

Signals and Systems with MATLAB R©

Won Y. Yang · Tae G. Chang · Ik H. Song ·
Yong S. Cho · Jun Heo · Won G. Jeon ·
Jeong W. Lee · Jae K. Kim

Signals and Systems
with MATLAB R©

123

Limits of Liability and Disclaimer of Warranty of Software

The reader is expressly warned to consider and adopt all safety precautions that might
be indicated by the activities herein and to avoid all potential hazards. By following the
instructions contained herein, the reader willingly assumes all risks in connection with
such instructions.

The authors and publisher of this book have used their best efforts and knowledge in
preparing this book as well as developing the computer programs in it. However, they
make no warranty of any kind, expressed or implied, with regard to the programs or
the documentation contained in this book. Accordingly, they shall not be liable for any
incidental or consequential damages in connection with, or arising out of, the readers’
use of, or reliance upon, the material in this book.

Questions about the contents of this book can be mailed to wyyang.53@hanmail.net.
Program files in this book can be downloaded from the following website:

<http://wyyang53.com.ne.kr/>

MATLAB R© and Simulink R© are registered trademarks of The MathWorks, Inc. For
MATLAB and Simulink product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA�: 508-647-7000, Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

ISBN 978-3-540-92953-6 e-ISBN 978-3-540-92954-3
DOI 10.1007/978-3-540-92954-3
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009920196

c© Springer-Verlag Berlin Heidelberg 2009
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: WMXDesign GmbH, Heidelberg

Printed on acid-free paper

Springer is a part of Springer Science+Business Media (www.springer.com)

To our parents and families
who love and support us

and
to our teachers and students
who enriched our knowledge

Preface

This book is primarily intended for junior-level students who take the courses on
‘signals and systems’. It may be useful as a reference text for practicing engineers
and scientists who want to acquire some of the concepts required for signal process-
ing. The readers are assumed to know the basics about linear algebra, calculus (on
complex numbers, differentiation, and integration), differential equations, Laplace
transform, and MATLAB R©. Some knowledge about circuit systems will be helpful.

Knowledge in signals and systems is crucial to students majoring in Electrical
Engineering. The main objective of this book is to make the readers prepared for
studying advanced subjects on signal processing, communication, and control by
covering from the basic concepts of signals and systems to manual-like introduc-
tions of how to use the MATLAB R© and Simulink R© tools for signal analysis and
filter design. The features of this book can be summarized as follows:

1. It not only introduces the four Fourier analysis tools, CTFS (continuous-time
Fourier series), CTFT (continuous-time Fourier transform), DFT (discrete-time
Fourier transform), and DTFS (discrete-time Fourier series), but also illuminates
the relationship among them so that the readers can realize why only the DFT of
the four tools is used for practical spectral analysis and why/how it differs from
the other ones, and further, think about how to reduce the difference to get better
information about the spectral characteristics of signals from the DFT analysis.

2. Continuous-time and discrete-time signals/systems are presented in parallel to
save the time/space for explaining the two similar ones and increase the under-
standing as far as there is no concern over causing confusion.

3. It covers most of the theoretical foundations and mathematical derivations that
will be used in higher-level related subjects such as signal processing, commu-
nication, and control, minimizing the mathematical difficulty and computational
burden.

4. Most examples/problems are titled to illustrate key concepts, stimulate interest,
or bring out connections with any application so that the readers can appreciate
what the examples/problems should be studied for.

5. MATLAB R© is integrated extensively into the text with a dual purpose. One
is to let the readers know the existence and feel the power of such software
tools as help them in computing and plotting. The other is to help them to

vii

viii Preface

realize the physical meaning, interpretation, and/or application of such concepts
as convolution, correlation, time/frequency response, Fourier analyses, and their
results, etc.

6. The MATLAB R© commands and Simulink R© blocksets for signal processing
application are summarized in the appendices in the expectation of being used
like a manual. The authors made no assumption that the readers are proficient in
MATLAB R© . However, they do not hide their expectation that the readers will
get interested in using the MATLAB R© and Simulink R© for signal analysis and
filter design by trying to understand the MATLAB R© programs attached to some
conceptually or practically important examples/problems and be able to modify
them for solving their own problems.

The contents of this book are derived from the works of many (known or
unknown) great scientists, scholars, and researchers, all of whom are deeply appre-
ciated. We would like to thank the reviewers for their valuable comments and
suggestions, which contribute to enriching this book.

We also thank the people of the School of Electronic & Electrical Engineering,
Chung-Ang University for giving us an academic environment. Without affections
and supports of our families and friends, this book could not be written. Special
thanks should be given to Senior Researcher Yong-Suk Park of KETI (Korea Elec-
tronics Technology Institute) for his invaluable help in correction. We gratefully
acknowledge the editorial and production staff of Springer-Verlag, Inc. including
Dr. Christoph Baumann and Ms. Divya Sreenivasan, Integra.

Any questions, comments, and suggestions regarding this book are welcome.
They should be sent to wyyang53@hanmail.net.

Seoul, Korea Won Y. Yang
Tae G. Chang

Ik H. Song
Yong S. Cho

Jun Heo
Won G. Jeon
Jeong W. Lee

Jae K. Kim

Contents

1 Signals and Systems . 1
1.1 Signals . 2

1.1.1 Various Types of Signal . 2
1.1.2 Continuous/Discrete-Time Signals . 2
1.1.3 Analog Frequency and Digital Frequency 6
1.1.4 Properties of the Unit Impulse Function

and Unit Sample Sequence . 8
1.1.5 Several Models for the Unit Impulse Function 11

1.2 Systems . 12
1.2.1 Linear System and Superposition Principle 13
1.2.2 Time/Shift-Invariant System . 14
1.2.3 Input-Output Relationship of Linear

Time-Invariant (LTI) System . 15
1.2.4 Impulse Response and System (Transfer) Function 17
1.2.5 Step Response, Pulse Response, and Impulse Response 18
1.2.6 Sinusoidal Steady-State Response

and Frequency Response . 19
1.2.7 Continuous/Discrete-Time Convolution 22
1.2.8 Bounded-Input Bounded-Output (BIBO) Stability 29
1.2.9 Causality . 30
1.2.10 Invertibility . 30

1.3 Systems Described by Differential/Difference Equations 31
1.3.1 Differential/Difference Equation and System Function 31
1.3.2 Block Diagrams and Signal Flow Graphs 32
1.3.3 General Gain Formula – Mason’s Formula 34
1.3.4 State Diagrams . 35

1.4 Deconvolution and Correlation . 38
1.4.1 Discrete-Time Deconvolution . 38
1.4.2 Continuous/Discrete-Time Correlation 39

1.5 Summary . 45
Problems . 45

ix

x Contents

2 Continuous-Time Fourier Analysis . 61
2.1 Continuous-Time Fourier Series (CTFS) of Periodic Signals 62

2.1.1 Definition and Convergence Conditions
of CTFS Representation . 62

2.1.2 Examples of CTFS Representation . 65
2.1.3 Physical Meaning of CTFS Coefficients – Spectrum 70

2.2 Continuous-Time Fourier Transform of Aperiodic Signals 73
2.3 (Generalized) Fourier Transform of Periodic Signals 77
2.4 Examples of the Continuous-Time Fourier Transform 78
2.5 Properties of the Continuous-Time Fourier Transform 86

2.5.1 Linearity . 86
2.5.2 (Conjugate) Symmetry . 86
2.5.3 Time/Frequency Shifting (Real/Complex Translation) 88
2.5.4 Duality . 88
2.5.5 Real Convolution . 89
2.5.6 Complex Convolution (Modulation/Windowing) 90
2.5.7 Time Differential/Integration – Frequency

Multiplication/Division . 94
2.5.8 Frequency Differentiation – Time Multiplication 95
2.5.9 Time and Frequency Scaling . 95
2.5.10 Parseval’s Relation (Rayleigh Theorem) 96

2.6 Polar Representation and Graphical Plot of CTFT 96
2.6.1 Linear Phase . 97
2.6.2 Bode Plot . 97

2.7 Summary . 98
Problems . 99

3 Discrete-Time Fourier Analysis . 129
3.1 Discrete-Time Fourier Transform (DTFT) . 130

3.1.1 Definition and Convergence Conditions of DTFT
Representation . 130

3.1.2 Examples of DTFT Analysis . 132
3.1.3 DTFT of Periodic Sequences . 136

3.2 Properties of the Discrete-Time Fourier Transform 138
3.2.1 Periodicity . 138
3.2.2 Linearity . 138
3.2.3 (Conjugate) Symmetry . 138
3.2.4 Time/Frequency Shifting (Real/Complex Translation) 139
3.2.5 Real Convolution . 139
3.2.6 Complex Convolution (Modulation/Windowing) 139
3.2.7 Differencing and Summation in Time 143
3.2.8 Frequency Differentiation . 143
3.2.9 Time and Frequency Scaling . 143
3.2.10 Parseval’s Relation (Rayleigh Theorem) 144

Contents xi

3.3 Polar Representation and Graphical Plot of DTFT 144
3.4 Discrete Fourier Transform (DFT) . 147

3.4.1 Properties of the DFT . 149
3.4.2 Linear Convolution with DFT . 152
3.4.3 DFT for Noncausal or Infinite-Duration Sequence 155

3.5 Relationship Among CTFS, CTFT, DTFT, and DFT 160
3.5.1 Relationship Between CTFS and DFT/DFS 160
3.5.2 Relationship Between CTFT and DTFT 161
3.5.3 Relationship Among CTFS, CTFT, DTFT, and DFT/DFS . . 162

3.6 Fast Fourier Transform (FFT) . 164
3.6.1 Decimation-in-Time (DIT) FFT . 165
3.6.2 Decimation-in-Frequency (DIF) FFT 168
3.6.3 Computation of IDFT Using FFT Algorithm 169

3.7 Interpretation of DFT Results . 170
3.8 Effects of Signal Operations on DFT Spectrum 178
3.9 Short-Time Fourier Transform – Spectrogram 180
3.10 Summary . 182

Problems . 182

4 The z-Transform . 207
4.1 Definition of the z-Transform . 208
4.2 Properties of the z-Transform . 213

4.2.1 Linearity . 213
4.2.2 Time Shifting – Real Translation . 214
4.2.3 Frequency Shifting – Complex Translation 215
4.2.4 Time Reversal . 215
4.2.5 Real Convolution . 215
4.2.6 Complex Convolution . 216
4.2.7 Complex Differentiation . 216
4.2.8 Partial Differentiation . 217
4.2.9 Initial Value Theorem . 217
4.2.10 Final Value Theorem . 218

4.3 The Inverse z-Transform . 218
4.3.1 Inverse z-Transform by Partial Fraction Expansion 219
4.3.2 Inverse z-Transform by Long Division 223

4.4 Analysis of LTI Systems Using the z-Transform 224
4.5 Geometric Evaluation of the z-Transform . 231
4.6 The z-Transform of Symmetric Sequences . 236

4.6.1 Symmetric Sequences . 236
4.6.2 Anti-Symmetric Sequences . 237

4.7 Summary . 240
Problems . 240

xii Contents

5 Sampling and Reconstruction . 249
5.1 Digital-to-Analog (DA) Conversion[J-1] . 250
5.2 Analog-to-Digital (AD) Conversion[G-1, J-2, W-2] 251

5.2.1 Counter (Stair-Step) Ramp ADC . 251
5.2.2 Tracking ADC . 252
5.2.3 Successive Approximation ADC . 253
5.2.4 Dual-Ramp ADC . 254
5.2.5 Parallel (Flash) ADC . 256

5.3 Sampling . 257
5.3.1 Sampling Theorem . 257
5.3.2 Anti-Aliasing and Anti-Imaging Filters 262

5.4 Reconstruction and Interpolation . 263
5.4.1 Shannon Reconstruction . 263
5.4.2 DFS Reconstruction . 265
5.4.3 Practical Reconstruction . 267
5.4.4 Discrete-Time Interpolation . 269

5.5 Sample-and-Hold (S/H) Operation . 272
5.6 Summary . 272

Problems . 273

6 Continuous-Time Systems and Discrete-Time Systems 277
6.1 Concept of Discrete-Time Equivalent . 277
6.2 Input-Invariant Transformation . 280

6.2.1 Impulse-Invariant Transformation . 281
6.2.2 Step-Invariant Transformation . 282

6.3 Various Discretization Methods [P-1] . 284
6.3.1 Backward Difference Rule on Numerical Differentiation . . . 284
6.3.2 Forward Difference Rule on Numerical Differentiation 286
6.3.3 Left-Side (Rectangular) Rule on Numerical Integration 287
6.3.4 Right-Side (Rectangular) Rule on Numerical Integration . . . 288
6.3.5 Bilinear Transformation (BLT) – Trapezoidal Rule on

Numerical Integration . 288
6.3.6 Pole-Zero Mapping – Matched z-Transform [F-1] 292
6.3.7 Transport Delay – Dead Time . 293

6.4 Time and Frequency Responses of Discrete-Time Equivalents 293
6.5 Relationship Between s-Plane Poles and z-Plane Poles 295
6.6 The Starred Transform and Pulse Transfer Function 297

6.6.1 The Starred Transform . 297
6.6.2 The Pulse Transfer Function . 298
6.6.3 Transfer Function of Cascaded Sampled-Data System 299
6.6.4 Transfer Function of System in A/D-G[z]-D/A Structure . . . 300
Problems . 301

Contents xiii

7 Analog and Digital Filters . 307
7.1 Analog Filter Design . 307
7.2 Digital Filter Design . 320

7.2.1 IIR Filter Design . 321
7.2.2 FIR Filter Design . 331
7.2.3 Filter Structure and System Model Available in MATLAB . 345
7.2.4 Importing/Exporting a Filter Design . 348

7.3 How to Use SPTool . 350
Problems . 357

8 State Space Analysis of LTI Systems . 361
8.1 State Space Description – State and Output Equations 362
8.2 Solution of LTI State Equation . 364

8.2.1 State Transition Matrix . 364
8.2.2 Transformed Solution . 365
8.2.3 Recursive Solution . 368

8.3 Transfer Function and Characteristic Equation 368
8.3.1 Transfer Function . 368
8.3.2 Characteristic Equation and Roots . 369

8.4 Discretization of Continuous-Time State Equation 370
8.4.1 State Equation Without Time Delay . 370
8.4.2 State Equation with Time Delay . 374

8.5 Various State Space Description – Similarity Transformation 376
8.6 Summary . 379

Problems . 379

A The Laplace Transform . 385
A.1 Definition of the Laplace Transform . 385
A.2 Examples of the Laplace Transform . 385

A.2.1 Laplace Transform of the Unit Step Function 385
A.2.2 Laplace Transform of the Unit Impulse Function 386
A.2.3 Laplace Transform of the Ramp Function 387
A.2.4 Laplace Transform of the Exponential Function 387
A.2.5 Laplace Transform of the Complex Exponential Function . . 387

A.3 Properties of the Laplace Transform . 387
A.3.1 Linearity . 388
A.3.2 Time Differentiation . 388
A.3.3 Time Integration . 388
A.3.4 Time Shifting – Real Translation . 389
A.3.5 Frequency Shifting – Complex Translation 389
A.3.6 Real Convolution . 389
A.3.7 Partial Differentiation . 390
A.3.8 Complex Differentiation . 390
A.3.9 Initial Value Theorem . 391

xiv Contents

A.3.10 Final Value Theorem . 391
A.4 Inverse Laplace Transform. 392
A.5 Using the Laplace Transform to Solve Differential Equations 394

B Tables of Various Transforms . 399

C Operations on Complex Numbers, Vectors, and Matrices 409
C.1 Complex Addition . 409
C.2 Complex Multiplication . 409
C.3 Complex Division . 409
C.4 Conversion Between Rectangular Form and Polar/Exponential Form409
C.5 Operations on Complex Numbers Using MATLAB 410
C.6 Matrix Addition and Subtraction[Y-1] . 410
C.7 Matrix Multiplication . 411
C.8 Determinant . 411
C.9 Eigenvalues and Eigenvectors of a Matrix1 . 412
C.10 Inverse Matrix . 412
C.11 Symmetric/Hermitian Matrix . 413
C.12 Orthogonal/Unitary Matrix . 413
C.13 Permutation Matrix . 414
C.14 Rank . 414
C.15 Row Space and Null Space . 414
C.16 Row Echelon Form . 414
C.17 Positive Definiteness . 415
C.18 Scalar(Dot) Product and Vector(Cross) Product 416
C.19 Matrix Inversion Lemma . 416
C.20 Differentiation w.r.t. a Vector . 416

D Useful Formulas . 419

E MATLAB . 421
E.1 Convolution and Deconvolution . 423
E.2 Correlation . 424
E.3 CTFS (Continuous-Time Fourier Series) . 425
E.4 DTFT (Discrete-Time Fourier Transform) . 425
E.5 DFS/DFT (Discrete Fourier Series/Transform) 425
E.6 FFT (Fast Fourier Transform) . 426
E.7 Windowing . 427
E.8 Spectrogram (FFT with Sliding Window) . 427
E.9 Power Spectrum . 429
E.10 Impulse and Step Responses . 430
E.11 Frequency Response . 433
E.12 Filtering . 434
E.13 Filter Design . 436

Contents xv

E.13.1 Analog Filter Design . 436
E.13.2 Digital Filter Design – IIR (Infinite-duration Impulse

Response) Filter . 437
E.13.3 Digital Filter Design – FIR (Finite-duration Impulse

Response) Filter . 438
E.14 Filter Discretization . 441
E.15 Construction of Filters in Various Structures Using dfilt() 443
E.16 System Identification from Impulse/Frequency Response 447
E.17 Partial Fraction Expansion and (Inverse) Laplace/z-Transform 449
E.18 Decimation, Interpolation, and Resampling . 450
E.19 Waveform Generation . 452
E.20 Input/Output through File . 452

F Simulink R© . 453

Index . 461

Index for MATLAB routines . 467

Index for Examples . 471

Index for Remarks . 473

Chapter 1
Signals and Systems

Contents

1.1 Signals . 2
1.1.1 Various Types of Signal . 2
1.1.2 Continuous/Discrete-Time Signals . 2
1.1.3 Analog Frequency and Digital Frequency . 6
1.1.4 Properties of the Unit Impulse Function

and Unit Sample Sequence . 8
1.1.5 Several Models for the Unit Impulse Function . 11

1.2 Systems . 12
1.2.1 Linear System and Superposition Principle . 13
1.2.2 Time/Shift-Invariant System . 14
1.2.3 Input-Output Relationship of Linear

Time-Invariant (LTI) System . 15
1.2.4 Impulse Response and System (Transfer) Function . 17
1.2.5 Step Response, Pulse Response, and Impulse Response 18
1.2.6 Sinusoidal Steady-State Response

and Frequency Response . 19
1.2.7 Continuous/Discrete-Time Convolution . 22
1.2.8 Bounded-Input Bounded-Output (BIBO) Stability . 29
1.2.9 Causality . 30
1.2.10 Invertibility . 30

1.3 Systems Described by Differential/Difference Equations . 31
1.3.1 Differential/Difference Equation and System Function . 31
1.3.2 Block Diagrams and Signal Flow Graphs . 32
1.3.3 General Gain Formula – Mason’s Formula . 34
1.3.4 State Diagrams . 35

1.4 Deconvolution and Correlation . 38
1.4.1 Discrete-Time Deconvolution . 38
1.4.2 Continuous/Discrete-Time Correlation . 39

1.5 Summary . 45
Problems . 45

In this chapter we introduce the mathematical descriptions of signals and sys-
tems. We also discuss the basic concepts on signal and system analysis such as
linearity, time-invariance, causality, stability, impulse response, and system function
(transfer function).

W.Y. Yang et al., Signals and Systems with MATLAB R©,
DOI 10.1007/978-3-540-92954-3 1, C© Springer-Verlag Berlin Heidelberg 2009

1

2 1 Signals and Systems

1.1 Signals

1.1.1 Various Types of Signal

A signal, conveying information generally about the state or behavior of a physical
system, is represented mathematically as a function of one or more independent
variables. For example, a speech signal may be represented as an amplitude function
of time and a picture as a brightness function of two spatial variables. Depending
on whether the independent variables and the values of a signal are continuous or
discrete, the signal can be classified as follows (see Fig. 1.1 for examples):

- Continuous-time signal x(t): defined at a continuum of times.
- Discrete-time signal (sequence) x[n] = x(nT): defined at discrete times.
- Continuous-amplitude(value) signal xc: continuous in value (amplitude).
- Discrete-amplitude(value) signal xd : discrete in value (amplitude).

Here, the bracket [] indicates that the independent variable n takes only integer
values. A continuous-time continuous-amplitude signal is called an analog signal
while a discrete-time discrete-amplitude signal is called a digital signal. The ADC
(analog-to-digital converter) converting an analog signal to a digital one usually
performs the operations of sampling-and-hold, quantization, and encoding. How-
ever, throughout this book, we ignore the quantization effect and use “discrete-time
signal/system” and “digital signal/system” interchangeably.

Continuous-time
continuous-amplitude

signal
x (t)

sampling at t = nT
T : sample period

T

hold

(a) (b) (c) (d) (e)

A/D conversion D/A conversion

Continuous-time
continuous-amplitude

sampled signal
x∗(t)

Discrete-time
discrete-amplitude

signal
xd

[n]

Continuous-time
discrete-amplitude

signal
xd (t)

Continuous-time
continuous-amplitude

signal
x (t)

Fig. 1.1 Various types of signal

1.1.2 Continuous/Discrete-Time Signals

In this section, we introduce several elementary signals which not only occur fre-
quently in nature, but also serve as building blocks for constructing many other
signals. (See Figs. 1.2 and 1.3.)

1.1 Signals 3

0

0
(a1) Unit step function

us(t)

t

1

1

(a2) Unit impulse function

δ(t)

t
0 1

0

1

(a3) Rectangular pulse function

rD(t)

t
0 D 1

0

1

(a4) Triangular pulse function

λD(t)

t
0 D 1

0

1

(a5) Exponential function

eatus(t)

t
0 1

0

1

(b2) Unit impulse sequence

δ [n]

n
0 10

0

1

(b3) Rectangular pulse sequence

rD[n]

n
0 D 10

0

1

(b1) Unit step sequence

us[n]

n
0 10

0

1

(b4) Triangular pulse sequence

λD[n]

n
0 D 10

0

1

(b5) Exponential sequence

anus[n]

n
0 10

0

1

(a6) Real sinusoidal function

cos(ω1t + φ)

t
0 1

0

10

(b6) Real sinusoidal sequence

cos(Ω1n + φ)

n
0 10

0

–1

1

Fig. 1.2 Some continuous–time and discrete–time signals

1.1.2.1a Unit step function 1.1.2.1b Unit step sequence

us(t) =
{

1 for t ≥ 0

0 for t < 0
(1.1.1a) us[n] =

{
1 for n ≥ 0

0 for n < 0
(1.1.1b)

4 1 Signals and Systems

Im

Im

Re

Re

(a) Complex exponential function x (t) = e

s1t = e

σ1t e

j ω1t

t

n

(b) Complex exponential sequence x (n) = z1
n n= r1 e

j Ω1n

Fig. 1.3 Continuous–time/discrete–time complex exponential signals

(cf.) A delayed and scaled step function (cf.) A delayed and scaled step sequence

Aus(t − t0) =
{

A for t ≥ t0
0 for t < t0

Aus[n − n0] =
{

A for n ≥ n0

0 for n < n0

1.1.2.2a Unit impulse function 1.1.2.2b Unit sample or impulse sequence

δ(t) = d

dt
us(t) =

{
∞ for t = 0

0 for t �= 0
(1.1.2a)

δ[n] =
{

1 for n = 0

0 for n �= 0
(1.1.2b)

(cf.) A delayed and scaled impulse
function

(cf.) A delayed and scaled impulse
sequence

Aδ(t − t0) =
{

A∞ for t = t0
0 for t �= t0

A δ[n − n0] =
{

A for n = n0

0 for n �= n0

1.1 Signals 5

(cf.) Relationship between δ(t) and us(t)

δ(t) = d

dt
us(t) (1.1.3a)

us(t) =
∫ t

−∞
δ(τ)dτ (1.1.4a)

1.1.2.3a Rectangular pulse function

rD(t) = us(t) − us(t − D) (1.1.5a)

=
{

1 for 0 ≤ t < D (D : duration)

0 elsewhere

1.1.2.4a Unit triangular pulse function

λD(t) =
{

1 − |t − D|/D for |t − D| ≤ D
0 elsewhere

(1.1.6a)
1.1.2.5a Real exponential function

x(t) = eat us(t) =
{

eat for t ≥ 0

0 for t < 0
(1.1.7a)

1.1.2.6a Real sinusoidal function

x(t) = cos(ω1t + φ) = Re{e j(ω1t+φ)}
= 1

2

{
e jφe jω1t + e− jφe− jω1t

}
(1.1.8a)

1.1.2.7a Complex exponential function

x(t) = es1t =eσ1t e jω1t with s1 = σ1 + jω1

(1.1.9a)

Note that σ1 determines the changing
rate or the time constant and ω1 the
oscillation frequency.

1.1.2.8a Complex sinusoidal function

x(t) = e jω1t = cos(ω1t) + j sin(ω1t)
(1.1.10a)

(cf) Relationship between δ[n] and us[n]

δ[n] = us[n] − us[n − 1] (1.1.3b)

us[n] =
∑n

m=−∞ δ[m] (1.1.4b)

1.1.2.3b Rectangular pulse sequence

rD[n] = us[n] − us[n − D] (1.1.5b)

=
{

1 for 0 ≤ n < D (D : duration)

0 elsewhere

1.1.2.4b Unit triangular pulse sequence

λD[n] =
{

1 − |n + 1 − D|/D for |n + 1 − D| ≤ D − 1

0 elsewhere

(1.1.6b)
1.1.2.5b Real exponential sequence

x[n] = anus[n] =
{

an for n ≥ 0

0 for n < 0
(1.1.7b)

1.1.2.6b Real sinusoidal sequence

x[n] = cos(Ω1n + φ) = Re
{
e j(Ω1n+φ)

}
= 1

2

{
e jφe jΩ1n + e− jφe− jΩ1n

}
(1.1.8b)

1.1.2.7b Complex exponential function

x[n] = zn
1 = rn

1 e jΩ1n with z1 = r1e jΩ1

(1.1.9b)

Note that r1 determines the changing
rate and Ω1 the oscillation frequency.

1.1.2.8b Complex sinusoidal sequence

x[n] = e jΩ1n = cos(Ω1n) + j sin(Ω1n)
(1.1.10b)

6 1 Signals and Systems

1.1.3 Analog Frequency and Digital Frequency

A continuous-time signal x(t) is periodic with period P if P is generally the smallest
positive value such that x(t + P) = x(t). Let us consider a continuous-time periodic
signal described by

x(t) = e jω1t (1.1.11)

The analog or continuous-time (angular) frequency1 of this signal is ω1 [rad/s] and
its period is

P = 2π

ω1
[s] (1.1.12)

where

e jω1(t+P) = e jω1t ∀ t (∵ ω1 P = 2π ⇒ e jω1 P = 1) (1.1.13)

If we sample the signal x(t) = e jω1t periodically at t = nT , we get a discrete-
time signal

x[n] = e jω1nT = e jΩ1n with Ω1 = ω1T (1.1.14)

Will this signal be periodic in n? You may well think that x[n] is also periodic
for any sampling interval T since it is obtained from the samples of a continuous-
time periodic signal. However, the discrete-time signal x[n] is periodic only when
the sampling interval T is the continuous-time period P multiplied by a rational
number, as can be seen from comparing Fig. 1.4(a) and (b). If we sample x(t) =
e jω1t to get x[n] = e jω1nT = e jΩ1n with a sampling interval T = m P/N [s/sample]
where the two integers m and N are relatively prime (coprime), i.e., they have no
common divisor except 1, the discrete-time signal x[n] is also periodic with the
digital or discrete-time frequency

Ω1 = ω1T = ω1
m P

N
= m

N
2π [rad/sample] (1.1.15)

The period of the discrete-time periodic signal x[n] is

N = 2mπ

Ω1
[sample], (1.1.16)

where

e jΩ1(n+N) = e jΩ1ne j2mπ = e jΩ1n ∀ n (1.1.17)

1 Note that we call the angular or radian frequency measured in [rad/s] just the frequency with-
out the modifier ‘radian’ or ‘angular’ as long as it can not be confused with the ‘real’ frequency
measured in [Hz].

1.1 Signals 7

1 2 3

1

0
0

0 1 2 3 4

0.5 1.5 2.5

(a) Sampling x (t) = sin(3πt) with sample period T = 0.25

(b) Sampling x (t) = sin(3πt) with sample period T = 1/π

3.5 4
t

t

–1

1

0

–1

Fig. 1.4 Sampling a continuous–time periodic signal

This is the counterpart of Eq. (1.1.12) in the discrete-time case. There are several
observations as summarized in the following remark:

Remark 1.1 Analog (Continuous-Time) Frequency and Digital (Discrete-Time)
Frequency

(1) In order for a discrete-time signal to be periodic with period N (being an
integer), the digital frequency Ω1 must be π times a rational number.

(2) The period N of a discrete-time signal with digital frequency Ω1 is the mini-
mum positive integer to be multiplied by Ω1 to make an integer times 2π like
2mπ (m: an integer).

(3) In the case of a continuous-time periodic signal with analog frequency ω1, it
can be seen to oscillate with higher frequency as ω1 increases. In the case of
a discrete-time periodic signal with digital frequency Ω1, it is seen to oscillate
faster as Ω1 increases from 0 to π (see Fig. 1.5(a)–(d)). However, it is seen
to oscillate rather slower as Ω1 increases from π to 2π (see Fig. 1.5(d)–(h)).
Particularly with Ω1 = 2π (Fig. 1.5(h)) or 2mπ , it is not distinguishable from
a DC signal with Ω1 = 0. The discrete-time periodic signal is seen to oscillate
faster as Ω1 increases from 2π to 3π (Fig. 1.5(h) and (i)) and slower again as
Ω1 increases from 3π to 4π .

8 1 Signals and Systems

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1
0 0.5

(a) cos(πnT), T = 0.25 (b) cos(2πnT), T = 0.25 (c) cos(3πnT), T = 0.25

(d) cos(4πnT), T = 0.25 (e) cos(5πnT), T = 0.25 (f) cos(6πnT), T = 0.25

(g) cos(7πnT), T = 0.25 (h) cos(8πnT), T = 0.25 (i) cos(9πnT), T = 0.25

1 1.5 2

0 0.5 1 1.5 2

0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0 0.5 1 1.5 2 0 0.5 1 1.5 2

Fig. 1.5 Continuous–time/discrete–time periodic signals with increasing analog/digital frequency

This implies that the frequency characteristic of a discrete-time signal is peri-
odic with period 2π in the digital frequency Ω. This is because e jΩ1n is also
periodic with period 2π in Ω1, i.e., e j(Ω1+2mπ)n = e jΩ1ne j2mnπ = e jΩ1n for any
integer m.

(4) Note that if a discrete-time signal obtained from sampling a continuous-time
periodic signal has the digital frequency higher than π [rad] (in its absolute
value), it can be identical to a lower-frequency signal in discrete time. Such a
phenomenon is called aliasing, which appears as the stroboscopic effect or the
wagon-wheel effect that wagon wheels, helicopter rotors, or aircraft propellers
in film seem to rotate more slowly than the true rotation, stand stationary, or
even rotate in the opposite direction from the true rotation (the reverse rotation
effect).[W-1]

1.1.4 Properties of the Unit Impulse Function
and Unit Sample Sequence

In Sect. 1.1.2, the unit impulse, also called the Dirac delta, function is defined by
Eq. (1.1.2a) as

δ(t) = d

dt
us(t) =

{
∞ for t = 0

0 for t �= 0
(1.1.18)

1.1 Signals 9

Several useful properties of the unit impulse function are summarized in the follow-
ing remark:

Remark 1.2a Properties of the Unit Impulse Function δ(t)

(1) The unit impulse function δ(t) has unity area around t = 0, which means

∫ +∞

−∞
δ(τ)dτ =

∫ 0+

0−
δ(τ)dτ = 1 (1.1.19)(

∵
∫ 0+

−∞
δ(τ)dτ −

∫ 0−

−∞
δ(τ)dτ

(1.1.4a)= us(0+) − us(0−) = 1 − 0 = 1

)

(2) The unit impulse function δ(t) is symmetric about t = 0, which is described by

δ(t) = δ(−t) (1.1.20)

(3) The convolution of a time function x(t) and the unit impulse function δ(t) makes
the function itself:

x(t) ∗ δ(t)
(A.17)=

definition of convolution integral

∫ +∞

−∞
x(τ)δ(t − τ)dτ = x(t) (1.1.21)

⎛
⎝∵ ∫ +∞

−∞ x(τ)δ(t − τ)dτ
δ(t−τ)�=0 for only τ=t= ∫ +∞

−∞ x(t)δ(t − τ)dτ
x(t) independent of τ= x(t)

∫ +∞
−∞ δ(t − τ)dτ

t−τ→t ′= x(t)
∫ t−∞

t+∞ δ(t ′)(−dt ′) = x(t)
∫ t+∞

t−∞ δ(t ′)dt ′ = x(t)
∫ +∞
−∞ δ(τ)dτ

(1.1.19)= x(t)

⎞
⎠

What about the convolution of a time function x(t) and a delayed unit impulse
function δ(t − t1)? It becomes the delayed time function x(t − t1), that is,

x(t) ∗ δ(t − t1) =
∫ +∞

−∞
x(τ)δ(t − τ − t1)dτ = x(t − t1) (1.1.22)

What about the convolution of a delayed time function x(t − t2) and a delayed
unit impulse function δ(t − t1)? It becomes another delayed time function x(t −
t1 − t2), that is,

x(t − t2) ∗ δ(t − t1) =
∫ +∞

−∞
x(τ − t2)δ(t − τ − t1)dτ = x(t − t1 − t2) (1.1.23)

If x(t) ∗ y(t) = z(t), we have

x(t − t1) ∗ y(t − t2) = z(t − t1 − t2) (1.1.24)

However, with t replaced with t − t1 on both sides, it does not hold, i.e.,

x(t − t1) ∗ y(t − t1) �= z(t − t1), but x(t − t1)∗ y(t − t1) = z(t − 2t1)

10 1 Signals and Systems

(4) The unit impulse function δ(t) has the sampling or sifting property that

∫ +∞

−∞
x(t)δ(t − t1)dt

δ(t−t1)�=0 for only t=t1= x(t1)
∫ +∞

−∞
δ(t − t1)dt

(1.1.19)= x(t1)

(1.1.25)

This property enables us to sample or sift the sample value of a continuous-time
signal x(t) at t = t1. It can also be used to model a discrete-time signal obtained
from sampling a continuous-time signal.

In Sect. 1.1.2, the unit-sample, also called the Kronecker delta, sequence is
defined by Eq. (1.1.2b) as

δ[n] =
{

1 for n = 0

0 for n �= 0
(1.1.26)

This is the discrete-time counterpart of the unit impulse function δ(t) and thus is
also called the discrete-time impulse. Several useful properties of the unit-sample
sequence are summarized in the following remark:

Remark 1.2b Properties of the Unit-Sample Sequence δ[n]

(1) Like Eq. (1.1.20) for the unit impulse δ(t), the unit-sample sequence δ[n] is also
symmetric about n = 0, which is described by

δ[n] = δ[−n] (1.1.27)

(2) Like Eq. (1.1.21) for the unit impulse δ(t), the convolution of a time sequence
x[n] and the unit-sample sequence δ[n] makes the sequence itself:

x[n] ∗ δ[n]
definition of convolution sum=

∑∞
m=−∞ x[m]δ[n − m] =x[n] (1.1.28)

⎛
⎜⎜⎜⎜⎜⎜⎝

∵
∑∞

m=−∞ x[m]δ[n − m]
δ[n−m]�=0 for only m=n= ∑∞

m=−∞ x[n]δ[n − m]

x[n] independent of m= x[n]
∑∞

m=−∞ δ[n − m]

δ[n−m]�=0 for only m=n= x[n]δ[n − n]
(1.1.26)= x[n]

⎞
⎟⎟⎟⎟⎟⎟⎠

1.1 Signals 11

(3) Like Eqs. (1.1.22) and (1.1.23) for the unit impulse δ(t), the convolution of a
time sequence x[n] and a delayed unit-sample sequence δ[n − n1] makes the
delayed sequence x[n − n1]:

x[n] ∗ δ[n − n1] =
∑∞

m=−∞ x[m]δ[n − m − n1] =x[n − n1] (1.1.29)

x[n − n2] ∗ δ[n − n1] =
∑∞

m=−∞ x[m − n2]δ[n − m − n1] =x[n − n1 − n2]

(1.1.30)

Also like Eq. (1.1.24), we have

x[n] ∗ y[n] = z[n] ⇒ x[n − n1] ∗ y[n − n2] = z[n − n1 − n2] (1.1.31)

(4) Like (1.1.25), the unit-sample sequence δ[n] has the sampling or sifting prop-
erty that

∑∞
n=−∞ x[n]δ[n − n1] =

∑∞
n=−∞ x[n1]δ[n − n1] =x[n1] (1.1.32)

1.1.5 Several Models for the Unit Impulse Function

As depicted in Fig. 1.6(a)–(d), the unit impulse function can be modeled by the limit
of various functions as follows:

− δ(t) = lim
D→0+

1

D

sin(π t/D)

π t/D
= lim

D→0+

1

D
sinc(t/D)

π/D→w= lim
w→∞

w

π

sin(wt)

wt
(1.1.33a)

− δ(t) = lim
D→0+

1

D
rD

(
t + D

2

)
(1.1.33b)

− δ(t) = lim
D→0+

1

D
λD (t + D) (1.1.33c)

− δ(t) = lim
D→0+

1

2D
e−|t |/D (1.1.33d)

Note that scaling up/down the impulse function horizontally is equivalent to scaling
it up/down vertically, that is,

δ(at) = 1

|a|δ(t) (1.1.34)

It is easy to show this fact with any one of Eqs. (1.1.33a–d). Especially for
Eq. (1.1.33a), that is the sinc function model of δ(t), we can prove the validity of
Eq. (1.1.34) as follows:

12 1 Signals and Systems

8 D = 0.125

D = 0.250

D = 0.500
D = 1.000

D = 0.125

D = 0.250

D = 0.500
D = 1.000

D = 0.125

D = 0.250

D = 0.500
D = 1.000

D = 0.0625

D = 0.125

D = 0.250
D = 0.500

6

4

2

0

8

6

4

2

0

–1.5 –1 –0.5 0 0.5 1 1.5

8

6

4

2

0

–1.5 –1 –0.5 0 0.5 1 1.5

8

6

4

2

0

–1.5 –1 –0.5 0 0.5 1 1.5

–1.5 –1 –0.5 0 0.5 1 1.5

D 2
(b) rD

(t +)
1 D

D
(c) λD (t + D)1

(a)
1 sin (πt /D)

πt /DD
1

sinc ()=
D

t
D

e– t / D

2D
(d) 1

Fig. 1.6 Various models of the unit impulse function δ(t)

δ(at)
(1.1.33a)= lim

D→0+

1

D

sin(πat/D)

πat/D
= lim

D/|a|→0+

1

|a|(D/|a|)
sin(π t/(D/a))

π t/(D/a)
D/|a|→D′

= 1

|a| lim
D′→0+

1

D′
sin(π t/D′)

π t/D′
(1.1.33a)= 1

|a|δ(t)

On the other hand, the unit-sample or impulse sequence δ[n] can be written as

δ[n] = sin(πn)

πn
= sinc(n) (1.1.35)

where the sinc function is defined as

sinc(x) = sin(πx)

πx
(1.1.36)

1.2 Systems

A system is a plant or a process that produces a response called an output in
response to an excitation called an input. If a system’s input and output signals
are scalars, the system is called a single-input single-output (SISO) system. If a
system’s input and output signals are vectors, the system is called a multiple-input

1.2 Systems 13

the input the output

(a) A continuous−time system (b) A discrete−time system

G Gy (t) = G {x (t)}x (t)
the input the output

y [n] = G {x [n] }x [n]

Fig. 1.7 A description of continuous–time and discrete–time systems

multiple-output (MIMO) system. A single-input multiple-output (SIMO) system and
a multiple-input single-output (MISO) system can also be defined in a similar way.
For example, a spring-damper-mass system is a mechanical system whose output
to an input force is the displacement and velocity of the mass. Another example
is an electric circuit whose inputs are voltage/current sources and whose outputs
are voltages/currents/charges in the circuit. A mathematical operation or a com-
puter program transforming input argument(s) (together with the initial conditions)
into output argument(s) as a model of a plant or a process may also be called
a system.

A system is called a continuous-time/discrete-time system if its input and output
are both continuous-time/discrete-time signals. Continuous-time/discrete-time sys-
tems with the input and output are often described by the following equations and
the block diagrams depicted in Fig. 1.7(a)/(b).

Continuous-time system

x(t)
G{}→ y(t); y(t) = G{x(t)}

Discrete-time system

x[n]
G{}→ y[n]; y[n] = G{x[n]}

1.2.1 Linear System and Superposition Principle

A system is said to be linear if the superposition principle holds in the sense that it
satisfies the following properties:

- Additivity: The output of the system excited by more than one independent
input is the algebraic sum of its outputs to each of the inputs
applied individually.

- Homogeneity: The output of the system to a single independent input is
proportional to the input.

This superposition principle can be expressed as follows:

If the output to xi (t) is yi (t) = G{xi (t)},
the output to

∑
i

ai xi (t) is
∑

i
ai G{xi (t)},

that is,

If the output to xi [n] is yi [n] =
G{xi [n]}, the output to

∑
i

ai xi [n] is∑
i

ai G {xi [n]}, that is,

14 1 Signals and Systems

G

{∑
i

ai xi (t)

}
=
∑

i

ai G{xi (t)}

=
∑

i

ai yi (1.2.1a)

(Ex) A continuous-time linear system

y(t) = 2x(t)

(Ex) A continuous-time nonlinear system

y(t) = x(t) + 1

G

{∑
i

ai xi [n]

}
=
∑

i

ai G{xi [n]}

=
∑

i

ai yi [n] (1.2.1b)

(Ex) A discrete-time linear system

y[n] = 2x[n]

(Ex) A discrete-time nonlinear system

y[n] = x2[n]

Remark 1.3 Linearity and Incremental Linearity

(1) Linear systems possess a property that zero input yields zero output.
(2) Suppose we have a system which is essentially linear and contains some

memory (energy storage) elements. If the system has nonzero initial condi-
tion, it is not linear any longer, but just incrementally linear, since it violates
the zero-input/zero-output condition and responds linearly to changes in the
input. However, if the initial condition is regarded as a kind of input usually
represented by impulse functions, then the system may be considered to be
linear.

1.2.2 Time/Shift-Invariant System

A system is said to be time/shift-invariant if a delay/shift in the input causes
only the same amount of delay/shift in the output without causing any change of
the charactersitic (shape) of the output. Time/shift-invariance can be expressed as
follows:

If the output to x(t) is y(t), the output to
x(t − t1) is y(t − t1), i.e.,

G {x(t − t1)} = y(t − t1) (1.2.2a)

(Ex) A continuous-time time-invariant
system

y(t) = sin(x(t))

If the output to x[n] is y[n], the output
to x[n − n1] is y[n − n1], i.e.,

G {x[n − n1]} = y[n − n1] (1.2.2b)

(Ex) A discrete-time time-invariant
system

y[n] = 1

3
(x[n − 1] + x[n] + x[n + 1])

1.2 Systems 15

(Ex) A continuous-time time-varying
system

y′(t) = (sin(t) − 1)y(t) + x(t)

(Ex) A discrete-time time-varying
system

y[n] = 1

n
y[n − 1] + x[n]

1.2.3 Input-Output Relationship of Linear
Time-Invariant (LTI) System

Let us consider the output of a continuous-time linear time-invariant (LTI) system
G to an input x(t). As depicted in Fig. 1.8, a continuous-time signal x(t) of any
arbitrary shape can be approximated by a linear combination of many scaled and
shifted rectangular pulses as

x̂(t) =
∑∞

m=−∞ x(mT)
1

T
rT

(
t + T

2
− mT

)
T

T →dτ,mT →τ→
(1.1.33b)

x(t) = lim
T →0

x̂(t) =
∫ ∞

−∞
x(τ)δ(t − τ)dτ = x(t) ∗δ(t) (1.2.3)

Based on the linearity and time-invariance of the system, we can apply the superpo-
sition principle to write the output ŷ(t) to x̂(t) and its limit as T → 0:

ŷ(t) = G{x̂(t)} =
∑∞

m=−∞ x(mT)ĝT (t − mT)T

y(t) = G{x(t)} =
∫ ∞

−∞
x(τ)g(t − τ)dτ = x(t)∗g(t) (1.2.4)

Here we have used the fact that the limit of the unit-area rectangular pulse response
as T → 0 is the impulse response g(t), which is the output of a system to a unit
impulse input:

(a) Rectangular
 pulse

1

0 0 0

1
rT

(t

)

T
t t

(b) Rectangular pulse
 shifted by –T/2

(c) A continuous–time signal approximated by a linear
 combination of scaled/shifted rectangular pulses

–T/2 T/2
–2T

x (t)

x (t) x (0)
x (–T) x (T)

x (2T)
x (3T)

x (–2T)

^

3T2TT–T

+ T
2)rT

(t

Fig. 1.8 The approximation of a continuous-time signal using rectangular pulses

16 1 Signals and Systems

ĝT (t) = G

{
1

T
rT

(
t + T

2

)}
: the response of the LTI system to a unit-area

rectangular pulse input

T →0→ lim
T →0

gT (t) = lim
T →0

G

{
1

T
rT

(
t + T

2

)}

= G

{
lim
T →0

1

T
rT

(
t + T

2

)}
(1.1.33b)= G{δ(t)} = g(t) (1.2.5)

To summarize, we have an important and fundamental input-output relationship
(1.2.4) of a continuous-time LTI system (described by a convolution integral in
the time domain) and its Laplace transform (described by a multiplication in the
s-domain)

y(t) = x(t)∗ g(t)
Laplace transform→

Table B.7(4)
Y (s) = X (s)G(s) (1.2.6)

where the convolution integral, also called the continuous-time convolution, is
defined as

x(t)∗ g(t) =
∫ ∞

−∞
x(τ)g(t − τ)dτ =

∫ ∞

−∞
g(τ)x(t − τ)dτ = g(t)∗ x(t) (1.2.7)

(cf.) This implies that the output y(t) of an LTI system to an input can be expressed
as the convolution (integral) of the input x(t) and the impulse response g(t).

Now we consider the output of a discrete-time linear time-invariant (LTI) system
G to an input x[n]. We use Eq. (1.1.28) to express the discrete-time signal x[n] of
any arbitrary shape as

x[n]
(1.1.28)= x[n]∗ δ[n]

definition of convolution sum=
∑∞

m=−∞ x[m]δ[n − m] (1.2.8)

Based on the linearity and time-invariance of the system, we can apply the superpo-
sition principle to write the output to x[n]:

y[n] = G{x[n]} (1.2.8)= G
{∑∞

m=−∞ x[m]δ[n − m]
}

linearity=
∑∞

m=−∞ x[m]G{δ[n − m]}

time−invariance=
∑∞

m=−∞ x[m]g[n − m] = x[n]∗ g[n] (1.2.9)

Here we have used the definition of the impulse response or unit-sample response
of a discrete-time system together with the linearity and time-invariance of the
system as

1.2 Systems 17

G{δ[n]} = g[n]
time−invariance→ G{δ[n − m]} = g[n − m]

G{x[m]δ[n − m]} linearity= x[m]G{δ[n − m]} time−invariance= x[m]g[n − m]

To summarize, we have an important and fundamental input-output relationship
(1.2.9) of a discrete-time LTI system (described by a convolution sum in the time
domain) and its z-transform (described by a multiplication in the z-domain)

y[n] = x[n]∗ g[n]
z−transform→
Table B.7(4)

Y [z] = X [z]G[z] (1.2.10)

where the convolution sum, also called the discrete-time convolution, is defined as

x[n]∗ g[n] =
∑∞

m=−∞ x[m]g[n − m] =
∑∞

m=−∞ g[m]x[n − m] = g[n]∗ x[n]

(1.2.11)

(cf.) If you do not know about the z-transform, just think of it as the discrete-time
counterpart of the Laplace transform and skip the part involved with it. You
will meet with the z-transform in Chap. 4.

Figure 1.9 shows the abstract models describing the input-output relationships of
continuous-time and discrete-time systems.

1.2.4 Impulse Response and System (Transfer) Function

The impulse response of a continuous-time/discrete-time linear time-invariant (LTI)
system G is defined to be the output to a unit impulse input x(t) = δ(t)/
x[n] = δ[n]:

g(t) = G{δ(t)} (1.2.12a) g[n] = G{δ[n]} (1.2.12b)

As derived in the previous section, the input-output relationship of the system can
be written as

Impulse response g (t)

System (transfer) function G (s)=L{g (t)}

(a) A continuous−time system

Laplace
transform

x (t)
y (t)=x (t) * g (t) y [n]=x [n] * g [n]

Y [z]=X [z] G [z]Y (s)=X (s)G (s)
G

Impulse response g [n]

System (transfer) function G [z]=Z{g [n] }

(b) A discrete−time system

z - transformx [n] G

Fig. 1.9 The input-output relationships of continuous-time/discrete-time linear time-invariant
(LTI) systems

18 1 Signals and Systems

y(t)
(1.2.7)= x(t)∗ g(t)

L↔ Y (s)
(1.2.6)= X (s)G(s) y[n]

(1.2.11)= x[n]∗ g[n]
Z↔ Y [z]

(1.2.10)= X [z]G[z]

where x(t)/x[n], y(t)/y[n], and g(t)/g[n] are the input, output, and impulse
response of the system. Here, the transform of the impulse response, G(s)/G[z],
is called the system or transfer function of the system. We can also rewrite these
equations as

G(s) = Y (s)

X (s)
= L{y(t)}

L{x(t)} = L{g(t)}
(1.2.13a)

G[z] = Y [z]

X [z]
= Z{y[n]}

Z{x[n]} = Z{g[n]}
(1.2.13b)

This implies another definition or interpretation of the system or transfer function
as the ratio of the transformed output to the transformed input of a system with no
initial condition.

1.2.5 Step Response, Pulse Response, and Impulse Response

Let us consider a continuous-time LTI system with the impulse response and transfer
function given by

g(t) = e−at us(t) and G(s)
(1.2.13a)= L{g(t)} = L{e−at us(t)} Table A.1(5)= 1

s + a
,

(1.2.14)

respectively. We can use Eq. (1.2.6) to get the step response, that is the output to the

unit step input x(t) = us(t) with X (s)
Table A.1(3)= 1/s, as

Ys(s) = G(s)X (s) = 1

s + a

1

s
= 1

a

(
1

s
− 1

s + a

)
;

ys(t) = L−1{Ys(s)} Table A.1(3),(5)= 1

a
(1 − e−at)us(t) (1.2.15)

Now, let a unity-area rectangular pulse input of duration (pulsewidth) T and
height 1/T

x(t) = 1

T
rT (t) = 1

T
(us(t) − us(t − T)); X (s) = L{x(t)} = 1

T
L{us(t) − us(t − T)}

Table A.1(3), A.2(2)= 1

T

(
1

s
− e−T s 1

s

)
(1.2.16)

be applied to the system. Then the output gT (t), called the pulse response, is
obtained as

1.2 Systems 19

Impulse

Impulse
response

0
0.0

1

T = 0.5
T = 1.00

T
rT

(t

)

gT (t)

Rectangular pulse

Pulse response

1.0 2.0 3.0 4.0
t

δ (t)

g (t)

0 ←T

T = 0.125

T = 0.25

Fig. 1.10 The pulse response and the impulse response

YT (s) = G(s)X (s) = 1

T

(
1

s(s + a)
− e−T s 1

s(s + a)

)

= 1

aT

(
1

s
− 1

s + a
− e−T s

(
1

s
− 1

s + a

))
; gT (t) = L−1{YT (s)}

Table A.1(3),(5),A.2(2)= 1

aT

(
(1 − e−at)us(t) − (1 − e−a(t−T))us(t − T)

)
(1.2.17)

If we let T → 0 so that the rectangular pulse input becomes an impulse δ(t) (of
instantaneous duration and infinite height), how can the output be expressed? Tak-
ing the limit of the output equation (1.2.17) with T → 0, we can get the impulse
response g(t) (see Fig. 1.10):

gT (t)
T →0→ 1

aT

(
(1 − e−at)us(t) − (1 − e−a(t−T))us(t)

) = 1

aT
(eaT − 1)e−at us(t)

(D.25)∼=
aT →0

1

aT
(1 + aT − 1)e−at us(t) = e−at us(t)

(1.2.14)≡ g(t) (1.2.18)

This implies that as the input gets close to an impulse, the output becomes close to
the impulse response, which is quite natural for any linear time-invariant system.

On the other hand, Fig. 1.11 shows the validity of Eq. (1.2.4) insisting that the
linear combination of scaled/shifted pulse responses gets closer to the true output as
T → 0.

1.2.6 Sinusoidal Steady-State Response
and Frequency Response

Let us consider the sinusoidal steady-state response, which is defined to be the ever-
lasting output of a continuous-time system with system function G(s) to a sinusoidal
input, say, x(t) = A cos(ωt + φ). The expression for the sinusoidal steady-state

20 1 Signals and Systems

: x(t)
: x(t)

: x(t)

1

0.5

0.5 1 1.5 2

0.4

0.2

0
0 1 2 3 4

0.4

0.2

0
0 1 2 3 4

0

1

0

1

0.5

0.5 1 1.5 2
0

0

^

: x(t)^
:y (t) =

2

3

1

2

3

4

5

1

2

3

5

1 2 3

4
3

21

T

T

+ + +...

:y (t) = 1 2 3+ +

: y (t)

: y (t)

(a1) The input x (t) and its approximation x (t) with T = 0.5^

(a2) The input x (t) and its approximation x (t) with T = 0.25^ (b2) The outputs to x (t) and x (t)^

^

(b1) The outputs to x (t) and x (t)^

^

Fig. 1.11 The input–output relationship of a linear time–invariant (LTI) system – convolution

response can be obtained from the time-domain input-output relationship (1.2.4).
That is, noting that the sinusoidal input can be written as the sum of two complex
conjugate exponential functions

x(t) = A cos (ωt + φ)
(D.21)= A

2
(e j(ωt+φ) + e− j(ωt+φ)) = A

2
(x1(t) + x2(t)), (1.2.19)

we substitute x1(t) = e j(ωt+φ) for x(t) into Eq. (1.2.4) to obtain a partial steady-state
response as

y1(t) = G{x1(t)} (1.2.4)=
∫ ∞

−∞
x1(τ)g(t − τ)dτ =

∫ ∞

−∞
e j(ωτ+φ)g(t − τ)dτ

= e j(ωt+φ)
∫ ∞

−∞
e− jω(t−τ)g(t − τ)dτ = e j(ωt+φ)

∫ ∞

−∞
e− jωt g(t)dt

= e j(ωt+φ)G(jω) (1.2.20)

with

G(jω) =
∫ ∞

−∞
e− jωt g(t)dt

g(t)=0 for t<0=
causal system

∫ ∞

0
g(t)e− jωt dt

(A.1)= G(s)|s= jω (1.2.21)

Here we have used the definition (A.1) of the Laplace transform under the assump-
tion that the impulse response g(t) is zero ∀t < 0 so that the system is causal (see
Sect. 1.2.9). In fact, every physical system satisfies the assumption of causality that
its output does not precede the input. Here, G(jω) obtained by substituting s = jω
(ω: the analog frequency of the input signal) into the system function G(s) is called
the frequency response.

1.2 Systems 21

The total sinusoidal steady-state response to the sinusoidal input (1.2.19) can be
expressed as the sum of two complex conjugate terms:

y(t) = A

2

(
y1(t) + y2(t)

)
= A

2

{
e j(ωt+φ)G(jω) + e− j(ωt+φ)G(− jω)

}

= A

2

{
e j(ωt+φ)|G(jω)|e jθ(ω) + e− j(ωt+φ)|G(− jω)|e− jθ(ω)

= A

2
|G(jω)|

{
e j(ωt+φ+θ(ω)) + e− j(ωt+φ+θ(ω))

}

(D.21)= A|G(jω)| cos(ωt + φ + θ (ω)) (1.2.22)

where |G(jω)| and θ (ω) = ∠G(jω) are the magnitude and phase of the frequency
response G(jω), respectively. Comparing this steady-state response with the sinu-
soidal input (1.2.19), we see that its amplitude is |G(jω)| times the amplitude A of
the input and its phase is θ (ω) plus the phase φ of the input at the frequency ω of
the input signal.

(cf.) The system function G(s) (Eq. (1.2.13a)) and frequency response G(jω)
(Eq. (1.2.21)) of a system are the Laplace transform and Fourier transform
of the impulse response g(t) of the system, respectively.

Likewise, the sinusoidal steady-state response of a discrete-time system to a
sinusoidal input, say, x[n] = A cos(Ωn + φ) turns out to be

y[n] = A|G[e jΩ]| cos(Ωn + φ + θ (Ω)) (1.2.23)

where

G[e jΩ] =
∑∞

n=−∞ g[n]e− jΩn g[n]=0 for n<0=
causal system

∑∞
n=0

g[n]e− jΩn Remark 4.5= G[z]|z=e jΩ

(1.2.24)
Here we have used the definition (4.1) of the z-transform. Note that G[e jΩ] obtained
by substituting z = e jΩ (Ω: the digital frequency of the input signal) into the system
function G[z] is called the frequency response.

Remark 1.4 Frequency Response and Sinusoidal Steady-State Response

(1) The frequency response G(jω) of a continuous-time system is obtained by sub-
stituting s = jω (ω: the analog frequency of the input signal) into the system
function G(s). Likewise, the frequency response G[e jΩ] of a discrete-time sys-
tem is obtained by substituting z = e jΩ (Ω: the digital frequency of the input
signal) into the system function G[z].

22 1 Signals and Systems

(2) The steady-state response of a system to a sinusoidal input is also a sinusoidal
signal of the same frequency. Its amplitude is the amplitude of the input times
the magnitude of the frequency response at the frequency of the input. Its
phase is the phase of the input plus the phase of the frequency response at the
frequency of the input (see Fig. 1.12).

Input x (t) = Output y (t) =
A⎪G (j ω) ⎪cos(ωt + φ + θ)

: Magnitude of the frequency response
: Phase of the frequency response

(a) A continuous-time system

A cos(ωt + φ)

G (j ω)
θ(ω) = ∠G (j ω)

G (s) G [z]
Input x [n] = Output y [n] =

A⎪G(e
j

Ω) ⎪cos(Ωn + φ + θ)

(b) A discrete-time system

A cos(Ωn + φ)

G [e
j

Ω] : Magnitude of the frequency response

θ(Ω) = ∠G [e
j

Ω] : Phase of the frequency response

Fig. 1.12 The sinusoidal steady–state response of continuous-time/discrete-time linear time-
invariant systems

1.2.7 Continuous/Discrete-Time Convolution

In Sect. 1.2.3, the output of an LTI system was found to be the convolution of the
input and the impulse response. In this section, we take a look at the process of
computing the convolution to comprehend its physical meaning and to be able to
program the convolution process.

The continuous-time/discrete-time convolution y(t)/y[n] of two functions/
sequences x(τ)/x[m] and g(τ)/g[m] can be obtained by time-reversing one of them,
say, g(τ)/g[m] and time-shifting (sliding) it by t/n to g(t−τ)/g[n−m], multiplying
it with the other, say, x(τ)/x[m], and then integrating/summing the multiplication,
say, x(τ)g(t − τ)/x[m]g[n − m]. Let us take a look at an example.

Example 1.1 Continuous-Time/Discrete-Time Convolution of Two Rectangular
Pulses

(a) Continuous-Time Convolution (Integral) of Two Rectangular Pulse Functions
rD1 (t) and rD2 (t) Referring to Fig. 1.13(a1–a8), you can realize that the
convolution of the two rectangular pulse functions rD1 (t) (of duration D1) and
rD2 (t) (of duration D2 < D1) is

rD1(t)∗rD2 (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t for 0 ≤ t < D2

D2 for D2 ≤ t < D1

−t + D for D1 ≤ t < D = D1 + D2

0 elsewhere

(E1.1.1a)

The procedure of computing this convolution is as follows:

- (a1) and (a2) show rD1 (τ) and rD2 (τ), respectively.
- (a3) shows the time-reversed version of rD2 (τ), that is rD2 (−τ). Since there is

no overlap between rD1 (τ) and rD2 (−τ), the value of the convolution rD1 (t)∗
rD2 (t) at t = 0 is zero.

1.2 Systems 23

(a1)

(a2)

(a3)

(a4)

(a5)

(a6)

(a7)

(a8)
D2

D2

–D2

D2

D1

D2

D1

D1

0

0

0

0

0

0

0

0

D1

D

D = D1 + D2

r D1
(τ) * rD2

(τ)

r D2
(D1 – τ)

r D2
(D1 + D2 – τ)

r D2
(D2 – τ)

r D2
(– τ)

r D2
(τ)

r D1
(τ)

t

D1 + D2

D1 – D2

τ (b1)

(b2)

(b3)

(b4)

(b5)

(b6)

(b7)

(b8)
0

0

0

0

0

0

D = D1 + D2 – 1
r D1

[n] * rD2
[n]

D2 – 1

D1 – 1

D1 – 1

D2 – 1

–(D2 – 1)

0

0 1 2

D2 – 1

(D1 – 1)Ts

D1 – 1 D–1

D2

D1 + D2 – 2

r D2
[D1 + D2 – 2 – m]

r D2
[D1 – 1 – m]

r D2
[D2 – 1 – m]

r D2
[– m]

r D2
[m]

r D1
[m]

m

m

m

m

m

m

m

n

D1 – D2

Ts

τ
[sec]

τ

τ

τ

τ

τ

τ

D1 – 1

Fig. 1.13 Continuous–time/discrete–time convolution of two rectangular pulses

- (a4) shows the D2-delayed version of rD2 (−τ), that is rD2 (D2 − τ). Since
this overlaps with rD1 (τ) for 0 ≤ τ < D2 and the multiplication of them is 1
over the overlapping interval, the integration (area) is D2, which will be the
value of the convolution at t = D2. In the meantime (from t = 0 to D2), it
gradually increases from t = 0 to D2 in proportion to the lag time t .

- As can be seen from (a4)–(a6), the length of the overlapping interval between
rD2 (t −τ) and rD1 (τ) and the integration of the multiplication is kept constant
as D2 till rD2 (t − τ) is slided by D1 to touch the right end of rD1 (τ). Thus the
value of the convolution is D2 all over D2 ≤ t < D1.

24 1 Signals and Systems

- While the sliding rD2 (t − τ) passes by the right end of rD1 (τ), the length of
the overlapping interval with rD1 (τ) and the integration of the multiplication
decreases gradually from D2 to 0 till it passes through the right end of rD1 (τ)
at t = D1 + D2 as shown in (a7).

- After the left end of rD2 (t − τ) passes by the right end of rD1 (τ) at t =
D1 + D2, there is no overlap and thus the value of the convolution is zero all
over t ≥ D1 + D2.

- The convolution obtained above is plotted against the time lag t in (a8).

(b) Discrete-Time Convolution (Sum) of Two Rectangular Pulse Sequences rD1 [n]
and rD2 [n] Referring to Fig. 1.13(b1–b8), you can realize that the convolution
of the two rectangular pulse sequences rD1 [n] (of duration D1) and rD2 [n] (of
duration D2 < D1) is as follows:

rD1[n]∗rD2 [n] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n + 1 for 0 ≤ n < D2

D2 for D2 ≤ n < D1

−n + D for D1 ≤ n < D = D1 + D2 − 1

0 elsewhere

(E1.1.1b)

The procedure of computing this discrete-time convolution is similar to that
taken to get the continuous-time convolution in (a). The difference is as follows:

- The value of rD1 [n] ∗ rD2 [n] is not zero at n = 0 while that of rD1 (t) ∗ rD2 (t)
is zero at t = 0.

- The duration of rD1 [n] ∗ rD2 [n] is from n = 0 to D1 + D2 − 2 while that of
rD1 (t) ∗ rD2 (t) is from t = 0 to D1 + D2.

(cf.) You had better try to understand the convolution process rather graphically
than computationally.

(cf.) Visit the web site <http://www.jhu.edu/∼signals/> to appreciate the joy of
convolution.

Remark 1.5 Continuous-Time/Discrete-Time Convolution of Two Rectangular
Pulses

(1) If the lengths of the two rectangular pulses are D1 and D2 (with D1 > D2),
respectively, the continuous-time and discrete-time convolutions have the dura-
tion of D1 + D2 and D1 + D2 − 1, respectively and commonly the height
of D2.

(2) If the lengths of the two rectangular pulses are commonly D, the continuous-
time and discrete-time convolutions are triangular pulses whose durations are
2D and 2D − 1, respectively and whose heights are commonly D:

rD(t)∗rD(t) = DλD(t) (1.2.25a)

rD[n]∗rD[n] = DλD[n] (1.2.25b)

1.2 Systems 25

3
2
1
0

0 2 4 6T t [sec]

0 2 4 6T t [sec]

0 2 4 6T t [sec]

(a1) x (t)

x(t)

g (t)

(a2) g (t)

(a3) y (t) = x (t)*g(t)

y1TλT (t−T)

y0TλT (t) y2TλT (t − 2T)

–1

3 6

4
2

0

0 5 10

2

2
(b1) xb[n] (c1) xc[n]

(c2) gc[n]

gc[n]

gb[n]

(b2) gb[n]

(b3) yb[n] = xb[n] *gb[n] (c3) yc[n] = xc[n] *gc[n]

4 6

1
0

0

–1

3
2
1
0

–1

3
2
1
0

–1

n

3
2

2 4 6

1
0

0

–1

n

3
2

2 4 6

1
0

0

–1

n

x3

x2
Ts

x0

y0

y1 y2 y3

y4

y5

g0 g1 g2

x1 xb[n]
xc[n]

n

6

4
2

0

0 5 10 n

6

4
2

0

0 5 10 n

Ts

Fig. 1.14 Approximation of a continuous–time convolution by a discrete–time convolution

The above example implies that the continuous-time convolution x(t) ∗ g(t) can
be approximated by the limit of a discrete-time convolution x(nTs) ∗ g(nTs)Ts as
Ts → 0 where Ts is the sampling period. Let us take a look at another example.

Example 1.2 Approximation of a Continuous-Time Convolution by a Discrete-
Time One

Figure 1.14(a1), (a2), and (a3) show two continuous-time signals, x(t), g(t), and
their convolution y(t) = x(t) ∗ g(t), respectively where y(t) is actually a discrete-
time version y(nTs), which is obtained as follows:

- We sample x(t) and g(t) every Ts = 0.01 [s] to make two sequences x(nTs) and
g(nTs).

- We use the MATLAB function conv() to compute their discrete-time convolu-
tion and multiply it by the sampling interval Ts to get y(nTs) = x(nTs)∗g(nTs)Ts

as we do in the numerical integration.

Figure 1.14(b1)/(c1), (b2)/(c2), and (b3)/(c3) show two discrete-time signals x[n],
g[n], and their discrete-time convolution y[n] = x[n] ∗ g[n] (computed using
conv()), respectively where x[n] and g[n] are obtained by sampling x(t) and g(t)
with sampling period Ts = 1/Ts = 0.5.

Interested readers are welcome to run the following MATLAB program
“sig01f14.m”.

26 1 Signals and Systems

%sig01f14.m: Fig.1.14
clear, clf
x=[1 2 -1 1]; g=[1 1 1];
t0 x=0;t0 g=0; %t0 x=1; t0 g=-2; % the initial time indices of x and g
% Continuous-Time Convolution
T=1; Ts=0.01; dt=Ts; M=T/Ts; %Interval T, Sampling period Ts, and # of Ts per T
xt= ones(M,1)*x; xt=xt(:).’; Nxt=length(xt);
gt= ones(M,1)*g; gt=gt(:).’; Ngt=length(gt);
yt= conv(xt,gt)*Ts; Nyt=length(yt); % the length of convolution Nxt+Ngt-1
NytM=Nyt+M; % plotting interval extended by one interval T
t0 y=t0 x+t0 g; tt= min([t0 x t0 g t0 y])+[0:NytM-1]*Ts;
xt = [zeros(1,fix((t0 x-tt(1))/Ts)) xt]; xt =[xt zeros(1,NytM-length(xt))];
gt = [zeros(1,fix((t0 g-tt(1))/Ts)) gt]; gt =[gt zeros(1,NytM-length(gt))];
yt = [zeros(1,fix((t0 y-tt(1))/Ts)) yt]; yt = [yt zeros(1,NytM-length(yt))];
ymax= max([xt gt yt])+0.5; ymin= min([xt gt yt])-0.5;
subplot(331), plot(tt,xt), axis([tt([1 end]) ymin ymax])
subplot(334), plot(tt,gt), axis([tt([1 end]) ymin ymax])
subplot(337), plot(tt,yt), axis([tt([1 end]) ymin ymax])
% Discrete-Time Convolution
Ts=1; n0 x = t0 x/Ts; n0 g = t0 g/Ts;
xn=xt(1:Ts/dt:4*M), gn=gt(1:Ts/dt:3*M)
Nx=length(xn); Ng=length(gn); % the length of convolution Nx+Ng-1
yn=conv(xn,gn); Ny=length(yn);
xn extended=[zeros(1,Ng-1) xn]; gn reversed= fliplr(gn);
gr extended= [gn reversed zeros(1,Ny-Ng)];
for n=1:Ny % Instead of conv(), we slide g[-n], multiply x[n], and take sum.

yn1(n)=xn extended*gr extended.’;
gr extended= [0 gr extended(1:Ny-1)];

end
Ny1=Ny+3; % plotting interval extended by two samples
n0 y=n0 x+n0 g; nn= min([n0 x n0 g n0 y])+[-1:Ny1-2];
xn = [zeros(1,n0 x-nn(1)) xn]; xn = [xn zeros(1,Ny1-length(xn))];
gn = [zeros(1,n0 g-nn(1)) gn]; gn = [gn zeros(1,Ny1-length(gn))];
yn = [zeros(1,n0 y-nn(1)) yn]; yn = [yn zeros(1,Ny1-length(yn))];
ymax= max([xn gn yn])+0.5; ymin= min([xn gn yn])-0.5;
subplot(332), stem(nn,xn ,’.’), axis([nn([1 end]) ymin ymax])
subplot(335), stem(nn,gn ,’.’), axis([nn([1 end]) ymin ymax])
subplot(338), stem(nn,yn ,’.’), axis([nn([1 end]) ymin ymax])

The systems, called tapped delay lines, to be discussed in the following example
are essentially continuous-time systems. However, they behave like discrete-time
systems in terms of the input-output relationship and thus are expected to be a link
between continuous-time systems and discrete-time ones.

Example 1.3 Tapped Delay Lines

(a) Tapped Delay Lines
Consider the continuous-time LTI system depicted in Fig. 1.15(a) where its
impulse response and system function are

g(t) =
∑∞

n=−∞ gnδ(t − nT); G(s) = L{g(t)} =
∑∞

n=−∞ gne−snT (E1.3.1)

1.2 Systems 27

Let the input and its Laplace transform be

x(t) =
∑∞

m=−∞ xmδ(t − mT); X (s) = L{x(t)} =
∑∞

m=−∞ xme−smT

(E1.3.2)
Then we claim that the output and its Laplace transform will be

y(t) =
∑∞

k=−∞ ykδ(t − kT); Y (s) = L{y(t)} =
∑∞

k=−∞ yke−skT (E1.3.3)

with

yk = xk∗gk =
∑∞

m=−∞ xm gk−m ; Y [z] = Z{yk} = X [z]G[z] (E1.3.4)

Proof

y(t) = x(t)∗g(t) =
∑∞

m=−∞ xmδ(t − mT)∗
∑∞

n=−∞ gnδ(t − nT)

=
∑∞

m=−∞

∑∞
n=−∞ xm gnδ(t − mT)∗δ(t − nT)

(1.1.23)=
∑∞

m=−∞

∑∞
n=−∞ xm gnδ(t − mT − nT)

m+n→k=
n→k−m

∑∞
k=−∞

∑∞
m=−∞ xm gk−mδ(t − kT)

=
∑∞

k=−∞ ykδ(t − kT) with yk =
∑∞

m=−∞ xm gk−m

(b) Tapped Delay Lines with a Zero-Order Hold at its Output Consider the
continuous-time LTI system with a zero-order hold (z.o.h.) device at its output
as depicted in Fig. 1.15(b) where its impulse response is

ḡ(t) =
∑∞

n=−∞ gnrT (t − nT) =
∑∞

n=−∞ gn(us(t − nT) − us(t − nT − T))

(E1.3.5)
Let the input be

x̄(t) =
∑∞

m=−∞ xmrT (t − mT) =
∑∞

m=−∞ xm(us(t − mT)−us(t −mT −T))

(E1.3.6)
Then we claim that the output will be

y(t) =
∑∞

k=−∞ yk T λT (t − kT) (E1.3.7)

with

yk = xk∗gk =
∑∞

m=−∞ xm gk−m (E1.3.8)

28 1 Signals and Systems

k = 0

k = 0

y0

k = 1

e–sT e–sT

e–sT e–sT e–sT

e–sT

e–sT

x (t)

g(t) =
y(t)

x (t)

y (t)

x (t–T)

x (t–T)

x (t–2T)

x (t–2T)

x (t–nT)

x (t–nT)

k = 2 k = n–1 k = n

x0
x1
x2

k = 1
k = 2..

x0g0 x0g1 x0g2 x0gn–1 x0gn.

x1gn–1x1gn–2x1g1x1g0

x2gn–2x2gn–3x2g0

.

y1 y2 yn–1 yn.

..

++ + +

+ +

=====

+ + +

gn–1 gng2g1g0

g0 g1 g2

x0
x0x1

multiplier

(a) Tapped delay lines

(b) Tapped delay lines with zero-order hold (z.o.h.) device

:
:
:
:

delay of T seconds
signal distribution point
adder

gn

gn–1 gn

z.o.h.
∑ ∞

n=–∞gnrT (t–nT)

g (t) = ∑ ∞
n=–∞gnδ (t–nT)

x(t) = ∑ ∞
m=–∞xmδ (t–mT)

y(t) = ∑ ∞
k=–∞ykTλT(t–kT)

x(t) = ∑ ∞
m=–∞xmrT (t–mT)

y(t) = ∑ ∞
k=–∞ykδ (t–kT)

–

Fig. 1.15 Systems for Example 1.3(a) and (b)

Proof

y(t) = x̄(t)∗ḡ(t) =
∑∞

m=−∞ xmrT (t − mT)∗
∑∞

n=−∞ gnrT (t − nT)

=
∑∞

m=−∞

∑∞
n=−∞ xm gnrT (t − mT)∗rT (t − nT)

(1.2.25a)=
(1.1.24)

∑∞
m=−∞

∑∞
n=−∞ xm gnT λT (t − mT − nT)

m+n→k=
n→k−m

∑∞
k=−∞

∑∞
m=−∞ xm gk−m T λT (t − kT)

=
∑∞

k=−∞ yk T λT (t − kT) with yk =
∑∞

m=−∞ xm gk−m

(cf.) Fig. 1.14(a1–a3) shows the validity of Eq. (E1.3.7).

1.2 Systems 29

1.2.8 Bounded-Input Bounded-Output (BIBO) Stability

A system is said to be (BIBO) stable if every bounded input produces a bounded
output. To find the stability condition for LTI systems with impulse response
g(t)/g[n], suppose we have a bounded input x(t)/x[n] such that

|x(t)| < B < ∞ for all t (1.2.26a) |x[n]| < B < ∞ for all n (1.2.26b)

Then we can use the input-output relationship (1.2.6)/(1.2.9) of the continuous-
time/discrete-time LTI system to express the magnitude of the output as

|y(t)| (1.2.6)=
∣∣∣∣
∫ ∞

−∞
x(τ)g(t − τ)dτ

∣∣∣∣
≤
∫ ∞

−∞
|x(τ)||g(t − τ)|dτ

(1.2.26a)≤ B
∫ ∞

−∞
|g(t − τ)|dτ

= B
∫ ∞

−∞
|g(τ)|dτ

|y[n]| (1.2.9)=
∣∣∣∑∞

m=−∞ x[m]g[n − m]
∣∣∣

≤
∑∞

m=−∞ |x[m]||g[n − m]|
(1.2.26b)≤ B

∑∞
m=−∞ |g[n − m]|

= B
∑∞

m=−∞ |g[m]|

which means that the output is also bounded. This implies that the system is
(BIBO) stable if the impulse response g(t)/g[n] is absolutely integrable/
summable, i.e.,∫ ∞

−∞
|g(τ)|dτ < ∞ (1.2.27a)

∑∞
m=−∞ |g[m]| < ∞ (1.2.27b)

In fact, this condition is not only sufficient but also necessary for stability of
continuous-time/discrete-time systems since if it is not satisfied, we can find a
bounded input which makes the output unbounded (see Problem 1.5). The following
remark restates the stability condition in terms of the pole locations of the system
functions where the poles are the values of s or z at which the denominator of G(s)
or G[z] becomes zero.

Remark 1.6 Stability of LTI Systems with System Function G(s)/G[z]

A continuous-time/discrete-time linear time-invariant (LTI) system having the
system function G(s) = L{g(t)} / G[z] = Z{g[n]} is stable if and only if all the
poles of G(s) / G[z] are strictly within the left-half s -plane/the unit circle in the z
-plane (see Remarks 2.5, 3.2, 4.5, and Theorem A.1 in Appendix A).

30 1 Signals and Systems

1.2.9 Causality

A signal x(t)/x[n] is said to be causal if it is zero for all t < 0 / n < 0. A system is
said to be causal or non-anticipatory if the response (output) of the system does not
precede the excitation (input), i.e., the output depends only on the present and past
values of the input. In other words, the output of a causal system to an input appears
only while or after the input is applied to the system. The necessary and sufficient
condition for the system causality is that the impulse response is causal, i.e.,

g(t) = 0 for all t < 0 (1.2.28a) g[n] = 0 for all n < 0 (1.2.28b)

since the impulse response g(t) / g[n] means the output measured at time t [s]/ n
[samples] after the impulse signal is applied as an input.

We can use Eqs. (1.2.6)/(1.2.10) (with Eqs. (1.2.7)/(1.2.11)) to write the time-
domain input-output relationships of continuous-time/discrete-time causal LTI sys-
tems as

y(t) =
∫ ∞

−∞
x(τ)g(t − τ)dτ

g(t−τ)=0 for t−τ<0=
causal

∫ t

−∞
g(τ)x(t − τ)dτ

=
∫ t0

−∞
x(τ)g(t − τ)dτ +

∫ t

t0

x(τ)g(t − τ)dτ ;

y(t) = y(t0) +
∫ t

t0

x(τ)g(t − τ)dτ (1.2.29a)

y[n] =
∑∞

m=−∞ x[m]g[n − m]

g[n−m]=0 for n−m<0=
causal

∑n

m=−∞ x[m]g[n − m]

=
∑n0

m=−∞ x[m]g[n − m]

+
∑n

m=n0+1
x[m]g[n − m];

y[n] = y[n0] +
∑n

m=n0+1
x[m]g[n − m]

(1.2.29b)

In fact, all physical systems such as analog filters are causal in the sense that they
do not react to any input before it is applied to them. As a contraposition, a non-
causal or anticipatory system is not physically realizable. Causal filters are typically
employed in applications where the inputs are (on-line) processed as they arrive. An
example of non-causal system is a digital filter for image processing, which collects
the input data x[m, n]’s in one frame for some period and processes them at a time
where m and n are spatial indices.

1.2.10 Invertibility

A system is said to be invertible if distinct inputs produce distinct outputs. If a
system G is invertible, then it is possible to design its inverse system H which,
connected in cascade with G at the output port, receives the output of G to restore
the input (applied to G) as its output.

Especially for an LTI system G with the impulse response g(t)/g[n], the impulse
response h(t)/h[n] of its inverse system H must satisfy the following condition:
(see Problem 1.6)

1.3 Systems Described by Differential/Difference Equations 31

g(t)∗h(t) = δ(t); G(s)H (s) = 1 (1.2.30a)

g[n]∗h[n] = δ[n]; G[z]H [z] = 1 (1.2.30b)

(cf.) An example of non-invertible system is a gambler (with a poker face) whose
face (output) does not vary with his card (input) so that other gamblers cannot
make the inverse system reading his card from his face.

1.3 Systems Described by Differential/Difference Equations

1.3.1 Differential/Difference Equation and System Function

The time-domain input-output relationships of continuous-time/discrete-time sys-
tems are often described by linear constant-coefficient differential/difference equa-
tions that are set up based on underlying physical laws or design specifications to
make it perform desired operations:

∑N

i=0
ai

di y(t)

dti
=
∑M

j=0
b j

d j x(t)

dt j

with the initial conditions

y(t0), y′(t0), · · · , y(N−1)(t0)

∑N

i=0
ai y[n − i] =

∑M

j=0
b j x[n − j]

with the initial conditions

y[n0], y[n0 − 1], · · · , y[n0 − N + 1]

With zero initial conditions, this can be transformed to make the system or transfer
function as

∑N

i=0
ai s

i Y (s) =
∑M

j=0
b j s

j X (s)

A(s)Y (s) = B(s)X (s);

G(s) = Y (s)

X (s)
= B(s)

A(s)
(1.3.1a)

where

A(s) =
∑N

i=0
ai s

i , B(s) =
∑M

j=0
b j s

j

∑N

i=0
ai z

−i Y [z] =
∑M

j=0
b j z

− j X [z]

A[z]Y [z] = B[z]X [z];

G[z] = Y [z]

X [z]
= B[z]

A[z]
(1.3.1b)

where

A[z] =
∑N

i=0
ai z

−i , B[z] =
∑M

j=0
b j z

− j

Note the following:
- The poles/zeros of the system function G(s) or G[z] are the values of s or z at

which its denominator/numerator becomes zero.

32 1 Signals and Systems

- The degree N of the denominator A(s)/A[z] of the system function G(s)/G[z] is
called the order of the system. If N �= 0, the system is said to be recursive in the
sense that its output depends on not only the input but also the previous output;
otherwise, it is said to be non-recursive or memoryless and its output depends
only on the input.

- Especially, discrete-time recursive and non-recursive systems are called IIR
(infinite-duration impulse response) and FIR (f inite-duration impulse response)
systems, respectively since the duration of the impulse response of recursive/non-
recursive system is infinite/finite, respectively.

1.3.2 Block Diagrams and Signal Flow Graphs

Systems are often described by graphical means such as block diagrams or sig-
nal flow graphs. As an example, let us consider an RC circuit or its equivalent
depicted in Fig. 1.16(a). We can apply Kirchhoff’s current law to write the node
equation, take its Laplace transform with zero initial conditions, and find the system
function as

Input voltage
source

(a) An RC circuit and its equivalent with the voltage-to-current source transformation

vi (t)

Vi (s) Vo(s) Vi [z] I [z]

i [n]

I [z]

i [n]

vi [n]

Vi [z]

Vi [z]

vi [n]

Vo [z]

vo [n]

Vo [z]

Vo [z]

vo [n]

vo(t)

Vo (s)

Vo (s)

vo (t)

I (s)

i (t)

I (s)

i (t)

Vi –Vo Vi –Vo

vi –vo
vi –vovi (t)

Vi (s)

vi (t)

vo(t) vi (t) vo (t)Ci (t)
+

+

(b1) Block diagram representation

(c1) Signal flow graph representation

(d1) State diagram (d2) State diagram

(c2) Signal flow graph representation

(b2) Block diagram representation

–

–

+

–

R

R Cs

R C

11
R
1

C (1–z –1)
Tz –1

C (1–z –1)
Tz –1

adder adder

adder

1/R 1/R

T/RC

1/Cs

I (s)Vi (s) adder 1/R 1/C s –1 z –1

–1

–1–1

–1

R

Fig. 1.16 Block diagram, signal flow graph, and state diagram representations of a system

1.3 Systems Described by Differential/Difference Equations 33

C
dvo(t)

dt
+ vo(t)

R
= vi (t)

R
(1.3.2a)

Laplace transform→
B.7(5)

CsVo(s) + 1

R
Vo(s) = 1

R
Vi (s) → G(s) = Vo(s)

Vi (s)
= 1

RCs + 1

(1.3.3a)

We may replace the derivative dvo(t)/dt with its difference approximation

dvo(t)

dt
∼= vo((n + 1)T) − vo(nT)

T
= vo[n + 1] − vo[n]

T

with sampling interval T to discretize the differential equation into a difference
equation, take its z -transform with zero initial conditions, and find the system
function as

C
vo[n + 1] − vo[n]

T
+ vo[n]

R
= vi [n]

R
(1.3.2b)

z−transform→
B.7(2)

C
zVo[z] − Vo[z]

T
+ 1

R
Vo[z] = 1

R
Vi [z]

→ G[z] = Vo[z]

Vi [z]
= 1

RC(z − 1)/T + 1
(1.3.3b)

Fig. 1.16(b1)/(b2) show the block diagram representing the continuous-time/
discrete-time system whose input-output relationship is described by Eqs. (1.3.2a)/
(1.3.2b) in the time domain and (1.3.3a)/(1.3.3b) in the s- / z -domain.
Figure 1.16(c1)/(c2) and (d1)/(d2) show their signal flow graph representations
where a branch from node j to node i denotes the causal relationship that the
signal j is multiplied by the branch gain and contributes to the signal i . Espe-
cially, Fig. 1.16(d1) is called a continuous-time state diagram since all branch gains
are constants or s−1 (denoting an integrator). Likewise, Fig. 1.16(d2) is called a
discrete-time state diagram since all branch gains are constants or z−1 (denoting a
delay T).

Since signal flow graphs are simpler to deal with than block diagrams, we will
rather use signal flow graphs than block diagrams. A signal flow graph was origi-
nally introduced by S.J. Mason as a graphical means of describing the cause-effect
relationship among the variables in a set of linear algebraic equations. It consists of
nodes connected by line segments called branches. Each node represents a signal
(variable), whose value is the sum of signals coming along all the branches from
other nodes and being multiplied by the branch gain. Every branch has the gain and
direction that determine or are determined by the cause-effect relationship among
the variables denoted by its nodes. Note that a branch with no gain indicated is
supposed to have unity gain.

34 1 Signals and Systems

For example, we consider the following set of linear equations:

y2 = a12 y1 + a32 y3, y3 = a23 y2 + a43 y4,

y4 = a34 y3 + a44 y4 + a54 y5, y5 = a25 y2 + a35 y3 + a45 y4

which describes the cause-effect relationship among the variables y1, y2, y3, y4,
and y5 with the causes/effects in the right/left-hand side, respectively. Figure 1.17
shows a signal flow graph representing the relationships described by this set of
equations.

Input
node

Output
nodey1 y2 y3 y4 y5 y5a12 a23 a34

a44

a43a32

a35
a54

a25

a45

1

Fig. 1.17 A signal flow graph

1.3.3 General Gain Formula – Mason’s Formula

In this section we introduce Mason’s gain formula, which is applied to signal flow
graphs to yield the overall gain from an input node to an output node. To understand
how to use the formula, we need to know the following terms:

- Input Node (Source) : A node having only outgoing branches.
- Output Node (Sink) : A node having only incoming branches.

(cf.) Note that, in contrast with the input node, the output node may not be clearly
seen. Suppose we don’t have the dotted branch in the signal flow graph
depicted in Fig. 1.17. In that case, if we regard y5 as an output, we may
draw a branch with unity gain from the node for y5 so that the node appears
to be an output node.

- Path: A continuous connection of branches traversed in the same direction.
- Forward Path: A path connecting an input node to an output node along which

no node is encountered more than once.
- Loop: A closed path that originates and terminates at the same node and encoun-

ters no other node more than once.
- Path Gain: The product of all the branch gains along a path.
- Loop Gain: The path gain of a loop.
- Non-touching: Having no nodes in common.

The gain formula states that the overall gain is

1.3 Systems Described by Differential/Difference Equations 35

G = yout

yin
= 1

Δ

∑N

k=1
MkΔk (1.3.4)

with Δ = 1 −
∑

m
Pm1 +

∑
m

Pm2 −
∑

m
Pm3 + · · · (1.3.5)

where

N : Total number of forward paths from node yin to node yout

Mk : Path gain of the k th forward path
Pmr : Gain product of the m th combination of r nontouching loops
Δk : Δ (Eq. (1.3.5)) for the part of the signal flow graph not touching the k th

forward path

It may seem to be formidable to use at first glance, but is not so complicated in
practice since most systems have not so many non-touching loops. For example, we
can apply Mason’s gain formula to the signal flow graph depicted in Fig. 1.18 as
follows:

G = y5

y1
= 1

Δ

∑N

k=1
MkΔk

with

Input
node

Output
nodey1 y2 y3 y4 y5 y5a12 a23 a34

a44

a43a32

a35

a54

a25

a45

1

Fig. 1.18 A signal flow graph with its loops denoted by closed curves

N = 3 (the total number of forward paths from node y1 to node y5)

M1 = a12a23a34a45,Δ1 = 1 for the forward path y1 − y2 − y3 − y4 − y5

M2 = a12a23a35,Δ2 = 1 − a44 for the forward path y1 − y2 − y3 − y5

M3 = a12a25,Δ3 = 1 − (a34a43 + a44) for the forward path y1 − y2 − y5

Δ = 1 − (a23a32 + a34a43 + a44 + a45a54 + a35a54a43 + a25a54a43a32)

+ (a23a32a44 + a23a32a45a54)

1.3.4 State Diagrams

Now we introduce a special class of signal flow graphs, called the state diagram or
state transition signal flow graph, in which every branch has a gain of constant

36 1 Signals and Systems

or s−1 (integrator)/z−1 (delay). This is very useful for the purposes of system
analysis, design, realization, and implementation. Systems represented by the state
diagram need the following three basic software operations or hardware elements
for implementation:

- addition(adder) - addition
- multiplication(amplifier) - multiplication
- integration(integrator) s−1 - delay (z−1)/advance (z)

It is good enough to take a look at the following examples.

Example 1.4a Differential Equation and Continuous-Time State Diagram

Figure 1.19(a) and (b) show the controllable and observable form of state dia-
grams, respectively, both of which represent the following differential equation or
its Laplace transform (see Problem 1.9):

y′′(t) + a1 y′(t) + a0 y(t) = b1u′(t) + b0u(t) with zero initial conditions
(E1.4a.1)

(s2 + a1s + a0)Y (s) = (b1s + b0)U (s) (E1.4a.2)

Example 1.4b Difference Equation and Discrete-Time State Diagram

Figure 1.20(a)/(b)/(c)/(d) show the direct I/transposed direct I/direct II/transposed
direct II form of state diagrams, respectively, all of which represent the following
difference equation or its z -transform (see Problems 1.8 and/or 8.4):

y[n + 2] + a1 y[n + 1] + a0 y[n] = b1u[n + 1] + b0u[n] with zero initial conditions
(E1.4b.1)

(z2 + a1z + a0)Y [z] = (b1z + b0)U [z] (E1.4b.2)

(b) Observable canonical form of state diagram

(a) Controllable canonical form of state diagram

U (s)
u (t)

U (s)
u (t)

Y (s)
y (t)

Y (s)
y (t)

x2x2x2

x1

x2 = –a0x1 – a1x2 + u

–a1

–a1

b1

–a0

–a0

b0

x1 b0

x1

b1

x2s–1

s–1

: Integrators–1

s–1

s–1x2′

x1

x1′ ′

′

′

x2 = x1–a1x2 + b1u′

x1 = –a0x2 + b0u′

y = b0x1 + b1x2x1′ = x2

y = x2

: Adder(addition)

: Amplifier (multiplication)
b

: Signal distribution point

Fig. 1.19 State diagrams for a given differential equation y′′(t)+a1 y′(t)+a0 y(t) = b1u′(t)+b0u(t)

1.3 Systems Described by Differential/Difference Equations 37

U [z]
u [n]

U [z]
u [n]

U [z]
u [n]

Y [z]
y [n]

Y [z]
y [n]

Y [z]
y [n]

U [z]
u [n]

Y [z]
y [n]

x2[n]
x2[n]

x2[n]

x1[n]

x4[n]

x2[n]

x2[n+1]

x2[n+1]

x4[n+1]

x3[n+1] x1[n+1] x2[n+1] x4[n+1]

x3[n+1]

x1[n+1]

x2[n+1]

x1[n+1]

x1[n+1]

x1[n]

x1[n]
x1[n]

x3[n]

x4[n]

x1[n]

x1[n]

x3[n]
x3[n]

b1

b1

b0

b0

–a1 –a1

–a0 b0

b0

b1

b1

–a0

–a0

–a1

–a0

–a1

z –1

z –1

z –1
z –1 z –1

z –1z –1

z –1

z –1

z –1

z –1

z–1

(c) Direct II form (d) Transposed direct II form

(a) Direct I form (b) Transposed direct I form

b
: Amplifier (multiplication)

z–1 : Delay

: Signal distribution point
: Adder(addition)

b
: Amplifier (multiplication)

Fig. 1.20 State diagrams for a given difference equation y[n + 2] + a1 y[n + 1] + a0 y[n] =
b1u[n + 1] + b0

For example, we can write the state and output equations for the state diagram of
Fig. 1.20(c) as

[
x1[n + 1]
x2[n + 1]

]
=
[

0 1
−a0 −a1

] [
x1[n]
x2[n]

]
+
[

0
1

]
u[n] (E1.4b.3)

y[n] = b1x2[n] + b0x1[n] (E1.4b.4)

We can apply Eq. (8.3.2b) with Eqs. (1.4b.3,4) or Mason’s gain formula for
Fig. 1.20(c) to obtain the transfer function G[z] = Y [z]/U [z] or equivalently, the
input-output relationship (E1.4b.2).

The digital filter or controller may be realized either by using a general-purpose
computer or a special digital hardware designed to perform the required computa-
tions. In the first case, the filter structure represented by the state diagram may be
thought of as specifying a computational algorithm where the number of z or z−1 is
proportional to the required memory size. In the latter case, it may be regarded as
specifying a hardware configuration where z−1 denotes a delay element like a flip-
flop. Note that, as shown in the above examples, the structure to solve or implement
a given differential/difference equation is not unique and it can be rearranged or
modified in a variety of ways without changing the overall input-output relationship
or system function.

38 1 Signals and Systems

1.4 Deconvolution and Correlation

In this section we will introduce the two terms related with the convolution. One is
the deconvolution, which is the inverse process of convolution. The other is the cor-
relation, which is procedurally similar to, but totally different from the convolution
in the physical meaning and usage.

1.4.1 Discrete-Time Deconvolution

In Sect. 1.2.3, the input-output relationship of a discrete-time LTI (linear time-
invariant) system was derived as Eq. (1.2.9):

y[n]
(1.2.9)= g[n]∗x[n] =

∑∞
m=−∞ g[n − m]x[m] (1.4.1)

where x[n], y[n], and g[n] are the input, output, and impulse response of the
system. Thus, for an FIR (f inite-duration impulse response) system with

g[n] = 0 for |n| ≥ N , (1.4.2)

we can write its output to the input {x[m] for m = 0 : N − 1} applied from m = 0
to N − 1 as

y[n] =
∑N−1

m=0
g[n − m]x[m] (1.4.3)

or in matrix-vector form as

⎡
⎢⎢⎢⎣

y[0]

y[1]

•
y[N − 1]

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

g[0] g[−1] • g[−N + 1]

g[1] g[0] • g[−N + 2]

• • • •
g[N − 1] g[N − 2] • g[0]

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

x[0]
x[1]
•

x[N − 1]

⎤
⎥⎥⎦ ;

y = Gx with G : transmission matri x (1.4.4)

One might ask a question, “Can we or how can we find the input sequence x[n]
for a system characterized by its impulse response g[n] to produce a certain output
sequence y[n]?”. For the FIR system with the input-output relationship described
by Eq. (1.4.4), we can find the input sequence as

x = G−1y, (1.4.5)

if the transmission matrix G is nonsingular. Furthermore, if the system is causal,
i.e., g[n] = 0 for n < 0, then the transmission matrix becomes lower-triangular as

1.4 Deconvolution and Correlation 39

G =

⎡
⎢⎢⎢⎣

g[0] 0 · 0

g[1] g[0] · 0

· · · ·
g[N − 1] g[N − 2] · g[0]

⎤
⎥⎥⎥⎦ (1.4.6)

so that if g[0] �= 0, the input sequence can be determined by forward substitution:

x[n] = y[n] − ∑n−1
m=0 g[n − m]x[m]

g[0]
(1.4.7)

starting from x[0] = y[0]/g[0] (see Problem 1.11).
Note that the problem of determining the impulse response g[n] for given input

and output sequences can be dealt with in the same way.

1.4.2 Continuous/Discrete-Time Correlation

The cross-correlation between two signals measures how similar the two signals are
over temporal or spatial difference. The auto-correlation of a signal measures how
much the signal looks like itself over temporal or spatial difference. Correlation
is widely used for various purposes including signal detection in communication
systems.

Let x(t)/x[n] and y(t)/y[n] be two continuous-time/discrete-time transient or
finite-duration signals. Then the cross-correlation between them is defined as fol-
lows:

φxy(τ) =
∫ ∞

−∞
x(t + τ)y∗(t)dt

=
∫ ∞

−∞
x(t)y∗(t − τ)dt

=
∫ ∞

−∞
x(−t + τ)y∗(−t)dt

(1.4.8a)

φxy[m] =
∑∞

n=−∞ x[n + m]y∗[n]

=
∑∞

n=−∞ x[n]y∗[n − m]

=
∑∞

n=−∞ x[−n + m]y∗[−n]

(1.4.8b)

where τ/m, called a lag variable, represents the relative delay (shift) between the
two signals. If the two signals happen to be identical, i.e., x(t) = y(t)/x[n] = y[n],
we have the auto-correlation as

40 1 Signals and Systems

φxx (τ) =
∫ ∞

−∞
x(t + τ)x∗(t)dt

=
∫ ∞

−∞
x(t)x∗(t − τ)dt

=
∫ ∞

−∞
x(−t + τ)x∗(−t)dt

(1.4.9a)

φxx [m] =
∑∞

n=−∞ x[n + m]x∗[n]

=
∑∞

n=−∞ x[n]x∗[n − m]

=
∑∞

n=−∞ x[−n + m]x∗[−n]

(1.4.9b)

There are some properties of correlation to note:

φxx (τ) = φ∗
xx (−τ) (1.4.10a)

φxy(τ) = φ∗
yx (−τ) (1.4.11a)

φxy(τ) = x(τ)∗y∗(−τ) (1.4.12a)

φxx [m] = φ∗
xx [−m] (1.4.10b)

φxy[m] = φ∗
yx [−m] (1.4.11b)

φxy[m] = x[m]∗y∗[−m] (1.4.12b)

If x(t)/x[n] and y(t)/y[n] are the input and output of a continuous-time/discrete-
time LTI system so that y(t) = g(t) ∗ x(t)/y[n] = g[n] ∗ x[n], then we have

φxy(τ) = g∗(−τ)∗φxx (τ) (1.4.13a)

φyy(τ) = g∗(−τ)∗φyx (τ) (1.4.14a)

φxy[m] = g∗[−m]∗φxx [m] (1.4.13b)

φyy[m] = g∗[−m]∗φyx [m] (1.4.14b)

(cf.) If the signals are random or periodic so that nonzero values appear all
over the time interval, the correlation should be defined as a time-average
version.

The correlation functions are very useful for extracting certain signals from noisy
ones and determining the spectral density of random signals. Look at the following
remark and example.

Remark 1.7 Properties of Autocorrelation

(1) In case two signals are periodic or random, their correlation should be defined as

φxy(τ) = 1

2T

∫ T

−T
x(t + τ)y∗(t)dt

(1.4.15a)

φxy[m] = 1

2N + 1

∑N

n=−N
x[n + m]y∗[n]

(1.4.15b)

(2) The autocorrelation (1.4.9a)/(1.4.9b) is even and has its maximum at τ =
0/m = 0. In the case of periodic or random signals, the maximum value is
the mean squared value of the signal.

1.4 Deconvolution and Correlation 41

Remark 1.8 Convolution vs. Correlation and Matched Filter

(1) Equation (1.2.7)/(1.2.11) implies that the continuous-time/discrete-time con-
volution of two time functions/sequences can be obtained by time-reversing
one of them and time-shifting (sliding) it, multiplying it with the other, and
then integrating/summing the multiplication. The correlation differs from the
convolution only in that the time-reversal is not performed.

(2) If we time-reverse one of two signals and then take the convolution of the time-
reversed signal and the other one, it will virtually yield the correlation of the
original two signals since time-reversing the time-reversed signal for comput-
ing the convolution yields the original signal as if it had not been time-reversed.
This presents the idea of matched filter, which is to determine the correlation
between the input signal x(t)/x[n] and a particular signal w(t)/w[n] based on
the output of the system with the impulse response g(t) = w(−t)/g[n] =
w[−n] to the input x(t)/x[n]. This system having the time-reversed and pos-
sibly delayed version of a particular signal as its impulse response is called the
matched filter for that signal. Matched filter is used to detect a signal, i.e., to
determine whether or not the signal arrives and find when it arrives.

Example 1.5 Correlation and Matched Filter

Consider the two signal waveforms of duration T = 2 [s], which represent
0 and 1 and are depicted in Fig. 1.21(a1) and (b1), respectively. According to
Remark 1.8(2), the impulse responses of their matched filters are

0

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

11

(a1) x1(t)

x1(t)

y1(t)

y2(t)

(b1) x2(t)

(c) An input signal x (t)

(d1) The output y1(t) of matched filter 1 to the input depicted in (c)

(d2) The output y2(t) of matched filter 2 to the input depicted in (c)

(a2) g1(t) = x1(T–t) (b2) g2(t) = x2(T–t)

1

1

2 0 1 2 0

0

1 1

–1

1

2 2
t t t t

t

t

t

Fig. 1.21 Two matched filters for two signals and their outputs to an input signal

42 1 Signals and Systems

g1(t) = x1(−t) and g2(t) = x2(−t) (E1.5.1)

We have, however, a problem that these filters are non-causal so that they are not
physically realizable. A reasonable measure is to shift their impulse responses by
T = 2 so that they become causal as depicted in Fig. 1.21(a2) and (b2):

g1(t) = x1(T − t) and g2(t) = x2(T − t) (E1.5.2)

Suppose the input signal depicted in Fig. 1.21(c) is applied to the two matched
filters with the impulse responses given by (E1.5.2). We can compose the following
MATLAB program “sig01e05.m” to find their outputs and run it to get the results
shown in Figs. 1.21(d1) and (d2). There are some points to think about:

- As long as the amplitude of the signals (expected to arrive) are the same, the
output of each matched filter achieves its maximum 2 s after the corresponding
signal arrives. Why?

%sig01e05.m
% Correlation/Convolution and Matched Filter
clear, clf
M=50; Ts=1/M;
x1=ones(M,1)*[1 1]; x1=x1(:).’; Nx=length(x1);
x2=ones(M,1)*[1 -1]; x2=x2(:).’;
g1=fliplr(x1); g2=fliplr(x2);
x=[x1 zeros(1,M) x2 zeros(1,M) x1 zeros(1,M) x2]; % signal to transmit
length x=length(x); Nbuffer= min(M*11,length x); tt=[0:Nbuffer-1]*Ts;
% Noise amp=0.3; x = x + Noise amp*randn(1,length x);
xbuffer=zeros(1,Nbuffer); ybuffer=zeros(2,Nbuffer);
for n=1:length x

xbuffer= [x(n) xbuffer(1:end-1)];
y= [g1; g2]*xbuffer(1:Nx).’*Ts; ybuffer= [ybuffer(:,2:end) y];
subplot(312), plot(tt,ybuffer(1,:)), subplot(313), plot(tt,ybuffer(2,:))
pause(0.01), if n<length x, clf; end

end
y1=xcorr(x,x1)*Ts; y1=y1([end-Nbuffer+1:end]-Nx); %correlation delayed by Nx
y2=xcorr(x,x2)*Ts; y2=y2([end-Nbuffer+1:end]-Nx);
subplot(312), hold on,plot(tt,y1,’m’) % only for cross-check
subplot(313), hold on, plot(tt,y2,’m’)

- If we remove the zero period between the signals and generate a signal every 2 s
in the input, could we still notice the signal arrival times from (local) maxima of
the output? (See Problem 1.12(a).)

Remark 1.9 xcorr() – MATLAB function for Correlation

(1) The MATLAB function xcorr(x,y) returns the correlation of two sequences
x[n] and y[n] defined by Eq. (1.4.16). Depending on the third input argument,
it returns different versions of correlation as follows:

1.4 Deconvolution and Correlation 43

xcorr(x,y,’coeff’) →

ρxy[m] =
∑∞

n=−∞ x[n + m] y∗[n]

(
∑ |x[n]|2 ∑ |y[n]|2)1/2

(−1 ≤ ρ ≤ +1)

(correlation coefficient) (1.4.16a)

xcorr(x,y,’biased’) →

ϕxy[m] =
⎧⎨
⎩

1
N

∑N−1−|m|
n=0 x[n + m] y∗[n] for 0 ≤ m ≤ N − 1

1
N

∑N−1−|m|
n=0 x[n] y∗[n − m] for − (N − 1) ≤ m ≤ 0

(1.4.16b)

xcorr(x,y,’unbiased’) →

ϕxy[m] =
⎧⎨
⎩

1
N−|m|

∑N−1−|m|
n=0 x[n + m] y∗[n] for 0 ≤ m ≤ N − 1

1
N−|m|

∑N−1−|m|
n=0 x[n] y∗[n − m] for − (N − 1) ≤ m ≤ 0

(1.4.16c)

(2) If the two sequences are of different lengths, xcorr(x,y) appends one of
them by zeros to make them have equal lengths and returns their
convolution.

(3) The durations of the convolution and correlation of two sequences x[n] (of dura-
tion [n0 x :n f x]) and y[n] (of duration [n0 y :n f y]) are [n0 x +n0 y :n f x +n f y]
and [n0 x − n f y :n f x − n0 y], respectively.

Example 1.6 Correlation for Periodic Signals with Random Noise

We can use MATLAB function randn(M,N) to generate a zero-mean and unit-
variance normal (Gaussian) noise sequence in an M × N matrix. Figure 1.22(a1)
and (a2) illustrate a Gaussian 1 × 128 random sequence w[n] with variance σ 2 =
0.52 (generated by 0.5*randn(1,N)) and its autocorrelation φww[m] (obtained
by xcorr(w,w)), respectively. On the other hand, Fig. 1.22(b1) shows a noise-
contaminated sinusoidal sequence x[n] = sin(πn/16) + w[n]. Figure 1.22(b2),
(b3), and (b4) show the various autocorrelations of x[n] that are obtained by
using xcorr(w,w), xcorr(w,w,‘coef’)/xcorr(w,w, ‘biased’),
and xcorr(w,w,‘unbiased’), respectively.

Note the following observations:

- All the autocorrelations in Fig. 1.22(a2), (b2)–(b4) are even and have their max-
ima at m = 0 as stated in Remark 1.7(2). Especially, the maximum of φww[m] in
Fig. 1.22(a2) is

44 1 Signals and Systems

2

0

–2

2

0

–2

–1

0

1

–1

0

1

0 100

0 100

–100

0

20

40

–50 0 50 100

–100–100

0

100

–50 0 50 100

–100 –50 0 50 100–100 –50 0 50 100

: coef
: biased

(a1) A (Gaussian) noise sequence w [n] (a2) Autocorrelation of w [n]

(b1) A noise-contaminated sinusoidal wave x [n] (b2) Autocorrelation of x [n] from xcorr()

(b3) Autocorrelation of x [n]
from xcorr(x,x, ‘biased’)/xcorr(x,x, ‘coef’)

(b4) Autocorrelation of x [n]
from xcorr(x,x, ‘unbiased’)

Fig. 1.22 Autocorrelation obtained using the MATLAB function xcorr()

φww[0] � Expectation

{∑N−1

n=0
x2[n]

}
�
∑N−1

n=0
σ 2 = 128 × 0.52 = 32

(E1.6.1)
- Marvelously, the noise effect can hardly be found in the autocorrelation except

for the spike at m = 0. Thanks to the noise reduction effect of autocorrelation, the
periodicity of the signal can be observed more clearly from the autocorrelation
than from the original noise-contaminated signal.

- Figure 1.22(b2) and (b3) show that the autocorrelation obtained from
xcorr(w,w,‘biased’) is just a 1/N -scaled version of that obtained from
xcorr(w,w). The normalized version obtained from xcorr(w,w,‘coef’)
has similar shape. Any of these versions have some end effect, i.e., their magni-
tudes decrease as the time lag m increases not because the correlation or similar-
ity gets loose, but because the number of samples in the summation decreases.
In contrast, the autocorrelation obtained from xcorr(w,w,‘unbiased’) is
relatively free from the end effect as shown in Fig. 1.22(b4).

%sig01e06.m : Autocorrelation of a noise-contaminated periodic signal
N=128; W=pi/16; nn=0:N-1;
s= sin(W*nn); w= 0.5*randn(1,N); x=s+w;
subplot(321), plot(nn,w)
[phi w,mlag]=xcorr(w,w); % Autocorrelation of the noise
subplot(322), plot(mlag,phi w)

Problems 45

subplot(323), plot(nn,x, nn,s,’k’)
[phi x,mlag]=xcorr(x,x); % Autocorrelation of the corrupted signal
subplot(324), plot(mlag,phi x)
[phi x coef,mlag]=xcorr(x,x,’coef’); % Correlation coefficient
subplot(325), plot(mlag,phi x coef)
[phi x biased,mlag]=xcorr(x,x,’biased’); % Biased autocorrelation
hold on, plot(mlag,phi x biased,’r:’)
[phi x unbiased,mlag]=xcorr(x,x,’unbiased’); % Unbiased autocorrelation
subplot(326), plot(mlag,phi x unbiased),axis([mlag([1 end]) -1 1])

1.5 Summary

In this chapter we have introduced some basic continuous-time/discrete-time signals
and defined a number of important concepts related to systems such as linearity,
time-invariance, causality, stability, impulse response, and system (transfer) func-
tion. We have also derived the convolution form of input-output relationship of LTI
systems. We have also indicated that a continuous-time/discrete-time system can be
described analytically by differential/difference equations and pictorially by signal
flow graphs. Finally, we introduced the concept of correlation.

Problems

1.1 Representation of Unit Impulse Function by Sinc Function

(a) Referring to the web site <http://mathworld.wolfram.com/SincFunction.
html> or [K-1] (Sect. 15.4, Example 2) or Eq. (E2.3.3) of this book, show
that the sinc function representation (1.1.33a) of the unit impulse function
δ(t) satisfies the property (1.1.19) regardless of D or w:

∫ ∞

−∞

w

π

sin(wt)

wt
dt

wt→x= 1

π

∫ ∞

−∞

sin(x)

x
dx = 1 (P1.1.1)

(b) Plot the sinc function
1

D
sinc

(
t

D

)
= sin(π t/D)

π t
(P1.1.2)

against time t for D = 1, 0.5, 0.25, and 0.125 and check the following:

- It is an even function since both of the numerator and denominator
functions are odd ones.

- Its amplitude decreases as |t | increases since the magnitude of the
denominator increases while the amplitude of the numerator is constant.

- It becomes zero at t = m D(m �= 0) and 1/D at t = 0 since
lim
x→0

sinc(x) = 1.

46 1 Signals and Systems

1.2 Convolution
Consider the two continuous-time signals x(t) = r3(t) = us(t) − us(t − 3) and
g(t) = e−0.5t us(t).

(a) Show that the (continuous-time) convolution of these two signals is

x(t)∗g(t) =

⎧⎪⎨
⎪⎩

0 for t < 0

2(1 − e−0.5t) for 0 ≤ t < 3

2(e−0.5(t−3) − e−0.5t) = 2(e1.5 − 1)e−0.5t for t ≥ 3
(P1.2.1)

(b) As in Example 1.2, we can use the MATLAB function ‘conv ()’ to com-
pute this continuous-time convolution approximately. Compose a program
which samples the two signals at t = nTs(Ts = 0.1[s]), use ‘conv ()’ to
compute the convolution, and plot it together with the true convolution
(P1.2.1) for t = [0, 10]s. Run it to see if the approximate convolu-
tion is close to the true one. If we decrease the sampling period, say, to
Ts = 0.01 s, is it helpful?

1.3 Necessary Condition on BIBO (Bounded Input Bounded Output) Stability
In Sect. 1.2.8 it was shown that the absolute integrability/summability
(1.2.27a)/(1.2.27b) of impulse response guarantees the BIBO stability and thus
are sufficient conditions. Here, you can show that if the conditions do not hold,
there is a bounded input yielding unbounded output, which implies that they
are also necessary conditions for BIBO stability. To this end, suppose that the
impulse response of a system does not satisfy the condition (1.2.27a)/(1.2.27b):

∫ ∞

−∞
|g(τ)|dτ = ∞ (P1.3.1a)

∑∞
m=−∞ |g[m]| = ∞ (P1.3.1b)

(a) Consider the following signal:

x(t) =
{

0 for t such that g(−t) = 0
g∗(−t)
|g(−t)| for t such that g(−t) �= 0

(P1.3.2a)

x[n] =
{

0 for n such that g[−n] = 0
g∗[−n]
|g[−n]| for n such that g[−n] �= 0

(P1.3.2b)

Are these signals bounded? If they are bounded, what is their upperbound?
(b) Show that the output y(t)/y[n] to the (bounded) input x(n)/x[n] at t =

0/n = 0 is unbounded, implying that the system is not BIBO stable.

1.4 Stability of Continuous-Time Systems
Remark 1.6 states that a continuous-time LTI system is stable if and only if its
system function G(s) = L{g(t)} has all the poles strictly within the left-half s

Problems 47

-plane or equivalently, the real parts of all the poles are negative. Referring to
the remark, consider the following two systems:

Ga(s) = 2

(s + 1)(s + 2)
(P1.4.1a)

Gb(s) = 6

(s − 1)(s + 2)
(P1.4.1b)

(a) Find the impulse responses ga(t) and gb(t) by taking the inverse Laplace
transform of each system function. Check if each system satisfies the
stability condition (1.2.27a) or not.

(b) Find the poles of each system function and determine whether or not each
system satisfies the stability condition stated in Remark 1.6. Does the result
agree to that obtained in (a)?

(c) Find the step responses of the two systems, i.e., their outputs to a unit-step
input x(t) = us(t) whose Laplace transform is X (s) = 1/s. Check if each
step response converges or not.

(cf.) You might get ya(t) by typing the following commands into the MAT-
LAB command window:

>> syms s; Gas=2/(s+1)/(s+2); Xs=1/s;
Yas=Gas*Xs, yat=ilaplace(Yas)

1.5 Stability of Discrete-Time Systems
Remark 1.6 states that a discrete-time LTI System is stable if and only if its
system function G[z] = Z{g[n]} has all the poles strictly within the unit circle
(see Remark 4.5). Referring to the remark, consider the following two systems:

Ga[z] = 3z

(z − 0.5)(z + 0.5)
(P1.5.1a)

Gb[z] = z

(z − 1.5)(z − 0.5)
(P1.5.1b)

(a) Find the impulse responses ga[n] and gb[n] by taking the inverse z -
transform of each system function. Determine whether each system satisfies
the stability condition (1.2.27b) or not.

(b) Find the poles of each system function and determine whether or not each
system satisfies the stability condition stated in Remark 1.6. Does the result
agree to that obtained in (a)?

(c) Find the step responses of the two systems to a unit-step input x[n] = us[n]
whose z -transform is X [z] = z/(z − 1). Determine whether each step
response converges or not.

(cf.) You might get ya[n] by typing the following commands into the MAT-
LAB command window:
>> syms z; Gaz=3*z/(z−0.5)/(z+0.5); Xz=z/(z−1);

Yaz=Gaz*Xz, yan=iztrans(Yaz)

48 1 Signals and Systems

1.6 Inverse System
Consider a model for echo generation, which is depicted in Fig. P1.6(a).

(a) Noting that the time-domain input-output relationship is

y(t) = a y(t − T) + x(t) (P1.6.1)

show that the impulse response is

g(t) =
∑∞

k=0
akδ(t − kT) with 0 < a < 1 (P1.6.2)

Also find the system function G(s) by taking the Laplace transform of this
impulse response or the time-domain input-output relationship. Referring
to Eq. (1.2.27a) or Remark 1.6, determine the stability condition of the
model system.

(b) Use Eq. (1.2.30a) to find the system function H (s) of the inverse system.
Show that the inverse system can be modeled as Fig. P1.6(b), whose time-
domain input-output relationship is

x̂(t) = y(t) − a y(t − T) (P1.6.3)

1.7 Inverse System
Consider a discrete-time model for duo-binary signaling, which is depicted in
Fig. P1.7(a).

(a) Noting that the time-domain input-output relationship is

y[n] = x[n] + x[n − 1] (P1.7.1)

find the system function G[z] by taking its z -transform.

y (t) = ay (t–T) + x(t)

x (t)
a –a

(a) A model for echoing (b) A model for removing the echo

e–sT e–sT

y (t) x (t)y (t)

x (t) = y (t) – ay (t–T)
∧

∧

Fig. P1.6

y [n] = x [n] + x [n – 1]
y [n] y [n]x [n]

(a) A model for duo–binary signaling (b) A model for detecting system

z
–1

1 –1
z

–1

x [n]
∧

x [n] = –x [n –1] + y [n]
∧ ∧

Fig. P1.7

Problems 49

(b) Use Eq. (1.2.30b) to find the system function H [z] of the inverse system.
Show that the inverse system can be modeled as Fig. P1.7(b), whose time-
domain input-output relationship is

x̂[n] = −x̂[n − 1] + y[n] (P1.7.2)

1.8 Simulation of Continuous-Time/Discrete-Time System Using MATLAB and
Simulink

(a) Find the system function of the system described by the block diagram in
Fig. 1.16(b1) or the signal flow graph in Fig. 1.16(c1) or (d1) with RC = 1.
Referring to the upper part of Fig. P1.8(a) and the parameter setting dialog
boxes in Fig. P1.8(b1), (b2), and (b3), perform the Simulink simulation to
plot the output signal vo(t) for 0 ≤ t < 4 s.

(a) Simulink block diagram for simulating the systems of Fig 1.16(b1) and (b2)

(b1) Parameter setting dialog box for Step and Step 1 (b2) Parameter setting dialog box for Add and Add1

Step Add Transfer Fcn Mux

Scope

Discrete
Transfer Fcn

Simulink/Sources/Step
Simulink/Math Operations/Add
Simulink/Continuous/Transfer Fcn
Simulink/Discrete/Discrete Transfer Fcn
Simulink/Signal Routing/Mux
Simulink/Sink/ScopeStep1 Add1

+

+

–

–

1
s

T
z–1

(c) The outputs obtained from the Simulink simulation

0 0.5

vo(t)
vo(t)

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4

(b3) Parameter setting dialog box for Transfer Fcn (b4) Parameter setting dialog box for Discrete Transfer Fcn

Fig. P1.8

50 1 Signals and Systems

(b) Find the system function of the system described by the block diagram in
Fig. 1.16(b2) or the signal flow graph in Fig. 1.16(c2) or (d2) with RC = 1.
Referring to the lower part of Fig. P1.8(a) and the parameter setting dialog
boxes in Fig. P1.8(b1), (b2), and (b4), perform the Simulink simulation
with sampling interval T = 0.1 to plot v̄o(t) for 0 ≤ t < 4 s. Also referring
to the following program “sig01p 08b.m”, perform the MATLAB simula-
tion to plot vo(t) for 0 ≤ t < 4 s. Does decreasing the sampling interval to,
say, T = 0.01 make the output close to that of the continuous-time system
obtained in (a)?

(cf.) If you parameterize a constant such as T in the Simulink block diagram
so that it can be easily changed, you can set it to a new value in the
MATLAB command window.

% sig01p 08a.m
% Continuous-Time System Simulation clear, clf
R=1; C=1; RC=R*C; tf=4;
T=0.1; tt=[0:T:tf];
vi = ones(size(tt)); % step input
vo t0=0;
options=odeset(’RelTol’,1e-4);
vo = ode45(dvodt,tt,vo t0,options,RC);
plot(tt,vo), hold on

function dv=dvodt(t,vo,RC)
dv = (-vo+(t>=0))/RC;

% sig01p 08b.m
% Discrete-Time System Simulation
clear, clf
R=1; C=1; RC=R*C; tf=4;
T=0.1; tt=[0:T:tf];
vi = ones(size(tt)); % step input
TRC=T/RC; vo(1)=0;
for n=1:length(tt)-1

vo(n+1)=vo(n)+(vi(n)-vo(n))*TRC;
end
stairs(tt,vo)

1.9 Continuous-Time State Diagram, State Equation, Transfer Function, and
Input-Output Relationship
We can write the state equation for a continuous-time state diagram by taking
the following procedure.

1. Assign a state variable xi (t) to the output of each integrator s−1.
2. Express the input x ′

i (t) of each integrator s−1 in terms of the state
variables and system input(s).

3. Express each output in terms of the state variables and input(s).

Problems 51

(a) Show that we can apply the above procedure to the state diagram of
Fig. 1.19(a) and write the state equation together with the output equa-
tion as [

x ′
1(t)

x ′
2(t)

]
=
[

0 1
−a0 −a1

] [
x1(t)
x2(t)

]
+
[

0
1

]
u(t) (P1.9.1)

y(t) = [
b0 b1

] [x1(t)
x2(t)

]
(P1.9.2)

We can also substitute the output equation (P1.9.2) into the left-hand side
of Eq. (E1.4a.1) and use the state equation (P1.9.1) to get the right-hand
side of Eq. (E1.4a.1):

y′′(t) + a1 y′(t) + a0 y(t) = b1u′(t) + b0u(t) (P1.9.3)

(b) Show that we can apply the above procedure to the state diagram of
Fig. 1.19(b) and write the state equation together with the output equa-
tion as [

x ′
1(t)

x ′
2(t)

]
=
[

0 −a0

1 −a1

][
x1(t)

x2(t)

]
+
[

b0

b1

]
u(t) (P1.9.4)

y(t) = [
0 1

] [x1(t)

x2(t)

]
(P1.9.5)

We can also combine these state and output equations to get the input-
output relationship (E1.4a.1).

(c) Apply Eq. (8.3.2a) with Eqs. (P1.9.1,2) or (P1.9.4,5) to find the transfer
function G(s) = Y (s)/U (s) or equivalently, the input-output relation-
ship (E1.4a.2). Also apply Mason’s gain formula for Fig. 1.19(a) or (b)
to find G(s).

(d) With a0 = 2, a1 = 3, b0 = 4, and b1 = 3, use the MATLAB func-
tion ss2tf() to find the transfer function G(s) of the system described
by Eqs. (P1.9.1,2) or (P1.9.4,5). Reversely, use the MATLAB function
tf2ss() to find a state equation for the transfer function

G(s) = b1s + b0

s2 + a1s + a0
= 3s + 4

s2 + 3s + 2
(P1.9.6)

Which one does it yield, the equivalent of Eq. (P1.9.1,2) or (P1.9.4,5)?
(e) Referring to the following program “sig01p 09.m”, simulate the systems

described by Eqs. (P1.9.1,2) and (P1.9.4,5) with a0 = 2, a1 = 3, b0 = 4,
and b1 = 3 to find their outputs (y(t)’s) to an input u(t) = sin(2t) for
0 ≤ t < 10 s (with sampling interval T = 0.01 s). Do the state equations
conform to each other in terms of the input-output relationship?

52 1 Signals and Systems

a0=2; a1=3; b0=4; b1=3;
A1=[0 1;-a0 -a1]; B1=[0;1]; C1=[b0 b1]; [num1,den1]= ss2tf(A1,B1,C1,D1)
A2=[0 -a0;1 -a1]; B2=[b0;b1]; C2=[0 1]; [num2,den2]= ss2tf(A2,B2,C2,D2)
num=[b1 b0]; den=[1 a1 a0]; [A,B,C,D]=tf2ss(num,den)

%sig01p 09.m
% to simulate a continuous-time system described by state equations
clear, clf
a0=2; a1=3; b0=4; b1=3; w=2;

% Use ode45() to solve the continuous-time state equations
% dx sig01p09= inline(’A*x+B*sin(w*t)’,’t’,’x’,’A’,’B’,’w’);
t0=0; tf=10; x0=[0; 0]; % initial time, final time, and initial state
A1=[0 1;-a0 -a1]; B1=[0;1]; C1=[b0 b1]; D1=0;
[tt1,xx1]= ode45(@dx sig01p09,[t0 tf],x0,[],A1,B1,w); y1= xx1*C1.’;
A2=[0-a0;1 -a1]; B2=[b0;b1]; C2=[0 1]; D2=0;
[tt2,xx2]= ode45(@dx sig01p09,[t0 tf],x0,[],A2,B2,w); y2= xx2*C2.’;
subplot(211), plot(tt1,y1, tt2,y2,’r’)

% Use lsim(A,B,C,D,u,t,x0) to simulate continuous-time linear systems
T=0.01; tt=[t0:T:tf];
[num1,den1]= ss2tf(A1,B1,C1,D1)
[y1,x1]= lsim(A1,B1,C1,D1,sin(w*tt),tt,x0);
[num2,den2]=ss2tf(A2,B2,C2,D2)
[y2,x2]= lsim(A2,B2,C2,D2,sin(w*tt),tt,x0);
[y3,x3]= lsim(num1,den1,sin(w*tt),tt);
subplot(212), plot(tt,y1, tt,y2,’r’, tt,y3,’m’)

function dx=dx sig01p09(t,x,A,B,w)
dx= A*x + B*sin(w*t);

(f) Referring to Fig. P1.9, perform the Simulink simulation for the systems
described by Eqs. (P1.9.1,2), (P1.9.4,5), and (P1.9.6) to find their outputs
(y(t)’s) to an input u(t) = sin(2t) for 0 ≤ t < 10 s. Do the simulation
results agree with each other and also with those obtained in (e)?

