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FOREWORD

In the early 1990s, the Object Management Group (OMG) undertook
a worldwide survey. Given the craze at the time for object-oriented
programming, object-oriented databases, object-oriented protocols—
object-oriented anything, in fact—it seemed obvious that the myriad
languages and methodologies for object-oriented analysis and design
ought to be tracked down, compared, and cataloged. OMG started the
process in 1993, and by 1994 had collected and published a useful
guide, Object Oriented Analysis & Design: Description of Methods.
Under the capable leadership of ICL’s Andrew T.F. Hutt, OMG had
moved past its early focus on distributed computing and middleware
standards such as CORBA, focusing on software design methodologies
and notations.

Unfortunately, the hue and cry that resulted from this simple and
abundantly useful catalog was a huge surprise to Dr. Hutt, myself, and
all of the OMG members and staff who participated in the production
of the catalog. We were told that standardization would result in the
freezing of forward momentum in software development methodology.
Research remained fluid, we heard, and the researchers didn’t want to
see development stop in the face of new discoveries.

An important new idea came from the catalog, however: though
development methodologies might have been in constant flux, all of
the methodologies then in use could realize value from a shared lan-
guage for expressing their processes. Language design, after all, was
already well understood by 1994, and the race was then on to provide
a standard language. Major consolidation in the software development
methodology marketplace was just starting as well, which brought
together erstwhile competitors to merge their thoughts and designs.
The result was a new OMG standard, quite outside the middleware
realm, for expressing software design—a key ingredient for any engi-
neering practice after all is a way to express design, like blueprints for
buildings and bridges. Abstract design languages allow analysis of the
design from engineering viewpoints, much as a bridge design is checked
for structural integrity from its blueprint, not after construction.



As I write this, the Unified Modeling Language (UML) is coming
to the end of its first two decades as a world standard for software
modeling. Twenty years have come and gone since, in September 1997,
dozens of organizations came together to complete the first version of
the language. Over the intervening years, newer versions have updated
that first approach, increasing the expressibility of the language and at
the same time simplifying its underpinnings. Though dozens of organi-
zations and likely hundreds of individuals have had their fingers inside
the UML standard, it remains robust and powerful and quite widely
adopted in the software industry.

And, in fact, not just in the software industry—UML has been used
in many other ways, as a way to express business processes, systems
architectures, even electronic circuits. The success of a product (or in
this case a standard) perhaps can be best measured as how broadly it
is used both inside and outside of its intended purpose. UML has also
spawned numerous related languages: the Meta-Object Facility (MOF)
that underlies the UML is now the underpinnings also of other lan-
guages (like the Business Processing Model & Notation (BPMN) and
others); the executable Functional UML (fUML), sufficiently precise
to be directly executed like a programming language itself; UML has
also been extended to explicitly support other modeling regimes like
Systems Engineering (with the Systems Modeling Language, SysML)
and work as of this writing is focusing on product architectures, busi-
ness architectures, and others. UML (and MOF) in 2000 also became
the major underpinning of the Model Driven Architecture (MDA), a
model-based way to develop software, just as modeling and simulation
underlie other engineering disciplines. Itself already approaching
20 years of age, the MDA is becoming a way to express semantics, and
the UML is the key technology that makes that possible.

One weak spot for UML and MDA has always been the
computation-independent model (CIM) layer that captures the design of
a software engineering artifact without regard to how it is implemen-
ted. The CIM is then translated into a platform-independent model and
thus to a platform-specific model which generally means some coding
language, although it might be more complicated than that. Many
methodologies have been developed over the past 20 years for CIM’s
that are sufficiently abstract to express design without regard to plat-
form, but sufficiently precise to specify exactly one process. Solving

xii Foreword



that problem would allow another layer of automation—and thus
success—for users of the Model Driven Architecture.

Topological modeling is one approach to capturing design in the
abstract. It is a testament to the flexibility of the UML standard that
topological modeling can actually be integrated directly into the lan-
guage, using the native profiling mechanisms of the UML and its
underlying MOF. This allows complete expression of system design,
from a high-level abstraction, all the way down to low-level implemen-
tation, with a single language. That idea and a complete expression of
the idea are the focus of this book, and an enduring testament to an
OMG standard whose success continues to astound.

Richard Mark Soley, PhD
Chairman and Chief Executive Officer,

Object Management Group, Inc.,

Lexington, MA, United States

May 6, 2017
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PREFACE

The analysis of problem domain and design of desired solution within
software development process has a major impact of the achieved
result—developed software. While the software developer community
uses a set of tools and different techniques to create detailed specifica-
tion of the solution, the proper analysis of problem domain function-
ing is ignored or covered insufficiently. One of such techniques is
object-oriented software analysis and development which states that
there are two fundamental aspects of systems modeling: analysis and
design. The analysis defines what the solution needs to do within the
problem domain to fit the customer’s requirements, and the design
states how the solution will be implemented. The design of object-
oriented software is leaded by the Unified Modeling Language
(UML). UML is an approved standard modeling notation for visualiz-
ing, specifying, constructing, and documenting the artifacts of a soft-
ware�intensive system. While the UML has elements for designing
and specifying artifacts of a software system, it lacks the ability to doc-
ument the functioning of a problem domain by using computation
independent constructs. To solve the previously mentioned UML issue,
a new—extended—version of UML is developed—Topological
Unified Modeling Language (Topological UML). Topological UML is
a combination of UML and formalism of Topological Functioning
Model (TFM). It captures system functioning specification in the form
of topological space consisting of functional features and cause-and-
effect relationships among them and is represented in a form of
directed graph.

The main aim of improving UML is by transferring topology and
mathematical formalism of TFM to UML thus strengthening the very
beginning of the software development lifecycle. Sometimes it is very
hard to pay appropriate resources and time at the very beginning of
the software development lifecycle to detect and analyze aspects of
desired software system as much as possible. If we pay appropriate
attention at the beginning of the software development project, we
tend to avoid wasting valuable resources, including time; otherwise it



could lead to unnecessary reworking or even recoding parts of the sys-
tem or the system as whole. Just like Benjamin Franklin has said:

“If you fail to plan, you are planning to fail!”

While the UML is a notation and as such its specification does not
contain any guidelines of its application during software development
process, the UML modeling driven methods fulfill this gap.
Unfortunately, not every UML modeling driven method covers all the
software development lifecycle. In addition—usually only a small part
of UML diagrams is used to specify both problem and solution
domains. Due to the partial UML and software development lifecycle
coverage and the fragmentary application of UML diagrams the soft-
ware developers are forced to combine UML with several modeling
methods and techniques (instead of taking UML as a notation and
one UML modeling driven method) thus the application of UML gets
more complicated and incomprehensible. To address this issue the
developed UML extension is provided together with a proper modeling
method—Topological UML modeling.

Topological UML modeling for problem domain modeling and soft-
ware systems designing is a model-driven modeling method. In the con-
text of Model Driven Architecture (MDA), the Topological
Functioning Model (TFM) considers problem domain information sep-
arate from the solution domain information and holistically represents
a complete functionality of the system from the computation indepen-
dent viewpoint while Topological UML has elements for representing
system design at the platform independent viewpoint and platform spe-
cific viewpoint. The Topological UML modeling method covers model-
ing and specification of systems in computation independent and
platform independent viewpoints. Problem domain analysis and soft-
ware system design with Topological UML modeling method consists
of six activities—the first one is problem domain functioning analysis
followed by behavior analysis and design, structure analysis and design,
state change and transition analysis, structuring logical layout of design,
and concluding with components and deployment design.

STRUCTURE OF THE BOOK

Part I. Introduction

Takes a broad look at the UML—what it is (see Chapter 1: Unified
Modeling Language—A Standard for Designing a Software), how to use
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it (see Chapter 2: Software Designing With Unified Modeling Language
Driven Approaches), and how to adjust it to improve software modeling
and design possibilities (see Chapter 3: Adjusting Unified Modeling
Language). If you are familiar with UML and its application in software
design, you can skip this part and go to Part II, Improving Domain
Modeling, or Part III, Topological UML Modeling Explained.

Chapter 1. Unified Modeling Language—A Standard for Designing a
Software

Chapter reviews UML evolution by paying most attention on the dia-
grams included in versions 1.x and 2.x as well as on the formalism
development used to specify the language. Review shows the benefits
and limitations of applying UML within software development life-
cycle, and identifies UML extension mechanisms and scenarios.

Chapter 2. Software Designing With Unified Modeling Language Driven
Approaches

UML is a notation and as such its specification does not contain any
guidelines of software development process. This chapter discusses the
current state of the art of UML-based software development approaches.
Most attention is paid on the artifacts created by using the UML.

Chapter 3. Adjusting Unified Modeling Language

This chapter discusses UML improvement by using the metamodeling
approach and its extensibility mechanism—profile. Since the UML
specification is a specification of a notation and it does not include any
guidelines for profile definition and specification, a set of profiles are
reviewed to define a profile specification template.

Part II. Improving Domain Modeling

Takes a broad look at the Topological UML—what it is (see
Chapter 4: Topological Unified Modeling Language) and how to use it
(see Chapter 5: Topological UML Modeling).

Chapter 4. Topological Unified Modeling Language

Chapter defines Topological Unified Modeling Language (Topological
UML) as a profile of UML thus answering “What it is?” The created
profile provides a UML specific version of the metamodel that can be
incorporated into standard UML modeling tools. Topological UML
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development is based on two steps: at first extend UML by using pro-
file mechanism, thus creating Topological UML profile (this chapter),
and then define guidelines for using Topological UML in practice,
thus formalizing the way the Topological UML is used (next chapter).

Chapter 5. Topological UML Modeling

Defines method on how to apply Topological UML profile in practice
thus answering “How to use it?” Problem domain analysis and soft-
ware system design with Topological UML modeling method consists
of six activities: (1) problem domain functioning analysis, (2) behavior
analysis and design, (3) structure analysis and design, (4) state change
and transition analysis, (5) structuring logical layout of design, and (6)
components and deployment design.

Part III. Topological UML Modeling Explained

Describes in detail each of the Topological UML modeling activities.
Within the Part III, Topological UML Modeling Explained, we use a
case study of enterprise data synchronization system development. This
part is supplemented with functioning description of enterprise data syn-
chronization, functional requirements, and nonfunctional requirements.

Chapter 6. Problem Domain Functioning Analysis

Problem domain functioning analysis is the first activity within
Topological UML modeling and it states that the analysis of the prob-
lem domain should be performed during which TFM gets developed.
To do so, functioning description and functional requirements are used
as prerequisites. This activity ensures that proper attention is paid at the
very beginning of the software development lifecycle by capturing vari-
ous aspects of the desired system. This part is supplemented with func-
tioning description of enterprise data synchronization, functional
requirements and nonfunctional requirements used throughout Part III,
Topological UMLModeling Explained.

Chapter 7. Behavior Analysis and Design

Behavior Analysis and Design is the next activity within Topological
UML modeling process. This activity is based on the results obtained
within previous Topological UML modeling activity—problem
domain functioning analysis. By basing behavior analysis on TFM,
we are identifying and designing subsystems, use cases, actors, and
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relationships between them (topological use case diagram), messages
and their sequence (sequence diagram), and workflows (activity and
interaction overview diagram).

Chapter 8. Structure Analysis and Design

The main goal of structure analysis and design is to develop a topolog-
ical class diagram which contains classes together with their attributes
and responsibilities. To identify classes and assign the right responsibil-
ity to each one of them a TFM is used—initially TFM is transformed
into communication diagram showing objects and messages they send
each other, afterwards the communication diagram is further trans-
formed into topological class diagram.

Chapter 9. Object State Change and Transition Analysis

This chapter describes object state change and transition analysis based
on the state diagram development. The state changes and transitions
within a system are formally analyzed by using TFM. The functional
features together with topological relationships contain the necessary
information to create state diagram which reflects the state changes
within system.

Chapter 10. Structuring Logical Layout of Software Design

Logical layout of software design is structured in accordance with the
defined subsystems in the behavior analysis and design activity and
classes with their relationships as developed within structure analysis
and design activity. The logical layout is depicted by using package
diagram.

Chapter 11. Components and Deployment Design

Chapter describes components and deployment design activity which
concludes the Topological UML modeling process. Components are
designed in accordance with packages and nonfunctional requirements
and is depicted by using component diagram. Deployment is planned
for the designed components in accordance with nonfunctional require-
ments and is reflected by using deployment diagram.

Janis Osis and Uldis Donins
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CHAPTER 11
Unified Modeling Language: A Standard
for Designing a Software

INFORMATION IN THIS CHAPTER:

• UML diagrams
• Formalism of UML
• Benefits and disadvantages of applying UML
• UML improvement options

1.1 INTRODUCTION

Unified Modeling Language—abbreviated as UML—is a graphical
language officially defined by Object Management Group (OMG) for
visualizing, specifying, constructing, and documenting the artifacts of a
software system [106]. An artifact in software development is an item
created or collected during the development process (example of arti-
facts includes use cases, requirements, design, code, executable files,
etc.). UML offers a standard way to write system’s blueprints, includ-
ing conceptual things such as business processes and system functions
as well as concrete things such as programming language statements,
database schemas, and reusable software components [37]. Despite that
UML is designed for specifying, visualizing, constructing, and document-
ing software systems, it is not restricted only for software modeling. UML
has been used for modeling hardware, and is used for business process
modeling, systems engineering modeling and representing organizational
structure, among many other domains [125].

The first UML specification (version 1.1) was published by OMG
at 1997. Since then there has been continuously ongoing work to
improve both the language and its corresponding specification.
Additionally, we should admit that UML versions 1.4.2 and 2.4.1 have
been published under International Organization for Standardization
(ISO) [44] and International Electronical Commission (IEC) [43] as a
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standard. In year 2005, the version 1.4.2 was published as ISO/IEC
19501:2005 [46]. Following in year 2012, the version 2.4.1 was pub-
lished as ISO/IEC 19505-1 [47] and ISO/IEC 19505-2 [48]. You should
ask—why there are two separate ISO/IEC standards for single UML
version? The answer hides in fact that beginning with UML version
2.0 its specification was divided in two parts (i.e., two separate
documents)—so-called Infrastructure and Superstructure. Accordingly,
the ISO/IEC standard is based on this separation. But what a
surprise—UML version 2.5 specification [79] again is a single document.

During the two major and a number of revision versions of UML,
the definition of UML is evolving. UML version 2.4.1 specification
[77,78] defines the language as follows: “UML is a visual language for
specifying, constructing, and documenting the artifacts of systems. It is a
general-purpose modeling language that can be used with all major
object and component methods, and that can be applied to all application
domains (e.g., health, finance, telecom, aerospace) and implementation
platforms (e.g., J2EE, .NET).”

The UML originally was developed in middle of 1990s as a combi-
nation of previously competing object-oriented analysis and design
approaches:

• Booch method by Booch [13],
• Object-Modeling Technique (OMT) by Rumbaugh, Blaha,

Premerlani, Eddy, and Lorensen [105],
• Object-Oriented Software Engineering (OOSE) by Jacobson,

Christerson, Jonsson, and Overgaard [49], and
• Other contributions to modeling complex systems, e.g., statecharts

by Harel [41].

The first version of UML (version 1.1) was approved by OMG in
year 1997 [71]; afterwards UML has been revised with several releases
(UML 1.3, 1.5, 2.0, 2.1.1, 2.1.2, 2.2, 2.3, 2.4.1, and 2.5 [81]) by fixing
some problems and adding new notational capabilities. The latest stan-
dard released by OMG is UML version 2.5 (UML version 2.0 is a
major rewrite of UML 1.x (“x” denotes the main version and any
subversion of specification) and was released in 2015).

The UML became widely accepted as the standard for object-
oriented analysis and design soon after it was first introduced [54] and
still remains so today [22,103]. Since the release of first UML version a
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large number of practitioner and research articles and dozens of text-
books have been devoted to articulate various aspects of the UML,
including guidelines for using it. In fact, since the UML specification is
a specification and thus it is written in a manner to specify every aspect
of the language’s constructs, it does not contain guidelines on how to
apply the language elements in real-life situation. So just reading the
language’s specification does not give an insight of its application. We
advise to read UML specification together with guidelines describing
approach or methodology of applying UML diagrams throughout
software development lifecycle. Since the UML as a language includes
14 kinds of diagrams and many elements building them up, the scope
of UML-related research areas is wide:

• Formalization of UML semantics (e.g., [31,42] (both after UML 1.1
was released), and [122] (after UML 2.0 was released)),

• Extending the UML (e.g., [64,99], and review of a number of UML
profiles developed by different researchers and groups [103]),

• Formalizing the way, the UML diagrams are developed (e.g.,
[88,96]),

• Ontological analysis of UML modeling constructs (e.g., [125]),
• Empirical assessments (e.g., [22,32]),
• Analysis of the UML’s complexity (e.g., [30,111,112]),
• Difficulties of learning UML (e.g., [113]) and how to avoid them

(e.g., [11]),
• Transformations between UML diagrams (e.g., [61,57,66]),
• Software code generation and related issues with generated code

quality (e.g., [59,108,118]), and
• Experiments that evaluate aspects of UML models effectiveness

(e.g., [17]).

The large number of researches regarding UML evolving and
strengthening is caused by the basis on which UML was developed.
According to Dobing and Parsons [22] the “UML was not developed
based on any theoretical principles regarding the constructs required for
an effective and usable modeling language for analysis and design;
instead, it arose from (sometimes conflicting) ‘best practices’ (e.g.,
Booch, OMT, OOSE) in parts of the software engineering community.”

The next section of this chapter introduces in brief with the dia-
grams found in UML specification. The review of elements that build
up UML within this chapter is based on UML version 2.4.1
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specification which is divided into two volumes (both volumes cross-
reference each other and the specifications are fully integrated):

• Infrastructure [77]—defines a metalanguage core that can be reused
to define a variety of metamodels, including UML, Meta-Object
Facility (MOF) [74], and Common Warehouse Metamodel (CWM)
[70]; and the core metamodel on which the Superstructure is based.
The Infrastructure of the UML is defined by the
InfrastructureLibrary package which consists of two subpackages:
1. Core—contains core concepts which are used when metamodel-

ing and
2. Profiles—defines the mechanisms that are used to customize

metamodels.
• Superstructure [78]—defines the notation and semantics for dia-

grams and their elements. The Superstructure metamodel is specified
by the UML package, which is divided into a number of sub-
packages that deal with structural and behavioral modeling.

Although the UML specification 2.5 has been extensively rewritten
from its previous version 2.4.1 by combining together the infrastructure
and superstructure parts, the metamodel itself remains unchanged from
UML 2.4.1 superstructure [79]. Thus, the amount and types of UML
diagrams have not changed from version 2.4.1 to version 2.5.

1.2 UNIFIED MODELING LANGUAGE DIAGRAMS

A system should be specified from different viewpoints to get a broader
and more comprehensive insight and understanding of the intended
software. The more efforts are added to consider the system from dif-
ferent viewpoints at the very beginning of the software development
lifecycle, the more risk of producing irrelevant or unnecessary software
system is reduced or even avoided [98]. Another benefit of such
approach hides in fact of reducing the need of overworking or overdo-
ing things that seem to be completed. The bunch of UML diagrams
allows us to take a look at the system from various viewpoints. “A dia-
gram is the graphical presentation of a set of elements, most often ren-
dered as a connected graph of vertices (things) and arcs (relationships).
A diagram is a projection into a system” [15]. Additionally, the UML
diagrams can be developed in different abstraction levels showing the
most important aspects in each one of the level. The abstraction levels
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allow to describe and to show the system with the appropriate informa-
tion amount for the stakeholders and developers.

In context of software development, there are five complementary
views that are important in visualizing, specifying, constructing, and
documenting software architecture [106]:

1. The use-case view,
2. The design view,
3. The interaction view,
4. The implementation view, and
5. The deployment view.

Each of these views involves structural modeling (static aspect of a
system) as well as behavioral modeling (dynamic aspect of a system).
Let’s take a look at the diagrams included in UML specification and
evolution history of them. The very first UML specification
(version 1.1) released by OMG in 1997 [71] contained only nine dia-
gram types. By evolving the UML, the amount of diagram types has
also grown. The newest UML specification (version 2.5) [79] released
by OMG in year 2015 contains 14 diagram types (see Fig. 1.1) which
are organized in two major diagram types and one subtype:

• Structure diagrams—aimed to visualize, specify, construct, and doc-
ument the static aspect of a system,

• Behavior diagrams—are used to visualize, specify, construct, and docu-
ment the dynamic aspect of a system (modeling dynamic aspect of a
system can be considered as representing its changing parts),
• Interaction diagrams—show interaction, consisting of a set of

objects and their relationships, including the messages that may be
dispatched among them. By using interaction diagrams, it is possi-
ble to reason about flow of control within an operation, a class, a
component, a use case, or the system as whole.

All of UML diagrams are briefly described in following subsections:
Section 1.2.1 describes structure diagrams and Section 1.2.2—behavior
diagrams.

1.2.1 Structure Diagrams
The UML’s structural diagrams are aimed to visualize, specify,
construct, and document the static aspect of a system [15,78,79].
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All structure diagrams are listed and described in the subsections of this
section. Each subsection name denotes corresponding UML diagram
and the contents include description, main elements, UML version in
which the diagram is included, and an example of a diagram.

1.2.1.1 Class Diagram
Class diagram is the most common diagram found in object-oriented
systems and it is used to illustrate the static viewpoint of a system.
It shows a set of classes, interfaces, and their relationships. Class
diagrams are also the foundation for a couple of related diagrams:
component and deployment diagrams. The class diagram is included in
UML specification since the first (1.1) version.

The class diagram includes following elements:

• Class—a template for creating objects, providing specification of
attributes and operations that an instance of the class can complete.
In the context of programming languages, the operation

Figure 1.1 Diagram types included in UML specification version 2.5.
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is addressed as function or procedure. When an object is created by
a constructor of the class, the resulting object is called an instance
of the class. In certain circumstances it is needed to also model
instances of classes at the specific moments in time—for those cases
Object diagram should be used (see Section 1.2.1.2). See example of
class representation using different notations in Fig. 1.2.

• Interface—specifies a contract consisting of a set of coherent public
attributes and operations for a class. Any instance of a class that
realizes the interface must fulfill that contract. Since interfaces are
declarations, they are not instantiable. Instead, an interface specifi-
cation is implemented by an instance of a class. Each class may
implement more than one interface and each interface may be
implemented by a number of different classes. Some object-oriented
programming languages, such as .NET [68] and Java [19] uses inter-
faces to “implement” multiple inheritance. Multiple inheritance
denotes that particular child can have more than one parent.
Fig. 1.3 shows example of class diagram having multiple interfaces
and classes realizing and requiring them.

• Relationship—a concept that specifies some kind of relationship
between elements, i.e., it references one or more related elements.
The relationship can model either physical or logical relations. The
UML specification contains definition of multiple relationships that

Figure 1.2 Example of a class representation.
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can exist between elements. The most important of relationships are
the following three which are illustrated in Fig. 1.4:
1. Generalization—relates generalized classes to specialized classes,

i.e., it shows the parent-child relations or the superclass-subclass
relations.

2. Association—structural relationships among classes showing the
physical structure of things. For example, transport vehicle has
fuel tank. It shows also the multiplicity between things. For
example, car has four tires.

3. Dependency—states that one entity uses the information and ser-
vices of another entity. For example, car uses petrol station to fill
fuel tank.

• Enumerator—used to specify definite set of available values. For
example, Boolean can be specified as enumerator with two values
true and false respectively (take a look at Fig. 1.5).

Figure 1.3 Class diagram showing implementation and usage of interfaces.
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Fig. 1.6 shows an example of class diagram which is developed as a
part of data synchronization system development project which is later
discussed in details in Part III, Topological UML Modeling
Explained. It contains one abstract class (DataSource) with specialized
classes of it (SourceDataSource and TargetDataSource), additional
three classes and an enumerator which are tied together by associations
and dependencies.

Figure 1.4 Example of relationships between classes.

Figure 1.5 Enumerator definition for Boolean and its application.
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1.2.1.2 Object Diagram
While objects are instances of classes, an object diagram is a snapshot
of the objects in a system at a specific point in time including the rela-
tions (links) between them. You should use object diagrams whenever
it is needed to model or take a look on the values of attributes and
state of the object at different stages during the execution of the soft-
ware. They are very useful to model step-by-step execution of complex
process or calculation operation. You can take a look at the initial
stages of objects, during the process, and of course the final stages of
objects to see the whole picture. Since it shows instances rather than
classes, it is also called an instance diagram.

Figure 1.6 Class diagram of enterprise data synchronization system.
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The object diagram is included in UML specification since the first
(1.1) version and it commonly contains following main elements: object
and link, as you can see in Fig. 1.7. An association in class diagram
becomes a link in object diagram. The example shows a car with four
tires—the snapshot includes data about car itself (manufacturer and
model) as well as tires (radius and manufacturer).

1.2.1.3 Package Diagram
The package is general-purpose mechanism for organizing modeling ele-
ments into groups, i.e., classes in groups or in namespaces and the rela-
tionships between them. Packages are used to arrange modeling
elements (e.g., classes, interfaces, components, nodes, diagrams, colla-
borations, use cases, and other packages) into larger chunks that it
is possible to manipulate them as a group. Packages can also be used to
present different views of system’s architecture and they can be incorpo-
rated into components to build up their internal structure. Well-designed
packages group elements that are semantically close and tend to change
together. Package diagram was first introduced in UML version 2.0.
The elements that build up a Package diagram are as follows:

• Name—all packages should have a name that distinguishes them
from other packages and allows to identify it. Since packages can be
graphically displayed with slight differences—the name of package
typically is placed in the middle of the package, or in the upper right
side of the package (see examples in Fig. 1.8).

Figure 1.7 Object diagram showing car and all of its four tires.
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• Package—a logical boundary of modeling elements to group
together. You can either choose to show or hide the contents of a
package. One way of how to organize packages—the commonly
used namespaces of the classes. Graphically a package is drawn like
a closed folder. Take a look at Fig. 1.9 to see the different ways of
drawing package and revealing/hiding its details.

• Element—a package contains elements, i.e., classes, interfaces, com-
ponents, nodes, use cases, diagrams, and other packages grouped
into it. Every element that is included in the package is defined
within it. If we destroy the package, all the elements within it are
destroyed as well. Right side of Fig. 1.9 shows nested elements of
package Vehicle while Fig. 1.10 gives an example of modeling
package within package.

Figure 1.8 Name of package.

Figure 1.9 Packages.
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• Relationships—several kinds of relationships are used when model-
ing packages: import, export, and dependency use relationship. If
elements of one package uses elements of another package, then
import or use relationship is used. If package contains public elements
(e.g., public class manufacturer in Fig. 1.9) —it is called an export.

As you can see in Fig. 1.11, the package diagram is very useful to
avoid unnecessary circular code references in the implementation. We
should avoid circular references to enable normal code compilation—
with such references both referenced classes must be recompiled every
time either of them is changed. The role of package diagram is to iden-
tify as early as possible the situations where circular references could
be used as a temporal solution (as we all know the temporal solutions

Figure 1.10 A package within a package.

Figure 1.11 Package diagram showing packages and their relations.
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are commonly with the most longest life) and to redesign the solution
with the least efforts required.

1.2.1.4 Component Diagram
A component diagram shows the internal parts, connectors, and ports
that implement a component. When the component is instantiated,
copies of its internal parts are also instantiated. The UML component
diagram shows how a software system will be composed of a set of
deployable components—dynamic-link library (DLL) files,
executable files, or web services—that interact through well-defined
interfaces and which have their internal details hidden.

The component diagram is included in UML specification since the
first (1.1) version and it contains the following elements:

• Interface—specifies a contract consisting of a set of coherent public
attributes and operations for a class. Any instance of a class that
realizes the interface must fulfill that contract. Since interfaces are
declarations, they are not instantiable. Instead, an interface specifi-
cation is implemented by an instance of a class. Each class may
implement more than one interface and each interface may be
implemented by a number of different classes. Fig. 1.12 shows
example of component diagram having multiple interfaces and com-
ponent providing and requiring them.

• Component—represents a modular part of a system that encapsu-
lates its contents, it defines its behavior in terms of provided and
required interfaces. As such, a component serves as a type whose
conformance is defined by these provided and required interfaces
(encompassing both their static as well as dynamic semantics). One
component may therefore be substituted by another only if the two

Figure 1.12 Component diagram showing component “Bank account” that provides and requires specific
interfaces.
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are type conformant. An example of component with provided and
required interfaces is given in Fig. 1.13.

• Port—an explicit window into an encapsulated component. All of the
interactions into and out of such component pass through ports.
Each port provides or requires one or more specific interfaces. There
can be multiple ports providing or requiring the same interface. It
allows greater control over implementation and interaction with other
components. Fig. 1.14 considers component with two named ports
that each requires the same interface. The first port Cash withdrawal
is used when bank’s client takes out cash from automated teller
machine (ATM) using his card. The other port named Payment in
shop is used when making payments with card at shop.

• Internal structure—used to specify structure of a complex compo-
nent, i.e., typically components are composed of smaller compo-
nents thus building up the system. Fig. 1.15 gives example of an
internal structure representation.

• Part—a component that builds up internal structure of a more com-
plex component. You can consider part as a subcomponent. An
example of showing parts within component is given in Fig. 1.15.

Figure 1.13 Example of component.

Figure 1.14 Component with two ports.
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• Connector—a relation between ports of components. If one port
provides interface required by the other port, they can be linked
together. There are several types of connectors that we can draw
between parts and components: A direct connector links together
two ports of parts, connector by interfaces links together two ports
by relating together required—provided interfaces using lollipop
and socket notation, and delegation connector which links together
port of a part and port of a component thus providing interface
(i.e., provides services to other components) or requiring interface
(i.e., consuming services of another component). Take a look at an
example showing all three kinds of connectors in Fig. 1.16.

There is an additional diagram type within UML 2.x versions—
composite structure diagram. It shows the internal structure of a class
or collaboration and uses interface, component, port, and connector to
show the internal structure. The difference between components and
composite structure is tiny.

1.2.1.5 Deployment Diagram
A deployment diagram commonly is used to specify how the compo-
nents of a system are distributed across the infrastructure and how
they are related together. To model such a view deployment diagrams
uses just two kinds of elements—nodes (i.e., components of a system

Figure 1.15 Internal structure of a component “Bank.”
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or the infrastructure artifacts) and relationships that links nodes
together. Deployment diagram shows the static deployment view of
architecture. Deployment diagram typically is related to a component
diagram in a way that nodes typically encloses one or more components.
A deployment diagram is a diagram that shows the configuration of
runtime processing nodes and the artifacts that live on them.

The deployment diagram is included in UML specification since the
first (1.1) version and it includes following elements:

• Node—artifact of a software system (i.e., a component) or artifact
of an infrastructure (e.g., server, network segment, sensors, etc.).

• Relationship—used to tie together nodes within deployment diagram
thus building up a graph consisting of arcs (relationships) and verti-
ces (nodes). Typically, association and dependency relationships are
used.

An example of deployment diagram showing servers, their relation-
ships and communication with client devices is shown in Fig. 1.17,
which consists of three infrastructure layers—web-front-end servers,
application server and data-storage server. The web-front-end servers
contains all the components needed to render html pages on client

Figure 1.16 Example of connectors for parts and components.
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browsers, including communication with application layer to read and
manipulate with data. The application layer (node of Application
server) is hidden from the client thus improving security aspect of the
deployment and contains all the artifacts that are required to work
with data (i.e., implements read and write operations) while the Data
storage node is responsible for storing and retrieving data bytes from
the media. The Client device holds components such as internet browser
for user to be able to interact with the system. The Client device node
adds more understanding to the deployment diagram showing that the
client can access data only using the web-front-end layer.

1.2.1.6 Profile Diagram
The profile diagram contains mechanisms that allow extending and
adapting metaclasses from existing metamodels for different purposes;
includes the ability to tailor the UML metamodel for different plat-
forms or domains. The profile diagram is the most younger diagram

Figure 1.17 Deployment diagram showing servers as nodes and relations between them.
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among the diagrams of UML—it is introduced only in version 2.2 thus
finally allowing legally extending the UML metamodel—the profiles
mechanism is consistent with the MOF. While there were no profile
diagram the solution to “extend” UML was to rewrite the specification
and add required elements. But this created additional headaches for
bringing the new thing into practice—there were no standardized tool
support for such new language specification. The UML profile
diagram consists of following elements:

• Metamodel—a referenced model that is extended through the profile
(e.g., UML).

• Reference—a dependency relationship with attached stereotype “ref-
erence” that is directed from profile to referenced metamodel.

• Profile—a special package that extends a referenced metamodel by
adding stereotypes to it. Like packages in package diagram can be
drawn at different abstraction levels revealing or hiding its content,
the profile can be drawn in the same manner.

• Metaclass—a class that is extended by a stereotype. The metaclass
is represented with the same node as regular class by attaching
stereotype “metaclass.”

• Stereotype—extends existing UML vocabulary by adding a new ele-
ment to it and it describes how an existing metaclass can be
extended enabling the integration of platform or domain-specific ter-
minology or notation in the modeling language (a set of stereotypes
build up the profile). A stereotype extension is used to indicate that
the properties of a metaclass are extended through a stereotype. The
stereotyped class is represented with the same node as regular class
by attaching stereotype “stereotype.”

• Extension—a special binary association, extension end is used to tie
an extension to a stereotype when extending a metaclass. Extension
relationship is directed from stereotyped class to the metaclass it
extends.

• Profile application—a dependency relationship with attached stereo-
type “apply” between a package and a profile that allows to use the
stereotypes from the profile in the model elements of the source
package. Profile application relationship is directed from package
that applies profile to the profile package.

Profiles in more details are explored in Chapter 3, Adjusting Unified
Modeling Language, while an example showing generic profile with
name TestML is given in Fig. 1.18. The example of profile extends
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UML by adding stereotype TestCase. The stereotype TestCase extends
metaclass UseCase by using extension relationship. The profile is applied
by the package Testing process.

1.2.2 Behavior Diagrams
The UML behavior diagrams are used to visualize, specify, construct,
and document the dynamic aspect of a system (modeling dynamic
aspect of a system can be considered as representing its changing
parts). Behavior diagrams include activity diagram, use case diagram,
state diagram, and interaction diagrams. Interaction diagrams are a
special subset of behavior diagrams and they are sequence, communi-
cation, interaction overview, and timing diagrams. An interaction dia-
gram shows an interaction, consisting of a set of objects and their
relationships, including the messages that may be dispatched among
them. These diagrams share the same underlying model, although in
practice they emphasize different things. By using interaction dia-
grams, it is possible to reason about flow of control within an opera-
tion, a class, a component, a use case, or the system as whole in two
ways: (1) focusing on how messages are dispatched across time and (2)
focusing on the structural relationships among the objects in an inter-
action and then consider how messages are passed within the context
of that structure [15,37,78,79].

All behavior diagrams, including interaction diagrams, are listed
and described in the subsections of this section. Each subsection name

Figure 1.18 Profile diagram showing example of profile and profile application.
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denotes corresponding UML diagram name and the contents includes
description, main elements, UML version in which the diagram is
included, and an example of a developed diagram.

1.2.2.1 Use Case Diagram
Use case diagram shows a set of use cases and actors and their rela-
tionships; it is used to organize and model the dynamic aspect—
required usages—of a system. Each use case in use case diagram
typically is supplemented by a full use case specification—a written
statement detailing the preconditions (what must be true before the use
case is performed), the sequence of events, including alternate sequence
of events in case of exception or specific conditions, and the post-
conditions (what must be true after the use case has completed).

The use case diagram is included in UML specification since its first
(1.1) version and it includes following elements:

• Subject—usually it is a system or subsystem, i.e., a set of use cases
together describes the behavioral aspect of the subject under consid-
eration. Fig. 1.19 contains example showing subject.

• Use case—it describes what a system or subsystem is doing, it does
not include and does not specify how it is doing it. Commonly speci-
fication of use case is written in natural language, structuring the
description as sequential steps performed by the actors and the sub-
ject involved in the use case scenario. Use case scenario includes
both the main scenario and an alternative scenario which is used in
the case of exception or specific conditions becoming true during the
execution of it. The use case is drawn as an ellipsis showing the
name of use case within it (see example in Fig. 1.19).

Figure 1.19 Example of use case within subject.
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• Actor—represents a coherent set of users, roles, external systems
that interacts with the subject through specific use cases. Actors
model entities that are outside the system. Taking a look from the
subject’s viewpoint—the external systems are also drawn as actors
interacting with the use case. Fig. 1.20 shows a typical graphical
representation of an actor although you can create a stereotype of
the actor to visually represent in any form or image according to
needs to better illustrate the actor.

• Relationship—there are three types of relationships used within use
case diagram. The first one is between use cases showing depen-
dency extend and include relations. The extend dependency is used
to show an alternate flow of events in the case if specific conditions
are met, e.g., an alternate scenario, while the include dependency is
used to specify a common scenario included in multiple use cases (it
avoids the duplications of the same scenarios/requirements). The
second type of relationships is between use cases and actors, typi-
cally represented as associations showing the communication link
between actor and use case. The last type is between actors—typi-
cally generalization is used to show the parent-child relationships
between roles.

Fig. 1.21 shows an example of diagram which is developed as a
part of data synchronization system development project described in
detail in Part III, Topological UML Modeling Explained.

