Won Y. Yang

Tae G. Chang omal 7] & &5 B

lk H. Song
Yong S. Cho
J. Heo

Won G. Jeon
Jeong W. Lee
Jae K. Kim

Signals
and Systems
with MATLAB®

@ Springer

Signals and Systems with MATLAB®

Won Y. Yang - Tae G. Chang - Ik H. Song -
Yong S. Cho - Jun Heo - Won G. Jeon -
Jeong W. Lee - Jae K. Kim

Signals and Systems
with MATLAB®

@ Springer

Limits of Liability and Disclaimer of Warranty of Software

The reader is expressly warned to consider and adopt all safety precautions that might
be indicated by the activities herein and to avoid all potential hazards. By following the
instructions contained herein, the reader willingly assumes all risks in connection with
such instructions.

The authors and publisher of this book have used their best efforts and knowledge in
preparing this book as well as developing the computer programs in it. However, they
make no warranty of any kind, expressed or implied, with regard to the programs or
the documentation contained in this book. Accordingly, they shall not be liable for any
incidental or consequential damages in connection with, or arising out of, the readers’
use of, or reliance upon, the material in this book.

Questions about the contents of this book can be mailed to wyyang.53@hanmail.net.

Program files in this book can be downloaded from the following website:

<http://wyyang53.com.ne.kr/>

MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc. For
MATLAB and Simulink product information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA

=: 508-647-7000, Fax: 508-647-7001
E-mail: info@mathworks.com

Web: www.mathworks.com

ISBN 978-3-540-92953-6 e-ISBN 978-3-540-92954-3
DOI 10.1007/978-3-540-92954-3
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009920196

© Springer-Verlag Berlin Heidelberg 2009

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: WMXDesign GmbH, Heidelberg
Printed on acid-free paper

Springer is a part of Springer Science+Business Media (www.springer.com)

To our parents and families
who love and support us
and
to our teachers and students
who enriched our knowledge

Preface

This book is primarily intended for junior-level students who take the courses on
‘signals and systems’. It may be useful as a reference text for practicing engineers
and scientists who want to acquire some of the concepts required for signal process-
ing. The readers are assumed to know the basics about linear algebra, calculus (on
complex numbers, differentiation, and integration), differential equations, Laplace
transform, and MATLAB®. Some knowledge about circuit systems will be helpful.

Knowledge in signals and systems is crucial to students majoring in Electrical
Engineering. The main objective of this book is to make the readers prepared for
studying advanced subjects on signal processing, communication, and control by
covering from the basic concepts of signals and systems to manual-like introduc-
tions of how to use the MATLAB® and Simulink® tools for signal analysis and
filter design. The features of this book can be summarized as follows:

1. It not only introduces the four Fourier analysis tools, CTFS (continuous-time
Fourier series), CTFT (continuous-time Fourier transform), DFT (discrete-time
Fourier transform), and DTFS (discrete-time Fourier series), but also illuminates
the relationship among them so that the readers can realize why only the DFT of
the four tools is used for practical spectral analysis and why/how it differs from
the other ones, and further, think about how to reduce the difference to get better
information about the spectral characteristics of signals from the DFT analysis.

2. Continuous-time and discrete-time signals/systems are presented in parallel to
save the time/space for explaining the two similar ones and increase the under-
standing as far as there is no concern over causing confusion.

3. It covers most of the theoretical foundations and mathematical derivations that
will be used in higher-level related subjects such as signal processing, commu-
nication, and control, minimizing the mathematical difficulty and computational
burden.

4. Most examples/problems are titled to illustrate key concepts, stimulate interest,
or bring out connections with any application so that the readers can appreciate
what the examples/problems should be studied for.

5. MATLAB® is integrated extensively into the text with a dual purpose. One
is to let the readers know the existence and feel the power of such software
tools as help them in computing and plotting. The other is to help them to

vii

viii Preface

realize the physical meaning, interpretation, and/or application of such concepts
as convolution, correlation, time/frequency response, Fourier analyses, and their
results, etc.

6. The MATLAB® commands and Simulink® blocksets for signal processing
application are summarized in the appendices in the expectation of being used
like a manual. The authors made no assumption that the readers are proficient in
MATLAB® . However, they do not hide their expectation that the readers will
get interested in using the MATLAB® and Simulink® for signal analysis and
filter design by trying to understand the MATLAB® programs attached to some
conceptually or practically important examples/problems and be able to modify
them for solving their own problems.

The contents of this book are derived from the works of many (known or
unknown) great scientists, scholars, and researchers, all of whom are deeply appre-
ciated. We would like to thank the reviewers for their valuable comments and
suggestions, which contribute to enriching this book.

We also thank the people of the School of Electronic & Electrical Engineering,
Chung-Ang University for giving us an academic environment. Without affections
and supports of our families and friends, this book could not be written. Special
thanks should be given to Senior Researcher Yong-Suk Park of KETI (Korea Elec-
tronics Technology Institute) for his invaluable help in correction. We gratefully
acknowledge the editorial and production staff of Springer-Verlag, Inc. including
Dr. Christoph Baumann and Ms. Divya Sreenivasan, Integra.

Any questions, comments, and suggestions regarding this book are welcome.
They should be sent to wyyang53@hanmail.net.

Seoul, Korea Won Y. Yang
Tae G. Chang

Ik H. Song

Yong S Cho

Jun Heo

Won G. Jeon

Jeong W, Lee

Jae K. Kim

Contents

1 Signalsand SYstemst 1
L1 SIgNalS . oo 2
1.1.1 Various Typesof Signal 2
1.1.2 Continuous/Discrete-Time Signals 2
1.1.3 Analog Frequency and Digital Frequency................ 6
1.1.4 Properties of the Unit Impulse Function
and Unit Sample Sequence ..., 8
1.1.5 Several Models for the Unit Impulse Function............ 11
12 QY EMS Lt e 12
1.2.1 Linear System and Superposition Principle 13
1.2.2 Time/Shift-Invariant System........................... 14
1.2.3 Input-Output Relationship of Linear
Time-Invariant (LTI) System..............ovt.. 15
1.2.4 Impulse Response and System (Transfer) Function........ 17
1.2.5 Step Response, Pulse Response, and Impulse Response 18
1.2.6 Sinusoidal Steady-State Response
and Frequency ReSpONSevvvvvv e, 19
1.2.7 Continuous/Discrete-Time Convolution 22
1.2.8 Bounded-Input Bounded-Output (BIBO) Stability 29
129 Causality. ... 30
1.2.10 Invertibility 30
1.3 Systems Described by Differential/Difference Equations 31
1.3.1 Differential/Difference Equation and System Function. 31
1.3.2 Block Diagrams and Signal Flow Graphs 32
1.3.3 General Gain Formula - Mason’s Formula............... 34
1.3.4 State Diagrams 35
1.4 Deconvolution and Correlation, 38
1.4.1 Discrete-Time Deconvolution.......................... 38
1.4.2 Continuous/Discrete-Time Correlation 39
15 SUMMANY ..ot 45
Problems 45

X Contents
2 Continuous-Time Fourier Analysis i, 61
2.1 Continuous-Time Fourier Series (CTFS) of Periodic Signals 62
2.1.1 Definition and Convergence Conditions
of CTFS Representationcouvun. 62
2.1.2 Examples of CTFS Representation 65
2.1.3 Physical Meaning of CTFS Coefficients — Spectrum....... 70
2.2 Continuous-Time Fourier Transform of Aperiodic Signals 73
2.3 (Generalized) Fourier Transform of Periodic Signals 77
2.4 Examples of the Continuous-Time Fourier Transform 78
2.5 Properties of the Continuous-Time Fourier Transform............ 86
251 Linearity ..o 86
2.5.2 (Conjugate) Symmetryooiiiiiiiiiiii 86
2.5.3 Time/Frequency Shifting (Real/Complex Translation) 88
254 Duality ... 88
255 RealConvolution..............cciiiiiiii i, 89
2.5.6 Complex Convolution (Modulation/Windowing) 90
2.5.7 Time Differential/Integration — Frequency
Multiplication/Divisiono, 94
2.5.8 Frequency Differentiation — Time Multiplication.......... 95
259 Timeand Frequency Scaling 95
2.5.10 Parseval’s Relation (Rayleigh Theorem) 96
2.6 Polar Representation and Graphical Plot of CTFT 96
2.6.1 LinearPhase..........coiiiiiiii 97
2.6.2 BodePlot 97
2.7 SUMMAIY .« e e 98
Problems 99
3 Discrete-Time Fourier Analysis. 129
3.1 Discrete-Time Fourier Transform (DTFT)ovviiiiiiinnn 130
3.1.1 Definition and Convergence Conditions of DTFT
Representationo 130
3.1.2 Examples of DTFT Analysisccoovinn. 132
3.1.3 DTFT of Periodic Sequencesccooo... 136
3.2 Properties of the Discrete-Time Fourier Transform 138
321 Periodicity 138
322 Linearity ... 138
3.2.3 (Conjugate) Symmetry 138
3.2.4 Time/Frequency Shifting (Real/Complex Translation) 139
3.25 RealConvolution ... 139
3.2.6 Complex Convolution (Modulation/Windowing).......... 139
3.2.7 Differencing and Summationin Time 143
3.2.8 Frequency Differentiation............................. 143
3.2.9 Timeand Frequency Scalingo.t. 143

3.2.10 Parseval’s Relation (Rayleigh Theorem) 144

Contents xi
3.3 Polar Representation and Graphical Plot of DTFT 144
3.4 Discrete Fourier Transform (DFT) ..., 147

3.4.1 Propertiesofthe DFT i .. 149
3.4.2 Linear Convolution withDFT 152
3.4.3 DFT for Noncausal or Infinite-Duration Sequence 155
3.5 Relationship Among CTFS, CTFT, DTFT,andDFT 160
3.5.1 Relationship Between CTFSand DFT/DFS 160
3.5.2 Relationship Between CTFT and DTFT 161
3.5.3 Relationship Among CTFS, CTFT, DTFT, and DFT/DFS .. 162
3.6 Fast Fourier Transform (FFT) i, 164
3.6.1 Decimation-in-Time (DIT)FFT........................ 165
3.6.2 Decimation-in-Frequency (DIF) FFT 168
3.6.3 Computation of IDFT Using FFT Algorithm 169
3.7 Interpretation of DFT Resultsit.. 170
3.8 Effects of Signal Operations on DFT Spectrum 178
3.9 Short-Time Fourier Transform — Spectrogram 180
310 SUMMAIY ot e e 182
Problems 182

4 Thez-Transform. ... 207
4.1 Definition of the z-Transform ot 208
4.2 Properties of the z-Transform 213

421 Linearity ... 213
4.2.2 Time Shifting — Real Translation....................... 214
4.2.3 Frequency Shifting — Complex Translation 215
424 TimeReversal 215
425 RealConvolution..............ooii i 215
4.2.6 Complex Convolution ..., 216
4.2.7 Complex Differentiationt 216
4.2.8 Partial Differentiation L. 217
4.2.9 Initial Value Theorem 217
4.2.10 Final Value Theorem 218
43 Thelnverse z-Transformo, 218
4.3.1 Inverse z-Transform by Partial Fraction Expansion 219
4.3.2 Inverse z-Transform by Long Division 223
4.4 Analysis of LTI Systems Using the z-Transform................. 224
4.5 Geometric Evaluation of the z-Transform 231
4.6 The z-Transform of Symmetric Sequences 236
4.6.1 Symmetric SEQUENCES . ..o oottt 236
4.6.2 Anti-Symmetric SEqUENCESottt 237
A7 SUMMAEIY © e e e e 240

Problems 240

Xii Contents
5 Sampling and Reconstruction i, 249
5.1 Digital-to-Analog (DA) Conversion[J-1], 250
5.2 Analog-to-Digital (AD) Conversion[G-1, J-2, W-2] 251
5.2.1 Counter (Stair-Step) Ramp ADC 251
522 Tracking ADCt 252
5.2.3 Successive Approximation ADC 253
524 Dual-Ramp ADC 254
525 Parallel (Flash) ADC 256
5.3 Sampling 257
5.3.1 Sampling Theoremcciiiiiieiiiiinn... 257
5.3.2 Anti-Aliasing and Anti-Imaging Filters 262
5.4 Reconstruction and Interpolation 263
5.4.1 Shannon Reconstruction 263
5.4.2 DFSReconstructionciiiiiii.. 265
5.4.3 Practical Reconstruction, 267
5.4.4 Discrete-Time Interpolation 269
5.5 Sample-and-Hold (S/H) Operationccooiiunn.. 272
5.6 SUMMAIY ... 272
Problems 273
6 Continuous-Time Systems and Discrete-Time Systems 277
6.1 Concept of Discrete-Time Equivalent.......................... 277
6.2 Input-Invariant Transformation e, 280
6.2.1 Impulse-Invariant Transformation 281
6.2.2 Step-Invariant Transformation 282
6.3 Various Discretization Methods [P-1].......................... 284
6.3.1 Backward Difference Rule on Numerical Differentiation . .. 284
6.3.2 Forward Difference Rule on Numerical Differentiation 286
6.3.3 Left-Side (Rectangular) Rule on Numerical Integration 287
6.3.4 Right-Side (Rectangular) Rule on Numerical Integration . .. 288

6.3.5 Bilinear Transformation (BLT) — Trapezoidal Rule on
Numerical Integration 288
6.3.6 Pole-Zero Mapping — Matched z-Transform [F-1]......... 292
6.3.7 Transport Delay —Dead Timeccovvivnn... 293
6.4 Time and Frequency Responses of Discrete-Time Equivalents 293
6.5 Relationship Between s-Plane Poles and z-Plane Poles 295
6.6 The Starred Transform and Pulse Transfer Function.............. 297
6.6.1 The Starred Transform et 297
6.6.2 The Pulse Transfer Function........................... 298
6.6.3 Transfer Function of Cascaded Sampled-Data System 299

6.6.4 Transfer Function of System in A/D-G[z]-D/A Structure . .. 300
Problems 301

Contents xiii
7 Analog and Digital Filters i 307
7.1 Analog Filter Designuuuuriiiiiiiiiiiae 307
7.2 Digital Filter Design 320
721 1RFilter Design ..o 321

7.22 FIRFilterDesign........covviiiiiiiiiiann 331

7.2.3 Filter Structure and System Model Available in MATLAB . 345

7.2.4 Importing/Exporting a Filter Design 348

7.3 HowtoUse SPTOOl 350
Problems 357

8 State Space Analysisof LTI Systems 361
8.1 State Space Description — State and Output Equations............ 362
8.2 Solution of LTI State Equation ..., 364
8.2.1 State Transition Matrix, 364

8.2.2 Transformed Solution 365

8.2.3 Recursive Solution............... ... o i 368

8.3 Transfer Function and Characteristic Equation 368
8.3.1 TransferFunction................ 368

8.3.2 Characteristic Equationand Roots 369

8.4 Discretization of Continuous-Time State Equation............... 370
8.4.1 State Equation Without Time Delay 370

8.4.2 State Equation with TimeDelay 374

8.5 \arious State Space Description — Similarity Transformation 376
8.6 SUMMAIY .. 379
Problems 379

A TheLaplace Transformcco i 385
A.1 Definition of the Laplace Transform........................... 385
A.2 Examples of the Laplace Transform 385
A.2.1 Laplace Transform of the Unit Step Function............. 385

A.2.2 Laplace Transform of the Unit Impulse Function 386

A.2.3 Laplace Transform of the Ramp Function................ 387

A.2.4 Laplace Transform of the Exponential Function 387

A.2.5 Laplace Transform of the Complex Exponential Function .. 387

A.3 Properties of the Laplace Transform........................... 387
A3L Linearity ...t 388

A.3.2 Time Differentiation 388

A33 Timelntegration 388

A.3.4 Time Shifting — Real Translation....................... 389

A.3.5 Frequency Shifting — Complex Translation 389

A.3.6 Real Convolution..............coiiiiiiiiinnnn. 389

A.3.7 Partial Differentiation i 390

A.3.8 Complex Differentiation 390

A.3.9 Initial Value Theorem 391

Xiv

Contents

A.3.10 Final Value Theorem 391

A4 Inverse Laplace Transform................ 392
A.5 Using the Laplace Transform to Solve Differential Equations. 394
Tables of Various Transforms 399
Operations on Complex Numbers, Vectors, and Matrices............ 409
C.1 Complex Adition ... 409
C.2 Complex Multiplication 409
C.3 Complex DiviSion 409
C.4 Conversion Between Rectangular Form and Polar/Exponential Form409
C.5 Operations on Complex Numbers Using MATLAB 410
C.6 Matrix Addition and Subtraction[Y-1], 410
C.7 Matrix Multiplication i 411
C.8 Determinant.t 411
C.9 Eigenvalues and Eigenvectors of a Matrix* 412
C.10 INVEISE MAtriX . .\ vttt 412
C.11 Symmetric/Hermitian Matrix, 413
C.12 Orthogonal/Unitary MatrixXc..euuuiiiuiinnnnnnnn. 413
C.13 Permutation MatriX.uuuuuieiiiiinns 414
C.ld RANK . .o 414
C.15 Row Spaceand Null Spacec.c.vriiirnnnnnns 414
C.16 Row Echelon Form ... iiiinns 414
C.17 Positive Definiteness. 415
C.18 Scalar(Dot) Product and Vector(Cross) Product 416
C.19 Matrix Inversion Lemmat 416
C.20 Differentiationw.rt.aVector i 416
Useful Formulas i 419
MAT LA B . 421
E.1 Convolution and Deconvolution, 423
E.2 Correlation. ... 424
E.3 CTFS (Continuous-Time Fourier SEries)coouvuvunnn. 425
E.4 DTFT (Discrete-Time Fourier Transform) 425
E.5 DFS/DFT (Discrete Fourier Series/Transform) 425
E.6 FFT (Fast Fourier Transform), 426
E7 WINdOWINg ... 427
E.8 Spectrogram (FFT with Sliding Window) 427
E.9 POWer Spectrum ... 429
E.10 Impulse and Step RESPONSESt eei i 430
E.11 Frequency RESPONSE vttt 433
E.12 Filteringo 434

E.13 Filter Designt 436

Contents XV

E.13.1 Analog Filter Design ...t 436

E.13.2 Digital Filter Design — IIR (Infinite-duration Impulse
Response) Filter 437

E.13.3 Digital Filter Design — FIR (Finite-duration Impulse
Response) Filter 438
E.14 Filter Discretizationc. i 441
E.15 Construction of Filters in Various Structures Using dfilt() 443
E.16 System Identification from Impulse/Frequency Response 447
E.17 Partial Fraction Expansion and (Inverse) Laplace/z-Transform. 449
E.18 Decimation, Interpolation, and Resampling..................... 450
E.19 Waveform Generation, 452
E.20 Input/Output through File i i, 452
FooSimulink® L 453
INOEX .ot e 461
Index for MATLAB rOULINES\ o e 467
Index for EXamples 471

Index for Remarks 473

Chapter 1
Signals and Systems

Contents
L1 SIgnals . .o 2
1.1.1 Various Typesof Signal 2
1.1.2 Continuous/Discrete-Time Signals.t 2
1.1.3 Analog Frequency and Digital Frequencycccoivveiinnn. 6
1.1.4 Properties of the Unit Impulse Function
and Unit Sample SEQUENCEo oot e 8
1.1.5 Several Models for the Unit Impulse Function 11
L2 Sy M 12
1.2.1 Linear System and Superposition Principle............... 13
1.2.2 Time/Shift-Invariant System i 14
1.2.3 Input-Output Relationship of Linear
Time-Invariant (LT1) System. ... i 15
1.2.4 Impulse Response and System (Transfer) Function 17
1.2.5 Step Response, Pulse Response, and Impulse Response 18
1.2.6 Sinusoidal Steady-State Response
and Frequency RESPONSEttt 19
1.2.7 Continuous/Discrete-Time Convolution, 22
1.2.8 Bounded-Input Bounded-Output (BIBO) Stability 29
129 Causality . ..o 30
1.220 Invertibilityo 30
1.3 Systems Described by Differential/Difference Equations 31
1.3.1 Differential/Difference Equation and System Function 31
1.3.2 Block Diagrams and Signal Flow Graphscccoveiinnn. 32
1.3.3 General Gain Formula—Mason’sFormula 34
1.3.4 State Diagramso oottt 35
1.4 Deconvolution and Correlation 38
1.4.1 Discrete-Time Deconvolutionot 38
1.4.2 Continuous/Discrete-Time Correlation, 39
LD SUMMAIY e 45
PrODIEMS . 45

In this chapter we introduce the mathematical descriptions of signals and sys-
tems. We also discuss the basic concepts on signal and system analysis such as
linearity, time-invariance, causality, stability, impulse response, and system function
(transfer function).

W.Y. Yang et al., Signals and Systems with MATLAB®, 1
DOI 10.1007/978-3-540-92954-3_1, © Springer-Verlag Berlin Heidelberg 2009

2 1 Signals and Systems

1.1 Signals

1.1.1 Various Types of Signal

A signal, conveying information generally about the state or behavior of a physical
system, is represented mathematically as a function of one or more independent
variables. For example, a speech signal may be represented as an amplitude function
of time and a picture as a brightness function of two spatial variables. Depending
on whether the independent variables and the values of a signal are continuous or
discrete, the signal can be classified as follows (see Fig. 1.1 for examples):

- Continuous-time signal X(t): defined at a continuum of times.

- Discrete-time signal (sequence) X[n] = x(nT): defined at discrete times.
- Continuous-amplitude(value) signal ~ X¢: continuous in value (amplitude).

- Discrete-amplitude(value) signal Xq: discrete in value (amplitude).

Here, the bracket [] indicates that the independent variable n takes only integer
values. A continuous-time continuous-amplitude signal is called an analog signal
while a discrete-time discrete-amplitude signal is called a digital signal. The ADC
(analog-to-digital converter) converting an analog signal to a digital one usually
performs the operations of sampling-and-hold, quantization, and encoding. How-
ever, throughout this book, we ignore the quantization effect and use “discrete-time
signal/system” and “digital signal/system” interchangeably.

Continuous-time Continuous-time Continuous-time Discrete-time Continuous-time
continuous-amplitude continuous-amplitude continuous-amplitude discrete-amplitude discrete-amplitude
signal sampled signal signal signal signal
X(t) — Xx(t) — X(t) — Xq[n] — x4

sampling at t=nT hold A/D conversion D/A conversion
T: sample period

g gl

(a) (b) () (d) (e)
Fig. 1.1 Various types of signal

1.1.2 Continuous/Discrete-Time Signals

In this section, we introduce several elementary signals which not only occur fre-
quently in nature, but also serve as building blocks for constructing many other
signals. (See Figs. 1.2 and 1.3.)

1.1 Signals 3
us[n]
t s
1 | US() 1 | W
0 0 reeee
: . : t : . . . n
0 1 0 10
(al) Unit step function (b1) Unit step sequence
ir T &(t)
0
: . : t . n
0 1 0 10
(a2) Unit impulse function (b2) Unit impulse sequence
1t fo(t) 1t W fo[n]
O 0 AT A AU W W W, W W, W, W W W
: : : t - : . n
0 D 1 0 D 10
(a3) Rectangular pulse function (b3) Rectangular pulse sequence
1r A M) 1t II([Ap[n]
0 0
L t L n

0 D 1
(a4) Triangular pulse function

0

0 D 10
(b4) Triangular pulse sequence

1+ anus[n]
0 %@m@m

0 1
(ab) Exponential function

L . L n
0 10
(b5) Exponential sequence

1
0 cos(QN+¢)
-1

10 Mos(wn + a)/\/
NNV t
0 1

(a6) Real sinusoidal function

@ﬁ@ 3l

o)l
T 10

(b6) Real sinusoidal sequence

Fig. 1.2 Some continuous—time and discrete—time signals

1.1.2.1a Unit step function

1 fort>0
us(t) = -

(1.1.1a)
0 fort<O

1.1.2.1b Unit step sequence

1 forn>0

(1.1.1b)
0 forn<O0

us[n] =

4 1 Signals and Systems

(a) Complex exponential function x(t) = eSit =%t e it

Im

Re

(b) Complex exponential sequence x(n)=z]' = r' e/"

Fig. 1.3 Continuous-time/discrete—time complex exponential signals

(cf.) A delayed and scaled step function |(cf.) A delayed and scaled step sequence

A fort >ty A forn>ng
Aug(t —to) = Aus[n —no] =
st~ 1) {0 fort < to sl o] {0 forn < ng
1.1.2.2a Unit impulse function 1.1.2.2b Unit sample or impulse sequence
d oo fort=0 1 forn=0
() = —ug(t) = 8[n] = 1.1.2b
O T {0 fort 0 [nl {0 forn # 0 ()
(1.1.2a)
(cf.) A delayed and scaled impulse (cf.) A delayed and scaled impulse
function sequence
AS(t — 1) = Aco fort =t AS[N — no] = A forn = ng
0 fort #tg 0 forn # ng

1.1 Signals

(cf.) Relationship between §(t) and us(t)

5(t) = %us(t) (1.1.3a)
Us(t) = / t s(rydr (1.1.4a)

1.1.2.3a Rectangular pulse function

ro(t) = us(t) — us(t — D) (1.1.5a)

_J1 for0 <t < D (D :duration)
|0 elsewhere

1.1.2.4a Unit triangular pulse function

. 1-|t—D|/D forit—D|<D
ro(t) = {0 elsewhere
(1.1.6)

1.1.2.5a Real exponential function

et fort>0
0 fort <0
(1.1.7a)

1.1.2.6a Real sinusoidal function

x(t) = e®ug(t) =

X(t) = cos(wit + ¢) = Re{el(:t+9))
1, iy o
= E {eld’e]wn + e*Jff’e*let}
(1.1.83)

1.1.2.7a Complex exponential function

x(t) = et =etel it with ;= 01 + j w4
(1.1.93)

Note that o; determines the changing
rate or the time constant and w; the
oscillation frequency.

1.1.2.8a Complex sinusoidal function

X(t) = el = cos(wyt) + j sin(wst)

(1.1.10a)

5

(cf) Relationship between §[n] and us[n]

8[n] = us[n] — us[n — 1]

us[n] = 2:1:_

1.1.2.3b Rectangular pulse sequence

(1.1.3b)

_olm] (1.1.4b)

ro[n] = us[n] — ug[n — D] (1.1.5b)

_J1 for0<n < D (D :duration)
|0 elsewhere

1.1.2.4b Unit triangular pulse sequence

0 elsewhere

(1.1.6b)
1.1.2.5b Real exponential sequence

1-|n+1-D|/Dforjn+1-Dj<D—1
)»D[n]z{

a" forn>0
X[n] = a%us[n] = 0 forn<0
(1.1.70)

1.1.2.6b Real sinusoidal sequence

x[n] = cos(Q1n + ¢) = Re {el1"9)}
= E{ej"’eml“ 4+ e idgiun
2
(1.1.8b)

1.1.2.7b Complex exponential function

x[n] = 2! = rPe/"M with 73 = riel™
(1.1.9b)

Note that r; determines the changing
rate and 2, the oscillation frequency.

1.1.2.8b Complex sinusoidal sequence

x[n] = €4 = cos(Q1n) + j sin(Q1n)
(1.1.10b)

6 1 Signals and Systems
1.1.3 Analog Frequency and Digital Frequency

A continuous-time signal x(t) is periodic with period P if P is generally the smallest
positive value such that x(t + P) = x(t). Let us consider a continuous-time periodic
signal described by

x(t) = el (1.1.11)

The analog or continuous-time (angular) frequency! of this signal is w; [rad/s] and
its period is

P= 2—”[s] (1.1.12)
w1

where

elntP) —eltt vt (- P =21 = P =1) (1.1.13)

If we sample the signal x(t) = el®:! periodically att = nT, we get a discrete-
time signal

x[n] = T = N with Q) = o, T (1.1.14)

Will this signal be periodic in n? You may well think that x[n] is also periodic
for any sampling interval T since it is obtained from the samples of a continuous-
time periodic signal. However, the discrete-time signal x[n] is periodic only when
the sampling interval T is the continuous-time period P multiplied by a rational
number, as can be seen from comparing Fig. 1.4(a) and (b). If we sample x(t) =
el“it to get x[n] = el"T = el4" with a sampling interval T = mP/N [s/sample]
where the two integers m and N are relatively prime (coprime), i.e., they have no
common divisor except 1, the discrete-time signal x[n] is also periodic with the
digital or discrete-time frequency
mP

m
Q=wT= WL = NZn [rad/sample] (1.1.15)

The period of the discrete-time periodic signal x[n] is

N:2m7'r

[sample], (1.1.16)
1

where

ejﬂl(r‘HN) — ej anejZmn — eij vn (1117)

1 Note that we call the angular or radian frequency measured in [rad/s] just the frequency with-
out the modifier ‘radian’ or ‘angular’ as long as it can not be confused with the ‘real’ frequency
measured in [Hz].

11

-1

Signals 7

AAA DD
AR

(a) Sampling x(t) = sin(3xt) with sample period T=0.25

AANAA
VYUY

(b) Sampling x(t) = sin(3xt) with sample period T = 1/7

Fig. 1.4 Sampling a continuous-time periodic signal

This is the counterpart of Eq. (1.1.12) in the discrete-time case. There are several
observations as summarized in the following remark:

Remark 1.1 Analog (Continuous-Time) Frequency and Digital (Discrete-Time)
Frequency

@)
)

©)

In order for a discrete-time signal to be periodic with period N (being an
integer), the digital frequency €; must be 7 times a rational number.

The period N of a discrete-time signal with digital frequency 2 is the mini-
mum positive integer to be multiplied by Q1 to make an integer times 25 like
2mz (m: an integer).

In the case of a continuous-time periodic signal with analog frequency wy, it
can be seen to oscillate with higher frequency as w; increases. In the case of
a discrete-time periodic signal with digital frequency g, it is seen to oscillate
faster as Q; increases from 0 to = (see Fig. 1.5(a)—(d)). However, it is seen
to oscillate rather slower as 2, increases from r to 27 (see Fig. 1.5(d)—(h)).
Particularly with ©; = 27 (Fig. 1.5(h)) or 2ms, it is not distinguishable from
a DC signal with €, = 0. The discrete-time periodic signal is seen to oscillate
faster as 2; increases from 2z to 37 (Fig. 1.5(h) and (i)) and slower again as
Q4 increases from 37 to 4.

1 Signals and Systems

ORI W RN

o

N ARRVIR VIR ARV

0.5 1 15 2 0 2 0 2
(a) cos(nnT), T =0.25 cos(ZrnT) T= 025 (c) cos(37rnT), T= 025

o

o

-1

VNN lW/hAﬂ\A AR

o

V/WWV/AWVWWV_MWVWUV

0

2 0 2 0
d) cos(47rnT) T= 025 e) cos(57rnT) T= 025 Cos(GﬂnT), T= 025

[

o

WA AR AR

=

T

-1

o

o

VRLYVU WUTVVUTY VTV

0

Fig.

4)

. . 2 0 0.5 1 15 2 0 0.5 1 15 2
(g) cos(77nT), T =0.25 (h) cos(87nT), T =0.25 (i) cos(97nT), T =0.25

1.5 Continuous-time/discrete-time periodic signals with increasing analog/digital frequency

This implies that the frequency characteristic of a discrete-time signal is peri-
odic with period 27 in the digital frequency . This is because /" is also
periodic with period 277 in Q1, i.e., e/ aF+2mmn — gingi2mnT _ glun for gny
integer m.

Note that if a discrete-time signal obtained from sampling a continuous-time
periodic signal has the digital frequency higher than = [rad] (in its absolute
value), it can be identical to a lower-frequency signal in discrete time. Such a
phenomenon is called aliasing, which appears as the stroboscopic effect or the
wagon-wheel effect that wagon wheels, helicopter rotors, or aircraft propellers
in film seem to rotate more slowly than the true rotation, stand stationary, or
even rotate in the opposite direction from the true rotation (the reverse rotation
effect).[W-1]

1.1.4 Properties of the Unit Impulse Function

and Unit Sample Sequence

In Sect. 1.1.2, the unit impulse, also called the Dirac delta, function is defined by

Eq.

(1.1.2a) as

oo fort=0
S(t)_ us(t)— 0 fort#0 (1.1.18)

1.1 Signals 9

Several useful properties of the unit impulse function are summarized in the follow-
ing remark:

Remark 1.2a Properties of the Unit Impulse Function §(t)

(1) The unit impulse function §(t) has unity area around t = 0, which means

+oo o+
/ 8(r)dt = /7 S(r)dr =1 (1.1.19)
(/0 8(r)dr — /O s()dr "=V ug(0) — ug(0) =1 -0 = 1)

(2) The unit impulse function §(t) is symmetric about t = 0, which is described by
3(t) = 8(-t) (1.1.20)

(3) The convolution of a time function x(t) and the unit impulse function §(t) makes
the function itself:

x(t) * 8(t) =y / o x(7)8(t — 7)dr = x(t) (L.1.21)

definition of convolution integral 00

L1

f:rooco x(0)8(t — 7)dt 3(t—7)#0 f:0r only r=t fjoooo X(t)5(t — 7)dr x(t) indepgdem of X(t) fff: 5(t — 7)dr
Ix()

T [8(t)(—dt) = x(t) [st = x(t) [s(z)de &

What about the convolution of a time function x(t) and a delayed unit impulse
function §(t — t;)? It becomes the delayed time function x(t — t;), that is,
+00
X(t) % 8(t —t1) = / X(7)8(t — t — ty)dt = x(t —t3) (1.1.22)

—00

What about the convolution of a delayed time function x(t — t,) and a delayed
unit impulse function §(t — t;)? It becomes another delayed time function x(t —
t; — tp), that is,

X(t —tg) * 5(11 —tl) = /+°o X(‘L’ — t2)5(t -7 tl)d‘L’ = X(t —tl—tz) (1.1.23)

—00

If x(t) = y(t) = z(t), we have
X(t—t) syt —t) = z(t —t; — t,) (1.1.24)
However, with t replaced with t — t; on both sides, it does not hold, i.e.,

X(t —tg) * y(t —tg) #£ z(t —t1), but x(t — t)* y(t — t1) = z(t — 2t;)

10 1 Signals and Systems

(4) The unit impulse function §(t) has the sampling or sifting property that

1.1

7 x(t2)

Foo 8(t—t1)£0 for only t=t
/ X(£)8(t — ty)dt IO =t

x(t1) f st —)t ®

e¢]

(1.1.25)

This property enables us to sample or sift the sample value of a continuous-time
signal x(t) att = t;. It can also be used to model a discrete-time signal obtained
from sampling a continuous-time signal.

In Sect. 1.1.2, the unit-sample, also called the Kronecker delta, sequence is
defined by Eq. (1.1.2b) as

5[] = 1 forn=0 (1.1.26)
0 forn#0

This is the discrete-time counterpart of the unit impulse function §(t) and thus is
also called the discrete-time impulse. Several useful properties of the unit-sample
sequence are summarized in the following remark:

Remark 1.2b Properties of the Unit-Sample Sequence §[n]

(1) Like Eq. (1.1.20) for the unit impulse §(t), the unit-sample sequence 5[N] is also
symmetric about n = 0, which is described by

8[n] = 8[—n] (1.1.27)

(2) Like Eq. (1.1.21) for the unit impulse §(t), the convolution of a time sequence
x[n] and the unit-sample sequence 5[N] makes the sequence itself:

X[I’l] " 8[”] definition of cglvolution sum Z:__ x[m]a[n _ m] =x[n] (1.1.28)

8[n—m]+#0 f_or only m=n

Zﬁzfoo X[m]8[n - m]

X[n] independent of m

szfoo X[n]a[n - m]

X[n] Y5 5[0 — m]

8[n—m]#0 f=or only m=n x[n]8[n _ n] (1.12.26) X[I"I]

1.1 Signals 11
(3) Like Egs. (1.1.22) and (1.1.23) for the unit impulse §(t), the convolution of a

time sequence x[n] and a delayed unit-sample sequence §[n — n;] makes the
delayed sequence x[n — ny]:

x[n] * 8[n — ny] = Zomo:,oo x[mM]s[n — m — ny] =x[n — ny] (1.1.29)

X[n —ng] x §[n—n;] = Z::_OO X[m — nzJ8[n — m — n;] =X[n — n; — ny]
(1.1.30)

Also like Eq. (1.1.24), we have
X[n] =« y[n] = z[n] = x[n—n]lxy[n—ny] =z[n—n; —np] (1.1.31)

(4) Like (1.1.25), the unit-sample sequence §[n] has the sampling or sifting prop-
erty that

> xsln—nd=Y"" ximlol—n]=xim] (L132)

1.1.5 Several Models for the Unit Impulse Function

As depicted in Fig. 1.6(a)—(d), the unit impulse function can be modeled by the limit
of various functions as follows:

~a00 = fin, 5 = i geinet/0)” " im0
(1.1.33a)
—8(t) = lim_ %ro (t + %) (1.1.33b)
—8(t) = lim_ %,\D (t + D) (1.1.33c)
—8(t) = DILng+ %e*"VD (1.1.33d)

Note that scaling up/down the impulse function horizontally is equivalent to scaling
it up/down vertically, that is,

1
@) = -58() (1.1.34)

It is easy to show this fact with any one of Eqgs. (1.1.33a-d). Especially for
Eq. (1.1.33a), that is the sinc function model of (t), we can prove the validity of
Eqg. (1.1.34) as follows:

12 1 Signals and Systems

8 ' ' M 'D=0.125

6

4 -—] D =0.250
D = 1.000

0 f T

-15 -1 05 0 0.5 1 15 -15 -1 -05 0 0.5 1 15

1 sin(at/D) 1 t 1 D
Q ———MmM = — — b) —rpt+=
()D —~D DSInC(D) ()D o 2)
8 8 D=0.0625 1
6 6
4 4
2 2
0 0
-15 -1 -05 0 05 1 15 -15 -1 -05 0 05 1 15
1 1 -lthp
= t+D d) —e
(© 5 Ap (t+D) (d) 5

Fig. 1.6 Various models of the unit impulse function §(t)

8(at)(1'l'—33a) lim 1 sin(rrat/D) — i 1 sin(zt/(D/a))
~ p>0+rD wat/D pja—o+ |a|(D/lal) =t/(D/a)
D/|a\:»D’i lim isin(nt/D’) (1'1'=333)i8(t)
|a| o—o+t D nt/D’ |al

On the other hand, the unit-sample or impulse sequence §[n] can be written as

st = S _ Ginein) (1.1.35)
n
where the sinc function is defined as
sinc(x) = SnCX) (1.1.36)
TX

1.2 Systems

A system is a plant or a process that produces a response called an output in
response to an excitation called an input. If a system’s input and output signals
are scalars, the system is called a single-input single-output (SISO) system. If a
system’s input and output signals are vectors, the system is called a multiple-input

1.2 Systems 13

the input the output the input the output
X(t)—>= G [—=y(t)=G{x ()} X(n]—> G [y[n]=G{x[n]}
(a) A continuous-time system (b) A discrete-time system

Fig. 1.7 A description of continuous—time and discrete—time systems

multiple-output (MIMO) system. A single-input multiple-output (SIMO) system and
a multiple-input single-output (MISO) system can also be defined in a similar way.
For example, a spring-damper-mass system is a mechanical system whose output
to an input force is the displacement and velocity of the mass. Another example
is an electric circuit whose inputs are voltage/current sources and whose outputs
are voltages/currents/charges in the circuit. A mathematical operation or a com-
puter program transforming input argument(s) (together with the initial conditions)
into output argument(s) as a model of a plant or a process may also be called
a system.

A system is called a continuous-time/discrete-time system if its input and output
are both continuous-time/discrete-time signals. Continuous-time/discrete-time sys-
tems with the input and output are often described by the following equations and
the block diagrams depicted in Fig. 1.7(a)/(b).

Continuous-time system Discrete-time system
Gl ... Gl .
x(t) = y(1); y(t) = G{x(1)} x[n] = y[n]; y[n] = G{x[n]}

1.2.1 Linear System and Superposition Principle

A system is said to be linear if the superposition principle holds in the sense that it
satisfies the following properties:

- Additivity: The output of the system excited by more than one independent
input is the algebraic sum of its outputs to each of the inputs
applied individually.

- Homogeneity: The output of the system to a single independent input is
proportional to the input.

This superposition principle can be expressed as follows:

If the output to x; (t) is yi (t) = G{xi(t)}, | If the output to x[n] is Vyi[n] =
the output to Zaixi(t) is ZaG{xi(t)}, G{xi[n]}, the output to Zaixi [n] is
that is, ' | S aG (q[n]), thatis,

14

G lZaxi(t)} = ZaiG{Xi(t)}
= Za,—yi (1.2.1a)

(EX) A continuous-time linear system
y(t) = 2x(t)
(Ex) A continuous-time nonlinear system

y(t) =x({t)+1

1 Signals and Systems

G {Zaxi[n], =Y aG{x[n]
=>_aynl

(Ex) A discrete-time linear system

(1.2.1b)

y[n] = 2x[n]

(Ex) A discrete-time nonlinear system

yln] = x*[n]

Remark 1.3 Linearity and Incremental Linearity

(1) Linear systems possess a property that zero input yields zero output.

(2) Suppose we have a system which is essentially linear and contains some
memory (energy storage) elements. If the system has nonzero initial condi-
tion, it is not linear any longer, but just incrementally linear, since it violates
the zero-input/zero-output condition and responds linearly to changes in the
input. However, if the initial condition is regarded as a kind of input usually
represented by impulse functions, then the system may be considered to be

linear.

1.2.2 Time/Shift-Invariant System

A system is said to be time/shift-invariant if a delay/shift in the input causes
only the same amount of delay/shift in the output without causing any change of
the charactersitic (shape) of the output. Time/shift-invariance can be expressed as

follows:

If the output to x(t) is y(t), the output to
X(t —ty)isy(t —t), i.e.,

GXt—-t)}=yt—-t) (1.2.2a)

(Ex) A continuous-time time-invariant
system

y(t) = sin(x(t))

If the output to x[n] is y[n], the output
to X[n —ni]isy[n —nq], i.e.,

G{xIn—n]} =y[n—ni] (1.2.2b)

(Ex) A discrete-time time-invariant
system

y[n] = %(x[n — 11+ x[n] + x[n + 1])

1.2 Systems 15

(Ex) A continuous-time time-varying | (Ex) A discrete-time time-varying
system system

1
y'(t) = (sin(t) — 1)y(t) + x(t) ylnl = —y[n — 1] +x[n]

1.2.3 Input-Output Relationship of Linear
Time-Invariant (LTI) System

Let us consider the output of a continuous-time linear time-invariant (LTI) system
G to an input x(t). As depicted in Fig. 1.8, a continuous-time signal x(t) of any
arbitrary shape can be approximated by a linear combination of many scaled and
shifted rectangular pulses as

0 1 T T—de,mT—1
X(t) = x(mT)=r ——mT)T .
® Zm?oo ()T T (t+ 2) (1.?53)3b)
o0

x(t) = lim K(t) = / x(2)8(t — 7)dt = x(t) *5(t) (1.2.3)

—0Q

Based on the linearity and time-invariance of the system, we can apply the superpo-
sition principle to write the output §(t) to X(t) and its limitas T — 0:

JO = GIKDL =Y x(mT)gr(t - mT)T

[ee]

y(t) = G{x()} = / x(r)g(t — r)dz = x(t)=g(t) (1.2.4)

—00

Here we have used the fact that the limit of the unit-area rectangular pulse response
as T — 0 is the impulse response g(t), which is the output of a system to a unit
impulse input:

x(0)

r-(t) rT(t+?) X_T)X(t) x(T) x(3T)
1 A |>- —]
X(t) ﬁAZ’IL‘V

t t
0 T -T/2 0 T/2 i -T 0 T 2T 3T
(a) Rectangular (b) Rectangular pulse 'y (=2T) (c) A continuous—time signal approximated by a linear
pulse shifted by —T/2 combination of scaled/shifted rectangular pulses

Fig. 1.8 The approximation of a continuous-time signal using rectangular pulses

16 1 Signals and Systems

1 T .
ort)=G {?rT (t + —)} : the response of the LTI system to a unit-area
rectangular pulse input

T—-0 .. . 1 T
=t ero = o { £or (147 |

1 T\ oL
-G {T"L“o = (t n E) } CEZ® G5y = gt) (1.25)

To summarize, we have an important and fundamental input-output relationship
(1.2.4) of a continuous-time LTI system (described by a convolution integral in
the time domain) and its Laplace transform (described by a multiplication in the
s-domain)

Laplace transform

y(t) = x(t) g(t) e B0 Y(s) = X(s)G(s) (1.2.6)

where the convolution integral, also called the continuous-time convolution, is
defined as

o]

X(t)* g(t) = /

—00

x(7)g(t — 7)dt = / T gOx(t — 1)dr = gty x(t) (L.2.7)

(cf.) Thisimplies that the output y(t) of an LTI system to an input can be expressed
as the convolution (integral) of the input x(t) and the impulse response g(t).

Now we consider the output of a discrete-time linear time-invariant (LTI) system

G to an input x[n]. We use Eq. (1.1.28) to express the discrete-time signal x[n] of
any arbitrary shape as

definition of convolution sum

x(n] = [[n] = Y ximblh-m (128)

Based on the linearity and time-invariance of the system, we can apply the superpo-
sition principle to write the output to x[n]:

yinl = Gxin) 276 {3 ximlsn — mi
e S X — mi)

time—invariance Zomozioo x[m]g[n — m] = x[n]* g[n] (1.2.9)

Here we have used the definition of the impulse response or unit-sample response
of a discrete-time system together with the linearity and time-invariance of the
system as

1.2 Systems 17

time—invariance

G{[n} =gln] = G{§[n—m]} =g[n—m]

linearity

G{x[m]s[n —m]} =" x[m]G{s[n — m]}

time—invariance
= X[m]g[nh—m]

To summarize, we have an important and fundamental input-output relationship

(1.2.9) of a discrete-time LTI system (described by a convolution sum in the time

domain) and its z-transform (described by a multiplication in the z-domain)
z—transform

y[n] = x[n] g[n] Table—B>‘7(4)Y[Z] = X[ZG[Z] (1.2.10)

where the convolution sum, also called the discrete-time convolution, is defined as

x[negnl =Y~ xmlgln—ml =" glmix[n —m] = g[n] x[n]
(1.2.11)

(cf.) If you do not know about the z-transform, just think of it as the discrete-time
counterpart of the Laplace transform and skip the part involved with it. You
will meet with the z-transform in Chap. 4.

Figure 1.9 shows the abstract models describing the input-output relationships of
continuous-time and discrete-time systems.
1.2.4 Impulse Response and System (Transfer) Function
The impulse response of a continuous-time/discrete-time linear time-invariant (LTI)

system G is defined to be the output to a unit impulse input x(t) = 3§(t)/
x[n] = §[n]:

g(t) = G{s(t)} (1.2.12a) g[n] = G{3[n]} (1.2.12b)

As derived in the previous section, the input-output relationship of the system can
be written as

Impulse response g (t) Impulse response g [n]
yO=x®)*g(t) | | ap| y[n]=x[n]=g[n]
® Y()=X()6(5)) ransform | X1 _© Yiz]=X[z] G[z) JZ tansform
System (transfer) function G (s)=£{g (t)} System (transfer) function G[z]=Z{g[n]}
(a) A continuous-time system (b) A discrete—time system

Fig. 1.9 The input-output relationships of continuous-time/discrete-time linear time-invariant
(LTI) systems

18 1 Signals and Systems

121 1.2.1

127 029 yinl “E xinl« ginl & Y12 “£” x(z16[2)

y() "= x(0) (1) S Y(9) "= X(9)G(s)

where x(t)/x[n], y(t)/y[n], and g(t)/g[n] are the input, output, and impulse
response of the system. Here, the transform of the impulse response, G(s)/G[Z],
is called the system or transfer function of the system. We can also rewrite these
equations as

Y(s) _ Liyt)} _ Y[z _ Z{yln} _
X(s) ~ L{x(t)} Lo Gl = X[~ ZX[nl} Ztoln)
(1.2.13a) (1.2.13b)

G(s) =

This implies another definition or interpretation of the system or transfer function
as the ratio of the transformed output to the transformed input of a system with no
initial condition.

1.2.5 Step Response, Pulse Response, and Impulse Response

Let us consider a continuous-time LTI system with the impulse response and transfer
function given by

Ligt)) = Lleugty) L s%a ,

(1.2.14)

g(t) = eug(t) and G(s)"E?

respectively. We can use Eq. (1.2.6) to get the step response, that is the output to the
. . . Table A.1(3)
unit step input x(t) = ug(t) with X(s) ="""1/s,as

ye(t) = £HY4(5)) Table A1(3).(5) 611(1 — eyt (1.2.15)

Now, let a unity-area rectangular pulse input of duration (pulsewidth) T and
height 1/ T

KO =270 = £ ()~ Uslt ~ T X() = L) = 7 L{us(0) — uslt = T))

Table A.1(3), A.2(2) i (E _ eTs}) (1.2.16)
T \s S

be applied to the system. Then the output gr(t), called the pulse response, is
obtained as

1.2 Systems 19

Impulse
8(t) 0T
| T=0.125
1
?rT(t)
Impulse T=0.25
response T=05
g(t) T=1.00
M&ponse
0 : - - et
0.0 1.0 2.0 3.0 4.0

Fig. 1.10 The pulse response and the impulse response

Y1 (s) = G(s)X(s) = % < ! e ’s !)

s(s+a) s(s+a)
1 /11 (1 1 _ o
—E(E‘Ha‘e <§—S+a)), gr(t) = £ (¥r(S))

Table A1(3).(5).A.22) 1

~ (1 — e ™us(t) — (1 — e Dyug(t — T)) (1.2.17)

If we let T — 0 so that the rectangular pulse input becomes an impulse §(t) (of
instantaneous duration and infinite height), how can the output be expressed? Tak-
ing the limit of the output equation (1.2.17) with T — 0, we can get the impulse
response g(t) (see Fig. 1.10):

750 1 _ _aft— 1 -

gr() =" = (- e ™us) - (L - e D)uy(D) = =@ — Deus(o)
(0.25) 1 2.
= —(+aT - Detug) = e us) 27 g0 (12.18)

This implies that as the input gets close to an impulse, the output becomes close to
the impulse response, which is quite natural for any linear time-invariant system.

On the other hand, Fig. 1.11 shows the validity of Eq. (1.2.4) insisting that the
linear combination of scaled/shifted pulse responses gets closer to the true output as
T—0.

1.2.6 Sinusoidal Steady-State Response
and Frequency Response

Let us consider the sinusoidal steady-state response, which is defined to be the ever-
lasting output of a continuous-time system with system function G(s) to a sinusoidal
input, say, x(t) = Acos(wt + ¢). The expression for the sinusoidal steady-state

20 1 Signals and Systems

1 N
x9N 04 7N Y0 =000 |
osf XO yd . .\ vy, @ .
/@ ! ! @x 0.2 / \ .
T ! N e ®]
0 " 1 " 1 " B 0 /. . " .
0 0.5 1 15 2 0 1 2 3 4
(al) The input x(t) and its approximation Q(t) with T=0.5 (b1) The outputs to x (t) and X (t)
—ix(t) D o ST Y =00 er
X @ 16 ']
0.5 /n [|\ -1y (t)
/ 1 1 1 1 \\ 0.2 @
PN Joe®®
0 0.5 1 1.5 2 0 1 2 3 4
(a2) The input x (t) and its approximation >?(t) with T = 0.25 (b2) The outputs to x (t) and)?(t)

Fig. 1.11 The input-output relationship of a linear time—invariant (LTI) system — convolution

response can be obtained from the time-domain input-output relationship (1.2.4).
That is, noting that the sinusoidal input can be written as the sum of two complex
conjugate exponential functions

021 A

X(t) = Acos (wt + ¢) = E(ej (@) | gml(0t+d)) — ?(xl(t) + Xo(t)), (1.2.19)

we substitute x (t) = el @+9) for x(t) into Eq. (1.2.4) to obtain a partial steady-state
response as

yi(t) = Gixy(t)} “EY / (@)t - T)dr = f ety - o)de

—00

_ elot+o) / " e Itog(t — ryde = gt / " ettt

o] [e]

= el HIG(jw) (1.2.20)

with

g(t):o_for t<0

Gli) = [e g [awe e e, azan

00 causal system

Here we have used the definition (A.1) of the Laplace transform under the assump-
tion that the impulse response g(t) is zero Vt < 0 so that the system is causal (see
Sect. 1.2.9). In fact, every physical system satisfies the assumption of causality that
its output does not precede the input. Here, G(j) obtained by substituting s = jw
(w: the analog frequency of the input signal) into the system function G(s) is called
the frequency response.

1.2 Systems 21

The total sinusoidal steady-state response to the sinusoidal input (1.2.19) can be
expressed as the sum of two complex conjugate terms:

0 = 5 (%04 9:0)) = 516G 0) + eI o)
N o y L
— _{el(wt+¢)|G(Jw)|e10(w) +e l(wt+¢)|G(_Jw)|e j0(e)
2

= é|G(ja))|{eJ (@t+o+0(@) | ej(wt+¢+0(w))}
2

C2 A1G(jw)] cos(wt + ¢ + 6(w)) (1.2.22)

where |G(jw)| and 6(w) = £G(jw) are the magnitude and phase of the frequency
response G(jw), respectively. Comparing this steady-state response with the sinu-
soidal input (1.2.19), we see that its amplitude is |G(j w)| times the amplitude A of
the input and its phase is 6(w) plus the phase ¢ of the input at the frequency w of
the input signal.

(cf.) The system function G(s) (Eq. (1.2.13a)) and frequency response G(jw)
(Eqg. (1.2.21)) of a system are the Laplace transform and Fourier transform
of the impulse response g(t) of the system, respectively.

Likewise, the sinusoidal steady-state response of a discrete-time system to a
sinusoidal input, say, x[n] = Acos(2n + ¢) turns out to be

y[n] = AIG[e!?]| cos(2n + ¢ + 6()) (1.2.23)

where

. 00 ; n]=0 for n<0 0 i .

Gle® =" glnje @ MO glnjeion TR g g,
(1.2.24)

Here we have used the definition (4.1) of the z-transform. Note that G[e/*] obtained

by substituting z = e/ (Q: the digital frequency of the input signal) into the system

function G[z] is called the frequency response.

causal system

Remark 1.4 Frequency Response and Sinusoidal Steady-State Response

(1) The frequency response G(jw) of a continuous-time system is obtained by sub-
stituting s = jw (w: the analog frequency of the input signal) into the system
function G(s). Likewise, the frequency response G[e!¢] of a discrete-time sys-
tem is obtained by substituting z = el (Q: the digital frequency of the input
signal) into the system function G[z].

22 1 Signals and Systems

(2) The steady-state response of a system to a sinusoidal input is also a sinusoidal
signal of the same frequency. Its amplitude is the amplitude of the input times
the magnitude of the frequency response at the frequency of the input. Its
phase is the phase of the input plus the phase of the frequency response at the
frequency of the input (see Fig. 1.12).

Input x (t) = Output y(t) = Input X[n]Output»y [n]=
A cos(ut + ¢) AlG(jw) lcos(ut + ¢+ 6) |A cos(Qn + ¢) AlG(e!®) |cos(@n + ¢ +)

| G(jw)|: Magnitude of the frequency response |G[e!®]] : Magnitude of the frequency response
0(w) = £G(jw) : Phase of the frequency response 0(Q) = £G[e'®] : Phase of the frequency response
(a) A continuous-time system (b) A discrete-time system

Fig. 1.12 The sinusoidal steady—state response of continuous-time/discrete-time linear time-
invariant systems

1.2.7 Continuous/Discrete-Time Convolution

In Sect. 1.2.3, the output of an LTI system was found to be the convolution of the
input and the impulse response. In this section, we take a look at the process of
computing the convolution to comprehend its physical meaning and to be able to
program the convolution process.

The continuous-time/discrete-time convolution y(t)/y[n] of two functions/
sequences X(z)/x[m] and g(z)/g[m] can be obtained by time-reversing one of them,
say, g(t)/g[m] and time-shifting (sliding) it by t /nto g(t—t)/g[n—m], multiplying
it with the other, say, x(7)/x[m], and then integrating/summing the multiplication,
say, X(7)g(t — 7)/x[m]g[n — m]. Let us take a look at an example.

Example 1.1 Continuous-Time/Discrete-Time Convolution of Two Rectangular
Pulses

(a) Continuous-Time Convolution (Integral) of Two Rectangular Pulse Functions
rp,(t) and rp,(t) Referring to Fig. 1.13(al-a8), you can realize that the
convolution of the two rectangular pulse functions rp, (t) (of duration D;) and
I'n,(t) (of duration D, < Dy) is

t for0<t <D,
D forD, <t <D
For(®)srp,t) = 1 2 ortz=t<h (E1.1.1a)
—t+D forDi<t<D=D;+D;
0 elsewhere

The procedure of computing this convolution is as follows:

- (al) and (a2) show rp,(t) and rp,(t), respectively.

- (a3) shows the time-reversed version of r p, (), that is rp,(—7). Since there is
no overlap between rp, (r) and rp,(—7), the value of the convolution rp, (t) *
rp,(t) att = 0 is zero.

1.2 Systems 23

rp,(7) rp,[m]
o . ERBERE
(al) — o I G B U I R
i Tg e (Dy-1)Ts [sec]
rD,(7) rp,ml
(82) —5—; G 0 D, "
D7) p,=m]
,—["""""""" ' P11 99999y
i . HEBESEEE!
@3) 5 GO b vy m
rp,(D2-7) D,[D= 1-m]
%“““““1 '[2999
(ad) — 2 ' T (b4) o m
A B1R1NS
(a5) —— : (05 . ! m
rDz(Dl T) I‘DZ[Dl—l—m]
pommmmm—-- % IR IR IR
(a6) 0 D,-D, D, T (06) 0 DD, D1 "
rp,(D1+D;—7) rp,[D; +D—2-m]
A : ,—‘ IDEERERER
a7 : b7 ||
@ 0 0,0, 7 D 0 D-1D,4D,2
1D, (1) +1D,(7) rp,[n]+rp,nl
Dp--mo—t 2 D, g : D=D,;+D,-1
D7D AT
(a8) 0 D, D, D v (8 0 D1 D,-1D-1 .

Fig. 1.13 Continuous—time/discrete—time convolution of two rectangular pulses

- (a4) shows the D,-delayed version of rp,(—1), that is rp,(D, — 7). Since
this overlaps with rp, () for 0 < = < D5 and the multiplication of them is 1
over the overlapping interval, the integration (area) is D, which will be the
value of the convolution att = D,. In the meantime (fromt = 0 to Dy), it
gradually increases from t = 0 to D, in proportion to the lag time t.

- As can be seen from (a4)—(a6), the length of the overlapping interval between
Io,(t—t) andrp, () and the integration of the multiplication is kept constant
as Dy till rp,(t — 7) is slided by D; to touch the right end of rp, (). Thus the
value of the convolution is D, all over D, <t < D;y.

24 1 Signals and Systems

- While the sliding rp,(t — t) passes by the right end of rp, (z), the length of
the overlapping interval with rp, (t) and the integration of the multiplication
decreases gradually from D, to 0 till it passes through the right end of rp, (7)
att = D; + D, as shown in (a7).

- After the left end of rp,(t —) passes by the right end of rp, () at t =
D; + Dy, there is no overlap and thus the value of the convolution is zero all
overt > Dy + D».

- The convolution obtained above is plotted against the time lag t in (a8).

(b) Discrete-Time Convolution (Sum) of Two Rectangular Pulse Sequences rp, [n]
and rp,[n] Referring to Fig. 1.13(b1-b8), you can realize that the convolution
of the two rectangular pulse sequences rp, [n] (of duration D;) and rp,[n] (of
duration D, < D) is as follows:

n+1 for0<n< D,

T 1 S I for Dz <n < Dy (E1.1.1b)
-n+D forDi<n<D=D;+D,-1
0 elsewhere

The procedure of computing this discrete-time convolution is similar to that
taken to get the continuous-time convolution in (a). The difference is as follows:

- The value of rp,[n] * rp,[N] is not zero at n = 0 while that of rp, (t) * rp,(t)
iszeroatt = 0.

- The duration of rp, [n] * rp,[n] is from n = 0 to D; + D, — 2 while that of
rp,(t) xrp,(t) isfromt = 0 to D; + Dy.

(cf.) You had better try to understand the convolution process rather graphically
than computationally.

(cf.) Visit the web site <http://www.jhu.edu/~signals/> to appreciate the joy of
convolution.

Remark 1.5 Continuous-Time/Discrete-Time Convolution of Two Rectangular
Pulses

(1) If the lengths of the two rectangular pulses are D; and D, (with D; > Dj),
respectively, the continuous-time and discrete-time convolutions have the dura-
tion of D; + D, and D; + D, — 1, respectively and commonly the height
of D,.

(2) If the lengths of the two rectangular pulses are commonly D, the continuous-
time and discrete-time convolutions are triangular pulses whose durations are
2D and 2D — 1, respectively and whose heights are commonly D:

ro(t)*rp(t) = DAp(t) (1.2.25a)
ro[n]*rp[n] = DAp[n] (1.2.25b)

1.2 Systems 25

3 3] 6

2 X(t) 2 Xp[n] 4

1 1 ’io b IX3) xc[n]

0 0 "'Ts'*l 0 11 I 11
-1t -1 X, _':'T"'l 1

0T 2 4 6 t[sec] 0 2 4 6 n 0 °® 5 10 n

(a1) x(t) (b1) x,[n] (c1) x[n]
S 1 gm °
21 90 21 % o, 0, TS
2 c

0 (1) NEARRAS
_l 1 1 1 -

0T 2 4 6 t[sec] 0 2 4 6 n 0 5 10 n

(@2)g(t) (b2) gp[n] (c2) g¢[n]

3 A YT (t=T) 3 n Y2 Y3 °
N] e T]

of VML o} %] al [y
-1 yIOT/\IT (t). YoTp(t-2T) -1 0

0T 2 4 6 t[sec] 0 2 4 6 n 0 5 10 n

(@3) y(t) = x(t)*g(t) (b3) yp[n] = xy[n]*gp[n] (€3) yeIn] = x¢[n]+gc[n]

Fig. 1.14 Approximation of a continuous—time convolution by a discrete—time convolution

The above example implies that the continuous-time convolution x(t) * g(t) can
be approximated by the limit of a discrete-time convolution x(nTs) x g(nTs)Ts as
Ts — 0 where Ts is the sampling period. Let us take a look at another example.

Example 1.2 Approximation of a Continuous-Time Convolution by a Discrete-
Time One

Figure 1.14(al), (a2), and (a3) show two continuous-time signals, x(t), g(t), and
their convolution y(t) = x(t) = g(t), respectively where y(t) is actually a discrete-
time version y(nTs), which is obtained as follows:

- We sample x(t) and g(t) every Ts = 0.01 [s] to make two sequences x(nTs) and
g(nTs).

- We use the MATLAB function conv() to compute their discrete-time convolu-
tion and multiply it by the sampling interval Ts to get y(nTs) = X(nTs) *g(nTs) Ts
as we do in the numerical integration.

Figure 1.14(b1)/(cl), (b2)/(c2), and (b3)/(c3) show two discrete-time signals x[n],
g[n], and their discrete-time convolution y[n] = X[n] * g[n] (computed using
conv()), respectively where x[n] and g[n] are obtained by sampling x(t) and g(t)
with sampling period Ts = 1/Ts = 0.5.

Interested readers are welcome to run the following MATLAB program
“sig01f14.m”.

26 1 Signals and Systems

%ig01f14. m Fig.1.14

clear, clf

x=[12 -11]; g=[1 1 1];

t0x=0;t09=0; %0x=1; t0.g=-2; %the initial tine indices of x and g

% Cont i nuous- Ti me Convol ution

T=1; Ts=0.01; dt=Ts; M:T/Ts; %nterval T, Sanpling period Ts, and # of Ts per T

xt= ones(M 1) *x; xt=xt(:).’; Nxt=length(xt);

gt= ones(M1)*g; gt=gt(:).’; Ngt=length(gt);

yt= conv(xt, gt)*Ts; Nyt=length(yt); %the length of convolution Nxt+Ngt-1

Nyt M=Nyt +M % pl otting interval extended by one interval T

tOy=t0x+t0g; tt= mn([tOx tOg tOy])+[0: Nyt M 1] *Ts;

xt = [zeros(1, fix((tOx-tt(1))/Ts)) xt]; xt_=[xt_- zeros(1, Nyt MIlength(xt))];

gt = [zeros(1,fix((tOg-tt(1))/Ts)) gt]; gt =[gt_- zeros(1l, N\yt Mlength(gt))];

yt = [zeros(1,fix((tOy-tt(1))/Ts)) yt]; yt_= [yt_ zeros(1l, N\ytMIength(yt))];

ymax= max([xt gt yt])+0.5; ymn= mn([xt gt yt])-0.5;

subpl ot (331), plot(tt,xt.), axis([tt([1 end]) ym n ynax])

subpl ot (334), plot(tt,gt.), axis([tt([1 end]) ym n ynax])

subpl ot (337), plot(tt,yt.), axis([tt([1 end]) ym n ynmax])

% Di screte-Tinme Convol ution

Ts=1; nOx = t0x/Ts; n0Og = t0g/Ts;

xn=xt (1: Ts/dt:4*M, gn=gt(1l: Ts/dt:3«M

Nx=I engt h(xn); Ng=l ength(gn); %the | ength of convol ution Nx+Ng-1

yn=conv(xn, gn); Ny=length(yn);

xn_ext ended=[zeros(1, Ng-1) xn]; gnreversed= fliplr(gn);

gr-extended= [gn.reversed zeros(1, Ny-Ng)];

for n=1: Ny % I nstead of conv(), we slide g[-n], multiply x[n], and take sum
yn1(n)=xn_extended*gr _ext ended.’;
gr extended= [0 gr_extended(1: Ny-1)];

end

Ny1=Ny+3; % plotting interval extended by two sanples

n0_y=n0x+n0_g; nn= m n([n0x nO_.g nO.y])+[-1: Nyl-2];

xn= [zeros(1l,n0x-nn(1)) xn]; xn= [xn. zeros(1, Nyl-1ength(xn))];

gn= [zeros(1,n0g-nn(1)) gn]; gn= [gn. zeros(1, N\yl-1ength(gn))];

yn= [zeros(1,n0y-nn(1)) yn]; yn= [yn. zeros(1, Nyl-length(yn.))];

ymax= max([xn gn yn])+0.5; ym n= mn([xn gn yn])-0.5;

subpl ot (332), sten(nn,xn.’'."), axis([nn([1 end]) ym n ynax])
subpl ot (335), stenm(nn,gn.’'."), axis([nn([1 end]) ym n ynax])
subpl ot (338), sten(nn,yn_.’'."), axis([nn([1 end]) ym n ynax])

The systems, called tapped delay lines, to be discussed in the following example
are essentially continuous-time systems. However, they behave like discrete-time
systems in terms of the input-output relationship and thus are expected to be a link
between continuous-time systems and discrete-time ones.

Example 1.3 Tapped Delay Lines

(a) Tapped Delay Lines
Consider the continuous-time LTI system depicted in Fig. 1.15(a) where its
impulse response and system function are

o)=Y gubt—nT); G =LigM} =) gue ™" (E131)

1.2 Systems 27

Let the input and its Laplace transform be

X(t) = Z:_, Xmd(t — mT); X(s) = L{X(t)} = Z:_, Xme ST
- - (E1.3.2)
Then we claim that the output and its Laplace transform will be

YO =Y Wt —KT): YO =Liy®) =) we™T (E133)
with
Yo=Xerdk =) xmOemi YI2 = Z(yd = X[AG[A (EL34)

Proof

YO =x(0M) =Y xudlt—mT)xy_ gud(t—nT)
- Z::_oo Z:i_w XmOnd(t — MT)«8(t — nT)
3 Xugod(t —mT —nT)
Do Do Yt = KT)
=3 KT withy =3 XuGhm
(b) Tapped Delay Lines with a Zero-Order Hold at its Output Consider the

continuous-time LTI system with a zero-order hold (z.0.h.) device at its output
as depicted in Fig. 1.15(b) where its impulse response is

GO =) _Grrt—nT)=3"" gus(t —nT) = us(t —nT —T))
(E1.3.5)
Let the input be

X(t) = Z::_oc Xl 7(t — MT) = Z::_Oo Xm(Us(t — MT) = us(t —mT —T))
(E1.3.6)
Then we claim that the output will be

YO =Y yTar(t—kT) (E1.3.7)
with

Yk = X0k = Z:}w XmOk-m (E1.3.8)

28 1 Signals and Systems

k=0 X X(1) = Xz oXmO(t—mT) 9n : multiplier
k=1 xg Xo : delay of T seconds
k=2 X Xq Xo e : signal distribution point
: : : o : adder
X(t) X(t-T) X(t-2T) X(t-nT)

Y0
© o‘o . X Qy(t)
g(t) = Znz—w8no(t=nT)
k=0 k=1 k=2 k=n-1 k=n
X090 X091 XoQ e Xo9n-1 Xo9n
+ + + +
X190 X191 creeeee X1Onh—2 X10On-1
+ + +
Xdo e X20n-3 X20n-2
+ +
1l 1 I I 1
Yo V1 Yo e Yn-1 Yo oY) = ZeioL Y6 (tKT)

(a) Tapped delay lines

X(t) = X mz—Xmfr (t=mT)
() X(t=T)

X(t-2T)

o4 ss —fzoh}—>y(®)

g(t) = Xai_gnl 7 (t-nT y(O) = Xpe_ LYk T AT(t=KT)

Y0

(b) Tapped delay lines with zero-order hold (z.0.h.) device

Fig. 1.15 Systems for Example 1.3(a) and (b)

Proof
YO =X =Y Xarr{t—mT Y~ garr(t—nT)

= Z:no:,oo Z:o:,oo Xmgan(t — mT)*rT(t _ nT)

(1.2.258) x 0 o0
wTon Zm:_oo Zn:_oo XmOn TAT(t —mT —nT)

m+n—k 0 00
n—k—m Zszoo Zm:foo XmOk—m T AT (t — kT)

=Y 0 WTAr(t—KT) with Y=~ Xulm

(cf.) Fig. 1.14(al-a3) shows the validity of Eq. (E1.3.7).

1.2 Systems 29
1.2.8 Bounded-Input Bounded-Output (BIBO) Stability
A system is said to be (BIBO) stable if every bounded input produces a bounded

output. To find the stability condition for LTI systems with impulse response
g(t)/g[n], suppose we have a bounded input x(t)/x[n] such that

IX(t)] < B<ooforallt (1.2.26a) | |x[n]| < B < ooforalln (1.2.26b)

Then we can use the input-output relationship (1.2.6)/(1.2.9) of the continuous-
time/discrete-time LTI system to express the magnitude of the output as

MO ‘ | x@ge-ode| |y 22| cimigin -
< [x@lgt - oide = 2 IXIligIn — m)
T (1.2.26b) 0o
(1.2.52631) B/ alt — 2)(ds < B Xoclm:oo lg[n — m]|
o =B) gl
= B/; lg(z)|dz

which means that the output is also bounded. This implies that the system is
(BIBO) stable if the impulse response g(t)/g[n] is absolutely integrable/
summable, i.e.,

/oo g()ldr <00 (1.2.27a) ‘ S jgimll <o (12.27h)

[ee]

In fact, this condition is not only sufficient but also necessary for stability of
continuous-time/discrete-time systems since if it is not satisfied, we can find a
bounded input which makes the output unbounded (see Problem 1.5). The following
remark restates the stability condition in terms of the pole locations of the system
functions where the poles are the values of s or z at which the denominator of G(s)
or G[z] becomes zero.

Remark 1.6 Stability of LTI Systems with System Function G(s)/G[Z]

A continuous-time/discrete-time linear time-invariant (LTI) system having the
system function G(s) = L{g(t)} / G[z] = Z{g[n]} is stable if and only if all the
poles of G(s) / G[Z] are strictly within the left-half s -plane/the unit circle in the z
-plane (see Remarks 2.5, 3.2, 4.5, and Theorem A.1 in Appendix A).

30 1 Signals and Systems
1.2.9 Causality

A signal x(t)/x[n] is said to be causal if it is zero forallt <0/ n < 0. A system is
said to be causal or non-anticipatory if the response (output) of the system does not
precede the excitation (input), i.e., the output depends only on the present and past
values of the input. In other words, the output of a causal system to an input appears
only while or after the input is applied to the system. The necessary and sufficient
condition for the system causality is that the impulse response is causal, i.e.,

gt) =0forallt <0 (1.228a)| g[n]=0foralln<0 (1.2.28b)

since the impulse response g(t) / g[n] means the output measured at time t [s]/ n
[samples] after the impulse signal is applied as an input.

We can use Egs. (1.2.6)/(1.2.10) (with Egs. (1.2.7)/(1.2.11)) to write the time-
domain input-output relationships of continuous-time/discrete-time causal LTI sys-
tems as

¥ = / " Xt - e v =3 ximigin - m]
> x[migln —m]

g[n—m]=0 for n—-m<0

/t g(r)x(t — r)dr causal

g(t—r):O_fOr t—7<0

causal
=Y xmlgn—m]

3 sy XImlgln —

1

0 t
= / x(r)g(t — r)dr +/t x(z)g(t — r)dr;
o 0

t yIn = yinol + 3" x[mlgn — m]
y(t) = y(to) + / X(r)gt -)dr (1.2.299) s (1.2.29)

fo

In fact, all physical systems such as analog filters are causal in the sense that they
do not react to any input before it is applied to them. As a contraposition, a non-
causal or anticipatory system is not physically realizable. Causal filters are typically
employed in applications where the inputs are (on-line) processed as they arrive. An
example of non-causal system is a digital filter for image processing, which collects
the input data Xx[m, n]’s in one frame for some period and processes them at a time
where m and n are spatial indices.

1.2.10 Invertibility

A system is said to be invertible if distinct inputs produce distinct outputs. If a
system G is invertible, then it is possible to design its inverse system H which,
connected in cascade with G at the output port, receives the output of G to restore
the input (applied to G) as its output.

Especially for an LTI system G with the impulse response g(t)/g[n], the impulse
response h(t)/h[n] of its inverse system H must satisfy the following condition:
(see Problem 1.6)

1.3 Systems Described by Differential/Difference Equations 31

g(t)h(t) = 5(t); G(S)H(s) = 1 (1.2.30a)

g[n]xh[n] = §[n]; G[zZ]H[Z] =1 (1.2.30b)
(cf.) An example of non-invertible system is a gambler (with a poker face) whose

face (output) does not vary with his card (input) so that other gamblers cannot
make the inverse system reading his card from his face.

1.3 Systems Described by Differential/Difference Equations

1.3.1 Differential/Difference Equation and System Function
The time-domain input-output relationships of continuous-time/discrete-time sys-
tems are often described by linear constant-coefficient differential/difference equa-

tions that are set up based on underlying physical laws or design specifications to
make it perform desired operations:

N dly(t) Mo dix(t) N _ " |
ZizoaiT:ijobj dt Zizoai y[n_|]:Zj=Oij[n—J]

with the initial conditions with the initial conditions

y(to). Y(to). -~ . YN (o) y[nol. yIno — 11, ---, y[no — N + 1]

With zero initial conditions, this can be transformed to make the system or transfer
function as

>, asve) = Z,M:o bis'X(e) | 3 azivid= ZJ,MZO bjz 1 X[2]

A(S)Y(s) = B(s)X(s); AlZY[Z] = B[AX[Z]:

_ YO _ BB
GO = %9~ A® Gl7] z% - %
(1.3.1a) (1.3.1b)

where
where

N . M .
A(s) = Zi:o as, B(s)= ijo bjs’ AlZ] = Zioa‘-z“, B[z] = ZJNLO bjz”)

Note the following:
- The poles/zeros of the system function G(s) or G[Zz] are the values of s or z at
which its denominator/numerator becomes zero.

32

1 Signals and Systems

- The degree N of the denominator A(s)/A[Z] of the system function G(s)/G[z] is
called the order of the system. If N £ 0, the system is said to be recursive in the
sense that its output depends on not only the input but also the previous output;
otherwise, it is said to be non-recursive or memoryless and its output depends

only on the input.

- Especially, discrete-time recursive and non-recursive systems are called IR
(infinite-duration i mpulse r esponse) and FIR (f inite-duration i mpulse r esponse)
systems, respectively since the duration of the impulse response of recursive/non-
recursive system is infinite/finite, respectively.

1.3.2 Block Diagrams and Signal Flow Graphs

Systems are often described by graphical means such as block diagrams or sig-
nal flow graphs. As an example, let us consider an RC circuit or its equivalent
depicted in Fig. 1.16(a). We can apply Kirchhoff’s current law to write the node
equation, take its Laplace transform with zero initial conditions, and find the system

function as

R

4%%Y
Input voltage

S ()

= Vo(t)

Vi (t)
R

+

RS CTvl)

(a) An RC circuit and its equivalent with the voltage-to-current source transformation

Vi) Vi~Vorg] 16) g

Vo ()

Vilel _ViVorg '[2]

721 Vo [2]

Cs

v (©) Tvi—volil it LCs

Vo(t)

c@a=z7

Vo [n]

v;[n] K’FVi v (R i[N]

(b2) Block diagram representation

(b1) Block diagram representation

Vi(s) adder 1/R 1(s) 1/Cs

Vo (S)

w0 | 10

1

Vo (t)

(c1) Signal flow graph representation

V;(s) adder 1/R 1(s) 1/C

st Vo (s)

| 4

(d1) State diagram

Vi[z] adder 1/R 1[Z] C(1+21—1) V, (2]
vl | i) Vo]
-1
(c2) Signal flow graph representation
Vilz] adder T/RC 21 V,[z]

-1

(d2) State diagram

Fig. 1.16 Block diagram, signal flow graph, and state diagram representations of a system

1.3 Systems Described by Differential/Difference Equations 33

duo(t) | wo(t) wi(t)
C dt + R R

(1.3.2a)

Laplace transform
—

B.7(5)

Vo(S) 1
Vi(s) RCs+1

CsVo(s) + %Vo(s) = %Vi(s) — G(s) =

(1.3.3a)

We may replace the derivative dv,(t)/dt with its difference approximation

dvo(t) _ vo((N+1)T) — vo(NT) _ vo[n + 1] — wo[n]
dt T - T

with sampling interval T to discretize the differential equation into a difference
equation, take its z -transform with zero initial conditions, and find the system
function as

vo[N+ 1] —wo[n] wo[n] wi[n]

= 132
C . + = R (1.3.2b)
z-transform __ ZVp[Z] — Vo[Z] 1 1 _
B?ZZ) Cf + ﬁVO[Z] = ﬁ\/, [Z]
V, 1
Gl = e (1.33b)

Vi[Zl ~ RC(z—-1)/T +1

Fig. 1.16(b1)/(b2) show the block diagram representing the continuous-time/
discrete-time system whose input-output relationship is described by Egs. (1.3.2a)/
(2.3.2b) in the time domain and (1.3.3a)/(1.3.3b) in the s- / z -domain.
Figure 1.16(c1)/(c2) and (d1)/(d2) show their signal flow graph representations
where a branch from node j to node i denotes the causal relationship that the
signal j is multiplied by the branch gain and contributes to the signal i. Espe-
cially, Fig. 1.16(d1) is called a continuous-time state diagram since all branch gains
are constants or s~ (denoting an integrator). Likewise, Fig. 1.16(d2) is called a
discrete-time state diagram since all branch gains are constants or z—* (denoting a
delay T).

Since signal flow graphs are simpler to deal with than block diagrams, we will
rather use signal flow graphs than block diagrams. A signal flow graph was origi-
nally introduced by S.J. Mason as a graphical means of describing the cause-effect
relationship among the variables in a set of linear algebraic equations. It consists of
nodes connected by line segments called branches. Each node represents a signal
(variable), whose value is the sum of signals coming along all the branches from
other nodes and being multiplied by the branch gain. Every branch has the gain and
direction that determine or are determined by the cause-effect relationship among
the variables denoted by its nodes. Note that a branch with no gain indicated is
supposed to have unity gain.

34 1 Signals and Systems

For example, we consider the following set of linear equations:

Yo = apy1 + aszys, Y3 = a3Y2 + &usVs,
V4 = @34Y3 + QusYs + 8s4Y5, Y5 = 8z5Y2 + A35Y3 1 usVa

which describes the cause-effect relationship among the variables yi, V>, V3, Va,
and ys with the causes/effects in the right/left-hand side, respectively. Figure 1.17
shows a signal flow graph representing the relationships described by this set of
equations.

1 _ Output
Vs node

Fig. 1.17 A signal flow graph

1.3.3 General Gain Formula — Mason’s Formula

In this section we introduce Mason's gain formula, which is applied to signal flow
graphs to yield the overall gain from an input node to an output node. To understand
how to use the formula, we need to know the following terms:

- Input Node (Source) : A node having only outgoing branches.
- Output Node (Sink) : A node having only incoming branches.

(cf.) Note that, in contrast with the input node, the output node may not be clearly
seen. Suppose we don’t have the dotted branch in the signal flow graph
depicted in Fig. 1.17. In that case, if we regard ys as an output, we may
draw a branch with unity gain from the node for ys so that the node appears
to be an output node.

- Path: A continuous connection of branches traversed in the same direction.

- Forward Path: A path connecting an input node to an output node along which
no node is encountered more than once.

- Loop: A closed path that originates and terminates at the same node and encoun-
ters no other node more than once.

- Path Gain: The product of all the branch gains along a path.

- Loop Gain: The path gain of a loop.

- Non-touching: Having no nodes in common.

The gain formula states that the overall gain is

1.3 Systems Described by Differential/Difference Equations 35

YOut _
Vo A Zk My (1.3.4)
with A =1 — Zm P + Zm Pz — Zm Pog + - - - (1.3.5)

where

N: Total number of forward paths from node yi, to node yout

My: Path gain of the k th forward path

Prr: Gain product of the m th combination of r nontouching loops

A A (Eg. (1.3.5)) for the part of the signal flow graph not touching the k th
forward path

It may seem to be formidable to use at first glance, but is not so complicated in
practice since most systems have not so many non-touching loops. For example, we
can apply Mason’s gain formula to the signal flow graph depicted in Fig. 1.18 as
follows:

with
Input 1 _ Output
node y,; as, ys Node

Fig. 1.18 A signal flow graph with its loops denoted by closed curves

= 3 (the total number of forward paths from node y; to node ys)
Ml = aypayzagsdys, A; = 1 forthe forward pathy; — yo — 3 — Y4 — 5
M, = agp83835, Ay = 1 — ay, for the forward path y; — v, — y3 — 5
M3 = agoap5, Az = 1 — (agsays + ayq) for the forward path y; — y» — s
A =1 — (axa3; + A34843 + g + 5854 + A35B54843 + A25854843832)
+ (23832844 + a23832845854)

1.3.4 State Diagrams

Now we introduce a special class of signal flow graphs, called the state diagram or
state transition signal flow graph, in which every branch has a gain of constant

36 1 Signals and Systems

or s7! (integrator)/z~! (delay). This is very useful for the purposes of system
analysis, design, realization, and implementation. Systems represented by the state
diagram need the following three basic software operations or hardware elements
for implementation:

- addition(adder) - addition
- multiplication(amplifier) - multiplication
- integration(integrator) s—* - delay (z1)/advance (2)

It is good enough to take a look at the following examples.
Example 1.4a Differential Equation and Continuous-Time State Diagram

Figure 1.19(a) and (b) show the controllable and observable form of state dia-
grams, respectively, both of which represent the following differential equation or
its Laplace transform (see Problem 1.9):

y'(t) + a1 y'(t) + agy(t) = byu'(t) + bou(t) with zero initial conditions
(E1.4a.1)

(s? + a15+ ap)Y(s) = (bis+ bo)U(s) (E1.4a.2)

Example 1.4b Difference Equation and Discrete-Time State Diagram

Figure 1.20(a)/(b)/(c)/(d) show the direct I/transposed direct I/direct I1/transposed
direct Il form of state diagrams, respectively, all of which represent the following
difference equation or its z -transform (see Problems 1.8 and/or 8.4):

yIn + 2] + a1 y[n + 1] + apy[n] = byu[n + 1] + bou[n] with zero initial conditions
(E1.4h.1)

(Z + a1z + ag)Y[2] = (b1z + by)U[7] (E1.4b.2)

X, = -8 —aXp +U X1’ =Xy o y=boxy + 01X,
ut) X3 st Xz\m y(t)
ues) ° S %/ by Y(s)
—a e : Signal distribution point
o : Adder(addition)

-a
0 s-1: Integrator
B) : Amplifier (multiplication)

(a) Controllable canonical form of state diagram

by X3 = X=Xy +byu _
, 1 , -1 X, X y=x
u(t) X{ s NX2 o ST T2y "2 _y(@®)
u(s) bo [N S—— Y(s)
=
X1 =—apXy +bou -a,

(b) Observable canonical form of state diagram

Fig. 1.19 State diagrams for a given differential equation y”(t)+a; y'(t)+agy(t) = byu'(t)+bouf(t)

1.3 Systems Described by Differential/Difference Equations 37

ufn] Xaln+1] Xo[n+1] y[n] u[n]
Ulz1—* : Y[z] Ulz]

zt zt
x3[n+1]<c n>x1[n+1] X,[n+1]

z7t 27t

Xeln] 3 <=4l [n+1]

(a) Direct | form (b) Transposed direct | form
ufn] Xg[n+1] yln] uln] XoIn] s oYIN
Ulz] i 77N v Y D Yzl
b, Xo[n+1]
Xq[n+1]
‘ xﬂnlLZl _lﬁw]

-8y X[n] by by xi[n+1] -ay
(c) Direct Il form (d) Transposed direct Il form

@ : Signal distribution point
O :Adder(addition)

z71: Delay

B) - Amplifier (multiplication)

Fig. 1.20 State diagrams for a given difference equation y[n + 2] + ayy[n + 1] + agy[n] =
byuln + 1] + bo

For example, we can write the state and output equations for the state diagram of
Fig. 1.20(c) as

X1[n+1] 0 1 |{xin]
[x;[n + 1]} - [—ao —al] [X;[n]} + [} ufn] (E1.4b.3)
y[n] = bixz[n] + box4[n] (E1.4b.4)

We can apply Eq. (8.3.2b) with Egs. (1.4b.3,4) or Mason’s gain formula for
Fig. 1.20(c) to obtain the transfer function G[z] = Y[z]/U[Z] or equivalently, the
input-output relationship (E1.4b.2).

The digital filter or controller may be realized either by using a general-purpose
computer or a special digital hardware designed to perform the required computa-
tions. In the first case, the filter structure represented by the state diagram may be
thought of as specifying a computational algorithm where the number of zor z % is
proportional to the required memory size. In the latter case, it may be regarded as
specifying a hardware configuration where z~* denotes a delay element like a flip-
flop. Note that, as shown in the above examples, the structure to solve or implement
a given differential/difference equation is not unique and it can be rearranged or
modified in a variety of ways without changing the overall input-output relationship
or system function.

38 1 Signals and Systems
1.4 Deconvolution and Correlation

In this section we will introduce the two terms related with the convolution. One is
the deconvolution, which is the inverse process of convolution. The other is the cor-

relation, which is procedurally similar to, but totally different from the convolution
in the physical meaning and usage.

1.4.1 Discrete-Time Deconvolution

In Sect. 1.2.3, the input-output relationship of a discrete-time LTI (linear time-
invariant) system was derived as Eq. (1.2.9):

yinl 2 ginlexin] = 3 gn — mix[m] (1.4.1)

where x[n], y[n], and g[n] are the input, output, and impulse response of the
system. Thus, for an FIR (f inite-duration i mpulse r esponse) system with

g[n] = 0for In| > N, (1.4.2)

we can write its output to the input {x[m] for m = 0: N — 1} applied fromm =0
toN —1as

yil = 3" gn — mix[m] (14.3)
or in matrix-vector form as
y[o] ol0] of-1 o g-N+UT [
yiur | _ | 9l glo] e g[-N+2] X[
y[N.— 1] g[N.— 1] g[N.— 2] g[.O] N
y = Gx with G : transmission matrix (1.4.9)

One might ask a question, “Can we or how can we find the input sequence x[n]
for a system characterized by its impulse response g[n] to produce a certain output
sequence y[n]?”. For the FIR system with the input-output relationship described
by Eq. (1.4.4), we can find the input sequence as

x=Gly, (1.4.5)

if the transmission matrix G is nonsingular. Furthermore, if the system is causal,
i.e., g[n] = 0 for n < 0, then the transmission matrix becomes lower-triangular as

1.4 Deconvolution and Correlation 39

g[0] 0o -0

G = 9[.1] gFO] 0 (1.4.6)

g[N —1] g[N — 2] - g[0]

so that if g[0] # 0, the input sequence can be determined by forward substitution:

yInl — Yho gln — mix[m]
9[0]
starting from x[0] = y[0]/9[0] (see Problem 1.11).

Note that the problem of determining the impulse response g[n] for given input
and output sequences can be dealt with in the same way.

x[n] = (1.4.7)

1.4.2 Continuous/Discrete-Time Correlation

The cross-correlation between two signals measures how similar the two signals are
over temporal or spatial difference. The auto-correlation of a signal measures how
much the signal looks like itself over temporal or spatial difference. Correlation
is widely used for various purposes including signal detection in communication
systems.

Let x(t)/x[n] and y(t)/y[n] be two continuous-time/discrete-time transient or
finite-duration signals. Then the cross-correlation between them is defined as fol-
lows:

by () = /_ X+ D)yt ool =Y~ x[n+mly'[n]
o =Y x[-n+mly‘[-n]
— /_ X(—t + T)y*(—t)dt (1.4.8b)
(1.4.8a)

where /m, called a lag variable, represents the relative delay (shift) between the
two signals. If the two signals happen to be identical, i.e., x(t) = y(t)/x[n] = y[n],
we have the auto-correlation as

40 1 Signals and Systems

oxx(t) = /:)O X(t + 7)x*(t)dt dxx[m] = Z:i*oo x[n + m]x*[n]
= /OO X(t)x*(t — 7)dt = an,w x[n]x*[n —m]
* =3 e
- /_ X(ZtH T (=t (1.4.9b)
(1.4.92)

There are some properties of correlation to note:
Pxx(7) = yx (—T) (1.4.10a) Pxx[M] = ¢y [—m] (1.4.10b)
Buy () = B (—7) (14118) | ehey[m] = @[] (1.4.11b)
Pxy(r) = X(0)xy"(=7) (14128) | oxy[m] = X[m]xy"[-m] (1.4.12b)

If x(t)/x[n] and y(t)/y[n] are the input and output of a continuous-time/discrete-
time LTI system so that y(t) = g(t) = x(t)/y[n] = g[n] = x[n], then we have

d’xy(f) = 0" (—1)*xdux(r) (1.4.133) ¢xy[m] = g"[—m]xpxx[m] (1.4.13b)
Py (t) = 9 (—1)xdyx(r) (L4.14a) | ¢yy[m] = g*[-m]xpyx[m] (1.4.14b)

(cf.) If the signals are random or periodic so that nonzero values appear all
over the time interval, the correlation should be defined as a time-average
version.

The correlation functions are very useful for extracting certain signals from noisy
ones and determining the spectral density of random signals. Look at the following
remark and example.

Remark 1.7 Properties of Autocorrelation

(1) Incase two signals are periodic or random, their correlation should be defined as
N
ry[m] = > x4 mlyn]

1 T
Pxy(T) = >T / . x(t + 7)y*(t)dt
- (1.4.15b)

(1.4.15a)

2N +1

(2) The autocorrelation (1.4.9a)/(1.4.9b) is even and has its maximum at t =
0/m = 0. In the case of periodic or random signals, the maximum value is
the mean squared value of the signal.

1.4

Deconvolution and Correlation 41

Remark 1.8 Convolution vs. Correlation and Matched Filter

@)

@)

Equation (1.2.7)/(1.2.11) implies that the continuous-time/discrete-time con-
volution of two time functions/sequences can be obtained by time-reversing
one of them and time-shifting (sliding) it, multiplying it with the other, and
then integrating/summing the multiplication. The correlation differs from the
convolution only in that the time-reversal is not performed.

If we time-reverse one of two signals and then take the convolution of the time-
reversed signal and the other one, it will virtually yield the correlation of the
original two signals since time-reversing the time-reversed signal for comput-
ing the convolution yields the original signal as if it had not been time-reversed.
This presents the idea of matched filter, which is to determine the correlation
between the input signal x(t)/x[n] and a particular signal w(t)/w[n] based on
the output of the system with the impulse response g(t) = w(-t)/g[n] =
w[—n] to the input x(t)/x[n]. This system having the time-reversed and pos-
sibly delayed version of a particular signal as its impulse response is called the
matched filter for that signal. Matched filter is used to detect a signal, i.e., to
determine whether or not the signal arrives and find when it arrives.

Example 1.5 Correlation and Matched Filter

Consider the two signal waveforms of duration T = 2 [s], which represent

0 and 1 and are depicted in Fig. 1.21(al) and (bl), respectively. According to
Remark 1.8(2), the impulse responses of their matched filters are

1 1
| .. | | :
L t L t t

t
0 1 2 0 1 2 0 1 2| | 1 2
-1
(@) x,(t) (@2) g (t) =x,(T-t) (b1) x,(t) (b2) gy(t) =x,(T-t)

| 0]] I . 1

t
0 1 2 3 4 5i 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10
(d1) The output y,(t) of matched filter 1 to the input depicted in (c)

Yo(t)

Fig

(d2) The output y,(t) of matched filter 2 to the input depicted in (c)

. 1.21 Two matched filters for two signals and their outputs to an input signal

42 1 Signals and Systems
Gi(t) = x(=t) and ga(t) = X(-t) (E15.)

We have, however, a problem that these filters are non-causal so that they are not
physically realizable. A reasonable measure is to shift their impulse responses by
T = 2 so that they become causal as depicted in Fig. 1.21(a2) and (b2):

i(t) =xa(T —t) and Ga(t) = X(T — 1) (E15.2)

Suppose the input signal depicted in Fig. 1.21(c) is applied to the two matched
filters with the impulse responses given by (E1.5.2). We can compose the following
MATLAB program “sig01e05.m” to find their outputs and run it to get the results
shown in Figs. 1.21(d1) and (d2). There are some points to think about:

- As long as the amplitude of the signals (expected to arrive) are the same, the
output of each matched filter achieves its maximum 2's after the corresponding
signal arrives. Why?

%i g01e05. m

% Correl ation/ Convol ution and Matched Filter

clear, clf

M=50; Ts=1/ M

xl=ones(M 1)*[1 1]; x1=x1(:).’; Nx=length(x1);

x2=ones(M 1)*[1 -1]; x2=x2(:).";

gl=fliplr(x1); g2=fliplr(x2);

x=[x1 zeros(1,M x2 zeros(1,M x1 zeros(1l,M x2]; %signal to transmt

I engt h.x=I engt h(x); Nbuffer= m n(M11, | engthx); tt=[0: Nouffer-1]+*Ts;

% Noi se_.amp=0. 3; x = x + Noi se_anp*randn(1,|engthx);

xbuf f er=zeros(1, Nouffer); ybuffer=zeros(2, Nouffer);

for n=1:1engthx
xbuffer= [x(n) xbuffer(1l:end-1)];
y= [9g1; g2]*xbuffer(1:Nx).’ *Ts; ybuffer= [ybuffer(:,2:end) y];
subpl ot (312), plot(tt,ybuffer(1,:)), subplot(313), plot(tt,ybuffer(2,:))
pause(0.01), if n<lengthx, clf; end

end

yl=xcorr(x,x1)*Ts; yl=yl([end-Nouffer+1:end]-Nx); %orrelation delayed by Nx

y2=xcorr(x,x2)*Ts; y2=y2([end- Nouffer+1: end]-Nx);

subpl ot (312), hold on,plot(tt,yl,’m) %only for cross-check

subpl ot (313), hold on, plot(tt,y2,'m)

- If we remove the zero period between the signals and generate a signal every 2s
in the input, could we still notice the signal arrival times from (local) maxima of
the output? (See Problem 1.12(a).)

Remark 1.9 xcor r () — MATLAB function for Correlation
(1) The MATLAB function xcor r (X, y) returns the correlation of two sequences

x[n] and y[n] defined by Eq. (1.4.16). Depending on the third input argument,
it returns different versions of correlation as follows:

1.4 Deconvolution and Correlation 43
xcorr(x,y,’ coeff’) —

Y oo XN+ m] y*[n]
(3 IxIn]IZ 3 Iy 2)+2

(correlation coefficient) (1.4.163)

pxy[m] = (-1<p=<+1)

xcorr(x,y,’ biased) —

1 N—1—|m|

N 2rneo X[n+m]y[n] for0 <m< N-1

§0xy[m] = { 1 N_1|m|

N rno x[nly*[n—m] for—(N—-1) <m=<0

(1.4.16b)
xcorr(x,y, unbiased) —

i Tnco T x[n4mly] foro <m < N-1
‘ny[m] = L N_1|m|
N—_|m|Zn=0 X[n]y*[n—m] for—(N—-1) <m <0
(1.4.16¢)

(2) If the two sequences are of different lengths, xcor r (X, y) appends one of
them by zeros to make them have equal lengths and returns their
convolution.

(3) The durations of the convolution and correlation of two sequences x[n] (of dura-
tion [ng x : Nt x]) and y[n] (of duration [Ng_y :n¢_y]) are [Nox +Noy: Nt x+N¢_y]
and [No x — Nf_y:N¢_x — Ng_y], respectively.

Example 1.6 Correlation for Periodic Signals with Random Noise

We can use MATLAB function r andn(M N) to generate a zero-mean and unit-
variance normal (Gaussian) noise sequence in an M x N matrix. Figure 1.22(al)
and (a2) illustrate a Gaussian 1 x 128 random sequence w[n] with variance 0% =
0.5% (generated by 0. 5xr andn(1, N)) and its autocorrelation ¢,,,,[m] (obtained
by xcor r (w, w)), respectively. On the other hand, Fig. 1.22(b1) shows a noise-
contaminated sinusoidal sequence x[n] = sin(zn/16) + w[n]. Figure 1.22(b2),
(b3), and (b4) show the various autocorrelations of x[n] that are obtained by
using xcorr(w,w), xcorr(w, w, coef’)/xcorr(w,w, ‘biased),
and xcorr (w, w, ‘ unbi ased’), respectively.

Note the following observations:

- All the autocorrelations in Fig. 1.22(a2), (b2)—(b4) are even and have their max-
ima at m = 0 as stated in Remark 1.7(2). Especially, the maximum of ¢,,,,[m] in
Fig. 1.22(a2) is

44 1 Signals and Systems

40 T T T T T
201
0
210 —100 50 0 50 100
(al) A (Gaussian) noise sequence w[n] (a2) Autocorrelation of w[n]
100 T T T T T
0
100 =50 50 0 50 100
(b1) A noise-contaminated sinusoidal wave x[n] (b2) Autocorrelation of x[n] from xcorr()
1 1 T T T T T
° ° MNVM
- - - : biased
-1 -100 -50 0 50 100 1100 50 0 50 100
(b3) Autocorrelation of x[n] (b4) Autocorrelation of x[n]
from xcorr(x,x, ‘biased’)/xcorr(x,x, ‘coef’) from xcorr(x,x, ‘unbiased’)

Fig. 1.22 Autocorrelation obtained using the MATLAB function xcorr ()

N) N—-1 2 - N—-1 2 2
¢ww[0] ~ Expectation {ano X [n]} ~ ano 02 =128 x 0.5> = 32
(E1.6.1)

- Marvelously, the noise effect can hardly be found in the autocorrelation except
for the spike at m = 0. Thanks to the noise reduction effect of autocorrelation, the
periodicity of the signal can be observed more clearly from the autocorrelation
than from the original noise-contaminated signal.

- Figure 1.22(b2) and (b3) show that the autocorrelation obtained from
xcorr(w,w, ‘ biased’) is justa 1/N-scaled version of that obtained from
xcorr (w, w) . The normalized version obtained from xcor r (w, w, ‘ coef’)
has similar shape. Any of these versions have some end effect, i.e., their magni-
tudes decrease as the time lag m increases not because the correlation or similar-
ity gets loose, but because the number of samples in the summation decreases.
In contrast, the autocorrelation obtained from xcorr (w, w, * unbi ased’) is
relatively free from the end effect as shown in Fig. 1.22(b4).

%i g01e06. m: Autocorrel ation of a noise-contani nated periodic signal
N=128; Wepi/ 16; nn=0: N-1;

s= sin(Wnn); w= 0.5*randn(1, N); x=s+w

subpl ot (321), plot(nn,w

[phi .w, M ag] =xcorr(w, w); % Autocorrel ation of the noise

subpl ot (322), plot(niag, phi_w

Problems 45

subpl ot (323), plot(nn,x, nn,s, k")

[phi x, m ag] =xcorr(x, x); % Autocorrel ation of the corrupted signal

subpl ot (324), plot(nlag, phi x)

[phi x_coef, m ag] =xcorr(x, x,’ coef’); % Correl ati on coefficient

subpl ot (325), plot(nlag, phi x_-coef)

[phi x_bi ased, m ag] =xcorr(x, x,’ biased’); % Bi ased autocorrel ation

hol d on, plot(n ag, phi x_biased, r:")

[phi x_unbi ased, ml ag] =xcorr(x, x, ' unbi ased’); % Unbi ased autocorrel ation
subpl ot (326), plot(nlag, phi x_.unbi ased), axis([mag([1 end]) -1 1])

1.5 Summary

In this chapter we have introduced some basic continuous-time/discrete-time signals
and defined a number of important concepts related to systems such as linearity,
time-invariance, causality, stability, impulse response, and system (transfer) func-
tion. We have also derived the convolution form of input-output relationship of LTI
systems. We have also indicated that a continuous-time/discrete-time system can be
described analytically by differential/difference equations and pictorially by signal
flow graphs. Finally, we introduced the concept of correlation.

Problems

1.1 Representation of Unit Impulse Function by Sinc Function

(a) Referring to the web site <http://mathworld.wolfram.com/SincFunction.
html> or [K-1] (Sect. 15.4, Example 2) or Eq. (E2.3.3) of this book, show
that the sinc function representation (1.1.33a) of the unit impulse function
38(t) satisfies the property (1.1.19) regardless of D or w:

/ wsin(t) xS0 oy (P1.1.1)
o T wt T J_ X
(b) Plot the sinc function 1 . (21D
Zsinc (-) _ Sinzt/D) (PL.1.2)
D D mt

against time t for D = 1, 0.5, 0.25, and 0.125 and check the following:

- It is an even function since both of the numerator and denominator
functions are odd ones.

- Its amplitude decreases as |t| increases since the magnitude of the
denominator increases while the amplitude of the numerator is constant.

- It becomes zero att = mD(m # 0) and 1/D att = O since
lim sinc(x) = 1.

x—0

46

1.2

13

14

1 Signals and Systems

Convolution
Consider the two continuous-time signals x(t) = r3(t) = us(t) — usg(t — 3) and
g(t) = e " us(t).

(a) Show that the (continuous-time) convolution of these two signals is

0 fort <0
X(#g(t) = 21— &%) foro=t <3
2(e705(=3) _ 705t — 2(el5 — 1)e 0% fort >3
(P1.2.1)

(b) As in Example 1.2, we can use the MATLAB function “‘conv ()’ to com-
pute this continuous-time convolution approximately. Compose a program
which samples the two signals att = nTs(Ts = 0.1[s]), use ‘conv ()’ to
compute the convolution, and plot it together with the true convolution
(P1.2.1) for t = [0,10]s. Run it to see if the approximate convolu-
tion is close to the true one. If we decrease the sampling period, say, to
Ts = 0.01s, is it helpful?

Necessary Condition on BIBO (Bounded Input Bounded Output) Stability

In Sect. 1.2.8 it was shown that the absolute integrability/summability
(1.2.27a)/(1.2.27b) of impulse response guarantees the BIBO stability and thus
are sufficient conditions. Here, you can show that if the conditions do not hold,
there is a bounded input yielding unbounded output, which implies that they
are also necessary conditions for BIBO stability. To this end, suppose that the
impulse response of a system does not satisfy the condition (1.2.27a)/(1.2.27b):

/oo lg(r)ldT = o0 (P1.3.1a)

> lglml = oc (P1.3.1b)

(a) Consider the following signal:

0 fortsuchthatg(—t) =0
t) =1 P1.3.2a
x(t) { LY for t such that g(—t) # 0 ()
X[n] = 0 for n such that g[—n] =0 (PL3.2b)
| &55 fornsuchthat g[—n] # 0 "

Avre these signals bounded? If they are bounded, what is their upperbound?
(b) Show that the output y(t)/y[n] to the (bounded) input x(n)/x[n] att =
0/n = 0 is unbounded, implying that the system is not BIBO stable.

Stability of Continuous-Time Systems
Remark 1.6 states that a continuous-time LTI system is stable if and only if its
system function G(s) = £{g(t)} has all the poles strictly within the left-half s

Problems a7

15

-plane or equivalently, the real parts of all the poles are negative. Referring to
the remark, consider the following two systems:

2
6

(a) Find the impulse responses ga(t) and gy(t) by taking the inverse Laplace
transform of each system function. Check if each system satisfies the
stability condition (1.2.27a) or not.

(b) Find the poles of each system function and determine whether or not each
system satisfies the stability condition stated in Remark 1.6. Does the result
agree to that obtained in (a)?

(c) Find the step responses of the two systems, i.e., their outputs to a unit-step
input x(t) = us(t) whose Laplace transform is X(s) = 1/s. Check if each
step response converges or not.

(cf.) You might get ya(t) by typing the following commands into the MAT-
LAB command window:

>> syms s; Gas=2/(s+1)/(s+2); Xs=1/s;
Yas=Gas*Xs, yat=ilaplace(Yas)

Stability of Discrete-Time Systems

Remark 1.6 states that a discrete-time LTI System is stable if and only if its
system function G[z] = Z{g[n]} has all the poles strictly within the unit circle
(see Remark 4.5). Referring to the remark, consider the following two systems:

3z
Gl = =05z 105 (PL5.12)
Go[z] = z (P1.5.1b)

(z—15)(z— 0.5)

(a) Find the impulse responses ga[n] and gy[n] by taking the inverse z -
transform of each system function. Determine whether each system satisfies
the stability condition (1.2.27b) or not.

(b) Find the poles of each system function and determine whether or not each
system satisfies the stability condition stated in Remark 1.6. Does the result
agree to that obtained in (a)?

(c) Find the step responses of the two systems to a unit-step input X[n] = us[n]
whose z -transform is X[z] = z/(z — 1). Determine whether each step
response converges or not.

(cf.) You might get ya[n] by typing the following commands into the MAT-
LAB command window:
>> syms z; Gaz=3*z/(z—0.5)/(z+0.5); Xz=z/(z—1);
Yaz=Gaz*Xz, yan=iztrans(Yaz)

48 1 Signals and Systems

1.6 Inverse System
Consider a model for echo generation, which is depicted in Fig. P1.6(a).

(a) Noting that the time-domain input-output relationship is

y(t) =ayt —T)+ x(t) (P1.6.1)

show that the impulse response is
g(t) = Z:io aks(t —kT)with0 <a < 1 (P1.6.2)

Also find the system function G(s) by taking the Laplace transform of this
impulse response or the time-domain input-output relationship. Referring
to Eq. (1.2.27a) or Remark 1.6, determine the stability condition of the
model system.

(b) Use Eg. (1.2.30a) to find the system function H(s) of the inverse system.
Show that the inverse system can be modeled as Fig. P1.6(b), whose time-
domain input-output relationship is

R(t) = y(t) —ay(t — T) (P1.6.3)

1.7 Inverse System
Consider a discrete-time model for duo-binary signaling, which is depicted in
Fig. P1.7(a).

(a) Noting that the time-domain input-output relationship is
y[n] = x[n] + x[n — 1] (P1.7.1)

find the system function G[Z] by taking its z -transform.

y(t) =ay (t=T) +x(t) X(t)=y (t)-ay (t-T)
x(t) y () y(t) X (t)
a -a
esT e=sT
(a) A model for echoing (b) A model for removing the echo
Fig. P1.6
yInl=x[n] +x[n-1] X[n]=—X[n-1]+yn]
x[n] y[n] y[n] X[n]
1 -1
z! z!
(a) A model for duo-binary signaling (b) A model for detecting system

Fig. P1.7

Problems 49

(b) Use Eq. (1.2.30b) to find the system function H[Zz] of the inverse system.
Show that the inverse system can be modeled as Fig. P1.7(b), whose time-
domain input-output relationship is

R[] = —K[n — 1] + y[n] (P1.7.2)

1.8 Simulation of Continuous-Time/Discrete-Time System Using MATLAB and
Simulink

(a) Find the system function of the system described by the block diagram in
Fig. 1.16(b1) or the signal flow graph in Fig. 1.16(c1) or (d1) with RC = 1.
Referring to the upper part of Fig. P1.8(a) and the parameter setting dialog
boxes in Fig. P1.8(b1), (b2), and (b3), perform the Simulink simulation to
plot the output signal ve(t) for 0 <t < 4s.

U—2F 1]

Step — Simulink/Sources/Step
Add Transfer Fen ux Simulink/Math Operations/Add

= Simulink/Continuous/Transfer Fcn

ﬂ = T — Simulink/Discrete/Discrete Transfer Fcn
Scope Simulink/Signal Routing/Mux
Stepl AddL Discrote Simulink/Sink/Scope
Transfer Fcn

(a) Simulink block diagram for simulating the systems of Fig 1.16(b1) and (b2)

Cl Source Block Parameters: Step B
Step fime:

B] Main [Signal data types |

iw value: lcon shape: |!cc[on5|.|lr.u ILl
£] List of signs:

Final value AdEALS

0] . 1
Sample time Sample time (-1 for Inherited}:

[o] &]

3 Function Block Parameters: Add B3

B4 Interpret vector parameters as 1-D |
B Enable zero crossing detection

0K, || Cancel || Help | Apply

(b1) Parameter setting dialog box for Step and Step 1 (b2) Parameter setting dialog box for Add and Add1

E! Function Block Parameters: Discrete Transler Fcn B

3 Function Block Parameters: Transfer Fcn B

NCdiarati Main [State jes |
@] Humerator:

(07]
Denominator D T
[] [n=u]
Absolute lolerance: Sample time (=1 tor inharited)
|uu|0] |T [

(b3) Parameter setting dialog box for Transfer Fcn (b4) Parameter setting dialog box for Discrete Transfer Fcn

1
0.8
0.6
04
0.2

0 ! ! | | | | |
0O 05 1 15 2 25 3 35 4
(c) The outputs obtained from the Simulink simulation

Fig. P1.8

50 1 Signals and Systems

(b) Find the system function of the system described by the block diagram in
Fig. 1.16(b2) or the signal flow graph in Fig. 1.16(c2) or (d2) with RC = 1.
Referring to the lower part of Fig. P1.8(a) and the parameter setting dialog
boxes in Fig. P1.8(b1), (b2), and (b4), perform the Simulink simulation
with sampling interval T = 0.1 to plot vo(t) for 0 <t < 4s. Also referring
to the following program “sig01p_08b.m”, perform the MATLAB simula-
tion to plot v,(t) for 0 <t < 4s. Does decreasing the sampling interval to,
say, T = 0.01 make the output close to that of the continuous-time system
obtained in (a)?

(cf.) If you parameterize a constant such as T in the Simulink block diagram
so that it can be easily changed, you can set it to a new value in the
MATLAB command window.

% si g01p_-08a. m

% Cont i nuous-Ti ne System Sinul ation clear, clf
R=1; C=1; RC=R+C, tf=4;

T=0.1; tt=[0:T:tf];

vi = ones(size(tt)); %step input

vo_t 0=0;

opti ons=odeset (' Rel Tol ’, 1le-4);

vo = ode45(dvodt,tt,vo.t0, options, RC);
plot(tt,vo), hold on

function dv=dvodt (t, vo, RC)
dv = (-vo+(t>=0))/RC

% si g01p-08b. m

% Di screte-Time System Sinul ation

clear, clf

R=1; C=1; RC=R+C, tf=4;

T=0.1; tt=[0:T:tf];

vi = ones(size(tt)); %step input

TRC=T/ RC; vo(1)=0;

for n=1:length(tt)-1
vo(n+1)=vo(n)+(vi(n)-vo(n))=*TRC

end

stairs(tt,vo)

1.9 Continuous-Time State Diagram, State Equation, Transfer Function, and
Input-Output Relationship
We can write the state equation for a continuous-time state diagram by taking
the following procedure.

1. Assign a state variable x; () to the output of each integrator s~2.

2. Express the input x/(t) of each integrator s~! in terms of the state
variables and system input(s).

3. Express each output in terms of the state variables and input(s).

Problems 51

(a) Show that we can apply the above procedure to the state diagram of
Fig. 1.19(a) and write the state equation together with the output equa-

tion as
X (t) 0 1 X1 (t) 0
[Xi(t)} B [—ao —al} [x;(t)] + [1] ut) (PL9.1)

y(t) =[bo by] [28} (P1.9.2)

We can also substitute the output equation (P1.9.2) into the left-hand side
of Eq. (E1.4a.1) and use the state equation (P1.9.1) to get the right-hand
side of Eq. (E1.4a.1):

y'(t) +ay'(t) + aoy(t) = byu'(t) + bou(t) (P1.9.3)

(b) Show that we can apply the above procedure to the state diagram of
Fig. 1.19(b) and write the state equation together with the output equa-

tion as
] [1-afe®] (b

X (t)
yt)=[0 1] [Xl(t)} (P1.9.5)

We can also combine these state and output equations to get the input-
output relationship (E1.4a.1).

(c) Apply Eg. (8.3.2a) with Egs. (P1.9.1,2) or (P1.9.4,5) to find the transfer
function G(s) = Y(s)/U(s) or equivalently, the input-output relation-
ship (E1.4a.2). Also apply Mason’s gain formula for Fig. 1.19(a) or (b)
to find G(s).

(d) Withayg = 2, &y = 3, bg = 4, and by = 3, use the MATLAB func-
tion ss2t f () to find the transfer function G(s) of the system described
by Egs. (P1.9.1,2) or (P1.9.4,5). Reversely, use the MATLAB function
t f 2ss() to find a state equation for the transfer function

bis+ by 3s+4
G(s) = 5 =
S +ays+a S4+3s+2

(P1.9.6)

Which one does it yield, the equivalent of Eq. (P1.9.1,2) or (P1.9.4,5)?

(e) Referring to the following program “sig01p_09.m”, simulate the systems
described by Egs. (P1.9.1,2) and (P1.9.4,5) with ag = 2, & = 3, by = 4,
and by = 3 to find their outputs (y(t)’s) to an input u(t) = sin(2t) for
0 <t < 10s (with sampling interval T = 0.015s). Do the state equations
conform to each other in terms of the input-output relationship?

52

1 Signals and Systems

a0=2; al=3; b0=4; b1l=3;

A1=[0 1;-a0 -al]; Bl=[0;1]; Cl=[b0 bl]; [nunil, denl]= ss2tf(Al, Bl, Cl, D1)
A2=[0 -a0;1 -al]; B2=[b0; bl]; C2=[0 1]; [nun®, den2]= ss2tf (A2, B2, C2, D2)
nun¥[bl b0]; den=[1 al a0]; [A B, C D]=tf2ss(num den)

%i g01p-09. m

%to sinulate a continuous-tine systemdescribed by state equations
clear, clf

a0=2; al=3; b0=4; b1=3; w=2;

% Use ode45() to solve the continuous-tinme state equations

% dx_si g01p09= inline(’ Axx+Bssin(wt)' ,'t’,’x’,”A,’B ,"W);

t0=0; tf=10; x0=[0; O]; %initial tinme, final tinme, and initial state
Al=[0 1;-a0 -al]; B1=[0;1]; Cl=[b0 bl]; D1=0;

[tt1, xx1] = oded5(@x_si g01p09,[t0 tf],x0,[],Al, Bl, w); yl= xx1+Cl.’;
A2=[0-a0;1 -al]; B2=[b0;bl]; C2=[0 1]; D2=0;

[tt2, xx2] = oded5(@x_si g01p09,[t0 tf],x0,[],A2, B2, w); y2= xx2xC2.";
subpl ot (211), plot(ttl,yl, tt2,y2,'r")

% Use Isim A B CDut,x0) to sinulate continuous-tine |inear systens
T=0.01; tt=[tO: T:tf];

[numl, denl] = ss2tf (AL, B1, C1, D1)

[yl,x1]= Isin{Al, B1, C1, D1, sin(wtt),tt,x0);

[nun®, den2] =ss2t f (A2, B2, C2, D2)

[y2,x2] = Isin{A2, B2, C2,D2,sin(wtt),tt,x0);

[y3,x3]= I sim nunt, denl, sin(wtt),tt);

subpl ot (212), plot(tt,yl, tt,y2,'r’, tt,y3,’'m)

function dx=dx_si g01p09(t, x, A B, w)
dx= Axx + Brsin(wt);

(f) Referring to Fig. P1.9, perform the Simulink simulation for the systems
described by Egs. (P1.9.1,2), (P1.9.4,5), and (P1.9.6) to find their outputs
(y(t)’s) to an input u(t) = sin(2t) for 0 < t < 10s. Do the simulation
results agree with each other and also with those obtained in (e)?

Simulink/Continuous: State-Space

W/ Simulink/Sources: Sine Wave & flo-z-31] & [[z1]]

Sine type: |T_e_b_g;g_q.f"33mple based - c: 143] o:[o]

Time (tr | Use simulation time/Use external time | = Initial conditions: CI
amplitude: [1 | Eias: [o | Absolute tol [auto |

Frequency (rad/seck [2 |

Phase (radk[0 | Semple time:

B interpret vector parameters as 1-D

Number of inputs :

State-Space

s e
Sine Wave

o Scope
Simulink /Sinks: Scope

[Simulink/Continuous: State-Space Transfer Fens|[@] Simulink/Continuous: Transfer Fen
A lo-2 1-3]] &l] Numerator :
c: i | o:[o] Denominator:
Initial conditions: IE'-:I Absolute tolerance:
Absolute tolerance:

Fig. P1.9 Simulink block diagram for Problem 1.9(e)

Problems 53

1.10 Discrete-Time State Diagram, State Equation, Transfer Function, and Input-
Output Relationship
We can write the state equation for a discrete-time state diagram by taking the
following procedure.