Fig. P1.9 Simulink block diagram for Problem 1.9(e)

Problems 53

1.10 Discrete-Time State Diagram, State Equation, Transfer Function, and Input-
Output Relationship
We can write the state equation for a discrete-time state diagram by taking the
following procedure.

1. Assign a state variable xi [n] to the output of each delay element z−1.
2. Express the input xi [n + 1] of each delay element z−1 in terms of the

state variables and system input(s).
3. Express each output in terms of the state variables and input(s).

(a) Show that we can apply the above procedure to the state diagram of
Fig. 1.20(c) and write the state equation together with the output equa-
tion as [

x1[n + 1]
x2[n + 1]

]
=
[

0 1
−a0 −a1

] [
x1[n]
x2[n]

]
+
[

b0

b1

]
u[n] (P1.10.1)

y[n] = [
b0 b1

] [x1[n]
x2[n]

]
(P1.10.2)

We can also substitute the output equation (P1.10.2) into the left-hand side
of Eq. (E1.4b.1) and use the state equation (P1.10.1) to get the right-hand
side of Eq. (E1.4b.1):

y[n + 2] + a1 y[n + 1] + a0 y[n] = b1u[n + 1] + b0u[n] (P1.10.3)

(b) Show that we can apply the above procedure to the state diagram of
Fig. 1.20(b) and write the state equation together with the output equa-
tion as [

x1[n + 1]
x2[n + 1]

]
=
[

0 −a0

1 −a1

] [
x1[n]
x2[n]

]
+
[

b0

b1

]
u[n] (P1.10.4)

y[n] = [
0 1

] [x1[n]
x2[n]

]
(P1.10.5)

We can also combine these state and output equations to get the input-
output relationship (E1.4b.1).

(c) Apply Eq. (8.3.2b) with Eqs. (P1.10.1,2) or (P1.10.4,5) to find the transfer
function G[z] = Y [z]/U [z] or equivalently, the input-output relationship
(E1.4b.2). Also apply Mason’s gain formula for Fig. 1.20(a), (b), (c), or (d)
to find G[z].

(d) Referring to the following program “sig01p 10.m” or Fig. P1.10, simulate
the systems described by Eqs. (P1.10.1,2) and (P1.10.4,5) with a0 = 1/8,
a1 = 3/4, b0 = 2, and b1 = 1 to find their outputs (y(t)’s) to an input
u(t) = sin(2t) for 0 ≤ t < 10 s (with sampling interval T = 0.01 s).

54 1 Signals and Systems

Do the state equations conform to each other in terms of the input-output
relationship?

%sig01p 10.m
% to simulate a discrete-time system described by state equations
a0=1/8; a1=3/4; b0=2; b1=1; w=2;

% Use difference equation to solve the discrete-time state equations
t0=0; tf=10; x0=[0; 0]; % initial time, final time, and initial state
T=0.01; tt=[t0:T:tf];
A1=[0 1;-a0 -a1]; B1=[0;1]; C1=[b0 b1]; D1=0; x1(1,:)=[0 0];
A2=[0 -a0;1 -a1]; B2=[b0;b1]; C2=[0 1]; D2=0; x2(1,:)=[0 0];
for n=1:length(tt)

t=tt(n);
x1(n+1,:)= x1(n,:)*A1.’+sin(w*t)*B1.’; y1(n)= x1(n,:)*C1.’;
x2(n+1,:)= x2(n,:)*A2.’+sin(w*t)*B2.’; y2(n)= x2(n,:)*C2.’;

end
subplot(211), plot(tt,y1, tt,y2,’r’)

% Use dlsim(A,B,C,D,u,x0) to simulate discrete-time linear systems
[y1,x1]= dlsim(A1,B1,C1,D1,sin(w*tt),x0);
[y2,x2]= dlsim(A2,B2,C2,D2,sin(w*tt),x0);
[num2,den2]= ss2tf(A2,B2,C2,D2)
[y3,x3]= dlsim(num2,den2,sin(w*tt));
subplot(212), plot(tt,y1, tt,y2,’r’, tt,y3,’m’)

Fig. P1.10 Simulink block diagram for Problem 1.10(d)

1.11 Deconvolution

(a) We can make two discrete-time sequences as

n = 0 1 · · · 9 10 11 · · · 19 20 21 · · · 29 30 31 · · · 39

x[n] = 1 1 · · · 1 9 9 · · · 9 −6 −6 · · · −6 2 2 · · · 2

g[n] = 1 1 · · · 1 1 1 · · · 1 1 1 · · · 1 0 0 · · · 0

Compute their convolution y[n] = x[n] ∗ g[n] and plot it.
(b) Referring to the following MATLAB program “sig01p 11.m”, compute

the estimate x̂[n] of x[n] from y[n] and g[n] two times, once by using

Problems 55

Eq. (1.4.5) and once by using Eq. (1.4.7). Compare the two results in terms
of how close they are to the original input sequence x[n].

%sig01p 11.m
clear, clf
x=[ones(1,30) zeros(1,10)]; Nx=length(x);
g=ones(10,1)*[1 9 -6 2]; g=g(:).’; Ng=length(g);
n=0:Nx+Ng-2;
y=conv(x,g);
subplot(313), stem(n,y,’.’)
% Deconvolution
for m=1:Ng

for n=1:m, G(m,n)=g(m-n+1); end % Eq.(1.4.5)
end
x0=(Gˆ-1*y(1:Ng)’)’;
x1(1)=y(1)/g(1);
for n=2:Nx

x1(n)=y(n);
for m=1:n-1, x1(n)=x1(n)-g(n-m+1)*x1(m); end % Eq.(1.4.7)
x1(n)=x1(n)/g(1);

end
err0=norm(x0-x)
err1=norm(x1-x)

(cf.) Another way to compute deconvolution is to use the MATLAB command
x=deconv(y,g).

1.12 Correlation and Matched Filter for Signal Detection
Consider Example 1.5 and the related program “sig01e05.m” again.

(a) To see the transmitted signal x, insert the following statement and run the
program to check if you can get the results as depicted in Fig. 1.21(c), (d1),
and (d2).

subplot(311), plot(tt,xbuffer)

(b) Remove the zero periods between the signals in the input. Can you still
notice the corresponding signal arrival times from (local) maxima of the
output of each matched filter? To simulate this situation, modify the state-
ment for generating the transmitted signal as follows:

x= [x1 x2 x1 x2 x2];

(c) If we sample the matched filter outputs every 2 s, can we use the sampled
output to detect the signal successfully based on which filter output is the
maximum? To simulate this situation, insert the following statements into
the last part of the for loop:

if mod(n,Nx)==0
fprintf(’At t=%5.2f, Matched filter output=%5.2f %5.2f\n’, n*Ts,y);

end

56 1 Signals and Systems

(d) If the input is contaminated with a Gaussian noise with zero mean and
variance of σ 2 = 0.32, will the detection performance be harmed severely?
To simulate this situation, modify one of the statements in the for loop as
follows:

xbuffer= [x(n)+0.3*randn xbuffer(1:end-1)];

(cf.) The system with impulse response gi (t) = xi (T − t) is called the
‘matched filter’ for the signal xi (t) because it is tuned to xi (t) so that
it can produce the maximum output to the input xi (t).

1.13 Walsh Functions [W-3] and Matched Filter

0

(a)

0

1

1 1.5 2
t

–1

(b)

0
0

–1

1

1 2
t

(c)

0

–1

1

0 1 2 t

(d)

0

–1

1

0 1 2
t

Fig. P1.13

With the program “sig01e05.m” modified in Problem 1.12, answer the
following questions.

(a) If we use the signal waveform of Fig. P1.13(a) in place of that of Fig. 1.21(a1),
how are the matched filter outputs sampled every 2 s changed? Can you
explain why the output of a matched filter is not close to zero 2 s after
another signal arrives in contrast with the case where the signal waveforms
of Fig. 1.21(a1) and (b1) are used?

(cf.) This gives us a chance to think about how we can design the signal
waveforms in such a way the difference between the (sampled) out-
put of a matched filter to the input for which it is tuned and the (sam-
pled) output to other input signals can be maximized, for the purpose
of minimizing the suffer from possible noise/distortion/interference
in a communication system. It is desirable to have the signal wave-
forms orthogonal to each other so that the integrations of their
products are zero.

(b) Consider the three signal waveforms x1(t), x2(t), and x3(t) of duration T =
2 [s], known as Walsh functions, which are depicted in Fig. P1.13(b), (c),
and (d) and represent a, b, and c, respectively.

- Are the three signals orthonormal in the following sense?

∫ T

0
xi (t)x j (t)dt = δ[i − j] =

{
1 for i = j

0 for i �= j
(P1.13.1)

Problems 57

- Modify the program “sig01e05.m” to simulate the situation that the
following input signal is applied to the three matched filters with the
impulse response gi (t) = xi (T − t):

x(t) = [x1(t) x2(t − T) x3(t − 2T) x2(t − 3T) x1(t − 4T)] (P1.13.2)

Does the receiver detect the received signals successfully from the sam-
pled outputs of the matched filters for all the zero-mean Gaussian noise
of variance σ 2 = 0.32?

1.14 Correlation Function and Radar (Radio Detection and Ranging) System
(Problem 3.28(e) of [O-1])
A radar transmits a short pulse of radio signal (electromagnetic radiation) and
measures the time it takes for the reflection to return from the target. The
distance is one-half the product of the round trip time and the speed of the
signal [W-1].

0 00

1

–1

t t

p1(t) p2(t)

(a) (b)

0

1

–1

Fig. P1.14

(a) Let the transmitted pulse be p(t) and the received pulse a p(t − t1) where t1
is the round trip time. Show that their crosscorrelation φxp(t) is maximized
at t = t1:

φxp(t1) = Max
t

φxp(t) (P1.14.1)

where

φxp(t) =
∫

x(t + τ)p(τ)dτ = a
∫

p(t − t1 + τ)p(τ)dτ (P1.14.2)

<Hint> To find the time at which the crosscorrelation is maximized, use
the Cauchy-Schwartz inequality:

∫ b

a
u(τ)v(τ)dτ ≤

(∫ b

a
u2(τ)dτ

)1/2 (∫ b

a
v2(τ)dτ

)1/2

(P1.14.3)

where the equality holds if and only if u(τ) = v(τ).
(b) Since the radar looks for the peak of the correlation function to find the

arrival time of returning signal, it would be good to use a pulse signal

58 1 Signals and Systems

(One OFDM symbol duration)

N_FFT
N_SD

N_GI

Prefix

(1) win_sig[n] = r[n]
(2) win_power[n] = r2[n]

(4) win_corr[n] = win_sig[n] win_sig[n–N_FFT]

(5) windowed_corr =

win_power[m](3) win_energy[n] =

correlation[n] =
Windowed_corr

m=n-N_Gl+1

m=n-N_Gl+1

r [n]
. ..

. ..

. ..

n
win_corr[m]

win_energy[n] win_energy[n–N_FFT]

∑

n
∑

. ..

√

⎧⎩ ⎧⎩

Fig. P1.15 Windows to detect an OFDM symbol using correlation

p(t) that has a sharply peaked autocorrelation function against possible
distortion in the returning signal. Which of the two pulses in Fig. P1.14 is
better?

1.15 OFDM Symbol Timing Using Correlation
Suppose an OFDM (Orthogonal Frequency Division Multiplexing) commu-
nication system in which an OFDM symbol consists of N FFT (Fast Fourier
Transform) points and N GI = 16 prefix points where the cyclic prefix is a
repeat of the end of the symbol at the beginning. Let us consider a problem
of detecting the start time of each OFDM symbol by using the correlation
between the prefix and the end part of the symbol. Since we cannot store
uncountably many samples of the received signal r[n], we use several win-
dows (buffers) to store some duration of signal samples, powers, energies, and
correlations as shown in Fig. P1.15 where the contents of each window is as
follows:

(1) win sig[n] = r[n] with the size of at least N FFT + 1
(2) win power[n] = r[n]2 with the size of N GI + 1
(3) win energy[n] = ∑n

m=n−N GI+1 win power[m] with the size of N FFT + 1
(4) win corr[n] = r[n]r[n − N FFT] with the size of N GI + 1

Problems 59

%detect OFDM symbol with correlation.m
% Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
clear, clf
N FFT=64; N GI=16; % N Prefix=16;
N SD=N FFT+N GI; N SD1=N SD+1; % Symbol Duration
N Null=N SD; Nw=N Null; % Null Duration
N d=N SD/4; % remaining period of the last symbol in the previous frame
N OFDM=2; % One Null + N OFDM symbols
symbols = []; Max energy ratio=0; Min energy ratio=1e10;
for i=1:N OFDM

symbol=2*rand(1,N FFT)-1; symbol=[symbol(end-N GI+1:end) symbol];
symbols = [symbols symbol];

end
Nulls= zeros(1,N Null);
received signal = [rand(1,N d) Nulls symbols];
length received= length(received signal);
noise = 0.1*(rand(size(received signal))-0.5);
received signal = received signal + noise;
Nw1=Nw+1; N GI1=N GI+1; N FFT1=N FFT+1;
win power= zeros(1,Nw1); win corr= zeros(1,N GI1);
win sig= zeros(1,N FFT1); win energy= zeros(1,N FFT1);
signal buffer = zeros(1,length received);
correlations = zeros(1,N SD);
True start points= [N d+N SD:N SD:length received]
OFDM start points= [0]; windowed corr=0;
nn = 1:length received;
for n=1:length received

signal buffer = [received signal(n) signal buffer(1:end-1)];
win power = [win power(2:end) received signal(n)ˆ2]; % the power window
win sig = [win sig(2:end) received signal(n)]; % the signal window
win energy = [win energy(2:end) win energy(end)+win power(end)];
if n>N GI, win energy(end) = win energy(end)-win power(end-N GI); end
win corr(1:end-1) = win corr(2:end);
if n>N FFT
win corr(end) = win sig(???)’*win sig(1);
windowed corr = windowed corr + win corr(end);

end
if n>N SD, windowed corr= windowed corr - win corr(?); end
% CP-based Symbol Timing
subplot(311)
stem(nn,signal buffer,’.’)
axis([0 N SD*4 -2 2]), hold on
title(’Received Signal and Estimated Starting Points of Symbols’)
if n>N SD %+N GI

%normalized/windowed correlation across N FFT samples for N GI points
normalized corr = windowed corr/sqrt(win energy(???)*win energy(?));
correlations = [correlations normalized corr];
if normalized corr>0.99&n-N SD>OFDM start points(end)+N FFT

OFDM start points = [OFDM start points n-N SD];
end
start points = OFDM start points(2:end);
subplot(312), stem(1:length(correlations),correlations,’.’)
axis([0 N SD*4 -1 1.5]), hold on

title(’Correlation across NFFT samples’)
end
if n<length received, clf; end

end
Estimated OFDM start points = start points

60 1 Signals and Systems

At each iteration when a sampled signal arrives, we compute the normalized
and windowed correlation

correlation[n] = windowed corr[n]√
win energy[n]win energy[n − N FFT]

?
> Threshold(0.99)

(P1.15.1)

with windowed corr[n] =
∑n

m=n−N GI+1
win corr[m]

to determine whether the current sample is the end of an OFDM symbol or
not. If the normalized correlation is found to exceed the threshold value, say,
0.99, we set the start time of the detected symbol to N SD (one OFDM sym-
bol duration) samples before the detection time. Complete the above program
“detect OFDM symbol with correlation.m” so that it implements this OFDM
symbol timing scheme. Also run it to check if it works.

Chapter 2
Continuous-Time Fourier Analysis

Contents

2.1 Continuous-Time Fourier Series (CTFS) of Periodic Signals . 62
2.1.1 Definition and Convergence Conditions

of CTFS Representation . 62
2.1.2 Examples of CTFS Representation . 65
2.1.3 Physical Meaning of CTFS Coefficients – Spectrum . 70

2.2 Continuous-Time Fourier Transform of Aperiodic Signals . 73
2.3 (Generalized) Fourier Transform of Periodic Signals . 77
2.4 Examples of the Continuous-Time Fourier Transform . 78
2.5 Properties of the Continuous-Time Fourier Transform . 86

2.5.1 Linearity . 86
2.5.2 (Conjugate) Symmetry . 86
2.5.3 Time/Frequency Shifting (Real/Complex Translation) . 88
2.5.4 Duality . 88
2.5.5 Real Convolution . 89
2.5.6 Complex Convolution (Modulation/Windowing) . 90
2.5.7 Time Differential/Integration – Frequency Multiplication/Division 94
2.5.8 Frequency Differentiation – Time Multiplication . 95
2.5.9 Time and Frequency Scaling . 95
2.5.10 Parseval’s Relation (Rayleigh Theorem) . 96

2.6 Polar Representation and Graphical Plot of CTFT . 96
2.6.1 Linear Phase . 97
2.6.2 Bode Plot . 97

2.7 Summary . 98
Problems . 99

Since the great contribution and revolutionary discovery of Jean Baptiste Joseph
Fourier saw the light in 1822 after passing through the long dark tunnel of J.L.
Lagrange’s stubborn objection and was supported by P.L. Dirichlet’s rigorous math-
ematical proof in 1829, the Fourier series and transform techniques have played very
significant role in so many disciplines within the fields of mathematics, science, and
engineering.

Joseph Fourier (1768∼1830) was a French mathematician and physicist who ini-
tiated the investigation of Fourier series and its application. Born as a son of a tailor,
he was orphaned at age 8. In 1784, at only 16 years of age, he became a mathematics
teacher at the Ecole Royale Militaire of Auxerre, debarred from entering the army

W.Y. Yang et al., Signals and Systems with MATLAB R©,
DOI 10.1007/978-3-540-92954-3 2, C© Springer-Verlag Berlin Heidelberg 2009

61

62 2 Continuous-Time Fourier Analysis

on account of his obscurity and poverty. In 1795, Fourier took a faculty position
at the Ecole Normale (Polytechnique) in Paris, which is an elite institution train-
ing high school teachers, university professors, and researchers. In 1798, he joined
Napoleon’s army in its expedition to Egypt as scientific advisor to help establish
educational facilities there and carry out archaeological explorations.

Eluding the Nelson’s British fleet, the Napoleon’s Egyption expedition fleet of
300 ships, 30,000 infantry, 2,800 cavalry, and 1,000 cannons started Toulon on
May 19,1798, sailing for Alexandria. The great expedition plan plotted by Napoleon
attached a library with lots of books, many measurement instruments, various lab-
oratory apparatuses, and about 500 civilians to the army; 150 of them were artists,
scientists, scholars, engineers, and technicians. These human and physical resources
formed the Institut d‘Égypte in Cairo after Egypt was conquered by Napoleon.
Napoleon Bonaparte (1769∼1821) not yet 30 years old, a great hero in the human
history, and Joseph Fourier, a great scholar of about the same age in their youth were
on board the flagship L’Orient of the expedition fleet. What were they thinking of
when walking around on the deck and looking up the stars twinkling in the sky above
the Mediterranean Sea at several nights in May of 1798? One might have dreamed
of Julius Caesar, who conquered Egypt about 1,800 years ago, falling in love with
the Queen Cleopatra, or might have paid a tribute to the monumental achievements
of the great king Alexander, who conquered one third of the earth, opening the road
between the West and the Orient. The other might have refreshed his memory on
what he wrote in his diary on his 21st birthday, Yesterday was my 21st birthday,
at that age Newton and Pascal had already acquired many claims to immortality,
arranging his ideas on Fourier series and heat diffusion or recollecting his political
ideology which had swept him and made him get very close to guillotine in the
vortex of French Revolution.

2.1 Continuous-Time Fourier Series (CTFS)
of Periodic Signals

2.1.1 Definition and Convergence Conditions
of CTFS Representation

Let a function x(t) be periodic with period P in t , that is,

x(t) = x(t + P) ∀ t (2.1.1)

where P [s] and ω0 = 2π/P [rad/s] are referred to as the fundamental period
and fundamental (angular) frequency, respectively, if P is the smallest positive real
number to satisfy Eq. (2.1.1) for periodicity. Suppose x(t) satisfies at least one of
the following conditions A and B:

2.1 Continuous-Time Fourier Series (CTFS) of Periodic Signals 63

< Condition A >

(A1) The periodic function x(t) is square-integrable over the period P , i.e.,∫
P

|x(t)|2 dt < ∞ (2.1.2a)

where
∫

P means the integration over any interval of length P . This implies
that the signal described by x(t) has finite power.

< Condition B : Dirichlet condition >

(B1) The periodic function x(t) has only a finite number of extrema and disconti-
nuities in any one period.

(B2) These extrema are finite.
(B3) The periodic function x(t) is absolutely-integrable over the period P , i.e.,∫

P
|x(t)| dt < ∞ (2.1.2b)

Then the periodic function x(t) can be represented by the following forms of
continuous-time Fourier series (CTFS), each of which is called the Fourier series
representation:
<Trigonometric form>

x(t) = a0 +
∑∞

k=1
ak cos kω0t +

∑∞
k=1

bk sin kω0t (2.1.3a)

with ω0 = 2π

P
(P : the period of x(t))

where the Fourier coefficients a0, ak , and bk are

a0 = 1

P

∫
P

x(t) dt (the integral over one period P)

ak = 2

P

∫
P

x(t) cos kω0t dt (2.1.3b)

bk = 2

P

∫
P

x(t) sin kω0t dt

<Magnitude-and-Phase form>

x(t) = d0 +
∑∞

k=1
dk cos(kω0t + φk) (2.1.4a)

where the Fourier coefficients are

d0 = a0, dk =
√

a2
k + b2

k , φk = tan−1(−bk/ak) (2.1.4b)

64 2 Continuous-Time Fourier Analysis

<Complex Exponential form>

x(t) = 1

P

∑∞
k=−∞ ck e jkω0t (2.1.5a)

where the Fourier coefficients are

ck =
∫

P
x(t) e− jkω0t dt (the integral over one period P) (2.1.5b)

Here, the k th frequency kω0 (|k| > 1) with fundamental frequency ω0 = 2π/P =
2π f0 [rad/s](P: period) is referred to as the k th harmonic. The above three forms of
Fourier series representation are equivalent and their Fourier coefficients are related
with each other as follows:

c0 =
∫

P
x(t) dt = Pd0 = Pa0 (2.1.6a)

ck =
∫

P
x(t) e− jkω0t dt =

∫
P

x(t) (cos kω0t − j sin kω0t) dt

= P

2
(ak − jbk) = P

2
dk∠φk (2.1.6b)

c−k =
∫

P
x(t) e jkω0t dt =

∫
P

x(t) (cos kω0t + j sin kω0t) dt

= P

2
(ak + jbk) = P

2
dk∠ − φk = c∗

k (2.1.6c)

a0 = c0

P
, ak = ck + c−k

P
= 2Re{ck}

P
, bk = c−k − ck

j P
= −2Im{ck}

P
(2.1.6d)

The plot of Fourier coefficients (2.1.4b) or (2.1.5b) against frequency kω0 is referred
to as the spectrum. It can be used to describe the spectral contents of a signal,
i.e., depict what frequency components are contained in the signal and how they
are distributed over the low/medium/high frequency range. We will mainly use
Eqs. (2.1.5a) and (2.1.5b) for spectral analysis.

<Proof of the Complex Exponential Fourier Analysis Formula (2.1.5b)>
To show the validity of Eq. (2.1.5b), we substitute the Fourier synthesis formula
(2.1.5a) with the (dummy) summation index k replaced by n into Eq. (2.1.5b) as

ck
?=
∫

P

1

P

∑∞
n=−∞ cn e jnω0t e− jkω0t dt =

∑∞
n=−∞ cn

1

P

∫
P

e j(n−k) 2π
P t dt

O.K.= ck

(2.1.7)

2.1 Continuous-Time Fourier Series (CTFS) of Periodic Signals 65

This equality holds since

1

P

∫ P/2

−P/2
e j(n−k) 2π

P t dt

=

⎧⎪⎪⎨
⎪⎪⎩

1
P· j(n−k)2π/P e j(n−k) 2π

P t
∣∣∣P/2

−P/2
= 0 for n �= k

1
P

∫ P/2
−P/2 dt = 1 for n = k

= δ[n − k] (2.1.8)

2.1.2 Examples of CTFS Representation

Example 2.1 Fourier Spectra of a Rectangular (Square) Wave and a Triangular
Wave

(a) CTFS Spectrum of a Rectangular (Square) Wave (Fig. 2.1(a1))
Consider an even rectangular wave x(t) with height A, duration D, and
period P:

x(t) = A r̃D/P (t) (E2.1.1)

where r̃D/P (t) =
{

1 for |t − m P| ≤ D/2(m : an integer)

0 elsewhere

A

A

(a1) A rectangular wave ArD/P (t): even∼

(b1) A triangular wave AλD/P (t): even
∼

(b2) A triangular wave AλD/P (t–D): odd
∼

(a2) A rectangular wave ArD/P (t–D/2): odd∼

–P

–P

P

P

t
–D/2 0 D/2 –P

t
–D 0 D

t

P

A

A

P2D
t

–2D–P 0–D 0 D

Fig. 2.1 Rectangular waves and triangular waves

66 2 Continuous-Time Fourier Analysis

We use Eq. (2.1.5b) to obtain the Fourier coefficients as

ck =
∫ P/2

−P/2
A r̃D/P (t) e− jkω0t dt = A

∫ D/2

−D/2
e− jkω0t dt = A

− jkω0
e− jkω0t

∣∣∣∣
D/2

−D/2

= A
e jkω0 D/2 − e− jkω0 D/2

jkω0
= AD

sin(kω0 D/2)

kω0 D/2

= AD sinc

(
k

D

P

)
with ω0 = 2π

P
(E2.1.2)

Now we can use Eq. (2.1.5a) to write the Fourier series representation of the
rectangular wave as

Ar̃D/P (t)
(2.1.5a)= 1

P

∑∞
k=−∞ AD sinc

(
k

D

P

)
e jkω0t

= AD

P
+
∑∞

k=1

2AD

P

sin(kπ D/P)

kπ D/P
cos kω0t (E2.1.3)

In the case of D = 1 and P = 2D = 2 as depicted in Fig. 2.2(a1), the
(magnitude) spectrum is plotted in Fig. 2.2(b1).
(Q) What about the case of P = D, which corresponds to a constant DC (Direct
Current) signal?

A = 1

ck

ck

–4 –4 –2 0 2 4

= 2π

6 8–6–8

0
0

1

–2

(a1) A rectangular wave (b1) The magnitude spectrum

2 t k

k

P

P

D

D

ω0
P

ω0

40

A = 1

–4

0

–2

(a2) A triangular wave

2 t 40 –4 –2 0 2 4

= 2π

6 8–6–8
0

1

(b2) The magnitude spectrum

ω0
P

ω0

Fig. 2.2 Rectangular/triangular waves and their CTFS magnitude spectra

2.1 Continuous-Time Fourier Series (CTFS) of Periodic Signals 67

(b) CTFS Spectrum of a Triangular Wave (Fig. 2.1(b1))
Consider an even triangular wave x(t) with maximum height A, duration 2D,
and period P:

x(t) = Aλ̃D/P (t) (E2.1.4)

where λ̃ D/P (t) =
{

1 − t/D for |t − m P| ≤ D (m : an integer)

0 elsewhere

We use Eq. (2.1.5b) to obtain the Fourier coefficients as

ck =
∫ P/2

−P/2
A

(
1 − |t |

D

)
e− jkω0t dt =

∫ D

−D
A

(
1 − |t |

D

)
cos(kω0t) dt

= 2
∫ D

0
A

(
1 − t

D

)
cos(kω0t) dt = 2A

(
1 − t

D

)
1

kω0
sin(kω0t)

∣∣∣∣
D

0

−
∫ D

0
2A

(
− 1

D

)
1

kω0
sin(kω0t) dt = −2A

1

(kω0)2 D
cos(kω0t)

∣∣∣∣
D

0

= 2AD
1 − cos(kω0 D)

(kω0 D)2
= AD

4 sin2(kω0 D/2)

(kω0 D/2)2

= AD sin c2

(
k

D

P

)
with ω0 = 2π

P
(E2.1.5)

Now we can use Eq. (2.1.5a) to write the Fourier series representation of the
triangular wave as

Aλ̃D/P (t)
(2.1.5a)= 1

P

∑∞
k=−∞ AD sinc2

(
k

D

P

)
e jkω0t (E2.1.6)

In the case of D = 1 and P = 2D = 2 as depicted in Fig. 2.2(a2), the
corresponding (magnitude) spectrum is plotted in Fig. 2.2(b2).

(c) MATLAB program to get the Fourier spectra
Once you have defined and saved a periodic function as an M-file, you can use
the MATLAB routine “CTFS exponential ()” to find its complex exponential
Fourier series coefficients (ck’s). Interested readers are invited to run the follow-
ing program “cir02e01.m” to get the Fourier coefficients and plot the spectra for
a rectangular wave and a triangular wave as in Fig. 2.2.

68 2 Continuous-Time Fourier Analysis

%sig02e01.m : plot Fig. 2.2 (CTFS spectra of rectangular/triangular waves
clear, clf
global P D
N=8; k= -N:N; % the range of frequency indices
for i=1:2

if i==1 % true Fourier series coefficients for a rectangular wave
x = ’rectangular wave’; P=2; D=1; c true= D*sinc(k*D/P);
else % true Fourier series coefficients for a triangular wave
x = ’triangular wave’; P=2; D=1; c true= D*sinc(k*D/P).ˆ2;

end
w0=2*pi/P; % fundamental frequency
tt=[-400:400]*P/200; % time interval

xt = feval(x,tt); % original signal
[c,kk] = CTFS exponential(x,P,N);
[c; c true] % to compare with true Fourier series coefficients
discrepancy between numeric and analytic=norm(c-c true)
jkw0t= j*kk.’*w0*tt;
xht = real(c/P*exp(jkw0t)); % Eq. (2.1.5a)

subplot(219+i*2), plot(tt,xt,’k-’, tt,xht,’b:’)
axis([tt(1) tt(end) -0.2 1.2]), title(’Periodic function x(t)’)
c mag = abs(c); c phase = angle(c);
subplot(220+i*2), stem(kk, c mag), title(’CTFS Spectrum |X(k)|’)

end

function y=rectangular wave(t)
global P D
tmp=min(abs(mod(t,P)),abs(mod(-t,P))); y= (tmp<=D/2);

function y=triangular wave(t)
global P D
tmp= min(abs(mod(t,P)),abs(mod(-t,P))); y=(tmp<=D).*(1-tmp/D);

function [c,kk]=CTFS exponential(x,P,N)
% Find the complex exponential Fourier coefficients c(k) for k=-N:N
% x: A periodic function with period P
% P: Period, N: Maximum frequency index to specify the frequency range
w0=2*pi/P; % the fundamental frequency [rad/s]
xexp jkw0t = [x ’(t).*exp(-j*k*w0*t)’];
xexp jkw0t= inline(xexpjkw0t ,’t’,’k’,’w0’);
kk=-N:N; tol=1e-6; % the frequency range tolerance on numerical error
for k=kk

c(k+N+1)= quadl(xexp jkw0t,-P/2,P/2,tol,[],k,w0); % Eq. (2.1.5b)
end

%sig02 01.m : plot Fig. 2.3 (CTFS reconstruction)
clear, clf
global P D
P=2; w0=2*pi/P; D=1; % period, fundamental frequency, and duration
tt=[-400:400]*P/400; % time interval of 4 periods
x = ’rectangular wave’;
xt = feval(x,tt); % original signal
plot(tt,xt,’k:’), hold on
Ns= [1 3 9 19];
for N=Ns

k= -N:N; jkw0t= j*k.’*w0*tt; % the set of Fourier reconstruction terms
c= D*sinc(k*D/P);
xht = real(c/P*exp(jkw0t)); % Eq. (2.1.9)
plot(tt,xht,’b’), hold on, pause

end
axis([tt(1) tt(end) -0.2 1.2])

2.1 Continuous-Time Fourier Series (CTFS) of Periodic Signals 69

1

0.5

0

–2 –1

x (t) = e
 = –N

 N = 1
 N = 3 N = 9

 N = 19

N jkω
0
tc

k k
1
P

∑∧

0 1 2

Fig. 2.3 Examples of the approximate Fourier reconstruction for a rectangular pulse

At this point, you may wonder how a rectangular wave with discontinuities can
be represented by the sum of trigonometric or complex exponential functions that
are continuous for all t . To satisfy your curiosity, let us consider the approximate
Fourier series reconstruction formula.

x̂N (t) = 1

P

∑N

k=−N
ck e jkω0t (2.1.9)

This can be used to reconstruct the original time function x(t) from its Fourier
series coefficients. We can use the above MATLAB program ‘sig02 01.m’ to plot
the Fourier series reconstructions of a rectangular wave with increasing number of
terms N = 1, 3, 9, 19,. . . as in Fig. 2.3.

The following remark with Fig. 2.3 will satisfy your curiosity:

Remark 2.1 Convergence of Fourier Series Reconstruction

(1) The Fourier series convergence condition A stated in Sect. 2.1.1 guarantees that
the Fourier coefficients are finite and the Fourier series reconstruction x̂N (t)
converges to the original time function x(t) in the sense that

∫
P

|x̂N (t) − x(t)|2 dt → 0 as N → ∞

(2) The Fourier series convergence condition B stated in Sect. 2.1.1 guarantees the
following:

- The Fourier coefficients are finite.
- The Fourier series reconstruction x̂N (t) converges to the original time func-

tion x(t) at every t except the discontinuities of x(t) and to the average value
of the limits from the left/right at each discontinuity.

(3) Figure 2.3 illustrates that x̂N (t) has ripples around the discontinuities of x(t),
whose magnitude does not decrease as N → ∞. This is called the Gibbs
phenomenon.

70 2 Continuous-Time Fourier Analysis

(a) An impulse train with period T

–3T –2T –T 0 T 2T

T

3T –2 –1 0 1

1

2
kt

(b) Its Fourier spectrum

ω 0=2π
T

δT(t) = Σm=–∞ δ(t – mT)
∞

Fig. 2.4 An impulse train and its CTFT spectrum

(4) For practical purposes, we do not need to pay attention to the convergence
condition because the “weird” signals that do not satisfy the condition are not
important in the study of signals and systems.

Example 2.2 Fourier Spectrum of an Impulse Train
Consider an impulse train consisting of infinitely many shifted unit impulses that

are equally spaced on the time axis:

δT (t) =
∑∞

m=−∞ δ(t − mT) (E2.1.1)

We can use Eq. (2.1.5b) with P = T and ω0 = 2π/T to obtain the Fourier
coefficients as

ck =
∫ T/2

−T/2
δT (t) e− jkω0t dt

(E2.1.1)=
∫ T/2

−T/2

∑∞
m=−∞ δ(t − mT)e− jkω0t dt

(since there is only one impulse δ(t)

within the integration interval [−T/2, T/2])

=
∫ T/2

−T/2
δ(t) e− jkω0t dt

(1.1.25)=
with t1=0

e− jkω0t
∣∣
t=0 = 1 ∀ k

This means a flat spectrum that is uniformly distributed for every frequency index.
Now we can use Eq. (2.1.5a) to write the Fourier series representation of the impulse
train as

δT (t)
(2.1.5a)=

P=T

1

P

∑∞
k=−∞ ck e jkω0t P=T= 1

T

∑∞
k=−∞ e jkω0t with ω0 = 2π

T

(2.1.10)

Fig. 2.4(a) and (b) show an impulse train and its spectrum, respectively.

2.1.3 Physical Meaning of CTFS Coefficients – Spectrum

To understand the physical meaning of spectrum, let us see Fig. 2.5, which shows
the major Fourier coefficients ck of a zero-mean rectangular wave for k = −3, −1,
1, and 3 (excluding the DC component c0) and the corresponding time functions

2.1 Continuous-Time Fourier Series (CTFS) of Periodic Signals 71

0

Re

Im
0

C1

C3

C–1

C–3

P

P

P

P t

d3cos(3ω0t + φ3)

–3ω0 3ω0[rad/s]

–ω0[rad/s]ω0

d 3
co

sφ
3

d 1
co

sφ
1

φ3

φ1

d1cos(ω0t + φ1)
d1cos(ω0t + φ1) + d3cos(3ω0t + φ3)

Fig. 2.5 Physical meaning of complex exponential Fourier series coefficients

1

P

(
c−1 e− jω0t + c1 e jω0t

)
and

1

P

(
c−3 e− j3ω0t + c3 e j3ω0t

)
The observation of Fig. 2.5 gives us the following interpretations of Fourier
spectrum:

Remark 2.2 Physical Meaning of Complex Exponential Fourier Series Coefficients

(1) While the trigonometric or magnitude-and-phase form of Fourier series has only
nonnegative frequency components, the complex exponential Fourier series has
positive/negative frequency (±kω0) components that are conjugate-symmetric
about k = 0, i.e.,

ck
(2.1.6b)= P

2
dke jφk and c−k

(2.1.6c)= P

2
dke− jφk → |c−k | = |ck | and φ−k = −φk

as shown in Sect. 2.1.1. This implies that the magnitude spectrum |ck | is (even)
symmetric about the vertical axis k = 0 and the phase spectrum φk is odd
symmetric about the origin.

(2) As illustrated above, the k th component appears as the sum of the positive and
negative frequency components

ck

P
e jkω0t + c−k

P
e− jkω0t (2.1.6)= 1

2
dke jφk e jkω0t + 1

2
dke− jφk e− jkω0t

= dk cos(kω0t + φk)

which denote two vectors (phasors) revolving in the opposite direction with
positive (counter-clockwise) and negative (clockwise) angular velocities ±kω0

[rad/s] round the origin, respectively.
(3) Figure 2.6 also shows that the spectrum presents the descriptive information of

a signal about its frequency components.

To get familiar with Fourier spectrum further, let us see and compare the spec-
tra of the three signals, i.e., a rectangular wave, a triangular wave, and a constant

72 2 Continuous-Time Fourier Analysis

Magnitude
spectrum

d1cos(ω0t +φ1) + d3cos(3ω0t +φ3)

d1cos(ω0t + φ1)

d3cos(3ω0t + φ3)

d1
t

t

t
fundamental component
 No 2nd harmonic

No dc component
Time

t

d1

d0 d2
d3

kω0 kω0

0

Fr equ
enc y

d3

the 3rd harmonic component

Fig. 2.6 Physical meaning of spectrum – time domain vs. frequency domain

(DC: Direct Current) signal depicted in Fig. 2.7. The observations are stated in the
following remarks:

Remark 2.3 Effects of Smoothness and Period on Spectrum

(1) The smoother a time function is, the larger the relative magnitude of low
frequency components to high frequency ones is. Compare Fig. 2.7(a1–b1),
(a2–b2), and (a3–b3).

(cf.) The CTFS of the unit constant function can be obtained from Eq. (E2.1.3)
with A = 1 and P = D.

P

D

D

–5
0

1

0

(a1) A rectangular wave with D = 1, P = 2 (b1) Its magnitude spectrum

(b2) Its magnitude spectrum

(b3) Its magnitude spectrum

(b4) Its magnitude spectrum

(a2) A triangular wave with D = 1, P = 2

(a3) A constant signal

(a4) A rectangular wave with D = 1, P = 4

5t –8
0

1

0 8k

P

D

–5
0

1

0 5t

–5
0

1

0 5t

–5
0

1

0 5t

ck = 2π
ω0

P
ω0

= 2π
P

ω0

ω0

–8
0

1

0 8k

ck

–8
0

1

0 8k

ck

–8
0

1

0 8k

ck

Fig. 2.7 The CTFS spectra of rectangular/triangular waves and a DC signal

2.2 Continuous-Time Fourier Transform of Aperiodic Signals 73

(2) The longer the period P is, the lower the fundamental frequency ω0 = 2π/P
becomes and the denser the CTFS spectrum becomes. Compare Fig. 2.7(a4–b4)
with (a1–b1).
(cf.) This presages the continuous-time Fourier transform, which will be intro-

duced in the next section.

Now, let us see how the horizontal/vertical translations of a time function x(t)
affect the Fourier coefficients.

<Effects of Vertical/Horizontal Translations of x(t) on the Fourier coefficients>
Translating x(t) by ±A (+: upward, −: downward) along the vertical axis causes
only the change of Fourier coefficient d0 = a0 for k = 0 (DC component or average
value) by ±A. On the other side, translating x(t) along the horizontal (time) axis by
±t1 (+: rightward, −: leftward) causes only the change of phases (φk’s) by ∓kω0t1,
not affecting the magnitudes dk of Eq. (2.1.4b) or |ck | of Eq. (2.1.5b):

c′
k

(2.1.5b)=
∫

P
x(t − t1) e− jkω0t dt =

∫
P

x(t − t1) e− jkω0(t−t1+t1)dt

= e− jkω0t1

∫
P

x(t − t1) e− jkω0(t−t1)dt
(2.1.5b)= cke− jkω0t1 = |ck |∠(φk − kω0t1)

(2.1.11)

Note that x(t − t1) is obtained by translating x(t) by t1 in the positive (rightward)
direction for t1 > 0 and by −t1 in the negative (leftward) direction for t1 < 0 along
the horizontal (time) axis. Eq. (2.1.11) implies that horizontal shift of x(t) causes a
change not in its magnitude spectrum but in its phase spectrum.

2.2 Continuous-Time Fourier Transform of Aperiodic Signals

In this section we will define the Fourier transform for aperiodic signals. Suppose
we have an aperiodic signal x(t) of finite duration D > 0 and its periodic extension
x̃P (t) with period P > D that is obtained by repeating x(t) every P s.

Noting that, as we choose the period P to be longer, x̃P (t) appears to be identical
to x(t) over a longer interval, we can think of x(t) as the limit of x̃P (t) as P → ∞.
Since x̃P (t) is periodic with period P , it can be represented by the Fourier series of
the form

x̃P (t) = 1

P

∑∞
k=−∞ ck e jkω0t = 1

2π

∑∞
k=−∞ X (jkω0) e jkω0tω0 with ω0 = 2π

P

where the CTFS coefficients are

X (jkω0) = ck =
∫

P
x̃P (t) e− jkω0t dt =

∫ ∞

−∞
x(t) e− jkω0t dt

Noting that x̃P (t) → x(t) and ω0 = 2π/P → 0 as P → ∞, we let ω0 = dω and
kω0 = ω and take the limits of the above two equations as P → ∞ to write the
continuous-time Fourier transform (CTFT) pair:

74 2 Continuous-Time Fourier Analysis

X (jω) = F{x(t)} =
∫ ∞

−∞
x(t)e− jωt dt (Fourier transform/integral) (2.2.1a)

x(t) = F−1{X (jω)} = 1

2π

∫ ∞

−∞
X (jω)e jωt dω (Inverse Fourier transform)

(2.2.1b)

where X (jω), called the spectrum of x(t), has values at a continuum of frequencies
and is often written as X (ω) with the constant j omitted. Like the CTFS of periodic
signals, the CTFT of aperiodic signals provides us with the information concerning
the frequency contents of signals, while the concept of frequency describes rather
how rapidly a signal changes than how fast it oscillates.

Note that the sufficient condition for the convergence of CTFT is obtained by
replacing the square-integrability condition (2.1.2a) of Condition A with

∫ ∞

−∞
|x(t)|2 dt < ∞ (2.2.2a)

or by replacing the absolute-integrability condition (2.1.2b) of Condition B with

∫ ∞

−∞
|x(t)| dt < ∞ (2.2.2b)

Remark 2.4 Physical Meaning of Fourier Transform – Signal Spectrum and Fre-
quency Response

(1) If a time function x(t) represents a physical signal, its Fourier transform
X (jω) = F{x(t)} means the signal spectrum, which describes the frequency
contents of the signal.

(2) In particular, if a time function g(t) represents the impulse response of a
continuous-time LTI (linear time-invariant) system, its Fourier transform
G(jω) = F{g(t)} means the frequency response, which describes how the sys-
tem responds to a sinusoidal input of (angular) frequency ω (refer to Sect. 1.2.6
for the definition of frequency response).

Remark 2.5 Frequency Response Existence Condition and Stability Condition of
a System

For the impulse response g(t) of a continuous-time LTI system, the absolute-
integrability condition (2.2.2b) is identical with the stability condition (1.2.27a).
This implies that a stable LTI system has a well-defined system function (frequency
response) G(jω) = F{g(t)}.
Remark 2.6 Fourier Transform and Laplace Transform

For any square-integrable or absolutely-integrable causal function x(t) such that
x(t) = 0 ∀ t < 0, the Fourier transform can be obtained by substituting s = jω into
the Laplace transform:

2.2 Continuous-Time Fourier Transform of Aperiodic Signals 75

X (jω)
(2.2.1a)=

∫ ∞

−∞
x(t)e− jωt dt

x(t)=0 for t<0=
causal signal

∫ ∞

0
x(t)e− jωt dt

(A.1)= X (s)|s= jω (2.2.3)

This argues that for a physical system having causal impulse response g(t), the
Fourier transform G(jω) of g(t), that is the frequency response, can be obtained by
substituting s = jω into the system function G(s), which is the Laplace transform
of g(t). (See Eq. (1.2.21).)

Example 2.3 CTFT Spectra of a Rectangular (Square) Pulse and a Triangular
Pulse

(a) CTFT Spectrum of a Rectangular (Square) Pulse (Fig. 2.8(a))
Consider a single rectangular pulse with height 1 and duration D on the interval
[−D/2, D/2]:

ArD(t) = A

(
us

(
t + D

2

)
− us

(
t − D

2

))
=
{

A for − D/2 ≤ |t | < D/2

0 elsewhere
(E2.3.1)

We use Eq. (2.2.1a) to obtain the CTFT coefficients as

1

Fourier transform

Fourier transform
generalized

P = 4D

P = 2D

: Period
Fourier series ck Xkor

Fourier series

Fundamental
frequency

–2π/D

–2π/D 2π/D

2π
ω0

ω0 PD

D

ω0

D

ω0

D

= :

2π/D00

–4 –40

t

t

–4 –4 –8

–16
k

16

8
k

0

0

0

0

–4 –40

t

t

X (jω)
D : Duration

(a) A rectangular pulse and its CTFT spectrum

(b) A rectangular wave and its CTFS spectrum

(d) A rectangular wave and its CTFT spectrum

(c) A rectangular wave and its CTFS spectrum

P

P

P = 2DP

⎥

⎥ ⎥ ⎥ ⎥

ck Xkor⎥ ⎥ ⎥ ⎥

⎥

⎥

X (jω)⎥ ⎥

ω

ω

D

D

D

D

Fig. 2.8 The CTFT or CTFS spectra of rectangular pulses or waves

76 2 Continuous-Time Fourier Analysis

ARD(jω)
(2.2.1a)=

∫ ∞

−∞
ArD(t)e− jωt dt = A

∫ D/2

−D/2
e− jωt dt = A

− jω
e− jωt

∣∣∣∣
D/2

−D/2

= A
e jωD/2 − e− jωD/2

jω
= AD

sin(ωD/2)

ωD/2

= ADsinc

(
ωD

2π

)
(E2.3.2)

This CTFT spectrum is depicted in Fig. 2.8(a). The first zero crossing B =
2π/D [rad/s] of the magnitude spectrum is often used as a measure of the fre-
quency spread of a signal and called the zero-crossing (null-to-null) bandwidth
of the signal.

(cf.) As a by-product, we can apply the inverse CTFT formula (2.2.1b) for
Eq. (E2.3.2) to get the integral of a sinc function:

rD(t)
(2.2.1b)= 1

2π

∫ ∞

−∞
RD(jω)e jωt dω

(E2.3.2)= 1

2π

∫ ∞

−∞
D

sin(ωD/2)

ωD/2
e jωt dω

us

(
t + D

2

)
− us

(
t − D

2

)
ω=2w= 1

π

∫ ∞

−∞

sin(wD)

w
e j2wt dw

Substituting t = 0 into this equation yields

1

π

∫ ∞

−∞

sin(wD)

w
dw = us

(
D

2

)
− us

(
− D

2

)
= sign(D)=

⎧⎪⎨
⎪⎩

1 for D > 0

0 for D = 0

−1 for D < 0

(E2.3.3)

(b) CTFT Spectrum of a Triangular Pulse
Like Eq. (E2.1.5), which is the CTFS coefficient of a triangular wave, we can
find the CTFT spectrum of a single triangular pulse x(t) = AλD(t) as

X (jω) = AΛD (jω) = AD
sin2(ωD/2)

(ωD/2)2
= AD sinc2

(
ωD

2π

)
(E2.3.4)

Figure 2.8(a) shows a rectangular pulse and its CTFT spectrum, while Fig. 2.8(b)
and (c) show two rectangular waves and their CTFS spectra. These figures present
us an observation about the relationship between the CTFT of a single pulse x(t)
and the CTFS of its periodic repetition x̃P (t) with period P , which is summarized
in the following remark.

Remark 2.7 Fourier Series and Fourier Transform

(1) We will mainly use the complex exponential Fourier coefficients, but seldom
use the trigonometric or magnitude-and-phase form of Fourier series. Thus,
from now on, we denote the complex exponential Fourier coefficients of x(t)

2.3 (Generalized) Fourier Transform of Periodic Signals 77

by Xk instead of ck , which has been used so far to distinguish it from other
Fourier coefficients ak, bk , or dk .

(2) As can be seen from comparing Eqs. (E2.1.2) and (E2.3.2) or (E2.1.5) and
(E2.3.4), the relationship between the CTFT X (jω) of x(t) and the CTFS coef-
ficient Xk of x̃P (t) (the periodic extension of x(t) with period P) is as follows:

X (jω)|ω=kω0=2πk/P = X (jkω0) = Xk (2.2.4)

As the period P gets longer so that the fundamental frequency or frequency
spacing ω0=2π/P decreases, the Fourier coefficients Xk’s become more closely
spaced samples of the CTFT X (jω), implying that the set of CTFS coefficients
approaches the CTFT as P → ∞ (see Fig. 2.8(c), (b), and (a)).

(3) Unlike the discrete frequency kω0 of CTFS, the continuous frequency ω of
CTFT describes how abruptly the signal changes rather than how often it
oscillates.

(4) If the CTFT of a single pulse x(t) and the CTFS of the periodic extension x̃P (t)
were of different shape in spite of the same shape of x(t) and x̃P (t) over one
period P , it would be so confusing for one who wants the spectral information
about a signal without knowing whether it is of finite duration or periodic. In
this context, how lucky we are to have the same shape of spectrum (in the sense
that CTFS are just samples of CTFT) whether we take the CTFT of x(t) or the
CTFS of x̃P (t)! Furthermore, you will be happier to see that even the CTFT of
x̃P (t) (Fig. 2.8(d)) is also of the same shape as the CTFS of x̃P (t), because one
might observe one period of x̃P (t) and mistake it for x(t) so that he or she would
happen to apply the CTFT for periodic signals. Are you puzzled at the CTFT of
a periodic signal? Then rush into the next section.

2.3 (Generalized) Fourier Transform of Periodic Signals

Since a periodic signal can satisfy neither the square-integrability condition (2.2.2a)
nor the absolute-integrability condition (2.2.2b), the CTFTs of periodic signals are
not only singular but also difficult to compute directly. For example, let us try to
compute the CTFT of xk(t) = e jkω0t by using Eq. (2.2.1a):

F{xk(t)} (2.2.1a)=
∫ ∞

−∞
e jkω0t e− jωt dt =

∫ ∞

−∞
e

− j(ω−kω0)t
dt

(D.33)= 1

− j(ω − kω0)
e

− j(ω−kω0)t
∣∣∣T
−T

∣∣∣∣
T →∞

= 1

j(ω − kω0)

(
e

j(ω−kω0)T − e
− j(ω−kω0)T

)∣∣∣
T =∞

=
(

2 sin (ω − kω0)T

(ω − kω0)

)∣∣∣∣
T =∞

=? (2.3.1)

78 2 Continuous-Time Fourier Analysis

To get around this mathematical difficulty, let us find the inverse CTFT of

Xk(jω) = 2π δ(ω − kω0)

by applying the inverse Fourier transform (2.2.1b):

F−1{Xk(jω)} (2.2.1b)= 1

2π

∫ ∞

−∞
2π δ(ω − kω0)e jωt dω

(1.1.25)= e
jkω0 t

This implies a CTFT pair as

xk(t) = e
jkω0 t F↔ Xk(jω) = 2π δ(ω − kω0) (2.3.2)

Based on this relation, we get the Fourier transform of a periodic function x(t)
from its Fourier series representation as follows:

x(t)
(2.1.5a)= 1

P

∑∞
k=−∞ Xk e jkω0t with ω0 = 2π

P

F↔ X (jω)
(2.3.2)= 2π

P

∑∞
k=−∞ Xk δ(ω − kω0) (2.3.3)

This implies that the CTFT of a periodic signal consists of a train of impulses
on the frequency axis having the same shape of envelope as the CTFS spectrum.
Figure 2.8(d) is an illustration of Eq. (2.3.3) as stated in Remark 2.7(4).

Remark 2.8 Fourier Transform of a Periodic Signal
It would be cumbersome to directly find the CTFT of a periodic function. Thus we
had better find the CTFS coefficients first and then use Eq. (2.3.2) as illustrated in
Eq. (2.3.3).

2.4 Examples of the Continuous-Time Fourier Transform

Example 2.4 Fourier Transform of an Exponential Function
For an exponential function (Fig. 2.9(a)) with time constant T > 0

e1(t) = 1

T
e−t/T us(t) with T > 0, (E2.4.1)

T : Time constant

B : Bandwidth

(a) A unilateral exponential signal (b) Its CTFT spectrum – magnitude

T
1

0 0

1

1

T

T
t

B

E1(jω)

ω
ωc = 1/T

ωc =

e–11

e1(t) = us(t)
T

e–t /T 1

√2

T
1 : Cutoff frequency

Fig. 2.9 A unilateral exponential signal and its CTFT spectrum

2.4 Examples of the Continuous-Time Fourier Transform 79

we have the Fourier transform

E1(jω) = F{e1(t)} (2.2.1a)=
∫ ∞

−∞

1

T
e−t/T us(t) e− jωt dt = 1

T

∫ ∞

0
e−t/T e

− jωt
dt

= 1

T

∫ ∞

0
e

−(1/T + jω)t
dt

(D.33)= − 1

T (1/T + jω)
e

−(1/T + jω)t
∣∣∣∞
0

= 1

1 + jωT
= 1√

1 + (ωT)2
∠ − tan−1(ωT) (E2.4.2)

whose magnitude is depicted in Fig. 2.9(b). From this magnitude spectrum, we see
that ωc = 1/T is the half-power frequency at which |E1(jω)| is 1/

√
2 times the

maximum magnitude 1:

|E1(jω)| = 1√
1 + (ω T)2

= 1√
2

; 1 + (ω T)2 = 2; ωT = 1; ωc = 1

T
(E2.4.3)

This example makes possible the following interpretations:

Remark 2.9 Signal Bandwidth and System Bandwidth – Uncertainty Principle

(1) In case the function e1(t) represents a physical signal itself, the above exam-
ple illustrates the inverse relationship (a kind of duality) between the time and
frequency domains that the bandwidth B [rad/s] of the signal is inversely pro-
portional to the time-duration T [s], i.e., BT = constant(= 1). Note that the
bandwidth of a signal, i.e., the width of the frequency band carrying the major
portion of the signal energy, describes how rich frequency contents the signal
contains. Such a relationship could also be observed in Example 2.3 and Fig. 2.8
where the time-duration of the rectangular pulse is D and the signal band-
width, defined as the frequency range to the first zero-crossing of the magnitude
spectrum, is 2π/D. This observation, called the reciprocal duration-bandwidth
relationship, is generalized into the uncertainty principle that the time-duration
and bandwidth of a signal cannot be simultaneously made arbitrarily small,
implying that a signal with short/long time-duration must have a wide/narrow
bandwidth [S-1, Sect. 4.5.2]. This has got the name from the Heisenberg uncer-
tainty principle in quantum mechanics that the product of the uncertainties in
the measurements of the position and momentum of a particle cannot be made
arbitrarily small.

(2) In case the function e1(t) represents the impulse response of a filter such as
the RC circuit shown in Fig. 2.10(a), it has another interpretation that the
bandwidth of the system behaving as a low-pass filter is inversely proportional
to the time constant T = RC[s]. Note that the system bandwidth of a filter
describes the width of frequency band of the signal to be relatively well passed
and that it is usually defined as the frequency range to the 3dB-magnitude
(half-power) frequency B = 1/T [rad/s]. Also note that, in comparison with
the bandwidth as a frequency-domain “capacity” concept, the time constant
describes how fast the filter produces the response (output) to an applied input

80 2 Continuous-Time Fourier Analysis

(a) An RC circuit and its transformed (s-domain) equivalent circuit

(b) The output voltages to a single rectangular pulse input
0 D

t

== =

vo (t)

vi (t)

vi (t)

vo1(t)

vo2(t)

R [Ω] R

1C [F] Vi (s)
sC Vo (s)

+

−

+
+ +

−

The output of the RC filter with RC = 1/2

A rectangular pulse input signalvi (t):

The output of the RC filter with RC = 1/8vo1 (t):
vo 2 (t):

System function :

1/sC

1/jωC 1

1

R + 1/sC

R + 1/jωC 1 + jωRC

1 + sRC

Frequency response :

==

Time constant : T = RC
Bandwidth : B = 1/T = 1/RC

Vi (s)

Vo (s)
G (s)

G (j ω)

Fig. 2.10 An RC circuit and its outputs to rectangular pulse input signals

signal and that it is defined as the time taken for the output to reach 68.2%(e−1)
of the final (steady-state) value, or equivalently, the time measured until the
(slowest) term of the transient response (converging towards zero) becomes as
small as 32.8% of the initial value.

(3) Referring to Fig. 2.10(b), suppose a rectangular pulse of duration D is applied
to the RC filter. Then, in order for the low-pass filter to have high fidelity of
reproduction so that the output pulse will appear very much like the input pulses,
the system bandwidth (the reciprocal of time constant RC) of the filter had
better be greater than the signal bandwidth 2π/D of the input pulse.

Example 2.5 Fourier Transform of an Even-Symmetric Exponential Function
For an exponential function (Fig. 2.11(a)) with time constant T > 0

e2(t) = 1

2T
e−|t |/T with T > 0, (E2.5.1)

0

(a) An even-symmetric exponential signal
T

t

2T
1

2T
1

2T
1

e–1

e2(t) = e– t /T

0

(b) Its CTFT spectrum–magnitude
1/T

ω

1 E2(j ω)

1
2

Fig. 2.11 An even-symmetric exponential signal and its CTFT spectrum

2.4 Examples of the Continuous-Time Fourier Transform 81

we have the Fourier transform

E2(jω) = F{e2(t)} (2.2.1a)=
∫ ∞

−∞

1

2T
e−|t |/T e− jωt dt

= 1

2T

{∫ 0

−∞
et/T e

− jωt
dt +

∫ ∞

0
e−t/T e

− jωt
dt

}

= 1

2T (1/T − jω)
e

(1/T − jω)t
∣∣∣0
−∞

− 1

2T (1/T + jω)
e

−(1/T + jω)t
∣∣∣∞
0

= 1/2

1 − jωT
+ 1/2

1 + jωT
= 1

1 + (ωT)2
(E2.5.2)

whose magnitude is depicted in Fig. 2.11(b).

(Q) Why has the magnitude spectrum shorter bandwidth than that in Fig. 2.9(b)?
(A) It is because the signal in Fig. 2.11(a) is smoother than that in Fig. 2.9(a).

Example 2.6 Fourier Transform of the Unit Impulse (Dirac Delta) Function
We can obtain the Fourier transform of the unit impulse function δ(t) as

D(jω) = F{δ(t)} (2.2.1a)=
∫ ∞

−∞
δ(t)e− jωt dt

(1.1.25)= 1 ∀ ω (E2.6.1)

This implies that an impulse signal has a flat or white spectrum, which is evenly
distributed over all frequencies (see Fig. 2.12).

It is interesting to see that this can be derived by taking the limit of Eq. (E2.3.2) as
D → 0 in Example 2.3 (with A = 1/D) or Eq. (E2.5.2) as T → 0 in Example 2.5:

δ(t)
(1.1.33b)= lim

D→0

1

D
rD

(
t + D

2

)
(E2.3.1)= lim

D→0

1

D

(
us

(
t + D

2

)
− us

(
t − D

2

))

→ lim
D→0

1

D
RD(jω)

(E2.3.2)= lim
D→0

sinc

(
ωD

2π

)
= 1

(a) A unit-impulse signal (b) Its CTFT spectrum–magnitude
0 0

1
� (jω) = 1δ(t)

ωt

Fig. 2.12 A unit impulse signal and its CTFT spectrum

82 2 Continuous-Time Fourier Analysis

δ(t)
(1.1.33d)= lim

T →0
e2(t)

(E2.5.1)= lim
T →0

1

2T
e−|t |/T

→ lim
T →0

E2(jω)
(E2.5.2)= lim

T →0

1

1 + (ωT)2
= 1

As a byproduct, we can apply the inverse Fourier transform (2.2.1b) to obtain an
expression of the impulse function as

δ(t) = F−1{D(jω)} (2.2.1b)= 1

2π

∫ ∞

−∞
D(jω)e jωt dω

(E2.6.1)= 1

2π

∫ ∞

−∞
1e jωt dω

(E2.6.2)

(D.33)= lim
w→∞

1

2π j t
e jωt

∣∣w
−w

= lim
w→∞

e jωt − e− jωt

2π j t

(D.22)= lim
w→∞

w

π

sin(wt)

wt

which is identical with Eq. (1.1.33a).

Remark 2.10 An Impulse Signal and Its (White/Flat) Spectrum

(1) Comparing Figs. 2.11 and 2.12, we see that short-duration signals contain
stronger high-frequency components than long-duration ones do. This idea sup-
ports why a lightning stroke of very short duration produces an observable
noise effect over all communication signals from the relatively low frequen-
cies (550∼1600kHz) used in radio system to the relatively higher ones used in
television system (60MHz for VHF ∼470MHz for UHF).

(2) We often use the impulse function as a typical input to determine the important
characteristics (frequency response or system/transfer function) of linear time-
invariant (LTI) systems. One practical reason is because the impulse function
has uniform (flat) spectrum, i.e., contains equal power at all frequencies so that
applying the impulse signal (or a good approximation to it) as the input to a
system would be equivalent to simultaneously exciting the system with every
frequency component of equal amplitude and phase.

Example 2.7 Fourier Transform of a Constant Function
We can obtain the Fourier transform of the unit constant function c(t) = 1

(Fig. 2.13(a)) as

C(jω) = F{1} (2.2.1a)=
∫ ∞

−∞
1e− jωt dt

(2.3.2)=
with k=0

2π δ(ω) (E2.7.1)

(a) A unit constant (DC) signal (b) Its CTFT spectrum–magnitude
0 0

1
c (t) = 1

C (jω) = 2πδ (ω)

t ω

Fig. 2.13 A unit constant (DC) signal and its CTFT spectrum

2.4 Examples of the Continuous-Time Fourier Transform 83

This spectrum, that is depicted in Fig. 2.13(b), shows that a constant signal has only
DC component with zero frequency, i.e., has all of its (infinite) energy at ω = 0.

This can also be obtained by swapping t and ω in (E2.6.2) and verified by using
the inverse Fourier transform (2.2.1b) to show that

F−1{2πδ(ω)} (2.2.1b)= 1

2π

∫ ∞

−∞
2π δ(ω)e jωt dω

(1.1.25)= 1 (E2.7.2)

Example 2.8 Fourier Transform of the Unit Step Function
To compute the Fourier transform of the unit step function us(t), let us write its

even-odd decomposition, i.e., decompose us(t) into the sum of an even function and
an odd function as

us(t) = ue(t) + uo(t) (E2.8.1)

where

ue(t) = 1

2
(us(t) + us(−t)) =

⎧⎨
⎩

1/2 for t �= 0

1 for t = 0
(E2.8.2)

uo(t) = 1

2
(us(t) − us(−t)) = 1

2
sign(t) =

⎧⎪⎪⎨
⎪⎪⎩

1/2 for t > 0

0 for t �= 0

−1/2 for t < 0

(E2.8.3)

Then, noting that the even part ue(t) is a constant function of amplitude 1/2 except
at t = 0, we can use Eq. (E2.7.1) to write its Fourier transform as

Ue(jω) = F{ue(t)} = 1

2
F {1} (E2.7.1)= π δ(ω) (E2.8.4)

On the other side, the Fourier transform of the odd part can be computed as

Uo(jω) = F{uo(t)} (2.2.1a)=
∫ ∞

−∞
uo(t)e− jωt dt =

∫ ∞

−∞

odd
uo(t)(

even
cos ωt − j

odd
sin ωt) dt

= − j
∫ ∞

−∞

odd×odd=even
uo(t) sin ωt dt = − j2

∫ ∞

0

even
uo(t) sin ωt dt

uo(t)=1/2 for t>0= − j
∫ ∞

0
sin ωt dt = − j

∫ ∞

0
sin ωt e−st dt |s=0

(A.1)= − j L{sin ωt}|s=0
B.8(9)= − j

ω

s2 + ω2

∣∣∣∣
s=0

= 1

jω
(E2.8.5)

84 2 Continuous-Time Fourier Analysis

(a) The impulse reponse of an LPF

0π π–

B/π
g (t)

B0

1
G(jω)

–B
B B

t

(b) The frequency response of an LPF

2π–
B

2π
B

ω

Fig. 2.14 The impulse response and frequency response of an ideal LPF

where we have used the Laplace transform. Now we add these two results to obtain
the Fourier transform of the unit step function as

F{us(t)} = F{ue(t) + uo(t)} (2.5.1)= Ue(jω) + Uo(jω)
(E2.8.4),(E2.8.5)= π δ(ω) + 1

jω

(E2.8.6)

Example 2.9 Inverse Fourier Transform of an Ideal LPF Frequency Response
Let us consider the frequency response of an ideal lowpass filter (LPF) depicted

in Fig. 2.14(b):

G(jω) =
{

1 for |ω| ≤ B

0 for |ω| > B
(E2.9.1)

Taking the inverse Fourier transform of this LPF frequency response yields the
impulse response as

g(t) = F−1{G(jω)} (2.2.1b)= 1

2π

∫ ∞

−∞
G(jω)e jωt dω = 1

2π

∫ B

−B
1e− jωt dω

= 1

2π j t
(e j Bt − e− j Bt) = sin Bt

π t
= B

π
sinc

(
Bt

π

)
(E2.9.2)

which is depicted in Fig. 2.14(a).

(cf.) It may be interesting to see that a rectangular pulse and a sinc function consti-
tute a Fourier transform pair, i.e., the Fourier transforms of rectangular pulse
and sinc function turn out to be the spectra of sinc function and rectangu-
lar pulse function form, respectively (see Figs. 2.8(a) and 2.14). This is a
direct consequence of the duality relationship between Fourier transform pairs,
which will be explained in detail in Sect. 2.5.4.

Remark 2.11 Physical Realizability and Causality Condition
If a system has the frequency response that is strictly bandlimited like G(jω)

given by Eq. (E2.9.1) and depicted in Fig. 2.14(b), the system is not physically

2.4 Examples of the Continuous-Time Fourier Transform 85

realizable because it violates the causality condition, i.e., g(t) �= 0 for some t < 0
while every physical system must be causal (see Sect. 1.2.9).

Example 2.10 Fourier Transform of an Impulse Train
Let us consider an impulse train

δT (t) =
∑∞

m=−∞ δ(t − mT) (E2.10.1)

Since this is a periodic function, we first write its Fourier series representation from
Eq. (2.1.10) as

δT (t)
(2.1.10)= 1

T

∑∞
k=−∞ e jkωs t with ωs = 2π

T
(E2.10.2)

Then we use Eq. (2.3.2) with ω0 = ωs = 2π/T to obtain the Fourier transform as

DT (jω)
(E2.10.2)=

(2.3.2)

2π

T

∑∞
k=−∞ δ(ω − kωs)

= 2π

T

∑∞
k=−∞ δ(ω + kωs) with ωs = 2π

T
(E2.10.3)

(cf.) Applying Eq. (2.2.1b) to take the inverse Fourier transform of Eq. (E2.10.3)
will produce Eq. (2.10.2).

(cf.) Note that, as the period T (the interval between the impulses in time) increases,
the fundamental frequency ωs = 2π/T (the spacing between the impulses in
frequency) decreases. This is also a consequence of the duality relationship
between Fourier transform pairs.

Example 2.11 Fourier Transform of Cosine/Sine Functions

(a) The Fourier transform of x(t) = sin (ω1t) = (e jω1 t − e− jω1 t)/j2 can be
obtained as

X (jω) = F{sin(ω1t)} = 1

j2
F{e jω1t − e− jω1t } (2.3.2)= jπ (δ(ω +ω1) − δ(ω −ω1))

(E2.11.1)
(b) The Fourier transform of x(t) = cos (ω1t) = (e jω1t + e− jω1t)/2 can be

obtained as

X (jω) = F{cos(ω1t)} = 1

2
F{e jω1t + e− jω1t } (2.3.2)= π (δ(ω + ω1) + δ(ω − ω1))

(E2.11.2)

86 2 Continuous-Time Fourier Analysis

2.5 Properties of the Continuous-Time Fourier Transform

In this section we are about to discuss some basic properties of continuous-time
Fourier transform (CTFT), which will provide us with an insight into the Fourier
transform and the capability of taking easy ways to get the Fourier transforms or
inverse Fourier transforms.

(cf.) From now on, we will use X (ω) instead of X (jω) to denote the Fourier
transform of x(t).

2.5.1 Linearity

With F{x(t)} = X (ω) and F{y(t)} = Y (ω), we have

a x(t) + b y(t)
F↔ a X (ω) + b Y (ω), (2.5.1)

which implies that the Fourier transform of a linear combination of many functions
is the same linear combination of the individual transforms.

2.5.2 (Conjugate) Symmetry

In general, Fourier transform has the time reversal property:

F{x(−t)} (2.2.1a)=
∫ ∞

−∞
x(−t)e− jωt dt

−t=τ=
∫ −∞

∞
x(τ)e jωτ (−dτ)

τ=t=
∫ ∞

−∞
x(t)e jωt dt

(2.2.1a)=
ω→−ω

X (−ω); x(−t)
F↔ X (−ω) (2.5.2)

In case x(t) is a real-valued function, we have

X (−ω)
(2.2.1a)=
ω→−ω

∫ ∞

−∞
x(t)e− j(−ω)t dt =

∫ ∞

−∞
x(t)e−(− j)ωt dt

(2.2.1a)=
j→− j

X∗(ω) (complex conjugate of X (ω))

or equivalently,

Re{X (−ω)} + jIm{X (−ω)} = Re{X (ω)} − jIm{X (ω)}
|X (−ω)|∠X (−ω) = |X (ω)|∠ − X (ω) (2.5.3)

2.5 Properties of the Continuous-Time Fourier Transform 87

This implies that the magnitude/phase of the CTFT of a real-valued function is an
even/odd function of frequency ω. Thus, when obtaining the Fourier transform of a
real-valued time function, we need to compute it only for ω ≥ 0 since we can use
the conjugate symmetry to generate the values for ω < 0 from those for ω > 0.
In other words, for a real-valued time function, its magnitude and phase spectra are
symmetrical about the vertical axis and the origin, respectively.

For an even and real-valued function xe(t) such that xe(−t) = xe(t), its Fourier
transform is also an even and real-valued function in frequency ω:

Xe(−ω)
(2.2.1a)=
ω=−ω

∫ ∞

−∞
xe(t) e− j(−ω)t dt

t=−τ=
∫ ∞

−∞
xe(−τ) e− jωτ dτ

xe(−τ)=xe(τ)=
even

∫ ∞

−∞
xe(τ) e− jωτ dτ

(2.2.1a)= Xe(ω)

(2.5.4a)

Also for an odd and real-valued function xo(t) such that xo(−t) = −xo(t), its
Fourier transform is an odd and imaginary-valued function in frequency ω:

Xo(−ω)
(2.2.1a)=
ω=−ω

∫ ∞

−∞
xo(t) e− j(−ω)t dt

t=−τ=
∫ ∞

−∞
xo(−τ) e− jωτ dτ

xo(−τ)=−xo(τ)=
odd

−
∫ ∞

−∞
xo(τ) e− jωτ dτ

(2.2.1a)= −Xo(ω) (2.5.4b)

Note that any real-valued function x(t) can be expressed as the sum of an even
function and an odd one:

x(t) = xe(t) + xo(t)

where

xe(t) = 1

2
(x(t) + x(−t)) and xo(t) = 1

2
(x(t) − x(−t))

Thus we can get the relations

X (ω) = F{xe(t)} + F{xo(t)} = Xe(ω) + Xo(ω)

Re{X (ω)} + jIm{X (ω)} = Xe(ω) + Xo(ω)

which implies

even and real-valued xe(t)
F↔ Re{ X (ω)} even and real-valued (2.5.5a)

odd and real-valued xo(t)
F↔ jIm{ X (ω)} odd and imaginary-valued (2.5.5b)

88 2 Continuous-Time Fourier Analysis

2.5.3 Time/Frequency Shifting (Real/Complex Translation)

For a shifted time function x1(t) = x(t − t1), we have its Fourier transform

F{x(t − t1)} (2.2.1a)=
∫ ∞

−∞
x(t − t1) e− jωt dt

t−t1→ t=
∫ ∞

−∞
x(t) e− jω(t+t1)dt

(2.2.1a)= F{x(t)} e− jω t1 ; x(t − t1)
F↔ X (ω) e− jωt1 (2.5.6)

This implies that real translation (time shifting) of x(t) by t1 along the t -axis will
affect the Fourier transform on its phase by −ωt1, but not on its magnitude. This is
similar to Eq. (2.1.11), which is the time shifting property of CTFS.

In duality with the time shifting property (2.5.6), the complex translation (fre-
quency shifting) property holds

x(t) e jω1 t F↔ X (ω − ω1) (2.5.7)

2.5.4 Duality

As exhibited by some examples and properties, there exists a definite symme-
try between Fourier transform pairs, stemming from a general property of duality
between time and frequency. It can be proved by considering the following integral
expression

f (u) =
∫ ∞

−∞
g(v) e− juvdv

v→−v=
∫ ∞

−∞
g(−v) e juvdv (2.5.8)

This, with (ω, t) or (±t,∓ω) for (u, v), yields the Fourier transform or inverse
transform relation, respectively:

f (ω) =
∫ ∞

−∞
g(t) e− jω t dt

(2.2.1a)= F{g(t)} : g(t)
F↔ f (ω) (2.5.9a)

f (± t) =
∫ ∞

−∞
g(∓ω) e jω t dω

(2.2.1b)= 2πF−1{g(∓ω)} : f (± t)
F↔ 2π g(∓ω)

(2.5.9b)

It is implied that, if one Fourier transform relation holds, the substitution of (±t,∓ω)
for (ω, t) yields the other one, which is also valid. This property of duality can be
used to recall or show Fourier series relations. We have the following examples:

(Ex 0) g(t) = x(t)
F↔

(2.5.9a)
f (ω) = X (ω)

⇔ 1

2π
f (t) = 1

2π
X (t)

F↔
(2.5.9b)

g(ω) = x(ω)

2.5 Properties of the Continuous-Time Fourier Transform 89

0

0

1
2π

0

0

π–

(b1)

(b2)(a2)

2D

B–B

(a1)

1
x (t)

X (t)

X (ω)

x (–ω)

ω

ω

t

t

D
π
D

B
π

1× 2π

π
B

π
B

– π
B

Fig. 2.15 Dual relationship between the Fourier transform pairs

(Ex 1) x(t) = Aδ(t)
F↔

(2.5.9a)
X (ω)

(E2.6.1)= A

⇔ X (t) = A
F↔

(2.5.9b)
2π x(−ω) = 2π A δ(−ω) (See Example 2.7.)

(Ex 2) x(t) =
{

1 for |t | ≤ D

0 for |t | > D

F↔
(2.5.9a)

X (ω)
(E2.3.1)= 2D sinc

(
Dω

π

)
(See Example 2.9 and Fig.2.15)

⇔ 1

2π
X (t) = B

π
sinc

(
Bt

π

)
F↔

(2.5.9b)
x(−ω) =

{
1 for |ω| ≤ B

0 for |ω| > B

(Ex 3) x(t) = Aδ(t − t1)
F↔

(2.5.9a)
X (ω)

(E2.6.1)&(2.5.6)= A e− jω t1

⇔ X (−t) = A e jω1 t F↔
(2.5.9b)

2πx(ω) = 2π Aδ(ω − ω1) (See Eq.(2.3.2))

2.5.5 Real Convolution

For the (linear) convolution of two functions x(t) and g(t)

y(t) = x(t) ∗ g(t) =
∫ ∞

−∞
x(τ)g(t − τ) dτ =

∫ ∞

−∞
g(τ)x(t − τ) dτ = g(t) ∗ x(t),

(2.5.10)

90 2 Continuous-Time Fourier Analysis

we can get its Fourier transform as

Y (ω) = F{y(t)} (2.2.1a)=
(2.5.10)

∫ ∞

−∞

{ ∫ ∞

−∞
x(τ)g(t − τ) dτ

}
e− jωt dt

=
∫ ∞

−∞
x(τ)e− jωτ

{ ∫ ∞

−∞
g(t − τ)e− jω (t−τ) dt

}
dτ

t−τ→t=
(2.2.1a)

∫ ∞

−∞
x(τ)e− jωτ G(ω) dτ = G(ω)

∫ ∞

−∞
x (τ)e− jωτ dτ

(2.2.1a)= G(ω)X (ω)

y(t) = x(t) ∗ g(t)
F↔ Y (ω) = X (ω) G(ω) (2.5.11)

where Y (ω) = F{y(t)}, X (ω) = F{x(t)}, and G(ω) = F{g(t)}. This is the
frequency-domain input-output relationship of a linear time-invariant (LTI) system
with the input x(t), the output y(t), and the impulse response g(t) where G(ω) is
called the frequency response of the system.

On the other hand, if two functions x̃P (t) and g̃P (t) are periodic with com-
mon period P , their linear convolution does not converge so that we need another
definition of convolution, which is the periodic or circular convolution with the
integration performed over one period:

ỹP (t) = x̃P (t) ∗
P

g̃P (t) =
∫

P
x̃P (τ)g̃P (t − τ) dτ

=
∫

P
g̃P (τ)x̃P (t − τ) dτ = g̃P (t) ∗

P
x̃P (t) (2.5.12)

where ∗
P

denotes the circular convolution with period P . Like the Fourier transform

of a linear convolution, the Fourier series coefficient of the periodic (circular) con-
volution turns out to be the multiplication of the Fourier series coefficients of two
periodic functions x̃P (t) and g̃P (t) (see Problem 2.8(a)):

ỹP (t) = x̃P (t) ∗
P

g̃P (t)
Fourier series↔ Yk = Xk Gk (2.5.13)

where Yk , Xk , and Gk are the Fourier coefficients of ỹP (t), x̃P (t), and g̃P (t),
respectively.

2.5.6 Complex Convolution (Modulation/Windowing)

In duality with the convolution property (2.5.11) that convolution in the time
domain corresponds to multiplication in the frequency domain, we may expect the

2.5 Properties of the Continuous-Time Fourier Transform 91

modulation property that multiplication in the time domain corresponds to convolu-
tion in the frequency domain:

y(t) = x(t)m(t)
F↔ Y (ω) = 1

2π
X (ω) ∗ M(ω) (2.5.14)

where Y (ω) = F{y(t)}, X (ω) = F{x(t)}, and M(ω) = F{m(t)}.
On the other hand, if two functions x̃P (t) and m̃ P (t) are periodic with common

period P , then their multiplication is also periodic and its Fourier series coefficient
can be obtained from the convolution sum (see Problem 2.8(b)):

ỹP (t) = x̃P (t)m̃ P (t)
Fourier series↔ Yk = 1

P

∑∞
n=−∞ Xn Mk−n (2.5.15)

where Yk , Xk , and Mk are the Fourier coefficients of ỹP (t), x̃P (t), and m̃ P (t),
respectively.

Example 2.12 Sinusoidal Amplitude Modulation and Demodulation

(a) Sinusoidal Amplitude Modulation
Consider a sinusoidal amplitude-modulated (AM) signal

xm(t) = x(t)m(t) = x(t) cos(ωct) (E2.12.1)

Noting that the Fourier transform of the carrier signal m(t) = cos(ωc t) is

M(ω) = F{m(t)} = F{cos(ωct)} (E2.11.2)= π (δ(ω + ωc) + δ(ω − ωc))
(E2.12.2)

we can use the modulation property (2.5.14) to get the Fourier transform of the
AM signal as

Xm(ω) = F{xm(t)} = F{x(t) cos ωc t} (2.5.14)= 1

2π
X (ω) ∗ M(ω)

(E2.12.2)= 1

2π
X (ω) ∗ π (δ(ω + ωc) + δ(ω − ωc))

(1.1.22)= 1

2
(X (ω + ωc) + X (ω − ωc)) (E2.12.3)

This implies that the spectrum of the AM signal x(t) cos(ωct) consists of the
sum of two shifted and scaled versions of X (ω) = F{x(t)}. Note that this result
can also be obtained by applying the frequency shifting property (2.5.7) to the
following expression:

xm(t) = x(t) cos(ωct)
(D.21)= 1

2
(x(t)e jωct + x(t) e− jωct) (E2.12.4)

92 2 Continuous-Time Fourier Analysis

(b) Sinusoidal Amplitude Demodulation
In an AM communication system, the receiver demodulates the modulated
signal xm(t) by multiplying the carrier signal as is done at the transmitter:

xd (t) = 2xm(t) cos(ωct) (E2.12.5)

We can use the modulation property (2.5.14) together with Eqs. (E2.12.3)
and (E2.12.2) to express the Fourier transform of the demodulated signal in
terms of the signal spectrum X (ω) as

Xd (ω) = F{xd (t)} = F{xm(t)2 cos ωc t} (2.5.14)= 1

2π
Xm(ω) ∗ 2 M(ω)

(E2.12.2)=
(E2.12.3)

1

2π

1

2
(X (ω + ωc) + X (ω − ωc)) ∗ 2π (δ(ω + ωc) + δ(ω − ωc))

(1.1.22)= 1

2
(X (ω + 2ωc) + X (ω) + X (ω) + X (ω − 2ωc))

= 1

2
X (ω + 2ωc) + X (ω) + 1

2
X (ω − 2ωc) (E2.12.6)

Example 2.13 Ideal (Impulse or Instant) Sampler and Finite Pulsewidth Sampler

(a) Ideal Sampling
We can describe the output of the ideal (or impulse or instant) sampler to a
given input x(t) as

x∗(t) = x(t) δT (t)
(
δT (t) =

∑∞
m=−∞ δ(t − mT) : the impulse train

)
(E2.13.1)

This is illustrated in Fig. 2.16(a1). Here, the switching function has been mod-
eled as an impulse train with period T and its Fourier transform is given by
Eq. (E2.10.3) as

DT (ω)
(E2.10.3)= 2π

T

∑∞
k=−∞ δ(ω + kωs) with ωs = 2π

T
(E2.13.2)

which is shown in Fig. 2.16(c1). We can use the modulation property (2.5.14)
together with Eq. (E2.13.2) to express the Fourier transform of the ideal sampler
output in terms of the input spectrum X (ω) as

X∗(ω)
(2.5.14)= 1

2π
X (ω) ∗ DT (ω)

(E2.13.2)= 1

T

∑∞
k=−∞ X (ω) ∗ δ(ω + kωs)

(1.1.22)= 1

T

∑∞
k=−∞ X (ω + kωs) (E2.13.3)

which is depicted in Fig. 2.16(d1).

2.5 Properties of the Continuous-Time Fourier Transform 93

(a1) Output of an ideal (impulse) sampler (a2) Output of a finite pulsewidth sampler

(b) The spectrum of a signal

(c1) The spectrum of the impulse train δT(t)

(d1) Output spectrum of the ideal sampler (d2) Output spectrum of the finite pulsewidth sampler

(c2) The spectrum of the rectangular wave rD/T(t)~

~

0 T 2T 3T 4T 5T 0 TD 2T 3T 4T 5T
t t

x (t) x (t)

x*(t) = x (t) δT (t) xs (t) = x (t) rD/T(t)

RD/T(ω)
�T (ω)

X(ω)

–ωx ωx
ω

8π–
T

6π–
T

4π–
T

02π–
T

2π
T

4π
T

6π
T

8π
T

8π–
T

6π–
T

4π–
T

02π–
T

2π
T

4π
T

6π
T

8π
T

8π–
T

6π–
T

4π–
T

02π–
T

2π
T

4π
T

6π
T

8π
T

8π–
T

6π–
T

4π–
T

02π–
T

2π
T

4π
T

6π
T

8π
T

ω

ω ω

ω

X* (ω) X(ω)*�r(ω)1
2π= X* (ω) X(ω)*RD/T(ω)1

2π=

Fig. 2.16 Ideal sampler and finite pulsewidth sampler

(b) Finite Pulsewidth Sampling
We can describe the output of a finite pulsewidth sampler with period T to a
given input x(t) as

xs(t) = x(t) r̃D/T (t) (E2.13.4)

(r̃D/T (t) : a rectangular wave with duration D and period T)

This is illustrated in Fig. 2.16(a2). Here, the switching function has been mod-
eled as a rectangular wave, r̃D/P (t), with duration D and period T . Noting that
from Eq. (E2.1.3), the Fourier series representation of this rectangular wave is

r̃D/P (t)
(E2.1.3)=

A=1,P=T

1

T

∑∞
k=−∞ D sinc

(
k

D

T

)
e jkωs t with ωs = 2π

T

(E2.13.5)

94 2 Continuous-Time Fourier Analysis

we can use Eq. (2.3.3) to write its Fourier transform as

RD/P (ω)
(2.3.2)=
P=T

2π

T

∑∞
k=−∞ ck δ(ω − kωs) with ck = D sinc

(
k

D

T

)

(E2.13.6)

which is shown in Fig. 2.16(c2). Now we can apply the modulation property
(2.5.14) together with Eq. (E2.13.6) to express the Fourier transform of the
finite pulsewidth sampler output in terms of the input spectrum X (ω) as

Xs(ω)
(2.5.14)= 1

2π
X (ω) ∗ RD/P (ω)

(E2.13.6)= 1

T

∑∞
k=−∞ X (ω) ∗ ck δ(ω − kωs)

(1.1.22)= 1

T

∑∞
k=−∞ ck X (ω − kωs) (E2.13.7)

which is depicted in Fig. 2.16(d2).

2.5.7 Time Differential/Integration – Frequency
Multiplication/Division

By differentiating both sides of the inverse Fourier transform formula (2.2.1b) w.r.t.
t , we obtain

dx(t)

dt

(2.2.1b)= 1

2π

∫ ∞

−∞
X (ω)

(
d

dt
e jωt

)
dω = 1

2π

∫ ∞

−∞
(jωX (ω))e jωt dω (2.5.16)

which yields the time-differentiation property of the Fourier transform as

dx(t)

dt
F←→ jωX (ω) (2.5.17)

This means that differentiation in the time domain results in multiplication by jω in
the frequency domain.

On the other hand, the time-integration property is obtained by expressing
the integration of x(t) in the form of the convolution of x(t) and the unit step
function us(t) and then applying the convolution property (2.5.11) together with
Eq. (E2.8.6) as

∫ t

−∞
x(τ) dτ =

∫ ∞

−∞
x(τ) us(t − τ) dτ = x(t) ∗ us(t)

F↔
(2.5.11)

F{x(t)}F{us(t)} (E2.8.6)= π X (ω)δ(ω) + 1

jω
X (ω) = π X (0)δ(ω) + 1

jω
X (ω)

(2.5.18)

2.5 Properties of the Continuous-Time Fourier Transform 95

where the additional impulse term π X (0)δ(ω) on the RHS reflects the DC value
resulting from the integration. This equation is slightly above our intuition that
integration/differentiation in the time domain results in division/multiplication by
jω in the frequency domain.

The differentiation/integration properties (2.5.17)/(2.5.18) imply that differenti-
ating/integrating a signal increases the high/low frequency components, respectively
because the magnitude spectrum is multiplied by | jω| = ω (proportional to fre-
quency ω) or |1/jω| = 1/ω (inversely proportional to frequency ω). That is why a
differentiating filter on the image frame is used to highlight the edge at which the
brightness changes rapidly, while an integrating filter is used to remove impulse-like
noises. Note also that a differentiator type filter tends to amplify high-frequency
noise components and an integrator type filter would blur the image.

2.5.8 Frequency Differentiation – Time Multiplication

By differentiating both sides of the Fourier transform formula (2.2.1a) w.r.t. ω, we
obtain

d X (ω)

dω

(2.2.1a)=
∫ ∞

−∞
x(t)

(
d

dω
e− jωt

)
dt = − j

∫ ∞

−∞
(t x(t))e− jωt dt (2.5.19)

which yields the frequency-differentiation property of the Fourier transform as

t x(t)
F↔ j

d X (ω)

dω
(2.5.20)

This means that multiplication by t in the time domain results in differentiation w.r.t.
ω and multiplication by j in the frequency domain.

2.5.9 Time and Frequency Scaling

The Fourier transform of x(at) scaled along the time axis can be obtained as

F{x(at)} =
∫ ∞

−∞
x(at) e− jωt dt

t=τ/a= 1

|a|
∫ ∞

−∞
x(τ)e− jωτ/adτ

(2.2.1a)= 1

|a| X
(ω

a

)

which yields the time and frequency scaling property of Fourier transform:

x(at)
F↔ 1

|a| X
(ω

a

)
(2.5.21)

This is another example of the dual (inverse) relationship between time and fre-
quency. A common illustration of this property is the effect on frequency contents of

96 2 Continuous-Time Fourier Analysis

playing back an audio tape at different speeds. If the playback speed is higher/slower
than the recording speed, corresponding to compression(a>1)/expansion(a<1) in
time, then the playback sounds get higher/lower, corresponding to expansion/
compression in frequency.

2.5.10 Parseval’s Relation (Rayleigh Theorem)

If x(t) has finite energy and F{x(t)} = X (ω), then we have

∫ ∞

−∞
|x(t)|2 dt = 1

2π

∫ ∞

−∞
|X (ω)|2 dω (2.5.22)

(Proof) ∫ ∞

−∞
|x(t)|2 dt =

∫ ∞

−∞
x(t)x∗(t) dt

(2.2.1b)=
∫ ∞

−∞
x(t)

{
1

2π

∫ ∞

−∞
X∗(ω)e− jωt dω

}
dt

= 1

2π

∫ ∞

−∞
X∗(ω)

{∫ ∞

−∞
x(t) e− jωt dt

}
dω

(2.2.1a)= 1

2π

∫ ∞

−∞
X∗(ω)X (ω) dω = 1

2π

∫ ∞

−∞
|X (ω)|2 dω

This implies that the total energy in the signal x(t) can be determined either by
integrating |x(t)|2 over all time or by integrating |X (ω)|2/2π over all frequencies.
For this reason, |X (ω)|2 is called the energy-density spectrum of the signal x(t).

On the other hand, if x̃P (t) is periodic with period P and its Fourier series
coefficients are Xk’s, then we have an analogous relation∫ ∞

−∞
|x̃P (t)|2 dt = 1

P

∑∞
k=−∞ |Xk |2 (2.5.23)

where |Xk |2/P is called the power-density spectrum of the periodic signal x̃P (t).

2.6 Polar Representation and Graphical Plot of CTFT

Noting that a signal x(t) can be completely recovered from its Fourier trans-
form X (ω) via the inverse Fourier transform formula (2.3.1b), we may say that
X (ω) contains all the information in x(t). In this section we consider the polar
or magnitude-phase representation of X (ω) to gain more insight to the (generally
complex-valued) Fourier transform. We can write it as

X (ω) = |X (ω)|∠X (ω)

2.6 Polar Representation and Graphical Plot of CTFT 97

(a) φ1 = φ2 = φ3 = 0 [rad]

t

t

t

(b) φ1 = 3 [rad], φ2 = 6 [rad], and φ3 = 9 [rad]

(c) φ1 = 3 [rad], φ2 = 2 [rad], and φ3 = 1 [rad]

0

0

0

Fig. 2.17 Plots of x(t) = 0.5 cos(2π t − φ1) + cos(4π t − φ2) + (2/3) cos(6π t − φ3) with different
phases

where |X (ω)| and ∠X (ω) give us the information about the magnitudes and phases
of the complex exponentials making up x(t). Notice that if x(t) is real, |X (ω)| is an
even function of ω and ∠X (ω) is an odd function of ω and thus we need to plot the
spectrum for ω ≥ 0 only (see Sect. 2.5.2).

The signals having the same magnitude spectrum may look very different depend-
ing on their phase spectra, which is illustrated in Fig. 2.17. Therefore, in some
instances phase distortion may be serious.

2.6.1 Linear Phase

There is a particular type of phase characteristic, called linear phase, that the phase
shift at frequency ω is a linear function of ω. Specifically, the Fourier transform of
x(t) changed in the phase by −αω, by the time shifting property (2.5.6), simply
results in a time-shifted version x(t − α):

X1(ω) = X (ω)∠ − αω = X (ω)e− jαω F↔ x1(t) = x(t − α) (2.6.1)

For example, Fig. 2.17(b) illustrates how the linear phase shift affects the shape
of x(t).

2.6.2 Bode Plot

To show a Fourier transform X (ω), we often use a graphical representation consist-
ing of the plots of the magnitude |X (ω)| and phase ∠X (ω) as functions of frequency
ω. Although this is useful and will be used extensively in this book, we introduce

98 2 Continuous-Time Fourier Analysis

another representation called the Bode plot, which is composed of two graphs,
i.e., magnitude curve of log-magnitude 20 log10 |X (ω)| [dB] and the phase curve
of ∠X (ω) [degree] plotted against the log frequency log10 ω. Such a representation
using the logarithm facilitates the graphical manipulations performed in analyzing
LTI systems since the product and division factors in X (ω) become additions and
subtractions, respectively. For example, let us consider a physical system whose
system or transfer function is

G(s) = K (1 + T1s)(1 + T2s)

s(1 + Tas)(1 + 2ζ Tbs + (Tbs)2)
(2.6.2)

As explained in Sect. 1.2.6, its frequency response, that is the Fourier transform of
the impulse response, is obtained by substituting s = jω into G(s):

G(jω) = G(s)|s= jω = K (1 + jω T1)(1 + jω T2)

jω(1 + jω Ta)(1 + jω2ζ Tb − (ωTb)2)
(2.6.3)

The magnitude of G(jω) in decibels is obtained by taking the logarithm on the base
10 and then multiplying by 20 as follows:

|G(jω)| = 20 log10 |G(jω)|[dB]

= 20 log10 |K | + 20 log10 |1 + jω T1| + 20 log10 |1 + jω T2|
− 20 log10 | jω| − 20 log10 |1 + jω Ta|
− 20 log10 |1 + jω2ζ Tb − (ωTb)2| (2.6.4a)

The phase of G(jω) can be written as

∠G(ω) = ∠K + ∠(1 + jω T1) + ∠(1 + jω T2) − ∠ jω − ∠(1 + jω Ta)

− ∠(1 + jω2ζ Tb − (ωTb)2) (2.6.4b)

The convenience of analyzing the effect of each factor on the frequency response
explains why Bode plots are widely used in the analysis and design of linear time-
invariant (LTI) systems.
(cf.) The MATLAB function “bode(n,d,..)” can be used to plot Bode plots.

2.7 Summary

In this chapter we have studied the CTFS (continuous-time Fourier series) and
CTFT (continuous-time Fourier transform) as tools for analyzing the frequency

Problems 99

characteristic of continuous-time signals and systems. One of the primary motiva-
tions for the use of Fourier analysis is the fact that we can use the Fourier series or
transform to represent most signals in terms of complex exponential signals which
are eigenfunctions of LTI systems (see Problem 2.14). The Fourier transform pos-
sesses a wide variety of important properties. For example, the convolution property
allows us to describe an LTI system in terms of its frequency response and the modu-
lation property provides the basis for the frequency-domain analysis of modulation,
sampling, and windowing techniques.

Problems

2.1 Fourier Series Analysis and Synthesis of Several Periodic Functions

(c) A half–rectified sinusoidal wave

–4 –3 –2

–1/2

xf (t)xh(t)

xa(t) xb(t)

1/2 2

1

–2

–1
–3

–6

3

6

1 2 3 4

(d) A full–rectified sinusoidal wave

(b) A triangular wave(a) A stair wave

–2

–4

–1

1

0 2 4 6 8

1

–1/2 2
t

t

1/2
t

t
0

00

–8 –6 –2

Fig. P2.1

(a) Noting that the stair wave in Fig. P2.1(a) can be regarded as the sum
of three scaled/time-shifted rectangular (square) waves with common
period 6[s] and different durations

xa(t) = 6r̃3/6(t − 1.5) − 3 + 3r̃1/6(t − 1.5) − 3r̃1/6(t − 4.5), (P2.1.1)

use Eq. (E2.1.3) together with (2.1.9) to find its complex exponential
Fourier series coefficients. Then complete the following MATLAB pro-
gram “cir02p 01a.m” and run it to plot the Fourier series representation
(2.1.7) to see if it becomes close to xa(t) as the number of terms in
the summation increases, say, from 5 to 20. Also, compare the Fourier
coefficients with those obtained by using “CtFS exponential()”.

100 2 Continuous-Time Fourier Analysis

%cir02p 01a.m
clear, clf
P= 6; w0= 2*pi/P; % Period, Fundamental frequency
tt=[-400:400]*P/400; % time interval of 4 periods
x = ’x a’; N=20; k= -N:N; % the range of frequency indices
c= 6*3*sinc(k*3/P).*exp(-j*1.5*k*w0)+3*sinc(k/P).*exp(-j*1.5*k*w0) ...

- ?????????????????????????????;
c(N+1) = c(N+1) - ???;
% [c n,k] = CtFS exponential(x,P,N);
xt = feval(x,tt); % original signal
jkw0t= j*k.’*w0*tt; xht = real((c/P)*exp(jkw0t)); % Eq. (2.1.5a)
subplot(221), plot(tt,xt,’k-’, tt,xht,’r:’)
c mag = abs(c); c phase = angle(c);
subplot(222), stem(k, c mag)
function y=x a(t)
P=6; t= mod(t,P);
y= 3*(0<=t&t<1) +6*(1<=t&t<2) +3*(2<=t&t<3) ...

-3*(3<=t&t<4) -6*(4<=t&t<5) -3*(5<=t&t<6);

(b) Use Eqs. (E.2.1.6) together with (2.1.9) to find the complex exponential
Fourier series coefficients for the triangular wave in Fig. P2.1(b). Then
compose a MATLAB program, say, “cir02p01b.m” to plot the Fourier
series representation (2.1.7) and run it to see if the Fourier series repre-
sentation becomes close to xb(t) as the number of terms in the summation
increases, say, from 3 to 6. Also, compare the Fourier coefficients with
those obtained by using “CtFS exponential()”.

(c) Consider a half-wave rectified cosine wave xh(t) = max(cos ω0t, 0),
which is depicted in Fig. P2.1(c). We can use Eq. (2.1.5b) to obtain the
Fourier coefficients as

ck =
∫ P/4

−P/4
cos ω0te− jkω0t dt

= 1

2

∫ P/4

−P/4
(e jω0t + e− jω0t)e− jkω0t dt with ω0 = 2π

P
= π

k �=1or−1= 1

2

(
1

− j(k − 1)ω0
e− j(k−1)ω0t + 1

− j(k + 1)ω0
e− j(k+1)ω0t

)∣∣∣∣
1/2

−1/2

= 1

(k − 1)π
sin(k − 1)

π

2
+ 1

(k + 1)π
sin(k + 1)

π

2

k=2m(even)= (−1)m 1

π

(
1

k + 1
− 1

k − 1

)
= (−1)m+12

(k2 − 1)π
(P2.1.2)

ck
k=1or−1=

∫ P/4

−P/4
(e jω0t + e− jω0t)e± jω0t dt

= 1

2

∫ P/4

−P/4
(1 + e± j2ω0t)dt = P

4
= 1

2
(P2.1.3)

Problems 101

Thus compose a MATLAB program, say, “cir02p01c.m” to plot the
Fourier series representation (2.1.7) and run it to see if the Fourier series
representation becomes close to xh(t) as the number of terms in the sum-
mation increases, say, from 3 to 6. Also, compare the Fourier coefficients
with those obtained by using “CtFS exponential()”.

(d) Consider a full-wave rectified cosine wave x f (t) = | cos ω0t |, which
is depicted in Fig. P2.1(d). Noting that it can be regarded as the sum
of a half-wave rectified cosine wave xh(t) and its P/2-shifted version
xh(t − P/2), compose a MATLAB program, say, “cir02p01d.m” to plot
the Fourier series representation (2.1.7) and run it to see if the Fourier
series representation becomes close to x f (t) as the number of terms in
the summation increases, say, from 3 to 6. Also, compare the Fourier
coefficients with those obtained by using “CtFS exponential()”.

(cf.) In fact, the fundamental frequency of a full-wave rectified cosine wave
is 2ω0 = 4π/P , which is two times that of the original cosine wave.

2.2 Fourier Analysis of RC Circuit Excited by a Square Wave Voltage Source
Figure P2.2(a) shows the PSpice schematic of an RC circuit excited by a rect-
angular (square) wave voltage source of height ±Vm = ±π , period P = 2[s],
and duration (pulsewidth) D = 1[s], where the voltage across the capacitor
is taken as the output. Figure P2.2(b) shows the input and output waveforms
obtained from the PSpice simulation. Figure P2.2(c) shows the Fourier spectra
of the input and output obtained by clicking the FFT button on the toolbar
in the PSpice A/D (Probe) window. Figure P2.2(d) shows how to fill in the
Simulation Settings dialog box to get the Fourier analysis results (for chosen
variables) printed in the output file. Figure P2.2(e) shows the output file that
can be viewed by clicking View/Output File on the top menu bar and pulldown
menu in the Probe window.

(a) Let us find the three leading frequency components of the input vi (t) and
output vo(t). To this end, we first write the Fourier series representation of
the rectangular wave input vi (t) by using Eq. (E2.1.3) as follows:

vi (t) = 2π r̃1/2(t − 0.5) − π
(E2.1.3)=

∑∞
k=1

2π
sin(kπ/2)

kπ/2
cos kπ (t − 0.5)

=
∑∞

k=odd

4

k
sin kπ t = 4 sin π t + 4

3
sin 3π t + 4

5
sin 5π t + · · ·

(P2.2.1)

Since the RC circuit has the system (transfer) function and frequency
response

G(s) = 1/sC

R + 1/sC
= 1

1 + s RC
;

G(jω) = 1

1 + jωRC
= 1√

1 + (ωRC)2
∠ − tan−1 ωRC, (P2.2.2)

102 2 Continuous-Time Fourier Analysis

(d) Simulation Settings window and Transient Output File Options dialog box

(a) PSpice schematic for the RC circuit excited by a square-wave source

V1= –3.14159
V2= 3.14159
TD = 0 (Delay Time)

VPULSE

TR = 0 (Rise Time)

PER = 2(PERiod)

TF = 0 (Falling Time)
PW = 1 (Pulse Width/Duration)

0

V R 1k

0.3m

C

V

νi (t) νo(t)
+

−

+
−

(b) The input and output voltage waveforms

4.0V

–4.0V0 s
V(C : 2) V(VPULSE: +)

5 s Time 10 s

0V

νo

νi

(c) The FFT spectra of the input and output voltages

5.0V

2.5V

A1 = 500.000m, 4.0002
2.9111
1.3334

444.678m
800.015m
166.148m

A2 = 500.000m,
A1 = 1.5000,
A2 = 1.5000,
A1 = 2.5000,
A2 = 2.5000,

0V
0 0.5 Hz 1.5 Hz 2.5 Hz 5 Hz Frequency 10 Hz

V(C : 2) V(VPULSE: +)

Probe Cursor

Fig. P2.2 (continued)

Problems 103

(e) The PSpice output file with FFT analysis

Fig. P2.2 PSpice simulation and analysis for Problem 2.2

its output to the input vi (t) (described by Eq. (P2.2.1)) can be written as

vo(t) =
∑∞

k=2m+1

4

k
√

1 + (kω0 RC)2
sin (k ω0t − tan−1 kω0 RC)

with ω0 = 2π
P = π (P2.2.3)

Show that the three leading frequency components of the output pha-
sor are

V(1)
o

k=1= G(jω0)V(1)
i = 4√

1 + (ω0 RC)2
∠ − tan−1 ω0 RC

RC=0.3= 4√
1 + (0.3π)2

∠ − tan−1 0.3π = 2.91∠ − 43.3o (P2.2.4)

V(3)
o

k=3= G(j3ω0)V(3)
i = 4

3
√

1 + (3ω0 RC)2
∠ − tan−1 3ω0 RC

RC=0.3= 4

3
√

1 + (0.9π)2
∠ − tan−1 0.9π = 0.4446∠ − 70.5o (P2.2.5)

104 2 Continuous-Time Fourier Analysis

V(5)
o

k=5= G(j5ω0)V(5)
i = 4

5
√

1 + (5ω0 RC)2
∠ − tan−1 5ω0 RC

RC=0.3= 4

5
√

1 + (1.5π)2
∠ − tan−1 1.5π = 0.166∠ − 78o (P2.2.6)

where the phases are taken with that of sin ωt as a reference in the sine-
and-phase form of Fourier series representation in order to match this
Fourier analysis result with that seen in the PSpice simulation output file
(Fig. P2.2(e)).

(cf.) Note that PSpice uses the sine-and-phase form of Fourier series
representation for spectrum analysis as below:

x(t) = d ′
0 +

∑∞
k=1

d ′
k sin(kω0t + φ′

k) (P2.2.7a)

where the Fourier coefficients are

d ′
0 = a0 = d0, d ′

k =
√

a2
k + b2

k = dk, φ′
k = tan−1(ak/bk) = φk + π/2

(P2.2.7b)
The magnitude ratios among the leading three frequency components of
the input and output are

input : |V(1)
i | : |V(3)

i | : |V(5)
i | = 4 :

4

3
:

5

3
= 15 : 5 : 3

output : |V(1)
o | : |V(3)

o | : |V(5)
o | = 2.91 : 0.4446 : 0.166 = 15 : 2.3 : 0.86

This implies that the relative magnitudes of high frequency components
to low ones become smaller after the input signal passes through the filter.
This is a piece of evidence that the RC circuit with the capacitor voltage
taken as the output functions as a lowpass filter.

(b) Find the Fourier analysis results on V(k)
i ’s and V(k)

o ’s for k = 0 : 5
(and compare them with those obtained from PSpice simulation in (a)) by
completing and running the following MATLAB program “sig02p 02.m”,
which uses the MATLAB function “Fourier analysis()” declared as

function [yt,Y,X]= Fourier analysis(n,d,x,P,N)

This function takes the numerator (n) and denominator (d) of the transfer
function G(s), the (periodic) input function (x) defined for at least one
period [−P/2,+P/2], the period (P), and the order (N) of Fourier analysis
as the input arguments and produces the output (yt) for one period and the
sine-and-phase form of Fourier coefficients Y and X of the output and
input (for k = 0, . . . , N).

Problems 105

%sig02p 02.m : to solve Problem 2.2
% Perform Fourier analysis to solve the RC circuit excited by a square wave
clear, clf
global P D Vm
P=2; w0=2*pi/P; D=1; Vm=pi; % Period, Frequency, Duration, Amplitude
N=5; kk=0:N; % Frequency indices to analyze using Fourier analysis
tt=[-300:300]*P/200; % Time interval of 3 periods
vi= ’f sig02p02’; % Bipolar square wave input function defined in an M-file
RC=0.3; % The parameter values of the RC circuit
n=1; d=[?? 1]; % Numerator/Denominator of transfer function (P2.2.2)
% Fourier analysis of the input & output spectra of a system [n/d]
[Vo,Vi]= ??????? analysis(n,d,vi,P,N);
% Magnitude and phase of input output spectrum
disp(’ frequency X magnitude X phase Y magnitude Y phase’)
[kk; abs(Vi); angle(Vi)*180/pi; abs(Vo); angle(Vo)*180/pi].’
vit = feval(vi,tt); % the input signal for tt
vot= Vo(1); % DC component of the output signal
for k=1:N % Fourier series representation of the output signal

% PSpice dialect of Eq.(2.1.4a)
vot = vot + abs(Vo(k+1))*sin(k*w0*tt + angle(Vo(k+1))); % Eq.(P2.2.7a)

end
subplot(221), plot(tt,vit, tt,vot,’r’) % plot input/output signal waveform
subplot(222), stem(kk,abs(Vi)) % input spectrum
hold on, stem(kk,abs(Vo),’r’) % output spectrum

function y=f sig02p02(t)
% defines a bipolar square wave with period P, duration D, and amplitude Vm
global P D Vm
t= mod(t,P); y= ((t<=D) - (t>D))*Vm;

function [Y,X]= Fourier analysis(n,d,x,P,N)
%Input: n= Numerator polynomial of system function G(s)
% d= Denominator polynomial of system function G(s)
% x= Input periodic function
% P= Period of the input function
% N= highest frequency index of Fourier analysis
%Output: Y= Fourier coefficients [Y0,Y1,Y2,...] of the output
% X= Fourier coefficients [X0,X1,X2,...] of the input
% Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
if nargin<5, N=5; end
w0=2*pi/P; % Fundamental frequency
kk=0:N; % Frequency index vector
c= CtFS ???????????(x,P,N); % complex exponential Fourier coefficients
Xmag=[c(N+1) 2*abs(c(N+2:end))]/P; % d(k) for k=0:N by Eq.(P2.2.7b)
Xph=[0 angle(c(N+2:end))+pi/2]; % phi’(k) for k=0:N by Eq.(P2.2.7b)
X= Xmag.*exp(j*Xph); % Input spectrum
Gw= freqs(n,d,kk*w0); % Frequency response
Y= X.*Gw; % Output spectrum

2.3 CTFT (Continuous-Time Fourier Transform) of a Periodic Function
In Eq. (2.3.1), we gave up computing the Fourier transform of a periodic
function e jkω0t :

F{xk(t)} (2.2.1a)=
∫ ∞

−∞
e jkω0t e− jωt dt =

∫ ∞

−∞
e

− j(ω−kω0)t
dt

= 1

− j(ω − kω0)
e

− j(ω−kω0)t
∣∣∣T
−T

= 1

− j(ω − kω0)

(
e

j(ω−kω0)T − e
− j(ω−kω0)T

)∣∣∣
T =∞

=
(

2 sin(ω − kω0)T

−(ω − kω0)

)∣∣∣∣
T =∞

=? (P2.3.1)

106 2 Continuous-Time Fourier Analysis

Instead, we took a roundabout way of finding the inverse Fourier transform
of 2πδ(ω − kω0) in expectation of that it will be the solution and showed the
validity of the inverse relationship. Now, referring to Eq. (E2.6.2) or using
Eq. (1.1.33a), retry to finish the derivation of Eq. (2.3.2) from Eq. (P2.3.1).

2.4 Two-Dimensional Fourier Transform of a Plane Impulse Train
The two-dimensional (2-D) Fourier transform of a 2-D signal f (x, y) on the
x-y plane such as an image frame is defined as

F(u, v) = F2 { f (x, y)} =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e− j(ux+vy)dx dy

=
∫ ∞

−∞

(∫ ∞

−∞
f (x, y)e− jux dx

)
e− jvy dy (P2.4.1)

where x and y are the spatial cordinates and u and v are the spatial angular
frequencies [rad/m] representing how abruptly or smoothly f (x, y) changes
w.r.t. the spatial shift along the x and y -axes, respectively.

(a) Show that the 2-D Fourier transform of f (x, y) = δ(y − αx) is

f (x, y) = δ(y − αx)
F2↔ F(u, v) = 2π δ(u + αv) (P2.4.2)

(b) Show that the 2-D Fourier transform of f (x, y) = ∑∞
n=−∞ δ(y − αx−

nd
√

1 + α2) (Fig. P2.4(a)) is

F(u, v) =
∫ ∞

−∞

∫ ∞

−∞

∑∞
n=−∞ δ(y − αx − nd

√
1 + α2)e− j(ux+vy)dx dy

(D.33)=
∑∞

n=−∞

∫ ∞

−∞
e− j(ux+v(αx+nd

√
1+α2)) dx

=
∑∞

n=−∞

∫ ∞

−∞
e− j(u+αv)x dxe− jvnd

√
1+α2

(2.3.2)=
with ω=u+αv, t=x, k=0

∑∞
n=−∞ 2πδ(u + αv)e− jvnd

√
1+α2

(3.1.5)=
with Ω=vd

√
1+α2,Ω0=0

2πδ(u + αv)
∑∞

i=−∞2πδ(vd
√

1 + α2 − 2π i)

(1.1.34)= (2π)2

d
√

1 + α2

∑∞
i=−∞ δ(u + 2π iα

d
√

1 + α2
, v − 2π i

d
√

1 + α2
)

= (2π)2

d
√

1 + α2

∑∞
i=−∞ δ(u + 2π i

d
sin θ, v − 2π i

d
cos θ) (P2.4.3)

as depicted in Fig. P2.4(b).
2.5 ICTFT (Inverse Continuous-Time Fourier Transform) of Uo(jω) = 1/jω

Using Eq. (E2.3.3), show that the ICTFT of Uo(jω) = 1/jω is the odd
component of the unit step function:

Problems 107

(a) A 2–D (plane) impulse wave in the spatial domain (b) The 2–D Fourier transform depicted
in the spatial frequency domain

Constant (DC)
signal

Impulse train

Impulse
spectrum

u

ν
u + αν = 0

θ1
d

Impulse train

x

y

d

y – αx = 0

d sec θ = d

θ
θ

1 + tan2θ
= d 1 + α2

Fig. P2.4 An example of 2-D Fourier transform

F−1{Uo(jω)} (2.2.1b)= 1

2π

∫ ∞

−∞

1

jω
e jωt dω = 1

2
sign(t) = uo(t) (P2.5.1)

which agrees with Eq. (E2.8.5).

2.6 Applications and Derivations of Several Fourier Transform Properties

(a) Applying the frequency shifting property (2.5.7) of Fourier transform to
Eq. (E2.7.1), derive Eq. (2.3.2).

(b) Applying the duality relation (2.5.9) to the time shifting property (2.5.6)
of Fourier transform, derive the frequency shifting property (2.5.7).

(c) From the time-differentiation property (2.5.7) of Fourier tansform that
differentiation in the time domain corresponds to multiplication by jω
in the frequency domain, one might conjecture that integration in the
time domain corresponds to division by jω in the frequency domain.
But, Eq. (2.5.18) shows that the Fourier transform of

∫ t
−∞ x(τ)dτ has an

additional impulse term reflecting the DC or average value of x(t). Can
you apply the time-differentiation property to Eq. (2.5.18) to derive the
original Fourier relation F{x(t)} = X (ω)?

∫ t

−∞
x(τ)dτ

F↔ π X (0)δ(ω) + 1

jω
X (ω) (2.5.18)

(d) Applying the duality relation (2.5.9) to the convolution property (2.5.11)
of Fourier transform, derive the modulation property (2.5.14).

(e) Apply the time-differentiation property to the time-integration property
(2.5.18) to derive the original Fourier relation F{x(τ)} = X (ω).

(f) Applying the time-differentiation property (2.5.7) to the time-domain
input-output relationship y(t) = dx(t)/dt of a differentiator, find the
frequency response of the differentiator.

(g) Applying the time-integration property (2.5.18) to the time-domain input-
output relationship y(t) = ∫ t

−∞ x(τ)dτ of an integrator, find the frequency

108 2 Continuous-Time Fourier Analysis

response of the integrator on the assumption that the input has zero
DC value.

(h) Find the time-domain and frequency-domain input-output relationships of
a system whose impulse response is g(t) = δ(t − t0).

2.7 Fourier Transform of a Triangular Pulse
Applying the convolution property (2.5.11), find the Fourier transform of a
triangular pulse DλD(t) (Eq. (1.2.25a)) obtained from the convolution of two
rectangular pulses of height 1 and duration D.

2.8 Convolution/Modulation Properties of Fourier Series
Let x̃P (t) and ỹP (t) be periodic functions with common period P that have the
following Fourier series representations, respectively:

x̃P (t) = 1

P

∑∞
k=−∞ Xke jkω0t and ỹP (t) = 1

P

∑∞
k=−∞ Yke jkω0t

(P2.8.1)

(a) The periodic or circular convolution of two periodic functions is defined as

z̃ P (t) = x̃P (t) ∗ ỹP (t)
(2.5.12)=

∫
P

x̃P (τ)ỹP (t − τ)dτ

=
∫

P
ỹP (τ)x̃P (t − τ)dτ = ỹP (t) ∗ x̃P (t) (P2.8.2)

The product of the two Fourier series coefficients Xk and Yk is the Fourier
series coefficients of this convolution so that

z̃ P (t) = 1

P

∑∞
k=−∞ Zke jkω0t = 1

P

∑∞
k=−∞ XkYke jkω0t (P2.8.3)

Applying the frequency shifting property (2.5.7) of Fourier transform to
Eq. (E2.7.1), derive Eq. (2.3.2).

(b) Show that the Fourier series coefficients of w̃P (t) = x̃P (t)ỹP (t) are

w̃P (t) = x̃P (t)ỹP (t)
Fourier series↔

(2.5.15)
Wk = 1

P

∑∞
n=−∞ Xn Yk−n (P2.8.4)

so that we have

w̃P (t) = 1

P

∑∞
k=−∞ Wke jkω0t (P2.8.5)

2.9 Overall Input-Output Relationship of Cascaded System
Consider the systems of Fig. P2.9 consisting of two subsystems connected in
cascade, i.e., in such a way that the output of the previous stage is applied to
the input of the next stage. Note that the overall output y(t) can be expressed
as the convolution of the input x(t) and the two subsystem’s impulse responses

Problems 109

g1(t) and g2(t) as

y(t) = g1(t) ∗ g2(t) ∗ x(t) = g2(t) ∗ g1(t) ∗ x(t). (P2.9.1)

Find the overall input-output relationship in the frequency domain.

(a) G1

G1G2

G1G2

G2x (t)

x (t)

y (t)

y (t)

y (t)

x (t)(b)

(c)

Fig. P2.9

2.10 Hilbert Transform and Analytic Signal

(a) Fourier Transform of Hilbert Transformed Signal
The Hilbert transform of a real-valued signal x(t) is defined as the convo-
lution of x(t) and 1/π t or equivalently, the output of a Hilbert transformer
(with the impulse response of h(t) = 1/π t) to the input x(t):

x̂(t) = h(t) ∗ x(t) = 1

π t
∗ x(t) = 1

π

∫ ∞

−∞
x(τ)

1

t − τ
dτ (P2.10.1)

- First, let us find the Fourier transform of h(t) = 1/π t by applying the
duality (2.5.9) to Eq. (E2.8.5), which states that

1

2
sign(t)

F↔ 1

jω

duality⇔ 1

j t
F↔ () (P2.10.2)

- We can multiply both sides by j/π to get the Fourier transform of
h(t) = 1/π t as

1

π t
F↔ () (P2.10.3)

- Now, we apply the convolution property to get the Fourier transform of
x̂(t) as

x̂(t) = 1

π t
∗ x(t)

F↔
convolution property

F
(

1

π t

)
F (x(t)) = () X (ω) (P2.10.4)

This implies that the Hilbert transform has the effect of shifting the
phase of positive/negative frequency components of x(t) by −90◦/+ 90◦,
allowing the Hilbert transform a −90◦ phase shifter.

110 2 Continuous-Time Fourier Analysis

(b) Inverse Hilbert Transform
Note that multiplying −H (ω) by the Fourier transform of the Hilbert
transformed signal x̂(t) brings the spectrum back into that of the original
signal x(t):

− H (ω)H (ω) X (ω) = −(− j sign(ω))(− j sign(ω)) X (ω) = X (ω)
(P2.10.5)

This implies the inverse Hilbert transform as

(−h(t)) ∗ x̂(t) =
(

− 1

π t

)
∗ 1

π t
∗ x(t) = x(t) (P2.10.6)

(c) Analytic Signal
The analytic signal, or analytic representation, of a real-valued signal x(t)
is defined as

xa(t) = x(t) + j x̂(t) (P2.10.7)

where x̂(t) is the Hilbert transform of x(t) and j is the imaginary unit.
Show that the Fourier transform of the analytic signal is

Xa(ω) = F{x(t)} + jF{x̂(t)} ∼= 2us(ω)X (ω) (P2.10.8)

where us(ω) is the unit step function in frequency ω. This implies that
xa(t) has only nonnegative frequency component of x(t).

(d) Examples of Hilbert Transform and Analytic Signal
Show that the following Hilbert transform relations hold:

cos(ωc t)
H↔ sin(ωc t) (P2.10.9)

sin(ωct)
H↔ −cos(ωct) (P2.10.10)

In general, it would be difficult to get the Hilbert transform of a signal x(t)
directly from its definition (P2.10.1) and therefore, you had better take the
inverse Fourier transform, X (ω), of x(t), multiply − j sign(ω), and then
take the inverse Fourier transform as

x̂(t) = F−1{− j sign(ω)X (ω)} (P2.10.11)

Now, let us consider a narrowband signal

s(t) = m(t) cos(ωct + φ) with m(t) : a baseband message signal
(P2.10.12)

whose spectrum is (narrowly) bandlimited around the carrier frequency
ωc. Show that the Hilbert transform of s(t) is

Problems 111

s(t) = m(t) cos(ωct + φ)
H↔ ŝ(t) = m(t) sin(ωct + φ) (P2.10.13)

Also, show that the analytic signal for s(t) can be expressed as

sa(t) = s(t) + j ŝ(t) = m(t)e j(ωct+φ) (P2.10.14)

This implies that we can multiply the analytic signal by e− jωct to obtain
the envelope of the baseband message signal m(t).

(e) Programs for Hilbert Transform
One may wonder how the convolution in the time domain results in just
the phase shift. To satisfy your curiosity, try to understand the following
program “sig02p 10e.m”, which computes the output of a Hilbert trans-
former to a cosine wave cos ωct with ωc = π/16 and sampling interval
Ts = 1/16 [s]. For comparison, it uses the MATLAB built-in function
“hilbert()” to generate the analytic signal and take its imaginary part
to get x̂(t).

(cf.) “hilbert()” makes the Hilbert transform by using Eq. (P2.10.11).

%sig02p 10e.m
% To try the Hilbert transform in the time/frequency domain
clear, clf
Ts=1/16; t=[-149.5:149.5]*Ts; % Sample interval and Duration of h(t)
h= 1/pi./t; % h(t): Impulse response of a Hilbert transformer
Nh=length(t); Nh2=floor(Nh/2); % Sample duration of noncausal part
h = fliplr(h); % h(-t): Time-reversed version of h(t)
wc= pi/16; % the frequency of an input signal
Nfft=512; Nfft2= Nfft/2; Nbuf=Nfft*2; % buffer size
tt= zeros(1,Nbuf); x buf= zeros(1,Nbuf); xh buf= zeros(1,Nbuf);
for n=-Nh:Nbuf-1 % To simulate the Hilbert transformer

tn=n*Ts; tt=[tt(2:end) tn];
x buf = [x buf(2:end) cos(wc*tn)];
xh buf = [xh buf(2:end) h *x buf(end-Nh+1:end).’*Ts];

end
axis limits= [tt([1 end]) -1.2 1.2];
subplot(321), plot(tt,x buf), title(’x(t)’), axis(axis limits)
subplot(323), plot(t(1:Nh2),h(1:Nh2), t(Nh2+1:end),h(Nh2+1:end))
title(’h(t)’), axis([t([1 end]) -11 11])
% To advance the delayed response of the causal Hilbert transformer
xh = xh buf(Nh2+1:end); xh 1 = imag(hilbert(x buf));
subplot(325), plot(tt(1:end-Nh2),xh,’k’, tt,xh 1), axis(axis limits)
subplot(326), plot(tt,xh buf), axis(axis limits)
ww= [-Nfft2:Nfft2]*(2*pi/Nfft);
Xw= fftshift(fft(x buf,Nfft)); Xw= [Xw Xw(1)]; % X(w): spectrum of x(t)
Xhw 1= fftshift(fft(xh 1,Nfft)); Xhw 1= [Xhw 1 Xhw 1(1)]; % Xh(w)
norm(Xhw 1+j*sign(ww).*Xw)

In the program “sig02p 10e.m”, identify the statements performing the
following operations:

- The impulse response of the Hilbert transformer
- Generating an input signal to the Hilbert transformer

112 2 Continuous-Time Fourier Analysis

- Computing the output expected to be the Hilbert transformed signal

Note the following:
- The output sequence has been advanced by Nh/2 for comparison

with x̂(t) obtained using “hilbert ()” because the real output of
the causal Hilbert transformer is delayed by Nh/2, which is the length
of the noncausal part of the Hilbert transformer impulse
response h(n).