1.2.2.2 Activity Diagram
Activity diagram is used to model dynamic view of a system. It shows
the control flow from step to step, i.e., from activity to activity. An
activity shows set of actions, the sequential or branching control flow,

Figure 1.20 Actor.
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and values that are produced or consumed by actions. The activity dia-
gram is included in UML specification since the first (1.1) version, it
includes following elements:

• Activity—specifies the flow of subordinate activities and actions,
using a control and data flow model. The activity execution is
started because of events happening outside that activity, e.g., other
activities finish executing, objects and data becoming available.
Each activity can include a set of preconditions, postconditions, and
input and output parameters. Each precondition should be met for
activity to start its execution (thus the availability of objects and
data plays an important role). Activities may form invocation hier-
archies invoking other activities, ultimately resolving to individual
actions. In an object-oriented model, activities are usually invoked
indirectly as methods bound to operations that are directly invoked.
Activities may describe procedural computation. In this context,
they are the methods corresponding to operations on classes.

Figure 1.21 Use case diagram of enterprise data synchronization system.
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Activities may be applied to organizational modeling for business
process engineering and workflow. In this context, events often orig-
inate from inside the system, such as the finishing of a task, but also
from outside the system, such as a customer call. Activities can also
be used for information system modeling to specify system level pro-
cesses. An example of general activity is given in Fig. 1.22.

• Action—represents a single atomic step within an activity, i.e., it is
the smallest step within activity and it is not further decomposed.
The dynamics of activity is modeled by all the actions included
within it. If there are common actions required in multiple activities,
a call behavior action can be used to reference another activity. In
this case, the execution of the call action involves the execution of
the referenced activity and its actions. While an activity defines a
behavior that can be reused in many places, whereas an action is
only used once at a particular point in an activity. Example of
actions is shown in Fig. 1.23.

Figure 1.22 Activity.

Figure 1.23 Actions and edges.
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• Edge—is used to model the control flow from activity to activity,
i.e., it is a link between actions having arrowhead at the end of it
pointing to the next action which is to be executed. In fact, an
action may have sets of incoming and outgoing activity edges that
specify control flow and data flow. An action will not begin execu-
tion until all of its input conditions are satisfied. A sample of edge
connecting two actions is given in Fig. 1.23.

• Branching and merging—while actions and edges are used to model
activity’s behavior, the branching allows to introduce alternate
execution paths based on conditions of each branch. A branch is
represented in a form of a diamond, it has one incoming edge and
two or more outgoing edges. Each outgoing edge has guard
(a Boolean expression) to model which action will be executed next.
Since activity diagrams beginning with UML version 2 is based on
the formalism of Petri nets [21], all the branched flows should be
merged together. Merge is represented with the same diamond as
branch but it has two or more incoming edges and at least one out-
going edge. An example of branching and merging is illustrated in
Fig. 1.24.

• Forking and joining—in the case of modeling concurrent control
flows fork and join should be used. A fork has one incoming and

Figure 1.24 Branching and merging in activity diagrams.
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two or more outgoing edges. Since activity diagrams is based on the
formalism of Petri nets, all the forked flows should be joined
together. The execution of an activity after join continues only when
all the flows after fork have come to the join. A join has two or
more incoming edges and one outgoing edge. Fork and join is repre-
sented using thick bar. An example illustrating use of fork and join
is given in Fig. 1.25.

• Initial and final nodes—an initial node shows a starting point for
executing an activity. One activity can have multiple initial nodes.
In such case the invoking of the activity starts multiple flows—one
at each initial node. Note that flows can also start at other nodes,
e.g., the parameter node of activity (see example in Fig. 1.22). An
initial node is represented in the form of circle. A final node is an
abstract control node at which a flow in an activity stops—when
a final node is reached the execution of activity is terminated.
The execution termination occurs also in the case of forking—if one
of the flow reaches final node, all the concurrent flows are
terminated. The final node is represented with a filled circle within
unfilled circle. If you need to terminate only one concurrent flow, a

Figure 1.25 Forking and joining in activity diagrams.
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flow final node should be used. The flow final node is represented
using X within a circle. See an example of initial and final nodes
in Fig. 1.26.

Fig. 1.27 shows an example of activity diagram which is developed
as a part of data synchronization system development project.

1.2.2.3 State Diagram
State diagram essentially is a state machine, consisting of states, transi-
tions, events, and activities. While activity diagram shows a flow of
control from activity to activity across number of objects involved in
execution of those activities, state diagram shows flow of control from
state to state within single object. State diagram specifies the sequences
of states an object goes through during its lifetime in response to
events, together with its responses to those events. The state diagram is

Figure 1.26 Initial and final nodes in activity diagram.
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included in UML specification since the first (1.1) version, it includes
following elements:

• State—shows a state of an object. For an object to be in a particular
state it should met some condition or situation in its lifetime, per-
form some activity, or wait for some event. If we take a look at file
writing software, it could have a set of following states—idle (the
software waits for a new file to be written in hard drive), writing (its
writing bytes of file to hard drive), and waiting (the file is locked for
writing by another process). Launching of such file writing software
puts it in the situation where it is waiting for next operation thus set-
ting the state to Idle. When user wants to write file, an event of this
will be fired and the status is changed to Writing. If the software
comes to condition where the file is exclusively locked for writing, it

Figure 1.27 Activity diagram modeling data import in target data base.
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is going to the state Waiting. After the file is unlocked the unlock
event is fired and the software returns to Writing. See example in
Fig. 1.28.

• Event—a specific occurrence or happening that plays a significant
role in an object’s lifetime and thus can trigger the state transition.
See example in Fig. 1.28.

• Transition—a directed relationship between a source state and a tar-
get state showing that an object will transit from one specified state
to another if specific conditions are met and specific events occur.
See example in Fig. 1.28.

• Initial and final states—a special kind of states showing the initial state
of an object and a final state. When the final state is reached, it means
that the state machine is completed. These two states are similar to
initial and final nodes in activity diagrams (see Section 1.2.2.2).

Fig. 1.28 shows an example of a state diagram showing states of file
writing software.

Figure 1.28 States of a file writing software.
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1.2.2.4 Sequence Diagram
A sequence diagram is an interaction diagram that emphasizes the
time ordering of messages sent between objects. It shows a set of
objects or roles and messages sent and received by them. Sequence dia-
gram has two features that distinguish them from communication dia-
grams—presence of lifeline and focus of control. The sequence
diagram is included in UML specification since the first (1.1) version,
it includes following elements:

• Object or role—shows object or role which is involved in the
communication with other objects or roles.

• Lifeline—a vertical dashed bar showing the lifeline of object. The
time dimension visually is going from top to down thus we can track
the creation and destruction of an object along with the messages
sent and received by it.

• Message—specifies a particular communication between objects or
roles. It is represented as a directed relationship pointing from
sender to receiver. Message can be an invocation of an operation,
raising a signal, creating or destroying object. The message has a
name and it can include also parameters. Using different notations
of messages, we can model both synchronous and asynchronous
interactions.

• Control—shows a period of time during which an object is perform-
ing an action requested by the message received, i.e., we can visually
show the period of the execution of specific procedure; if we have
nested procedure calls then we can visually as soon as possible show
the possible bottlenecks raising performance issues in the future.
Visually it is represented as a tiny vertical rectangle on the corre-
sponding object’s lifeline.

• Structured control—while control and messages allows us to model
simple communication between objects, in many situations we need
to model decision taking, parallel execution, and optional execution.
To accomplish this modeling task, there are special graphical
notation elements allowing us to model such cases.

Fig. 1.29 shows an example of diagram which is developed as a
part of data synchronization system development project.

1.2.2.5 Communication Diagram
Communication diagram like sequence diagram pays attention on
objects or roles involved in system and communication between them.
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It accents structural organization of objects that send and receive mes-
sages; it shows a set of roles, connectors among roles, and messages
sent and received by the instances playing these roles. Communication
diagram have two features that distinguish them from sequence dia-
gram—path and sequence number of messages (Sequence number indi-
cates the time order of message). A communication diagram is a
simplified version of the UML version 1.x collaboration diagram and
it is included in UML beginning with version 2.0. It includes following
elements:

• Object or role—shows object or role which is involved in the com-
munication with other objects or roles.

• Message—specifies a particular communication between objects or
roles. Since there are no timelines in communication diagram, the
sequence of messages is numbered. Having a large communication
diagram will lead to quite complex numbering of the messages.

• Link—shows a communication link between objects or roles.
Communication direction between objects are represented with addi-
tional small arrow next to the link pointing from sender to receiver.

Fig. 1.30 shows an example of diagram which is developed as a
part of data synchronization system development project.

Figure 1.29 Importing data in target data base.
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1.2.2.6 Interaction Overview Diagram
Interaction overview diagram define interactions through a variant of
activity diagram in a way that promotes overview of the control flow.
The lifelines and the messages can be hidden at this overview level.
Interaction overview diagrams are specialization of activity diagrams
that represent interactions. Interaction overview diagram is introduced
starting from UML version 2.0, it includes following elements:

• Interaction—emphasizes the time ordering of messages sent between
objects. It shows a set of objects or roles and messages sent and
received by them. Interaction is represented in a form of a rectangle
with name tag, while the contents of this rectangle we can consider
as a sequence diagram. Fig. 1.31 shows an example of interaction.

• Interaction use—a reference to an interaction. Interaction use hides
the contents of the interaction. It is useful if we are using the same
interaction across the system. Using interaction use we can define
one interaction only once and reference it everywhere where it is
needed. Representation of interaction use is given in Fig. 1.32.

• Edge—is used to model the control flow from activity to activity,
i.e., it is a link between nodes having arrowhead at the end of it
pointing to the next node which is to be executed. In fact, a node

Figure 1.30 Communication diagram representing data synchronization with source data base.
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may have sets of incoming and outgoing activity edges that specify
control flow and data flow. A node will not begin execution until all
of its input conditions are satisfied. An example of edges connecting
interaction uses is given in Fig. 1.32.

• Structured control—while control and messages allows us to model
simple communication between objects, in many situations we need
to model decision taking, parallel execution, and optional execution.
To accomplish this modeling task, there are special graphical nota-
tion elements allowing us to model such cases.

• Initial and final nodes—an initial node shows a starting point for
executing interaction. An initial node is represented in the form of

Figure 1.31 Interaction.

Figure 1.32 Interaction use.
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circle. A final node is an abstract control node at which a flow in an
interaction stops—when a final node is reached the execution of
interaction is terminated. the execution termination occurs also in
the case of forking—if one of the flow reaches final node, all the
concurrent flows are terminated. The final node is represented with
a filled circle within unfilled circle.

• Branching and merging—while interactions, interaction uses, and
edges are used to model simple interactions, the branching allows to
introduce alternate execution paths based on conditions of each
branch. A branch is represented in a form of a diamond, it has one
incoming edge and two or more outgoing edges. Each outgoing
edge has guard (a Boolean expression) to model which action will
be executed next. Merge is represented with the same diamond as
branch but it has two or more incoming edges and at least one out-
going edge. Take a look at Fig. 1.33 which contains an example of
branching and merging in interaction overview diagram.

Figure 1.33 Branching and merging in interaction overview diagram.
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• Forking and joining—in the case of modeling concurrent control
flows fork and join should be used. A fork has one incoming and
two or more outgoing edges. The execution after join continues only
when all the flows after fork have come to the join. A join has two
or more incoming edges and one outgoing edge. Fork and join is
represented using thick bar. Fig. 1.34 includes an example of forking
and joining.

Fig. 1.34 shows an example of interaction overview diagram.

1.2.2.7 Timing Diagram
Timing diagram is used to show interactions when a primary purpose
of the diagram is to reason about time; it focuses on conditions chang-
ing within and among lifelines along a linear time axis. Timing diagram
is a special form of a sequence diagram. The most notable graphical
difference between timing diagram and sequence diagram is that time
dimension in timing diagram is horizontal and the time is increasing
from left to the right and the lifelines are shown in separate compart-
ments arranged vertically. The timing diagram is available since UML
version 2.0 and includes elements such as message, lifeline, timeline,
and object or role.

1.3 BENEFITS OF APPLYING UNIFIED MODELING LANGUAGE

The use of UML for systems’ modeling has following benefits
[3,22,35,78,82]:

• The UML is a modeling language and not a method, methodology, or
technique, thus making it independent of particular methods and
programming languages. The UML specification defines a number
of diagrams and the meaning of those diagrams. A method goes fur-
ther and describes the steps required to develop the software, which
diagrams are developed in what order, and who is responsible for
completing certain tasks.

• The UML is platform independent modeling language—it can be used
to design software for implementation in any programming language.

• It is a modeling language created from a set of widely accepted
object-oriented software design methods, thus ending the endless
choose between concurrent notations.

• The UML is a set of standardized object-oriented models, thus mak-
ing communication between stakeholders more efficient and mean-
ingful, i.e., if stakeholders are familiar with UML then the created
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models of system can be more easily communicated between
different development teams, customers, and stakeholders.

• Starting with UML version 2.0 it contains extension mechanisms. If
the set of models provided by UML are not enough for required
solution, it is possible to extend UML in a number of allowed ways.

Figure 1.34 Interaction overview diagram.
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• The UML can be used for both large and complex systems model-
ing, as well as for small projects.

• As UML is defined in accordance with XML Metadata Interchange
(XMI), the models can be transferred between different tools from
different tool vendors. Thus making users of UML less dependent
on particular modeling tools.

Despite all above-mentioned benefits that the application of UML
within software development has, it has also a number of disadvan-
tages which are discussed in the next subsection.

1.4 DISADVANTAGES OF APPLYING
UNIFIED MODELING LANGUAGE

The specification of UML and the UML itself is not developed basing on
any theoretical principles regarding the constructs required for an effec-
tive and usable modeling language for analysis and design. UML arose
from best practices in parts of the software engineering community; in
fact, these best practices at some points are even conflicting [22].
Basically, this means that the UML goes without mathematics [83]
(except activity diagrams, which are now (starting from UML version
2.0) based on the formalism and mathematics of Petri nets [78]). UML
specification is described using the combination of languages—metamo-
deling, Object Constraint Language (OCL) [124], and the natural lan-
guage. This has resulted in a language that contains many modeling
constructs, which has thus been criticized on the grounds that it is exces-
sively complex and large. At the same time, the UML has also been criti-
cized for lacking the flexibility to handle certain modeling requirements
in specific domains. As a result of this criticism, UML has evolved—
starting from UML version 2.0 it allows the development of profiles [22].

Main disadvantages of UML are as follows [22,24,51,99]:

• Size—UML is a collection of notations that encompasses a wide
range of notations. In addition, the provided extension mechanisms
of UML allow modelers to add their own, often ad-hoc, extensions
to the language. In short, UML is large and growing.

• Incoherence—UML has brought together a number of notations
from different fields. For example, it is not clear how state diagram
relates to class diagram and sequence diagram.
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• Different interpretations—since the semantics of UML constructs
are defined by using natural language, they are interpreted differ-
ently by different modelers.

• Frequent subsetting—organizations tend to define their own UML
subset—guidelines on which parts to use; which not to use; own
definitions of semantics where the standard is unclear, inconsistent
or untenable for the organization concerned.

• Lack of causality—despite the fact that UML contains a set of 14 dia-
grams, none of the existing diagram allows to clearly trace cause-and-
effect relationships between both problem and solution domains. This
can be related to the fact, that only use case diagram deals with the
requirements and computation independent viewpoint modeling.

In regards to the above listed disadvantages of UML, in [114] is pre-
sented a list of problems associated with using UML in software devel-
opment; causes of these problems are various: ambiguous semantics,
cognitive misdirection during the development process, inadequate cap-
ture of properties of system under consideration, lack of appropriate sup-
porting tools and developer inexperience. By analyzing these problems in
detail, part of the researchers claim that some of these problems can be
addressed by formalizing UML semantics [122], and the most helpful
sequencing of modeling techniques [26]. Others claim that a revision of
the UML and its supporting tools is required [31]. Furthermore, it is
assumed that largest part of these problems can be addressed to the
ambiguous transition between analysis and design models [99].

1.5 FORMALISM OF UNIFIED MODELING LANGUAGE

The UML specification is defined by using a metamodeling approach
which adapts formal specification techniques. A metamodel is used to
specify the model that comprises the UML. In spite of using the meta-
modeling approach, the UML specification method lacks some proper-
ties of formal specification methods. The specification of UML cannot
be considered as formal specification because of natural language
(English) use in it. UML specification [77] underlines that the specifica-
tion as a metamodel does not eliminate the option of specifying it later
by using formal/mathematical language (e.g., notation Z [119],
Prototype Verification System (PVS) [102], Rigorous Approach to
Industrial Software Engineering (RAISE) [69]). Section 1.5.1 takes
closer look at the formalism of UML version 1.x specification and
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Section 1.5.2 takes closer look at the formalism of UML version 2.x
(as the UML version 2.x is major revision of UML version 1.x).

1.5.1 Formalism of Unified Modeling Language Version 1.x
The specification of UML version 1.5 [72] contains language syntax
and its static and dynamic semantics. The specification uses a combi-
nation of languages—a subset of UML, an OCL, and precise natural
language to describe the abstract syntax and semantics of the full
UML. Thus, the UML version 1.x specification uses a formal tech-
nique for preciseness improving but at the same time keeping readabil-
ity of it. Despite that the language structure is described in precise
specification that is necessary for tool interaction, it is needed to note
that the existing description is not a completely formal specification
(due to the use of natural language). As stated in [73], a common tech-
nique for specification of languages is to first define the syntax of the
language and then to describe its static and dynamic semantics. The
syntax defines what constructs exist in the language and how the con-
structs are built up in terms of other constructs. Static semantics of a
language define how an instance of a construct should be connected to
other instances to be meaningful while dynamic semantics define the
meaning of a well-formed construct. These semantics are described
using natural language (English).

Summarizing up the UML version 1.x specification, the metamodel
of UML is described in a semi-formal way using three views [73]:

1. Abstract syntax—presented in a form of UML class diagram. The
UML metamodel is defined with the set of interrelated packages.
Abstract syntax shows the metaclasses defining the constructs and
their relationships and also presents some of the well-formedness
rules (mainly the multiplicity requirements of the relationships), and
whether or not the instances of a particular subconstruct must be
ordered. A short informal description in natural language describ-
ing each construct is supplied. The first paragraph of each of these
descriptions is a general presentation of the construct that sets the
context, while the following paragraphs give the informal definition
of the metaclass specifying the construct in UML. Each metaclass
has its attributes enumerated together with a short explanation.
Besides that, the opposite role names of associations connected to
the metaclass is also listed in the same way.
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2. Well-formedness rules—the static semantics of UML metaclasses
(except for multiplicity and ordering constraints) are defined as a
set of invariants of an instance of the metaclass. These invariants
have to be satisfied for the construct to be meaningful. The rules
thus specify constraints over attributes and associations defined in
the metamodel. Each invariant is defined by an expression written
using OCL together with an informal explanation in English of the
expression.

3. Semantics—defines meanings of the constructs using natural lan-
guage (English). The constructs are grouped into logical chunks that
are defined together. Since only concrete metaclasses have a true
meaning in the language, only these are described in this section.

In summary, the UML metamodel is described in a combination of
graphic notation, (precise) natural language, and formal language. The
use of natural language for specifying language constructs makes its
specification semiformal. This semiformal specification of UML can
cause incorrectness and inaccuracy of system models defined with
UML (due that statements in natural language can be interpreted with
different meanings among different persons (in spite of trying to use it
as precise as possible)).

1.5.2 Formalism of Unified Modeling Language Version 2.x
The main goal of major revision of UML within version 2.0 is to
increase the precision and correctness of the specification. The set of
UML modeling concepts is partitioned into horizontal layers of
increasing capability called compliance levels. For ease of model inter-
change, there are only two compliance levels defined for infrastructure
specification [77]:

• Level 0 (L0)—contains a single language unit that provides capabil-
ities for modeling class-based structures encountered in object-
oriented programming languages, and it provides an entry-level
modeling capability, and

• Metamodel Constructs (LM)—adds an extra language unit for
more advanced class-based structures used for building metamodels.

Superstructure specification adds three more compliance levels [78]:

• Level 1 (L1)—adds new language units and extends the capabilities
provided by Level 0. Specifically, it adds language units for use
cases, interactions, structures, actions, and activities.
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• Level 2 (L2)—extends the language units already provided in Level
1 and adds language units for deployment, state machine modeling,
and profiles.

• Level 3 (L3)—represents the complete UML. It extends the lan-
guage units provided by Level 2 and adds new language units for
modeling information flows, templates, and model packaging.

All compliance levels are defined as extensions to a single core
UML package that defines the common namespace shared by all the
compliance levels. Level 0 is defined by the top-level metamodel. The
UML version 2.x specification is defined by using a metamodeling
approach that adapts formal specification techniques. According to
[77], the following are the goals of the specification techniques used to
define UML 2.x:

• Correctness—improves the correctness of the metamodel by helping
to validate it.

• Precision—increases the precision of both the syntax and semantics.
The precision should be sufficient so that there is neither syntactic
nor semantic ambiguity for either implementers or users.

• Conciseness—the specification techniques should be parsimonious,
so that the precise syntax and semantics are defined without super-
fluous detail.

• Consistency—the metamodeling approach should be complemented
by adding essential detail in a consistent way.

• Understandability—while increasing the precision and conciseness,
the readability of the specification should also be improved. For this
reason, a less than strict formalism is applied, since a strict formal-
ism would require formal techniques.

The specification technique used in UML version 2.x describes the
metamodel in the same way as the version 1.x does, i.e., it uses meta-
modeling approach and three views (abstract syntax, well-formedness
rules, and semantics). Main language constructs are related to meta-
classes in the metamodel. Other constructs, i.e., being variants of other
ones, are defined as stereotypes of metaclasses in the metamodel. This
mechanism allows the semantics of the variant constructs to be signifi-
cantly different from the base metaclass. Another way of defining var-
iants is the use of metaatributes.

The UML 2.x metamodel contains infrastructure library package
which defines a reusable metalanguage kernel and a metamodel
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extension mechanism for UML. The metalanguage kernel can be used
to specify a variety of metamodels, including UML itself, MOF, and
CWM. In addition, the infrastructure library defines a profile exten-
sion mechanism that can be used to customize UML for different plat-
forms and domains without supporting a complete metamodeling
capability. The UML profile extension mechanism reduces notation
size and efforts for specific task solution and allows creating additional
constructs along with the benefit of profile reuse in ordinary UML
modeling tools. The architectural alignment among UML, MOF, and
XMI tries to solve the problem of UML model interchange between
tools by using the rules of XMI specification.

In spite of trying to use natural language in more precise way, the
specification of UML cannot be considered as formal specification
because of natural language use—the problem considered in previous
subsection still exists. The UML specification still underlines that the
specification as a metamodel does not eliminate the option of specifying
it later by using formal or mathematical language. However, the first
steps of formalizing UML constructs are taken—starting from UML
version 2.0 the activity diagram is formally based on Petri nets [79].

1.5.3 The Need of Additional Unified Modeling Language
Formalization
Since the release of the first UML specification researchers are work-
ing and proposing approaches to improve formalization of UML.
Researches on UML formalization are performed because the meaning
of the language, which is mainly described in English, is too informal
and unstructured to provide a foundation for developing formal analy-
sis and development techniques, and because of the scope of the
model, which is both complex and large [97]. Despite the fact that
the latest UML specification is based on the metamodeling approach,
the UML metamodel gives information about abstract syntax of UML
but does not deal with semantics in formal way (as discussed previous,
the semantics is expressed using natural language). Thus, it is hard to
determine how a given change in a model influences its meaning and
to verify whether a given model transformation preserves the semantics
of the model or not. Since UML is method-independent, its specifica-
tion tends to set a range of potential interpretations rather than
providing an exact meaning [31,122].
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According to [31], the formalization of UML specification has fol-
lowing benefits:

• Clarity—the formally stated semantics can act as a point of refer-
ence to resolve disagreements over intended interpretation and to
clear up confusion over the precise meaning of a construct.

• Equivalence and consistency—a precise semantics provides an unam-
biguous basis from which to compare and contrast the UML with
other techniques and notations, and for ensuring consistency
between its different components.

• Extendibility—the soundness of extensions to the UML can be veri-
fied (as encouraged by the UML authors).

• Refinement—the correctness of design steps in the UML can be veri-
fied and precisely documented. In particular, a properly developed
semantics supports the development of design transformations, in
which a more abstract model is diagrammatically transformed into
an implementation model.

• Proof—justified proofs and rigorous analysis of important proper-
ties of a system described in the UML require precise semantics.
Proof and rigorous analysis are not currently supported by UML.

• Tools—the tools that make use of semantics, e.g., a code generator
or consistency checker, require that semantics to be precise, whether
it be expressed as part of the standard or invented in the code by
the tool developer.

The current UML semantics are not sufficiently formal to realize
all of the above listed benefits. Despite that researches on UML for-
malization have been made before the release of UML version 2.0, the
UML version 2.x specification is not written as a formal specification
of language. Therefore, there are a number of ongoing UML
formalization researches trying to formalize it from different aspects.

1.5.4 Current Unified Modeling Language Formalization
Attempts
After OMG accepted UML version 1.1 as a standard, a precise UML
(pUML) group was found with main goal to bring together international
researchers and practitioners who share the aim of developing the UML
as a precise modeling language [31]. The aim of pUML group was to
work firmly in the context of the existing UML semantics. As a formal-
ization instrument they use several formal notations (e.g., OCL [124] or
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the formal language Z [119]). The pUML group is an example of
researches focusing on formalization of UML semantics. Some of the
formalization researches are restricted to the semantics of models, while
the others are concerned with the issues of reasoning about models and
model transformations. Currently there exist a number of approaches for
specifying and formalizing semantics of UML:

• Specifying semantics by formal languages (e.g., using language Z
[31] or Object-Z [52]),

• Using category theory—captures relationships between specification
objects (e.g., [1,20]),

• Using stream theory—as streams is an adequate setting for the for-
malization of the semantics of concurrent systems (e.g., [16]),

• Using π-calculus or process algebra (e.g., [126]), and
• Using algebraic approaches (e.g., using mathematical notation [122])

As indicated by Evermann in [33], the researches on UML seman-
tics formalization relate to the internal consistency of the UML, not to
its relationship to problem domains. To address the relation of UML
elements to problem domains, the researchers are ongoing on formaliz-
ing the way the software is developed by using UML diagrams (e.g.,
the problem domain formalization approach [89], or the software
development with the emphasis on topology in constructed models
[24]) and describing UML constructs by using ontology, thus relating
them with problem domains (e.g., [33,125]).

By summarizing up the attempts to formalize UML, the following
formalization directions emerge:

• Formalizing the semantics of UML,
• Formalizing the way, the UML is used, and
• Relating UML constructs to problem domains.

1.6 UNIFIED MODELING LANGUAGE IMPROVEMENT OPTIONS

According to the UML version 2.4.1 specification [77,78] and recent
researches (e.g., [22,33,88,114,122,125]) in the field of strengthening
UML, its use and analysis, the following UML improvement options
arise:

• Extending UML by using UML’s extensibility mechanisms,
• Formalizing the semantics of UML,
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• Formalizing the way, the UML is used, and
• Relating UML constructs to problem domains.

The UML can be strengthened by using the mathematical topology.
The use of topology reflects extending the UML to support topology
in its diagrams, and formalizing the way the UML is applied during
software development process. Since this work is dedicated to extend
UML by its extensibility mechanisms and formalizing the software
development process, the following two subsections discuss the UML
extensibility mechanisms and its improvement by using mathematical
topology.

1.6.1 Unified Modeling Language Extensibility Mechanisms
The UML version 2.4.1 extensibility mechanisms permit to extend the
language in controlled ways; these mechanisms include stereotypes,
tagged values, constraints, and profiles. If the enumerated four exten-
sion mechanisms does not solve the problem why the language should
be extended, then UML metamodel can be extended using MOF. By
extending UML using MOF there are no restrictions on what are
allowed to do with a UML metamodel [15,77].

Stereotypes: A stereotype defines how an existing metaclass may be
extended, and enables the use of platform or domain specific terminol-
ogy or notation in place of, or in addition to, the ones used for the
extended metaclass. In other words, a stereotype extends the vocabu-
lary of the UML, allowing to create new kinds of building blocks that
are derived from existing ones but that are specific to problem under
consideration.

Stereotype can be considered as a type that defines other types,
because each one creates equivalent of a new class in the UML meta-
model. When an element is stereotyped (such as node or a class), the
UML gets extended by creating a new building block just like the exist-
ing one but with its own special modeling properties (each stereotype
may provide its own set of tagged values), semantics (each stereotype
may provide its own constraints), and notation (each stereotype may
provide its own icon). The stereotype “stereotype” specifies that the
classifier is a stereotype that may be applied to other elements [15,77].

Tagged values: A tagged value extends the properties of a UML ste-
reotype, thus allowing creation of new information in element’s specifi-
cation. By using stereotypes it is possible to add new things to the
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UML; by using tagged values it is possible to add new properties to a
stereotype. Tags that apply to individual stereotypes are defined so
that everything with that stereotype has tagged value. A tagged value
is not the same as class attribute. Rather, a tagged value can be consid-
ered as metadata because its value applies to the element specification,
not to its instances [15].

Constraints: A constraint extends the semantics of a UML con-
struct, thus allowing to add new rules or to modify existing ones. Each
constraint consists of a textual description in natural language and
may be followed by a formal constraint expressed in OCL. If it is not
possible to express the constraint in OCL, then in such case the formal
expression can be omitted [15,78].

Profiles: The profile mechanism has been specially defined for pro-
viding a lightweight extension mechanism to the UML specification.
In UML version 1.1, stereotypes and tagged values were used as
string-based extensions that could be attached to UML model elements
in a flexible way. In subsequent revisions of UML, the notion of a
profile was defined in order to provide more structure and precision to
the definition of stereotypes and tagged values. Since the UML version
2.0 specification this has been carried further, by defining UML exten-
sion as a specific metamodeling technique. Stereotypes are specific
metaclasses, tagged values are standard metaattributes, and profiles
are specific kinds of packages. A profile defines a specialized version
of UML for particular area or solution. Because it is built on standard
UML elements, it does not present a new language, and it can be sup-
ported by ordinary UML tools [15,77,78].

According to UML version 2.4.1 specification [78], the profiles
mechanism is not a first-class extension mechanism (i.e., it does not
allow for modifying existing metamodels). Rather, the intention of pro-
files is to give a straightforward mechanism for adapting an existing
metamodel with constructs that are specific to a particular domain,
platform, or method. Each such adaptation is grouped in a profile. It
is not possible to take away any of the constraints that apply to a
metamodel such as UML using a profile, but it is possible to add new
constraints that are specific to the profile.

The UML metamodel extension: First-class extensibility is handled
by using MOF, where there are no restrictions on what are allowed to
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do with a UML metamodel (i.e., it is possible to add and remove
metaclasses, constraints, and relationships as necessary) [77].

“There is no simple answer for when you should create a new
metamodel and when you instead should create a new profile” [78].

1.6.2 Improving Unified Modeling Language
by Using Topology
The UML improvement by using mathematical topology is based on
topology and formalism of Topological Functioning Model (TFM)
[86]. The TFM is a mathematical modeling language intended to
design and analyze functionality of a system and it holistically repre-
sents a complete functionality of the system from a computation inde-
pendent viewpoint. It considers problem domain information separate
from the solution domain information. TFM has strong mathematical
basis and is represented in a form of a topological space. Graphically,
it is drawn as an oriented graph where nodes represent functional fea-
tures of the system, while directed arcs represent their causal relation-
ships. The TFM has topological characteristics: connectedness,
closure, neighbor-hood, and continuous mapping. Despite that any
graph is included into algebraic topology, not every graph is a TFM.
A directed graph becomes the TFM only when theoretical substantia-
tion of the systems is added to the above mathematical substantiation.
The latter is represented by functional characteristics: cause-effect rela-
tions, cycle structure, and inputs and outputs [88,91].

It is acknowledged that every business and technical system is a
subsystem of the environment. TFM enables careful analysis of sys-
tem’s operation and communication with the environment through
analysis of functional cycles—a common thing for all system (techni-
cal, business, or biological) functioning should be the main feedback,
visualization of which is an oriented cycle. Thus, it is stated that at
least one directed closed loop (i.e., cycle) must be present in every
topological model of system functioning. This cycle shows the main
functionality that has a vital importance in the system’s life. Usually it
is even an expanded hierarchy of cycles. By interrupting this main
cycle the system can no longer function or it functions faulty [86].
Therefore, a proper cycle analysis is necessary in the TFM construc-
tion, because it enables careful analysis of system’s operation and com-
munication with the environment. To better illustrate main cycle in
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graph representation of TFM, the arcs belonging to this cycle is drew
with bolder lines [84].

The TFM and its construction steps are given in Chapter 4,
Topological Unified Modeling Language, of this book.

The UML can be improved by supplementing it with the topologi-
cal and functioning characteristics of TFM. To allow using topology
in UML diagrams, it needs to be extended by using extensibility
mechanisms. In such case a new kind of UML is created—Topological
Unified Modeling Language (Topological UML). The idea of
Topological UML is adapted from [83]. The core framework proposal
for Topological UML profile is presented in [99]. The first research
results in [96] shows that the transfer of topological and functioning
characteristics from TFM to UML is sufficient for clearly tracing cause-
and-effect relationships in both—problem and solution—domains.

1.7 SUMMARY

The UML is a visual language for specifying, constructing, and docu-
menting the artifacts of systems. It is a general-purpose modeling lan-
guage that can be used with all major object and component methods,
and that can be applied to all application domains and implementation
platforms.

The UML version 1.x (the first version (1.1) is released in 1997)
contains nine diagram types. UML version 2.0 (released in 2005) is a
major rewrite of UML version 1.x with the main goal to increase the
precision and correctness of the specification. The version 2.0 contains
13 diagram types, and the version 2.2 adds additional one diagram
type—profile diagram (now in total UML has 14 diagram types). At
the moment of writing this work, the newest version is 2.5 and it is
released in 2015.

The specification of UML version 2.0 to 2.4.1 is divided into two
volumes: infrastructure (core metamodel) and superstructure (notation
and semantics for diagrams and their model elements). Actually, the
superstructure specification is based on infrastructure specification.
Specification version 2.5 is a rewritten version 2.4.1 combining
together in a single document the infrastructure and the superstructure.
The set of modeling concepts of UML is partitioned into horizontal
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layers of increasing capability called compliance levels. UML infra-
structure specification defines only two compliance levels (for ease of
model interchange): L0 and LM, while the superstructure specification
adds three more compliance levels: L1, L2, and L3. In fact, the
complete UML specification is given in compliance level L3.

While the application of UML within software development has a
number of benefits, it also has some disadvantages. The main benefits
are: UML is independent of software development methods, techni-
ques, and platforms; it has an extension mechanism thus allowing to
solve specific modeling tasks; and the models can be transferred
between different tools from different tool vendors since UML is
defined in accordance with XMI. The main disadvantages of UML
application are its size, incoherence, different interpretations, frequent
subsetting, and the lack of causality. From these disadvantages rises a
set of problems like ambiguous semantics, cognitive misdirection dur-
ing the development process, inadequate capture of properties of sys-
tem under consideration, lack of appropriate supporting tools and
developer inexperience, and inability to trace cause-and-effect relation-
ships between the existing artifacts in problem domain and created
artifacts in solution domain. By taking a closer look at benefits and
disadvantages, it is visible that some benefits turn into disadvantages
(e.g., independency of software development methods leads to cogni-
tive misdirection during the development process). To address the
listed disadvantages, a bunch of researches on UML strengthening and
formalization are performed and are still ongoing, e.g., formalizing the
semantics of UML, formalizing the way the UML is used, and relating
UML constructs to problem domains.

The UML can be strengthened by using mathematical topology,
thus addressing the disadvantage of lacking causality. Next chapter is
dedicated to explore currently existing UML modeling driven software
development approaches, thus addressing the disadvantages of UML’s
size, incoherence, different interpretations, and frequent subsetting.
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CHAPTER 22
Software Designing With Unified Modeling
Language Driven Approaches

INFORMATION IN THIS CHAPTER:

• UML modeling driven methods and approaches
• Comparison of UML application and usage
• Benefits and limitations of UML modeling driven methods and

approaches

2.1 INTRODUCTION

The UML is a notation and as such its specification does not contain
any guidelines for software development process (e.g., which diagrams
to use and in what order to elaborate them). This is pointed out as a
benefit of UML application in software development as well as a
disadvantage in Chapter 1, Unified Modeling Language: A Standard
for Designing a Software. Despite that UML is independent of partic-
ular methods and approaches, most of the UML modeling driven
methods uses use case driven approach [22]. This might be caused by
the originators (Booch, Rumbaugh, and Jacobson) of the UML since
they recommend a use case driven process in their book “The Unified
Modeling Language User Guide” [15]. A majority of UML modeling-
driven approaches since then has endorsed this view, and most contain at
least some further prescriptions for applying the UML in modeling (e.g.,
“Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development” [58], “UML for the IT
Business Analyst” [104], and “Using UML: Software Engineering with
Objects and Components” [120]).

Since UML modeling-driven approaches are elaborated by different
authors, their prescriptions sometimes differ. As indicated in UML
usage research [22], “while some accept the original view that only use
cases are used to verify requirements with users, others explicitly or
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implicitly indicate that other UML diagrams can be used for this purpose,
e.g., activity diagrams can be safely shared with customers, even those unfa-
miliar with software engineering.” There is also difference in the use of use
case narratives across various methods due to the lack of guidance on nar-
rative format in the UML specification. The UML specification [79] only
states that “use cases are typically specified in various idiosyncratic formats
such as natural language, tables, trees, etc. Therefore, it is not easy to cap-
ture its structure accurately or generally by a formal model.”