1. Assign a state variable x; [n] to the output of each delay element z~2.

2. Express the input x;[n + 1] of each delay element z~* in terms of the
state variables and system input(s).

3. Express each output in terms of the state variables and input(s).

(a) Show that we can apply the above procedure to the state diagram of
Fig. 1.20(c) and write the state equation together with the output equa-

tion as
Xl[n + 1] i 0 1 xl[n] bo
[Xz[n + 1]:| B |:—ao —al] |:X2[n]i| * |:b1:| utn] (PLIO.D)
WM=W>mﬂ2%] (P1.10.2)
We can also substitute the output equation (P1.10.2) into the left-hand side

of Eq. (E1.4b.1) and use the state equation (P1.10.1) to get the right-hand
side of Eq. (E1.4b.1):

y[n + 2] +ayy[n + 1] + agy[n] = byu[n + 1] + bou[n] (P1.10.3)

(b) Show that we can apply the above procedure to the state diagram of
Fig. 1.20(b) and write the state equation together with the output equa-

tion as
xi[Nn+11] _ [0 —ag]| [xu[n] Bo
[xZ[n + 1]} - [1 —aJ [xz[n]} + [bj ufn] (P1.10.4)
VW=W1ﬂﬁm (P1.10.5)

We can also combine these state and output equations to get the input-
output relationship (E1.4b.1).

(c) Apply Eq. (8.3.2b) with Egs. (P1.10.1,2) or (P1.10.4,5) to find the transfer
function G[z] = Y[z]/U[z] or equivalently, the input-output relationship
(E1.4b.2). Also apply Mason’s gain formula for Fig. 1.20(a), (b), (c), or (d)
to find G[z].

(d) Referring to the following program “sig01p_10.m” or Fig. P1.10, simulate
the systems described by Egs. (P1.10.1,2) and (P1.10.4,5) with ag = 1/8,
ay = 3/4, by = 2, and b; = 1 to find their outputs (y(t)’s) to an input
u(t) = sin(2t) for 0 < t < 10s (with sampling interval T = 0.015).

54 1 Signals and Systems

Do the state equations conform to each other in terms of the input-output
relationship?

%i g01p_10. m
%to sinulate a discrete-time system described by state equations
a0=1/8; al=3/4; b0=2; bl=1l; w=2;

% Use difference equation to solve the discrete-tine state equations
t0=0; tf=10; x0=[0; 0]; %initial tine, final time, and initial state
T=0.01; tt=[t0:T:tf];
Al=[0 1;-a0 -al]; B1=[0;1]; Cl=[b0 bl]; D1=0; x1(1,:)
A2=[0 -a0;1 -al]; B2=[b0;bl]; C2=[0 1]; D2=0; x2(1,:)
for n=1:length(tt)
t=tt(n);
x1(n+1,:)= x1(n,:)*Al." +sin(wt)*Bl.’; yl(n)= x1(n,:)*Cl.";
x2(n+1,:)= x2(n,:)*A2." +sin(wt)*B2."; y2(n)= x2(n,:)*C2.";
end
subpl ot (211), plot(tt,yl, tt,y2,'r")

% Use dl sinm(A B,C D u,x0) to sinulate discrete-time |inear systens
[y1l, x1] = dI si n{(Al, B1, C1, D1, sin(wtt), x0);

[y2, x2] = dl si m(A2, B2, C2, D2, si n(wtt), x0);

[nung, den2] = ss2tf (A2, B2, C2, D2)

[y3,x3] = dI si m{nun2, den2, si n(wxtt));

subpl ot (212), plot(tt,yl, tt,y2,'r’, tt,y3,'m)

[sighip_10_s M [=1[E3
L sighlp_10_s| =—|

“| Simulink/Discrete : State-Space |—— “l Simulink/Discrete : State-Space
p| YM = Cxin)+Duln) :
& [loi:-/8-37a1 | B: [0 1) | Wn+1) = Ax(n) *+ Buln) A ([01:-2 3] g [[1:2] |

cl1a] o:o | Discrete State—Space ¢ o)] o0 |

y{n)= Cxin) + Duln) > [
1 xin#1) = Axn) + Buln) > g
Simulink/Sources: Sine Wave Discrete State-Spacel Mux Scope

ﬁ[SimuIink/Discrete : Transfer Fen

i 242
Numerator : [[12] | 24 maz +10m
Denominator: |[1_3/4 1/8] Discrete Transfer Fcn

Fig. P1.10 Simulink block diagram for Problem 1.10(d)

1.11 Deconvolution

(a) We can make two discrete-time sequences as

n =01...91011..-1920 21 ---293031---39

x[n]=11.--199...9 6-6---—62 2. ...2

ogn]=11.--1211-..-121 1..-1 00---0
Compute their convolution y[n] = Xx[n] * g[n] and plot it.

(b) Referring to the following MATLAB program “sig01p_11.m”, compute
the estimate X[n] of x[n] from y[n] and g[n] two times, once by using

Problems 55

Eq. (1.4.5) and once by using Eq. (1.4.7). Compare the two results in terms
of how close they are to the original input sequence x[n].

%ig0lp_11. m
clear, clf
x=[ones(1,30) zeros(1,10)]; Nx=length(x);
g=ones(10,1)*[1 9 -6 2]; g=g(:)."; Ng=length(g);
n=0: Nx+Ng- 2;
y=conv(x, g);
subpl ot (313), sten(n,y,’.")
% Deconvol ution
for nmrl: Ng
for n=1:m G(mn)=g(mn+l); end %Eq.(1.4.5)
end
X0=(G -1xy(1:Ng)')" ;
x1(1)=y(1)/9(1);
for n=2: Nx
x1(n)=y(n);
for mrl:n-1, x1(n)=x1(n)-g(n-mrl)*x1(m; end %Eq.(1.4.7)
x1(n)=x1(n)/g(1);
end
err 0=nor m(x0- x)
err 1=nor m x1-x)

(cf.) Another way to compute deconvolution is to use the MATLAB command
x=deconv(y, g).
1.12 Correlation and Matched Filter for Signal Detection
Consider Example 1.5 and the related program “sig01e05.m” again.

(a) To see the transmitted signal x, insert the following statement and run the
program to check if you can get the results as depicted in Fig. 1.21(c), (d1),
and (d2).

subpl ot (311), plot(tt, xbuffer)

(b) Remove the zero periods between the signals in the input. Can you still
notice the corresponding signal arrival times from (local) maxima of the
output of each matched filter? To simulate this situation, modify the state-
ment for generating the transmitted signal as follows:

x= [x1 x2 x1 x2 x2];

(c) If we sample the matched filter outputs every 2, can we use the sampled
output to detect the signal successfully based on which filter output is the
maximum? To simulate this situation, insert the following statements into
the last part of the for loop:
if mod(n, Nx)==0

fprintf(’ At t=9%.2f, Matched filter output=%.2f %.2f\n", n*Ts,y);
end

56

(d)

1 Signals and Systems

If the input is contaminated with a Gaussian noise with zero mean and
variance of o2 = 0.32, will the detection performance be harmed severely?
To simulate this situation, modify one of the statements in the for loop as
follows:

xbuffer= [x(n)+0.3*randn xbuffer(1l:end-1)];

(cf.) The system with impulse response gi(t) = x(T — t) is called the

‘matched filter’ for the signal x;(t) because it is tuned to x;(t) so that
it can produce the maximum output to the input x; (t).

1.13 Walsh Functions [W-3] and Matched Filter

1t

(@) m © d

Fig. P1.13

With the program “sig01e05.m” modified in Problem 1.12, answer the
following questions.

@

(b)

If we use the signal waveform of Fig. P1.13(a) in place of that of Fig. 1.21(al),
how are the matched filter outputs sampled every 2s changed? Can you
explain why the output of a matched filter is not close to zero 2s after
another signal arrives in contrast with the case where the signal waveforms
of Fig. 1.21(al) and (b1) are used?

(cf.) This gives us a chance to think about how we can design the signal
waveforms in such a way the difference between the (sampled) out-
put of a matched filter to the input for which it is tuned and the (sam-
pled) output to other input signals can be maximized, for the purpose
of minimizing the suffer from possible noise/distortion/interference
in a communication system. It is desirable to have the signal wave-
forms orthogonal to each other so that the integrations of their
products are zero.

Consider the three signal waveforms x; (t), x2(t), and X3(t) of duration T =

2 [s], known as Walsh functions, which are depicted in Fig. P1.13(b), (c),

and (d) and represent a, b, and c, respectively.

- Are the three signals orthonormal in the following sense?

1 fori=|

o (P1.13.1)
0 fori #j

fT X (D)x; (0)dt = i — j] = {
0

Problems

57

- Modify the program “sig01e05.m” to simulate the situation that the
following input signal is applied to the three matched filters with the
impulse response g; (t) = x; (T —t):

X(t) = [Xa(t) Xo(t — T) Xa(t — 2T) xo(t — 3T) xa(t — 4T)] (P1.13.2)

Does the receiver detect the received signals successfully from the sam-
pled outputs of the matched filters for all the zero-mean Gaussian noise
of variance o2 = 0.3%?

1.14 Correlation Function and Radar (Radio Detection and Ranging) System
(Problem 3.28(e) of [O-1])
A radar transmits a short pulse of radio signal (electromagnetic radiation) and
measures the time it takes for the reflection to return from the target. The
distance is one-half the product of the round trip time and the speed of the

signal [W-1].
1 P (t) 1 p,(t)
0 -:I—->O t 0 0 t
NN
(@) (b)
Fig. P1.14
(a) Letthe transmitted pulse be p(t) and the received pulse a p(t —t;) where t;

(b)

is the round trip time. Show that their crosscorrelation ¢yp(t) is maximized
att =1ty

Pxp(ta) = Max dyp(t) (P1.14.1)

where

Pxp(t) = / X(t 4+ 7)p(r)dr = a/ ptt —t; + 7)p(r)dr (P1.14.2)

<Hint> To find the time at which the crosscorrelation is maximized, use
the Cauchy-Schwartz inequality:

b b 1/2 b 1/2
/ u(r)v(r)drf(/ uz(t)dr> (/ vz(r)dr> (P1.14.3)

where the equality holds if and only if u(z) = v(z).
Since the radar looks for the peak of the correlation function to find the
arrival time of returning signal, it would be good to use a pulse signal

58

1 Signals and Systems

(One OFDM symbol duration)

s N_SD N
N_GI N_FFT .
A A
Prefix
77 r[n]
C
(1) win_sig[n] =r[n]

(2) win_power[n] =r?[n]
H -1 .

(3) win_energy[n]= X, win_power[m]
m +

=n-N_GI+1
)

(4) win_corr[n] =win_sig[n] win_sig[n—N_FFT]

i

n
(5) windowed_corr = > win_corr[m]
m=n-N_GI+1

Windowed_corr
\win_energy[n] win_energy[n-N_FFT]

correlation[n] =

Fig. P1.15 Windows to detect an OFDM symbol using correlation

p(t) that has a sharply peaked autocorrelation function against possible
distortion in the returning signal. Which of the two pulses in Fig. P1.14 is
better?

1.15 OFDM Symbol Timing Using Correlation

Suppose an OFDM (Orthogonal Frequency Division Multiplexing) commu-
nication system in which an OFDM symbol consists of N_FFT (Fast Fourier
Transform) points and N_GI = 16 prefix points where the cyclic prefix is a
repeat of the end of the symbol at the beginning. Let us consider a problem
of detecting the start time of each OFDM symbol by using the correlation
between the prefix and the end part of the symbol. Since we cannot store
uncountably many samples of the received signal r[n], we use several win-
dows (buffers) to store some duration of signal samples, powers, energies, and
correlations as shown in Fig. P1.15 where the contents of each window is as
follows:

(1) win_sig[n] = r[n] with the size of at least N_.FFT + 1

(2) win_power[n] = r[n]? with the size of N_GI + 1

(3) win_energy[n] = Y . NG 1 Win_power[m] with the size of N_-FFT + 1
(4) win_corr[n] = r[n]r[n — N_FFT] with the size of N_.GI + 1

Problems 59

Y%let ect -OFDM.synbol wi t h_correl ati on. m
% Copyl eft: Won Y. Yang, wyyang53@annuil.net, CAU for acadenic use only
clear, clf
N.FFT=64; NG =16; % N.Prefi x=16;
N.SD=N_FFT+N.G ; N.SD1=N_.SD+1; % Synbol Duration
N-Nul I =N.SD; Nw=N_Nul | ; % Nul | Duration
N.d=N_SDJ 4; % remai ni ng period of the |ast symbol in the previous frane
N.OFDME2; % One Nul | + N.OFDM synbol s
symbol s = []; Max_energyratio=0; M n_energy.ratio=1el0;
for i=1: NOFDM
synbol =2xrand(1, N.-FFT) - 1; synbol =[synbol (end- NG +1: end) synbol];
synbol s = [synbol s synbol];

end
Nul I s= zeros(1, N.Nul |);
recei vedssignal = [rand(1, Nd) Nulls synbols];

| engt h_recei ved= | engt h(recei ved_si gnal);
noi se = 0.1x(rand(size(receivedsignal))-0.5);
recei ved_si gnal = received.signal + noise;
NvI=Nw+1; NG 1=N.G +1; NFFT1=N.FFT+1;
wi n_power = zeros(1, N\wl); wi ncorr= zeros(1, NG 1);
W n_sig= zeros(1, N.FFT1); win_energy= zeros(1, N.FFT1);
signal buffer = zeros(1,!ength.received);
correlations = zeros(1, N.SD);
True_start _poi nts= [N.d+N.SD: N.SD: | engt h_r ecei ved]
OFDMst art _poi nts= [0]; wi ndowed_corr =0;
nn = 1:length_received;
for n=1:1ength_received
signal _buffer = [received.signal (n) signal buffer(1:end-1)];
wi n_power = [wi n_power (2:end) receivedsignal(n)"2]; %the power w ndow
winsig = [wnsig(2:end) receivedsignal (n)]; %the signal w ndow
w n_energy = [w n_energy(2:end) w n_energy(end)+w n_power(end)];
if n>N.G, winenergy(end) = wi n_energy(end)-w n_power(end-Nd); end
wi n_corr(1:end-1) = w n_corr(2:end);
if n>NFFT
wincorr(end) = wnsig(???)’ *w n=sig(l);
wi ndowed_corr = wi ndowed_corr + wi n_corr(end);
end
if n>N.SD, wi ndowed_corr= wi ndowed_corr - wincorr(?); end
% CP- based Synbol Ti m ng
subpl ot (311)
sten(nn, signal buffer,”.")
axi s([0 N.SD«4 -2 2]), hold on
title(’ Received Signal and Estimated Starting Points of Synbols’)
if n>N.SD %NG
9% ormal i zed/ wi ndowed correl ati on across N.FFT sanples for N.G points
normal i zed_corr = wi ndowed_corr/sqrt(w n.energy(???)*w n_energy(?));
correlations = [correlations nornalizedcorr];
if nornalized.corr>0.99&n- N.SD>OFDMst ar t _poi nt s(end) +N.-FFT
OFDMst art _points = [OFDMstart _poi nts n- N.SD] ;

end
start_poi nts = OFDMstart _poi nts(2: end);
subpl ot (312), sten(1l:length(correlations),correlations,’.”)

axis([0 N.SD<4 -1 1.5]), hold on
title(’ Correlation across NFFT sanples’)
end
if n<lengthreceived, clf; end
end
Esti mat ed_ OFDMst art _poi nts = start_points

60

1 Signals and Systems

At each iteration when a sampled signal arrives, we compute the normalized
and windowed correlation

indowed_ A
correlation[n] = - win ovye corrfn] ;Threshold(0.99)
/win_energy[n]win_energy[n — N_FFT]
(P1.15.1)
with windowed_corr[n] = Zn win_corr[m]

m=n—N_GI+1

to determine whether the current sample is the end of an OFDM symbol or
not. If the normalized correlation is found to exceed the threshold value, say,
0.99, we set the start time of the detected symbol to N_SD (one OFDM sym-
bol duration) samples before the detection time. Complete the above program
“detect_ OFDM _symbol_with_correlation.m” so that it implements this OFDM
symbol timing scheme. Also run it to check if it works.

Chapter 2
Continuous-Time Fourier Analysis

Contents
2.1 Continuous-Time Fourier Series (CTFS) of Periodic Signals 62
2.1.1 Definition and Convergence Conditions
of CTFS Representationc.uuiiiii e 62
2.1.2 Examples of CTFS Representationccoiiiiineeiiininnnenn. 65
2.1.3 Physical Meaning of CTFS Coefficients — Spectrum 70
2.2 Continuous-Time Fourier Transform of Aperiodic Signals 73
2.3 (Generalized) Fourier Transform of Periodic Signals............................. 77
2.4 Examples of the Continuous-Time Fourier Transform 78
2.5 Properties of the Continuous-Time Fourier Transform............................ 86
251 LINGaritY ...ttt 86
252 (Conjugate) SYMmMeLrY . ..ottt e 86
2.5.3 Time/Frequency Shifting (Real/Complex Translation) 88
254 DUAIILY . . 88
255 Real Convolution ... 89
2.5.6 Complex Convolution (Modulation/Windowing) 90
2.5.7 Time Differential/Integration — Frequency Multiplication/Division 94
2.5.8 Frequency Differentiation — Time Multiplication 95
259 Timeand Frequency Scaling......... ..o 95
2.5.10 Parseval’s Relation (Rayleigh Theorem), 96
2.6 Polar Representation and Graphical Plot of CTFT, 96
2.6.1 Linear Phaseouuiit 97
2.6.2 BOde PlOt.o 97
2.7 SUMMANY . oottt e 98
PrODIEMS L. 99

Since the great contribution and revolutionary discovery of Jean Baptiste Joseph
Fourier saw the light in 1822 after passing through the long dark tunnel of J.L.
Lagrange’s stubborn objection and was supported by P.L. Dirichlet’s rigorous math-
ematical proof in 1829, the Fourier series and transform techniques have played very
significant role in so many disciplines within the fields of mathematics, science, and
engineering.

Joseph Fourier (1768~1830) was a French mathematician and physicist who ini-
tiated the investigation of Fourier series and its application. Born as a son of a tailor,
he was orphaned at age 8. In 1784, at only 16 years of age, he became a mathematics
teacher at the Ecole Royale Militaire of Auxerre, debarred from entering the army

W.Y. Yang et al., Signals and Systems with MATLAB®, 61
DOI 10.1007/978-3-540-92954-3_2, © Springer-Verlag Berlin Heidelberg 2009

62 2 Continuous-Time Fourier Analysis

on account of his obscurity and poverty. In 1795, Fourier took a faculty position
at the Ecole Normale (Polytechnique) in Paris, which is an elite institution train-
ing high school teachers, university professors, and researchers. In 1798, he joined
Napoleon’s army in its expedition to Egypt as scientific advisor to help establish
educational facilities there and carry out archaeological explorations.

Eluding the Nelson’s British fleet, the Napoleon’s Egyption expedition fleet of
300 ships, 30,000 infantry, 2,800 cavalry, and 1,000 cannons started Toulon on
May 19,1798, sailing for Alexandria. The great expedition plan plotted by Napoleon
attached a library with lots of books, many measurement instruments, various lab-
oratory apparatuses, and about 500 civilians to the army; 150 of them were artists,
scientists, scholars, engineers, and technicians. These human and physical resources
formed the Institut d‘Egypte in Cairo after Egypt was conquered by Napoleon.
Napoleon Bonaparte (1769~1821) not yet 30 years old, a great hero in the human
history, and Joseph Fourier, a great scholar of about the same age in their youth were
on board the flagship L’Orient of the expedition fleet. What were they thinking of
when walking around on the deck and looking up the stars twinkling in the sky above
the Mediterranean Sea at several nights in May of 1798? One might have dreamed
of Julius Caesar, who conquered Egypt about 1,800 years ago, falling in love with
the Queen Cleopatra, or might have paid a tribute to the monumental achievements
of the great king Alexander, who conquered one third of the earth, opening the road
between the West and the Orient. The other might have refreshed his memory on
what he wrote in his diary on his 21st birthday, Yesterday was my 21st birthday,
at that age Newton and Pascal had already acquired many claims to immortality,
arranging his ideas on Fourier series and heat diffusion or recollecting his political
ideology which had swept him and made him get very close to guillotine in the
vortex of French Revolution.

2.1 Continuous-Time Fourier Series (CTFS)
of Periodic Signals

2.1.1 Definition and Convergence Conditions
of CTFS Representation

Let a function x(t) be periodic with period P int, that is,
Xt)=x(t+P) Vvt (2.1.1)

where P [s] and wg = 27 /P [rad/s] are referred to as the fundamental period
and fundamental (angular) frequency, respectively, if P is the smallest positive real
number to satisfy Eq. (2.1.1) for periodicity. Suppose x(t) satisfies at least one of
the following conditions A and B:

2.1 Continuous-Time Fourier Series (CTFS) of Periodic Signals 63
< Condition A >
(A1) The periodic function x(t) is square-integrable over the period P, i.e.,

/ IX(t)% dt < oo (2.1.2a)
P

where fP means the integration over any interval of length P. This implies
that the signal described by x(t) has finite power.

< Condition B : Dirichlet condition >

(B1) The periodic function x(t) has only a finite number of extrema and disconti-
nuities in any one period.

(B2) These extrema are finite.

(B3) The periodic function x(t) is absolutely-integrable over the period P, i.e.,

/ X(t)] dt < oo (2.1.2b)
P

Then the periodic function x(t) can be represented by the following forms of
continuous-time Fourier series (CTFS), each of which is called the Fourier series
representation:

<Trigonometric form>

X(t) = ap + Z:il a, cos kagt + Zzl bk sin kwot (2.1.3a)

. 2 .
With o = Fﬂ (P : the period of x(t))
where the Fourier coefficients ag, ay, and by are

1
aQ = B/ X(t) dt (the integral over one period P)
=]
2
a = E/ X(t) cos kagt dt (2.1.3b)
P

2
b = —/ X(t) sin kot dt
PJp
<Magnitude-and-Phase form>
X(t) = do + Zkzl di cos(kawot + i) (2.1.43)
where the Fourier coefficients are

do=a0, dc=y/aZ+bl, ¢=tan"(—bc/a) (2.1.4b)

64 2 Continuous-Time Fourier Analysis

<Complex Exponential form>
x(t) = e ZOO oy elkent (2.1.5a)
= P Ke—oo K A
where the Fourier coefficients are
Gk = / x(t) e k=t dt (the integral over one period P) (2.1.5b)
P

Here, the k th frequency kayg (|k| > 1) with fundamental frequency wg = 27/P =
27 fo [rad/s](P: period) is referred to as the k th harmonic. The above three forms of
Fourier series representation are equivalent and their Fourier coefficients are related
with each other as follows:

Co = / X(t) dt = Pdy = Pay (2.1.6a)
P

Ck = f x(t) e Tkt gt = / X(t) (cos kgt — j sinkawot) dt
P P

P , P
= E(ak — jby) = Edkzdm (2.1.6b)

Cx= / x(t) ekt dt = / X(t) (cos kot + j sin kagt) dt
P P

P . P
= 5@+ b= S 0hs —de=C (2.1.6c)
_ G _ G+cCk 2Re{cd _Ck—0C 2Im{c
ao—P, A = P - p o = T =
(2.1.6d)

The plot of Fourier coefficients (2.1.4b) or (2.1.5b) against frequency kay is referred
to as the spectrum. It can be used to describe the spectral contents of a signal,
i.e., depict what frequency components are contained in the signal and how they
are distributed over the low/medium/high frequency range. We will mainly use
Egs. (2.1.5a) and (2.1.5b) for spectral analysis.

<Proof of the Complex Exponential Fourier Analysis Formula (2.1.5b)>
To show the validity of Eq. (2.1.5b), we substitute the Fourier synthesis formula
(2.1.5a) with the (dummy) summation index k replaced by n into Eq. (2.1.5b) as

. 1 . . 1) ; "
ol [5T ettt =TT e [@rviae

P =—00 =—00 p
(2.1.7)

2.1 Continuous-Time Fourier Series (CTFS) of Periodic Signals 65

This equality holds since

P/2
1 / Q-0 Zt g
PJ pp

P/2

1 i(n—k) 2z —

) Weun)ptip/z_o for n;ék—a[n—k] 218)
1 rP/2
P —P/Zdtzl for n=k

2.1.2 Examples of CTFS Representation

Example 2.1 Fourier Spectra of a Rectangular (Square) Wave and a Triangular
Wave

(@) CTFS Spectrum of a Rectangular (Square) Wave (Fig. 2.1(al))
Consider an even rectangular wave x(t) with height A, duration D, and
period P:

X(t) = AFD/p(t) (E211)

where 7o,p(t) = 1 for|t —mP| < D/2(m: an integer)

0 elsewhere
At A
A
+ t >t t t >t
1-P -D20D2 | p -+ b 0o D P
I | I | I | I | | I |
I | I | I | I | | I |
(al) Arectangular wave Arpp (t): even (a2) A rectangular wave Afpp (t-D/2): odd
A
/ Al/\
’/:\I\ I/\ }/:\‘I\ >t /\ + I/:\(I\ >t
/pN DoO0oD [pN P 2D 0 2D PN
/ A\ 7 \ / oy 7 \
/ W4 | A/ \ / N/ A/ \
(b1) A triangular wave AXD,,;, (t): even (b2) A triangular wave A:\D,p (t—D): odd

Fig. 2.1 Rectangular waves and triangular waves

66 2 Continuous-Time Fourier Analysis

We use Eg. (2.1.5b) to obtain the Fourier coefficients as

P/2 _ D/2 A b2
ck=/ Afpp(t) e ket dt = A/ g koot gt = g Ikent
—P/2 D2 —jkao -D/2

jku)oD/Z _ —jka)oD/z 1

_ A8 _ e _ ADsm(kwo D/2)
jka)o kaD/2
. D . 2

= AD sinc <k5) with wy = Fﬂ (E2.1.2)

Now we can use Eq. (2.1.5a) to write the Fourier series representation of the
rectangular wave as

1 . D :
Aip/p(t) @ B 2o AD sinc (kB) gl ket

_E Zoo 2AD sin(kr D/P)

cos kot E2.1.3
P k=1 P krD/P “o (E2.1.3)

In the case of D = 1 and P = 2D = 2 as depicted in Fig. 2.2(al), the
(magnitude) spectrum is plotted in Fig. 2.2(b1).

(Q) What about the case of P = D, which corresponds to a constant DC (Direct
Current) signal?

- 1
l N . T ’T
LT 0 e Pog TN ‘fk P
-2 0 2 t 4 -8 -6 -4 -2 4 6k8
(al) A rectangular wave (b1) The magnitude spectrum
A=1 [+—P—
0 . D 0
-4 -2 0 2 t 4 8 6 -4 2 0 2 4 6ks8
(a2) A triangular wave (b2) The magnitude spectrum

Fig. 2.2 Rectangular/triangular waves and their CTFS magnitude spectra

2.1

(b)

(©

Continuous-Time Fourier Series (CTFS) of Periodic Signals 67
CTFS Spectrum of a Triangular Wave (Fig. 2.1(b1))

Consider an even triangular wave x(t) with maximum height A, duration 2D,
and period P:

X(t) = Alp,p(t) (E2.1.4)

1—-t/D for|t — mP| < D (m: an integer)

where X pp(t) = {0 elsewhere

We use Eq. (2.1.5b) to obtain the Fourier coefficients as

Pz 1\ kot ° It]
ck=/ A 1—5 e °dt=/ A 1—5 cos(kawpt) dt
—P/2 -D
—Z/DA 1—t cos(kwpt) dt = 2A 1—t ! sin(kaot)
A D @0t B8 = D) kag o N

b 1y 1 . 1
— /0 2A (—B> k_a)o S|n(ka)0t) dt = —ZAW COS(ka)ot)

D

0
D

0

1 — cos(kwg D) 4sin?(kwg D /2)

=2AD——— 2~ —aAD——— "'~
(kaoD)? (koD /2)?

= ADsinc? (k%) with g = 23” (E2.1.5)

Now we can use Eg. (2.1.5a) to write the Fourier series representation of the
triangular wave as

~ @152 1 o o DY\ ikt
Aipp(t) = Ezkzm AD sinc <k5> glkeo (E2.1.6)

In the case of D = 1 and P = 2D = 2 as depicted in Fig. 2.2(a2), the
corresponding (magnitude) spectrum is plotted in Fig. 2.2(b2).

MATLAB program to get the Fourier spectra

Once you have defined and saved a periodic function as an M-file, you can use
the MATLAB routine “CTFS_exponential () to find its complex exponential
Fourier series coefficients (cy’s). Interested readers are invited to run the follow-
ing program “cir02e01.m” to get the Fourier coefficients and plot the spectra for
a rectangular wave and a triangular wave as in Fig. 2.2.

68

2 Continuous-Time Fourier Analysis

%i g02e01. m: plot Fig. 2.2 (CTFS spectra of rectangul ar/triangul ar waves
clear, clf

gl obal P D
N=8; k= -N:N, %the range of frequency indices
for i=1:2
if i==1 %true Fourier series coefficients for a rectangul ar wave
x = 'rectangul ar wave'; P=2; D=1; c_true= Drtsinc(k*D P);

else %true Fourier series coefficients for a triangular wave
X = 'triangul ar wave'; P=2; D=1; c-true= Dtsinc(k+*D/ P)."2;
end
w0=2+*pi / P; % fundanmental frequency
tt=[-400: 400] P/ 200; %tine interval
xt = feval (x,tt); %original signal
[c,kk] = CTFS_.exponential (x, P, N);
[c; ctrue] %to conpare with true Fourier series coefficients
di screpancy_bet ween_nuneri c.and_anal yti c=norn(c-c_true)
j kwot = j*kk.’ *wOxtt;
xht = real (c/Prexp(jkwot)); % Eq. (2.1.5a)
subpl ot (219+i *2), plot(tt,xt, k-", tt,xht, b:")
axis([tt(1l) tt(end) -0.2 1.2]), title(’ Periodic function x(t)’)
c.mag = abs(c); c_phase = angle(c);
subpl ot (220+i *2), stem(kk, c.mag), title(’ CTFS Spectrum | X(k)|")
end

function y=rectangul ar wave(t)
global P D
tmp=m n(abs(nmod(t, P)),abs(nmod(-t,P))); y= (tnp<=D2);

function y=triangul ar wave(t)
gl obal P D
tmp= m n(abs(nmod(t, P)),abs(nod(-t,P))); y=(tnmp<=D).*(1-tnp/D);

function [c, kk] =CTFS_exponenti al (x, P, N)
% Find the conpl ex exponential Fourier coefficients c(k) for k=-N'N
% x: A periodic function with period P
% P: Period, N Maxi mum frequency index to specify the frequency range
w0=2*pi /P; % the fundanmental frequency [rad/s]
xexpj kwot = [x ' (t).*exp(-j*kxw0*t)'];
xexp-j kwot = i nline(xexpjkwot_'t’,’ k', w0);
kk=-N: N, tol=1e-6; % the frequency range tol erance on nunerical error
for k=kk

c(k+N+1) = quadl (xexp.j kwot,-P/2,P/2,tol,[],k,w0); % Eq. (2.1.5b)
end

%i g02.01.m: plot Fig. 2.3 (CTFS reconstruction)
clear, clf
global P D
P=2; wO0=2xpi/P; D=1; % period, fundanental frequency, and duration
tt=[-400: 400] P/ 400; %tinme interval of 4 periods
X = 'rectangul ar wave’ ;
xt = feval (x,tt); %original signal
plot(tt,xt, k:"), hold on
Ns=[1 3 9 19];
for N=Ns
k= -N'N jkwot= j*k.’*wO*tt; % the set of Fourier reconstruction terns
c= Drsinc(k*D/ P);
xht = real (c/Pxexp(jkwot)); % Eg. (2.1.9)
plot(tt,xht,” b’), hold on, pause
end
axis([tt(1) tt(end) -0.2 1.2])

2.1 Continuous-Time Fourier Series (CTFS) of Periodic Signals 69

A 1N wt
X(t)252k=7 ¢ e
N
1
0.5
0 L
-2 ' 1 ' 0 ' 1 ' 2

Fig. 2.3 Examples of the approximate Fourier reconstruction for a rectangular pulse

At this point, you may wonder how a rectangular wave with discontinuities can
be represented by the sum of trigonometric or complex exponential functions that
are continuous for all t. To satisfy your curiosity, let us consider the approximate
Fourier series reconstruction formula.

. 1 N .
XN (t) = E ZszN Ck eJk ot (219)

This can be used to reconstruct the original time function x(t) from its Fourier
series coefficients. We can use the above MATLAB program ‘sig02_01.m’ to plot
the Fourier series reconstructions of a rectangular wave with increasing number of
terms N =1, 3,9, 19,...as in Fig. 2.3.

The following remark with Fig. 2.3 will satisfy your curiosity:

Remark 2.1 Convergence of Fourier Series Reconstruction

(1) The Fourier series convergence condition A stated in Sect. 2.1.1 guarantees that
the Fourier coefficients are finite and the Fourier series reconstruction Xy (t)
converges to the original time function x(t) in the sense that

/ IXn () — X(t)]> dt — 0as N — oo
P

(2) The Fourier series convergence condition B stated in Sect. 2.1.1 guarantees the
following:

- The Fourier coefficients are finite.

- The Fourier series reconstruction X (t) converges to the original time func-
tion x(t) at every t except the discontinuities of x(t) and to the average value
of the limits from the left/right at each discontinuity.

(3) Figure 2.3 illustrates that Xy (t) has ripples around the discontinuities of x(t),
whose magnitude does not decrease as N — oo. This is called the Gibbs
phenomenon.

70 2 Continuous-Time Fourier Analysis
br(t) = Zp-—. 8(t-mT)

THTL 1%L

-3T 2T -T 2T 3T -2 -1 0 1 2
(a) An impulse train with period T (b) Its Fourier spectrum

Fig. 2.4 An impulse train and its CTFT spectrum

(4) For practical purposes, we do not need to pay attention to the convergence
condition because the “weird” signals that do not satisfy the condition are not
important in the study of signals and systems.

Example 2.2 Fourier Spectrum of an Impulse Train
Consider an impulse train consisting of infinitely many shifted unit impulses that
are equally spaced on the time axis:

st(t) = Z:?OO 5(t — mT) (E2.1.1)

We can use Eq. (2.1.5b) with P = T and wy = 27/T to obtain the Fourier
coefficients as

T/2 - E211) [/ ;
Ck = / ST (t) eﬁlkwot dt(=)/ ZOO 8(t - mT)eijkat dt
= -T/2 m=-o0

(since there is only one impulse §(t)
within the integration interval [-T /2, T/2])

/2 - 11.25)
=/ 5(t) e Thont g I grikent| 1y
-T2 with t;=0 -

This means a flat spectrum that is uniformly distributed for every frequency index.
Now we can use Eq. (2.1.5a) to write the Fourier series representation of the impulse
train as

@158 1 oo koot P=T 1 oo jkoot i _ 2
) = 5D, e == Zk?we with w0 =
(2.1.10)

Fig. 2.4(a) and (b) show an impulse train and its spectrum, respectively.

2.1.3 Physical Meaning of CTFS Coefficients — Spectrum

To understand the physical meaning of spectrum, let us see Fig. 2.5, which shows
the major Fourier coefficients ¢k of a zero-mean rectangular wave for k = -3, —1,
1, and 3 (excluding the DC component ¢o) and the corresponding time functions

2.1

Continuous-Time Fourier Series (CTFS) of Periodic Signals 71

dqcos(wpt + &)
dycos(wpt + ¢y) + d3cos(3wpt + ¢3)

1\ .
\/

d3cos(3wpt + ¢3)

Fig. 2.5 Physical meaning of complex exponential Fourier series coefficients

1 - - 1 . _
5 (C—l elot L ¢ erot) and 5 (C 3 g i8wot cs eJ3w0t)

The observation of Fig. 2.5 gives us the following interpretations of Fourier
spectrum:

Remark 2.2 Physical Meaning of Complex Exponential Fourier Series Coefficients

1)

)

@)

tra

While the trigonometric or magnitude-and-phase form of Fourier series has only
nonnegative frequency components, the complex exponential Fourier series has
positive/negative frequency (+kwo) components that are conjugate-symmetric
aboutk =0, i.e.,

(2.1.6

b) P - 2.1.6c) P
=)Edke“”k and c,k(SR

! dee 1% — |c | = |ck| and ¢y = —x

as shown in Sect. 2.1.1. This implies that the magnitude spectrum |cy| is (even)
symmetric about the vertical axis k = 0 and the phase spectrum ¢y is odd
symmetric about the origin.

As illustrated above, the k th component appears as the sum of the positive and
negative frequency components

Ck ikt Cok ikt @LOL L it

= glkeo @ Jkaot =% Ty aldkalkeo Zd e 1¢g ko

o + P 5 k + 5 Kk
= dy cos(Kawot + ¢x)

which denote two vectors (phasors) revolving in the opposite direction with
positive (counter-clockwise) and negative (clockwise) angular velocities +kwg
[rad/s] round the origin, respectively.

Figure 2.6 also shows that the spectrum presents the descriptive information of
a signal about its frequency components.

To get familiar with Fourier spectrum further, let us see and compare the spec-
of the three signals, i.e., a rectangular wave, a triangular wave, and a constant

72 2 Continuous-Time Fourier Analysis

dlCOS(WOt + ¢1) + d3COS(3 th + ¢3)
d, \/\/\ .
................ Time t
: 0 ; No dc component o

Magnitude ! d,cos(wt + &)

spectrum fundamental component !

dy r . No 2nd harmonic K >t

d; mqss?w T03) -

d d, 0 A PN t
qb kwo the 3rd harmonic component

Cy

kwg

Fig. 2.6 Physical meaning of spectrum — time domain vs. frequency domain

(DC: Direct Current) signal depicted in Fig. 2.7. The observations are stated in the
following remarks:

Remark 2.3 Effects of Smoothness and Period on Spectrum

(1) The smoother a time function is, the larger the relative magnitude of low
frequency components to high frequency ones is. Compare Fig. 2.7(al-bl),
(a2-b2), and (a3-b3).

(cf) The CTFS of the unit constant function can be obtained from Eq. (E2.1.3)
withA=1land P=D

IOOEAN eeabs?

(al) A rectangular wave with D=1, P=2 (b1) Its magmtude spectrum
1 /

1 V\/\/\/W F ICk| T 1
0 L L L L L 0 & "T ?‘ Q- - .
-5 o b t5 -8 0 k 8
(a2) A triangular wave with D=1, P=2 (b2) Its magnitude spectrum
1
0 1

-5 0 t5

(a3) A constant signal
r ’_‘ ’:‘ P ’_‘ 1
(a4) A rectangular wave with D=1, P=4 (b4) Its magnitude spectrum

Fig. 2.7 The CTFS spectra of rectangular/triangular waves and a DC signal

2.2 Continuous-Time Fourier Transform of Aperiodic Signals 73

(2) The longer the period P is, the lower the fundamental frequency wy = 27/P
becomes and the denser the CTFS spectrum becomes. Compare Fig. 2.7(a4—b4)
with (al-b1).

(cf.) This presages the continuous-time Fourier transform, which will be intro-
duced in the next section.

Now, let us see how the horizontal/vertical translations of a time function x(t)
affect the Fourier coefficients.

<Effects of Vertical/Horizontal Translations of x(t) on the Fourier coefficients>
Translating x(t) by £A (+: upward, —: downward) along the vertical axis causes
only the change of Fourier coefficient dy = ay for k = 0 (DC component or average
value) by +A. On the other side, translating x(t) along the horizontal (time) axis by
+t; (+: rightward, —: leftward) causes only the change of phases (¢x’s) by Fkawot,
not affecting the magnitudes dy of Eq. (2.1.4b) or |ci| of Eq. (2.1.5b):

2.1.5b ; .
CI/((i)/ X(t _ tl) e—kaotdt — / X(t _ tl) e—jkwo(t—t1+t1)dt
P P

- | 2180 |
- e‘Jk‘“°‘1/ x(t — ty) e iken(t=t gy G2 g gmikoots — 6 /(g — kaooty)
P

(2.1.11)

Note that x(t — t;) is obtained by translating x(t) by t; in the positive (rightward)
direction for t; > 0 and by —t; in the negative (leftward) direction for t; < 0 along
the horizontal (time) axis. Eq. (2.1.11) implies that horizontal shift of x(t) causes a
change not in its magnitude spectrum but in its phase spectrum.

2.2 Continuous-Time Fourier Transform of Aperiodic Signals

In this section we will define the Fourier transform for aperiodic signals. Suppose
we have an aperiodic signal x(t) of finite duration D > 0 and its periodic extension
Xp(t) with period P > D that is obtained by repeating x(t) every P s.

Noting that, as we choose the period P to be longer, Xp(t) appears to be identical
to x(t) over a longer interval, we can think of x(t) as the limit of Xp(t) as P — oo.
Since Xp(t) is periodic with period P, it can be represented by the Fourier series of
the form

. 1 oo ke 1 00 . ke . 27
Kp(t) = 5 Zk:—oo Cy elkeot — > Zk?w X(jkawo) €%twy with wy = -

where the CTFS coefficients are

. 0 .
X(jkwo) = ¢ = / Xp(t) e kot gt = / x(t) e~ Tkt gt
P —00
Noting that Xp(t) — x(t) and wy = 27/P — 0as P — oo, we let wy = dw and
kwg = w and take the limits of the above two equations as P — oo to write the
continuous-time Fourier transform (CTFT) pair:

74 2 Continuous-Time Fourier Analysis

X(jw) = F{x(t)} = / x(t)e~1“* dt (Fourier transform/integral) (2.2.1a)
X(t) = FYX(jo)} = ZL/ X(jw)e!t dw (Inverse Fourier transform)
T J -0

(2.2.1b)

where X(jw), called the spectrum of x(t), has values at a continuum of frequencies
and is often written as X(w) with the constant j omitted. Like the CTFS of periodic
signals, the CTFT of aperiodic signals provides us with the information concerning
the frequency contents of signals, while the concept of frequency describes rather
how rapidly a signal changes than how fast it oscillates.

Note that the sufficient condition for the convergence of CTFT is obtained by
replacing the square-integrability condition (2.1.2a) of Condition A with

/ N IX(t)[? dt < oo (2.2.2a)

oo

or by replacing the absolute-integrability condition (2.1.2b) of Condition B with

/OO IX(t)| dt < oo (2.2.2b)

[e¢]

Remark 2.4 Physical Meaning of Fourier Transform — Signal Spectrum and Fre-
guency Response

(1) If a time function x(t) represents a physical signal, its Fourier transform
X(jw) = F{x(t)} means the signal spectrum, which describes the frequency
contents of the signal.

(2) In particular, if a time function g(t) represents the impulse response of a
continuous-time LTI (linear time-invariant) system, its Fourier transform
G(jw) = F{o(t)} means the frequency response, which describes how the sys-
tem responds to a sinusoidal input of (angular) frequency w (refer to Sect. 1.2.6
for the definition of frequency response).

Remark 2.5 Frequency Response Existence Condition and Stability Condition of
a System

For the impulse response g(t) of a continuous-time LTI system, the absolute-
integrability condition (2.2.2b) is identical with the stability condition (1.2.27a).
This implies that a stable LTI system has a well-defined system function (frequency
response) G(jw) = F{g(t)}.

Remark 2.6 Fourier Transform and Laplace Transform

For any square-integrable or absolutely-integrable causal function x(t) such that
Xx(t) =0Vt < 0, the Fourier transform can be obtained by substituting s = jw into
the Laplace transform:

2.2 Continuous-Time Fourier Transform of Aperiodic Signals 75

la)

X(jw) P& f x(t)e et

x(t):ozfort<0/ x(t)eiotdt (AL X(©)lsejo (22.3)

causal signal /g

This argues that for a physical system having causal impulse response g(t), the
Fourier transform G(j w) of g(t), that is the frequency response, can be obtained by
substituting s = jw into the system function G(s), which is the Laplace transform
of g(t). (See Eq. (1.2.21).)

Example 2.3 CTFT Spectra of a Rectangular (Square) Pulse and a Triangular
Pulse

(@) CTFT Spectrum of a Rectangular (Square) Pulse (Fig. 2.8(a))
Consider a single rectangular pulse with height 1 and duration D on the interval
[-D/2, D/2]:

D D A for —D/2<|t|<D/2
Apt) = Aus(t+ =) —us(t—=)) =
oft) <us< * 2) us(2)) {0 elsewhere

(E2.3.1)
We use Eqg. (2.2.1a) to obtain the CTFT coefficients as
D
Fourier transform [X (jw) |
D : Duration —
t w
0 27D 0 27/D
(a) Arectangular pulse and its CTFT spectrum
«o
= P > D "' %ﬂ Fundamental
P=4D Founer series |c,| or X, | ¢ frequency
p~| :Period ‘ ‘
R R DPREPRPTRS| Neai K
i 0

(b) A rectangular wave and its CTFS spectrum

’_‘ ’_‘ W ’_‘ ’_‘Founerserles el or X, T;
D
I Coaeﬁ‘? T Py @n.@m K

0
() A rectangular wave and |ts CTFS spectrum

generalized

’_‘ ’—‘ l:‘ ’_‘ ’_‘Fourrertransform |X(J°«)|]I

-27/D 0 27r/D
(d) A rectangular wave and its CTFT spectrum

Fig. 2.8 The CTFT or CTFS spectra of rectangular pulses or waves

76 2 Continuous-Time Fourier Analysis
@21a) [] D/2 A b2
ARp(jw) = / Arp(t)e 1t dt = A/ e lotdt = — gl
-0 -D/2 —Jo -D/2
jwD/2 _ a—jwD/2 ; D/2

et e _ \pSin@b/2)

Jo wD/2

. wD
= ADsinc o (E2.3.2)

=A

T

This CTFT spectrum is depicted in Fig. 2.8(a). The first zero crossing B =
27 /D [rad/s] of the magnitude spectrum is often used as a measure of the fre-
quency spread of a signal and called the zero-crossing (null-to-null) bandwidth
of the signal.

(cf.) As a by-product, we can apply the inverse CTFT formula (2.2.1b) for
Eq. (E2.3.2) to get the integral of a sinc function:

E232) 1 /‘X’ Dsin(a)D/Z)
- 2n). wDJ2

D D\ w=2w 1 [sin(wD) .
us(t+—) —ug(t— =)= —/ sin(wD))erwtdw
2 2 T J s w

Substituting t = 0 into this equation yields

210 1 [) : :
rD(t)(”:“E/ Ro(jw)el do' el“t do
—00

1 for D>0
1 [sin(wD) D D\ or b=
— ————dw=uUs| =) —us|——=) =sign(D)=40 for D=0
T J_so w 2 2
—1for D<O
(E2.3.3)

(b) CTFT Spectrum of a Triangular Pulse
Like Eq. (E2.1.5), which is the CTFS coefficient of a triangular wave, we can
find the CTFT spectrum of a single triangular pulse x(t) = Aip(t) as

sin(wD/2)

X(j) = Ao (jo) = AD= L0

D
— AD sinc? (“2’—) (E2.3.4)
T

Figure 2.8(a) shows a rectangular pulse and its CTFT spectrum, while Fig. 2.8(b)
and (c) show two rectangular waves and their CTFS spectra. These figures present
us an observation about the relationship between the CTFT of a single pulse x(t)
and the CTFS of its periodic repetition Xp(t) with period P, which is summarized
in the following remark.

Remark 2.7 Fourier Series and Fourier Transform
(1) We will mainly use the complex exponential Fourier coefficients, but seldom

use the trigonometric or magnitude-and-phase form of Fourier series. Thus,
from now on, we denote the complex exponential Fourier coefficients of x(t)

2.3

@)

@)

(4)

(Generalized) Fourier Transform of Periodic Signals 77

by Xk instead of ¢, which has been used so far to distinguish it from other
Fourier coefficients ax, by, or d.

As can be seen from comparing Egs. (E2.1.2) and (E2.3.2) or (E2.1.5) and
(E2.3.4), the relationship between the CTFT X(jw) of x(t) and the CTFS coef-
ficient X of Xp(t) (the periodic extension of x(t) with period P) is as follows:

X(jw)|w:kw0:2nk/P = X(J ka)o) = Xk (224)

As the period P gets longer so that the fundamental frequency or frequency
spacing wo=27 /P decreases, the Fourier coefficients X’s become more closely
spaced samples of the CTFT X(jw), implying that the set of CTFS coefficients
approaches the CTFT as P — oo (see Fig. 2.8(c), (b), and (a)).

Unlike the discrete frequency kwo of CTFS, the continuous frequency » of
CTFT describes how abruptly the signal changes rather than how often it
oscillates.

If the CTFT of a single pulse x(t) and the CTFS of the periodic extension Xp(t)
were of different shape in spite of the same shape of x(t) and Xp(t) over one
period P, it would be so confusing for one who wants the spectral information
about a signal without knowing whether it is of finite duration or periodic. In
this context, how lucky we are to have the same shape of spectrum (in the sense
that CTFS are just samples of CTFT) whether we take the CTFT of x(t) or the
CTFS of Xp(t)! Furthermore, you will be happier to see that even the CTFT of
Xp(t) (Fig. 2.8(d)) is also of the same shape as the CTFS of Xp(t), because one
might observe one period of Xp(t) and mistake it for x(t) so that he or she would
happen to apply the CTFT for periodic signals. Are you puzzled at the CTFT of
a periodic signal? Then rush into the next section.

2.3 (Generalized) Fourier Transform of Periodic Signals

Since a periodic signal can satisfy neither the square-integrability condition (2.2.2a)
nor the absolute-integrability condition (2.2.2b), the CTFTs of periodic signals are
not only singular but also difficult to compute directly. For example, let us try to
compute the CTFT of x,(t) = elk*t by using Eq. (2.2.1a):

f{Xk(t)} (2,2:,1‘3)/00 ej kawot e—jwt dt = /w e—](w—kwo)tdt

(o] —0Q

(D._33) 1 —j(@—kog)t T
— (@ — kao)

Tlhrow

_ 1 <ej(m—kmo)T _ 67 j(w—kmo)T)
j (0 — ko)

_(2sin (o — ka)T
B ((@ — ko))

T=00

=9 (2.3.1)

T=0c0

78 2 Continuous-Time Fourier Analysis

To get around this mathematical difficulty, let us find the inverse CTFT of
Xk(jw) = 27 §(w — ka)
by applying the inverse Fourier transform (2.2.1b):

o 1™ . 195) ot
LXe(joo)y &Y = f 27 8(e — kp)el ™ do “E
2 J_o

This implies a CTFT pair as

jkagt f

x(t) = €“" S Xe(jo) = 27 8(w — ko) (2.3.2)

Based on this relation, we get the Fourier transform of a periodic function x(t)
from its Fourier series representation as follows:

15a) 1 | _ 2
xCEI 23 ekt with wy =
P k=—00 P
2
L X(jw)®? —” Xy 8(e — ko) (2.3.3)

k=—00

This implies that the CTFT of a periodic signal consists of a train of impulses
on the frequency axis having the same shape of envelope as the CTFS spectrum.
Figure 2.8(d) is an illustration of Eq. (2.3.3) as stated in Remark 2.7(4).

Remark 2.8 Fourier Transform of a Periodic Signal

It would be cumbersome to directly find the CTFT of a periodic function. Thus we
had better find the CTFS coefficients first and then use Eq. (2.3.2) as illustrated in
Eg. (2.3.3).

2.4 Examples of the Continuous-Time Fourier Transform

Example 2.4 Fourier Transform of an Exponential Function
For an exponential function (Fig. 2.9(a)) with time constant T > 0

el(t) = ‘t/TuS(t) with T >0, (E2.4.1)

1
e, t)= = UTug(t)

I) S N T : Time constant

0 T 0 w.=1T
(a) A unilateral exponential signal (b) Its CTFT spectrum—magnitude

Fig. 2.9 A unilateral exponential signal and its CTFT spectrum

2.4 Examples of the Continuous-Time Fourier Transform 79

we have the Fourier transform

. 2. ® 1 : 1 [
Ei(jo) = Fley(t)} “2? f e tUTug(t) et dt = = / eUTe ™ gt
T T /)
_ lfoo e7(1/T+jm)z dt (D.=33)_ 1 . e—(l/T+jw)t [e9)
T/ TA/T+ jo) 0
1 1
= / —tan"Y(wT) (E2.4.2)

1+ joT /1t (@T)

whose magnitude is depicted in Fig. 2.9(b). From this magnitude spectrum, we see
that w. = 1/T is the half-power frequency at which |E1(jw)| is 1/+/2 times the
maximum magnitude 1:

|E1(jw)| = 1+ (@T)P =2 0T =1; o = % (E2.4.3)

1 1
JirT? V2
This example makes possible the following interpretations:
Remark 2.9 Signal Bandwidth and System Bandwidth — Uncertainty Principle

(1) In case the function e;(t) represents a physical signal itself, the above exam-
ple illustrates the inverse relationship (a kind of duality) between the time and
frequency domains that the bandwidth B [rad/s] of the signal is inversely pro-
portional to the time-duration T [s], i.e., BT = constant(= 1). Note that the
bandwidth of a signal, i.e., the width of the frequency band carrying the major
portion of the signal energy, describes how rich frequency contents the signal
contains. Such a relationship could also be observed in Example 2.3 and Fig. 2.8
where the time-duration of the rectangular pulse is D and the signal band-
width, defined as the frequency range to the first zero-crossing of the magnitude
spectrum, is 27t/ D. This observation, called the reciprocal duration-bandwidth
relationship, is generalized into the uncertainty principle that the time-duration
and bandwidth of a signal cannot be simultaneously made arbitrarily small,
implying that a signal with short/long time-duration must have a wide/narrow
bandwidth [S-1, Sect. 4.5.2]. This has got the name from the Heisenberg uncer-
tainty principle in quantum mechanics that the product of the uncertainties in
the measurements of the position and momentum of a particle cannot be made
arbitrarily small.

(2) In case the function ey (t) represents the impulse response of a filter such as
the RC circuit shown in Fig. 2.10(a), it has another interpretation that the
bandwidth of the system behaving as a low-pass filter is inversely proportional
to the time constant T = RC]Js]. Note that the system bandwidth of a filter
describes the width of frequency band of the signal to be relatively well passed
and that it is usually defined as the frequency range to the 3dB-magnitude
(half-power) frequency B = 1/T [rad/s]. Also note that, in comparison with
the bandwidth as a frequency-domain “capacity” concept, the time constant
describes how fast the filter produces the response (output) to an applied input

80 2 Continuous-Time Fourier Analysis

°g

AN Vo(s)_ 1sCc _ 1
= G (jw)= 1lfjwC _ 1

G(s)= = =—"—""—=
+ © Vi(s) R+1/sC 1+sRC
w® empwone® &
- “R+1jwC 1+jwRC
1 . Time constant: T=RC

R System function :
+
Frequency response :
=V, (s) T oeneyTes
Bandwidth : B=1/T=1/RC

(a) An RC circuit and its transformed (s-domain) equivalent circuit

Vi (1)
Vo1(t) V; (t): A rectangular pulse input signal
Vo) Vo1 (1): The output of the RC filter with RC = 1/8
02 Vo2 (1): The output of the RC filter with RC = 1/2
! t
0 D

(b) The output voltages to a single rectangular pulse input

Fig. 2.10 An RC circuit and its outputs to rectangular pulse input signals

signal and that it is defined as the time taken for the output to reach 68.2%(e™!)
of the final (steady-state) value, or equivalently, the time measured until the
(slowest) term of the transient response (converging towards zero) becomes as
small as 32.8% of the initial value.

(3) Referring to Fig. 2.10(b), suppose a rectangular pulse of duration D is applied
to the RC filter. Then, in order for the low-pass filter to have high fidelity of
reproduction so that the output pulse will appear very much like the input pulses,
the system bandwidth (the reciprocal of time constant RC) of the filter had
better be greater than the signal bandwidth 27z /D of the input pulse.

Example 2.5 Fourier Transform of an Even-Symmetric Exponential Function
For an exponential function (Fig. 2.11(a)) with time constant T > 0

1
e(t) = ﬁe—'t'/T with T >0, (E2.5.1)

_ 1 T
e,(t)=—e
) =55

0 T 0o uT
(a) An even-symmetric exponential signal (b) Its CTFT spectrum—magnitude

Fig. 2.11 An even-symmetric exponential signal and its CTFT spectrum

2.4 Examples of the Continuous-Time Fourier Transform 81

we have the Fourier transform

© 1 _
Ea(jw) = Flea(t)} Zlf oo Terltdt

1(° o > ot
= — /Te ™ dt / eVTe ™ dt
2T {/w * 0

1 1/ T—jo)t

T2T/T — jo)

0 1 —(/T+jot |%°

o 2T(/T + jo)

_ Y2 o2 1
S 1—joT 1+ joT 1+ (oT)?

(E2.5.2)

whose magnitude is depicted in Fig. 2.11(b).

(Q) Why has the magnitude spectrum shorter bandwidth than that in Fig. 2.9(b)?
(A) Itis because the signal in Fig. 2.11(a) is smoother than that in Fig. 2.9(a).

Example 2.6 Fourier Transform of the Unit Impulse (Dirac Delta) Function
We can obtain the Fourier transform of the unit impulse function §(t) as

(1.1.25)

D(jo) = Fis) “E? / se it dt “EV 1 v o (E2.6.1)

This implies that an impulse signal has a flat or white spectrum, which is evenly
distributed over all frequencies (see Fig. 2.12).

It is interesting to see that this can be derived by taking the limit of Eq. (E2.3.2) as
D — 0in Example 2.3 (with A=1/D) or Eq. (E2.5.2) as T — 0 in Example 2.5:

(1.1.33b) 1 D\Eas3y, 1 D D
3(t) I|mOBrD <t+5> = I:I)ILnOB <uS <t+5> — Us <t— 5))

wD
I|m —R ? jim sinc (22) =1
oli0) 2 fim sine (5)
a(t) 29 =1
t w
0 0
(a) A unit-impulse signal (b) Its CTFT spectrum—magnitude

Fig. 2.12 A unit impulse signal and its CTFT spectrum

82 2 Continuous-Time Fourier Analysis

(1133d) 25.1) . 1
S(t 1) 2 lim e t/T
® "= lim ex() = fim —

E25.2) 1
||m E (]C()) Tglom =1

As a byproduct, we can apply the inverse Fourier transform (2.2.1b) to obtain an
expression of the impulse function as

—1 . 221 a)t E2.6.1) 1 = jot
5(t) = FHD(jo)} “E” = D(Jw)eJ =" = [1:d’dw
2 J_o
(E2.6.2)
©33) o1 1 eJ"’t| . glot _ g—jot ©? | w sin(wt)
w—>00 27-[Jt - w—00 27TJt w—oo 1wt

which is identical with Eq. (1.1.33a).
Remark 2.10 An Impulse Signal and Its (White/Flat) Spectrum

(1) Comparing Figs. 2.11 and 2.12, we see that short-duration signals contain
stronger high-frequency components than long-duration ones do. This idea sup-
ports why a lightning stroke of very short duration produces an observable
noise effect over all communication signals from the relatively low frequen-
cies (550~1600kHz) used in radio system to the relatively higher ones used in
television system (60MHz for VHF ~470MHz for UHF).

(2) We often use the impulse function as a typical input to determine the important
characteristics (frequency response or system/transfer function) of linear time-
invariant (LTI) systems. One practical reason is because the impulse function
has uniform (flat) spectrum, i.e., contains equal power at all frequencies so that
applying the impulse signal (or a good approximation to it) as the input to a
system would be equivalent to simultaneously exciting the system with every
frequency component of equal amplitude and phase.

Example 2.7 Fourier Transform of a Constant Function
We can obtain the Fourier transform of the unit constant function c(t) =
(Fig. 2.13(a)) as

232)

Clio) =71 2 [1o at 020 2 50) (E27.1)
00 wi
c(t)=1
1 C(jw) =27mé(w)
t w
0 0
(a) A unit constant (DC) signal (b) Its CTFT spectrum—magnitude

Fig. 2.13 A unit constant (DC) signal and its CTFT spectrum

2.4 Examples of the Continuous-Time Fourier Transform 83

This spectrum, that is depicted in Fig. 2.13(b), shows that a constant signal has only
DC component with zero frequency, i.e., has all of its (infinite) energy at w = 0.

This can also be obtained by swapping t and w in (E2.6.2) and verified by using
the inverse Fourier transform (2.2.1b) to show that

o0

21p) 1 .
f‘l{ZnS(w)}m:lb)z—/ 1.25)
/A

27 8(w)et dow “EV 1 (E2.7.2)

[e.¢]

Example 2.8 Fourier Transform of the Unit Step Function

To compute the Fourier transform of the unit step function ug(t), let us write its
even-odd decomposition, i.e., decompose us(t) into the sum of an even function and
an odd function as

Us(t) = ue(t) + Uo(t) (E2.8.1)
where

1/2 for t £0

E2.8.2
1 fort=0 ()

elt) = 5 (Us(0) + u~1) =

1/2 fort >0
Uo(t) = %(us(t) —ug(—t)) = %sign(t) =10 for t £0 (E2.8.3)
—-1/2 fort <0

Then, noting that the even part ue(t) is a constant function of amplitude 1/2 except
att = 0, we can use Eq. (E2.7.1) to write its Fourier transform as

Ue(jw) = Flue(t)} = %}"{1} €D 1 s(w) (E2.8.4)

On the other side, the Fourier transform of the odd part can be computed as

. (213 [ot o odd even . odd
Uo(jw) = Fluo(t)} = / Uo(t)e 1t dt = / Uo(t)(coswt — j sinwt) dt
. ©° oddxodd=even . o0 even
=—] f Uo(t)sin wt dt = —j2 f Uo(t) sin wt dt
—00 0

ot)=1/2fort=0 . [. Y A
Hoh=12 for t> —j / sin wtdt:—]/ sin wt e dt|o_,
0 0

1
= (E2.8.5)
= Jo

A e —
="—] L{sin ot}|s_g = —] L1l

84 2 Continuous-Time Fourier Analysis

B/m) G(jw)
g(t)
t w
"2\ 0 &\ /21 -B 0 B
B B B B
(a) The impulse reponse of an LPF (b) The frequency response of an LPF

Fig. 2.14 The impulse response and frequency response of an ideal LPF

where we have used the Laplace transform. Now we add these two results to obtain
the Fourier transform of the unit step function as

(E2.8.4).(E2.8.5)

Flus®)) = Flue®) + uo(®)} %" Ue(jw) + Uo(jo) 7 () + Jiw

(E2.8.6)

Example 2.9 Inverse Fourier Transform of an Ideal LPF Frequency Response
Let us consider the frequency response of an ideal lowpass filter (LPF) depicted
in Fig. 2.14(b):

1 for|jw| <B

(E2.9.1)
0 forjw|>B

G(jw) = {

Taking the inverse Fourier transform of this LPF frequency response yields the
impulse response as

0 B
o) = FHG(ju) “E0 L / G(jw)e do = — f 1% do
2 J o 2r J_g

1 i sinBt B . Bt
= ?jt(eJ Bt _ g IBY = — = sine (;) (E2.9.2)

which is depicted in Fig. 2.14(a).

(cf.) It may be interesting to see that a rectangular pulse and a sinc function consti-
tute a Fourier transform pair, i.e., the Fourier transforms of rectangular pulse
and sinc function turn out to be the spectra of sinc function and rectangu-
lar pulse function form, respectively (see Figs. 2.8(a) and 2.14). This is a
direct consequence of the duality relationship between Fourier transform pairs,
which will be explained in detail in Sect. 2.5.4.

Remark 2.11 Physical Realizability and Causality Condition
If a system has the frequency response that is strictly bandlimited like G(jw)
given by Eq. (E2.9.1) and depicted in Fig. 2.14(b), the system is not physically

2.4 Examples of the Continuous-Time Fourier Transform 85

realizable because it violates the causality condition, i.e., g(t) # 0 for somet < 0
while every physical system must be causal (see Sect. 1.2.9).

Example 2.10 Fourier Transform of an Impulse Train
Let us consider an impulse train

5r(t) = Z::_oo 5(t —mT) (E2.10.1)

Since this is a periodic function, we first write its Fourier series representation from
Eq. (2.1.10) as

(2.1.10) i o0 kot . . 2_71
or(®) =" 1 Zk?me with w5 = — (E2.10.2)

Then we use Eq. (2.3.2) with wg = ws = 27t/ T to obtain the Fourier transform as

(E2.10.2) 27 00

Dr(je) @32 T ke=—

3(w — kawg)
_2n oo

. 2w
T o 8(w + kws) with wg = Ea (E2.10.3)

(cf.) Applying Eg. (2.2.1b) to take the inverse Fourier transform of Eq. (E2.10.3)
will produce Eg. (2.10.2).

(cf.) Note that, as the period T (the interval between the impulses in time) increases,
the fundamental frequency ws = 27t/ T (the spacing between the impulses in
frequency) decreases. This is also a consequence of the duality relationship
between Fourier transform pairs.

Example 2.11 Fourier Transform of Cosine/Sine Functions

(@) The Fourier transform of x(t) = sin (wit) = (elrt — et t)/j2 can be
obtained as

X(jo) = Fisin(it)} = jizf (@t — e U2 (5w + w1) — 80 — 1)
(E2.11.1)

(b) The Fourier transform of x(t) = cos (wit) = (el“t + e~11t)/2 can be
obtained as

29 71 (5(0 + 1) + 8(0 — 1))

(E2.11.2)

X(Jw) = 7{008((1)1'[)} = %f{eiwlt + efjwit}

86 2 Continuous-Time Fourier Analysis
2.5 Properties of the Continuous-Time Fourier Transform

In this section we are about to discuss some basic properties of continuous-time
Fourier transform (CTFT), which will provide us with an insight into the Fourier

transform and the capability of taking easy ways to get the Fourier transforms or
inverse Fourier transforms.

(cf.) From now on, we will use X(w) instead of X(jw) to denote the Fourier
transform of x(t).

2.5.1 Linearity
With F{x(t)} = X(w) and F{y(t)} = Y(w), we have

ax(t) +byt) L aX(@) + b Y(), (2.5.1)
which implies that the Fourier transform of a linear combination of many functions
is the same linear combination of the individual transforms.
2.5.2 (Conjugate) Symmetry
In general, Fourier transform has the time reversal property:

t

Fix(—t)) “E? /_ x(—t)e jet gt =" f et (—dr) S /_ ¥ xelt dt
PET X (o) X(—) & X(-0) (25.2)
In case x(t) is a real-valued function, we have
X(-w) 72 /_ X(t)e 1) dt = /_ " xe et

2219 X*(w) (complex conjugate of X (w))

or equivalently,

Re{X(-o)} + JIm{X(-w)} = Re{X(w)} — jIm{X(w)}
IX(—0)|£X(-w) = [X(w)]|£ = X(w) (25.3)

2.5 Properties of the Continuous-Time Fourier Transform 87

This implies that the magnitude/phase of the CTFT of a real-valued function is an
even/odd function of frequency w. Thus, when obtaining the Fourier transform of a
real-valued time function, we need to compute it only for « > 0 since we can use
the conjugate symmetry to generate the values for @ < 0 from those for o > 0.
In other words, for a real-valued time function, its magnitude and phase spectra are
symmetrical about the vertical axis and the origin, respectively.

For an even and real-valued function xg(t) such that xe(—t) = Xe(t), its Fourier
transform is also an even and real-valued function in frequency w:

Xo(—w) @29 / Xe(t) €71 gt = / Xe(—7) € 17 dr
- —00

w=—w o0

. (2.5.4a)
Xe(—1)=Xe(1) / Xo(7) & ot gy (2212) Xo(e)

even o0

Also for an odd and real-valued function Xx,(t) such that xo(—t) = —Xo(t), its
Fourier transform is an odd and imaginary-valued function in frequency w:
oo . _ [e.¢] .
Xo(—w) 27 / Xo(t) € I dt = f Xo(—7) €717 dr
e / xo(7) €717 dr “Z? _X,(0) (2.5.4b)
odd o

Note that any real-valued function x(t) can be expressed as the sum of an even
function and an odd one:

X(t) = Xe(t) + Xo(t)

where
Kl) = SO+ X)) and X)) = 56O~ X(~1)

Thus we can get the relations

X(w) = F{Xe(t)} + F{Xo(t)} = Xe(w) + Xo(w)
Re{X(w)} 4+ jIm{X(w)} = Xe(w) + Xo(w)

which implies
even and real-valued Xe(t) Z Re{ X(w)} even and real-valued (2.5.5a)
odd and real-valued X, (t) Z jIm{ X()} odd and imaginary-valued (2.5.5b)

88 2 Continuous-Time Fourier Analysis
2.5.3 Time/Frequency Shifting (Real/Complex Translation)

For a shifted time function x;(t) = x(t — t;), we have its Fourier transform

.7:{)(('[— tl)} ¢z 1a)/ X(t —t) e jot d'[t t— t/ X(t) e—jw(t+t1)dt

[e.¢]

C2 rix@)y e io b x(t —) & X(w) eion (2.5.6)

This implies that real translation (time shifting) of x(t) by t; along the t -axis will
affect the Fourier transform on its phase by —wt;, but not on its magnitude. This is
similar to Eq. (2.1.11), which is the time shifting property of CTFS.

In duality with the time shifting property (2.5.6), the complex translation (fre-
quency shifting) property holds

x(t) et L X(w— 1) (2.5.7)
2.5.4 Duality

As exhibited by some examples and properties, there exists a definite symme-
try between Fourier transform pairs, stemming from a general property of duality
between time and frequency. It can be proved by considering the following integral
expression

f(u) = /_ h g(v) e vy =" /_ h g(—v) el"dv (2.5.8)

This, with (@, t) or (£t, Fw) for (u, v), yields the Fourier transform or inverse
transform relation, respectively:

(2.2.1a)

f(w) = [h g(t) e e tdt Flg®): git) L f(w) (2.5.9a)

fE1) = / oFw) € do =" 20 F Hg(Fw)) : f(21) D 2n g(F)
(2.5.9b)
It is implied that, if one Fourier transform relation holds, the substitution of (+t, Fw)

for (w, t) yields the other one, which is also valid. This property of duality can be
used to recall or show Fourier series relations. We have the following examples:

Ex0) o) =x(0) 5)= X(@)
@ — f(t) = —X(t) J(w) = x(w)

(2.5.9b)

2.5 Properties of the Continuous-Time Fourier Transform 89

x(t)
1- ¥
>
0 t ' ?
(a1)
B x L X ()
1 T 2n
2—nX (t) B / _
_n 4 >
B | B ¢ w
NS 0o VS B 0 B
(a2) (b2)

Fig. 2.15 Dual relationship between the Fourier transform pairs

(Ex 1) x(t)—AS(t)(;—z X(@) 280

o X(t) = A(Z(S];gb) 27 X(—w) = 21 AS(—w) (See Example 2.7.)

(Ex2) x)= 1+ rt=p g
0 for|t| > D (25.93)

D
X(a)) 2D sinc (w) (See Example 2.9 and Fig.2.15)
T

1 B Bt F 1 for|jw|<B
— X(t _—smc < X(—w) =
@210 ()(25%) (=) {0 for |w| > B

(E2.6.1)&(2.5.6)

(Ex3) x(t) = AS(t — t,) <—>9)X() L0 A

e*thl

& X(—t) = Aelert (2<5§ 27 x(w) = 27 AS(w — w1) (See Eq.(2.3.2))

2.5.5 Real Convolution

For the (linear) convolution of two functions x(t) and g(t)

Y(t) = x(t) % g(t) = / X(1)g(t — 7) dr = f g(O)x(t — 1) dr = gt) * x().
- - (2.5.10)

90 2 Continuous-Time Fourier Analysis

we can get its Fourier transform as

Y(w) = Flyt) “=? f N { /_ " x@gtt - 1) dt} e lotdt

(2.5.10)

= /oo x(r)eler { /OO g(t — r)e” 1o =7 dt}dr
22‘2{; /_ (D)1 G(w) dt = G(w) f_ Y X @eiordr P29 Gw)X()
y(t) = x(t) % g(t) & Y (0) = X(w) G(w) (2.5.11)

where Y(w) = F{y@)}, X(w) = F{x@®)}, and G(w) = F{g(t)}. This is the
frequency-domain input-output relationship of a linear time-invariant (LTI) system
with the input x(t), the output y(t), and the impulse response g(t) where G(w) is
called the frequency response of the system.

On the other hand, if two functions Xp(t) and §p(t) are periodic with com-
mon period P, their linear convolution does not converge so that we need another
definition of convolution, which is the periodic or circular convolution with the
integration performed over one period:

yr(t) = Xp (1) % Gp(t) = /P Xp(7)8p(t — 7) dr
= /P Op(t)Xp(t —) dr = Gp(t) % Xp(t) (2.5.12)

where % denotes the circular convolution with period P. Like the Fourier transform

of a linear convolution, the Fourier series coefficient of the periodic (circular) con-
volution turns out to be the multiplication of the Fourier series coefficients of two
periodic functions Xp(t) and gp(t) (see Problem 2.8(a)):

Fourier series

ye(t) =Xe()% () < Yi= X« Gk (2.5.13)

where Yy, Xk, and G are the Fourier coefficients of ¥p(t), Xp(t), and gp(t),
respectively.

2.5.6 Complex Convolution (Modulation/Windowing)

In duality with the convolution property (2.5.11) that convolution in the time
domain corresponds to multiplication in the frequency domain, we may expect the

2.5 Properties of the Continuous-Time Fourier Transform 91

modulation property that multiplication in the time domain corresponds to convolu-
tion in the frequency domain:

1
y(t) = x(OmM(t) & Y(w) = 5 X(@) * M() (2.5.14)
T
where Y (o) = F{y(t)}, X(w) = F{x(t)}, and M(w) = F{m(t)}.
On the other hand, if two functions Xp(t) and mp(t) are periodic with common
period P, then their multiplication is also periodic and its Fourier series coefficient
can be obtained from the convolution sum (see Problem 2.8(b)):

~ ~ . Fourier series 1 00
Ye(t) =Xe()Mp(t) < Yi= B Zn:_m Xn My_n (2.5.15)

where Yk, Xk, and My are the Fourier coefficients of §p(t), Xp(t), and mp(t),
respectively.

Example 2.12 Sinusoidal Amplitude Modulation and Demodulation

(a) Sinusoidal Amplitude Modulation
Consider a sinusoidal amplitude-modulated (AM) signal

Xm(t) = x(t)M(t) = x(t) cos(wct) (E2.12.1)

Noting that the Fourier transform of the carrier signal m(t) = cos(wc t) is

M(w) = F{m(t)} = Ficos(@et)} =2 7 (8(e + we) + 8(w — wd))
(E2.12.2)
we can use the modulation property (2.5.14) to get the Fourier transform of the
AM signal as

Xin(@) = FXm(t)} = Fx(t) cos g t} “Z %X(w) « M()

€222 1 o) s (50 + w0 + 5 — w0))
2
CED (X0 4 00) + X(o — o) (E2123)

This implies that the spectrum of the AM signal x(t) cos(wct) consists of the
sum of two shifted and scaled versions of X(w) = F{x(t)}. Note that this result
can also be obtained by applying the frequency shifting property (2.5.7) to the
following expression:

Xn(t) = X(t) cos(wet) %2 %(x(t)ejwct +x(t) e ety (E2.12.4)

92 2 Continuous-Time Fourier Analysis

(b) Sinusoidal Amplitude Demodulation
In an AM communication system, the receiver demodulates the modulated
signal xm(t) by multiplying the carrier signal as is done at the transmitter:

Xa(t) = 2Xm(t) cos(wet) (E2.12.5)

We can use the modulation property (2.5.14) together with Egs. (E2.12.3)
and (E2.12.2) to express the Fourier transform of the demodulated signal in
terms of the signal spectrum X(w) as

(2514 1

Xg(w) = F{Xg(t)} = F{Xm(t)2 cos we t) 5 Xm(®) %2 M(w)

(E2.122) 11
(E2.12.3) EE(X(‘” + wc) + X(w —) * 27 (8(w + wc) + 8(w — wc))

4= —(X(w + 2w¢) + X(@) + X() + X(w — 2wc))

= EX(a) + 2w¢) + X(w) + zX(a) — 2wc) (E2.12.6)

Example 2.13 Ideal (Impulse or Instant) Sampler and Finite Pulsewidth Sampler

(a) Ideal Sampling
We can describe the output of the ideal (or impulse or instant) sampler to a
given input x(t) as

X« (t) = x(t) 87 (t) <8T(t) = Zm:_oo 8(t —mT) : the impulse tram)
(E2.13.1)
This is illustrated in Fig. 2.16(al). Here, the switching function has been mod-
eled as an impulse train with period T and its Fourier transform is given by
Eq. (E2.10.3) as

(E2.103) 2w

Dr(w) T 2

2
5(+ Kavs) With wg = ?” (E2.13.2)
which is shown in Fig. 2.16(c1). We can use the modulation property (2.5.14)
together with Eq. (E2.13.2) to express the Fourier transform of the ideal sampler
output in terms of the input spectrum X(w) as

25]1] 52132 l) 2
1. 1 E2.13.3
@ _—1 22) — X(a)—i— ka)s) (B)

which is depicted in Fig. 2.16(d1).

2.5 Properties of the Continuous-Time Fourier Transform 93

AT =X0 50

~Xs (t) = x (t) Fp/7(t)

0 T 2T 3T 4T 5T 0DT 2T 3T 4T 5T
(al) Output of an ideal (impulse) sampler (a2) Output of a finite pulsewidth sampler
“A

w
—Wy Wy

(b) The spectrum of a signal

R
Dr (W) /9’1(?)
// \\
/1 I\
, N
/ N
w S BN P S w
_8r 6 _4r 2r 0 27 4z 67 8r _8r _6r _4r 27 0 27 4z 67 8rm
T T T 7T T T T 7T T T T T T T T 7
(c1) The spectrum of the impulse train é1(t) (c2) The spectrum of the rectangular wave rp,(t)
X (@) = 2 X () * Dy () Xe @) = 5= X(@)*Rpyr (o)
/\/\/\/\A\/\/\/\/\ /’\\//\ﬂ\/\\/'\\\
w el N ey o
"r 7'r 'r 7' 7'r 7'r Q 8_7 7T 7r "T 7T "r 7r T T

T T
(dl) Output spectrum of the |dea| sampler (d2) Output spectrum of the flnlte pulsewidth sampler

Fig. 2.16 Ideal sampler and finite pulsewidth sampler

(b) Finite Pulsewidth Sampling
We can describe the output of a finite pulsewidth sampler with period T to a
given input x(t) as

Xs(t) = x(t) Fo, (1) (E2.13.4)

(Fp,(t) : arectangular wave with duration D and period T)

This is illustrated in Fig. 2.16(a2). Here, the switching function has been mod-
eled as a rectangular wave, f'p,p(t), with duration D and period T. Noting that
from Eq. (E2.1.3), the Fourier series representation of this rectangular wave is

E2.13) 1

rD/P()A 1,P= T

. D . . 2
* D sinc [k=) e/k*st with ws = il
ke—oo T T

(E2.13.5)

94 2 Continuous-Time Fourier Analysis
we can use Eq. (2.3.3) to write its Fourier transform as

(232) 2w

D
Rp,/p(w) o T 2o Ck §(w — kws) with ¢x = Dsmc(k_l_>

(E2.13.6)

which is shown in Fig. 2.16(c2). Now we can apply the modulation property
(2.5.14) together with Eq. (E2.13.6) to express the Fourier transform of the
finite pulsewidth sampler output in terms of the input spectrum X(w) as

|Im

1 (E2136) 1 00
Xs(@) © z_x“") * Ro/p() T e X@) % a8 — ko)

=
= Z & X (@ — k) (E2.13.7)

|I"

which is depicted in Fig. 2.16(d2).

2.5.7 Time Differential/Integration — Frequency
Multiplication/Division

By differentiating both sides of the inverse Fourier transform formula (2.2.1b) w.r.t.
t, we obtain

dx(t) @2a) 1 [d 1 /oo _ y
dt 2n /_mx(w)(dte do = - _w(lwx(w))e do (2.5.16)

which yields the time-differentiation property of the Fourier transform as

dx(t) r
—_— >
dt

This means that differentiation in the time domain results in multiplication by jw in
the frequency domain.

On the other hand, the time-integration property is obtained by expressing
the integration of x(t) in the form of the convolution of x(t) and the unit step
function us(t) and then applying the convolution property (2.5.11) together with
Eq. (E2.8.6) as

joX(w) (2.5.17)

ft x(r)dr = /00 X(t) us(t — 7) dr = x(t) = us(t)

o0 o0

F{x()}F{us(t)}

5.11)

E289) 1 X (@)8(0) + —X(w) = 7 X(0)5(®) + —X(w)
jo jo

(2.5.18)

2.5 Properties of the Continuous-Time Fourier Transform 95

where the additional impulse term 7 X(0)8(w) on the RHS reflects the DC value
resulting from the integration. This equation is slightly above our intuition that
integration/differentiation in the time domain results in division/multiplication by
jw in the frequency domain.

The differentiation/integration properties (2.5.17)/(2.5.18) imply that differenti-
ating/integrating a signal increases the high/low frequency components, respectively
because the magnitude spectrum is multiplied by |jw| = » (proportional to fre-
quency w) or |1/jw| = 1/w (inversely proportional to frequency w). That is why a
differentiating filter on the image frame is used to highlight the edge at which the
brightness changes rapidly, while an integrating filter is used to remove impulse-like
noises. Note also that a differentiator type filter tends to amplify high-frequency
noise components and an integrator type filter would blur the image.

2.5.8 Frequency Differentiation — Time Multiplication

By differentiating both sides of the Fourier transform formula (2.2.1a) w.r.t. o, we
obtain
dX(w) 2:2.10)
dw

/_Z x(t) (%eiwt>dt =—j /_Z x(t)e dt (25.19)

which yields the frequency-differentiation property of the Fourier transform as

dX(w
txt) & j dc(o)

(2.5.20)

This means that multiplication by t in the time domain results in differentiation w.r.t.
 and multiplication by j in the frequency domain.

2.5.9 Time and Frequency Scaling

The Fourier transform of x(at) scaled along the time axis can be obtained as

F{x(at)} = /OO x(at) e 1'dt

—00

L [T et P29 Zx ()
lal J-oo la| ‘\a

which yields the time and frequency scaling property of Fourier transform:

x(at) & % X (g) (2.5.21)

This is another example of the dual (inverse) relationship between time and fre-
quency. A common illustration of this property is the effect on frequency contents of

96 2 Continuous-Time Fourier Analysis
playing back an audio tape at different speeds. If the playback speed is higher/slower
than the recording speed, corresponding to compression(a>1)/expansion(a<1) in
time, then the playback sounds get higher/lower, corresponding to expansion/
compression in frequency.

2.5.10 Parseval’s Relation (Rayleigh Theorem)

If x(t) has finite energy and F{x(t)} = X(w), then we have

[e9) 5 _i 00)
[w|x(t)| dt = o~ [M|X(w)| dw (2.5.22)

(Proof)
/ |x(t)|2dt=/ X(t)x*(t) dt

[ee]

210) [1 [.
(2.2.10) / X(t) {— f X*(w)e 1t dw}dt
oo 21 J_o

% /_Z X* (o) {f_: x(t) eJet dt} dw

1 *© 1 o
@2 2 7 X ()X (0) do = — / IX()l? dov
27 J_o 27 J_o

This implies that the total energy in the signal x(t) can be determined either by
integrating |x(t)|? over all time or by integrating | X(w)|?/2m over all frequencies.
For this reason, | X(w)|? is called the energy-density spectrum of the signal x(t).

On the other hand, if Xp(t) is periodic with period P and its Fourier series
coefficients are Xi’s, then we have an analogous relation

o 1 o
[meora= g (2523)

where | Xi|?/ P is called the power-density spectrum of the periodic signal Xp(t).
2.6 Polar Representation and Graphical Plot of CTFT

Noting that a signal x(t) can be completely recovered from its Fourier trans-
form X(w) via the inverse Fourier transform formula (2.3.1b), we may say that
X(w) contains all the information in x(t). In this section we consider the polar

or magnitude-phase representation of X(w) to gain more insight to the (generally
complex-valued) Fourier transform. We can write it as

X(w) = [X(0)| £X(w)

2.6 Polar Representation and Graphical Plot of CTFT 97

\ L\ AN
VAN VALV VALV VARV VAR
(@) ¢1=d2=p3=0[rad]

\VARVRR VARVA AV ALVARE VAR VS

(b) ¢, =3 [rad], ¢, =6 [rad], and ¢3=9 [rad]

AW NAN WA A
voouwoov o\

(c) ¢ =3 [rad], ¢,=2 [rad], and ¢3=1 [rad]

Fig. 2.17 Plots of x(t) = 0.5cos(2rt — ¢1) + cos(dnt — ¢,) + (2/3) cos(6rrt — ¢3) with different
phases

where | X(w)| and ZX(w) give us the information about the magnitudes and phases
of the complex exponentials making up x(t). Notice that if x(t) is real, | X(w)| is an
even function of w and /X(w) is an odd function of w and thus we need to plot the
spectrum for w > 0 only (see Sect. 2.5.2).

The signals having the same magnitude spectrum may look very different depend-
ing on their phase spectra, which is illustrated in Fig. 2.17. Therefore, in some
instances phase distortion may be serious.

2.6.1 Linear Phase

There is a particular type of phase characteristic, called linear phase, that the phase
shift at frequency w is a linear function of w. Specifically, the Fourier transform of
X(t) changed in the phase by —aw, by the time shifting property (2.5.6), simply
results in a time-shifted version x(t — «):

X1(0) = X(@)Z — aw = X(@)e 1% L x(t) = x(t — a) (2.6.1)
For example, Fig. 2.17(b) illustrates how the linear phase shift affects the shape

of x(t).

2.6.2 Bode Plot

To show a Fourier transform X(w), we often use a graphical representation consist-
ing of the plots of the magnitude | X ()| and phase £ X(w) as functions of frequency
w. Although this is useful and will be used extensively in this book, we introduce

98 2 Continuous-Time Fourier Analysis

another representation called the Bode plot, which is composed of two graphs,
i.e., magnitude curve of log-magnitude 20 log,, | X(w)| [dB] and the phase curve
of ZX(w) [degree] plotted against the log frequency log,, @. Such a representation
using the logarithm facilitates the graphical manipulations performed in analyzing
LTI systems since the product and division factors in X(w) become additions and
subtractions, respectively. For example, let us consider a physical system whose
system or transfer function is

K1+ T18)(1 + T29)

GO = T T9ut 2cTost (o9

(2.6.2)

As explained in Sect. 1.2.6, its frequency response, that is the Fourier transform of
the impulse response, is obtained by substituting s = jw into G(S):

KA+ joT)A+ jo Ty)

G(]w) = G(S)|s=jw = ja)(l + jw Ta)(l +]0)2§Tb — (wa)z)

(2.6.3)

The magnitude of G(jw) in decibels is obtained by taking the logarithm on the base
10 and then multiplying by 20 as follows:

IG(jw)| = 20109, |G(jw)I[dB]
= 2010g,o |K|+ 2010944 |1+ jow T1| + 20100 |1 + jo To|
—201l0gyg |jow| — 2010914 |1 + jo Tal
— 201090 |1 + jw2e Ty — (0Tp)?| (2.6.4a)

The phase of G(jw) can be written as

/G@)=/K+ 0+ joT)+ZQl+joT)—Zjio—Z(1+ jo T,)
—Z(1+ jw2r Ty — (0Tp)?) (2.6.4b)
The convenience of analyzing the effect of each factor on the frequency response
explains why Bode plots are widely used in the analysis and design of linear time-

invariant (LTI) systems.
(cf.) The MATLAB function “bode(n, d, . .) ” can be used to plot Bode plots.

2.7 Summary

In this chapter we have studied the CTFS (continuous-time Fourier series) and
CTFT (continuous-time Fourier transform) as tools for analyzing the frequency

Problems 99

characteristic of continuous-time signals and systems. One of the primary motiva-
tions for the use of Fourier analysis is the fact that we can use the Fourier series or
transform to represent most signals in terms of complex exponential signals which
are eigenfunctions of LTI systems (see Problem 2.14). The Fourier transform pos-
sesses a wide variety of important properties. For example, the convolution property
allows us to describe an LTI system in terms of its frequency response and the modu-
lation property provides the basis for the frequency-domain analysis of modulation,
sampling, and windowing techniques.

Problems

2.1 Fourier Series Analysis and Synthesis of Several Periodic Functions

6_
T_‘ Sﬂ_\ Ax,,m 1 A A
t \ .
4 -3 -2 -1 1 2 3 4 t
s —}x\/é —4\/2 0 > 4\/6 8
1-6 |_ —14

(a) A stair wave (b) A triangular wave
/.\ Xn(t) AL /\ X (t)]\/\m
\ X T 2 / t = 12 012 2 !
(c) A half-rectified sinusoidal wave (d) A full-rectified sinusoidal wave
Fig. P2.1

(a) Noting that the stair wave in Fig. P2.1(a) can be regarded as the sum
of three scaled/time-shifted rectangular (square) waves with common
period 6[s] and different durations

Xa(t) = 6F3/6(t — 1.5) — 3 + 3Fy 6t — 1.5) — 3Fy6(t — 4.5), (P2.1.1)

use Eq. (E2.1.3) together with (2.1.9) to find its complex exponential
Fourier series coefficients. Then complete the following MATLAB pro-
gram “cir02p_01a.m” and run it to plot the Fourier series representation
(2.1.7) to see if it becomes close to X(t) as the number of terms in
the summation increases, say, from 5 to 20. Also, compare the Fourier
coefficients with those obtained by using “CtFS_exponential()”.

100

2 Continuous-Time Fourier Analysis

%ir02p.0la. m

clear, clf

P= 6; wW0= 2+pi/P; % Period, Fundamental frequency

tt=[-400: 400] xP/ 400; %tine interval of 4 periods

x = 'xa; N=20; k= -N:N, % the range of frequency indices

c= 6x3*sinc(k*3/P).*xexp(-j*1.5«k*w0)+3*sinc(k/P).+exp(-j*1.5+k*w0) ...
- 22272727°77227222222222222°2222°7;

c(N+1) = c(N+1) - ?2?7;

% [c.n, k] = CtFSexponential (x,P,N);

xt = feval (x,tt); %original signal

jkwot= j«k.' *wO*tt; xht = real ((c/P)*xexp(jkwot)); %Eq. (2.1.5a)

subpl ot (221), plot(tt,xt, k-", tt,xht,’ r:")

c.nag = abs(c); c_phase = angle(c);

subpl ot (222), stem(k, c-mag)

function y=x_a(t)

P=6; t= nod(t,P);

y= 3% (0<=t & <1) +6+(1<=t&t <2) +3%(2<=t&t<3) ...
-3%(3<=t & <4) -6%(4<=t & <5) - 3*(5<=t &t <6);

(b)

(©

Use Egs. (E.2.1.6) together with (2.1.9) to find the complex exponential
Fourier series coefficients for the triangular wave in Fig. P2.1(b). Then
compose a MATLAB program, say, “cir02p01lb.m” to plot the Fourier
series representation (2.1.7) and run it to see if the Fourier series repre-
sentation becomes close to X,(t) as the number of terms in the summation
increases, say, from 3 to 6. Also, compare the Fourier coefficients with
those obtained by using “CtFS_exponential()”.

Consider a half-wave rectified cosine wave xp(t) = max(cos wpt, 0),
which is depicted in Fig. P2.1(c). We can use Eqg. (2.1.5b) to obtain the
Fourier coefficients as

P/4)
C = f cos wote™ Ikentdt

P/4
1 (P4 . . . 2
= —f (el 4 eTlontyeikont Gt with wp = — =
2) pya P
172
k¢1§r—11 (- 1 Dt | j(k+1)wot> /
2 \—j(k—=1wo —j(k+ 1w —1/2
1 b4 1 b4
=——sin(k—1)—=+-——sink+1)—
k=D k=15 + gy Sink+ 17
k=2m(even) ml 1 1 (—1)m+12
=1 n<k+1 k—1 (k2 — 1) ()
_1or—1 P4 .)
—P/4
1 (P4 , P 1
—2 / P/4 (14 ettt = 472 (P213)

Problems 101

Thus compose a MATLAB program, say, “cir02p0lc.m” to plot the
Fourier series representation (2.1.7) and run it to see if the Fourier series
representation becomes close to xu(t) as the number of terms in the sum-
mation increases, say, from 3 to 6. Also, compare the Fourier coefficients
with those obtained by using “CtFS_exponential()”.

(d) Consider a full-wave rectified cosine wave X¢(t) = |coswpt|, which
is depicted in Fig. P2.1(d). Noting that it can be regarded as the sum
of a half-wave rectified cosine wave x(t) and its P/2-shifted version
Xh(t — P/2), compose a MATLAB program, say, “cir02p01d.m” to plot
the Fourier series representation (2.1.7) and run it to see if the Fourier
series representation becomes close to X¢(t) as the number of terms in
the summation increases, say, from 3 to 6. Also, compare the Fourier
coefficients with those obtained by using “CtFS_exponential ()”.

(cf)) In fact, the fundamental frequency of a full-wave rectified cosine wave
is 2wp = 47/ P, which is two times that of the original cosine wave.

2.2 Fourier Analysis of RC Circuit Excited by a Square Wave Voltage Source
Figure P2.2(a) shows the PSpice schematic of an RC circuit excited by a rect-
angular (square) wave voltage source of height -V, = +, period P = 2[s],
and duration (pulsewidth) D = 1[s], where the voltage across the capacitor
is taken as the output. Figure P2.2(b) shows the input and output waveforms
obtained from the PSpice simulation. Figure P2.2(c) shows the Fourier spectra
of the input and output obtained by clicking the FFT button on the toolbar
in the PSpice A/D (Probe) window. Figure P2.2(d) shows how to fill in the
Simulation Settings dialog box to get the Fourier analysis results (for chosen
variables) printed in the output file. Figure P2.2(e) shows the output file that
can be viewed by clicking View/Output_File on the top menu bar and pulldown
menu in the Probe window.

(a) Let us find the three leading frequency components of the input v; (t) and
output vo(t). To this end, we first write the Fourier series representation of
the rectangular wave input v (t) by using Eq. (E2.1.3) as follows:

© sin(kz /2)

u(t) = 27 Fupt —0.5) — 7 C=2)" coskr (t — 0.5)

k=1 kr/2
o 4 . 4 4 .
= Zk:odd L sin krt = 4sinmt + 3 sin 37t + Zsin St +---
(P2.2.1)
Since the RC circuit has the system (transfer) function and frequency
response
1/sC 1
) R+1/sC 14sRC
G(jw) ! ! /—tantwRC, (P2.2.2)
w) = - = — w s 2.
1+joRC /14 (wRC)?

102

2 Continuous-Time Fourier Analysis

R 1k

V1= -3.14159 v MW) v
V2= 3.14159 VPULSE

TD=0 (Delay Time)
TR=0 (Rise Time) vi (t)

TF=0 (Falling Time) 0.3
PW =1 (Pulse Width/Duration)
PER = 2(PERiod) L

+
= vo(t)

310

(a) PSpice schematic for the RC circuit excited by a square-wave source

4.0v

Vi ' . ' ' ' ' ' '
Va
2 VA / / /.
O 7/ W /0 O A W V |
TN A N O Y L O A
AN 5 - - AN
-4.0V -
TV(C:2) o V(VPULSE:4) °° Time 10s
(b) The input and output voltage waveforms
5.0V
Al = 500.000m 4.0002
A2 =500.000m, ___2.9111
Al= 1.5000 1.3334
L
o e —TA2= " 1.5000, _A44.678m
2.5V - =IAT= 25000, 800.015m
P .~ | |a2= 255000_~166.148m
// /4‘/
I » —
o S R NN

0 0.5Hz 1.5Hz 2.5Hz 5Hz Frequency 10Hz
0 V(C:2) o V(VPULSE: +)

(c) The FFT spectra of the input and output voltages

Simulation Settings - lran
General | Analysis [Configuration Files | Options | Data Collection | Probe Window |

Analysis type:
: - . ime t : 0]sec
Tirme Domain (Transisnt) [:l Time fo run _ secands
7) Start saving data after: [| seconds

Transient options

Maxirurn step T seconds

O Skip the initial transient bias point calculstion (SKIPBP)

ep e Output File Options., .,

ITemperature .iS r . .
; M Transient Output File Options
[(J5ave Bias Point = p p

[Load Bias Point | Print values in the output file "] seconds 0K

DC Sweep
AC Sweep/Noise
Bias Point

ysis) Cancel

& Perform Fourier Anal

; BT |
Center Frequency™™ [0 |hz fundamental frequency

Nurnber of Harmonics Jy=wolln

Qutput Variables (VPULSE:+) V(L 2y

O Include detailed bias point information for nonlinear
controlled sources and semiconductors (JOP)

(d) Simulation Settings window and Transient Output File Options dialog box

Fig. P2.2 (continued)

Problems 103

** Profile: "SCHEMATIC1l-tran™ [C:\ORCAD\sigD2pO2-pspicefiles\tran,sim]
*hnalysis directives:

.TRAN 0 10 0 1m

LFOUR 0.5 5 V{[NOD183]) V{[NOOO70])

TREN FOURIER ANALYSIS TEHFERATURE = 27.000 DEG C
FOURIER COMPCOMNENTS OF TRANSIENT RESPONSE V(NOO183)
DC COMPONENT = 3.140322E—D3(d6)
HARHONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO(k) (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

.000E-01(f;) 4.000E+00(d1) 1.000E+00 -1.800E-01($)) 0.000E+00
.O0DE+00(25) 6.281E-03(d2) 1.570E-03 8.964E+01(%2) 9.000E+01
.SODE+00(3f) 1.333E+00(d3) 2.333E-01 -5.401E-01(¢3) -7.176E-10
LO00E+00(4 f3) 6.281E-03(d3) 1.570E-03 8.928E+01(#3) 9.000E+01
.5ODE+D0(5;) 8.000E-01(ds) 2.D00E-01 -9.002E-01(f5) -3.588E-09

TOTAL HARMONIC DISTORTION = 3.887326E4+01 PERCENT

B W
. |

FOURIER COMPONENTS OF TRANSIENT RESPONSE WV ({NOOO70)

DC COMPONENT = 3.141583E-03(dp)
HARMCMIC FREQUENCY FOURIER NORMALIZED PHASE MORMALIZED
no(k) (HZ) COMPONENT COMPONENT {DEG) PHASE (DEG)
1 5.000E-01(f) 2.911E+00{di) 1.000E+00 -4.348E+01($j) 0.000E+00
2 1.000E+00(2f;) 2.945E-03(d?) 1.012E-03 2.758E+01(fz) 1.146E+02
3 1.500E+00(3f;) 4.446E-01(d3) 1.527E-01 -7.106E+01(f3) 5.939E+01
4 z.000E+00(4.f) 1.611E-03(d3) 5.534E-04 1.414E+01(3) 1.881E+02
5 z.500E+00(55) 1.661E-01(ds) 5.705E-02 -7.892E+01(fs) 1.385E+02

TOTAL HARMONIC DISTORTION = 1.630388E+01 PERCENT

JOB CONCLUDED

(e) The PSpice output file with FFT analysis

Fig. P2.2 PSpice simulation and analysis for Problem 2.2
its output to the input v; (t) (described by Eq. (P2.2.1)) can be written as

sin (k wot — tan™! kawy RC)

00 4
) = D ot g (kaoRC)?

with wg = %ﬂ =7 (P2.2.3)
Show that the three leading frequency components of the output pha-
sor are
ORS (1) 4 -1
Vy! = G(jwo)V;’ = ————=2 —tan" " o»yRC
1+ (woRC)?
- 4
RC=03 /—tan"t0.37 =291/ —433° (P2.2.4)
1+ (0.37)2
_ 4
VO'E G(j8wV® = ————— / —tan~! 3woRC
31+ (BwyRC)?
RC=0.3 4

Z/ —tan~10.97 = 0.4446/ — 70.5° (P2.2.5)

31+ (0.97)

104

(b)

2 Continuous-Time Fourier Analysis

4
S —
51+ (5w0RC)?

—tan"11.57 = 0.166/ — 78° (P2.2.6)

Ve k=5 G(j5wp)V® = —tan"1 5wy RC

RC=0.3 4

5/1+ (1.571')24

where the phases are taken with that of sin wt as a reference in the sine-

and-phase form of Fourier series representation in order to match this

Fourier analysis result with that seen in the PSpice simulation output file

(Fig. P2.2(e)).

(cf.) Note that PSpice uses the sine-and-phase form of Fourier series
representation for spectrum analysis as below:

x(t) = d} + Z‘k’; d sin(kaot + ¢}) (P2.2.7a)

where the Fourier coefficients are

dy=ao=do, =,/ +bi=0ck, ¢ ="tan"(a/b) =k +7/2

(P2.2.7b)
The magnitude ratios among the leading three frequency components of
the input and output are

input : |Vi(l)| : |Vi(3)| : |Vi(5)| =4 =15:5:3

w|4>
(.»JIU'I

output : V|1 V)| 1 VO =2.91:0.4446 : 0.166 = 15: 2.3 : 0.86

This implies that the relative magnitudes of high frequency components
to low ones become smaller after the input signal passes through the filter.
This is a piece of evidence that the RC circuit with the capacitor voltage
taken as the output functions as a lowpass filter.

Find the Fourier analysis results on Vs and V®’s fork = 0 : 5
(and compare them with those obtained from PSplce simulation in (a)) by
completing and running the following MATLAB program “sig02p_02.m”,
which uses the MATLAB function “Fourier_analysis()” declared as

function [yt,Y, X] = Fourier_anal ysis(n,d,x, P,N)

This function takes the numerator (n) and denominator (d) of the transfer
function G(s), the (periodic) input function (x) defined for at least one
period [—P/2, +P/2], the period (P), and the order (N) of Fourier analysis
as the input arguments and produces the output (yt) for one period and the
sine-and-phase form of Fourier coefficients Y and X of the output and
input (fork =0, ..., N).

Problems

105

%i g02p.02. m: to solve Problem2.2

% Perform Fourier analysis to solve the RC circuit excited by a square wave
clear, clf

global P D Vm

P=2; w0=2xpi/P; D=1; Vn¥pi; % Period, Frequency, Duration, Anplitude

N=5; kk=0:N, % Frequency indices to anal yze using Fourier analysis
tt=[-300:300] P/ 200; % Tine interval of 3 periods

vi="f_sig02p02’'; % Bi pol ar square wave input function defined in an Mfile
RC=0. 3; % The paraneter values of the RC circuit

n=1; d=[?? 1]; % Numerator/Denoni nator of transfer function (P2.2.2)

% Fourier analysis of the input & output spectra of a system[n/d]

% Magni t ude_and_phase_of _i nput _out put _spectrum
di sp(’ frequency Xnmgnitude Xphase Y.nagnitude Y_phase’)
[kk; abs(Vi); angle(Vi)*180/pi; abs(Vo); angle(Vo)*180/pi].’
vit = feval (vi,tt); %the input signal for tt
vot= Vo(1); % DC conponent of the output signal
for k=1:N % Fourier series representation of the output signal
% PSpi ce dial ect of Eq.(2.1.4a)
vot = vot + abs(Vo(k+1))=*sin(k+wOxtt + angle(Vo(k+1))); % Eq. (P2.2.7a)
end
subpl ot (221), plot(tt,vit, tt,vot,'r’) %plot input/output signal waveform
subpl ot (222), stem(kk,abs(Vi)) % input spectrum
hol d on, sten(kk, abs(Vo),’'r’) % output spectrum

function y=f_si g02p02(t)

% defines a bipolar square wave with period P, duration D, and anplitude Vm
global P D Vm

t=nmod(t,P); y= ((t<=D) - (t>D))*Vm

function [Y, X] = Fourier_analysis(n,d,x, P, N
% nput: n= Nunerator polynom al of systemfunction s)

% d= Denomi nator pol ynom al of system function Gs)

% x= I nput periodic function

% P= Period of the input function

% N= hi ghest frequency index of Fourier analysis

% utput: Y= Fourier coefficients [YO,Y1,Y2,...] of the output
% X= Fourier coefficients [X0, X1, X2,...] of the input

% Copyl eft: Won Y. Yang, wyyang53@annail.net, CAU for academic use only
if nargin<5, N=5; end

w0=2*pi / P; % Fundanental frequency

kk=0: N; % Frequency index vector

c= Gt FS.??2?2?2?22?2?22??(x, P, N); % conpl ex exponential Fourier coefficients
Xmag=[c(N+1) 2xabs(c(N+2:end))]/P; %d(k) for k=0:N by Eqg.(P2.2.7b)
Xph=[0 angl e(c(N+2:end))+pi/2]; %phi’ (k) for k=0:N by Eq.(P2.2.7b)

X= Xmag. *exp(j *Xph); % | nput spectrum

Gn= freqgs(n,d, kkxw0); % Frequency response

Y= X *Qn, % Qut put spectrum

2.3 CTFT (Continuous-Time Fourier Transform) of a Periodic Function

In

Eqg. (2.3.1), we gave up computing the Fourier transform of a periodic

function eikeot:

[e’e} oo .
Fix(t) “=? / elktgmlotdt — f et
—0Q0

; jo—kopyt | T _ ; (el(wfkwo)T _ eﬂ(w—ktx}O)T)‘

—j (@ — kay) T —j(w — kay) T=c0

(M)) (P23.)
—(w — k) T=00

106

2.4

2.5

2 Continuous-Time Fourier Analysis

Instead, we took a roundabout way of finding the inverse Fourier transform
of 27 §(w — Kay) in expectation of that it will be the solution and showed the
validity of the inverse relationship. Now, referring to Eq. (E2.6.2) or using
Eq. (1.1.33a), retry to finish the derivation of Eq. (2.3.2) from Eq. (P2.3.1).

Two-Dimensional Fourier Transform of a Plane Impulse Train
The two-dimensional (2-D) Fourier transform of a 2-D signal f(x, y) on the
x-y plane such as an image frame is defined as

F(u,v) = % {f(x,y)} =/ / f(x, y)e | @+ dx dy

_ /Oo </°O F(, y)e-J'Ude> e 1% dy (P2.4.1)

[ee] o]

where x and y are the spatial cordinates and u and v are the spatial angular
frequencies [rad/m] representing how abruptly or smoothly f(x, y) changes
w.r.t. the spatial shift along the x and y -axes, respectively.

(a) Show that the 2-D Fourier transform of f(x, y) = §(y — ax) is

foGy) =8y —ax) 2 F(Uv)=278U+av) (P24.2)

(b) Show that the 2-D Fourier transform of f(x,y) = > 02 _ 8(y — ax—
nd+/1 + «?2) (Fig. P2.4(a)) is

F(u,v) = / / Z:O:,oo 8(y — ax — ndy/1 + a?)e” 1+ dx dy

(D-=33) ZOO / OO e j(ux+v(ex+ndv1+a?)) dx
N=—00
—00

*° > —j (Utav)x —jundvIta?
= Z e JUrevX dxe™ 1Y «
n=—co J_

232 CondviTaZ
@32 Z:o 278(U + av)e i vndvite
=—00

with o=u+av, t=x, k=0

G19 278(u + ozv)zic>o 278(vdv/ 1+ a2 — 27 i)
=—00

with Q=vdv/1+a?,Q0=0

w134y (2m)? oo 2ria 27
o @ g .)
dv/1 4 g2 —i=—x dv1 + a? dv1+a?

_ (2n)? % 27 27i
= Zi?w s(u+ =5 sin 6, v — == cos 6) (P2.4.3)

as depicted in Fig. P2.4(b).
ICTFT (Inverse Continuous-Time Fourier Transform) of Ug(jw) = 1/jw

Using Eq. (E2.3.3), show that the ICTFT of Ug(jw) = 1/jw is the odd
component of the unit step function:

Problems 107

y ~ .
y-ax=0 ‘\U+041/=0
/ KX
d sec # = d+1+tan20

d 9 4 =dV1+a?

v

=

6
AS

el
c

X

Impulse train Y
) A
Impulse/t(raln Constant (DC) 3 . !srgggtlrsfm
R % signal AN
A A

(a) A 2-D (plane) impulse wave in the spatial domain (b) The 2-D Fourier transform depicted
in the spatial frequency domain

Fig. P2.4 An example of 2-D Fourier transform

1 *© 1 . 1
FHYUo(joo)} PEY = / e do = Zsign(t) = uo(t) (P25.1)

2 J_o jo

which agrees with Eq. (E2.8.5).
2.6 Applications and Derivations of Several Fourier Transform Properties

(a) Applying the frequency shifting property (2.5.7) of Fourier transform to
Eq. (E2.7.1), derive Eq. (2.3.2).

(b) Applying the duality relation (2.5.9) to the time shifting property (2.5.6)
of Fourier transform, derive the frequency shifting property (2.5.7).

(c) From the time-differentiation property (2.5.7) of Fourier tansform that
differentiation in the time domain corresponds to multiplication by jw
in the frequency domain, one might conjecture that integration in the
time domain corresponds to division by jw in the frequency domain.
But, Eq. (2.5.18) shows that the Fourier transform of [foo X(t)dt has an
additional impulse term reflecting the DC or average value of x(t). Can
you apply the time-differentiation property to Eq. (2.5.18) to derive the
original Fourier relation F{x(t)} = X(w)?

f‘ F 1
X(r)dt < 7 X(0)8(w) + j—wX(a)) (2.5.18)

—0Q

(d) Applying the duality relation (2.5.9) to the convolution property (2.5.11)
of Fourier transform, derive the modulation property (2.5.14).

(e) Apply the time-differentiation property to the time-integration property
(2.5.18) to derive the original Fourier relation F{x(1)} = X(w).

(f) Applying the time-differentiation property (2.5.7) to the time-domain
input-output relationship y(t) = dx(t)/dt of a differentiator, find the
frequency response of the differentiator.

(g) Applying the time-integration property (2.5.18) to the time-domain input-
output relationship y(t) = ffoo X(t)dz of an integrator, find the frequency

108

2.7

2.8

2.9

2 Continuous-Time Fourier Analysis

response of the integrator on the assumption that the input has zero
DC value.

(h) Find the time-domain and frequency-domain input-output relationships of
a system whose impulse response is g(t) = 8(t — to).

Fourier Transform of a Triangular Pulse

Applying the convolution property (2.5.11), find the Fourier transform of a
triangular pulse DAp(t) (Eq. (1.2.25a)) obtained from the convolution of two
rectangular pulses of height 1 and duration D.

Convolution/Modulation Properties of Fourier Series
Let Xp(t) and ¥p(t) be periodic functions with common period P that have the
following Fourier series representations, respectively:

1 , 1 .
Kp(t) = = Z:i_oo Xeekot and §p(t) = 5 Zii—oo Y, el kent

(P2.8.1)

(&) The periodic or circular convolution of two periodic functions is defined as

Zp(t) = %p(t) * Fp(t) “Z? / %p (z)Pp (t — 7)de
P
- /P I (1)%p (t — T)dT = To(t) * e () (P2.8.2)

The product of the two Fourier series coefficients Xy and Y is the Fourier
series coefficients of this convolution so that

~ 1 oo i ke 1 00 iKeo

7p(t) = 5 Zkz_m Zyelkeot =5 Zkz_m XiYyel kot (P2.8.3)
Applying the frequency shifting property (2.5.7) of Fourier transform to
Eq. (E2.7.1), derive Eq. (2.3.2).

(b) Show that the Fourier series coefficients of wp(t) = Xp(t)¥p(t) are

~ ~ ~ Fourier series 1 [e 9]
Dp() = XpOFp(O) 0 T Wk=5D XaYien (P284)
so that we have

Wp(t) = % > Welk (P2.8.5)
Overall Input-Output Relationship of Cascaded System
Consider the systems of Fig. P2.9 consisting of two subsystems connected in
cascade, i.e., in such a way that the output of the previous stage is applied to
the input of the next stage. Note that the overall output y(t) can be expressed
as the convolution of the input x(t) and the two subsystem’s impulse responses

Problems 109
gu(t) and go(t) as
y(t) = Gu(t) * Ga(t) * X(t) = Ga(t) * Ga(t) * X(t). (P2.9.1)

Find the overall input-output relationship in the frequency domain.

s
(© x(® 0
(b) x(t) y()

Fig. P2.9

2.10 Hilbert Transform and Analytic Signal

(a) Fourier Transform of Hilbert Transformed Signal
The Hilbert transform of a real-valued signal x(t) is defined as the convo-
lution of x(t) and 1/xt or equivalently, the output of a Hilbert transformer
(with the impulse response of h(t) = 1/xt) to the input x(t):

1
dr (P2.10.1)
— 7T

R(t) = h(t) * x(t) = % * X(t) = %/ X() -

- First, let us find the Fourier transform of h(t) = 1/xt by applying the
duality (2.5.9) to Eq. (E2.8.5), which states that

1 1
—5|gn(t) Z de“é'i‘y” L) (P2.10.2)

- We can multiply both sides by j/m to get the Fourier transform of
h(t) = 1/xt as
— &) (P2.10.3)

- Now, we apply the convolution property to get the Fourier transform of
X(t) as

. 1 F
X(t) = — = x(t) <
Tt convolution property

1
F (H) F(x@) =() X(w) (P2.10.4)

This implies that the Hilbert transform has the effect of shifting the
phase of positive/negative frequency components of x(t) by —90°/ + 90°,
allowing the Hilbert transform a —90° phase shifter.

110

(b)

(©

(d)

2 Continuous-Time Fourier Analysis

Inverse Hilbert Transform

Note that multiplying —H (w) by the Fourier transform of the Hilbert
transformed signal X(t) brings the spectrum back into that of the original
signal x(t):

— H(@)H () X() = —(=] sign(@))(—] sign(w)) X(@) = X(w)

(P2.10.5)
This implies the inverse Hilbert transform as
N 1 1
(=h(t)) = X(t) = (——) x — x X(f) = x(t) (P2.10.6)
mt mt

Analytic Signal
The analytic signal, or analytic representation, of a real-valued signal x(t)
is defined as

Xa(t) = x(t) + JX(t) (P2.10.7)

where X(t) is the Hilbert transform of x(t) and j is the imaginary unit.
Show that the Fourier transform of the analytic signal is

Xa(w) = F{x()} + JF{X(1)} = 2us(w) X () (P2.10.8)

where us(w) is the unit step function in frequency w. This implies that
Xa(t) has only nonnegative frequency component of x(t).

Examples of Hilbert Transform and Analytic Signal

Show that the following Hilbert transform relations hold:

cos(we t) 2 sin(we t) (P2.10.9)
sin(wet) & —cos(wet) (P2.10.10)

In general, it would be difficult to get the Hilbert transform of a signal x(t)
directly from its definition (P2.10.1) and therefore, you had better take the
inverse Fourier transform, X(w), of x(t), multiply —j sign(w), and then
take the inverse Fourier transform as

K(t) = FYH{—j sign(w)X(w)} (P2.10.11)
Now, let us consider a narrowband signal
s(t) = m(t) cos(wct 4+ ¢) with m(t) : a baseband message signal
(P2.10.12)

whose spectrum is (narrowly) bandlimited around the carrier frequency
wc. Show that the Hilbert transform of s(t) is

Problems

Q)

111

S(t) = m(t) cos(wet + ¢) < &(t) = m(t)sin(wet +¢) (P2.10.13)
Also, show that the analytic signal for s(t) can be expressed as

Sa(t) = s(t) + j&(t) = m(t)el @+ (P2.10.14)

This implies that we can multiply the analytic signal by e~/ to obtain
the envelope of the baseband message signal m(t).

Programs for Hilbert Transform

One may wonder how the convolution in the time domain results in just
the phase shift. To satisfy your curiosity, try to understand the following
program “sig02p_10e.m”, which computes the output of a Hilbert trans-
former to a cosine wave cos wct with w. = /16 and sampling interval
Ts = 1/16 [s]. For comparison, it uses the MATLAB built-in function
“hi | bert ()~ to generate the analytic signal and take its imaginary part
to get X(t).

(cf.) “hil bert()” makesthe Hilbert transform by using Eq. (P2.10.11).

%i g02p-10e. m
% To try the Hilbert transformin the tine/frequency domain
clear, clf
Ts=1/16; t=[-149.5:149.5]+Ts; % Sanple interval and Duration of h(t)
h= 1/pi./t; %h(t): Inpulse response of a Hilbert transforner
Nh=l engt h(t); Nh2=floor(Nh/2); % Sanple duration of noncausal part
h=fliplr(h); %h(-t): Time-reversed version of h(t)
we= pi/16; %the frequency of an input signal
Nfft=512; Nfft2= Nfft/2; Nbuf=Nfft*2; %buffer size
tt= zeros(1, Nbuf); x_buf= zeros(1, Nbuf); xh_buf= zeros(1, Nouf);
for n=-Nh:Nbuf-1 % To sinmulate the Hilbert transformer
tn=n*Ts; tt=[tt(2:end) tn];
x-buf = [x_buf(2:end) cos(wc*tn)];
xh_buf = [xh_buf(2:end) h_xx_buf(end-Nh+1:end).’ *Ts];
end
axislimts= [tt([1 end]) -1.2 1.2];
subpl ot (321), plot(tt,xbuf), title(’x(t)'), axis(axislinmts)
subpl ot (323), plot(t(1:Nh2), h(1:Nh2), t(Nh2+1:end), h(Nh2+1:end))
title("h(t)'), axis([t([1 end]) -11 11])
% To advance the del ayed response of the causal Hilbert transfornmer
xh = xh_buf (Nh2+1:end); xh.1 = imag(hilbert(x_buf));
subpl ot (325), plot(tt(1:end-Nnh2),xh," k", tt,xh.1), axis(axislinits)
subpl ot (326), plot(tt,xh-buf), axis(axislimts)
W= [-NFft2: NFft2] «(2«pi /Nfft);
Xw= fftshift(fft(xbuf, Nfft)); Xw= [Xw Xw(1)]; % X(w): spectrum of x(t)
Xhwi= fftshift(fft(xhl, Nfft)); Xhwi= [Xhwl Xhwi(1)]; % Xh(w)
nor m{ Xhw_1+j *si gn(ww) . * Xw)

In the program “sig02p_10e.m”, identify the statements performing the
following operations:

- The impulse response of the Hilbert transformer
- Generating an input signal to the Hilbert transformer

112

()

()

2 Continuous-Time Fourier Analysis

- Computing the output expected to be the Hilbert transformed signal

Note the following:

- The output sequence has been advanced by Nh/2 for comparison
with X(t) obtained using “hi | bert () ” because the real output of
the causal Hilbert transformer is delayed by Nh/2, which is the length
of the noncausal part of the Hilbert transformer impulse
response h(n).

Application of Hilbert Transform and Analytic Signal for Envelope
Detection

To see an application of Hilbert transform and analytic signal, consider
the following narrowband signal

s(t) = m(t) cos(wet + ¢)

B
= sinc (—t) cos(wct + %) with B = 100, w; = 400z (P2.10.15)
T

%i g02p_10f . m

% To obtain the | owpass equi val ent of Bandpass signal

Ts =0.001; fs =1/Ts; % Sanpling Period/ Frequency

t=[-511: 512]+Ts; % Duration of signal

fc=200; wc=2xpi*fc; B=100; % Center frequency & bandwi dth of signal s(t)
me sinc(B/pi*t);

s= m+*cos(wc*t +pi/6); % a narrowband (bandpass) signal

sa= hilbert(x); % Analytic signal sa(t) = s(t) +j s™(t)

sl = sa.xexp(-j*wext); % Lowpass Equival ent (Conplex envel ope) sl (t)

Referring to the above program “sig02p_10f.m”, use the MATLAB func-
tion “hi | bert () ” to make the analytic or pre-envelope signal s,(t),
multiply it by e i to get the lowpass equivalent or complex enve-
lope s(t), take its absolute values |5(t)| to obtain the envelope of the
baseband message signal m(t), and plot it to compare with m(t) =
|sinc (2Bt) |.