(f) Application of Hilbert Transform and Analytic Signal for Envelope
Detection
To see an application of Hilbert transform and analytic signal, consider
the following narrowband signal

s(t) = m(t) cos(ωct + φ)

= sinc

(
B

π
t

)
cos(ωct + π

6
) with B = 100, ωc = 400π (P2.10.15)

%sig02p 10f.m
% To obtain the lowpass equivalent of Bandpass signal
Ts =0.001; fs =1/Ts; % Sampling Period/Frequency
t=[-511: 512]*Ts; % Duration of signal
fc=200; wc=2*pi*fc; B=100; % Center frequency & bandwidth of signal s(t)
m= sinc(B/pi*t);
s= m.*cos(wc*t+pi/6); % a narrowband (bandpass) signal
sa= hilbert(x); % Analytic signal sa(t) = s(t) + j sˆ(t)
sl= sa.*exp(-j*wc*t); % Lowpass Equivalent (Complex envelope) sl(t)

Referring to the above program “sig02p 10f.m”, use the MATLAB func-
tion “hilbert ()” to make the analytic or pre-envelope signal sa(t),
multiply it by e− jωct to get the lowpass equivalent or complex enve-
lope sl(t), take its absolute values |sl(t)| to obtain the envelope of the
baseband message signal m(t), and plot it to compare with m(t) =
|sinc (2Bt) |.

(g) Hilbert Transform with Real-Valued Signals for Signal Detection
Consider the system of Fig. P2.10 where a narrowband signal x(t) having
in-phase component xc(t) and quadrature component xs(t) is applied as
an input to the system:

x(t) = xc(t) cos ωct − xs(t) sin ωct (P2.10.16)

Verify that the two outputs of the system are the same as xc(t) and xs(t),
respectively by showing that their spectra are

Xc d (ω) = Xc(ω) and Xs d (ω) = Xs(ω) (P2.10.17)

Problems 113

Hilbert
transformer

x (t)

x (t)

x (t)ˆ
x (t) = xc (t) cos ωct

 –xs (t) sin ωct

multiplier

multiplier

multiplier

summer

summer

sin ωct

–sin ωct

cos ωct

cos ωct

xc_d (t)

xs_d (t)

Fig. P2.10

Complete and run the following program “sig02p 10g.m” to check if these
results are valid for

xc(t) = sinc (100t) , xs(t) = sinc (450t) , and ωc = 400π

Does the simulation result show that xc d (t) = xc(t) and xs d (t) = xs(t)?
If one of them does not hold, figure out the reason of the discrepancy.

%sig02p 10g.m
% To use the Hilbert transform for signal detection
clear, clf
Ts=0.0002; t=[-127:128]*Ts; % Sampling Period and Time interval
fc=200; wc=2*pi*fc; % Center frequency of signal x(t)
B1=100*pi; B2=450*pi; % Bandwidth of signal x(t)
xc= sinc(B1/pi*t); xs= sinc(B2/pi*t);
x= xc.*cos(wc*t) - xs.*sin(wc*t);
xh= imag(hilbert(x)); % imag(x(t)+j xˆ(t))=xˆ(t)
xc d= x.*cos(wc*t) + xh.*?????????; % xc detected
xs d= -x.*sin(wc*t) + xh.*?????????; % xc detected
subplot(221), plot(t,xc, t,xc d,’r’)
subplot(222), plot(t,xs, t,xs d,’r’)
norm(xc-xc d)/norm(xc), norm(xs-xs d)/norm(xs)

2.11 Spectrum Analysis of Amplitude Modulation (AM) Communication System
Consider the AM communication system of Fig. P2.11(a) where the message
signal x(t) is band-limited with maximum frequency ωx and the spectrum
X (ω) is depicted in Fig. P2.11(b). Assume that the frequency response of the
(bandpass) channel is

H (ω) =
{

1 for |ω − ωc| < BC/2

0 elsewhere
with BC ≥ 2ωx (P2.11.1)

and that of the LPF (lowpass filter) at the receiver side is

114 2 Continuous-Time Fourier Analysis

(e) The spectrum of the detected signal d (t)

(d) The spectrum of the demodulated signal xd(t)

(b) The spectrum of the message signal x(t)

(a) The block daigram of an AM communication system

message
signal

multiplier multiplier

idealideal 2cos ωctcarrier signal cos ωct

Channel
H (ω)

LPF
G (ω)

(c) The spectrum of the modulated, transmitted, and received signal r (t)

0

0

0

0

D (ω)

Xd
(ω)

Xm (ω) = R (ω)

X (ω)

–2ωc 2ωc

–ωc

–ωx

ωc

ωx

ω

ω

ω

ω

x(t)
r (t)xm(t) xd(t)

d (t)

Fig. P2.11 An amplitude–modulation (AM) communication system

G(ω) =
{

1 for |ω| < BR

0 elsewhere
with ωx < BR < 2ωc − ωx (P2.11.2)

(a) Express the spectrum, Xd (ω), of the demodulated signal xd (t) in terms of
X (ω).

(b) Draw the spectra of the modulated and received signal r (t), the demod-
ulated signal xd (t), and the detected signal d(t) on Fig. P2.11(c), (d),
and (e).

(c) Complete and run the following program “sig02p 11.m” to simulate the
AM communication system depicted in Fig. P2.11(a). Note that the spec-
trum of each signal is computed by using the MATLAB built-in function
“fft()” instead of CTFT (Continuous-Time Fourier Transform) since
DFT (Discrete Fourier Transform) is applied to any sequence (consisting
of sampled values of an arbitrary continuous-time signal), while CTFT

Problems 115

can be applied only to continuous-time signals expressed by a linear
combination of basic functions. DFT and “fft()” will be introduced
in Chap. 4.

%sig02p 11.m
% AM (amplitude-modulation) communication system
clear, clf
Ts=0.0001; t=[-127:128]*Ts; % Sampling Period and Time interval
fc=1000; wc=2*pi*fc; % Carrier frequency
B=1000; % (Signal) Bandwidth of x(t)
x= sinc(B/pi*t).ˆ2; % a message signal x(t) having triangular spectrum
xm= x.*cos(wc*t); % AM modulated signal
r= xm; % received signal
xd= r.*(2*?????????); % demodulated signal
Br=wc/2; % (System) Bandwidth of an ideal LPF
g= Br/pi*sinc(Br/pi*t); % (truncated) Impulse Response of the ideal LPF
d= conv(xd,g)*Ts; % the output of the LPF to the demodulated signal
subplot(421), plot(t,x), title(’A message signal x(t)’)
Nfft=256; Nfft2=Nff/2; % FFT size and a half of Nfft
w= [-Nfft/2:Nfft/2]*(2*pi/Nfft/Ts); % Frequency vector
X= fftshift(fft(x)); X=[X X(1)]; % Spectrum of x(t)
subplot(422), plot(w,abs(X)), title(’The spectrum X(w) of x(t)’)
subplot(423), plot(t,xm), title(’The modulated signal xm(t)’)
Xm= fftshift(fft(xm)); Xm=[Xm Xm(1)]; % Spectrum of modulated signal
subplot(424), plot(w,abs(Xm)), title(’The spectrum Xm(w) of xm(t)’)
subplot(425), plot(t,xd), title(’The demodulated signal xd(t)’)
Xd= fftshift(fft(xd)); Xd=[Xd Xd(1)]; % Spectrum of demodulated signal
subplot(426), plot(w,abs(Xd)), title(’The spectrum Xd(w) of xd(t)’)
d= d(Nfft2+[0:Nfft-1]);
subplot(427), plot(t,d), title(’The LPF output signal d(t)’)
D= fftshift(fft(d)); D=[D D(1)]; % Spectrum of the LPF output
subplot(428), plot(w,abs(D)), title(’The spectrum D(w) of d(t)’)

2.12 Amplitude-Shift Keying (ASK) and Frequency-Shift Keying (FSK)

(a) Amplitude-Shift Keying (ASK) or On-Off Keying (OOK)
Find the spectrum X ASK (ω) of a BASK (binary amplitude-shift keying)
or OOK modulated signal xASK (t) = rD(t) cos(ω1t) (Fig. P2.12(a)) where
rD(t) is a unit-height rectangular pulse with duration D.

(b) Frequency-Shift Keying (FSK)
Find the spectrum X F SK (ω) of a BFSK (binary frequency-shift keying)
modulated signal xF SK (t) = rD(t) cos(ω1t) + rD(t − D) cos(ω2(t − D))
(Fig. P2.12(b)).

116 2 Continuous-Time Fourier Analysis

0 0

(a) A BASK or OOK signal (b) A BFSK signal

rD(t) cos(ω1t) rD(t) cos(ω1t) rD (t – D) cos(ω2(t – D))

1 1

D D Dt t

Fig. P2.12

2.13 Autocorrelation/Crosscorrelation Theorem
Suppose we have X (ω) = F{x(t)}, Y (ω) = F{y(t)}, and G(ω) = F{g(t)},
where x(t), y(t), and g(t) are the real-valued input, output, and impulse
response of an LTI system G so that

y(t) = g(t) ∗ x(t)
F↔ Y (ω) = G(ω) ∗ X (ω) (P2.13.1)

(a) Prove the autocorrelation theorem:

Φxx (ω) = F{φxx (t)} (1.4.12a)= F{x(t) ∗ x(−t)} = |X (ω)|2

(Energy Density Spectrum) (P2.13.2)

(b) Prove the crosscorrelation theorem:

Φxy(ω) = F{φxy(t)} (1.4.12a)= F{x(t) ∗ y(−t)}

= X (ω)Y ∗(ω) = G∗(ω) |X (ω)|2 (P2.13.3)

(c) Prove that

Φyy(ω) = F{φyy(t)} (1.4.12a)= F{y(t) ∗ y∗(−t)} = Y (ω)Y ∗(ω)

= |G(ω)|2|X (ω)|2 (P2.13.4)

2.14 Power Theorem - Generalization of Parseval’s Relation
Prove the power theorem that, with X (ω) = F{x(t)} and Y (ω) = F{y(t)},
we have ∫ ∞

−∞
x(t)y∗(t)dt = 1

2π

∫ ∞

−∞
X (ω)Y ∗(ω) dω (P2.14.1)

2.15 Eigenfunction
If the output of a system to an input is just a (possibly complex-valued) con-
stant times the input, then the input signal is called an eigenfunction of the
system. Show that the output of an LTI (linear time-invariant) system with the
(causal) impulse response g(t) and system (transfer) function G(s) = L{g(t)}
to a complex exponential input es0t is,

Problems 117

G{es0t } = g(t) ∗ es0t = G(s0)es0t with G(s0) = G(s)|s=s0
(P2.15.1)

where G(s) is assumed not to have any pole at s = s0 so that the ampli-
tude factor G(s0), called the eigenvalue, is finite. This implies that a complex
exponential function is an eigenfunction of LTI systems.

2.16 Fourier Transform of a Polygonal Signal (Problem 4.20 of [O-1])

(a) Show that the Fourier trnasform of y(t) = (at + b)(us(t − t1) − us(t − t2))
with t1 < t2 is

Y (ω) = 1

ω2
(a+ jbω)(e− jωt2 −e− jωt1)+ j

a

ω
(t1e− jωt2 −t2e− jωt1) (P2.16.1)

(b) We can describe a triangular pulse having three vertices (ti−1, 0), (ti , xi),
and (ti+1, 0) as

λ i (t) =
{

xi + xi
ti −ti−1

(t − ti) = − xi ti−1

ti −ti−1
+ xi

ti −ti−1
t for ti−1 ≤ t < ti

xi + xi
ti −ti+1

(t − ti) = − xi ti+1

ti −ti+1
+ xi

ti −ti+1
t for ti ≤ t < ti+1

(P2.16.2)

(a) A signal and its polygonal approximation (b) A trapezoidal signal

x (t)

z (t)

x3
x4

xP (t)

xn –1 xn

x2
x1

t0 t1 t2 t3 t4 . . . tn –1 –T2 –T1 T1 T2

T2 – T1

0tn

x0 t t

Fig. P2.16

Use Eq. (P2.16.1) to show that the Fourier transform of this pulse is

Λi (ω) = 1

ω2

{
xi

ti − ti−1
(e− jωti − e− jωti−1) + xi

ti+1 − ti
(e− jωti − e− jωti+1)

}

(P2.16.3)

(c) Fig. P2.16(a) shows a finite-duration signal x(t) and its piece-wise linear
or polygonal approximation xP (t) where x(t) = xP (t) = 0 ∀t ≤ t0 and
t ≥ tn . Use Eq. (P2.16.3) to show that the Fourier transform of xP (t) is

X P (ω) = F{xP (t)} = F
{∑n

i=0
λi (t)

}
= 1

ω2

∑n

i=0
ki e

− jωti (P2.16.4)

118 2 Continuous-Time Fourier Analysis

where

ki = (ti−1 − ti)xi+1 + (ti − ti+1)xi−1 + (ti+1 − ti−1)xi

(ti − ti−1)(ti+1 − ti)
and

x(t−1) = x(tn+1) = 0

Complete the following program “CTFT poly ()” so that it implements
this method of computing the Fourier transform.

function [X,w]=CTFT poly(t,x,w)
% Computes the CTFT of x(t) for frequency w by using Eq.(P2.16.4).
N =length(x); n=1:N;
if nargin<3, w = [-100:100]*pi/100+1e-6; end
t=[2*t(1)-t(2) t 2*t(N)-t(N-1)]; x=[0 x 0];
X= 0;
for i=2:N+1

ki=((t(i-1)-t(i))*x(i+1)+(t(i)-t(i+1))*x(i-1)+(t(i+1)-t(i-1))*x(i));
k(i)= ki/(t(i)-t(i-1))/(t(i+1)-t(i));
X= X + k(i)*exp(-j*w*t(i));

end
X = X./(w.ˆ2+eps);

(d) For the trapezoidal signal z(t) shown in Figure P2.16(b), find its Fourier
transform Z (ω) in two ways:

(i) Regarding z(t) as the convolution of two unit-height rectangular
pulses each of length D1 = T2 − T1 and D2 = T2 + T1, you can
use the convolution property (2.5.11) together with Eq. (E2.3.2).

(ii) Use Eq. (P2.16.4), which is the result of part (c).
(iii) Use the MATLAB routine “CTFT poly ()” to get Z (ω) = F{z(t)}

with T1 = 1 and T2 = 2 and plot it to compare the result with that
obtained (i) or (ii).
<Hint> You can complete and run the following program.

%sig02p 16.m
% Numerical approximation of CTFT for a trapezoidal signal
clear, clf
T1=1; T2=2; D1= T2-T1; D2= T1+T2;
t= [-T2 -T1 T1 T2];
x= [0 T2-T1 T2-T1 0];
w= [-200:200]/100*pi+1e-6; % frequency range on which to plot X(w)
X= D1*D2*sinc(w*D1/2/pi).*sinc(w*D2/2/pi);
X poly= ?????????(?,?,?); % (P2.16.4)
Discrepancy=norm(X poly-X)
plot(w,abs(X),’b’, w,abs(X poly),’r’)

(e) Show that, if we choose the points ti ’s sufficiently close together so that
the piecewise linear approximation, xP (t), of x(t) is accurate enough to
satisfy the bounded error condition

Problems 119

|x(t) − xP (t)| ≤ ε, (P2.16.5)

then the Fourier transform (Eq. (P2.16.4)) of xP (t) is close to X (ω) =
F{x(t)} enough to satisfy

∫ ∞

−∞
|X (ω) − X P (ω)|2dω ≤ 2π (tn − t0)ε2 (P2.16.6)

(cf.) This implies that even though a signal x(t) cannot be expressed as a
linear combination, a multiplication, or convolution of basic functions,
we can find its approximate Fourier transform from the collection of
sample values of x(t) and that we can improve the accuracy by making
the piecewise approximation xP (t) closer to x(t).

(cf.) This result suggests us that it is possible to evaluate numerically the
Fourier transform for a finite-duration signal whose values are mea-
sured experimentally at many (discrete) time instants, even though the
closed-form analytic expression of the signal is not available or too
complicated to deal with.

2.17 Impulse Response and Frequency Response of Ideal Bandpass Filter
Consider a sinc function multiplied by a cosine function, which is depicted in
Fig. P2.17:

B
t0

Fig. P2.17

g(t) = B

π
sinc

(
B

π
t

)
cos ωpt with ωp = 10B (P2.17.1)

(a) Using Eqs. (E2.9.1&2) and the amplitude modulation (AM) property
(E2.12.3), find the Fourier transform G(ω) = F{g(t)} and sketch it.

(b) If Eq. (P2.17.1) describes the impulse response of a system, which type
of filter is it?
(Lowpass, Bandpass, Highpass, Bandstop)

2.18 Design of Superheterodyne Receiver – Combination of Tunable/Selective
Filters
We can build a tunable selective filter, called the superheterodyne or super-
sonic heterodyne receiver often abbreviated superhet), by combining a tun-
able, but poorly selective filter, a highly-selective, but untunable filter having

120 2 Continuous-Time Fourier Analysis

a fixed IF (intermediate frequency) passband, a mixer (multiplier), and a local
oscillator as shown in Fig. P2.18.1.
Suppose the input signal y(t) consists of many AM (amplitude modulated)
signals which have been frequency-division-multiplexed (FDM) so that they
each occupy different frequency bands. Let us consider one signal y1(t) =
x1(t) cos ωct with spectrum Y1(ω) as depicted in Fig. P2.18.2(a). We want to
use the system of Fig. P2.18.1 to demultiplex and demodulate for recovering
the modulating signal x1(t), where the coarse tunable filter has the frequency
response Hc(ω) shown in Fig. P2.18.2(b) and the fixed frequency selective
filter is a bandpass filter (BPF) whose frequency response H f (ω) is centered
around fixed frequency ωc as shown in Fig. P2.18.2(c).

(Radio Frequency)
RF Amplifier

Coarse
tunable filter

Hc(ω)

(Multiplier)
Mixer

Local Oscillator

Fixed
selective filter

Hf
(ω)

Demodulator
LPF

IF
(Intermediate Frequency)

2cos (ωc + ωf)t 2cos ωf
tωc

y (t) r (t) z (t) v (t)
d (t)

Fig. P2.18.1 Superheterodyne receiver – tunable and selective filter

(c) The frequency response of the fixed selective filter

0
ω

Hf
(ω)

K

– ωf – ωM – ωf + ωM– ωf ωf – ωM ωf

+ ωMωf

(b) The frequency response of the coarse tunable filter

0

1

– ωc + ωM – ωc + ωT ωc + ωM ωc + ωT
ωωc– ωc – ωT ωc – ωT ωc – ωM– ωc – ωM – ωc

Hc
(ω)

(a) The spectrum of the input signal y (t)

0– ωc + ωM ωc – ωM

Y (ω) Y1(ω)

ωc + ωM
ω

 ωc– ωc – ωM – ωc

Fig. P2.18.2

(a) What constraint in terms of ωc and ωM must ωT satisfy to guarantee that
an undistorted spectrum of x1(t) is centered around ω f so that the output
of the fixed selective filter H f can be v(t) = x1(t) cos ω f t?

Problems 121

(b) Determine and sketch the spectra R(ω), Z (ω), V (ω), and D(ω) of the
output r (t) of the coarse tunable filter Hc, the input z(t) and output v(t) of
the fixed selective filter H f , and the output d(t) of the LPF.

(c) How could you determine the gain K of the fixed selective filter H f

required to have v(t) = x1(t) cos ω f t at its output?
(d) Complete and run the following program “sig02p 18.m” to simulate the

superheterodyne receiver twice, once with kT = 18 and once with kT =
19. Explain why the two simulation results are so different in terms of the
error between d(t) and x1(t). Note that the parameters kc, kf, kM, and kT
correspond to ωc, ω f , ωM , and ωT , respectively.

%sig02p 18.m

% simulates a superheterodyne receiver combining a coarse tunable filter

% and a fixed selective filter

% Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only

clear, clf

N=128; kc=16; kf=12; kM=4; kT=12; Wcf=2*pi/N*(kc+kf); Wf=2*pi/N*kf;

%create a signal having the spectrum as Fig.P2.17.2(a)

n=[0:N-1]; kk=[-N/2:N/2]; % Time/Frequency ranges

y=make signal(N,kc,kM);

Y=fftshift(fft(y)); Y mag= abs([Y Y(1)]);

subplot(6,2,1), plot(n,y), title(’y(t)’)

subplot(6,2,2), plot(kk,Y mag), title(’Y(w)’)

%tunable filter

r=??????????????(N,kc,kM,kT,?);

R=fftshift(fft(r)); R mag= abs([R R(1)]);

subplot(6,2,3), plot(n,r), title(’r(t) after tunable filter’)

subplot(6,2,4), plot(kk,R mag), title(’R(w)’)

%modulation

z=r.*(????????????);

Z=fftshift(fft(z)); Z mag= abs([Z Z(1)]);

subplot(6,2,5), plot(n,z), title(’z(t) after modulation’)

subplot(6,2,6), plot(kk,Z mag), title(’Z(w)’)

%selective filter

K=1; v=????????????????(N,kf,kM,K,?);

V=fftshift(fft(v)); V mag= abs([V V(1)]);

subplot(6,2,7), plot(n,v), title(’v(t) after selective filter’)

subplot(6,2,8), plot(kk,V mag), title(’V(w)’)

%demodulation

d0=v.*(???????????);

D0=fftshift(fft(d0)); D0 mag= abs([D0 D0(1)]);

subplot(6,2,9), plot(n,d0), title(’d0(t) after demodulation’)

subplot(6,2,10), plot(kk,D0 mag), title(’D0(w)’)

%tunable filter as LPF

d=tunable filter(N,0,kM,kT,d0);

D=fftshift(fft(d)); D mag= abs([D D(1)]);

x1=zeros(1,N);

for k=-kM:kM, x1(n+1)= x1(n+1)+(1-abs(k)/kM)*cos(2*pi*k*n/N); end

subplot(6,2,11), plot(n,d,’b’, n,x1,’r’)

title(’detected/transmitted signal’)

subplot(6,2,12), plot(kk,D mag),

title(’Spectrum D(w) of detected signal’)

error between detected transmitted signals= norm(d-x1)

122 2 Continuous-Time Fourier Analysis

function x=make signal(N,kc,kM)

% create a signal having the spectrum as Fig.P2.17.2(a)

n=1:N;

x=zeros(1,N);

for k=0:N/2-1

tmp= 2*pi*k*(n-1)/N;

if k<kc-kM, x(n)= x(n)+sin(tmp);

elseif k>kc+kM, x(n)=x(n)+sin(tmp); % whatever, cos() or sin()

else x(n)= x(n)+(1-abs(k-kc)/kM)*cos(tmp);

end

end

function x t=tunable filter(N,kc,kM,kT,x)

% BPF with passband (kc-kM,kc+kM) and

% stopband edge frequencies kc-kT and kc+kT

X=fft(x,N);

for k=1:N/2+1

if k<=kc-kT|k>kc+kT+1, X(k)=0; X(N+2-k)=0;

elseif k<=kc-kM+1

X(k)=X(k)*(1-(kc-kM-k+1)/(kT-kM)); X(N+2-k)=conj(X(k));

elseif k>kc+kM

X(k)=X(k)*(1-(k-1-kc-kM)/(kT-kM)); X(N+2-k)=conj(X(k));

end

end

x t=real(ifft(X,N));

function x t=selective filter(N,kf,kM,K,x)

% passes only the freq (kf-kM,kf+kM) with the gain K

X=fft(x,N);

for k=1:N

if (k>kf-kM&k<=kf+kM+1)|(k>N-kf-kM&k<=N-kf+kM+1), X(k)= K*X(k);

else X(k)=0;

end

end

x t=real(ifft(X));

2.19 The Poisson Sum Formula (PSF) and Spectrum of Sampled Signal
Consider an LTI (linear time-invariant) system with impulse response h(t)
and frequency response H (jω) = F{h(t)}. Note that the response (output)
of the system to the impulse train can be expressed in terms of the impulse
response as

δ(t)
G{}→ h(t); δT (t) =

∑∞
n=−∞ δ(t − nT)

G{}→
∑∞

n=−∞ h(t − nT) (P2.19.1)

Likewise, the response (output) of the system to a single or multiple complex
exponential signal can be written as

e jkω0t G{}→ H (jkω0)e jkω0t ;
1

T

∑∞
k=−∞ e jkω0t G{}→ 1

T

∑∞
k=−∞ H (jkω0)e jkω0t

(P2.19.2)

(a) Based on the above results (P2.19.1) & (P2.19.2) and Eq. (2.1.10), prove
that, for any function h(t) with its Fourier transform H (jω) = F{h(t)}
well-defined, the following relation holds:

Problems 123

∑∞
n=−∞ h(t − nT) = 1

T

∑∞
k=−∞ H (jkω0)e jkω0t with ω0 = 2π

T
(P2.19.3)

which is called the Poisson sum formula.
(b) Using the Poisson sum formula, prove the following relation pertaining to

the spectrum of a sampled signal (see Eq. (E2.13.3)):

∑∞
n=−∞ x(nT)e− jnωT = 1

T

∑∞
k=−∞ X (j(ω + kω0)) with X (jω)

= F{x(t)} and ω0 = 2π

T
(P2.19.4)

<Hint> Substitute h(t) = x(t)e jω1t and its Fourier transform H (jω) =
X (j(ω + ω1)) with ω = kω0 into Eq. (P2.19.3) and then
substitute t = 0 and ω1 = ω.

2.20 BPF (Bandpass Filter) Realization via Modulation-LPF-Demodulation
Consider the realization of BPF of Fig. P2.20(a), which consists of a modu-
lator (multiplier), an LPF, and a demodulator (multiplier). Assuming that the
spectrum of x(t) is as depicted in Fig. P2.20(b), sketch the spectra of the sig-
nals xc(t), xs(t), yc(t), ys(t), and y(t) to see to it that the composite system
realizes a BPF and determine the passband of the realized BPF.

(a) A BPF realization via modulation–LPF–demodulation

(b) The spectrum of the input signal

x(t)

xc(t)
yc(t)

y(t)

ys(t)xs(t)

2

–1 0 1

X(ω)

cos ωct

sin ωct

ω

2

–1 0 1
ω

ω
–6 –5 –4 –3 –2 –1 0 1 2

8

3 4 5 6

ωc = 2

Fig. P2.20

124 2 Continuous-Time Fourier Analysis

2.21 TDM (Time-Division Multiplexing)
As depicted in Fig. P2.21(a), Time-Division multiplexing (TDM) is to transmit
two or more PAM (pulse amplitude modulation) signals not simultaneously as
subchannels (separated in the frequency-domain), but physically by turns in
one communication channel where each subchannel is assigned a timeslot of
duration D every T s in such a way that the timeslots do not overlap. Sketch a
TDM waveform of two signals x1(t) and x2(t) in Fig. P2.21(b).

x1(t) x1(t)p1(t)

x2(t)p2(t)x2(t)

Communication
channel

synchronized
switching

(a) A TDM communication system

x1(t)

x2(t)

t

t

t
(b) A time–division multiplexed signal

Fig. P2.21 TDM (Time-Division Multiplexing) communication

2.22 FDM (Frequency-Division Multiplexing)
As depicted in Fig. P2.22(a), Frequency-Division multiplexing (FDM) is to
transmit two or more SAM (sinusoidal amplitude modulation) signals as sub-
carriers (separated in the frequency-domain) in such a way that the frequency
slots each carrying a signal (amplitude-modulated with different carrier fre-
quency) do not overlap. Assuming that the channel is ideal so that r (t) = s(t),
sketch the spectrum of the FDM signal to be transmitted over the same com-
munication channel where the spectra of two signals x1(t) and x2(t) to be
frequency-multiplexed are shown in Fig. P2.22(b).

(cf.) Time/frequency-division multiplexing assigns different time/frequency
intervals to each signal or subchannel.

2.23 Quadrature Multiplexing
Consider the quadrature multiplexing system depicted in Fig. P2.22, where
the two signals are assumed to be bandlimited, that is,

X1(ω) = X2(ω) = 0 for ω > ωM (P2.23.1)

as illustrated in Fig. P2.23(b).

(a) Assuming that the channel is ideal so that r (t) = s(t), express the spectra
S(ω), V1(ω), V2(ω), Y1(ω), Y2(ω) of the signals s(t), v1(t), v2(t), y1(t),
and y2(t) in terms of X1(ω) and X2(ω).

(b) Complete and run the following MATLAB program “sig02p 23.m” to see
if y1(t) = x1(t) and y2(t) = x2(t).

Problems 125

(a) A FDM (Frequency–Division Multiplexing) communication system

x1(t)

s (t)

cos ω1t

cos ω2t

–ω 1 –ω M ω M

–ω M ω M

0

1 2

21

ω 1

–ω 2 0 ω 2

Communication
channel

r (t)

y1(t)

y2(t)x2(t)

(b) The spectra of two signals to be frequency–division multiplexed

–ωM ωM0

X1(ω) X2(ω)

ω
–ωM ωM0

ω

Fig. P2.22 FDM (Frequency-Division Multiplexing) communication

x1(t)

s (t) r (t)

cos ωct

sin ωct

–ωM ωM

–ωM ωM

Communication
channel

x2(t)

v1(t) y1(t)

y2(t)

2

2v2(t)

Fig. P2.23 Quadrature multiplexing

%sig02p 23.m
% Quadrature Multiplexing in Fig.P2.23
% Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
clear, clf
N=128; kc=16; kM=6; kx1=6; kx2=6; Wc=2*pi/N*kc;
n=[0:N-1]; kk=[-N/2:N/2];
x1= make signal1(N,kx1); x2= make signal2(N,kx2);
X1= fftshift(fft(x1)); X2= fftshift(fft(x2));
subplot(523), plot(kk,abs([X1 X1(1)])), title(’X1(w)’)
subplot(524), plot(kk,abs([X2 X2(1)])), title(’X2(w)’)
s= x1.*???(Wc*n) + x2.*sin(Wc*n); S= fftshift(fft(s));
subplot(513), plot(kk,abs([S S(1)])), title(’S(w)’)
v1= s.*cos(Wc*n); V1= fftshift(fft(v1));
v2= s.*???(Wc*n); V2= fftshift(fft(v2));
subplot(527), plot(kk,abs([V1 V1(1)])), title(’V1(w)’)
subplot(528), plot(kk,abs([V2 V2(1)])), title(’V2(w)’)

126 2 Continuous-Time Fourier Analysis

% selective filter(ideal LPF)
kf=0; K=2;
y1= selective filter(N,kf,kM,K,v1); Y1= fftshift(fft(y1));
y2= ????????????????(N,kf,kM,K,v2); Y2= fftshift(fft(y2));
discrepancy1=norm(x1-y1), discrepancy2=norm(x2-y2)
subplot(529), plot(kk,abs([Y1 Y1(1)])), title(’Y1(w)’)
subplot(5,2,10), plot(kk,abs([Y2 Y2(1)])), title(’Y2(w)’)

function x=make signal1(N,kx)
n=1:N; kk=1:kx-1; x= (1-kk/kx)*cos(2*pi*kk.’*n/N);

function x=make signal2(N,kx)
n=1:N; kk=1:kx-1; x= kk/kx*cos(2*pi*kk.’*n/N);

2.24 Least Squares Error (LSE) and Fourier Series Representation
Consider a continuous-time function x(t) on a time interval [a, b] and a set of
its sampled values, {x1, x2, · · · , xN } (with xn = x(tn)). Let us find an approx-
imate representation of x(t) as a linear combination of some basis functions
{φk(t); k = 1 : K }:

x̂(c, t) =
∑K

k=1
ck φk(t) for a ≤ t ≤ b (P2.24.1)

where the coefficient vector c = [c1 c2 · · · cK]T is to be determined so that the
following objective function can be minimized:

E2(c) =
∫ b

a
(x(t) − x̂(c, t))2dt (P2.24.2)

E2(c) =
∑K

n=1
(xn − x̂(c, tn))2 (P2.24.3)

The following notations will be used:

x = [x1 x2 · · · xN]T with xn = x(tn) (P2.24.4a)

c = [c1 c2 · · · cK]T (P2.24.4b)

ϕ(t) = [φ1(t) φ2(t) · · · φK (t)]T (P2.24.4c)

ε = [ε1 ε2 · · · εN]T (P2.24.4d)

Problems 127

with εn = xn − x̂(c, tn) = xn −
∑K

k=1
ckφk(tn) = xn − ϕT (tn)c

Φ =

⎡
⎢⎢⎢⎢⎣

ϕT (t1)
ϕT (t2)

•
•

ϕT (tN)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

φ11 φ21 • φK 1

φ12 φ22 • φK 2

• • • •
• • • •

φ1N φ2N • φK N

⎤
⎥⎥⎥⎥⎦ with φkn = φk(tn) (P2.24.4e)

Based on these notations, the above objective function (P2.24.3) can be
written as

E2(c) = ε∗T ε = [x∗ − Φ∗c∗]T [x − Φc]

= x∗T x − x∗T Φc − c∗T Φ∗T x + c∗T Φ∗T Φc

= x∗T
[
I − Φ[Φ∗T Φ]−1Φ∗T

]
x

+ [ΦT Φ∗c∗ − ΦT x∗]T [Φ∗T Φ]−1[Φ∗T Φc − Φ∗T x] (P2.24.5)

where only the second term of this equation depends on c. Note that this
objective function is minimized for

Φ∗T Φc − Φ∗T x = 0 (a normal equation); c = [Φ∗T Φ]−1Φ∗T x (P2.24.6)

(a) Let the K functions {φk(t), k = 1 : K } constitute an orthogonal set for
the N discrete times {tn, n = 1 : N } in the sense that

∑N

n=1
φ∗

knφmn = 0 ∀ k �= m (P2.24.7)

so that [Φ∗T Φ] is diagonal. Show that the coefficients can be deter-
mined as

ck =
∑N

n=1 xnφ
∗
kn∑N

n=1 φ∗
knφkn

, for k = 1, 2, · · · , K (P2.24.8)

Likewise, if the K functions {φk(t), k = 1 : K } constitute an orthogonal
set for the continuous time intrerval [a, b] in the sense that

∫ b

a
φ∗

k (t)φm(t) dt = 0 ∀ k �= m, (P2.24.9)

then the coefficients can be determined as

ck =
∫ b

a x(t)φ∗
k (t) dt∫ b

a φ∗
k (t)φk(t) dt

, for k = 1, 2, · · · , K (P2.24.10)

128 2 Continuous-Time Fourier Analysis

(b) Using Eq. (P2.24.1), find an approximate representation of a real-valued
function x(t) for −P/2 ≤ t ≤ P/2 in terms of the following basis
functions

φk(t) = 1

P
e jkω0t with ω0 = 2π

P
and k = −K : K (P2.24.11)

Chapter 3
Discrete-Time Fourier Analysis

Contents

3.1 Discrete-Time Fourier Transform (DTFT) . 130
3.1.1 Definition and Convergence Conditions of DTFT Representation 130
3.1.2 Examples of DTFT Analysis . 132
3.1.3 DTFT of Periodic Sequences . 136

3.2 Properties of the Discrete-Time Fourier Transform . 138
3.2.1 Periodicity . 138
3.2.2 Linearity . 138
3.2.3 (Conjugate) Symmetry . 138
3.2.4 Time/Frequency Shifting (Real/Complex Translation) . 139
3.2.5 Real Convolution . 139
3.2.6 Complex Convolution (Modulation/Windowing) . 139
3.2.7 Differencing and Summation in Time . 143
3.2.8 Frequency Differentiation . 143
3.2.9 Time and Frequency Scaling . 143
3.2.10 Parseval’s Relation (Rayleigh Theorem) . 144

3.3 Polar Representation and Graphical Plot of DTFT . 144
3.4 Discrete Fourier Transform (DFT) . 147

3.4.1 Properties of the DFT . 149
3.4.2 Linear Convolution with DFT . 152
3.4.3 DFT for Noncausal or Infinite-Duration Sequence . 155

3.5 Relationship Among CTFS, CTFT, DTFT, and DFT . 160
3.5.1 Relationship Between CTFS and DFT/DFS . 160
3.5.2 Relationship Between CTFT and DTFT . 161
3.5.3 Relationship Among CTFS, CTFT, DTFT, and DFT/DFS 162

3.6 Fast Fourier Transform (FFT) . 164
3.6.1 Decimation-in-Time (DIT) FFT . 165
3.6.2 Decimation-in-Frequency (DIF) FFT . 168
3.6.3 Computation of IDFT Using FFT Algorithm . 169

3.7 Interpretation of DFT Results . 170
3.8 Effects of Signal Operations on DFT Spectrum . 178
3.9 Short-Time Fourier Transform – Spectrogram . 180
3.10 Summary . 182

Problems . 182

In this chapter we study the discrete-time Fourier analysis techniques, i.e., the
DTFT (Discrete-Time Fourier Transform), DFT (Discrete Fourier Transform), and
DFS (Discrete Fourier Series) of a discrete-time sequence, which will be used to

W.Y. Yang et al., Signals and Systems with MATLAB R©,
DOI 10.1007/978-3-540-92954-3 3, C© Springer-Verlag Berlin Heidelberg 2009

129

130 3 Discrete-Time Fourier Analysis

describe and analyze the frequency characteristics of discrete-time signals and the
frequency-domain behavior of discrete-time systems. We also deal with the fast
Fourier transform (FFT), which is a very efficient algorithm for computing the DFT.

Each of the continuous-time and discrete-time Fourier techniques has its own
application in the sense that they are used for analyzing continuous-time and
discrete-time signals/systems, respectively. However, if you do not understand their
organic inter-relationship beyond some similarity, you will miss the overall point
of viewing the frequency characteristic of signals/systems and get only a confusing
impression that there are too many Fourier techniques. Basically, we want to find,
say, the CTFT of continuous-time signals since no inherently discrete-time signals
exists in the physical world. However, the DFT, implemented by the FFT algorithm,
of discrete-time signals obtained by sampling continuous-time signals is the only
one practical Fourier analysis technique because of its outstanding computational
convenience compared with the CTFT that is difficult to compute for general sig-
nals. That is why we need to know the relationship between the CTFT and DFT and
ultimately, be able to get the “true” information about the frequency characteristic
of a (continuous-time) signal from its FFT-based spectrum.

3.1 Discrete-Time Fourier Transform (DTFT)

3.1.1 Definition and Convergence Conditions of DTFT
Representation

As the discrete-time counterpart of the CTFT (continuous-time Fourier transform)

X (jω) = F{x(t)} (2.2.1a)=
∫ ∞

−∞
x(t) e− jωt dt

we define the Fourier transform of a discrete-time sequence x[n] as

X (jΩ) = X [e j Ω] = F{x [n]} =
∑∞

n=−∞ x[n] e− j Ωn (3.1.1)

which is called the DTFT (discrete-time Fourier transform). From now on, we will
more often use X (Ω) than X (jΩ) or X [e jΩ] for simplicity. Let us see the physical
meaning of the DTFT.

Remark 3.1 Physical Meaning of the DTFT – Signal Spectrum and Frequency
Response

(1) If a sequence x[n] represents a physical signal, its DTFT X (Ω) = F{x[n]}
means the signal spectrum, which describes the frequency contents of the signal.

(2) In particular, if a time function g[n] represents the impulse response of a
discrete-time LTI (linear time-invariant) system, its DTFT G(Ω) = F{g[n]}
means the frequency response, which describes how the system responds to a

3.1 Discrete-Time Fourier Transform (DTFT) 131

sinusoidal input sequence of digital (angular) frequency Ω (refer to Sect. 1.2.6
for the definition of frequency response).

One striking difference of the DTFT from the CTFT is its periodicity (with period
2π) in the (digital) frequency variable Ω, which results from the fact that it is a
function of e jΩ periodic with period 2π in Ω, i.e., e j(Ω+2πn) = e jΩ. Based on the
periodicity of the DTFT, we are going to use the CTFS (for periodic functions) to
derive the IDTFT (inverse discrete-time Fourier transform) formula. To this end, we
can use Eq. (2.1.5a) with P = 2π, ω0 = 2π/P = 1, t = Ω, and k = −n to write
the (continuous-frequency) Fourier series representation of X (Ω) as

X (Ω)
(2.1.5a)= 1

2π

∑∞
n=−∞ xn e− j Ωn (3.1.2a)

where the Fourier coefficients are

xn
(2.1.5b)=

P=2π, ω0=1,t=Ω,k=−n

∫
2π

X (Ω) e j Ωn dΩ (the integral over one period of length 2π)

(3.1.2b)

Noting that Eq. (3.1.2a) is the same as Eq. (3.1.1) multiplied by a scaling factor
1/2π , we can multiply Eq. (3.1.2b) by the same scaling factor 1/2π to write the
IDTFT formula as

x[n] = F−1{X (Ω)} = 1

2π

∫
2π

X (Ω) e jΩn dΩ (3.1.3)

We call Eqs. (3.1.1) and (3.1.3) the DTFT pair where Eq. (3.1.1) is the analysis
equation and Eq. (3.1.3) is the synthesis equation.

Like the convergence conditions (2.2.2a) and (2.2.2b) for the CTFT, it can be
stated that the DTFT will exist if the sequence x[n] has finite energy, i.e.,

∑∞
n=−∞ |x[n] |2 < ∞ (3.1.4a)

or if it is absolutely summable, i.e.,

∑∞
n=−∞ |x[n] | < ∞ (3.1.4b)

Remark 3.2 Frequency Response Existence Condition and Stability Condition of a
System

Note that, for the impulse response g[n] of a discrete-time LTI system, the
absolute-summability condition (3.1.4b) is identical with the stability condition
(1.2.27b). This implies that a stable LTI system has a well-defined frequency
response G(Ω) = F{g[n]}.

132 3 Discrete-Time Fourier Analysis

3.1.2 Examples of DTFT Analysis

Example 3.1 DTFT of a Rectangular Pulse Sequence
For the rectangular pulse of duration 2M+1 from −M to M shown in Fig. 3.1(a1)

and described by

r ′
2M+1[n] = us[n + M] − us[n − M − 1] (E3.1.1)

we can apply Eq. (3.1.1) to get its DTFT as

R′
2M+1(Ω)

(3.1.1)=
∑∞

n=−∞ r ′
2M+1[n] e− j Ωn

(E3.1.1)=
∑M

n=−M
e− j Ωn (D.23)= e j ΩM 1 − e− j Ω(2M+1)

1 − e− j Ω
(Dirichlet kernel)

= e j ΩM e− j Ω(2M+1)/2(e j Ω(2M+1)/2 − e− j Ω(2M+1)/2)

e− j Ω/2(e j Ω/2 − e− j Ω/2)
(D.22)= sin(Ω(2M + 1)/2)

sin(Ω/2)
(E3.1.2)

whose magnitude and phase are depicted in Fig. 3.1 (b1) and (c1), respectively.
Likewise, for the rectangular pulse of duration 2M + 1 from 0 to 2M shown in
Fig. 3.1(a2) and described by

r2M+1[n] = us[n] − us[n − 2M − 1] = r ′
2M+1 [n − M] (E3.1.3)

with M = 1

–1

–2π 2π–π π

1

1

0

(c1) (c2)

3

even-symmetric

odd-symmetric

0

–2π –2π 2π–π

–π

π

π

2π–π

–π

π

π

0 0
00

r2M +1[n]'

(a1) r2M +1[n]'

R2M +1(Ω)

Ω

Ω Ω

'

∠R2M +1(Ω)'

∠R2M +1(Ω)'

∠R2M +1(Ω)

∠R2M +1(Ω)

n
with M = 1

1 2

1

0

= r2M +1[n–M]'
r2M +1[n]

n

(b1) R2M +1(Ω)'
–2π 2π–π π0

R2M +1(Ω)

Ω

(b2) R2M +1(Ω)

3

(a2) r2M +1[n] = r2M +1[n–M]'

Fig. 3.1 Two rectangular pulse sequences and their magnitude & phase spectra

3.1 Discrete-Time Fourier Transform (DTFT) 133

we can apply Eq. (3.1.1) to get its DTFT as

R2M+1(Ω)
(3.1.1)=

∑∞
n=−∞ r2M+1[n] e− j Ωn

(E3.1.3)=
∑ 2M

n=0
e− j Ωn (D.23)= 1 − e− j Ω(2M+1)

1 − e− j Ω
= R′

2M+1(Ω)e− j ΩM

(E3.1.2)= sin(Ω(2M + 1)/2)

sin(Ω/2)
e− j ΩM = sin(Ω(2M + 1)/2)

sin(Ω/2)
∠ − MΩ

(E3.1.4)

whose magnitude and phase are depicted in Figs. 3.1 (b2) and (c2), respectively.
Note the following:

– In contrast with the continuous-time case (Fig. 2.8(a)), the DTFT of a rectan-
gular pulse sequence is periodic, being no longer a pure sinc function, but an
aliased sinc function. Still the magnitude spectra show that the rectangular pulses
have low frequency components (around Ω = 0) more than high frequency ones
around Ω = ±π .

– The spectrum (E3.1.2) of an even-symmetric pulse sequence is real-valued and
its phase is 0 or ±π depending on whether it is positive or negative. Especially
for the frequency range such that R′

2M+1(Ω) < 0, we set its phase to +π or −π

so that the overall phase curve is odd-symmetric to comply with the conjugate
symmetry (3.2.4) of DTFT (see Fig. 3.1(c1)).

– Due to the fact that the phase of R2M+1(Ω) (Eq. (E3.1.4)) is proportional to the
(digital) frequency Ω as −MΩ, the (shifted) rectangular pulse sequence is said
to have a linear phase despite the phase jumps (discontinuities) caused by the
change of sign or the wrapping (modulo 2π) operation of angle (see the piecewise
linear phase curve in Fig. 3.1(c2)).

Example 3.2 DTFT of an Exponential Sequence
For an exponential sequence e1[n] = anus[n] with |a| < 1, we can apply

Eq. (3.1.1) to get its DTFT as

E1(Ω) =
∑∞

n=−∞ anus[n]e− j Ωn =
∑∞

n=0
(ae− j Ω)

n (D.23)= 1

1 − a e− j Ω

= 1

1 − a e− j Ω

1 − a e j Ω

1 − a e j Ω

(D.20)= 1 − a cos Ω − j a sin Ω

1 − 2a cos Ω + a2
(E3.2.1)

whose magnitude and phase are

|E1(Ω)| = 1√
(1 − a cos Ω)2 + (a sin Ω)2

and ∠ E1(Ω) = tan−1 −a sin Ω

1 − a cos Ω

(E3.2.2)

134 3 Discrete-Time Fourier Analysis

: a = 0.5
: a = 0.8

: a = –0.5
: a = –0.8

a = 0.8

a = 0.5

(a1) (a2)

nn

(b1) (b2)

(c1) (c2)

–2π 0

1

1

2π
–π

π –2π 0 2π–π π
a = –0.5

a = –0.8∠E1(Ω)

∠E1(Ω)

ΩΩ0

E1(Ω)
a = 0.8

a = 0.5

–2π 0 2π–π π Ω

2

Ω

E1(Ω)

a = –0.8

2

4

–2π 0 2π–π π

a = –0.5
0

0

–1

1

Fig. 3.2 Four exponential sequences and their magnitude & phase spectra

Fig. 3.2(a1–a2), (b1–b2), and (c2–c2) show the exponential sequences e1[n] =
anus[n] with a = ±0.5 and ±0.8 and their magnitude and phase spectra. Note
the following:

- From Fig. 3.2(a1), we see that e1[n] with a = 0.8 is smoother than that with
a = 0.5. This is reflected in Fig. 3.2(b1) showing that the magnitude spectrum
|E1[Ω]| with a = 0.8 is larger/smaller than that with a = 0.5 around Ω = 0 (low
frequency)/ Ω = ±π (high frequency). Also from Fig. 3.2(a2), we see that e1[n]
with a = −0.8 changes more rapidly than that with a = −0.5. This is reflected
in Fig. 3.2(b2) showing that the magnitude spectrum |E1[Ω]| with a = −0.8 is
larger/smaller than that with a = −0.5 around Ω = ±π (high frequency)/Ω = 0
(low frequency).

- Comparing Fig. 3.2(a1) and (a2), we see that e1[n] with a < 0 changes much
more rapidly than that with a > 0. This is reflected in that the magnitude
spectrum |E1[Ω]| with a < 0 (Fig. 3.2(b2)) is large around Ω = ±π (high
frequency) and that with a > 0 (Fig. 3.2(b1)) is large around Ω = 0 (low
frequency).

Example 3.3 DTFT of a Symmetric Exponential Sequence
For the exponential sequence e2[n] = a|n| with |a| < 1, we can apply Eq. (3.1.1)

to get its DTFT as

3.1 Discrete-Time Fourier Transform (DTFT) 135

–1 0

–2π 2π–π π0 –2π 2π–π π0

0
nn

: a = 0.5
: a = 0.8

a = 0.8 a = –0.8

a = 0.5 a = –0.5

(a1)

(b1) (b2)

(a2)

|E2 (Ω)|

Ω Ω

|E2 (Ω)|

: a = –0.5
: a = –0.8

1

Fig. 3.3 Four exponential sequences and their magnitude spectra

E2(Ω) =
∑∞

n=−∞ a|n|e− j Ωn =
∑−1

n=− ∞ a−ne− j Ω n

+
∑∞

n=0
ane− j Ω n =

∑∞
n=1

(ae j Ω)
n +

∑∞
n=0

(ae− j Ω)
n

(D.23)= a e j Ω

1 − a e j Ω
+ 1

1 − a e− j Ω

(D.20)= 1 − a2

1 − 2 a cos Ω + a2
: real-valued

(E3.3.1)

whose magnitudes with a = ±0.5 and ±0.8 are depicted in Fig. 3.3.

Example 3.4 DTFT of the Unit Sample (Impulse) Sequence
For the impulse (unit sample) sequence δ[n], we can apply Eq. (3.1.1) to get its

DTFT as

D(Ω) =
∑∞

n=−∞ δ[n] e− j Ωn = δ[n] e− j Ωn
∣∣
n=0 = 1 (E3.4.1)

As with the continuous-time case (Eq. (E2.6.1) in Example 2.6), this implies that a
discrete-time impulse signal has a flat or white spectrum, which is evenly distributed
over all digital frequencies.

(cf.) Very interestingly, applying the IDTFT formula (3.1.3) to (E3.4.1) yields a
useful expression of the unit sample (impulse) sequence.

δ[n]
(3.1.3)= 1

2π

∫
2π

D(Ω) e j Ωn dΩ

(E3.4.1)= 1

2π

∫ π

−π

1 e j ΩndΩ
(D.33)= e jπn − e− jπn

2π j n

(D.22)= sin nπ

n π
(E3.4.2)

136 3 Discrete-Time Fourier Analysis

(a) The impulse response of an ideal LPF

0 0

g [n]

B =

B

(b) The frequency response of an ideal LPF

2
π

B

n
2π

B
2π2π 2π

B
–B B B B

G(Ω)

π
B––

– – –+ 2π 2π
2π–2π

Ω–B B– – +π

π

Fig. 3.4 The impulse response and frequency response of an ideal LPF

Example 3.5 IDTFT of an Ideal Lowpass Filter Frequency Response
Let us consider the frequency response of an ideal lowpass filter (LPF) depicted

in Fig. 3.4(b):

G(Ω) =
{

1 for |Ω − 2mπ | ≤ B ≤ π (m : an integer)

0 elsewhere
(E3.5.1)

We can take the IDTFT (inverse discrete-time Fourier transform) (3.1.3) to get the
impulse response of the LPF, which is shown in Fig. 3.4(a), as follows:

g[n] = F−1{ G(Ω) } (3.1.3)= 1

2π

∫ B

−B
G(Ω) e j Ωn dΩ

(E3.5.1)=
(D.33)

1

2π j n
(e j B n − e− j B n)

= sin(Bn)

π n
= B

π
sinc

(
B n

π

)
(E3.5.2)

3.1.3 DTFT of Periodic Sequences

In analogy with the arguments in Sect. 2.3 for deriving Eq. (2.3.2) as the generalized
CTFT of continuous-time periodic functions, we begin with applying the IDTFT
formula (3.1.3) to an impulse train type spectrum

X (Ω) =
∑∞

i=−∞ 2πδ(Ω − Ω0 − 2π i)

to get a complex sinusoidal sequence as

x[n] = F−1{X (Ω)} (3.1.3)= 1

2π

∫
2π

X (Ω) e j ΩndΩ

=
∫

2π

δ(Ω − Ω0) e j Ωn dΩ
(1.1.25)= e j Ω0n

This implies the following DTFT relation:

e j Ω0n F↔ X (Ω) =
∑∞

i=−∞ 2πδ(Ω − Ω0 − 2π i) (3.1.5)

3.1 Discrete-Time Fourier Transform (DTFT) 137

Example 3.6 DTFT of a Constant Sequence
Let us consider a constant sequence c[n] = 1. Noting that this is a kind of

periodic function obtained by substituting Ω0 = 0 into the LHS of DTFT relation
(3.1.5), we can substitute Ω0 = 0 into the RHS of that DTFT relation to obtain the
DTFT of c[n] = 1 as

c[n] = 1
F↔

(3.1.5) with Ω0=0
C(Ω) =

∑∞
i=−∞ 2πδ(Ω − 2π i) (E3.6.1)

Example 3.7 DTFT of a Sine/Cosine Sequence

(a) For sin(Ω0n)
(D.22)= (e jΩ0n − e− jΩ0n)/j2, we use Eq. (3.1.5) to get its DTFT as

sin(Ω0n)
F↔ jπ

∑∞
i=−∞ (δ(Ω + Ω0 − 2π i) − δ(Ω − Ω0 − 2π i)) (E3.7.1)

(b) For cos(Ω0n)
(D.21)= (e jΩ0n + e− jΩ0n)/2, we use Eq. (3.1.5) to get its DTFT as

cos(Ω0n)
F↔ π

∑∞
i=−∞ (δ(Ω + Ω0 − 2π i) + δ(Ω − Ω0 − 2π i)) (E3.7.2)

Example 3.8 DTFT of the Unit Step Sequence
Similarly to Example 2.8 for deriving the CTFT of the unit step function, we first

decompose the unit step sequence us[n] into the sum of an even sequence and an
odd sequence as

us [n] = ue [n] + uo [n] (E3.8.1)

where

ue [n] = 1

2
(us [n] + us [−n]) = 1

2
(1 + δ [n]) (E3.8.2)

uo [n] = 1

2
(us [n] − us [−n]) = 1

2
sign(n) (E3.8.3)

Then we can take the DTFT of the even and odd parts as

Ue(Ω) = F{ ue [n] } = 1

2
F{ δ [n] } + F

{
1

2

}
(E3.4.1),(E3.6.1)= 1

2
+ π

∑∞
i=−∞ δ(Ω − 2π i) (E3.8.4)

Uo(Ω) = F{ uo [n] } = 1

2
(F{us [n]} − F{us [−n]})

= 1

2

(∑∞
n=1

1 e− j Ωn −
∑−1

n=−∞ 1 e− j Ωn

)
= 1

2

∑∞
n=1

(e− j Ωn − e j Ωn)

(D.23)= 1

2

(
e− j Ω

1 − e− j Ω
− e j Ω

1 − e j Ω

)
(D.20)= − j sin Ω

2(1 − cos Ω)
(E3.8.5)

138 3 Discrete-Time Fourier Analysis

Now we add these two results to obtain the Fourier transform of the unit step
sequence as

F{ us[n] } = 1

2

(
e− j Ω

1 − e− j Ω
+ 1

1 − e− j Ω

)
+ 1

2
+ π

∑∞
i=−∞ δ(Ω − 2π i)

= 1

1 − e− j Ω
+ π

∑∞
i=−∞ δ(Ω − 2π i) (E3.8.6)

3.2 Properties of the Discrete-Time Fourier Transform

As with the continuous-time Fourier transform (CTFT), there are many properties
of DTFT that provide us with further insight into the transform and can be used
for reducing the computational complexity associated with it. Noting that there are
striking similarities with the case of CTFT, we will simply state the properties unless
their derivations and interpretations differ from those with the continuous-time case.

3.2.1 Periodicity

Since the DTFT X (Ω) defined by Eq. (3.1.1) is a function of e jΩ, it is always
periodic with period 2π in Ω:

X (Ω) = X [e j Ω] = X (Ω + 2mπ) for any integer m (3.2.1)

(cf.) The periodicity lets us pay attention to the DTFT only for its one period, say,
−π ≤ Ω ≤ π .

3.2.2 Linearity

With F{x[n]} = X (Ω) and F{y[n]} = Y (Ω), we have

a x[n] + b y[n]
F↔ a X (Ω) + b Y (Ω), (3.2.2)

which implies that the DTFT of a linear combination of many sequences is the same
linear combination of the individual DTFTs.

3.2.3 (Conjugate) Symmetry

In general, the DTFT has the time reversal property:

F{ x[−n] } (3.1.1)=
∑∞

n=−∞x[−n] e− j Ωn −n=m=
∑∞

m=−∞x[m] e− j (−Ω) m (3.1.1)= X (−Ω)

x[−n]
F↔ X (−Ω) (3.2.3)

3.2 Properties of the Discrete-Time Fourier Transform 139

In case x[n] is a real-valued sequence, we have

X (−Ω)
(3.1.1)=

∑∞
n=−∞ x[n] e− j (−Ω) n

(2.2.1a)=
∑∞

n=−∞ x[n] e−(− j) Ωn = X∗(Ω) (complex conjugate of X (Ω))

or equivalently,

Re{X (−Ω)} + j Im{X (−Ω)} = Re{X (Ω)} − j Im{X (Ω)};
|X (−Ω)|∠X (−Ω) = |X (Ω)|∠ − X (Ω) (3.2.4)

This implies that the magnitude/phase of the DTFT of a real-valued sequence is an
even/odd function of frequency Ω.

Also in analogy with Eq. (2.5.5) for the CTFT, we have

even and real-valued xe[n]
F↔ Re{X (Ω)} even and real-valued (3.2.5a)

odd and real-valued xo[n]
F↔ j Im{X (Ω)} odd and imaginary-valued (3.2.5b)

3.2.4 Time/Frequency Shifting (Real/Complex Translation)

The DTFT has the time-shifting and frequency-shifting properties as

x[n − n1]
F↔ X (Ω) e− j Ωn1 = X (Ω)∠ − n1 Ω (3.2.6)

x[n]e j Ω1n F↔ X (Ω − Ω1) (3.2.7)

3.2.5 Real Convolution

The DTFT has the convolution property

y[n] = x[n] ∗ g[n]
F↔ Y (Ω) = X (Ω) G(Ω) (3.2.8)

which can be derived in the same way with Eq. (2.5.11). This is very useful for
describing the input-output relationship of a discrete-time LTI system with the input
x[n], the output y[n], and the impulse response g[n] where G(Ω) = F{g[n]} is
called the frequency response of the system.

3.2.6 Complex Convolution (Modulation/Windowing)

In analogy with Eq. (2.5.14) for the CTFT, the DTFT also has the complex convo-
lution (modulation) property as

y[n] = x[n] m[n]
F↔ Y (Ω) = 1

2π
X (Ω) ∗

2π
M(Ω) (3.2.9)

where ∗
2π

denotes a circular or periodic convolution with period 2π .

140 3 Discrete-Time Fourier Analysis

Example 3.9 Effect of Rectangular Windowing on the DTFT of a Cosine Wave
From Eqs. (E3.7.2) and (E3.1.2), we can write the DTFTs of a cosine wave

x[n] = cos(Ω0n) and an even rectangular pulse sequence r ′
2M+1[n] of duration

2M + 1 as

X (Ω) = DTFT{cos(Ω0n)}
(E3.7.2)= π

∑∞
i=−∞ (δ(Ω + Ω0 − 2π i) + δ(Ω − Ω0 − 2π i)) (E3.9.1)

R′
2M+1(Ω) = DTFT{r ′

2M+1[n]} (E3.1.2)= sin(Ω(2M + 1)/2)

sin(Ω/2)
(E3.9.2)

We can use the complex convolution property (3.2.9) to find the DTFT of a
rectangular-windowed cosine wave y[n] = cos(Ω0n)r ′

2M+1[n] as

Y (Ω) = DTFT{y[n]} = DTFT{cos(Ω0n)r ′
2M+1[n]} (3.2.9)= 1

2π
X (Ω) ∗

2π
R′

2M+1(Ω)

(E3.9.1)= 1

2π
π

∑∞
i=−∞ (δ(Ω + Ω0 − 2π i) + δ(Ω − Ω0 − 2π i)) ∗

2π
R′

2M+1(Ω)

(D.37)= 1

2
(R′

2M+1(Ω + Ω0 − 2π i) + R′
2M+1(Ω − Ω0 − 2π i))

(E3.9.2)= 1

2

(
sin((Ω + Ω0 − 2π i)(2M + 1)/2)

sin((Ω + Ω0 − 2π i)/2)

+ sin((Ω − Ω0 − 2π i)(2M + 1)/2)

sin((Ω − Ω0 − 2π i)/2)

)
(E3.9.3)

which is depicted together with X (Ω) (E3.9.1) and R′
2M+1(Ω) (E3.9.2) in Fig. 3.5.

Compared with the spectrum X (Ω) of the cosine wave (Fig. 3.5(b1)), the spectrum
Y (Ω) of the rectangular-windowed cosine wave (Fig. 3.5(b3)) has many side lobe
ripples (with low amplitude) besides the two main peaks, which is interpreted as the
spectral leakage due to the rectangular windowing.

Example 3.10 Impulse Response and Frequency Response of an FIR LPF (Lowpass
Filter)

We can use Eq. (E3.5.2) to write the impulse response of an ideal LPF with
bandwidth B = π/4 as

g[n]
(E3.5.2)= sin(Bn)

π n

∣∣∣∣
B=π/4

= 1

4
sinc

(n

4

)
(E3.10.1)

which has an infinite duration so that it cannot be implemented by an FIR filter.
Thus, to implement it with an FIR filter, we need to truncate the impulse response,

3.2 Properties of the Discrete-Time Fourier Transform 141

(a1) A discrete–time cosine signal x [n]

(a2) A discrete–time rectangular signal r2M+1[n]

(a3) A rectangular–windowed cosine signal y [n]

(b1) The DTFT spectrum X (Ω) of x[n]

y [n] = cos(Ω0n)r2M+1[n]

x [n] = cos(Ω0n)

0 20

Time
domain

Frequency
domain

↔

↔

–20 –10 0

1

10

x

x
1/2π

–2π – π 0

2

π 2π

–2π – π 0

10

π 2π

–2π –π 0 π 2⎯

II II

*

20

–20 –10
–1

0

1

10 20

n

n

n

'

'r2M+1[n]
'r2M+1[n] ' 'R2M+1[Ω] R2M+1[Ω]

↔x [n]

y [n] Y [Ω]

X (Ω)
X (Ω) Ω

Ω

Ω

(b2) The DTFT spectrum R2M+1[Ω] of r2M+1[n]

(b3) The DTFT spectrum Y (Ω) of y [n]

Y (Ω)
5

' '

–20 10–10

'

F

F

F

Fig. 3.5 Effect of rectangular windowing on the DTFT spectrum

say, by multiplying the rectangular window

w[n] =
{

1 for − 3 ≤ n ≤ 3

0 elsewhere
(E3.10.2)

whose DTFT is

W (Ω)
(E3.1.2)= sin(7Ω/2)

sin(Ω/2)
(E3.10.3)

Then we obtain the windowed impulse response of an FIR LPF as

gw[n] = g[n] w[n] (E3.10.4)

whose DTFT is

Gw(Ω)
(3.2.9)=

complex convolution property

1

2π
G(Ω) ∗

2π
W (Ω) (E3.10.5)

This is the frequency response of the FIR LPF. Figure 3.6 shows the impulse and
frequency responses of the ideal and FIR LPFs together with the rectangular window
sequence and its DTFT spectrum.

(cf.) Note that the frequency response of the FIR LPF (Fig. 3.6(b3)) has smooth
transition in contrast with the sharp transition of the frequency response of
the ideal LPF (Fig. 3.6(b1)).

We can run the following program “sig03e10.m” to plot Fig. 3.6 and compare the
two DTFTs of the windowed impulse response g7[n], one obtained by using the
DTFT formula (3.1.1) or the MATLAB routine “DTFT()” and one obtained by

142 3 Discrete-Time Fourier Analysis

0.25
Time
domain

Frequency
 domain

0.25

(a1) Ideal LPF impulse response (b1) Ideal LPF frequency response

(a2) Rectangular window sequence

(a3) FIR LPF impulse response

–10 –2π

1/2π

1

2π

G (Ω)

G (Ω)

Ω–π π0

B=π/4

0 10

–10 0

1

10

n

g [n]

g [n]

w [n]

w [n]

gw[n] gw[n]

n

–10 0 10
n

(b2) Spectrum of rectangular window

(b3) FIR LPF frequency response

–2π 2π

W (Ω)

W (Ω)

Gw(Ω)Gw(Ω)

Ω
–π π0

6

–2π 2π Ω
–π π0

1

×

×

∗

π/4

F

F

F

Fig. 3.6 Effect of windowing on the spectrum or frequency response

using the circular convolution (E3.10.5) or the MATLAB routine
“conv circular()”.

%sig03e10.m
% Fig. 3.6: Windowing Effect on Impulse/Frequency Response of an ideal LPF
clear, clf
n= [-20: 20]; g= sinc(n/4)/4;
N=400; f=[-400:400]/N +1e-10; W=2∗pi∗f;
global P D
D=pi/2; P=2∗pi; G=rectangular wave(W);
subplot(321), stem(n,g,’.’), subplot(322), plot(f,G)
M=3; wdw= [zeros(1,20-M) ones(1,2∗M+1) zeros(1,20-M)];
Wdw= DTFT(wdw,W,-20); % DTFT Wdw(W) of wdw[n] - Appendix E for DTFT
Wdw t= sin(W∗(2∗M+1)/2)./sin(W/2); % Eq.(E3.1.2)
discrepancy between DTFT and E3 1 2 = norm(Wdw-Wdw t)
subplot(323), stem(n,wdw,’.’), subplot(324), plot(f,real(Wdw))
gw= g.∗wdw;
Gw= DTFT(gw,W,n(1)); % DTFT spectrum Gw(W) of gw[n]
Gw 1P= conv circular(G,Wdw,N);
discrepancy between circonv and DTFT= norm(Gw(1:N)-Gw 1P)/norm(Gw 1P)
subplot(325), stem(n,gw,’.’)
subplot(326), plot(f,real(Gw)), hold on
plot(f(1:N),real(Gw 1P),’r’)

function z=conv circular(x,y,N)
% Circular convolution z(n)= (1/N) sum m=0ˆN-1 x(m)∗y(n-m)
if nargin<3, N=min(length(x),length(y)); end
x=x(1:N); y=y(1:N); y circulated= fliplr(y);
for n=1:N

y circulated= [y circulated(N) y circulated(1:N-1)];
z(n)= x∗y circulated’/N;

end

3.2 Properties of the Discrete-Time Fourier Transform 143

3.2.7 Differencing and Summation in Time

As with the differentiation and integration property of the CTFT, the DTFT has the
following differencing and summation properties:

x[n] − x[n − 1]
F↔ (1 − e− j Ω) X (Ω) (3.2.10)∑ n

m=−∞ x[m] = x[n] ∗ us[n]
F↔

1

1 − e− j Ω
X (Ω) + π X (0)

∑∞
i=−∞ δ(Ω − 2π i) (3.2.11)

3.2.8 Frequency Differentiation

By differentiating both sides of the DTFT formula (3.1.1) w.r.t. Ω, we obtain

d X (Ω)

dΩ

(3.1.1)= −
∑∞

n=−∞ j n x[n] e− j Ωn

which yields the frequency-differentiation property of the DTFT as

n x[n]
F↔ j

d X (Ω)

dΩ
(3.2.12)

This means that multiplication by n in the time domain results in differentiation
w.r.t. Ω and multiplication by j in the frequency domain.

3.2.9 Time and Frequency Scaling

In the continuous-time case, we have Eq. (2.5.21) as

x(at)
F↔ 1

| a | X
(ω

a

)

However, it is not so simple to define x[an] because of the following reasons:

- If a is not an integer, say, a = 0.5, then x[0.5 n]|n=1 = x[0.5] is indeterminate.
- If a is an integer, say, a = 2, then it does not merely speed up x[n], but takes the

even-indexed samples of x[n].

Thus we define a time-scaled version of x[n] as

x(K)[n] =
{

x[n/K] for n = Kr (a multiple of K) with some integer r

0 elsewhere
(3.2.13)

144 3 Discrete-Time Fourier Analysis

which is obtained by placing (K − 1) zeros between successive samples of x[n].
Then we apply the DTFT formula (3.1.1) to get

X (K)(Ω)
(3.1.1)=

∑∞
n=−∞ x(K) [n]e− j Ωn (3.2.13)=

with n=K r

∑∞
r=−∞ x[r] e− j ΩK r = X (KΩ)

(3.2.14)

3.2.10 Parseval’s Relation (Rayleigh Theorem)

If x[n] has finite energy and the DTFT X (Ω) = F{x[n]}, then we have

∑∞
n=−∞ |x[n]|2 = 1

2π

∫
2π

|X (Ω)|2d Ω (3.2.15)

where |X (Ω)|2 is called the energy-density spectrum of the signal x[n].

3.3 Polar Representation and Graphical Plot of DTFT

Similarly to the continuous-time case, we can write the polar representation of the
DTFT as

X (Ω) = |X (Ω)|∠X (Ω)

If x[n] is real, then its DTFT X (Ω) = F{x[n]} has the following properties:

- X (Ω) is periodic with period 2π in Ω.
- The magnitude |X (Ω)| is an even function of Ω and is symmetric about Ω = mπ

(m: an integer).
- The phase ∠X (Ω) is an odd function of Ω and is anti-symmetric about Ω = mπ

(m: an integer).

Note that all the information about the DTFT of a real-valued sequence is contained
in the frequency range [0, π] since the portion for other ranges can be determined
from that for [0, π] using symmetry and periodicity. Consequently, we usually plot
the spectrum for 0 ≤ Ω ≤ π only.

Remark 3.3 Phase Jumps in the DTFT Phase Spectrum
From the phase spectra shown in Fig. 3.1(c1)–(c2) and 3.7(c1)–(c2), it can be

observed that there are two occasions for which the phase spectrum has discontinu-
ities or jumps:

- A jump of ±2π occurs to maintain the phase value within the principal range of
[−π,+π].

- A jump of ±π occurs when the sign of X (Ω) changes.

3.3 Polar Representation and Graphical Plot of DTFT 145

The sign of phase jump is chosen in such a way that the resulting phase spectrum
is odd or antisymmetric and lies in the principal range [−π,+π] after
the jump.

Remark 3.4 The DTFT Magnitude/Phase Spectra of Symmetric Sequences

(1) Especially for anti-symmetric sequences, their magnitude spectrum is zero at
Ω = 0 (see Fig. 3.7(b1)–(b2)). This implies that the DC gain of digital filters
having an anti-symmetric impulse response is zero so that they cannot be used
as a lowpass filter.

(2) As for the sequences that are even/odd about some point, their DTFTs have
linear phase −MΩ (proportional to the frequency) except for the phase jumps
so that the DTFT phase spectra are piecewise linear. Also, symmetric/anti-
symmetric sequences, that are just shifted versions of even/odd ones, preserve
linear phase because shifting does not impair the linear phase characteristic
(see Eq. (3.2.6)). This is illustrated by Examples 3.1, 3.11, and 3.12 and will be
restated in Remark 4.8, Sect. 4.6.

Example 3.11 DTFT of an Odd Sequence
For an odd sequence

n=
x1[n] = · · · −4

0
−3
1

−2
2

−1
1

0
0

1
−1

2
−2

3
−1

4
0

5
0 · · · (E3.11.1)

(a1) An odd sequence (a2) An anti–symmetric sequence

(b1) The CTFT/DTFT magnitude spectra of x1(t) /x1[n] (b2) The DTFT magnitude spectrum of x2[n]

(c1) The DTFT phase spectrum of x1[n] (c2) The DTFT phase spectrum of x2[n]

x1(t)
x2[n]

2

1 3
t

–1
–2

0

1x1[n] = x1(nT) |T = 1

2

–5 50 5

6 6

t

–2

–2π 2π

π/2

0–π π –2π 2π0–π π

π

DTFT CTFT
/T

T

X1(Ω)

∠X1(Ω) ∠X2(Ω)

| |

| | X2(Ω)| |X1(ω)

ω=Ω

Ω Ω

Ω Ω

| |

T

–2π
–π/2

–π π 2π0 –2π –π

–π

π 2π0

Fig. 3.7 The DTFT spectra of an odd sequence and an anti-symmetric sequence

146 3 Discrete-Time Fourier Analysis

we have its DTFT as

X1(Ω) =
∑∞

n=−∞ x1[n] e− j Ωn

= e j3Ω − e− j3Ω + 2(e j2Ω − e− j2Ω) + e j Ω − e− j Ω (D.22)= j2 sin(3Ω)

+ j4 sin(2Ω) + j2 sin(Ω)
(D.12)= 4 sin(2Ω) (1 + cos Ω) e jπ/2 (E3.11.2)

Noting that the continuous-time version of this sequence is apparently the sum of
two opposite-sign shifted triangular pulses, we can compute its CTFT spectrum as

x1(t) = 2(λD(t + 2) − λD(t − 2))
(E2.3.4) with A=2,D=2↔

(2.5.6) with t1=2

X1(ω) = 4 sinc2
(ω

π

)
(e j2ω − e− j2ω) = j8 sin(2ω) sinc2

(ω

π

)
(E3.11.3)

This sequence and its DTFT magnitude/phase spectra are depicted in Fig. 3.7(a1)
and (b1)/(c1), respectively. The CTFT magnitude spectrum (E3.11.3) (divided by
sampling interval or period T) is plotted (in a dotted line) together with the DTFT
magnitude spectrum in Fig. 3.7(b1) for comparison.

Example 3.12 DTFT of an Anti-Symmetric Sequence
For the sequence which is anti-symmetric about n = 1.5

n = −2 −1 0 1 2 3 4 5
x2[n] = · · · 0 0 −1 2 −2 1 0 0 · · · (E3.12.1)

we have its DTFT as

X2(Ω) =
∑∞

n=−∞ x2[n] e− j Ωn = −1 + 2 e− j Ω − 2e− j2Ω + e− j3Ω

= −(1 − e− j3Ω) + 2(e− j Ω − e− j2Ω)

= −e− j3Ω/2(e j3Ω/2 − e− j3Ω/2) + 2e− j3Ω/2(e j Ω/2 − e− j Ω/2)

(D.22)= 2 j e− j3Ω/2

(
2 sin

(
Ω

2

)
− sin

(
3
Ω

2

))

= 2

(
2 sin

(
Ω

2

)
− sin

(
3
Ω

2

))
∠
(

−3
Ω

2
+ π

2

)
(E3.12.2)

This sequence and its magnitude/phase spectra are depicted in Fig. 3.7(a2) and (b2)/
(c2), respectively.

3.4 Discrete Fourier Transform (DFT) 147

3.4 Discrete Fourier Transform (DFT)

Before going into the DFT, let us consider the computational difference between
the CTFS or CTFT for a periodic or an aperiodic continuous-time function x(t) and
the DTFT for the discrete-time sequence x[n] consisting of the samples of x(t).
Since the CTFS (2.1.5b) and CTFT (2.2.1a) involving a continuous-time integral
can be computed analytically for only x(t) described by some basic functions and
require a numerical integration method for general finite-duration time functions,
they are not practical when we need to find the spectra of real-world signals. The
DTFT (3.1.1) is computationally advantageous over the CTFS or CTFT since it does
not involve any continuous-time integration. However, it can be computed, say, by
using the MATLAB routine “DTFT()”, only for finite-duration sequences unless
the sequence is expressed by some basic sequences such as an exponential or sinc
one. Therefore in practice, signals are truncated in various ways to obtain a set of
finite number of samples [S-2]:

- A transient signal is assumed to be zero after it decays to a negligible amplitude.
- A periodic signal is sampled over an integral number of periods.
- A random signal is multiplied by a “window” of finite duration (short-time

Fourier transform).

In any case, suppose we have a causal, finite-duration sequence x[n] containing M
samples. Then the DTFT formula (3.1.1) becomes

X (Ω) = X [e j Ω] = F{x[n]} =
∑N−1

n=0
x[n]e− j Ωn (3.4.1)

where N is set to be greater than or equal to M (the number of samples). Although
it is easier to compute than the CTFS, CTFT, or the original DTFT, it may still
annoy the computer because the frequency Ω takes continuous values for all that
it is conventionally called the “digital” frequency. That is why we define and use
another Fourier technique, called the N -point DFT (discrete Fourier transform), as
follows:

X (k) = DFTN {x[n]} =
∑N−1

n=0
x[n]e− j2πk n/N =

∑N−1

n=0
x[n]W k n

N (3.4.2)

with WN = e− j2π/N for k = 0 : N − 1

This is an N -point discrete-frequency sequence obtained by sampling one period of
the finite version of DTFT, Eq. (3.4.1), conventionally at

Ω = kΩ0 = k
2π

N
for 0 ≤ k ≤ N − 1

where N is called the DFT size and Ω0 = 2π/N the digital fundamental or res-
olution frequency just like ω0 = 2π/P in the CTFS. Note that these N frequency

148 3 Discrete-Time Fourier Analysis

points are equally-spaced over the digital frequency range [0, 2π) (excluding the
upperbound 2π). Also we can write the IDFT (inverse discrete Fourier transform)
formula as

x[n] = IDFTN {X (k)} = 1

N

∑N−1

k=0
X (k) e j2πk n/N

= 1

N

∑N−1

k=0
X (k)W −k n

N for n = 0 : N − 1 (3.4.3)

Here, by substituting Eq. (3.4.2) into Eq. (3.4.3), we are going to demonstrate the
validity of the IDFT formula, which amounts to verifying that the set of DFT sam-
ples {X (k), k = 0 : N − 1} conveys all the information contained in the set of
time-domain samples {x[n], n = 0 : N − 1}, that is, x[n] can be recovered perfectly
from X (k):

x[n]
?=

(3.4.3)

1

N

∑N−1

k=0
X (k) W −k n

N
(3.4.2)= 1

N

∑N−1

k=0

∑N−1

m=0
x[m] W k m

N W −k n
N

=
∑N−1

m=0
x[m]

(
1

N

∑N−1

k=0
W k(m−n)

N

)

=
∑N−1

m=0
x[m]δ[(m − n) mod N]

O.K.= x[n]

(a mod b or a modulo b : the remainder after division of a by b)

where we have used the fact that

1

N

∑N−1

k=0
W k(m−n)

N = 1

N

∑N−1

k=0
e− j2πk(m−n)/N

=
{

1 if m − n = i N (i : an integer)

0 otherwise
(3.4.4)

There are two observations about the DFT pair (3.4.2) and (3.4.3):

- The DFT sequence X (k) is periodic in k with period N :

X (k + m N)
(3.4.2)=

∑N−1

n=0
x[n] e− j2π (k+m N) n/N

=
∑N−1

n=0
x[n] e− j2πk n/N e− j2πm n (3.4.2)= X (k) (3.4.5)

3.4 Discrete Fourier Transform (DFT) 149

- The IDFT sequence x[n] is periodic in n with period N :

x [n + m N]
(3.4.3)= 1

N

∑N−1

k=0
X (k) e j2πk(n+m N)/N

= 1

N

∑N−1

k=0
X (k) e j2πk n/N e j 2πk m (3.4.3)= x[n] (3.4.6)

The first observation (3.4.5) is no wonder since the DFT X (k) inherits the periodicity
of the DTFT X (Ω) as X (k) originates from the samples of X (Ω) over its period. In
contrast, the second observation is very surprising since there is no reason to believe
that any sequence x[n] is periodic and that with period equal to the DFT size N ,
which can be arbitrarily chosen as long as it covers the duration of x[n]. Because
of this illusory periodicity, the shift involved with the time shifting property and the
convolution related with the real convolution property of the DFT turn out to be
not linear, but circular as will be discussed subsequently in Sects. 3.4.1 and 3.4.2.
This headache is a kind of cost that we should pay in return for the computational
convenience of DFT, which is discrete in both time and frequency so that it needs
only multiplication and summation instead of integration. If only the sequence x[n]
is really periodic with period N , the DFT is a perfect Fourier technique for analyzing
the frequency characteristic and thus it might well be referred to as the discrete-time
Fourier series (DTFS). In this context, when we want to emphasize the periodicity
of DFT, we call it DFS (discrete Fourier series) pair and write the DFS pair as

X̃ (k) = DFSN {x̃ [n]} =
∑N−1

n=0
x̃[n] e− j 2πk n/N =

∑N−1

n=0
x̃[n] W kn

N (3.4.7)

x̃ [n] = IDFSN {X̃ (k)} = 1

N

∑N−1

k=0
X̃ (k) e j 2πk n/N = 1

N

∑N−1

k=0
X̃ (k) W − k n

N

(3.4.8)

3.4.1 Properties of the DFT

The DFT has properties similar to those of the CTFS such as the real convolution
property (2.5.13) since the DFT regards a time-domain sample sequence x[n] as one
period of its periodic extension (with period equal to the DFT size N) that can be
described by

x [n] = x̃N [n] rN [n] (3.4.9)

where x̃N [n] is the periodic extension of x[n] with period N and rN [n] the rectan-
gular pulse sequence with duration of n = 0 : N − 1:

x̃ [n] =
∑∞

m=−∞ x[n + m N] = x [n mod N] (3.4.10a)

rN [n] = us[n] − us[n − N] =
{

1 for 0 ≤ n ≤ N − 1

0 elsewhere
(3.4.10b)

150 3 Discrete-Time Fourier Analysis

On the other hand, the DFT sequence is born from the samples of the DTFT and
thus it inherits most of the DTFT properties except that the real translation and
convolution in the time domain are not linear, but circular as with the CTFS. There-
fore we discuss only the two properties and summarize all the DFT properties in
Appendix B.

3.4.1.1 Real/Complex Translation – Circular Shift in Time/Frequency

Figure 3.8(a), (b1), (b2), and (d) show a sequence x[n] of finite duration N = 4, its
periodic extension x̃N [n], its shifted version x̃N [n−M] (M = 2), and its rectangular-
windowed version x̃N [n − M]rN [n], respectively. You can see more clearly from
Fig. 3.8(a), (c1), (c2), and (d) that x̃N [n − M]rN [n] is the circular-shifted (rotated)
version of x[n] where Fig. 3.8(c1) and (c2) show the circular representation of the
finite-duration sequence x[n] and its shifted or rotated version displayed around the
circle with a circumference of N points. With this visual concept of circular shift,
we can write the (circular) time-shifting property of DFS and DFT as

x̃N [n − M] (circular shift)
DFS↔ W Mk

N X̃ (k) (3.4.11a)

x̃N [n − M]rN [n] (one period of circular shift)
DFT↔ W Mk

N X (k) (3.4.11b)

We can also apply the duality between the time and frequency domains to write
the (circular) frequency-shifting property of DFS/DFT:

W −Ln
N x̃N [n]

DFS↔ X̃ (k − L) (circular shift) (3.4.12a)

W −Ln
N x[n]

DFT↔ X̃ (k − L)rN [k] (one period of circular shift) (3.4.12b)

x [n]

n
n = 2

n = 2

n = 1

n = 1

n = 0

n = 0

n = N –1

n = N –1
n

n n

xN [n]

N –10

Periodic repetition

Circular representation

Linear representation

Taking one period
(Rectangular windowing)

Circular shift

Linear shift

(a) (c1)

(c2)

(d)

(b1)

(b2)

1

N –10 1

N –10 1N –10 1

~

xN [n –2]~ xN [n –2] rN [n]~

Fig. 3.8 Circular shift of a sequence by 2 samples

3.4 Discrete Fourier Transform (DFT) 151

3.4.1.2 Real/Complex Convolution – Circular Convolution
in Time/Frequency

Let us consider two sequences x[n] and y[n], both of duration M ≤ N and each
with DFT X (k) and Y (k), respectively. Also let us denote the periodic extensions of
the two sequences and their DFSs by x̃[n], ỹ[n], X̃ (k), and Ỹ (k), respectively. Then
we can write the product of the two DFSs X̃ (k) and Ỹ (k) as

X̃ (k) = DFSN {x̃ [n]} =
∑N−1

m=0
x̃[m] W km

N

Ỹ (k) = DFSN {ỹ [n]} =
∑N−1

r=0
ỹ [r] W kr

N

; X̃ (k)Ỹ (k) =
∑N−1

m =0

∑N−1

r=0
x̃[m] ỹ [r] W k(m+r)

N (3.4.13)

and compute its IDFS (inverse discrete Fourier series) as

IDFSN
{

X̃ (k)Ỹ (k)
} (3.4.8)= 1

N

∑N−1

k=0
X̃ (k)Ỹ (k) W −k n

N

(3.4.13)=
∑N−1

m=0
x̃[m]

∑N−1

r=0
ỹ [r]

(
1

N

∑N−1

k=0
W k(r−n+m)

N

)

(3.4.4)=
∑N−1

m=0
x̃[m]

∑N−1

r=0
ỹ [r]δ[r − (n − m)]

(1.1.32)=
∑N−1

m =0
x̃[m] ỹ [n − m] = x̃[n] ∗

N
ỹ [n] (3.4.14)

where ∗
N

denotes the circular or periodic convolution sum with period N . This

implies the real convolution property of DFS/DFT as

x̃[n] ∗
N

ỹ [n] (circular convolution)
DFS↔ X̃ (k)Ỹ (k) (3.4.15a)

(x̃[n] ∗
N

ỹ [n]) rN [n] (one period of circular convolution)
DFT↔ X (k) Y (k) (3.4.15b)

In duality with this, we can interchange the time and frequency indices to write the
complex convolution property as

x̃[n] ỹ [n]
DFS↔ 1

N

∑N−1

i=0
X̃ (i)Ỹ (k − i) = 1

N
X̃ (k) ∗

N
Ỹ (k) (circular convolution)

(3.4.16a)

x[n] y [n]
DFT↔ 1

N

(
X̃ (k) ∗

N
Ỹ (k)

)
rN [k] (one period of circular convolution)

(3.4.16b)

152 3 Discrete-Time Fourier Analysis

Note that the shift of a periodic sequence along the time/frequency axis actually
causes a rotation, making the sequence values appear to wrap around from the
beginning of the sequence to the end.

3.4.2 Linear Convolution with DFT

As discussed in the previous section, circular translation/convolution is natural with
the DFT/DFS. However, in most applications of digital signal processing, linear
convolution is necessary. As will be seen later, very efficient algorithms called FFT
are available for computing the DFT of a finite-duration sequence. For this reason,
it can be computationally advantageous to use the FFT algorithm for computing a
convolution in such a way that the linear convolution corresponds to a single period
of a circular convolution.

Specifically, suppose the signals x[n] and y[n] are of finite duration Nx and Ny ,
and defined on n = 0 : Nx − 1 and on n = 0 : Ny − 1, respectively. Then, the
procedure for computing the linear convolution z[n] = x[n] ∗ y[n] is as below (see
Fig. 3.9):

0) Extend the given sequences x[n] and y[n] to the duration of N ≥ Nx + Ny − 1
by zero-padding where Nx + Ny − 1 is the expected length of the linear
convolution of the two sequences (see Remark 1.5(1)).
(cf.) Zero-padding a sequence means appending zeros to the end of the

sequence.)
1) Compute X (k) = DFTN {x[n]} and Y (k) = DFTN {y[n]}. (3.4.17a)
2) Multiply the two DFT sequences Z (k) = X (k)Y (k)

for k = 0 : N − 1. (3.4.17b)
3) Compute z[n] = IDFTN {Z (k)} where z[n] = x[n] ∗ y[n]. (3.4.17c)

Example 3.13 Linear Convolution Using the DFT
We want to find the linear convolution z[n] = x[n] ∗ y[n] of the two sequences

depicted in Fig. 3.10(a), where

x[n] =

⎧⎪⎨
⎪⎩

1 for n = 0

0.5 for n = 1

0 elsewhere

and y[n] =

⎧⎪⎨
⎪⎩

0.5 for n = 0

1 for n = 1

0 elsewhere

(E3.13.1)

Zero-padding
to duration N

Zero-padding
to duration N

N – point
DFT

N ≥ Nx + Ny – 1

N – point
DFT

N – point
DFT

X(k) = DFTN {x [n]}

Y(k) = DFTN {y [n]}

x [n]

z [n]

y [n]

length Ny

Z(k) = X(k)Y(k)length Nx

Fig. 3.9 Linear convolution using the DFT

3.4 Discrete Fourier Transform (DFT) 153

(a) Time-domain approach (Fig. 3.10(a))

z[n] = 0 for n < 0 or n ≥ 3(= Nx + Ny − 1 = 2 + 2 − 1)

z[0] = x [0] y[0] + x[1] y[−1] = 0.5

z[1] = x [0] y[1] + x[1] y[0] = 1.25 (E3.13.2)

z[2] = x [0] y[2] + x[1] y[1] = 0.5

z[3] = x [0] y[3] + x[1] y[2] = 0

(b) Frequency-domain approach with 2-point DFT (Fig. 3.10(b))
We can use the DFT formula (3.4.2) with N = 2 to get the DFTs of the two
sequences as

X2(k) = ∑2−1
n=0 x[n]e− j2πkn/2 = 1 + 0.5(−1)k = 1.5, 0.5 for k = 0, 1

Y2(k) = ∑2−1
n=0 y[n]e− j2πkn/2 = 0.5 + (−1)k = 1.5, −0.5 for k = 0, 1

so that

Z2(k) = X2(k) Y2(k) = 2.25, −0.25 for k = 0, 1 (E3.13.3)

Then we use the IDFT formula (3.4.3) to get

z2[n] = 1

2

∑2−1

k=0
Z2(k)e j2πkn/2

= 1

2

(
Z2(0) + (−1)n Z2(1)

) = 1, 1.25 for n = 0, 1 (E3.13.4)

(a) Linear convolution (b) Circular convolution with 2-point DFT (c) Circular convolution with 3-point DFT

0.5

x2 [n]

n
–5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

1

∼

0.5

n
–5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

1
y2 [n]∼

0

0.5

x [n]

n
1

1

z [n] = x [n]∗y [n]

n
0

0.5

1.25

1 2

0.5

y [n]

n
0 1

1

1.25

n
–5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

1

z2 [n]∼

0.5

n

1
x3 [n]∼

–5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

0.5

n

1
y3 [n]∼

–5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

n
2

1.25

0.5 0.5

z3 [n]∼

–5 –4 –3 –2 –1 0 1 3 4 5 6 7

Fig. 3.10 Linear and circular convolutions with DFT

154 3 Discrete-Time Fourier Analysis

This corresponds to one period of the periodic extension of z[n] (obtained in part
(a)) with period N = 2 and is not equal to z[n]. This illustrates that time-aliasing
effect might occur if the DFT size N is not sufficiently large.

(c) Frequency-domain approach with 3-point DFT (Fig. 3.10(c))
We can use the DFT formula (3.4.2) with N = 3 to get the DFTs of the two
sequences as

X3(k) =
∑3−1

n=0
x[n]e− j2πkn/3 = 1 + 0.5e− j2πk/3

= 1.5, 1 + 0.5e− j2π/3, 1 + 0.5e− j4π/3 for k = 0, 1, 2

Y3(k) =
∑3−1

n=0
y[n]e− j2πkn/3 = 0.5 + e− j2πk/3

= 1.5, 0.5 + e− j2π/3, 0.5 + e− j4π/3 for k = 0, 1, 2

so that

Z3(k) = X3(k)Y3(k) = 0.5 + 1.25e− j2πk/3 + 0.5e− j4πk/3 (E3.13.5)

We can match this with the IDFT formula (3.4.3) to get

z3[n] = 0.5, 1.25, 0.5 for n = 0, 1, 2 (E3.13.6)

This agrees with the linear convolution z[n] obtained in part (a) for n = 0 ∼ 2.
(d) MATLAB Program

We can run the following program “sig03e13.m” to apply the above procedure
to get the linear convolution using the DFT. Note the following:

- The built-in MATLAB functions “fft(x,N)” and “ifft(X,N)” are used
to compute the N-point DFT X (k) = DFTN {x[n]} and IDFT x[n] =
IDFTN {X (k)}, respectively.

- Depending on whether the length of the sequence given as the first input
argument of “fft(x,N)” or “ifft(X,N)” is less or greater than the sec-
ond input argument N, the sequence will be zero-padded or truncated so that
its resulting length will be N.

- Note that, to exploit the computational efficiency of FFT (fast Fourier trans-
form), the DFT size N should be chosen as a power of two greater than or
equal to the length of the sequence.

%sig03e13.m
% Use 2-point/3-point DFT for computing a (linear) convolution
clear, clf
x= [1 0.5]; y= [0.5 1];
z= conv(x,y) % Linear convolution
N= 3; % DFT size

3.4 Discrete Fourier Transform (DFT) 155

XN= fft(x,N); YN=fft(y,N);
ZN= XN.∗YN;
zN= ifft(ZN) % Circular convolution expected to agree with the linear one
% Sometimes, you had better take the real part of IDFT result
% by using real(ifft(ZN)) to make sure of its being real-valued.

(cf.) The above procedure, which is depicted in Fig. 3.9 and illustrated in
Example 3.13, paves the way to use the DFT for computing the linear
convolution of two finite-duration sequences.

Remark 3.5 How to Choose the DFT Size N in Connection with Zero Padding

(1) In computing the DFT of a given sequence x[n] of length M , we are free to
choose the DFT size N , i.e., the number of sampled frequency points over
[0, 2π) (one period of digital frequency) as long as it is greater than or equal to
M . Choosing N > M corresponds to increasing the length of x[n] by appending
it with additional zero-valued samples - padding with zeros. This procedure
called zero padding may be used to fill out the sequence length so that an
N = 2L -point FFT (fast Fourier transform) algorithm could be applied (see
Sect. 3.6) or a linear convolution of two sequences could be performed with-
out causing a time-aliasing problem (see Example 3.13). It can also be used to
provide a better-looking display of the frequency contents of a finite-duration
sequence by decreasing the digital frequency spacing (resolution frequency)
2π/N so that the discrete DFT spectrum X (k) can look close to the continuous
DTFT spectrum X (Ω) (see Example 3.14).

(2) As can be seen from the DTFT formula (3.1.1), zero padding does not alter the
continuous spectrum X (Ω), but just decreases the interval width between suc-
cessive discrete frequencies in the DFT spectrum. However, when the signal is
not of finite duration, zero padding can lead to erroneous results. Conclusively,
zero padding is justified only when a signal is of finite duration and has already
been sampled over the entire range where it is nonzero.

3.4.3 DFT for Noncausal or Infinite-Duration Sequence

Let us consider the DFT formula (3.4.2):

X (k) = DFTN {x[n]} =
∑N−1

n=0
x[n]e− j2πkn/N for k = 0 : N − 1

This is defined for a causal, finite-duration sequence x[n] so that we can cast
it into a computer program without taking much heed of the negative indices.
(C language prohibits using the negative indices for array and MATLAB does not
accept even zero index.) Then, how can we get the DFT spectrum of noncausal or
infinite-duration sequences? The answer is as follows:

156 3 Discrete-Time Fourier Analysis

- For a noncausal sequence, append the noncausal part to the end of the sequence
after any necessary zero-padding is done so that the resulting sequence can be
causal.

- For an infinite-duration sequence, set the time-duration [0, N − 1] so that the
most significant part of the sequence can be covered. To increase the DFT size is
also helpful in making the DFT close to the DTFT. Compare Fig. 3.11(b2)/(c2)
with (b3)/(c3). Also compare Fig. 3.12.1(b1) with Fig. 3.12.2(b1).

Example 3.14 DFT of a Non-causal Pulse Sequence
Consider a sequence which is depicted in Fig. 3.11(a1). Shifting the noncausal

part x[−1] = 1/3 into the end of the sequence yields a causal sequence

xN [n] =
⎧⎨
⎩

1/3 for n = 0, 1, N − 1

0 elsewhere
(E3.14.1)

where N is the DFT size. This corresponds to one period of the periodic extension
x̃N [n] (see Fig. 3.11(a2) with N = 4 and (a3) with N = 8).

Then we can compute the N -point DFT of xN [n] as

X N (k)
(3.4.2)=

∑N−1

n=0
xN [n]e− j2πkn/N = 1

3

n=0

e− j2πk0/N +1

3

n=1

e− j2πk1/N +1

3

n=N−1

e− j2πk(N−1)/N

= 1

3

(
1 + e− j2πk/N + e− j2πk(N−1)/N

) = 1

3

(
1 + e− j2πk/N + e j2πk/N

)
= 1

3
(1 + cos(2πk/N)) for k = 0 : N − 1 (E3.14.2)

0
0

1

0

–4 –1 0 1 3 4 5 7 8 9 –1 0 1 4 7 8 9

1/3 1/3 1/3

x [n] x4[n] x4[n]

(a1) A noncausal sequence

(b1) The DTFT magnitude spectrum

(c1) The DTFT phase spectrum (c2) The DFT phase spectrum (c3) The DFT phase spectrum

DTFT phase ∠X(Ω) 4-point DFT phase ∠X4(k) 8-point DFT phase ∠X8(k)

(b2) The DFT magnitude spectrum (b3) The DFT magnitude spectrum

(a2) Periodic extension with N = 4
 and its one period

(a3) Periodic extension with N = 8
 and its one period

–1 0 4
n n n

1

0

1

DTFT magnitude

π 2π

–π –π –π

2π
N

Ω
1 2 3

k

X(Ω)

4-point
DFT magnitude

X4(k)

8-point
DFT magnitude

X8(k)

0 1
0

1

2π
N

2 3 4 5 6 7
k

0
000

2π
π/3 2π/3 Ω

1 2 3
k

0

1
0

2 3 4 5 6 7
k

x8[n]x8[n]

Fig. 3.11 DTFT and DFT for a noncausal sequence

3.4 Discrete Fourier Transform (DFT) 157

Figure 3.11(b2)/(c2) and (b3)/(c3) show the magnitude/phase of this DFT with
N = 4 and those with N = 8, respectively. Note the following:

- The overlapped DTFT spectra in dotted lines, obtained in Example 3.1 and plot-
ted in Figs. 3.1 and 3.11(b1)/(c1), illustrate the fact that the DFT X N (k) are just
the samples of the DTFT X (Ω) at Ω = kΩ0 = 2πk/N for 0 ≤ k ≤ N − 1 as
long as the whole duration of the sequence is covered by [0 : N − 1].

- Figure 3.11(a2) and (a3) differ in the length of zero padding performed before
appending the noncausal part to the end of the sequence. Comparing the corre-
sponding DFT spectra in Figure 3.11(b2)/(c2) and (b3)/(c3), we see that longer
zero-padding increases the DFT size and thus decreases the digital resolution
frequency Ω0 = 2π/N so that the DFT looks closer to the DTFT.

Example 3.15 DFT of an Infinite-Duration Sequence
Consider a real exponential sequence of infinite duration described by

x [n] = an us[n] (|a| < 1) (E3.15.1)

This sequence is shown partially for n = 0 : 7 in Fig. 3.12.1(a1) and for n = 0 : 15
in Fig. 3.12.2(a1).

(a) The DTFT of this infinite-duration sequence was obtained in Example 3.2 as

X (Ω)
(E3.2.1)= 1

1 − a e− j Ω
(E3.15.2)

Thus we get the samples of the DTFT at Ω = kΩ0 = 2πk/N as

00

(a1) A part of an infinite-duration sequence
4 7

x [0:7]

n

1

(a2) Periodic extension of x [n] with period N = 8
0 4 8 16

x 8[n]

n0

1 ~

0

⇒
N = 8-point samples of DTFT

0 π 2π
N
2π

8-point
IDFT

Ω

(b2) Samples of the DTFT X(Ω) at Ω = 2πk /N

0

⇒

0

8-point
DFT

: DTFT magnitude X(Ω)
4

4 7

(b1) The 8-point DFT X8(k) and the DTFT X(Ω)

k

: DFT magnitude X8(k)

Fig. 3.12.1 Relationship between the 8-point DFT and the DTFT for an infinite-duration
sequence

158 3 Discrete-Time Fourier Analysis

1

0
0 4

(a1) A part of an infinite-duration sequence (b1) The 16-point DFT X16 (k) and the DTFT X (Ω)

(a2) Periodic extension of x [n] with period N = 16 (b2) Samples of the DTFT X (Ω) at Ω = 2πk /N

8 15

x [0:15]

4

0

0

4

0

0

8 15
n

1

0
0 8 16

n

k

: DTFT magnitude X(Ω)
: DFT magnitude X16(k)

x 16[n]~ N=16-point samples of DTFT

π 2π
Ω

16-point
DFT

16-point
IDFT

2π
N

Fig. 3.12.2 Relationship between the 16-point DFT and the DTFT for an infinite-duration
sequence

X (kΩ0)
(E3.15.2)= 1

1 − ae− jkΩ0
= 1

1 − ae− j2πk/N

= 1

1 − aW k
N

with WN = e− j2π/N (E3.15.3)

(b) We can use the DFT formula (3.4.2) to find the N -point DFT of x[n] for n =
0 : N − 1:

X (k)
(3.4.2)=

∑N−1

n=0
x[n]W nk

N

(E3.15.1)=
∑N−1

n=0
an W nk

N = 1 − aN W k N
N

1 − aW k
N

= 1 − aN

1 − aW k
N

for k = 0 : N − 1

(E3.15.4)

Comparing this with (E3.15.3) reveals the following:

- The DFT and the DTFT samples are not exactly the same for an infinite-
duration sequence, while they conform with each other for a finite-duration
sequence whose duration can somehow be covered in [0 : N − 1]

- Larger DFT size N will make the DFT closer to the sampled DTFT. This can
also be seen visually by comparing Figs. 3.12.1(b1) and 3.12.2(b1).

(c) One might wonder what the time-domain relationship between the DFT X (k)
and the sampled DTFT X (kΩ0) is for the infinite-duration sequence. This
curiosity seduces us to find the IDFT of X (kΩ0) as

3.4 Discrete Fourier Transform (DFT) 159

xN [n] = IDFT{X (kΩ0)} (3.4.3)= 1

N

∑N−1

k=0
X (kΩ0)W −kn

N

(E3.15.3)= 1

N

∑N−1

k=0
W −kn

N

1

1 − aW k
N

(D.23)= 1

N

∑N−1

k=0
W −kn

N

{∑∞
r=0

ar W kr
N

}

=
∑∞

r=0
ar

(
1

N

∑N−1

k=0
W k(r−n)

N

)
(3.4.4)=

∑∞
i=0

an+i N

(D.23)= an

1 − aN
for n = 0 : N − 1

N→∞→
|a|<1

x[n] = anus[n] (E3.15.5)

This corresponds to one period of the periodic extension x̃N [n] of x[n] with period
N and it becomes closer to x[n] as the DFT size N increases. Note the following:

- Just as the sampling of continuous signal x(t) in the time domain results in the
periodic extension of X (ω) = F{x(t)} in the frequency domain (Eq. (E2.13.3)),
so the sampling of continuous spectrum X (ω) or X (Ω) in the frequency domain
results in the periodic extension x̃P (t) (of x(t) = F−1{X (ω)}) or x̃N [n] (of
x[n] = F−1{X (Ω)}) in the time domain.

- Besides, just as shorter time-domain sampling interval (T) in the sampling of
x(t) to make x[n] = x(nT) increases the frequency band on which the CTFT
X (ω) = F{x(t)} is close to the DTFT X (Ω) = F{x[n]}, so narrower frequency-
domain sampling interval (ω0/Ω0) in the sampling of X (ω)/X (Ω) to make
X (kω0)/X (kΩ0) expands the time range on which x̃P (t) (with P = 2π/ω0) or
x̃N [n] (with N = 2π/Ω0) is close to x(t) or x[n].

- However short the time-domain sampling interval in the sampling of x(t) to make
x[n] may be, X (Ω) = F{x[n]} for −π ≤ Ω ≤ π cannot be exactly the same as
X (ω) = F{x(t)} for −π/T ≤ ω ≤ π/T due to the frequency-aliasing unless
X (ω) is strictly bandlimited. Likewise, however narrow the frequency-domain
sampling interval in the sampling of X (ω)/X (Ω) to make X (kω0)/X (kΩ0) may
be, the corresponding periodic extension x̃P (t)/x̃N [n] cannot be exactly the
same as x(t)/x[n] for one period of length P/N due to the time-aliasing unless
x(t)/x[n] is strictly time-limited.

Remark 3.6 The DFT for Noncausal/Infinite-Duration Sequences
The DFT pair (3.4.2) and (3.4.3) can be used to analyze the frequency character-

istic of causal, finite-duration sequences. Then, how do we deal with noncausal or
infinite-duration sequences?

(1) For a noncausal sequence, append the noncausal part to the end of the sequence
after any necessary zero-padding is done so that the resulting sequence can be
causal.

(2) For an infinite-duration sequence, set the time-duration [0, N − 1] so that the
most significant part of the sequence can be covered. If the duration is shifted,

160 3 Discrete-Time Fourier Analysis

apply the time-shifting property to the DFT for obtaining the right phase spec-
trum. You can also increase the DFT size to make the DFT close to the DTFT,
which accommodates infinite-duration sequences.

3.5 Relationship Among CTFS, CTFT, DTFT, and DFT

3.5.1 Relationship Between CTFS and DFT/DFS

To investigate the relationship between CTFS and DFT/DFS, suppose we have a
continuous-time periodic signal x̃P (t) with period P and its discrete-time version
x̃N [n] = x̃P (nT), which is obtained by sampling x̃P (t) at the rate of N times per
period P . Since x̃P (t) is a continuous-time periodic signal with period P , we can
use Eq. (2.1.5a) to write its CTFS representation as

x̃P (t)
(2.1.5a)= 1

P

∑∞
k=−∞ Xk e jkω0t P =N T=

ω0=2π/P=2π/N T

1

N T

∑∞
k=−∞ Xk e j2πkt/N T

(3.5.1)

Substituting t = nT into this equation and using the fact that e j2πkn/N is unique
only for n mod N yields

x̃P (nT)
(3.5.1)= 1

N T

∑∞
k=−∞ Xke j2πknT/N T = 1

N T

∑∞
k=−∞ Xke j2πkn/N

(since e j2πkn/N is unique only for n mod N)

= 1

N T

∑N−1

k=0

∑∞
m=−∞ Xk+m N e j 2π (k+m N)n/N

= 1

N

∑N−1

k=0

(
1

T

∑∞
m=−∞ Xk+m N

)
e j 2πkn/N (3.5.2)

We can match this equation with the IDFS/IDFT formula (3.4.8)/(3.4.3) for x̃N [n] =
x̃P (nT)

x̃N [n] = 1

N

∑N−1

k=0
X̃ N (k) e j 2πk n/N

to write the relation between the CTFS coefficients Xk of a periodic signal x̃P (t)
(with period P = N T) and the N -point DFT/DFS coefficients X̃ N (k) of x̃N [n] =
x̃P (nT) as

X̃ N (k) = 1

T

∑∞
m=−∞ Xk+m N (3.5.3)

This implies that the DFT/DFS of x̃N [n] = x̃P (nT) is qualitatively the periodic
extension of the CTFS of x̃P (t) (with period N in frequency index k), i.e., the
sum of infinitely many shifted version of CTFS. This explains how the DFT/DFS

3.5 Relationship Among CTFS, CTFT, DTFT, and DFT 161

strays from the CTFS because of frequency-aliasing unless the CTFS spectrum
Xk is strictly limited within the low-frequency band of (−(N/2)ω0, (N/2)ω0) =
(−π/T, π/T) where the DFT size N equals the number of samples per period P
and the fundamental frequency is ω0 = 2π/P = 2π/N T .

3.5.2 Relationship Between CTFT and DTFT

To investigate the relationship between CTFT and DTFT, suppose we have a
continuous-time signal x(t) and its discrete-time version x[n] = x(nT). As a bridge
between x(t) and x[n], let us consider the sampled version of x(t) with sampling
interval or period T as

x∗(t) = x(t)δT (t) (δT (t) =
∑∞

n=−∞ δ(t − nT) : the impulse train) (3.5.4)

Noting that x∗(t) is still a continuous-time signal, we can use Eq. (2.2.1a) to write
its CTFT as

X∗(ω)
(2.2.1a)=

∫ ∞

−∞
x∗(t)e− jωt dt

(3.5.4)=
∫ ∞

−∞
x(t)

∑∞
n=−∞ δ(t − nT)e− jωt dt

=
∑∞

n=−∞

∫ ∞

−∞
x(t)e− jωtδ(t − nT) dt

(1.1.25)=
∑∞

n=−∞ x(nT)e− jωnT

=
∑∞

n=−∞ x[n] e− jΩn
∣∣
Ω=ωT

(3.1.1)= Xd (Ω)|Ω=ωT (3.5.5)

This implies that Xd (Ω) = DTFT{x[n]} and X∗(ω) = CTFT{x∗(t)} are essentially
the same and that Xd (Ω) can be obtained from X∗(ω) via a variable substitution ω =
Ω/T . On the other hand, we recall from Eq. (E2.13.3) that X∗(ω) = CTFT{x∗(t)}
is expressed in terms of X (ω) = CTFT{x(t)} as

X∗(ω)
(E2.13.3)= 1

T

∑∞
m=−∞ X (ω + mωs) with ωs = 2π

T
(3.5.6)

Combining these two equations (3.5.5) and (3.5.6), we can write the relation
between the CTFT and the DTFT as

Xd (Ω)
(3.5.5)= X∗(ω)|ω=Ω/T

(3.5.6)= 1

T

∑∞
m=−∞ X

(
Ω

T
+ m

2π

T

)
(3.5.7)

where ω and Ω are called the analog and digital frequency, respectively.
This implies that the DTFT of x[n] = x(nT) is qualitatively the periodic

extension of the CTFT of x(t) (with period 2π/T in analog frequency ω or 2π

in digital frequency Ω), i.e., the sum of infinitely many shifted version of CTFT.
This explains how the DTFT strays from the CTFT because of frequency-aliasing

162 3 Discrete-Time Fourier Analysis

unless the CTFT spectrum X (ω) is strictly limited within the low-frequency band
of (−π/T, π/T) where T is the sampling interval of x[n] = x(nT). Fig. 3.7(b1)
illustrates the deviation of the DTFT spectrum from the CTFT spectrum caused by
frequency-aliasing.

3.5.3 Relationship Among CTFS, CTFT, DTFT, and DFT/DFS

As stated in Remark 2.7(2) and illustrated in Fig. 2.8, the CTFS Xk’s of a periodic
function x̃P (t) are the samples of the CTFT X (ω) of the one-period function xP (t)
at kω0 = 2πk/P:

Xk
(2.2.4)= X (ω)|ω=kω0=2πk/P (3.5.8)

Likewise, as discussed in Sect. 3.4 and illustrated in Fig. 3.11, the DFT/DFS X (k)’s
of a periodic sequence x̃P [n] are the samples of the DTFT Xd (Ω) of the one-period
sequence xP [n] at kΩ0 = 2πk/N :

X (k)
(3.4.1)&(3.4.2)= Xd (Ω)|Ω=kΩ0=2πk/N (3.5.9)

Figure 3.13 shows the overall relationship among the CTFS, CTFT, DTFT, and
DFT/DFS based on Eqs. (3.5.3), (3.5.7), (3.5.8), and (3.5.9). Figure 3.14 shows
the CTFT, DTFT, DFT/DFS, and CTFS spectra for a continuous-time/discrete-
time rectangular pulse or wave, presenting us with a more specific view of their
relationship. Some observations are summarized in the following remark:

Remark 3.7 Relationship among the CTFS, CTFT, DTFT, and DTFS (DFT/DFS)
Figures 3.13 and 3.14 shows the overall relationship among the CTFS, CTFT,

DTFT, and DTFS (DFT/DFS) from a bird’s-eye point of view. The following
observations and comparisons are made.

(1) Among the four Fourier spectra, the CTFS and CTFT are more desired than
the DTFS and DTFT since all physical signals are continuous-time signals.

Time-domain periodic extension with period N

Time-domain periodic extension with period P

Frequency-domain
periodic extension

Frequency-domain
periodic extensionFrequency-domain

sampling

Frequency-domain
sampling

DTFT DTFS (DFT/DFS)

CTFT CTFS
Time-domain

sampling
at t = nT

Time-domain
sampling
at t = nT

(2.2.1a)
X(ω) = ∫–∞ x(t) e–j ωt dt

∞ (2.1.5b)
 = ∫p x(t)e–j 2πkt / P dt

at ω = kω0 = k 2π
P

at Ω = kΩ0 = k
2π
N

∞ 2π
T

1
T

Xd (Ω) = Σm = – ∞X(ω + m)⎮ω = Ω/T
(3.5.6)

∞
Xd (Ω) = Σn = – ∞ x [n]e–j Ωn(3.1.1)

∞1
T

X (K) = Σm = – ∞Xk + mN

(3.5.3)

(3.4.2) N –1X (K) = Σn = 0 x [n]e–j 2πkn / N∼

∼
Xk

Fig. 3.13 Overall relationship among the CTFT, CTFS, DTFT, and DTFS (DFT/DFS)

3.5 Relationship Among CTFS, CTFT, DTFT, and DFT 163

–10 100

–10 0 10

–8 0 8

T

(a0) A pulse signal x(t) (b0) The CTFT spectrum X(ω) of x(t)

(b2) N = 8-point DFS/DFT spectrum X(k) of x8(n)

(b3) The CTFS spectrum Xk of x8(t)

(b4) The DTFT spectrum Xd (Ω) of x

[n]

(b1) The DTFT spectrum Xd (Ω) of x[n](a1) x [n] obtained by sampling x (t) with T = 1

(a2) x8[n] – a periodic extension of x [n] with period N = 8

–8 0 8
(a3) x8(t) – a periodic extension of x (t) with period p = 8

–20 0

T

20

N = 16
Period

(a4) x (n) obtained by sampling x(t) withT = 0.5

(a5) x16(n) – a periodic extension of x [n] with period N = 16

t

n

X(ω)

X(ω)

Xd (Ω)

Xd (Ω)

Xd (Ω)

Xd
(Ω)

X(k)

Xk

X(k)

X(ω)

X(ω)

–4π –2π 2π

2π

0

N

4π–π π

n

t

n

n

N = 8
Period

P = 8
Period

ω

–4π –2π

–16 –8

2π0

0 8 16

–16

–2π 2π–π π

–8 0

0

8 16

–16 –8 0 8 16

4π–π π
Ω

k

k

k

Ω

Ω0=

2π
N

Ω0=

2π
p

ω0=

∼

∼ ∼

∼∼

∼(b5) N = 16- point DFS/DFT spectrum X(k) of x16[n]

Fig. 3.14 Examples of CTFT, DTFT, DFS/DFT, and CTFS spectra

Between the CTFS and CTFT, we prefer to have the CTFT because it has all the
information contained in the CTFS on the assumption that the CTFS consists of
the samples of CTFT (Eq. (3.5.8) and Fig. 3.14(b3)). Besides, the CTFS is not
so practical because it is hard to find the period or even periodicity of periodic
signals due to a noise. Therefore, we think of the CTFT as a standard when
we need to compare the spectra in terms of how faithfully they describe the
frequency contents of a given signal.

(2) The problem with the CTFS and CTFT is that they are difficult to compute
due to the integration. Compared with them, the DTFT Xd (Ω) is easier to deal
with since it has only multiplications and additions. However, the sampling
of x(t) (with sampling interval T) to make x[n] = x(nT) produces the peri-
odic extension of the CTFT spectrum X (ω) with period 2π/T in ω, causing
frequency-aliasing in the case of non-zero frequency components outside the
principal analog frequency band [−π/T, π/T]. This is the cost we pay in
return for the computational convenience of the DTFT. This frequency-aliasing

164 3 Discrete-Time Fourier Analysis

can be reduced by decreasing the sampling interval T so that more frequency
components can be contained in [−π/T, π/T]. (Compare the DTFT spectra in
Fig. 3.14(b1) (for T = 1) and (b4) (for T = 0.5) with the CTFT plotted in
dotted lines.) Refer to the sampling theorem to be discussed in Sect. 5.3, which
presents a criterion for selecting the sampling interval.

(cf.) To compare the DTFT Xd (Ω) with the CTFT X (ω), we should divide X (ω)
by the sampling interval T (refer to Eq. (3.5.7)).

(3) The DTFT Xd (Ω) of x[n] is computationally advantageous over the CTFS
or CTFT, but is still not so handy since it is continuous in the frequency
Ω and thus requires an integration for IDTFT (inverse DTFT). That is why
we sample the DTFT in the frequency domain at kΩ0 = 2πk/N for k =
0 : N − 1 to make an N -point DFT X (k) for more computational efficiency.
However, it also costs us the (illusory) periodic extension of x[n] with period
N (the DFT size) irrespective of whether x[n] is originally periodic or not
and no matter what the real period is even if x[n] is really periodic. This
causes time-aliasing if the original signal is not sufficiently covered within
the whole time interval [0, N − 1] (Example 3.15) and spectral leakage prob-
lem when the DFT size does not conform to the real period of the signal
(Example 3.16).

(4) The analog resolution frequency ω0 = Ω0/T = 2π/N T = 2π/P can be
improved by increasing the whole time interval P = N T . Increasing the DFT
size N (, say, by zero-padding) helps the DFT spectrum to become close to
the DTFT spectrum. Decreasing the sampling interval T increases the period
2π/T of periodic extension of the CTFT spectrum (Eq. (3.5.7)) or equivalently,
expands the principal analog frequency band [−π/T, π/T] so that the chance
and degree of frequency aliasing can be reduced.

(5) Generally, we can choose the DFT size N and sampling interval T and thus,
eventually P = N T (the product of N and T) during which a signal is to be
measured, sampled, and collected as a set of N data points. Therefore, it is hard
to imagine that N T happens to be identical with the real period of the signal.
For this reason, it will be reasonable to call P = N T the whole time interval
rather than the period that was originated from the definition of the CTFS.

3.6 Fast Fourier Transform (FFT)

In this section we discuss the FFT algorithm that exploits the periodicity and sym-
metry of the discrete-time complex exponentials e j2πnk/N to reduce significantly the
number of multiplications for the DFT computation. The FFT algorithm discussed
here achieves its efficiency when N is a power of 2, i.e., N = 2N L OG2 for some
integer NLOG2. This makes no practical problem since the length of x[n] can be
increased to the next power of 2 by zero-padding.

To get some understanding of the steps in the FFT algorithm, let us consider a
sequence x[n] for 0 ≤ n ≤ N − 1 with N = 2N L OG2. There are two approaches,

3.6 Fast Fourier Transform (FFT) 165

each of which is based on the decimation process in the time and frequency domain,
respectively.

3.6.1 Decimation-in-Time (DIT) FFT

In this approach, we break the N -point DFT into two N/2-point DFTs, one for
even-indexed subsequence x[2r] and the other for odd-indexed subsequence x[2r +
1], then break each N/2-point DFT into two N/4-point DFTs and continue this
process until 2-point DFTs appear. Specifically, we can write the N -point DFT of
x[n] as

X (k)
(3.4.2)=

∑N−1

n=0
x[n]W k n

N =
∑

n=2r (even)
x[n]W kn

N +
∑

n=2r+1(odd)
x[n]W kn

N

=
∑N/2−1

r=0
x[2r]W 2rk

N +
∑N/2−1

r=0
x[2r + 1]W (2r+1)k

N

(W 2rk
N = e− j2π (2r)k/N = e− j2πrk/(N/2) = W rk

N/2)

=
∑N/2−1

r=0
xe[r]W rk

N/2 + W k
N

∑N/2−1

r=0
xo[r]W rk

N/2

(3.4.2)= Xe(k) + W k
N Xo(k) for 0 ≤ k ≤ N − 1 (3.6.1)

so that

X (k)
(3.6.1)= Xe(k) + W k

N Xo(k) for 0 ≤ k ≤ N/2 − 1 (3.6.2a)

X (k)
(3.6.1)= Xe(k) + W k

N Xo(k) for N/2 ≤ k ≤ N − 1;

X (k + N/2)
(3.6.1)= Xe(k + N/2) + W k+N/2

N Xo(k + N/2)

= Xe(k) − W k
N Xo(k) for 0 ≤ k ≤ N/2 − 1 (3.6.2b)

where Xe(k) and Xo(k) are N/2 -point DFTs that are periodic with period N/2 in
k. If N/2 is even, then we can again break Xe(k) and Xo(k) into two N/4 -point
DFTs in the same way:

Xe(k)
(3.6.1)=

with N→N/2
Xee(k) + W k

N/2 Xeo(k)

= Xee(k) + W 2k
N Xeo(k) for 0 ≤ k ≤ N/2 − 1 (3.6.3a)

Xo(k)
(3.6.1)=

with N→N/2
Xoe(k) + W k

N/2 Xoo(k)

= Xoe(k) + W 2k
N Xoo(k) for 0 ≤ k ≤ N/2 − 1 (3.6.3b)

166 3 Discrete-Time Fourier Analysis

If N = 2N L OG2, we repeat this procedure N L OG2−1 times to obtain N/2 2 -point
DFTs, say, for N = 23, as

Xee(k) =
∑N/4−1

n=0
xee[n]W kn

N/4 = x[0] + (−1)k x[4] (3.6.4a)

with xee[n] = xe[2n] = x[22n]

Xeo(k) =
∑N/4−1

n=0
xeo[n]W kn

N/4 = x[2] + (−1)k x[6] (3.6.4b)

with xeo[n] = xe[2n + 1] = x[22n + 2]

Xoe(k) =
∑N/4−1

n=0
xoe[n]W kn

N/4 = x[1] + (−1)k x[5] (3.6.4c)

with xoe[n] = xo[2n] = x[22n + 1]

Xoo(k) =
∑N/4−1

n=0
xoo[n]W kn

N/4 = x[3] + (−1)k x[7] (3.6.4d)

with xoo[n] = xo[2n + 1] = x[22n + 2 + 1]

Along with this procedure, we can draw the signal flow graph for an 8-point DFT
computation as shown in Fig. 3.15(a). By counting the number of branches with
a gain W r

N (representing multiplications) and empty circles (denoting additions),
we see that each stage needs N complex multiplications and N complex additions.
Since there are log2 N stages, we have a total of N log2 N complex multiplications
and additions. This is a substantial reduction of computation compared with the
direct DFT computation, which requires N 2 complex multiplication and N (N − 1)
complex additions since we must get N values of X (k) for k = 0 : N −1, each X (k)
requiring N complex multiplications and N − 1 complex additions.

Remark 3.8 Data Rearrangement in “Bit Reversed” Order
The signal flow graph in Fig. 3.15 shows that the input data x[n] appear in the

bit reversed order:
Position Binary equivalent Bit reversed Sequence index

3 → 011 → 110 → 6

4 → 100 → 001 → 1

Remark 3.9 Simplified Butterfly Computation

(1) The basic computational block in the flow graph (Fig. 3.15(b)), called a butter
fly, for stage m + 1 represents the following operations such as Eq. (3.6.2):

Xm+1(p) = Xm(p) + W r
N Xm(q), with q = p + 2m (3.6.5a)

Xm+1(q) = Xm(p) + W r+N/2
N Xm(q) = Xm(p) − W r

N Xm(q) (3.6.5b)

(∵ W r+N/2
N = −W r

N)

3.6 Fast Fourier Transform (FFT) 167

Position
0

1

x [0] = xee[0]
W2

0 W4
0

W4
1

W4
2

W4
3

W4
0

W4
1

W4
2

W4
3

WN
0

WN
0

WN
1

WN
2

WN
3

WN
1

WN
2

WN

WN

3

WN
4

WN
5

WN
6

WN
7

W2
0

W2
0

W2
0

W2
1

W2
1

W2
1

W2
1

r

= –WNWN
rr + N/2

x [4] = xee[1]

2 x [2] = xeo[0]

3

4

x [6] = xeo[1]

x [1] = xoe[0]

Xeo(0)

Xee(1)

Xee(0)

Xeo(1)

Xoe(0)

Xoe(1)

Xoo(0)

Xoo(1)

Xm(p)

Xm(q)

Xm+1(p)

Xm+1(q)
WN

r

Xm(p)

Xm(q)

Xm+1(p)

Xm+1(q)

Xe(2)

Stage 3Stage 2Stage 1

Xe(1)

Xe(0)

Xe(3)

Xo(0)

Xo(1)

Xo(2)

Xo(3)

X(2)

X(1)

X(0)

X(3)

X(4)

X(5)

X(6)

X(7)

5 x [5] = xoe[1]

6

(a) Signal flow graph of DIT(decimation-in-time) FFT algorithm
 for computing an N = 8-point DFT

(c) Signal flow graph of DIT(decimation-in-time) FFT algorithm
 (with simplified butterfly pattern) for computing an N = 8-point DFT

(b) Simplifying the butterfly computation

x [3] = xoo[0]

7

⇒

x [7] = xoo[1]

x [0]

W4
0

W2
0

W2
0

W2
0

W2
0

W4
0

W4
1

W4
1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

x [4]

x [2]

x [6]

x [1]

X(2)

X(1)

X(0)

X(3)

X(4)

X(5)

X(6)

X(7)

x [5]

x [3]

x [7]

Fig. 3.15 Signal flow graph of DIT(decimation-in-time) FFT algorithm

where p and q are the position indices in stage m + 1. Notice that Xm+1(p)
and Xm+1(q), the outputs of the butterfly at stage m + 1 are calculated in terms
of Xm(p) and Xm(q), the corresponding values from the previous stage and
no other inputs. Therefore, if a scratch memory for storing some intermediate
results is available, Xm+1(p) and Xm+1(q) can be calculated and be placed back
into the storage registers for Xm(p) and Xm(q). Thus only N registers for storing
one complex array are needed to implement the complete computation. This
kind of memory-efficient procedure is referred to as an in-place computation.

