exchange data
based on CPU requirements. Figure 2.5 shows a dual-core processor with two
levels of cache memory. Each core has its private L1 cache, but they share the
L2 cache and, of course, the main memory.

Figure 2.5 A dual-core processor with
two levels of cache memory. Processor

Core 1 Core 2

L1 Cache L1 Cache

L2 Cache

Main memory

�

� �

�

26 2 Hardware Components

2.3 I/O Interfaces

Embedded processors communicate with the outside world through I/O inter-
faces. An I/O interface is an electronic device, exposed to designers as pins of
the chip, which has one side connecting to the processor and the other side
connecting to input/output devices. For example, a key pad in a microwave is
an electronic device for users to interact with the microwave.There is a special
circuit between the key pad and the embedded microcontroller that serves as
the interface. When a key is pressed by a user, the circuit picks up the event,
converts it into a unique recognizable binary number, and presents it to the pro-
cessor’s I/O port.The processor reads the number from the port and processes
it based on what it means.
In case of analog I/O, as seen in the example of ABS, an A/D converter (ADC)

is needed to encode analog inputs (normally voltage) into a digital word (nor-
mally 8 bits or 16 bits), and a D/A converter (DAC) is needed to decode digital
outputs. Let VRefL and VRefH be the lower bound and upper bound, respectively,
of voltage that an ADC can encode. The ADC encodes all possible inputs in
[VRefL, VRefH] into a range of values from 00 to FF (8 bits) or from 0000 to FFFF
(16 bits). The number of bits in the digit word determines the resolution of
the conversion, which represents the magnitude of the quantization error. For
example, an ADC with a resolution of 8 bits can encode an analog input to one
in 256 different levels.
The ADC resolution can also be expressed in volts. The minimum change in

voltage required to guarantee a change in the output code level is called the
least significant bit (LSB) voltage. The resolution Q of the ADC is equal to
the LSB voltage. The maximum quantization error is half of the LSB voltage.

Example 2.1 ADC Resolution and Quantization Error
Consider an ADC of 16 digits. The input voltage ranges from 0 to 5V.

• Quantization levels: L= 216 = 65536
• Quantization intervals: I =N− 1= 65535
• Resolution: Q= (VrefH −VrefL)/I = 5/65535= 0.000076V
• Maximum quantization error: E =Q/2= 0.000038V

Typically, there are multiple I/O peripherals connected through I/O inter-
faces to the embedded processor. Each peripheral is identified with a unique
address. When the process executes an I/O related instruction, it issues a com-
mand that contains the address of the target peripheral. Therefore, each I/O
interface must interpret the address lines to determine if the command is for
itself.
In a design where the processor, main memory, and I/O peripherals share

a common bus, there are two complementary ways the I/O is mapped:

�

� �

�

2.4 Sensors and Actuators 27

port-mapped I/O (also called isolated I/O) and memory-mapped I/O.
Port-mapped I/O uses a separate address space from main memory, accom-
plished by an extra I/O pin on the CPU’s physical interface, or a dedicated
bus to I/O. I/O devices are accessed via a dedicated set of microprocessor
instructions. Because the address space for I/O is isolated from that for main
memory, this is sometimes referred to as isolated I/O.
Memory-mapped I/O means mapping the I/O peripherals’ memory into the

main memory map. That is, there will be addresses in the processor’s memory
that won’t actually correspond to RAM, but to memory of peripherals. Com-
pared to port-mapped I/O, memory-mapped I/O is simple in design, because
port-mapped I/O requires either additional pins in the processor or an entire
separate bus, while memory-mapped I/O does not have this extra complexity.
Memory-mapped I/O is also more efficient than port-mapped I/O.

Port-mapped I/O instructions are very limited in capability, often provided
only for simple load-and-store operations between CPU registers and I/O
ports. Because of that, to add a constant to a port-mapped device register
would require three instructions: read the port to a CPU register, add the
constant to the CPU register, and write the result back to the port. However,
because regular memory instructions are used to address the devices in
memory mapper I/O, all of the CPU’s addressing modes are available for I/O
as well as memory, and instructions that perform an ALU operation directly
on a memory operand can be used with I/O device registers as well.

2.4 Sensors and Actuators

A sensor is an input device of embedded systems. It is a transducer that con-
verts energy fromone form to another formeasurement or control purpose. For
example, an ultrasonic sensor converts ultrasound waves to electrical signals,
an accelerometer converts acceleration to voltage, and a camera is a sensor that
converts photon energy to electrical charge that represents the photon flux for
each picture element in an array.There aremany types of sensors. Displacement
sensors, pressure sensors, humidity sensors, acceleration sensors, gyro sensors,
temperature sensors, and light sensors are among themost widely used ones. A
good sensor must be sensitive to the measured property, but does not interfere
with it. Recall the ABS wheel speed sensor that is introduced in Chapter 1.The
input of the sensor is the rotation of the sensor rotor, and the output is AC volt-
age.The voltagemagnitude and frequency are proportional to the rotation rate.
Sensors can be designed for virtually every physical and chemical quantity,

including weight, velocity, acceleration, electrical current, voltage, tem-
peratures, and chemical compounds. Many physical effects are used for
constructing the sensors. For example, the automotive wheel speed sensors
use the induction effect, that is, when a magnetic field interacts with an electric

�

� �

�

28 2 Hardware Components

circuit, an electromotive force is produced. The automotive airbag sensor
is designed based on the effect piezoelectric effect; that is, certain materials
generate an electric charge in response to the applied mechanical stress.
There are active sensors and passive sensors. An active sensor requires an

external source of energy to operate. Examples are radar, sonar, GPS and X-ray.
On the contrary, passive sensors simply detect and respond to some type of
input from the physical environment. For example, the wheel speed sensor is
a passive sensor. It detects and measures the wheel rotation without the need
to send any signal or apply any energy to the wheel. Temperature sensors are
another example of passive sensors.
The performance of sensors is mainly characterized by the following

parameters:

• Range of the value of the measured stimulus
• Resolution of the measured stimulus
• Sensing frequency
• Accuracy of measurement
• Size
• Operating temperature and environment conditions
• Service life in hours or number of cycles of operation

Of course, cost is also a concern in sensor selection.
An actuator is a transducer that converts electrical energy into some other

form of energy, such as motion, heat, light, or sound, to move or control a
system. It provides the driving force for a variety of natural and man-made
requirements. For example, the ABS hydraulic control unit introduced in
Chapter 1 is an actuator that acts on the ECU output to build, hold, or reduce
the brake pressure. Traditional actuators include hydraulics, pneumatics, and
solenoids. A hydraulic actuator consists of a cylinder or fluid motor that uses
hydraulic power to facilitate mechanical operation. A pneumatic actuator
converts energy formed by vacuum or compressed air at a high pressure into
either linear or rotary motion. A solenoid is a type of electromagnetic actuator
that converts an electrical signal into a magnetic field and produces a linear
motion. Solenoids are used in the ABS hydraulic control unit to move the
valves.
Some newly developed actuators, such as piezoelectric, shape memory

alloy, and magnetostrictive devices, are based on shape-changing materials.
They are increasingly used in novel applications. For example, piezoelectric
actuators are high-speed precision ceramic actuators that convert electrical
energy into linear motion with high resolution. These actuators are used in
many modern high-tech areas such as microscopy, bionanotechnology, and
astronomy/aerospace technology.

�

� �

�

2.5 Timers and Counters 29

Different types of actuators exhibit different characteristics. Nevertheless,
the performance of an actuator is primarily characterized by the following
parameters:

• Maximum magnitude of force or mechanic it can exert on a system in sus-
tainable cyclic operation

• Speed of operation
• Operating temperature and environment conditions
• Service life in hours or number of cycles of operation

2.5 Timers and Counters

Timing functions are vital in real-time embedded systems. A timer is a special-
ized type of clock that is used to measure time intervals. A counter counts the
number of external events occurring on its external event pin. When the event
is clock pulse, a timer and counter are essentially the same.Therefore, in many
occasions, these two terms are used interchangeably.
Themain component of a timer is a free-running binary counter.The counter

increments for each incoming timing pulse. Since it runs freely, it can count the
inputs, which could be clock pulses, while the processor is executing the main
program. If the input pulses arrive at a fixed rate, then the pulse count accu-
rately measures the time interval. For example, if the rate of the input pulses
is 1MHz and the counter has recorded 1000 pulses, then the elapsed time is
1000 microseconds. When the count overflows, an output signal is asserted.
The overflow signal may thereby trigger an interrupt to the processor or set a
bit that the processor can read. Figure 2.6 shows a 16-bit counter that takes
clock cycles as input.
The input pulses could be different from clock pulses. In that case, a prescaler

is used to generate pulses. A prescaler is a configurable clock-divider circuit. It
takes the basic clock frequency and divides it by some value before feeding it to
the counter. With a prescaler, we can let the counter count at a desired rate. For
example, if we configure the prescaler to divide the 1MHz of clock frequency
by 8, then the new rate of the timer will be 106/8= 125KHz, and thus, a 16-bit
timer can record up to 65,535× 8= 524,280 microseconds before it overflows.
The free-running counter is often connected to a capture register, as

illustrated in Figure 2.7. A capture register can automatically load the current

Figure 2.6 Structure of a
16-bit counter.

Counter
Clock

Reset signal

16-bit count

Overflow

�

� �

�

30 2 Hardware Components

PrescalerClock Counter

Configuration bits
Reset

Capture

register

Capture signal

Processor bus

Figure 2.7 A timer with a prescaler and a capture register.

output of the free-running counter upon the occurrence of some event,
typically a signal to an input pin, latch the value into a processor-visible
register, and then generate an output signal. One use of a timer with the
capture requester is to measure the time between the leading edges of two
pulses. By reading the value in the capture register and comparing it with a
previous reading, the software can determine how many clock cycles elapsed.

Example 2.2 Timing Events
Consider a timer that is designed with a prescaler. The prescaler is configured
with 3 bits, and the free-running counter has 16 bits.The timer counts the tim-
ing pulses froma clockwhose frequency is 8MHz. Suppose that a capture signal
from the processor latches a count of 304D in hex. We want to find out how
much time had elapsed since the last reset to the free counter.
First, we convert the hex number 304D to the corresponding decimal number,

which results in 12,365.
Because the prescaler is configured with 3 bits, it divides the clock frequency

by 23. Thus, the frequency of the signals that are fed into the free-running
counter is 8*106/23 Hz or 1MHz. Therefore, the elapsed time is

12365∕106 = 0.12365 second = 12,365 microseconds.

Exercises

1 Assume a 1MB memory.
(a) What are the lowest and highest addresses if it is byte-addressable?
(b) What are the lowest and highest addresses if it is 32-bit word-

addressable?

2 Explain the difference between port-mapped I/O and memory-mapped
I/O.

3 Compare the von Neumann architecture with the Harvard architecture.

�

� �

�

References 31

4 Consider an A/D converter with a full-scale measurement range of –5 to
5V and a resolution of 16 bits. How many quantization levels are there?
What is the maximum quantization error?

5 Consider a timer with a prescaler that is configured with 4 bits, a 16-bit
free counter, and a capture register. The input clock frequency is 33MHz.
A capture signal from the processor latches a count of C17E in hex. How
much time had elapsed since the last reset to the free counter?

Suggestions for Reading

Instruction set architecture in general and Intel x86 architecture in particular
are well discussed in Ref. [1]. The details of SPARC RISC architecture are pre-
sented in Ref. [2]. ARM RISC architecture and powerful 32-bit instructions set
are introduced in Ref. [3]. References for various microcontroller products and
their applications in embedded system design are available. Examples include
McKinlay [4] for Intel 8051, Valvano [5] for Texas Instruments MSP432, and
Wilmshurst [6] for Microchip PIC products. A good coverage of sensors and
actuators can be found in Refs [7] and [8]. If you are interested in building your
own embedded system, Catsoulis [9] is a good reference.

References

1 Shanley, T. (2010) x86 Instruction Set Architecture, MindShare Press.
2 Paul, R. (1999) SPARC Architecture, Assembly Language Programming, and

C, 2nd edn, Pearson.
3 Mazidi, M.A. (2016) ARM Assembly Language Programming & Architecture,
Kindle edn, Micro Digital Ed.

4 McKinlay, M. (2007) The 8051 Microcontrollers & Embedded Systems,
Pearson.

5 Valvano, J.W. (2015) Embedded Systems: Introduction to the MSP432 Micro-
controller, CreateSpace Independent Publishing Platform.

6 Wilmshurst, T. (2009) Designing Embedded Systems with PIC Microcon-
trollers, Principles and Applications, 2nd edn, Newnes.

7 Ida, N. (2013) Sensors, Actuators, and Their Interfaces: A Multidisciplinary
Introduction, SciTech Publishing.

8 de Silva, C.W. (2015) Sensors and Actuators: Engineering System Instrumenta-
tion, 2nd edn, CRC Press.

9 Catsoulis, J. (2005) Designing Embedded Hardware: Create New Computers
and Devices, 2nd edn, O’Reilly Media.

�

� �

�

33

3

Real-Time Operating Systems

The heart of many computerized embedded systems is real-time operating
system (RTOS). An RTOS is an operating system that supports the con-
struction of applications that must meet real-time constraints in addition to
providing logically correct computation results. It provides mechanisms and
services to carry out real-time task scheduling, resource management, and
intertask communication. In this chapter, we briefly review the main functions
of general-purpose operating systems, and then we discuss the characteristics
of RTOS kernels. After that, we introduce some widely used RTOS products.

3.1 Main Functions of General-Purpose Operating
Systems

An operating system (OS) is the software that sits between the hardware of
a computer and software applications running on the computer. An OS is a
resource allocator and manager. It manages the computer hardware resources
and hides the details of how the hardware operates to make the computer
system more convenient to use. The main hardware resources in a computer
are processor, memory, I/O controllers, disks, and other devices such as
terminals and networks.
An OS is a policy enforcer. It defines the rules of engagement between the

applications and resources and controls the execution of applications to prevent
errors and improper use of the computer.
An OS is composed of multiple software components, and the core com-

ponents in the OS form its kernel. The kernel provides the most basic level of
control over all of the computer’s hardware devices.The kernel of an OS always
runs in system mode, while other parts and all applications run in user mode.
Kernel functions are implemented with protection mechanisms such that they
could not be covertly changed through the actions of software running in user
space.

Real-Time Embedded Systems, First Edition. Jiacun Wang.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

�

� �

�

34 3 Real-Time Operating Systems

The OS also provides an application programming interface (API), which
defines the rules and interfaces that enable applications to use OS features
and communicate with the hardware and other software applications. User
processes can request kernel services through system call or bymessage passing.
With the system call approach, the user process applies traps to the OS routine
that determines which function is to be invoked, switches the processor to
systemmode, calls the function as a procedure, and then switches the processor
back to user mode when the function completes and returns control to the
user process. In the message passing approach, the user process constructs a
message that describes the desired service and then uses a send function to
pass it to an OS process.The send function checks the desired service specified
in the message, changes the processor mode to system mode, and delivers it to
the process that implements the service. Meanwhile, the user process waits for
the result of the service request with a message receive operation. When the
service is completed, the OS process sends a message back to the user process.
In the rest of this section, we briefly introduce some of the main functions of

a typical general-purpose OS.

3.1.1 Process Management

A process is an instance of a program in execution. It is a unit of work within
the system. A program is a passive entity, while a process is an active entity.
A process needs resources, such as CPU, memory, I/O devices, and files, to
accomplish its task. Executing an application program involves the creation of
a process by the OS kernel that assigns memory space and other resources,
establishes a priority for the process in multitasking systems, loads program
binary code into memory, and initiates execution of the application program,
which then interacts with the user and with hardware devices. When a process
is terminated, any reusable resources are released and returned to the OS.
Starting a new process is a heavy job for the OS, which includes allocating

memory, creating data structures, and coping code.
A thread is a path of execution within a process and the basic unit to

which the OS allocates processor time. A process can be single-threaded or
multithreaded. Theoretically, a thread can do anything a process can do. The
essential difference between a thread and a process is the work that each one
is used to accomplish. Threads are used for small tasks, whereas processes
are used for more heavyweight tasks – basically the execution of applications.
Therefore, a thread is often called a lightweight process.
Threads within the same process share the same address space, whereas

different processes do not. Threads also share global and static variables, file
descriptors, signal bookkeeping, code area, and heap. This allows threads to
read from and write to the same data structures and variables and also facil-
itates communication between threads. Thus, threads use far less resources

�

� �

�

3.1 Main Functions of General-Purpose Operating Systems 35

(a) (b)

Code

Registers Stack

FilesData

Thread

Code

Registers

Stack

FilesData

Registers Registers

Stack Stack

Figure 3.1 (a) Single-threaded process; (b) Multithreaded process.

compared to processes. However, each thread of the same process has its own
thread status, program counter, registers, and stack, as illustrated in Figure 3.1.
A thread is the smallest unit of workmanaged independently by the scheduler

of the OS. In RTOSs, the term tasks is often used for threads or single-threaded
processes. For example, VxWorks and MicroC/OS-III are RTOSs that use the
term tasks. In this book, processes (threads) and tasks are used interchangeably.
Processes may create other processes through appropriate system calls, such

as fork or spawn. The process that does the creating is called the parent of the
other process, which is called its child. Each process is assigned a unique integer
identifier, call process identifier, or PID for short, when it is created. A process
can be created with or without arguments. Generally, a parent process is in
control of a child process. The parent can temporarily stop the child, cause it
to be terminated, send it messages, look inside its memory, and so on. A child
process may receive some amount of shared resources from its parent.
Processes may request their own termination by making the exit() system

call. Processes may also be terminated by the system for a variety of reasons,
such as the inability of the system to deliver necessary system resources, or
in response to a kill command or other unhandled process interrupt. When a
process terminates, all of its system resources are freed up, and open files are
flushed and closed.
A process can be suspended for a variety of reasons. It can be swapping – the

OS needs to release sufficient main memory to bring in a process that is ready
to execute, or timing – a process that is executed periodicallymay be suspended
while waiting for the next time interval. A parent process may also wish to
suspend the execution of a child to examine or modify it or to coordinate the
activity of various children.

�

� �

�

36 3 Real-Time Operating Systems

Sometimes, processes need to communicate with each other while they are
running. This is called interprocess communication (IPC). The OS provides
mechanisms to support IPC. Files, sockets, message queues, pipes, named
pipes, semaphores, shared memory, and message passing are typical IPC
mechanisms.

3.1.2 MemoryManagement

Main memory is the most critical resource in a computer system in terms of
speed at which programs run. The kernel of an OS is responsible for all system
memory that is currently in use by programs. Entities in memory are data and
instructions.
Each memory location has a physical address. In most computer architec-

tures,memory is byte-addressable,meaning that data can be accessed 8 bits at a
time, irrespective of thewidth of the data and address buses.Memory addresses
are fixed-length sequences of digits. In general, only system software such as
Basic Input/Output System (BIOS) and OS can address physical memory.
Most application programs do not have knowledge of physical addresses.

Instead, they use logic addresses. A logical address is the address at which a
memory location appears to reside from the perspective of an executing appli-
cation program. A logical address may be different from the physical address
due to the operation of an address translator or mapping function.
In a computer supporting virtual memory, the term physical address is

used mostly to differentiate from a virtual address. In particular, in computers
utilizing a memory management unit (MMU) to translate memory addresses,
the virtual and physical addresses refer to an address before and after
translation performed by the MMU, respectively. There are several reasons
to use virtual memory. Among them is memory protection. If two or more
processes are running at the same time and use direct addresses, a memory
error in one process (e.g., reading a bad pointer) could destroy the memory
being used by the other process, taking down multiple programs due to a
single crash. The virtual memory technique, on the other hand, can ensure
that each process is running in its own dedicated address space.
Before a program is loaded into memory by the loader, part of the OS, it

must be converted into a load module and stored on disk. To create a load
module, the source code is compiled by the compiler. The compiler produces
an object module. An object module contains a header that records the size
of each of the sections that follow, a machine code section that contains the
executable instructions compiled by the compiler, an initialized data section
that contains all data used by the program that require initialization, and the
symbol table section that contains all external symbols used in the program.
Some external symbols are defined in this object module and will be referred
to by other object modules, and some are used in this object module and

�

� �

�

3.1 Main Functions of General-Purpose Operating Systems 37

Figure 3.2 Structure of object module.

Header information

Machine code

Initialized data

Symbol table

Object module

Relocation info

defined in other object modules. The relocation information is used by the
linker to combine several object modules into a load module. Figure 3.2 shows
the structure of object modules.
When a process is started, the OS allocates memory to the process and then

loads the load module from disk into the memory allocated to the process.
During the loading, the executable code and initialized data are copied into the
process’ memory from the load module. In addition, memory is also allocated
for uninitialized data and runtime stack that is used to keep information about
each procedure call. The loader has a default initial size for the stack. When
the stack is filled up at runtime, extra space will be allocated to it, as long as
the predefined maximum size is not exceeded.
Many programming languages support memory allocation while a program

is running. It is done by the call of new in C++ and Java or malloc in C, for
example. This memory comes from a large pool of memory called the heap or
free store. At any given time, some parts of the heap are in use, while some are
free and thus available for future allocation. Figure 3.3 illustrates the memory
areas of a running process, in which the heap area is the memory allocated by
the process at runtime.
To avoid loading big executable files into memory, modern OS provides two

services: dynamic loading and dynamic linking. In dynamic loading, a routine
(library or other binary module) of a program is not loaded until it is called by
the program.All routines are kept on disk in a relocatable load format.Themain
program is loaded into memory and is executed. Other routine methods or
modules are loaded on request. Dynamic loading makes better memory space
utilization, and unused routines are never loaded. Dynamic loading is useful
when a large amount of code is needed to handle infrequently occurring cases.
In dynamic linking, libraries are linked at execution time. This is compared

to static linking, in which libraries are linked at compile time, and thus,
the resultant executable code is big. Dynamic linking refers to resolving

�

� �

�

38 3 Real-Time Operating Systems

Process memory

Executable code

Initialized data

Uninitialized data

Heap

Stack

Figure 3.3 Memory areas of process.

symbols – associating their names with addresses or offsets – after compile
time. It is particularly useful for libraries.
The simplest memory management technique is single contiguous allocation.

That is, except the area reserved for the OS, all the memory is made available
to a single application. This is the technique used in the MS-DOS system.
Another technique is partitioned allocation. It divides memory into multiple

memory partitions; each partition can have only one process. The memory
manager selects a free partition and assigns it to a process when the process
starts and deallocates it when the process is finished. Some systems allow a
partition to be swapped out to secondary storage to free additional memory. It
is brought back into memory for continued execution later.

Paged allocation divides memory into fixed-size units called page frames and
the program’s virtual address space into pages of the same size. The hardware
MMU maps pages to frames. The physical memory can be allocated on a
page basis while the address space appears to be contiguous. Paging does not
distinguish and protect programs and data separately.

Segmented memory allows programs and data to be broken up into logically
independent address spaces and to aid sharing and protection. Segments are
areas of memory that usually correspond to a logical grouping of information
such as a code procedure or a data array. Segments require hardware support
in the form of a segment table, which usually contains the physical address of
the segment in memory, its size, and other data such as access protection bits
and status (swapped in, swapped out, etc.).
As processes are loaded and removed from memory, the long, contiguous

free memory space becomes fragmented into smaller and smaller contiguous
pieces. Eventually, it may become impossible for the program to obtain large
contiguous chunks ofmemory.The problem is called fragmentation. In general,
smaller page size reduces fragmentation. The negative side is that it increases
the page table size.

�

� �

�

3.1 Main Functions of General-Purpose Operating Systems 39

3.1.3 Interrupts Management

An interrupt is a signal from a device attached to a computer or from a running
process within the computer, indicating an event that needs immediate
attention. The processor responds by suspending its current activity, saving
its state, and executing a function called an interrupt handler (also called
interrupt service routine, ISR) to deal with the event.
Modern OSs are interrupt-driven. Virtually, all activities are initiated by

the arrival of interrupts. Interrupt transfers control to the ISR, through the
interrupt vector, which contains the addresses of all the service routines.
Interrupt architecture must save the address of the interrupted instruction.
Incoming interrupts are disabled while another interrupt is being processed.
A system call is a software-generated interrupt caused either by an error or by
a user request.

3.1.4 Multitasking

Real-world events may occur simultaneously. Multitasking refers to the
capability of an OS that supports multiple independent programs running on
the same computer. It is mainly achieved through time-sharing, which means
that each program uses a share of the computer’s time to execute. How to
share processors’ time among multiple tasks is addressed by schedulers, which
follow scheduling algorithms to decide when to execute which task on which
processor.
Each task has a context, which is the data indicating its execution state and

stored in the task control block (TCB), a data structure that contains all the
information that is pertinent to the execution of the task. When a scheduler
switches a task out of the CPU, its context has to be stored; when the task
is selected to run again, the task’s context is restored so that the task can be
executed from the last interrupted point. The process of storing and restoring
the context of a task during a task switch is called a context switch, which is
illustrated in Figure 3.4.
Context switches are the overhead of multitasking. They are usually com-

putationally intensive. Context switch optimization is one of the tasks of OS
design. This is particularly the case in RTOS design.

3.1.5 File SystemManagement

Files are the fundamental abstraction of secondary storage devices. Each file is
a named collection of data stored in a device. An important component of an
OS is the file system, which provides capabilities of file management, auxiliary
storage management, file access control, and integrity assurance.
File management is concerned with providing the mechanisms for files to be

stored, referenced, shared, and secured. When a file is created, the file system

�

� �

�

40 3 Real-Time Operating Systems

Task A Task B
OS

Interrupt or system call

Save state into TCBa

Restore state from TCBb

Save state into TCBb

Restore state from TCBa

Executing

Idle

Executing

Executing

Idle

Idle

Figure 3.4 Context switch between tasks A and B.

File Location

File directory

Data Data

Null

DataData

Data Data

Null

Data

Figure 3.5 The block chaining scheme in file storage.

allocates an initial space for the data. Subsequent incremental allocations follow
as the file grows. When a file is deleted or its size is shrunk, the space that is
freed up is considered available for use by other files. This creates alternating
used and unused areas of various sizes. When a file is created and there is not
an area of contiguous space available for its initial allocation, the space must
be assigned in fragments. Because files do tend to grow or shrink over time,
and because users rarely know in advance how large their files will be, it makes
sense to adopt noncontiguous storage allocation schemes. Figure 3.5 illustrates
the block chaining scheme. The initial address of storage of a file is identified
by its file name.
Typically, files on a computer are organized into directories, which constitute

a hierarchical system of tree structure.

�

� �

�

3.1 Main Functions of General-Purpose Operating Systems 41

Afile system typically stores necessary bookkeeping information for each file,
including the size of data contained in the file, the time the filewas lastmodified,
its owner user ID and group ID, and its access permissions.
The file system also provides a spectrum of commands to read and write the

contents of a file, to set the file read/write position, to set and use the protection
mechanism, to change the ownership, to list files in a directory, and to remove
a file.
File access control can be realized using a two-dimensional matrix that lists

all users and all files in the system.The entry at index (i, j) of thematrix specifies
if user i is allowed to access file j. In a system that has a large number of users
and contains a large number of files, this matrix would be very large and very
sparse.
A scheme that requires much less space is to control access to various

user classes. Role-based access control (RBAC) is an access control method
where access to data is performed by authorized users. RBAC assigns users
to specific roles, and permissions are granted to each role based on the user’s
job requirements. Users can be assigned a number of roles in order to conduct
day-to-day tasks. For example, a user may need to have a developer role as well
as an analyst role. Each role would define the permissions that are needed to
access different objects.

3.1.6 I/OManagement

Modern computers interact with a wide range of I/O devices. Keyboards, mice,
printers, disk drives, USB drives, monitors, networking adapters, and audio
systems are among the most common ones. One purpose of an OS is to hide
peculiarities of hardware I/O devices from the user.
In memory-mapped I/O, each I/O device occupies some locations in the

I/O address space. Communication between the I/O device and the processor
is enabled through physical memory locations in the I/O address space. By
reading from or writing to those addresses, the processor gets information
from or sends commands to I/O devices.
Most systems use device controllers. A device controller is primarily an

interface unit. The OS communicates with the I/O device through the device
controller. Nearly all device controllers have direct memory access (DMA)
capability, meaning that they can directly access the memory in the system,
without the intervention by the processor. This frees up the processor of the
burden of data transfer from and to I/O devices.
Interrupts allow devices to notify the processor when they have data to

transfer or when an operation is complete, allowing the processor to perform
other duties when no I/O transfers need its immediate attention.The processor
has the interrupt request line that it senses after executing every instruction.
When a device controller raises an interrupt by asserting a signal on the

�

� �

�

42 3 Real-Time Operating Systems

interrupt request line, the processor catches it and saves the state and then
transfers control to the interrupt handler. The interrupt handler determines
the cause of the interrupt, performs necessary processing, and executes a
return from interrupt instruction to return control to the processor.
I/O operations often have high latencies. Most of this latency is due to the

slow speed of peripheral devices. For example, information cannot be read from
or written to a hard disk until the spinning of the disk brings the target sectors
directly under the read/write head.The latency can be alleviated by having one
or more input and output buffers associated with each device.

3.2 Characteristics of RTOS Kernels

Although a general-purpose OS provides a rich set of services that are also
needed by real-time systems, it takes too much space and contains too many
functions that may not be necessary for a specific real-time application.
Moreover, it is not configurable, and its inherent timing uncertainty offers no
guarantee to system response time. Therefore, a general-purpose OS is not
suitable for real-time embedded systems.
There are three key requirements of RTOS design. Firstly, the timing behavior

of the OS must be predictable. For all services provided by the OS, the upper
bound on the execution time must be known. Some of these services include
OS calls and interrupt handling. Secondly, the OSmust manage the timing and
scheduling, and the scheduler must be aware of task deadlines. Thirdly, the OS
must be fast. For example, the overhead of context switch should be short. A
fast RTOS helps take care of soft real-time constraints of a system as well as
guarantees hard deadlines.
As illustrated in Figure 3.6, an RTOS generally contains a real-time kernel

and other higher-level services such as file management, protocol stacks,
a Graphical User Interface (GUI), and other components. Most additional
services revolve around I/O devices. A real-time kernel is software that
manages the time and resources of a microprocessor or microcontroller and
provides indispensable services such as task scheduling and interrupt handling
to applications. Figure 3.7 shows a general structure of a microkernel. In
embedded systems, a small amount of code called board support package
(BSP) is implemented for a given board that conforms to a given OS. It is
commonly built with a bootloader that contains the minimal device support to
load the OS and device drivers for all the devices on the board.
In the rest of this section, we introduce some most important real-time

services that are specified in POSIX 1.b for RTOS kernels.

3.2.1 Clocks and Timers

Most embedded systems must keep track of the passage of time. The length
of time is represented by the number of system ticks in most RTOS kernels.

�

� �

�

3.2 Characteristics of RTOS Kernels 43

RTOS

Applications

Kernel

Timing scheduling

Interrupts handling

Memory mgmt

File

management

GUI

Device I/O

Protocol stacks

Debugging

tools

Other services

Board support package

Target hardware

Figure 3.6 A high-level view of RTOS.

External

interrupts

System

calls

Hardware/software

exceptions

Clock

interrupts

Immediate

interrupt

service

Case of

Create_thread

Suspend_thread

Destroy_thread

Create_timer

Timer_sleep

Timer_notify

Other system calls

.

.

.

.

.

.

Scheduling

Exception

handling

Time

service

Kernel

Figure 3.7 Structure of a microkernel.

�

� �

�

44 3 Real-Time Operating Systems

The RTOS works by setting up a hardware timer to interrupt periodically, say,
every millisecond, and bases all timings on the interrupts. For example, if in a
task you call the taskDelay function in VxWorks with a parameter of 20, then
the task will block until the timer interrupts for 20 times. In the POSIX stan-
dard, each tick is equal to 10 milliseconds, and in each second, there are 100
ticks. Some RTOS kernels, such as VxWorks, define routines that allow the user
to set and get the value of system tick. The timer is often called a heartbeat
timer, and the interrupt is also called clock interrupt.
At each clock interrupt, an ISR increments tick count, checks to see if it is

now time to unblock or wake up a task. If this is the case, it calls the scheduler
to do the scheduling again.
Based on the system tick, an RTOS kernel allows you to call functions of your

choice after a given number of system ticks, such as the taskDelay function
in VxWorks. Depending upon the RTOS, your function may be directly called
from the timer ISR. There are also other timing services. For example, most
RTOS kernels allow developers to limit how long a task will wait for a message
from a queue or a mailbox and how long a task will wait for a semaphore, and
so on.
Timers improve the determinism of real-time applications. Timers allow

applications to set up events at predefined intervals or time. POSIX specified
several timer-related routines, including the following:

• timer_create() – allocate a timer using the specified clock for a timing
base.

• timer_delete() – remove a previously created timer.
• timer_gettime() – get the remaining time before expiration and the

reload value.
• timer_getoverrun() – return the timer expiration overrun.
• timer_settime() – set the time until the next expiration and arm timer.
• nanosleep() – suspend the current task until the time interval elapses.

3.2.2 Priority Scheduling

Because real-time tasks have deadlines, being soft or hard, all tasks are not
equal in terms of the urgency of getting executed. Tasks with shorter deadlines
should be scheduled for execution sooner than those with longer deadlines.
Therefore, tasks are typically prioritized in an RTOS. Moreover, if a higher
priority task is released while the processor is serving a lower priority task,
the RTOS should temporarily suspend the lower priority task and immediately
schedule the higher priority on the processor for execution, to ensure that the
higher priority task is executed before its deadline. This process is called pre-
emption. Task scheduling for real-time applications is typically priority-based
and preemptive. Examples are earliest deadline first (EDF) scheduling and
rate monotonic (RM) scheduling. Scheduling algorithms that do not take task

�

� �

�

3.2 Characteristics of RTOS Kernels 45

Ready tasks

Scheduler Dispatcher

Task control blocks

Context switcher CPU

Remove the running task

Figure 3.8 Priority scheduling.

priorities into account, such as first-in-first-service and round-robin, are not
suitable for real-time systems.
In priority-driven preemptive scheduling, the preemptive scheduler has a

clock interrupt task that provides the scheduler with options to switch after
the task has had a given period to execute – the time slice. This scheduling
system has the advantage of making sure that no task hogs the processor for
any time longer than the time slice.
As shown in Figure 3.8, an important component involved in scheduling is

the dispatcher, which is the module that gives control of the CPU to the task
selected by the scheduler. It receives control in kernel mode as the result of
an interrupt or system call. It is responsible for performing context switches.
The dispatcher should be as fast as possible, since it is invoked during every task
switch. During the context switches, the processor is virtually idle for a fraction
of time; thus, unnecessary context switches should be avoided.
The key to the performance of priority-driven scheduling is in choosing

priorities for tasks. Priority-driven scheduling may cause low-priority tasks to
starve and miss their deadlines. In the next two chapters, several well-known
scheduling algorithms and resource access control protocols will be discussed.

3.2.3 Intertask Communication and Resource Sharing

In an RTOS, a task cannot call another task. Instead, tasks exchange infor-
mation through message passing or memory sharing and coordinate their
execution and access to shared data using real-time signals, mutex, or
semaphore objects.

3.2.3.1 Real-Time Signals
Signals are similar to software interrupts. In an RTOS, a signal is automatically
sent to the parent when a child process terminates. Signals are also used for
many other synchronous and asynchronous notifications, such as waking a
process when a wait call is performed and informing a process that it has
issued a memory violation.
POSIX extended the signal generation and delivery to improve the real-time

capabilities. Signals take an important role in real-time systems as the

�

� �

�

46 3 Real-Time Operating Systems

way to inform the processes of the occurrence of asynchronous events
such as high-resolution timer expiration, fast interprocess message arrival,
asynchronous I/O completion, and explicit signal delivery.

3.2.3.2 Semaphores
Semaphores are counters used for controlling access to resources shared
among processes or threads. The value of a semaphore is the number of units
of the resource that are currently available. There are two basic operations
on semaphores. One is to atomically increment the counter. The other is to
wait until the counter is nonnull and atomically decrement it. A semaphore
tracks only how many resources are free; it does not keep track of which of the
resources are free.
A binary semaphore acts similarly to a mutex, which is used in the case when

a resource can only be used by at most one task at any time.

3.2.3.3 Message Passing
In addition to signals and semaphores, tasks can share data by sendingmessages
in an organized message passing scheme. Message passing is muchmore useful
for information transfer. It can also be used just for synchronization. Message
passing often coexists with shared memory communication. Message contents
can be anything that is mutually comprehensible between the two parties in
communication. Two basic operations are send and receive.
Message passing can be direct or indirect. In direct message passing, each

process wanting to communicate must explicitly name the recipient or sender
of the communication. In indirect message passing, messages are sent to and
received from mailboxes or ports. Two processes can communicate in this way
only if they have a shared mailbox.
Message passing can also be synchronous or asynchronous. In synchronous

message passing, the sender process is blocked until the message primitive
has been performed. In asynchronous message passing, the sender process
immediately gets control back.

3.2.3.4 SharedMemory
Shared memory is a method that an RTOS uses to map common physical space
into independent process-specific virtual space. Shared memory is commonly
used to share information (resources) between different processes or threads.
Shared memory must be accessed exclusively. Therefore, it is necessary to use
mutex or semaphores to protect the memory area. The code segment in a task
that accesses the shared data is called a critical section. Figure 3.9 shows that
two tasks share a memory region.
A side effect in using shared memory is that it may cause priority inversion, a

situation that a low-priority task is runningwhile a high-priority task is waiting.
More details of priority inversion will be discussed in Chapter 5.

�

� �

�

3.2 Characteristics of RTOS Kernels 47

Task A Task B

.

.

.

wait(S)

critical
section

signal(s)
.
.
.

Shared

memory

.

.

.

wait(S)

critical
section

signal(s)
.
.
.

Figure 3.9 Shared memory and critical section.

3.2.4 Asynchronous I/O

There are two types of I/O synchronization: synchronous I/O and asyn-
chronous I/O. In synchronous I/O, when a user task requests the kernel for
I/O operation and the requested is granted, the system will wait until the
operation is completed before it can process other tasks. Synchronous I/O is
desirable when the I/O operation is fast. It is also easy to implement.
An RTOS supports the overlap of application processing and application-

initiated I/O operations. This is the RTOS service of asynchronous I/O. In
asynchronous I/O, after a task requests I/O operation, while this task is waiting
for I/O to complete, other tasks that do not depend on the I/O results will
be scheduled for execution. Meanwhile, tasks that depend on the I/O having
completed are blocked. Asynchronous I/O is used to improve throughput,
latency, and/or responsiveness.
Figure 3.10 illustrates the idea of synchronous I/O and asynchronous I/O.

3.2.5 Memory Locking

Memory locking is a real-time capability specified by POSIX that is intended
for a process to avoid the latency of fetching a page of memory. It is achieved
by locking the memory so that the page is memory-resident, that is, it remains
in the main memory. This allows fine-grained control of which part of the
application must stay in physical memory to reduce the overhead associated
with transferring data between memory and disk. For example, memory
locking can be used to keep in memory a thread that monitors a critical
process that requires immediate attention.
When the process exits, the locked memory is automatically unlocked.

Locked memory can also be unlocked explicitly. POSIX, for example, defined
mlock() and munlock() functions to lock and unlock memory. The
munlock function unlocks the specified address range regardless of the
number of times the mlock function was called. In other words, you can lock

�

� �

�

48 3 Real-Time Operating Systems

Kernel mode

Synchronous I/O

Executing

a task

Idle

Executing Executing

User mode

I/O starts

I/O ends

Requests I/O

Task resumes Task resumes

Asynchronous I/O

Executing

a task

Executing

another task

User mode

I/O starts

I/O ends

Requests I/O

Interrupted

Kernel mode

Figure 3.10 Synchronous I/O versus asynchronous I/O.

address ranges over multiple calls to the mlock function, but the locks can be
removed with a single call to the munlock function. In other words, memory
locks don’t stack.
More than one process can lock the same or overlapping region, and in that

case, thememory region remains locked until all the processes have unlocked it.

3.3 RTOS Examples

3.3.1 LynxOS

The LynxOS RTOS is a Unix-like RTOS from Lynx Software Technologies.
LynxOS is a deterministic, hard RTOS that provides POSIX-conformant
APIs in a small-footprint embedded kernel. It features predictable worst-case
response time, preemptive scheduling, real-time priorities, ROMable kernel,
and memory locking. LynxOS provides symmetric multiprocessing support to
fully take advantage of multicore/multithreaded processors. LynxOS 7.0, the
latest version, includes new tool chains, debuggers, and cross-development
host support.
The LynxOS RTOS is designed from the ground up for conformance

to open-system interfaces. It leverages existing Linux, UNIX, and POSIX
programming talent for embedded real-time projects. Real-time system
development time is saved, and programmers are able to be more productive
using familiar methodologies as opposed to learning proprietary methods.

�

� �

�

3.3 RTOS Examples 49

LynxOS is mostly used in real-time embedded systems, in applications for
avionics, aerospace, the military, industrial process control, and telecommuni-
cations. LynxOS has already been used in millions of devices.

3.3.2 OSE

OSE is an acronym for the operating system embedded. It is a real-time
embedded OS created by the Swedish information technology company ENEA
AB. OSE uses signals in the form of messages passed to and from processes
in the system. Messages are stored in a queue attached to each process. A link
handler mechanism allows signals to be passed between processes on separate
machines, over a variety of transports. The OSE signaling mechanism formed
the basis of an open-source interprocess kernel design.
The Enea RTOS family shares a high-level programming model and an

intuitive API to simplify programming. It consists of two products, each
optimized for a specific class of applications:
• Enea OSE is a robust and high-performance RTOS optimized for multicore,

distributed, and fault-tolerant systems.
• Enea OSEck is a compact and multicore DSP-optimized version of ENEA’s

full-featured OSE RTOS.
OSE supports many mainly 32-bit processors, such as those in ARM,

PowerPC, and MIPS families.

3.3.3 QNX

TheQNX Neutrino RTOS is a full-featured and robust OS developed by QNX
Software Systems Limited, a subsidiary of BlackBerry. QNX products are
designed for embedded systems running on various platforms, including ARM
and x86, and a host of boards implemented in virtually every type of embedded
environment.
As a microkernel-based OS, QNX is based on the idea of running most of

the OS kernel in the form of a number of small tasks, known as servers. This
differs from the more traditional monolithic kernel, in which the OS kernel is
a single, very large program composed of a huge number of components with
special abilities. In the case of QNX, the use of a microkernel allows developers
to turn off any functionality they do not require without having to change the
OS itself; instead, those servers will simply not run.
The BlackBerry PlayBook tablet computer designed by BlackBerry uses a

version of QNX as the primary OS.The BlackBerry line of devices running the
BlackBerry 10 OS are also based on QNX.

3.3.4 VxWorks

VxWorks is an RTOS developed as proprietary software by Wind River, a
subsidiary company of Intel providing embedded system software, which

�

� �

�

50 3 Real-Time Operating Systems

comprises runtime software, industry-specific software solutions, simulation
technology, development tools, and middleware. As other RTOS products,
VxWorks is designed for use in embedded systems requiring real-time and
deterministic performance.
VxWorks supports Intel, MIPS, PowerPC, SH-4, and ARM architectures.The

VxWorks Core Platform consists of a set of runtime components and devel-
opment tools. VxWorks core development tools are compilers such as Diab,
GNU, and Intel C++Compiler (ICC) and its build and configuration tools.The
system also includes productivity tools such as its Workbench development
suite and Intel tools and development support tools for asset tracking and host
support. Cross-compiling is used with VxWorks. Development is achieved on a
“host” system where an integrated development environment (IDE), including
the editor, compiler toolchain, debugger, and emulator, can be used. Software
is then compiled to run on the “target” system. This allows the developer to
work with powerful development tools while targeting more limited hardware.
VxWorks is used by products over a wide range of market areas: aerospace

and defenses, automotive, industrial such as robots, consumer electronics,
medical area, and networking. Several notable products also use VxWorks as
the onboard OS. Examples in the area of spacecraft are the Mars Reconnais-
sance Orbiter, the Phoenix Mars Lander, the Deep Impact Space Probe, and
the Mars Pathfinder.

3.3.5 Windows Embedded Compact

Formerly known as Windows CE, Windows Embedded Compact is an OS
subfamily developed by Microsoft as part of its Windows Embedded family
of products. It is a small-footprint RTOS and optimized for devices that have
minimal memory, such as industrial controllers, communication hubs, and
consumer electronics devices such as digital cameras, GPS systems, and also
automotive infotainment systems. It supports x86, SH (automotive only),
and ARM.

Exercises

1 What is the kernel of an operating system? In which mode does it run?

2 What are the two approaches that a user process interacts with the
operating system? Discuss the merits of each approach.

3 What is the difference between a program and a process? What is the
difference between a process and a thread?

4 Should terminating a process also terminate all its children? Give an
example when this is a good idea and another example when this is a
bad idea.

�

� �

�

3.3 RTOS Examples 51

5 Should the open files of a process be automatically closed when the
process exits?

6 What is the difference between an object module and a load module?

7 Discuss the merits of each memory allocation techniques introduced in
this chapter.

8 What do we mean when we say an OS is interrupt-driven?What does the
processor do when an interrupt occurs?

9 What is a context switch and when does it occur?

10 Does a file have to be stored in a contiguous storage region in a disk?

11 What are the benefits of using memory-mapped I/O?

12 Why can a general-purpose OS not meet the requirements of real-time
systems?

13 Howdoesmemory fragmentation form?Name one approach to control it.

14 What are the basic functions of an RTOS kernel?

15 How does an RTOS keep track of the passage of time?

16 Why is it necessary to use priority-based scheduling in a real-time appli-
cation?

17 What are the general approaches that different tasks communicate with
each other and perform synchronization of their actions in access to
shared resources?

18 Compare synchronous I/O and asynchronous I/O and list their advan-
tages and disadvantages.

19 How does the memory locking technique improve the performance of a
real-time system?

�

� �

�

52 3 Real-Time Operating Systems

Suggestions for Reading

Many textbooks are available that provide thorough and in-depth discussion
on general-purpose OSs. Examples are [1–3]. Cooling [4] provides a great
overview of the fundamentals of RTOS for embedded programming without
being specific to any one vendor. POSIX-specified real-time facilities are
described in Ref. [5]. More information regarding the commercial RTOS
products can be found on their official websites.

References

1 Doeppner, T. (2011) Operating Systems in Depth, Wiley.
2 McHoes, A.M. and Flynn, I.M. (2011) Understand Operating Systems,
6th edn, Course Technology Cengage Learning.

3 Stallings, W. (2014) Operating Systems: Internals and Design Principles,
8th edn, Pearson.

4 Cooling, J. (2013) Real-Time Operating Systems, Kindle edn, Lindentree
Associates.

5 Gallmeister, B. (1995) POSIX 4.0: Programming for the Real World, O’Reilly
& Associates, Inc..

URLs

LynxOS, http://www.lynxos.com/
VxWorks, http://www.windriver.com/products/vxworks/
WindowsCE, https://www.microsoft.com/windowsembedded/en-us/windows-
embedded-compact-7.aspx
QNX, http://www.qnx.com/content/qnx/en.html
OSE, http://www.enea.com/ose

�

� �

�

53

4

Task Scheduling

Task management and scheduling are some of the core functions of any RTOS
kernel. Part of the kernel is a scheduler that is responsible for allocating and
scheduling tasks on processors to ensure that deadlines are met. This chapter
presents somewell-known andwidely used techniques for task assignment and
scheduling.

4.1 Tasks

A task is a unit of work scheduled for execution on the CPU. It is a build-
ing block of real-time application software supported by an RTOS. In fact, a
real-time application that uses an RTOS can be structured as a set of indepen-
dent tasks. There are three types of tasks:

Periodic tasks. Periodic tasks are repeated once a period, for example, 200 mil-
liseconds. They are time-driven. Periodic tasks typically arise from sensory
data acquisition, control law computation, action planning, and systemmon-
itoring. Such activities need to be cyclically executed at specific rates, which
can be derived from the application requirements. Periodic tasks have hard
deadlines, because each instance of a periodic task has to complete execution
before the next instance is released. Otherwise, task instances will pile up.

Aperiodic tasks. Aperiodic tasks are one-shot tasks. They are event-driven. For
example, a driver may change the vehicle’s cruise speed while the cruise con-
trol system is in operation. Tomaintain the speed set by the driver, the system
periodically takes its speed signal from a rotating driveshaft, speedometer
cable, wheel speed sensor, or internal speed pulses produced electronically
by the vehicle and then pulls the throttle cable with a solenoid as needed.
When the user manually changes the speed, the system has to respond to
the change andmeanwhile keeps its regular operation. Aperiodic tasks either
have no deadlines or have soft deadlines.

Real-Time Embedded Systems, First Edition. Jiacun Wang.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

�

� �

�

54 4 Task Scheduling

Sporadic tasks. Sporadic tasks are also event-driven. The arrival times of spo-
radic task instances are not known a priori, but there is requirement on the
minimum interarrival time. Unlike aperiodic tasks that do not have hard
deadlines, sporadic tasks have hard deadlines. For example, when the driver
of a vehicle sees a dangerous situation in front of him and pushes the break
to stop the vehicle, the speed control system has to respond to the event (a
hard step on the break) within a small time window.

4.1.1 Task Specification

In a real-time system, a task can be specified by the following temporal
parameters:

Release time. The release time of task is the time when a task becomes available
for execution.The task can be scheduled for execution at any time at or after
the release time. It may not be executed immediately, because, for example,
a higher or equal-priority task is using the processor. The release time of a
task Ti is denoted by ri.

Deadline. The deadline of a task is the instant of time by which its execution
must be completed. The deadline of Ti is denoted by di.

Relative deadline. The relative deadline of a task is the deadline measured in
reference to its release time. For example, if a task is released at time t and its
deadline is t + 200milliseconds, then its relative deadline is 200milliseconds.
The relative deadline of Ti is denoted by Di.

Execution time. The execution time of a task is the amount of time that is
required to complete the execution of the task when it executes alone and
has all required resources in place. A task’s execution time mainly depends
on the complexity of the task and the speed of the processor. The execution
time of Ti is denoted by ei.

Response time.Theresponse time of a task is the length of time elapsed from the
task is released to the execution is completed. For a task with a hard deadline,
the maximum allowed response time is the task’s relative deadline.

Figure 4.1 illustrates these five temporal parameters. Real-time constraints
imposed on a task are typically specified in terms of its release time and
deadline.
In addition to the aforementioned parameters, a periodic task has the follow-

ing two parameters:

Period. The period of a periodic task is the length of the interval between the
release times of two consecutive instances of the task. We assume that all
intervals have the same length throughout the book. The period of Ti is
denoted by pi.

Phase. The phase of a periodic task is the release time of its first instance. The
phase of Ti is denoted by 𝜙i.

�

� �

�

4.1 Tasks 55

Release time

Response time

Deadline

Relative deadline

Execution time

Start exec Complete exec

Time

Figure 4.1 Task specification.

Utilization. The utilization of a periodic task is the ratio of its execution time
over its period, denoted by ui. ui = ei∕pi.

For a periodic task, the task execution time, release time, deadline, relative
deadline, and response time are all referring to its instances. We assume that
all instances of a periodic task have the same execution time throughout the
book. We specify a periodic task as follows:

Ti = (𝜙i, pi, ei.Di)

For example, a task with parameters (2, 10, 3, 9) would mean that the first
instance of the task is released at time 2, the following instances will arrive at
12, 22, 32, and so on. The execution time of each instance is 3 units of time.
When an instance is released, it has to be executed within 9 units of time.
If the task’s phase is 0, then we specify it with

Ti = (pi, ei.Di).

If the task’s relative deadline is the same as its period, then we specify it with
two parameters only:

Ti = (pi, ei).

Given a set of periodic tasksTi, i= 1, 2,…, n, we can calculate their hyperperiod,
denoted byH .H is the least commonmultiple (LCM) of pi for i= 1, 2,…, n. One
way to calculate H is prime factorization. The theory behind this approach is
that every positive integer greater than 1 can be written in only one way as a
product of prime numbers.Theprime numbers can be considered as the atomic
elements, which, when combined together, make up a composite number.

Example 4.1 Calculation of Hyperperiod of Periodic Tasks
Consider a system of three periodic tasks:

T1 = (5, 1),T2 = (12, 2),T3 = (40, 1).

�

� �

�

56 4 Task Scheduling

Number 5 is a prime and is not decomposable. Number 12 is a composite
number and can be expressed as

12 = 2 ⋅ 6 = 2 ⋅ 2 ⋅ 3 = 22 ⋅ 3.

Number 40 is also a composite number and can be decomposed as

40 = 2 ⋅ 20 = 2 ⋅ 2 ⋅ 10 = 2 ⋅ 2 ⋅ 2 ⋅ 5 = 23 ⋅ 5.

The LCM of 5, 12, and 20 is the product of the highest power of each prime
number combined. That is,

H = LCM(5, 12, 40)
= 23 ⋅ 3 ⋅ 5
= 120

When we compute the schedule for a set of periodic tasks, we only need to
compute its schedule for its first hyperperiod, and then, we reuse the same
schedule for each hyperperiod afterward.
In addition to timing parameters, tasks possess functional parameters that

are important in task scheduling.

Criticality. Tasks in a system are not equally important. The relative priorities
of tasks are a function of the nature of the tasks themselves and the current
state of the controlled process.The priority of a task indicates the criticalness
of the task with respect to other tasks.

Preemptivity. Execution of tasks can be interleaved.The schedulermay suspend
the execution of a task and give the processor to a more urgent task.The sus-
pended taskmay resume its executionwhen themore urgent task completed.
Such an interrupt of task execution is called a preemption. A task is preempt-
able if it can resume its execution from the point of interruption. In other
words, it does not need to start over. An example is a computational task on
the CPU. On the other hand, a task is nonpreemptable if it must be executed
from start to completion without interruption. If they are interrupted in the
middle of execution, they have to be executed again from the very beginning.

A task can be partially preemptive. For example, if part of a task accesses
exclusively shared resources, then the critical section is nonpreemptable, but
the rest of the task may be preemptable.

4.1.2 Task States

In real-time systems, a task can exist in one of the following three states:

Running. When a task is actually executing, it is said to be in the running state.
It is currently utilizing the processor. In a single-processor system, only one
task can be in the running state at any given time.

�

� �

�

4.1 Tasks 57

Ready. Tasks in the ready state are those that are able to execute but are not
currently executing because a different task of equal or higher priority is in
the running state. Ready tasks have all resources needed to run except the
processor. In this state, a task is able to run whenever it becomes the task
with the highest priority among all tasks in this state and the processor is
released. Any number of tasks can be in this state.

Blocked.A task is said to be in the blocked state if it is currentlywaiting for either
a temporal or an external event. For example, if a task calls taskDelay(), it will
block itself until the delay period has expired – timer expiration is a temporal
event. A task that is responsible for processing user inputs has nothing to
do until the user types in something, a case of an external event. Tasks can
also block while they are waiting for RTOS kernel object events. Tasks in the
blocked state are not available for scheduling. Any number of tasks can be in
this state as well.

When a new task is created, it is placed in the ready state queue.The task can
be scheduled for execution immediately or later, depending on it priority and
the priority of other tasks in the ready state. All tasks in this state complete for
the processor to run. When a task with the highest priority is dispatched for
execution on the processor, it shifts to the running state.
If it is preemptable and the scheduler is priority–preemption based, a task

in the running state may be preempted by a higher priority task. When it is
preempted, the RTOS kernel places it in the ready queue. A task in the run-
ning state may also enter the blocked state for several reasons. Let us explain
the blocking case that causes priority inversion here. Assume that two tasks,
namely A and B, share a piece of common memory that is designed to be used
exclusively. A has a higher priority over B. While B is running and accessing
the shared memory, A is released and preempts B. When A starts to execute
its code that accesses the shared memory, it is blocked because the shared
memory is not available. Now B in the ready state is dispatched to run. This
is the situation that a lower priority task is running while a higher priority task
is waiting.
A task is blocked because all conditions other than the processor for its exe-

cution are not met. Examples of the conditions are time delay and required
resources. When all the conditions are met, the task will be placed in the ready
state. In the priority inversion example, when the task B exits the shared mem-
ory access, it will signal the RTOS kernel. The task A will preempt B immedi-
ately and resume its execution.
Figure 4.2 describes the state transitions of a task. Notice that some RTOS

kernels defined more states for tasks. For example, the T-Kernel RTOS defined
five task states: running, ready, waiting, suspended, and waiting-suspended. In
addition to the running and ready states, a task in VxWorks can be in the state
of pending, suspended, delayed, or a combination of these states.

�

� �

�

58 4 Task Scheduling

Running

Ready

Blocked

Dispatch

Preemption

Wait

Signal

Created

Deleted

Figure 4.2 States of a task.

4.1.3 Precedence Constraints

In addition to timing constraints on tasks in a real-time application, theremight
be precedence constraints among tasks. A precedence constraint specifies the
execution order of two or more tasks. It reflects data and/or control depen-
dencies among tasks. For example, in a real-time control system, the control
law computation task has to wait for the results from the sensor data polling
task. Therefore, the sensor data pulling task should run before the control law
computation task in each control cycle.
If a task A is an immediate predecessor of a task B, we use A<B to represent

their precedence relation. To bemore intuitive, we can use a task graph to show
the precedence constraints among a set of tasks. Nodes of the graph are tasks,
and a directed edge from the node A to the node B indicates that the task A is
an immediate predecessor of the task B.

Example 4.2 Precedence Graph
There are seven tasks shown in Figure 4.3. Dependency constraints among
them are as follows:

T1 < T3,T2 < T3,T3 < T6,T4 < T5,T5 < T6, and T6 < T7.

T1

T2

T3

T4 T5

T6 T7

Figure 4.3 A task graph.

�

� �

�

4.2 Clock-Driven Scheduling 59

4.1.4 Task Assignment and Scheduling

Given all task timing parameters and functional parameters, the tasks are allo-
cated or assigned to the various processors and scheduled on them. Assigning
and scheduling problems with multiple processors are NP-complete, and
thus, heuristic approaches are often employed. Developing a multiprocessor
schedule normally proceeds with two steps: we first assign tasks to processors,
and then, we do a uniprocessor scheduling for tasks assigned to each processor.
If one or more of the schedules are infeasible, then we either redo the task
allocation or use a different algorithm to do the scheduling. It is possible that
there is no feasible assignment/schedule for a particular problem. Notice that
all scheduling algorithms presented in this chapter are uniprocessor-based.
Task assignment techniques are introduced later this chapter.
Each task executes within its own context. Only one task within the appli-

cation can be executing at any point in time on a processor. A schedule is an
assignment of tasks to available processors.The scheduler of an RTOS is amod-
ule that implements the assignment (scheduling) algorithms.
A schedule is said to be valid if all precedence and resource usage constraints

are met and no task is underscheduled (the task is assigned insufficient time for
execution) or overscheduled (the task is assigned more time than needed
for execution).
A schedule is said to be feasible if every task scheduled completes before its

deadline. A system (a set of tasks) is said to be schedulable if a feasible schedule
exists for the system. The bulk of real-time scheduling work deals with finding
feasible schedules.
An algorithm is said to be optimal if it always produces a feasible schedule as

long as a given set of tasks has feasible schedules.
Weuse schedulable utilization (SU) tomeasure the performance of a schedul-

ing algorithm. The SU is the maximum total utilization of tasks that can be
feasibly scheduled by the algorithm.The higher the SU, the better the schedul-
ing algorithm.
A schedule may be computed before the system is put in operation or

obtained dynamically at runtime.

4.2 Clock-Driven Scheduling

In the clock-driven scheduling, scheduling decisions are made at specific time
instants, which are typically chosen a priori before the system begins execu-
tion. It usually works for deterministic systems where tasks have hard deadlines
and all task parameters are not changing during systemoperation. Clock-driven

�

� �

�

60 4 Task Scheduling

schedules can be computed off-line and stored for use at runtime, which sig-
nificantly saves runtime scheduling overhead.
For a set of periodic tasks with given parameters, it is quite straightforward

to draw a feasible schedule for the tasks based on the clock-driven approach,
as long as such a feasible schedule exists. In most cases, one can come up with
different feasible schedules using this approach. It is up to the user to select the
best one according to some criteria.