Hilbert Transform with Real-Valued Signals for Signal Detection
Consider the system of Fig. P2.10 where a narrowband signal x(t) having
in-phase component x.(t) and quadrature component Xs(t) is applied as
an input to the system:

X(t) = Xc(t) cos wct — X(t) sin wct (P2.10.16)

Verify that the two outputs of the system are the same as X¢(t) and xs(t),
respectively by showing that their spectra are

Xe d(@) = Xe(w) and Xs.a(@) = Xs(w) (P2.10.17)

Problems 113

multiplier summer
Xc_d (t)

x(t)

X(t) —> multiplier

X (t) =X, (t) cos w,t .
—Xs (t) sin wet Hilbert X(t)
transformer

Xs_d (t)

multiplier summer

Fig. P2.10

Complete and run the following program “sig02p_10g.m” to check if these
results are valid for

Xc(t) = sinc (100t), xs(t) = sinc (450t), and w; = 4007

Does the simulation result show that x._4(t) = X(t) and xs_g(t) = Xs(t)?
If one of them does not hold, figure out the reason of the discrepancy.

%i g02p_10g. m

% To use the Hilbert transformfor signal detection
clear, clf

Ts=0.0002; t=[-127:128]*Ts; % Sanpling Period and Tinme interval
fc=200; wc=2+pi*fc; % Center frequency of signal x(t)
B1=100%pi ; B2=450+*pi; % Bandw dth of signal x(t)

xc= sinc(Bl/pi*t); xs= sinc(B2/pixt);

X= XC.*cos(wc*t) - Xs.*sin(wcxt);
xh=imag(hilbert(x)); %inmag(x(t)+ x"(t))=x"(t)
xc._d= Xx.*cos(wecxt) + xh.*??2?2?2?2???7?; % xc_detected
xs_d= -Xx.*sin(wext) + xh.*??2?2?2??2?2?2?, % xc_detected
subpl ot (221), plot(t,xc, t,xcd,'r")

subpl ot (222), plot(t,xs, t,xsd,'r")

nor n{ xc-xc_d)/ norm(xc), norn(xs-xs-d)/norm xs)

2.11 Spectrum Analysis of Amplitude Modulation (AM) Communication System
Consider the AM communication system of Fig. P2.11(a) where the message
signal x(t) is band-limited with maximum frequency wy and the spectrum
X(w) is depicted in Fig. P2.11(b). Assume that the frequency response of the
(bandpass) channel is

1 for|w— wc| < Bc/2

with Bc > 2 pP2.11.1
0 elsewhere C = o0 ()

H(w)={

and that of the LPF (lowpass filter) at the receiver side is

114

2 Continuous-Time Fourier Analysis

multiplier) multiplier t
message m Channel | r(t) Xq(t) [T LPF
signal x(t) ® H (w) & G (w) d()
carrier signal cos wet ideal 2c0s wt ideal

(a) The block daigram of an AM communication system

X(w)
w
_()‘)X 0 wX
(b) The spectrum of the message signal x(t)
Xm (W) =R (W)
1 1 w
—wg 0 We
(c) The spectrum of the modulated, transmitted, and received signal r(t)
Xg (W)
1 1 1 1 w
—2Ww; 0 2wg
(d) The spectrum of the demodulated signal x4(t)
D (W)
1 1 1 1 w
0
(e) The spectrum of the detected signal d(t)
Fig. P2.11 An amplitude-modulation (AM) communication system
1 for|w| < Br .
G(w) = ol Rwith oy < Br < 2w¢ — wy (P2.11.2)
0 elsewhere

(@)
(b)

(©)

Express the spectrum, X4(w), of the demodulated signal xq4(t) in terms of
X(w).

Draw the spectra of the modulated and received signal r (t), the demod-
ulated signal x4(t), and the detected signal d(t) on Fig. P2.11(c), (d),
and (e).

Complete and run the following program “sig02p_11.m” to simulate the
AM communication system depicted in Fig. P2.11(a). Note that the spec-
trum of each signal is computed by using the MATLAB built-in function
“fft()” instead of CTFT (Continuous-Time Fourier Transform) since
DFT (Discrete Fourier Transform) is applied to any sequence (consisting
of sampled values of an arbitrary continuous-time signal), while CTFT

Problems 115

can be applied only to continuous-time signals expressed by a linear
combination of basic functions. DFT and “f ft () ” will be introduced
in Chap. 4.

%si g02p-11. m

% AM (anpl i t ude- nodul ati on) conmuni cati on system

clear, clf

Ts=0.0001; t=[-127:128]*Ts; % Sanpling Period and Tine interval
fc=1000; wc=2*pix*fc; % Carrier frequency

B=1000; % (Signal) Bandw dth of x(t)

x= sinc(B/pi*t)."2; %a nessage signal x(t) having triangular spectrum
XmE X.*cos(we*t); % AM nodul ated si gnal

r= xm %received signal

xd= r.*(2%x??2?2?2?2?2???); % denodul ated si gnal

Br=wc/2; % (System) Bandw dth of an ideal LPF

g= Br/pix*sinc(Br/pi*t); % (truncated) |npulse Response of the ideal LPF
d= conv(xd, g)*Ts; %the output of the LPF to the denodul ated signal
subpl ot (421), plot(t,x), title(’' A nessage signal x(t)")

Nfft=256; Nfft2=Nff/2; % FFT size and a half of Nfft

w= [-NFft/2:Nfft/2]=(2+pi /Nfft/Ts); % Frequency vector

X= fftshift(fft(x)); X=[X X(1)]; % Spectrum of x(t)

subpl ot (422), plot(w abs(X)), title(’ The spectrum X(w) of x(t)')
subpl ot (423), plot(t,xn), title(’ The nodul ated signal xm(t)’)

Xme fftshift(fft(xm); Xme[Xm Xn(1)]; % Spectrum of nodul ated signal
subpl ot (424), plot(w abs(Xm), title(’ The spectrum Xmw) of xm(t)’)
subpl ot (425), plot(t,xd), title(’ The denpdul ated signal xd(t)’)

Xd= fftshift(fft(xd)); Xd=[Xd Xd(1)]; % Spectrum of denodul ated si gnal
subpl ot (426), plot(w, abs(Xd)), title(’ The spectrum Xd(w) of xd(t)’)
d= d(NfFft2+[0: Nfft-1]);

subpl ot (427), plot(t,d), title(’ The LPF output signal d(t)’)

D= fftshift(fft(d)); D=[D D(1)]; % Spectrumof the LPF output
subpl ot (428), plot(w abs(D)), title(’ The spectrum D(w) of d(t)')

2.12 Amplitude-Shift Keying (ASK) and Frequency-Shift Keying (FSK)

(a) Amplitude-Shift Keying (ASK) or On-Off Keying (OOK)
Find the spectrum Xask (w) of a BASK (binary amplitude-shift keying)
or OOK modulated signal Xask (t) = rp(t) cos(w:t) (Fig. P2.12(a)) where
rp(t) is a unit-height rectangular pulse with duration D.

(b) Frequency-Shift Keying (FSK)
Find the spectrum Xgsk (w) of a BFSK (binary frequency-shift keying)
modulated signal Xgsk (t) = rp(t) cos(wit) + rp(t — D) cos(wa(t — D))
(Fig. P2.12(b)).

116

WAL t

2 Continuous-Time Fourier Analysis

UL

rp(t) cos(w;t) ' rp(t) cos(wyt) :rD (t-D) cos(wz(t—D)):

(a) ABASK or OOK signal (b) ABFSK signal
Fig. P2.12
2.13 Autocorrelation/Crosscorrelation Theorem
Suppose we have X(w) = F{x(t)}, Y(w) = F{y(t)}, and G(w) = F{g(t)},
where x(t), y(t), and g(t) are the real-valued input, output, and impulse
response of an LTI system G so that
y(t) = g(t) x x(t) & Y(0) = G() * X(w) (P2.13.1)
(a) Prove the autocorrelation theorem:
1.4.12
Pux(@) = Flper(®)) " E7 FIx(V) % X(-1) = [X()?
(Energy Density Spectrum) (P2.13.2)
(b) Prove the crosscorrelation theorem:
1412
Buy(0) = Figy () = Fix(t) + y(-1))
= X(w)Y*(w) = G*(w) | X(w)|? (P2.13.3)
(c) Prove that
DPyy(w) = f{¢>yy(t)} D Fy®) « v (1) = Y(0)Y* ()
= |G(@)*IX()? (P2.13.4)
2.14 Power Theorem - Generalization of Parseval’s Relation
Prove the power theorem that, with X(w) = F{x(t)} and Y(w) = F{y(t)},
we have
o0 1 o0
/ X()y*(t)dt = 2—/ X(w)Y*(w) dw (P2.14.1)
0o T J s
2.15 Eigenfunction

If the output of a system to an input is just a (possibly complex-valued) con-
stant times the input, then the input signal is called an eigenfunction of the
system. Show that the output of an LTI (linear time-invariant) system with the
(causal) impulse response g(t) and system (transfer) function G(s) = £{g(t)}
to a complex exponential input €%t is,

Problems 117
G{e¥'} = g(t) * €' = G(s0)e™" with G(s9) = G(S)lss, (P2.15.1)

where G(s) is assumed not to have any pole at s = s so that the ampli-
tude factor G(s), called the eigenvalue, is finite. This implies that a complex
exponential function is an eigenfunction of LTI systems.

2.16 Fourier Transform of a Polygonal Signal (Problem 4.20 of [O-1])

(a) Show that the Fourier trnasform of y(t) = (at + b)(us(t —t;) — us(t —t))
with L <t is

1 .) a) .
Y(0) = S (a+]j bw)(e 1% —e71oM) | Z(te7 ! —te7 9N (P2.16.1)
w 1)

(b) We can describe a triangular pulse having three vertices (t 1, 0), (ti, X;),
and (tj;1,0) as

(- t.)——tlx't't|11+tl -t fortg <t<t

(t) = Xitit1 f) ’
.+t t.1(t_t')__ s T e t orti <t <ty
(P2.16.2)
z(t) [T,-Ty
: R S : t : : t
to ty tp t3 tg - g ty =T, -T 0 T, T
(a) A signal and its polygonal approximation (b) A trapezoidal signal

Fig. P2.16

Use Eq. (P2.16.1) to show that the Fourier transform of this pulse is

Xi)
(e joti _ e_lwti—1)+
i —t_q t|-+—l

1 .
A (a)) { (e joti _ e‘]wtiﬂ)}
(P2.16.3)
(c) Fig. P2.16(a) shows a finite-duration signal x(t) and its piece-wise linear

or polygonal approximation xp(t) where x(t) = Xp(t) = 0Vt < ty and
t > t,. Use Eq. (P2.16.3) to show that the Fourier transform of xp(t) is

Xo() = Foo®) = [1) = 5 Y kel (2164

118 2 Continuous-Time Fourier Analysis

where

K — (ti =)X + (G —tipa)Xi—1 4 (b1 — ti_1)X
(6 —ti—)(ti —)
X(t-1) = X(ta+1) =0

and

Complete the following program “CTFT_poly () so that it implements
this method of computing the Fourier transform.

function [X, w =CTFT_pol y(t, x,w)
% Conmputes the CTFT of x(t) for frequency w by using Eq.(P2.16.4).
N =l ength(x); n=1:N;

if nargin<3, w = [-100:100]*pi/100+1le-6; end
t=[2+t(1)-t(2) t 25t (N)-t(N-1)]; x=[0 x 0];
X= 0;

for i=2:N+1

Ki=((t(i-21)-t(i))sx(i+L)+(t(i)-t(i+1))*x(i-1)+(t(i+1)-t(i-21))*x(i));
k(i)= Kki/(t(i)-t(i-1))/(t(i+1)-t(i));
X= X+ k(i)xexp(-jrwt(i));

end

X = X/ (w "~ 2+eps);

(d) For the trapezoidal signal z(t) shown in Figure P2.16(b), find its Fourier
transform Z(w) in two ways:

(i) Regarding z(t) as the convolution of two unit-height rectangular
pulses each of length D; = T, — T; and D, = T, + Ty, you can
use the convolution property (2.5.11) together with Eq. (E2.3.2).

(if) Use Eq. (P2.16.4), which is the result of part (c).

(iii) Use the MATLAB routine “CTFT_poly ()” to get Z(w) = F{z(t)}
with T; = 1 and T, = 2 and plot it to compare the result with that
obtained (i) or (ii).
<Hint> You can complete and run the following program.

%i g02p_16. m

% Nurreri cal approximation of CTFT for a trapezoidal signal
clear, clf

T1=1; T2=2; Dl= T2-T1, D2= T1+T2;

t=[-T2 -T1 T1 T2];

x= [0 T2-T1 T2-T1 0];

w= [-200: 200]/ 100*pi +1e-6; % frequency range on which to plot X(w)
X= D1*D2*si nc(wD1/ 2/ pi).*sinc(wD2/2/pi);

Xpol y= ?222?222?2?2(?,?,7?); % (P2.16.4)

Di scr epancy=nor n{ X-pol y- X)

plot(w, abs(X), b, w, abs(Xpoly),’'r")

(e) Show that, if we choose the points t;’s sufficiently close together so that
the piecewise linear approximation, Xp(t), of x(t) is accurate enough to
satisfy the bounded error condition

Problems 119
IX(t) = xp(t)| <e, (P2.16.5)

then the Fourier transform (Eq. (P2.16.4)) of xp(t) is close to X(w) =
F{x(t)} enough to satisfy

/OO IX(w) — Xp(@)]?do < 27(t, — to)e? (P2.16.6)

[ee]

(cf.) This implies that even though a signal x(t) cannot be expressed as a
linear combination, a multiplication, or convolution of basic functions,
we can find its approximate Fourier transform from the collection of
sample values of x(t) and that we can improve the accuracy by making
the piecewise approximation xp(t) closer to x(t).

(cf.) This result suggests us that it is possible to evaluate numerically the
Fourier transform for a finite-duration signal whose values are mea-
sured experimentally at many (discrete) time instants, even though the
closed-form analytic expression of the signal is not available or too
complicated to deal with.

2.17 Impulse Response and Frequency Response of Ideal Bandpass Filter
Consider a sinc function multiplied by a cosine function, which is depicted in
Fig. P2.17:

Fig. P2.17

B . B .
g(t) = ;smc (;t) coswpt with w, = 10B (P2.17.1)

(a) Using Egs. (E2.9.1&2) and the amplitude modulation (AM) property
(E2.12.3), find the Fourier transform G(w) = F{g(t)} and sketch it.

(b) If Eq. (P2.17.1) describes the impulse response of a system, which type
of filter is it?
(Lowpass, Bandpass, Highpass, Bandstop)

2.18 Design of Superheterodyne Receiver — Combination of Tunable/Selective
Filters
We can build a tunable selective filter, called the superheterodyne or super-
sonic heterodyne receiver often abbreviated superhet), by combining a tun-
able, but poorly selective filter, a highly-selective, but untunable filter having

120 2 Continuous-Time Fourier Analysis

a fixed IF (intermediate frequency) passband, a mixer (multiplier), and a local
oscillator as shown in Fig. P2.18.1.

Suppose the input signal y(t) consists of many AM (amplitude modulated)
signals which have been frequency-division-multiplexed (FDM) so that they
each occupy different frequency bands. Let us consider one signal y;(t) =
X1 (t) cos wct with spectrum Y; (w) as depicted in Fig. P2.18.2(a). We want to
use the system of Fig. P2.18.1 to demultiplex and demodulate for recovering
the modulating signal x;(t), where the coarse tunable filter has the frequency
response Hq(w) shown in Fig. P2.18.2(b) and the fixed frequency selective
filter is a bandpass filter (BPF) whose frequency response H¢(w) is centered
around fixed frequency wc as shown in Fig. P2.18.2(c).

(Radio Frequency) IF

RF Amplifier (Multiplier) (Intermediate Frequency)
Coarse Mixer Fixed Demodulator
tunable filter |- ® R z(v) v(©)

R selective filter LPF [d(t)
H¢ (W)

He(w)

2c0s (W, + wp)t

2cos wit
Fig. P2.18.1 Superheterodyne receiver — tunable and selective filter
Y(W) @)
> W
—LUC—LUM —wc —(.UC-HUM 0 wc—wM u}c UJC+ wM
(a) The spectrum of the input signal y (t)
He (W)
/ i~ S~
T . -
—wc—w-l- —wc—wM —u)c —wc+wM —u)c+u)-|— 0 wc—w-r u)c—wM wc wc+wM wC+wT
(b) The frequency response of the coarse tunable filter
Hi (W)
__________ K- _———— - -
L L > W
—Wp— Wy —Wr —Ws + Wy 0 Wr—wy W W +wy

(c) The frequency response of the fixed selective filter

Fig. P2.18.2

(a) What constraint in terms of w¢ and wy must wt satisfy to guarantee that
an undistorted spectrum of x;(t) is centered around w; so that the output
of the fixed selective filter H¢ can be v(t) = x;(t) coswt?

Problems

(b)

(©
(d)

121

Determine and sketch the spectra R(w), Z(w), V(w), and D(w) of the
output r (t) of the coarse tunable filter Hc, the input z(t) and output v(t) of
the fixed selective filter H¢, and the output d(t) of the LPF.

How could you determine the gain K of the fixed selective filter H;
required to have v(t) = x;(t) cosw+t at its output?

Complete and run the following program “sig02p_18.m” to simulate the
superheterodyne receiver twice, once with KT = 18 and once with kKT =
19. Explain why the two simulation results are so different in terms of the
error between d(t) and x;(t). Note that the parameters kc, kf, kM, and KT
correspond to we, w¢, wwm, and wT, respectively.

%i g02p-18. m

% si mul ates a superheterodyne receiver conbining a coarse tunable filter
% and a fixed selective filter

% Copyl eft: Won Y. Yang, wyyang53@annuil.net, CAU for acadenic use only
clear, clf

N=128; kc=16; kf=12; kM=4; kT=12; Wef=2xpi/N<(kc+kf); W =2+pi/N«Kf;
%reate a signal having the spectrumas Fig.P2.17.2(a)

n=[0: N-1]; kk=[-N2: N 2]; % Ti me/ Frequency ranges

y=make_si gnal (N, kc, kM ;

Y=fftshift(fft(y)); Y-mag= abs([Y Y(1)]);

subplot(6,2,1), plot(n,y), title("y(t)")

subpl ot (6, 2,2), plot(kk,Y.mag), title(’Y(w")

% unable filter

Refftshift(fft(r)); Rmag= abs([R R(1)]);

subpl ot (6,2,3), plot(n,r), title('r(t) after tunable filter’)
subpl ot (6, 2,4), plot(kk, Rmag), title(’R(w)")

%vodul ati on

Z=fftshift(fft(z)); Z.mag= abs([Z Z(1)]);

subpl ot (6,2,5), plot(n,z), title(’ z(t) after nodul ation’)
subpl ot (6, 2,6), plot(kk,Zmg), title(’Z(w")

Y%sel ective filter

K=1; v=2??2??2?222?222?22?2(N, kf, kKM K, ?);

v=fftshift(fft(v)); V.mag= abs([V V(1)]);

subplot(6,2,7), plot(n,v), title('v(t) after selective filter’)
subpl ot (6, 2,8), plot(kk,V-mag), title(’V(w)")

%lenodul ati on

Do=fftshift(fft(d0)); DO_mag= abs([DO DO(1)]);

subpl ot (6,2,9), plot(n,d0), title(’do(t) after denodul ation’)
subpl ot (6, 2,10), plot(kk, D0O.mag), title(’ DO(wW) ')

% unable filter as LPF

d=tunabl efilter(N, 0, kM KT, dO);

D=fftshift(fft(d)); D.mag= abs([D D(1)]);

x1l=zeros(1, N);

for k=-kM kM x1(n+1)= x1(n+1)+(1-abs(k)/kM *cos(2*pi*k*n/N); end
subpl ot (6,2,11), plot(n,d,’ b, n,x1,'r")
title('detected/transmtted signal’)

subpl ot (6, 2,12), pl ot (kk, D-nag),

title(’ Spectrum D(w) of detected signal’)

error _between_det ected_transmitted.si gnal s= norn{d-x1)

122 2 Continuous-Time Fourier Analysis

function x=meke_si gnal (N, kc, kM
% create a signal having the spectrumas Fig.P2.17.2(a)
n=1: N,
x=zeros(1, N);
for k=0: N 2-1
tnp= 2xpi*kx(n-1)/N;
if k<kc-kM x(n)= x(n)+sin(tnp);
el sei f k>kc+kM x(n)=x(n)+sin(tnmp); % whatever, cos() or sin()
el se x(n)= x(n)+(1-abs(k-kc)/kM *cos(tnp);
end
end

function x_t=tunablefilter(N, kc, KMKT, x)
% BPF wi th passband (kc-kM kc+kM and
% stopband edge frequencies kc-kT and kc+kT
X=fft(x,N;
for k=1: N 2+1
i f k<=kc-KkT| k>kc+kT+1, X(Kk)=0; X(N+2-k)=0;
el sei f k<=kc- kMl
X(k) =X(k) *(1-(kc-kM k+1)/ (kT-kM); X(N+2-k)=conj (X(k));
el sei f k>kc+kM
X(k) =X(k)*(1-(k-1-kc-kM/(kT-kM); X(N+2-k)=conj (X(k));
end
end
xt=real (ifft(X N));

function x_t=selectivefilter(N, kf, kMK, x)

% passes only the freq (kf-kMkf+kM with the gain K

X=fft(x,N;

for k=1:N
if (k>kf-kMk<=kf +kM+1) | (k>N kf - kM8&k<=N- kf +kMr1), X(k)= KxX(k);
el se X(k)=0;
end

end

xt=real (ifft(X));

2.19 The Poisson Sum Formula (PSF) and Spectrum of Sampled Signal
Consider an LTI (linear time-invariant) system with impulse response h(t)
and frequency response H(jw) = F{h(t)}. Note that the response (output)
of the system to the impulse train can be expressed in terms of the impulse
response as

5(t) =2 h(t); o7(t) = Z:’;m s —nT) ! Z:’;w ht —nT) (P2.19.1)

Likewise, the response (output) of the system to a single or multiple complex
exponential signal can be written as

koot U Ly Kont. 1 X kot G 1 o0 . ikeo
ekt = H (jkao)el T Yo et = Y H(ikeg)e
(P2.19.2)
(a) Based on the above results (P2.19.1) & (P2.19.2) and Eq. (2.1.10), prove

that, for any function h(t) with its Fourier transform H(jw) = F{h(t)}
well-defined, the following relation holds:

Problems 123

> ht—nT)= % > Hjkeo)e! ! with o = 2?”
(P2.19.3)
which is called the Poisson sum formula.
(b) Using the Poisson sum formula, prove the following relation pertaining to
the spectrum of a sampled signal (see Eq. (E2.13.3)):

> x(nT)e ™ = % > X(i(e + ko)) with X(je)

= F{x(t)} and wy = 2?71 (P2.19.4)

<Hint> Substitute h(t) = x(t)el“! and its Fourier transform H(jw) =
X(j(w + w1)) with @ = kwp into Eg. (P2.19.3) and then
substitute t = 0 and w1 = w.

2.20 BPF (Bandpass Filter) Realization via Modulation-LPF-Demodulation
Consider the realization of BPF of Fig. P2.20(a), which consists of a modu-
lator (multiplier), an LPF, and a demodulator (multiplier). Assuming that the
spectrum of x(t) is as depicted in Fig. P2.20(b), sketch the spectra of the sig-
nals xq(t), Xs(t), Ye(t), ys(t), and y(t) to see to it that the composite system
realizes a BPF and determine the passband of the realized BPF.

Cos wt we=2
—2

Key Koy

O — 0—|1 w o)
X(t) —>——1 S—> y(t)

0] _2_| = ys(t)

[==t]
sin wet

(a) A BPF realization via modulation—-LPF—demodulation

w

(b) The spectrum of the input signal

Fig. P2.20

124

2.21

2 Continuous-Time Fourier Analysis

TDM (Time-Division Multiplexing)

As depicted in Fig. P2.21(a), Time-Division multiplexing (TDM) is to transmit
two or more PAM (pulse amplitude modulation) signals not simultaneously as
subchannels (separated in the frequency-domain), but physically by turns in
one communication channel where each subchannel is assigned a timeslot of
duration D every T s in such a way that the timeslots do not overlap. Sketch a
TDM waveform of two signals x; (t) and x,(t) in Fig. P2.21(b).

xy(t) >0 c o 0> xy(t)p(t) Lo Xo(t)
ommunication HE T T
\ channel , P P P t
X,(t) >0 ! 1O X(t)p2(t)

. —— 7’ N
. synchronized ___| / S~ o~
switching = D-bm----- - AN
t

(a) A TDM communication system (b) A time—division multiplexed signal

Fig. P2.21 TDM (Time-Division Multiplexing) communication

2.22

2.23

FDM (Frequency-Division Multiplexing)

As depicted in Fig. P2.22(a), Frequency-Division multiplexing (FDM) is to

transmit two or more SAM (sinusoidal amplitude modulation) signals as sub-

carriers (separated in the frequency-domain) in such a way that the frequency

slots each carrying a signal (amplitude-modulated with different carrier fre-

quency) do not overlap. Assuming that the channel is ideal so that r (t) = s(t),

sketch the spectrum of the FDM signal to be transmitted over the same com-

munication channel where the spectra of two signals x;(t) and x,(t) to be

frequency-multiplexed are shown in Fig. P2.22(b).

(cf) Time/frequency-division multiplexing assigns different time/frequency
intervals to each signal or subchannel.

Quadrature Multiplexing

Consider the quadrature multiplexing system depicted in Fig. P2.22, where

the two signals are assumed to be bandlimited, that is,

X1(w) = Xz(w) = 0 for w > wwm (P2.23.1)

as illustrated in Fig. P2.23(b).

(a) Assuming that the channel is ideal so that r (t) = s(t), express the spectra
S(w), Vi(w), Va(w), Yi(w), Yz2(w) of the signals s(t), vi(t), va(t), ya(t),
and y,(t) in terms of X;(w) and X,(w).

(b) Complete and run the following MATLAB program “sig02p_23.m” to see
if yi(t) = xa(t) and yz(t) = Xa(t).

Problems 125

cos wyt

) ﬁ"jjﬁﬁ%)— P sy
B ,

s(t) | communication | " ()
channel

Xo(t) l_[|l1_|—<%>— ﬁz] > y,(t)
T

COS Wyt

(a) AFDM (Frequency-Division Multiplexing) communication system

X1 (W) X,(w)
M ,)
—Wy 0 Wy Wy 0 Wy

(b) The spectra of two signals to be frequency—division multiplexed

Fig. P2.22 FDM (Frequency-Division Multiplexing) communication

oS wet
!
X (1) —
s(t) | communication
channel
%(t) —> Yo(t)
sin wt

Fig. P2.23 Quadrature multiplexing

%i g02p-23. m

% Quadrature Miltiplexing in Fig.P2.23

% Copyl eft: Won Y. Yang, wyyang53@annail.net, CAU for acadenic use only
clear, clf

N=128; kc=16; kMe=6; kx1=6; kx2=6; We=2*pi/Nrkc;

n=[0: N-1]; kk=[-N2: N 2];

x1= make_si gnal 1(N, kx1); x2= make.signal 2(N, kx2) ;

Xl= fftshift(fft(x1)); X2= fftshift(fft(x2));
subpl ot (523), plot(kk,abs([X1 X1(1)])), title(’ X1(w)")
subpl ot (524), plot(kk,abs([X2 X2(1)])), title(’ X2(w)")
s= x1.x?2?2?2(We*n) + x2.*sin(W=xn); S= fftshift(fft(s));
subpl ot (513), plot(kk,abs([S S(1)])), title(’S(w")
vl= s.*xcos(W=*n); V1= fftshift(fft(vl));

v2= s.*x?2?2?2(We*n); V2= fftshift(fft(v2));

subpl ot (527), plot(kk,abs([V1 V1(1)])), title(’Vi(w)")
subpl ot (528), plot(kk,abs([V2 V2(1)])), title(’V2(w")

126 2 Continuous-Time Fourier Analysis

% sel ective filter(ideal LPF)
kf=0; K=2;

di screpancyl=norm(x1-y1l), discrepancy2=norn(x2-y2)

yl= selectivefilter(N kf, kMK, vl); Yl= fftshift(fft(yl));
y2= ?2?2222?222?2222??22?(N, kf , kM K, v2); Y2= fftshift(fft(y2));

subpl ot (529), plot(kk,abs([Y1 Y1(1)])), title(’YI(wW")
subpl ot (5, 2,10), plot(kk,abs([Y2 Y2(1)])), title(’Y2(w)")

function x=make_si gnal 1(N, kx)
n=1: N, kk=1:kx-1; x= (1-kk/kx)=*cos(2xpix*kk.’ *n/N);

function x=make_si gnal 2(N, kx)
n=1: N, kk=1:kx-1; x= kk/kx*cos(2xpi*kk.’*n/N);

2.24 Least Squares Error (LSE) and Fourier Series Representation

Consider a continuous-time function x(t) on a time interval [a, b] and a set of
its sampled values, {X1, X2, - - - , Xn} (With X, = X(t,)). Let us find an approx-
imate representation of x(t) as a linear combination of some basis functions

{pc(t); k=1:K}:

(c,1) = Z;) fora<t<b

(P2.24.1)

where the coefficient vector ¢ = [c1 ;- - - ck]" is to be determined so that the

following objective function can be minimized:

b
E?(c) = / (x(t) — %(c, 1))dt
a
K N
B Q) =), 0 — X t))?
The following notations will be used:

X =[xt X --- xn]" With X, = X(tn)
c=[cc - k]
o(t) = [a(t) p2(t) -+ P (O]

e=[e1e --- 8N]T

(P2.24.2)

(P2.24.3)

(P2.24.43)
(P2.24.4b)
(P2.24.4c)

(P2.24.4d)

Problems 127

) R K
With 0 = X — R(C, t) =Xn — > Cek(tn) = Xn — ¢ (ta)C

k=1
¢ (ty) P11 P21 ® Pi1
@' (t2) $12 P22 ® Pk2

o = ° =| o o o @ with ¢n = ¢k(tn) (P2.24.4¢e)
@' (tn) OIN P2n ® Pk N

Based on these notations, the above objective function (P2.24.3) can be
written as

E2(c) = ¢'Te = [x* — ®*c*]"[x — dc]
=x"Tx —x*Toc—cTd*Tx + c*Td*Tdc
— 5T [I . q)[q)*Tq)]—l(b*T]x
+[®T ot — dTX]T[@* T D] T e — d*TX] (P2.24.5)

where only the second term of this equation depends on c. Note that this
objective function is minimized for

®*Tdc — d*Tx = 0 (a normal equation); ¢ = [®*T®]1d*Tx (P2.24.6)

(a) Let the K functions {¢k(t), k = 1 : K} constitute an orthogonal set for
the N discrete times {t,, n = 1: N} in the sense that

" ibmn = 0Vk £ m (P2.24.7)

so that [®*T @] is diagonal. Show that the coefficients can be deter-
mined as

N *
= Lo g0 K (P2.24.8)

Cx = N ,
anl ¢kn¢kn

Likewise, if the K functions {¢x(t), k = 1 : K} constitute an orthogonal
set for the continuous time intrerval [a, b] in the sense that

b
f P (t)pm(t) dt =0V k # m, (P2.24.9)
a
then the coefficients can be determined as

2 xg() dt

= -2 fork=1,2,--- K (P2.24.10)
Ja $ k(1) dt

128 2 Continuous-Time Fourier Analysis

(b) Using Eq. (P2.24.1), find an approximate representation of a real-valued
function x(t) for —P/2 < t < P/2 in terms of the following basis
functions

1 oot 2
ok(t) = Be’ ot with wy = - andk=-K : K (P2.24.11)

Chapter 3
Discrete-Time Fourier Analysis

Contents
3.1 Discrete-Time Fourier Transform (DTFT)t e 130
3.1.1 Definition and Convergence Conditions of DTFT Representation 130
3.1.2 Examples of DTFT AnalysiS.ooviiii e 132
3.1.3 DTFT of Periodic SEQUENCESttt 136
3.2 Properties of the Discrete-Time Fourier Transform, 138
321 PeriodiCity . ..ot 138
322 LINEaANItY ..ttt e 138
3.2.3 (Conjugate) SYMMELry. 138
3.2.4 Time/Frequency Shifting (Real/Complex Translation) 139
3.25 Real Convolutiono 139
3.2.6 Complex Convolution (Modulation/Windowing) 139
3.2.7 Differencing and Summation in Time i, 143
3.2.8 Frequency Differentiation i 143
3.29 Timeand Frequency Scaling........ ... 143
3.2.10 Parseval’s Relation (Rayleigh Theorem) iiiiinoo... 144
3.3 Polar Representation and Graphical Plot of DTFT ..., 144
3.4 Discrete Fourier Transform (DFT) . ..ot e 147
3.4.1 Propertiesof the DFT ... i 149
3.4.2 Linear Convolution With DFT it 152
3.4.3 DFT for Noncausal or Infinite-Duration Sequence........................ 155
3.5 Relationship Among CTFS, CTFT, DTFT,andDFT ...t 160
3.5.1 Relationship Between CTFSand DFT/DFS ..., 160
3.5.2 Relationship Between CTFT and DTFTc.oiiiiineeiiiinnnns 161
3.5.3 Relationship Among CTFS, CTFT, DTFT,and DFT/DFS 162
3.6 Fast Fourier Transform (FFT)o e 164
3.6.1 Decimation-in-Time (DIT) FFT e 165
3.6.2 Decimation-in-Frequency (DIF) FFT ... e 168
3.6.3 Computation of IDFT Using FFT Algorithm 169
3.7 Interpretation of DFT ReSUItSot e 170
3.8 Effects of Signal Operations on DFT Spectrumccoiiieeiiiinnn... 178
3.9 Short-Time Fourier Transform — Spectrogram ..o 180
310 SUMMANY . oottt 182
PrObIEmMS . 182

In this chapter we study the discrete-time Fourier analysis techniques, i.e., the
DTFT (Discrete-Time Fourier Transform), DFT (Discrete Fourier Transform), and
DFS (Discrete Fourier Series) of a discrete-time sequence, which will be used to

W.Y. Yang et al., Signals and Systems with MATLAB®, 129
DOI 10.1007/978-3-540-92954-3_3, © Springer-Verlag Berlin Heidelberg 2009

130 3 Discrete-Time Fourier Analysis

describe and analyze the frequency characteristics of discrete-time signals and the
frequency-domain behavior of discrete-time systems. We also deal with the fast
Fourier transform (FFT), which is a very efficient algorithm for computing the DFT.

Each of the continuous-time and discrete-time Fourier techniques has its own
application in the sense that they are used for analyzing continuous-time and
discrete-time signals/systems, respectively. However, if you do not understand their
organic inter-relationship beyond some similarity, you will miss the overall point
of viewing the frequency characteristic of signals/systems and get only a confusing
impression that there are too many Fourier techniques. Basically, we want to find,
say, the CTFT of continuous-time signals since no inherently discrete-time signals
exists in the physical world. However, the DFT, implemented by the FFT algorithm,
of discrete-time signals obtained by sampling continuous-time signals is the only
one practical Fourier analysis technique because of its outstanding computational
convenience compared with the CTFT that is difficult to compute for general sig-
nals. That is why we need to know the relationship between the CTFT and DFT and
ultimately, be able to get the “true” information about the frequency characteristic
of a (continuous-time) signal from its FFT-based spectrum.

3.1 Discrete-Time Fourier Transform (DTFT)

3.1.1 Definition and Convergence Conditions of DTFT
Representation

As the discrete-time counterpart of the CTFT (continuous-time Fourier transform)

X(jo) = Fix) “E? f ” x(t) e 1t dt

]

we define the Fourier transform of a discrete-time sequence x[n] as
X(jQ) = X[/ %] = F{x[n]) = Z:O_, x[n] el en (3.1.1)

which is called the DTFT (discrete-time Fourier transform). From now on, we will
more often use X(£2) than X(j) or X[e!¥] for simplicity. Let us see the physical
meaning of the DTFT.

Remark 3.1 Physical Meaning of the DTFT — Signal Spectrum and Frequency
Response

(1) If a sequence x[n] represents a physical signal, its DTFT X(Q2) = F{x[n]}
means the signal spectrum, which describes the frequency contents of the signal.
(2) In particular, if a time function g[n] represents the impulse response of a
discrete-time LTI (linear time-invariant) system, its DTFT G(2) = F{g[n]}
means the frequency response, which describes how the system responds to a

3.1 Discrete-Time Fourier Transform (DTFT) 131

sinusoidal input sequence of digital (angular) frequency €2 (refer to Sect. 1.2.6
for the definition of frequency response).

One striking difference of the DTFT from the CTFT is its periodicity (with period
27) in the (digital) frequency variable €2, which results from the fact that it is a
function of e/ periodic with period 27 in €, i.e., e/(@+2™) — el Based on the
periodicity of the DTFT, we are going to use the CTFS (for periodic functions) to
derive the IDTFT (inverse discrete-time Fourier transform) formula. To this end, we
can use Eq. (2.1.5a) with P = 2, wy = 27/P =1, t = @, and k = —n to write
the (continuous-frequency) Fourier series representation of X(£2) as

(2.15a) 1 00 i
X(Q) =" PED DR jgn (3.1.2a)

where the Fourier coefficients are

(2.1.5b)

Xn
P=27, wp=1,t=Q,k=—n

/ X(£2) el " d<2 (the integral over one period of length 27)
2
(3.1.2b)

Noting that Eq. (3.1.2a) is the same as Eq. (3.1.1) multiplied by a scaling factor
1/27, we can multiply Eq. (3.1.2b) by the same scaling factor 1/27 to write the
IDTFT formula as

x[n] = FHX(Q)} = %/ X(Q) e dQ (3.1.3)

2w

We call Egs. (3.1.1) and (3.1.3) the DTFT pair where Eq. (3.1.1) is the analysis
equation and Eq. (3.1.3) is the synthesis equation.

Like the convergence conditions (2.2.2a) and (2.2.2b) for the CTFT, it can be
stated that the DTFT will exist if the sequence x[n] has finite energy, i.e.,

> Xl <oo (3.1.4a)

or if it is absolutely summable, i.e.,

Zi,m X[n] | < o0 (3.1.4b)

Remark 3.2 Frequency Response Existence Condition and Stability Condition of a
System

Note that, for the impulse response g[n] of a discrete-time LTI system, the
absolute-summability condition (3.1.4b) is identical with the stability condition
(1.2.27b). This implies that a stable LTI system has a well-defined frequency
response G(2) = F{g[n]}.

132 3 Discrete-Time Fourier Analysis

3.1.2 Examples of DTFT Analysis

Example 3.1 DTFT of a Rectangular Pulse Sequence

For the rectangular pulse of duration 2M+1 from —M to M shown in Fig. 3.1(al)
and described by

Fovea[n] = Us[n + M] — ug[n — M — 1] (E3.1.1)
we can apply Eq. (3.1.1) to get its DTFT as

(B.L1) x~© .
oM () = anfoo Fomsan] €790

(E?ﬂ..l) M —jan (D._23) oM 1-— e*j Q(2M+1)
= M € =’e e —
n=—

: (Dirichlet kernel)
1-el@
_ oiau g1 QEM+D)/2(g] Q@M +D)/2 _ g 2(2M+1)/2)
- efj Q/Z(e] Q2 _ efj Q/Z)
(0.22) SiN(2(2M + 1)/2)
sin(2/2)

(E3.1.2)

whose magnitude and phase are depicted in Fig. 3.1 (b1) and (cl), respectively.
Likewise, for the rectangular pulse of duration 2M + 1 from 0 to 2M shown in
Fig. 3.1(a2) and described by

/
r2M+1[n] = uS[n] - uS[n —2M — 1] = r2M+l [n - M] (E313)
! Fomn] Tom+1[N] 1
withM=1 = Iomea[N-M]
with M=1
01 n 012 n
(al) ray 44Nl (@2) Tom+1[N] = Fop44[N-M]
3R 3
[Rom+1(Q)] [Rowm+1()]
even-symmetric
1 1 1 1 1 1 1 1
=27 -7 0 T 2m @ 27 - 0 T 27 @
(b1)[Rop . 1()] (02) [Roy +1(<)]
T T £LRoy41(Q)
2Ry 1(9Q)
1 1 0 1 —aye} 1 '\I 0. '\n e ()
27 - 0 Fis 27 27 | - | —~l 27
odd-symmetric
S r
(€1) £Ray +1(9) (c2) £Ron+1(Q)

Fig. 3.1 Two rectangular pulse sequences and their magnitude & phase spectra

3.1 Discrete-Time Fourier Transform (DTFT) 133

we can apply Eg. (3.1.1) to get its DTFT as

(3.1.2) _ig
Rom+1(82) = Zn?oorzwlﬂ[n]e] :

_ ol @Mt
(E3,1.3)ZZM jan@2)1—e Rt
e e —

- n=0 1-eie2 Ry ()M
(E3.L.2) SiN(Q2M + 1)/2) oioM _ sin(2(2M +1)/2)

sin(Q/2) sin(2/2) £-Ma

(E3.1.4)

whose magnitude and phase are depicted in Figs. 3.1 (b2) and (c2), respectively.
Note the following:

— In contrast with the continuous-time case (Fig. 2.8(a)), the DTFT of a rectan-
gular pulse sequence is periodic, being no longer a pure sinc function, but an
aliased sinc function. Still the magnitude spectra show that the rectangular pulses
have low frequency components (around €2 = 0) more than high frequency ones
around Q2 = +£m.

— The spectrum (E3.1.2) of an even-symmetric pulse sequence is real-valued and
its phase is 0 or =x depending on whether it is positive or negative. Especially
for the frequency range such that Ry, ,(€2) < 0, we set its phase to + or —x
so that the overall phase curve is odd-symmetric to comply with the conjugate
symmetry (3.2.4) of DTFT (see Fig. 3.1(c1)).

— Due to the fact that the phase of Ryv11(2) (Eq. (E3.1.4)) is proportional to the
(digital) frequency Q as —M €, the (shifted) rectangular pulse sequence is said
to have a linear phase despite the phase jumps (discontinuities) caused by the
change of sign or the wrapping (modulo 27r) operation of angle (see the piecewise
linear phase curve in Fig. 3.1(c2)).

Example 3.2 DTFT of an Exponential Sequence
For an exponential sequence e [n] = a"us[n] with |a] < 1, we can apply
Eq. (3.1.1) to get its DTFT as

o0 n —jQn _ o —jy\n (D~=23) 1
Zn:_w a"ug[n]e = ano (ae™™)

E1(S2)

1-aei®
1 1—ael® (p20) 1— acosQ — jasinQ
- . __ 02 ‘ (E3.2.1)
1-aei®l— agel® 1— 2acosQ2 + a2
whose magnitude and phase are
1 —asinQ

|EL(Q)| = . and ZE(Q)=tan! ——

V(1 — acosQ)? + (asin Q)2 1— acosQ

(E3.2.2)

134 3 Discrete-Time Fourier Analysis

(c1) (c2)

Fig. 3.2 Four exponential sequences and their magnitude & phase spectra

Fig. 3.2(al-a2), (b1-b2), and (c2-c2) show the exponential sequences e;[n] =
a"ug[n] with a = 40.5 and +0.8 and their magnitude and phase spectra. Note
the following:

- From Fig. 3.2(al), we see that e;[n] with a = 0.8 is smoother than that with
a = 0.5. This is reflected in Fig. 3.2(b1) showing that the magnitude spectrum
|E1[€2]| with a = 0.8 is larger/smaller than that with a = 0.5 around = 0 (low
frequency)/ @ = +x (high frequency). Also from Fig. 3.2(a2), we see that e;[n]
with a = —0.8 changes more rapidly than that with a = —0.5. This is reflected
in Fig. 3.2(b2) showing that the magnitude spectrum |E;[2]] with a = —0.8 is
larger/smaller than that with a = —0.5 around = +x (high frequency)/Q2 =0
(low frequency).

- Comparing Fig. 3.2(al) and (a2), we see that e;[n] with a < 0 changes much
more rapidly than that with a > 0. This is reflected in that the magnitude
spectrum |E;[R2]| with a < 0 (Fig. 3.2(b2)) is large around Q = =z (high
frequency) and that with a > 0 (Fig. 3.2(b1)) is large around 2 = 0 (low
frequency).

Example 3.3 DTFT of a Symmetric Exponential Sequence
For the exponential sequence e;[n] = a with |a| < 1, we can apply Eq. (3.1.1)
to get its DTFT as

3.1 Discrete-Time Fourier Transform (DTFT) 135

Fig. 3.3 Four exponential sequences and their magnitude spectra

1

00 . — .
Ex(Q) = Zn?w aNleg=isn — Zn?oo aneg-ien

X _na—jQ@n _ o0 j N o0 —jQ\n
+Zn:0ae _Zn:l(ae) +ano(ae)

023 ae® 1 (D.20) 1-— a?

. . . real-valued
1—ae19+1—ae*1Q 1—-2acos2 + a2

(E3.3.1)

whose magnitudes with a = 0.5 and +0.8 are depicted in Fig. 3.3.

Example 3.4 DTFT of the Unit Sample (Impulse) Sequence
For the impulse (unit sample) sequence 5[N], we can apply Eqg. (3.1.1) to get its
DTFT as

D) =) sne’™=snel ™| =1 (E3.4.1)

As with the continuous-time case (Eq. (E2.6.1) in Example 2.6), this implies that a
discrete-time impulse signal has a flat or white spectrum, which is evenly distributed
over all digital frequencies.

(cf.) Very interestingly, applying the IDTFT formula (3.1.3) to (E3.4.1) yields a
useful expression of the unit sample (impulse) sequence.

19 1 |
a[n](?’és’z | b@ye N 4o

€341 1 /” L ei g 39 el _ g-imn (022) sinnx
-

E3.4.2
2 27 n ()

136 3 Discrete-Time Fourier Analysis

B,

71'

! \g[n]

g=L G(Q)
T2
-9~ AR ‘\A AN -9~ n —2m 2 Q
+ 27r\i w0 a2 2278 —27*B -B 0 B -27-B —27+B
"B B B B

(a) The impulse response of an ideal LPF (b) The frequency response of an ideal LPF

Fig. 3.4 The impulse response and frequency response of an ideal LPF

Example 3.5 IDTFT of an Ideal Lowpass Filter Frequency Response
Let us consider the frequency response of an ideal lowpass filter (LPF) depicted
in Fig. 3.4(b):

1 for|Q—-2mx| < B < 7 (m: aninteger)

(E3.5.1)
0 elsewhere

G(Q) = {

We can take the IDTFT (inverse discrete-time Fourier transform) (3.1.3) to get the
impulse response of the LPF, which is shown in Fig. 3.4(a), as follows:

13 1 B 4 (E35.1) <
— —1 Q (3é3)_/ Q jQn JBn —jBn
gln] = 7 {G()} o _BG(yel*dq 03 Zan(—e =0
_ SinB) _ B <@> (E3.5.2)
N T s

3.1.3 DTFT of Periodic Sequences

In analogy with the arguments in Sect. 2.3 for deriving Eqg. (2.3.2) as the generalized
CTFT of continuous-time periodic functions, we begin with applying the IDTFT
formula (3.1.3) to an impulse train type spectrum

X(Q) = Zi‘:’_m 278(Q2 — Q0 — 27 1)

to get a complex sinusoidal sequence as

(L3 1

X(R) el "dQ
27T 27

x[n] = FH{X(Q)}

_ / 5(Q — Qo) el 2 dQ M gi 2o
2

This implies the following DTFT relation:

el L x(@) = Zi‘” 278(Q — Qo — 27 1) (3.15)
=—00

3.1 Discrete-Time Fourier Transform (DTFT) 137

Example 3.6 DTFT of a Constant Sequence

Let us consider a constant sequence c[n] = 1. Noting that this is a kind of
periodic function obtained by substituting 2o = 0 into the LHS of DTFT relation
(3.1.5), we can substitute 2o = 0 into the RHS of that DTFT relation to obtain the
DTFT of c[n] = 1l as

F o .
=1 & CE@= Zi:_oo 278(Q — 27 i) (E3.6.1)

Example 3.7 DTFT of a Sine/Cosine Sequence

(@) For sin(Qon) (D'zzz)(ej Qon _ g=i%M)/j2 we use Eq. (3.1.5) to get its DTFT as

sin(Qon) & j ZZW (5(2 + Q0 — 271) — 8(R — Qo — 27 1)) (E3.7.1)

(b) For cos(S2on) (D'=21)(ej Qon 4 e~ i%%N) /2 we use Eq. (3.1.5) to get its DTFT as
F 9] . .
cos(Qon) < Zi_, (8(22 + Qo — 27i) + 8(Q — Qo — 27i)) (E3.7.2)

Example 3.8 DTFT of the Unit Step Sequence

Similarly to Example 2.8 for deriving the CTFT of the unit step function, we first
decompose the unit step sequence ug[n] into the sum of an even sequence and an
odd sequence as

Us [N] = ue[N] 4 ug [N] (E3.8.1)

where 1 1
o) = S(us] + us) = >+ 3 [n]) (E38.2)
o 1] = (s [— us[-1) = Zsign() (E383)

Then we can take the DTFT of the even and odd parts as

Uel®) = F{ Ue]} = %f{a[n]}w{%}

(E3.4.1),(E36.1) 1 00 .
= S+7 Zizfooa(sz —27i) (E3.8.4)

Uo(@) = Fluolil) = 3 (Flus [} — Flus [-n1))
1 1

1 00 . - - 00 : .
_ = —jen —jen) _ — —]Q2n _ 4] en
=3 (anl le > le) =3 PBANC el o

< e l® el®)(D._ZO) —jsinQ

023 1
1—eie 1-—ei® 2(1 —cosQ)

2

(E3.8.5)

138 3 Discrete-Time Fourier Analysis

Now we add these two results to obtain the Fourier transform of the unit step
sequence as

f{us[n]}=%(

g i® 1
1—e*i9jL l—ei®

)+%+n Y @ —2ri)

1 o0 _
= 1_eia 7 Zi?oo 8(Q —2mi) (E3.8.6)

3.2 Properties of the Discrete-Time Fourier Transform

As with the continuous-time Fourier transform (CTFT), there are many properties
of DTFT that provide us with further insight into the transform and can be used
for reducing the computational complexity associated with it. Noting that there are

striking similarities with the case of CTFT, we will simply state the properties unless
their derivations and interpretations differ from those with the continuous-time case.

3.2.1 Periodicity

Since the DTFT X() defined by Eq. (3.1.1) is a function of el€, it is always
periodic with period 27 in Q:

X(2) = X[e!] = X(2 + 2mw) for any integer m (3.2.1)

(cf.) The periodicity lets us pay attention to the DTFT only for its one period, say,
-t <Q<m.

3.2.2 Linearity
With F{x[n]} = X(2) and F{y[n]} = Y(L2), we have

ax[n] +by[nl & aX(Q)+bY(Q), (3.2.2)
which implies that the DTFT of a linear combination of many sequences is the same
linear combination of the individual DTFTs.
3.2.3 (Conjugate) Symmetry

In general, the DTFT has the time reversal property:

FIX-n P2 S xfenjei o TET S ymje (M Ox(-0)

x[-n] & X(- Q) (3.2.3)

3.2 Properties of the Discrete-Time Fourier Transform 139

In case x[n] is a real-valued sequence, we have

(3.11)

X2 =0 Y xinjel C9n
(@212 Z:i_oo x[n] e~ e = X*(Q) (complex conjugate of X())
or equivalently,
Re{X(=)} +] Im{X(—)} = Re{X(£2)} —] Im{X(2)};
IX(=Q)I£X(=2) = [X(2)]£ - X(R) (3.2.4)

This implies that the magnitude/phase of the DTFT of a real-valued sequence is an
even/odd function of frequency .
Also in analogy with Eq. (2.5.5) for the CTFT, we have

even and real-valued Xe[n] Z Re{X(€2)} even and real-valued (3.2.52)

odd and real-valued x,[N] Z j Im{X(£2)} odd and imaginary-valued (3.2.5b)

3.2.4 Time/Frequency Shifting (Real/Complex Translation)

The DTFT has the time-shifting and frequency-shifting properties as
x[n—n] & X(Q)e ™M = X(Q)/ —m Q (3.2.6)

x[nlelan & x(e - o)) (3.2.7)
3.2.5 Real Convolution

The DTFT has the convolution property
F
y[n] = x[n] * g[n] < Y(R2) = X(R) G(R) (3.2.8)

which can be derived in the same way with Eq. (2.5.11). This is very useful for
describing the input-output relationship of a discrete-time LTI system with the input
x[n], the output y[n], and the impulse response g[n] where G(2) = F{g[n]} is
called the frequency response of the system.

3.2.6 Complex Convolution (Modulation/Windowing)

In analogy with Eq. (2.5.14) for the CTFT, the DTFT also has the complex convo-
lution (modulation) property as

1
2
where X denotes a circular or periodic convolution with period 27.

T

y[n] = x[n] m[n] & Y(Q) = — X(Q) * M) (3.2.9)

140 3 Discrete-Time Fourier Analysis

Example 3.9 Effect of Rectangular Windowing on the DTFT of a Cosine Wave

From Eqgs. (E3.7.2) and (E3.1.2), we can write the DTFTs of a cosine wave
x[n] = cos(€20n) and an even rectangular pulse sequence r,,.,[n] of duration
2M +1as

X(2) = DTFT{cos(2n)}

€12 Zio_o_ (B5(Q + Qo —271) +8(Q — Q0 —27i)) (E3.9.1)

, , 12) Sin(Q(2M +1)/2
Ropy11(2) = DTET{rpy iy E22 SN an(g g)/2) (E3.9.2)

We can use the complex convolution property (3.2.9) to find the DTFT of a
rectangular-windowed cosine wave y[n] = cos(S2on)r,,,[n] as

@29 1

Y(€) = DTFT{y[n]} = DTFT{cos(Qon)roy .1 [N]} "=" 5—X(Q) * Rom1(R)
(€391 1 00 . . ,
=" Zi:_w (B(Q2 + Qo —27i) +8(2 — Qo —27 |));T Rov+1()
031

=" 2 (Rowa (@ + Q0 = 2 1) + Ry 4 (R — Q0 — 27 1))

€392 1 (sin((Q + Qo — 27 i)(2M +1)/2)
- E(Sin((Q + Qo —271)/2)

sin((Q — Qo — 27 1)(2M + 1)/2)> (E3.9.3)

sin((2 — Qo —271)/2)

which is depicted together with X(£2) (E3.9.1) and R, ,(2) (E3.9.2) in Fig. 3.5.
Compared with the spectrum X(2) of the cosine wave (Fig. 3.5(b1)), the spectrum
Y (€2) of the rectangular-windowed cosine wave (Fig. 3.5(b3)) has many side lobe
ripples (with low amplitude) besides the two main peaks, which is interpreted as the
spectral leakage due to the rectangular windowing.

Example 3.10 Impulse Response and Frequency Response of an FIR LPF (Lowpass
Filter)

We can use Eq. (E3.5.2) to write the impulse response of an ideal LPF with
bandwidth B = /4 as

(e35.2) sin(Bn)

gln] =

1
= Jsinc (2) (E3.10.1)
B=nr/4

Tn

which has an infinite duration so that it cannot be implemented by an FIR filter.
Thus, to implement it with an FIR filter, we need to truncate the impulse response,

3.2 Properties of the Discrete-Time Fourier Transform 141

X[n] = cos(gn) Time |Frequency
Ehd b b] doman|domain ‘ xm)‘ il ‘ ‘
SR TP T 1 wexe Lo L L1 | g
(al) A discrete—time cosine signal x[n] . | . (b1) The DTFT spectrum X(Q) of x[n]
L Tl] 0
T vl SRaall| Ry)
-20 -10 0 10 20 i i v | e >0
(a2) A discrete-time rectangular signal r3y,,,[n] !l Il (b2) The DTFT spectrum Ry, [Q] of F,y,,[n]
Y1) = cos(Qqn) . [n] yinl & vy e
-20 -10 l_l] o] 10 20" i . . 0 (o0
(a3) A rectangular—windowed cosine signal y[n] (b3) The DTFT spectrum Y (Q) of y[n]

Fig. 3.5 Effect of rectangular windowing on the DTFT spectrum

say, by multiplying the rectangular window

wn] = 1 for—=3 <n <3 (E3.102)
0 elsewhere
whose DTFT is
1.2) SiN(7€2/2
w(e) Ed SnU</2) (E3.10.3)
sin(2/2)
Then we obtain the windowed impulse response of an FIR LPF as
9w[n] = g[n] wln] (E3.10.4)
whose DTFT is
2. 1
G.,(Q) 629 ZG(Q) * W(Q) (E3.10.5)
complex convolution property 277 27

This is the frequency response of the FIR LPF. Figure 3.6 shows the impulse and
frequency responses of the ideal and FIR LPFs together with the rectangular window
sequence and its DTFT spectrum.

(cf.) Note that the frequency response of the FIR LPF (Fig. 3.6(b3)) has smooth
transition in contrast with the sharp transition of the frequency response of
the ideal LPF (Fig. 3.6(b1)).

We can run the following program *“sig03e10.m” to plot Fig. 3.6 and compare the
two DTFTs of the windowed impulse response g;[n], one obtained by using the
DTFT formula (3.1.1) or the MATLAB routine “DTFT() ” and one obtained by

142 3 Discrete-Time Fourier Analysis

1

0.25 T
gn] Time |Frequency
domain| domain G(Q)
B=n/4
10 0 10 n T e Pt

(al) Ideal LPF impulse response

g (b1) Ideal LPF frequency response
glnj<>G(Q)

1 6,

H‘HH) X < * N
g VAW
0 n wn]<=>W(Q) Q

M [=2e\] =7 \J o \J "= \J2r |

-10 0
a2) Rectangular window sequence
(@2) 9 q I | 1/|2|” (b2) Spectrum of rectangular window

1
0.25 F
gwln] gun] <> Gy (Q) Gy (Q)
Il .
1% 0 o n T 0 G zr 9
(a3) FIR LPF impulse response (b3) FIR LPF frequency response

Fig. 3.6 Effect of windowing on the spectrum or frequency response

using the circular convolution (E3.10.5) or the MATLAB routine
“conv_circular()”.

%i g03e10. m

% Fig. 3.6: Wndowi ng Effect on Inpul se/ Frequency Response of an ideal LPF
clear, clf

n= [-20: 20]; g= sinc(n/4)/4;

N=400; f=[-400:400]/N +1le-10; We2*pi *f;

gl obal P D

D=pi / 2; P=2*pi; G=rectangul ar wave(W;

subpl ot (321), stem(n,g,’.’), subplot(322), plot(f,Q

Me3; wdw= [zeros(1,20-M ones(1,2*M+l) zeros(1,20-M];

Wiw= DTFT(wdw, W -20); % DTFT WAwW(W of wdw{n] - Appendix E for DTFT
Wiwt = sin(W(2*M+1)/2)./sin(W2); %Eq.(E3.1.2)

di screpancy_bet ween_ DTFT_and_E3_1.2 = nor m(Wiw Wiw.t)

subpl ot (323), stem(n,wdw,’.’), subplot(324), plot(f,real (Wiw))

gw= g. “wdw

Gn= DTFT(gw, Wn(1)); % DTFT spectrum GMW of gwfn]

GM.1P= conv_circul ar (G Wiw, N) ;

di screpancy_bet ween_ci r conv_and_DTFT= nor n{ GM 1: N) - GA.1P) / nor m(GA.1P)
subpl ot (325), stenm(n,gw,’'.")

subpl ot (326), plot(f,real (Gn)), hold on

plot(f(1:N),real (Gn1P), 1)

function z=conv_circular(x,y, N

% Circular convolution z(n)= (1/N) summ0"N-1 x(m) *y(n-m

if nargin<3, N=min(length(x),length(y)); end

x=x(1:N); y=y(1:N); ycirculated= fliplr(y);

for n=1: N
ycirculated= [y-circulated(N) ycirculated(1:N1)];
z(n)= x*y_circulated /N,

end

3.2 Properties of the Discrete-Time Fourier Transform 143
3.2.7 Differencing and Summation in Time

As with the differentiation and integration property of the CTFT, the DTFT has the
following differencing and summation properties:

x[n] — x[n —1] 4 1 - e X(Q) (3210
Zf::—oo x[m] = x[n] * us[n] &

T o a X @+ 7X(O) Z _d@—2mi) (3211

3.2.8 Frequency Differentiation

By differentiating both sides of the DTFT formula (3.1.1) w.r.t. 2, we obtain

_inxn] e jen

dX(Q) (3.L1) Z

which yields the frequency-differentiation property of the DTFT as

Z . dX(£2)
dQ

nx[n] < (3.2.12)

This means that multiplication by n in the time domain results in differentiation
w.r.t. © and multiplication by j in the frequency domain.

3.2.9 Time and Frequency Scaling

In the continuous-time case, we have Eq. (2.5.21) as

x(at) & ITlll X (g)

However, it is not so simple to define x[an] because of the following reasons:

- If ais not an integer, say, a = 0.5, then x[0.5n]|,_; = X[0.5] is indeterminate.
- If ais an integer, say, a = 2, then it does not merely speed up x[n], but takes the
even-indexed samples of x[n].

Thus we define a time-scaled version of x[n] as

x[n/K] forn = Kr (a multiple of K) with some integer r

3.2.13
0 elsewhere ()

Xk)[n] =

144 3 Discrete-Time Fourier Analysis

which is obtained by placing (K — 1) zeros between successive samples of x[n].
Then we apply the DTFT formula (3.1.1) to get

(.11 00 _jon (213 o0 —jQKr _
Xeo(@) =" "~ xw[nle = > xle = X(KQ)

with n=Kr

(3.2.14)
3.2.10 Parseval’s Relation (Rayleigh Theorem)
If x[n] has finite energy and the DTFT X(€2) = F{x[n]}, then we have

S =5 [ix@rde (3215)

where | X(2)|? is called the energy-density spectrum of the signal x[n].

3.3 Polar Representation and Graphical Plot of DTFT

Similarly to the continuous-time case, we can write the polar representation of the
DTFT as

X(£2) = IX(2)I£X(2)
If x[n] is real, then its DTFT X(€2) = F{x[n]} has the following properties:

- X(2) is periodic with period 27 in Q.

- The magnitude | X(£2)| is an even function of € and is symmetric about 2 = mn
(m: an integer).

- The phase £ X(2) is an odd function of € and is anti-symmetric about Q = mn
(m: an integer).

Note that all the information about the DTFT of a real-valued sequence is contained
in the frequency range [0, 7] since the portion for other ranges can be determined
from that for [0, 7] using symmetry and periodicity. Consequently, we usually plot
the spectrum for 0 < Q < 7 only.

Remark 3.3 Phase Jumps in the DTFT Phase Spectrum

From the phase spectra shown in Fig. 3.1(c1)—(c2) and 3.7(c1)-(c2), it can be
observed that there are two occasions for which the phase spectrum has discontinu-
ities or jumps:

- A jump of +27r occurs to maintain the phase value within the principal range of
[—m, +7].
- A jump of £ occurs when the sign of X(£2) changes.

3.3 Polar Representation and Graphical Plot of DTFT 145

The sign of phase jump is chosen in such a way that the resulting phase spectrum
is odd or antisymmetric and lies in the principal range [—m, +m] after
the jump.

Remark 3.4 The DTFT Magnitude/Phase Spectra of Symmetric Sequences

(1) Especially for anti-symmetric sequences, their magnitude spectrum is zero at
Q = 0 (see Fig. 3.7(b1)—(b2)). This implies that the DC gain of digital filters
having an anti-symmetric impulse response is zero so that they cannot be used
as a lowpass filter.

(2) As for the sequences that are even/odd about some point, their DTFTs have
linear phase —M 2 (proportional to the frequency) except for the phase jumps
so that the DTFT phase spectra are piecewise linear. Also, symmetric/anti-
symmetric sequences, that are just shifted versions of even/odd ones, preserve
linear phase because shifting does not impair the linear phase characteristic
(see Eg. (3.2.6)). This is illustrated by Examples 3.1, 3.11, and 3.12 and will be
restated in Remark 4.8, Sect. 4.6.

Example 3.11 DTFT of an Odd Sequence
For an odd sequence

n= -4 -3 -2 -10 1 4 5
xaf= -0 12 10-1-2-100: (E3.11.1)
2 2
xa(D_M Xl[”]le(“T)|T=1 %[n] [1
-5 ko []75 1113
N -1
_2 -2
(al) An odd sequence (a2) An anti-symmetric sequence
6+
| %@
e 27 —I7r 0 7Ir 2 @
(b1) The CTFT/DTFT magnitude spectra of x,(t)/x,[n] (b2) The DTFT magnitude spectrum of x,[n]
2X,(Q) £%,Q) NE h
/2
e O B N\
L2 7 _‘»mzl_l Kl g T \1
—h

(c1) The DTFT phase spectrum of x4[n] (c2) The DTFT phase spectrum of x,[n]

Fig. 3.7 The DTFT spectra of an odd sequence and an anti-symmetric sequence

146 3 Discrete-Time Fourier Analysis

we have its DTFT as

o0 .
Xl(Q) = Zn:—oo xl[n] g-lon
— 32 _ i3 4 (el _ e i22) 1 oi2 _ g 190 jo4in3q)

+ j4sin29) + j2sin(@) %22 4sin(2Q) (1 + cos Q) e™/? (E3.11.2)

Noting that the continuous-time version of this sequence is apparently the sum of
two opposite-sign shifted triangular pulses, we can compute its CTFT spectrum as

(E2.3.4) with A=2,D=2
<>

x1(t) = 2(hp(t +2) — Ap(t —2)) (2.5.6) with t;=2

X1(w) = 4 sinc? (;) (€12° — e7122) — |8 sin(2w)sinc? (;) (E3.11.3)

This sequence and its DTFT magnitude/phase spectra are depicted in Fig. 3.7(al)
and (b1)/(cl), respectively. The CTFT magnitude spectrum (E3.11.3) (divided by
sampling interval or period T) is plotted (in a dotted line) together with the DTFT
magnitude spectrum in Fig. 3.7(b1) for comparison.

Example 3.12 DTFT of an Anti-Symmetric Sequence
For the sequence which is anti-symmetric about n = 1.5

n= -2-1012 345

X[n=---0 0 -12-2100--- (E3.12.1)

we have its DTFT as

X2(Q) = Z:O Xo[n]e 1 = —1 42719 _2e7 1% | g7I30
=—00
= —(1—e ¥ 4271 ? — 12

— _e—jSQ/Z(ejSQ/Z _ e—jSQ/Z) + 2e—j3§2/2(ej Q2 e—j Q/Z)

€295 g-i3972 (2 sin <%) —sin <3%))
—2 (2 sin (%) _sin (3%)) / (-3% + %) (E3.12.2)

This sequence and its magnitude/phase spectra are depicted in Fig. 3.7(a2) and (b2)/
(c2), respectively.

3.4 Discrete Fourier Transform (DFT) 147
3.4 Discrete Fourier Transform (DFT)

Before going into the DFT, let us consider the computational difference between
the CTFS or CTFT for a periodic or an aperiodic continuous-time function x(t) and
the DTFT for the discrete-time sequence x[n] consisting of the samples of x(t).
Since the CTFS (2.1.5b) and CTFT (2.2.1a) involving a continuous-time integral
can be computed analytically for only x(t) described by some basic functions and
require a numerical integration method for general finite-duration time functions,
they are not practical when we need to find the spectra of real-world signals. The
DTFT (3.1.1) is computationally advantageous over the CTFS or CTFT since it does
not involve any continuous-time integration. However, it can be computed, say, by
using the MATLAB routine “DTFT() ”, only for finite-duration sequences unless
the sequence is expressed by some basic sequences such as an exponential or sinc
one. Therefore in practice, signals are truncated in various ways to obtain a set of
finite number of samples [S-2]:

- Atransient signal is assumed to be zero after it decays to a negligible amplitude.

- A periodic signal is sampled over an integral number of periods.

- A random signal is multiplied by a “window” of finite duration (short-time
Fourier transform).

In any case, suppose we have a causal, finite-duration sequence x[n] containing M
samples. Then the DTFT formula (3.1.1) becomes
. N—1 .
_ jQ1 — _ —jen
X(Q) = X[l %] = F{x[n]} = ano x[n]e (3.4.1)

where N is set to be greater than or equal to M (the number of samples). Although
it is easier to compute than the CTFS, CTFT, or the original DTFT, it may still
annoy the computer because the frequency 2 takes continuous values for all that
it is conventionally called the “digital” frequency. That is why we define and use
another Fourier technique, called the N-point DFT (discrete Fourier transform), as
follows:

N-1 . N—1
— _ —j2rkn/N __ kn
X(k) = DFTN{X[N]} = E o x[n]e = E o x[NJWy (3.4.2)
with Wy = e 1%/Nfork=0: N —1

This is an N-point discrete-frequency sequence obtained by sampling one period of
the finite version of DTFT, Eq. (3.4.1), conventionally at

2
Q:onsznforOEng—l

where N is called the DFT size and ¢ = 27/N the digital fundamental or res-
olution frequency just like wy = 27/P in the CTFS. Note that these N frequency

148 3 Discrete-Time Fourier Analysis

points are equally-spaced over the digital frequency range [0, 27) (excluding the
upperbound 27r). Also we can write the IDFT (inverse discrete Fourier transform)
formula as

x[n] = IDFTx{X(K)} = %ZL: X(k) &2k

_ 1 N—1 —kn A
=3 Zk:O XKWk forn=0:N—-1 (3.4.3)

Here, by substituting Eq. (3.4.2) into Eq. (3.4.3), we are going to demonstrate the
validity of the IDFT formula, which amounts to verifying that the set of DFT sam-
ples {X(k),k = 0 : N — 1} conveys all the information contained in the set of
time-domain samples {x[n], n = 0 : N — 1}, that is, x[n] can be recovered perfectly
from X(Kk):

X[2 X W O S S] i

(343) N

k(m n)
-y Ox[m](S W)
N-1 O.K.
= Zm_o x[M]S[(m — nymod N1 =" x[n]
(a mod b oramodulo b : the remainder after division of a by b)
where we have used the fact that
i ZNfl Wk(mfn) _ i Z’\Fl e7j2nk(m7n)/N
N k=0 N N k=0

_ 1 ifm—'n=iN(i . aninteger) (3.4.0)
0 otherwise

There are two observations about the DFT pair (3.4.2) and (3.4.3):
- The DFT sequence X(K) is periodic in k with period N:
(84.2) —j2 (k+mN)n/N
X(k + mN) Zn: x[n]e

— Z X[n] e jann/Ne—Iann (3é2) X(k) (345)

3.4 Discrete Fourier Transform (DFT) 149

- The IDFT sequence x[n] is periodic in n with period N:

X [n+ mN] (43) % :—_ol X (k) erK(n+mN)/N
1 N-1 . _ 4.
= N Zk_o X(k)ejzﬂkn/Ne]Zﬂkm(gés)x[n] (346)

The first observation (3.4.5) is no wonder since the DFT X(K) inherits the periodicity
of the DTFT X(2) as X(k) originates from the samples of X(2) over its period. In
contrast, the second observation is very surprising since there is no reason to believe
that any sequence x[n] is periodic and that with period equal to the DFT size N,
which can be arbitrarily chosen as long as it covers the duration of x[n]. Because
of this illusory periodicity, the shift involved with the time shifting property and the
convolution related with the real convolution property of the DFT turn out to be
not linear, but circular as will be discussed subsequently in Sects. 3.4.1 and 3.4.2.
This headache is a kind of cost that we should pay in return for the computational
convenience of DFT, which is discrete in both time and frequency so that it needs
only multiplication and summation instead of integration. If only the sequence x[n]
is really periodic with period N, the DFT is a perfect Fourier technique for analyzing
the frequency characteristic and thus it might well be referred to as the discrete-time
Fourier series (DTFS). In this context, when we want to emphasize the periodicity
of DFT, we call it DFS (discrete Fourier series) pair and write the DFS pair as

X(K) = DFSy (% [N]} = Zn': K[e 2N Z::‘ol RNWE (34.7)

1
N

N—-1 ~) 1 N—-1 ~
j27kn/N __ —kn
E ko X(k)e = _N E o X(K) WN

(3.4.8)

%[n] = IDFSN{X(K)} =

3.4.1 Properties of the DFT

The DFT has properties similar to those of the CTFS such as the real convolution
property (2.5.13) since the DFT regards a time-domain sample sequence x[n] as one
period of its periodic extension (with period equal to the DFT size N) that can be
described by

x[n] = Xn[n] rn[n] (34.9)

where Xn[n] is the periodic extension of x[n] with period N and ry[n] the rectan-
gular pulse sequence with durationofn=0: N — 1:

%[n] = Z:ﬂo x[n+mN] = x[n mod N] (3.4.10a)

1 for0<n<N-1
rn[n] = us[n] — us[n — N] = 0 elsewh;re - (3.4.10b)

150 3 Discrete-Time Fourier Analysis

On the other hand, the DFT sequence is born from the samples of the DTFT and
thus it inherits most of the DTFT properties except that the real translation and
convolution in the time domain are not linear, but circular as with the CTFS. There-
fore we discuss only the two properties and summarize all the DFT properties in
Appendix B.

3.4.1.1 Real/Complex Translation — Circular Shift in Time/Frequency

Figure 3.8(a), (b1), (b2), and (d) show a sequence x[n] of finite duration N = 4, its
periodic extension Xy[n], its shifted version Xy[n—M] (M = 2), and its rectangular-
windowed version Xn[n — M]rn[n], respectively. You can see more clearly from
Fig. 3.8(a), (c1), (c2), and (d) that Xx[n — M]rn[n] is the circular-shifted (rotated)
version of x[n] where Fig. 3.8(c1) and (c2) show the circular representation of the
finite-duration sequence x[n] and its shifted or rotated version displayed around the
circle with a circumference of N points. With this visual concept of circular shift,
we can write the (circular) time-shifting property of DFS and DFT as

Xn[n — M] (circular shift) B W,ﬁ’”‘f((k) (3.4.113)
Xn[n — M]rn[n] (one period of circular shift) el WK X (k) (3.4.11b)

We can also apply the duality between the time and frequency domains to write
the (circular) frequency-shifting property of DFS/DFT:

W,\]'-”XN [n] P X(k — L) (circular shift) (3.4.12a)
W,q“‘x[n] iy X(k — L)rn[K] (one period of circular shift) (3.4.12b)
x[n]
Circular representation a— |
l I Iy T =2 n=0
! n
01 N-1 n=N-1
@ (c1)
*Periodic repetition Circular shift *
Xy[n]
ITT“Tt]ITT“T!“Tt N n=2 n=0
01 N-1 n=N-1
(b1) (c2)
Linear shift Linear representfltion *
Xy[n-2] Taking one period *Xn[n-2] ry[n]
(Rectangular windowing)
!]Tr I]T hr ITT] N [l N
01 N-J 01 N-1
(b2) (d)

Fig. 3.8 Circular shift of a sequence by 2 samples

3.4 Discrete Fourier Transform (DFT) 151

3.4.1.2 Real/Complex Convolution — Circular Convolution
in Time/Frequency

Let us consider two sequences x[n] and y[n], both of duration M < N and each
with DFT X(Kk) and Y (K), respectively. Also let us denote the periodic extensions of
the two sequences and their DFSs by X[n], ¥[n], X(k), and Y (k), respectively. Then
we can write the product of the two DFSs X (k) and Y (k) as

~ N N-1 _ K
X(k) = DFSn(& [l = D K[m] Wy"
S N . N-1 K
Y(k)=DFSn(y = JIrIwW§
ava =SS N e v k(m-+r)
XY= >y XImIYIrTwWy (34.13)
and compute its IDFS (inverse discrete Fourier series) as

@48 1 Lo T ey Wk
=75 ey XYW

Ly Y y[](ZKNJWE“‘“*"”)
S S k) Y Il — (n— m)]

(11.32) Z : %[m]§y[n—m] = X[n] 9 yn] (3.4.14)

IDFSN {X(K)Y (k) }

where * denotes the circular or periodic convolution sum with period N. This
implies the real convolution property of DFS/DFT as
i[n]ﬁ ¥ [n] (circular convolution) N X(K)Y (k) (3.4.15a)

()”([n]>'\k‘ § [n]) rn[n] (one period of circular convolution) Py X(kK)Y(k) (3.4.15b)

In duality with this, we can interchange the time and frequency indices to write the
complex convolution property as

%] §[n % - Z;} X(i)Y(k—i)= %f((k)ﬁ\?(k) (circular convolution)
(3.4.163)
x[n]y[n] < iy lil <5((k) : \?(k)) rn [K] (one period of circular convolution)
(3.4.16b)

152 3 Discrete-Time Fourier Analysis

Note that the shift of a periodic sequence along the time/frequency axis actually
causes a rotation, making the sequence values appear to wrap around from the
beginning of the sequence to the end.

3.4.2 Linear Convolution with DFT

As discussed in the previous section, circular translation/convolution is natural with
the DFT/DFS. However, in most applications of digital signal processing, linear
convolution is necessary. As will be seen later, very efficient algorithms called FFT
are available for computing the DFT of a finite-duration sequence. For this reason,
it can be computationally advantageous to use the FFT algorithm for computing a
convolution in such a way that the linear convolution corresponds to a single period
of a circular convolution.

Specifically, suppose the signals x[n] and y[n] are of finite duration Ny and Ny,
and defined onn = 0: Ny —landonn = 0 : Ny — 1, respectively. Then, the
procedure for computing the linear convolution z[n] = x[n] *« y[n] is as below (see
Fig. 3.9):

0) Extend the given sequences x[n] and y[n] to the duration of N > Ny + Ny, — 1
by zero-padding where Ny + Ny — 1 is the expected length of the linear
convolution of the two sequences (see Remark 1.5(1)).

(cf.) Zero-padding a sequence means appending zeros to the end of the

sequence.)
1) Compute X(k) = DFTn({x[n]} and Y (k) = DFTn{y[n]}. (3.4.17a)
2) Multiply the two DFT sequences Z(k) = X(k)Y (k)
fork=0: N —1. (3.4.17b)
3) Compute z[n] = IDFTn{Z(k)} where z[n] = x[n] * y[n]. (3.4.17¢)

Example 3.13 Linear Convolution Using the DFT
We want to find the linear convolution z[n] = x[n] * y[n] of the two sequences
depicted in Fig. 3.10(a), where

1 forn=0 0.5 forn=0
X[n] =305 forn=1 and y[n]=31 forn=1 (E3.13.1)
0 elsewhere 0 elsewhere
x[n] | Zero-padding N—point | X(K)=DFTy {x[n]}
to duration N DFT
length N, Z(k) =X(K)Y(k —poi
NN+ Ny—1 (k) = X(k)Y (K) NDIF;?I'mt_>Z[n]
y[n] — Zero-padding N — point
to duration N DFT | Y(k)=DFTy{y[n]}
length N,

Fig. 3.9 Linear convolution using the DFT

3.4 Discrete Fourier Transform (DFT) 153
(&) Time-domain approach (Fig. 3.10(a))

zZ[nN]=0forn<0orn>3(=Ny+Ny—-1=2+4+2-1)
z[0] = x [0] y[0] + x[1] y[-1] = 0.5
z[1] = x[0] y[1] + x[1] y[0] = 1.25 (E3.13.2)
z[2] = x[0] y[2] + x[1] y[1] = 0.5
z[3] = x[0] y[3] + x[1] y[2] = O
(b) Frequency-domain approach with 2-point DFT (Fig. 3.10(b))
We can use the DFT formula (3.4.2) with N = 2 to get the DFTs of the two
sequences as
Xa(K) = Z x[n]e j27kn/2 — 1 4+ 0.5(—1)k = 1.5, 05 for k=0,1
Yao(k) = Y2t y[nle 127k/2 — 054 (-1)k =15, —05 for k=0, 1
so that

Zo(K) = Xo(K) Yo(k) = 2.25, —0.25 for k=0, 1 (E3.13.3)

Then we use the IDFT formula (3.4.3) to get

121 :
_ = j2nkn/2
z[n] = > E o Zy(K)e

Z%(ZZ(O)-F(—l)nZz(l)):l, 125 for n=0,1 (E3.13.4)

l><[r1] X3[n]
0.5 0.5
h I‘I{ ‘I{ hhm I h h h MM
01 5-4-3-2-10 1 4567 5-4-3-2-10 1234567
y[n] ¥2[n] AL
1 1 1
0.5 0.5 0.5
RS I 1 1 R O A
01 5-4-3-2-10123 4567 5-4-3-2-101234567
z[n]=x[n]#y[n] 1.25 Z,[n] z,[n]
1.25 1 1.25
05 ‘ ‘ ‘ ‘ ‘ ‘ 05 | 05
[, |1 o LT,
213 456

4 7

012 5-4-3-2-110 1|2 3 4 5 6 7 -5-4-3-2-10 1
(a) Linear convolution (b) Circular convolution with 2-point DFT (c) Circular convolution with 3-point DFT

Fig. 3.10 Linear and circular convolutions with DFT

154

(©

(d)

3 Discrete-Time Fourier Analysis

This corresponds to one period of the periodic extension of z[n] (obtained in part
(a)) with period N = 2 and is not equal to z[n]. This illustrates that time-aliasing
effect might occur if the DFT size N is not sufficiently large.

Frequency-domain approach with 3-point DFT (Fig. 3.10(c))
We can use the DFT formula (3.4.2) with N = 3 to get the DFTs of the two
sequences as

3-1 . .
— —j27kn/3 __ —j2rk/3
X3(K) = ano x[n]e =1+05e
=15, 14056722 1405e 47 fork=0, 1, 2
_ 31 —j2mkn/3 _ —j2rk/3
Y (k) = ZH y[n]e™! =05+¢!
=15 05+e /7B 054+ 43 fork=0, 1, 2
so that
Z3(K) = X3(k)Ys(k) = 0.5 + 1.25¢~127/3 0 5g147k/3 (E3.13.5)
We can match this with the IDFT formula (3.4.3) to get
z3[n] =05, 1.25, 0.5 forn=0, 1, 2 (E3.13.6)

This agrees with the linear convolution z[n] obtained in part (a) forn =0 ~ 2.
MATLAB Program

We can run the following program “sig03e13.m” to apply the above procedure
to get the linear convolution using the DFT. Note the following:

- The built-in MATLAB functions “f f t (x, N) ”and “i f ft (X, N) ” are used
to compute the N-point DFT X(k) = DFTn{x[n]} and IDFT x[n] =
IDFT N {X(K)}, respectively.

- Depending on whether the length of the sequence given as the first input
argument of “f ft (x, N) " or “i f ft (X, N) " is less or greater than the sec-
ond input argument N, the sequence will be zero-padded or truncated so that
its resulting length will be N.

- Note that, to exploit the computational efficiency of FFT (fast Fourier trans-
form), the DFT size N should be chosen as a power of two greater than or
equal to the length of the sequence.

%i g03el13. m

% Use 2-point/3-point DFT for conputing a (linear) convolution
clear, clf

x=[1 0.5]; y=[0.5 1];

z= conv(x,y) % Linear convolution

N= 3; % DFT si ze

3.4 Discrete Fourier Transform (DFT) 155

XN= fft(x,N); YN=fft(y,N);

ZN= XN. *YN;

zN= i fft(ZN) % Circular convol ution expected to agree with the |inear one
% Sonetimes, you had better take the real part of |IDFT result

% by using real (ifft(ZN)) to make sure of its being real-val ued.

(cf.) The above procedure, which is depicted in Fig. 3.9 and illustrated in
Example 3.13, paves the way to use the DFT for computing the linear
convolution of two finite-duration sequences.

Remark 3.5 How to Choose the DFT Size N in Connection with Zero Padding

(1) In computing the DFT of a given sequence x[n] of length M, we are free to
choose the DFT size N, i.e., the number of sampled frequency points over
[0, 27r) (one period of digital frequency) as long as it is greater than or equal to
M. Choosing N > M corresponds to increasing the length of x[n] by appending
it with additional zero-valued samples - padding with zeros. This procedure
called zero padding may be used to fill out the sequence length so that an
N = 2'-point FFT (fast Fourier transform) algorithm could be applied (see
Sect. 3.6) or a linear convolution of two sequences could be performed with-
out causing a time-aliasing problem (see Example 3.13). It can also be used to
provide a better-looking display of the frequency contents of a finite-duration
sequence by decreasing the digital frequency spacing (resolution frequency)
27 /N so that the discrete DFT spectrum X (k) can look close to the continuous
DTFT spectrum X(£2) (see Example 3.14).

(2) As can be seen from the DTFT formula (3.1.1), zero padding does not alter the
continuous spectrum X(£2), but just decreases the interval width between suc-
cessive discrete frequencies in the DFT spectrum. However, when the signal is
not of finite duration, zero padding can lead to erroneous results. Conclusively,
zero padding is justified only when a signal is of finite duration and has already
been sampled over the entire range where it is nonzero.

3.4.3 DFT for Noncausal or Infinite-Duration Sequence

Let us consider the DFT formula (3.4.2):

X(k) = DFT{xin]} = " " x[nJe >N fork = 0: N — 1

This is defined for a causal, finite-duration sequence x[n] so that we can cast
it into a computer program without taking much heed of the negative indices.
(C language prohibits using the negative indices for array and MATLAB does not
accept even zero index.) Then, how can we get the DFT spectrum of noncausal or
infinite-duration sequences? The answer is as follows:

156 3 Discrete-Time Fourier Analysis

- For a noncausal sequence, append the noncausal part to the end of the sequence
after any necessary zero-padding is done so that the resulting sequence can be
causal.

- For an infinite-duration sequence, set the time-duration [0, N — 1] so that the
most significant part of the sequence can be covered. To increase the DFT size is
also helpful in making the DFT close to the DTFT. Compare Fig. 3.11(b2)/(c2)
with (b3)/(c3). Also compare Fig. 3.12.1(b1) with Fig. 3.12.2(b1).

Example 3.14 DFT of a Non-causal Pulse Sequence
Consider a sequence which is depicted in Fig. 3.11(al). Shifting the noncausal
part x[—1] = 1/3 into the end of the sequence yields a causal sequence

1/3 forn=0,1, N—-1
xn [n] = (E3.14.1)
0 elsewhere

where N is the DFT size. This corresponds to one period of the periodic extension
Xn[n] (see Fig. 3.11(a2) with N = 4 and (a3) with N = 8).
Then we can compute the N-point DFT of xy[n] as

=0 -1
(342 - i 1 1 1
X (k) § XN [n]e errkn/N e]27‘[k0/N 4e J271kl/N 41 e J27‘[k(N 1)/N
n=0 ~3 3 3
1 1 . .
- (1 +e j27k/N t+e j27rk(N— 1)/N) P (1 4 e—]an/N + ej27rk/N)
~3 3
1
=3 (1 +cos(2rk/N)) fork=0:N-1 (E3.14.2)
x[n] Xyn] X4[n] Xg[n] Xg[n]
il L (e 1
>N n
-101 4 -101 345 789 -101 4 789
(al) Anoncausal sequence (a2) Periodic extension with N=4 (a3) Periodic extension with N=8
and its one period and its one period
1 1 - 1¢.
. 4-point , N 8-point ,
DTFT magnitude \ DFT magnitude \ DFT magnitude /
X4(K 4 N Xg(K;
x@)| i \ ’A<\)\ , ol \ ’s(\ﬂ ;
0 Q 0 ! v k 0 [X 1 k
0 ™ 27 0 1 2 3 0123 4567
(b1) The DTFT magnitude spectrum (b2) The DFT magnitude spectrum (b3) The DFT magnitude spectrum
00 73 273 -0 OI 1 2 3 K 1 2 I3 4 5I 6 7 -k
2r 0 j j :J l l.
I i B Sl N N
DTFT phase £X(Q2) 4-point DFT phase £X,(k) 8-point DFT phase £Xg(k)
(c1) The DTFT phase spectrum (c2) The DFT phase spectrum (c3) The DFT phase spectrum

Fig. 3.11 DTFT and DFT for a noncausal sequence

3.4 Discrete Fourier Transform (DFT) 157

Figure 3.11(b2)/(c2) and (b3)/(c3) show the magnitude/phase of this DFT with
N = 4 and those with N = 8, respectively. Note the following:

- The overlapped DTFT spectra in dotted lines, obtained in Example 3.1 and plot-
ted in Figs. 3.1 and 3.11(b1)/(cl), illustrate the fact that the DFT Xy (k) are just
the samples of the DTFT X(2) at Q@ = ko = 2nk/N for0 <k < N —1as
long as the whole duration of the sequence is covered by [0 : N — 1].

- Figure 3.11(a2) and (a3) differ in the length of zero padding performed before
appending the noncausal part to the end of the sequence. Comparing the corre-
sponding DFT spectra in Figure 3.11(b2)/(c2) and (b3)/(c3), we see that longer
zero-padding increases the DFT size and thus decreases the digital resolution
frequency o = 2r/N so that the DFT looks closer to the DTFT.

Example 3.15 DFT of an Infinite-Duration Sequence
Consider a real exponential sequence of infinite duration described by

x[n] =a"ug[n] (la] < 1) (E3.15.1)

This sequence is shown partially forn =0 : 7 in Fig. 3.12.1(al) and forn = 0 : 15
in Fig. 3.12.2(al).

(&) The DTFT of this infinite-duration sequence was obtained in Example 3.2 as

3.2.1) 1
X(R £ _— E3.15.2
@ ——3 (E315.2)
Thus we get the samples of the DTFT at 2 = k2o = 2wk/N as

!\ ---:DTFT magnitude [X(Q)]

CAnT e DFT magnitude [Xg(K)[|

1t 8-point [| [

X[OZ7] DFT \ /' !

it IS il
0 Z : ; >N 7% [— 1 Tk

(al) A part of an infinite-duration sequence (b1) The 8-point DFT X4(k) and the DTFT X(Q)

._x

Xgln] 8-point N =8-point samples of DTFT

il 1)1

0 T 21
(a2) Perlodlc extension of x[n] with perlod N=8 (b2) Samples of the DTFT X(Q) at Q=2rk/N

o

Q

Fig. 3.12.1 Relationship between the 8-point DFT and the DTFT for an infinite-duration
sequence

158 3 Discrete-Time Fourier Analysis

2. ---:DTFT magnitude [X(Q)] "\
AT e cDFT magnitude [X,(K)| /' \
1} 16-point |/ | I
{ x[0:15] DFT ‘ }
[= . {
Obe ITTTTT???!??? n 0 '[rTTT‘TTT'T'TT’TT R
0 4 8 15 0 8 15
(al) A part of an infinite-duration sequence (b1) The 16-point DFT X4 (k) and the DTFT X(Q)
4 -
1t ~ 16-point N=16-point samples of DTFT
X6[N] IDFT |
=
114 | 0
ote ?12%90000e n o2l Q
0 8 16 0 T 27
(a2) Periodic extension of x[n] with period N = 16 (b2) Samples of the DTFT X (Q) at Q =27k/N

Fig. 3.12.2 Relationship between the 16-point DFT and the DTFT for an infinite-duration
sequence

(E3.15.2) 1 _ 1
XKS) = T e = T ae 17N
1) .
= ——— with Wy = e 12"/N (E3.15.3)
1-—aWy

(b) We can use the DFT formula (3.4.2) to find the N-point DFT of x[n] for n =
0:N-1:

(3.4.2) N-1
X T=") 0 xIIW

fork=0:N-1

(E3.15.1) ZNfl ik - 1= aNWKN _1-an
=0 " TN T 1AWk 1-awg
(E3.15.4)

Comparing this with (E3.15.3) reveals the following:

- The DFT and the DTFT samples are not exactly the same for an infinite-
duration sequence, while they conform with each other for a finite-duration
sequence whose duration can somehow be covered in [0: N — 1]

- Larger DFT size N will make the DFT closer to the sampled DTFT. This can
also be seen visually by comparing Figs. 3.12.1(b1) and 3.12.2(b1).

(c) One might wonder what the time-domain relationship between the DFT X(k)
and the sampled DTFT X(kS) is for the infinite-duration sequence. This
curiosity seduces us to find the IDFT of X(k2g) as

3.4 Discrete Fourier Transform (DFT) 159

(343 1 N-1 _
xn[N] = IDFT{X(kS0)} = NZKZO X (kS20) Wik

(€3.153) 1 N-1 n 1 (023) 1 N=1 kn % ryaskr
- Nzk=o WN 1—3.W|lfj - N k=0 WN {Zrzoa W }

_ o r i N=1 ' kr—n)\ (3:44) © _niiN
Y (R W) e

@23 A" CaeN L N— 00 o
= 1—an forn=0:N-1 |;<)1 x[n] = a"ug[n] (E3.15.5)

This corresponds to one period of the periodic extension Xy [n] of x[n] with period
N and it becomes closer to x[n] as the DFT size N increases. Note the following:

- Just as the sampling of continuous signal x(t) in the time domain results in the
periodic extension of X(w) = F{x(t)} in the frequency domain (Eq. (E2.13.3)),
so the sampling of continuous spectrum X(w) or X(£2) in the frequency domain
results in the periodic extension %p(t) (of x(t) = F~}{X(w)}) or Xn[n] (of
x[n] = F~H{X(R)}) in the time domain.

- Besides, just as shorter time-domain sampling interval (T) in the sampling of
X(t) to make x[n] = x(nT) increases the frequency band on which the CTFT
X(w) = F{x(t)} is close to the DTFT X(£2) = F{x[n]}, so narrower frequency-
domain sampling interval (wo/20) in the sampling of X(w)/X(2) to make
X(kawg)/ X(kS2g) expands the time range on which Xp(t) (with P = 27 /wg) or
Xn[n] (with N = 271/€Q0) is close to x(t) or x[n].

- However short the time-domain sampling interval in the sampling of x(t) to make
x[n] may be, X(2) = F{x[n]} for —7r < @ < 7 cannot be exactly the same as
X(w) = F{x(t)} for —n/T < w < 7/T due to the frequency-aliasing unless
X(w) is strictly bandlimited. Likewise, however narrow the frequency-domain
sampling interval in the sampling of X(w)/ X(£2) to make X(kwg)/ X(k2o) may
be, the corresponding periodic extension Xp(t)/Xn[Nn] cannot be exactly the
same as x(t)/x[n] for one period of length P/N due to the time-aliasing unless
X(t)/x[n] is strictly time-limited.

Remark 3.6 The DFT for Noncausal/Infinite-Duration Sequences

The DFT pair (3.4.2) and (3.4.3) can be used to analyze the frequency character-
istic of causal, finite-duration sequences. Then, how do we deal with noncausal or
infinite-duration sequences?

(1) Foranoncausal sequence, append the noncausal part to the end of the sequence
after any necessary zero-padding is done so that the resulting sequence can be
causal.

(2) For an infinite-duration sequence, set the time-duration [0, N — 1] so that the
most significant part of the sequence can be covered. If the duration is shifted,

160 3 Discrete-Time Fourier Analysis

apply the time-shifting property to the DFT for obtaining the right phase spec-
trum. You can also increase the DFT size to make the DFT close to the DTFT,
which accommodates infinite-duration sequences.

3.5 Relationship Among CTFS, CTFT, DTFT, and DFT

3.5.1 Relationship Between CTFS and DFT/DFS

To investigate the relationship between CTFS and DFT/DFS, suppose we have a
continuous-time periodic signal Xp(t) with period P and its discrete-time version
Xn[n] = Xp(nT), which is obtained by sampling Xp(t) at the rate of N times per
period P. Since Xp(t) is a continuous-time periodic signal with period P, we can
use Eq. (2.1.5a) to write its CTFS representation as

2152 1 o0 Xelkeot PNT 1 0

=" _ = X, el 27Kt/NT
P k=—00 wo=2r/P=2x/NT NT k=—00

Xp(t)
(35.1)

Substituting t = nT into this equation and using the fact that e/27<"/N s unique
only for n mod N yields

g @5 1 G j2rknT/NT _ L1 j2mkn/N
%p(nT) =7 Zk?w Xye = N7 Zk?w Xye

(since e/ 2™"/N s unique only for n mod N)

1 N—-1 00 .
- j 2 (k+mN)n/N
= NT Do Do Xicrmie

1 N-1/1 oo)
=N 2o <? D Xk+mN>e' Zrkn/N (35.2)

We can match this equation with the IDFS/IDFT formula (3.4.8)/(3.4.3) for Xn[Nn] =
Xp(nT)
1 N-1 ~

] =& Zk=o Xn(k) el Zrk/N

to write the relation between the CTFS coefficients X of a periodic signal Xp(t)
(with period P = NT) and the N-point DFT/DFS coefficients Xy (k) of Xy[n] =
Xp(nT) as

~ 1 o0
Xn(k) = T Zm:wo Xi+mN (3.5.3)

This implies that the DFT/DFS of Xy[n] = Xp(nT) is qualitatively the periodic
extension of the CTFS of Xp(t) (with period N in frequency index k), i.e., the
sum of infinitely many shifted version of CTFS. This explains how the DFT/DFS

3.5 Relationship Among CTFS, CTFT, DTFT, and DFT 161

strays from the CTFS because of frequency-aliasing unless the CTFS spectrum
X is strictly limited within the low-frequency band of (—(N/2)wq, (N/2)wy) =
(—m/T,w/T) where the DFT size N equals the number of samples per period P
and the fundamental frequency is wg = 27/P = 27 /NT.

3.5.2 Relationship Between CTFT and DTFT

To investigate the relationship between CTFT and DTFT, suppose we have a
continuous-time signal x(t) and its discrete-time version x[n] = x(nT). As a bridge
between x(t) and x[n], let us consider the sampled version of x(t) with sampling
interval or period T as

X (t) = x(@)é7(t) (57 () = Z:o:_oo 3(t — nT) : the impulse train) (3.5.4)

Noting that x.(t) is still a continuous-time signal, we can use Eq. (2.2.1a) to write
its CTFT as

X, () P22 / x. (e et gt 29 / x(t)Z:O__ 5(t — nT)e 1etdt

oo

00 o . (1.1.25) @ .
= jot _ = jonT
= E . /_OO x(t)e 1§t — nT) dt E N x(nT)e

o0 i (3.1.1)
= anfoo X[n] €]Qn|Q:wT = Xd(Q)lﬁsz (355)

This implies that Xq4(2) = DTFT{X[n]} and X.(w) = CTFT{x,(t)} are essentially
the same and that X4(£2) can be obtained from X, (w) via a variable substitution w =
Q/T. On the other hand, we recall from Eq. (E2.13.3) that X,(w) = CTFT{x.(t)}
is expressed in terms of X(w) = CTFT{x(t)} as

2

133 1 .
F2V 3 X (o + mos) with ws = T (35.6)
m=—o00 T

Xi(w) T

Combining these two equations (3.5.5) and (3.5.6), we can write the relation
between the CTFT and the DTFT as

(35.5) @56 1 00 Q 27
Xd(Q) =" Xu(@)lpeg/r = T m_oox(? + m?)

(3.5.7)
where w and 2 are called the analog and digital frequency, respectively.

This implies that the DTFT of x[n] = x(nT) is qualitatively the periodic
extension of the CTFT of x(t) (with period 27/ T in analog frequency w or 2w
in digital frequency), i.e., the sum of infinitely many shifted version of CTFT.
This explains how the DTFT strays from the CTFT because of frequency-aliasing

162 3 Discrete-Time Fourier Analysis

unless the CTFT spectrum X(w) is strictly limited within the low-frequency band
of (—m/T,x/T) where T is the sampling interval of x[n] = x(nT). Fig. 3.7(b1)
illustrates the deviation of the DTFT spectrum from the CTFT spectrum caused by
frequency-aliasing.

3.5.3 Relationship Among CTFS, CTFT, DTFT, and DFT/DFS

As stated in Remark 2.7(2) and illustrated in Fig. 2.8, the CTFS Xy’s of a periodic
function Xp(t) are the samples of the CTFT X(w) of the one-period function xp(t)
at kwg = 2rk/P:

2.24
X()

X(a))|a)—ka)o =27k/P (358)
Likewise, as discussed in Sect. 3.4 and illustrated in Fig. 3.11, the DFT/DFS X(Kk)’s
of a periodic sequence Xp[n] are the samples of the DTFT Xq4(€2) of the one-period
sequence Xp[n] at k2o = 2rk/N:

X(K) (3.4.0)&(34.2)

X ()| okap=27k/N (3.5.9)
Figure 3.13 shows the overall relationship among the CTFS, CTFT, DTFT, and
DFT/DFS based on Egs. (3.5.3), (3.5.7), (3.5.8), and (3.5.9). Figure 3.14 shows
the CTFT, DTFT, DFT/DFS, and CTFS spectra for a continuous-time/discrete-
time rectangular pulse or wave, presenting us with a more specific view of their
relationship. Some observations are summarized in the following remark:

Remark 3.7 Relationship among the CTFS, CTFT, DTFT, and DTFS (DFT/DFS)

Figures 3.13 and 3.14 shows the overall relationship among the CTFS, CTFT,
DTFT, and DTFS (DFT/DFS) from a bird’s-eye point of view. The following
observations and comparisons are made.

(1) Among the four Fourier spectra, the CTFS and CTFT are more desired than
the DTFS and DTFT since all physical signals are continuous-time signals.

Time-domain periodic extension with period P
Frequency-domain

2.2.1a) e - N)
X(JJ)(2)j_m S0 e dit sampling . Xk(z-l-gb) jp R(t)e 2% P g
CTFT| atw=kuwy= ka CTES
(3.5.6)1 - Time-domain (3 5. 3)1 Time-domain
X @) =TTy X+ m T & looam)y sampling (K), T Xerm sampling
Frequency-domain att=nT Freque_ncy dom_am att=nT
periodic extension Frequency-domain periodic extension
& a. 1 " DTFT sampling DTFS EDFT/DFS)
—Qn = -1z —j27kn/N
@ =R e xnle at0=ko,-kZ | X® S Tle

Time-domain periodic extension with period N

Fig. 3.13 Overall relationship among the CTFT, CTFS, DTFT, and DTFS (DFT/DFS)

3.5 Relationship Among CTFS, CTFT, DTFT, and DFT 163

. . et NV w
T

7 27 -t 0 T 27
(b0) The CTFT spectrum X(w) of X(t)

-10 0 10
(a0) A pulse signal x(t)
T,

10 o 10 " e e N T
(al) x [n] obtained by sampling x (t) with T=1 (b1) The DTFT spectrugw Xq () of x[n]
’ QD:Jr
Period , » = N . |
O L % %1 25 1
-8 0 8 -16 -8 0 8 16
(a2) Xg[n] — a periodic extension of x [n] with period N=8 (b2) N=8-point DFS/DFT spectrum X(k) of Xg(n)

_2n
. W=t
. fperied | 3P

t
16

-8 8
(a3) Xg(t) — a periodic extension of x(t) with period p=8

>l

—20 0 20 n —27r = ;77 0 T 271' Q
(a4) x(n) obtained by sampling x(t) withT=0.5 (b4) The DTFT Spec”"‘zTT Xa(Q) of x[n]
Q=51
Period &N
l«N=16— ' £
W W W mm HH n k
(ab) X16(n) — a periodic extension of x[n] with period N=16 (b5) N =16- point DFS/DFT spectrum X(k) of X;g[n]

Fig. 3.14 Examples of CTFT, DTFT, DFS/DFT, and CTFS spectra

Between the CTFS and CTFT, we prefer to have the CTFT because it has all the
information contained in the CTFS on the assumption that the CTFS consists of
the samples of CTFT (Eq. (3.5.8) and Fig. 3.14(b3)). Besides, the CTFS is not
so practical because it is hard to find the period or even periodicity of periodic
signals due to a noise. Therefore, we think of the CTFT as a standard when
we need to compare the spectra in terms of how faithfully they describe the
frequency contents of a given signal.

(2) The problem with the CTFS and CTFT is that they are difficult to compute
due to the integration. Compared with them, the DTFT X4(2) is easier to deal
with since it has only multiplications and additions. However, the sampling
of x(t) (with sampling interval T) to make x[n] = x(nT) produces the peri-
odic extension of the CTFT spectrum X(w) with period 27/ T in w, causing
frequency-aliasing in the case of non-zero frequency components outside the
principal analog frequency band [—x/T, 7/ T]. This is the cost we pay in
return for the computational convenience of the DTFT. This frequency-aliasing

164 3 Discrete-Time Fourier Analysis

can be reduced by decreasing the sampling interval T so that more frequency
components can be contained in [z /T, 7/ T]. (Compare the DTFT spectra in
Fig. 3.14(b1) (for T = 1) and (b4) (for T = 0.5) with the CTFT plotted in
dotted lines.) Refer to the sampling theorem to be discussed in Sect. 5.3, which
presents a criterion for selecting the sampling interval.

(cf.) To compare the DTFT Xq4(€2) with the CTFT X(w), we should divide X(w)

®)

4)

©)

by the sampling interval T (refer to Eqg. (3.5.7)).

The DTFT Xg(2) of x[n] is computationally advantageous over the CTFS
or CTFT, but is still not so handy since it is continuous in the frequency
Q and thus requires an integration for IDTFT (inverse DTFT). That is why
we sample the DTFT in the frequency domain at k2o = 27xk/N for k =
0 : N — 1 to make an N-point DFT X(k) for more computational efficiency.
However, it also costs us the (illusory) periodic extension of x[n] with period
N (the DFT size) irrespective of whether x[n] is originally periodic or not
and no matter what the real period is even if x[n] is really periodic. This
causes time-aliasing if the original signal is not sufficiently covered within
the whole time interval [0, N — 1] (Example 3.15) and spectral leakage prob-
lem when the DFT size does not conform to the real period of the signal
(Example 3.16).

The analog resolution frequency wg = Q0/T = 27/NT = 2x/P can be
improved by increasing the whole time interval P = NT. Increasing the DFT
size N (, say, by zero-padding) helps the DFT spectrum to become close to
the DTFT spectrum. Decreasing the sampling interval T increases the period
27/ T of periodic extension of the CTFT spectrum (Eq. (3.5.7)) or equivalently,
expands the principal analog frequency band [—z/T, 7/ T] so that the chance
and degree of frequency aliasing can be reduced.

Generally, we can choose the DFT size N and sampling interval T and thus,
eventually P = NT (the product of N and T) during which a signal is to be
measured, sampled, and collected as a set of N data points. Therefore, it is hard
to imagine that NT happens to be identical with the real period of the signal.
For this reason, it will be reasonable to call P = NT the whole time interval
rather than the period that was originated from the definition of the CTFS.

3.6 Fast Fourier Transform (FFT)

In this section we discuss the FFT algorithm that exploits the periodicity and sym-
metry of the discrete-time complex exponentials e/2"™/N to reduce significantly the
number of multiplications for the DFT computation. The FFT algorithm discussed
here achieves its efficiency when N is a power of 2, i.e., N = 2NL9C2 for some
integer NLOG2. This makes no practical problem since the length of x[n] can be
increased to the next power of 2 by zero-padding.

To get some understanding of the steps in the FFT algorithm, let us consider a

sequence x[n] for 0 < n < N — 1 with N = 2NLOG2_ There are two approaches,

3.6 Fast Fourier Transform (FFT) 165

each of which is based on the decimation process in the time and frequency domain,
respectively.

3.6.1 Decimation-in-Time (DIT) FFT

In this approach, we break the N-point DFT into two N/2-point DFTs, one for
even-indexed subsequence x[2r] and the other for odd-indexed subsequence x[2r +
1], then break each N/2-point DFT into two N/4-point DFTs and continue this
process until 2-point DFTs appear. Specifically, we can write the N-point DFT of
x[n] as

(3 4.2) kn kn
X(k) - Z [n]W Z:n:2r(even) X[n]WN + Zn:2r+1(odd) X[n]WN

N/2—1
=5 :r x[2r]W2’k +3° o ox[2r+ AR
=0 r=
(WZrk — e—Jer(Zr)k/N — e—jank/(N/Z) — W'r\‘k/z)

N/2—-1 N/2—-1
=D, el IWi + WG D xe[r Wi,

CLD %K) + WEXo(k) for0O<k<N-—1 (36.)

so that

X(K) 2 Xe(k) + WEXo(k) for 0<k<N/2—1 (3.6.23)

X (k) *&)Xe(k) FWEXo(K) for N/2<k<N-—1;

X(k + N/2) ®2Y Xo(k + N/2) + WEN2 X (k + N/2)
= Xo(K) — WEXo(k) for0 <k < N/2—1 (3.6.2b)

where Xe(k) and Xo(k) are N/2 -point DFTSs that are periodic with period N/2 in
k. If N/2 is even, then we can again break Xq(k) and X, (K) into two N/4 -point
DFTs in the same way:

(@61)
with N— N2

Xe(K) Xee(K) + WK, Xeo(K)

= Xee(K) + W2Xeo(k) for0 <k <Nj2—1 (3.6.3a)

(3.6.1) K
Xok) e Koe) 4+ Wi Xoo(K)

= Xoe(K) + W2 Xoo(k) for0 <k < Nj2—1 (3.6.3b)

166 3 Discrete-Time Fourier Analysis

If N = 2NLOG2 \we repeat this procedure NL OG2 — 1 times to obtain N /2 2 -point
DFTs, say, for N = 23, as

Xoo(K) = Z‘:':/ ;“1 Xee MWK, = X[0] + (~1)*x[4] (3.6.42)
with Xee[n] = Xe[2n] = x[2n]

Xeol) = 300 seoIWEfly = X121 + (~1)¥6] (3.6.4b)
With Xeo[N] = Xe[2n + 1] = x[22n + 2]

Xoo®) = 3 Koo NWE}, = X[1] + (~1)*x[5] (3.6.4¢)
with Xee[N] = Xo[2n] = x[2%n + 1]

XaoK) = 3 Xoo MW, = X[3] + (~1)¥x[7] (3.6.4d)
With Xeo[N] = Xo[2n + 1] = X[2%n + 2 + 1]

Along with this procedure, we can draw the signal flow graph for an 8-point DFT
computation as shown in Fig. 3.15(a). By counting the number of branches with
a gain Wy (representing multiplications) and empty circles (denoting additions),
we see that each stage needs N complex multiplications and N complex additions.
Since there are log, N stages, we have a total of N log, N complex multiplications
and additions. This is a substantial reduction of computation compared with the
direct DFT computation, which requires N? complex multiplication and N(N — 1)
complex additions since we must get N values of X(k) fork = 0: N —1, each X(k)
requiring N complex multiplications and N — 1 complex additions.

Remark 3.8 Data Rearrangement in “Bit Reversed” Order
The signal flow graph in Fig. 3.15 shows that the input data x[n] appear in the
bit reversed order:
Position ~ Binary equivalent ~ Bitreversed Sequence index
3 - 011 — 110 — 6
4 - 100 — 001 — 1

Remark 3.9 Simplified Butterfly Computation

(1) The basic computational block in the flow graph (Fig. 3.15(b)), called a butter
fly, for stage m + 1 represents the following operations such as Eq. (3.6.2):

Xm+1(P) = Xm(P) + Wy Xm(a), withq = p+ 2" (3.6.52)
Xmi1(@) = Xm(p) + WL 2Xim(@) = Xm(p) — Wi Xm(q) (3.6.5b)

(W = -

3.6 Fast Fourier Transform (FFT)

167

Position Stage 1 > Xee(0) Stage 2 Xe(0) Stage 3
0 X[0]=Xge[0] —® o « X(0)
[4] ee[11 W X O\ WX\ m
1 x[4]=%ee[1] —o o < X(1)
2 X[21=%[0] W Xeol0) RN /'(TNl
X121 = Xeo * * \ L X(2)
3 X[6]=Xeol1] W x) T INE X) \W
=Xeo[l] —e - 8 < X(3
4 X[1]=x5e[0] —» . * X X(4)
[5] = Xoe[1] >@} Xoe(1) \ﬂ“o *o() N
5 X[O=Xoe hd e hd \ X(5)
w; Xool0) W %(2) / N
6 X[3]=X5[0] @ . Y ¢ @ X(6)
Ny 2 Ny 6
WD %) W2 X,(3) w
7 X[TI=%p0ll] o = -/ \\\} -/ 2— X(7)
W, w, wy
(a) Signal flow graph of DIT(decimation-in-time) FFT algorithm
for computing an N = 8-point DFT
Xin(P) Xm+1(P) Xm(p) © Xin+1(P)
Xm(Q) xm+1(Q) Xm(Q) © Xm+1(q)
WNH N/2 =—W,\; WNr -1
(b) Simplifying the butterfly computation
x[0] ® . ° « X(0)
= SN A
B N
x[2] @ ° * < X(2)
0 —1
R XX
L i - ><><><>C X@
x[1] @ ‘ * ¢
- < AN m X6)
x[5] @ ° . L >7
o GV IAN
x[3] @ . * — « >7
X[7] >< Wy \\1A Wi / \%X(ﬂ
w; -t wy - Wy -

Fig. 3.15 Signal flow graph of DIT(decimation-in-time) FFT algorithm

(c) Signal flow graph of DIT(decimation-in-time) FFT algorithm
(with simplified butterfly pattern) for computing an N = 8-point DFT

where p and g are the position indices in stage m + 1. Notice that X.1(p)
and Xm.1(q), the outputs of the butterfly at stage m + 1 are calculated in terms
of Xm(p) and Xm(q), the corresponding values from the previous stage and
no other inputs. Therefore, if a scratch memory for storing some intermediate
results is available, Xn1(p) and Xm1(q) can be calculated and be placed back
into the storage registers for X (p) and Xm(q). Thus only N registers for storing
one complex array are needed to implement the complete computation. This
kind of memory-efficient procedure is referred to as an in-place computation.

168 3 Discrete-Time Fourier Analysis

(2) Noting that the horizontal multiplier is just the negative of the diagonal mul-
tiplier, the basic butterfly configuration can be further simplified. Specifically,
with T = W{ Xm(q), we have the simplified butterfly computation

Xm+1(P) = Xm(P) + T

Xm1(0) = Xm(p) = T
which is depicted in Fig.3.15(b). This reduces the number of complex multi-
plications for the DFT computation to half of that with the original butterfly
computation (3.6.5a) (Fig. 3.15(c)):

N
Nlog,N — ?Iogz N

3.6.2 Decimation-in-Frequency (DIF) FFT

An alternative algorithm for computing the DFT results from breaking up or
decimating the transform sequence X(K). It begins by breaking up X(k) as follows:

(34.2) N-—1 o N/2—1 n N—_1 ‘o
XU =T xIWT = T XMW D xInIW

et K kN/2 x—N/2-1 K
— Zn:O X[n]WNn + WN ano X[n + N/Z]WNFI
N/2—1 K Kn
=3 T (XDl + (—1)Fx[n + N/2D)W (3.6.6)

We separate this into two groups, i.e., one group of the even-indexed elements (with
k = 2r) and the other group of the odd-indexed elements (k = 2r + 1) of X(k);

X(2r) = Z:z/ 2_1 (X[n] + x[n + N/2)WE ™" (3.6.7a)

N/2—1
= ZH (x[n] + x[n+ N/2)Wy), for0<r <N/2-1

X(@r +1) = Z::/ 2‘1 (x[n] — x[n + N/2yw& +on (3.6.7h)

N/2-1
= 3] — xIn+ N/ZDWRW, for0 <r < N/2 -1

These are N/2 -point DFTSs of the sequences (x[n] +x[n+ N/2]) and (x[n] —x[n+
N/2])WHT, respectively. If N = 2NLO62 \we can proceed in the same way until it
ends up with N /2 2-point DFTs. The DIF FFT algorithm with simplified butterfly
computation and with the output data in the bit reversed order is illustrated for a
8-point DFT in Fig. 3.16.

3.6 Fast Fourier Transform (FFT) 169

Lj NS o
o AN\ ><>< D 1 wN",4=X(2)
N

XXX

® X (0)

:

:

* ® X(6)
-1 Wiz -1 W

x[4] —e PR

NS e =
<0 " S wg o AL —ex@®
x[7] —* T X(7)

T
-1 we -1 W2 -1 W74

® X(1)

:

:

Fig. 3.16 Signal flow graph of DIF(decimation-in-frequency) FFT algorithm (with simplified
butterfly pattern) for computing an N = 8-point DFT

3.6.3 Computation of IDFT Using FFT Algorithm

The inverse DFT is given by Eq. (3.4.3) as

x[n] = IDFTy{X(K)} = % St x iz

_ 1 N-1 —kn —_0n-
=3 Zkzo XKW " forn=0:N -1 (3.6.8)

Comparing this with the DFT formula (3.4.2), we see that the computational pro-
cedure remains the same except that the twiddle factors are negative powers of Wy
and the output is scaled by 1/N. Therefore, an inverse fast Fourier transform (IFFT)
program can be obtained from an FFT algorithm by replacing the input data x[n]’s
with X(K)’s, changing the exponents of Wy to negative values, and scaling the last
output data by 1/N.

An alternative way to get the IDFT by using the FFT algorithm is derived by
taking the complex conjugate of the IDFT formula (3.4.3) or (3.6.8) as follows:

KTl = = Y X ROW = SFETOCW);
x[n] = % (FFT{X*(K)})" (3.6.9)

It is implied that we can get x[n] = IDFT\{X(K)} by taking the complex conjugate
of X(k), applying the FFT algorithm for X*(k), taking the complex conjugate of the
output, and scaling by 1/N.

The MATLAB built-in functions “f ft (x, N) ”/“i f ft (X, N) ” implement the
N-point FFT/IFFT algorithm for the data x[n]/ X(k) given as their first input argu-
ment if the second input argument N is given as a power of 2 or if N is not given and

170 3 Discrete-Time Fourier Analysis

the length of the given data is a power of 2. If the length of the data sequence differs
from the second input argument N, it will be zero-padded or truncated so that the
resulting length will be N.

3.7 Interpretation of DFT Results

In general, the DFT takes a complex-valued sequence {x[n], n=0: N — 1} and
produces another complex-valued sequence {X(k), k = 0 : N — 1}. Then, what
is the physical meaning or practical usage of it? To understand it, let us take some
examples where we think of a discrete sequence x[n] as the discrete-time version of
an analog signal x(t) such that x[n] = x(nT).

Example 3.16 DFT Spectrum of a Single-Tone Sinusoidal Wave [L-1]
Suppose we have a continuous-time signal

15 . 15
X(t) = cos (w1t) = cos (Tnt> with w; = Tn (E3.16.1)

Let us use the MATLAB function “f f t () ” to find the DFT spectrum of {x[n] =
x(nT), n=0: N—1} with different sampling interval T and DFT size or number of
sample points N. Then we will discuss how we can read the frequency information
about x(t) from the DFT spectrum, which has different shape depending on the
sampling interval T and DFT size N.