168 3 Discrete-Time Fourier Analysis

(2) Noting that the horizontal multiplier is just the negative of the diagonal mul-
tiplier, the basic butterfly configuration can be further simplified. Specifically,
with T = W r

N Xm(q), we have the simplified butterfly computation

Xm+1(p) = Xm(p) + T

Xm+1(q) = Xm(p) − T

which is depicted in Fig.3.15(b). This reduces the number of complex multi-
plications for the DFT computation to half of that with the original butterfly
computation (3.6.5a) (Fig. 3.15(c)):

N log2 N → N

2
log2 N

3.6.2 Decimation-in-Frequency (DIF) FFT

An alternative algorithm for computing the DFT results from breaking up or
decimating the transform sequence X (k). It begins by breaking up X (k) as follows:

X (k)
(3.4.2)=

∑N−1

n=0
x[n]W kn

N =
∑N/2−1

n=0
x[n]W kn

N +
∑N−1

n=N/2
x[n]W kn

N

=
∑N/2−1

n=0
x[n]W kn

N + W k N/2
N

∑N/2−1

n=0
x[n + N/2]W kn

N

=
∑N/2−1

n=0
(x[n] + (−1)k x[n + N/2])W kn

N (3.6.6)

We separate this into two groups, i.e., one group of the even-indexed elements (with
k = 2r) and the other group of the odd-indexed elements (k = 2r + 1) of X (k);

X (2r) =
∑N/2−1

n=0
(x[n] + x[n + N/2])W 2rn

N (3.6.7a)

=
∑N/2−1

n=0
(x[n] + x[n + N/2])W rn

N/2 for 0 ≤ r ≤ N/2 − 1

X (2r + 1) =
∑N/2−1

n=0
(x[n] − x[n + N/2])W (2r+1)n

N (3.6.7b)

=
∑N/2−1

n=0
(x[n] − x[n + N/2])W n

N W rn
N/2 for 0 ≤ r ≤ N/2 − 1

These are N/2 -point DFTs of the sequences (x[n]+ x[n + N/2]) and (x[n]− x[n +
N/2])W n

N , respectively. If N = 2N L OG2, we can proceed in the same way until it
ends up with N/2 2-point DFTs. The DIF FFT algorithm with simplified butterfly
computation and with the output data in the bit reversed order is illustrated for a
8-point DFT in Fig. 3.16.

3.6 Fast Fourier Transform (FFT) 169

x [0] X (0)

X (4)

X (2)

X (6)

X (1)

X (5)

X (3)

X (7)
–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

x [1]

x [2]

x [3]

x [4]
WN

x [5]

x [6]

x [7]

0

WN /2
0

WN /4
0

WN /4
0

WN /4
0

WN /4
0

WN /2
0

WN /2
1

WN /2
1

WN
1

WN
2

WN
3

Fig. 3.16 Signal flow graph of DIF(decimation-in-frequency) FFT algorithm (with simplified
butterfly pattern) for computing an N = 8-point DFT

3.6.3 Computation of IDFT Using FFT Algorithm

The inverse DFT is given by Eq. (3.4.3) as

x[n] = IDFTN {X (k)} = 1

N

∑N−1

k=0
X (k)e j2πkn/N

= 1

N

∑N−1

k=0
X (k)W −kn

N for n = 0 : N − 1 (3.6.8)

Comparing this with the DFT formula (3.4.2), we see that the computational pro-
cedure remains the same except that the twiddle factors are negative powers of WN

and the output is scaled by 1/N . Therefore, an inverse fast Fourier transform (IFFT)
program can be obtained from an FFT algorithm by replacing the input data x[n]’s
with X (k)’s, changing the exponents of WN to negative values, and scaling the last
output data by 1/N .

An alternative way to get the IDFT by using the FFT algorithm is derived by
taking the complex conjugate of the IDFT formula (3.4.3) or (3.6.8) as follows:

x∗[n] = 1

N

∑N−1

k=0
X∗(k)W kn

N = 1

N
FFT{X∗(k)};

x[n] = 1

N

(
FFT{X∗(k)})∗ (3.6.9)

It is implied that we can get x[n] = IDFTN {X (k)} by taking the complex conjugate
of X (k), applying the FFT algorithm for X∗(k), taking the complex conjugate of the
output, and scaling by 1/N .

The MATLAB built-in functions “fft(x,N)”/“ifft(X,N)” implement the
N-point FFT/IFFT algorithm for the data x[n]/X (k) given as their first input argu-
ment if the second input argument N is given as a power of 2 or if N is not given and

170 3 Discrete-Time Fourier Analysis

the length of the given data is a power of 2. If the length of the data sequence differs
from the second input argument N, it will be zero-padded or truncated so that the
resulting length will be N.

3.7 Interpretation of DFT Results

In general, the DFT takes a complex-valued sequence {x[n], n = 0 : N − 1} and
produces another complex-valued sequence {X (k), k = 0 : N − 1}. Then, what
is the physical meaning or practical usage of it? To understand it, let us take some
examples where we think of a discrete sequence x[n] as the discrete-time version of
an analog signal x(t) such that x[n] = x(nT).

Example 3.16 DFT Spectrum of a Single-Tone Sinusoidal Wave [L-1]
Suppose we have a continuous-time signal

x(t) = cos (ω1t) = cos

(
15

4
π t

)
with ω1 = 15

4
π (E3.16.1)

Let us use the MATLAB function “fft()” to find the DFT spectrum of {x[n] =
x(nT), n = 0 : N−1} with different sampling interval T and DFT size or number of
sample points N . Then we will discuss how we can read the frequency information
about x(t) from the DFT spectrum, which has different shape depending on the
sampling interval T and DFT size N .

(a) Let the sampling interval and number of samples (DFT size) be T = 0.1 and
N = 16, respectively so that the discrete-time sequence will be

xa[n] = cos

(
15

4
π t

)∣∣∣∣
t=nT =0.1n

= cos

(
3

8
πn

)
, n = 0, 1, · · · , 15

(E3.16.2)

The magnitude spectrum of this sequence, i.e., the magnitude of Xa(k) =
DFT16{xa[n]} is depicted in Fig. 3.17(a). It has a spike at the frequency index
k = 3 corresponding to the digital and analog frequencies as

Ω3 = 3Ω0 = 3
2π

N
= 6π

16
= 3π

8
[rad/sample]

→ ω
(1.1.15)= Ω3

T
= 3π

8 × 0.1
= 15π

4
[rad/s] (E3.16.3)

This analog frequency agrees exactly with the real frequency of the original
signal (E3.16.1). Note that |Xa(k)| has another spike at the frequency index
k = 13, which virtually corresponds to k = 13 − N = −3, but it is just like the

3.7 Interpretation of DFT Results 171

0

1
xa[n]

xc [n]

Xa(k)

0

–1

5

1

0

10

0
0 8 16 24 31

16

–1

0 10 20

Picket Fense Effect Spectral Leakage

30

0
0 4 8 12 15

5

8

2π

(a) T=0.1, N=16 (b) T=0.05, N=16 (faster and shorter)

(c) T=0.05, N=32 (faster sampling) (d) T=0.1, N=32 (longer interval)

: DFT
: DTFT

: DFT
: DTFT

: DFT
: DTFT

: DFT
: DTFT

10 15
n

1 xb[n]

0

–1

0 5 10 15
n

k

n

xd[n]1

0

–1

0 10 20 30
n

k

N

2π
N

Xb(k)
5

0
0 4 8 12 15

2π

k

N

Xc(k) 10

0
0 8 16 24 31

16

k

Xd(k)

Ω0= Ω0=

Ω0=

Fig. 3.17 DFT spectra of discrete-time sinusoidal sequences having a single tone

mirror image of k = 3. It can be assured by writing the discrete-time sequence
(E3.16.2) as

x [n] = 1

2

(
e j 3π n/8 + e− j 3π n/8

)
IDFT (3.4.3)= 1

N

(
N

2
e j 2π3 n/N + N

2
e− j 2π3 n/N

)∣∣∣∣
N=16

(E3.16.4)

= 1

16

(
8 e j 2π3 n/16 + 8 e j 2π (13) n/16) = 1

N

∑N−1

k=0
X (k) e j 2πk n/N

This explains why the magnitude of the DFT spectrum has two spikes of 8 at
k = 3 and N − 3 = 13.

(b) Let the sampling interval and number of samples (DFT size) be T = 0.05
(up-sampling) and N = 16, respectively so that the discrete-time sequence
will be

xb[n] = cos

(
15

4
π t

)∣∣∣∣
t=nT =0.05n

= cos

(
3

16
πn

)
, n = 0, 1, · · · , 15

(E3.16.5)

The magnitude spectrum of this sequence, i.e., the magnitude of Xb(k) =
DFT16{xb[n]} is depicted in Fig. 3.17(b), which looks quite different from

172 3 Discrete-Time Fourier Analysis

Fig. 3.17(a). That is, so many nonzero values show up here and there in the
magnitude spectrum, though the highest two values occur at k = 1 and 2. It is
because the picket fence effect (due to the frequency domain sampling of DFT)
hides the spectral peak, allowing the many side lobes (resulting from the spec-
tral leakage due to the time domain windowing) to be seen. This is a contrast to
the other cases where the picket fence effect coincidentally hides the side lobes
except the main peak as if by magic. Still we might fake a “far-fetched” story
about the frequency corresponding to k = 1.5 (between 1 and 2) as

Ω1.5 = 1.5Ω0 = 1.5
2π

N
= 3π

16
[rad/sample]

→ ω
(1.1.15)= Ω1.5

T
= 3π

16 × 0.05
= 15π

4
[rad/s] (E3.16.6)

This agrees with the result of (a), showing the right frequency information.
(c) Let the sampling interval and DFT size be T = 0.05 (up-sampling) and N = 32

(more sampling), respectively so that the discrete-time sequence will be

xc[n] = cos

(
15

4
π t

)∣∣∣∣
t=nT =0.05n

= cos

(
3

16
πn

)
, n = 0, 1, · · · , 31

(E3.16.7)

The magnitude spectrum of this sequence, i.e., the magnitude of Xc(k) =
DFT32{xc[n]} is depicted in Fig. 3.17(c). Like Fig. 3.17(a), it has two spikes
at k = 3 and N − 3 = 29 with only a difference in their amplitude (16), which
is two times as large as those in (a) because of the increased number of samples
(N = 32). Thus we can read the digital and analog frequencies as

Ω3 = 3Ω0 = 3
2π

N
= 6π

32
= 3π

16
[rad/sample]

→ ω
(1.1.15)= Ω3

T
= 3π

16 × 0.05
= 15π

4
[rad/s] (E3.16.8)

This analog frequency also agrees exactly with the real frequency of the original
signal (E3.16.1).

(d) Let the sampling interval and DFT size be T = 0.1 and N = 32 (longer
interval/more sampling), respectively so that the discrete-time sequence will be

xd [n] = cos

(
15

4
π t

)∣∣∣∣
t=nT =0.1n

= cos

(
3

8
πn

)
, n = 0, 1, · · · , 31

(E3.16.9)

The magnitude spectrum of this sequence, i.e., the magnitude of Xd (k) =
DFT32{xd [n]} is depicted in Fig. 3.17(d). It has two spikes at k = 6 and
N − 6 = 26, which tells us about the existence of the digital and analog

3.7 Interpretation of DFT Results 173

frequencies as

Ω6 = 6Ω0 = 6
2π

N
= 12π

32
= 3π

8
[rad/sample]

→ ω
(1.1.15)= Ω6

T
= 3π

8 × 0.1
= 15π

4
[rad/s] (E3.16.10)

This analog frequency also agrees exactly with the real frequency of the original
signal (E3.16.1).

Example 3.17 DFT Spectrum of a Multi-Tone Sinusoidal Wave
Suppose we have a continuous-time signal

x(t) = sin(ω1t) + 0.5 cos(ω2t) = sin(1.5π t) + 0.5 cos(3π t) (E3.17.1)

with ω1 = 1.5π and ω2 = 3π

Figure 3.18 shows the four different discrete-time versions of this signal and their
DFT spectra, which will be discussed below.

(a) With sampling interval T = 0.1 and DFT size N = 32, the discrete-time
sequence will be

xa[n] = x(nT)|T =0.1 = sin(0.15πn) + 0.5 cos(0.3πn), n = 0, 1, · · · , 31

(E3.17.2)

The magnitude spectrum depicted in Fig. 3.18(a) is large at k = 2 & 3 and 4 &
5 and they can be alleged to represent two tones, one between kω0 = kΩ0/T =
2πk/N T = 2πk/3.2

k=2= 1.25 π and kω0
k=3= 1.875 π and the other between

kω0
k=4= 2.5 π and kω0

k=5= 3.125 π . Of these two tones, the former corresponds
to ω1 = 1.5π (with larger amplitude) and the latter to ω2 = 3π (with smaller
amplitude).

(b) With shorter sampling interval T = 0.05 (up-sampling) and larger DFT size
N = 64, the discrete-time sequence will be

xb[n] = x(nT)|T =0.05 = sin(0.075πn) + 0.5 cos (0.15πn), (E3.17.3)

n = 0, 1, · · · , 63

For all the up-sampling by a factor of 2, the magnitude spectrum depicted in
Fig. 3.18(b) does not present us with any more information than (a). Why?
Because all the frequency components (ω1 = 1.5π and ω2 = 3π) are
already covered within the principal analog frequency range [−π/T, π/T]
with T = 0.1, there is nothing to gain by expanding it via shorter sampling
interval.

174 3 Discrete-Time Fourier Analysis

1 1

0

0 10 20 30 40 50 60

–1

–2

1
20

0 5 10 20 30 40 50 60

10

0

1

0

0 10 20 30 40 50 60

–1

–2

30

20

0 5 10 20 30 40 50 60

10

0

15

10

0 105 20 30 40 50 60

5

0

1

0

0 10 20 30 40 50 60

–1

–2

10

0

0 10
(a) T=0.1, N=32

(c) T=0.1, N=64 (zero-padding) (d) T=0.1, N=64 (longer interval)

(b) T=0.05, N=64 (faster sampling)

xa[n]

Xa(k)

xb[n]

xc[n]

20 30

5 10 20 30

5

0

0

–1

–2

xd[n]

Xc(k) Xd(k)

zero-padding

Xb(k)

Fig. 3.18 DFT spectra of a two-tone sinusoidal wave

(c) With the same sampling interval T = 0.1, but with larger DFT size N = 64 (by
zero-padding), the discrete-time sequence will be

xc[n] =
{

xa[n] for n = 0, 1, · · · , 31

0 for n = 32, · · · , 63
(E3.17.4)

The magnitude spectrum depicted in Fig. 3.18(c) is large at k = 4 & 5 and
9 & 10 and they can be alleged to represent two tones, one between kω0 =
kΩ0/T = 2πk/N T = 2πk/6.4

k=4= 1.25 π and kω0
k=5= 1.5625 π and the other

between kω0
k=9= 2.8125 π and kω0

k=10= 3.125 π . Comparing this with the result
obtained in (a), we see that larger DFT size by zero-padding can yield better
resolution for the spectrum.

(d) With the same sampling interval T = 0.1, but with larger DFT size N = 64 (by
more sampling), the discrete-time sequence will be

xd [n] = x(nT)|T =0.1 = sin(0.15πn) + 0.5 cos(0.3πn), n = 0, 1, · · · , 63
(E3.17.5)

3.7 Interpretation of DFT Results 175

The magnitude spectrum depicted in Fig. 3.18(d) is strikingly large at k = 5
and 10, which can be alleged to represent two tones of kω0 = 2πk/N T =
2πk/6.4

k=5= 1.5625 π and kω0
k=10= 3.125 π . Comparing this with the result

obtained in (a), we see that larger DFT size by more sampling can improve
the spectrum resolution. Comparing this with (c), we see that more sampling
can yield better resolution than zero-padding as it collects more information
about the signal.

Example 3.18 DFT Spectrum of a Triangular Pulse
Consider the following sequences that are obtained by sampling the continuous-

time triangular wave x̃8(t) = 2(λ̃2(t) − λ̃2(t − 4)) of period 8 and with peak-to-
peak range between −2 and +2. Let us consider the DFT magnitude spectra of the
sequences that are depicted in Fig. 3.18.

(a) With sampling interval T = 1 and DFT size N = 8, the discrete-time sequence
will be

xa[n] = x̃8 (nT)|T =1 , n = 0, 1, · · · , 7 (E3.18.1)

The 8-point DFT magnitude spectrum of xa[n] together with the CTFT mag-
nitude spectrum of the single-period triangular pulse x8(t) (Eq. (E3.11.3)) is
depicted in Fig. 3.19(a).

(b) With shorter sampling interval T = 0.5 (up-sampling) and larger DFT size
N = 16, the discrete-time sequence will be

xb[n] = x̃8 (nT)|T =0.5 , n = 0, 1, · · · , 15 (E3.18.2)

The 16-point DFT magnitude spectrum of xb[n] together with the CTFT magni-
tude spectrum of the single-period triangular pulse x8(t) is depicted in
Fig. 3.19(b). It shows that the DFT is similar to the CTFT for the expanded
principal analog frequency range [−π/T, π/T].

(cf.) Note that to be compared with the DFT, the CTFT spectrum has been
scaled not only vertically in consideration for the sampling interval T
(Eq. (3.5.7) or Remark 3.7(2)) and the number of sample points, but
also horizontally in consideration for the relationship between the digital
frequency Ω and analog frequency ω = Ω/T .

(c) With the same sampling interval T = 1, but with larger DFT size N = 16 (by
zero-padding), the discrete-time sequence will be

xc[n] =
{

xa[n] for n = 0, 1, · · · , 7

0 for n = 8, · · · , 15
(E3.18.3)

176 3 Discrete-Time Fourier Analysis

2

(a) T = 1, N = 8 (b) T = 0.5, N = 16 (c) T = 1, N = 16 (d) T = 1, N = 16

(e) T = 0.5, N = 16 (f) T = 2, N = 4 (g) T = 2, N = 8 (h) T = 1, N = 16

t00

0 2 4 6
0

5
CTFT CTFT

CTFT
CTFTDTFT

DFT

2 4 6

–2

k

k

x8(t)

xa
[n]

xb
[n]

xc [n] xd [n]

Xa (k)

2

t t t t0
0 2 4 6

–2

2

00 2 4 6

–2

2

00 4 8 12

–2

2

00 4 8 12

–2

2

00 4 8 12
t

–2

xe [n]

xf [n]

xg [n] xh [n]

2

t t00 2 4 6

Up-sampling

Spectal leakage
Blurred

Down-sampling
& Zero-padding

More sampling
 & Zero - padding

Zero-padding

Zero-insertion

Down-sampling

More sampling

–2

2

0
0 4 8 12

–2

0 4 8 12

0
0

5

4 8 12
k

0
0

5

0

5

0

10

1 2 3
k

0 2 4 6
k

0 4 8 12

0

10

k
0 4 8 12

0

5

k
0 4 8 12

0

10

k

Xe (k)
Xf (k)

Xg(k)

Xh(k)

Xb (k) Xe (k) Xd (k)

∼

Fig. 3.19 DFT spectra of various discrete-time versions of a triangular wave

Figure 3.19(c) shows that the DFT becomes closer to the DTFT spectrum,
while it has the same principal analog frequency range for which it is similar to
the CTFT.

(d) With the same sampling interval T = 1, but with larger DFT size N = 16 (by
more sampling), the discrete-time sequence will be

xd [n] =
{

xa[n] for n = 0, 1, · · · , 7

xa[n − 8] for n = 8, · · · , 15
(E3.18.4)

Figure 3.19(d) shows that we gained nothing with more sampling and larger
DFT size in contrast with the case of Example 3.17(d). However, we lost
nothing with more sampling.

(e) With larger DFT size N = 16 by zero-insertion, i.e., inserting one zero between
the samples, the discrete-time sequence will be

xe[n] =
{

xa[n/2] for n = 0, 2, · · · , 14 (even)

0 for n = 1, 3, · · · , 15 (odd)
(E3.18.5)

Figure 3.19(e) shows that zero-insertion results in the periodic extension of
the DFT spectrum. This has an interpretation that zero-insertion increases the
variation rate of the signal, producing the high frequency components.

(f) With longer sampling interval T = 2 (down-sampling or subsampling) and
smaller DFT size N = 4, the discrete-time sequence will be

x f [n] = xa[2n], n = 0, 1, · · · , 3 (E3.18.6)

3.7 Interpretation of DFT Results 177

Figure 3.19(f) shows that down-sampling compresses the principal analog
frequency range and besides, smaller DFT size harms the spectrum resolution.

(g) With longer sampling interval T = 2 (down-sampling or subsampling), but
with the same DFT size N = 8 (by zero-padding), the discrete-time sequence
will be

xg[n] =
{

x f [n] for n = 0, 1, · · · , 3

0 for n = 4, 5, · · · , 7
(E3.18.7)

Figure 3.19(g) shows that zero-padding may help the spectrum to look better,
but it does not recover the spectrum damaged by down-sampling.

(h) With the same sampling interval T = 1, but with larger DFT size N = 16
(by more sampling partly and zero-padding partly), the discrete-time sequence
will be

xh[n] =
{

xd [n] for n = 0, 1, · · · , 11

0 for n = 12, · · · , 15
(E3.18.8)

Figure 3.19(h) shows that zero-padding may help the spectrum to look better
compared with (d).

Remark 3.10 DFS/DFT (Discrete Fourier Series/Transform) and Spectral
Leakage

(1) Generally, the DFT X (k) is complex-valued and denotes the magnitude &
phase of the signal component having the digital frequency Ωk = kΩ0 =
2πk/N [rad/sample], which corresponds to the analog frequency ωk = kω0 =
kΩ0/T = 2πk/N T [rad/s]. We call Ω0 = 2π/N and ω0 = Ω0/T (N :
DFT size) the digital/analog fundamental or resolution frequency since it is
the minimum digital/analog frequency difference that can be distinguished by
the N -point DFT. Note that the frequency indices k = 0 and N/2 represent the
DC component (Ω = 0) and the virtually highest digital frequency component
(ΩN/2 = N/2 × 2π/N = π), respectively.

(2) As illustrated in Figs. 3.17(b) and 3.18(a)-(d), if a periodic signal does not go
through a multiple of periods within the sampled signal range [0, N T), its DFT
spectrum is dirty. This is because the spectral leakage is not hidden by the
picket fence effect. It seems that we might avoid this problem by setting the
sampled signal range so that it covers exactly a multiple of the period of the
signal. However, it is only our desire because we hardly know in advance the
frequency contents of the signal and besides, most signals have many frequency
components.

(3) The spectral leakage problem is always in the midst of DFT because it is
inherently due to the time-domain windowing as can be observed in the DTFT
spectrum of Fig. 3.5(b3). Then, how could the DFT spectra of Figs. 3.17(a),
(c), and (d) be free from the spectral leakage? The fact is that we could not

178 3 Discrete-Time Fourier Analysis

see the existing spectral leakage (as shown by the DTFT spectrum plotted in
dotted lines) because the picket fence effect [D-1] of DFT (attributed to the
frequency-domain sampling of DTFT) coincidentally happens to hide the many
side lobe ripples except the main peaks.

(4) From another point of view, we might put the responsibility for spectral leakage
on the assumption of DFT that every signal is periodic with period equal to
the DFT size, which is hard to be true. As a measure to alleviate the spectral
leakage problem, there is a smooth windowing technique [W-1] that can reduce
the “faked” abrupt change of the signal (at both ends of the signal range) caused
by the rectangular windowing. Interested readers can see Problem 3.14.

Through the examples given above, we have already observed how the DFT spec-
trum is affected by the sampling interval, DFT size, zero-padding, and so on. The
observations are summarized as follows:

Remark 3.11 The Effects of Sampling Period (Interval) T and DFT Size N
on DFT

(1) Shorter sampling interval expands the principal analog frequency range
[−π/T, π/T] so that it can help higher frequency components to be reflected
on the DFT spectrum if every frequency component is not covered within the
present principal analog frequency range.

(2) Larger DFT size (by zero-padding or more sampling) may help the (discrete)
DFT spectrum to become closer to the (continuous) DTFT spectrum and that
with better frequency resolution.

3.8 Effects of Signal Operations on DFT Spectrum

In this section, we summarize the formulas for finding the DFTs of different versions
of a signal from the DFT of the original one. They will be of help in understanding
the effect of self-repetition, zero-padding, zero-insertion, and so on.

Let the DFT of a finite-duration sequence x[n] be

X (k) =
∑N−1

n=0
x[n]e− j2πkn/N

=
∑N−1

n=0
x[n]W kn

N with WN = e− j 2π/N for k = 0 : N − 1 (3.8.1)

(a) Flipping: xa[n] = x[N − 1 − n]

Xa(k) =
∑N−1

n=0
x[N − 1 − n]W kn

N
n→N−1−m=

∑0

m=N−1
x[m]W k(N−1−m)

N

m→n=
∑N−1

n=0
x[n]W −kn

N W −k
N = X (N − k)W −k

N (3.8.2)

3.8 Effects of Signal Operations on DFT Spectrum 179

(b) Frequency-shifting: xb[n] = (−1)n x[n]

Xb(k) =
∑N−1

n=0
(−1)n x [n] W k n

N

=
∑N−1

n=0
x[n] W k n

N W (N/2) n
N = X (k + N/2) (3.8.3)

(c) Zero-Padding: xc[n] =
{

x[n] for n = 0, 1, · · · , N − 1

0 for n = N , · · · , 2N − 1

Xc(k) =
∑2N−1

n=0
xc[n]W kn

2N =
∑N−1

n=0
x[n]W (k/2)n

N = X (k/2) (interpolation)
(3.8.4)

(d) Self-Repetition: xd [n] =
{

x[n] for n = 0, 1, · · · , N − 1

x[n − N] for n = N , · · · , 2N − 1

Xd (k) =
∑2N−1

n=0
xd [n]W kn

2N =
∑N−1

n=0
x[n]W (k/2)n

N +
∑2N−1

n=N
x[n − N]W (k/2)n

N

n→m+N=
∑N−1

n=0
x[n]W (k/2)n

N +
∑N−1

m=0
x[m]W (k/2)(m+N)

N

=
∑N−1

n=0
x[n]W (k/2)n

N +
∑N−1

n=0
x[n]W (k/2)n

N W (N/2)k
N (3.8.5)

= X (k/2) + (−1)k X (k/2) =
⎧⎨
⎩

2X (k/2) for k even

0 for k odd
(zero-insertion)

(e) Zero-Insertion: xe[n] =
{

x[n/2] for n even
0 for n odd

Xe(k) =
∑2N−1

n=0
xe[n] W k n

2N =
∑2N−1

n=even
x [n/2] W kn

2N

n=2m=
∑N−1

m=0
x[m] W 2km

2N
m→n=

∑N−1

n=0
x[n] W k n

N = X̃ (k)

=
{

X (k) for k = 0, 1, · · · , N − 1
X (k − N) for k = N , · · · , 2N − 1

(self-repetition) (3.8.6)

180 3 Discrete-Time Fourier Analysis

(f) Down-sampling, Subsampling, or Decimation: x f [n] = x[2n], n = 0, 1, · · · ,
N
2 − 1

X f (k) =
∑N/2−1

n=0
x[2 n] W k n

N/2
2n=m=

∑N−1

m=0
x [m]

1 + (−1)m

2
W km/2

N/2

m→ n= 1

2

∑N−1

n=0
x[n] W k n

N + 1

2

∑N−1

n=0
x[n] W (k+N/2) n

N (3.8.7)

= 1

2
(X (k) + X (k + N/2)) for k = 0, 1, · · · ,

N

2
− 1 (blurring)

3.9 Short-Time Fourier Transform – Spectrogram

The short-time or short-term Fourier transform (STFT) breaks a long signal into
small segments, optionally overlapped and/or windowed, and finds the DFT of
each (windowed) segment separately to record the local spectra in a matrix with
frequency/time indices:

STFT{x[n]} = X [k, n] =
∑N−1

m=0
x[m + n]w[m]W km

N (3.9.1a)

m→m−n=
∑n+N−1

m=n
x[m]w[m − n]W k(m−n)

N for k = 0, 1, · · · , N − 1

(3.9.1b)

%sig03f20.m : to plot Fig.3.20
clear, clf
T=0.1; Fs=1/T; % Sampling period and Sampling frequency
w1=25∗pi/16; w2=30∗pi/16; w3=40∗pi/16; w4=60∗pi/16;
n=[0:31]; x=[cos(w1∗T∗n) sin(w2∗T∗n) cos(w3∗T∗n) sin(w4∗T∗n)];
Nx=length(x); nn=0:Nx-1; % Length and duration (period) of the signal
N=32; kk=0:N/2; ff=kk∗Fs/N; % DFT size and frequency range
wnd= hamming(N).’; % Hamming window of length N
Noverlap=N/4; % the number of overlap
M=N-Noverlap; % the time spacing between DFT computations
for i=1:fix((Nx-Noverlap)/M)

xiw= x((i-1)∗M+[1:N]).∗wnd; % ith windowed segment
Xi= fft(xiw); % DFT X(k,i) of ith windowed segment
X(:,i)= Xi(kk+1).’; % insert X(0:N/2,i) into the ith column
tt(i)=(N/2+(i-1)∗M)∗T;

end
% Use the MATLAB signal processing toolbox function specgram()
[X sp,ff1,tt1] = spectrogram(x,wnd,Noverlap,N,Fs,’yaxis’);
% Any discrepancy between the above result and spectrogram()?
discrepancy= norm(X-X sp)/norm(X sp)
figure(2), clf, colormap(gray(256));
subplot(221), imagesc(tt,ff,log10(abs(X))), axis xy
subplot(222), imagesc(tt1,ff1,log10(abs(X sp))), axis xy
% specgram(x,N,Fs,wnd,noverlap) in MATLAB of version 6.x

where the window sequence w[m] is used to select a finite-length (local) segment
from the sliding sequence x[m + n] and possibly to reduce the spectral leakage.
Note that the frequency and time denoted by frequency index k and time index n of
X [k, n] are

3.9 Short-Time Fourier Transform – Spectrogram 181

200

0 31

0 24 55

48 78

0 16 40 64 112

(a) A non-stationary signal with time-varying frequency content

(b) Sliding windows and windowed signals

(c) The short-time Fourier transform (STFT) obtained with DFT size N = 32 and Noverlap = 8

(d1) X [k,n] obtained with N = 32 and
 Noverlap = 8

(d2) X [k,n] obtained with N = 48 and
 Noverlap = 12

Time t = nT

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Time t = nT

N = 32-point DFT

N = 32-point DFT

N = 32-point DFT

n

m

m

m

k
NT

n

kkkkkk

x [n]

0

–1

40 60 100
12080

X [k,n][dB] X [k,16] X [k,40] X [k,64]

fk =

X [k,88] X [k,112]

x [m]w [m-24]

x [m]w [m]

ω [m-24]

w[m]

ω [m-48]

x [m]w [m-48]

0
2 4 6 8 10 12 2 4 6 8 10

1

2

3

4

5

0

1

2

3

4

5

k fsN
=

0

1

2

3

4

5

Fr
eq

ue
nc

y

Fig. 3.20 Short-time Fourier transforms with different time/frequency resolution

fk = k

N T
= k

N
fs[Hz] and tn =

(
N

2
+ n

)
T [sec] (3.9.2)

where tn is set to the center of the sliding window (Fig. 3.20(b)). If we take the
STFT not for every n but only for n = i M (a multiple of M), each segment
gets overlapped with its neighboring one(s) by Noverlap = N − M samples.

182 3 Discrete-Time Fourier Analysis

Note that M determines the width of interval time between the DFT computations.
The MATLAB function “spectrogram()” can be used to find the STFT (see
Appendix E.8).

We run the above MATLAB program “sig03f20.m” to get the STFT X [k, n]
of x[n] (Fig. 3.20(a)) as depicted in Fig. 3.20(d1) (with DFT size N = 32 and
Noverlap = 8) and (d2) (with N = 48 and Noverlap = 12), which show that the
frequency becomes higher as time goes by. Such a STFT can be used to determine
and display the spectrum of a non-stationary signal (such as speech or music) whose
frequency content changes with time.

Now, comparing Fig. 3.20(d1) and (d2), let us consider the effect of segment or
window duration NT on the time and frequency resolutions of the STFT. We might
say that the time resolution is NT [sec] (the segment duration) and the frequency
resolution is 1/N T [Hz]. This implies that if we increase or decrease the segment
duration, the time/frequency resolution gets poorer/better or better/poorer, show-
ing the trade-off between the time and frequency resolutions. It is an illustration
of uncertainty principle (Remark 2.9(1)) that both time resolution and frequency
resolution cannot be improved. Although the boundary of the uncertainty principle
(best simultaneous resolution of both) is reached with a Gaussian window function,
the wavelet transform or multi-resolution analysis was devised, which can give a
good time/frequency resolution for high/low-frequency components.

3.10 Summary

In this chapter we have defined the discrete-time Fourier transform (DTFT) and the
discrete Fourier series(DFS)/transform(DFT) for discrete-time signals and exam-
ined their properties together with their relationship. The DFT of a discrete-time
sequence x[n] has been shown to correspond to one period of the discrete-time
Fourier series for the periodic extension of x[n]. We have also discussed the FFT
algorithms that deserve the overwhelming popularity owing to their computational
efficiency. This chapter also introduced some examples, which give you some inter-
pretation of the DFT and will hopefully help you to gain an insight into physical
meaning or practical usage of the DFT. It ended up with the introduction of the short-
time Fourier transform (STFT), which can easily be obtained by using a MATLAB
function “specgram()” in 6.x versions and “spectrogram()” in 7.x versions.

Problems

3.1 Properties of DTFT (Discrete-Time Fourier Transform)

(a) Prove the frequency-shifting property (3.2.7) by using the DTFT formula
(3.1.1) or IDTFT formula (3.1.3).

x[n]e jΩ1n F↔ X (Ω − Ω1) (P3.1.1)

Problems 183

(b) Prove the convolution property (3.2.8).

y[n] = x[n]∗g[n]
F↔ Y (Ω) = X (Ω)G(Ω) (P3.1.2)

(c) Prove the modulation property (3.2.9).

y[n] = x[n] m[n]
F↔ Y (Ω) = 1

2π
X (Ω)∗M(Ω) (P3.1.3)

(d) Prove the summation property (3.2.11) by using the convolution property
(3.2.8) together with Eq. (E3.8.6).

∑n

m=−∞ x[m] = x[n] ∗ us[n]
F↔

1

1 − e− j Ω
X (Ω) + π X (0)

∑∞
i=−∞ δ(Ω − 2π i)

(P3.1.4)

3.2 Discrete-Time Hilbert Transformer

(a) Prove that the impulse response of a system, called the Hilbert trans-
former, with frequency response

H (Ω) =
{− j for 0 < Ω < π

+ j for − π < Ω < 0
(P3.2.1)

is

h [n] =
{

2/nπ for n : odd
0 for n : even

(P3.2.2)

%sig03p 02.m
EPS=1e-10; Nx=200; nx=[-Nx:Nx]; W1=0.1∗pi; xn= cos(W1∗nx);
Nh=50; nh=[-Nh:Nh]; hn= (mod(nh,2)==1).∗(2/pi./(nh+EPS));
yn= conv(hn,xn); ny=Nh+Nx+1+nx; yn1= yn(ny);
W=[-50:-1 1:50]∗(pi/50);
X= DTFT(xn,W); Xmag= abs(X); Xphase= angle(X);
Xphase= (abs(imag(X))>=EPS).∗Xphase;
H= DTFT(hn,W); Hmag= abs(H); Hphase= angle(H);
Y= DTFT(yn,W); Ymag= abs(Y); Yphase= angle(Y);
subplot(331), plot(nx,xn), axis([nx([1 end]) -1.5 1.5])
subplot(332), plot(W,Xmag), subplot(333), plot(W,Xphase)
subplot(334), plot(nh,hn), axis([nh([1 end]) -1 1])
subplot(335), plot(W,Hmag), subplot(336), plot(W,Hphase)
subplot(337), plot(nx,yn1, nx,sin(W1∗nx),’r’)
subplot(338), plot(W,Ymag), subplot(339), plot(W,Yphase)

184 3 Discrete-Time Fourier Analysis

(b) By taking the IDTFT of Y (Ω) = H (Ω)X (Ω), prove that the output of the
Hilbert transformer to a sinusoidal input x[n] = cos(Ω0n) is

y[n] = sin(Ω0n) (P3.2.3)

(c) We can run the above program “sig03p 02.m” to rest assured of the
fact that the output of the Hilbert transformer to x[n] = cos(0.1πn) is
y[n] = sin(0.1πn) where y[n] = h[n]∗x[n] has been obtained from the
time-domain input-output relationship. Identify the statements yielding
the impulse response h[n], output y[n], and frequency response H (Ω).

3.3 Discrete-Time Differentiator

(a) Prove that the impulse response of a discrete-time differentiator with
frequency response

H (Ω) = jΩ (P3.3.1)

is

h [n] = (−1)n

n
(P3.3.2)

(b) By taking the IDTFT of Y (Ω) = H (Ω)X (Ω), prove that the output of the
differentiator to a sinusoidal input x[n] = sin(Ω0n) is

y[n] = Ω0 cos(Ω0n) (P3.3.3)

(c) By reference to the program “sig03p 02.m”, compose a program and run
it to rest assured of the fact that the output of the differentiator to x[n] =
sin(0.1πn) is y[n] = 0.1π cos(0.1πn) where y[n] = h[n] ∗ x[n] has been
obtained from the time-domain input-output relationship.

3.4 BPF Realization via Modulation-LPF-Demodulation – Frequency Shifting
Property of DTFT
Consider the realization of BPF of Fig. P3.4(a), which consists of a modulator
(multiplier), an LPF, and a demodulator (multiplier). Assuming that the spec-
trum of x[n] is as depicted in Fig. P3.4(b), sketch the spectra of the signals
s[n], v[n], and y[n].

3.5 Quadrature Multiplexing – Modulation (Complex Convolution) Property
of DTFT
Consider the quadrature multiplexing system depicted in Fig. P3.5 where the
two signals are assumed to be bandlimited, i.e.,

X1(Ω) = X2(Ω) = 0 for Ω > ΩM (P3.5.1)

Problems 185

–2π –π –π/2

–π/4 π/4

0

2

(b) The spectrum of the input signal x [n]

(a) A BPF realization via modulation–LPF–demodulation

multiplier multiplier

LPF

x [n] y [n]

G (Ω)

X (Ω)

Ω

s [n] v [n]

ejπn /2 e–jπn /2

π/2 π 2π
Ω

1

0

Fig. P3.4

cos Ωcn

–ΩM ΩM

–ΩM ΩM

sin Ωc
n

x1[n]

y2[n]

y1[n]v1[n]

v2[n]

s [n] r [n]

x2[n]

multiplier

multiplier
LPF

LPF

2

2

Communication
channel

adder

multiplier

multiplier

adder

Fig. P3.5 Quadrature multiplexing

Assuming that the channel is ideal so that r [n] = s[n], express the spectra
S(Ω), V1(Ω), V2(Ω), Y1(Ω), and Y2(Ω) of s[n], v1[n], v2[n], y1[n], and
y2[n] in terms of X1(Ω) and X2(Ω).

3.6 Windowing (Complex Convolution) Property of DTFT
Referring to Example 3.10, answer the following questions:

(a) In the program “sig03e10.m”, increase the (rectangular) window size
parameter M and run the program to see the window spectrum and the fre-
quency response of the designed FIR filter. Based on the results, describe
the shape of the filter frequency response when M is set to infinity.

(b) With the window size parameter M set to 3 as it was, change the shape
of the window into, say, one of the following: Bartlett (triangular), Ham-
ming, Hanning, Blackman, and Kaiser. Note that the window sequences
can be generated (as column vectors) by the MATLAB commands,
bartlett(), hamming(), hanning(), blackman(), and
kaiser(), respectively. Has the ripple of the frequency response been
reduced?

186 3 Discrete-Time Fourier Analysis

3.7 DTFT and CTFT of a Finite-Duration Signal

%sig03p 07.m
% Fig. 3.7(To tell the relationship between CTFT and DTFT)
EPS=1e-10; T=1; t =[-10:T:10];
N=400; f=[-500:500]/N + EPS; % Normalized frequency range
W=2∗pi∗f; w=W/T; % Digital/Analog frequency range
xn= [zeros(1,7) 1 2 1 0 -1 -2 -1 zeros(1,7)];
Xw= inline(’j∗8∗sin(2∗w).∗sinc(w/pi).ˆ2’,’w’);
X CTFT= Xw(w); X CTFT mag= abs(X CTFT);
Sum of X CTFTs= (Xw(w+2∗pi/T)+Xw(w)+Xw(w-2∗pi/T))/T;
X DTFT=DTFT(xn,W); X DTFT mag= abs(X DTFT); X DTFT ph= angle(X DTFT);
Discrepancy between CTFT DTFT= norm(X DTFT-Sum of X CTFTs)/norm(X DTFT)
subplot(321), stem(t,xn,’.’), hold on, plot(t,xn,’:’)
subplot(323), plot(W,X DTFT mag,’b’, W,X CTFT mag/T,’k:’)
hold on, plot(W,abs(Sum of X CTFTs),’r:’)

The objective of the above program “sig03p 07.m” is to plot the CTFT spec-
trum X1(ω)/T of the unsampled dual triangular pulse signal x1(t) given by
Eq. (E3.11.3) and the DTFT spectrum X1(Ω) of the triangular pulse sequence
x1[n] = x1(nT) with T = 1. Also, it plots the sum of three CTFTs shifted
by −2π/T , 0, and +2π/T along the analog frequency ω = Ω/T and scaled
by 1/T to check the validity of the relationship between the CTFT and DTFT
described by Eq. (3.5.7). Modify the program so that it does the same job
with sampling interval T = 0.5. What can we get by shortening the sampling
interval? Refer to Remark 3.7(2).

3.8 DFT/DFS, DTFT, and CTFS of a Noncausal Signal
Consider the dual triangular pulse sequence which would be obtained by
sampling x1(t) in Fig. 3.7(a1) with sampling interval T = 0.5.

(a) Use the MATLAB function “fft()” to get the N = 16-point DFT
X N (k) of the sequence and plot its magnitude together with the DTFT
magnitude against Ωk = [0 : N − 1] × (2π/N) and Ω = [−500 :
500] × (2π/400), respectively. Note that the DTFT might have been
obtained in Problem 3.7.

(b) Noting that the CTFS coefficients Xk are the samples of the CTFT X (ω)
(Eq. (E3.11.3)) at ω = kω0 = 2πk/P = 2πk/N T as described by
Eq. (2.2.4) or stated in Remark 2.7(2), find the relative errors between
the DFT X N (k) and two partial sums of the shifted CTFSs and compare
them to argue for the relationship (3.5.3) between the DFT and CTFS.

E1 = ||X N (k) − Xk/T ||
||X N (k)|| and

E2 = ||X N (k) − (Xk+N + Xk + Xk−N)/T ||
||X N (k)|| (P3.8.1)

Problems 187

<Hint> You might need to combine some part of the program “sig03p
07.m” with the following statements:

xn causal= [0 -0.5 -1 -1.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 1.5 1 0.5];
X DFT= fft(xn causal); X DFT mag= abs(X DFT);
N=length(xn causal); k=[0:N-1];
f0=1/N; fk=k∗f0; W0=2∗pi∗f0; Wk=k∗W0; w0=W0/T;
stem(Wk,X DFT mag,’m.’)
% (b): Partial sum of CTFSs by Eq.(3.5.3)
Sum of Xks= (Xw((k+N)∗w0)+Xw(k∗w0)+Xw((k-N)∗w0))/T;
Discrepancy between CTFS and DFT= norm(X DFT-Xw(k∗w0)/T)/norm(X DFT)
Discrepancy between CTFS and DFT3= norm(X DFT-Sum of Xks)/norm(X DFT)

3.9 CTFS, CTFT, and DFT/DFS of a Noncausal Sequence

–3 –2

x (t) (a triangular pulse)

x (t)

x2(t) (periodic extension with period 2)~

x2(t)~

x∗(t)~

x2[n] (discrete-time version)~

–0.5–1

1

0 0.5 1 2 3
t

T

Fig. P3.9

Consider the triangular pulse signal x(t) of Fig. P3.9, its periodic extension
x̃2(t) with period P = 2, and its sampled periodic version x̃∗(t) = x̃2(t)δT (t)
with sampling interval T = 0.5.

(a) Find the CTFT X (ω) of x(t). You can use Eq. (E2.3.4).
(b) Find the CTFS Xk of x̃2(t). You can use the result of (a) and Eq. (2.2.4)

stating that the CTFS coefficients are the samples of the CTFT at ω =
kω0 = 2πk/P .

(c) Show that the N = 4-point DFT of the discrete-time version x̃[n] is

X (k) = [2 1 0 1] (P3.9.1)

(d) Show the validity of the relationship between the CTFS and DFT described
by Eq. (3.5.3) for this case, i.e.,

X (k)
(P3.9.1)= [2 1 0 1]

?= 1

T

∑∞
m=−∞ Xk+m N (P3.9.2)

188 3 Discrete-Time Fourier Analysis

<Hint> You might need the following formula

∑∞
m=0

1

(2m + 1)2
= π2

8
(P3.9.3)

which can be derived by substituting A = 1, D/P = 1/2 into
Eq. (E2.1.6) as

Aλ̃D/P (t)
(E2.1.6)= 1

P

∑∞
k=−∞ ADsinc2

(
k

D

P

)
A=1, P=2D→

1 = 1

2

∑∞
k=−∞ sinc2

(
k

2

)

= 1

2

⎛
⎝for k=0

1 + for k=even(�=0)
0 +

for k=odd∑∞
k=2m+1

1

(kπ/2)2

⎞
⎠ ;

1

2
= 1

2

∑∞
m=−∞

1

(2m + 1)2π2/22
= 2

∑∞
m=−∞

1

(2m + 1)2π2

= 4
∑∞

m=0

1

(2m + 1)2π2

3.10 DTFT and DFT of Discrete-Time Periodic Sequences
When we need to find the DTFT of a periodic sequence x̃N [n] with period N ,
we first get its DFS representation

x̃N [n]
(3.4.3)=
IDFT

1

N

∑N−1

k=0
X̃ N (k)e j2πkn/N (P3.10.1)

with X̃ N (k)
(3.4.2)=
DFT

∑N−1

n=0
x̃N [n]e− j2πkn/N

and then use Eq. (3.1.5) to obtain the DTFT of x̃N [n] as

x̃N [n] = 1

N

∑N−1

k=0
X̃ N (k)e j2πkn/N F↔

X (Ω)
(P3.10.1)=

(3.1.5)

2π

N

∑∞
k=−∞ X̃ N (k)δ

(
Ω − 2πk

N

)
(P3.10.2)

(a) Verify the validity of this DTFT pair by showing that the IDTFT of
(P3.10.2) is x̃N [n].

F−1{X (Ω)} (3.1.3)= 1

2π

∫
2π

X (Ω) e j Ω n dΩ

(P3.10.2)=
(1.1.25)

1

N

∑N−1

k=0
X̃ N (k) e j 2πkn/N (P3.10.1)= x̃N [n] (P3.10.3)

Problems 189

(b) Use the DTFT relation (P3.10.2) to show that the DTFT of the discrete-
time impulse train

δN [n] =
∑∞

m=−∞ δ[n−m N] (also called the comb sequence) (P3.10.4)

is

DN (Ω) = 2π

N

∑∞
k=−∞ δ

(
Ω − 2πk

N

)
= 2π

N

∑∞
k=−∞ δ

(
Ω + 2πk

N

)

(P3.10.5)

3.11 Effect of Discrete-Time Sampling on DTFT
As a continuous-time sampling with sampling interval T can be described by

x∗(t)
(E2.13.1)= x(t)δT (t) (δT (t) =

∑∞
m=−∞ δ(t − mT) : the impulse train)

so can a discrete-time sampling with sampling interval N be described by

x∗[n] = x[n]δN [n] (δN [n] =
∑∞

m=−∞ δ[n − m N] : the impulse train)

(P3.11.1)

(a) Use the DTFT modulation property (3.2.9) or B.4(9) and Eq. (P3.10.5) to
show that the DTFT of this sampled sequence x∗[n] can be expressed in
terms of that of the original sequence x[n] as

X∗(Ω) = 1

N

∑∞
m=−∞ X

(
Ω + 2πm

N

)

= 1

N

∑∞
m=−∞ X (Ω + mΩs) with Ωs = 2π

N
(P3.11.2)

(b) Show that the DTFT of a decimated sequence xd [n] obtained by removing
the zeros from the sampled sequence x∗[n] = x[n]δN [n] is

Xd (Ω) = X∗

(
Ω

N

)
(P3.11.3)

(cf.) This conforms with Eq. (3.2.14), which is the scaling property of DTFT.

(c) Substitute Eq. (P3.11.2) into Eq. (P3.11.3) to show that

Xd (Ω) = 1

N

∑N−1

m=0
X

(
Ω

N
+ 2πm

N

)
(P3.11.4)

190 3 Discrete-Time Fourier Analysis

1.0

0.0

2.0

0.0

2.0

0.0

2.0

4.0

0.0

2.0

0.0

2.0

0.0

–8.0 –6.0 –4.0 –2.0

(a1) x0(t)

(a2) xa(t)

(a3) x [n] sampling xa(t) with T = 0.5

x [n]

x0(t)
x0(t))(= sinc

2

0.0 2.0 4.0 6.0 8.0 –3π –2π –π
(b1) X0(ω)

X0(ω)

Xa (ω)

X (Ω)

0.0 π 2π 3π

–3π –2π –π 0.0 π 2π 3π

–3π –2π –π
(b2) Xa(ω)

(b3) X(Ω): (P3.11.5) with T = 0.5 from Xa(ω)

–3π –2π –π 0.0 π 2π 3π
(b4) X1(Ω): (P3.11.2) with N = 2 from X (Ω)

–3π –2π –π 0.0 π 2π 3π
(b5) Xd (Ω): (P3.11.3) with N = 2 from X1(Ω)

2.0

0.0

1.0

0.0

1.0

0.0

–3π –2π –π 0.0 π 2π 3π
(b6) X3(Ω): (P3.11.2) with N = 2 from Xd (Ω)

–3π –2π –π 0.0 π 2π 3π
(b7) X4(Ω): (P3.11.2) with N = 2 from X (Ω)

–3π
Ω

Ω

Ω

Ω

Ω

Ω

ω

ω

–2π –π 0.0 π 2π 3π
(b8) X5(Ω): (P3.11.5) with T = 2 from Xa(ω)

0.0 π 2π 3π

1.0

0.0
–8.0 –6.0 –4.0 –2.0 0.0 2.0 4.0 6.0 8.0

1.0

0.0

1.0

0.0

1.0

0.0

–12 –8 –4 0 4 8 12

(a4) x1[n] sampling x [n] with N =2

–12 –8 –4 0 4 8 12

(a5) xd [n] decimating x1[n] with N = 2

–6 –4 –2 0 2 4 6

–4 –3 –2 –1 0 1 2 3 4

1.0

0.0

1.0

0.0

1.0

0.0

–12 –8 –4 0 4 8 12

(a6) x3[n] sampling xd [n] with N = 2

(a7) x4[n] sampling x [n] with N = 4

(a8) x5[n] ampling xa(t) with T = 2

–6 –4 –2 0 2 4 6

t

t

t

n

n

n

n

n

n

(t))(= sinc
2
txa(t) = x0

2 2

Fig. P3.11 Effect of sampling on the spectrum

(d) Let x[n] be obtained from the samples of xa(t) with sampling interval T .
Then, from Eq. (3.5.7), we can write

X (Ω) = X∗(ω)|ω=Ω/T
(3.5.7)= 1

T

∑∞
k=−∞ Xa

(
Ω

T
+ k

2π

T

)
(P3.11.5)

Problems 191

Substitute this into Eq. (P3.11.4) to show that

Xd (Ω) = 1

N T

∑ ∞
k=−∞ Xa

(
Ω

N T
+ 2πk

N T

)
(P3.11.6)

(e) Verify the CTFT relation between the signal and its spectrum depicted in
Figs. P3.11(a2) and (b2):

xa(t) = x2
0 (t) = sinc2

(
t

2

)
F↔ 1

2π
2rπ (ω) ∗ 2rπ (ω) (triangular pulse)

(P3.11.7)

Also verify the DTFT relation between the signal and its spectrum depicted
in Fig. P3.11(a3) and (b3):

x[n] = x2
0 [n] = sinc2

(n

4

) F↔ 1

2π
4rπ/2(Ω) ∗ 4rπ/2(Ω) (triangular pulse)

(P3.11.8)

(f) Show that the DTFT spectrum X (Ω) of x[n] (Fig. P3.11(a3)) can be
expressed in terms of the CTFT spectrum Xa(ω) of xa(t) (Fig. P3.11(a2)) as

X (Ω) = 2
∑∞

k=−∞ Xa(2(Ω − 2πk)) (P3.11.9)

Show that the DTFT spectrum X1(Ω) of x1[n] (Fig. P3.11(a4)) can be
expressed in terms of the DTFT spectrum X (Ω) of x[n] (Fig. P3.11(a3)) as

X1(Ω) = 1

2
(X (Ω) + X (Ω + π)) (P3.11.10)

Show that the DTFT spectrum Xd (Ω) of xd [n] (Fig. P3.11(a5)) can be
expressed in terms of the DTFT spectrum X (Ω) of x[n] (Fig. P3.11(a3)) as

Xd (Ω) = 1

2

(
X

(
Ω

2

)
+ X

(
Ω + 2π

2

))
(P3.11.11)

Show that the DTFT spectrum X3(Ω) of x3[n] (Fig. P3.11(a6)) can be
expressed in terms of the DTFT spectrum Xd (Ω) of x[n] (Fig. P3.11(a5)) as

X3(Ω) = 1

2
(Xd (Ω) + Xd (Ω + π)) (P3.11.12)

192 3 Discrete-Time Fourier Analysis

Show that the DTFT spectrum X4(Ω) of x4[n] (Fig. P3.11(a7)) can be
expressed in terms of the DTFT spectrum Xd (Ω) of xd [n]
(Fig. P3.11(a5)) as

X4(Ω) = 1

4

(
Xd (Ω) + Xd

(
Ω + π

2

)
+ Xd (Ω + π) + Xd

(
Ω + 3

2
π

))
(P3.11.13)

Show that the DTFT spectrum X5(Ω) of x5[n] (Fig. P3.11(a8)) can be
expressed in terms of the CTFT spectrum Xa(ω) of xa(t) (Fig. P3.11(a2)) as

X5(Ω) = 1

2

∑∞
m=−∞ Xa

(
Ω + 2mπ

2

)
(P3.11.14)

(cf.) The sampled sequences x3[n], x4[n], and x5[n] are all identical to
the impulse sequence and their flat spectra illustrate the extreme
case of a spectrum blurred by downsampling.

3.12 Linear Convolution and Correlation Using DFT
Consider the following two sequences:

x[n] = [1 2 3 4 5 6 7 8] and y[n] = [1 −2 3] (P3.12.1)

(a) Referring to Remark 1.5, determine the length of the linear convolution
or correlation of the two sequences. Also use the MATLAB command
“nextpow2()” to find the smallest power of 2 that is greater than or
equal to the expected length of the linear convolution or correlation. What
is the minimum size N of DFT that can make the FFT operation most
efficient for computing the linear convolution or correlation?

(b) Referring to Sect. 3.4.2, use the N -point FFT to compute the linear con-
volution of x[n] and y[n]. Check if the result conforms with that obtained
by using “conv(x,y)”.

(c) It seems that we can use the N -point FFT to compute the correlation of
x[n] and y[n] based on the following facts:

◦ φ̃xy[n]
(1.4.12b)= x̃[n] ∗ ỹ[−n]

periodicity of ỹ[n]=
with period N

x̃[n] ∗ ỹ[N − n] (P3.12.2)

◦ x[−n]
F↔

(3.2.3)
X (−Ω) implies that DFTN {ỹ[N − n]} = Ỹ (N − k)

(P3.12.3)

Noting that ỹ[N − n] can be programmed as “[y(1) fliplr(y(2:
end))]”, compose a program to compute the correlation and run it to
get φxy[n]. Check if the result conforms with that obtained by using
“xcorr(x,y)”.

Problems 193

3.13 DFT Spectra of Sampled Signals

(b)

(d)

20

30

10

0
0 8 16 32 48 63

k

(c)

30

20

10

0
0 8 16 32 48 63

k

Xb(k)

20

10

0
0 8 16 32 48 63 k

(a)

20

10

0
0 8 16 32 48 63

k

Xd(k)Xc(k)

Xa(k)

Fig. P3.13 DFT spectra of several discrete-time signals

With the sampling period T = 0.1 [s], we have sampled the following signals

(1) 0.5 cos 3π t + sin 2π t
(2) cos 3π t + 0.5 sin 2π t
(3) 0.5 cos 4π t + sin π t
(4) cos 4π t + 0.5 sin π t
(5) 0.5 cos 23π t + 0.5 sin 2π t − 0.5 sin 18π t
(6) 0.5 sin 21π t + 0.5 cos 24π t + 0.5 cos 16π t

and obtained their DFT spectra as depicted in Fig. P3.13.

(a) Find the corresponding spectrum for each signal from the DFT spectra
depicted in Fig. P3.13.

(b) If these signals have been through an anti-aliasing prefilter, which one is
expected to have the DFT magnitude spectrum like |Xa(k)|?

3.14 Spectral Leakage and Windowing Technique
Let us think about the cause of spectral leakage illustrated in Fig. 3.17(b)
and some measure against it. As discussed in Remark 3.10(2), the spectral
leakage stems from that any sequence is supposed to have periodicity with
period N (equal to the DFT size), regardless of its peridocity, just because it is
an object sequence of an N -point DFT. More specifically, the sequence xb[n]
is supposed to be periodic with period N = 16 as depicted in Fig. P3.14(a),
which shows such abrupt changes as discontinuities at both ends. A measure to
reduce this abrupt change is to multiply a window sequence whose magnitude
decreases gradually at both ends rather than cuts off abrubtly as the rectangular
window does. Figure P3.14(b), (c), (d1), and (d2) show a triangular (Bartlett)
window wT [n] of length N = 16, the windowed sequence xb[n]wT [n], and
the DFT spectra of xb[n] and xb[n]wT [n]. Comparing the DFT spectra of
unwindowed and windowed sequences, we can see that the windowing has

194 3 Discrete-Time Fourier Analysis

0

0

x b[n]~

~

x b[n] wT

[n]~

~x b[n] x b[n]

wT

[n]

0

0

0

(a) A sequence x b[n] with its periodicity assumed due to the 16-point DFT

(b) A triangular (Bartlett) window of length N = 16

(c) The windowed sequence and its periodic extension with period N = 16

(d1) The DTF spectrum of unwindowed sequence

DFT { x b[n] }

(d2) The DTF spectrum of windowed sequence

7

7

8

8

7 8

15

15

15

n

n

n

1

1

–1

0

6

Xb(k) =

~DFT { x b[n]w [n] }

4

2

0
0–8 8–4 4 0

0
–8 8–4

2

4

4

1

–1

k k

Fig. P3.14 The effect of windowing on the DFT spectrum

the effect of reducing the spectral leakage. You can try with another window
such as the Hamming window or Hanning (raised-cosine) window.

3.15 Spectrum Blurring due to Down/Sub-sampling (Slower Sampling)
As can be seen in Fig. 3.19(f) or Eq. (3.8.7), slower sampling (sub-sampling)
may make the spectrum blurred.

(a) Noting that x f [n] in Fig. 3.19(f) has been obtained from downsampling
xa[n] by a factor of 2, sketch the DFT spectrum of the sequence which
will be obtained from downsampling x f [n] by a factor of 2.

(b) Referring to Eq. (3.8.7), determine the condition on which the DFT
spectrum is not blurred by downsampling it by a factor of 2.

3.16 Parallel Computation of DFTs for Two Real-valued Sequences (Problem 4.10
of [K-2])
We can compute the DFTs of two real-valued sequences x1[n] and x2[n] from
the DFT Y (k) of a complex-valued sequence

y[n] = x1 [n] + j x2 [n] (P3.16.1)

Problems 195

where the DFT of each sequence can be written as

X1(k) = X1R(k) + j X1I (k) =
∑N−1

n=0
x1[n] cos

(
2πkn

N

)

− j
∑N−1

n=0
x1[n] sin

(
2πkn

N

)
(P3.16.2a)

X2(k) = X2R(k) + j X2I (k) =
∑N−1

n=0
x2[n] cos

(
2πkn

N

)

− j
∑N−1

n=0
x2[n] sin

(
2πkn

N

)
(P3.16.2b)

(a) Show that, since xi [n], i = 1 & 2, is real, Xi R(k) = Re{Xi (k)} is even
and Xi I (k) = Im{Xi (k)} is odd via the conjugate symmetry (3.2.5) or
Table B.5(4) so that

Xi R(k) = X̃i R(−k)rN [k] = X̃i R(N − k)

= Xi R(N − k) for k = 1, · · · , N − 1 (P3.16.3a)

Xi I (k) = −X̃i I (−k)rN [k] = −X̃i I (N − k)

= −Xi I (N − k) for k = 1, · · · , N − 1 (P3.16.3b)

where rN [k] = us[k] − us[N − k] is a rectangular pulse sequence.
(b) Show that the real and imaginary parts of Y (k) = DFTN {y[n]} can be

expressed in terms of X1R(k), X1I (k), X2R(k), and X2I (k) as

Y (k) = DFTN {y[n] = x1 [n] + j x2 [n]} = X1(k) + j X2(k)

= X1R(k) + j X1I (k) + j (X2R(k) + j X2I (k)) ;

YR(k) + j YI (k) = X1R(k) − X2I (k) + j (X1I (k) + X2R(k)) (P3.16.4)

(c) Show that we can use the above relations (P3.16.3) and (P3.16.4) to
express the DFTs X1(k) and X2(k) in terms of the real and imaginary
parts of Y (k) = DFTN {y[n]} as

X1(k) = X1R(k) + j X1I (k) = 1

2
(YR(k) + ỸR(N − k))

+ j
1

2
(Y I (k) − Ỹ I (N − k)) = 1

2
(Y (k) + Ỹ ∗(N − k))

(P3.16.5a)

X2(k) = X2R(k) + j X2I (k) = 1

2
(YI (k) + ỸI (N − k))

− j
1

2
(YR(k) − ỸR(N − k)) = − j

1

2
(Y (k) − Ỹ ∗(N − k))

(P3.16.5b)

196 3 Discrete-Time Fourier Analysis

(d) Compose a MATLAB function “[X1,X2]=fft 2real(x1,x2,N)”, which uses
Eq. (P3.16.5) to compute the DFTs of two given real-valued sequences x1
and x2. Run it to get the DFTs of the two sequences xa[n] and xb[n]
of Fig. 3.17(a) and (b) simultaneously and plot them to check for its
legitimacy.

3.17 Half-Size DFT Computation of Real-valued Sequences in OFDM Communi-
cation
Suppose we have an OFDM (Orthogonal Frequency Division Multiplexing)
communication system in which the transmitter converts a length N − 1
complex data sequence {X (k), k = 1 : N − 1} into a length 2N conjugate
symmetric sequence

Y (k) =

⎧⎪⎪⎨
⎪⎪⎩

0 for k = 0
X (k) for k = 1, · · · , N − 1

0 for k = N
X∗(2N − k) for k = N + 1, · · · , 2N − 1

(P3.17.1)

and performs a 2N -point IFFT operation on {Y (k), k = 0 : 2N − 1} to make
a length 2N real-valued sequence {y[n], n = 0 : 2N − 1} to be transmitted.
With a noiseless channel and an exact synchronization, the receiver performs
a 2N -point FFT operation on the received sequence y[n] to get Y (k), and then
restore X (k). Let us consider how to exploit the conjugate symmetry to cut the
DFT size by half.

(a) Referring to Problem 3.16, we let the receiver construct a complex-valued
sequence from the received sequence y[n] as

w[n]
(P3.16.1)= w1 [n] + jw2 [n]

= y [2n] + j y [2n + 1] for k = 0 : N − 1 (P3.17.2)

and take the N -point FFT operation on w[n] to compute W (k) = DFTN

{w[n]}. Then we can use Eq. (P3.16.5) to express the DFTs of w1[n] and
w2[n] in terms of W (k) as

W1(k) = DFTN {w1[n]} (P3.16.5a)= 1

2
(W (k) + W̃ ∗(N − k)) (P3.17.3a)

W2(k) = DFTN {w2[n]} (P3.16.5b)= − j
1

2
(W (k) − W̃ ∗(N − k)) (P3.17.3b)

Note that the 2N -point DFT of the even-indexed sequence y[2n] = w1[n],
i.e., y[n] = w1[n/2] (with zero-insertion) is the same as the repetition of
W1(k) (Eq. (3.8.6)) and the 2N -point DFT of the odd-indexed sequence
y[2n + 1] = w2[n] is the same as the repetition of W2(k)e− j2πk/2N

(Eq. (3.8.6)) and the time-shifting property B.5(7)) since deploying w2[n]
as y[2n + 1] amounts to a zero-insertion followed by time-shifting by

Problems 197

n = −1. Therefore the DFT of the original received sequence y[n] =
y[2n] + y[2n + 1] can be written as

Y (k) = W1(k) + W2(k) e− jπk/N (P3.17.3a,b)= 1

2
(W (k) + W̃ ∗(N − k))

− j
1

2
e− jπk/N (W (k) − W̃ ∗(N − k)) (P3.17.4)

This equation is used by the receiver for post-processing the FFT
result.

(b) On the other hand, the transmitter is required to perform a pre-processing
operation on Y (k) to construct W (k) whose IDFT is the complex-valued
sequence as

w[n]
(P3.17.2)= w1 [n] + jw2 [n]

= y [2n] + j y [2n + 1] for k = 0 : N − 1 (P3.17.5)

and take the N -point IFFT operation on W (k) to compute w[n] =
IDFTN {W (k)}. Then the transmitter is supposed to construct a length
2N real-valued sequence y[n] = y[2n] + y[2n + 1] (to be transmit-
ted) such that y[2n] = w1[n] and y[2n + 1] = w2[n]. To determine
the pre-processing operation (at the transmitter) which is reverse to the
post-processing one (at the receiver), let us write Eq. (P3.17.4) together
with its Hermitian in matrix form as

[
Y (k)

Ỹ ∗(N − k)

]
(P3.17.4)=

with its Hermitian

1

2

[
1 − j e− jπk/N 1 + j e− jπk/N

1 − j e jπ (N−k)/N 1 + j e jπ (N−k)/N

] [
W (k)

W̃ ∗(N − k)

]

= 1

2

[
1 − j e− jπk/N 1 + j e− jπk/N

1 + j e− jπk/N 1 − j e− jπk/N

] [
W (k)

W̃ ∗(N − k)

]
(P3.17.6)

This implies that the pre-processing operation on Y (k) to construct W (k)
can be performed by

[
W (k)

W̃ ∗(N − k)

]
= 2

[
1 − j e− jπk/N 1 + j e− jπk/N

1 + j e− jπk/N 1 − j e− jπk/N

]−1 [
Y (k)

Ỹ ∗(N − k)

]

= 2

− j 4e− jπk/N

[
1 − j e− jπk/N −(1 + j e− jπk/N)

−(1 + j e− jπk/N) 1 − j e− jπk/N

] [
Y (k)

Ỹ ∗(N − k)

]

198 3 Discrete-Time Fourier Analysis

%sig03p 17.m
clear, clf
N=1024; N2=N∗2; kk=[-N:N];
n=[0:N-1]; k=[0:N-1]; WN k=exp(j∗pi∗k/N); WNk=exp(-j∗pi∗k/N);
Y= [0 2∗(randint(1,N-1)+j∗randint(1,N-1))-1]; % assumed data
% Transmitter
Y2= [Y 0 conj(fliplr(Y(2:N)))]; y2= ifft(Y2); % using 2N-point IDFT
Yc= conj([Y(1) fliplr(Y(2:N))]);
W= (Y+Yc + j∗WN k.∗(Y-Yc))/2; w= ifft(W); % using N-point IDFT
y2 from w= [real(w); imag(w)]; y2 from w= y2 from w(:).’;
error between y2 and y2 from w= norm(y2-y2 from w)/norm(y2)
% Receiver
y2 r= y2; Y2 r= fft(y2 r); % received sequence and its 2N-point DFT
y r= reshape(y2 r,2,N); w r= y r(1,:)+j∗y r(2,:);
W r= fft(w r); Wc r= conj([W r(1) fliplr(W r(2:N))]);
Y from W= (W r+Wc r - j∗WNk.∗(W r-Wc r))/2;
error between Y2 r and Y from W=norm(Y2 r(1:N)-Y from W)/norm(Y2 r)

= 1

2

[
1 + j e jπk/N 1 − j e jπk/N

1 − j e jπk/N 1 + j e jπk/N

] [
Y (k)

Ỹ ∗(N − k)

]
(P3.17.7)

W (k) = 1

2
(Y (k) + Ỹ ∗(N − k)) + j

1

2
e jπk/N (Y (k) − Ỹ ∗(N − k)) (P3.17.8)

The objective of the above program “sig03p 17.m” is to check the validity
of this scheme by seeing if the result of using the N -point DFT agrees with
that of using the 2N -point DFT. Identify the statements corresponding to
Eqs. (P3.17.4) and (P3.17.8).

3.18 On-line Recursive Computation of DFT
We can compute the N -point DFT X (k, m) of a long sequence x[n] multi-
plied by a sliding rectangular window rN [n − m] of length N in the following
recursive way where we call each windowed sequence x[n]rN [n − m] the m th

data segment.
Let us define the 0th, m th, and (m + 1)th data segments as

{x0[0], x0[1], · · · , x0 [N − 1]} = {0, 0, · · · , 0} (P3.18.1a)

{xm[0], xm[1], · · · , xm [N − 1]}
= {x[m], x [m + 1], · · · , x [m + N − 1]} (P3.18.1b)

{xm+1[0], xm+1[1], · · · , xm+1 [N − 1]}
= {x[m + 1], x[m + 2], · · · , x [m + N]} (P3.18.1c)

Problems 199

Thus we can express the N -point DFT X (k, m + 1) of (m + 1)th data segment
in terms of X (k, m) (i.e., the DFT of the previous segment) as

X (k, m + 1) =
∑N−1

n=0
xm+1[n] W kn

N =
∑N−1

n=0
xm [n + 1] W kn

N

=
∑N−1

n=0
xm [n + 1] W k(n+1)

N W −k
N

n+1→ n=
∑N

n=1
xm[n] W kn

N W −k
N

=
(∑N−1

n=0
xm [n] W kn

N + x[N] − x [0]

)
W −k

N

= (X (k, m) + x [N] − x [0]) W −k
N (P3.18.2)

Complete the following program “sig03p 18.m” to check the validity. What is
the meaning of “discrepancy” in the program?

%sig03p 18.m
% Recursive computation of DFT
clear, clf
N=64; n=0:N-1; k=0:N-1;
W1=2∗pi∗8/N; x=sin(W1∗n);
X=fft(x); %FFT
xa=[zeros(1,N) x]; % augment x with N zeros
Xm=zeros(1,N); WN k=exp(j∗2∗pi∗k/N);
for m=1:N
Xm=(Xm+xa(N+m)-xa(m)).∗????; %RDFT

end
discrepancy= norm(Xm-X)/norm(X)
stem(k,abs(Xm)), hold on, pause, stem(k,abs(X),’r’)
title(’RDFT and FFT’)

3.19 Two-Dimensional (2-D) DFT
Two-dimensional DFT X (k, l) of a 2-D sequence x[m, n] and its IDFT x[m, n]
are defined as

X (k, l) =
∑M−1

m=0

∑N−1

n=0
x [m, n] W km

M W ln
N (P3.19.1a)

for 0 ≤ k ≤ M − 1 and 0 ≤ l ≤ N − 1

x [m, n] = 1

M N

∑M−1

k=0

∑N−1

l=0
X (k, l) W −km

M W −ln
N (P3.19.1b)

for 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1

The 2-D DFT can be computed by using a MATLAB built-in function fft2().
On the other hand, the 2-D DFT (P3.19.1a) can be written as two cascaded
1-D DFTs:

200 3 Discrete-Time Fourier Analysis

X (k, l) =
∑M−1

m=0
P(m, l) W km

M (P3.19.2a)

for 0 ≤ k ≤ M − 1 and 0 ≤ l ≤ N − 1

with P(m, l) =
∑N−1

n=0
x [m, n] W ln

N (P3.19.2b)

for 0 ≤ m ≤ M − 1 and 0 ≤ l ≤ N − 1

This implies that the 2-D DFT can be computed by taking the 1-D DFT for
each row of x to get P(m, l) and then taking the 1-D DFT for each column
of P(m, l). Noting that the MATLAB function fft() computes the DFTs of
each column of the input matrix, compose a program to check the validity of
Eq. (P3.19.2a–b) for a 2-D rectangular pulse x[m, n] that is produced and 2-D
or 3-D plotted (in black and white) by the following MATLAB statements:

>>N=64; x=zeros(N,N); x(N/2-3:N/2+3,N/2-5:N/2+5)=255;
>>mm=[-N/2:N/2-1]; nn=[-N/2:N/2-1]; image(nn,mm,x) % 2-D plot
>>mesh(nn,mm,x), colormap(gray(256)); % Alternatively, 3-D plot

In fact, it does not matter whichever of the column and row is taken the DFT
of first.

3.20 Short-Time Fourier Transform (STFT) Using Spectrogram
Let us use the MATLAB function spectrogram() to find the STFT for some
signals.

%play music wave.m

clear, clf

Fs=10000; Ts=1/Fs; % 10kHz Sampling Frequency and Sampling period

Tw=2; % Duration of a whole note

melody rhythm= [40 42 44 45 47 49 51 52; 1/4 1/4 1/4 1/4 1/8 1/8 1/8 1/8];

[x,tt]= music wave(melody rhythm,Ts,Tw); sound(x,Fs)

N=256; wnd=N; Noverlap= N/2;

subplot(221), spectrogram(x,wnd,Noverlap,N,Fs,’yaxis’); % specgram(x)

colormap(gray(256)) % colormap(’default’)

function [wave,tt]=music wave(melody rhythm,Ts,Tw)

% Ts: Sampling period, Tw: duration for a whole note

% Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only

if nargin<3, Tw=2; end

if nargin<2, Ts=0.0001; end

[M,N]= size(melody rhythm);

wave= []; tt=[]; pi2= 2∗pi; phase= 0;

for i=1:N

t= [Ts:Ts:melody rhythm(2,i)∗Tw];
if i==1, tt=[tt t]; else tt=[tt tt(end)+t]; end

w= pi2∗440∗2ˆ((melody rhythm(1,i)-49)/12); angle= w∗t + phase;

wave= [wave sin(angle)]; phase= angle(end);

end

Problems 201

The fourth octave

35
34 36 38 41 43 46 48 50 53 55 57

37 39 40 42 44 45 47 49 51 52 54 56
E5D5C5B4A4G4F4E4D4C4B3

(a) A piano keyboard with the key numbers

(b) A melody written on the music score

treble clef quarter notes eighth notes

A3G3

Fig. P3.20.1

(a) Referring to the above program “play music wave.m” and the layout of
a piano keyboard depicted in Fig. P3.20.1(a), use the MATLAB routine
“music wave” to produce a sinusoidal wave for a series of musical notes
shown in Fig. P3.20.1(b) where the frequency for the central note A4 is
440 Hz and that for any other note is

fn = 440 × 2(n−49)/12[Hz] where n is the key number. (P3.20.1)

(b) Use the MATLAB function “specgram” (in MATLAB of version 6.x) or
“spectrogram” (in MATLAB of version 7.x) to find the STFT for the
sinusoidal wave produced in (a). You can change the DFT size from its
default value N = 256 to 512 and then to 1024 and localize the frequency
range if you think it to be of help in distinguishing the distinct frequency
components. Which of the frequency and time resolutions do you gain or
lose by increasing the DFT size?

(c) Beyond the current limit of your ability and the scope of this book, you
can use the RDFT (recursive DFT) or any other technique such as the
wavelet transform to improve the time and frequency resolution.

(d) Produce a beat-note signal by summing two sinusoids of slightly different
frequencies 495 Hz and 505 Hz as

x(t) = cos(2π × 495t) + cos(2π × 505t)

= 2 cos(2π × 500t) cos(2π × 5t) (P3.20.2)

Determine the FFT size (as a power of 2) such that the two frequencies
are distinguishable in the spectrogram. How about the DFT size N which
makes the frequency resolution

2

N T
∼= 505 − 495

2
Hz (P3.20.3)

202 3 Discrete-Time Fourier Analysis

where the sampling period T is chosen as 0.0001 s?

2

0

–2
0

0.02 0.1 t

Fig. P3.20.2 A beat-note signal

(cf.) For example, the spectrogram with N = 512 shows a single fre-
quency of around 500 Hz varying in amplitude with time, while
that with N = 4096 reveals the two different frequencies with
constant amplitude.

3.21 Design of DTMF (Dual-Tone Multi-Frequency) Signal Decoder
DTMF system transmits keys pressed on a keypad (Fig. P3.21(a)) through an
audio channel such as a telephone line. Every time a key is pressed, it transmits
two frequencies, each corresponding to the row and column in which the key
is in.

%sig03p 21.m

% DTMF encoding and decoding

clear, clf

Fs=10000; Ts=1/Fs; % 10kHz Sampling Frequency and Sampling period

keypad.keys= [’1’ ’2’ ’3’ ’A’;

’4’ ’5’ ’6’ ’B’;

’7’ ’8’ ’9’ ’C’;

’*’ ’0’ ’#’ ’D’];

keypad.row freqs= [697 770 852 941];

keypad.col freqs= [1209 1336 1477 1633];

w=2∗pi∗[keypad.row freqs keypad.col freqs];

[x,tt]= dtmf generator(’159D’,[0.1 0.2 0.1 0.2],Ts,keypad);

soundsc(x,Fs)

[keys,B,A]= dtmf decoder(x,Ts,keypad);

keys

sim(’dtmf’,tt(end)); % run the Simulink model file ’dtmf’ for tt(end)[sec]

function [wave,tt]=dtmf generator(keys,durations,Ts,keypad)

% keys, durations : keys pressed and their durations in vectors

% Ts : Sampling period

% Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only

Nkey= length(keys); Nduration= length(durations);

if Nduration<Nkey

durations= [durations durations(1)∗ones(1,Nkey-Nduration)];
end

wave= []; tt=[]; pi2= 2∗pi;
Nzero= ceil(0.1/Ts); zero between keys=zeros(1,Nzero);

tzero= [1:Nzero]∗Ts;
for i=1:Nkey

t= [Ts:Ts:durations(i)];

if i==1, tt=[tt t];

else tt=[tt tt(end)+t];

end

[m,n]= find(keys(i)==keypad.keys);

if isempty(m), error(’Wrong key in dtmf generator’); end

w2= pi2∗[keypad.row freqs(m); keypad.col freqs(n)];

wave= [wave sum(sin(w2∗t)) zero between keys];

tt=[tt tt(end)+tzero];

end

Problems 203

Coloumn frequencies

R
ow

 fr
eq

ue
nc

ie
s 1 2

4 5

7 8

0

(a) A DTMF keypad with the row and column frequencies

∗

3

6

9

A

B

C

D#

697Hz

770Hz

852Hz

941Hz

Number of inputs: 2
Multiplication:

Transfer function type: FIR
Filter structure: Direct form
Coefficient source:

Specify via dialog
Numerator coefficients: B
Initial conditions: 0

Element-wise(,∗)
Sampling time: Ts

Sine type: Time based

Use simulation time
Amplitude: 1, Bias: 0
Frequency [rad /sec]: w(1)
Phase [rad]: 0
Sample time: Ts

Sine Wave Product1

DF FIR

Digital Filter1
[Signal Processing /Filtering /Filter Designs]

Digital Filter2

Digital Filter3

Digital Filter4

Digital Filter5

Digital Filter6

Digital Filter7

Digital Filter8

DF FIR

DF FIR

DF FIR

DF FIR

DF FIR

DF FIR

DF FIR

[Simulink [Simulink /Signal Routing]

0

1

–1

0

1

–1

0

0.2

–0.2

0

0.2

–0.2

0

0.5

0.5
–0.5

0

0

1

–1

0

1

–1

0

1

–1

1

Mux

[Simulink /Sink]
Scope

/Math operations]

×
y 1[n]

d 1[n]

d 2[n]

d 3[n]

d 4[n]

d 5[n]

d 6[n]

d 7[n]

d 8[n]

d 1

d 2

d 3

d 4

d 5

d 6

d 7

d 8

y 2[n]

y 3[n]

y 4[n]

y 5[n]

y 6[n]

y 7[n]

y 8[n]

×

×

×

×

×

×

×

Product2

Product3

Product4

Product5

Product6

Product7

Product8

Sin(ω 1Ts

n)

x (nTs

)

Sin(ω 2Ts

n)

Sin(ω 3Ts

n)

Sin(ω 4Ts

n)

Sin(ω 5Ts

n)

Sin(ω 6Ts

n)

Sin(ω 7Ts

n)

Sin(ω 8Ts

n)

From Workspace
[Simulink /Source]

[tt; x].′

Function1

Sine Wave
Function2

Sine Wave
Function3

Sine Wave
Function4

Sine Wave
Function5

Sine Wave
Function6

Sine Wave
Function7

Sine Wave
Function8

Time(t):

1209Hz 1336Hz 1477Hz 1633Hz

(b) The Simulink block diagram for a DTMF decoder

Fig. P3.21

(a) The program “dtmf generator()” listed below generates a DTMF signal
(wave) together with the time vector (tt) for given vector (keys) of keys
pressed and vector (durations) of key pressing duration. A zero period of
0.1 s is inserted between the key signals so that the decoder can distin-
guish between a single long-pressed key and multiple repeated keys by

204 3 Discrete-Time Fourier Analysis

accepting a new key only after detecting a zero period. Referring to the
main program “sig03p 21.m”, make a DTMF signal for the leading three
digits of your phone number and listen to its sound.

(b) Figure 3.21(b) shows a Simulink block diagram for a filter bank which
can be used to detect the DTMF signal. In each bank, sin(ωi Tsn) =
sin(2π fi Tsn) is multiplied with the input signal where fi = 697, 770, 852,
941, 1209, 1336, 1477, and 1633 Hz and the modulated signal is passed
through a moving or running average filter (MAF). The DTMF signal x
together with the time vector tt, the sampling period Ts, the analog fre-
quency vector w (ωi = 2π fi ’s), and the running average filter coefficient
vector B are supposed to be supplied via the MATLAB workspace. Note
that the Simulink model file “dtmf.mdl” can be run directly or indirectly
from a MATLAB program by using the MATLAB command “sim()” as
illustrated in the program “sig03p 21.m”. Based on the simulation results
observed through the scope, determine the common threshold value which
can be used for detecting any one of the eight frequencies from the output
(di [n]) of each MAF.

(c) Complete the following program “dtmf decoder()” and run it on the
DTMF signal generated in (a) for demonstration. Note that freq
durations(i) for each frequency is accumulated every sample time the
corresponding MAF output is larger than the threshold value (Thd) and
zero duration is increased by one every time no frequency is detected.
Whenever the accumulated zero duration exceeds some threshold value
(Zero duration) and the frequency durations for at least one of the row fre-
quencies and at least one of the column frequencies exceed some threshold
(Freq duration), the key corresponding to the row/column frequencies is
determined.

Problems 205

function [keys,B,A]=dtmf decoder(x,Ts,keypad)
% <Inputs> x : Signal vector of DTMF tones
% Ts : Sampling period
% <Outputs> Keys: Detected key vector
% B,A : Numerator/denominator of the filter transfer function
% Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
w=2∗pi∗[keypad.row freqs keypad.col freqs]; wTs=w∗Ts;
NB=ceil(0.03/Ts); B=ones(1,NB)/NB; A=1; % FIR filter for running average
DCgain= sum(B)/sum(A); B= B/DCgain;
NB=length(B); NA=length(A);
M=length(wTs); % the input dimension of the filter
%wi=zeros(max(NA,NB)-1,M); % the initial state
Nx= length(x); tt=[1:Nx]∗Ts; % the length of signal and the time vector
y=[]; d=[]; keys= [];
freq durations=zeros(1,M); zero duration=0; Thd=0.1;
Zero duration= 0.08/Ts; Freq duration= 0.09/Ts;
for n=1:Nx

y= [y; x(n)∗sin(wTs∗n)];
if n==1, [dn,wi]= filter(B,A,[zeros(1,M); y(end,:)]); % column-wise
else [dn,wi]= filter(B,A,y([end-1 end],:),wi); % multi-filtering
end
d = [d; dn(end,:)]; tmp = (abs(dn(end,:))>Thd);
freq durations = freq durations + tmp;
zero duration = zero duration + (sum(tmp)==0);
cond1= (zero duration>Zero duration);
cond2= sum(freq durations(1:4)>Freq duration)>0;
cond3= sum(freq durations(5:8)>Freq duration)>0;
if cond1&cond2&cond3
???????????????????????????????????????
??
???
??????????????????????????
???????????????????
end

end

Chapter 4
The z-Transform

Contents

4.1 Definition of the z-Transform . 208
4.2 Properties of the z-Transform . 213

4.2.1 Linearity . 213
4.2.2 Time Shifting – Real Translation . 214
4.2.3 Frequency Shifting – Complex Translation . 215
4.2.4 Time Reversal . 215
4.2.5 Real Convolution . 215
4.2.6 Complex Convolution . 216
4.2.7 Complex Differentiation . 216
4.2.8 Partial Differentiation . 217
4.2.9 Initial Value Theorem . 217
4.2.10 Final Value Theorem . 218

4.3 The Inverse z-Transform . 218
4.3.1 Inverse z-Transform by Partial Fraction Expansion . 219
4.3.2 Inverse z-Transform by Long Division . 223

4.4 Analysis of LTI Systems Using the z-Transform . 224
4.5 Geometric Evaluation of the z-Transform . 231
4.6 The z-Transform of Symmetric Sequences . 236

4.6.1 Symmetric Sequences . 236
4.6.2 Anti-Symmetric Sequences . 237

4.7 Summary . 240
Problems . 240

The z-transform is the discrete-time counterpart of the Laplace transform. It can be
viewed as a generalization of the DTFT (discrete-time Fourier transform) just as the
Laplace transform can be viewed as a generalization of the CTFT (continuous-time
Fourier transform). It plays a vital role in the analysis and design of discrete-time
linear time-invariant (LTI) systems that are described by difference equations. In
this chapter we introduce the z-transform and discuss some of its properties and
applications to LTI system analysis and representations.

W.Y. Yang et al., Signals and Systems with MATLAB R©,
DOI 10.1007/978-3-540-92954-3 4, C© Springer-Verlag Berlin Heidelberg 2009

207

208 4 The z-Transform

4.1 Definition of the z-Transform

For a discrete-time sequence x[n], the bilateral (two-sided) and unilateral (one-
sided) z-transforms are defined as

X [z] = Z{x[n]} =
∑∞

n=−∞ x[n]z−n

(4.1.1a)
X [z] = Z{x[n]} =

∑∞
n=0

x[n]z−n

(4.1.1b)

where z is a complex variable. For convenience, the z-transform relationship will
sometimes be denoted as

x[n]
Z↔ X [z] x[n]

Z↔ X [z]

Note that the unilateral z-transform of x[n] can be thought of as the bilateral
z-transform of x[n]us[n] (us[n]: the unit step sequence) and therefore the two
definitions will be identical for causal sequences. The unilateral z-transform is par-
ticularly useful in analyzing causal systems described by linear constant-coefficient
difference equations with initial conditions.

The z-transform does not necessarily exist for all values of z in the complex
plane. For the z-transform to exist, the series in Eq. (4.1.1) must converge. For a
given sequence x[n], the domain of the z-plane within which the series converges is
called the region of convergence (ROC) of the z-transform X[z] or X [z]. Thus, the
specification of the z-transform requires both the algebraic expression in z and its
region of convergence.

Note that a sequence x[n] is called

– a right-sided sequence if x[n] = 0 ∀ n < n0 for some finite integer n0,
– a causal sequence if x[n] = 0 ∀ n < n0 for some nonnegative integer n0 ≥ 0,
– a left-sided sequence if x[n] = 0 ∀ n ≥ n0 for some finite integer n0, and
– a anti-causal sequence if x[n] = 0 ∀ n ≥ n0 for some non-positive integer

n0 ≤ 0,

respectively.

Example 4.1 The z-Transform of Exponential Sequences

(a) For a right-sided and causal sequence x1[n] = anus[n], we can use Eq. (4.1.1a)
to get its bilateral z-transform as

X1[z] = Z{x1[n]} =
∑∞

n=−∞ anus[n]z−n =
∑∞

n=0
anz−n

(D.23)= 1

1 − az−1
= z

z − a
(E4.1.1)

This geometric sequence converges for |az−1| < 1, which implies that the ROC
of X1[z] is R1 = {z : |z| > |a|} (see Fig. 4.1(a)).

4.1 Definition of the z-Transform 209

(a) ROC for a right-sided
 sequence

(b) ROC for a left-sided
 sequence

(c) ROC for a both-sided
 sequence

R2 = {z: |z | < |b |}R1 = {z: |z | > |a |} R = R1 ∩ R2 = {z: |a | < |z | < |b |}

Re {z}
|a|0

Im {z} Im {z}

0 Re {z}
|a| |b||b|

Im {z}

Re {z}0

Fig. 4.1 Three forms of ROC (region of convergence)

(b) For a left-sided and anti-causal sequence x2[n] = −bnus[−n − 1], we can use
Eq. (4.1.1a) to get its bilateral z-transform as

X2[z] = Z{x2[n]} =
∑∞

n=−∞ −bnus[−n − 1]z−n = −
∑−1

n=−∞ bnz−n

= −
∑∞

n=1
(b−1z)n (D.23)= −b−1z

1 − b−1z
= z

z − b
(E4.1.2)

This geometric sequence converges for |b−1z| < 1, which implies that the ROC
of X2[z] is R2 = {z : |z| < |b|} (see Fig. 4.1(b)).

(c) For the both-sided sequence

y[n] = x1[n] + x2[n] = anus[n] − bnus[−n − 1] (E4.1.3)

we can combine the above results of (a) and (b) to obtain its bilateral z-
transform as

Y[z] = X1[z] + X2[z] = z

z − a
+ z

z − b
(E4.1.4)

For this series to converge, both of the two series must converge and therefore,
its ROC is the intersection of the two ROCs R1 and R2 : R = R1 ∩ R2 =
{z : |a| < |z| < |b|}. This is an annular region |a| < |z| < |b| (Fig. 4.1(c)) if
|b| > |a| and it will be an empty set if |b| ≤ |a|.

(cf) This example illustrates that different sequences may have the same z-transform,
but with different ROCs. This implies that a z-transform expression may
correspond to different sequences depending on its ROC.

Remark 4.1 Region of Convergence (ROC)

(1) The ROC for X [z] is an annular ring centered at the origin in the z-plane of
the form

210 4 The z-Transform

r− < |z| < r+ (4.1.2)

where r+ can be as large as ∞ (Fig. 4.1(a)) for causal sequences and r− can be
as small as zero (Fig. 4.1(b)) for anti-causal sequences.

(2) As illustrated in Example 4.1, the three different forms of ROC shown in
Fig. 4.1 can be associated with the corresponding three different classes of
discrete-time sequences; 0 < r− < |z| for right-sided sequences, |z| < r+ < ∞
for left-sided sequences, and r− < |z| < r+ (annular ring) for two-sided
sequences.

Example 4.2 A Causal Sequence Having Multiple-Pole z-transform
For a sum of two causal sequences

x[n] = x1[n] + x2[n] = 2us[n] − 2(1/2)nus[n] (E4.2.1)

we can use Eq. (E4.1.1) to get the z-transform for each sequence and combine the
z-transforms as

X[z] = Z{x[n]} = X1[z] + X2[z]
(E4.1.1)=

with a=1 and a=1/2
2

z

z − a

∣∣∣∣
a=1

−2
z

z − a

∣∣∣∣
a=1/2

= 2z

z − 1
− 2z

z − 1/2
= z

(z − 1)(z − 1/2)
(E4.2.2)

Since both X1[z] = Z{x1[n]} and X2[z] = Z{x2[n]} must exist for this z-transform
to exist, the ROC is the intersection of the ROCs for the two z-transforms:

R = R1 ∩ R2 = {z : |z| > 1} ∩ {z : |z| > 1/2} = {z : |z| > 1} (E4.2.3)

(cf) Figure 4.2 shows the pole-zero pattern of the z-transform expression (E4.2.2)
where a pole and a zero are marked with x and o, respectively. Note that the
ROC of the z-transform X[z] of a right-sided sequence is the exterior of the
circle which is centered at the origin and passes through the pole farthest from
the origin in the z-plane.

Fig. 4.2 Pole-zero pattern of
the z-transform (E4.2.2)

Im{z}

Re{z}
11/2

z-plane

× ×

4.1 Definition of the z-Transform 211

Before working further with more examples, let us see the relationship between
the z-transform and DTFT (discrete-time Fourier transform), which is summarized
in the following remark:

Remark 4.2 The z-Transform and the DTFT (Discrete-Time Fourier Transform)
Comparing the bilateral z-transform (4.1.1a) with the DTFT (3.1.1), we can see

their relationship that the DTFT can be obtained by substituting z = e jΩ into the
(bilateral) z-transform:

F{x[n]} = X (jΩ)
(3.1.1)=

∑∞
n=−∞ x[n]e− jΩn = X [e jΩ]

= X [z]|z=e jΩ = Z{x[n]}|z=e jΩ (4.1.3)

This implies that the evaluation of the z-transform along the unit circle in the z-
plane yields the DTFT. Therefore, in order for the DTFT to exist, the ROC of the
z-transform must include the unit circle (see Fig. 4.3).

Example 4.3 The z-transform of a Complex Exponential Sequence
Let us consider a causal sequence

x[n] = e jΩ1nus[n] = cos(Ω1n)us[n] + j sin(Ω1n)us[n] (E4.3.1)

We can find the z-transform of this exponential sequence by substituting a = e jΩ1

into Eq. (E4.1.1) as

X[z] = Z{e jΩ1nus[n]} (E4.1.1)=
a=e jΩ1

z

z − e jΩ1
= z(z − e− jΩ1)

(z − e jΩ1)(z − e− jΩ1)
, |z| > |e± jΩ1 | = 1;

e jΩ1nus[n]
(D.20)= cos(Ω1n)us[n] + j sin(Ω1n)us[n]

Z↔ z(z − cos Ω1)

z2 − 2z cos Ω1 + 1
+ j

z sin Ω1

z2 − 2z cos Ω1 + 1

Fig. 4.3 The relationship
between the DTFT and
z-transform

Re{z}

Im{z}

F{x[n]} = X(jΩ) = (X [z] = Z{x [n]}) with z = e jΩ

0 1

z-plane

z = e jΩ

Ω

212 4 The z-Transform

This implies the following two z-transform pairs:

cos(Ω1n)us[n]
Z↔ z(z − cos Ω1)

z2 − 2z cos Ω1 + 1
= z(z − cos Ω1)

(z − cos Ω1)2 + sin2 Ω1
(E4.3.2)

with R = {z : |z| > 1}
sin(Ω1n)us[n]

Z↔ z sin Ω1

z2 − 2z cos Ω1 + 1
= z sin Ω1

(z − cos Ω1)2 + sin2 Ω1
(E4.3.3)

with R = {z : |z| > 1}

Example 4.4 The z-transform of an Exponentially Decreasing Sinusoidal Sequence
For a causal sequence

x[n] = rn cos(Ω1n)us[n]
(D.21)= 1

2
rn(e jΩ1n + e− jΩ1n)us[n] (E4.4.1)

we can use Eq. (E4.1.1) with a = e± jΩ1 to find the z-transform of this sequence as

X[z]
(E4.1.1)=

a=re jΩ1 and a=re− jΩ1

1

2

(
z

z − re jΩ1
+ z

z − re− jΩ1

)
= z(z − r cos Ω1)

z2 − 2zr cos Ω1 + r2

(E4.4.2)

where the ROC is R = {z : |z| > |r e± jΩ1 | = |r |}.

(cf) Note that if |r | ≥ 1, the ROC does not contain the unit circle and consequently,
the DTFT does not exist in the strict sense.

We could elaborate on more examples of the z-transform computation. However,
we instead list a number of useful z-transform pairs in Table B.9 in Appendix B so
that the readers can use them for finding the z-transform or inverse z-transform.

In many cases, we deal with the z-transform that is expressed in the form of a
rational function, i.e., a ratio of polynomials in z. For such a rational z-transform
X[z] = Q[z]/P[z], we define its singularities, i.e., poles and zeros as follows:

Remark 4.3 Poles and Zeros of a Rational z-Transform Expression X[z] = Q[z]/
P[z]

The roots of Q[z] = 0, or the values of z at which X[z] = 0 are called the
zeros of X[z]. The poles are the roots of P[z] = 0, or the values of z for which
X[z] = ∞. If we count the singularities at z = ∞, the number of poles will be
equal to that of zeros. Notice that, for polynomials with real-valued coefficients, the
complex-valued singularities must occur in complex-conjugate pairs.

The ROC of a z-transform X[z] can be described in terms of its poles as follows:

4.2 Properties of the z-Transform 213

Remark 4.4 Pole Locations and Region of Convergence (ROC)

(1) It is obvious that there can be no poles of a z-transform X[z] inside the ROC
since the z-transform does not converge at its poles. In fact, the ROC is bounded
by poles or infinity as illustrated by Examples 4.1 and 4.2.

(2) For a right-sided sequence xa[n] and left-sided sequence xb[n], the ROCs for
their z-transforms Xa[z] and Xb[z] are outside/inside the outermost/innermost
pole, respectively:

R1 = {z : |z| > the maximum of |ai |′s}(z = ai : the poles of Xa[z]) (4.1.4a)

(as illustrated by Example 4.2) or

R2 = {z : |z| < the minimum of |bi |′s}(z = bi : the poles of Xb[z]) (4.1.4b)

For a two-sided sequence x[n] = x[n] + xb[n], the ROC is an annular region
given by

R = R1 ∩ R2 = {z : max
i

|ai | < |z| < min
j

|b j |} (4.1.4c)

4.2 Properties of the z-Transform

In this section we discuss the properties of the z-transform that are useful in obtain-
ing z-transform pairs and in applying the transform to the analysis of discrete-time
linear time-invariant systems. These properties are very similar to those of the
Laplace transform and Fourier transform.

Most of the properties are commonly applicable to the bilateral and unilateral
z-transforms. There are, however, a few exceptions such as the time shifting prop-
erty, time reversal property, and initial/final value theorems. In particular, it is the
time shifting property that makes the unilateral z-transform very useful for solving
difference equations with initial conditions.

4.2.1 Linearity

Let the z-transforms of two time sequences x[n] and y[n] be Z{x[n]} = X[z] with
ROC Rx and Z{y[n]} = Y[z] with ROC Ry . Then we can express the z-transform
of their linear combination in terms of X[z] and Y[z] as

ax[n] + βy[n]
z↔ αX[z] + βY[z] with ROC R ⊃ (R1 ∩ R2) (4.2.1)

where the ROC is generally the intersection of the two ROCs Rx and Ry , but it can
be larger when any pole of X[z] and Y[z] is cancelled by the zeros resulting from
the addition.

214 4 The z-Transform

4.2.2 Time Shifting – Real Translation

Let the bilateral z-transform of x[n] be Z{x[n]} = X[z] with ROC Rx . Then the
bilateral z-transform of a time-shifted version x[n − n1] is

x[n − n1]
z↔ z−n1X[z], ROC Rx (possibly with z = 0 or ∞ added or removed)

(4.2.2)

The addition/removal of z = ∞ to/from the ROC occurs when a causal/non-causal
sequence is shifted to become a non-causal/causal sequence. Similarly, the addi-
tion/removal of the origin z = 0 to/from the ROC is owing to the possible transition
between anticausal and non-anticausal sequences resulting from the shift operation.

On the other hand, the time-shifting property of the unilateral z-transform is as
follows:

<Case 1> x[n − n1], n1 > 0 (delayed sequence)

Z{x[n − n1]} =
∑∞

n=0
x[n − n1]z−n

=
∑n1−1

n=0
x[n − n1]z−n +

∑∞
n=n1

x[n − n1]z−n

n−n1=m,n=m+n1=
∑−1

m=−n1
x[m]z−(m+n1) +

∑∞
m=0

x[m]z−(m+n1)

= z−n1

(∑∞
m=0

x[m]z−m +
∑−1

m=−n1
x[m]z−m

)
;

x[n − n1]
Z↔ z−n1

(
X [z] +

∑−1

m=−n1
x[m]z−m

)
(4.2.3a)

where the second term in the RHS will disappear when x[n] is causal.

<Case 2> x[n + n1], n1 > 0 (advanced sequence)

Z{x[n + n1]} =
∑∞

n=0
x[n + n1]z−n n+n1=m,n=m−n1=

∑∞
n=n1

x[m]z−(m−n1)

= zn1

(∑∞
m=0

x[m]z−m −
∑n1−1

m=0
x[m]z−m

)
;

x[n + n1]
Z↔ zn1

(
X [z] −

∑n1−1

m=0
x[m]z−m

)
(4.2.3b)

Example 4.5 Applying Linearity and Time Shifting Properties of the z-Transform
For a rectangular pulse sequence of duration N given by

x[n] = us[n] − us[n − N] =
n=···−1 0 1 ···N−1 N ···
{· · · 0 1 1 · · · 1 0 · · · } (E4.5.1)

4.2 Properties of the z-Transform 215

we can use Eq. (E4.1.1) (with a = 1) together with the linearity (4.2.1) and time-
shifting property (4.2.2) to get its z-transform as

X[z]
(E4.1.1) with a=1=

(4.2.1)&(4.2.2)

z

z − 1
− z−N z

z − 1
= zN − 1

zN−1(z − 1)
(E4.5.2)

Note that X[z] has multiple pole of order N − 1 at z = 0 and N − 1 zeros at
z = e j2mπ/N (for m = 1, 2, · · · , N − 1) on the unit circle where the zero at z = 1
(resulting from the addition) cancels the pole (of Z{us[n]} = z/(z −1)) at that point.
Due to this pole-zero cancellation, the ROC of X[z] becomes |z| > 0 (the entire
z-plane except the origin z = 0), which is larger than that of Z{us[n]} = z/(z − 1),
i.e., |z| > 1.

4.2.3 Frequency Shifting – Complex Translation

Let the bilateral z-transform of x[n] be Z{x[n]} = X[z] with ROC Rx = {z :
r−

x < |z| < r+
x }. Then we have the z-transform of a frequency-shifted or modulated

version zn
1 x[n] as

e jΩ1n x[n]
z↔ X[e− jΩ1 z] with ROC : Rx = {z : r−

x < |z| < r+
x } (4.2.4a)

zn
1 x[n]

z↔ X[z/z1] with ROC : |z1|Rx = {z : |z1|r−
x < |z| < |z1|r+

x } (4.2.4b)

4.2.4 Time Reversal

Let the bilateral z-transform of x[n] be Z{x[n]} = X[z] with ROC Rx = {z :
r−

x < |z| < r+
x }. Then we have the bilateral z-transform of a time-reversed version

x[−n] as

x[−n]
z↔ X[z−1] with ROC : 1/Rx = {z : 1/r+

x < |z| < 1/r−
x } (4.2.5)

where if z ∈ Rx , then 1/z ∈ 1/Rx .

4.2.5 Real Convolution

Let the z-transforms of two time sequences g[n] and x[n] be Z{g[n]} = G[z] with
ROC Rg and Z{x[n]} = X[z] with ROC Rx . Then we can express the z-transform
of their convolution in terms of G[z] and X[z] as

y[n] = g[n] ∗ x[n]
z↔ Y[z] = G[z] X[z] with ROC R ⊃ (Rg ∩ Rx) (4.2.6)

216 4 The z-Transform

(proof)

Z{g[n] ∗ x[n]} (4.1.1a)=
∑∞

n=−∞ (g[n] ∗ x[n])z−n

(1.2.9)=
∑∞

n=−∞

(∑∞
m=−∞ g[m]x[n − m]

)
z−n

=
∑∞

m=−∞

(
g[m]

∑∞
n=−∞ x[n − m]z−(n−m)z−m

)
n−m→n, n→n+m=

∑∞
m=−∞

(
g[m]z−m

∑∞
n=−∞ x[n]z−n

)
(4.1.1a)= G[z]X[z]

This convolution property holds for causal sequences, which implies that the uni-
lateral z-transform also has the same property. It is very useful for describing the
input-output relationship of a discrete-time LTI system with the input x[n], out-
put y[n], and impulse response g[n] where the transform of the impulse response,
Z{g[n]} = G[z], is called the system or transfer function (see Sects. 1.2.3 and 1.2.4).

4.2.6 Complex Convolution

Let the z-transforms of x[n] and y[n] be Z{x[n]} = X[z] with ROC Rx = {z : r−
x <

|z| < r+
x } and Z{y[n]} = Y[z] with ROC Ry = {z : r−

y < |z| < r+
y }, respectively.

Then the z-transform of the product of the two sequences can be expressed in terms
of X[z] and Y[z] as

x[n]y[n]
Z↔ 1

2π j

∮
C1

X[z/v]Y[v]v−1dv with ROC R = {z : r−
x r−

y < |z| < r+
x r+

y }
(4.2.7a)

x[n]y[n]
Z↔ 1

2π j

∮
C2

X[v]Y[z/v]v−1dv with ROC R = {z : r−
x r−

y < |z| < r+
x r+

y }
(4.2.7b)

where
∮

Ci
means the complex integral along a closed contour Ci within the intersec-

tion of the ROCs of X[z/v] and Y[v] or X[v] and Y[z/v] (see [O-2], Sect. 2.3.9 for
its proof).

4.2.7 Complex Differentiation

Let the z-transform of x[n] be Z{x[n]} = X[z] with ROC Rx . Then the z-transform
of nx[n] can be expressed in terms of X[z] as

nx[n]
Z↔ −z

d

dz
X[z] with ROC Rx (4.2.8)

4.2 Properties of the z-Transform 217

This can be proved by differentiating the definition of the z-transform (4.1.1)
w.r.t. z.

4.2.8 Partial Differentiation

If a z-transform pair is given in the form of Z{x(nT, a)} = X(z, a) with a parameter
a, we can differentiate it w.r.t. a to obtain another z-transform pair as

∂

∂a
x(nT, a)

Z↔ ∂

∂a
X (z, a) (4.2.9)

Example 4.6 Complex Differentiation and Partial Differentiation
For y[n] = n2anus[n], we can apply the complex differentiation property (4.2.8)

twice for Eq. (E4.1.1) to write

nanus[n]
Z↔ −z

d

dz

(
z

z − a

)
= −z

(z − a) − z

(z − a)2
= az

(z − a)2
(E4.6.1)

n2anus[n]
Z↔ −z

d

dz

(
az

(z − a)2

)
= −z

a(z − a)2 − 2az(z − a)

(z − a)4
= az(z + a)

(z − a)3

(E4.6.2)

Alternatively, we can apply the partial differentiation property for Eq. (E4.1.1) to
get the same results:

nan−1us[n]
Z↔ ∂

∂a

(
z

z − a

)
= z

(z − a)2
(E4.6.3)

n2an−1us[n]
Z↔ ∂

∂a

(
az

(z − a)2

)
= z(z − a)2 + 2az(z − a)

(z − a)4
= z(z + a)

(z − a)3
(E4.6.4)

Multiplying both sides of these equations by a yields Eqs. (E4.6.1) and (E4.6.2),
which are listed in Table B.9(10) and (12).

4.2.9 Initial Value Theorem

For a causal sequence x[n] such that x[n] = 0 ∀ n < 0, we can get its initial value
x[0] from its z-transform as

x[0] = lim
z→∞ X [z] (4.2.10)

This can easily be shown by substituting z = ∞ into the z-transform definition
(4.1.1b).

218 4 The z-Transform

4.2.10 Final Value Theorem

For a causal sequence x[n] such that x[n] = 0 ∀ n < 0, we can get its final value
x[∞] from its z-transform as

x[∞] = lim
z→1

(z − 1)X [z] = lim
z→1

(1 − z−1)X [z] (4.2.11)

This requires that x[n] should converge or equivalently, all the poles of its z-
transform X [z] should lie inside the unit circle possibly with the exception of a
simple pole at z = 1.
(proof)

We can use the z-transform definition (4.1.1b) to write

Z{x[n + 1] − x[n]} = lim
k→∞

(∑k

n=0
x[n + 1]z−n −

∑k

n=0
x[n]z−n

)

= lim
k→∞

(∑k

n=1
x[n]z−(n−1) + x[k + 1]z−k

− x[0] −
∑k

n=1
x[n]z−n

)

On the other hand, from the time shifting property (4.2.3b), we can write

Z{x[n + 1] − x[n]} (4.2.1)= Z{x[n + 1]} − Z{x[n]}
(4.2.3)= z(X [z] − x[0]) − X [z] = (z − 1)X [z] − zx[0]

Noting that these two equations are commonly the z-transform of (x[n + 1] − x[n]),
we can equate their RHSs and substitute z = 1 to get the desired result.

4.3 The Inverse z-Transform

In this section we consider how to find x[n] for a given z-transform X [z] with its
ROC. From the complex variable theory, the inverse z-transform formula can be
derived (see [O-2], Sect. 2.2) as

x[n] = 1

2π j

∮
C

X[z]z−ndz (4.3.1)

where
∮

C means the complex integral along a closed contour C within the ROC
of X[z] encircling the origin of the z-plane in the counterclockwise direction. It is,
however, difficult to directly evaluate this integral and therefore we make resort to
alternative procedures for obtaining the inverse z-transform.

4.3 The Inverse z-Transform 219

4.3.1 Inverse z-Transform by Partial Fraction Expansion

Noting that the complex variable z appears in the numerator of almost every basic
z-transform listed in Table B.9, we apply the same procedure as with the inverse
Laplace transform (Sect. A.4) to get the partial fraction expansion on X [z]/z and
then multiply both sides by z so that we can directly use the z-transform table to get
the inverse z-transform.

More specifically, let X [z]/z be rational as

X [z]

z
= Q1[z]

P[z]
= bM zM + . . . + b1z + b0

aN zN + . . . + a1z + a0
(4.3.2)

where M and N are the degrees of the numerator and denominator polynomials,
respectively. If M ≥ N , we divide Q1[z] by P[z] starting with the highest powers
of z to produce the remainder polynomial of degree less than N :

X [z]

z
= Q[z]

P[z]
+ cM−N zM−N + . . . + c1z + c0 (4.3.3)

If M < N , we have only the first term on the RHS where ci = 0 for all i . Now,
for the purpose of illustration, we assume that all the poles of Q[z]/P[z] are simple
except one multiple pole of order L at z = p so that we can write Q[z]/P[z] in the
following form:

Q[z]

P[z]
=
(

N−L∑
i=1

ri

z − pi

)
+ rN−L+1

z − p
+ . . . + rN

(z − p)L
+ K (4.3.4)

where

ri = (z − pi)
Q[z]

P[z]

∣∣∣∣ z = pi
, i = 1, 2, . . . , N − L (4.3.5a)

rN−l = 1

l!

dl

dzl

{
(z − p)L Q[z]

P[z]

} ∣∣∣∣ z = p
, l = 0, 1, . . . , L − 1 (4.3.5b)

Now, substituting Eq. (4.3.4) into Eq. (4.3.3), multiplying the both sides by z, and
using the z-transform Table B.9, we can obtain the inverse z-transform of X [z] as

x[n] =
{

N−L∑
i=1

ri pn
i + rN−L+1 pn + rN−L+2npn−1 + . . .

+ rN
n!

(L − 1)!(n − L + 1)!
pn−L+1

}
us[n] +

M−N∑
i=0

ciδ[n + i + 1] (4.3.6)

220 4 The z-Transform

Example 4.7 The Inverse z-Transform by Partial Fraction Expansion

(a) Let us find the inverse z-transform of

X [z] = z

z3 − 2z2 + (5/4)z − 1/4
= z

(z − 1)(z − 1/2)2
(E4.7.1)

with ROC R = {z : |z| > 1}

We first divide this by z and then expand it into partial fractions:

X [z]

z
= r1

z − 1
+ r2

z − 1/2
+ r3

(z − 1/2)2

(4.7.3)= 4

z − 1
− 4

z − 1/2
− 2

(z − 1/2)2
(E4.7.2)

where the coefficient of each term can be found from Eq. (4.3.5) as

r1
(4.3.5a)= (z − 1)

X [z]

z

∣∣∣∣
z=1

= 4 (E4.7.3a)

r2
(4.3.5b)=

l=1

d

dz

(
(z − 1/2)2 X [z]

z

)∣∣∣∣
z=1/2

= d

dz

(
1

z − 1

)∣∣∣∣
z=1/2

= − 1

(z − 1)2

∣∣∣∣
z=1/2

= −4 (E4.7.3b)

r3
(4.3.5b)=

l=0
(z − 1/2)2 X [z]

z

∣∣∣∣
z=1/2

= 1

z − 1

∣∣∣∣
z=1/2

= −2 (E4.7.3c)

Now, moving the z (which we have saved) from the LHS back into the RHS
yields

X [z] = 4
z

z − 1
− 4

z

z − 1/2
− 4

(1/2)z

(z − 1/2)2
(E4.7.4)

Then we can use Table B.9(3), (5), and (10) to write the inverse z-transform as

x[n] =
(

4 − 4

(
1

2

)n

− 4n

(
1

2

)n)
us[n] (E4.7.5)

where the right-sided sequences are chosen over the left-sided ones since the
given ROC is not the inside, but the outside of a circle.
We can use the MATLAB command ‘residue()’ or ‘residuez()’ to get the par-
tial fraction expansion and ‘iztrans()’ to obtain the whole inverse z-transform.

4.3 The Inverse z-Transform 221

It should, however, be noted that ‘iztrans()’ might not work properly for high-
degree rational functions.

>>Nz=[0 1]; Dz=poly([1 1/2 1/2]), [r,p,k]=residue(Nz,Dz); [r p],k %(E4.7.2)
r = 4.0000 p = 1.0000 % (E4.7.3a) 4/(z-1)

-4.0000 0.5000 % (E4.7.3b) -4/(z-0.5)
-2.0000 0.5000 % (E4.7.3c) -2/(z-0.5)ˆ2

k = []
>>syms z, x=iztrans(z/(zˆ3-2*zˆ2+1.25*z-0.25)) % (E4.7.1)

x = 4-4*(1/2)ˆn-4*(1/2)ˆn*n % (E4.7.5)

(b) Let us find the inverse z-transform of

X [z] = 3z

z2 − (1/4)z − 1/8
= 3z

(z − 1/2)(z + 1/4)
(E4.7.6)

with one of the following three ROCs:

R1 =
{

z : |z| >
1

2

}
,R2 =

{
z : |z| <

1

4

}
, and

R3 =
{

z :
1

4
< |z| <

1

2

}
(E4.7.7)

We first divide this by z and then expand it into partial fractions:

X [z]

z
= 4

z − 1/2
− 4

z + 1/4
; X [z] = 4

z

z − 1/2
− 4

z

z + 1/4
(E4.7.8)

Now, depending on the ROC, we use Table B.9(5) or (6) to write the inverse
z-transform as follows:

(i) R1 =
{

z : |z| >
1

2

}
: x[n] = 4

(
1

2

)n

us[n] − 4

(
−1

4

)n

us[n]

(E4.7.9a)

(ii) R2 =
{

z : |z| <
1

4

}
:

x[n] = −4

(
1

2

)n

us[−n − 1] + 4

(
−1

4

)n

us[−n − 1] (E4.7.9b)

(iii) R3 =
{

z :
1

4
< |z| <

1

2

}
:

x[n] = −4

(
1

2

)n

us[−n − 1] − 4

(
−1

4

)n

us[n] (E4.7.9c)

>>syms z, x=iztrans(3*z/(zˆ2-0.25*z-1/8)) % (E4.7.6)
x = 4*(1/2)ˆn-4*(-1/4)ˆn % (E4.7.9a) just a right-sided sequence

222 4 The z-Transform

Example 4.8 The Inverse z-Transform by Partial Fraction Expansion
Let us find the inverse z-transform of

X [z] = 2z2

z2 − z + 1/2
= 2z2

(z − 0.5 − j0.5)(z − 0.5 + j0.5)
(E4.8.1)

with ROC R = {z : |z| > 1}

We first divide this by z and then expand it into partial fractions:

X [z]

z
= rR + jrI

z − 0.5 − j0.5
+ rR − jrI

z − 0.5 + j0.5

= 1 − j

z − 0.5 − j0.5
+ 1 + j

z − 0.5 + j0.5
(E4.8.2)

Now, moving the z (which we have saved) from the LHS back into the RHS yields

X [z] = (1 − j)z

z − 0.5 − j0.5
+ (1 + j)z

z − 0.5 + j0.5
(E4.8.3)

We can use Table B.9(5) to write the inverse z-transform as

x[n] = (1 − j)(0.5 + j0.5)nus[n] + (1 + j)(0.5 − j0.5)nus[n]

=
√

2
(

e− jπ/4
√

2
−n

e jnπ/4 + e jπ/4
√

2
−n

e− jnπ/4
)

us[n]

=
√

2
−n+3

cos((n − 1)
π

4
)us[n] (E4.8.4)

As a nice alternative for X [z] having complex conjugate poles like (E4.8.1), we can
decompose it into the following form, which can be matched exactly with some
element of the z-transform table:

X [z] = 2z(z − 1/2)

(z − 1/2)2 + (1/2)2
+ 2(1/2)z

(z − 1/2)2 + (1/2)2

= 2
z(z − r cos Ω1)

(z − r cos Ω1)2 + r2 sin2 Ω1
+ 2

zr sin Ω1

(z − r cos Ω1)2 + r2 sin2 Ω1
(E4.8.5)

where r = 1/
√

2, cos Ω1 = 1/
√

2, sin Ω1 = 1/
√

2, and Ω1 = π/4. Then we can
use B.9(18) and (17) to obtain the same result as (E4.8.3):

x[n] = 2
(
rn cos(Ω1n) + rn sin(Ω1n)

)
us[n]

= 2
(√

2
−n

cos(
π

4
n) +

√
2

−n
sin(

π

4
n)
)

us[n]

=
√

2
−n+3

cos((n − 1)
π

4
)us[n] =

√
2

−n+3
sin((n + 1)

π

4
)us[n] (E4.8.6)

4.3 The Inverse z-Transform 223

(cf) It seems that the MATLAB command ‘iztrans()’ does not work properly for
this problem:

>>syms z, x=iztrans(2*zˆ2/(zˆ2-z+1/2)) % (E4.8.1)
>>n=1:10; xn=2.ˆ(-(n-3)/2).*cos((n-1)*pi/4); stem(n,xn), hold on %(E4.8.6)
>>[r,p,k]=residuez([2 0 0],[1 -1 1/2]) % Partial fraction expansion
>>xn1=real(r.’*[p(1).ˆn; p(2).ˆn]); stem(n,xn1,’r’) % (E4.8.3) Alternative

4.3.2 Inverse z-Transform by Long Division

Noting that the inverse z-transform can rarely be found in an elegant form like
Eq. (E4.8.6), we may think of it as an alternative to expand X[z] = Q1[z]/P[z]
into a polynomial in powers of z−1 and equate each coefficient of z−n to x[n]. More
specifically, starting with the highest/lowest powers of z depending on the shape of
the ROC (for a right/left-sided sequence), we divide Q1[z] by P[z] to expand X[z]
into the power series form of the z-transform definition (4.1.1). For example, let us
consider X[z] given by Eq. (E4.7.6) in Example 4.7.

X[z] = 3z

z2 − (1/4)z − 1/8
= 3z

(z − 1/2)(z + 1/4)
(4.3.7)

(Case 1) If the ROC is given as {z : |z| > 1/2}, we perform the long division as

3z−1 + (3/4)z−2 + (9/16)z−3 + · · ·
z2 − (1/4)z − 1/8

)
3z

3z − 3/4 − (3/8)z−1

3/4 + (3/8)z−1

3/4 − (3/16)z−1 − (3/32)z−2

(9/16)z−1 − (3/32)z−2

. .

Then each coefficient of the quotient polynomial in z−n is equated with
x[n], yielding

x[n] = [
n=0
0

1
3

2
3/4

3
9/16 · · ·] : the same as Eq. (E4.7.9a)

(4.3.8a)

224 4 The z-Transform

(Case 2) If the ROC is given as {z : |z| < 1/4}, we perform the long division as

−24z + 48z2 − 288z3 + · · ·
− 1/8 − (1/4)z + z2

)
3z

3z + 6z2 − 24z3

− 6z2 + 24z3

−6z2 − 12z3 + 48z4

36z3 − 48z4

. .

Then each coefficient of the quotient polynomial in zn is equated with
x[−n], yielding

x[n] = [
−3

−288
−2
48

−1
−24

n=0
0 · · ·] : the same as Eq. (E4.7.9b)

(4.3.8b)

(Case 3) If the ROC is given as {z : r− = 1/4 < |z| < r+ = 1/2}, X[z] should
be separated into two parts, one having the poles on or inside the circle
of radius r− and the other having the poles on or outside the circle of
radius r+. Then, after performing the long division as in case 1/2 for the
former/latter, we add the two quotients and equate each coefficient of the
resulting polynomial in z±n with x[∓n].

4.4 Analysis of LTI Systems Using the z-Transform

So far we have seen that the z-transform is a general way of describing and
analyzing discrete-time sequences. Now we will see that the z-transform also
plays a very important role in the description and analysis of discrete-time linear
time(shift)-invariant (LTI) systems. This stems from the fact that an LTI system can
be characterized by the impulse response. Since the impulse response itself is a
discrete-time signal, its z-transform, referred to as the system or transfer function,
provides another way to characterize discrete-time LTI systems both in the time
domain and in the frequency domain.

Let us consider a discrete-time causal LTI system with the impulse response g[n]
and input x[n]. Then the output y[n] is the convolution of g[n] and x[n] given by
Eq. (1.2.9) as

y[n] = g[n] ∗ x[n] (4.4.1)

so that, from the convolution property (4.2.6),

Y [z] = G[z]X [z] (4.4.2)

4.4 Analysis of LTI Systems Using the z-Transform 225

where X [z], Y [z], and G[z] are the z-transforms of the input x[n], output y[n], and
impulse response g[n], respectively. Note that G[z] is referred to as the system or
transfer function.

Remark 4.5 System Function, Pole Location, ROC, Causality, and Stability

(1) Eqs. (4.4.2) and (3.2.8) have an interpretation of describing the input-output
relationship of a discrete-time LTI system in the z-domain and in the frequency
domain, respectively. Comparing these two equations, we can state that the sys-
tem function G[z], evaluated on the unit circle z = e jΩ, yields the frequency
response G[e jΩ] = G(Ω) of the system (Remark 4.2) if G(Ω) = F{g[n]}
exists, or equivalently, the ROC of G[z] includes the unit circle. This is anal-
ogous to the continuous-time case where the frequency response G(ω) can be
obtained by evaluating the system function G(s) on the imaginary axis s = jω.

(2) Characteristics of a system such as stability and causality can be associated with
the ROC and pole location of the system function G[z]. For example, if a system
is causal, its impulse response g[n] is a right-sided sequence and therefore,
the ROC of G[z] = Z{g[n]} must be the outside of the outermost pole (see
Remark 4.4). If a system is stable, the ROC of G[z] includes the unit circle
so that the frequency response G[e jΩ] can be defined (see Remark 4.2). If a
system is both causal and stable, then the ROC of G[z] must include the unit
circle and be outside the outermost pole. It is implied that for a causal system to
be stable, all the poles of its system function G[z] must be inside the unit circle
(Fig. 4.4(a) vs. (b)).