Example 4.3 Clock-Driven Scheduling
Figure 4.4 shows two feasible schedules for the system of three periodic tasks:

T1 = (4, 1),T2 = (6, 1),T3 = (12, 2).

The schedules are in the interval from 0 to 12 units of time, the first hyper-
period of the system. During this time period, there are three instances from
T1, two instances from T2, and one instance from T3. Let us analyze the first
schedule and see why it is feasible.
Consider T1 first. At time 0, T1 has its first instance released with a deadline

at time 4. It is scheduled for execution at time 0 and completed at time 1. So, it
meets its deadline.
At time 4, the second instance of T1 is released with a deadline at time 8. It is

scheduled for execution at time 4 and completed at time 5. It meets its deadline.
At time 8, the third instance of T1 is released with a deadline at time 12. It is

scheduled for execution at time 8 and completed at time 9. It meets its deadline.
Now let us considerT2.T2 has its first instance released at time 0. Its deadline

is at time 6. It is scheduled for execution at time 1 and completed at time 2. So,
it meets its deadline.
At time 6, the second instance of T2 is released with a deadline at time 12. It is

scheduled for execution at time 6 and completed at time 7. It meets its deadline.
The only instance in T3 is released at time 0 with a deadline at time 12. It

is scheduled for execution at time 2 and completed at time 4. So, it meets its
deadline.
Since all task instances released in the first hyperperiod of the system meet

their deadlines, the schedule is feasible.

4 8 122 6 100

T1 T1 T1T2 T2T3

4 8 122 6 100

T1 T1 T2 T2 T3T1

Figure 4.4 Two feasible schedules for T 1 = (4, 1), T 2 = (6, 1), and T 3 = (12, 2).

�

� �

�

4.2 Clock-Driven Scheduling 61

A similar analysis will conclude that the second schedule is also feasible. In
fact, one can move around the task execution slots a bit and get other feasible
schedules. What is important is that you have to consider all instances in the
time period and make sure that they all meet their deadlines.
You might wonder that why we only draw the schedule up to time 12. Well,

the reason is that the hyperperiod of these three tasks is 12. In the clock-driven
scheduling, the hyperperiod of a set of tasks is also called their major cycle. It
can be proved that regardless of what each task’s phase is, their major cycle is
always their LCM.
We can use a schedule table to list all scheduling decisions in a sched-

ule. For example, Table 4.1 is such a table for the first schedule shown in
Figure 4.4. There are six task instances in the table. Let N = 6. Then based on
the table, a scheduler can be designed according to the pseudocode shown in
Figure 4.5.

Table 4.1 The schedule table for the first schedule
shown in Figure 4.4.

Entry k Time tk Task T (tk)

0 0 T1

1 1 T2

2 2 T3

3 4 T1

4 6 T2

5 8 T1

Input: Stored scheduling table (tk, T(tk)) for k = 0, 1, …, N -1.
Task SCHEDULER:

i := 0; //decision point
k := 0;
set timer to expire at tk;
loop FOREVER

accept timer interrupt;
currentTask := T(tk);
i++;
k := i mod N;
set timer to expire at floor(i/N)H+ tk;
execute currentTask;
sleep;

end loop
end SCHEDULER

Figure 4.5 Clock-driven scheduler.

�

� �

�

62 4 Task Scheduling

4.2.1 Structured Clock-Driven Scheduling

Although the schedules in Example 4.3 are feasible, scheduling decision
points are randomly scattered. In other words, there is no pattern in the
time points at which new tasks are selected for execution. The idea with
structured clock-driven scheduling approach is that scheduling decisions are
made at periodical, rather than arbitrary, times. This way, a timer that expires
periodically with a fixed length of duration can be used for decision times.

4.2.1.1 Frames
In a structured schedule, the scheduling decision times partition the time line
into intervals called frames. Each frame is of a length f , which is called frame
size. There is no preemption within a frame, because scheduling decisions are
only made at the beginning of each frame. To ease the schedule construction,
the phase of each periodic task is a nonnegative multiple of the frame size. In
other words, the first instance of each periodic task is released at the beginning
of some frame.
We just mentioned that there should be no preemption within a frame

(otherwise, it is not a structured schedule). Since preemption involves context
switches, it is desirable to avoid preemption.Therefore, when we select a frame
size, it should be big enough to allow every task to complete its execution inside
a frame. Assume that there are n periodic tasks in a system. This constraint
can be expressed mathematically as

f ≥ max{ei, i = 1, 2, … , n} (4.1)

To minimize the number of entries in a schedule table to save storage space,
the chosen frame size should divide the major size. Otherwise, storing the
schedule for one major cycle won’t be sufficient, because the schedule won’t
simply repeat from one major cycle to another, and thus, a larger scheduling
table is needed. This constraint can be formulated as

H mod f = 0 (4.2)

Since H is a multiple of every task’s period, if f can divide H , then f must also
divide the period of at least one task in the system, that is,

pi mod f = 0,∃i ∈ {1, 2,… , n}

Notice that this constraint is important, because storage is limited for most
embedded systems.
When we choose the frame size, we should also need to ensure that it allows

every task instance to meet its deadline. This constraint imposes that there is
at least one full frame between the arrival of a task instance and its deadline.
Because if a task instance arrives right after a frame starts, it won’t be scheduled
until the beginning of the following frame. However, a frame size can be up to

�

� �

�

4.2 Clock-Driven Scheduling 63

…

(k+1)fkf0

…

(k+2)fkf+𝛥t

Task arrival Task deadline, d

Figure 4.6 A task instance released right after a frame starts.

the execution time of a task. This may cause the instance to miss its deadline.
Figure 4.6 illustrates this situation.
In Figure 4.6, a task instance arrives at time kf + Δt, where Δt < f . Its dead-

line d is between (k + 1)f and (k + 2)f . This task instance will be scheduled
for execution at the earliest (k + 1)f , the beginning of the next frame after it
arrives. Before its deadline, it can only be executed for d − (k + 1)f units of
time, which is less than the frame size. If the execution time is close or equal
to the frame size, then the task instance cannot finish execution before its
deadline.
The constraint that there must be a full frame between the arrival of a task

instance and its deadline is formulated as

di − (kf + Δt) ≥ f + (f − Δt)

Because

di − (kf + Δt) = Di

Therefore,

2f − Δt ≤ Di

Since the first instance of the task is released at the beginning of a frame, the
minimum of Δt is the greatest common devisor (GCD) of pi and f . The min-
imum of Δt corresponds to the worst case, that is, the task instance has the
greatest chance to miss its deadline.Thus the third constraint can be written as

2f −GCD(pi, f) ≤ Di, i = 1,2,… , n. (4.3)

Example 4.4 Cyclic Schedule
Consider a system of three periodic tasks:

T1 = (4, 1),T2 = (5, 1),T3 = (10, 2).

We want to develop a cyclic scheduler for the system. First, we need to select
a proper frame size.
According to the first constraint, we have f ≥ 2.
The major cycle of the three tasks is H = 20. According to the second con-

straint, f should divide 20. Possible frame sizes are 2, 4, 5, and 10.We don’t need
to consider 1, because it violates the first constraint.

�

� �

�

64 4 Task Scheduling

Now we need to test 2, 4, 5, and 10 with the third constraint 2f −GCD(pi, f)
≤ Di for each task. Consider f = 2 first. For T1 = (4, 1),

2f −GCD(p1, f) = 2 ∗ 2 −GCD(4, 2) = 4 − 2 = 2

while D1 = 4. Therefore, the constraint is satisfied by T1.
For T2 = (5, 1),

2f −GCD(p2, f) = 2 ∗ 2 −GCD(5, 2) = 4 − 1 = 3,

while D2 = 5. Therefore, the constraint is satisfied by T2.
For T3 = (10, 2),

2f −GCD(p3, f) = 2 ∗ 2 −GCD(10, 2) = 4 − 2 = 2,

while D3 = 10. Therefore, the constraint is satisfied by T3.
Thus, the third constraint is satisfied by all tasks when f = 2. This also con-

cludes that one choice of the frame size is 2.
Now let us examine f = 4. For T1 = (4, 1),

2f −GCD(p1, f) = 2 ∗ 4 −GCD(4, 4) = 8 − 4 = 4,

while D1 = 4.Therefore, the constraint is satisfied by T1.
For T2 = (5, 1),

2f −GCD(p2, f) = 2 ∗ 4 −GCD(5, 4) = 8 − 1 = 7,

while D2 = 5. The inequality is not satisfied by T2. There is no need to further
test T3.
Consider f = 5. For T1 = (4, 1),

2f −GCD(p1, f) = 2 ∗ 5 −GCD(4, 5) = 10 − 1 = 9,

while D1 = 4. The inequality is not satisfied by T1.
Consider f = 10. For T1 = (4, 1),

2f −GCD(p1, f) = 2 ∗ 10 −GCD(4, 10) = 20 − 2 = 18,

while D1 = 4. The inequality is not satisfied by T1.
Thus, the only feasible frame size for cyclic scheduling is 2. Figure 4.7 shows

a feasible schedule with frame size 2.
The number of entries in the schedule table of a cyclic scheduler is equal

to the number of frames in a major cycle. Each entry lists the schedule and
the names of tasks scheduled to execute in the frame. Table 4.2 represents the

8 16 204 120

T1 T2 T3 T1 T2 T1 T2 T1 T1 T2 T3 T1

Figure 4.7 A cyclic schedule of frame size 2.

�

� �

�

4.2 Clock-Driven Scheduling 65

Table 4.2 The schedule table for the
schedule shown in Figure 4.7.

Entry k Schedule block L (k)

0 T1, T2

1 T3

2 T1

3 T2

4 T1

5 T2

6 T1

7 I
8 T1, T2

9 T3

Input: Stored scheduling table L(k) for k= 0, 1, …, F - 1.
Task CYCLIC_SCHEDULER:

t := 0; //current time
k := 0; //frame number
loop FOREVER

accept clock interrupt;
current Block := L(k);
t++;
k := t mod F;
execute currentTask;
sleep until the next clock interrupt;

end loop
end CYCLIC_SCHEDULER

Figure 4.8 Cyclic scheduler.

schedule table of the schedule shown in Figure 4.7. The entry 7 is an I, which
stands for idle.
In the cyclic scheduler shown in Figure 4.8, the schedule in a frame is called

a scheduling block. Each entry in the schedule table is a block. The k-th block
is denoted by L(k), k = 0, 1, 2, …, F − 1, where F is the number of frames in a
major cycle. The clock periodically interrupts every f units of time.

4.2.1.2 Task Slicing
It is possible that for a set of periodic tasks, there is no feasible frame size
that meets all the three constraints. This is typically because one or more tasks
have large executions times. In that case, the first constraint may conflict with

�

� �

�

66 4 Task Scheduling

the third constraint. One way to resolve the issue is to slice one or more big
tasks (tasks with longer execution times) into several smaller ones. We use an
example to illustrate the idea.

Example 4.5 Task Slicing
Given the following three periodic tasks:

T1 = (4, 1),T2 = (5, 1),T3 = (10, 3),

we want to find a feasible frame size for a cyclic scheduler. The first constraint
requires f ≥ 3. The second constraint restricts the frame size to be 4, 5, or 10.
Notice that the three tasks are similar to the ones in Example 4.4. The only
difference is that we changed the execution of T3 from 2 to 3 units of time.
From the analysis in Example 4.4, we know that none of 4, 5, or 10 is a feasible
frame size.Therefore, there is no frame size that meets all the three constraints.
The reason is obvious: we have a big chunk task, T3.
Assume that T3 is preemptable. We slice T3 to two smaller tasks:

T31 = (10, 2),T32 = (10, 1).

Now the problem becomes developing a cyclic scheduler for four tasks:

T1 = (4, 1),T2 = (5, 1),T31 = (10, 2),T32 = (10, 1).

It is easy to find out that one feasible frame size is 2.
Of course, we can also slice T3 to three smaller tasks:

T31 = (10, 1),T32 = (10, 1),T33 = (10, 1).

This would mean more frequent preemption. Since preemption involves con-
text switches, it is desirable to minimize the chance of preemption. Therefore,
slicing T3 into two smaller periodic tasks with the same period is a better
option.

4.2.2 Scheduling Aperiodic Tasks

Aperiodic tasks are typically results of external events. They do not have hard
deadlines. However, it is desirable to service aperiodic tasks as soon as possible
in order to reduce the latency and improve the system’s performance.
Aperiodic tasks are usually scheduled for execution at the background of

periodic tasks.Therefore, aperiodic tasks are executed during the idle time slots
of the processor. For example, in the schedule shown in Figure 4.7, the time
intervals of [5, 6], [7, 8], [9, 10], [11, 12], and [13, 16] are idle. These idle time
intervals are called slacks. They can be used to execute aperiodic tasks if they
are waiting for execution.

�

� �

�

4.2 Clock-Driven Scheduling 67

Recall for periodic task instances, all that we need to ensure is that their
deadlines are met; there is no benefit in completing their executions earlier.
Therefore, we can try to delay the execution of periodic task instances as much
as possible, as long as they can still meet their deadlines. This way, we can exe-
cute aperiodic tasks at the earliest possible times.This technique is called slack
stealing.

Example 4.6 Slack Stealing
Figure 4.9a is a copy of the schedule in Example 4.4. Figure 4.9b shows the
arrival of two aperiodic tasks. The first one arrives at 2 with 1.5 units of exe-
cution time. The second one arrives at 7 with 0.5 units of execution time. If we
schedule them at the background of the schedule in Figure 4.9a, the first task
will be completed at 10 and the second one will be completed at 12, as shown
in Figure 4.9c. However, if we move the execution of the second instance of T2
to the interval of [9, 10] and the third instance of T2 to [11, 12], we are able
to complete the first aperiodic task at 8 and the second aperiodic task at 11, as
shown in Figure 4.9d.

T1

T1

T1 T2 T3 T1 T1 T2 T2 T1 T1 T2 T3 T1

T2 T3 T1 T2
T1 T2 T1 T1 T2 T3 T1

T2 T3 T1 T2 T1 T2 T1 T1 T1T2 T3

0

(a)

(b)

(c)

(d)

4 8 12 16 20

0 42 87 12 16 20

0 4 8 12 16 20

0 4 8 12 16 20

1.5 0.5

Figure 4.9 (a) Periodic task schedule. (b) Two aperiodic tasks. (c) Scheduling aperiodic tasks
without slack stealing. (d) Scheduling aperiodic tasks with slack stealing.

�

� �

�

68 4 Task Scheduling

4.2.3 Scheduling Sporadic Tasks

Sporadic tasks have hard deadlines, but their parameters (release time, exe-
cution time, and deadline) are unknown a priori, so there is no way for the
scheduler to guarantee that they meet their deadlines. A common practice is
that when a sporadic task is released with a known deadline, the scheduler will
test to see if it can schedule the task such that its deadline can bemet, given that
all periodic tasks and maybe other sporadic tasks have already been scheduled.
If the newly released sporadic task can pass the test, it will be scheduled for
execution. Otherwise, the scheduler rejects the task and notifies the system so
that it can take necessary recovery action.

Example 4.7 Scheduling Sporadic Tasks
Figure 4.10 shows a schedule of periodic tasks for two major cycles. The frame
size of the scheduler is 4, and the major cycle is 20. Three sporadic tasks are
released in the first major cycle. We want to test if they are schedulable or not.
At time 2, the first sporadic task S1 is released with deadline 17 and execution

time 3. The acceptance test is performed at 4, the beginning of the next frame.
There are 4 units of slack time in total before 17, which is greater than the task’s
execution time. Therefore, S1 passes the acceptance test. One unit of the S1 is
executed in the frame that starts at 4.
At time 5.5, the second sporadic task S2 is released with deadline 19 and

execution time 2. The acceptance test is performed at 8, the beginning of the
following frame. There are 3 units of slack time in total from 8 to 19, which is
greater than S2’s execution time. However, S1 is not done yet; it still has 2 time
units to finish. In addition, S1 has an earlier deadline compared to S2, so we
should schedule S1 first. After we reserve 2 units of execution time for S1, there
is only 1 time unit left for S2 before its deadline, which is less than its execution
time. Hence, the scheduler rejects S2. S1 completes its execution in the frame
that starts at 8.

24 28 32 36 4020

0

S1

(2, 17, 3)

4 8 12 16 20

S3

(13, 34, 2)

3 7 10 15 19

S2

(5.5, 19, 2)

Figure 4.10 Scheduling sporadic tasks.

�

� �

�

4.3 Round-Robin Approach 69

...

T1

T2

Tn

Priority queue

Aperiodic

Processor

Reject

Acceptance

test

Periodic

tasks

Sporadic

tasks

Aperiodic

tasks

Figure 4.11 Scheduling of periodic, aperiodic, and sporadic tasks.

At time 13, the third sporadic task S3 is released with deadline 34 and execu-
tion time 2. The acceptance test is performed at 16. There are 5 units of slack
time in total between 16 and 34, which is greater than the task’s execution time.
Meanwhile, there is no other sporadic task waiting for execution.Therefore, S3
passes the acceptance test. One unit of S3 is executed in the frame that starts
at 12, and the second unit executes in the frame that starts at 20.

In general, when periodic, aperiodic, and sporadic tasks are mixed together,
the cyclic scheduler places all aperiodic tasks in one queue and all sporadic
tasks in another queue. The sporadic task queue is a priority queue. The task
with the earliest deadline is placed at the head of the queue. Of course, only
sporadic tasks that pass the acceptance test are placed in the queue. Periodic
tasks should be scheduled toward their deadlines as long as the deadlines are
met, to allow aperiodic tasks to steal slacks and complete execution as early
as possible. The scheduling scheme of all three types of tasks is illustrated in
Figure 4.11.

4.3 Round-Robin Approach

The round-robin approach is a time-sharing scheduling algorithm. In the
round-robin scheduling, a time slice is assigned to each task in a circular order.
Tasks are executed without priority. There is an FIFS (first-in-first-service)
queue that stores all tasks in the ready state. Each time, the task at the head of
the queue is removed from the queue and dispatched for execution. If the task
is not finished within the assigned time slice, it is placed at the tail of the FIFS
queue to wait for its next turn. Normally, the length of the time slice is short,

�

� �

�

70 4 Task Scheduling

so that the execution of every task appears to start almost immediately after
it is ready. Since each time a task only gets a small portion executed, all tasks
are assumed to be preemptable, and context switches occur frequently in this
scheduling approach.
The round-robin scheduling algorithm is simple to implement. It is fair to all

tasks in using the processor.Themajor drawback is that it delays the completion
of all tasks and may cause tasks to miss their deadlines. It is not a good option
for scheduling tasks with hard deadlines.
An improved version of round-robin isweighted round-robin. In theweighted

round-robin approach, instead of assigning an equal share of the processor time
to all ready tasks, different tasks may obtain different weights, the fractions of
the processor time. By adjusting the weights, we can speed up or slow down the
completion of a task.

4.4 Priority-Driven Scheduling Algorithms

In contrast to the clock-driven scheduling algorithms that schedule tasks
at specific time points off-line, in a priority-driven scheduling algorithm,
scheduling decisions are made when a new task (instance) is released or a
task (instance) is completed. It is online scheduling, and decisions are made
at runtime. Priority is assigned to each task. Priority assignment can be done
statically or dynamically while the system is running. A scheduling algorithm
that assigns priority to tasks statically is called a static-priority or fixed-priority
algorithm, and an algorithm that assigns priority to tasks dynamically is said
to be dynamic-priority algorithm.
Priority-driven scheduling is easy to implement. It does not require the infor-

mation on the release times and execution times of tasks a priori. The parame-
ters of each task become known to the online scheduler only after it is released.
Online scheduling is the only option in a system whose future workload is
unpredictable.
In this section, unless mentioned otherwise, we assume the following:

1) There are only periodic tasks in the system under consideration.
2) The relative deadline of each task is the same as its period.
3) All tasks are independent; there are no precedence constraints.
4) All tasks are preemptable, and the cost of context switches is negligible.
5) Only processing requirements are significant. Memory, I/O, and other

resource requirements are negligible.

4.4.1 Fixed-Priority Algorithms

Themostwell-knownfixed-priority algorithm is the rate-monotonic (RM) algo-
rithm.The algorithm assigns priorities based on the period of tasks. Given two
tasks Ti = (pi, ei) and Tj = (pj, ej), if pi < pj, then Ti has higher priority than Tj.

�

� �

�

4.4 Priority-Driven Scheduling Algorithms 71

Scheduling periodic tasks based on the RM algorithm is relatively easy: when
a new task instance is released, if the processor is idle, it executes the task; if the
processor is executing another task, then the scheduler compares their priori-
ties. If the new task’s priority is higher, then it preempts the task in execution
and executes on the processor. The preempted task is placed in the queue of
ready tasks.

Example 4.8 RM Scheduling
Figure 4.12 shows an RM-based schedule of three periodic tasks:

T1 = (4, 1),T2 = (5, 1),T3 = (10, 3).

Because p1 < p2 < p3, T1 has the highest priority and T3 has the lowest priority.
Whenever an instance from T1 is released, it preempts whatever is running
on the processor and gets executed immediately. Instances from T2 run in the
“background” of T1. Task T3, on the other hand, cannot execute when either
T1 or T2 is unfinished.
Now let us examine the schedule and see if any task instancemissed its dead-

line. We don’t need to examine T1, because whenever an instance is released,
it gets executed on the processor immediately. For T2, there are four instances
released in the firstmajor cycle, and they all get executed before their deadlines.
For T3, the first instance is completed at 7, which is before its deadline 10. The
second instance is released at 10 and completed at 15, which is also before its
deadline 20. Therefore, the three periodic tasks are schedulable based on RM.

Example 4.9 Task missing deadline by RM
Figure 4.13 shows that when we schedule three periodic tasks

T1 = (4, 1),T2 = (5, 2),T3 = (10, 3.1).

according to the RM algorithm, the first instance of T3 misses its dead-
line – it has remaining 0.1 units of execution time that is not completed by its
deadline 10.

0 161284

T1

20

0 161284

T2

20

0 161284

T3

20

Figure 4.12 RM scheduling of three periodic tasks.

�

� �

�

72 4 Task Scheduling

20

0 161284

T1

20

0 161284

T2

20

0 161284

T3 T3 misses deadline!

Figure 4.13 Example of task missing deadline in RM schedule.

4.4.1.1 Schedulability Test Based on Time Demand Analysis
We just saw two RM scheduling examples. In the first example, the RM pro-
duces a feasible schedule, but in the second example, it does not. You might
wonder how to test whether a system can be scheduled by the RM algorithm
or not.
Let us introduce a simple test first:

If the total utilization of a set of periodic tasks is not greater than

URM(n) = n(21∕n − 1),

where n is the number of tasks, then the RM algorithm can schedule all the tasks
to meet their deadlines.
Notice that this statement includes only a sufficient condition, but not nec-

essary. That is, you may find a set of tasks with a total utilization greater than
n(21∕n − 1), but they are schedulable by the RM algorithm.
For n= 3, we have URM(3) = 0.78. In Example 4.8, the total utilization is 0.75.

Because 0.75< 0.78, the three tasks are schedulable as we proved in Figure 4.12.
In Example 4.9, the total utilization is 0.96. Because 0.96> 0.78, we cannot draw
any conclusion from the aforementioned statement. One thing we can claim
based on this example is that the RM algorithm is not optimal, because, as we
mentioned before, the SU of an optimal algorithm is 1.
Now let us discuss a more accurate approach to test whether a system can be

scheduled by the RM algorithm. It is called time demand analysis (TDA). The
TDA test is performed at critical instants. A critical instant of a task Ti is a time
instant such that

• the instance in Ti released at the instant has the maximum response time of
all instances in Ti, if the response time of every instance in Ti is equal to or
less than the relative deadline Di of Ti, and,

• the response time of the instance released at the instant is greater than Di if
the response time of some instances in Ti is greater than Di.

�

� �

�

4.4 Priority-Driven Scheduling Algorithms 73

Simply put, a critical instant is a time instant that has the worst combination
of task instance release times. It is the instant that, when an instance in a task is
released, all tasks of higher priority have an instance released at the same time,
because in this case, the lower priority task instance has the longest delay before
getting executed. Obviously, in a system that every task has phase 0, time 0 is a
critical instant for every task. If a task can meet its deadline at a critical instant,
then the task is schedulable by the RM algorithm.
Let us use a simple example to explain the idea of schedulability test using the

TDA approach. Consider three periodic tasks T1, T2, and T3, with T1 having
the highest priority and T3 having the lowest priority. When an instance in
T1 is released, the scheduler interrupts whatever is running and places it for
execution with no delay.Therefore, as long as the utilization of T1 is not greater
than 1, it is schedulable.
Consider the instance in T2 released at time 0. It can complete its execu-

tion before its relative deadline p2 if there is sufficient time for the instance in
the interval [0, p2]. Suppose that the instance completes at time t. The number
of instances in T1 released in the interval of [0, t] is

⌈
t
pi

⌉
. In order for the T2

instance to finish at t, all those T1 instances must be completed, and in addi-
tion, there must be e2 units of the processor time available for executing the T2
instance.Therefore, the total execution time or, in other words, the demand for
processor time is⌈

t
p1

⌉
e1 + e2

By the same token, in order for the first instance in T3 to finish at t, all
instances in T1 and T2 released in the interval of [0, t] must be completed, and
in addition, there must be e3 units of the processor time available for executing
the T3 instance. Therefore, the demand for processor time is⌈

t
p1

⌉
e1 +

⌈
t

p2

⌉
e2 + e3

For a general system with n tasks where pi < pj for j > i, the demand for
processor time to complete task Ti at time t is

wi(t) =
i−1∑
j=1

⌈
t
pj

⌉
ej + ei (4.4)

We call wi(t) the time demand function of Ti. On the other hand, the supply
of processor time is t. Ti can meet its deadline at t if and only if the supply of
processor time is greater than or equal to its time demand, that is,

wi(t) ≤ t, t ∈ [0, pi] (4.5)

�

� �

�

74 4 Task Scheduling

Notice that wi(t) jumps when an instance in any higher priority task is
released. Therefore, we test whether the inequality Eq. (4.5) is satisfied for
some t that is a multiple of p1, p2, …, or pi−1 over 0 ≤ t ≤ pi, or pi. If and
only if such a t exists, then is Ti schedulable; otherwise, it is not schedu-
lable. If all tasks pass this test, then the system is schedulable by the RM
algorithm.

Example 4.10 Schedulability Test
Consider the following four periodic tasks:

T1 = (3, 1),T2 = (4, 1),T3 = (6, 1),T4 = (12, 1).

We want to test their schedulability based on the TDA.
Task T1 is schedulable, because u1 = 0.33 < 1.
To test T2, we first list the time instants when instances in T1 are released in

[0, 4], and they are 0 and 3. If none of them satisfy the inequality Eq. (4.5),
we shall further test the time instant 4, the deadline of the first instance in
T2. There is no need to test 0, because obviously it does not satisfy Eq. (4.5).
At time 3,⌈

t
p1

⌉
e1 + e2 =

⌈3
3

⌉
1 + 1 = 2

Inequality Eq. (4.5) is satisfied. Therefore, T2 is schedulable.
The time instants when instances in T1 and T2 are released in [0, 6] are 0, 3,

4 and 6. At time 3,⌈
t

p1

⌉
e1 +

⌈
t

p2

⌉
e2 + e3 =

⌈3
3

⌉
1 +

⌈3
4

⌉
1 + 1 = 3

Inequality Eq. (4.5) is satisfied. Therefore, T3 is schedulable.
The deadline of the first instance in T4 is 12. The time instants when

instances in T1, T2, and T3 are released in [0, 12] are 0, 3, 4, 6, 8, 9, and 12.
At time 3,⌈

t
p1

⌉
e1+

⌈
t

p2

⌉
e2+

⌈
t

p3

⌉
e3 + e4 =

⌈3
3

⌉
1 +

⌈3
4

⌉
1 +

⌈3
6

⌉
1 + 1 = 4 > 3

Inequality Eq. (4.5) is not satisfied.We have to continue the test with larger time
points. At 4,⌈

t
p1

⌉
e1+

⌈
t

p2

⌉
e2+

⌈
t

p3

⌉
e3 + e4 =

⌈4
3

⌉
1 +

⌈4
4

⌉
1 +

⌈4
6

⌉
1 + 1 = 5 > 4

Inequality Eq. (4.5) is still not satisfied. At 5,⌈
t

p1

⌉
e1+

⌈
t

p2

⌉
e2+

⌈
t

p3

⌉
e3 + e4 =

⌈5
3

⌉
1 +

⌈5
4

⌉
1 +

⌈5
6

⌉
1 + 1 = 6 > 5

�

� �

�

4.4 Priority-Driven Scheduling Algorithms 75

Inequality Eq. (4.5) is still not satisfied. At 6,⌈
t

p1

⌉
e1 +

⌈
t

p2

⌉
e2 +

⌈
t

p3

⌉
e3 + e4 =

⌈6
3

⌉
1 +

⌈6
4

⌉
1 +

⌈6
6

⌉
1 + 1 = 6

Now the inequality is satisfied.Therefore, T4 is schedulable.This means that all
tasks in the system pass the schedulability test.

Example 4.11 System Fails TDA
Example 4.9 shows that the following three periodic tasks

T1 = (4, 1),T2 = (5, 2),T3 = (10, 3.1)

cannot be scheduled by the RM algorithm. Now let us prove it with TDA.
For task T2, the two time instants to test its schedulability are 4 and 5. At

time 4,⌈
t

p1

⌉
e1 + e2 =

⌈4
4

⌉
1 + 2 = 3 < 4

Inequality Eq. (4.5) is satisfied. Therefore, T2 is schedulable.
The schedulability ofT3 can be tested at time instants 4, 5, 8, and 10.At time 4,⌈

t
p1

⌉
e1 +

⌈
t

p2

⌉
e2 + e3 =

⌈4
4

⌉
1 +

⌈4
5

⌉
2 + 3.1 = 6.1 > 4

Inequality Eq. (4.5) is not satisfied. We have to continue the test with the next
time point. At 5,⌈

t
p1

⌉
e1 +

⌈
t

p2

⌉
e2 + e3 =

⌈5
4

⌉
1 +

⌈5
5

⌉
2 + 3.1 = 7.1 > 5

Inequality Eq. (4.5) is not satisfied. We test it with time 8:⌈
t

p1

⌉
e1 +

⌈
t

p2

⌉
e2 + e3 =

⌈8
4

⌉
1 +

⌈8
5

⌉
2 + 3.1 = 9.1 > 8

It still does not work. The last time point to test is time 10. At 10,⌈
t

p1

⌉
e1 +

⌈
t

p2

⌉
e2 + e3 =

⌈10
4

⌉
1 +

⌈10
5

⌉
2 + 3.1 = 10.1 > 10

The inequality is still not satisfied.We have tested all time points.Therefore, T3
is not schedulable. This is consistent with what is revealed in Example 4.9.
If we plotwi(t) over t, thenTi is schedulable if and only if some part of the plot

of wi(t) falls on or below the wi(t) = t line before or at its relative deadline pi.
Figure 4.14 shows the plots of wi(t) for T1, T2, and T3.The dotted line indicates
the locus of wi(t) = t. As you can see, w1(t) has a segment below the dotted
line before its deadline 4, so does w2(t) before 5. However, w3(t) is all above the
dotted line from 0 to 10.

�

� �

�

76 4 Task Scheduling

2

0 2 64 8 10

t

4

6

8

10

w1(t)

w2(t)

w3(t)

wi(t)
Figure 4.14 Time
demand function for tasks
in Example 4.11.

4.4.1.2 Deadline-Monotonic Algorithm
Besides the RM algorithm, another well-known fixed-priority scheduling algo-
rithm is deadline-monotonic (DM), which assigns priorities to tasks based on
their relative deadlines. A task with shorter relative deadline has higher pri-
ority than those with longer relative deadlines. For example, for a system with
three tasks T1 = (50, 50, 25, 100), T2 = (0, 62.5, 10, 20), and T3 = (0, 125, 25, 50),
T2 has the highest priority while T1 has the lowest priority. If in a system every
task’s relative deadline is equal to its period, then RM and DMwill produce the
same schedule.

4.4.2 Dynamic-Priority Algorithms

Fixed-priority scheduling algorithms assign a fixed priority to all instances in
a task. It is not the case in a dynamic-priority algorithm, in which different
instances in a task may be assigned with different priorities. The most widely
used dynamic-priority scheduling algorithm is the earliest-deadline-first (EDF)
algorithm.

4.4.2.1 Earliest-Deadline-First (EDF) Algorithm
Ascheduler following the EDF algorithmalways schedules the taskwhose abso-
lute deadline is the earliest for execution. A task’s priority is not fixed. It is
decided at runtime based on how close it is to its absolute deadline.
Next, we first use three one-shot tasks to show how to apply the EDF algo-

rithm in task scheduling. After that, we show that the three periodic tasks in

�

� �

�

4.4 Priority-Driven Scheduling Algorithms 77

Example 4.9 are schedulable by the EDF algorithm (they are not schedulable by
the RM algorithm).

Example 4.12 EDF Scheduling of One-Shot Tasks
Consider the four one-shot hard deadline tasks listed in Table 4.3. Assume that
they are all independent and preemptable. At time 0, T1 is released. Since it is
the only task in the system, it is scheduled for execution.At time 1,T2 is released
and its deadline is at 4, which is earlier than the deadline of T1. Therefore, T2
has higher priority than T1. Although T1 still has one unit that is not finished,
it is preempted by T2. So, at time 1, T2 executes. Because its execution time
is 1, so it is done at time 2. Then T1 resumes its execution at time 2, and it is
completed at 3. At 3, T3 is released and its deadline is at 10. Now T3 is the only
task in the ready queue, and so it is scheduled for execution. At time 5, T4 is
released and its deadline is at 8, earlier than the deadline of T3. So, T4 preempts
T3 and executes. At 7, T4 is done and T3 resumes execution. T3 is completed
at 8. The schedule is shown in Figure 4.15.

Example 4.13 EDF Scheduling of Periodic Tasks
In Examples 4.9 and 4.11, we showed that the following three independent, pre-
emptable periodic tasks are not schedulable by the RM scheduling algorithm:

T1 = (4, 1),T2 = (5, 2),T3 = (10, 3.1)

Now let us examine if we can schedule them by the EDF algorithm.
At 0, the first instance in each task is released. Because the instance in T1 has

the earliest deadline, it executes. It is done at 1.
At 1, the instance in T2 has higher priority than the instance in T3 and exe-

cutes. It is done at 3.
At 3, T3 is the only task waiting to run, and so it executes.

Table 4.3 The aperiodic tasks in Example 4.12.

Task
Release
time

Execution
time Deadline

T1 0 2 6
T2 1 1 4
T3 3 3 10
T4 5 2 8

Figure 4.15 EDF schedule
of three one-shot tasks.

0 2 64 8 10

T1 T2 T1 T3 T4 T3

�

� �

�

78 4 Task Scheduling

At 4, the second instance in T1 is released. Its deadline is at 8, earlier than the
deadline of the T3 instance, which is at 10. So, the T1 instance preempts T3 and
executes. It is done at 5.
At 5, the second instance in T2 is released. Its deadline is at 10, same as the

deadline of the T3 instance. Since T3 arrives earlier, T3 executes and is com-
pleted at 7.1, which means that the first instance of T3 meets its deadline!
At 7.1, T2 is the only task waiting to run, and so it executes.
At 8, the third instance in T1 arrives. Its deadline is at 12, later than the dead-

line of the T2 instance in execution, which still has 1.1 units to complete. So,
T2 continues to run and completes at 9.1.
At 9.1, T1 is the only task waiting to run, and so it executes.
At 10, an instance in T2 is released with deadline 15, and meanwhile, an

instance in T3 is released with deadline at 20. So, the T1 instance continues
to run. Both T2 and T3 are waiting.
At 10.1, T1 is completed. T2 has higher priority than T3. The instance in T2

executes. T3 is waiting.
At 12, an instance in T1 is released with deadline 16. The T2 instance

continues to run. T1 and T3 are waiting.
At 12.1, T2 is completed. T1 has higher priority than T3. The instance in T1

executes. T3 is waiting.
At 13.1, T1 is completed. The instance in T3 executes. No task is waiting.
At 15, an instance inT2 is releasedwith deadline at 20. It has the same priority

as the T3 instance in execution. T3 continues to run. T2 is waiting.
At 16, an instance inT1 is releasedwith deadline at 20. It has the same priority

as T2 and T3. T3 continues to run. T1 and T2 are waiting.
At 16.2, T3 is completed. T1 and T2 have the same deadline, but T2 arrives

earlier. The instance in T2 executes. T1 is waiting.
At 18.2, T2 is completed. T1 executes. No task is waiting.
At 19.2, T1 is completed. No task is waiting.
We have completed the scheduling for the first major cycle of the three tasks.

Every task instance meets its deadline. Therefore, the tasks are schedulable by
the EDF algorithm. The schedule is plotted in Figure 4.16.

4.4.2.2 Optimality of EDF
Example 4.13 shows that EDF produces feasible schedule for the three periodic
tasks that cannot be scheduled by RM. In fact, EDF is an optimal uniproces-
sor scheduling algorithm. In other words, as long as a set of tasks has feasible
schedules, EDF can produce a feasible schedule.
We prove that EDF is optimal by showing that any feasible schedule can

be systematically transformed to an EDF schedule. Assume that an arbitrary
schedule S meets all deadlines. If S is not an EDF schedule, there must be a
situation as illustrated in Figure 4.17a, that is, a task with a later deadline is
scheduled to run before a task with an earlier deadline. Assume before that the
schedule is EDF.

�

� �

�

4.4 Priority-Driven Scheduling Algorithms 79

0 161284

T3

20

0 161284

T2

20

0 161284

T1

20

Figure 4.16 EDF schedule of periodic tasks that cannot be scheduled by the RM algorithm.

S is EDF up to here
Tj Ti

di dj

I1 I2

Ti1 Ti2

di dj

ri , rj

ri , rj

ri , rj

I1 I2

Tj1 Tj2

di dj

I1 I2

Tj

Ti

(a)

(b)

(c)

Figure 4.17 Proof of optimality of EDF.

We consider three cases.

Case 1: Interval I1 is shorter than I2. In this case, we partition Ti into two
subtasks Ti1 and Ti2, where Ti1 is the first portion of Ti and its
execution time is equal to the length of I1. We place Ti1 in I1, move
Ti2 to the beginning of I2, and place Tj right after Ti2, as shown in
Figure 4.17b.

Case 2: Interval I1 is longer than I2. In this case, we partition Tj into two sub-
tasks Tj1 and Tj2, where Tj1 is the first portion of Tj and its execution
time is equal to the difference in the lengths of I1 and I2. We place Ti
and Tj1 in I1 and place Tj2 in I2, as shown in Figure 4.17c.

Case 3: Intervals I1 and I2 are equally long. In this case, we simply switch the
two tasks.

�

� �

�

80 4 Task Scheduling

After the adjustment in either case, the two tasks tend to be in the EDF order.
Notice that the adjustment does not affect the rest of the schedule. Therefore,
if we repeat this process for any two tasks that are out of order, we turn the
schedule to an EDF schedule.This proves that any feasible schedule can be sys-
tematically transformed to an EDF schedule. Thus, EDF is optimal.
How do we test the schedulability of a set of tasks by the EDF algorithm?We

have an important statement as follows:
If all tasks in a system are periodic and have relative deadlines equal to their
respective periods and the total utilization of the tasks is not greater than 1,
then the system is schedulable on a single processor by the EDF algorithm.
The necessary condition is obvious, because the utilization of a single pro-

cessor cannot exceed 1. We focus on the proof of the sufficient condition. We
prove it by showing that if in an EDF schedule, some tasks of a system fail to
meet their deadlines, then the total utilization of the system must be greater
than 1.
Without loss of generality, assume that the system starts execution at 0, and

the event that the first task, say Ti, misses its deadline occurs at time t.
Assume that the processor never idles prior to t. Consider two cases: (1) the

current period of every task starts at or after ri, the release time of the instance
in Ti that misses its deadline at t, and (2) the current periods of some tasks
begin before ri. The two cases are illustrated in Figure 4.18.

Case (1): This case is illustrated in Figure 4.18a. Each tick on the time line of a
task shows the release time of some instance in the task.The fact that
Ti misses its deadline at t indicates two things:
a) Any current task instance whose deadline is after t is not given any

processor time to execute before t.
b) The total processor time required to complete the Ti instance and

all other task instances with deadlines at or before t exceeds the
total supply of processor time, t.

In other words, we have

t <
(t − 𝜙i)ei

pi
+
∑
k≠i

⌊ t − 𝜙k

pk

⌋
ek (4.6)

The first term on the right-hand side of the inequality is the time
required to execute all instances in Ti with deadlines before t. Each
term in the sum gives the total amount of time before t required to
complete instances that are in a task Tk other than Ti and have dead-
lines at or before t. Notice that the flooring function excludes the task
instances whose deadlines are after t. Since𝜙k ≥ 0 and ek∕pk = uk for
all k, and ⌊x⌋ ≤ x for any x ≥ 0, we have

(t − 𝜙i)ei

pi
+
∑
k≠i

⌊ t − 𝜙i

pk

⌋
ek ≤ t

ei

pi
+ t

∑
k≠i

ek

pk
= t

n∑
k=1

uk = tU

�

� �

�

4.4 Priority-Driven Scheduling Algorithms 81

ri

(a)

(b)

T1

T2

Ti

Current period

t

Tk

T1

T2

Ti
ri + pi

ri + pi

Current period

tt−1

Figure 4.18 Infeasible EDF schedules.

Combining this inequality with the previous inequality, we have
U > 1.

Case (2): This case is illustrated in Figure 4.16b. Denote by T ′ the set of tasks
whose current period of instances are released before ri and have
deadlines after t. It is possible that processor time before ri was given
to the current instances of some tasks in T ′. Tk is such a task in the
figure. Let t−1 be the last point in time before ri when some cur-
rent instance in T ′ is executed, as illustrated in the figure, where an
instance of Tk ends its execution at t−1. Then, during the interval
[t−1, t], no instances in tasks in T −T ′ whose deadlines are after t
are given processor time. Denote by 𝜙′

j the release time of the first
instance of task Tj in T −T ′ after t−1.
Because the current instance in Ti misses its deadline, we must
have

t − t−1 <
(t − t−1 − 𝜙′

i)ei

pi
+

∑
Tk∈T−T ′

⌊ t − t−1 − 𝜙′
k

pk

⌋
ek

�

� �

�

82 4 Task Scheduling

This inequality is essentially the same as the one in Eq. (4.6) except
that t is replaced with t − t−1 and 𝜙k is replaced with 𝜙′

k . This implies
that U > 1.
Now let us consider the case that processor idles for some time prior
to t. Let t−2 be the last time instant when the processor idles. In other
words, from t−2 to t, the processor never idles. For the same reason,
the inequality in Eq. (4.6) is true. Therefore, we have U > 1.
The total utilization of the three periodic tasks in Example 4.13
is 0.96. Therefore, they are schedulable by the EDF algorithm.

4.4.3 Priority-Driven Scheduling of Aperiodic and Sporadic Tasks

We have discussed the priority-driven scheduling of periodic tasks. In this
section, we introduce algorithms for scheduling aperiodic tasks and sporadic
tasks.

4.4.3.1 Scheduling of Aperiodic Tasks
Aperiodic tasks have either soft deadlines or no deadlines. The simplest algo-
rithm for aperiodic task scheduling is to execute them at the background of
periodic tasks, that is, at the slack times of the schedule of periodic tasks. The
algorithm assigns the lowest priority to aperiodic tasks. Therefore, the schedu-
lability of periodic tasks won’t be affected, but there is no guarantee of the
response time of aperiodic tasks.
We can apply the slack stealing technique to improve the scheduler’s perfor-

mance regarding the response to aperiodic tasks.The theory behind slack steal-
ing is that for periodic tasks, the scheduling target is to meet their deadlines;
there is no benefit to complete their execution earlier. Therefore, we can delay
their execution as much as possible, as long as their deadlines are met. This
way, we can execute aperiodic tasks at the earliest possible times. Slack steal-
ing can be easily implemented in a clock-driven scheduling system, because a
clock-driven schedule is computed off-line, and we know exactly when the pro-
cessor is available for aperiodic tasks, howmuch the slack time is in each frame,
and themaximum that a schedule can bemove around.However, implementing
slack stealing in a priority-driven scheduling system ismuchmore complicated,
because scheduling decisions are made at runtime.
A more popular approach to scheduling aperiodic tasks is polling. In this

approach, a polling server or poller is introduced as a periodic task Ts = (ps, es)
to the system, where ps is the polling period and es is its execution time. The
scheduler treats the polling server as one more periodic task and assigns a rela-
tive priority to it based on its polling period.When the poller executes, it exam-
ines the aperiodic task queue. If it is backlogged, the poller executes the task at
the head of the queue. The poller stops running when it has already executed

�

� �

�

4.4 Priority-Driven Scheduling Algorithms 83

for es units of time or the aperiodic task that executes is finished, whichever
comes first, and then waits for next cycle. However, if at the beginning of a
polling period, no aperiodic tasks are available for execution, the poller sus-
pends itself immediately. It won’t be ready for execution until the next polling
period. According to this polling policy, if an aperiodic task arrives right after
the beginning of a polling period, it has to wait until the beginning of the next
period to be considered for execution.
A deferrable server Tds = (ps, es) is a bandwidth-preserving polling server that

preserves the execution time or budget of the server until it is used up by exe-
cuting aperiodic tasks in the current period or expires at the end of the period.
This way, if an aperiodic task arrives at an empty aperiodic task queue after the
beginning of a polling period, it still can get executed within the period if the
server’s priority permits. The idea of deferrable server is simple, but it reduces
the delay of execution of aperiodic tasks.

Example 4.14 Scheduling of Aperiodic Tasks
Consider a system of two periodic tasks:

T1 = (3, 1),T2 = (10, 3).

They are scheduled by RM. An aperiodic task A with an execution time of 1.3 is
released at 0.2. If we schedule A at the background of T1 and T2, its execution
is completed at 7.3, as shown in Figure 4.19a.
If A is scheduled with the simple polling server Ts = (2.5, 0.5), its execution

is finished at 7.8, as shown in Figure 4.19b. Notice that since the period of Ts
is shorter than T1 and T2, Ts has the highest priority. In addition, because A
arrives after the first period begins, it is not executed until time 2.5, the begin-
ning of the next period.
If A is scheduled with a deferrable server Ts = (2.5, 0.5), its execution is fin-

ished at 5.5 as shown in Figure 4.19c. In this case, A executes immediately after
it is released at 0.2. It is executed for 0.5 units of time in the first period, another
0.5 units of time in the second period. The last 0.3 is completed in the third
period. The first instance of T1 is preempted by the server at 0.2. It is resumed
for execution at 0.7, the instant when A uses up its budget in the first period,
and completes at 1.5.

Now let us examine the impact of a deferrable server to the schedulability
of periodic tasks. Assume that the server has the highest priority. The worst
impact occurs when an aperiodic task with execution time no less than 2es
arrives atmps − es, wherem is a nonnegative integer. In this case, the server exe-
cutes for 2es units of time consecutively and causes the longest possible delay
to periodic tasks. Therefore, in a system of periodic tasks scheduled by the RM
algorithm, if aperiodic tasks are scheduled by a deferrable server that has the

�

� �

�

84 4 Task Scheduling

2

T1

4 6 8 10 120 14 16

T2

2

A

4 6 8 10 120 14 16

A

Ts

T1

T2

2 4 6 8 10 120 14 16

T1

A

Tds

T2

2 4 6 8 10 120 14 16

(a)

(b)

(c)

Figure 4.19 Aperiodic task scheduling. (a) Aperiodic task scheduled at the background of
periodic tasks. (b) Aperiodic task scheduled with a simple polling server. (c) Aperiodic task
scheduled with a deferrable server.

shortest period, a critical instant of every periodic taskTi occurs at time t0 when
all the following are true:

1) One of its instances is released at t0.
2) An instance in every higher priority task is released at t0.
3) The budget of the server at t0 is es, one aperiodic task is released at t0, the

next period of the server starts at t0 + es, and the server keeps running in
the interval [t0, t0 + 2es].

�

� �

�

4.4 Priority-Driven Scheduling Algorithms 85

Hence, the time demand function of Ti is

wi(t) =
⌈ t − es

ps

⌉
es + es +

i−1∑
j=1

⌈
t
pj

⌉
ej + ei , 0 < t ≤ pi (4.7)

On the right-hand side of Eq. (4.7), the first two terms count the maximum
processor time demand by the server at time t. Each term in the sum is the time
demand by each higher priority task.
From the schedulability analysis we presented for periodic tasks, we know

that if we can find a t in the interval [0, pi] such that wi(t) ≤ t, then Ti is schedu-
lable.This schedulability test can help us in selecting the two server parameters
ps and es. First of all, we don’t want to introduce any deferrable server that will
cause a periodic task tomiss its deadline. From that end, the server should have
a relatively big ps and small es. However, in order for the system to respond
quickly to aperiodic tasks, the utilization of the server cannot be too small.The
schedulability analysis can help us figure out an acceptable server for both peri-
odic tasks and aperiodic tasks.

4.4.3.2 Scheduling of Sporadic Tasks
Sporadic tasks are released irregularly. Although a sporadic task does not have
a period, theremust be aminimum interarrival time between any two consecu-
tive instances of the task. Otherwise, it is hard for a scheduler to guarantee that
all its instances meet their deadlines. One way of handling sporadic tasks is to
treat every sporadic task as a periodic task with a period equal to its minimum
interarrival time. Another way is to introduce a deferrable server, the way we
handle aperiodic tasks. Since sporadic tasks have hard deadlines, an acceptance
test should be performed before a sporadic task is scheduled for execution. If
it is not schedulable, it should be rejected.

4.4.4 Practical Factors

The scheduling algorithms we have presented so far are based on assumptions
that every task is preemptable at any time, once a task instance is released, it
never suspends itself; hence, it is ready for execution until it completes, and
context switch overhead is negligible compared to task execution time. How-
ever, in real-world applications, these assumptions are not always valid. In this
section, we discuss how to test the schedulability of a system where these prac-
tical factors cannot be ignored.

4.4.4.1 Nonpreemptivity
A task or a particular portion of a task may be nonpreemptable. For example,
when a task is running in its critical section, making it nonpreemptable is one
way to avoid unboundedpriority inversion.Thiswill be discussed in detail in the
next chapter. Tasks are also made not preemptable if preemption is too costly.

�

� �

�

86 4 Task Scheduling

For example, consider a task that packages and sends control signal to an exter-
nal device. If the portion of sending a control signal is preempted, it has to
start over.
Denote by 𝜃i the largest nonpreemptable portion of Ti. A task is said to be

blocked if it is prevented from being executed by lower priority job, a situa-
tion of priority inversion. When we test the schedulability of a task Ti, we must
consider the nonpreemptable portions of lower priority tasks as well as the exe-
cution times of higher priority tasks.
The blocking time bi(np) of a task Ti is the longest time by which any instance

of Ti can be blocked by lower priority tasks. In a fixed-priority system where
tasks are indexed in the decreasing order of priorities, bi(np) is given by

bi(np) = max
i+1≤k≤n

𝜃k (4.8)

4.4.4.2 Self-Suspension
Self-suspension of a task occurs when the task waits for an external opera-
tion, such as Remote Procedure Call (RPC) and I/O operation, to complete
on another processor. When a task self-suspends, it loses the processor and
is placed in a blocked queue by the scheduler. Of course, when the blocked
task tries to reacquire the processor, it may be blocked by the tasks in their
nonpreemptable portions.
The suspension of a task may delay the execution of lower priority tasks.

Figure 4.20 illustrates such a case. Two tasks shown in the figure are

T1 = (5, 2),T2 = (2, 6, 2.1, 6).

The first instance of T1 suspends itself for 3 units of time immediately after it
starts execution, which causes the first instance of T2 to miss its deadline at
time 8.
Assume that we know the maximum length of external operation, that

is, the duration of self-suspension is bounded. Denote by 𝜌i the maximum
self-suspension duration of Ti. Denote by bi(ss) the blocking time of a task Ti

0 161284

T1

T2

20

0 161284 20

Self-suspension

Miss deadline!

Figure 4.20 Illustration of impact of task self-suspension.

�

� �

�

4.4 Priority-Driven Scheduling Algorithms 87

due to self-suspension. bi(ss) is given by

bi(ss) = 𝜌i +
i−1∑
k=1

min{ek , 𝜌k} (4.9)

4.4.4.3 Context Switches
Each task has a context, which is the data indicating its execution status and
stored in the task control block (TCB), a data structure that contains all the
information that is pertinent to the execution of the task. When a scheduler
switches a task out of the CPU, its context has to be stored; when the task is
selected to run again, its context is restored so that the task can be executed
from the last interrupted point. In a fixed-priority system, each task preempts
at most one lower priority task if there is no self-suspension. Hence, each task
instance suffers one context switch when it starts execution and another con-
text switch when it completes. Therefore, we can add the context switch time
twice to the execution time of each task. Let CS be the maximum amount of
time that the system spends on a single context switch, then when we analyze
the schedulability of a system, we need to add 2CS to the execution time of
each task if there is no self-suspension. For a task that can self-suspend up to ki
times, we add 2(ki +1)CS to its execution time.

4.4.4.4 Schedulability Test
In a fixed-priority system where a task Ti suspends ki times, its total blocking
time bi is given by

bi = bi(ss) + (ki + 1)bi(np) (4.10)

After adding the context switch time to each task’s execution time, the time
demand function wi(t) of the task Ti is modified as follows:

wi(t) =
i−1∑
j=1

⌈
t
pj

⌉
ej + ei + bi (4.11)

We then analyze the schedulability of tasks based on this expanded time
demand function.

Example 4.15 Schedulability Test
Consider four periodic tasks as follows:

T1 = (3, 1),T2 = (4, 1),T3 = (6, 1),T4 = (12, 1).

We showed in Example 4.10 that all these tasks are schedulable according to
the RM algorithm. Now we assume the following:

• T3 has a 0.2 time units of nonpreemptable portion, that is, 𝜃3 = 0.2. All other
tasks are preemptable at any time.

�

� �

�

88 4 Task Scheduling

• T1 may suspend itself at most once for 0.2 units of time. That is, k1 = 1 and
𝜌1 = 0.2. All other tasks have no self-suspension.

• Overhead of context switches is not negligible; CS = 0.1.

Let us find out if all the tasks are still schedulable.
According to Eqs. (4.8) and (4.9), we calculate bi(np) and bi(ss) for each task

as follows:

b1(np) = b2(np) = q3 = 0.2;

b3(np) = b4(np) = 0;

b3(np) = b4(np) = 0;

b1(ss) = 0;

b2(ss) = b3(ss) = b4(ss) = min{e1, r1} = 0.2.

Then it results from Eq. (4.10) that

b1 = b1(ss) + (k1 + 1)b1(np) = 0.4;

b2 = b2(ss) + (k2 + 1)b2(np) = 0.4;

b3 = b3(ss) + (k3 + 1)b3(np) = 0.2;

b4 = b4(ss) + (k4 + 1)b4(np) = 0.2.

The execution time with context switch time included for each task is

e1 = 1 + 2(k1 + 1)CS = 1.4;

e2 = e3 = e4 = 1 + 2CS = 1.2.

Now we can test the schedulability of each task based on the modified time
demand function. For the task T1,

w1(t) = e1 + b1 = 1.4 + 0.4 = 1.8

At t = 3 we have t > w1(t). Therefore, T1 is schedulable.
For the task T2,

w2(t) =
⌈

t
p1

⌉
e1 + e2 + b2 =

⌈ t
3

⌉
1.4 + 1.2 + 0.4 =

⌈ t
3

⌉
1.4 + 1.6

At t = 3 the inequality t ≥ w2(t) is satisfied. Therefore, T2 is schedulable.
For the task T3,

w3(t) =
⌈

t
p1

⌉
e1 +

⌈
t

p2

⌉
e2 + e3 + b3 =

⌈ t
3

⌉
1.4 +

⌈ t
4

⌉
1.2 + 1.4

The time instants to test the schedulability of T3 are 3, 4, and 6. However, none
of them satisfies t ≥ w3(t). Therefore, T3 is not schedulable.

�

� �

�

4.5 Task Assignment 89

4.5 Task Assignment

The scheduling algorithms presented in the previous sections are all
uniprocessor-based. In reality, many real-time embedded systems are
running onmultiple processors because a single processor is not able to handle
all tasks. As mentioned earlier in this chapter, a multiprocessor scheduling
problem is often dealt with through uniprocessor scheduling by assigning
tasks in a system to each processor first. In this section, we introduce some
well-known task assignment approaches.

4.5.1 Bin-Packing Algorithms

In general, task execution times, communication costs between tasks when
they are assigned to different processors, and placement of resources are
among the most important factors that we need to consider when we perform
task assignment. Bin-packing algorithms are utilization-based and do not take
communication costs into consideration. In some real-time applications, tasks
assigned to different processors exchange information through shared mem-
ory. Their communication costs are negligible. Bin-packing algorithms are
good for the task assignment of this kind of systems. Besides, at the early stage
of system design, we may want to ignore communication and resource access
costs despite the fact that they may be significant. We estimate the execution
time of each task based on its complexity and determine its utilization roughly,
and then based on each task’s utilization, we carry out task assignment.
The first step of task assignment is to decide the number of processors that

are needed. This can be done roughly based on the total task utilization. For
example, consider a system that contains n independent and preemptable peri-
odic tasks whose relative deadlines are equal to their respective periods, and
these tasks are to be scheduled by the EDF algorithm. If we know the utilization
of each task, then we can easily compute the total utilization U of the system.
Because the SU of EDF is 1, we round up U to the nearest integer, say k. Then
k is the minimum number of processors that we need for the system. To assign
the tasks to each processor, we can partition the set of tasks into k groups and
assign all tasks in each group to the same processor. All that we need to make
sure is that the total utilization of tasks in each group is not greater than 1. Of
course, it may not be a good idea to attempt to fully utilize the processor time in
periodic tasks. To reserve certain amount of processor time for the execution
of aperiodic tasks and sporadic tasks, we can set the threshold to utilization of
each processor to some value U ′

< 1.
It is straightforward to formulate this kind of task assignment problems as

simple bin-packing problems. In a bin-packing problem, objects or items of dif-
ferent volumes must be packed into a finite number of bins or containers of the
same volume in a way thatminimizes the number of bins used. In the context of

�

� �

�

90 4 Task Scheduling

task assignment, objects are tasks, the number of bins is the number of proces-
sors, and the volume of each bin is U ’. For n tasks with utilizations u1,u2,… ,un,
we want to find the required number of processors Np and a Np-partition of the
task set such that

minNp =
n∑

i=1
yi (4.12a)

subject to Np ≥ 1 (4.12b)
n∑

j=1
ujxij ≤ U ′yi, i ∈ {1, 2, … , n} (4.12c)

n∑
i=1

xij = 1, j ∈ {1, 2, … , n} (4.12d)

yi ∈ {0, 1}, i ∈ {1, 2, … , n} (4.12e)
xij ∈ {0, 1}, i ∈ {1, 2, … , n}, j ∈ {1, 2, … , n} (4.12f)

This is a integer linear programming (ILP) formulation of the problem.
Equation (4.12c) states that the cap of the utilization of each processor is not
greater than U ’. Equation (4.12d) together with Eq. (4.12f) states that each task
can only be assigned to one processor. Equation (4.12e) states that processor i
may or may not be used. Notice that it is assumed that the maximum number
of processors that are needed is n, the number of tasks.

4.5.1.1 First-Fit Algorithm
The bin-packing problem is NP-complete, but there are many simple heuristic
algorithms to solve the problem.Thefirst-fit algorithm is a very straightforward
greedy approximation algorithm. It processes the items in arbitrary order. For
each item, it attempts to place the item in the first bin that can accommodate
the item. If no bin is found, it opens a newbin and places the item in the newbin.
According to this algorithm, given a set of tasks T1,T2,… ,Tn and the max-

imum utilization of each processor U ’, we follow the following simple rules to
perform the task assignment:

• Tasks are assigned one by one in an arbitrary order.
• Assign task T1 to processor P1.
• Assign Ti to Pk if

• After the assignment, total utilization of Pk is less than or equal to U ’, and
• Assigning Ti to any processor in {P1,P2,…Pk−1} will make the total

utilization of the processor to be greater than U ’.