A successful software development project can be measured against
the deliverables that satisfy and possibly exceed expectations of customer,
the delivery schedule that has occurred in a timely and economical
fashion, and the created result is resilient to change and adaptation.
For software development project to be successful by means of given
measurements, it should satisfy the following two characteristics [14]:

• Solution should have a strong architectural vision and
• A well-managed development lifecycle should be used.

The International Organization for Standardization (ISO)/International
Electronical Commission (IEC)/Institute of Electrical and Electronics
Engineers (IEEE) architecture description standard [45] defines archi-
tecture as “fundamental organization of a system embodied in its compo-
nents, their relationships to each other, and to the environment, and the
principles guiding its design and evolution.” Besides this definition there
exist a large number of architecture definitions. A system that has a
good architecture has also a conceptual integrity. Good software archi-
tectures tend to have several attributes in common [14]:

• They are constructed in well-defined layers of abstraction,
• They have a clear separation of concerns between the interface and

implementation of each layer, and
• The architecture itself is simple—common behavior is achieved

through common abstractions and common mechanisms.

This chapter discusses the current state of the art of UML-based soft-
ware development approaches by reviewing two aspects of each approach:

1. The process of software development and
2. The artifacts developed.

Most attention is paid on the artifacts created by using the
UML.
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2.2 CURRENT STATE OF THE ART

The review of software development methods discusses a number of
existing UML modeling driven software development approaches
paying the most emphasis and attention on the use and application of
UML diagrams (i.e., which diagram types for what purpose are used
and in which sequence they should be developed to create a blueprint
of the information system under consideration). The analysis of UML
diagram usage additionally shows if there are included transformation
rules or guidelines between different diagram types. Each approach is
reviewed by using following structure:

• At first a brief description of the approach is given,
• Overview and analysis is done of development steps involved in the

approach, and
• Finally, analysis of used UML diagrams is given.

Currently exist dozens of UML modeling driven software
development approaches, e.g.,

• Unified Process [107],
• Use case-driven methods [104],
• Model Driven Architecture (MDA) [53],
• Pattern-based development [58],
• Component-based development [120], and
• Conceptual modeling [82].

Overview of the current state of the art of UML-based software
development approaches includes approaches that are well known in
software development industry [22], formalizes the development process
and problem domain [93], and are used in the conjunction of software
development tools. The overview of UML modeling driven software
development approaches includes a number of approaches thus
covering different aspects of software development and its organization:

• Object-oriented analysis and design with Unified Process,
• Business Object-Oriented Modeling (B.O.O.M.),
• Object-oriented analysis and design with patterns,
• Conceptual modeling,
• Component-based development, and
• Topological Functioning Model (TFM) for Model Driven

Architecture (TFM4MDA).
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2.2.1 Object-Oriented Analysis and Design With Unified Process
Object-oriented software development is a complete conceptual frame-
work that covers the entire software development life cycle and it has
the following characterization [104]:

• Affects the way in which the requirements are analyzed and modeled,
• Affects the way the software engineer designs the system

specification, and
• Affects the way the code itself is structured—the software is imple-

mented by using object-oriented programming languages (e.g., C11
[63], .NET language family (C#, Visual Basic .NET) [68], Java [19]).

One of the well-managed iterative and incremental development
lifecycle is Unified Software Development Process (Unified Process),
where each of the iteration includes its own requirements analysis,
design, implementation, and testing activities.

2.2.1.1 Development Process
Unified Process is based on the enlargement and refinement of a sys-
tem through multiple iterations, with cyclic feedback and adaptation.
The system is developed incrementally over time, iteration by iteration,
and thus this approach is also known as iterative and incremental soft-
ware development. The iterations are spread over four phases where
each phase consists of one or more iterations [4]:

• Inception—the first and the shortest phase in the project. It is used
to prepare basis for the project, including preparation of business
case, establishing project scope and setting boundaries, outlining
key requirements, and possible architecture solution together with
design tradeoffs, identifying risks, and development of initial proj-
ect plan—schedule with main milestones and cost estimates. If the
inception phase lasts for too long, it is like an indicator stating
that the project vision and goals are not clear to the stakeholders.
With no clear goals and vision the project most likely is doomed to
fail. At this scenario it is better to take a pause at the very begin-
ning of the project to refine the vision and goals. Otherwise it
could lead to unnecessary make-overs and schedule delays in fur-
ther phases.

• Elaboration—during this phase the project team is expected to cap-
ture a majority of system’s requirements (e.g., in the form of use
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cases), to perform identified risk analysis and make a plan of risk
management to reduce or eliminate their impact on final schedule
and product, to establish design and architecture (e.g., using basic
class diagrams, package diagrams, and deployment diagrams), to
create a plan (schedule, cost estimates, and achievable milestones)
for the next (construction) phase.

• Construction—the longest and largest phase within Unified Process.
During this phase, the design of the system is finalized and refined
and the system is built using the basis created during elaboration
phase. The construction phase is divided into multiple iterations, for
each iteration to result in an executable release of the system. The
final iteration of construction phase releases fully completed system
which is to be deployed during transition phase, and

• Transition—the final project phase which delivers the new system to
its end-users. Transition phase includes also data migration from
legacy systems and user trainings.

Each phase and its iteration consists of a set of predefined activities.
The Unified Process describes work activities as disciplines—a disci-
pline is a set of activities and related artifacts in one subject area (e.g.,
the activities within requirements analysis). The disciplines described
by Unified Process are as follows [107]:

• Business modeling—domain object modeling and dynamic modeling
of the business processes,

• Requirements—requirements analysis of system under consideration.
Includes activities like writing use cases and identifying nonfunc-
tional requirements,

• Analysis and design—covers aspects of design, including the overall
architecture,

• Implementation—programming and building the system (except the
deployment),

• Test—involves testing activities such as test planning, development
of test scenarios, alpha and beta testing, regression testing,
acceptance testing, and

• Deployment—the deployment activities of developed system.

The disciplines and phases of Unified Process are given in Fig. 2.1
where the phases are columns and the disciplines are rows. It clearly
shows that the relative effort across disciplines changes over time from
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iteration to iteration, e.g., initial iterations apply greater relative effort
on requirements and design while the latter—more on testing and
deployment.

There exist a number of extensions and adaptions of Unified
Process, e.g., Agile Unified Process (AUP) [2] and Rational Unified
Process (RUP) [56].

2.2.1.2 Unified Modeling Language Diagrams Used
Since the Unified Process is a software development lifecycle by
using it almost every UML diagram type is elaborated during soft-
ware development process. Fig. 2.2 contains all the UML diagram
types used within Unified Process, the oriented vertices between dia-
gram types denotes their construction order and the source of the
diagram. The root diagram is use case diagram which is constructed
according to the functional requirements and business scenario
narratives.

Detailed information of UML diagram types used within Unified
Process and their intended use is given in Table 2.1.

2.2.2 Business Object-Oriented Modeling
Business Object-Oriented Modeling (B.O.O.M.) developed by Podeswa
[104] is an UML modeling approach intended to relate business

Figure 2.1 Disciplines and phases of Unified Process [123].
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Figure 2.2 UML diagram development sequence by using Unified Process.

Table 2.1 UML Diagrams Used in Unified Process
No. Diagram Type Sequence Information for Notes

1. Use case
diagram

1 Sequence diagram, class
diagram, state diagram,
activity diagram

Initial use cases are created during
inception phase and later refined in
elaboration and construction phases.
Use cases help finding conceptual
classes using noun phrase
identification.

2. Sequence
diagram

2 Communication diagram,
interaction overview
diagram

Sequence diagrams are developed
during elaboration and construction
phases. They should be created for
the main success scenario of the use
case, and for frequent or complex
alternative scenarios. Sequence
diagram is generated from inspection
of use case.

(Continued)
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analysis documentation to the object-oriented software development.
B.O.O.M. is use case driven analysis approach. A standard UML use
case refers to an interaction with any type of system. While analyzing
and specifying the system following question arises [104]: “What type of

Table 2.1 (Continued)
No. Diagram Type Sequence Information for Notes

3. Class diagram 3 Communication diagram,
state diagram, package
diagram, component
diagram

Class diagram is developed during
elaboration phase and refined later
in construction phase. It is used to
represent domain and a system
design model. Domain model has
conceptual classes with no
operations; the key idea behind it is
a visual dictionary of abstractions.

4. State diagram 4 � State diagrams are developed during
elaboration and construction phases.
The use of state diagrams is
emphasized for showing system
events in use cases, but they may
additionally be applied to any class.

5. Communication
diagram

4 Class diagram Communication diagrams are
developed during elaboration and
construction phases. They illustrate
object interactions and help to
analyze relations between classes.

6. Activity
diagram

4 Interaction overview
diagram

Activity diagrams are developed
during elaboration and construction
phases. Used to visualize business
workflows and processes, or use
cases.

7. Interaction
overview
diagram

5 � Interaction overview diagrams are
developed during elaboration and
construction phases. Used to
visualize business workflows and
processes, or use cases.

8. Package
diagram

6 Component diagram,
deployment diagram

Package diagram is developed during
elaboration phase and refined later
in construction phase. Each package
groups a set of cohesive
responsibilities.

9. Component
diagram

7 Deployment diagram Component diagram is developed
during elaboration phase and refined
later in construction phase. It
represents modular, deployable, and
replaceable parts of a system.

10. Deployment
diagram

8 � Deployment diagram is developed
during elaboration phase and refined
later in construction phase. It shows
how instances of components are
deployed on instances of processing
nodes.
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system is being referring to?” Therefore, use cases in B.O.O.M. are
divided into two logical types: (1) business use cases and (2) system use
cases (this distinction of use case types is not a part of the UML but is
an UML extension). A business use case is an interaction with a busi-
ness system while the latter one is an interaction with a software system.
A system use case typically involves one active (primary) user and takes
place over a single session on the computer. At the end of the system
use case, the user should feel that he or she has achieved a useful goal.
The main idea of the B.O.O.M. is to identify and describe business use
cases that a planned system will affect, thus analyzing possible changes
in business workflows and human roles. Each business use case is
analyzed, looking for activities that the application will realize, and this
information is specified as system use cases, which further will drive the
whole development process.

2.2.2.1 Development Process
The software analysis and design with B.O.O.M. consists of two
phases:

• Initiation phase involves creation and analysis of business use cases,
initial identification of system use cases, and drawing a sketch of
business objects involved into system in a form of class diagram.
Processes defined by system use cases are identified by going back
to the business use case workflow and selecting activities that can
benefit from full or partial automation. Activity diagrams are used
to model the workflow of each business use case in order to achieve
consensus among developers and stakeholders of the business use
cases. By the end of initiation phase developers should have over-
view of the project, initial list of system use cases together with
knowledge on users involved within each system use case. System
use cases are detailed only at the level to be able to estimate the
project (e.g., whether the project development will take days, weeks,
or months). The initiation phase includes following steps: (1) modeling
business use cases, (2) modeling system use cases, (3) sketching static
model (class diagram including key business classes), and (4) setting
baseline for analysis.

• Analysis phase includes acquisition of detailed requirements from
stakeholders, and analysis and documentation of elicited require-
ments for verification by stakeholders and for use by the developers.
To achieve this goal a system use case specifications are created by
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storyboarding the interaction between users and the proposed sys-
tem. In parallel with system use case specification, a class diagrams
describing key business concepts and business rules that apply to the
business objects are developed. For better understanding of business
objects life cycle, state diagrams are developed (state diagrams
should be developed for at least every key business object). The
analysis phase includes following steps: (1) dynamic and static anal-
ysis, (2) specifying test plan and implementation plan, and (3) setting
baseline for development.

2.2.2.2 Unified Modeling Language Diagrams Used
The UML diagrams involved into B.O.O.M. application are listed in
Fig. 2.3. Fig. 2.3 contains all the UML diagram types used within
B.O.O.M., the oriented vertices between diagram types denotes their
construction order and the source of the diagram. The root diagram is
use case diagram. Since the B.O.O.M. covers the requirements and
analysis phase of software development lifecycle, it uses diagrams only
needed to analyze the business system and additionally a package
diagram to organize developed artifacts.

Detailed information of UML diagram types used within B.O.O.M.
and their intended use is given in Table 2.2.

Figure 2.3 UML diagram development sequence by using B.O.O.M.
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2.2.3 Pattern-Based Software Design
A general approach in object design is to identify requirements, create
domain model and add operations to software classes, and define the
messaging between the objects to fulfill the requirements [36]. Deciding
what operations belong to which class and how the objects should
interact is important and not a trivial task—it takes careful analysis
and explanation. According to [58] “this is at the heart of what it means
to develop an object-oriented system, not drawing domain model dia-
grams, package diagrams, and so on.” Operations of a class are
addressed as responsibilities of this class. Responsibilities answer to
two questions: “What to do?” and “How to do?”; and they are assigned
to classes of objects during the object design. The translation of
responsibilities into classes and operations is influenced by the granu-
larity of the responsibility. A responsibility is not the same concept as
an operation, but operations are implemented to fulfill assigned
responsibilities. Responsibilities are implemented using operations that

Table 2.2 UML Diagrams Applied Within B.O.O.M.
No. Diagram

Type

Sequence Information for Notes

1. Use case
diagram

1 Activity diagram, state
diagram, class diagram,
package diagram

Two types of use cases: business and system
use cases. While the first one describes the
functionality from a business perspective, the
latter one describes functionality by the
system perspective. Business use cases are
developed before system use cases.

2. Class
diagram

1 Package diagram, object
diagram

Describes key business concepts and rules
that apply to business objects. A sketch of
class diagram is made during initiation phase
and later during analysis phase it is refined
to include relationships.

3. Package
diagram

2 � Package diagram is used as a container to
group and organize other diagrams.

4. Activity
diagram

3 � Activity diagram is used to help developers
and stakeholders form a consensus regarding
the workflow of each business use case.

5. State
diagram

4 � The state change of objects in system is
specified by using state diagram thus helping
to avoid surmising objects behavior over
time. State diagram should be created at
least for every key business object.

6. Object
diagram

5 Class diagram Object diagram is used instead of a class
diagram in situations that involve more than
one object of the same class acting in
different roles. It is used while analyzing
associations between classes.
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either act alone or collaborate with other operation and objects. In order
to help assign responsibilities, patterns for object-oriented analysis and
design has been created by a number of researchers and practitioners
(e.g., [36,39,58,109]). In object-oriented analysis and design, a pattern is
a named description of a problem and solution pair that is used to
design object-oriented systems and can be applied to new contexts.
Pattern can be considered as guidelines.

Set of nine GRASP (General Responsibility Assignment Software
Pattern) patterns introduced in [58] are designed to address the assign-
ment of responsibilities for objects and analysis of their interaction.
The GRASP patterns are as follows:

• Creator—responsible for creating an object of a class,
• Information expert—leads placing responsibility on the class with

the most information required to fulfill it,
• Controller—assigns responsibility for dealing with systems events (usu-

ally the controller is the first object beyond the user interface layer),
• Low coupling—assigns responsibilities in a way that coupling

remains low (coupling is a measure of how strongly one element is
connected to, has knowledge of, or relies on other elements),

• High cohesion—assigns responsibilities in a way that cohesion
remains high (cohesion is a measure that shows how appropriate the
assigned responsibilities of an element are),

• Polymorphism—defines variation of behaviors based on object’s
type (achieved by using polymorphic operations),

• Pure fabrication—creates a special class that has a highly cohesive
set of responsibilities and that do not exist in the problem domain
(i.e., an artificial class),

• Indirection—assign responsibility to an intermediate object to medi-
ate between other components or services so that they are not
directly coupled, and

• Protected variations—classes with predicted variation or instability
are identified and responsibilities to these classes are assigned in a
way to create a stable interface around them.

Since patterns can be used in the context of any software develop-
ment lifecycle and the application of patterns and the order of pattern
application are directly influenced by the used lifecycle, the subsection
“Development Process” is not included for pattern-based design.
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2.2.3.1 Unified Modeling Language Diagrams Used
This section discusses UML diagrams addressed by GRASP design
patterns. The UML diagrams used by GRASP design patterns are
given in Fig. 2.4. Fig. 2.4 contains all the UML diagram types used
within GRASP design patterns, the oriented vertices between diagram
types denotes their construction order and the source of the diagram.
The root diagram is use case diagram. The GRASP patterns in the
context of Unified Process are focused on business modeling, require-
ments, and design disciplines, thus the GRASP design patterns uses
only part of UML diagram types. This is due the fact that GRASP
design patterns are intended for analysis and design of objects. The
deployment diagrams are not addressed while they describe the logical
structure of objects deployment and not the responsibilities assigned to
objects. However, these diagrams are addressed by other patterns, e.g.,
pattern-oriented software architecture or architectural patterns.
Example of architectural pattern is layer architecture [18] and model-
view-controller pattern [36].

Detailed information of UML diagram types used within GRASP
design patterns and their intended use is given in Table 2.3.

Figure 2.4 UML diagram development sequence by using pattern-based design.
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2.2.4 Conceptual Modeling
Conceptual modeling can be viewed as an activity related to capturing
the knowledge about the desired system functionality. According to [82],
“the conceptual schema of an information system is the specification of its
functional requirements.” In the field of conceptual modeling exists a
number of approaches (a set of conceptual modeling approaches are
reviewed in “On the Evolution of Quality Conceptualization Techniques”
[110]). Review of conceptual modeling in this section is based on
“Conceptual Modeling of Information Systems” [82], where the
development of conceptual schema is divided into two related parts:

• Structural schema—consists of a set of concepts used in a particular
domain that constitutes a conceptualization (i.e., ontology) of a
domain and

• Behavioral schema—specifies valid changes in the domain state
together with the actions that the system can perform (changes in

Table 2.3 UML Diagrams Used by GRASP Design Patterns
No. Diagram Type Information for Notes

1. Use case
diagram

Sequence diagram,
communication
diagram, class diagram,
state diagram, activity
diagram

Use cases are used as an identification source of
controller classes. Controller concept is described by
controller pattern.

2. State diagram � Describes allowed sequence of external system events
that are recognized and handled by a system in the
context of a use case. Additionally, state diagrams
can be applied to any class.

3. Sequence
diagram

Class diagram Sequence diagram is used to show the interaction
between objects thus showing also the coupling
between them. Sequence diagram is addressed by
creator, controller, high cohesion, and indirection
patterns.

4. Communication
diagram

Class diagram Communication diagram is used to show the
interaction and relations between objects.
Communication diagram is addressed by creator,
controller, high cohesion, and indirection patterns.

5. Activity
diagram

Class diagram Used for visualizing business workflows and
processes, or use cases.

6. Class diagram Sequence diagram,
communication
diagram, state diagram,
package diagram

Since class diagram is the basis for domain model (in
the context of Unified Process described in
Section 2.2.1), it is addressed by all nine GRASP
design patterns.

7. Package
diagram

� Typical system is composed of a set of logical
packages. Each package groups a set of cohesive
responsibilities. This is the basic practice of
modularization to support a separation of concerns.
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the domain state are domain events and a request to perform an
action is an action request event).

The conceptual schema of software system should include the knowl-
edge about the domain and the functions that the system has to perform in
order to be able to perform the three main functions of software system:

• Memory function—ability to maintain a representation of the
domain state,

• Informative function—ability to provide information about the
domain state, and

• Active function—ability to perform actions that change the domain
state.

The state of the domain consists of a set of relevant properties. The
meaning of the relevant properties of the domain depends on the
purpose for which the system is built. In the conceptual modeling of
information systems, it is assumed that a domain consists of a number
of objects and the relationships between them, which are classified into
concepts. The state of a particular domain consists of a set of objects,
a set of relationships, and a set of concepts into which these objects
and relationships are classified.

2.2.4.1 Development Process
By looking at the conceptual modeling through the prism of UML and
the diagram development sequence an interesting fact comes out—the
first model to create is class diagram (i.e., the structural schema of
software system). The software development process by using concep-
tual modeling is shown in Fig. 2.5 within the context of two kinds of
conceptual schemas that are developed for each software system.

The development of class diagram is divided into several subactiv-
ities: (1) identification of entities, (2) their relationships (i.e., associa-
tions), (3) cardinalities on associations, (4) other relationship types,
(5) derivation, (6) taxonomies (i.e., the class hierarchy), and (7) domain
events. The domain events within classes are reflected as operations.
Each entity identified in structural schema has its own state diagram
(or multiple state diagrams) reflecting state changes of it. The set of
use cases should be consistent with the set of requests defined in the
behavioral schema. This consistency comprises two properties:

• Each request generated by use case should be defined in the
behavioral schema.
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• Each request defined in the behavioral schema should be generated
by one or more use cases.

One way of documenting the mapping of use cases to requests is by
including textual references to requests near the places in the use case
specification where they are generated. Each use case (the request
sequence) can be specified by using sequence diagram. A sequence dia-
gram shows, for one particular scenario of a use case, the action
requests that the actors generate and their temporal order. The state
diagram, use case diagram, and sequence diagram together defines the
behavioral schema of software system.

2.2.4.2 Unified Modeling Language Diagrams Used
Conceptual modeling of software systems uses only five UML diagram
types: (1) class diagram, (2) state diagrams, (3) use case diagram,
(4) sequence diagram, and (5) profile diagram. Fig. 2.6 contains all the
UML diagram types used, the oriented vertices between diagram types
denotes their construction order and the source of the diagram. In
most cases the root diagram is the class diagram, but there can be
scenarios where a domain specific language is created prior to con-
structing information system. In this scenario the root diagram is pro-
file diagram which contains entity types (i.e., meta-entities) needed to
build the system.

Detailed information of UML diagram types used within conceptual
modeling and their intended use is given in Table 2.4.

Figure 2.5 Modeling structural and behavioral schemas.
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2.2.5 Component-Based Development
The first promise of developed code reuse is object orientation—classes
developed for one project should be usable in the next project. This
supposed to deliver high-quality products on time and in budget.

Figure 2.6 UML diagram development sequence by using conceptual modeling.

Table 2.4 UML Diagrams Used by Conceptual Modeling
No. Diagram

Type

Sequence Information for Notes

1. Class
diagram

1 State diagram, use
case diagram
(partly)

Reflects entities and their relationships. Each entity
(class) has its own state diagram (or multiple state
diagrams) reflecting state changes of it.

2. State
diagram

2 � Each entity type may be associated with zero, one,
or more state diagrams.

3. Use case
diagram

3 Sequence diagram The set of use cases should be consistent with the
set of requests defined in the behavioral schema.

4. Sequence
diagram

4 � A sequence diagram shows, for one particular
scenario of a use case, the action requests that the
actors generate and their temporal order.

5. Profile
diagram

5 Class diagram An entity type defined in the schema of system
may also be an entity in the information base of
the same system or of another system. A meta-
entity type is an entity type whose instances are
entity types.
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Unfortunately, as revealed in recent research by Jones [50] this is not
true—the software projects frequently overrun their budgets and soft-
ware is developed behind the planned schedule. The next step in the
direction of reusable software parts is components. According to
Stevens and Pooley [120] a component is unit that can be reused or
replaced. The ideal way to build a new system in the context of
component-based development is to take existing components and
plug them together. The Catalysis Approach [29] states that for a unit
to be reusable it should have following characterization:

• High cohesion,
• Low coupling with the rest of the system,
• A well-defined interface, and
• It should be an abstraction of a well analyzed and understood concept.

Stevens and Pooley [120] describes component-based development
in the context of 41 1 architecture view model [55] which divides
software architecture in five (41 1) views:

• Logical view—shows parts of the system and how they are related
together with the functionality that is provided to system users, this
view specifies the logical behavior of the system,

• Process view—reflects the dynamic aspects of the system, explains
the system processes and how they communicate; it addresses
several nonfunctional characteristics of system like concurrency,
distribution, integrators, performance, and scalability,

• Development view—shows system from the perspective of developer
and is concerned with software management,

• Physical (deployment) view—depicts the system from a system engi-
neer viewpoint; concerned with the layout of software components
on the physical layer, as well as the physical connections between
these components, and

• Scenario view (the 11 view)—description of architecture is illus-
trated using a small set of scenarios which describe sequences
of interactions between objects and processes; scenarios are used
to identify architectural elements and to illustrate and validate the
architecture design.

2.2.5.1 Development Process
Component-based development is oriented on creating reusable
software components thus it can be used in the context of different
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software development lifecycles and architectural styles. By applying
component-based development in the context of 41 1 architectural
style as suggested by Stevens and Pooley [120], the following UML
diagrams are developed for each of the architecture view:

• Scenario view—use case diagram,
• Logical view—class diagram, interaction diagrams, and state

diagram,
• Process view—interaction diagrams, state diagram, activity diagram,

and deployment diagram (used to determine the threads of control
of the system),

• Development view—component diagram and package diagram, and
• Physical view—deployment diagram.

The three case studies provided by Stevens and Pooley in [120]
shows a part of a software development project. Within each case study
the set of used diagrams differs and the order of diagram development
also is different. Thus the guidelines of UML diagrams application and
development sequence are left open and all the decisions about how to
detail the system design should be taken by the project team. The three
case studies together with developed diagrams are as follows:

1. Study process administration—use case diagram, class diagram, and
activity diagram;

2. Board games—communication diagram, class diagram, and state
diagram; and

3. Discrete event simulation—class diagram, use case diagram, state
diagram, and communication diagram.

2.2.5.2 Unified Modeling Language Diagrams Used
The UML diagrams involved into component-based development are
shown in Fig. 2.7. Since the use of UML diagrams vary from one case
study to another (as discussed in previously), the development
sequence of UML diagrams cannot be precisely specified.

Detailed information of UML diagram types used within component-
based development and their intended use is given in Table 2.5.

2.2.6 Topological Functioning Modeling
for Model Driven Architecture
Topological Functioning Modeling for Model Driven Architecture [92]
is an approach intended for problem domain analysis and modeling in
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Figure 2.7 UML diagram development sequence by using component-based development.

Table 2.5 UML Diagrams Used in Component-Based Development
No. Diagram Type Information

for

Notes

1. Use case
diagram

? Specifies a set of scenarios which describe sequences of
interactions between objects and processes.

2. Class diagram ? Shows objects of the system and how they are related together
with the functionality that is provided to system users.

3. Activity
diagram

? Determines the threads of control in the system.

4. State diagram ?

5. Communication
diagram

? Specifies the logical behavior of the system and determines the
threads of control in the system.

6. Sequence
diagram

?

7. Component
diagram

? Shows the system from the viewpoint of developer.

8. Deployment
diagram

? Shows the system from the viewpoint of system engineer by
showing the topology of components on the physical layer.

9. Package
diagram

? Shows the system from the viewpoint of developer by grouping
together related elements.
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the context of MDA [67], thus dealing with the weakest part of
MDA—the computation independent model (CIM) and its formal
transformation to platform independent model (PIM) [85,116]. In the
context of MDA, TFM4MDA uses an extended version of MDA soft-
ware lifecycle [84]. Extended MDA lifecycle is given in Fig. 2.8. In the
standard MDA lifecycle [53] the feedback from deployment is going back
directly to analysis (“standard feedback” in Fig. 2.8) and it is clearly
visible that CIM is considered only as textual requirements without any
formal relation to the functionality of the business system and that the
requirements and desired behavior of system is not considered at all when
changes are needed in the deployed software system.

To avoid ignorance of CIM and analysis of the business system in
the context of MDA, TFM4MDA uses capabilities of the universal
category logic and is based on the formalism of TFM [87] (TFM and

Figure 2.8 Extended and standard MDA software development lifecycle.
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its construction steps are given in Chapter 4, Topological Unified
Modeling Language, of this book). The main idea behind TFM4MDA
is that the required functionality determines the structure of the
planned system [88]. This corresponds to the opinion that there are
two stages at the beginning of the problem analysis: the first one is
analysis of the problem domain and the second one is analysis of the
application domain. Having knowledge about a complex system that
operates in the real world, a TFM of this system can be developed.
This means that a TFM of the system is tested and can be partially
changed and adjusted by functional requirements and vice versa.
Usually changes in TFM are initiated if the software system introduces
new functionality in the problem domain (e.g., in the context of library
software development project discussed in [94]—sending of SMS notifi-
cations is a new functionality introduced to business process through
the developed software system).

2.2.6.1 Development Process
The software development process within TFM4MDA approach
begins with the analysis and formalization of problem domain as
shown in Fig. 2.9, where the development is shown in the context of
two kinds of information at the beginning of the problem analysis: the
problem domain and the application domain.

Problem domain analysis and software modeling within the
TFM4MDA approach consists following actions:

1. Development of TFM reflecting the problem domain functioning,
2. Functional requirement mapping onto TFM,

Figure 2.9 Software modeling within TFM4MDA approach.

74 Topological UML Modeling



3. Use case identification from a TFM,
4. Activity diagram development for each identified use case, and
5. Conceptual and controller class identification.

The formal development of TFM within TFM4MDA is given in
Fig. 2.10.

After the development of TFM, the functional features are associ-
ated with business goals of the system. Associating functional features
with business goals provides business use case and system use case
identification according to the problem domain entities. Additionally,
after those activities functional requirements can be traced back to the
system use case diagram [7]. Problem domain concepts are selected
and described in an UML Class diagram. The UML Class diagram is
developed by performing two transformations: (1) TFM to problem
domain objects graph and (2) problem domain objects graph to class

Figure 2.10 TFM development within TFM4MDA approach.
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diagram. As a result of this transformation a class diagram reflecting
conceptual classes (i.e., without attributes and operations) and
nondirected associations between them is obtained.

2.2.6.2 Unified Modeling Language Diagrams Used
All the diagram types used within TFM4MDA are shown in
Fig. 2.11, the oriented vertices between diagram types denotes their
construction order and the source of the diagram. The root diagram
is TFM which is constructed according to the problem domain func-
tioning. TFM4MDA approach uses only three UML diagram types:
use case diagram, activity diagram, and class diagram; and additional
two diagrams: TFM and problem domain objects graph (the names of
these two diagram types are given in italic in Fig. 2.11).

Despite the fact that TFM can be transformed to activity diagram, the
author of TFM4MDA in [6] states that “it is impossible to create fork
and join nodes automatically because the TFM does not hold information
of concurrency” (thus TFM can be transformed into simple activity dia-
gram). The transformation from TFM to class diagram is ambiguous
while it is not clear how the control flow showing interaction between
objects (i.e., cause-and-effect relationships) in TFM can be transformed
into structural relationships (i.e., associations) between classes. The level

Figure 2.11 Diagram development sequence by using TFM4MDA.
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of ambiguousness is even increased in the initial stage of TFM to class
diagram transformation—the TFM to problem domain object graph
transformation.

Detailed information of UML diagram types used within TFM4MDA
and their intended use is given in Table 2.6.

2.3 BENEFITS AND LIMITATIONS OF UNIFIED MODELING
LANGUAGE FOR MODELING DRIVEN APPROACHES

Since UML itself is a notation and as such it does not contain guide-
lines on how it can be applied in practice, the largest benefit of pres-
ence of UML modeling driven approaches is that the use of UML is
made systematical. If UML is combined together with some approach,
it can be used as a powerful tool to analyze and understand both busi-
ness and software systems and to design planned software system.
Despite the fact that UML modeling driven approaches provides a sys-
tematical use of UML diagrams, these approaches do cover different
parts of a software development lifecycles. Whole software develop-
ment lifecycle is covered only by the Unified Process, other methods
focuses more on analysis (e.g., B.O.O.M., TFM4MDA, and concep-
tual modeling) while others—more on design and less on analysis (e.g.,
pattern-based design, component-based development). This impacts
the number of UML diagram types that are used by each of the
method. The summary of UML diagrams usage by each method is
given in Fig. 2.12, where it can be seen that not every UML diagram
type is used (UML in total has 14 diagram types). The greatest amount
of applied diagram types is for the Unified process.

Table 2.6 Diagrams Used in TFM4MDA Approach
No. Diagram Type Sequence Information for Notes

1. Topological
Functioning
Model (TFM)

1 Problem domain objects
graph, use case diagram,
and activity diagram

TFM is used to formalize problem
domain and thus it is the initial
diagram developed when using
TFM4MDA approach.

2. Use case
diagram

2 � Since TFM4MDA approach is intended
for problem domain analysis using
TFM, it does not include guidelines for
transformations between standard
UML diagrams.

3. Activity
diagram

3 �

4. Class diagram 5 �
5. Problem

domain
objects graph

4 Class diagram TFM is transformed 1:1 into problem
domain object graph where each vertex
shows only one type of objects.
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While the benefit of applying Unified process is the coverage of whole
software development lifecycle, it has some limitations—the Unified
Process promotes use case driven analysis of business system thus all the
process is more or less use case driven (e.g., actors are identified by use
cases, system class candidates are extracted from the use case narratives
by using noun analysis). As such the Unified Process does not provide a
formal way of analyzing and formalizing business system.

The only formal method for problem domain formalization among
the reviewed methods is TFM4MDA. It uses TFM as a tool for both
problem and solution domain analysis and formalization. When a TFM
of system’s functioning has been developed, it can be mapped onto
functional requirements, goals and use cases. By mapping TFM onto
functional requirements, the requirements get validated. As a result of
this validation missing, overlapping, unrealizable, and conflicting require-
ments are found. If there are requirements that do not map onto devel-
oped TFM, then it is a signal that a new functionality is going to be
introduced to the functioning of a business system through the new soft-
ware. TFM can be transformed into activity diagram and class diagram
(TFM4MDA addresses class diagram as conceptual class diagram). The
conceptual class diagram contains conceptual classes (without attributes
and operations) and associations between them.

While TFM4MDA has formalized the very beginning of software
development lifecycle, its largest limitation is the conceptual class

Figure 2.12 Number of UML diagrams used by UML modeling driven methods.
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diagram and its development. TFM describes the functionality of the
business and software system (including the responsibilities through the
whole system). When TFM is transformed into conceptual class dia-
gram this important information of responsibilities from TFM is not
transferred to class diagram, thus raising a question: “How the respon-
sibilities carried by classes can be determined?” The transformation
from TFM to class diagram is ambiguous while it is not clear how the
control flow showing interaction between objects (i.e., cause-and-effect
relationships) in TFM can be transformed into structural relationships
(i.e., associations) between classes. As underlined by Larman in [58]:
“deciding what operations belong where, and how the objects should
interact, is terribly important and anything but trivial. This is a critical
step - this is at the heart of what it means to develop an object-oriented
system, not drawing domain model diagrams, package diagrams, and so
forth.”

The analysis of UML application in software development industry
[22] shows that the five most applied diagram type among UML dia-
grams are: (1) class diagram (84%), (2) use case diagram (71%), (3)
sequence diagram (70%), (4) activity diagram (57%), and (5) state

Figure 2.13 Percentage of UML diagram type application by UML modeling driven methods.
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diagram (56%) (percentage in braces shows how many of the review’s
135 respondents are using corresponding UML diagram type). This
fact is tightly related with the UML modeling driven methods—the
review of such methods shows that the five most applied UML dia-
gram types within them are: (1) class diagram, (2) use case diagram,
(3) activity diagram, (4) state diagram, and (5) sequence diagram as
shown in Fig. 2.13.

2.4 SUMMARY

The use of UML modeling driven methods supplements the applica-
tion of UML in software development. While UML is a notation and
as such its specification does not contain any guidelines of its applica-
tion during software development process, the UML modeling driven
methods fulfill this gap. In fact, the application of modeling methods
reduces and even solves disadvantages of UML identified in previous
chapter:

• Size—systematic and consistent software development activities
solves issue related with the large amount of UML diagrams and
their elements (i.e., UML is applied gradually thus avoiding the
need to read whole language specification at once),

• Incoherence—through the predefined actions the modeling method
tries to develop diagram by diagram thus showing the seams and
transitions between diagrams (e.g., developing state diagram for
each class in class diagram),

• Different interpretations—UML semantics together with methodical
application of UML diagrams creates shared understanding among
stakeholders,

• Frequent subsetting—providing UML extension (e.g., profile) and a
proper modeling method that uses this extension it is clearly visible
how it is related to UML elements and diagrams and how software
development can benefit from this extension, and

• Lacking causality—by tracing cause-and-effect relationships between
both problem and solution domains the software system can be vali-
dated against the business needs and functional requirements. The
only approach trying to deal with such cause-and-effect relation-
ships is TFM4MDA. But the causality relationships are identified
and analyzed only at the TFM and are not spread to UML dia-
grams during further analysis and design of the system.
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Review of UML modeling methods shows that not every method
covers all the software development lifecycle. Among the reviewed
methods only Unified Process covers whole software development life-
cycle while other methods cover just a specific part of it (e.g., analysis,
design) thus impacting the number of UML diagram types that are
applied by each of the method. While most of the reviewed UML
modeling methods promotes use case driven software development
process, the only formal method for business system (i.e., problem
domain) formalization among the reviewed methods is TFM4MDA. It
uses TFM as a tool for problem domain analysis and formalization.
The TFM4MDA covers only TFM, use case, activity, and class dia-
gram development. In fact, class diagram contains conceptual classes
(without attributes and operations) and associations between them,
thus the responsibilities of classes are not assigned.

The review of UML modeling driven methods leads to the follow-
ing conclusions:

• None of reviewed method is sufficient for software development
that allows to clearly trace cause-and-effect relationships in both
problem and solution domains,

• Modeling methods determine the application of UML diagrams and
not the UML itself (review of UML application in industry [22] and
UML modeling methods review shows that the top five most
applied UML diagrams are the same), and

• Due to the partial UML and software development lifecycle cover-
age and the fragmentary application of UML diagrams the software
developers are forced to combine UML with several modeling methods
and techniques (instead of taking UML as a notation and one UML
modeling driven method) thus the application of UML gets more
complicated and incomprehensible.