In particular, for systems characterized by linear constant-coefficient difference
equations, the z-transform provides a very convenient procedure for obtaining
the system function, frequency response, or time response. Consider a causal lin-
ear time-invariant (LTI) system (in Fig. 4.5) whose input-output relationship is
described by the following difference equation

∑N A−1

i=0
ai y[n − i] =

∑N B−1

j=0
b j x[n − j] (4.4.3)

z-plane
Im{z} Im{z}

(a) All poles inside the unit circle (b) Not all poles inside the unit circle

Re{z} Re{z}
1

5
1

4

z-plane

Fig. 4.4 Pole locations, ROC, unit circle, causality, and stability

226 4 The z-Transform

Input Output

Output spectrum

∑NA–1
i=0 aiy [n– i]

A [z]Y [z] = B [z]X [z]

bjx [n–j]

B [z]
X [z]

Y(Ω) B(Ω)
X(Ω) A(Ω)

A [z]
Y [z]

∑NB–1
j=0

y [n] = g [n] * x [n]

z-Transorm of output

Y (Ω) = G (Ω) X(Ω)

Y [z] = G [z]X [z]

Input spectrum
Frequency response G (Ω) =

System or transfer function G [z] =

Impulse response g [n]x [n]

X [z]

X [Ω]

z-Transform of input

=

=

=

Fig. 4.5 The input–output relationship, system function, and frequency response of a discrete–time
LTI system

where the initial conditions are given as y[n0], y[n0 − 1], · · · , y[n0 − N A + 2].
This can be solved iteratively for the time response y[n] to an input x[n] starting
from n = n0 + 1:

y[n] = 1

a0

(
−a1 y[n − 1] − · · · − aN A−1 y[n − N A + 1] +

∑N B−1

j=0
b j x[n − j]

)
(4.4.4)

With zero initial conditions and the unit impulse input x[n] = δ[n], this yields
the impulse response y[n] = g[n]. To find the system function as the z-domain
input-output relationship, we assume zero initial conditions and use the linearity
and time-shifting properties to take the z-transform of Eq. (4.4.3) as

∑N A−1

i=0
ai z

−i Y [z] =
∑N B−1

j=0
b j z

− j X [z]; A[z]Y [z] = B[z]X [z];

G[z] = Y [z]

X [z]
= B[z]

A[z]
with A[z] =

∑N A−1

i=0
ai z

−i and B[z] =
∑N B−1

j=0
b j z

− j

(4.4.5)

This is referred to as the system function. Substituting z = e jΩ into the system
function or taking the DTFT of the impulse response g[n], we can obtain the fre-
quency response of the system. Figure 4.6 shows the overall relationship among
the time-domain relationship (in the form of difference equation), the system (or
transfer) function, the impulse response, and the frequency response.

∑NA–1 ∑i = 0 j = 0aiy [n–i] =
z-Transform

z -domain Frequency domain

DTFT (discrete-time Fourier transform)

Y [z]
A [z] z = e jΩ

B [z]
G [e jΩ] G (Ω)

X [z]
G [z]

A [z]Y [z] = B [z]X [z]
Inverse z-transform

Inverse z-transform

z-Transform

zero initial conditions

Time domain

x [n] = δ[n] and
g [n]

bj x [n– j]

== =

NB–1

Fig. 4.6 The relationship between the impulse response, system function, and frequency response

4.4 Analysis of LTI Systems Using the z-Transform 227

Especially when we are interested only in right-sided sequences and causal lin-
ear systems, it is sensible to use the unilateral z-transform instead of the bilateral
z-transform. It is the time shifting property that makes the unilateral z-transform
particularly useful in analyzing causal systems described by difference equations
with initial conditions.

Example 4.9 Difference Equation, System Function, and Impulse Response
Consider a discrete-time causal LTI (linear time-invariant) system whose input-

output relationship is described by the following difference equation:

y[n] − 1

4
y[n − 1] − 1

8
y[n − 2] = x[n − 1] (E4.9.1)

(a) Find the system function G[z].
Applying the linearity and time-shifting properties of the z-transform or using
Eq. (4.4.5), we can obtain the system function as

G[z] = Y [z]

X [z]
= z−1

1 − (1/4)z−1 − (1/8)z−2
= z

(z − 1/2)(z + 1/4)
(E4.9.2)

(b) Find the impulse response g[n].
Noting that the system is causal and accordingly, the ROC of G[z] is z > 1/2
(the outside of the circle passing through the outermost pole), we obtain the
inverse z-transform of G[z] as

g[n] = Z−1

{
z

(z − 1/2)(z + 1/4)

}
partial fraction expansion=

Z−1

{
4

3

(
z

z − 1/2
− z

z + 1/4

)}
B.9(5)= 4

3

((
1

2

)n

−
(

−1

4

)n)
us[n]

(E4.9.3)

Alternatively, the impulse response can be obtained directly from the dif-
ference equation, which can be solved iteratively with the unit impulse input
x[n] = δ[n] and zero initial conditions:

y[n] = 1

4
y[n − 1] + 1

8
y[n − 2] + x[n − 1] (E4.9.4)

where y[−1] = y[−2] = 0 and x[n − 1] = δ[n − 1] = 1 only for n = 1.

n = 0 : y[0] = (1/4)y[−1] + (1/8)y[−2] + x[−1] = 0 − 0 + 0 = 0

n = 1 : y[1] = (1/4)y[0] + (1/8)y[−1] + x[0] = 0 − 0 + 1 = 1

n = 2 : y[2] = (1/4)y[1] + (1/8)y[0] + x[1] = 1/4 − 0 + 0 = 1/4

n = 3 : y[3] = (1/4)y[2] + (1/8)y[1] + x[2] = 1/16 + 1/8 + 0 = 3/16

.

228 4 The z-Transform

%sig04e09.m
syms z, Gz=z/(zˆ2-(1/4)*z-1/8); %system function
g = iztrans(Gz) % symbolic inverse z transform
N=16; nn=[0:N-1];
for n=0:N-1, gn(n+1) = eval(g); end
% Solving the difference equation with the unit impulse input
B= [1 0]; A= [1 -1/4 -1/8]; %numerator/denominator
NB=length(B); NA=length(A);
xn = [0 1 zeros(1,N-1+NB)]; % x[n-1] impulse input delayed by one sample
y = zeros(1,NA-1); % Initial condition
for m=NA:NA+N-1 % To solve the difference equation iteratively

y(m)= -A(2:NA)*y(m-[1:NA-1]).’ +B*xn(m-NA+[1:NB]).’;
end
y = y(NA:NA+N-1);
% Using filter()
yp=[0 0]; xp=0; w0=filtic(B,A,yp,xp) %Initial condition from past history
yn = filter(B,A,xn,w0) % With zero initial condition by default
subplot(211)
stem(nn,gn), hold on, pause, stem(nn,y(1:N),’r’), stem(nn,yn(1:N),’k.’)
% To plot the frequency response
N=64; dW=2*pi/N; W=[0:N]*dW; % frequency range
GW = DTFT(gn,W); %DTFT of the impulse response
GW1 = freqz(B,A,W); %substitute z=exp(j*W) into the system ftn B(z)/A(z)
subplot(212), plot(W,abs(GW),’b’, W,abs(GW1),’r’)

The objective of the above program “sig04e09.m” is as follows:

- Find the impulse response g[n] in two ways, that is, by taking the inverse z-
transform of the system function G[z] and by solving the difference equation for
the output y[n] to the impulse input x[n] = δ[n]. The MATLAB built-in function
‘filter()’ together with ‘filtic()’ (Sect. E.12) can also be used to obtain
the output to any input and any initial condition. Also check if the two results
conform to each other.

- Find the frequency response G(Ω) in two ways, that is, by taking the DTFT of
the impulse response g[n] and by substituting z = e jΩ into the system function
G[z] = B[z]/A[z], where the latter job is done by using the MATLAB built-in
function ‘freqz()’.

(cf) Comparing Eq. (E4.9.2) with Eq. (E4.9.3), we can tell that the poles of the
system function, say, p1 = 1/2 and p2 = −1/4 yield the modes of the sys-
tem, each of which determines how the corresponding output term evolves with
time. See the stability theorem A.1.

Remark 4.6 Computational Method for Inverse z-Transform
Example 4.9 suggests another way of obtaining the inverse z-transform. That

is, we can regard a rational z-transform expression G[z] as a system function and
set it equal to Y [z]/X [z]. Then, cross multiplying yields the z-domain input-output
relationship

4.4 Analysis of LTI Systems Using the z-Transform 229

Y [z]

X [z]
= G[z] = B[z]

A[z]
; A[z]Y [z] = B[z]X [z] (4.4.6)

with A[z] = ∑N A−1
i=0 ai z−i and B[z] = ∑N B−1

j=0 b j z− j . We can write the correspond-
ing difference equation

∑N A−1

i=0
ai y[n − i] =

∑N B−1

j=0
b j x[n − j] (4.4.7)

and solve it iteratively with x[n] = δ[n] and zero initial conditions for y[n] in the
forward/backward direction to get a right/left-sided sequence g[n] = Z−1{G[z]}.
Just as with the long division method, this gives us no analytical solution in a closed
form. Note the following fact:

Y [z]|X [z]=1 = G[z]X [z]|X [z]=1 = G[z]

y[n]|x[n]=δ[n] = Z−1{G[z]} = g[n] (4.4.8)

So far, we have never felt the necessity of the unilateral z-transform over the
bilateral one. Now, we are about to look at an initial value problem for which the
unilateral transform is indispensable.

Example 4.10 Different Difference Equations Describing the Same System

(a) Find the output y1[n] of the causal system whose input-output relationship is
described by

y1[n] − a y1[n − 1] = x1[n − 1], n ≥ 0 (E4.10.1)

where y1[−1] = y0 and

x1[n] = bnus[n] with b �= a (E4.10.2)

(Solution)
To solve this difference equation for y1[n], we apply the time shifting property
(4.2.3a) for Eq. (E4.10.1) to write its z-transform as

Y1[z] − a(z−1Y1[z] + y1[−1]) = z−1 X1[z] + x1[−1];

(1 − az−1)Y1[z] = a y0 + z−1 X1[z] (E4.10.3)

since x1[−1]
(E4.10.2)= bnus[n]|n=−1 = 0. We can solve this algebraic equation

for Y1[z] as

Y1[z] = 1

1 − a z−1
(a y0+z−1 X1[z]) = z

z − a

(
a y0 + z−1 z

z − b

)
(E4.10.4)

230 4 The z-Transform

To take the inverse z-transform of this expression, we divide its both sides by
z and perform the partial fraction expansion as

Y1[z]

z
= a y0

z − a
+ 1

(z − a)(z − b)
= a y0

z − a
+ 1

a − b

(
1

z − a
− 1

z − b

)

Y1[z] = a y0z

z − a
+ 1

a − b

(
z

z − a
− z

z − b

)
(E4.10.5)

Now we take the inverse z-transform to get the output as

y1[n] = ay0anus[n] + 1

a − b
(an − bn)us[n]

= y0an+1us[n + 1] + 1

a − b
(an − bn)us[n] (E4.10.6)

Here, we replaced us[n] by us[n+1] to express the existence of the given initial
condition y1[−1] = y0.

(b) Find the output y2[n] of the causal system whose input-output relationship is
described by

y2[n + 1] − ay2[n] = x2[n], n ≥ 0 (E4.10.7)

where y2[0] = y0 and

x2[n] = x1[n − 1] = bn−1us[n − 1] with b �= a (E4.10.8)

(Solution)
To solve this difference equation for y2[n], we apply the time shifting property
(4.2.3b,a) for Eq. (E4.10.7) to write its z-transform as

z(Y2[z] − y2[0]) − aY2[z] = X2[z];

(z − a)Y2[z] = zy0 + X2[z] = zy0 + z−1 X1[z] (E4.10.9)

since x1[−1]
(E4.10.2)= bnus[n]|n=−1 = 0. We can solve this algebraic equation

for Y2[z] as

Y2[z] = 1

z − a
(zy0 + z−1 X1[z]) = y0z

z − a
+ 1

(z − a)(z − b)
(E4.10.10)

To take the inverse z-transform of this expression, we divide its both sides by
z and perform the partial fraction expansion as

4.5 Geometric Evaluation of the z-Transform 231

Y2[z]

z
= y0

z − a
+ 1

z(z − a)(z − b)

= y0

z − a
+ 1/ab

z
+ 1/a(a − b)

z − a
+ 1/b(b − a)

z − b
;

Y2[z] = y0z

z − a
+ 1

ab
+ 1

a − b

(
1

a

z

z − a
− 1

b

z

z − b

)
(E4.10.11)

Now we take the inverse z-transform to get the output as

y2[n] = y0anus[n] + 1

ab
δ[n] + 1

a − b
(an−1 − bn−1)us[n]

= y0anus[n] + 1

a − b
(an−1 − bn−1)us[n − 1] (E4.10.12)

Here, us[n] is replaced by us[n − 1] to show that the 2nd and 3rd terms cancel
each other at n = 0.

(cf) Comparing Eqs. (E4.10.6) and (E4.10.12), we see that y1[n − 1] = y2[n]. This
can be verified by showing that

Z{y1[n − 1]} = Y2[z] = Z{y2[n]} (E4.10.13)

(Proof)

Z{y1[n − 1]} (4.2.3a)= z−1(Y1[z] + y1[−1]z) = z−1(Y1[z] + y0z)

(4.10.4)= z−1(
1

z − a
(z a y0 + X1[z]) + y0z) = 1

z − a
(z y0 + z−1 X1[z])

(4.10.10)= Y2[z]

(E4.10.14)

The justification is as follows: The two LTI systems of (a) and (b) are inherently
the same. Compared with (a), the initial conditions and input of (b) are delayed by
n1 = 1 and consequently, the output of the system (b) is also delayed by n1 = 1.

4.5 Geometric Evaluation of the z-Transform

In this section we discuss a geometrical method to evaluate a rational function in z
at any point in the z-plane, particularly on the unit circle z = e jΩ for obtaining the
frequency response G(Ω) from the pole-zero plot of the system function G[z].

Let us consider a system function G[z] given in a rational form as

G[z] = K

∐M
j=1 (z − z j)∐N
i=1 (z − pi)

= K
(z − z1)(z − z2) · · · (z − zM)

(z − p1)(z − p2) · · · (z − pN)
(4.5.1)

232 4 The z-Transform

where z j ’s and pi ’s are finite zeros and poles of G[z], respectively. The value of
G[z] at some point z = z0 in the z-plane is a complex number that can be expressed
in the polar form as

G[z0] = |G[z0]|∠G[z0] (4.5.2)

where

Magnitude : |G[z0]| = |K |
∐M

j=1 |z0 − z j |∐N
i=1 |z0 − pi |

(4.5.3a)

Phase : ∠G[z0] =
∑M

j=1
∠(z0 − z j) −

∑N

i=1
∠(z0 − pi)(±π)

with ± π only for K < 0 (4.5.3b)

(z0 − z j)’s and (z0 − pi)’s in the above equations are complex numbers, each of
which can be represented by a vector in the z-plane from z j or pi to z0. They can
be easily constructed from the pole/zero plot where |z0 − z j | and |z0 − pi | are the
distances, while ∠z0 − z j and ∠z0 − pi are the phase angles.

As mentioned in Remark 4.5(1), the frequency response G(Ω) can be obtained
by evaluating the system function G[z] on the unit circle if it exists. Keeping this in
mind, we can use the pole-zero plot to get the approximate shape of the magnitude
response |G(Ω)| without computing the frequency response from Eq. (4.5.2). Here
is the overall feature of frequency response related with the pole-zero pattern:

Remark 4.7 Frequency (Magnitude/Phase) Response and Pole-Zero Pattern

(1) For a pole/zero near the unit circle, the magnitude response curve tends to have
a sharp peak/valley and the phase changes rapidly by about 180◦ at the corre-
sponding frequency. As the pole/zero moves to the unit circle, the peak/valley
becomes sharper. On the other hand, as the pole/zero moves to the origin, the
peak/valley becomes smoother. Such a tendency can be observed from Fig. 3.2
where the frequency responses of G[z] = z/(z−a) are depicted for a = 0.8 and
0.5. Also, the phase jump of π [rad] occurring at the frequency corresponding
to a zero on the unit circle is illustrated by Figs. 3.1, 3.7, 3.11, and 4.8.

(2) Generally speaking, if a singularity (pole/zero) is located close to the unit circle,
it will dominate the frequency response in the frequency range adjacent to that
location. This idea of dominant singularity is helpful not only for getting an
approximate frequency response, but also for the pole/zero placement design
to achieve a desired frequency response. For example, the magnitude response
(Fig. 4.7(b)) of the system described by (E4.11.1) has the maximum around
Ω = ±π/4 due to the pole at z = 0.5

√
2e± jπ/4 and becomes zero at Ω = π

because of the zero at z = −1. In contrast, the zero at z = 0 (which is far from
the unit circle) has no influence on the magnitude response.

4.5 Geometric Evaluation of the z-Transform 233

Example 4.11 Pole-Zero Pattern and Frequency Response
For the system function

G[z] = z(z + 1)

z2 − z + 0.5
= z(z + 1)

(z − 0.5 − j0.5)(z − 0.5 + j0.5)
(E4.11.1)

we have the pole-zero plot and the frequency response magnitude and phase curves
depicted in Fig. 4.7(a), (b), and (c), respectively. As shown in Fig. 4.7(b), the mag-
nitude of G(Ω) = G[e jΩ] becomes zero at Ω = π corresponding to the zero
z = −1, i.e.,

|G[e jΩ]|∣∣
Ω=π

= |G[z]||z=−1 = 0 (E4.11.2)

Im {z}

[rad]

Re {z}

AB

G [z]

CD

z0 = e
j Ω

B

(a) The pole–zero plot of G [z] =

(b) The magnitude curve of the frequency response G(Ω) = G [e j Ω]

(c) The phase curve of the frequency response G(Ω) = G [e j Ω]

z

2–z+0.5

z
2–z+0.5

Z1Z 2

P2

P1

z (z+1)

z (z+1)
(z –0.5– j 0.5) (z –0.5+ j 0.5)

z (z+1)

C

D

A

Ω = −π
Ω = π Ω = 0

Ω = 2π

Ω = −π/4

2π

2π

π

φ1

φ2

θ1

<(θ1 + θ2 − φ1 − φ2
)

θ2

−π

−π

|G [e
j Ω]

G [e j Ω]

Ω

Ω

ΩP = 0.68

Ω = π/4

G[z0] =

0

2

2

– 0.7457

–2

5.3

π

4

0

=

=

1

Fig. 4.7 The pole–zero plot and frequency response for Example 4.11

234 4 The z-Transform

and it reaches the peak around Ω = ±π/4 adjacent to the phases of the poles

z = 0.5 ± j0.5 = 0.5
√

2e± jπ/4 (E4.11.3)

(a) Let us find the response of the system G[z] to a sinusoidal input x1[n] =
sin(Ωpn) with Ωp = 0.68.

Y1[z] = X1[z]G[z] = z sin Ωp

(z − cos Ωp)2 + sin2 Ωp

z(z + 1)

(z − 0.5)2 + 0.52
(E4.11.4)

= −3.60 × z(z − cos Ωp) + 3.89 × z sin Ωp

(z − cos Ωp)2 + sin2 Ωp

+ 3.60 × z(z − R cos Ωs) − 1.65 × z R sin Ωs

(z − R cos Ωs)2 + (R sin Ωs)2

∣∣∣∣
R= 1√

2
,Ωs= π

4

y1[n] = Z−1 {Y1[z]} = −3.6 cos(Ωpn) + 3.89 sin(Ωpn)

+
√

2
−n

(3.6 cos(nπ/4) − 1.65 sin(nπ/4))

= (5.3 sin(Ωpn − 0.7457) +
√

2
−n

(3.6 cos(nπ/4)

− 1.65 sin(nπ/4)))us[n] (E4.11.5)

Note that the sinusoidal steady-state response y1,ss[n] = 5.3 sin(Ωpn − 0.7457)
has the same frequency with the input x1[n], but its amplitude is |G(Ωp)| = 5.3
times that of the input and its phase is ∠G(Ωp) = −0.7457 � −1.1Ωp plus
that of the input, as can be seen from Fig. 4.8(a).

(b) Let us find the response of the system G[z] to a unit step (DC) input x2[n] =
us[n].

4

0

0

0

0
5

20

20

30

30

n

m

(b) The output of the system of Example 4.11 to a unit step (DC) input

(a) The output of the system of Example 4.11 to a sinusoidal input sin (Ωpn)

10

11

–5.3

Output
Input

5.3

:
:

Fig. 4.8 The output of the system of Example 4.11 to sinusoidal/DC inputs

4.5 Geometric Evaluation of the z-Transform 235

Y2[z] = X2[z]G[z] = z

z − 1

z(z + 1)

(z − 0.5)2 + 0.52

= 4 × z

z − 1
+ −3 × z(z − 0.5)

(z − 0.5)2 + 0.52
+ 1 × z0.5

(z − 0.5)2 + 0.52
(E4.11.6)

where the partial fraction expansion is found as follows:

Y2[z] = K1 × z

z − 1
+ K2 × z(z − 0.5)

(z − 0.5)2 + 0.52
+ K3 × z0.5

(z − 0.5)2 + 0.52

K1 = (z − 1)
Y1[z]

z
= z(z + 1)

(z − 0.5)2 + 0.52

∣∣∣∣
z=1

= 4

K1 + K2 = 1,−K1 − 0.5K2 + 0.5K3 = 1, 0.5K1 + 0.5K2 − 0.5K3 = 0

K2 = 1 − K1 = 1 − 4 = −3, K3 = K1 + K2 = 4 − 3 = 1

Thus the response to x2[n] = us[n] can be obtained from the inverse z-
transform as

y2[n] = Z−1 {Y2[z]} =
(

4 +
√

2
−n

(−3 cos(nπ/4) + sin(nπ/4))
)

us[n]

(E4.11.7)

Note that the DC steady-state response y2,ss[n] = 4 is the DC gain |G(0)| = 4
times that of the input, as can be seen from Fig. 4.8(b).

In fact, the inverse z-transform of Y1[z] as well as Figs. 4.7 and 4.8 is obtained
by running the following MATLAB program “sig04e11.m”, where we managed to
get the coefficients of the partial fraction expansion using residue() since iztrans()
does not work properly for this case.

%sig04e11.m
clear, clf
B=[1 1 0]; A=[1 -1 0.5]; %numerator/denominator of system function (E4.11.1)
figure(1), zplane(roots(B),roots(A)) % pole-zero plot in Fig. 4.7(a)
% To get the frequency response
N=360; dW=2*pi/N; k0=-200; W=[k0:500]*dW;
GW= freqz(B,A,W); % frequency response
GW mag= abs(GW); GW ph= angle(GW); % magnitude/phase of frequency response
[GW mag peak,i]= max(GW mag(-k0+[1:N/2])) % peak frequency response magnitude
ip=-k0+i-1; Wp=W(ip); GW ph peak=GW ph(ip); % peak frequency
GW dc= GW(-k0+1); % DC gain
figure(2), subplot(411), plot(W,GW mag) % Fig. 4.7(b)
subplot(412), plot(W,GW ph) % Fig. 4.7(c)
% To get the time response from filtering of a sine-wave input signal
nn=[0:30]; % time index vector
xn= sin(Wp*nn); % A sinusoidal input of peak frequency
yn= filter(B,A,xn); % With zero initial condition by default
% plot the time response
subplot(413), stem(nn,xn,’Markersize’,5), hold on

236 4 The z-Transform

stem(nn,yn,’x’,’Markersize’,5)
% Try with the inverse z-transform
syms z
y1=iztrans(sin(Wp)*zˆ2*(z+1)/((z-cos(Wp))ˆ2+sin(Wp)ˆ2)/((z-0.5)ˆ2+0.5ˆ2))
[r,p,k]=residue(sin(Wp)*[1 1 0],conv([1 -2*cos(Wp) 1],[1 -1 0.5]))
R = sqrt(real(p(3)*p(4))); Ws= angle(p(3));
% numerator of the 1st&2nd terms reduced to a common denominator
n1= r(1)*[1 -p(2)]+r(2)*[1 -p(1)];
K1= n1(1); K2= (n1(2)+K1*cos(Wp))/sin(Wp);
% numerator of the 3rd&4th terms reduced to a common denominator
n2= r(3)*[1 -p(4)]+r(4)*[1 -p(3)];
K3= n2(1); K4= (n2(2)+K3*R*cos(Ws))/(R*sin(Ws));
y1n= K1*cos(Wp*nn) + K2*sin(Wp*nn) + R.ˆnn.*(K3*cos(Ws*nn)+K4*sin(Ws*nn));
stem(nn,y1n,’rx’,’Markersize’,5)
%filtering of a DC input signal
nn=[0:30]; xn= ones(size(nn)); % A DC input signal (of zero frequency)
yn DC= filter(B,A,xn); % With zero initial condition by default
subplot(414)
stem(nn,xn,’Markersize’,5) % plot the time response together with the input
hold on, stem(nn,yn DC,’m’,’Markersize’,5)
% Try with the inverse z-transform
y2=iztrans(zˆ2*(z+1)/(z-1)/((z-0.5)ˆ2+0.5ˆ2))
% A nice alternative for the case of all simple poles
[r,p,k]=residue([1 1 0],conv([1 -1],[1 -1 0.5]))
y2n= 0;
for i=1:length(r)

y2n= y2n + r(i)*p(i).ˆnn;
end
stem(nn,real(y2n),’mˆ’,’Markersize’,5)

4.6 The z-Transform of Symmetric Sequences

In this section we explore some features of the phase characteristic and pole-zero
pattern for systems having (anti-)symmetric impulse responses of finite duration.

4.6.1 Symmetric Sequences

Let us consider a symmetric sequence g[n] of duration N + 1 such that

g[n] = g[N − n] for n = 0 : N (4.6.1)

<Case 1> If N is even, i.e., N = 2M for some integer M , then the z-transform of
g[n] is

4.6 The z-Transform of Symmetric Sequences 237

G[z] =
∑M−1

n=0
g[n]z−n + g[M]z−M +

∑N

n=M+1
g[n]z−n

(4.6.1)=
∑M−1

n=0
g[n](z−n + z−(N−n)) + g[M]z−M

= z−M

(
g[M] +

∑M−1

n=0
g[n](z−n+M + zn−M)

)
with M = N

2
(4.6.2a)

which, with z = e jΩ, yields the frequency response as

G(Ω) =
(

g[
N

2
] +

∑N/2−1

n=0
2g[n] cos

((
N

2
− n

)
Ω

))
∠ − N

2
Ω

(4.6.2b)
<Case 2> If N is odd, i.e., N = 2M − 1 for some integer M , then the z-transform

of g[n] is

G[z] =
∑M−1

n=0
g[n]z−n +

∑N

n=M
g[n]z−n

(4.6.1)=
∑M−1

n=0
g[n]z−n +

∑M−1

n=0
g[N − n]z−(N−n)

=
∑M−1

n=0
g[n](z−n + zn−N)

M=(N+1)/2= z−N/2
∑M−1

n=0
g[n](z−n+N/2 + zn−N/2) (4.6.3a)

which, with z = e jΩ, yields the frequency response as

G(Ω) =
∑(N−1)/2

n=0
2g[n] cos

((
N

2
− n

)
Ω

)
∠ − N

2
Ω (4.6.3b)

Note that G[z]|−1 = G[e jΩ]
∣∣
Ω=π

= 0.

4.6.2 Anti-Symmetric Sequences

Let us consider an anti-symmetric sequence g[n] of duration N + 1 such that

g[n] = −g[N − n] for n = 0 : N (4.6.4)

<Case 1> If N is even, i.e., N = 2M for some integer M , then we have g[M] =
−g[M], which implies g[M] = 0. The z-transform of g[n] is

G[z] = z−M
∑M−1

n=0
g[n](z−n+M − zn−M) with M = N

2
(4.6.5a)

238 4 The z-Transform

which, with z = e jΩ, yields the frequency response as

G(Ω) =
∑N/2−1

n=0
2g[n] sin

((
N

2
− n

)
Ω

)
∠ − N

2
Ω + π

2
(4.6.5b)

Note that G[e jΩ]
∣∣
Ω=0 = 0 and G[e jΩ]

∣∣
Ω=π

= 0.
<Case 2> If N is odd, i.e., N = 2M − 1 for some integer M , then the z-transform

of g[n] is

G[z] = z−N/2
∑M−1

n=0
g[n](z−n+N/2 − zn−N/2) (4.6.6a)

which, with z = e jΩ, yields the frequency response as

G(Ω) =
∑(N−1)/2

n=0
2g[n] sin

((
N

2
− n

)
Ω

)
∠ − N

2
Ω + π

2
(4.6.6b)

Note that G[e jΩ]
∣∣
Ω=0 = 0.

Remark 4.8 Pole-Zero Pattern and Linear Phase of (Anti-)Symmetric Sequences

(1) From Eqs. (4.6.2a)/(4.6.5a) and (4.6.3a)/(4.6.6a), we can see that if G[z0] = 0,
then G[z−1

0] = 0, which implies that real zeros occur in reciprocal pairs (z0

and z−1
0) and complex zeros occur in reciprocal, complex-conjugate quadruplets

(z0 = r0∠ ± Ω0 and z−1
0 = r−1

0 ∠ ± Ω0). Note that zeros on the unit circle form
their own reciprocal pairs and real zeros on the unit circle, i.e., z = 1 or z = −1,
form their own reciprocal, complex conjugate pairs. Note also that all the poles
are located at z = 0 or ∞. See Fig. 4.9(a1) and (a2).

(2) From Eqs. (4.6.2b)/(4.6.5b) and (4.6.3b)/(4.6.6b), we can see that they have
linear phase, i.e., their phases are (piecewise) linear in Ω except for phase jumps
of ±π or ±2π (see Remark 3.3 and Fig. 4.9(c1) and (c2)).

(3) If a system has the impulse response represented by a symmetric or anti-
symmetric sequence of finite duration, such a system has linear phase shifting
property so that it will reproduce the input signals falling in the passband with a
delay equal to the slope of the phase curve. That is why such a system is called
the linear phase FIR filter.

Example 4.12 Pole-zero Pattern of Symmetric or Anti-symmetric Sequences

(a) Consider a system whose impulse response is

g1[n] = [· · · n=−1
0

0
1

1
−2.5

2
5.25

3
−2.5

4
1.0

5
0 · · ·]. (E4.12.1)

This system has the system function G1[z] = Z{g1[n]} as

4.6 The z-Transform of Symmetric Sequences 239

π
(b1) The magnitude curve G1[e jΩ]

(a1) The pole-zero plot for G1[z] (a2) The pole-zero plot for G2[z]

Im{z} Im{z}

4
1

0

0 0

–π

–π

π

π π

0–πΩ

Ω Ω

Ω0

–2

0

2

–2

0

2

5

10 4

2

0

3Re{z} Re{z}

(c1) The phase curve ∠G1[e jΩ] (c2) The phase curve ∠G2
[e jΩ]

(b2) The magnitude curve G2[e jΩ]

4th-order pole at z = 0 3th-order pole at z = 0

1

–π

Fig. 4.9 The pole–zero plots and frequency responses for Example 4.12

G1[z] = 1 − 2.5z−1 + 5.25z−2 − 2.5z−3 + z−4

= z−4(z − 0.5e jπ/3)(z − 0.5e− jπ/3)(z − 2e jπ/3)(z − 2e− jπ/3)
(E4.12.2)

whose pole-zero pattern and frequency response magnitude/phase curves are
plotted in Fig. 4.9(a1) and (b1)/(c1), respectively.

(b) Consider a system whose impulse response is

g2[n] = [· · · n=−1
0 −0

1
1
2 −2

2
3
1

4
0 · · ·]. (E4.12.3)

This system has the system function G2[z] = Z{g2[n]} as

G2[z] = −1 + 2z−1 − 2z−2 + z−3 = −z−3(z − 1)(z2 − z + 1)

= −z−3(z − 1)(z − e jπ/3)(z − e− jπ/3) (E4.12.4)

240 4 The z-Transform

whose pole-zero pattern and frequency response magnitude/phase curves are
plotted in Fig. 4.9(a2) and (b2)/(c2), respectively.

The following program “sig04e12.m” is run to yield Fig. 4.9, where zplane(B,A)
is used to create the pole-zero plot of a system with system function G[z] =
B[z]/A[z].

%sig04e12.m
clear, clf
N=360; W=pi/N*[-N:N]; % frequency range
for i=1:2

if i==1, B=[1 -2.5 5.25 -2.5 1]; A=1;
else B=[-1 2 -2 1]; A=1; %numerator/denominator of system function
end
figure(1), subplot(220+i), zplane(B,A)
GW= freqz(B,A,W); % frequency response
GW mag= abs(GW); % magnitude of frequency response
GW phase= angle(GW); % phase of frequency response
figure(2)
subplot(220+i), plot(W,GW mag)
set(gca,’fontsize’,9, ’Xlim’,[-pi pi], ’xtick’,[-pi 0 pi], ...

’xticklabel’,{’-pi’ ’0’ ’pi’})
subplot(222+i), plot(W,GW phase)
set(gca,’fontsize’,9, ’Xlim’,[-pi pi], ’xtick’,[-pi 0 pi], ...

’xticklabel’,{’-pi’ ’0’ ’pi’})
end

4.7 Summary

In this chapter we have defined the bilateral/unilateral z-transform and derived their
basic properties. We have also presented the several methods to find the inverse
z-transform of a given z-transform expression. We have explored the relation-
ship among the system function, frequency response, and difference equation and
discussed how to utilize the z-transform for analyzing discrete-time LTI systems.

Problems

4.1 z-Transform

(a) Find the bilateral z-transform X [z] (with its ROC) of

x[n] = a|n| = anus[n] + a−nus[−n − 1] with |a| < 1 (P4.1.1)

(b) Could you get the bilateral z-transform of

x[n] = 1 = us[n] + us[−n − 1] (P4.1.2)

If your answer is yes, find it. Otherwise, state why it is not possible.

Problems 241

(c) Find the bilateral z-transform X [z] (with its ROC) of

x[n] = us[−n] (P4.1.3)

in the following three ways:

(i) Noting that us[−n] is the one-sample delayed version of us[−n − 1],
use the time shifting property.

(ii) Noting that us[−n] is the time-reversal version of us[n], use the time
reversal property.

(iii) Noting that us[−n] can be expressed as us[−n − 1] + δ[n], use B.9(6)
& (1).

4.2 Inverse z-Transform

(a) Find the inverse z-transform x[n] of

X [z] = z2

(z + 1)2
= z × z

(z + 1)2
= z

z + 1
× z

z + 1
(P4.2.1)

with ROC R = {z : |z| > 1}

in the following two different ways:

(i) Use the z-transform table B.9(10) and the time shifting property
4.2.3(b) or B.7(2).

(ii) Use the z-transform table B.9(5) and the convolution property 4.2.6
or B.7(4).

(b) Use the z-transform table B.9(17) and the time shifting property 4.2.3(a) or
B.7(2) to find the inverse z-transform of

X [z] = a

z2 + a2
= z−1 × az

z2 + a2
with ROC R = {z : |z| > a} (P4.2.2)

(c) Find the inverse z-transform x[n] of

X [z] = 2z − 1

(z − 1)(z2 − z + 1)
with ROC R = {z : |z| > 1} (P4.2.3)

(d) Find the inverse z-transform x[n] of

X [z] = 1

(z − 1)2z2
= 1

(z − 1)2
− 2

z − 1
+ 1

z2
+ 2

z
(P4.2.4)

with ROC R = {z : |z| > 1}

4.3 Inverse z-Transform, Causality, Convergence, and Stability

(a) Find the inverse z-transforms ga1[n], ga2[n], and ga3[n] of

Ga[z] = 3(1 − z−1)

1 − (5/2)z−1 + z−2
= 3z(z − 1)

(z − 2)(z − 1/2)
(P4.3.1)

242 4 The z-Transform

with one of the following ROCs:

(i) R1 = {z : |z| > 2}, (ii) R2 = {z : |z| < 1/2}, and (iii) R3 = {z :
1/2 < |z| < 2}. Then determine the causality and convergence (to
zero) for each of gi [n]’s.

(b) Find the inverse z-transforms gb1[n], gb2[n], and gb3[n] of

Gb[z] = 2z(z + 1)

z2 + (3/4)z + 1/8
= 2z(z + 1)

(z + 1/4)(z + 1/2)
(P4.3.2)

with one of the following ROCs: (i) R1 = {z : |z| > 1/2}, (ii) R2 = {z :
|z| < 1/4}, and (iii) R3 = {z : 1/4 < |z| < 1/2}. Then determine the
causality and convergence (to zero) for each of gi [n]’s.

(c) Suppose Ga[z] and Gb[z] are the system functions of discrete-time sys-
tems. Then the causality and stability of the systems depends on the
causality and geometric convergence (to zero) of the impulse response
gi [n]’s. Referring to the stability criterion that the ROC should contain the
unit circle (Remark 4.5(2)), determine the stability of the above six cases.
For each case, plot the impulse response for n = −20 : 20 and complete
the following table:

(d) What do you think about the stability of a system having a pole on the unit
circle, which is the boundary between the stability and instability regions?
Let us consider a system with the system function

Gc[z] = 1

z − 1
with ROC R = {z : |z| > 1} (P4.3.3)

Suppose a bounded input such as the unit step sequence x[n] = us[n] is
applied to this system and find the output. Is it bounded? Is the system
(BIBO) stable? Can you find any (bounded) input such as a sine-wave
which makes the output of the system blow up?

(cf) If a discrete-time LTI system has all its poles inside or on the unit circle
and the poles on the unit circle are simple (distinct), the system is said to
be marginally stable. Likewise, if a continuous-time LTI system has all its
poles inside the LHP (left-half s -plane) or on the jω-axis and the poles

Table P4.3 Pole location, ROC, causality, and stability of a system

All poles inside the unit circle The unit circle inside ROC Causality Stablility

(a)–(i)
(a)–(ii)
(a)–(iii)
(b)–(i)
(b)–(ii)
(b)–(iii)

Problems 243

on the jω-axis are simple (distinct), the system is said to be marginally
stable.

4.4 To Solve Difference Equation Using the z-Transform
Consider the following difference quation

y[n] − 1

3
y[n − 1] = x[n] with x[n] = 2−nus[n] (P4.4.1)

(a) Solve it with the initial condition y[−1] = −3.
(b) Solve it with the initial condition y[−1] = 6.

(cf) This problem implies that the output of an LTI system has generally the
system mode (in the natural response) and the input mode (in the forced
response), but the system mode may disappear depending on the initial
conditions.

4.5 Forward/Backward Solution of Difference Equation by Iteration
Consider the following difference quation:

y[n] − 1

4
y[n − 1] − 1

8
y[n − 2] = 3x[n − 1] with x[n] = δ[n] (P4.5.1)

(a) Solve it forward with no initial condition (y[−2] = y[−1] = 0) to find
y[n] for n = 0 : 3. To do this, you should rewrite the difference equation as

y[n] = 1

4
y[n − 1] + 1

8
y[n − 2] + 3x[n − 1] with x[n] = δ[n] (P4.5.2)

(b) Solve it backward with no initial condition (y[1] = y[2] = 0) to find y[n]
for n = −3 : 0. To do this, you should rewrite the difference equation as

y[n − 2] = −2y[n − 1] + 8y[n] − 24x[n − 1] with x[n] = δ[n] (P4.5.3)

(cf) You can use the following program “sig04p 05.m”. Do the results agree
with the solutions (4.3.8a,b) obtained using the long division in Sec. 4.3.2
or (E4.7.9a,b)?

%sig04p 05.m
clear
% To solve a difference equation forward by iteration
ya(1)=0; ya(2)=0; % zero initial conditions
xa= zeros(1,10); xa(3)=1; % unit impulse input
for n=3:11

ya(n)= (1/4)*ya(n-1) + (1/8)*ya(n-2) +3*xa(n-1);
end
nn=0:8; ya1= 4*(1/2).ˆnn - 4*(-1/4).ˆnn;
[ya(3:end); ya1]
% To solve a difference equation backward by iteration

244 4 The z-Transform

yb(10)=0; yb(11)=0; % zero initial conditions
xb= zeros(1,10); xb(9)=1; % unit impulse input
for n=11:-1:3

yb(n-2)= -2*yb(n-1) + 8*yb(n) -24*xb(n-1);
end
yb
nn=-8:0; yb1= -4*(1/2).ˆnn + 4*(-1/4).ˆnn;
[yb(1:end-2); yb1]

4.6 Difference Equation, System Function, Impulse Response, and Frequency
Response
Consider a causal system whose input-output relationship is described by the
following difference quation:

y[n] − y[n − 1] + 0.5y[n − 2] = x[n] + x[n − 1] with y[−2] = y[−1] = 0
(P4.6.1)

(a) Find the system function G[z] = Y [z]/X [z] and determine the stability
based on its pole locations.

(b) Find the frequency response G(Ω) = G[e jΩ] at Ω = 0, π/2, and π or
e jΩ = 1, j , and −1 where G(0) = G[e j0 = 1] is referred to as the DC
(direct current) gain.

(c) Find the impulse response g[n], i.e., the output of the system to the unit
impulse input x[n] = δ[n] in two ways; once using the z-transform and
once using the iterative method for n = 0 : 4. Does the DTFT of {g[n] :
n = 0 : 100} agree with G(Ω) for Ω = 0 : 0.01 : 2π? You can use the
following program “sig04p 06.m”.

(d) Find the step response, i.e., the output of the system to the unit step input
x[n] = us[n] in two ways; once using the z-transform and once using the
iterative method for n = 0 : 4. Is the steady-state value the same as the DC
gain obtained in (b) and the result of applying the final value theorem?

(e) Find the z-transform Y [z] of the output to a sinusoidal input x[n] =
sin(nπ/2)us[n]. Find the steady-state response of the output by taking the
inverse z-transform of Y [z] or using the frequency response obtained in (b).
Support your analytical solution by plotting it together with the iterative
(numerical) solution for n = 0 : 100. Could you apply the final value
theorem? If not, state why it is not possible.

%sig04p 06.m
clear, clf
disp(’(a)’)
syms z
% Gz= z*(z+1)/(zˆ2-z+0.5);
Gz= z*(z+1)/(z-0.5+0.5i)/(z-0.5-0.5i);
B=[1 1]; A=[1 -1 0.5];

Problems 245

disp(’(b)’)
DC gain=subs(Gz,’z’,exp(j*0))
[DC gain subs(Gz,’z’,exp(j*pi/2)) subs(Gz,’z’,exp(j*pi))]
disp(’(c)’) % Impulse response and frequency response
g= iztrans(Gz)
% To solve a difference equation by iteration
gn(1)=0; gn(2)=0; % zero initial conditions
xc= zeros(1,103); xc(3)=1; % unit impulse input
r=1/sqrt(2); W1=pi/4;
for m=3:103

gn(m)= gn(m-1) - 0.5*gn(m-2) + xc(m) + xc(m-1);
n=m-3; gn iztrans(m-2)= eval(g);
gn iztrans hand(m-2)= rˆn*(cos(W1*n)+3*sin(W1*n));

end
gn=gn(3:end); gn(1:4)
discrepancy gn1= norm(gn-gn iztrans)
discrepancy gn2= norm(gn-gn iztrans hand)
W=0:0.01:2*pi;
GW DTFT= DTFT(gn,W,0);
GW= freqz(B,A,W);
discrepancy GW= norm(GW-GW DTFT)

4.7 Sinusoidal Steady-State Response from z-Transform or Frequency Response
Consider a causal system which has the following system function:

H [z] = 1 − e−1

z − e−1
(P4.7.1)

Find the output of the system to a sinusoidal input x[n] = sin(0.2πn)us[n] in
the following two ways:

(a) Using the z-transform, show that the sinusoidal response is

y[n] = (0.688e−n + 0.5163 sin(0.2πn) − 0.688 cos(0.2πn))us[n]

= (0.688e−n + 0.8602 sin(0.2πn − 53.1o))us[n]

= (0.688e−n + 0.8602 sin(0.2π (n − 1.4754)))us[n] (P4.7.2)

(b) Based on the fact that the frequency response at Ω = 0.2π is

H [e jΩ]
∣∣
Ω=0.2π

= 1 − e−1

e j0.2π − e−1

= 1 − e−1√
(cos(0.2π) − e−1)2 + sin2(0.2π)

∠ − tan−1 sin(0.2π)

cos(0.2π) − e−1

= 0.8602∠ − 0.927 (P4.7.3)

find the sinusoidal steady-state response excluding the transient response which
decays as time goes by.

246 4 The z-Transform

4.8 System Function and Frequency Response from Input and Output
Consider a causal system which has the following input and output:

x[n] = rn cos(Ω1n)us[n] (P4.8.1)

y[n] = rn sin(Ω1n)us[n] (P4.8.2)

(a) Find the system function G[z] = Y [z]/X [z] and impulse response of this
system.

(b) Find the frequency response G(Ω) = G[e jΩ] and its peak frequency.

4.9 Goertzel Algorithm [G-2]
Consider two second-order filters whose impulse responses are

g1[n] = cos(2πkn/N)us[n] (P4.9.1a)

g2[n] = sin(2πkn/N)us[n] (P4.9.1b)

(a) Show that for the input of real-valued sequence {x[n]; 0 ≤ n ≤ N −1}, the
outputs of the two filters at n = N become the real and imaginary parts of
N -point DFT X (k) = DFTN {x[n]}:

y1k[n]|n=N =
∑N−1

m=0
x[m]g1[N − m] (P4.9.2a)

=
∑N−1

m=0
x[m] cos

(
2πkm

N

)
= X R(k)

y2k[n]|n=N =
∑N−1

m=0
x[m]g2[N − m]

= −
∑N−1

m=0
x[m] sin

(
2πkm

N

)
= X I (k) (P4.9.2b)

where

X (k) = DFTN {x[n]} (3.4.2)=
∑N−1

m=0
x[m]W mk

N =
∑N−1

m=0
x[m]e− j2πkm/N

(P4.9.3)

X R(k) + j X I (k) =
∑N−1

m=0
x[m] cos

(
2πkm

N

)

− j
∑N−1

m=0
x[m] sin

(
2πkm

N

)
(P4.9.4)

(b) Taking the z-transform of the impulse responses (P4.9.1a,b), find the sys-
tem functions of the filters and check if they can be implemented as
Fig. P4.9.

Problems 247

x [n]

–1

z–1

z–1

2cos(2πk /N) –cos(2πk /N)

y1k[n]

y2k[n]
sin(2πk /N)

Fig. P4.9 The signal flow graph for Goertzel algorithm

(c) The structure of the filter which generates the DFT sequence of a given
input sequence can be obtained from the following equation:

yk[n] =
∑N−1

m=0
x[m]W −k(n−m)

N = x[n] ∗ W −kn
N (P4.9.5)

Comparing this equation with the DFT definition (P4.9.3), we see that the
value of the output (P4.9.5) at n = N is the same as the DFT of x[n]:

yk[n]|n=N = yk[N] =
∑N−1

m=0
x[m]W −k(N−m)

N

=
∑N−1

m=0
x[m]W km

N = X (k) (P4.9.6)

Noting that (P4.9.5) is the output of a filter with the impulse response

g[n] = W −kn
N = e j2πkn/N (P4.9.7)

show that the system function of the filter is

G[z] = 1 − W k
N z−1

1 − 2 cos(2πk/N)z−1 + z−2

= 1 − cos(2πk/N)z−1 + j sin(2πk/N)z−1

1 − 2 cos(2πk/N)z−1 + z−2
(P4.9.8)

(cf) This filter is not stable in view of the BIBO stability criterion (1.2.27b).
However, we will use them for only a finite number of time points,
ensuring that their outputs do not become infinite.

Chapter 5
Sampling and Reconstruction

Contents

5.1 Digital-to-Analog (DA) Conversion[J-1] . 250
5.2 Analog-to-Digital (AD) Conversion[G-1, J-2, W-2] . 251

5.2.1 Counter (Stair-Step) Ramp ADC . 251
5.2.2 Tracking ADC . 252
5.2.3 Successive Approximation ADC . 253
5.2.4 Dual-Ramp ADC . 254
5.2.5 Parallel (Flash) ADC . 256

5.3 Sampling . 257
5.3.1 Sampling Theorem . 257
5.3.2 Anti-Aliasing and Anti-Imaging Filters . 262

5.4 Reconstruction and Interpolation . 263
5.4.1 Shannon Reconstruction . 263
5.4.2 DFS Reconstruction . 265
5.4.3 Practical Reconstruction . 267
5.4.4 Discrete-Time Interpolation . 269

5.5 Sample-and-Hold (S/H) Operation . 272
5.6 Summary . 272

Problems . 273

In this chapter we are concerned how continuous-time and discrete-time signals are
related with each other. We will cover the following:

- Basic functions of D/A (digital-to-analog) converter, A/D (analog-to-digital)
converter, and S/H (sample-and-hold) device

- Relationship between the CTFT and DTFT and the effect of sampling on the
spectrum of a continuous-time signal

- Sampling theorem
- Reconstruction of the original signal from the sampled signal

These topics will not only give an insight into the relationship between continuous-
time signals and discrete-time signals, but also help you to realize what the sampling
really means.

Sects. 5.1 and 5.2 are based on the tutorial notes of Richard C. Jaeger ([J-1]
and [J-2]).

W.Y. Yang et al., Signals and Systems with MATLAB R©,
DOI 10.1007/978-3-540-92954-3 5, C© Springer-Verlag Berlin Heidelberg 2009

249

250 5 Sampling and Reconstruction

5.1 Digital-to-Analog (DA) Conversion[J-1]

The basic function of the D/A (digital-to-analog) converter (DAC) is to convert a
digital (binary) number into its equivalent analog voltage. The output voltage of the
DAC can be represented as

vo = VF S(d12−1 + d22−2 + · · · + dN 2−N) + Vos (5.1.1)
where

vo: Output voltage
VF S: Full-scale output voltage
Vos : Offset voltage (normally to be adjusted to zero)
d1d2 · · · dN : N -bit input word with the (fictitious) binary point at the left, the

most significant bit (MSB) d1, and the least significant bit (LSB) dN .

The resolution of the converter is the smallest analog change that may be
produced by the conversion and is equal to the value of the LSB in volts:

Resolution (in volts) = 2−N VF S = 1LSB value (5.1.2)

It is often stated as a percentage of full scale (2−N × 100%) or just N -bit resolution.
Figure 5.1 shows an inverted R-2R ladder network, which can be used as a 3-bit

DAC where the binary input word controls the switches with a signal of logical value
‘1’/‘0’ indicating a transfer to OP Amp/ground side. Taking successive Thevenin
equivalent circuits for each stage of the ladder, it can be shown that the input currents
are each reduced by a factor of 2 going from the MSB to the LSB so that the analog
output voltage to a 3-bit binary input d1d2d3 becomes

vo = R io = R

(
d1

VF S

2R
+ d2

VF S

4R
+ d3

VF S

8R

)
= (

d12−1 + d22−2 + d32−3
)

VF S

(5.1.3)

Virtual ground

–VFS

d2d1

i1 i2 i3
io = i1 + i2 + i3

Rf = R

d3

VFS

R R

R R R
2R 2R 2R

0

2R

2R

VFS

4R
VFS

8R

U1

+

–

vo = Rio

1 2 3

4 5 6

N

P

Fig. 5.1 An inverted R-2R ladder network used as a DAC

5.2 Analog-to-Digital (AD) Conversion[G-1, J-2, W-2] 251

Note that the currents flowing in the resistors are kept constant since the digital
input diverts the current either to ground or to the input (virtual ground) of the
operational amplifier functioning as a current-to-voltage converter.

5.2 Analog-to-Digital (AD) Conversion[G-1, J-2, W-2]

An analog-to-digital converter (ADC) takes an unknown analog input signal, most
often a voltage Vx , and converts it into an N -bit binary number D representing the
ratio of Vx to the converter’s full-scale voltage VF S .

Most ADCs use a DAC to vary the reference voltage Vr and use a logic cir-
cuit including one or more comparators to deteremine one of the 2N possible
binary numbers D = d1d2 · · · dN (di ’s: binary coefficients) which can represent
the unknown voltage Vx . The reference voltage Vr can have 2N different values as

Vr = VF S

∑N

i=1
di 2

−i (5.2.1)

where VF S is the DC reference voltage. The basic difference in converters consists in
how to vary Vr to determine the binary coefficients di ’s such that the error |Vx − Vr |
is minimized.

5.2.1 Counter (Stair-Step) Ramp ADC

The counter ramp ADC illustrated in Fig. 5.2(a) starts to increment the N -bit
counter value from zero by one per clock period on the SOC (start of conver-
sion) pulse till the reference voltage Vr exceeds the unknown input voltage Vx .

Vx
Vx

VFS

Vr

Vr

SOC

Analog input Vx

Reference voltage Vr

Conversion time
Digital output D 1000 0111 0101 0101 0100 0100 0100 0101 0101 0110 1001

Time

N -bit
DAC

AND

N -bit
Counter

Tc Tc

TC,11TC,10TC,9TC,8TC,7TC,6TC,5TC,4TC,3TC,2TC,1

1/fc

fc

t

t

t

t

EOC

EOC

SOC

(a) Block diagram (b) Timing diagram

(c) A typical variation of the analog input, reference voltage,digital output, and conversion time

Digital output

(End of conversion)

(Start of conversion)

InverterComparatorAnalog input

–

+

Clock pulse
of period 1/fc

D = d1d2 dN

1 : One clock period (fc : the clock frequency)

Fig. 5.2 Counter ramp ADC

252 5 Sampling and Reconstruction

The sequentially increasing counter output is applied to the N -bit DAC, making
its output Vr go up like a staircase as depicted in Fig. 5.2(b). The reference voltage
Vr is applied to the − input terminal of the comparator and compared against Vx

(applied to the + input terminal) by the comparator. The comparator output keeps
to be ‘1’ so that the counter will continue to increase normally till Vr exceeds Vx .
When Vr ≥ Vx , the comparator output will be switched to ‘0’ so that no further
clock pulse can increment the counter value and the EOC (end of conversion) signal
becomes high to tell other devices that an A/D conversion cycle is completed and the
counter value represents the converted (digital) value of the unknown analog voltage
Vx . Fig. 5.2(c) shows typical variations of the analog input, reference voltage, digital
output, and conversion time.

Some features of this converter should be noted:

<Advantage>

– The simple hardware makes the counter ramp ADC inexpensive to implement.

<Disadvantages>

– The conversion time is proportional to the value of Vx . In the worst case where
Vx is equal to or greater than the value of the maximum binary number, i.e., Vx ≥
(1 − 2−N)VF S , it becomes

TC = 2N / fc(2N clock periods) (5.2.2)

where fc is the clock frequency and VF S is the full-scale DAC output voltage.
– The DAC output is not necessarily the closest to Vx , but the smallest just over Vx

among the 2N possible binary numbers.

5.2.2 Tracking ADC

The tracking ADC tries to improve the conversion performance by using an up-down
counter with logic to force the DAC output Vr to track changes in the analog input
Vx (see Fig. 5.3). Depending on whether Vr < Vx or Vr > Vx (as indicated by
the comparator output), the counter value is incremented or decremented by the
clock pulse so that the DAC output will alternate between two values differing by
one LSB value (2−N) when Vx is constant. When the analog input Vx varies, Vr

changes in the proper direction towards Vx so that Vr follows Vx . Consequently, if
Vx varies slowly enough, the DAC output Vr is continuously close to Vx and the A/D
converted value may be read from the counter at any time. However, if Vx varies too
rapidly, the DAC output Vr will not be able to catch up with Vx quickly enough to
make the counter value represent Vx closely at any time. The main drawback is the

5.2 Analog-to-Digital (AD) Conversion[G-1, J-2, W-2] 253

Analog input

Clock pulse
of period 1/fc

|1/fc|

(a) Block diagram (b) Timing diagram

D = d1d2…dN
Digital output

Vx

VFS
N – bit
DAC

N – bit
Updown counter

SOC

SOC

Comparator+

–

catch-up time

bit bobble

bit bobble

U/D

Vr

Vx

Vr

t

t

t

Fig. 5.3 Tracking ADC

phenomenon called ‘bit bobble’ that the output is never stable since it switches back
and forth with every clock pulse even for a constant analog input Vx = const.

5.2.3 Successive Approximation ADC

The successive approximation ADC uses a binary or bisectional search method to
determine the best approximation to Vx , requiring only N clock periods to complete
an N -bit conversion. Figure 5.4 shows its block diagram and timing diagram. At
the start of conversion, the SAR (successive approximation register) is reset with its
MSB set to ‘1’, resulting in the DAC output

Vr ← 2−1VF S

At the next clock pulse, depending on whether Vr < Vx or Vr > Vx (as indicated by
the comparator output), the MSB is left on (‘1’) or set to ‘0’ and the 2nd MSB is set
to ‘1’, resulting in

Vr ← Vr + 2−2VF S or Vr ← Vr − 2−2VF S

Analog input

Clock pulse
of period 1/fc

(a) Block diagram

D = d1d2…dN
Digital output

Vx

VFS
N – bit
DAC

Successive
approximation

SOC

EOC
EOC

Tc

Comparator

Vr

|1/fc|
(b) Timing diagram

Vx

Vr
2–1VFS +2–2VFS

+2–3VFS

–2–3VFS

–2–2VFS

t

t

+

–

SOC
t

t

Tc

Fig. 5.4 Successive approximation ADC

254 5 Sampling and Reconstruction

100

010

110

000

001

010

011

100

101

110

111

001

011

101

111

Fig. 5.5 Binary code sequence of a 3-bit successive approximation DAC

Again, depending on Vr < Vx or Vr > Vx , the 2nd MSB is left on(‘1’) or set to ‘0’
and the 3rd MSB is set to ‘1’, resulting in

Vr ← Vr + 2−3VF S or Vr ← Vr − 2−3VF S

When the process has been carried out for every bit, the SAR contains the binary
number representing Vx and EOC line indicates that digital output is available. In
this way, the 3-bit successive conversion is completed at the end of N clock periods
for an N -bit ADC so that we have the A/D conversion time

TC = N/ fc(N clock periods) (5.2.3)

Figure 5.5 shows the binary code sequence of a 3-bit successive approximation
DAC.

This type of converter is very popular due to its fast conversion rate. A problem
with the SA ADC is that if the input does not remain constant during the full con-
version period, the digital output may not be related to the value of the unknown
input voltage Vx . To avoid this problem, sample-and-hold circuits are usually used
ahead of the ADC.

5.2.4 Dual-Ramp ADC

Figure 5.6 shows the organization and operation of the dual-ramp ADC. On the SOC
pulse, the counter and RC integrator are reset. Then the analog input Vx , connected
to the integrator input through switch S1, is (negatively) integrated during a fixed
time interval of T1 = 2N / fc. At the end of the integration period, the two switches
S1/S2 are turned off/on, respectively so that the reference input −VF S are connected
to the integrator input through S2. Then the integrator output vo increases until it
crosses zero to make the comparator output change. The length of the deintegration
period will be measured as T2 = n2/ fc (n2 clock periods).

5.2 Analog-to-Digital (AD) Conversion[G-1, J-2, W-2] 255

Comparator outputvo

vo

T1 T2

1
fc

t

t

t

Integration

Integration
output

Clock pulse

Fixed slope
propotional to VFS

Deintegration

+

–

U1

S1

S2

+

–

RC Integrator

Comparator
C

vo vc

R

D = d1d2
... dN

Digital output

0

0

+Vx

–VFS

Analog
Input

Clock pulse
of period 1/fc

Control
logic

N -bit
Counter

SOCEOC

(a) Block diagram (b) Timing diagram

Fig. 5.6 Dual ramp ADC

Noting that the charge accumulated in the capacitor from t = 0+ to T1 will have
been completely discharged at t = T1 + T2, we can write

1

RC

∫ T1

0
Vx dt = 1

RC

∫ T1+T2

T1

VF S dt ;
V x T1

RC
= VF ST2

RC
; T2 = T1

V x

VF S
(5.2.4)

where T1 = 2N / fc and V x is the average of Vx . This implies that the counter value
n2 accumulated during the deintergration period is supposed to represent the average
value of the analog input:

n2 = 2N V x

VF S
(5.2.5)

The value of RC constant does not matter as long as it remains constant throughout
the conversion cycle of duration T1 + T2.

<Advantage>

– Even if Vx changes during the conversion cycle, the ADC output corresponding to
V x is still valid since it represents the average value of Vx during the integration
period of duration T1 = 2N / fc.

– Any sinusoidal input signals with frequencies K/T1 = K 2−N fc (K : an integer)
will have integrals of zero so that they will not disturb the ADC output. This
property is utilized in digital voltmeters which use dual-ramp converters with
T1 = K/ fo where fo is the power-line frequency (50 or 60Hz), so that har-
monic noise at multiples of fo can be removed (‘good rejection of power-line
interference’).

– Reversed polarity of the analog input Vx can easily be dealt with by reversing the
polarity of −VF S .

<Disadvantages>

– The conversion time is variable and is as long as

TC = T1 + T2 = (2N + n)/ fc (5.2.6)

256 5 Sampling and Reconstruction

5.2.5 Parallel (Flash) ADC

Figure 5.7 shows a 3-bit parallel (or flash) ADC in which the analog input Vx is
simultaneously compared with (23 − 1) different reference values and depending on
the comparison results, one of the 23 digital values is chosen as the ADC output by
the encoding logic circuit.

<Advantage>

– The conversion speed is so fast that the parallel ADC can be thought of as
automatically tracking the input signal.

– With the resistors of no-equal values, the parallel ADC can be designed so that
it performs a customized, nonlinear A/D conversion. No other ADC design is
capable of such a nonlinear AD conversion.

<Disadvantage>

– The cost is expensive and grows rapidly with resolution since 2N −1 comparators
and reference voltages are required for an N -bit converter.

(cf.) Visit the web site [W-2] to see the delta-sigma (ΔΣ) ADC.

Fig. 5.7 Parallel (or flash)
ADC

+

–

+

–

+

–

+

–

+

–

+

–

+

–

VFS
11
16

VFS
13
16

R

VFS
9
16

R

VFS
7
16

R

VFS
5
16

R

VFS
3
16

R

VFS
1
16

R

R/2

3R/2
+VFS

d1

d2

d3

Vx

Analog input
C

om
bi

na
to

ria
l l

og
ic

D
ig

ita
l o

ut
pu

t

5.3 Sampling 257

5.3 Sampling

5.3.1 Sampling Theorem

In Sect. 3.5.2 we derived the relation between the CTFS Xk of a continuous-time
periodic signal x̃P (t) and the N -point DTFS (DFS/DFT) X̃ N (k) of the discrete-time
version x̃N [n] = x̃P (nT) (obtained by sampling x̃P (t) every T s), which is periodic
with period N = P/T in n:

X̃ N (k)
(3.5.3)= 1

T

∑∞
m=−∞ Xk+m N (5.3.1a)

where the frequency components described by the DTFS X̃ N (k) and CTFS Xk are
virtually identical in light of the inter-relationship (1.1.15) between the digital and
analog frequencies:

kΩ0 = k
2π

N
[rad/sample]

(1.1.15)∼

k
2π/N [rad/sample]

T [sec/sample]
= k

2π

N T
[rad/sec] = k

2π

P
= kω0

We also showed that the CTFT Xa(ω) of a continuous-time signal xa(t) is related
with the DTFT Xd (Ω) of the discrete-time version xd [n] = xa(nT) as

Xd (Ω)
(3.5.7)= 1

T

∑∞
k=−∞ Xa

(
ω + k

2π

T

)∣∣∣∣
ω=Ω/T

= 1

T

∑∞
k=−∞ Xa

(
Ω

T
+ k

2π

T

)
(5.3.1b)

where ω = Ω/T [rad/s] and Ω [rad/sample] are virtually identical in light of the
inter-relationship (1.1.15) between the digital and analog frequencies.

Equations (5.3.1a) and (5.3.1b) imply that the DTFS/DTFT of a discrete-time
sequence xd [n] = xa(nT) is qualitatively the periodic extension of the CTFS/CTFT
of the continuous-time version xa(t) (with period 2π/T in analog frequency ω or
2π in digital frequency Ω), i.e., the sum of infinitely many shifted version of the
spectrum of xa(t). This explains how the DTFS/DTFT spectrum of xd [n] = xa(nT)
deviates from the CTFS/CTFT spectrum of xa(t) due to frequency-aliasing unless
the CTFS/CTFT is strictly limited within the low-frequency band of (−π/T, π/T)
where T is the sampling interval or period of xd [n] = xa(nT).

To be more specific, suppose a continuous-time signal xa(t) has a band-limited
CTFT spectrum

Xa(ω) = 0 for |ω| > ωx (5.3.2)

as depicted in Fig. 5.8(a). Then the DTFT spectrum Xd (Ω) of the discrete-time ver-
sion xd [n] = xa(nT), which is the periodic extension of Xa(ω)|ω=Ω/T with period

258 5 Sampling and Reconstruction

Xa(ω)

–ωx ωx
ω

0

Xd(Ω)

ωx–ωx

0 π
π/T

–π
–π/T

2π
2π/T

–2π
–2π/T

3π
3π/T

–3π
–3π/T

Ω
ω=Ω/T

Xd(Ω)

ωx–ωx

0 π
π/T

–π
–π/T

–2π
–2π/T

Ω
ω=Ω/T

(c) The spectrum of xd[n]=xa(nT) with ωs=2π/T < 2ωx

(b) The spectrum of xd[n]=xa(nT) with ωs=2π/T > 2ωx

(a) The spectrum of xa[t]

Frequency response
of an ideal LPF

2π
ωs=2π/T

Fig. 5.8 The spectra of discrete–time signals depending on the sampling frequency – the sampling
theorem

ωs = 2π/T in ω or Ωs = 2π in Ω, is shown in Fig. 5.8(b) and (c) for π/T > ωx

and π/T < ωx , respectively. Notice that Xd (Ω) in the principal frequency range
(−π/T, π/T) is identical to Xa(ω) if

ωs = 2π

T
> 2ωx (Nyquist rate) or equivalently,

π

T
(folding frequency) > ωx

(5.3.3)
where ωx is the highest frequency in xa(t) and ωs = 2π/T and π/T are called
the sampling frequency and folding or Nyquist frequency, respectively. In this case
(Fig. 5.8(b): oversampling), there is no overlap, called aliasing, between adjacent
spectral components so that xa(t) or Xa(ω) can be extracted exactly from xd [n] =
xa(nT) or Xd (Ω) by employing an ideal lowpass filter with the magnitude response
depicted (in a dotted line) in Fig. 5.8(b).

On the other hand, in the case of Fig. 5.8(c) (under-sampling) with π/T < ωx

or equivalently, ωs = 2π/T < 2ωx , the frequency aliasing (or spectral overlap)
occurs, producing an irretrievable error in the spectrum. Such an aliasing phe-
nomenon makes higher frequencies in Xa(ω) get reflected into lower frequencies,
which presents an interpretation of the stroboscopic effect. This effect is occasion-
ally observed in films of wagon wheels or aircraft propellers that appear to be
rotating slower than would be consistent with the forward motion and sometimes
in the opposite direction. This story can be summarized as follows:

[Sampling Theorem]
In order to retain vital information through sampling with sampling period T ,
the sampling frequency ωs = 2π/T must be greater than twice the highest fre-
quency ωx contained in the continuous-time signal xa(t) to be sampled, called
the Nyquist rate 2ωx . Otherwise, i.e., if ωs ≤ 2ωx , the so-called frequency
aliasing effect (spectral overlapping phenomenon) results.

5.3 Sampling 259

When sampling a continuous-time signal xa(t) every T s, we want to ensure that
all the information in the original signal is retained in the samples xd [n] = xa(nT)
so that we can exactly recover xa(t) from the discrete-time sequence xd [n]. In this
context, the sampling theorem is the most important criterion of the sampling period
selection.

To clarify the concept of aliasing, consider two continuous-time signals x1(t) =
sin(2π t) and x2(t) = sin(22π t) shown in Fig. 5.9(a). Each of these signals is
sampled every T = 0.1 s to give sequences x1[n] = x1(0.1n) = sin(0.2πn)
and x2[n] = x2(0.1n) = sin(2.2πn), that are identical. Fig. 5.9(b) also shows
that two continuous-time signals x3(t) = sin(18π t) and x4(t) = − sin(2π t)
are sampled every T = 0.1 s to yield x3[n] = x3(0.1n) = sin(1.8πn) and
x4[n] = x4(0.1n) = sin(−0.2πn), that are identical. These are examples of fre-
quency aliasing that a higher frequency signal, when sampled, appears like a lower
frequency one.

Figure 5.10 shows the output signals y1(t), y2(t), and y3(t) of an A/D- G[z]
(digital filter)-D/A structure to the three different input signals where G[z] =
(1 − e−1)/(z − e−1). Note that with the sampling period T = 0.1 [s], all the
outputs are of the same digital frequency and that x2(t) = sin(22π t) and x3(t) =
sin(18π t) have been aliased/folded with the phase preserved/reversed, respectively.
This result can be obtained by running the following program “sig05f10.m” and
predicted from the frequency response of the digital filter G[z], which is shown in
Fig. 5.11.

0

0.5

–0.5

–1

1

0.2 0.4 0.6 0.8 10 1.2 1.4 1.6 1.8

0

0.5

–0.5

–1

1

0

: x3(0.1n)=sin(1.8πn)x4(t)=–sin(2πt)x3(t)=sin(18πt) : x4(0.1n)=sin(–0.2πn)

: x1(0.1n)=sin(0.2πn)x2(t)=sin(22πt)x1(t)=sin(2πt) : x2(0.1n)=sin(2.2πn)

(b) x3[n] and x4[n] obtained by sampling x3(t) = sin (18πt) and x4(t) = sin (–2πt) with T=0.1

(a) x1[n] and x2[n] obtained by sampling x1(t) = sin (2πt) and x2(t) = sin (22πt) with T=0.1

t

t
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Fig. 5.9 Examples of frequency aliasing/folding or spectral overlap

260 5 Sampling and Reconstruction

t

0

–1

1

0 1
t 0

–1

1

0.5 1.50 1 2
t

0

–1

1

0.5 1.50 1 2

t0

–1

1

0.5 1.50 1 2

y1(t)

y2(t)

y3(t)

0

–1

1

0.5 1.50 1 2
t

0

–1

1

0.5 1.50 1 2
t

x1(t)=sin(2πt) x1(0.1n)=sin(0.2πn)
T=0.1

x2(t)=sin(22πt) x2(0.1n)=sin(2.2πn)
T=0.1

T=0.1

x3(t)=sin(18πt) x3(0.1n)=sin(1.8πn)
T=0.1

aliased

folded

A/D G [z] D/A

G [z]=1–e–1

z–e–1

0.5 1.5 2

Fig. 5.10 The effect of frequency aliasing on a system of A/D-G[z]-D/A structure

∠G [z]

–2π –π –0.2π

0.927

–0.927
00

(a) The magnitude response of the digital filter G [z]

(b) The phase response of the digital filter G [z]

0 0.2π

1
0.86 |G [z] |

Ω

Ω
π

π

π 2π–2π –π

–π

1.8π π 2.2π

Fig. 5.11 The frequency response of the digital filter G[z]

%sig05f10.m
clear, clf
B=[0 1-exp(-1)]; A=[1 -exp(-1)]; % system function of the filter
W=[2 22 18]*pi; % the three different frequency of input signal
T=0.1; ts=2e-3; % Sampling period, Segment length
tf=2; t=[0:ts:tf]; n=[0:tf/T]; % Final time, Time ranges
x1t= sin(W(1)*t); x1n=x1t([1:T/ts:end]); y1n= filter(B,A,x1n);
x2t= sin(W(2)*t); x2n=x2t([1:T/ts:end]); y2n= filter(B,A,x2n);
x3t= sin(W(3)*t); x3n=x3t([1:T/ts:end]); y3n= filter(B,A,x3n);
subplot(521), plot(t,x1t), hold on, stairs(n*T,x1n,’r’) % Input 1
subplot(522), stairs(n*T,y1n) % Output 1

5.3 Sampling 261

subplot(523), plot(t,x2t), hold on, stairs(n*T,x2n,’r’) % Input 2
subplot(524), stairs(n*T,y2n) % Output 2
subplot(525), plot(t,x3t), hold on, stairs(n*T,x3n,’r’) % Input 3
subplot(526), stairs(n*T,y3n) % Output 3
% The frequency response of the digital filter
W=[-2:0.001:2.3]*pi; GW=freqz(B,A,W);
subplot(514), plot(f,abs(GW))
subplot(515), plot(f,angle(GW))

Referring to Remark 1.4 (for the physical meaning of the frequency response)
and based on the frequency response of the digital filter G[z] depicted in Fig. 5.11,
we can write the steady-state response of the digital filter to the digital inputs
x1[n] = sin(0.2πn) and x3[n] = sin(1.8πn) as

y1[n] = | G[e jΩ] |∣∣
Ω=0.2π

sin(0.2πn + ∠G[e jΩ]
∣∣
Ω =0.2π

)

= 0.86 sin (0.2πn − 0.927)

y3[n] = | G[e jΩ] |∣∣
Ω =1.8π

sin(1.8πn + ∠G[e jΩ]
∣∣
Ω=1.8π

)

= 0.86 sin (1.8πn + 0.927)

= 0.86 sin (−0.2πn + 0.927) = −0.86 sin (0.2πn − 0.927) = −y1[n]

Here, let us think about how we can interpret the periodicity of the DTFT spectrum
of a discrete-time signal and that of the frequency response of a discrete-time sys-
tem such as G[z]. The interpretation of the former is an ambiguity that we cannot
tell which of analog frequency components {(Ω1 ± 2mπ)/T, m: any integer} are
contained in the original continuous-time signal (before sampling with period T).
It should not be interpreted as the existence of infinitely many analog frequency
components {(Ω1 ± 2mπ)/T, m: any integer}. On the other hand, the interpre-
tation of the latter is an equality that the discrete-time system responds with the
same magnitude and phase of frequency response to the discrete-time version of
continuous-time signals of different analog frequencies {(Ω1 ± 2mπ)/T, m: any
integer}.

There are some rules of thumb for choosing the sampling rate, which are listed
in the following remark:

Remark 5.1 Rules of Thumb for Sampling Rate Selection
In practice, the sampling frequency is chosen to be much higher than the Nyquist

rate. In closed-loop sampled-data systems, low sampling rate has a detrimental
effect on stability and therefore, the sampling rate selection is made with stability
consideration. The rules of thumb are

– to sample 8 ∼ 10 times during a cycle of damped oscillation in the output if the
system is under-damped or during the rise time of the transient response if the
system is over-damped, or

– to sample at least 5 times per time constant.

262 5 Sampling and Reconstruction

Remark 5.2 Time Aliasing and Frequency Aliasing
In Example 3.15, it can be observed that if the DFT size is not sufficiently

large, in other words, if the sampling rate in the frequency domain [0, 2π] is not
sufficiently high, the aliasing problem may occur in the time domain and such a
phenomenon is called the time aliasing. Now in this section, we can observe that a
low sampling rate in the time domain may cause the frequency aliasing.

5.3.2 Anti-Aliasing and Anti-Imaging Filters

We know that higher sampling rate satisfies the sampling theorem more easily; in
other words, if a continuous-time signal is sampled at a sufficiently high rate, the
frequency-aliasing problem can be alleviated. However, the maximum sampling rate
of a S/H (sample/hold device) is upper-bounded by the hardware constraints such
as the delay time of the S/H and the conversion time of A/D (analog-to-digital)
converter. If the total conversion time is 1 μs, the maximum sampling rate is 1 MHz.
Therefore we may not be able to make the sampling rate as high as we want.
Besides, a higher sampling rate increases the number of calculations needed for
implementation.

On the other hand, all physical signals found in the real world are not band-
limited and do contain a wide range of frequency components. Besides, an ideal
low-pass filter is not realizable. It is therefore impossible to exactly reproduce the
original continuous-time signal from its sampled version even though the sampling
theorem is satisfied.

Fortunately, most physical transients tend to be smooth so that their spectra are
close to zero for high frequencies. Still it may be a problem to deal with the signal
corrupted by high-frequency noise. To prevent or reduce aliasing errors caused by
undesired high-frequency signals, we must use an analog low-pass filter, called an
anti-aliasing prefilter. This filter is applied to the continuous-time signal prior to

(a) The block diagram of a digital signal processing system with anti-aliasing and anti-imaging filters

(b) The frequency responses of an anti-aliasing filter and the overall DSP system

Sampling
frequencyFolding frequency

Guard band
0

|Gaa(jω)|

ωc ωs – ωc ωs – 2π /T
ω

π /T

G [e jωT]

Real (analog) world

Anti-aliasing
LPF

Gaa(s)

Anti-imaging
(Reconstruction)

LPF Gai (s)

Digital Filter
G [z]A/D D/Axa(t)

xd [n] yd [n]
ya(t)

Digital world Real (analog) world

Magnitude response of digital filter G (z)
Overall (resulting) magnitude response

Magnitude response of an anti-aliasing filter Gaa(s)

Fig. 5.12 Block diagram and frequency response of a DSP system

5.4 Reconstruction and Interpolation 263

sampling and passes the components with frequencies |ω| ≤ ωc, while attenuat-
ing the components with |ω| ≥ ωs − ωc, which would be folded into the range
|ω| ≤ ωc. A digital signal processing system using an anti-aliasing LPF and its
typical frequency response are shown in Fig. 5.12. Note that another LPF of similar
frequency characteristic, called an anti-imaging or reconstruction filter, might have
to be installed after D/A conversion to remove unwanted spectral components
(above the folding or Nyquist frequency ω f = π/T) from the DAC output and
construct a smooth analog output signal.

5.4 Reconstruction and Interpolation

In many practical applications, discrete-time sequences are required to be trans-
formed into continuous-time signals. In computer-controlled systems, it is necessary
to convert the control actions calculated by the computer as a sequence of numbers
into a continuous-time signal that can be applied to the plant or process. In digital
audio compact disk system, the audio signals are stored as digital samples on the
disk and must ultimately be converted into analog signals to drive the speakers. In
these cases, we are faced with the inverse of the sampling operation, which asks us
to think about how to reproduce the analog signal xa(t) from the continuous-time
sampled signal x∗(t) = xa(t)δT (t) or discrete-time sequence xd [n] = xa(nT).

5.4.1 Shannon Reconstruction

We begin by considering the un-aliased spectrum X∗(ω) as shown in Fig. 5.8(b)
where X∗(ω) has the same shape with the original spectrum Xa(ω) over the principal
frequency range (−π/T, π/T) where T is the sampling interval or period. Sup-
pose we have an analog lowpass filter (LPF) with the ideal ‘brick wall’ frequency
response

G I (ω) =
{

T for − π/T ≤ ω ≤ π/T

0 elsewhere
(5.4.1)

which passes only frequencies in the range |ω| ≤ π/T and masks out all other
frequencies. Recall from Eq. (E2.9.2) that

gI (t) = F−1{G I (ω)} (E2.9.2)= T
B

π
sinc

(
Bt

π

)
B=π/T= sinc

(
t

T

)
(5.4.2)

We can apply this filter to X∗(ω) to retrieve the original spectrum Xa(ω) in the
frequency domain as

X (ω) = G I (ω)X∗(ω) (5.4.3)

or in the time domain as

264 5 Sampling and Reconstruction

x(t) = F−1{X (ω)} (2.5.10)= gI (t) ∗ x∗(t)
(E2.13.1)= gI (t) ∗ xa(t)δT (t)

(E2.10.1)= gI (t) ∗ xa(t)
∑∞

m =−∞ δ(t − mT)

= gI (t) ∗
∑∞

m =−∞ xa(t)δ(t − mT) = gI (t) ∗
∑∞

m =−∞ xa(mT)δ(t − mT)

(D.37)=
∑∞

m =−∞ xa(mT)gI (t − mT);

x̂(t)
(5.4.2)=

∑∞
m =−∞ xa(mT) sinc

(
t − mT

T

)
(5.4.4)

The above summation (5.4.4), called Whittaker’s cardinal interpolation formula or
Whittaker-Shannon sampling series [S-1, W-1], suggests a reconstruction formula.
It can be modified into a more computationally-efficient form

x̂(t) = sin(π t/T)

π/T

∑∞
m =−∞ xa(mT)

(−1)m

t − mT
(5.4.5)

where we have used the fact that

sin
(π

T
(t − mT)

)
= sin

(π

T
t
)

cos(m π) − cos
(π

T
t
)

sin(m π) = (−1)m sin
(π

T
t
)

Since the sinc function sinc(t − mT) has unity value for t = mT and becomes zero
for other Shannon reconstruction sample points, it is obvious that

x̂(nT) = xa(nT) ∀ integer n (5.4.6)

holds for every sample point. The role of gI (t) is to fill in or interpolate the values
of the continuous-time function between the sample points.

%sig05f13.m

clear, clf

ts=0.001; T=0.1; tt=-0.5:ts:1.4; t0=0; tf=1; % Time range

fs=[0 0.1 0.2 0.3 0.4 0.5]; ws=2*pi*fs/T; % Frequencies contained in x(t)

Aks= [1 1 1 1 1 1]; phiks= [0.5 -0.5 0.5 -0.5 1 -1];

K=6; xt= Aks(1)*sin(ws(1)*tt + phiks(1));

for k=2:K, xt = xt + Aks(k)*sin(ws(k)*tt + phiks(k)); end

nT= tt([1:T/ts:end]); % Sampling point vector

xn= xt([1:T/ts:end]); % Discrete-time sequence sampled with T=0.1

sincmT= inline(’sinc(t/T)’,’t’,’T’);

plot(tt,xt), hold on, stem(nT,xn)

xht= 0;

for n=1:length(xn)

xn sincnT = xn(n)*sincmT(tt-nT(n),T); xht = xht + xn sincnT; %Eq.(5.4.4)

plot(tt,xn sincnT,’:’)

end

plot(tt,xht,’r’), set(gca,’XLim’,[t0 tf],’fontsize’,9)

5.4 Reconstruction and Interpolation 265

3

2

1

0

–1

–2

–3

0 0.5 1
t

4

2

3

1

0

–1

–2

–3

0 0.5 1
t

: xa(t)
: xa(mT)sinc (t–mT)
: x (t)^

x (t)^

x (t)^

xa(t)

xa(t)

(b) An example of Whittaker–Shannon reconstruction
 when the precondition of the sampling theorem is not satisfied

(a) An example of Whittaker–Shannon reconstruction
 when the precondition of the sampling theorem is satisfied

Fig. 5.13 Examples of Whittaker–Shannon reconstruction

Interested readers are recommended to run the above program “sig05f13.m”
twice, once with the number of frequencies K = 5 and once with K = 6, to get
Fig. 5.13(a) and (b), respectively and then, think about what the difference comes
from in connection with the precondition of the sampling theorem.

5.4.2 DFS Reconstruction

Recall again the relationship (5.3.1a) between the CTFS Xk of a continuous-time
periodic signal x̃P (t) and the N -point DTFS (DFS/DFT) X̃ N (k) of the discrete-time
version x̃N [n] = x̃P (nT) (obtained by sampling x̃P (t) every T s), which is periodic
with period N = P/T in n:

X̃ N (k)
(3.5.3) or (5.3.1a)= 1

T

∑∞
m=−∞ Xk+m N (5.4.7)

This implies that if x̃P (t) does not contain the frequencies above the folding
frequency, i.e., half the sampling frequency

266 5 Sampling and Reconstruction

ω f = ωs

2
= π

T
= N

2

2π

N T

= N

2

2π

P
= N

2
ω0(corresponding to the frequency index k = N

2
)

so that

Xk = 0 ∀ |k| ≥ N

2
(5.4.8)

then Eq. (5.4.7) becomes

X̃ N (k)
(5.4.7) with (5.4.8)= 1

T
Xk for |k| <

N

2
(5.4.9)

This suggests another reconstruction formula, called the DFS reconstruction, which
is similar to the inverse DFS formula (3.4.8):

x̂(t) = 1

N

∑
| k|<N/2

X̃ N (k)e j2πkt/N T (5.4.10)

%sig05f14.m
clear, clf
ts=0.001; T=0.1; tt=-0.5:ts:1.4; t0=0; tf=1;
fs=[0 0.1 0.2 0.3 0.4 0.5]; ws=2*pi*fs/T; % Frequencies contained in x(t)
Aks= [1 1 1 1 1 1]; phiks= [0.5 -0.5 0.5 -0.5 1 -1];
K=5; xt= Aks(1)*sin(ws(1)*tt + phiks(1));
for k=2:K, xt = xt + Aks(k)*sin(ws(k)*tt + phiks(k)); end
nT= tt([1:T/ts:end]); xn= xt([1:T/ts:end]);
xn causal=[xn(6:end) xn(1:5)]; Xk= fft(xn causal); N=length(Xk);
plot(tt,xt), hold on, stem(nT,xn)
kk1=[1:N/2].’;
xht1 DFS= real(Xk(kk1)*exp(j*2*pi/N/T*(kk1-1)*tt))/N;
kk2=[N/2+2:N].’;
xht2 DFS= real(Xk(kk2)*exp(j*2*pi/N/T*(kk2-1-N)*tt))/N;
xht DFS = xht1 DFS + xht2 DFS;
plot(tt,xht DFS,’r’), set(gca,’XLim’,[t0 tf],’fontsize’,9)

Interested readers are recommended to run the above program “sig05f14.m”
twice, once with the number of frequencies K = 5 and once with K = 6, to get
Fig. 5.14(a) and (b), respectively and then, think about what the difference comes
from in connection with the precondition of the sampling theorem.

5.4 Reconstruction and Interpolation 267

t

(b) An example of Fourier series reconstruction
 when the precondition of the sampling theorem is not satisfied

(a) An example of Fourier series reconstruction
 when the precondition of the sampling theorem is satisfied

t

2

1

0

–1

–2

0.5

x (t)^
xa(t)

: xa(t)

: x (t)^

Overlapped

2

0

–2

0.5

0

0

x (t)^

xa(t)

Fig. 5.14 Examples of Fourier series reconstruction

5.4.3 Practical Reconstruction

The problem with the ideal (Whittaker-Shannon) interpolation function gI (t) =
sinc(t/T) is that it extends in time from t = −∞ to +∞ and accordingly, it incor-
porates the entire sequence of xa(nT) including all the future samples (for n > 0)
as well as all the past samples (for n < 0) to find the estimate of x(t). Besides, in
control situations we cannot usually wait to observe the entire sequence before an
interpolation is performed. In this section we consider a practical interpolator called
the zero-order hold (z.o.h.), which is a causal lowpass filter to approximate a signal
between two consecutive sampling instants nT and (n + 1)T by a constant xa(nT).
This is the beginning of the story about the ideal S/H (sample-and-hold device). As
depicted in Fig. 5.15(a), the output of a z.o.h. to an input x(t) can be described as

x(t) =
∑∞

n=0
xa(nT) (us(t − nT) − us(t − nT − T)) (5.4.11)

whose Laplace transform is

X (s)
(5.4.11)=

B.8(3), B.7(2)

∑∞
n=0

xa(nT)

(
1

s
e−nT s − 1

s
e−nT s−T s

)

=
∑∞

n=0
xa(nT)e−nT s 1

s
(1 − e−T s); (5.4.12)

X (s) = X∗(s) Gh0(s) (5.4.13)

268 5 Sampling and Reconstruction

t

ω

0

0

: Input to S/H
: Output from S/H

Gh0(jω)
z.o.h. Gh0(s)

S/H
xa(t) x (t)

xa(t) x
*
(t)

X
*
(s)

x (t)

0

(a) The input and output of a S/H

(b) The magnitude response of a z.o.h.

(c) A S/H and its model

Fig. 5.15 S/H (Sample–and–Hold) modeled by combining an ideal sampler and a z.o.h.

where

X∗(s) = L{x∗(t)} (E2.13.1)= L
{

xa(t)
∑∞

n=−∞ δ(t − nT)
}

B.8(2)=
∑∞

n=−∞ xa(nT)e−nT s (4.1.1)= Xd [z]|z=esT (5.4.14)

Gh0(s)
(5.4.13)= X (s)

X∗(s)
(5.4.12)=
(5.4.14)

1

s
(1 − e−T s) (5.4.15)

Note that in Eq. (5.4.13) describing the Laplace transform of the z.o.h. output,
X∗(s) is the Laplace transform of x∗(t) = xa(t)δT (t) (the output of an ideal sampler
to xa(t)), called the starred transform of xa(t). On the other hand, Gh0(s) can be
regarded as the system or transfer function of the z.o.h. device since it does not
depend on xa(t). Hence the frequency response of the z.o.h. is

Gh0(jω) = Gh0(s)|s= jω = 1

jω
(1 − e− jωT) = e jωT/2 − e− jωT/2

jω
e− jωT/2

= T
sin(ωT/2)

ωT/2
e− jωT/2 (5.4.16)

which implies that the z.o.h. is a kind of lowpass filter (see Fig. 5.15(b)). Note that
x∗(t) is not present in physical systems, but it appears in the mathematical model
as a result of factoring and can be considered to be the output of an ideal sampler.
Although the ideal sampler and the z.o.h. do not individually model a physical sam-
pler and a physical data hold, their combination does accurately model a physical
S/H device (see Fig. 5.15(c)).

5.4 Reconstruction and Interpolation 269

5.4.4 Discrete-Time Interpolation

As mentioned in Remark 3.7(4), zero-padding in the time domain can be used to
increase the frequency resolution, which is justified for finite-duration signals that
have already been sampled over all nonzero portions. In duality with this, zero-
padding in the frequency domain can be used to increase the time resolution, which
is justified for bandlimited signals having nonzero spectral values only for some
finite frequency range. This suggests us a discrete-time interpolation method.

Suppose we are given a sequence {x[n], n = 0 : N − 1} where X (Ω) =
F{x[n]} � 0 for the frequency range near Ω = π . We first obtain the N -point
DFT of x[n], i.e., X (k) = DFTN {x[n]} for k = 0 : N −1 and then pad it with some,
say, (K − 1)N zeros to make a new KN -point DFT sequence V (k) as follows:

<case 1: N is even>

V (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K X̃ (k) for 0 ≤ k ≤ (N/2) − 1 and

K N − (N/2) + 1 ≤ k ≤ K N − 1

(K/2)X̃ (k) for k = N/2, K N − (N/2)

0 elsewhere (zero-padding)

(5.4.17a)

<case 2: N is odd>

V (k) =

⎧⎪⎨
⎪⎩

K X̃ (k) for 0 ≤ k ≤ (N − 1)/2 and

K N − (N − 1)/2 ≤ k ≤ K N − 1

0 elsewhere (zero-padding)

(5.4.17b)

where X̃ (k) = DFSN {x[n]} is the periodic repetition of X (k) with period N .

Now we compute the KN -point IDFT of V (k) to obtain an interpolation of
x[n] as

v [n] = IDFTK N {V (k)}

= 1

K N

∑K N−1

k=0
V (k) e j2πkn/K N for n = 0, 1, · · · , K N − 1 (5.4.18)

To evaluate this expression at every K th element, we substitute n = K m to get

v[K m] = 1

N

∑N−1

k=0
X̃ (k) e j2πkm/N

= IDFTN {X (k)} = x[m] for m = 0, 1, · · · , N − 1 (5.4.19)

This implies that the new sequence v[n] has been obtained by placing (K − 1)
samples between successive samples of the original sequence x[n].

270 5 Sampling and Reconstruction

(Q) In the case where x[n] is a real-valued sequence, it seems that we need to
ensure the conjugate symmetry of its K N -point DFT V (k) by modifying a part of
Eq. (5.4.17a) as

V (k) =
{

(K/2)X̃ (k) for k = N/2

(K/2)X̃∗(k) for k = K N − (N/2)
(5.4.20)

However, we do not have to take the complex conjugate of X̃ (N/2) since it is real
for a real-valued sequence x[n].

Remark 5.3 Discrete-Time Interpolation, Zero Insertion, and Lowpass Filtering
The DFT sequence V (k) is the same as the DFT of the output sequence of an

ideal lowpass filter (with gain K and bandwidth π/K) to the input signal x(K)[n],
which is obtained by inserting (K − 1) zeros between successive sample points of
x[n]. From Eq. (3.2.14), we know that the K N -point DFT of x(K)[n] is

X K N (k) = X̃ N (k) for k = 0, 1, · · · , (K N − 1) :

the periodic repetition of X (k) with period N

Note that Eq. (5.4.17) is equivalent to taking a scaled version of X K (k) within the
low frequency band, which corresponds to a lowpass filtering (see Fig. 5.16(b2)).

Example 5.1 Discrete-Time Interpolation
Let us find a discrete-time interpolation for the following sequence (see

Fig. 5.16(a1)):

x [n]
n=0

= {2,
1
1,

2
0,

3
1} (E5.1.1)

We first compute the N = 4 -point DFT of x[n] as (see Fig. 5.16(b1))

X (k) = DFTN {x[n]} =
∑N−1

n=0
x[n] e− j2πnk/N =

∑3

n=0
x[n] (− j)nk

= x [0] + x [1] (− j)k + x [2] (− j)2k + x [3] (− j)3k

= 2 + (− j)k + (− j)3k ;

X (k) = {4, 2, 0, 2} (E5.1.2)

Then we use Eq. (5.4.17) with K = 2 to get V (k) as (see Fig. 5.16(b3))

V (k)
k=0

= {8,
1
4,

2
0,

3
0,

4
0,

5
0,

6
0,

7
4} (E5.1.3)

Now, we compute the K N = 8 -point IDFT of V (k) to obtain the interpolated
sequence v[n] (see Fig. 5.16(a3)):

5.4 Reconstruction and Interpolation 271

n

2

1

0
0

0 1 2 3

1
x [n]

(a1) x [n]

k

4

2

0
0

0 1 2 3

1
X (k)

(b1) X (k)=DFT{x [n]}

n

2

1

0
0 2

0
4

0
3

0
5

0
7

0
1 6

1
x (2)[n]

(a2) x (2)[n]: zero–inserted

k

444 4

2

7

2

5

2

3 4

2

10

2

–1

2

–3–4

2

–5
0
6

0
2

0
–2

(b2) X
~

(k): a periodic repetition of X (k)

n

2

1

0
0 2

0
4

0.3

3

0.3

5

1.7

7

1.7

1 6

1
v [n]

(a3) v [n]: lowpass–filtered

k

8

0
0 2

00 0 0 0
43 5

4

7

4

1 6
(b3) V (k): zero–padded

X
~

(k)

Zero–insertion

Lowpass–filtering

IDFT

DFT

Ideal LPF frequency response

Z
er

o-
pa

dd
in

g

up
-s

am
pl

in
g

do
w

n-
sa

m
pl

in
g

(d
ec

im
at

io
n)

Fig. 5.16 Discrete-time interpolation of a discrete-time sequence

v [n] = IDFTK N {V (k)} = 1

8

∑7

k=0
V (k) e j2πk n/8

= 1

8
(8 + 4e jπkn/4 + 4e− jπkn/4) = 1 + cos

(
1

4
kπn

)
;

v [n]
n=0

= {2,
1

1.707,
2
1,

3
0.293,

4
0,

5
0.293,

6
1,

7
1.707}

(E5.1.4)

This result can also be obtained by using the MATLAB routine ‘interpolation
discrete()’, which implements the procedure described by Eq. (5.4.17)
and (5.4.18).

>>x=[2 1 0 1]; K=2;
>>v=interpolation discrete(x,K)

2.0000 1.7071 1.0000 0.2929 0 0.2929 1.0000 1.7071

function [xi,Xi]=interpolation discrete(x,K)
% To find the KN-point discrete-time interpolation xi of an N-point
% discrete-time sequence x[n]
N=length(x); KN=K*N; N1=floor((N+1)/2); KNN1=KN-N1+2;
X= fft(x);
Xi= K*X(1:N1); Xi(KNN1:KN)=K*X(N-N1+2:N); % Eq.(5.4.17)
if mod(N,2)==0, Xi([N/2+1 KN-N/2])=K/2*X(N/2+1)*[1 1]; end % Eq.(5.4.17b)
xi= ifft(Xi); % Eq. (5.4.18)

272 5 Sampling and Reconstruction

5.5 Sample-and-Hold (S/H) Operation

In a majority of practical digital operations, a S/H function is performed by a
single device consisting of a capacitor, an electronic switch, and operational ampli-
fiers, which stores the (sampled) input signal voltage as a charge on the capacitor
(Fig. 5.17). OP amps are needed for isolation; capacitor and switch are not con-
nected directly to analog circuitry lest the capacitor should affect the input waveform
and should be discharged to the output. The mathematical model for a S/H device
or operation has been developed in Sect. 5.4.3.

Fig. 5.17 Sample-and-Hold
(S/H) device

input U1

C
Tvo

vo

+

–

Vx

U1
+

–

The DAC described in Sect. 5.1 may be regarded as a device which consists
of a decoder and an S/H unit (Fig. 5.18(a)). Note that the sampling operation
is not necessary, but it is included since the S/H is usually considered as one
unit. The ADC performs the operations of S/H, quantization, and encoding (see
Fig. 5.18(b)).

Digital signal

Digital

signal

Analog

signal

Analog signal
DAC

Decoder S/H

(b) A model for ADC(a) A model for DAC

Digital signal

Digital

signal

Analog

signal S/H Quantizer Encoder

ADC
Analog signal

Fig. 5.18 Models for DAC and ADC

5.6 Summary

In this chapter we were concerned how continuous-time and discrete-time signals
are and can be related. First, we have included a survey of D/A and A/D conver-
sion methods to let the readers know the relationship between analog signals and
the corresponding digital ones and further, to provide them with some practical
information that may be useful for the selection of DAC and ADC. Then we dis-
cussed the sampling theorem, several reconstruction/interpolation techniques, and
the mathematical model of a practical S/H device.

Problems 273

Problems

5.1 CTFS, DTFS, and Sampling Theorem
Consider the following five cosine waves:

x1(t) = cos(2π t) = 1

2
(e j2π t + e− j2π t)

x2(t) = cos(8π t) = 1

2
(e j8π t + e− j8π t)

x3(t) = cos(10π t) = 1

2
(e j10π t + e− j10π t)

x4(t) = cos(18π t) = 1

2
(e j18π t + e− j18π t)

x5(t) = cos(22π t) = 1

2
(e j22π t + e− j22π t)

(a) Referring to the Fourier representation formula (2.1.5a), verify that the
Fourier series coefficients of the two-tone signal xa(t) = x1(t) + x2(t)
with period Pa = max{2π/2π, 2π/8π} = 1 and fundamental frequency
ω0 = 2π are

Xa,k = 1

2
,

1

2
,

1

2
, and

1

2
for k = −4,−1 ,+1 , and + 4, respectively.

(P5.1.1)
Also for the sequence {xa(nT), n = 0 : 9} obtained by sampling one period
of the signal with sampling period T = 0.1, find the N = 10 -point DFT
X (k) and discuss how it is related with Xa,k based on the relationship (3.5.3)
between the CTFS and DTFS. Note that xa(nT) can be written as

xa[n] = xa(nT) = 1

2
(e j2π n/10 + e− j2πn/10) + 1

2
(e j8πn/10 + e− j8πn/10)

(P5.1.2)
and it can somehow be matched with the IDFT formula

x [n] = IDFTN {X (k)} (3.4.3)= 1

N

∑N−1

k=0
X (k) e j 2πk n/N for n = 0 : N − 1

to yield the DFT coefficients X (k).
(b) For xb(t) = x1(t) + x3(t), do the same job as in (a).
(c) For xc(t) = x1(t) + x4(t), do the same job as in (a).
(d) For xd (t) = x1(t) + x5(t), do the same job as in (a).
(e) Complete the following MATLAB program “sig05p 01.m” and run it to

find the N = 10 -point DFTs for {xa(nT), n = 0 : 9}, {xb(nT), n = 0 :
9}, {xc(nT), n = 0 : 9}, and {xd (nT), n = 0 : 9}. Do they agree with
those obtained in (a)–(d)? For each of the four cases (a)–(d), tell whether
the frequency folding or aliasing occurs or not by the sampling with period
T = 0.1.

274 5 Sampling and Reconstruction

%sig05p 01.m
clear, clf
ws=[2*pi 8*pi 10*pi 18*pi 22*pi];
P=1; ts=0.001; tt=[0:ts:P]; T=0.1; N=round(P/T);
n=[0:T/ts:length(tt)]; n=n(1:N); nT=n*ts; k=[0:N-1];
x1t= cos(ws(1)*tt)+cos(ws(2)*tt); x1n= x1t(n+1); X1= fft(x1n);
subplot(521), plot(tt,x1t), hold on, stem(nT,x1n,’.’)
subplot(522), stem(k,abs(X1),’.’)
..

(f) Among the sampling rates {15Hz, 20Hz, 25Hz, 40Hz, 50Hz}, choose the
lowest one such that the frequency aliasing does not occur for any of (a)–(d).

5.2 Reconstruction
Consider the continuous-time waveform x(t) depicted in Fig. P5.2.

–1 0 1
t

x (t) 1

Fig. P5.2

(a) Use Eq. (E2.3.4) to find the CTFT of x(t).
(b) Regarding x(t) as a periodic waveform with period P = 2 [s], we can

sample it with sampling period T = 0.5 [s] to get a (non-causal) discrete-
time sequence

xNC [n] =
n=
{ −1

0.5,
0
1,

1
0.5,

2
0 } (P5.2.1)

and take the part of the periodic repetition of xNC [n] with period N = 4
for n = 0 : 3 to have a causal sequence

x [n] =
n=
{ 0

1,
1

0.5,
2
0,

3
0.5} (P5.2.2)

Find the 4-point DFT of this sequence.
(c) Find the analytical expression of the DFS reconstruction of x(t) using the

DFT obtained in (b) and plot it on Fig. P5.2.
(d) Suppose we can apply an ideal LPF for reconstruction. Can the waveform

depicted in P5.2 be reconstructed perfectly from its sampled version with
some sampling period? Say ‘yes’ or ‘no’ and state the background of your
answer.

Problems 275

5.3 Discrete-Time Interpolation
Consider the discrete-time signal x[n] whose DTFT spectrum is depicted in
Fig. P5.3.

(a) Sketch the spectrum of y[n] = x(2)[n] where

y[n] = x(2)[n] =
{

x[n/2] for n = 2m(m : integer)

0 elsewhere
(P5.3.1)

(b) Suppose that we wish to form an interpolated version of x[n] by passing
y[n] through a lowpass filter. Specify the requirements of the LPF on its
gain and bandwidth.

0–2π

X(Ω)

Ω
–π 2ππ

Fig. P5.3

5.4 Discrete-Time Interpolation
Consider the discrete-time signal x[n] obtained by sampling the following
continuous-time signal x(t) at t = nT (n = 0 : 50, T = 0.0001 sec) with
sampling rate Fs = 10kHz.:

x(t) = cos(2π × 1000t) + sin(2π × 3000t) (P5.4.1)

Using the discrete-time interpolation introduced in Sect. 5.4.4, insert 19 points
between successive sample points of x[n] to make a 1020-point interpolation
v[n] and plot it (continuously in a solid line) together with x(nT) (discretely
using the ‘x’ mark).

5.5 A/D- G[z] (digital filter)-D/A Structure
Consider the A/D- G[z] -D/A structure with G[z] = 1 + z−1 where the input is
to be sampled with sampling period T = 0.1 [s].

(a) Let the input be given by x1(t) = sin(10π t/3). What is the digital frequency
of x1[n] = x1(nT)?

(b) What is the highest analog frequency such that the input signal will not be
aliased?

(c) Find the frequency response and DC gain of the digital filter G[z].
(d) Find the steady-state output y1,ss[n] to x1[n] = x1(nT) = sin(10πT n/3).
(e) Find the steady-state output y2,ss[n] to the unit step input x2[n] = us[n].
(f) Support your answers to (d) and (e) by the simulations for n = 0 : 50.

Chapter 6
Continuous-Time Systems and Discrete-Time
Systems

Contents

6.1 Concept of Discrete-Time Equivalent . 277
6.2 Input-Invariant Transformation . 280

6.2.1 Impulse-Invariant Transformation . 281
6.2.2 Step-Invariant Transformation . 282

6.3 Various Discretization Methods [P-1] . 284
6.3.1 Backward Difference Rule on Numerical Differentiation 284
6.3.2 Forward Difference Rule on Numerical Differentiation . 286
6.3.3 Left-Side (Rectangular) Rule on Numerical Integration 287
6.3.4 Right-Side (Rectangular) Rule on Numerical Integration 288
6.3.5 Bilinear Transformation (BLT) – Trapezoidal Rule on Numerical Integration . 288
6.3.6 Pole-Zero Mapping – Matched z-Transform [F-1] . 292
6.3.7 Transport Delay – Dead Time . 293

6.4 Time and Frequency Responses of Discrete-Time Equivalents . 293
6.5 Relationship Between s-Plane Poles and z-Plane Poles . 295
6.6 The Starred Transform and Pulse Transfer Function . 297

6.6.1 The Starred Transform . 297
6.6.2 The Pulse Transfer Function . 298
6.6.3 Transfer Function of Cascaded Sampled-Data System . 299
6.6.4 Transfer Function of System in A/D-G[z]-D/A Structure 300
Problems . 301

In this chapter we are concerned how continuous-time and discrete-time systems
are or can be related with each other. We will discuss the concept and criterion
of discrete-time equivalent (digital simulator) and investigate various discretization
methods to obtain the discrete-time equivalent for a given analog system, which can
be used for the analysis and design of sampled-data systems.

6.1 Concept of Discrete-Time Equivalent

As the technology of digital processors becomes more advanced, it is often desirable
to replace analog systems with digital ones. In some cases, we need to transform
the analog systems into their “equivalent” digital systems in order to simulate their
behaviors on digital computers. In other cases, rather than designing directly a

W.Y. Yang et al., Signals and Systems with MATLAB R©,
DOI 10.1007/978-3-540-92954-3 6, C© Springer-Verlag Berlin Heidelberg 2009

277

278 6 Continuous-Time Systems and Discrete-Time Systems

digital system, we make use of a variety of well-developed analog system design
procedures to get an analog system with satisfactory performance and then convert
it into a discrete-time equivalent that mimicks (emulates) the analog system. In
either case, for a given continuous-time linear time-invariant (LTI) system G A(s)
with input x(t) and output yA(t), we wish to find a discrete-time system G D[z] with
input x[n] and output yD[n] such that

x[n] = x(nT) ⇒ yD[n] = yA(nT) (6.1.1)

This means that G A(s) and G D[z] yield the equivalent outputs to equivalent inputs
in the discrete-time domain. We will call such a system G D[z] the discrete-time
(z-domain) equivalent or digital simulator for G A(s) where Eq. (6.1.1) is referred
to as the (discrete-time) equivalence criterion. To establish necessary conditions for
the validity of the above criterion, we shall first consider sinusoidal inputs, which
will lead to the general case, because an arbitrary signal can be expressed as a linear
combination of sine waves (the Fourier series representation). Suppose the input
x[n] of a discrete-time system G D[z] is the discrete-time version of x(t) = e jωt

sampled with period T , i.e., x[n] = x(nT) = e jnωT where x(t) is the input to the
continuous-time system G A(s) (see Fig. 6.1):

x(t) = e jωt Sampling with period T−−−−−−−−−−−−−→ x[n] = x(nT) = e jnωT (6.1.2)

Then we can use the convolutional input-output relationships (1.2.4)/(1.2.9) of
continuous-time/discrete-time LTI systems and the definitions of CTFT and DTFT
to write the outputs of G A(s) and G D[z] as

yA(t) =
∫ ∞

−∞
gA(τ)e jω(t−τ)dτ

(2.2.1a)= G A(jω)e jωt

?−−−−−−→
Sampling with period T

yD[n] =
∑∞

m=−∞ gD[m]e jω(n−m)T

(3.1.1)= G D[e jωT]e jnωT

(6.1.3)

where

G A(jω)
(2.2.1a)=

∫ ∞

−∞
gA(τ)e− jωτ dτ

(A.1)=
gA(τ)=0 ∀ τ<0

causal system

G A(s)|s= jω (6.1.4a)

G D[e jωT]
(3.1.1)=

∑∞
m=−∞ gD[m] e− jm ωT (4.1.1b)=

gD[n]=0 ∀ n<0
causal system

G D[z]|z=e jωT (6.1.4b)

x (t)=e
jωt

?
x (nT)=e

jnωT

GA(s)

GD[z] yD[n]=GD[e
jωT]e

jnωT

yA(t)=GA(jω)e
jωT

yA(nT) = yD[n]

T

Fig. 6.1 The equivalence criterion between a continuous-time system and a discrete-time system

6.1 Concept of Discrete-Time Equivalent 279

The above equivalence criterion (6.1.1) can be stated in terms of the frequency
responses of the continuous-time and discrete-time systems as

G D[e jωT] = G A(jω) (6.1.5)

This is referred to as the frequency-domain discrete-time equivalence criterion.
However, this equivalence criterion cannot be satisfied perfectly because the

digital frequency response G D[e jωT] is periodic in ω (Sect. 3.2.1) while the fre-
quency response G A(jω) is not. This implies that we cannot find the discrete-time
equivalent of a continuous-time system that would work for all kinds of inputs. In
principle, the criterion (6.1.5) can be satisfied only for the principal frequency range
(−π/T,+π/T) if we restrict the class of inputs into band-limited signals that do not
contain frequencies higher than the folding frequency π/T , i.e., half the sampling
frequency ωs = 2π/T . In this sense, the resulting system G D[z] satisfying the
criterion (6.1.5) is a discrete-time equivalent of G A(s), which is valid only for such
band-limited input signals.

Remark 6.1 Equivalence Criterion and Band-Limitedness Condition

(1) The band-limitedness condition is not so restrictive since we can increase π/T
by decreasing the sampling period T . Furthermore, the condition is desirable in
order for the sampled output y(nT) to represent y(t) faithfully.

(2) As a matter of fact, the equivalence criterion (6.1.5) cannot be met exactly
even for the principal frequency range since G D[e jωT] is a rational function of
e jωT , while G A(jω) is a rational function of jω. For engineering applications,
however, approximate equality is good enough.

Now we will discuss the time-sampling method, which determines G D[z] so as
to satisfy the criterion (6.1.5) with reasonable accuracy for almost every ω in the
frequency band of the input signal. The basic idea is as follows. Suppose that the
input x(t) and the impulse response gA(t) of the analog (or continuous-time) system
G A(s) are sufficiently smooth, i.e., nearly constant in any interval of length T . Then,
letting

gD[n] = T gA(nT) (6.1.6)

satisfies approximately the equivalence criterion (6.1.1), i.e.,

yD[n] ∼= yA(nT) for x[n] = x(nT)

since we have

280 6 Continuous-Time Systems and Discrete-Time Systems

yA(nT)
(1.2.4)=

∫ ∞

−∞
gA(τ)x(t − τ)dτ

∣∣∣∣
t=nT

∼=
∑∞

m=−∞ T gA(nT)x(nT − mT) (6.1.7a)

yD[n]
(1.2.9)=

∑∞
m=−∞ gD[m]x[n − m] (6.1.7b)

The condition (6.1.6) can be written in terms of the transforms as

G D[z] = TZ{gA(nT)} = TZ
{
L−1{G A(s)}|t=nT

}
(6.1.8)

Remark 6.2 Time-Sampling Method – Impulse-Invariant Transformation
Note that sampling the continuous-time unit impulse δ(t) ∼= (1/T)sinc(t/T)

(Eq. (1.1.33a)) at t = nT (i.e., every T s) yields (1/T)sinc(n)
(1.1.35)= (1/T)δ[n].

Then, it is very natural that, in order for G A and G D to be similar, their responses to
δ(t) and (1/T)δ[n] should be the same, i.e.,

gA(nT) = G A{δ(t)}|t=nT ≡ G D

{
1

T
δ[n]

}
= 1

T
G D {δ[n]} = 1

T
gD[n] (6.1.9)

where G{x(t)} denotes the output of a system G to an input x(t). This is equivalent
to the condition (6.1.6) for the impulse-invariant transformation.

Remark 6.3 Frequency Response Aspect of Impulse-Invariant Transformation
If G A(jω) is negligible for |ω| > π/T (in agreement with the smoothness

conditions about gA(t)), then we can take the DTFT of (6.1.6) and use Eq. (3.5.7)
or (5.3.1b) to get

G D(Ω) = F{gD[n]}|Ω=ωT ≡ TF(gA(nT)}
(5.3.1b)∼= G A(ω) (6.1.10)

6.2 Input-Invariant Transformation

We will consider the input-invariant transformations that are error-free for specific
input signals. For example, the impulse-invariant/step-invariant transformation is
accurate when the input is an impulse or a step function. If they were accurate
only for the specified inputs, they would be of limited practical value. However,
by superposition, an input-invariant transformation gives zero error in response to
any linear combination of specified input functions.

6.2 Input-Invariant Transformation 281

6.2.1 Impulse-Invariant Transformation

As mentioned in Remark 6.2, this is identical to the time-sampling method discussed
in the previous section. Note that Eq. (6.1.8) can be written as

Z−1

{
G D[z] · 1

T

}
≡ L−1{G A(s) · 1}|t=nT

gD[n] ∗ 1

T
δ[n]

(1.1.28)= 1

T
gD[n] ≡ gA(t)|t=nT

(1.1.21)= gA(t) ∗ δ(t)|t=nT (6.2.1)

This implies that the (impulse) response of the continuous-time system G A(s) to the
impulse input δ(t) is equal to the response of the discrete-time system G D[z] to the
input (1/T)δ[n], which is the sampled version of δ(t).

The procedure to derive the impulse-invariant equivalent Gimp[z] for a given
analog system G A(s) is as follows:

1. Expand G A(s) into the partial fraction form:

G A(s) =
∑N

i=1

Ki

s − si
(6.2.2)

2. Replace each term 1/(s − si) by T/(1 − esi T z−1):

Gimp[z] =
∑N

i=1

Ki T

1 − esi T z−1
(6.2.3)

Remark 6.4 Mapping of Stability Region by Impulse-Invariant Transformation
Comparing Eq. (6.2.2) with Eq. (6.2.3), we observe that a pole at s = si in

the s-plane is mapped to z = esi T in the z-plane. Consequently, if and only if si

is in the left half plane (LHP), which is the stable region in the s-plane, then the
corresponding pole is inside the unit circle, which is the stable region in the z-plane
(see Fig. 6.2). However, the zeros will not in general be mapped in the same way as
the poles are mapped.

10

5

–5

–10

–10 –5 0 5 10

Im{z }

Re{z }

x

x

1

–1
x

x

x

0

1

xx

x

x x

jω s–plane

z–planez=esT

σ

Fig. 6.2 Mapping of poles from the s-plane to the z-plane

282 6 Continuous-Time Systems and Discrete-Time Systems

Remark 6.5 Frequency Transformation by Impulse-Invariant Transformation
The relationship between the analog frequency ωA and the corresponding digital

frequency Ω is linear, that is, Ω = ωAT since

e jΩ ≡
evaluation along the unit circle

z = esT s= jωA≡
evaluation along the jωA−axis

e jωA T (6.2.4)

Consequently, the shape of the frequency response is preserved. The negative aspect
of this linear frequency relationship is that short sampling period T does not remove
the frequency-aliasing problem caused by the impulse-invariant transformation (see
Fig. 6.8).

Example 6.1 Impulse-Invariant Transformation – Time-Sampling Method
For a continuous-time system with the system function G A(s) and frequency

response G A(jω) as

G A(s) = a

s + a
; G A(jω) = a

jω + a
(E6.1.1)

the impulse-invariant transformation yields the following discrete system function

Gimp[z]
(6.2.3)= a T

1 − e−aT z−1
; Gimp[e jωT] = a T

1 − e−aT e− jωT
(E6.1.2)

6.2.2 Step-Invariant Transformation

If we let

Gstep[z] = (1 − z−1)Z
{
L−1

{
1

s
G A(s)

}∣∣∣∣
t=nT

}
(6.2.5)

then it will be an exact discrete-time equivalent of G A(s) for any input composed of
step functions occurring at sample points. Note that Eq. (6.2.5) can be written as

Z−1

{
Gstep[z] · 1

1 − z−1

}
= L−1

{
1

s
G A(s)

}∣∣∣∣
t=nT

;

gstep[n] ∗ us[n] = gA(t) ∗ us(t)|t=nT (6.2.6)

This implies that the step response of the continuous-time system G A(s) is equal to
the step response of the discrete-time system Gstep[z] on a sample-by-sample basis.
That is why Eq. (6.2.5) is called the step-invariant transformation.

Let us consider the discrete-time error model for G A(s) and Gstep[z] in Fig. 6.3,
in which the input to G A(s) is x̄(t), i.e., the zero-order-hold version of x(t). The

6.2 Input-Invariant Transformation 283

z.o.h.

A/D

x(t)

T
Gstep[z]

GA(s)
yA(nT)

yA(nT) – ystep[n]

ystep[n]T
D/A

+
–

Fig. 6.3 The discrete–time error model for the step–invariant transformation

discrete-time transfer function of the system with a z.o.h. in the upper part of
Fig. 6.3 is

Z
{
L−1 {Gh0(s)G A(s)}∣∣t=nT

} (5.4.15)= Z
{
L−1

{
1 − e−T s

s
G A(s)

}∣∣∣∣
t=nT

}

= Z
{
L−1

{
1

s
G A(s)

}∣∣∣∣
t=nT

− L−1

{
e−T s

s
G A(s)

}∣∣∣∣
t=nT

}

= (1 − z−1)Z
{
L−1

{
1

s
G A(s)

}∣∣∣∣
t=nT

}
(6.2.5)≡ Gstep[z] (6.2.7)

Therefore the step-invariant transformation is also called the zero-order-hold equiv-
alent mapping and it is well suited to a digital computer implementation in the
A/D-G[z]-D/A structure.

Example 6.2 Step-Invariant Transformation (Zero-Order-Hold Equivalent)
For a continuous-time system with the system function

G A(s) = a

s + a
with a pole at s = sp = −a (E6.2.1)

the step-invariant transformation yields the following discrete system function:

Z
{

1

s
G A(s)

}
= Z

{
a

s(s + a)

}
= Z

{
1

s
− 1

s + a

}
B.8(3),(6)= 1

1 − z−1
− 1

1 − e−aT z−1
= (1 − e−aT z−1) − (1 − z−1)

(1 − z−1)(1 − e−aT z−1)

Gstep[z]
(6.2.5)= (1 − z−1)Z

{
1

s
G A(s)

}
= 1 − e−aT

z − e−aT
= Gzoh[z] (E6.2.2)

This implies that the s-plane pole is mapped into the z-plane through the step-
invariant transformation in the same way as through the impulse-invariant trans-
formation.

s = sp = −a → z = z p = esp T = e−aT

284 6 Continuous-Time Systems and Discrete-Time Systems

6.3 Various Discretization Methods [P-1]

A continuous-time LTI system can be described by the system or transfer function as

G A(s) = Y (s)

X (s)

where X (s) and Y (s) are the Laplace transforms of the input and output. Its input-
output relationship can be written as an integro-differential equation. We often use
the numerical methods to convert the integro-differential equation into the corre-
sponding difference equation, which can easily be solved on a digital computer.
The difference equation may be represented by a discrete system function G D[z]
(Sect. 4.4), which can be thought of representing a discrete-time equivalent to G A(s)
(see Fig. 6.4).

Continuous–time system

L

Discrete–time system

Integro–differential equation
Numerical

approximation

Discretization
s= f (z)

(Laplace transform)

Transfer function

Difference equation

(z–transform) Z

Transfer function

GD[z] =
Y [z]

X [z]
=

⇔ ⇔

ΣM
j = 0

bj z
– j

=y [n–i] x [n–j]ΣN
i = 0

ai ΣM
j = 0

bj

ΣN
i = 0

ai z
– j

i = 0

GA(s) =
Y (s)

X (s)
=

ΣM
j = 0

bj s
j

ΣN ai s
i

=d
i y (t)

dt
i

d
jx (t)

dt
j

ΣN
i = 0 ΣM

j = 0
ai bj

Fig. 6.4 Discretization and numerical approximation

Some numerical approximation techniques on differentiation/integration will
now be presented with the corresponding discretization methods.

6.3.1 Backward Difference Rule on Numerical Differentiation

We could replace the derivative of a function x(t)

y(t) = d

dt
x(t) : Y (s) = s X (s)

by

y(nT) = x(nT) − x(nT − T)

T
: Y [z] = 1 − z−1

T
X [z]

where the initial values have been neglected since we are focusing on describing
the input-output relationship. This numerical differentiation method suggests the
backward difference mapping rule (Fig. 6.5(a)):

s → 1 − z−1

T
or equivalently,

1

1 − s T
→ z (6.3.1)

6.3 Various Discretization Methods [P-1] 285

(a) Backward difference rule

0 (n – 1)T

→ y (nT)=

y(t)= x (t)

x (nT) – x (nT–T)
T

d
dt

nT
t

(c) Mapping of stable region(b) Right–side integration rule

0

→ y (nT)=y (nT–T)+Tx (nT)

(n –1)T nT
t

y (t) = ∫ x (τ)dτt

0
1

–1

Im{z }

Re{z}

z–plane

0 1/2

–1

1

Fig. 6.5 Backward difference or right–side integration rule

Example 6.3 Backward Difference Rule
For a continuous-time system with the system function G A(s) = a/(s + a), the

backward difference rule yields the following discrete system function:

Gb[z]
(6.3.1)= a

s + a

∣∣∣∣
s=(1−z−1)/T

= a

(1 − z−1)/T + a

= aT

1 + aT − z−1
= aT z/(1 + aT)

z − 1/(1 + aT)
(E6.3.1)

This implies that the s-plane pole is mapped into the z-plane through the backward
difference or right-side integration rule as

s = sp = −a → z = z p
(6.3.1)= 1

1 − spT

for |sp T |<<1∼=
(D.25)

1

e−sp T
= esp T (E6.3.2)

This implies that if the s-plane pole sp is so close to the origin and/or the sampling
period is so short that |spT | << 1, then the location of the pole mapped to the
z-plane from the s-plane is

z p
∼= esp T

This relationship between the s-plane poles and the corresponding z-plane poles is
almost the same as those for other discretization methods.

Remark 6.6 Mapping of Stability Region and Frequency Transformation
From Eq. (6.3.1), it can be seen that the jω-axis (the stability boundary) in the

s-plane is mapped to

z = 1

1 − jωT
= 1 − jωT + 1 + jωT

2(1 − jωT)
= 1

2
(1 + e jθ) with θ = 2 tan−1(ωT)

(6.3.2)

This describes the circle of radius 1/2 and with the center at z = 1/2, which is
inside the unit circle in the z-plane (see Fig. 6.5(c)). It is implied that the backward

286 6 Continuous-Time Systems and Discrete-Time Systems

difference rule always maps stable analog systems into stable discrete equivalents,
but some unstable analog systems also yield stable discrete ones. Besides, since the
jω-axis in the s-plane does not map to the unit circle in the z-plane, the digital
frequency response will deviate from the analog frequency response as ω → ±∞
or Ω → ±π (farther from s = 0 or z = 1). Thus, in order to make the frequency
response of the discrete-time equivalent close to that of the original analog system
(for the principal frequency range), we must decrease the sampling T or equiva-
lently, increase the sampling frequency ωs so that significant pole/zeros are mapped
to the neighborhood of z = 1.

6.3.2 Forward Difference Rule on Numerical Differentiation

We could replace the derivative of a function x(t)

y(t) = d

dt
x(t) : Y (s) = s X (s)

by
y(nT) = x(nT + T) − x(nT)

T
: Y [z] = z − 1

T
X [z]

This numerical differentiation method suggests the forward difference mapping rule
(Fig. 6.6(a)):

s → z − 1

T
or equivalently, 1 + s T → z (6.3.3)

Example 6.4 Forward Difference Rule
For a continuous-time system with the system function G A(s) = a/(s + a), the

forward difference rule yields the following discrete system function:

G f [z] = a

s + a

∣∣∣∣
s=(z−1)/T

= a

(z − 1)/T + a
= aT

z − (1 − aT)
(E6.4.1)

→ y (nT)=

0

(a) Forward difference rule (b) Left–side integration rule (c) Mapping of stable region

0

(n+1)T (n – 1)T (n + 1)T

x (nT+T)–x (nT)
T

→ y (nT)=y (nT–T)+Tx (nT–T)

nT nT
t

Im{z }

Re{z }

z–plane

z=1

t

y (t) = ∫ x (τ)dτt

0y (t)= x (t)d
dt

Fig. 6.6 Forward difference or left–side integration rule

6.3 Various Discretization Methods [P-1] 287

This implies that the s-plane pole is mapped into the z-plane through the forward
difference or left-side integration rule as

s = sp = −a → z = z p
(6.3.3)= 1 + spT

(D.25)∼=
for |sp T |<<1

esp T (E6.4.2)

This implies that if the s-plane pole sp is so close to the origin and/or the sampling
period is so short that |spT | << 1, then the location of the poles mapped to the
z-plane from the s-plane is

z p
∼= esp T

Remark 6.7 Mapping of Stability Region By Forward Difference Rule
From Eq. (6.3.3), it can be seen that the jω-axis (the stability boundary) in the

s-plane is mapped to

z = 1 + jωT (6.3.4)

This describes the straight line parallel to the imaginary axis and crossing the real
axis at z = 1. It is implied that the forward difference rule maps the left half
plane (LHP) in the s-plane to the left of z = 1 in the z-plane with some por-
tion outside the unit circle. Consequently, some stable analog systems may yield
unstable discrete equivalents, while unstable analog systems always make unsta-
ble discrete ones. Hence, this is an undesirable mapping that cannot be used in
practice.

6.3.3 Left-Side (Rectangular) Rule on Numerical Integration

We could replace the integral of a function x(t)

y(t) =
∫ t

0
x(τ)dτ : Y (s) = 1

s
X (s)

by
y(nT) = y(nT − T) + T x(nT − T) : Y [z] = T z−1

1 − z−1
X [z]

This numerical integration method suggests the left-side integration rule
(Fig. 6.6(b)):

s → z − 1

T
or equivalently, 1 + s T → z (6.3.5)

This is identical to the forward difference rule (6.3.3).

288 6 Continuous-Time Systems and Discrete-Time Systems

6.3.4 Right-Side (Rectangular) Rule on Numerical Integration

We could replace the integral of a function x(t)

y(t) =
∫ t

0
x(τ)dτ : Y (s) = 1

s
X (s)

by
y(nT) = y(nT − T) + T x(nT) : Y [z] = T

1 − z−1
X [z]

This numerical integration method suggests the right-side integration rule
(Fig. 6.5(b)):

s → 1 − z−1

T
or equivalently,

1

1 − sT
→ z (6.3.6)

This is identical to the backward difference rule (6.3.1).