(a) Let the sampling interval and number of samples (DFT size) be T = 0.1 and
N = 16, respectively so that the discrete-time sequence will be

15 3
Xa[n] = cos (—nt) = CO0S (—nn) , n=01,.--,15
4 t=nT=0.1n 8

(E3.16.2)
The magnitude spectrum of this sequence, i.e., the magnitude of Xy(k) =
DFTys{Xa[n]} is depicted in Fig. 3.17(a). It has a spike at the frequency index
k = 3 corresponding to the digital and analog frequencies as

2r 6w 3w
Q3 =3Qq = 3W =15 = ?[rad/sample]
(1.1.15) 23 _ 3 _ 157
—>w = T T8x01" 3 [rad/s] (E3.16.3)

This analog frequency agrees exactly with the real frequency of the original
signal (E3.16.1). Note that | X,(K)| has another spike at the frequency index
k = 13, which virtually corresponds to k = 13 — N = —3, but it is just like the

3.7 Interpretation of DFT Results 171

(1) \\\Tlxa[n] II T[_ , 1¢-, ?(b[n]

TIPE e g e

(@) T=0.1, N=16 (b)T= 0.05, N=16 (faster and shorter)

= o
—OT—e
—

8
T Xa(k
/| Pt 5 : DFT

(o 27 | : R o4 b Xk 13
— g?‘;ﬁ ““ ~ T DTFT —\." “'\ . Qozf\l’LI ‘ b()‘ :DTFT ‘W I
A I BRIy : Ok 54 i 1‘ G N 222, 4 T i K

" Y A " Y " Y A " Y
Picket Fense Effect Spectral Leakage

1 Xd[“ N

a1
N
B

Fig. 3.17 DFT spectra of discrete-time sinusoidal sequences having a single tone

mirror image of k = 3. It can be assured by writing the discrete-time sequence
(E3.16.2) as

x[n] — % (ej37rn/8 + e—j37rn/8)

IDFT 3.43) 1 (ﬂe,‘znsn/N n N ej2n3n/N> (E3.16.4)

N \ 2 2

N=16

1) . 1 N—1
_ j273n/16 j 27 (13)n/16\ __ j 2rkn/N
—16(8e + 8e)—N E o XKye

This explains why the magnitude of the DFT spectrum has two spikes of 8 at
k=3and N —3=13.

(b) Let the sampling interval and number of samples (DFT size) be T = 0.05
(up-sampling) and N = 16, respectively so that the discrete-time sequence

will be
15 3
Xp[N] = cos (—nt) = CO0S <—nn) n=0,1-...,15
4 t=nT=0.05n 16
(E3.16.5)

The magnitude spectrum of this sequence, i.e., the magnitude of Xy(k) =
DFT1s{xp[N]} is depicted in Fig. 3.17(b), which looks quite different from

172

(©

(d)

3 Discrete-Time Fourier Analysis

Fig. 3.17(a). That is, so many nonzero values show up here and there in the
magnitude spectrum, though the highest two values occur at k = 1 and 2. It is
because the picket fence effect (due to the frequency domain sampling of DFT)
hides the spectral peak, allowing the many side lobes (resulting from the spec-
tral leakage due to the time domain windowing) to be seen. This is a contrast to
the other cases where the picket fence effect coincidentally hides the side lobes
except the main peak as if by magic. Still we might fake a “far-fetched” story
about the frequency corresponding to k = 1.5 (between 1 and 2) as

2t 3mw
Q15 =1.5Q = 1'5W = E[rad/sample]
(1.1.15) Q15 . 37 _ 157
—>w = ? = m =2 [rad/s] (E3.16.6)

This agrees with the result of (a), showing the right frequency information.
Let the sampling interval and DFT size be T = 0.05 (up-sampling) and N = 32
(more sampling), respectively so that the discrete-time sequence will be

15 3
Xc[n] = cos (—nt) = CO0S (_;m> , n=01,.---,31
4 t=nT=0.05n 16
(E3.16.7)

The magnitude spectrum of this sequence, i.e., the magnitude of X.(k) =
DFT3,{xc[n]} is depicted in Fig. 3.17(c). Like Fig. 3.17(a), it has two spikes
atk = 3and N — 3 = 29 with only a difference in their amplitude (16), which
is two times as large as those in (a) because of the increased humber of samples
(N = 32). Thus we can read the digital and analog frequencies as

2r 6w 3w
Q3 =3Q = 3W =3 = E[rad/sample]
(1.1.15) 23 3 157
= 2= - E3.16.
- T ~T6x005 ~ 4 redsl (E3.168)

This analog frequency also agrees exactly with the real frequency of the original
signal (E3.16.1).

Let the sampling interval and DFT size be T = 0.1 and N = 32 (longer
interval/more sampling), respectively so that the discrete-time sequence will be

15 3
Xa[n] = cos <—7‘[t> = coS <_7m) . n=0,1,---,31
4 t=nT=0.1n 8

(E3.16.9)
The magnitude spectrum of this sequence, i.e., the magnitude of Xy(k) =
DFT3{xq[n]} is depicted in Fig. 3.17(d). It has two spikes at k = 6 and
N — 6 = 26, which tells us about the existence of the digital and analog

3.7 Interpretation of DFT Results 173

frequencies as

2 127 3
Qg = 6Q = 6W =3 = ?[rad/sample]
(1.1.15) Q26 3 157
= — = = —[rad E3.16.10
- T ~8xo01_ 4 sl ()

This analog frequency also agrees exactly with the real frequency of the original
signal (E3.16.1).

Example 3.17 DFT Spectrum of a Multi-Tone Sinusoidal Wave
Suppose we have a continuous-time signal

X(t) = sin(w1t) + 0.5 cos(w,t) = sin(1.5xt) + 0.5 cos(3rt) (E3.17.1)

with w; = 1.57 and wy, = 37

Figure 3.18 shows the four different discrete-time versions of this signal and their
DFT spectra, which will be discussed below.

(a) With sampling interval T = 0.1 and DFT size N = 32, the discrete-time
sequence will be

Xa[n] = X(NT)|1—01 = sin(0.15zn) + 0.5c0s(0.37zn),n =0, 1,---, 31
(E3.17.2)

The magnitude spectrum depicted in Fig. 3.18(a) is largeatk =2 & 3and 4 &
5 and they can be alleged to represent two tones, one between kwg = kQo/T =

27k/NT = 27k/3.2'S 1.25 7 and ke = 1.875 7 and the other between

Kawq =y 2.5 7 and kayg = 3.125 7. Of these two tones, the former corresponds
to wy = 1.57 (with larger amplitude) and the latter to w, = 37 (with smaller
amplitude).

(b) With shorter sampling interval T = 0.05 (up-sampling) and larger DFT size
N = 64, the discrete-time sequence will be

Xp[N] = X(NT)|1_0.05 = Sin(0.0757rn) + 0.5 cos (0.155rn), (E3.17.3)

n=0,1-...,63

For all the up-sampling by a factor of 2, the magnitude spectrum depicted in
Fig. 3.18(b) does not present us with any more information than (a). Why?
Because all the frequency components (w; = 1.57 and w, = 3m) are
already covered within the principal analog frequency range [—z/T, 7/T]
with T = 0.1, there is nothing to gain by expanding it via shorter sampling
interval.

174 3 Discrete-Time Fourier Analysis

N S PG i
T 3 1
T el 1]““ ol][}
—1r - —1F .
2 0 I 1I0 I 2I0 I 3IO _20 1I0 2I0 3IO 4IO 5I0 6I0
(a) T=0.1, N=32 (b) T=0.05, N=64 (faster sampling)
T T T T 1
10} ‘ 1 20} I
5r 104 IXp ()l i
Wl e] OI‘H]
0 5 10 20 30 0510 20 30 40 50 60
1 1 : : . ; .
ol il ... zere-padding ol Skl ik
I e M MWl F 7
1t i 1t
-2 1 1 1 1 1 1 -2 1 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
(c) T=0.1, N=64 (zero-padding) (d) T=0.1, N=64 (longer interval)
15F T T T T T ™ 30F T T T T T ™
10+ 20 - g
5t 41 10t .
0 ﬂ] ‘I]“In-—- 2 |Xc(k)| 20 '1]”]1 " 0 171] 11'] Tt1131000ss Xyl asmsnenenit]]n’l]TI
0 510 20 30 40 50 60 0510 20 30 40 50 60

Fig. 3.18 DFT spectra of a two-tone sinusoidal wave

(c) With the same sampling interval T = 0.1, but with larger DFT size N = 64 (by
zero-padding), the discrete-time sequence will be

Xa[n] forn=0, 1, ..., 31
Xc[n] = (E3.17.4)
0 forn=32, ---,63

The magnitude spectrum depicted in Fig. 3.18(c) is large at kK = 4 & 5 and
9 & 10 and they can be alleged to represent two tones, one between kwg =

kQo/T = 27k/NT = 27k/6.4'S 1.25 7 and ke = 1.5625 7 and the other
between kayg = 2.8125 7 and kg = 3.125 5r. Comparing this with the result
obtained in (a), we see that larger DFT size by zero-padding can yield better
resolution for the spectrum.

(d) With the same sampling interval T = 0.1, but with larger DFT size N = 64 (by
more sampling), the discrete-time sequence will be

xd[n] = X(NT)|t=01 = sin(0.15zn) + 0.5¢c0s(0.37n), n=0, 1,---, 63
(E3.17.5)

3.7 Interpretation of DFT Results 175

The magnitude spectrum depicted in Fig. 3.18(d) is strikingly large at k = 5
and 10, which can be alleged to represent two tones of kwy = 27k/NT =

2mk/6.4 = 1.5625 7 and kwg k==103.125 7. Comparing this with the result
obtained in (a), we see that larger DFT size by more sampling can improve
the spectrum resolution. Comparing this with (c), we see that more sampling
can yield better resolution than zero-padding as it collects more information
about the signal.

Example 3.18 DFT Spectrum of a Triangular Pulse

Consider the following sequences that are obtained by sampling the continuous-
time triangular wave %g(t) = 2(Aa(t) — Aa(t — 4)) of period 8 and with peak-to-
peak range between —2 and +2. Let us consider the DFT magnitude spectra of the
sequences that are depicted in Fig. 3.18.

(a) With sampling interval T = 1 and DFT size N = 8, the discrete-time sequence
will be

Xa[n] =X (NT)ly—y, n=0,1,---,7 (E3.18.1)

The 8-point DFT magnitude spectrum of x,[n] together with the CTFT mag-
nitude spectrum of the single-period triangular pulse xg(t) (Eq. (E3.11.3)) is
depicted in Fig. 3.19(a).

(b) With shorter sampling interval T = 0.5 (up-sampling) and larger DFT size
N = 16, the discrete-time sequence will be

Xp[N] =X (NT)|t—05, Nn=0,1,---,15 (E3.18.2)

The 16-point DFT magnitude spectrum of x,[n] together with the CTFT magni-
tude spectrum of the single-period triangular pulse xg(t) is depicted in
Fig. 3.19(b). It shows that the DFT is similar to the CTFT for the expanded
principal analog frequency range [z /T, 7/ T].

(cf.) Note that to be compared with the DFT, the CTFT spectrum has been
scaled not only vertically in consideration for the sampling interval T
(Eq. (3.5.7) or Remark 3.7(2)) and the number of sample points, but
also horizontally in consideration for the relationship between the digital
frequency €2 and analog frequency w = /T.

(c) With the same sampling interval T = 1, but with larger DFT size N = 16 (by
zero-padding), the discrete-time sequence will be

(E3.18.3)

[n] Xa[n] forn=0,1, ---,7
xc[n] =
¢ 0 forn=8, -.-,15

176 3 Discrete-Time Fourier Analysis
2 2 U y 2 More sampling
PN o p-sampling
LTl Ll s rT e
TR 2] L T L S
-2 -2 -2
@T=1,N=8 (b) T=05N=16 (©)T=1,N=16 dT=1,N=16

0

2

0

— CTFT
CTET 1off|\ cTeT . SIS, CTFT
5 5 /
[Xa ()] [X (] 1 \I\H&(k)l) ‘ [Xq 0]
b
o 1 Ko PGPSR B I A Ko 1.

2 4 6 0 4 8 12 0 4 8 12 0 4 8 12

More sampling

|

o

. ?ero-insertion 2 'l . 2] Down-sanzj[ijling 2 T] & Zero] padding
f & Zero-padding

2T Lo . L A I R R B S N

Xe[n] | 72T Down-sampling | 74 %g [Nl l 74 J Xp [n]

(&) T=05N=16 HT=2,N=4 @T=2,N=8 (MT=1,N=16
5 5 Spectal leakage
[% 0] Blurred | Xg(k) | 10

e | o | T e

NIRX % N Ko Ko]Th 1111]
0 4 8 12 0 1 2 3 0 2 4 6 0

Fig.

(d)

()

()

3.19 DFT spectra of various discrete-time versions of a triangular wave

Figure 3.19(c) shows that the DFT becomes closer to the DTFT spectrum,
while it has the same principal analog frequency range for which it is similar to
the CTFT.

With the same sampling interval T = 1, but with larger DFT size N = 16 (by
more sampling), the discrete-time sequence will be

Xa[n] forn=0,1,...,7
xd[n] = (E3.18.4)
Xa[n—8] forn=8, ---, 15

Figure 3.19(d) shows that we gained nothing with more sampling and larger
DFT size in contrast with the case of Example 3.17(d). However, we lost
nothing with more sampling.

With larger DFT size N = 16 by zero-insertion, i.e., inserting one zero between
the samples, the discrete-time sequence will be

Xa[n/2] forn =0, 2,---, 14 (even)

Xe[n] = (E3.18.5)
0 forn =1, 3,---, 15 (odd)

Figure 3.19(e) shows that zero-insertion results in the periodic extension of
the DFT spectrum. This has an interpretation that zero-insertion increases the
variation rate of the signal, producing the high frequency components.
With longer sampling interval T = 2 (down-sampling or subsampling) and
smaller DFT size N = 4, the discrete-time sequence will be

xi[n] =xa[2n], n=0,1,---,3 (E3.18.6)

3.7

9

(h)

Interpretation of DFT Results 177

Figure 3.19(f) shows that down-sampling compresses the principal analog
frequency range and besides, smaller DFT size harms the spectrum resolution.
With longer sampling interval T = 2 (down-sampling or subsampling), but
with the same DFT size N = 8 (by zero-padding), the discrete-time sequence
will be

x¢[n] forn =0,1,---,3

Xg[n] = (E3.18.7)
0 forn=4,5--.--,7

Figure 3.19(g) shows that zero-padding may help the spectrum to look better,
but it does not recover the spectrum damaged by down-sampling.

With the same sampling interval T = 1, but with larger DFT size N = 16
(by more sampling partly and zero-padding partly), the discrete-time sequence
will be

xq[n] forn =0,1,---, 11

Xn[n] = (E3.18.8)
0 forn =12, ..., 15

Figure 3.19(h) shows that zero-padding may help the spectrum to look better
compared with (d).

Remark 3.10 DFS/DFT (Discrete Fourier Series/Transform) and Spectral
Leakage

1)

@)

®)

Generally, the DFT X(k) is complex-valued and denotes the magnitude &
phase of the signal component having the digital frequency Qx = kQy =
2k/N [rad/sample], which corresponds to the analog frequency wx = kwo =
kQo/T = 27xk/NT [rad/s]. We call Qo = 27/N and wy = /T (N:
DFT size) the digital/analog fundamental or resolution frequency since it is
the minimum digital/analog frequency difference that can be distinguished by
the N-point DFT. Note that the frequency indices k = 0 and N /2 represent the
DC component (€2 = 0) and the virtually highest digital frequency component
(2n/2 = N/2 x 2 /N =), respectively.

As illustrated in Figs. 3.17(b) and 3.18(a)-(d), if a periodic signal does not go
through a multiple of periods within the sampled signal range [0, NT), its DFT
spectrum is dirty. This is because the spectral leakage is not hidden by the
picket fence effect. It seems that we might avoid this problem by setting the
sampled signal range so that it covers exactly a multiple of the period of the
signal. However, it is only our desire because we hardly know in advance the
frequency contents of the signal and besides, most signals have many frequency
components.

The spectral leakage problem is always in the midst of DFT because it is
inherently due to the time-domain windowing as can be observed in the DTFT
spectrum of Fig. 3.5(b3). Then, how could the DFT spectra of Figs. 3.17(a),
(c), and (d) be free from the spectral leakage? The fact is that we could not

178 3 Discrete-Time Fourier Analysis

see the existing spectral leakage (as shown by the DTFT spectrum plotted in
dotted lines) because the picket fence effect [D-1] of DFT (attributed to the
frequency-domain sampling of DTFT) coincidentally happens to hide the many
side lobe ripples except the main peaks.

(4) From another point of view, we might put the responsibility for spectral leakage
on the assumption of DFT that every signal is periodic with period equal to
the DFT size, which is hard to be true. As a measure to alleviate the spectral
leakage problem, there is a smooth windowing technique [W-1] that can reduce
the “faked” abrupt change of the signal (at both ends of the signal range) caused
by the rectangular windowing. Interested readers can see Problem 3.14.

Through the examples given above, we have already observed how the DFT spec-
trum is affected by the sampling interval, DFT size, zero-padding, and so on. The
observations are summarized as follows:

Remark 3.11 The Effects of Sampling Period (Interval) T and DFT Size N
on DFT

(1) Shorter sampling interval expands the principal analog frequency range
[-7/T,/T] so that it can help higher frequency components to be reflected
on the DFT spectrum if every frequency component is not covered within the
present principal analog frequency range.

(2) Larger DFT size (by zero-padding or more sampling) may help the (discrete)
DFT spectrum to become closer to the (continuous) DTFT spectrum and that
with better frequency resolution.

3.8 Effects of Signal Operations on DFT Spectrum

In this section, we summarize the formulas for finding the DFTs of different versions
of a signal from the DFT of the original one. They will be of help in understanding
the effect of self-repetition, zero-padding, zero-insertion, and so on.

Let the DFT of a finite-duration sequence x[n] be

N—-1 .
X(k) = x[nje 1zmoN
N-1 _
=Y X[IWE with Wy =e1#/Nfor k=0:N-1 (38.)
(a) Flipping: xa[n] = X[N —1 —n]
N-1 n—>N-1-m 0 K(N—1—
Xak) = 30 XN —1—nwi " ETT S mpwM

men Z:_‘Ol XINTWSTWLK = X(N — KWK (3.8.2)

3.8 Effects of Signal Operations on DFT Spectrum 179

(b) Frequency-shifting: xp[n] = (—1)"x[n]

Xe(k) = 3 ()% [n] W"

N-1
= ano x[n] W"\(l“ W&N/Z)n = X(k+ N/2) (3.8.3)

(©) Zero-Paddi - x[n] forn=0,1,---,N-—-1
c) Zero-Padding: x.[n] =
9% 0 forn=N,..- ;2N -1

Xel) = 30, WA = 3 anIwi " = X(k2) Gnterpolation
(3.8.4)

x[n] forn=0,1,--- ,N-1

d) Self-Repetition: x4[n] =
@ P alnl {x[n—N] forn=N,... 2N -1

2N-1 N-1 /2 2N-1 K/2
Xa09 ==) xalnWi = 37 W 3 — NJwiE”
n—m+N N-1 (k/2)n N-1 (k/2)(m+N)
=) XMW Y xImw

N k/2 N-1 k/2)n\ x /(N/2)k
= x[nIwW A" + > x[nwd/2npw (N2 (3.8.5)

2X(k/2) fork even

(zero-insertion)
0 for k odd

= X(k/2) + (—1)*X(k/2) = {

x[n/2] for neven

(e) Zero-Insertion: xg[n] = { 0 fornodd

2N-1 2N-1
Xe@) =D xelnIWil =3 x[n/2] Wi

n=2m N-1 m—n N—-1 ~
=" XImIWRT=T S Xl W = X(K)

_{ X(k) fork=0,1,---, N

-1 .
X(k—N) fork=N, ---, 2N — 1 (self-repetition) (3.8.6)

180 3 Discrete-Time Fourier Analysis
(f) Down-sampling, Subsampling, or Decimation: x;[n] = x[2n], n=0,1,---,
N
> —1
2
_ N/2—1 kn 2n=m N-1 14+ (=™ km/2
XeWy=_ o XRAIWRL =T X Eml e W
mon 1 N1 kn, L N2 (k+N/2)n
=" 3 ano x[n] WE" + 5 ano x[n] Wy (3.8.7)

= %(X(k) + X(k+ N/2)) for k=0,1, - -, g — 1 (blurring)

3.9 Short-Time Fourier Transform — Spectrogram

The short-time or short-term Fourier transform (STFT) breaks a long signal into
small segments, optionally overlapped and/or windowed, and finds the DFT of
each (windowed) segment separately to record the local spectra in a matrix with
frequency/time indices:

N-—1
STFT{X[n]} = X[k, n] = meo x[m + nJw[m]WK™ (3.9.1a)
< Z::::A x[m]w[m — n]wK™ ™ fork =0, 1, ---, N—1
(3.9.1b)

%i g03f20.m: to plot Fig.3.20
clear, clf
T=0.1; Fs=1/T, % Sanpling period and Sanpling frequency
w1l=25*pi / 16; w2=30*pi /16; w3=40*pi/16; w4=60*pi/ 16;
n=[0: 31]; x=[cos(wWL*T*n) sin(w2*T*n) cos(wW3*T*n) sin(w4*T*n)];
Nx=I engt h(x); nn=0:Nx-1; % Length and duration (period) of the signal
N=32; kk=0: N 2; ff=kk*Fs/ N, % DFT size and frequency range
wnd= hamm ng(N).’; % Hanm ng w ndow of length N
Nover | ap=N 4; % the nunber of overlap
MEN- Noverl ap; % the time spaci ng between DFT conputations
for i=1:fix((Nx-Noverlap)/M
xiws X((i-1)*MH[1:N).*wnd; %ith w ndowed segnent
Xi= fft(xiw); %DFT X(k,i) of ith w ndowed segnent
X(:,i)= Xi(kk+1l).’; %insert X(0:N2,i) into the ith colum
tt(i)=(N2+(i-1)*M*T;
end
% Use the MATLAB signal processing tool box function specgran()
[Xsp, ffl,tt1l] = spectrogran(x,wnd, Noverlap, N, Fs,’yaxis’');
% Any di screpancy between the above result and spectrogran()?
di screpancy= nor m(X- X:sp) / nor n{ X_sp)
figure(2), clf, colornmap(gray(256));
subpl ot (221), imagesc(tt,ff,lo0gl0(abs(X))), axis xy
subpl ot (222), imagesc(ttl,ffl,10gl10(abs(Xsp))), axis xy
% specgr an(x, N, Fs, wnd, noverl ap) in MATLAB of version 6.x

where the window sequence w[m] is used to select a finite-length (local) segment
from the sliding sequence x[m + n] and possibly to reduce the spectral leakage.
Note that the frequency and time denoted by frequency index k and time index n of
X[k, n] are

3.9 Short-Time Fourier Transform — Spectrogram 181

GLMWWWMMWWWWMMmH
TP T BT T

(a) A non-stationary signal with time-varying frequency content

w[m]

“mhm“ m
...,ﬂnmlllllllllllmﬁ‘:ff'z‘” o
IO] .

[P T

(b) Slldlng windows and windowed signals

i JH sintuis :

S TT
l l]l by

l N =32-point DFT

N =32-point DFT | e
N =32-point DFT

o]
-—2]

X[k,n][dB] X [k,16] X [k,40] X [k,64] X [k,88] X [k,112]
K K K K K K

0 16

]

(c) The short-time Fourier transform (STFT) obtained with DFT size N = 32 and Noverlap =8

f,= NLT 5 5
:Lf 4 4
S
N >
33 g3
g 2 qéz
o [
: 1 Sy
0 0
2 4 6 8 10 12 2 4 6 8 10
Timet=nT Timet=nT
(d1) X[k,n] obtained with N=32 and (d2) X[k,n] obtained with N=48 and
Noverlap=8 Noverlap=12

Fig. 3.20 Short-time Fourier transforms with different time/frequency resolution

k k N
fk = NT-N fs[Hz] and t,= (? + n) T[sec] (3.9.2)

where t,, is set to the center of the sliding window (Fig. 3.20(b)). If we take the
STFT not for every n but only for n = iM (a multiple of M), each segment
gets overlapped with its neighboring one(s) by Noverlap = N — M samples.

182 3 Discrete-Time Fourier Analysis

Note that M determines the width of interval time between the DFT computations.
The MATLAB function “spect rogram() ” can be used to find the STFT (see
Appendix E.8).

We run the above MATLAB program “sig03f20.m” to get the STFT X][Kk, n]
of x[n] (Fig. 3.20(a)) as depicted in Fig. 3.20(d1) (with DFT size N = 32 and
Noverlap = 8) and (d2) (with N = 48 and Noverlap = 12), which show that the
frequency becomes higher as time goes by. Such a STFT can be used to determine
and display the spectrum of a non-stationary signal (such as speech or music) whose
frequency content changes with time.

Now, comparing Fig. 3.20(d1) and (d2), let us consider the effect of segment or
window duration NT on the time and frequency resolutions of the STFT. We might
say that the time resolution is NT [sec] (the segment duration) and the frequency
resolution is 1/NT [Hz]. This implies that if we increase or decrease the segment
duration, the time/frequency resolution gets poorer/better or better/poorer, show-
ing the trade-off between the time and frequency resolutions. It is an illustration
of uncertainty principle (Remark 2.9(1)) that both time resolution and frequency
resolution cannot be improved. Although the boundary of the uncertainty principle
(best simultaneous resolution of both) is reached with a Gaussian window function,
the wavelet transform or multi-resolution analysis was devised, which can give a
good time/frequency resolution for high/low-frequency components.

3.10 Summary

In this chapter we have defined the discrete-time Fourier transform (DTFT) and the
discrete Fourier series(DFS)/transform(DFT) for discrete-time signals and exam-
ined their properties together with their relationship. The DFT of a discrete-time
sequence X[n] has been shown to correspond to one period of the discrete-time
Fourier series for the periodic extension of x[n]. We have also discussed the FFT
algorithms that deserve the overwhelming popularity owing to their computational
efficiency. This chapter also introduced some examples, which give you some inter-
pretation of the DFT and will hopefully help you to gain an insight into physical
meaning or practical usage of the DFT. It ended up with the introduction of the short-
time Fourier transform (STFT), which can easily be obtained by using a MATLAB
function “specgr am() " in 6.x versions and “spect r ogr an() ” in 7.x versions.

Problems

3.1 Properties of DTFT (Discrete-Time Fourier Transform)

(a) Prove the frequency-shifting property (3.2.7) by using the DTFT formula
(3.1.1) or IDTFT formula (3.1.3).

x[n]e/® & x(Q — 1) (P3.1.1)

Problems 183

(b) Prove the convolution property (3.2.8).

y[n] = x[n]*g[n] Z Y(Q2) = X(Q)G(R) (P3.1.2)
(c) Prove the modulation property (3.2.9).

1

yIn] = x[n] min] & Y(«) = —

X(2)xM () (P3.1.3)

(d) Prove the summation property (3.2.11) by using the convolution property
(3.2.8) together with Eqg. (E3.8.6).

anz_oo x[m] = x[n] * us[n] &

1 @+ X Z:w 5(Q — 27i)

l-—el®
(P3.1.4)
3.2 Discrete-Time Hilbert Transformer

(a) Prove that the impulse response of a system, called the Hilbert trans-
former, with frequency response

=) for0<Q<m
HE) = {—H for —m < Q<0 (P3.2.1)
is
| 2/nm forn: odd
hn]= { 0 forn: even (P3.2.2)

%i g03p_02. m

EPS=1e- 10; Nx=200; nx=[-Nx: Nx]; WL=0. 1*pi; xn= cos(WL*nx);
Nh=50; nh=[-Nh: Nh]; hn= (nod(nh, 2)==1).*(2/pi./(nh+EPS));
yn= conv(hn, xn); ny=Nh+Nx+1+nx; ynl= yn(ny);

W[-50: -1 1:50] *(pi/50);

X= DTFT(xn, W; Xmag= abs(X); Xphase= angl e(X);

Xphase= (abs(i mag(X))>=EPS). *Xphase;

H= DTFT(hn, W; Hmag= abs(H); Hphase= angle(H);

Y= DTFT(yn,W,; Ymag= abs(Y); Yphase= angle(Y);

subpl ot (331), plot(nx,xn), axis([nx([1 end]) -1.5 1.5])
subpl ot (332), plot(W Xmag), subplot(333), plot(W Xphase)
subpl ot (334), plot(nh,hn), axis([nh([1 end]) -1 1])

subpl ot (335), plot(WHmag), subplot(336), plot(WHphase)
subpl ot (337), plot(nx,ynl, nx,sin(W*nx),'r")

subpl ot (338), plot(WYmag), subplot(339), plot(W Yphase)

184 3 Discrete-Time Fourier Analysis

(b) By taking the IDTFT of Y(2) = H(K2)X(2), prove that the output of the
Hilbert transformer to a sinusoidal input x[n] = cos(2pn) is

y[n] = sin(2on) (P3.2.3)

(c) We can run the above program “sig03p_02.m” to rest assured of the
fact that the output of the Hilbert transformer to x[n] = cos(0.1xn) is
y[n] = sin(0.1n) where y[n] = h[n]xx[n] has been obtained from the
time-domain input-output relationship. ldentify the statements yielding
the impulse response h[n], output y[n], and frequency response H ().

3.3 Discrete-Time Differentiator

(@) Prove that the impulse response of a discrete-time differentiator with
frequency response

HQ) = jQ (P3.3.1)
is
i = Y (P3.32)

(b) By taking the IDTFT of Y(2) = H(K2)X(£2), prove that the output of the
differentiator to a sinusoidal input x[n] = sin(22on) is

y[n] = Q¢ cos(2n) (P3.3.3)

(c) By reference to the program “sig03p_02.m”, compose a program and run
it to rest assured of the fact that the output of the differentiator to x[n] =
sin(0.17rn) is y[n] = 0.1z cos(0.1n) where y[n] = h[n] *x x[n] has been
obtained from the time-domain input-output relationship.

3.4 BPF Realization via Modulation-LPF-Demodulation — Frequency Shifting
Property of DTFT
Consider the realization of BPF of Fig. P3.4(a), which consists of a modulator
(multiplier), an LPF, and a demodulator (multiplier). Assuming that the spec-
trum of x[n] is as depicted in Fig. P3.4(b), sketch the spectra of the signals
s[n], v[n], and y[n].

3.5 Quadrature Multiplexing — Modulation (Complex Convolution) Property
of DTFT
Consider the quadrature multiplexing system depicted in Fig. P3.5 where the
two signals are assumed to be bandlimited, i.e.,

X1(R) = Xo(R) = 0 for @ > Qu (P3.5.1)

Problems 185

elm/2 LPF g—im/2
G(Q
é s[n] 1. () v[n] é
x[n] - > > y[n]
multiplier —ga 0 aa 9 multiplier

(a) A BPF realization via modulation—LPF—demodulation

X(Q) 12
1 1 1 1 Q
27 -r —7l2 0 w2 ™ 27
(b) The spectrum of the input signal x[n]
Fig. P3.4
cos Q:n
LPF
2
Xq[n] |—|] s ya[n]
multiplier multiplier —Qp Qy
adder sn] Communication rin] adder
channel LPF
multiplier multiplier |_|2
Xo[Nn]] —>Y2[n]
. —Qun Qy
R
sin Q.n

Fig. P3.5 Quadrature multiplexing

Assuming that the channel is ideal so that r[n] = s[n], express the spectra
(), Vi(2), Va2(£2), Y1(2), and Yz(2) of s[n], vi[n], vz[n], yi[n], and
yo[n] in terms of X1(2) and X,(£2).

3.6 Windowing (Complex Convolution) Property of DTFT
Referring to Example 3.10, answer the following questions:

(@) In the program “sig03e10.m”, increase the (rectangular) window size
parameter M and run the program to see the window spectrum and the fre-
quency response of the designed FIR filter. Based on the results, describe
the shape of the filter frequency response when M is set to infinity.

(b) With the window size parameter M set to 3 as it was, change the shape
of the window into, say, one of the following: Bartlett (triangular), Ham-
ming, Hanning, Blackman, and Kaiser. Note that the window sequences
can be generated (as column vectors) by the MATLAB commands,
bartlett(), hammng(), hanning(), blackman(), and
kai ser (), respectively. Has the ripple of the frequency response been
reduced?

186

3.7

3.8

3 Discrete-Time Fourier Analysis

DTFT and CTFT of a Finite-Duration Signal

%si g03p_07. m

%Fig. 3.7(To tell the relationship between CTFT and DTFT)
EPS=1e-10; T=1; t =[-10:T:10];

N=400; f=[-500:500]/N + EPS; % Nornmalized frequency range

We2*pi *f; w=W T, % Digital/Anal og frequency range

xn= [zeros(1,7) 1 210 -1-2-1 zeros(1,7)];

Xw= inline(’j*8*sin(2*w).*sinc(wpi). 2 ,"wW);

X.CTFT= Xw(w) ; X.CTFT_nmag= abs(X-CTFT);

Sumof X CTFTs= (Xw(w+2*pi / T) +Xw(W) +Xw(w 2*pi / T))/ T;

XDTFT=DTFT(xn, W; XDTFT_.mag= abs(X.DTFT); X.DTFT_ph= angl e(X.DTFT);
Di screpancy_bet ween_CTFT_DTFT= nor m(X_DTFT- Sumof X_CTFTs) / nor n{ X_DTFT)
subpl ot (321), sten(t,xn,’.’), hold on, plot(t,xn, :")

subpl ot (323), plot(WXDTFT_-mag,’' b, WXCTFT.nag/ T, k:")

hol d on, plot(Wabs(Sumof X CTFTs), r:")

The objective of the above program “sig03p_07.m” is to plot the CTFT spec-
trum X;(w)/ T of the unsampled dual triangular pulse signal x;(t) given by
Eq. (E3.11.3) and the DTFT spectrum X;(£2) of the triangular pulse sequence
x1[n] = x¢(nT) with T = 1. Also, it plots the sum of three CTFTs shifted
by —27/T, 0, and +27/T along the analog frequency w = 2/ T and scaled
by 1/T to check the validity of the relationship between the CTFT and DTFT
described by Eqg. (3.5.7). Modify the program so that it does the same job
with sampling interval T = 0.5. What can we get by shortening the sampling
interval? Refer to Remark 3.7(2).

DFT/DFS, DTFT, and CTFS of a Noncausal Signal
Consider the dual triangular pulse sequence which would be obtained by
sampling xq(t) in Fig. 3.7(al) with sampling interval T = 0.5.

(a) Use the MATLAB function “fft () ” to get the N = 16-point DFT
Xn(Kk) of the sequence and plot its magnitude together with the DTFT
magnitude against Qx = [0 : N — 1] x (27z/N) and @ = [-500 :
500] x (27r/400), respectively. Note that the DTFT might have been
obtained in Problem 3.7.

(b) Noting that the CTFS coefficients Xy are the samples of the CTFT X(w)
(Eq. (E3.11.3)) at w = kawg = 27wk/P = 27k/NT as described by
Eq. (2.2.4) or stated in Remark 2.7(2), find the relative errors between
the DFT Xy (k) and two partial sums of the shifted CTFSs and compare
them to argue for the relationship (3.5.3) between the DFT and CTFS.

~IIXN(K) = Xie/ T
T
E, — [IXN(K) — (Xken + X+ Xe—n)/ T (P3.8.1)

[IXn (K

Problems 187

<Hint> You might need to combine some part of the program “sig03p_
07.m” with the following statements:

xn_causal= [0 -0.5 -1 -1.5-2 -1.5-1-0.500.511.521.510.5];
XDFT= fft(xn_causal); XDFT.nag= abs(X.DFT);

N=I engt h(xn_causal); k=[0: N-1];

f0=1/N, fk=k*f0; W=2*pi *f0; Wk=k*WD; wO=W0/ T;

stem(Wk, XDFT_-mag, ' m ')

% (b): Partial sumof CTFSs by Eq.(3.5.3)

Sumof Xks= (Xw((k+N) *w0) +Xw(k*w0) +Xw((k- N) *w0))/ T;

Di screpancy_bet ween_CTFS_and_DFT= nor m(X_-DFT- Xw(k*w0) / T) / nor m{ X_-DFT)

Di screpancy_bet ween_CTFS_and_DFT3= nor m(X.DFT- Sumof _Xks) / nor n{ X_DFT)

3.9 CTFS, CTFT, and DFT/DFS of a Noncausal Sequence

— Xx(t) (a triangular pulse)
X,(t) (periodic extension with period 2)
—e iz[n] (discrete-time version)
l ~
X(t) xz(t)/," :

-3 2 1 05 0 05 1 2 3
Fig. P3.9

Consider the triangular pulse signal x(t) of Fig. P3.9, its periodic extension
Xo(t) with period P = 2, and its sampled periodic version X, (t) = Xa(t)d7(t)
with sampling interval T = 0.5.

(a) Find the CTFT X(w) of x(t). You can use Eq. (E2.3.4).

(b) Find the CTFS Xg of X»(t). You can use the result of (a) and Eq. (2.2.4)
stating that the CTFS coefficients are the samples of the CTFT at w =
ka)o = 27Tk/ P.

(c) Show that the N = 4-point DFT of the discrete-time version X[n] is

X(k) = [2101] (P3.9.1)

(d) Show the validity of the relationship between the CTFS and DFT described
by Eq. (3.5.3) for this case, i.e.,

P3.9.1 » 1 00
XM TE 2101223 Xicemn (P3.9.2)

188 3 Discrete-Time Fourier Analysis

<Hint> You might need the following formula
00 1 2
—_— = — P3.9.3
Zm=o @m+1)2 8 ()
which can be derived by substituting A = 1, D/P = 1/2 into
Eq. (E2.1.6) as

~ (E2.1.6) 1 00 .o DY\ A=1, P=2D
Akp/p(t) = 5 k}oOADsmc (kp) —

1 00 . o (k
1= Zk:_oo sinc <§>
for k=odd
1 [for k=0 for k=even(s0) 00 1 .
= z (1 + 0 + Zk:2m+l (kn—/z)z) ’

1 1w 1 00 1
L N — -
2 2 f=m——oc (2m + 1)2772/22 Zm:—oo (2m + 1)22
00 1
=4y~
m=0 (2m + 1)272

3.10 DTFT and DFT of Discrete-Time Periodic Sequences
When we need to find the DTFT of a periodic sequence Xy [n] with period N,
we first get its DFS representation

43) 1 N-1 ~ ;
snin] &Y = o Xn(eizrkn (P3.10.1)

IDFT N £—k=

o~ (342 N-1 —j27kn/N
with X(k) " =" “%n[ne

and then use Eq. (3.1.5) to obtain the DTFT of Xy[n] as

1 N-1 o . F
X I j2mkn/N
] = 5 2o Xn(e Z
(P3.10.1) 27T x—© ¢ 2wk
X(@) @15 N “—k=—oo Xn(K)d (Q - T) (P3.10.2)

(a) Verify the validity of this DTFT pair by showing that the IDTFT of
(P3.10.2) is Xn[n].
@13 1

FUX(@Q) == | X(Q)el ?"de
27 2

(P3.102) 1 N—1 ~ o (P3.10.1) -
w15 N 2eieo N el /N TP gnn] - (P3.10.3)

Problems 189

(b) Use the DTFT relation (P3.10.2) to show that the DTFT of the discrete-
time impulse train

Sn[n] = Z::_oo 8[n—mN] (also called the comb sequence) (P3.10.4)

2 00 2k 27 N~ 2k
LCEEOWIRICEE SRS DRI CRE
(P3.10.5)

3.11 Effect of Discrete-Time Sampling on DTFT
As a continuous-time sampling with sampling interval T can be described by

.0 2 xt)sr 1) (6r(t) = Z::_Ooa(t —mT) : the impulse train)

so can a discrete-time sampling with sampling interval N be described by

Xs[N] = X[n]én[n] (SnI[N] = Zomo_,oo 8[n — mN] : the impulse train)
- (P3.11.1)

(a) Use the DTFT modulation property (3.2.9) or B.4(9) and Eq. (P3.10.5) to
show that the DTFT of this sampled sequence x.[n] can be expressed in
terms of that of the original sequence x[n] as

1 00 2rm
X*(Q) = N E N X <Q + T)
=N Zmz_m X(€2 + mS2s) with Qs = (P3.11.2)

(b) Show that the DTFT of a decimated sequence X4[Nn] obtained by removing
the zeros from the sampled sequence x,[n] = x[n]sn[Nn] is

Xq(R) = X, <%) (P3.11.3)

(cf.) This conforms with Eq. (3.2.14), which is the scaling property of DTFT.
(c) Substitute Eq. (P3.11.2) into Eq. (P3.11.3) to show that

1 N-1 Q 2rm
Xq(Q) = N Zmzo X (N + T) (P3.11.4)

190 3 Discrete-Time Fourier Analysis

x 13
10 - 2.0 <mmmmmmmmmeee o)
Xo(t) =sinc(=
NG
0.0 t 0.0 ——— - ——— w
-8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 80 -3m 2w -m 0.0 T 27 37
(a1) xo(t) (b1) Xo(w)
X, (t) =xX(t) = sinc?(L.
a() =%5 (1) (2) X, ()

10 -mmmmmrees /\ """"""" 2 0/\ """"""
0.0 0.0 > W

. t
-8.0 -6.0 4.0 -2.0 0.0 2.0 4.0 6.0 8.0 -3m -2 -m 00 W 2w 3T
(82) %,(t) (b2) X,(w)

x[n]

00 —F———F+——F———"F+——F+—F+—>Q
-12 -8 -4 0 4 8 12 -3r -2m -w 00 m 2m 3T
(a3) x [n] sampling x,(t) with T=0.5 (b3) X(€2): (P3.11.5) with T=0.5 from X (w)
20 A" ATTATTTATTTATT AT A
00 —¥F——F——F—F—F—¥F— Q
-12 -8 -4 0 4 8 12 -3m 2w -mw 0.0 m 2m 371
(a4) x4[n] sampling x[n] with N =2 (b4) X4(Q): (P3.11.2) with N =2 from X(Q)
1.0 ----------mm - o - o mm oo 2.0
0.0 - S T T - . n 00—+ Q
-6 -4 -2 0 2 4 6 -3r 2w -m 00 2T 31
(a5) x4[n] decimating x,[n] with N =2 (b5) X4(Q): (P3.11.3) with N =2 from X,(Q)
1.0 ==-=-==-===--=--- po-mmmmemeemeees 2.0
-6 -4 -2 0 2 4 6 -3m 2w -m 00 7 2w 3T
(a6) x5[n] sampling x4[n] with N=2 (b6) X5(€2): (P3.11.2) with N =2 from X, (Q)
10----------------]‘ ---------------- 1.0
0.0 é n 0.0 éxmmw, Q
-12 -8 -4 0 4 8 12 -3r 2w -m 0.0 T 2m 3T
(a7) x4[n] sampling x [n] with N =4 (b7) X,(Q): (P3.11.2) with N =2 from X(Q)
c | O S S <
0.0 $ N . . A n 00 ——mr—F—— T r— Q
-4 -3 -2 -1 0 1 2 3 4 =37 2w -m 00 W 2T 3w
(a8) xg[n] ampling x,(t) with T=2 (b8) X5(Q2): (P3.11.5) with T =2 from X, (w)

Fig. P3.11 Effect of sampling on the spectrum

(d) Let x[n] be obtained from the samples of X,(t) with sampling interval T.
Then, from Eq. (3.5.7), we can write

357 1 0o Q 2
X(Q) = Xu(@)lpegyr = T 2o Xa (? +k?> (P3.11.5)

Problems

©

()

191
Substitute this into Eq. (P3.11.4) to show that
1 o0 Q 2k
xd(Q) = ﬁ Ke—oo Xa (ﬁ + ﬁ) (P3116)

Verify the CTFT relation between the signal and its spectrum depicted in
Figs. P3.11(a2) and (b2):

Xa(t) = X3(t) = sinc® <%) Z 2i2rn(a)) % 2 (w) (triangular pulse)
T
(P3.11.7)

Also verify the DTFT relation between the signal and its spectrum depicted
in Fig. P3.11(a3) and (b3):
. 1 .
x[n] = x3[n] = sinc? (2) Z 2—4r,,/2(£2) % 4r , ;2(R2) (triangular pulse)
T
(P3.11.8)

Show that the DTFT spectrum X(€2) of x[n] (Fig. P3.11(a3)) can be
expressed in terms of the CTFT spectrum X, (w) of X4 (t) (Fig. P3.11(a2)) as

X(Q) = 2 Z:i_oo Xa(2(Q — 27K)) (P3.11.9)

Show that the DTFT spectrum X3(2) of x;[n] (Fig. P3.11(a4)) can be
expressed in terms of the DTFT spectrum X(£2) of x[n] (Fig. P3.11(a3)) as

X1(Q) = %(X(Q) + X(Q + 7)) (P3.11.10)

Show that the DTFT spectrum Xq(2) of x4[n] (Fig. P3.11(a5)) can be
expressed in terms of the DTFT spectrum X(2) of x[n] (Fig. P3.11(a3)) as

Xq(Q) = % (x (%) + X (Q J;z”)) (P3.11.11)

Show that the DTFT spectrum X3(2) of x3[n] (Fig. P3.11(a6)) can be
expressed in terms of the DTFT spectrum Xg4(€2) of x[n] (Fig. P3.11(a5)) as

X3(Q) = %(xd(sz) + X4(Q + 7)) (P3.11.12)

192

3 Discrete-Time Fourier Analysis

Show that the DTFT spectrum X4(2) of x4[n] (Fig. P3.11(a7)) can be
expressed in terms of the DTFT spectrum Xg(2) of xq4[n]
(Fig. P3.11(a5)) as

X4(Q) = % (xd(sz) + Xq (sz + %) + Xa(Q +7) + Xg (sz + grr
(P3.11.13)

Show that the DTFT spectrum Xs(£2) of xs[n] (Fig. P3.11(a8)) can be
expressed in terms of the CTFT spectrum X, (w) of X5(t) (Fig. P3.11(a2)) as

1 00 Q +2mm
X5(Q) = > Zmz_w Xa (T) (P3.11.14)

(cf.) The sampled sequences x3[n], Xs[n], and xs[n] are all identical to
the impulse sequence and their flat spectra illustrate the extreme
case of a spectrum blurred by downsampling.

3.12 Linear Convolution and Correlation Using DFT
Consider the following two sequences:

x[N=[1 2 3 4 56 7 8 and y[n]=[1 -2 3] (P3.12.1)

(@)

(b)

(©

Referring to Remark 1.5, determine the length of the linear convolution
or correlation of the two sequences. Also use the MATLAB command
“next pow2() ” to find the smallest power of 2 that is greater than or
equal to the expected length of the linear convolution or correlation. What
is the minimum size N of DFT that can make the FFT operation most
efficient for computing the linear convolution or correlation?

Referring to Sect. 3.4.2, use the N-point FFT to compute the linear con-
volution of x[n] and y[n]. Check if the result conforms with that obtained
by using “conv(x, y)”.

It seems that we can use the N-point FFT to compute the correlation of
x[n] and y[n] based on the following facts:

o Pyl = R + YL LR [] « YN < 0] (P3122)
with period N

o X[—n] (3%3) X(—€2) implies that DFT ({y[N — n]} = Y(N —k)
(P3.12.3)

Noting that [N — n] can be programmed as “[y(1) fliplr(y(2:
end))] ”, compose a program to compute the correlation and run it to
get ¢yy[n]. Check if the result conforms with that obtained by using
“xcorr(x,y)”

Problems 193

3.13

20
10

30
20
10

DFT Spectra of Sampled Signals
20
Xa(K)| 10 X (K)!
8 16 32 48 63 k 00 8 16 32 48 63 k
(a) (b)
30
20
Xe(K) 10 Xa (k)|
8 16 32 48 M T 32 48 65K
(c) (d)

Fig. P3.13 DFT spectra of several discrete-time signals

3.14

With the sampling period T = 0.1 [s], we have sampled the following signals

(1) 0.5cos3xt + sin2xt

(2) cos3xt + 0.5sin2xt

(3) 0.5cos4xt +sinxt

(4) cosdnt 4 0.5sinxt

(5) 0.5c0s23nt + 0.5sin2xt — 0.5sin 187t
(6) 0.5sin21xt + 0.5c0s24xt + 0.5c0s 167t

and obtained their DFT spectra as depicted in Fig. P3.13.

(a) Find the corresponding spectrum for each signal from the DFT spectra
depicted in Fig. P3.13.

(b) If these signals have been through an anti-aliasing prefilter, which one is
expected to have the DFT magnitude spectrum like | Xa(Kk)|?

Spectral Leakage and Windowing Technique

Let us think about the cause of spectral leakage illustrated in Fig. 3.17(b)
and some measure against it. As discussed in Remark 3.10(2), the spectral
leakage stems from that any sequence is supposed to have periodicity with
period N (equal to the DFT size), regardless of its peridocity, just because it is
an object sequence of an N-point DFT. More specifically, the sequence x,[n]
is supposed to be periodic with period N = 16 as depicted in Fig. P3.14(a),
which shows such abrupt changes as discontinuities at both ends. A measure to
reduce this abrupt change is to multiply a window sequence whose magnitude
decreases gradually at both ends rather than cuts off abrubtly as the rectangular
window does. Figure P3.14(b), (c), (d1), and (d2) show a triangular (Bartlett)
window w+[n] of length N = 16, the windowed sequence Xy[n]Jwr[n], and
the DFT spectra of xp[n] and x,[n]Jwr[n]. Comparing the DFT spectra of
unwindowed and windowed sequences, we can see that the windowing has

194 3 Discrete-Time Fourier Analysis

1¢ B . N %, [n] KRS . KA
Xpln] \ N b \ v Xg[n] I\\
/ / /
1

\

b N T LA 1'1 .

(a) A sequence x,[n] with its periodicity assumed due to the 16-point DFT

o

n

ir wr[n]

0 7TT” H“ITH .

0 78 15
(b) A triangular (Bartlett) window of length N =16

Xp[n] we[n]

oo

(c) The windowed sequence and its periodic extension with period N =16

o

-—|

-—|

PR

—1

o
JRUEPEN S

o

-—]

-—|

PR

—=

©

L

° ! DFT {x,[nlw[n]}
ARICE
DFT{)?b[n]} 5
ARIT I
1111 ‘ 1 ‘ REEEN
L 4 0 4 g - 0% 0 4 8 «

(d1) The DTF spectrum of unwindowed sequence (d2) The DTF spectrum of windowed sequence

Fig. P3.14 The effect of windowing on the DFT spectrum

the effect of reducing the spectral leakage. You can try with another window
such as the Hamming window or Hanning (raised-cosine) window.

3.15 Spectrum Blurring due to Down/Sub-sampling (Slower Sampling)
As can be seen in Fig. 3.19(f) or Eq. (3.8.7), slower sampling (sub-sampling)
may make the spectrum blurred.

(a) Noting that x¢[n] in Fig. 3.19(f) has been obtained from downsampling
Xa[n] by a factor of 2, sketch the DFT spectrum of the sequence which
will be obtained from downsampling x[n] by a factor of 2.

(b) Referring to Eq. (3.8.7), determine the condition on which the DFT
spectrum is not blurred by downsampling it by a factor of 2.

3.16 Parallel Computation of DFTs for Two Real-valued Sequences (Problem 4.10
of [K-2])
We can compute the DFTs of two real-valued sequences x;[n] and x,[n] from
the DFT Y (k) of a complex-valued sequence

y[n] = xi [n] + j x2 [n] (P3.16.1)

Problems 195

where the DFT of each sequence can be written as

X1(K) = Xir(k) + j X1 (k) = Z::ol xa[n] cos <2nNkn>

— i Y xalnlsin <2”Nkn) (P3.16.22)
Xo(K) = Xor(K) +] Xai (k) = 3" Xo[] cos <2”k”>
—] Z:;Ol xz[N] sin <2”Nkn> (P3.16.2b)
(a) Show that, since xi[n], i = 1 & 2, is real, Xjr(k) = Re{X;(k)} is even

and X, (k) = Im{X;(k)} is odd via the conjugate symmetry (3.2.5) or
Table B.5(4) so that

Xir(k) = Xir(—K)rn[k] = Xir(N — k)
=Xjg(N—-Kk) for k=1,--- ,N-1 (P3.16.3a)
Xi1(K) = —Xi1 (KKl = =X (N — k)
=-—Xi{i(N=k) for k=1,---,N-1 (P3.16.3h)
where rny[K] = us[k] — us[N — k] is a rectangular pulse sequence.

(b) Show that the real and imaginary parts of Y(k) = DFTy{y[n]} can be
expressed in terms of X;r(k), Xi;(K), Xzr(k), and Xz (K) as

Y (K) = DFTn{yIn] = xa [n] + j %2 [n]} = Xu(K) +] Xa(K)
= Xir(K) + | X1 (K) +] (X2r(K) +] X21(K));
Yr(K) + J Yi(K) = Xir(K) — X21(K) + | (X11(K) + X2r(K)) (P3.16.4)
(c) Show that we can use the above relations (P3.16.3) and (P3.16.4) to

express the DFTs Xj;(k) and X,(Kk) in terms of the real and imaginary
parts of Y (k) = DFTn{y[n]} as

X1(k) = X1r(k) + | Xy (K) = %(YR(k) + Yr(N — k)

Fi5 0000~ Vi (N =) = Z(Y() + PN —K)
(P3.16.52)

Xalk) = Xor () + 1 X1 (09 = 50409 + (N —K)

- j%(YR(k) — Yr(N —K)) = —j %(Y(k) - Y*(N - k)
(P3.16.5b)

196

3.17

3 Discrete-Time Fourier Analysis

(d) Compose a MATLAB function “[X1,X2]=fft_2real(x1,x2,N)”, which uses
Eqg. (P3.16.5) to compute the DFTs of two given real-valued sequences x1
and x2. Run it to get the DFTs of the two sequences xa[n] and xy[n]
of Fig. 3.17(a) and (b) simultaneously and plot them to check for its
legitimacy.

Half-Size DFT Computation of Real-valued Sequences in OFDM Communi-
cation

Suppose we have an OFDM (Orthogonal Frequency Division Multiplexing)
communication system in which the transmitter converts a length N — 1
complex data sequence {X(k),k = 1 : N — 1} into a length 2N conjugate
symmetric sequence

0 fork=0
X(k fork=1,---, N—-1
Y(k) = (()) fork — N (P3.17.1)
X*(2N —k) fork=N+1, .-, 2N -1

and performs a 2N-point IFFT operation on {Y(k),k = 0 : 2N — 1} to make
a length 2N real-valued sequence {y[n],n = 0 : 2N — 1} to be transmitted.
With a noiseless channel and an exact synchronization, the receiver performs
a 2N-point FFT operation on the received sequence y[n] to get Y(Kk), and then
restore X(k). Let us consider how to exploit the conjugate symmetry to cut the
DFT size by half.

(a) Referring to Problem 3.16, we let the receiver construct a complex-valued
sequence from the received sequence y[n] as

(P3.16.1)

w[n] w1 [N] + jws [Nn]

=y[2n]+jy[2n+1] fork=0:N-1 (P3.17.2)

and take the N-point FFT operation on w[n] to compute W(k) = DFTy
{w[n]}. Then we can use Eq. (P3.16.5) to express the DFTs of w;[n] and
wo[n] in terms of W(k) as

Wi(k) = DF Ty) 2% 2

(P3.16.5b)

(W(K) +W*(N —k)) (P3.17.3a)

W, (k) = DFT \{w2[n]} j%(W(k) — W*(N —k)) (P3.17.3b)
Note that the 2N-point DFT of the even-indexed sequence y[2n] = w1 [n],
i.e., y[n] = wi[n/2] (with zero-insertion) is the same as the repetition of
W, (k) (Eg. (3.8.6)) and the 2N-point DFT of the odd-indexed sequence
y[2n + 1] = wy[n] is the same as the repetition of W, (k)e 127k/2N
(Eq. (3.8.6)) and the time-shifting property B.5(7)) since deploying w,[n]
as y[2n + 1] amounts to a zero-insertion followed by time-shifting by

Problems 197

n = —1. Therefore the DFT of the original received sequence y[n] =
y[2n] + y[2n + 1] can be written as

N (P317.3ab) 1
2

_ j%efjnk/N(W(k) — W*(N —K)) (P3.17.4)

Y(K) = Wi(K) + Wa(k) e/ (W(K) + W*(N = k)

This equation is used by the receiver for post-processing the FFT
result.

(b) On the other hand, the transmitter is required to perform a pre-processing
operation on Y (K) to construct W(k) whose IDFT is the complex-valued
sequence as

(P3.17.2)

wln] wi [n] + jwz [N]

=ynl+jy(n+1] fork=0:N-1 (P3.17.5)

and take the N-point IFFT operation on W(k) to compute w[n] =
IDFTN{W(K)}. Then the transmitter is supposed to construct a length
2N real-valued sequence y[n] = y[2n] + y[2n + 1] (to be transmit-
ted) such that y[2n] = wi[n] and y[2n + 1] = w3[n]. To determine
the pre-processing operation (at the transmitter) which is reverse to the
post-processing one (at the receiver), let us write Eq. (P3.17.4) together
with its Hermitian in matrix form as

L YK
Y*(N — k)
3174y L[1—jedmk/N 14 jeimk/N W(k)
with its Hermitian 2 | 1 — j eT(N=K/N 1 4 j gl(N=K)/N W*(N — k)
B 11— J e~ i7k/N 1 4] e imk/N W(k)
=2 [1+ jerimkN 1 e | [N — Ky | (PRLT6)

This implies that the pre-processing operation on Y (k) to construct W(K)
can be performed by

WK][l e g jerimin YK
WH(N —K) |~ “| 1+ jelmk/N 1 je imk/N Y*(N — k)

B 2 1—jed™N (1 +je ™M Y(k)

T —jAe kN | —(1 + jeTimNy 1 jeimk/N Y*(N = k)

198

3.18

3 Discrete-Time Fourier Analysis

%i g03p_17. m

clear, clf

N=1024; N2=N'2; kk=[-N: N;

n=[0: N-1]; k=[0: N-1]; WA_k=exp(]j *pi *k/ N); WNk=exp(-j *pi *k/ N);

Y= [0 2*(randint (1, N1)+j *randint (1, N-1))-1]; % assunmed data

% Transmi tter

Y2=[Y O conj (fliplr(Y(2:N)))]; y2=ifft(Y2); %using 2N-point |DFT
Yc= conj ([Y(1) fliplr(Y(2:N))]);

WE (Y+Yc + j*WAk.*(Y-Yc))/2; w=ifft(W,; %using N-point |DFT
y2fromw= [real (w); imag(w]; y2fromw= y2fromw:).’;

error _between.y2_and.y2_fromw= norn(y2-y2_fromw)/norn{y2)

% Recei ver

y2ur=y2; Y2r= fft(y2r); %received sequence and its 2N point DFT
yr= reshape(y2r,2,N; wr=yr(1,:)+*yr(2,:);

Wr= fft(wr); W= conj([Wr(1) fliplr(Wr(2:N))]);

YfromWs (Wr+Wer - j*WAK. *(Wr-Wer))/2;

error between_Y2_r _and_Y_fromWenor m(Y2_r (1: N) - YfromW/ norn(Y2.r)

_ 11+ J elmk/N 1 _ J elmk/N Y(k)
o E |:1 — j ei7k/N 9 + J elmk/N ?*(N . k) (P3177)

W(K) = %(Y(k) + Y*(N = k) + j%ei”k/N(Y(k) —Y*(N —K)) (P3.17.8)

The objective of the above program “sig03p_17.m” is to check the validity
of this scheme by seeing if the result of using the N -point DFT agrees with
that of using the 2N -point DFT. Identify the statements corresponding to
Egs. (P3.17.4) and (P3.17.8).

On-line Recursive Computation of DFT

We can compute the N -point DFT X(k, m) of a long sequence x[n] multi-
plied by a sliding rectangular window rn[n — m] of length N in the following
recursive way where we call each windowed sequence x[n]r[n — m] the m™"
data segment.

Let us define the 0, m", and (m + 1) data segments as

{X[0], Xo[1],---, Xo[N —1]} ={0, 0, , 0} (P3.18.1a)
{Xm[0], Xm[1],---, Xm [N — 1]}

= {x[m], x[m+1],---, x[m+ N — 1]} (P3.18.1b)
{Xm+1[0], Xm4a[L], -+, Xmia [N — 1]}

= {X[m+1], xIm+2],---, x[m+ N]} (P3.18.1¢c)

Problems 199

Thus we can express the N -point DFT X(k, m+ 1) of (m+ 1)"" data segment
in terms of X(k, m) (i.e., the DFT of the previous segment) as

N-1 N—1
Xkem+1) =3 mal W =D xm [0+ WY
N-—1 k 1 —K n+1_—>n N —k
= ano X [N + 1] WMWK = Zn:l Xm[N] WK™ Wy

= (Z:':—Ol Xm [M] WK + X[N] — x[o]> Wik
= (X(k,m) + x[N] — x[0]) Wi* (P3.18.2)

Complete the following program “sig03p_18.m” to check the validity. What is
the meaning of “discrepancy” in the program?

%i g03p_18. m
% Recur si ve conputation of DFT
clear, clf
N=64; n=0:N-1; k=0:N-1;
WL=2*pi *8/ N; x=si n(WL*n);
X=fft(x); 9FT
xa=[zeros(1,N) x]; %augnent x with N zeros
Xmrzeros(1, N); WALk=exp(j *2*pi *k/ N) ;
for mr1l: N
Xme(Xmkxa(N+m) - xa(m) . *??2?2?; YRDFT
end
di screpancy= nor m(Xm X) / nor n{ X)
sten(k, abs(Xn)), hold on, pause, sten(k,abs(X),'r")
title(’ ROFT and FFT")

3.19 Two-Dimensional (2-D) DFT
Two-dimensional DFT X(k, I) of a 2-D sequence X[m, n] and its IDFT x[m, n]
are defined as

_ M-1 N-1 km \p/ln
Xk, 1) = Zmzo ano x [m, n] Wkmwi! (P3.19.1a)
forO<k<M-land0O<l<N-1
B 1 M—1 N-1 KM AN
x[m.n] = —— Zkzo leo X(k, 1) W™ Wy'" (P3.19.1b)
forO<m<M-land0<n<N-1
The 2-D DFT can be computed by using a MATLAB built-in functionf f t 2() .

On the other hand, the 2-D DFT (P3.19.1a) can be written as two cascaded
1-D DFTs:

200

3.20

3 Discrete-Time Fourier Analysis

_ M-1 Kkm
X(k,1) = Zmzo P(m, 1) Wk (P3.19.2a)
forO<k<M-1 and 0<l<N-1
) _ N-1 n
with P(m,1) = ano x [m, n] WY (P3.19.2b)
forO<m<M-1 and O0<lI<N-1

This implies that the 2-D DFT can be computed by taking the 1-D DFT for
each row of x to get P(m,) and then taking the 1-D DFT for each column
of P(m, 1). Noting that the MATLAB function f f t () computes the DFTs of
each column of the input matrix, compose a program to check the validity of
Eq. (P3.19.2a-b) for a 2-D rectangular pulse x|m, n] that is produced and 2-D
or 3-D plotted (in black and white) by the following MATLAB statements:

>>N=64; x=zeros(N, N); x(N2-3:N 2+3, N 2-5: N 2+5) =255;
>>me[- N 2: N 2-1]; nn=[-N 2: N 2-1]; image(nn, mm x) % 2-D pl ot
>>nesh(nn, mm x), col ormap(gray(256)); % Alternatively, 3-D plot

In fact, it does not matter whichever of the column and row is taken the DFT
of first.

Short-Time Fourier Transform (STFT) Using Spectrogram
Let us use the MATLAB function spectrogram() to find the STFT for some
signals.

%l ay_nusi c.wave. m

clear, clf

Fs=10000; Ts=1/Fs; % 10kHz Sanpling Frequency and Sanpling period

Tw=2; % Duration of a whole note

nel ody_rhythme [40 42 44 45 47 49 51 52; 1/4 1/4 1/4 1/4 1/8 1/8 1/8 1/8];
[x,tt]= musicwave(nel ody_rhythm Ts, Tw); sound(x, Fs)

N=256; wnd=N; Noverl ap= N 2;

subpl ot (221), spectrogran(x,wnd, Noverl ap, N, Fs,’ yaxis'); % specgran(x)

col ormap(gray(256)) % col ormap(’ default’)

function [wave, tt] =nusi cwave(nel ody.rhythm Ts, Tw)
% Ts: Sanpling period, Tw duration for a whole note
% Copyl eft: Won Y. Yang, wyyang53@anmail.net, CAU for acadenic use only
if nargin<3, Tw=2; end
if nargin<2, Ts=0.0001; end
[MN] = size(nel ody.rhyt hmn;
wave= []; tt=[]; pi2= 2*pi; phase= 0;
for i=1:N
t= [Ts: Ts: mel ody.rhythn(2,i)*Tw ;
if i==1, tt=[tt t]; else tt=[tt tt(end)+t]; end
W= pi 2*440*2" ((mel odyrhythn(1,i)-49)/12); angle= wt + phase;
wave= [wave sin(angle)]; phase= angle(end);
end

Problems

201

The fourth octave

40 | 42 | 44 52| 54 | 56
c4|D4|E4 cs5| D5 | E5

(a) A piano keyboard with the key numbers

treblg clef quarter notes eighth notes
—7 . I K AN
[at | | | | I\I
] 1/
1% 4
(b) A melody written on the music score
Fig. P3.20.1
(a) Referring to the above program “play_music_wave.m” and the layout of

(b)

(©

(d)

a piano keyboard depicted in Fig. P3.20.1(a), use the MATLAB routine
“music_wave” to produce a sinusoidal wave for a series of musical notes
shown in Fig. P3.20.1(b) where the frequency for the central note A4 is
440 Hz and that for any other note is

fn = 440 x 200=%/22[Hz] where n is the key number. (P3.20.1)

Use the MATLAB function “specgram” (in MATLAB of version 6.x) or
“spectrogram” (in MATLAB of version 7.x) to find the STFT for the
sinusoidal wave produced in (a). You can change the DFT size from its
default value N = 256 to 512 and then to 1024 and localize the frequency
range if you think it to be of help in distinguishing the distinct frequency
components. Which of the frequency and time resolutions do you gain or
lose by increasing the DFT size?

Beyond the current limit of your ability and the scope of this book, you
can use the RDFT (recursive DFT) or any other technique such as the
wavelet transform to improve the time and frequency resolution.

Produce a beat-note signal by summing two sinusoids of slightly different
frequencies 495 Hz and 505 Hz as

X(t) = cos(2mw x 495t) 4 cos(2w x 505t)

= 2cos(2r x 500t) cos(2w x 5t) (P3.20.2)

Determine the FFT size (as a power of 2) such that the two frequencies
are distinguishable in the spectrogram. How about the DFT size N which
makes the frequency resolution

2 —4
2 o 505 95HZ

P3.20.
NT 2 (P3.20.3)

202 3 Discrete-Time Fourier Analysis

where the sampling period T is chosen as 0.0001 s?

Fig. P3.20.2 A beat-note signal

(cf.) For example, the spectrogram with N = 512 shows a single fre-
quency of around 500 Hz varying in amplitude with time, while
that with N = 4096 reveals the two different frequencies with
constant amplitude.

3.21 Design of DTMF (Dual-Tone Multi-Frequency) Signal Decoder
DTMF system transmits keys pressed on a keypad (Fig. P3.21(a)) through an
audio channel such as a telephone line. Every time a key is pressed, it transmits
two frequencies, each corresponding to the row and column in which the key
isin.

%i g03p-21. m
% DTMF encodi ng and decodi ng
clear, clf
Fs=10000; Ts=1/Fs; % 10kHz Sanpling Frequency and Sanpling period
keypad. keys= ["1" 2" '3 A
"4 '5 6 "B
7T '8 9 ' Cy
0 '# "D
keypad. rowfreqs= [697 770 852 941];
keypad. col freqs= [1209 1336 1477 1633];
w=2*pi *[keypad. rowfreqgs keypad.col freqgs];
[x,tt]= dtnf_generator(’159D ,[0.1 0.2 0.1 0.2],Ts, keypad);
soundsc(x, Fs)
[keys, B, A] = dt nf _.decoder (x, Ts, keypad) ;
keys
sin(’dtnf’,tt(end)); %run the Simlink nodel file 'dtnf’ for tt(end)[sec]

function [wave, tt] =dtnf _generator (keys, durations, Ts, keypad)
% keys, durations : keys pressed and their durations in vectors
% Ts : Sanpling period
% Copyl eft: Won Y. Yang, wyyang53@annail.net, CAU for academi c use only
Nkey= | engt h(keys); Nduration= | ength(durations);
i f Nduration<Nkey
durations= [durations durations(1)*ones(1, Nkey-Nduration)];
end
wave= []; tt=[]; pi2= 2%pi;
Nzero= ceil (0.1/Ts); zero.between_keys=zeros(1, Nzero);
tzero= [1: Nzero] *Ts;
for i=1:Nkey
t= [Ts: Ts:durations(i)];
if i==1, tt=[tt t];
else tt=[tt tt(end)+t];
end
[mn]= find(keys(i)==keypad. keys);
if isenpty(m), error(’Wong key in dtnf_generator’'); end
w2= pi 2*[keypad. rowfreqs(m); keypad.col fregs(n)];
wave= [wave sun(sin(w2*t)) zero-between_keys];
tt=[tt tt(end)+tzero];
end

Problems 203

Coloumn frequencies
1209Hz 1336Hz 1477Hz 1633Hz
697Hz
[%]
Q
o
$ 770Hz
3
o
£ 852Hz
3
=}
14
941Hz

(a) A DTMF keypad with the row and column frequencies

Sine E};pe: Time based Transfer function type: FIR | 1 am
Time(t): ; - Filter structure: Direct form 1 :
Use simulation time Number of inputs: 2 Coefficient source: 0] ZP SN EONE—
i . ias: Multiplication: PR :
Amplitude: 1, Bias: 0 Elepmenl-wise(9 Specify via dialog :
Frequency [rad/sec]: w(1) Sampling time: Ts Numerator coefficients: B | ~1
Phase [rad]: 0 Initial conditions: 0 1 ;
Sample time: Ts T id,[n]
X(nT.) T [Simulink | [Simulink/Signal Routing] Of—mrd..onn \—--—:
IMath operations] ! Mux :
— " DF FIR - 1 ;
From Workspace x m 1
[Simulink/Source] y,[n] d, T
Sine Wave Productl Digital Filterl dy[n] \
Sin(w4Tgn) Functionl [Signal Processing/Filtering/Filter Designs] 0
. S,HBe Wave Product2 Digital Filter2
Sin(w,Tgn) Function2
. DEFIR -
y,n] 7N d [Simulink/Sink] —0-2
Sine Wave Product3 Digital Filter3 Scope 1

Sin(w3Tgn) Function3 —>

Po— ma i S (e N G

y,[n] 4
! Sine Wave Product4 Digital Filter4 o
SinWgTgn) Function4 . :
L} T
——>| O pag—- oo ,
Ysln] d :
: Sine Wave Products Digital Filter5 o :
Sin(WsTsn) Functions 2
. DF FIR - p T
- Yeln A ‘ 0 :d,[n]
6 !
- Sine Wave Product6 Digital Filter6 : _/
Sin(wgTn) Function6 ' 1
| 0.5 -
! d,n]
" Sine Wave ' vl
Sinw7Tsn) Function? i :
-0.5 L
. 0.5
n 8 - i
Sin(wqT.m) Sine Wave Product8 Digital Filterg Lt i
8 Functiond General “ Data history | 19: try nignt choking cnaxes | General || Data histery | g iry nght clicking on aces
e Lt df peiis ot
Mumer of axes: _ floating scope D Save dats to \f."D'kSpaCE
ol — Variadls rame
Samping] Format Stucture wintme v

(b) The Simulink block diagram for a DTMF decoder

Fig. P3.21

(@) The program “dtmf_generator()” listed below generates a DTMF signal
(wave) together with the time vector (tt) for given vector (keys) of keys
pressed and vector (durations) of key pressing duration. A zero period of
0.1s is inserted between the key signals so that the decoder can distin-
guish between a single long-pressed key and multiple repeated keys by

204

(b)

(©)

3 Discrete-Time Fourier Analysis

accepting a new key only after detecting a zero period. Referring to the
main program “sig03p_21.m”, make a DTMF signal for the leading three
digits of your phone number and listen to its sound.

Figure 3.21(b) shows a Simulink block diagram for a filter bank which
can be used to detect the DTMF signal. In each bank, sin(w;Tsn) =
sin(27 f; Tsn) is multiplied with the input signal where f; = 697, 770, 852,
941, 1209, 1336, 1477, and 1633 Hz and the modulated signal is passed
through a moving or running average filter (MAF). The DTMF signal x
together with the time vector tt, the sampling period Ts, the analog fre-
quency vector w (wj = 27 fi’s), and the running average filter coefficient
vector B are supposed to be supplied via the MATLAB workspace. Note
that the Simulink model file “dtmf.mdl” can be run directly or indirectly
from a MATLAB program by using the MATLAB command “si () ” as
illustrated in the program “sig03p_21.m”. Based on the simulation results
observed through the scope, determine the common threshold value which
can be used for detecting any one of the eight frequencies from the output
(di [n]) of each MAF.

Complete the following program “dtmf_decoder()” and run it on the
DTMF signal generated in (a) for demonstration. Note that freq-
durations(i) for each frequency is accumulated every sample time the
corresponding MAF output is larger than the threshold value (Thd) and
zero_duration is increased by one every time no frequency is detected.
Whenever the accumulated zero duration exceeds some threshold value
(Zero_duration) and the frequency durations for at least one of the row fre-
quencies and at least one of the column frequencies exceed some threshold
(Freg_duration), the key corresponding to the row/column frequencies is
determined.

Problems 205

function [keys, B, Al =dt nf _decoder (x, Ts, keypad)

% <I nput s> X : Signal vector of DTMF tones

% Ts : Sanpling period

% <CQut put s> Keys: Detected key vector

% B, A : Nunerator/denom nator of the filter transfer function

% Copyl eft: Won Y. Yang, wyyang53@annuil.net, CAU for acadenic use only
w=2*pi *[keypad. row.fregs keypad.col freqgs]; wIs=w‘Ts;
NB=cei | (0. 03/ Ts); B=ones(1, NB)/NB; A=1; % FIR filter for running average
DCgai n= sun(B)/sunm(A); B= B/ DCgai n;
NB=I engt h(B); NA=l engt h(A);
Mel engt h(wTs); % the input dinmension of the filter
%M =zeros(max(NA, NB)-1,M; %the initial state
Nx= length(x); tt=[1:Nx]*Ts; %the length of signal and the tine vector
y=[1; d=[]; keys=[];
freq-durations=zeros(1, M; zero.duration=0; Thd=0.1;
Zero_duration= 0.08/Ts; Freqg-duration= 0.09/Ts;
for n=1: Nx
y=[y; x(n)*sin(wTs*n)];
if n==1, [dn,wi]= filter(B,A [zeros(1,M; y(end,:)]); % colum-wi se
else [dn,wi]= filter(B, A y([end-1 end],:),wi); %mlti-filtering
end
d =[d; dn(end,:)]; tmp = (abs(dn(end,:))>Thd);
freqdurations = freq.durations + tnp;
zeroduration = zero.duration + (sun(tnp)==0);
condl= (zero_duration>Zero_duration);
cond2= sun(freq-durations(1:4)>Freq.duration)>0;
cond3= sun(freq-durations(5:8)>Freq-duration)>0;
if condl&cond2&cond3
2029222227222222222222222222222222222222?

Chapter 4
The z-Transform

Contents
4.1 Definition of the z-Transform 208
4.2 Properties of the z-Transform i 213
421 LINGaItY ottt 213
4.2.2 Time Shifting — Real Translation o i, 214
4.2.3 Frequency Shifting — Complex Translation.............................. 215
424 TIMEReVErsal 215
425 Real ConvolUutioN 215
426 Complex Convolutioncooiii e 216
4.2.7 Complex Differentiation i 216
4.2.8 Partial Differentiation 217
429 Initial Value Theorem 217
4.2.10 Final Value Theorem e 218
4.3 Thelnverse z-Transform 218
4.3.1 Inverse z-Transform by Partial Fraction Expansion 219
4.3.2 Inverse z-Transform by Long Division. ..., 223
4.4 Analysis of LTI Systems Using the z-Transformo i, 224
4.5 Geometric Evaluation of the z-Transform o it 231
4.6 The z-Transform of Symmetric SEqUENCeSovviiiiiiieiiiiennn.. 236
4.6.1 SYMMELriC SEQUENCES . .. vt v vttt e ettt e e et e 236
4.6.2 ANti-SYMmetric SEQUENCES oottt 237
A7 SUMMANY . o ettt ettt ettt et ettt e et et et e e e e 240
PrODIEMS 240

The z-transform is the discrete-time counterpart of the Laplace transform. It can be
viewed as a generalization of the DTFT (discrete-time Fourier transform) just as the
Laplace transform can be viewed as a generalization of the CTFT (continuous-time
Fourier transform). It plays a vital role in the analysis and design of discrete-time
linear time-invariant (LTI) systems that are described by difference equations. In
this chapter we introduce the z-transform and discuss some of its properties and
applications to LTI system analysis and representations.

W.Y. Yang et al., Signals and Systems with MATLAB®, 207
DOI 10.1007/978-3-540-92954-3_4, © Springer-Verlag Berlin Heidelberg 2009

208 4 The z-Transform
4.1 Definition of the z-Transform

For a discrete-time sequence x[n], the bilateral (two-sided) and unilateral (one-
sided) z-transforms are defined as

X[Z] = Z{x[n]} = Z:i_oo x[n]z™"

_ X[=Z{xn) =Y~ xnjz™"
(4.1.1a)

~ (4.1.1b)

where z is a complex variable. For convenience, the z-transform relationship will
sometimes be denoted as

x[n] & X [2] | x[n] & X[2]

Note that the unilateral z-transform of x[n] can be thought of as the bilateral
z-transform of Xx[n]Jus[n] (us[n]: the unit step sequence) and therefore the two
definitions will be identical for causal sequences. The unilateral z-transform is par-
ticularly useful in analyzing causal systems described by linear constant-coefficient
difference equations with initial conditions.

The z-transform does not necessarily exist for all values of z in the complex
plane. For the z-transform to exist, the series in Eq. (4.1.1) must converge. For a
given sequence X[n], the domain of the z-plane within which the series converges is
called the region of convergence (ROC) of the z-transform X[z] or X[Zz]. Thus, the
specification of the z-transform requires both the algebraic expression in z and its
region of convergence.

Note that a sequence x[n] is called

— aright-sided sequence if x[n] = 0V n < ng for some finite integer no,

— acausal sequence if x[n] = 0V n < ng for some nonnegative integer ny > 0,

— aleft-sided sequence if x[n] = 0V n > ng for some finite integer ng, and

— a anti-causal sequence if x[n] = 0V n > ng for some non-positive integer
no <0,

respectively.
Example 4.1 The z-Transform of Exponential Sequences

() For aright-sided and causal sequence x;[n] = a"us[n], we can use Eq. (4.1.1a)
to get its bilateral z-transform as

Xu[2] = Z{xa[n]) = Z:;oo a"us[n]z " = Z::O a"z™"

(D.23) 1 z
T 1-az! z-a (E4LD)

This geometric sequence converges for |az~%| < 1, which implies that the ROC
of Xy[z] isR1 = {z: |z| > |al} (see Fig. 4.1(a)).

4.1 Definition of the z-Transform 209

Im{z}

o~

_
74

7

Ry ={z:1z|>|al} Ry ={z:1z|< b} R=Ry N Ry={z: |al<|z|<[b]}
(a) ROC for a right-sided (b) ROC for a left-sided (c) ROC for a both-sided
sequence sequence sequence

Fig. 4.1 Three forms of ROC (region of convergence)

(b) For a left-sided and anti-causal sequence x;[n] = —b"ug[—n — 1], we can use
Eq. (4.1.1a) to get its bilateral z-transform as

-1

Xo[Z] = Z{%o[n]} = Z:‘;_w —bUuf-n-1z "= " bz

N=—00

N @2 —bT'z oz
= Zn:l(b e AR (E4.1.2)

This geometric sequence converges for |b~1z| < 1, which implies that the ROC
of X5[z] is R, = {z: |z] < |b|} (see Fig. 4.1(b)).
(c) For the both-sided sequence

y[n] = x1[n] + %2[n] = a"us[n] — b"ug[—n — 1] (E4.1.3)

we can combine the above results of (a) and (b) to obtain its bilateral z-
transform as

Y[Z] = X4[7] + X3[2] = é + z—Db

(E4.1.4)
For this series to converge, both of the two series must converge and therefore,
its ROC is the intersection of the two ROCs Ry and R, : R = R1 NR, =
{z:]al < |z| < |bl}. This is an annular region |a| < |z| < |b| (Fig. 4.1(c)) if
|b] > |a] and it will be an empty set if [b| < |a].

(cf) This example illustrates that different sequences may have the same z-transform,
but with different ROCs. This implies that a z-transform expression may
correspond to different sequences depending on its ROC.

Remark 4.1 Region of Convergence (ROC)

(1) The ROC for X[Z] is an annular ring centered at the origin in the z-plane of
the form

210 4 The z-Transform
r- <zl <rt 4.1.2)

where r T can be as large as co (Fig. 4.1(a)) for causal sequences and r ~ can be
as small as zero (Fig. 4.1(b)) for anti-causal sequences.

(2) As illustrated in Example 4.1, the three different forms of ROC shown in
Fig. 4.1 can be associated with the corresponding three different classes of
discrete-time sequences; 0 < r~ < |z| for right-sided sequences, |z| < r* < oo
for left-sided sequences, and r~ < |z < r* (annular ring) for two-sided
sequences.

Example 4.2 A Causal Sequence Having Multiple-Pole z-transform
For a sum of two causal sequences

x[n] = x1[n] + %2[n] = 2us[n] — 2(1/2)"us[n] (E4.2.1)

we can use Eq. (E4.1.1) to get the z-transform for each sequence and combine the
z-transforms as

4
Z—a

E4.1.1 Z
€1y

Al2] = Z{xIn]y = X4[7] + X5[7] witha=land a=1/2 Z — @

-2

a=1

a=1/2
2 2
z z z (E4.2.2)

z—1 z-1/2 (z-1(z-1/2)

Since both X;[Z] = Z{x;[n]} and X;[Z] = Z{x2[n]} must exist for this z-transform
to exist, the ROC is the intersection of the ROCs for the two z-transforms:

R=TRiNRy={z:|z| >1}Nn{z:|z| > 1/2} ={z: |z| > 1} (E4.2.3)

(cf) Figure 4.2 shows the pole-zero pattern of the z-transform expression (E4.2.2)
where a pole and a zero are marked with x and o, respectively. Note that the
ROC of the z-transform X[Z] of a right-sided sequence is the exterior of the
circle which is centered at the origin and passes through the pole farthest from
the origin in the z-plane.

Im{z}

Fig. 4.2 Pole-zero pattern of
the z-transform (E4.2.2)

4.1 Definition of the z-Transform 211

Before working further with more examples, let us see the relationship between
the z-transform and DTFT (discrete-time Fourier transform), which is summarized
in the following remark:

Remark 4.2 The z-Transform and the DTFT (Discrete-Time Fourier Transform)

Comparing the bilateral z-transform (4.1.1a) with the DTFT (3.1.1), we can see
their relationship that the DTFT can be obtained by substituting z = e/ into the
(bilateral) z-transform:

FixI] = X(19) =737 x[nje 19" = X[eif]

X[Z]|Z=eiQ = Z{X[n]Hz:eiQ (4-1'3)

This implies that the evaluation of the z-transform along the unit circle in the z-
plane yields the DTFT. Therefore, in order for the DTFT to exist, the ROC of the
z-transform must include the unit circle (see Fig. 4.3).

Example 4.3 The z-transform of a Complex Exponential Sequence
Let us consider a causal sequence

x[n] = e/%"ug[n] = cos(21n)us[n] + j sin(21n)us[n] (E4.3.1)

We can find the z-transform of this exponential sequence by substituting a = el
into Eq. (E4.1.1) as

E411) Z 2(z— e 1)
a—eit Z— el (z—elu)(z—e i)’

X[z] = Z{e'*"ug[n]) 2| > |e5%) = 1;

ey n] %22 cos(Qin)us[n] + j sin(Q:n)us[n]

z Z(z — cos 1) . zsin
72 —2zc0s2; +1 72 —2zcosQ; +1

Im{z} z-plane

z=¢ 0

Q

0 1 Re{z}
Fig. 4.3 The relationship
between the DTFT and W ,
z-transform FX[NT}= X(jQ) = (X[z] = Z{x[n]}) with z=e I

212 4 The z-Transform

This implies the following two z-transform pairs:

Z(z—cosQ 2(z —cosQ
cos(Q:1n)us[n] & 5 (D (1_) . (E4.3.2)
z¢—2zc0sQ +1 (z—cosQ)? +sin” Q;
With R ={z:|z| > 1}
. zsinQ zsinQ
sin(Q:n)us[n] & L L (E4.3.3)

22 —2zcos Q2 +1 - (z— cos Q1)2 + sin®
wWith R = {z:|z| > 1}

Example 4.4 The z-transform of an Exponentially Decreasing Sinusoidal Sequence
For a causal sequence

ol .
x[n] = r" cos(Q1n)us[n] €2 Er”(eJ an 4 eIy n] (E4.4.1)
we can use Eq. (E4.1.1) with a = e*I*4 to find the z-transform of this sequence as

X[z]

(E4.L1) 1 (z z) _ Z(z—rcos)

_ _ + _ —
a=rei® and a=re-im1 2 \ Zz—rei®s z_reitu 72 —2zr cos Qg +r2

(E4.4.2)
where the ROCis R = {z: |z| > |r e1%1| = |r|}.

(cf) Note thatif |r| > 1, the ROC does not contain the unit circle and consequently,
the DTFT does not exist in the strict sense.

We could elaborate on more examples of the z-transform computation. However,
we instead list a number of useful z-transform pairs in Table B.9 in Appendix B so
that the readers can use them for finding the z-transform or inverse z-transform.

In many cases, we deal with the z-transform that is expressed in the form of a
rational function, i.e., a ratio of polynomials in z. For such a rational z-transform
X[z] = Q[z]/P[Z], we define its singularities, i.e., poles and zeros as follows:

Remark 4.3 Poles and Zeros of a Rational z-Transform Expression X[z] = Q[z]/
P[Z]

The roots of Q[z] = 0, or the values of z at which X[z] = 0 are called the
zeros of X[z]. The poles are the roots of P[z] = 0, or the values of z for which
X[Z] = oo. If we count the singularities at z = oo, the number of poles will be
equal to that of zeros. Notice that, for polynomials with real-valued coefficients, the
complex-valued singularities must occur in complex-conjugate pairs.

The ROC of a z-transform X[z] can be described in terms of its poles as follows:

4.2 Properties of the z-Transform 213

Remark 4.4 Pole Locations and Region of Convergence (ROC)

(1) It is obvious that there can be no poles of a z-transform X[Zz] inside the ROC
since the z-transform does not converge at its poles. In fact, the ROC is bounded
by poles or infinity as illustrated by Examples 4.1 and 4.2.

(2) For a right-sided sequence x5[n] and left-sided sequence xy[n], the ROCs for
their z-transforms X,[z] and X[Z] are outside/inside the outermost/innermost
pole, respectively:

R1={z:|z] > the maximum of |a;|'s}(z = & : the poles of X,[z]) (4.1.4a)
(as illustrated by Example 4.2) or
Rz = {z: |z| < the minimum of |b;|'s}(z = by : the poles of Xp[z]) (4.1.4b)

For a two-sided sequence X[n] = X[n] + Xp[n], the ROC is an annular region
given by

R=RiNRy={z:max|a| < |z|] < min|b;|} (4.1.4c)
[i

4.2 Properties of the z-Transform

In this section we discuss the properties of the z-transform that are useful in obtain-
ing z-transform pairs and in applying the transform to the analysis of discrete-time
linear time-invariant systems. These properties are very similar to those of the
Laplace transform and Fourier transform.

Most of the properties are commonly applicable to the bilateral and unilateral
z-transforms. There are, however, a few exceptions such as the time shifting prop-
erty, time reversal property, and initial/final value theorems. In particular, it is the
time shifting property that makes the unilateral z-transform very useful for solving
difference equations with initial conditions.

4.2.1 Linearity

Let the z-transforms of two time sequences x[n] and y[n] be Z{x[n]} = X[z] with
ROC Ry and Z{y[n]} = Y[z] with ROC R. Then we can express the z-transform
of their linear combination in terms of X[z] and Y[Z] as

ax[n] + By[n] & aX[z] + BY[Z] with ROC R > (R1 N Ry) (4.2.1)
where the ROC is generally the intersection of the two ROCs Ry and Ry, but it can

be larger when any pole of X[z] and Y[Z] is cancelled by the zeros resulting from
the addition.

214 4 The z-Transform
4.2.2 Time Shifting — Real Translation

Let the bilateral z-transform of x[n] be Z{x[n]} = X[z] with ROC R«. Then the
bilateral z-transform of a time-shifted version x[n — n;] is

x[n — nq] S Z "X[Zz], ROC Ry (possibly with z = 0 or co added or removed)
(4.2.2)

The addition/removal of z = oo to/from the ROC occurs when a causal/non-causal
sequence is shifted to become a non-causal/causal sequence. Similarly, the addi-
tion/removal of the origin z = 0 to/from the ROC is owing to the possible transition
between anticausal and non-anticausal sequences resulting from the shift operation.

On the other hand, the time-shifting property of the unilateral z-transform is as
follows:

<Case 1> X[n — n], n; > 0 (delayed sequence)
o0 —n
Z{X[n—n]} = ano x[n —ng]z
_ n—1 n [ee] n
=), xn—mlz"+ Zn:nl x[n —ny]z

n—n1=m;n=m+n1 -1 ,(m+n) 0 7(m+n)
= Zm:—m x[m]z~ (M) 4 Zm:O x[m]z~ M+
=z (Y7 xmlz ™+ Zil x[mlz™);
m=0 m=-—ny '
1
X[n —nq] Ezm <X[z] + Zm:_m x[m]zm> (4.2.3a)

where the second term in the RHS will disappear when x[n] is causal.

<Case 2> X[n + n;], n; > 0 (advanced sequence)

) = T S g

=z (Z::o x[m]z ™ — anl:_: x[m]zm> :
x[n + ni] Z g (X[z] - an:: x[m]z‘m> (4.2.3b)

Example 4.5 Applying Linearity and Time Shifting Properties of the z-Transform
For a rectangular pulse sequence of duration N given by

n= ..N

- 0 1 ~1 N--
x[n] =ug[n] —us[n = N]={--0 2 1-.- 1 0---} (E4.5.1)

4.2 Properties of the z-Transform 215

we can use Eq. (E4.1.1) (with a = 1) together with the linearity (4.2.1) and time-
shifting property (4.2.2) to get its z-transform as

(421&@422) z—1 z—1 N-1(z-1)

(E41D witha=1 Z N Z N1

X[2] (E4.5.2)

Note that X[z] has multiple pole of order N — 1 at z = 0 and N — 1 zeros at
z=el?™/N (form=1,2,---, N — 1) on the unit circle where the zero at z = 1
(resulting from the addition) cancels the pole (of Z{us[n]} = z/(z— 1)) at that point.
Due to this pole-zero cancellation, the ROC of X[z] becomes |z| > 0 (the entire
z-plane except the origin z = 0), which is larger than that of Z{ug[n]} = z/(z — 1),
ie, |z > 1.

4.2.3 Frequency Shifting — Complex Translation
Let the bilateral z-transform of x[n] be Z{x[n]} = X[z] with ROC Ry = {z :

ry <zl <ry}. Then we have the z-transform of a frequency-shifted or modulated
version z;'x[n] as

el ux[n] & X[e 1 HZ with ROC : Ry = {z:r; < |z| <t} (4.2.49)

Z'x[n] S X[z/z] with ROC : |21 Ry = {z: lz1lr, < 12| < |z1|ryf} (4.2.4b)

4.2.4 Time Reversal

Let the bilateral z-transform of x[n] be Z{x[n]} = X[z] with ROC Ry = {z :
ry < |z| < r}}. Then we have the bilateral z-transform of a time-reversed version
x[—n] as

x[—n] & X[z with ROC : 1/Ry = {z: 1/r]} < |z| < 1/r]} (4.2.5)

where if ze€ Ry, then1/z € 1/R.

4.2.5 Real Convolution
Let the z-transforms of two time sequences g[n] and x[n] be Z{g[n]} = G[z] with

ROC Rg and Z{x[n]} = X[z] with ROC Ry. Then we can express the z-transform
of their convolution in terms of G[Zz] and X[Zz] as

y[n] = g[n] = x[n] < Y[z] = G[Z] X[Z] with ROC R > (RgNRx) (4.2.6)

216 4 The z-Transform

(proof)
Z{gn] = x[n]} “=7 3" (gn] « x[n)z "

(1.2.9) Z::—oo (Z::oo g[m]x[n — m]> SN
= Z:=foo (g[m] Z:O:—oo x[n — m]z—(n—m)z_m>
n—m-n, N—>n+m Z::_oo (g[m]z*m Z:‘;_m x[n]z*“) (411a) GZX[]

This convolution property holds for causal sequences, which implies that the uni-
lateral z-transform also has the same property. It is very useful for describing the
input-output relationship of a discrete-time LTI system with the input x[n], out-
put y[n], and impulse response g[n] where the transform of the impulse response,
Z{g[n]} = G[Z], is called the systemor transfer function (see Sects. 1.2.3and 1.2.4).

4.2.6 Complex Convolution

Let the z-transforms of x[n] and y[n] be Z{x[n]} = X[Z] withROC Ry = {z:r; <
lz| < rf}and Z{y[n]} = Y[z] with ROC Ry = {z: 1, < |z| <1}, respectively.
Then the z-transform of the product of the two sequences can be expressed in terms
of X[z] and Y[Z] as
x[n]y[n] & —7{ X[z/v]Y[v]v 'dv WithROC R = {z: 1,1, < |z] <r/rf
(4.2.78)
1)
x[n]y[n] & ﬂyg X[]Y[z/v]v 'dv with ROC R = {z: 1,1, < |z <r/fr)
T C,

(4.2.7b)
where 95 means the complex integral along a closed contour C; within the intersec-
tion of the ROCs of X[z/v] and Y[v] or X[v] and Y[z/v] (see [O-2], Sect. 2.3.9 for
its proof).

4.2.7 Complex Differentiation

Let the z-transform of x[n] be Z{x[n]} = X[z] with ROC Ry. Then the z-transform
of nx[n] can be expressed in terms of X[Zz] as

nx[n] & —zdizsg[z] with ROC Ry (4.2.8)

4.2 Properties of the z-Transform 217

This can be proved by differentiating the definition of the z-transform (4.1.1)
w.r.t. z.

4.2.8 Partial Differentiation

If a z-transform pair is given in the form of Z{x(nT, a)} = X(z, a) with a parameter
a, we can differentiate it w.r.t. a to obtain another z-transform pair as

d z 0
—Xx(nT, a —X(z, a 429
o X(T.8) & —-X(z a) (42.9)

Example 4.6 Complex Differentiation and Partial Differentiation
For y[n] = n?a"us[n], we can apply the complex differentiation property (4.2.8)
twice for Eq. (E4.1.1) to write

z d

n z_4d z __(z—a)—z_ az
na"us[n] zdz (z— a) =-z a7 ~@z_ay (E4.6.1)
N z _d az _ _a(z—a)?-2azz—a) az(z+a)
e e e
(E4.6.2)

Alternatively, we can apply the partial differentiation property for Eq. (E4.1.1) to
get the same results:

n— z 0 z _ z
na"lus[n] & A (Z - a) =T ar (E4.6.3)
. 9 az 2(z—a)> +2az(z—a) z(z+a)
n2a"tug[n] & o ((z — a)2> = Z—a =z aF (E4.6.4)

Multiplying both sides of these equations by a yields Egs. (E4.6.1) and (E4.6.2),
which are listed in Table B.9(10) and (12).

4.2.9 Initial Value Theorem

For a causal sequence x[n] such that x[n] = 0V n < 0, we can get its initial value
x[0] from its z-transform as

X[0] = lim X[Z] (4.2.10)

This can easily be shown by substituting z = oo into the z-transform definition
(4.1.1b).

218 4 The z-Transform
4.2.10 Final Value Theorem

For a causal sequence x[n] such that x[n] = 0V n < 0, we can get its final value
X[oc] from its z-transform as

x[oe] = lim(z —)X[2] = lim(1 -z)X[Z] (4.2.11)

This requires that x[n] should converge or equivalently, all the poles of its z-
transform X[Z] should lie inside the unit circle possibly with the exception of a
simple poleat z = 1.
(proof)

We can use the z-transform definition (4.1.1b) to write

Z(x[n + 1] - x[n]) = Jim (Z:zo x[n+ 1]z — Z:zo xInjz™")
= lim (Z:zl x[nlz- ™ 4 x[k + 1)z

~X[0] - Y xinlz ")

On the other hand, from the time shifting property (4.2.3b), we can write

Z(xn + 1] — x[n]} 2 Z{x[n + 11} — Z{x[n]}

“29 2(X[2] - x[0]) — X[2] = (z — 1)X[2] — zx[0]

Noting that these two equations are commonly the z-transform of (x[n + 1] — x[n]),
we can equate their RHSs and substitute z = 1 to get the desired result.

4.3 The Inverse z-Transform

In this section we consider how to find x[n] for a given z-transform X[z] with its
ROC. From the complex variable theory, the inverse z-transform formula can be
derived (see [O-2], Sect. 2.2) as

X[n] = % ﬁ X[z]z "dz (4.3.1)

where §. means the complex integral along a closed contour C within the ROC
of X[Zz] encircling the origin of the z-plane in the counterclockwise direction. It is,
however, difficult to directly evaluate this integral and therefore we make resort to
alternative procedures for obtaining the inverse z-transform.

4.3 The Inverse z-Transform 219
4.3.1 Inverse z-Transform by Partial Fraction Expansion

Noting that the complex variable z appears in the numerator of almost every basic
z-transform listed in Table B.9, we apply the same procedure as with the inverse
Laplace transform (Sect. A.4) to get the partial fraction expansion on X[z]/z and
then multiply both sides by z so that we can directly use the z-transform table to get
the inverse z-transform.

More specifically, let X[Z]/z be rational as

X[Z] Qi[Z] bwz“+...+biz+by
z Pl anzV+...+az+a

(4.3.2)

where M and N are the degrees of the numerator and denominator polynomials,
respectively. If M > N, we divide Q4[z] by P[Zz] starting with the highest powers
of z to produce the remainder polynomial of degree less than N:

@ _ % +ounM N+ ezt (4.33)

If M < N, we have only the first term on the RHS where ¢; = 0 for all i. Now,
for the purpose of illustration, we assume that all the poles of Q[z]/P[z] are simple
except one multiple pole of order L at z = p so that we can write Q[z]/P[Z] in the
following form:

Qlz] _ = i IN—L+1 N K 434
ﬁ_ ;Z_pi +Z—p+”'+—(z—p)'-+ (4.3.4)
where
r=(z—p % z=p” =1,2,...,N—L (4.3.5)
1d
I’N—I:ﬁH {(Z—p)"%} Z:p,|:0,1,...,L—1 (4.3.5b)

Now, substituting Eq. (4.3.4) into Eq. (4.3.3), multiplying the both sides by z, and
using the z-transform Table B.9, we can obtain the inverse z-transform of X[Z] as

N—L

x[n] = :Z NP+ INeLen P+ T2
i=1

M—N

n! n _
TN DI Ly L“}“s[”H > coln+i+i] (136)

220 4 The z-Transform

Example 4.7 The Inverse z-Transform by Partial Fraction Expansion

(a) Letus find the inverse z-transform of

V4 4

X[z] = = E4.7.1
2= oz Gm—1a = @-Dz-1/2¢ (E4.7.1)
WithROCR = {z: |z| > 1}
We first divide this by z and then expand it into partial fractions:
X[z] ri r rs
z 717 z—1/2 + (z—1/2)?
@73 4 4 2
I _ — E4.7.2
z—1 z-1/2 (z-1/2)? ()
where the coefficient of each term can be found from Eq. (4.3.5) as
X
(42, gy 2 [Z] —4 (E4.7.32)
z=1
3. X 1
r2(43=5b’i<(_ 120 [Z]) _ g()
=1 dz Z)l dz\z-1/|,4p
= ! =—4 (E4.7.3b)
I v -
3. X 1
AL | I — 2 (E4.7.3c)
= =12 Z—1{p

Now, moving the z (which we have saved) from the LHS back into the RHS
yields

- z 1/2)z
X[z]_4z_1 —42_1/2—4(2_1/2)2 (E4.7.4)

Then we can use Table B.9(3), (5), and (10) to write the inverse z-transform as

x[n] = <4 —4 (%)n —4n <%>n> us[n] (E4.7.5)

where the right-sided sequences are chosen over the left-sided ones since the
given ROC is not the inside, but the outside of a circle.

We can use the MATLAB command ‘residue()’ or ‘residuez()’ to get the par-
tial fraction expansion and ‘iztrans()’ to obtain the whole inverse z-transform.

4.3 The Inverse z-Transform 221

It should, however, be noted that ‘iztrans()’ might not work properly for high-
degree rational functions.

>>Nz=[0 1]; Dz=poly([1 1/2 1/2]), [r,p,k]l=residue(Nz,Dz); [r p].k %KE4. 7.2)
r = 4.0000 p = 1.0000 % (E4.7.3a) 4/ (z-1)
-4.0000 0. 5000 % (E4.7.3b) -4/(z-0.5)
-2.0000 0. 5000 % (E4.7.3c) -2/(z-0.5)"2
k =1]
>>syns z, x=iztrans(z/(z"3-2xz"2+1.25%2z-0.25)) % (E4.7.1)
X = 4-4%(1/2)"n-4%(1/2)"nxn % (E4.7.5)

(b) Let us find the inverse z-transform of

3z 3z
X[z] = = E4.7.6
A= @18~ G=12@+ 14 (E4.7.6)
with one of the following three ROCs:
1 1
R1= {z: |z| > 5}’R2: {z: |z| < Z}’ and
1 1
Rs = {z: 1= |z| < 5} (E4.7.7)
We first divide this by z and then expand it into partial fractions:
X 4 4
[z _ X[7] = 4—2 z (E4.7.8)

= - ; -4
z z—1/2 z+1/4 z—1/2 z+1/4

Now, depending on the ROC, we use Table B.9(5) or (6) to write the inverse
z-transform as follows:

(i) R1= {z Cz| > %} o X[nl=4 (%)n us[n] — 4 <—%>n us[n]
(E4.7.9a)

(i) Ry = {z: |z| < %} :
x[n] = -4 (%)n us[-n—-1]1+14 (—%)n us[—n —1] (E4.7.9b)

(iii)R3={z:%<|z|<%}:

x[n] = -4 (%)n us[-n—-1]—-4 (—%)n us[n] (E4.7.9c)

>>synms z, X=iztrans(3xz/(z"2-0.25%z-1/8)) % (E4.7.6)
X = 4%(1/2)"n-4+(-1/4)"n % (E4.7.9a) just a right-sided sequence

222 4 The z-Transform

Example 4.8 The Inverse z-Transform by Partial Fraction Expansion
Let us find the inverse z-transform of

X[= 22 _ 2z (E4.8.1)
Z2—-2z+1/2 (z-05-j0.5)(z—0.5+j0.5) o
with ROCR = {z: |z| > 1}
We first divide this by z and then expand it into partial fractions:
X[zZ] rrtjn rR—Jr
z z-05-j05 z—05+j05
1—j 1+]
_ L +J (E4.8.2)

z—05-j05 z-05+j05
Now, moving the z (which we have saved) from the LHS back into the RHS yields

(1-i)z (A+])z

Xl = =05 j05 " 705+ o5 (E483)
We can use Table B.9(5) to write the inverse z-transform as
X[n] = (1 — j)(0.5 4+ j0.5)"us[n] + (1 + j)(0.5 — j0.5)"us[Nn]
=2 (e*j”/4«/§_ne"””/4 + ej”/“«/i_ne*j””/“) us[n]
— V2 " cos((n — l)%)us[n] (E4.8.4)

As a nice alternative for X[z] having complex conjugate poles like (E4.8.1), we can
decompose it into the following form, which can be matched exactly with some
element of the z-transform table:

X[7] — 22(z—-1/2) 2(1/2)z
O T V) V) A R V) e Y
Z(z—r cos ;) Zr sin Q4

E4.8.5
(z—rcos)2+r2sinQy (z—rcosQ1)? +r2sin®Qy ()

wherer = 1/4/2, cosQ; = 1/4/2, sinQ; = 1/4/2, and ©; = /4. Then we can
use B.9(18) and (17) to obtain the same result as (E4.8.3):

x[n] = 2 (r" cos(Q1n) + r"sin(22:n)) us[n]
=2 («/E_n cos(%n) +v2 " sin(%n)) us[n]

— V2 " cos((n — 1)%)us[n] — V2 " sin((n + 1)%)us[n] (E4.8.6)

4.3 The Inverse z-Transform 223

(cf) It seems that the MATLAB command “iztrans()’ does not work properly for
this problem:

>>syms z, X=iztrans(2+xz"2/(z"2-z+1/2)) % (E4.8.1)

>>n=1:10; xn=2."(-(n-3)/2).*cos((n-1)*pi/4); stem(n,xn), hold on % E4.8.6)
>>[r,p,k]=residuez([2 0 0],[1 -1 1/2]) % Partial fraction expansion
>>xnl=real (r.” *[p(1l)."n; p(2).°n]); stem(n,xnl,’r’) % (E4.8.3) Alternative

4.3.2 Inverse z-Transform by Long Division

Noting that the inverse z-transform can rarely be found in an elegant form like
Eqg. (E4.8.6), we may think of it as an alternative to expand X[z] = Q:[Z]/P[Z]
into a polynomial in powers of z=* and equate each coefficient of z™" to x[n]. More
specifically, starting with the highest/lowest powers of z depending on the shape of
the ROC (for a right/left-sided sequence), we divide Q1[z] by P[Z] to expand X[Z]
into the power series form of the z-transform definition (4.1.1). For example, let us
consider X[Zz] given by Eq. (E4.7.6) in Example 4.7.

3z . 3z
22— (1/8z2—-1/8 (z—1/2)(z+1/4)

X[2] = 4.3.7)

(Case 1) Ifthe ROC isgivenas {z: |z| > 1/2}, we perform the long division as

3271+ (3/4)z72 +(9/16)z ° + - - -
2 (1/4)z— 1/8) 3z

3z—3/4 —(3/8)z!
3/4 +(3/8)z° 1
3/4 —(3/16)z7! — (3/32)z2

(9/16)z71 — (3/32)z72

Then each coefficient of the quotient polynomial in z™" is equated with
x[n], yielding

=0 1 2 3
X[n] = [no 3 3/4 9/16---]:thesame as Eq. (E4.7.9a)
(4.3.8a)

224 4 The z-Transform

(Case 2) Ifthe ROC isgivenas {z: |z| < 1/4}, we perform the long division as

—24z + 4874 — 2887 +---
—1/8— (1/4)z+ z2) 3z

3z + 62 — 247

—62 + 247
—622 — 12728 + 487
362 — 487

Then each coefficient of the quotient polynomial in z" is equated with
x[—n], yielding

-3 -2 -1 =0
x[n] =[-288 48 —24 n0 -+.]:the same as Eq. (E4.7.9b)
(4.3.8b)

(Case 3) If the ROCisgivenas{z:r~ =1/4 < |z| < r* = 1/2}, X[z] should
be separated into two parts, one having the poles on or inside the circle
of radius r ~ and the other having the poles on or outside the circle of
radius r ™. Then, after performing the long division as in case 1/2 for the
former/latter, we add the two quotients and equate each coefficient of the
resulting polynomial in " with x[n].

4.4 Analysis of LTI Systems Using the z-Transform

So far we have seen that the z-transform is a general way of describing and
analyzing discrete-time sequences. Now we will see that the z-transform also
plays a very important role in the description and analysis of discrete-time linear
time(shift)-invariant (LTI) systems. This stems from the fact that an LTI system can
be characterized by the impulse response. Since the impulse response itself is a
discrete-time signal, its z-transform, referred to as the system or transfer function,
provides another way to characterize discrete-time LTI systems both in the time
domain and in the frequency domain.

Let us consider a discrete-time causal LTI system with the impulse response g[n]
and input x[n]. Then the output y[n] is the convolution of g[n] and x[n] given by
Eqg. (1.2.9) as

y[n] = g[n] = x[n] (4.4.1)
so that, from the convolution property (4.2.6),

Y[Z] = G[ZX[Z] (4.4.2)

4.4 Analysis of LTI Systems Using the z-Transform 225

where X[Z], Y[Z], and G[Zz] are the z-transforms of the input x[n], output y[n], and
impulse response g[n], respectively. Note that G[Z] is referred to as the system or
transfer function.

Remark 4.5 System Function, Pole Location, ROC, Causality, and Stability

(1) Egs. (4.4.2) and (3.2.8) have an interpretation of describing the input-output
relationship of a discrete-time LTI system in the z-domain and in the frequency
domain, respectively. Comparing these two equations, we can state that the sys-
tem function G[z], evaluated on the unit circle z = 9, yields the frequency
response G[el®] = G(Q) of the system (Remark 4.2) if G(Q) = F{g[n]}
exists, or equivalently, the ROC of G[Z] includes the unit circle. This is anal-
ogous to the continuous-time case where the frequency response G(w) can be
obtained by evaluating the system function G(s) on the imaginary axis s = jw.

(2) Characteristics of a system such as stability and causality can be associated with
the ROC and pole location of the system function G[z]. For example, if a system
is causal, its impulse response g[n] is a right-sided sequence and therefore,
the ROC of G[z] = Z{g[n]} must be the outside of the outermost pole (see
Remark 4.4). If a system is stable, the ROC of GJ[z] includes the unit circle
so that the frequency response G[e!®’] can be defined (see Remark 4.2). If a
system is both causal and stable, then the ROC of G[z] must include the unit
circle and be outside the outermost pole. It is implied that for a causal system to
be stable, all the poles of its system function G[z] must be inside the unit circle
(Fig. 4.4(a) vs. (b)).

In particular, for systems characterized by linear constant-coefficient difference
equations, the z-transform provides a very convenient procedure for obtaining
the system function, frequency response, or time response. Consider a causal lin-
ear time-invariant (LTI) system (in Fig. 4.5) whose input-output relationship is
described by the following difference equation

A-1

>, avin-il= Z?j{l bjx[n — j] (4.4.3)

Re{z} 17 Re{z}
%// %KJ/
/ / 7
(a) All poles inside the unit circle (b) Not all poles inside the unit circle

Fig. 4.4 Pole locations, ROC, unit circle, causality, and stability

226

Input
x[n]

z-Transform of input

4 The z-Transform

Output

Impulse response g[n]
Zi’\‘:%_la,y[n—i] = Z?‘:%‘lbjx [n—j]

Alz]Y [z] =B [z]X [z]

y[n]=g[n]«x[n]

z-Transorm of output

X[z] System or transfer function G[z] :% = % Y [z2] =G[z]X[z]
x| Frequency response G (@)= Y& = B@) | v (o)=6 @) x(@)
Input spectrum X(©Q) AQ) O(ut)put sE)e():trLEm)

Fig. 4.5 The input—output relationship, system function, and frequency response of a discrete-time
LTI system

where the initial conditions are given as y[no], y[no — 1], ---, y[ho — NA+ 2].
This can be solved iteratively for the time response y[n] to an input x[n] starting
fromn=ny + 1:
1 NB—1 .
yinl = = <—a1y[n =1 = —ana1yln = NA+ 1]+ ijo bjx[n —]
(4.4.4)

With zero initial conditions and the unit impulse input x[n] = §[n], this yields
the impulse response y[n] = g[n]. To find the system function as the z-domain
input-output relationship, we assume zero initial conditions and use the linearity
and time-shifting properties to take the z-transform of Eq. (4.4.3) as

S az'YiE =Y bz X[AlAYIA = BlAX(Z)

_ Y[zl _ B[Z]

T X[~ Al

B-1

NA-1 . N .
with A[z] = Zi:o az and B[Z] = ijo bz

(4.4.5)

G[z]

This is referred to as the system function. Substituting z = /€ into the system
function or taking the DTFT of the impulse response g[n], we can obtain the fre-
quency response of the system. Figure 4.6 shows the overall relationship among
the time-domain relationship (in the form of difference equation), the system (or
transfer) function, the impulse response, and the frequency response.

Time domain
SN Lay n-i] =X 25 byx [n—j]

z-domain —}<—— Frequency domain
Alz]Y [z] =B[z]X][z]

P

z-Transform

Inverse z-transform

z-Transform _Y[z] _BJ[z] o
——— G[z]===—" ——»G[e!¥]=G(
x[n]=¢[n] and Inverse z-transform [2] X[z] Alz] z=ei@ [e"]=C()

zero initial conditions DTFT (discrete-time Fourier transform)

!

Fig. 4.6 The relationship between the impulse response, system function, and frequency response

4.4 Analysis of LTI Systems Using the z-Transform 227

Especially when we are interested only in right-sided sequences and causal lin-
ear systems, it is sensible to use the unilateral z-transform instead of the bilateral
z-transform. It is the time shifting property that makes the unilateral z-transform
particularly useful in analyzing causal systems described by difference equations
with initial conditions.

Example 4.9 Difference Equation, System Function, and Impulse Response
Consider a discrete-time causal LTI (linear time-invariant) system whose input-
output relationship is described by the following difference equation:

1 1
yln] = yIn =11 = gyln -2l =x[n — 1] (E4.9.1)

(a) Find the system function G[z].
Applying the linearity and time-shifting properties of the z-transform or using
Eq. (4.4.5), we can obtain the system function as

Y[z! z

Gl = X[~ 1— (182 —(1/8)z2 (z—1/2)(z+1/4)

(E4.9.2)

(b) Find the impulse response g[n].
Noting that the system is causal and accordingly, the ROC of G[z] isz > 1/2
(the outside of the circle passing through the outermost pole), we obtain the
inverse z-transform of G[Z] as

gln] = 2! {

V4 } partial fraction expansion

(z—-1/2)(z+1/4)

z" {% (z-zl/z - z+21/4)} = ((é) R <_%>> .

(E4.9.3)

Alternatively, the impulse response can be obtained directly from the dif-
ference equation, which can be solved iteratively with the unit impulse input
x[n] = 8[n] and zero initial conditions:

y[n] = %y[n - 1]+ %y[n — 2]+ x[n —1] (E4.9.4)
where y[—1] = y[-2] = 0 and x[n — 1] = §[n — 1] = 1 only forn = 1.
n=0: y[0]=(/4y[-1]+ (1/8)y[-2] + x[-1]=0-0+0=0
©y[A] = (1/4)y[0] + (1/8)y[-1]1 +x[0] =0—-0+1=1

n=2: y[2]=(1/4)y[1] + (1/8)y[0] + x[1] =1/4 —0+ 0 =1/4
n=3: y[3]=(1/4)y[2] + (1/8)y[1] + x[2] = 1/16 + 1/8 + 0 = 3/16

228 4 The z-Transform

%i g04e09. m

syms z, Gz=z/(z"2-(1/4)*z-1/8); Ysystem function

g = iztrans(Gz) % synbolic inverse z transform

N=16; nn=[0: N-1];

for n=0: N1, gn(n+l) = eval(g); end

% Sol ving the difference equation with the unit inpulse input

B=[10]; A=[1-1/4 -1/8]; Y%wumnerator/denom nator

NB=I engt h(B); NA=l engt h(A);

xn = [0 1 zeros(1, N1+NB)]; % x[n-1] inpulse input del ayed by one sanple

y = zeros(1,NA-1); %lInitial condition

for mENA: NA+N-1 % To sol ve the difference equation iteratively
y(m=-A(2: N *y(m[1:NA-1])." +B*xn(m NA+[1:NB]).";

end

y = y(NA NA+N-1);

% Using filter()

yp=[0 0]; xp=0; wo=filtic(B,A yp,xp) %nitial condition from past history

yn = filter(B, A xn,w0) % Wth zero initial condition by default

subpl ot (211)

stem(nn, gn), hold on, pause, sten{nn,y(1:N),'r’), stem(nn,yn(1l:N), k.")

% To plot the frequency response

N=64; dWe2+pi /N, WE[O: N| *dW % frequency range

GW = DTFT(gn,W; 9%OTFT of the inpul se response

GM = freqz(B, A W,; %ubstitute z=exp(j*W into the systemftn B(z)/A(z)

subpl ot (212), plot(Wabs(GW,’' b, Wabs(GA),'r")

The objective of the above program “sig04e09.m” is as follows:

- Find the impulse response g[n] in two ways, that is, by taking the inverse z-
transform of the system function G[z] and by solving the difference equation for
the output y[n] to the impulse input x[n] = §[n]. The MATLAB built-in function
‘filter ()’ togetherwith“filtic()’ (Sect. E.12) can also be used to obtain
the output to any input and any initial condition. Also check if the two results
conform to each other.

- Find the frequency response G(£2) in two ways, that is, by taking the DTFT of
the impulse response g[n] and by substituting z = e/ into the system function
G[z] = BJ[z]/A[Z], where the latter job is done by using the MATLAB built-in
function ‘f reqz() .

(cf) Comparing Eq. (E4.9.2) with Eq. (E4.9.3), we can tell that the poles of the
system function, say, p1 = 1/2 and p, = —1/4 yield the modes of the sys-
tem, each of which determines how the corresponding output term evolves with
time. See the stability theorem A.1.

Remark 4.6 Computational Method for Inverse z-Transform

Example 4.9 suggests another way of obtaining the inverse z-transform. That
is, we can regard a rational z-transform expression G[Zz] as a system function and
set it equal to Y[z]/ X[Zz]. Then, cross multiplying yields the z-domain input-output
relationship

4.4 Analysis of LTI Systems Using the z-Transform 229

Y[Z] B[Z]
—— =0G[z] = —; AlZ]Y[Z] = B[z]X[Z] (4.4.6)
X[z] [
with Alz] = 5"z and B[z] = 3% " bz~ J. We can write the correspond-
ing difference equation
NA-1 A NB-1 .
Y., ayln—il= Z;:o bix[n — j] (4.4.7)

and solve it iteratively with x[n] = §[n] and zero initial conditions for y[n] in the
forward/backward direction to get a right/left-sided sequence g[n] = Z1{G[Z]}.
Just as with the long division method, this gives us no analytical solution in a closed
form. Note the following fact:

Y[z]Ixig=1 = Glz]X[ZIxz-1 = G[Z]
YN lxgryms = 2~ H{G[2]} = gln] (4.4.8)

So far, we have never felt the necessity of the unilateral z-transform over the
bilateral one. Now, we are about to look at an initial value problem for which the
unilateral transform is indispensable.