It can be proved that the first-fit algorithm achieves an approximation factor
of 2, that is, the number of processors used by this algorithm is no more than
twice the optimal number of processors.The proof proceeds with an important

�

� �

�

4.5 Task Assignment 91

observation, that is, in a task assignment by the first-fit algorithm, there are no
two processors that both have a utilization less thanU ′∕2.This is because at any
point of the process, if one processor is less than half-full (utilization<U ′∕2),
we should assign any new task with a utilization less than U ′∕2 to that proces-
sor, instead of adding a new processor for the task. Therefore, if we have Np
processors, then at least Np − 1 processors are more than half-full, i.e.,

n∑
i=1

ui >
1
2
(Np − 1)U ′

Let N∗ be the optimal number of processors, then by the definition of U ′,

N∗ ≥
1

U ′

n∑
i=1

ui =
1
2
(Np − 1)

Therefore, Np ≤ 2N∗.

Example 4.16 First-Fit Algorithm
Consider the tasks listed in Table 4.4. They are to be scheduled by EDF on
multiple processors. The maximum utilization allocated for periodic tasks on
each processor is 0.8. Table 4.5 shows how tasks are assigned to processors step
by step, and the utilization of each processor is updated after each step of the
process.

4.5.1.2 First-Fit Decreasing Algorithm
The first-fit decreasing algorithm is the same as the first-fit algorithm, except
that in the first-fit decreasing algorithm, the tasks are first sorted in nonincreas-
ing order according to their utilizations and then they are assigned in turn in
that order. For example, the sorted list of the 10 tasks in Table 4.4 is (T10, T5,
T2, T8, T1, T3, T4, T6, T7, T9).Then, we can use the first-fit algorithm to assign
them to processors based on this order.

4.5.1.3 Rate-Monotonic First-Fit (RMFF) Algorithm
Recall the theorem that RMcanproduce a feasible schedule forni periodic tasks
if the total utilization of these tasks is not greater than

URM(ni) = ni(21∕ni − 1)

Table 4.4 A set of periodic and preemptable tasks.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

pi 10 8 15 20 10 18 9 8 20 16
ei 2 2 3 4 3 2 1 2 2 5
ui 0.2 0.25 0.2 0.2 0.3 0.11 0.11 0.25 0.1 0.31

�

� �

�

92 4 Task Scheduling

Table 4.5 Task assignment by the first-fit algorithm.

Step Task Utilization Assigned to
Postassignment
utilization

1 T1 0.20 P1 U1 = 0.20
2 T2 0.25 P1 U1 = 0.45
3 T3 0.20 P1 U1 = 0.65
4 T4 0.20 P2 U2 = 0.20
5 T5 0.30 P2 U2 = 0.50
6 T6 0.11 P1 U1 = 0.76
7 T7 0.11 P2 U2 = 0.66
8 T8 0.25 P3 U3 = 0.25
9 T9 0.10 P2 U2 = 0.76
10 T10 0.31 P3 U3 = 0.56

Otherwise, the RM algorithm may not be able to produce a feasible schedule.
TheRMFF algorithmworks by sorting tasks in a nondecreasing order according
to their periods first.Then, we assign each task in turn in the sorted order, until
all tasks are assigned in the first-fit manner. A task Ti is assigned to a processor
if the total utilization of the x tasks that are already assigned to the processor
and Ti is not greater than URM(x + 1).

Example 4.17 Task Assignment by RMFF
Consider the tasks listed in Table 4.4 again. According to their periods, they
are sorted as (T2, T8, T7, T1, T5, T3, T10, T6, T4, T9). The step-by-step task
assignment is listed in Table 4.6. The values of URM(n) for n= 2, 3, 4, and 5 are
also given in the table to help with the assignment decision.

4.5.2 Assignment with Communication Cost

Thecost of communication between tasks is the time spent for them to commu-
nicate with each other. Denote by cij the time to communicate from Ti to Tj. If
Ti and Tj are assigned to the same processor, cij is low and negligible. However,
if they are assigned to different processors that are connected via some kind
of network, cij may be significant. When we partition tasks to different proces-
sors that involve nontrivial communication cost, we should try to minimize the
communication cost, as well as minimize the number of processors to use.
We assume a heterogeneous computing system in which the execution cost

of a task depends on the processor that it is executed on. We further assume
that the network is heterogeneous, that is, the cost of communication between
two interacting tasks depends on the processors they are assigned to and the

�

� �

�

4.5 Task Assignment 93

Table 4.6 Task assignment by RMFF.

Step Task Utilization Assigned to
Postassignment
utilization

1 T2 0.25 P1 U1 = 0.25, n1 = 1
2 T8 0.25 P1 U1 = 0.50, n1 = 2
3 T7 0.11 P1 U1 = 0.66, n1 = 3
4 T1 0.20 P2 U2 = 0.20, n2 = 1
5 T5 0.30 P2 U2 = 0.50, n2 = 2
6 T3 0.20 P2 U2 = 0.7, n2 = 3
7 T10 0.31 P3 U3 = 0.31, n3 = 1
8 T6 0.11 P3 U3 = 0.42, n3 = 2
9 T4 0.20 P3 U3 = 0.62, n3 = 3
10 T9 0.10 P3 U3 = 0.72, n3 = 4

URM(2) = 0.83, URM(3) = 0.78, URM(4) = 0.76, URM(5) = 0.74

bandwidth of communication link. The objective is to minimize the sum of all
the communication costs. The problem is also known to be NP-complete.
Let lij be the interference cost whenTi andTj are placed on the sameprocessor,

incurred due to resource contention. If we do not want Ti and Tj to be assigned
to the same processor, we can set lij to be a sufficiently large number. We allow
different processors to have different maximum utilizations. Denote by Uk the
maximum utilization of all tasks assigned to the k-th processor.
Assigning n periodic tasks into m processors with the objective to minimize

the total communication cost can be formulated as an ILP problem:

min
n∑

i=1

n∑
j=1

m∑
k=1

m∑
l=1

(1 − dij)AikAjl[cij(1 − dkl) + lijdkl] (4.13a)

subject to Aik ∈ {0, 1} (4.13b)
m∑

k=1
Aik = 1, for i = 1, 2, … , n (4.13c)

n∑
i=1

Aikui ≤ Uk k = 1, 2, … , m (4.13d)

dik =

{
1, if i = k
0, if i ≠ k

(4.13e)

Equations (4.13b) and (4.13c) state that a task can only be assigned to one
processor. Aik = 1 if the task Ti is assigned to processor Pk ; otherwise, Aik = 0.

�

� �

�

94 4 Task Scheduling

Equation (4.13d) states that the total utilization of all tasks assigned to a proces-
sor cannot exceed the maximum utilization of the processor. Equations (4.13a)
and (4.13e) state that the total cost is the sum of the communication cost and
interference cost between any two tasks Ti and Tj.The factor (1 − dij) excludes
the case that Ti = Tj. AikAjl indicates that Ti is assigned to Pk and Tj is assigned
to Pl. cij(1 − dkl) counts the communication cost when Pk ≠ Pj. lijdkl counts the
interference cost when Pk = Pj.

Exercises

1 Each of the following systems contains independent and preemptable
periodic tasks and is scheduled by the structured clock-driven scheduling
algorithm. For each system, calculate its major cycle, choose an appropri-
ate frame size, and construct the schedule of the first major cycle. If task
slicing is necessary, it should be kept minimal.
(a) T1 = (3, 1), T2 = (6, 1), T3 = (9, 2).
(b) T1 = (4, 1), T2 = (6, 1), T3 = (8, 2), T4 = (12, 2).
(c) T1 = (4, 1), T2 = (8, 1), T3 = (12, 2), T4 = (12, 3).
(d) T1 = (3, 1), T2 = (6, 1), T3 = (8, 2), T4 = (12, 4).
(e) T1 = (5, 1), T2 = (10, 2), T3 = (20, 5).

2 A system containing the following three independent and preemptable
periodic tasks is scheduled according to the structured clock-driven
scheduling algorithm:

T1 = (3, 1),T2 = (6, 2),T3 = (12, 2).

(a) Construct the schedule of the first major cycle.
(b) An aperiodic task A with execution time 4.5 arrives at 1.5. Schedule A

at the slack time intervals of the schedule produced in (a).
(c) RescheduleAwith slack stealing based on the schedule produced in (a).

3 Figure 4.10 shows a schedule of periodic tasks for two major cycles. The
frame size of the scheduler is 4. Perform acceptance test for the following
sporadic tasks:

Sporadic
task

Release
time

Execution
time Deadline

S1 1.5 3 9
S2 5 2 13
S3 7 4 15
S4 14 3.5 19

�

� �

�

4.5 Task Assignment 95

4 The following systems of independent and preemptable periodic tasks are
scheduled by the RM algorithm. Construct the schedule in the segment of
(0, 25) for each system.
(a) T1 = (4, 1), T2 = (8, 2), T3 = (10, 3).
(b) T1 = (4, 1), T2 = (5, 1), T3 = (7, 1), T4 = (10, 1).
(c) T1 = (3, 1), T2 = (6, 1), T3 = (8, 2), T4 = (12, 4).

5 Consider the following systems of independent and preemptable periodic
tasks that are scheduled by the RM algorithm. Test the schedulability of
each system using the time demand analysis.
(a) T1 = (4, 1), T2 = (7, 2), T3 = (9, 2).
(b) T1 = (5, 1), T2 = (8, 2), T3 = (10, 2), T4 = (15, 2).
(c) T1 = (3, 1), T2 = (5, 1), T3 = (8, 2), T4 = (10, 1).
(d) T1 = (3, 0.5), T2 = (4, 1), T3 = (5, 2), T4 = (8, 1).

6 Redo the schedulability test in Problem 5 by plotting the time demand
function of each task.

7 Schedule the following one-shot tasks with hard deadlines on a unipro-
cessor by the EDF algorithm. Assume that all tasks are independent and
preemptable.

Task
Release
time

Execution
time Deadline

T1 0 2 6
T2 1 3 9
T3 3 2 15
T4 4 1 8
T5 5 4 12
T6 8 2 11

8 Assume that the tasks in Problem 7 have precedence constraints shown
in Figure 4.21. Construct the EDF schedule again. Can all tasks meet their
deadlines?

9 The following systems of independent and preemptable periodic tasks are
scheduled by the EDF algorithm. Construct the schedule in the segment
of (0, 15) for each system.
(a) T1 = (3, 1), T2 = (5, 3).
(b) T1 = (4, 1), T2 = (5, 1), T3 = (6, 3).
(c) T1 = (5, 1), T2 = (6, 3), T3 = (9, 2).

�

� �

�

96 4 Task Scheduling

T1

T2

T4

T3

T5 T6

Figure 4.21 Precedence constraints graph of tasks in Problem 7.

10 Can we decide the schedulability of a system of independent and
preemptable tasks by the RM algorithm based on its total utilization?
Explain why.

11 Consider the following three independent periodic tasks:

T1 = (4, 1),T2 = (5, 2),T3 = (10, 2).

T1 and T3 are preemptable, but T2 is not.
(a) Construct the RM schedule of the system in the first 20 units of time.
(b) Construct the EDF schedule of the system in the first 20 units of time.

12 Consider four periodic tasks as follows:

T1 = (3, 1),T2 = (4, 1),T3 = (6, 1),T4 = (9, 1).

Assume the following:
• T4 has a 0.2 time units of nonpreemptable portion, that is, 𝜃4 = 0.2. All

other tasks are preemptable at any time.
• T2 may suspend itself at most once for 0.1 time units.That is, k2 = 1 and
𝜌2 = 0.1. All other tasks have no self-suspension.

• Overhead of context switches is not negligible; CS = 0.1.
Find out if the all tasks are schedulable by the RM algorithm.

13 Construct three periodic tasks that are schedulable by EDF and not all
schedulable by RM. Assume that all tasks are independent and preempt-
able.

14 Construct three periodic tasks that are schedulable by RM if all of them are
preemptable. However, if the task with the least priority is not preempt-
able, the task with the highest priority cannot meet its deadline. Assume
that all tasks are independent.

15 Consider a system of two periodic tasks:

T1 = (4.5, 2),T2 = (6, 2).

�

� �

�

References 97

They are scheduled by RM. An aperiodic task A with execution time 1.5 is
released at 0.1. Construct the schedule of the system in the first 15 units
of time in each of the following three cases:
(1) A is scheduled at the background of T1 and T2.
(2) A is scheduled using a simple polling server Ts = (4, 0.5).
(3) A is scheduled using a deferrable server Tds = (4, 0.5).

16 Consider the assignment of the following periodic tasks to multiple
processors:

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

pi 10 8 20 5 12 18 9 30 25 16
ei 3 2 2 1 3 2 2 3 10 4
ui 0.3 0.25 0.1 0.2 0.25 0.11 0.22 0.1 0.4 0.25

(a) Assume that the tasks are scheduled by EDF and the maximum uti-
lization of each processor is 0.8. What is the assignment based on the
first-fit algorithm?

(b) Assume that the tasks are scheduled by EDF and the maximum uti-
lization of each processor is 0.75.What is the assignment based on the
first-fit decreasing algorithm?

(c) What is the assignment based on the RM first-fit algorithm?

Suggestions for Reading

Liu and Layland introduced RM and showed that RM is optimal among all
static scheduling algorithms in Ref. [1] in 1973. In a system where a task’s
relative deadline is less than its period, Leung and Whitehead showed that
DM achieves the best performance in terms of schedulability [2]. Dertouzos
showed that EDF is optimal among all online algorithms [3]. To schedule
aperiodic tasks in fixed-priority systems, polling server and deferrable servers
are introduced in Refs [4, 5], sporadic server in Ref. [6], and the slack stealer
in Ref. [7]. For dynamic-priority systems, the dynamic sporadic server [8, 9],
the total-bandwidth server [9], and the constant-bandwidth server [10] are
the options.

References

1 Liu, C.L. and Layland, J.W. (1973) Scheduling algorithm for multipro-
gramming in a hard real-time environment. Journal of the ACM, 20 (1),
40–61.

�

� �

�

98 4 Task Scheduling

2 Leung, J. and Whitehead, J. (1982) On the complexity of fixed priority
scheduling of periodic real-time tasks. Performance Evaluation, 2 (4),
237–250.

3 Dertouzos, M.L. (1974) Control Robotics: The Procedural Control of Phys-
ical Processes, Information Processing, vol. 74, North-Holland Publishing
Company, pp. 807–813.

4 Lehoczky, J.P., Sha, L. and Strosnider, J.K. 1987 Enhanced aperiodic respon-
siveness in hard real-time environments. Proceeding of the IEEE Real-Time
Systems Symposium, pp. 261–270.

5 Strosnider, J.K., Lehoczky, J.P., and Sha, L. (1995) The deferrable server
algorithm fro enhanced aperiodic responsiveness in hard real-time environ-
ments. IEEE Transactions on Computers, 44 (1), 73–91.

6 Sprunt, B., Sha, L., and Lehoczky, J.P. (June 1989) Aperiodic task scheduling
for hard real-time systems. Journal of Real-Time Systems, 1, 27–60.

7 Lehoczky, J.P. and Ramos-Thuel, R. 1992 An Optimal Algorithm for
Scheduling Soft-Aperiordic Tasks in Fixed-Priority Preemptive Systems.
Proceedings of the IEEE Real-Time Symposium

8 Ghazalie, T.M. and Baker, T.P. (1995) Aperiodic servers in a deadline
scheduling environment. Real-Time Systems, 9 (1), 31–67.

9 Spuri, M. and Buttazzo, G. (1996) Scheduling aperiodic tasks in dynamic
priority systems. Real-Time Systems, 10 (2), 179–210.

10 Abeni, L. and Buttazzo, G. 1998 Integrate multimedia applications in hard
real-time systems, Proceedings of the IEEE Real-Time Systems Symposium,
Madrid, Spain.

�

� �

�

99

5

Resource Sharing and Access Control

The scheduling algorithms presented in Chapter 4 are all under the assumption
that all tasks are independent. We remove this assumption in this chapter,
because in many real-time applications, tasks do have explicit or implicit
dependencies among them. Explicit dependencies can be specified by the task
precedence graph, as discussed in Chapter 4. Data or resource sharing imposes
implicit dependencies among tasks that share the resource. Many shared
resources do not allow simultaneous access. When tasks share resources,
scheduling anomalies may occur due to potential priority inversions and
even deadlocks. This chapter discusses how resource sharing and resource
contention affect the execution behavior and schedulability of tasks and how
various resource access control protocols work to reduce the undesirable effect
of resource sharing.We focus on priority-driven and single-processor systems.

5.1 Resource Sharing

Examples of common resources are data structures, variables, main memory
area, files, registers, and I/O units. A task may need some resources in addition
to a processor in order to make progress. For example, a computational task
may share data with other computational tasks, and the shared data may be
guarded by semaphores. Each semaphore is a resource. When a task wants to
access the shared data guarded by a semaphore R, it must lock the semaphore
first and then enters the critical section of the code where it accesses the shared
data. In this case, we say that the task requires the resource R for the duration
of the critical section.
We only consider serially reusable resources. A serially reusable resource is

one that can be used safely by one task at a time and is not depleted by that use.
If a task using the resource gets preempted, it is allowed to use it at some later
time without a problem. Examples of serially reusable resources are devices,
files, databases, and semaphores.

Real-Time Embedded Systems, First Edition. Jiacun Wang.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

�

� �

�

100 5 Resource Sharing and Access Control

Not all serially reusable resources are preemptable. A tape and CD are
examples of nonpreemptable resources. If a process has begun to burn a
CD-ROM, suddenly taking the CD recorder away from it and giving it to
another process will result in a garbled CD. A task using a nonpreemptable
resource cannot be preempted from the resource usage. In other words,
when a unit of resource is granted to a task, this unit is no longer available to
other tasks until the task frees the unit; otherwise, the resource may become
inconsistent and lead to a system failure.

5.1.1 Resource Operation

Suppose that there are m types of resources in a system, namely R1, R2, …, Rm,
and there are vi indistinguishable units ofRi, i= 1, 2,…,m.When a task requests
𝜂i units of a resourceRi, it executes a lock to request them.The action is denoted
by L(Ri, 𝜂i). When the task no longer needs a resource, it executes an unlock to
release the resource, denoted by U(Ri, 𝜂i). If the resource has only one unit, the
notations are simplified to L(Ri) and U(Ri) for lock and unlock, respectively.
A binary semaphore, for example, is a resource that has only one unit, while a
counting semaphore can have multiple units.
The code segment of a task that begins at a lock and ends at amatching unlock

is called a critical section, which cannot be concurrently executed by multiple
processes. Resources are released in the last-in-first-out order. Therefore, crit-
ical sections are properly nested.
Two tasks conflict with each other if some of the resources they require are of

the same type. They contend for a resource when one requests a resource that
the other has. We say that the lock request L(Ri, 𝜂i) fails (or is denied) if the
scheduler does not grant the 𝜂i units of a resource Ri to the task. When its lock
request is denied, the task is blocked and losses the processor. A blocked task is
removed from the ready queue and stays blocked until the scheduler grants 𝜂i
units of Ri to it. At that time, the task becomes unblocked and is moved to the
ready task queue.

5.1.2 Resource Requirement Specification

The duration of a critical section determines how long the task that locks the
corresponding semaphore (resource) needs to hold the resource.We denote by
[R, 𝜂; c] that the task needs 𝜂 units of a resource R and the execution time of
the critical section is c. If only one unit of the resource is required, we omit the
parameter 𝜂 and use the simpler notation [R; c] instead. Nested critical sections
are denoted by nested brackets. For example, a notation by [R1; 10[R2; 3]]means
that the task requires one unit of R1 for 10 units of time (because the critical
section protected by R1 is 10 units of time), while in the critical section of R1,
the task requires one unit of R2 for 3 units of time.

�

� �

�

5.1 Resource Sharing 101

Example 5.1 Critical Sections
Figure 5.1 shows the critical sections of two tasks, namely T1 and T2. The exe-
cution time of T1 is 12 units of time. It has seven code segments:

[0, 2]: Requires no resources.
[2, 4]: Requires R1.
[4, 6]: Requires no resources.
[6, 8]: Requires R3.
[8, 10]: Requires R3 and R2.
[10, 11]: Requires R3.
[11, 12]: Requires no resources.

The execution time of T2 is 10 units of time. It has five code segments:

[0, 1]: Requires no resources.
[1, 4]: Requires R2.
[4, 6]: Requires no resources.
[6, 8]: Requires R1.
[8, 10]: Requires no resources.

The resource requirements of the two tasks are specified as follows:

T1: [R1; 2], [R3; 5[R2; 2]].
T2: [R2; 3], [R1; 2].

For a periodic task Ti, by saying that Ti has a critical section [R, 𝜂; c] we mean
that every instance of the task has a critical section [R, 𝜂; c].

5.1.3 Priority Inversion and Deadlocks

Assume that a higher priority task TH and a lower priority task TL share a
resource R. TH expects to run as soon as it is ready. However, if TL is using the
shared resource R when TH becomes ready to run, TH must wait for TL to finish
with it. We say that TH is pending on the resource.This is a situation where pri-
ority inversion occurs: a lower priority task is running while a higher priority

4 8 122 6 100

T1
L(R1) U(R1) L(R3) U(R3)L(R2) U(R2)

4 82 6 100

T2

L(R1) U(R1)L(R2) U(R2)

Figure 5.1 Critical sections.

�

� �

�

102 5 Resource Sharing and Access Control

task is waiting, which violates the priority model that a task can only be pre-
empted by another task of higher priority. This is a bounded priority inversion.
When TL is finished using R and unlocks it, TH preempts TL and runs. There-
fore, as long as the critical section of TL with regard to R is not sufficiently long,
TH can still meet its deadline.
However, amuchworse situation can occur. Let us say that afterTH is blocked

by TL on R and before TL is done with R, a task TM1 with a priority between TH
and TL is released and preempts TL. Now TL has to wait until TM1 is completed
and then resumes its execution. While it is waiting, a task TM2 with a prior-
ity between TH and TM1 is released and preempts TM1; hence, TM1 has to wait
until TM2 is completed and then resumes its execution. Such a chain waiting
sequence can go on and on.We call this situation an unbounded priority inver-
sion. An unbounded priority inversion can cause the task blocked on resource
access to miss its deadline, as illustrated in Figure 5.2.
Tasks that share resources can also enter a state that none of them can make

progress. Such a state is called a deadlock. A deadlock occurs when all the
following four conditions are met:

• Mutual exclusion. One or more resources must be held by a task in an exclu-
sive mode.

• Hold and wait. A task holds a resource while waiting for another resource.
• No preemption. Resources are not preemptable.
• Circular wait. There is a set of waiting tasks T = {T1, T2, …, TN}, such that

T1 is waiting for a resource held by T2, T2 is waiting for a resource held by
T3 and so on, until TN is waiting for a resource held by T1.

Figure 5.3 illustrates a deadlock of two tasks. The lower priority task TL is
released and executes first. It locks a resource A in a short period of time after
it starts to run. Then, a higher priority task TH is released and preempts TL.

Lock(S) Unlock(S)

Lock(S) Unlock(S)

TH

TM

TL

Figure 5.2 Priority inversion.

�

� �

�

5.2 Nonpreemptive Critical Section Protocol 103

Lock(A)

Lock(B)

TH

TL

Lock(A)

Lock(B)

Deadlock happens!

Figure 5.3 Deadlock.

Later on, TH locks a resource B and continues running, until it attempts to lock
the resource A and gets blocked, because A is held by TL. Now, TL executes.
Sometime later, TL attempts to lock the resource B, which is held by TH. Hence,
TL is blocked. In other words, at this moment, both tasks are blocked and no
one can move on.

5.1.4 Resource Access Control

Resource sharing can cause serious problems in real-time systems. We need
rules to regulate the access to shared resources. Several well-known resource
access control protocols have been developed to handle priority inversion
and deadlocks caused by resource sharing. A resource access control protocol
is a set of rules that govern when and under what conditions each request
for resource is granted and how tasks requiring resources are scheduled. A
well-designed access control protocol can prevent deadlocks from occurring.
However, there is no protocol that can eliminate priority inversion. A realistic
goal of access control is to keep the blocking time of higher priority tasks
under control.

5.2 Nonpreemptive Critical Section Protocol

As we mentioned earlier, bounded priority inversion in general won’t hurt an
application provided that the critical section of the lower priority task executes
in a timely manner. The real trouble is with unbounded priority inversion, in
which a medium-priority task preempts the lower priority task when the latter
is executing its critical section. To prevent unbounded priority inversion from
occurring, a simpleway is tomake all critical sections nonpreemptable. In other
words, when a task locks a resource, it executes at a priority that is higher than
the priorities of all other tasks, until it unlocks the resource (or completes the
execution of its critical section). This protocol is called nonpreemptive critical
section (NPCS) protocol. Because in this protocol, no task can be preempted

�

� �

�

104 5 Resource Sharing and Access Control

when it holds a resource, circularwaiting cannever occur.Therefore, a deadlock
is impossible.

Example 5.2 Priority Inversion with Mars Pathfinder
A well-known example of priority inversion is what happened with the Mars
Pathfinder mission in July 1997. The Pathfinder mission was best known for
the little rover that took high-resolution color pictures of the Martian surface
and relayed them back to Earth. The problem was in the mission software
run on the Martian surface. In the spacecraft, various devices communicated
over a MIL-STD-1553 data bus. Activity on this bus was managed by a pair of
high-priority tasks. One of the bus manager tasks communicated through a
pipe with a low-priority meteorological science task (task ASI/MET).
The software mostly ran without incident on Earth. On Mars, however, a

problem that was serious enough to trigger a series of software resets during the
mission developed. The sequence of events leading to each reset began when
the low-priority science task was preempted by a couple of medium-priority
tasks while it held a mutex related to the pipe. While the low-priority task was
preempted, the high-priority bus distribution manager (task bc_dist) tried to
sendmore data to it over the same pipe. Because the mutex was still held by the
science task, the bus distributionmanager wasmade to wait. Shortly thereafter,
the other bus scheduler became active. It noticed that the distributionmanager
hadn’t completed its work for that bus cycle and forced a system reset.
Figure 5.4 illustrates the schedule of the Mars Pathfinder in which the higher

priority task bc_dist misses its deadline due to unbounded priority inversion.
However, if we reschedule these tasks with the NPCS protocol, bc_dist can

Task bc_dist

Blocked on mutex
Becomes active

Task bc_sch

detects overrun

Task ASI/MET

Starts Locks mutex Gets preempted

Figure 5.4 Priority inversion with Mars Pathfinder.

�

� �

�

5.2 Nonpreemptive Critical Section Protocol 105

Task bc_dist

Locks mutex
Becomes active Completes

before deadline

Task ASI/MET

Starts locks mutex Unlocks mutex

Unlocks mutex

Figure 5.5 Apply nonpreemptive critical section protocol to the schedule in Figure 5.4.

complete before its deadline, as shown in Figure 5.5. In the new schedule, the
task ASI/MET is able to complete its execution with the mutex without inter-
ruption. When the task bc_dist is ready to require the mutex, it is available.
Therefore, there is no delay with the execution of bc_dist.

The NPCS protocol ensures that any higher priority task can only be blocked
at most once. This is because, after being blocked by a lower priority task on a
resource, the higher priority task starts execution immediately after the lower
priority task is finished with the resource. After it starts running, it cannot be
blocked by any lower level tasks. Therefore, in a system of periodic tasks T1,
T2, …, Tn that are indexed in order of nonincreasing priority, the maximum
blocking time bi(rc) of Ti is

bi(rc) = max{ck , k = i + 1, i + 2,… , n} (5.1)

where ck is the execution time of the longest critical section of the task Tk. The
worst case (maximum blocking) occurs right after the lower priority task with
the longest critical section enters the critical section, the higher priority task
becomes ready and blocked.

Example 5.3 Blocking Times of Tasks under the NPCS Protocol
Consider a system of four periodic tasks T1, T2, T3, and T4.Their priorities are
in the decreasing order. The execution times of their longest critical sections
are 4, 3, 6, and 2, respectively. According to Eq. (5.1),

b1(rc) = max{c2, c3, c4} = max{3, 6, 2} = 6;

�

� �

�

106 5 Resource Sharing and Access Control

b2(rc) = max{c3, c4} = max{6, 2} = 6;

b3(rc) = max{c4} = max{2} = 2.

Since T4 has the lowest priority, no blocking on it can ever occur. Therefore,
b4(rc) = 0.

The NPCS protocol is simple and easy to implement. It works without need-
ing any prior knowledge of resource requirements of tasks. It eliminates the
possibility of unbounded priority inversion and deadlocks. However, under this
protocol, any higher priority task can be blocked by any lower priority task that
accesses some resources, even when the higher priority task does not need any
resource in its entire execution.

5.3 Priority Inheritance Protocol

Another simple protocol eliminating unbounded priority inversion is the Prior-
ity Inheritance Protocol. Under this protocol, when a lower priority task blocks
a higher priority task, it inherits the priority of the blocked higher priority task.
Thisway the lower priority task can complete the execution of its critical section
as soon as possible. Due to the priority inheritance, any task with a priority
in between cannot preempt the lower priority task. Thus, unbounded priority
inversion is avoided. A task holding a resource may block multiple tasks that
are waiting for the resource. In that case, the last blocked task must have the
highest priority and thus the blocking task inherits the highest priority. After
executing its critical section and releasing the resource, the task returns to its
original priority level.
Because the priority of a task is changeable under the priority inheritance

protocol, we call the priority that is assigned to a task according to a schedul-
ing algorithm (e.g., rate-monotonic) its assigned priority. In a fixed-priority
scheduling system, the assigned priority of a task is a constant. Because a task
can inherit other task’s priority, a task may be scheduled at a priority that is dif-
ferent from its assigned priority. We can say that priority is the current priority
of the task.

5.3.1 Rules of Priority Inheritance Protocol

There are three rules that govern the priority inheritance protocol:

Scheduling Rule: Ready tasks are scheduled on the processor preemptively
according to their current priorities. A task’s current priority is its assigned
priority unless it is in its critical section and blocks higher priority
tasks.

�

� �

�

5.3 Priority Inheritance Protocol 107

Table 5.1 Tasks in Example 5.4.

Task Priority Released at Execution time Resource usage

T1 1 6 3 [1, 2) uses X
T2 2 4 5 [1, 3) uses X; [2, 3) uses Y
T3 3 3 2 None
T4 4 2 1 None
T5 5 0 5 [1, 4) uses X

Allocation Rule: When a task T locks a resource R at time t,
• If R is free (not locked by another task), R is allocated to T and the lock

L(R) is successful.
• If R is not free (locked by another task), L(R) is denied and T is blocked.

Priority Inheritance Rule: When a lower priority task blocks a higher priority
task, it inherits the current priority of the blocked higher priority task until
it completes the execution of its critical section and unlocks the resource.
Then, it returns to its assigned priority.

The reason that in the priority inheritance rule, we highlight the current
priority to be inherited is because a task may block multiple tasks in the order
of nondecreasing priorities, as is illustrated in the following example.

Example 5.4 Priority Inheritance
Consider the five single-shot tasks listed in Table 5.1. Their priority values are
listed in the second column. As a convention, a greater priority value means a
lower priority. Thus, T1 has the highest priority and T5 has the lowest priority.
Their schedule is depicted in Figure 5.6. We explain the schedule step by step
as follows.
At time 0,T5 is released. It is the only task ready to execute. It starts execution.
At time 1, T5 locks the resource X that is free. According to the allocation

rule, T5 is granted X. T5 enters its critical section guarded by X.
At time 2, T4 is released. Because the priority of T4 is higher than that of T5,

T4 preempts T5.
At time 3, T4 completes its execution. T3 is released. Because the priority of

T3 is higher than that of T5, T3 is scheduled to run.
At time 4, T2 is released. Because the priority of T2 is higher than that of T3,

T2 is scheduled to run. T3 is preempted. Both T5 and T3 are waiting to run.
At time 5, T2 attempts to lock X, which is held by T5. According to the alloca-

tion rule, the lock is denied.Thus,T2 is blocked byT5. According to the priority
inheritance rule, T5 inherits T2’s priority as its current priority, which is higher
than that of another waiting task T3. Therefore, T5 is scheduled to run. Both
T2 and T3 are waiting.

�

� �

�

108 5 Resource Sharing and Access Control

20 4 6 8 10 12 14

T1

T2

T3

T4

T5

L(X)

L(X)

L(X) U(X)

U(X)

L(Y)U(Y)U(X)

Figure 5.6 Schedule of tasks in Example 5.4.

At time 6, T1 is released. Because T1 has the highest priority in the system, it
preempts T5 and executes. T2, T3, and T5 are waiting.
At time 7, T1 attempts to lock X, which is held by T5. According to the alloca-

tion rule, the lock is denied.Thus,T1 is blocked byT5. According to the priority
inheritance rule, T5 inherits T1’s priority as its current priority, which is higher
than that of two waiting tasks T2 and T3.Therefore, T5 is scheduled to run. T1,
T2, and T3 are waiting.
At time 8, T5 completes the execution of its critical section and unlocks

X. Its current priority drops to its assigned priority, the lowest in the system.
Although it still has one unit to execute, it is preempted by T1, which is granted
X and starts to execute with X. T2, T3, and T5 are waiting.
At time 9, T1 completes the execution of its critical section and unlocks X. It

still has one unit to execute. Because it has the highest priority in the system,
so it continues running. T2, T3, and T5 are waiting.
At time 10, T1 completes its execution. Among the three waiting tasks T2,

T3, and T5, T2 has the highest priority. Its pending lock of X is granted because
X is free. Thus, T2 executes. T3 and T5 are waiting.
At time 11,T2 locks Y . BecauseY is free, so the lock is successful.T2 executes

with both X and Y . T3 and T5 are waiting.
At time 12, T2 unlocks X and Y . It continues running because it still has one

time unit to finish. T3 and T5 are waiting.
At time 13, T2 completes its execution. T3 executes and T5 is waiting.
At time 14, T3 completes its execution. T5 executes.
At time 15, T5 completes its execution. All tasks are executed.

�

� �

�

5.3 Priority Inheritance Protocol 109

Throughout their executions, the current priorities of all tasks except T5 are
their assigned priorities, because they never block any other tasks.The current
priority of T5 changes as follows:
[0, 5): 𝜋5; [5, 7): 𝜋2; [7, 8): 𝜋1; [8, 15): 𝜋5.

Here we use notation 𝜋i for the assigned priority of a task Ti. 𝜋i = i for i= 1, 2,
…, 5.

Discussion:

1. Notice that due to priority inheritance, T3, a task whose priority is between
T2 and T5 does not get chance to preempt T5 when T2 is blocked by T5.
Therefore, unbounded priority inversion is controlled.

2. T2 and T1 are directly blocked T5 in turn at time 5 and 8, respectively, due to
resource contention. We say that T3 is priority-inheritance blocked by T5 at
time 5 and 7.Thus, there are two types of blocking in the priority inheritance
protocol.

5.3.2 Properties of Priority Inheritance Protocol

We mentioned earlier that the NPCS protocol can avoid both unbounded
priority inversion and deadlocks. We have already justified that the priority
inheritance protocol can eliminate unbounded priority inversion. A natural
question is: can the priority inheritance protocol eliminate deadlocks as well?
Unfortunately, the answer is no. The reason is simple: it cannot avoid circular
waiting of resources. Look at the deadlocked schedule depicted in Figure 5.3.
This schedule does not violate any rules of the priority inheritance protocol. In
other words, the priority inheritance protocol does not prevent deadlocks. We
use another example to further illustrate this fact.

Example 5.5 Deadlocks under Priority Inheritance Protocol
Figure 5.7 shows the schedule of the three tasks listed in Table 5.2. At time 6,
TH locks the resource X that is in use by TL, which is preempted in the critical
section of X by TM at time 2. According to the resource allocation rule, the lock
fails and TH is blocked. TL’s priority is upgraded to 1 and executes. At time 7,
TL locks the resource Y that is in use by TH, so the locks fails. Now TH and TL
enter a circular waiting for resources held by each other and neither of them
can move on.
The other task, TM, cannot run either, because its priority is not the highest.

Therefore, a deadlock occurs.

A lower priority task blocks a higher priority task only when it is executing
its critical sections. Otherwise, it is preempted by the higher priority task.
Under the priority inheritance protocol, a higher priority task can only be

blocked for at most once by a lower priority task.This is because after the lower

�

� �

�

110 5 Resource Sharing and Access Control

2 4 6 8 10 12 14

TH

TM

TL

L(X)

L(Y)L(X)

L(Y)
Deadlock happens!

Figure 5.7 Schedule of tasks listed in Table 5.2.

Table 5.2 Tasks in Example 5.5.

Task Priority Released at Execution time Resource usage

TH 1 4 4 [1, 4) uses Y ; [2, 3) uses X
TM 2 2 3 None
TL 3 0 7 [1, 5) uses X; [3, 4) uses Y

2 4 6 8 10 12 14

TH

TM

TL

L(X)

L(X) U(X)

U(X)

L(Y) U(Y)

L(Y) U(Y)

Figure 5.8 A higher priority task is blocked by a lower priority task for at most once.

priority task completes the execution of its critical section and unlocks the
resource, the higher priority task is unblocked and executes.The lower priority
task cannot run until the higher priority task completes its execution, even if the
lower priority task has multiple critical sections. For example, in the schedule
shown in Figure 5.6, T1 is only blocked once by T5, so does T2. Figure 5.8 illus-
trates the case that the two tasks have conflict on two resources, but the higher
priority task is only blocked once. Again, the reason is that, after TL unlocks X
at time 5, its current priority drops to its assigned priority, and it never gets a
chance to run again before TH and TM complete.

�

� �

�

5.4 Priority Ceiling Protocol 111

L(Y)

2 4 6 8 10 12 14

TH

TM

TL

L(X)

L(X)

U(X)

U(Y)

U(Y)

U(X) L(Y)

Figure 5.9 A higher priority task is blocked by multiple lower priority tasks.

A task can be blocked by multiple lower priority tasks. Consider the case
illustrated in Figure 5.9. TL and TM lock X and Y at times 1 and 3, respectively.
TL is preempted by TM at time 2, while TM is preempted by TH at time 4. TH
is blocked by TL on X at time 5. Thus, TL inherits TH’s priority and executes
with X until it unlocks X at time 6, which unblocks TH. TH executes until it is
blocked again by TM on Y at time 8. It is unblocked when TM unblocks Y at
time 9.
The worst case of blocking under the priority inheritance protocol is that a

task is blocked by every lower priority task for once by their longest critical
sections.
In summary, the priority inheritance protocol eliminates unbounded priority

inversion. A task can only be blocked by any lower priority task for atmost once.
However, there are several noticeable disadvantages with the protocol. First,
it does not prevent deadlocks from occurring. Second, a task can be blocked
by as many lower priority tasks as there are, so the blocking time can be long
enough to cause the task to miss its deadline. Third, due to the existence of
priority inheritance blocking, a task can be blocked by any lower priority task
that has no resource conflict with it, a disadvantage that the NPCS protocol
suffers as well.
Nevertheless, the priority inheritance protocol is supported by most com-

mercial real-time operating systems. It was used to solve the priority inversion
issue with the Mars Pathfinder back in 1997.
The priority inheritance protocol is also called the basic priority inheritance

protocol. Several protocols were developed based on this protocol with better
performance. The priority ceiling protocol to be presented in the next section
is one of them.

5.4 Priority Ceiling Protocol

The priority ceiling protocol is an improvement of the priority inheritance
protocol with the goal to prevent the formation of deadlocks and to reduce

�

� �

�

112 5 Resource Sharing and Access Control

the blocking time. This protocol assumes that the resource requirement of
every task is known before the execution of any task starts. It associates each
resource with a priority ceiling, which is the highest priority of all tasks that
might use the resource. As we know that in the priority inheritance protocol,
whenever a request for a resource is made, the resource is granted to the
requesting task as long as it is free. However, such a request under the priority
ceiling protocol may or may not be granted, even if the resource is free. More
specifically, when a task preempts the critical section of another task and
locks a new resource, the protocol ensures that the lock is successful only if
the priority ceiling of the new resource is higher than that of any preempted
resources.
We use the following priority-related notations:

ΠR: the priority ceiling of a resource R
Π(t): the system’s priority ceiling at time t, which is the highest priority ceiling
of all resources that are in use. If at time t, there are no resources in use, then
the priority ceiling Π(t) is the lowest, denoted by the symbol Ω.

5.4.1 Rules of Priority Ceiling Protocol

The rules for scheduling, resource allocation, and priority inheritance of the
priority ceiling protocol are as follows:

Scheduling Rule: Ready tasks are scheduled on the processor preemptively
according to their current priorities. A task’s current priority is its assigned
priority unless it is in its critical section and blocks higher priority
tasks.

Allocation Rule: When a task T locks a resource R at time t,

• If R is not free (locked by another task), L(R) is denied and T is blocked.
• If R is free,

• If T ’s current priority 𝜋(t) is higher than Π(t), R is allocated to T and the
lock L(R) is successful.

• If T ’s current priority 𝜋(t) is lower than or equal toΠ(t), R is allocated to T
only if T is the task holding the resource(s) whose priority ceiling is equal
to Π(t); otherwise, the lock fails and T is blocked.

Priority Inheritance Rule: When a lower priority task blocks a higher priority
task, it inherits the current priority of the blocked higher priority task until
it completes the execution of its critical section and unlocks the resource.
Then, it returns to its assigned priority.

Notice that the scheduling rule and priority inheritance rule are exactly the
same as they are in the priority inheritance protocol.The only difference is with
the allocation rule. Before we explain the benefits of this new rule, let us use an
example to show how the protocol works.

�

� �

�

5.4 Priority Ceiling Protocol 113

Table 5.3 Tasks in Example 5.6.

Task Priority Released at Execution time Resource usage

T1 1 6 3 [1, 2) uses X
T2 2 4 5 [1, 3) uses Y ; [2, 3) uses X
T3 3 3 2 None
T4 4 2 1 None
T5 5 0 5 [1, 4) uses X

2 4 6 8 10 12 140

T1

T2

T3

T4

T5

L(X)

L(Y)

L(X) U(X)

U(X)

L(X) U(X)U(Y)

Figure 5.10 Schedule of tasks in Table 5.3.

Example 5.6 Priority Ceiling Protocol
The tasks listed in Table 5.3 are similar to those in Table 5.1.The only difference
is withT2, which usesX in [1, 3) andY in [2, 3) in Table 5.1.The priority ceilings
of the two resources are

ΠX = 1; ΠY = 2.

The schedule of these tasks under the priority ceiling protocol is depicted in
Figure 5.10.
WhenT5 requestsX at time 1, there is no other resource in use, so the priority

ceiling Π(1) is Ω, the lowest possible priority. According to the allocation rule,
T5 is granted X. Then T5 is preempted by T4 at time 2, T4 is preempted by T3
at time 3, and T3 is preempted by T2 at time 4.

�

� �

�

114 5 Resource Sharing and Access Control

At time 5, T2 requests Y . At this moment, Π(5) = ΠX = 1. Because the pri-
ority of T2 is less than Π(5), the request is denied according to the resource
allocation rule.Therefore, T2 is blocked by T5. T5’s current priority is upgraded
to 2 and T5 executes.
When T1 is released at time 6, because its assigned priority is greater than

T5’s current priority, it preempts T5. At time 7, T1 attempts to lock X and
gets directly blocked by T5. Thus, T5’s current priority is upgraded to 1 and T5
executes.

T5 unlocks X at time 8. T1 is unblocked and executes its critical section of X.
It unlocks X at time 9 and completes its execution at time 10. Notice that T2
is also unblocked at time 8. However, because its current priority is lower than
that of T1, it is not picked by the scheduler to run.
After T1 completes its execution at time 10, T2 executes. At time 11, it

requests X. At this moment, Π(11) = ΠY = 2, which is equal to the current
priority of T2. Because T2 is the task that holds Y , therefore, according
the allocation rule, T2 is granted X. T2 completes at time 13. Then, T2 and
T5 complete the executions of their remaining portions at time 14 and 15,
respectively.
Throughout their execution, the current priorities of all tasks except T5 are

their assigned priorities, because they never block any other tasks.The current
priority of T5 changes as follows:

[0, 5)∶𝜋5; [5, 7)∶𝜋2; [7, 8)∶𝜋1; [8, 15)∶𝜋5.

The system’s priority ceiling changes as follows:
[0, 1): Ω; [1, 9): 𝜋1; [10, 11): 𝜋2; [11, 12): 𝜋1; [12, 15): Ω.

Discussion:

1. When T2 requests Y at time 5, Y is free. Under the priority inheritance pro-
tocol, such a request would be granted. So, the priority inheritance protocol
is a greedy protocol. Because it is greedy, it does not prevent deadlocks.

2. In addition to the direct blocking and priority inheritance blocking, there is
a third type of blocking under the priority ceiling protocol, which is priority
ceiling blocking. In Example 5.6, the priority ceiling blocking occurs at time
5 when T2 requests Y .

5.4.2 Properties of Priority Ceiling Protocol

The priority inheritance rule allows the priority ceiling protocol to avoid
unbounded priority inversion, a property shared by the priority inheritance
protocol. As we see in Example 5.6, the tough resource allocation rule in
the priority ceiling protocol causes additional priority ceiling blocking. This
additional blocking, however, helps avoid deadlocks.Therefore, priority ceiling
blocking is also called deadlock avoidance blocking. Example 5.7 shows how it
works.

�

� �

�

5.4 Priority Ceiling Protocol 115

2 4 6 8 10 12 14

TH

TM

TL

L(X)

L(Y) L(X)

L(Y) U(X)U(Y)

U(Y)U(X)

Figure 5.11 The priority ceiling protocol avoids deadlock.

Example 5.7 Deadlock Avoidance Blocking
We know that the three tasks listed in Table 5.2 enter a deadlock when they are
scheduled with the priority inheritance protocol. Let us see what happens if we
reschedule them with the priority ceiling protocol. The priority ceilings of the
two resources are

ΠX = 1; ΠY = 1.

As shown in Figure 5.11, the first resource request is made by TL at time 1
when the system’s priority ceiling is Ω. The request is granted. Then, TL is pre-
empted by TM at time 2, and TM is preempted by TH at time 4. At time 5, TH
requests Y . Because X is in use, the system’s priority ceiling Π(5) is 1, which is
equal to the current priority of TH . Recall the allocation rule that states that in
this case, if the resource whose priority ceiling is equal to the requesting task’s
current priority is held by the requesting task, the request is granted; other-
wise, it is denied. Here, the resource X is held by TL, not TH . Therefore, the
request is denied, and TH is priority-ceiling blocked. TL inherits TH ’s priority
and runs until it unlocks X at time 8. Then, TH resumes its execution until it is
completed at time 11. TM and TL complete their remaining portions at 12 and
14, respectively. The deadlock is avoided!

The priority ceiling protocol prevents the formation of deadlocks by denying
those resource requests that, if granted, may cause deadlock later. If the current
priority of the requesting task is higher than the system’s priority ceiling, then
based on the definition of the system’s priority ceiling, we know for sure that
the requesting task will not request any resource that is in use. So, it is safe
to allocate the resource to the task. Otherwise, the requesting task may need
to use some resource that is in use by other tasks later, which can lead to a
deadlock, so the request should be denied. An exception is that requesting task
itself holds the resource whose priority ceiling is equal to the system’s priority
ceiling. In that case, the requesting task will not request any resource that is in
use by other tasks. So, it is safe to allocate the resource to the task.

�

� �

�

116 5 Resource Sharing and Access Control

In addition to deadlock avoidance, the priority ceiling protocol can prevent
the chained blocking illustrated in Figure 5.9.The tasks shown in Figure 5.9 are
rescheduledwith the priority ceiling protocol, and the new schedule is depicted
in Figure 5.12. In the new schedule, TM is priority-ceiling blocked at time 3
when it locks Y . As a result, the blocking on TH by TM due to resource con-
tention for Y is avoided. (In this particular example, the blocking by TL is also
avoided, but this is not the general case. If the length of the critical section of
TL is longer than 2 time units, then TH will be blocked by TL at time 5.)
In fact, as long as one resource that a higher priority task will access is in

use by a lower priority task, no tasks whose priorities are in between can suc-
cessfully lock any resource that the higher priority task will access. In other
words, under the priority ceiling protocol, a task can be blocked for at most the
duration of one critical section.
In summary, the priority ceiling protocol eliminates unbounded priority

inversion, prevents the formation of deadlock, and avoids chained blocking. A
task can only be blocked for at most the duration of one critical section. These
advantages show that it is a big improvement over the priority inheritance
protocol. Of course, the improvement comes at a cost, which includes the
overhead of the calculation of resource priority ceiling and system priority
ceiling, and the overhead of extra context switches due to priority ceiling
blockings. In general, a task that does not need to access resources may suffer
at most two context switches due to preemption. A task that accesses resource
may suffer additional two context switches incurred by blockings.

5.4.3 Worst-Case Blocking Time

As we mentioned earlier, there are three types of blocking when resource
accesses are controlled by the priority inheritance protocol: direct blocking,
priority inheritance blocking, and priority ceiling blocking.

L(Y)

2 4 6 8 10 12 14

TH

TM

TL

L(X)

L(X)

U(X)

U(Y)

U(Y)

U(X) L(Y)

Figure 5.12 The priority ceiling protocol avoids chained blocking.

�

� �

�

5.4 Priority Ceiling Protocol 117

Direct blocking occurs when a higher priority task requests a resource that
is held by a lower priority task. The maximum blocking time is the duration of
the corresponding critical section of the lower priority task.
When a lower priority task blocks a higher priority task, it inherits the pri-

ority of the higher priority task. Thus, it further priority-inheritance blocks all
tasks whose priorities are between the assigned priorities of the two tasks. The
maximum blocking time is the duration of the corresponding critical section
of the lower priority task.
After a lower priority task successfully locks a resource R, every higher pri-

ority task is priority-ceiling blocked from locking other resources if its priority
is not higher than the priority ceiling of R. The maximum blocking time is the
duration of the corresponding critical section of the lower priority task.
Notice that direct blocking and priority ceiling blocking never occur to tasks

that do not use resources, as these two types of blockings only occur when
tasks request resources. Besides, even if it conflicts with other tasks on multi-
ple resources, a task can only be blocked for at most the duration of one critical
section.Next, we use an example to showhow to compute theworst-case block-
ing time of a task under the priority ceiling protocol.

Example 5.8 Blocking Time Computation
Consider a system of five tasks and three resources.The resource requirements
of the tasks are specified as follows:

T1 ∶ [X; 2][Y ; 4]

T2 ∶ [Z; 1]

T3 ∶ [Y ; 3][Z; 6]

T4 ∶ None

T5 ∶ [X; 4][Z; 2]

These tasks are indexed in the decreasing order of priorities. Let us discuss all
possible blockings and blocking times.

Direct blockings:
• The lowest priority task T5 shares X with T1 and Z with T2 and T3, and

thus, T5 can directly block T1 for 4 time units (the duration of T5’s critical
section of X), and T2 and T3 each for 2 time units (the duration of T5’s
critical section of Z).

• T3 shares Y with T1 and Z with T2, and thus, T3 can directly block T1 for
3 time units (the duration of T3’s critical section of Y) and T2 for 6 time
units (the duration of T3’s critical section of Z).

�

� �

�

118 5 Resource Sharing and Access Control

Table 5.4 Worst-case blocking times of tasks in Example 5.8.

Direct Priority-inheritance Priority-ceiling

Task T2 T3 T4 T5 T2 T3 T4 T5 T2 T3 T4 T5

T1 3 4
T2 6 2 3 4 3 4
T3 2 4 4
T4 4

Priority inheritance blockings:

• After T5 blocks T1, it can priority-inheritance block T2, T3 and T4 for 4
time units in the worst case.

• After T5 blocks T2, it can priority-inheritance block T3 and T4 for 2 time
units in the worst case.

• After T5 blocks T3, it can priority-inheritance block T4 for 2 time units in
the worst case.

• After T3 blocks T1, it can priority-inheritance block T2 for 3 time units in
the worst case.

Priority ceiling blockings:

• After T5 locks X successfully, it can priority-ceiling block T2 and T3 for 4
time units in the worst case.

• After T5 locks Z successfully, it can priority-ceiling block T3 for 2 time
units in the worst case.

• After T3 locks Y successfully, it can priority-ceiling block T2 for 3 time
units in the worst case.

Table 5.4 shows the all different types of blockings and maximum blocking
times.The table is composed of three subtables, and they are for directly block-
ing, priority inheritance blocking and priority ceiling blocking. There is a row
for each task that can be blocked.There is no row for T5 because it has the low-
est priority and thus never gets blocked. For example, the row for T1 shows that
T1 can be directly blocked by T3 and T5 for 3 and 4 time units, respectively. It
also shows that there is neither priority inheritance nor priority ceiling blocking
on T1. The row for T3 shows that T3 can be directly blocked by T5 for 2 time
units, priority-inheritance blocked by T5 for 4 time units, and priority-ceiling
blocked by T5 for 4 time units. We can also read the table in columns. For
example, the column for T5 in the priority inheritance blocking subtable shows
that T5 can priority-inheritance block each of T2, T3, and T4 for 4 time units.
The values of most entries in the table come directly for the analysis that

we just made. However, in case that there are multiple values for an entry,

�

� �

�

5.5 Stack-Sharing Priority Ceiling Protocol 119

we should put the greatest one there because we are considering the longest
blocking times. For example, our aforementioned analysis indicates that T3 can
be priority-inheritance blocked by T5 for 4 time units after T5 directly locks
T1. It can also be priority-inheritance blocked by T5 for 2 time units after T5
directly blocks T2. We put 4 on the corresponding entry in the priority inheri-
tance blocking subtable.
Because a task can only be blocked for at most the duration of one critical

section, the maximum blocking time of a task is equal to the maximum value
of entries in the corresponding row, which gives

b1(rc) = 4; b2(rc) = 6; b3(rc) = 4; b4(rc) = 4.

In general, the direct blocking table is constructed based on the resource
requirement specification. The entry (i, j) of the priority inheritance table is
the maximum of all entries in the column j and rows 1, 2, …, i− 1 of the direct
blocking table. When the priorities of all tasks are distinct, the entries in prior-
ity ceiling blocking table are the same as the entries in the priority inheritance
blocking table, except for tasks that do not require any resources, which are
never priority-ceiling blocked.

5.5 Stack-Sharing Priority Ceiling Protocol

The stack-sharing priority ceiling protocol is a protocol that provides
stack-sharing capability and simplifies the priority ceiling protocol. The
worst-case blocking time of a task under this protocol is the same as it is
under the priority ceiling protocol, but this protocol incurs smaller overhead
of context switches compared to the priority ceiling protocol.
Sharing of the stack among tasks eliminates stack space fragmentation and

thus saves memory. Normally, each task has its own runtime stack that stores
its local variables and return address, as illustrated in Figure 5.13a.Thememory
used by a task stack is automatically allocated when the task is created. When
the number of tasks in a system is too large, it may be necessary for several
tasks to share a common runtime stack to reduce the overall memory demand,
as illustrated in Figure 5.13b.

5.5.1 Rules of Stack-Sharing Priority Ceiling Protocol

When tasks share a common runtime stack, the task that executes is the one on
the top of the stack. The space for the task is freed when it completes. When a
task Ti is preempted by another task Tj, Tj is allocated the space above that of
Ti. A preempted task can only resume when it returns to be on the top of the
stack, that is, all tasks holding stack space above its space complete. Obviously,
such a principle of space sharing does not allow any kind of blockings to occur.

�

� �

�

120 5 Resource Sharing and Access Control

(a) (b)

T1

T2

T3

T1

T2

T3

Figure 5.13 Runtime stacks of
tasks. (a) No stack sharing. (b)
Stack sharing.

Imagine that after it preempts Ti, if Tj requests a resource that is held by Ti,
then Tj on the top of the stack is blocked while the blocking task Ti cannot
run before it is not on the top.Then, a deadlock occurs. Therefore, when a task
is scheduled to run, we need to make sure that it does not get blocked due to
resource access before it completes.
The rules that define the stack-sharing priority ceiling protocol are as follows:
Update of Priority Ceiling:When all the resources are free, the priority ceiling

of the systemΠ(t) isΩ.Π(t) is updated each time a resource is allocated or freed.
Scheduling Rule: After a task is released, it is blocked from starting execution

until its assigned priority is higher than Π(t). At all times, tasks that are not
blocked are scheduled on the processor in a priority-driven, preemptive fashion
according to their assigned priorities.

Allocation Rule: Whenever a task requests a resource, it is allocated the
resource.

Example 5.9 Stack-Sharing Priority Ceiling Protocol
We reschedule the five tasks listed in Table 5.3 with the stack-sharing priority
ceiling protocol.The new schedule is depicted in Figure 5.14. It is much simpler
than the priority ceiling protocol-based schedule shown in Figure 5.10. It is
explained as follows.
At time 0, T5 is released and the stack is empty, so it executes.
At time 1, T5 requests X. According to the allocation rule, T5 is allocated X.

The system’s priority ceilingΠ(t) is upgraded fromΩ toΠX , which is equal to 1.
At time 2, T4 is released. Because the assigned priority of T4 is lower than

Π(t), it is blocked. T5 continues its execution.
At time 3, T3 is released. Because the assigned priority of T3 is lower than

Π(t), it is blocked. T5 continues to run.
At time 4, T5 unlocks X.Π(t) becomesΩ. Meanwhile, T2 is released. Because

the assigned priority of T2 is higher than Π(t), it is scheduled to run. T5 is pre-
empted. A stack space is allocated for T2 on top of T5.
At time 5, T2 requests Y , which is free. According to the allocation rule, T2

is allocated Y . Π(t) is upgraded from Ω to ΠY , which is equal to 2.

�

� �

�

5.5 Stack-Sharing Priority Ceiling Protocol 121

2 4 6 8 10 12 14

T1

T2

T3

T4

T5

L(X)

L(Y)

L(X) U(X)

U(X)

L(X)U(X)U(Y)

Figure 5.14 Stack-sharing schedule of tasks in Table 5.3.

At time 6, T1 is released. Because the assigned priority of T1 is higher than
Π(t), it is scheduled to run. T2 is preempted. A stack space is allocated for T1
on top of T2. Now T5 sits in the bottom of the shared stack, T2 is in the middle,
and T1 is running on the top.
At time 7, T1 requests X, which is free. T1 is allocated X. Π(t) is upgraded

from ΠY to ΠX , which is equal to 1. T1 continues to run.
At time 8, T1 unlocks X. Π(t) drops to ΠY . T1 continues to run.
At time 9, T1 completes. T2 returns to be on the top of the stack. At this

moment, underneath T2 is T5. There are also two blocked tasks: T3 and T4.
Since T2 has the highest priority, so T2 executes. T2 requests and is allocated
X. Π(t) is upgraded from ΠY to ΠX .
At time 10, T2 unlocks both X and Y. Π(t) drops to Ω. T2 continues to run.
At time 11, T2 completes. T5 returns to be on the top of the stack. The two

blocked tasks T3 and T4 are also waiting to run. Since T3 has the highest
priority, T3 is allocated a stack space on top of T5 and executes.
At time 13, T3 completes. T5 returns to be on the top of the stack. However,

because T4 has a higher priority than T5, T4 is allocated a stack space on top
of T5 and executes.
At time 14, T4 completes. The only reaming task T5 executes and completes

at time 15.

5.5.2 Properties of Stack-Sharing Priority Ceiling Protocol

The stack-sharing priority ceiling protocol is an improved version of the
basic priority ceiling protocol that was introduced in the previous section.

�

� �

�

122 5 Resource Sharing and Access Control

It possesses all advantages that the priority ceiling protocol offers: no
unbounded priority inversion, no deadlocks, and no chained blocking. Block-
ings under the stack-sharing priority ceiling protocol can only occur when
tasks are released. Once a task starts execution, it can only be preempted but
never get blocked before it completes. Because of this, no task ever suffers
more than two context switches. This is compared to the priority ceiling
protocol where a task that needs to access resources may suffer four context
switches: two caused by preemption and two caused by blocking.
Although the stack-sharing priority ceiling protocol was developed with

stack sharing in consideration, it can be reformulated for non-stack-sharing
systems. The rules of the reformulated protocol are defined as follows:

Scheduling Rules:

1. Every task executes at its assigned priority when it does not hold resources.
2. Tasks of the same priority are scheduled on FIFO basis.
3. The priority of each task holding resources is the highest of the priority

ceilings of all resources held by the task.