6.3.5 Bilinear Transformation (BLT) – Trapezoidal Rule
on Numerical Integration

By the trapezoidal rule (or Tustin’s method), we could replace the integral of a
function x(t)

y(t) =
∫ t

0
x(τ)dτ : Y (s) = 1

s
X (s)

by
y(nT) = y(nT − T) + T

2
(x(nT) + x(nT − T)) : Y [z] = T

2

1 + z−1

1 − z−1
X [z]

which suggests the bilinear transformation rule (Fig. 6.7(a)):

s → 2

T

1 − z−1

1 + z−1
or equivalently,

1 + sT/2

1 − sT/2
→ z (6.3.7)

→ y (nT)=y (nT–T) + (x (nT)+x (nT–T))

y (t) = ∫ x (τ)dτ
t

0

(n – 1)T

(a) Trapezoidal integration rule (b) Mapping of stable region

(n+1)T

Im{z }

Re{z }

z–planeUnit circle

t
nT

2
T

0 z = 1

Fig. 6.7 Trapezoidal integration rule or Tustin’s method – Bilinear transformation

6.3 Various Discretization Methods [P-1] 289

Example 6.5 Bilinear Transformation (BLT)
For a continuous-time system with the system function G A(s) = a/(s+a) having

a pole at s = −a and cutoff frequency ωA,c = a, the bilinear transformation (BLT)
yields the following discrete system function:

Gbl[z] = a

s + a

∣∣∣∣
s= 2(1−z−1)

T (1+z−1)

= a
2(1−z−1)
T (1+z−1) + a

= aT (z + 1)/(2 + aT)

z − 1−aT/2
1+aT/2

(E6.5.1)

This implies that the s-plane pole is mapped into the z-plane through the BLT as

s = sp = −a → z = z p
(6.3.7)= 1 + spT/2

1 − spT/2
= 1 − aT/2

1 + aT/2
(E6.5.2)

(
= esp T/2

e−sp T/2
∼= esp T for |spT | << 1

)

The cutoff frequency of this discrete-time equivalent can be found as

|Gbl [z]||z=e jωT =
∣∣∣∣∣ a

2(e jωT/2−e− jωT/2)
T (e jωT/2+e− jωT/2) + a

∣∣∣∣∣ =
∣∣∣∣∣ a

j 2
T tan

(
ωT
2

) + a

∣∣∣∣∣
≡ 1√

2
; ωD,c = 2

T
tan−1

(
ωA,cT

2

)
(E6.5.3)

Remark 6.8 Mapping of Stability Region and Frequency Transformation by BLT
From Eq. (6.3.7), it can be seen that the jω-axis (the stability boundary) in the

s-plane is mapped to

z
(6.3.7)=
s= jω

1 + jωT/2

1 − jωT/2
=

√
12 + (ωT/2)2√
12 + (ωT/2)2

<

(
tan−1

(
ωT

2

)
− tan−1

(−ωT

2

))

= e j2 tan(ωT/2) = e jΩ (6.3.8)

which describes the unit circle itself (see Fig. 6.7(b)). It is implied that the BLT
always maps stable/unstable analog systems into stable/unstable discrete-time equiv-
alents. However, since the entire jω-axis in the s-plane maps exactly once onto the
unit circle in the z-plane, the digital frequency response will be distorted (warped)
from the analog frequency response while no frequency aliasing occurs in the fre-
quency response, i.e., the analog frequency response in the high frequency range
is not wrapped up into the digital frequency response in the low frequency (see
Fig. 6.8). We set z = e jΩ = e jωD T with Ω = ωDT in Eq. (6.3.8) to get the

290 6 Continuous-Time Systems and Discrete-Time Systems

⎜G
im

p[
e

jΩ
]⎜

=
⎜G

im
p
[e

 jω
D

T
]⎜

ωA,c
ωA

ωA

ωA

⎜GA(j ωA)⎜

⎜G
bl

 [e
 jΩ

]⎜
=

⎜G
bl

 [e
 jω

D
T
]⎜

–2
π

2π
0

–π
π

Ω
 =

 ω D
T

Ω
c =

 ω D
,c

T
–2

π

–3π/T –2π/T

–π/T

0

0.707

π/T

ωA,cT
ωD,cT

ωA,c ω′A,c
ωA

π/T

π/T π/T 3π/T

2π
0

fr
eq

ue
nc

y
al

ia
si

ng

Frequency warping and prewarping

prewarping:

frequency warping

warping

Frequency transformation through the impulse-invariant
and bilinear transformation

Impulse-invariant
transformation

Bilinear
transformation

–π
π

Ω
 =

 ω D
T

Ω
c =

 ω D
,c

T

Ω = ωDT = ωAT+2π

Ω = ωDT = ωAT

ωAT

Ω = ωDT = ωAT – 2π

Ω = ωDT = 2 tan–1

(b)

(a)

Ω

 + 2π
2

ωATΩ = ωDT = 2 tan–1
2

ωAT
2

ωATΩ = ωDT = 2 tan–1

ωD,c =

 – 2π
2

Ω
2 tan–1
T

ωA,cT
2

ω′A,c = 2 tan
T

0.
70

7

ωA,c

Fig. 6.8 Frequency transformation

relationship between the digital frequency (Ω or ωD = Ω/T) in the z-plane and
the analog frequency ωA in the s-plane as

e jΩ (6.3.8)= e j2 tan−1(ωA T/2);

Ω ≡ ωDT = 2 tan−1

(
ωAT

2

)
; ωD = 2

T
tan−1

(
ωAT

2

)
: warping (6.3.9)

6.3 Various Discretization Methods [P-1] 291

For low frequencies such that |ωA| << 1 → tan−1(ωAT/2) ∼= ωAT/2, this
relationship collapses down to

ωD
∼= ωA (6.3.10)

On the other hand, the nonlinear compression for high frequencies is more apparent,
causing the frequency response at high frequencies to be highly distorted through
the bilinear transformation.

Remark 6.9 Prewarping

(1) To compensate for the frequency warping so that frequency characteristics of
the discrete-time equivalent in the frequency range of interest is reasonably
similar to those of the continuous-time system, we should prewarp the critical
frequencies before applying the BLT, by

ω′
A ← 2

T
tan

(
ωAT

2

)
: prewarping (6.3.11)

so that frequency transformation (6.3.9) with prewarping becomes

ω′
D

(6.3.9)= 2

T
tan−1

(
ω′

AT

2

)
≡ ωA (6.3.12)

(2) The BLT with prewarping at an analog frequency ωc can be performed by
substituting

s → 2

T

1 − z−1

1 + z−1
× ωc

(2/T) tan(ωcT/2)
= ωc

tan(ωcT/2)

1 − z−1

1 + z−1

instead of s → 2

T

1 − z−1

1 + z−1
(6.3.13)

for s in G A(s) where ωc(< π/T) is a critical (prewarp) frequency.
(3) The warping and prewarping (against warping) by the frequency scale conver-

sion is depicted in Fig. 6.8. It is implied that, if we design an analog filter,
i.e., determine G A(jω′

A) to satisfy the specifications on frequency ω′
A, the orig-

inal frequency response specifications on ωA will be satisfied by the digital filter
Gbl [z] that is to be obtained by applying the BLT to G A(s ′).

Figure 6.8 show the frequency transformation through BLT (accompanied with
frequency warping, but no frequency aliasing) and that through impulse-invariant
transformation (accompanied with frequency aliasing, but no frequency warping).

Example 6.6 Bilinear Transformation with Prewarping
For a continuous-time system with the system function G A(s) = a/(s+a) having

a pole at s = −a and cutoff frequency ωA,c = a, the bilinear transformation (BLT)
with prewarping yields the following discrete system function:

292 6 Continuous-Time Systems and Discrete-Time Systems

Gbl,pre[z]
(6.3.13)= a

s + a

∣∣∣∣
s= a(1−z−1)

tan(aT/2)(1+z−1)

= (2/T) tan(aT/2)
2(1−z−1)
T (1+z−1) + 2

T tan(aT/2)
(E6.6.1)

This implies that the s-plane pole is mapped into the z-plane through the BLT as

s = sp = −a → z = z p
(6.3.13)= 1 + sp tan(aT/2)/a

1 − sp tan(aT/2)/a(
∼= 1 − aT/2

1 + aT/2
∼= esp T/2

e−sp T/2
∼= esp T for |spT | << 1

)
(E6.6.2)

Note that G A(s) and its discrete-time equivalent obtained by the BLT with prewarp-
ing have the same cutoff frequency (half-power point) ωD = a at which

|G A(jωA)| |ωA=a = ∣∣Gbl,pre[e jωD T]
∣∣∣∣

ωD=a = 1√
2

= −3 [dB] (E6.6.3)

6.3.6 Pole-Zero Mapping – Matched z-Transform [F-1]

This technique consists of a set of heuristic rules given below.

(1) All poles and all finite zeros of G A(s) are mapped according to z = esT .
(2) All zeros of G A(s) at s = ∞ are mapped to the point z = −1 in G[z]. (Note

that s = j∞ and z = −1 = e jπ represent the highest frequency in the s-plane
and in the z-plane, respectively.)

(3) If a unit delay in the digital system is desired for any reason (e.g., because of
computation time needed to process each sample), one zero of G A(s) at s = ∞
is mapped into z = ∞ so that G[z] is proper, that is, the order of the numerator
is less than that of the denominator.

(4) The DC gain of G pz[z] at z = 1 is chosen to match the DC gain of G A(s) at
s = 0 so that

G D[z]|z=e jωp T =1 ≡ G A(s)|s= jωA=0 ; G pz[1] ≡ G A(0)

Example 6.7 Pole-Zero Mapping
For a continuous-time system with the system function G A(s) = a/(s + a), we

can apply the pole-zero mapping procedure as

a

s + a
zero at s = ∞
pole at s = −a

Rule 1, 2→ zero at z = −1
pole at z = e−aT

z + 1

z − e−aT

Rule 3→ zero at z = ∞,

pole at z = e−aT
1

z − e−aT

Rule 4→ G pz[z] = 1 − e−aT

z − e−aT
(E6.7.1)

6.4 Time and Frequency Responses of Discrete-Time Equivalents 293

At the last stage, (1−e−aT) is multiplied so that the DC gain is the same as that of the
analog system: G pz[1] ≡ G A(0) = 1. This happens to be identical with Eq. (E6.2.2),
which is obtained through the step-invariant (or z.o.h. equivalent) transformation.

Remark 6.10 DC Gain Adjustment
Irrespective of which transformation method is used, we often adjust the DC gain

of G[z] by multiplying a scaling factor to match the DC steady-state
response:

G D[z]|z=e jωp T =1 ≡ G A(s)|s= jωA=0 ; G pz[1] ≡ G A(0) (6.3.14)

6.3.7 Transport Delay – Dead Time

If an analog system contains a pure delay of d s in time, it can be represented by a
continuous-time model of the form

G(s) = H (s)e−sd (6.3.15)

If the time delay is an integer multiple of the sampling period T , say, d = MT ,
then the delay factor e−sd = e−sMT can be mapped to z−M (with M poles at z =
0). More generally, if we have d = MT + d1 with 0 ≤ d1 < T , then we can
write

e−sd = e−sMT e−sd1 (6.3.16)

With sufficiently high sampling rate such that d1 < T << 1, we can make a rational
approximation of

e−d1s ∼= 1 − d1s/2

1 + d1s/2
(6.3.17)

Now we can substitute Eq. (6.3.16) with Eq. (6.3.17) into Eq. (6.3.15) and apply a
discretization method to obtain the discrete-time equivalent.

6.4 Time and Frequency Responses
of Discrete-Time Equivalents

In the previous section we have obtained several discrete-time equivalents for the
continuous-time system G A(s) = a/(s +a). Figure 6.9(a1, a2, b1, and b2) show the
time and frequency responses of the two discrete-time equivalents obtained by the
z.o.h. mapping and BLT for the sampling period of T = 0.5 and T = 0.1 [s] where
a = 1. The following program “sig06f09.m” can be used to get Figs. 6.9(a1) and
(b1).

294 6 Continuous-Time Systems and Discrete-Time Systems

Ω = ωDT

Ω = ωDT
2π

2π

1

0.5

0
0

1

0.5

0
0 0.5 1.51 2 3 4 54.52.5 3.5

1

0.5

0
0 0.5 1.51 2 3 4 54.52.5 3.5

1

0.5

0
0 [rad/sample]

[rad/sample]

t [sec]

t [sec]

(b1) The frequency responses with the sampling period T = 0.5 [sec]

(b2) The frequency responses with the sampling period T = 0.1 [sec]

(a2) The step responses with the sampling period T = 0.1 [sec]

(a1) The step responses with the sampling period T = 0.5 [sec]

3π

3π

4π

4π

π

π

⎜GA(j ωA)⎜

⎜GA(j ωA)⎜

⎜Gbl [e
jΩ]⎜

ybl[n]

yb l[n]

yzoh[n]

yzoh [n]

yA(t)

yA(t)

⎜Gbl [e
jΩ]⎜

⎜Gzoh [e
jΩ]⎜

⎜Gzoh [e
jΩ]⎜

Fig. 6.9 The step and frequency responses of discrete–time equivalents

Note the following:

– All the discrete-time equivalents have the frequency characteristics that are peri-
odic with period 2π in the digital frequency Ω or with period 2π/T in the analog
frequency ωD = Ω/T and become similar to that of the continuous-time system
for wider frequency range as the sampling period T gets shorter.

– The BLT gives a zero at ωD = π/T corresponding to the zero at z = −1 = e jπ ,
assuring no aliasing problem in the frequency response.

6.5 Relationship Between s-Plane Poles and z-Plane Poles 295

– The BLT with prewarping gives the half-power (3dB) frequency at ωD = a just
like the continuous-time system.

%sig06f09.m
% Continuous-to-Discrete-time conversion of GA(s)=a/(s+a) with a=1
clear, clf
a=1; B=1; A=[1 a]; GAs=tf(B,A); % Analog transfer function
t f=5; tt=[0:0.01:t f]; % Time vector
fD=[0:0.001:2]; wD=2*pi*fD; % Digital/Analog frequency vector in Hz
T=0.5; % Sampling period
fA=fD/T; wA=wD/T; % Digital/Analog frequency vector in rad/s
GAw mag= abs(freqs(B,A,wA)); % Analog frequency reponse |GA(jw)|
GD zoh=c2d(GAs,T,’zoh’); [Bd zoh,Ad zoh]=tfdata(GD zoh,’v’)
GD BLTp=c2d(GAs,T,’prewarp’,a); [Bd BLTp,Ad BLTp]= tfdata(GD BLTp,’v’)
[yt,t]=step(GAs,t f); % Step response
N=t f/T; nT=[0:N-1]*T; yn zoh=dstep(Bd zoh,Ad zoh,N);
subplot(411), plot(t,yt), hold on, stairs(nT,yn zoh,’:’)
GDw zoh mag=abs(freqz(Bd zoh,Ad zoh,wD)); % Digital frequency response
subplot(413), plot(fD,GAw mag, fD,GDw zoh mag,’:’)

6.5 Relationship Between s-Plane Poles
and z-Plane Poles

In this section, we will derive the mathematical relationship between the s-plane and
z-plane pole locations. We write the system function of a continuous-time second-
order system in standard form as

G(s) = ω2
n

s2 + 2ζωns + ω2
n

= ω2
n

(s + σ)2 + ω2
d

, 0 ≤ |ζ | ≤ 1 (6.5.1)

which has the poles at

s1,2 = −ζωn ± j ωn

√
1 − ζ 2 = −σ ± j ωd (Fig. 6.10(a))

–ζωn

ωn

θ
5 1000

5

10

0 t

faster
decreasing

hi
gh

er
fr

eq
ue

nc
y

The pole locations of an analog system(a) The impulse response corresponding
 to the pole locations

(b)

–5

–10

jωd = jωn 1– ζ 2√

Fig. 6.10 Pole locations and the corresponding impulse responses

296 6 Continuous-Time Systems and Discrete-Time Systems

where ζ, σ, ωn , and ωd are the damping ratio, damping constant, natural frequency,
and damped frequency. Note that the impulse response of the system is

g(t) = L−1{G(s)} = ωn√
1 − ζ 2

e−σ t sin(ωd t) (Fig. 6.10(b)) (6.5.2)

The z-plane poles corresponding to the s-plane poles s1,2 are located at

z1,2 = esT
∣∣
s1,2

= e−σ T ∠ ± ωd T = r∠ ± Ω (6.5.3)

where

e−ζωn T = e−σ T = r or ζωnT = σ T = − ln r (6.5.4a)

and ωnT
√

1 − ζ 2 = ωd T = Ω : digital frequency (6.5.4b)

The discrete-time version of the impulse response can be written as

g[n] = g(nT)
(6.5.2)= ωn√

1 − ζ 2
e−σ T n sin (ωd T n)

(6.5.4a,b)= ωn√
1 − ζ 2

rn sin (Ωn) (6.5.5)

Note that the larger the distance r of a pole from the origin is, the slower the output
stemming from the pole converges; on the other hand, the larger the phase Ω (digital
frequency) of a pole is, the shorter the discrete-time oscillation period of the output
stemming from the pole Ω is.

Based on Eqs. (6.5.4a) and (6.5.4b), we can express the dampling ratio ζ and
natural frequency ωn in terms of the parameters of the pole location, i.e., the absolute
value r and phase Ω of the pole(s) as

ζ√
1 − ζ 2

= − ln r

Ω
; ζ = − ln r√

ln2 r + Ω2
(6.5.6)

ωn = 1

T

√
ln2 r + Ω2 (6.5.7)

The time constant of the pole(s) is

τ = 1

σ
= 1

ζωn
= −T

ln r
(6.5.8)

Thus, given the complex pole locations z = r∠ ± Ω in the z-plane, we can find the
damping ratio ζ , natural frequency ωn , and time constant τ . If we have sufficiently
high sampling rate so that T << τ , the poles of the discrete-time system are placed

6.6 The Starred Transform and Pulse Transfer Function 297

1

0.8

0.6

0.4

0.2

0
–0.8–1 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

3π
10

π
10

0.7
0.6

0.4

0.1
ζ = 0

π
10
π

1010

ωnT = π

ωnT = π
20

π
10

T = Ω = ωd

Ω = ωd
8π
10

T =

8π
10

9π
10

7π
10

6π
10

5π
10 4π

10

2π
10

0.2
0.3

0.8

0.5

ζ=0.9

ζ=1.0
ω d

T
 =

 5
π 10

10
π

Fig. 6.11 The loci of the poles of a digital system for ζ = constant, ωn T = constant, and ωd T =
constant

in the vicinity of z = 1. Note that high sampling rate does not make the response
slower, but only makes the sampling interval shorter.

Figure 6.11 gives a picture of how the s-plane and z-plane poles are related where
the loci of pole locations for constant damping ratio ζ are logarithmic spirals (with
decreasing amplitude r = e−ζωn T as ωnT increases) and the loci of pole locations
for constant ωnT are drawn at right angles to the spirals for ζ = constant.

6.6 The Starred Transform and Pulse Transfer Function

6.6.1 The Starred Transform

We define the starred transform X∗(s) of a signal x(t) to be the Laplace transform
of the impulse-modulated version x∗(t) = x(t)δT (t) representing the output signal
of an ideal sampler with sampling period T . Using Eq. (2.1.10), we can express the
ideal sampler output as

x∗(t) = x(t)δT (t) = 1

T

∞∑
k=−∞

x(t) e j kωs t with ωs = 2π

T
(6.6.1)

Taking the Laplace transform of the both sides and using the complex translation
property (Table B.7(3)), we obtain the bilateral starred transform of x(t) as

X∗(s) = 1

T

∞∑
k=−∞

X (s − j kωs) = 1

T

∞∑
k=−∞

X (s + j kωs) (6.6.2)

298 6 Continuous-Time Systems and Discrete-Time Systems

Also, from Appendix III of [P-1], we borrow the following expressions for the
unilateral starred transform:

X∗(s) =
∞∑

m=0

x(mT) e−mT s = X [z]|z=eTs (6.6.3a)

X∗(s) = 1

T

∞∑
k=−∞

X (s + jkωs) + 1

2

∞∑
n=0

Δ x(nT) e−nT s (6.6.3b)

where Δx(nT) = x(nT +) − x(nT −) is the amplitude of the discontinuity of x(t) at
t = nT .

The bilateral and unilateral starred transforms have the following properties:

<Properties of the starred transform>

1. They are periodic with period of jωs in s:

X∗(s + jmωs) =
∑

x(nT) e−nT (s+ jmωs) =
∑

x(nT) e−nT s = X∗(s) (6.6.4)

since e− jn mωs T = e− jn m2π = 1 for any integer m.
2. If they have a pole at s = s1, then they will also have poles at s = s1 +

jmωs, m = 0, ±1, ±2, · · · :

X∗(s) = 1

T
{X (s)+ X (s + jωs)+ X (s − jωs)+ X (s + j2ωs)+ X (s − j2ωs)+· · ·

(6.6.5)

6.6.2 The Pulse Transfer Function

Consider the sampled-data systems depicted in Fig. 6.12 where the one has a sam-
pled input and the other has a continuous-time input. Under the assumption of zero
initial conditions, the output transform of system (a) can be written as

Y (s) = G(s)X∗(s) (6.6.6)

If x(t) and y(t) are continuous at all sampling instants, we can use Eq. (6.6.2) to
take the starred transform of Eq. (6.6.6) as

Fig. 6.12 Sampled–data
systems

∗(s)X

∗(t)y

∗(t)y

∗(s)Y

∗(s)Y

X (s) Y (s)

Y (s)X (s)
G (s)

G (s)

T

T

T

x (t) y (t)

y (t)x (t) ∗(t)x

6.6 The Starred Transform and Pulse Transfer Function 299

Y∗(s)
(6.6.6)= {G(s)X∗(s)}∗ (6.6.2)= 1

T

∞∑
k=−∞

G(s + jkωs)X∗(s + jkωs)

(6.6.4)= 1

T

∞∑
k=−∞

G(s + jkωs)X∗(s); Y∗(s) = G∗(s)X∗(s) (6.6.7)

where G∗(s) is called the pulse transfer function. This implies that, when taking the
starred transform, we can factor out the existing starred transform. If we replace eT s

by z in the starred transform, we will get the z-transform

Y [z] = G [z] X [z] (6.6.8)

which describes the input-output relationship in the z-domain.
In contrast with this, the sampled output of system (b) in Fig. 6.12 can be

expressed as

Y∗(s) = {G(s)X (s)}∗ �= G∗(s)X∗(s) (6.6.9a)

Y [z] = G X [z] �= G [z] X [z] (6.6.9b)

This implies that, if the input is applied to a continuous-time system before being
sampled, the input transform can never be factored out to derive the transfer
function.

6.6.3 Transfer Function of Cascaded Sampled-Data System

Consider the cascaded sampled-data systems depicted in Fig. 6.13. Each of the three
sampled-data systems has the input-output relationship as below:

(a) Y∗(s) = {G2(s)V∗(s)}∗ (6.6.7)= G2∗(s)V∗(s) = G2∗(s)G1∗(s)X∗(s)

Y [z] = G2[z]G1[z]X [z] (6.6.10a)

(b) Y∗(s) = {G2(s)G1(s)X∗(s)}∗ (6.6.7)= {G2(s)G1(s)}∗ X∗(s) = G2G1∗(s)X∗(s)

Y [z] = G2G1[z] X [z] (6.6.10b)

(c) Y∗(s) = {G2(s)V∗(s)}∗ (6.6.7)= G2∗(s)V∗(s) = G2∗(s){G1(s)X (s)}∗

= G2∗(s)G1 X∗(s); Y [z] = G2[z]G1 X [z] (6.6.10c)

300 6 Continuous-Time Systems and Discrete-Time Systems

∗(t)y

∗(s)Y

Y (s)X (s) T

T

T

T

T

T

T

G1(s)

G1(s)

y (t)x (t)
(a)

(b)

(c)

V (s)

V (s)

V (s)=G1(s)X∗(s)

V (s)=G1(s)X ∗(s)

V (s)=G1(s)X (s)

Y (s)=G2(s)V∗(s) = G2(s){G1(s)X∗(s)}∗

Y (s)=G2(s)V (s)=G2(s)G1(s)X∗(s)

Y (s)=G2(s)V∗(s) = G2(s){G1(s)X (s)}∗

v (t)

v (t)

X (s)

x (t)

X (s)

x (t)

∗(s)X
∗(t)x

G2(s)
∗(s)V
∗(t)v

∗(s)X
∗(t)x

∗(t)y

∗(s)Y

Y (s)
G1(s)

y (t)

V (s)

v (t)
G2(s)

∗(s)V
∗(t)v

∗(t)y

∗(s)Y

Y (s)

y (t)
G2(s)

Fig. 6.13 Cascaded sampled–data systems

6.6.4 Transfer Function of System in A/D-G[z]-D/A Structure

Consider the sampled-data system containing an A/D-G[z]-D/A structure or a S/H
device depicted in Fig. 6.14. Both of the two systems (a) and (b) have the same
transfer function

Y [z]

X [z]
= GhoG2[z]G1[z] (6.6.11)

since

V [z] = G1[z]X [z] ; V [eT s] = G1[eT s]X [eT s] ; V∗(s) = G1∗(s)X∗(s)

V̄ (s) = 1 − e−T s

s
V∗(s) = 1 − e−T s

s
G1∗(s)X∗(s)

Y (s) = G2(s)V̄ (s) = 1 − e−T s

s
G2(s)G1∗(s)X∗(s)

Y [z] = Z

{
1 − e−T s

s
G2(s)

}
G1[z]X [z] = GhoG2[z] G1[z] X [z]

(t)y

(s)Y

Y (s)

X (s)

X (s)
A/D D/A

z.o.h.

X [z]

Τ G1[z]

G1[z]
y (t)

x (t)

x (t) x [n]
(a)

(b)

V [z]

V (s)
—

V [s]

v (n) v (t)

T

T

v (t)–

G2(s)

(s)V

(t)x∗

∗(s)X

(t)v

(t)y

(s)Y

Y (s)

y (t)
G2(s)Gho(s)∗

∗

∗

∗

∗

∗

Fig. 6.14 Sampled–data system containing an A/D-G[z]-D/A structure or a S/H device

Problems 301

where

GhoG2[z] = Z
{

(1 − e−T s)
G2(s)

s

}
= (1 − z−1) Z

{
1

s
G2(s)

}
:

the z.o.h. equivalent of G2(s)

(cf.) Note that the DAC usually has a data-hold device at its output, which allows
us to model it as a zero-order-hold device.

Problems

6.1 Z.O.H. Equivalent

(a) Show that the zero-order-hold equivalent of G(s) = 1/s(s + 1) with
sampling period T is

G(s) = 1

s(s + 1)
→ Gzoh[z] = (T − 1 + e−T)z + 1 − e−T − T e−T

(z − 1)(z − e−T)
(P6.1.1)

(b) Show that the zero-order-hold equivalent of G(s) = 2/(s2 + 2s + 2) with
sampling period T is

G(s) = 2

(s + 1)2 + 1
→

Gzoh[z] = (1 − e−T (cos T + sin T))z + e−2T − e−T (cos T − sin T)

z2 − 2z e−T cos T + e−2T

(P6.1.2)

(c) Use the following MATLAB statements to find the discrete-time equiva-
lent of analog system (b) through the BLT (bilinear transformation) with
sampling period T = 0.1 [s] and critical frequency ωp = √

2 [rad/s].

>>B=2; A=[1 2 2]; T=0.1; wp=sqrt(2);
>>GAs= tf(B,A);
>>Gz BLT prewarp= c2d(GAs,T,’prewarp’,wp);
>>[Bd BLT p,Ad BLT p]= tfdata(Gz BLT prewarp,’v’)

Also support the above results of (a) and (b) by completing and running the
following MATLAB program “sig06p 01.m”, which computes the z.o.h.
equivalents of analog system (a) and (b) with sampling period T = 0.1 [s].

302 6 Continuous-Time Systems and Discrete-Time Systems

%sig06p 01.m
clear, clf
B=1; A=[1 1 0]; T=0.1; e T= exp(-T); e 2T= exp(-2*T);
GAs= tf(B,A); % Analog transfer function
Gz zoh= c2d(GAs,T); % z.o.h. equivalent
[Bd zoh,Ad zoh]= tfdata(Gz zoh,’v’)
Bd= [(T-1+e T) 1-e T-T*e T], Ad= [1 -1-e T e T] % (P6.1.1)

(d) Referring to the Simulink block diagram of Fig. P6.1, perform the Simulink
simulation to obtain the step responses of the analog system (b) and its two
discrete-time equivalents, one through z.o.h. and one through BLT.

Ad_zoh(z)

Bd_zoh(z)

Transfer Fcn

Discrete Filter 1

[Simulink/Discrete][Simulink/Sources]
Step

[Simulink/Sinks]
Scope

[Simulink/Continuous]

Discrete Filter

2
s2 + 2s + 2

Ad_BLT_p(z)

Bd_BLT_p(z)

Fig. P6.1 Simulink block diagram for Problem 6.1

X (s) Y (s)

G1(s) G2(s)
x (t) y (t)1

s + 1
2

s + 2

Fig. P6.2

6.2 Step-Invariant Transformation
Consider the system depicted in Fig. P6.2.

(a) Find the step-invariant equivalent G1[z] of G1(s).
(b) Find the step-invariant equivalent G2[z] of G2(s).
(c) Find the step-invariant equivalent G[z] of G1(s)G2(s).
(d) Is it true that G[z] = G1[z]G2[z]?

6.3 Bilinear Transformation without prewarping or with prewarping
Consider the second-order analog system whose transfer function is

Problems 303

G A(s) = ωbs

s2 + ωbs + ω2
p

= 2s

s2 + 2s + 1
with ωb = 2, ωp = 1 (P6.3.1)

Note that the frequency response G A(jω), its peak frequency, and two 3dB-
frequencies are

G A(jω) = jωωb

(jω)2 + jωωb + ω2
p

= j2ω

(1 − ω2) + j2ω
(P6.3.2)

ωp = 1, ω3B,l =
−ωb +

√
ω2

b + 4ω2
p

2
= −1 +

√
2,

ω3B,u =
ωb +

√
ω2

b + 4ω2
p

2
= 1 +

√
2 (P6.3.3)

(a) Find the discrete-time equivalent G D[z] using the BLT with sampling
period of T = 1 [s] and no prewarping. Also find the peak frequency Ωp

and lower/upper 3dB frequencies Ω3B,l and Ω3B,u of the digital frequency
response G D[e jΩ]. How are they related with ωp, ω3B,l , and ω3B,u? You
can modify and use the MATLAB program “sig06p 03.m” below.

(b) Find the discrete-time equivalent G D[z] using the BLT with sampling
period of T = 1 [s] and prewarping three times, once at ωp = 1, once at
ω3B,l , and once at ω3B,u . Also for each G D[z], find the peak frequency Ωp

and lower/upper 3dB frequencies Ω3B,l and Ω3B,u of the digital frequency
response G D[e jΩ] and tell which frequency is closest to the corresponding
analog frequency in terms of the basic realtionship Ω = ωT between the
analog and digital frequencies.

%sig06p 03.m
B=[2 0]; A=[1 2 1]; wp=1; w 3dB1= -1+sqrt(2); w 3dB2= 1+sqrt(2);
GAs= tf(B,A); T=1; % Analog transfer function and sampling period
Gz= c2d(GAs,T,’tustin’); % BLT without prewarping
W=[0:0.00001:1]*pi; GDW mag= abs(freqz(BD,AD,W));
[GDW max,i peak]= max(GDW mag); Wp= W(i peak)
tmp= abs(GDW mag-GDW max/sqrt(2));
[tmp 3dB1,i 3dB1]= min(tmp(1:i peak));
[tmp 3dB2,i 3dB2]= min(tmp(i peak+1:end));
W 3dB1= W(i 3dB1); W 3dB2= W(i peak+i 3dB2);

6.4 Pole Locations and Time Responses
Consider an analog system having the system function Ga(s) = 1/(s2 +2s +5)
and its two z.o.h. equivalents Gzoh1[z] and Gzoh2[z], each with sampling period
T = 0.2 and T = 0.1, respectively.

304 6 Continuous-Time Systems and Discrete-Time Systems

× 1

× 1

–2 –1 10
2

2

1

–1

–2

s–plane

z–plane

Re{s}

lm{s}

Re{z}

lm{z}

×2

×
×

××

2

–1 0

–1

–0.5

3

0.5–0.5

0.5

(a) The pole/zero plot of Ga(s) (b) The pole/zero plot of Gzoh1[z] and Gzoh2[z]

(c) The Simulink model window

(d) The Scope window showing the simulation results

3

Fig. P6.4 Pole/zero plots and Simulink simulation

Problems 305

(a) Note that the pole-zero plot of Ga(s) is depicted in Fig. P6.4(a). Refer-
ring to the pole/zero plots shown in Fig. P6.4(b), choose the pole locations
(r∠Ω) of Gzoh1[z] and Gzoh2[z] from 2© and 3©. The digital frequency ωnT
of the output corresponding to pole location 2© is expected to be two times
as high as that of the output corresponding to pole location 3© in proportion
to the sampling period T where ωn is determined from the pole location of
the analog system Ga(s). Does it mean that the output corresponding to
pole location 2© oscillates two times as fast as that corresponding to pole
location 3©?

(b) Referring to Fig. P6.4(c), perform the Simulink simulation for Ga(s),
Gzoh1[z], and Gzoh2[z] to get the simulation results as Fig. P6.4(d) and
choose the output waveforms of Ga(s), Gzoh1[z] and Gzoh2[z] from 1©, 2©,
and 3©.

×
1

–2 –1 1

2

2

1

–1

–2

s–plane

z–plane

Re{s}

lm{s}

Re{z}

lm{z}

–1 0

–1

4

(a) The pole/zero plot of Ga1(s) and Ga2(s) (b) The pole/zero plot of Gzoh1[z] and Gzoh2[z]

×
2

×
2

×
1

3
4

3
×

×× ××

×

(c) The Simulink model window and the simulation results seen in the Scope window

Fig. P6.5 Pole/zero plots and Simulink simulation

6.5 Pole Locations and Time Responses
Consider two analog systems, each having the system function G1(s) = 1/(s2+
2s + 5) and G2(s) = 1/(s2 + 0.4s + 4.04), respectively and their z.o.h.
equivalents Gzoh1[z] and Gzoh2[z] with sampling period T = 0.1.

306 6 Continuous-Time Systems and Discrete-Time Systems

(a) Note that the pole-zero plots of G1(s) and G2(s) are depicted in Fig. P6.5(a).
Referring to the pole/zero plots shown in Fig. P6.5(b), choose the pole loca-
tions of Gzoh1[z] and Gzoh2[z] from 3© and 4©. Which converges faster of
the outputs stemming from the poles 3© and 4©? Note that the poles 3© are
closer to the origin than the poles 4©, i.e., r3 < r4.

(b) Referring to Fig. P6.5(c), perform the Simulink simulation for G1(s), G2(s),
Gzoh1[z], and Gzoh2[z] and choose the output waveforms of the four systems
from a©, b©, c©, and d©.

6.6 Pole-Zero Mapping (Matched z-Transform) of an Analog System with Delay
Using the pole-zero mapping (matched z-transform), find the discrete-time
equivalent of an analog system

G(s) = 2

s + 2
e−0.95s (P6.6.1)

with sampling period T = 1/4 [s].

Chapter 7
Analog and Digital Filters

Contents

7.1 Analog Filter Design . 307
7.2 Digital Filter Design . 320

7.2.1 IIR Filter Design . 321
7.2.2 FIR Filter Design . 331
7.2.3 Filter Structure and System Model Available in MATLAB 345
7.2.4 Importing/Exporting a Filter Design . 348

7.3 How to Use SPTool . 350
Problems . 357

This chapter introduces how to use MATLAB for designing analog and digital
filters such that the given specification on the frequency response is satisfied. Espe-
cially for analog filters, the MATLAB routines to perform circuit-level design are
also introduced.

7.1 Analog Filter Design

This section has been excerpted from Sect. 8.6 of [Y-2] (Yang, Won Y. and Seung
C. Lee, Circuit Systems with MATLAB and PSpice, John Wiley & Sons, Inc., New
Jersey, 2007.). Fig 7.1(a)/(b)/(c)/(d) show typical lowpass/bandpass/bandstop/ high-
pass filter specifications on their log-magnitude, 20 log10 |G(jω)| [dB], of frequency
response. The filter specification can be described as follows:

20 log10 |G(jωp)| ≥ −Rp[dB] for the passband (7.1.1a)

20 log10 |G(jωs)| ≤ −As[dB] for the stopband (7.1.1b)

where ωp, ωs , Rp, and As are referred to as the passband edge frequency, the
stopband edge frequency, the passband ripple, and the stopband attenuation, respec-
tively. The most commonly used analog filter design techniques are the Butterworth,
Chebyshev I, II, and elliptic ones ([K-2], Chap. 8). MATLAB has the built-in
functions butt(), cheby1(), cheby2(), and ellip() for designing the
four types of analog/digital filter. As summarized below, butt() needs the 3dB
cutoff frequency while cheby1() and ellip() get the critical passband edge

W.Y. Yang et al., Signals and Systems with MATLAB R©,
DOI 10.1007/978-3-540-92954-3 7, C© Springer-Verlag Berlin Heidelberg 2009

307

308 7 Analog and Digital Filters

frequency and cheby2() the critical stopband edge frequency as one of their input
arguments. The parametric frequencies together with the filter order can be prede-
termined using buttord(), cheb1ord(), cheb2ord(), and ellipord().
The frequency input argument should be given in two-dimensional vector for
designing BPF or BSF. Also for HPF/BSF, the string ‘high’/‘stop’ should
be given as an optional input argument together with ‘s’ for analog filter design.

20log10|G (jω)|[dB]

(a) Typical specification of lowpass filter (b) Typical specification of bandpass filter

(d) Typical specification of highpass filter
transition band

transition band
passband

passbandpassband

passband stopband

stopband passband

stopbandstopband

stopband

transition band transition band

transition band transition band
(c) Typical specification of bandstop filter

0
–Rp

Rp : passband ripple
As : stopband attenuation
ωp : passband edge frequency
ω s : stopband edge frequency

–As

0
–Rp

–As

0
–Rp

–As

0
–Rp

–As

20log10|G (jω)|[dB] 20log10|G (jω)|[dB]

20log10|G (jω)|[dB]

ω

ω ω

ω
ωs2ωp2ωp1ωs1

ωp1 ωs1 ωs2 ωp2

ωsωp

ωs ωp

Fig. 7.1 Specification on the log-magnitude of the frequency response of an analog filter

function [N,wc] = buttord(wp,ws,Rp,As,opt)

% For opt=’s’, it selects the lowest order N and cutoff frequency wc of analog Butterworth filter.

% that has the passband ripple<=Rp[dB] and stopband attenuation>=As[dB]

% for the passband edge frequency wp and stopband edge frequency ws.

% Note that for the BPF/BSF, the passband edge frequency wp and stopband edge frequency ws should be

% given as two-dimensional vectors like [wp1 wp2] and [ws1 ws2].

function [B,A]=butter(N,wc,opt)

% It designs a digital/analog Butterworth filter, returning the numerator/denominator of system function.

% [B,A]=butter(N,wc,’s’) for the analog LPF of order N with the cutoff frequency wc[rad/s]

% butter(N,[wc1 wc2],’s’) for the analog BPF of order 2N with the passband wc1<w<wc2[rad/s]

% butter(N,[wc1 wc2],’stop’,’s’) for the analog BSF of order 2N with the stopband wc1<w<wc2[rad/s]

% butter(N,wc,’high’,’s’) for the analog HPF of order N with cutoff frequency wc[rad/s]

% Note that N and wc can be obtained from [N,wc]=buttord(wp,ws,Rp,As,opt).

function [B,A]=cheby1(N,Rp,wpc,opt)

% It designs a digital/analog Chebyshev type I filter with the passband ripple Rp[dB]

% and the critical passband edge frequency wpc (Use Rp=0.5 as a starting point, if not sure).

% Note that N and wpc can be obtained from [N,wpc]=cheby1ord(wp,ws,Rp,As,opt).

function [B,A]=cheby2(N,As,wsc,opt)

% It designs a digital/analog Chebyshev type II filter with the stopband attenuation As[dB] down

% and the critical stopband edge frequency wsc (Use As=20 as a starting point, if not sure).

% Note that N and wsc can be obtained from [N,wsc]=cheby2ord(wp,ws,Rp,As,opt).

function [B,A]=ellip(N,Rp,As,wpc,opt)

% It designs a digital/analog Elliptic filter with the passband ripple Rp, the stopband attenuation As,

% and the critical passband edge frequency wpc (Use Rp=0.5[dB] & As=20[dB], if unsure).

% Note that N and wpc can be obtained from ellipord(wp,ws,Rp,As,opt).

7.1 Analog Filter Design 309

G0(s)

G0(s)

G1(s)

summer

(a) Cascade form (b) Parallel form

G2(s)

GM(s)

G1(s) G2(s) GM (s)

G0(s)+ Gm(s)G (s) ΣM
m=1=

G (s) G0(s) Gm(s)
M
Π

m=1

Vo (s)

Vi (s)
= =

Fig. 7.2 Two realizations of an analog filter (system or transfer function)

The designed filter system functions are often factored into the sum or product of
second-order sections called biquads (possibly with an additional first-order section
in the case of an odd filter order) as

G(s) =K G0(s)
M
Π

m=1
Gm(s) = K

b01s + b02

s + a02

M
Π

m=1

bm1s2 + bm2s + bm3

s2 + am2s + am3
(7.1.2a)

with M = floor
(

N
2

)

G(s) =G0(s) +
∑M

m=1
Gm(s) = b01s + b02

s + a02
+
∑M

m=1

bm1s2 + bm2s + bm3

s2 + am2s + am3
(7.1.2b)

with M = floor

(
N

2

)

and then realized in cascade or parallel form, respectively as depicted in Fig. 7.2.
Rather than reviewing the design procedures, let us use the MATLAB functions

to design a Butterworth lowpass filter, a Chebyshev I bandpass filter, a Chebyshev
II bandstop filter, and elliptic highpass filter in the following example.

Example 7.1 Analog Filter Design Using the MATLAB Functions
Let us find the system functions of analog filters meeting the specifications

given below.

(a)We are going to determine the system function of a Butterworth lowpass filter with

ωp = 2π × 6000 [rad/s], ωs = 2π × 15000 [rad/s], Rp = 2 [dB], and

As = 25 [dB] (E7.1.1)

First, we use the MATLAB function ‘buttord()’ to find the filter order N and
the cutoff frequency ωc at which 20 log10 |G(jωc)| = −3 [dB] by typing the
following statements into the MATLAB command window:

310 7 Analog and Digital Filters

>>wp=2*pi*6000; ws=2*pi*15000; Rp=2; As=25;
>>format short e, [N,wc]=buttord(wp,ws,Rp,As,’s’)

N = 4, wc = 4.5914e+004

We put these parameter values N and wc into the Butterworth filter design func-
tion ‘butter()’ as its first and second input arguments:

>>[Bb,Ab]=butter(N,wc,’s’)

Bb = 0 0 0 0 4.4440e+018

Ab = 1.0000e+000 1.1998e+005 7.1974e+009 2.5292e+014 4.4440e+018

This means that the system function of the designed Butterworth LPF of order
N=4 is

G(s) = 4.444 × 1018

s4 + 1.1998 × 105s3 + 7.1974 × 109s2 + 2.5292 × 1014s + 4.444 × 1018

(E7.1.2)

We can find the cascade and parallel realizations of this system function by typing
the following statements into the MATLAB command window:

>>[SOS,K]=tf2sos(Bb,Ab); % cascade realization
>>Ns=size(SOS,1); >>Gm=Kˆ(1/Ns), BBc=SOS(:,1:3), AAc=SOS(:,4:6)

Gm = 2.1081e+009
BBc = 0 0 1 AAc = 1.0000e+000 3.5141e+004 2.1081e+009

0 0 1 1.0000e+000 8.4838e+004 2.1081e+009
>>[BBp,AAp]=tf2par s(Bb,Ab) % parallel realization (see Sect. E.15)

BBp = 0 4.2419e+004 3.5987e+009
0 -4.2419e+004 -1.4906e+009

AAp = 1.0000e+000 8.4838e+004 2.1081e+009
1.0000e+000 3.5141e+004 2.1081e+009

This means that the designed system function can be realized in cascade and
parallel form as

G(s) = 2.108 × 109

s2 + 3.514 × 104s + 2.108 × 109
× 2.108 × 109

s2 + 8.484 × 104s + 2.108 × 109

(E7.1.3a)

G(s) = 4.242 × 104s + 3.599 × 109

s2 + 8.484 × 104s + 2.108 × 109
− 4.242 × 104s + 1.491 × 109

s2 + 3.514 × 104s + 2.108 × 109

(E7.1.3b)

(b)We are going to determine the system function of a Chebyshev I bandpass fil-
ter with

ωs1 = 2π × 6000, ωp1 = 2π × 10000, ωp2 = 2π × 12000,

ωs2 = 2π × 15000 [rad/s], Rp = 2 [dB], and As = 25 [dB] (E7.1.4)

First, we use the MATLAB function ‘cheb1ord()’ to find the filter order N and
the critical passband edge frequencies ωpc1 and ωpc2 at which the passband rip-
ple condition is closely met, i.e., 20 log10 |G(jωpc)| = −Rp [dB] by typing the
following statements:

7.1 Analog Filter Design 311

>>ws1=2*pi*6e3; wp1=2*pi*1e4; wp2=2*pi*12e3; ws2=2*pi*15e3; Rp=2; As=25;
>>[N,wpc]=cheb1ord([wp1 wp2],[ws1 ws2],Rp,As,’s’)

N = 2, wpc = 6.2832e+004 7.5398e+004

We put the (half) filter order N, the passband ripple Rp, and the critical passband
edge frequency vector wpc = [ωpc1 ωpc2] into the Chebyshev I filter design
function ‘cheby1()’ as
>>[Bc1,Ac1]=cheby1(N,Rp,wpc,’s’)

Bc1 = 0 0 1.0324e+008 0 0
Ac1 = 1.0000e+000 1.0101e+004 9.6048e+009 4.7853e+013 2.2443e+019

This means that the system function of the designed Chebyshev I BPF of order
2N=4 is

G(s) = 1.0324 × 108s2

s4 + 10101s3 + 9.6048 × 109s2 + 4.7853 × 1013s + 2.2443 × 1019

(E7.1.5)

We can find the cascade and parallel realizations of this system function by typing
the following statements into the MATLAB command window:

>>[SOS,K]=tf2sos(Bc1,Ac1); % cascade realization
>>Ns=size(SOS,1); Gm=Kˆ(1/Ns), BBc=SOS(:,1:3), AAc=SOS(:,4:6)

Gm = 1.0161e+004
BBc = 0 0 1 AAc = 1.0000e+000 5.4247e+003 5.4956e+009

1 0 1 1.0000e+000 4.6763e+003 4.0838e+009
>>[BBp,AAp]=tf2par s(Bc1,Ac1) % parallel realization

BBp = 0 1.8390e+002 4.0242e+008
0 -1.8390e+002 -2.9904e+008

AAp = 1.0000e+000 5.4247e+003 5.4956e+009
1.0000e+000 4.6763e+003 4.0838e+009

This means that the designed system function can be realized in cascade and
parallel form as

G(s) = 1.0161 × 104s

s2 + 5.425 × 103s + 5.496 × 109
× 1.0161 × 104s

s2 + 4.676 × 103s + 4.084 × 109

(E7.1.6a)

G(s) = 1.839 × 102s + 4.024 × 108

s2 + 5.425 × 103s + 5.496 × 109
− 1.839 × 102s + 2.990 × 108

s2 + 4.676 × 103s + 4.084 × 109

(E7.1.6b)

(c)We are going to determine the system function of a Chebyshev II bandstop
filter with

ωp1 = 2π × 6000, ωs1 = 2π × 10000, ωs2 = 2π × 12000,

ωp2 = 2π × 15000 [rad/s], Rp = 2 [dB], and As = 25 [dB] (E7.1.7)

First, we use the MATLAB function ‘cheb2ord()’ to find the filter order N and
the critical stopband edge frequencies ωsc1 and ωsc2 at which the stopband atten-
uation condition is closely met, i.e., 20 log10 |G(jωsc)| = −As [dB] by typing
the following statements:

312 7 Analog and Digital Filters

>>wp1=2*pi*6000; ws1=2*pi*10000; ws2=2*pi*12000; wp2=2*pi*15000;

>>Rp=2; As=25;

>>[N,wsc]=cheb2ord([wp1 wp2],[ws1 ws2],Rp,As,’s’)

N = 2, wsc = 6.2798e+004 7.5438e+004

We put the (half) filter order N, the stopband attenuation As, and the critical
stopband edge frequency vector wsc = [ωsc1 ωsc2] into the Chebyshev II filter
design function ‘cheby2()’ as

>>[Bc2,Ac2]=cheby2(N,As,wsc,’stop’,’s’)
Bc2 = 1.0000e+000 1.0979e-010 9.5547e+009 4.9629e-001 2.2443e+019
Ac2 = 1.0000e+000 5.1782e+004 1.0895e+010 2.4531e+014 2.2443e+019

This means that the system function of the designed Chebyshev II BSF of order
2N = 4 is

G(s) = s4 + 9.5547 × 109s2 + 4.9629 × 10−1s + 2.2443 × 1019

s4 + 51782s3 + 1.0895 × 1010s2 + 2.4531 × 1014s + 2.2443 × 1019

(E7.1.8)

We can find the cascade and parallel realizations of this system function by typing
the following statements into the MATLAB command window:

>>[SOS,K]=tf2sos(Bc2,Ac2); % cascade realization [BBc,AAc]=tf2cas(B,A)
>>Ns=size(SOS,1); Gm=Kˆ(1/Ns), BBc=SOS(:,1:3), AAc=SOS(:,4:6)

Gm = 1
BBc = 1.0000e+000 7.7795e-011 5.3938e+009

1.0000e+000 2.9104e-011 4.1609e+009
AAc = 1.0000e+000 3.1028e+004 7.0828e+009

1.0000e+000 2.0754e+004 3.1687e+009
>>[BBp,AAp]=tf2par s(Bc2,Ac2) % parallel realization

BBp = 5.0000e-001 -1.5688e+004 3.4426e+009
5.0000e-001 -1.0204e+004 1.6285e+009

AAp = 1.0000e+000 3.1028e+004 7.0828e+009
1.0000e+000 2.0754e+004 3.1687e+009

This means that the designed system function can be realized in cascade and
parallel form as

G(s) = s2 + 5.394 × 109

s2 + 3.103 × 104s + 7.083 × 109
× s2 + 4.161 × 109

s2 + 2.075 × 104s + 3.169 × 109

(E7.1.9a)

G(s) = 0.5s2 − 1.569 × 104s + 3.443 × 109

s2 + 3.103 × 104s + 7.083 × 109
+ 0.5s2 − 1.020 × 104s + 1.6285 × 109

s2 + 2.075 × 104s + 3.169 × 109

(E7.1.9b)

(d)We are going to determine the system function of an elliptic highpass filter with

ωs = 2π × 6000 [rad/s], ωp = 2π × 15000 [rad/s], Rp = 2 [dB], and As = 25 [dB]
(E7.1.10)

First, we use the MATLAB function ‘ellipord()’ to find the filter order N and the
critical passband edge frequency ωpc at which 20 log10 |G(jωpc)| = −Rp [dB]
by typing the following statements into the MATLAB command window:

7.1 Analog Filter Design 313

>>ws=2*pi*6000; wp=2*pi*15000; Rp=2; As=25;
>>format short e, [N,wc]=ellipord(wp,ws,Rp,As,’s’)

N = 3, wc = 9.4248e+004

We put the parameter values N, Rp, As, and wc into the elliptic filter design
function ‘ellip()’ as

>>[Be,Ae]=ellip(N,Rp,As,wc,’high’,’s’)
Be = 1.0000e+000 8.9574e-009 3.9429e+009 -5.6429e+002
Ae = 1.0000e+000 2.3303e+005 1.4972e+010 1.9511e+015

This means that the system function of the designed elliptic HPF of order N =3 is

G(s) = s3 + 3.9429 × 109s − 5.6429 × 102

s3 + 2.3303 × 105s2 + 1.4972 × 1010s + 1.9511 × 1015
(E7.1.11)

We can find the cascade and parallel realizations of this system function by typing
the following statements into the MATLAB command window:

>>[SOS,K]=tf2sos(Be,Ae); % cascade realization
>>Ns=size(SOS,1); Gm=Kˆ(1/Ns), BBc=SOS(:,1:3), AAc=SOS(:,4:6)

Gm = 1.0000e+000
BBc = 1.0000e+000 -1.4311e-007 0

1.0000e+000 1.5207e-007 3.9429e+009
AAc = 1.0000e+000 2.0630e+005 0

1.0000e+000 2.6731e+004 9.4575e+009
>>[BBp,AAp]=tf2par s(Be,Ae) % parallel realization

BBp = 5.0000e-001 -1.3365e+004 4.7287e+009
0 5.0000e-001 -1.0315e+005

AAp = 1.0000e+000 2.6731e+004 9.4575e+009
0 1.0000e+000 2.0630e+005

This means that the designed system function can be realized in cascade and
parallel form as

G(s) = s

s + 2.063 × 105
× s2 + 3.943 × 109

s2 + 2.673 × 104s + 9.458 × 109
(E7.1.12a)

G(s) = 0.5s2 − 1.337 × 104s + 4.729 × 109

s2 + 2.673 × 104s + 9.458 × 109
+ 0.5s − 1.032 × 105

s + 2.063 × 105

(E7.1.12b)

(e)All the above filter design works are put into the M-file named “sig07e01.m”,
which plots the frequency responses of the designed filters so that one can check
if the design specifications are satisfied. Figure 7.3, obtained by running the
program “sig07e01.m”, shows the following points:

- Figure 7.3(a) shows that the cutoff frequency ωc given as an input argument of
‘butter()’ is the frequency at which 20 log10 |G(jωc)| = −3 [dB]. Note that the
frequency response magnitude of a Butterworth filter is monotonic, i.e., has no
ripple.

314 7 Analog and Digital Filters

20log10 G (jω) [dB]

20log10 G (jω) [dB] 20log10 G (jω) [dB]

20log10 G (jω) [dB]

ωs2

5

0

–5 –3dB

–3dB

–10

–15

–20

–30

(a) A Butterworth LPF (b) A Chebyshev I BPF

(c) A Chebyshev II BPF(d) An elliptic HPF

105

105 105

105ωp

ωs ωp
ωpc

ωs1 ωp1

ωp1 ωs1
ωsc1 ωsc2

ωs2 ωp2

ωpc1 ωpc2

ωp2ωc ωs

–As

–Rp

5

0

–5

–10

–15

–20

–30

–As

–Rp

5

0

–5

–10

–15

–20

–30

–As

–Rp

5

0

–5

–10

–15

–20

–30

–As

–Rp

Fig. 7.3 Frequency responses of the filters designed in Example 7.1

- Figure 7.3(b) shows that the critical passband edge frequencies ωpc1 and ωpc2

given as an input argument wpc = [wpc1 wpc2] of ‘cheby1()’ are the frequencies
at which the passband ripple condition is closely met, i.e., 20 log10 |G(jωpc)| =
−Rp [dB]. Note that the frequency response magnitude of a Chebyshev I filter
satisfying the passband ripple condition closely has a ripple in the passband,
which is traded off for a narrower transition band than the Butterworth filter (with
the same filter order).

- Figure 7.3(c) shows that the critical stopband edge frequencies ωsc1 and ωsc2

given as an input argument wsc = [wsc1 wps2] of ‘cheby2()’ are the frequen-
cies at which the stopband attenuation condition is closely met, i.e., 20 log10 |
G(jωsc)| = −As [dB]. Note that the frequency response magnitude of a Cheby-
shev II filter satisfying the stopband attenuation condition closely has a ripple in
the stopband.

- Figure 7.3(d) shows that the critical passband edge frequency ωpc given as an
input argument wpc of ‘ellip()’ is the frequency at which the passband ripple

7.1 Analog Filter Design 315

condition is closely met, i.e., 20 log10 |G(jωpc)| = −Rp [dB]. Note that the fre-
quency response magnitude of an elliptic filter has ripples in both the passband
and the stopband, yielding a relatively narrow transition band with the smallest
filter order N = 3 among the four filters.

%sig07e01.m for analog filter design and frequency response plot
clear, clf, format short e
disp(’(a) Butterworth LPF’)
wp=2*pi*6000; ws=2*pi*15000; Rp=2; As=25;
[Nb,wcb]= buttord(wp,ws,Rp,As,’s’) % Order of analog BW LPF
[Bb,Ab]= butter(Nb,wcb,’s’) % num/den of analog BW LPF system ftn
[SOS,K]= tf2sos(Bb,Ab); % cascade realization [BBc,AAc]=tf2cas(B,A)
Ns=size(SOS,1); Gm=Kˆ(1/Ns), BBc=SOS(:,1:3), AAc=SOS(:,4:6)
[BBp,AAp]= tf2par s(Bb,Ab) % parallel realization -- see Sect. E.15
ww= logspace(4,6,1000); % log frequency vector from 1e4 to 1e6[rad/s]
subplot(221), semilogx(ww,20*log10(abs(freqs(Bb,Ab,ww))))
title(’Butterworth LPF’)

disp(’(b) Chebyshev I BPF’)
ws1=2*pi*6e3; wp1=2*pi*1e4; wp2=2*pi*12e3; ws2=2*pi*15e3; Rp=2; As=25;
[Nc1,wpc]= cheb1ord([wp1 wp2],[ws1 ws2],Rp,As,’s’)
[Bc1,Ac1]= cheby1(Nc1,Rp,wpc,’s’)
[SOS,K]= tf2sos(Bc1,Ac1); % cascade realization
Ns=size(SOS,1); Gm=Kˆ(1/Ns), BBc=SOS(:,1:3), AAc=SOS(:,4:6)
[BBp,AAp]= tf2par s(Bc1,Ac1) % parallel realization
subplot(222), semilogx(ww,20*log10(abs(freqs(Bc1,Ac1,ww))))
title(’Chebyshev I BPF’)

disp(’(c) Chebyshev II BSF’)
wp1=2*pi*6e3; ws1=2*pi*1e4; ws2=2*pi*12e3; wp2=2*pi*15e3; Rp=2; As=25;
[Nc2,wsc]= cheb2ord([wp1 wp2],[ws1 ws2],Rp,As,’s’)
[Bc2,Ac2]= cheby2(Nc2,As,wsc,’stop’,’s’)
[SOS,K]= tf2sos(Bc2,Ac2); % cascade realization
Ns=size(SOS,1); Gm=Kˆ(1/Ns), BBc=SOS(:,1:3), AAc=SOS(:,4:6)
[BBp,AAp]= tf2par s(Bc2,Ac2) % parallel realization
subplot(224), semilogx(ww,20*log10(abs(freqs(Bc2,Ac2,ww))))
title(’Chebyshev II BSF’)
disp(’(d) Elliptic HPF’)

ws=2*pi*6000; wp=2*pi*15000; Rp=2; As=25;
[Ne,wpc]= ellipord(wp,ws,Rp,As,’s’)
[Be,Ae]= ellip(Ne,Rp,As,wpc,’high’,’s’)
[SOS,K]= tf2sos(Be,Ae); % cascade realization
Ns=size(SOS,1); Gm=Kˆ(1/Ns), BBc=SOS(:,1:3), AAc=SOS(:,4:6)
[BBp,AAp]= tf2par s(Be,Ae) % parallel realization
subplot(223), semilogx(ww,20*log10(abs(freqs(Be,Ae,ww))))

Now we are going to conclude this section with some MATLAB routines that
can be used to determine the parameters of the circuits depicted in Figs. 7.4, 7.5,
and 7.6 so that they can realize the designed (second-order) system functions. See
Chap. 8 of [Y-2] for more details.

316 7 Analog and Digital Filters

function [CR1,CR2,Gs]= filter LPF 7 4a(A2,A3,K,RC1,RC2,KC)
% Design an LPF with the circuit in Fig. 7.4(a)
% KG1G2/C1C2 B3=K*A3
% G(s) = --- = ---------------
% sˆ2 +((G1+G2)/C1+(1-K)G2/C2)*s +G1G2/C1C2 sˆ2 + A2*s + A3
if K<1, error(’We must have K=(R3+R4)/R3 >= 1!’); end
if nargin<6, KC=1; end
if KC==1 % Find C1 and C2 for given K, R1, and R2.
R1= RC1; R2= RC2; G1= 1/R1; G2= 1/R2;
a= G1+G2; b= -(K-1)*G2; c= A2; d= A3/G1/G2; tmp = cˆ2-4*a*b*d;
C1= 2*a/(c + sqrt(tmp)); C2= 1/d/C1; CR1= C1; CR2= C2;
else % Find R1 and R2 for given K, C1, and C2.
C1= RC1; C2= RC2;
a= 1/C1; b= 1/C1 - (K-1)/C2; c= A2; d= A3*C1*C2; tmp = cˆ2-4*a*b*d;
if tmp<0, error(’Increase C1 and K, or decrease C2’); end
G1= (c + sqrt(tmp))/2/a; G2= d/G1; R1= 1/G1; R2= 1/G2; CR1= R1; CR2= R2;

end
B3= K*A3; A2= (G1+G2)/C1 + (1-K)*G2/C2; A3= G1*G2/C1/C2;
syms s; Gs = B3/(sˆ2+A2*s+A3);

function [CR1,CR2,Gs]= filter HPF 7 4b(A2,A3,K,RC1,RC2,KC)
% Design a HPF with the circuit in Fig. 7.4(b)
% K*sˆ2 K*sˆ2
% G(s) = --- = ---------------
% sˆ2 +(G2(1/C1+1/C2)-(K-1)G1/C1)s +G1G2/C1C2 sˆ2 + A2*s + A3
if K<1, error(’We must have K=(R3+R4)/R3 >= 1!’); end
if nargin<6, KC=1; end
if KC==1 % Find C1 and C2 for given K, R1, and R2.
R1= RC1; R2= RC2; G1= 1/R1; G2= 1/R2;
a= G2+(1-K)*G1; b= G2; c= A2; d= A3/G1/G2; tmp= cˆ2-4*a*b*d;
if tmp<0, error(’Try with smaller/greater values of R1/K’); end
C1= 2*a/(c + sign(a)*sqrt(tmp)); C2= 1/d/C1; CR1= C1; CR2= C2;

else % Find R1 and R2 for given K, C1, and C2.
C1=RC1; C2=RC2;
a=(1-K)/C1; b=1/C1+1/C2; c=A2; d=A3*C1*C2; tmp=cˆ2-4*a*b*d;
if tmp<0, error(’Try with smaller/greater values of C2/K’); end
if abs(a)<eps, G2= A2/b; G1= d/G2;
else G1= (c + sign(a)*sqrt(tmp))/2/a; G2= d/G1;

end
R1= 1/G1; R2= 1/G2; CR1= R1; CR2= R2;

end
B1= K; A2= G2*(1/C1+1/C2) - (K-1)*G1/C1; A3= G1*G2/C1/C2;
syms s; Gs = B1*sˆ2/(sˆ2+A2*s+A3);

function [R1,C2R3,C5R4,Gs]= filter LPF 7 5a(B3,A2,A3,R3C2,R4C5,KC)
% Design an LPF with the circuit in Fig. 7.5(a)
% -G1G4/C2C5 -B3
% G(s) = --------------------------------- = ---------------
% sˆ2 + (G1+G3+G4)/C2*s + G3G4/C2C5 sˆ2 + A2*s + A3
if nargin<6, KC=1; end
if KC==1 % Find R1, C2 and C5 for given R3 and R4.
R3= R3C2; R4= R4C5; G3= 1/R3; G4= 1/R4;
G1=G3*B3/A3; C2=(G1+G3+G4)/A2; C5=G3*G4/C2/A3; R1=1/G1; C2R3=C2; C5R4=C5;
else % Find R1, R3 and R4 for given C2 and C5.
C2=R3C2; C5=R4C5; a=1+B3/A3; b=1; c=A2*C2; d=A3*C2*C5; tmp = cˆ2-4*a*b*d;
if tmp<0, error(’Try with greater/smaller values of C2/C5’); end
G3= (c + sign(a)*sqrt(tmp))/2/a; G4= d/G3;
G1= B3/A3*G3; R3= 1/G3; R4= 1/G4; R1=1/G1; C2R3= R3; C5R4= R4;

end
B3= G1*G4/C2/C5; A2= (G1+G3+G4)/C2; A3= G3*G4/C2/C5;
syms s; Gs = -B3/(sˆ2+A2*s+A3);

7.1 Analog Filter Design 317

function [C1,C3R2,C4R5,Gs]= filter HPF 7 5b(B1,A2,A3,R2C3,R5C4,KC)
% Design a HPF with the circuit in Fig. 7.5(b)
% -(C1/C3)*sˆ2 -B1*sˆ2
% G(s) = -------------------------------------- = ---------------
% sˆ2 + G5(C1+C3+C4)/C3/C4*s + G2G5/C3C4 sˆ2 + A2*s + A3
if nargin<6, KC=1; end
if KC==1 % Find C1, C3 and C4 for given R2 and R5.
R2= R2C3; R5= R5C4; G2= 1/R2; G5= 1/R5;
a= 1; b= 1+B1; c= A2/G5; d= A3/G2/G5; tmp = cˆ2-4*a*b*d;
if tmp<0, error(’Try with smaller/greater values of R2/R5’); end
C3= 2*a/(c + sqrt(tmp)); C4= 1/d/C3; C1= B1*C3; C3R2= C3; C4R5= C4;
else % Find C1, R2 and R5 for given C3 and C4.
C3= R2C3; C4= R5C4;
C1 = B1*C3; G5= A2/(C1+C3+C4)*C3*C4; G2= A3*C3*C4/G5;
R2= 1/G2; R5= 1/G5; C3R2= R2; C4R5= R5;

end
B1= C1/C3; A2= G5*(C1+C3+C4)/C3/C4; A3= G2*G5/C3/C4;
syms s; Gs = -B1*sˆ2/(sˆ2+A2*s+A3);
% Examples of Usage
%>>B1=2; A2=100; A3=10000;
%>> R2=1e4; R5=2e5; [C1,C3,C4,Gs]=filter HPF 7 5b(B1,A2,A3,R2,R5,1)
%>> C3=1e-7; C4=2e-6; [C1,R2,R5,Gs]=filter HPF 7 5b(B1,A2,A3,C3,C4,2)

function [C3R1,C4R2,R5,Gs]= filter BPF 7 6a(B2,A2,A3,R1C3,R2C4,KC)
% Design a BPF with the circuit in Fig. 7.6(a)
% -(G1/C3)*s -B2*s
% G(s) = -------------------------------------- = ---------------
% sˆ2 + G5(1/C3+1/C4)*s + (G1+G2)G5/C3C4 sˆ2 + A2*s + A3
if nargin<6, KC=1; end
if KC==1 % Find C3, C4, and R5 for given R1 and R2.
R1= R1C3; R2= R2C4; G1= 1/R1; G2= 1/R2; C3= G1/B2;
G5= (A2 - A3*C3/(G1+G2))*C3;
if G5<0, error(’Try with smaller values of R2’); end
C4= G5*(G1+G2)/C3/A3;
R5= 1/G5; C3R1= C3; C4R2= C4;
fprintf(’C3=%10.4e, C4=%10.4e, R5=%10.4e\n’, C3,C4,R5)
elseif KC==2 % Find R1, R2 and R5 for given C3 and C4.
C3= R1C3; C4= R2C4;
G1 = B2*C3; G5= A2/(1/C3+1/C4); G2= A3*C3*C4/G5-G1;
R5= 1/G5; R1=1/G1; R2=1/G2; C3R1= R1; C4R2= R2;
fprintf(’R1=%10.4e, R2=%10.4e, R5=%10.4e\n’, R1,R2,R5)
else % Find R1, R5, and C3=C4=C for given R2 and C3=C4.
R2= R1C3; G2=1/R2;
nonlinear eq= inline(’[2*x(1)-A2*x(2); x(1).*(B2*x(2)+G2)-A3*x(2).ˆ2]’,...

’x’,’G2’,’B2’,’A2’,’A3’);
G50=0.1; C0=0.1; x0=[G50 C0]; % Initial guesses of G5 and C
x= fsolve(nonlinear eq,x0,optimset(’TolFun’,1e-8),G2,B2,A2,A3)
%tol=1e-5; MaxIter=100; x=newtons(nonlinear eq,x0,tol,MaxIter,G2,B2,A2,A3)
G5= x(1); C=x(2); C3=C; C4=C; G1=B2*C3;
R1=1/G1; R5=1/G5; C3R1=C3; C4R2=R1;
fprintf(’C3=C4=%10.4e, R1=%10.4e, R5=%10.4e\n’, C,R1,R5)
end
B1= G1/C3; A2= G5*(1/C3+1/C4); A3= (G1+G2)*G5/C3/C4;
syms s; Gs = -B2*s/(sˆ2+A2*s+A3);
% Examples of Usage
%>>B2=100; A2=100; A3=10000;
%>> R1=1e2; R2=1e2; [C3,C4,R5,Gs]=filter BPF 7 6a(B2,A2,A3,R1,R2,1)
%>> C3=1e-4; C4=1e-4; [R1,R2,R5,Gs]=filter BPF 7 6a(B2,A2,A3,C3,C4,2)
%>> R2=1e2; [C3,R1,R5,Gs]=filter BPF 7 6a(B2,A2,A3,R2,0,3)

318 7 Analog and Digital Filters

function [C1,C2R3,C5R4,Gs]= filter BPF 7 6b(B2,A2,A3,R3C5,R4C5,KC)
% Design a BPF with the circuit in Fig. 7.6(b)
% -(C1G4/(C1+C2)C5)*s -B2*s
% G(s) = -- = ---------------
% sˆ2 + ((G3+G4)/(C1+C2))*s + G3G4/(C1+C2)C5 sˆ2 + A2*s + A3
if nargin<6, KC=1; end
if KC==1 % Find C1, C2 and C5 for given R3 and R4.
R3= R3C5; R4=R4C5; G3= 1/R3; G4=1/R4;
C1pC2= (G3+G4)/A2; C5= G3*G4/A3/C1pC2; C1= B2*C1pC2*C5/G4 %=B2*G3/A3
C2= C1pC2 - C1; C2R3= C2; C5R4= C5;
if C2<0, error(’Try with greater/smaller values of R3/R4’); end
fprintf(’C1=%10.4e, C2=%10.4e, C5=%10.4e\n’, C1,C2,C5)
else % Find C1, R3 and R4 for given C5 and C1=C2.
C5=R3C5; G4= 2*C5*B2; G3 2C= A3/G4*C5; %=A3/2/B2: not adjustable
C= G4/2/(A2-G3 2C); C1=C; C2=C;
if C<0, error(’How about increasing B2 & A2 and/or decreasing A3’); end
G3= G3 2C*2*C; R3= 1/G3; R4= 1/G4; C2R3= R3; C5R4= R4;
fprintf(’C1=C2=%10.4e, R3=%10.4e, R4=%10.4e\n’, C,R3,R4)

end
B3= C1*G4/(C1+C2)/C5; A2= (G3+G4)/(C1+C2); A3= G3*G4/(C1+C2)/C5;
syms s; Gs = -B2*s/(sˆ2+A2*s+A3);

R3

R2R1

C2

0 0

C1

R4

R3 + R4

R3

U1
1 P

N

+

–

Vo (s)

K =

Ga (s) = =

Vi(s)
VP(s)

VN(s) = VP(s)~ ~

VN(s)

V1(s)

Vo (s)

(a) A second-order Sallen-Key lowpass filter (b) A second-order Sallen-Key highpass filter

KG1G2/C1C2

s2+ ((G1+ G2)/C1+ (1 – K)G2/C2)s + G1G2/C1C2Vi(s)

Gb (s) = =
Vo (s)

Vi(s)

R3

C2C1

R2

0 0

R1

R4

R3 + R4

R3

U1
1 P

N

+

–

Vo (s)

K =

Vi(s)
VP(s)

VN(s) = VP(s)
VN(s)

V1(s)

Ks2

s2
 + G2(1/C1 + 1/C2) +(1– K)G1/ C1)s + G1G2/C1C2

Fig. 7.4 Second-order active filters

Ga (s) = =
Vo (s)

(a) A second-order MFB (multi-feedback) LPF (b) A second-order MFB (multi-feedback) HPF

–G1G4/C2C5

s2+ sC5(G1 + G3 + G4)/C2C5 + G3G4/C2C5Vi(s)

Gb (s) = =
Vo (s)

Vi(s)
–C1C4s

2/C3C4

s2
 + sG5(C1 + C3 + C4) / C3 C4 + G2G5/C3C4

R4R1

C2

0

R3

1

C5

U1

N

P +
= 0

–

Vo (s)

Vi(s)

VN(s) = VP(s)~
VN(s)V1(s)

C4C1

R2

0

R5

1

C3

U1

N

P +
= 0

–

Vo (s)

Vi(s)

VN(s) = VP(s)~
VN(s)V1(s)

Fig. 7.5 Second-order active filters

7.1 Analog Filter Design 319

Ga (s) = =
Vo (s)

(a) A second-order MFB (multi-feedback) BPF (b) A second-order MFB (multi-feedback) BPF

–(G1/G3)s

s2+ (G5(C3 + C4) /C3C4)s + (G1 + G2)G5/C3C4Vi(s)

Gb (s) = =
Vo (s)

Vi(s)

–(C1G4/(C1 + C2)C5)s

s2
 + ((G3 +G4) /(C1 + C2)s + G3G4/(C1 + C2)C5

R4
C1

C2

0

R3

1

C5

U1

N

P +
= 0

–

Vo (s)

Vi(s)

VN(s) = VP(s)~
VN(s)V1(s)

C4R1

R2

0

R5

1

C3

U1

N

P +
= 0

–

Vo (s)

Vi(s)

VN(s) = VP(s)~
VN(s)V1(s)

Fig. 7.6 Second-order active filters

For example, we can use the MATLAB routine ‘filter BPF 7 6a()’ to tune the
parameters of the MFB (multiple feedback) circuit of Fig. 7.6(a) so that the circuit
realizes the following BPF system function

G(s) = −(G1/C3)s

s2 + (G5(C3 + C4)/C3C4)s + (G1 + G2)G5/C3C4
= −100s

s2 + 100s + 1002

(7.1.3)
To this end, we have only to type the following statements into the MATLAB com-
mand window:

>>B2=100; A2=100; A3=10000; % The desired system function B2*s/(sˆ2+A2*s+A3)
>>R2=1e2; KC=3; % With the given value of R2=100 and the assumption that C3=C4
>>[C3,R1,R5,Gs]=filter BPF 7 6a(B2,A2,A3,R2,0,KC)

C3=C4=1.0000e-004, R1=9.9999e+001, R5=2.0000e+002
Gs = -100*s/(sˆ2+100*s+5497540047884755/549755813888)

>>5497540047884755/549755813888 % To see the weird constant term
1.0000e+004

For another example, we can use the MATLAB routine ‘filter LPF 7 4a()’ to
tune the parameters of the Sallen-Key circuit of Fig. 7.4(a) so that the circuit realizes
the following LPF system function:

G(s) = K G1G2/C1C2

s2 + ((G1 + G2)/C1 + (1 − K)G2/C2)s + G1G2/C1C2
= Kω2

r

s2 + ωbs + ω2
r

(7.1.4)

More specifically, suppose we need to determine the values of R1 and R2 of the
Sallen-Key circuit of Fig. 7.4(a) with the pre-determined values of capacitances
C1 = C2 = 100pF so that it realizes a second-order LPF with the DC gain K = 1.5,
the corner frequency ωr = 2π × 107 [rad/s], and the quality factor Q = 0.707 (for
ωb = ωr/Q). To this end, we have only to type the following statements into the
MATLAB command window:

>>K=1.5; C1=1e-10; C2=1e-10; wr=2*pi*1e7; Q=0.707;
% The coefficients of denominator of desired system ftn

>>A2=wr/Q; A3=wrˆ2; % G(s)=K*A3/(sˆ2+A2*s+A3)
>>KC=2; [R1,R2,Gs]= filter LPF 7 4a(A2,A3,K,C1,C2,KC)

320 7 Analog and Digital Filters

R1 = 221.2010 % tuned resistance
R2 = 114.5126
Gs = 5921762640653615/(sˆ2+5964037174912491/67108864*s+7895683520871487/2)

(cf) For reference, you can visit the web site <http://www.national.com/pf/LM/
LMH6628.html> to see the application note OA-26 for Designing Active High
Speed Filters.

To illustrate the filter design and realization procedure collectively, let us find
the cascade realization of a fourth-order Butterworth LPF with cutoff frequency
ωc = 10 kHz using the Sallen-Key circuit of Fig. 7.4(a). For this job, we compose
the following program and run it:

%sig07 01 1.m
N=4; fc=1e4; wc=2*pi*fc; % the order and cutoff frequency of the LPF
format short e
[B,A]= butter(N,wc,’s’) % Butterworth LPF system function G(s)=B(s)/A(s)
f= logspace(3,5,400); % frequency vector of 400 points between 1e3˜1e5[Hz]
Gw= freqs(B,A,2*pi*f); % frequency response G(jw)
semilogx(f,20*log10(abs(Gw))) % plot |G(jw)| in dB versus frequency[Hz]
[SOS,K0]= tf2sos(B,A); % cascade realization
BBc=SOS(:,1:3); AAc=SOS(:,4:6); % numerator/denominator of each SOS
K=1; R1= 1e4; R2= 1e4; KC=1; % predetermined values of R1 and R2
for n=1:floor(N/2)

A2 = AAc(n,2); A3 = AAc(n,3);
[C1,C2,Gs]= filter LPF 7 4a(A2,A3,K,R1,R2,KC) % filter tuning

end
% Check the LPF design results obtained at the web site
% <http://www.daycounter.com/Filters/Sallen-Key-LP-Calculator.phtml>

(cf) Note that multiplying all the resistances/capacitances by the same constant does
not change the system function and frequency response. This implies that if
you want to scale up/down the tuned capacitances/resistances without affecting
the system function and frequency response, you can scale up/down the pre-
determined values of resistances/capacitances in the same ratio.

7.2 Digital Filter Design

Digital filters can be classified into IIR (infinite-duration impulse response) or FIR
(finite-duration impulse response) filter depending on whether the duration of the
impulse response is infinite or finite. If the system function of a filter has a polyno-
mial in z or z−1 of degree one or higher (in addition to a single zN or z−N term) in
its denominator, its impulse response has an infinite duration. For example, consider
a filter whose system function is

G[z] = Y [z]

X [z]
= 1

z − 0.5
(7.2.1)

7.2 Digital Filter Design 321

so that the z-domian and time-domain input-output relationships are

(z − 0.5)Y [z] = X [z]; zY [z] − 0.5Y [z] = X [z]; zY [z] = 0.5Y [z] + X [z];

y[n + 1] = 0.5y[n] + x[n] (7.2.2)

This means that the output y[n + 1] of this recursive difference equation is affected
by not only the input x[n] but also the previous output y[n]. That is why the impulse
response of the filter has indefinitely long duration. In contrast with this, the dura-
tion of the impulse response of a FIR filter is equal to one plus the degree of the
(numerator) polynomial in z or z−1 of its system function (having no denominator).
For example, consider a filter whose system function is

G[z] = Y [z]

X [z]
= 1 − 2z−1 + 3z−3 = z3 − 2z2 + 0z + 3

z3
(7.2.3)

so that the z-domian and time-domain input-output relationships are

Y [z] = (1 − 2z−1 + 3z−3)X [z];

y[n] = x[n] − 2x[n − 1] + 3x[n − 3] (7.2.4)

The output y[n] of this nonrecursive difference equation is affected not by any pre-
vious output, but only by the input terms. That is why the impulse response of the
filter has a finite duration. In fact, the impulse response of a FIR filter is identical
to the filter coefficients, say, [1 − 2 0 3] in the case of this filter having the system
function (7.2.3).

In this section we will see how to design the IIR and FIR filters using the
MATLAB software.

7.2.1 IIR Filter Design

The methods of designing IIR filters introduced here are basically the discretizations
of analog filters dealt with in Sect. 7.1. We will use the same MATLAB functions
that are used for analog filter design.

Example 7.2 IIR Filter Design
Let us find the system functions of digital filters (with sampling frequency Fs =

50 [kHz]) meeting the specifications given below.

(a)We are going to determine the system function of a digital Butterworth lowpass
filter with the passband/stopband edge frequencies, passband ripple, and stop-
band attenuation as

ωp = 2 π ×6000 [rad/s], ωs = 2π ×15000 [rad/s], Rp = 2 [dB], and As = 25 [dB]
(E7.2.1)

322 7 Analog and Digital Filters

First, we prewarp the edge frequencies, design an analog Butterworth LPF satis-
fying the given specifications on the passband ripple and stopband attenuation at
the prewarped passband and stopband edge frequencies, and then discretize the
LPF through bilinear transformation:

>>Fs=5e4; T=1/Fs; format short e %Sampling frequency and sampling period
>>wp=2*pi*6000; ws=2*pi*15000; Rp=2; As=25;
>>wp p=prewarp(wp,T); ws p=prewarp(ws,T); % Prewarp the edge frequencies
>>[Nb,wcb]=buttord(wp p,ws p,Rp,As,’s’);%Order, cutoff freq of analog BW LPF
>>[Bb,Ab]= butter(Nb,wcb,’s’); % num/den of analog BW LPF system ftn
>>[Bb d0,Ab d0]= bilinear(Bb,Ab,Fs) % Bilinear transformation

We can also use the MATLAB function butter() to design a digital Butter-
worth filter directly:

>>fp=wp*T/pi; fs=ws*T/pi; %Normalize edge freq into [0,1](1:pi[rad/sample])
>>[Nb,fcb]= buttord(fp,fs,Rp,As) % Order, Cutoff freq of digital BW LPF

Nb = 3, fcb = 3.0907e-001
>>[Bb d,Ab d]= butter(Nb,fcb) % num/den of digital BW LPF system ftn

Bb d = 5.3234e-002 1.5970e-001 1.5970e-001 5.3234e-002
Ab d = 1.0000e+000 -1.1084e+000 6.6286e-001 -1.2856e-001

>>[SOS,Kc]= tf2sos(Bb d,Ab d) % Cascade form realization
SOS = 1 1 0 1.0000e+00 -3.0925e-01 0

1 2 1 1.0000e+00 -7.9918e-01 4.1571e-01
Kc = 5.3234e-002

>>[BBp,AAp,Kp]= tf2par z(Bb d,Ab d) % Parallel form realization
BBp = -9.9489e-001 5.6162e-001 0

0 1.4622e+000 0
AAp = 1.0000e+000 -7.9918e-001 4.1571e-001

0 1.0000e+000 -3.0925e-001
Kp = -4.1408e-001

%sig07e02a.m for digital Butterworth LPF design
clear, clf, format short e
Fs=5e4; T=1/Fs; % Sampling frequency and sampling period
wp=2*pi*6000; ws=2*pi*15000; Rp=2; As=25;
% analog filter design and discretization through bilinear transformation
wp p=prewarp(wp,T); ws p=prewarp(ws,T); % Prewarp the edge frequencies
[Nb,wcb]=buttord(wp p,ws p,Rp,As,’s’); % Order, cutoff freq of analog BW LPF
[Bb,Ab]= butter(Nb,wcb,’s’); % num/den of analog BW LPF system ftn
[Bb d0,Ab d0]= bilinear(Bb,Ab,Fs) % Bilinear transformation
% direct digital filter design
fp=wp*T/pi; fs=ws*T/pi; % Normalize edge freq into [0,1] (1: pi[rad/sample])
[Nb,fcb]= buttord(fp,fs,Rp,As) % Order of digital BW LPF
[Bb d,Ab d]= butter(Nb,fcb) % num/den of digital BW LPF system ftn
% Plot the frequency response magnitude
fn=[0:512]/512; W=pi*fn; % Normalized and digital frequency range
subplot(221), plot(fn,20*log10(abs(freqz(Bb d,Ab d,W))+eps))
% To check if the filter specifications are satisfied
hold on, plot(fp,-Rp,’o’, fcb,-3, ’+’, fs,-As,’x’)
axis([0 1 -80 10]), title(’Butterworth LPF’)
[SOS,Kc]= tf2sos(Bb d,Ab d) % Cascade form realization
[BBp,AAp,Kp]= tf2par z(Bb d,Ab d) % Cascade form realization

7.2 Digital Filter Design 323

0
0

[dB]
–50

–100

–150

–200

–250
0 0.2 1.0

–20

–40

–60

–80
0 0.2 0.4

–Rp

fc fsfp

1.0

–As

–3

Normalized frequency Normalized frequency(×π rad/sample)

(a) From MATLAB (b) From the FDAtool

[dB]

Fig. 7.7 The magnitude curves of the frequency response of the digital Butterworth LPF

Fig. 7.8 Design of a digital Butterworth LPF with order 3 and cutoff frequency 0.309 using
FDAtool

This result means that the system function of the designed Butterworth LPF of
order N = 3 is

G[z] = 0.05323z3 + 0.1597z2 + 0.1597z + 0.05323

z3 − 1.1084z2 + 0.6629z − 0.1286
: Direct form (E7.2.2a)

= 0.05323(z2 + 2z + 1)(z + 1)

(z2 − 0.7992z + 0.4157)(z − 0.3092)
: Cascade form (E7.2.2b)

= −0.9949z2 + 0.5616z

z2 − 0.7992z + 0.4157
+ 1.4622z

z − 0.3092
− 0.4141 : Parallel form

(E7.2.2c)

324 7 Analog and Digital Filters

The magnitude curve of the frequency response of the designed filter is shown
in Fig. 7.7. If the order and cutoff frequency are determined, then we can use the
FDATool to design a digital filter as depicted in Fig. 7.8 where the same cascade
realization is obtained as with butter(). Note that the cutoff frequency fcb
determined by buttord() and used by butter() and FDATool is normal-
ized to the range of [0,1] with 1 corresponding to Fs/2[Hz] (half the sampling
frequency).

(b)We are going to determine the system function of a Chebyshev I BPF with

ωs1 = 2π × 6000, ωp1 = 2π × 10000, ωp2 = 2π × 12000,

ωs2 = 2π × 15000 [rad/s], Rp = 2 [dB], and As = 25 [dB] (E7.2.3)

First, we prewarp the edge frequencies, design an analog chebyshev I BPF satis-
fying the given specifications on the passband ripple and stopband attenuation at
the prewarped passband and stopband edge frequencies, and then discretize the
BPF through bilinear transformation:

>>Fs=5e4; T=1/Fs; % Sampling frequency and sampling period
>>ws1=2*pi*6e3; wp1=2*pi*1e4; wp2=2*pi*12e3; ws2=2*pi*15e3; Rp=2; As=25;
>>wp p=prewarp([wp1 wp2],T); ws p=prewarp([ws1 ws2],T); % Prewarp
>>[N,wpc]=cheb1ord(wp p,ws p,Rp,As,’s’) %Order & cutoff freq of A-C1 BPF

N = 2, wpc = 7.2654e+004 9.3906e+004
>>[Bc1,Ac1]=cheby1(N,Rp,wpc,’s’) % num/den of analog C1 BPF system ftn
>>[Bc1 d0,Ac1 d0]= bilinear(Bc1,Ac1,Fs) % Bilinear transformation

The MATLAB function cheby1() can also be used to design a digital
Chebyshev I filter directly as follows:

>>fp=[wp1 wp2]*T/pi; fs=[ws1 ws2]*T/pi; %Normalize edge freq into [0,1]

>>[Nc1,fcc1]=cheb1ord(fp,fs,Rp,As) % Order & Cutoff freq of D-C1 BPF

Nc1 = 2, fcc1 = 0.4 0.48

>>[Bc1 d,Ac1 d]= cheby1(Nc1,Rp,fcc1) % num/den of D-C1 BPF system ftn

Bc1 d = 9.3603e-03 0 -1.8721e-02 0 9.3603e-03

Ac1 d = 1.0000e+00 -7.1207e-01 1.8987e+00 -6.4335e-01 8.1780e-01

>>[SOS,Kc]= tf2sos(Bc1 d,Ac1 d) % Cascade form realization

SOS = 1 2 1 1.0000e+000 -1.6430e-001 9.0250e-001

1 -2 1 1.0000e+000 -5.4780e-001 9.0610e-001

Kc = 9.3603e-003

>>[BBp,AAp,Kp]= tf2par z(Bc1 d,Ac1 d) % Parallel form realization

BBp = -1.9910e-003 -8.9464e-002 0

-9.4316e-005 9.7236e-002 0

AAp = 1.0000e+000 -5.4785e-001 9.0612e-001

1.0000e+000 -1.6432e-001 9.0253e-001

Kp = 1.1446e-002

This means that the system function of the designed Chebyshev I BPF of order
2Nc1 = 4 is

7.2 Digital Filter Design 325

G[z] = 9.3603 × 10−3z4 − 1.8721 × 10−2z2 + 9.3603 × 10−3

z4 − 0.7121z3 + 1.8987z2 − 0.6434z + 0.8178
: Direct form

(E7.2.4a)

= 9.3603 × 10−3(z2 + 2z + 1)(z2 − 2z + 1)

(z2 − 0.1643z + 0.9025)(z2 − 0.5478z + 0.9061)
: Cascade form

(E7.2.4b1)

= 0.10855 × 0.10855 × 0.7943(z2 − 1)(z2 − 1)

(z2 − 0.1643z + 0.9025)(z2 − 0.5478z + 0.9061)
: Cascade form

(E7.2.4b2)

= 0.011446 + −9.4316 × 10−5z2 + 9.7236 × 10−2z

z2 − 0.1643z + 0.9025

+ −1.991 × 10−3z2 − 8.9464 × 10−2z

z2 − 0.5478z + 0.9061
: Parallel form (E7.2.4c)

0
0

[dB]

–20

–40

–60

–80
0 0.2 1.0

–20

–40

–60

–80
0 0.2 0.4

fs1 fs2fp1 fp2

–Rp

1.0

–As –As

Normalized frequency Normalized frequency (×π rad/sample)

(a) From MATLAB (b) From the FDAtool

[dB]
+ +

Fig. 7.9 The magnitude curves of the frequency response of the digital Chebyshev I BPF

Fig. 7.10 Design of a digital Chebyshev I BPF with order 4 and passband edge frequencies 0.4 &
0.48 using FDAtool

326 7 Analog and Digital Filters

The magnitude curve of the frequency response of the designed filter is shown in
Fig. 7.9. If the order and passband edge frequencies are determined, then we
use the FDATool to design a digital filter as depicted in Fig. 7.10 where the
same cascade realization is obtained as with cheby1(). Note that the critical
passband edge frequencies fcc1(1) and fcc1(2) determined by cheb1ord()
and used by cheby1() and FDATool are normalized to the range of [0,1]
with 1 corresponding to Fs/2[Hz] (half the sampling frequency, i.e., the Nyquist
frequency).

(c)We are going to determine the system function of a Chebyshev II BSF with

ωp1 = 2π × 6000, ωs1 = 2π × 10000, ωs2 = 2π × 12000,

ωp2 = 2π × 15000 [rad/s], Rp = 2 [dB], and As = 25 [dB] (E7.2.5)

Let us use the MATLAB function cheby2() to design a digital Chebyshev II
filter directly as follows:

>>Fs=5e4; T=1/Fs; % Sampling frequency and sampling period
>>wp1=2*pi*6e3; ws1=2*pi*1e4; ws2=2*pi*12e3; wp2=2*pi*15e3; Rp=2; As=25;
>>fp=[wp1 wp2]*T/pi; fs=[ws1 ws2]*T/pi; %Normalize edge freq into [0,1]
>>[Nc2,fcc2]=cheb2ord(fp,fs,Rp,As) % Order & Cutoff freq of D-C2 BSF

Nc2 = 2, fcc2 = 0.4 0.48
>>[Bc2 d,Ac2 d]=cheby2(Nc2,As,fcc2,’stop’) %D-C2 BSF system ftn

Bc2 d = 6.0743e-01 -4.5527e-01 1.2816e+00 -4.5527e-01 6.0743e-01
Ac2 d = 1.0000e+00 -5.7307e-01 1.1202e+00 -3.3746e-01 3.7625e-01

>>[SOS,Kc]= tf2sos(Bc2 d,Ac2 d) % Cascade form realization
SOS = 1 -0.2000 1 1.0000e+000 1.4835e-001 5.9730e-001

1 -0.5495 1 1.0000e+000 -7.2143e-001 6.2992e-001
Kc = 6.0743e-001

>>[BBp,AAp,Kp]= tf2par z(Bc2 d,Ac2 d) % Parallel form realization
BBp = -4.7229e-001 2.3377e-001 0

-5.3469e-001 -7.9541e-002 0
AAp = 1.0000e+000 -7.2143e-001 6.2992e-001

1.0000e+000 1.4835e-001 5.9730e-001
Kp = 1.6144e+000

This means that the system function of the designed Chebyshev II BSF of order
2Nc2 = 4 is

G[z] = 0.6074z4 − 0.4553z3 + 1.2816z2 − 0.4553z + 0.6074

z4 − 0.5731z3 + 1.1202z2 − 0.3375z + 0.3763
: Direct form

(E7.2.6a)

= 0.6074(z2 − 0.2z + 1)(z2 − 0.5495z + 1)

(z2 − 0.1484z + 0.5973)(z2 − 0.7214z + 0.6299)
: Cascade form

(E7.2.6b)

= −0.4723z2 + 0.2338z

z2 − 0.7214z + 0.6299
+ −0.5347z2 − 0.07954z

z2 + 0.1484z + 0.5973
+ 1.6144

: Parallel form (E7.2.6c)

7.2 Digital Filter Design 327

The magnitude curve of the frequency response of the designed filter is shown
in Fig. 7.11. If the order and stopband edge frequencies are determined, then we
can use the FDATool to design a digital filter as depicted in Fig. 7.12 where the
same cascade realization is obtained as with cheby2(). Note that the critical
stopband edge frequencies fcc2(1) and fcc2(2) determined by cheb2ord() and
used by cheby2() and FDATool are normalized to the range of [0,1] with 1
corresponding to Fs/2[Hz]. Note also that as can be seen from the magnitude
curves in Fig. 7.11, the Chebyshev II type filter closely meets the specification
on the stopband attenuation (As ≥ 25[dB]), while it satisfies that on the passband
ripple (Rp ≤ 2[dB]) with some margin.

0
0

[dB]

–5

–10

–15

–20

–25

0 0.2 1.0

–20

–40

–60
0 0.2 0.4

fp1 fp2fs1 fs2

–Rp –Rp

1.0Normalized frequency Normalized frequency (×π rad/sample)

(a) From MATLAB (b) From the FDAtool

[dB]

–As –As

Fig. 7.11 The magnitude curves of the frequency response of the digital Chebyshev II BSF

Fig. 7.12 Design of a digital Chebyshev II BSF with order 4 and stopband edge frequencies 0.4 &
0.48 using FDAtool (version 7.2-R2006a)

328 7 Analog and Digital Filters

(d)We are going to determine the system function of an elliptic HPF with

ωs = 2π × 6000 [rad/s], ωp = 2π × 15000 [rad/s], Rp = 2 [dB], and As = 25 [dB]
(E7.2.7)

Let us use the MATLAB function ellip() to design a digital elliptic filter
directly as follows:

>>Fs=5e4; T=1/Fs; % Sampling frequency and sampling period
>>ws=2*pi*6e3; wp=2*pi*15e3; Rp=2; As=25;
>>fp=wp*T/pi; fs=ws*T/pi; %Normalize edge freq into [0,1]
>>[Ne,fce]=ellipord(fp,fs,Rp,As) % Order & Cutoff freq of D-elliptic HPF

Ne = 2, fce = 0.6
>>[Be d,Ae d]=ellip(Ne,Rp,As,fce,’high’) %D-elliptic HPF system ftn

Be d = 2.0635e-001 -3.0101e-001 2.0635e-001
Ae d = 1.0000e+000 5.4365e-001 4.4217e-001

>>[SOS,Kc]= tf2sos(Be d,Ae d) % Cascade form realization
SOS = 1 -1.4587e+000 1 1.0000e+000 5.4365e-001 4.4217e-001
Kc = 2.0635e-001

>>[BBp,AAp,Kp]= tf2par z(Be d,Ae d) % Parallel form realization
BBp = -2.6034e-001 -5.5472e-001 0
AAp = 1.0000e+000 5.4365e-001 4.4217e-001
Kp = 4.6669e-001

This means that the system function of the designed elliptic HPF of order
Ne = 2 is

G[z] = 0.2064z2 − 0.3010z + 0.2064

z2 + 0.5437z + 0.4422
= 0.2064(z2 − 1.4587z + 1)

z2 + 0.5437z + 0.4422
: Cascade form

(E7.2.8a)

= −0.2603z2 − 0.5547z

z2 + 0.5437z + 0.4422
+ 0.4667 : Parallel form (E7.2.8b)

%sig07e02.m for digital filter design and frequency response plot
clear, clf, format short e
Fs=5e4; T=1/Fs; % Sampling frequency and sampling period
disp(’(a) Digital Butterworth LPF’)
wp=2*pi*6000; ws=2*pi*15000; Rp=2; As=25;
fp=wp*T/pi; fs=ws*T/pi;
[Nb,fcb]= buttord(fp,fs,Rp,As) % Order of analog BW LPF
[Bb d,Ab d]= butter(Nb,fcb) % num/den of digital BW LPF system ftn
fn=[0:512]/512; W=pi*fn;
% Plot the frequency response magnitude curve
subplot(221), plot(fn,20*log10(abs(freqz(Bb d,Ab d,W))+eps))
hold on, plot(fp,-Rp,’o’, fcb,-3,’+’, fs,-As,’x’)
[SOS,Kc]= tf2sos(Bb d,Ab d) % Cascade form realization
[BBp,AAp,Kp]= tf2par z(Bb d,Ab d) % Parallel form realization
disp(’(b) Digital Chebyshev I BPF’)
ws1=2*pi*6e3; wp1=2*pi*1e4; wp2=2*pi*12e3; ws2=2*pi*15e3; Rp=2; As=25;

7.2 Digital Filter Design 329

fp=[wp1 wp2]*T/pi; fs=[ws1 ws2]*T/pi; %Normalize edge freq into [0,1]
[Nc1,fcc1]=cheb1ord(fp,fs,Rp,As) % Order & critical passband edge freq
[Bc1 d,Ac1 d]= cheby1(Nc1,Rp,fcc1) % num/den of D-C1 BPF system ftn
subplot(222), plot(fn,20*log10(abs(freqz(Bc1 d,Ac1 d,W))+eps))
[SOS,Kc]= tf2sos(Bc1 d,Ac1 d) % Cascade form realization
[BBp,AAp,Kp]= tf2par z(Bc1 d,Ac1 d) % Parallel form realization
disp(’(c) Digital Chebyshev II BSF’)
wp1=2*pi*6e3; ws1=2*pi*1e4; ws2=2*pi*12e3; wp2=2*pi*15e3; Rp=2; As=25;
fp=[wp1 wp2]*T/pi; fs=[ws1 ws2]*T/pi; %Normalize edge freq into [0,1]
[Nc2,fcc2]=cheb2ord(fp,fs,Rp,As) % Order & critical edge frequencies
[Bc2 d,Ac2 d]=cheby2(Nc2,As,fcc2,’stop’) %num/den of D-C2 BSF system ftn
subplot(223), plot(fn,20*log10(abs(freqz(Bc2 d,Ac2 d,W))+eps))
[SOS,Kc]= tf2sos(Bc2 d,Ac2 d) % Cascade form realization
[BBp,AAp,Kp]= tf2par z(Bc2 d,Ac2 d) % Parallel form realization
disp(’(d) Digital elliptic HPF’)
ws=2*pi*6000; wp=2*pi*15000; Rp=2; As=25;
fp=wp*T/pi; fs=ws*T/pi; %Normalize edge freq into [0,1]
[Ne,fce]=ellipord(fp,fs,Rp,As) % Order & Cutoff freq of D-elliptic HPF
[Be d,Ae d]=ellip(Ne,Rp,As,fce,’high’) % D-elliptic HPF system ftn
subplot(224), plot(fn,20*log10(abs(freqz(Be d,Ae d,W))+eps))
[SOS,Kc]= tf2sos(Be d,Ae d) % Cascade form realization
[BBp,AAp,Kp]= tf2par z(Be d,Ae d) % Parallel form realization:

The magnitude curve of the frequency response of the designed filter is shown
in Fig. 7.13. If the order and cutoff frequency are determined, then we use the
FDATool to design a digital filter as depicted in Fig. 7.14, yielding the cascade
realization close to that obtained with ellip(). Note that the cutoff frequency
fce determined by ellipord() and used by ellip() and FDATool is nor-
malized to the range of [0,1] with 1 corresponding to Fs/2[Hz] (half the sampling
frequency).

(e)All the above filter design works are put into the M-file named “sig07e02.m”,
which plots the frequency responses of the designed filters so that one can check
if the design specifications are satisfied. Figs. 7.7(a), 7.9(a), 7.11(a), and 7.13(a),
obtained by running the program “sig07e02.m”, show the following points:

- Figure 7.7(a) shows the monotone frequency response magnitude of a Butter-
worth filter.

- Figure 7.9(a) shows that the critical passband edge frequencies f p1 and f p2

given as an input argument fcc1 = [fp1 fp2] of ‘cheby1()’ are the frequencies
at which the passband ripple condition is closely met. Note that the frequency
response magnitude of a Chebyshev I filter satisfying the passband ripple con-
dition closely has a ripple in the passband, which is traded off for a narrower
transition band than the Butterworth filter (with the same filter order).

- Figure 7.11(a) shows that the critical stopband edge frequencies fs1 and fs2

given as an input argument fcc2 = [fs1 fs2] of ‘cheby2()’ are the frequencies
at which the stopband attenuation condition is closely met. Note that the fre-
quency response magnitude of a Chebyshev II filter satisfying the stopband
attenuation condition closely has a ripple in the stopband.

330 7 Analog and Digital Filters

0
[dB]

–20

–40

–60

–80
0 0.2 0.4 1.0

0

–10

–20

–30

–40

0 0.2 1.0

[dB]

Normalized frequency Normalized frequency (xπ rad/sample)

(a) From MATLAB (b) From the FDAtool

–As

–Rp

fs fp

Fig. 7.13 The magnitude curves of the frequency response of the digital elliptic HPF

Fig. 7.14 Design of a digital elliptic HPF with order 2 and stopband/passband edge frequencies
0.24/0.6 using FDAtool (version 7.2-R2006a)

7.2 Digital Filter Design 331

Fig. 7.15 The state diagram of a filter drawn by the ‘Realize Model’ function of FDAtool

- Figure 7.13(a) shows that the critical passband edge frequency f p given as an
input argument fce of ‘ellip()’ is the frequency at which the passband ripple
condition is closely met. Note that the frequency response magnitude of an
elliptic filter has ripples in both the passband and the stopband, yielding a
relatively narrow transition band with the smallest filter order N = 2 among
the four filters.

Note that we can click the Realize Model button or the Pole/Zero Editor button
on the left-hand side of the FDATool window to create a Simulink model file
having the designed filter block as depicted in Fig. 7.15 or to see the pole/zero
plot of the designed filter as illustrated in Fig. 7.14.

7.2.2 FIR Filter Design

FIR filters are compared with IIR filters as follows:
Advantages: Disadvantages:
- FIR filters can have exactly linear
phase.

- FIR filters require a much higher
filter order than IIR filters to achieve a
given level of performance.

- FIR filters are stable. - The delay of FIR filters is often much
greater than that of an equal
performance IIR filter.

According to the signal processing toolbox user’s guide (page 2–16), FIR filter
design methods cast into MATLAB functions are listed in Table 7.1.

332 7 Analog and Digital Filters

Table 7.1 FIR filter design methods

Windowing Apply windowing to truncated IDFT of
desired “brick wall” filter

fir1(), fir2()

Multibands with
transition bands

Equiripple or least squares approach over
subbands of the frequency range

firpm(), firls()

Constrained least
squares

Minimize squared integral error over
entire frequency range subject to
maximum error constraints

fircls(), fircls1()

Arbitrary
responses

Arbitrary responses, including nonlinear
phase and complex filters

cfirpm()

Raised cosine Lowpass response with smooth,
sinusoidal transition

firrcos()

As discussed in Sect. 4.6, the phases of FIR filters having symmetric or anti-
symmetric coefficients are linear so that the phase delay τp and group delay τg are
equal and constant over the frequency band, where the phase delay and group delay
are related to the phase shift θ (Ω) = ∠G(Ω) of the frequency response as

τp = −θ (Ω)

Ω
and τg = −dθ (Ω)

dΩ
with θ (Ω) = ∠G(Ω)(phase response) (7.2.5)

Table 7.2 shows some restrictions on the frequency response depending on the sym-
metry of the FIR filter (tap) coefficients g[n] and whether the filter order is even or
odd. Note that fir1(N,fc,‘high’) and fir1(N,[fc1 fc2], ‘stop’) with an odd filter order
N design an (N + 1)th-order HPF and BSF (of type I), respectively since no linear
phase HPF or BSF of odd order (type II) can be made.

Table 7.2 FIR filter design methods (see Sect. 4.6)

Linear phase
filter type

Filter order N Symmetry of filter (tap)
coefficients g[n]

Restriction on frequency
response

Type I Even Symmetric
g[n] = g[N − n]
for n = 0 : N

No restriction

Type II Odd Symmetric
g[n] = g[N − n]
for n = 0 : N

G(Ω)|Ω=π = 0
(No HPF or BSF)

Type III Even Anti-symmetric
g[n] = −g[N − n]
for n = 0 : N

G(Ω)|Ω=0 = 0,

G(Ω)|Ω=π = 0
(No LPF or HPF or BSF)

Type IV Odd Anti-symmetric
g[n] = −g[N − n]
for n = 0 : N

G(Ω)|Ω=0 = 0 (No LPF)

7.2 Digital Filter Design 333

7.2.2.1 Windowing Method

Consider the frequency response of an ideal (“brick wall”) LPF with cutoff fre-
quency Ωc as

G I (Ω) = G I [e jΩ] =
{

1 for |Ω − 2mπ | ≤ Ωc ≤ π (m : an integer)

0 elsewhere
(7.2.6)

Referring to Eq. (E3.5.2), we can take the inverse DTFT of this frequency response
to write the impulse response of an ideal LPF as

gI [n] = F−1{G I (Ω)} (3.1.3)= 1

2π

∫ Ωc

−Ωc

G(Ω)e jΩndΩ = Ωc

π
sinc

(
Ωcn

π

)
(7.2.7)

Since this infinite-duration impulse response cannot be realized by a FIR filter, we
apply a (rectangular) window of, say, length N + 1 (N = 2M : an even number) to
truncate it to make the tap coefficients of an N th-order FIR LPF as

gL P [n] = gI [n]r2M+1[n + M] = Ωc

π
sinc

(
Ωcn

π

)
for − M ≤ n ≤ M(M = N

2
)

(7.2.8)
We can multiply this with 2 cos(Ωpn) (for modulation) to obtain the tap coeffi-

cients of an N th-order FIR BPF with passband center frequency Ωp and bandwidth
2Ωc as

gB P [n] = 2gL P [n] cos(Ωpn) for − M ≤ n ≤ M(M = N

2
) (7.2.9)

We can also get the tap coefficients of N th-order FIR HPF (with cutoff fre-
quency Ωc) and BSF (with stopband center frequency Ωs and bandwidth 2Ωc) by
subtracting the tap coefficients of LPF and BPF from the unit impulse sequence
δ[n] as

gH P [n] = δ[n] − gL P [n] = δ[n] − Ωc

π
sinc

(
Ωcn

π

)
for − M ≤ n ≤ M(M = N/2)

(7.2.10)

gBS[n] = δ[n] − gB P [n] = δ[n] − 2gL P [n] cos(Ωsn) for − M ≤ n ≤ M(M = N/2)
(7.2.11)

where δ[n] is the impulse response of an all-pass filter with a flat frequency response
(see Example 3.4). Note the following:

- The tap coefficients or impulse responses of FIR filters (7.2.8), (7.2.9), (7.2.10),
and (7.2.11) should be delayed by M = N/2 to make the filters causal for
physical realizability (see Sect. 1.2.9).

334 7 Analog and Digital Filters

- Cutting off the impulse response of an ideal filter abruptly for truncation results
in ripples near the band edge of the frequency response. Thus a non-rectangular
window such as a Hamming window is often used to reduce the Gibbs effect.

Given a filter order N and description of the desired frequency response including
6dB band edge frequency (vector), the MATLAB functions fir1() and fir2()
return the N + 1 tap coefficients of a FIR filter designed by the windowing method.
Let us try using the MATLAB functions for FIR filter design in the following
examples:

Example 7.3 Standard Band FIR Filter Design
Let us design several standard band FIR filters with sampling frequency Fs = 50

[kHz]. The following program “sig07e03.m” finds the tap coefficients of an LPF
with cutoff frequency 5kHz, a BPF with passband 7.5 ∼ 17.5kHz, a HPF with
cutoff frequency 20kHz, and a BSF with stopband 7.5 ∼ 17.5kHz by using
Eqs. (7.2.8), (7.2.9), (7.2.10), and (7.2.11) and the MATLAB function fir1().
Fig. 7.16 shows the impulse responses (tap coefficients) and frequency responses of
the filters obtained by running the program.

%sig07e03.m to design standard band FIR filters
clear, clf
Fs= 5e4; T=1/Fs; % Sampling frequency and sampling period
N=30; M=N/2; % Filter order and its half
nn=[-M:M]; nn1=nn+M; % Duration of filter impulse response
fn=[0:512]/512; W= fn*pi; % normalized and digital frequency ranges
% LPF design
fc LP= 5000*T*2; % Normalized 6dB cutoff frequency corresponding to 5kHz
gLP= fc LP*sinc(fc LP*nn); % Eq. (7.2.8)
gLP1= fir1(N,fc LP); % filter impulse response or tap coefficients
GLP= abs(freqz(gLP,1,W))+eps; GLP1= abs(freqz(gLP1,1,W))+eps;
subplot(421), stem(nn1,gLP), hold on, stem(nn1,gLP1,’r.’)
subplot(422), plot(fn,20*log10(GLP), fn,20*log10(GLP1),’r:’)
% BPF design
fc BP=[7500 17500]*T*2; % Normalized 6dB band edge frequencies
fp= sum(fc BP)/2*pi; % Passband center frequency[rad/sample]
gBP= 2*gLP.*cos(fp*nn); % Eq. (7.2.9)
gBP1= fir1(N,fc BP); % filter impulse response or tap coefficients
GBP= abs(freqz(gBP,1,W))+eps; GBP1= abs(freqz(gBP1,1,W))+eps;
subplot(423), stem(nn1,gBP), hold on, stem(nn1,gBP1,’r.’)
subplot(424), plot(fn,20*log10(GBP), fn,20*log10(GBP1),’r:’)
% HPF design
impulse delayed= zeros(1,N+1); impulse delayed(M+1)= 1; % Impulse
fc HP= 20000*T*2; % Normalized 6dB cutoff frequency 20kHz
gHP= impulse delayed-fc HP*sinc(fc HP*nn); % Eq. (7.2.10)
gHP1=fir1(N,fc HP,’high’); %filter impulse response/tap coefficients
GHP= abs(freqz(gHP,1,W))+eps; GHP1= abs(freqz(gHP1,1,W))+eps;
subplot(425), stem(nn1,gHP), hold on, stem(nn1,gHP1,’r.’)
subplot(426), plot(fn,20*log10(GHP), fn,20*log10(GHP1),’r:’)
% BSF design
fc BS=[7500 17500]*T*2; % Normalized 6dB band edge frequencies

7.2 Digital Filter Design 335

0.3

0.2

0.1

0

–0.1
0 5
(a1) Impulse response (tap coefficients) of FIR LPF

10 15 20 25 30n

: Rectangular windowed
: Hamming windowed

0.4

0.2

0

–0.2

–0.4

(a2) Impulse response (tap coefficients) of FIR BPF
0 5 10 15 20 25 30n

0.2

0.1

0

–0.1

–0.2

(a3) Impulse response (tap coefficients) of FIR HPF
0 5 10 15 20 25 30n

0.6

0.4

0.2

0

–0.2
0 5 10 15 20 25 n 30

(a4) Impulse response (tap coefficients) of FIR BSF

0
[dB]
–20

–40

–60

–80
0 0.2 0.3 0.5 0.7 0.8 1Ω/π

–6dB

(b1) Magnitude of frequency response of FIR LPF

: Rectangular windowed
: Hamming windowed

0
[dB] –6dB –6dB
–20

–40

–60

–80
0 0.2 0.3 0.5 0.7 0.8 1Ω/π
(b2) Magnitude of frequency response of FIR BPF

–6dB
0

[dB]
–20

–40

–60

–80
0 0.2 0.3 0.5 0.7 0.8 1Ω/π

(b3) Magnitude of frequency response of FIR HPF

–6dB–6dB
0

[dB]
–20

–40

–60

–80
0 0.2 0.3 0.5 0.7 0.8 1Ω/π

(b4) Magnitude of frequency response of FIR BSF

Fig. 7.16 Impulse responses (tap coefficients) and frequency responses of FIR filters

Ws= sum(fc BS)/2*pi; % Stopband center frequency[rad/sample]
fc LP= (fc BS(2)-fc BS(1))/2; gLP= fc LP*sinc(fc LP*nn);
gBS= impulse delayed-2*gLP.*cos(Ws*nn); % Eq. (7.2.11)
gBS1=fir1(N,fc BS,’stop’); % filter impulse response/tap coefficients
GBS= abs(freqz(gBS,1,W))+eps; GBS1= abs(freqz(gBS1,1,W))+eps;
subplot(427), stem(nn1,gBS), hold on, stem(nn1,gBS1,’r.’)
subplot(428), plot(fn,20*log10(GBS), fn,20*log10(GBS1),’r:’)

7.2.2.2 Multi-Band FIR Filter Design

We can use the MATLAB function fir1(N,f,‘DC-1’) or fir1(N,f,‘DC-
0’) to design FIR filters whose frequency response magnitude is close to [1 0 1
0 . . .] or [0 1 0 1 . . .] for each band [f(1) ∼ f(2) f(2) ∼ f(3) f(3) ∼ f(4) f(4) ∼
f(5) . . .] between the neighboring edge frequencies. We can also use the MATLAB
function fir2(N,f,A) or firpm(N,f,A) or firls(N,f,A) to design FIR

336 7 Analog and Digital Filters

filters whose frequency response magnitude is close to an arbitrary piecewise linear
shape specified by the second and third input arguments f and A. Note the following:

- The firpm() function implements the Parks-McClellan algorithm, which uses the
Remez exchange algorithm and Chebyshev approximation theory to design mini-
max or equiripple filters minimizing the maximum error between the desired and
actual frequency responses [W-3]. It yields the frequency response exhibiting an
equiripple behavior.

- The firls() function minimizes the integral of the squared error between the
desired and actual frequency responses.

- The number of desired frequency-amplitude points must be even for firpm()
and firls().

- While the desired frequency response for fir1() is supposed to be the brick wall
type, firpm and firls() allow us to describe the desired frequency response so that
we can insert the transition band(s) between the passband(s) and stopband(s) to
reduce the ripple in the magnitude of the frequency response.

Example 7.4 Multi-Band FIR Filter Design
Figure 7.17 shows the impulse responses (tap coefficients) and frequency

responses of the filters obtained by running the following program “sig07e04.m”.
Especially, Fig. 7.17(b4) illustrates the difference between the magnitude responses
of the equiripple and LSE filters that are designed using firpm() and firls(),
respectively.

%sig07e04.m
% to design multi-band FIR filters using fir1()/fir2()/firpm()
clear, clf
fn=[0:512]/512; W= fn*pi; % normalized and digital frequency ranges
N=30; M=N/2; % Filter order and its half
nn=[-M:M]; nn1=nn+M; % Duration of filter impulse response
%Multi pass/stop-band filter using fir1()
ffe=[0.2 0.4 0.6 0.8]; % Band edge frequency vector
B fir1 DC1=fir1(N,ffe,’DC-1’); % Tap coefficient vector
G fir1 DC1= freqz(B fir1 DC1,1,W); % Frequency response magnitude
subplot(421), stem(nn1,B fir1 DC1)
subplot(422), plot(fn,abs(G fir1 DC1))
%Multi stop/pass-band filter using fir1()
B fir1 DC0=fir1(N,ffe,’DC-0’); % Tap coefficient vector
G fir1 DC0= freqz(B fir1 DC0,1,W); % Frequency response magnitude
subplot(423), stem(nn1,B fir1 DC0)
subplot(424), plot(fn,abs(G fir1 DC0))
%Multi pass/stop-band filter using fir2()
% Desired piecewise linear frequency response
ffd=[0 0.18 0.22 0.38 0.42 0.58 0.62 0.78 0.82 1]; % Band edges in pairs
GGd=[1 1 0 0 1 1 0 0 1 1];
B fir2=fir2(N,ffd,GGd);
G fir2= freqz(B fir2,1,W);
subplot(425), stem(nn1,B fir2)
subplot(426), plot(fn,abs(G fir2), ffd,GGd,’k:’)

7.2 Digital Filter Design 337

%Multi-band pass/stop filter using firpm()
B firpm=firpm(N,ffd,GGd); % The number of frequency points must be even
B firls=firls(N,ffd,GGd); % The number of frequency points must be even
G firpm= freqz(B firpm,1,W);
G firls= freqz(B firls,1,W);
subplot(427), stem(nn1,B firpm), hold on, stem(nn1,B firls,’.’)
subplot(428), plot(fn,abs(G firpm), fn,abs(G firls),’r-.’, ffd,GGd,’k:’)

0.5

0

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0.4
0.2

–0.2
0

0.4
0.6

0.2

–0.2
0

0.4
0.6

0.2

–0.2
0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0
0 0.1 0.2 0.3 0.4 0.6 0.70.5 0.8 1Ω/π

0.50 0.1 0.2 0.3 0.4 0.6 0.70.5 0.8 1Ω/π

0.50 0.1 0.2 0.3 0.4 0.6 0.7 0.8 1Ω/π

0.50 0.1 0.2 0.3 0.4 0.6 0.70.5 0.8 1Ω/π
(a1) Impulse response of multi-band FIR filter
 designed by using fir1(30,ffe, ‘DC–1’)

(a2) Impulse response of multi-band FIR filter
 designed by using fir1(30,ffe, ‘DC–0’)

(a3) Impulse response of multi-band FIR filter
 designed by using fir2(30,fd,Gd)

(a4) Impulse response of multi-band FIR filter
 designed by using firpm(30,fd,Gd)/firls()

(b4) Magnitude response of multi-band FIR filter
 designed by using firpm(30,fd,Gd)/firls()

(b3) Magnitude response of multi-band FIR filter
 designed by using fir2(30,fd,Gd)

(b2) Magnitude response of multi-band FIR filter
 designed by using fir1(30,ffe,’DC–0’)

(b1) Magnitude response of multi-band FIR filter
 designed by using fir1(30,ffe, ‘DC–1’)

n

n

n

n

firpm()
firls()

Desired magnitude response
Actual magnitude response

firpm()
firls()

Fig. 7.17 Multi-band FIR filters designed using fir1(), fir2(), and firpm()/firls()

7.2.2.3 Anti-Symmetric FIR Filter Design

We can use the MATLAB functions firpm() or firls() with the fourth input
argument ‘h’ or ‘d’ to design anti-symmetric FIR filters. Note that in the ‘d’
mode, firpm() and firls() weight the error by 1/Ω and 1/Ω2, respectively
in nonzero amplitude bands to minimize the maximum relative error or sum of rel-
ative squared error. Note from Table 7.2 that the desired frequency response of an

338 7 Analog and Digital Filters

anti-symmetric FIR filter of an even order should be allowed to be zero at Ω = 0
and π and that of an anti-symmetric FIR filter of an odd order should be allowed to
be zero at Ω = 0.

Example 7.5 Anti-Symmetric Filters – Hilbert Transformer and Differentiator

(a)Hilbert Transformer
The impulse response of the Hilbert transformer dealt with in Problems 2.10
and 3.2 has an odd symmetry so that it can easily be designed using firpm()
or firls() with the fourth input argument ‘h’ as in the following program
“sig07e05a.m”. We can run it to get Fig. 7.18, where the frequency response of
the ideal Hilbert transformer is

H (Ω)
(P3.2.1)=

{
− j for 0 < Ω < π

+ j for − π < Ω < 0
(7.2.12)

%sig07e05a.m
% to design Hilbert transformers as anti-symmetric FIR filters
% by using firpm() or firls().
clear, clf
fn=[0:512]/512; W= fn*pi; % normalized and digital frequency ranges
% Hilbert transformer using firpm() or firls()
% Type III (anti-symmetric and even order) with G(0)=0 and G(pi)=0
B20 H firpm= firpm(20,[0.05 0.95],[1 1],’h’); % Type III
G20 H firpm= freqz(B20 H firpm,1,W);
B20 H firls= firls(20,[0.05 0.95],[1 1],’h’); % Type III
G20 H firls= freqz(B20 H firls,1,W);
% Type IV (anti-symmetric and odd order) with G(0)=0
B21 H firpm= firpm(21,[0.05 1],[1 1],’h’); % Type IV
G21 H firpm= freqz(B21 H firpm,1,W);
B21 H firls= firls(21,[0.05 1],[1 1],’h’); % Type IV
G21 H firls= freqz(B21 H firls,1,W);
subplot(421), nn=[0:20]; % Duration of filter impulse response
stem(nn,B20 H firpm), hold on, stem(nn,B20 H firls,’.’)
subplot(422), plot(fn,abs(G20 H firpm), fn,abs(G20 H firls),’:’)
subplot(423), nn=[0:21]; % Duration of filter impulse response
stem(nn,B21 H firpm), hold on, stem(nn,B21 H firls,’.’)
subplot(424), plot(fn,abs(G21 H firpm), fn,abs(G21 H firls),’:’)
% Use filter visualization tool to see the filter
fvtool(B20 H firpm,1,B20 H firls,1)
fvtool(B21 H firpm,1,B21 H firls,1)

(b)Differentiator
The impulse response of the differentiator dealt with in Problem 3.3 has an odd
symmetry so that it can easily be designed by using firpm() or firls()
with the fourth input argument ‘d’ as in the following program “sig07e05b.m”
where firpm() and firls() in the ‘d’ mode weight the error by 1/Ω and
1/Ω2, respectively. We can run it to get Fig. 7.19.

7.2 Digital Filter Design 339

(Q)Why is the rightmost edge frequency in the second input argument of firpm()/firls()
set to 0.95 instead of 1 for the type III FIR filter design despite the nonzero
desired magnitude response at Ω = π ?

0.5

0

0
(a1) Impulse response of a Hilbert transformer

using firpm()/firls (20, [0.05,0.95], [1 1], 'h')

(a2) Impulse response of a Hilbert transformer
using firpm()/firls (21, [0.05,1], [1 1], 'h')

(b2) Magnitude response of a Hilbert transformer
using firpm()/firls (21, [0.05,1], [1 1], 'h')

(b1) Magnitude response of a Hilbert transformer
using firpm()/firls (20, [0.05,0.95], [1 1], 'h')

5 10

: firpm()
: firls()

: firpm()
: firls()

: firpm()
: firls()

: firpm()
: firls()

15 20n 0 0.2 0.4 0.6 0.8 1Ω/π

–0.5

0.5

0

0 5 10 15 2021n

–0.5

0.5

1

0

0 0.2 0.4 0.6 0.8 1Ω/π

0.5

1

0

Fig. 7.18 Hilbert transformers designed using firpm() and firls()

0 5 10 15 20 21n

0 5 10 15 20n

1

–1

0

1

–1

0
1

0

3

2

1

0

3

2

0 0.2 0.4 0.6 0.8 1Ω/π

0 0.2 0.4 0.6 0.8 1Ω/π

firpm()
firls()

firpm()
firls()

firpm()
firls()

firpm()
firls()

(a1) Impulse response of a differentiator
 using firpm()/firls(20,[0 0.95],[0 0.95*pi], ‘d’)

(a2) Impulse response of a differentiator
 using firpm()/firls(21,[0 1],[0 pi], ‘d’)

(b1) Magnitude response of a differentiator
 using firpm()/firls(20,[0 0.95],[0 0.95*pi], ‘d’)

(b2) Magnitude response of a differentiator
 using firpm()/firls(21,[0 1],[0 pi], ‘d’)

Fig. 7.19 Differentiators designed using firpm() and firls()

340 7 Analog and Digital Filters

%sig07e05b.m
% to design differentiators as anti-symmetric FIR filters
% by using firpm() or firls().
clear, clf
fn=[0:512]/512; W= fn*pi; % normalized and digital frequency ranges
% Differentiator using firpm()or firls()
B20 d firpm= firpm(20,[0 0.95],[0 0.95*pi],’d’); % Type III
G20 d firpm= freqz(B20 d firpm,1,W);
B20 d firls= firls(20,[0 0.95],[0 0.95*pi],’d’); % Type III
G20 d firls= freqz(B20 d firls,1,W);
B21 d firpm= firpm(21,[0 1],[0 pi],’d’); % Type IV with G(0)=0
G21 d firpm= freqz(B21 d firpm,1,W);
B21 d firls= firls(21,[0 1],[0 pi],’d’); % Type IV with G(0)=0
G21 d firls= freqz(B21 d firls,1,W);
subplot(421), nn=[0:20]; % Duration of filter impulse response
stem(nn,B20 d firpm), hold on, stem(nn,B20 d firls,’.’)
subplot(422), plot(fn,abs(G20 d firpm), fn,abs(G20 d firls),’:’)
subplot(423), nn=[0:21]; % Duration of filter impulse response
stem(nn,B21 d firpm), hold on, stem(nn,B21 d firls,’.’)
subplot(424), plot(fn,abs(G21 d firpm), fn,abs(G21 d firls),’:’)
% Use filter visualization tool to see the filter
fvtool(B20 d firpm,1,B20 d firls,1)
fvtool(B21 d firpm,1,B21 d firls,1)

7.2.2.4 Constrained Least Squares (CLS) FIR Filter Design

There are two CLS filter design functions, fircls() and fircls1(). The
fircls() function designs FIR filters whose magnitude responses are close to
the desired piecewise constant one specified by a vector of band edges and the
corresponding vector of band amplitudes. The upperbound and lowerbound of the
desired magnitude response can also be given. The fircls1() function designs
a FIR LPF or HPF whose magnitude response is close to the brick wall type for
the passband/stopband specified by the cutoff frequency within the given tolerance
on the passband and stopband ripples. Given the passband and stopband edge fre-
quencies together with the weighting factor on stopband error relative to passband
error, it applies the weighted least squares algorithm. In the case of HPF design, the
filter order N given as the first input argument should be even; otherwise, it will be
incremented by one to make an even filter order.