Example 4.10 Different Difference Equations Describing the Same System

(a) Find the output y;[n] of the causal system whose input-output relationship is
described by

yiln] —ayi[n—-1]=x[n-1], n>0 (E4.10.1)
where y;[—1] = Yo and
x1[n] = b"us[n] with b # a (E4.10.2)
(Solution)

To solve this difference equation for y;[n], we apply the time shifting property
(4.2.33) for Eq. (E4.10.1) to write its z-transform as

Yi[Z] — a(z *Yi[2] + ya[-1]) = 7 " Xa[Z] + xa [-1];
(1—az Y[zl =ay +z X[z (E4.10.3)

. E4.10.2 . . .
since xl[—l](202 b"us[n]|,—_; = 0. We can solve this algebraic equation

for Yi[Z] as

B 1 1 .z 4 Z
Yl[Z] = m(a Yo+2Z Xl[Z]) = s _a (a. Yo+ 2 7 b) (E4104)

230

(b)

4 The z-Transform

To take the inverse z-transform of this expression, we divide its both sides by
z and perform the partial fraction expansion as

Yi[zZ] avyo 1 _av n 1 1 1
z z—a (z-a@z-b z—a a-bl\z-a z-b
a Yoz 1 z z
Yi[z] = - E4.10.5
12 z—a+a—b<z—a z—b) ()

Now we take the inverse z-transform to get the output as

1

(@~ b"uln]

yi[n] = ayoa"us[n] +

1
a—b

= yoa"tug[n + 1] + (@" — b"Mus[n] (E4.10.6)

Here, we replaced us[n] by us[n-+1] to express the existence of the given initial
condition y;[—1] = Yo.

Find the output y,[n] of the causal system whose input-output relationship is
described by

Y2[n + 1] — ayz[n] = xz[n],n > 0 (E4.10.7)
where y,[0] = yp and
Xo[n] = x1[n — 1] = b tug[n — 1] withb # a (E4.10.8)
(Solution)

To solve this difference equation for y,[n], we apply the time shifting property
(4.2.3b,a) for Eq. (E4.10.7) to write its z-transform as

Z(Y2[2] - y2[0]) — aYz[Z] = Xz[2];
(z—a)Ya[z] = zyo + Xo[z] = 2o + 271 X1[Z] (E4.10.9)

. E4.10.2 . . .
since xl[—l](202) b"us[n]|,—_; = 0. We can solve this algebraic equation

for Y,[Z] as

1
z—a

Yoz 1
—a T z—a@z-b

Ys[z] = (2o + 271 X4[2]) = - (E4.10.10)

To take the inverse z-transform of this expression, we divide its both sides by
z and perform the partial fraction expansion as

4.5 Geometric Evaluation of the z-Transform 231

Yozl Yo 1
z z—a zz-—a)(z-b)
l/ab 1 —-b 1/b(b —
_ % | Yab 1l/a@-b) 1/bb-a)
z—a z z—a z—b
Yoz 1 1 1 z _1 z
Y2[Z]_z—ajLabjLa—b<az—a bz—b) (E4.10.11)

Now we take the inverse z-transform to get the output as

Yol = yoaulil + — ot + — (@ b Huein]

a—>b

@t —b" Hug[n — 1] (E4.10.12)

_ n
= Yoa'Us[n] + ——

Here, us[n] is replaced by us[n — 1] to show that the 2" and 3" terms cancel
each other at n = 0.
(cf) Comparing Egs. (E4.10.6) and (E4.10.12), we see that y;[n — 1] = y»[n]. This
can be verified by showing that
Z{y[n - 11} = Y2[7] = Z{y,[n]} (E4.10.13)

(Proof)

Ziyin — 1 E 2702 + yi[-112) = 27X (Wa[2] + Yo2)

(zYo + 7 X4[2]) ¢-2:10 Y2[2]
(E4.10.14)

204 5, 1
“RY ——(zayo+ Xild) + yod) = ——

The justification is as follows: The two LTI systems of (a) and (b) are inherently
the same. Compared with (a), the initial conditions and input of (b) are delayed by
n; = 1 and consequently, the output of the system (b) is also delayed by n; = 1.

4.5 Geometric Evaluation of the z-Transform

In this section we discuss a geometrical method to evaluate a rational function in z
at any point in the z-plane, particularly on the unit circle z = el for obtaining the
frequency response G(£2) from the pole-zero plot of the system function G[z].

Let us consider a system function G[Zz] given in a rational form as

HhE-2) | @-2)@-2)@-2)
U, @-p) @—p)E—p)---(z— pn)

Gl[z] = K (4.5.1)

232 4 The z-Transform

where z;’s and p;’s are finite zeros and poles of G[z], respectively. The value of
G[Z] at some point z = z, in the z-plane is a complex number that can be expressed
in the polar form as

Glz] = |G[2]I£G[z] (45.2)
where
M

S — Zi
Magnitude : |G[z]| = |K |M (4.5.32)

[1iZy 120 — pil

M N
Phase : ZGlzo] =) | L@ —2) =) (20— p)(En)

with + 7 only for K < 0 (4.5.3b)

(zo — zj)’s and (zo — pi)’s in the above equations are complex numbers, each of
which can be represented by a vector in the z-plane from z; or p; to z,. They can
be easily constructed from the pole/zero plot where |2y — z;| and |2y — p;| are the
distances, while Zzy — zj and £zy — pj are the phase angles.

As mentioned in Remark 4.5(1), the frequency response G(£2) can be obtained
by evaluating the system function G[z] on the unit circle if it exists. Keeping this in
mind, we can use the pole-zero plot to get the approximate shape of the magnitude
response |G(€2)| without computing the frequency response from Eq. (4.5.2). Here
is the overall feature of frequency response related with the pole-zero pattern:

Remark 4.7 Frequency (Magnitude/Phase) Response and Pole-Zero Pattern

(1) For a pole/zero near the unit circle, the magnitude response curve tends to have
a sharp peak/valley and the phase changes rapidly by about 180° at the corre-
sponding frequency. As the pole/zero moves to the unit circle, the peak/valley
becomes sharper. On the other hand, as the pole/zero moves to the origin, the
peak/valley becomes smoother. Such a tendency can be observed from Fig. 3.2
where the frequency responses of G[z] = z/(z—a) are depicted for a = 0.8 and
0.5. Also, the phase jump of = [rad] occurring at the frequency corresponding
to a zero on the unit circle is illustrated by Figs. 3.1, 3.7, 3.11, and 4.8.

(2) Generally speaking, if a singularity (pole/zero) is located close to the unit circle,
it will dominate the frequency response in the frequency range adjacent to that
location. This idea of dominant singularity is helpful not only for getting an
approximate frequency response, but also for the pole/zero placement design
to achieve a desired frequency response. For example, the magnitude response
(Fig. 4.7(b)) of the system described by (E4.11.1) has the maximum around
Q = +7/4 due to the pole at z = 0.5+/2e*17/* and becomes zero at @ = 7
because of the zero at z = —1. In contrast, the zero at z = 0 (which is far from
the unit circle) has no influence on the magnitude response.

4.5 Geometric Evaluation of the z-Transform 233

Example 4.11 Pole-Zero Pattern and Frequency Response
For the system function

2(z+1) 2(z+1)
T 22-72+05 (z-05-j0.5)(z—05+ j0.5)

(E4.11.1)

we have the pole-zero plot and the frequency response magnitude and phase curves
depicted in Fig. 4.7(a), (b), and (c), respectively. As shown in Fig. 4.7(b), the mag-
nitude of G(Q) = G[e!®?] becomes zero at @ = m corresponding to the zero
z=-1,ie,

1G], = IG[ll,-1 =0 (E4.11.2)
Im {z} "
zn=¢e!
2 Glzo] :CA;_S <O+ 06, — b1 — @)
Q= 7/4 Glz]= z (z+1)
B A/ | S\ 2%-7+0.5
_ z (z+1)
(z-0.5-j0.5) (z-0.5+j0.5)
Q=7 b, =0
Q: ﬂ(! Re{z}
z (z+1)
Th le— lot of G —
(@) The pole—zero plot of G[z] 2,105
j
—TT . 2:7(Q

(b) The magnitude curve of the frequency response G(Q) =G [e €]

2 .
/\@[/G[ei9]
e . Ow ™ . 2 . Q
B

(c) The phase curve of the frequency response G(Q) =G[e 9]

Fig. 4.7 The pole-zero plot and frequency response for Example 4.11

234 4 The z-Transform

and it reaches the peak around @ = £ /4 adjacent to the phases of the poles

z=05= j0.5 = 0.5v2e*i7/4

(E4.11.3)

(a) Let us find the response of the system G[Z] to a sinusoidal input x;[n] =

sin(§2pn) with Q, = 0.68.
zsin 2, z(z+1)
(z — cos Qp)? + sin® @, (z— 0.5)? + 0.5
_ —3.60 x z(z — cos Q2p) + 3.89 x zsin Q2p
B (z — cos Qp)2 + sin® 2y

3.60 x z(z — Rcos Q2g) — 1.65 x zRsin Qg
(z — Rcos Q)2 + (Rsin Q)2 ReL O

Yi[z] = X1[Z]G[z] =

yi[nl = 271 (Ya[2]} = —3.6 cos(2pn) + 3.89sin(2n)
++/2 " (3.6 cos(nrr/4) — 1.65sin(nz/4))

= (5.3sin(QpN — 0.7457) + v/2 (3.6 cos(nrr /4)
— 1.65sin(nx/4)))us[n]

(E4.11.4)

(E4.11.5)

Note that the sinusoidal steady-state response y; ss[n] = 5.3 sin(€2pn — 0.7457)
has the same frequency with the input x1[n], but its amplitude is |G(Q2p)| = 5.3
times that of the input and its phase is ZG(2p) = —0.7457 ~ —1.1Q, plus

that of the input, as can be seen from Fig. 4.8(a).

(b) Let us find the response of the system G[z] to a unit step (DC) input x,[n]

us[n].

£ TR T

Ll ol 1]

¥ :Output
-5.3

N

OcP:Inlout UQT I’Lll 6T IZO gf l 30

(a) The output of the system of Example 4.11 to a sinusoidal input sin ()

(b) The output of the system of Example 4.11 to a unit step (DC) input
Fig. 4.8 The output of the system of Example 4.11 to sinusoidal/DC inputs

ST

4.5 Geometric Evaluation of the z-Transform 235

Y2[Z] = X»[Z]G[z] = zf 1(z —2525;; —1i-)0.52

_4xz —-3x2z-0.5) 1x20.5
T z—1 (z—-052+052 (z—0.5)2+0.52

(E4.11.6)

where the partial fraction expansion is found as follows:

Kixz K2 x z(z—0.5) K3 x 20.5
Y2[7] = 2 2 2 2
z—1 (z—-0.5)>+0.5 (z—-0.5)>+0.5
Y1[z 2(z+1
Ky = (z—1) 17 (z+1) 4

= Z-052+05|,,
Ki+K; =1, —K; —0.5K; +0.5K3 = 1,0.5K; + 0.5K; — 0.5K3 =0
Kp=1-K;=1-4=-3,K3=K;+K,=4-3=1

Thus the response to x;[n] = us[n] can be obtained from the inverse z-
transform as

yo[n] = 271 {Yo[2]} = (4 + ﬁfn(—3 cos(nr/4) + sin(nn/4))) us[n]
(E4.11.7)

Note that the DC steady-state response Vy, ss[n] = 4 is the DC gain |G(0)| = 4
times that of the input, as can be seen from Fig. 4.8(b).

In fact, the inverse z-transform of Y;[z] as well as Figs. 4.7 and 4.8 is obtained
by running the following MATLAB program “sig04e11.m”, where we managed to
get the coefficients of the partial fraction expansion using residue() since iztrans()
does not work properly for this case.

%i g04ell. m

clear, clf

B=[1 1 0]; A=[1 -1 0.5]; %wunerator/denoni nator of system function (E4.11.1)
figure(l), zplane(roots(B),roots(A)) %pole-zero plot in Fig. 4.7(a)

% To get the frequency response

N=360; dWe2xpi/N; kO=-200; W[kO: 500] *dW

OGN freqz(B, AL W; % frequency response

GWmag= abs(GW; GNph= angl e(GWN; % magni tude/ phase of frequency response

[GNneg-peak, i] = max(GWNmag(-kO+[1: N 2])) % peak frequency response magnitude
i p=-kO0+i -1; W=Wip); GAph_peak=GNph(ip); % peak frequency

GWdc= GN(-kO+1); % DC gain

figure(2), subplot(411), plot(WGWNmg) % Fig. 4.7(b)

subpl ot (412), pl ot (W GNph) % Fig. 4.7(c)

% To get the time response fromfiltering of a sine-wave input signal
nn=[0:30]; %tine index vector

xn= sin(Wh*nn); % A sinusoidal input of peak frequency

yn= filter(B, A xn); %Wth zero initial condition by default

% pl ot the time response

subpl ot (413), sten(nn, xn,’ Markersize',5), hold on

236 4 The z-Transform

stem(nn,yn,’ x',’ Markersize’,5)
% Try with the inverse z-transform
syns z
yl=i ztrans(si n(W)=*z"2x(z+1)/ ((z-cos(W)) " 2+si n(W) " 2)/((z-0.5)"2+0.5"2))
[r,p, k] =residue(sin(W)*[1 1 0],conv([1 -2xcos(W) 1],[1 -1 0.5]))
R = sqrt(real (p(3)+p(4))); W= angle(p(3));
% nunerator of the 1st&2nd terns reduced to a common denoni nat or
ni= r(D+*[1 -p(]+r(2)+*[1 -p(1)];
Kl= n1(1); K2= (nl(2)+Klxcos(W))/sin(W);
% nunerator of the 3rd&ith terns reduced to a comon denoni nat or
n2= r(3)*[1 -p(4)]+r(4)+[1 -p(3)];
K3= n2(1); K4= (n2(2)+K3*Recos(W))/ (Resin(W));
yln= Klx*cos(Wp*nn) + K2*xsin(W*nn) + R “nn.*(K3xcos(Ws*nn)+K4*si n(\W*nn));
stem(nn, yln,’rx’,’ Markersize',5)
%iltering of a DC input signal
nn=[0: 30] ; xn= ones(size(nn)); %A DC input signal (of zero frequency)
yn.DC= filter(B, A xn); %Wth zero initial condition by default
subpl ot (414)
stem(nn, xn, ' Markersi ze',5) %plot the tinme response together with the input
hold on, sten(nn,yn.DC, ' ni,’' Markersize',5)
% Try with the inverse z-transform
y2=i ztrans(z" 2x(z+1)/(z-1)/((z-0.5)"2+0.572))
% A nice alternative for the case of all sinple poles
[r,p,kl=residue([1 1 O],conv([1 -1],[1 -1 0.5]))
y2n= 0;
for i=1:1ength(r)
y2n=y2n + r(i)*p(i). nn;
end
stem(nn, real (y2n),’' ni’,’ Markersize',5)

4.6 The z-Transform of Symmetric Sequences

In this section we explore some features of the phase characteristic and pole-zero
pattern for systems having (anti-)symmetric impulse responses of finite duration.

4.6.1 Symmetric Sequences

Let us consider a symmetric sequence g[n] of duration N + 1 such that

gln] =9[N —n]forn=0:N (4.6.1)

<Case 1> If N iseven,i.e., N = 2M for some integer M, then the z-transform of
g[n] is

4.6 The z-Transform of Symmetric Sequences 237

Gl =Y ‘onz"+oMIz™+ Y glnjz "

(4;21) :/l:—ol g[n](zfn + Z—(an)) + g[M]ZfM
— ZfM g[M] + ZM71 g[n](zfrH*M + anM) W|th M — E
n=0 2
(4.6.2a)

which, with z = e/, yields the frequency response as

G(@) = (9[%1 +3,, 2alnlcos ((g) n) Q>) ’ _(L?Gib)

<Case 2> If Nisodd, i.e., N =2M — 1 for some integer M, then the z-transform
of g[n] is

Gl =Y" ‘iz +Y" qlnlz"

(46.1) gM-1 -n ML GIN = - (N-n)
= , 9niz +ano 9[N —n]z

n=

=" g+)

M=(N+1)/2 __N2 M-1 —n+N/2 n—N/2
= Zn:O g[nl(z +7Z) (4.6.3a)

which, with z = el®, yields the frequency response as

G(Q) = Z:\;M 2g[n] cos <<g — n) Q> /- %Q (4.6.3b)

Note that G[z]|_; = G[e/®]|,__=0.

4.6.2 Anti-Symmetric Sequences
Let us consider an anti-symmetric sequence g[n] of duration N + 1 such that
g[ln]= —g[N —n]forn=0:N (4.6.4)

<Case 1> If N is even, i.e., N = 2M for some integer M, then we have g[M] =
—g[M], which implies g[M] = 0. The z-transform of g[n] is

Gl =2y “glnlE ™™~ 2M) with M = g (4.6.53)

238 4 The z-Transform

which, with z = el®, yields the frequency response as
N/2—1 . N N b4
G(Q) = Zn:O 2g[n]sin <<? — n> sz) L — S0+ (4.6.5b)

Note that G[e!*]| ,_, = 0and G[e/?]|,__=0.
<Case 2> If Nisodd, i.e., N =2M — 1 for some integer M, then the z-transform
of g[n] is

Gz = z V2 Z:”_;l glnl(z MN/2 — 21N/ (4.6.62)

which, with z = el©, yields the frequency response as

a@ =" " 2gn]sin ((g - n) sz) /- %Q +7 (4660)

Note that G[e!*]|,_, = 0.

Remark 4.8 Pole-Zero Pattern and Linear Phase of (Anti-)Symmetric Sequences

(1) From Eqgs. (4.6.2a)/(4.6.5a) and (4.6.3a)/(4.6.6a), we can see that if G[z] = 0,
then G[zgl] = 0, which implies that real zeros occur in reciprocal pairs (zo
and zgl) and complex zeros occur in reciprocal, complex-conjugate quadruplets
(zo =roZ £ Qoand z;* = ry £ & Qo). Note that zeros on the unit circle form
their own reciprocal pairs and real zeros on the unit circle, i.e.,z=10orz = —1,
form their own reciprocal, complex conjugate pairs. Note also that all the poles
are located at z = 0 or co. See Fig. 4.9(al) and (a2).

(2) From Egs. (4.6.2b)/(4.6.5b) and (4.6.3b)/(4.6.6b), we can see that they have
linear phase, i.e., their phases are (piecewise) linear in € except for phase jumps
of & or +27 (see Remark 3.3 and Fig. 4.9(c1) and (c2)).

(3) If a system has the impulse response represented by a symmetric or anti-
symmetric sequence of finite duration, such a system has linear phase shifting
property so that it will reproduce the input signals falling in the passband with a
delay equal to the slope of the phase curve. That is why such a system is called
the linear phase FIR filter.

Example 4.12 Pole-zero Pattern of Symmetric or Anti-symmetric Sequences
(a) Consider a system whose impulse response is

n=-10 1 2 3 4 5
qunl=[-- 0 1-25 525 —-25 10 0---]. (E4.12.1)

This system has the system function G;[z] = Z{g.[n]} as

4.6 The z-Transform of Symmetric Sequences 239

Im{z}4 e} Im{z} 4

4th-order pole at z=0

3th-order ;')ole atz=0
STl ee,

(al) The pole-zero plot for G4[z]

4 L
2 L
Il Il Il Il 0 Il Q
0—7r 0 oo ° - 0 m
(b1) The magnitude curve |G,[e!?] (b2) The magnitude curve |G el
2t ‘ - 2 \l\’ -
0 . - Q) 0 mal 9]
- 0 T - 0 T
-2+ - 2} \I_
(c1) The phase curve £G,[el9] (c2) The phase curve ZG,[e 9]
Fig. 4.9 The pole-zero plots and frequency responses for Example 4.12
Gi[z] =1-25z21 4525222523+ 7+
=7%z—0.5e/"3)(z — 0.5 17/3)(z — 2e)7/3)(z — 2e717/3)
(E4.12.2)

whose pole-zero pattern and frequency response magnitude/phase curves are
plotted in Fig. 4.9(al) and (b1)/(cl), respectively.
(b) Consider a system whose impulse response is

n=—1 0 1 234
®nl=[-- 0 -1 2-210---1. (E4.12.3)

This system has the system function G,[z] = Z{g.[n]} as

Gzl = -1+42z'-2z22+72°%=-723%z-1)ZP - z+1)
=—73%z-1)(z— ") (z—e 173 (E4.12.4)

240 4 The z-Transform

whose pole-zero pattern and frequency response magnitude/phase curves are
plotted in Fig. 4.9(a2) and (b2)/(c2), respectively.

The following program “sig04e12.m” is run to yield Fig. 4.9, where zplane(B,A)
is used to create the pole-zero plot of a system with system function G[z] =
B[z]/AlZ].

%i g04el2. m

clear, clf
N=360; Wepi /N«[-N: N]; % frequency range
for i=1:2

if i==1, B=[1 -2.5 5.25 -2.5 1]; A=1;

else B=[-1 2 -2 1]; A=1; %wunerator/denom nator of system function

end

figure(l), subplot(220+i), zplane(B,A)

OGN freqz(B, A W; % frequency response

GWNnag= abs(GW; % nagni tude of frequency response

GWNphase= angl e(GW; % phase of frequency response

figure(2)

subpl ot (220+i), pl ot (W GNmag)

set(gca, ' fontsize',9, 'Xim,[-pi pi], "xtick’,[-pi O pi], ...
"xticklabel”, {"-pi’ "0 'pi'})

subpl ot (222+i), pl ot (W G\phase)

set(gca,’'fontsize' ,9, "Xim,[-pi pi], "xtick ,[-pi O pi], ...
"xticklabel”,{"-pi’ "0 'pi'})

end

4.7 Summary

In this chapter we have defined the bilateral/unilateral z-transform and derived their
basic properties. We have also presented the several methods to find the inverse
z-transform of a given z-transform expression. We have explored the relation-
ship among the system function, frequency response, and difference equation and
discussed how to utilize the z-transform for analyzing discrete-time LTI systems.

Problems

4.1 z-Transform

(a) Find the bilateral z-transform X[z] (with its ROC) of
x[n] = a" = a"ug[n] + a"us[—n — 1] with |a| < 1 (P4.1.1)
(b) Could you get the bilateral z-transform of
x[n] = 1 = ug[n] + ug[—n — 1] (P4.1.2)

If your answer is yes, find it. Otherwise, state why it is not possible.

Problems 241

(c) Find the bilateral z-transform X[z] (with its ROC) of
x[n] = us[—n] (P4.1.3)

in the following three ways:

(i) Noting that us[—n] is the one-sample delayed version of us[—n — 1],
use the time shifting property.
(if) Noting that us[—n] is the time-reversal version of us[n], use the time
reversal property.
(iii) Noting that us[—n] can be expressed as us[—n — 1] + §[n], use B.9(6)
& (1).

4.2 Inverse z-Transform

(a) Find the inverse z-transform x[n] of

2
X[z] = 1 1) =zx e

WithROCR = {z: |z] > 1}

z z z
= X
z+1 z+1

(P4.2.1)

in the following two different ways:

(i) Use the z-transform table B.9(10) and the time shifting property
4.2.3(b) or B.7(2).

(if) Use the z-transform table B.9(5) and the convolution property 4.2.6
or B.7(4).

(b) Use the z-transform table B.9(17) and the time shifting property 4.2.3(a) or
B.7(2) to find the inverse z-transform of

a 1 az .]
(c) Find the inverse z-transform x[n] of
2z —

XA=Gz—zr1

WithROCR ={z:|z| > 1} (P4.2.3)

(d) Find the inverse z-transform x[n] of

X[z=—tr -1 2 112 (pang
T z-122 (z-1? z-1 2 z -

WithROCR ={z:|z| > 1}

4.3 Inverse z-Transform, Causality, Convergence, and Stability
(a) Find the inverse z-transforms ga1[N], ga2[N], and ga3[n] of

31—z 3z(z-1)

Ga[z] = 1— (5/2)2—1 + 72 - (Z — 2)(2 — 1/2)

(P4.3.1)

242

(b)

(©

(d)

(cf)

4 The z-Transform

with one of the following ROCs:

() Ry ={z:1z > 2},(i)Ry, ={z: |z| < 1/2},and (iii) Rz = {z :
1/2 < |z| < 2}. Then determine the causality and convergence (to
zero) for each of gi[n]’s.

Find the inverse z-transforms gp1[N], gw2[N], and gy3[n] of

22(z+ 1) _ 22(z+1)
2+ 3/8z+1/8 (z+1/4)(z+1/2)

Golz] = (P4.3.2)

with one of the following ROCs: (i) Ry = {z: |z| > 1/2}, (ii)) R, = {z:
|z| < 1/4}, and (iii) Rz = {z : 1/4 < |z| < 1/2}. Then determine the
causality and convergence (to zero) for each of gi[n]’s.

Suppose Ga[z] and Gp[z] are the system functions of discrete-time sys-
tems. Then the causality and stability of the systems depends on the
causality and geometric convergence (to zero) of the impulse response
0 [n]’s. Referring to the stability criterion that the ROC should contain the
unit circle (Remark 4.5(2)), determine the stability of the above six cases.
For each case, plot the impulse response for n = —20 : 20 and complete
the following table:

What do you think about the stability of a system having a pole on the unit
circle, which is the boundary between the stability and instability regions?
Let us consider a system with the system function

1
Gelz] = o1 WithROCR ={z: |z| > 1} (P4.3.3)
Suppose a bounded input such as the unit step sequence x[n] = ug[n] is
applied to this system and find the output. Is it bounded? Is the system
(BIBO) stable? Can you find any (bounded) input such as a sine-wave
which makes the output of the system blow up?

If a discrete-time LTI system has all its poles inside or on the unit circle
and the poles on the unit circle are simple (distinct), the system is said to
be marginally stable. Likewise, if a continuous-time LTI system has all its
poles inside the LHP (left-half s -plane) or on the jw-axis and the poles

Table P4.3 Pole location, ROC, causality, and stability of a system

All poles inside the unit circle ~ The unit circle inside ROC Causality ~ Stablility

(@)
(a)~(ii)
(a)~(ii)
(b))

(b))
(b)-Gii)

Problems 243
on the jw-axis are simple (distinct), the system is said to be marginally
stable.

4.4 To Solve Difference Equation Using the z-Transform
Consider the following difference quation

y[n] — %y[n — 1] = x[n] with x[n] = 2 "us[n] (P4.4.1)
(a) Solve it with the initial condition y[—1] = —3.

(b) Solve it with the initial condition y[—1] = 6.

(cf) This problem implies that the output of an LTI system has generally the
system mode (in the natural response) and the input mode (in the forced
response), but the system mode may disappear depending on the initial
conditions.

4.5 Forward/Backward Solution of Difference Equation by Iteration
Consider the following difference quation:

y[n] - %y[n - 1] - %y[n — 2] = 3x[n — 1] with x[n] = 6[n] (P4.5.1)

(a) Solve it forward with no initial condition (y[—2] = y[-1] = 0) to find
y[n] for n = 0 : 3. To do this, you should rewrite the difference equation as

y[n] = %y[n - 1]+ éy[n — 2] + 3x[n — 1] with x[n] = §[n] (P4.5.2)

(b) Solve it backward with no initial condition (y[1] = y[2] = 0) to find y[n]
for n = —3: 0. To do this, you should rewrite the difference equation as

y[n—2] = —2y[n — 1] + 8y[n] — 24x[n — 1] with x[n] = §[n] (P4.5.3)

(cf) You can use the following program “sig04p_05.m”. Do the results agree
with the solutions (4.3.8a,b) obtained using the long division in Sec. 4.3.2
or (E4.7.9a,b)?

%si g04p_05. m
cl ear
% To solve a difference equation forward by iteration
ya(1)=0; ya(2)=0; % zero initial conditions
xa= zeros(1,10); xa(3)=1; %unit inpulse input
for n=3:11
ya(n)= (1/4)*ya(n-1) + (1/8)*ya(n-2) +3xxa(n-1);
end
nn=0:8; yal= 4x(1/2)."nn - 4x(-1/4). nn;
[ya(3:end); yal]
% To solve a difference equati on backward by iteration

244

4.6

4 The z-Transform

yb(10)=0; yb(11)=0; % zero initial conditions
xb= zeros(1,10); xb(9)=1; %unit inpulse input
for n=11:-1:3

yb(n-2)= -2+yb(n-1) + 8xyb(n) -24+xxb(n-1);
end
yb
nn=-8:0; ybl= -4*x(1/2)."nn + 4%(-1/4)." nn;
[yb(1:end-2); ybil]

Difference Equation, System Function, Impulse Response, and Frequency
Response

Consider a causal system whose input-output relationship is described by the
following difference quation:

y[n] — y[n — 1] + 0.5y[n — 2] = x[n] + X[n — 1] with y[-2] = y[-1] =0
(P4.6.1)

(a) Find the system function G[z] = Y|[z]/X[z] and determine the stability
based on its pole locations.

(b) Find the frequency response G(Q) = G[e/®] at @ = 0, 7/2, and 7 or
el® =1, j,and —1 where G(0) = G[el® = 1] is referred to as the DC
(direct current) gain.

(c) Find the impulse response g[n], i.e., the output of the system to the unit
impulse input x[n] = 3[n] in two ways; once using the z-transform and
once using the iterative method for n = 0 : 4. Does the DTFT of {g[n] :
n = 0 : 100} agree with G(€2) for @ = 0 : 0.01 : 27 ? You can use the
following program “sig04p_06.m”.

(d) Find the step response, i.e., the output of the system to the unit step input
x[n] = us[n] in two ways; once using the z-transform and once using the
iterative method for n = 0 : 4. Is the steady-state value the same as the DC
gain obtained in (b) and the result of applying the final value theorem?

(e) Find the z-transform Y[z] of the output to a sinusoidal input x[n] =
sin(nzr /2)us[n]. Find the steady-state response of the output by taking the
inverse z-transform of Y[Zz] or using the frequency response obtained in (b).
Support your analytical solution by plotting it together with the iterative
(numerical) solution for n = 0 : 100. Could you apply the final value
theorem? If not, state why it is not possible.

%si g04p_06. m

clear, clf
disp(’ (a)")
syns z

% Gz= z*(z+1)/(z"2-z+0.5);
Gz= z*(z+1)/(z-0.5+0.5i)/(z-0.5-0.5i);
B=[1 1]; A=[1 -1 0.5];

Problems 245

disp(’ (b)")
DC_gai n=subs(Gz,’ z’, exp(j*0))
[DCgain subs(Gz,’ z',exp(j*pi/2)) subs(Gz,’' z',exp(j*pi))]
disp(’'(c)’) %I npul se response and frequency response
g= iztrans(&z)
% To solve a difference equation by iteration
gn(1)=0; gn(2)=0; % zero initial conditions
xc= zeros(1,103); xc(3)=1; %unit inpulse input
r=1/sqrt(2); W=pi/4;
for me3:103
gn(m=gn(m1l) - 0.5+xgn(m2) + xc(m + xc(m1l);
n=m 3; gn.ztrans(m2)= eval (9g);
gn. ztrans_hand(m 2) = r"nx(cos(W.+n) +3*si n(WL*n)) ;
end
gn=gn(3:end); gn(1l:4)
di screpancy_gnl= norm(gn-gn.i ztrans)
di screpancy_gn2= norn{gn-gn.i zt r ans_hand)
W£Q: 0. 01: 2*pi ;
GWDTFT= DTFT(gn, WO0);
OGN freqz(B AW;
di screpancy _GWM nor m(G GNDTFT)

4.7 Sinusoidal Steady-State Response from z-Transform or Frequency Response
Consider a causal system which has the following system function:
1-¢et

A=

(P4.7.1)

Find the output of the system to a sinusoidal input x[n] = sin(0.2zn)us[n] in
the following two ways:

(a) Using the z-transform, show that the sinusoidal response is

y[n] = (0.688e™" 4 0.5163sin(0.27n) — 0.688 cos(0.27n))us[n]
= (0.688e " + 0.86025sin(0.2rn — 53.1°))us[n]
= (0.688e™" + 0.86025in(0.27 (N — 1.4754)))us[n] ~ (P4.7.2)

(b) Based on the fact that the frequency response at 2 = 0.27 is

—1
HIE g0, = %
_ 1—e P sin(0.2m)
V(cos(0.27) — e 1)2 4 sin?(0.27) cos(0.27) —e?
= 0.8602/ — 0.927 (P4.7.3)

find the sinusoidal steady-state response excluding the transient response which
decays as time goes by.

246 4 The z-Transform

4.8 System Function and Frequency Response from Input and Output
Consider a causal system which has the following input and output:
x[n] = r" cos(2:n)us[n] (P4.8.1)
y[n] = r"sin(Q1n)us[n] (P4.8.2)
(a) Find the system function G[z] = Y[Zz]/ X[z] and impulse response of this

system.
(b) Find the frequency response G(2) = G[ei®*] and its peak frequency.

4.9 Goertzel Algorithm [G-2]
Consider two second-order filters whose impulse responses are

g1[n] = cos(2rkn/N)us[n] (P4.9.13)
02[n] = sin(2wrkn/N)ug[n] (P4.9.1b)

(a) Show that for the input of real-valued sequence {X[n];0 < n < N —1}, the
outputs of the two filters at n = N become the real and imaginary parts of
N -point DFT X(k) = DFTn{X[n]}:

VoIl = 3 x[milgi[N — m] (P4.9.22)

27km

N-1

=2 o x[m] cos() = Xgr(k)
N-1

Yallnon =) X[M]ge[N — m]

N-1 . (2mkm
=— E x[m] sin (
m=0

) =Xi(k) (P4.9.2b)

where

X(K) = DFTn{x[n]} (842) Z:;: XMWk = Z:;; x[mje~1Zwkm/N
(P4.9.3)

Xr(K) + | X (K) = Z:;: x[m] cos (

) N-1 . {27km
—j Zmzo x[m] sm(N) (P4.9.4)

(b) Taking the z-transform of the impulse responses (P4.9.1a,b), find the sys-
tem functions of the filters and check if they can be implemented as
Fig. P4.9.

27rkm>

Problems 247
x[n] Y]
21
2cos(27k/N) —cos(2mk/N)
Z—l
-1 sin(2mk/N
eri/h) Yol

Fig. P4.9 The signal flow graph for Goertzel algorithm

(©

(cf)

The structure of the filter which generates the DFT sequence of a given
input sequence can be obtained from the following equation:

N-1
y[n] = Zmzo XMW ™™ = x[n] s Wik (P4.9.5)

Comparing this equation with the DFT definition (P4.9.3), we see that the
value of the output (P4.9.5) at n = N is the same as the DFT of x[n]:

N—1 RN
WlMlnon = WINT =~ x[mlwg M
N-1
= meo X[MIWE™ = X (k) (P4.9.6)
Noting that (P4.9.5) is the output of a filter with the impulse response
gln] = W = elzrkw/N (P4.9.7)
show that the system function of the filter is

1- Wzt

G =
(2] 1—2cos(2rk/N)z=1 + 72

_ 1—cos(27k/N)z"! + jsin2wk/N)z*
N 1 —2cos(2rk/N)z—1 + 22

(P4.9.8)

This filter is not stable in view of the BIBO stability criterion (1.2.27b).
However, we will use them for only a finite humber of time points,
ensuring that their outputs do not become infinite.

Chapter 5
Sampling and Reconstruction

Contents
5.1 Digital-to-Analog (DA) Conversion[J-1] ...t 250
5.2 Analog-to-Digital (AD) Conversion[G-1, J-2, W-2] 251
5.2.1 Counter (Stair-Step) Ramp ADCttt 251
5.2.2 Tracking ADCt 252
5.2.3 Successive Approximation ADC 253
52.4 Dual-RamMp ADC ...ttt 254
525 Parallel (Flash) ADC 256
5.3 SAMPIING ..o o et 257
5.3.1 Sampling Theoremt e 257
5.3.2 Anti-Aliasing and Anti-Imaging Filters.o ot 262
5.4 Reconstruction and Interpolation 263
5.4.1 Shannon RecoNnStruCtiono 263
5.4.2 DFS RECONSIIUCHION\ttt e 265
5.4.3 Practical Reconstruction 267
5.4.4 Discrete-Time Interpolation i 269
5.5 Sample-and-Hold (S/H) Operationooiiiiiii e 272
5.6 SUMMANY . . oo 272
PrODIEMS . 273

In this chapter we are concerned how continuous-time and discrete-time signals are
related with each other. We will cover the following:

- Basic functions of D/A (digital-to-analog) converter, A/D (analog-to-digital)
converter, and S/H (sample-and-hold) device

- Relationship between the CTFT and DTFT and the effect of sampling on the
spectrum of a continuous-time signal

- Sampling theorem

- Reconstruction of the original signal from the sampled signal

These topics will not only give an insight into the relationship between continuous-
time signals and discrete-time signals, but also help you to realize what the sampling
really means.

Sects. 5.1 and 5.2 are based on the tutorial notes of Richard C. Jaeger ([J-1]
and [J-2]).

W.Y. Yang et al., Signals and Systems with MATLAB®, 249
DOI 10.1007/978-3-540-92954-3.5, © Springer-Verlag Berlin Heidelberg 2009

250 5 Sampling and Reconstruction
5.1 Digital-to-Analog (DA) Conversion[J-1]

The basic function of the D/A (digital-to-analog) converter (DAC) is to convert a
digital (binary) number into its equivalent analog voltage. The output voltage of the
DAC can be represented as

Vo = Vrs(di2 7+ 272 + - +dn27N) 4+ Vs (5.1.1)
where

vo: Output voltage

VEs: Full-scale output voltage

Vos: Offset voltage (normally to be adjusted to zero)

did, - - - dn: N-bit input word with the (fictitious) binary point at the left, the
most significant bit (MSB) dy, and the least significant bit (LSB) dy.

The resolution of the converter is the smallest analog change that may be
produced by the conversion and is equal to the value of the LSB in volts:

Resolution (in volts) = 2-NVgg = 1LSB value (5.1.2)

It is often stated as a percentage of full scale (2=N x 100%) or just N-bit resolution.

Figure 5.1 shows an inverted R-2R ladder network, which can be used as a 3-bit
DAC where the binary input word controls the switches with a signal of logical value
‘1°/*0” indicating a transfer to OP Amp/ground side. Taking successive Thevenin
equivalent circuits for each stage of the ladder, it can be shown that the input currents
are each reduced by a factor of 2 going from the MSB to the LSB so that the analog
output voltage to a 3-bit binary input d;d,d; becomes

_ v v v
vo = Rio = R(dlziRS +dpg + dssiRS) = (0h2 + h272 + ds27) Vs

(5.1.3)

—0 V,=Ri,

Fig. 5.1 Aninverted R-2R ladder network used as a DAC

5.2 Analog-to-Digital (AD) Conversion[G-1, J-2, W-2] 251

Note that the currents flowing in the resistors are kept constant since the digital
input diverts the current either to ground or to the input (virtual ground) of the
operational amplifier functioning as a current-to-voltage converter.

5.2 Analog-to-Digital (AD) Conversion[G-1, J-2, W-2]

An analog-to-digital converter (ADC) takes an unknown analog input signal, most
often a voltage Vy, and converts it into an N -bit binary number D representing the
ratio of V to the converter’s full-scale voltage Vgs.

Most ADCs use a DAC to vary the reference voltage V; and use a logic cir-
cuit including one or more comparators to deteremine one of the 2N possible
binary numbers D = dyd,---dn (d;i’s: binary coefficients) which can represent
the unknown voltage V,. The reference voltage V; can have 2N different values as

N .
Vi = Ves Zi:l d27 (5.2.1)

where Vg is the DC reference voltage. The basic difference in converters consists in
how to vary V; to determine the binary coefficients d;’s such that the error |Vyx — V; |
is minimized.

5.2.1 Counter (Stair-Step) Ramp ADC
The counter ramp ADC illustrated in Fig. 5.2(a) starts to increment the N -bit

counter value from zero by one per clock period on the SOC (start of conver-
sion) pulse till the reference voltage V, exceeds the unknown input voltage V.

Analog input

VX

EOC
(End of conversion)

%MFFI

Clock pulse Vi
of period 1/f;
o SOCh]
N-bit N-bit Te ﬁH_TC_H t
v N |
Fs DAC Counter EOC| r t
eae hnonnonon,,
T o1d2UN SOC . {1/ =
Digital output (Start of conversion) ¢
(a) Block diagram (b) Timing diagram
l: One clock period (fc: the clock frequency)
Analog input Vy ot Gt

Reference voltage V,

Conversion time = T¢; ="T¢; T T T~ TCe ~TcT~ T ™ Tes ~Teig ™ Tcal ' Time
Digital output D 1000 0111 0101 0101 0100 0100 0100 0101 0101 0110 1001
(c) Atypical variation of the analog input, reference voltage,digital output, and conversion time

Fig. 5.2 Counter ramp ADC

252 5 Sampling and Reconstruction

The sequentially increasing counter output is applied to the N -bit DAC, making
its output V; go up like a staircase as depicted in Fig. 5.2(b). The reference voltage
V; is applied to the — input terminal of the comparator and compared against Vy
(applied to the + input terminal) by the comparator. The comparator output keeps
to be ‘1’ so that the counter will continue to increase normally till V;, exceeds V.
When V; > V, the comparator output will be switched to ‘0’ so that no further
clock pulse can increment the counter value and the EOC (end of conversion) signal
becomes high to tell other devices that an A/D conversion cycle is completed and the
counter value represents the converted (digital) value of the unknown analog voltage
V. Fig. 5.2(c) shows typical variations of the analog input, reference voltage, digital
output, and conversion time.
Some features of this converter should be noted:

<Advantage>
— The simple hardware makes the counter ramp ADC inexpensive to implement.
<Disadvantages>

— The conversion time is proportional to the value of V. In the worst case where
Vy is equal to or greater than the value of the maximum binary number, i.e., Vi >
(1 — 27N)VEg, it becomes

Te = 2N/ f.(2Nclock periods) (5.2.2)

where f¢ is the clock frequency and Vgs is the full-scale DAC output voltage.
— The DAC output is not necessarily the closest to Vy, but the smallest just over Vy
among the 2N possible binary numbers.

5.2.2 Tracking ADC

The tracking ADC tries to improve the conversion performance by using an up-down
counter with logic to force the DAC output V; to track changes in the analog input
Vy (see Fig. 5.3). Depending on whether V, < Vi or V; > V4 (as indicated by
the comparator output), the counter value is incremented or decremented by the
clock pulse so that the DAC output will alternate between two values differing by
one LSB value (2-N) when V, is constant. When the analog input V, varies, V;
changes in the proper direction towards Vy so that V, follows V. Consequently, if
Vy varies slowly enough, the DAC output V; is continuously close to Vi and the A/D
converted value may be read from the counter at any time. However, if Vi varies too
rapidly, the DAC output V; will not be able to catch up with Vi quickly enough to
make the counter value represent Vy closely at any time. The main drawback is the

5.2 Analog-to-Digital (AD) Conversion[G-1, J-2, W-2] 253

Analog input
V.

X

Comparator

bit bobble

[e ORETEY LD ELE e
Clock pulse Vi bit bobble
of period 1/f; R R
mruu _ catch-up time ¢
u/D
N —bit N —bit SOCh
Ves DAC % Updown counter I—l t
i OO nnnn .
D=d,d,...dy soc 1f
Digital output plCan
(a) Block diagram (b) Timing diagram

Fig. 5.3 Tracking ADC

phenomenon called ‘bit bobble’ that the output is never stable since it switches back
and forth with every clock pulse even for a constant analog input Vy = const.

5.2.3 Successive Approximation ADC

The successive approximation ADC uses a binary or bisectional search method to
determine the best approximation to Vy, requiring only N clock periods to complete
an N -bit conversion. Figure 5.4 shows its block diagram and timing diagram. At
the start of conversion, the SAR (successive approximation register) is reset with its
MSB set to “1’, resulting in the DAC output

V, <~ 271VFS
At the next clock pulse, depending on whether V, < Vi or V; > V, (as indicated by
the comparator output), the MSB is left on (*1”) or set to “0” and the 2nd MSB is set
to ‘1’, resulting in

Vi, <V, +22Ves or V, <V, —272Vgg

Analog input

v, Comparator

Clock pulse Vi
of period 1/f,

soch Y N

[e—Tc—> |+—Tc—>

N —bit Successive
Veg —» ‘ 4
Fs DAC % approximation _E>OC EOC | t
: 0

b=dd,.d, SOC OOnnrmmnm,,
Digital output |1/ |-
(a) Block diagram (b) Timing diagram

Fig. 5.4 Successive approximation ADC

254 5 Sampling and Reconstruction
/111 i: 111
110 110
/ \101 i: 101
100 100
\ /011 i: 011
0 010
\001 i: 001

000

10

Fig. 5.5 Binary code sequence of a 3-bit successive approximation DAC

Again, depending on V; < Vi or V; > V,, the 2nd MSB is left on(“1’) or set to ‘0’
and the 3rd MSB is set to ‘1’, resulting in

Vi <V, +273Ves or V, <V, —273Vg

When the process has been carried out for every bit, the SAR contains the binary
number representing Vx and EOC line indicates that digital output is available. In
this way, the 3-bit successive conversion is completed at the end of N clock periods
for an N -bit ADC so that we have the A/D conversion time

Te = N/fc(N clock periods) (5.2.3)

Figure 5.5 shows the binary code sequence of a 3-bit successive approximation
DAC.

This type of converter is very popular due to its fast conversion rate. A problem
with the SA ADC is that if the input does not remain constant during the full con-
version period, the digital output may not be related to the value of the unknown
input voltage V. To avoid this problem, sample-and-hold circuits are usually used
ahead of the ADC.

5.2.4 Dual-Ramp ADC

Figure 5.6 shows the organization and operation of the dual-ramp ADC. On the SOC
pulse, the counter and RC integrator are reset. Then the analog input Vy, connected
to the integrator input through switch S;, is (negatively) integrated during a fixed
time interval of T, = 2N /f.. At the end of the integration period, the two switches
S1/S; are turned off/on, respectively so that the reference input — Vg s are connected
to the integrator input through S,. Then the integrator output v, increases until it
crosses zero to make the comparator output change. The length of the deintegration
period will be measured as T, = n,/f. (n, clock periods).

5.2 Analog-to-Digital (AD) Conversion[G-1, J-2, W-2] 255

RC Integrator v, A Comparator output
t
/-\Iplgt)tg s, Integration Deintegration
+VX—O/ Comparator — "'"'-'"'1"1"'r"""!'""' il t
Ve —07 0 - Ve

2
Clock pulse Fixed slope
of period 1/f,

=5 Integration propotional to Vg

AU Vo [output
| {
Control N-bit D=d,d,d Clock pulse
logic Counter Digital output | t
v 1 i~
EOC sOC c
(a) Block diagram (b) Timing diagram

Fig. 5.6 Dual ramp ADC

Noting that the charge accumulated in the capacitor fromt = 0% to T; will have
been completely discharged att = T; + T,, we can write

1 (" 1 [T Vi VesT v
E/ Vi dt = x1_ “Fs 2. X (5.2.4)
0

RCJ, °7 RC~ RC P’ Vs

where Ty = 2N/f. and V is the average of V,. This implies that the counter value
n, accumulated during the deintergration period is supposed to represent the average
value of the analog input:

n, = 2N (5.2.5)

Ves
The value of RC constant does not matter as long as it remains constant throughout
the conversion cycle of duration Ty + T,.

<Advantage>

— Evenif V changes during the conversion cycle, the ADC output corresponding to
V, is still valid since it represents the average value of V, during the integration
period of duration T; = 2N/f..

— Any sinusoidal input signals with frequencies K/ T; = K2=N . (K: an integer)
will have integrals of zero so that they will not disturb the ADC output. This
property is utilized in digital voltmeters which use dual-ramp converters with
T1 = K/f, where fq is the power-line frequency (50 or 60Hz), so that har-
monic noise at multiples of f, can be removed (‘good rejection of power-line
interference’).

— Reversed polarity of the analog input Vi can easily be dealt with by reversing the
polarity of —Vs.

<Disadvantages>
— The conversion time is variable and is as long as

Tc=Ti+ T, = (2" +n)/f, (5.2.6)

256 5 Sampling and Reconstruction

5.2.5 Parallel (Flash) ADC

Figure 5.7 shows a 3-bit parallel (or flash) ADC in which the analog input Vy is
simultaneously compared with (22 — 1) different reference values and depending on
the comparison results, one of the 22 digital values is chosen as the ADC output by
the encoding logic circuit.

<Advantage>

— The conversion speed is so fast that the parallel ADC can be thought of as
automatically tracking the input signal.

— With the resistors of no-equal values, the parallel ADC can be designed so that

it performs a customized, nonlinear A/D conversion. No other ADC design is
capable of such a nonlinear AD conversion.

<Disadvantage>

— The cost is expensive and grows rapidly with resolution since 2N —1 comparators
and reference voltages are required for an N -bit converter.

(cf.) Visit the web site [W-2] to see the delta-sigma (AX) ADC.

Analog input

d
L2
2 P
° =1
B =
= =4
g —»d°
b=
o} [
c =
IS 2
£ a
s}
O
ds

Fig. 5.7 Parallel (or flash)
ADC

5.3 Sampling 257

5.3 Sampling

5.3.1 Sampling Theorem

In Sect. 3.5.2 we derived the relation between the CTFS Xk of a continuous-time
periodic signal Xp(t) and the N -point DTFS (DFS/DFT) Xy (K) of the discrete-time
version Xn[n] = Xp(NT) (obtained by sampling Xp(t) every T s), which is periodic
with period N = P/T inn:

~ 353 1 00

X)) =" & Zm:_oo Xi+mN (5.3.13)
where the frequency components described by the DTFS Xy (k) and CTFS X are
virtually identical in light of the inter-relationship (1.1.15) between the digital and
analog frequencies:

2 1
kQg = kWn[rad/sample] 429

27 /N[rad/sample]
T [sec/sample]

2 2
- kN—j_Tl_[rad/sec] - kF” — Kkao

We also showed that the CTFT X;(w) of a continuous-time signal Xx4(t) is related
with the DTFT Xq4(€2) of the discrete-time version X4[n] = X4(nT) as

@s7n 1) 2
X(@)=" = Zk:_w Xa (a) + k—)

0=8/T

1 00 Q 2
=2 Ka <? + k?) (5.3.1b)

where = Q/T [rad/s] and 2 [rad/sample] are virtually identical in light of the
inter-relationship (1.1.15) between the digital and analog frequencies.

Equations (5.3.1a) and (5.3.1b) imply that the DTFS/DTFT of a discrete-time
sequence X4[n] = xa(nT) is qualitatively the periodic extension of the CTFS/CTFT
of the continuous-time version Xa(t) (with period 2/ T in analog frequency w or
27 in digital frequency 2), i.e., the sum of infinitely many shifted version of the
spectrum of X,(t). This explains how the DTFS/DTFT spectrum of x4[n] = Xa(nT)
deviates from the CTFS/CTFT spectrum of x,(t) due to frequency-aliasing unless
the CTFS/CTFT is strictly limited within the low-frequency band of (—z/T, 7/ T)
where T is the sampling interval or period of x4[n] = Xa(nT).

To be more specific, suppose a continuous-time signal x,(t) has a band-limited
CTFT spectrum

Xa(@) =0 for |o| > wy (5.3.2)

as depicted in Fig. 5.8(a). Then the DTFT spectrum Xy(€2) of the discrete-time ver-
sion xq[n] = Xa(nT), which is the periodic extension of Xa(w)l,—q v With period

258 5 Sampling and Reconstruction

Xa(w)

—Wx 0 Wy
(a) The spectrum of x4[t]

Frequency response
Xa(€2)

ofanideal LPF.
. _:WX "Jxé .
—-2m -7 0 T 27 Q
27T —nlT T wg=27T w=QIT
(b) The spectrum of x4[n]=X4(NT) with wg=27/T > 2w,

Xq()

T e

S ool Wx R

=37 on -7 0 E; 27 37 0
-37/T 27T —lT T 27T 3T w=QIT
(c) The spectrum of x4[n]=x,(nT) with ws=2a/T < 2wy

Fig. 5.8 The spectra of discrete-time signals depending on the sampling frequency — the sampling
theorem

ws = 27/ T inw or Qg = 27 in &, is shown in Fig. 5.8(b) and (c) for 7/ T > wy
and 7/T < wy, respectively. Notice that Xq4(£2) in the principal frequency range
(—m/T,/T)is identical to X,(w) if

ws = 2?71 > 2wy (Nyquist rate) or equivalently, %(folding frequency) > wy

(5.3.3)
where wy is the highest frequency in x,(t) and ws = 27/T and /T are called
the sampling frequency and folding or Nyquist frequency, respectively. In this case
(Fig. 5.8(b): oversampling), there is no overlap, called aliasing, between adjacent
spectral components so that X, (t) or Xa(w) can be extracted exactly from x4[n] =
Xa(nT) or Xq(£2) by employing an ideal lowpass filter with the magnitude response
depicted (in a dotted line) in Fig. 5.8(b).

On the other hand, in the case of Fig. 5.8(c) (under-sampling) with 7/T < wy
or equivalently, ws = 27/T < 2wy, the frequency aliasing (or spectral overlap)
occurs, producing an irretrievable error in the spectrum. Such an aliasing phe-
nomenon makes higher frequencies in Xa(w) get reflected into lower frequencies,
which presents an interpretation of the stroboscopic effect. This effect is occasion-
ally observed in films of wagon wheels or aircraft propellers that appear to be
rotating slower than would be consistent with the forward motion and sometimes
in the opposite direction. This story can be summarized as follows:

[Sampling Theorem]

In order to retain vital information through sampling with sampling period T,
the sampling frequency ws = 27t/ T must be greater than twice the highest fre-
quency wy contained in the continuous-time signal x,(t) to be sampled, called
the Nyquist rate 2wy. Otherwise, i.e., if ws < 2wy, the so-called frequency
aliasing effect (spectral overlapping phenomenon) results.

5.3 Sampling 259

When sampling a continuous-time signal x,(t) every T s, we want to ensure that
all the information in the original signal is retained in the samples x4[n] = Xa(nT)
so that we can exactly recover x,(t) from the discrete-time sequence x4[n]. In this
context, the sampling theorem is the most important criterion of the sampling period
selection.

To clarify the concept of aliasing, consider two continuous-time signals x; (t) =
sin(2zt) and Xo(t) = sin(22xt) shown in Fig. 5.9(a). Each of these signals is
sampled every T = 0.1s to give sequences x;[n] = x3(0.1n) = sin(0.27n)
and Xo[n] = X2(0.1n) = sin(2.2zn), that are identical. Fig. 5.9(b) also shows
that two continuous-time signals Xs(t) = sin(18xt) and x4(t) = —sin(2xt)
are sampled every T = 0.1s to yield x3[n] = x3(0.1n) = sin(1.87n) and
X4[N] = x4(0.1n) = sin(—0.2zn), that are identical. These are examples of fre-
quency aliasing that a higher frequency signal, when sampled, appears like a lower
frequency one.

Figure 5.10 shows the output signals yi(t), y»(t), and ys(t) of an A/D- G[Zz]
(digital filter)-D/A structure to the three different input signals where G[z] =
(1 — e Y)/(z — e1). Note that with the sampling period T = 0.1 [s], all the
outputs are of the same digital frequency and that x(t) = sin(22xt) and x3(t) =
sin(18rrt) have been aliased/folded with the phase preserved/reversed, respectively.
This result can be obtained by running the following program “sig05f10.m” and
predicted from the frequency response of the digital filter G[z], which is shown in
Fig. 5.11.

(a) x4[n] and x,[n] obtained by sampling x,(t) = sin (2at) and x,(t) = sin (22xt) with T=0.1

X4(t) =sin(18xt) X4(t)==sin(2at) O: x5(0.1n)=sin(1.87n) - : x,(0.1n)=sin(-0.27n)

LML AT
IV il

(b) X5[n] and x,[n] obtained by sampling x5(t) = sin (18xt) and x,(t) = sin (-2xt) with T=0.1

Fig. 5.9 Examples of frequency aliasing/folding or spectral overlap

260 5 Sampling and Reconstruction

X, (t)=sin(2xt) —Ol X;(0.1n)=sin(0.27n)

AT !
YR TR

ased

” 14
G[z]:_l—e‘_1 yz(’til—'__l—‘ rl_r_L‘
z—e

x,(t) =sin(22xt) 1202 iz(O.ln):sin(Z.Zvrn)
2

0+

Bl
=01 _ folded

X3(t)= sm(187—t) —— X3(0.1n)=sin(1.87n)
1

T=0.1
-1

T
lygm l rl_,—_L‘ | rl_r |
J

-1

Fig. 5.10 The effect of frequency aliasing on a system of A/D-G[z]-D/A structure

27 - —-0.27 0 0.27w T 187 © 227«
(a) The magnitude response of the digital filter G [z]

(b) The phase response of the digital filter G [z]

Fig. 5.11 The frequency response of the digital filter G[Zz]

%si g05f 10. m

clear, clf

B=[0 1-exp(-1)]; A-[1 -exp(-1)]; %systemfunction of the filter
WE[2 22 18] *pi; %the three different frequency of input signal
T=0.1; ts=2e-3; % Sanpling period, Segnent |ength

tf=2; t=[0:ts:tf]; n=[0:tf/T]; % Final time, Tinme ranges

x1lt= sin(W1)*t); xIn=x1t([1l:T/ts:end]); yln= filter(B, A x1n);
x2t= sin(W2)*t); x2n=x2t([1: T/ts:end]); y2n= filter(B, A x2n);
x3t=sin(W3)*t); x3n=x3t([1:T/ts:end]); y3n= filter(B, A x3n);
subpl ot (521), plot(t,x1t), hold on, stairs(n*T,x1n,’ r’) % Ilnput 1
subpl ot (522), stairs(n+*T,yln) % CQutput 1

5.3 Sampling 261

subpl ot (523), plot(t,x2t), hold on, stairs(n*T,x2n,’r’) % | nput 2
subpl ot (524), stairs(n*T,y2n) % Cut put 2

subpl ot (525), plot(t,x3t), hold on, stairs(n*T,x3n,’r’) % Ilnput 3
subpl ot (526), stairs(n*T,y3n) % CQutput 3

% The frequency response of the digital filter

WE[-2:0.001: 2. 3] xpi; GMfreqz(B AW;

subpl ot (514), plot(f,abs(GW)

subpl ot (515), plot(f,angle(GN)

Referring to Remark 1.4 (for the physical meaning of the frequency response)
and based on the frequency response of the digital filter G[z] depicted in Fig. 5.11,
we can write the steady-state response of the digital filter to the digital inputs
x1[N] = sin(0.2rn) and x3[n] = sin(1.87zn) as

yilnl = | G[e'?]]|, _, . sin(0.27n+ /G|, _,,.)
= 0.865in (0.2rn — 0.927)
ya[nl = | G[e9] ||, _, 4. SIN(L.87N+ ZG[e®]|,_, 5)
= 0.865sin (1.8n + 0.927)
= 0.865in (—0.27n + 0.927) = —0.86sin (0.27n — 0.927) = —yy[n]

Here, let us think about how we can interpret the periodicity of the DTFT spectrum
of a discrete-time signal and that of the frequency response of a discrete-time sys-
tem such as G[z]. The interpretation of the former is an ambiguity that we cannot
tell which of analog frequency components {(21 & 2mx)/ T, m: any integer} are
contained in the original continuous-time signal (before sampling with period T).
It should not be interpreted as the existence of infinitely many analog frequency
components {(21 & 2mx)/T, m: any integer}. On the other hand, the interpre-
tation of the latter is an equality that the discrete-time system responds with the
same magnitude and phase of frequency response to the discrete-time version of
continuous-time signals of different analog frequencies {(21 + 2mx)/T, m: any
integer}.

There are some rules of thumb for choosing the sampling rate, which are listed
in the following remark:

Remark 5.1 Rules of Thumb for Sampling Rate Selection

In practice, the sampling frequency is chosen to be much higher than the Nyquist
rate. In closed-loop sampled-data systems, low sampling rate has a detrimental
effect on stability and therefore, the sampling rate selection is made with stability
consideration. The rules of thumb are

— to sample 8 ~ 10 times during a cycle of damped oscillation in the output if the
system is under-damped or during the rise time of the transient response if the
system is over-damped, or

— to sample at least 5 times per time constant.

262 5 Sampling and Reconstruction

Remark 5.2 Time Aliasing and Frequency Aliasing

In Example 3.15, it can be observed that if the DFT size is not sufficiently
large, in other words, if the sampling rate in the frequency domain [0, 2] is not
sufficiently high, the aliasing problem may occur in the time domain and such a
phenomenon is called the time aliasing. Now in this section, we can observe that a
low sampling rate in the time domain may cause the frequency aliasing.

5.3.2 Anti-Aliasing and Anti-Imaging Filters

We know that higher sampling rate satisfies the sampling theorem more easily; in
other words, if a continuous-time signal is sampled at a sufficiently high rate, the
frequency-aliasing problem can be alleviated. However, the maximum sampling rate
of a S/H (sample/hold device) is upper-bounded by the hardware constraints such
as the delay time of the S/H and the conversion time of A/D (analog-to-digital)
converter. If the total conversion time is 1 1, the maximum sampling rate is 1 MHz.
Therefore we may not be able to make the sampling rate as high as we want.
Besides, a higher sampling rate increases the number of calculations needed for
implementation.

On the other hand, all physical signals found in the real world are not band-
limited and do contain a wide range of frequency components. Besides, an ideal
low-pass filter is not realizable. It is therefore impossible to exactly reproduce the
original continuous-time signal from its sampled version even though the sampling
theorem is satisfied.

Fortunately, most physical transients tend to be smooth so that their spectra are
close to zero for high frequencies. Still it may be a problem to deal with the signal
corrupted by high-frequency noise. To prevent or reduce aliasing errors caused by
undesired high-frequency signals, we must use an analog low-pass filter, called an
anti-aliasing prefilter. This filter is applied to the continuous-time signal prior to

Real (analog) world <—|—> Digital world <—|—> Real (analog) world

Anti-aliasing x.[n — - n Anti-imaging
Xo(t) —] LPF | A/D uln] D|g|tGal[Zf]:|Iter Yal] D/A |—{ (Reconstruction) —sy,(t)
GaalS) LPF G, (s)

(a) The block diagram of a digital signal processing system with anti-aliasing and anti-imaging filters

----- Magnitude response of an anti-aliasing filter G_,(s)
—— Magnitude response of digital filter G (z)
Overall (resulting) magnitude response

Ny
\\~\ Sampling
Folding frequency™===--____ frequency
L w
0 we T Ws—we wg—27/T
+——— Guardband «——F

(b) The frequency responses of an anti-aliasing filter and the overall DSP system

Fig. 5.12 Block diagram and frequency response of a DSP system

5.4 Reconstruction and Interpolation 263

sampling and passes the components with frequencies |w| < ¢, While attenuat-
ing the components with |w| > ws — wc, which would be folded into the range
lw] < wc. A digital signal processing system using an anti-aliasing LPF and its
typical frequency response are shown in Fig. 5.12. Note that another LPF of similar
frequency characteristic, called an anti-imaging or reconstruction filter, might have
to be installed after D/A conversion to remove unwanted spectral components
(above the folding or Nyquist frequency ws = =/ T) from the DAC output and
construct a smooth analog output signal.

5.4 Reconstruction and Interpolation

In many practical applications, discrete-time sequences are required to be trans-
formed into continuous-time signals. In computer-controlled systems, it is necessary
to convert the control actions calculated by the computer as a sequence of numbers
into a continuous-time signal that can be applied to the plant or process. In digital
audio compact disk system, the audio signals are stored as digital samples on the
disk and must ultimately be converted into analog signals to drive the speakers. In
these cases, we are faced with the inverse of the sampling operation, which asks us
to think about how to reproduce the analog signal x,(t) from the continuous-time
sampled signal x,(t) = Xa(t)d(t) or discrete-time sequence x4[n] = Xa(nT).

5.4.1 Shannon Reconstruction

We begin by considering the un-aliased spectrum X, (w) as shown in Fig. 5.8(b)
where X, (w) has the same shape with the original spectrum X,(w) over the principal
frequency range (—x/T,/T) where T is the sampling interval or period. Sup-
pose we have an analog lowpass filter (LPF) with the ideal ‘brick wall’ frequency
response

T for —n/T < w < /T

54.1
0 elsewhere ()

Gl(w)={

which passes only frequencies in the range |w| < w/T and masks out all other
frequencies. Recall from Eq. (E2.9.2) that

9) = F 4G, ()} 22 TEsina(E) BT sinc(%) (5.4.2)

T

We can apply this filter to X, (w) to retrieve the original spectrum X,(w) in the
frequency domain as

X(w) = G (o) Xy () (5.4.3)

or in the time domain as

264 5 Sampling and Reconstruction

x(1) = FHX(@)} “E? g ©) % x,. (1) “EY 91 (1) % xa(®)57 (1)

C2V a0t Y0 st-mT)
=9 ©* Y Xt -mT)=giM)x Y~ Xa(mT)st - mT)
oy xa(mT)g (t — mT);

K(t) (642 Z:?oo Xa(mT) sinc (t —TmT> (5.4.4)

The above summation (5.4.4), called Whittaker’s cardinal interpolation formula or
Whittaker-Shannon sampling series [S-1, W-1], suggests a reconstruction formula.
It can be modified into a more computationally-efficient form

R(t) = (5.4.5)

sin(rt/T) (nm
JT/T Z t mT

where we have used the fact that
e —ain (T _ TN o ymein (T
sin (?(t — mT)) =sin <T t) cos(mm) — cos (T t) sin(mzx) = (—1)"sin (T t)
Since the sinc function sinc(t — mT) has unity value for t = mT and becomes zero
for other Shannon reconstruction sample points, it is obvious that
X(NT) = xo(nT) V integer n (5.4.6)

holds for every sample point. The role of g, (t) is to fill in or interpolate the values
of the continuous-time function between the sample points.

%i g05f 13. m
clear, clf
ts=0.001; T=0.1; tt=-0.5:ts:1.4; t0=0; tf=1; % Tinme range
fs=[0 0.1 0.2 0.3 0.4 0.5]; ws=2+pi*fs/T; % Frequencies contained in x(t)
Aks=[111111]; phiks=[0.5-0.50.5-0.51-1];
K=6; xt= Aks(1)*sin(ws(1l)*tt + phiks(1));
for k=2: K, xt = xt + Aks(k)=*sin(ws(k)*tt + phiks(k)); end
nT=tt([1:T/ts:end]); % Sanpling point vector
xn= xt([1: T/ts:end]); %Discrete-time sequence sanpled with T=0.1
sincml= inline('sinc(t/T)','t’,'T);
plot(tt,xt), hold on, sten(nT, xn)
xht= 0;
for n=1:1ength(xn)
xn_sincnT = xn(n)*sincml(tt-nT(n),T); xht = xht + xn=sincnT; %Eq. (5.4.4)
plot(tt,xnsincnT,’:")
end
plot(tt,xht,’r’), set(gca,’ XLim ,h [tO tf], fontsize',9)

5.4 Reconstruction and Interpolation 265

B I Xg(MT)sinc (t—mT)
—X()

(a) An example of Whittaker—Shannon reconstruction
when the precondition of the sampling theorem is satisfied

(b) An example of Whittaker—Shannon reconstruction
when the precondition of the sampling theorem is not satisfied

Fig. 5.13 Examples of Whittaker—Shannon reconstruction

Interested readers are recommended to run the above program “sig05f13.m”
twice, once with the number of frequencies K = 5 and once with K = 6, to get
Fig. 5.13(a) and (b), respectively and then, think about what the difference comes
from in connection with the precondition of the sampling theorem.

5.4.2 DFS Reconstruction
Recall again the relationship (5.3.1a) between the CTFS Xy of a continuous-time
periodic signal Xp(t) and the N -point DTFS (DFS/DFT) Xy (K) of the discrete-time

version Xy[n] = Xp(NT) (obtained by sampling Xp(t) every T s), which is periodic
with period N = P/T inn:

~ (353)or (53.1a) 1)
Xn(k) T = T Do Xrmn (5.4.7)

This implies that if Xp(t) does not contain the frequencies above the folding
frequency, i.e., half the sampling frequency

266 5 Sampling and Reconstruction

ws T N 27
Ty T T T 2NT
N 2 N N
o —wp(corresponding to the frequency index k = —)
2 P 2 2
S0 that
N
Xk=0 V |kl > 0 (5.4.8)
then Eq. (5.4.7) becomes
~ 4.7) with (5.4. 1 N
K (k) &7 v G498 =Xiforlk| < - (5.4.9)

This suggests another reconstruction formula, called the DFS reconstruction, which
is similar to the inverse DFS formula (3.4.8):

f((t):% > Kn(k)el 2 NT (5.4.10)

|k|<N/2

%i g05f 14. m

clear, clf

ts=0.001; T=0.1; tt=-0.5:ts:1.4; t0=0; tf=1;

fs=[0 0.1 0.2 0.3 0.4 0.5]; ws=2xpi*fs/T, % Frequencies contained in x(t)
Aks=[1 1111 1]; phiks=[0.5-0.50.5-0.51 -1];

K=5; xt= Aks(1l)*sin(ws(1)*tt + phiks(1));

for k=2:K, xt = xt + Aks(k)*sin(ws(k)*tt + phiks(k)); end

nT= tt([1: T/ts:end]); xn= xt([1:T/ts:end]);

xn_causal =[xn(6: end) xn(1:5)]; Xk= fft(xn_causal); N=length(Xk);
plot(tt,xt), hold on, stenm(nT,xn)

kk1=[1: N 2].";

xht 1.DFS= real (Xk(kkl)*exp(j*2*pi /N Tx(kk1l-1)*tt))/ N
kk2=[N/ 2+2: N] . " ;

xht 2.DFS= real (Xk(kk2) *exp(j *2*pi /N Tx(kk2-1-N)*tt))/N;

xht _.DFS = xht 1.DFS + xht 2_DFS;

plot(tt,xht DFS,'r'), set(gca,’ XLim ,[tO tf],’ fontsize',?9)

Interested readers are recommended to run the above program “sig05f14.m”
twice, once with the number of frequencies K = 5 and once with K = 6, to get
Fig. 5.14(a) and (b), respectively and then, think about what the difference comes
from in connection with the precondition of the sampling theorem.

5.4 Reconstruction and Interpolation 267

Xaﬁt) Overlapped
X(t)
0 /Ny
1 _0 .),(\a(t) 0.5 U
] — 1 X(t)

(a) An example of Fourier series reconstruction
when the precondition of the sampling theorem is satisfied

\ﬂo-sww

(b) An example of Fourier series reconstruction
when the precondition of the sampling theorem is not satisfied

Fig. 5.14 Examples of Fourier series reconstruction
5.4.3 Practical Reconstruction

The problem with the ideal (Whittaker-Shannon) interpolation function g, (t) =
sinc(t/T) is that it extends in time from t = —oo to +o00 and accordingly, it incor-
porates the entire sequence of x,(nT) including all the future samples (for n > 0)
as well as all the past samples (for n < 0) to find the estimate of x(t). Besides, in
control situations we cannot usually wait to observe the entire sequence before an
interpolation is performed. In this section we consider a practical interpolator called
the zero-order hold (z.0.h.), which is a causal lowpass filter to approximate a signal
between two consecutive sampling instants nT and (n 4+ 1)T by a constant Xo(nT).
This is the beginning of the story about the ideal S/H (sample-and-hold device). As
depicted in Fig. 5.15(a), the output of a z.0.h. to an input x(t) can be described as

X(t) = Z::o Xa(NT) (Us(t — NT) — ug(t — nT — T)) (5.4.11)

whose Laplace transform is

oo 641D s L aTsoTs
X(s) B.8(3), B.7(2) Z Xa(nT) (S € >

o0 1
_ —NTs— A Tsy.
= E o Xa(nNT)e S(1 e %), (5.4.12)

X(8) = X«(s) Gho(s) (5.4.13)

268 5 Sampling and Reconstruction

0
CIJ —— :Input to S/H \J/

[[—— : Output from S/H
(a) The input and output of a S/H

Xa(t) on X()

Xa(t) X.(t) X(t)
o —O/W 2.0.h. Gpo(s) ——
(c) A S/H and its model

0
(b) The magnitude response of a z.o0.h.

Fig. 5.15 S/H (Sample—and-Hold) modeled by combining an ideal sampler and a z.0.h.

where
(E2.13.1) 00
X9 = L6 =L ha® Y8t -nT))
B.8(2) oo B @11)
= Zn:_oo Xa(nT)e nTs = Xd [Z] |z=eST (5414)

(64.13) X(S) (5.4.12) 1

Gro(s) = X.(9) (5.214)5(1_e_TS) (5.4.15)

Note that in Eq. (5.4.13) describing the Laplace transform of the z.0.h. output,
X,(s) is the Laplace transform of x,(t) = Xa(t)é7(t) (the output of an ideal sampler
to Xxa(t)), called the starred transform of x,(t). On the other hand, Gpo(s) can be
regarded as the system or transfer function of the z.0.h. device since it does not
depend on x4(t). Hence the frequency response of the z.0.h. is

. 1 T eja)T/Z _ e—ij/Z .
Gho(jw) = Gho(9)ls=jw = j_a)(l —el) = j—we‘“" /
sin(T/2) _.:
=T————e1*T/2 5.4.16
wT/2 ()

which implies that the z.0.h. is a kind of lowpass filter (see Fig. 5.15(b)). Note that
X«(t) is not present in physical systems, but it appears in the mathematical model
as a result of factoring and can be considered to be the output of an ideal sampler.
Although the ideal sampler and the z.0.h. do not individually model a physical sam-
pler and a physical data hold, their combination does accurately model a physical
S/H device (see Fig. 5.15(c)).

5.4 Reconstruction and Interpolation 269
5.4.4 Discrete-Time Interpolation

As mentioned in Remark 3.7(4), zero-padding in the time domain can be used to
increase the frequency resolution, which is justified for finite-duration signals that
have already been sampled over all nonzero portions. In duality with this, zero-
padding in the frequency domain can be used to increase the time resolution, which
is justified for bandlimited signals having nonzero spectral values only for some
finite frequency range. This suggests us a discrete-time interpolation method.

Suppose we are given a sequence {x[n], n = 0 : N — 1} where X(Q2) =
F{x[n]} =~ 0 for the frequency range near 2 = m. We first obtain the N -point
DFT of x[n], i.e., X(k) = DFTn{x[n]} fork = 0 : N —1 and then pad it with some,
say, (K — 1)N zeros to make a new KN -point DFT sequence V (k) as follows:

<case 1: N is even>

K X (k) for 0 <k <(N/2)—1 and
KN—(N/2)+1 <k < KN-1

V(K) = ~ (5.4.17a)
(K/2)X(k) for k= N/2, KN —(N/2)
0 elsewhere (zero-padding)
<case 2: N is odd>
KX(k) for0 < k < (N —1)/2 and
V(K) = KN—-(N-1)/2 <k < KN—-1 (5.4.17h)

0 elsewhere (zero-padding)

where X(k) = DFSy{x[n]} is the periodic repetition of X (k) with period N.

Now we compute the KN -point IDFT of V (k) to obtain an interpolation of
x[n] as

v [n] = |DFTKN{V(|()}
1 KN-1

= N Do VT Nforn=0, 1 ... KN-1 (5418)

To evaluate this expression at every K th element, we substitute n = Km to get
1 N-1 ~ .
—- j27km/N
v[Km] = Zkzo X(k) e
= IDFTN{X(K)} = x[m] form=0, 1, ---, N—-1 (5.4.19)

This implies that the new sequence v[n] has been obtained by placing (K — 1)
samples between successive samples of the original sequence x[n].

270 5 Sampling and Reconstruction

(Q) In the case where x[n] is a real-valued sequence, it seems that we need to
ensure the conjugate symmetry of its KN -point DFT V (k) by modifying a part of
Eq. (5.4.17a) as

i) — :(K/Z)X(k) for k = N2 5420

(K/2)X*(k) fork=KN —(N/2)
However, we do not have to take the complex conjugate of X(N/2) since it is real

for a real-valued sequence x[n].

Remark 5.3 Discrete-Time Interpolation, Zero Insertion, and Lowpass Filtering
The DFT sequence V (k) is the same as the DFT of the output sequence of an
ideal lowpass filter (with gain K and bandwidth /K to the input signal x(x)[n],
which is obtained by inserting (K — 1) zeros between successive sample points of
X[n]. From Eq. (3.2.14), we know that the K N -point DFT of x)[n] is
Xkn(K) = Xn(K) fork =0, 1, ---, (KN —=1):
the periodic repetition of X (k) with period N

Note that Eq. (5.4.17) is equivalent to taking a scaled version of Xy (k) within the
low frequency band, which corresponds to a lowpass filtering (see Fig. 5.16(b2)).

Example 5.1 Discrete-Time Interpolation
Let us find a discrete-time interpolation for the following sequence (see
Fig. 5.16(al)):

n

=0 1 2 3
x[n]={2, 1, 0, 1} (E5.1.1)

We first compute the N = 4 -point DFT of x[n] as (see Fig. 5.16(b1))

X(k) = DFTwix[nl) = 3° “x[n]e 127N = 37 x[n] (— j)*
= X [0] + X [1] (= })* + x [2] (= })* + x [3] (= })*
=24+ (=) + (=)
X(k)=1{4, 2, 0, 2} (E5.1.2)
Then we use Eq. (5.4.17) with K = 2 to get V (k) as (see Fig. 5.16(b3))

k=0 1 2 3 4 5 6
V(k)={8, 4,0, 0, 0, 0, 0, 4} (E5.1.3)

Now, we compute the KN = 8 -point IDFT of V (k) to obtain the interpolated
sequence v[n] (see Fig. 5.16(a3)):

5.4 Reconstruction and Interpolation 271

2 4
1 Xy DFT 2 Xty
_—
0 0
_ ,oo 1 2 3 n 00 1 2 3 K
(a1) x[n] (b1) X (k)=DFT{x [n]}
é l Zero—insertion Ideal LEET_I:G_E}_[_{S_[‘I_?X_I’_@_S}_)OHSG
g 2 4 4 P4 ;
gle] L X9 ; 2
S |3 1 @ g 2 2 P2 2 P2 2 P2 3
2|& f : f g
gfllolooolo Il Tol TelToll,|f
o n k =
E = 0 1 2 3 4 5 6 7 5 -4 3 -2-1 0 1 2 3 4 5 6 7 N
2 (a2) x y[n]: zero—inserted (b2) X(k): a periodic repetition of X (k)
E l Lowpass—filtering
2¢ 17 1.7 8
v[n]
1 1 4 4
‘ l 03 03] ‘ < PFT] l
0 0 ¢ o 0 0 0 0 O
n k
0 1 2 3 4 5 6 7 0O 1 2 3 4 5 6 7
(a3) v[n]: lowpass—filtered (b3) V (k): zero—padded
Fig. 5.16 Discrete-time interpolation of a discrete-time sequence
1 7 .
v[n] = IDFTn{V(K)} = ¢ Zk OV(k)eJZ”k“/B
1 jmkn/4 —jmkn/4 1
= §(8+4e + 4e) =1+ cos ann , (E5.1.4)

n=0 1 2 3 4 5 6 1
v[n]={2, 1.707, 1,0.293, 0, 0.293, 1, 1.707}

This result can also be obtained by using the MATLAB routine ‘i nt er pol ati on_

di screte()’, which implements the procedure described by Eq. (5.4.17)
and (5.4.18).

>>x=[2 1 0 1]; K=2;
>>v=j nt er pol ati on_di scret e(x, K)
2.0000 1.7071 1.0000 0.2929 0 0.2929 1.0000 1.7071

function [xi, Xi]=interpol ation_di screte(x,K)

% To find the KN-point discrete-tine interpolation xi of an N point

% di screte-ti me sequence x[n]

N=l engt h(x); KN=K+#N; N1=fl oor ((N+1)/2); KNNL=KN- N1+2;

X= fft(x);

Xi = KeX(1:N1); Xi (KNNL: KN) =K#X(N- N1+2: N); % Eq. (5. 4. 17)

if nod(N, 2)==0, Xi ([N2+1 KN-N 2])=K/2+*X(N 2+1)*[1 1]; end % Eq. (5. 4. 17b)
xi=ifft(Xi); %Eq. (5.4.18)

272 5 Sampling and Reconstruction
5.5 Sample-and-Hold (S/H) Operation

In a majority of practical digital operations, a S/H function is performed by a
single device consisting of a capacitor, an electronic switch, and operational ampli-
fiers, which stores the (sampled) input signal voltage as a charge on the capacitor
(Fig. 5.17). OP amps are needed for isolation; capacitor and switch are not con-
nected directly to analog circuitry lest the capacitor should affect the input waveform
and should be discharged to the output. The mathematical model for a S/H device
or operation has been developed in Sect. 5.4.3.

Fig. 5.17 Sample-and-Hold
(S/H) device

input u1 A O? o +

Vy + Ci

The DAC described in Sect. 5.1 may be regarded as a device which consists
of a decoder and an S/H unit (Fig. 5.18(a)). Note that the sampling operation
is not necessary, but it is included since the S/H is usually considered as one
unit. The ADC performs the operations of S/H, quantization, and encoding (see
Fig. 5.18(b)).

Digital signal Analog signal Analog signal Digital signal
gl signal, 5 Analog =19 gsignal__,fapc}— ol sig
Digital | | [1 Analog Analog - Digital
signal IDecoderI | S/H |signa| signal’ | S/H |—>| Quantizer HEncoderlm»
(a) A model for DAC (b) A model for ADC

Fig. 5.18 Models for DAC and ADC

5.6 Summary

In this chapter we were concerned how continuous-time and discrete-time signals
are and can be related. First, we have included a survey of D/A and A/D conver-
sion methods to let the readers know the relationship between analog signals and
the corresponding digital ones and further, to provide them with some practical
information that may be useful for the selection of DAC and ADC. Then we dis-
cussed the sampling theorem, several reconstruction/interpolation techniques, and
the mathematical model of a practical S/H device.

Problems 273

Problems

5.1 CTFS, DTFS, and Sampling Theorem
Consider the following five cosine waves:

@

(b)
(©
(d)
(€)

X1 (t) = cos(2nt) = %(ejzﬂt 1 el
Xo(t) = cos(8rt) = %(eism 1 gty
X3(t) = cos(107t) = 2(9110nt 4 eitonty
X4(t) = cos(18xt) = %(ej o7t | g-il8aty
Xs(t) = cos(22xt) = %(ei 22mt 4 gi22mty

Referring to the Fourier representation formula (2.1.5a), verify that the
Fourier series coefficients of the two-tone signal xa(t) = Xi(t) + xo(t)
with period P, = max{2n/2x, 27/8n} = 1 and fundamental frequency
wo = 27 are

1
Xak = and 2 fork = —4,-1,+41, and + 4, respectively.
(P5.1.1)
Also for the sequence {X,(nT), n = 0 : 9} obtained by sampling one period
of the signal with sampling period T = 0.1, find the N = 10 -point DFT
X (k) and discuss how it is related with X, « based on the relationship (3.5.3)

between the CTFS and DTFS. Note that x,(nT) can be written as

l\)ll—‘

1
"2’

l\)ll—‘

Xa[n] — Xa(nT) (e]27r n/10 + eijﬂn/lO) + §(ej87'm/10 + efj87'm/10)

(P5.1.2)
and it can somehow be matched with the IDFT formula
l _
x [n] = IDFTn{X(K)} ®2Y SO " X(K)el TN forn =0 N — 1

to yield the DFT coefficients X(K).

For xp(t) = x1(t) + x3(t), do the same job as in (a).

For Xc(t) = xu(t) + x4(t), do the same job as in (a).

For xq(t) = x1(t) + xs(t), do the same job as in (a).

Complete the following MATLAB program “sig05p_01.m” and run it to
find the N = 10 -point DFTSs for {xa(nT), n =0: 9}, {X(nT), n=0:
9}, {X(nT), n =0 : 9}, and {Xg(nT), n = 0 : 9}. Do they agree with
those obtained in (a)—(d)? For each of the four cases (a)—(d), tell whether
the frequency folding or aliasing occurs or not by the sampling with period
T=0.1

274 5 Sampling and Reconstruction

% i g05p_01. m

clear, clf

ws=[2*pi 8xpi 10*pi 18+pi 22+pi];

P=1; ts=0.001; tt=[0:ts:P]; T=0.1; N=round(P/T);

n=[0: T/ts:length(tt)]; n=n(1:N); nT=n*ts; k=[0:N-1];

x1t= cos(ws(1l)*tt)+cos(ws(2)*tt); x1ln= x1t(n+l); Xl= fft(x1ln);
subpl ot (521), plot(tt,x1t), hold on, sten(nT, x1n,’.")

subpl ot (522), sten(k,abs(X1),’.")

(f) Among the sampling rates {15Hz, 20Hz, 25Hz, 40Hz, 50Hz}, choose the
lowest one such that the frequency aliasing does not occur for any of (a)—(d).

5.2 Reconstruction
Consider the continuous-time waveform x(t) depicted in Fig. P5.2.

X(t) Ad

-1 0 1

Fig. P5.2

(a) Use Eq. (E2.3.4) to find the CTFT of x(t).

(b) Regarding x(t) as a periodic waveform with period P = 2 [s], we can
sample it with sampling period T = 0.5 [s] to get a (non-causal) discrete-
time sequence

n= -1 0 1 2
Xne [n]= {05, 1,05, 0} (P5.2.1)

and take the part of the periodic repetition of xnc[n] with period N = 4
for n = 0 : 3 to have a causal sequence

n=0 1 2 3
x[n] = {1, 0.5, 0, 0.5} (P5.2.2)

Find the 4-point DFT of this sequence.

(c) Find the analytical expression of the DFS reconstruction of x(t) using the
DFT obtained in (b) and plot it on Fig. P5.2.

(d) Suppose we can apply an ideal LPF for reconstruction. Can the waveform
depicted in P5.2 be reconstructed perfectly from its sampled version with
some sampling period? Say ‘yes’ or ‘no’ and state the background of your
answer.

Problems 275

5.3

Discrete-Time Interpolation
Consider the discrete-time signal x[n] whose DTFT spectrum is depicted in
Fig. P5.3.

(@) Sketch the spectrum of y[n] = X¢)[n] where

x[n/2] for n=2m(m: integer)

(P5.3.1)
0 elsewhere

y[n] = x@[n] = :

(b) Suppose that we wish to form an interpolated version of x[n] by passing
y[n] through a lowpass filter. Specify the requirements of the LPF on its
gain and bandwidth.

X(Q)

Fig. P5.3

54

5.5

Discrete-Time Interpolation
Consider the discrete-time signal x[n] obtained by sampling the following
continuous-time signal x(t) att = nT(n = 0 : 50, T = 0.0001 sec) with
sampling rate Fs = 10kHz.:

X(t) = cos(2mw x 1000t) + sin(2x x 3000t) (P5.4.1)

Using the discrete-time interpolation introduced in Sect. 5.4.4, insert 19 points
between successive sample points of x[n] to make a 1020-point interpolation
v[n] and plot it (continuously in a solid line) together with x(nT) (discretely
using the ‘x” mark).

A/D- G[Z] (digital filter)-D/A Structure
Consider the A/D- G[Zz] -D/A structure with G[z] = 1 + z~* where the input is
to be sampled with sampling period T = 0.1 [s].

(@) Letthe input be given by x;(t) = sin(10rt/3). What is the digital frequency
of x1[n] = x3(nT)?

(b) What is the highest analog frequency such that the input signal will not be
aliased?

(c) Find the frequency response and DC gain of the digital filter G[z].

(d) Find the steady-state output y; ss[n] to X3[N] = x1(nT) = sin(107 Tn/3).

(e) Find the steady-state output y, ss[Nn] to the unit step input X,[n] = us[n].

(f) Support your answers to (d) and (e) by the simulations for n = 0 : 50.

Chapter 6
Continuous-Time Systems and Discrete-Time
Systems

Contents
6.1 Concept of Discrete-Time Equivalent i 277
6.2 Input-Invariant Transformationt e 280
6.2.1 Impulse-Invariant Transformation oo, 281
6.2.2 Step-Invariant Transformation i, 282
6.3 Various Discretization Methods [P-1]t 284
6.3.1 Backward Difference Rule on Numerical Differentiation 284
6.3.2 Forward Difference Rule on Numerical Differentiation.................... 286
6.3.3 Left-Side (Rectangular) Rule on Numerical Integration 287
6.3.4 Right-Side (Rectangular) Rule on Numerical Integration 288
6.3.5 Bilinear Transformation (BLT) — Trapezoidal Rule on Numerical Integration . 288
6.3.6 Pole-Zero Mapping — Matched z-Transform [F-1] 292
6.3.7 TransportDelay —Dead Time........ ... 293
6.4 Time and Frequency Responses of Discrete-Time Equivalents 293
6.5 Relationship Between s-Plane Poles and z-Plane Poles 295
6.6 The Starred Transform and Pulse Transfer Function 297
6.6.1 The Starred Transform 297
6.6.2 The Pulse Transfer FUNCtiON 298
6.6.3 Transfer Function of Cascaded Sampled-Data System 299
6.6.4 Transfer Function of System in A/D-G[Zz]-D/A Structure 300
PrODIEMS . 301

In this chapter we are concerned how continuous-time and discrete-time systems
are or can be related with each other. We will discuss the concept and criterion
of discrete-time equivalent (digital simulator) and investigate various discretization
methods to obtain the discrete-time equivalent for a given analog system, which can
be used for the analysis and design of sampled-data systems.

6.1 Concept of Discrete-Time Equivalent

As the technology of digital processors becomes more advanced, it is often desirable
to replace analog systems with digital ones. In some cases, we need to transform
the analog systems into their “equivalent” digital systems in order to simulate their
behaviors on digital computers. In other cases, rather than designing directly a

W.Y. Yang et al., Signals and Systems with MATLAB®, 277
DOI 10.1007/978-3-540-92954-3_6, © Springer-Verlag Berlin Heidelberg 2009

278 6 Continuous-Time Systems and Discrete-Time Systems

digital system, we make use of a variety of well-developed analog system design
procedures to get an analog system with satisfactory performance and then convert
it into a discrete-time equivalent that mimicks (emulates) the analog system. In
either case, for a given continuous-time linear time-invariant (LTI) system Ga(S)
with input x(t) and output ya(t), we wish to find a discrete-time system Gp[z] with
input x[n] and output yp[n] such that

x[n] =x(nT) = yo[n] = ya(nT) (6.1.1)

This means that G a(S) and Gp[Zz] yield the equivalent outputs to equivalent inputs
in the discrete-time domain. We will call such a system Gp[Z] the discrete-time
(z-domain) equivalent or digital smulator for G A(s) where Eq. (6.1.1) is referred
to as the (discrete-time) equivalence criterion. To establish necessary conditions for
the validity of the above criterion, we shall first consider sinusoidal inputs, which
will lead to the general case, because an arbitrary signal can be expressed as a linear
combination of sine waves (the Fourier series representation). Suppose the input
x[n] of a discrete-time system Gp[z] is the discrete-time version of x(t) = el®!
sampled with period T, i.e., x[n] = x(nT) = el™T where x(t) is the input to the
continuous-time system G a(s) (see Fig. 6.1):

t Sampling with period T

x(t) = el® x[n] = x(nT) = el (6.1.2)

Then we can use the convolutional input-output relationships (1.2.4)/(1.2.9) of
continuous-time/discrete-time LTI systems and the definitions of CTFT and DTFT
to write the outputs of Ga(S) and Gp|[z] as

OO i 00 .

a0 = [ga(el et Ve : Yol = Y gofmjel0-m1

—00 7

Sampling with period T (3.1.1) G [ei a)T]ej neT
= D

(6.1.3)

CLGp(jw)eit

where
(A1)

ga(r)=0V <0
causal system

Galio) 2 [~ gatmye GA®sy (6142)

(B.LY)

joTq CLD {0 Simar (4L10)
Go[eT1"=") golmle

gp[n]=0V n<0
causal system

Gol[Zl,—eir (6.1.4D)

Gals) yat)=Ga(jw)elT

x(t)=eJt —> y (nT)=elneT ya(hT) Zyp[n]

Fig. 6.1 The equivalence criterion between a continuous-time system and a discrete-time system

6.1 Concept of Discrete-Time Equivalent 279

The above equivalence criterion (6.1.1) can be stated in terms of the frequency
responses of the continuous-time and discrete-time systems as

Gole!”T] = Ga(jo) (6.1.5)

This is referred to as the frequency-domain discrete-time equivalence criterion.

However, this equivalence criterion cannot be satisfied perfectly because the
digital frequency response Gp[el“T] is periodic in w (Sect. 3.2.1) while the fre-
quency response G a(jw) is not. This implies that we cannot find the discrete-time
equivalent of a continuous-time system that would work for all kinds of inputs. In
principle, the criterion (6.1.5) can be satisfied only for the principal frequency range
(—m/T, +m/T) if we restrict the class of inputs into band-limited signals that do not
contain frequencies higher than the folding frequency /T, i.e., half the sampling
frequency ws = 27/T. In this sense, the resulting system Gp[Zz] satisfying the
criterion (6.1.5) is a discrete-time equivalent of G (s), which is valid only for such
band-limited input signals.

Remark 6.1 Equivalence Criterion and Band-Limitedness Condition

(1) The band-limitedness condition is not so restrictive since we can increase 7/ T
by decreasing the sampling period T. Furthermore, the condition is desirable in
order for the sampled output y(nT) to represent y(t) faithfully.

(2) As a matter of fact, the equivalence criterion (6.1.5) cannot be met exactly
even for the principal frequency range since Gp[el®T] is a rational function of
el“T while Ga(jw) is a rational function of jw. For engineering applications,
however, approximate equality is good enough.

Now we will discuss the time-sampling method, which determines Gp[z] so as
to satisfy the criterion (6.1.5) with reasonable accuracy for almost every w in the
frequency band of the input signal. The basic idea is as follows. Suppose that the
input x(t) and the impulse response ga(t) of the analog (or continuous-time) system
G a(s) are sufficiently smooth, i.e., nearly constant in any interval of length T. Then,
letting

go[n] =T ga(nT) (6.1.6)
satisfies approximately the equivalence criterion (6.1.1), i.e.,
yp[n] £ ya(nT) for x[n] = x(nT)

since we have

280 6 Continuous-Time Systems and Discrete-Time Systems

ya(nT) “2" / ¥ gax(t — 1)dr
- t=nT
=Y " Tga(T)X(nT — mT) (6.1.7a)
ol “=” Z::_OO go[m]x[n —m] (6.1.7h)

The condition (6.1.6) can be written in terms of the transforms as
Golzl = TZ{ga(nT)} = TZ {L7HGA(S)}li=nT } (6.1.8)

Remark 6.2 Time-Sampling Method — Impulse-Invariant Transformation

Note that sampling the continuous-time unit impulse 8(t) = (1/T)sinc(t/T)
(Eq. (1.1.333)) att = nT (i.e., every T s) yields (1/T)sinc(n) (1'1:35)(1/T)5[n].
Then, it is very natural that, in order for G5 and Gp to be similar, their responses to
8(t) and (1/T)8[n] should be the same, i.e.,

ga(nT) = Ga{d(t)}i=nt = Go {%S[n]} = %GD (8[n]} = %gD[n] (6.1.9)

where G{x(t)} denotes the output of a system G to an input x(t). This is equivalent
to the condition (6.1.6) for the impulse-invariant transformation.

Remark 6.3 Frequency Response Aspect of Impulse-Invariant Transformation

If Ga(jw) is negligible for |w| > 7/T (in agreement with the smoothness
conditions about ga(t)), then we can take the DTFT of (6.1.6) and use Eq. (3.5.7)
or (5.3.1b) to get

Go(©) = Flgo[Mlar = TFEANT)) = Galw) (6.1.10)

1N

6.2 Input-Invariant Transformation

We will consider the input-invariant transformations that are error-free for specific
input signals. For example, the impulse-invariant/step-invariant transformation is
accurate when the input is an impulse or a step function. If they were accurate
only for the specified inputs, they would be of limited practical value. However,
by superposition, an input-invariant transformation gives zero error in response to
any linear combination of specified input functions.

6.2 Input-Invariant Transformation 281
6.2.1 Impulse-Invariant Transformation

As mentioned in Remark 6.2, this is identical to the time-sampling method discussed
in the previous section. Note that Eq. (6.1.8) can be written as

1
z™t {GD[Z] : ?} = L7HGA(S) - Llt=nt

12 12

ol + 25101 27 Lol = ga®l_ar “E ga® + 50l (622)
This implies that the (impulse) response of the continuous-time system G A(S) to the
impulse input §(t) is equal to the response of the discrete-time system Gp[z] to the
input (1/T)8[n], which is the sampled version of §(t).

The procedure to derive the impulse-invariant equivalent Gimp[z] for a given
analog system G(s) is as follows:

1. Expand Ga(s) into the partial fraction form:

N K;
Ga(s) = Zi:l < _'S (6.2.2)
2. Replace eachterm1/(s—s)by T/(1 — e Tz1):
N KiT
Gimplz] = Zi:i m (6.2.3)

Remark 6.4 Mapping of Stability Region by Impulse-Invariant Transformation

Comparing Eg. (6.2.2) with Eg. (6.2.3), we observe that a pole at s = § in
the s-plane is mapped to z = €37 in the z-plane. Consequently, if and only if s
is in the left half plane (LHP), which is the stable region in the s-plane, then the
corresponding pole is inside the unit circle, which is the stable region in the z-plane
(see Fig. 6.2). However, the zeros will not in general be mapped in the same way as
the poles are mapped.

« 10 jw « s—plane
B AIm{z}

1
P
RN

Fig. 6.2 Mapping of poles from the s-plane to the z-plane

282 6 Continuous-Time Systems and Discrete-Time Systems

Remark 6.5 Frequency Transformation by Impulse-Invariant Transformation
The relationship between the analog frequency wa and the corresponding digital
frequency 2 is linear, that is, 2 = waT since

. s=jwa ;
T e - (6.2.4)
evaluation along the unit circle evaluation along the jwa—axis

Consequently, the shape of the frequency response is preserved. The negative aspect
of this linear frequency relationship is that short sampling period T does not remove
the frequency-aliasing problem caused by the impulse-invariant transformation (see
Fig. 6.8).

Example 6.1 Impulse-Invariant Transformation — Time-Sampling Method
For a continuous-time system with the system function Ga(s) and frequency
response Ga(jw) as

a . a
Ga(s) = m; Ga(jo) = jota (E6.1.1)

the impulse-invariant transformation yields the following discrete system function

(6.2.3) aT o aT
Gimplz] = T ear 1’ Gimp[€’ T]Zw (E6.1.2)
6.2.2 Step-Invariant Transformation
If we let
Gunlz = (1~ 92| [Zeu0)| | (625)
S t=nT

then it will be an exact discrete-time equivalent of G (s) for any input composed of
step functions occurring at sample points. Note that Eq. (6.2.5) can be written as

t=n

Ostep[N] * Us[N] = ga(t) * Us(t)li—nT (6.2.6)

This implies that the step response of the continuous-time system G A(S) is equal to
the step response of the discrete-time system Ggep[Z] 0N @ sample-by-sample basis.
That is why Eq. (6.2.5) is called the step-invariant transformation.

Let us consider the discrete-time error model for G a(S) and Ggep[Z] in Fig. 6.3,
in which the input to Ga(s) is X(t), i.e., the zero-order-hold version of x(t). The

6.2 Input-Invariant Transformation 283

o—»l z.0.h. l—»l Ga(s) YaliT)

X(t) —> Ya(NT) = Ystep[n]
TO—>| A/D l—’| Gstep[z] l—’| D/A . ystep[n]

Fig. 6.3 The discrete—time error model for the step—invariant transformation

discrete-time transfer function of the system with a z.0.h. in the upper part of
Fig. 6.3 is

A Ts
2 (£ Euoad) 7 2| P)| |
t=nT
3 1 B efTs
S L EC I E e
:(1—zl)Z{£1{éGA(s)} }(SéS) GeeplZ] (6.2.7)
t=nT

Therefore the step-invariant transformation is also called the zero-order-hold equiv-
alent mapping and it is well suited to a digital computer implementation in the
A/D-G[Zz]-D/A structure.

Example 6.2 Step-Invariant Transformation (Zero-Order-Hold Equivalent)
For a continuous-time system with the system function

Ga(s) = s—i-ia witha poleats = s, = —a (E6.2.1)

the step-invariant transformation yields the following discrete system function:

1 a 1 1
Z{EGA(S)} ZZ{s(era)} :Z{E_SJr_a}

B8@.6) 1 1 _(-e?zh-(1-2z7)
1-z1 1-edz1l (1-z1)(1l-e?Tzl)
(6.2.5) 1—eal

Gl 27 (1~ 272 | S649) - — Gl (E622)

7z — efaT

This implies that the s-plane pole is mapped into the z-plane through the step-
invariant transformation in the same way as through the impulse-invariant trans-
formation.

S=Sp=-a > z=z,=€" ="

284 6 Continuous-Time Systems and Discrete-Time Systems
6.3 Various Discretization Methods [P-1]

A continuous-time LTI system can be described by the system or transfer function as

Ga(s) = %

where X(s) and Y(s) are the Laplace transforms of the input and output. Its input-
output relationship can be written as an integro-differential equation. We often use
the numerical methods to convert the integro-differential equation into the corre-
sponding difference equation, which can easily be solved on a digital computer.
The difference equation may be represented by a discrete system function Gp[Zz]
(Sect. 4.4), which can be thought of representing a discrete-time equivalent to G A(S)
(see Fig. 6.4).

Continuous—time system

Transfer function)
v(s) _Ztobys’
GA(S) = X_ = -~
() zl,as

Discretization

Discrete—time system

Integro—differential equation

j
N Mo dx (@)

dly@) _
T T

s=1(z)

§ £ (Laplace transform)

Numerical

Transfer function)
M =i
o Y] _ZjLohZ

ol ey N ez

(z-transform)Z

approximation

Fig. 6.4 Discretization and numerical approximation

Difference equation

L odyIn-il=xl b x[n—j]

Some numerical approximation techniques on differentiation/integration will
now be presented with the corresponding discretization methods.

6.3.1 Backward Difference Rule on Numerical Differentiation

We could replace the derivative of a function x(t)

d
y() = Xt Y =X

by
x(nT) — x(nT = T) 1-z1
y(nT) = T 1 Y[Z] = T X[Z]
where the initial values have been neglected since we are focusing on describing
the input-output relationship. This numerical differentiation method suggests the
backward difference mapping rule (Fig. 6.5(a)):

—1

or equivalently, -z

(6.3.1)

S —

1—sT

6.3 Various Discretization Methods [P-1] 285

Im{z}
d t
Y= x® y(t) = [y x(r)ydr 1 z-plane
ﬁy(nT):w S y(nT)=y(nT=T)+Tx(nT) /
Kl/ 1 o 12 1 Re{z}
I
L t
0 (n—-1)T nT 0 (n-1)T nT 1
(a) Backward difference rule (b) Right-side integration rule (c) Mapping of stable region

Fig. 6.5 Backward difference or right-side integration rule

Example 6.3 Backward Difference Rule
For a continuous-time system with the system function Ga(s) = a/(s + a), the
backward difference rule yields the following discrete system function:

©31) a a
Gplz] =" —— =
St+algg 1yt (L-z1H/T+a

B aT _aTz/(1+aT)
1+aT—z1! z—1/1+aT)

(E6.3.1)

This implies that the s-plane pole is mapped into the z-plane through the backward
difference or right-side integration rule as
for |spT|<<1 1

s=s,=-a 2=z, = ~ =e>' E6.3.2
P ~ P 1—-s,T (2 e ()

This implies that if the s-plane pole s, is so close to the origin and/or the sampling
period is so short that [s,T| << 1, then the location of the pole mapped to the

z-plane from the s-plane is
Zp ~ SpT

This relationship between the s-plane poles and the corresponding z-plane poles is
almost the same as those for other discretization methods.

Remark 6.6 Mapping of Stability Region and Frequency Transformation
From Eqg. (6.3.1), it can be seen that the jw-axis (the stability boundary) in the
s-plane is mapped to

,_ 1 1—joT 41+ joT
T l-joT 2(1 — joT)

1 _
= 5(1 +el%) with 6 = 2tan"Y(wT)
(6.3.2)

This describes the circle of radius 1/2 and with the center at z = 1/2, which is
inside the unit circle in the z-plane (see Fig. 6.5(c)). It is implied that the backward

286 6 Continuous-Time Systems and Discrete-Time Systems

difference rule always maps stable analog systems into stable discrete equivalents,
but some unstable analog systems also yield stable discrete ones. Besides, since the
jw-axis in the s-plane does not map to the unit circle in the z-plane, the digital
frequency response will deviate from the analog frequency response as w — o0
or Q — = (farther from s = 0 or z = 1). Thus, in order to make the frequency
response of the discrete-time equivalent close to that of the original analog system
(for the principal frequency range), we must decrease the sampling T or equiva-
lently, increase the sampling frequency ws So that significant pole/zeros are mapped
to the neighborhood of z = 1.

6.3.2 Forward Difference Rule on Numerical Differentiation

We could replace the derivative of a function x(t)

d
Y = X0 V() =5 X()

by x(nNT +T) —x(nT)

T

y(nT) = Y[=

This numerical differentiation method suggests the forward difference mapping rule
(Fig. 6.6(a)):

S —

or equivalently, 14+sT — z (6.3.3)

Example 6.4 Forward Difference Rule
For a continuous-time system with the system function Ga(s) = a/(s + a), the
forward difference rule yields the following discrete system function:

a a aT
Gi[d= — = = (E6.4.1)
S+alse T (z-1)/T+a z—(@-—aT)
Im{z}
y(O=3x(0) YO = (a7 Z plane
d
ﬁy(ntT)_x(nT+T) x(nT) - y(T)=y(nT-T)+Tx(nT-T)
efz}
. :
| |
0 nT (n+1)T (n=21)T nT (n+ 1)T
(a) Forward difference rule (b) Left—side integration rule (c) Mapping of stable region

Fig. 6.6 Forward difference or left-side integration rule

6.3 Various Discretization Methods [P-1] 287

This implies that the s-plane pole is mapped into the z-plane through the forward
difference or left-side integration rule as

s:spz—a—>z=zp(=)1+spT =~ g%
for [spT|<<1

(E6.4.2)
This implies that if the s-plane pole s, is so close to the origin and/or the sampling
period is so short that |[s,T| << 1, then the location of the poles mapped to the
z-plane from the s-plane is

zp = e’

Remark 6.7 Mapping of Stability Region By Forward Difference Rule
From Eg. (6.3.3), it can be seen that the jw-axis (the stability boundary) in the
s-plane is mapped to

z=1+joT (6.3.4)

This describes the straight line parallel to the imaginary axis and crossing the real
axis at z = 1. It is implied that the forward difference rule maps the left half
plane (LHP) in the s-plane to the left of z = 1 in the z-plane with some por-
tion outside the unit circle. Consequently, some stable analog systems may yield
unstable discrete equivalents, while unstable analog systems always make unsta-
ble discrete ones. Hence, this is an undesirable mapping that cannot be used in
practice.

6.3.3 Left-Side (Rectangular) Rule on Numerical Integration

We could replace the integral of a function x(t)

t
y(t):/0 x(r)dz : Y(s) = éX(S)

by Tz 1
yinT) =y(nT = T)+Tx(nT —=T): Y[Z] = mx[z]

This numerical integration method suggests the left-side integration rule
(Fig. 6.6(b)):

S —

or equivalently, 14+sT — z (6.3.5)

This is identical to the forward difference rule (6.3.3).

288 6 Continuous-Time Systems and Discrete-Time Systems
6.3.4 Right-Side (Rectangular) Rule on Numerical Integration

We could replace the integral of a function x(t)
t
y(t) = f x(r)dz : Y(s) = —X(s)
0

by y(NT) = y(nT — T)+ T x(nT) : Y[= — X7

This numerical integration method suggests the right-side integration rule
(Fig. 6.5(b)):

Z—l

S —

. 1
or equivalently, 1T -z (6.3.6)

This is identical to the backward difference rule (6.3.1).

6.3.5 Bilinear Transformation (BLT) — Trapezoidal Rule
on Numerical Integration

By the trapezoidal rule (or Tustin’s method), we could replace the integral of a
function x(t)

t
y(t) = /O X(@)de V(9 = SX(9

by -1
T T1l+2z
y(nT) =y(nT —T) + E(x(nT) +x(nT =T)): Y[z] = 0l FX[Z]
which suggests the bilinear transformation rule (Fig. 6.7(a)):
21-z"1 . 1+4sT/2
S — Tir.1 or equivalently, 1_sT2 -z (6.3.7)

y(t) = x(xdr
S y(T)=y(nT-T) +%(x(nT)+x(nT_T))

el

(n=1)T nT (n+1)T

Re{z}

(a) Trapezoidal integration rule (b) Mapping of stable region

Fig. 6.7 Trapezoidal integration rule or Tustin’s method — Bilinear transformation

6.3 Various Discretization Methods [P-1] 289

Example 6.5 Bilinear Transformation (BLT)

For a continuous-time system with the system function G A(s) = a/(s+a) having
a pole at s = —a and cutoff frequency wa ¢ = @, the bilinear transformation (BLT)
yields the following discrete system function:

a a aT(z+1)/(2 +aT)
Gulzl = ——) - 1-aT (E6.5.1)
-7~ — - — /2
s+a szig(lmfl)) @ +szl) +a z 1taT/2

This implies that the s-plane pole is mapped into the z-plane through the BLT as

63n1l+sT/2 1 —aT/2

S=Sy=—-a—>z2=2, = = E6.5.2
P TR T 1T T 1 ratp2 (E6:52)
e»1/2
<= p— ST for |spT| << 1)
The cutoff frequency of this discrete-time equivalent can be found as
a a
|Gb| [Z]szeimT = T2 oo = P
A val |iZen(9) +a
1 2 _1 { WA CT
= —; = —tan . E6.5.3
i o= 3t (25 (€653)

Remark 6.8 Mapping of Stability Region and Frequency Transformation by BLT
From Eq. (6.3.7), it can be seen that the jw-axis (the stability boundary) in the
s-plane is mapped to

3. i 2 2 _
L6030 14jeT/2 V1P +(@T/2P <tan‘1 (ﬂ) _tan_1< a)T))
s=io 1—joT/2 /12 + (T /2)? 2 2

— gl2an(T/2) _ i€ (6.3.8)

which describes the unit circle itself (see Fig. 6.7(b)). It is implied that the BLT
always maps stable/unstable analog systems into stable/unstable discrete-time equiv-
alents. However, since the entire jw-axis in the s-plane maps exactly once onto the
unit circle in the z-plane, the digital frequency response will be distorted (warped)
from the analog frequency response while no frequency aliasing occurs in the fre-
quency response, i.e., the analog frequency response in the high frequency range
is not wrapped up into the digital frequency response in the low frequency (see
Fig. 6.8). We set z = el® = el*oT with Q = wpT in Eq. (6.3.8) to get the

290 6 Continuous-Time Systems and Discrete-Time Systems

Q=wpT=wpT+27
Q=wpT=wpT

Q=wpT =wpT-27

WA

| Gimp[ejg]| =| C"’imp [eijT]|

Impulse-invariant
transformation

!

Bilinear
transformation,

WA

w,

— .
/ szDT=2tan 1A—T]+27|’
LA 2

[ars)

/ Q=uwpT =2 tan_l[WAZT]
y warping |
L ‘ WA

T
Q=uwpT =2 tan*l[%] —2r

| Gyl =l Gy [e/pT]l

(a) Frequency transformation through the impulse-invariant
and bilinear transformation

(b) Frequency warping and prewarping

Fig. 6.8 Frequency transformation

relationship between the digital frequency (2 or wp = €/T) in the z-plane and
the analog frequency wa in the s-plane as

oi® (6339) gl2tan ! (@aT/2).

T 2 T .
Q=wpT =2tan?! (%) Jop == tan~! (w%) swarping (6.3.9)

6.3 Various Discretization Methods [P-1] 291

For low frequencies such that |wa] << 1 — tan Y (waT/2) = waT/2, this
relationship collapses down to

wp = (OFN (6310)

On the other hand, the nonlinear compression for high frequencies is more apparent,
causing the frequency response at high frequencies to be highly distorted through
the bilinear transformation.

Remark 6.9 Prewarping

(1) To compensate for the frequency warping so that frequency characteristics of
the discrete-time equivalent in the frequency range of interest is reasonably
similar to those of the continuous-time system, we should prewarp the critical
frequencies before applying the BLT, by

2 T
W) T tan (%) : prewarping (6.3.11)

so that frequency transformation (6.3.9) with prewarping becomes

3.9) 2 T
wp 639 T tan~! <%) =wp (6.3.12)

(2) The BLT with prewarping at an analog frequency w. can be performed by
substituting

S - 2 1_2_1 We we 1_2_1
J— X —
T 1+z1t (@2/T)tan(wcT/2) tan(wcT/2) 1+ 2zt
2 1 —2z21
instead of s > — ——— 6.3.13
T 14zt ()

for sin Ga(s) where wc(< 7/ T) is a critical (prewarp) frequency.

(3) The warping and prewarping (against warping) by the frequency scale conver-
sion is depicted in Fig. 6.8. It is implied that, if we design an analog filter,
i.e., determine Ga(j ') to satisfy the specifications on frequency w’, the orig-
inal frequency response specifications on w will be satisfied by the digital filter
Gpi [Z] that is to be obtained by applying the BLT to Ga(s).

Figure 6.8 show the frequency transformation through BLT (accompanied with
frequency warping, but no frequency aliasing) and that through impulse-invariant
transformation (accompanied with frequency aliasing, but no frequency warping).

Example 6.6 Bilinear Transformation with Prewarping

For a continuous-time system with the system function G o(s) = a/(s+a) having
apole at s = —a and cutoff frequency wa ¢ = &, the bilinear transformation (BLT)
with prewarping yields the following discrete system function:

292 6 Continuous-Time Systems and Discrete-Time Systems

6313 a (2/T)tan(aT/2)
Gbl,pre[Z] = s+_a I = S0 o1 T2 an(@aT/2) (E6.6.1)
Swarpmzh 1@z) T

This implies that the s-plane pole is mapped into the z-plane through the BLT as

6313 1 +sptan(aT/2)/a

S=sy=-a—>z=12
P - P 1 —sptan(aT/2)/a

1—aT/2 _ e»'/?
(g 1+aT//2 e T for [spT| << 1) (E6.6.2)

Note that G A(S) and its discrete-time equivalent obtained by the BLT with prewarp-
ing have the same cutoff frequency (half-power point) wp = a at which

. , 1
IGA(j @A) 1oy = |Gb|,pre[elw'>T]||tz61 = 5= —3[dB] (E6.6.3)

6.3.6 Pole-Zero Mapping — Matched z-Transform [F-1]

This technique consists of a set of heuristic rules given below.

(1) All poles and all finite zeros of G A(S) are mapped according to z = €°7.

(2) All zeros of Ga(s) at s = oo are mapped to the point z = —1 in G[Zz]. (Note
that s = joo and z = —1 = el™ represent the highest frequency in the s-plane
and in the z-plane, respectively.)

(3) If a unit delay in the digital system is desired for any reason (e.g., because of
computation time needed to process each sample), one zero of Ga(s) at s = oo
is mapped into z = oo so that G[z] is proper, that is, the order of the numerator
is less than that of the denominator.

(4) The DC gain of Gp,[z] at z = 1 is chosen to match the DC gain of Ga(s) at
s = 0 so that

GolZlz—eivrr=1 = GA(S)ls=jup=0: Gpzll] = Ga(0)

Example 6.7 Pole-Zero Mapping
For a continuous-time system with the system function Ga(s) = a/(s + a), we
can apply the pole-zero mapping procedure as

a zero at s=o00 Rue 12 zero at z=-1 z+1
s+a pole at s=-—a pole at z=¢e 3T 7 _g-aT

Rule 3 zero at z = oo, 1 Rule 4 1—eal

pole at z=eaT 7 _garl Gpld = -— = (E67.1)

6.4 Time and Frequency Responses of Discrete-Time Equivalents 293

At the last stage, (1—e~2T) is multiplied so that the DC gain is the same as that of the
analog system: G p;[1] = Ga(0) = 1. This happens to be identical with Eq. (E6.2.2),
which is obtained through the step-invariant (or z.0.h. equivalent) transformation.

Remark 6.10 DC Gain Adjustment

Irrespective of which transformation method is used, we often adjust the DC gain
of G[z] by multiplying a scaling factor to match the DC steady-state
response:

GD[Z:HZ:erpT:l = GA(S)|s=ij=o; sz[l] = GA(O) (6.3.14)

6.3.7 Transport Delay — Dead Time

If an analog system contains a pure delay of d s in time, it can be represented by a
continuous-time model of the form

G(s) = H(s)e ™ (6.3.15)

If the time delay is an integer multiple of the sampling period T, say, d = MT,
then the delay factor e = e SMT can be mapped to z™ (with M poles at z =
0). More generally, if we have d = MT + d; with 0 < d; < T, then we can
write

—sd — g SMTgsd: (6.3.16)

e
With sufficiently high sampling rate such thatd; < T << 1, we can make a rational
approximation of

_dis ~ 1- d]_S/Z

= 6.3.17
1 +dis/2 ()

Now we can substitute Eq. (6.3.16) with Eq. (6.3.17) into Eq. (6.3.15) and apply a
discretization method to obtain the discrete-time equivalent.

6.4 Time and Frequency Responses
of Discrete-Time Equivalents

In the previous section we have obtained several discrete-time equivalents for the
continuous-time system G a(s) = a/(s+ a). Figure 6.9(al, a2, b1, and b2) show the
time and frequency responses of the two discrete-time equivalents obtained by the
z.0.h. mapping and BLT for the sampling period of T = 0.5and T = 0.1 [s] where
a = 1. The following program “sig06f09.m” can be used to get Figs. 6.9(al) and
(b1).

294 6 Continuous-Time Systems and Discrete-Time Systems

05t

i 1 1 1 1 1 1 1 1
% 05 1 15 2 25 3 35 4 45 5~ tsec]

(al) The step responses with the sampling period T = 0.5 [sec]

1t
Yoiln]
0.5F Ya(t)
#~ "-\yzoh[n]
0o o.'5 i 15 2 25 3 35 2 25 5 tlsec]
(a2) The step responses with the sampling period T = 0.1 [sec]
1

| Gzoh [ejQ”

05F |Gb| [e19]|

| GA(ij)l
1) 1 1 1] 1 T T —T 5 —w
OO T 21 3r Q_MDT

Ax
(b1) The frequency responses with the sampling period T = 0.5 [sec] [rad/sample]

| Gzoh [e jQ]‘

|Gpi[e 14

: - : i =y Q=upT
0 ™ 2r 3r Ar

d/ I
(b2) The frequency responses with the sampling period T = 0.1 [sec] [rad/sample]

Fig. 6.9 The step and frequency responses of discrete-time equivalents

Note the following:

— All the discrete-time equivalents have the frequency characteristics that are peri-
odic with period 27 in the digital frequency €2 or with period 27/ T in the analog
frequency wp = €2/ T and become similar to that of the continuous-time system
for wider frequency range as the sampling period T gets shorter.