Allocation Rule: Whenever a task requests a resource, it is allocated the
resource.

Exercises

1 What is priority inversion? In a priority-driven system where all tasks are
preemptable and that only need the processor to run, will priority inver-
sion occur? Among the four protocols introduced in this chapter, which
protocols prevent priority inversion?

2 What is a deadlock? What are the conditions under which a deadlock
can occur? Does the NPCS protocol prevent deadlocks? Does the priority
inheritance protocol prevent deadlocks?

3 Explain each of the following terminologies:
(a) Assigned priority
(b) Current priority
(c) Resource priority ceiling
(d) System priority ceiling
(e) Direct blocking
(f) Priority inheritance blocking
(g) Priority ceiling blocking

�

� �

�

5.5 Stack-Sharing Priority Ceiling Protocol 123

4 How would you evaluate the performance of a resource access control
protocol?

5 Determine whether the following statements are true or false. Justify your
answer briefly.
(a) A higher priority task can block a lower priority task in the NPCS

protocol when they share a common resource.
(b) In the priority inheritance protocol, a task that holds a resource has

the highest priority of all tasks in the system.
(c) Priority ceiling blocking is also called avoidance blocking, because the

blocking prevents deadlock among tasks.
(d) The fundamental difference between the priority inheritance protocol

and priority ceiling protocol is that they use different priority inheri-
tance rules.

(e) Under the stack-sharing priority ceiling protocol, a task that does not
require any resource does not undergo priority inversion.

(f) Under the priority ceiling protocol, the maximum blocking time of a
task is the sum of its direct blocking time, priority inheritance block-
ing time, and priority ceiling blocking time.

6 The following five tasks are to be scheduled on a single processor
preemptively.

Task Priority Released at Execution time Resource usage
T1 1 7 3 [1, 2) uses X
T2 2 5 3 [1, 3) uses X; [2, 3) uses Y
T3 3 4 2 None
T4 4 2 2 [1, 2) uses X
T5 5 0 5 [1, 4) uses X

(a) Construct the schedule when there is no resource access control.
(b) Construct the schedule when the NPCS protocol is applied to control

the access to resources. Explain the schedule step by step.
(c) Construct the schedule when the priority inheritance protocol is

applied to control the access to resources. Explain the schedule step
by step.

7 The following five tasks are to be scheduled on a single processor
preemptively.

�

� �

�

124 5 Resource Sharing and Access Control

Task Priority Released at Execution time Resource usage
T1 1 8 2 [1, 2) uses X
T2 2 5 4 [2, 3) uses Y
T3 3 3 2 [1, 2) uses X
T4 4 2 1 None
T5 5 0 5 [1, 4) uses X

(a) Construct the schedule when the priority inheritance protocol is
applied for resource access control. Explain the schedule step by step.

(b) Construct the schedule when the priority ceiling protocol is
applied for resource access control. Explain the schedule step
by step.

8 The following four tasks are to be scheduled on a single processor
preemptively.

Task Priority Released at Execution time Resource usage
T1 1 8 2 [1, 2) uses X
T2 2 5 4 [2, 3) uses Y
T3 3 3 2 [1, 2) uses X
T4 4 2 1 None
T5 5 0 5 [1, 4) uses X

(a) Construct the schedule when the priority ceiling protocol is
applied to control access to resources. Explain the schedule step by
step.

(b) Construct the schedule when the stack-sharing priority ceiling proto-
col is applied to control access to resources. Explain the schedule step
by step.

9 A system contains five tasks. There are three resources X, Y , and Z. The
resource requirements of the tasks are specified as follows:
T1: [X; 1] [Y ; 2].
T2: [Z; 4].
T3: [X; 2].
T4: [X, 2][Y; 3].
T5: [X; 1] [Z; 3].
The tasks are indexed in the decreasing order of priorities and scheduled
with the priority ceiling protocol. Find the maximum blocking time for
each task.

�

� �

�

References 125

10 A system contains seven tasks.There are three resources X, Y , and Z. The
resource requirements of the tasks are specified as follows:

T1: [Y ; 2].
T2: [Z; 1].
T3: [X; 2].
T4: [X, 2] [Y; 3].
T5: [Y ; 1] [Z; 3].
T6: [X; 2].
T7: [X, 2] [Z; 2].

The tasks are indexed in the decreasing order of priorities and scheduled
with the priority ceiling protocol. Find the maximum blocking time for
each task.

Suggestion for Reading

Lampson and Redell published one of the first papers to point out the priority
inversion problem [1]. The priority inheritance protocol and priority ceiling
protocol were introduced by Sha, Rajkumar, and Lehoczky [2]. Baker proposed
the stack-based resource allocation policy for real-time processes in Ref. [3].
Chen and Lin implemented the priority ceiling protocol in dynamic priority
systems [4]. Chen and Ras described the implementation of the priority ceiling
protocol in Ada-2005 [5]. A comprehensive review of priority inversion control
policies is provided in Ref. [6].
The four Coffman conditions for deadlock to occur are described in Ref. [7]

as well as many other operating system textbooks. Davison and Lee discussed
deadlock prevention in concurrent real-time systems in Ref. [8].

References

1 Lampson, B. and Redell, D. (1980) Experience with processes and monitors
in MESA. Communications of the ACM, 23 (2), 105–117.

2 Sha, L., Rajkumar, R., and Lehoczky, J. (1990) Priority inheritance protocols:
an approach to real-time synchronization. IEEE Transactions on Computers,
39 (9), 1175–1185.

3 Baker, T.P. (1991) A stack-Based Resource Allocation Policy for Real-Time
Processes. Proceedings of the 12th IEEE Real-Time Systems Symposium, San
Antonio.

4 Chen, M.L. and Lin, K.J. (1990) Dynamic priority ceilings: A concurrency
control protocol for real-time systems. Real-Time Systems Journal, 2 (4),
325–346.

�

� �

�

126 5 Resource Sharing and Access Control

5 Cheng, A. and Ras, J. (2007) The implementation of the Priority Ceiling Pro-
tocol in Ada-2005. ACM SIGADA Ada Letters, 27 (1), 24–39.

6 Liu, J. (2000) Real-Time Systems, Prentice Hall.
7 Silberschatz, A. (2006) Operating System Principles, 7th edn, Wiley-India.
8 Davidson, S. and Lee, I. (1993) Deadlock prevention in concurrent real-time
systems. Real-Time Systems, 5, 305–318.

�

� �

�

127

6

Concurrent Programming

The previous chapters covered the concepts and theory of real-time tasks, task
scheduling, and resource access control. This chapter shifts to the implemen-
tation side of real-time embedded software, with the focus being placed on the
mechanisms of intertask synchronization and communication. All program-
ming examples given in this chapter are tested in the Code::Blocks integrated
development environment on Ubuntu.

6.1 Introduction

Concurrent programming is a technique for expressing potential parallelism.
It divides an overall computation into subcomputations that may be executed
concurrently, that is, several computations are executing during overlapping
time periods.
Virtually, all real-time systems are inherently concurrent – devices operate

in parallel in the real world. For example, a washing machine has to do several
things, frequently more than one at a time: accepting water, monitoring
the water level, monitoring the water temperature, timing a wash cycle,
releasing the detergent, controlling the agitator, spinning the tub, and so on.
A thermostat has at least three tasks running all the time: monitoring the
room temperature, monitoring the timer, and polling the keypad. Therefore,
a natural way to programming the controllers of these devices is use of
concurrency.
Concurrent programming offers several distinguished advantages to pro-

grammers and application users. Firstly, it improves the responsiveness of an
application. With concurrent computation, the system appears to immediately
respond to every user request, even if the system is executing other expensive
computation. Secondly, it improves the processor utilization. Multiple tasks
compete for the processor time and keep the processor busy whenever a task

Real-Time Embedded Systems, First Edition. Jiacun Wang.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

�

� �

�

128 6 Concurrent Programming

is ready to run. If one task gets stuck, others can run. Thirdly, it provides a
convenient structure for failure isolation.
You might wonder whether we can use sequential programming techniques

to handle concurrent tasks. Well, if you choose to do that, you must construct
the system so that it involves the cyclic execution of a program sequence to han-
dle the various concurrent activities that are essentially irrelevant to each other.
The resulting programs will be more obscure and inelegant and thus make the
decomposition of the problem more complex.
It is worth mentioning that concurrent programming and parallel program-

ming are two related concepts, but they are different. The goal of concurrent
programming is to allow tasks to multiplex their executions on a single proces-
sor and tackle the complexity of problem-solving. However, at any given time,
only one task is running in concurrent computing.
By contrast, execution of multiple tasks in parallel computing literally occurs

at the same instant, for example, on separate processors of a multiprocessor
machine, with the goal of speeding up computations. Parallel computing is
impossible on a single processor, as only one computation can occur at any
instant.

6.2 POSIX Threads

In this chapter, POSIX threads, or Pthreads, are chosen as an example to
show the issues and their solutions in concurrent programming. The reason
is that POSIX provides a set of standard application programming interfaces
(APIs) for real-time embedded systems. Although many RTOS vendors have
their proprietary programming interfaces, POSIX conformance is required,
which permits interoperability of software across different operating sys-
tems and hardware implementations. Notice that the goal of this chapter is
not teaching Pthreads, so we are not digging into the details on Pthreads.
Instead, only routines that are necessary to explain concurrent programming
concepts are briefly introduced. Readers who have programming experience
in C, C++, or Java should be able to understand the programs listed in this
chapter.
Pthreads are defined as a set of C language programming types and

procedure calls, implemented with a pthread.h header file and a thread
library. Pthreads API routines are provided for thread management, mutexes,
condition variables, and thread synchronization with read/write locks and
barriers.

�

� �

�

6.2 POSIX Threads 129

Table 6.1 Pthread attributes.

Attribute Description

Scope The scope that the thread competes for resource
Detachstate Thread is joinable or not
Stackaddr Stack space allocated for the thread
Stacksize Stack size of the thread
Priority Priority of the thread
Policy Scheduling policy for the thread
Inheritsched Whether scheduling policy and parameters are inherited from parent

thread
Guardsize Size of the guard area for the stack of the thread

A new thread is created by calling the pthread_create() routine, which
has the following prototype:

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

The first argument thread of the routine is an opaque and unique identifier
of the new thread. The attr argument points to a pthread_attr_t
structure whose contents are used to determine the attributes for the new
thread. The new thread starts execution by invoking start_routine();
arg is passed as the sole argument of start_routine(). Upon suc-
cess, the call returns 0; upon receiving an error, it returns an error
number.
Attributes are used to specify the behavior of threads. Table 6.1 lists all

attributes and their brief descriptions.
The default attribute object is NULL, in which the stack size is typically set

to 1MB, the thread priority is set to the priority of its parent thread, and the
scheduling policy is time-sharing, for example. Attributes are specified only
at thread creation time; they cannot be altered after the thread is created and
running. An attribute object is opaque and cannot be directly modified by
assignments. A set of functions is provided to initialize, configure, and destroy
each attribute object. For example, the pthread_attr_setscope(attr)
routine is used to set the scope of the specified attribute. The type of attribute

�

� �

�

130 6 Concurrent Programming

object is pthread_attr_t. The routine that initializes an attribute object
is pthread_attr_init(attr). When the created thread is no longer
needed, the memory of the attribute object should be freed up by calling the
pthread_attr_destroy(attr) routine.
Other important thread management routines include the following:

• void pthread_exit(void *status)This routine is called to termi-
nate the calling thread.

• int pthread_join(pthread_t thread, void *status) is
called to block the calling thread until the specified thread thread is
finished. It is a synchronization routine, as its name suggests. All Pthreads
are joinable by default.

• int pthread_cancel(pthread_t thread) is a called to cancel the
thread thread.

Note that the main() function of a program comprises a single default
thread. All other threads must be explicitly created by calling pthread_create().
Threads can be created from anywhere of your code. Once created, threads are
peers and may create other threads.
The code listed in Figure 6.1 shows how to create a thread with default

attributes and a thread with customized attributes. Line 1 includes
pthread.h header file, because all Pthread APIs are defined in the
file. Line 4 declares a thread attribute object, which is initialized in Line
41 by calling the pthread_attr_init() routine. Line 46 sets the
detachstate attribute to PTHREAD_CREATE_JOINABLE by calling
the pthread_attr_getdetachstate() routine.
In the main function starting from Line 36, two thread IDs, namely

threadD and threadC, are declared in Line 37. Line 51 creates a thread
with the default attribute object by setting the attribute object reference to
a NULL. The routine of this thread is threadDefault() in Lines 6–10.
Line 57 creates a thread with the constructed attribute object attr. The
routine of this thread is threadCustomized() in Lines 12–34. Lines
61 and 62 call the pthread_join() routine to synchronize the two cre-
ated threads with the default main thread. Line 65 frees up the memory
of the attribute object. Line 66 exits the main thread and thus the entire
program.
The thread created with the default attribute object simply outputs a

message to show that the thread is created and running. In the routine of
the thread created with the customized attribute object, it retrieves the
detach state from the attribute object attr in Line 18 by calling the routine
pthread_attr_getdetachstate() and then prints it out. It also
retrieves the scheduling policy from attr in Line 25. Since we didn’t set
up the policy value before the thread was created, the value retrieved is a
default one.

�

� �

�

6.2 POSIX Threads 131

1. #include <pthread.h>
2. #include <stdio.h>
3.
4. pthread_attr_t attr;
5.
6. void *threadDefault(void *arg) {
7. printf("A thread with default attributes is created!\n\n");
8. pthread_exit(NULL);
9. return NULL;
10. }
11.
12. void *threadCustomized(void *arg) {
13. int policy;
14. int detachstate;
15. printf("A thread with customized attributes is created!\n");
16.
17. /* Print out detach state */
18. pthread_attr_getdetachstate(&attr, &detachstate);
19. printf(" Detach state: %s\n",
20. (detachstate == PTHREAD_CREATE_DETACHED) ?

"PTHREAD_CREATE_DETACHED" :
21. (detachstate == PTHREAD_CREATE_JOINABLE) ?

"PTHREAD_CREATE_JOINABLE" :
22. "???");
23.
24. /* Print out scheduling policy */
25. pthread_attr_getschedpolicy(&attr, &policy);
26. printf(" Scheduling policy: %s\n\n",
27. (policy == SCHED_OTHER) ? "SCHED_OTHER" :
28. (policy == SCHED_FIFO) ? "SCHED_FIFO" :
29. (policy == SCHED_RR) ? "SCHED_RR" :
30. "???");
31.
32. pthread_exit(NULL);
33. return NULL;
34. }
35.
36. int main(int argc, char* argv[]) {
37. pthread_t threadD, threadC;
38. int rc;
39.
40. /* Inlitialize attributes */
41. rc = pthread_attr_init(&attr);
42. if (rc)
43. printf("ERROR; RC from pthread_attr_init() is %d \n", rc);
44.
45. /* Set detach state and */

Figure 6.1 Pthreads creation and termination.

�

� �

�

132 6 Concurrent Programming

46. rc = pthread_attr_setdetachstate(&attr,
PTHREAD_CREATE_JOINABLE);

47. if (rc)
48. printf("ERROR; RC from pthread_attr_setdetachstate()

is %d \n", rc);
49.
50. /* Creating thread with default attributes */
51. rc = pthread_create(&threadD, NULL, threadDefault, NULL);
52. if (rc)
53. printf("ERROR when creating default thread; Code is

%d\n", rc);
54.
55. /* Creating thread with constructed attribute object */
56. rc = pthread_create(&threadC, &attr, threadCustomized,

NULL);
57. if (rc)
58. printf("ERROR when creating customized thread;

Code is %d\n", rc);
59.
60. /* Synchronize all threads */
61. pthread_join(threadD, NULL);
62. pthread_join(threadC, NULL);
63.
64. /* Free up attribute object and exit */
65. pthread_attr_destroy(&attr);
66. pthread_exit(NULL);
67. }

Figure 6.1 (Continued)

Note that Lines 9 and 33 will never get hit; they are there to cheat the
compiler.
The output of this program is shown in Figure 6.2.

Figure 6.2 Output of the program listed in Figure 6.1.

�

� �

�

6.3 Synchronization Primitives 133

6.3 Synchronization Primitives

Concurrent programs should be constructed carefully so that processes or
threads can exchange information, but do not interfere with each other and
cause errors. They often need to satisfy certain constraints on the interleaving
of their executions. This kind of synchronization requirement is necessary
due to race condition behavior. To prevent multiple tasks from accessing
shared data effectively, most RTOS kernels provide synchronization objects to
help programmers in implementing synchronization. Among them, mutexes,
condition variables, and semaphores are the most popular kernel objects. This
section first explains the concepts of race conditions and critical sections and
then introduces the various solutions to process synchronization.

6.3.1 Race Conditions and Critical Sections

In concurrent computing, there aremultiple processes or threads running con-
currently. Generally, programmers have no control over when processes are
swapped. Swapping or preemption occurs under the control of the scheduler of
the operating system, not the programmer. Each process might get interrupted
after any instruction. A race condition occurs when two or more processes
interact via shared data, and the final outcome depends on the exact instruction
sequence of the processes.
Consider an ATM application that has two processes: a process P1 that cred-

its money to an account and a process P2 that debits money from an account.
Each process performs the following three actions sequentially:

• Reads the balance of an account
• Modifies the balance
• Writes the balance back

Suppose that the balance of a joint account of a couple is $1000. While the
husband is depositing $200 to the account at an ATM, the wife is withdrawing
$200 from the account at another ATM. If the two processes run according to
the following sequence:

• P1: Read the balance of the account
• P1: Increase the balance
• P1: Write the balance back
• P2: Read the balance of the account
• P2: Decrease the balance
• P2: Write the balance back

or the following sequence:

• P2: Read the balance of the account
• P2: Decrease the balance

�

� �

�

134 6 Concurrent Programming

• P2: Write the balance back
• P1: Read the balance of the account
• P1: Increase the balance
• P1: Write the balance back

The final balance will remain $1000, which is correct. However, if the two
processes interleave as follows:

• P1: Read the balance of the account
• P2: Read the balance of the account
• P1: Increase the balance
• P1: Write the balance back
• P2: Decrease the balance
• P2: Write the balance back

The final balance will be $800, which is incorrect. The root cause to the issue
is that here the deposit operations are not mutually exclusive. Mutually exclu-
sive operations are those that cannot be interrupted. An example is accessing a
shared memory location.
In a program, a code segment that accesses shared data is called a critical

section. Being inside a critical section is a special status of a task. When one
task enters its critical section to access the shared memory, all other tasks
needing access to that shared data should wait. This way race conditions are
avoided. Because in a real-time system, tasks need to meet their deadlines,
critical sections must be coded as short as possible. Normally, a task performs
only noncritical work on local variables the majority of the time. We should
not place unnecessary code in a critical section. Moreover, coding errors in a
critical section such as an infinite loop should also be carefully checked and
removed.
Chapter 5 mentioned that before a task enters a critical section, it needs to

lock a mutex or semaphore. We introduce this kind of task synchronization
primitives offered by most RTOSs in the next few sections.

6.3.2 Mutex

Mutex is the short form for mutual exclusion object. It is used to allowmultiple
tasks to share the same resource, such as global data, but not simultaneously.
The two basic operations on a mutex object are as follows:

• LOCK(mutex) It blocks the calling task until the object mutex is available
and then makes it unavailable to other tasks.

• UNLOCK(mutex) It unlocks the objectmutex andmakes it available to other
tasks.

In a program in which resources will be shared by multiple tasks, a mutex
object is created with a unique name for each resource. After that, any task that

�

� �

�

6.3 Synchronization Primitives 135

needs a shared resource must lock the corresponding mutex object from other
tasks while it is using the resource. The mutex object is set to unlock when the
data is no longer needed or the task is finished.
There are three routines dealing with mutex operations in POSIX:

• int pthread_mutex_lock(pthread_mutex_t *mutex) This
routine locks the mutex object referenced by mutex. If the object is already
locked by another thread, this call will block the calling thread until it is
unlocked.

• int pthread_mutex_unlock(pthread_mutex_t *mutex) This
routine unlocks the mutex object referenced by mutex if called by the
owning thread. If it is called by a routine that did not lock the mutex, or
the mutex was already unlocked, an error is returned.

• int pthread_mutex_trylock(pthread_mutex_t *mutex)This
routine is called to lock the mutex object referenced by mutex. However,
if the mutex is already locked, it retunes immediately with a “busy” error
code.

Each of these function calls returns zero upon success; otherwise, an error
number that indicates the error type is returned. The type of mutex objects is
pthread_mutex_t. Mutex objects must be initialized through the function
call of pthread_mutex_init() before they are used.
The code listed in Figure 6.3 illustrates the use of mutex objects. This

program creates two threads that are identified as thread1 and thread2.
The routine that implements thread1 is deposit(), which prompts user
to enter a double number and then adds it to the global variable bal-
ance. Before the routine enters its critical section to change the global
variable, the pthread_mutex_lock() routine is called in Line 11 to
lock the global mutex object my_mutex, which is declared in Line 5 and
initialized in Line 50. After the access to balance is established, the
pthread_mutex_unlock() routine is called in Line 17 to unlock the
mutex object. Notice that in general the code in Lines 13, 14, and 16 should
not be included in a critical section, because they will affect its running time.
As an illustrative example, we place them inside the critical section only for
the convenience of experiment; otherwise, the output of the program will
be messy. The routine that implements thread2 is withdraw(), which
prompts users to enter a double number and then subtract it from balance.
In Line 61, the pthread_mutex_destroy() routine is called to destroy

the mutex object and free up the memory. It is very important to notice that
before the mutex object is destroyed, we need to make sure that the two
threads have completed accessing it. To ensure that, in Lines 57 and 58, the
pthread_join() routine is called to block the default main routine from
moving on until the two threads are done, that is, the pthread_exit()
routine is called in Lines 19 and 42.

�

� �

�

136 6 Concurrent Programming

1. #include "pthread.h"
2. #include <stdio.h>
3.
4. double balance=0;
5. pthread_mutex_t my_mutex;
6.
7. void *deposit(void *dummy){
8. double credit = 0;
9.
10. /* enter critical section */
11. pthread_mutex_lock(&my_mutex); /* lock mutex */
12. /* put printf and scanf inside critical section ONLY for

experiment */
13. printf("\nI am in thread 1. Enter amount to deposit: ");
14. scanf("%lf", &credit);
15. balance = balance + credit;
16. printf("The new balance is: %lf\n", balance);
17. pthread_mutex_unlock(&my_mutex); /* unlock mutex */
18.
19. pthread_exit(NULL);
20. return NULL;
21. }
22.
23. void *withdraw(void *dummy){
24. double debit = 0;
25.
26. /* enter critical section */
27. pthread_mutex_lock(&my_mutex); //lock mutex
28. /* put printf and scanf inside critical section ONLY for

experiment */
29. printf("\nI am in thread 2. Enter amount to withdraw: ");
30. while (1){
31. scanf("%lf", &debit);
32. if (balance - debit < 0)
33. printf("Insufficient balance. Please enter a

smaller amount: ");
34. else
35. break;
36. }
37.
38. balance = balance - debit;
39. printf("The new balance is: %lf\n", balance);
40. pthread_mutex_unlock(&my_mutex); //unlock mutex
41.
42. pthread_exit(NULL);
43. return NULL;
44. }
45.
46. int main(int argc, char* argv[]){

Figure 6.3 Use of mutex objects.

�

� �

�

6.3 Synchronization Primitives 137

47. pthread_t thread1, thread2;
48.
49. /* initialize mutex */
50. pthread_mutex_init(&my_mutex, NULL);
51.
52. /* creating threads */
53. pthread_create(&thread1, NULL, deposit, NULL);
54. pthread_create(&thread2, NULL, withdraw, NULL);
55.
56. /* wait until threads to finish */
57. pthread_join(thread1, NULL);
58. pthread_join(thread2, NULL);
59.
60. /* delete mutex */
61. pthread_mutex_destroy(&my_mutex);
62.
63. pthread_exit(NULL);
64. }
65.

Figure 6.3 (Continued)

Figure 6.4 Execution of the program listed in Figure 6.3.

Figure 6.4 shows a snapshot of the execution of the program. Keep in mind
that you never know which of the two created threads executes first, even if we
call the creation routine for thread1 before thread2. In other words, when
you execute the program, you may see that the “I am in thread2. Enter amount
to withdraw:” message appears first.

6.3.3 Condition Variables

In some cases, as a task executes in a critical section, it discovers that it can-
not proceed until some other task takes a particular action on the protected
data. Condition variables are synchronization objects used in conjunction with

�

� �

�

138 6 Concurrent Programming

mutex objects to allow tasks to synchronize based upon the actual value of
some data. Condition variables should be global to all tasks that may manip-
ulate them. Two fundamental operations on condition variables are as follows:

• WAIT(condition, mutex). Suspends the invoking task until another task
performs SIGNAL(condition).

• SIGNAL(condition). Resumes exactly one other task that is suspended due
to WAIT operation. If no task is waiting, then the signal will have no effect.

Because a condition variable is a global variable, access to it has to be
protected by a mutex object.
In POSIX, the WAIT operation is carried out by calling the

pthread_cond_wait() routine:

int pthread_cond_wait(pthread_cond_t *condition,
pthread_mutex_t *mutex);

It blocks the calling thread until the condition object referenced by the first
argument condition is signaled. While it waits, the mutex object referenced
by the second argument mutex is released and thus unblocks a thread on the
mutex.When the condition variable is signaled, the calling thread is awakened,
and the mutex object is locked for use by the calling thread. Upon successful
completion, a value of zero shall be returned; otherwise, an error number shall
be returned to indicate the error.
A similar routine to pthread_cond_wait() is

int pthread_cond_timewait(pthread_cond_t *condition,
pthread_mutex_t *mutex,
const struct timespec *restrictabstime);

The only difference is that this time wait routine shall return an error if the
absolute time specified by abstime passes before the condition referenced
by condition is signaled or broadcasted or if the absolute time specified by
abstime has already been passed at the time of the call. In real-time applica-
tions, this routine is more helpful in implementing real-time tasks.
There are two POSIX routines that can be used to signal a condition:

• int pthread_cond_signal(pthread_cond_t *condition)
This routine signals a thread that is waiting on the specified condition
variable. If no thread is waiting, then it takes no effect.

• int pthread_cond_broadcast(pthread_cond_t *condi-
tion) This routine signals all threads that are waiting on the specified
condition object. If no thread is waiting, then it takes no effect. Otherwise,
when the threads that were the target of the broadcast wake up, they contend
for the mutex object that they have been associated with the condition
variable on the call to pthread_cond_wait().

�

� �

�

6.3 Synchronization Primitives 139

To illustrate how condition variables are used to solve task synchronization
issues, we consider the classic producer–consumer problem, which is also
known as the bounded-buffer problem. In this problem, producers and con-
sumers share a common, fixed-size buffer as a queue. The producers’ job is to
repeatedly generate a piece of data and add it into the buffer. At the same time,
the consumers are consuming the data, that is, removing it from the buffer one
piece at a time. No producer should try to add data into the buffer if it is full.
Similarly, no consumer should try to remove data from an empty buffer.
The solution is that if a producer finds the buffer is full, it stays waiting until

it is notified by a consumer that an item is removed from the buffer, and then,
the producer starts to fill the buffer. In the same way, the consumer can go to
sleep if it finds the buffer to be empty. The next time the producer adds data
into the buffer, it wakes up the sleeping consumer.
To solve this problem, we need a mutex object to protect the shared buffer so

that it never gets accessed bymultiple tasks concurrently.We also need a global
count to track the number of items in the buffer. If it is equal to 0, then consumer
tasks should be blocked; if it is equal to the buffer size, then producer tasks
should be blocked. Executing a producer task may wake up a consumer task,
while executing a consumer task may unblock a producer task. The blocking
and unblocking can be achieved by using a condition variable object.
Figure 6.5 lists a program that solves the producer–consumer problem. The

program implements two producers and one consumer. The buffer is imple-
mented by an array of integers with a capacity of 4. The number of integers
in the array is tracked by the global variable size. Lines 85 and 86 indicate
that the two producer threads share the same routine produce(). The con-
sumer thread is implement by the consume()routine. A mutex object and a
condition variable object are declared in Lines 9 and 10, respectively. Each pro-
ducer thread iterates five times and thus writes five numbers to the buffer. Each
time a producer threadwrites a number to the buffer, it sleeps for 1millisecond,
as shown in Line 38, to allow other threads to run.The consumer thread iterates
10 times and thus reads and removes 10 numbers from the buffer. Each time the
consumer thread removes a number from the buffer, it sleeps for 2milliseconds,
as shown in Line 69.
Let us see how themutex and condition objects are used together to solve the

synchronization issue in the program. After a producer thread locks the mutex
object in Line 17, the if-statement in Lines 19–24 checks to see if the buffer
is full. If it is full, the call of pthread_cond_wait(&my_CV, &my_mutex)
blocks the thread on the condition variable my_CV until it is signaled. If the
buffer is not full, or it was full but a space was just freed up (my_CV was sig-
naled), it continues by adding an integer in the buffer (Line 26), incrementing
the size of the buffer (Line 28). If after the increment, the size is equal to 1,
then the buffer was empty before, whichmeans that the consumer threadmight
be blocked. Therefore, in Line 32, the pthread_cond_signal() routine is

�

� �

�

140 6 Concurrent Programming

1. #include <pthread.h>
2. #include <stdio.h>
3. #include <stdlib.h>
4. #include <unistd.h>
5.
6. #define BUFFER_SIZE 4
7.
8. int theArray[BUFFER_SIZE], size=0;
9. pthread_mutex_t myMutex;
10. pthread_cond_t myCV; /* declare condition variable object */
11.
12. void *produce(void *arg) {
13. int id = (int)arg;
14. int i;
15.
16. for (i = 0; i<5; i++){
17. pthread_mutex_lock(&myMutex); /* lock mutex */
18.
19. if (size == BUFFER_SIZE){
20. printf("Producer %d waiting...\n", id);
21.
22. /* wait for a space to be freed up */
23. pthread_cond_wait(&myCV, &myMutex);
24. }
25.
26. theArray[size] = i;
27. printf("Producer %d added %d.\n", id, i);
28. size++;
29.
30. if (size == 1) {
31. /* signal consumer to resume */
32. pthread_cond_signal(&myCV);
33. }
34.
35. pthread_mutex_unlock(&myMutex); /* unlock mutex */
36.
37. /* sleep for 1 millisecond, so that other threads can run */
38. usleep(1000);
39. }
40. return NULL;
41. }
42.
43. void *consume(void *arg) {
44. int item;
45. int i;
46.
47. for (i=0; i<10; i++){
48. pthread_mutex_lock(&myMutex); /* lock mutex */
49.
50. if (size == 0) {
51. printf("Consumer waiting...\n");
52.
53. /* waiting for an item to be added */

Figure 6.5 Solving the producer–consumer problem with condition variables.

�

� �

�

6.3 Synchronization Primitives 141

54. pthread_cond_wait(&myCV, &myMutex);
55. }
56.
57. item = theArray[size-1];
58. printf("Consumer removed %d.\n", item);
59. size--;
60.
61. if (size == BUFFER_SIZE-1) {
62. /* signal producer to resume */
63. pthread_cond_signal(&myCV);
64. }
65.
66. pthread_mutex_unlock(&myMutex); /* unlock mutex */
67.
68. /* sleep for 1 millisecond so that other threads can run */
69. usleep(1000);
70. }
71.
72. return NULL;
73. }
74.
75. int main(int argc, char* argv[]) {
76. int t1=1, t2=2;
77. pthread_t consumer, producer1, producer2;
78.
79. /* Initialize mutex and condition variable objects */
80. pthread_mutex_init(&myMutex, NULL);
81. pthread_cond_init (&myCV, NULL);
82.
83. /* Create one consumer thread and two producer threads */
84. pthread_create(&consumer, NULL, consume, NULL);
85. pthread_create(&producer1, NULL, produce, (void *)t1);
86. pthread_create(&producer2, NULL, produce, (void *)t2);
87.
88. /* Wait for all threads to complete */
89. pthread_join(consumer, NULL);
90. pthread_join(producer1, NULL);
91. pthread_join(producer2, NULL);
92.
93. /* Clean up and exit */
94. pthread_mutex_destroy(&myMutex);
95. pthread_cond_destroy(&myCV);
96. pthread_exit(NULL);
97.
98. return 0;
99. }

Figure 6.5 (Continued)

�

� �

�

142 6 Concurrent Programming

Figure 6.6 Execution of the program listed in Figure 6.5.

called to signal the consumer thread to resume its execution. Line 35 calls the
pthread_mutex_unlock() routine to exit the critical section.
The behavior of the consumer thread is identical to that of the producer

threads. It locks the mutex in Line 48 first, and then, the if-statement
in Lines 50–55 checks to see if the buffer is empty. If it is empty, the
pthread_cond_wait() routine is called to block the thread until the condi-
tion variable my_CV is signaled. It can only be signaled by a producer thread
that executes the statement in Line 32. If the buffer is not empty, or it was
empty but an integer was just added (my_CV was signaled), it continues by
taking an integer out of the buffer (Lines 57 and 59). The if-statement in Lines
61–64 checks to see if the buffer was full before an item was removed. If it
was full, one or two producer threads might be blocked. Therefore, in Line 63,
the pthread_cond_signal() routine is called to wake up one producer
thread.
Figure 6.6 shows a snapshot of the program execution result.

6.3.4 Semaphores

A semaphore is a synchronization primitive designed by Edsger Dijkstra in the
1960s. A semaphore is a shared counter in essence, which is associated with two
operations:

�

� �

�

6.3 Synchronization Primitives 143

Table 6.2 Operations on a semaphore initialized to 1.

Action # Task Operation Value Consequence

1 A P() 0 Task A moves on
2 A P() 0 Task A is blocked
3 B V() 0 Task A is unblocked
4 A V() 1 —
5 B P() 0 Task B moves on
6 A V() 1 —
7 B V() 2 —

• P(sem) It is an atomic action that waits for the value of the semaphore sem
to be greater than 0 and then decrements it.

• V(sem) It is an atomic action that increments the value of the semaphore sem
by 1.

Table 6.2 showcases the behavior of semaphores.
Notice that after the third action, the semaphore value is increased to 1 first

and then decremented to 0 immediately by the call of P() from task A.
The initial value of a semaphore has a great impact on the consequences of

semaphore operations. If we change the initial value to 0 or 2, the results listed
in Table 6.2 will be completely different. Specifically, if the initial semaphore
value is 0, then task A is blocked upon Action #1; if the initial semaphore value
is 2, then task A can move on after both Action #1 and Action #2.
Semaphores can be used to implement blocks. For example, the following

pseudocode shows that a semaphore is used to protect the access to the balance
of a bank account:

semaphore mySem = 1;

void deposit(account, amount){
P(mySem);

balance = get_balance(account);
balance -= amount;
put_balance(account, balance);

V(mySem);
}

Although a semaphore can implement the functions of a mutex, there is a big
difference between them. Amutex object has an owner, but a semaphore object
does not. When a mutex object is locked by a task, it can only be unlocked by

�

� �

�

144 6 Concurrent Programming

the same task. On the other hand, when P(mySem) is called in one task and
blocks the calling task, a subsequent V(mySem) can be called in any other task
to unblock the first task.
As an example, we look into the classic readers–writers problem and dis-

cuss its semaphore-based solution.The problem is stated as follows:many tasks
try to access the same shared resource at one time. Some tasks may read and
some may write. The constraint is that when a task is in the act of writing
to the shared data, no other task may access it for either reading or writing.
However, it is allowed for two or more readers to access the shared data at the
same time.
A solution to the problem can be illustrated with the following pseudocode:

semaphore write = 1;
int readcount = 0;

reader() {
readcount++;
if (readcount == 1) {

P(write);
}
do_read(); // access shared data
readcount--;
if (readcount == 0) {

V(write);
}

}

writer() {
P(write);

do_write(); // access shared data
V(write);

}

Logically, this solution seems to be okay: a reader task is allowed to read the
shared data only if currently there are tasks reading the shared data (the value
of readcount is greater than 1), and if there is no task currently reading the
shared data, the reader task calls P() to lock the semaphore. On the writer side,
a writer task always calls P() to lock the semaphore before it can write to the
shared data. However, since there are multiple reader and writer tasks in
the system and context switches can take place at any moment, the following
situation may occur:

• Reader task #1 executes till the completion of readcount++;
• Reader task #1 swaps out;

�

� �

�

6.3 Synchronization Primitives 145

• Reader task #2 swaps in and executes readcount++;
• Reader task #2 swaps out;
• Writer task #1 swaps in, executes P() and starts running do_write();
• Writer task #1 swaps out;
• Reader task #1 swaps in, skips P() because now the value of readcount is

2, and starts reading.

So, the system enters a state while a writer task is writing, a reader task is read-
ing. This is an error. The root cause to the error is that multiple tasks make
change to readcount before the test and P() are completed. It is a race condi-
tion issue. To correct the error, we can introduce another semaphore to make
“increment, test, P()” and “decrement, test, V()” both atomic. The pseudocode
with the fix is listed as follows:

semaphore read = 1;
semaphore write = 1;
int readcount = 0;

reader() {
P(read);
readcount++;
if (readcount == 1) {

P(write);
}
V(read)
do_read(); // access shared data
P(read)
readcount–;
if (readcount == 0) {

V(write);
}
V(read);

}

writer() {
P(write);

do_write(); // access shared data
V(write);

}

In POSIX, semaphores are not included in the Pthreads library. The nec-
essary declarations related to semaphores are contained in semaphore.h. The
semaphore routines include the following:

�

� �

�

146 6 Concurrent Programming

• int sem_wait(sem_t *sem): This is the P() operation on the
semaphore object referenced by sem.

• int sem_post(sem_t *sem): This is the V() operation.
• intsem_init(sem_t *sem,intpshared,unsigned int val):

Initialize a new semaphore object referenced by sem to the value val. Note
that the second argument denotes how the semaphore will be shared.
Passing zero denotes that it will be shared among threads rather than
processes.

• int sem_destroy(sem_t *sem): Deallocate the semaphore object
referenced by sem.

The code listed in Figure 6.7 implements the solution of the readers–writers
problem that we discussed before. There are a few points worth mentioning
here: first, the routines of the reader threads and writer threads are imple-
mented as an infinite while-loop. This is a typical way to implementing a peri-
odic task. To stop the running of these threads, the pthread_cancel()
routine is called in the main function. Second, the focus of this implementa-
tion is on thread synchronization, and thus, the code of reading and writing
the shared data is omitted. Third, the output of this program varies with the
four constants defined in Lines 7–10.

1. #include <semaphore.h>
2. #include <pthread.h>
3. #include <stdio.h>
4. #include <stdlib.h>
5. #include <unistd.h>
6.
7. #define READERS 5
8. #define WRITERS 3
9. #define READER_SLEEP_TIME 20000
10. #define WRITER_SLEEP_TIME 50000
11. #define MAIN_SLEEP_TIME 5000000
12.
13. sem_t semRead;
14. sem_t semWrite;
15. int readCount;
16.
17. void *reader(void *arg) {
18. int *p = (int *)arg;
19.
20. while(1) {
21. /* lock semaphore semRead to update readCount*/
22. sem_wait(&semRead);
23. readCount++;
24. printf(" Number of readers: %d

\n", readCount);
25.

Figure 6.7 Solving the readers–writers problem with semaphores.

�

� �

�

6.3 Synchronization Primitives 147

26. if (readCount == 1) {
27. /* lock semaphore semWrite */
28. sem_wait(&semWrite);
29. }
30.
31. /* release semaphore semRead */
32. sem_post(&semRead);
33.
34. /* entered critical section. reading code goes here */
35. printf(" Reader #%d reading

...\n", (int) *p);
36.
37. /* lock semaphore semRead to update readCount*/
38. sem_wait(&semRead);
39. readCount–;
40.
41. if (readCount == 0) {
42. /* release semaphore semWrite */
43. sem_post(&semWrite);
44. }
45.
46. /* release semaphore semRead */
47. sem_post(&semRead);
48. usleep(READER_SLEEP_TIME);
49. }
50. return NULL;
51. }
52.
53. void *writer(void *arg) {
54. int *p = (int *)arg;
55. while(1){
56. sem_wait(&semWrite);
57.
58. /* writing code goes here */
59. printf("Writer #%d writing ...\n", (int) *p);
60.
61. sem_post(&semWrite);
62. usleep(WRITER_SLEEP_TIME);
63. }
64. return NULL;
65. }
66.
67. int main(int argc, char* argv[]) {
68. pthread_t readers[READERS];
69. pthread_t writers[WRITERS];
70. int i, rc, r[READERS], w[WRITERS];
71. readCount = 0;
72.
73. /* initialize the semaphores to 1. */
74. sem_init(&semRead, 0, 1);

Figure 6.7 (Continued)

�

� �

�

148 6 Concurrent Programming

75. sem_init(&semWrite, 0, 1);
76.
77. for(i = 0; i < WRITERS; i++){
78. w[i] = i;
79. rc = pthread_create(&writers[i], NULL, writer, (void *)&w[i]);
80. if (rc){
81. perror("In writer pthread_create()");
82. exit(1);
83. }
84. usleep(20000);
85. }
86.
87. /* create reader and writer threads */
88. for(i = 0; i < READERS; i++){
89. r[i] = i;
90. rc = pthread_create(&readers[i], NULL, reader, (void *)&r[i]);
91. if (rc){
92. perror("In reader pthread_create()");
93. exit(1);
94. }
95. usleep(20000);
96. }
97.
98. usleep(MAIN_SLEEP_TIME);
99.
100. /* cancel all threads */
101. for(i = 0; i < WRITERS; ++i)
102. pthread_cancel(writers[i]);
103. for(i = 0; i < READERS; ++i)
104. pthread_cancel(readers[i]);
105.
106. /* destroy semaphores */
107. sem_destroy(&semRead);
108. sem_destroy(&semWrite);
109.
110. return 0;
111.}

Figure 6.7 (Continued)

A snapshot of the output of the program is shown in Figure 6.8.

6.4 Communication among Tasks

Operating systems provide intertask communication mechanisms for tasks to
share data. Message queues, pipes, named pipes, sockets, and shared memory
are among the most popular mechanisms being used. We introduce message
queues and shared memory in this section.

�

� �

�

6.4 Communication among Tasks 149

Figure 6.8 A snapshot of the output of the program listed in Figure 6.7.

6.4.1 Message Queues

A message queue is used for intertask information transfer. Two basic opera-
tions are as follows:

• SEND(msg) It sends the message msg.
• RECEIVE(msg) It receives a message and stores it in msg.

Message contents can be anything that is mutually comprehensible between
senders and receivers. Typically, a message is an instance of a data structure.
In direct message passing, each process wanting to communicate must

explicitly name the recipient or sender of the communication. Therefore,
the two operations must have the counterpart of the communication as an
argument:

• SEND(P, msg) It sends the message msg to the task P.
• RECEIVE(Q, msg) It receives a message from the task Q and stores it

in msg.

In indirect message passing, messages are sent to and received from shared
message queues, mailboxes, or ports. A message queue can be viewed as an
object intowhichmessages are placed by tasks and fromwhichmessages can be
removed by other tasks. In a real application, there might be multiple message

�

� �

�

150 6 Concurrent Programming

queues. The operation model of message queues in indirect message passing is
as follows:

• SEND(MQ, msg) It sends the message msg to the message queue MQ.
• RECEIVE(MQ, msg) It receives a message from the message queue MQ and

stores it in msg.

Communication with message queues can proceed synchronously or
asynchronously. In synchronous communication, the sending task blocks
itself until the message it sends is received by the receiver. In asynchronous
communication, the sender can continue with other processing even if the
receiver has not yet received the message. Of course, in asynchronous com-
munication, a message buffering mechanism needs to be in place to store the
message until the receiver retrieves the message. In general, asynchronous
communication is more desired because it increases the level of concur-
rency. Communication can be one-to-one, many-to-one, one-to-many, and
many-to-many.
Before a task can send or receive amessage, a message queuemust be created

and initialized. Attributes of the queue are set up during the queue initializa-
tion. The attributes include the maximum size of the queue, the maximum
length of amessage, the type of communication (blocking or nonblocking), and
so on.
In POSIX message queues, messages are queued (and thus received) in the

order of priority. The message attribute structure is defined as follows:

struct mq_attr {
long int mq_flags; /* Message queue flags. */
long int mq_maxmsg; /* Maximum # of messages. */
long int mq_msgsize; /* Maximum message size. */
long int mq_curmsgs; /* # of messages in queue. */

};

Message-queue-related definitions are included in the mqueue.h head
file. The routine that creates a new or opens an existing POSIX message
queue is

mqd_t mq_open(const char *name,
int oflag,
mode_t mode,
struct mq_attr *attr

);

It creates and opens a queue referenced by name for access. The message
queue name must follow the construction rules as for a normal file path
name. In particular, it has to start with a “/,” and the name cannot contain
additional “/.”

�

� �

�

6.4 Communication among Tasks 151

The second argument oflags controls the way in which the message queue
is opened. It can be O_RDONLY for receiving messages, O_WRONLY for send-
ing messages, or O_RDWR for both sending and receiving operations on the
queue. The flag can be OR’ed with O_CREATE, meaning that the routine is
called to create a queue. Only when O_CREATE is used, the last two argu-
ments are necessary. It may also be OR’ed with other flags. For example, you
can specify O_NONBLOCK to use the queue in a nonblocking mode. By default,
mq_send()would block if the queue is full and mq_receive()would block
if the queue is empty. But if O_NONBLOCK is specified in flag, the call would
return in those cases immediately with an error. Therefore, a flag

O_RDONLY | O_CREATE

would mean that the routine is called to create a new queue for read-only, and
when the queue is empty, mq_receive() call will be blocked until a message
is sent to the queue.
The mode argument is a bit mask that specifies the access permission to be

placed on the queue.The bit values that may be specified are the same as those
for files. For example, 0222 means write-only, 0444 means read-only, and 0666
means read and write.
The last argument attr is a reference to the attribute structure instance

associated with the queue. If it is NULL, then the queue is created with the
implementation-defined default attributes.
Themq_open() call returns the descriptor of themessage queue if the queue

is created or opened successfully. The descriptor is used to reference the mes-
sage queue by most other message queue routines. The call fails if the queue
reference already exists.
To open an existing queue, we call

mqd_t mq_open(const char *name,
int oflag);

which is the same routine but with two arguments only. In this case,O_CREATE
should not appear in the oflag argument.
The routine that sends messages is

int mq_send(mqd_t mqdes,
const char* msgbuf,
size_t length,
unsigned int priority);

It adds themessage pointed bymsgbuf to themessage queue referenced by the
descriptormqdes.Thelengthmust be less than or equal to themq_msgsize
specified in the attributes with which the queue is created. The last argument
specifies the priority of the message. Messages of the same priority are stored
on the queue in FIFO order.

�

� �

�

152 6 Concurrent Programming

The routine that receives messages is

size_t mq_receive(mqd_t mqdes,
char *msgbuf,
size_t length,
unsigned int *priority);

It retrieves a message from the queue referenced by the descriptor mqdes. The
retrieved message is removed from the queue and stored in the area pointed by
msgbuf, whose length is length. Messages are retrieved from the queue in
FIFO order within priorities. Messages of higher priorities are retrieved first.
The priority of the message is stored in priority. Upon success, the call
returns the number of bytes in the received message. Otherwise, it returns −1.
Other important routines include the following:

• int mq_setattr(mqd_t mqdes, structmq_attr *new_attr,
struct mq_attr *old_attr) It sets some attributes of the message
queue referenced by the descriptor mqdes. New attributes are set from the
values given in the structure referenced bynew_attr.The old attributes are
stored in the location referenced by old_attr, if the pointer is not NULL.
However, the only attribute that can be modified by this function call is the
O_NONBLOCK flag in mq_flags. Other fields in the structure pointed by
new_attr are ignored.

• int mq_getattr(mqd_t mqdes, struct mq_attr * attr) It
retrieves the attributes of the message queue referenced by the descriptor
mqdes and stores it in the buffer pointed by attr.

• int mq_close(mqd_t mqdes) It terminates access to a message queue
referenced by the descriptor mqdes.

• int mq_unlink(const char *name) It removes the name of the
message queue referenced by name and marks the queue for deletion when
all processes have closed it.

Messages can be sent or received with a time-out. That is, in case the flag
NONBLOCK is not set, the message queue call, be it sending messages or
receiving messages, will block for a time limited by the specified argument.
The sending and receiving routines with time-out are

• mq_timedsend(mqdes, msgbuf, length, priority, timeout);
• mq_timedreceive(mqdes, msgbuf, length, priority, time-
out);

where time-out is an absolute value in seconds and nanoseconds since Epoch.
To use a relative time-out, one way is to call the clock_getting() routine to get
the current time and then add the relative amount of time.
Figure 6.9 lists a program (sender) that creates a message queue and then

sends a message to the queue, while Figure 6.10 lists a program (receiver) that

�

� �

�

6.4 Communication among Tasks 153

1. #include <stdio.h>
2. #include <mqueue.h>
3. #include <sys/stat.h>
4. #include <stdlib.h>
5. #include <unistd.h>
6. #include <string.h>
7. #include <errno.h>
8. #define QUEUE_NAME "/my_queue"
9. #define MAX_MSG_LEN 100
10.
11. int main(int argc, char *argv[]) {
12. mqd_t myQ_id;
13. unsigned int msg_priority = 0;
14. pid_t my_pid = getpid();
15. char msgcontent[MAX_MSG_LEN];
16.
17. /* create a message queue */
18. myQ_id = mq_open(QUEUE_NAME, O_RDWR | O_CREAT | O_EXCL,
19. S_IRWXU | S_IRWXG, NULL);
20.
21. /* if not successful */
22. if (myQ_id == (mqd_t)-1) {
23. /* if the queue already exists, simply open it */
24. if (errno == EEXIST){
25. myQ_id = mq_open(QUEUE_NAME, O_RDWR);
26. if (myQ_id == (mqd_t)-1) {
27. perror("In mq_open(2)");
28. exit(1);
29. }
30. }
31. else {
32. perror("In mq_open(4)");
33. exit(1);
34. }
35. }
36.
37. /* compose a message */
38. snprintf(msgcontent, MAX_MSG_LEN, "Hello from process

%u", my_pid);
39.
40. /* send the message */
41. if (mq_send(myQ_id, msgcontent, strlen(msgcontent)+1,

msg_priority) == 0){
42. printf("A message is sent. \n");
43. printf(" Content: %s\n", msgcontent);
44. }
45. else {
46. perror("In mq_send()");
47. exit(1);
48. }
49.
50. /* close the queue */
51. mq_close(myQ_id);
52.
53. return 0;
54. }

Figure 6.9 Sending messages to a message queue.

�

� �

�

154 6 Concurrent Programming

1. #include <stdio.h>
2. #include <mqueue.h>
3. #include <sys/stat.h>
4. #include <stdio.h>
5. #include <mqueue.h>
6. #include <stdlib.h>
7. #include <unistd.h>
8. #include <string.h>
9.
10. #define QUEUE_NAME "/my_queue"
11. #define MAX_MSG_LEN 10000
12.
13. int main(int argc, char *argv[]) {
14. mqd_t myQ_id;
15. char msgcontent[MAX_MSG_LEN];
16. int msg_size;
17. unsigned int priority;
18.
19. /* open the queue created by the sender */
20. myQ_id = mq_open(QUEUE_NAME, O_RDWR);
21. if (myQ_id == (mqd_t)-1) {
22. perror("In mq_open()");
23. exit(1);
24. }
25.
26. /* retreve a message from the queue */
27. msg_size = mq_receive(myQ_id, msgcontent, MAX_MSG_LEN,

&priority);
28. if (msg_size == -1) {
29. perror("In mq_receive()");
30. exit(1);
31. }
32.
33. /* output message info */
34. printf("Received a message.\n");
35. printf(" Content: %s\n", msgcontent);
36. printf(" Size: %d bytes.\n", msg_size);
37. printf(" Priority: %d\n", priority);
38.
39. /* close the qeueu */
40. mq_close(myQ_id);
41.
42. return 0;
43. }

Figure 6.10 Receiving messages from a message.

opens the queue created by the sender program and then retrieves a message
from the queue. It is important that both programs use the samemessage queue
name. In addition, when the sender program is executed for the first time, the
mq_open() routine with four arguments in Lines 18–19 is called and returns
a valid queue ID.When the program is executed again, this routine will attempt

�

� �

�

6.4 Communication among Tasks 155

Figure 6.11 Execution of programs listed in Figures 6.9 and 6.10.

to create an existing queue and thus return −1 with the error code being EEX-
IST. When this happens, we should call the mq_open () routine with two
arguments to open the existing queue. That is why we have the if-statement in
Lines 22–35. In the receiver program, we can only call the my_open() routine
with two arguments.
In addition, notice that both programs call themq_close() routine to close

the queue. However, after the execution of the programs, the memory allo-
cated in the kernel for the queue remains there. To deallocate the memory, the
my_unlink() routine has to be called explicitly.We can add the call to the end
of the receiver program or write a new program to call this routine to remove
the queue from the kernel.
The execution results of the two programs are shown in Figure 6.11.

6.4.2 SharedMemory

Shared memory is a low-level way for tasks to communicate with each other.
Data is exchanged by placing it in memory pages shared by multiple tasks.
Shared memory is mapped into the address spaces of all tasks concerned. If
one task writes a value into a particular byte of shared memory, the change is
visible to other tasks immediately. This means that data transfer with shared

�

� �

�

156 6 Concurrent Programming

memory is not mediated by the kernel, and thus, shared memory is a fast inter-
task communication mechanism compared to message queues.This is because
in message queue approach, senders need to copy messages from their local
space to kernel memory, while receivers need to copy messages from kernel to
their local space. Of course, additional mechanisms, such as mutexes, condi-
tion variables, and/or semaphores, have to be used to protect the access to the
shared data. As with message queues, we can place any structure of data in a
shared memory area.
POSIX shared memory objects are implemented as files. The objects have

kernel persistence, that is, they exist until explicitly deleted or the system is
rebooted. To set up a shared memory region, first we need to open a shared
memory object, and then, we use the resulting descriptor to map the object
into a task’s address space.The routine used to create a new or open an existing
shared memory object is
int shm_open(const char *name,

int oflag,
mode_t mode);

The first argument name of the routine is a reference of the shared memory
object. A shared memory object name must follow the construction rules as
for a normal file path name, which has to start with a “/” and cannot contain
additional “/.”
The second argument oflags controls the way in which the sharedmemory

object is opened. It can be O_RDONLY for read-only or O_RDWR for read and
write. Write-only is not an option for shared memory. The flag can be OR’ed
with O_CREATE, meaning that the routine is called to create a shared memory
object. Only when O_CREATE is used, the last argument mode is necessary. It
may also be OR’ed with other flags. For example, you can specify O_EXCL to
modify the behavior of O_CREATE: if the object referenced by name already
exists and O_CREATE is set, but O_EXCL is not set in the shm_open() call,
then the call will simply return the descriptor of the existing object. If both flags
are set, then the call will return an error.
The last argument mode specifies access permission bits for the sharedmem-

ory object.
Upon success, shm_open() returns a nonnegative file descriptor. Upon

failure, shm_open() returns −1.
To map a shared memory into the address space of the calling process, we

call the mmap() routine:
void *mmap(void *addr,

size_t length,
int prot,
int flags,
int fd,
off_t offset);

�

� �

�

6.4 Communication among Tasks 157

It works by creating a virtual memory mapping for a region referenced by the
file descriptor fd, which is the return value of the shm_open() call. The area
of the shared memory from offset offset and with length length will be
mapped into the virtual address space, specified by addr, of the process. The
third argument prot specifies memory protection mode that must be consis-
tent with the accessmode specified in theshm_open() routine.The argument
flags has only one option MAP_SHARED, which makes the caller’s modifi-
cations to the mapped memory visible to other processes mapping the same
object.
Other important routines are listed as follows:

• int munmap(void *addr, size_t length) It removes any map-
pings for those entire pages containing any part of the address space of the
process starting at addr and continuing for length bytes.

• int close(int fd) It closes the file descriptor fd returned by the
shm_open() call.

• int shm_unlink(const char *name) It remove the object name,
marks it for deletion once all processes have closed it.

• fstat(int fd, struct stat *buf) It obtains information about
an open file associated with the file descriptor fd and writes it to the area
pointed by buf.

Note that struct stat is a system struct that is defined to store informa-
tion about files. It is used in several system calls, such as fstat, lstat,
and stat.
Figure 6.12 lists a program (writer) that creates a sharedmemory region (Line

19), configures its size (Line 26), maps the shared memory to its local space
(Line 29), and then writes data to the shared memory (Line 40). Figure 6.13
lists a program (reader) that opens the share memory created by the writer
program (Line 16), maps the shared memory to its local space (Line 23),
reads data from the shared memory (Line 31), and then removes the shared
memory segment (Line 34). Figure 6.14 shows the execution results of the two
programs.

6.4.3 SharedMemory Protection

Processes that access shared memory need to be synchronized so that each
process does not step on another process’s work in the shared memory. The
mutex, condition variable, and semaphore approaches introduced earlier in this
chapter are only suitable for synchronization between threads of a single pro-
cess. One way to synchronize data sharing between processes is to use named
semaphores.
Named semaphores obey all the name rules as message queues. To open

an existing semaphore, we use the sem_open function, with the semaphore’s
name and normal flags as arguments:
sem_t *sem_open(const char *name, int oflag);

�

� �

�

158 6 Concurrent Programming

1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <unistd.h>
4. #include <sys/types.h>
5. #include <fcntl.h>
6. #include <sys/shm.h>
7. #include <sys/mman.h>
8.
9. int main(){
10. const int SHM_SIZE = 4096;
11. const int MSG_SIZE = 100;
12. const char *name = "/my_shm";
13. char message[MSG_SIZE];
14.
15. int shm_fd;
16. void *ptr;
17.
18. /* create the shared memory segment */
19. shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);
20. if (shm_fd == -1){
21. perror("In shm_open()");
22. exit(1);
23. }
24.
25. /* configure the size of the shared memory segment */
26. ftruncate(shm_fd,SHM_SIZE);
27.
28. /* now map the shared memory segment in the address space

of the process */
29. ptr = mmap(0,SHM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED,

shm_fd, 0);
30. if (ptr == MAP_FAILED) {
31. printf("Map failed\n");
32. return -1;
33. }
34.
35. /* input a message from keyboard */
36. printf("Type a message:\n");
37. fgets (message, MSG_SIZE, stdin);
38.
39. /* write the message to the shared memory region */
40. sprintf(ptr,"%s",message);
41.
42. printf("Your message has been written to the shared

memory.\n");
43. printf(" Content: %s\n", message);
44. return 0;
45. }

Figure 6.12 Writing to a shared memory region.

�

� �

�

6.4 Communication among Tasks 159

1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <fcntl.h>
4. #include <sys/shm.h>
5. #include <sys/mman.h>
6.
7. int main()
8. {
9. const char *name = "/my_shm";
10. const int SIZE = 4096;
11.
12. int shm_fd;
13. void *ptr;
14.
15. /* open the shared memory segment */
16. shm_fd = shm_open(name, O_RDONLY, 0666);
17. if (shm_fd == -1) {
18. perror("in shm_open()");
19. exit(1);
20. }
21.
22. /* now map the shared memory segment in the

address space of the process */
23. ptr = mmap(0,SIZE, PROT_READ, MAP_SHARED, shm_fd, 0);
24. if (ptr == MAP_FAILED) {
25. perror("in mmap()");
26. exit(1);
27. }
28.
29. /* now read from the shared memory region */
30. printf("Content in the shared memory:\n");
31. printf(" %s", ptr);
32.
33. /* remove the shared memory segment */
34. if (shm_unlink(name) == -1) {
35. perror("in shm_unlink()");
36. exit(1);
37. }
38.
39. return 0;
40. }

Figure 6.13 Reading from a shared memory region.