As stated in the Chapter 1, Unified Modeling Language: A
Standard for Designing a Software, the UML can be improved by
supplementing it with the topological and functioning characteristics
of TFM. To allow using topology in UML diagrams, it needs to be
extended by using extensibility mechanisms. In such case a new kind
of UML is created—Topological Unified Modeling Language
(Topological UML). If the UML disadvantage of lacking causality is
solved by supplementing it with mathematical topology and thus cre-
ating Topological UML profile, then another UML disadvantage
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emerges—frequent subsetting. To address this issue, a new UML
extension needs to be provided together with a proper modeling
method—Topological UML modeling method. To address issues
related with existing UML modeling methods, the Topological UML
modeling method should include following aspects:

• It should ensure proper analysis of problem and solution domains
thus enabling clearly tracing of cause-and-effect relationships in
both domains (all software artifacts need to be an abstraction of a
well analyzed and understood problem domain unit),

• It should cover most of the UML diagrams and software develop-
ment lifecycle to eliminate the need to combine together several
modeling methods,

• The developed artifacts should be with high cohesion (achieved
through proper analysis of objects and their responsibilities
throughout the system), and in addition

• Components of developed system need to have low coupling with
the rest of the system and a well-defined interface.
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CHAPTER 33
Adjusting Unified Modeling Language

INFORMATION IN THIS CHAPTER:

• UML metamodel
• Metamodeling principles and approaches
• Metamodel extension
• A new metamodel vs extension of existing one

3.1 INTRODUCTION

While the UML is intended to be a graphical language for visualizing,
specifying, constructing, and documenting the artifacts of a system it
has a number of advantages and a number of disadvantages as outlined
in Chapter 1, Unified Modeling Language: A Standard for Designing a
Software. The main disadvantages of UML which emerges the
improvement of it have raised from the basis on which UML has been
developed. The specification of UML and the UML itself is not devel-
oped basing on any theoretical principles regarding the constructs
required for an effective and usable modeling language for analysis and
design; instead UML arose from (sometimes conflicting) best practices
in parts of the software engineering community [22]. In the field of
improving UML and its application in software development the
following improvement options are outlined:

• Extending UML by using UML’s extensibility mechanisms,
• Formalizing the semantics of UML,
• Formalizing the way in which the UML is used, and
• Relating UML constructs to the problem domains.

According to the UML specification, the UML extension is divided
into two ways: (1) lightweight extension and (2) heavyweight extension
[77]. The lightweight extension is done by using profiles thus defining a
new dialect of UML to customize the language for particular
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platforms, domain and problem solutions. The heavyweight extension
(or the first class extension) is done by using metamodeling based on
Meta-Object Facility (MOF). In this case, all the benefits of creating
profile are lost and it can be a difficult task to put it into the practice.

If there is need to extend the UML, at first it is needed to draw the
scope of UML extension. If the new language will use most of the
UML, then profiles are suitable choose for that solution. If the new lan-
guage uses only small part of UML or there is need to use more com-
plex features of UML such as redefinition, then creating a complete
new language by using MOF metamodeling should be considered. The
relationship between the UML and the new language under consider-
ation is shown in Fig. 3.1. It clearly shows that if there is much overlap
between the concepts in UML and those within the new language then
UML should be extended and if there is little overlap, then MOF-based
solution should be created. An example of using both approaches
(UML profile-based extension and MOF-based solution) to develop a
new language is demonstrated in the “UML testing profile” [75]. In
other words, the UML testing profile specification defines the same
language by using two different approaches.

The UML specification itself is defined by using metamodeling
approach—a metamodel is used to specify the model that builds UML.
One of the UML metamodel principles is its extensibility. In fact, the
most common and suitable way for improving UML is to use its exten-
sibility mechanisms—the profiles. By improving UML with the profile
mechanism, it is possible to adapt and use ordinary UML compliant
modeling tools [77]. Thus by creating a profile of UML the costs of
adaption in industry for such new language is lowered and it can be

Figure 3.1 Overlap between UML, the new language under consideration, and the suggested language creation solution.

84 Topological UML Modeling



adapted faster (in comparison with creating a MOF-based solution
which forces to implement new modeling tools along with the very new
language).

Regardless of which UML extension way is used it is important to
add mathematical foundations to the specification, thus making UML
and its use more precise and formal. As outlined in Chapter 1, Unified
Modeling Language: A Standard for Designing a Software, and
as pointed out in “Software Development with the Emphasis on
Topology” [24] and “Formalization of the UML Class Diagrams” [97],
the UML can be strengthened by using the mathematical topology.
The use of topology reflects extending the UML to support topology in
its diagrams and formalizing the way the UML is used. Having more
precise and formal language makes it less expensive to adapt in
software development process and tools [38].

3.2 PROFILING UNIFIED MODELING LANGUAGE
AND METAMODELING

The UML specification is defined using a metamodeling approach that
adapts formal specification techniques (it is needed to notice that this
approach lacks some of the rigor of a formal specification method,
mainly due to the extensive use of natural language). The purpose of
metamodeling is to use metamodel for specifying the model that com-
prises UML. UML specification (version 2.0 to 2.4.1) is organized in
two parts: (1) Infrastructure [77] (represented by InfrastructureLibrary)
and (2) Superstructure [78] (represented by SuperstructureLibrary).
Although the UML specification 2.5 has been extensively rewritten
from its previous version 2.4.1 by combining together the infrastructure
and superstructure parts, the metamodel itself remains unchanged from
UML 2.4.1 superstructure [79]. Thus the amount and types of UML
diagrams have not changed from version 2.4.1 to version 2.5.

The infrastructure is represented by two packages: (1)
InfrastructureLibrary (consists of two subpackages Core (contains core
concepts used when metamodeling) and Profiles (defines the mechanisms
that are used to customize metamodels)) and (2) PrimitiveTypes (consists
of a few predefined primitive types that are commonly used when meta-
modeling) and it satisfies following design requirements [106]:

• Define a metalanguage core that can be reused to define a variety of
metamodels,
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• Architecturally align UML, MOF, and XML metadata interchange
(XMI) so that model interchange is fully supported, and

• Allow customization of UML through profiles and creation of new
languages (family of languages) based on the same metalanguage
core as UML.

The Core package is a complete metamodel particularly designed
for high reusability, where other metamodels at the same metalevel
either import or specialize its specified metaclasses (see Fig. 3.2 where
it is shown how UML, Profiles, and MOF each depends on a common
core). Common core is defined as a Core package, thus enabling to
share model elements between UML and MOF and ensuring that
UML is defined as a model that is based on MOF as a metamodel.

The mechanisms and tools of improving and extending UML by
using profiles are given in the Profiles package, which depends on the
Core package. The Profiles package defines the mechanisms used to
tailor existing metamodels toward specific platforms, domains, prob-
lem solutions or software process modeling. The primary target for
profiles is UML, but it is possible to use profiles together with any
metamodel that is based on (i.e., instantiated from) the common core.
A profile must be based on a metamodel such as the UML that it
extends. A profile of UML is a set of stereotypes, when defining a
UML profile the stereotypes are defined to extend classes in the UML
metamodel. A stereotype describes how an existing metaclass is
extended thus enabling the integration of platform or domain specific
terminology or notation in the modeling language.

The UML Superstructure metamodel is specified by the UML
package SuperstructureLibrary, which is divided into a number of

Figure 3.2 Dependencies between Core, MOF, UML, and Profiles packages.
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packages that deal with structural and behavioral modeling. One of
the primary uses of the UML Infrastructure specification is that it
should be reused when creating other metamodels. The
SuperstructureLibrary reuses the InfrastructureLibrary in two different
ways: (1) all of the UML metamodel is instantiated from
meta-metaclasses that are defined in the InfrastructureLibrary and (2)
the UML metamodel imports and specializes all metaclasses in the
InfrastructureLibrary.

Defining language by using metamodeling includes dealing with
three meta-layers that always have to be taken into account:

1. Language specification: The metamodel,
2. User specification: The model, and
3. Objects of the model: The run-time instance of model.

This three-layer structure can be applied recursively, thus creating
possibly infinite number of meta-layers. The metamodel in one case can be
a model in another case (e.g., from the MOF viewpoint the UML is a
model, from profile viewpoint the UML is a metamodel). The UMLmeta-
model commonly is viewed as a four layer metamodel hierarchy [106]:

• M3 meta-metamodeling layer—defines a language for specifying a
metamodel, e.g., MOF,

• M2 metamodeling layer—defines a language for specifying models
(i.e., defines metamodel as an instance of a meta-metamodel, meaning
that every element of the metamodel is an instance of an element in
the meta-metamodel), e.g., UML, specific profile of UML,

• M1 modeling layer—defines languages that describe semantic domains,
i.e., to allow users to model a wide variety of different problem
domains, such as software, business processes, and requirements, e.g.,
user model which is an instance of UML metamodel, and

• M0 run-time instances layer—contains the run-time instances of
model elements defined in a model.

Extending UML by developing a new profile has a number of
positive and negative aspects. When a profiling has been chosen as an
extension solution for the development of the new language the
following aspects should be kept in mind:

• Positive aspects:
• Profiles are well described in UML specification,
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• Can add structure, additional constraints, and formal notation,
• Standard means for icons definition and well-defined display

options,
• Application of profiles and how to use them is well defined, and
• Low development costs—profiles can be used within existing

UML modeling tools.
• In some cases, it could be needed to remove some existing element

or change its existing specification, then the negative aspects of pro-
file application arise:
• Cannot remove existing constraints,
• Cannot redefine existing types, and
• Cannot modify existing structures (i.e., existing relationships

between language elements cannot be removed and changed).

3.3 OVERVIEW OF UNIFIED MODELING LANGUAGE PROFILES

The first UML profile was presented at UML’99 [38] under the title
“Towards a UML Extension for Hypermedia Design” [12]. Since that
a number of UML profiles are developed and published. They cover
different problem domains, like business process, requirements,
ontologies, device capabilities, parallel applications, and hypermedia.
Most of the UML profiles have been presented at conferences which
are specialized in conceptual modeling and software engineering. As
Pardillo has underlined in his research “A Systematic Review on the
Definition of UML Profiles” [103] the presentation of UML profiles
“shows a great disparity regarding both the profile definition process
and the quality of the UML-profile presentation,” thus leading
to difficult comparison, discussion and usage of presented UML
profiles.

To better understand the development and structure of UML pro-
file specification this section holds an overview of four UML profiles
which are created by different teams. The profiles for review are
selected based on following criterions (at least one criterion for each
profile is satisfied):

1. Widely accepted and used,
2. Developed at research or scientific institution, or
3. Published by Object Management Group (OMG) (i.e., publishers of

UML specifications).
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The review of UML profiles includes analysis of following UML
profiles:

• Executable UML (xUML) [64] —satisfies the first criterion,
• Topological Functioning Model for Model Driven Architecture

(TFM4MDA) [9] —satisfies the second criterion,
• Object Management Group Systems Modeling Language (OMG

SysML) [80]—satisfies third criterion, and
• Service Oriented Architecture Modeling Language (SoaML) [76]—

satisfies third criterion.

According to Pardillo, the systematic review of UML profiles should
include two main aspects of UML profiling practices—(1) profile defini-
tion process and (2) profile presentation quality. Thus, the selected four
profiles are measured against the following quantitative and qualitative
criterions:

• Qualitative criterions:
1. Purpose of the profile—briefly describes the purpose and goal of

the profile,
2. Problem domain addressed—identifies problem domain addressed

and the specific task which needs to be solved by the profile,
3. Formalization of UML semantics—identifies if semantics of

existing UML elements are formalized,
4. Formalization of profile semantics—identifies if semantics of the

new elements (i.e., stereotypes) are expressed in formal statements,
5. Extension approach—evaluates the applied UML extension

approach, and
6. Specification structure—evaluates the profile definition structure

and whether it follows some specification guidelines or style.
• Quantitative criterions:

7. Metaclasses extended—count of metaclasses that are extended,
8. Stereotypes defined—count of stereotypes defined in profile,
9. Diagrams extended—number of UML diagrams that are

extended,
10. Diagrams introduced—count of diagrams that are new to profile

(i.e., defined in profile and does not exist in UML specification), and
11. Total count of diagrams—total count of diagrams included into

profile.

The result of the evaluation against qualitative criteria is given
below in Table 3.1.
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Table 3.1 Evaluation of Qualitative Criteria for Selected Profiles
No. Criterion Profile Evaluation

1. Purpose of the
profile

xUML Graphically specifies a system at high level of abstraction,
abstracting away both specific programming languages
and decisions about the organization of the software. The
models are testable, and can be compiled into a less
abstract programming language to target a specific
implementation. It supports MDA through the
specification of PIM, and the compilation of the PIM into
PSM. Together with model compiler, xUML models are
executable—model compiler turns xUML model into an
implementation using a set of decisions about the target
hardware and software environment.

TFM4MDA An attempt to raise the formalization level of problem
domain modeling within MDA at the CIM level and
CIM-to-PIM transformation. It includes a new type of
diagram: Topological Functioning Model (TFM); thus
allowing to analyze and model problem and solution
domain functioning. According to [88] within software
development process this diagram should be created
before any other diagram gets constructed. This conforms
to the extended MDA lifecycle [83].

OMG SysML A general-purpose modeling language for systems
engineering applications. It supports the specification,
analysis, design, verification, and validation of a range of
systems (e.g., hardware, software, information, processes,
personnel, and facilities) and it is particularly effective in
specifying requirements, structure, behavior, allocations,
and constraints on system properties to support
engineering analysis. The authors of OMG SysML
anticipate that it will be customized to model domain-
specific applications (e.g., such as automotive, aerospace,
communication, and information systems).

SoaML A language for designing services within a service-
oriented architecture (SOA). It supports range of
modeling requirements for SOAs, including the
specification of services systems, individual service
interfaces, and service implementations. This is done in a
way to support automatic generation of derived artifacts
following MDA-based approach.

2. Problem domain
addressed

xUML Software modeling and development within MDA.

TFM4MDA Formal problem and solution domain modeling and
analysis.

OMG SysML Systems engineering.

SoaML Modeling of SOA and services.

3. Formalization of
UML semantics

xUML None.

TFM4MDA None.

OMG SysML None.

SoaML None.

(Continued)
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Table 3.1 (Continued)
No. Criterion Profile Evaluation

4. Formalization of
profile semantics

xUML Semantics and constraints expressed in natural language.

TFM4MDA Semantics and constraints expressed in natural language
and OCL.

OMG SysML Semantics and constraints expressed in natural language.

SoaML Semantics and constraints expressed in natural language.

5. Extension
approach

xUML Elements of UML are supplemented with action language
and action concepts to make the UML diagrams
executable.

TFM4MDA UML is extended only where it is necessary to introduce
new elements for definition of TFM and elements related
to it.

OMG SysML Since the OMG SysML profile does not use every
modeling element and every diagram which is included in
UML version 2.0, initially a narrowed version of UML
(UML4SysML) is developed. The OMG SysML
specification defines the language architecture in terms of
the parts of UML 2 that are reused and the extensions to
UML 2.

SoaML UML is extended only where it is necessary to accomplish
the goals and requirements of SOA and service modeling.

6. Specification
structure

Executable UML Since this profile is created basing on UML version 1.4,
which contains no profile diagram and the profiling
mechanism, the specification style is not convenient with
UML specification style. All of the new concepts are
defined only using natural language. For the diagrams
and elements the authors of xUML try to keep the
following specification points:
1. UML diagram (description of which can be

supplemented by set of definitions),
2. Diagram element (description of which are

supplemented by set of definitions), and
3. How to apply diagram in software development

process.

TFM4MDA Specification of TFM4MDA includes profile diagram
which shows metaclasses and stereotypes extending them.
Each stereotype has brief description of its semantics in
natural language and constraints in OCL. A standalone
metamodel is defined for TFM.

OMG SysML Specification structure follows the style in which the
UML specification itself is written. Specification is
divided into parts that contain specific modeling aspects;
each part contains definition of elements needed to
construct specific diagram. Elements are described in the
same way as in UML specification, thus containing
determined specification parts.

SoaML The same as used for OMG SysML (see above).
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The result of the evaluation against quantitative criteria is given in
Table 3.2.

Summary of positive and negative aspects for each evaluated profile
is given in Table 3.3.

The review of profiles shows that there is no unified profile defini-
tion template or approach—each author defines profile on its own.
After doing systematic review of UML profiles, Pardillo in his research
[103] has outlined that “the low presentation quality point out the
need of more formal methods and templates to present UML profiles.”
Only two of four reviewed profiles (OMG SysML and SoaML) have
huge similarities in the profile specification (the specification structure

Table 3.2 Evaluation of Quantitative Criteria for Selected Profiles
Profile

Criterion

xUML TFM4MDA OMG SysML SoaML

Metaclasses extended ? 6 25 12

Stereotypes defined ? 8 40 20

Diagrams extended ? 0 3 0

Diagrams introduced 0 1 2 0

Total count of diagrams 8 14 9 13

Table 3.3 Positive and Negative Aspects of Selected UML Profiles
No. Aspect Profile Evaluation

1. Positive
aspects

xUML Models are testable and executable. Profile contains approach of
applying it.

TFM4MDA Profile has an approach (called TFM4MDA) for its use in software
development.

OMG
SysML

Profile definition structure.

SoaML Profile definition structure.

2. Negative
aspects

xUML Profile definition style—no stereotypes and extended metaclasses
modeled.

TFM4MDA TFM4MDA approach uses problem domain graph as intermediate
model between TFM and class diagram but in the same time this
graph is not included in TFM4MDA profile.

OMG
SysML

The introduced requirements diagram is just a repository of textual
requirements.

SoaML Names of stereotypes are the same as for the metaclasses they extend.
It could lead to confusion of used element and misunderstanding of
developed diagrams.
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is about 85% the same). The specification of these two profiles follows
the overall specification structure of UML; thus if the reader is
familiar with the UML specification understanding of these profiles
is relieved. Summarizing issues related to UML profile specification
techniques and templates, the next section provides guidelines for
profile development.

3.4 DEVELOPING A PROFILE FOR
UNIFIED MODELING LANGUAGE

Developing a profile for UML should be done in consistent way by
using some unified profiling approach or template. Since UML specifi-
cation contains only the definition of elements that are building up a
profile and does not provide guidelines or process on how to apply
these elements, before creating a profile for UML it is needed to define
guidelines of profile development. While this section summarizes up
the contents of profile in the terms of used elements from UML specifi-
cation [78], the next section gives guidelines of contents for a profile
specification.

The UML profile diagram consists of following elements:

• Metamodel—a referenced model that is extended through the pro-
file. A graphical representation is shown in Fig. 3.3 where UML is
used as a metamodel to extend.

• Reference—a dependency relationship with attached stereotype «ref-
erence» that is directed from profile to referenced metamodel. An
example of reference relationship is given in Fig. 3.4 where a profile
named TestML references metamodel of UML. This example shows
that TestML profile is created by extending UML.

• Profile—a special package that extends a referenced metamodel by
adding stereotypes to it. Like packages in package diagram can be

Figure 3.3 Metamodel representation.
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drawn at different abstraction levels revealing or hiding its content,
the profile can be drawn in the same manner. Fig. 3.5 gives an
example of profile TestML showing on the left side just the profile
node and on the right side—profile together with its contents.

• Metaclass—a class that is extended by a stereotype. The metaclass
is represented with the same node as regular class by attaching ste-
reotype «metaclass». An example of regular class and metaclass is
illustrated in Fig. 3.6.

• Stereotype—extends existing UML vocabulary by adding a new ele-
ment to it and it describes how an existing metaclass can be
extended enabling the integration of platform or domain specific ter-
minology or notation in the modeling language (a set of stereotypes
build up the profile). A stereotype extension is used to indicate that

Figure 3.4 Metamodel reference relationship.

Figure 3.5 Profile illustration variations.
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the properties of a metaclass are extended through a stereotype. The
stereotyped class is represented with the same node as regular class
by attaching stereotype «stereotype». An example of regular class
and stereotyped class is given in Fig. 3.7.

• Extension—a special binary association, extension end is used to
tie an extension to a stereotype when extending a metaclass.
Extension relationship is directed from stereotyped class to the
metaclass it extends. An example of extension relationship is given
in Fig. 3.8 where a stereotyped class named TestCase extends
metaclass UseCase.

• Profile application—a dependency relationship with attached stereo-
type «apply» between a package and a profile that allows to use the
stereotypes from the profile in the model elements of the
source package. Profile application relationship is directed from
package that applies profile to the profile package. Take a look at
profile application example in Fig. 3.9.

Figure 3.6 Class nodes showing regular class and metaclass.

Figure 3.7 Class nodes showing regular class and stereotyped class.
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An example showing generic profile with name TestML is given in
Fig. 3.10. The example of profile extends UML by adding stereotype
TestCase. The stereotype TestCase extends metaclass UseCase by using
extension relationship. The profile is applied by the package Testing
process.

Figure 3.8 Extension relationship.

Figure 3.9 Profile application relationship.
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3.5 PROFILE SPECIFICATION TEMPLATE

As shows the specification of OMG SysML [80] and SoaML [76] the
best practice for UML profile specification is to use the same structure
as used for UML specification, thus if the reader is familiar with UML
specification it is easier to read and understand the specification of
specific UML profile. UML specification is created by keeping
in mind following aspects [77]: correctness, precision, conciseness,
consistency, and understandability.

The profile specification should start with profile diagram showing
the referenced metamodel and how the profile extends it. After profile
diagram, one or more package diagrams should be provided showing
the packages of which the profile consists. UML elements within its
metamodel and specification also are grouped into packages. At this
point it is advised to reuse the package specification style used in
UML specification. Each package and each class in the UML specifi-
cation (both infrastructure [77] and superstructure [78] specifications)
has following structure:

• Package—this clause provides information for each package and
each class in the UML metamodel or profile. Each package specifi-
cation contains one or more of the following subclauses (Classes,
Diagrams, and Instance model).
• Classes—contains a list of the classes specifying all the constructs

defined in package. This subclause begins with one diagram or

Figure 3.10 Example of profile and profile application.
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several diagrams depicting the abstract syntax of the constructs
(i.e., the classes and their relationships) in the package, together
with some of the well-formedness requirements (multiplicity and
ordering). Then follows a specification of each class in alphabetic
order. Each class specification has following subclauses:
• Description—an informal definition of the metaclass specifying

the construct in UML.
• Attributes—list of all attributes for metaclass. Attributes are

given together with a short explanation.
• Associations—list of all member ends of associations connected

to this class (associations are listed in the same way as attributes).
• Constraints—well-formedness rules of the metaclass. These

rules specify constraints over attributes and associations
defined in the metamodel. Mostly they are defined by using
OCL expressions together with an informal explanation of the
expression.

• Additional operations (optional)—contains any additional
operations on the class which are needed for the OCL
expressions.

• Semantics—the meaning of a well-formed construct is defined
using natural language (can include formal definition of
construct’s semantics).

• Semantic variation points (optional)—objective of a semantic
variation point is to enable specialization of that part of UML
for a particular situation or domain.

• Notation—presents the notation of the construct (i.e., class).
• Presentation options (optional)—if there are different ways to

show the construct, these ways are described in this subclause.
• Style guidelines (optional)—describes non-normative conventions

that are used in representing some part of a model.
• Examples (optional)—examples of how the construct is to be

depicted.
• Rationale (optional)—if there is a reason why a construct is

defined like it is, or why its notation is defined as it is, then it
is given in this subclause.

• Diagrams—this subclause is included into specification to describe
specific kind of diagram, if this diagram uses the constructs that are
defined in this package.

• Instance model—shows an example of applying constructs defined in
this package.
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3.6 SUMMARY

When extending UML it is needed to draw the scope of required exten-
sion: if the new language will use most of the UML, then profiles are
more suitable; and if the new language uses only small part of UML or
there is need to use more complex features of UML such as redefinition,
then creating a complete new language by using MOF metamodeling
should be considered. In fact, UML specification itself is defined using
metamodeling approach (a metamodel is used to specify the model that
builds UML). One of the UML metamodel principles is its extensibility.
The most common and suitable way for improving UML is to use
its extensibility mechanisms—the profiles (in this scenario it is possible
to adapt and use ordinary UML compliant modeling tools). Thus, by
creating a profile of UML, the costs of adapting it in practice is lowered
and it can be adapted faster (in comparison with creating a new
modeling language which leads to implementing new modeling tools).

Since the UML specification is a specification of a notation, it does
not include any guidelines for profile definition and specification, thus
leading to current situation when UML profiles are developed in inconsis-
tent ways. This makes it hard to read and understand profiles proposed
and created by different authors. To overcome identified issue, a set of
UML profiles are analyzed resulting in profile specification template—the
best practice for UML profile specification is to use the same structure as
used for UML specification. Thus, if the reader is familiar with UML
specification it is easier to read and understand the specification of
specific UML profile.
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CHAPTER 44
Topological Unified Modeling Language

INFORMATION IN THIS CHAPTER:

• Topology in UML diagrams
• Extending UML
• Defining Topological UML
• Metamodels of Topological UML diagrams

4.1 TOPOLOGICAL UNIFIED MODELING LANGUAGE:
AN UNIFIED MODELING LANGUAGE IMPROVEMENT

Topological Unified Modeling Language (Topological UML) is a com-
bination of Unified Modeling Language (UML) and formalism of
Topological Functioning Model (TFM) and is based on the principles of
metamodeling and Meta-Object Facility (MOF). Idea of Topological
UML is adapted from [83] where it is shown that “there is a lack of
mathematical formalism by drawing UML diagrams.” The main aim of
improving UML is by transferring topology and mathematical formal-
ism of TFM to UML, thus strengthening the very beginning of the soft-
ware development lifecycle. Sometimes it is very hard to pay appropriate
resources and time at the very beginning of the software development
lifecycle to detect and analyze aspects of desired software system as
much as possible. Especially in the world in which the result is required
as soon as possible. As the end-user demands his or her software, the
analysis, design, etc. is just a side-product for which the customer needs
to pay—and it creates undesirable costs. But keep in mind, every single
design decision which should be taken will be taken! If it happens as
early as possible, it avoids wasting valuable resources, including time;
otherwise it could lead to unnecessary reworking or even recoding parts
of the system or the system as whole.

TFM enables careful analysis of system’s operation and communica-
tion with the environment through analysis of functional cycles and it

Topological UML Modeling. DOI: http://dx.doi.org/10.1016/B978-0-12-805476-5.00004-6
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allows to pay the required attention at the very beginning of the software
development lifecycle. While using the TFM as a tool to carefully analyze
the problem domain and design the solution domain, it is very important
to not lose the information gathered during construction of the TFM.
The best way to do this is to transfer all the design decisions from TFM
to other design diagrams and of course to the software code. In such case,
we are going from more abstract models to more specialized models, thus
adding more and more development specific artifacts to design to get us
to the executable software. Our research “An Innovative Model Driven
Formalization of the Class Diagrams” [96] shows that it is possible to
transfer topology from TFM into UML class diagrams thus creating a
new diagram type called topological class diagram and that this
diagram can be refined to have all necessary information for software
development as outlined in “Towards the Refinement of Topological Class
Diagram as a Platform Independent Model” [28].

The Topological UML is developed as a profile of UML and its
specification takes advantage of the package merge feature of UML to
merge extensions into UML. The created profile provides a UML spe-
cific version of the metamodel that can be incorporated into standard
UML modeling tools as stated in UML’s specification [77]. Since there
is no specific profile definition method or approach the Topological
UML profile definition is done by using results of profile definition
analysis as given in Chapter 3, Adjusting Unified Modeling Language.
Topological UML development is based on following steps:

• Extend UML by using profile mechanism, thus creating
Topological UML profile and

• Define guidelines for using Topological UML in practice (thus for-
malizing the way the Topological UML is used).

This chapter covers extending UML while next—defining guidelines.

Despite that together with Topological UML is defined method on
how to apply it in practice, the Topological UML language is intended
to support multiple approaches and methods (e.g., structured, object-
oriented, and conceptual). It is assumed that each methodology may
impose additional constraints on how a Topological UML construct
or diagram may be used and applied.

The analysis of UML diagrams included in the version 2.4.1
shows which of the diagrams already have elements that can reflect
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cause-and-effect (topological) relationships and which diagrams should
be extended. The extension of a number of UML diagrams is necessary
to develop a framework for Topological UML and later define
Topological UML profile diagram for it. The analysis of existing
UML diagrams is given in Table 4.1.

UML diagrams which already have constructs that reflect
cause-and-effect relationships are the following six: (1) activity,

Table 4.1 Cause-and-Effect Relationships in UML Diagrams
No. Diagram Has Cause-

and-Effect

Relationship

Requires

Extension

Description

Structure Diagrams

1. Class diagram No Yes Relationships which are used in class diagrams
do not reflect cause-and-effect relations between
classes, e.g., dependency shows that one class
uses another without any clues how this class
and for what is used, association shows
structural relationships between classes (i.e., the
structure), generalization shows inheritance
between classes. By adding topological
relationship to class diagram, it is possible to
model cause-and-effect relations between classes.

2. Component
diagram

No No Component diagram shows relationships
between logical components (by using interfaces
and ports), i.e., it shows how a software system
will be composed of a set of deployable
components. Therefore, component diagram do
not need to include topological relationship.

3. Composite
structure
diagram

No No A composite structure diagram shows the
internal structure of a class or collaboration.
Since the difference between components and
composite structure is small, composite structure
diagram do not need to include topological
relationship.

4. Deployment
diagram

No No A deployment diagram shows a set of nodes and
their relationships. They are used to illustrate
the static deployment view of architecture.
Therefore, they do not need to include
topological relationship.

5. Object diagram No No Object diagram shows instance of classes in
class diagram with objects and their
corresponding relationships (i.e., a snapshot
taken at specific time). Since triggering of
topological relationship causes a change in
system the snapshot taken is altered thus
creating a new snapshot. Therefore, object
diagram do not need to include topological
relationship.

(Continued)
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Table 4.1 (Continued)
No. Diagram Has Cause-

and-Effect

Relationship

Requires

Extension

Description

6. Package
diagram

No No Package diagram models contents of packages
and relationships between packages, i.e., the
structure of packages. Relationships used in
package diagrams are import and export. If an
element of one package uses element from
another package, then there is a relationship
between the two packages. Relations between
packages are used to enable reuse of package
contents. Therefore, package diagram do not
need to include topological relationship.

7. Profile diagram No No Since Profile diagram allows to define a new
language belonging to UML language family, it
allows to add new language elements or extend
existing ones and it does not include information
about functioning of systems. The profile
diagram is not used to model and design systems.
Therefore, profile diagram do not need to include
topological relationship.

Behavior Diagrams

8. Activity
diagram

Yes No Cause-and-effect relations in activity diagram is
reflected by the control flow from one node to
another. Therefore, activity diagram do not
need to include additional topological
relationship.

9. Use case
diagram

No Yes Associations between actors and use cases show
that there can be interaction (message sending)
between actor and use case. Actor can be a user
or another system. Addition of topological
relationship to use case diagram enables to
design and show formally defined
communication between the use case and actor
thus showing who is triggering the
communication.

10. State diagram Yes No Topological relationship within state diagram is
reflected by transition relationship between two
states indicating that an object in the first state
will perform certain actions and enter the
second state when a specified event occurs and
specified conditions are satisfied. Therefore,
state diagram do not need to include additional
topological relationship.

Behavior Diagrams: Interaction Diagrams

11. Sequence
diagram

Yes No Message sending from one lifeline to another
(i.e., a series of messages) establishes a chain of
causality in sequence diagram, thus it already
has constructs to reflect cause-and-effect
relationships. Therefore, sequence diagram do
not need to include additional topological
relationship.

(Continued)
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(2) state (or state machine), (3) sequence, (4) communication, (5) inter-
action overview, and (6) timing diagram. According to the intended
use of component diagram, composite structure diagram, deployment
diagram, object diagram, package diagram, profile diagram, and
state diagram they do not require to be extended in order to intro-
duce cause-and-effect relationships. The analysis of UML diagrams
provides results of diagrams which are missing topological relation-
ships and which one of those should be extended. Extension should
be provided for two UML diagrams: (1) class diagram and (2) use
case diagram.

By extending the class diagram and use case diagram to include
cause-and-effect relationships, it is possible to model topological
relations between classes and enables to design and show formally
defined communication between the use case and actor thus showing
who is triggering the communication. This is a very important aspect
while these both are the most widely used UML diagrams, as

Table 4.1 (Continued)
No. Diagram Has Cause-

and-Effect

Relationship

Requires

Extension

Description

12. Communication
diagram

Yes No Since both sequence diagram and
communication diagram derive from the same
information in UML metamodel, message
sending from one lifeline to another (i.e., a series
of messages) establishes a chain of causality in
communication diagram, thus it already has
constructs to reflect cause-and-effect
relationships. Therefore, communication
diagram do not need to include additional
topological relationship.

13. Interaction
overview
diagram

Yes No Interaction overview diagram combines aspects
of activity diagrams and sequence diagrams,
thus it already has constructs to reflect
cause-and-effect relationships. Therefore,
interaction overview diagram do not need to
include additional topological relationship.

14. Timing diagram Yes No Timing diagrams describe behavior of both
individual classifiers and interactions of
classifiers, focusing attention on time of
occurrence of events causing changes in the
modeled conditions of the lifelines. Therefore,
timing diagram already has constructs to reflect
cause-and-effect relationships and do not need
to include additional topological relationship.
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identified in Chapter 2, Software Designing With Unified Modeling
Language Driven Approaches: (1) class diagram (84%) and (2) use
case diagram (71%).

4.2 TOPOLOGICAL UML PROFILE

According to the Topological UML base idea to combine formalism of
TFM with UML and to create Topological UML in accordance with
UML extension mechanisms, the new language includes all diagram types
from UML and a new diagram type—TFM (thus making a family of 15
diagrams). The analysis of topology in UML diagrams shows that there
are two diagrams which should be extended in order to include topologi-
cal relationship: (1) class diagram and (2) use case diagram. Extension of
these two diagrams means that it is possible to reflect cause-and-effect
relations by using these diagrams. The extended versions of these two
diagrams are called topological class diagram and topological use case
diagram.

The diagrams included into Topological UML language specification
are as shown in Fig. 4.1: (1) topological class diagram, (2) component
diagram, (3) object diagram, (4) composite structure diagram,
(5) deployment diagram, (6) package diagram, (7) profile diagram, (8)
TFM, (9) activity diagram, (10) topological use case diagram, (11) state
diagram, (12) sequence diagram, (13) communication diagram, (14)
interaction overview diagram, and (15) timing diagram. Bolder lines in
Fig. 4.1 denotes the new diagram (TFM) and two extended diagrams
(topological class diagram and topological use case diagram).

The profile diagram specifying Topological UML language consists
of eight stereotypes and two enumerations which are divided into four
packages. The top-level profile diagram of Topological UML is given
in Fig. 4.2 which shows the related metamodel and relationships
between packages in profile. The packages are used to group together
elements based on their intent and semantics and to ease the evolution
of Topological UML (i.e., creation of new Topological UML ver-
sions). The packages that build up Topological UML profile are as
follows:

• TopologicalRelationships—contains constructs related to relationships,
• TopologicalStructure—contains constructs related to structure

representation,
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• TopologicalBehavior—contains constructs related to behavior
modeling, and

• TopologicalModels—contains diagram types added to UML by
Topological UML profile.

The Topological UML profile packages are designed to provide the
necessary constructs to create TFM, topological class diagram, and
topological use case diagram. Stereotypes included into each package
are used across multiple diagram types thus making Topological UML
profile more compact and without needless constructs. Stereotypes are
related to corresponding metaclasses by extension relationship. The
following subsections describe each of the Topological UML package
and gives specification of all the stereotypes and enumerations used to
create Topological UML profile.

Figure 4.1 Topological UML diagrams.
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4.2.1 Topological Relationships Package
The topological relationships package contains all relationships that are
created by Topological UML profile. These relationships provide the
necessary constructs to create TFM, topological class diagram, and
topological use case diagram. The relations introduced are used across
multiple diagram types thus making Topological UML profile more
compact and without needless constructs. The topological relationships
package is given in Fig. 4.3 as package TopologicalRelationships.

The topological relationships package contains following stereotypes:

• TopologicalRelationship—topological relationship is a binary
relationship that shows a cause-and-effect relation between two
elements: (1) source element and (2) target element. A topological
relationship is assertion that indicates that the effect element can be
triggered only by the cause element thus showing that effect element
is executed only after the cause element executes.

• LogicalRelationship—logical relationship represents logical relation
between two or more topological relationships belonging to TFM
(an instance of TopologicalFunctioningModel). It can show conjunction
(and), disjunction (or), and exclusive disjunction (xor).

Figure 4.2 Topological UML profile top level package.
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Topological relationship in Topological UML is reflected by stereo-
type TopologicalRelationship. Specification of TopologicalRelationship
is given in Table 4.2.

Logical relationship in Topological UML is reflected by stereotype
LogicalRelationship. Specification of LogicalRelationship is given in
Table 4.3.

4.2.2 Topological Structure Package
The topological structure package contains all structure elements that are
created by Topological UML profile. These elements provide the neces-
sary constructs to create TFM, topological class diagram, and topological
use case diagram. The elements introduced are used across multiple
diagram types thus making Topological UML profile more compact
and without needless constructs. The topological structure package is
given in Fig. 4.4.

Topological structure package TopologicalStructure contains follow-
ing stereotypes:

• TopologicalCycle—topological cycle represents directed functional
cycle of system; it consists of elements and relationships between
them. It can show the main functionality that has a vital importance
in the functioning of system, i.e., by interrupting the main cycle the
system can no longer function or its functioning is deformed.