— The BLT gives a zero at wp = 7/ T corresponding to the zero at z = —1 = el”,
assuring no aliasing problem in the frequency response.

6.5 Relationship Between s-Plane Poles and z-Plane Poles 295

— The BLT with prewarping gives the half-power (3dB) frequency at wp = a just
like the continuous-time system.

% i g06f 09. m

% Cont i nuous-to-Discrete-tinme conversion of GA(s)=al/(s+a) with a=1
clear, clf

a=1l; B=1; A=[1l a]; GAs=tf(B,A); % Anal og transfer function

t f=5; tt=[0:0.01:t f]; % Tinme vector

fD=[0:0.001: 2]; wD=2+pi*fD; % Digital/Analog frequency vector in Hz
T=0.5; % Sanpling period

fAfDIT, wA=wD/' T; % Di gital/Anal og frequency vector in rad/s
GAw.mag= abs(freqs(B, A, wA)); % Anal og frequency reponse | GA(jw) |
GD_zoh=c2d(GAs, T, ' zoh’); [Bd._zoh, Ad_zoh] =t f dat a(GD_.zoh, ' v')
GDBLTp=c2d(GAs, T, ' prewarp’,a); [Bd-BLTp, Ad-BLTp]= tfdata(GDBLTp, V')
[yt,t]=step(GAs,t_f); % Step response

N=t f/T; nT=[0: N-1]*T; yn_zoh=dst ep(Bd_zoh, Ad_zoh, N);

subpl ot (411), plot(t,yt), hold on, stairs(nT,yn.zoh,’ :")
GDw.zoh_mag=abs(freqz(Bd_zoh, Ad_zoh,wD)); %Digital frequency response
subpl ot (413), plot(fD GAw.nag, fD, Gbw.zoh.nag,’:’)

6.5 Relationship Between s-Plane Poles
and z-Plane Poles

In this section, we will derive the mathematical relationship between the s-plane and
z-plane pole locations. We write the system function of a continuous-time second-
order system in standard form as

2 0)2

= 0 = L , 0 < <1 6.5.1
S+ 20wnS+ @3 (S+0)2+ = Kl= (6.5.2)

w

G(s)
which has the poles at

S0 =—Cwnt] wnm = —0 %] wq (Fig. 6.10(a))

> 10— —— |
Q
5 8 e — o
f:; 2" Jwg = jwp\1=¢
faster =& 11 \¢hn
decreasing B
e o 0 - 0 t
—Cwn 0 5 10
—
[P
-10%
(@) The pole locations of an analog system (b) The impulse response corresponding

to the pole locations

Fig. 6.10 Pole locations and the corresponding impulse responses

296 6 Continuous-Time Systems and Discrete-Time Systems

where ¢, o, wn, and wq are the damping ratio, damping constant, natural frequency,
and damped frequency. Note that the impulse response of the system is

O
J1-1¢2

The z-plane poles corresponding to the s-plane poles s; , are located at

g(t) = £7HG(s)} = e sin(wqt) (Fig. 6.10(b)) (6.5.2)

2,=€" = €7/t ogT = r1£+Q (6.5.3)

where
gtonT — a9 _ or lonT=0T==Inr (6.5.4a)
and wnTv/1—¢2=04T = Q:digital frequency (6.5.4b)

The discrete-time version of the impulse response can be written as

gln] = g(nT) °2? _2n_goTn

T = sin (wgTh)
—¢

(65.4ab) wp
J1-1¢2

Note that the larger the distance r of a pole from the origin is, the slower the output
stemming from the pole converges; on the other hand, the larger the phase 2 (digital
frequency) of a pole is, the shorter the discrete-time oscillation period of the output
stemming from the pole < is.

Based on Egs. (6.5.4a) and (6.5.4b), we can express the dampling ratio ¢ and
natural frequency wp in terms of the parameters of the pole location, i.e., the absolute
value r and phase 2 of the pole(s) as

r" sin (2n) (6.5.5)

¢ —Inr. ¢ = _—Inr (6.5.6)

JI-¢2 o ViIn?r 4+ Q2
1
wn = ?\/Inzr + Q2 (6.5.7)

The time constant of the pole(s) is

1 -T
r=2 = — (6.5.8)

o Cw, Inr

Thus, given the complex pole locations z = r £ 4+ Q in the z-plane, we can find the
damping ratio ¢, natural frequency wn, and time constant z. If we have sufficiently
high sampling rate so that T << t, the poles of the discrete-time system are placed

6.6 The Starred Transform and Pulse Transfer Function 297

0.8

0.6

0.4

0.2

0

0.2 0.4 0.6 0.8 1

-1 -0.8 -0.6 -0.4 -0.2

Fig. 6.11 The loci of the poles of a digital system for ¢ = constant, w, T = constant, and wgT =
constant

in the vicinity of z = 1. Note that high sampling rate does not make the response
slower, but only makes the sampling interval shorter.

Figure 6.11 gives a picture of how the s-plane and z-plane poles are related where
the loci of pole locations for constant damping ratio ¢ are logarithmic spirals (with
decreasing amplitude r = e~¢“T as w, T increases) and the loci of pole locations
for constant w, T are drawn at right angles to the spirals for ¢ = constant.

6.6 The Starred Transform and Pulse Transfer Function

6.6.1 The Starred Transform

We define the starred transform X,.(s) of a signal x(t) to be the Laplace transform
of the impulse-modulated version x,(t) = x(t)d1(t) representing the output signal
of an ideal sampler with sampling period T. Using Eq. (2.1.10), we can express the
ideal sampler output as

X, (t) = X(t)87(t) = % i x(t) e kst with ws = 2?” (6.6.1)

k=—o00

Taking the Laplace transform of the both sides and using the complex translation
property (Table B.7(3)), we obtain the bilateral starred transform of x(t) as

[e¢] [e¢]

X*(s)=% > X(s—j kws)=% > X(s+ j kes) (6.6.2)

k=—o00 k=—o00

298 6 Continuous-Time Systems and Discrete-Time Systems

Also, from Appendix Il of [P-1], we borrow the following expressions for the
unilateral starred transform:

oo

X«(s) = D x(MT) e = X[Z]|,—en (6.6.3a)
m=0
X, (s) = % Z X(s+ jkws) + % Z A x(nT)e™"Ts (6.6.3b)
k=—00 n=0

where AX(nT) = x(nT*) — x(nT) is the amplitude of the discontinuity of x(t) at
t=nT.
The bilateral and unilateral starred transforms have the following properties:

<Properties of the starred transform>

1. They are periodic with period of jws in s:
Xu(s+ jMws) = D x(nT) e MMEHM™D) =X "x(nT) e "™ = X,(s) (6.6.4)

since e~ INMesT — g=InM27 — 1 for any integer m.
2. If they have a pole at s = s, then they will also have poles at s = s +
jMmws, m=0, £1, £2, ---:

Xi(s) = %{X(S)Jr X(s+ jws) + X(s— jws) + X(s+ j 2ws) + X(s— | 2w5) + - - -
(6.6.5)

6.6.2 The Pulse Transfer Function

Consider the sampled-data systems depicted in Fig. 6.12 where the one has a sam-
pled input and the other has a continuous-time input. Under the assumption of zero
initial conditions, the output transform of system (a) can be written as

Y(s) = G(8)X4(S) (6.6.6)

If x(t) and y(t) are continuous at all sampling instants, we can use Eg. (6.6.2) to
take the starred transform of Eq. (6.6.6) as

- o/o----->y*(t)
x(t) LA NONN e B ERRT0) Y.(s)
X(s) X.(s) L7 Y (s)
T
-oee /o----»i*il))
Fig. 6.12 Sampled—data x(t) m : v () ;

systems X(s) (il Y(s)

6.6 The Starred Transform and Pulse Transfer Function 299

Y92 (GEOX. T Y Gl + fkoX,(s+ ko)
k=—00
664 1 & _ _
= ?k;oo G(s+ jkas)X.(3); Yu(S) = G.(S)X.(S) (6.6.7)

where G,(s) is called the pulse transfer function. This implies that, when taking the
starred transform, we can factor out the existing starred transform. If we replace e's
by z in the starred transform, we will get the z-transform
Y[zZ1=G[z] X[z] (6.6.8)
which describes the input-output relationship in the z-domain.
In contrast with this, the sampled output of system (b) in Fig. 6.12 can be
expressed as
Y«(s) = {G()X(S)} # Gu(s)Xi(9) (6.6.9a)
Y[z1=GX|[z # Gz X[Z] (6.6.9b)
This implies that, if the input is applied to a continuous-time system before being

sampled, the input transform can never be factored out to derive the transfer
function.

6.6.3 Transfer Function of Cascaded Sampled-Data System

Consider the cascaded sampled-data systems depicted in Fig. 6.13. Each of the three
sampled-data systems has the input-output relationship as below:

@ Yi(S) = {Ga()Va(9)}: ®E” G (9)V.(S) = G2u(8)G1(S) X, (9)

Y[z] = G2[Z]G:1[Z]X[Z] (6.6.10a)

(0) Yu(s) = {G2(8)G1(8) Xu(5)} “27(G(8)G1 ()}, X, (S) = GG, () X.(S)

Y[Z] = G,Gi[Z] X[Z] (6.6.10b)
© Yi(S) = {Ga(Va(9)} ®E” Guu(9)V.(S) = Gou(8){G1(S)X(S)}.

= G2.(8)G1Xu(8); Y[2 = G2[ZG:X[Z] (6.6.10c)

300 6 Continuous-Time Systems and Discrete-Time Systems

T

_____ 0/0----->y*(t)
x) X o) VO v o vy Y
@ X(s) T X s)L2 V) T v*(s)lﬁl Y (s)
V(5)=Gy(s)Xx«(s) Y (8)=Gy(5)Vi(S) = Gp(5){G1(S) Xx(S)}
_____ R L0
i Ya(s)
® e T X,(s) C1s) V(s) 1 G20) | Y (s)
V(s)=Gy(s)X «(s) Y (5)=Gy(s)V(s)=Gy(s)G1(s) X x(s)
_____ YD)
E TTYL()
x () e VO o w® o i v® Y
© X L818))1 V) L8280] Ye)
V (s)=Gy(s)X(s) Y (5)=G2(s)Vi(s) = Ga(s){Gu(s)X (s)}«

Fig. 6.13 Cascaded sampled—data systems

6.6.4 Transfer Function of System in A/D-G|[z]-D/A Structure

Consider the sampled-data system containing an A/D-G[z]-D/A structure or a S/H
device depicted in Fig. 6.14. Both of the two systems (a) and (b) have the same

transfer function
Y[z]

X[GhoG2[2]G1[Z] (6.6.11)

since

V[Z = Gi[ZX[Z] ; V[e™] = Gi[e"]X[e"®] ; V.(S) = G1.(5)X.(S)

_ 1 — efTS 1 — efTS
V(S) = TV*(S) = Tel*(s)x*(s)
_ 1 _e—TS
Y(s) = Ga2(s)V(s) = TGZ(S)GI*(S)X*(S)
1 _efTs .
Y[zl = {—Gz(S)} G1[z]X[2] = GnoG2[2z] G1[Z] X[Z]
______ 0}0____’3/*(0
RION | A/D |—>X[n] | Gylz] }——|V(n) DIA |—>V(t) | G,(s) | . yo O
@) X[z] L2 V[z] vis] L2 | Y (s)
) R A0
z.o.h. _ P VL)
X (t) x.(0) v, () v(t) L ye
O %o ﬂ?cx*(s) [Gl [o+ Crols) |_’|v(s) Gafs) | e

Fig. 6.14 Sampled—data system containing an A/D-G[z]-D/A structure or a S/H device

Problems 301

where

GnoG2[Z] = Z {(1 — e‘Ts)GZT(S)} —1-zYz EGZ(S)} :

the z.0.h. equivalent of G;(s)

(cf.) Note that the DAC usually has a data-hold device at its output, which allows
us to model it as a zero-order-hold device.

Problems

6.1 Z.0.H. Equivalent

(a) Show that the zero-order-hold equivalent of G(s) = 1/s(s + 1) with
sampling period T is

(T-1+eNz +1—-e T -TeT

G Z—-1Dz—eT)

— Ggon [Z] =

- s(s+1)

(P6.1.1)

(b) Show that the zero-order-hold equivalent of G(s) = 2/(s? + 2s + 2) with
sampling period T is

2
G = st12+1

(1—e T(cosT +sinT))z+e 2T —e T(cosT — sinT)
22 —-2zeTcosT + e 2T

Gaon [Z] =
(P6.1.2)

(c) Use the following MATLAB statements to find the discrete-time equiva-
lent of analog system (b) through the BLT (bilinear transformation) with

sampling period T = 0.1 [s] and critical frequency w, = V2 [rad/s].

>>B=2; A=[1 2 2]; T=0.1; wp=sqrt(2);

>>GAs= tf (B, A);

>>CGz BLT prewar p= c2d(GAs, T, prewarp’, wp);

>>[Bd_BLT_p, AdBLT p] = tfdata(&G_BLT_prewarp,’'Vv’)

Also support the above results of (a) and (b) by completing and running the
following MATLAB program “sig06p_01.m”, which computes the z.0.h.
equivalents of analog system (a) and (b) with sampling period T = 0.1 [s].

302 6 Continuous-Time Systems and Discrete-Time Systems

%i g06p_01. m
clear, clf

GAs= tf(B,A); % Anal og transfer function
Gz_zoh= c2d(GAs, T); % z.o.h. equival ent
[Bd_zoh, Ad_zoh] = tfdata(Gz-zoh,’ v')

B=1; A=[1 1 0]; T=0.1; eT= exp(-T); e2T= exp(-2*T);

Bd= [(T-1+e.T) 1-eT-T+eT], Ad= [1 -1-eT e.T] % (P6.1.1)

(d) Referring to the Simulink block diagram of Fig. P6.1, perform the Simulink
simulation to obtain the step responses of the analog system (b) and its two
discrete-time equivalents, one through z.0.h. and one through BLT.

2

s2+25+2

Transfer Fcn
[Simulink/Continuous]

Bd_zoh(z)
Ad_zoh(z)

e

—>

Scope
[Simulink/Sinks]

o Step Discrete Filter
[Simulink/Sources] [Simulink/Discrete]

Bd_BLT_p(z)

Ad_BLT_p(z)

Discrete Filter 1

Fig. P6.1 Simulink block diagram for Problem 6.1

Gi(s) Ga(s)
X (t) 1 _ 2
X (s) s+1 s+2

Fig. P6.2

6.2 Step-Invariant Transformation
Consider the system depicted in Fig. P6.2.

(a) Find the step-invariant equivalent G1[Z] of G4(s).
(b) Find the step-invariant equivalent G;[z] of G,(s).

y(t)
Y(s)

(c) Find the step-invariant equivalent G[z] of G1(S)G2(S).

(d) Is it true that G[z] = G.[Z]G>[Zz]?

6.3 Bilinear Transformation without prewarping or with prewarping
Consider the second-order analog system whose transfer function is

Problems 303

wpS . 2s
2+ wpS + W} 242541

Ga(s) = Withwp =2, wp,=1 (P6.3.1)

Note that the frequency response Ga(jw), its peak frequency, and two 3dB-
frequencies are

) jwwp j2w
G = — - = - P6.3.2
alle) (jo?+ jowp +0f (1 —w?)+ j2w ()
—wp + /0 + 4
wp=1, w3 = > p=—1+~/§,
wp + /wf + da?
wipu= ——— " =142 (P6.3.3)

2

(a) Find the discrete-time equivalent Gp[z] using the BLT with sampling
period of T = 1 [s] and no prewarping. Also find the peak frequency 2
and lower/upper 3dB frequencies Q3p and Q23p , of the digital frequency
response Gp[e/?]. How are they related with wp, w3g, and wsg y? You
can modify and use the MATLAB program “sig06p_03.m” below.

(b) Find the discrete-time equivalent Gp[z] using the BLT with sampling
period of T = 1 [s] and prewarping three times, once at w, = 1, once at
ws3p,1, and once at wsp . Also for each Gp[Z], find the peak frequency Q,
and lower/upper 3dB frequencies Q3p and Q23p , of the digital frequency
response Gp[e/*?] and tell which frequency is closest to the corresponding
analog frequency in terms of the basic realtionship @ = »T between the
analog and digital frequencies.

%i g06p_03. m

B=[2 0]; A=[1 2 1]; wp=1; w3dBl= -1+sqrt(2); w3dB2= 1l+sqrt(2);
GAs= tf(B,A); T=1; % Anal og transfer function and sanpling period
Gz= c2d(GAs, T, tustin’); %BLT w thout prewarping

W£[0: 0. 00001: 1] *pi ; GDWnag= abs(freqz(BD, AD,W);

[GDWnex, i -peak] = max(GDWrag); W= Wi _peak)

t mp= abs(GDWnag- GCDWnax/ sqrt (2));

[tmp_3dB1,i _3dB1] = mi n(tnp(1l:i_peak));

[tnmp-3dB2,i _3dB2] = mi n(tnp(i-peak+1:end));

W3dB1= Wi _-3dB1); W3dB2= Wi _peak+i _3dB2);

6.4 Pole Locations and Time Responses
Consider an analog system having the system function Ga(s) = 1/(s* +2s+5)
and its two z.0.h. equivalents G,on1[z] and G,on2[2], each with sampling period
T =0.2and T = 0.1, respectively.

304 6 Continuous-Time Systems and Discrete-Time Systems

Im{s
<D SHim{s}
s—plane
1
12
2 -1 0 1
-1
x® 2
(a) The pole/zero plot of G,(s) (b) The pole/zero plot of G,,,[z] and G,,[z]

=] sigD6p_04_s M =1 E3
File Edit View Simulation Format Tools Heb

DeHE| 28| 4|22 » s 50 Normal |~

S 3 Function Block Parameters: Discrete Filter! [X]
A // Main | State Propetties
Transfer “cn
Humeraor coefficien
Bd_zohi(z) Bd_z20H1 I
Ad_zoh1(z) Denamiratar cosfficient:
Step Jizerete Filtert Scope [Ad_zor1 |
Bd_zoh2@) Sampletme [-1 for mhented):
Ad_zoh2ez) |” I
F' =TT >
Jiscrete Filter2 [oK ” Cancel H Help " Accly l

(c) The Simulink model window

ope N] E3
sB|LPLL ABEIDE K >

(25 T

0z

15

01

€05

0

0 1 2 3 4 Time §

(d) The Scope window showing the simulation results

Fig. P6.4 Pole/zero plots and Simulink simulation

Problems

@

(b)

305

Note that the pole-zero plot of Ga(s) is depicted in Fig. P6.4(a). Refer-
ring to the pole/zero plots shown in Fig. P6.4(b), choose the pole locations
(r £92) of Gon1[z] and G onz[Z] from @) and). The digital frequency w, T
of the output corresponding to pole location) is expected to be two times
as high as that of the output corresponding to pole location (3) in proportion
to the sampling period T where wy, is determined from the pole location of
the analog system G,(s). Does it mean that the output corresponding to
pole location) oscillates two times as fast as that corresponding to pole
location 3)?

Referring to Fig. P6.4(c), perform the Simulink simulation for Gy(s),
Gyoni[z], and Gzonz[Z] to get the simulation results as Fig. P6.4(d) and
choose the output waveforms of G4(S), Gzon1[2] and Gzonz2[2] from D, @),

and 3.

x x 2 Im{s}
@
" s—plane
. . 2 R Re{z}
-2 -1 1 els
-1
%

(a) The pole/zero plot of G,,(s) and G,,(s)

Step

"5
1o e Fenl
BE
ALls
Transier Fen2

Bu_coli(a
o | B

" adznim
gcele Filte]

? 3] q 5

(¢) The Simulink model window and the simulation results seen in the Scope window

Fig. P6.5 Pole/zero plots and Simulink simulation

6.5 Pole Locations and Time Responses
Consider two analog systems, each having the system function G1(s) = 1/(s*+
2s + 5) and Gy(s) = 1/(s? + 0.4s + 4.04), respectively and their z.0.h.
equivalents G;on1[Z] and G;on2[2] with sampling period T = 0.1.

306 6 Continuous-Time Systems and Discrete-Time Systems

(a) Note that the pole-zero plots of G1(s) and G,(s) are depicted in Fig. P6.5(a).
Referring to the pole/zero plots shown in Fig. P6.5(b), choose the pole loca-
tions of Gzon1[Z] and Gzon2[Z] from @) and @). Which converges faster of
the outputs stemming from the poles 3) and @? Note that the poles @) are
closer to the origin than the poles @), i.e., r3 < rs.

(b) Referring to Fig. P6.5(c), perform the Simulink simulation for G1(s), Ga(s),
Gyon1[2], and Gzon2[Z] and choose the output waveforms of the four systems

from @, ®, ©, and @.

6.6 Pole-Zero Mapping (Matched z-Transform) of an Analog System with Delay
Using the pole-zero mapping (matched z-transform), find the discrete-time
equivalent of an analog system

2
G(s) = — g 0%s P6.6.1
(s) — ()

with sampling period T = 1/4 [s].

Chapter 7
Analog and Digital Filters

Contents

7.1 Analog Filter Design 307

7.2 Digital Filter Design 320
721 HRFIEr Design ..ot 321
722 FIRFIer DesigN .ottt e 331
7.2.3 Filter Structure and System Model Available in MATLAB 345
7.2.4 Importing/Exporting a Filter Designccviiiiii i 348

7.3 HOW IO USE SPTOOI ..ttt 350
PrODIEMS . 357

This chapter introduces how to use MATLAB for designing analog and digital
filters such that the given specification on the frequency response is satisfied. Espe-
cially for analog filters, the MATLAB routines to perform circuit-level design are
also introduced.

7.1 Analog Filter Design

This section has been excerpted from Sect. 8.6 of [Y-2] (Yang, Won Y. and Seung
C. Lee, Circuit Systems with MATLAB and PSpice, John Wiley & Sons, Inc., New
Jersey, 2007.). Fig 7.1(a)/(b)/(c)/(d) show typical lowpass/bandpass/bandstop/ high-
pass filter specifications on their log-magnitude, 20 log,, |G(j w)| [dB], of frequency
response. The filter specification can be described as follows:

20109, |G(jwp)| = —Rp[dB] for the passband (7.1.19)
20109, |G(jws)| < — As[dB] for the stopband (7.1.1b)

where wp, ws, Rp, and As are referred to as the passband edge frequency, the
stopband edge frequency, the passband ripple, and the stopband attenuation, respec-
tively. The most commonly used analog filter design techniques are the Butterworth,
Chebyshev 1, 11, and elliptic ones ([K-2], Chap. 8). MATLAB has the built-in
functions butt (), cheby1(), cheby2(), and el i p() for designing the
four types of analog/digital filter. As summarized below, but t () needs the 3dB
cutoff frequency while cheby1() and el i p() get the critical passband edge

W.Y. Yang et al., Signals and Systems with MATLAB®, 307
DOI 10.1007/978-3-540-92954-3_7, © Springer-Verlag Berlin Heidelberg 2009

308 7 Analog and Digital Filters

frequency and cheby?2() the critical stopband edge frequency as one of their input
arguments. The parametric frequencies together with the filter order can be prede-
termined using but t or d(), cheblord(), cheb2ord(),andel I i pord().
The frequency input argument should be given in two-dimensional vector for
designing BPF or BSF. Also for HPF/BSF, the string ‘ hi gh’ / * st op’ should
be given as an optional input argument together with * s’ for analog filter design.

20l0g;0lG (jw)l[dB] 20l0g;0lG (jw)l[dB]

----- R, : passband ripple 0

_Rp ---------- A : stopband attenuation _Rp
wp : passhand edge frequency
ws : stopband edge frequency

A R e T —As ~_ "
w L L w
qu Ws Ws1 wpl oJp2 Ws2
< passband -1 = stopband stopband i (=< passband - (= stopband
~ transition band] transition band transition band
(a) Typical specification of lowpass filter (b) Typical specification of bandpass filter
20l0g;0|G (jw)I[dB] 0 20l0g10|G (jw)I[dB]
-R Y LR SRR CEE R -R p SN\ e
A . Al i N
: w H : w
Ws wp wpl sl Ws2 "Jpz
=— stopband — <— passband passband 1 = stopband - <— passbhand
transition band transition band transition band
(d) Typical specification of highpass filter (c) Typical specification of bandstop filter

Fig. 7.1 Specification on the log-magnitude of the frequency response of an analog filter

function [N,wc] = buttord(wp,ws, Rp, As, opt)

% For opt="s’, it selects the |owest order N and cutoff frequency wec of analog Butterworth filter.
% that has the passband rippl e<=Rp[dB] and stopband attenuation>=As[dB]

% for the passband edge frequency wp and stopband edge frequency ws.

% Note that for the BPF/ BSF, the passband edge frequency wp and stopband edge frequency ws should be
% given as two-dimensional vectors |ike [wpl wp2] and [wsl ws2].

function [B, Al =butter (N, wc, opt)

%1t designs a digital/analog Butterworth filter, returning the nunerator/denom nator of system function.
% [B, Al =butter(N,wc,’s’) for the anal og LPF of order N with the cutoff frequency wc[rad/s]

% butter(N [wel wec2],’s") for the anal og BPF of order 2N with the passband wcl<w<wc2[rad/s]

% butter(N [wel wc2],’'stop’,’s’) for the anal og BSF of order 2N with the stopband wcl<w<wc2[rad/s]

% butter(N wc, high',’s’) for the anal og HPF of order N with cutoff frequency wc[rad/s]

% Note that N and wc can be obtained from [N, wc]=buttord(wp, ws, Rp, As, opt) .

function [B, Al =cheby1(N, Rp, wpc, opt)

%1t designs a digital/anal og Chebyshev type | filter with the passhand ripple Rp[dB]

% and the critical passband edge frequency wpc (Use Rp=0.5 as a starting point, if not sure).
% Note that N and wpc can be obtained from [N, wpc] =chebylord(wp, ws, Rp, As, opt).

function [B, Al =cheby2(N, As, wsc, opt)

% It designs a digital/analog Chebyshev type Il filter with the stopband attenuation As[dB] down
% and the critical stopband edge frequency wsc (Use As=20 as a starting point, if not sure).

% Note that N and wsc can be obtained from [N, wsc]=cheby2ord(wp, ws, Rp, As, opt).

function [B, Al =el l'i p(N Rp, As, wpc, opt)

%1t designs a digital/analog Elliptic filter with the passband ripple Rp, the stopband attenuation As,
% and the critical passband edge frequency wpc (Use Rp=0.5[dB] & As=20[dB], if unsure).

% Note that N and wpc can be obtained fromellipord(wp, ws, Rp, As, opt) .

7.1 Analog Filter Design 309

—NL Gy(s) r---------
Gy(s)
(PSP 1 summer
_NLGO(S)J o G,(s) C
V,(s) M :
G(s)= v.5) :GO(S)mllle(s) .
' Gy(s)
G(5)=Go(S)*+ Zpn—; Grn(5)
(a) Cascade form (b) Parallel form

Fig. 7.2 Two realizations of an analog filter (system or transfer function)

The designed filter system functions are often factored into the sum or product of
second-order sections called biquads (possibly with an additional first-order section
in the case of an odd filter order) as
bo1S + boz M b S® + broS + brg

S+ap m=1 S+ amS+ am

G(s) =K Go(s) 1“4_1 G(s) = K (7.1.22)

with M = floor ()

Do1S + boz ZM Pm1S? + bmaS + bmg
m=1

S+ agp s? + ampS + ams
(7.1.2b)

G(S) =Go(8) + Y Gm(S) =

with M = floor <g>

and then realized in cascade or parallel form, respectively as depicted in Fig. 7.2.
Rather than reviewing the design procedures, let us use the MATLAB functions
to design a Butterworth lowpass filter, a Chebyshev | bandpass filter, a Chebyshev
Il bandstop filter, and elliptic highpass filter in the following example.
Example 7.1 Analog Filter Design Using the MATLAB Functions
Let us find the system functions of analog filters meeting the specifications
given below.

(a) We are going to determine the system function of a Butterworth lowpass filter with

wp = 27 x 6000 [rad/s], ws = 2m x 15000 [rad/s], R, = 2[dB], and
As = 25[dB] (E7.1.2)

First, we use the MATLAB function ‘buttord()’ to find the filter order N and
the cutoff frequency wc at which 201og,, |G(jwc)| = —3 [dB] by typing the
following statements into the MATLAB command window:

310 7 Analog and Digital Filters

>>wWp=2+pi *6000; ws=2xpi »15000; Rp=2; As=25;
>>f ormat short e, [N, wc]=buttord(wp,ws, Rp, As,’s’)
N =4, wec = 4.5914e+004

We put these parameter values N and wc into the Butterworth filter design func-
tion ‘butter()” as its first and second input arguments:

>>[Bb, Ab] =butter (N, wc,’s’)
Bb = 0 0 0 0 4. 4440e+018
Ab = 1.0000e+000 1.1998e+005 7.1974e+009 2.5292e+014 4.4440e+018

This means that the system function of the designed Butterworth LPF of order
N=4is
4.444 x 10'8
s* +1.1998 x 10583 + 7.1974 x 1092 4 2.5292 x 10%4s + 4.444 x 1018
(E7.1.2)
We can find the cascade and parallel realizations of this system function by typing
the following statements into the MATLAB command window:

G(s) =

>>[SOS, K] =t f 2sos(Bb, Ab) ; % cascade realization
>>Ns=si ze(SCS, 1); >>GreK" (1/Ns), BBc=SOS(:, 1:3), AAc=SOS(:, 4:6)
Gm = 2.1081e+009
BBc = 0 0 1 AAc = 1.0000e+000 3.5141e+004 2.1081e+009
0 0 1 1. 0000e+000 8.4838e+004 2.1081e+009
>>[BBp, AAp] =t f 2par s(Bb, Ab) % parallel realization (see Sect. E. 15)
BBp = 0 4.2419e+004 3.5987e+009
0 -4.2419e+004 -1.4906e+009
1. 0000e+000 8.4838e+004 2.1081e+009
1. 0000e+000 3.5141e+004 2.1081e+009

AAp

This means that the designed system function can be realized in cascade and
parallel form as

G(9) = 2.108 x 10° 5 2.108 x 10°
T s24+3.514 x 10%s + 2.108 x 10° ~ 2 + 8.484 x 10%s + 2.108 x 10°
(E7.1.3a)
() = 4.242 x 10*s + 3.599 x 10° 4.242 x 10*s + 1.491 x 10°
T 248484 x 10%s+2.108 x 109 2 4+ 3.514 x 10%s+ 2.108 x 10°
(E7.1.3b)

(b)We are going to determine the system function of a Chebyshev | bandpass fil-
ter with

we = 27 x 6000, wpy = 27 x 10000, wp = 27 x 12000,
ws = 27 x 15000 [rad/s], R, = 2[dB], and A; = 25[dB] (E7.1.4)

First, we use the MATLAB function ‘cheblord()’ to find the filter order N and
the critical passhand edge frequencies wpc1 and wpeo at which the passband rip-
ple condition is closely met, i.e., 20109, |G(jwpc)| = —Rp [dB] by typing the
following statements:

7.1 Analog Filter Design 311

>>Ws1=2xpi *6e3; wpl=2+pi *1led; wp2=2+pi »12e3; ws2=2xpi *15e3; Rp=2; As=25;
>>[N, wpc] =cheblord([wpl wp2],[wsl ws2], Rp, As,’s’)
N = 2, wpc = 6.2832e+004 7.5398e+004

We put the (half) filter order N, the passband ripple Rp, and the critical passband
edge frequency vector wpe = [wper wpe] into the Chebyshev | filter design
function “‘chebyl()’ as
>>[Bc1, Acl] =cheby1(N, Rp, wpc, ' s’)

Bcl = 0 0 1.0324e+008 0 0

Acl = 1.0000e+000 1.0101e+004 9.6048e+009 4.7853e+013 2.2443e+019
This means that the system function of the designed Chebyshev | BPF of order
2N=4is

1.0324 x 10%s?
G(s) = 0324 x 10°s

s* 4 10101s® + 9.6048 x 109s? + 4.7853 x 1013s + 2.2443 >(<E170;.95)

We can find the cascade and parallel realizations of this system function by typing
the following statements into the MATLAB command window:

>>[SCS, K] =t f 2sos(Bc1, Acl); % cascade realization
>>Ns=si ze(SCS, 1); GmwK (1/Ns), BBc=SOS(:, 1:3), AAc=SOS(:, 4:6)
Gn = 1.0161e+004
BBc = 0 0 1 AAc = 1.0000e+000 5.4247e+003 5.4956e+009
1 0 1 1. 0000e+000 4.6763e+003 4.0838e+009
] =t f2par s(Bcl, Acl) %parallel realization
BBp = 0 1.8390e+002 4.0242e+008
0 -1.8390e+002 -2.9904e+008
1. 0000e+000 5.4247e+003 5.4956e+009
1.0000e+000 4.6763e+003 4.0838e+009

This means that the designed system function can be realized in cascade and
parallel form as

() 1.0161 x 10%s 1.0161 x 10%s
= X
S?2 +5.425 x 1035+ 5.496 x 109 = s? + 4.676 x 103s + 4.084 x 10°
(E7.1.6a)
G(s) = 1.839 x 10%s + 4.024 x 108 1.839 x 10%s +2.990 x 108
© S245425x 10354 5.496 x 10° S2 + 4.676 x 103s + 4.084 x 10°
(E7.1.6b)

(c)We are going to determine the system function of a Chebyshev Il bandstop
filter with

wp1 = 27 x 6000, wg = 27 x 10000, we; = 27 x 12000,
wpy = 2 x 15000 [rad/s], R, = 2[dB], and As = 25[dB] (E7.1.7)

First, we use the MATLAB function ‘cheb2ord()’ to find the filter order N and
the critical stopband edge frequencies wsc; and ws; at which the stopband atten-
uation condition is closely met, i.e., 2010g;, |G(jwsc)| = —As [dB] by typing
the following statements:

312 7 Analog and Digital Filters

>>Wpl=2xpi *6000; ws1l=2xpi*10000; ws2=2xpi *12000; wp2=2+pi *15000;
>>Rp=2; As=25
>>[N, wsc] =cheb2or d([wpl wp2],[wsl ws2],Rp, As,’s’)

N =2, wsc = 6.2798e+004 7.5438e+004
We put the (half) filter order N, the stopband attenuation As, and the critical
stopband edge frequency vector wsc = [wsc1 wsc2] into the Chebyshev |1 filter
design function ‘cheby2()’ as
>>[Bc2, Ac2] =cheby2(N, As, wsc, ' stop’,’s’)

Bc2 = 1.0000e+000 1.0979e-010 9.5547e+009 4.9629e-001 2.2443e+019
Ac2 1. 0000e+000 5.1782e+004 1.0895e+010 2.4531e+014 2.2443e+019

This means that the system function of the designed Chebyshev Il BSF of order
2N =4is

s* +9.5547 x 109s? + 4.9629 x 107 1s + 2.2443 x 10'°
s* +51782s% 4 1.0895 x 1010s? + 2.4531 x 104s + 2.2443 ?E%OllgB)

We can find the cascade and parallel realizations of this system function by typing
the following statements into the MATLAB command window:

G(s) =

>>[SCS, K] =t f 2sos(Bc2, Ac2); % cascade realization [BBc, AAc] =t f2cas(B, A)
>>Ns=si ze(SCS, 1); GwK (1/Ns), BBc=SOS(:, 1:3), AAc=SOS(:, 4:6)
Gn=1
BBc = 1.0000e+000 7.7795e-011 5.3938e+009
1.0000e+000 2.9104e-011 4.1609e+009
AAc = 1.0000e+000 3.1028e+004 7.0828e+009
1. 0000e+000 2.0754e+004 3.1687e+009
>>[BBp, AAp] =t f 2par _s(Bc2, Ac2) % parallel realization
BBp = 5.0000e-001 -1.5688e+004 3.4426e+009
5.0000e-001 -1.0204e+004 1.6285e+009
1. 0000e+000 3.1028e+004 7.0828e+009
1. 0000e+000 2.0754e+004 3.1687e+009

This means that the designed system function can be realized in cascade and
parallel form as

AAD

) s? 4+ 5.394 x 10° s? +4.161 x 10°
= X
s2 +3.103 x 10%s+ 7.083 x 109 = s2 + 2.075 x 10%s + 3.169 x 10°
(E7.1.9a)
G(9) = 0.5s2 — 1.569 x 10*s+ 3.443 x 10° 0.5s? — 1.020 x 10%s + 1.6285 x 10°

& +3.103 x 10°5 + 7.083 x 10° | &2 4 2.075 x 10% + 3.169 x 10°
(E7.1.9b)

(d)We are going to determine the system function of an elliptic highpass filter with

ws = 2 x 6000 [rad/s], wp = 27 x 15000 [rad/s], R, = 2[dB], and As = 25[dB]

(E7.1.10)
First, we use the MATLAB function “ellipord()’ to find the filter order N and the
critical passhand edge frequency wpc at which 2010g,4 |G(jwpc)l = —R, [dB]

by typing the following statements into the MATLAB command window:

7.1 Analog Filter Design 313

>>Ws=2+pi *6000; wp=2+pi »15000; Rp=2; As=25;
>>f ormat short e, [N, wc]=ellipord(wp,ws, Rp, As,’s’)
N = 3, wec = 9.4248e+004

We put the parameter values N, Rp, As, and wc into the elliptic filter design
function “ellip()’ as

>>[Be, Ae] =el | i p(N, Rp, As, wc, ' high',’s")
Be = 1.0000e+000 8.9574e-009 3.9429e+009 -5.6429e+002
Ae = 1.0000e+000 2.3303e+005 1.4972e+010 1.9511e+015

This means that the system function of the designed elliptic HPF of order N =3 is

s +3.9429 x 10%s — 5.6429 x 107
s + 2.3303 x 10%s? + 1.4972 x 10'%s + 1.9511 x 1015

G(s) = (E7.1.11)

We can find the cascade and parallel realizations of this system function by typing
the following statements into the MATLAB command window:

>>[SCS, K] =t f 2sos(Be, Ae); % cascade realization
>>Ns=si ze(SCS, 1); GwK (1/Ns), BBc=SOS(:,1:3), AAc=SOS(:, 4:6)
Gm = 1. 0000e+000

BBc = 1.0000e+000 -1.4311e-007 0
1.0000e+000 1.5207e-007 3.9429e+009
AAc = 1.0000e+000 2.0630e+005 0

1. 0000e+000 2.6731e+004 9.4575e+009
>>[BBp, AAp] =t f 2par s(Be, Ae) % parallel realization
BBp = 5.0000e-001 -1.3365e+004 4.7287e+009
0 5.0000e-001 -1.0315e+005
1. 0000e+000 2.6731e+004 9. 4575e+009
0 1. 0000e+000 2. 0630e+005

AAp

This means that the designed system function can be realized in cascade and
parallel form as

s s? 4 3.943 x 10°
G(s) = E7.1.12a
() S+ 2063 x 105 . S2 4 2.673 x 10%s + 9.458 x 10° ()
G(s) = 0.582 — 1.337 x 10%s+4.729 x 10° 0.5s — 1.032 x 10°

2 12673 x 1075+ 9.458 x 10° 5+ 2.063 x 108
(E7.1.12b)

(e) All the above filter design works are put into the M-file named “sig07e01.m”,
which plots the frequency responses of the designed filters so that one can check
if the design specifications are satisfied. Figure 7.3, obtained by running the
program “sig07e01.m”, shows the following points:

- Figure 7.3(a) shows that the cutoff frequency wc given as an input argument of
‘butter()” is the frequency at which 201o0g,, |G(jwc)| = —3 [dB]. Note that the
frequency response magnitude of a Butterworth filter is monotonic, i.e., has no

ripple.

314 7 Analog and Digital Filters

5 T T T T T 17T 5

| 2010g34|G (jw)l[dB]

-30 1 HETR 1 L1 |:| -30 1 Ly 1 oy gy

Wp We ws™N-10° Ws1 Wp1 Wp2 Ws2~10°
“pcl Wpc2
(a) A Butterworth LPF (b) A Chebyshev | BPF
5 T T T T T T T T 5 T T T T T T T
ol 20109;0lG (jw)l[dB] 0 2010g;/G (jw)I[dB]
A sy AP —Rp [PN
-5 -3dB -5F
-10 - -10
-15 -15}
20} | 20} |
; S R
"Jp\los —30 W1 Ws1 Ws2 Wp2 —10°
Whe Wsc1 Wsc2
(d) An elliptic HPF (c) A Chebyshev || BPF

Fig. 7.3 Frequency responses of the filters designed in Example 7.1

- Figure 7.3(b) shows that the critical passband edge frequencies wpc; and wpc2
given as an input argument wpc = [wpcl wpc2] of ‘chebyl()’ are the frequencies
at which the passhand ripple condition is closely met, i.e., 20109,y |G(jwpc)| =
—Rp [dB]. Note that the frequency response magnitude of a Chebyshev | filter
satisfying the passband ripple condition closely has a ripple in the passband,
which is traded off for a narrower transition band than the Butterworth filter (with
the same filter order).

- Figure 7.3(c) shows that the critical stopband edge frequencies wsc; and wsc
given as an input argument wsc = [wscl wps2] of ‘cheby?2()’ are the frequen-
cies at which the stopband attenuation condition is closely met, i.e., 20log |
G(jwsc)| = —As [dB]. Note that the frequency response magnitude of a Cheby-
shev Il filter satisfying the stopband attenuation condition closely has a ripple in
the stopband.

- Figure 7.3(d) shows that the critical passband edge frequency wpc given as an
input argument wpc of ‘ellip()’ is the frequency at which the passband ripple

7.1 Analog Filter Design 315

condition is closely met, i.e., 20109, |G(jwpc)| = —Rp [dB]. Note that the fre-
quency response magnitude of an elliptic filter has ripples in both the passband
and the stopband, yielding a relatively narrow transition band with the smallest
filter order N = 3 among the four filters.

%i g07e01. mfor analog filter design and frequency response plot
clear, clf, format short e

disp(’(a) Butterworth LPF)

wp=2+pi *6000; ws=2*pi *15000; Rp=2; As=25;

[Nb, web] = buttord(wp, ws, Rp, As,’s’) % Order of anal og BW LPF

[Bb, Ab] = butter(Nb,wch,’s’) % nunm den of anal og BWLPF system ftn

[SCS, K] = tf2sos(Bb, Ab); % cascade realization [BBc, AAc] =tf 2cas(B, A)
Ns=si ze(SOS, 1); GreK (1/Ns), BBc=SOS(:, 1:3), AAc=SOS(:, 4:6)

[BBp, AAp] = tf2par s(Bb, Ab) % parallel realization -- see Sect. E. 15
ww= | ogspace(4, 6,1000); %l og frequency vector from le4 to le6[rad/s]
subpl ot (221), sem | ogx(ww, 20*| 0g10(abs(freqs(Bb, Ab, wn))))
title(’Butterworth LPF)

di sp(’ (b) Chebyshev | BPF)

ws1=2+pi *6e3; wpl=2*pi*led; wp2=2*pi*12e3; ws2=2+pi *15e3; Rp=2; As=25;
[Nc1, wopc] = cheblord([wpl wp2], [wsl ws2], Rp, As,’s’)

[Bcl, Acl] = chebyl(Ncl, Rp, wpc, ' s’)

[SCS, K] = tf2sos(Bcl, Acl); % cascade realization

Ns=si ze(SOS, 1); GrK (1/Ns), BBc=SOS(:, 1:3), AAc=SOS(:, 4:6)

[BBp, AAp] = tf2par s(Bcl, Acl) % parallel realization

subpl ot (222), sem | ogx(ww, 201 0g10(abs(freqs(Bcl, Acl, ww))))

title(’ Chebyshev | BPF)

disp(’ (c) Chebyshev Il BSF)

wpl=2+pi *6e3; wsl=2x*pi *led; ws2=2*pi*12e3; wp2=2+pi *15e3; Rp=2; As=25;
[Nc2, wsc] = cheb2ord([wpl wp2],[wsl ws2],Rp, As,’s’)

[Bc2, Ac2] = cheby2(Nc2, As, wsc, " stop’,’s’)

[SCs, K] = tf2sos(Bc2, Ac2); % cascade realization

Ns=si ze(SCS, 1); GrwK (1/Ns), BBc=SOS(:, 1:3), AAc=SOS(:, 4:6)

[BBp, AAp] = tf2par _s(Bc2, Ac2) % parallel realization

subpl ot (224), sem | ogx(ww, 20*| 0g10(abs(freqs(Bc2, Ac2, w))))

title(’ Chebyshev Il BSF)

disp(’'(d) Elliptic HPF)

ws=2*pi *6000; wp=2*pi *15000; Rp=2; As=25;

[Ne, wpc] = el I'i pord(wp, ws, Rp, As,’s’)

[Be, Ae] = el l'i p(Ne, Rp, As, wpc, ' high',’s")

[SCS, K] = tf2sos(Be, Ae); % cascade realization

Ns=si ze(SOS, 1); GmK (1/Ns), BBc=SOS(:,1:3), AAc=SOS(:, 4: 6)
[BBp, AAp] = tf2par s(Be, Ae) % parallel realization

subpl ot (223), sem | ogx(ww, 20*| 0g10(abs(freqs(Be, Ae, w))))

Now we are going to conclude this section with some MATLAB routines that
can be used to determine the parameters of the circuits depicted in Figs. 7.4, 7.5,
and 7.6 so that they can realize the designed (second-order) system functions. See
Chap. 8 of [Y-2] for more details.

316 7 Analog and Digital Filters

function [CR1, CR2, Gs] = filter_LPF.74a(A2, A3, K, RC1, RC2, KC)
% Design an LPF with the circuit in Fig. 7.4(a)

% KGL&2/ C1C2 B3=Kx A3
QHG(S) = =--cmemmmmeeeiee ettt ieaia e S LR
% s"2 +((Gl+&)/ Cl+(1-K) &/ C2)*s +GlG2/ C1C2 s"2 + A2xs + A3

if K<1, error(’We nust have K=(R3+R4)/R3 >= 1!"); end
if nargin<6, KC=1; end
if KC==1 % Find ClL and C2 for given K, Rl1, and R2.
Rl= RCl; R2= RC2; Gl= 1/Rl; &= 1/Rz;
a= Gl+&; b= -(K-1)*Q&; c= A2; d= A3/GL/ X; tnp = c"2-4*a*xb*d,
Cl= 2xal(c + sqrt(tnp)); C2= 1/d/Cl; CRl= Cl; CR2= C2;
else %Find RL and R2 for given K, C1, and C2.
Cl= RCl; C2= RCZ;
a= 1/Cl; b= 1/Cl - (K-1)/C2; c= A2; d= A3*xCl*C2; tnp = c"2-4*xaxb*d;
if tmp<0, error(’Increase Cl and K, or decrease C2'); end
Gl= (¢ + sqrt(tnmp))/2/a; &= d/Gl; Rl= 1/Gl; R2= 1/ X; CRl= Rl; CR2= R2;
end
B3= KxA3; A2= (Gl+&)/Cl + (1-K)*G2/C2; A3= Gl*@&/Cl/C2;
syms s; Gs = B3/(s”2+A2xs+A3);

function [CRL, CR2, Gs] = filter HPF.7_4b(A2, A3, K, RC1, RC2, KC)
% Design a HPF with the circuit in Fig. 7.4(b)

% Kxs™ 2 Kxs™ 2
QO G(S) = --mmmmm e S LR T R
% s72 +(@&2(1/Cl+1/C2)-(K-1)Gl/ Cl)s +GL&/C1C2 s"2 + A2*s + A3

if K<1, error(’We nust have K=(R3+R4)/R3 >= 1!"); end
if nargin<6, KC=1; end
if KC==1 % Find ClL and C2 for given K, Rl, and R2.
Rl= RCl; R2= RC2; Gl= 1/Rl; &= 1/ R2;
a= @+(1-K)*Gl; b= &; c= A2; d= A3/Gl/ X; tnp= c"2-4rarbxd;
if tnmp<0, error('Try with snaller/greater values of RL/K); end
Cl= 2*al(c + sign(a)*sqrt(tnp)); C2= 1/d/Cl; CRl= Cl; CR2= C2;
else %Find RL and R2 for given K, Cl, and C2.
Cl=RCl; C2=RC2;
a=(1-K)/Cl; b=1/Cl+1/C2; c=A2; d=A3xCl*C2; tnp=c”2-4*xaxb*d,
if tmp<0, error('Try with snaller/greater values of C2/K); end
if abs(a)<eps, &= A2/b; Gl= d/ &;
else Gl= (¢ + sign(a)*sqrt(tnp))/2/a; &= d/Gl;
end
Rl= 1/Gl; R2= 1/ X; CRl= Rl; CR2= R2;
end
Bl= K; A2= &x(1/Cl+1/C2) - (K-1)*Gl/Cl; A3= Gl*Q@2/Cl/C2;
syns s; Gs = Blxs"2/(s”2+A2xs+A3);

function [R1, C2R3, C5R4, Gs] = fil ter LPF_7_5a(B3, A2, A3, R3C2, R4C5, KC)
% Design an LPF with the circuit in Fig. 7.5(a)

% -GlA/ C2C5 -B3
Y G(S) = mmmmmmmm e e R T
% s"2 + (GL+&B+&HA)/ C2xs + G3G4/ C2C5 s"2 + A2xs + A3

if nargin<6, KC=1; end
if KC==1 %Find Rl, C2 and C5 for given R3 and R4.
R3= R3C2; R4= R4C5; &B= 1/ R3; (4= 1/ R4;
Gl=G3*B3/ A3; C2=(Gl+G3+(A)/ A2; C5=C3*G4/ C2/ A3; R1=1/Gl; C2R3=C2; C5R4=C5;
else %Find Rl, R3 and R4 for given C2 and C5.
C2=R3C2; C5=R4C5; a=1+B3/A3; b=1; c=A2xC2; d=A3*C2*xC5; tnp = c”2-4raxbxd;
if tmp<0, error('Try with greater/smaller values of C2/C5); end
@&B= (¢ + sign(a)*sqrt(tnp))/2/a;, A= d/ G3;
Gl= B3/ A3+G3; R3= 1/G3; R4= 1/ A; R1=1/Gl; C2R3= R3; C5R4= R4;
end
B3= Gl*(4/ C2/ C5; A2= (Gl+G3+G4)/ C2; A3= G3* 4/ C2/ C5;
syms s; Gs = -B3/(s”2+A2+xs+A3);

7.1 Analog Filter Design 317

function [Cl, C3R2, CAR5, Gs] = filter HPF_7.5b(B1, A2, A3, R2C3, R5C4, KC)
% Design a HPF with the circuit in Fig. 7.5(b)

% -(Cl/C3)*s"2 -Blxs™ 2
HG(S) = =--cmemmmmeeei e eiiceeiea e R
% s"2 + GB(Cl+C3+C4)/ C3/ CAxs + RCGB/ C3C4 s"2 + A2xs + A3

if nargin<6, KC=1; end
if KC==1 % Find Cl, C3 and C4 for given R2 and R5.
R2= R2C3; R5= R5C4; (X= 1/ R2; Gb= 1/ R5;
a= 1; b= 1+Bl; c= A2/G5; d= A3/ @R/ G5; tnp = c”2-4*axbxd;
if tnp<0, error('Try with smaller/greater values of R2/R5); end
C3= 2+al(c + sqrt(tnp)); C4= 1/d/C3; Cl= B1*C3; C3R2= C3; CAR5= (4;
else %Find Cl, R2 and R5 for given C3 and C4.
C3= R2C3; C4= R5C4,
Cl = B1*C3; Gb= A2/ (Cl+C3+C4)*C3*C4; &R= A3*C3*C4/ Gb;
R2= 1/ &; R5= 1/G5; C3R2= R2; CAR5= R5;
end
Bl= Cl1/C3; A2= Gb*(Cl+C3+C4)/C3/ C4; A3= R*Gh/ C3/ C4;
syns s; Gs = -Bl*s”2/(s”2+A2xs+A3);
% Exanpl es of Usage
%>B1=2; A2=100; A3=10000;
%> R2=le4; R5=2e5; [Cl, C3, 4, Gs]=filter _HPF_7.5b(Bl, A2, A3, R2, R5, 1)
%> C3=le-7; C4=2e-6; [Cl, R2, R5, Gs]=filter HPF_7.5b(B1, A2, A3, C3, C4, 2)

function [C3R1, C4R2, R5, Gs] = fil t er BPF_7_6a(B2, A2, A3, RLC3, R2C4, KC)
% Design a BPF with the circuit in Fig. 7.6(a)

% -(Gl/C3) *s -B2*s
PG(S) = -m-mmmmmmmee e B T
% s"2 + G5(1/C3+1/ CA)*s + (GL+&R) G5/ C3C4 s"2 + A2xs + A3

if nargin<6, KC=1; end
if KC==1 % Find C3, C4, and R5 for given Rl and R2.
Rl= RIC3; R2= R2C4; Gl= 1/Rl; &= 1/R2; C3= Gl/B2;
Gb= (A2 - A3+C3/ (GL+&)) *C3;
if Gb<0, error('Try with smaller values of R2"); end
C4= Gb*(GL+QR)/ C3/ A3;
R5= 1/ G5; C3Rl= C3; CAR2= 4;
fprintf(’ C3=%0.4e, C4=%0.4e, R5=%0.4e\n’, C3, 4, R5)
elseif KC==2 % Find R, R2 and R5 for given C3 and C4.
C3= RIC3; C4= R2C4;
Gl = B2xC3; Gb= A2/(1/C3+1/C4); @R= A3xC3+C4/ G- Gl;
R5= 1/ G5; Rl1=1/Gl; R2=1/ X; C3Rl= Rl; CAR2= R2;
fprintf(’ RL=940.4e, R2=940.4e, R5=%0.4e\n’, R, R2, R5)
else %Find RL, R5, and C3=C4=C for given R2 and C3=C4.
R2= RIC3; &X=1/R2;
nonlinear _eq= inline(’[2*x(1)-A2xx(2); x(1).*(B2xx(2)+&)-A3*x(2)."2]",...
X', ,'B2','A2" " A3");
G50=0.1; C0=0.1; x0=[GB0 C0]; % Initial guesses of G5 and C
x= fsol ve(nonlinear _eq, x0, opti nset (' Tol Fun’, le-8), &, B2, A2, A3)
% ol =1e-5; Maxlter=100; x=newtons(nonlinear _eq, x0,tol, Maxlter, &, B2, A2, A3)
Gb= x(1); C=x(2); C3=C, C4=C, Gl=B2*C3;
R1=1/Gl; R6=1/Gb; C3R1=C3; CAR2=R1;
fprintf(’ C3=C4=940. 4e, R1=940.4e, R5=9%0.4e\n’, C Ril, R5)
end
Bl= Gl/C3; A2= Gb*(1/C3+1/C4); A3= (GlL+Q&)*GCb/ C3/ C4;
syms s; Gs = -B2*xs/(s”2+A2xs+A3);
% Exanpl es of Usage
%>B2=100; A2=100; A3=10000;
%> Rl=le2; R2=le2; [C3,C4, R5, Gs]=filter_BPF.7.6a(B2, A2, A3, Rl, R2, 1)
%> C3=le-4; C4=le-4; [Rl,R2, R5, Gs]=filter_BPF_.7_6a(B2, A2, A3, C3, (4, 2)
%> R2=le2; [C3,Rl, R5, Gs]=filter BPF_7_6a(B2, A2, A3, R2, 0, 3)

318 7 Analog and Digital Filters

function [Cl, C2R3, C5R4, Gs] = fil ter .BPF_7_6b(B2, A2, A3, R3C5, R4C5, KC)
% Design a BPF with the circuit in Fig. 7.6(b)

% - (ClGA/ (C1+C2) C5) *s - B2xs
G(S) = =--cmemmmmeeeiee et iee i e ns EICEEEEEE TR PR
% s72 + ((&B+&HA)/ (CL+C2))*s + G3HA/ (CL+C2) C5 s"2 + A2xs + A3

if nargin<6, KC=1; end
if KC==1 % Find Cl, C2 and C5 for given R3 and R4.
R3= R3C5; R4=R4C5; G3= 1/ R3; (4=1/R4;
ClpC2= (G3+(4)/ A2; C5= GBx A/ A3/ ClpC2; Cl= B2*ClpC2*C5/ A %=B2x G3/ A3
C2= ClpC2 - Cl; C2R3= C2; C5R4= Cs5;
if C2<0, error('Try with greater/smaller values of R3/R4’); end
fprintf(’ Cl=%40.4e, C2=%0.4e, C5=%0.4e\n’, CI,C2, C5)
else %Find Cl, R3 and R4 for given C5 and Cl=C2.
C5=R3C5; 4= 2xC5+xB2; G3.2C= A3/ G4*C5; %=A3/2/B2: not adjustable
C= A/ 2/ (A2-&B.20); Cl=C, C2=C,
if C<0, error(’'How about increasing B2 & A2 and/or decreasing A3'); end
&B= B2C2+C, R3= 1/&B; R4= 1/ HA; C2R3= R3; C5R4= R4;
fprintf(’ Cl=C2=%0. 4e, R3=%0.4e, R4=940.4e\n’, C R3, R4)
end
B3= Cl*G4/ (C1+C2)/ C5; A2= (&B+&HA)/(Cl+C2); A3= G&B*G4/ (C1+C2)/ C5;
syms s; Gs = -B2*s/(s”2+A2xs+A3);

V() =V, (9)
Vn(s)

2 Vp(s)
=

G,(5)= Vo (s) _ KG,G,/C,C,
BTV 8% ((Gy+ Gy)IC,+ (1-K)G,/C,)s + G, G,/C,C,
_Vo(s) _ Ks?
Gyp(s)= ===
Vi(s) 82+ G,(L/C, +1/Cy) +(1-K)G,/ C,)s + G,G,/C,C,
(a) A second-order Sallen-Key lowpass filter (b) A second-order Sallen-Key highpass filter

Fig. 7.4 Second-order active filters

6.9 Vo(s) _ ~G,G,/C,Cq
Vi(s) $2+5C4(G, +G3+G,)/C,Cs+G3G,/C,Cq
Gy(s)= Vo(s) _ —C,C,s%/C,C,
Vi(s) s24+5G4(C,+C3+C,)/C3C,+G,Gs/CoCy

(a) A second-order MFB (multi-feedback) LPF (b) A second-order MFB (multi-feedback) HPF

Fig. 7.5 Second-order active filters

7.1 Analog Filter Design 319

o

G, (5)= V,(s) _ —(G,/G3)s
BTV 524 (G4(Cy+ Cl)ICCL)s + (G + Gy)G/C,C,
_Vo(s) _ —(C,G4/(C,+C,)Cq)s
Gy(s)= =

Vi(s) 5%+ ((G3+G,) /(Cy +Cy)s+G4G,/(C, +C,)Cs
(a) A second-order MFB (multi-feedback) BPF (b) A second-order MFB (multi-feedback) BPF

Fig. 7.6 Second-order active filters

For example, we can use the MATLAB routine “filter BPF_7_6a()’ to tune the
parameters of the MFB (multiple feedback) circuit of Fig. 7.6(a) so that the circuit
realizes the following BPF system function

G(S) _ —(G1/C3)S . —100s
24 (Gs5(C3 + C4)/C3Cy)s + (G1 + G2)Gs/C3Cy ~ s24100s +(%%0§)

To this end, we have only to type the following statements into the MATLAB com-
mand window:

>>B2=100; A2=100; A3=10000; % The desired system function B2+s/(s”2+A2xs+A3)
>>R2=1e2; KC=3; % Wth the given value of R2=100 and the assunption that C3=C4
>>[C3, R1, R5, Gs] =fi | ter .BPF_7_6a(B2, A2, A3, R2, 0, KC)

C3=C4=1. 0000e- 004, R1=9.9999e+001, R5=2.0000e+002

Gs = -100*s/(s"2+100*s+5497540047884755/ 549755813888)
>>5497540047884755/ 549755813888 % To see the weird constant term

1. 0000e+004

For another example, we can use the MATLAB routine “filter_LPF_7_4a()’ to
tune the parameters of the Sallen-Key circuit of Fig. 7.4(a) so that the circuit realizes
the following LPF system function:

G(S) . KGng/C1C2 _ K(,()r2
T4 ((G1+G2)/C1+ (1 — K)Gy/Cr)s+ G1G,/C1Cy T2 4 wpS + a)r2
(7.1.4)

More specifically, suppose we need to determine the values of R; and R, of the
Sallen-Key circuit of Fig. 7.4(a) with the pre-determined values of capacitances
C; = C, = 100pF so that it realizes a second-order LPF with the DC gain K = 1.5,
the corner frequency wr = 2 x 107 [rad/s], and the quality factor Q = 0.707 (for
wp = oy /Q). To this end, we have only to type the following statements into the
MATLAB command window:

>>K=1.5; Cl=le-10; C2=le-10; w =2xpi*1le7; Q0.707;

% The coefficients of denom nator of desired systemftn
>>A2=wr/ Q@ A3=wr"2; % §(s)=KrxA3/(s" 2+A2*s+A3)
>>KC=2; [R1, R2,Gs]= filter_LPF.7_4a(A2, A3, K, C1, C2, KC)

320 7 Analog and Digital Filters

Rl = 221.2010 % tuned resistance
R2 = 114.5126
Gs = 5921762640653615/ (s”2+5964037174912491/ 67108864*s+7895683520871487/ 2)

(cf) For reference, you can visit the web site <http://www.national.com/pf/LM/
LMHG6628.html> to see the application note OA-26 for Designing Active High
Speed Filters.

To illustrate the filter design and realization procedure collectively, let us find
the cascade realization of a fourth-order Butterworth LPF with cutoff frequency
we = 10kHz using the Sallen-Key circuit of Fig. 7.4(a). For this job, we compose
the following program and run it:

%i g07.01_.1. m
N=4; fc=1led4; wc=2xpi*fc; %the order and cutoff frequency of the LPF
format short e
[B, A= butter(N,wc,’s’) %Butterworth LPF system function G(s)=B(s)/A(s)
f= 1 ogspace(3,5,400); %frequency vector of 400 points between 1e3™ 1e5[Hz]
Gn= freqs(B, A 2«pi*f); % frequency response G(jw)
sem | ogx(f, 20«1 0og10(abs(Gn))) % plot |G jw| in dB versus frequency[Hz]
[SCs, KO] = tf2sos(B, A); % cascade realization
BBc=SOS(:, 1: 3); AAc=SOS(:, 4:6); % nunerator/denom nator of each SOS
K=1; Rl= le4; R2= le4; KC=1; % predeterm ned values of Rl and R2
for n=1:fl oor (N 2)
A2 = AAc(n,2); A3 = AAc(n,3);
[Cl,C2,Gs]= filter_LPF.74a(A2, A3, K RL, R2,KC) % filter tuning
end
% Check the LPF design results obtained at the web site
% <http://ww. daycounter.conl Filters/Sallen-Key-LP-Cal cul ator. phtm >

(cf) Note that multiplying all the resistances/capacitances by the same constant does
not change the system function and frequency response. This implies that if
you want to scale up/down the tuned capacitances/resistances without affecting
the system function and frequency response, you can scale up/down the pre-
determined values of resistances/capacitances in the same ratio.

7.2 Digital Filter Design

Digital filters can be classified into IIR (infinite-duration impulse response) or FIR
(finite-duration impulse response) filter depending on whether the duration of the
impulse response is infinite or finite. If the system function of a filter has a polyno-
mial in z or z~* of degree one or higher (in addition to a single zN or z~N term) in
its denominator, its impulse response has an infinite duration. For example, consider
a filter whose system function is

Y[zl 1
" X[z] z-05

Gl2] (7.2.1)

7.2 Digital Filter Design 321
so that the z-domian and time-domain input-output relationships are

(z—0.5)Y[z] = X][z]; zY[Z] — 0.5Y[z] = X[Z]; zY[z] = 0.5Y][Z] + X[Z];
y[n + 1] = 0.5y[n] + x[n] (7.2.2)

This means that the output y[n + 1] of this recursive difference equation is affected
by not only the input x[n] but also the previous output y[n]. That is why the impulse
response of the filter has indefinitely long duration. In contrast with this, the dura-
tion of the impulse response of a FIR filter is equal to one plus the degree of the
(numerator) polynomial in z or z~?* of its system function (having no denominator).
For example, consider a filter whose system function is

Y[zZ] 22 —22+0z+3

=y =1-22"+32° = 7.2
G[Z] X[Z] z " +3z = (7.2.3)
so that the z-domian and time-domain input-output relationships are
Y[z = (1 - 2271 4+ 32 3)X[7];
y[n] = x[n] — 2x[n — 1] 4 3x[n — 3] (7.2.4)

The output y[n] of this nonrecursive difference equation is affected not by any pre-
vious output, but only by the input terms. That is why the impulse response of the
filter has a finite duration. In fact, the impulse response of a FIR filter is identical
to the filter coefficients, say, [1 — 2 0 3] in the case of this filter having the system
function (7.2.3).

In this section we will see how to design the IR and FIR filters using the
MATLAB software.

7.2.1 1IR Filter Design

The methods of designing IIR filters introduced here are basically the discretizations
of analog filters dealt with in Sect. 7.1. We will use the same MATLAB functions
that are used for analog filter design.

Example 7.2 1IR Filter Design
Let us find the system functions of digital filters (with sampling frequency Fs =
50 [kHz]) meeting the specifications given below.

(a) We are going to determine the system function of a digital Butterworth lowpass
filter with the passband/stopband edge frequencies, passband ripple, and stop-
band attenuation as

wp = 27 x 6000 [rad/s], ws = 27 x 15000 [rad/s], R, = 2[dB], and As = 25[dB]
(E7.2.1)

322 7 Analog and Digital Filters

First, we prewarp the edge frequencies, design an analog Butterworth LPF satis-
fying the given specifications on the passband ripple and stopband attenuation at
the prewarped passband and stopband edge frequencies, and then discretize the
LPF through bilinear transformation:

>>Fs=5e4; T=1/Fs; format short e %Sanpling frequency and sanpling period
>>wWp=2*pi *6000; ws=2*pi *15000; Rp=2; As=25;

>>wWp_p=prewar p(wp, T); ws_p=prewarp(ws, T); % Prewarp the edge frequencies

>>[Nb, web] =but t or d(wp_p, ws_p, Rp, As, ' s’); %Order, cutoff freq of anal og BWLPF
>>[Bb, Ab] = butter(Nb,wch,’ s’); % num den of anal og BWLPF systemftn

>>[Bb_dO, Ab_dO] = bi | i near (Bb, Ab, FS) % Bi | i near transformation

We can also use the MATLAB function but t er () to design a digital Butter-
worth filter directly:

>>fp=wp* T/ pi; fs=ws*T/pi; %Nornulize edge freq into [0, 1] (1: pi[rad/sanple])
>>[Nb, fcb] = buttord(fp,fs, Rp, As) % Order, Cutoff freq of digital BWLPF
No = 3, fcb = 3.0907e-001
>>[Bb_d, Ab.d] = butter(Nb, fcb) % numden of digital BWLPF systemftn
Bb.d = 5.3234e-002 1.5970e-001 1.5970e-001 5.3234e-002
Ab.d = 1.0000e+000 -1.1084e+000 6.6286e-001 -1.2856e-001
>>[SOS, Ke] = tf2sos(Bb.d, Ab.d) % Cascade formrealization
SCs = 1 1 0 1.0000e+00 -3.0925e-01 0
1 2 1 1. 0000e+00 -7.9918e-01 4.1571e-01
Kc = 5.3234e-002
>>[BBp, AAp, Kp] = tf2par z(Bb.d, Ab.d) % Parallel formrealization

BBp = -9.9489e-001 5.6162e-001 0
0 1.4622e+000 0
AAp = 1.0000e+000 -7.9918e-001 4.1571e-001
0 1.0000e+000 -3.0925e-001
Kp = -4.1408e-001

%i g07e02a. mfor digital Butterworth LPF design

clear, clf, format short e

Fs=5e4; T=1/Fs; % Sanpling frequency and sanpling period

wp=2*pi *6000; ws=2+pi *15000; Rp=2; As=25;

% anal og filter design and discretization through bilinear transformation
wp-p=prewar p(wp, T); ws_p=prewarp(ws, T); % Prewarp the edge frequencies

[Nb, web] =but t or d(wp-p, ws_p, Rp, As, ' s’); % Order, cutoff freq of anal og BWLPF
[Bb, Ab] = butter(Nb,wch,’s’); % nunfden of anal og BWLPF systemftn

[Bb_dO, Ab_d0] = bi |l i near (Bb, Ab, Fs) % Bi | i near transformation

%direct digital filter design

fp=wp*T/pi; fs=ws*T/pi; % Normalize edge freq into [0,1] (1: pi[rad/sanmple])
[Nb, fcb] = buttord(fp,fs, Rp, As) % Order of digital BWLPF

[Bb_d, Ab_d] = butter(No, fcb) % nunm den of digital BWLPF systemftn

% Pl ot the frequency response magnitude

fn=[0:512]/512; Wepix*fn; % Normalized and digital frequency range

subpl ot (221), plot(fn, 20«1 og10(abs(freqgz(Bb.d, Ab_.d, W) +eps))

% To check if the filter specifications are satisfied

hold on, plot(fp,-Rp,’ 0", fcbh,-3, "+, fs,-As,'x")

axis([0 1 -80 10]), title('Butterworth LPF")

[SCS, Kc] = tf2sos(Bb-d, Ab.d) % Cascade formrealization

[BBp, AAp, Kp] = tf2par _z(Bb.d, Ab.d) % Cascade formrealization

7.2 Digital Filter Design

323

O v v
0 - [dB] . . : :
[dB] Bl e et R R i~
-20 - ' H
100 f--=------ S fommmeeean R s LT
40 o T] S SR SRR SR b
60 1 —200f----oo-o S S R A
_go Lt Lt . 1 _250 H H i H H
0 0.2 0.4 Normalized frequency 1.0 0 0.2 Normalized frequency(xnrad/sample) 1.0

(a) From MATLAB

(b) From the FDAtool

Fig. 7.7 The magnitude curves of the frequency response of the digital Butterworth LPF

«) Filter Design & Analysis Tool - [untitled.fda] -Phase response Magnitude & phase responses
Eile Edit Analysis Targets View Window Help 7 Q;‘l‘:jc Pole/zer0 IOt _ Fijter cosflicients
1 £ -
DedalR|2RLPX|DM|INNMA 3 M-S S
‘ani Group Impulse “Siep
:ﬁ‘;%,g‘.ﬁ‘;".“ delay TeSponse response
(— Current Fitter Information _ Filler Coefficierts -=occoococoocooaaoaoaaaan. o
Structure: Direct-Form i, S08 (second-order section) patrix
Second-Order 1 2 1 1 -0.79917375192971729 0.415713077391
Sedtions 1 1 0 1 -0.3092434239528595% 0O
Order; 3 Scale Factors
Sections: 2 D.15413483136549086
Stable: Yes 0.3453732850235701
Source: Designed
[FiterManager.. |
Filter Design Panel
— Responze Type — Fller Order — Frequency Specifications — Magnitude
@I = oW L= || <ekSpecify order. Unks. |Normalized (0 to 1) [~] [1. stenustion st cutatt
—\|| & = =
otz | - e 23 Minkruan order Fe [|| wenuenciesis txeaat3m
- {_iBancpass i Sampling fr]
\: i e g Aeduanes (half the passhand gain)
{_» Bandstop __ Optians Fe
= P e . = Cufoff frequency
@J “.# |Differentiator There are no cptional
El |- Desin Method 1| paremeters for this design
. @R (Butterveorth - meitod:
[@ PR [Equiripple -

Fig. 7.8 Design of a digital Butterworth LPF with order 3 and cutoff frequency 0.309 using

FDAtool

This result means that the system function of the designed Butterworth LPF of

order N = 3 is

0.05323Z% + 0.15977° + 0.1597z + 0.05323
73 — 1.10842% + 0.6629z — 0.1286

0.05323(22 +2z+1)(z+ 1)
B : Cascade f E7.2.2b
(ZZ —0.79927 + 04157)(2 — 03092) ascade torm ()

—0.99497% + 0.5616z 1.4622z
= — 0.4141 : Parallel form
72 —0.7992z + 0.4157 + z—0.3092
(E7.2.2c)

Gl[z] = : Direct form (E7.2.2a)

324 7 Analog and Digital Filters

The magnitude curve of the frequency response of the designed filter is shown
in Fig. 7.7. If the order and cutoff frequency are determined, then we can use the
FDATool to design a digital filter as depicted in Fig. 7.8 where the same cascade
realization is obtained as with but t er () . Note that the cutoff frequency fcb
determined by but t or d() and used by but t er () and FDATool is normal-
ized to the range of [0,1] with 1 corresponding to Fs/2[Hz] (half the sampling
frequency).
(b) We are going to determine the system function of a Chebyshev | BPF with

ws1 = 21 x 6000, wp; = 27 x 10000, wy = 27 x 12000,
wsp = 21 x 15000 [rad/s], Ry = 2[dB], and As = 25[dB] (E7.2.3)

First, we prewarp the edge frequencies, design an analog chebyshev | BPF satis-
fying the given specifications on the passbhand ripple and stopband attenuation at
the prewarped passband and stopband edge frequencies, and then discretize the
BPF through bilinear transformation:

>>Fs=5e4; T=1/Fs; % Sanpling frequency and sanpling period

>>Ws1=2xpi *6e3; wpl=2+pi *1led; wp2=2+pi »12e3; ws2=2xpi *15e3; Rp=2; As=25;

>>wp_p=prewar p([wpl wp2],T); ws_p=prewarp([wsl ws2],T); % Prewarp

>>[N, wpc] =cheblord(wp_p, ws_p, Rp, As,’s’) % rder & cutoff freq of A-Cl BPF
N = 2, wpc = 7.2654e+004 9.3906e+004

>>[Bcl, Acl] =cheby1(N, Rp, wpc,’'s’) % nunf den of anal og Cl1 BPF systemftn

>>[Bc1.d0, Ac1.d0] = bilinear(Bcl, Acl, Fs) % Bilinear transformation

The MATLAB function cheby1() can also be used to design a digital
Chebyshev | filter directly as follows:

>>fp=[wpl wp2] «T/pi; fs=[wsl ws2]*T/pi; %ornuelize edge freq into [0, 1]
>>[Nc1, fccl] =cheblord(fp,fs, Rp, As) % Order & Cutoff freq of D-Cl BPF

Nel = 2, fccl = 0.4 0.48
>>[Bcl.d, Acl.d] = chebyl(Ncl, Rp, fccl) % num den of D-Cl BPF systemftn
Bcl.d = 9.3603e-03 0 -1.8721e-02 0 9.3603e-03

Acld = 1.0000e+00 -7.1207e-01 1.8987e+00 -6.4335e-01 8.1780e-01
>>[SOS, Kc] = tf2sos(Bcl.d, Acl.d) % Cascade formrealization
SCs = 1 2 1 1.0000e+000 -1.6430e-001 9.0250e-001
1 -2 1 1.0000e+000 -5.4780e-001 9.0610e-001
Kc = 9.3603e-003
>>[BBp, AAp, Kp] = tf2par _z(Bcl.d, Acl.d) % Parallel formrealization

BBp = -1.9910e-003 -8.9464e-002 0
-9.4316e-005 9.7236e-002 0
AAp = 1.0000e+000 -5.4785e-001 9.0612e-001

1.0000e+000 -1.6432e-001 9.0253e-001
Kp = 1.1446e-002

This means that the system function of the designed Chebyshev | BPF of order
2Ncl =4is

7.2 Digital Filter Design 325

ol 9.3603 x 10 °7' — 18721 x 10°7 +9.3603x10°° . .
T 40712173 + 1.898722 — 0.6434z + 0.8178
(E7.2.4q)

93603 x 10322 +2z+1)(# —2z+1) | Cascade form
~ (22 — 0.1643z + 0.9025)(z2 — 0.5478z + 0.9061) °
(E7.2.4b1)

_ 010855 x 0.10855 x 0.7943(2 ~ (@ ~1) .. o
~ (2 — 0.1643z + 0.9025)(z2 — 0.5478z + 0.9061)
(E7.2.4b2)

—9.4316 x 107°Z% + 9.7236 x 1072z
72 — 0.1643z + 0.9025
—1.991 x 107322 — 8.9464 x 10?2
22 — 0.5478z + 0.9061

= 0.011446 +

: Parallel form (E7.2.4c)

fsll f;?l ng f52
L

1 . ' ' ' '
0.2 0.4 Normalized frequency 1.0 0 0.2 Normalized frequency (xnrad/sample) 1.0
(a) From MATLAB (b) From the FDAtool

Fig. 7.9 The magnitude curves of the frequency response of the digital Chebyshev | BPF

-) Filter Design & Analysis Tool - [untitled.fdal -Fhezs respinas o i & phase responses m!l
Eile Edit Analysis Targets View Window Help /E'ngc,e F;nle,’"zero Plot _ Filter coetticients
= -, 2 T —
DedaR[PPPX[O[HNNNM#+ M0, SEONE]?
Current Fiter informat _ Filler Coefficlents -=— == - - - - - ... 4
Structure; Direct-Form Il, 508 (second-order section) natrix
Second-Order 1 0 =1 1 =0.1643Z104883109377 O0.30Z53365865330257

1 0 -1 1 -0 54784725300087311 0. 30611937721248159

Seclions
Srr.le_r i Scale Factors
Shoiong, 2 0.10855377520284321
Stsble: Ve 0.10855377520284321
Sowce. Designed 0.79432023472428145
Store Fiter ... |
Filter Marager ., |

Filter Design Panel
— Respo Tvpe — FlterCrder __ Frequency Specifications __ _ Magnitude Spacifications

7 [Lowpass - & Specityorder: [| || Unts: |Homalized (0 to 1) n Lhits:
O [Highpass -
® = ¢”s Winimum order Apass:

Sampling frequency (Rp)

(" Bandstop — Options | wpasst:
here are no optiona wpass2 |feel (2)

|- Design Method —__{| parameters for this design
method.

@R [Chebysher Typel |~ |

IR]Equi'ipple :|

| Design Filter|

Fig. 7.10 Design of a digital Chebyshev | BPF with order 4 and passband edge frequencies 0.4 &
0.48 using FDAtool

326 7 Analog and Digital Filters

The magnitude curve of the frequency response of the designed filter is shown in
Fig. 7.9. If the order and passband edge frequencies are determined, then we
use the FDATool to design a digital filter as depicted in Fig. 7.10 where the
same cascade realization is obtained as with cheby1() . Note that the critical
passband edge frequencies fcc1(1) and fccl(2) determined by cheblor d()
and used by cheby1() and FDATool are normalized to the range of [0,1]
with 1 corresponding to Fs/2[Hz] (half the sampling frequency, i.e., the Nyquist
frequency).
(c)We are going to determine the system function of a Chebyshev Il BSF with

wp1 = 27 % 6000, ws1 = 27 x 10000, ws; = 27 x 12000,
wpr = 2 x 15000 [rad/s], R, = 2[dB], and As = 25[dB] (E7.2.5)

Let us use the MATLAB function cheby2() to design a digital Chebyshev 1l
filter directly as follows:

>>Fs=5e4; T=1/Fs; % Sanpling frequency and sanpling period
>>Wpl=2*pi *6e3; wsl=2*pi x1led; ws2=2*pi *12e3; wp2=2+pi »15e3; Rp=2; As=25
>>fp=[wpl wp2] «*T/pi; fs=[wsl ws2]*T/pi; %Nornulize edge freq into [0, 1]
>>[Nc2, f cc2] =cheb2ord(fp, fs, Rp, As) % Order & Cutoff freq of D C2 BSF
Nc2 = 2, fcc2 = 0.4 0.48
>>[Bc2.d, Ac2_d] =cheby2(Nc2, As, fcc2,’stop’) %D C2 BSF systemftn
Bc2.d = 6.0743e-01 -4.5527e-01 1.2816e+00 -4.5527e-01 6.0743e-01
Ac2.d = 1.0000e+00 -5.7307e-01 1.1202e+00 -3.3746e-01 3.7625e-01
>>[SOS, Ke] = tf2sos(Bc2.d, Ac2.d) % Cascade formrealization
SOs = 1 -0.2000 1 1. 0000e+000 1.4835e-001 5.9730e-001
1 -0.5495 1 1. 0000e+000 -7.2143e-001 6.2992e-001
Kc = 6.0743e-001
>>[BBp, AAp, Kp] = tf2par_z(Bc2.d, Ac2.d) % Parallel formrealization

BBp = -4.7229e-001 2.3377e-001 0
-5.3469e-001 -7.9541e-002 0
AAp = 1.0000e+000 -7.2143e-001 6.2992e-001

1. 0000e+000 1.4835e-001 5.9730e-001
Kp = 1.6144e+000

This means that the system function of the designed Chebyshev Il BSF of order
2Nc2 =4 1is

& = 0.60747' — 0.45532° + 1.28162° — 0.45532 +0.6074 . .
T 74— 057312% + 1.120222 — 0.3375z + 0.3763
(E7.2.6a)

_ 0.6074(z% — 0.2z + 1)(z* — 0.5495z + 1) . Cascade form
(22 —0.1484z + 0.5973)(z2 — 0.7214z 4+ 0.6299)
(E7.2.6b)

—0.472372 +0.2338z —0.534772 — 0.07954z
= + +1.6144
72— 0.7214z+ 0.6299 ' 72 + 0.1484z + 0.5973

: Parallel form (E7.2.6¢)

7.2 Digital Filter Design 327
The magnitude curve of the frequency response of the designed filter is shown
in Fig. 7.11. If the order and stopband edge frequencies are determined, then we
can use the FDATool to design a digital filter as depicted in Fig. 7.12 where the
same cascade realization is obtained as with cheby?2(') . Note that the critical
stopband edge frequencies fcc2(1) and fcc2(2) determined by cheb2or d() and
used by cheby?2() and FDATool are normalized to the range of [0,1] with 1
corresponding to Fs/2[Hz]. Note also that as can be seen from the magnitude
curves in Fig. 7.11, the Chebyshev 1l type filter closely meets the specification
on the stopband attenuation (As > 25[dB]), while it satisfies that on the passband
ripple (Rp < 2[dB]) with some margin.

pr1 fsl fsz fpz

I
0 0.2

Normalized frequency (xnrad/sample) 1.0
(b) From the FDAtool

04 Normallzed frequency 1.0 0
(a) From MATLAB

Fig. 7.11 The magnitude curves of the frequency response of the digital Chebyshev Il BSF

-J Filter De sign & Analysis Tool - [untitied.fdal -Phase response & phase p :-c
Ph
File Edit Analysis Targets View Window Help d.f“ Pole/zera plot _ Filter cosfiicients
W EINEEEF LIRS %D‘Jr®|
Currert Filter Informeation — Fiter Cosfficlents -===---22----------
Structure: Direct-Form Il Section #1 Zaction FE g oucput Gain:
= FOvdlay Numerator: Humerator: 1
Seclions 1 1
=0.54952191339597745 =0.1999798E851301128
1
Denominacor: Denominator:
1
=0.72142740776645217 0.14835391484953715
0.629922403185246084 0. 5973026167748635
Gadn: Gain:
0.77937487317850429 0.77937487317850429
Filter Design Panel
— Fiter Order — Frequency Specifications pecifications —
() Spexify order F I Units: |Hmmal|xed<[lto 1)|:| o
) Minimum orcer Fe Astop: 25
Sampling frequency (As)
— Options wstop! - [fcc2(1)
There are no optional .
e || oo]
@R [chebyshey Type [~ || ™%
PR [Ecuiipple [:|
| Des=ign Filter

Fig. 7.12 Design of a digital Chebyshev Il BSF with order 4 and stopband edge frequencies 0.4 &
0.48 using FDAtool (version 7.2-R2006a)

328 7 Analog and Digital Filters
(d)We are going to determine the system function of an elliptic HPF with

ws = 21 x 6000 [rad/s], wp = 27 x 15000 [rad/s], Ry, = 2[dB], and As = 25[dB]
(E7.2.7)

Let us use the MATLAB function el | i p() to design a digital elliptic filter
directly as follows:

>>Fs=5e4; T=1/Fs; % Sanpling frequency and sanpling period

>>Ws=2*pi *6e3; wp=2*pi »15e3; Rp=2; As=25;

>>f p=wp+ T/ pi ; fs=ws*T/pi; 9%ornalize edge freq into [0, 1]

>>[Ne, fce] =el l'ipord(fp,fs, Rp, As) % Order & Cutoff freq of D-elliptic HPF
Ne = 2, fce = 0.6

>>[Be.d, Ae_d] =el | i p(Ne, Rp, As, fce, high’) %D-elliptic HPF systemftn
Be.d = 2.0635e-001 -3.0101e-001 2.0635e-001
Ae_d = 1.0000e+000 5.4365e-001 4.4217e-001

>>[SOS, Kc] = tf2sos(Be.d, Ae.d) % Cascade formrealization
SOS = 1 -1.4587e+000 1 1.0000e+000 5.4365e-001 4.4217e-001
Kc = 2.0635e-001

>>[BBp, AAp, Kp] = tf2par z(Be_d, Ae_.d) % Parallel formrealization

BBp = -2.6034e-001 -5.5472e-001 0
AAp = 1.0000e+000 5.4365e-001 4.4217e-001
Kp = 4.6669e-001

This means that the system function of the designed elliptic HPF of order
Ne = 2is

0.20647% —0.3010z 4 0.2064 0.2064(z* — 1.4587z + 1)

Glz] = = : Cascade form
[2 72 +0.5437z 4 0.4422 72 + 0.5437z + 0.4422
(E7.2.8a)
—0.26032° — 0.5547
z z + 0.4667 : Parallel form (E7.2.8b)

T 22+ 054372+ 0.4422

%i g07e02. mfor digital filter design and frequency response pl ot
clear, clf, format short e

Fs=5e4; T=1/Fs; % Sanpling frequency and sanpling period
disp(’(a) Digital Butterworth LPF)

wp=2#pi *6000; ws=2*pi *15000; Rp=2; As=25;

fp=wp*T/ pi; fs=ws*T/pi;

[Nb, fcb] = buttord(fp,fs, Rp, As) % Order of anal og BW LPF

[Bb.d, Ab_d] = butter(Nb, fcb) % nunmiden of digital BWLPF systemftn
fn=[0:512]/512; Wepi*fn;

% Pl ot the frequency response nagnitude curve

subpl ot (221), plot(fn, 20«1 ogl0(abs(freqz(Bb.d, Ab_d, W) +eps))

hold on, plot(fp,-Rp,’0", fcbh,-3,"+, fs,-As,’ x’)

[SCS, Kc] = tf2sos(Bb.d, Ab.d) % Cascade formrealization

[BBp, AAp, Kp] = tf2par z(Bb.d, Ab.d) % Parallel formrealization
disp(’ (b) Digital Chebyshev | BPF)

ws1=2xpi *6e3; wpl=2xpi*led; wp2=2*pi*12e3; ws2=2xpi *15e3; Rp=2; As=25;

7.2 Digital Filter Design 329

fp=[wpl wp2] *T/pi; fs=[wsl ws2]+T/pi; 9%\ormalize edge freq into [0, 1]
[Nc1, fccl] =cheblord(fp,fs, Rp, As) % Order & critical passband edge freq
[Bcl.d, Acl.d] = chebyl(Ncl, Rp, fccl) % num den of D-Cl BPF systemftn
subpl ot (222), plot(fn, 20«1 ogl0(abs(freqz(Bcl.d, Acl.d, W) +eps))

[SCS, Ke] = tf2sos(Bcl.d, Acl.d) % Cascade formrealization

[BBp, AAp, Kp] = tf2par z(Bcl.d, Acl.d) % Parallel formrealization

disp(’ (c) Digital Chebyshev Il BSF)

wpl=2xpi x6e3; ws1l=2*pi*led; ws2=2+pi=*12e3; wp2=2xpi *15e3; Rp=2; As=25;
fp=[wpl wp2] *T/pi; fs=[wsl ws2]+T/pi; 9%\ormalize edge freq into [0, 1]

[Nc2, fcc2] =cheb2ord(fp,fs, Rp, As) % Order & critical edge frequencies

[Bc2.d, Ac2.d] =cheby2(Nc2, As, fcc2,’ stop’) %uni den of D-C2 BSF systemftn
subpl ot (223), plot(fn, 20«1 ogl0(abs(freqz(Bc2.d, Ac2.d, W) +eps))

[SCS, Kc] = tf2sos(Bc2.d, Ac2.d) % Cascade formrealization

[BBp, AAp, Kp] = tf2par -z(Bc2.d, Ac2.d) % Parallel formrealization
disp(’(d) Digital elliptic HPF)

ws=2*pi *6000; wp=2+*pi *15000; Rp=2; As=25;

fp=wp*T/pi; fs=ws*T/pi; ¥Nornulize edge freq into [0, 1]

[Ne, fce]=ellipord(fp,fs,Rp, As) % Order & Cutoff freq of D-elliptic HPF
[Be-d, Ae_d] =el I'i p(Ne, Rp, As, fce,” high’) %D-elliptic HPF systemftn
subpl ot (224), plot(fn, 20«1 ogl0(abs(freqz(Be.d, Ae_d, W) +eps))

[SCS, Kc] = tf2sos(Be.d, Ae.d) % Cascade formrealization

[BBp, AAp, Kp] = tf2par -z(Be.d, Ae.d) % Parallel formrealization:

The magnitude curve of the frequency response of the designed filter is shown
in Fig. 7.13. If the order and cutoff frequency are determined, then we use the
FDATool to design a digital filter as depicted in Fig. 7.14, yielding the cascade
realization close to that obtained with el | i p() . Note that the cutoff frequency
fce determined by el | i por d() and used by el I'i p() and FDATool is nor-
malized to the range of [0,1] with 1 corresponding to Fs/2[Hz] (half the sampling
frequency).

(e) All the above filter design works are put into the M-file named “sig07e02.m”,
which plots the frequency responses of the designed filters so that one can check
if the design specifications are satisfied. Figs. 7.7(a), 7.9(a), 7.11(a), and 7.13(a),
obtained by running the program “sig07e02.m”, show the following points:

- Figure 7.7(a) shows the monotone frequency response magnitude of a Butter-
worth filter.

- Figure 7.9(a) shows that the critical passband edge frequencies fp and fp,
given as an input argument fccl = [fpl fp2] of ‘chebyl()’ are the frequencies
at which the passband ripple condition is closely met. Note that the frequency
response magnitude of a Chebyshev | filter satisfying the passband ripple con-
dition closely has a ripple in the passband, which is traded off for a narrower
transition band than the Butterworth filter (with the same filter order).

- Figure 7.11(a) shows that the critical stopband edge frequencies fs; and fs,
given as an input argument fcc2 = [fs1 fs2] of ‘cheby2()” are the frequencies
at which the stopband attenuation condition is closely met. Note that the fre-
quency response magnitude of a Chebyshev Il filter satisfying the stopband
attenuation condition closely has a ripple in the stopband.

330 7 Analog and Digital Filters

0 0.2 0.4 Normalized frequency 10 0 0.2 Normalized frequency (xx rad/sample) 1.0
(a) From MATLAB (b) From the FDAtool

Fig. 7.13 The magnitude curves of the frequency response of the digital elliptic HPF

-) Filter D % ! ool - [untitied.ida] =Phass 2tponzs Magnitude & phase responsas X
Eile Ed Analvsls Tapgets View Window Help ety Pole/zero plot_ Fiiter costhicients
DEHER[P AL X[O[MRHK +mr@mﬁl|§1|w
Current Fiter Information __ Fiter Coatficlents -=2z2x I Sy
Structure: Direct-Form i, Sagtiom £1 i put Gain:
Sacond-Order Numerator: -\1 S
Sections 1 o]
Order b1 -1.4590230616800686
A 1
Sections: 1 Denominator:
Stable Yes
Source: Designed 0.54306433694272649 5
0.44165950879081086
Gain: H H
Stors Fitter . | H : £
A-£Q6 kb AOO-nmnmee] Mormelized Frequency. 0.2397461 ...
Filter Manager ... ! | Madnituce (B 1227122
! ! : !
150 i : 1 :
0 02 10
Mormalized Froqumr (xl:nﬂl‘sanpb)
Filter Design Model
_ Response Type Fiter Order Freg ¥ Specifications Nagnitude Specifications —
e v i
e Y S o]
.)

e T— | P | —
- {3 Minimem on - Asl
() Bandpass Sampiing frequency {A:}‘T IC]

Omtser o ———— | v e]
" (RN

L o s 1 d=Zero T Pole/Zero Editor

| DesignMetnod .- | Add Pole: Delete Pole/Zaro

on o] OIS

Move Pole/Zero

orm bl —
P —

PR —

Angle: :l radians

Section:

[Coniugste

[¥] Auio Update = Bgala Part

Imaginary Part

Fig. 7.14 Design of a digital elliptic HPF with order 2 and stopband/passband edge frequencies
0.24/0.6 using FDAtool (version 7.2-R2006a)

7.2 Digital Filter Design 331

/—Pnaso response x|

J Filter [imsiun & Anal;sis Tool - [untitled.fda]

Magnitude & phase responses =

delay Folefzero plot_ Eier coefiicients

D= EQ&I@B&XI&IEIEEE;&1@1-@&;]'5.@”&9

File Edt View Simulstion Format Tools Help
D& 2| 4|2 v moo |[Noma -] B E @
Double Click
oO—lk>
Input Output Input]-S(/” 3 Qutput
0,54306433634272649 -1,45502 30616300686
Filter 02063568500534 5764 | [
Realizing model \ﬁ] Kz
~Pole/Zera Editor a(2)(1) z! b{2)(1)
Impaort filter /K1|
— E‘;’;g‘:ﬂ{ﬁf“e a(3)(1)=1044185950879881886

Fig. 7.15 The state diagram of a filter drawn by the ‘Realize Model’ function of FDAtool

- Figure 7.13(a) shows that the critical passband edge frequency f, given as an
input argument fce of “ellip()’ is the frequency at which the passband ripple
condition is closely met. Note that the frequency response magnitude of an
elliptic filter has ripples in both the passband and the stopband, yielding a
relatively narrow transition band with the smallest filter order N = 2 among
the four filters.

Note that we can click the Realize Model button or the Pole/Zero Editor button
on the left-hand side of the FDATool window to create a Simulink model file
having the designed filter block as depicted in Fig. 7.15 or to see the pole/zero
plot of the designed filter as illustrated in Fig. 7.14.

7.2.2 FIR Filter Design

FIR filters are compared with IIR filters as follows:

Advantages: Disadvantages:

- FIR filters can have exactly linear - FIR filters require a much higher

phase. filter order than IIR filters to achieve a
given level of performance.

- FIR filters are stable. - The delay of FIR filters is often much
greater than that of an equal
performance IIR filter.

According to the signal processing toolbox user’s guide (page 2-16), FIR filter
design methods cast into MATLAB functions are listed in Table 7.1.

332 7 Analog and Digital Filters

Table 7.1 FIR filter design methods

Apply windowing to truncated IDFT of
desired “brick wall” filter

Equiripple or least squares approach over
subbands of the frequency range

Minimize squared integral error over

Windowing fird(), fir2()
Multibands with
transition bands

Constrained least

firpm), firls()

fircls(), firclsi()

squares entire frequency range subject to
maximum error constraints
Arbitrary Avrbitrary responses, including nonlinear cfirpm))
responses phase and complex filters
Raised cosine Lowpass response with smooth, firrcos()

sinusoidal transition

As discussed in Sect. 4.6, the phases of FIR filters having symmetric or anti-
symmetric coefficients are linear so that the phase delay t, and group delay t4 are
equal and constant over the frequency band, where the phase delay and group delay
are related to the phase shift 6(2) = ZG(2) of the frequency response as

—_ dz(g?) with 6(2) = ZG(£2)(phase response)

0(22
I

and 7y = (7.2.5)

Table 7.2 shows some restrictions on the frequency response depending on the sym-
metry of the FIR filter (tap) coefficients g[n] and whether the filter order is even or
odd. Note that firl(N,fc,*high’) and firl(N,[fc1 fc2], ‘stop’) with an odd filter order
N design an (N + 1)th-order HPF and BSF (of type 1), respectively since no linear
phase HPF or BSF of odd order (type Il) can be made.

Table 7.2 FIR filter design methods (see Sect. 4.6)

Linear phase Filter order N

Symmetry of filter (tap)

Restriction on frequency

filter type coefficients g[n] response
Type | Even Symmetric No restriction
gn] = g[N — n]
forn=0:N
Type Il Odd Symmetric G(Q)lg—, =0
g[n] = g[N —n] (No HPF or BSF)
forn=0:N
Type 1l Even Anti-symmetric G(Q)|q_o =0,
gln] = —g[N —n] G(Q)lgr =0
forn=0:N (No LPF or HPF or BSF)
Type IV Odd Anti-symmetric
g[n] = —gIN —n] G()lg=o = 0 (No LPF)

forn=0:N

7.2 Digital Filter Design 333

7.2.2.1 Windowing Method

Consider the frequency response of an ideal (“brick wall”) LPF with cutoff fre-
quency 2. as

1 for |Q —2mn| < Q¢ < 7 (m: an integer)

Gi(2) = Gi[e"] = {O elsewhere (7.2.6)

Referring to Eq. (E3.5.2), we can take the inverse DTFT of this frequency response
to write the impulse response of an ideal LPF as

Qc
giln] = F 4G, (@) *&Y i/ G(@)elMda = Zesinc <Q°”> (7.2.7)
21 J_ T b4

Q¢

Since this infinite-duration impulse response cannot be realized by a FIR filter, we
apply a (rectangular) window of, say, length N + 1 (N = 2M: an even number) to
truncate it to make the tap coefficients of an N th-order FIR LPF as

Qe . Qch
gre[n] = gilnlromya[n + M] = fsmc(;

N
)for—MgnfM(M:E)

(7.2.8)

We can multiply this with 2 cos(€2pn) (for modulation) to obtain the tap coeffi-

cients of an Nth-order FIR BPF with passband center frequency 2, and bandwidth
2Qc as

gsp[n] = 2gLp[n] cos(R2,n) for — M <n < M(M = ;) (7.2.9)

We can also get the tap coefficients of Nth-order FIR HPF (with cutoff fre-
quency 2¢) and BSF (with stopband center frequency Q24 and bandwidth 2;) by
subtracting the tap coefficients of LPF and BPF from the unit impulse sequence
3[n] as

Ghp] = o[] — gLp[n] = 8[n] — %sinc(Q;”) for —M =n<M(M = N/2)
(7.2.10)

ges[n] = é[n] — ger[n] = 8[n] — 2gLp[n] cOs(€2sn) for — M <n < M(M = N/2)
(7.2.11)

where §[n] is the impulse response of an all-pass filter with a flat frequency response
(see Example 3.4). Note the following:

- The tap coefficients or impulse responses of FIR filters (7.2.8), (7.2.9), (7.2.10),
and (7.2.11) should be delayed by M = N/2 to make the filters causal for
physical realizability (see Sect. 1.2.9).

334 7 Analog and Digital Filters

- Cutting off the impulse response of an ideal filter abruptly for truncation results
in ripples near the band edge of the frequency response. Thus a non-rectangular
window such as a Hamming window is often used to reduce the Gibbs effect.

Given a filter order N and description of the desired frequency response including
6dB band edge frequency (vector), the MATLAB functions fi r1() and fir2()
return the N + 1 tap coefficients of a FIR filter designed by the windowing method.
Let us try using the MATLAB functions for FIR filter design in the following
examples:

Example 7.3 Standard Band FIR Filter Design

Let us design several standard band FIR filters with sampling frequency Fs = 50
[kHz]. The following program “sig07e03.m” finds the tap coefficients of an LPF
with cutoff frequency 5kHz, a BPF with passband 7.5 ~ 17.5kHz, a HPF with
cutoff frequency 20kHz, and a BSF with stopband 7.5 ~ 17.5kHz by using
Egs. (7.2.8), (7.2.9), (7.2.10), and (7.2.11) and the MATLAB function fir1().
Fig. 7.16 shows the impulse responses (tap coefficients) and frequency responses of
the filters obtained by running the program.

%i g07e03. mto design standard band FIR filters

clear, clf

Fs= 5e4; T=1/Fs; % Sanpling frequency and sanpling period

N=30; M=N'2; % Filter order and its half

nn=[-M M ; nnl=nn+M % Duration of filter inpulse response
fn=[0:512]/512; W= fn*pi; %nornalized and digital frequency ranges
% LPF desi gn

fc_LP= 5000*T+2; % Nornulized 6dB cutoff frequency corresponding to 5kHz
gLP= fc_LPxsinc(fc_LPxnn); % Eq. (7.2.8)

gLP1= firl(N fcLP); %filter inpulse response or tap coefficients
GLP= abs(freqz(gLP, 1, W) +eps; GLP1= abs(freqz(gLPl, 1, W) +eps;
subpl ot (421), stem(nnl, gLP), hold on, stem(nnil, gLP1,'r.")

subpl ot (422), plot(fn, 20«1 0ogl0(G.P), fn, 20xl 0g10(G.P1), r:")

% BPF desi gn

fc_BP=[7500 17500] *T*2; % Nornalized 6dB band edge frequencies

fp= sum(fc_BP)/2+pi; % Passband center frequency[rad/ sanpl e]

gBP= 2xgLP. xcos(fp*nn); % Eq. (7.2.9)

gBP1= firl(N fcBP); %filter inpulse response or tap coefficients
GBP= abs(freqz(gBP, 1, W) +eps; GBP1l= abs(freqz(gBPl, 1, W) +eps;
subpl ot (423), sten(nnl, gBP), hold on, stem(nnil, gBP1,'r.")

subpl ot (424), plot(fn, 20«1 0ogl0(GBP), fn, 20%xl 0gl0(GBP1), r:")

% HPF desi gn

i mpul se_del ayed= zeros(1, N+1); inpul se.del ayed(M+l)= 1; % | npul se
fc_HP= 20000+T*2; % Nornalized 6dB cutoff frequency 20kHz

gHP= i nmpul se_del ayed-fc_HPxsinc(fc_-HPxnn); % Eq. (7.2.10)
gHP1=fir1(N,fcHP," high'); %ilter inpulse response/tap coefficients
GHP= abs(freqz(gHP, 1, W) +eps; GHP1= abs(freqz(gHP1, 1, W) +eps;

subpl ot (425), sten(nnl, gHP), hold on, stem(nnil, gHP1,'r.")

subpl ot (426), plot(fn, 20«1 0gl0(GHP), fn, 20%xl 0gl0(GHP1), r:")

% BSF desi gn

fc_BS=[7500 17500] *T+2; % Normalized 6dB band edge frequencies

7.2 Digital Filter Design 335

0.3 ; O: Rectangular windowed
o : Hamming windowed

— : Rectangular windowed
- - : Hamming windowed

|
|
—40 I
0 -60 i
—0.1 N N N N N n -80 | A
0 5 10 15 20 25 n 30 0 0.2 03 0.5 0.7 0.8 Q/r 1
(al) Impulse response (tap coefficients) of FIR LPF (b1) Magnitude of frequency response of FIR LPF
0.4
0
02 [dB]

100 15 20 25 n30 0 0.2 03 05 07 08 Y 1

(a2) Impulse response (tap coefficients) of FIR BPF
0.2

(b2) Magnitude of frequency response of FIR BPF

0.1

o

0 5 10 15 20 25 n 30 0 0.2 03 0.5 0.7 08 Q/m 1
(a3) Impulse response (tap coefficients) of FIR HPF (b3) Magnitude of frequency response of FIR HPF

ool

O
10 15 20 25
(a4) Impulse response (tap coefficients) of FIR BSF

0.6

poseeserie

n 30 0

07 0.8 Q/m 1

0.5

0.2 03
(b4) Magnitude of frequency response of FIR BSF

Fig. 7.16 Impulse responses (tap coefficients) and frequency responses of FIR filters

W= sun(fc_BS)/2*pi; % Stopband center frequency[rad/ sanpl e]
fcLP= (fcBS(2)-fcBS(1))/2; gLP= fc_LP+sinc(fc.-LPxnn);
gBS= i mpul se_del ayed- 2xgLP. xcos(Ws*nn); % Eq. (7.2.11)

gBS1=fir1(N fc.BS, stop’);

% filter inpulse response/tap coefficients

GBS= abs(freqz(gBS, 1, W) +eps;
subpl ot (427), sten(nnil, gBS),

GBS1= abs(freqz(gBSi, 1, W) +eps;
hol d on, stenm(nnl, gBS1,'r.’)

subpl ot (428), plot(fn, 20+l 0ogl0(GBS),

fn, 201 0g10(GBS1), 'r: ")

7.2.2.2 Multi-Band FIR Filter Design

We can use the MATLAB functionfir1(N,f, DC-1") orfirl(N,f," ' DC
0’) to design FIR filters whose frequency response magnitude is close to [1 0 1
0..Jor[0101...]foreach band [f(1) ~ f(2) f(2) ~ f(3) f(3) ~ f(4) f(4) ~
f(5) .. .] between the neighboring edge frequencies. We can also use the MATLAB
functionfir2(N,f, A orfirpm(N,f,A) orfirls(N,f,A) todesignFIR

336 7 Analog and Digital Filters

filters whose frequency response magnitude is close to an arbitrary piecewise linear
shape specified by the second and third input arguments f and A. Note the following:

- The firpm() function implements the Parks-McClellan algorithm, which uses the
Remez exchange algorithm and Chebyshev approximation theory to design mini-
max or equiripple filters minimizing the maximum error between the desired and
actual frequency responses [W-3]. It yields the frequency response exhibiting an
equiripple behavior.

- The firls() function minimizes the integral of the squared error between the
desired and actual frequency responses.

- The number of desired frequency-amplitude points must be even for firpm()
and firls().

- While the desired frequency response for firl() is supposed to be the brick wall
type, firpm and firls() allow us to describe the desired frequency response so that
we can insert the transition band(s) between the passband(s) and stopband(s) to
reduce the ripple in the magnitude of the frequency response.

Example 7.4 Multi-Band FIR Filter Design

Figure 7.17 shows the impulse responses (tap coefficients) and frequency
responses of the filters obtained by running the following program “sig07e04.m”.
Especially, Fig. 7.17(b4) illustrates the difference between the magnitude responses
of the equiripple and LSE filters that are designed using firpm() and firls(),
respectively.

%i g07e04. m

%to design multi-band FIRfilters using firl()/fir2()/firpm)
clear, clf

fn=[0:512]/512; Wt fn*pi; %nornalized and digital frequency ranges
N=30; MEN'2; % Filter order and its half

nn=[-M M; nnl=nn+M % Duration of filter inpulse response

%l ti pass/stop-band filter using firl()

ffe=[0.2 0.4 0.6 0.8]; % Band edge frequency vector

Bfirl DCl=fir1(N,ffe,'DC1"); % Tap coefficient vector
GfirlDCl= freqz(Bfirl.DCl,1,W; % Frequency response magnitude
subpl ot (421), stem(nnl, Bfir1.DCl)

subpl ot (422), plot(fn,abs(Gfir1.DCl))

9%l ti stop/pass-band filter using firl()
Bfirl.DQO=firl(N, ffe, 'DC0"); % Tap coefficient vector
Gfirl.DCO= freqz(Bfirl1.DC0,1,W; % Frequency response magnitude
subpl ot (423), sten(nnl, Bfir1.DC0)

subpl ot (424), plot(fn, abs(Gfir1.-DQ0))

%vul ti pass/stop-band filter using fir2()

% Desired pi ecewi se |inear frequency response

ffd=[0 0.18 0.22 0.38 0.42 0.58 0.62 0.78 0.82 1]; % Band edges in pairs
Gx=[1 1 0 0 1 1 0 0 1 1];

Bfir2=fir2(N, ffd, Gx);

Gfir2= freqz(Bfir2,1,W;

subpl ot (425), stem(nnl, Bfir2)

subpl ot (426), plot(fn,abs(Gfir2), ffd, GC&d, k:")

7.2 Digital Filter Design

337

%Wl ti-band pass/stop filter using firpm()
Bfirpmefirpn(N, ffd, G&d); % The nunber of fr
Bfirls=firls(N ffd, G&d); % The nunber of fr
Gfirpne freqz(Bfirpm1, W;
Gfirls= freqz(Bfirls,1,W;
subpl ot (427), stem(nnl, Bfirpm,
subpl ot (428), plot(fn,abs(Gfirpm,

hol d on, st

fn,abs(Gfirls), r-.",

equency points nust be even
equency points nust be even

em(nnl, Bfirls,’.")

ffd, G, " k:")

0.5
0.5

D

?olof
Wél) .6VU

0 5 10 15 20 25 n 30
(al) Impulse response of multi-band FIR filter
designed by using fir1(30,ffe, ‘DC-1")

0.4 1
0.2

Odesecesce’ Pt Pocococsen 05
o2l 8% S4

0 5 10 15 20 25 n 30

(a2) Impulse response of multi-band FIR filter
designed by using fir1(30,ffe, ‘DC-0)

0.6
04
0.2
2 o ?elel . .
-0.2
0 5 10 15 20 25 n 30

—~

(a3) Impulse response of multi-band FIR filter
designed by using fir2(30,fd,Gd)

0.6 om0
O firpm
0.4 < - firls()
02 T T
0 (OAY ? ® m@o
o OO
o2l b &
0 5 10 15 20 25 n 30

(a4) Impulse response of multi-band FIR filter
designed by using firpm(30,fd,Gd)/firls()

o 1 "
0 0102030

0 " il 'n " i iy "
0 0.1 0203040506 0.7 08 Q/r
b

0 R -
0 010203

(b4) Magnitude response of multi-band FIR filter

designed by using firpm(30,fd,Gd)/firls()

0 1 1 1
0 0102030405060708Q/m 1
b

1) Magnitude response of multi-band FIR filter
designed by using fir1(30,ffe, ‘DC-1")

1 H H
.4 0506 07 08 Q/r 1
2) Magnitude response of multi-band FIR filter
designed by using fir1(30,ffe,'DC-0")

--.: Desired magnitude response

'
)

1
3) Magnitude response of multi-band FIR filter
designed by using fir2(30,fd,Gd)

Vi)
0.7 08 Q/= 1

0.4 0.5 0.6

Fig. 7.17 Multi-band FIR filters designed using fir1(), fir2(), and firpm()/firls()

7.2.2.3 Anti-Symmetric FIR Filter Design
We can use the MATLAB functions fi r pn()

orfirls() with the fourth input

argument ‘h’ or ‘d’ to design anti-symmetric FIR filters. Note that in the ‘d’
mode, firpm() and firls() weight the error by 1/Q and 1/Q?, respectively
in nonzero amplitude bands to minimize the maximum relative error or sum of rel-
ative squared error. Note from Table 7.2 that the desired frequency response of an

338 7 Analog and Digital Filters

anti-symmetric FIR filter of an even order should be allowed to be zero at 2 = 0
and s and that of an anti-symmetric FIR filter of an odd order should be allowed to
be zero at 2 = 0.

Example 7.5 Anti-Symmetric Filters — Hilbert Transformer and Differentiator

(a)Hilbert Transformer
The impulse response of the Hilbert transformer dealt with in Problems 2.10
and 3.2 has an odd symmetry so that it can easily be designed using fi r pm()
or firls() with the fourth input argument * h’ as in the following program
“sig07e05a.m”. We can run it to get Fig. 7.18, where the frequency response of
the ideal Hilbert transformer is

2 |—j for0<Q
H(Q) 32y |=j for0<Q <z (7.212)
+j for —m<Q <0

%si g07e05a. m

%to design Hilbert transforners as anti-symetric FIRfilters
% by using firpm() or firls().

clear, clf

fn=[0:512]/512; W fn*xpi; %normalized and digital frequency ranges
% H | bert transforner using firpm() or firls()

% Type IIl (anti-symetric and even order) with G0)=0 and G pi)=0
B20_Hfirpm= firpn(20,[0.05 0.95],[1 1], h"); % Type |11
Q0_Hfirpme freqz(B20Hfirpm1,W;

B20_Hfirls= firls(20,[0.05 0.95],[1 1], h'); % Type |11

&0 Hfirls= freqz(B20Hfirls, 1, W;

% Type |1V (anti-symmetric and odd order) with G 0)=0
B21_Hfirpme firpn(21,[0.05 1],[1 1], h'); % Type 1V

Q1. Hfirpme freqz(B21 Hfirpm1, W;

B21 Hfirls= firls(21,[0.05 1],[1 1], h"); % Type IV

@1 Hfirls= freqz(B21 Hfirls,1,W;

subpl ot (421), nn=[0:20]; % Duration of filter inpulse response
stem(nn, B20_HSfirpm, hold on, stenm(nn,B20.Hfirls,’.")

subpl ot (422), plot(fn,abs(&0Hfirpm, fn,abs(&ROHSfirls),’ :")
subpl ot (423), nn=[0:21]; %Duration of filter inpulse response
stem(nn, B21_Hfirpm, hold on, stenm(nn,B21 Hfirls,’.")

subpl ot (424), plot(fn,abs(@1HSfirpm, fn,abs(R1Hfirls), :")
% Use filter visualization tool to see the filter

fvtool (B20_Hfirpm 1, B20.Hfirls, 1)

fvtool (B21_ Hfirpm1, B21 Hfirls, 1)

(b) Differentiator
The impulse response of the differentiator dealt with in Problem 3.3 has an odd
symmetry so that it can easily be designed by using firpm() orfirls()
with the fourth input argument * d’ as in the following program “sig07e05b.m”
where firpm() and firls() inthe ‘d’ mode weight the error by 1/ and
1/92, respectively. We can run it to get Fig. 7.19.

7.2 Digital Filter Design 339

(Q)Why is the rightmost edge frequency in the second input argument of firpm()/firls()

set to 0.95 instead of 1 for the type 1l FIR filter design despite the nonzero
desired magnitude response at Q@ = 7 ?

| o: firpm() 1 2
05 T « : firls()
Pe@®e0Q —: firpm()
0 %
R 0.5 ---: firls()
05}
0 5 10 15 n 20 0 0.2 0.4 0.6 08 Q/ir 1

(al) Impulse response of a Hilbert transformer
using firpm()/firls (20, [0.05,0.95], [1 1], 'h")

o: firpm()
05 i « : firls() !
0-‘@'0'®'®'®‘€W

(b1) Magnitude response of a Hilbert transformer
using firpm()/firls (20, [0.05,0.95], [1 1], 'h")

05 -=-: firls()
-0.5
0 5 10 15 n 2021 0 0 0.2 0.4 0.6 08 Q/r 1
(a2) Impulse response of a Hilbert transformer (b2) Magnitude response of a Hilbert transformer
using firpm()/firls (21, [0.05,1], [1 1], 'h") using firpm()/firls (21, [0.05,1], [1 1], 'h")

Fig. 7.18 Hilbert transformers designed using firpm() and firls()

O: firpm() 3
1 . firls()
2 — firpm()
0q 1 | i finsO
_1) =
0 5 10 15 n 20 0 0.2 04 06 0.8 Q/r 1

(al) Impulse response of a differentiator

(b1) Magnitude response of a differentiator
using firpm()/firls(20,[0 0.95],[0 0.95*pi], ‘d")

using firpm()/firls(20,[0 0.95],[0 0.95*pi], ‘d’)

o: firpm() 3
o firls()

0 21— firpm()
1 === firls()
-1
1 1 1 11 0 1 1 1 1 1
0 5 10 15 n 2021 0 0.2 0.4 0.6 0.8 Q/r 1

(a2) Impulse response of a differentiator

(b2) Magnitude response of a differentiator
using firpm()/firls(21,[0 1],[0 pi], ‘d")

using firpm()/firls(21,[0 1],[0 pi], ‘d")
Fig. 7.19 Differentiators designed using firpm() and firls()

340 7 Analog and Digital Filters

%i g07e05b. m

%to design differentiators as anti-symetric FIRfilters

% by using firpm() or firls().

clear, clf

fn=[0:512]/512; W= fn*pi; %nornalized and digital frequency ranges
%Differentiator using firpm()or firls()

B20.dfirpm= firpn(20,[0 0.95],[0 0.95*pi], d); % Type |11
Q0dfirpme freqz(B20dfirpm1, W;

B20.dfirls= firls(20,[0 0.95],[0 0.95*pi], d); % Type |11
&Q0dfirls= freqz(B20dfirls,1, W;

B21dfirpne firpm(21,[0 1],[0 pi], d); % Type IV with G0)=0
Q1dfirpme freqz(B21dfirpm1, W;

B21dfirls= firls(21,[0 1],[0 pi], d"); % Type IV with G 0)=0
@1dfirls= freqz(B21dfirls,1,W;

subpl ot (421), nn=[0:20]; % Duration of filter inpulse response
stem(nn, B20_d_firpm, hold on, stem(nn,B20dfirls,’.")

subpl ot (422), plot(fn,abs(&0dfirpn), fn,abs(&0dfirls), :")
subpl ot (423), nn=[0:21]; % Duration of filter inpulse response
stem(nn, B21.dfirpm, hold on, stem(nn,B21dfirls,’.")

subpl ot (424), plot(fn,abs(&1dfirpnm, fn,abs(XR1ldfirls), :")
% Use filter visualization tool to see the filter

fvtool (B20dfirpm1,B20dfirls,1)

fvtool (B21dfirpm1,B21dfirls,1)

7.2.2.4 Constrained Least Squares (CLS) FIR Filter Design

There are two CLS filter design functions, fircls() and fircls1(). The
fircls() function designs FIR filters whose magnitude responses are close to
the desired piecewise constant one specified by a vector of band edges and the
corresponding vector of band amplitudes. The upperbound and lowerbound of the
desired magnitude response can also be given. The fi rcl s1() function designs
a FIR LPF or HPF whose magnitude response is close to the brick wall type for
the passband/stopband specified by the cutoff frequency within the given tolerance
on the passband and stopband ripples. Given the passband and stopband edge fre-
quencies together with the weighting factor on stopband error relative to passband
error, it applies the weighted least squares algorithm. In the case of HPF design, the
filter order N given as the first input argument should be even; otherwise, it will be
incremented by one to make an even filter order.

Example 7.6 Multi-Band CLS FIR Filter Design

The MATLAB function fi rcl s() is used to design a two-band FIR filter with
the desired magnitude response vector A = [0 0.5 0 1 0] for the bands speci-
fied by the band edge vector f = [0 0.3 0.5 0.7 0.9 1] in the following program
“sig07e06.m”. We run it to get Fig. 7.20, which shows the magnitude responses
of the two filters where filter 1 and filter 2 are designed with the upperbound and
lowerbound stricter on the stopband and the passband, respectively.