�

� �

�

160 6 Concurrent Programming

Figure 6.14 Execution of programs listed in Figures 6.12 and 6.13.

To create a new named semaphore, the same function is used, but with
additional two arguments:

sem_t *sem_open(const char *name, int oflag,
mode_t mode, unsigned int value);

In the two types of sem_open function calls, there are only two flags
that we can set, and both are related to semaphore creation: O_CREAT
and O_EXCL. When they are set, the call with four arguments should be
used.
Other two functions related to named semaphores are sem_close and

sem_unlink. sem_close removes a process’s connection to the specified
semaphore, while sem_unlink destroys a semaphore. The behaviors of
sem_wait and sem_post are exactly the same as those used for unnamed
semaphores.
The programs listed in Figures 6.12 and 6.13 are not safe, because access to

the shared memory is not synchronized. Figure 6.15 lists the code of writing
to shared memory with semaphore control, in which semaphore-related code
is highlighted with boldface. The reading program listed in Figure 6.13 can be
modified identically.

�

� �

�

6.4 Communication among Tasks 161

1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <unistd.h>
4. #include <sys/types.h>
5. #include <fcntl.h>
6. #include <sys/shm.h>
7. #include <sys/mman.h>
8. #include <semaphore.h>
9.
10. int main(){
11. const int SHM_SIZE = 4096;
12. const int MSG_SIZE = 100;
13. const char *shm_name = "/my_shm";
14. const char *sem_name = "/my_sem"; /* semaphore name */
15. char message[MSG_SIZE];
16.
17. int shm_fd;
18. sem_t *sem; //semaphore descriptor
19. void *ptr;
20.
21. /* create the shared memory segment */
22. shm_fd = shm_open(shm_name, O_CREAT | O_RDWR, 0666);
23. if (shm_fd == -1){
24. perror("In shm_open()");
25. exit(1);
26. }
27.
28. /* create the named semahphore. initial value: 1 */
29. sem = sem_open(sem_name, O_CREAT, 0664, 1);
30.
31. /* configure the size of the shared memory segment */
32. ftruncate(shm_fd,SHM_SIZE);
33.
34. /* now map the shared memory segment in the address space

of the process */
35. ptr = mmap(0,SHM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED,

shm_fd, 0);
36. if (ptr == MAP_FAILED) {
37. printf("Map failed\n");
38. return -1;
39. }
40.
41. /* input a message from keyboard */
42. printf("Type a message:\n");
43. fgets (message, MSG_SIZE, stdin);
44.
45. /* write the message to the shared memory region */
46. /* access controlled by the named semaphore */

Figure 6.15 Writing to a shared memory region with semaphore control.

�

� �

�

162 6 Concurrent Programming

47. sem_wait(sem);
48. sprintf(ptr,"%s",message);
49. sem_post(sem);
50.
51. printf("Your message has been written to the shared

memory.\n");
52. printf(" Content: %s\n", message);
53.
54. sem_close(sem); /* close the semaphore */
55. sem_unlink(sem_name); /* destroy the semaphore */
56. return 0;
57. }

Figure 6.15 (Continued)

6.5 Real-Time Facilities

In a real-time system, the majority of tasks are periodic tasks. To implement
these tasks, we need to have an effective way of tracking the passage of time.
This is also important to make sure that no tasks will overrun. In this section,
we introduce widely used real-time signals and timers. We also discuss how to
use these kernel facilities to implement periodic tasks.

6.5.1 Real-Time Signals

Similarly to mutexes, conditional variables, semaphores, message queues,
and shared memory, signals are an integral part of multitasking of many
real-time kernels. Signals can be used for several different purposes, such as
exception handling, process termination in abnormal circumstances, and even
intertask communication. In this section, we focus on process notification of
asynchronous event occurrence, particularly timer expiration.
A POSIX signal is the software equivalent of an interrupt. A signal is an asyn-

chronous notification sent to a process or to a specific thread within the same
process in order to notify it of the occurrence of an event. Here, asynchronous
means that the event can occur at any time that may be unrelated to the execu-
tion of the process. An example is the key stroke of CTRL+C.
Signals can be originated by the kernel, terminal driver, or other processes.

For example, the Unix command

$ kill -KILL 1234

sends a SIGKILL signal to a process whose ID is 1234. Signals are identified by
their numbers. Each POSIX compliant system supports a list of signal numbers.
Normally, the head file signal.h defines symbolic names for signals. Each
signal number has a particular meaning and effect on the process that receives
the signal. For example, if you hit CTRL+C, a signal of SIGINT from the OS
is generated. When a process makes illegal memory reference, the event gains

�

� �

�

6.5 Real-Time Facilities 163

attention of the OS, and the OS stops the application process immediately and
sends a SIGSEGV signal out. The signal will be caught by the default signal
handler of SIGSEGV, which prints an error message and exits the process.
User processes can send signals to other processes through kill() or

sigqueue() call. Upon receiving a signal, a process can ignore the signal,
block the signal, or handle the signal. Some signals, such as SIGKILL (ter-
minating a process) and SIGSTOP (pausing a process), cannot be ignored
though.
When real-time signals are generated as a result of a POSIX timer, upon

completion of asynchronous I/O, or by arrival of a message on an empty mes-
sage queue, there is no server process to send the signals. Instead, the way that
signals are to be delivered is set as part of initialization of the timer, the asyn-
chronous I/O, or the message queue, by using the data structure sigevent.‘
union sigval { /* data passed with notification */

int sival_int; /* integer value */
void *sival_ptr; /* points to timer_id */

};

struct sigevent {
int sigev_notify; /* notification method. */
int sigev_signo; /* notification signal */
union sigval sigev_value;

/* data to pass with notification */
};

The sigev_notify field in struct sigevent specifies how notifica-
tion is to be performed. When it is set to SIGEV_NONE, then no signal is sent
when the event occurs; if it is set to SIGEV_SIGNAL, then the process is noti-
fied to send the signal that is specified in the sigev_signo argument. In
case of timer expiration, the signal should be SIGALRM. The third argument
sigev_value is an application-defined value to be passed to a particular sig-
nal handler at the time of signal delivery. In case of timer expiration, we only
need to set the first two members in structure.
To suspend a process until one of the expected signals is pending, we can call

the sigwait() routine:

int sigwait(const sigset_t *set, int *sig);

Thefirst argument of the routine is a signal set.The second argument stores the
signal that is received.The routine returns 0 if the call is successful. Otherwise,
it returns a positive error number.

6.5.1.1 Blocking Signals
To block a signal is to queue it for delivery at a later time.The purpose of block-
ing signals is to avoid race conditions – a signal of type X arrives while the
handler for signals of type X is executing. When the signal handler returns, the

�

� �

�

164 6 Concurrent Programming

block is removed for the signal in front of the queue. The POSIX signal system
uses signal sets to deal with pending signals that might otherwise be missed
while a signal is being processed. It provides several functions for creating,
changing, and examining signal sets, and they are all included in signal.h.

• int sigemptyset(sigset_t *set) Initialize a signal set to be
empty.

• int sigfillset(sigset_t *set) Initialize a signal set to be full.
• int sigaddset(sigset_t *set, int signo) Add the signal

numbered signo to the specified set.
• int sigdelset(sigset_t *set, int signo) Remove the signal

numbered signo from the specified set.
• int sigismember(const sigset_t *set, int signo) Check

whether the signal numbered signo is in the specified set.

The collection of signals that are currently blocked is called the signal mask.
Each process has its own signal mask in the kernel. When a new process is
created, it inherits its parent’s mask. Signals can be blocked or unblocked by
modifying the signal mask. Signal mask is manipulated and interrogated by the
sigprocmask() routine:

int sigprocmask(int iHow, const sigset_t *psSet,
sigset_t *psOldSet);

In this routine, the argument psSet points to a signal set. The first argument
modifies the signal mask. It can be set to one of the following three values:

• SIG_BLOCK: Add psSet to the current mask.
• SIG_UNBLOCK: Remove psSet from the current mask.
• SIG_SETMASK: Install psSet as the signal mask.

The last argument, psOldSet, is used to store the old process signal mask.
For example, the following code segment blocks signal SIGINT.

...
sigset_t sSet;
sigemptyset(&sSet);
sigaddset(&sSet, SIGINT);
sigprocmask(SIG_BLOCK, &sSet, NULL);

...

Note that sigprocmask() is only used for single-threaded process. In
multithreaded processes, pthread_sigmask() should be used.

6.5.1.2 Dealing with Signals
Signals can be handled with default actions or user-defined handlers. To handle
signals of certain type with a user-defined handler, a function needs to be set

�

� �

�

6.5 Real-Time Facilities 165

up so that it is called whenever a signal with a particular number arrives. The
details of what the process needs to do upon receiving a signal are set in the
sigaction structure:‘

struct sigaction {
void (*sa_handler)(int); /* address of signal handler */
sigset_t sa_mask; /* signals */
int sa_flags; /* signal options */
void (*sa_sigaction)(int, siginfo_t *, void*);

/* alternate signal handler */
};

Thepointersa_handler points to a function that serves as the signal handler.
The only argument (integer) of the signal handler is the signal number. The
pointersa_sigactionpoints to a function that serves as an alternative signal
handler. Normally, we do not assign both sa_handler and sa_sigaction.
To change the action taken by a process upon receipt of a specific signal, we

can call the sigaction routine:

int sigaction(int signum, const struct sigaction *act,
struct sigaction *oldact);

Here, signum specifies the signal and can be any valid signal except SIGKILL
and SIGSTOP. If act is non-NULL, the new action for signal signum is
installed from act. If oldact is non-NULL, the previous action is saved in
oldact.
Figure 6.16 lists a simple program that captures the CRTL+C (to terminate a

process) and CRTL-Z (to suspend a process) key strokes and sends a signal to
the signal handler my_handler, which outputs a message.
As restricted by the sigaction structure definition and specified in Line

5, my_handler has only one integral argument signo, which is the signal
number. In the main function, we first declared an instance of the sigac-
tion structure, named action. Data members of action are set in Lines
19–29. Lines 28 and 29 specify that the signals generated from CRTL-C and
CRTL-Z key strokes will be handled by the sigaction instance action.
The while-loop simply lets the process run forever so that users can type and
observe the results. Figure 6.17 shows a screenshot of the execution result of
the program.

6.5.2 Timers

To time a process’s execution so that it runs at certain frequency, real-time
clocks and timers are necessary.
All Unix-like systems use Unix time, which is also known as POSIX time or

Epoch time. It is a system for describing instants in time as the number of

�

� �

�

166 6 Concurrent Programming

1. #include <stdio.h>
2. #include <signal.h>
3. #include <unistd.h>
4.
5. void my_handler(int signo){
6. /* handling Ctrl-C */
7. if (signo == SIGINT)
8. printf("You hit Ctrl-C. \n");
9.
10. /* handling Ctrl-Z */
11. if (signo == SIGTSTP)
12. printf("You hit Ctrl-Z. \n");
13. }
14.
15. int main(void){
16. struct sigaction action;
17.
18. /* set up signal handler */
19. action.sa_handler = my_handler;
20.
21. /* initialize signal set */
22. sigemptyset(&action.sa_mask);
23.
24. /* set signal option to 0 that makes no change to

signal behavior */
25. action.sa_flags = 0;
26.
27. /* specify signals to be handled by action */
28. sigaction(SIGINT, &action, NULL);
29. sigaction(SIGTSTP, &action, NULL);
30.
31. /* wait forever */
32. while(1)
33. sleep(1);
34.
35. return 0;
36. }

Figure 6.16 Handling signals generated from key strokes of CTRL-C and CTRL-Z.

Figure 6.17 A screenshot of executing the program listed in Figure 6.16.

�

� �

�

6.5 Real-Time Facilities 167

seconds that have elapsed since 00:00 AM, January 1, 1970. The call of the
time() routine with a NULL argument returns the current time:

#include <time.h>
time_t time(time_t *what_time_it_is);

If a pointer is passed to the call, the returned time will be stored in the memory
referenced by the pointer.The POSIX routine clock_gettime() can return
the time with a precision that is measured in nanoseconds:

int clock_gettime(clockid_t c_id,
struct timespec *current_time);

After the call, the current clock time is stored in an object of timespec
referenced by current_time. The timespec structure is defined as
follows:

struct timespec {
time_t tv_sec; /* seconds */
time_t tv_nsec; /* nanoeconds */

};

We can also call the clock_getres() routine to obtain the clock
resolution.
Real-time applications often schedule actions using interval timers. An inter-

val timer can be either of two types: one-shot or periodic. A one-shot timer
is an armed timer that is set to an expiration time relative to either the cur-
rent time or an absolute time. When it expires, the timer is disarmed. Such
a timer is useful for single-shot tasks, such as clearing buffers after the data
has been transferred to storage or to time-out an operation. A periodic timer
is armed with an initial expiration time, absolute or relative, and a repetition
interval. Each time the interval timer expires, it is reloaded with the interval
and rearmed. This timer is useful for periodic tasks.
POSIX defined a set of routines for timers that utilize Unix clock. The most

fundamental one is

int timer_create(clock_id clockid, struct sigevent sigev,
timer_t *timerid);

which is called to create a new per-process interval timer. The clockid
argument specifies the clock that the new timer uses to measure time. All
POSIX-compliant RTOSs must support CLOCK_REALTIME, which is a settable
system-wide real-time clock. When the timer is successfully created, the ID of
the new timer is returned in the buffer pointed by timerid, which must be
a non-NULL pointer. This ID is unique within the process, until the timer is
deleted. The new timer is initially disarmed.

�

� �

�

168 6 Concurrent Programming

The second argument sigev is a pointer to the struct sigevent data
structure. This data structure is used to inform the kernel about what kind of
event the timer should deliver whenever it “fires.” In our case, we set the first
two members of the structure as follows:

sigev.sigev_notify = SIGEV_SIGNAL;
sigev.sigev_signo = SIGALRM;

After a timer is created, we need to set up the timer. The routine is

int timer_settime(timer_t timerid, int flags,
const struct itimerspec *new_setting,
struct itimerspec *old_setting);

It sets up the timer referenced by timerid to expire either periodically or
once.The last two arguments are pointers of itimerspec structure, which is
defined as follows:

struct itimerspec {
struct timespec it_interval; /* Timer interval *
struct timespec it_value; /* Initial expira-

tion */
};

To set a timer, we set new_setting->it_value with the time
interval after which the timer should expire for the first time and set
new_setting->it_interval with the interval at which subsequent
timer expirations should occur. If new_setting->it_value is set to 0,
then the timer will never expire; if new_setting->it_interval is set to
0, then the timer will expire only once, at the time indicated by it_value.
If the flags argument is set to 0, then the new_setting->it_value field

is taken to be a time relative to the current time. If it is set toTIMER_ABSTIME,
then the time is absolute.
Other timer-related POSIX routines include the following:

• int timer_delete(timer_t timerid) Deletes the timer whose ID
is given in timerid.

• int timer_getoverrun(timer_t timerid) Returns the overrun
count of the timer whose ID is given in timerid.

Note that in calls to interval timer functions, time values smaller than the
resolution of the system hardware periodic timer are rounded up to the next
multiple of the hardware timer interval. For example, if the clock resolution is
10 milliseconds and the value set for timer expiration is 95 milliseconds, then
the timer will expire in 100milliseconds, instead of 95milliseconds.

�

� �

�

6.5 Real-Time Facilities 169

6.5.3 Implement Periodic Tasks

When we implement a periodic task, we need to make sure that the task starts
to execute repeatedly at the beginning of each period, and it is suspended each
cycle from the time point when it is completed to the beginning of the next
cycle. The framework of periodic task implementation is as follows:
aPeriodicTask{

initialize phase, period, etc.;
set_timer(phase, period);
while (condition) {

task_body();
wait_next_activation();

}
}

In the aforementioned framework, the real-time control of the task is carried
out through two actions: one is to set a timer to wake up at a given period,
the function call of set_timer(phase, period). The second action
is to put the task to wait until the next period begins, the function call of
wait_next_activation(). We discuss how to implement these two
actions in the rest of this section. Typically, the task body performs routine
jobs listed as follows:
task_body(){

receive data;
computation;
update state variables;
output data;

}

The actual implementation varies with the mission of each individual task.

6.5.3.1 Using sleep() Function
A simple idea to make a task run periodically is to call the sleep() or simi-
lar routines after a task instance is completed to make the task sleep until the
next period begins. With this approach, the set-timer action is not needed.The
wait-next action is implemented as follows:
wait_next_activation(){

current_time = time();
sleep_time = next_activation_time - current_time;
next_activation_time = next_activation_time + period;
sleep(sleep_time);

}

�

� �

�

170 6 Concurrent Programming

1. #include <sys/time.h>
2. #include <signal.h>
3. #include <time.h>
4. #include <stdlib.h>
5. #include <stdint.h>
6. #include <string.h>
7. #include <stdio.h>
8.
9. #define ONE_THOUSAND 1000
10. #define ONE_MILLION 1000000
11. /* offset and period are in microseconds. */
12. #define OFFSET 1000000
13. #define PERIOD 500000
14.
15. sigset_t sigst;
16.
17. static void wait_next_activation(void){
18. int dummy;
19. /* suspend calling process until a signal is pending */
20. sigwait(&sigst, &dummy);
21. }
22.
23. int start_periodic_timer(uint64_t offset, int period){
24. struct itimerspec timer_spec;
25. struct sigevent sigev;
26. timer_t timer;
27. const int signal = SIGALRM;
28. int res;
29.
30. /* set timer parameters */
31. timer_spec.it_value.tv_sec = offset / ONE_MILLION;
32. timer_spec.it_value.tv_nsec = (offset % ONE_MILLION) *

ONE_THOUSAND;
33. timer_spec.it_interval.tv_sec = period / ONE_MILLION;
34. timer_spec.it_interval.tv_nsec = (period % ONE_MILLION) *

ONE_THOUSAND;
35.
36. sigemptyset(&sigst); /* initialize a signal set */
37. sigaddset(&sigst, signal); /* add SIGALRM to the

signal set */
38. sigprocmask(SIG_BLOCK, &sigst, NULL); /* block the signal */
39.
40. /* set the signal event at timer expiration */
41. memset(&sigev, 0, sizeof(struct sigevent));
42. sigev.sigev_notify = SIGEV_SIGNAL;
43. sigev.sigev_signo = signal;
44.
45. /* create timer */
46. res = timer_create(CLOCK_MONOTONIC, &sigev, &timer);

Figure 6.18 Implementing a periodic task.

�

� �

�

6.5 Real-Time Facilities 171

47.
48. if (res < 0) {
49. perror("Timer Create");
50. exit(-1);
51. }
52.
53. /* activiate the timer */
54. return timer_settime(timer, 0, &timer_spec, NULL);
55. }
56.
57. static void task_body(void){
58. static int cycles = 0;
59. static uint64_t start;
60. uint64_t current;
61. struct timespec tv;
62.
63. if (start == 0) {
64. clock_gettime(CLOCK_MONOTONIC, &tv);
65. start = tv.tv_sec * ONE_THOUSAND + tv.tv_nsec / ONE_MILLION;
66. }
67.
68. clock_gettime(CLOCK_MONOTONIC, &tv);
69. current = tv.tv_sec * ONE_THOUSAND + tv.tv_nsec / ONE_MILLION;
70.
71. if (cycles > 0){
72. printf("Ave interval between instances: %f milliseconds\n",
73. (double)(current - start)/cycles);
74. }
75.
76. cycles ++;
77. }
78.
79. int main(int argc, char *argv[]){
80. int res;
81.
82. /* set and activate a timer */
83. res = start_periodic_timer(OFFSET, PERIOD);
84. if (res < 0) {
85. perror("Start Periodic Timer");
86. return -1;
87. }
88.
89. while(1) {
90. wait_next_activation(); /* wait for timer expiration */
91. task_body(); /* executes the task */
92. }
93.
94. return 0;
95. }

Figure 6.18 (Continued)

This solution is not reliable. If the process or thread is preempted after
the sleep time is calculated and before the sleep() call is performed,
then the process will “over sleep.” For example, if the calculated sleep time
is 5milliseconds and the time-span from the process being preempted to
getting resumed is 3milliseconds, then the process should only sleep for
2milliseconds, instead of 5milliseconds.

�

� �

�

172 6 Concurrent Programming

6.5.3.2 Using Timers
Another way to implement periodic tasks is using real-time timers. In this
approach, we create a timer and arm the timer in the set-timer action, and
wait for the timer expiration signal in the wait-next action. The pseudocode of
set-timer is as follows:

set_timer(phase, period){
set up an itimerspec instance with phase and period;
add SIGALRM to an empty signal set and mask it;
set up a sigevent instance with signal SIGALRM

and notification method SIGEV_SIGNAL;
create a timer with the sigevent instance;
arm the timer with phase and period;

}
wait_next_activation(){

wait for signal SIGALRM;
}

Figure 6.18 lists a program that implements the pseudocode listed ear-
lier. The timer is set to expire every 500milliseconds. The offset is set to
1000milliseconds, meaning that the first expiration of the timer occurs
1500milliseconds after the timer is activated. In the main function, we
first call the function start_periodic_timer() to set and activate
the timer. Then the process enters an infinite loop, in which the function
wait_next_activation() is called to wait for the next timer expira-
tion signal first. When the signal arrives, the call returns, and the function
task_body() is called and executed, which simply calculates and prints out
the average interval between consecutive instances since the first expiration of
the timer. Figure 6.19 is a screenshot of the output of the program execution.

Figure 6.19 A screenshot of the output of the program listed in Figure 6.17.

�

� �

�

6.5 Real-Time Facilities 173

6.5.4 Implement an Application with Multiple Periodic Tasks

In the real world, even a simple real-time applicationwould havemore than one
periodic task. A periodic task can be implemented with a process or a thread,
depending on the computation complexity of the task. Simple tasks are usually
implemented with threads. Regardless, each periodic task would need a timer
created and activated. Each timer takes the corresponding task’s period and
phase as its parameters. Multiple timers can be created in a program (process),
each for a task (thread). The common definitions and utilities for timer setup
and activation and other application related functions should be placed in a
header file, while each thread should contain only the code that is unique to the
corresponding task.

Exercises

1 Write a simple C program using Pthread that creates a thread with
a default attribute object. All the thread does is create an array of
1,000,000 elements of integer type, initialize the array with random
numbers between 0 and 100, and then output a message indicating
that the initialization is completed. Run the program and see what
happens. Then, modify your code such that you create the thread with
a customized attribute object, in which you specify the stack size as
20MB. Run the program again and see what happens. Explain the
difference.

2 When creating a new Pthread by calling the pthread_create() rou-
tine, we can pass one and only one argument to the thread start routine.
The argument must be cast to (void *). The following call passes a
single integer t to the thread start routine myRoutine:

rc = pthread_create(&thread, NULL, myRoutine, (void *)t);

To retrieve t in myRoutine, we perform a cast as follows:

void *myRoutine(void *arg)
{

int a = (int) arg; //a gets the value of t
...

}

The following code attempts to pass the address of an integer to the start
routine. Is it safe?

for(t=0; t<NUM_THREADS; t++)
{

�

� �

�

174 6 Concurrent Programming

printf("Creating thread %ld\n", t);
rc = pthread_create(&th[t], NULL, myRoutine,
(void *) &t);

...
}

3 If multiple data items are to be passed to a thread during the thread
creation, we can define a structure that contains all of the data items as
members, declare an instance with desired values for all members, and
then pass the reference of the instance to the thread start routine. Write
a program that passes the following data to a thread:
int student_id;
char *first_name;
char *last_name;
double gpa;

Initialize the data in the main function and output the data in the thread
start routine.

4 The program listed in Figure 6.19 creates three Pthreads, each thread
containing a for-loop. A global variable count is used to track the total
iteration times of all the three threads. For each loop, a thread reads the
global count into a local count, increments the local count, and then
writes it to the global count. Run the program multiple times, and check
to see if the value of the global count is always correct. If it is not, explain
why, and then fix the problem.
1. #include <pthread.h>
2. #include <stdio.h>
3. #include <stdlib.h>
4.
5. #define ITERATION 100000
6.
7. int count = 0;
8.
9. void * Count(void * a){
10. int i, local_count;
11. for(i = 0; i < ITERATION; i++){
12. local_count = count;

/* copy theglobalcountto a local_count */
13. local_count++;

/* increment the local_count */
14. count = local_count;

/* store the local value into the global count */
15. }
16. }

�

� �

�

6.5 Real-Time Facilities 175

17.
18. int main(int argc, char * argv[]){
19. pthread_t tid[3];
20. int i, correctCount;
21.
22. for (i = 0; i <3; i++){
23. if(pthread_create(&tid[i], NULL, Count, NULL)){
24. printf("\n ERROR creating thread 1");
25. exit(1);
26. }
27. }
28.
29. for (i = 0; i <3; i++){
30. if(pthread_join(tid[i], NULL)){
31. printf("\n ERROR joining thread");
32. exit(1);
33. }
34. }
35.
36. correctCount = 3 * ITERATION;
37. if (count < correctCount)
38. printf("\n BOOM! count is %d, should be %d\n",

count, correctCount);
39. else
40. printf("\n OK! cnt is %d\n", count);
41.
42. pthread_exit(NULL);
43. }

5 Assume that we are given an array of 200,000 elements of double type,
and we want to find the sum of all elements with two threads. The first
thread finds the sum of the first half of the array and adds it to a global
variable total. Similarly, the second thread finds the sum of the second
half of the array and adds it to total. Write a program to implement the
function. Declare the array as global data, and initialize it with all 0.99s in
the main function before threads are created. The access to total should
be protected by a mutex object.

6 Perform the previous project, but generalize the solution by specifying
the number of threads to be created and dividing the work equally to each
thread. Make sure that the number of threads can divide the array size.

7 Write a program that creates a single Pthread. Implement the “join” func-
tion using a condition variable and mutex, such that the main thread will
wait until the child Pthread is completed before it exits, instead of calling
the pthread_join routine.

�

� �

�

176 6 Concurrent Programming

8 Redo the previous problem with a semaphore, instead of a condition
variable and mutex.

9 Write a program that uses two threads to search a doubly linked list.
Requirements are as follows:
(1) Create a doubly linked list. Insert 10,000 nodes to the list. Each node

stores a randomly generated integral value in the range of 0…50,000.
(2) Create two Pthreads. One searches the list for a node that stores a

value x from the head toward the tail, while the other searches the list
for the node backward from the tail. When one thread hits the node,
both threads should stop searching.

(3) When the search is stopped, each thread prints out the number of
nodes it has examined.

(4) The value x to be searched for is entered by the user. It must be in the
range of 0…50,000.

(5) If there are multiple nodes that store x in the list, the search stops
when the first node is hit. If there is no single node that stores x, the
search stops when the entire list is examined by a thread.

10 Modify the program listed in Figure 6.5 such that the three Pthreads keep
running until the main thread explicitly calls the pthread_cancel()
routine to terminate them 5 seconds after they are created.

11 If the semaphore is initialized to 2, what will be the semaphore value and
consequence after each action listed in Table 6.2? Redraw the table.

12 Rewrite the code listed in Figure 6.3 by solving the synchronization issue
with a semaphore, instead of a mutex object.

13 Modify the programs listed in Figures 6.9 and 6.10, such that the sender
repeatedly takes messages (strings) from the keyboard and sends it to
the message queue, until a “stop” is taken and sent out. Meanwhile, the
receiver keeps receiving messages from the queue, until a “stop” message
is received.

14 On top of the previous project, add two more senders, such that three
senders send messages to one receiver via one message queue. Assign the
highest priority to messages from the first sender, a medium priority to
the messages from the second sender, and the lowest priority to the mes-
sages from the third sender. Run the senders first until all messages are
sent out in a mixed order. Then, run the receiver and check to see if all
messages are received in the order of their priorities.

�

� �

�

References 177

15 Develop a project with two periodic tasks. Task 1 opens a shared memory
to store an array of 1000 elements of integer type and initialize all ele-
ments to 0s. It inserts a new value that is randomly generated in the range
of 1–100 to the array every 500milliseconds. Task 2, on the other hand,
counts the number of values inserted in the array every 400milliseconds
and displays the count.

16 Develop a project with three periodic tasks, where one task plays the role
of a server and the other two tasks are clients. The server task opens two
message queues, one for each client. Each client sends the POSIX time
in a message to the server every 500milliseconds. Meanwhile, the server
retrieves a message from each message queue and displays them every
500milliseconds.

Suggestions for Reading

The requirement of mutual exclusion was first identified and solved by Edsger
W. Dijkstra [1], which is credited as the first topic in the study of concurrent
algorithms. POSIX programming was discussed in details in Refs [2–4]. Bruno
[5] andWellings [6] introduced concurrent and real-time programming in Java.
Burns [7] introduced concurrent and real-time programming in Ada.

References

1 Dijkstra, E.W. (1965) Solution of a problem in concurrent programming
control. Communications of the ACM, 8 (9), 569.

2 Buttlar, D. (1996) PThreads Programming: A POSIX Standard for Better
Multiprocessing (A Nutshell Handbook), O’Reilly Media.

3 Butenhof, D.R. (1997) Programming with POSIX Threads, Addison-Wesley
Professional.

4 Gallmeister, B. (1995) POSIX.4: Programming for Real World, O’Reilly and
Associations, Inc..

5 Bruno, E.J. (2009) Real-Time Java Programming: With Java RTS, Prentice
Hall.

6 Wellings, A.J. (2004) Concurrent and Real-Time Programming in Java, Wiley.
7 Burns, A. (2007) Concurrent and Real-Time Programming in Ada, 3rd edn,
Cambridge University Press.

�

� �

�

179

7

Finite-State Machines

Real-time embedded systems are reactive systems. Their primary purpose is
to respond to or react to signals from their environment. The design of these
systems is a complex process, which necessitates the integration of common
design methods in both hardware and software to fulfill the functional and
nonfunctional requirements. Design patterns, which give abstract solutions
to commonly recurring design problems, have been widely used in the
software and hardware domains. Finite-state machines (FSMs) are a powerful
mathematical and graphical tool in specifying the behavior of reactive sys-
tems. Over the decades, they have become one of the most popular design
patterns for real-time embedded systems. This chapter introduces traditional
FSMs.

7.1 Finite State Machine Basics

An FSM is an abstract computation model that is used to design both software
and sequential logic circuits. In general, a state machine is a device that stores
the context of an object at a given time and operates on input events to change
the context and/or cause an action to take place or an output to occur for any
given change. The context is called a state, which captures the relevant aspects
of the object’s history. An FSM can be in one of a finite number of states. A
change from one state to another is called a transition. A state transition occurs
because of the occurrence of some triggering events or conditions. The state it
is in at a given time is called the current state.
An FSM can be represented by a directed graph called a state diagram, in

which each state is represented by a node (circle) and each transition is repre-
sented by an edge.

Example 7.1 State Diagram of a Light
Figure 7.1 shows the state diagramof a button-controlled light. It has two states:
On and Off . When the light is in the Off state, a Press button event changes the

Real-Time Embedded Systems, First Edition. Jiacun Wang.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

�

� �

�

180 7 Finite-State Machines

Off On

Press button

Press button

Figure 7.1 Finite-state machine of a light.

(a) (b)

Figure 7.2 Graphic representations of (a) initial states
and (b) final states.

light state to On; Similarly, when the light is in the On state, a Press button event
changes the light state to Off .

In many FSMs, it is necessary to classify states into initial states, final states,
and intermediate states. Normally, an initial state is graphically marked with an
incoming arrow, while a final state is represented with two circles, as shown in
Figure 7.2.

Example 7.2 State Diagram of a Safe
Consider a safe that is locked with a code 2-0-1-7. The states that we are
interested in are as follows:

• State q0: locked, with no meaningful input.
• State q1: locked, with an input sequence that ends with a “2.”
• State q2: locked, with an input sequence that ends with a “2-0.”
• State q3: locked, with an input sequence that ends with a “2-0-1.”
• State q4: unlocked (after an input sequence that ends with a “2-0-1-7.”

Figure 7.3 shows the state diagram of the safe.

q0 q2

0

q1 q4q3

2

7

1

not 0

not 1
not 7

not 2

Figure 7.3 Finite-state machine of a safe.

�

� �

�

7.2 Deterministic Finite Automation (DFA) 181

1

not p not 1not w

q5q1q0

wp
q2 q3 q4

q6

32

not 2 not 3

Figure 7.4 An acceptor for password pw123.

7.2 Deterministic Finite Automation (DFA)

There are two types of FSMs: deterministic finite automation (DFA) and non-
deterministic finite automation (NDFA). In DFA, one can determine the state
to which the machine will move for each triggering event.
A DFA is also known as a deterministic finite accepter, a machine that accepts

and rejects finite sequence of inputs and only produces a unique computation
(or run) of the automaton for each input sequence. For example, theDFA shown
in Figure 7.4 will only accept a password of “pw123.” All other input strings will
lead the machine to the error and dead state q6.
Mathematically, a DFA is denoted as M =

(
Q,

∑
, 𝛿, q0, F

)
, where

• Q is a finite set of states.
•

∑
is a finite set of symbols.

• 𝛿: Q×
∑

→Q is the transition function.
• q0 is the initial state. q0 ∈ Q.
• F is a set of final states. F ⊆ Q.
In the definition, Q is simply a set of a finite number of elements, with each
element being the name of a state.

∑
is a set of finite elements as well, with

each element being an input.The transition function 𝛿 is also called a next state
function, meaning the machine moves to the state 𝛿 (q, 𝜀) if it receives the input
𝜀 in the state q.

Example 7.3 Mathematical Model of FSM in Figure 7.2
The FSM shown in Figure 7.3 is a DFA. Its mathematical representation is as
follows:

Q = {q0, q1, q2, q3, q4}.∑
= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

𝛿 ∶ (q0, 2) → q1, (q0, 𝜀) → q0 for all 𝜀 ≠ 2;
(q1, 0) → q2, (q1, 𝜀) → q0 for all 𝜀 ≠ 0;
(q2, 1) → q3, (q2, 𝜀) → q0 for all 𝜀 ≠ 1;
(q3, 7) → q4, (q3, 𝜀) → q0 for all 𝜀 ≠ 7.

F = {s4}.
The initial state is q0.

�

� �

�

182 7 Finite-State Machines

Table 7.1 State transitions of FSM shown in Figure 7.2.

0 1 2 3 4 5 6 7 8 9

q0 q0 q0 q1 q0 q0 q0 q0 q0 q0 q0

q1 q2 q0 q0 q0 q0 q0 q0 q0 q0 q0

q2 q0 q3 q0 q0 q0 q0 q0 q0 q0 q0

q3 q0 q0 q0 q0 q0 q0 q0 q4 q0 q0

State transitions can also be described using a state transition table. For
example, Table 7.1 lists all state transitions shown in Figure 7.3. The rows of
the table are labeled by states, the columns are labeled by inputs, and each
element shows the next state.
A state machine may have outputs corresponding to each transition. There

are two types of FSMs that generate outputs:

• Moore machines
• Mealy machines

A Moore machine is a DFA whose output depends only on the current state.
In contrast, a Mealy Machine is a DFA whose output depends on the current
input as well as the current state. Any Moore machine can be turned into a
Mealy machine, and vice versa.

7.2.1 MooreMachines

Basically, a Moore machine is just a DFA with output associated with each
state. The machine writes the appropriate output as it enters each state.
Mathematically, a Moore machine is denoted by M =

(
Q,

∑
, O, 𝛿, 𝜆, q0

)
,

where

• Q is a finite set of states.
•

∑
is a finite set of input symbols.

• O is a finite set of output symbols.
• 𝛿: Q×

∑
→Q is the transition function.

• 𝜆: Q→O is the output function.
• q0 is the initial state. q0 ∈ Q.

Notice that there is no final state set in the Moore machine definition. This
is because a Moore machine is deemed an output producer, instead of a lan-
guage recognizer (acceptor). The output function 𝜆 is a mapping from the set
of states to the set of outputs, indicating that outputs depend only on states.
Figure 7.5 illustrates how next states and outputs are computed in a Moore
machine.

�

� �

�

7.2 Deterministic Finite Automation (DFA) 183

Next state

combination

logic

State

register
Output logic

Inputs Outputs

Figure 7.5 Moore machines: outputs depend solely on current states.

Example 7.4 Moore Machine of a Vending Machine
Consider a vending machine that sells candy bars for 20 cents each. Assume
that the machine only accepts coins of 5 cents, 10 cents, and 25 cents. When
coins of 20 cents or more are inserted into the machine, it releases a candy bar
and ejects changes.
To model the behavior of the vending machine, we need to find out all possi-

ble states and inputs and then decide transitions among the states. All possible
input events are as follows:

• 5c (insert a coin of 5 cents)
• 10c (insert a coin of 10 cents)
• 25c (insert a coin of 25 cents)

After each input, the customer’s balance in the vendingmachine is changed. All
possible balances are as follows:

• 0c (0 cents)
• 5c (5 cents)
• 10c (10 cents)
• 15c (15 cents)

In addition, when a coin is inserted, the customer may receive one of the fol-
lowing outputs, depending on the total number of coins inserted:

• “-” (nothing).
• “bar” (a candy bar)
• “bar, 5c” (a candy bar and a coin of 5 cents for change)
• “bar, 10c” (a candy bar and a coin of 10 cents)
• “bar, 15c” (a candy bar and coins of 15 cents)
• “bar, 20c” (a candy bar and coins of 20 cents)

However, except “-”, all other outputs only comewith a balance of 0c. Because
outputs are only determined by states in aMooremachine, combinations of bal-
ances and outputs constitute states in this problem,which are listed inTable 7.2.
The Moore machine diagram is shown in Figure 7.6.
Consider an input sequence of 10c, 10c, 5c, and 25c, and we can easily tell

from this state machine that the machine will go through states q0q7q3q6q3 and
sequentially output

(nothing), (nothing), a candy bar, (nothing), a candy bar plus 10c.

�

� �

�

184 7 Finite-State Machines

Table 7.2 Moore machine states of
Example 7.4.

State Balance Output

q0 0c —
q1 0c bar
q2 0c bar, 5c
q3 0c bar, 10c
q4 0c bar, 15c
q5 0c bar, 20c
q6 5c —
q7 10c —
q8 15c —

10c

25c

10c
5c

10c

q2

bar, 5c 10c

25c

5cq0

−

5c25c

q6

−

q7

−
10c

10c

q8

−

10c

q1

bar

5c
25c

5c
5c

25c

q3

bar, 10c

25c

10c

5c

25c

25c

5c

10c

25c

5c

q5

bar, 20c

q4

bar, 15c

Figure 7.6 Moore machine state diagram of a vending machine.

7.2.2 Mealy Machines

Intuitively, the difference between Moore machines and Mealy machines is
that Mealy machines move the outputs from within state nodes to transitions.
Transitions in a Mealy state diagram are labeled in the format of i/o, where i is
the input and o is the output. Mathematically, a Mealy machine is denoted by
M = (Q,

∑
, O, 𝛿, 𝜆, q0), where

�

� �

�

7.2 Deterministic Finite Automation (DFA) 185

Next state

combination

logic

State

register
Output logic

Inputs Outputs

Figure 7.7 Mealy machines: outputs depend on both inputs and current states.

• Q is a finite set of states.
•

∑
is a finite set of input symbols.

• O is a finite set of output symbols.
• 𝛿: Q×

∑
→Q is the transition function.

• 𝜆: Q×
∑

→ O is the output function.
• q0 is the initial state. q0 ∈ Q.

For the same reason as withMooremachines, there are no final states defined
in Mealy machines. On the other hand, the definitions of the output function
𝜆 in Mealy machines and Moore machines show the difference between the
two types of machines. In Mealy machines, it is a mapping from the Cartesian
product of Q and

∑
to O, indicating the outputs depend on both states and

inputs. Figure 7.7 illustrates how next states and outputs are produced inMealy
machines.
Mealy machines are as expressive as Moore machines. However, since typi-

cally there are more transitions than states in a state machine, aMealy machine
is often more compact than a Moore machine in specifying outputs. This fact
also makes Mealy machines more practical in use. For example, the behavior
of the vending machine in Example 7.4 can be modeled in a Mealy machine
much more concisely as shown in Figure 7.8. Basically, the six states q0, q1, …,
q5 that all have a balance of 0 cents in the Moore machine are combined into a
single state marked by 0c in the Mealy machine model, thus reducing the total
number of states.

Example 7.5 Mealy Machine of a Seat Belt Reminder System
A seat belt is an important vehicle safety device that prevents the occupant
of a vehicle from movement in the event of a collision or a sudden stop. A
seat belt reminder system gives a signal after the ignition is turned on and
if the occupant’s seat belt is not fastened. Assume that we want to design
a seat belt reminder system that would function according to the following
specification:

• The initial state is the car engine being off.
• After being seated, the driver can either turn on the engine or put the seat

belt on.

�

� �

�

186 7 Finite-State Machines

10c/−
10c

5c/−
5c/−

25c/bar, 20c

5c/−

10c/−

10c/bar

25c/bar, 5c

25c/bar, 15c

25c/bar, 10c

5c/bar

10c/bar, 5c

15c

5c

0c

Figure 7.8 Mealy machine state diagram of the vending machine.

• When the engine is on, but the driver is seated without the seat belt buckled,
the buzzer timer is turned on. The timer is turned off if the driver puts the
seat belt on before the timer expires.

• If the timer expires, the buzzer is turned on.When the driver puts on his seat
belt, the buzzer is turned off.

• The driver can turn off the car engine at any moment, which turns the timer
or buzzer off, whichever is on.

• When the driver is seated with the belt buckled, he can take off the seat belt.
• The driver cannot turn on the car engine before he is seated.
• Thedriver cannot leave the seat with the seat belt buckled orwhile the engine

is on.

The inputs of the system are from the car key, seat sensor, belt sensor, and
timer. Input events are

key, seat, unseat, belt, unbelt, and timer_expires.

Outputs are

timer_off . timer_on, buzzer_off , and buzzer_on.

The system can take any one of the following states at any given time:

• Off : The engine is off.
• Seated: Driver is seated with engine off.
• Ready: Driver is seated with seat belt buckled and engine off.

�

� �

�

7.2 Deterministic Finite Automation (DFA) 187

• Timing: Driver is seated with engine on and timer on.
• Belted: Driver is belted with engine on.
• Buzzer: Buzzer is on.

Figure 7.9 shows the Mealy machine diagram of this seat belt system. The
state transitions are also listed in Table 7.3.

unseat/−

timer_expires

/buzzer_on

Off Seated

Buzzer

seat/−

key

/timer_on

belt/buzzer_off

key

/buzzer_off

unbelt/−
Ready

belt/−

Timing Belted

key/−

unbelt/timer_on

belt/timer_off

key/−
key

/timer_off

Figure 7.9 Mealy machine diagram of a seat belt system.

Table 7.3 State transition table of the Mealy machine shown in
Figure 7.9.

Current State Input Next State Output

Off seat Seated —
Seated unseat Off —

belt Ready —
key Timing timer_on

Ready unbelt Seated —
key Belted —

Belted unbelt Timing timer_on
key Ready —

Timing belt Belted timer_off
key Seated timer_off
timer_expires Buzzer buzzer_on

Buzzer belt Belted buzzer_off
key Ready buzzer_off

�

� �

�

188 7 Finite-State Machines

q2

q0

q1

a
a b

b

c

Figure 7.10 A simple NDFA.

7.3 Nondeterministic Finite Automation

In an NDFA, given a state and an input, there may be more than one next
state, or a state can transition from one state to another without any input,
or there is no next state at all for some given input. NDFAs are good in specify-
ing unknown or unspecified system behavior. For any NDFA, there is always an
equivalent DFA. However, the NDFA model is more compact and uses fewer
states compared to the DFA model. Example 7.6 shows an NDFA.

Example 7.6 A Simple NDFA.
Figure 7.10 shows an NDFA, in which the input a in the state q0 can change the
system to the state q1 or q2. In other words, the system’s behavior in response
to the input event a in the initial state is nondeterministic.

7.4 Programming Finite-State Machines

As one of the most popular design patterns, FSMs are implemented in many
real-time embedded applications.There are two common approaches to imple-
menting an FSM. One is using conditional statements. An FSM can be simply
coded using two levels of nested multiple-decision or switch-case structures.
The first-level switch-case structure contains a list of cases corresponding to
all the states. Each case within the structure would contain a second-level
switch-case structure, listing the various possible inputs. Or, vice versa, one
could start with the outer switch-case structure listing all the inputs, where
each input case would contain a switch-case structure with a case for each
state. For example, Figure 7.11 lists a code segment of the implementation in C
of the FSM of the safe discussed in Example 7.2. In this simple problem, each
internal switch-case structure can be replaced with an if–then statement.
The conditional statements approach is very straightforward and easy to

understand. However, when the number of states and input events grow, the
code can easily become unwieldy. When the state machine code runs into
multiple screen pages, debugging and maintenance will become difficult, not
to mention the code readability.

�

� �

�

7.4 Programming Finite-State Machines 189

int get_input(); //get the digit that is pressed
void lock_safe(); //lock the safe
void unlock_safe(); //unlock the safe

void fsm(){
enum states {STATE0, STATE1, STATE2, STATE3, STATE4} current_state;
lock_safe(); //initialize the safe
current_state = STATE0; //set the initial state
int input;

while(true){
input = get_input();

switch(current_state){
case STATE0:

switch(input){
case 2:

current_state = STATE1;
break;

default:
current_state = STATE0;

}
case STATE1:

switch(input){
case 0:

current_state = STATE2;
break;

default:
current_state = STATE0;

}
case STATE2:

switch(input){
case 1:

current_state = STATE3;
break;

default:
current_state = STATE0;

}
case STATE3:

switch(input){
case 7:

current_state = STATE4;
break;

default:
current_state = STATE0;

}

Figure 7.11 Code segment of the finite-state machine of Example 7.2.

�

� �

�

190 7 Finite-State Machines

case STATE4:
unlock_safe();
break;

} // switch(current_state)
} //while(true)

}

Figure 7.11 (Continued)

Another approach to implementing state machines is table-based. To make
the implementation scalable for machines with large numbers of states and
input events, this approach uses a two-dimensional table, with one dimension
for states and the other for events, to store transition functions.The table could
be implemented in C using a two-dimensional array of function pointers.
Let us use the Mealy machine shown in Figure 7.9 as an example to explain

how the table-based approach works. We define all states and input events as
enumerated type:
enum states {OFF, SEATED, READY, BELTED, TIMING, BUZZER} current_state;
enum events {SEAT, UNSEAT, BELT, UNBELT, KEY, TIMER_EXPIRES} new_event;

Then, we define the state transition table as follows:
#define MAX_STATES 6
#define MAX_EVENTS 6
typedef void (*transition)();

transition state_table[MAX_STATES][MAX_EVENTS] = {
{seat, error, error, error, error, error}, // state OFF
{error, unseat, belt_s, error, key_s, error}, // state SEATED
{error, error, error, unbelt_r, key_r, error}, // state READY
{error, error, error, unbelt_b, key_b, error}, // state BELTED
{error, error, belt_t, error, key_t, timer}, // state TIMING
{error, error, belt_b, error, key_z, error}}; // state BUZZER

Each element in the table transition is a function that handles the corre-
sponding input event in the corresponding state. The error function is used
to handle all events that are not acceptable and will be ignored in a state. For
example, the state TIMING (Timing in the state machine diagram) accepts
and handles three events (BELT, KEY, and TIMER_EXPIRES) and ignores all
other inputs. Except the error function, each function in the table should be
implemented to generate the output and next state. Here is an example of the
function belt_t():
/* Function belt_t
* Input event: BELT Output: timer_off
* Current state: TIMING Next state: BELTED */

void belt_t(){
turn_timer_off(); //turn_timer_off() should be implemented

somewhere
current_state = BELTED; //this is a global variable

}

�

� �

�

7.4 Programming Finite-State Machines 191

The aforementioned definitions and implementation of all functions can be
placed in a separated file. The body of the main program will then be simply
implemented as
while(true) {

new_event = get_new_event(); /* get the next event to process */

if ((new_event >= 0) && (new_event < MAX_EVENTS)
&& (current_state >= 0) && (current_state < MAX_STATES)) {
/* call the transition function */
state_table[current_state][new_event]();

}
else {

/* invalid event/state - handle appropriately */
}

}

Exercises

1 Create the state transition table for the Mealy machine shown in
Figure 7.12a. What is the output sequence for an input sequence
0011100?

2 Create the state transition table for the Mealy machine shown in
Figure 7.12b. What is the output sequence for an input sequence
abaabaa?

3 Draw the Mealy machine for the state transitions shown in Table 7.4. A is
the entry state of the machine.

4 Create the state transition table for the Moore machine shown in
Figure 7.6.

(a) (b)

S0

S2

S1

a/a

a/b

b/b b/a

a/b

S0

S2

S1

1/1

0/0 1/0

0/1 0/1

Figure 7.12 Two three-state Mealy machines.

�

� �

�

192 7 Finite-State Machines

Table 7.4 The state transition table for Problem 7.3.

Present state Input Next state Output

A a B b
b C —

B a C —
b B a

C a A a
b D a

D a A b
b D —

Table 7.5 The state transition table for Problem 7.5.

Present state Input Next state Output

A a B —
b C

B a C a
b B

C a A a
b D

D a A b
b D

5 Draw the Moore machine for the state transitions shown in Table 7.5. A
is the entry state of the machine.

6 Draw the Moore machine for the state transitions shown in Table 7.6. A
is the entry state of the machine.

7 Create the state transition table for the NDFA shown in Figure 7.10.

8 Consider a digital combination lock as illustrated in Figure 7.13. On its
keypad are five digital input buttons for numbers 1–5, a reset button R,
and a display that shows the number of keys pressed since the last reset.
The lock code is a sequence of four digits. At the initial state, a 0 is dis-
played. When a number key is pressed, the display is incremented by 1,
regardless of the input. Upon the fourth key press, if the input sequence

�

� �

�

7.4 Programming Finite-State Machines 193

Table 7.6 The state transition table for Problem 7.6.

Present state Input Next state Output

A 0 A 0
1 B

B 0 E 0
1 C

C 0 D 1
1 C

D 0 A 1
1 F

E 0 A 0
1 F

F 0 E 1
1 C

Figure 7.13 Keypad of a digital
combination lock.

1 2 3

4 5 R

is correct, the display will change to a 0, unlocking the system. If an incor-
rect sequence is entered, the display will change to an E upon the fourth
key press, and the user must then press the R button to reset the lock to
its initial state. The user can also press the R button anytime to reset the
lock. Assume that the code is set to 5152.
(1) Draw the Moore state machine of the combination lock.
(2) Draw the Mealy state machine of the combination lock.
Hint: consider the display as well as the lock status (locked, unlocked) as
the output.

9 Consider a binary digital combination lock. As shown in Figure 7.14, on
its keypad are two number buttons “0” and “1” and a reset button R. The
length of the lock code is 6. Assume that the code is 101101. Whenever

�

� �

�

194 7 Finite-State Machines

0

1

R

Figure 7.14 Keypad of a binary digital combination
lock.

the lock detects such an input sequence, it is unlocked. For example, any
one of the following binary sequences will unlock it:
101101
0101101
011010101101
1110001101101101
At any time, a press on the reset button will take the lock to its initial state.
The lock enters its final state when the sequence of the code is detected.
Design a state transition diagram for this lock.

10 Complete the table-based implementation of the Mealy machine for the
seat belt reminder system introduced in Example 7.5.

11 Implement a C program for the state machine of the binary digital
combination lock in Problem 9.
(1) Using the conditional statement approach.
(2) Using the table-based approach.

Suggestions for Reading

The concept of finite-state machine is often attributed to two physiologists
Warren McCulloch and Walter Pitts for their first formal use of finite-state
systems, the neural nets, in 1943, for studying the nervous activity [1]. These
were later shown to be equivalent to the finite automata by Kleene [2].
Moore machine was introduced by Edward F. Moore [3]. Mealy machine was
introduced by George H. Mealy [4]. The equivalence of deterministic and non-
deterministic FSMs was established by Rabin and Scott [5]. A comprehensive

�

� �

�

References 195

collection of introductory materials on finite-state theories, algorithms, and
the latest domain applications can be found in Ref. [6].

References

1 McCulloch, W.S. and Pitts, E. (1943) A logical calculus of the ideas imma-
nent in nervous activity. Bulletin of Mathematical Biology, 5, 115–133.

2 Kleene, S.C. (1956) “Representation of Events in Nerve Nets and Finite
Automata,” Automata Studies, vol. 3–42, Princeton University Press.

3 Moore, E.F. (1956) Gedanken-experiments on sequential machines, in
Automata Studies, Annals of Mathematics Studies, vol. 34 (eds C.E.
Shannon and J. McCarthy), Princeton University Press, pp. 129–153.

4 Mealy, G.H. (1955) A method for synthesizing sequential circuits. The Bell
System Technical Journal, 34 (5), 1045–1079.

5 Rabin, M.O. and Scott, D. (1959) Finite automata and their decision prob-
lems. IBM Journal of Research and Development, 3, 114–125.

6 Wang, J. (2013) Handbook of Finite State Based Models and Applications,
CRC Press.

�

� �

�

197

8

UML State Machines

TheUnifiedModeling LanguageTM (UML) is a standard graphical modeling lan-
guage for themodeling, design, analysis, and implementation of software-based
systems. It was first developed in the 1990s. It is the integration of notations
of the Booch method, object-modeling technique (OMT), and object-oriented
software engineering (OOSE).The current version of UML is UML 2.5 and was
released in June 2015.
UML visualizes a software program with a collection of diagrams. These

diagrams are classified into two groups: structural diagrams and behavioral
diagrams. Structural diagrams emphasize the things that must be present in
the system being modeled, including the following:

• Class diagram. A class diagram shows the structure of a system, subsystem,
or component as related classes and interfaces, with their features,
constraints, and relationships.

• Package diagram. A package diagram shows packages and relationships
between them.

• Component diagram. A component diagram shows components and depen-
dencies between them.

• Composite structure diagram. A composite structure diagram shows the
internal part of a class.

• Deployment diagram. A deployment diagram shows the architecture of a sys-
tem as deployment (distribution) of software artifacts to deployment targets.

UML behavioral diagrams describe what must occur in the system being mod-
eled, including the following:

• Activity diagram. An activity diagram illustrates the dynamic nature of a
system by modeling the flow of control from activity to activity.

• Sequence diagram. A sequence diagram describes the interactions among
classes in terms of an exchange of messages over time.

• Use-case diagram. A use-case diagram models the functionality of a system
using actors and use cases.

Real-Time Embedded Systems, First Edition. Jiacun Wang.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

�

� �

�

198 8 UML State Machines

• State machine diagram. A state machine diagram describes the dynamic
behavior of a system in response to external stimuli. State diagrams are espe-
cially useful in modeling reactive objects whose state changes are triggered
by specific events.

• Communication diagram. A communication diagram describes the interac-
tions between objects in sequence.

• Timing diagram. A timing diagram shows interactions when a primary
purpose of the diagram is to reason about time.

• Interaction overview diagram. Defines interactions through a variant of
activity diagrams in a way that promotes overview of the control flow.

This chapter focuses on statemachine diagrams. A statemachine diagramhas
four types of elements, namely states, transitions, events, and actions. States
represent the possible operational modes of an object. Transitions represent
legal changes from one state to another. Events are the labels of a transition,
defining under what conditions the transition occurs. Actions are the activities
that take place within a state. This chapter introduces the fundamental con-
cepts of UML state machines, such as hierarchy, concurrency, and modularity
of graphic representation, as well as various graphic elements. At the end of
the chapter, the antilock braking system (ABS) is used as example to show the
application of UML state machines in real-world embedded system behavior
modeling.

8.1 States

A state in a UML state machine is modeled using a circular rectangle with the
state’s name being represented either inside the rectangle or outside the rect-
angle using a name tab. Figure 8.1 shows three different ways of representing
a state called On. In the representation shown in Figure 8.1a, the state name
is inside the rectangle. This type of representation is usually used to model
simple states. In Figure 8.1b, the state name is inside a name tab. This type
of state representation is useful when modeling orthogonal composite states.
In Figure 8.1c, the rectangle is divided into two different compartments. The
state name is given inside the first compartment. This type of representation is
usually useful when modeling simple dynamic states or hierarchical composite
states.

(a) (b) (c)

On

On

On

Figure 8.1 Representations of a state.

�

� �

�

8.1 States 199

Figure 8.2 Initial state marker and end state marker.

Start End

In a state diagram, there is an initial state marker, represented by a big
solid dot, which represents the starting point of a machine. It has neither
real existence nor incoming transition. There may also be end state markers,
represented by a big dot with a circle around it, which indicate the end of
processing. Both initial state markers and end state markers are pseudostates
in UML state machines, which will be discussed in detail later. Figure 8.2 shows
the start marker and end marker. Not all systems have an end marker.
Three types of states are defined in UML state machines: simple states, com-

posite states, and submachine states. A simple state represents a basic situation,
and it does not have substates – it contains neither regions nor submachine
states. A composite state has substates and contains one or more regions. A
submachine state specifies the insertion of the specification of a submachine
state machine.

Example 8.1 UML State Machine for a Landline Telephone
Consider as an example of the behavioral representation of a landline tele-
phone, which is shown in Figure 8.3. It is a high-level model and has only two
states: Idle and Active, where the Idle state indicates that the phone is not in use
while the Active state indicates that the phone is in use. Events that cause state
changes are pick up and hang up.

States may be dynamic, that is, they can perform some type of actions while
they are active. At the timeof execution of an action, the statewill not accept any
event until the action is completed. UML state machines support three types
of behaviors within a state:
• entry: the specified behavior is executed at the moment the state becomes

active.
• exit: the specified behavior is executed at the moment the state becomes

inactive.
• do: the specified behavior is executed continuously as long as the state is

active.

These behaviors can be specified in a compartment within a state.
Figure 8.3 UML state machine for a landline telephone.

Pick up Hang up

Active

Idle

�

� �

�

200 8 UML State Machines

Active

entry/play dial tone

do/connecting, talking

exit/hang up phone

Figure 8.4 A simple state with entry, do, and exit
behaviors specified.

Example 8.2 State with Compartments
Figure 8.4 shows the telephone Active state with two compartments.The upper
compartment has the state name, while the lower compartment specifies the
state behaviors.

8.2 Transitions

States represent the modes of operation that we are interested in while model-
ing the behavior of an object. Transitions, on the other hand, are used to depict
the changes of modes. A transition is graphically represented as a directed arc
from a source state to a target state. Figure 8.5 shows the general representation
of a transition. A transition can be optionally labeled by the following elements:

• Event-list: an event or a list of events that cause the transition to be triggered
or fired. In case there is a list of events, the occurrence of one event from this
list is enough to trigger the transition.

• Guard: a conditional statement that is evaluated to determine whether the
transition should be triggered or not. A guard can be a variable range speci-
fication, such as [speed> 60], or some other constraint must be met.

• Action-list: an operation or set of operations that will execute when the tran-
sition is triggered. Actions normally take a short period of time to perform.
They may occur when a transition is taken, when a state is entered, or when
a state is exited.

During the execution of an object or a system, a particular state can be active
or inactive. The occurrence of a transition indicates the following:

• The source state was the active state before the triggering of the transition.
• The source state exits because of the transition occurrence and becomes

inactive.
• The target state becomes the active state.

State A
event-list[Guard] / action-list

State B

Figure 8.5 A transition.

�

� �

�

8.3 Events 201

DoorOpen

entry/ovenOff()

Heating

entry/ovenOn()

Completed

doorClosed [timerPreset() > 0]

/timerStart()

Paused

doorOpen

/timerPause(), ovenOff()

doorOpen

timeout

/timerClear(), ovenOff()

doorClosed

/timerOn()

Figure 8.6 A simplified UML state machine for an oven.

Example 8.3 A Simplified State Machine for an Oven
Figure 8.6 depicts a simplified UML state machine for an oven. There are four
states in this model: DoorOpen, Heating, Paused, and Completed. Consider the
transition from DoorOpen to Heating. The event that causes the transition is
doorClosed. The guard is timePreset()> 0, meaning that you have to set the
timer to a value that is greater than 0 in order for the oven to start heating.
When this transition is triggered, the timer is armed, which is represented by
the action timerStart().