• TopologicalOperation—topological operation is a behavioral fea-
ture of classifier that specifies the name, type, parameters, and

Figure 4.3 TopologicalRelationships package.
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constraints for invoking an associated behavior, and related func-
tional features and topological relationships for specifying cause-
and-effect relations within system, thus allowing a cause-and-effect
relations to be modeled within the system by means of behavioral
features (e.g., in topological class diagram).

Table 4.2 Specification of Stereotype TopologicalRelationship
Clause Specification

Description Topological relationship represents a cause-and-effect relationship between two
elements: (1) source and (2) target element. Extends «metaclass» DirectedRelationship.

Attributes • 1 id: string [1]
• Specifies the identifier of topological relationship.

Associations • 1 cycle: TopologicalCycle [0..�]
• Specifies the cycle to which this topological relationship belongs. Topological

relationship can belong to many cycles at a time.
• 1 logicOnIncomingArcs: LogicalRelationship [0..�]

• Specifies logical relationship to which this logical relationship belongs.
Topological relationship can belong to many logical relationships at a time.

• 1 logicOnOutgoingArcs: LogicalRelationship [0..�]
• Specifies logical relationship to which this logical relationship belongs.

Topological relationship can belong to many logical relationships at a time.

Constraints 1. Logical relationship logicOnIncomingArcs should belong to TFM (an instance of
TopologicalFunctioningModel).

2. Logical relationship logicOnOutgoingArcs should belong to TFM (an instance of
TopologicalFunctioningModel).

3. If TopologicalRelation relates instances of UseCase and Actor, then source cannot
be the same type and/or instance as target.

4. If TopologicalRelation relates instances of UseCase and Actor, then target cannot be
the same type and/or instance as source.

Additional
operations

• 1 isInMainCycle(): Boolean
• Check that topological relationship belongs to main functioning cycle.

Semantics Topological relationship is a binary relationship that shows a cause-and-effect relation
between two elements: (1) source element and (2) target element. A topological relationship
is assertion that indicates that the effect element can be triggered only by the cause element
thus showing that effect element is executed only after the cause element executes.

Notation Topological relationship is shown as arrow with filled arrowhead pointing from cause
element to effect element (the arrowhead is placed at the effect side); it is directed only
in one way—from cause to effect.

Presentation
options

In the case of topological class diagrams where behavioral features (operations) are
related with topological relationship, multiple topological relationships can be merged by
listing cause and effect behavioral features together with their identifiers on the ends of
relationship (identifier for related behavior features on both ends of relationship is the
same). Identifiers are local to one topological relationship; it can be any user-specific
symbol.
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Table 4.3 Specification of Stereotype LogicalRelationship
Clause Specification

Description Logical relationship represents a logical relation between two or more topological
relationships. It extends «metaclass» Relationship.

Attributes • 1 id: string [1]
• Specifies the identifier of logical relationship.

• 1 relationType: RelationType [1]
• Specifies the type of logical relation; defined values: and, or, and xor.

Associations No additional associations.

Constraints 1. Minimal count of related elements is two (i.e., relatedElement: Element [2..�]).
2. relatedElement can be only of type TopologicalRelationship.
3. Related topological relationships should belong to TFM (an instance of

TopologicalFunctioningModel).
4. Either target element or source element of related topological relationships should be the

same.

Semantics Logical relationship represents logical relation between two or more topological relationship
belonging to TFM (an instance of TopologicalFunctioningModel). It can show conjunction
(and), disjunction (or), and exclusive or (xor).

Notation Logical relationship is drawn as solid line connecting related topological relationships. If
topological relationship is included in logical relationship, a point is set on the place where
line representing logical relationship crosses arrow representing topological relationship. Next
to the line of logical relationship is added label denoting the type of it.

Figure 4.4 TopologicalStructure package.
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Topological cycle in Topological UML is reflected by stereotype
TopologicalCycle. Specification of TopologicalCycle is given in
Table 4.4.

Topological operation in Topological UML is reflected by stereo-
type TopologicalOperation. Specification of TopologicalOperation is
given in Table 4.5.

4.2.3 Topological Behavior Package
The topological behaviors package contains all behavioral constructs
that are created by Topological UML profile that are necessary to cre-
ate TFM, topological class diagram, and topological use case diagram.

Table 4.4 Specification of Stereotype TopologicalCycle
Clause Specification

Description Topological cycle represents directed functional cycle of system; it consists of elements
and relationships between them. Extends «metaclass» Class.

Attributes • 1 isMain: Boolean [1]
• Indicates if cycle is main functioning cycle of system.

• 1 order: Integer [1]
• Shows the order of functioning cycle.

Associations • 1 relationship: TopologicalRelationship [2..�]
• Contains all topological relationships belonging to this functioning cycle.

• 1 functionalFeature: FunctionalFeature [2..�]
• Contains all functional feature belonging to this functioning cycle.

Constraints 1. Only one main functional cycle is allowed in system.
2. Can contain elements and relations between them which form the oriented cycle.

Semantics It is acknowledged that every business and technical system is a subsystem of the
environment. Besides that a common thing for all system functioning should be the
main feedback, visualization of which is an oriented cycle. Therefore, it is stated that at
least one directed closed loop (main functioning cycle) must be present in every
topological model of system functioning. It shows the main functionality that has a vital
importance in the functioning of system, i.e., by interrupting the main cycle the system
can no longer function or its functioning is deformed.

Notation There is no general notation for a TopologicalCycle. It is formed by elements and
relationships between them.

Presentation
options

The main topological cycle (isMain5 true) can be highlighted by drawing bolder lines
of relationships belonging to it.

Examples Example shows diagram with two cycles—one main cycle and one ordinary cycle.
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The relations introduced are used across multiple diagram types
thus making Topological UML profile more compact and without
needless constructs. The topological behaviors package is given in
Fig. 4.5 as package TopologicalBehavior.

Topological behaviors package TopologicalBehavior contains fol-
lowing stereotypes:

• FunctionalFeature—functional feature is a description of an atomic
business action (i.e., it cannot be separated into a number of other
business actions). Each functional feature is a unique tuple (stereo-
type FunctionalFeature is an abstraction of this tuple).

• Condition—condition shows precondition and postcondition within
system. To enter the execution of behavior (e.g., functional feature)
all preconditions of it should be true and to exit the execution of this
behavior all postconditions should be evaluated to true. In the context
of business system a condition also can be atomic business rule.

• ActionResult—action result specifies a result of object’s action
together with affected objects. For example, by registering customer
in the registration journal a registration entry is created.

Table 4.5 Specification of Stereotype TopologicalOperation
Clause Specification

Description Topological operation is extension of «metaclass» Operation which is a behavioral feature
of a classifier that specifies the name, type, parameters, and constraints for invoking an
associated behavior, and related functional features and topological relationships for
specifying cause-and-effect relations within system.

Attributes No additional attributes.

Associations • 1 functionalFeature: FunctionalFeature [1]
• Reference to functional feature which specifies this operation.

• 1 preAction: TopologicalRelationship [0..1]
• Specifies relationship to cause action for this action.

• 1 postAction: TopologicalRelationship [0..1]
• Specifies relationship to effect action of this action.

Constraints 1. If topological relationship specifying cause action belongs to main functioning cycle
(preAction.isMain - true), then this operation cannot be suppressed.

2. If topological relationship specifying effect action belongs to main functioning cycle
(postAction.isMain - true), then this operation cannot be suppressed.

Semantics Topological operation is a behavioral feature of classifier that specifies the name, type,
parameters, and constraints for invoking an associated behavior, and related functional
features and topological relationships for specifying cause-and-effect relations within
system, thus allowing a cause-and-effect relations to be modeled within the system by
means of behavioral features (e.g., in topological class diagram).

Notation No additional notation—uses the same as extended «metaclass» Operation.
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Functional feature in Topological UML is reflected by stereotype
FunctionalFeature. Specification of FunctionalFeature is given in
Table 4.6.

Precondition and postcondition in Topological UML are reflected by
stereotype Condition. Specification of Condition is given in Table 4.7.

Result of action in Topological UML is reflected by stereotype
ActionResult. Specification of ActionResult is given in Table 4.8.

4.2.4 Topological Models Package
The topological models package contains additional model that are intro-
duced to UML by Topological UML profile—TFM. TopologicalModels
package contains one stereotype:

• TopologicalFunctioningModel—It represents TFM by using UML
metamodeling constructs. TFM is a mathematical model that shows
functioning of a system in the form of directed graph consisting of
functional features and topology between them. Functional features

Figure 4.5 TopologicalBehavior package.
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Table 4.6 Specification of Stereotype FunctionalFeature
Clause Specification

Description Stereotype FunctionalFeature extends «metaclass» Behavior and is an abstraction of
functional feature.

Attributes • 1 action: string [1]
• Action performed by object (see attribute this.object).

• 1 executorIsSystem: Boolean [1]
• Indicates if execution of action could be automated (i.e., performed without

human interaction).
• 1 id: string [1]

• Identifier of functional feature.
• 1 object: string [1]

• Object that receives the result or that is used in action (e.g., a role, a time period,
a catalogue, etc.).

• 1 subordination: Subordination [1]
• Specifies subordination of functional feature, can be inner or external.

Associations • 1 actionResult: ActionResult [0..1]
• Result of action (this.action) performed by object (this.object).

• 1 class: Class [0..1]
• Represents object (this.object) in static viewpoint of system (can be specified when

the class diagram is synthesized).
• 1 newState: State [0..1]

• Represents the new state of object (this.object) after performing action (this.action).
• 1 cycle: TopologicalCycle [0..�]

• Shows the functioning cycles to which this functional feature belongs.
• 1 entity: Actor [1]

• Entity responsible for performing action specified by this functional feature.
• 1 operation: TopologicalOperation [0..1]

• Specifies functionality defined by action (this.action). Operation can be specified
when the class diagram is synthesized.

• 1 preCondition: Condition [0..�]
• Set of preconditions, where precondition can be an atomic business rule.

• 1 postCondition: Condition [0..�]
• Set of postconditions, where precondition can be an atomic business rule.

Constraints 1. Each functional feature is participating in at least one topological relationship either
as a target or as a source.

2. In order for control flow to enter into functional feature, if any precondition is
present it should be evaluated to true.

3. In order for control flow to leave functional feature, if any postcondition is present
it should be evaluated to true.

Additional
operations

• 1 isInput(): Boolean
• Check if functional feature is input functional feature.

• 1 isOutput(): Boolean
• Check if functional feature is output functional feature.

Semantics Functional feature is a description of an atomic business action (i.e., it cannot be
separated into a number of other business actions). Each functional feature is a unique
tuple (stereotype FunctionalFeature is an abstraction of this tuple).

Notation Functional feature is represented in a form of circle with label inside showing identifier
of it.

Presentation
options

Functional feature can be represented as a class showing its stereotype name
«FunctionalFeature» above the identifier or identifier with action of functional feature.
The format of displaying functional feature name is as follows: ,id. [‘: ’, action. ]



embed information of systems functioning and its structural descrip-
tion while topology defines cause-and-effect relations between them
thus embedding the behavior of the system.

The topological models package is shown in Fig. 4.6.

Specification of TFM’s stereotype TopologicalFunctioningModel is
given in Table 4.9.

Table 4.7 Specification of Stereotype Condition
Clause Specification

Description Condition is an abstraction of precondition and postcondition in system. It extends
«metaclass» Constraint.

Attributes • 1 id: string [1]
• Identifier of condition.

• 1 condition: string [1]
• Boolean expression written in natural language or machine readable language.

Associations • 1 oppositeCondition: Condition [0..1]
• Relation to opposite condition of this condition, i.e., this.condition5 this.

oppositeCondition.condition.

Constraints No additional constraints.

Semantics Condition shows precondition and postcondition within system. To enter the execution of
behavior (e.g., functional feature) all preconditions of it should be true and to exit the
execution of this behavior all postconditions should be evaluated to true. In the context of
business system a condition also can be atomic business rule.

Notation There is no notation for condition. It is shown only as attribute of functional feature.

Table 4.8 Specification of Stereotype ActionResult
Clause Specification

Description Action result is an abstraction of result which is achieved by object performing action as
specified by functional feature. Extends «metaclass» NamedElement.

Attributes • 1 result: string [1]
• Textual description of result of action performed by object specified in functional

feature.

Associations • 1 affectedClass: Class [0..1]
• Related class which is affected by the result of action performed by object specified in

functional feature.

Constraints 1. Instance of ActionResult should belong to instance of FunctionalFeature.

Semantics Action result specifies a result of object’s action in functional feature specification. The
action result shows also affected objects during its execution. For example, by registering
customer in the registration journal a registration entry is created.

Notation There is no notation for action result. It is shown only as attribute of functional feature.
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Figure 4.6 TopologicalModels package.

Table 4.9 Specification of Stereotype TopologicalFunctioningModel
Clause Specification

Description TopologicalFunctioningModel is an abstraction of Topological Functioning Model (TFM)
in the metamodeling terms; it extends «metaclass» Model.

Attributes No additional attributes.

Associations • 1 functionalFeature: functionalFeature [2..�]
• Functional feature is an atomic business action (i.e., it cannot be separated into a

number of other business actions).
• 1 cycle: TopologicalCycle [1..�]

• Topological cycle represents directed functional cycle of system; it consists of
functional features and relationships between them.

• 1 topologicalRelationship: TopologicalRelationship [2..�]
• Topological relationships relating functional features.

Constraints 1. Instances of TopologicalRelationship can relate only instances of FunctionalFeature (i.e.,
source and target of TopologicalRelationship can only be of type FunctionalFeature).

2. TopologicalFunctioningModel should contain at least two elements of type
FunctionalFeature.

3. TopologicalFunctioningModel should contain at least two elements of type
TopologicalRelationship.

4. TopologicalFunctioningModel should contain at least one instance of type
TopologicalCycle.

5. TopologicalFunctioningModel should contain one instance of type TopologicalCycle with
its attribute isMain set to value true (isMain5 true).

Additional
operations

• 1 checkCycleStructure(): Boolean
• Check that created model contains functioning cycles.

• 1 checkConnectedness(): Boolean
• Check that all functional features are connected with cause-and-effect relationships.

• 1 checkLogicalRelationships(): Boolean
• Identify and set logical relations within model. In addition identification of logical

relations does an additional model checking by verifying correctness and allowance of
specified preconditions and postconditions.

• 1 inputs(): FunctionalFeature �

• Array of functional features that are input functional features (this.functionalFeature
[].isInput).

(Continued)



Table 4.9 (Continued)
Clause Specification

• 1 outputs(): FunctionalFeature �

• Array of functional features that are output functional features (this.functionalFeature
[].isOutput).

Semantics TopologicalFunctioningModel represents TFM by using UML metamodeling constructs.
TFM is a mathematical model that shows functioning of a system in the form of directed
graph consisting of functional features and topology between them. Functional features
embed information of systems functioning and its structural description while topology
defines cause-and-effect relations between them thus embedding the behavior of the system.

Notation TFM is displayed as a directed graph showing functional features as circles and topological
relationships (i.e., cause-and-effect relations) between them. Topological relationship is
denoted with solid line and filled arrowhead to the target (i.e., effect) functional feature.
Additionally logical relations can be shown between topological relationships. Logical
relationship is drawn as solid line connecting related topological relationships (connection
with topological relationship is denoted by bold point). TFM in diagram header is denoted
with keyword tfm.

Style
guidelines

The main topological cycle (isMain5 true) can be highlighted by drawing bolder lines of
relationships belonging to it. Example shows diagram with two cycles—one main cycle and
one ordinary cycle.

Examples
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4.3 METAMODELS OF TOPOLOGICAL UML DIAGRAMS

This section gives metamodels of Topological UML diagrams which
are new to UML or which have been extended—TFM, topological
class diagram, and topological use case diagram.

4.3.1 Metamodel of Topological Functioning Model
To better understand the metamodel of TFM at first let’s take a look
at the TFM itself, i.e., what it is and what can we do with it. TFM is a
mathematical modeling language intended to design and analyze func-
tionality of a system and it holistically represents a complete function-
ality of the system from a computation independent viewpoint. It
considers problem domain information separate from the solution
domain information. TFM has strong mathematical basis and is repre-
sented in a form of a topological space. Graphically it is drawn as an
oriented graph where nodes represent functional features of the system,
while directed arcs represent their causal relationships. The TFM has
topological characteristics: (1) connectedness, (2) closure, (3) neighbor-
hood, (4) and continuous mapping. Despite that any graph is included
into algebraic topology, not every graph is a TFM. A directed graph
becomes the TFM only when theoretical substantiation of the systems
is added to the above mathematical substantiation. The latter is repre-
sented by functional characteristics: (1) cause-effect relations, (2) cycle
structure, and (3) inputs and outputs [88, 90].

It is acknowledged that every business and technical system is a
subsystem of the environment. TFM enables careful analysis of sys-
tem’s operation and communication with the environment through
analysis of functional cycles—a common thing for all system (techni-
cal, business, or biological) functioning should be the main feedback,
visualization of which is an oriented cycle. Thus, it is stated that at
least one directed closed loop (cycle) must be present in every
topological model of system functioning. This cycle shows the main
functionality that has a vital importance in the system’s life. Usually it
is even an expanded hierarchy of cycles. By interrupting this main
cycle the system can no longer function or it functions faulty [86].
Therefore, a proper cycle analysis is necessary in the TFM construc-
tion, because it enables careful analysis of system’s operation and com-
munication with the environment. To better illustrate main cycle in
graph representation of TFM, the arcs belonging to this cycle is drew
with bolder lines [84].
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4.3.1.1 Formal Definition of Topological Functioning Model
TFM is represented in a form of a topological space (see Eq. 4.1 [86]),
where X is a finite set X of functional features Xid (see Eq. 4.4) of the
system under consideration, and Θ is the topology that satisfies axioms
of topological structures and is represented in a form of a directed
graph (i.e., Θ is a finite set of topological relationships Tid [10] (see
Eq. 4.3) between functional features):

G5 ðX;ΘÞ: (4.1)

Topological space Z represents functioning of the system under con-
sideration and its surrounding environment (i.e., finite set of TFMs
exists in topological space where each TFM shows functioning of a
specific system). The topological space Z is a system represented by
Eq. (4.2) [86], where N is a set of internal system functional features
and M is a set of functional features of other systems that interact with
the system or of the system itself, which affect the external ones:

Z5N,M: (4.2)

The necessary condition for constructing the topological space Z is
a meaningful and exhaustive verbal, graphical, or mathematical system
description. The adequacy of a model describing the functioning of a
specific system can be achieved by analyzing mathematical and func-
tional properties of such abstract object [86]. To create a TFM that
reflects the system under consideration, the necessary information can
be taken from different sources such as verbal descriptions like docu-
ments [86], interviews, user stories, business use cases (discussed in
[104]), diagrams, ontologies, schemas, business process descriptions,
requirements specifications, as well as from mathematical expressions
and expert knowledge about the system.

To analyze and show functioning of specific system, TFM of this sys-
tem should be separated from topological space Z. Separation of the TFM
from the topological space Z of a problem domain is performed by apply-
ing the closure operation over a set of system’s inner functional features
(the set N) as it is shown by Eq. (4.3) [86], where Xη is an adherence point
of set N and capacity of X is the number n of adherence points of N:

X5 ½N�5 ,n
η51

Xη (4.3)

An adherence point of the set N is a point, whose each neighborhood
includes at least one point from the set N. The neighborhood of a vertex
Y in a directed graph is the set of all vertices adjacent to Y and the

122 Topological UML Modeling



vertex Y itself. It is assumed here that all vertices adjacent to Y lie at the
distance d5 1 from Y. An example of TFM is given in Fig. 4.7.

4.3.1.2 Formal Definition of Functional Features
Functional feature is a description of atomic business action (i.e., it cannot
be separated into a number of other business actions). In [5] it is suggested
that each functional feature is a unique tuple; in [97] this tuple is extended
to include class and operation reference (elements Cl and Op). This
research redefines tuple to include all necessary elements needed when
constructing TFM (the new elements are Id, St, Es, and S). Unique tuple
definition of functional feature Xid is a shown by Eq. (4.4):

Xid5,Id; A; Op; R; O; Cl; St; PreCond; PostCond; E; Es; S. (4.4)

where,

• Id—identifier of functional feature,
• A—action of object O,
• Op—operation which will provide functionality defined by action A

(can be acquired when the class diagram is synthesized),
• R—result of action A,
• O—object that receives the result or that is used in action A (e.g., a

role, a time period, a catalogue),
• Cl—class which will represent object O in static viewpoint of system

(can be acquired when the class diagram is synthesized),
• St—new state of object O after performing action A,
• PreCond—is a set of preconditions Cid (see Eq. 4.5),
• PostCond—is a set of postconditions Cid (see Eq. 4.5),
• E—entity responsible for performing action A,
• Es—indicates if execution of action A could be automated (i.e., per-

formed without human interaction), and
• S—subordination of functional feature (can be internal or external).

Figure 4.7 Example of TFM.
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4.3.1.3 Formal Definition of Preconditions and Postconditions
Each precondition or postcondition is a condition Cid described by
unique tuple given in Eq. (4.5). Condition is considered as an atomic
business rule.

Cid5, Id; Cond; oCond. ; where (4.5)

• Id—identifier of condition,
• Cond—condition or an atomic business rule, and
• oCond—identifier of opposite condition, i.e., Ci5Cj.

4.3.1.4 Formal Definition of Topological Relationships
Cause-and-effect relationship Tid is a binary relationship relating two
functional features Xid and are represented as arcs of a directed graph
that are oriented from a cause vertex to an effect vertex. The synonym
for cause-and-effect relationship is topological relationship. Each
cause-and-effect relationship is a unique tuple represented by Eq. (4.6):

Tid 5, Id; Xc; Xe; Lout; Lin . ; where (4.6)

• Id—unique identifier of topological relationship,
• Xc—cause functional feature,
• Xe—effect functional feature,
• Lout—set of logical relationships between topological relationships

on outgoing arcs of cause functional feature Xc (optional), and
• Lin—set of logical relationships between topological relationships on

incoming arcs of effect functional feature Xe (optional).

4.3.1.5 Formal Definition of Logical Relations
Logical relation Lid shows the logical relationship conjunction (and),
disjunction (or), or exclusive or (xor) between two or more topological
relationships Tid. The type of logical relation denotes system execution
behavior (e.g., decision making, parallel actions). Each logical relation
is a unique tuple represented by Eq. (4.7):

Lid 5, Id; T; Rt. ; where (4.7)

• Id—identifier of logical relationship,
• T—set of topological relationships belonging to this logical relation-

ship, and
• Rt—logical relationship type (and, or, or xor).
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Identification of logical relations Lid between cause-and-effect (i.e.,
topological) relationships Tid consists of two activities:

1. Identification of logical relations Lout between topological relation-
ships Tid that are outgoing from functional feature Xid and

2. Identification of logical relations Lin between topological relation-
ships Tid that are incoming to functional feature Xid.

Example of logical relations between topological relationships is
given in Fig. 4.8.

4.3.1.6 Definition of Topological Functioning Model Metamodel
The metamodel of TFM represents it as an instance of the metaclass
TopologicalFunctioningModel. In order to define metamodel of TFM
the following UML version 2.4.1 metaclasses has been extended:
Model, Class, NamedElement, Behavior, Constraint, Relationship, and
DirectedRelationship.

Metamodel of TFM is given in Fig. 4.9 showing all stereotypes,
metaclasses and enumerations involved into definition of TFM.
Mappings between elements of unique tuple (see Eq. 4.4) and attributes
of stereotype FunctionalFeature which is defining functional features is
given in Table 4.10.

Mappings between elements of unique tuple (see Eq. 4.5) and attri-
butes or properties of stereotype Condition which is defining precondition
and postcondition of functional feature is given in Table 4.11.

Mappings between elements of unique tuple (see Eq. 4.6) and attri-
butes or properties of stereotype TopologicalRelationship which is
defining topological relationships between functional features is given
in Table 4.12.

Figure 4.8 Example of logical relations between topological relationships.
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Figure 4.9 Metamodel of TFM.

Table 4.10 Mappings Between Tuple and Stereotype Elements for Functional Feature
Xid

No. Tuple Element Class Attribute or Property With Type Multiplicity

1. Id id:string 1

2. A action:string 1

3. Op operation:Operation 0..1

4. R actionResult:ActionResult 0..1

5. O object:string 1

6. Cl class:Class 0..1

7. St newState:State 0..1

8. PreCond preCondition:Condition 0..�

9. PostCond postCondition:Condition 0..�

10. E entity:Actor 1

11. Es executorIsSystem:boolean 1

12. S subordination:Subordination 1
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Mappings between elements of unique tuple (see Eq. 4.7) and attri-
butes or properties of stereotype LogicalRelationship which is defining
logical relations between topological relationships is given in Table 4.13.

According to metamodel of TFM in order to create TFM an
instance of class TopologicalFunctioningModel should be instantiated.
Each instance consists of at least two functional features (instances of
class FunctionalFeature), two cause-and-effect relationships (instances
of class TopologicalRelationship), and at least one functioning cycle
(instance of class TopologicalCycle).

4.3.2 Metamodel of Topological Class Diagram
Metamodel of topological class diagram is given in Fig. 4.10, where
classes with bolder lines show elements that are added to the metamodel
of regular UML class diagram.

Table 4.11 Mappings Between Tuple and Stereotype Elements of Precondition and
Postcondition Cid

No. Tuple Element Class Attribute or Property With Type Multiplicity

1. Id id:string 1

2. Cond condition:string 1

3. oCond oppositeCondition:Condition 0..1

Table 4.12 Mappings Between Tuple and Stereotype Elements of Topological
Relationships Tid

No. Tuple Element Class Attribute or Property With Type Multiplicity

1. Id id:string 1

2. Xc source:FunctionalFeature 1

3. Xe target:FuntionalFeature 1

4. Lout logicOnOutgoingArcs:LogicalRelationship 0..�

5. Lin logicOnIncomingArcs:LogicalRelationship 0..�

Table 4.13 Mappings Between Tuple and Stereotype Elements of Logical
Relationships Lid

No. Tuple Element Class Attribute or Property With Type Multiplicity

1. Id id:string 1

2. T relatedElement:TopologicalRelationship 2..�

3. Rt relationType:RelationType 1
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Topological class diagram is based on UML class diagram—it is
extended to include topological relationships thus allowing to trace
causality relations between problem and solution domains.
Additionally, topological class diagram is able to show functioning
cycles of a system (including the main functional cycle), input and
output classes (classes which are communicating with the external envi-
ronment). The presence of functional cycles allows classifying classes
thus the classes participating in functional cycles can be marked and
highlighted in the solution.

To achieve above described goal a class TopologicalOperation is
used instead of class Operation thus allowing to relate two operations
with topological relationship (similarly as association relationship
relates at least two properties). Each operation specifies a cause and an
effect of it (the cause is specified by using attribute preAction and the
effect is specified by using attribute postAction). Attribute preAction
leads to related topological relationship and the attribute target of this

Figure 4.10 Metamodel of topological class diagram.
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relationship leads to pre-operation (the cause), while attribute
postAction leads to related topological relationship and the attribute
source of this relationship leads to post-operation (the effect). The topo-
logical relationship defines the causality within topological class diagram
while association defines the structure of objects (more precisely their
specification—classes).

Each topological operation is related with functional feature that
specifies it. This relation allows establishing direct traceability between
TFM and topological class diagram. Besides that, relationships in
topological class diagram are perceived formally from problem
domain.

4.3.3 Metamodel of Topological Use Case Diagram
Topological use case diagram extends ordinary UML use case dia-
gram by adding topological relationship between actor and use case
(i.e., between classes Actor and UseCase) thus allowing to define actor
for use case diagram directly from TFM by automatically relating
functional features with corresponding use case. Since both classes
Actor and UseCase are generalizations of class BehavioredClassifier,
the source and target of topological relationships (i.e., both ends of a
binary relationship) is connected to the BehavioredClassifier.

The metamodel of the topological use case diagram is represented
in Fig. 4.11, where classes with bolder lines show elements that are
added to the metamodel of regular UML use case diagram.

Topological use case diagram allows development of use cases
based on the functional features and functionality they describe, func-
tional features are mapped onto use cases. The input and output func-
tional features define communication with the external environment.
When functional features have been mapped onto use cases, the identi-
fication of actors is performed. The actors in topological use case dia-
gram are entities from functional features.

Additionally «include» and «extend» relationships between use cases
can be added automatically by analyzing topological and logical rela-
tionships between the mapped functional features. The scope of subsys-
tems is defined formally by analyzing the functional cycles within
TFM. If more than one functioning cycle is found, subsystems are
designed in a way that each subsystem includes functionality of one
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functional cycle. Thus, the topological use case diagram is developed
in strong accordance with the functioning of the problem and solution
domains.

4.4 SUMMARY

The most common and suitable way for improving UML is to use its
extensibility mechanisms—the profiles (in this scenario, it is possible to
adapt and use standard UML compliant modeling tools). Thus, by cre-
ating a profile of UML, the costs of adapting it in practice is lowered
and it can be adapted faster (in comparison with creating a new model-
ing language which leads to implementing new modeling tools). Since
the UML specification is a specification of a notation, it does not
include any guidelines for profile definition and specification, thus
leading to current situation when UML profiles are developed in
inconsistent ways. To overcome this, in Chapter 3, Adjusting Unified
Modeling Language, you will find a solution.

Topological UML is a combination of UML and formalism of
TFM. The main aim of improving UML is by transferring topology
and mathematical formalism of TFM to UML thus strengthening the

Figure 4.11 Metamodel of topological use case diagram.
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very beginning of the software development lifecycle. Sometimes it is
very hard to pay appropriate resources and time at the very beginning
of the software development lifecycle to detect and analyze aspects of
desired software system as much as possible. If we pay appropriate
attention at the beginning of the software development project, we
tend to avoid wasting valuable resources, including time; otherwise it
could lead to unnecessary reworking or even recoding parts of the sys-
tem or the system as whole. Just like Benjamin Franklin has said back
in 18th century:

“If you fail to plan, you are planning to fail!”

TFM enables careful analysis of system’s operation and communi-
cation with the environment through analysis of functional cycles and
it allows to pay the required attention at the very beginning of the soft-
ware development lifecycle. While using the TFM as a tool to carefully
analyze the problem domain and design the solution domain, it is very
important not to lose the information gathered during construction of
the TFM. The best way to do this is to transfer all the design decisions
from TFM to other design diagrams and of course to the software
code. In such case, we are going from more abstract models to more
specialized models, thus adding more and more development specific
artifacts to design to get us to the executable software. While this chap-
ter specifies Topological UML profile, the next chapter defines a
modeling method for applying Topological UML profile in practice.
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CHAPTER 55
Topological UML Modeling

INFORMATION IN THIS CHAPTER:

• Topological UML modeling method
• Top-down design with Topological UML diagrams
• Seams between diagrams
• Topological UML modeling in comparison with other modeling

methods

5.1 TOPOLOGICAL UML MODELING: A METHOD FOR
DESIGNING SOFTWARE

Topological UML modeling for problem domain modeling and
software systems designing is a model-driven modeling method which
combines Topological Functioning Model (TFM) and its formalism
with elements and diagrams of Topological UML. In the context of
Model Driven Architecture (MDA), the TFM considers problem
domain information separate from the solution domain information
and holistically represents a complete functionality of the system from
the computation independent viewpoint while Topological UML has
elements for representing system design at the platform independent
viewpoint and platform-specific viewpoint. The Topological UML
modeling method covers modeling and specification of systems in
computation independent and platform independent viewpoints.

The application of Topological UML modeling ensures proper analy-
sis of system functioning by identifying and analyzing functioning cycles.
The functioning cycle is a common thing of all system (technical, busi-
ness, or biological) functioning. Therefore, it is stated that at least one
directed closed loop must be present in every TFM of system functioning
[86]. It shows the main functionality that has a vital importance in the
system’s life (i.e., by destroying the main functioning cycle the system can
no longer function or it is seriously malfunctioning). Usually the main

Topological UML Modeling. DOI: http://dx.doi.org/10.1016/B978-0-12-805476-5.00005-8
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functionality is even an expanded hierarchy of cycles [40]. Therefore, a
proper cycle analysis is necessary in the very beginning of software devel-
opment lifecycle, because it enables careful analysis of system’s operation
and communication with the environment [91]. Operations of a class are
addressed as responsibilities of this class. According to Larman’s
“Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development” [58], responsibilities
answer to two questions: “What to do?” and “How to do?”; and they are
assigned to classes of objects during the object design. By using
Topological UML the information of system functioning from TFM is
transferred to design models and diagrams thus allowing marking and
evaluating the most important objects and components within system and
to assign proper responsibilities to the objects in a formal way.

Problem domain analysis and software system design with
Topological UML modeling method consist of six activities as given in
Fig. 5.1:

1. Problem domain functioning analysis—this is the first activity within
Topological UML modeling and it states that the analysis of the prob-
lem domain should be performed. To do so, functioning description
and functional requirements are used as input. Functioning description
can be in any form; it needs to cover full description of problem domain
functioning. Output of this activity is TFM (both the one representing
functioning of problem domain, i.e., the situation as-is, and the one
representing functionality of desired software system, i.e., the solution

Figure 5.1 Topological UML modeling process and activities.
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to-be) which shows the system from computation independent view-
point, mappings between functional features and functional require-
ments, and refined functional requirements. This activity ensures that
proper attention is paid at the very beginning of the software develop-
ment lifecycle by capturing various aspects of the desired system.

2. Behavior analysis and design—the next activity within Topological
UML modeling process which is based on the results obtained in pre-
vious problem domain functioning analysis activity. By basing behav-
ior analysis on TFM, we can clearly identify and design subsystems,
use cases, actors, and relationships between them (topological use
case diagram), messages and their sequence (sequence diagram), and
workflows (activity and interaction overview diagram).

3. Structure analysis and design—the problem domain and solution
domain representing TFM include enough information to identify
system’s structural artifacts and elements. By using this valuable
information, we can design the domain model in the form of topo-
logical class diagram, communication diagram, and object diagram.
As the object diagram shows a snapshot of the system at a given
point in time, it is useful as an additional artifact when analyzing
relationships between classes.

4. State change and transition analysis—the refined TFM and classes
(either from topological class diagram or lifelines from communica-
tion diagram) are used to design state diagram for each class show-
ing state changes and transitions. It is advised to analyze state
changes of complex or most important objects in the system. The
most important objects are those that are participating in the main
functioning cycle of the system which is identified and specified dur-
ing the construction of TFM during the very first activity within
Topological UML modeling.

5. Structuring logical layout of design—logical layout of software
design is structured in accordance with the defined subsystems in
the system behavior analysis and design activity and the input of
this activity is subsystems (use case diagram) and classes with their
relationships (topological class diagram). The logical layout is
depicted by using package diagram where each package initially
represents one subsystem. The contents of packages are added from
the topological class diagram accordingly to the use cases in each
subsystem and the mappings between functional features and use
cases. The output of this activity is package diagram structured
according to subsystems and responsibilities of classes.
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6. Components and deployment design—the input of this activity is
packages from package diagram and nonfunctional requirements,
and as the output a component design (component diagram) and
deployment design (deployment diagram) are created.

The activities of Topological UML modeling within the software
development project can be applied in any order and only part of the
activities can be used. There is one restriction—inputs of each activity
should be provided in order to produce intended outputs. Topological
UML modeling method is guidelines of Topological UML profile
application in software development; it does not restrict the use and
application of Topological UML diagrams. Each modeling activity is
described in detail in Part III, Topological UML Modeling Explained.

5.1.1 Top-Down Design With Topological UML Diagrams
Transitions between Topological UML diagrams according to
Topological UML modeling method activity sequence are given in
Fig. 5.2, where the diagrams are shown as nodes and the transitions
between them as directed lines pointing from source diagram to desti-
nation diagram. Topological UML modeling does not include develop-
ment of profile, timing, and composite structure diagrams as the TFM
shows timing within functioning of a system; component diagram spe-
cifies structure of components. Profile diagram is not addressed while
it is intended to specify a new profile of UML (not a software design).
It is possible to automate transitions between Topological UML dia-
grams while the validation of the acquired diagrams is needed by the
domain experts. The development of TFM can be partly automated as
shown in “Transforming Textual Use Cases to a Computation
Independent Model” [100], “Knowledge Integration for Domain
Modeling” [115], and “The Integrated Domain Modeling: A Case
Study” [117] where the business use cases are transformed into TFM.

The Topological UML diagrams that are used within Topological
UML modeling are listed in Table 5.1, where a development order of
the diagram is given as well as the diagrams to which it can be trans-
formed or has information for development.

5.1.2 Seaming Causality Between Diagrams
As Topological UML profile introduces a new diagram type—the TFM—

we need to show how the elements of TFM is used to spread the causality
relationships and other information to different types of Topological
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UML diagrams. At the same time, all mappings that exist between stan-
dard UML diagrams remain the same. The mappings between standard
UML diagrams can be found in various books and researches, like
[15,37,104,120,121]. Mappings between Topological UML diagrams are
described in the form of table by giving element of one Topological UML
diagram type and corresponding element in other kind of Topological
UML diagram together with a brief description.

Mappings between elements of TFM and elements of communica-
tion and sequence diagrams are given in Table 5.2.

Mappings between elements of TFM and elements of activity dia-
gram are given in Table 5.3.