7.2 Digital Filter Design

+} Filter Visualization Tool - Magnitude Response ! E
DER|IMOTNNNU|2 220X B =0] Normaiized Frequency
e+ 0 @HONS i T
1 f[Normalized Frequency: 0.3000488] -~ - 4 v - : Fangs:
0.8 | (Megniude: 0.3296551 | i A Numiber of Poirts:
T L [Normalized Frequency: 03005371 [
ucl: 024011866 Magnitude Display:

[Mormaiize Magnitude to 1 (0 dB)

| Save as Detaut || Restors Original Defauts|

e T T

341

O 01 02 05 04 Nomeizeds o 10 [Co0) (Camcet) (o) (o)
(a) Filter Visualization window opened by using fvtool() (b) Analysis Parameters dialog box opened
or clicking View/Filter_Visualization_Tool on the top menu bar by clicking Analysis/Analysis Parameters

Fig. 7.20 Multiband FIR filters designed using fircls(30,f,A,ub,lb) with f = [0 0.3 0.5 0.7 0.8 1]

and A =[00.5010]

(cf) We can change the unit of magnitude and frequency scale in the Analysis
Parameters dialog box opened by clicking Analysis/Analysis_Parameters on

the menu bar of the Filter Visualization window.

%i g07e06. m

% CLS design nmulti-band filters using fircls().

clear, refresh(1)

N=50; % Filter order

f=[00.30.50.7 0.8 1]; % The band edge frequency vector

A= [0 0.5 0 1 0]; % The nagni tude response vector

ubl= [0.01 0.54 0.02 1.05 0.02]; Ibl=[-0.01 0.46 -0.02 0.95 -0.02];
Blfircls= fircls(N f,A ubl, Ibl); %stricter on stopband ripple condition
ub2= [0.05 0.51 0.05 1.02 0.05]; Ib2=[-0.05 0.49 -0.05 0.98 -0.05];
B2fircls= fircls(N f, A ub2,1b2); %stricter on passband ripple condition
fvtool (Blfircls,1, B2fircls,1) %ilter visualization tool to see filter
% Cick any point on the frequency curve to add data markers

Example 7.7 CLS FIR LPF/HPF Design

(a)FIR LPF Dsign

We can run the following program “sig07e07a.m” to get Fig. 7.21(a), which
shows the magnitude responses of the two filters where filter 2 is designed with

more weighting (Kw > 1) on the stopband.

%i g07e07a. m

%to CLS design LPF filters using firclsl().

clear, refresh(1)

N=30; fc= 0.3; %Filter order and Cutoff frequency

fp=0.28; fs=0.32; % Passband and stopband edge frequencies
rp= 0.05; rs= 0.02; % Tol erances on passbhand and stopband ripple
% FI R LPF design using firclsl()

Bl_LPFfirclsl= firclsl(Nfc,rp,rs);

Kw=10; % For nore wei ghting on the stopband ripple condition
B2_LPFfirclsl= firclsi(Nfc,rp,rs,fp,fs,Kw;

% Use filter visualization tool to see the filter

fvtool (BL.LPFfirclsl,1, B2.LPFfirclsl,1)

342 7 Analog and Digital Filters

(b)FIR HPF Dsign
We can run the following program “sig07e07b.m” to get Fig. 7.21(b), which
shows the magnitude responses of the three filters where filters 2 and 3 are
designed with more weighting (Kw < 1) on the passband. Note that filters 2/3
are ensured to satisfy the passband/stopband ripple condition at the frequency of
ft = fp + 0.02/fs — 0.02, respectively.

%si g07e07b. m

%to CLS design HPF filters using firclsl().

clear, refresh(1)

N=30; fc= 0.3; %Filter order and Cutoff frequency

fp=0. 28; fs=0.32; % Passband and stopband edge frequencies
rp= 0.05; rs= 0.02; %tol erances on passhand and stopband ripple
% FI R HPF design using firclsl()

BHPFfirclsl= fircls1i(Nfc,rp,rs, high);

Kw=0. 1; %more weighting on passband ripple condition

% To ensure error(ft)<rp with ft within the passband

ft=f p+0. 02;

Bl HPFfirclsl= fircls1(Nfc,rp,rs,fp,fs,Kw ft, high);

% To ensure error(ft)<rs with ft within the stopband
ft=fs-0.02;

B2 HPFfirclsl= fircls1(N fc,rp,rs,fp,fs,Kw ft, high);

% Use filter visualization tool to see the filter

fvtool (B.HPFfirclsl, 1, B1.HPFfirclsl, 1, B2.HPFfirclsil, 1)

0 : 0
[dB] | [dB] /
-10 -
\(Fllt(r#1 -10
—20 FiIter#Z\//Filter#l
Flter#’z/\\ -20 | i
30 ///\ !
Filter #3
—40 /\ \ \ /\ -30
VNN o MR
-0 A WK TR
0 0.1 0.2 0.3 Normalized Frequency (xr rad/sample) 1.0 0 0.1 0.2 0.3 Normalized Frequency (xr rad/sample) 1.0
(a) The magnitude responses of FIR LPFs (b) The magnitude responses of FIR LPFs

Fig. 7.21 FIR LPF/HPFs designed using fircls1()

7.2.2.5 Arbitrary-Response FIR Filter Design

Thecfi rpn() function designs a possibly nonlinear phase, asymmetric, complex-
coefficient, and equiripple frequency response FIR filter minimizing the Chebyshev
(or minimax) error between the actual magnitude response and desired one. Note
the following:

- B = cfirpm(N, f, A, w) returns a length (N + 1) FIR filter whose magnitude
response is the best approximation to the desired frequency response described
by f and A where

N: the filter order.

7.2 Digital Filter Design 343

f. the vector of (an even number of) band edge frequencies arranged in ascend-
ing order between —1 and +1 where 1 is half the sampling frequency,
i.e., the Nyquist frequency. The frequency bands span f(k) to f(k + 1) for
k odd; the intervals f(k + 1) to f(k + 2) for k odd are “transition bands” or
“don’t care regions” during optimization.
A: areal vector (of the same size as f) which specifies the desired magnitude
response as the line connecting the points (F(k),A(k)) and (F(k+1), A(k+
1)) for odd k.
W: a vector of real, positive weights, one per band, for use during optimization.
If not specified, it is set to unity.
- For filters with a gain other than zero at Fs/2, e.g., highpass and bandstop filters,
N must be even. Otherwise, N will be incremented by one.
- B = cfirpm(N, f, {@fresp, p1, p2, ---}, w) returns a length (N + 1) FIR filter
whose magnitude is the best approximation to the desired frequency response as

returned by function @fresp with optional arguments p1,p2, - - - . The function is
called from within cfirpm() using the syntax [fg, wg] = fresp(N, f, fg, w, p1, p2,
-++) where

fg: avector of interpolated grid frequencies over each specified frequency band
at which the response function will be evaluated.

Ag and wg: the desired complex frequency response and optimization weight
vectors, respectively, evaluated at each frequency in grid fg.

- Predefined frequency response functions for @fresp include:
‘lowpass’, ‘bandpass’, “hilbfilt’, ‘allpass’, ‘highpass’, ‘bandstop’, ‘differen-
tiator’, “invsinc’
- B = cfirpm(--- , Sym) imposes a symmetry constraint on the impulse response,
where Sym may be one of the following:

‘none’; Default if any negative band edge frequencies are passed, or if @fresp
does not supply a default value of Sym.

‘even’: Impulse response will be real and even. This is the default for highpass,
lowpass, bandpass, bandstop, and multiband designs.

‘odd’: Impulse response will be real and odd. This is the default for Hilbert and
differentiator designs. The desired magnitude response at 2 = 0 must
be zero.

‘real’: Impose conjugate symmetry on the frequency response.

(cf) Ifany Sym option other than ‘none’ is specified, the band edges should only
be specified over positive frequencies; the negative frequency region will
be filled in from symmetry.

Example 7.8 Complex-Coefficient, Arbitrary Magnitude Response FIR Filter Design

The MATLAB function cf i r pn() is used to design two FIR filters with differ-
ent filter order N = 30 and 40, with the desired piecewise linear magnitude response
connecting the frequency-amplitude points {(—1, 5), (—0.5, 1), (0.4, 2), (0.3, 2),
(0.4, 2), (0.9, 1)} in the following program “sig07e08.m”. We run it to get Fig. 7.22,
which shows the impulse and magnitude responses of the two filters.

344 7 Analog and Digital Filters
2 ® [—e Filter #1: Real 2 [—@ Filter #1: Real
—% Filter #1: Imaginary —% Filter #1: Imaginary
15 15
1 1
0.5 05
0 W-TT* T $ PO SN 0 Guonoen T?* ?t L] >
i S0 I 0 il i ML X i i
0 5 10 15 20 Samples 30 0 5 10 15 20 25 30 Samples40

(al) Complex impulse response of 30th—order Filter 1

(a2) Complex impulse response of 40th—order Filter 2

[t:'lé] |———: Desired magnitude response|” g-é | ———: Desired magnitude response|
12 1\ |— : Actual magnitude response | [12] \ : Actual magnitude response [

10 \\\ 10 \\\ |

6L\ RN I

\ \

N R | I |
N I v -
) W AN \! N
AW/l \ .| A\ |

-1 -0,5 0 0.5 -1 -0,5 0 0.5 1

1
Normalized Frequency (xrn rad/sample)
(b1) Asymmetric frequency response of Filter 1

=} User-defined Spectral Mask [CJE][X]

[] Enabie Mask

Frequency Vector .41 .05-04030409] |Oto1
|L near E

Magritude Vector [l512221] |

lormahzed Fregquency

Mapgnitude Unds:

[oK | [cancel] [Hel | [Apply |

(c) User—defined Spectral Mask dialog box
to the desired magnitude response

Normalized Frequency (xn rad/sample)
(b2) Asymmetric frequency response of Filter 2

(cf) To plot the desired magnitude response curve
so that it will be overlapped with the actual one
of the designed filter dotted, type in the band
edge frequency vector and the corrresponding
desired magnitude response vector into the
dialog box opened by clicking the View/User-
defined Spectral Mask menu on the top menu bar.

Fig. 7.22 Complex impulse response and frequency response of (nonlinear phase) FIR filters

designed using cfirpm()

%i g07e08. m
% use cfirpm) to design FIRfilters

clear, refresh
for N=[30 40]

f=[-1-0.5-0.40.30.40.9];
A=[5 122 21];
Kw=[1 10 5];
Bcfirpme cfirpm(N f, A Kw;
% Use filter visualization tool
fvtool (Bcfirpm1)

end

% having an arbitrary conplex frequency response (w th nonlinear

phase)

% Frequency/ magni t ude vectors describing desired frequency response

%14 0 6 6 6 0] (dB)
% A vector describing the weighting factor for each band

to see the filter

7.2 Digital Filter Design 345
7.2.3 Filter Structure and System Model Available in MATLAB

Figure 7.23 shows various filter structures that can be constructed, realized, and cast
into a Simulink block by using FDATool or the dfilt()/realizemdl() command (see
Sect. E.15). Note that all of the (transposed) direct I and Il forms in Fig. 7.23(a)—(d)
commonly have the following system function

By yn] Bm1 y[n]
>0 Y[Z] >0 Y [Z]
z1 z-1 z-1
bmo —an2 —am2 Bm2
. >
z-1 z-1 z-1
b3 —8m3 —am3 b3
cascade) (b) Transposed direct | form — SOS (cascade)
uln] m1 yInl u[n] b1 yn]
ulz] Yizl Ulz] T 0 v
21427} z-1
b2 —am2
ce-O-ee-@
21421 2-1
b3 —am3
(c) Direct Il form — SOS (cascade) (d) Transposed direct Il form — SOS (cascade)

u[n]

ulz] . :
-'N N T2 2 - 51
T, T T,
P+ p3 P2 P Jin]

Y[z]
(e) Lattice/ladder —ARMA form
U[rl] y 3 see y 3 y 3
U[z]
N N —f2 2 -n 5
All-pass output All-pole output
¥ [n] y,[n]
Y, 2] T) S v
2 z z z 1
(f) IR lattice form
uln] _ y,[n]
u[z] Y, (2]
5] 51 P 2 'N Minimum-phase
output
Maximum-phase
output
YoInl
71 -1 z-1 Y, lz]

(g) FIR lattice form

Fig. 7.23 Various filter structures

346 7 Analog and Digital Filters

uln] y[n] uln]
(Vi T Y[zl U[z]
ufn]
U[z]
(j1) Direct symmetric form with an even order (j2) Direct symmetric form with an odd order
T DR S S uln]
Ulz] - ulz]
(k1) Direct asymmetric form with an even order (k2) Direct asymmetric form with an odd order

Fig. 7.23 (continued)

bmi11Z+ byyrz M bm12? + bmaZ + bmg
Z+am41.2 m=1 Z2+amz+ am3

with M = roor(%) (7.2.13)

Gl2l = KGu1[2] I Gnl2] = K

MATLAB represents the SOSs (second-order sections) connected in cascade
(with the output of each stage applied into the input of the next stage) asan M x 6
array ‘SOS’, each row of which contains the numerator and denominator coefficient
vector [bmy bmz bms 1 amy ams] of a single section.

MATLAB provides several functions that can be used for conversion between
the various linear system models as listed in Table 7.3. Converting from one system
model or filter structure to another may yield a result with different characteristic
than the original due to the computer’s finite-precision arithmetic operations and the
variations in the conversion’s round-off computations.

347

7.2 Digital Filter Design

00q SIY} Ut PajesLicey St UoNoUNy g TLVIA 8y} Jey) suesw . (o)

— QUON QUON QUON QUON ()112010 | aomeT]
3UON — auoN 3UON 3UON «() 11z red (ja1resed) SOS
3UON 3UON — ()dzgzsos ()ssgsos ()igsos (apeoses) SOS
dUON JUON ()sosgdz — ()ssgdz ()112dz ure9-s|0d-04e7
3UON 3UON ()sosgss ()dzgss — ()1i1zss aoeds-a1e1S

()ore gyl «()z redg 41 ()sosz 41 ()dzz 43 ()ssz 43 — uonoung wesAs
3011 (131eted) SOS (apeoses) SOS ure9-8|0d-01ez aoeds-a1eIS uonounS walsAs

S|9pOoW WaSAS Jeaul] SNOLIBA aUj) U3am1aq UOISIAAUOD Jo) suonouny gy 1IVIN £/ 9l0el

348 7 Analog and Digital Filters

In the Filter Design & Analysis window (Fig. 7.24(a)) opened by typing “‘fdatool’
in the MATLAB command window, we can convert the structure of a designed
filter through the Convert Structure dialog box (Fig. 7.24(b1)) opened by clicking
Edit/Convert_Structure (Fig. 7.24(b)) on the top menu bar. The following structures
are available for conversion in MATLAB:

- Direct form |, Direct form IlI, Direct form | transposed, or Direct form Il
transposed

- Second-Order Sections

- Lattice minimum/maximum phase from minimum/maximum-phase FIR filter

- Lattice allpass from Allpass filter

- Lattice ARMA from IIR filter

- State-Space model

The MATLAB function dfilt() can also be used to convert the filter structure. For
example,

>>B=firls(30,[0 .5 .6 1],[0 0 1 1]); Gdi=dfilt.dffir(B); %lirect-formFIR
>>[B, Al =butter(7,0.2); Gd2=dfilt.df2tsos(tf2sos(B,A)); %irect I1t-SCS IIR
>>Cd_par=dfilt.parallel (Gdl, Gd2); Y%parallel structure of two or nore objects
>>real i zemdl (Gd_par) % To create Sinulink nodel

>>f vt ool (Gd1, Gd2, Gd_par) % To anal yze filter

7.2.4 Importing/Exporting a Filter Design

In the FDATool window (Fig. 7.24), we can click the Import Filter button in the side
bar to open the Import Filter panel (Fig. 7.25) and import a filter in any of the repre-
sentations in the Filter Structure or a SOS by clicking on the check box. In the fields
of Numerator and Denominator, type the filter coefficient vectors explicitly or the
names of the variables whose values are in the MATLAB workspace. Then select
the frequency unit from the options in the Units menu and if the selected frequency
unit is not ‘Normalized’, specify the value or MATLAB workspace variable of the
sampling frequency in the Fs field. Lastly click the Import Filter button at the bottom
of the Import Filter panel to import the filter that you have specified. You can edit
the imported filter using the Pole/Zero Editor panel in which you can move poles,
add, or delete poles/zeros.

On the other hand, we can select the File/Export menu in the FDATool window
to open the Export dialog box (Fig. 7.26) and save your filter design result by

- exporting the filter coefficients or objects to the workspace, a MAT-file, or a C
header file,

- exporting the filter coefficients to an ASCII file,

- or exporting to SPTool or Simulink.

(cf) FDATool GUI is opened through the Digital Filter Design block in the Signal
Processing Blockset.

7.2 Digital Filter Design

sign & Analysis Toaol

[untitled.fda]

349

Phase response

Magnitude & phase responses g

dela |

Pole/zero plot

New Session
Open Session
Save Session

Save Session As \K

Store Filter T

m@]_- Elle~Edit Analysis Tamzs%\ﬂew Window Help

response
ter Specifications.

20 N # 2 [0S
fvtool Magnitude “N':UD E’;‘E,‘,’.',‘if“ mlggnnse

ay

Sy

Filter coefficients

Import from Workspace

Import from XILINX Coefficient (,COE) File|

els pulidown menu] | 2) view pulldown menu |
(Generate C header Grid
Code Composer Studio (tm) IDE || Legend

Export to Simulink Model

XILINX Coefficient (. COE) File

Specification Mask
User-Defined Spectral Mask .,

Feorder snd Scale Second-Order Section .,
Conver to Single Section
Pole/Zero Editor

Export Generate HOL
M-file o Show Ref -
. Palyph ilter
[Edit(b) | Zoom In
Convert Structure 7 %
Convert to Second-Order Sections 00M
Zoom ¥

Full View

Filtar(s)

Restore Default View

Stopband S0S View Seftings .,
Filter Visualization Tool

Filter Design Panel —

Filter Order L ¥
(> Specify order; units: [z [+]]| units: [ue -]
©vemun e

e roose B0 Jllp B]
et DenstyFactor. [0] chw]
I=1

e o { Fiter C {1 Import Filter dialog box:

F:::?ﬂ:lng Fiter Structure: Sampling Frequency:

4 | et [ovectForm s 7] Momersor 50671 0053 0028 (Gear) ks [orekzed 016 D]

r . :
I [import as second-order seclions ‘pezi@Tise0el(Gea) FsfE]
mport filter e
hom 1 Import Fiter
D_ul:Ign 1 Tesign F I'El|

(@)

FDATool (Filter Design & Analysis Tool) window

_“iSCZanalgsis pulldown menu I
[Fil

-) Convert Structure [LIE][x] |Filter Specifications
e B
i f
Convert to: - Phase Response
T ——— (1
Direct-Form | Transposed, SOS Group Delay Response Fraquency Soal: [rear]
Direct-Form | Transposed, SOS Phase Delay) -
Lattice Autoregressive Moving- Average (ARMA) Impulse Response Frequency Range: [0, pi)
Coupled-Allpass (CA) Laftice ||| |Step Response Number a2
iCoupled-Alpass (CA) Lattice with Power-C ¥ (°C) Outpd % | |Pole/Zero Plot of Pt %
|__ou—_| [Cancer)| [Filter Coefficients)
Filter Informati Magritude Display: | Magrnuae ||
{b1) Convert Structure dialog box Magnitude Response Estimate
Found-off Noise Power S O s Msrdods 01,0 08)

[save

(o] (concei] (ron) (oowt)

({c1) Sampling Freauency dialog box

Defeut] [Restore Orige]

Fig. 7.24 FDA Tool window and its menu

Overlasf Analysis

[Save as Detaut | [Restore Original Detauts)

(c) Analysis pulldown menu

(c2) Analysis Parameters dialog box

350 7 Analog and Digital Filters

(Side — Filter C:
El'el :lfaw Fiter Structure: Sampling Frequency:
ultirrate
Filter Drect.Form 1 [[] Mumerstor[071 0.0530028) Units: Cﬂ
Transform

Filter

Direct-Form | r-,m -[62148-11580 S

Set
quantization| .
parameters Direct-Form | Transposed
Realizing {7 Direct-Form Il Transposed
model ¥
Direct-Form FIR
Pole/zero
Eoley2eroy Ovelrﬁm—a&.dd FIR
: Lattice Alpass
Impaort filter 5 : 2
om — Lattice Moving-Average (MA) For Minimum Phase
workspece | Lattice Maving-Average (MA) For Maximum Phase
gesion THR| | atceatorerssve o Avroe it
|Ready Filter object

Fig. 7.25 Import Filter panel opened by clicking the Import Filter button in the side bar

&]
Expoet To . Export To. Export To Export To.
Workspace E Workspace B Workspace E (Workspace B
Coefficiert File (ASCH) Coefficient File (ASCE) Coefficiert File (ASCE) Coetficient File (ASCH)
MATFie WAT-File MAT-Fie MAT-File
SPTool SPTool SPTool SPTool
Export As Export Az Export As Export As
[coetticients [l ﬂ Obyects ™ | [cotticents =i ﬁ Otyects =]
Objects Objects
Variable Names Vorishbe Mames VarisbleNames Vorihle Mames
soswaric 55] || || DiscreteFor] || || trrstor m - —
Dencminator: Den
Sosevates]
[J overwrite Variables [overwrite Variables [overwrite Variables [Overwrite Variables

(a) To save a SOS filter structure as a variable or a filter obiect (b) To save filter coefficient(s) as a variable or a filter object

Fig. 7.26 Exporting a filter design result

7.3 How to Use SPTool
SPTool is an interactive GUI for digital signal processing that can be used to

- Analyze signals (Signal Browser)

- Design filters (FDATool: Filter Design & Analysis Tool)
- Analyze (view) filters (FVTool: Filter Visualization Tool)
- Filter signals

- Analyze signal spectra (Spectrum Viewer)

Signals, filters, and spectra can be brought from the MATLAB workspace into the
SPTool workspace using File/lmport. Signals, filters, and spectra created/modified
in or imported into the SPTool workspace can be saved (as MATLAB structures)
using File/Export.

Figure 7.27(a) shows the SPTool window opened by typing ‘sptool’ into the
MATLAB command window where you can access the three GUIs, i.e., Signal

7.3 How to Use SPTool

351
<) SPTool: startup,spt
File Edt Window Help
Signals Filters Spectra
mtlb [vector] & | [LSIp [design] a | |mtlbse [auto] -
ichirp [vector) 'Zlp [imported] chirpse [auto)
rain [vector] IRbp [design] firainse [auto]
H View] { View] View N
New] Create
Edit] Update |
Apply]
(a) SPTool window
<) Signal Browser _JOfx

File Markers Window Help

(Toééle Markers) (Set Marker type)

SR RIS |1IX X

s O

B =L [A ¥ ¥

1

Play an
audio signal

(Zoom in or out) | Set c-lspay color and line style) (C'What is this” Helg')

. : (Select a signal)
Display array and complex signals,

chirp (13129x1 real, Fs=g8132)

T T

[

(=]

=

&

0

E)

F

8, o] e L

0 0.2 0.4 0.6 0.8 1 1.2 1.4 Time 1.8
:
[+
Marker 1 x:[0.36376953] Marker2 x[0.84521484 dx: 0.46144531
y: 0.00076923077 — — y: 0.30115385 dy: 0.30038462
(b) Signal Browser window

=) Spectrum Viewer M= E
File Options Markers Window Help
GR|LXIswme | T8I ZBH AV
_ Signal: chirp PSD
13129-by-1 real 0 : ; . : r : T .
Fs=8192

Covariance
FFT
Mod. Covar.
MTM

..SU A A A L . A A
0 500 1000 1500 2000 2500 3000 Frequency 4000
Marker1 x[632____ | Marker2 x[2980 | d9x 1848
. -47 043533 y: -4.1619254 dy: 42881608

(¢) Spectrum Viewer window

Fig. 7.27 SPTool window, Signal Browser window, and Spectrum Viewer window

352 7 Analog and Digital Filters

Browser (Fig. 7.27(b)), Filter Visualization Tool (Fig. 7.20(a)), and Spectrum Viewer
(Fig. 7.27(c)) by selecting a signal, filter, or spectrum and clicking the appropriate
View button. Note that if you start FVTool by clicking the SPTool Filter View button,
FVTool is linked to SPTool so that any changes made in SPTool are immediately
reflected in FVTool where the FVVTool title bar includes “SPTool” to indicate the
link. (Every time you click the Filter View button, a new, linked FVTool starts,
which allows you to view multiple analyses simultaneously. Any parameter except
the sampling frequency can be changed in a linked FVVTool. The sampling frequency
can be changed through the Sampling Frequency dialog box opened by selecting the
Edit/Sampling_Frequency menu in the SPTool window or by selecting the Analy-
sis/Sampling_Frequency menu in the FDATool window, which will be opened by
clicking the Filters/Edit button.) If you start an FVVTool by clicking the New button
or by selecting File/New from within FVVTool, that FVTool is a stand-alone version
that is not linked to SPTool. You can also access a reduced version of FDATool
(Fig. 7.24(a)) by clicking the New button to create a new filter or the Edit button to
edit a selected filter. You can apply a selected filter to a selected signal by clicking
the Apply button. Clicking the Create button opens the Spectrum Viewer and shows
the PSD (power spectral density) of the selected signal. Clicking the Update button
opens the Spectrum Viewer for the selected spectrum.
Let us try using the SPTool in the following steps:

1. Create a noisy two-tone signal in the MATLAB workspace and import it into
SPTool.

2. Design a BPF using FDATool.

3. Apply the designed filter to the signal to create a bandlimited noisy signal.

4. Analyze the input and output signals. For example, you can compare the original
and filtered signals in the time domain using the Signal Browser.

5. Compare the original and filtered signals in the frequency domain using the
Spectrum Viewer.

6. Save the filter design and signal analysis results by exporting to disk (MAT-file)
or workspace.

<Step 1: Creating a noisy signal in the MATLAB workspace and importing it
into SPTool>
You can type the following statements into the MATLAB command window:

>>Fs=1e4; Ts=1/Fs; tt=[0:Ts:0.5]; randn(’state',0);
>>x=si n(2+ pi *941xtt) +cos(2xpi *1209+tt) +0. 1xrandn(si ze(tt));
>>spt ool % Open a SPTool window to start a new SPTool session

Then in the SPTool window, select the File/Import menu to open the Import-
to-SPTool dialog box in which you can import x and Fs into the SPTool in
the following way (see Fig. 7.28(a)):

- Select x from the Workspace Contents list, click the upper Right-Arrow
button, and name the signal by typing, say, ‘sigl’ (default name) in the
Name field to import x as a signal data.

7.3 How to Use SPTool 353

<) Import to
Source — Workspace Conterts —

{&) From Workspace = ssloction &
" From Disk Ts
MAT-file Mame: t Spectrum

— || £} | CR—

—— Sampling Frequency
i)z |
hame
[Cox) ("cance) {Heep]lﬁs-n“ |l

(a) Import-to-SPTool dialog box opened by selecting the File/Import menu

Ma r‘;lggge Phase response .o & phase resp C1BI]
"“?SL%"'.;’:?JSP "SES{“’"’ Filter coefficients
DeWaR|[PRPLX[DHINNMHA+ M0 - SHONE W
—— — Current Fiter | i Magniude Response (dB)
Structure: Direct-Form i,
Second-Order ! H ! H
Sections i ¢ R
Order: 10 h-1 : : : :
Sections: S 1 1 H H
Sobi: ves o feeeeed e
Source: Designed 2 H ‘
] (NP .S -
: NI EE N
o 0s 1 15 2 25 3 Frequency (kHz) 45
Filter ign P]
— Response Type_____ _ Filter Order ue Design ans_.’ o y Specifications — __ e
2 |Lowpass 11| | ¢ specity order: Units: ||-|; El Urits: |dﬁ El
O Highpass .
® Bancpass SN P —
Oy Fstopt: |1000
O Borstop ~ortons | | co—
O |pifferentistor : There are no optional Fpassi: [1100
2 5 for this desi <
1 | = Fassz il
o e T Feen2
@[PR [Equiripple -
E [Design Filter]

(b) FDATool window opened by clicking the New button in the SPTool window

-) Apply Filter

) Edit Window Help
Input sigt .
Signell .'ﬂ | g:,;pllcala : |Illels Spectra
Fter it | i Tve N:rire bse (auto] -
Algorith Direct-Form I, Second-Order Sections|v ;’;’n"lt" Sampling Frequency ss:[gfoci]
A > TIRT i 1 [auto]
Siplsi || = -) Specify ... M SIE
(oK] [canca | - Sampling freguency: i
[10000)
o [View | (ox) (Cancel))
(c) Apply Filter dialog box e

(d) Specify_Sampling_Frequency dialog box

Fig. 7.28 Importing signal, designing filter, applying designed filter, and editing sampling
frequency

354 7 Analog and Digital Filters

- Select Fs from the workspace contents list and click the lower Right-
Arrow button to import Fs as the sampling frequency.

- Click the OK button to close the Import-to-SPTool dialog box. Then you
will see sigl[vector] in the SPTool’s Signals list (see Fig. 7.29(a)).

(cf) You can also import signals from MAT-files on your disk.
(cf) You can import filters and spectra into SPTool in the same way as you
import signals.

<Step 2: Using FDATool to design a BPF>

You might import an existing filter or design/edit a new filter using FDATool.
Here, click the New button to open FDATool, type the following specification
into the appropriate fields, and then click the Design Filter button to design a
filter named *“filtl’ by default (Fig. 7.28(b)):
Sampling frequency: Fs = 10kHz, Stopband attenuation: As = 50dB, and
Passband ripple: R, = 3dB

Passband edge frequencies: fp; = 1.1kHz, f, = 1.8kHz

Stopband edge frequencies: fs; = 1kHz, fs, = 2kHz

<Step 3: Applying the designed filter to the signal to create a bandlimited
signal>

- Select the signal ‘sigl[vector]’ from the Signals list by clicking on it
(Fig. 7.27(a)).

- Select the filter “filtl[design]’ from the Filters list by clicking on it.

- Click the Apply button under the Filters list to open the Apply Filter dialog
box (Fig. 7.28(c)), in which you can select the filtering algorithm, name
the output signal, say, ‘sig2’, and click OK to close the dialog box. Then
you will see sig2[vector] in the SPTool’s Signals list.

(cf) If you see a warning message that the sampling frequencies for the sig-
nal and filter are different, select the Edit/Sampling_Frequency menu to
make them equal and then apply the filter to the signal
(Fig. 7.28(d)).

<Step 4: Comparing the original and filtered signals in the time domain in
Signal Browser>

- Select the signals ‘sigl” and ‘sig2’ from the Signals list by (Shift/Ctrl+)
clicking on them.

- Click the View button under the Signals list to open the Signal Browser
window and see the two signals in the time domain.

- If needed or desired, you can click the Select Trace button to select one of
the displayed signals and then click the Line Properties button to change
the color and/or line style to display the selected signal.

7.3 How to Use SPTool 355

- You can also click the Play_Selected_Signal button to play the selected sig-
nal. You can click the Vertical_Markers button to use the vertical Markers
to select a portion of the signal you want to play. If you want to print the
signals (or their spectra), click the Print button.

<Step 5: Compare the original and filtered signals in the frequency domain in
Spectrum Viewer>

- In the SPTool window (Fig. 7.29(a)), select the signal ‘sigl[vector]” from
the Signals list by clicking on it.

- Click the Create button under the Spectra list to create a PSD ‘spectl’
corresponding to the selected signal ‘sigl’ and open the Spectrum Viewer
window (Fig. 7.29(b1)). Note that the PSD is not yet computed and
displayed.

- Through the Parameters region, set the parameters such as the spectral
analysis method (Welch), FFT size (Nfft = 1024), window size (Nwind =
1024), Window type (hanning), and Overlap length (512).

- Click the Apply button in the Spectrum Viewer window to compute and
display the PSD spectl.

- Follow the above three steps for the filter output signal ‘sig2’ to create
another PSD, say, spect2. In the Parameters region, you had better select
‘spectl’ from the PSD list in the Inherit_from field (Fig. 7.29(b2)) so that
every spectral analysis parameter can be inherited from the existent PSD
‘spectl’.

- You can Shift 4 click on ‘spectl” and ‘spect2’ in the Spectra list to select
them and click the View button under the Spectra list to reactivate the
Spectrum Viewer and display the two spectra together.

- You can export the signals, filters, and spectra through the Export_from_
SPTool dialog box opened by selecting the File/Export menu.

<Step 6: Save the filter design and signal analysis results>
You can save the designed filter(s) and signal analysis result(s) by exporting
on your disk (as a MAT-file) or the MATLAB workspace in the follow-
ing way:

- In the SPTool window, select the File/Export menu to open the Export_
from_SPTool dialog box in which you can select the signals, filters,
and spectra you want to save from the Export list and save them on
your disk (as a MAT-file) or the MATLAB workspace by clicking the
Export_to_Disk or Export_to_workspace button, respectively (see Fig. 7.30).

- If you have exported the filter structure “filt1” into the workspace, you can
refer to its numerator and denominator as “filtl.tf.num” and “filt1.tf.den’.

356

7 Analog and Digital Filters

File Edit Window Heln
Signals Filters Spectra
il [vector] =] [C5ip [design] 2] fritiose [auto] -
ichirp [vector] PZip [imported] ichirpse [auto]
rain [vectuf] FIRbp [design] rainse [auto]
fit1 [design] spect! [auto]
- | [spect2 [auto] -
(View (View (View
(New 1 Create]
(Edt J(Update]
Apply

-) Spectrum Viewer

(a) SPTool window

i Revert Apply |

y: -67 6854

Fls Options” Markers Window Help Peak Valley
I*:'se o“:‘;m F Mo |¥‘“ =Bl K AN Magnitude Scale » P
Slgnat ity Hoggle VesicalVHorizontal Frequency Range »
5001-by-1 real - PSD v Linear
Fe = 10000 10 : —T— r *
de 0
- [dB] d d Log
G- 1
=30} -
o T—
weaowors]| -ao]]
S —
=50} -
" _WW‘ IWWNWM\MMM,»M
=70 1 L]
0 S00 1000 1500 2000 2500 3000 3500 4000 Frequency 5000
[innert from I~ Matker1 X [B375 Marker 2 X 12108375 | @ 2734375
[Revert [_aeply) y: -15.387M1 y: -14.8319 dy, 045524
(b1) Spectrum Viewer window for the original signal 'sig1’
Signal sig2
5001-by-1 real PSD
Fe= 10000 0 : —— - : : :
P (a8l (e You can chck* o select a portion of the
o e — specirum and zoom itin,
Method[weich _[~] (cf) It is interesting to note that the PSD of
the output to the noize is similar to the
Nlﬂ squared frequency response of the filler,
-sof R
N T—
: @ J
=100 m] 4
-150k 1 I] 1 1 L 1 L 1 L
0 S00 1000 1500 2000 2S00 3000 3500 4000 Frequency 5000
Maker1 *[B375 | Maker2 © HEARAES

y: <15, 218? dy: 52 4667

(b2) Spectrum Viewer window for the filtered signal 'sig2

Fig. 7.29 SPTool window and Spectrum Viewer window

Problems 357

) Export from SPTool M (=] g3

- Export List

Sigmal: mtlb [vector] |a ; y
Signal: chirp [vector] [[] Export fitters as TF objects
Signal: train [vector]

Signal: sigZ2 [vector] [Export to disk...]

Filter: LSlp [design] [
Filter: PZlp [imported]
Filter: FIBbp [design]

Export to workspace]

filtl [design]
Spectrum: ntlbse [auto]) [

Spectrum: chirpse [autd Cancel]

Spectrum: trainse [autd [

Help |

Show: al

Fig. 7.30 Export_from_SPTool dialog box

Problems

7.1 Design and Use of a Filter to Remove/Reduce a Noise from a Music Signal

(a) Using any recording software, create a wave file of sampling frequency
8kHz, duration 16s, and any melody that you like in the name of, say,
“melody.wav”. Then take the following steps:

(1) Use the MATLAB command “‘wavread()’ to extract the signal vector
x and sampling frequency Fs from the wave file. Use ‘soundsc()’ to
listen to the melody signal. Use “fft()” & “plot()’ to plot x together with
the magnitude of its DFT spectrum in dB.

(2) Add a noise of amplitude 0.5 and frequency 3.9kHz to the signal, listen
to the noise-contaminated signal xn, and plot xn together with its DFT
spectrum magnitude in dB.

(3) Design a Butterworth LPF with passband/stopband edge frequencies
of 3.6kHZ/3.9kHz and use the LPF to filter the noise-contaminated
signal to obtain a filtered signal xf. Then listen to the filtered signal xf
and plot xf together with the magnitude of its DFT spectrum in dB.

358

7 Analog and Digital Filters

Yiest filtering.m

clear, clf

[x, Fs] =wavr ead(’ nel ody. wav');

N=2"17; x=x(end-N+l:end,1).’; %convert into row vector
soundsc(x, Fs);

Ts=1/Fs; t=(0:N-1)*Ts; nn=1:N32; tt=t(nn); %time vector

subpl ot (4,2,1), plot(tt,x(nn)), axis([tt([1 end]) -2 2])

x| abel ("tinme[s]’), ylabel ("signal x[n]")

X=fftshift(fft(x,N)); Xnmag=20+l0gl0(abs([X X(1)]));
f=(-N2:N2)*(Fs/N); fkHz=f/1000; % frequency vector

subpl ot (4, 2,2), plot(fkHz, X.mag), axis([-5 5 -40 100])

x| abel (" f[kHz] "), ylabel (* 20+l 0g10| X(k)|[dB]")

% Add a Hi gh Frequency Noise

onega=2+pi *3900+Ts; % convert 3.9 kHz into digital (DT) frequency
Yomega=2*pi 5000+« Ts; % convert 5 kHz into digital (DT) frequency
n=0: N-1; noi se=0. 5xcos(onega*n); xn = x + noi se; soundsc(xn, Fs);
subplot(4,2,3), plot(tt,xn(nn)), axis([tt([1 end]) -3 3])

x|l abel ("time[s]’), ylabel (' noise-contam nated signal xn[n]’)
Xn=fftshift(fft(xn, N)); Xn_mag=20+|o0gl0O(abs([Xn Xn(1)]));

subpl ot (4, 2,4), plot(fkHz, Xn_mag), axis([-5 5 -40 100])

x| abel (" f[kHz] "), ylabel (*20%1 0g10| Xn(k)|[dB]"),

% Butterworth LPF Design

Rp=3; As=40; % Passband Ri ppl e and Stopband Attenuation in dB

f p=3600* Ts*2; fs=3900*Ts*2; % passband/ st opband edge frequency
[Nb, fcb] =buttord(fp,fs, Rp, As);

[Bb, Ab] =but t er (Nb, fcb);

H=fftshift(freqz(Bb, Ab, N," whole’)); Hmag=20+10gl0(abs([H H(1)]));
subpl ot (4, 2,6), plot(fkHz, Hmag), axis([-5 5 -100 5])

x| abel (" f[kHz] "), ylabel (* 20«1 0g10| H(k)|[dB] "),

% Filtering to renpve the 10kHz noise

xf=filter(Bb, Ab, xn); soundsc(xf,Fs);

subplot(4,2,7), plot(tt,xf(nn)), axis([tt([1 end]) -2 2])

x| abel ("tinme[s]’), ylabel ("filetred signal xf[n]")
Xf=fftshift(fft(xf,N)); Xf_mag=20+1o0glO(abs([Xf Xf(1)]));

subpl ot (4, 2,8), plot(fkHz, Xf_mag); axis([-5 5 -40 100])

x| abel (" f[kHz] "), ylabel (*20%1 0gl0| Xf (k) |[dB]"),

(b) Referring to Fig. P7.1, make a Simulink model file to perform the filtering
operation as done by the above MATLAB program “test_filtering.m”. You
can relocate the To_Wave_Device block to listen to the original signal, the
noise-contaminated one, and the filtered one.

Problems 359

iz} Sink Block Parameters: Spectrum Scope ‘§| [Spedlumﬁww

Compute and display the periodogram of each input signal. Mon-frame
based inputs to the block should use the bulfering option.

Compute and display the periodogram of each input signal. Non-frame
based inputs to the block should use the bulfering option.

[Spectium Scope

Scope Properties | Display Properties | Axis Properties | Line Properti

Scope Properlies [Display Propeties) Avis Propetties | Line Properties) ||| P

P Frequency units: etz =
[¥] Bulfer input Frequency range: [Fs/2..Fs/2] &
Bulfer size: [N/]] Inhei sample increment from input

Bufer overlap:[0] Sample time of oiiginal time series: 15]
Window type: [Hann) Frequency display limits: [Auto =
Window sampling: [Periodic ~ Amplude scaling |dB o
2] Specily FFT length Minimum Y-imit: [100 |
FFT length:[N | Masinum it [50 |
R —— | -avis title: [Magritude-squared, dB |

[Signal Processing Sinks]

Spectrum
. Scope
[Simulink Sources]
. o To
=] ¥ came —""i‘ |
Whik?:nce Frame Conversion Add 2
[Simulink/Math Operations] Dugtal
[Signal Przz:sslnwimﬂng
= o To
13 MS&']I ™ Frame fFilter Design]
nhrir?m':m Frame Corversion1
[Signal P i

/Signal g owu-ngaoe
/Signal Attributes] [Simulink Sinks]

Fig. P7.1 Simulink block diagram for a signal filtering and the parameter setting dialog boxes for
spectrum scope block

Chapter 8
State Space Analysis of LTI Systems

Contents

8.1 State Space Description — State and Output Equations.
8.2 Solution of LTI State EQUAtionttt
8.2.1 State Transition Matrix
8.2.2 Transformed Solutiono
8.2.3 Recursive Solution ...
8.3 Transfer Function and Characteristic Equation
8.3.1 Transfer FUNCHioNo
8.3.2 Characteristic Equationand ROOtScoviiiineennn.
8.4 Discretization of Continuous-Time State Equation.........................
8.4.1 State Equation Without TimeDelay....................... ...t
8.4.2 State Equationwith TimeDelay it
8.5 Various State Space Description — Similarity Transformation................
8.6 SUMMANY ... o
ProblemS . . .

In this chapter we will introduce the state space description of a system, which
consists of the state and output equations. It has several distinct features compared

with the transfer function approach:

- It allows us to deal with multi-input multi-output (MIMQ) systems in a system-

atic way.

- It describes a system more completely than the transfer function does. It describes
not only the input-output relationship, but also what is happening under any ini-
tial condition, while the transfer function covers only systems with zero initial

condition.

- It can be applied to certain types of nonlinear and/or time-varying systems.

- Itis not easy to determine the state equation through experiments, while the trans-
fer function of an LTI system can be measured by employing signal generators

and spectrum analyzer.

W.Y. Yang et al., Signals and Systems with MATLAB®,
DOI 10.1007/978-3-540-92954-3_8, © Springer-Verlag Berlin Heidelberg 2009

361

362 8 State Space Analysis of LTI Systems
8.1 State Space Description — State and Output Equations

In this section we introduce the state space description of an N th order LTI system,
which consists of a set of equations describing the relations among the input, output,
and state:

State equation: X'(t) = f(x(t), u(t),t) | x[n+1] = f(x[n], u[n], n) (8.1.1b)
(8.1.1a)

Output equation: y(t) = g(x(t), u(t), t) y[n] = g(x[n], u[n], n) (8.1.2b)
(8.1.2a)

where

State vector: X(t) = [Xy(t), - - , Xn(t)]" x[n] = [xa[n], - - -, xn[N]T
Input vector: u(t) = [us(t), --- ,ux®)]" | u[n] = [u[n], -, ux[n]]"
Output vector: y(t) = [ya(t),--- ., ym(®)1" | yIn] = [yalnl, .-, ym[nII"

(cf.) Note that, in this chapter, the notation u(t)/u[n] denotes the general input
function, while the unit step function/sequence is denoted by us(t)/us[n].

Here, we have the definitions of the state and the state variable:

Definition 8.1 State, Sate Variables, and State \ector
The state of a system at time tg isthe amount of information at t that, together with
theinput fromty, determines uniquely the behavior of the systemfor all t > to. Note
that the ‘behavior’ means all the responses, including the state, of the system.

The state variables of a dynamic system are the variables forming the smallest set
of variables which determine the state of the system. The state vector is composed
of the state variables.

(Ex) For an RLC circuit driven by a source e(t), the inductor current i (t) and
capacitor voltage vc(t) can form the state. The charge gc(t) and inductor cur-
rent i (t) can also make the state. It is because {i, (t), vc(t)} or {qc(t), i (1)}
can be determined for any t > t if the value of input e(t) is known fort > tg
together with the initial condition {i (to), vc(to)} or {qc(to), iL(to)}-

(Ex) For a moving body, the set of the position x(t) and velocity x'(t) qualifies the
state of the mechanical system since the information about x(tg), X'(tp), and
u(t) (force) fort > tq is necessary and sufficient for determining x(t) and x'(t)
for any time t > to.

Especially, the state space descriptions of continuous-time/discrete-time LTI sys-
tems are

8.1 State Space Description — State and Output Equations 363

State equation: X'(t) = Ax(t) + Bu(t) | x[n+ 1] = Ax[n] + Bu[n] (8.1.3b)
(8.1.3a)

Output equation: y(t) = Cx(t) + Du(t) y[n] = Cx[n] + Du[n] (8.1.4b)
(8.1.4a)

In Sect. 1.3.4, we illustrated how a continuous-time/discrete-time state diagram
can be constructed for a given differential/difference equation. Once a state dia-
gram is constructed, the corresponding state equation can easily be obtained by the
following procedure:

1. Assign a state variable x; (t)/x; [n] to the output of each integrator s~*/delay
z L

2. Write an equation for the input x/(t)/x; [n + 1] of each integrator/delay.

3. Write an equation for each system output in terms of state variables and
input(s).

Applying this procedure to the state diagrams in Figs. 1.19(a)/1.20(c) yields

X! (t) 0 1 Xl(t) 0 Xl[n+ 1]} _ { 0 1 :| |:X1[n]:| {0}
[xim] - [—ao ﬁj La)} * H "o Lz[nw —ao —au| ol T[] 1"

(8.1.50) (8.1.5b)

x1[Nn]
y®) =[bo br] {Zgﬂ (8.1.63) yinl = [bo 1] [Xi[n]} (8.1.6b)

which is referred to as the controllable canonical form. Also, for Figs. 1.19(b)/1.20(d),
we obtain

Xi(t)} _ {0 —ao] {Xl(t)} + |:b0} U(t) (8173) X1[n+ 1] 0 —a X1[n] b0
|:x§(t) 1 —ay || %(t) by |:X2[n + 1]] = |:1 _a1:| |:Xz[n]] + |:b1:| ufn]
(8.1.7b)

X1 (t) x1[n]
y =[o 1] [Xz(t)} (8.1.8a) yin =[o 1] Lz [n]] (8.1.8b)

which is referred to as the observable canonical form.

(cf.) Note that the controllable and observable canonical forms of state/output
equations are convenient for designing a controller and an observer, respec-
tively. [F-1]

364 8 State Space Analysis of LTI Systems

8.2 Solution of LTI State Equation

8.2.1 State Transition Matrix

For later use, we will define the continuous-time/discrete-time LTI state transition
matrices and examine their properties.

Definition 8.2 LTI Sate Transition Matrix — Fundamental Matrix

For an LTI system described by the state equations (8.1.3a)/(8.1.3b), the LTI state
transition matrix or fundamental matrix ¢(t)/¢[n] isan N x N matrix, which is
multiplied with the initial state x(0)/x[0] to make the state x(t)/x[n] at any time
t/n>0as

x(t) = ¢(t)x(0) | x[n] = ¢[n]x[0]

and satisfies the homogeneous state equation with zero input

X (t) = AX(t) xX[n + 1] = Ax[n]
;@' (1x(0) = Agp(t)x(0) ; ¢[n+ 1]x[0] = A¢[n]x[0]
L) = Ag(t) (8.2.1a) . gIn+1]=Ag[n] (8.2.1b)

where theinitial conditionis ¢(0)/¢[0] = | (an N x N identity matrix).
To find ¢(t), we make use of Tables A.2(5)/B.7(2) (with n; = 1) to take the
(unilateral) Laplace/z -transform of both sides of Egs. (8.2.1a)/(8.2.1b) as
s®(s) — ¢(0) = Ad(s) | z®[z] — z¢[0] = AP[Z]
and solve this for ®(s)/®[z] as

d(s) = [sl — Al 1p(0) =[sl — A" | ®[z] = [zl — A] *zp[0] = [zI — A] 'z
=[l — As7!]is? =[l -z1tA?
=Is i+ As 24+ A5 34 ... 1+ Az A2 24

Now we use Table A.1(4)/Eq. (4.1.1) to take the inverse transform of ®(s)/®[z]
to get

p(t) = L7HPS)} = L7Hsl — AIY | ¢[n] = 2 H{@[2]) = 2 Y[zl — Al *2)

V. FC I = A (8.2.2b)

2!
(8.2.2a)
which is the continuous-time/discrete-time LTIl state transition or fundamental

matrix. This result can be verified by substituting Egs. (8.2.2a)/(8.2.2b) into
Egs. (8.2.1a)/(8.2.1b), respectively.

8.2 Solution of LTI State Equation 365

The LTI state transition matrices possess the following properties:
<Properties of the LTI state transition matrix>

1) ¢(t)o(tz) = d(th +t2) Vi, B2
2) ¢(=t) = ¢H(t); $(0) = |
3) ¢(t) = e isnonsingular Vt < oo

1) ¢[mlenz] = [Ny +n2] ¥V Ny, ny
2) ¢[-n] =¢7[n]; ¢[0] = | if ¢[n]

is nonsingular.

8.2.2 Transformed Solution

To solve the LTI state equations (8.1.3a)/(8.1.3b), we make use of Tables A.2(5)/
B.7(2) (with n; = 1) to take the (unilateral) Laplace/z -transform of both sides
and write

sX(s) — x(0) = AX(s) + BU(s) zX[z] — zx[0] = AX[z] + BU[Z]
; [sl — AIX(s) = x(0) + BU(s) i [zl — AIX[z] = zx[0] + BU[Z]

which can be solved for X(s)/ X[Z] as

X[Z] = [zI — Al 1zx[0]
+[zI — AI"'BU[z] (8.2.3b)

X(s) = [s| — A]"x(0)
+[sl — A]"1BU(s) (8.2.3a)

Now, we will find the inverse transform of this transformed solution:

x(t) = £7Y{[sl — A]"1}x(0) x[n] = 27 Y[zl — A]"*z}x[0]
+ L£7Y[sl — AI"'BU(s)} + 2 Y[zl — AI'BU[Z])
(8.2.4a) (8.2.4b)

We can use Eq. (8.2.2), the convolution property, and the causality assumption
to write

N

L*l{[sl _ A]fl}(s-Zz.Za) Mt (825a) Z_l{[2| . A]_lz} (8.2.2b)

L7Y[sl — A]"1BU(s)}
B.1(4)

A" (8.2.5h)

1 1 1 Z Y[zl — AI'BU[Z]}
r- | — Al L7{BU

{[sl — A%} % £7Y{BU(s)) P19 z-1[z1 — Al Y} % Z-4BU[Z])
% Bu(t) (6.2.50)

t
(A7) / A-IBy(r)dr (8.2.6a)
0

0259
A1« Bu[n]

_ n-1 n—-1-m
_ZmzoA Bu[m] (8.2.6b)

Substituting Egs. (8.2.5) and (8.2.6) into Eq. (8.2.4) yields the solution of the LTI
state equation as

366
t

x(t) = eMx(0) + / A" Bu(r)dr
0

t
— B(B)X(0) + /O $(t — 1)Bu(r)dr
(8.2.73)

8 State Space Analysis of LTI Systems

x[n] =A"[0] + Y A "Bu[m]
= ¢[n]x[0]+

> pIn—1 - mlBulm]
(8.2.7h)

which is referred to as the state transition equation. Note that, if the initial time is

to/No, then we will have

t
X(t) = eNCOx(to) + / A-IBy(r)dr
= ot — to)x(t) + f #(t — 1)Bu(r)de
fo
(8.2.83)

Example 8.1 Solving a State Equation

x[n] =A™ "x[no] + Zf:n A-MBy[m]
= ¢[n — no]x[No]+

Z::n #[n — 1 — m]Bu[m]
(8.2.8b)

(a) Consider a continuous-time LTI system described by the following differential

equation:

y'(®) +y'(t) = u()

(E8.1.1)

Applying the procedure illustrated in Sects. 1.3.4 and 8.1, we can write the state

equation as
xi(t)]| @159 [0
X(t) | ap=0,a=1 | 0 —
(8.1.63)
y(t) b0:1._b1:0[
where

A

o)

Thus we have

ome[f -] -
st ostt—(s+ 1)
- [0 s+t }

ﬂ [28] + m ut) (E8.1.2)

0] [28} (E8.L.3)
m,cz[l 0]. D=0

s —11' 1 [s+1 1

o i) cwrmll

(E8.1.4)

8.2 Solution of LTI State Equation 367

so that the state transition matrix is

(8.2.2a)

o) ®F? £y sl — A1 Yy EEY [1 1_ et

B8@3.6) |0 €'] fort >0 (E8.1.5)

Therefore, from Eqg. (8.2.7a), we can write the solution of the state equation as

X1 (t)] 8278 [1 1 — e] [x1(0) M1 — et
[Xz(t)} (E87..5) [0 eft X2(0) + 0 e—(lfr) u(T)dT fOI’t 2 0
(E8.1.6)
(b) Consider a discrete-time LTI system described by the following state equation:

B T [T

Xo[n + 1]
yIn] = [10] [2{2}] (E8.1.8)
where
_ T _ —T
A=[éle_‘$] B:[Tl_lgﬁ } C=[1 0].D=0

For this system, we have

IS 1 _ -T71
[2! _A]lz:HS 2} _[éle‘? H Z:[zol zl—+e€T} z

_ z [z—e‘T l—e‘T]
C(z—-1(z—-eT) 0 z—-1

(1-e) Zz z _ _Zz_
_ 1 (z—l)(ezfeET) = |zt z1 zel (E8.1.9)
. z 0 , 1
z—e T z—e "

so that the state transition matrix is

(220) 3 o o o) (E819) [11—e T
o[n] =" Z{[zl — A"z 5536 [O ot forn>0 (E8.1.10)
. (8.2.2b)
as would be obtained from ¢[n] =" A". Therefore, from Eq. (8.2.7b), we can

write the solution of the state equation as

xa[n]] @27 [11— e [x0]] S=[T — (L — e T)e (-1-mT
[x;[n]} (E8.1.10) [O e T } [x;[O]} + n;[(1— e T)e (-1-mT]u[m]

forn>0 (E8.1.11)

368 8 State Space Analysis of LTI Systems
8.2.3 Recursive Solution
The discrete-time state equation has a recursive form and therefore is well-suited

for a digital computer, which can be programmed to perform the following compu-
tation:

x[1] = AX[0] + Bu[0]
x[2] = AX[1] + Bu[1] = A’X[0] + ABU[0] + Bu[1]
X[3] = AX[2] + Bu[2] = A%x[0] + A2Bu[0] + ABu[1] + Bu[2] (8.2.9)

If the continuous-time state equation is somehow discretized, it can be solved
recursively, too.
8.3 Transfer Function and Characteristic Equation

8.3.1 Transfer Function

Using the transformed solution (8.2.3) of the state equation, we can write the
transform of the output equation (8.1.4) with zero initial condition as

Y(s) = CX(s) + DU(s) Y[zl = CX[Z] + DU[Z]
(X%iz’qsl — A]"'BU(s) + DU(s) f['r%itzC[zl — AI"'BU[Z] + DU[Z]
(8.3.1a) (8.3.1b)

Thus the transfer function matrix describing the input-output relationship turns out
to be

G(s)=C[sl — A"'B+D (83.2a)| G[z1=C[zl —A]"'B+D (8.3.2b)

Taking the inverse transform of this transfer function matrix yields the impulse
response matrix:

g(t) = Co(t)B + Ds(t) (8.3.3a) | g[n] = Co[n — 1]B + DS[n] (8.3.3b)

8.3 Transfer Function and Characteristic Equation 369
8.3.2 Characteristic Equation and Roots

Note that the transfer function matrix (8.3.2) can be written as

AdISI - Alp | b (g34) | c[g=chUlZ - Al

Gl =C sl — A 1zl — Al

B+D (8.3.4h)

where Adj[sl — A] denotes the adjoint, i.e., the transpose of the cofactor matrix.
The characteristic equation of an LTI system is obtained by equating the denom-
inator of the transfer function to zero:

Isl — Al =0 (8.3.5a) | |zl —Al=0 (8.3.5a)

Therefore, the roots of the characteristic equation are the eigenvalues of the matrix A
and are often called the characteristic roots of the system. The physical implication
of a characteristic root sy/2, is that there will appear such terms as K e®! /K (zp)" in
the natural response of the system.

(cf.) The natural response means the output stemming from the initial condition,
while the forced response means the output caused by the input.

Example 8.2 Transfer Function

(a) For the continuous-time LTI system described by Eq. (E8.1.2) in Example 8.1(a),
we can use Eq. (8.3.2a) to find the transfer function

-1

[1 O] [s+11][0 1
- =— E8.2.1
ss+1)| 0 s|[1] s(s+1) ()
This could be obtained directly by taking the transform of the differential equa-

tion (E8.1.1). We can equate the denominator of this transfer function with zero
to write the characteristic equation

Isl —Al=s(s+1)=0 (E8.2.2)
which has the roots s = 0 and s = —1 as the eigenvalues.

(b) For the discrete-time LTI system described by Eq. (E8.1.7) in Example 8.1(b),
we can use Eq. (8.3.2b) to find the transfer function

370 8 State Space Analysis of LTI Systems

32

1 -T7-1 _ -7
G[z](s z—1-1+e] [T 1+e :|

b) _
Clzl —A"'B+D =1 0][0 S e 1 e

[1 0] [z—eT 1—eT][T—1+eT]

= Z-Dz-en| 0 z-1 1-eT
 (T-1+eNz+1-e" -Te
- =y (ES.2.3)

We can equate the denominator with zero to write the characteristic equation
zZl —Al=(z—-1)(@z-eT)=0 (E8.2.4)

which has the roots z =1 and z = e~ T as the eigenvalues.

8.4 Discretization of Continuous-Time State Equation

In Chap. 6, we studied various discretzation methods that can be used for converting
a given s -transfer function or a differential equation into an ‘equivalent’ z -transfer
function or a difference equation. In this section, we will develop a technique to

discretize a continuous-time state equation into an ‘equivalent’ discrete-time state
equation.

8.4.1 State Equation Without Time Delay
Let us consider a continuous-time state equation

X'(t) = Ax(t) + Bu(t) (8.4.1)
y(t) = Cx(t) + Du(t) (8.4.2)

As shown in Sect. 8.2.2, the solution to these equations is given by Eq. (8.2.8a):
t
X(t) = o(t — to)x(to) + / #(t — t)Bu(r)dr (8.4.3)
o

To obtain an “‘equivalent’ discrete-time state equation, we write the state transition
equation for an interval of sampling period T fromty =nT tot = (n+ 1)T:

n+1)T
x((n+ 1)T) = ¢(T)X(nT) + f) #(nT + T — 7)Bu(r)dr (8.4.4)

Assuming that the input is constant during each sampling interval, i.e., u(t) =
u(nT) = u[n] fornT <t < (n+ 1)T, we can rewrite this equation as

8.4 Discretization of Continuous-Time State Equation 371

(n+1)T
X[n + 1] = ¢(T)X[n] + /T ¢o(nT + T — 7)drBu[n]

; x[n + 1] = Apx[n] + Bpu[n] (8.4.5)

where we have let X(nT) = x[n], u(nT) = u[n], and

Ap = ¢(T) =T (8.4.6a)
()T nT+T—1—0 0 T
Bp = / o(nT +T —7)dzB = —/ ¢(0)doB = / ¢(r)drB
nT T 0
(8.4.6b)

We can get the discrete-time system matrices Ap and Bp by substituting the state
transition matrix (8.2.2a) into these Egs. (8.4.6a) and (8.4.6b), which is cumbersome
in general. As an alternative, it may be better to use a digital computer for evaluating
them in the following way [F-1]:

(8.4.62) AT (D.25) AT Tm
Ap = e = + AT =1+ATY (84.7a
i ;J m! Z(L= ATV @473
Am m 00 Ame+l
Bp —/ Zm 0 = ZmzomB =VTB (8.4.7b)
with
= ATTM AT AT AT AT
=Y — o~ l4— (1 +—=—(1+ l— {1+ —))
2y 1y +2(+3((+N—1<+N>>))

(8.4.8)
Here, the infinite number of summations in Eq. (8.4.8) is truncated to some finite
number N, which will be chosen in consideration of the desired accuracy and
computation time.

Example 8.3 Discretization of a Continuous-Time State Equation

Consider a continuous-time LTI system described by Egs. (E8.1.2) and (E8.1.3)
in Example 8.1(a), where the state transition matrix is given by Eq. (E8.1.5) as

At
o) ®E L 1sl — AL FLEY [é 1 e_? } fort > 0 (E8.3.1)

372 8 State Space Analysis of LTI Systems

(a) Find the discretized state equation.
We can use Eqgs. (8.4.6a) and (8.4.6b) to get

L1- eT} (E8.3.2)

(8.4.6a)
ao o = 31

T _ T T
(8.4.6b) _|rTr+eT Of ([TT+e ' —-1]|0
S i R HE R

_ [T el - 1] (E8.3.3)

1—eT

so that the discretized state equation can be obtained as

[xl[n + 1]] ©45) [1 1- eT] [xl[n]} N [T +e '’ - 1} U] (E8.3.4)

Xo[n + 1] 0 e’ X2[N] 1—eT

%si g08e03. m
clear, clf
Syns s z
Ns=1; Ds=[1 1 0]; Gs=tf(Ns,Ds); % Anal og transfer function
[A B, C D =tf2ss(Ns,Ds) % Transfer function to state equation
N=si ze(A 2); %the dinension of the system
% The nuner at or/ denom nator of transfer function (8.3.2a)
[Ns, Ds]=ss2tf (A B, C D
Gsl= C+(s*eye(N)-A)"-1«B + D; pretty(Gsl) % Eq. (8. 3.2a)
T=0.1; NT=101; t=[0:NT-1]*T;
% To find the response to step input applied to the 1st input term nal
[y,x,tt]=step(A B, CD1,t);
synms s t % or synbolic solution of the state eq.
A=[0 1;0 -1]; B=[0 1]'; %Eq.(E8.1.2)
x0=[0 0]'; %zero initial condition
% Lapl ace transform sol ution
Xs=(s*eye(N)-A) " -1x(x0+B/s) % Eq. (8. 2. 3a)
% I nverse Laplace transform
for n=1: N, xt(n)=ilaplace(Xs(n)), end
for n=1:length(tt)
t=tt(n); yl(n)=eval (xt(1)); % Eq.(E8.1.3) with C5[1 0]
end
% To solve the differential equation directly
x=dsol ve(’ Dx1=x2, Dx2=-x2+1", ' x1(0) =0, x2(0)=0"); % Eq. (E8. 1. 2)
t=tt; y2= eval (x.x1); %Eq.(E8.1.3) with C5[1 0]
plot(tt,y, k', tt,yl,'b, tt,y2,'r")
% Di scretization
A=[0 1;0 -1]; B=[O0 1]’; C=[1 0]; D=0; % Eq.(E8.1.2)
[Ad, Bd, Cd, Dd] =c2dn{ A, B,C, D, T, ' zoh’) % Di screti zed state equation
[Ad1, Bd1l] =c2d_steq(A B, T) % Eq. (8.4.7a,b)
e T=exp(-T); Ad2=[1 1-e.T, 0 e.T], Bd2=[T+e.T-1; 1l-e.T] % Eq. (E8. 3.4)
% The nuner at or/ denom nator of transfer function (8.3.2b)
[Nz, Dz] =ss2tf (Ad, Bd, Cd, Dd) % Eq. (8.3.2b) to (E8.2.3) or (E8.3.5)
Nz1=[T-1+eT 1-eT-TxeT], Dz1=[1 -1-eT e.T]
%5z1= Cd+(zxeye(N)-Ad)"-1+Bd + Dd, pretty(Gzl)
% The z.o.h. equival ent of the analog transfer function

8.4 Discretization of Continuous-Time State Equation 373

Gz_zoh=c2d(Gs, T, zoh’);

[Bd_zoh, Ad_zoh] =t f dat a(Gz_zoh, " v’) % Eq. (E8. 3. 7)

% To find the response to step input applied to the 1st input term nal
yd=dst ep(Ad, Bd, Cd, Dd, 1, NT) ;

hol d on, stairs(tt,yd)

function [Ad, Bd] =c2d_steq(A B, T, N

i f nargin<4, N=100; end

| = eye(size(A 2)); PSI=1;

for nEN:-1:1, PSI=1 +A«PSI*T/(m+l); end % Eq.(8.4.8)
Ad= | +A«T+PSl; Bd= PSI*T*B; % Eq. (8.4.7a,b)

Note that this is identical to Eq. (E8.1.7) in Example 8.1(b) and the trans-
fer function of the system was computed via Eq. (8.3.2b) as Eg. (E8.2.3) in
Example 8.2:

(T-1+eNz+1-e T -Te T
z-1(@z—-eT)

Gplz] = (E8.3.5)
(b) Find the transfer function for the z.0.h. (step-invariant) equivalent of the continuous-
time system.
Noting from Eq. (E8.2.1) that the transfer function of the continuous-time
system is

, (E8.3.6)

we can use Eq. (6.2.5) to get

Gmﬂﬂwin—z4mZ{£*{§G@ﬁ }
t=nT

(E836) Z— 1 1 1 prEZz—1 41 -1 1
Sl I 3 DU O ol 4 Il N Bl S T
z { {52(s+1)” z 32+ s +s—i—l

B.8(3).(4)&6) Z— 1 Tz z z T z—-1
- z ((z—l)z_z—ldl_z—e—T>:z—1_1+z—e—T
(T—-14+eNz+1-eT -Te'

B Z-Dz-eT)

(E8.3.7)

This is the same as the transfer function of the system described by the dis-
cretized state equation (E8.3.4) and output equation (E8.1.8). It is because we
have assumed that the input is constant during each sampling period in dis-
cretizing the state equation as if a S/H (sampler and zero-order-hold) device
were installed at the input stage.

Interested readers are invited to run the above program “sig08e03.m”, check the
validity of the above results, and see how the MATLAB commands can be used
to discretize a continuous-time state equation.

374 8 State Space Analysis of LTI Systems

Remark 8.1 Discretized State Equation and Zero-Order-Hold Equivalent

The z.0.h. (step-invariant) equivalent of a continuous-time system has the same
transfer function with the discrete-time system obtained by discretizing the state and
output equations.

Example 8.4 Discretization of a Double Integrator
Consider the continuous-time LTI system described by the state and output

equations as
x| _ (0 X1 (t)
[Xz(t)]_[o][xz(t)} H u(t) (E8.4.1)
y=[1 0] [28} (E8.4.2)

For this system, we have

R R R R S R I ey
0 s 00 0 s 2|0 s 0 st

(E8.4.3)
so that the state transition matrix is

(8.2:22)

L7H[sl — A

o) ik

B.83).4) | 0 1] fort =0 (E8.4.4)

Thus we can use Eqgs. (8.4.6a) and (8.4.6b) to get the system and input coefficient
matrices for the discretized state equation as

(846a) 1T (8.4.60 T |:r] [Tz/Z}
= = d dr =
o(T) = []and Bo / $(r)d7B = /0 ae =T

(E8.4.5)

8.4.2 State Equation with Time Delay
A continuous-time LTI system with the input u(t) delayed by d [s] can be described by
X'(t) = Ax(t) + Bu(t —d) (8.4.9)

Therearetwo cases: (i) 0 <d < T (i) T <d=MT +d; with0 < d; < T and
M > 1.

<Casel>0=<d=<T
When the time delay d is not longer than the sampling period T, i.e.,
0 <d < T, the second term of the RHS of Egs. (8.4.4) or (8.4.5) becomes

8.4 Discretization of Continuous-Time State Equation 375

(n+1)T
/ o(nT + T — 7)Bu(r — d)dz
n

T
nT+d
= / ¢(nNT + T —o)doBu(nT —T)
T
" nT+T
+ / d(NT + T — o)do Bu(nT) (8.4.10)
nT+d

where the input signal u(t) is assumed to be constant over each sampling
interval. Thus Eq. (8.4.5) becomes

X[n + 1] = Apx[n] 4+ Bpiu[n — 1] + Bpou[n] (8.4.11)

where

Ao (8.4=.6a)¢(.|.) — AT (8.4.12a)

nT+d

Boi = / $(nT +T —0)do B
nT

nNT+T—o—1

0 d
—/ (T —d+1)deB =¢(T — d)/ ¢(r)dB
d 0
(8.4.12h)

nT+T
Bp, 2 / #(NT +T —0)do B
nT+d

nNT+T—o—7t 0

T—d
#(r)deB = / #(r)dcB (8.4.12¢)
d 0

T—

This can be written in the form of state equation as

[X[B[:]lq B [%D 831} [u[ﬁ[i] 1]} * [B'DO} vk 0459

where K extra state variables u[n — 1] representing the past input values are
introduced to augment the state vector.

<Casell>T <d=MT +d;withO<dy <TandM > 1
When the time delay d is longer than the sampling period T so that d =
MT +d; with0 < d; < T and some integer M > 1, Eq. (8.4.11) becomes

X[n + 1] = ApX[n] + Bpiu[n — M — 1] 4+ Bpeu[n — M] (8.4.14)

where the matrices Ap, Bpi, and Bpg are as defined by Eqgs. (8.4.12a,b,c).
This can be written in the form of state equation as

376 8 State Space Analysis of LTI Systems

x[n+1] Ap Bp1 BpgO--- 0O x[n] O

ufn — M] O O I O0---0f|un—-M-1])
e I . |||

un — 1] 0O 0 0O0..| uln — 2] 0

ufn] 0 0 00---0|| un-1 |
(8.4.15)

where (M + 1)K extra state variables {u[n—1], u[n—2], - -- , u[n— M —1]}
representing the past input values are introduced.

u(t)

— E :

! : i ' : t
nT-T nT nT+T

u(t—d) .

e R

r — . [

1 1 1 1 ! ! 1 1 t

Fig. 8.1 Delayed input signal by d

Example 8.5 Discretization of a Double Integrator with Time Delay

Consider the double integrator dealt with in Example 8.4, where the input is
delayed by d (0 < d < T). With the state transition matrix ¢(t) given by
Eq. (E8.4.4), we use Eq. (8.4.12) to get the discrete-time system matrices as

Ap = ¢(T) = [é H (E8.5.1)
d . 2 .
Boi = ¢(T — ol)/0 ¢(x)drB = [é T d} [d d/z} - [d(T y d/z)} (E8.5.2)
T 2721|770 (T - d)?)2
BDo:/O ¢(r)drB = [. L =[T_4d] (E8.5.3)

8.5 Various State Space Description — Similarity Transformation

As can be seen in Sect. 1.3.4, we could construct many state diagrams for a given
transfer function and each of them can be represented by a state equation. This
implies that there is no unique state space model for a certain system.

8.5 Various State Space Description — Similarity Transformation 377
As a matter of fact, we can use similarity transformation to derive any humber

of different state equations, all of which are equivalent in terms of the input-output
relationship. Consider the state and output equation of an LTI system as

State equation:
X'(t) = Ax(t) + Bu(t) (8.5.1a) X[n+ 1] = Ax[n] + Bu[n] (8.5.1b)

Output equation:

y(t) = Cx(t) + Du(t) (8.5.2a) y[n] = Cx[n] + Dul[n] (8.5.2h)

With a nonsingular transformation matrix P and a new state vector w(t)/w[n], we
substitute

X(t) = P w(t) (8.5.3a) | x[n] = P w[n] (8.5.3b)
into Egs. (8.5.1) and (8.5.2) to write

w(t) = P APw(t) + P71Bu(t) ‘ wn +1] = P APW[n] + P~1Buln]
y(t) = CPw(t) + Du(t) y[n] = CPw[n] + Du[n]

This can be written as another set of state and output equations:

w'(t) = Apw(t) + Bpu(t) (8.5.4a) | w[n+1] = Apw[n]+ Bpu[n] (8.5.4b)

y(t) = Cpw(t) + Dpu(t) (8.5.5a) y[n] = Cow[n] + Dpu[n] (8.5.5b)

where
A, =P'AP, B,=P !B, C,=CP, and D, =D (8.5.6)

Remark 8.2 Similarity Transformation — Equivalence Transformation

(1) Note that, with different nonsingular matrices P, we could obtain different set
of state and output equations as many as we want.

(2) Transfer function, characteristic equation, and eigenvalues are not changed
under similarity transformation:

sl —Apl=Isl —P7*AP|=|P7'sI P—P*AP|=|P7!||s| — A||P|=]sl — A|
(8.5.7)
(3) The determinant/trace of A, is the same as that of A, since the determinant/trace
of a matrix is equal to the product/sum of the eigenvalues. Especially if a system
has distinct characteristic values, we may derive a state equation with a diagonal
system matrix having the characteristic values on its diagonal, which is referred

to as the Jordan canonical or normal form.

378 8 State Space Analysis of LTI Systems

Suppose we have an N x N system matrix A with N distinct eigenvalues A;’s for
i = 1: N and the corresponding eigenvectors m;’s. Then we can write

Am; =Aim; for i=1,2,---,N (8.5.8)

or in a more compact form,

A O - 0
0 Xy - 0
Almymy - my]=[mymy - my] o
00 ---XAn
: AM = MA (8.5.9)

where M, called a modal matrix, is composed of the eigenvectors as columns, and
M~ AM = A is a diagonal matrix with the eigenvalues on its diagonal. The
modal matrix M is nonsingular if the eigenvalues are distinct and consequently, the
eigenvectors are linearly independent. This implies that, with the similarity trans-
formation P = M, the resulting system matrix Ap will appear to be diagonal in the
new state equation.

Example 8.6 Diagonal/Jordan Canonical Form
Consider a system described by the following discrete-time state and output

equations:
xan+11] _[1 37 [xln] 0
|:X2[n+1]:|_|:0 2“x2[n]]+ [1] uln] (E8.6.1)
yln] =[1 0] [g{ﬂﬂ (E8.6.2)

We can get its eigenvalues and the corresponding eigenvectors as below:

sl —Al=(s-1)(s=2)=0;s=1 =2
=2

o 3llme] =2 me]

; My, & arbitrary, my; = 3my;

s=1
1 3 My -1 M1y
0 2||[ma| | my
; My = 0, myq: arbitrary

Thus we have a modal matrix and its inverse as

_m11m12_13 _1_1—3
w1] ey

Problems 379

Now, with the similarity transformation P = M, we use Eqg. (8.5.6) to obtain another
set of state and output equations with

ians [1-3701 31[1 3] _[1-3[1 3] _[1 0]. .
Ap =M AM_[O 1“0 2][0 1]—[0 2][0 1]—[0 2]‘"390”6"

(E8.6.42)
Bp=M7'B= [(1) _13} m = [_13} (E8.6.4b)
Cy—CM=[1 0] [3 ﬂ —1 3 (E8.6.40)

We can use the MATLAB function ‘j or dan() ’ to get a modal matrix and the
corresponding Jordan canonical form of state equation:

>>A=[1 3; 0 2]; [MAp]=jordan(A) % [ML]=eig(A

M= -3 3 Ap = 1 0
0 1 0 2
>>B=[0; 1]; C=[1 0]; Bp=MB, Cp=C+M
Bp = 1 Cp=-3 3
1

8.6 Summary

In this chapter we have studied the state space description of LTI systems in the form
of the state and output equations. We have also defined the state transition matrix
and derived the solution of continuous-time/discrete-time LTI state equations. Then
we have discussed the techniques of discretizing the continuous-time state equations
and the similarity transformation.

Problems
8.1 Controllable/Observable Canonical Form of State Equations

Complete the controllable/observable form of state diagrams in Fig. P8.1 for a
system having the following transfer function:

b,s? + bys + &g
S+ as?+as+a

G(s) = (P8.1.1)

and show that the corresponding state and output equations are

380 8 State Space Analysis of LTI Systems

u() X0 yo o u@ xs(t) v
—>—o0—> 9 o >o —o °
u(s) Y(s) U(s) Y(s)
-1 —1,

X3(t), 1S s
g x3(t)
x3(1) b d —a
o e O
Xa(t) ,
\$ X5(t)
-a x{(t) b,
; ® = ! P X, (t)
LAV
XM b, Xit) —a
(a) Controllable canonical form (b) Observable canonical form

Fig. P8.1 Controllable/observable canonical state diagrams for the transfer function (P8.1.1)

i (t) 0 1 0 7 [x() X;(t) 0 0—ay | [x(t)
Xé(t) = 0 0 1 Xg(t) Xg(t) =(10 —ay Xz(t)
X5 (t) —aQp —a —a& x3(t) X3(t) 0 1-a x3(t)
0 bo
+ 0] u(t) (P8.1.2a) + | by | u(t) (P8.1.2b)
1 b,
xa(t) xa(t)
y(t) =[bo br by] | x(t) yt) =[0 0 1] x(t)
X3(t) X3(t)
(P8.1.3a) (P8.1.3b)
8.2 Controllable/Observable Canonical Form of State Equations
Consider a system having the following transfer function:
G(s) = e _ A+ (P8.2.1)

T U(s) 2s2+6s+4

(a) Write the controllable/observable form of state and output equations and
find the state transition matrices.
(b) Show that the step response is

y(t) = (3 —4e™' + e *)us(t) (P8.2.2)
8.3 State Transition Matrix

Find the state transition matrix ¢(t) = e”' for a state equation having the
following system matrix:

A=t P8.3.1
5] (P8.3.1)

Problems 381

8.4 State Diagram and State Equation
(a) Show that the state and output equations for the state diagram of Fig. 1.20(a)

are
X1[n+ 1] 0 1 0 07][xn] 0
X[n+1]| | —ag—ay by b %2[N] 0
xi[n+1]) 01 00 1l xz[n] + 0 ufn] (P8.4.1)
Xq[n + 1] 0 0 00 ||xn] 1
[x1[n]
yIn] = [~a0 —au bo by] 2{2} (P8.4.2)
| Xa[n]

(b) Use Eq. (8.3.2b) to find the transfer function of the system described by the
above state equation.

8.5 Discretization of a Continuous-Time State Equation
Consider a system described by the following state and output equations:

O-BALS B e
yit)=[1 0] [28] (P8.5.2)

(a) Use Eq. (8.3.2a) to find the transfer function G(s) of this continuous-time
system.

(b) Discretize the above state equation and then use Eq. (8.3.2b) to find the
transfer function Gp[z] of the discretized system. Compare Gp[z] with the
z.0.h. equivalent of G(s).

8.6 Discretization of a Continuous-Time State Equation
Note that for an oscillator having the transfer function

2

60 =g (P8.6.1)

we can write the following state and output equations:
[28} - [2 ﬂ [28] + [Z] u(t) (P8.6.2)
y =[1 0] [28] (P8.6.3)

(a) Use Eq. (8.3.2a) to find the transfer function G(s) of this continuous-time
system.

382 8 State Space Analysis of LTI Systems

(b) Discretize the above state equation and then use Eq. (8.3.2b) to find the
transfer function Gp[z] of the discretized system. Compare Gp[Z] with the
z.0.h. equivalent Ggep[Z] of G(S).

8.7 PWM (Pulse-Width Modulated) Input
Consider a system described by the following state equation

X((®)] {0 1 |[xa(t) 0

[xé(t)] = [0 —1| | () + 1 u(t) (P8.7.1)
where the input u(t) is a PWM signal as depicted in Fig. P8.7. Show that the
discretized state equation is

x+17_[11—eT][xn]] , [dh—e T-% +eT
|:Xi[n + 1]] - [0 e T :| [Xi[n]] + |: e(T—d) _ T :| (P8.7.2)

Do, &y 2 %5
N I N 1 I
0 T 2T 3T aT 5T

Fig. P8.7 A PWM (pulse-width modulated) signal

8.8 Modal Matrix and Diagonalization of a Circulant Matrix
Consider the following circulant matrix:

c(0) c(1)--c(N—-1)

¢(N—-1)c()--c(N—-2)
C= . .o .

(P8.8.1)
c(1) c@- - c(0)
(a) Show that the eigenvalues and the corresponding eigenvectors of the
circulant matrix are

N-1 .) ‘

A = Zn—o (MW = ¢(0) + c(YW' + - - + (N — ywN-Di,
wW=ett (P8.8.2)
mp=[L, W, o, WV =01, N—1 (P883)

so that

Cm; = Aim; (P8.8.4)

Problems 383

(b) Note that a modal matrix consisting of the eigenvectors can be written as

1 1
M =ﬁ[mo, mg, -+, Mno1] = —

Show that the inverse of the modal matrix is

r 1 - 1

1 w1t ..ow-(N-D
M= . - = M* (Conjugate transpose) (P8.8.6)
1 W=D \y—(N=-1)

(c) With the matrix dimension N = 4, diagonalize the circulant matrix C by the

similarity transformation. For reference, you can run the following
program “sig08p_08.m”.

%i g08p_08. m

clear, clf

syms ¢cO0 cl1 c2 c3

C=[c0 c1l c2 ¢c3; ¢c3 cO0 cl c2; c2 c3 cO0 cl; cl1 c2 c3 c0];
[ML]=jordan(C) %[ML]=eig(Q

MM

Appendix A
The Laplace Transform

The Laplace transform was discovered originally by Leonhard Euler (1707-1783),
the great 18th-century Swiss mathematician and physicist, but is named in honor of
a French mathematician and astronomer Pierre-Simon Laplace (1749-1827), who
used the transform in his work on probability theory. He was such a genius not
only in mathematics that the great mathematician Simeon Poisson (1781-1840)
labeled him the Isaac Newton of France, but also in politics that he could serve three
regimes in revolutionary France — the republic, the empire of Napoleon, and the
Bourbon restoration, having been bestowed a count from Napoleon and a marquis
from Louis XVIII.

The Laplace transform is a very useful tool in solving differential equations and
much further, it plays an important role in dealing with linear time-invariant systems.

A.1 Definition of the Laplace Transform

The (unilateral or one-sided) Laplace transform is defined for a function x(t) of a
real variable t (often meaning the time) as

X(s) = L{X(t)} = / " (et (A1)

where s is a complex variable, the lower limit, t_, of the integration interval is the
instant just before t = 0, and x(t) is often assumed to be causal in the sense that it
is zero forallt < 0.

A.2 Examples of the Laplace Transform

A.2.1 Laplace Transform of the Unit Step Function

The unit step function is defined as

385

386 Appendix A

6(1) =lim rr ()= M L (ug(t+) -ug (t-5)) = 4)

T-0T
lim
(t) It (t) l—l T~>0]5(t)
t
0 0
(a) Unit step function (b) Rectangular pulse (c) Unit impulse function

Fig. A.1 Unit step, rectangular pulse, and unit impulse functions

1 fort>0
t) = - A2
Us(t) {0 fort <O (A-2)

which is depicted in Fig. A.1(a). We can use Eq. (A.1) to obtain the Laplace
transform of the unit step function as

N 1 o 1
L{us(t)}(Azl)/ us(t)eStdt (A)/ o stgp @39 . e | = _S(O_)==>
0 0 -

This Laplace transform pair is denoted by
1
Ug(t) <= g (A3)

A.2.2 Laplace Transform of the Unit Impulse Function

The unit impulse function can be defined to be the limit of a rectangular pulse func-
tion rr(t) with the pulsewidth T — 0 (converging to zero) or simply, the time
derivative of the unit step function as

8(t) = lim rr (1) = Tliino% (us (t + %) — Us <t - %)) = %us(t) (A4)

which is depicted in Fig. A.1(c). We can use Eqg. (A.1) to obtain the Laplace
transform of the unit impulse function as

L{5(t)} = / s(tye Stdt =1
0—
This Laplace transform pair is denoted by

5(t) <25 1 (A5)

Appendix A 387
A.2.3 Laplace Transform of the Ramp Function

The Laplace transform of the unit ramp function tus(t) is obtained as

A1 [A2 [D.36) t 1 [D.33) 1
£{tus(t)}(=)/ tus(t)e‘S‘dt(z)f te~star 22— e+ 7/ e st :)—2
0 0 —S S Jo S

This Laplace transform pair is denoted by

tug(t) <= é (A.6)

A.2.4 Laplace Transform of the Exponential Function

The Laplace transform of the exponential function e~ ug(t) is obtained as

o0 [o¢] o0
. a A } 3 1
Lle (1)) = / e tug(t)e dt / etle St = / etsrargy @22 _=
0 0 0 S+a

This Laplace transform pair is denoted by

_ c 1
e atus(t) <> s_|__a (A?)

A.2.5 Laplace Transform of the Complex Exponential Function

Substituting o + jw for a into (A.7) yields the Laplace transform of the complex
exponential function as

ety (1) %2V et (cos wt — sinwt)us(t) <>

1 _ S+o . w
sto+jo (5+0)2+w? J(S—{—o)z—}—wz
L S+o
et cos wt ug(t S A.8
® S()(—>(s+(7)2+a)2 (A.8)
e sina)tu(t)éL (A.9)
S (s+0)? + w? '

A.3 Properties of the Laplace Transform

Let the Laplace transforms of two functions x(t) and y(t) be X(s) and Y(s),
respectively.

388 Appendix A
A.3.1 Linearity

The Laplace transform of a linear combination of x(t) and y(t) can be written as

a X(t) + By(t) <> aX(s) + BY(S) (A.10)

A.3.2 Time Differentiation

The Laplace transform of the derivative of x(t) w.r.t. t can be written as
X'(t) <25 s X(s) — x(0) (A11)

Proof

e [e "t 2 e 4 —-9 [xwe a2 sx@-x0)

Repetitive application of this time differentiation property yields the Laplace trans-
form of n th-order derivative of x(t) w.r.t. t as

x™(t) <5 S1X(s) — s 1x(0) — S72X(0) — - - - — x(D(0) (A.12)

A.3.3 Time Integration

The Laplace transform of the integral of x(t) w.r.t. t can be written as
0

/t x(7)dr <> %X(s) + é[x(7)dt (A.13)

—00 oo

This can be derived by substituting fiw x(tr)dzr and x(t) for x(t) and x'(t) into
Eqg. (A.11) as

X(t) <> X(s) = s.c{/t X(r)dr} - fo x(7)dt

Repetitive application of this time integration property yields the Laplace trans-
form of n th-order integral of x(t) w.r.t. t as

/joov/;;”‘/;;x(f)dfn<L>S’”X(S)+anv/j;x(t)dt+...+[l[;..[lx(t)dfn

(A.14)

Appendix A 389
A.3.4 Time Shifting — Real Translation

The Laplace transform of a delayed function x(t) can be obtained as follows.

£ix(t —t)) A / x(t —t)e Stdr + f ” x(t — t;)e Stdt

—0Q t1

0 00
LT g / x(t)e 'dr + e St / x(r)e S'dr;
— 0

1]

t

0

X(t —t), ti > 0 <5 g st {X(s) n / X(t)e_STd‘c} X090 stk (g)
—t
(A.15)
H T=t T T=t
t t
0 @) (b)
Fig. A.2 Switching the order of two integrations for double integral
A.3.5 Frequency Shifting — Complex Translation
(1) <2 X(s — 91) (A.16)

A.3.6 Real Convolution
The (real) convolution of two (causal) functions g(t) and x(t) is defined as

N —ovieo [t
if g(t)=0 and x(1)=0 ¥ t o/ (o)X (t — 7)dr
0
(A.17)

The Laplace transform of the convolution y(t) = g(t) * x(t) turns out to be the
product of the Laplace transforms of the two functions as

g(t) = X(t):/_ g(r)x(t—r)dr

causality

y(t) = g(t) = x(t) PLIN Y(s) = G(s)X(s) (A.18)

390 Appendix A

Proof

£{g(t) = x(t)) & /Ooo g(t) * x()e~dt 2" /ooo { fot g(o)x(t — f>d’}e_5tdt

Fgs2 / g(x)e ™ f X(t — 7)e St dr
0 T

(tT::v)/:o g(r)e s {/000 X(v)e_svdv} dr

| T gmeTdrx© e X
0

This property is used to describe the input-output relationship of a linear time-
invariant (LTI) system which has the input x(t), the impulse function g(t), and
the output y(t), where the Laplace transform of the impulse function, i.e., G(s) =
L{g(t)}, is referred to as the system function or transfer function of the system.

A.3.7 Partial Differentiation

Given the Laplace transform of a function having a parameter a, that is £L{x(t, a)} =
X(s, @), the Laplace transform of the derivative of the parameterized function x(t, a)
w.r.t. a equals the derivative of its Laplace transform X(s, a) w.r.t. a.

0 c 0
— <X Al
aaX(t,a) 9a (s,a) (A.19)

A.3.8 Complex Differentiation

The Laplace transform of —tx(t) equals the derivative of £{x(t)} = X(s) w.r.t. s.
c d
tx(t) < —d—SX(s) (A.20)

This can be derived by differentiating Eq. (A.1) w.r.t. s.

Example A.1 Applying Partial/Complex Differentiation Property
To find the Laplace transform of t e 3ug(t), we differentiate Eq. (A.7) w.rt. a
and multiply the result by —1 to get

1

teatyg(t) £ — =
S() (S+ a)z

(A.21)

Appendix A 391

Multiplying t by the left-hand side (LHS) and applying the complex differentia-
tion property (A.20) repetitively, we get

_ c 2!
t?e 3 ug(t) <> Grap (A.22)
_ c m!
tMe " ug(t) L (A.23)

A.3.9 Initial Value Theorem

We can get the initial value of x(t) from its Laplace transform L{x(t)} = X(s) as
follows.

x(0) = SILrQo s X(s) (A.24)

This can be derived by substituting s = oo into the time differentiation property
(A.11) as

(A1)

Jim sX(s)—x(O)(A'zll)SIim £{x®} = lim / x'(t)e Sdt = 0
—> 00 — 00 —00 Jo

A.3.10 Final Value Theorem

We can get the final value of x(t) from its Laplace transform L{x(t)} = X(s) as
follows.

X(o0) = lirrg)s X(s) (A.25)

on the premise that x(t) is convergent, or equivalently, all poles of X(s) are in the
left-half plane (LHP) except for a simple pole at s = 0. This can be derived by
substituting s = 0 into the time differentiation property (A.11) as

lim s X(s) - x(0) (1D lim £ {x()} @n lim /0 ” X' (t)e~Stdt =x(00) — x(0)

(Q) Can we apply this final value theorem to have sinwt|,_,, = Iin?)s
S—
Table A.1(7) ,.
X(s) = lﬂ)s# =07

392 Appendix A
A.4 Inverse Laplace Transform
Suppose a s-function X(s) is given in the form of a rational function, i.e., a ratio of

an M th-degree polynomial Q(s) to an N th-degree polynomial P(s) in s and it is
expanded into the partial fractions as

Q(s) _ bMSM+...+b15+b0

X(s) = P(s) ansN+...+as+ap (M =N) (A.26)
= r IN—L+1 'n
n -L+
= + +...+ —+K A.27
(; S_pn> s—p (s—p* (A7)
where
= (s— py) 2 n=12.. . N-L (A.28.1)
P(s) S= pn
1d LQ(9)
rN_|—ﬁ@{(S—p) m} S:p,I_O,l,...,L—l (A282)

Then the inverse Laplace transform of X(s) can be obtained as

N—L
r
x(t) = {Z Tn€P Iy 1€ ot €7 L+ T _”1),t“e”t} Us(t) + K3(t)

n=1

(A.29)

Example A.2 Inverse Laplace Transform
Let us find the inverse Laplace transform of the following s-functions

3 +11s+11 35+ 11s+11
P +4s24+55+2 (s+1)(s+2)

ri Iy I3 .
th a double pole ats = —1 1
s-|—2+s-|—1+(s-|-1)2(WI ulep) (@)

@ X(s) =

We can use the formula (A.28.1) to find the simple-pole coefficient r; as

N 3s? +11s+ 11

r=(s+2)X () ls=—2 =(s +2) 106+ |, = 2)

and can also use the formula (A.28.2) to find the multiple-pole coefficient r, and
I3 as

Appendix A 393

) 3s? +11s+ 11

r3=(s4+1°X(8) sz = ——————= =3 3
3= (5+ 12X (9) e 1 7|, ®)

d d 3s? +11s+ 11
r2=—(6+1°X@E)|sec1= ——
2= ST DXE) 1= 4o s+2 =1
(@31 (6s+ 11)(s+ 2) — (3s* 4 11s + 11) -2 4)

(s+ 2)2 —1

Thus the inverse Laplace transform can be written as
1
x(t) (A(=2)9)(rle*2t et 4 rate)ug(t) = (€2 + 267 + 3te us(t) (5)

>>Ns=[3 11 11]; Ds=[1 4 5 2]; [r,p, k]=residue(Ns, Ds), [A B]=residue(r,p,k)

s
242542

(b) X(s)
(6)

= (S_‘_l)ﬁ (with complex conjugate polesats = —1 & j)

We may use the formula (A.28.1) to find the coefficients of the partial fraction
expansion form

S r]

X = = 7
O =g32s72 s71-] Ts1i1])
as

A281 6 S .

rn “E s S+1—J)X(S) |s=14] &__°> =051+ j)
S+ 1+ e 14 ®)

(A.28.1) Q) S)

ry S+ 1+))X(S)|s=— = =05(1 —
(DX (8) [s=1-] ey 1-i

Thus we can write the inverse Laplace transform as

x(t) (o 5(L+)t 40,51 — et Dug(t) E¥ et (cost —sint)us(t)

9)
In the case of complex conjugate poles, it may be simpler to equate X(s) with
the following form

X(s) = S . A(s+1) Bx1 common denominator As+ (A+ B)
T 242s+2 (s+1)2+12 0 (s+1)2+12 (s+1)2 4 12

(10)

and get the coefficients as A = 1 and B = —1. Then we can directly find each

term of the inverse Laplace transform from the Laplace transform Table A.1 and
write the inverse Laplace transform as

394 Appendix A

Table A.1 Laplace transforms of basic functions

X(t) X(s) x(t) X(s) x(t) X(s)
_al 1 ot w
(1) 8(t) 1 (5) e 2ug(t) oy Y (9) e~ sin wt us(t) W
@8t —1t) et (6)tMeug(t) W (10) e cos wt us(t) Grafiat
. w
(3) us(t) gm| (7) sinwt us(t) ﬁs‘”z
(4) t™us(t) w (8) cos wt us(t) a2
(10) s+1 (1) x 1 Table A1(9).(10) ot ot
X(s) = R 4 Grifi = X(t)=(e' cost —e " sint)us(t)

(11)

(c) Use of MATLAB for Partial Fraction Expansion and Inverse Laplace Transform

We can use the MATLAB command “residue ()” to get the partial fraction expan-

sion and “ilaplace ()” to obtain the whole inverse Laplace transform. It should,

however, be noted that “ilaplace () might not work properly for high-degree
rational functions.

>>Ns=[3 11 11]; Ds=[1 4 5 2]; [r,p,k]=residue(Ns,Ds); [r p],k % (1)
r = 1.0000 p = -2.0000 % (2) 1/(s-(-2))

2.0000 -1. 0000 % (4) 2/(s-(-1))
3. 0000 -1. 0000 % (3) 3/(s-(-1))"2
k =1]
>>syms S, x= ilaplace((3+s”2+11xs+11)/(S” 3+4*s” 2+5+s+2))
X = exp(-2xt)+3xt*exp(-t)+2xexp(-t) % (5)
>>Ns=[1 0]; Ds=[1 2 2]; [r,p,k]=residue(Ns,Ds); [r p],k % (6)
r = 0.5000 + 0.5000i p = -1.0000 + 1.0000i % (8) (0.5+0.5i)/(s+1-i)
0.5000 - 0.5000i p = -1.0000 - 1.0000i % (8) (0.5-0.5i)/(s+1+i)
k =1]
>>synms S, X= ilaplace(s/(s”2+2xs+2))

x = exp(-t)*cos(t)-exp(-t)*sin(t) % (9) or (11)
>>j | apl ace(s/ (s"4+10*s”3+9*s” 2+6xs+1)) 9%®? Ns=[1 0]; Ds=[1 10 9 6 1];

A.5 Using the Laplace Transform to Solve Differential Equations

One can realize how useful the Laplace transform is for dealing with linear ordinary
differential equations.

Example A.3 Solving a Differential Equation
Let us solve the following differential equation.

d? d
Wy(t) + 3ay(t) + 2y(t) = 10ug(t), t > 0 ()

with the initial conditions y(0) = 1 and y’(0) = —2.

Appendix A 395

(Solution)
We make use of the time differentiation properties (A.11) and (A.12) of Laplace
transform to write the Laplace transform of both sides as

S?Y(s) — sy(0) — Y'(0) + 3(sY(s) — y(0)) + 2Y(s) = 1_80;
(s° +3s+2)Y(s) = sy(0) + y'(0) + 3y(0) + 1_S° - 1_S° Lsal @)

This algebraic equation can be solved for Y(s) as

_ s(s+1)+10
YO = @312 ®

We expand this s-domain solution into partial fractions as

s(s+1)+ 10 r D) rs 5 -10 6
(s) S(s?+3s+2) s s+1+s+2 s+s+l+s+2 @

where the coefficients are found by using the formula (A.28.1) as

@ s +s+10
ri=5Y(8)|se0 = ————
1 () Is=0 13572

s=0

® s°+s+10

r2=(+1)Y(S)ls=1 512

=10)

s=-1
@ s?+s+10

s(s+1) =6

r3=(S+2)Y (9) ls=—2

s=-2

Thus we can write the time-domain solution y(t) as
y(t) = (r1e7® +roet +rze)us(t) = (5 — 1067 + 66 H)us(t) (6)

>>synms s, Ns=[1 1 10]; Ds=[1 3 2 0];

>>y=ij | apl ace(pol y2synm(Ns, s)/ pol y2sym(Ds,s)) % I nverse Lapl ace transform
>>yl1=i | apl ace((s”2+s+10)/(s"3+3*s"2+2*s)) % O, directly from Eq. (3)

>>t =0: 0. 01: 10; yt=eval (y); plot(t,yt), hold on %plot y(t) for t=[0, 10]
>>[r, p, k] =resi due(Ns, Ds), % Partial fraction expansion

>>ytl=real (r.’ *exp(p*t)); plot(t,ytl,’r’) % Another way to get y(t)

Another alternative way to solve differential equations using MATLAB is to
use the symbolic differential solver “dsol ve() ”. To solve Eq. (1), we need the
following MATLAB statement:

>>y=dsol ve(’ D2y+3*Dy+2+xy=0","'y(0)=1, Dy(0)=-2")
y = 5+6xexp(-2xt)-10*exp(-t)

396

Appendix A

Table A.2 Properties of Laplace transform

(0) Definition
(1) Linearity
(2) Time shifting (Real translation)

(3) Frequency shifting (Complex translation)
(4) Real convolution

(5) Time derivative (Differentiation property)
(6) Time integral (Integration property)

(7) Complex derivative

(8) Complex convolution

(9) Initial value theorem

(10) Final value theorem

X(8) = L{X(R)} = [x(®)e* dt; x(t) S X(9)
ax(t) + By(t) <> aX(s) + BY(S)

X(t - tl)Us(t — tl), th >0«

e st {X(s) +/° x(t)e*STdr} — esuX(9)
forx(t)=0Vvt <0

etx(t) & X(s—s)

g(t) * x(t) < G(s)X(s)

X (1) = Sx(t) < sX(s) — x(0)

St ox@dr o 1X(9) + L /0 x(x)de

tX(t) < — L X(s)

XOY() < 5 [X()Y(s — v)dv

x(0) = SI_|)r£1C s X(s)

x(00) = lim s X(s)

Theorem A.1 Sability Condition of an LTI system on its Pole Location

Alinear time-invariant (LTI) system having the systemor transfer function G(s)/ G[z]
isstableiff (if and only if) all the poles of G(s)/G[z] are strictly within the left-hal f
s-plane/the unit circle in the z-plane (see Remarks 2.5, 3.2, and 4.5).

Proof Noting that the system or transfer function of a continuous-time/discrete-time
system is the Laplace/ z-transform of its impulse response g(t)/g[n], let the system
function of a causal LTI (linear time-invariant) system be

Glz = Z(glni =Y glnlz ™"

G(s) = Llg(t)) = /0 " et
(1b)

(1a)

Taking the absolute value yields

ol =|Y_" gz ™"
=Y " lalnliiz " (2b)

G(S)| = \ /0 N g(t)e-stdt\
< /0 T lale it (2a)

Suppose that

G(s) hasapoleats = sp = op + jowp
with o > 0 on the RHP (right-half
s-plane)

G[z] has a pole at z = z, = rpel%
with r, > 1 outside the unit circle in the
z-plane

Appendix A 397
so that
|G(sp)| = 00 (3a) | [eleA[ERS (30)

We can substitute this pole into Eq. (2a)/(2b) to get

(3a)

(2a) [ot i o)
32 7 jopt | 4t - (3b) (2b) 00 L
00 = |G(sp)| = /0 lg(t)|le~7%"|le” P |dt; 002 [G[zp]] < Zn:O Ig[n]/Ir ;" le i)

= /om lg(®)idt (4a) co= 3, lainl (40)

which contradicts the stability condition (1.2.27a)/(1.2.27b). This implies that if
even a single pole of a system exists in the unstable region, i.e., on the RHP in the
s-plane or outside the unit circle in the z-plane, then the system is unstable. This
completes the proof of the theorem.

The stability condition can be understood more clearly if we expand the system
function into the partial fractions and take its inverse transform to write the impuse
response as

K A
G =), o5 _ksk; Glz] = Z:;O - f\kzk;
a =Y ae (5) g =" _AZ (b

This shows that even a single pole with Re{sc} > 0 or |z| > 1 causes the impulse
response to diverge, which violates the BIBO stability condition (1.2.27).

Appendix B
Tables of Various Transforms

Table B.1 Definition and properties of the CTFS (continuous-time Fourier series)
@15) ;.

(0) Definition Synthesis: Xp(t) LR o Xkelkeot, P: period of Xp(t)
Analysis: Xy @L) [p Xp(t)e Tkentdt, wy = &
(1) Linearty a%s (t) + by (t) & a Xy + bY
(2) Time reversal Xp(—t) 4 X_k
(3) Symmetry for real-valued Real-valued Xp (t) = Xp e(t) + Xp o(t) z X = X,
functions
Real-valued and even Xp ¢(t) 4 Xk.e = Re{Xy}
Real-valued and odd Xp (t) Z Xko = jIm{Xx}
. ~ CTFS
(4) Conjugate Xp(t) < X*,
(5) Time shifting (Real translation) Kp(t —11) < Xee Tkolt = | X, | Z(— Kaots)
(6) Freguency shifting (Complex o (t)eiMoot L %,y
translation)
(7) Real convolution e ()50 (1) = [» XDt — 7)d7 T X Yi
(periodic/circular)
(8) Complex convolution Xp(t)Yp(t) P % Y oo XmYiem
(9) Time differentiation 0 L i X
L . t finite-valued and periodic \ CTFs
(10) Time integration J- o X(x)dt (only if Xo — 0) < o X
. x(at), a>0 CTFS Xk
periodic with period P/a < (with fundamental frequency awg)
(11) Scaling (q h d P/a)
(12) Parseval’s relation o1k @)Pdt = 5300 [Xl?

399

400

Appendix B

Table B.2 Definition and properties of the CTFT (continuous-time Fourier transform)

(0) Definition
(1) Linearity

(2) Time reversal

(3) Symmetry for real-valued functions

(4) Conjugate
(5) Time shifting (Real translation)

(6) Frequency shifting (Complex
translation)

(7) Duality

(8) Real convolution

(9) Complex convolution
(10) Time differentiation
(11) Time integration
(12) Scaling

(13) Time multiplication-Frequency
differentiation
(14) Parseval’s relation

X(jo) = Fix(t) 2 12 x(t)eietdt

ax(t) + by(t) & aX () + bY (w)
F

X(-1) 2, X(-o)

Real-valued X(t) = Xe(t) + Xo(t) &> X (@) = X*(—w)

Real-valued and even xq(t) (2<§5) Xe(w) = Re{X(w)}
.9.94,

Real-valued and odd Xo(t) (Zé Xo(@) = § Im(X(@))
.9.94,

X*(t) & X*(—w)

_ A —jott _
X(t—tr) 2 X(@e I = X(©)Z - tio

jot 25 _
x(t)eler (2?7) X(w — w1)
F F
g(t) < f(w) 2 f(t) & 2rg(-w)

YO =x(0)+90) 5, ¥(@) = X(@)6()
y(t) = xOMt) & Y(0) = £ X(@) * M()

(2.5.14)
=0 L oj,x
dt (2A5.17)Jw (@)

It x(@)de (25‘%3) 7 X(0)3(®) + & X(@)

F 1 12}
X(at) (@50m) X (%)
tx(t) & @
(2.5.20)

S xOPdt = oz [7 IX(@)Pde

401

Appendix B

w(@l+e)

T
A@l+e)

T
®[4e

T

@)1
QIESS H (9323)
T
alaymas|a o

_ <
g > |® o)1) ez

2/® _
(@¢/@Q)uss (zg23)
00—=)
(0o —)X
ooWoHv_
L =to(oy-0) X &
o0

(@)ous @

@)1z .5 (T mv

(0@ — @)¢ — (0 + @)Q) x|

Q:mv
0 0
(@ —@)9+ (@ +o)r <
(0w — @)
00—=y
0, ®)A
(O3 — @)X N fm&

uonouny a1pouade ue 1oy /N
uonouny o1ipouiade ue 10} /N
uonouny oipotiade ue 10} /N
uonouny s1pouade ue 1oy /N
uonouny o1pouiade ue 10} /N

uonouny a1pouiade ue 1oy /N

uonouny o1potiade ue oy /N

£ = os,Aoosv_voc_m a="7

MAT =X

assymasie 0 | _ 1y
0=>1I0} d
3I3YMas|o 0

T— =30} z/dl =X
T=>loyz/dl-

alymasp 0| _ I
‘TF =340} 2/d

asymasie 0 | _ 1y
T=>Io}d

0%

0 < {ejay (YN8t —7*

8\\
d — om e
iz = 0P ooy @IX HOM

iT—n)
-n}

#1)
0 < {e}ay ‘(1) e_21 (1)
0 < {elay ‘()N e_s (21)
(Msn (t1)

(Mg (o1)

(3g)ouisg = ays (6)

(£ —1°n — (£ +1)°n = (3)94 8sind rejnbueloay (g)
co—=|
d>adr—»ar X anem senbuesy (1)
co—=|
(d1—1¢ X urenasindwy (9)

T = (3)x uonouny uelsuo) (g)

& = Yours ()

d _ ¢
= = @ 10®s00 (g)

EPN = 0» rHDS.—O ANV

=)

(uonouny a1potiade/aipoliad Joy) (@)X 141D

(uonouny o1ponad 10§) *X S410D

(1)x uonouny

suonouny oiseq 10} 1419/S410 €9 3lqeL

402

Appendix B

Table B.4 Definition and properties of the DTFT (discrete-time Fourier transform)

(0) Definition

(1) Periodicity
(2) Linearity
(3) Time reversal

(4) Symmetry for real-valued
sequences

(5) Conjugate
(6) Time shifting (Real
translation)

(7) Frequency shifting (Complex
translation)

(8) Real convolution

(9) Complex convolution
(circular)

(10) Differencing in time

(11) Summation in time

(12) Scaling

(13) Time multiplication-
Frequency differentiation
(14) Parseval’s relation

(311)

DTFT: X(Q) = X[e/®] = F{x[n] Y x[njemien
@3.L3) 4

IDTFT: X[n] = FHX(Q)} = £ [,, X(Q)el*dQ
X(R) = X[ejQ] = X(2 + 2ms) for any integer m
ax[n] + by[n] & aX () + by ()

F
x[—n] (3?3) X(—R)
Real-valued x[n] = Xg[N] + Xo[N] % X(Q) = X*(—Q)
Real-valued and even xe[n] (3<§5) Xe(£2) = Re{X(2)}

.2.08,

Real-valued and odd x,[n] (3{—@) Xo(R2) = j Im{X(2)}
x*[n] & X*(—Q)
x[n —] 5 X(Q)e 19 = X(Q)£ — mQ

x[njein & X(Q — Q1)

x[n] g[n] & X(Q)G(Q)

x[nmin] & L X(2) * M(Q)

x[n] — x[n — 1] &(1 — e 1)X(Q)
3> X[m] = x[n] « ugln] &

m=-—o0

- elﬂX(Q)+”X(0) Z 8(Q2 — 27i)

_ x[n/K]_x[r] forn_rK F
Xw)[n] = { elsewhere (3.2.14) X(K)
nx[n] Z j dX(Q)

Yo G IXINIP = & [, IX(Q)1PdR

403

Appendix B

{T—N"T0) =< N >aum ,|e)x| N1 = ,l[ulx| "N

N N EYEINNENE] 0l — 0
DINIGONX 90 0= wioy [op/ux |~ [P

DN (1= DNAMNY TR % < [WIATulX

T 14a
ODAGDX < [uINa (1= WAX 55X
(41ys renaad Jo porad uo)DNI(T —NNX < [ulxys-Nm
DX yAM 5, (41us seiniro 4o poriad suo)[uI N[N — uJNx
DINIGI-INEN o Tuly < 04 < [u1B
DINIGI-) B o [ulx
{Gx 3w ['= ()X &> [U]°x ppo pue panjen-resy
{O)x)ed = (1)°X < [U]*x uans pue panjen-feay
DINIGI-)NX =)X < [u]°x + [u]Px = [u]x penfeA-feay

14a
N pouad yum [u]x Jo uonneadai
a1poutad ayp st [u]Nx ataym ([N — 15N — [H]5n = [HIND) PAINI—)NX <> [uINI[u—]x

~ 14a

(NAG + (I)Xe < [ulAg + [u]xe

14a

w saBaju Aue Joy (NW + %)X = ()X

o MODX IR T = ez PODX LUK T (2, (00X NHar = [u]x

GMIUIX I = g -BlUlx I = (IUDIN 19 = ()X

uolye|al s,Jenssted (1)

Buipeas (11)
uonNjoAuod (4enaJid) xajdwod (OT)
uonNjoAuod eay (6)
(uonejsuen xajdwo)) (yejnaiio) Bunyiys Aouanbai (8)
(4eno110) Buyiys awit (2)
Aurena (9)
arebnfuo) (S)

saouanbas panjeA-[eal 1oy ABWWAS ()

|esianal awil (g)
Aesurn (z)

Auwoipouiad (1)

uopiuyaq (0)

(s8113s 43N0 aWwn-21849s1p) S4A/L4A ay1 Jo sanadoid pue uonuya@ §'g a|qeL

Appendix B

_ @oms
(z/(T + W2)B)uIs €T3

(o5 — B)eBNX owux bi7

co—=y
%= 3 -0v) X
co—=y o

Mxz — v)¢ M 22 o2

OGlrz — B — B)g— T
012z — 05 M + B)¢ Sl e

Oz — o) —v)e+ "
Gz =N+) = (eI

00—=)]
w7z — 0 §la
Gl — 9B Y — B)¢ N (A=

co—=yf

Ey-v)eix X £
o0

N (2/%BM)uIs
— =0 yYMm —————————— = ()X
xg 4 (2/(1 + W) osx)uis e
N (2/%0M)uIs
—_— = oG | ot A X
xz (2/(T + WD) osH)uIs 00X
AT = ()X
alymasfe 0 | _
...,zNﬂ,zﬂ,oufei G0X
31aymasia
:.,zum M= M— =10} N\z_
CNF UM =104 g/NT—
a1ayMas|a _ — O)X
N FAF ANF=>Jos /N ~
21aYMas|o o“ w
CONZFCNTF M =340y N ~
X1 =0

[T—W—-uPn—[N+ul*n=
[u]tt+wey
as|nd sejnbueioay (8)
0o—=|
N>T+We Twr—urnes X
aNeM E_:mcSwomm)

[N |%8W_ (9

T = [u]x @2uanbas uelsuo) (g)

X — 075 ‘Yo
= B udBH uIs ()

N

— =0 ‘1o
e B ‘U0 Y 09 (€)

n?N =08 ‘uosy@ @
AZV”V_ n_
IN=d ‘gue@X X $@

()X 141

(saousanbas uoleinp-anuly

pue o1potiade/aiposad 1oy) ()X 14A/G)X S4d

[u]x aouanbag

404

$90uaNbas oIseq 404 141 pue 14A/S4A 9'd 3l1qeL

405

Appendix B

2+ 5s0oez —1
—_— <«

9ouanbas o1poLiade uoieINP-a)ULUI Ue 10} /N

T > el yum e (v1)

2T (Teel)

w28 — 1) s

EE— 9ouanbas dIpotiade uoneINp-alIuLUl Ue 10} /N T > lel ‘[ul*nge(T +u) (€T)
si9e—T
B 5o aouanbas d1potiade uoleINp-alIuLUl Ue 10} /N T > lel yum [u]snee (2T)
oo—=I 9 —
(lzg—v)e X =+ ﬁ il souanhas o1poliade uoleINP-SHULUL Ue 104 /N [ul*n (TT)
oo
T ¥ T-N>X>0AT=0DX [u]¢ (oT)
aloumssa 0 1 _ aouanbas dIpotiade uoleINp-alIuLUl Ue 10} /N = oc_mm = 4 (6)
x>g > |uwg —6lI0)T) (reed) T : TR ug g (ug)us

(5)x 141a (seouanbas uoneINp-alUL [u]x sdouanbag

pue o1poLiade/aipotad Joj) ()X L4a/()X S4a

(panunuod) 9'g sjqel

406 Appendix B

Table B.7 Definitions and properties of the Laplace transform and z-transform

Laplace transform | z -transform

X(s) = Lix(0)} = [Lx(e™dt | Bilateral(two-sided) | Xlz] = Z{x{n]} = o oxln]z™"

X(s) = £{x(0} = [[x(0)e™™"dt | Unilateral(one-sided) | X[z]=Z{x{nl} = X ox[n]z™"
(1) Linearity

aX(s)+bY(s) l ax(t)+ by(1) [ax[n]+ by|n) l aX[z]+bY|z]
(2) Time shifting (Real translation)
e " XK(s) x(t—1) x[n=n] z " X[z]

—5h

e [.\‘m+jf_'n.r(r)e'“'dr} x(t-h), H>0 \x[n—-m].n>0 z'"'{.\'|z|+z;,l. ,..xlm]z"'“}

o {'\'U)_]’1: _l.(ﬂe--wﬂrr} x(t+4), 1>0 |x[n+m],m>0 z™M { X[z]- Z:'._.,_],.\'i mlz ™ }

(3) Frequency shifting (Complex translation)
X(s-51) e x(n) ‘ zf x[n] | Xz/z)]

(4) Real convolution

G(s).X () g(r) = x(f) gln]*x[n] | Glz].X[z]
(5) Time derivative (Differentiation property) | Differencing
ilate K (o <Bi - —z-!
<B|lf.atcral> _\X(:,) (_,:x(” e oy Bilateral> (1 Y X[z]
<Unilateral> s.X (s) - x(0) dr <Unilateral> (1-z7")X[z] -x[-1]
(6) Time integral (Integration property) Summation
. 1
<Bilateral> %xm , <Bilateral> —— X[z]
. ’ o
1 j:_“x(r]dr _Z_“v"lml) 1 -1
<Unilateral> —(X (s)+]'_x(@ dz) " <Unilateral> -—— (X[z] + ¥ x{m])
(7) Complex derivative
[- (.
X 1 x(0) ~nx[n] z-X[2]
(8) Complex convolution
1 pemgies .o, 3 . .
FrT] e XY (s—¥) v x(N) () AT m-ﬁ‘_\[mumm
(9) Time scaling
2 x[n/M] Y
4X(as) (i) (M : a positive integer) X[z"]
(10) Time reversal
K(-s) [x(=1) x[-n] X[z
(11) Initial value theorem
x(0) = lim sX(s) x[0] = lim X[z]

(12) Final value theorem

x(e0) = limsX (s) x[eo] = lim(l1-z"")X[z]
=0 =l

407

Appendix B

1@ ,UIS | 073+ (1®S00 1,3 —2) s s @+ ;(0+5)
(1L®s00 |, 8 —2)z [ulsn(uL®)s0d ;.8 (1) (1)°n 1®s00,, 9 ois

+ 1®s002Z — Z @+ S
i [u]*n(u L™)s0d () (3)°n 10500 =

L®UIS | 578 + 7(1@S00 | o8 —2) . . 2@+ (0 +5)

Louls o [usn(uL@)us) oo (o1) (V°nouls |, 8 >
e [uln(u 1o)us ©) (¥ 1ous £ris
2—2\ pee (e+59)
£ SR a0 [U]*N 4 o8 (LU) @®) (N o0 e 2
z ne inN
9—-Z e+Ss
ﬁ _”Cums u _.m\m 1u pv Cvms Hmww] {
le—

q—z 89—z e+s

A._.mlo = Qvﬂ = .:mﬁ ch_mj W= _”C”_m_)_ u 1e-o va Cvmjﬂmlw ﬂ
29—z ee 0<® S

) A waw [ul*n (1u) (©) (En 2 o

W

(1-2) s s ol

T [ul*n 1u () (1»sn1 T

1-Z2—1T 1-12 s

JLAN A S ulsn I 1)sn z

= - [u] (e) @) =
ekw [fu-— 5%% @ (m—1¢ sy-9

1 1
I Emm ™ (@] 1
{[ulxiz = [z]x [ulx (1)x {()x}7 = (5)X

$30UaNbas/sUONOUNY D1SBq JO SWIOJSURI-Z pue swiojsuen adejde] g'g s|gel

408 Appendix B
Table B.9 Bilateral z-transform of basic sequences

x[n] X[Z] = Z{x[n]} = > o2, X[n]z™" with ROC

1) s[n] 1 All z

2) S8[n—nq] z~™ All zexcept 0 (for m > 0) or oo

(form < 0)

() usln] 1= T |zl > 1

4) —-us[-n-1] o = 1T |zl <1

(5) e T"us[n] = a"us[n] 2= ram(@=e7") |zl > |a

(6) —bus[-n—1] 75 = Tt |zl < |b]

(7) e Tl =gl =T CE eT) lal < |z| < |%]

(8) nug[n] (Zfl)2 |z > 1

9) —nus[—n—1] (2_21)2 |z <1
(10) na"us[n] Ty |2l > la|
(11) —nb"ug[-n —1] = |z| < |b|
(12) n?a"usn]) |zl > |al
(13) —n?b"us[-n—1] bz |2l < |b]
(14) MOfRERan-(<Dygln] A |zl > |a
(15) sin(Qin)us[n] o = Fohest 2l > 1
(16) cos(@un)us[n] oo = 7o 2l > 1
(17) r" sin(Q1n)us[n] Rl o |zl > Ir|
(18) r" cos(21n)us[n] dzreossh) _ _ Ezot cos<h) Iz| > Ir|

(z—r cos Q1)2+r2sin® Q; ~ 22—2zZr cos Q1+12

Appendix C
Operations on Complex Numbers, Vectors,
and Matrices

C.1 Complex Addition

(@ + jb1) + (@2 + jb2) = (a1 + &) + (b1 + by) (C1)

C.2 Complex Multiplication

Rectangular form: (a; + jby) x (a2 + jbo) = (awax — biby) + j(auby + biay)

(C.2a)
Polar form: r1/601 x ro/60, = r1el%r,ei% = rir,el it = i1, /(61 + 6,)
(C.2b)
C.3 Complex Division

a+jb a+jb a— jb

Rectangular form: 2 J G + J 2x 2 J d
a+jbr a+jb a—jb (C.32)

_axmt b, &by —ay '
az +b? a? + b?
r, /0 rzeiez rr . ro

Polar form: = — Zgie—t) = 2 (9, — 0 C.3b
riZ6 rielo r ri (02 1) ()

C.4 Conversion Between Rectangular Form
and Polar/Exponential Form

. ; . . 1 8
a +ja =rz0 =rel? withr = |a, + ja| = /a2 +a*and 6 = tan"* — (C.4
] | Jal=,/af + g ar()

409

410 Appendix C

Here, r and 6 are referred to as the absolute value and argument or phase angle
of the complex number a; + ja;, respectively and j is the unit imaginary number

V-1

C.5 Operations on Complex Numbers Using MATLAB

If we do not use i and j for any other purpose, they represent the basic imagi-
nary unit +/—1 by default. Try typing the following statements into the MATLAB
Command Window:

>>cl= 1+2i; c2= 3-4i;
>>cl+xc2, c1/c2 % multiplication/division of conplex nunbers
>>r =abs(c2) % absol ute val ue of the conpl ex nunber c2
>>sqrt(real (c2)”2+imag(c2)”2) % equivalent to the absol ute val ue
>>t h=angl e(c2) % phase angl e of the conpl ex nunmber c2 in radi ans
>>at an2(i mag(c2),real (c2)) % equivalent to the phase angle
>>i mag(l og(c2)) % equivalent to the phase angle
>>t h=180/ pi % radi an-t o- degree conversion
>>r+exp(j*th) % pol ar-to-rectangul ar conversion
ans = 3.0000 - 4.0000i
>>C= [1+i 1-2i; -1+43i -1-4i] %a conplex matrix
Cl = 1.0000 + 1.0000i 1. 0000 - 2.0000i
-1.0000 + 3.0000i -1.0000 - 4.0000i
>>Cl= C % conjugate transpose
Cl = 1.0000 - 1.0000i -1.0000 - 3.0000i
1.0000 + 2.0000i -1.0000 + 4.0000i

C.6 Matrix Addition and Subtraction[Y-1]

dj1 a2 - aN b1 by - by Ci1 Ci2 - CIN
A ap - a by by - b C1 Cp» - C

A+ B=— b1 a2 oN |y | P D22 oN | _ | Ca1 G2 N | _ o
am1 amz - aMn bm1 bmz - bun Cm1 Cm2 - CMN

(C.53)

Appendix C 411

C.7 Matrix Multiplication

d;1 a2 - 4K b1 by - bin Ci1 Ci2 - CIN
A axp - a by by - b C1 Cp» - C
AB — b1 a2 DK 1 D2 oN | _ | G C22 2N | _ ¢ (C.6a)
am1 amz - amk | | bk1 bka - bkn CmM1 Cm2 - CMN
. K
With Con = Zkzl amkbin (C.6b)

(cf.) For this multiplication to be done, the number of columns of A must equal the
number of rows of B.