8.3 Events

Events are internal or external interactions that cause transitions in the behav-
ior of an object or a system. For example, the state machine shown in Figure 8.6
has two events: doorOpen and doorClosed. The response of the system to an
event depends on its current state and the type of events this state accepts. For
example, the state machine shown in Figure 8.6 shows that, while the oven is
in the Heating state, the event of doorOpen changes the oven state to Paused,
indicating that the heating is paused. If an event occurs while the system is
currently in a state that cannot handle this event, then the system behavior will
not change and the event will be ignored.The two states DoorOpen and Paused
can only accept the event doorClosed, while the states Heating and Completed
only respond to the event doorOpen.
UML defines four kinds of events:
Signal events. A signal event is a named object that is dispatched

asynchronously by one object and received by another.
Call events. A call event represents the dispatch of an operation. It is a syn-

chronous event. The general format of call events is
event_name(parameters).

Parameters are optional. The call events shown in Figure 8.6 do not have
parameters.

�

� �

�

202 8 UML State Machines

start button

ReadyIdle

after(10 seconds)

[no printing task]

when (11:59 PM)/self test

Figure 8.7 Change event and time event with a printer.

Change events. A change event represents a change in the state of the satis-
faction of some condition. The general format of this type of events is

when(condition).

Time events. A time event represents the passage of time.This type of event
keeps track of the time that a state is active and compares it to a boundary value.
An event occurs when the boundary value is exceeded. The general format of
this type of events is

after(time),

where time can be either absolute or relative. When an object enters a state,
any time-out function from that state is started. When a time-out expires, the
statemachine receives the expiration as an event.When an object leaves a state,
any time-out that was started upon entry to that state is cancelled. Only one
time-out can be used per state.
Figure 8.7 illustrates a change event and a time event. It is a partial repre-

sentation of the behavior of a printer. The printer is in the Idle state when
it is powered on but not printing. The printer does a self-test every night at
11:59 PM if it is idle. When the start button is pressed, the printer enters the
Ready state, in which it is ready to print. However, if it does not receive any
printing task fromclientswithin 10 seconds, the printer returns to the Idle state.

8.4 Composite States

The most distinguished extension of UML state machines to the traditional
FSM formalism is the introduction of composite states. A composite state has
substates and contains one or more regions. Composite states can be speci-
fied in hierarchy or orthogonality. In case of hierarchy, the composite state is
composed of one region. As for orthogonality, a composite state encloses two
or more regions, where each region executes concurrently. A region in a hier-
archical or orthogonal state contains states and transitions. The states inside a
region in turn can also be simple states, composite states, or submachine states.

�

� �

�

8.4 Composite States 203

8.4.1 Hierarchy

Hierarchy is introduced by allowing a state to encompass other states.
Hierarchical states represent abstraction of the software behavior, where lower
level abstractions are depicted as states that are enclosed within other states.
This is a traditional way of handling complexity. Hierarchical states are an ideal
mechanism for hiding internal details because the designer can easily zoom
out or zoom in to hide or show nested states, respectively.

Example 8.4 Decomposition of the Active State Shown in Figure 8.3
Recall that Figure 8.3 depicts the phone behavior at a high level of abstraction.
To analyze and understand the behavior of the phone while it is being used, it
is necessary to develop a more detailed representation, or a lower level abstrac-
tion, of what is happening while the phone is on. This in-depth representation
of the operational phone behavior should include multiple modes of interest,
such as dialing, connecting, and talking.Therefore, there is a need to refine the
Active state.
Figure 8.8 shows the representation of the phone behavior while it is active

as a composite state that supports hierarchy. This composite state consists of
6 simple states and 10 transitions. The Ready state is the default state to enter
when the composite state is activated, and it indicates that the phone is ready
and can be used to make a call. The action of playing a dial tone is performed
immediately upon entry to the state. The moment this state exits, due to a
dialDigit event, the dial tone should be stopped. If the user does not dial a digit
in 10 seconds, the phone enters theNot Ready state, and then, the user can press

Active

flash

dialDigit(n)[valid]

after (10 seconds)

dialDigit(n)[invalid]

Not Ready

entry/playBusyTone

dialDigit(n)

Invalid

entry/playMessage

Talking[busy]

[connected]

hang up

dialDigit(n)[incomplete]

Ready

entry/playDialTone

/

Dialing Connecting

Figure 8.8 Partial representation of the Active composite state.

�

� �

�

204 8 UML State Machines

the flash button to return the phone to the Ready state. When the user starts to
dial, the phone enters the Dialing state, and the user has to dial all the required
number of digits to complete the dialing. If the dialed number is a valid phone
number, the phone enters the Connecting state; otherwise, it enters the Invalid
state and plays an errormessage. After the errormessage is played, it changes to
the Not Ready state. If the called party’s line is in use, the phone changes from
the Connecting state to the Not Ready state; otherwise, it moves the Talking
state. When the caller hangs up, the Active state becomes inactive.

We can further decompose a substate’s behavior into a lower level abstrac-
tion and represent it as a composite state. For example, we can replace the
Connecting state shown in Figure 8.8 with a composite state that describes the
connecting behavior in a finer granularity as shown in Figure 8.9.
We introduced a new symbol in Figure 8.9, which is the diamond representing

the conditional branch, called the choice pseudostate. It evaluates the guards
of the triggers of its outgoing transitions to select only one outgoing transition.
In the statemachine shown in Figure 8.8, we can also use a choice pseudostate to
branch out from the stateDialing to the statesDialing,Connecting, and Invalid,
to make the condition check more intuitive.
Drawing the transitions that end on the board of a composite state looks

less nice. Later on, the entry/exit pseudostates will be introduced to make the
graphical representation more structured.
When there are a large number of states in a state machine, it is desirable to

hide the decomposition of a composite state and represent it with a simple state
graphic, so that all states can fit into the graphical space available for the
diagram. To differentiate the composite state from a simple state in graphic rep-
resentation, we use a special “composite” icon, usually in the lower right-hand
corner. This icon, consisting of two horizontally placed and connected states,

Connecting

CheckingCalledPartyStatus

[busy]

[notBusy]

EstablishingConnection

[connected]

Figure 8.9 Decomposition
of the Connecting state
shown in Figure 8.8.

�

� �

�

8.4 Composite States 205

Figure 8.10 Composite state Connecting with decomposition hidden.
Connecting

is an optional visual cue that the state has a decomposition that is not shown
in this particular diagram. Instead, the contents of the composite state are
described in a separate diagram. For example, the composite state Connecting
state in the state machine shown in Figure 8.8 can be replaced with the one
shown in Figure 8.10.

8.4.2 Orthogonality

Orthogonal states represent concurrent behavior. An orthogonal state has
more than one region. Regions of parallel states are separated by dashed lines.
Each dashed line divides the composite state into two separate regions. These
orthogonal regions run concurrently. In other words, the software system or
subsystem must be in all its regions the moment the composite state becomes
active. Communication between orthogonal parts can be achieved through
signal events and/or call events. This notion of orthogonality is very helpful
in representing subcomponents of a system and pertaining modularity in the
behavioral representation.

Example 8.5 UML State Machine Diagram of a Soda Machine
Consider a soda vending machine. We are interested in its behavior when a
customer makes a purchase. Its high-level model is depicted in Figure 8.11, in
which the state Dispensing is a composite state, but is represented as a simple
state with a composite state icon.
Internally, the state Dispensing has two paths of operations that run in

parallel. One path handles the soda delivery, and the other path does the

WaitingForSelection

do/display message

deposit coin[total >= soda cost]/

coin in bin

Idle
ReceivingCoins

do/display amount

deposit coin/

coin in bin deposit coin[total < soda cost]/

coin in bin

Dispensing

select soda/

dispense soda

RefundingChange

dispensed
turn return-coin level/

return coins

turn return-coin level/

return coins

Figure 8.11 UML state machine of a soda machine.

�

� �

�

206 8 UML State Machines

Dispensing

Dispensing soda

Bookkeeping sales

RotateRack ReleaseSoda OpenDispenseDoor

LogSales UpdateInventory

Figure 8.12 Orthogonal composite state Dispensing.

bookkeeping of sales. Figure 8.12 shows the behavior of the Dispensing state.
It has two orthogonal regions.

8.4.3 Submachine States

A submachine is a state machine inserted as a state in another state machine.
The same submachine can be inserted more than once. Submachine states
are semantically equivalent to composite states in that they are made up of
internal states and transitions. However, submachine states provide a means
to encapsulate states and transitions so that they can be reused. The name
compartment of a submachine state holds the (optional) name of the state,
as a string. The name of the referenced state machine is shown as a string
following “:” after the name of the state. For example, to follow the submachine
state name convention, we can rename the composite state Dispensing in
Figure 8.11 to Disp:Dispensing, where Disp is the new name of the state, and
the whole name indicates that a submachine state machine named Dispensing
is to be inserted here.

8.5 Pseudostates

In addition to simple states and composite states, UML state machines
also defined a set of pseudostates that are used to precisely specify the
dynamic behavior of a system.We have introduced the initial pseudostates and
choice pseudostates before. In this section, we introduce a few other important
pseudostates.They are history pseudostates, entry/exit pseudostates, fork/join
pseudostates, and terminate pseudostates.

8.5.1 History Pseudostates

In some systems, it is relevant to remember the last active internal state of a
composite state or a submachine state when this composite state turns inac-
tive. For example, when we open the door of an oven while it is heating, the

�

� �

�

8.5 Pseudostates 207

state Heating is remembered by the system. Later on, when the door is closed,
the oven resumes to heat. UML state machines support this type of behavior
through the use of history pseudostates. UMLdefined two kinds of history, shal-
low history and deep history. A shallow history pseudostate, shown as a circled
letter H, is used to remember the last active internal state of a composite state
or a submachine state but not the substates of that last active internal state. A
transition coming into the shallow history vertex is equivalent to a transition
coming into the most recent active substate of a state. At most, one transi-
tion may originate from the history connector to the default shallow history
state. This transition is taken in case the composite state had never been active
before, because there is simply no history. A deep history is a shallow history
recursively reactivating the substates of the most recent active substate. It is
represented as the shallow history with a star (H* inside a circle).
Figure 8.13 shows two identical state machines. The only difference between

them is that one uses a shallow history and the other uses a deep history in the
composite state State1. At the highest level, eachmachine has two states: State1
and State2. Within State1, there are two substates: State11 and State12, where
State12 is also a composite state, which is made up of two substates: State121
and State122. Suppose that each machine transitions out of State1 while it is at
State122 to State2 and then transitions back to State1.With the shallow history
pseudostate, the firstmachinewill return to State12 and start with State121.On
the other hand, the secondmachinewill directly return to State122, because the
deep history pseudostate remembers the leaf substate within State1.

State1

State11

State12

State122State121

State2
H

State1

State11

State12

State122State121

State2
H*

Figure 8.13 Shallow history pseudostate and deep history pseudostate.

�

� �

�

208 8 UML State Machines

Example 8.6 State Machine of a CD Player
Consider a CD player with high-level behavior depicted by the state machine
shown in Figure 8.14a. The Playing state is a composite state, and its internal
behavior is specified in Figure 8.14b, which shows how the CD player plays
back the three songs stored in a CD according to the manual selection by a
user. Of course, this is a simplified model.The intention here is to show the use
of shallow history pseudostates. Notice the shallow history pseudostate icon in
the composite state representation in Figure 8.14b.
The state machine starts with the Stopped state. When the press play event

occurs for the first time, the statemachine changes to the Playing state. Because
this is the first time that the Playing state becomes active, this composite state
will start with the substate Song1, and the playing behavior changes among
the Song1, Song2, and Song3 states, depending on the events press next and
press prev. If the press stop or press pause event occurs, the machine leaves the
Playing state, andmeanwhile, the last active state is remembered by the shallow
history pseudostate. When the press play event occurs again, the Playing state
is reactivated, and internally, the machine restores the substate represented by
the shallow history pseudostate; thus, the interrupted song is played.
Because no single internal state of the state Playing has substates, there is no

difference between using a shallowhistory pseudostate and using a deep history
pseudostate in this example.

8.5.2 Entry and Exit Points

When a composite state or submachine state becomes active, the internal sub-
state to enter is the initial state by default for each region, or the last active state

Playing

(b)

Song1 Song2 Song3

press next press next

press prev press prev H

Stopped
Playing

Paused

(a)

press play

press stop

press pause
press stop

press play

Figure 8.14 UML state machine of a CD player. (a) High-level state machine. (b) Composite
state Playing.

�

� �

�

8.5 Pseudostates 209

in case there is a history pseudostate and the composite state or submachine
state was active before. Sometimes, we may not want to enter a submachine at
the default state. Instead, we want to enter a particular internal state. In that
case, an entry point pseudostate can be used. An entry point pseudostate is an
entry point of a state machine or composite state. In each region of the state
machine or composite state, it can have at most one single transition to a vertex
within the same region. An entry point is shown as a small circle on the bor-
der of the state machine diagram or composite state, with the name associated
with it.
By default, a state machine exits a composite state when all internal substates

of the composite state become inactive. In a similar manner to entry points,
it is possible to have named alternative exit points. An exit point pseudostate
is an exit point of a state machine or composite state. Entering an exit point
within any region of the composite state implies the exit of this composite state
or submachine state. It also implies the triggering of the transition that has this
exit point as source in the state machine enclosing the composite state. An exit
point is shown as a small circle with a cross on the border of the state machine
diagram or composite state, with the name associated with it.

Example 8.7 A Data Processing State Machine
Figure 8.15 shows a simple state machine for data processing. It is composed
of four high-level states, namely Reading Data, Processing Data, Displaying
Results, and Reporting Error. Processing Data is a composite state and has two
substates: Sorting and Processing. By default, data are sorted first and then get
processed. If the data are already sorted, then the sorting phase is skipped. In
the machine, the unsorted transition goes to the default initial state, Sorting,
while the sorted transition connects to the Processing state via the entry point

error

Reading data

[unsorted]

[sorted]

skip sorting

Processing data

Sorting

Processing

Displaying results Reporting error

Figure 8.15 A simple state machine for data processing.

�

� �

�

210 8 UML State Machines

skip sorting. If the Processing state is finished properly, the machine transitions
to the Displaying Results state by default. If the state terminates with an error,
the machine moves to the Reporting Error state via the exit point error.

8.5.3 Fork and Join Pseudostates

A fork pseudostate splits an incoming transition into two or more transitions
terminating on target states that are in different orthogonal regions of a com-
posite state. The transition outgoing from a fork pseudostate must not have
guards or triggers because it is unconditional by definition. On the contrary,
a join pseudostate merges several transitions originating from source states in
different orthogonal regions of a composite state.The transition entering a join
vertex cannot have guards or triggers. The notation for a fork and join pseu-
dostate is a short heavy bar and is illustrated in Figure 8.16.

8.5.4 Terminate Pseudostates

A terminate pseudostate is used to represent a complete stoppage of the behav-
ior of a state machine. This implies that the execution of the system has been
terminated. At the moment of termination, the state machine cannot respond
to events anymore and, as a result, cannot change its behavior. An example of a
complete stoppage to the CD player behavior is that it runs out of battery while
it is playing. Figure 8.17 shows a modified behavior to the CD player example.
The terminate pseudostate is shown in the figure as a cross symbol.

S

Q

(a) (b)

S

Q

Figure 8.16 Fork and join pseudostates. (a) Fork splits a transition. (b) Join merges
transitions.

Stopped
Playing

Paused

press play

press stop

press pause
press stop

press play

run out of battery

Figure 8.17 CD player state machine with a terminate pseudostate.

�

� �

�

8.6 UML State Machine of Antilock Braking System 211

8.6 UML State Machine of Antilock Braking System

The notion of hierarchy and orthogonality in composite states and submachine
states gives UML state machine diagrams the power to support hierarchy,
concurrency, and modularity in system behavior modeling. It allows software
practitioners to model a system at multiple abstraction levels and design each
component independently. At the highest level of abstraction, we consider
components (or subsystems) of a system and how these components interact
with each other. Then, we model each component. A component can be
further decomposed into a set of subcomponents. This kind of refinement
process can go on and on. When a component reaches a desired level of
abstraction, we identify all states the component can go in and then consider
state transitions, events that trigger these transitions, and the system actions
after the transitions.This section discusses the hierarchical modeling idea with
the ABS that is introduced in Chapter 1.
Recall that sensors, valves, pumps, and an electrical control unit (ECU) are

themajor functional components in anABS.Critical sensors that detect awheel
lockup are wheel speed sensors and deceleration sensors. Valves include isola-
tion valves and dump valves. These components operate concurrently. Thus,
the state machine of the ABS should have six components, represented by six
regions in Figure 8.18. The ECU is the brain of the ABS. All other components
act upon commands sent by the ECU.The communication among components
should be reflected in the state machine model of each component. Next, we
create the state machine diagram for each component and discuss how these
state machines interact with each other.
Figure 8.19 shows the wheel speed sensor state machine. It has only one

state named Idle. A get_wheel_speed event, which is triggered by a signal

[Wheel Speed

Sensor]

[Pump]

[Dump Valve][Isolation Valve]

ABS

[Electrical Control Unit]

[Deceleration

Sensor]

Figure 8.18 Components of ABS.

Figure 8.19 Wheel speed sensor state
machine. Idle

get_wheel_speed()/return_wheel_speed()

�

� �

�

212 8 UML State Machines

sent from the ECU, results in a transition from the Idle state to itself, and
a return_wheel_speed() message is sent back to the ECU. The state machine
of the deceleration sensor is identical to the wheel speed sensor model,
with the only difference being the label of the self-transition, which is
get_deceleration()/return_deceleration().
Both the isolation valve and pump valve have two states: Closed and Open.

Their state machine diagrams are exactly the same, as shown in Figure 8.20.
They are initially at the Closed state. When a valve receives an open signal from
the ECU, it switches to the Open state. Then, a close signal from the ECU trig-
gers the valve to change from the Closed state to the Open state.
The pump has two states: Idle and Pumping, with Idle being its entry state. A

pumping signal from the ECU will trigger the pump to move to the Pumping
state.Then, a stop signal from the ECUwill change the pump from the Pumping
state to the Idle state. The state machine is shown in Figure 8.21.
At the highest level, the ECU statemachine has two states:On andOff , where

Off is the entry state and On is a composite state, as shown in Figure 8.22.
When the ECU is powered on, it first enters the Initializing state. An important

Closed

open()

Open

close()

Figure 8.20 Valve state
machine.

Idle

pump()

Pumping

stop()

Figure 8.21 Pump state
machine.

Initializing

do/set timer

Computing

Waiting

On

power off

Off

power on

timer expires/

reactivate timer

Figure 8.22 ECU state machine.

�

� �

�

8.6 UML State Machine of Antilock Braking System 213

Computing

Processing

do/compute control command

Preprocessing

[build]

[hold]

[reduce]

Holding

do/Iso Valve.close(),

 Dump Valve.close()

Building

do/Iso Valve.open(),

Dump Valve.close(),

Pump.stop()

Reducing

do/Iso Valve.close(),

Dump Valve.open(),

Pump.pump()

Figure 8.23 Composite state Computing.

internal event at this state is setting and activating the timer.TheECUcomputes
the control command periodically.When the control unit is initialized, itmoves
to the Computing state. This is a composite state, and its internal behavior
is described in Figure 8.23. When the ECU exits the Computing state, it
enters the Waiting state, waiting for the beginning of the next control cycle.
When the timer expires, it triggers the transition to the Computing state, and
meanwhile, the timer is reactivated to clock the next control cycle.
The entry state of theComputing state is theProprocessing state, withinwhich

sensor data are read and converted to digital words. The Preprocessing state
shown in Figure 8.23 is a composite state, and its internal behavior is presented
in Figure 8.24. After sensor data are preprocessed, the ECU enters the Process-
ing state and starts to compute the control command.The result could be build
the braking pressure, hold the braking pressure, or reduce the braking pressure.
So, the Processing state transitions to one of the three states: Building, Holding,
and Reducing, depending on the computation result. At the Building state, the
ECU sends an open signal to the isolation valve and a close signal to the dump
valve. At the Holding state, the ECU sends an close signal to the isolation valve
and a close signal to the dump valve. At the Reducing state, the ECU sends a

�

� �

�

214 8 UML State Machines

close signal to the isolation valve and an open signal to the dump valves. In this
diagram, the convention

target_component_name.signal_name(parameter)

is used for intercomponent communication. For example, the event Iso
Valve.open() means that a signal open is sent to the isolation valve component.
A component is a region of a state machine.
Figure 8.24 describes the internal behavior of the Preprocessing composite

state. The state has two regions, one for the wheel speed sensor data prepro-
cessing and the other for the deceleration sensor data preprocessing. Each sub-
state machine has two states: Reading and A/D Converting. In the Reading
state, the ECU sends a reading signal to the corresponding sensor to obtain the
measurement. Readings are converted to digital words in the A/D Converting
state.
In summary, the ABS UML state machine has six regions, each region for

a major component in the system. The substate machines of all components
except the ECUare rather simple.The statemachine of each sensor has only one
state, while the state machine of each valve has two states. The state machine
of the pump also has only two states. These components act upon signals of
command from the ECU.The dynamic behavior of the ECU is specified at three
levels of abstraction. The events that occur upon the ECU sending commands
to all other components are reflected in the transition labels.

Preprocessing

[Deceleration]

Reading

entry/Whee Speed Sensor.get_wheel_speed()

A/D Converting

do/AD converting

Reading

entry/Deceleration Sensor.get_deceleration()

A/D Converting

do/AD converting

[Wheel Speed]

Figure 8.24 Composite state Proprocessing.

�

� �

�

8.6 UML State Machine of Antilock Braking System 215

T2[g2()]/t2()

T1[g1()]/t1() State2

entry/f();

exit/g(); State21

entry/h();

exit/k();

State1

entry/a();

exit/b(); State11

entry/d();

exit/e();

−/c()

Figure 8.25 A state machine for Problem 1.

Exercises

1 Consider the state machine shown in Figure 8.25.
(1) When transition T1 occurs, what actions will be followed in order?
(2) When transition T2 occurs, what actions will be followed in order?

2 Develop a UML state machine to specify the dynamic behavior of a door
that can be opened or closed. When it is closed, it can be locked and
unlocked. Notice that you can open or close a door only if the doorway is
cleared.
(1) Use only simple states.
(2) Use a composite state Closed to model the behavior of the door when

it is closed. The composite state has two internal states: Unlocked and
Locked.

3 Draw the state machine for a luggage belt system. The belt is started when
the start button is pressed and runs either until the stop button is pressed
or until there is no luggage on the belt. This no-luggage condition prevails
when no luggage has been detected in the previous 60 seconds.

4 Draw the state machine for a simple battery charger that can charge
two batteries in parallel. The charger has three modes: idle, discharging,
and charging. The charger starts charging the batteries when a button
is pushed. However, before each battery can be charged, it must be
discharged. When each battery is discharged, it sends a signal to the
charger to change the mode to charging. When a battery is charged, it
sends notification to the charger. When both batteries are charged, the
charger returns to the idle mode.

5 Table 8.1 lists the power modes of an LCD projector, in which its cur-
rent power mode is indicated by the status of an indicator in the projector.
Power status can be changed by pressing the power button in a remote con-
trol. For example, when the power is off, a press on the button will turn it
on. When the power is on, a press on the button will switch the power off.

�

� �

�

216 8 UML State Machines

Table 8.1 Power modes of a projector.

Indicator status Explanation

Red, lit Power is off (standby mode). Press power button to start projection
Red, flashing Power is off (standby mode), and the Power On Blink feature is set

to yes
Green, lit It is projecting
Green, flashing It is preparing to project. Flashing lasts for 5 seconds
Orange, lit It is preparing to switch power off. Flashing lasts for 5 seconds
Orange, flashing Power is pressed again in the power-off preparation mode
No illumination Main power is switched off

In addition, when the power is on, if the projector receives no signal from
the remote control upon a press for 5minutes, it will behave as if having
received a power button signal. Develop a UML state machine to describe
the dynamic behavior of the power status of the LCD projector.

6 To receive a driver license, an adult must take and pass a written permit
test and a road test. If one fails the written permit test, he has to wait for
at least 1week to take it again. When he passes the written permit test, he
can take the road test 3months later. If he passes the test, he will receive his
driver license. If he fails, he has towait for aminimumof 2weeks to take the
test again. If he fails the road test three or more times, he has to wait for
at least 6months before he can take the test again. Draw a state diagram
to specify the testing process. Consider only four states: Permit Testing,
Waiting for Permit Testing, Road Testing, and Waiting for Road Testing.The
guard of “wait for at least one week” can be specified by a change event as
follows:

when(waiting_time ≥ 1 week)

7 Consider the wall-mounted control unit of a garage door opener. The con-
trol unit has two buttons: a door button that opens or closes the garage
door, depending on the door’s current state, and a light button that switches
the light on the motor unit on or off.Whenever the door button is pressed,
it will turn the light on as well as open or close the door. When the light
is left on for 60 seconds, it will turn off automatically. Create a UML state
machine for the behavior of the control unit, door, and light.

8 Create a UML state machine that models the operation of a simple cell
phone according to the following specification:

�

� �

�

References 217

• The cell phone has an On/Off switch.
• It has a numeric keypad that produces a keypad press event with a digit

as its argument.
• The phone has a three-way switch that is set to ringing, vibrating, or

both; it determines the action of the phone when a call comes in.
• The phone has an action button that

– initiates a call when seven digits have been entered,
– answers a call when the phone is ringing or vibrating, and
– terminates a call (hangs up) if a call is in progress.

• If the action button is pressed when fewer than seven digits have been
entered, the digits are erased.

• When dialing, the interval between any two consecutive digits pressed
cannot exceed 10 seconds; otherwise, a time-out event will terminate
the call.

• Finally, the phone has a display that shows the digits that have been
pressed so far, if any.

Use composite states as appropriate in your model to increase its
readability.

Suggestions for Reading

UML state machine diagrams originated from Harel Statecharts [1]. David
Harel described how the language of Statecharts came into being in [2].
UML state machine diagrams are part of the OMG UML. The specification
of the latest version of UML 2.5 is downloadable from the OMG official
website [3, 4].
It is possible to directly generate source code from state machines to

automate the design process. For example, IBM Rational allows C, C++,
Java, or Ada code generation from UML state machines [5]. Samek [6] gives
a detailed description of how to generate C/C++ code from state machine
through numerous examples of embedded systems.

References

1 Harel, D. (1987) Statecharts: a visual formalism for complex systems. Science
of Computer Programming, 8 (3), 231–274.

2 Harel, D. (2009) Statecharts in the making: a personal account. Communica-
tions of the ACM, 52 (3), 67–75.

3 Dennis, A., Wixom, B.H., and Tegarden, D. (2015) Systems Analysis and
Design: An Object-Oriented Approach with UML, 5th edn, Wiley.

�

� �

�

218 8 UML State Machines

4 OMG OMG Unified Modeling LanguageTM (OMG UML), http://www.omg
.org/spec/UML/2.5, Version 2.5, 2015 (accessed 21 March, 2017).

5 IBM IBM Rational Software, http://www-01.ibm.com/software/rational/
(accessed 21 March, 2017).

6 Samek, M. (2008) Practical UML Statecharts in C/C++: Event-Driven Pro-
gramming for Embedded Systems, 2nd edn, Newnes, Newton.

�

� �

�

219

9

Timed Petri Nets

Petri nets were introduced in 1962 by Dr Carl Adam Petri. Petri nets are
a powerful modeling formalism in computer science, system engineering,
and many other disciplines. Petri nets combine a well-defined mathematical
model with a graphical representation of the dynamic behavior of discrete
event-driven systems. The theoretical aspect of Petri nets allows precise
modeling and analysis of system behavior, while the graphical aspect enables
visualization of the state changes of the modeled system. This combination
is the main reason for the great success of Petri nets. Consequently, Petri
nets have been used to model various kinds of event-driven systems such as
embedded systems, communication systems, manufacturing plants, command
and control systems, real-time computing systems, logistic networks, and
workflows, to mention only a few important examples. Timed Petri nets, in
which job execution times or event durations are specified, are able to catch
the time-related performance or real-time properties of a system.

9.1 Petri Net Definition

A Petri net is a particular kind of bipartite directed graph, populated by four
types of objects: places, transitions, directed arcs, and tokens. Directed arcs con-
nect places to transitions or transitions to places. In its simplest form, a Petri
net can be represented by a transition together with an input place and an out-
put place. This elementary net may be used to represent various aspects of the
modeled systems. For example, a transition and its input place and output place
can be used to represent a data processing event, its input data and output data,
respectively, in a data processing system. In order to study a system’s dynamic
behavior, in terms of states and state changes, using Petri nets, each place may
potentially hold either none or a positive number of tokens. Tokens are a primi-
tive concept for Petri nets in addition to places and transitions.The presence or
absence of a token in a place can indicate whether a condition associated with
this place is true or false, for instance.

Real-Time Embedded Systems, First Edition. Jiacun Wang.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

�

� �

�

220 9 Timed Petri Nets

A Petri net is formally defined as a five-tuple N = (P,T , I,O,M0), where

• P = {p1, p2,… , pm} is a finite set of places;
• T = {t1, t2,… , tn} is a finite set of transitions, P ∪ T ≠ ∅, and P ∩ T = ∅;
• I∶ T × P → N is an input function that defines directed arcs from places to

transitions, where N is a set of all nonnegative integers;
• O∶ T × P → N is an output function that defines directed arcs from

transitions to places; and
• M0∶ P → N is the initial marking.

A marking in a Petri net is an assignment of tokens to the places of a Petri net.
Tokens reside in the places of a Petri net. The number and location of tokens
may change during the execution of a Petri net. The tokens are used to define
the execution of a Petri net. A place containing one or more tokens is said to be
marked.
Most theoretical work on Petri nets is based on the formal definition of Petri

nets. However, a graphical representation of a Petri net is much more useful
for illustrating the structure and dynamics of the modeled system. A Petri net
graph is a Petri net depicted as a bipartite directed multigraph. Correspond-
ing to the definition of Petri nets, a Petri net graph has two types of nodes: a
circle represents a place, and a bar or box represents a transition. Directed arcs
(arrows) connect places and transitions, with some arcs directed from places to
transitions and other arcs directed from transitions to places. An arc directed
from a place pj to a transition ti indicates that pj is an input place of ti, denoted
by I(ti, pj) = 1. An arc directed from a transition ti to a place pj indicates that pj
is an output place of ti, denoted by O(ti, pj) = 1. If I(ti, pj) = k (or O(ti, pj) = k)
for some k > 1, then there exist k directed (parallel) arcs connecting place pj
to transition ti (or connecting transition ti to place pj). Usually, in the graphi-
cal representation, parallel arcs connecting a place (transition) to a transition
(place) are represented by a single directed arc labeled with its multiplicity or
weight k. A circle containing a dot represents a place containing a token.

Example 9.1 A Simple Petri Net
Figure 9.1 shows a simple Petri net. It has four places and three transitions. At
the initial marking, the place p1 has two tokens, while all other places have no

p4
p1

p2

p3 t3

t2

t1

2

2

Figure 9.1 A simple Petri net.

�

� �

�

9.1 Petri Net Definition 221

tokens. Its five tuples are as follows:

P = {p1, p2, p3, p4};

T = {t1, t2, t3};

I(t1, p1) = 2, I(t1, pi) = 0, i = 2, 3,4;
I(t2, p2) = 1, I(t2, pi) = 0, i = 1, 3,4;
I(t3, p3) = 1, I(t3, pi) = 0, i = 1, 2,4;

O(t1, p2) = 2, O(t1, p3) = 1, O(t1, pi) = 0, i = 1,4;
O(t2, p4) = 1, O(t2, pi) = 0, i = 1, 2,3;
O(t3, p4) = 1, O(t3, pi) = 0, i = 1, 2,3;

M0 = (2, 0, 0, 0).

In the initial marking, p1 is the only marked place. Notice that there is a label
of 2 on the arc from p1 to t1 and from t1 to p2. It means that the weights of these
two arcs are 2: when t1 fires, two tokens in p1 will be taken away and two tokens
will be placed in p2.

9.1.1 Transition Firing

The execution of a Petri net is controlled by the number and distribution of
tokens in the Petri net. By changing the distribution of tokens in places, which
may reflect the occurrence of events or execution of operations, for instance,
one can study the dynamic behavior of the modeled system. A Petri net is exe-
cuted by firing transitions. Denote the number of tokens in a place p in the
marking M by M(p). We now introduce the enabling rule and firing rule of a
transition, which govern the flows of tokens:

• Enabling Rule: A transition t is said to be enabled if each input place p of t
contains at least the number of tokens equal to the weight of the directed
arc connecting p to t, that is, M(p) ≥ I(t, p) for all p in P. If I(t, p) = 0, then
t and p are not connected, so we don’t care about the marking of p when
considering the firing of t.

• Firing Rule: Only enabled transitions can fire. The firing of an enabled tran-
sition t removes the number of tokens equal to I(t, p) from each input place
p and deposits the number of tokens equal to O(t, p) in each output place p.

Mathematically, firing t in M yields a new marking

M′(p) = M(p) − I(t, p) + O(t, p) ∀p ∈ P.

�

� �

�

222 9 Timed Petri Nets

Notice that since only enabled transitions can fire, the number of tokens in
each place always remains nonnegative when a transition is fired. Firing a tran-
sition can never try to remove a token that is not there.
A transition without any input place is called a source transition, and one

without any output place is called a sink transition. Note that a source transi-
tion is unconditionally enabled and that the firing of a sink transition consumes
tokens, but doesn’t produce tokens.
A pair of place p and transition t is called a self-loop, if p is both an input place

and an output place of t. A Petri net is said to be pure if it contains no self-loops.

Example 9.2 Transition Firing
Consider the simple Petri net shown in Figure 9.1. In the initial marking M0,
only t1 is enabled. Firing of t1 results in a new marking, say M1. It follows from
the firing rule that

M1 = (0, 2, 1, 0).

The new token distribution of this Petri net is shown in Figure 9.2.Then in the
marking M1, both transitions t2 and t3 are enabled. If t2 fires, the newmarking,
say M2, is

M2 = (0, 1, 1, 1).

If t3 fires, the new marking, say M3, is

M3 = (0, 2, 0, 1).

9.1.2 Modeling Power

The typical characteristics exhibited by the activities in an embedded system,
such as concurrency, decision-making, synchronization, and priorities, can be
modeled effectively by Petri nets.

1. Sequential execution. In Figure 9.3, the transition t2 can fire only after the
firing of t1.This imposes the precedence constraint “t2 after t1.” Such prece-
dence constraints are typical among tasks in an embedded system. Also, this
Petri net construct models the causal relationship among activities.

p4
p1

p2

p3 t3

t2

t1

2

2

Figure 9.2 Firing of transition t1.

�

� �

�

9.1 Petri Net Definition 223

Figure 9.3 Two sequential
transitions.

t1 t2

Figure 9.4 Transitions t2 and
t3 are in conflict.

t1

t2

t3

t1

t2

t3

t4

Figure 9.5 Transitions t2 and t3 are concurrent. Transition t4 synchronizes two sequences.

2. Conflict. Transitions t2 and t3 are in conflict in Figure 9.4. Both are enabled;
however, the firing of any transition leads to the disabling of the other transi-
tion. Such a situation will arise, for example, when two tasks compete for the
CPU or any other shared resource.The resulting conflict may be resolved in
a purely nondeterministic way or in a probabilistic way, by assigning appro-
priate probabilities to the conflicting transitions.

3. Concurrency. In Figure 9.5, t2 and t3 are concurrent. Concurrency is an
important attribute of system interactions.

4. Synchronization. It is quite normal in a dynamic system that an event
requires multiple resources. The resulting synchronization of resources can
be captured by a transition with multiple input places. In Figure 9.5, t4 is
enabled only when each of its two input places receives a token. In general
cases, the arrival of a token into each input place could be the result of a
complex sequence of operations elsewhere in the rest of the Petri net model.
Essentially, a transition of synchronization models a joining operation.

5. Mutually exclusive. Two processes are mutually exclusive if they cannot
be performed at the same time due to constraints on the usage of shared
resources. A real-world example is a robot shared by two machines for
loading and unloading. Figure 9.6 shows this structure. The single token in
place p dictates that at any moment, either the sequence of t1 and t2 is in
execution or the sequence of t3 and t4 is in execution, but it will never be
both.

6. Priorities. The classical Petri nets discussed so far have no mechanism to
represent priorities. Such a modeling power can be achieved by introducing

�

� �

�

224 9 Timed Petri Nets

t1 t2

t4t3

p

Figure 9.6 Mutual exclusion.

t1 t2

t4
t3

p1 P2

P3 P4

Figure 9.7 Transition t2 has
priority over t4.

an inhibitor arc.The inhibitor arc connects an input place to a transition and
is pictorially represented by an arc terminated with a small circle. The pres-
ence of an inhibitor arc connecting an input place to a transition changes the
transition enabling conditions. In the presence of the inhibitor arc, a transi-
tion is regarded as enabled if each input place, connected to the transition by
a normal arc (an arc terminated with an arrow), contains at least the number
of tokens equal to the weight of the arc, and no tokens are present on each
input place connected to the transition by the inhibitor arc. The transition
firing rule is the same for normally connected places. The firing, however,
does not change the marking in the places connected by the inhibitor arc.
A Petri net with an inhibitor arc is shown in Figure 9.7. t2 is enabled if p2
contains a token, while t4 is enabled if p4 contains a token, and p2 has no
token. This gives priority to t2 over t4: In a marking in which both p2 and p4
have a token, t4 won’t be able to fire until t2 is fired.

7. Resource constraint. Petri nets are well suited to model and analyze systems
that are constrained by resources. For instance, Figure 9.8 depicts the two
models of a writing–reading system. In the model (a), the transitions write
and send can keep firing and injecting as many tokens (mails) as you want to
the place mail that is connected to send and receive. Therefore, this model
assumes an unbounded buffer or mailbox for mails between the sender and
receiver. In the model (b), however, a place mailbox with three initial tokens
is added to the Petri net, which limits to the consecutive firing times of write
and send to only three. In fact, the mailbox is a resource in this system. The
place mailbox here models the capacity of the mailbox. This example shows
that resource constraints can be modeled very naturally in Petri nets.

�

� �

�

9.2 Petri Net Properties 225

receive

mail

rest_w

write

send

mail_r

read

rest_r

mail_w

rest_r

mail_w

write

send

mail_r

read

rest_w

mailbox

mail receive

(a)

(b)

Figure 9.8 A writing–reading system. (a) The mailbox is unbounded. (b) The mailbox can
hold up to three mails.

9.2 Petri Net Properties

As a mathematical tool, Petri nets possess a number of properties.These prop-
erties, when interpreted in the context of the modeled system, allow system
designers to check if desired properties are in place, and meanwhile, undesired
properties are avoided. Two types of properties can be distinguished: behav-
ioral and structural. The behavioral properties depend on the initial state or
marking of a Petri net. The structural properties, on the other hand, do not
depend on the initial marking of a Petri net; they depend on its topology or
structure instead.

9.2.1 Behavioral Properties

9.2.1.1 Reachability
An important issue in designing event-driven systems is whether a system
can reach a specific state or exhibit a particular functional behavior. In
general, the question is whether the system modeled with a Petri net exhibits
all desirable properties as specified in the requirement specification and no
undesirable ones.
In order to find out whether the modeled system can reach a specific state as

a result of a required functional behavior, it is necessary to find such a transi-
tion firing sequence that would transform its Petri net model from the initial

�

� �

�

226 9 Timed Petri Nets

t1 t2

p1 p2
p3

Figure 9.9 A Petri net with
𝜔markings.

marking M0 to a desired marking Mj, where Mj represents the specific state,
and the firing sequence represents the required functional behavior. In gen-
eral, a marking Mj is said to be reachable from a marking Mi if there exists a
sequence of transition firings that transforms Mi to Mj. A marking Mj is said to
be immediately reachable from Mi if firing an enabled transition in Mi results
in Mj. The set of all markings reachable from a marking M is denoted by R(M).
We will explain how to obtain R(M) later.
The reachability analysis of a bounded Petri net is conducted through the

construction of reachability tree. Given a Petri net N , from its initial marking
M0, we can obtain as many “new” markings as the number of enabled transi-
tions. From each new marking, we can again reach more markings. Repeating
the procedure over and over results in a tree representation of themarkings and
firing transitions. Nodes representmarkings generated from M0 and its succes-
sors, and each arc represents the firing of a transition, which changes the Petri
net from one marking to another.

9.2.1.2 𝝎Markings
The aforementioned tree representation, however, will grow infinitely large if
the net is unbounded. Tomaintain the tree finite, we introduce a special symbol
𝜔, which can be thought of as “infinity.” It has the following properties:

• 𝜔 > n
• 𝜔 + n = 𝜔

• 𝜔 ≥ 𝜔

where n is any given integer.
For example, after t1 is fired in the Petri net shown in Figure 9.9, the new

marking is (0, 1, 0). Now t2 is enabled. Firing t2 results in the marking (0, 1,
1). Since in this marking, t2 is still enabled, it can fire again, which results in
(0, 1, 2). Continuing to fire t2, we will obtain (0, 1, 3), (0, 1, 4) … Therefore,
there are infinite number of markings with this Petri net. With the concept of
𝜔markings, we use (0, 1, 𝜔) to represent markings (0, 1, n) for all n≥ 1.
The firing condition and firing rule for normal marking cases can be neatly

extended to 𝜔markings with the extended arithmetic rules. Basically, if a tran-
sition has an input place with 𝜔 tokens, then that place is considered to have
sufficiently many tokens for the transition to fire, regardless of the arc weight.
On the other hand, if a place contains 𝜔 tokens, then firing any transition that
outputs tokens to the place will not change the number of tokens in the place.

�

� �

�

9.2 Petri Net Properties 227

9.2.1.3 Reachability Analysis Algorithm
Generally speaking, we don’t know if a Petri net is bounded or not before we
perform reachability analysis. However, we can construct a coverability tree if
the net is unbounded or a reachability tree if the net is bounded according to
the following general algorithm:

1. Label the initial marking M0 as the root and tag it “new.”
2. For every new marking M:

2.1. If M is identical to a marking that already appeared in the tree, then tag
M “old” and move on to another new marking.

2.2. If no transitions are enabled at M, tag M “dead-end” and move on to
another new marking.

2.3. While there exist enabled transitions in M, do the following for each
enabled transition t:
2.3.1. Obtain the marking M′ that results from firing t in M.
2.3.2. On the path from the root to M, if there exists a marking M′′

such that M′ (p) ≥ M′′(p) for each place p and M′
≠ M′′, that is,

M′′ is coverable, then replace M′ (p) by 𝜔 for each p such that M′

(p)>M′′(p).
2.3.3. Introduce M′ as a node, draw an arc with label t from M to M′ ,

and tag M′ “new.”

If 𝜔 appears in a marking, then the Petri net is unbounded, and the tree is
a coverability tree; otherwise, the net is bounded and the tree is a reachabil-
ity tree. When all old nodes are merged with corresponding internal nodes, a
reachability tree becomes a reachability graph, or a coverability tree becomes a
coverability graph.

Example 9.3 Reachability Tree and Reachability Graph
Consider the Petri net shown in Figure 9.1 again. It has seven reach-
able markings:

M0 = (2, 0, 0, 0),

M1 = (0, 2, 1, 0),

M2 = (0, 1, 1, 1),

M3 = (0, 2, 0, 1),

M4 = (0, 1, 0, 2),

M5 = (0, 0, 1, 2),

M6 = (0, 0, 0, 3).

The reachability tree of this Petri net is shown in Figure 9.10a, and the reach-
ability graph is shown in Figure 9.10b.

�

� �

�

228 9 Timed Petri Nets

M0

M1

M2

M5
M4

M6 M6

M3

M4

t1

t3

t3
t2 t2

t2

t2 t3

dead-end old

old

M4

t3

t2

M0

M1

M2

M5

M6

M3

t1

t3

t2

t2

t2

t3

(a)
(b)

Figure 9.10 Reachability tree and reachability graph of the Petri net shown in Figure 9.1. (a)
Reachability tree. (b) Reachability graph.

t1 t3
p1

p2 p4

p3
t2

(1 0 0 0)

(0 1 1 0) (1 0 ω 0)

t2t1

(0 0 0 1)

t3 t2

t1

(0 1 ω 0)

(0 0 ω 1)

t3

Figure 9.11 Coverability graph. (a) A Petri net. (b) Coverability graph.

Example 9.4 Coverability Graph
ThePetri net shown in Figure 9.11 is an unbounded Petri net. Its initial marking
M0 = (1, 0, 0, 0) enables t1 and t2. Firing t1 results in a new marking M1 =
(0, 1, 1, 0), which is a regular marking. Firing t2 gives (1, 0, 1, 0). Comparing
it with its ancestor M0, we know that (1, 0, 1, 0) ≥ M0. Therefore, we change
the element that is increased to 𝜔 and obtain M2 = (1, 0, 𝜔, 1).
AtM1, t3 is enabled. Firing t3 results in a dead-endmarkingM3 = (0, 0, 0, 1).
At M2, both t1 and t2 are enabled. Firing t1 results in a new marking (0, 1,

𝜔 + 1, 0). Because𝜔 + 1 = 𝜔, we denote thismarking asM4 = (0, 1, 𝜔, 0). Fir-
ing t2 results in (1, 0, 𝜔 + 1, 0), which is equal to M2.
AtM4, t3 is enabled. Firing t3 results (0, 0, 𝜔 − 1, 1). Because𝜔 − 1 = 𝜔, this

is a dead-end marking M5 = (0, 0, 𝜔, 1).
Therefore, there are six markings with this Petri net, three being regular

markings and three being 𝜔markings:

�

� �

�

9.2 Petri Net Properties 229

M0 = (1, 0, 0, 0),

M1 = (0, 1, 1, 0),

M2 = (1, 0, 𝜔, 1),

M3 = (0, 0, 0, 1),

M4 = (0, 1, 𝜔, 0),

M5 = (0, 0, 𝜔, 1).

The coverability graph is shown in Figure 9.11b.

9.2.1.4 Boundedness and Safeness
In a Petri net, places are often used to represent information storage areas in
communication and computer systems, product and tool storage areas in man-
ufacturing systems, and so on. It is important to be able to determine whether
the proposed control strategies prevent the overflows of these storage areas.
The Petri net property that helps to identify the existence of overflows in the
modeled system is boundedness.
A place p is said to be k-bounded if the number of tokens in p is always less

than or equal to k (k is a nonnegative integer number) for every marking M
reachable from the initial marking M0, that is, M ∈ R(M0). It is safe if it is
1-bounded.
A Petri net N = (P,T , I,O,M0) is k-bounded (safe) if each place in P is

k-bounded (safe). It is unbounded if k is infinitely large. For example, the Petri
net shown in Figure 9.1 is 2-bounded, but the net of Figure 9.8a is unbounded.

9.2.1.5 Liveness
The concept of liveness is closely related to the deadlock situation, which has
been situated extensively in the context of real-time embedded systems.
A Petri net model of a deadlock-free systemmust be live.This implies that for

any reachable marking M, it is ultimately possible to fire any transition in the
net by progressing through some firing sequence. This requirement, however,
might be too strict to represent some real systems or scenarios that exhibit
deadlock-free behavior. For instance, the initialization of a system can be
modeled by a transition (or a set of transitions) that fires a finite number of
times. After initialization, the system may exhibit a deadlock-free behavior,
although the Petri net representing this system is no longer live as specified
earlier. For this reason, different levels of liveness are defined. Denote the set
of all possible firing sequences starting from M0 by L(M0). A transition t in a
Petri net is said to be:

L0-live (or dead) if there is no firing sequence in L(M0) in which t can
fire.

�

� �

�

230 9 Timed Petri Nets

L1-live (potentially firable) if t can be fired at least once in some firing sequence
in L(M0).

L2-live if t can be fired at least k times in some firing sequence in L(M0) for any
given positive integer k.

L3-live if t can be fired infinitely often in some firing sequence in L(M0).
L4-live (or live) if t is L1-live (potentially firable) in every marking in

R(M0).
For example, all the three transitions in the net shown in Figure 9.1 are L1-live

because both t1 and t3 can only fire once, while transition t2 can fire twice.
However, all transitions in the net shown in Figure 9.8a are L4-live, because
they are all L1-live in every reachable marking.

9.2.2 Structural Properties

9.2.2.1 T-Invariants and S-Invariants
For a Petri net with m places and n transitions, we define its incidence matrix
as follows:

A =
⎡⎢⎢⎣

a11 · · · a1m
⋮ ⋱ ⋮

an1 · · · anm

⎤⎥⎥⎦
where

aij = O(ti, pj) − I(ti, pj)

A T-invariant is an integer solution x of the homogeneous equation
ATx = 0

where AT is the transpose of A. The nonzero entries in a T-invariant repre-
sent the firing counts of the corresponding transitions that belong to a firing
sequence that first moves the Petri net away from M0 and then brings it back
to M0.
A Petri net often has an infinite number of T-invariants. A T-invariant x is

said to be minimal if there is no other T-invariant x′ such that x(t) ≤ x′(t) for
all t in T .

Example 9.5 Incidence Matrix and T-Invariants
The Petri net shown in Figure 9.12 has eight places and six transitions. Its
incidence matrix is

A =

⎡⎢⎢⎢⎢⎢⎢⎣

−1 0 −1 1 0 0 0 0
0 −1 −1 0 1 0 0 0
0 0 1 −1 0 1 0 0
0 0 1 0 −1 0 1 0
0 0 0 0 0 −1 −1 1
1 1 0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦

�

� �

�

9.2 Petri Net Properties 231

Figure 9.12 A Petri net
with one minimal
T-invariant.

P7

P1

P2

P4

P5

P3

P6

P8

t1

t2

t3

t4

t5

t6

Its transpose is

AT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 1
0 −1 0 0 0 1
−1 −1 1 1 0 0
1 0 −1 0 0 0
0 1 0 −1 0 0
0 0 1 0 −1 0
0 0 0 1 −1 0
0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Let x be an 6 by 1 column vector (x1, x2, x3, x4, x5, x6)T. It results fromATx = 0

that

−x1 + x6 = 0

−x2 + x6 = 0

−x1 − x2 + x3 + x4 = 0

x1 − x3 = 0

x2 − x4 = 0

x3 − x5 = 0

x4 − x5 = 0

x5 − x6 = 0

Thus, we have x1 = x2 = x3 = x4 = x5 = x6. Because we are looking for
a nonzero solution, we cannot assign 0 to x1. Let x1 = k, and k is any
nonzero natural number, then we have x = (k, k, k, k, k, k)T. Therefore,
x = (1, 1, 1, 1, 1, 1)T is a solution, and it means that if we fire every transition

�

� �

�

232 9 Timed Petri Nets

in this Petri net once (in some order), it will return to the initial marking.
By examining the Petri net, we can easily find that from the initial marking,
the firing sequence t1t3t2t4t5t6 or t2t4t1t3t5t6 can each bring the net back
to M0.
Obviously, there are an infinite number of T-invariants for this Petri net.

However, (1, 1, 1, 1, 1, 1)T is the only minimal invariant.

Example 9.6 Petri Net with Multiple Minimal T-Invariants
The Petri net shown in Figure 9.13 has two minimal T-invariants:
x1 = (1, 1, 1, 0)T and x2 = (1, 1, 0, 1)T. This can be easily verified by
firing sequence t1t2t3 and sequence t1t2t4.

Not every Petri net has T-invariants. An example is the Petri net shown in
Figure 9.1. For that net, the only vector that satisfies ATx = 0 is x = (0, 0, 0)T,
which is not a valid T-invariant. Basically, the net does not show any repetitive
behavior.
It is worth mentioning that a T-invariant only tells the firing count of each

transition; it does not tell the transition firing sequence. Moreover, the exis-
tence of a T-invariant does not imply that it will actually be possible to fire the
indicated transitions; the initial conditions of a net may prohibit it. Instead, a
T-invariant indicates that if it is possible to fire the transitions in some order,
the state of the net will return to its initial condition at the end of the sequence.
An S-invariant is an integer solution y of homogeneous equation

Ay = 0

The nonzero entries in an S-invariant represent weights associated with the
corresponding places so that the weighted sum of tokens on these places is con-
stant for all markings reachable from an initial marking.
An S-invariant y is said to be minimal if there is no other S-invariant y′ such

that y(p) ≥ y′(p) for all p in P.

t1 t2

p1 p2
p3

t3

t4

Figure 9.13 A Petri net with two
minimal T-invariants.

�

� �

�

9.2 Petri Net Properties 233

Example 9.7 S-Invariants
The incidence matrix of the Petri net shown in Figure 9.13 is

A =
⎡⎢⎢⎢⎣
−1 1 0
0 −1 1
1 0 −1
1 0 −1

⎤⎥⎥⎥⎦
Let y= (y1, y2, y3)T. Solving Ay= 0 gives

−y1 + y2 = 0

−y2 + y3 = 0

y1 − y3 = 0

Thus, y = (1, 1, 1)T is a minimal S-invariant, which means that in all reachable
markings, the sum of tokens in p1, p2, and p3 is a constant.

Invariants are important means for analyzing Petri nets since they allow for
the net’s structure to be investigated independently of any dynamic process.

9.2.2.2 Siphons and Traps
Let ⋅p = {t|O(t, p) > 0}. ⋅p is called the preset of p. Let S be a subset of P, that
is, S ⊆ P. Define

⋅S =
⋃
p∈S

p⋅

⋅S is a set of transitions that output tokens to places in S. Similarly, let
p⋅ = {t|I(t, p) > 0}. p⋅ is called the pos-set of p. Define

S⋅ =
⋃
p∈S

p⋅

S⋅ is a set of transitions that take tokens from places in S as input.
S is a siphon if ⋅S ⊆ S⋅. Intuitively, if a transition is going to deposit a token to

a place in a siphon S, the transition must also remove a token from S. A siphon
is minimal if there is no siphon contained in it as a proper subset.

S is a trap if S⋅
⊆

⋅S. Intuitively, a trap S represents a set of places in which every
transition consuming a token from S must also deposit a token back into S. A
trap is minimal if there is no trap contained in it as a proper subset.
Siphons and traps are closely related to the reachability and potential

deadlock of a Petri net. Once a siphon is emptied under a marking, it remains
empty under subsequent markings. Once a trap is marked under a marking, it
remainsmarked under subsequentmarkings.This is illustrated in the following
example.

�

� �

�

234 9 Timed Petri Nets

Example 9.8 Siphons and Traps
Let us examine three subsets of places in the Petri net shown in Figure 9.8b:

S1 = {mail w, rest w}

S2 = {mail, mailbox}

S3 = {mail r, rest r}

Because ⋅S1 = {write, send} = S⋅
1
, S1 is both a siphon and a trap. So are S2 and

S3. Let us focus on S2. For any reachable marking M, we always have M(mail) +
M(mailbox) = 3. The sum of tokens in S2 does not increase because S2 is a
siphon. Similarly, the sum of tokens in S2 does not decrease because S2 is a
trap. Imagine if in the initial state, there is no token in mailbox, there will never
be tokens added to S2. In other words, markings that indicate thatmails are sent
by the writer are not reachable. This is, of course, undesired.

9.3 Timed Petri Nets

The need for including timing variables in the models of various types of
dynamic systems is apparent since these systems are real-time in nature. In the
real world, almost every event is time-related. A Petri net that contains time
variables are called timed Petri net. The definition of a timed Petri net consists
of three specifications:

• The topological structure
• The labeling of the structure
• Firing rules

The topological structure of a timed Petri net generally takes the form that
is used in a conventional Petri net. The labeling of a timed Petri net consists
of assigning numerical values to transitions, places, or arcs. The firing rules
are defined differently depending on the way the Petri net is labeled with time
variables. The firing rules defined for a timed Petri net control the process of
moving the tokens around.
The aforementioned variations lead to several different types of timed Petri

nets. Among them, deterministic timed Petri nets (DTPN) and time Petri nets
(TPN), in which time variables are associated with transitions, are the two
models widely used in real-time system modeling.

9.3.1 Deterministic Timed Petri Nets

ADTPN is a six-tuple (P,T , I,O,M0, 𝜏), where (P,T , I,O,M0) is a Petri net, 𝜏 ∶
T → R+ is a function that associates transitions with deterministic time delays.
A transition ti in a DTPN can fire at time 𝜏 if and only if:

�

� �

�

9.3 Timed Petri Nets 235

• For any input place p of ti, the number of tokens is greater than or equal
to I(ti, p) in p continuously for the time interval [𝜏 − 𝜏 i, 𝜏], where 𝜏 i is the
associated firing time of ti;

• After the transition fires, each of its output places, p, will receive the number
of tokens equal to O(ti, p) at time 𝜏 .

Let us use the DTPN shown in Figure 9.14 as an example to show the
timeliness analysis. Transition firing times are as follows:

t1 ∶ 2 t2 ∶ 1 t3 ∶ 3 t4 ∶ 3

At time 0, the initial marking (1, 0, 0, 0, 0, 0) has sufficient tokens to fire t1, but
the firing won’t occur until time 2 because the firing time of t1 is 2.
At time 2, t1 fires, and the new marking is (0, 1, 1, 0, 0, 0). In this marking,

both t2 and t3 have sufficient tokens to fire; however, only t2 can fire in this
marking, because its firing time is less than that of t3.
At time 3, t2 fires, and the new marking is (0, 0, 1, 1, 0, 0). In this marking,

t3 is the only transition that is enabled. Remember that p3 is marked at time 2.
Therefore, t3 only needs to wait for 2 more time units to fire.
At time 5, t3 fires, and the new marking is (0, 0, 0, 1, 1, 0). In this marking, t4

has sufficient tokens to fire. Of course, it has to wait for 3 time units.
At time 8, t4 fires. The new marking is (0, 0, 0, 0, 0, 1), and the Petri net hits a

dead end. This also means that it takes 8 units of time for this Petri net to run
from the initial marking to the final marking.

Example 9.9 Scheduling of Periodic Tasks
In this example, we show how to model the scheduling of periodic tasks. Con-
sider two tasks T1 (5, 1) and T2 (10, 2) that are running on one processor. We
firstmodel the scheduling using the Petri net shown in Figure 9.15.The number
in parentheses in each transition label indicates the transition firing time. The
model shows two processes: the left-hand side half models the activities of T1,
and the right-hand side half shows the activities of T2. They share a common
processor that is modeled by the place Processor. The transition T1 job arrives
and places T1 and T1 job together model the job arrival process of the first
periodic task. The transitions T1 job scheduled and T2 job executed and places

p1

t1 (2)

t2 (1)

t3 (3)

t4 (3)

p3

p2 p4

p5

p6

Figure 9.14 A deterministic timed Petri net.

�

� �

�

236 9 Timed Petri Nets

T1 job
arrives (5)

T1

T1 job

T1 job
scheduled (0)

In execution

T2

Processor

In execution

T2 job
scheduled (0)

T2 job
arrives (10)

T2 job

T1 job
executed (1)

T2 job
executed (2)

Figure 9.15 Timed Petri net model of two periodic tasks scheduled on one processor. First
attempt.

T1 job
arrives (5)

T1

T1 job

T1 job
scheduled (0)

In execution

T2

Processor

In execution

T2 job
scheduled (0)

T2 job
arrives (10)

T2 job

T1 job
executed (1)

T2 job
executed (2)

Figure 9.16 Timed Petri net model of two periodic tasks scheduled on one processor.
Second attempt.

In execution and Processor together model the job execution process. The sec-
ond task is modeled similarly.
We can see a problem with this model: it only specifies that the two periodic

tasks share a single processor, but it does not reflect that jobs inT1 have a higher
priority in getting executed on the processor than jobs in T2. For example, at
time 10, there are jobs released from both T1 and T2, and thus, T1 job and T2
job each gets a token at the same time.According to thismodel,T2 job scheduled
may be selected to fire, which violates the priority rule. To fix this problem, we
introduce an inhibitor arc from T1 job to T2 job scheduled, which is shown in
Figure 9.16.This ensures that when both tasks have a job released, the job from
T1 will get scheduled and executed first.
Do we still miss anything in the updated model? Think about this case: a

T1 job arrives while a T2 job is in execution. According to this model, the
T1 job has to wait until the T2 job is finished before it can access the proces-
sor. In other words, this model does not allow high-priority jobs to preempt
low-priority jobs.