Figure 5.2 Transitions between Topological UML diagrams.
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Table 5.1 Diagrams Used Within Topological UML Modeling
No. Diagram Type Order Information for Notes

1. Topological
Functioning
Model

1 Topological use case
diagram, sequence
diagram, activity diagram,
communication diagram,
state diagram

Initial TFM is developed by analyzing
functional characteristics of the problem
domain. The refinement of TFM includes
adjusting TFM to the functional
requirements of the desired software
system since the requirements can
introduce new functionality to the
problem domain. By refining TFM the
functional requirements are validated, i.e.,
the TFM shows missing, overlapping,
conflicting, and incorrect requirements
[8,91,95].

2. Topological use
case diagram

2 Sequence diagram,
activity diagram, package
diagram

The scope of use cases is set either by
functional requirements or by system
goals. The functionality represented by
each use case is obtained from the TFM
according to the mappings between
functional features and functional
requirements.

3. Communication
diagram

2 Topological class diagram Communication diagram is used as an
intermediate model between TFM and
topological class diagram. It is developed
by transforming TFM—the functional
features representing the same object type
are merged and the cause-and-effect
relations become links between lifelines.

4. Sequence diagram 3 Interaction overview
diagram

Sequence diagram shows the messaging
between actors and objects. Usually a set
of sequence diagrams is created—one for
each use case. Use case is used to set the
scope of sequence diagram while TFM is
used to set the messages and their order.

5. Activity diagram 3 Interaction overview
diagram

Activity diagram shows the workflow of a
use case. Usually a set of activity
diagrams is created—one for each use
case. Use case is used to set the scope of
activity diagram while TFM is used to set
the action nodes and edges.

6. Topological class
diagram

3 Package diagram, state
diagram, object diagram

Topological class diagram is used to
represent a domain model and a system
design model. The key idea behind
domain model is a visual dictionary of
abstractions. The topological relations
between classes show the causal relations
between entities in the problem and
solution domains.

7. Interaction
overview diagram

4 � Defines interactions through a variant of
activity diagram in a way that promotes
overview of the control flow. Interaction
overview diagram focus on the overview
of the flow of control.

(Continued)
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Table 5.1 (Continued)
No. Diagram Type Order Information for Notes

8. Object diagram 4 � Object diagram can be developed during
the refinement process of topological class
diagram when the associations are
analyzed. It is useful in situation when
object of one type plays more than one
role at a time. Object diagram can also be
used to provide examples of system at a
specific time.

9. State diagram 5 � State diagrams are used to show the state
transitions of objects; one diagram is
created for each object type.

10. Package diagram 6 Component diagram Package diagram is used to organize and
group classes into logical structure—
packages. Each package represents a
subsystem and groups a set of cohesive
responsibilities of classes.

11. Component
diagram

7 Deployment diagram Component diagram represents modular,
deployable, and replaceable parts of a
system; one component is created for each
package.

12. Deployment
diagram

8 � Deployment diagram shows how instances
of components are deployed on instances
of nodes. The content of deployment
diagram is denoted by components and
nonfunctional requirements.

Table 5.2 Mapping TFM to Communication and Sequence Diagrams
No. TFM Element Communication and

Sequence Diagram Element

Description

1. Class specified by
functional feature

Lifeline Each functional feature specifies object
which is performing action. During
analysis of system object is specified by
class.

2. Operation specified
by functional feature

Message Each functional feature specifies an atomic
business action which later is specified by
topological operation.

3. Sequence of
functional features

Message sequence number
(only in communication
diagram)

Message sequence number is denoted by
the sequence number of functional feature.
The sequence of functional features is
defined by problem domain expert.

Message order (only in
sequence diagram)

4. Logical relations Message sending
concurrency

Logical relations in TFM give additional
information about execution concurrency
of functional features, thus allowing to
define concurrency within communication
diagram.
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Table 5.3 Mapping TFM to Activity Diagram
No. TFM Element Activity Diagram Element Description

1. Action of object specified by
functional feature

Action Each functional feature specifies an atomic business action which is represented by action of object and
later is specified by topological operation. In activity diagram one action represents one functional
feature from TFM.

2. Cause-and-effect (i.e.,
topological) relationship

Edge Functional features are connected by topological relationship which is represented by straight line with
arrowhead at effect side (i.e., it points from cause to effect). In activity diagram one edge represents one
topological relationship from TFM.

3. Logical relationship with type
xor (and partially or)

Decision and merge node Logical relations in TFM give additional information about execution concurrency of functional
features and decision-making within system. Exclusive or (xor) within activity diagram is represented
with decision node and corresponding merge node. Disjunction (or) is represented in a mixture of
decision and fork nodes.

4. Preconditions of functional
feature

Guards on edges outgoing
from decision node

Preconditions of functional feature in TFM are represented as guards on edges incoming to
corresponding action in activity diagram.

5. Logical relationship with type
and (and partially or)

Fork and join node Logical relations in TFM give additional information about execution concurrency and decision-
making within system. Conjunction (and) within activity diagram is represented with fork node and
corresponding join node. Disjunction (or) is represented in a mixture of decision and fork nodes.

6. Functional feature Initial node In basic scenario when input functional feature is transformed into an action, an initial node is added
before this action. In more advanced scenario TFM can be split up in several parts and each part
represented by its own activity diagram. In such case, the initial node is added before action which is
obtained from the input functional feature of that TFM part.

7. Functional feature Final node In basic scenario when output functional feature is transformed into an action, a final node is added
after this action. In more advanced scenario TFM can be split up in several parts and each part
represented by its own activity diagram. In such case, the final node is added after action which is
obtained from the output functional feature of that TFM part.



Mappings between elements of TFM and elements of topological
use case diagram are given in Table 5.4.

Mappings between elements of TFM and elements of topological
class diagram are given in Table 5.5.

Mappings between elements of TFM and elements of state diagram
are given in Table 5.6. Each functional feature specifies an object per-
forming certain action. By transforming TFM into state diagrams a set
of state diagrams is obtained. The count of obtained state diagrams is
denoted by count of distinct objects specified by functional features.

Table 5.4 Mapping TFM to Topological Use Case Diagram
No. TFM Element Topological Use

Case Diagram

Element

Description

1. TFM or part of TFM Subject TFM itself defines subject of topological use case
diagram. If TFM is divided into parts according to
subsystems, then each part of TFM defines the
subject.

2. Entity of functional
feature

Actor Actor is an entity of input and output functional
features.

3. Functional features Use case Use case is defined by a set of functional features.
All functional features within one set should be
connected—there should be no separated functional
features. The set of functional features included in
one use case (i.e., the scope of use case) is denoted
by expert, by functional requirement, or by goal.

4. Topological
relationship

Topological
relationship

The topological relationship from input functional
feature to the descendant functional feature denotes
topological relationship pointing from actor to use
case. The topological relationship from predecessor
of output functional feature to the output functional
feature denotes topological relationship pointing
from use case to actor.

5. Cause-and-effect (i.e.,
topological)
relationship

Relationship
between use cases

Relationship between use cases are denoted by the
existence of topological relationship between
functional features belonging to use cases.

6. Logical relationship Extend
relationship

The type of relationship between use cases is
denoted by the type of logical relationship in TFM.
The disjunction (or) and exclusive or (xor) denote
extend relationship between use cases.

7. Cause-and-effect (i.e.,
topological) and
logical relationship

Include
relationship

The type of relationship between use cases is
denoted by the type of logical relationship in TFM.
The conjunction (and) denote include relationship
between use cases. If there is no logical relationship
between topological relationships in TFM, then it
indicates that there exist include relationship
between use cases.
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5.2 TOPOLOGICAL UML MODELING IN COMPARISON
WITH OTHER MODELING METHODS

This section compares Topological UML modeling with UML modeling
driven approaches discussed in Chapter 2, Software Designing With
Unified Modeling Language Driven Approaches, object-oriented analysis
and design (OOAD), Business Object-Oriented Modeling (B.O.O.M.),
conceptual modeling, component-based development, and Topological
Functioning Modeling for Model Driven Architecture (TFM4MDA).
Each of the method is evaluated against a set of criterions divided into
four groups:

• Analysis and design models—shows the summary of diagram types
used and the transformation guidelines provided.

• Problem domain analysis and design—sets the emphasis on the evalu-
ation of the existing and desired domain model designing and the
identification of the boundaries of them.

• Requirements management—describes the requirements of manage-
ment aspect of the compared methods (like requirements traceability).

• Usage—evaluates the practical application of each method in the
software development.

Table 5.5 Mapping TFM to Topological Class Diagram
No. TFM Element Topological Class

Diagram Element

Description

1. Class specified by
functional feature

Class Each functional feature specifies object which is
performing action thus during analysis of system the
object is specified by class. A class in topological class
diagram represents one class which is obtained by
merging all functional features specifying the same class.

2. Attributes of class
specified by
functional feature

Attribute of class Each functional feature specifies an atomic business
action which involves specification of affected data and
data fields. Later this information can be specified as
attributes of corresponding class.

3. Operation
specified by
functional feature

Operation of class Each functional feature specifies an atomic business action
which later is specified by topological operation in TFM.

4. Topological
relationship

Topological
relationship

Topological relationship within TFM is drawn between
two functional features while in topological class diagram
it is drawn between two topological operations. In fact,
each topological operation is defined by one functional
feature, so the topological relationship is transferred 1:1
from TFM into topological class diagram.

5. Result of action
and class specified
by functional
feature

Association An association within topological class diagram can be
added between class specified by functional feature and
class specified by result of action of the same functional
feature. By further analysis of the action context an
aggregation or composition can be set of this association.
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The criterions in each group are selected from a set of modeling
methods and techniques reviews and guidelines [34,62,101,103] based
on the purpose of Topological UML modeling.

The first evaluated group of criterions is analysis and design models
and it consists of the following evaluation criterions:

1. Count of diagrams used—shows the number of diagrams used by
each method.

2. The first diagram created—indicates the first diagram that is created
by particular method (this criterion indicates the diagram that is

Table 5.6 Mapping Topological Functioning Model TFM to State Diagram
No. TFM Element State

Diagram

Element

Description

1. Object state
specified by
functional feature

State Each functional feature specifies an object performing certain
operation. If during execution of this action changes the state of
object performing this action, functional feature specifies the new
state of the object. Object state from functional feature is
transformed into state in state diagram.

2. Object state
specified by
functional feature

Initial
state

When information from input functional feature is transformed
into a state, an initial state is added before this state.

3. Object state
specified by
functional feature

Final
state

When information from output functional feature is transformed
into a state, a final state is added after this state.

4. Topological
relationship

Transition If during execution of action specified by functional feature is
changed the state of object performing this action, then incoming
topological relationship defines transition from previous state to
the new state.

5. Operation
specified by
functional feature

Event Each functional feature specifies an atomic business action which
later is specified by topological operation in TFM. If functional
feature specifies the new state of object, the operation is
transformed into the event triggering transition from one state to
another.

6. Operation
specified by
functional feature

Entry
effect

If current functional feature specifies the new state of object, the
operation is transformed into the entry effect of this new state.

7. Operation
specified by
functional feature

Exit effect If descendant functional feature specifies the new state of object,
the operation of this descendant functional feature is transformed
into the exit effect of current state.

8. Preconditions of
functional
features

Guard
condition

If current functional feature specifies the new state of object, the
preconditions of this functional feature are transformed into the
guard conditions.

9. Logical
relationship with
type and (and
partially or)

Fork and
join

A logical relation in TFM gives additional information about
execution concurrency of functional features, thus conjunction (and)
within state diagram is represented with fork and corresponding
join. Disjunction (or) indicates possible fork and join.
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driving the further software development process, e.g., some meth-
ods are called use case driven).

3. Transformations provided—if method includes transformation guide-
lines for all diagrams addresses, then the value is all; if part of the
diagrams are covered, then partial; and if no guidelines for transfor-
mations are given, then none.

4. Transformation automation level—if the transformation process can
be done automatically (i.e., without presence of human), then the
value is automatic; if some interaction is required by the human,
then semiautomatic; or manual (no guidelines and mappings
between diagrams and diagram elements are given).

The result of the evaluation against analysis and design models cri-
terions is given in Table 5.7.

The second evaluated group of criterions is problem domain analy-
sis and design and it consists of the following evaluation criterions:

1. Representation of “as-is” domain model—diagram types used to
specify and analyze the existing functioning of the problem domain.
This is an important criterion since it is needed to understand the
functioning of the existing problem domain (e.g., business system)
and only then introduce the new concepts and functions into it.

2. Representation of “to-be” domain model—diagram types used to
specify and analyze the desired functioning of the solution.

3. “As-is” boundary identification—approach used for the existing
(as-is) domain boundary identification (i.e., before the new software
system is introduced to the problem domain).

4. “To-be” boundary identification—approach used for the desired
(to-be) domain boundary identification (i.e., after the new software
system is introduced to the problem domain) since the new software
system can introduce a new functionality in the problem domain.

The result of the evaluation against problem domain analysis and
design criterions is given in Table 5.8.

The next evaluated group of criterions is requirements management
and it consists of following evaluation criterions:

1. Functional requirements—the way of the functional requirement
specification.
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Table 5.7 Evaluation of Analysis and Design Models Criterions
No. Criterion Method Evaluation

1. Count of
diagrams used

Topological UML
modeling

12—all except profile diagram, timing diagram,
and composite structure diagram

OOAD with Unified
Process

10—all except composite structure diagram,
object diagram, profile diagram, and timing
diagram

B.O.O.M. 6—use case diagram, activity diagram, state
diagram, class diagram, package diagram, and
object diagram

Conceptual modeling 5—class diagram, state diagram, use case
diagram, sequence diagram, and profile diagram

Component-based
development

9—composite structure diagram, object
diagram, profile diagram, interaction overview
diagram, and timing diagram

TFM4MDA 5—three UML diagrams: use case diagram,
activity diagram, and class diagram; one
diagram from TFM4MDA profile: TFM; and
unspecified diagram type: problem domain
objects graph

2. The first
diagram created

Topological UML
modeling

TFM

OOAD with Unified Process Use case diagram

B.O.O.M. Use case diagram and class diagram (in parallel)

Conceptual modeling Class diagram

Component-based
development

Not specified, varies from case study to case
study

TFM4MDA TFM

3. Transformations
provided

Topological UML
modeling

All

OOAD with Unified Process Partial

B.O.O.M. Partial

Conceptual modeling Partial

Component-based
development

None

TFM4MDA All

4. Transformation
automation level

Topological UML
modeling

Semiautomatic—some diagram types require
additional actions from expert or designer

OOAD with Unified Process Semiautomatic—depending on the design
patterns used

B.O.O.M. Manual

Conceptual modeling Semiautomatic

Component-based
development

Manual

TFM4MDA Semiautomatic
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Table 5.8 Evaluation of Problem Domain Analysis and Design Criterions
No. Criterion Method Evaluation

1. Representation
of as-is domain
model

Topological UML
modeling

TFM

OOAD with Unified
Process

Use case diagram

B.O.O.M. Business use cases and activity diagram

Conceptual modeling Partly by class diagram

Component-based
development

None

TFM4MDA TFM

2. Representation
of to-be domain
model

Topological UML
modeling

TFM, communication diagram, topological class
diagram, and object diagram

OOAD with Unified
Process

Use case diagram, activity diagram, and class diagram

B.O.O.M. Use case diagram and class diagram

Conceptual modeling Class diagram

Component-based
development

Scenario and logical view of 41 1 architectural style

TFM4MDA TFM, class diagram with conceptual classes

3. As-is boundary
identification

Topological UML
modeling

Initial TFM—the result of applying topological space
closure operation

OOAD with Unified
Process

Intuitive—based on initial estimation of use cases

B.O.O.M. Business use cases—an initial estimation based on
interviews

Conceptual modeling Intuitive

Component-based
development

None

TFM4MDA TFM as the result of topological space closure
operation

4. To-be boundary
identification

Topological UML
modeling

Refined TFM—the result of mapping TFM on
functional requirements or goals

OOAD with Unified
Process

Intuitive—based on analysis of use cases

B.O.O.M. System use cases—identified and elaborated based on
the business use cases

Conceptual modeling Intuitive

Component-based
development

Intuitive

TFM4MDA User goals finding in accordance with the TFM
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2. Nonfunctional requirements—the way of the nonfunctional require-
ment specification.

3. Requirements conformance—evaluates the conformance of func-
tional requirements to the existing domain functioning.

4. Functional requirements traceability—support of the functional
requirements traceability between developed artifacts.

5. Nonfunctional requirements traceability—support of the nonfunc-
tional requirements traceability between developed artifacts.

The result of the evaluation against requirements management crite-
rions is given in Table 5.9.

The last evaluated group of criterions is usage and it consists of the
following evaluation criterion:

1. Type of validation—evaluates how the method is validated. There
can be three different ways of validating a method depending on
the purpose of the validation and the conditions for empirical inves-
tigation [34]: survey, case study, and experiment. A survey is an
investigation performed in retrospect when the method has been
used for a certain period of time. A case study is an observational
study in which data are collected for a specific purpose throughout
the study. An experiment is a formal and controlled investigation (it
also includes the theoretical examples).

The result of the evaluation against usage criterion is given in
Table 5.10.

The results of comparison criterions show that the Topological
UML modeling tends to holistically and formally cover all the system
thus the count of applied diagrams to create the system’s blueprint—its
specification—is the largest. It uses all the diagrams available in
Topological UML except profile diagram, timing diagram, and com-
posite structure diagram. Since both Topological UML modeling and
TFM4MDA are based on TFM, several characteristics of them are
equal or similar, like the first diagram created which is TFM. As dis-
cussed in Chapter 4, Topological Unified Modeling Language, the
TFM holistically covers the specification of the problem and solution
domains thus allowing to formally seam together both domains and to
eliminate the intuitive development of the specification. While using
the TFM as a tool to carefully analyze the problem domain and design
the solution domain, it is very important to not lose the information
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Table 5.9 Evaluation of Requirements Management Criterions
No. Criterion Method Evaluation

1. Functional
requirements

Topological UML
modeling

Textual description, business use cases, etc.

OOAD with Unified
Process

Use case diagram

B.O.O.M. System use case diagram

Conceptual modeling Conceptual schema (all UML diagrams applied by this
method)

Component-based
development

Use case diagram (the scenario view of 41 1
architecture style)

TFM4MDA Textual description, use case diagram

2. Nonfunctional
requirements

Topological UML
modeling

Textual description

OOAD with Unified
Process

Textual specification within use cases

B.O.O.M. Textual specification within system use cases

Conceptual modeling None

Component-based
development

Components should conform to a characterization of a
unit to be reusable

TFM4MDA Partially by textual specification within use cases

3. Requirements
conformance

Topological UML
modeling

Mappings between requirements and the initial and
refined TFM

OOAD with Unified
Process

Intuitive or based on knowledge of expert

B.O.O.M. Based on business use cases

Conceptual modeling Intuitive or based on knowledge of expert

Component-based
development

Intuitive or based on knowledge of expert

TFM4MDA Mappings between requirements and the TFM as-is

4. Functional
requirements
traceability

Topological UML
modeling

Trace links from requirements to functional features of
TFM, use cases, topological class diagram, and other
developed artifacts (Topological UML modeling enables
traceability from the very beginning of software
development lifecycle to the code and backward)

OOAD with Unified
Process

Requirements are traced to use cases and to other
design and implementation artifacts.

B.O.O.M. Trace links from business use cases to system use cases
and other developed artifacts

Conceptual modeling Intuitive; trace links between diagrams created in the
conceptual schema

Component-based
development

Intuitive; trace links from Scenario view (use cases) to
other views in the context of 41 1 architecture style

TFM4MDA Trace links between requirements, TFM, use cases, and
other diagrams used

(Continued)
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gathered during construction of the TFM. The best way to do this is to
transfer all the design decisions from TFM to other design diagrams
and of course to the software code. In such case, we are going from
more abstract models to more specialized models, thus adding more
and more development-specific artifacts to design to get us to the
executable software. TFM4MDA also uses a powerful tool to analyze
functioning of the problem domain—the TFM, but the TFM4MDA
lacks the ability to transfer responsibilities of objects from TFM to the
classes. Other modeling methods like B.O.O.M., Unified Process, con-
ceptual modeling, and component-based development rely on the abili-
ties of the expert which is working on the development of specification.
In most cases, there is no way to validate the result provided by the
expert unless we are at the finish line of the software development
process—getting an executable software. In the case of classical water-
fall software development lifecycle there is a very high possibility that
the software will not meet the goals stated by the owner of the product.

Table 5.9 (Continued)
No. Criterion Method Evaluation

5. Nonfunctional
requirements
traceability

Topological UML
modeling

Trace links from nonfunctional requirements to
component diagram and deployment diagram

OOAD with Unified
Process

Traced together with use cases

B.O.O.M. Traced together with system use cases

Conceptual modeling Not supported

Component-based
development

Intuitive; based on the experience of designer

TFM4MDA Not supported

Table 5.10 Evaluation of Usage Criterion
No. Criterion Method Evaluation

1. Type of
validation

Topological UML
modeling

Case study (as given in Part III, Topological UML Modeling
Explained and [26])

OOAD with
Unified Process

Survey

B.O.O.M. Survey

Conceptual
modeling

Experiment (a conceptual modeling case study in [82] is shown
in the context of already existing system so it cannot be
considered as a real case study)

Component-based
development

Case study

TFM4MDA Experiment
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5.3 SUMMARY

Topological UML modeling is based on the formalism of TFM and
the Topological UML profile. While TFM provides formal abstraction
and understandability of the problem domain, other Topological UML
diagrams allow to model system from different viewpoints. TFM is
used in two forms—as-is and to-be, where the first one describes the
existing functioning of the problem domain while the latter one—the
required functioning of the solution (i.e., software system). Within
Topological UML modeling TFM serves as the root model for behav-
ior and structure specification and as a tool for validation of the func-
tional requirements as well as of the software system. While using the
TFM as a tool to carefully analyze the problem domain and design the
solution domain, it is very important to not lose the information gath-
ered during construction of the TFM. The best way to do this is to
transfer all the design decisions from TFM to other design diagrams
and of course to the software code. In such case, we are going from
more abstract models to more specialized models, thus adding more
and more development-specific artifacts to design to get us to the
executable software.

The problem domain analysis and software design within
Topological UML modeling consist of six activities, covering behavior,
structure, layout, and deployment analysis and design. By following the
Topological UML modeling activities one by one, the system gets
designed in top-down way and the developed design artifacts are in
strong accordance with the functioning of problem domain, thus the
Topological UML modeling ensures that causal trace links exist between
artifacts of both problem and solution domains.

By following the Topological UML modeling activities, designed
software artifacts have the following characteristics:

• High cohesion—application of TFM for system functioning analysis
and formal transformation of TFM to other diagram types ensures
appropriate assignment of responsibilities to objects and classes (this
actually is leading to the next statement).

• Every design artifact is an abstraction of a well-analyzed and
understood problem domain artifact.

• Low coupling with the rest of the system—relations between elements
initially are identified within TFM and defined as topological
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relationships between functional features describing functioning of a
problem and solution domains.

• Well-defined interface—the result of performing closuring operation
of topological space is TFM reflecting functioning of system under
consideration; the TFM obtained from topological space shows
inputs and outputs (one of the functional characteristic of TFM).
Topological UML modeling uses the inputs and outputs of TFM to
define required and provided interfaces of system.
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CHAPTER 66
Problem Domain Functioning Analysis

INFORMATION IN THIS CHAPTER:

• Problem domain analysis
• Functional characteristics of system functioning
• Requirements checking and refinement
• Topological Functioning Model (TFM) development

6.1 INTRODUCTION

Problem domain functioning analysis is the first activity within
Topological UML modeling during which a Topological Functioning
Model (TFM) gets developed. During the analysis of the problem
domain we model two aspects of the desired system—one representing
functioning of problem domain, i.e., the situation as-is, and one repre-
senting functionality of desired software system, i.e., the solution to-be.
This activity ensures that proper attention is paid at the very beginning
of the software development lifecycle by capturing various aspects of
the desired system. Such strategy allows to identify functional require-
ments which are not in accordance with the existing functioning of the
problem domain. Thus, the stakeholders can make decision whether to
change the existing business process or to adapt functional requirements
to it.

Problem domain functioning analysis consists of three activities (see
Fig. 6.1, where Mappings denotes the mappings between functional
features and functional requirements):

1. Topological space development—topological space represents func-
tioning of the system under consideration and its surrounding envi-
ronment (i.e., finite set of TFM exists in topological space where
each TFM shows functioning of a specific system), it is visualized
by using oriented graph where functional features are vertices and

Topological UML Modeling. DOI: http://dx.doi.org/10.1016/B978-0-12-805476-5.00006-X
© 2017 Elsevier Inc. All rights reserved.
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cause-and-effect (causal) relationships—arcs between them directed
from cause functional feature to the effect functional feature.

2. Initial TFM development—the TFM gets extracted from the topo-
logical space by analyzing functional features that belong to the
desired system’s functioning.

3. TFM refinement—functional requirements are mapped on func-
tional features, thus checking the completeness of TFM and func-
tional requirements. If required, we need to modify both the TFM
and the functional features in order for the TFM to meet the
desired system’s functioning.

To perform the problem domain functioning analysis there are two
prerequisites—functioning description of the business process or
desired system and functional requirements which should be satisfied
by the software system. The functioning description can be taken from
different sources such as verbal descriptions like documents, interviews,

Figure 6.1 Problem domain functioning analysis activities.

156 Topological UML Modeling



user stories, diagrams, ontologies, schemas, business process descrip-
tions, requirements specifications, as well as from mathematical expres-
sions and expert knowledge about the system; it needs to cover full
description of problem domain functioning.

The result of the problem domain functioning analysis is TFM
(both the one representing functioning of problem domain and the one
representing functionality of desired software system), mappings
between functional features and functional requirements, and refined
functional features. The TFM development activities are described in
detail in the next sections (each section describes one activity).

6.2 ENTERPRISE DATA SYNCHRONIZATION SYSTEM
CASE STUDY

Within the Part III, Topological UML Modeling Explained, we use a
case study of enterprise data synchronization system development. The
initial specification of enterprise data synchronization system consists
of the following artifacts:

1. Informal description of data synchronization functioning, where
nouns are denoted by italic, verbs are denoted by bold, and action
preconditions and postconditions are underlined (see Section 6.2.1).

2. Functional and nonfunctional requirements defined for data synchro-
nization software system (see Section 6.2.2).

6.2.1 Informal Enterprise Data Synchronization
System Description
Scheduler every 5 min reads configuration data from configuration file.
Configuration data includes following parameters: connection informa-
tion of input data source, username and password for reading input
data, flag to indicate if data should be taken from input data source,
time at which to make import from input data source, connection infor-
mation of target data source, username and password for editing data
in target data source, path to import files folder, path to log folder.

After configuration data is read, scheduler checks if import from
source database should be performed. Import from source database is
performed at specified time which is given in configuration data as
parameter. If import should be performed from source database, then
scheduler reads all data from source database by using query statement
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given in configuration file. After all data is read, scheduler checks if
read data structure is according to specification. Data from source
databases has following structure: surname, forename, job title,
address, e-mail address, telephone number, gender, start date, expiry
date, department, and company code. If data structure is according to
specification, then scheduler puts the read data into temporal internal
table. After converting read data to temporal internal table every row
from this table is imported into target database.

After configuration data is read and import from source databases is
performed (if needed), scheduler checks import folder. If CSV file (the
import file) is found in that folder, scheduler reads the import file.
Import file has following structure: surname, forename, job title,
address, e-mail address, telephone number, gender, start date, expiry
date, department, and company code. Scheduler then checks that read
import file corresponds to predefined import file structure. If import file
structure is according to specification, then scheduler converts the read
data into temporal internal table. After converting read data into
temporal internal table every row from this table is imported into target
database. If import file structure is not prepared according to specifica-
tion, the import file is skipped, moved to processed files folder and a log
file is created in log files folder stating that particular import file was
not imported into target database.

For every row scheduler checks if data from a particular row
already exists in target database. If data from the particular row
exists then update of existing data is performed in target database. If
data from the particular row does not exist then insert of new data is
performed in target database. By updating or inserting data in target
database scheduler prepares log file in log files folder for every import
file and for every time data is imported from source database. In log
file is logged every data row from temporal internal table in order to
unify log files from different data sources. For every row from source
data an import status is logged. There are two import statuses: suc-
cessful and error. Successful status is logged when import is successful
for particular row. Error status is logged when import is not success-
ful for particular row. If error is logged then error description also is
logged in order to allow data import manager to watch for
un-imported data. After data import is completed the log file is
archived. After importing data from import file, the import file is
moved to processed files folder.
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6.2.2 Functional and Nonfunctional Requirements
The enterprise data synchronization system has the following func-
tional requirements:

• FR1—Employee data synchronization should be done between input
data sources and target data source. This requirement includes
requirements FR1.1�FR1.7.

• FR1.1—By starting synchronization process a configuration infor-
mation should be taken from configuration file.

• FR1.2—If needed, data from source database should be taken.
• FR1.3—Data should be taken from import files in CSV format.
• FR1.4—If import CSV file is with wrong data structure, the proces-

sing of particular file should be skipped and faulty import file should
be logged.

• FR1.5—All data obtained from either source database or import
files should be placed in target database.

• FR1.6—When importing data in target database all rows from source
data should be logged together with import status for each particular
data row.

The enterprise data synchronization system has the following non-
functional requirements:

• NFR1—Employee data synchronization mechanism should be
implemented in a way that it runs every 5 min after previous data
synchronization has been completed.

• NFR2—Employee data synchronization mechanism should be
deployed separately from any other systems and components.

• NFR3—Executable files responsible for logging should be deployed
separately of other components.

• NFR4—Employees responsible for source data preparation should
not have access to employee data synchronization mechanism.

6.3 TOPOLOGICAL SPACE DEVELOPMENT

The first activity to develop a TFM of system under consideration is
the development of topological space which consists of two actions
(see Fig. 6.2):

1. Definition of physical or business functional characteristics—functional
characteristics are defined in the form of functional features that
graphically are drawn as vertices of a directed graph.
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2. Introduction of topology Θ—cause-and-effect (causal) relationships
are added between functional features. Graphically causal relation-
ships are drawn as oriented arcs between vertices pointing from
cause functional feature to the effect functional feature. Causal rela-
tionship is binary relationship linking together only two functional
features.

To develop the topological space of problem domain, the function-
ing description of the system is used. The functioning description
can be taken from different sources such as verbal descriptions like
documents [86], interviews, user stories, business use cases (discussed in
[104]), diagrams, ontologies, schemas, business process descriptions,
requirements specifications, as well as from mathematical expressions
and expert knowledge about the system; it needs to cover full descrip-
tion of problem domain functioning.

Definition of physical or business functional characteristics, i.e.,
the development of functional features, consists of the following
activities [9]:

Figure 6.2 Development of topological space.
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1. Definition of objects and their properties from the problem domain
description.

2. Identification of external systems and partially dependent systems.
3. Definition of functional features using verb analysis in the problem

domain description, i.e., by finding meaningful verbs.

In the case of having functioning description of the system as a
textual description, all the required information can be visualized
within text. For example, the informal description of enterprise data
synchronization functioning given in Section 6.2.1 is analyzed by tak-
ing into account nouns (denoted by italic), verbs (denoted by bold),
and action preconditions and postconditions (denoted by underline).

As a result, a set of functional features Xid are defined. At the
lowest abstraction level one functional feature should describe only
one atomic business action (it cannot be further divided into a set of
business actions) [91]. By using the topological characteristic continu-
ous mapping of TFM, the abstraction level of functional features can be
changed at any time when needed (e.g., the initial TFM can be detailed
out by lowering the abstraction level of functional features thus showing
more or less detailed description of problem domain functioning). Each
functional feature is a unique tuple as shown by equation Xid5,Id, A,
Op, R, O, Cl, St, PreCond, PostCond, E, Es, S. Eq. (4.4) in
Chapter 4, Topological Unified Modeling Language, where:

• Id—identifier of functional feature,
• A—action of object O,
• Op—operation which will provide functionality defined by action A

(can be acquired when the class diagram is synthesized),
• R—result of action A,
• O—object that receives the result or that is used in action A (e.g., a

role, a time period, a catalogue),
• Cl—class which will represent object O in static viewpoint of system

(can be acquired when the class diagram is synthesized),
• St—new state of object O after performing action A,
• PreCond—a set of preconditions Cid,
• PostCond—a set of postconditions Cid,
• E—entity responsible for performing action A,
• Es�indicates if execution of action A could be automated (i.e., per-

formed without human interaction), and
• S—subordination of functional feature (can be internal or external).

161Problem Domain Functioning Analysis



Each precondition or postcondition is a condition Cid described by
unique tuple Cid5,Id, Cond, oCond. Eq. (4.5) in Chapter 4,
Topological Unified Modeling Language, where:

• Id—identifier of condition,
• Cond—condition or an atomic business rule, and
• oCond—identifier of opposite condition, i.e., Ci 52Cj.

Condition is considered as an atomic business rule.

Within enterprise data synchronization software system develop-
ment project has been defined 33 functional features (see Table 6.1).

Table 6.1 Functional Features of Enterprise Data Synchronization System
Id Object Action A Precondition

PreCond

Entity E Object O Subordination

S

1 Defining data
synchronization
parameters

Data import
manager

Configuration External

2 Creating data
synchronization
parameters

Data import
manager

Configuration External

3 Acquiring synchronization
parameters

Configuration Configuration Inner

4 Checking if import from
source database should be
performed

Configuration Configuration Inner

5 Defining source data Source data
manager

SourceDataSource External

6 Creating data in source
database

Source
database

SourceDataSource External

7 Reading all data from
source database

If import
should be
performed
from source
database

Scheduler SourceDataSource Inner

8 Checking if read data
structure is according to
specification

Scheduler Scheduler Inner

9 Putting the read data into
temporal internal table

If data
structure is
according to
specification

Scheduler Scheduler Inner

10 Importing every row from
internal table into target
database

Scheduler Scheduler Inner

(Continued)
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Table 6.1 (Continued)
Id Object Action A Precondition

PreCond

Entity E Object O Subordination

S

11 Checking import folder Scheduler ImportFolder Inner

12 Creating data for CSV
import file

Source data
manager

ImportFile External

13 Creating CSV import file Import file ImportFile External

14 Reading the import file If CSV file
(the import
file) is found
in import
folder

Scheduler ImportFile Inner

15 Checking if import file
data structure is according
to specification

Scheduler Scheduler Inner

16 Converting the read data
from import file into
temporal internal table

If import file
structure is
according to
specification

Scheduler Scheduler Inner

17 Skipping importing of
import file

If import file
structure is
not prepared
according to
specification

Scheduler Scheduler Inner

18 Moving import file to
processed files folder

Scheduler ImportFile Inner

19 Creating log file in log
files folder

Scheduler Logger Inner

20 Writing into log file that
particular import file was
not imported into target
database

Data import
manager

Logger External

21 Receiving log file for
unimported CSV file

Data import
manager

Logger External

22 Checking if data from a
particular row already
exists in target database

Scheduler TargetDataSource Inner

23 Updating existing data in
target database

If data from
the particular
row exists

Target
database

TargetDataSource External

24 Receiving updated
information

Target
database

TargetDataSource External

25 Insert new data in target
database

If data from
the particular
row does not
exist

Target
database

TargetDataSource External

26 Receiving new
information

Target
database

TargetDataSource External

(Continued)
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Introduction of topology Θ (in other words, creation of topological
space) means establishing cause-and-effect (causal) relationships Tid

between identified functional features. Cause-and-effect (causal) rela-
tionship Tid is a binary relationship relating two functional features
Xid represented as arcs of a directed graph oriented from a cause
vertex to an effect vertex. The synonym for cause-and-effect relation-
ship is topological relationship. Each cause-and-effect relationship is a
unique tuple Tid5,Id, Xc, Xe, Lout, Lin. Eq. (4.6) in Chapter 4,
Topological Unified Modeling Language, where:

• Id�unique identifier of cause-and-effect relationship,
• Xc—cause functional feature,
• Xe—effect functional feature,
• Lout—set of logical relationships between cause-and-effect relation-

ships on outgoing arcs of cause functional feature Xc (optional), and
• Lin—set of logical relationships between cause-and-effect relation-

ships on incoming arcs of effect functional feature Xe (optional).

Topological space Z is a system represented by equation Z5N,M
Eq. (4.2) in Chapter 4, Topological Unified Modeling Language, where N
is a set of inner system functional features and M is a set of external func-
tional features (i.e., the external functional features show links and commu-
nication with the external environment). Topological space represents the

Table 6.1 (Continued)
Id Object Action A Precondition

PreCond

Entity E Object O Subordination

S

27 Creating log file in log
files folder for import file
processing

If data is read
from import
file

Scheduler Logger Inner

28 Logging data row from
temporal internal table

Data import
manager

Logger Inner

29 Logging successful status If import is
successful for
particular row

Data import
manager

Logger Inner

30 Logging error status If import is
not successful
for particular
row

Data import
manager

Logger Inner

31 Logging error description If error is
logged

Data import
manager

Logger Inner

32 Archiving log file If data import
is completed

Data import
manager

Logger External

33 Receiving archived import
log file

Data import
manager

Logger External
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system under consideration together with the environment in which this
system exists. Together, functional features and cause-and-effect relation-
ship make topological space of the system under consideration.

The identified cause-and-effect relationships between the defined
functional features for enterprise data synchronization system case
study are illustrated by the means of the topological space (see
Fig. 6.3), where functional features are added as vertices of directed
graph and cause-and-effect relationships as arcs between vertices point-
ing from cause functional feature to the effect functional feature.
Functional features are given in Table 6.1.