Example 7.6 Multi-Band CLS FIR Filter Design
The MATLAB function fircls() is used to design a two-band FIR filter with

the desired magnitude response vector A = [0 0.5 0 1 0] for the bands speci-
fied by the band edge vector f = [0 0.3 0.5 0.7 0.9 1] in the following program
“sig07e06.m”. We run it to get Fig. 7.20, which shows the magnitude responses
of the two filters where filter 1 and filter 2 are designed with the upperbound and
lowerbound stricter on the stopband and the passband, respectively.

7.2 Digital Filter Design 341

Fig. 7.20 Multiband FIR filters designed using fircls(30,f,A,ub,lb) with f = [0 0.3 0.5 0.7 0.8 1]
and A = [0 0.5 0 1 0]

(cf) We can change the unit of magnitude and frequency scale in the Analysis
Parameters dialog box opened by clicking Analysis/Analysis Parameters on
the menu bar of the Filter Visualization window.

%sig07e06.m
% CLS design multi-band filters using fircls().
clear, refresh(1)
N=50; % Filter order
f= [0 0.3 0.5 0.7 0.8 1]; % The band edge frequency vector
A= [0 0.5 0 1 0]; % The magnitude response vector
ub1= [0.01 0.54 0.02 1.05 0.02]; lb1= [-0.01 0.46 -0.02 0.95 -0.02];
B1 fircls= fircls(N,f,A,ub1,lb1); % stricter on stopband ripple condition
ub2= [0.05 0.51 0.05 1.02 0.05]; lb2= [-0.05 0.49 -0.05 0.98 -0.05];
B2 fircls= fircls(N,f,A,ub2,lb2); % stricter on passband ripple condition
fvtool(B1 fircls,1, B2 fircls,1) %filter visualization tool to see filter
% Click any point on the frequency curve to add data markers

Example 7.7 CLS FIR LPF/HPF Design

(a)FIR LPF Dsign
We can run the following program “sig07e07a.m” to get Fig. 7.21(a), which
shows the magnitude responses of the two filters where filter 2 is designed with
more weighting (Kw > 1) on the stopband.

%sig07e07a.m
% to CLS design LPF filters using fircls1().
clear, refresh(1)
N=30; fc= 0.3; % Filter order and Cutoff frequency
fp=0.28; fs=0.32; % Passband and stopband edge frequencies
rp= 0.05; rs= 0.02; % Tolerances on passband and stopband ripple
% FIR LPF design using fircls1()
B1 LPF fircls1= fircls1(N,fc,rp,rs);
Kw=10; % For more weighting on the stopband ripple condition
B2 LPF fircls1= fircls1(N,fc,rp,rs,fp,fs,Kw);
% Use filter visualization tool to see the filter
fvtool(B1 LPF fircls1,1, B2 LPF fircls1,1)

342 7 Analog and Digital Filters

(b)FIR HPF Dsign
We can run the following program “sig07e07b.m” to get Fig. 7.21(b), which
shows the magnitude responses of the three filters where filters 2 and 3 are
designed with more weighting (Kw < 1) on the passband. Note that filters 2/3
are ensured to satisfy the passband/stopband ripple condition at the frequency of
ft = fp + 0.02/fs − 0.02, respectively.

%sig07e07b.m
% to CLS design HPF filters using fircls1().
clear, refresh(1)
N=30; fc= 0.3; % Filter order and Cutoff frequency
fp=0.28; fs=0.32; % Passband and stopband edge frequencies
rp= 0.05; rs= 0.02; % tolerances on passband and stopband ripple
% FIR HPF design using fircls1()
B HPF fircls1= fircls1(N,fc,rp,rs,’high’);
Kw=0.1; %more weighting on passband ripple condition
% To ensure error(ft)<rp with ft within the passband
ft=fp+0.02;
B1 HPF fircls1= fircls1(N,fc,rp,rs,fp,fs,Kw,ft,’high’);
% To ensure error(ft)<rs with ft within the stopband
ft=fs-0.02;
B2 HPF fircls1= fircls1(N,fc,rp,rs,fp,fs,Kw,ft,’high’);
% Use filter visualization tool to see the filter
fvtool(B HPF fircls1,1, B1 HPF fircls1,1, B2 HPF fircls1,1)

0

–10

–20

–30

–40

–50

0 0.1 0.2 0.3 Normalized Frequency (xπ rad/sample)

(a) The magnitude responses of FIR LPFs (b) The magnitude responses of FIR LPFs

1.0 0 0.1 0.2 0.3 Normalized Frequency (xπ rad/sample) 1.0

[dB]
0

–10

–20

–30

–40

[dB]

Filter #2

Filter #1
Filter #1Filter #2

Filter #3

Fig. 7.21 FIR LPF/HPFs designed using fircls1()

7.2.2.5 Arbitrary-Response FIR Filter Design

The cfirpm() function designs a possibly nonlinear phase, asymmetric, complex-
coefficient, and equiripple frequency response FIR filter minimizing the Chebyshev
(or minimax) error between the actual magnitude response and desired one. Note
the following:

- B = cfirpm(N, f, A, w) returns a length (N + 1) FIR filter whose magnitude
response is the best approximation to the desired frequency response described
by f and A where

N: the filter order.

7.2 Digital Filter Design 343

f: the vector of (an even number of) band edge frequencies arranged in ascend-
ing order between −1 and +1 where 1 is half the sampling frequency,
i.e., the Nyquist frequency. The frequency bands span f(k) to f(k + 1) for
k odd; the intervals f(k + 1) to f(k + 2) for k odd are “transition bands” or
“don’t care regions” during optimization.

A: a real vector (of the same size as f) which specifies the desired magnitude
response as the line connecting the points (F(k),A(k)) and (F(k+1), A(k+
1)) for odd k.

W: a vector of real, positive weights, one per band, for use during optimization.
If not specified, it is set to unity.

- For filters with a gain other than zero at Fs/2, e.g., highpass and bandstop filters,
N must be even. Otherwise, N will be incremented by one.

- B = cfirpm(N, f, {@fresp, p1, p2, · · · }, w) returns a length (N + 1) FIR filter
whose magnitude is the best approximation to the desired frequency response as
returned by function @fresp with optional arguments p1,p2, · · · . The function is
called from within cfirpm() using the syntax [fg, wg] = fresp(N, f, fg, w, p1, p2,

· · ·) where

fg: a vector of interpolated grid frequencies over each specified frequency band
at which the response function will be evaluated.

Ag and wg: the desired complex frequency response and optimization weight
vectors, respectively, evaluated at each frequency in grid fg.

- Predefined frequency response functions for @fresp include:

‘lowpass’, ‘bandpass’, ‘hilbfilt’, ‘allpass’, ‘highpass’, ‘bandstop’, ‘differen-
tiator’, ‘invsinc’

- B = cfirpm(· · · , Sym) imposes a symmetry constraint on the impulse response,
where Sym may be one of the following:

‘none’: Default if any negative band edge frequencies are passed, or if @fresp
does not supply a default value of Sym.

‘even’: Impulse response will be real and even. This is the default for highpass,
lowpass, bandpass, bandstop, and multiband designs.

‘odd’: Impulse response will be real and odd. This is the default for Hilbert and
differentiator designs. The desired magnitude response at Ω = 0 must
be zero.

‘real’: Impose conjugate symmetry on the frequency response.
(cf) If any Sym option other than ‘none’ is specified, the band edges should only

be specified over positive frequencies; the negative frequency region will
be filled in from symmetry.

Example 7.8 Complex-Coefficient, Arbitrary Magnitude Response FIR Filter Design
The MATLAB function cfirpm() is used to design two FIR filters with differ-

ent filter order N = 30 and 40, with the desired piecewise linear magnitude response
connecting the frequency-amplitude points {(−1, 5), (−0.5, 1), (−0.4, 2), (0.3, 2),
(0.4, 2), (0.9, 1)} in the following program “sig07e08.m”. We run it to get Fig. 7.22,
which shows the impulse and magnitude responses of the two filters.

344 7 Analog and Digital Filters

(a1) Complex impulse response of 30th–order Filter 1 (a2) Complex impulse response of 40th–order Filter 2

0

2

–1 –0,5 0 0.5 1 –1 –0,5 0

(b2) Asymmetric frequency response of Filter 2
Normalized Frequency (xπ rad/sample)

(b1) Asymmetric frequency response of Filter 1

(c) User–defined Spectral Mask dialog box
to the desired magnitude response

Normalized Frequency (xπ rad/sample)

: Desired magnitude response
: Actual magnitude response

0.5 1

4

6

8

10

12

14
[bB]

2

4

6

8

10

12

14
[bB]

0 5 10 15 20 30

Filter #1: Real

Samples 0 5 10 15 20 25 30 40Samples

Filter #1: Imaginary

Filter #1: Real

Filter #1: Imaginary

0.5

1

1.5

2

0

0.5

1

1.5

2

: Desired magnitude response
: Actual magnitude response

To plot the desired magnitude response curve
so that it will be overlapped with the actual one
of the designed filter dotted, type in the band
edge frequency vector and the corrresponding
desired magnitude response vector into the
dialog box opened by clicking the View/User-
defined Spectral Mask menu on the top menu bar.

(cf)

Fig. 7.22 Complex impulse response and frequency response of (nonlinear phase) FIR filters
designed using cfirpm()

%sig07e08.m
% use cfirpm() to design FIR filters
% having an arbitrary complex frequency response (with nonlinear phase)
clear, refresh
for N=[30 40]

% Frequency/magnitude vectors describing desired frequency response
f=[-1 -0.5 -0.4 0.3 0.4 0.9];
A=[5 1 2 2 2 1]; %[14 0 6 6 6 0](dB)
Kw=[1 10 5]; % A vector describing the weighting factor for each band
B cfirpm= cfirpm(N,f,A,Kw);
% Use filter visualization tool to see the filter
fvtool(B cfirpm,1)

end

7.2 Digital Filter Design 345

7.2.3 Filter Structure and System Model Available in MATLAB

Figure 7.23 shows various filter structures that can be constructed, realized, and cast
into a Simulink block by using FDATool or the dfilt()/realizemdl() command (see
Sect. E.15). Note that all of the (transposed) direct I and II forms in Fig. 7.23(a)–(d)
commonly have the following system function

bm3

bm3

–am3

–am2

–am3

–am2

bm2

bm1

bm1

bm2

z –1

z –1 z –1

z –1

z –1

z –1 z –1

z –1 z –1

z –1

z –1

z –1

z –1

z –1z –1

z –1
z –1

z –1

z –1

z –1

y [n]u [n]
Y [z]

y [n]

Y [z]

U [z]

u [n]
U [z]

bm3–am3

–am2 bm2

bm1 y [n]u [n]
Y [z]U [z]

u [n]
U [z]

bm3 –am3

–am2

bm1

bm2

z –1

z –1

z –1

y [n]

Y [z]
u [n]
U [z]

(a) Direct I form – SOS (cascade)

(c) Direct II form – SOS (cascade)

(b) Transposed direct I form – SOS (cascade)

(d) Transposed direct II form – SOS (cascade)

y [n]

Y [z]

p1p2p3pN+1

z –1 z –1

– rN rN – r2 r2 – r1 r1

u [n]
U [z]

z –1

y
1
[n]

Y
1
[z]

z –1 z –1

– rN rN – r2 r2

r2r2

– r1 r1

r1 r1

y
2
[n]

Y
2
[z]

All–pass output All-pole output

z –1 z –1 z –1

y
2
[n]

Y
2
[z]

y
1
[n]

Y
1
[z]

u [n]
U [z]

rN rN Minimum-phase
output
Maximum-phase
output

(e) Lattice/ladder –ARMA form

(f) IIR lattice form

(g) FIR lattice form

Fig. 7.23 Various filter structures

346 7 Analog and Digital Filters

b–Mf

u [n]
U [z]

u [n]
U [z]

u [n]
U [z]

y [n]
Y [z]

y [n]
Y [z]

b–1

–a1

–aN–1

–aN

–a1

–aN –1

–aN

z–1

z–1

z–1

z–1

z–1 z–1

z–1

z–1

z–1

z–1

z

z b0

b1

bMb

b–Mf

b–1

z–1

z–1

z–1

z

z
b0

b1

bMb

b0 b1 b2

u [n]
U [z]

z–1

z–1 z–1

z–1

z–1

z–1

z–1

b0 b1 b2 b3

u [n]
U [z]

z–1

z–1 z–1

z–1

z–1

z–1

z–1

b0 b1 b2 b3

u [n]
U [z]

z–1

z–1 z–1

z–1

z–1

b0

–1 –1 –1 –1 –1 –1

b1 b2

(h) Direct I form (i) Direct II form

(j2) Direct symmetric form with an odd order

(k2) Direct asymmetric form with an odd order

(j1) Direct symmetric form with an even order

(k1) Direct asymmetric form with an even order

Fig. 7.23 (continued)

G[z] = K G M+1[z]
M
Π

m=1
Gm[z] = K

bM+1,1z + bM+1,2

z + aM+1,2

M
Π

m=1

bm1z2 + bm2z + bm3

z2 + am2z + am3

with M = floor(
N

2
) (7.2.13)

MATLAB represents the SOSs (second-order sections) connected in cascade
(with the output of each stage applied into the input of the next stage) as an M × 6
array ‘SOS’, each row of which contains the numerator and denominator coefficient
vector [bm1 bm2 bm3 1 am2 am3] of a single section.

MATLAB provides several functions that can be used for conversion between
the various linear system models as listed in Table 7.3. Converting from one system
model or filter structure to another may yield a result with different characteristic
than the original due to the computer’s finite-precision arithmetic operations and the
variations in the conversion’s round-off computations.

7.2 Digital Filter Design 347

Ta
bl

e
7.

3
M

A
T

L
A

B
fu

nc
tio

ns
fo

r
co

nv
er

si
on

be
tw

ee
n

th
e

va
ri

ou
s

lin
ea

r
sy

st
em

m
od

el
s

Sy
st

em
Fu

nc
tio

n
St

at
e-

Sp
ac

e
Z

er
o-

Po
le

-G
ai

n
SO

S
(c

as
ca

de
)

SO
S

(p
ar

al
le

l)
L

at
tic

e

Sy
st

em
Fu

nc
tio

n
—

t
f
2
s
s
(
)

t
f
2
z
p
(
)

t
f
2
s
o
s
(
)

t
f
2
p
a
r
z
(
)

∗
t
f
2
l
a
t
c
(
)

St
at

e-
Sp

ac
e

s
s
2
t
f
(
)

—
s
s
2
z
p
(
)

s
s
2
s
o
s
(
)

N
on

e
N

on
e

Z
er

o-
Po

le
-G

ai
n

z
p
2
t
f
(
)

z
p
2
s
s
(
)

—
z
p
2
s
o
s
(
)

N
on

e
N

on
e

SO
S

(c
as

ca
de

)
s
o
s
2
t
f
(
)

s
o
s
2
s
s
(
)

s
o
s
2
z
p
(
)

—
N

on
e

N
on

e
SO

S
(p

ar
al

le
l)

p
a
r
2
t
f
(
)

∗
N

on
e

N
on

e
N

on
e

—
N

on
e

L
at

tic
e

l
a
t
c
2
t
f
(
)

N
on

e
N

on
e

N
on

e
N

on
e

—

(c
f)

∗
m

ea
ns

th
at

th
e

M
A

T
L

A
B

fu
nc

tio
n

is
fa

br
ic

at
ed

in
th

is
bo

ok
.

348 7 Analog and Digital Filters

In the Filter Design & Analysis window (Fig. 7.24(a)) opened by typing ‘fdatool’
in the MATLAB command window, we can convert the structure of a designed
filter through the Convert Structure dialog box (Fig. 7.24(b1)) opened by clicking
Edit/Convert Structure (Fig. 7.24(b)) on the top menu bar. The following structures
are available for conversion in MATLAB:

- Direct form I, Direct form II, Direct form I transposed, or Direct form II
transposed

- Second-Order Sections
- Lattice minimum/maximum phase from minimum/maximum-phase FIR filter
- Lattice allpass from Allpass filter
- Lattice ARMA from IIR filter
- State-Space model

The MATLAB function dfilt() can also be used to convert the filter structure. For
example,

>>B=firls(30,[0 .5 .6 1],[0 0 1 1]); Gd1=dfilt.dffir(B); %direct-form FIR
>>[B,A]=butter(7,0.2); Gd2=dfilt.df2tsos(tf2sos(B,A)); %direct IIt-SOS IIR
>>Gd par=dfilt.parallel(Gd1,Gd2); %parallel structure of two or more objects
>>realizemdl(Gd par) % To create Simulink model
>>fvtool(Gd1,Gd2,Gd par) % To analyze filter

7.2.4 Importing/Exporting a Filter Design

In the FDATool window (Fig. 7.24), we can click the Import Filter button in the side
bar to open the Import Filter panel (Fig. 7.25) and import a filter in any of the repre-
sentations in the Filter Structure or a SOS by clicking on the check box. In the fields
of Numerator and Denominator, type the filter coefficient vectors explicitly or the
names of the variables whose values are in the MATLAB workspace. Then select
the frequency unit from the options in the Units menu and if the selected frequency
unit is not ‘Normalized’, specify the value or MATLAB workspace variable of the
sampling frequency in the Fs field. Lastly click the Import Filter button at the bottom
of the Import Filter panel to import the filter that you have specified. You can edit
the imported filter using the Pole/Zero Editor panel in which you can move poles,
add, or delete poles/zeros.

On the other hand, we can select the File/Export menu in the FDATool window
to open the Export dialog box (Fig. 7.26) and save your filter design result by

- exporting the filter coefficients or objects to the workspace, a MAT-file, or a C
header file,

- exporting the filter coefficients to an ASCII file,
- or exporting to SPTool or Simulink.

(cf) FDATool GUI is opened through the Digital Filter Design block in the Signal
Processing Blockset.

7.2 Digital Filter Design 349

Fig. 7.24 FDA Tool window and its menu

350 7 Analog and Digital Filters

Fig. 7.25 Import Filter panel opened by clicking the Import Filter button in the side bar

Fig. 7.26 Exporting a filter design result

7.3 How to Use SPTool

SPTool is an interactive GUI for digital signal processing that can be used to

- Analyze signals (Signal Browser)
- Design filters (FDATool: Filter Design & Analysis Tool)
- Analyze (view) filters (FVTool: Filter Visualization Tool)
- Filter signals
- Analyze signal spectra (Spectrum Viewer)

Signals, filters, and spectra can be brought from the MATLAB workspace into the
SPTool workspace using File/Import. Signals, filters, and spectra created/modified
in or imported into the SPTool workspace can be saved (as MATLAB structures)
using File/Export.

Figure 7.27(a) shows the SPTool window opened by typing ‘sptool’ into the
MATLAB command window where you can access the three GUIs, i.e., Signal

7.3 How to Use SPTool 351

Fig. 7.27 SPTool window, Signal Browser window, and Spectrum Viewer window

352 7 Analog and Digital Filters

Browser (Fig. 7.27(b)), Filter Visualization Tool (Fig. 7.20(a)), and Spectrum Viewer
(Fig. 7.27(c)) by selecting a signal, filter, or spectrum and clicking the appropriate
View button. Note that if you start FVTool by clicking the SPTool Filter View button,
FVTool is linked to SPTool so that any changes made in SPTool are immediately
reflected in FVTool where the FVTool title bar includes “SPTool” to indicate the
link. (Every time you click the Filter View button, a new, linked FVTool starts,
which allows you to view multiple analyses simultaneously. Any parameter except
the sampling frequency can be changed in a linked FVTool. The sampling frequency
can be changed through the Sampling Frequency dialog box opened by selecting the
Edit/Sampling Frequency menu in the SPTool window or by selecting the Analy-
sis/Sampling Frequency menu in the FDATool window, which will be opened by
clicking the Filters/Edit button.) If you start an FVTool by clicking the New button
or by selecting File/New from within FVTool, that FVTool is a stand-alone version
that is not linked to SPTool. You can also access a reduced version of FDATool
(Fig. 7.24(a)) by clicking the New button to create a new filter or the Edit button to
edit a selected filter. You can apply a selected filter to a selected signal by clicking
the Apply button. Clicking the Create button opens the Spectrum Viewer and shows
the PSD (power spectral density) of the selected signal. Clicking the Update button
opens the Spectrum Viewer for the selected spectrum.

Let us try using the SPTool in the following steps:

1. Create a noisy two-tone signal in the MATLAB workspace and import it into
SPTool.

2. Design a BPF using FDATool.
3. Apply the designed filter to the signal to create a bandlimited noisy signal.
4. Analyze the input and output signals. For example, you can compare the original

and filtered signals in the time domain using the Signal Browser.
5. Compare the original and filtered signals in the frequency domain using the

Spectrum Viewer.
6. Save the filter design and signal analysis results by exporting to disk (MAT-file)

or workspace.

<Step 1: Creating a noisy signal in the MATLAB workspace and importing it
into SPTool>
You can type the following statements into the MATLAB command window:

>>Fs=1e4; Ts=1/Fs; tt=[0:Ts:0.5]; randn(’state’,0);
>>x=sin(2*pi*941*tt)+cos(2*pi*1209*tt)+0.1*randn(size(tt));
>>sptool % Open a SPTool window to start a new SPTool session

Then in the SPTool window, select the File/Import menu to open the Import-
to-SPTool dialog box in which you can import x and Fs into the SPTool in
the following way (see Fig. 7.28(a)):

- Select x from the Workspace Contents list, click the upper Right-Arrow
button, and name the signal by typing, say, ‘sig1’ (default name) in the
Name field to import x as a signal data.

7.3 How to Use SPTool 353

Fig. 7.28 Importing signal, designing filter, applying designed filter, and editing sampling
frequency

354 7 Analog and Digital Filters

- Select Fs from the workspace contents list and click the lower Right-
Arrow button to import Fs as the sampling frequency.

- Click the OK button to close the Import-to-SPTool dialog box. Then you
will see sig1[vector] in the SPTool’s Signals list (see Fig. 7.29(a)).

(cf) You can also import signals from MAT-files on your disk.
(cf) You can import filters and spectra into SPTool in the same way as you

import signals.

<Step 2: Using FDATool to design a BPF>

You might import an existing filter or design/edit a new filter using FDATool.
Here, click the New button to open FDATool, type the following specification
into the appropriate fields, and then click the Design Filter button to design a
filter named ‘filt1’ by default (Fig. 7.28(b)):
Sampling frequency: Fs = 10kHz, Stopband attenuation: As = 50dB, and
Passband ripple: Rp = 3dB

Passband edge frequencies: f p1 = 1.1 kHz, f p2 = 1.8 kHz
Stopband edge frequencies: fs1 = 1 kHz, fs2 = 2kHz

<Step 3: Applying the designed filter to the signal to create a bandlimited
signal>

- Select the signal ‘sig1[vector]’ from the Signals list by clicking on it
(Fig. 7.27(a)).

- Select the filter ‘filt1[design]’ from the Filters list by clicking on it.
- Click the Apply button under the Filters list to open the Apply Filter dialog

box (Fig. 7.28(c)), in which you can select the filtering algorithm, name
the output signal, say, ‘sig2’, and click OK to close the dialog box. Then
you will see sig2[vector] in the SPTool’s Signals list.

(cf) If you see a warning message that the sampling frequencies for the sig-
nal and filter are different, select the Edit/Sampling Frequency menu to
make them equal and then apply the filter to the signal
(Fig. 7.28(d)).

<Step 4: Comparing the original and filtered signals in the time domain in
Signal Browser>

- Select the signals ‘sig1’ and ‘sig2’ from the Signals list by (Shift/Ctrl+)
clicking on them.

- Click the View button under the Signals list to open the Signal Browser
window and see the two signals in the time domain.

- If needed or desired, you can click the Select Trace button to select one of
the displayed signals and then click the Line Properties button to change
the color and/or line style to display the selected signal.

7.3 How to Use SPTool 355

- You can also click the Play Selected Signal button to play the selected sig-
nal. You can click the Vertical Markers button to use the vertical Markers
to select a portion of the signal you want to play. If you want to print the
signals (or their spectra), click the Print button.

<Step 5: Compare the original and filtered signals in the frequency domain in
Spectrum Viewer>

- In the SPTool window (Fig. 7.29(a)), select the signal ‘sig1[vector]’ from
the Signals list by clicking on it.

- Click the Create button under the Spectra list to create a PSD ‘spect1’
corresponding to the selected signal ‘sig1’ and open the Spectrum Viewer
window (Fig. 7.29(b1)). Note that the PSD is not yet computed and
displayed.

- Through the Parameters region, set the parameters such as the spectral
analysis method (Welch), FFT size (Nfft = 1024), window size (Nwind =
1024), Window type (hanning), and Overlap length (512).

- Click the Apply button in the Spectrum Viewer window to compute and
display the PSD spect1.

- Follow the above three steps for the filter output signal ‘sig2’ to create
another PSD, say, spect2. In the Parameters region, you had better select
‘spect1’ from the PSD list in the Inherit from field (Fig. 7.29(b2)) so that
every spectral analysis parameter can be inherited from the existent PSD
‘spect1’.

- You can Shift + click on ‘spect1’ and ‘spect2’ in the Spectra list to select
them and click the View button under the Spectra list to reactivate the
Spectrum Viewer and display the two spectra together.

- You can export the signals, filters, and spectra through the Export from
SPTool dialog box opened by selecting the File/Export menu.

<Step 6: Save the filter design and signal analysis results>
You can save the designed filter(s) and signal analysis result(s) by exporting
on your disk (as a MAT-file) or the MATLAB workspace in the follow-
ing way:

- In the SPTool window, select the File/Export menu to open the Export
from SPTool dialog box in which you can select the signals, filters,
and spectra you want to save from the Export list and save them on
your disk (as a MAT-file) or the MATLAB workspace by clicking the
Export to Disk or Export to workspace button, respectively (see Fig. 7.30).

- If you have exported the filter structure ‘filt1’ into the workspace, you can
refer to its numerator and denominator as ‘filt1.tf.num’ and ‘filt1.tf.den’.

356 7 Analog and Digital Filters

Fig. 7.29 SPTool window and Spectrum Viewer window

Problems 357

Fig. 7.30 Export from SPTool dialog box

Problems

7.1 Design and Use of a Filter to Remove/Reduce a Noise from a Music Signal

(a) Using any recording software, create a wave file of sampling frequency
8kHz, duration 16 s, and any melody that you like in the name of, say,
“melody.wav”. Then take the following steps:

(1) Use the MATLAB command ‘wavread()’ to extract the signal vector
x and sampling frequency Fs from the wave file. Use ‘soundsc()’ to
listen to the melody signal. Use ‘fft()’ & ‘plot()’ to plot x together with
the magnitude of its DFT spectrum in dB.

(2) Add a noise of amplitude 0.5 and frequency 3.9kHz to the signal, listen
to the noise-contaminated signal xn, and plot xn together with its DFT
spectrum magnitude in dB.

(3) Design a Butterworth LPF with passband/stopband edge frequencies
of 3.6kHZ/3.9kHz and use the LPF to filter the noise-contaminated
signal to obtain a filtered signal xf. Then listen to the filtered signal xf
and plot xf together with the magnitude of its DFT spectrum in dB.

358 7 Analog and Digital Filters

%test filtering.m
clear, clf
[x,Fs]=wavread(’melody.wav’);
N=2ˆ17; x=x(end-N+1:end,1).’; % convert into row vector
soundsc(x,Fs);
Ts=1/Fs; t=(0:N-1)*Ts; nn=1:N/32; tt=t(nn); % time vector
subplot(4,2,1), plot(tt,x(nn)), axis([tt([1 end]) -2 2])
xlabel(’time[s]’), ylabel(’signal x[n]’)
X=fftshift(fft(x,N)); X mag=20*log10(abs([X X(1)]));
f=(-N/2:N/2)*(Fs/N); fkHz=f/1000; % frequency vector
subplot(4,2,2), plot(fkHz,X mag), axis([-5 5 -40 100])
xlabel(’f[kHz]’), ylabel(’20*log10|X(k)|[dB]’)
% Add a High Frequency Noise
omega=2*pi*3900*Ts; % convert 3.9 kHz into digital (DT) frequency
%omega=2*pi*5000*Ts; % convert 5 kHz into digital (DT) frequency
n=0:N-1; noise=0.5*cos(omega*n); xn = x + noise; soundsc(xn,Fs);
subplot(4,2,3), plot(tt,xn(nn)), axis([tt([1 end]) -3 3])
xlabel(’time[s]’), ylabel(’noise-contaminated signal xn[n]’)
Xn=fftshift(fft(xn,N)); Xn mag=20*log10(abs([Xn Xn(1)]));
subplot(4,2,4), plot(fkHz,Xn mag), axis([-5 5 -40 100])
xlabel(’f[kHz]’), ylabel(’20*log10|Xn(k)|[dB]’),
% Butterworth LPF Design
Rp=3; As=40; % Passband Ripple and Stopband Attenuation in dB
fp=3600*Ts*2; fs=3900*Ts*2; % passband/stopband edge frequency
[Nb,fcb]=buttord(fp,fs,Rp,As);
[Bb,Ab]=butter(Nb,fcb);
H=fftshift(freqz(Bb,Ab,N,’whole’)); H mag=20*log10(abs([H; H(1)]));
subplot(4,2,6), plot(fkHz,H mag), axis([-5 5 -100 5])
xlabel(’f[kHz]’), ylabel(’20*log10|H(k)|[dB]’),
% Filtering to remove the 10kHz noise
xf=filter(Bb,Ab,xn); soundsc(xf,Fs);
subplot(4,2,7), plot(tt,xf(nn)), axis([tt([1 end]) -2 2])
xlabel(’time[s]’), ylabel(’filetred signal xf[n]’)
Xf=fftshift(fft(xf,N)); Xf mag=20*log10(abs([Xf Xf(1)]));
subplot(4,2,8), plot(fkHz,Xf mag); axis([-5 5 -40 100])
xlabel(’f[kHz]’), ylabel(’20*log10|Xf(k)|[dB]’),

(b) Referring to Fig. P7.1, make a Simulink model file to perform the filtering
operation as done by the above MATLAB program “test filtering.m”. You
can relocate the To Wave Device block to listen to the original signal, the
noise-contaminated one, and the filtered one.

Problems 359

Fig. P7.1 Simulink block diagram for a signal filtering and the parameter setting dialog boxes for
spectrum scope block

Chapter 8
State Space Analysis of LTI Systems

Contents

8.1 State Space Description – State and Output Equations . 362
8.2 Solution of LTI State Equation . 364

8.2.1 State Transition Matrix . 364
8.2.2 Transformed Solution . 365
8.2.3 Recursive Solution . 368

8.3 Transfer Function and Characteristic Equation . 368
8.3.1 Transfer Function . 368
8.3.2 Characteristic Equation and Roots . 369

8.4 Discretization of Continuous-Time State Equation . 370
8.4.1 State Equation Without Time Delay . 370
8.4.2 State Equation with Time Delay . 374

8.5 Various State Space Description – Similarity Transformation . 376
8.6 Summary . 379

Problems . 379

In this chapter we will introduce the state space description of a system, which
consists of the state and output equations. It has several distinct features compared
with the transfer function approach:

- It allows us to deal with multi-input multi-output (MIMO) systems in a system-
atic way.

- It describes a system more completely than the transfer function does. It describes
not only the input-output relationship, but also what is happening under any ini-
tial condition, while the transfer function covers only systems with zero initial
condition.

- It can be applied to certain types of nonlinear and/or time-varying systems.
- It is not easy to determine the state equation through experiments, while the trans-

fer function of an LTI system can be measured by employing signal generators
and spectrum analyzer.

W.Y. Yang et al., Signals and Systems with MATLAB R©,
DOI 10.1007/978-3-540-92954-3 8, C© Springer-Verlag Berlin Heidelberg 2009

361

362 8 State Space Analysis of LTI Systems

8.1 State Space Description – State and Output Equations

In this section we introduce the state space description of an N th order LTI system,
which consists of a set of equations describing the relations among the input, output,
and state:

State equation: x′(t) = f (x(t), u(t), t)
(8.1.1a)

x[n+1] = f (x[n], u[n], n) (8.1.1b)

Output equation: y(t) = g(x(t), u(t), t)
(8.1.2a)

y[n] = g(x[n], u[n], n) (8.1.2b)

where

State vector: x(t) = [x1(t), · · · , xN (t)]T

Input vector: u(t) = [u1(t), · · · , uK (t)]T

Output vector: y(t) = [y1(t), · · · , yM (t)]T

x[n] = [x1[n], · · · , xN [n]]T

u[n] = [u1[n], · · · , uK [n]]T

y[n] = [y1[n], · · · , yM [n]]T

(cf.) Note that, in this chapter, the notation u(t)/u[n] denotes the general input
function, while the unit step function/sequence is denoted by us(t)/us[n].

Here, we have the definitions of the state and the state variable:

Definition 8.1 State, State Variables, and State Vector
The state of a system at time t0 is the amount of information at t0 that, together with
the input from t0, determines uniquely the behavior of the system for all t > t0. Note
that the ‘behavior’ means all the responses, including the state, of the system.

The state variables of a dynamic system are the variables forming the smallest set
of variables which determine the state of the system. The state vector is composed
of the state variables.

(Ex) For an RLC circuit driven by a source e(t), the inductor current iL (t) and
capacitor voltage vC (t) can form the state. The charge qC (t) and inductor cur-
rent iL (t) can also make the state. It is because {iL (t), vC (t)} or {qC (t), iL (t)}
can be determined for any t > t0 if the value of input e(t) is known for t > t0
together with the initial condition {iL (t0), vC (t0)} or {qC (t0), iL (t0)}.

(Ex) For a moving body, the set of the position x(t) and velocity x′(t) qualifies the
state of the mechanical system since the information about x(t0), x′(t0), and
u(t) (force) for t > t0 is necessary and sufficient for determining x(t) and x′(t)
for any time t > t0.

Especially, the state space descriptions of continuous-time/discrete-time LTI sys-
tems are

8.1 State Space Description – State and Output Equations 363

State equation: x′(t) = Ax(t) + Bu(t)

(8.1.3a)

x[n + 1] = Ax[n] + Bu[n] (8.1.3b)

Output equation: y(t) = Cx(t) + Du(t)

(8.1.4a)

y[n] = Cx[n] + Du[n] (8.1.4b)

In Sect. 1.3.4, we illustrated how a continuous-time/discrete-time state diagram
can be constructed for a given differential/difference equation. Once a state dia-
gram is constructed, the corresponding state equation can easily be obtained by the
following procedure:

1. Assign a state variable xi (t)/xi [n] to the output of each integrator s−1/delay
z−1.

2. Write an equation for the input x ′
i (t)/xi [n + 1] of each integrator/delay.

3. Write an equation for each system output in terms of state variables and
input(s).

Applying this procedure to the state diagrams in Figs. 1.19(a)/1.20(c) yields

[
x ′

1(t)

x ′
2(t)

]
=
[

0 1

−a0 −a1

][
x1(t)

x2(t)

]
+
[

0

1

]
u(t)

(8.1.5a)

y(t) =
[
b0 b1

] [x1(t)

x2(t)

]
(8.1.6a)

[
x1[n + 1]

x2[n + 1]

]
=
[

0 1

−a0 −a1

][
x1[n]

x2[n]

]
+
[

0

1

]
u[n]

(8.1.5b)

y[n] =
[
b0 b1

] [x1[n]

x2[n]

]
(8.1.6b)

which is referred to as the controllable canonical form. Also, for Figs. 1.19(b)/1.20(d),
we obtain

[
x ′

1(t)

x ′
2(t)

]
=
[

0 −a0

1 −a1

][
x1(t)

x2(t)

]
+
[

b0

b1

]
u(t) (8.1.7a)

y(t) =
[
0 1

] [x1(t)

x2(t)

]
(8.1.8a)

[
x1[n + 1]

x2[n + 1]

]
=
[

0 −a0

1 −a1

][
x1[n]

x2[n]

]
+
[

b0

b1

]
u[n]

(8.1.7b)

y[n] =
[
0 1

] [x1[n]

x2[n]

]
(8.1.8b)

which is referred to as the observable canonical form.

(cf.) Note that the controllable and observable canonical forms of state/output
equations are convenient for designing a controller and an observer, respec-
tively. [F-1]

364 8 State Space Analysis of LTI Systems

8.2 Solution of LTI State Equation

8.2.1 State Transition Matrix

For later use, we will define the continuous-time/discrete-time LTI state transition
matrices and examine their properties.

Definition 8.2 LTI State Transition Matrix – Fundamental Matrix
For an LTI system described by the state equations (8.1.3a)/(8.1.3b), the LTI state
transition matrix or fundamental matrix φ(t)/φ[n] is an N × N matrix, which is
multiplied with the initial state x(0)/x[0] to make the state x(t)/x[n] at any time
t/n ≥ 0 as

x(t) = φ(t)x(0) x[n] = φ[n]x[0]

and satisfies the homogeneous state equation with zero input

x′(t) = Ax(t)

; φ′(t)x(0) = Aφ(t)x(0)

; φ′(t) = Aφ(t) (8.2.1a)

x[n + 1] = Ax[n]

; φ[n + 1]x[0] = Aφ[n]x[0]

; φ[n + 1] = Aφ[n] (8.2.1b)

where the initial condition is φ(0)/φ[0] = I (an N × N identity matrix).

To find φ(t), we make use of Tables A.2(5)/B.7(2) (with n1 = 1) to take the
(unilateral) Laplace/z -transform of both sides of Eqs. (8.2.1a)/(8.2.1b) as

sΦ(s) − φ(0) = AΦ(s) zΦ[z] − zφ[0] = AΦ[z]

and solve this for Φ(s)/Φ[z] as

Φ(s) = [s I − A]−1φ(0) = [s I − A]−1

= [I − As−1]−1s−1

= I s−1 + As−2 + A2s−3 + · · ·

Φ[z] = [z I − A]−1zφ[0] = [z I − A]−1z

= [I − z−1 A]−1

= I + Az−1 + A2z−2 + · · ·

Now we use Table A.1(4)/Eq. (4.1.1) to take the inverse transform of Φ(s)/Φ[z]
to get

φ(t) = L−1{Φ(s)} = L−1{[s I − A]−1}

= I + At + A2

2!
t2 + · · · = eAt

(8.2.2a)

φ[n] = Z−1{Φ[z]} = Z−1{[z I − A]−1z}
= An (8.2.2b)

which is the continuous-time/discrete-time LTI state transition or fundamental
matrix. This result can be verified by substituting Eqs. (8.2.2a)/(8.2.2b) into
Eqs. (8.2.1a)/(8.2.1b), respectively.

8.2 Solution of LTI State Equation 365

The LTI state transition matrices possess the following properties:
<Properties of the LTI state transition matrix>

1) φ(t1)φ(t2) = φ(t1 + t2) ∀ t1, t2
2) φ(−t) = φ−1(t); φ(0) = I
3) φ(t) = eAt is nonsingular ∀ t < ∞

1) φ[n1]φ[n2] = φ[n1 + n2] ∀ n1, n2

2) φ[−n] = φ−1[n]; φ[0] = I if φ[n]
is nonsingular.

8.2.2 Transformed Solution

To solve the LTI state equations (8.1.3a)/(8.1.3b), we make use of Tables A.2(5)/
B.7(2) (with n1 = 1) to take the (unilateral) Laplace/z -transform of both sides
and write

s X (s) − x(0) = AX (s) + BU (s)

; [s I − A]X (s) = x(0) + BU (s)

zX [z] − zx[0] = AX [z] + BU [z]

; [z I − A]X [z] = zx[0] + BU [z]

which can be solved for X (s)/X [z] as

X (s) = [s I − A]−1x(0)

+[s I − A]−1 BU (s) (8.2.3a)

X [z] = [z I − A]−1zx[0]

+[z I − A]−1 BU [z] (8.2.3b)

Now, we will find the inverse transform of this transformed solution:

x(t) = L−1{[s I − A]−1}x(0)

+ L−1{[s I − A]−1 BU (s)}
(8.2.4a)

x[n] = Z−1{[z I − A]−1z}x[0]

+ Z−1{[z I − A]−1 BU [z]}
(8.2.4b)

We can use Eq. (8.2.2), the convolution property, and the causality assumption
to write

L−1{[s I − A]−1} (8.2.2a)= eAt (8.2.5a) Z−1{[z I − A]−1z} (8.2.2b)= An (8.2.5b)

L−1{[s I − A]−1 BU (s)}
B.7(4)= L−1{[s I − A]−1} ∗ L−1{BU (s)}

(8.2.5a)= eAt ∗ Bu(t)

(A.17)=
∫ t

0
eA(t−τ) Bu(τ)dτ (8.2.6a)

Z−1{[z I − A]−1 BU [z]}
B.7(4)= Z−1{[z I − A]−1} ∗ Z−1{BU [z]}

(8.2.5b)= An−1 ∗ Bu[n]

=
∑n−1

m=0
An−1−m Bu[m] (8.2.6b)

Substituting Eqs. (8.2.5) and (8.2.6) into Eq. (8.2.4) yields the solution of the LTI
state equation as

366 8 State Space Analysis of LTI Systems

x(t) = eAt x(0) +
∫ t

0
eA(t−τ) Bu(τ)dτ

= φ(t)x(0) +
∫ t

0
φ(t − τ)Bu(τ)dτ

(8.2.7a)

x[n] =Anx[0] +
∑n−1

m=0
An−1−m Bu[m]

= φ[n]x[0]+∑n−1

m=0
φ[n − 1 − m]Bu[m]

(8.2.7b)

which is referred to as the state transition equation. Note that, if the initial time is
t0/n0, then we will have

x(t) = eA(t−t0)x(t0) +
∫ t

t0

eA(t−τ) Bu(τ)dτ

= φ(t − t0)x(t0) +
∫ t

t0

φ(t − τ)Bu(τ)dτ

(8.2.8a)

x[n] =An−n0 x[n0] +
∑n−1

m=n0
An−1−m Bu[m]

= φ[n − n0]x[n0]+∑n−1

m=n0
φ[n − 1 − m]Bu[m]

(8.2.8b)

Example 8.1 Solving a State Equation

(a) Consider a continuous-time LTI system described by the following differential
equation:

y′′(t) + y′(t) = u(t) (E8.1.1)

Applying the procedure illustrated in Sects. 1.3.4 and 8.1, we can write the state
equation as

[
x ′

1(t)
x ′

2(t)

]
(8.1.5a)=

a0=0,a1=1

[
0 1
0 −1

] [
x1(t)
x2(t)

]
+
[

0
1

]
u(t) (E8.1.2)

y(t)
(8.1.6a)=

b0=1,b1=0

[
1 0

] [x1(t)
x2(t)

]
(E8.1.3)

where

A =
[

0 1
0 −1

]
, B =

[
0
1

]
, C = [

1 0
]
, D = 0

Thus we have

[s I − A]−1 =
[[

s 0
0 s

]
−
[

0 1
0 −1

]]−1

=
[

s − 1
0 s + 1

]−1

= 1

s(s + 1)

[
s + 1 1

0 s

]

=
[

s−1 s−1 − (s + 1)−1

0 (s + 1)−1

]
(E8.1.4)

8.2 Solution of LTI State Equation 367

so that the state transition matrix is

φ(t)
(8.2.2a)= L−1{[s I − A]−1} (E8.1.4)=

B.8(3),(6)

[
1 1 − e−t

0 e−t

]
for t ≥ 0 (E8.1.5)

Therefore, from Eq. (8.2.7a), we can write the solution of the state equation as

[
x1(t)
x2(t)

]
(8.2.7a)=
(E8.1.5)

[
1 1 − e−t

0 e−t

] [
x1(0)
x2(0)

]
+
∫ t

0

[
1 − e−(t−τ)

e−(t−τ)

]
u(τ)dτ for t ≥ 0

(E8.1.6)
(b) Consider a discrete-time LTI system described by the following state equation:

[
x1[n + 1]
x2[n + 1]

]
=
[

1 1 − e−T

0 e−T

] [
x1[n]
x2[n]

]
+
[

T − 1 + e−T

1 − e−T

]
u[n] (E8.1.7)

y[n] = [
1 0

] [x1[n]
x2[n]

]
(E8.1.8)

where

A =
[

1 1 − e−T

0 e−T

]
, B =

[
T − 1 + e−T

1 − e−T

]
, C = [

1 0
]
, D = 0

For this system, we have

[z I − A]−1z =
[[

z 0
0 z

]
−
[

1 1 − e−T

0 e−T

]]−1

z =
[

z − 1 −1 + e−T

0 z − e−T

]−1

z

= z

(z − 1)(z − e−T)

[
z − e−T 1 − e−T

0 z − 1

]

=
[

z
z−1

(1−e−T)z
(z−1)(z−e−T)

0 z
z−e−T

]
=
[

z
z−1

z
z−1 − z

z−e−T

0 z
z−e−T

]
(E8.1.9)

so that the state transition matrix is

φ[n]
(8.2.2b)= Z−1{[z I − A]−1z} (E8.1.9)=

B.8(3),(6)

[
1 1 − e−nT

0 e−nT

]
for n ≥ 0 (E8.1.10)

as would be obtained from φ[n]
(8.2.2b)= An . Therefore, from Eq. (8.2.7b), we can

write the solution of the state equation as

[
x1[n]
x2[n]

]
(8.2.7b)=

(E8.1.10)

[
1 1 − e−nT

0 e−nT

] [
x1[0]
x2[0]

]
+

n−1∑
m=0

[
T − (1 − e−T)e−(n−1−m)T

(1 − e−T)e−(n−1−m)T

]
u[m]

for n ≥ 0 (E8.1.11)

368 8 State Space Analysis of LTI Systems

8.2.3 Recursive Solution

The discrete-time state equation has a recursive form and therefore is well-suited
for a digital computer, which can be programmed to perform the following compu-
tation:

x[1] = Ax[0] + Bu[0]

x[2] = Ax[1] + Bu[1] = A2x[0] + ABu[0] + Bu[1]

x[3] = Ax[2] + Bu[2] = A3x[0] + A2 Bu[0] + ABu[1] + Bu[2] (8.2.9)

. ..

x[n] = Anx[0] +
∑n−1

m=0
An−1−m Bu[m]

If the continuous-time state equation is somehow discretized, it can be solved
recursively, too.

8.3 Transfer Function and Characteristic Equation

8.3.1 Transfer Function

Using the transformed solution (8.2.3) of the state equation, we can write the
transform of the output equation (8.1.4) with zero initial condition as

Y (s) = C X (s) + DU (s)
(8.2.3a)=
x(t)=0

C[s I − A]−1 BU (s) + DU (s)

(8.3.1a)

Y [z] = C X [z] + DU [z]
(8.2.3b)=
x[n]=0

C[z I − A]−1 BU [z] + DU [z]

(8.3.1b)

Thus the transfer function matrix describing the input-output relationship turns out
to be

G(s) = C[s I − A]−1 B + D (8.3.2a) G[z] = C[z I − A]−1 B + D (8.3.2b)

Taking the inverse transform of this transfer function matrix yields the impulse
response matrix:

g(t) = Cφ(t)B + Dδ(t) (8.3.3a) g[n] = Cφ[n − 1]B + Dδ[n] (8.3.3b)

8.3 Transfer Function and Characteristic Equation 369

8.3.2 Characteristic Equation and Roots

Note that the transfer function matrix (8.3.2) can be written as

G(s) = C
Adj [s I − A]

|s I − A| B + D (8.3.4a) G[z] = C
Adj [z I − A]

|z I − A| B + D (8.3.4b)

where Adj[s I − A] denotes the adjoint, i.e., the transpose of the cofactor matrix.
The characteristic equation of an LTI system is obtained by equating the denom-

inator of the transfer function to zero:

|s I − A| = 0 (8.3.5a) |z I − A| = 0 (8.3.5a)

Therefore, the roots of the characteristic equation are the eigenvalues of the matrix A
and are often called the characteristic roots of the system. The physical implication
of a characteristic root s0/z0 is that there will appear such terms as K es0t/K (z0)n in
the natural response of the system.

(cf.) The natural response means the output stemming from the initial condition,
while the forced response means the output caused by the input.

Example 8.2 Transfer Function

(a) For the continuous-time LTI system described by Eq. (E8.1.2) in Example 8.1(a),
we can use Eq. (8.3.2a) to find the transfer function

G(s)
(8.3.2a)= C[s I − A]−1 B + D = [1 0]

[
s −1
0 s + 1

]−1 [
0
1

]

= [1 0]

s(s + 1)

[
s + 1 1

0 s

] [
0
1

]
= 1

s(s + 1)
(E8.2.1)

This could be obtained directly by taking the transform of the differential equa-
tion (E8.1.1). We can equate the denominator of this transfer function with zero
to write the characteristic equation

|s I − A| = s(s + 1) = 0 (E8.2.2)

which has the roots s = 0 and s = −1 as the eigenvalues.
(b) For the discrete-time LTI system described by Eq. (E8.1.7) in Example 8.1(b),

we can use Eq. (8.3.2b) to find the transfer function

370 8 State Space Analysis of LTI Systems

G[z]
(8.3.2b)= C[z I − A]−1 B + D = [1 0]

[
z−1 −1 + e−T

0 z − e−T

]−1 [
T − 1 + e−T

1 − e−T

]

= [1 0]

(z − 1)(z − e−T)

[
z − e−T 1 − e−T

0 z − 1

] [
T − 1 + e−T

1 − e−T

]

= (T − 1 + e−T)z + 1 − e−T − T e−T

(z − 1)(z − e−T)
(E8.2.3)

We can equate the denominator with zero to write the characteristic equation

|z I − A| = (z − 1)(z − e−T) = 0 (E8.2.4)

which has the roots z = 1 and z = e−T as the eigenvalues.

8.4 Discretization of Continuous-Time State Equation

In Chap. 6, we studied various discretzation methods that can be used for converting
a given s -transfer function or a differential equation into an ‘equivalent’ z -transfer
function or a difference equation. In this section, we will develop a technique to
discretize a continuous-time state equation into an ‘equivalent’ discrete-time state
equation.

8.4.1 State Equation Without Time Delay

Let us consider a continuous-time state equation

x′(t) = Ax(t) + Bu(t) (8.4.1)

y(t) = Cx(t) + Du(t) (8.4.2)

As shown in Sect. 8.2.2, the solution to these equations is given by Eq. (8.2.8a):

x(t) = φ(t − t0)x(t0) +
∫ t

t0

φ(t − τ)Bu(τ)dτ (8.4.3)

To obtain an ‘equivalent’ discrete-time state equation, we write the state transition
equation for an interval of sampling period T from t0 = nT to t = (n + 1)T :

x((n + 1)T) = φ(T)x(nT) +
∫ (n+1)T

nT
φ(nT + T − τ)Bu(τ)dτ (8.4.4)

Assuming that the input is constant during each sampling interval, i.e., u(t) =
u(nT) = u[n] for nT ≤ t < (n + 1)T , we can rewrite this equation as

8.4 Discretization of Continuous-Time State Equation 371

x[n + 1] = φ(T)x[n] +
∫ (n+1)T

nT
φ(nT + T − τ)dτ Bu[n]

; x[n + 1] = ADx[n] + BDu[n] (8.4.5)

where we have let x(nT) = x[n], u(nT) = u[n], and

AD = φ(T) = eAT (8.4.6a)

BD =
∫ (n+1)T

nT
φ(nT + T − τ)dτ B

nT +T −τ→σ= −
∫ 0

T
φ(σ)dσ B =

∫ T

0
φ(τ)dτ B

(8.4.6b)

We can get the discrete-time system matrices AD and BD by substituting the state
transition matrix (8.2.2a) into these Eqs. (8.4.6a) and (8.4.6b), which is cumbersome
in general. As an alternative, it may be better to use a digital computer for evaluating
them in the following way [F-1]:

AD
(8.4.6a)= eAT (D.25)=

∞∑
m=0

Am T m

m!
= I + AT

∞∑
m=0

Am T m

(m + 1)!
= I + AT Ψ (8.4.7a)

BD =
∫ T

0

∑∞
m=0

Amτm

m!
dτ B =

∑∞
m=0

Am T m+1

(m + 1)!
B = ΨT B (8.4.7b)

with

Ψ =
∞∑

m=0

Am T m

(m + 1)!
� I+ AT

2

(
I + AT

3

(
I + · · ·

(
I + AT

N − 1

(
I + AT

N

))
· · ·

))
(8.4.8)

Here, the infinite number of summations in Eq. (8.4.8) is truncated to some finite
number N , which will be chosen in consideration of the desired accuracy and
computation time.

Example 8.3 Discretization of a Continuous-Time State Equation

Consider a continuous-time LTI system described by Eqs. (E8.1.2) and (E8.1.3)
in Example 8.1(a), where the state transition matrix is given by Eq. (E8.1.5) as

φ(t)
(8.2.2a)= L−1{[s I − A]−1} (E8.1.5)=

[
1 1 − e−t

0 e−t

]
for t ≥ 0 (E8.3.1)

372 8 State Space Analysis of LTI Systems

(a) Find the discretized state equation.
We can use Eqs. (8.4.6a) and (8.4.6b) to get

AD
(8.4.6a)= φ(T) =

[
1 1 − e−T

0 e−T

]
(E8.3.2)

BD
(8.4.6b)=

∫ T

0
φ(τ)dτ B =

[
τ τ + e−τ

0 −e−τ

]∣∣∣∣
T

0

[
0
1

]
=
[

T T + e−T − 1
0 −e−T + 1

] [
0
1

]

=
[

T + e−T − 1
1 − e−T

]
(E8.3.3)

so that the discretized state equation can be obtained as

[
x1[n + 1]
x2[n + 1]

]
(8.4.5)=

[
1 1 − e−T

0 e−T

] [
x1[n]
x2[n]

]
+
[

T + e−T − 1
1 − e−T

]
u[n] (E8.3.4)

%sig08e03.m
clear, clf
syms s z
Ns=1; Ds=[1 1 0]; Gs=tf(Ns,Ds); % Analog transfer function
[A,B,C,D]=tf2ss(Ns,Ds) % Transfer function to state equation
N=size(A,2); % the dimension of the system
% The numerator/denominator of transfer function (8.3.2a)
[Ns,Ds]=ss2tf(A,B,C,D)
Gs1= C*(s*eye(N)-A)ˆ-1*B + D; pretty(Gs1) % Eq.(8.3.2a)
T=0.1; NT=101; t=[0:NT-1]*T;
% To find the response to step input applied to the 1st input terminal
[y,x,tt]=step(A,B,C,D,1,t);
syms s t %for symbolic solution of the state eq.
A=[0 1;0 -1]; B=[0 1]’; % Eq.(E8.1.2)
x0=[0 0]’; % zero initial condition
% Laplace transform solution
Xs=(s*eye(N)-A)ˆ-1*(x0+B/s) % Eq.(8.2.3a)
% Inverse Laplace transform
for n=1:N, xt(n)=ilaplace(Xs(n)), end
for n=1:length(tt)

t=tt(n); y1(n)=eval(xt(1)); % Eq.(E8.1.3) with C=[1 0]
end
% To solve the differential equation directly
x=dsolve(’Dx1=x2,Dx2=-x2+1’,’x1(0)=0,x2(0)=0’); % Eq.(E8.1.2)
t=tt; y2= eval(x.x1); % Eq.(E8.1.3) with C=[1 0]
plot(tt,y,’k’, tt,y1,’b’, tt,y2,’r’)
% Discretization
A=[0 1;0 -1]; B=[0 1]’; C=[1 0]; D=0; % Eq.(E8.1.2)
[Ad,Bd,Cd,Dd]=c2dm(A,B,C,D,T,’zoh’) % Discretized state equation
[Ad1,Bd1]=c2d steq(A,B,T) % Eq.(8.4.7a,b)
e T=exp(-T); Ad2=[1 1-e T; 0 e T], Bd2=[T+e T-1; 1-e T] % Eq.(E8.3.4)
% The numerator/denominator of transfer function (8.3.2b)
[Nz,Dz]=ss2tf(Ad,Bd,Cd,Dd) % Eq.(8.3.2b) to (E8.2.3) or (E8.3.5)
Nz1=[T-1+e T 1-e T-T*e T], Dz1=[1 -1-e T e T]
%Gz1= Cd*(z*eye(N)-Ad)ˆ-1*Bd + Dd, pretty(Gz1)
% The z.o.h. equivalent of the analog transfer function

8.4 Discretization of Continuous-Time State Equation 373

Gz zoh=c2d(Gs,T,’zoh’);
[Bd zoh,Ad zoh]=tfdata(Gz zoh,’v’) % Eq.(E8.3.7)
% To find the response to step input applied to the 1st input terminal
yd=dstep(Ad,Bd,Cd,Dd,1,NT);
hold on, stairs(tt,yd)

function [Ad,Bd]=c2d steq(A,B,T,N)
if nargin<4, N=100; end
I= eye(size(A,2)); PSI= I;
for m=N:-1:1, PSI= I +A*PSI*T/(m+1); end % Eq.(8.4.8)
Ad= I +A*T*PSI; Bd= PSI*T*B; % Eq.(8.4.7a,b)

Note that this is identical to Eq. (E8.1.7) in Example 8.1(b) and the trans-
fer function of the system was computed via Eq. (8.3.2b) as Eq. (E8.2.3) in
Example 8.2:

G D[z] = (T − 1 + e−T)z + 1 − e−T − T e−T

(z − 1)(z − e−T)
(E8.3.5)

(b) Find the transfer function for the z.o.h. (step-invariant) equivalent of the continuous-
time system.
Noting from Eq. (E8.2.1) that the transfer function of the continuous-time
system is

G(s)
(E8.2.1)= 1

s(s + 1)
, (E8.3.6)

we can use Eq. (6.2.5) to get

Gstep[z]
(6.2.5)= (1 − z−1)Z

{
L−1

{
1

s
G(s)

}∣∣∣∣
t=nT

}
(E8.3.6)= z − 1

z
Z
{
L−1

{
1

s2(s + 1)

}}
PFE= z − 1

z
Z
{
L−1

{
1

s2
+ −1

s
+ 1

s + 1

}}
B.8(3),(4)&(6)= z − 1

z

(
T z

(z − 1)2
− z

z − 1
+ z

z − e−T

)
= T

z − 1
− 1 + z − 1

z − e−T

= (T − 1 + e−T)z + 1 − e−T − T e−T

(z − 1)(z − e−T)
(E8.3.7)

This is the same as the transfer function of the system described by the dis-
cretized state equation (E8.3.4) and output equation (E8.1.8). It is because we
have assumed that the input is constant during each sampling period in dis-
cretizing the state equation as if a S/H (sampler and zero-order-hold) device
were installed at the input stage.
Interested readers are invited to run the above program “sig08e03.m”, check the
validity of the above results, and see how the MATLAB commands can be used
to discretize a continuous-time state equation.

374 8 State Space Analysis of LTI Systems

Remark 8.1 Discretized State Equation and Zero-Order-Hold Equivalent
The z.o.h. (step-invariant) equivalent of a continuous-time system has the same

transfer function with the discrete-time system obtained by discretizing the state and
output equations.

Example 8.4 Discretization of a Double Integrator
Consider the continuous-time LTI system described by the state and output

equations as

[
x ′

1(t)
x ′

2(t)

]
=
[

0 1
0 0

] [
x1(t)
x2(t)

]
+
[

0
1

]
u(t) (E8.4.1)

y(t) = [
1 0

] [x1(t)
x2(t)

]
(E8.4.2)

For this system, we have

[s I − A]−1 =
[[

s 0
0 s

]
−
[

0 1
0 0

]]−1

=
[

s −1
0 s

]−1

= 1

s2

[
s 1
0 s

]
=
[

s−1 s−2

0 s−1

]
(E8.4.3)

so that the state transition matrix is

φ(t)
(8.2.2a)= L−1{[s I − A]−1} (E8.4.3)=

B.8(3),(4)

[
1 t
0 1

]
for t ≥ 0 (E8.4.4)

Thus we can use Eqs. (8.4.6a) and (8.4.6b) to get the system and input coefficient
matrices for the discretized state equation as

AD
(8.4.6a)= φ(T) =

[
1 T
0 1

]
and BD

(8.4.6b)=
∫ T

0
φ(τ)dτ B =

∫ T

0

[
τ

1

]
dτ =

[
T 2/2

T

]
(E8.4.5)

8.4.2 State Equation with Time Delay

A continuous-time LTI system with the input u(t) delayed by d [s] can be described by

x′(t) = Ax(t) + Bu(t − d) (8.4.9)

There are two cases: (i) 0 < d ≤ T (ii) T < d = MT + d1 with 0 < d1 < T and
M ≥ 1.

<Case I> 0 ≤ d ≤ T
When the time delay d is not longer than the sampling period T , i.e.,
0 < d ≤ T , the second term of the RHS of Eqs. (8.4.4) or (8.4.5) becomes

8.4 Discretization of Continuous-Time State Equation 375

∫ (n+1)T

nT
φ(nT + T − τ)Bu(τ − d)dτ

=
∫ nT +d

nT
φ(nT + T − σ)dσ Bu(nT − T)

+
∫ nT +T

nT +d
φ(nT + T − σ)dσ Bu(nT) (8.4.10)

where the input signal u(t) is assumed to be constant over each sampling
interval. Thus Eq. (8.4.5) becomes

x[n + 1] = ADx[n] + BD1u[n − 1] + BD0u[n] (8.4.11)

where

AD
(8.4.6a)= φ(T) = eAT (8.4.12a)

BD1
(8.4.6b)=

∫ nT +d

nT
φ(nT + T − σ)dσ B

nT +T −σ→τ= −
∫ 0

d
φ(T − d + τ)dτ B = φ(T − d)

∫ d

0
φ(τ)dτ B

(8.4.12b)

BD0
(8.4.6b)=

∫ nT +T

nT +d
φ(nT + T − σ)dσ B

nT +T −σ→τ= −
∫ 0

T −d
φ(τ)dτ B =

∫ T −d

0
φ(τ)dτ B (8.4.12c)

This can be written in the form of state equation as

[
x[n + 1]

u[n]

]
=
[

AD BD1

O O

] [
x[n]

u[n − 1]

]
+
[

BD0

I

]
u[n] (8.4.13)

where K extra state variables u[n − 1] representing the past input values are
introduced to augment the state vector.

<Case II> T < d = MT + d1 with 0 < d1 < T and M ≥ 1
When the time delay d is longer than the sampling period T so that d =
MT + d1 with 0 < d1 < T and some integer M ≥ 1, Eq. (8.4.11) becomes

x[n + 1] = ADx[n] + BD1u[n − M − 1] + BD0u[n − M] (8.4.14)

where the matrices AD, BD1, and BD0 are as defined by Eqs. (8.4.12a,b,c).
This can be written in the form of state equation as

376 8 State Space Analysis of LTI Systems

⎡
⎢⎢⎢⎢⎢⎢⎣

x[n + 1]
u[n − M]

•
•

u[n − 1]
u[n]

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

AD BD1 BD0 O · · · O
O O I O · · · O
• • • • · · · •
• • • • · · · •
O O O O · · · I
O O O O · · · O

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x[n]
u[n − M − 1]

•
•

u[n − 2]
u[n − 1]

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

O
O
•
•
O
I

⎤
⎥⎥⎥⎥⎥⎥⎦

u[n]

(8.4.15)
where (M +1)K extra state variables {u[n −1], u[n −2], · · · , u[n − M −1]}
representing the past input values are introduced.

u(t)

u(t – d)

nT – T nT + TnT

nT – T

d

nT + TnT

t

t

Fig. 8.1 Delayed input signal by d

Example 8.5 Discretization of a Double Integrator with Time Delay
Consider the double integrator dealt with in Example 8.4, where the input is

delayed by d (0 < d < T). With the state transition matrix φ(t) given by
Eq. (E8.4.4), we use Eq. (8.4.12) to get the discrete-time system matrices as

AD = φ(T) =
[

1 T
0 1

]
(E8.5.1)

BD1 = φ(T − d)
∫ d

0
φ(τ)dτ B =

[
1 T − d
0 1

] [
d2/2

d

]
=
[

d(T − d/2)
d

]
(E8.5.2)

BD0 =
∫ T −d

0
φ(τ)dτ B =

[
τ 2/2

τ

]∣∣∣∣
T −d

0

=
[

(T − d)2/2
T − d

]
(E8.5.3)

8.5 Various State Space Description – Similarity Transformation

As can be seen in Sect. 1.3.4, we could construct many state diagrams for a given
transfer function and each of them can be represented by a state equation. This
implies that there is no unique state space model for a certain system.

8.5 Various State Space Description – Similarity Transformation 377

As a matter of fact, we can use similarity transformation to derive any number
of different state equations, all of which are equivalent in terms of the input-output
relationship. Consider the state and output equation of an LTI system as

State equation:

x′(t) = Ax(t) + Bu(t) (8.5.1a)

Output equation:

y(t) = Cx(t) + Du(t) (8.5.2a)

x[n + 1] = Ax[n] + Bu[n] (8.5.1b)

y[n] = Cx[n] + Du[n] (8.5.2b)

With a nonsingular transformation matrix P and a new state vector w(t)/w[n], we
substitute

x(t) = P w(t) (8.5.3a) x[n] = P w[n] (8.5.3b)

into Eqs. (8.5.1) and (8.5.2) to write

w′(t) = P−1 APw(t) + P−1 Bu(t)

y(t) = C Pw(t) + Du(t)

w[n + 1] = P−1 APw[n] + P−1 Bu[n]

y[n] = C Pw[n] + Du[n]

This can be written as another set of state and output equations:

w′(t) = Apw(t) + Bpu(t) (8.5.4a)

y(t) = C pw(t) + Dpu(t) (8.5.5a)

w[n +1] = Apw[n]+ Bpu[n] (8.5.4b)

y[n] = Cpw[n] + Dpu[n] (8.5.5b)

where

Ap = P−1 AP, Bp = P−1 B, C p = C P, and Dp = D (8.5.6)

Remark 8.2 Similarity Transformation – Equivalence Transformation

(1) Note that, with different nonsingular matrices P , we could obtain different set
of state and output equations as many as we want.

(2) Transfer function, characteristic equation, and eigenvalues are not changed
under similarity transformation:

|s I − Ap|=|s I −P−1 AP|=|P−1s I P−P−1 AP|=|P−1||s I − A||P|=|s I − A|
(8.5.7)

(3) The determinant/trace of Ap is the same as that of A, since the determinant/trace
of a matrix is equal to the product/sum of the eigenvalues. Especially if a system
has distinct characteristic values, we may derive a state equation with a diagonal
system matrix having the characteristic values on its diagonal, which is referred
to as the Jordan canonical or normal form.

378 8 State Space Analysis of LTI Systems

Suppose we have an N × N system matrix A with N distinct eigenvalues λi ’s for
i = 1 : N and the corresponding eigenvectors mi ’s. Then we can write

Ami = λi mi for i = 1, 2, · · · , N (8.5.8)

or in a more compact form,

A[m1 m2 · · · mN] = [m1 m2 · · · mN]

⎡
⎢⎢⎢⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
· · · · · ·
· · · · · ·
· · · · · ·
0 0 · · · λN

⎤
⎥⎥⎥⎥⎥⎥⎦

; AM = MΛ (8.5.9)

where M , called a modal matrix, is composed of the eigenvectors as columns, and
M−1 A M = Λ is a diagonal matrix with the eigenvalues on its diagonal. The
modal matrix M is nonsingular if the eigenvalues are distinct and consequently, the
eigenvectors are linearly independent. This implies that, with the similarity trans-
formation P = M , the resulting system matrix Ap will appear to be diagonal in the
new state equation.

Example 8.6 Diagonal/Jordan Canonical Form
Consider a system described by the following discrete-time state and output

equations:

[
x1[n + 1]
x2[n + 1]

]
=
[

1 3
0 2

] [
x1[n]
x2[n]

]
+
[

0
1

]
u[n] (E8.6.1)

y[n] = [
1 0

] [x1[n]
x2[n]

]
(E8.6.2)

We can get its eigenvalues and the corresponding eigenvectors as below:

|s I − A| = (s − 1)(s − 2) = 0; s1 = 1, s2 = 2

s1 = 1[
1 3
0 2

][
m11

m21

]
= 1

[
m11

m21

]
; m21 = 0, m11: arbitrary

s2 = 2[
1 3
0 2

][
m12

m22

]
= 2

[
m12

m22

]
; m22 : arbitrary, m12 = 3m22

Thus we have a modal matrix and its inverse as

M =
[

m11 m12

m21 m22

]
=
[

1 3
0 1

]
, M−1 =

[
1 −3
0 1

]
(E8.6.3)

Problems 379

Now, with the similarity transformation P = M , we use Eq. (8.5.6) to obtain another
set of state and output equations with

Ap = M−1 AM =
[

1 −3
0 1

] [
1 3
0 2

] [
1 3
0 1

]
=
[

1 −3
0 2

] [
1 3
0 1

]
=
[

1 0
0 2

]
: diagonal

(E8.6.4a)

Bp = M−1 B =
[

1 −3
0 1

] [
0
1

]
=
[−3

1

]
(E8.6.4b)

Cp = C M = [
1 0

] [1 3
0 1

]
= [

1 3
]

(E8.6.4c)

We can use the MATLAB function ‘jordan()’ to get a modal matrix and the
corresponding Jordan canonical form of state equation:

>>A=[1 3; 0 2]; [M,Ap]=jordan(A) % [M,L]=eig(A)
M = -3 3 Ap = 1 0

0 1 0 2
>>B=[0; 1]; C=[1 0]; Bp=M\B, Cp=C*M

Bp = 1 Cp = -3 3
1

8.6 Summary

In this chapter we have studied the state space description of LTI systems in the form
of the state and output equations. We have also defined the state transition matrix
and derived the solution of continuous-time/discrete-time LTI state equations. Then
we have discussed the techniques of discretizing the continuous-time state equations
and the similarity transformation.

Problems

8.1 Controllable/Observable Canonical Form of State Equations
Complete the controllable/observable form of state diagrams in Fig. P8.1 for a
system having the following transfer function:

G(s) = b2s2 + b1s + a0

s3 + a2s2 + a1s + a0
(P8.1.1)

and show that the corresponding state and output equations are

380 8 State Space Analysis of LTI Systems

y (t)
Y (s)

x3(t)

x2(t)

x1(t)

x1(t)

(a) Controllable canonical form (b) Observable canonical form
–a0

–a2b2

b1–a1

b0

x3(t)′

x3(t)′

x2(t)′

x1(t)′

x2(t)

x1(t)

x3(t)

x2(t)′

x1(t)′

u(t)
U(s)

s–1 s–1

s–1

s–1

s–1

s–1

u(t)
U(s)

y (t)
Y (s)

Fig. P8.1 Controllable/observable canonical state diagrams for the transfer function (P8.1.1)

⎡
⎣x ′

1(t)
x ′

2(t)
x ′

3(t)

⎤
⎦ =

⎡
⎣ 0 1 0

0 0 1
−a0 −a1 −a2

⎤
⎦
⎡
⎣x1(t)

x2(t)
x3(t)

⎤
⎦

+
⎡
⎣0

0
1

⎤
⎦ u(t) (P8.1.2a)

⎡
⎣x ′

1(t)
x ′

2(t)
x ′

3(t)

⎤
⎦ =

⎡
⎣0 0 −a0

1 0 −a1

0 1 −a2

⎤
⎦
⎡
⎣x1(t)

x2(t)
x3(t)

⎤
⎦

+
⎡
⎣b0

b1

b2

⎤
⎦ u(t) (P8.1.2b)

y(t) = [
b0 b1 b2

]⎡⎣x1(t)
x2(t)
x3(t)

⎤
⎦

(P8.1.3a)

y(t) = [
0 0 1

]⎡⎣x1(t)
x2(t)
x3(t)

⎤
⎦

(P8.1.3b)

8.2 Controllable/Observable Canonical Form of State Equations
Consider a system having the following transfer function:

G(s) = Y (s)

U (s)
= 4(s + 3)

2s2 + 6s + 4
(P8.2.1)

(a) Write the controllable/observable form of state and output equations and
find the state transition matrices.

(b) Show that the step response is

y(t) = (3 − 4e−t + e−2t)us(t) (P8.2.2)

8.3 State Transition Matrix
Find the state transition matrix φ(t) = eAt for a state equation having the
following system matrix:

A =
[
λ 1
0 λ

]
(P8.3.1)

Problems 381

8.4 State Diagram and State Equation

(a) Show that the state and output equations for the state diagram of Fig. 1.20(a)
are ⎡

⎢⎢⎣
x1[n + 1]
x2[n + 1]
x3[n + 1]
x4[n + 1]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
−a0 −a1 b0 b1

0 0 0 1
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1[n]
x2[n]
x3[n]
x4[n]

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ u[n] (P8.4.1)

y[n] = [−a0 −a1 b0 b1
]
⎡
⎢⎢⎣

x1[n]
x2[n]
x3[n]
x4[n]

⎤
⎥⎥⎦ (P8.4.2)

(b) Use Eq. (8.3.2b) to find the transfer function of the system described by the
above state equation.

8.5 Discretization of a Continuous-Time State Equation
Consider a system described by the following state and output equations:

[
x ′

1(t)
x ′

2(t)

]
=
[

0 1
0 −2

] [
x1(t)
x2(t)

]
+
[

0
1

]
u(t) (P8.5.1)

y(t) = [
1 0

] [x1(t)
x2(t)

]
(P8.5.2)

(a) Use Eq. (8.3.2a) to find the transfer function G(s) of this continuous-time
system.

(b) Discretize the above state equation and then use Eq. (8.3.2b) to find the
transfer function G D[z] of the discretized system. Compare G D[z] with the
z.o.h. equivalent of G(s).

8.6 Discretization of a Continuous-Time State Equation
Note that for an oscillator having the transfer function

G(s) = ω2

s2 + ω2
(P8.6.1)

we can write the following state and output equations:

[
x ′

1(t)
x ′

2(t)

]
=
[

0 ω

ω 0

] [
x1(t)
x2(t)

]
+
[

0
ω

]
u(t) (P8.6.2)

y(t) = [
1 0

] [x1(t)
x2(t)

]
(P8.6.3)

(a) Use Eq. (8.3.2a) to find the transfer function G(s) of this continuous-time
system.

382 8 State Space Analysis of LTI Systems

(b) Discretize the above state equation and then use Eq. (8.3.2b) to find the
transfer function G D[z] of the discretized system. Compare G D[z] with the
z.o.h. equivalent Gstep[z] of G(s).

8.7 PWM (Pulse-Width Modulated) Input
Consider a system described by the following state equation

[
x ′

1(t)
x ′

2(t)

]
=
[

0 1
0 −1

] [
x1(t)
x2(t)

]
+
[

0
1

]
u(t) (P8.7.1)

where the input u(t) is a PWM signal as depicted in Fig. P8.7. Show that the
discretized state equation is

[
x1[n + 1]
x2[n + 1]

]
=
[

1 1 − e−T

0 e−T

] [
x1[n]
x2[n]

]
+
[

dn − e−(T −dn) + e−T

e−(T −dn) − e−T

]
(P8.7.2)

d0

0 T 2T 3T 4T 5T
t

d1

u(t)
d2 d3 d4 d5

Fig. P8.7 A PWM (pulse-width modulated) signal

8.8 Modal Matrix and Diagonalization of a Circulant Matrix
Consider the following circulant matrix:

C =

⎡
⎢⎢⎢⎢⎣

c(0) c(1) · · c(N − 1)
c(N − 1) c(0) · · c(N − 2)

· · · · ·
· · · · ·

c(1) c(2) · · c(0)

⎤
⎥⎥⎥⎥⎦ (P8.8.1)

(a) Show that the eigenvalues and the corresponding eigenvectors of the
circulant matrix are

λi =
∑N−1

n=0
c(n)W in = c(0) + c(1)W i + · · · + c(N − 1)W (N−1)i ,

W = e j2π/N (P8.8.2)

mi = [1, W i , · · · , W (N−1)i]T , i = 0, 1, · · · , N − 1 (P8.8.3)

so that

Cmi = λi mi (P8.8.4)

Problems 383

(b) Note that a modal matrix consisting of the eigenvectors can be written as

M = 1√
N

[m0, m1, · · · , mN−1] = 1√
N

⎡
⎢⎢⎢⎢⎣

1 1 · · 1
1 W 1 · · W N−1

· · · · ·
· · · · ·
1 W N−1 · · W (N−1)2

⎤
⎥⎥⎥⎥⎦

(P8.8.5)
Show that the inverse of the modal matrix is

M−1 =

⎡
⎢⎢⎢⎢⎣

1 1 · · 1
1 W −1 · · W −(N−1)

· · · · ·
· · · · ·
1 W −(N−1) · · W −(N−1)2

⎤
⎥⎥⎥⎥⎦ = M∗ (Conjugate transpose) (P8.8.6)

(c) With the matrix dimension N = 4, diagonalize the circulant matrix C by the
similarity transformation. For reference, you can run the following
program “sig08p 08.m”.

%sig08p 08.m
clear, clf
syms c0 c1 c2 c3
C=[c0 c1 c2 c3; c3 c0 c1 c2; c2 c3 c0 c1; c1 c2 c3 c0];
[M,L]=jordan(C) % [M,L]=eig(C)
M*M’

Appendix A
The Laplace Transform

The Laplace transform was discovered originally by Leonhard Euler (1707–1783),
the great 18th-century Swiss mathematician and physicist, but is named in honor of
a French mathematician and astronomer Pierre-Simon Laplace (1749–1827), who
used the transform in his work on probability theory. He was such a genius not
only in mathematics that the great mathematician Simeon Poisson (1781–1840)
labeled him the Isaac Newton of France, but also in politics that he could serve three
regimes in revolutionary France – the republic, the empire of Napoleon, and the
Bourbon restoration, having been bestowed a count from Napoleon and a marquis
from Louis XVIII.

The Laplace transform is a very useful tool in solving differential equations and
much further, it plays an important role in dealing with linear time-invariant systems.

A.1 Definition of the Laplace Transform

The (unilateral or one-sided) Laplace transform is defined for a function x(t) of a
real variable t (often meaning the time) as

X (s) = L{x(t)} =
∫ ∞

0−
x(t)e−st dt (A.1)

where s is a complex variable, the lower limit, t−, of the integration interval is the
instant just before t = 0, and x(t) is often assumed to be causal in the sense that it
is zero for all t < 0.

A.2 Examples of the Laplace Transform

A.2.1 Laplace Transform of the Unit Step Function

The unit step function is defined as

385

386 Appendix A

(a) Unit step function (b) Rectangular pulse (c) Unit impulse function
0 0 0

t

rT (t)

= =lim rT (t) (us(t +
T→0

T→0

δ (t)

δ (t)
T

T
1

t t

us(t)
lim

T→0
lim

T
1

2
T

2
T d

dt) – us (t –)) = us(t)

Fig. A.1 Unit step, rectangular pulse, and unit impulse functions

us(t) =
{

1 for t ≥ 0

0 for t < 0
(A.2)

which is depicted in Fig. A.1(a). We can use Eq. (A.1) to obtain the Laplace
transform of the unit step function as

L{us(t)} (A.1)=
∫ ∞

0
us(t)e−st dt

(A.2)=
∫ ∞

0
e−st dt

(D.33)= 1

−s
e−st

∣∣∞
0 = 1

−s
(0 − 1) = 1

s

This Laplace transform pair is denoted by

us(t)
L←→ 1

s
(A.3)

A.2.2 Laplace Transform of the Unit Impulse Function

The unit impulse function can be defined to be the limit of a rectangular pulse func-
tion rT (t) with the pulsewidth T → 0 (converging to zero) or simply, the time
derivative of the unit step function as

δ(t) = lim
T →0

rT (t) = lim
T →0

1

T

(
us

(
t + T

2

)
− us

(
t − T

2

))
= d

dt
us(t) (A.4)

which is depicted in Fig. A.1(c). We can use Eq. (A.1) to obtain the Laplace
transform of the unit impulse function as

L{δ(t)} =
∫ ∞

0−
δ(t)e−st dt = 1

This Laplace transform pair is denoted by

δ(t)
L←→ 1 (A.5)

Appendix A 387

A.2.3 Laplace Transform of the Ramp Function

The Laplace transform of the unit ramp function tus(t) is obtained as

L{tus(t)} (A.1)=
∫ ∞

0
tus(t)e−st dt

(A.2)=
∫ ∞

0
te−st dt

(D.36)= t

−s
e−st

∣∣∞
0 + 1

s

∫ ∞

0
e−st dt

(D.33)= 1

s2

This Laplace transform pair is denoted by

tus(t)
L←→ 1

s2
(A.6)

A.2.4 Laplace Transform of the Exponential Function

The Laplace transform of the exponential function e−at us(t) is obtained as

L{e−at us(t)} (A.1)=
∫ ∞

0
e−at us(t)e−st dt

(A.2)=
∫ ∞

0
e−at e−st dt =

∫ ∞

0
e−(s+a)t dt

(D.33)= 1

s + a

This Laplace transform pair is denoted by

e−at us(t)
L←→ 1

s + a
(A.7)

A.2.5 Laplace Transform of the Complex Exponential Function

Substituting σ + jω for a into (A.7) yields the Laplace transform of the complex
exponential function as

e−(σ+ jω)t us(t)
(D.20)= e−σ t (cos ωt − j sin ωt)us(t)

L←→
1

s + σ + jω
= s + σ

(s + σ)2 + ω2
− j

ω

(s + σ)2 + ω2

e−σ t cos ωt us(t)
L←→ s + σ

(s + σ)2 + ω2
(A.8)

e−σ t sin ωt us(t)
L←→ ω

(s + σ)2 + ω2
(A.9)

A.3 Properties of the Laplace Transform

Let the Laplace transforms of two functions x(t) and y(t) be X (s) and Y (s),
respectively.

388 Appendix A

A.3.1 Linearity

The Laplace transform of a linear combination of x(t) and y(t) can be written as

α x(t) + βy(t)
L←→αX (s) + βY (s) (A.10)

A.3.2 Time Differentiation

The Laplace transform of the derivative of x(t) w.r.t. t can be written as

x ′(t)
L←→ s X (s) − x(0) (A.11)

Proof

L{x ′(t)} (A.1)=
∫ ∞

0

dx

dt
e
−st

dt
(D.36)= x(t)e−st

∣∣∞
0 −(−s)

∫ ∞

0
x(t)e−st dt

(A.1)= s X (s)−x(0)

Repetitive application of this time differentiation property yields the Laplace trans-
form of n th-order derivative of x(t) w.r.t. t as

x (n)(t)
L←→ sn X (s) − sn−1x(0) − sn−2x ′(0) − · · · − x (n−1)(0) (A.12)

A.3.3 Time Integration

The Laplace transform of the integral of x(t) w.r.t. t can be written as

∫ t

−∞
x(τ)dτ

L←→ 1

s
X (s) + 1

s

∫ 0

−∞
x(τ)dτ (A.13)

This can be derived by substituting
∫ t
−∞ x(τ)dτ and x(t) for x(t) and x ′(t) into

Eq. (A.11) as

x(t)
L←→ X (s) = sL

{∫ t

∞
x(τ)dτ

}
−
∫ 0

−∞
x(τ)dτ

Repetitive application of this time integration property yields the Laplace trans-
form of n th-order integral of x(t) w.r.t. t as

∫ t

−∞

∫ t

−∞
· ·
∫ t

−∞
x(τ)dτ n L←→ s−n X (s) + s−n

∫ 0

−∞
x(τ)dτ + · · · +

∫ 0

−∞

∫ 0

−∞
· ·
∫ 0

−∞
x(τ)dτ n

(A.14)

Appendix A 389

A.3.4 Time Shifting – Real Translation

The Laplace transform of a delayed function x(t) can be obtained as follows.

L {x(t − t1)} (A.1)=
∫ t1

−∞
x(t − t1)e−st dτ +

∫ ∞

t1

x(t − t1)e−st dτ

t−t1=τ= e−st1

∫ 0

−t1

x(τ)e−sτ dτ + e−st1

∫ ∞

0
x(τ)e−sτ dτ ;

x(t − t1), t1 > 0
L←→ e−st1

{
X (s) +

∫ 0

−t1

x(τ)e−sτ dτ

}
if x(t)=0 ∀ t<0→ e−s t1 X (s)

(A.15)

(a)0 (b)
t

τ = t τ = t
τ τ

t

Fig. A.2 Switching the order of two integrations for double integral

A.3.5 Frequency Shifting – Complex Translation

es1t x(t)
L←→ X (s − s1) (A.16)

A.3.6 Real Convolution

The (real) convolution of two (causal) functions g(t) and x(t) is defined as

g(t) ∗ x(t) =
∫ ∞

−∞
g (τ) x (t − τ) dτ

if g(t)=0 and x(t)=0 ∀ t<0=
causality

∫ t

0
g (τ) x (t − τ) dτ

(A.17)

The Laplace transform of the convolution y(t) = g(t) ∗ x(t) turns out to be the
product of the Laplace transforms of the two functions as

y(t) = g(t) ∗ x(t)
L←→ Y (s) = G(s)X (s) (A.18)

390 Appendix A

Proof

L {g(t) ∗ x(t)} (A.1)=
∫ ∞

0
g(t) ∗ x(t)e−st dt

(A.17)=
∫ ∞

0

{∫ t

0
g(τ)x(t − τ)dτ

}
e−st dt

Fig.A.2=
∫ ∞

0
g(τ)e−sτ

∫ ∞

τ

x(t − τ)e−s(t−τ)dt dτ

(t−τ=v)=
∫ ∞

0
g(τ)e−sτ

{∫ ∞

0
x(v)e−svdv

}
dτ

(A.1)=
∫ ∞

0
g(τ)e−sτ dτ X (s)

(A.1)= G (s) X (s)

This property is used to describe the input-output relationship of a linear time-
invariant (LTI) system which has the input x(t), the impulse function g(t), and
the output y(t), where the Laplace transform of the impulse function, i.e., G(s) =
L{g(t)}, is referred to as the system function or transfer function of the system.

A.3.7 Partial Differentiation

Given the Laplace transform of a function having a parameter a, that is L{x(t, a)} =
X (s, a), the Laplace transform of the derivative of the parameterized function x(t, a)
w.r.t. a equals the derivative of its Laplace transform X (s, a) w.r.t. a.

∂

∂a
x(t, a)

L←→ ∂

∂a
X (s, a) (A.19)

A.3.8 Complex Differentiation

The Laplace transform of −t x(t) equals the derivative of L{x(t)} = X (s) w.r.t. s.

t x(t)
L←→− d

ds
X (s) (A.20)

This can be derived by differentiating Eq. (A.1) w.r.t. s.

Example A.1 Applying Partial/Complex Differentiation Property
To find the Laplace transform of t e−at us(t), we differentiate Eq. (A.7) w.r.t. a

and multiply the result by −1 to get

t e−at us(t)
L←→ 1

(s + a)2
(A.21)

Appendix A 391

Multiplying t by the left-hand side (LHS) and applying the complex differentia-
tion property (A.20) repetitively, we get

t2e−at us(t)
L←→ 2!

(s + a)3
(A.22)

. .

tme−at us(t)
L←→ m!

(s + a)m+1
(A.23)

A.3.9 Initial Value Theorem

We can get the initial value of x(t) from its Laplace transform L{x(t)} = X (s) as
follows.

x(0) = lim
s→∞ s X (s) (A.24)

This can be derived by substituting s = ∞ into the time differentiation property
(A.11) as

lim
s→∞ s X (s) − x(0)

(A.11)= lim
s→∞L

{
x ′(t)

} (A.1)= lim
s→∞

∫ ∞

0
x ′(t)e−st dt = 0

A.3.10 Final Value Theorem

We can get the final value of x(t) from its Laplace transform L{x(t)} = X (s) as
follows.

x(∞) = lim
s→0

s X (s) (A.25)

on the premise that x(t) is convergent, or equivalently, all poles of X (s) are in the
left-half plane (LHP) except for a simple pole at s = 0. This can be derived by
substituting s = 0 into the time differentiation property (A.11) as

lim
s→0

s X (s) − x(0)
(A.11)= lim

s→0
L
{

x ′(t)
} (A.1)= lim

s→0

∫ ∞

0
x ′(t)e−st dt =x(∞) − x(0)

(Q) Can we apply this final value theorem to have sin ωt |t=∞ = lim
s→0

s

X (s)
Table A.1(7)= lim

s→0
s ω

s2+ω2 = 0?

392 Appendix A

A.4 Inverse Laplace Transform

Suppose a s-function X (s) is given in the form of a rational function, i.e., a ratio of
an M th-degree polynomial Q(s) to an N th-degree polynomial P(s) in s and it is
expanded into the partial fractions as

X (s) = Q(s)

P(s)
= bM sM + . . . + b1s + b0

aN s N + . . . + a1s + a0
(M ≤ N) (A.26)

=
(

N−L∑
n=1

rn

s − pn

)
+ rN−L+1

s − p
+ . . . + rN

(s − p)L
+ K (A.27)

where

rn = (s − pn)
Q(s)

P(s)

∣∣∣∣
s = pn

, n = 1, 2, . . . , N − L (A.28.1)

rN−l = 1

l!

dl

dsl

{
(s − p)L Q (s)

P (s)

} ∣∣∣∣ s = p
, l = 0, 1, . . . , L − 1 (A.28.2)

Then the inverse Laplace transform of X (s) can be obtained as

x(t) =
{

N−L∑
n=1

rnepn t + rN−L+1ept + rN−L+2t ept + . . . + rN

(L − 1)!
t L−1ept

}
us(t) + K δ(t)

(A.29)

Example A.2 Inverse Laplace Transform
Let us find the inverse Laplace transform of the following s-functions

(a) X (s) = 3s2 + 11s + 11

s3 + 4s2 + 5s + 2
= 3s2 + 11s + 11

(s + 1)2(s + 2)

= r1

s + 2
+ r2

s + 1
+ r3

(s + 1)2
(with a double pole at s = −1) (1)

We can use the formula (A.28.1) to find the simple-pole coefficient r1 as

r1 = (s + 2)X (s) |s=−2
(1)=(s + 2)

3s2 + 11s + 11

(s + 1)2(s + 2)

∣∣∣∣
s=−2

= 1 (2)

and can also use the formula (A.28.2) to find the multiple-pole coefficient r2 and
r3 as

Appendix A 393

r3 = (s + 1)2 X (s) |s=−1
(1)= 3s2 + 11s + 11

s + 2

∣∣∣∣
s=−1

= 3 (3)

r2 = d

ds
(s + 1)2 X (s)

∣∣∣∣s=−1 = d

ds

3s2 + 11s + 11

s + 2

∣∣∣∣
s=−1

(D.31)= (6s + 11)(s + 2) − (3s2 + 11s + 11)

(s + 2)2

∣∣∣∣
s=−1

= 2 (4)

Thus the inverse Laplace transform can be written as

x(t)
(1)=

(A.29)
(r1e−2t + r2e−t + r3te−t)us(t) = (e−2t + 2e−t + 3te−t)us(t) (5)

>>Ns=[3 11 11]; Ds=[1 4 5 2]; [r,p,k]=residue(Ns,Ds), [A,B]=residue(r,p,k)

(b) X (s) = s

s2 + 2s + 2

= s

(s + 1)2 + 12
(with complex conjugate poles at s = −1 ± j)

(6)

We may use the formula (A.28.1) to find the coefficients of the partial fraction
expansion form

X (s) = s

s2 + 2s + 2
= r1

s + 1 − j
+ r2

s + 1 + j
(7)

as

r1
(A.28.1)= (s + 1 − j)X (s)

∣∣
s=−1+ j

(6)= s

s + 1 + j

∣∣∣∣
s=−1+ j

= 0.5(1 + j)

r2
(A.28.1)= (s + 1 + j)X (s)

∣∣
s=−1− j

(6)= s

s + 1 − j

∣∣∣∣
s=−1− j

= 0.5(1 − j)
(8)

Thus we can write the inverse Laplace transform as

x(t)
(7)=

(A.29)
(0.5(1+ j)e(−1+ j)t +0.5(1− j)e(−1− j)t)us(t)

(F.20)= e−t (cos t − sin t)us(t)

(9)
In the case of complex conjugate poles, it may be simpler to equate X (s) with
the following form

X (s) = s

s2 + 2s + 2
= A(s + 1)

(s + 1)2 + 12
+ B × 1

(s + 1)2 + 12

common denominator= As + (A + B)

(s + 1)2 + 12

(10)

and get the coefficients as A = 1 and B = −1. Then we can directly find each
term of the inverse Laplace transform from the Laplace transform Table A.1 and
write the inverse Laplace transform as

394 Appendix A

Table A.1 Laplace transforms of basic functions

x(t) X (s) x(t) X (s) x(t) X (s)

(1) δ(t) 1 (5) e−at us (t)
1

s + a
(9) e−at sin ωt us (t)

ω

(s + a)2 + ω2

(2) δ(t − t1) e−t1s (6) tme−at us (t)
m!

(s + a)m+1
(10) e−at cos ωt us (t)

s + a

(s + a)2 + ω2

(3) us (t)
1

s
(7) sin ωt us (t)

ω

s2 + ω2

(4) tmus (t)
m!

sm+1
(8) cos ωt us (t)

s

s2 + ω2

X (s)
(10)= s + 1

(s + 1)2 + 12
+ (−1) × 1

(s + 1)2 + 12

Table A.1(9),(10)→ x(t)= (e−t cos t −e−t sin t)us(t)

(11)
(c) Use of MATLAB for Partial Fraction Expansion and Inverse Laplace Transform

We can use the MATLAB command “residue ()” to get the partial fraction expan-
sion and “ilaplace ()” to obtain the whole inverse Laplace transform. It should,
however, be noted that “ilaplace ()” might not work properly for high-degree
rational functions.

>>Ns=[3 11 11]; Ds=[1 4 5 2]; [r,p,k]=residue(Ns,Ds); [r p],k % (1)
r = 1.0000 p = -2.0000 % (2) 1/(s-(-2))

2.0000 -1.0000 % (4) 2/(s-(-1))
3.0000 -1.0000 % (3) 3/(s-(-1))ˆ2

k = []
>>syms s, x= ilaplace((3*sˆ2+11*s+11)/(sˆ3+4*sˆ2+5*s+2))

x = exp(-2*t)+3*t*exp(-t)+2*exp(-t) % (5)
>>Ns=[1 0]; Ds=[1 2 2]; [r,p,k]=residue(Ns,Ds); [r p],k % (6)

r = 0.5000 + 0.5000i p = -1.0000 + 1.0000i % (8) (0.5+0.5i)/(s+1-i)
0.5000 - 0.5000i p = -1.0000 - 1.0000i % (8) (0.5-0.5i)/(s+1+i)

k = []
>>syms s, x= ilaplace(s/(sˆ2+2*s+2))

x = exp(-t)*cos(t)-exp(-t)*sin(t) % (9) or (11)
>>ilaplace(s/(sˆ4+10*sˆ3+9*sˆ2+6*s+1)) %?? Ns=[1 0]; Ds=[1 10 9 6 1];

A.5 Using the Laplace Transform to Solve Differential Equations

One can realize how useful the Laplace transform is for dealing with linear ordinary
differential equations.

Example A.3 Solving a Differential Equation
Let us solve the following differential equation.

d2

dt2
y(t) + 3

d

dt
y(t) + 2y(t) = 10us(t), t ≥ 0 (1)

with the initial conditions y(0) = 1 and y′(0) = −2.

Appendix A 395

(Solution)
We make use of the time differentiation properties (A.11) and (A.12) of Laplace
transform to write the Laplace transform of both sides as

s2Y (s) − sy(0) − y′(0) + 3(sY (s) − y(0)) + 2Y (s) = 10

s
;

(s2 + 3s + 2)Y (s) = sy(0) + y′(0) + 3y(0) + 10

s
= 10

s
+ s + 1 (2)

This algebraic equation can be solved for Y (s) as

Y (s) = s(s + 1) + 10

s(s2 + 3s + 2)
(3)

We expand this s-domain solution into partial fractions as

Y (s) = s(s + 1) + 10

s(s2 + 3s + 2)
= r1

s
+ r2

s + 1
+ r3

s + 2
= 5

s
+ −10

s + 1
+ 6

s + 2
(4)

where the coefficients are found by using the formula (A.28.1) as

r1 = sY (s) |s=0
(3)= s2 + s + 10

s2 + 3s + 2

∣∣∣∣
s=0

= 5

r2 = (s + 1)Y (s) |s=−1
(3)= s2 + s + 10

s(s + 2)

∣∣∣∣
s=−1

= −10

r3 = (s + 2)Y (s) |s=−2
(3)= s2 + s + 10

s(s + 1)

∣∣∣∣
s=−2

= 6

(5)

Thus we can write the time-domain solution y(t) as

y(t) = (r1e−0t + r2e−t + r3e−2t)us(t) = (5 − 10e−t + 6e−2t)us(t) (6)

>>syms s, Ns=[1 1 10]; Ds=[1 3 2 0];
>>y=ilaplace(poly2sym(Ns,s)/poly2sym(Ds,s)) % Inverse Laplace transform
>>y1=ilaplace((sˆ2+s+10)/(sˆ3+3*sˆ2+2*s)) % Or, directly from Eq.(3)
>>t=0:0.01:10; yt=eval(y); plot(t,yt), hold on % plot y(t) for t=[0,10]
>>[r,p,k]=residue(Ns,Ds), % Partial fraction expansion
>>yt1=real(r.’*exp(p*t)); plot(t,yt1,’r’) % Another way to get y(t)

Another alternative way to solve differential equations using MATLAB is to
use the symbolic differential solver “dsolve()”. To solve Eq. (1), we need the
following MATLAB statement:

>>y=dsolve(’D2y+3*Dy+2*y=0’,’y(0)=1,Dy(0)=-2’)
y = 5+6*exp(-2*t)-10*exp(-t)

396 Appendix A

Table A.2 Properties of Laplace transform

(0) Definition X (s) =L{x(t)} = ∫ ∞
0 x(t)e−st dt ; x(t)

L↔ X (s)
(1) Linearity αx(t) + βy(t) ↔ αX (s) + βY (s)
(2) Time shifting (Real translation) x(t − t1)us (t − t1), t1 > 0 ↔

e−st1
{

X (s) + ∫ 0
−t1

x(τ)e−sτ dτ
}

= e−st1 X (s)

for x(t) = 0 ∀t < 0
(3) Frequency shifting (Complex translation) es1 t x(t) ↔ X (s − s1)
(4) Real convolution g(t) ∗ x(t) ↔ G(s)X (s)
(5) Time derivative (Differentiation property) x ′(t) = d

dt x(t) ↔ s X (s) − x(0)
(6) Time integral (Integration property)

∫ t
−∞ x(τ)dτ ↔ 1

s X (s) + 1
s

∫ 0
−∞ x(τ)dτ

(7) Complex derivative t x(t) ↔ − d
ds X (s)

(8) Complex convolution x(t)y(t) ↔ 1
2π j

∫ σ0+∞
σ0−∞ X (v)Y (s − v)dv

(9) Initial value theorem x(0) = lim
s→∞ s X (s)

(10) Final value theorem x(∞) = lim
s→0

s X (s)

Theorem A.1 Stability Condition of an LTI system on its Pole Location
A linear time-invariant (LTI) system having the system or transfer function G(s)/G[z]
is stable iff (if and only if) all the poles of G(s)/G[z] are strictly within the left-half
s-plane/the unit circle in the z-plane (see Remarks 2.5, 3.2, and 4.5).

Proof Noting that the system or transfer function of a continuous-time/discrete-time
system is the Laplace/ z-transform of its impulse response g(t)/g[n], let the system
function of a causal LTI (linear time-invariant) system be

G(s) = L{g(t)} =
∫ ∞

0
g(t)e−st dt

(1a)

G[z] = Z{g[n]} =
∑∞

n=0
g[n]z−n

(1b)

Taking the absolute value yields

|G(s)| =
∣∣∣∣
∫ ∞

0
g(t)e−st dt

∣∣∣∣
≤
∫ ∞

0
|g(t)||e−st |dt (2a)

|G[z]| =
∣∣∣∑∞

n=0
g[n]z−n

∣∣∣
≤
∑∞

n=0
|g[n]||z−n| (2b)

Suppose that

G(s) has a pole at s = sp = σp + jωp

with σp > 0 on the RHP (right-half
s-plane)

G[z] has a pole at z = z p = rpe jΩp

with rp > 1 outside the unit circle in the
z-plane

Appendix A 397

so that

|G(sp)| = ∞ (3a) |G[z p]| = ∞ (3b)

We can substitute this pole into Eq. (2a)/(2b) to get

∞ (3a)= |G(sp)| (2a)≤
∫ ∞

0
|g(t)||e−σp t ||e− jωp t |dt ;

∞ ≤
∫ ∞

0
|g(t)|dt (4a)

∞ (3b)= |G[z p]| (2b)≤
∑∞

n=0
|g[n]||r−n

p ||e− jΩp n |;
∞ ≤

∑∞
n=0

|g[n]| (4b)

which contradicts the stability condition (1.2.27a)/(1.2.27b). This implies that if
even a single pole of a system exists in the unstable region, i.e., on the RHP in the
s-plane or outside the unit circle in the z-plane, then the system is unstable. This
completes the proof of the theorem.

The stability condition can be understood more clearly if we expand the system
function into the partial fractions and take its inverse transform to write the impuse
response as

G(s) =
∑K

k=0

Ak

s − sk
;

g(t) =
∑k

k=0
akesk t (5a)

G[z] =
∑k

k=0

Ak

z − zk
;

g[n] =
∑K

k=0
Ak zn

k (5b)

This shows that even a single pole with Re{sk} > 0 or |zk | > 1 causes the impulse
response to diverge, which violates the BIBO stability condition (1.2.27).

Appendix B
Tables of Various Transforms

Table B.1 Definition and properties of the CTFS (continuous-time Fourier series)

(0) Definition Synthesis: x̃P (t)
(2.1.5a)= 1

P

∑∞
k=−∞ Xk e jkω0 t , P: period of x̃P (t)

Analysis: Xk
(2.1.5b)= ∫

P x̃P (t)e− jkω0 t dt, ω0 = 2π
P

(1) Linearty ax̃P (t) + bỹP (t)
F↔ a Xk + bYk

(2) Time reversal x̃P (−t)
F↔ X−k

(3) Symmetry for real-valued
functions

Real-valued x̃P (t) = x̃P,e(t) + x̃P,o(t)
F↔ Xk = X∗

−k

Real-valued and even x̃P,e(t)
F↔ Xk,e = Re{Xk}

Real-valued and odd x̃P,o(t)
F↔ Xk,o = jIm{Xk}

(4) Conjugate x̃∗
P (t)

CTFS↔ X∗
−k

(5) Time shifting (Real translation) x̃P (t − t1) ↔ Xk e− jkω0 t1 = |Xk |∠(φk − kω0t1)

(6) Frequency shifting (Complex
translation)

x̃P (t)e j Mω0 t CTFS↔ Xk−M

(7) Real convolution
(periodic/circular)

x̃P (t)∗ỹP (t) = ∫
P x̃(τ)ỹ(t − τ)dτ

CTFS↔ Xk Yk

(8) Complex convolution x̃P (t)ỹP (t)
CTFS↔ 1

P

∑∞
m=−∞ Xm Yk−m

(9) Time differentiation dx(t)
dt

CTFS↔ jkω0 Xk

(10) Time integration
∫ t
−∞ x(τ)dτ

(
finite-valued and periodic
only if X0 = 0

)
CTFS↔ 1

jkω0
Xk

(11) Scaling
x(at), a > 0

(periodic with period P/a)
CTFS↔ Xk

(with fundamental frequency aω0)

(12) Parseval’s relation
∫ ∞
−∞ |x̃P (t)|2dt = 1

P

∑∞
k=−∞ |Xk |2

399

400 Appendix B

Table B.2 Definition and properties of the CTFT (continuous-time Fourier transform)

(0) Definition X (jω) = F{x(t)} (2.2.1a)= ∫∞
−∞ x(t)e− jωt dt

(1) Linearity ax(t) + by(t)
F↔ aX (ω) + bY (ω)

(2) Time reversal x(−t)
F↔

(2.5.2)
X (−ω)

(3) Symmetry for real-valued functions Real-valued x(t) = xe(t) + xo(t)
F↔ X (ω) = X∗(−ω)

Real-valued and even xe(t)
F↔

(2.5.5a)
Xe(ω) = Re{X (ω)}

Real-valued and odd xo(t)
F↔

(2.5.5a)
Xo(ω) = j Im{X (ω)}

(4) Conjugate x∗(t)
F↔ X∗(−ω)

(5) Time shifting (Real translation) x(t − t1)
F↔

(2.5.6)
X (ω)e− jωt1 = X (ω)∠ − t1ω

(6) Frequency shifting (Complex
translation)

x(t)e jω1 t F↔
(2.5.7)

X (ω − ω1)

(7) Duality g(t)
F↔ f (ω) ⇔

(2.5.9)
f (t)

F↔ 2πg(−ω)

(8) Real convolution y(t) = x(t) ∗ g(t)
F↔

(2.5.11)
Y (ω) = X (ω)G(ω)

(9) Complex convolution y(t) = x(t)m(t)
F↔

(2.5.14)
Y (ω) = 1

2π
X (ω) ∗ M(ω)

(10) Time differentiation dx(t)
dt

F↔
(2.5.17)

jωX (ω)

(11) Time integration
∫ t
−∞ x(τ)dτ

F↔
(2.5.18)

π X (0)δ(ω) + 1
jω X (ω)

(12) Scaling x(at)
F↔

(2.5.21)

1
|a| X

(
ω
a

)
(13) Time multiplication-Frequency

differentiation
t x(t)

F↔
(2.5.20)

j d X (ω)
dω

(14) Parseval’s relation
∫∞
−∞ |x(t)|2dt =

(2.5.22)

1
2π

∫ ∞
−∞ |X (ω)|2dω

Appendix B 401

Ta
bl

e
B

.3
C

T
FS

/C
T

FT
fo

r
ba

si
c

fu
nc

tio
ns

fu
nc

tio
n

x(
t)

C
T

FS
X

k
(f

or
pe

ri
od

ic
fu

nc
tio

n)
C

T
FT

X
(ω

)
(f

or
pe

ri
od

ic
/a

pe
ri

od
ic

fu
nc

tio
n)

(1
)

1 P

∞ ∑
k=

−∞
X

k
e

jk
ω

0
t ,

ω
0

=
2π P

X
k

(2
.3

3) →
2π P

∞ ∑
k=

−∞
X

k
δ
(ω

−
kω

0
)

(2
)

e
jω

0
t ,

ω
0

=
2π P

X
k

=
{ P

fo
r

k
=

1
0

el
se

w
he

re
2π

δ
(ω

−
ω

0
)

(3
)

co
sω

0
t,

ω
0

=
2π P

X
k

=
{ P

/
2

fo
r

k
=

±1
,
··

·
0

el
se

w
he

re
(E

2.
11

.2
)

→
π

(δ
(ω

+
ω

0
)+

δ
(ω

−
ω

0
))

(4
)

si
n
ω

0
t,

ω
0

=
2π P

X
k

=
⎧ ⎨ ⎩−

jP
/
2

fo
r

k
=

1
jP

/
2

fo
rk

=
−1

0
el

se
w

he
re

(E
2.

11
.1

)
→

jπ
(δ

(ω
+

ω
0
)−

δ
(ω

−
ω

0
))

(5
)

C
on

st
an

tf
un

ct
io

n
x(

t)
=

1
X

k
=
{ P

fo
r

k
=

0
0

el
se

w
he

re
(E

2.
7.

1)
→

2π
δ
(ω

)

(6
)

Im
pu

ls
e

tr
ai

n
∞ ∑

i=
−∞

δ
(t

−
iP

)
X

k
=

1∀
k

2π P

∞ ∑
k=

−∞
δ
(ω

−
kω

0
),

ω
0

=
2π P

(7
)

R
ec

ta
ng

ul
ar

w
av

e
∞ ∑

i=
−∞

r D
(t

−
iP

),
D

≤
P

X
k

=
D

si
nc

(kω
0

D
2π

) ,
ω

0
=

2π P
2π P

∞ ∑
k=

−∞
X

k
δ
(ω

−
kω

0
)

(8
)

R
ec

ta
ng

ul
ar

pu
ls

e
r D

(t
)
=

u
s(

t
+

D 2
)−

u
s(

t
−

D 2
)

N
/A

fo
r

an
ap

er
io

di
c

fu
nc

tio
n

D
si

nc
(

D 2π
ω

)(E
2.

3.
2)

=
si

n(
D

ω
/
2)

ω
/
2

(9
)

si
n(

B
t)

π
t

=
B π

si
nc

(B
t

π

)
N

/A
fo

r
an

ap
er

io
di

c
fu

nc
tio

n
(E

2.
9.

1)
→

{ 1
fo

r
|ω

|≤
B

0
el

se
w

he
re

(1
0)

δ
(t

)
N

/A
fo

r
an

ap
er

io
di

c
fu

nc
tio

n
1

(1
1)

u
s(

t)
N

/A
fo

r
an

ap
er

io
di

c
fu

nc
tio

n
(E

2.
8.

6)
→

1 jω
+

π
δ
(ω

)

(1
2)

e−a
t u

s(
t)

,
R

e{a
}>

0
N

/A
fo

r
an

ap
er

io
di

c
fu

nc
tio

n
1

a+
jω

(1
3)

te
−a

t u
s(

t)
,
R

e{a
}>

0
N

/A
fo

r
an

ap
er

io
di

c
fu

nc
tio

n
1

(a
+

jω
)2

(1
4)

tM
−1

(M
−1

)!
e−a

t u
s(

t)
,
R

e{a
}>

0
N

/A
fo

r
an

ap
er

io
di

c
fu

nc
tio

n
1

(a
+

jω
)M

402 Appendix B

Table B.4 Definition and properties of the DTFT (discrete-time Fourier transform)

(0) Definition DTFT: X (Ω) = X [e jΩ] = F{x[n]} (3.1.1)= ∑∞
n=−∞ x[n]e− jΩn

IDTFT: x[n] = F−1{X (Ω)} (3.1.3)= 1
2π

∫
2π

X (Ω)e jΩndΩ

(1) Periodicity X (Ω) = X [e jΩ] = X (Ω + 2mπ) for any integer m

(2) Linearity ax[n] + by[n]
F↔ aX (Ω) + bY (Ω)

(3) Time reversal x[−n]
F↔

(3.2.3)
X (−Ω)

(4) Symmetry for real-valued
sequences

Real-valued x[n] = xe[n] + xo[n]
F↔ X (Ω) = X∗(−Ω)

Real-valued and even xe[n]
F↔

(3.2.5a)
Xe(Ω) = Re{X (Ω)}

Real-valued and odd xo[n]
F↔

(3.2.5b)
Xo(Ω) = j Im{X (Ω)}

(5) Conjugate x∗[n]
F↔ X∗(−Ω)

(6) Time shifting (Real
translation)

x[n − n1]
F↔ X (Ω)e− jΩn1 = X (Ω)∠ − n1Ω

(7) Frequency shifting (Complex
translation)

x[n]e jΩ1n F↔ X (Ω − Ω1)

(8) Real convolution x[n] ∗ g[n]
F↔ X (Ω)G(Ω)

(9) Complex convolution
(circular)

x[n]m[n]
F↔ 1

2π
X (Ω) ∗ M(Ω)

(10) Differencing in time x[n] − x[n − 1]
F↔(1 − e− jΩ)X (Ω)

(11) Summation in time
n∑

m=−∞
x[m] = x[n] ∗ us [n]

F↔
1

1−e− jΩ X (Ω) + π X (0)
∞∑

i=−∞
δ(Ω − 2π i)

(12) Scaling x(K)[n] =
{

x[n/K] = x[r] for n = r K
0 elsewhere

F↔
(3.2.14)

X (KΩ)

(13) Time multiplication-
Frequency differentiation

nx[n]
F↔ j d X (Ω)

dΩ

(14) Parseval’s relation
∑∞

n=−∞ |x[n]|2 = 1
2π

∫
2π

|X (Ω)|2dΩ

Appendix B 403

Ta
bl

e
B

.5
D

efi
ni

tio
n

an
d

pr
op

er
tie

s
of

th
e

D
FT

/D
FS

(d
is

cr
et

e-
tim

e
Fo

ur
ie

r
se

ri
es

)

(0
)

D
efi

ni
tio

n
X

(k
)
=

D
FT

N
{x

[n
]}(3

.4
.2

)
=

∑ N
−1

n=
0

x[
n]

e−
j2

π
kn

/
N

=
∑ N

−1
n=

0
x[

n]
W

kn N

x[
n]

=
ID

FT
N
{X

(k
)}(3

.4
.3

)
=

1 N

∑ N
−1

k=
0

X
(k

)e
j2

π
kn

/
N

=
1 N

∑ N
−1

k=
0

X
(k

)W
−k

n
N

(1
)

Pe
ri

od
ic

ity
X

(k
)
=

X
(k

+
m

N
)

fo
r

an
y

in
te

ge
r

m

(2
)

L
in

ea
ri

ty
a

x[
n]

+
by

[n
]D

FT ↔
a

X
(k

)+
bY

(k
)

(3
)

T
im

e
re

ve
rs

al
x̃[

−n
]r

N
[n

]D
FT ↔

X̃
N

(−
k)

r N
[k

]
(r

N
[k

]
=

u
s[

k]
−

u
s[

k
−

N
])

w
he

re
x̃ N

[n
]

is
th

e
pe

ri
od

ic
re

pe
tit

io
n

of
x[

n]
w

ith
pe

ri
od

N

(4
)

Sy
m

m
et

ry
fo

r
re

al
-v

al
ue

d
se

qu
en

ce
s

R
ea

l-
va

lu
ed

x[
n]

=
x e

[n
]+

x o
[n

]D
FT ↔

X
(k

)
=

X̃
∗ N

(−
k)

r N
[k

]

R
ea

l-
va

lu
ed

an
d

ev
en

x e
[n

]D
FT ↔

X
e(

k)
=

R
e{

X
(k

)}
R

ea
l-

va
lu

ed
an

d
od

d
x o

[n
]D

FT ↔
X

o
(k

)
=

j
Im

{X
(k

)}
(5

)
C

on
ju

ga
te

x∗ [
n]

D
FT ↔

X̃
∗ N

(−
k)

r N
[k

]

(6
)

D
ua

lit
y

g[
n]

D
FT ↔

f(
k)

⇔
f[

n]
D

FT ↔
N

g̃ N
(−

k)
r N

[k
]

(7
)

T
im

e
sh

if
tin

g
(c

ir
cu

la
r)

x̃ N
[n

−
M

]r
N

[n
](

on
e

pe
ri

od
of

ci
rc

ul
ar

sh
if

t)
D

FT ↔
W

M
k

N
X

(k
)

(8
)

Fr
eq

ue
nc

y
sh

if
tin

g
(c

ir
cu

la
r)

(C
om

pl
ex

tr
an

sl
at

io
n)

W
N

−L
n
x[

n]
D

FT ↔
X̃

N
(k

−
L

)r
N

[k
](

on
e

pe
ri

od
of

ci
rc

ul
ar

sh
if

t)

(9
)

R
ea

lc
on

vo
lu

tio
n

(∑
N

−1
i=

0
x̃(

i)
ỹ(

n
−

i)
) r N

[n
]D

FT ↔
X

(k
)Y

(k
)

(1
0)

C
om

pl
ex

(c
ir

cu
la

r)
co

nv
ol

ut
io

n
x[

n]
y[

n]
D

FT ↔
1 2π

(∑
N

−1
i=

0
X̃

N
(i

)Ỹ
N

(k
−

i)
) r N

[k
]

(1
1)

Sc
al

in
g

x (
K

)[
n]

=
{ x[

n/
K

]
fo

r
n

=
r

K
0

el
se

w
he

re
D

FT ↔
X̃

N
(K

k)
r N

[k
]

(1
2)

Pa
rs

ev
al

’s
re

la
tio

n
∑ n=

<
N

>
|x[

n]
|2

=
1 N

∑ k=
<

N
>

|X
(k

)|2
w

he
re

<
N

>
=

{0,
1,

··
·,

N
−

1}

404 Appendix B

Ta
bl

e
B

.6
D

FS
/D

FT
an

d
D

T
FT

fo
r

ba
si

c
se

qu
en

ce
s

Se
qu

en
ce

x[
n]

D
FS

X̃
(k

)/
D

FT
X

(k
)

(f
or

pe
ri

od
ic

/a
pe

ri
od

ic
an

d
fin

ite
-d

ur
at

io
n

se
qu

en
ce

s)
D

T
FT

X
(Ω

)

(1
)

1 P

∑
k=

<
N

>

X
k
e

j2
π

kn
/

P
,

P
=

N
T

X̃
(k

)
=

1 T
X

k
2π P

∞ ∑
k=

−∞
X

k
δ
(Ω

−
k

2π N
)

(2
)

e
jK

Ω
0
n
,

Ω
0

=
2π N

X̃
(k

)
=
{ N

fo
r

k
=

K
,

K
±

N
,

K
±

2
N

,
··

·
0

el
se

w
he

re
(3

.1
.5

)
→

2π
∞ ∑

k=
−∞

δ
(Ω

−
K

Ω
0
−

2π
k)

(3
)

co
s

K
Ω

0
n,

Ω
0

=
2π N

X̃
(k

)
=
{ N

/
2

fo
r

k
=

±K
,
±K

±
N

,
··

·
0

el
se

w
he

re
(E

3.
7.

2)
→

π
∞ ∑

k=
−∞

δ
(Ω

+
K

Ω
0
−

2π
k)

+δ
(Ω

−
K

Ω
0
−

2π
k)

(4
)

si
n

K
Ω

0
n,

Ω
0

=
2π N

X̃
(k

)
=
⎧ ⎨ ⎩−

jN
/
2

fo
r

k
=

K
,

K
±

N
,
··

·
jN

/
2

fo
r

k
=

−K
,
−K

±
N

,
··

·
0

el
se

w
he

re

(E
3.

7.
1)

→
jπ

∞ ∑
k=

−∞
δ
(Ω

+
K

Ω
0
−

2π
k)

−δ
(Ω

−
K

Ω
0
−

2π
k)

(5
)

C
on

st
an

ts
eq

ue
nc

e
x[

n]
=

1
X̃

(k
)
=
{ N

fo
r

k
=

0,
±N

,
±2

N
,
··

·
0

el
se

w
he

re
(E

3.
6.

1)
→

2π
∞ ∑

k=
−∞

δ
(Ω

−
2π

k)

(6
)

∞ ∑
i=

−∞
δ
[n

−
iN

]
X̃

(k
)
=

1
∀k

2π N

∞ ∑
k=

−∞
δ
(Ω

−
kΩ

0
),

Ω
0

=
2π N

(7
)

R
ec

ta
ng

ul
ar

w
av

e
∞ ∑

i=
−∞

r 2
M

+1
[n

−
iM

],
2

M
+

1
≤

N

X̃
(k

)
=

si
n(

kΩ
0
(2

M
+

1)
/
2)

si
n(

kΩ
0
/
2)

,
Ω

0
=

2π N
2π N

∞ ∑
k=

−∞
X̃

(k
)δ

(Ω
−

kΩ
0
)

(8
)

R
ec

ta
ng

ul
ar

pu
ls

e
r 2

M
+1

[n
]

=
u

s[
n

+
M

]−
u

s[
n

−
M

−
1]

X
(k

)
=

si
n(

kΩ
0
(2

M
+

1)
/
2)

si
n(

kΩ
0
/
2)

w
ith

Ω
0

=
2π N

(E
3.

1.
2)

→
si

n(
Ω

(2
M

+
1)

/
2)

si
n(

Ω
/
2)

Appendix B 405

Ta
bl

e
B

.6
(c

on
tin

ue
d)

Se
qu

en
ce

x[
n]

D
FS

X̃
(k

)/
D

FT
X

(k
)

(f
or

pe
ri

od
ic

/a
pe

ri
od

ic
an

d
fin

ite
-d

ur
at

io
n

se
qu

en
ce

s)
D

T
FT

X
(Ω

)

(9
)

si
n(

B
n)

π
n

=
B π

si
nc

(B
n

π

)
N

/A
fo

r
an

in
fin

ite
-d

ur
at

io
n

ap
er

io
di

c
se

qu
en

ce
(E

3.
5.

1)
→

{ 1
fo

r
|Ω

−
2m

π
|≤

B
≤

π

0
el

se
w

he
re

(1
0)

δ
[n

]
X

(k
)
=

1
∀0

≤
k

≤
N

−
1

(E
3.

4.
1)

→
1

(1
1)

u
s[

n]
N

/A
fo

r
an

in
fin

ite
-d

ur
at

io
n

ap
er

io
di

c
se

qu
en

ce
(E

3.
8.

6)
→

1

1
−

e−
jΩ

n
+

π
∞ ∑

i=
−∞

δ
(Ω

−
2π

i)

(1
2)

an
u

s[
n]

w
ith

|a|
<

1
N

/A
fo

r
an

in
fin

ite
-d

ur
at

io
n

ap
er

io
di

c
se

qu
en

ce
(E

3.
2.

1)
→

1

1
−

ae
−

jΩ

(1
3)

(n
+

1)
an

u
s[

n]
,

|a|
<

1
N

/A
fo

r
an

in
fin

ite
-d

ur
at

io
n

ap
er

io
di

c
se

qu
en

ce
1

(1
−

ae
−

jΩ
)2

(1
4)

a|n|
w

ith
|a|

<
1

N
/A

fo
r

an
in

fin
ite

-d
ur

at
io

n
ap

er
io

di
c

se
qu

en
ce

(E
3.

3.
1)

→
1

−
a2

1
−

2a
co

sΩ
+

a2

406 Appendix B

Table B.7 Definitions and properties of the Laplace transform and z-transform

Appendix B 407
Ta

bl
e

B
.8

L
ap

la
ce

tr
an

sf
or

m
s

an
d

z-
tr

an
sf

or
m

s
of

ba
si

c
fu

nc
tio

ns
/s

eq
ue

nc
es

X
(s

)
=

L{
x(

t)
}

x(
t)

x[
n]

X
[z

]
=

Z
{x

[n
]}

1
δ
(t

)
(1

)
1 T

δ
[n

]
1 T

e−t
1
s

δ
(t

−
t 1

)
(2

)
1 T

δ
[n

−
n 1

]
1 T

z−n
1

1 s
u

s(
t)

(3
)

u
s[

n]
z

z
−

1
=

1

1
−

z−
1

1 s2
t

u
s(

t)
(4

)
n

T
u

s[
n]

T
z

(z
−

1)
2

M
!

sM
+1

tM
u

s(
t)

(5
)

(n
T

)M
u

s[
n]

lim a→
0(−

1)
M

∂
M

∂
a

M

(
z

z
−

e−
a

T

)

1

s
+

a
e−a

t u
s(

t)
(6

)
e−a

T
n

u
s[

n]
=

bn
u

s[
n]

z

z
−

e−
a

T
=

z

z
−

b
(b

=
e−a

T
)

1

(s
+

a)
2

t
e−a

t
u

s(
t)

(7
)

n
T

e−a
T

n
u

s[
n]

T
ze

−a
T

(z
−

e−
a

T
)2

M
!