�

� �

�

9.3 Timed Petri Nets 237

To fix this problem, we have to extend the notation of timed Petri nets a little.
First, we introduce “take-all” arcs that connect places to transitions. A take-all
arc works this way: when the connected transition fires, it removes all tokens
from the connected place, being it zero or more. Second, we introduce variable
transition firing times – the firing time of a transition is determined by the value
of a function.With these extensions, we build the final model of a periodic task
scheduling problem as shown in Figure 9.17.
In the new model, we added a place Count that is connected as an output

place of T1 job scheduled and input place of T2 job scheduled. The arc (Count,
T2 job scheduled) is a take-all arc. As such, when transition T2 job scheduled is
fired, all tokens in Count will be removed. Notice that whether there are tokens
in Count does not matter.The purpose of this arc is to rather clean up the place
when transition T2 job scheduled is fired. This way, the number of tokens in
Count before transition T2 job executed fires indicates how many T1 jobs are
released and executed before the T2 job is executed. That is why we set the
firing time of transition T2 job executed to 2+m, where 2 is the duration of
T2 jobs, while m is the maximum number of tokens in Count while the place
In execution is marked. If the execution time of T1 job executed is 𝜏 and 𝜏 ≠ 0,
then the execution time of T2 job executed should be set to 2+m𝜏 .
We also split the single place Processor in the previous two models to two,

each with a token.The consequence is that T1 jobs are scheduled and executed
as if task T2 didn’t exist. T2 jobs are also running independently, except (1)
when T1 and T2 release jobs at the same time, T1 job is scheduled first; (2)
when a T2 job is scheduled, its completion time may be delayed due to the
release and execution of T1 jobs. We know that this is consistent with what are
discussed in Chapter 4.

9.3.1.1 Performance Evaluation Based on DTPNs
An important application of DTPNs is to calculate the cycle time of a class of
systems inwhich job arrival times and job service times are known in advance of

T1 job
arrives (5)

T1

T1 job

T1 job
scheduled (0)

T1 in execution

T2

Processor

T2 in execution

T2 job
scheduled (0) T2 job

arrives (10)

T2 jobT1 job
executed (1)

T2 job

executed (2+m)Take_all
Count

Figure 9.17 Timed Petri net model of two periodic tasks scheduled on one processor. m:
maximum number of tokens in place Count while place T2 in execution is marked.

�

� �

�

238 9 Timed Petri Nets

the analysis. Before we proceed, let us introduce some concepts first. In a Petri
net, a sequence of places and transitions, p1t1p2t2 … pk , is a directed path from
p1 to pk if transition ti is both an output transition of pi and an input transition
of pi+1 for 1≤ i≤ k − 1. If p1 and pk are the same place, but all other nodes in
the directed path are different, then the path is a directed circuit. If in a Petri
net, every place has exactly one input transition and one output transition then
the Petri net is a decision-free Petri net or a marked graph.
Decision-free Petri nets have two unique properties. First, they are strongly

connected, that is, there is a directed path between any two nodes in such a Petri
net. Second, the total number of tokens in a directed circuit remains the same
after any firing sequence.This is because whenever a transition in a circuit fires,
it removes one and only one token from its input place in the circuit and adds
one and only one token to its output place in the circuit.
Let Si(ni) be the time at which a transition ti initiates its ni -th firing. Then,

the cycle time Ci of the transition ti is defined as

Ci = lim
ni→∞

Si(ni)
ni

.

It has been proved that all transitions in a decision-free Petri net have the same
cycle time C. Consider a decision-free Petri net with q directed circuits. For a
circuit Lk , denote the sum of the firing times of all transitions in the circuit by
Tk and the total number of tokens in all places of the circuit by Nk , that is,

Tk =
∑
ti∈Lk

𝜏i

Nk =
∑

pi∈Lk

M(pi)

Both Tk and Nk are constants. Nk can be counted at the initial marking. Obvi-
ously, the number of transitions that are enabled simultaneously in Lk is less
than or equal to Nk . On the other hand, the processing time required by cir-
cuit Lk per cycle, which is Tk , is less than or equal to the maximum processing
power of the circuit per cycle time, which is CNk . Therefore, we have

Tk ≤ CNk ,

or

C ≥
Tk

Nk

The bottleneck circuit in the decision-free Petri net is the one that satisfies
Tk = CNk . Therefore, the minimum cycle time C is given by

C = max
{Tk

Nk
∶ k = 1, 2,… , q

}
,

�

� �

�

9.3 Timed Petri Nets 239

which corresponds to the best performance of the system modeled by the
Petri net.

Example 9.10 A Communication Protocol
Consider the communication protocol between two processes: one indicated
as the sender and the other as the receiver. The sender sends messages to a
buffer, while the receiver picks up messages from the buffer. When it receives a
message, the receiver sends anACKback to the sender. After receiving theACK
from the receiver, the sender begins processing and sending a new message.
Suppose that the sender takes 1 unit of time to send a message to the buffer, 1
unit of time to receive the ACK, and 3 units of time to process a new message.
The receiver takes 1 time unit to receive the messages from the buffer, 1 unit of
time to send an ACK back to the buffer, and 4 time units to process a received
message.TheDTPNmodel of this protocol is shown in Figure 9.18.The legends
of places and transitions and timing properties are listed in Table 9.1.

There are three circuits in the model:
Circuit L1: p1t1p3t5p8t6p1. Its cycle time is

CL1 =
T1

N1
= 1 + 1 + 3

1
= 5,

Circuit L2: p1t1p2t2p4t3p7t5p8t6p1. Its cycle time is

CL2 =
T2

N2
= 1 + 1 + 1 + 1 + 3

1
= 7,

Circuit L3: p5t2p4t3p6t4p5. Its cycle time is

CL3 =
T3

N3
= 1 + 1 + 4

1
= 6.

After enumerating all circuits in the net, we know that the minimum cycle
time of the protocol between the two processes is 7 time units.

Figure 9.18 Petri net
model of a communication
protocol.

t1
t2

t4

t5

p1

p2

p8 p7

t3

p5

p6

p3
p4

t6

�

� �

�

240 9 Timed Petri Nets

Table 9.1 Legend for Figure 9.18.

Place Description

p1 The sender ready
p2 Message in the buffer
p3 The sender waiting for ACK
p4 Message received
p5 The receiver ready
p6 ACK sent
p7 ACK in the buffer
p8 ACK received

Transition Description Time delay

t1 The sender sends a message to the buffer 1
t2 The receiver receives the messages from the buffer 1
t3 The receiver sends an ACK back to the buffer 1
t4 The receiver processes the message 4
t5 The sender receives the ACK 1
t6 The sender processes a new message 3

9.3.2 Time Petri Nets

TPNs are first introduced by Merlin and Farber in 1976. In a TPN, two time
values are defined for each transition, 𝛼s and 𝛽s, where 𝛼s is the minimum time
the transition must wait for after it is enabled and before it is fired, and 𝛽s is
the maximum time the transition can wait for before firing if it is still enabled.
Times 𝛼s and 𝛽s, for a transition t, are relative to the moment at which t is
enabled. Assuming that t has been enabled at time 𝜏 , then t, even if it is con-
tinuously enabled, cannot fire before time 𝜏 + 𝛼s andmust fire before or at time
𝜏 + 𝛽s, unless it is disabled before its firing by the firing of another transition.
TPNs have been proven very convenient for constraints that are difficult to

express except in terms of firing durations. Using TPNs, action synchroniza-
tion is represented in terms of a set of pre- and postconditions associated with
each individual action of the system under discussion, and timing constraints
are expressed in terms of minimum andmaximum times between the enabling
and the execution of each action. This facilitates model specification by per-
mitting a compact representation of the state space and an explicit modeling of
concurrency and parallelism. Therefore, TPNs have gained application to the
modeling and verification of real-time concurrent systems.
Mathematically, a TPN is a six-tuple (P, T , I, O, M0, SI) where:

�

� �

�

9.3 Timed Petri Nets 241

• (P, T , I, O, M0) is a Petri net;
• SI is a mapping called static interval

SI ∶ T → Q∗ × (Q∗ ∪ ∞),

where Q∗ is the set of positive rational numbers.

To analyze a TPN, it is necessary to differentiate static intervals and dynamic
intervals associated with transitions. For each transition t, its static interval (or
static firing interval) is defined as

SI(t) = (𝛼s
, 𝛽

s)

where 𝛼s and 𝛽 s are rational numbers such that

0 ≤ 𝛼
s
< +∞,

0 ≤ 𝛽
s
< +∞,

𝛼
s ≤ 𝛽

s if 𝛽s ≠ ∞, or

𝛼
s
< 𝛽

s if 𝛽s = ∞.

The left bound 𝛼s is called the static earliest firing time (SEFT for short), and
the right bound 𝛽s is called the static latest firing time (SLFT for short).
In the general case, in a marking other than the initial marking, the dynamic

firing interval of a transition in the firing domain will be different from its static
firing interval. The lower bound of the dynamic interval is called dynamic ear-
liest firing time (EFT), and the upper bound is called the dynamic latest firing
time (LFT), written as 𝛼 and 𝛽, respectively.
For a transition t, 𝛼s, 𝛽s, 𝛼, and 𝛽 are relative to the moment when t is enabled

in a state. If t is enabled at an absolute time 𝜏abs, then t cannot fire before time
𝜏abs + 𝛼s or 𝜏abs + 𝛼 and must fire before or at the latest at time 𝜏abs + 𝛽s or
𝜏abs + 𝛽. t may be disabled by firing another transition tm, which leads to a new
marking at a different absolute time 𝜏 ′abs.
In a TPNmodel, firing a transition takes no time to complete: firing a transi-

tion at time 𝜏 leads to a new state at the same time 𝜏 . Furthermore, if a pair
(𝛼s
, 𝛽

s) is not defined for a transition, then it is implicitly assumed that the
corresponding transition is a classical Petri net transition, and by default, it is
associated with the pair (𝛼s = 0, 𝛽s = +∞).

9.3.2.1 States in a Time Petri Net
A general form for a state S of a TPN can be defined as a pair S = (M, I). M
is a marking, as what is defined in a regular Petri net. I is a set of inequalities;
each inequality describes the upper bound and lower bound of the firing time
of an enabled transition. The number of entries of I is given in the number of
the enabled transitions in themarking M. Because differentmarkingsmay have

�

� �

�

242 9 Timed Petri Nets

different numbers of enabled transitions, the number of entries in I varies from
state to state.
For example, Figure 9.19 shows a simple TPN, in which

SI(t1) = [4, 6],

SI(t2) = [3, 5],

SI(t3) = [2, 3].

For t1, SEFT= 4 and SLFT= 6. For t2, SEFT= 3 and SLFT= 5. For t3, SEFT= 2
and SLFT= 3. The initial marking, M0 = (1 1 0 0 0), defines the initial state S0
of the TPN, in which t1 and t2 are enabled. I0 is given by

I0 = {4 ≤ 𝜃(t1) ≤ 6,
3 ≤ 𝜃(t2) ≤ 5}.

9.3.2.2 Enabling and Firing Conditions of Transitions
A transition t is enabled in a marking M if for each p ∈ P, M(p) ≥ I(t, p). This
rule is the same as for traditional Petri nets.
Assume that a transition t is enabled at time 𝜏 and remains continuously

enabled in a state S = (M, I). It is firable at time 𝜏 + 𝜃 if and only if the rela-
tive firing time 𝜃, relative to the absolute enabling time 𝜏 , is not smaller than
the EFT of t, denoted by EFT(t), and not greater than the smallest of the LFTs
of all the transitions enabled in M, that is,

EFT(t) ≤ 𝜃 ≤ min{LFT(tk)|tk ∈ E(M)}.

This condition simply reflects the rule that an enabled transition can fire no
earlier than its EFT andmust fire no later than its LFT unless another transition
fires and changes the marking M and thus the state S.
For example, in the initial state of the TPN shown in Figure 9.19,

min{LFT(tk)|tk ∈ E(M0)} = min{6, 5} = 5.

Therefore, t1 can only fire in the interval of [4, 5], and t2 can only fire in the
interval of [3, 5].
Delay 𝜃 is not a global time; it can be viewed as provided by a “virtual clock,”

local to the transition, which must have the same time unit (e.g., in terms of
seconds) as 𝜏 .

t1

t2

p1

p3

p4

[4, 6]

[2, 3]

[3, 5]

p2 p5

Figure 9.19 A TPN.

�

� �

�

9.3 Timed Petri Nets 243

t1

t2

t3

t4
p1

p3

p2 p4

p5

p6

[2, 4]
[1, 3]

[2, 3] [3, 5]

Figure 9.20 A time Petri net.

9.3.2.3 Firing Rules
Given a state S = (M, I). Some transitions in E(M) may never be able to fire
due to the firing constraints of transitions (EFTs and LFTs). For example, if we
change SI(t2) to [2, 3] in the TPN shown in Figure 9.19, then t1 won’t be able to
fire in the initial state, because min{6, 3} = 3, earlier than the EFT(t1).
Suppose that a transition t is firable at time 𝜏 + 𝜃 in the S = (M, I), and firing

t in S results in an S′ = (M′
, I′). The new state is calculated as follows:

1. M′ is calculated with the same rule as for regular Petri nets:
(∀p)M′(p) = M(p) − I(ti, p) + O(ti, p)

2. I′ is computed in three steps:
(a) Remove the entries that are related to the transitions that become dis-

abled when t is fired, including t, from the expression of I.
(b) Shift all remaining firing intervals in I by the value 𝜃 toward the origin

of time, and truncate them, when necessary, to nonnegative values.
(c) Introduce the domain new entries, each corresponding to the static

interval of a newly enabled transition.
It should be easy to understand 2(a) and 2(c): when state changes, some origi-

nally enabled transitionsmay become disabled, andmeanwhile, some originally
disabled transitions may become enabled. Step 2(b) takes care of these tran-
sitions that are enabled in both S and S′. At S′, their dynamic intervals are
different from they were in S, because from S to S′, a time of 𝜃 has elapsed,
so their lower bounds and upper bounds need to be deducted by 𝜃. If a lower
bound becomes negative, change it to 0. Consider again the TPN shown in
Figure 9.17, if t1 fires at time 4.5 (𝜃 = 4.5), then in the new state, t2 is still enabled,
but its dynamic firing interval becomes [0, 0.5].

Example 9.11 Time Petri Net Analysis
Consider the TPN shown in Figure 9.20. Its initial state (M0, I0) is

M0 = (1, 0, 0, 0, 0, 0),

I0 = {2 ≤ 𝜃(t1) ≤ 4}.

t1 is the only enabled transition. After t1 fires, the new state (M1, I1) is

M1 = (0, 1, 1, 0, 0, 0),

�

� �

�

244 9 Timed Petri Nets

I1 = {1 ≤ 𝜃(t2) ≤ 3,
2 ≤ 𝜃(t3) ≤ 3}.

I1 has two new entries because both t2 and t3 are enabled after the firing of t1.
These two transitions are in concurrent; firing one won’t disable the other. If we
fire t2 at some time, say q, between 1 and 3, it will result in a new state (M2, I2),
with

M2 = (0, 0, 1, 1, 0, 0),

I2 = {max{0, 2 − q} ≤ 𝜃(t3) ≤ 3 − q}

Notice that here we shifted the firing time interval of t3 by q, according to the
firing rule 2(b).
At state (M2, I2), t3 is the only enabled transition. Firing t3 results in state

(M3, I3), in which

M3 = (0, 0, 0, 1, 1, 0),

I3 = {3 ≤ 𝜃(t4) ≤ 5}.

t4 is a newly enabled transition; it is added to I3 with its static firing interval.
Firing t4 results in state (M4, I4), in which

M4 = (0, 0, 0, 0, 0, 1),

I4 = ∅.

TPNs offer the capability of specifying the lower bound and upper bound
of event times. This is a very useful feature for real-time system specification.
For example, it is common that there is jitter in task instance release times
and execution times, even if the tasks are designed as periodic. Using an inter-
val to specify a task’s period or execution time, instead of a constant, will be
more accurate and allow the designers to evaluate the effect of jitter on task
scheduling and system performance.

Exercises

1 Construct the reachability trees of the three Petri nets shown in
Figure 9.21.

2 Construct the coverability graphs of the three Petri nets shown in
Figure 9.22.

3 Use a Petri net to model a manufacturing system with a single machine
and buffer. Events with the system include the following:

�

� �

�

9.3 Timed Petri Nets 245

Figure 9.21 Three Petri nets with
regular markings only.

t3

p2t1

t2

p1

p3

p4

(a)

(b)

(c)

t3

p2t1

t2

p1

p3

p4

t3

p2

t1

t2

p1

p3

p4

• A part arrives into the buffer.
• Themachine starts processing.
• Themachine ends processing.
• During processing, the machine may fail.
• If the machine fails, it will be repaired.
• After the machine is repaired, the processing continues.
Assume that the buffer can hold up to three parts. When the machine
starts processing a part, one buffer slot is freed up for a new part.

4 Consider the classic dining philosophers problem. As illustrated in
Figure 9.23, five silent philosophers sit at a round table with bowls of
spaghetti. There are also forks on the table, each between two adjacent
philosophers. However, the spaghetti is of a particularly slippery type,

�

� �

�

246 9 Timed Petri Nets

(a)

(b)

(c)

t1

t3

t2

p1 p2

p3

p4

t1 t3
p1 p2 p4

p3t2

t1
t3

p1 p2 p4

p3t2

Figure 9.22 Three Petri nets with
𝜔markings.

and a philosopher can only eat spaghetti when he has both left and right
forks. The philosophers have agreed on the following protocols to grab
the forks: Initially, they think about philosophy. When one gets hungry,
he takes the fork on his left-hand side first, and then takes the one on
his right-hand side, and then starts eating. He returns the two forks
simultaneously to the table when he finishes eating and gets back to think
about philosophy again. Of course, each fork can only be held by one
philosopher at a time, and so when a philosopher tries to grab a fork, it
may or may not be available. Model the behavior of the philosophers by a
Petri net.

5 Consider a cruise control (CC) system in an auto. The CC controller has
four buttons:

CC, Set, Cancel, and Resume.

To start any cruise control functions, the CC button has to be pressed,
which brings the cruise control system from the Off state to the Armed
state.

�

� �

�

9.3 Timed Petri Nets 247

Figure 9.23 Five dining philosophers.

• At the Armed state, if the Set button is pressed, the system enters Speed
Control state; if the CC button is pressed, the system goes back to the
Off state.

• At the Speed Control state, if the Cancel button is pressed or the brake
pedal is applied, the system changes to the Cancelled state; if the gas
pedal is applied, then the system changes to the Override state.

• At the Cancelled state, if the Resume button is pressed, the system goes
back to the Speed Control state; if the CC button is pressed, it goes back
to the Off state.

• At the Override state, if the Resume button is pressed, the system goes
back to the Speed Control state; if the CC button is pressed, it goes back
to the Off state; if the Cancel button is pressed, it switches to the Can-
celled state.

Model the behavior of the cruise controller with a Petri net.

6 Consider the classic ferryman puzzle. A ferryman has to bring a goat, a
wolf, and a cabbage from the left bank to the right bank of a river. The
ferryman can cross the river either alone or with exactly one of these three
passengers. At any time, either the ferryman should be on the same bank
as the goat, or the goat should be alone on a bank. Otherwise, the goat will
eat the cabbage or the wolf will eat the goat. In Figure 9.24, we use places
ML, WL, GL, and CL to model the ferryman, wolf, goat, and cabbage on
the left bank, respectively. Similarly, we use the places MR, WR, GR, and
CR to model the ferryman, wolf, goat, and cabbage on the right bank,
respectively. Tokens in MR, WR, GR, and CR indicate that initially the
four agents are all on the left bank. TransitionMLRmodels the event that
the ferryman travels alone to the right bank. TransitionMGLRmodels the
event that the ferryman travels to the right bank with the goat.

�

� �

�

248 9 Timed Petri Nets

MLRML MR

MGLR

WL WR

GL GR

CL CR

Figure 9.24 Ferryman crosses river
(incomplete).

(1) Model the event that the ferryman travels from the right bank to the
left bank with the goat.

(2) Model the event that the goat eats the cabbage on the left bank. Be sure
to model all preconditions and postconditions for the event.

(3) Model the event that the wolf eats the goat on the right bank. Be sure
to model all preconditions and postconditions for the event.

(4) Find a sequence of transitions that enables the ferryman to bring all
the passengers safely to the right bank.

7 Find out the liveness of each transition in the four Petri nets shown in
Figure 9.25.

8 Find minimal T-invariants and S-invariants in the Petri net shown in
Figure 9.26. Notice that I(t2, p5) = 2 and O(t3, p5) = 3.

9 In the Petri net shown in Figure 9.27, let

S1 = {p1, p2, p3}

S2 = {p1, p2, p4}

S3 = {p1, p2, p3, p4}

S4 = {p2, p3}

S5 = {p2, p3, p4}

Is each of the sets a siphon and/or a trap?

10 Consider again the three Petri nets shown in Figure 9.21. Assume that the
firing times of t1, t2, and t3 are 2, 4, and 3, respectively. Perform timeliness
analysis for each Petri net.

�

� �

�

9.3 Timed Petri Nets 249

t1

t4

p1 p2

p4

t2

P3

t3t5

t1

t4

p1 p2

p4

t2

P3

t3t3

t1

t4

p1 p2

p4

t2

P3

t3t5

t4

p1 p2

p4

t2

P3

t3t5

p5

(a) (b)

(c) (d)

Figure 9.25 Four Petri nets for Problem 7.

Figure 9.26 Petri net for Problem 8. t1

3

p1

p2

t2

P3

t3

2

p4

p5

11 Consider three periodic tasks: T1 (3, 1), T2 (5, 1), and T3 (8, 1). They are
scheduled on a single processor.
(a) Assume that they are nonpreemptive. Draw the rate-monotonic

scheduling model with a DTPN.
(b) Assume that they are preemptive.Draw the rate-monotonic scheduling

model with a DTPN.

�

� �

�

250 9 Timed Petri Nets

t1

p2

p1

t2

P3t3

p4

t4

Figure 9.27 Petri net for Problem 9.

p1
t1 (2)

t4 (5)

p2

p6

p5

t2 (3)t5 (1)

p10 p9

p7

t3 (1)
p3

t6 (2)

t7 (1)

p4

p8

Figure 9.28 A deterministic timed Petri net.

12 Consider the decision-free DTPN shown in Figure 9.28.
(a) List all directed circuits.
(b) Calculate the minimum cycle time of this DTPN. Which circuit is the

bottleneck circuit in terms of the processing rate of the described sys-
tem?

(c) Add a token to p4. Recalculate the minimum cycle time.

Suggestions for Reading

The concept of Petri nets were introduced by Dr Carl Adam Petri in his disser-
tation in 1992 [1]. The first book on Petri nets was published in 1981, authored
by J. L. Peterson [2]. In 1989, Dr T. Murata published a comprehensive survey
paper on Petri nets in IEEE Proceedings [3], which has been cited intensively.
DTPNs were first introduced in Ref. [4]. TPNs were proposed in Ref. [5]. The
state-class-based solution to TPNs was discussed in Ref. [6]. A solution based
on clock-stamped state class was presented in Ref. [7]. High-level Petri nets and
colored Petri nets were introduced in Refs [8–10]. Exponentially distributed
stochastic Petri nets were introduced in Refs [11, 12], and their applications can

�

� �

�

References 251

be found in Refs [13, 14]. Timing constraint with Petri nets and their applica-
tion to schedulability analysis of real-time system specifications were discussed
in Ref. [15]. All different types of timed Petri net models were presented in
Ref. [16].

References

1 Petri, C.A. (1962) Kommunikation mit Automaten. Technical Report
RADC-TR-65-377, Rome Air Dev. Center, New York.

2 Peterson, J.L. (1981) Petri Net Theory and the Modeling of Systems. N.J.:
Prentice-Hall.

3 Murata, T. (1989) Petri nets: properties, analysis and applications. Proceed-
ings of the IEEE, 77(4): 541–580.

4 Ramamoorthy, C. and Ho, G. (1980) Performance evaluation of asyn-
chronous concurrent systems using Petri nets. IEEE Transaction on
Software Engineering, SE-6 (5), 440–449.

5 Merlin, P. and Farber, D. (1976) Recoverability of communication protocols
- implication of a theoretical study. IEEE Transactions on Communications.
24(9):1036–1043.

6 Berthomieu, B. and Diaz, M. (1991) Modeling and verification of time
dependent systems using time Petri nets. IEEE Transactions on Software
Engineering, 17 (3), 259–273.

7 Wang, J., Deng, Y., and Xu, G. (2000) Reachability analysis of real-time sys-
tems using time Petri nets. IEEE Transactions on Systems, Man, and Cyber-
netics, B30 (5), 725–736.

8 Genrich, J.H. and Lautenbach, K. (1981) System modeling with high-level
Petri nets. Theoretical Computer Science, 13, 109–136.

9 Jensen, K. (1981) Colored Petri nets and the invariant-method. Theoretical
Computer Science, 14, 317–336.

10 Jensen, K. (1997) Coloured Petri Nets: Basic Concepts, Analysis Methods
and Practical Use (3 volumes), Springer-Verlag, London.

11 Molloy, M. (1981) On the integration of delay and throughput measures in
distributed processing models. Ph.D. Thesis, UCLA.

12 Natkin, S. (1980) Les Reseaux de Petri Stochastiques et Leur Application
a I’evaluation des Systemes Informatiques. These de Docteur Ingegneur,
Cnam, Paris, France.

13 Ajmone Marsan, M. (1990) Stochastic Petri nets: an elementary introduc-
tion. Advances in Petri Nets, LNCS, 424, 1–29.

14 Molloy, M. (1982) Performance analysis using stochastic Petri nets. IEEE
Transactions on Computers, 31 (9), 913–917.

�

� �

�

252 9 Timed Petri Nets

15 Tsai, J., Yang, S., and Chang, Y. (1995) Timing constraint Petri nets and
their application to schedulability analysis of real-time system specifica-
tions. IEEE Transactions on Software Engineering, 21(1): 32–49.

16 Wang, J. (1998) Timed Petri Nets: Theory and Application, Kluwer Aca-
demic Publishers, Boston.

�

� �

�

253

10

Model Checking

Model checking is an automatic verification technique for finite-state concur-
rent and reactive systems. It is developed to verify if assertions on a system
are true or not. This is compared at program testing or simulation, which is to
find out if there are bugs in a system.The aim of this chapter is to introduce the
model checking technique. Becausemodel checking is based on temporal logic,
linear temporal logic (LTL), computation tree logic (CTL), and real-time com-
putation tree logic (RTCTL) are introduced. A model checking tool, NuSMV,
and its associated system description language are also presented.

10.1 Introduction to Model Checking

Chapter 1 discussed the importance of the reliability and correctness of
real-time embedded systems. The two most common approaches to ensure
software correctness are testing and simulation. Software testing involves the
execution of a software component or system component to evaluate one or
more properties of interest.This approach is very useful in practice, although it
is clearly not possible to use it in highly critical systems if the testing data could
cause damages in case of errors before real deployment. Simulation is based on
the process of modeling a real system with a set of mathematical formulas. It
is, essentially, a program that allows the user to observe an operation through
simulation without actually performing that operation. Simulation does not
work directly on the real system, which is a big advantage over testing.
Both testing and simulation are widely applied in industrial applications.

However, program testing or simulation can only show the presence of errors
but never their absence. It is not possible, in general, to simulate or test all
the possible scenarios or behaviors of a given system. In other words, those
techniques are not exhaustive due to the high number of possible cases to be
taken into account, and the failure cases may be among those not tested or
simulated.

Real-Time Embedded Systems, First Edition. Jiacun Wang.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

�

� �

�

254 10 Model Checking

Property

specification φ

Model checker

System

model

, s

“Yes”

Counter

example

Y

N

φ

Figure 10.1 Model checking.

Model checking is an automatic verification technique for finite-state concur-
rent systems. It was originated independently by the pioneering work by E. M.
Clarke and E. A. Emerson and by J. P. Queille and J. Sifakis in the early 1980s. In
model checking, digital circuits or software designs under study are modeled
as state transition systems, and desired properties are specified with tempo-
ral logic formulas. Verification is performed to find out whether the finite-state
modelmeets the specifications. Verification is carried out by running themodel
checking tools, which are also called model checkers.
Model checking technique is based on solid mathematics, logics, and com-

puter science. It is a formal verification method and can be stated as follows:
given a desired property, expressed as a temporal logic formula 𝜑, and a struc-
ture M, decide if M, s⊨𝜑, that is, if 𝜑 is satisfied by M from a given state s. If it
is, the model checking tool or model checker will simply output something as a
“yes”; If it is not, the tool will print out a counterexample of execution in which
the property is violated. This is illustrated in Figure 10.1.

10.2 Temporal Logic

Logic plays a fundamental role in computer science. It takes into account
syntactically well-formed statement and studies whether they are semantically
correct. Classic propositional logic deals with declarative sentences or propo-
sitions. Propositions can be formed by other propositions with the use of
logical operators. An indivisible proposition is called an atom. Propositional
logic is concerned with the study of the truth value of propositions and how
their value depends on the truth value of their components. Propositions are
evaluated in a single fixed state. Examples of propositions are

Earth is the center of the universe.
Five plus five is equal to ten and five minus five is equal to zero.
If it rains, then the ground is wet.

Temporal logic is any systemof rules and symbolism for representing and rea-
soning about propositions qualified in terms of time. It describes the ordering

�

� �

�

10.2 Temporal Logic 255

of events in time without explicitly introducing time. In temporal logic, we can
specify that

The elevator cannot move until the door is closed.
The program is in its critical section.
When a program enters a critical section, it will eventually leave the critical

section.

Basically, a temporal logic statement or formula is not statically true or false in
a model. A temporal logic model contains states, and a formula can be
true in one state but false in another state. The set of states correspond to
moments in time. How we navigate between these states depends on our
particular view of time.
There are two models of time. One model thinks of time as a path of time

points; for any two points, we can find that one is earlier than the other. Math-
ematically, we represent time as a structure (T , <) such that < is a precedence
relation at T . Elements of T are time points. If a pair (s, t) belongs to <, we say
that s is earlier than t or s< t. For a point t, the set {s ∈ T | t< s} is called the
future of t; the past of t is defined similarly. This model is called linear-time
model, because all time points are linearly ordered. The linear-time model is
illustrated in Figure 10.2a.
The second model is based on a branching-time structure. In this structure, a

time point, say r, may have two or more future time points that are not related
to each other. In other words, for any two of these future points, say s and t, we
cannot say that s is the future of t, or vice versa.This also means that the future
of r is not deterministic; or, r branches out to the future. The branching-time
structure is a tree structure, rooted at the present moment, which is illustrated
in Figure 10.2b.
We introduce two popular temporal logic models in this section. One is LTL

that models time as sequence of states, and the other one is CTL that models
time as a tree-like structure.

Figure 10.2 Modeling of time.
(a) Linear-time model.
(b) Branching-time model.

(a)

(b)

s t

r

s

t

�

� �

�

256 10 Model Checking

10.2.1 Linear Temporal Logic

LTL models time as a sequence of states, extending infinitely into the future. A
sequence of states is also called a computation path or simply a path. Future is
not determined, so there is more than one path, representing different possible
futures.

10.2.1.1 Syntax of LTL
Recall that there are four propositional logical operators:

• ¬ for negation, or “not.”
• ∧ for conjunction, or “and.”
• ∨ for disjunction, or “or.”
• → for implication, or “if–then.”

Let𝜑 and𝜓 be two propositional formulas. Table 10.1 shows the truth table for
all these operators.
Temporal logic extends classical propositional logic with a set of temporal

operators that navigate between states. The operators include the following:

• X for neXt state. X p is true if p is true in the next state.
• F for some Future state. F p is true if there is a reachable future state in which

p is true.
• G for all future states (globally). G p is true if p is true in all future states.
• U for Until. p U q is true if p is true until q is true in a future state.
• R for Release. p R q is true if q is true until the first position in which p

is true.

Assume a fixed set
∑

of atomic propositional formulas and p ∈
∑
. An LTL

formula is inductively defined in the Backus–Naur form as

𝜑 ∶∶=⊤|⊥|p|(¬𝜑)|(𝜑 ∧ 𝜓)|(𝜑 ∨ 𝜓)|(𝜑→ 𝜓)|(X𝜑)|(F𝜑)|(G𝜑)|(𝜑U𝜓)|(𝜑R𝜓) (10.1)

where⊤ stands for true and⊥ stands for false. Equation (10.1) says that the two
logic constants true and false and any atomic propositional formulas are LTL

Table 10.1 Truth table for propositional logic operators.

𝝋 𝝍 ¬𝝋 𝝋 ∧𝝍 𝝋 ∨𝝍 𝝋→𝝍

T T F T T T
T F F F T F
F T T F T T
F F T F F T

�

� �

�

10.2 Temporal Logic 257

formulas; the negation of any LTL formula is an LTL formula; the conjunction
of any two LTL formulas is an LTL formula, and so on.
The LTL definition also indicates that ¬, X, F, and G are unary operators,

while all others are binary operators. Unary operators have the highest binding
priority, followed by the temporal operators X, F, andG, then ∧ and ∨, and the
last is→. Therefore, the formula

((¬p) ∧ ((Gq) ∨ (¬q))) → (pUq)

is equal to

¬p ∧ (Gq ∨ ¬q) → pUq

An LTL formula is syntactically correct or well-formed if and only if it obeys
the inductive construction rule given in the definition. For example, the follow-
ing formulas are well-formed:

• p ∨ ¬ (p ∨ G q)→ p
• F (p → X r)→ q
• GF (q R r)

The following formulas are not well-formed:

• F p ∧ G q → U r
• G (p → q X r)
• p U (∧ r)

10.2.1.2 Parse Trees for LTL Formulas
A parse tree of an LTL formula is a nested list, where each branch is either a
single atomic proposition or a formula composed of either two propositions
and a binary operator or one proposition and a unary operator. Parse trees are
helpful for the truth value evaluation of LTL formulas. The root of the parse
tree of an LTL formula is the operator that should be evaluated last, while all
leaf nodes of the tree are atomic propositions. In case the formula has only an
atomic proposition, then the proposition is the root and only node. Parse trees
are evaluated bottom-up.

Example 10.1 Parse Tree
Consider the formula ¬p ∧ (G q ∨ ¬q) → p U q. In this formula, the only →
operator has the lowest binding priority and is evaluated last. Thus, it is the
root of the parse tree. Its left branch is the subtree of ¬p ∧ (G q ∨ ¬q), in which
the only ∧ operator has the lowest binding priority, and thus, ∧ is the root of
the subtree.The right branch of→ is the subtree of p U q, in whichU is the only
operator and p and q are atomic propositions, and thus, the root of the subtree
is U. Continuing the parsing recursively until all operators are hit, we end up
with a parse tree depicted in Figure 10.3.

�

� �

�

258 10 Model Checking

→

p q

U/\

¬ \/

G ¬p

qq

Figure 10.3 Parse tree of formula ¬p ∧ (G q ∨ ¬q) → p U q.

10.2.1.3 Semantics of LTL
LTL models time as an infinite sequence of states in which each point in time
has a unique successor, based on a linear-time perspective. Again, we assume
a fixed set

∑
of atomic propositions. For a set of states S, let L be a labeling

function that maps S to the power set of
∑
. The power set of

∑
, denoted by 2

∑
,

is the set of all subsets of
∑
. For example, if

∑
= {p, q, r}, then

2
∑
= {∅, p, q, r, {p, q}, {q, r}, {p, r}, {p, q, r}}

For each individual state s, L(s) is a set of all atomic propositions that are
evaluated to be true in the state.
To discuss the semantics of LTL, we consider a path

𝜋 = s1 → s2 → · · ·

and denote by 𝜋i the path

𝜋i = si → si+1 → · · ·

Wenow define the binary satisfaction relation, denoted by⊨, for LTL formulas.
The satisfaction is with respect to a computation path 𝜋. We always have

• 𝜋 ⊨ ⊤

• 𝜋 |≠ ⊥

For any single atomic proposition p∈
∑
, 𝜋⊨ p if only if (iff for short) p ∈ L(s).

For any LTL formula 𝜑, we have 𝜋 ⊨ 𝜑 iff 𝜑 evaluates to be true in s1. Any
composition of 𝜑 and 𝜓 with propositional logic operators (¬, ∧, ∨, and →) is
evaluated in the first state s1 of the path. Specifically,

• 𝜋 ⊨ ¬𝜑 iff 𝜋 |≠ 𝜑

• 𝜋 ⊨ 𝜑 ∧ 𝜓 iff 𝜋 ⊨ 𝜑 and 𝜋 ⊨ 𝜓
• 𝜋 ⊨ 𝜑 ∨ 𝜓 iff 𝜋 ⊨ 𝜑 or 𝜋 ⊨ 𝜓
• 𝜋 ⊨ 𝜑 → 𝜓 iff 𝜋 ⊨ 𝜓 as long as 𝜋 ⊨ 𝜑

All LTL formulas that are composed of temporal operators should be evalu-
ated across states. The operator X is formally defined as follows:

𝜋 ⊨ X𝜑 iff 𝜋2 ⊨ 𝜑

�

� �

�

10.2 Temporal Logic 259

That is, iff 𝜑 is evaluated to be true in the next state s2, then we have 𝜋 ⊨ X𝜑.
The operator G is formally defined as follows:

𝜋 ⊨ G𝜑 iff 𝜋i ⊨ 𝜑 for all i ≥ 1

That is, iff𝜑 is evaluated to be true in every state along the path 𝜋, then we have
𝜋⊨ G𝜑.
The operator F is formally defined as follows:

𝜋 ⊨ F𝜑 iff 𝜋i ⊨ 𝜑 for some i ≥ 1

That is, iff𝜑 is evaluated to be true in some state along the path 𝜋, then we have
𝜋 ⊨ F𝜑.
The operator U is formally defined as follows:

𝜋 ⊨ 𝜑U𝜓 iff 𝜋i ⊨ 𝜓 for some i ≥ 1 and 𝜋j ⊨ 𝜑 for all
j = 1,2,… i − 1

That is, iff 𝜑 is evaluated to be true in every state along the path 𝜋 until a state
in which 𝜓 is evaluated to be true, then we have 𝜋 ⊨ 𝜑U𝜓 . By the way, we can
view F𝜑 as an abbreviation of ⊤U𝜑.
The operator R is formally defined as follows:

𝜋 ⊨ 𝜑R𝜓 iff 𝜋i ⊨ 𝜑 for some i ≥ 1 and 𝜋j ⊨ 𝜓 for all j = 1,2,… i

That is, iff 𝜓 is evaluated to be true in every state along the path 𝜋 until a state
in which both 𝜑 and 𝜓 are evaluated to be true, then we have 𝜋 ⊨ 𝜑R𝜓 .
Figure 10.4 illustrates the semantics of all these temporal operators. The first

bubble in each path represents the first state of the path.
We use transition systems to model the systems that we want to verify. A

transition system is defined as a Kripke structure M = (S, I,R, L), where

• S is a set of states.
• I is a set of initial states I ⊆ S.

Figure 10.4 Illustration of
semantics of LTL temporal
operators.

�

� �

�

260 10 Model Checking

• R ⊆ S × S describes state transition relations. For each s ∈ S, there is s′ such
that s → s′ and the relation is denoted as (s, s′) ∈ R.

• L is a labeling function that maps S to the power set of
∑
, where

∑
is the set

of atomic propositions.

A transition system can be more intuitively illustrated as a directed graph,
where each node is a state, state transitions are depicted by directed arrows,
and the labeling of each state is marked on the node.

Example 10.2 Transition Systems
In the transition system shown in Figure 10.5,

∑
= {p, q, r}, and the Kripke

structure is
S = {s1, s2, s3, s4},
I = {s1},
R = {(s1, s2,), (s1, s3,), (s2, s1,), (s2, s4,), (s3, s4,), (s4, s3)},

L(s1) = {p, q},
L(s2) = {p, r},
L(s3) = {q},
L(s4) = {r}.

s2

s3

s4

p, q

p, r q

r

s1

Figure 10.5 Directed graph of a transition system.

Unwinding the transition system results in an infinite tree of all possible
computation paths, as shown in Figure 10.6.

As we can see from Example 10.2, a system may have many or even infinite
number of computation paths.Whenwe verify a system against an LTL formula
from a state (typically an initial state), we check if the formula is satisfied by all
paths from the state. We have M, s ⊨ 𝜑 if 𝜋 ⊨ 𝜑 holds for every computation
path 𝜋 starting at s.
Note that sometimes we do list variables that are not true in a state in the

graph of a transition system, just to improve the readability.

�

� �

�

10.2 Temporal Logic 261

p, q
s1

p, r s2

p, q
s1

p, r
s2

q s3

r s4

q s3

r s4

…

…

r s4

q s3

r s4

…

q s3

r s4

q s3

…

r s4

q s3

r s4

…

r s4

q s3

q s3

Figure 10.6 Computation paths of the system shown in Figure 10.5.

Example 10.3 LTL Formula Verification
We want to verify the model introduced in Example 10.2 against a few LTL
specifications from the initial state s1.

1. 𝜑 = p ∧ q.
Because 𝜑 is essentially a propositional formula, M, s1 ⊨ 𝜑 is evaluated
only in s1. Because L(s1) = {p, q}, M, s1 ⊨ p ∧ q holds.

2. 𝜑 = p ∧ r.
Because s1 does not satisfy r, M, s1 ⊨ p ∧ r does not hold.

3. 𝜑 = X q.
We check to see if along every path, the next state has q. Since s2 does not
have q, M, s1 ⊨ X q does not hold.

4. 𝜑 = F q.
We check to see if r is true in some state along every path. This is the case.
Therefore, M, s1 ⊨ F q holds.

5. 𝜑 = G (q ∨ r).
In every state, either q is true or r is true.Therefore,M, s1 ⊨ G (q ∨ r) holds.

6. 𝜑 = G(¬p → q ∨ r).
We check to see if for each state that satisfies ¬p, it also satisfies q ∨ r.
We know this is true, because all states that satisfy ¬p have either q or r.
Therefore, M, s1 ⊨ G(¬p → q ∨ r) holds.

�

� �

�

262 10 Model Checking

7. 𝜑 = FG r.
We check to see if there is a state in every path such that starting that state
G r is true. Obviously, there is no single path that satisfies G r from some
point along the path. Therefore, M, s1 ⊨ FG r does not hold.

8. 𝜑 = GF r.
We check to see if F r is true in every state along every path, or in other
words, if r is satisfied infinitely often. We know that this is true, because the
state s2 or s4 appears in each path infinitely often. Therefore, M, s1 ⊨ GF r
holds.

9. 𝜑 = q U r.
For all paths starting with s1 → s2, q is true in the first state and r is true in
the second state, which satisfies q U r. All other paths start with s1 → s3 →
s4 and also satisfy q U r. Therefore, M, s1 ⊨ q U r holds.

10. 𝜑 = (p ∧ q) U (p ∧ r).
Note that p ∧ r is true only in the states along the left-most path. In all
other paths, it has never been true. Take the right-most path, for example.
p ∧ q is true only in the first state. In the second state, neither p ∧ q nor p
∧ r is true. Therefore, M, s1 ⊨ (p ∧ q) U (p ∧ r) does not hold.

11. 𝜑 = F q → F (p ∧ r).
This formula states that if any path starting from s1 satisfies F q, the path
also satisfies F (p ∧ r). Check the right-most path. It satisfies F q but not F
(p ∧ r). Therefore, 𝜑 = F q → F (p ∧ r) does not hold.

12. 𝜑 = GF q → GF r.
This formula states that if any path starting from s1 satisfiesGF q, the path
also satisfiesGF r.The directed graph shows that every single path starting
from s1 satisfies GF q; meanwhile, each of such paths also satisfies GF r.
Therefore, M, s1 ⊨ GF q → GF r holds.

10.2.1.4 Equivalencies of LTL Formulas
Two LTL formulas 𝜑 and 𝜓 are said to be semantically equivalent, denoted by
𝜑≡𝜓 , if for all models M and all states s in M,

M, s ⊨ 𝜑 iff M, s ⊨ 𝜓 .

Simply put, two formulas are equivalent if they are evaluated to the same truth
value from any state of any computation path of any Kripke structure. A few
equivalencies are as follows.

X(𝜑 ∧ 𝜓) ≡ X𝜑 ∧ X𝜓
X (𝜑 ∨ 𝜓) ≡ X𝜑 ∨ X𝜓
X (𝜑 U𝜓) ≡ X𝜑 U X𝜓
¬ X𝜑 ≡ X¬𝜑

�

� �

�

10.2 Temporal Logic 263

F(𝜑 ∨ 𝜓) ≡ F𝜑 ∨ F𝜓
G(𝜑 ∧ 𝜓) ≡ G𝜑 ∧ G𝜓
¬F𝜑 ≡ G¬𝜑
F F𝜑 ≡ F𝜑
G G𝜑 ≡ G𝜑

10.2.1.5 System Property Specification
Let us use an elevator of five floors as an example to show how we can use LTL
formulas to code the properties of real-world systems.

1. The elevator should not move if the door is open.

G(¬door_closed → ¬(direction_up ∨ direction_down))

2. Whenever the door is open, it will eventually be closed.

G(¬door_closed → F door_closed)

3. Similarly, whenever the door is closed, it will eventually be open.

G(door_closed → F ¬door_closed)

4. The elevator can move upward only if the floor is not the highest.

G(direction_up → ¬floor_5)

5. Similarly, the elevator canmove downward only if the floor is not the lowest.

G(direction_down → ¬floor_1)

6. When a floor button is pressed, the elevator will eventually stop at the floor.
For example,

G(button_3 → F floor_3)

7. When the elevator is traveling upward, it does not change its direction when
it has passengers waiting to go to a higher floor. For example,

G ((floor_1 ∨ floor_2 ∨ floor_3) ∧ direction_up ∧
button_4

→ direction_up U floor_4)

8. Similarly, when the elevator is traveling downward, it does not change
its direction when it has passengers waiting to go to a lower floor. For
example,

G ((floor_4 ∨ floor_5 ∨ floor_3) ∧ direction_down ∧
button_2

→ direction_down U floor_2)

�

� �

�

264 10 Model Checking

10.2.2 Computation Tree logic

LTL formulas are evaluated on paths. We say that a state of a system satisfies
an LTL formula if all paths from the state satisfy it. If we want to specify that
there exists a path that satisfies some property𝜑, we can verify if all paths satisfy
¬𝜑. A positive answer to the new problem is a negative answer to the original
problem, and vice versa.
Branching-time logics solve this problem with the capability of explicitly

quantifying over paths. CTL is a branching-time logic; It models time as a
tree-like structure in which the future is not determined.

10.2.2.1 Syntax of CTL
CTL formulas are composed of propositional operators and CTL temporal
operators. As shown in Figure 10.7, each CTL temporal operator is a pair of
symbols. The first one is a path quantifier. It can be either A (“for All paths”)
or E (“there Exists a path”). The second one is a temporal operator and can
be X (“neXt state”), F (“in a Future state”), G (“Globally in the future”), or U
(“Until”), exactly as defined in LTL.
Let

∑
be a set of atomic propositional formulas and p ∈

∑
. A CTL formula

is defined inductively in the Backus–Naur form as

𝜑 ∶∶=⊤|⊥|p| (¬𝜑) | (𝜑 ∧ 𝜓) | (𝜑 ∨ 𝜓) | (𝜑→ y)|(AX𝜑)|(EX𝜑) |(AG𝜑)|(EG𝜑)|(AF𝜑)|(EF𝜑)|A(𝜑U𝜓)|E(𝜑U𝜓) (10.2)

In CTL formulas, operators ¬,AG, EG,AF, EF,AX, and EX have the highest
binding priority, then∧ and∨, and then→,AU, andEU.The following formulas
are well-formed CTL formulas:

• AG(p ∧ q → EF r)
• A((p ∨ q) U (EF r))
• EF E(p U q)
• AG (EF p → EF(q → r))
• ¬p ∧ r → EF(q → E(p U q))

P T

there exists a path E
for all path A

X next state

F future state

G globally

U until

Figure 10.7 CTL operators. P: path quantifiers; T: temporal operators.

�

� �

�

10.2 Temporal Logic 265

The following are not well-formed CTL formulas:

• AG(p ∧ q → F r)
• (p ∨ q) U (EF r)
• EF (p U q)
• AG (EF p → G(q → r))
• ¬p ∧ r → EF(q → E(p → q))

10.2.2.2 Semantics of CTL
CTL formulas are evaluated over state transition systems. Let M = (S, I,R, L)
be a transition system, s ∈ S, and 𝜑 and 𝜓 be CTL formulas. The satisfaction
relation M, s ⊨ 𝜑 is defined as follows:

• M, s ⊨ ⊤ and M, s |≠ ⊥

• M, s ⊨ p iff p ∈ L(s)
• M, s ⊨ ¬𝜑 iff M, s |≠ 𝜑

• M, s ⊨ 𝜑 ∧ 𝜓 iff M, s ⊨ 𝜑 and M, s ⊨ 𝜓

• M, s ⊨ 𝜑 ∨ 𝜓 iff M, s ⊨ 𝜑 or M, s ⊨ 𝜓

• M, s ⊨ 𝜑 → 𝜓 iff M, s ⊨ 𝜓 whenever M, s ⊨ 𝜑

• M, s ⊨ AX 𝜑 iff for all s′ such that (s, s′) ∈ R, we have M, s′ ⊨ 𝜑

• M, s ⊨ EX 𝜑 iff for some s′ such that (s, s′) ∈ R, we have M, s′ ⊨ 𝜑

• M, s ⊨ AG 𝜑 iff for any state si along any path we have M, si ⊨ 𝜑

• M, s ⊨ EG 𝜑 iff there is a path and for any state si along the path we have
M, si ⊨ 𝜑

• M, s ⊨ AF 𝜑 iff there is a state si along every path such that M, si ⊨ 𝜑

• M, s ⊨ EF 𝜑 iff there is a path and for some state si along the path we have
M, si ⊨ 𝜑

• M, s ⊨ A(𝜑 U 𝜓) iff for all paths 𝜑 U 𝜓 is satisfied
• M, s ⊨ E(𝜑 U 𝜓) there exists a path in which 𝜑 U 𝜓 is satisfied.

The semantics of AX and EX, AG and EG, AF and EF, and AU and EU are
intuitively illustrated in Figures 10.8–10.11. It also shows thatAF𝜑 is an abbre-
viation of A(⊤ U 𝜑) and EF𝜑 is an abbreviation of E(⊤ U 𝜑).

Example 10.4 CTL Formula Verification
In this example, we verify the system M shown in Example 10.2 against a few
CTL specifications from the initial state s1.

1. 𝜑 = EX p.
M, s1 ⊨ EX p holds because s2 has p.

2. 𝜑 = AF q.
Fq is true in every path. Therefore, M, s1 ⊨ EX q holds.

3. 𝜑 = EG(¬p ∧ q).
G(¬p ∧ q) does not hold in any single path. Therefore, M, s1 ⊨ EG(¬p ∧ q)
does not hold.

�

� �

�

266 10 Model Checking

Figure 10.8 Illustration of semantics of AX and EX.

Figure 10.9 Illustration of semantics of AG and EG.

Figure 10.10 Illustration of semantics of AF and EF.

�

� �

�

10.2 Temporal Logic 267

Figure 10.11 Illustration of semantics of AU and EU.

4. 𝜑 = A(q U r)
We check to see if we have q U r along every path.The answer is yes.There-
fore, M, s1 ⊨ A(q U r) holds.

5. 𝜑 = AF p → AF q.
In general, to verify whether a formula of the form AF𝜓 → AF𝜓′ is satis-
fied, we first check to see if AF𝜓 is satisfied. If AF𝜓 is not satisfied, then
AF𝜓 → AF𝜓 ′ is satisfied (recall the truth table of the implication operator).
If AF𝜓 is satisfied, then we further check to see if AF𝜓 ′ is satisfied. If AF𝜓 ′

is satisfied, then AF𝜓 → AF𝜓 ′ is satisfied. Otherwise, AF𝜓 → AF𝜓 ′ is not
satisfied. Because the system shown in Figure 10.5 does not satisfy AF p, so
M, s1 ⊨ AF p → AF q holds.

6. 𝜑 = AG AF q.
In general, to verify whether a formula of the form AG AF 𝜓 is satisfied by
a system, first we check to see if AF 𝜓 is satisfied. If AF 𝜓 is not satisfied,
then AG AF𝜓 is not satisfied. If AF𝜓 is satisfied, then we check to see if
AF 𝜓 is satisfied from any single state of any single path. If it is, then AG
AF 𝜓 is satisfied. In this example, AF q is satisfied because F q is satisfied
in every path. In addition, because AF q is satisfied from any state of every
path, M, s1 ⊨ AG AF q holds.

7. 𝜑 = AX EX q.
In general, to verify whether a formula of the formAX EX𝜓 is satisfied by a
system, we first identify all states s′ such that (s, s′) ∈ R, and then from each
s′ , we check to see if EX𝜓 is satisfied. If EX𝜓 is satisfied from all s′, thenAX
EX 𝜓 holds. In this example, s2 and s3 are the two next states of s1. EX q is
satisfied from s2 but not from s3.Therefore, M, s1 ⊨ AX EX q does not hold.

8. 𝜑 = EX AX q.
In general, to verify whether a formula of the form EX AX𝜓 is satisfied by a
system, we first identify all states s′ such that (s, s′) ∈ R. Then from each s′,
we check to see if AX𝜓 is satisfied. As long as AX𝜓 is satisfied from one s′,
EX AX𝜓 holds. In this example, s2 and s3 are the two next states of s1. AX q
is satisfied from none of them. Therefore, M, s1 ⊨ EX AX q does not hold.

�

� �

�

268 10 Model Checking

10.2.2.3 Equivalencies of CTL Formulas
Two CTL formulas 𝜑 and 𝜓 are said to be semantically equivalent, denoted by
𝜑≡𝜓 , if for all models M and all states s in M,

M, s ⊨ 𝜑 iff M, s ⊨ 𝜓

In other words, two CTL formulas are equivalent if either both of them are
satisfied or none of them are satisfied from any state of any Kripke structure. A
few equivalencies are as follows:

AX(𝜑 ∧ 𝜓) ≡ AX 𝜑 ∧ AX 𝜓

EX(𝜑 ∨ 𝜓) ≡ EX 𝜑 ∨ EX 𝜓

AG(𝜑 ∧ 𝜓) ≡ AG 𝜑 ∧ AG 𝜓

EF(𝜑 ∨ 𝜓) ≡ EF 𝜑 ∨ EF 𝜓

¬AX 𝜑 ≡ EX ¬𝜑
¬AF 𝜑 ≡ EG ¬𝜑
¬EF 𝜑 ≡ AG ¬𝜑
AF AF 𝜑 ≡ AF 𝜑

EF EF 𝜑 ≡ EF 𝜑

AG AG 𝜑 ≡ AG 𝜑

EG EG 𝜑 ≡ EG 𝜑

10.2.3 LTL versus CTL

LTL and CTL are two of the most popular forms of temporal logic. LTL
views time as a linear path extending to the future, while CTL views time as
a branching-out structure. In general, LTL formulas are more intuitive and
easier to understand. Using a combination of path quantifiers and temporal
operators, CTL formulas are less intuitive and thus more error-prone in
system property specification.
They overlap in their expressive powers. CTL allows explicit quantification

over paths, which makes it more expressive than LTL in that regard. In fact,
any CTL formula necessitating the operator E cannot be expressed in LTL.
On the other hand, there are also LTL formulas that cannot be expressed in

CTL. One such formula, for example, is the formula F 𝜑→ F 𝜓 . It means that
“all paths that have a state satisfying 𝜑 along them also have a state satisfying 𝜓
along them.” We might think that it is equivalent to the CTL formula AF 𝜑→
AF 𝜓 . Actually it is not, because this CTL formula means that “if all paths have
a state satisfying 𝜑 along them, then all paths have a state satisfying 𝜓 along
them.” Let 𝜑= p ∧ r and 𝜓 = p ∧ q, then the model shown in Figure 10.5 does
not satisfy the LTL formula F 𝜑→ F 𝜓 , because 𝜑 is satisfied by the left child
node of the initial state, but F𝜓 is not satisfied along all paths starting from the

�

� �

�

10.3 The NuSMV Model Checking Tool 269

left child node. However, the model does satisfy the CTL formula AF 𝜑→ AF
𝜓 because AF 𝜑 is not satisfied.
There is a temporal logic called CTL* that combines the expressiveness of

LTL and CTL. However, it is beyond the scope of this book.

10.3 The NuSMV Model Checking Tool

There is a long list of model checking tools developed to support system prop-
erty verification. SPIN, NuSMV, FDR2, CADP, and ProB are some examples.
They differ in terms of property specification languages and modeling
languages. In this book, we only introduce the NuSMV model checker.
NuSMV is a short form forNew SymbolicModel Verifier. It is an open-source

product jointly developed by ITC-IRST, Trento, Italy, Carnegie Mellon Univer-
sity, the University of Genoa, and the University of Trento. NuSMV supports
the analysis of specifications expressed in CTL and LTL. NuSMV is a reimple-
mentation of and extension to SMV, the first model checker based on binary
decision diagrams (BDDs).

10.3.1 Description Language

An SMV program is broken down into modules that can be composed and
reused.Modules describe initial values of variables andhow they change in each
step. Variables can be of Boolean type, enumerative type, bounded integers,
or finite arrays. For example, the following code segment defines a Boolean
variable cond, an enumerative variable status that takes values from
{ready, busy, waiting, stopped}, an integer variable num that is
bounded from 1 to 10, and an array arr of Booleans indexed from 0 to 10.

VAR
cond : Boolean;
status : {ready, busy, waiting, stopped};
num : 1..10;
arr : array 0..10 of Boolean;

10.3.1.1 Single-Module SMV Program
Figure 10.12 lists a program of single module. It shows that a module consists
of a variable declaration section, started with the keyword VAR, and an assign-
ment section, started with the keyword ASSIGN. In this example, variables are
request, a Boolean, and state, an enumerative. The state variables deter-
mine the state space of the model.

�

� �

�

270 10 Model Checking

MODULE main
VAR

request : boolean;
state : {ready, busy};

ASSIGN
init(state) := ready;
next(state) :=

case
state = ready & request : busy;
TRUE : {ready, busy};

esac;

Figure 10.12 A single-module SMV program.

The first part of the assignment section assigns the initial value of each vari-
able. The keyword init is used to describe the initial value of a variable. The
syntax is

init(<variable>) := <simple_expression>;

where <simple_expression> must evaluate to values in the domain of
<variable>. If the initial value of a variable is not specified, then the vari-
able can take any value in its domain as its initial value. In this example, the
variable state is initialized to ready. The variable request is not initial-
ized, and thus, its initial value can be either TRUE or FALSE. Therefore, there
are two initial states in this model:

Initial state 1: request = TRUE, state = ready;
Initial state 2: request = FALSE, state = ready.

The second part of the assignment section assigns values with the keyword
next, which describes how the value of the variable changes in one step. The
syntax of the next statement is

next(<variable>) := <next_expression>;

where <next_expression> must evaluate to values in the domain of
<variable>. <next_expression> depends on “current” and “next”
variables. For example,

next(x) := x xor TRUE;
next(y) := y & next(x);

If the next value is unspecified, then the variable takes any value in its
domain at the next step. In this example, the change of state is specified with
a case statement, but not of request. A case statement assigns the value of

�

� �

�

10.3 The NuSMV Model Checking Tool 271

Figure 10.13 The
transition system
corresponding to the SMV
program in Figure 10.12.