It is acknowledged that every business and technical system is a
subsystem of the environment. TFM enables careful analysis of
system’s operation and communication with the environment through
analysis of functional cycles—a common thing for all system (techni-
cal, business, or biological) functioning should be the main functional
feedback, visualization of which is an oriented cycle. Thus, it is stated
that at least one directed closed loop (i.e., cycle) must be present in
every topological model of system functioning. This cycle shows the
main functionality that has a vital importance in the system’s life.
Usually it is even an expanded hierarchy of cycles. By interrupting this

Figure 6.3 Topological space of enterprise data synchronization system.
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main cycle the system can no longer function or it functions faulty
[86]. Therefore, a proper cycle analysis is necessary in the TFM con-
struction, because it enables careful analysis of system’s operation and
communication with the environment. To better illustrate main cycle
in graph representation of TFM, the arcs belonging to this cycle
are drawn with bolder lines. In Fig. 6.3 is clearly visible that cause-
and-effect relations form functioning cycles. In enterprise data synchro-
nization system case study the main functioning cycle represents
getting data from source database and import files and editing those
data in target database, and is as follows:

3-4-7-8-9-10-27-22-28-29-18-3:

6.4 INITIAL TOPOLOGICAL FUNCTIONING MODEL
DEVELOPMENT

The next activity within problem domain functioning analysis after
topological space development is the development of TFM. To do so
we need to complete the following two actions (see Fig. 6.4):

1. Separation of TFM from topological space—done by applying the
closuring operation over a set of system’s inner functional features.

2. Identification of logical relations—the presence of logical relations
within TFM denotes forking, joining, decision-making, and merging
during the functioning of the problem and solution domains. They
are identified by analyzing preconditions and postconditions of
functional features.

Logical relation Lid shows the logical relationship conjunction (and),
disjunction (or), or exclusive or (xor) between two or more cause-
and-effect relationships Tid. The type of logical relation denotes system
execution behavior (e.g., decision-making, parallel actions). Each logical
relation is a unique tuple Lid5,Id, T, Rt. Eq. (4.7) in Chapter 4,
Topological Unified Modeling Language, where:

• Id—identifier of logical relationship,
• T—set of cause-and-effect relationships belonging to this logical

relationship, and
• Rt�logical relationship type (and, or, or xor).

Separation of TFM from topological space is done by applying the
closure operation as shown by the equation X 5 [N] Eq. (4.3) in
Chapter 4, Topological Unified Modeling Language, over a set of
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system’s inner functional features (the set N), where Xη is an adher-
ence point of the set N and capacity of X is the number n of adherence
points of N. Initial TFM can be called TFM as-is where as-is means
that the TFM represents the functioning of the problem domain with-
out the impact of planned software system. Construction of initial
TFM can be iterative. Iterations are needed if the information col-
lected for TFM development is incomplete or inconsistent or there
have been introduced changes in system functioning or in software
requirements.

According to the equation Z 5 N,M Eq. (4.2) given in
Chapter 4, Topological Unified Modeling Language, all the identified
functional features given in Table 6.1 are split into two sets, where N
is a set of internal system functional features and M is a set of func-
tional features of other systems that interact with the system or of the
system itself, which affect the external ones:

• N 5 {3, 4, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 22, 27, 28, 29, 30, 31}
• M 5 {1, 2, 5, 6, 12, 13, 20, 21, 23, 24, 25, 26, 32, 33}

Figure 6.4 Development of initial TFM.
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In order to get all of the system’s functionality—the set X—the
closuring operation (see equation X 5 [N] Eq. (4.3) in Chapter 4,
Topological Unified Modeling Language) is applied over the set N.
During the closuring operation, all the vertices in set N are analyzed
by taking into account successor and predecessor vertices of all vertices
in set N. As a result, the obtained set X includes all the vertices from
set N and all the vertices from set M which are adjacent to the vertices
in set N. It is assumed here that all vertices adjacent to vertex from set
N lie at the distance d51 from it. A visualization example of closuring
operation by analyzing abstract functional features F1, F2, F3, F4,
and F5 is given in Fig. 6.5.

In the context of enterprise data synchronization system develop-
ment case study the closuring operation revealing how functional
features are added to set X is given in Table 6.2 where with

Figure 6.5 Functional features belonging to set N, M, and X.
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underline is denoted external functional features that are belonging
to set M.

The obtained set X (the TFM) after applying closuring operation is
as follows:

X5 f2; 3; 4; 6; 7; 8; 9; 10; 11; 13; 14; 15; 16; 17; 18; 19; 20;
22; 23; 25; 27; 28; 29; 30; 31; 32g:

The resulting TFM is given in Fig. 6.6.

Identification of logical relations between cause-and-effect rela-
tionships consists of two steps since there are two kinds of logical
relationships Lid—one kind is between arcs that are outgoing from
functional features Xid and the other kind is between arcs that are
incoming to functional features Xid. The logical relationships
between outgoing arcs are denoted with Lout and the logical relation-
ships between incoming arcs with Lin, thus the identification of

Table 6.2 Closuring Operation Over the Set N
Functional Feature From Set N Adjacent Functional Features

3 2, 4, 11, 18, 19

4 3, 7, 11

7 4, 6, 8

8 7, 9

9 8, 10

10 9, 16, 27

11 3, 4, 14, 18

14 11, 13, 15

15 14, 16, 17

16 10, 15

17 15, 18

18 3, 11, 17, 19, 29, 31

19 3, 18, 20

22 23, 25, 27, 28, 29, 31

27 10, 22

28 22, 29, 30

29 18, 22, 28, 32

30 28, 31

31 18, 22, 30, 32
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logical relations between cause-and-effect (i.e., topological) relation-
ships consists of two actions:

1. Identification of logical relations Lout between cause-and-effect
relationships Tid that are outgoing from functional feature Xid (see
Section 6.4.1).

2. Identification of logical relations Lin between cause-and-effect
relationships Tid that are incoming to functional feature Xid (see
Section 6.4.2).

Within TFM can be defined three types of logical relations Lid: con-
junction (and), disjunction (or), and exclusive disjunction (xor). Within
each logical relation Lid participate two or more cause-and-effect
relationships Tid. The following two subsections cover the identifica-
tion of logical relations Lout and Lin.

6.4.1 Identification of Logical Relations Between Outgoing
Cause-and-Effect Relationships
Logical relations Lout between cause-and-effect relationships that are
outgoing from functional feature indicate necessity of decision-making
or branching. In the case of making decision only part of effect
functional features is executed, but in the case of branching all of the
effect functional features are executed (i.e., system performs parallel
processing) [23].

Figure 6.6 TFM representing enterprise data synchronization system functioning.
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The analysis of logical relations Lout is critical when transforming
TFM into other diagram types, while these relations contain information
about decision-making, parallel execution, and branching. Thus, by
using TFM and logical relations Lid it is possible to build advanced dia-
grams of other type (e.g., activity and topological use case diagrams).
This is in opposition to the opinion in [6] that TFM contains informa-
tion sufficient to create only basic activity diagrams (i.e., without fork-
ing, joining, and decisions).

Depending on the relationship type Rt of logical relation Lout,
system execution behavior is defined as follows:

• Conjunction (and)—system is running in parallel by executing all
effect functional features of cause-and-effect relationships participat-
ing in this logical relation,

• Disjunction (or)—system can be running in parallel by executing
one, part of, or all effect functional features of cause-and-effect
relationships participating in this logical relation, and

• Exclusive disjunction (xor)—only one effect functional feature of
cause-and-effect relationships participating in this logical relation is
executed.

The algorithm of identifying logical relations Lout between outgoing
arcs of functional features is given in Fig. 6.7 while the rules for identi-
fication of logical relation Lout type are given in Table 6.3, where Xe

denotes effect functional features and Cid denotes preconditions of Xe.

To better understand identification of logical relations a small
fragment of TFM representing enterprise data synchronization sys-
tem functioning from Fig. 6.6 is used consisting of four functional
features: 22, 23, 25, and 28 in Fig. 6.8. The functional feature 23
has a precondition C1 (If data from the particular row exists) and
functional feature 25 has a precondition C2 (If data from the partic-
ular row does not exist) while functional feature 28 has no precondi-
tions as given in Table 6.1. The relation between preconditions C1

and C2 is as follows: C15C2; thus, indicating that between the arcs
that are outgoing from functional feature 22 to functional features
23 and 25 (22-23 and 22-25) the logical relation with type exclu-
sive disjunction (xor) exist. Since functional feature 28 has no pre-
conditions logical relations with type conjunction (and) are added
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Figure 6.7 Identification of logical relations Lout between outgoing cause-and-effect relationships.
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between cause-and-effect relationship 22-23 and 22-28, and
22-25 and 22-28.

The resulting TFM with logical relations on outgoing cause-and-
effect relationships of enterprise data synchronization system is given
in Fig. 6.9.

Table 6.3 Rules for Identification of Logical Relations Lout

Relation Type Xe Cid Example of Lout

and Xe1 Ø

Xe2 Ø

or Xe1 C1 C16¼C2 & C16¼C2

Xe2 C2

xor Xe1 C1 C25C1

Xe2 C2

Figure 6.8 Example of logical relation identification between outgoing cause-and-effect relationships.
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6.4.2 Identification of Logical Relations Between Incoming
Cause-and-Effect Relationships
Logical relations Lin between cause-and-effect relationships that are
incoming to functional feature indicate that there is decision or branch-
ing made before the effect functional feature. If there was branching
before the effect functional feature, then before executing this func-
tional feature there should be joining and system can continue its
execution only after all arcs are joined [23]. This reflects the mathemat-
ical foundations of Petri nets [21]. Logical relations Lin contain impor-
tant information when transforming TFM into other diagram types,
e.g., activity diagram. Depending on the type of logical relation Lin in
the activity diagram join (Rt5 and) and decision-making should be
created (Rt5 or or xor).

Depending on the relation type of logical relation Lin, system execu-
tion behavior is defined as follows:

• Conjunction (and)—system is executing in parallel thus effect func-
tional feature Xe can be executed only when all direct predecessor
functional features (i.e., all cause functional features Xc in the
distance d 5 1) of cause-and-effect relationships Tid participating in
logical relation Lid are executed,

• Disjunction (or)—system can be executing in parallel by executing
one, part of, or all cause functional features Xc of effect functional
feature Xe at the distance d 5 1 of cause-and-effect relationships Tid

participating in this logical relation, and

Figure 6.9 TFM representing enterprise data synchronization system functioning and logical relations between out-
going cause-and-effect relationships.
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• Exclusive disjunction (xor)—only one cause functional feature Xc

of effect functional feature Xe at the distance d 5 1 of cause-and-
effect relationships Tid participating in this logical relation Lid is
executed.

Relation type of logical relations Lin is denoted by corresponding
logical relation Lout (for relationships which are branched within
TFM) and by the preconditions and postconditions (for the relation-
ships that come from the inputs of TFM). The rules for identification
of logical relations Lin between incoming arcs of functional features
are given in Table 6.4, where Lout denotes logical relations between
outgoing arcs, and Lin denotes logical relations between incoming arcs.

The algorithm for identification of logical relations Lin between
incoming arcs of functional features is given in Fig. 6.10. To find
required functional features within TFM, graph traversing algorithms
are used (e.g., backtracking algorithm [64]). The identification process
of logical relations Lin is different from the identification process of
logical relations Lout. The main difference is in the fact that logical
relations Lin are added according to the existing logical relations Lout

and preconditions and postconditions of functional features, while logi-
cal relations Lout are added by taking into account only preconditions
of functional features.

Table 6.4 Rules for Identification of Logical Relations Lin

Relation Type Source Relation Lout Corresponding Relation Lin

and

or

xor
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To better understand identification of logical relations a small frag-
ment of TFM representing enterprise data synchronization system
functioning from Fig. 6.6 is used consisting of following functional
features: 3, 4, 7, 8, 9, 10, 11, 14, 15, 16, and 27 in Fig. 6.11 where it is
clearly visible that only one vertex has more than one predecessor—
functional feature 10. So, we should define the correct logical relation

Figure 6.10 Identification of logical relations between incoming cause-and-effect relationships.
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Lin between the following two cause-and-effect relationships: 9-10
and 16-10. By traversing the TFM graph, the first found predecessor
(cause) functional feature which has two or more descendants is func-
tional feature 4. According to the algorithm given in Fig. 6.10 we
should transfer logical relation Lout from outgoing arcs from cause
functional feature 4 to its descendant functional feature’s 10 incoming
arcs. Thus, the logical relation between cause-and-effect relationships
9-10 and 16-10 is or—the same as between the cause-and-effect
relationships 4-7 and 4-11.

The TFM as given in Fig. 6.12 shows logical relations between cause-
and-effect relationships. The logical relations are divided into two sets:

• Lout—logical relations between cause-and-effect relationships which
are outgoing from functional feature and

• Lin—logical relations between cause-and-effect relationships which
are incoming into functional feature.

6.5 REFINING TOPOLOGICAL FUNCTIONING MODEL

The last activity to develop a TFM of system under consideration is the
refinement of initial TFM. By mapping functional requirements to func-
tional features, the latter are validated in conformance with the con-
structed TFM. Functional features specify functionality that exists in
the problem domain, but requirements specify functionality that should
exist in the solution domain. Therefore, it is possible to make mappings
between requirements and functional features of the TFM. As a result
of requirements validation, both TFM and requirements are checked.

Figure 6.11 Example of logical relation identification between incoming cause-and-effect relationships.
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TFM is refined by completing the following actions (see Fig. 6.13):

1. Mapping functional requirements to functional features—there are
five types of mappings between functional features on functional
requirements: one to one, many to one, one to many, one to zero,
and zero to one.

2. Checking for missing and incomplete functional requirements—if
mapping with type one to many or zero to one is added, it indicates
that requirements do not cover the full functionality of the problem
domain; missing functional requirements should be added or exist-
ing ones extended and mappings should be updated.

3. Checking for missing functional features—if at least one mapping
with type one to zero is added, it indicates that the functional
requirements introduce new functionality to the problem domain;
missing functional features and cause-and-effect relationships
should be defined and mappings should be updated.

4. Searching for overlapping functional requirements—if mapping with
type many to one is added, it indicates that functional requirements
overlap the specification of what will be implemented in accordance
with one functional feature.

In [88] it is suggested to represent requirement mappings
between functional requirements and functional features by using

Figure 6.12 TFM representing enterprise data synchronization system functioning and logical relations between
cause-and-effect relationships.
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arrow predicates. An arrow predicate is a construct in universal
categorical logic.

There are five types of mappings and corresponding arrow predi-
cates defined for mapping requirements onto TFM [9]:

1. One to one—one requirement completely specifies what will be
implemented in accordance with one functional feature.

2. Many to one—set of requirements overlap the specification of what
will be implemented in accordance with one functional feature.

Figure 6.13 TFM refinement process.
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3. One to many—one requirement incompletely specifies some func-
tional feature, or one requirement completely specifies several
functional features. It can be so because of one of the following
reasons:
a. the requirement joins several requirements and can be split up or
b. functional features are more detailed than the functional

requirements.
4. One to Zero—one requirement specifies some new or undefined

functionality. In this particular case, it is necessary to define possi-
ble changes in the problem domain functioning.

5. Zero to one—specification does not contain any requirement corre-
sponding to the defined functional feature. This means that it could
be a missing requirement.

Graphical representations of arrow predicates are given in
Table 6.5.

Table 6.5 Arrow Predicates Used to Map Functional Requirements to Functional
Features
No. Type Description Graphical Representation

1. One to
one

Inclusion predicate is used if the functional requirement
A completely specifies what will be implemented in
accordance with the functional feature B

2. Many
to one

Covering predicate is used if functional requirements
A1, A2, . . ., An overlap the specification of what will
be implemented in accordance with the functional
feature B

Disjoint (component) predicate is used if functional
requirements A1, A2, . . ., An together completely specify
the functional feature B and do not overlap each other

3. One to
Many

Projection is used if some part of the functional
requirement A incompletely specifies some functional
feature B

Separating family of functions is used if one functional
requirement A completely specifies several functional
features B1,. . .,Bn

180 Topological UML Modeling



The mappings between functional requirements and functional fea-
tures allow to:

• Check for missing requirements—presence of one to many (with projec-
tion predicate) or zero to one mapping type indicates that requirements
do not cover the full functionality of the problem domain. Missing
functional requirements should be added or existing ones extended
and mappings should be updated in order to cover main functional
cycle of the problem domain.

• Check for missing functional features—if at least one mapping with
type one to zero exists, it indicates that the functional requirements
introduce new functionality to the problem domain. Missing func-
tional features and cause-and-effect relationships should be defined
and mappings should be updated.

• Identify overlapping functional requirements—presence of many to
one (with covering predicate) mapping type or if there is existence of
more than one functional requirement with more than one mapping
type associated with some functional feature which indicates that a
number of functional requirements define functionality that will be
implemented by the same functional feature.

As a result of this activity we get refined TFM representing the
functionality of the desired software system (refined TFM can be
addressed as TFM to-be), mappings between functional features and
functional requirements, and refined functional requirements.

The established mappings from functional requirements to func-
tional features within enterprise data synchronization system are
given in Table 6.6. As you can see in Table 6.6 all the mappings
between functional requirements and functional features in our
case study are with type one to many. This means that each func-
tional requirement completely specifies several functional features
and we have no missing functional requirements or functional fea-
tures, and functional requirements do not overlap. Thus, the
refined TFM is equal to the initial TFM. Since in this case study
use cases are used to model requirements, the set of mappings of
functional requirements include both functional features and func-
tional requirements.
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Table 6.6 Mappings for Functional Requirements to Functional Features
Functional

Requirements

Functional Features Mapping Type Graphical Representation

FR1.1 2, 3, 4 One to many

FR1.2 6, 7, 8, 9 One to many

FR1.3 11, 13, 14, 15, 16, 17 One to many

FR1.4 18, 19, 20 One to many

FR1.5 10, 27, 22, 23, 25 One to many

FR1.6 28, 29, 30, 31, 32 One to many
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6.6 SUMMARY

Problem domain functioning analysis is the first activity within
Topological UML modeling during which a TFM gets developed. A
case study of enterprise data synchronization system is used to explain
each step of the problem domain functioning analysis. During the
analysis of the problem domain we model two aspects of the desired
system—one representing functioning of problem domain, i.e., the situ-
ation as-is, and one representing functionality of desired software sys-
tem, i.e., the solution to-be. This activity ensures that proper attention
is paid at the very beginning of the software development lifecycle by
capturing various aspects of the desired system. Such strategy allows
to identify functional requirements which are not in accordance with
the existing functioning of the problem domain. Thus, the stakeholders
can make decision whether to change the existing business process or
to adapt functional requirements to it.

Problem domain functioning analysis consists of three activities:

1. Topological space development—topological space represents func-
tioning of the system under consideration and its surrounding
environment.

2. Initial TFM development—the TFM gets extracted from the topo-
logical space by analyzing functional features that belong to the
desired system’s functioning.

3. TFM refinement—functional requirements are mapped on func-
tional features, thus checking the completeness of TFM and func-
tional requirements.
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CHAPTER 77
Behavior Analysis and Design

INFORMATION IN THIS CHAPTER:

• Consuming Topological Functioning Model (TFM) for formal behav-
ior analysis and design

• Formal development of use cases
• Determination of subsystems, communication between systems and

users
• Workflow modeling in accordance with solution domain functioning

7.1 INTRODUCTION

Behavior analysis and design is the next activity within Topological
UML modeling. It is based on the results obtained within previous
Topological UML modeling activity—problem domain functioning anal-
ysis. By basing behavior analysis on Topological Functioning Model
(TFM), we are identifying and designing subsystems, use cases, actors,
and relationships between them (topological use case diagram), messages
and their sequence (sequence diagram), and workflows (activity and inter-
action overview diagram). Behavior analysis and design consists of fol-
lowing four activities:

1. Use case analysis—it is based on refined functional requirements,
refined TFM, and mappings between functional features and func-
tional requirements. The very first step is identification of use cases.
The next step is to map functional features onto use cases according
to mappings between functional requirements and functional
features thus creating the scenario of each use case. When func-
tional features have been mapped onto use cases, the identification
of actors is performed. Since actors in use case diagram show inter-
action between system and external systems or entities [78], they are
obtained from topological space. The cause-and-effect relationships
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between functional features define two kinds of relationships within
topological use case diagram—the topological relationship (i.e., the
communication) between use case and actor, and dependencies
between use cases, while logical relations between topological relation-
ships within TFM defined the type of dependencies between use cases.
As a result of this activity we get topological use case diagram show-
ing use cases, actors, relationships between them, and subsystems.

2. Messages and their sequence analysis—to analyze messages and how
they are sent, a sequence diagram is used. The sequence diagram is
developed by taking all the required information from topological
use case diagram and TFM. Scope of each sequence diagram is set
by the scope of corresponding use case. Actors are added to
sequence diagrams directly from the corresponding use case. At the
same time the TFM allows establishing objects with lifelines
(objects from functional features), messages they send each other
(cause-and-effect relationships). As a result of messages and their
sequence analysis we get sequence diagram for each use case show-
ing the objects and message sending between them.

3. Workflows analysis—to analyze workflows activity diagrams are
used. Each activity diagram gets developed in accordance with use
cases, TFM, and mappings between functional features and func-
tional requirements. Scope of each activity diagram is set by the
scope of corresponding use case. The activity diagram contains the
description of the same functionality that is included into corre-
sponding use case. The TFM and mappings between functional fea-
tures and functional requirements allow establishing actions and the
control flow between actions—functional features are transformed
into action nodes and topological relationships into activity edges.
The logic of control flow (i.e., decision, merge, fork, and join) is
defined in accordance with the logical relations. As a result of this
activity we get activity diagram for each use case representing its
workflow.

4. Workflows and messaging analysis—this activity is used to formally
develop interaction overview diagrams which basically merges together
activity and sequence diagrams (interaction overview diagrams are
specialization of activity diagrams that represent interactions). While
the first one gives the information about control flow, the latter shows
objects and messaging between them. The obtained diagram can be
helpful in order to better understand the overall process of system and
the control flow relations between sequence diagrams.
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The process of behavior analysis and design is given in Fig. 7.1
while each of the four activities are described in the further sections of
this chapter (each section describes one activity).

7.2 USE CASE ANALYSIS

Use case analysis and design consists of the following four actions (see
Fig. 7.2):

1. Identification of use cases—the use cases are created according to
the functional requirements of the required system or the system
goals.

Figure 7.1 Process of system behavior analysis and design.
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2. Mapping functional features onto use cases—functional features
onto use cases are mapped according to mappings between func-
tional features and functional requirements thus creating the sce-
nario of each use case.

3. Identification of actors—since actors in use case diagram show inter-
action between system and external systems or entities [78], they are
obtained from topological space.

4. Establishing relationships between use cases and actors—the cause-
and-effect relationships from TFM between functional features
define two kinds of relationships within topological use case dia-
grams—the topological relationship (i.e., the communication)
between use case and actor and the dependencies between use cases,

Figure 7.2 Use case analysis process.
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while the logical relations between cause-and-effect relationships
define the stereotype of the dependency between use cases (i.e.,
«include» and «exclude»).

To develop topological use case diagram, the TFM, refined functional
requirements, and mappings between functional features and functional
requirements are used. These artifacts have been developed during the
previous Topological UML modeling activity—problem domain func-
tioning analysis (see Chapter 6, Problem Domain Functioning Analysis).

Identification of use cases is performed by creating one use case for
each requirement. The alternative is to use system goals which are
identified by the problem domain experts. If system goals need to be
identified during problem domain analysis a TFM4MDA approach
can be used [88]. TFM4MDA uses goals [60] in order to identify use
cases and concepts from the description of the system (in the form of
informal description, expert interviewing, etc.).

To illustrate analysis of use cases, we use enterprise data synchroni-
zation system development case study introduced in Chapter 6,
Problem Domain Functioning Analysis. Within the case study every
functional requirement is modeled with a corresponding use case, thus
we have identified the following seven use cases (see Fig. 7.3):

• FR1—employee data synchronization,
• FR1.1—obtaining configuration information,
• FR1.2—obtaining data from source database,
• FR1.3—obtaining data from import files,

Figure 7.3 Use cases identified in enterprise data synchronization system case study.
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• FR1.4—logging faulty import file,
• FR1.5—importing data in target database, and
• FR1.6—logging import status.

The next step is to map functional features onto use cases according
to mappings between functional features and functional requirements
by expert. The expert finds an input and an output functional feature
for each use case—all functional features that correspond to particular
use case should be in one chain.

In the context of case study, the following mappings exist between
use cases and functional features:

• Employee data synchronization—this use case includes requirements
FR1.1�FR1.7,

• Obtaining configuration information—includes functional features
{2, 3, 4},

• Obtaining data from source database—{6, 7, 8, 9},
• Obtaining data from import files—{11, 13, 14, 15, 16, 17},
• Logging faulty import file—{18, 19, 20},
• Importing data in target database—{10, 27, 22, 23, 25}, and
• Logging import status—{28, 29, 30, 31, 32}.

When functional features have been mapped onto use cases, the iden-
tification of actors is performed. Since actors in use case diagram show
interaction between system and external systems or entities [78], they are
obtained from topological space. The actors are entities from functional
features and the set of actors are identified by Eq. (7.1), where E is a set
of functional features defining external entities, X is a set of functional
features belonging to TFM, and N is a set of inner functional features:

E5X\N (7.1)

In the context of enterprise data synchronization system develop-
ment case study, within Chapter 6, Problem Domain Functioning
Analysis, we have developed TFM which consists of the following 26
functional features:

X5 f2; 3; 4; 6; 7; 8; 9; 10; 11; 13; 14; 15; 16; 17; 18; 19; 20;
22; 23; 25; 27; 28; 29; 30; 31; 32g:

All the inner functional features belonging to this TFM is as follows:

N5 f3; 4; 7; 8; 9; 10; 11; 14; 15; 16; 17; 18; 19; 22; 27; 28; 29; 30; 31g:
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By applying Eq. (7.1) we get the following set of functional features
defining entities as actors for collaboration between the system and
other parties (Table 7.1 shows entities for each functional feature
belonging to set E):

E5 f2; 6; 13; 20; 23; 25; 32g:

In total within case study we have identified the following four
actors (see Fig. 7.4):

• Data import manager,
• Source database,
• Import file, and
• Target database.

Table 7.1 Entities for Functional Features Included in Set E
Functional Feature Id Entity E Subordination S

2 Data import manager External

6 Source database External

13 Import file External

20 Data import manager External

23 Target database External

25 Target database External

32 Data import manager External

Figure 7.4 Actors identified from TFM.
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The cause-and-effect relationship between one functional feature
belonging to set E and the other to set N defines topological relationship
between use case and actor. For a better understanding take a look at
Fig. 7.5, where topological relationship is added between use case log-
ging import status and actor data import manager.

The final action is to establish relationships between use cases
according to mappings between functional features and them.
According to these mappings «include» and «extend» relationships are
automatically established between use cases by analyzing logical rela-
tions Lout between topological relationships. Logical relations should
be analyzed for the first predecessor functional feature (which has two
or more descendants, but within the scope of predecessor use case) of
the use case’s input functional features:

• The «include» relationship is added in two cases:
1. No branching for the predecessor functional features and
2. Logical relation Lout with type and.

Figure 7.5 Adding topological relationship between use case and actor.
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• The «extend» relationship is denoted by presence of logical relation
Lout with type or and xor on the topological relationships outgoing
from functional feature.

The designed topological use case diagram is supplemented with the
information of subsystems. The scope of subsystems is determined by
analyzing functional cycles within TFM—subsystems are extracted
from TFM by applying closuring operation on the set of functional
features belonging to a particular functioning cycle.

According to the mappings between functional features and require-
ments and logical relations in TFM the «include» and «extend» relation-
ships are automatically established between use cases. Since actors in use
case diagram show interaction between system and external systems or
entities, they are obtained from topological space—actors are entities (E)
from functional features and the set of actors are identified by Eq. (7.1).
Topological relation between one functional feature belonging to set E
and the other to set X defines relation between use case and actor since
all use cases are mapped to functional features. The developed topological
use case diagram is given in Fig. 7.6.

Figure 7.6 Topological use case diagram of enterprise data synchronization system.
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As a result of use case analysis activity, we have developed topolog-
ical use case diagram showing use cases, actors, relationships between
them, and subsystems.

7.3 MESSAGES AND THEIR SEQUENCE ANALYSIS

Messaging and their sequence analysis consist of three actions (see
Fig. 7.7) in which one sequence diagram is developed for each use case:

1. Setting scope of sequence diagram—one sequence diagram is created
for each use case, thus through the mappings between use cases
and TFM, the sequence diagram formally gets all the necessary
information.

2. Adding lifelines—through the mappings between use case and
TFM, the lifelines are added as entities from functional features.

3. Establishing messages between objects and their sequence—cause-
and-effect relationships between functional features within TFM set
the messaging between objects, while logical relations set the
required interaction operator.

Use cases, TFM, and mappings between functional features and
functional requirements are used to develop sequence diagrams. The
scope of each sequence diagram is set by the scope of corresponding use

Figure 7.7 Messages and their sequence analysis process.
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case (i.e., the sequence diagram contains the description of the same
functionality that is included in the corresponding use case). Actors are
added to sequence diagrams directly from the corresponding use case.
The TFM and mappings allow establishing objects with lifelines
(merged functional features), messages they send each other (cause-
and-effect relationships). If one use case has included another use case
(e.g., A includes B), then the sequence diagram for use case A should
include interaction use (ref) for the sequence diagram of use case B.

Messages between objects and their sequence are established by
transforming part of TFM according to the scope of the corresponding
use case. During TFM transformation all vertices with the same type
of objects should be merged. While merging these vertices all topologi-
cal relations between them are kept. The cause-and-effect relations
from TFM serve as message sending between objects. The interaction
operators are added by taking into consideration logical relations Lout:

• alt—added for logical relations Lout with type or and xor,
• opt—added for logical relations Lout with type or, and
• par—added for logical relations Lout with type and.

In the case of adding interaction operators alt and opt their guards
are set as the preconditions of the corresponding effect functional
feature. To better understand the TFM transformation into sequence
diagram, take a look at Fig. 7.8, where on the left side is given

Figure 7.8 Mappings between elements of TFM and sequence diagram.
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fragment of TFM and on the right side fragment of sequence diagram
(the dashed arrows from TFM to sequence diagram show correspond-
ing elements of TFM in the sequence diagram).

Since in enterprise data synchronization system development
case study use cases are used to model requirements, the use cases
define the number and the scope of sequence diagrams. The scope of
sequence diagrams defines a set of functional features that are
included in each use case. A total set of seven sequence diagrams is
created. Sequence diagram for use case importing data in target data-
base (which reflects functional requirement FR1.5) is given in
Fig. 7.9.

As FR1.5 mappings also include functional requirement FR1.6, the
corresponding sequence diagram contains ref interaction use to
sequence diagram logging import status. The mappings between

Figure 7.9 Sequence diagram importing data in target database.
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functional requirements FR1.5, FR1.6, and functional features are as
follows:

• FR1.5—importing data in target data base—{10, 27, 22, 23, 25,
FR1.6} and

• FR1.6—logging import status—{28, 29, 30, 31, 32}.

Description of the functional features mapped for functional
requirements FR1.5 and FR1.6 is given in Table 7.2.

As a result of messages and their sequence analysis activity we have
developed sequence diagram for each use case showing the lifelines
and message sending between them.

7.4 WORKFLOWS ANALYSIS

Analysis and design of workflows consist of three actions (see Fig. 7.10)
in which one activity diagram is developed for each use case:

1. Setting scope of activity diagram—one activity diagram is created for
each use case, thus through the mappings between use cases and TFM,
the activity diagram formally gets all the necessary information.

Table 7.2 Part of Functional Features Defined for Enterprise Data Synchronization
System
Id Object Action (A) Precondition (PreCond)

10 Importing every row from internal table into target database

22 Checking if data from a particular row already exists in
target database

23 Updating existing data in target database If data from the particular row exist

25 Insert new data in target database If data from the particular row do
not exist

27 Creating log file in log files folder for import file processing If data are read from import file

28 Logging data row from temporal internal table

29 Logging successful status If import is successful for particular
row

30 Logging error status If import is not successful for
particular row

31 Logging error description If error is logged

32 Archiving log file If data import is completed
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2. Adding actions—actions are added by transforming functional fea-
tures from corresponding part of TFM into actions.

3. Establishing control flow and logic—cause-and-effect relationships
between functional features within TFM are added as edges
between actions thus establishing the control flow while logical
relations between cause-and-effect relationships define the logic of
control flow (i.e., decision, merge, fork, and join).

Workflows within system are analyzed and designed by using the
activity diagram. Use cases, TFM, and mappings between functional
features and functional requirements are used to develop activity
diagrams. Scope of each activity diagram is set by the scope of corre-
sponding use case (i.e., the activity diagram contains the description of
the same functionality that is included into corresponding use case).
The TFM and mappings allow establishing actions and the control flow
between actions—functional features are transformed into action nodes
and topological relationships into activity edges. The logic of control
flow (i.e., decision, merge, fork, and join) is defined in accordance with
the logical relations Lout within TFM as shown in the activity diagram
pattern in Table 7.3.

Figure 7.10 Workflows analysis process.
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An example showing TFM to activity diagram transformation is
given in Fig. 7.11, where on the upper side is given fragment of TFM
and on the lower side corresponding fragment of activity diagram (the
dashed arrows from TFM to activity diagram shows corresponding
elements of TFM in the activity diagram).

Since in enterprise data synchronization system development case study
use cases are used to model requirements, the use cases define the number
and the scope of activity diagrams. The scope of activity diagrams defines
a set of functional features that are included in each use case. A total set
of seven activity diagrams is created. Activity diagram for use case import-
ing data in target database (which reflects functional requirement FR1.5)
is given in Fig. 7.12. As FR1.5 mappings also include functional require-
ment FR1.6, the corresponding activity diagram contains ref interaction
use to activity diagram logging import status. Mappings between func-
tional requirements and functional features together with description of
those functional features are given in Section 7.3.

Table 7.3 Rules for Identification of Logical Relations Lout and Patterns for
Transforming TFM Into Activity Diagram
Rt Xe Cid Example of Lout Pattern of Activity Diagram

and Xe1 Ø

Xe2 Ø

or Xe1 C1 C16¼C2 &
C16¼C2Xe2 C2

xor Xe1 C1 C25C1

Xe2 C2
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Figure 7.11 Example of TFM to activity diagram transformation.

Figure 7.12 Activity diagram representing workflow of use case importing data in target database and corre-
sponding part of TFM.
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As a result of workflows analysis activity, we have developed activ-
ity diagram for each use case showing the actions, edges between
action, control flow, and the logic of control flow.

7.5 WORKFLOWS AND MESSAGING ANALYSIS

To tie together workflows and messaging, interaction overview diagrams
are used. To develop interaction overview diagram, the activity diagrams

Figure 7.13 Example of interaction overview diagram.
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(representing the workflow of use case) and sequence diagrams (showing
the objects and messages they send each other) are merged together.

The workflow and messaging design together is represented with
interaction overview diagram which define interactions through a vari-
ant of activity diagram in a way that promotes overview of the control
flow. Interaction overview diagram focuses on the overview of the
flow of control where the nodes are of type interaction or interaction
use. The lifelines and the messages do not appear at this overview
level [78].

The interaction overview diagrams are developed by merging
created activity diagrams and sequence diagrams. While the first one
gives the information about control flow, the latter shows objects and
messaging between them. The obtained diagram can be helpful in order
to better understand the overall process of system and the control flow
relations between sequence diagrams. An example of interaction over-
view diagram is given in Fig. 7.13.

As a result of workflows and messaging analysis activity we have
developed interaction overview diagrams.

7.6 SUMMARY

Behavior analysis and design is the next activity within Topological
UML modeling following the first activity—problem domain function-
ing analysis. During behavior analysis and design a set of behavioral
diagrams is developed for the system under consideration based on the
previously developed artifacts—TFM and mappings between func-
tional requirements to functional features. The behavioral diagrams
are developed by transforming previously created artifacts thus assur-
ing that the analysis and design is going in accordance with the
required functioning. By basing behavior analysis on TFM, we are
identifying and designing subsystems, use cases, actors, and relation-
ships between them (topological use case diagram), messages and their
sequence (sequence diagram), and workflows (activity and interaction
overview diagram). Behavior analysis and design consists of the follow-
ing four activities:

1. Use case analysis—it is based on refined functional requirements,
refined TFM, and mappings between functional features and
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functional requirements. As a result of this activity we get topologi-
cal use case diagram showing use cases, actors, relationships
between them, and subsystems.

2. Messages and their sequence analysis—the sequence diagram is
developed by taking all the required information from topological
use case diagram and TFM. As a result of messages and their
sequence analysis we get sequence diagram for each use case show-
ing the objects and message sending between them.

3. Workflows analysis—each activity diagram gets developed in accor-
dance with use cases, TFM, and mappings between functional
requirements and functional features. As a result of this activity we
get activity diagram for each use case representing its workflow.