(s
+

a)
M

+1
tM

e−a
t

u
s(

t)
(8

)
(n

T
)M

e−a
T

n
u

s[
n]

(−
1)

M
∂

M

∂
a

M

(
z

z
−

e−
a

T

)

ω

s2
+

ω
2

si
n

ω
t

u
s(

t)
(9

)
si

n(
ω

T
n)

u
s[

n]
z

si
n

ω
T

z2
−

2z
co

sω
T

+
1

ω

(s
+

σ
)2

+
ω

2
e−σ

t
si

n
ω

t
u

s(
t)

(1
0)

e−σ
T

n
si

n(
ω

T
n)

u
s[

n]
ze

−σ
T

si
n

ω
T

(z
−

e−
σ

T
co

sω
T

)2
+

e−
2σ

T
si

n2
ω

T

s

s2
+

ω
2

co
sω

t
u

s(
t)

(1
1)

co
s(

ω
T

n)
u

s[
n]

z(
z
−

co
sω

T
)

z2
−

2z
co

sω
T

+
1

s
+

σ

(s
+

σ
)2

+
ω

2
e−σ

t
co

sω
t

u
s(

t)
(1

2)
e−σ

T
n

co
s(

ω
T

n)
u

s[
n]

z(
z
−

e−σ
T

co
sω

T
)

(z
−

e−
σ

T
co

sω
T

)2
+

e−
2σ

T
si

n2
ω

T

408 Appendix B

Table B.9 Bilateral z-transform of basic sequences

x[n] X[z] = Z{x[n]} = ∑∞
n=−∞ x[n]z−n with ROC

(1) δ[n] 1 All z

(2) δ[n − n1] z−n1 All z except 0 (for m > 0) or ∞
(for m < 0)

(3) us [n] z
z−1 = 1

1−z−1 |z| > 1

(4) −us [−n − 1] z
z−1 = 1

1−z−1 |z| < 1

(5) e−σ T nus [n] = anus [n] z
z−a = 1

1−az−1 (a = e−σ T) |z| > |a|
(6) −bnus [−n − 1] z

z−b = 1
1−bz−1 |z| < |b|

(7) e−σ T |n| = a|n| z
z−a − z

z−1/a (a = e−σ T) |a| < |z| <
∣∣ 1

a

∣∣
(8) nus [n] z

(z−1)2 |z| > 1

(9) −nus [−n − 1] z
(z−1)2 |z| < 1

(10) nanus [n] az
(z−a)2 |z| > |a|

(11) −nbnus [−n − 1] bz
(z−b)2 |z| < |b|

(12) n2 an us [n] az(z+a)
(z−a)3 |z| > |a|

(13) −n2bnus [−n − 1] bz(z+b)
(z−b)3 |z| < |b|

(14) n(n−1)···(n−K+2)
(K−1)! an−(K−1)us [n] z

(z−a)K |z| > |a|
(15) sin(Ω1n)us [n] z sin Ω1

(z−cos Ω1)2+sin2 Ω1
= z sin Ω1

z2−2z cos Ω1+1 |z| > 1

(16) cos(Ω1n)us [n] z(z−cos Ω1)
(z−cos Ω1)2+sin2 Ω1

= z(z−cos Ω1)
z2−2z cos Ω1+1 |z| > 1

(17) rn sin(Ω1n)us [n] zr sin Ω1

(z−r cos Ω1)2+r2 sin2 Ω1
= zr sin Ω1

z2−2zr cos Ω1+r2 |z| > |r |
(18) rn cos(Ω1n)us [n] z(z−r cos Ω1)

(z−r cos Ω1)2+r2 sin2 Ω1
= z(z−r cos Ω1)

z2−2zr cos Ω1+r2 |z| > |r |

Appendix C
Operations on Complex Numbers, Vectors,
and Matrices

C.1 Complex Addition

(a1 + jb1) + (a2 + jb2) = (a1 + a2) + j(b1 + b2) (C.1)

C.2 Complex Multiplication

Rectangular form: (a1 + jb1) × (a2 + jb2) = (a1a2 − b1b2) + j(a1b2 + b1a2)

(C.2a)

Polar form: r1∠θ1 × r2∠θ2 = r1e jθ1r2e jθ2 = r1r2e j(θ1+θ2) = r1r2∠(θ1 + θ2)
(C.2b)

C.3 Complex Division

Rectangular form:
a2 + jb2

a1 + jb1
= a2 + jb2

a1 + jb1
× a1 − jb1

a1 − jb1

= a1a2 + b1b2

a2
1 + b2

1

+ j
a1b2 − a2b1

a2
1 + b2

1

(C.3a)

Polar form:
r2∠θ2

r1∠θ1
= r2e jθ2

r1e jθ1
= r2

r1
e j(θ2−θ1) = r2

r1
∠(θ2 − θ1) (C.3b)

C.4 Conversion Between Rectangular Form
and Polar/Exponential Form

ar + jai = r∠θ = re jθ with r = |ar + jai | =
√

a2
r + a2

i and θ = tan−1 ai

ar
(C.4)

409

410 Appendix C

Here, r and θ are referred to as the absolute value and argument or phase angle
of the complex number ar + jai , respectively and j is the unit imaginary number√−1.

C.5 Operations on Complex Numbers Using MATLAB

If we do not use i and j for any other purpose, they represent the basic imagi-
nary unit

√−1 by default. Try typing the following statements into the MATLAB
Command Window:

>>c1= 1+2i; c2= 3-4i;
>>c1*c2, c1/c2 % multiplication/division of complex numbers
>>r=abs(c2) % absolute value of the complex number c2
>>sqrt(real(c2)ˆ2+imag(c2)ˆ2) % equivalent to the absolute value
>>th=angle(c2) % phase angle of the complex number c2 in radians
>>atan2(imag(c2),real(c2)) % equivalent to the phase angle
>>imag(log(c2)) % equivalent to the phase angle
>>th*180/pi % radian-to-degree conversion
>>r*exp(j*th) % polar-to-rectangular conversion
ans = 3.0000 - 4.0000i

>>C= [1+i 1-2i; -1+3i -1-4i] % a complex matrix
C1 = 1.0000 + 1.0000i 1.0000 - 2.0000i

-1.0000 + 3.0000i -1.0000 - 4.0000i
>>C1= C’ % conjugate transpose

C1 = 1.0000 - 1.0000i -1.0000 - 3.0000i
1.0000 + 2.0000i -1.0000 + 4.0000i

C.6 Matrix Addition and Subtraction[Y-1]

A + B =

⎡
⎢⎢⎣

a11 a12 · a1N

a21 a22 · a2N

· · · ·
aM1 aM2 · aM N

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

b11 b12 · b1N

b21 b22 · b2N

· · · ·
bM1 bM2 · bM N

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c11 c12 · c1N

c21 c22 · c2N

· · · ·
cM1 cM2 · cM N

⎤
⎥⎥⎦ = C

(C.5a)

with amn + bmn = cmn (C.5b)

Appendix C 411

C.7 Matrix Multiplication

AB =

⎡
⎢⎢⎣

a11 a12 · a1K

a21 a22 · a2K

· · · ·
aM1 aM2 · aM K

⎤
⎥⎥⎦
⎡
⎢⎢⎣

b11 b12 · b1N

b21 b22 · b2N

· · · ·
bK 1 bK 2 · bK N

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c11 c12 · c1N

c21 c22 · c2N

· · · ·
cM1 cM2 · cM N

⎤
⎥⎥⎦ = C (C.6a)

with cmn =
∑K

k=1
amkbkn (C.6b)

(cf.) For this multiplication to be done, the number of columns of A must equal the
number of rows of B.

(cf.) Note that the commutative law does not hold for the matrix multiplication, i.e.,
AB �= B A.

C.8 Determinant

The determinant of a K × K (square) matrix A = [amn] is defined by

det(A) = |A| =
∑K

k=0
akn(−1)k+n Mkn or

∑K

k=0
amk(−1)m+k Mmk (C.7a)

for any fixed 1 ≤ n ≤ K or 1 ≤ m ≤ K

where the minor Mkn is the determinant of the (K − 1) × (K − 1) (minor)
matrix formed by removing the kth row and the nth column from A and Akn =
(−1)k+n Mkn is called the cofactor of akn .

Especially, the determinants of a 2 × 2 matrix A2×2 and a 3 × 3 matrix A3×3 are

det(A2×2) =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ =
∑2

k=1
akn(−1)k+n Mkn = a11a22 − a12a21 (C.7b)

det(A3×3) =
∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣ − a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣
= a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

(C.7c)

Note the following properties.

• If the determinant of a matrix is zero, the matrix is singular.
• The determinant of a matrix equals the product of the eigenvalues of a matrix.

412 Appendix C

• If A is upper/lower triangular having only zeros below/above the diagonal in each
column, its determinant is the product of the diagonal elements.

• det (AT) = det (A); det (AB) = det (A) det (B); det (A−1) = 1/det (A)

C.9 Eigenvalues and Eigenvectors of a Matrix1

The eigenvalue or characteristic value and its corresponding eigenvector or charac-
teristic vector of an N × N matrix A are defined to be a scalar λ and a nonzero
vector v satisfying

A v = λ v ⇔ (A − λI)v = 0 (v �= 0) (C.8)

where (λ, v) is called an eigenpair and there are N eigenpairs for an N×N matrix A.
The eigenvalues of a matrix can be computed as the roots of the characteristic

equation

|A − λI | = 0 (C.9)

and the eigenvector corresponding to an eigenvalue λi can be obtained by substitut-
ing λi into Eq. (C.8) and solve it for v.

Note the following properties.

• If A is symmetric, all the eigenvalues are real-valued.
• If A is symmetric and positive definite, all the eigenvalues are real and positive.
• If v is an eigenvector of A, so is cv for any nonzero scalar c.

C.10 Inverse Matrix

The inverse matrix of a K × K (square) matrix A = [amn] is denoted by A−1

and defined to be a matrix which is pre-multiplied/post-multiplied by A to form an
identity matrix, i.e., satisfies

A × A−1 = A−1 × A = I (C.10)

An element of the inverse matrix A−1 = [αmn] can be computed as

αmn = 1

det(A)
Amn = 1

|A| (−1)m+n Mmn (C.11)

where Mkn is the minor of akn and Akn = (−1)k+n Mkn is the cofactor of akn .

1 See the website @http://www.sosmath.com/index.html or http://www.psc.edu/∼burkardt/papers/
linear glossary.html.

Appendix C 413

Note that a square matrix A is invertible/nonsingular if and only if

• no eigenvalue of A is zero, or equivalently
• the rows (and the columns) of A are linearly independent, or equivalently
• the determinant of A is nonzero;

C.11 Symmetric/Hermitian Matrix

A square matrix A is said to be symmetric, if it is equal to its transpose, i.e.,

AT ≡ A (C.12)

A complex-valued matrix is said to be Hermitian if it is equal to its complex
conjugate transpose, i.e.,

A ≡ A∗T where ∗ means the conjugate. (C.13)

Note the following properties of a symmetric/Hermitian matrix.

• All the eigenvalues are real.
• If all the eigenvalues are distinct, the eigenvectors can form an orthogonal/unitary

matrix U .

C.12 Orthogonal/Unitary Matrix

A nonsingular (square) matrix A is said to be orthogonal if its transpose is equal to
its inverse, i.e.,

AT A ≡ I ; AT ≡ A−1 (C.14)

A complex-valued (square) matrix is said to be unitary if its conjugate transpose is
equal to its inverse, i.e.,

A∗T A ≡ I ; A∗T ≡ A−1 (C.15)

Note the following properties of an orthogonal/unitary matrix.

• The magnitude (absolute value) of every eigenvalue is one.
• The product of two orthogonal matrices is also orthogonal; (AB)∗T (AB) =

B∗T (A∗T A)B ≡ I .

414 Appendix C

C.13 Permutation Matrix

A matrix P having only one nonzero element of value 1 in each row and column is
called a permutation matrix and has the following properties.

• Pre-multiplication/post-multiplication of a matrix A by a permutation matrix P ,
i.e., PA or AP yields the row/column change of the matrix A, respectively.

• A permutation matrix A is orthogonal, i.e., AT A ≡ I .

C.14 Rank

The rank of an M × N matrix is the number of linearly independent rows/columns
and if it equals min (M, N), then the matrix is said to be of maximal or full rank;
otherwise, the matrix is said to be rank-deficient or to have rank-deficiency.

C.15 Row Space and Null Space

The row space of an M ×N matrix A, denoted by R (A), is the space spanned by the
row vectors, i.e., the set of all possible linear combinations of row vectors of A that
can be expressed by ATααα with an M-dimensional column vector ααα. On the other
hand, the null space of the matrix A, denoted by N (A), is the space orthogonal
(perpendicular) to the row space, i.e., the set of all possible linear combinations of
the N -dimensional vectors satisfying Ax = 0.

C.16 Row Echelon Form

A matrix is said to be of row echelon form [W-6] if

• each nonzero row having at least one nonzero element has a 1 as its first nonzero
element, and

• the leading 1 in a row is in a column to the right of the leading 1 in the upper row.
• All-zero rows are below the rows that have at least one nonzero element.

A matrix is said to be of reduced row echelon form if it satisfies the above conditions
and additionally, each column containing a leading 1 has no other nonzero elements.

Any matrix, singular or rectangular, can be transformed into this form through
the Gaussian elimination procedure, i.e., a series of elementary row operations,
or equivalently, by using the MATLAB built-in routine “rref()”. For example,
we have

A =
⎡
⎣ 0 0 1 3

2 4 0 −8
1 2 1 −1

⎤
⎦ row→

change

⎡
⎣ 2 4 0 −8

0 0 1 3
1 2 1 −1

⎤
⎦

row
division

→
row

subtraction

⎡
⎣ 1 2 0 −4

0 0 1 3
0 0 1 3

⎤
⎦ row→

subtraction

⎡
⎣ 1 2 0 −4

0 0 1 3
0 0 0 0

⎤
⎦ = rre f (A)

Appendix C 415

Once this form is obtained, it is easy to compute the rank, the determinant, and the
inverse of the matrix, if only the matrix is invertible.

C.17 Positive Definiteness

A square matrix A is said to be positive definite if

x∗T A x > 0 for any nonzero vector x (C.16)

A square matrix A is said to be positive semi-definite if

x∗T A x ≥ 0 for any nonzero vector x (C.17)

Note the following properties of a positive definite matrix A.

• A is nonsingular and all of its eigenvalues are positive, and
• the inverse of A is also positive definite.

There are similar definitions for negative definiteness and negative semi-definiteness.
Note the following property, which can be used to determine if a matrix is

positive (semi-) definite or not. A square matrix is positive definite if and only if

(i) every diagonal element is positive and
(ii) every leading principal minor matrix has positive determinant.

On the other hand, a square matrix is positive semi-definite if and only if

(i) every diagonal element is nonnegative and
(ii) every principal minor matrix has nonnegative determinant.

Note also that the principal minor matrices are the sub-matrices taking the diagonal
elements from the diagonal of the matrix A and, say for a 3×3 matrix, the principal
minor matrices are

a11, a22, a33,

[
a11 a12

a21 a22

]
,

[
a22 a23

a32 a33

]
,

[
a11 a13

a31 a33

]
,

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

among which the leading ones are

a11,

[
a11 a12

a21 a22

]
,

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

416 Appendix C

C.18 Scalar(Dot) Product and Vector(Cross) Product

A scalar product of two N -dimensional vectors x and y is denoted by x · y and is
defined by

x · y =
∑N

n=1
xn yn = xT y (C.18)

An outer product of two 3-dimensional column vectors x = [x1 x2 x3]T and y =
[y1 y2 y3]T is denoted by x × y and is defined by

x × y =

⎡
⎣ x2 y3 − x3 y2

x3 y1 − x1 y3

x1 y2 − x2 y1

⎤
⎦ (C.19)

C.19 Matrix Inversion Lemma

[Matrix Inversion Lemma]
Let A, C and [C−1 + D A−1 B] be well-defined with non-singularity as well

as compatible dimensions. Then we have

[A + BC D]−1 = A−1 − A−1 B[C−1 + D A−1 B]−1 D A−1 (C.20)

Proof We will show that post-multiplying Eq. (C.20) by [A + BC D] yields an
identity matrix.

[A−1 − A−1 B[C−1 + D A−1 B]−1 D A−1][A + BC D]
= I + A−1 BC D − A−1 B[C−1 + D A−1 B]−1 D − A−1 B[C−1 + D A−1 B]−1 D A−1 BC D
= I + A−1 BC D − A−1 B[C−1 + D A−1 B]−1C−1C D − A−1 B[C−1 + D A−1 B]−1 D A−1 BC D
= I + A−1 BC D − A−1 B[C−1 + D A−1 B]−1[C−1 + D A−1 B]C D
= I + A−1 BC D − A−1 BC D ≡ I

C.20 Differentiation w.r.t. a Vector

The 1st derivative of a scalar-valued function f (x) w.r.t. a vector x = [x1 x2]T is
called the gradient of f (x) and defined as

∇ f (x) = d

dx
f (x) =

[
∂ f/∂x1

∂ f/∂x2

]
(C.21)

Appendix C 417

Based on this definition, we can write the following equation.

∂

∂x
xT y = ∂

∂x
yT x = ∂

∂x
(x1 y1 + x2 y2) =

[
y1

y2

]
= y (C.22)

∂

∂x
xT x = ∂

∂x
(x2

1 + x2
2) = 2

[
x1

x2

]
= 2x (C.23)

Also with an M × N matrix A, we have

∂

∂x
xT Ay = ∂

∂x
yT AT x = Ay (C.24a)

∂

∂x
yT Ax = ∂

∂x
xT AT y = AT y (C.24b)

where

xT Ay =
∑M

m=1

∑N

n=1
amn xm yn (C.25)

Especially for a square, symmetric matrix A with M = N , we have

∂

∂x
xT Ax = (A + AT)x

if A is symmetric→ 2Ax (C.26)

The 2nd derivative of a scalar function f (x) w.r.t. a vector x = [x1 x2]T is called the
Hessian of f (x) and is defined as

H (x) = ∇2 f (x) = d2

dx2
f (x) =

[
∂2 f/∂x2

1 ∂2 f/∂x1∂x2

∂2 f/∂x2∂x1 ∂2 f/∂x2
2

]
(C.27)

Based on this definition, we can write the following equation:

d2

dx2
xT Ax = A + AT if A is symmetric→ 2A (C.28)

On the other hand, the 1st derivative of a vector-valued function f(x) w.r.t. a
vector x = [x1 x2]T is called the Jacobian of f (x) and is defined as

J (x) = d

dx
f(x) =

[
∂ f1/∂x1 ∂ f1/∂x2

∂ f2/∂x1 ∂ f2/∂x2

]
(C.29)

Appendix D
Useful Formulas

419

Appendix E
MATLAB

Once you installed MATLAB�, you can click the icon like the one
at the right side to run MATLAB. Then you will see the MATLAB
Command Window on your monitor as depicted in Fig. E.1, where
a cursor appears (most likely blinking) to the right of the prompt
like “>>” waiting for you to type in commands/statements. If you
are running MATLAB of version 6.x or above, the main window has
not only the command window, but also the workspace and command history
boxes on the left-up/down side of the command window, in which you can see
the contents of MATLAB memory and the commands you have typed into the
Command window up to the present time, respectively (see Fig. E.1). You might
clear the boxes by clicking the corresponding submenu under the “Edit” menu
and even remove/restore them by clicking the corresponding submenu under the
“Desktop/Desktop Layout” menu.

How do we work with the MATLAB Command Window?

– By clicking “File” on the top menu and then “New”/“Open” in the File pull-down
menu, you can create/edit any file with the MATLAB editor.

Fig. E.1 The MATLAB command window with the workspace and command history boxes

421

422 Appendix E

– By clicking “File” on the top menu and then “Set Path” in the File pull-down
menu, you can make the MATLAB search path list include or exclude the paths
containing the files you want to or not to be run.

– If you are a beginner in MATLAB, then it may be worthwhile to click “Help”
on the top menu, “Demos” in the Help pull-down menu, (double-)click any topic
that you want to learn about, and watch the visual explanation about it.

– By typing any MATLAB commands/statements in the MATLAB Command Win-
dow, you can use various powerful mathematic/graphic functions of MATLAB.

– If you have an M-file which contains a series of commands/statements composed
for performing a target procedure, you can type in the file name (without the
extension “.m”) to run it.

Note the following:

1) the index of an array in MATLAB starts from 1, not 0, and
2) a dot(.) must be put before an operator to make a term-wise (element-by-

element) operation.

Table E.1 Functions and Variables in MATLAB
function Remark function Remark

cos(x) exp(x) exponential function
sin(x) log(x) natural logarithm
tan(x) log10(x) common logarithm
acos(x) cos−1 (x) abs(x) absolute value
asin(x) sin−1 (x) angle(x) phase of a complex

number[rad]
atan(x) −π/2 ≤ tan−1 (x) ≤ π/2 sqrt(x) square root
atan2(y,x) −π ≤ tan−1 (y, x) ≤ π real(x) real part
cosh(x) (ex + e−x)/2 imag(x) imaginary part
sinh(x) (ex − e−x)/2 conj(x) complex conjugate
tanh(x) (ex − e−x)/(ex + e−x) round(x) the nearest integer (round-off)
acosh(x) cosh−1 (x) fix(x) the nearest integer towards 0
asinh(x) sinh−1 (x) floor(x) the greatest integer ≤ x

rounding down
atanh(x) tanh−1 (x) ceil(x) the smallest integer ≥ x

rounding up
max maximum and its index sign(x) 1(positive)/0/-1(negative)
min minimum and its index mod(y,x) remainder of y/x
sum sum rem(y,x) remainder of y/x
prod product eval(f) evaluate an expression
norm norm feval(f,a) function evaluation
sort sort in the ascending order polyval value of a polynomial function
clock present time poly polynomial with given roots
find index of element(s) roots roots of polynomial
tic start a stopwatch timer toc read the stopwatch timer

(elapsed time from tic)
date present date

Appendix E 423

Table E.1 (continued)

function Remark function Remark

reserved variables with special meaning
i, j

√−1 pi π

eps machine epsilon (smallest
positive number)

Inf, inf largest number (∞)

realmax,
realmin

largest/smallest positive
number

NaN Not a Number(undetermined)

end the end of for-loop or if, while,
case statement or an array
index

break exit while/for loop

nargin # of input arguments nargout # of output arguments
varargin variable input argument list varargout variable output argument list

Table E.2 Graphic line specifications used in the plot() command

Line type Point type (Marker symbol) Color

- solid line .(dot) +(plus) ∗(asterisk) r: red m: magenta
: dotted line ∧: Δ >: > ◦(circle) g: green y: yellow
– dashed line p: � v: ∇ x: x-mark b: blue c: cyan(sky blue)
-. dash-dot d: ♦ <: < s: square(�) k: black

Some of mathematical functions and special reserved constants/variables defined
in MATLAB are listed in Table E.1. Table E.2 shows the graphic line specifications
used in the plot() command.

E.1 Convolution and Deconvolution

C=conv(A,B)

– For two sequences A = [a1 a2 · · · aN] and B = [b1 b2 · · · bM], this routine
computes their (linear) convolution C = [c1 c2 · · · cN+M−1] as

cn+1 =
∑min(n,M−1)

m=max(0,n−N+1)
an−m+1bm+1 (E.1)

– It can be used for multiplying two polynomials whose coefficients are A and
B, respectively:

(a1x N−1 + · · · + aN−1x + aN)(b1x M−1 + · · · + bM−1x + bM)

= c1x N+M−2 + · · · + cN+M−2x + cN+M−1

– C=xcorr2(A,B) performs two-dimensional convolution of matrices A
and B.

424 Appendix E

function z=conv circular(x,y,N)
% Circular convolution z(n)= (1/N) sum m=0ˆN-1 x(m)*y(n-m)
if nargin<3, N=min(length(x),length(y)); end
x=x(1:N); y=y(1:N); y crc= fliplr(y);
for n=1:N

y crc = [y crc(N) y crc(1:N-1)]; z(n) = x*y crc.’/N;
end

[Q,R]=deconv(C,A)

– This routine deconvolves a vector A out of C by long division to find Q and R
such that

C = conv(A, Q) + R

– It can be used for polynomial division C(x)/A(x) = Q(x) + R(x)/A(x).

E.2 Correlation

[phi,lags]=xcorr(x,y,opt)

– With no optional parameter opt, this routine computes the (linear) correla-
tion as

φxy[m] =
∑∞

n=−∞ x[n + m]y∗[n] =
∑∞

n=−∞ x[n]y∗[n − m]

=
∑∞

n=−∞ x[−n + m]y∗[−n] (E.2)

together with the corresponding time lag vector lags.
– With optional parameter opt = “coeff”/“biased”/“unbiased”, it outputs a

normalized version as Eqs. (1.4.16a)/(1.4.16b)/(1.4.16c), respectively.

function [phi,lags]=xcorr my(x,y,opt)
% computes the crosscorrelation of two vectors x and y as phi(1:Nx+Ny-1)
if nargin<3, opt=’reg’; if nargin<2, y=x; end, end
x=x(:).’; y=y(:).’; % make them row vectors
Nx=length(x); Ny=length(y); N=max(Nx,Ny);
for n=1:Nx-1
N1=min(Nx-n,Ny); m=1:N1; phi(n+Ny)= x(m+n)*y(m)’;
if opt(1:3)==’unb’, phi(n+Ny)= phi(n+Ny)/N1; end % regular or unbiased

end
for n=1-Ny:0
N2=min(Nx,Ny+n); m=1:N2; phi(n+Ny)= x(m)*y(m-n)’;
if opt(1:3)==’unb’, phi(n+Ny)= phi(n+Ny)/N2; end % regular or unbiased

end
if opt(1)==’b’, phi= phi/N; % biased version (1.4.16b)
elseif opt(1)==’c’, phi=phi/sqrt((x*x’)*(y*y’)); % coefficient version

end
lags=[-(Ny-1):(Nx-1)];

Appendix E 425

function phi=xcorr circular(x,y,N)
% Circular (cyclic) correlation of x and y with period N
if nargin<2, y=x; end
Nx = length(x); Ny = length(y);
if nargin<3, N=max(Nx,Ny); end
if Nx<N, x = [x zeros(1,N-Nx)]; elseif N<Nx, x = x(1:N); end
if Ny<N, y = [y zeros(1,N-Ny)]; elseif N<Ny, y = y(1:N); end
for n=1:N, phi(n) = x*y’/N; y = [y(N) y(1:N-1)]; end

PHI=xcorr2(X,Y)

– Two-dimensional cross-correlation of matrices X and Y

E.3 CTFS (Continuous-Time Fourier Series)

function [c,kk]=CTFS exponential(x,P,N)
% Find the complex exponential Fourier coefficients c(k) for k=-N:N
% x: A periodic function with period P
% P: Period, N: Maximum frequency index to specify the frequency range
w0=2*pi/P; % the fundamental frequency [rad/s]
xexp jkw0t = [x ’(t).*exp(-j*k*w0*t)’];
xexp jkw0t= inline(xexp jkw0t ,’t’,’k’,’w0’);
kk=-N:N; tol=1e-6; % the frequency range tolerance on numerical error
for k=kk

c(k+N+1)= quadl(xexp jkw0t,-P/2,P/2,tol,[],k,w0); % Eq. (2.1.5b)
end

E.4 DTFT (Discrete-Time Fourier Transform)

function [X,ph]=DTFT(x,W,n0)
% DTFT of x[n] for frequency W regarding the 1st sample as the n0-th one.
Nt =length(x); n=0:Nt-1;
if nargin<3, n0 = -floor(Nt/2); end
X= x*exp(-j*(n+n0)’*W); % Eq.(3.1.1)
if nargout==2, ph=angle(X); X=abs(X); end

E.5 DFS/DFT (Discrete Fourier Series/Transform)

function [X,ph]=DFS(x,N,n0)
% N-point DFS/DFT of x[n] regarding the 1st sample as the n0-th one.
if nargin<3, n0 = 0; end
n=n0+[0:length(x)-1]; k=[0:N-1];
X= x*exp(-j*2*pi*n’*k/N); % Eq.(3.4.7)
If nargout==2, ph=angle(X); X=abs(X); end

426 Appendix E

E.6 FFT (Fast Fourier Transform)

X=fft(x,N) or fft(x)

– This routine computes the N-point DFT X(k) of a given sequence x[n],
where the sequence will be zero-padded or truncated so that its resulting
length will be N. If the 2nd input argument is not given, the DFT size will
be set to the length of the sequence. In case the 1st input argument x is a
matrix, X will also be a matrix, each column of which is the FFT of the
corresponding column of x.

– Note that, to exploit the computational efficiency of FFT, the DFT size N
should be chosen as a power of 2 greater than or equal to the length of the
sequence.

x=ifft(X,N) or ifft(X)

– This routine computes the N-point IDFT x[n] of a given sequence X(k),
where the sequence will be zero-padded or truncated so that its resulting
length will be N. If the 2nd input argument is not given, the IDFT size will
be set to the length of the sequence. In case the 1st input argument x is a
matrix, x will also be a matrix, each column of which is the IDFT of the
corresponding column of X.

– Note that, to exploit the computational efficiency of FFT, the IDFT size N
should be chosen as a power of 2 greater than or equal to the length of the
sequence.

X=fft2(x,M,N) or fft2(x)

– This routine computes the two-dimensional DFT X(k,l) of a given matrix
x[m,n], where each column/row of x will be zero-padded or truncated so that
the resulting matrix size will be M × N. If the 2nd and 3rd input arguments
are not given, the DFT sizes will be set to the row/column size. In fact,
“fft2(x,M,N)” is equivalent to “fft(fft(x,M).’),N).′”

x=ifft2(X,M,N) or ifft2(X)

– This routine computes the two-dimensional IDFT x[m,n] of a given matrix
X(k,l), where each column/row of X will be zero-padded or truncated so that
the resulting matrix size will be M × N. If the 2nd and 3rd input arguments
are not given, the IDFT sizes will be set to the row/column size. In fact,
“ifft2(x,M,N)” is equivalent to “ifft(ifft(x,M).’),N).′”

Appendix E 427

y=fftshift(x)

– This routine swaps the first and second halves of the input vector x if x is
a vector and swaps quadrants one and three with quadrants two and four
if x is a matrix. It is used to rearrange the FFT sequence so that the zero
(DC) frequency component is located at the center with the negative/positive
frequency ones on the left/right side.

E.7 Windowing

function xw=windowing(x,w,opt)
N= length(x);
if isnumeric(w)

xw= x; Nw2=floor((N-w)/2); xw(1:Nw2)=0; xw(Nw2+w+1:end)=0;
else
switch lower(w(1:2))

case {’bt’,’tt’}, w= bartlett(N); % window(bartlett,N)
case ’bk’, w= blackman(N); % window(@blackman,N)
case ’cb’, if nargin<3, r=100; else r=opt; end

w= chebwin(N,r); % window(@chebwin,N,r)
case ’gs’, if nargin<3, alpha=2.5; else alpha=opt; end

w= gausswin(N,alpha); % window(@gausswin,N,alpha)
case ’hm’, w= hamming(N); % window(@hamming,N)
case ’hn’, w= hanning(N); % window(@hanning,N)
case ’ks’, if nargin<3, beta=0.5; else beta=opt; end

w= kaiser(N,beta); % window(@kaiser,N,beta)
otherwise w= x;

end
if size(x,1)==1, w=w.’; end
xw = x.*w;

end

(cf.) You can just type “window” or “wintool” into the MATLAB Command win-
dow to open the Window Design & Analysis Tool. Type “doc window/
signal”/“doc window” to see other usages of the signal processing toolbox
or filter design toolbox function “window”.

E.8 Spectrogram (FFT with Sliding Window)

[X,F,T]=specgram(x,N,Fs,WND,Noverlap) in MATLAB 6.x
versions

– This STFT (Short-Time Fourier Transform) routine computes the spectro-
gram, i.e., N-point DFT X(k,m) of mth segment that is windowed by WND
and overlaps with neighboring segment by Noverlap (whose default value is
length(WND)/2), where the length of WND must be greater than Noverlap,
but not greater than N.

428 Appendix E

– Input
• WND: Window sequence given as a column vector of length Nw such that

Noverlap < Nw <= N

If a scalar is given as WND, a Hamming window of length N is used.
• N: DFT size whose default value is min(256,length(x)).
• Fs: Sampling frequency which does not affect the spectrogram but is used

for scaling plots and its default value is 2 Hz.
• You can use the default value for any parameter by leaving it off or

using [].

– Output
• X: STFT X(k,m) of x with time and frequency increasing linearly across

its columns, from left to right and down its rows, starting at 0, respec-
tively. The number of coumns of X will be Nc = fix((length(x)-
Noverlap)/(length(WND)-Noverlap)). The number of rows of X will
be Nr = ceil((N + 1)/2) or N depending on whether x is real or
complex-valued.

• F and T: Nr normalized frequencies (Ω/π) in Hz and Nc times in column
vectors

– With no output arguments, the routine plots the absolute value of the spec-
trogram in the current figure, using imagesc(T,F,20∗log10(abs(X))), where
T is created with its starting point shifted by (Nw-Noverlap)/2. Then “axis
xy”, and “colormap(jet)” are used so that the low frequency content of the
first portion of the signal is displayed in the lower left corner of the axes.
>>imagesc(T,F,20∗log10(abs(X)+eps)); axis xy; colormap(jet)

(Example) Compute the spectrogram of a quadratic chirp.

Fs=1e3; Ts=1/Fs; t=0:Ts:2; % 0˜2 secs @ 1kHz sample rate
x= chirp(t,0,1,150,’q’); % quadratic chirp start @ 0 & cross 150Hz at t=1
N=64; Nhw=N; % The DFT size and the length of the Hanning window
Noverlap=32; [X,F,T] = specgram(x,N,Fs,Nhw,Noverlap);
specgram(x,N,Fs,Nhw,Noverlap); % Display the spectrogram
title(’Quadractic Chip: start at 0Hz and cross 150Hz at t=1sec’)

[X,F,T,P]=spectrogram(x,WND,Noverlap,N,Fs) in MATLAB
7.x versions

– This STFT routine computes the spectrogram, i.e., N-point DFT X(k,m)
of mth segment that is windowed by WND and overlaps with neighboring
segment by Noverlap.

– By default, x is divided into eight segments. If x cannot be divided exactly
into eight segments, it is truncated. Also by default, the DFT size N is set

Appendix E 429

to the maximum of 256 and the next power of 2 greater than the length
of each segment of x. WND is a Hamming window of length N. Noverlap
is the value producing 50% overlap between segments. Fs is the sampling
frequency, which defaults to normalized frequency 1 Hz.

– Each column of X contains an estimate of the short-term, time-localized fre-
quency content of x. Time increases across the columns of S and frequency
increases down the rows.

– The number of rows of X will be Nr = ceil((N + 1)/2) or N depending on
whether x is real-valued or complex-valued.

– The number of coumns of X will be Nc = fix((length(x)-Noverlap)/
(length(WND)-Noverlap)).

– If WND is given as an integer, x is divided into segments of length WND and
each segment is windowed by a Hamming window. If WND is a vector, x is
divided into segments equal to the length of WND and then each segment is
windowed by the window vector WND.

– Noverlap must be an integer smaller than WND (an integer) or its length if
WND is a vector.

– If the 4th input argument is given as not a scalar meaning the DFT size, but
a vector of frequency[Hz], spectrogram(x,WND,Noverlap,F) computes the
spectrogram at the frequencies in F using the Goertzel algorithm.

– The 2nd output F is the frequency vector of length N and the 3rd output T
the time vector of length Nc at which the spectrogram is computed, where
each value of T corresponds to the center of each segment.

– The 4th output P is a matrix of the same size as x containing the PSD of
each segment. For real x, each column of P has the one-sided periodogram
estimate of the PSD of each segment. If x is complex or a frequency vector
is given as the 4th input, P has the two-sided PSD.

E.9 Power Spectrum

[Pxy,F]=cpsd(x,y,WND,Noverlap,Nfft,Fs)

– This routine computes the one/two-sided CPSD (Cross Power Spectral Den-
sity) estimate Pxy of two real/complex-valued signal vectors x and y using
Welch’s averaged periodogram method. For real signals, Pxy has length
(Nfft/2 + 1) if Nfft is even, and (Nfft + 1)/2 if Nfft is odd. For complex
signals, Pxy always has length Nfft.

– By default, x is divided into 8 sections (with 50% overlap), each of which
is windowed with a Hamming window and eight modified periodograms are
computed and averaged.

430 Appendix E

– If WND is a vector, the signal vectors are divided into overlapping sections
of length equal to the length of WND, and then each section is windowed
with WND. If WND is an integer, x and y are divided into sections of length
WND, and a Hamming window of equal length is used. If the length of x and
y is such that it cannot be divided exactly into integer number of sections
overlapped by Novelap samples (or 50% by default), they will be truncated
accordingly. Noverlap must be an integer smaller than WND (given as an
integer) or the length of WND (given as a vector).

– Nfft specifies the DFT size used to calculate the CPSD estimate and its
default value is the maximum of 256 or the next power of 2 greater than
the length of each section of x (and y).

– Note that if Nfft is greater than the segment length, the data is zero-padded.
If Nfft is less than the segment, the segment is “wrapped” to make the length
equal to Nfft. This produces the correct FFT when Nfft < L, L being signal
or segment length.

– If the sampling frequency Fs is not given, F will be the vector of digital
frequencies in rad/sample at which the PSD is estimated. For real signals,
F will span the interval [0,pi] when Nfft is even and [0,pi) when Nfft is
odd. For complex signals, F spans [0, 2∗pi). If Fs[Hz] is given as the real
frequency, F will span the interval [0,Fs/2] when Nfft is even and [0,Fs/2)
when Nfft is odd. For complex signals, F spans the interval [0,Fs). If Fs is
given as [] (an empty set), it will be set to 1 Hz so that F will be a vector of
normalized frequencies.

– The string “twosided” or “onesided” may be placed in any position in the
input argument list after Noverlap to specify the frequency range over which
the CPSD estimated is found.

– cpsd(..) with no output arguments plots the CPSD estimate in dB per unit
frequency.

– cpsd(x,x,. . .) can be used to find the APSD (auto power spectral density) of
a signal x, which shows the distribution of signal power per unit frequency.

(cf.) An interactive GUI (graphic user interface) signal processing tool, named
“SPTool”, is available.

E.10 Impulse and Step Responses

[y,t,x]=impulse(sys,t f) or [y,x,t]=impulse(B,A,t f)

– This routine returns the impulse response y(t) (together with the time
vector t starting from 0 to t f and the state history x for a state-space
model) of an LTI system with transfer function B(s)/A(s) or a system model

Appendix E 431

sys that might have been created with either tf (transfer function), zpk
(zero-pole-gain), or ss (state space) as below:

>>sys=tf(B,A) % continuous-time system B(s)/A(s)
>>sys=tf(B,A,Ts) %discrete-time system B[z]/A[z]

with sampling interval Ts

– For continuous-time systems, the final time or time vector t f can be given
in the form of t 0:dt:t fwhere dt is the sample time of a discrete approx-
imation to the continuous system. For discrete-time systems, it should be
of the form t 0:Ts:t f where Ts is the sampling period. Note that the
impulse input is always assumed to arise at t = 0 (regardless of t 0).

– If t f is not given, the simulation time range will somehow be chosen
appropriately.

– [y,x,t]=impulse(B,A,t f) returns an empty set [] for the 2nd
output argument x.

– With no output arguments, the routine plots the impulse response with
plot() for continuous-time systems and with stair() for discrete-time
systems.

[g,t]=impz(B,A,N,Fs)

– This computes two N × 1 column vectors, g and t, where g consists of N
samples of the impulse response of the digital filter B[z]/A[z] and t is the cor-
responding time vector consisting of N sample times spaced Ts = 1/Fs[s]
apart. Note that Fs is 1 by default.

– The impulse response can also be obtained from filter(B,A,[1
zeros(1,N-1)]).

– With no output arguments, the routine plots the impulse response using
stem(t,g).

[y,x]=dimpulse(A,B,C,D,IU,N) or y=dimpulse(B,A,N)

– This returns N samples of the impulse response in y (together with the state
history x for a state-space model) of a discrete-time LTI system described
by state-space model (A,B,C,D) or transfer function B[z]/A[z] to the unit
impulse input (applied to the IUth input terminal), where the state-space
model is given as

x[n + 1] = Ax[n] + Bu[n]

y[n] = Cx[n] + Du[n]

432 Appendix E

[y,t,x]=step(sys,t f) or [y,x,t]=step(B,A,t f)

– This routine returns the step response y(t) (together with the time vector t
starting from 0 to the final time t f and the state history x for a state-space
model) of the LTI model sys that might have been created with either tf
(transfer function), zpk (zero-pole-gain), or ss (state space).

– For a continuous-time system, t f can be given as a time vector in the form
of t 0:dt:t f where dt is the sample time of a discrete approximation
to the continuous system. For a discrete-time system, it can be given in the
form of t 0:Ts:t f where Ts is the sampling interval. Note that the unit
step input is always assumed to arise at t = 0 (regardless of t 0).

– If the final time or time vector t f is not given, the simulation time range
and number of points will somehow be chosen appropriately.

– [y,x,t]=step(B,A,t f) returns an empty set [] for the 2nd output
argument x.

– With no output arguments, the routine plots the step response with plot()
for continuous-time systems and with stair() for discrete-time systems.

[y,x]=dstep(A,B,C,D,IU,N) or y=dstep(B,A,N)

– This returns N samples of the step response in y (together with the state
history x for a state-space model) of a discrete-time LTI system described
by state-space model (A,B,C,D) or transfer function B[z]/A[z] to the unit
step input (applied to the IUth input terminal).

[y,t,x]=lsim(sys,u,t,x0)

– This routine returns the time response (together with the time vector t and
the state history x) of the LTI system sys (with the initial state x0 at time t(1)
for state-space models only) to the input signal u(t) where the input matrix
u has as many columns as the input coefficient matrix B and its ith row
specifies u(t(i)) where sys=ss(A,B,C,D).

– For discrete-time systems, u should be sampled at the same rate as sys and
in this case, the input argument t is redundant and can be omitted or set to
the empty matrix.

– For continuous-time systems, choose the sampling period t(n + 1) − t(n)
small enough to describe the input u accurately.

[y,x]=dlsim(A,B,C,D,u,x0) or y=dlsim(B,A,u)

– This routine returns the time response (together with the state history x)
of a discrete-time LTI system described by state space model (A,B,C,D) or
transfer function B[z]/A[z] (with the initial state x0 for state-space models
only) to the input signal u[n] where the input matrix u has as many columns
as the input coefficient matrix B.

Appendix E 433

E.11 Frequency Response

G=freqs(B,A,w) (w : analog frequency vector[rad/s])
– This routine returns the frequency response of a continuous-time system by

substituting s = jω (ω = w) into its system function G(s) = B(s)/A(s) =
(b1s N B−1 + · · · + bN B)/(a1s N A−1 + · · · + aN A):

G(ω) = G(s)|s= jω = b1s N B−1 + · · · + bN B−1s + bN B

a1s N A−1 + · · · + aN A−1s + aN A

∣∣∣∣
s= jω

(E.3a)

G=freqz(B,A,W) (W : digital frequency vector[rad/sample])
– This routine returns the frequency response of a discrete-time system by

substituting z = e jΩ (Ω = W) into its system function G[z] = B[z]/A[z] =
(b1 + · · · + bN B z−(N B−1))/(a1 + · · · + aN Az−(N A−1)):

G(Ω) = G[z]|z=e jΩ = b1 + b2z−1 + · · · + bN B z−(N B−1)

a1 + a2z−1 + · · · + aN Az−(N A−1)

∣∣∣∣
z=e jΩ

(E.3b)

[G,W]=freqz(B,A,N)
(with N: number of digital frequency points around the upper half of the unit

circle)
– This routine returns the frequency response of a discrete-time system by

substituting z = e jΩk (Ωk = 2kπ/N with k = 0 : N − 1) into its system
function G[z] = B[z]/A[z] where the 2nd output argument is a column
vector consisting of {Ωk = kπ/N , k = 0 : N − 1}.

[G,W]=freqz(B,A,N,’whole’)
(with N: number of digital frequency points around the whole unit circle

– This routine returns the frequency response of a discrete-time system by
substituting z = e jΩk (Ωk = 2kπ/N with k = 0 : N − 1) into its system
function G[z] = B[z]/A[z].

G=freqz(B,A,f,fs) (with f: digital frequency vector in Hz, fs: sampling
frequency in Hz)
– This routine returns the frequency response of a discrete-time system by

substituting z = e jΩ (Ω = 2π f/ fs) into its system function G[z] =
B[z]/A[z].

434 Appendix E

E.12 Filtering

[y,wf]=filter(B,A,x,w0) or
[y,wf]=filter(Gd structure,x,w0)

– This routine computes the output y (together with the final condition wf)
of the digital filter G[z] = B[z]/A[z] = (b1 + · · · + bN B z−(N B−1))/(a1 +
· · · + aN Az−(N A−1)) (described by numerator B and denominator A or a fil-
ter structure constructed using dfilt()) to the input x (with the initial
condition w0).

– Let every filter coefficient be divided by a1 for normalization so that we have
the system function of the digital filter as

G[z] = b1 + b2z−1 + · · · + bN B z−(N B−1)

a1 + a2z−1 + · · · + aN Az−(N A−1)

bi /a1→bi=
ai /a1→ai

b1 + b2z−1 + · · · + bN B z−(N B−1)

1 + a2z−1 + · · · + aN Az−(N A−1)
(E.4)

x [n]

delay

: signal distribution point, : summer

y [n]
bN

z–1 z–1 z–1

wN–1[n] w2[n] w1[n]

b2 b1

w2[n–1] w1[n–1]wN–2[n]wN–1[n–1]

bN–1

–aN –a2–aN–1

Fig. E.2 Implementation of an FIR filter in the transposed direct form II structure

The difference equation describing the input-output relationship of the filter

y[n] = −a2 y[n−1]−· · ·−aN A y[n−N A+1]+b1x[n]+· · ·+bN B x[n−N B+1]
(E.5)

is implemented in the transposed direct form II structure (Fig. E.2) as

y[n] = w1[n − 1] + b1x[n]
w1[n] = w2[n − 1] − a2 y[n] + b2x[n]
· ·
wN−2[n] = wN−1[n − 1] − aN−1 y[n] + bN−1x[n]
wN−1[n] = −aN y[n] + bN x[n]

where N = max(N A, N B) and the initial condition vector w0 of
length N − 1 can be determined from the past output/input by using
w0=filtic(B,A,yp,xp).

Appendix E 435

– When the input x is given as an L × M matrix, filter() operates on
each column of the input matrix. If the initial state wi is nonzero, it must be
given as an (N − 1) × M matrix where N = max(N A, N B). The following
program illustrates how to apply it to obtain the output(s) of a filter with
some initial states sample by sample:

Ts=0.001; tt=[0:Ts:0.2]; x= [sin(2*pi*20*tt); cos(2*pi*50*tt)]; x=x.’;
B=[1 1]; A=[1 1.5 0.5]; %numerator/denominator of filter transfer function
NB=length(B); NA=length(A); N=max(NA,NB)-1;
[Nx,M]=size(x); wi=zeros(NB-1,M); % input dimension and initial state
for n=1:Nx

if n==1, [yn,wi]= filter(B,A,[zeros(1,M); x(n,:)],wi);
else [yn,wi]= filter(B,A,[x([n-1 n],:)],wi);
end
y(n,:) = yn(end,:);

end

function [y,y0]=filterb(B, A, x, y0)
% Input: x= [x(-NB+1),..,x(0),x(1),..,x(n)]: the past/future input
% y0= [y(-NA+1),..,y(-1)]: the past output
% Output: y= [y(0),y(1),..,y(n)]: the output
% y0= [y(n-NA+1),..,y(n)]: the last output
% to be used for successive processing of the same filter
if nargin<4, y0=[]; end
NA= length(A);
A1=A;
for i=1:NA
if A(i)==0, A1=A(i+1:NA); else break; end

end
A=A1; NA= length(A); NB= length(B); N= NA-1; % the order of filter
Ny0= length(y0);
if length(x)<NB, x=[x zeros(1,NB-length(x))]; end
if Ny0<=N %the initial values of the output
y0= [zeros(1,N-Ny0) y0];
elseif Ny0>N
y0= y0(Ny0-N+1:Ny0);

end
A1= A(NA:-1:2);
if A(1)˜=1, B= B/A(1); A1= A1/A(1); end
for n= 1: length(x)-NB+1

y(n)= B*x(n+NB-1:-1:n)’;
if NA>1, y(n)= y(n)-A1*y0’; end
y0= [y0(2:N) y(n)];

end

Y=filter2(B,X)

– This routine computes the output Y of the 2-D (two-dimensional) FIR filter
described by matrix B where most of its work is done by using conv2.

436 Appendix E

E.13 Filter Design

E.13.1 Analog Filter Design

[N,wc]=buttord(wp,ws,Rp,As,’s’)

– This routine selects the lowest order N and cutoff frequency wc of analog
Butterworth filter that has the passband ripple<= Rp[dB] and stopband
attenuation>= As[dB] for the passband edge frequency wp[rad/s] and
stopband edge frequency ws[rad/s]. (Sect. 7.1)

– The cutoff frequency is the frequency at which the magnitude response is
1/

√
2.

– Note that for BPF/BSF, the passband edge frequency wp and stopband edge
frequency ws should be given as two-element vectors like [wp1 wp2] and
[ws1 ws2].

[B,A]=butter(N,wc,’s’)

– This routine designs an analog Butterworth filter, returning the numera-
tor/denominator of system function of designed filter.

– [B,A]=butter(N,wc,’s’) for an analog LPF of order N with cutoff
frequency wc[rad/s]

– butter(N,[wc1 wc2],’s’) for an analog BPF of order 2N with
passband wc1 < w < wc2 [rad/s]

– butter(N,[wc1 wc2],’stop’,’s’) for an analog BSF of order 2N
with stopband wc1 < w < wc2 [rad/s]

– butter(N,wc,’high’,’s’) for an analog HPF of order N with cutoff
frequency wc[rad/s]

– Note that N and wc can be obtained from
[N,wc]=buttord(wp,ws,Rp,As,’s’).

[B,A]=cheby1(N,Rp,wpc,’s’)

– This routine designs an analog Chebyshev type I filter with passband rip-
ple Rp[dB] and critical passband edge frequency wpc (Use Rp = 0.5 as a
starting point, if not sure).

– Note that N and wpc can be obtained from
[N,wpc]=cheby1ord(wp,ws,Rp,As,’s’).

[B,A]=cheby2(N,As,wsc,’s’)

– This routine designs an analog Chebyshev type II filter with stopband atten-
uation As[dB] down and critical stopband edge frequency wsc (Use As = 20
as a starting point, if not sure).

– Note that N and wsc can be obtained from
[N,wsc]=cheby2ord(wp,ws,Rp,As,’s’).

Appendix E 437

[B,A]=ellip(N,Rp,As,wpc,’s’)

– This routine designs an analog Elliptic filter with passband ripple Rp,
stopband attenuation As, and critical passband edge frequency wpc (Use
Rp = 0.5[dB] & As = 20[dB], if unsure).

– Note that N and wpc can be obtained from
ellipord(wp,ws,Rp,As,’s’).

E.13.2 Digital Filter Design – IIR (Infinite-duration Impulse
Response) Filter

[N,fc]=buttord(fp,fs,Rp,As)

– This routine selects the lowest order N and normalized cutoff frequency fc of
digital Butterworth filter that has passband ripple<= Rp[dB] and stopband
attenuation>= As[dB] for passband edge frequency fp and stopband edge
frequency fs.

– The cutoff frequency is the frequency at which the magnitude response is
1/

√
2.

– As far as digital filter is concerned, every digital frequency Ωi = ωi T =
2π fi T [rad/sample] should be divided by π so that it can be normalized
into the range [0, 1] where 1.0 corresponds to the digital frequency π

[rad/sample].
– Note that for BPF/BSF, the passband edge frequency fp and stopband edge

frequency fs should be given as two-dimensional vectors like [fp1 fp2] and
[fs1 fs2].

[B,A]=butter(N,fc)

– This routine designs the system function of digital Butterworth filter.
– [B,A]=butter(N,fc): digital LPF of order N with cutoff frequency fc
– butter(N,[fc1 fc2]): digital BPF of order 2N with passband fc1 <

f < fc2
– butter(N,[fc1 fc2],’stop’): digital BSF of order 2N with stop-

band fc1 < f < fc2
– butter(N,fc,’high’): digital HPF of order N with cutoff fre-

quency fc
– Note that N and fc can be obtained from
[N,fc]=buttord(fp,fs,Rp,As).

438 Appendix E

[B,A]=cheby1(N,Rp,fpc,opt)

– This routine designs a digital Chebyshev type I filter with passband ripple
Rp[dB] and critical passband edge frequency fpc (Use Rp = 0.5 as a starting
point, if not sure).

– Note that N and fpc can be obtained from
[N,fpc]=cheby1ord(fp,fs,Rp,As).

[B,A]=cheby2(N,As,fsc,opt)

– This routine designs a digital Chebyshev type II filter with stopband attenu-
ation As[dB] down and critical stopband edge frequency fsc (Use As = 20
as a starting point, if not sure).

– Note that N and fsc can be obtained from
[N,fsc]=cheby2ord(fp,fs,Rp,As).

[B,A]=ellip(N,Rp,As,fpc,opt)

– This routine designs a digital elliptic filter with passband ripple Rp, stopband
attenuation As, and critical passband edge frequency fpc (Use Rp = 0.5[dB]
and As = 20[dB], if unsure).

– Note that N and fpc can be obtained from ellipord(fp,fs,Rp,As).

E.13.3 Digital Filter Design – FIR (Finite-duration Impulse
Response) Filter

B=fir1(N,fc,opt)

– This designs a linear-phase FIR filter by using the windowing method.
(Sect. 7.2.2.1)

– The normalized cutoff frequency fc must be between 0 and 1, with 1.0 cor-
responding to the digital frequency π [rad/sample] or half the sampling rate.

– B=fir1(N,fc) designs an Nth order lowpass FIR filter with linear phase
and returns the (real-valued) filter coefficients in a row vector B of length
N + 1 where the normalized gain of the filter at fc is −6 dB.

– B=fir1(N,fc,’high’) designs an Nth order highpass FIR filter.
– If fc is a two-element vector such as fc = [fc1 fc2], fir1(N,fc)

designs an Nth order BPF with passband fc1 < f < fc2, while
fir1(N,fc,’stop’) designs a bandstop filter.

– If fc is a multi-element vector such as fc = [fc1 fc2 fc3 fc4 . . . fcM], it
designs an Nth order multi-band filter with bands 0 < f < fc1, fc1 <

f < fc2, . . . , fcM < f < 1. Note that, depending on the value of
a trailing input argument opt = “DC-1” or “DC-0”, it makes the first

Appendix E 439

band a passband or stopband, that is, B=fir1(N,fc,’DC-1’) and
B=fir1(N,fc,’DC-0’) make the first band a passband and a stopband,
respectively.

– B=fir1(N,fc,WND) designs an Nth order FIR filter using the N + 1
length vector WND to window the impulse response. If empty or omit-
ted (by default), fir1 uses a Hamming window of length N + 1. Other
windows such as Boxcar, Hann, Bartlett, Blackman, Kaiser, and Cheb-
win can be specified with an optional trailing argument. For example,
fir1(N,fc,chebwin(N+1,R)) uses a Chebyshev window.

– For filters with a non-zero gain at fs/2 (half the sampling rate corresponding
to the digital frequency π), e.g., HPF and BSF, N must be even. If N is an
odd number for HPF or BSF, it will be incremented by one to make the filter
order even and the window length will be N + 2.

– By default, the filter is scaled so that the center of the first passband has a unit
magnitude after windowing. To prevent this scaling, use a trailing ’noscale’
argument as illustrated by
fir1(N,fc,’high’,’noscale’) and
fir1(N,fc,WND,’noscale’).

B=fir2(N,F,A)

– This designs a FIR filter by using the frequency sampling method. (See
Example 7.4)

– B=fir2(N,F,A) designs an Nth order FIR filter with the frequency
response specified by frequency vector F and amplitude vector A, and
returns the filter coefficients in a row vector B of length N + 1.

– Vectors F and A specify the frequency and magnitude breakpoints such that
plot(F,A) would show a plot of the desired frequency response, where the
frequencies in F must be between 0.0 < F < 1.0 (with 1.0 corresponding
to half the sample frequency) and must also be in increasing order starting
from 0.0 and ending with 1.0.

– The filter B is real, and has linear phase, consisting of symmetric coefficients
obeying B(k) = B(N + 2 − k) for k = 1, 2, . . . , N + 1.

– By default, fir2 windows the impulse response with a Hamming window.
Other windows can be specified with an optional trailing argument.

– For filters with a non-zero gain at fs/2 (half the sampling rate corresponding
to the digital frequency π), e.g., HPF and BSF, N must be even. If N is an
odd number for HPF or BSF, it will be incremented by one to make the filter
order even and the window length will be N + 2.

B=firpm (N, F, A)

– This designs a Parks-McClellan optimal equiripple FIR filter with desired
frequency response.

440 Appendix E

– B=firpm (N, F, A) returns a length N + 1 linear phase (real, symmet-
ric coefficients) FIR filter which has the best approximation to the desired
frequency response described by F and A in the minimax sense that the
maximum error is minimized.

– F is a vector of paired frequency band edges in ascending order between
0 and 1 (with 1.0 corresponding to half the sample frequency). A is a real
vector (of the same size as F) specifying the desired amplitude of the fre-
quency response, which is the line connecting the points (F(k),A(k)) and
(F(k+1), A(k+1)) for odd k where the bands between F(k+1) and F(k+2)
for odd k is treated as “transition bands” or “don’t care” regions.

– For filters with a non-zero gain at fs/2 (half the sampling rate corresponding
to the digital frequency π), e.g., HPF and BSF, N must be even. If N is an
odd number for HPF or BSF, it will be incremented by one to make the filter
order even. Alternatively, you can use a trailing ‘h’ flag to design a type 4
linear phase filter (Table 7.2) and avoid incrementing N.

– B=firpm (N, F, A, W) uses the weights in W to weight the error
where W has one entry per band (so it is half the length of F and A) which
tells fripm() how much emphasis to put on minimizing the error in each band
relative to the other bands.

– B=firpm (N, F, A, ‘h’) and B=firpm (N, F, A, W,
‘Hilbert’) design filters having odd symmetry, that is,
B(k) = −B(N + 2 − k) for k = 1, . . . , N + 1. A special case is a
Hilbert transformer having an approximate amplitude of 1 across the entire
band, which will be designed by the following statement: B=firpm (30,
[.1 .9], [1 1], ‘Hilbert’).

– B=firpm (N, F, A, ‘d’) and B=firpm (N, F, A, W,
‘differentiator’) also design filters having odd symmetry, but with
a special weighting scheme for non-zero amplitude bands. The weight is
assumed to be equal to the inverse of frequency times the weight W. Thus
the filter has a much better fit at low frequency than at high frequency. This
designs FIR differentiators.

– firpm() normally designs symmetric (even) FIR filters while
firpm(. . .,‘h’) and firpm(. . .,‘d’) design antisymmetric (odd) filters.

B=firls (N, F, A)

– This designs a linear-phase FIR filter using a least-squares error (LSE)
method.

– Everything is the same with firpm().

Appendix E 441

B=fircls (N, F, A, ub, lb)

– This designs a length N + 1 linear-phase FIR multi-band filter (with the fre-
quency response amplitude A upperbounded/lowerbounded by ub/lb) using
a constrained LSE.

– F is a vector of normalized transition frequencies in ascending order from 0
to 1 (corresponding to half the sampling rate), whose length is one plus the
number of bands, i.e., length(A) + 1.

– A, ub, and lb are vectors of length(F)-1 piecewise constant desired frequency
response amplitudes and their upper/lower bounds for each band.

(Ex) B=fircls (10, [0 0.4 0.8 1], [0 1 0], [0.02 1.02 0.01],

[−0.02 0.98 −0.01])

B=fircls1 (N, fc, rp, rs, opt)

– This designs a length N + 1 linear-phase FIR LPF/HPF (with the cut-
off frequency fc) using a constrained LSE method where rp/rs specify the
passband/stopband ripple, respectively.

– With opt=‘high’, it designs a HPF.

(Ex) B=fircls1 (10, 0.7, 0.02, 0.01, ‘high’)

(cf.) The GUI signal processing tool “sptool” manages a suite of four other GUIs:
signal browser, filter designer, fvtool (for filter visualization), and spectrum
viewer where “fdatool” is for filter design and analysis.

E.14 Filter Discretization

[Bz,Az]=impinvar (Bs, As, fs, tol)

– This uses the impulse-invariant method (Sect. 6.2.1) to convert a continuous-
time system G(s) = B(s)/A(s) into an equivalent discrete-time system
G[z] = B[z]/A[z] such that the impulse response is invariant except for
being scaled by Ts = 1/fs.

– If you leave out the argument fs or specify it as the empty vector [], its
default value 1 Hz will be taken.

– The fourth input argument tol specifies the tolerance to determine whether
poles are repeated. A larger tolerance increases the likelihood that
impinvar() interprets closely located poles as multiplicities (repeated
ones). The default is 0.001, or 0.1% of a pole’s magnitude. Note that the
accuracy of the pole values is still limited to the accuracy obtainable by the
roots() function.

442 Appendix E

[Bz,Az]=bilinear (Bs, As, fs, fp)

– This uses the bilinear transformation (BLT) method (Sect. 6.3.5) to convert
a continuous-time system G(s) = B(s)/A(s) into its discrete equivalent
G[z] = B[z]/A[z] such that the entire LHP on the s-plane maps into the
unit circle on the z-plane in one-to-one correspondence.

– The numerator/denominator polynomial vector Bs and As of an analog fil-
ter are written in descending powers of s and the numerator/denominator
polynomial vector Bz and Az of the discrete-time equivalent are written in
descending powers of z (ascending powers of z−1).

– The optional parameter fp[Hz] specifies a prewarping match frequency for
which the frequency responses before and after BLT mapping match exactly.

sysd=c2d (sysc, Ts, method)

– This converts a continuous-time system (transfer) function sysc (that might
have been created with either tf (transfer function), zpk (zero-pole-gain),
or ss (state space)) into an equivalent discrete-time system function sysd
with the sampling interval Ts[s] by using the discretization method among
the following:

‘zoh’ : Zero-order hold on the inputs (by default) - Sect. 6.2.2
‘foh’ : Linear interpolation of inputs (triangle approximation)
‘imp’ : Impulse-invariant discretization - Sect. 6.2.1
‘tustin’ : Bilinear (Tustin) approximation - Sect. 6.3.5
‘prewarp’ : Tustin approximation with frequency prewarping where the

critical frequency Wc (in rad/s) is specified as fourth input,
e.g., as sysd = c2d(sysc,Ts,‘prewarp’,Wc)

‘matched’ : Matched pole-zero method (for SISO systems only) –
Sect. 6.3.6

[Ad,Bd]=c2d (Ac, Bc, Ts)
– This converts a continuous-time state equation x’(t) = Ac∗x(t) + Bc∗u(t)

into the zero-order-hold (z.o.h.) equivalent discrete-time state equation x[n+
1] = Ad∗x[n] + Bd∗u[n] with the sampling interval Ts[s]. (Sect. 8.4.1)

sysc=d2c (sysd, method)

– This converts a discrete-time system function into an equivalent continuous-
time system function.

Appendix E 443

E.15 Construction of Filters in Various Structures Using dfilt()

[SOS,Kc]=tf2sos(B,A); % Transfer function B(s)/A(s) to Cascade (Chap. 7)
Gd=dfilt.df1sos(SOS,Kc); % Cascade to Direct I form
Gd=dfilt.df1tsos(SOS,Kc); % Cascade to Direct I transposed form
Gd=dfilt.df2sos(SOS,Kc); % Cascade to Direct II form
Gd=dfilt.df2tsos(SOS,Kc); % Cascade to Direct II transposed form
Gd=dfilt.dffir(B); % FIR transfer function to Direct form
Gd=dfilt.dfsymfir(B); % FIR transfer function to Direct symmetric form
Gd=dfilt.dfasymfir(B); % FIR transfer function to Direct asymmetric form
Gd=dfilt.latticearma(r,p); % Lattice/Ladder coefficients to lattice ARMA
Gd=dfilt.latticeallpass(r); % Lattice coefficients to lattice Allpass
Gd=dfilt.latticear(r); % Lattice coefficients to lattice Allpole
Gd=dfilt.latticemamax(r); % Lattice coefficients to lattice MA max-phase
Gd=dfilt.latticemamin(r); % Lattice coefficients to lattice MA min-phase
[A,B,C,D]=tf2ss(B,A); G ss=dfilt.statespace(A,B,C,D); % State space
G cas= dfilt.cascade(Gd1,Gd2); % Cascade structure
G par= dfilt.parallel(Gd1,Gd2); % Parallel structure

%sigApE 01.m: % To practice using dfilt()
Fs=5e4; T=1/Fs; % Sampling frequency and sampling period
ws1=2*pi*6e3; wp1=2*pi*1e4; wp2=2*pi*12e3; ws2=2*pi*15e3; Rp=2; As=25;
fp=[wp1 wp2]*T/pi; fs=[ws1 ws2]*T/pi; %Normalize edge freq into [0,1]
[N,fc]=cheb1ord(fp,fs,Rp,As) % Order & critical passband edge freq
[B,A]= cheby1(N,Rp,fc) % numerator/denominator of Chebyshev I BPF
fn=[0:511]/512; W=pi*fn;
plot(fn,20*log10(abs(freqz(B,A,W))+eps)) % Frequency response

[SOS,Kc]= tf2sos(B,A) % Cascade form realization
[BBc,AAc]= tf2cas(B,A) % Alternative
[BBp,AAp,Kp]= tf2par z(B,A) % Parallel form realization: dir2par(B,A)
[r,p]= tf2latc(B,A) % Lattice/Ladder coefficients of lattice filter
G df1sos= dfilt.df1sos(SOS,Kc); % Direct I form (Fig. 7.23(a))
pause, plot(fn,20*log10(abs(freqz(G df1sos,W))+eps),’r’)

G df1tsos=dfilt.df1tsos(SOS,Kc); % Direct I transposed form (Fig.7.23(b))
pause, plot(fn,20*log10(abs(freqz(G df1tsos,W))+eps))

G df2sos= dfilt.df2sos(SOS,Kc); % Direct II form (Fig. 7.23(c))
pause, plot(fn,20*log10(abs(freqz(G df2sos,W))+eps),’r’)

G df2tsos=dfilt.df2tsos(SOS,Kc); %Direct II transposed form (Fig.7.23(d))
pause, plot(fn,20*log10(abs(freqz(G df2tsos,W))+eps))

G latticeARMA= dfilt.latticearma(r,p); % Lattice ARMA (Fig.7.23(e))
pause, plot(fn,20*log10(abs(freqz(G latticeARMA,W))+eps),’r’)

[A,B,C,D]=tf2ss(B,A); G ss=dfilt.statespace(A,B,C,D); % State space
pause, plot(fn,20*log10(abs(freqz(G ss,W))+eps),’m’)

G1=dfilt.df2tsos(BBc(1,:),AAc(1,:)); G2=dfilt.df2tsos(BBc(2,:),AAc(2,:));
G3=dfilt.df2tsos(BBc(3,:),AAc(3,:))
G cascade= dfilt.cascade(G1,G2,G3); % Cascade form
plot(fn,20*log10(abs(freqz(G cascade,W))+eps)), hold on
G1=dfilt.df2tsos(BBp(1,:),AAp(1,:)); G2=dfilt.df2tsos(BBp(2,:),AAp(2,:))
G3=dfilt.df2tsos(Kp,1);
G parallel= dfilt.parallel(G1,G2,G3); % Parallel form
pause, plot(fn,20*log10(abs(freqz(G parallel,W))+eps),’r’)
G latticeAR allpass=dfilt.latticeallpass(r); %Lattice Allpass Fig.7.23(f)
G latticeAR allpole= dfilt.latticear(r); % Lattice Allpole Fig.7.23(f)
G dffir= dfilt.dffir(B);
G dfsymfir= dfilt.dfsymfir(B); G dfasymfir= dfilt.dfasymfir(B);
G latticeMA maxphase=dfilt.latticemamax(r); % MA max phase Fig.7.23(g)
G latticeMA minphase= dfilt.latticemamin(r); % MA min phase Fig.7.23(g)

444 Appendix E

function [BB,AA,K]=tf2par s(B,A)
% Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
EPS= 1e-8;
B= B/A(1); A= A/A(1);
I= find(abs(B)>EPS); K= B(I(1)); B= B(I(1):end);
p= roots(A); p= cplxpair(p,EPS); Np= length(p);
NB= length(B); N= length(A); M= floor(Np/2);
for m=1:M

m2= m*2; AA(m,:) = [1 -p(m2-1)-p(m2) p(m2-1)*p(m2)];
end
if Np>2*M

AA(M+1,:)= [0 1 -p(Np)]; % For a single pole
end
M1= M+(Np>2*M); b= [zeros(1,Np-NB) B]; KM1= K/M1;
% In case B(s) and A(s) has the same degree, we let all the coefficients
% of the 2ˆ{nd}-order term in the numerator of each SOS be Bi1=1/M1:
if NB==N, b= b(2:end); end
for m=1:M1

polynomial = 1; m2=2*m;
for n=1:M1

if n˜=m, polynomial = conv(polynomial,AA(n,:)); end
end
if m<=M

if M1>M, polynomial = polynomial(2:end); end
if NB==N, b = b - [polynomial(2:end)*KM1 0 0]; end
Ac(m2-1,:) = [polynomial 0];
Ac(m2,:) = [0 polynomial];
else
if NB==N, b = b - [polynomial(2:end)*KM1 0]; end
Ac(m2-1,:) = polynomial;

end
end
Bc = b/Ac; Bc(find(abs(Bc)<EPS)) = 0;
for m=1:M1

m2= 2*m;
if m<=M

BB(m,:) = [0 Bc(m2-1:m2)]; if NB==N, BB(m,1) = KM1; end
else
BB(m,:) = [0 0 Bc(end)]; if NB==N, BB(m,2) = KM1; end

end
end

function [BB,AA,K]=tf2par z(B,A)
% Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
if nargin<3, IR =0; end % For default, inverse z-transform style
EPS= 1e-8; %1e-6;
B= B/A(1); A= A/A(1);
I= find(abs(B)>EPS); B= B(I(1):end);
if IR==0, [z,p,K]= residuez(B,A); else [z,p,K]= residue(B,A); end
m=1; Np=length(p); N=ceil(Np/2);
for i=1:N

if abs(imag(p(m)))<EPS % Real pole
if m+1<=Np & abs(imag(p(m+1)))<EPS % Subsequent real pole
if abs(p(m)-p(m+1))<EPS % Double pole

BB(i,:)= [z(m)+z(m+1) -z(m)*p(m) 0];
AA(i,:)= [1 -2*p(m) p(m)ˆ2]; m=m+2;

elseif m+2<=Np&abs(p(m+1)-p(m+2))<EPS %Next two poles are double

Appendix E 445

BB(i,:)=[0 z(m) 0]; AA(i,:)=[0 1 -p(m)]; m=m+1; % Single pole
else
BB(i,:)= [real([z(m)+z(m+1) -z(m)*p(m+1)-z(m+1)*p(m)]) 0];
AA(i,:)= [1 real([-p(m)-p(m+1) p(m)*p(m+1)])]; m=m+2;

end
else
BB(i,:)=[0 z(m) 0]; AA(i,:)=[0 1 -p(m)]; m=m+1; % Single pole
end

else % Two distinct real poles or Complex pole
BB(i,:)= [real([z(m)+z(m+1) -z(m)*p(m+1)-z(m+1)*p(m)]) 0];
AA(i,:)= [1 real([-p(m)-p(m+1) p(m)*p(m+1)])]; m=m+2;

end
end
if IR∼=0, BB(:,2:3)= BB(:,1:2); end

function y=filter cas(B,A,x)
y=x;
[Nsection,NB]=size(B);
for k=1:Nsection

Bk= B(k,:); Ak= A(k,:);
if abs(B(k,1))+abs(A(k,1))<1e-10

Bk= B(k,2:3); Ak= A(k,2:3);
end
%if B(k,3)==0&A(k,3)==0, Bk=B(k,1:2); Ak=A(k,1:2); end
%if B(k,2)==0&A(k,2)==0, Bk=B(k,1); Ak=A(k,1); end
%if Bk(1)==0; Bk=Bk(2:length(Bk)); end
y=filterb(Bk,Ak,[zeros(1,length(Bk)-1) y]);

end

function y=filter par(B,A,x)
[Nsection,NB]=size(B);
y= zeros(1,length(x));
for k=1:Nsection

Bk= B(k,:); Ak= A(k,:);
while length(Bk)>1&abs(Bk(1))<eps, Bk=Bk(2:end); end
while length(Ak)>1&abs(Ak(1))<eps, Ak=Ak(2:end); end
if sum(abs(Bk))>eps

y=y+filterb(Bk,Ak,[zeros(1,length(Bk)-1) x]);
end

end

function [r,p]=tf2latc my(B,A)
if nargin>1&length(A)>1 %Recursive Lattice Filter

% IIR System Function to Lattice Filter
% **
% B(1)+B(2)*zˆ-1 +B(3)*zˆ-2 +.....+B(NB)*zˆ(-NB+1)
% G[z] = ---
% A(1)+A(2)*zˆ-1 +A(3)*zˆ-2 +......+A(NA)*zˆ(-NA+1)
% **
N= length(A);
AA= A;
for k=1:N-1

if abs(AA(k))<.0000001, A= AA(k+1: N);
else break;
end

end
N= length(A);

446 Appendix E

if N<=1, error(’LATTICED: length of polynomial is too short!’); end
BB= B;
NB= length(B);
for k=1:NB-1

if abs(BB(k))<.0000001, B= BB(k+1: NB);
else break;
end

end
if length(B) ˜= N

error(’tf2latc my: lengths of polynomials B and A do not agree!’);
end
S= B/A(1); V= A/A(1);
for i=N:-1:2

p(i)= S(i); ri1= V(i);
W(1:i)= V(i:-1:1);
if abs(ri1)>=.99999

error(’tf2latc my: ri1= V(i) is too large to maintain stability!’);
end
V(1:i)= (V(1:i)-ri1*W(1:i))/(1-ri1*ri1);
r(i-1)= ri1;
S(1:i)= S(1:i) -p(i)*W(1:i);

end
p(1)= S(1);
if nargout==0

fprintf(’\n\t Recursive Lattice Filter Coefficients\n’);
for i=1:length(r), fprintf(’ r(%1d)=%7.4f’, i, r(i)); end
fprintf(’\n’);
for i=1:length(p), fprintf(’ p(%1d)=%7.4f’, i, p(i)); end
fprintf(’\n’);

end
else %Nonrecursive Lattice Filter

% FIR System Function --> Nonrecursive Lattice-II Filter
% **
% G[z]= B(1)+B(2)*zˆ-1 +B(3)*zˆ-2 +.....+B(NB)*zˆ(-NB+1)
% **
N= length(B);
BB= B;
for k=1:N-1

if abs(BB(k))<.0000001, B= BB(k+1: N);
else break;
end

end
N= length(B);
if N<=1, error(’tf2latc my: length of polynomial is too short!’); end
V= B/B(1);
for i=N:-1:2

ri1= V(i);
W(1:i)= V(i:-1:1);
if abs(abs(ri1)-1)<.001 %Nonrecursive Lattice cannot be unstable

ri1 =ri1/abs(ri1)*.99;
end
V(1:i)= (V(1:i)-ri1*W(1:i))/(1-ri1*ri1);
r(i-1)= ri1;

end
if nargout==0

fprintf(’\n\t Nonrecursive Lattice Filter Coefficients\n’);
for i=1:length(r), fprintf(’ r(%1d)=%7.4f’, i, r(i)); end

Appendix E 447

fprintf(’\n’);
end

end

function [y,w]=filter latc r(r,p,x,w)
%hopefully equivalent to latcfilt() inside MATLAB
%w contains the past history of internal state ..,w(n-1), w(n)
%1-step Lattice filtering the input x to yield the output y and update w
N= length(r); % the order of the lattice filter
if length(p)˜= N+1

error(’LATTICEF: length(p) must equal length(r)+1!’);
end
if nargin<4, w=[]; end
if length(w)<N

w=[zeros(1,N-length(w)) w];
end
for n=1:length(x)

vi=x(n); %Current Input
for i=N:-1:1

vi= vi -r(i)*w(i); w(i+1)= w(i) +r(i)*vi;
end
w(1)= vi;
y(n)= p(:).’*w(:);

end

function [y,w]=filter latc nr(r,x,w)
% hopefully equivalent to latcfilt() inside MATLAB
% w contains the past history of internal state...,w(n-1), w(n)
%1-step Lattice filtering the input x to yield the output y and update w
N= length(r); % the order of the lattice filter
if nargin<3, w=[]; end
if length(w)<N

w=[zeros(1,N-length(w)) w];
end
for n=1:length(x)

vi= x(n)+r*w(1:N)’;
y(n)= vi;
for i=N:-1:1

vi= vi -r(i)*w(i); w(i+1)= w(i) +r(i)*vi;
end
w(1)= x(n);

end

E.16 System Identification from Impulse/Frequency Response

[B,A]=prony (g, NB, NA)

– This identifies the system function

G[z] = B[z]

A[z]
= b1 + b2z−1 + · · · + bN B+1z−N B

a1 + a2z−1 + · · · + aN A+1z−N A
(E.6)

448 Appendix E

of a discrete-time system from its impulse response g[n].
– The outputs B and A are numerator and denominator polynomial coefficient

vectors of length NB + 1 and NA + 1, respectively.

[B,A]=stmcb (g, NB, NA, Niter, Ai) or stmcb (y, x, NB,
NA, Niter, Ai)

– This identifies the system function G[z] = B[z]/A[z] of a discrete-time
system from its impulse response g[n] or its output y[n] and input x[n]
optionally with Niter (5 by default) iterations and initial estimate of the
denominator coefficients Ai where y and x are of the same length.

G=tfe (x, y, N, fs, WND, Noverlap)

– This estimates the transfer function as frequency response G[Ω] =
Y [Ω]/X [Ω] of a discrete-time system from its input x[n] and output y[n]
optionally with N-point DFT (N = 256 by default), sampling frequency
fs (2Hz by default), windowing sequence WND, and with each section
overlapped by Noverlap samples.

[B,A]=invfreqs (G, w, NB, NA, wt, Niter, tol)

– This identifies the system function

G(s) = B(s)

A(s)
= b1s N B + b2s N B−1 + · · · + bN B+1

a1s N A + a2s N A−1 + · · · + aN A+1
(E.7)

of a continuous-time system from its frequency response G(w)(G(ω)) speci-
fied for an analog frequency vector w(ω) optionally with a weighting vector
wt (of the same length as w), within Niter iterations, and with fitting error
tolerance tol.

[B,A]=invfreqz (G, W, NB, NA, wt, Niter, tol)

– This identifies the system function G[z] = B[z]/A[z] of a discrete-time
system from its frequency response G(W)(G(Ω) = G[e jΩ]) specified for a
digital frequency vector W(Ω)(0 ≤ Ω ≤ π) optionally with a weighting
vector wt (of the same length as W), within Niter iterations, and with fitting
error tolerance tol.

Appendix E 449

E.17 Partial Fraction Expansion and (Inverse)
Laplace/z-Transform

[r,p,k]=residue (B,A) or [B,A]=residue (r, p, k)

– This converts a rational function B(s)/A(s), i.e., a ratio of numera-
tor/denominator polynomials to partial fraction expansion form (or pole-
residue representation), and back again.

B(s)

A(s)
= b1s N B−1 + b2s N B−2 + · · · + bN B

a1s N−1 + a2s N−2 + · · · + aN

�
(

N−1−L∑
n=1

rn

s − pn

)
+ rN−L

s − p
+ · · · + rN−1

(s − p)L
+ k(s) (E.8)

where the numerator vector r and pole vector p are column vectors and the
quotient polynomial coefficient vector k is a row vector.

[r,p,k]=residuez (B,A) or [B,A]=residuez (r,p,k)

– This converts a rational function B[z]/A[z], i.e., a ratio of numera-
tor/denominator polynomials to partial fraction expansion form (or pole-
residue representation), and back again.

B[z]

A[z]
= b1 + b2z−1 + · · · + bN B z−(N B−1)

a1 + a2z−1 + · · · + aN z−(N−1)

�
(

N−1−L∑
n=1

rnz

z − p

)
+ rN−L z

z − p
+ · · · + rN−1zL

(z − p)L
+ k(z) (E.9)

where the numerator vector r and pole vector p are column vectors and the
quotient polynomial coefficient vector k is a row vector.

Xs=laplace (xt) and xt=ilaplace (Xs)

– These MATLAB commands compute the symbolic expressions for the
Laplace transform X (s) = L{x(t)} of a symbolic function in t and the
inverse Laplace transform x(t) = L−1{X (s)} of a symbolic function in s,
respectively.

Xz=ztrans (xn) and xn=iztrans (Xz)

– These MATLAB commands compute the symbolic expressions for the
z -transform X [z] = Z{x[n]} of a symbolic function in n and the inverse
z -transform x[n] = Z−1{X [z]} of a symbolic function in z, respectively.

450 Appendix E

function x=ilaplace my(B,A)
% To find the inverse Laplace transform of B(s)/A(s) using residue()
% Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
if ˜isnumeric(B)

[B,A]=numden(simple(B)); B=sym2poly(B); A=sym2poly(A);
end
[r,p,k]= residue(B,A); EPS = 1e-4;
N= length(r); x=[]; n=1;
while n<=N

if n>1, x = [x ’ + ’]; end
if n<N & abs(imag(p(n)))>EPS & abs(sum(imag(p([n n+1]))))<EPS
sigma=real(p(n)); w=imag(p(n)); Kc=2*real(r(n)); Ks=-2*imag(r(n));
sigma_=num2str(sigma); w_=num2str(w); Kc_=num2str(Kc); Ks_=num2str(Ks);
if abs(sigma)>EPS
x = [x ’exp(’ sigma_ ’*t).*’];
if abs(Kc)>EPS&abs(Ks)>EPS
x = [x ’(’ Kc_ ’*cos(’ w_ ’*t) + ’ Ks_ ’*sin(’ w_ ’*t))’];
elseif abs(Kc)>EPS, x = [x Kc_ ’*cos(’ w_ ’*t)’];
else x = [x Ks_ ’*sin(’ w_ ’*t)’];

end
end
n = n+2;
elseif n<=N & abs(imag(r(n)))<EPS
if abs(p(n))>EPS, x = [x num2str(r(n)) ’*exp(’ num2str(p(n)) ’*t)’];
else x = [x num2str(r(n))];
end
n = n+1;

end
end
if ˜isempty(k), x = [x ’ + ’ num2str(k(end)) ’*dirac(t)’]; end

E.18 Decimation, Interpolation, and Resampling

y=decimate (x, M, N, ‘fir’)

– This process filters the input sequence x with an LPF and then resamples
the resulting smoothed signal at a lower rate, which is the opposite of
interpolation.

– y=decimate (x, M) reduces the sample rate of x by a factor M to pro-
duce a decimated sequence y that is M times shorter than x. By default, it
employs an eighth-order lowpass Chebyshev type I filter. Note that x must
be longer than 3 times the filter order.

– y=decimate (x, M, N) uses an Nth order Chebyshev filter.
– y=decimate (x, M, ‘fir’) uses a 30-point FIR filter.
– y=decimate (x, M, N, ‘fir’) uses an N-point FIR filter.

Appendix E 451

y=interp (x, M, L, fc)

– This inserts zeros into the input sequence x and then apply an LPF.
– y=interp (x,M) increases the sampling rate of x by a factor of M to

produce an interpolated sequence y that is M times longer than x.
– y=interp(x,M,L,fc) specifies L (= 4 by default) for filter length and

fc (= 0.5 by default) for normalized cut-off frequency.
– [y,B]=interp(x,M,L,fc) returns a vector B of length 2∗L∗M + 1

containing the filter coefficients used for the interpolation.

y=upfirdn(x,B,Mi,Md)

– This can be used to change the sampling rate by a rational factor.
– It upsamples x by Mi (i.e., inserts (Mi-1) zeros between samples), applies the

FIR filter B, and downsamples the output by Md (i.e., throws away (Md-1)
samples between samples).

– The default values of Mi and Md are 1.

y=resample(x,Mi,Md,B)

– This can be used to change the sampling rate by a rational factor.
– y=resample(x,Mi,Md) resamples x at Mi/Md times the original sam-

pling rate, using a polyphase filter implementation where Mi and Md must
be positive integers. The length of y will be ceil(length(x)∗Mi/Md). If x is a
matrix, resample() works down the columns of x.

– It applies an anti-aliasing (lowpass) FIR filter (designed using firls() with a
Kaiser window) to x during the resampling process.

– y=resample(x,Mi,Md,B) filters x using a FIR filter with coeffi-
cients B.

– y=resample(x,Mi,Md,N) uses a weighted sum of 2∗N∗

max (1, Md/Mi) samples of x to compute each sample of y. Since the
length of the FIR filter used by resample() is proportional to N(= 10 by
default), you can increase N to get better accuracy at the expense of a longer
computation time. If you let N = 0, a nearest neighbor interpolation is
performed so that the output y(n) is x(round((n − 1)∗Md/Mi) + 1) where
y(n) = 0 if round((n − 1)∗Md/Mi) + 1 > length(x)).

– y=resample(x,Mi,Md,N,beta) uses beta as the design parameter for
the Kaiser window used to design the filter where its default value is 5.

– [y,B]=resample(x,Mi,Md) returns the filter coefficient vector B
applied to x during the resampling process (after upsampling).

– If x is a matrix, the routine resamples the columns of x.

y=detrend(x)

– y=detrend(x) removes the best straight-line fit from vector x.
– y=detrend(x,0) removes the mean value from vector x.

452 Appendix E

E.19 Waveform Generation

chirp(t,f0,t1,f1,’type’) swept-frequency cosine generator
pulstran(t,D,pulse) pulse train generator
rectpuls(t,D) sampled aperiodic rectangular pulse generator
square(t,D), sawtooth(t,D) square, sawtooth/triangular wave generator
tripuls(t,D,skew) sampled aperiodic triangular pulse generator

E.20 Input/Output through File

% input output data.m
clear
x=[1 2]; y=[3 4 5];
save sig x y % save x and y in a MATLAB data file ’sig.mat’
clear(’y’)
display(’After y has been cleared, does y exist?’)
if (exist(’y’)˜=0), disp(’Yes’), y
else disp(’No’)

end
load sig y % read y from the MATLAB data file ’sig.mat’
disp(’After y has been loaded the file sig.mat, does y exist?’)
if isempty(’y’), disp(’No’), else disp(’Yes’), y, end
fprintf(’x(2)=%5.2f \n’, x(2))
save y.dat y /ascii % save y into the ASCII data file ’y.dat’
% The name of the ASCII data file must be the same as the variable name.
load y.dat % read y from the ASCII data file ’y.dat’
str=’prod(y)’; % ready to compute the produce of the elements of y
eval(str) % evaluate the string expression ’prod(y)’

Appendix F
Simulink R©

According to the MATLAB documentation [W-5], Simulink R© is software for mod-
eling, simulating, and analyzing dynamic systems. It supports linear and nonlinear
systems, modeled in continuous time, sampled time, or a hybrid of the two. Sys-
tems can be multirate, i.e., have different parts that are sampled or updated at
different rates.

Simulink R© provides a graphical user interface (GUI) for building models as
block diagrams, using click-and-drag mouse operations. Simulink includes a com-
prehensive block library of sinks, sources, linear and nonlinear components, and
connectors. Models are hierarchical, so you can build models using both top-down
and bottom-up approaches. You can view the system at a high level, then double-
click blocks to go down through the levels to see increasing levels of model detail.
This approach provides insight into how a model is organized and how its parts
interact.

After you define a model, you can simulate it either from the Simulink menus
or by entering commands in the MATLAB R© Command Window. The menus are
convenient for interactive work, while the command line is useful for running
a batch of simulations with a parameter swept across a range of values. Using
scopes and other display blocks, you can see the simulation results while the sim-
ulation runs. The simulation results can be put in the MATLAB workspace for
postprocessing and visualization. MATLAB R© and Simulink R© are integrated so
that you can simulate, analyze, and revise your models in either environment at
any point.

To start Simulink, you must first start MATLAB. Consult your MATLAB docu-
mentation for more information. You can then start Simulink in two ways:

• Click the Simulink icon on the MATLAB toolbar.
• Type “simulink” (without the quotation marks) at the MATLAB prompt (like

“>>”) in the MATLAB Command Window or use the “sim()” command inside
a MATLAB program.

On Microsoft Windows platforms, starting Simulink displays the Simulink Library
Browser as depicted in Fig. F.1. The Library Browser displays a tree-structured
view of the Simulink block libraries installed on your system, from which you can

453

454 Appendix F

Fig. F.1 Simulink Library Browser window

Appendix F 455

copy and move (click/drag) the blocks into a model window and build models. The
procedure of creating or editing a Simulink model is as follows:

– A new empty model file (window) can be created by selecting File/New menu
or clicking “Create a new model” button on the library browser’s toolbar. An
existing one can be opened by selecting File/Open menu or clicking the Open
button on the library browser’s toolbar and then choosing/entering the file name
for the model to edit.

– Copy and move (click/drag) the blocks you want into the model window.
– Connect the blocks by clicking at an (input/output) point of a block and drag to

an (output/input) point of another block.
– To draw a branch line, position the pointer at a point on the existing line (wire),

press and hold down the CTRL key, press the mouse button, and then drag the
pointer to another point.

To simulate the created/edited Simulink model, select the Simulation/
Configuration Parameters menu (in the model window) to open the Configuration
Parameters window in which you can set the simulation parameters including the
start/final(stop) times, and then press the CTRL + T key (on the keyboard) or select
the Simulation/Start menu on the toolbar of the model window. To see the simulation
results, double-click the Scope block.

Figures F.2 and F.3 show the Signal Processing and Communication Blocksets,
which enables you to design and prototype various signal processing and commu-
nication systems using key signal processing algorithms and components in the
Simulink R© block format.

(cf.) If you see an error message that a Simulink model file cannot be saved
because of character encoding problem, keep the erroneous part of the model
file in mind, click OK to close the error message dialog block, use a text
editor to modify the erroneous part in the designated file named “∗∗∗.err”,
and then save it with the extension name “mdl” instead of “err” so that it can
be opened in another Simulink session.

456 Appendix F

Signal Processing Blockset

Estimation
Linear Prediction: Autocorrelation LPC, Levinson-Durbin, LPC to LSF/LSP Conversion

Adaptive Filters: Block LMS Filter, Kalman Adaptive Filter, LMS Filter, RLS Filter
Filtering Designs: Analog Filter Design, Digital Filter, Digital Filter Design, Filter Realization Wizard
Multirate Filters: CIC Decimation/Interpolation, Dyadic Analysis/Synthesis Filter Bank

FIR Decimation/Interpolation, FIR Rate Conversion
Two-Channel Analysis/Synthesis Subband Filter

Math Operations: Complex Exponential, Cumulative Product/Sum
Difference, Normalization, dB Conversion, dB Gain

Matrices and LInear Algebra:

Linear System Solvers: Backward/Forward Substitution, Levinson-Durbin

Polynomial Functions: Least Squares Polynomial Fit, Polynomial Evaluation
 Polynomial Stability Test

– Windows (WIN32): From Wave Device/File, To Wave Device/File

Cholesky/LDL/LU/QR/SVD Solver

Matrix Factorizations: Cholesky/LDL/LU/QR/SVD Factorization

Matrix Inverses: Cholesky/LDL/LU/Pseudo Inverse

Matrix Operations: Identity Matrix, Constant Diagonal Matrix, Create Diagonal Matrix
 Extract Diagonal/Triangular, Overwrite Values, Reciprocal Condition
 Matrix Concatenation/Product/Scaling/Square/Sum/Multiply/Transpose
 Matrix 1-Norm, Permute Matrix, Submatrix, Toeplitz

LSF/LSP to LPC Conversion, LPC to/from RC, Autocorrelation, Cepstral Coefficients

Parametric Estimation: Burg AR Estimator, Covariance AR Estimator, Yule-Walker AR Estimator
Power Spectrum Estimation: Burg Method, Covariance Method; Magnitude FFT, Periodogram,
 Yule-Walker Method

Filtering

Math Functions

Platform Specific I/Q

Quantizers : Quantizer, Uniform Encoder/Decoder

Buffers: Buffer, Delay Line, Triggered Delay Line, Queue, Stack, Unbuffer

Indexing: Selector, Multiport Selector, Variable Selector, Flip, Submatrix, Overwrite Values

Signal Attributes: Check Signal Attributes, Convert 1-D to 2-D, Convert 2-D to 1-D
Date Type Conversion, Frame Status Conversion, Inherity Complexity

Switches and Counters: Counter, Edge Detector, Event-Count Comparator
Multiphase Clock, N-Sample Enable, N-Sample Switch

Convolution, Downsample, Upsample, Interpolation, Unwrap, Window Function
Pad, Zero-Pad, Repeat, S/H, Integer Delay, Variable Integer/Fractional Delay

: Autocorrelation, Correlation, Detrend, Histogram, Maximum, Minimum, Mean, Median,
 RMS, Standard Deviation, Variance, Sort

: Analytic Signal, Real/Complex Cepstrum
 DCT, DWT, FFT, IDCT, IDWT, IFFT, Magnitude FFT

: Display, Matrix Viewer, Spectrum Scope, Time Scope, Vector Scope
 Signal To Workspace, Triggered To Workspace

: Chirp, Constant Ramp, Discrete Impulse, DSP Constant, Sine Wave, Random Source
 Identity Matrix, Constant Diagonal Matrix, Multiphase Clock, N-Sample Enable
 Signal From Workspace, Triggered Signal From Workspace

Signal Management

Signal Operation

Statistics

Transforms

DSP Sinks

DSP Sources

Fig. F.2 Signal Processing Blockset available in the Simulink Library Browser window

Appendix F 457

Communication Blockset

Integrate and Dump, Windowed Integrator, ...

Insert Zero (Depuncture), Puncture, ...

Integrators:

Channels

Basic Comm Functions

AWGN Channel, Binary Symmetric Channel
Multipath Rayleigh Fading Channel
Rician Fading Channel

Continuous-Time Eye and Scatter Diagrams
Discrete-Time Scatter Plot Scope
Discrete-Time Signal Traiectory Scope
Error Rate Calculation, Triggered Write to File

Controlled Sources: Voltage-Controlled Oscillator (VCO)
Bernoulli Binary Generator
Binary Error Pattern Generator
Random Integer Generator

Gaussian Noise Generator
Uniform Noise Generator

Barker Code Generator
Gold Sequence Generator
Hadamard Code Generator
Kasami Sequence Generator
PN Sequence Generator
Walsh Code Generator

BCH Encoder/Decoder
Cyclic Encoder/Decoder
Linear Encoder/Decoder
Hamming Encoder/Decoder
RS(Reed-Solomon)En/Decoder

Convolutional Encoder
Viterbi Decoder

CRC Generator
CRC Syndrome Detector

AM (PAM, QAM)
FM (M-FSK)
PM (PSK, DPSK, OQPSK)
CPM (CPM, CPFSK, MSK, GMSK)

Analog Baseband Modulation: DSB/SSB-AM, FM, PM

Analog Passband Modulation: DSB/SSB-AM, FM, PM

Digital Baseband Modulation

Digital Passband Modulation

Bipolar to Unipolar Convertor
Unipolar to Bipolar Convertor
Bit to Integer Convertor
Integer to Bit Convertor
Data Mapper, dB Conversion

DPCM Encoder/Decoder
Differential Encoder/Decoder
Mu-Law Expander/Compressor
A-Law Expander/Compressor
Enabled Quantizer Encode
Sampled Quantizer Encode
Quantizer Decode

Data Sources

Noise Generators

Sequence Generators

Block

Convolutional

CRC

Block
Convolutional

Comm Sinks

Comm Sources

Error Detection and
Correction

Interleaving

Modulation

RF Impairments

Source Coding

Synchronization
: PLL

Utility Functions

Sequence Operations:

Fig. F.3 Communication Blockset available in the Simulink Library Browser window

References

[D-1] Denbigh, P., System Analysis and Signal Processing: with emphasis on the use of MATLAB,
Prentice Hall, Inc., Englewood Cliff, N.J., 1998.

[F-1] Franklin, G. F., J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems,
2nd ed., Addison-Welsey Publishing Company, New York, 1990.

[G-1] Gopal, M., Digital Control Engineering, John Wiley & Sons, Singapore, 1988.
[G-2] Goertzel, G., “An Algorithm for the Evaluation of Finite Trigonometric Series,” Amer.

Math. Monthly, Vol. 65, Jan. 1958, pp. 34–35.
[J-1] Jaeger, R. C., “Tutorial: Analog data acquisition technology, part I; digital-to-analog

conversion”, IEEE MICRO, Vol. 2, No 3, pp. 20–37, 1982a.
[J-2] Jaeger, R. C., “Tutorial: Analog data acquisition technology, part II; analog-to-digital

conversion”, IEEE MICRO, Vol. 2, No 3, pp. 46–56, 1982b.
[K-1] Kreyszig, E., Advanced Engineering Mathematics, John Wiley & Sons, Inc.,

New York, 1983.
[K-2] Kuc, R., Introduction to Digital Signal Processing, McGraw-Hill Book Company,

New York, 1988.
[L-1] Ludeman, L. C., Fundamentals of Digital Signal Processing, John Wiley & Sons, Inc.,

New York, 1987.
[O-1] Oppenheim, A. V., A. S. Willsky, and I. T. Young, Signals and Systems, Prentice Hall, Inc.,

Englewood Cliff, NJ, 1983.
[O-2] Oppenheim, A. V. and R. W. Schafer, Digital Signal Processing, Prentice Hall, Inc.,

Englewood Cliff, NJ, 1975.
[P-1] Phillips, C. L. and H. T. Nagle, Digital Control System Analysis and Design, 2nd ed.,

Prentice Hall, Inc., Englewood Cliff, NJ, 1989.
[S-1] Soliman, S. S. and M. D. Srinath, Continuous and Discrete Signals and Systems, Prentice

Hall, Inc., Englewood Cliff NJ, 1999.
[S-2] Stearns, S. D. and D. R. Hush, Digital Signal Analysis, 2nd ed., Prentice Hall, Inc.,

Englewood Cliff, NJ, 1990.
[W-1] Web site <http://en.wikipedia.org/wiki/Main Page> (Wikipedia: The Free Encyclopedia)
[W-2] Website <http://www.allaboutcircuits.com/vol 4/chpt 13/> (analog-to-digital converter)
[W-3] Website <http://www.mathworks.com/>
[W-4] Website <http://www.mathworks.com/access/helpdesk/help/pdf doc/signal/signal tb.pdf>
[W-5] Website <http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/>
[W-6] Website <http://mathworld.wolfram.com/>
[Y-1] Yang, W. Y., W. Cao, T.-S. Chung, and J. Morris, Applied Numerical Methods Using

MATLAB, John Wiley & Sons, Inc., Hoboken NJ, 2005.
[Y-2] Yang, W. Y. and S. C. Lee, Circuit Systems with MATLAB and PSpice, John Wiley & Sons,

Inc., Hoboken, NJ, 2007.

459

Index

A
ADC (Analog-to-Digital conversion), 251–256
A/D-G[z]-D/A structure, 259, 275, 283
Additivity, 13
Aliasing, 8
AM (amplitude modulation), 91, 113
Analog filter design, 307–320
Analog frequency, 6, 7
Analog signal, 2
Analytic signal, 109, 110
Anti-aliasing, 262–263
Anti-causal sequence, 208
Anticipatory, 30
Anti-imaging, 262–263
Anti-symmetric, 145, 232, 237–240
ASK (amplitude-shift keying), 115

B
Backward difference rule, 284
Bandpass filter (BPF), 309
Bandstop filter (BSF), 309
Bandwidth, 76
BIBO (bounded-input bounded-output), 29
BIBO stability condition, 29, 46
Bilateral (two-sided) z-transform, 208
Bilinear transformation, 288–292, 301, 302
Bit reversed order, 166
Block diagram, 32
Bode plot, 97
BPF realization, 123, 184
Butterfly computation, 167, 168
Butterworth filter, 313, 314, 329

C
Cascade form, 309
Causal, 30, 85, 208
Causality, 30, 225
Causal sequence, 208
Characteristic equation, 369

Characteristic root, 369
Chebyshev I filter, 311, 314, 324
Chebyshev II filter, 312, 314, 326
Circulant matrix, 382
Circular convolution, 90, 142, 151, 152, 403
Circular shift, 150
Complex convolution, 90, 139, 151, 184, 216
Complex envelope, 112
Complex exponential function, 4
Complex exponential sequence, 4
Complex number operation, 409
Complex sinusoidal function, 5
Complex sinusoidal sequence, 5
Complex translation, 88, 139, 150, 215, 389
Conjugate symmetry, 86, 138
Continuous-amplitude signal, 2
Continuous-time convolution, 7, 13, 19, 20
Continuous-time Fourier series, see CTFS
Continuous-time Fourier transform, see CTFT
Continuous-time frequency, 7
Continuous-time signal, 1
Continuous-time state equation, 50, 370
Continuous-time system, 13
Continuous-value signal, 2
Controllable canonical form, 36, 363
Convolution, 9–10, 16, 17, 183
Convolution property, 90, 109
Correlation, 38–39, 58, 60, 116, 424
Correlation coefficient, 43
CTFS, 62–73, 399, 401
CTFS and DFT/DFS, 160–164
CTFS coefficient, 70
CTFS of an impulse train, 70
CTFS of a rectangular wave, 65
CTFS of a triangular wave, 65
CTFS spectrum, 67
CTFT, 78–96, 400, 401
CTFT and DTFT, 161–162
CTFT of a cosine function, 85

461

462 Index

CTFT of an impulse train, 85
CTFT of a periodic signal, 77
CTFT of a polygonal signal, 117
CTFT of a rectangular pulse, 75
CTFT of a sine function, 85
CTFT of a triangular pulse, 76
CTFT of the unit impulse function, 81
CTFT of the unit step function, 83

D
DAC (Digital-to-Analog conversion), 250–251
Dead time, 293
Decimation-in-frequency (DIF) FFT, 168
Decimation-in-time (DIT) FFT, 165
Deconvolution, 38, 54, 423
Demodulation, 92
DFS, 151–152, 405–406
DFS reconstruction, 265
DFT, 147–164, 178–180, 403–404
DFT for an infinite-duration sequence,

155–160
DFT for a noncausal sequence, 156–157,

159, 187
DFT of a triangular sequence, 175
DFT size, 149, 164
Difference equation, 31, 207, 208, 213,

225, 226
Differential equation, 33
Differentiation w.r.t. a vector, 388
Differentiator, 184, 338
Digital filter design, 320–350
Digital frequency, 6–8, 147
Digital fundamental frequency, 147
Digital resolution frequency, 147
Digital signal, 2
Dirac delta function, 8
Direct form, 36, 323, 325
Dirichlet condition, 63
Discrete-amplitude signal, 2
Discrete Fourier series (DFS), 147
Discrete Fourier transform, see DFT
Discrete-time convolution, 8, 17, 22, 24
Discrete-time equivalence criterion, 278, 279
Discrete-time equivalent, 277–280, 293
Discrete-time Fourier series (DTFS), 149
Discrete-time Fourier transform, see DTFT
Discrete-time frequency, 6
Discrete-time interpolation, 269–271, 275
Discrete-time sampling, 189
Discrete-time signal, 2
Discrete-time state equation, 54
Discrete-time system, 13
Discrete-value signal, 2

Discretization, 284–293, 370–376
Discretization of continuous-time state

equation, 370–376, 381
DTFT, 130–138, 160–164, 402
DTFT of a cosine sequence, 137
DTFT of a discrete-time impulse train, 189
DTFT of a periodic sequence, 136, 188
DTFT of a rectangular pulse, 132
DTFT of a sine sequence, 137
DTFT of asymmetric sequences, 145
DTFT of symmetric sequences, 145
DTFT of the unit impulse sequence, 135
DTFT of the unit step sequence, 137
DTFT spectrum, 141, 186
Duality, 88
Dual-tone multi-frequency (DTMF), 202

E
Eigenfunction, 116
Eigenvalue, 369, 378, 412
Elliptic filter, 313, 315, 328
Envelope detector, 112
Exponential function, 4
Exponential sequence, 4, 208
Export (a filter), 348

F
Fast Fourier transform (FFT), 164
FDATool, 348, 350, 352, 354
FDM (frequency-division multiplexing), 124
Filter structure, 345–348
Final value theorem, 218, 391
Finite-duration impulse response, see FIR
Finite pulsewidth sampler, 92
FIR, 32
FIR filter design, 331–344
FIR lowpass filter (LPF), 140
Folding frequency, 262
Formulas, 419
Forward difference, 286
Forward substitution, 39
Fourier, 61
Fourier reconstruction, 69
Fourier series, see CTFS
Fourier series and Fourier ransform, 76
Fourier transform, see CTFT
Fourier transform and Laplace transform, 74
Frequency, 6–8
Frequency aliasing, 257, 258, 260
Frequency resolution, 178
Frequency response, 19–22, 74, 225, 226,

228, 237
Frequency shifting, 88, 139, 150, 215, 389
Frequency transformation, 282, 289–291

Index 463

FSK (frequency-shift keying), 115
Fundamental frequency, 64, 161
Fundamental matrix, 364–365
Fundamental period, 62

G
General gain formula, 34
Generalized Fourier transform, 77
Gibbs phenomenon, 69
Goertzel algorithm, 246
Group delay, 332

H
Half-power frequency, 79
Half-size DFT computation, 196
Harmonic, 72
Highpass filter (HPF), 307
Hilbert transformer, 109–113, 184, 338–339
Homogeneity, 13

I
Ideal BPF (bandpass filter), 119
Ideal LPF frequency response, 74–75, 120
Ideal LPF impulse response, 74–75
Ideal sampler, 92
IDFT (inverse discrete Fourier transform),

148, 169
IIR, 32
IIR filter design, 321–331
Import (a filter), 348
Impulse-invariant transformation, 281–282
Impulse response, 15, 16, 17, 216, 368
Impulse signal, 81
Incrementally linear, 14
Infinite-duration impulse response, see IIR
Initial value theorem, 217, 391
In-place computation, 167
Interpolation, 263
Inverse discrete Fourier series (IDFS), 151
Inverse discrete Fourier transform (IDFT), 148
Inverse Laplace transform, 392
Inverse system, 48
Inverse z-transform, 218–223, 226, 230–231
Invertible, 30

J
Jordan canonical form, 378–379

K
Kronecker delta sequence, 10

L
Ladder, 345
Laplace transform, 384–397, 406, 407

Lattice, 345
Least squares error (LSE), 126
Left-sided sequence, 208
Left-side (rectangular) rule, 287
Linear, 13
Linear convolution, 152–155, 423
Linear convolution with DFT, 152–155, 192
Linear phase, 97, 133, 238
Linear system, 13
Linear time-invariant (LTI) system, 15
Long division, 223
Lowpass equivalent, 112
Lowpass filter (LPF), 270

M
Mason’s formula, 34
Matched filter, 40, 41, 42, 55
Matched z-transform, 292
MATLAB, 395
Matrix operation, 409–417
Modal matrix, 378–379, 382
Modulation property, 91, 108, 139
Multi-band FIR filter design, 240, 335–336

N
Non-anticipatory, 30
Non-causal, 30
Nyquist frequency, 258
Nyquist rate, 258, 261

O
Observable canonical form, 36, 363
Order, 32
Orthogonal, 127, 413
Output equation, 362

P
Parallel computation of two DFTs, 194
Parallel form, 309
Parseval’s relation, 96, 116, 144
Partial fraction expansion, 219–223, 393
Passband edge frequency, 307–308
Passband ripple, 307–308
Period, 6, 7, 62
Periodic, 6, 62
Periodic convolution, 139
Periodic extension, 149
Phase delay, 332
Phase jump, 133
Physical realizability, 84
Picket fence effect, 172, 177
Plane impulse train, 106
Poisson sum formula, 123

464 Index

Pole, 29, 210, 224
Pole location, 295–296, 303, 305
Pole-zero mapping, 292
Pole-zero pattern, 210, 232
Power theorem, 116
Practical reconstruction, 267
Pre-envelope signal, 112
Prewarping, 290–291, 302
Pulse response, 18
Pulse transfer function, 297
PWM (pulse-width modulated), 382

Q
Quadrature multiplexing, 124, 184

R
Rayleigh theorem, 96, 144
Real convolution, 89, 139, 149, 215, 389
Real translation, 88, 139, 150, 214, 389
Reconstruction, 263–271, 274
Rectangular function, 5
Rectangular sequence, 5
Rectangular windowing, 140
Recursive, 32, 321
Recursive computation of DFT, 198
Region of convergence (ROC), 208, 209, 213,

223
Resolution frequency, 147
Right-sided sequence, 210
Right-side (rectangular) rule, 288

S
Sample-and-hold (S/H), 272
Sampler, 92–93
Sampling, 92–93, 186, 249
Sampling interval, 178
Sampling period, 178, 259
Sampling property, 10, 11
Sampling theorem, 249, 257
Scaling, 95, 143, 189
Second-order active filter, 318–319
Shannon reconstruction, 263
Shift-invariant, 14
Short-time Fourier transform, 180, 200
Sifting property, 10, 11
Signal, 2
Signal bandwidth, 79
Signal flow graph, 32–34
Similarity transformation, 376–379
Simulink, 453
Sinc function, 11, 45, 76
Sinusoidal function, 5
Sinusoidal sequence, 5

Sinusoidal steady-state response, 19–20, 234
Spectral leakage, 140, 164, 171, 193
Spectrogram, 180, 201, 427
Spectrum, 64, 67, 70–73
Spectrum blurring, 176, 194
SPTool, 350–359
Stability, 29, 242
Stability condition, 29, 74, 397
Stability of discrete-time systems, 47, 225
Stable, 29
Starred transform, 268, 297
State, 362
State diagram, 32, 35, 37, 51, 53
State equation, 50, 53, 362–363, 364, 370–376
State space description, 362
State transition matrix, 364–365
State variable, 362
State vector, 362
Step-invariant transformation, 282–283
Step response, 18
Stopband attenuation, 307–308
Stopband edge frequency, 307–308
Stroboscopic effect, 8, 258
Superheterodyne receiver, 120
Superposition principle, 13, 15, 16
Symmetric sequence, 145, 146, 236, 238
System, 17
System bandwidth, 79
System function, 18, 31, 225

T
Tapped delay lines, 26–28
TDM (Time-Division multiplexing), 124
Time-aliasing, 154, 262
Time constant, 78
Time-invariant, 14
Time resolution, 182
Time reversal, 215
Time sampling method, 279
Time shifting, 88, 139, 148, 214, 389
Transfer function, 17, 31, 368
Transmission matrix, 38
Transportation delay, 293
Transposed direct form, 37, 434
Trapezoidal rule, 288
Tustin’s method, 288–292
Two-dimensional DFT, 199
Two-dimensional Fourier transform, 106

U
Uncertainty principle, 67, 155
Unilateral (one-sided) z-transform, 208
Unit impulse function, 3, 8, 10, 11, 45, 386
Unit impulse sequence, 3, 10, 11

Index 465

Unit sample response, 16
Unit sample sequence, 4, 10, 11
Unit step function, 3, 362
Unit step sequence, 3, 362

W
Wagon-wheel effect, 8, 258
White spectrum, 81
Whittaker’s cardinal interpolation, 264
Windowing, 193

Windowing method (for FIR filter design), 333
Windowing property, 90, 139, 185

Z
Zero, 31, 212
Zero-insertion, 176
Zero-order-hold equivalent, 283, 301, 374
Zero-padding, 152, 156, 164, 174
z-transform, 208, 213, 406, 407, 408
z-transform and DTFT, 211

Index for MATLAB routines

MATLAB Page
routine name Description number

bilinear() bilinear transformation (optionally with prewarping) 442
butter() designs Butterworth filter with an order and cutoff

frequency
310, 436

buttord() the order and cutoff frequency of Butterworth filter 310, 436
cfirpm() designs a (possibly complex) FIR filter 332, 344
cheby1() designs Chebyshev I filter with an order and cutoff

frequency
311, 436

cheby1order() the order and cutoff frequency of Chebyshev I filter 311
cheby2() designs Chebyshev II filter with an order and cutoff

frequency
312, 438

cheby2order() the order and cutoff frequency of Chebyshev II filter 312
chirp() swept-frequency cosine generator 452
conv() (linear) convolution 154, 423
conv circular() circular convolution 424
cpsd() cross power spectral density 429
c2d() discretization (continuous-to-discrete conversion) 442
CTFS exponential() find the CTFS coefficients in exponential form 425
CTFT poly() CTFT of a polygonal signal 118
decimate() Reduces the sampling rate to produce a decimated

sequence
450

deconv() deconvolution 424
dimpulse() impulse response of a discrete-time system 431
detrend() remove the best straight-line fit or the mean value 451
dfilt digital filter structure conversion 443
DFS discrete Fourier series 425
DFT discrete Fourier transform 425
dlsim() time response of a discrete-time system to a given

input
432

dstep() step response of a discrete-time system 432
DTFT discrete-time Fourier transform 425
d2c() discrete-to-continuous conversion 442
dtmf decoder() DTMF (dual-tone multi-frequency) signal decoder 205
dtmf generator() DTMF (dual-tone multi-frequency) signal generator 202
ellip() designs elliptic filter with an order and cutoff

frequency
437

fft() fast Fourier transform (FFT) 426
fftshift() swaps the first and second halves 427

467

468 Index for MATLAB routines

MATLAB Page
routine name Description number

filter() the output of a digital filter (with an initial state) to an
input

434

filter cas() filtering in a cascade form 445
filter latc nr() filtering in a nonrecursive lattice form 447
filter latc r() filtering in a recursive lattice form 447
filter par() filtering in a parallel form 445
fir1(), fir2() designs a FIR filter using windowing 332, 439
fircls(), fircls1() designs a FIR filter using constrained least squares 332, 441
firls(), firpm() designs a FIR filter using equiripple or least squares 332, 440
firrcos() designs a FIR filter using raised cosine 332
Fourier analysis() CTFT analysis of an LTI system with a transfer

function
105

freqs() frequency response of a continuous-time system 433
freqz() frequency response of a discrete-time system 433
hilbert() analytic signal with Hilbert transform on the

imaginary part
111

ifft() inverse (fast) Fourier transform 426
ilaplace() inverse Laplace transform 394, 449
impinv() impulse-invariant discretiztion of a continuous-time

system
441

impulse() impulse response of a continuous-time system 431
impz() impulse response of a discrete-time system B[z]/A[z] 431
interp() increase the sampling rate to produce an interpolated

sequence
450-451

interpolation discrete() discrete-time interpolation (Sec. 5.4.4) 271
invfreqs() identifies continuous-time system from its frequency

response
448

invfreqz identifies discrete-time system from its frequency
response

448

iztrans() inverse z-transform 221, 449
jordan() Jordan canonical form of state equation 379
laplace() Laplace transform 449
latc2tf() lattice structure to transfer function 347
load load (read) a file 452
lsim() time response of a continuous-time system to a given

input
432

music wave() melody generator 200
par2tf() parallel form to transfer function 347
prony() identifies a discrete-time system based on its impulse

response
447

pulstran() generates a pulse train 452
rectpuls generates a rectangular pulse 452
resample() change the sampling rate 451
residue() partial fraction expansion of a Laplace transform

expression
394, 449

residuez() partial fraction expansion of a z-transform expression 220, 449
save save (write) a file 452
sos2ss() second-order sections to state-space description 347
sos2tf() second-order sections to transfer function 347
sos2zp() second-order sections to zero-pole form 347
specgram() spectrogram (old version) 427
spectrogram() spectrogram 427

Index for MATLAB routines 469

MATLAB Page
routine name Description number

ss2sos() state-space description to second-order sections 347
ss2tf() state-space description to transfer function 347
ss2zp() state-space description to zero-pole form 347
step() step response of a continuous-time system 432
stmcb() identifies a discrete-time system 448
tfe (discrete-time) transfer function estimation 448
tf2latc() transfer function to lattice form 347, 443
tf2latc my() transfer function to lattice form 446
tf2par s() transfer function (in Laplace transform) to parallel

form
444

tf2par z() transfer function (in z-transform) to parallel form 347, 443
tf2sos() transfer function to second-order sections 347
tf2ss() transfer function to state-space description 347
tf2zp() transfer function to zero-pole form 347
tripuls() generates a triangular pulse 452
upfirdn() upsamples, applies a FIR filter, and downsamples 451
windowing() various windowing techniques 427
xcorr() correlation 42, 423
xcorr circular() circular correlation 425
zp2sos() zero-pole form to second-order sections 347
zp2ss() zero-pole form to state-space description 347
ztrans() z-transform 449

Index for Examples

Example no. Description Page number

Example 1.1 Convolution of Two Rectangular Pulses 22
Example 1.2 Approximation of a Continuous-Time Convolution 25
Example 1.3 Tapped Delay Lines 26
Example 1.4a Differential Equation and Continuous-Time State Diagram 36
Example 1.4b Difference Equation and Discrete-Time State Diagram 36
Example 1.5 Correlation and Matched Filter 41
Example 1.6 Correlation for Periodic Signals with Random Noise 43
Example 2.1 Fourier Spectra of a Rectangular Wave and a Triangular Wave 65
Example 2.2 Fourier Spectrum of an Impulse Train 70
Example 2.3 CTFT Spectra of Rectangular Pulse and a Triangular Pulse 75
Example 2.4 Fourier Transform of an Exponential Function 78
Example 2.5 Fourier Transform of an Even-Symmetric Exponential Function 80
Example 2.6 Fourier Transform of the Unit Impulse Function 81
Example 2.7 Fourier Transform of a Constant Function 82
Example 2.8 Fourier Transform of the Unit Step Function 83
Example 2.9 Inverse Fourier Transform of an ideal LPF Frequency Response 84
Example 2.10 Fourier Transform of an Impulse Train 85
Example 2.11 Fourier Transform of Cosine/Sine Functions 85
Example 2.12 Sinusoidal Amplitude Modulation and Demodulation 91
Example 2.13 Ideal (Impulse or Instant) Sampler and Finite Pulsewidth

Sampler
92

Example 3.1 DTFT of a Rectangular Pulse Sequence 132
Example 3.2 DTFT of an Exponential Sequence 133
Example 3.3 DTFT of a Symmetrical Exponential Sequence 134
Example 3.4 DTFT of the Unit Sample (Impulse) Sequence 135
Example 3.5 IDTFT of an Ideal Lowpass Filter Frequency Response 136
Example 3.6 DTFT of a Constant Sequence 137
Example 3.7 DTFT of Cosine/Sine Sequences 137
Example 3.8 DTFT of the Unit Step Sequence 137
Example 3.9 Effect of Rectangular Windowing on the DTFT of a Cosine

Wave
140

Example 3.10 Impulse Response and Frequency Response of a FIR LPF 140
Example 3.11 DTFT of an Odd Sequence 145
Example 3.12 DTFT of an Anti-Symmetric Sequence 146
Example 3.13 Linear Convolution Using the DFT 152
Example 3.14 DFT of a Noncausal Pulse Sequence 156
Example 3.15 DFT of an Infinite-Duration Sequence 157
Example 3.16 DFT Spectrum of a Single-Tone Sinusoidal Wave 170

471

472 Index for Examples

Example no. Description Page number

Example 3.17 DFT Spectrum of a Multi-Tone Sinusoidal Wave 173
Example 3.18 DFT Spectrum of a Triangular Wave 175
Example 4.1 The z-Transform of Exponential Sequences 208
Example 4.2 A Causal Sequence Having a Multiple-Pole z-Transform 210
Example 4.3 The z-Transform of a Complex Exponential Sequence 211
Example 4.4 The z-Transform of an Exponentially Decreasing Sinusoidal

Sequence
212

Example 4.5 Applying Linearity and Time Shifting Properties of the
z-Transform

214

Example 4.6 Complex Differentiation and Partial Differentiation 217
Example 4.7 The Inverse z-Transform by Partial Fraction Expansion 220
Example 4.8 The Inverse z-Transform by Partial Fraction Expansion 222
Example 4.9 Difference Equation, System Function, and Impulse Response 227
Example 4.10 Different Difference Equations Describing the Same System 229
Example 4.11 Pole-Zero Pattern and Frequency Response 233
Example 4.12 Pole-Zero Pattern of Symmetric or Anti-Symmetric

Sequences
238

Example 5.1 Discrete-Time Interpolation 270
Example 6.1 Impulse-Invariant Transformation–Time-Sampling Method 282
Example 6.2 Step-Invariant Transformation (Zero-Order-Hole Equivalent) 283
Example 6.3 Backward Difference Rule 285
Example 6.4 Forward Difference Rule 286
Example 6.5 Bilinear Transformation 289
Example 6.6 Bilinear Transformation with Prewarping 291
Example 6.7 Pole-Zero Mapping 292
Example 7.1 Analog Filter Design Using the MATLAB Functions 309
Example 7.2 IIR Filter Design 321
Example 7.3 Standard Band FIR Filter Design 334
Example 7.4 Multi-Band FIR Filter Design 336
Example 7.5 Anti-Symmetric Filters–Hilbert Transformer and

Differentiator
338

Example 7.6 Multi-Band CLS FIR Filter Design 340
Example 7.7 CLS (Constrained Least-Squares) FIR LPF/HPF Design 341
Example 7.8 Complex-Coefficient, Arbitrary Magnitude Response FIR

Filter Design
343

Example 8.1 Solving a State Equation 366
Example 8.2 Transfer Function 369
Example 8.3 Discretization of a Continuous-Time State Equation 371
Example 8.4 Discretization of a Double Integrator 374
Example 8.5 Discretization of a Double Integrator with Time Delay 376
Example 8.6 Diagonal/Jordan Canonical Form of State Equation 378

Index for Remarks

Remark no. Description Page number

Remark 1.1 Analog Frequency and Digital Frequency 7
Remark 1.2a Properties of the Unit Impulse Function 9
Remark 1.2b Properties of the Unit Impulse Sequence 10
Remark 1.3 Linearity and Incremental Linearity 14
Remark 1.4 Frequency Response and Sinusoidal Steady-State Response 21
Remark 1.5 Convolution of Two Rectangular Pulses 24
Remark 1.6 Stability of LTI systems with System Function G(s)/G[z] 29
Remark 1.7 Properties of Autocorrelation 40
Remark 1.8 Convolution vs. Correlation and Matched Filter 40
Remark 1.9 xcorr()–MATLAB function for Correlation 42
Remark 2.1 Convergence of Fourier Series Reconstruction 69
Remark 2.2 Physical Meaning of Complex Exponential Fourier Series

Coefficients
71

Remark 2.3 Effects of Smoothness and Period on Spectrum 72
Remark 2.4 Physical Meaning of Fourier Transform 74
Remark 2.5 Frequency Response Existence Condition and Stability

Condition
74

Remark 2.6 Fourier Transform and Laplace Transform 74
Remark 2.7 Fourier Series and Fourier Transform 74
Remark 2.8 Fourier Transform of a Periodic Signal 76
Remark 2.9 Signal Bandwidth and System Bandwidth–Uncertainty

Principle
79

Remark 2.10 An Impulse Signal and Its (White/Flat) Spectrum 82
Remark 2.11 Physical Realizability and Causality Condition 84
Remark 3.1 Physical Meaning of DTFT 130
Remark 3.2 Frequency Response Existence Condition and Stability

Condition
131

Remark 3.3 Phase Jumps in DTFT Phase Spectrum 144
Remark 3.4 The DTFT Magnitude/Phase Spectra of a Symmetric

Sequence
144

Remark 3.5 How to Choose the DFT Size N in Connection with Zero
Padding

155

Remark 3.6 The DFT got Noncausal/Infinite-Duration Sequences 159
Remark 3.7 Relationship among the CTFS, CTFT, DTFT, and DTFS

(DFT/DFS)
162

Remark 3.8 Data Arrangement in Bit Reversed Order 166
Remark 3.9 Simplified Butterfly Computation 166

473

474 Index for Remarks

Remark no. Description Page number

Remark 3.10 DFS/DFT (Discrete Fourier Series/Transform) and Spectral
Leakage

177

Remark 3.11 The Effects of Sampling Interval T and DFT Size N on DFT 178
Remark 4.1 Region of Convergence (ROC) 209
Remark 4.2 z-Transform and DTFT (Discrete-Time Fourier Transform) 211
Remark 4.3 Poles and Zeros 212
Remark 4.4 System Function, Pole Location, ROC, Causality, and

Stability
213

Remark 4.5 Simplified Butterfly Computation 225
Remark 4.6 Computational Method for Inverse z-Transform 228
Remark 4.7 Frequency Response and Pole-Zero Pattern 232
Remark 4.8 Pole-Zero Pattern, Linear Phase of (Anti-)Symmetric

Sequences
238

Remark 5.1 z-Transform and DTFT (Discrete-Time Fourier Transform) 261
Remark 5.2 Poles and Zeros 262
Remark 5.3 Discrete-Time Interpolation, Zero Insertion, and Lowpass

Filtering
270

Remark 6.1 Equivalence Criterion and Band-Limitedness Condition 279
Remark 6.2 Time-Sampling Method–Impulse-Invariant Transformation 280
Remark 6.3 Frequency Response Aspect of Impulse-Invariant

Transformation
280

Remark 6.4 Mapping of Stability Region by Impulse-Invariant
Transformation

281

Remark 6.5 Frequency Transformation by Impulse-Invariant
Transformation

282

Remark 6.6 Mapping of Stability Region and Frequency Transformation 285
Remark 6.7 Mapping of Stability Region by Forward Difference Rule 287
Remark 6.8 Mapping of Stability Region and Frequency Transformation

by BLT
289

Remark 6.9 Prewarping 291
Remark 6.10 DC Gain Adjustment 293
Remark 8.1 Discretized State Equation and Zero-Order-Hold Equivalent 374
Remark 8.2 Similarity Transformation–Equivalence Transformation 377