Request

ready

Request

busy

Request

ready

Request

busy

the variable associated with each case condition when it is true; TRUE is for all
default cases. In general, it is written as

case
c1 : e1;
c2 : e2;
...
TRUE :en;

esac;

Let us consider all possible transitions from the first initial state. Based
on the first condition of the case statement, the next value of state
should be busy. The next value of request is not specified, and thus, it
can be either TRUE or FALSE. Therefore, the system can transit from
the initial state (request = TRUE, state = ready) to either
(request = TRUE, state=busy) or (request=FALSE, state=
busy).
Consider the second initial state now. The first condition of the case state-

ment for state is not satisfied, so its next value can be either ready or
busy, as defined by the default case. The next value of request again can be
either TRUE or FALSE. Therefore, the system can transit from the initial state
(request = TRUE, state = ready) to a state of any combination of
values of request and state. The state transition model of the program is
fully depicted in Figure 10.13.
There are four groups of operators that can be used in SMV expressions:

• Arithmetic operators: +, −, *, /, mod
• Comparison operators: =, !=, >, <, <=, >=
• Logic operators: & (and), | (or), xor (exclusive or), ! (not),→ (implication)
• Set operators: in (set inclusion), union (set union)

10.3.1.2 Multimodule SMV Program
An SMV program can consist of more than one module. In each SMV spec-
ification, there must be a module main. It is the top-most module. All other

�

� �

�

272 10 Model Checking

MODULE counter_cell(carry_in)
VAR

value : boolean;
ASSIGN

init(value) := FALSE;
next(value) := value xor carry_in;

DEFINE carry_out := value & carry_in;

MODULE main
VAR

bit0 : counter_cell(TRUE);
bit1 : counter_cell(bit0.carry_out);
bit2 : counter_cell(bit1.carry_out);

Figure 10.14 SMV program of a three-bit counter.

modules are instantiated in main or other parent modules. The instantiation
is performed inside the VAR declaration of the parent module. All the variables
declared in a module instance are visible in the module in which it has been
instantiated via the dot notation.
The program listed in Figure 10.14 has two modules: main and

counter_cell. It is a model of a three-bit binary counter circuit. As
the name indicates, the entry module of the program is main. The main
module simply initiates three instances of the counter_cell module,
named bit0, bit1, and bit2.The counter_cellmodule has a parameter
carry_in. For example, the carry_in of bit1 is bit0.carry_out.
Note that an expression of the form a.b denotes the component b of module
a, just as if the module a were a data structure in a standard programming
language. Hence, the carry_in of module bit1 is the carry_out of
module bit0. DEFINE is used to define C-like “macros”; defined variables
are not real variables in that they do not increase the state space. The operator
xor means “exclusive or,” a Boolean operator working on two variables that
has the value of 1 (TRUE) if one but not both of the variables has a value of 1
(TRUE).
The initial state of the model is

(bit0.value = FALSE, bit0.value = FALSE,
bit0.value = FALSE)

or briefly described as 000. It transitions to 001, 010, … and all the way to 111
and then repeats.The details of the first two transitions are listed in Table 10.2.
The result of each transition is recorded in next(value).

�

� �

�

10.3 The NuSMV Model Checking Tool 273

Table 10.2 First two state transitions of the program listed in Figure 10.14.

Transition 1 Transition 2

bit0 bit1 bit2 bit0 bit1 bit2

carry_in T F F T T F
value F F F T F F
next(value) T F F F T F
carry_out F F F T F F

10.3.1.3 Asynchronous Systems
The previous two programs describe synchronous systems, where in each
module or module instance, the assignment statements are taken into account
in parallel and simultaneously at each “clock tick.” NuSMV allows for asyn-
chronous system modeling. It is possible to define a collection of parallel
processes, whose actions are interleaved, following an asynchronous model of
concurrency.
Figure 10.15 lists an SMV program that represents a ring of three asyn-

chronous inverting gates. Here, the key wordprocess specifies asynchronous
module instances. Each time the global clock ticks, only one of the three
inverter instances is randomly chosen to execute, and the values of
variables of other instances remain unchanged. Since the system is not forced
to eventually choose a given process to execute, it is possible that the output

MODULE inverter(input)
VAR

output : boolean;
ASSIGN

init(output) := FALSE;
next(output) := !input;

MODULE main
VAR

gate1 : process inverter(gate3.output);
gate2 : process inverter(gate1.output);
gate3 : process inverter(gate2.output);

FAIRNESS
running

Figure 10.15 SMV program of an inverter ring.

�

� �

�

274 10 Model Checking

of a given gate may remain constant forever, regardless of its input. Thus, a
statement

FAIRNESS
running

is added to the end of the invertermodule to force every instance of inverter
to execute infinitely often.

10.3.2 Specifications

Specifications can be added in any module of an SMV program. Each prop-
erty is verified separately. NuSMV supports specifications in LTL and CTL. A
property in LTL is specified with the keyword LTLSPEC:

LTLSPEC <ltl_expr>

where <ltl_expr> is an LTL formula coded in NuSMV:

ltl_expr ::
simple_expr ;; a simple boolean expression
| "(" ltl_expr ")"
| "!" ltl_expr ;; logical not
| ltl_expr "&" ltl_expr ;; logical and
| ltl_expr "|" ltl_expr ;; logical or
| ltl_expr "xor" ltl_expr ;; logical exclusive or
| ltl_expr "->" ltl_expr ;; logical implies
| ltl_expr "<->" ltl_expr ;; logical equivalence ;;
| "X" ltl_expr ;; next state
| "G" ltl_expr ;; globally
| "F" ltl_expr ;; finally
| ltl_expr "U" ltl_expr ;; until
| ltl_expr "V" ltl_expr ;; releases

For example, we can add

LTLSPEC F (bit0.value & bit1.value & bit2.value)

to the end of the program listed in Figure 10.14. This specification checks
whether the property that eventually the counter outputs 111 holds. For the
same program, we can also add

LTLSPEC G F bit2.value

which checks whether the third bit becomes true infinitely often.
A property in CTL is specified with the keyword SPEC:

SPEC <ctl_expr>

�

� �

�

10.3 The NuSMV Model Checking Tool 275

where <ctl_expr> is a CTL formula coded in NuSMV:

ctl_expr ::
simple_expr ;; a simple boolean expression
| "(" ctl_expr ")"
| "!" ctl_expr ;; logical not
| ctl_expr "&" ctl_expr ;; logical and
| ctl_expr "|" ctl_expr ;; logical or
| ctl_expr "xor" ctl_expr ;; logical exclusive or
| ctl_expr "->" ctl_expr ;; logical implies
| ctl_expr "<->" ctl_expr ;; logical equivalence
| "EG" ctl_expr ;; exists globally
| "EX" ctl_expr ;; exists next state
| "EF" ctl_expr ;; exists finally
| "AG" ctl_expr ;; forall globally
| "AX" ctl_expr ;; forall next state
| "AF" ctl_expr ;; forall finally
| "E" "[" ctl_expr "U" ctl_expr "]" ;; exists until
| "A" "[" ctl_expr "U" ctl_expr "]" ;; forall until

For example, we can add

SPEC EX gate3.output
SPEC EX gate1.output -> EX gate2.output
SPEC EF ((!gate1.output) & (!gate2.output) &

gate3.output)

to the end of the program listed in Figure 10.15.
In addition to the properties specified in LTL or CTL formulas, NuSMV can

verify the invariant properties. An invariant is a propositional property, which
must always hold and specified using the keyword INVARSPEC:

INVARSPEC <simple_expression>

For example, for the program listed in Figure 10.12, we add the following spec-
ification:

INVARSPEC state in {ready, busy}

to check to see if the variable state always has a legal value.

10.3.3 Running NuSMV

NuSMV can be used either interactively or in batch mode. To check a model
against a set of specifications, we write the specification and system description
in a file with .smv extension and type the command

NuSMV <file_name>.smv

�

� �

�

276 10 Model Checking

NuSMV will check each specification automatically, informing whether it is
satisfied, or will produce a trace (when possible) to demonstrate its violation.
For example, we save the counter program with the two LTL specifications we
mentioned earlier to a file named counter.smv and run the command

NuSMV counter.smv

We will get the following result:

*** This version of NuSMV is linked to the MiniSat
SAT solver.

*** See http://minisat.se/MiniSat.html
*** Copyright (c) 2003-2006, Niklas Een,

Niklas Sorensson
*** Copyright (c) 2007-2010, Niklas Sorensson
-- specification F ((bit0.carry_out & bit1.carry_out)

& bit2.carry_out) is true
-- specification G (F bit2.value) is true

If we modify the second specification to

LTLSPEC G X bit2.value

and run the command again, we get

*** This version of NuSMV is linked to the MiniSat
SAT solver.

*** See http://minisat.se/MiniSat.html
*** Copyright (c) 2003-2006, Niklas Een,

Niklas Sorensson
*** Copyright (c) 2007-2010, Niklas Sorensson
-- specification F ((bit0.value&bit1.value)

&bit2.value) is true
-- specification G (X bit2.carry_out) is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-- Loop starts here
-> State: 1.1 <-

bit0.value = FALSE
bit1.value = FALSE
bit2.value = FALSE
bit0.carry_out = FALSE
bit1.carry_out = FALSE

�

� �

�

10.3 The NuSMV Model Checking Tool 277

bit2.carry_out = FALSE
-> State: 1.2 <-

bit0.value = TRUE
bit0.carry_out = TRUE

-> State: 1.3 <-
bit0.value = FALSE
bit1.value = TRUE
bit0.carry_out = FALSE

-> State: 1.4 <-
bit0.value = TRUE
bit0.carry_out = TRUE
bit1.carry_out = TRUE

-> State: 1.5 <-
bit0.value = FALSE
bit1.value = FALSE
bit2.value = TRUE
bit0.carry_out = FALSE
bit1.carry_out = FALSE

-> State: 1.6 <-
bit0.value = TRUE
bit0.carry_out = TRUE

-> State: 1.7 <-
bit0.value = FALSE
bit1.value = TRUE
bit0.carry_out = FALSE

-> State: 1.8 <-
bit0.value = TRUE
bit0.carry_out = TRUE
bit1.carry_out = TRUE
bit2.carry_out = TRUE

-> State: 1.9 <-
bit0.value = FALSE
bit1.value = FALSE
bit2.value = FALSE
bit0.carry_out = FALSE
bit1.carry_out = FALSE
bit2.carry_out = FALSE

NuSMV >

The result indicates that the second specification is false, and it prints out
a counter example of execution that violates the specification. The counter
example lists all states step by step until they repeat.

�

� �

�

278 10 Model Checking

NuSMV supports simulation that allows users to explore the possible execu-
tions (traces from now on) of an SMV model. A simulation session is started
interactively from the system prompt as follows:

system_prompt> NuSMV -int <file>.smv
NuSMV> go
NuSMV>

The next step is to pick a state from the initial states to start a new trace. To
pick a state randomly, type command

NuSMV> pick_state -r

Subsequent states in the simulation can be picked using the simulate
command. For example, we can type the command

NuSMV> simulate -r -k 5

to randomly simulate five steps of a trace. To show the trace with states, use the
commands

NuSMV> show_trace -t
NuSMV> show_trace -v

Following is a screenshot of NuSMV simulation:

C:\...\NuSMV-2.6.0-win64\bin>nusmv -int counter.smv
...
NuSMV > go
NuSMV > pick_state -r
NuSMV > simulate -r -k 3
******** Simulation Starting From State 2.1 ********
NuSMV > show_traces -t
There are 2 traces currently available.
NuSMV > show_traces -v

<!-- ################# Trace number: 2
################# -->

Trace Description: Simulation Trace
Trace Type: Simulation
-> State: 2.1 <-

bit0.value = FALSE
bit1.value = FALSE
bit2.value = FALSE
bit0.carry_out = FALSE
bit1.carry_out = FALSE
bit2.carry_out = FALSE

�

� �

�

10.4 Real-Time Computation Tree Logic 279

-> State: 2.2 <-
bit0.value = TRUE
bit1.value = FALSE
bit2.value = FALSE
bit0.carry_out = TRUE
bit1.carry_out = FALSE
bit2.carry_out = FALSE

-> State: 2.3 <-
bit0.value = FALSE
bit1.value = TRUE
bit2.value = FALSE
bit0.carry_out = FALSE
bit1.carry_out = FALSE
bit2.carry_out = FALSE

-> State: 2.4 <-
bit0.value = TRUE
bit1.value = TRUE
bit2.value = FALSE
bit0.carry_out = TRUE
bit1.carry_out = TRUE
bit2.carry_out = FALSE
bit2.carry_out = FALSE

NuSMV >

For details of how to use the NuSMV tool, please read the latest ver-
sion of NuSMV tutorial that can be downloaded from the NuSMV official
website.

10.4 Real-Time Computation Tree Logic

RTCTL is a real-time extension to CTL, where operators G, F, and U are
bounded. RTCTL specifies temporal properties not only qualitatively but also
quantitatively.
Let

∑
be a set of atomic propositional formulas and p ∈

∑
. In addition,

let k be a natural number. An RTCTL formula is defined inductively in the
Backus–Naur form as

𝜑 ∶∶=⊤|⊥|p|(¬𝜑)|(𝜑 ∧ 𝜓)|(𝜑 ∨ 𝜓)|(𝜑→ 𝜓)|(AX𝜑)|(EX𝜑)|(AG𝜑)|(EG𝜑)|(AF𝜑)|(EF𝜑)|A(𝜑U𝜓)|E(𝜑U𝜓)|(AG≤k
𝜑)|(EG≤k

𝜑)|(AF≤k
𝜑)|(EF≤k

𝜑)|A(𝜑U≤k
𝜓)|E(𝜑U≤k

𝜓)
(10.3)

�

� �

�

280 10 Model Checking

Let M = (S, I,R, L) be a transition system, s ∈ S, and 𝜑 and 𝜓 be RTCTL
formulas. A path 𝜋 is denoted as

𝜋 = s1 → s2 → · · ·

The satisfaction relation M, s ⊨ 𝜑 for all operators that appear in the CTL
definition is exactly the same as that defined in CTL. For those newly added
operators, the relationship is defined as follows:

• M, s1 ⊨ AG≤k
𝜑 iff for any state si, i≤ k + 1, along any path 𝜋 we have

M, si ⊨ 𝜑.
• M, s1 ⊨ EG≤k

𝜑 iff there is a path 𝜋 such that for any state si, i≤ k + 1, along
the path we have M, si ⊨ 𝜑

• M, s1 ⊨ AF≤k
𝜑 iff along any path 𝜋, there is a state si, i≤ k + 1, such that

M, si ⊨ 𝜑.
• M, s1 ⊨ EF≤k

𝜑 iff there is a path 𝜋 and there is a state si, i≤ k + 1, along this
path such that M, si ⊨ 𝜑.

• M, s1 ⊨ A(𝜑 U≤k
𝜓) iff for any path 𝜋, there exists a state si, 0≤ i≤ k, such

that M, si ⊨ 𝜓 and for any j, 0≤ j< i, M, sj ⊨ 𝜑.
• M, s1 ⊨ E(𝜑 U≤k

𝜓) iff for some path 𝜋, there exists an i, 0≤ i≤ k, such that
M, si ⊨ 𝜓 and for any j, 0≤ j< i, M, sj ⊨ 𝜑.

RTCTL is useful in specifying real-time system properties. For example, we
can specify the maximal temporal distance between two events A and B as fol-
lows:

AG(A → AF≤k B).

If k = 3, this RTCTL formula is equal to the following CTL formula:

AG(A → (B ∨ AX (B ∨ AX (B ∨ AX B))))

Of course, if k is large, such a translation will result in an exponential blowup in
CTL formulas. The exact temporal distance between two events can be speci-
fied as

AG (A → (AG≤ k-1 ¬B ∧ AF≤ k B))

The minimal temporal distance between two consecutive occurrences of an
event can be specified as

AG (E → AG≤k ¬E).

To specify the periodicity of a task, we can use the following formula:

AG (E → (AG≤k-1 ¬E ∧ AF≤k E))

�

� �

�

10.4 Real-Time Computation Tree Logic 281

NuSMV allows RTCTL specifications. RTCTL extends the syntax of CTL
path expressions with the following bounded modalities:

rtctl_expr :: ctl_expr
| EBF range rtctl_expr
| ABF range rtctl_expr
| EBG range rtctl_expr
| ABG range rtctl_expr
| A [rtctl_expr BU range rtctl_expr]
| E [rtctl_expr BU range rtctl_expr]

range :: integer_number .. integer_number

For details of RTCTL expressions and RTCTL specifications in NuSMV, please
read the latest version of the NuSMV User Manual.

Example 10.5 The Ferryman Puzzle
In the Exercise section of Chapter 9, we mentioned the ferryman puzzle. The
puzzle can be solved with NuSMV model checker.
To model the system with a NuSMV program, we ignore the boat, as it is

always with the ferryman. The four agents, the ferryman, wolf, goat, and cab-
bage, are modeled with four Boolean variables, as they each can have two val-
ues: false (on the initial bank of the river) and true (on the destination bank of
the river). We model all possible behaviors in the program and ask if a trace
indicating that the ferryman takes all of the three passengers to the other bank
safely exists. The program is listed in Figure 10.16. In the program, we use the
variable carry to indicate which passenger the ferryman will take with him to
cross the river. If the ferryman travels alone, then carry takes the value of 0.
In the ASSIGN section of the program, the statement

next(ferryman) := !ferryman;

means that the ferrymanmust cross the river in each step.The next(carry)
statement shows that the ferryman can take any passenger that is on the same
bank of the river as he is or takes nothing with him (union 0 at the end of the
statement) .The next(goat) statement says that if the goat and ferryman are
on the same bank and the goat is chosen to cross the river with the ferryman,
then the goat will be on the other bank in the next state. Otherwise, the goat will
stay on the same bank. The next(cabbage) and next(wolf) statements
are similar to the next(goat) statement.
The LTL specification states that for all execution paths, if the goat and cab-

bage are on the same bank, or if the goat and wolf are on the same bank, then

�

� �

�

282 10 Model Checking

MODULE main
VAR

ferryman : boolean;
goat : boolean;
cabbage : boolean;
wolf : boolean;
carry : {g, c, w, 0};

ASSIGN
init(ferryman) := FALSE;
init(goat) := FALSE;
init(cabbage) := FALSE;
init(wolf) := FALSE;
init(carry) := 0;

next(ferryman) := !ferryman;

next(carry) :=
case

(ferryman = goat) : g;
TRUE : 0;

esac union
case

(ferryman = cabbage): c;
TRUE : 0;

esac union
case

(ferryman = wolf) : w;
TRUE : 0;

esac union 0;

next(goat) :=
case

(ferryman = goat) & (next(carry) = g)
: next(ferryman);

TRUE : goat;
esac;

next(cabbage) :=
case

(ferryman = cabbage) & (next(carry) = c)
: next(ferryman);

TRUE : cabbage;
esac;

Figure 10.16 SMV program of the ferryman puzzle.

�

� �

�

10.4 Real-Time Computation Tree Logic 283

next(wolf) :=
case

(ferryman = wolf) & (next(carry) = w)
: next(ferryman);

TRUE : wolf;
esac;

LTLSPEC
((goat=cabbage |goat = wolf) -> goat = ferryman)

U (cabbage & goat & wolf & ferryman)

Figure 10.16 (Continued)

the goat must be with the ferryman, and this is true until the ferryman and
all of his passengers are on the destination bank. The program produces the
following output:

C:\...\NuSMV-2.6.0-win64\bin>nusmv ferryman.smv
...
-- specification (((goat = cabbage | goat = wolf) ->

goat = ferryman) U (((cabbage & goat) & wolf) &
ferryman)) is false

-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-- Loop starts here
-> State: 1.1 <-

ferryman = FALSE
goat = FALSE
cabbage = FALSE
wolf = FALSE
carry = 0

-> State: 1.2 <-
ferryman = TRUE

-> State: 1.3 <-
ferryman = FALSE

The result shows that the property is false, which is correct, because there are
plenty of “execution paths” that violate this property. The program prints out
one example, in which the ferryman crosses the river alone first (state 1.2), then
he travels back (state 1.3), and he keeps crossing the river this way.

�

� �

�

284 10 Model Checking

Because what we are looking for is an execution path such that the LTL spec-
ification is true, we can verify an opposite specification, which is

LTLSPEC
!(((goat=cabbage |goat = wolf) -> goat = ferryman)

U (cabbage & goat & wolf & ferryman))

If the puzzle has a solution, then the aforementioned specification won’t be
true on all execution paths. In that case, the trace of a counter example will
be printed on running the program, which is the solution that we want. The
result from running the program with the new specification is listed as follows,
in which states 1.1 through 1.8 are the trace of the solution, while states 1.9
through 1.15 are the trace that the ferryman safely takes all passengers back
from the destination bank to the original bank.

C:\...\NuSMV-2.6.0-win64\bin>nusmv ferryman.smv
...
-- specification !(((goat = cabbage | goat = wolf) ->

goat = ferryman) U (((cabbage & goat) & wolf) &
ferryman)) is false

-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-- Loop starts here
-> State: 1.1 <-

ferryman = FALSE
goat = FALSE
cabbage = FALSE
wolf = FALSE
carry = 0

-> State: 1.2 <-
ferryman = TRUE
goat = TRUE
carry = g

-> State: 1.3 <-
ferryman = FALSE
carry = 0

-> State: 1.4 <-
ferryman = TRUE
wolf = TRUE
carry = w

-> State: 1.5 <-
ferryman = FALSE
goat = FALSE

�

� �

�

10.4 Real-Time Computation Tree Logic 285

carry = g
-> State: 1.6 <-

ferryman = TRUE
cabbage = TRUE
carry = c

-> State: 1.7 <-
ferryman = FALSE
carry = 0

-> State: 1.8 <-
ferryman = TRUE
goat = TRUE
carry = g

-> State: 1.9 <-
ferryman = FALSE
wolf = FALSE
carry = w

-> State: 1.10 <-
ferryman = TRUE
carry = 0

-> State: 1.11 <-
ferryman = FALSE
cabbage = FALSE
carry = c

-> State: 1.12 <-
ferryman = TRUE
carry = 0

-> State: 1.13 <-
ferryman = FALSE
goat = FALSE
carry = g

-> State: 1.14 <-
ferryman = TRUE
carry = 0

-> State: 1.15 <-
ferryman = FALSE

Exercises

1 What is model checking? Why do we need model checking?

2 What is the difference between LTL and CLT in terms of modeling of
time?

�

� �

�

286 10 Model Checking

3 Can any LTL formula be specified by CTL? Can any CTL formula be spec-
ified by LTL?

4 What is the difference between CTL and RTCTL?

5 Draw the parse trees for the following LTL formulas:
(a) ¬p ∧ Xp → Fq
(b) (p ∨ ¬q) ∨ Xr → GFq
(c) (p U q) ∨ (Fq ∧ Gr)
(d) X(p ∨ q) U (Fq ∧ ¬r)

6 Draw parse trees for the following CTL formulas:
(a) EG((¬p ∧ EXp)→ AGq)
(b) A(¬p U q) ∨ (AFq ∧ EG(p ∨ r))
(c) E(¬p U (AG q))→ AG (q → r)
(d) AG AF(¬p U (q ∨ r))

7 Consider the state transition systemM illustrated in Figure 10.17. For each
LTL formula 𝜑 listed, decide if M, s1⊨𝜑 holds.
(a) p ∧ q
(b) (p ∨ q) ∧ Xq
(c) X Xq
(d) X X(q ∨ r)
(e) F q
(f) F (p ∧ q)
(g) F (q ∧ r)
(h) G (p ∨ q)
(i) G (p ∧ q)
(j) p U q
(k) p U r
(l) p U (q ∧ r)

(m) G (p U (q ∧ r))
(n) p → ¬q
(o) G (p → ¬q)
(p) GF r
(q) G(p → X r)
(r) F(q → ¬r)
(s) GF (q → r)
(t) F (p ∧ q)→ F (q ∧ r)
(u) GF (p ∧ q)→ GF ¬(q ∨ r)
(v) G(p → X r)
(w) F(q → ¬r)
(x) GF(q → r)

�

� �

�

10.4 Real-Time Computation Tree Logic 287

Figure 10.17 The state transition model for Problems 7
and 8. p

p, q q, r

p, r

s1

s2
s3

s4

8 Consider the state transition systemM illustrated in Figure 10.17. For each
CTL formula 𝜑 listed, decide if M, s1⊨𝜑 holds.
(a) AF(p ∧ q)
(b) AG(p ∨ r)
(c) AX AXq
(d) AX EXq
(e) AF(q ∧ r)
(f) EF(q ∧ r)
(g) AG(p ∧ ¬(q ∨ r))
(h) EG(p ∧ ¬(q ∨ r))
(i) E(p U (q ∧ r))
(j) A(p U (q ∧ r))
(k) A(p U AG q)
(l) E(p U EG q)

(m) EG(p → ¬q)
(n) EG AF r
(o) AG EF r
(p) EG(p → X r)
(q) EF(q → ¬r)
(r) GF(q → r)

9 Consider the state transition system M illustrated in Figure 10.18.
(1) Write the SMV program of the model.
(2) For each of the LTL or CTL formula 𝜑 listed, verify if M, s1⊨𝜑 holds

by running the program.
(a) (p ∨ q) ∧ X q
(b) F (p ∨ q)
(c) F G q
(d) G F q
(e) X q → (p ∨ q) U r
(f) AX r
(g) EX q

�

� �

�

288 10 Model Checking

p

q r

q, r

s1

s2
s3

s4

Figure 10.18 The state transition model for Problem 9.

(h) EG r
(i) EF AG r
(j) A (p U r)
(k) EX q → E((p ∨ q) U r)

10 The SMV code listed in Figure 10.19 models the mutual exclusion feature
of two processes. Each process can be in one of the three states: idle, ready
(ready to enter the critical section), or critical (in the critical section). The
properties under concern are as follows:
Safety. At any moment, at most one task can be in its critical section.
Liveness. Whenever a task requests to enter its critical section (and thus

access the shared resource), the request will eventually be granted.
Fairness. If a task makes infinitely often requests to enter its critical

section, it will enter its critical section infinitely often.
(1) Run the program and verify the properties of safety and liveness.
(2) Code the fairness property in LTL and verify it.
(3) Draw the state transition diagram of the program.
(4) Modify the program to include a third process pr2 such that all the

three properties are satisfied.

11 Figure 10.20 shows the control of amicrowave oven in terms of its working
status.
(1) Write the SMV program.
(2) Some fundamental requirements over the oven control include the fol-

lowing:
(a) The oven cannot heat unless the door is closed.
(b) Nomatterwhat status of the oven is in, it will be heating eventually.

Code the two properties in CTL and verify them with the SMV program.

�

� �

�

10.4 Real-Time Computation Tree Logic 289

MODULE main
VAR

turn: {0, 1};
pr0: process prc(pr1.control, turn, 0);
pr1: process prc(pr0.control, turn, 1);

ASSIGN
init(turn) := 0;

-- safety
SPEC AG !((pr0.control = critical)&(pr1.control = critical))

-- liveness
SPEC AG ((pr0.control = ready) -> AF(pr0.control = critical))
SPEC AG ((pr1.control = ready) -> AF(pr1.control = critical))

MODULE prc(other_control, turn, ID)
VAR

control: {idle, ready, critical};

ASSIGN
init(control) := idle;

next(control) :=
case

(control = idle) : {ready, idle};
(control = ready)&(other_control = idle): critical;
(control = ready)&(other_control = ready)

&(turn = ID) : critical;
(control = critical) : {critical, idle};
TRUE : control;

esac;

next(turn) :=
case

(turn = ID)&(control = critical) : (turn + 1) mod 2;
TRUE : turn;

esac;

FAIRNESS running;
FAIRNESS !(control = critical);

Figure 10.19 SMV program of mutual exclusion.

�

� �

�

290 10 Model Checking

s1

s2 s3

s4

L(s1) = {¬closed, ¬started, ¬heating}

L(s2) = {¬closed, started, ¬heating}

L(s3) = {closed, ¬started, ¬heating}

L(s4) = {closed, started, heating}

Figure 10.20 State transition system of a microwave oven.

Suggestions for Reading

Burstall [1], Kroger [2], and Pnueli [3], all proposed using temporal logic for
reasoning about computer programs. Lamport was the first to investigate the
expressive power of various temporal logics for verification. He discussed two
logics: a simple linear-time logic and a simple branching-time logic in Ref. [4]
and showed that each logic could express certain properties that could not be
expressed in the other. The model checking approach to program verification
was first proposed by Clarke and Emerson [5–7]. RTCTL was introduced in
Ref. [8] by Emerson, Mok, Sistla, and Srinivasan.
Bobbio and Horvath presented a technique to check if a time Petri net (TPN)

satisfies the temporal properties expressed in RTCTL [9].The transition graph
of the TPN is built in a compositional manner based on discretization of the
firing intervals. The compositional description can be automatically translated
into the model description language of NuSMV, a tool for model checking
finite-state systems against specifications in RTCTL.
Another time extension to temporal logic, called Timed Computation Tree

Logic (TCTL), was introduced in Ref. [10]. Virbitskaite and Pokozy [11]
proposed a method to model check TCTL properties on TPN.

References

1 Burstall, R.M. (1974) Program proving as hand simulation with a little
induction. IFIP Congress 74, North Holland, pp. 308–312.

2 Kroger, F. (1977) Lar: A logic of algorithmic reasoning. Acta Informatica, 8,
243–266.

3 Pnueli, A. (1977) The temporal semantics of concurrent programs. 18th
Annual Symposium on Foundations of Computer Science.

4 Lamport, L. (1980) “Sometimes” is sometimes “Not Never”. Annual ACM
Symposium on Principles of Programming Languages, pp. 174–185.

�

� �

�

References 291

5 Clarke, E.M. and Emerson, E.A. (1981) Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. Logic of Programs,
131, 52–71.

6 Clarke, E.M., Emerson, E.A., and Sistla, A.P. (1986) Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8 (2), 244.

7 Emerson, E.A. and Clarke, E.A. (1980) Characterizing correctness proper-
ties of parallel programs using fixpoints. Proceedings of the 7th Colloquium
on Automata, Languages and Programming, Noordwijkerhout, The Nether-
lands, 169–181.

8 Emerson, E.A., Mok, A.K., Sistla, A.P., and Srinivasan, J. (1992) Quantitative
temporal reasoning. Real-Time Systems, 4 (4), 331–352.

9 Bobbio, A. and Horvath, A. (2001) Modeling checking time Petri nets using
NuSMV. Proceedings of the 5th International Workshop on Performability
Modeling of Computer and Communication Systems, pp. 100–104.

10 Alur, R., Courcoubetis, C. and Dill, D. (1990) Model-checking for real-time
systems. Proceedings of the 5th Annual Symposium on Logic in Computer
Science, pp. 414–425.

11 Virbitskaite, I. and Pokozy, E. (1999) A partial order method for the ver-
ification of time Petri nets, in Fundamentals of Computation Theory (eds
G. Ciobanu and G. Paum), LNCS 1684, Springer-Verlag.

�

� �

�

293

11

Practical Issues

This chapter briefly introduces some practical issues in real-time embedded
system design and development that designers should be aware of.These issues
include software reliability, software aging and rejuvenation, software security,
embedded system safety, and power efficiency.

11.1 Software Reliability

Reliability is a measurement of the probability that a system operates without
failure over a specified time within a specified environment for a specified pur-
pose. Software can fail. A failure corresponds to unexpected runtime behavior
observed by a user of the software. Software failuresmay be due to errors, ambi-
guities, oversights or misinterpretation of the specification that the software is
supposed to satisfy, carelessness or incompetence in writing code, inadequate
testing, incorrect or unexpected usage of the software, or other unforeseen
problems. A failure is caused by a fault (or bug) in the code.

11.1.1 Software Faults

A software fault is either a Bohrbug or a Mandelbug.

Bohrbugs. Bohrbugs are solid software faults that can be easily detected and
fixed, and the corresponding failure occurrences can be easily reproduced.
Bohrbugs are essentially permanent design faults and hence almost deter-
ministic in nature. They can be identified and removed during the testing
and debugging phase (or early deployment phase) of the software life cycle.

Mandelbugs. Mandelbugs are bugs whose underlying causes are so complex
and obscure that their behaviors appear chaotic and even nondeterministic.
They are essentially permanent faults whose conditions of activation occur
rarely or are not easily reproducible. The complexity can take two forms.

Real-Time Embedded Systems, First Edition. Jiacun Wang.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

�

� �

�

294 11 Practical Issues

(i) The activation and/or error propagation depend on a combination of
conditions within both the software and its running environment, such as
interactions of the system with its environment, the timing of inputs, and
operation sequencing. (ii) There is a delay from fault activation to failure
occurrence. In general, Mandelbugs are difficult to locate, because the faults
and failures might not be near the actual fault activation in code/operation
location or time.

There are two special types of Mandelbugs: Heisenbugs and aging-related
bugs.

Heisenbugs. Heisenbugs are faults that will stop causing failures or manifest
differently when one attempts to probe or isolate them. For example, some
failures are related to improper initialization.When debuggers that initialize
unused memory are turned on, these failures may disappear.

Aging-related bugs. An aging-related bug is a fault that leads to the accumula-
tion of errors either within the running application or in its system-internal
environment, resulting in an increased failure rate and/or degraded perfor-
mance. Software aging will be discussed in detail in the next section.

Most studies on failure data have reported that a large proportion of soft-
ware failures are transient in nature. Not every fault causes a failure. There is
a famous 90–10 rule, which says that 90% of the time a software application is
typically executing 10% of the code. Because of that, many faults simply reside
in the software silently and do not cause trouble over a long period of time.
This also means that fixing certain percent of faults in a software application
does not necessarily improve the application’s reliability by the same percent-
age. One study shows that removing 60% of software defaults only led to a 3%
of reliability improvement.

11.1.2 Reliability Measurement

Software reliability is usually measured in terms of Mean Time between Fail-
ures (MTBF). For example, if MTBF= 5000 hours for average software, then
the software is expected to work for 5000 hours for continuous operations.
For safety-critical real-time embedded systems, the reliability can also

be measured using Probability of Failure on Demand (POFOD), which is
defined as the likelihood that the software will fail when a request is made.
For example, a POFOD of 0.00001 means that 1 every 100,000 requests may
result in failure.
Another measurement in use is Rate of Occurrence of Failure (ROCOF),

which is defined as the frequency of failures. For example, an ROCOF of
0.0001 means that there is likely 1 failure every 10,000 time units. Here, the
time unit can be the clock hour or minute for nonstop real-time embedded
systems or a transaction for transaction processing systems.

�

� �

�

11.1 Software Reliability 295

11.1.3 Improving Software Reliability

Real-time embedded systems typically require high reliability. Software reliabil-
ity improvement techniques deal with the existence andmanifestation of faults.
Fault avoidance, fault removal, and fault tolerance are three major approaches
to improve software reliability.

11.1.3.1 Fault Avoidance
Fault avoidance refers to a collection of practical techniques or rules of thumb
in software design and development. Objected-oriented design and program-
ming, formal modeling and verification, modularity, use of software compo-
nents that are already proved to be fault-free, low coupling and high cohesion,
and so on, are all examples of techniques of fault avoidance. In addition, doc-
umentation is an important aspect of fault avoidance, which is often ignored
by many developers. Documentation includes requirements, design, analysis,
assembly history, test cases, test results, change history, and so on. Documen-
tation should be reviewed in each step of the system design and development
process.

11.1.3.2 Fault Removal
Fault removal aims to detect the presence of faults and then to locate and
remove them after the development stage is completed. It is performed
through exhaustive and rigorous testing of the final application.

11.1.3.3 Fault Tolerance
Software is complex. It is not realistic to attempt to deliver a 100% bug-free
software application, not to mention that most applications are extremely
time-to-market-driven. Therefore, fault avoidance and fault removal are not
sufficient to ensure high reliability. Fault tolerance is an approach that allows
software to continue operation in spite of software failure. It proceeds with
three steps: fault detection, damage assessment, and fault recovery or fault
repair. Common practices for fault tolerance include N-Version Programming
(NVP) and exception handling.
NVP is a method or process in software engineering where multiple func-

tionally equivalent programs are independently generated from the same initial
specifications. At runtime, all functionally equivalent programs are running in
parallel on the same input to produce output. A voter is used to produce the
correct output according to a specific voting scheme. NVD has been applied to
software in switching trains, performing flight control computations on mod-
ern airliners.
Exception handling is the process of responding to the occurrence, during

computation, of exceptions that change the normal flow of program execution.
With exception handling, an exception breaks the normal flow of execution and

�

� �

�

296 11 Practical Issues

executes a preregistered exception handler, which is normally implemented to
handle the exception gracefully and resume the execution of the interrupted
application.

11.1.3.4 Fault Recovery
Failure recovery is a process that involves restoring an erroneous state to an
error-free state. The success of fault recovery depends on the detection of
faults accurately and as early as possible. There are three classes of recovery
procedures:

• Full recovery. It requires all the aspects of fault-tolerant computing.
• Degraded recovery. It is also referred to as graceful degradation. In this class

of recovery, defective component is taken out of service.
• Safe shutdown.

Fault recovery can be performed with a forward recovery approach or
backward recovery approach. In a forward recovery approach, procedures
correct through continuation of normal processing. In a backward recovery
approach, some redundant processes and state information are recorded
with the progress of computation. The recovery proceeds by rolling back the
interrupted processes to a point for which the correct information is available.

11.2 Software Aging and Rejuvenation

Software often exhibits an increasing failure rate and/or degraded performance
over time due to accumulation of errors. This phenomenon is called software
aging.
One major cause of software aging is memory leaks. A memory leak is a type

of resource leak that occurs when a computer program incorrectly manages
memory allocations in such a way that memory that is no longer needed is
not released. Memory leaks are hard to detect. Memory leaks are a common
error in programming, especially when using languages that have no built-in
automatic garbage collection, such as C and C++.
Memory fragmentation is another factor of software aging. Memory frag-

mentation occurs when most of the memory is allocated in a large number
of noncontiguous blocks or chunks – leaving a good percentage of total
memory unallocated, but unusable for most typical scenarios. This results in
out-of-memory exceptions or allocation errors (i.e., malloc returns null).
File descriptor leaks also contribute to software aging. It is important to

ensure that files that are opened always get closed. Failing to close files will
lead to I/O exceptions, a variety of failures on attempts to open properties
files, sockets, and so on. File descriptor leaks can be detected through error
messages in error log.

�

� �

�

11.3 Security 297

Software aging is inevitable. A proactive approach to handling the issue is
to perform software rejuvenation. Software rejuvenation is the act of gracefully
terminating an application and immediately restarting. Such a reboot of the
systemwill remove the accumulated error conditions, free up system resources,
clean the internal state of the software, flush the operating system kernel tables,
and reinitialize the internal data structures.
Many users choose to wait until they see applications fail and then restart

them. While this does not seem to be a bad idea, a preemptive rollback of
continuously running applications would prevent failures in the future and
minimize any collateral damage. There are two types of preemptive software
rejuvenation. One is time-based or periodic. Businesses quite often do a reg-
ular reboot as part of a scheduled maintenance to help prevent aging-related
Mandelbugs. For example, a database server might be rebooted every week
during a period of low activity to reduce the probability of errors during busy
times. It is reported that the telecommunication giant AT&T has implemented
periodic software rejuvenation in the real-time billing system in the United
States for most telephone exchanges. The second type of rejuvenation is
prediction-based. In this approach, the date of the next software failure is
predicted based on the previous failure data and a certainmathematical model.
Rejuvenation is performed before the predicted date.
Rejuvenation events will cause the software application to be unavailable for

the duration of the restart. In some situations, this will be includedwithin a sys-
tem’s planned downtime allocation. In other situations, it will be unobservable
and won’t need to be accounted for.

11.3 Security

Similarly to traditional desktop and networked computing systems, real-time
embedded systems face security threats as well. In fact, many real-time
embedded systems are often required to store, access, or communicate data
of a sensitive nature during their regular operation, making security a serious
concern. The common information system security services, such as availabil-
ity, confidentiality, authentication, data integrity, and nonrepudiation, are also
important to embedded systems. The security goal is to protect sensitive data
and/or resources from various kinds of attacks and malicious threats.

11.3.1 Challenges

Challenges in securing embedded systems come from limited processing power
and memory capacity, restricted power budget, cost sensitivity, and open and
specific operating environment. The limited processing and memory capac-
ity of embedded systems make it impossible for their architectures to keep

�

� �

�

298 11 Practical Issues

up with the continuously growing complexity of security mechanisms. Con-
ventional security mechanisms tend to be conservative in their security guar-
antees, by adding a large number of messages and computational overhead,
which not only presents a challenge to real-time task execution but also induces
high-energy consumption. To face this challenge, energy-efficient security pro-
tocol execution is highly required. One solution consists of making the execu-
tion of employed cryptographic primitives more efficient through a combina-
tion of a new hardware and software optimization techniques.
Cost is also an issue in securing embedded systems. Embedded systems are

often highly cost-sensitive; adding a few cents can make a big difference when
a manufacturer builds millions of units of a product. Therefore, integrating
top-level security is not always cost-effective for embedded systems because
it mandates the use of more expensive hardware and software. Consequently,
it is necessary to find a balance between the security requirement and cost in
designing an embedded system.

11.3.2 Common Vulnerabilities

There is no 100% secure system though. Given sufficient time and resources,
attackers can break any system.Therefore, designers’ responsibility is to set up
a reasonable security goal for a system based on the services it has to offer and
all practical constraints it has to obey. The first step is to identify potential vul-
nerabilities and attacks for the system under consideration and then implement
proper services to counter potential attacks.
Common vulnerabilities of embedded systems include the following:

Programming errors. Buffer overflows, unvalidated input, race condition, and
insecure file operation are the most common programming errors that can
lead to control flow attacks.
A buffer overflow occurs when an application attempts to write data
past the boundary of a buffer. Buffer overflows can cause applications to
crash, can compromise data, and can provide an attack vector for further
privilege escalation to compromise the system on which the application is
running. Technically, there are stack-based and heap-based buffer overflow
exploitations.
Input validation is a fundamental measurement in securing an application.
This is particularly true for web-based applications. Any input received by
an application from an untrusted source is a potential target for attack.
Examples of input from untrusted source include text input field, command
input line, data read from an untrusted server over a network, audio, video,
or graphics files provided by users, and so on.
Race condition issues were discussed in Chapter 6. The ATM example
showed an undesired result when two people access the shared account
in some particular orders. It is also vulnerability that attackers can take

�

� �

�

11.3 Security 299

advantage of, if no mechanism that handles the race condition issue is
implemented.
In some cases, opening or writing to a file in an insecure fashion can give
attackers the opportunity to create a race condition. For example, you cre-
ate a file with the write permission. Before you write to the file, an attacker
changes the permission to read-only. When you write to the file, if you do
not check the return code, you will not detect the fact that the file has been
tampered with.

Access control problems. Access control in information system security is about
the control of who is allowed to do what. Access control includes authoriza-
tion, authentication, access approval, and audit. Authorization is the function
of specifying access rights or privileges to resources. Authentication is the act
of confirming the truth of an attribute of a single piece of data claimed true
by an entity. Access is approved based on successful authentication. Many
security vulnerabilities are created by the careless or improper use of access
controls, which lead to attackers to gain more privileges that they should
have. Of particular interest to attackers is the gaining of root privileges, which
refers to having the unrestricted permission to perform any operation on the
system. In general, the access control should be implemented fine-grained
enough to satisfy the principle of least privilege, which limits access to the
minimal level that allows normal functioning.
By the way, using weak passwords or hard-coded passwords in a device is
obviously a bad idea, because such vulnerabilities make it possible for attack-
ers to bypass access control mechanisms rather easily with minimal effort.

Improper data encryption. Encryption is the most fundamental mechanism
to protect the confidentiality of the data stored in a computing system or
transmitted via the Internet or other networks. Modern encryption algo-
rithms play a vital role in the security assurance. In addition to confiden-
tiality, encryption algorithms can be used to ensure data integrity. However,
improper encryption can also lead to security vulnerability. Examples include
using weak random number generators for generating cryptographic keys,
trying to create your own encryption method, and attempting to implement
a published encryption algorithm yourself.

11.3.3 Secure Software Design

Securing a real-time embedded system requires a good software engineering
practices and involves addressing the security concerns in every phase of the
software development life cycle. It is a bad idea to perform security-related
activities only as part of testing, because the after-the-fact technique usually
results in a high number of issues discovered too late or not discovered at all.
It is a far better practice to integrate activities across the software development
life cycle to help build security in.

�

� �

�

300 11 Practical Issues

A risk assessment and vulnerability identification should be performed, and a
cost-effective security goal should be established in the software requirements
and design phase.Then, in the implementation phase, techniques that serve the
security objectives of a particular system or product should be evaluated and
implemented. After that, the secure code should be fully reviewed and thor-
oughly tested. In addition to regular testing that aims to remove bugs, security
penetration testing is mandatory.

Penetration testing, also called pen testing, is the practice of testing a
computer system, network, or Web application to find vulnerabilities that an
attacker could exploit. The main objective of pen testing is to determine secu-
rity weaknesses. Pen testing can be either performed manually or automated
with software applications. The process includes gathering information about
the target before the test, identifying the possible entry points, attempting
to break in with fault injection, either virtually or for real, and reporting the
findings back.

11.4 Safety

Many real-time embedded systems are safety-critical systems. Safety is the
property of a system that it will not endanger human life or the environment.
It is a measure of the freedom of a system from those conditions that can
cause death, injury, occupational illness, damage to equipment or property, or
damage to the environment.
Safety and reliability are two different properties of a system. Reliability is a

measure of the rate of failures that render the system unusable, while safety is a
measure of the absence of failures or conditions that would render the system
dangerous. Safety is a combination of risk probability and severity of impact.
Reliability can reduce the probability of an event of risk, but not its impact. A
reliable systemmay not be safe, while a safe systemmay not be reliable. Imagine
a car that is never able to run above 10 miles per hour; it is safe, but its trans-
mission system is not reliable. If the car is functioning very well according to
all functional specification, but its two real wheels fall apart when it runs over a
small bump at a high speed, then it has a good reliability but is not safe. There-
fore, safety should be ensured, so that if something happens, the impact is as
low as possible.
Measurement of safety property involves how frequent and how severe

are the dangers. Risk probability can be classified into extremely improbable,
improbable, and probable. Risk severity is usually derived from system safety
assessment, which is a means to identify and control hazardous consequences
to be within acceptable risk.

�

� �

�

11.5 Power Conservation 301

The primary objective of all safety activities is to reduce or mitigate as many
risks as possible, ensuring that the product does not have the potential to harm
users. Developers of mission-critical embedded products, such as those in the
medical device, railway, automotive, and avionics industries, to name just a few,
need to have strategies to ensure the safety of their products.The rigorous stan-
dards and regulations that apply to safety-critical sectors have to be followed.
In terms of software development, there are certain well-established quality
assurance methods that help developers achieve functional safety. It is essen-
tial to address the safety issues of embedded products across the entire software
development life cycle, starting with proper, accurate, and well-documented
safety requirements. A mature process should be in place to track and manage
the requirements, risks, and all quality assurance activities.

11.5 Power Conservation

Many real-time embedded systems are battery-operated and are thus con-
strained by limited power budget. Conventional system design metrics such
as performance, size, weight, nonrecurring engineering cost, correctness, and
testability are understandably important. Power consumption, however, is
even more critical for embedded systems. Lower energy consumption means
longer battery life and mission duration.
There are two different types of power consumption: static (also referred to

as standby) and active. Static power consumption is mainly due to leakage.
It increases with temperature and supply voltage. Since leakage is a natural
phenomenon that comes with shrinking process technology, the only way to
eliminate it is to shut that component down.
Active power consumption depends on chip activity. It increases with supply

voltage, but not temperature. Several techniques have been developed for
power conservation. Dynamic voltage scaling (DVS), which involves dynami-
cally adjusting the voltage used in a computing component, is a well-known
technique in power management for real-time embedded systems. DVS to
increase voltage is known as overvolting; DVS to decrease voltage is known as
undervolting. Undervolting is performed in order to conserve power.
DVS is often used in conjunction with dynamic frequency scaling (DFS), a

technique in which the frequency of a microprocessor can be automatically
adjusted “on the fly,” either to conserve power or to reduce the amount of heat
generated by the chip.Through DVS and DFS, quadratic energy savings can be
achieved at the expense of linear performance loss.Thus, the execution of tasks
can be slowed down in order to save energy, as long as the deadline constraints
are not violated.

�

� �

�

302 11 Practical Issues

Other power conservation techniques include dynamic power switching
(DPS), where software is used to switch between power modes based on
system activity, and adaptive voltage scaling (AVS), a closed-loop, hardware
and software cooperative strategy to maintain performance while using the
minimum voltage needed based on the silicon process and temperature.
Power consumption is also affected by the way the software is designed.

Display, wireless peripherals, USB, CPUutilization, andmemory are among the
key areas where software has an influence. Nowadays, many System-on-Chip
(SoC) devices support power management by providing low power states,
such as sleep, doze, and hibernate, and mechanisms for software developers
to leverage them. In general, anything that can be done to reduce the number
of clock cycles or the clock frequency needed to execute an algorithm can
be applied to reducing power consumption, as long as a system can complete
the work as required. Another example is with I/O. Since I/O buffers at the
pin need to drive the current, we should minimize the traffic through major
peripherals such as memory controllers and eliminate unnecessary data
transfer in and out of the SoC.

Suggestions for Reading

Bohrbugs and Heisenbugs and their characteristics in software systems
were first discussed in Ref. [1]. A more thorough classification and precise
definitions of software faults were presented in Ref. [2]. The NVD technique
was introduced in Ref. [3] and experimentally evaluated in Ref. [4]. Software
aging and rejuvenation were discussed in Ref. [5]. Khelladi et al. [6] and
Kocher et al. [7] are two good articles on embedded system security. DVS was
first introduced in Ref. [8]. AbouGhazaleh et al. [9] presented an approach
that a novel hybrid scheme uses DVS and compiler support to adjust the
performance of embedded applications to reduce energy consumption.

References

1 Gray, J. (1985) Why do computers stop and what can be done about it?
Technical Report 85.7, PN87614, Tandem Computers, Cupertino.

2 Grottke, M. and Trivedi, K.S. (2005) A classification of software faults.
Proceedings of the 16th International IEEE Symposium on Software
Reliability Engineering, pp. 4.19–4.20.

3 Chen, L. and Avizienis,A. (1978) N-Version Programming: A Fault-Tolerance
Approach to Reliability of Software Operation. Proceedings of the 8th IEEE
International Fault-Tolerant Computing.

�

� �

�

References 303

4 Knight, J.C. and Leveson, N.G. (1986) An experimental evaluation of the
assumption of independence in multi-version programming. IEEE Transac-
tions on Software Engineering, SE-12 (1), 96–109.

5 Castelli, V., Harper, R.E., Heidelberger, P. et al. (2001) Proactive manage-
ment of software aging. IBM Journal of Research and Development, 45 (2),
311–332.

6 Khelladi, L., Challal, Y., Bouabdallah, A., and Badache, N. (2008) On security
issues in embedded systems: challenges and solutions. International Journal
of Information and Computer Security, 2 (2), 140–174.

7 Kocher, P., Lee,R., McGraw, G., Raghunathan,A. and Ravi, S. (2004) Secu-
rity as a new dimension in embedded system design. The 41st Design and
Automation Conference, San Diego, California, USA, June 7–11, 2004.

8 Pering, T. and Brodersen,R. (1998) Energy efficient voltage scheduling for
real-time operating systems. Proceedings of the 4th IEEE Real-Time Technol-
ogy and Applications Symposium, Denver, CO, June 1998.

9 AbouGhazaleh, N., Childers, B., Mosse, D., Melhem, R. and Craven, M.
(2003) Energy management for real-time embedded applications with com-
piler support. LCTES’03, San Diego, California, USA, June 11–13 2003.

�

� �

�

305

Index

a
actuators
antilock braking system (ABS) 8,

10, 11
magnetostrictive 28
pneumatic 28
shape memory alloy 28
solenoid 8, 28

analog-to-digit converter (ADC) 10,
26

quantization error 26
resolution 26

anti-lock braking systems (ABS)
anti-skid braking system 3
brake force 3
cornering force 4
deceleration sensor 5
electrical control unit (ECU) 7
hydraulic circuits 5
hydraulic control unit (HCU) 5
operation mode, valve
apply 5
hold 6
release 6

pump 5
slip rate 4
threshold control 8
valve
dump valve 5
isolation valve 5

wheel speed sensor 4

b
blocking
deadlock avoidance blocking 114,

115
direct blocking 114, 116, 117, 119
priority inheritance blocking 111,

114, 116, 118, 119
priority ceiling blocking 114,

116–119
time 86, 87, 103, 105, 111, 112,

116–119

c
closed-loop control 8
computation tree logic (CTL)
path quantifier 264
semantics 265–267
syntax 264, 265
temporal operator 264

concurrency 12, 127, 150, 198, 211,
222, 223, 240, 273

concurrent programming 127, 128
counters,see timers
critical sections 46, 56, 85, 99–119,

133–137, 142, 147, 255

d
deadlock 99, 102–104, 106, 109, 111,

114–116, 120, 122, 229, 233
digit-to-analog converter (DAC) 10,

26

Real-Time Embedded Systems, First Edition. Jiacun Wang.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

�

� �

�

306 Index

e
embedded systems
large-scale 2
medium-scale 2, 19
non-real-time 2
real-time 2
small-scale 2

f
ferryman puzzle 247, 248, 281–285
field programmable gate arrays (FPGA)

19, 20
files
access control 41
file systems 39–41
role-base access control (RBAC) 41

finite state machines (FSM)
acceptors 181
deterministic finite automation

(DFA) 181
Mealy machines 182, 184–188
Moore machines 182–184
non-deterministic finite automation

(NDFA) 188
state diagram 179–180, 186, 198,

199, 216
state transition table 182, 187, 190

i
induction effect 27
input/output (I/O) interface
analog 26
asynchronous 46, 47
device controller 41
direct memory access (DMA) 41
memory-mapped 27
port-mapped 27
synchronous 47

interprocess communication (IPC)
message queues 36, 148–155
named pipes 36
pipes 36, 148
shared memory 36, 148, 155–161

signals 36, 162–168
sockets 36, 148

interrupts
interrupt service routine (ISR) 39,

44
vector 39

instruction set
complex instruction set computing

(CISC) 22
reduced instruction set computing

(RISC) 22

k
Kripke structure 259

l
least significant bit 26
linear temporal logic (LTL)
computation path 256, 258,

260–262
formula 256–258, 261–264,

268
operators 256
parse tree 257–258
semantics 258
syntax 256, 257

m
memory
address
logical 36
physical 36
virtual 36, 38, 157

byte-addressable 36
cache 24, 25
cell 23
flash 23
fragmentation 38
locking 47
paged allocation 38
partitioned allocation 38
RAM 19, 21, 24
DRAM 24

�

� �

�

Index 307

SDRAM 24
SRAM 24

ROM
EEPROM 23
EPROM 23
PROM 23

single contiguous allocation 38
virtual memory 36, 158

microcontrollers 2, 13, 17, 19, 26, 42
model checker 254, 269, 281
model checking 253, 254, 269
multitasking 34, 39, 162

n
New Symbolic Model Verifier

(NuSMV)
asynchronous systems 273
counter example 254, 277, 284
fairness 273, 274, 288
modules 269, 272
simulation 278
SMV program 269–274, 281, 282
specification 254, 261, 263, 265,

268
traces 276, 278

o
operating systems (OS)
kernel 33, 34, 36, 42–48
system call 34, 35, 39, 40, 43, 45,

157
system mode 33, 34
user mode 33, 34, 48

p
parallel programming 128
Petri nets
boundedness 229
coverability graph 227–229
firing rules 221, 222, 224, 226, 234,

243
input function 220
liveness 229, 230

markings 220–244
𝜔-markings 226–229
output function 220
places 219–222
reachability 227
graph 227, 228
tree 227, 228

safeness 229
S-invariants 230, 232, 233
siphons 233, 234
T-invariants 230–232
tokens 219–222
transitions 219–222
traps 233, 234

piezoelectric effect 28
POSIX
specified real-time services 42–48
threads 128–148

power conservation
adaptive voltage scaling (AVS) 302
dynamic frequency scaling (DFC)

301
dynamic power switching (DPS)

302
dynamic voltage scaling (DVS) 301

predictability 12
priority ceiling 112–122
priority inversion 46, 57, 85, 86, 99,

101–122
processes
lightweight 34
multithreaded 34
process identifier 35
single-threaded 34

processors
architectures
Harvard 21
von Neumann 21

application specific integrated
circuits (ASIC) 19

application specific instruction set
processors (ASIP) 20

digit signal processors (DSP) 20

�

� �

�

308 Index

processors (contd.)
microprocessors
arithmetic logic unit 17
instruction decoder 17
program counter 18
registers 17

multi-core 20, 21
proportional–integral–derivative (PID)

controller
derivative control 9
integral control 9
proportional control 9

propositional logic
operators 256
truth table 256

r
race condition 133, 163, 298, 299
reactive systems 2, 179, 253
real-time computation tree logic

(RTCTL) 279–281
real-time computing constraints 1
real-time operating systems (RTOS)
board support package 42
examples 48–50
dispatcher 45
preemption 44, 56, 133
real-time kernel 42, 162

real-time systems
deterministic systems 59
hard 13
real-time constraint 13, 33, 42, 54
soft 13

reliability
mean time between failures (MTBF)

294
probability of failure on demand

(POFOD) 294
rate of occurrence of failure

(ROCOF) 294
resources
access control

non-preemptive critical section
protocol 103–106

priority ceiling protocol
111–116

priority inheritance protocol
106–111

stack-sharing priority-ceiling
protocol 119–122

operation
lock 100
unlock 100

requirement specification 100, 101
resource-constrained environments

11

s
safety 13, 300, 301
schedulers 35, 39, 42, 44, 45
schedules
feasible 59
optimal 59

scheduling
acceptance test 68
clock-driven
frames 62
hyperperiod 55, 60, 61
major cycle 61–65, 68
slack stealing 67, 82
slack time 68, 69, 82
structured 62–69
task slicing 65, 66

deadline-monotonic (DM) 76
earliest deadline first (EDF) 44,

76–82, 89, 91
priority-driven
static-priority algorithm 70
dynamic-priority algorithm 70

rate-monotonic (RM) 70–76, 91
round-robin 46, 69, 70
schedulable utilization 59

security
buffer overflow 298
confidentiality 299

�

� �

�

Index 309

encryption 299
mechanisms 298
penetration testing 300
risk assessment 300
services 297
vulnerabilities 298

self-suspension 86
sensors
acceleration 27
active 28
displacement 27
gyro 27
humidity 27
light 27
passive 28
pressure 27
temperature 27
ultrasonic 27

software aging 294, 296, 297
software faults
Bohrbugs 293
fault avoidance 295
fault recovery 296
fault removal 295
fault tolerance 295
Heisenbugs 294
Mandelbugs 293

software rejuvenation 296, 297
synchronization
condition variables 128, 133,

137–142
mutex 45, 46, 104, 105, 128,

133–142
named semaphores 157, 160–182
semaphores 45, 46, 128, 142–148

t
task(s)
aperiodic tasks 53, 54, 66, 69, 77,

82, 83
context 39
switch 39, 40, 42, 45, 62, 66, 70,
85, 87, 88, 116

control block 39, 45, 87
criticality 56
deadline
absolute 76
relative 54

execution time 54
graph 58
periodic tasks
period 54
phase 54

precedence constraints 58, 70
preemptivity 56
release time 54
response time 54
sporadic tasks 54, 68, 69, 82
utilization 55, 59, 72, 73, 80, 89–94

task assignment
bin-packing 89, 90
first-fit 90, 91
decreasing 91

rate-monotonic-first-fit 91, 92
temporal logic
formulas 253–255
models of time
branching-time 255, 264
linear-time 255, 258

threads 21, 34, 35, 46, 128
time-demand function 73, 85, 87, 88
timed Petri nets
decision-free Petri nets 238
deterministic timed Petri nets

(DTPN) 234–240
minimum cycle time 238, 239
time Petri nets (TPN) 240–244
static interval 241
earliest firing time 241
latest firing time 241

timers
capture register 29
output signal 29
input pulses 29
prescaler 29

transition systems 254, 260, 261, 266

�

� �

�

310 Index

u
unified modeling language (UML) state

machines
actions 198
behavioral diagrams 197, 198
composite states 198, 199, 202–205
events
call 201, 205
change 202
signal 201, 205
time 202

guards 200, 201, 204, 210
hierarchy 202–205
history
deep 207

shallow 207
join 210
orthogonality 205, 206
pseudostates
choice 204
entry points 209
exit points 209
fork 210

regions 199
states 198
structural diagrams 197
submachine states 199, 202,

206
terminate 210
transitions 198

	fmatter
	ch1
	ch2
	ch3
	ch4
	ch5
	ch6
	ch7
	ch8
	ch9
	ch10
	ch11
	index