4. Workflows and messaging analysis—this activity is used to formally
develop interaction overview diagrams which basically merge
together activity and sequence diagrams.
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CHAPTER 88
Structure Analysis and Design

INFORMATION IN THIS CHAPTER:

• Consuming Topological Functioning Model (TFM) for formal
structure analysis and design

• TFM transformation into structure diagrams
• Formal development of classes and their relationships

8.1 INTRODUCTION

Structure analysis and design is an activity within Topological UML
modeling process. This activity is based on the results obtained within
the very first Topological UML modeling activity—problem domain
functioning analysis in which Topological Functioning Model (TFM)
is developed for the system under consideration. The TFM holistically
represents the functioning of the problem and solution domains. As a
holistic model, TFM includes necessary information to develop dia-
grams reflecting structure of the solution domain. Structure analysis
and design consists of the following activities:

1. Analysis of objects structure and communication—it is based on the
TFM transformation into communication diagram. When trans-
forming TFM into communication diagram the following TFM ele-
ments are used: functional features (source for lifeline identification
and message sending from object to object), cause-and-effect rela-
tionships (from which lifeline to which lifeline the message is sent
and the message sending sequence), and logical relations (message
sending concurrency).

2. Domain model development—domain model is represented by using
topological class diagram which is developed by transforming com-
munication diagram. It is used for adding classes and operations
to the topological class diagram, where lifelines are transformed
into classes while messages into operations. After the classes and
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topological relationships between them have been established, the
attributes are added to the classes taking the necessary information
from corresponding functional feature.

3. Modeling snapshots of the system—object diagram serves to take a
look at a complete or partial view of the structure of a modeled
system at a specific time moment. It can be used instead of a topo-
logical class diagram in situations that involve more than one object
of the same class acting in different roles or to provide examples of
a system at a specific time.

The process of structure analysis and design is given in Fig. 8.1,
while each of the activities is described in the further sections of this
chapter (each section describes one activity). Additional section is
designated for initial topological class diagram refinement.

The main goal of structure analysis and design is to develop a topo-
logical class diagram which contains classes together with their attributes
and responsibilities. To identify classes and assign the right responsibility

Figure 8.1 Structure analysis and design process.
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to each one of them a TFM is used. This chapter shows the transforma-
tion of TFM into communication diagram and communication diagram
into topological class diagram (together with refinement of it).

8.2 ANALYSIS OF OBJECTS AND THEIR COMMUNICATION

Analysis of objects and their communication is based on the TFM
transformation into communication diagram. When transforming TFM
into communication diagram the following TFM elements are used:

• Functional features—source for lifeline identification and message
sending from object to object;

• Cause-and-effect relationships—from which lifeline to which lifeline
the message is sent and the message sending sequence; and

• Logical relations—message sending concurrency.

The development process of communication diagram is given in
Fig. 8.2.

To develop communication diagram, a TFM of the system is used.
The TFM is constructed during the very first Topological UML model-
ing activity—problem domain functioning analysis (see Chapter 6,
Problem Domain Functioning Analysis). In order to obtain a communi-
cation diagram, it is necessary to check if each functional feature of the
TFM reflects only one type of object. If some functional feature reflects
more than one type of object, then it is needed to decompose it to the
level where one functional feature uses only one type of objects. If TFM
has been successfully checked it can be transformed into communication
diagram.

The first step in transformation is to merge functional features with
objects of the same type in one lifeline (the lifeline represents the class
(Cl) attribute of the functional feature). While merging functional fea-
tures into lifelines the relationships with other lifelines should be retained
(if there is more than one topological relationship, then only one link is
added between lifelines). The count of topological relationships between
merged functional features denotes the count of messages sent between
lifelines represented by those functional features. Messages can be
obtained from functional features because one functional feature repre-
sents one atomic business action. The message that is sent to a lifeline is
an operation (Op) attribute of the functional feature (e.g., if functional
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feature B is descendant of functional feature A, then in communication
diagram the lifeline representing A sends a message to lifeline represent-
ing B and this message is the value of operation (Op) attribute of B).
Actors to communication diagram are added from the input functional
features—value of the entity (E) attribute is used.

For a better understanding of TFM to communication diagram
transformation, a small fragment of TFM consisting of two functional
features A and B is used, where A is an input functional feature of
TFM. An example showing TFM to communication diagram transfor-
mation is given in Fig. 8.3, where:

• On the upper side is given fragment of TFM consisting of two
functional features A and B linked together with cause-and-effect
relationship pointing from functional feature A to functional
feature B and

Figure 8.2 Development of communication diagram.
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• On the lower side is given fragment of communication diagram (the
dashed arrows from TFM to communication diagram show corre-
sponding elements of TFM in the communication diagram).

The developed communication diagram representing data synchro-
nization with source data base in the context of enterprise data syn-
chronization system development case study is given in Fig. 8.4, while
Table 8.1 contains all the functional features of developed TFM where
column Id contains identifier of functional feature, Lifeline shows
values of functional features’ class (Cl) element, and Message shows
operation (Op) element. Elements defining functional feature’s tuple
are given in Eq. (4.4).

Figure 8.4 Communication diagram representing data synchronization with source database.

Figure 8.3 Example of TFM to communication diagram transformation.
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As a result of this activity the partial domain model in the form of
communication diagram is created.

8.3 DOMAIN MODEL DEVELOPMENT

Domain model development is based on topological class diagram
development. The topological class diagram is developed by transform-
ing communication diagram and adding additional information from
corresponding TFM thus ensuring that the classes, their responsibili-
ties, and relationships are added in strong conformance with the

Table 8.1 Functional Features’ Specification for Communication Diagram
Id Lifeline Message

2 Configuration CreateConfiguration

3 Configuration Read

4 Configuration IsImportFromDBNeeded

6 SourceDataSource CreateData

7 SourceDataSource ReadDataFromDB

8 Scheduler CheckDBDataStructure

9 Scheduler ConvertDBDataToInternal

10 Scheduler ImportIntoTargetDB

11 ImportFolder CheckImportFolder

13 ImportFile CreateImportFile

14 ImportFile ReadImportFile

15 Scheduler CheckImportFileStructure

16 Scheduler ConvertImportFileDataToInternal

17 Scheduler SkipImportFile

18 ImportFile MoveImportFile

19 Logger CreateLog

20 Logger WriteLogEntry

22 TargetDataSource CheckIfDataExists

23 TargetDataSource UpdateData

25 TargetDataSource InsertData

27 Logger CreateLog

28 Logger WriteLogEntry

29 Logger WriteLogEntry

30 Logger WriteLogEntry

31 Logger WriteLogEntry

32 Logger ArchiveLog
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required functionality and domain functioning. Domain model
development by means of topological class diagram consists of four
activities (see Fig. 8.5):

1. Adding classes and operations—lifelines from communication dia-
gram are transformed into classes and messages into operations.

2. Adding topological relationships between classes—links from com-
munication diagram are transformed into topological relationships
while the direction of message sending defines the direction of
topological relationship.

3. Identifying attributes—it is achieved by taking into consideration
attributes of the object represented by functional feature in TFM.

4. Refining initial topological class diagram—it is aimed to lower
abstraction level of topological class diagram by adding additional
information, including relationships between classes. By lowering
abstraction level, the diagram gets additional information which is
needed during the software development and later also during its
maintenance (this activity is covered in next section).

Figure 8.5 Development of topological class diagram.
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At first the communication diagram is used for adding classes and
operations to the topological class diagram—lifelines are transformed
into classes and messages into operations. The next step is adding topo-
logical relationships between classes. Since the notation of topological
class diagram allows variations of topological relationship graphical
representation, it is advised to draw only one directed arrow in the
same direction between classes (the arrow will show the cause and the
effect operations). The example of communication diagram to topolog-
ical class diagram transformation is given in Fig. 8.6, where on the
left side is given fragment of communication diagram and on the right
side fragment of topological class diagram.

After the classes and topological relationships between them have
been established the next step is identification of attributes. This can be
achieved by taking into consideration attributes of the object repre-
sented by functional feature. If the functional feature is well specified,
the class attribute of it is determined. If the class attribute is not deter-
mined, it can be specified in several ways (e.g., by analyzing function-
ing description of the system and searching nouns that represent
attributes of the object [26], performing expert interviews [104], or by
using ontology [125]).

Figure 8.6 Example of communication to topological class diagram transformation.
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Figure 8.7 Initial topological class diagram of enterprise data synchronization system.
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By transforming communication diagram an initial topological class
diagram is obtained (with attributes, operations, and topological rela-
tions between classes). A topological relation shows the control flow
within the system. If static relations should be included (such as asso-
ciations, generalization, etc.), then initial topological class diagram
should be refined. The refinement process of initial topological class
diagram is described in the next section.

The developed topological class diagram in the context of enterprise
data synchronization system development case study is given in Fig. 8.7.
With bolder lines in developed topological class diagram is maintained
the main functional cycle which is defined within the previously con-
structed TFM in Chapter 6, Problem Domain Functioning Analysis. In
enterprise data synchronization system case study the main functioning
cycle represents getting data from source data base and import files and
editing those data in target database. By interrupting this main cycle the
system can no longer function or it functions faulty [86]. Thus, the visu-
alization with bolder lines for topological relationships and classes
clearly shows the classes and relationships which have the main respon-
sibility assigned to them. This reflects the idea that the holistic domain
representation by the means of TFM enables identification of all neces-
sary domain concepts and, even, enables to define their necessity for
a successful implementation of the system. The responsibilities of
classes are assigned as operations; thus, by using TFM in software
development the classes are identified and responsibilities are assigned
directly from the problem domain.

Topological class diagram given in Fig. 8.7 can be considered as
initial because it contains classes and topological relations between
them and it is at high abstraction level. By reviewing and refining
initial class diagram associations, generalizations, dependencies, and
other relationships defined in UML are added. In this way the abstrac-
tion level of diagram is lowered and structural relations between clas-
ses are added. The refinement of initial topological class diagram is
covered within the case study explored in the next section.

8.4 REFINEMENT OF TOPOLOGICAL CLASS DIAGRAM

The refinement of topological class diagrams is aimed to lower abstrac-
tion level of it. By lowering abstraction level, the diagram gets addi-
tional information which is needed during the software development
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and later also during its maintenance. The refinement process consists
of six actions [28] (see Fig. 8.8):

1. Identifying generalizations—to find a generalization you need to
look for the same responsibilities, topological relationships, attri-
butes, and operations that are common to two or more classes. The
set of common responsibilities, topological relationships, attributes,
and operations can be elevated to a more general class.

2. Identifying structural relationships between classes—the identifica-
tion of physical relationships between entities involved in the system
consists of three steps—at first aggregations are added, then
followed by compositions, and finally associations are added.

3. Defining interfaces—interfaces are identified by the operations and
the signals that cross the boundary of the system under consideration.

Figure 8.8 Refinement process of topological class diagram.
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These operations and signals can be found by analyzing both the
TFM and the topological space of the system (the TFM shows the
functioning of the system, while topological space shows the system
within the surrounding environment). This analysis shows the inputs
(provided interfaces) and outputs (required interfaces) of the system.

4. Identifying enumerations—by reviewing initial topological classes of
the system under consideration enumeration candidates can be found,
e.g., attributes which can contain only a restricted set of values can
be transformed into enumeration containing set of these restricted
values.

5. Checking for additional relationships—it includes identification of
dependencies and realizations.

6. Revising topological class structure.

The actions of refinement process are described in detail in the sub-
sequent subsections. As a result of applying refinement process, a rich
topological class diagram with lower abstraction level is obtained.

8.4.1 Identifying Generalizations
A generalization is a relationship between a general kind of thing
(called the generalized class or parent) and a more specific kind of
thing (called the specialization class or child). Generalization some-
times is called an is-a-kind-of relationship. If child class has one parent
class, then it is single inheritance. If child class has two or more parent
classes, then it is multiple inheritance.

The generalizations can be identified in two ways. The first way is
to review initial topological classes which are obtained from the com-
munication diagram and TFM. To find a generalization you need to
look for the same responsibilities, topological relationships, attributes,
and operations that are common to two or more classes. The set
of common responsibilities, topological relationships, attributes, and
operations can be elevated to a more general class. If this general class
does not exist it should be created. Since topological relationships
define control flow within system, by introducing general classes and
generalization relationships it is possible that the more general class is
placed at the end of topological relationship and the more specific class
is placed at the beginning of topological relationship (see Fig. 8.9). In
order to help identifying generalizations, during the review process of
initial topological classes, an additional attention can be paid on
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anywhere where the initial topological classes indicate that there is
more than one kind of thing (e.g., two kinds of documents—invoice
and receipt (see Fig. 8.9b)). This indicates a possible generalization.

The second way is by doing additional interviews with stakeholders.
During interviews the interviewees are asked if any of the classes are
variations on others [104]. By applying both ways in generalization
identification a more formal (by reviewing initial topological classes)
and less formal (by making interviews) approaches are used. The
reviewing process is more formal because it is based on sets of already
existing information. Reviewing and introduction of generalization
relationships (together with parent classes) can be automated. By using
together reviewing and interviewing an additional model checking gets
performed.

8.4.2 Identifying Structural Relationships Between Classes
The identification of physical relationships between entities involved
in the system consists of three steps. At first it is needed to check and
find the whole and part relationships—aggregations and compositions.

Aggregation is a has a relationship meaning that an object of the
whole has objects of the part [37]. If objects are related with an aggre-
gation, then by destroying the object of the whole, the objects of the

Figure 8.9 Initial topological classes and generalized topological classes.
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part is not destroyed. Aggregation is a special kind of association.
According to guidelines given in [104], aggregation can be placed
between objects if a part object can belong to more than one whole
object and the part continues to exist when the whole is destroyed.
Words that suggest aggregation include collection, list, and group.

Composition is a form of aggregation, with strong ownership and
coincident lifetime as part of the whole. Parts with nonfixed multiplic-
ity may be created after the composite itself, but once created they live
and die with it. This means that, in a composite aggregation, an object
may be a part of only one composite at a time and by destroying
whole, the parts are destroyed with it [37]. According to guidelines
given in [104], composition can be placed between objects if a part is
totally owned by the whole and the part ceases to exist when the whole
is destroyed. Words that suggest composition include composed of and
component.

After identification of aggregations and compositions, the next step
is identification of associations between classes. An association is a struc-
tural relationship that specifies that objects of one thing are connected
to objects of another. Given an association connecting two classes, it is
possible to relate objects of one class to objects of the other class [77].
According to guidelines given in [15], associations can be placed
between objects if it is needed to navigate from objects of one type to
objects of another. This is a data-driven view of associations.

8.4.3 Defining Interfaces
An interface is a collection of operations that are used to specify a
service of a class or a component. Graphically, an interface may be
rendered as a stereotyped class in order to expose its operations and
other properties. Interfaces may also be used to specify a contract for a
use case or subsystem [77].

A line around the topological class diagram which is obtained by
applying transformations on the TFM can be drawn, thus showing the
boundary of the system under consideration. The next step is to iden-
tify the operations and the signals that cross this boundary. These
operations and signals can be found by analyzing both the TFM and
the topological space of the system (the TFM shows the functioning
of the system, but topological space shows the system within the
surrounding environment). This analysis shows the inputs and outputs

218 Topological UML Modeling



of the system. The input functional features within TFM indicate the
provided interfaces, but the output functional features indicate the
required interfaces. Required (imported) interfaces are modeled by
using dependency relationships, and provided (exported) interfaces are
modeled by using realization relationships. An example of showing
analysis of TFM and topological space and the resulting interfaces is
given in Fig. 8.10, where in the middle is given fragment of TFM and
on the sides fragment of topological class diagram (the dashed arrows
from TFM to topological class diagram show corresponding elements
of TFM in the topological class diagram).

By using the guidelines given in “The Unified Modeling Language
User Guide” [15] it is possible to model interfaces within the system as
seams between different parts of the system.

8.4.4 Identifying Enumerations
An enumeration is a data type whose values are enumerated in the
model as enumeration literals. Enumeration is a kind of data type,
whose instances may be any of a number of user-defined enumeration
literals. An enumeration may be shown using the classifier notation (a
rectangle) with the keyword «enumeration».

Figure 8.10 Fragment of topological space and examples of provided and required interfaces.
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The enumeration within a system can be found in two ways. The
first way is to review initial topological classes which are obtained from
the TFM of the system under consideration. To find enumerations at
first you need to look for attributes which can contain only a restricted
set of values. In the context of the laundry system, an example of the
restricted set of values is the requested washing type. The second thing
is to search for objects which can change its state value during its life-
time. In the context of the laundry system, an example of such object is
washing request. The washing request can have different states, e.g.,
new, registered, in washing, completed, paid. The second way is by doing
additional interviews with stakeholders. During the interviews the inter-
viewees are asked if any of the attributes has only limited list of allowed
values or if there exist states of things involved into system. If such lists
of values or states exist, then enumerations should be defined for each
such list. An example of identified enumerations is given in Fig. 8.11.

8.4.5 Checking for Additional Relationships
The checking of additional relationships includes identification of
dependencies and realizations.

A dependency is a relationship that states that one thing uses the infor-
mation and services of another thing, but not necessarily the reverse.
Dependency relationship should be used to show that one thing is using
another. Most often dependencies between classes are used to show that
one class uses operations from another class or it uses variables or argu-
ments typed by the other class. Dependencies alsomost often show required
interfaces of a class. Dependencies do not model structural relationships.

Realization is a semantic relationship between classifiers in which one
classifier specifies a contract that another classifier guarantees to carry
out.

Figure 8.11 Example of identified enumeration for linen registration form.
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8.4.6 Revising Topological Class Structure
The final step in topological class diagram refinement is the revising of
topological class structure. The revising of topological class structure
should be done using following guidelines (revising guidelines for gen-
eralizations are based on guidelines given in “UML for the IT Business
Analyst” [104]):

1. Any classes that have the same topological relationships or associa-
tions to other classes should be identified. If such classes exist, a
decision of adding additional generalized class should be made. If
generalized class is added, then common topological relationships
and associations should be moved to it.

2. Any classes that have the same attributes or operations as other
classes should be identified. If such classes exist, a decision of add-
ing additional generalized class that will contain common attributes
and operations should be made.

3. Every generalized class in the topological class diagram should be
justified. The point of introducing a generalized class is to provide a
convenient, single place to put rules that affect a number of special-
ized classes. There should be at least one attribute, operation, or
relationship that can be ascribed to the generalized class.

4. As a final revising step of generalized classes is that each generalized
class should have at least two specializations, with two exceptions:
a. The generalized class is concrete and
b. It is anticipated that more specializations will be added in the

future.
5. Since the system is connected with the environment (through

inputs and outputs), at least one provided and one required inter-
face should be identified. Revising of interfaces should follow
these rules:
a. The count of operations defined within provided interfaces should

be the same as count of input functional features within TFM.
b. The count of operations defined within required interfaces

should be the same as count of output functional features within
TFM.

After the revising process has been finished, the initial topological
class diagram is refined and the abstraction level of it has been
lowered. Mainly the abstraction level should be lowered in order to
introduce generalized classes, structural relationships, and interfaces.
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The refined topological class diagram of enterprise data synchroni-
zation system is given in Fig. 8.12, where with bolder topological rela-
tionships is denoted main functioning cycle and during refinement
process have been added the following artifacts:

Figure 8.12 Refined topological class diagram of enterprise data synchronization system.
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• Generalizations—an abstract generalized class DataStructure speciali-
zations of which are classes SourceDataSource and TargetDataSource;

• Structural relationships—associations between multiple classes,
e.g., Scheduler and SourceDataSource;

• Interfaces—both provided (IConfiguration, ISourceDataSource, and
IImportFile) and required (ILogger and ITargetDataSource);

• Enumerations—an enumerator ImportStatus which lists all the
statuses of import result;

• Dependencies and realizations—in addition to dependency and
realization relationships used to relate classes with interfaces and
enumerations an additional dependency was identified between
classes Configuration and ImportFolder.

8.5 MODELING SYSTEM SNAPSHOTS

To model a snapshot of a system, its structure representing view is
required—it can be either communication diagram or topological class
diagram. Since object diagram shows a complete or partial view of the
structure of a modeled system at a specific time moment [78] it can be
used instead of a topological class diagram in situations that involve
more than one object of the same class acting in different roles [104] or
to provide examples of a system at a specific time. An object diagram
focuses on particular set of object instances and attributes, and the
links between the instances. A set of object diagrams provides insight
into how a view of system is expected to evolve over time. Only those
aspects of a model that are of current interest need to be shown on an
object diagram. When topological class diagram is transformed into a
set of object diagrams, the classes become instance specifications, and
associations—links. As a result of modeling system snapshots activity,
a set of object diagrams is created describing the objects details of the
domain model.

8.6 SUMMARY

Structure analysis and design is an activity within Topological UML
modeling process. This activity is based on the results obtained within
the very first Topological UML modeling activity—problem domain
functioning analysis in which TFM is developed for the system under
consideration. The TFM holistically represents the functioning of the
problem and solution domains. As a holistic model, TFM includes
necessary information to develop diagrams reflecting structure of the
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solution domain. Topological UML modeling models structure by
means of the topological class diagram. To design a structure reflecting
diagrams, the following activities are performed:

• Analysis of objects structure and communication—initially TFM is
transformed into communication diagram showing objects and mes-
sages they send each other.

• Domain model development—afterward the communication diagram
is further transformed into topological class diagram. The opera-
tions are obtained during TFM transformation to communication
diagram and the attributes are added from TFM while transforming
communication diagram into topological class diagram. The respon-
sibilities of classes are assigned as operations; thus, by using TFM
in software development the classes are identified and responsibili-
ties are assigned directly from the problem domain.

• Modeling snapshots of the system—object diagram serves to take a
look at a complete or partial view of the structure of a modeled sys-
tem at a specific time moment. It can be used instead of a topologi-
cal class diagram in situations that involve more than one object of
the same class acting in different roles or to provide examples of a
system at a specific time.

224 Topological UML Modeling



CHAPTER 99
Object State Change and Transition Analysis

INFORMATION IN THIS CHAPTER:

• Consuming Topological Functioning Model (TFM) for formal
object state change and transition analysis

• TFM transformation into state diagrams

9.1 INTRODUCTION

Object state change and transition analysis is an activity within
Topological UML modeling process following structure analysis and
design activity. It is based on the state diagram development. Object
state change and transition analysis consists of one activity—analyzing
object state changes and transitions (see Fig. 9.1). Initially we need to
scale down Topological Functioning Model (TFM). States for each
class are obtained from the functional features of TFM (functional fea-
ture has an attribute that defines the new state of the object). State
transitions are obtained by transforming cause-and-effect relationship
between functional features. The special states (initial state and final
state) are added to the obtained state diagram as inputs and outputs
of TFM.

To perform object state change and transition analysis, the refined
TFM and classes (either from topological class diagram or lifelines from
communication diagram) are used as a source information for state dia-
gram. Development of TFM is described in Chapter 6, Problem
Domain Functioning Analysis, while structure analysis in which classes
are developed—in Chapter 8, Structure Analysis and Design. As a result
of object state change and transition analysis is one state diagram for
each class. It is advised to analyze state changes of complex or most
important objects in the system. The most important objects are those
that are participating in the main functioning cycle of the system.
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9.2 OBJECT STATE CHANGE AND TRANSITION ANALYSIS

Object state change and transition analysis is based on the TFM trans-
formation into a set of state diagrams. The input of this activity is refined
TFM and classes (either from topological class diagram or lifelines from
communication diagram) and the output of this activity is one state dia-
gram for each class. Each functional feature specifies an object perform-
ing certain action. The count of obtained state diagrams is denoted by
count of distinct objects specified by functional features. It is advised to
analyze state changes of complex or most important objects in the system
as outlined by Podeswa in “UML for the IT Business Analyst” [104]. The
most important objects are denoted by TFM—the functional features
that are included into main functional cycle denote them, thus the identi-
fication of most important objects is done in a formal way.

The first action is to scale down TFM which is performed by
removing functional features which does not represent the object under
consideration but in the same time retaining cause-and-effect relations.
For example, assume that TFM consists of three functional features
A, B, and C and are in the following causal chain: A-B-C. The A
and C represent the same object while B represents another object. The
resulting (scaled down) TFM is as follows: A-C.

Figure 9.1 Analyzing object state changes and transitions.
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States for each class are obtained from the functional features of
refined TFM (functional feature has an attribute named newState as
shown in Section 4.3.1). If the execution of functional feature involves
the change of the corresponding object’s state, then the attribute
newState has value, otherwise the value is not set. State transitions are
obtained by transforming cause-and-effect relationship between func-
tional features [27].

The special states (initial state and final state) are added to the
obtained state diagram as follows:

• The initial state is added before the states that are obtained from the
functional features which are the inputs of the downscaled TFM,

Table 9.1 Mappings Between Elements of TFM and State Diagram
No. TFM Element State

Diagram

Element

Description

1. Object state from
functional feature

State If execution of functional feature’s action changes the
state of object performing this action, it specifies the
new state of the object.

2. Object state from
functional feature

Initial state When information from input feature is transformed
into a state, an initial state is added before this state.

3. Object state from
functional feature

Final state When information from output feature is transformed
into a state, a final state is added after this state.

4. Cause-and-effect
relationship

Transition If execution of functional feature’s action changes the
state of object performing this action, then
corresponding cause-and-effect relationship defines
transition from previous state to the new state.

5. Operation from
functional feature

Event Each functional feature specifies an atomic business
action which later is specified by topological operation
in TFM. If functional feature specifies the new state of
object, the operation is transformed into the event
triggering transition from one state to another.

6. Operation from
functional feature

Entry
effect

If current functional feature specifies the new state of
object, the operation is transformed into the entry effect
of this new state.

7. Operation from
functional feature

Exit effect If descendant functional feature specifies the new state
of object, the operation of this descendant functional
feature is transformed into the exit effect of current
state.

8. Preconditions from
functional feature

Guard
condition

If current functional feature specifies the new state of
object, the preconditions of this functional feature are
transformed into the guard conditions.

9. Logical relationship with
type and (and partially
or)

Fork and
join

A logical relation in TFM gives additional information
about execution concurrency of functional features, thus
conjunction (and) within state diagram is represented
with fork and corresponding join. Disjunction (or)
indicates possible fork and join.
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i.e., the ones which has no predecessors, or at the smallest distance
to the input functional features of full TFM.

• The final state is added after the states that are obtained from the
functional features which are the outputs of the downscaled TFM,
i.e., the ones which has no descendants, or at the smallest distance
to the output functional features of full TFM.

Mappings between elements of TFM and state diagram are
described in Table 9.1 giving corresponding elements of TFM and
state diagram together with a description of each mapping.

The example of transforming generic example of TFM into state
diagram is given in Fig. 9.2, where the left part shows fragment of
TFM and right part corresponding state diagram.

In the context of enterprise data synchronization system, this chap-
ter discusses state diagram created for one of the main object—Logger.
Table 9.2 contains specification of functional features that are used to
define state diagram for object Logger.

The first action is to scale down TFM which is performed by
removing functional features that do not represent the object under
consideration but in the same time retaining cause-and-effect relations.

Figure 9.2 Example of TFM to state diagram transformation.
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In the context of enterprise data synchronization system development
case study from all the functional features belonging to TFM (X5 {2, 3,
4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29,
30, 31, 32}) we should leave only the following eight functional features:
{19, 20, 27, 28, 29, 30, 31, 32}. These functional features represent the
object Logger. Fig. 9.3 shows both the full TFM of enterprise data syn-
chronization system (left side) and the scaled down containing only func-
tional features representing object Logger (right side). Within scaled
down TFM with the interrupted relationships between functional features
are denoted relationships that have been retained while removing func-
tional features defining other objects.

The specification of functional features {19, 20, 27, 28, 29, 30, 31, 32}
given in Table 9.2 shows that the object Logger in total has five different
states:

1. Archiving,
2. Completing logging,
3. Creating log file,
4. Logging data row, and
5. Logging status.

The resulting state diagram is given in Fig. 9.4.

Table 9.2 Functional Features Specifying Functioning of Object Logger
Id Object Action Precondition New State

19 Creating log file in log files folder Completing
logging

20 Writing into log file that particular import file was not
imported into target database

Completing
logging

27 Creating log file in log files folder for import file
processing

If data is read from
import file

Creating log
file

28 Logging data row from temporal internal table Logging data
row

29 Logging successful status If import is successful
for particular row

Logging
status

30 Logging error status If import is not
successful for
particular row

Logging
status

31 Logging error description If error is logged Logging
status

32 Archiving log file If data import is
completed

Archiving
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Figure 9.3 Full TFM and scaled down for object Logger.

Figure 9.4 TFM of enterprise data synchronization system functioning and state diagram for object Logger.
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9.3 SUMMARY

Object state change and transition analysis is an activity within
Topological UML modeling process following structure analysis and
design activity. It is based on the state diagram development. The state
changes and transitions within a system are formally analyzed by using
TFM—it is transformed into a set of state diagrams (one state diagram
for each class). It is advised to analyze state changes of complex or
most important objects in the system. The most important objects are
those that are participating in the main functioning cycle of the system.
Classes involved in system are identified and specified while developing
communication diagram and topological class diagram within
Topological UML modeling activity structure analysis and design.
States for each class are obtained from the functional features of TFM
(functional feature has an attribute that defines the new state of the
object), while state transitions are obtained by transforming cause-and-
effect relationship between functional features. The special states (ini-
tial state and final state) are added to the obtained state diagram as
inputs and outputs of TFM. Thus, the state diagrams are developed in
a formal way by transforming domain model.
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CHAPTER 1010
Structuring Logical Layout of Software Design

INFORMATION IN THIS CHAPTER:

• Structuring logical layout of software design
• Transforming subsystems and classes with relationships into packages

with relationships
• Formal package diagram development

10.1 INTRODUCTION

Logical layout of software design is structured in accordance with the
defined subsystems in the behavior analysis and design activity and
classes with their relationships as developed within structure analysis
and design activity. The logical layout is depicted by using package
diagram where each package initially represents one subsystem. The
package is a general-purpose mechanism for organizing modeling
elements into groups, i.e., classes in groups or in namespaces and the
relationships between them. Packages are used to arrange modeling ele-
ments (e.g., classes, interfaces, components, nodes, diagrams, collabora-
tions, use cases, other packages) into larger chunks that it is possible to
manipulate them as a group. Packages can also be used to present
different views of system’s architecture and they can be incorporated
into components to build up their internal structure. Well-designed
packages group elements that are semantically close and that tend
to change together. The process of structuring the logical layout of soft-
ware design is given in Fig. 10.1.

10.2 DESIGNING PACKAGES

Initially packages are added to package diagram as subsystems from
topological use case diagram which gets developed within Topological
UML modeling behavior analysis and design activity. The contents of
packages are added from the topological class diagram accordingly to
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the use cases in each system and the mappings between functional
features and use cases. Thus, each package gets a set of classes that are
responsible for particular subsystem. If needed the initial packages can
be split up by grouping classes by their responsibilities. The output of
this activity is package diagram structured according to subsystems
and responsibilities of classes.

The developed package diagram in the context of enterprise data
synchronization system development case study is given in Fig. 10.2,
where one package added as topological use case diagram of enterprise
data synchronization system (see Fig. 7.3) contains only one subsystem
Scheduler. The graphical representation used in Fig. 10.2 shows pack-
age Scheduler without revealing its internal details.

Another way of representing package is by revealing its details.
According to UML, a package can contain any element, i.e., classes,
interfaces, components, nodes, use cases, diagrams, and other packages
grouped into it. Every element that is included in the package is
defined within it. If we destroy the package, all the elements within it
are destroyed as well. Fig. 10.3 shows package Scheduler revealing
its internal details—classes and interfaces. The classes and interfaces

Figure 10.1 Structuring the logical layout of software design.
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are added by following mappings between topological use case dia-
gram and topological class diagram. In the context of enterprise data
synchronization system development case study all the classes and
interfaces are added from topological class diagram developed during
structure analysis and design activity (see Fig. 8.12) to the package
Scheduler.

Figure 10.3 Package diagram showing internal details.

Figure 10.2 Initial package diagram of enterprise data synchronization system.
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As package Scheduler contains classes and interfaces, we can make
groupings of similar elements by adding additional packages, e.g., by
grouping all interfaces in a special package with name Interfaces (see
Fig. 10.4).

10.3 SUMMARY

Logical layout of software design is structured in accordance with the
defined subsystems in the behavior analysis and design activity and
classes with their relationships as developed within structure analysis
and design activity. The logical layout is depicted by using package

Figure 10.4 Package diagram with additional package for interfaces.
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diagram where each package initially represents one subsystem.
Packages are used to arrange modeling elements (e.g., classes, inter-
faces, components, nodes, diagrams, collaborations, use cases, other
packages) into larger chunks that it is possible to manipulate them
as a group. Initially packages are added to package diagram as subsys-
tems from topological use case diagram which gets developed within
Topological UML modeling behavior analysis and design activity. The
contents of packages are added from the topological class diagram
accordingly to the use cases in each system and the mappings between
functional features and use cases. Thus, each package gets a set of classes
that are responsible for particular subsystem. If needed the initial
packages can be split up by grouping classes by their responsibilities. The
output of this activity is package diagram structured according to subsys-
tems and responsibilities of classes.
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CHAPTER 1111
Components and Deployment Design

INFORMATION IN THIS CHAPTER:

• Designing components
• Planning deployment

11.1 INTRODUCTION

Components are designed in accordance with packages and nonfunc-
tional requirements while deployment is planned for the designed
components in accordance with nonfunctional requirements. The com-
ponents and deployment design consist of two consequent activities
(see Fig. 11.1):

• Designing components—the components design is depicted by using
component diagram showing the internal parts, connectors, and
ports that implement a component. Component represents
a modular part of a system that encapsulates its contents. It defines
its behavior in terms of provided and required interfaces.

• Planning deployment—the planned deployment is reflected by using
deployment diagram which commonly is used to specify how the
components of a system are distributed across the infrastructure and
how they are related together. To model such a view deployment
diagrams use just two kinds of elements—nodes (i.e., components of
a system or the infrastructure artifacts) and relationships that link
nodes together.

11.2 DESIGNING COMPONENTS

Components designing within Topological UML modeling are
performed according to the packages and nonfunctional requirements.
The input of this activity is package diagram and nonfunctional
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requirements. The components designing process consists of two
subsequent actions (see Fig. 11.2):

• Defining components—the initial components are designed, one com-
ponent for each package.

• Refining components—initial components are refined according to non-
functional requirements. For example, the nonfunctional requirements
may include security requirements by stating that executable files
responsible from logging into system should be deployed separately
from other components.

As the output a component diagram is developed showing the
internal parts, connectors, and ports that implement a component.
When the component is instantiated, copies of its internal parts are
also instantiated.

The developed component diagram in the context of enterprise data
synchronization system development case study is given in Fig. 11.3,

Figure 11.1 Overview of designing components and planning deployment.
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where one component is added as package diagram of enterprise data
synchronization system (see Fig. 10.2) contains only one package
Scheduler. The graphical representation used in Fig. 11.3 shows inter-
faces of component Scheduler—lollipop is used for provided interfaces
while socket for required interfaces.

Another way of graphically showing required interfaces and pro-
vided interfaces is by using realization and dependency relationships.
In both cases the relationship is oriented from component to the

Figure 11.3 Component diagram of enterprise data synchronization system.

Figure 11.2 Components designing process.
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corresponding interface. Component diagram given in Fig. 11.4 uses
realization and dependency relationships to show required and
provided interfaces while in the meantime it is the same component
diagram as given in Fig. 11.3, just using a slightly different graphical
representation.

11.3 DEPLOYMENT PLANNING

Deployment planning within Topological UML modeling is made
according to the components and nonfunctional requirements. During
the deployment planning the components are assigned to the nodes as
specified by nonfunctional requirements. As the output a deployment
diagram is created which represents the assignment of software
artifacts to nodes. A deployment diagram is commonly used to specify
how the components of a system are distributed across the infra-
structure and how they are related together. To model such a view
deployment diagrams use just two kinds of elements—nodes (a compu-
tational resource upon which artifacts may be deployed for execution)
and relationships that link nodes together. Deployment diagram shows
the static deployment view of architecture. Deployment diagram is
typically related to a component diagram in a way that nodes typically

Figure 11.4 Component diagram of enterprise data synchronization system.
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enclose one or more components and it shows the configuration of
runtime processing nodes and the artifacts that live on them.

The developed deployment diagram in the context of enterprise
data synchronization system development case study is given in
Fig. 11.5, where one component named Scheduler is added to a single
node named Application server.

To get a more detailed insight of the enterprise data synchroniza-
tion system and how it is related to other nodes in infrastructure, we
can add more nodes to the deployment diagram thus revealing all the
communication links between different types of nodes, e.g., other
servers or workstations. In such scenario in the context of enterprise
data synchronization system development case study all the required
and provided interfaces show relationships between nodes that contain
components realizing interfaces which are required and provided by
the Scheduler component (see Fig. 11.6), where:

• Provided interfaces are available on Data manager workstation node
(interface IConfiguration), Source database server node (interface
ISourceDataSource), and File server node (interface IImportFile).

Figure 11.5 Deployment diagram of enterprise data synchronization system.
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• Required interfaces are available on Log file server node (interface
ILogger) andTarget database server node (interface ITargetDataSource).

11.4 SUMMARY

Components and deployment design is an activity within Topological
UML modeling. It follows the structuring logical layout of software
design activity and concludes the Topological UML modeling process.
Components are designed in accordance with packages and nonfunc-
tional requirements while deployment is planned for the designed compo-
nents in accordance with nonfunctional requirements. The components
design is depicted by using component diagram showing the internal
parts, connectors, and ports that implement a component while the

Figure 11.6 Deployment diagram showing relationships with other nodes.
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planned deployment is reflected by using deployment diagram which
is commonly used to specify how the components of a system are
distributed across the infrastructure and how they are related together.
Deployment diagram shows the static deployment view of architecture
and it is related to a component diagram in a way that nodes typically
enclose one or more components and it shows the configuration of
runtime processing nodes and the artifacts that live on them.
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