(cf.) Note that the commutative law does not hold for the matrix multiplication, i.e.,
AB # BA.

C.8 Determinant

The determinant of a K x K (square) matrix A = [amn] is defined by

K K
det(A) = |Al = Zk:o an(—1)" My, or Zk:o am(—1)™*Mm (C.70)

foranyfixedl <n<Korl<m<K

where the minor My, is the determinant of the (K — 1) x (K — 1) (minor)
matrix formed by removing the kth row and the nth column from A and A, =
(=1)%*" My, is called the cofactor of ayp.

Especially, the determinants of a 2 x 2 matrix Az, and a 3 x 3 matrix Agz,3 are

ay ap 2 k+n
det(A, = = -1 Min = a8 — aa; C.7b
(A2x2) a1 A Zk:l an(—1) kn = 8118 — 812821 (C.7b)
aj1 a2 A3
ap a3 a1 a3 a ap
det(Asx3) = |ax1 ap 3| = an -
azp az3 az1 az3 agy az2
az1 dz2 az3

= a1 (axpags — apzasy) — aro(ar1ass — Ax3@31) + arz(@1d3 — axraar)
(C.7c)
Note the following properties.

e If the determinant of a matrix is zero, the matrix is singular.
e The determinant of a matrix equals the product of the eigenvalues of a matrix.

412 Appendix C

o If Aiisupper/lower triangular having only zeros below/above the diagonal in each
column, its determinant is the product of the diagonal elements.
o det (AT) = det (A); det (AB) = det (A) det (B); det (A1) = 1/det (A)

C.9 Eigenvalues and Eigenvectors of a Matrix*

The eigenvalue or characteristic value and its corresponding eigenvector or charac-
teristic vector of an N x N matrix A are defined to be a scalar A and a nonzero
vector v satisfying

Av=iAvs (A-Al)lv=0 (v#0) (C.8)

where (1, v) is called an eigenpair and there are N eigenpairs for an N x N matrix A.
The eigenvalues of a matrix can be computed as the roots of the characteristic
equation

IA—al| =0 (C.9)

and the eigenvector corresponding to an eigenvalue ; can be obtained by substitut-
ing \; into Eq. (C.8) and solve it for v.
Note the following properties.

e If Aiis symmetric, all the eigenvalues are real-valued.
e If Ais symmetric and positive definite, all the eigenvalues are real and positive.
e If vis an eigenvector of A, so is cv for any nonzero scalar c.

C.10 Inverse Matrix

The inverse matrix of a K x K (square) matrix A = [ams] is denoted by A1
and defined to be a matrix which is pre-multiplied/post-multiplied by A to form an
identity matrix, i.e., satisfies

AxAl=AlxA=1 (C.10)
An element of the inverse matrix A~! = [amn] can be computed as

1 1

— — __1\ym+n
Omn = det(A) Amn = |A|(l) Mmn (C-ll)

where My, is the minor of a, and A, = (—1)¥t" My, is the cofactor of ay,.

1 See the website @http://www.sosmath.com/index.html or http:/Avww.psc.edu/~burkardt/papers/
linear_glossary.html.

Appendix C 413

Note that a square matrix A is invertible/nonsingular if and only if

e no eigenvalue of A is zero, or equivalently
e the rows (and the columns) of A are linearly independent, or equivalently
e the determinant of A is nonzero;

C.11 Symmetric/Hermitian Matrix
A square matrix A is said to be symmetric, if it is equal to its transpose, i.e.,
AT =A (C.12)

A complex-valued matrix is said to be Hermitian if it is equal to its complex
conjugate transpose, i.e.,

A= AT where * means the conjugate. (C.13)

Note the following properties of a symmetric/Hermitian matrix.

o All the eigenvalues are real.
o Ifall the eigenvalues are distinct, the eigenvectors can form an orthogonal/unitary
matrix U.

C.12 Orthogonal/Unitary Matrix

A nonsingular (square) matrix A is said to be orthogonal if its transpose is equal to
its inverse, i.e.,

ATA=1; AT=A" (C.14)

A complex-valued (square) matrix is said to be unitary if its conjugate transpose is
equal to its inverse, i.e.,

ATA=1; AT=A"1 (C.15)

Note the following properties of an orthogonal/unitary matrix.

e The magnitude (absolute value) of every eigenvalue is one.
e The product of two orthogonal matrices is also orthogonal; (AB)*T (AB) =
BT (A*T AB = 1.

414 Appendix C
C.13 Permutation Matrix

A matrix P having only one nonzero element of value 1 in each row and column is
called a permutation matrix and has the following properties.

e Pre-multiplication/post-multiplication of a matrix A by a permutation matrix P,
i.e., PA or AP yields the row/column change of the matrix A, respectively.
e A permutation matrix A is orthogonal, i.e., AT A= 1.

C.14 Rank

The rank of an M x N matrix is the number of linearly independent rows/columns
and if it equals min (M, N), then the matrix is said to be of maximal or full rank;
otherwise, the matrix is said to be rank-deficient or to have rank-deficiency.

C.15 Row Space and Null Space

The row spaceof an M x N matrix A, denoted by R (A), is the space spanned by the
row vectors, i.e., the set of all possible linear combinations of row vectors of A that
can be expressed by ATa with an M-dimensional column vector a. On the other
hand, the null space of the matrix A, denoted by A/ (A), is the space orthogonal
(perpendicular) to the row space, i.e., the set of all possible linear combinations of
the N-dimensional vectors satisfying Ax = 0.

C.16 Row Echelon Form

A matrix is said to be of row echelon form [W-6] if

e each nonzero row having at least one nonzero element has a 1 as its first nonzero
element, and

e the leading 1 inarow is in a column to the right of the leading 1 in the upper row.

e All-zero rows are below the rows that have at least one nonzero element.

A matrix is said to be of reduced row echelon formif it satisfies the above conditions
and additionally, each column containing a leading 1 has no other nonzero elements.

Any matrix, singular or rectangular, can be transformed into this form through
the Gaussian elimination procedure, i.e., a series of elementary row operations,
or equivalently, by using the MATLAB built-in routine “r r ef () ”. For example,
we have

row
001 3 o 240 -8 division 120 -4 o 120 -4
A=|240-8| = |001 3 — 001 3 = 1001 3 |=rref(A)
1211 |"™%|121-1] row 001 3 |*"™ 000 0
subtraction

Appendix C 415

Once this form is obtained, it is easy to compute the rank, the determinant, and the
inverse of the matrix, if only the matrix is invertible.

C.17 Positive Definiteness

A square matrix A is said to be positive definite if

x*T Ax > 0 for any nonzero vector x (C.16)
A square matrix A is said to be positive semi-definite if

x*T Ax > 0 for any nonzero vector x (C.17)

Note the following properties of a positive definite matrix A.

e Ais nonsingular and all of its eigenvalues are positive, and
e the inverse of A is also positive definite.

There are similar definitions for negative definitenessand negative semi-definiteness.
Note the following property, which can be used to determine if a matrix is
positive (semi-) definite or not. A square matrix is positive definite if and only if

(i) every diagonal element is positive and
(ii) every leading principal minor matrix has positive determinant.

On the other hand, a square matrix is positive semi-definite if and only if

(i) every diagonal element is nonnegative and
(ii) every principal minor matrix has nonnegative determinant.

Note also that the principal minor matrices are the sub-matrices taking the diagonal
elements from the diagonal of the matrix A and, say for a 3 x 3 matrix, the principal
minor matrices are

adp1 A2 a3

a1 a2 azy a3 az1 az3
g1 A3z Az3

a1 a2 A13
a1 a2 A a3 aj; a3
a1, a, 3-33,|:)) ,

among which the leading ones are

dz1 a2 A3

a1 a2
a, [
dz1 a32 az3

ai1 a2 &3
a1 azz] ’

416 Appendix C

C.18 Scalar(Dot) Product and Vector(Cross) Product

A scalar product of two N -dimensional vectors x and y is denoted by x - y and is
defined by

N
X - y = anl Xnyn = XTy (C18)

An outer product of two 3-dimensional column vectors X = [X; X2 X3]" andy =
[y1 ¥2 y3]" is denoted by x x y and is defined by

X2Y3 — X3Y2
XXY =1 XYy1—X1ys (C.19)
X1Y2 — Xoy1

C.19 Matrix Inversion Lemma

[Matrix Inversion Lemma]

Let A, C and [C! 4+ D A~ B] be well-defined with non-singularity as well
as compatible dimensions. Then we have

[A+BCD]I'=A'-—A!'B[C!+DA !B IDA! (C.20)

Proof We will show that post-multiplying Eq. (C.20) by [A + BCD] yields an
identity matrix.

[A-l - A'B[C!+ DA 'B]"'DA![A + BCD]

=1 +A1BCD—- A!B[C!+DA!B]'D—- A!B[C!+DA!B]"'DA!BCD
=1+ A1BCD - AB[C !+ DA !B]'!CICD - A !B[C!+ DA 'B]"!DA'BCD
=1+ A1BCD - A1B[Ct+ DA !B]![Ct+DABICD
=14+A'BCD-A'BCD=I

C.20 Differentiation w.r.t. a Vector

The 1st derivative of a scalar-valued function f(x) w.r.t. a vector x = [x; X]" is
called the gradient of f(x) and defined as

d
VI = o f0) = [g;;gg] (C.21)

Appendix C 417

Based on this definition, we can write the following equation.

d 7 I .7 d Y1
9 . - = = C.22
o XY= Y X = o (i xey) [yz y (C.22)
d o1, _ 9 2 N _ o X | _
aXx X = ax(xl + X3) _2[X2 = 2X (C.23)
Also withan M x N matrix A, we have
S Ay = in ATx = Ay (C.24a)
aX X
9 Tax= D XTATy = ATy (C.24b)
X X
where
M N
xT Ay = Zmil | 8mnXmYh (C.25)

Especially for a square, symmetric matrix A with M = N, we have

%XTAX — (A4 AT)X if A isimmetric 2 Ax (C.26)

The 2nd derivative of a scalar function f (x) w.r.t. a vector x = [x; x,]" is called the
Hessian of f(x) and is defined as

d? 32f/9x2 92 f/0%10x
_ 2 _ _ 1 1042
H(X) =V f(x) = e f(x) = [82 Floxaix, 92 1)0%2 } (C.27)
Based on this definition, we can write the following equation:
d2 T T if A is symmetric
Wx Ax=A+A - 2A (C.28)

On the other hand, the 1st derivative of a vector-valued function f(x) w.r.t. a
vector X = [x; X2]" is called the Jacobian of f(x) and is defined as

(C.29)

JX) = %f(x) - [3“/ 9% 8fl/axﬂ

afg/axl 8f2/8X2

Appendix D
Useful Formulas

sin(A4 £90°) =+ cos 4 (D.1)| cos(4£90%) =75sind (D.2)
sin(A4 £180°) = —sinA (D.3) | cos(A+180%) =-cosd (D.4)
sin(4+ B) =sind cos B + c‘cas,~l s‘inB (D.5) tan (A + B) = Iuin A i-]la'n BB (D.7)
cos(A+B) = cosA cosB F sinA sinB (D.6) F tan A tan

sind sinB = -;-{cos(,-!—B) —cos(A+B)} (D.8)| sind cosB = ~;—{si11(,-i+8) +sin(4-B)} (D.9)

cos.d sinB = %{sin(:!+B)—sin(.‘l—8)} (D.10) | cosA cosB = %{OOS(."I+B}+COS[:I—B}} (D.11)

B)cos(%) (D.13)

sind +sinB = Zsin[gjcos[%J (D.12) | cosA + cosB = lcos["i;

sin®4 = %(1—:;05 20 (D.14) | cos®4 = %umsz.-:) (D.15)
cos 24 =cos’A —sin°4
in24d = 2sin. £ : i D.17
sin2A4 = 2sinA cosA (D.16) =1-2sin"4 = 2c0s°4 - 1 ()
acosA —bsind = Va2 +b2 cos(4+8), 6 =tan” (b/a) (D.18)
asind + bcosA =va’+b° sin(A +8), 0= tan”' (b/ a) (D.19)
e’?+e71% = 2cos 0 (D.21)
Euler identity: e*/?=cos@ + jsing (D20)[7a_ 9 —— D22)
;oo - N o 1- e oo,
Sum of (infinite) geometric series: Y u_,r” = Ilfr = hINEN 17 [rl <1 (D.23)
Binomial ion: (a+b)" =N NC,a""b" with NC,= NCy_, = LA . D.24
inomial expansion: (a +)" = 2 NC,a with NC,= NCy_, = R e 3 v e (D.24)
e*=3 Lorctsdeele sl T erones (D.25)
=0 .1 m 21 3! *
d | L = L n+l -
" =nt D.26) | [1"di = — 1" for n# -1 (D.32)
d a _ at at _ L at
e =ae ©27) | [e™dt = —e (D.33)
d p |
Ecosmr = —wsin i (D.28) _[coswt di = asm-mnf (D.34)
-g?siumr I (0.29) | [sinardr = - :Ecosruf (D35)
d d d dv du A
F(m)= um +1 i (D.30) _[u?c.’f =uv I\ -‘—f}-dr (Partial integral) (D.36)
d (] u(dw’d!)—ﬂ\-‘((.’m’d!) (D31)
dt u*
(0 +8¢ -1 xt-1,) @37 | [Txnsa-nya" = x(n) (D38)
[" e a2 22 8() (039) | T2 /™y _s@-27i) (DAO)

419

Appendix E
MATLAB

Command Window on your monitor as depicted in Fig. E.1, where

a cursor appears (most likely blinking) to the right of the prompt P
like “>>" waiting for you to type in commands/statements. If you
are running MATLAB of version 6.x or above, the main window has

not only the command window, but also the workspace and command history
boxes on the left-up/down side of the command window, in which you can see
the contents of MATLAB memory and the commands you have typed into the
Command window up to the present time, respectively (see Fig. E.1). You might
clear the boxes by clicking the corresponding submenu under the “Edit” menu
and even remove/restore them by clicking the corresponding submenu under the
“Desktop/Desktop_Layout” menu.

How do we work with the MATLAB Command Window?

Once you installed MATLAB®, you can click the icon like the one
at the right side to run MATLAB. Then you will see the MATLAB
[t

— By clicking “File” on the top menu and then “New”/“Open” in the File pull-down
menu, you can create/edit any file with the MATLAB editor.

«): MATLAB
Eile Edit Debug Desktop Window Help
D@ & BRE v o ¥ ef| P curentbirectory [CMATLAB701Wwork M (=)

Shortcuts [Z]) How to Add [Z] What's New

Command Window

B @ B lFEaseM™ To get started, select MAILAB Help or Demos trom the Help menu.

Mame Value
Hd 1 >
<]l] B3]

Current Directory | Workspace
Command History ? X
cir09%03
0. 0002+pi
<] BJ
2 Start |

Fig. E.1 The MATLAB command window with the workspace and command history boxes

421

422 Appendix E

By clicking “File” on the top menu and then “Set_Path” in the File pull-down
menu, you can make the MATLAB search path list include or exclude the paths
containing the files you want to or not to be run.

If you are a beginner in MATLAB, then it may be worthwhile to click “Help”
on the top menu, “Demos” in the Help pull-down menu, (double-)click any topic
that you want to learn about, and watch the visual explanation about it.

By typing any MATLAB commands/statements in the MATLAB Command Win-
dow, you can use various powerful mathematic/graphic functions of MATLAB.
If you have an M-file which contains a series of commands/statements composed
for performing a target procedure, you can type in the file name (without the
extension “.m”) to run it.

Note the following:

1) the index of an array in MATLAB starts from 1, not 0, and
2) a dot(.) must be put before an operator to make a term-wise (element-by-
element) operation.
Table E.1 Functions and Variables in MATLAB

function Remark function Remark

cos(x) exp(x) exponential function

si n(x) | og(x) natural logarithm

tan(x) | 0g10(x) common logarithm

acos(x) cos™ (x) abs(x) absolute value

asi n(x) sin™! (x) angl e(x) phase of a complex
number([rad]

at an(x) —n/2 <tan~! (x) < /2 sqrt(x) square root

atan2(y,x) —m <tan"'(y,x) <= real (x) real part

cosh(x) (e +e%)/2 i mag(x) imaginary part

si nh(x) (e —e¥)/2 conj (x) complex conjugate

t anh(x) (e —eX)/(e+e™) round(x) the nearest integer (round-off)

acosh(x) cosh™ (x) fix(x) the nearest integer towards 0

asi nh(x) sinh~! (x) f1 oor(x) the greatest integer < x
rounding down

at anh(x) tanh™! (x) ceil (x) the smallest integer > x
rounding up

nmax maximum and its index si gn(x) 1(positive)/0/-1(negative)

mn minimum and its index nod(y, x) remainder of y/x

sum sum rem(y, X) remainder of y/x

pr od product eval (f) evaluate an expression

norm norm feval (f,a) function evaluation

sort sort in the ascending order pol yval value of a polynomial function

cl ock present time pol y polynomial with given roots

find index of element(s) roots roots of polynomial

tic start a stopwatch timer toc read the stopwatch timer

(elapsed time from tic)

date present date

Appendix E 423

Table E.1 (continued)

function Remark function Remark
reserved variables with special meaning
[V-1 pi b
eps machine epsilon (smallest Inf, inf largest number (oc0)
positive number)
realmax, largest/smallest positive NaN Not_a_Number(undetermined)
realmin number
end the end of for-loop or if, while, br eak exit while/for loop
case statement or an array
index
nargin # of input arguments nar gout # of output arguments
var ar gi n variable input argument list var ar gout variable output argument list

Table E.2 Graphic line specifications used in the pl ot () command

Line type Point type (Marker symbol) Color

- solid line .(dot) +(plus) *(asterisk) r: red m: magenta

: dotted line ALA > > °(circle) g: green y: yellow

— dashed line p: * v:V X: X-mark b: blue c: cyan(sky blue)
-. dash-dot d: ¢ << s: square() k: black

Some of mathematical functions and special reserved constants/variables defined
in MATLAB are listed in Table E.1. Table E.2 shows the graphic line specifications
used in the plot() command.

E.1 Convolution and Deconvolution

C=conv(A, B)

— Fortwo sequences A =[a; a --- ay]and B = [by b, --- by], this routine
computes their (linear) convolution C =[c; ¢, -+ Cnam—1] @S

min(n,M—1)
Ch+1 = Zm:max(O,n—N-H) An-m+1Bmy1 (E.D)

— It can be used for multiplying two polynomials whose coefficients are A and
B, respectively:

(axN 4 ayix +an) (XM - 4 by_1X + by)

N+M—2
=cx\t + -+ CNyM—2X + CNyM-1

— C=xcorr2(A, B) performs two-dimensional convolution of matrices A
and B.

424 Appendix E

function z=convcircular(x,y, N
% Circular convolution z(n)= (1/N) summ=0"N-1 x(m)*y(n-m
i f nargin<3, N=nin(length(x),!length(y)); end
x=x(1:N); y=y(1:N); ycre= fliplr(y);
for n=1: N
ycrc = [ycrc(N yecrc(1l:N1)]; z(n) = xxycrc.' /N
end

[Q Rl =deconv(C, A

— This routine deconvolves a vector A out of C by long division to find Q and R
such that

C =conv(A,Q) +R
It can be used for polynomial division C(x)/A(x) = Q(x) + R(x)/A(X).

E.2 Correlation

[phi, | ags] =xcorr (X, y, opt)

With no optional parameter opt, this routine computes the (linear) correla-
tion as

polml=)" " xn+mlyn]=Y"" xnly‘[n—m]
=Y x[n+mily'] (E2)
together with the corresponding time lag vector | ags.

With optional parameter opt = “coeff”/“biased”/*“unbiased”, it outputs a
normalized version as Eqs. (1.4.16a)/(1.4.16b)/(1.4.16c¢), respectively.

function [phi,lags]=xcorr_ny(x,y, opt)
% conput es the crosscorrelation of two vectors x and y as phi (1: Nx+Ny- 1)
if nargin<3, opt="reg ; if nargin<2, y=x; end, end
x=x(:)."; y=y(:).’; % make themrow vectors
Nx=I engt h(x); Ny=length(y); N=max(Nx, Ny);
for n=1: Nx-1
N1=m n(Nx-n, Ny); n¥1l:N1; phi (n+Ny)= x(m#n)*y(m’;
if opt(1:3)=="unb’, phi(n+Ny)= phi(n+Ny)/Nl; end %regular or unbiased
end
for n=1-Ny: 0
N2=mi n(Nx, Ny+n) ; n¥1l: N2; phi(n+Ny)= x(m*y(mn)’;
if opt(1:3)=="unb’, phi(n+Ny)= phi(n+Ny)/N2; end % regular or unbiased
end
if opt(1)=="b’, phi= phi/N % biased version (1.4.16b)
elseif opt(1l)=="c', phi=phi/sqrt((x*x")*(y*y’)); %coefficient version
end
lags=[-(Ny-1): (Nx-1)];

Appendix E 425

function phi=xcorr_circular(x,y,N)

% Circular (cyclic) correlation of x and y with period N
if nargin<2, y=x; end

Nx = length(x); Ny = length(y);

if nargin<3, N=max(Nx, Ny); end

if Nx<N x =[x zeros(1,NNx)]; elseif N<Nx, x = x(1:N); end
if Ny<N, y [y zeros(1,NNy)]; elseif NNy, vy = y(1:N); end
for n=1: N, phi(n) = xxy' /N y =[y(N y(1:N1)]; end

PHI =xcorr2(X,Y)

— Two-dimensional cross-correlation of matrices X and Y

E.3 CTFS (Continuous-Time Fourier Series)

function [c, kk] =CTFS_exponenti al (x, P, N)
% Find the conpl ex exponential Fourier coefficients c(k) for k=-N'N
% x: A periodic function with period P
% P. Period, N Maxinmumfrequency index to specify the frequency range
w0=2*pi / P; % the fundanental frequency [rad/s]
xexpj kwot = [x " (t).*exp(-j*kxwOxt)’'];
xexp- kwOt = inline(xexpjkwot_ 't’, k',"w0);
kk=-N: N; tol=1e-6; %the frequency range tol erance on nunerical error
for k=kk

c(k+N+1) = quadl (xexp kwot,-P/2,P/2,tol,[],k,wO0); % Eq. (2.1.5b)
end

E.4 DTFT (Discrete-Time Fourier Transform)

function [X, ph] =DTFT(x, W n0)

% DTFT of x[n] for frequency Wregarding the 1st sanple as the nO-th one.
Nt =length(x); n=0:Nt-1;

if nargin<3, n0 = -floor(Nt/2); end

X= xxexp(-j*(n+n0)’ *W,; %Eq. (3.1.1)

i f nargout==2, ph=angle(X); X=abs(X); end

E.5 DFS/DFT (Discrete Fourier Series/Transform)

function [X, ph] =DFS(x, N, n0)

% N-poi nt DFS/ DFT of x[n] regarding the 1st sanple as the nO-th one.
if nargin<3, n0O = 0; end

n=n0+[0: | engt h(x)-1]; k=[0:N-1];

X= xxexp(-j*2*pi*n’xk/IN); % Eq.(3.4.7)

I f nargout==2, ph=angle(X); X=abs(X); end

426 Appendix E

E.6 FFT (Fast Fourier Transform)

X=fft(x,N) orfft(x)

— This routine computes the N-point DFT X(k) of a given sequence x[n],
where the sequence will be zero-padded or truncated so that its resulting
length will be N. If the 2nd input argument is not given, the DFT size will
be set to the length of the sequence. In case the 1st input argument X is a
matrix, X will also be a matrix, each column of which is the FFT of the
corresponding column of x.

— Note that, to exploit the computational efficiency of FFT, the DFT size N
should be chosen as a power of 2 greater than or equal to the length of the
sequence.

x=i fft (X N) orifft(X)

— This routine computes the N-point IDFT x[n] of a given sequence X(k),
where the sequence will be zero-padded or truncated so that its resulting
length will be N. If the 2nd input argument is not given, the IDFT size will
be set to the length of the sequence. In case the 1st input argument X is a
matrix, x will also be a matrix, each column of which is the IDFT of the
corresponding column of X.

— Note that, to exploit the computational efficiency of FFT, the IDFT size N
should be chosen as a power of 2 greater than or equal to the length of the
sequence.

X=fft2(x,MN) orfft2(x)

— This routine computes the two-dimensional DFT X(k,l) of a given matrix
X[m,n], where each column/row of x will be zero-padded or truncated so that
the resulting matrix size will be M x N. If the 2nd and 3rd input arguments
are not given, the DFT sizes will be set to the row/column size. In fact,
“fft2(x, M N) ”isequivalentto“fft (fft(x, M.), N .”

x=i fFt2(X, M N) orifft2(X)

— This routine computes the two-dimensional IDFT x[m,n] of a given matrix
X(k,I), where each column/row of X will be zero-padded or truncated so that
the resulting matrix size will be M x N. If the 2nd and 3rd input arguments
are not given, the IDFT sizes will be set to the row/column size. In fact,
“ifft2(x, M N)”isequivalentto“i fft(ifft(x,M."), N .”

Appendix E 427

y=fftshift(x)

— This routine swaps the first and second halves of the input vector x if X is
a vector and swaps quadrants one and three with quadrants two and four
if x is a matrix. It is used to rearrange the FFT sequence so that the zero
(DC) frequency component is located at the center with the negative/positive
frequency ones on the left/right side.

E.7 Windowing

functi on xw=w ndow ng(x, w, opt)
N= | engt h(x);
if isnumeric(w
xw= X; Nw2=floor ((Nw)/2); xw1l:Nw2)=0; xw(Nw2+w+1:end) =0;
el se
switch | ower (W 1:2))
case {"bt’,’tt’}, w= bartlett(N); % w ndow bartlett, N)
case 'bk’, w= blackman(N); % w ndow(@| ackman, N)

case 'cb’, if nargin<3, r=100; else r=opt; end
w= chebwi n(N, r); % w ndow(@hebwi n, N, r)
case 'gs’, if nargin<3, alpha=2.5; else al pha=opt; end

w= gausswi n(N, al pha); % wi ndow(@aussw n, N, al pha)
case 'hm, w= hamming(N); % w ndow(@anmm ng, N)
W=

case 'hn’, hanni ng(N); % wi ndow(@anni ng, N)
case 'ks', if nargin<3, beta=0.5; else beta=opt; end
w= kai ser (N, beta); % w ndow @ai ser, N, bet a)
otherwi se w= Xx;
end
if size(x,1)==1, w=w.'; end
XW = X. *W,

end

(cf.) You can just type “window” or “wintool” into the MATLAB Command win-
dow to open the Window Design & Analysis Tool. Type “doc window/
signal”/“doc window” to see other usages of the signal processing toolbox
or filter design toolbox function “window”.

E.8 Spectrogram (FFT with Sliding Window)

[X, F, T] =specgr am(x, N, Fs, WND, Nover | ap) in MATLAB 6.x
versions

— This STFT (Short-Time Fourier Transform) routine computes the spectro-
gram, i.e., N-point DFT X(k,m) of mth segment that is windowed by WND
and overlaps with neighboring segment by Noverlap (whose default value is
length(WND)/2), where the length of WND must be greater than Noverlap,
but not greater than N.

428 Appendix E

— Input
¢ WND: Window sequence given as a column vector of length Nw such that

Noverlap < Nw <= N

If a scalar is given as WND, a Hamming window of length N is used.

e N: DFT size whose default value is min(256,length(x)).

e Fs: Sampling frequency which does not affect the spectrogram but is used
for scaling plots and its default value is 2 Hz.

e You can use the default value for any parameter by leaving it off or

using [].

— Output

e X: STFT X(k,m) of x with time and frequency increasing linearly across
its columns, from left to right and down its rows, starting at 0, respec-
tively. The number of coumns of X will be Nc = fix((length(x)-
Noverlap)/(length(WND)-Noverlap)). The number of rows of X will
be Nr = ceil((N + 1)/2) or N depending on whether x is real or
complex-valued.

e Fand T: Nr normalized frequencies (2/7) in Hz and Nc times in column
vectors

— With no output arguments, the routine plots the absolute value of the spec-
trogram in the current figure, using imagesc(T,F,20*log10(abs(X))), where
T is created with its starting point shifted by (Nw-Noverlap)/2. Then “axis
xy”, and “colormap(jet)” are used so that the low frequency content of the
first portion of the signal is displayed in the lower left corner of the axes.
>>i magesc(T, F, 20*l og10(abs(X) +eps)); axis xy; col ormap(jet)

(Example) Compute the spectrogram of a quadratic chirp.

Fs=1e3; Ts=1/Fs; t=0:Ts:2; %072 secs @1kHz sanple rate

x= chirp(t,0,1,150,’q"); %aquadratic chirp start @0 & cross 150Hz at t=1
N=64; Nhw=N; % The DFT size and the length of the Hanni ng wi ndow

Nover |l ap=32; [X F, T] = specgran(Xx, N, Fs, Nnw, Nover| ap) ;

specgran(x, N, Fs, Nnw, Noverl ap); % Di splay the spectrogram

title(’ Quadractic Chip: start at OHz and cross 150Hz at t=1sec’)

[X, F, T, P] =spect rogr an(x, WND, Nover | ap, N, Fs) in MATLAB
7.X versions

— This STFT routine computes the spectrogram, i.e., N-point DFT X(k,m)
of mth segment that is windowed by WND and overlaps with neighboring
segment by Noverlap.

— By default, x is divided into eight segments. If x cannot be divided exactly
into eight segments, it is truncated. Also by default, the DFT size N is set

Appendix E 429

to the maximum of 256 and the next power of 2 greater than the length
of each segment of x. WND is a Hamming window of length N. Noverlap
is the value producing 50% overlap between segments. Fs is the sampling
frequency, which defaults to normalized frequency 1 Hz.

— Each column of X contains an estimate of the short-term, time-localized fre-
quency content of x. Time increases across the columns of S and frequency
increases down the rows.

— The number of rows of X will be Nr = ceil((N + 1)/2) or N depending on
whether x is real-valued or complex-valued.

— The number of coumns of X will be Nc = fix((length(x)-Noverlap)/
(length(WND)-Noverlap)).

— If WND is given as an integer, X is divided into segments of length WND and
each segment is windowed by a Hamming window. If WND is a vector, X is
divided into segments equal to the length of WND and then each segment is
windowed by the window vector WND.

— Noverlap must be an integer smaller than WND (an integer) or its length if
WND is a vector.

— If the 4th input argument is given as not a scalar meaning the DFT size, but
a vector of frequency[Hz], spectrogram(x,WND,Noverlap,F) computes the
spectrogram at the frequencies in F using the Goertzel algorithm.

— The 2nd output F is the frequency vector of length N and the 3rd output T
the time vector of length Nc at which the spectrogram is computed, where
each value of T corresponds to the center of each segment.

— The 4th output P is a matrix of the same size as x containing the PSD of
each segment. For real x, each column of P has the one-sided periodogram
estimate of the PSD of each segment. If x is complex or a frequency vector
is given as the 4th input, P has the two-sided PSD.

E.9 Power Spectrum

[Pxy, F] =cpsd(x, y, WD, Nover | ap, Nfft, Fs)

— This routine computes the one/two-sided CPSD (Cross Power Spectral Den-
sity) estimate Pxy of two real/complex-valued signal vectors x and y using
Welch’s averaged periodogram method. For real signals, Pxy has length
(Nfft/2 4+ 1) if Nfft is even, and (Nfft + 1)/2 if Nfft is odd. For complex
signals, Pxy always has length Nfft.

— By default, x is divided into 8 sections (with 50% overlap), each of which
is windowed with a Hamming window and eight modified periodograms are
computed and averaged.

430 Appendix E

— If WND is a vector, the signal vectors are divided into overlapping sections
of length equal to the length of WND, and then each section is windowed
with WND. If WND is an integer, x and y are divided into sections of length
WND, and a Hamming window of equal length is used. If the length of x and
y is such that it cannot be divided exactly into integer number of sections
overlapped by Novelap samples (or 50% by default), they will be truncated
accordingly. Noverlap must be an integer smaller than WND (given as an
integer) or the length of WND (given as a vector).

— Nfft specifies the DFT size used to calculate the CPSD estimate and its
default value is the maximum of 256 or the next power of 2 greater than
the length of each section of x (and y).

— Note that if Nfft is greater than the segment length, the data is zero-padded.
If Nfft is less than the segment, the segment is “wrapped” to make the length
equal to Nfft. This produces the correct FFT when Nfft < L, L being signal
or segment length.

— If the sampling frequency Fs is not given, F will be the vector of digital
frequencies in rad/sample at which the PSD is estimated. For real signals,
F will span the interval [0,pi] when Nfft is even and [0,pi) when Nfft is
odd. For complex signals, F spans [0, 2*pi). If FS[Hz] is given as the real
frequency, F will span the interval [0,Fs/2] when Nfft is even and [0,Fs/2)
when Nfft is odd. For complex signals, F spans the interval [0,Fs). If Fs is
given as [] (an empty set), it will be set to 1 Hz so that F will be a vector of
normalized frequencies.

— The string “twosided” or “onesided” may be placed in any position in the
input argument list after Noverlap to specify the frequency range over which
the CPSD estimated is found.

— cpsd(..) with no output arguments plots the CPSD estimate in dB per unit
frequency.

— c¢psd(x,X,...) can be used to find the APSD (auto power spectral density) of
a signal x, which shows the distribution of signal power per unit frequency.

(cf.) An interactive GUI (graphic user interface) signal processing tool, named
“SPTool”, is available.

E.10 Impulse and Step Responses

[y,t,x]=inmpul se(sys,t f) or [y, x,t]=inpul se(B,At_f)

— This routine returns the impulse response y(t) (together with the time
vector t starting from 0 to t _f and the state history x for a state-space
model) of an LTI system with transfer function B(s)/A(s) or a system model

Appendix E 431

sys that might have been created with either t f (transfer function), zpk
(zero-pole-gain), or ss (state space) as below:

>>sys=tf (B, A) % continuous-tine system B(s)/A(s)
>>sys=tf (B, A, Ts) %li screte-tine system B[z]/A] z]
with sanpling interval Ts

— For continuous-time systems, the final time or time vector t _f can be given
inthe formoft _0: dt : t _f where dtis the sample time of a discrete approx-
imation to the continuous system. For discrete-time systems, it should be
of the form t _0: Ts: t -f where Ts is the sampling period. Note that the
impulse input is always assumed to arise at t = 0 (regardless of t _0).

— If t _f is not given, the simulation time range will somehow be chosen
appropriately.

— [y, x,t]=inpul se(B, At f) returns an empty set [] for the 2nd
output argument Xx.

— With no output arguments, the routine plots the impulse response with
pl ot () for continuous-time systems and with st ai r () for discrete-time
systems.

[g,t]=i mpz(B, A N, Fs)

— This computes two N x 1 column vectors, g and t, where g consists of N
samples of the impulse response of the digital filter B[z]/A[z] and t is the cor-
responding time vector consisting of N sample times spaced Ts = 1/Fs[s]
apart. Note that Fs is 1 by default.

— The impulse response can also be obtained from filter(B, A [1
zeros(1,N1D)]).

— With no output arguments, the routine plots the impulse response using

stem(t, g).

[y, x]=di npul se(A B, C, D, 1U N) ory=di npul se(B, A, N

— This returns N samples of the impulse response in y (together with the state
history x for a state-space model) of a discrete-time LTI system described
by state-space model (A,B,C,D) or transfer function B[z]/A[z] to the unit
impulse input (applied to the IUth input terminal), where the state-space
model is given as

X[n + 1] = Ax[n] + Bu[n]
y[n] = Cx[n] + Du[n]

432 Appendix E

[y,t,x]=step(sys,t f)or[y,x,t]=step(B, At.f)

— This routine returns the step response y(t) (together with the time vector t
starting from 0 to the final time t _f and the state history x for a state-space
model) of the LTI model sys that might have been created with either t f
(transfer function), zpk (zero-pole-gain), or ss (state space).

— For a continuous-time system, t _f can be given as a time vector in the form
of t 0:dt:t_f wheredt isthe sample time of a discrete approximation
to the continuous system. For a discrete-time system, it can be given in the
form of t _0: Ts: t _f where Ts is the sampling interval. Note that the unit
step input is always assumed to arise at t = 0 (regardless of t _0).

— If the final time or time vector t _f is not given, the simulation time range
and number of points will somehow be chosen appropriately.

- [y, x,t]=step(B, At f) returns an empty set [] for the 2nd output
argument X.

— With no output arguments, the routine plots the step response with pl ot ()
for continuous-time systems and with st ai r () for discrete-time systems.

[y, x]=dstep(A B, C, D I1UN) ory=dstep(B, A N

— This returns N samples of the step response in y (together with the state
history x for a state-space model) of a discrete-time LTI system described
by state-space model (A,B,C,D) or transfer function B[z]/A[z] to the unit
step input (applied to the 1Uth input terminal).

[y,t,x]=lsimsys,u,t,x0)

— This routine returns the time response (together with the time vector t and
the state history x) of the LTI system sys (with the initial state x0 at time t(1)
for state-space models only) to the input signal u(t) where the input matrix
u has as many columns as the input coefficient matrix B and its ith row
specifies u(t(i)) where sys=ss(A,B,C,D).

— For discrete-time systems, u should be sampled at the same rate as sys and
in this case, the input argument t is redundant and can be omitted or set to
the empty matrix.

— For continuous-time systems, choose the sampling period t(n + 1) — t(n)
small enough to describe the input u accurately.

[y, x]=dl si (A, B, C, D, u,x0) ory=dl si m B, A, u)

— This routine returns the time response (together with the state history x)
of a discrete-time LTI system described by state space model (A,B,C,D) or
transfer function B[z]/A[z] (with the initial state x0 for state-space models
only) to the input signal u[n] where the input matrix u has as many columns
as the input coefficient matrix B.

Appendix E 433

E.11 Frequency Response

G=freqs(B, A, w) (w:analog frequency vector[rad/s])

— This routine returns the frequency response of a continuous-time system by
substituting s = j (w = W) into its system function G(s) = B(s)/A(s) =
(bysNB- .. 4 byg)/(arSNAT 4 - -+ ana):

bysNB-1 + ... + byg_1S + bne
asNA-1 ... L aya_1S+ana s=jo

G(w) = G(9)ls=ju = (E.3a)

G=freqz(B, A, W (W:digital frequency vector[rad/sample])

— This routine returns the frequency response of a discrete-time system by
substituting z = €/® (Q = W into its system function G[z] = B[z]/Alz] =
(by + -+ bygz NBDY /(g + - - - + ayaz (NAD):

by + bzt + ...+ bygz (NB-D
a+az 4+ +anaz NAD| e

G(Q) = G[Z:“z:elsZ = (E3b)

[GW=freqz(B, AN
(with N: number of digital frequency points around the upper half of the unit

circle)

— This routine returns the frequency response of a discrete-time system by
substituting z = e/*(Qx = 2kz/N with k = 0 : N — 1) into its system
function G[z] = B[Zz]/A[Z] where the 2nd output argument is a column
vector consisting of {Qx = kz/N, k=0: N —1}.

[GW=freqz(B, A N ' whole)
(with N: number of digital frequency points around the whole unit circle

— This routine returns the frequency response of a discrete-time system by
substituting z = el (Q, = 2kz/N with k = 0 : N — 1) into its system
function G[z] = B[z]/A[Z].

G=freqz(B, A f, fs) (withf: digital frequency vector in Hz, fs: sampling

frequency in Hz)

— This routine returns the frequency response of a discrete-time system by
substituting z = el® (Q = 2xf/fs) into its system function G[z] =
B[z]/AlZ].

434 Appendix E

E.12 Filtering

[y,wf]=filter (B, A x,w0) or
[y,wi]=filter(CGd_structure, X, w0)

— This routine computes the output y (together with the final condition wf)
of the digital filter G[z] = B[z]/A[z] = (by + - - - + bysz NB-D)/(ay +
-« 4+ ayaz-(NA-D) (described by numerator B and denominator A or a fil-
ter structure constructed using df i | t ()) to the input x (with the initial
condition w0).

— Letevery filter coefficient be divided by a; for normalization so that we have
the system function of the digital filter as

B by + bzt + ...+ bygz (NB-D

B a; + 822’1 + -+ aNAZ*(NA*]-)
b/a—b by + ozt 4 4 bygz (NB-1)
aja—a 1 +apz i+ +ayaz(NA-D

G[Z]

(E.4)

e :signal distribution point, o:summer

by delay bNJ bz} b,
1 . T | .
_a Jn-al] 'Z—'Wngn—llfWNz[n] wﬁgwﬂn—g f waln) Ewgin-1]
TOAN-1 a2

Fig. E.2 Implementation of an FIR filter in the transposed direct form Il structure

The difference equation describing the input-output relationship of the filter

y[n] = —apy[n—1]—- - -—anay[n—N A+1]+byx[n]+- - -+bysx[n—NB+1]
(E.5)
is implemented in the transposed direct form 11 structure (Fig. E.2) as

ylnl = wi[n— 1]+ byx[n]

wi[n] = wy[n — 1] — ay[n] + bxx[n]
wn-2[N] = wn-1[n — 1] —an-1Y[n] + bn-1X[n]
wn-1[n] = —any[n] + bnyx[Nn]

where N = max(NA, NB) and the initial condition vector wO of
length N — 1 can be determined from the past output/input by using
wo=filtic(B, A yp, xp).

Appendix E 435

— When the input x is given as an L x M matrix, filter () operates on
each column of the input matrix. If the initial state wi is nonzero, it must be
given as an (N — 1) x M matrix where N = max(N A, N B). The following
program illustrates how to apply it to obtain the output(s) of a filter with
some initial states sample by sample:

Ts=0.001; tt=[0:Ts:0.2]; x= [sin(2xpi*20xtt); cos(2+pi*50*tt)]; x=x.";
B=[1 1]; A=[1 1.5 0.5]; %wunerator/denom nator of filter transfer function
NB=I engt h(B) ; NA=lI engt h(A); N=max(NA, NB)-1;
[Nx, M =si ze(x); wi=zeros(NB-1,M; %input dinension and initial state
for n=1: Nx

if n==1, [yn,wi]= filter(B, A [zeros(1,M; x(n,:)],w);

el se [yn,wi]= filter(B,A[x([n-1n],:)],w);

end

y(n,:) =yn(end,:);
end

function [y,y0]=filterb(B, A X, yO0)
% Input: x= [x(-NB+1),..,x(0),x(1),..,x(n)]: the past/future input

% yO0= [y(-NA+1),..,y(-1)]: the past output
% Qutput: y= [y(0),y(1l),..,y(n)]: the output
% y0= [y(n-NA+1),..,y(n)]: the last output
% to be used for successive processing of the same filter
if nargin<4, y0=[]; end
NA= | engt h(A);
Al=A;
for i=1:NA
if A(i)==0, A1=A(i+1:NA); else break; end
end

A=Al; NA= length(A); NB= length(B); N= NA-1; %the order of filter
NyO= | engt h(yO0);
if length(x)<NB, x=[x zeros(1,NB-length(x))]; end
if NyO<=N % he initial values of the output
y0= [zeros(1, N-Ny0) yO];
el sei f NyO>N
y0= yO(NyO- N+1: Ny0);
end
Al= A(NA: -1:2);
if A(1)"=1, B= B/A(1); Al= Al/A(1); end
for n= 1: length(x)-NB+1
y(n)= B*x(n+NB-1:-1:n)’;
if NA>1, y(n)= y(n)-Alxy0’; end
y0= [y0(2:N) y(n)];
end

Y=filter2(B, X)

— This routine computes the output Y of the 2-D (two-dimensional) FIR filter
described by matrix B where most of its work is done by using conv2.

436 Appendix E

E.13 Filter Design

E.13.1 Analog Filter Design

[N, we] =buttord(wp, ws, Rp, As,’s’)

— This routine selects the lowest order N and cutoff frequency wc of analog
Butterworth filter that has the passband ripple<= Rp[dB] and stopband
attenuation>=As[dB] for the passbhand edge frequency wp[rad/s] and
stopband edge frequency ws[rad/s]. (Sect. 7.1)

— The cutoff frequency is the frequency at which the magnitude response is
1/V/2.

— Note that for BPF/BSF, the passband edge frequency wp and stopband edge
frequency ws should be given as two-element vectors like [wpl wp2] and
[ws1 ws2].

[B, Al =butter (N, wc,’s")

— This routine designs an analog Butterworth filter, returning the numera-
tor/denominator of system function of designed filter.

— [B, Al =butter (N, wc,’s’) foran analog LPF of order N with cutoff
frequency wc[rad/s]

— butter(N [wel wec2],’s’) for an analog BPF of order 2N with
passband wcl < w < wc?2 [rad/s]

— butter(N,[wcl wc?2],’ stop’,’ s’) forananalog BSF of order 2N
with stopband wcl < w < wc2 [rad/s]

— butter(N, wec,’ high',’s’) forananalog HPF of order N with cutoff
frequency wc[rad/s]

— Note that N and wc can be obtained from
[N, we] =but t ord(wp, ws, Rp, As, s’).

[B, Al =cheby1(N, Rp, wpc, ' s’)

— This routine designs an analog Chebyshev type | filter with passband rip-
ple Rp[dB] and critical passband edge frequency wpc (Use Rp = 0.5 as a
starting point, if not sure).

— Note that N and wpc can be obtained from
[N, wpc] =chebylord(wp, ws, Rp, As, ' s’).

[B, A] =cheby2(N, As, wsc, ' s’)

— This routine designs an analog Chebyshev type Il filter with stopband atten-
uation As[dB] down and critical stopband edge frequency wsc (Use As = 20
as a starting point, if not sure).

— Note that N and wsc can be obtained from
[N, wsc] =cheby2or d(wp, ws, Rp, As,’ s’).

Appendix E 437

[B, Al =el l'i p(N, Rp, As, wpc, ' s’)

— This routine designs an analog Elliptic filter with passband ripple Rp,
stopband attenuation As, and critical passband edge frequency wpc (Use
Rp = 0.5[dB] & As = 20[dB], if unsure).

— Note that N and wpc can be obtained from
el l'i pord(wp, ws, Rp, As,’s’).

E.13.2 Digital Filter Design — IR (Infinite-duration Impulse
Response) Filter

[N, fc]=buttord(fp,fs, Rp, As)

— This routine selects the lowest order N and normalized cutoff frequency fc of
digital Butterworth filter that has passhand ripple<= Rp[dB] and stopband
attenuation>= As[dB] for passband edge frequency fp and stopband edge
frequency fs.

— The cutoff frequency is the frequency at which the magnitude response is
1/V/2.

— As far as digital filter is concerned, every digital frequency Qi = o T =
27 f; T [rad/sample] should be divided by = so that it can be normalized
into the range [0, 1] where 1.0 corresponds to the digital frequency m
[rad/sample].

— Note that for BPF/BSF, the passband edge frequency fp and stopband edge
frequency fs should be given as two-dimensional vectors like [fpl fp2] and
[fs1 fs2].

[B, Al =butter(N,fc)

— This routine designs the system function of digital Butterworth filter.

— [B, Al =but ter (N, f c) : digital LPF of order N with cutoff frequency fc

— butter(N,[fcl fc2]): digital BPF of order 2N with passband fcl <
f<fc2

— butter(N, [fcl fc2],’ stop’): digital BSF of order 2N with stop-
band fcl < f < fc2

— butter (N, fc,’ high’): digital HPF of order N with cutoff fre-
quency fc

— Note that N and fc can be obtained from
[N, fc]=buttord(fp,fs, Rp, As).

438 Appendix E

[B, Al =cheby1(N, Rp, f pc, opt)

— This routine designs a digital Chebyshev type | filter with passband ripple
Rp[dB] and critical passband edge frequency fpc (Use Rp = 0.5 as a starting
point, if not sure).

— Note that N and fpc can be obtained from
[N, fpc] =chebylord(fp,fs, Rp, As).

[B, A] =cheby2(N, As, f sc, opt)

— This routine designs a digital Chebyshev type Il filter with stopband attenu-
ation As[dB] down and critical stopband edge frequency fsc (Use As = 20
as a starting point, if not sure).

— Note that N and fsc can be obtained from
[N, fsc] =cheby2ord(fp,fs, Rp, As).

[B, Al =el lip(N, Rp, As, f pc, opt)

— This routine designs a digital elliptic filter with passband ripple Rp, stopband
attenuation As, and critical passband edge frequency fpc (Use Rp = 0.5[dB]
and As = 20[dB], if unsure).

— Note that N and fpc can be obtained from el | i pord(fp, fs, Rp, As).

E.13.3 Digital Filter Design — FIR (Finite-duration Impulse
Response) Filter

B=fir1(N, fc, opt)

— This designs a linear-phase FIR filter by using the windowing method.
(Sect. 7.2.2.1)

— The normalized cutoff frequency fc must be between 0 and 1, with 1.0 cor-
responding to the digital frequency r [rad/sample] or half the sampling rate.

— B=fir1(N, fc) designs an N order lowpass FIR filter with linear phase
and returns the (real-valued) filter coefficients in a row vector B of length
N + 1 where the normalized gain of the filter at fc is —6 dB.

— B=firl(N, fc,’ high’) designsan Nth order highpass FIR filter.

— If fc is a two-element vector such as fc = [fclfc2], fir1(N, fc)
designs an Nth order BPF with passband fc1 < f < fc2, while
firl(N,fc, stop’) designsa bandstop filter.

— If fc is a multi-element vector such as fc = [fcl fc2 fc3 fcd... fcM], it
designs an Nth order multi-band filter with bands 0 < f < fcl, fcl <
f < fc2, ..., fcM < f < 1. Note that, depending on the value of
a trailing input argument opt = “DC-1" or “DC-0”, it makes the first

Appendix E 439

band a passband or stopband, that is, B=fir1(N,fc, DC-1") and
B=fir1(N, fc,’ DC-0') make the first band a passhand and a stopband,
respectively.

— B=firl(N, fc, WND) designs an Nth order FIR filter using the N + 1
length vector WND to window the impulse response. If empty or omit-
ted (by default), firl uses a Hamming window of length N + 1. Other
windows such as Boxcar, Hann, Bartlett, Blackman, Kaiser, and Cheb-
win can be specified with an optional trailing argument. For example,
firl(N, fc, chebwi n(N+1, R)) usesa Chebyshev window.

— For filters with a non-zero gain at fs/2 (half the sampling rate corresponding
to the digital frequency), e.g., HPF and BSF, N must be even. If N is an
odd number for HPF or BSF, it will be incremented by one to make the filter
order even and the window length will be N + 2.

— By default, the filter is scaled so that the center of the first passband has a unit
magnitude after windowing. To prevent this scaling, use a trailing 'noscale’
argument as illustrated by
firl(N, fc,’ high',’ noscal e) and
firl(N, fc, WND, " noscal e’).

B=fir2(N, F, A)

— This designs a FIR filter by using the frequency sampling method. (See
Example 7.4)

— B=fir2(N F, A) designs an Nth order FIR filter with the frequency
response specified by frequency vector F and amplitude vector A, and
returns the filter coefficients in a row vector B of length N + 1.

— Vectors F and A specify the frequency and magnitude breakpoints such that
plot(F,A) would show a plot of the desired frequency response, where the
frequencies in F must be between 0.0 < F < 1.0 (with 1.0 corresponding
to half the sample frequency) and must also be in increasing order starting
from 0.0 and ending with 1.0.

— Thefilter B is real, and has linear phase, consisting of symmetric coefficients
obeying B(k) =B(N+2—-k)fork=1,2,...,N+ 1.

— By default, fir2 windows the impulse response with a Hamming window.
Other windows can be specified with an optional trailing argument.

— For filters with a non-zero gain at fs/2 (half the sampling rate corresponding
to the digital frequency), e.g., HPF and BSF, N must be even. If N is an
odd number for HPF or BSF, it will be incremented by one to make the filter
order even and the window length will be N + 2.

B=firpm (N, F, A

— This designs a Parks-McClellan optimal equiripple FIR filter with desired
frequency response.

440 Appendix E

— B=firpm (N, F, A) returnsa length N+ 1 linear phase (real, symmet-
ric coefficients) FIR filter which has the best approximation to the desired
frequency response described by F and A in the minimax sense that the
maximum error is minimized.

— F is a vector of paired frequency band edges in ascending order between
0 and 1 (with 1.0 corresponding to half the sample frequency). A is a real
vector (of the same size as F) specifying the desired amplitude of the fre-
quency response, which is the line connecting the points (F(k),A(k)) and
(F(k+1), A(k+1)) for odd k where the bands between F(k+ 1) and F(k+2)
for odd k is treated as “transition bands” or “don’t care” regions.

— For filters with a non-zero gain at fs/2 (half the sampling rate corresponding
to the digital frequency =), e.g., HPF and BSF, N must be even. If N is an
odd number for HPF or BSF, it will be incremented by one to make the filter
order even. Alternatively, you can use a trailing ‘h’ flag to design a type 4
linear phase filter (Table 7.2) and avoid incrementing N.

- B=firpm (N, F, A W uses the weights in W to weight the error
where W has one entry per band (so it is half the length of F and A) which
tells fripm() how much emphasis to put on minimizing the error in each band
relative to the other bands.

- B=firpm (N, F, A ‘h") and B=firpm (N, F, A W
“Hil bert’) design filters having odd symmetry, that is,
B(kl = —B(N+2 — k) fork = 1, ..., N+ 1. A special case is a
Hilbert transformer having an approximate amplitude of 1 across the entire
band, which will be designed by the following statement: B=f i r pm (30,
[.1.9], [1 1], *Hilbert’).

- B=firpm (N, F, A ‘d) and B=firpm (N, F, A W
“differentiator’) alsodesign filters having odd symmetry, but with
a special weighting scheme for non-zero amplitude bands. The weight is
assumed to be equal to the inverse of frequency times the weight W. Thus
the filter has a much better fit at low frequency than at high frequency. This
designs FIR differentiators.

— firpm() normally designs symmetric (even) FIR filters while
firpm(...,*h”) and firpm(. . .,“d") design antisymmetric (odd) filters.

B=firls (N, F, A

— This designs a linear-phase FIR filter using a least-squares error (LSE)
method.
— Everything is the same with fi r pm() .

Appendix E 441

B=fircls (N, F, A ub, Ib)

— This designs a length N + 1 linear-phase FIR multi-band filter (with the fre-
quency response amplitude A upperbounded/lowerbounded by ub/Ib) using
a constrained LSE.

— Fis a vector of normalized transition frequencies in ascending order from 0
to 1 (corresponding to half the sampling rate), whose length is one plus the
number of bands, i.e., length(A) + 1.

— A, ub, and Ib are vectors of length(F)-1 piecewise constant desired frequency
response amplitudes and their upper/lower bounds for each band.

(EX)B=fircls (10, [0 0.4 0.8 1], [0 1 0], [0.02 1.02 0.01],
[—0.02 0.98 —0.01])

B=firclsl (N, fc, rp, rs, opt)

— This designs a length N + 1 linear-phase FIR LPF/HPF (with the cut-
off frequency fc) using a constrained LSE method where rp/rs specify the
passhband/stopband ripple, respectively.

— With opt=" hi gh’ , it designs a HPF.

(Ex)B=firclsl (10, 0.7, 0.02, 0.01, ‘high’)

(cf.) The GUI signal processing tool “sptool” manages a suite of four other GUIs:
signal browser, filter designer, fvtool (for filter visualization), and spectrum
viewer where “fdatool” is for filter design and analysis.

E.14 Filter Discretization

[Bz, Az] =i npi nvar (Bs, As, fs, tol)

— This uses the impulse-invariant method (Sect. 6.2.1) to convert a continuous-
time system G(s) = B(s)/A(S) into an equivalent discrete-time system
G[z] = B[Z]/A[Z] such that the impulse response is invariant except for
being scaled by Ts = 1/fs.

— If you leave out the argument fs or specify it as the empty vector [], its
default value 1 Hz will be taken.

— The fourth input argument tol specifies the tolerance to determine whether
poles are repeated. A larger tolerance increases the likelihood that
i mpi nvar () interprets closely located poles as multiplicities (repeated
ones). The default is 0.001, or 0.1% of a pole’s magnitude. Note that the
accuracy of the pole values is still limited to the accuracy obtainable by the
root s() function.

442 Appendix E

[Bz, Az] =bi l i near (Bs, As, fs, fp)

— This uses the hilinear transformation (BLT) method (Sect. 6.3.5) to convert
a continuous-time system G(s) = B(s)/A(s) into its discrete equivalent
G[z] = B[Z]/A[Z] such that the entire LHP on the s-plane maps into the
unit circle on the z-plane in one-to-one correspondence.

— The numerator/denominator polynomial vector Bs and As of an analog fil-
ter are written in descending powers of s and the numerator/denominator
polynomial vector Bz and Az of the discrete-time equivalent are written in
descending powers of z (ascending powers of z™1).

— The optional parameter fp[Hz] specifies a prewarping match frequency for
which the frequency responses before and after BLT mapping match exactly.

sysd=c2d (sysc, Ts, nethod)

— This converts a continuous-time system (transfer) function sysc (that might
have been created with either t f (transfer function), zpk (zero-pole-gain),
or ss (state space)) into an equivalent discrete-time system function sysd
with the sampling interval Ts[s] by using the discretization method among

the following:

‘zoh’ : Zero-order hold on the inputs (by default) - Sect. 6.2.2
‘foh’ : Linear interpolation of inputs (triangle approximation)
‘imp’ : Impulse-invariant discretization - Sect. 6.2.1

‘tustin’ : Bilinear (Tustin) approximation - Sect. 6.3.5

‘prewarp’ : Tustin approximation with frequency prewarping where the
critical frequency Wc (in rad/s) is specified as fourth input,
e.g., as sysd = c2d(sysc,Ts, ‘prewarp’,Wc)

‘matched’ : Matched pole-zero method (for SISO systems only) —
Sect. 6.3.6

[Ad, Bd] =c2d (Ac, Bc, Ts)

— This converts a continuous-time state equation x’(t) = Ac*x(t) + Bc*u(t)
into the zero-order-hold (z.0.h.) equivalent discrete-time state equation x[n+
1] = Ad*x[n] + Bd*u[n] with the sampling interval Ts[s]. (Sect. 8.4.1)

sysc=d2c (sysd, method)

— This converts a discrete-time system function into an equivalent continuous-
time system function.

Appendix E 443

E.15 Construction of Filters in Various Structures Using dfilt()

[SCS, Kc] =t f 2sos(B, A); % Transfer function B(s)/A(s) to Cascade (Chap. 7)
Gd=dfilt.df 1sos(SCS, Kc); % Cascade to Direct | form

Gd=dfilt.df 1t sos(SCS, Kc); % Cascade to Direct | transposed form
Gd=dfilt.df 2sos(SCS, Kc); % Cascade to Direct Il form
Gd=dfilt.df 2t sos(SCS, Kc); % Cascade to Direct Il transposed form
Gd=dfilt.dffir(B); % FIR transfer function to Direct form
Gd=dfilt.dfsynfir(B); % FIR transfer function to Direct symmetric form
Gd=dfilt.dfasynfir(B); % FIR transfer function to Direct asymetric form
Gd=dfilt.latticearma(r,p); % Lattice/Ladder coefficients to lattice ARVA
Gd=dfilt.latticeal |l pass(r); % Lattice coefficients to lattice Allpass
Gd=dfilt.latticear(r); %Lattice coefficients to lattice Allpole
Gd=dfilt.latticemamax(r); % Lattice coefficients to lattice MA max-phase
Gd=dfilt.latticemanmn(r); %Lattice coefficients to lattice MA m n-phase
[A/B C D =tf2ss(B,A); Gss=dfilt.statespace(A B, C D); % State space
Gcas= dfilt.cascade(Gdl, Gd2); % Cascade structure

Gpar= dfilt.parallel (Gd1, Gd2); % Parallel structure

%i gAPE0Ll. m % To practice using dfilt()

Fs=5e4; T=1/Fs; % Sanpling frequency and sanpling period

ws1=2*pi *6e3; wpl=2+pi *1led; wp2=2+pi*12e3; ws2=2+pi *15e3; Rp=2; As=25;

fp=[wpl wp2] *T/pi; fs=[wsl ws2]*T/pi; %\ornmalize edge freq into [0, 1]

[N, fc]=cheblord(fp,fs,Rp,As) % Order & critical passband edge freq

[B, Al = chebyl(N, Rp, fc) % nunerator/denom nator of Chebyshev | BPF

fn=[0:511]/512; Wepi *fn;
pl ot (fn, 20«1 0g10(abs(freqz(B, A, W) +eps)) % Frequency response

[SCS, Kc] = tf2sos(B, A) % Cascade formrealization

[BBc, AAc] = tf2cas(B,A) % Alternative

[BBp, AAp, Kp] = tf2par z(B,A) % Parallel formrealization: dir2par(B,A)

[r,pl= tf2latc(B,A) % Lattice/Ladder coefficients of lattice filter

Gdf 1sos= dfilt.df 1sos(SCS,Kc); % Direct | form(Fig. 7.23(a))
pause, plot(fn, 20*1 ogl0(abs(freqz(Gdflsos, W) +eps),’'r’)

Gdf 1t sos=dfi | t.df 1t sos(SCS, Kc); % Direct | transposed form (Fig.7.23(b))
pause, plot(fn, 20*1 0ogl0(abs(freqz(Gdf 1tsos, W) +eps))

Gdf 2sos= dfilt.df2s0s(SCS,Kc); % Direct Il form(Fig. 7.23(c))
pause, plot(fn,20+| ogl0(abs(freqz(Gdf2sos, W) +eps),’'r’)

Gdf 2t sos=dfilt.df 2t sos(SCS,Kc); %irect Il transposed form (Fig.7.23(d))
pause, plot(fn, 20*1 0ogl0(abs(freqz(Gdf 2tsos, W) +eps))

GlatticeARMA= dfilt.latticearnma(r,p); % Lattice ARVA (Fig.7.23(e))
pause, plot(fn, 20*1 oglO(abs(freqz(Glatti ceARVA W) +eps),’'r’)

[A B CD=tf2ss(B,A); Gss=dfilt.statespace(A B, C D; % State space
pause, plot(fn, 20x1 ogl0(abs(freqz(Gss, W) +eps),’' n)

Gl=dfilt.df 2tsos(BBc(1,:),AAc(1,:)); @=dfilt.df2tsos(BBc(2,:),AAc(2,:));

G3=dfilt.df 2t sos(BBc(3,:),AAc(3,:))

Gcascade= dfilt.cascade(Gl, @, G3); % Cascade form

pl ot (fn, 20«1 0g10(abs(freqz(Gcascade, W) +eps)), hold on

Gl=dfilt.df2tsos(BBp(1,:),AAp(1,:)); @&@=dfilt.df2tsos(BBp(2,:),AAp(2,:))

&3=dfilt.df2tsos(Kp, 1);

Gparallel= dfilt.parallel (G, &,G3); %Parallel form

pause, plot(fn,20x1 ogl0(abs(freqz(Gparallel,W)+eps),'r’)

GlatticeARal |l pass=dfilt.latticeall pass(r); %attice Allpass Fig.7.23(f)

GlatticeARallpole= dfilt.latticear(r); %Lattice Allpole Fig.7.23(f)

Gdffir=dfilt.dffir(B);

Gdfsynfir= dfilt.dfsynfir(B); Gdfasynfir= dfilt.dfasynfir(B);

Gl atti ceMA.maxphase=dfilt.latticemanax(r); % MA max phase Fig.7.23(g)

Gl atti ceMAm nphase= dfilt.latticemanmin(r); % MA m n phase Fig.7.23(g)

444 Appendix E

function [BB, AA K] =t f 2par _s(B, A)

% Copyl eft: Won Y. Yang, wyyang53@annuil.net, CAU for academ ¢ use only
EPS= 1le-8;

B= B/A(Ll); A= A/A(D);

I = find(abs(B)>EPS); K= B(1(1)); B= B(1(1):end);

p= roots(A); p= cplxpair(p, EPS); Np= length(p);

NB= | ength(B); N= length(A); M= floor(Np/2);

for nrl: M
m=m2; AA(m:) =[1 -p(n2-1)-p(n2) p(n2-1)*p(n2)];
end
if Np>2+M
AA(MtL,)= [0 1 -p(Np)]; % For a single pole
end

ML= M+(Np>2+*M; b= [zeros(1, Np-NB) B]; KML= K/ ML;

% | n case B(s) and A(s) has the sane degree, we let all the coefficients
% of the 2°{nd}-order termin the nunerator of each SOS be Bi 1=1/ M.:

if NB==N, b= b(2:end); end

for nrl: ML
polynom al = 1; nR2=2*m
for n=1: ML
if n"=m polynonmi al = conv(polynonial,AA(n,:)); end
end
if m=M

if MI>M polynom al = polynom al (2: end); end
if NB==N, b = b - [polynomi al (2:end)*KML O 0]; end

Ac(nm2-1,:) = [polynonmial 0];
Ac(nR,:) = [0 polynom al];
el se

if NB==N, b = b - [polynoni al (2: end)*KML 0]; end
Ac(nm2-1,:) = polynom al;

end
end
Bc = b/ Ac; Bc(find(abs(Bc)<EPS)) = 0;
for nmrl: ML
m= 2*m
if m=M
BB(m:) = [0 Be(nk-1:nR)]; if NB==N, BB(m1l) = KML; end
el se
BB(m:) = [0 0 Bc(end)]; if NB==N, BB(m2) = KML; end
end
end

function [BB, AA K] =t f2par _z(B, A)
% Copyl eft: Won Y. Yang, wyyang53@annuil.net, CAU for academ c use only
if nargin<3, IR =0; end % For default, inverse z-transformstyle
EPS= le-8; %e-6;
B= B/A(1); A= A/A(L);
I = find(abs(B)>EPS); B= B(l(1):end);
if IRF=0, [z,p,K = residuez(B,A); else [z,p,K = residue(B,A); end
m=l; Np=length(p); N=ceil (Np/2);
for i=1:N
if abs(imag(p(n)))<EPS % Real pole
if mtl<=Np & abs(imag(p(m+l)))<EPS % Subsequent real pole
i f abs(p(n)-p(ml))<EPS % Doubl e pol e
BB(i,:)= [z(m+z(mtl) -z(m+p(m) O];
AA(I,1)= [1 -2+p(m p(m~2]; mEme2;
el sei f mt2<=Np&abs(p(mtl)-p(m+2))<EPS %Next two pol es are double

Appendix E 445

BB(i,:)=[0 z(m O0]; AA(i,:)=[0 1 -p(m]; nFm+l; % Single pole

el se
BB(i,:)= [real ([z(m)+z(m+1) -z(m)*p(m+l)-z(mtl)*p(m]) 0];
AA(T,)= [1 real ([-p(m-p(mtl) p(m*p(m1)])]; memt2;
end
el se
BB(i,:)=[0 z(m 0]; AA(i,:)=[0 1 -p(m]; mem+1l; % Single pole
end

else % Two distinct real poles or Conplex pole
BB(i,:)= [real ([z(m+z(m1) -z(m*p(mtl)-z(mrl)*p(m]) O];
AA(, 1) = [1 real ([-p(m-p(mtl) p(m*p(m1)])]; nmeEme2;
end
end
if IRM=0, BB(:,2:3)=BB(:,1:2); end

function y=filter_cas(B, A x)
y=X;
[Nsecti on, NB] =si ze(B);
for k=1:Nsection
Bk= B(k,:); Ak= A(k,:);
i f abs(B(k, 1))+abs(A(k, 1))<le-10
Bk= B(k, 2:3); Ak= A(k, 2:3);
end
% f B(k, 3)==0&A(k, 3)==0, Bk=B(k, 1:2); Ak=A(k,1:2); end
% f B(k, 2) ==0&A(k, 2) ==0, Bk=B(k, 1); Ak=A(k,1); end
% f Bk(1)==0; Bk=Bk(2:length(Bk)); end
y=filterb(Bk, Ak, [zeros(1,|ength(Bk)-1) y]);
end

function y=filter_par(B, A Xx)
[Nsecti on, NB] =si ze(B);
y= zeros(1,length(x));
for k=1:Nsection
Bk= B(k,:); Ak= A(k,:);
whi |l e | engt h(Bk) >1&abs(Bk(1))<eps, Bk=Bk(2:end); end
whi | e | engt h(Ak) >1&abs(Ak(1))<eps, Ak=Ak(2:end); end
i f sun(abs(Bk))>eps
y=y+filterb(Bk, Ak, [zeros(1,length(Bk)-1) x]);
end
end

function [r,p]=tf2latc.ny(B,A)
if nargin>1& ength(A)>1 %Recursive Lattice Filter
% |1 R System Function to Lattice Filter

O kkkkhkkkhhkhhkkhkkhkkkkkkkhkkhkkkkkkkhkkhhkkkhkkkkkk kK %

% B(1)+B(2)*z"-1 +B(3)*z" -2 +..... +B(NB) *z™ (- NB+1)
I C 4 B

% A(L)+A(2)*2" -1 +A(3)*2"-2 +...... +A(NA) * 2™ (- NA+1)
%**

N= length(A);

AA= A

for k=1:N-1

if abs(AA(k))<.0000001, A= AA(k+1l: N);
el se break;
end
end
N= length(A);

446

Appendix E

el

if N<=1, error(’ LATTICED: length of polynonmal is too short!’); end
BB= B;
NB= | engt h(B);
for k=1:NB-1
i f abs(BB(k))<.0000001, B= BB(k+1l: NB);
el se break;
end
end
if length(B) "= N
error('tf2latcny: lengths of polynomals B and A do not agree!’);
end
S= B/A(1); V= AVA(1);
for i=N-1:2
p(i)= S(i); ril= V(i);
WLii)= V(i:-1:1);
if abs(ril)>=.99999
error("tf2latcny: ril= V(i) is too large to maintain stability!’);
end
V(1:i)= (M(2:i)-ri 1«W1:i))/(1-ril*ril);

r(i-1)=ril,;
S(1:i)= S(1:i) -p(i)*W1:i);
end
p(1)= S(1);
i f nargout==
fprintf(’\n\t Recursive Lattice Filter Coefficients\n);
for i=1:length(r), fprintf(’ r(oad)=9%.4f", i, r(i)); end
fprintf('\n);
for i=1:length(p), fprintf(’ p(odd)=%.4f", i, p(i)); end
fprintf(’\n");
end
se %\onrecursive Lattice Filter
% FIR System Function --> Nonrecursive Lattice-Il Filter
%**
% Jz]= B(1)+B(2)*z"-1 +B(3)*z"-2 +..... +B(NB) xz” (- NB+1)
%**
N= | ength(B);
BB= B;
for k=1:N-1
i f abs(BB(k))<.0000001, B= BB(k+1l: N);
el se break;
end
end
N= | engt h(B);
if N<=1, error(’tf2latc.ny: length of polynomal is too short!’); end
V= B/ B(1);
for i=N-1:2
ril= V(i);
WLii)= V(i:-1:1);
if abs(abs(ril)-1)<.001 %\onrecursive Lattice cannot be unstable
ril =ril/abs(ril)=*.99;
end
V(1:i)= (M(Lii)-ril«W21:i))/(1-ril*ril);
r(i-1)=ril,;
end
i f nargout==

fprintf(’\n\t Nonrecursive Lattice Filter Coefficients\n);
for i=1:length(r), fprintf(’ r(odd)=9%.4f", i, r(i)); end

Appendix E 447

fprintf(’\n");
end
end

function [y,w=filter_latcr(r,p,x,w
O%opeful ly equivalent to latcfilt() inside MATLAB
%v contains the past history of internal state ..,w(n-1), w(n)
%.-step Lattice filtering the input x to yield the output y and update w
N= length(r); %the order of the lattice filter
if length(p) = N+1

error (' LATTI CEF: length(p) must equal length(r)+1!");
end
if nargin<4, we[]; end
if length(w <N

w=[zeros(1, N-length(w)) w;
end
for n=1:1ength(x)

vi=x(n); %Current |nput

for i=N:-1:1

vi=vi o-r(i)*sw(i); wWi+l)= w(i) +r(i)*vi;

end

W 1) = vi;

y(n)= p(:)."*w(:);
end

function [y,w=filter_latc.nr(r,x,w
% hopeful Iy equivalent to latcfilt() inside MATLAB
% w contains the past history of internal state...,wn-1), w(n)
%-step Lattice filtering the input x to yield the output y and update w
N= length(r); %the order of the lattice filter
if nargin<3, w[]; end
if length(w)<N

w=[zeros(1, Nl ength(w)) w;
end
for n=1:1ength(x)

vi= x(n)+r*w(1: N’ ;

y(n)= vi;

for i=N:-1:1

vi=vi o-r(i)sw(i); w(i+l)= w(i) +r(i)*vi;
end
w(1)= x(n);

end

E.16 System ldentification from Impulse/Frequency Response

[B, Al=prony (g, NB, NA)
— This identifies the system function

_B[z] b+ bzt 4 .-+ bypr1z B

Glz] = =
[Alz] & +azt+---+anapz NA

(E.6)

448 Appendix E

of a discrete-time system from its impulse response g[n].
— The outputs B and A are numerator and denominator polynomial coefficient
vectors of length NB 4 1 and NA + 1, respectively.

[B,Al=stntb (g, NB, NA, Nter, A)orstncbhb (y, X, NB,
NA, Niter, A)

— This identifies the system function G[z] = B[z]/A[Z] of a discrete-time
system from its impulse response g[n] or its output y[n] and input x[n]
optionally with Niter (5 by default) iterations and initial estimate of the
denominator coefficients Ai where y and x are of the same length.

Gtfe (x, y, N, fs, WND, Noverl ap)

— This estimates the transfer function as frequency response G[Q] =
Y[2]/ X[€2] of a discrete-time system from its input x[n] and output y[n]
optionally with N-point DFT (N = 256 by default), sampling frequency
fs (2Hz by default), windowing sequence WND, and with each section
overlapped by Noverlap samples.

[B,Al=invfregqs (G w, NB, NA wt, Nter, tol)
— This identifies the system function

B(s) bisMB+bpsMBt 4.+ byg gy

= = E.7
A(s) asNA+apsNA-T ... fayap ED

of a continuous-time system from its frequency response G(w)(G(w)) speci-
fied for an analog frequency vector w(w) optionally with a weighting vector
wt (of the same length as w), within Niter iterations, and with fitting error
tolerance tol.

[B,Al=invfreqz (G W NB, NA w, Nter, tol)

— This identifies the system function G[z] = B[z]/A[Z] of a discrete-time
system from its frequency response G(W)(G(2) = G[e'®*]) specified for a
digital frequency vector W(2)(0 < @ <) optionally with a weighting
vector wt (of the same length as W), within Niter iterations, and with fitting
error tolerance tol.

Appendix E 449

E.17 Partial Fraction Expansion and (Inverse)
Laplace/z-Transform

[r,p,k]=residue (B, A) or[B, Al =residue (r, p, k)

— This converts a rational function B(s)/A(s), i.e., a ratio of numera-
tor/denominator polynomials to partial fraction expansion form (or pole-
residue representation), and back again.

B(s) bysNBt 4 b,sNB2 4. 4+ by

AS) asNlasN24 ... tay
N—-1-L r r r
=Y)+ =+t k) (ESB)
~ s—pn) s—p (s—n)

where the numerator vector r and pole vector p are column vectors and the
quotient polynomial coefficient vector k is a row vector.

[r,p,K]=residuez (B, A) or[B, Al =residuez (r,p,k)

— This converts a rational function B[z]/A[Z], i.e., a ratio of numera-
tor/denominator polynomials to partial fraction expansion form (or pole-
residue representation), and back again.

B[Z] by + bzt + ... 4+ bygz (NB-D
AlZ] a+az 4. - +ayz—(N-D

L

N-1-L
'z IN—LZ I'nN—1Z
(n_l Z—p) z—p z-p* @ E9

where the numerator vector r and pole vector p are column vectors and the
quotient polynomial coefficient vector k is a row vector.

Xs=l apl ace (xt) andxt =il apl ace (Xs)

— These MATLAB commands compute the symbolic expressions for the
Laplace transform X(s) = L{x(t)} of a symbolic function in t and the
inverse Laplace transform x(t) = £7{X(s)} of a symbolic function in s,
respectively.

Xz=ztrans (xn) andxn=i ztrans (Xz)

— These MATLAB commands compute the symbolic expressions for the
z -transform X[z] = Z{x[n]} of a symbolic function in n and the inverse
z -transform x[n] = Z~1{X[z]} of a symbolic function in z, respectively.

450 Appendix E

function x=il apl ace_ny(B, A)
% To find the inverse Laplace transformof B(s)/A(s) using residue()
% Copyl eft: Won Y. Yang, wyyang53@annuil.net, CAU for acadenic use only
if “isnunmeric(B)
[B, Al =nunden(si npl e(B)); B=syn2pol y(B); A=syn2pol y(A);

end

[r,p, k] = residue(B, A); EPS = le-4;
N= length(r); x=[]; n=1,

whil e n<=N

if n>1, x =[x +"'];, end
if n<N & abs(imag(p(n)))>EPS & abs(sun(imag(p([n n+1]))))<EPS
sigma=real (p(n)); w=imag(p(n)); Kc=2+real (r(n)); Ks=-2xinmag(r(n));
sigma_=nun2str(sigm); w =nunstr(w); Kc_=nun2str(Kc); Ks_=nun@str (Ks);
if abs(sigm)>EPS
X =[x "exp(’ sigma_ '*t).*'];
i f abs(Kc)>EPS&abs(Ks)>EPS
X =[x (" Kc_ "xcos(’ w_ '*t) + ' Ks_ '*sin(’ w_ '*t))'];
el seif abs(Kc)>EPS, x = [x Kc_ "*cos(’ w_ '*t)'];
el se X =[x Ks_ '*sin(’ w_'=*t)'];
end
end
n = n+2;
el seif n<=N & abs(inmag(r(n)))<EPS
if abs(p(n))>EPS, x =[x nunBstr(r(n)) '*exp(’ nun2str(p(n)) '=*t)’1];
el se X =[x nunm2str(r(n))]l;
end
n = n+l;
end
end
if “isempty(k), x =[x ' + ' nun2str(k(end)) '*dirac(t)’']; end

E.18 Decimation, Interpolation, and Resampling

y=decimate (x, M N, ‘fir")

— This process filters the input sequence x with an LPF and then resamples
the resulting smoothed signal at a lower rate, which is the opposite of
interpolation.

— y=deci mate (x, M reduces the sample rate of x by a factor M to pro-
duce a decimated sequence y that is M times shorter than x. By default, it
employs an eighth-order lowpass Chebyshev type 1 filter. Note that x must
be longer than 3 times the filter order.

— y=deci mate (x, M N) usesan Nth order Chebyshev filter.

— y=decimate (x, M ‘fir’) usesa 30-pointFIR filter.

— y=decimate (x, M N, “fir’) usesan N-pointFIR filter.

Appendix E 451

y=interp (x, M L, fc)

This inserts zeros into the input sequence x and then apply an LPF.
y=interp (X, M increases the sampling rate of x by a factor of M to
produce an interpolated sequence y that is M times longer than x.
y=interp(x, ML, fc) specifies L (= 4 by default) for filter length and
fc (= 0.5 by default) for normalized cut-off frequency.
[y,B]l=interp(x, ML, fc) returns a vector B of length 2*L*M + 1
containing the filter coefficients used for the interpolation.

=upfirdn(x, B,M, M)

This can be used to change the sampling rate by a rational factor.

It upsamples x by Mi (i.e., inserts (Mi-1) zeros between samples), applies the
FIR filter B, and downsamples the output by Md (i.e., throws away (Md-1)
samples between samples).

The default values of Mi and Md are 1.

<

=resanpl e(x, M, Md, B)

<

— This can be used to change the sampling rate by a rational factor.

— y=resanpl e(x, M, M) resamples x at Mi/Md times the original sam-
pling rate, using a polyphase filter implementation where Mi and Md must
be positive integers. The length of y will be ceil(length(x)*Mi/Md). If x is a
matrix, r esanpl e() works down the columns of x.

— It applies an anti-aliasing (lowpass) FIR filter (designed using firls() with a
Kaiser window) to x during the resampling process.

— y=resanpl e(x, M, M, B) filters x using a FIR filter with coeffi-
cients B.

— y=resanple(x,M,M,N) uses a weighted sum of 2*N*
max (1, Md/Mi) samples of x to compute each sample of y. Since the
length of the FIR filter used by resample() is proportional to N(= 10 by
default), you can increase N to get better accuracy at the expense of a longer
computation time. If you let N = 0, a nearest neighbor interpolation is
performed so that the output y(n) is x(round((n — 1)*Md/Mi) + 1) where
y(n) = 0 if round((n — 1)*Md/Mi) + 1 > length(x)).

— y=resanpl e(x, M, Md, N, bet a) uses beta as the design parameter for
the Kaiser window used to design the filter where its default value is 5.

- [y, Bl =resanpl e(x, M, Md) returns the filter coefficient vector B
applied to x during the resampling process (after upsampling).

— If x is a matrix, the routine resamples the columns of x.

=det r end(x)

<

y=det r end(x) removes the best straight-line fit from vector x.
y=det rend(x, 0) removes the mean value from vector x.

452 Appendix E

E.19 Waveform Generation

chirp(t,fo,t1,f1, type’) swept-frequency cosine generator

pul stran(t, D, pul se) pulse train generator

rect pul s(t, D) sampled aperiodic rectangular pulse generator
square(t, D), sawt ooth(t, D) square, sawtooth/triangular wave generator
tripuls(t, D, skew) sampled aperiodic triangular pulse generator

E.20 Input/Output through File

% i nput _out put .data. m

cl ear

x=[1 2]; y=[3 4 5];

save sig x y %save x and y in a MATLAB data file ’'sig. mat’
clear('y’)

di splay(’' After y has been cleared, does y exist?')

if (exist('y')"=0), disp(’'Yes'), y

else disp(’'No)

end

load sigy %read y fromthe MATLAB data file ’'sig. mat’

di sp(' After y has been | oaded the file sig.mat, does y exist?)

if isempty('y’), disp(’No’), else disp(’'Yes’), y, end
fprintf(’x(2)=9%%.2f \n", x(2))

save y.dat y /ascii %save y into the ASCII data file 'y.dat’

% The name of the ASCI| data file nust be the same as the variable nane.
load y.dat %read y fromthe ASCI| data file 'y.dat’

str="prod(y)'; %ready to conpute the produce of the elenents of y
eval (str) %evaluate the string expression 'prod(y)’

Appendix F
Simulink®

According to the MATLAB documentation [W-5], Simulink® is software for mod-
eling, simulating, and analyzing dynamic systems. It supports linear and nonlinear
systems, modeled in continuous time, sampled time, or a hybrid of the two. Sys-
tems can be multirate, i.e., have different parts that are sampled or updated at
different rates.

Simulink® provides a graphical user interface (GUI) for building models as
block diagrams, using click-and-drag mouse operations. Simulink includes a com-
prehensive block library of sinks, sources, linear and nonlinear components, and
connectors. Models are hierarchical, so you can build models using both top-down
and bottom-up approaches. You can view the system at a high level, then double-
click blocks to go down through the levels to see increasing levels of model detail.
This approach provides insight into how a model is organized and how its parts
interact.

After you define a model, you can simulate it either from the Simulink menus
or by entering commands in the MATLAB® Command Window. The menus are
convenient for interactive work, while the command line is useful for running
a batch of simulations with a parameter swept across a range of values. Using
scopes and other display blocks, you can see the simulation results while the sim-
ulation runs. The simulation results can be put in the MATLAB workspace for
postprocessing and visualization. MATLAB® and Simulink® are integrated so
that you can simulate, analyze, and revise your models in either environment at
any point.

To start Simulink, you must first start MATLAB. Consult your MATLAB docu-
mentation for more information. You can then start Simulink in two ways:

e Click the Simulink icon ® on the MATLAB toolbar.

e Type “simulink” (without the quotation marks) at the MATLAB prompt (like
“>>") in the MATLAB Command Window or use the “sim()” command inside
a MATLAB program.

On Microsoft Windows platforms, starting Simulink displays the Simulink Library
Browser as depicted in Fig. F.1. The Library Browser displays a tree-structured
view of the Simulink block libraries installed on your system, from which you can

453

454 Appendix F

X Simulink Library Browser M =] E3

File Edit View Help (Constant

Data Type Conversion
O 4= d | Demusx, Mux
Additional Math & Discrete: simulink/Additional Math Discrete-Time Integrator

Gain, Product, Sum

& Discrete Ini, Outl
- W Simulink @ Integrator
Commonly Used Blocks - Logical Operator
% Eom.rnunly Used Blocks ESN biocks gelaﬁmlﬂal Oparsior
ontinuous aturation
i inuiti Continuous Scope
i ! i,
=t Hist) witch, Unit Delay
g tug:: an?ag:ggpemﬂons " A Discontinuities gerivagvs y
ookup * tate-Space
Math Operations . Transfer Fcn
% Model S:Iiﬁcalion I Discrete Jransport Dalay
; Moo Wi T = ganahr!‘e lTransgon Delay
- Model-Wide Ltilities = : ero-Paole
#] Ports & Subsystems = = Logic and Bit Operationsi \—)Discrete S
- Signal Attributes giscm:a ?lale—fSp:'a:ca
i i y=iu}| Lookup Tables iscrete Transfer Fcn
2] Signal Routing = g Discrete Zero-Pole
> Sinks = Bisil:batla—'l"lme Integrator
Sources » Math Operations, nit Delay, Memory
3 User-Defined Functions Bk :i:m_g;i:r Hold z
ﬁj aJ Mdiﬁnnéll M:fh '& Discrete " ®@| Model Verification Ea?n‘piem rﬁdaglnjmde—ﬁngle
+ arospace Blockse! | omplex to Real-Ima
+ W COMA Reference Blockset . Divide, Dot Product, Gain
ey tisc | Model-Wide Utilities Maanitude-Angle to Complex
+ Wl Communications Blockset] Math Function
B Control System Toolbox n £ Matrix Concatenate
+ Bl Embedded Target for Infinean [J) &g Ports & Subsystems Elilelghlllll—?rxnag o Complex
+ W Embedded Target for Motorola > Reshape, Rounding
+ W Embedded Target for Motorala Signal Attributes Sign, Subtract, Sum
W Embedded Target for 0SEK/VIN [Sli1e vave Funceon
-3 Einbedded T 9 6t T1 C2000 .) Trigonometric Function)
e E%l Signal Rouling——— ¢ bl I, If Action Subsystem
+ Bl Embedded Target for TI CED00|HY [+ Function-Call Generator
+ W Fuzzy Logic Toolbox b o Sinks Subsystem, Switch Case
+ W Gauges Blockset m N Trigger, Trigger Subsystem
W Image Acquisition Toolbox Sources T”?{;tamorss'f::i sh;em
[ux/Demux. Switch. Merge I
W Instrument Control Toolbox m R Selactn?

W Link far ModelSim
W Model Predictive Control Tool

ta
o
" ; "Display, Scope, XY Graph
ﬂp‘ Llselr—Dafmed Functions To Workspace, To File

+ W Neural Network Toolbox [fon (Function) \Stop Simulation, Termination
W OPC Toolbox MATLAB Fen rom Workspace, From Flle
+ Wl AF Blockset S-Function Signal generatot, Pulse Genaralm
B Feal-Time Windows Target gonstam, Step. Ramp. Sine wave
andom MNumber, Repeating Sequence
+ W Real-Time Workshop Band-limited White Noise

+ W Real-Time Workshop Embedds
W Report Generator

+ W@ Signal Processing Blockset

+ W SimDriveline

+ W SimEvents

+ B SimMechanics ~

Ready

Fig. F.1 Simulink Library Browser window

Appendix F 455

copy and move (click/drag) the blocks into a model window and build models. The
procedure of creating or editing a Simulink model is as follows:

— A new empty model file (window) can be created by selecting File/New menu
or clicking “Create a new model” button on the library browser’s toolbar. An
existing one can be opened by selecting File/Open menu or clicking the Open
button on the library browser’s toolbar and then choosing/entering the file name
for the model to edit.

— Copy and move (click/drag) the blocks you want into the model window.

— Connect the blocks by clicking at an (input/output) point of a block and drag to
an (output/input) point of another block.

— To draw a branch line, position the pointer at a point on the existing line (wire),
press and hold down the CTRL key, press the mouse button, and then drag the
pointer to another point.

To simulate the created/edited Simulink model, select the Simulation/
Configuration_Parameters menu (in the model window) to open the Configuration
Parameters window in which you can set the simulation parameters including the
start/final(stop) times, and then press the CTRL + T key (on the keyboard) or select
the Simulation/Start menu on the toolbar of the model window. To see the simulation
results, double-click the Scope block.

Figures F.2 and F.3 show the Signal Processing and Communication Blocksets,
which enables you to design and prototype various signal processing and commu-
nication systems using key signal processing algorithms and components in the
Simulink® block format.

(cf.) If you see an error message that a Simulink model file cannot be saved
because of character encoding problem, keep the erroneous part of the model
file in mind, click OK to close the error message dialog block, use a text
editor to modify the erroneous part in the designated file named “***.err”,
and then save it with the extension name “mdI” instead of “err” so that it can
be opened in another Simulink session.

456 Appendix F

|Signal Processing Blockset

H_ Estimation)

I Linear Prediction: Autocorrelation LPC, Levinson-Durbin, LPC to LSF/LSP Conversion

LSF/LSP to LPC Conversion, LPC to/from RC, Autocorrelation, Cepstral Coefficients
- Parametric Estimation: Burg AR Estimator, Covariance AR Estimator, Yule-Walker AR Estimator
L Power Spectrum Estimation: Burg Method, Covariance Method; Magnitude FFT, Periodogram,

Yule-Walker Method
H_Filtering)

I Adaptive Filters: Block LMS Filter, Kalman Adaptive Filter, LMS Filter, RLS Filter
I Filtering Designs: Analog Filter Design, Digital Filter, Digital Filter Design, Filter Realization Wizard
- Multirate Filters: CIC Decimation/Interpolation, Dyadic Analysis/Synthesis Filter Bank

FIR Decimation/Interpolation, FIR Rate Conversion

Two-Channel Analysis/Synthesis Subband Filter

HMath Functions)

- Math Operations: Complex Exponential, Cumulative Product/Sum
Difference, Normalization, dB Conversion, dB Gain

I Matrices and Linear Algebra:

Linear System Solvers: Backward/Forward Substitution, Levinson-Durbin
Cholesky/LDL/LU/QR/SVD Solver
Matrix Factorizations: Cholesky/LDL/LU/QR/SVD Factorization
Matrix Inverses: Cholesky/LDL/LU/Pseudo Inverse
Matrix Operations: Identity Matrix, Constant Diagonal Matrix, Create Diagonal Matrix
Extract Diagonal/Triangular, Overwrite Values, Reciprocal Condition

Matrix Concatenation/Product/Scaling/Square/Sum/Multiply/Transpose
Matrix 1-Norm, Permute Matrix, Submatrix, Toeplitz

L Polynomial Functions: Least Squares Polynomial Fit, Polynomial Evaluation
Polynomial Stability Test

{(Platform Specific 1/Q)
— Windows (WIN32): From Wave Device/File, To Wave Device/File

Quantizers) : Quantizer, Uniform Encoder/Decoder

Signal Management

Buffers: Buffer, Delay Line, Triggered Delay Line, Queue, Stack, Unbuffer
Indexing: Selector, Multiport Selector, Variable Selector, Flip, Submatrix, Overwrite Values

Signal Attributes: Check Signal Attributes, Convert 1-D to 2-D, Convert 2-D to 1-D
Date Type Conversion, Frame Status Conversion, Inherity Complexity

Switches and Counters: Counter, Edge Detector, Event-Count Comparator
Multiphase Clock, N-Sample Enable, N-Sample Switch

Signal Operation Convolution, Downsample, Upsample, Interpolation, Unwrap, Window Function

Pad, Zero-Pad, Repeat, S/H, Integer Delay, Variable Integer/Fractional Delay

Statistics) : Autocorrelation, Correlation, Detrend, Histogram, Maximum, Minimum, Mean, Median,
RMS, Standard Deviation, Variance, Sort

Transforms) : Analytic Signal, Real/Complex Cepstrum

DCT, DWT, FFT, IDCT, IDWT, IFFT, Magnitude FFT

DSP Sinks) : Display, Matrix Viewer, Spectrum Scope, Time Scope, Vector Scope

Signal To Workspace, Triggered To Workspace

DSP Sources) : Chirp, Constant Ramp, Discrete Impulse, DSP Constant, Sine Wave, Random Source
Identity Matrix, Constant Diagonal Matrix, Multiphase Clock, N-Sample Enable
Signal From Workspace, Triggered Signal From Workspace

Fig. F.2 Signal Processing Blockset available in the Simulink Library Browser window

Appendix F

| Communication Blockset

ntegrators (ntegrate and Dump, Windowed Integrator, ..
_ Sequence Operations: (nsert Zero (Depuncture), Puncture, ...

AWGN Channel, Binary Symmetric Channel
- Channels

Multipath Rayleigh Fading Channel
Rician Fading Channel

Continuous-Time Eye and Scatter Diagrams
- Comm Sinks Discrete-Time Scatter Plot Scope
Discrete-Time Signal Traiectory Scope
Error Rate Calculation, Triggered Write to File

- Comm Sources .
Controlled Sources: Voltage-Controlled Oscillator (VCO)

Data Sources Bernoulli Binary Generator

r Egggg%ﬁ‘mo” and Noise Generators Binary Error Pattern Generator
Random Integer Generator

Sequence Generators

. Gaussian Noise Generator
- Interleaving Block —————— Uniform Noise Generator

Convolutional (‘Barker Code Generator
CRC Gold Sequence Generator
S Hadamard Code Generator
Kasami Sequence Generator
PN Sequence Generator
\ Walsh Code Generator

- Modulation

Block

- RF Impairments .
P Convolutional

- Source Coding ('BCH Encoder/Decoder

Cyclic Encoder/Decoder
Linear Encoder/Decoder
Hamming Encoder/Decoder

\ RS(Reed-Solomon)En/Decoder

Convolutional Encoder
Viterbi Decoder

- Synchronization
:PLL

I Utility Functions

CRC Generator
CRC Syndrome Detector

2] Analog Baseband Modulation: DSB/SSB-AM, FM, PM
E Analog Passband Modulation: DSB/SSB-AM, FM, PM
[P2] Digital Baseband Modulation (AM (PAM, QAM)

P2 Digital Passband Modulation |FM (M-FSK)
PM (PSK, DPSK, OQPSK)

DPCM Encoder/Decoder CPM (CPM, CPFSK, MSK, GMSK)

Differential Encoder/Decoder
Mu-Law Expander/Compressor
A-Law Expander/Compressor
Enabled Quantizer Encode
Sampled Quantizer Encode
Quantizer Decode

Bipolar to Unipolar Convertor
Unipolar to Bipolar Convertor
Bit to Integer Convertor
Integer to Bit Convertor
Data Mapper, dB Conversion

Fig. .3 Communication Blockset available in the Simulink Library Browser window

457

References

Denbigh, P., System Analysis and Signal Processing: with emphasis on the use of MATLAB,
Prentice Hall, Inc., Englewood CIiff, N.J., 1998.

Franklin, G. F., J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems,
2nd ed., Addison-Welsey Publishing Company, New York, 1990.

Gopal, M., Digital Control Engineering, John Wiley & Sons, Singapore, 1988.

Goertzel, G., “An Algorithm for the Evaluation of Finite Trigonometric Series,” Amer.
Math. Monthly, Vol. 65, Jan. 1958, pp. 34-35.

Jaeger, R. C., “Tutorial: Analog data acquisition technology, part I; digital-to-analog
conversion”, IEEE MICRO, Vol. 2, No 3, pp. 20-37, 1982a.

Jaeger, R. C., “Tutorial: Analog data acquisition technology, part II; analog-to-digital
conversion”, IEEE MICRO, Vol. 2, No 3, pp. 46-56, 1982b.

Kreyszig, E., Advanced Engineering Mathematics, John Wiley & Sons, Inc.,
New York, 1983.

Kuc, R., Introduction to Digital Sgnal Processing, McGraw-Hill Book Company,
New York, 1988.

Ludeman, L. C., Fundamentals of Digital Sgnal Processing, John Wiley & Sons, Inc.,
New York, 1987.

Oppenheim, A. V., A. S. Willsky, and I. T. Young, Signals and Systems, Prentice Hall, Inc.,
Englewood Cliff, NJ, 1983.

Oppenheim, A. V. and R. W. Schafer, Digital Sgnal Processing, Prentice Hall, Inc.,
Englewood Cliff, NJ, 1975.

Phillips, C. L. and H. T. Nagle, Digital Control System Analysis and Design, 2nd ed.,
Prentice Hall, Inc., Englewood CIiff, NJ, 1989.

Soliman, S. S. and M. D. Srinath, Continuous and Discrete Sgnals and Systems, Prentice
Hall, Inc., Englewood CIiff NJ, 1999.

Stearns, S. D. and D. R. Hush, Digital Sgnal Analysis, 2nd ed., Prentice Hall, Inc.,
Englewood CIliff, NJ, 1990.

Web site <http://en.wikipedia.org/wiki/Main _Page> (Wikipedia: The Free Encyclopedia)
Website <http://www.allaboutcircuits.com/vol_4/chpt_13/> (analog-to-digital converter)
Website <http://www.mathworks.com/>

Website <http://www.mathworks.com/access/helpdesk/help/pdf_doc/signal/signal _tb.pdf>
Website <http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/>

Website <http://mathworld.wolfram.com/>

Yang, W. Y., W. Cao, T.-S. Chung, and J. Morris, Applied Numerical Methods Using
MATLAB, John Wiley & Sons, Inc., Hoboken NJ, 2005.

Yang, W. Y. and S. C. Lee, Circuit Systems with MATLAB and PSpice, John Wiley & Sons,
Inc., Hoboken, NJ, 2007.

459

| ndex

A

ADC (Analog-to-Digital conversion), 251-256
A/D-GJz]-D/A structure, 259, 275, 283
Additivity, 13

Aliasing, 8

AM (amplitude modulation), 91, 113
Analog filter design, 307-320

Analog frequency, 6, 7

Analog signal, 2

Analytic signal, 109, 110
Anti-aliasing, 262-263

Anti-causal sequence, 208
Anticipatory, 30

Anti-imaging, 262-263
Anti-symmetric, 145, 232, 237-240
ASK (amplitude-shift keying), 115

B

Backward difference rule, 284

Bandpass filter (BPF), 309

Bandstop filter (BSF), 309

Bandwidth, 76

BIBO (bounded-input bounded-output), 29
BIBO stability condition, 29, 46

Bilateral (two-sided) z-transform, 208
Bilinear transformation, 288-292, 301, 302
Bit reversed order, 166

Block diagram, 32

Bode plot, 97

BPF realization, 123, 184

Butterfly computation, 167, 168
Butterworth filter, 313, 314, 329

C

Cascade form, 309

Causal, 30, 85, 208
Causality, 30, 225

Causal sequence, 208
Characteristic equation, 369

Characteristic root, 369

Chebyshev I filter, 311, 314, 324
Chebyshev Il filter, 312, 314, 326

Circulant matrix, 382

Circular convolution, 90, 142, 151, 152, 403
Circular shift, 150

Complex convolution, 90, 139, 151, 184, 216
Complex envelope, 112

Complex exponential function, 4

Complex exponential sequence, 4

Complex number operation, 409

Complex sinusoidal function, 5

Complex sinusoidal sequence, 5

Complex translation, 88, 139, 150, 215, 389
Conjugate symmetry, 86, 138
Continuous-amplitude signal, 2
Continuous-time convolution, 7, 13, 19, 20
Continuous-time Fourier series, see CTFS
Continuous-time Fourier transform, see CTFT
Continuous-time frequency, 7
Continuous-time signal, 1

Continuous-time state equation, 50, 370
Continuous-time system, 13
Continuous-value signal, 2

Controllable canonical form, 36, 363
Convolution, 9-10, 16, 17, 183
Convolution property, 90, 109

Correlation, 38-39, 58, 60, 116, 424
Correlation coefficient, 43

CTFS, 62-73, 399, 401

CTFS and DFT/DFS, 160-164

CTFS coefficient, 70

CTFS of an impulse train, 70

CTFS of a rectangular wave, 65

CTFS of a triangular wave, 65

CTFS spectrum, 67

CTFT, 78-96, 400, 401

CTFT and DTFT, 161-162

CTFT of a cosine function, 85

461

462

CTFT of an impulse train, 85

CTFT of a periodic signal, 77

CTFT of a polygonal signal, 117
CTFT of a rectangular pulse, 75
CTFT of a sine function, 85

CTFT of a triangular pulse, 76

CTFT of the unit impulse function, 81
CTFT of the unit step function, 83

D

DAC (Digital-to-Analog conversion), 250-251

Dead time, 293

Decimation-in-frequency (DIF) FFT, 168

Decimation-in-time (DIT) FFT, 165

Deconvolution, 38, 54, 423

Demodulation, 92

DFS, 151-152, 405-406

DFS reconstruction, 265

DFT, 147-164, 178-180, 403-404

DFT for an infinite-duration sequence,
155-160

DFT for a noncausal sequence, 156-157,
159, 187

DFT of a triangular sequence, 175

DFT size, 149, 164

Difference equation, 31, 207, 208, 213,
225, 226

Differential equation, 33

Differentiation w.r.t. a vector, 388

Differentiator, 184, 338

Digital filter design, 320-350

Digital frequency, 6-8, 147

Digital fundamental frequency, 147

Digital resolution frequency, 147

Digital signal, 2

Dirac delta function, 8

Direct form, 36, 323, 325

Dirichlet condition, 63

Discrete-amplitude signal, 2

Discrete Fourier series (DFS), 147

Discrete Fourier transform, see DFT

Discrete-time convolution, 8, 17, 22, 24

Discrete-time equivalence criterion, 278, 279

Discrete-time equivalent, 277-280, 293

Discrete-time Fourier series (DTFS), 149

Discrete-time Fourier transform, see DTFT

Discrete-time frequency, 6

Discrete-time interpolation, 269-271, 275

Discrete-time sampling, 189

Discrete-time signal, 2

Discrete-time state equation, 54

Discrete-time system, 13

Discrete-value signal, 2

Index

Discretization, 284-293, 370-376

Discretization of continuous-time state
equation, 370-376, 381

DTFT, 130-138, 160-164, 402

DTFT of a cosine sequence, 137

DTFT of a discrete-time impulse train, 189

DTFT of a periodic sequence, 136, 188

DTFT of a rectangular pulse, 132

DTFT of a sine sequence, 137

DTFT of asymmetric sequences, 145

DTFT of symmetric sequences, 145

DTFT of the unit impulse sequence, 135

DTFT of the unit step sequence, 137

DTFT spectrum, 141, 186

Duality, 88

Dual-tone multi-frequency (DTMF), 202

E

Eigenfunction, 116
Eigenvalue, 369, 378, 412
Elliptic filter, 313, 315, 328
Envelope detector, 112
Exponential function, 4
Exponential sequence, 4, 208
Export (a filter), 348

=

Fast Fourier transform (FFT), 164

FDATool, 348, 350, 352, 354

FDM (frequency-division multiplexing), 124

Filter structure, 345-348

Final value theorem, 218, 391

Finite-duration impulse response, see FIR

Finite pulsewidth sampler, 92

FIR, 32

FIR filter design, 331-344

FIR lowpass filter (LPF), 140

Folding frequency, 262

Formulas, 419

Forward difference, 286

Forward substitution, 39

Fourier, 61

Fourier reconstruction, 69

Fourier series, see CTFS

Fourier series and Fourier ransform, 76

Fourier transform, see CTFT

Fourier transform and Laplace transform, 74

Frequency, 6-8

Frequency aliasing, 257, 258, 260

Frequency resolution, 178

Frequency response, 19-22, 74, 225, 226,
228, 237

Frequency shifting, 88, 139, 150, 215, 389

Frequency transformation, 282, 289-291

Index

FSK (frequency-shift keying), 115
Fundamental frequency, 64, 161
Fundamental matrix, 364-365
Fundamental period, 62

G

General gain formula, 34
Generalized Fourier transform, 77
Gibbs phenomenon, 69

Goertzel algorithm, 246

Group delay, 332

H

Half-power frequency, 79

Half-size DFT computation, 196

Harmonic, 72

Highpass filter (HPF), 307

Hilbert transformer, 109-113, 184, 338-339
Homogeneity, 13

|

Ideal BPF (bandpass filter), 119

Ideal LPF frequency response, 74-75, 120

Ideal LPF impulse response, 74-75

Ideal sampler, 92

IDFT (inverse discrete Fourier transform),
148, 169

lIR, 32

IIR filter design, 321-331

Import (a filter), 348

Impulse-invariant transformation, 281-282

Impulse response, 15, 16, 17, 216, 368

Impulse signal, 81

Incrementally linear, 14

Infinite-duration impulse response, see IIR

Initial value theorem, 217, 391

In-place computation, 167

Interpolation, 263

Inverse discrete Fourier series (IDFS), 151

Inverse discrete Fourier transform (IDFT), 148

Inverse Laplace transform, 392

Inverse system, 48

Inverse z-transform, 218-223, 226, 230-231

Invertible, 30

J
Jordan canonical form, 378-379

K
Kronecker delta sequence, 10

L
Ladder, 345
Laplace transform, 384-397, 406, 407

463

Lattice, 345

Least squares error (LSE), 126
Left-sided sequence, 208

Left-side (rectangular) rule, 287
Linear, 13

Linear convolution, 152-155, 423
Linear convolution with DFT, 152-155, 192
Linear phase, 97, 133, 238

Linear system, 13

Linear time-invariant (LTI) system, 15
Long division, 223

Lowpass equivalent, 112

Lowpass filter (LPF), 270

M

Mason’s formula, 34

Matched filter, 40, 41, 42, 55

Matched z-transform, 292

MATLAB, 395

Matrix operation, 409-417

Modal matrix, 378-379, 382

Modulation property, 91, 108, 139
Multi-band FIR filter design, 240, 335-336

N

Non-anticipatory, 30
Non-causal, 30
Nyquist frequency, 258
Nyquist rate, 258, 261

(0]

Observable canonical form, 36, 363
Order, 32

Orthogonal, 127, 413

Output equation, 362

=]
Parallel computation of two DFTs, 194
Parallel form, 309

Parseval’s relation, 96, 116, 144

Partial fraction expansion, 219-223, 393
Passhand edge frequency, 307-308
Passhand ripple, 307-308

Period, 6, 7, 62

Periodic, 6, 62

Periodic convolution, 139

Periodic extension, 149

Phase delay, 332

Phase jump, 133

Physical realizability, 84

Picket fence effect, 172, 177

Plane impulse train, 106

Poisson sum formula, 123

464

Pole, 29, 210, 224

Pole location, 295-296, 303, 305
Pole-zero mapping, 292
Pole-zero pattern, 210, 232
Power theorem, 116

Practical reconstruction, 267
Pre-envelope signal, 112
Prewarping, 290-291, 302

Pulse response, 18

Pulse transfer function, 297
PWM (pulse-width modulated), 382

Q
Quadrature multiplexing, 124, 184

R

Rayleigh theorem, 96, 144

Real convolution, 89, 139, 149, 215, 389

Real translation, 88, 139, 150, 214, 389

Reconstruction, 263-271, 274

Rectangular function, 5

Rectangular sequence, 5

Rectangular windowing, 140

Recursive, 32, 321

Recursive computation of DFT, 198

Region of convergence (ROC), 208, 209, 213,
223

Resolution frequency, 147

Right-sided sequence, 210

Right-side (rectangular) rule, 288

S

Sample-and-hold (S/H), 272
Sampler, 92-93

Sampling, 92-93, 186, 249
Sampling interval, 178

Sampling period, 178, 259
Sampling property, 10, 11
Sampling theorem, 249, 257
Scaling, 95, 143, 189
Second-order active filter, 318-319
Shannon reconstruction, 263
Shift-invariant, 14

Short-time Fourier transform, 180, 200
Sifting property, 10, 11

Signal, 2

Signal bandwidth, 79

Signal flow graph, 32-34
Similarity transformation, 376-379
Simulink, 453

Sinc function, 11, 45, 76
Sinusoidal function, 5

Sinusoidal sequence, 5

Index

Sinusoidal steady-state response, 19-20, 234
Spectral leakage, 140, 164, 171, 193
Spectrogram, 180, 201, 427

Spectrum, 64, 67, 70-73

Spectrum blurring, 176, 194

SPTool, 350-359

Stability, 29, 242

Stability condition, 29, 74, 397

Stability of discrete-time systems, 47, 225
Stable, 29

Starred transform, 268, 297

State, 362

State diagram, 32, 35, 37, 51, 53

State equation, 50, 53, 362-363, 364, 370-376
State space description, 362

State transition matrix, 364-365

State variable, 362

State vector, 362

Step-invariant transformation, 282-283
Step response, 18

Stopband attenuation, 307-308

Stopband edge frequency, 307-308
Stroboscopic effect, 8, 258
Superheterodyne receiver, 120
Superposition principle, 13, 15, 16
Symmetric sequence, 145, 146, 236, 238
System, 17

System bandwidth, 79

System function, 18, 31, 225

T
Tapped delay lines, 26-28

TDM (Time-Division multiplexing), 124
Time-aliasing, 154, 262

Time constant, 78

Time-invariant, 14

Time resolution, 182

Time reversal, 215

Time sampling method, 279

Time shifting, 88, 139, 148, 214, 389
Transfer function, 17, 31, 368
Transmission matrix, 38

Transportation delay, 293

Transposed direct form, 37, 434
Trapezoidal rule, 288

Tustin’s method, 288-292
Two-dimensional DFT, 199
Two-dimensional Fourier transform, 106

U

Uncertainty principle, 67, 155

Unilateral (one-sided) z-transform, 208
Unit impulse function, 3, 8, 10, 11, 45, 386
Unit impulse sequence, 3, 10, 11

Index

Unit sample response, 16

Unit sample sequence, 4, 10, 11
Unit step function, 3, 362

Unit step sequence, 3, 362

W

Wagon-wheel effect, 8, 258

White spectrum, 81

Whittaker’s cardinal interpolation, 264
Windowing, 193

465

Windowing method (for FIR filter design), 333
Windowing property, 90, 139, 185

Z

Zero, 31, 212

Zero-insertion, 176

Zero-order-hold equivalent, 283, 301, 374
Zero-padding, 152, 156, 164, 174
z-transform, 208, 213, 406, 407, 408
z-transform and DTFT, 211

Index for MATLAB routines

MATLAB Page
routine name Description number
bilinear() bilinear transformation (optionally with prewarping) 442
butter() designs Butterworth filter with an order and cutoff 310, 436
frequency
buttord() the order and cutoff frequency of Butterworth filter 310, 436
cfirpm() designs a (possibly complex) FIR filter 332, 344
cheby1() designs Chebyshev | filter with an order and cutoff 311, 436
frequency
chebyZlorder() the order and cutoff frequency of Chebyshev | filter 311
cheby2() designs Chebyshev I filter with an order and cutoff 312, 438
frequency
cheby2order() the order and cutoff frequency of Chebyshev I filter 312
chirp() swept-frequency cosine generator 452
conv() (linear) convolution 154, 423
conv_circular() circular convolution 424
cpsd() cross power spectral density 429
c2d() discretization (continuous-to-discrete conversion) 442
CTFS_exponential () find the CTFS coefficients in exponential form 425
CTFT_poly() CTFT of a polygonal signal 118
decimate() Reduces the sampling rate to produce a decimated 450
sequence
deconv() deconvolution 424
dimpulse() impulse response of a discrete-time system 431
detrend() remove the best straight-line fit or the mean value 451
dfilt digital filter structure conversion 443
DFS discrete Fourier series 425
DFT discrete Fourier transform 425
disim() time response of a discrete-time system to a given 432
input
dstep() step response of a discrete-time system 432
DTFT discrete-time Fourier transform 425
d2c() discrete-to-continuous conversion 442
dtmf_decoder() DTMF (dual-tone multi-frequency) signal decoder 205
dtmf_generator() DTMF (dual-tone multi-frequency) signal generator 202
ellip() designs elliptic filter with an order and cutoff 437
frequency
fft() fast Fourier transform (FFT) 426
fftshift() swaps the first and second halves 427

467

468 Index for MATLAB routines
MATLAB Page
routine name Description number
filter() the output of a digital filter (with an initial state) to an 434
input
filter_cas() filtering in a cascade form 445
filter_latc_nr() filtering in a nonrecursive lattice form 447
filter_latc_r() filtering in a recursive lattice form 447
filter_par() filtering in a parallel form 445
fir(), fir2() designs a FIR filter using windowing 332,439
fircls(), fircls1() designs a FIR filter using constrained least squares 332,441
firls(), firpm() designs a FIR filter using equiripple or least squares 332, 440
firrcos() designs a FIR filter using raised cosine 332
Fourier_analysis() CTFT analysis of an LTI system with a transfer 105
function
fregs() frequency response of a continuous-time system 433
freqz() frequency response of a discrete-time system 433
hilbert() analytic signal with Hilbert transform on the 111
imaginary part
ifft() inverse (fast) Fourier transform 426
ilaplace() inverse Laplace transform 394, 449
impinv() impulse-invariant discretiztion of a continuous-time 441
system
impulse() impulse response of a continuous-time system 431
impz() impulse response of a discrete-time system B[z]/A[z] 431
interp() increase the sampling rate to produce an interpolated 450-451
sequence
interpolation_discrete() discrete-time interpolation (Sec. 5.4.4) 271
invfregs() identifies continuous-time system from its frequency 448
response
invfreqz identifies discrete-time system from its frequency 448
response
iztrans() inverse z-transform 221, 449
jordan() Jordan canonical form of state equation 379
laplace() Laplace transform 449
latc2tf() lattice structure to transfer function 347
load load (read) a file 452
Isim() time response of a continuous-time system to a given 432
input
music_wave() melody generator 200
par2tf() parallel form to transfer function 347
prony() identifies a discrete-time system based on its impulse 447
response
pulstran() generates a pulse train 452
rectpuls generates a rectangular pulse 452
resample() change the sampling rate 451
residue() partial fraction expansion of a Laplace transform 394, 449
expression
residuez() partial fraction expansion of a z-transform expression 220, 449
save save (write) a file 452
5052s5() second-order sections to state-space description 347
s0s2tf() second-order sections to transfer function 347
50s2zp() second-order sections to zero-pole form 347
specgram() spectrogram (old version) 427
spectrogram() spectrogram 427

Index for MATLAB routines 469
MATLAB Page
routine name Description number
$52505() state-space description to second-order sections 347
ss2tf() state-space description to transfer function 347
ss2zp() state-space description to zero-pole form 347
step() step response of a continuous-time system 432
stmch() identifies a discrete-time system 448
tfe (discrete-time) transfer function estimation 448
tf2latc() transfer function to lattice form 347, 443
tf2latc_my() transfer function to lattice form 446
tf2par_s() transfer function (in Laplace transform) to parallel 444
form
tf2par_z() transfer function (in z-transform) to parallel form 347, 443
tf2s0s() transfer function to second-order sections 347
tf2ss() transfer function to state-space description 347
tf2zp() transfer function to zero-pole form 347
tripuls() generates a triangular pulse 452
upfirdn() upsamples, applies a FIR filter, and downsamples 451
windowing() various windowing techniques 427
xcorr() correlation 42,423
xcorr_circular() circular correlation 425
zp2s0s() zero-pole form to second-order sections 347
zp2ss() zero-pole form to state-space description 347
ztrans() z-transform 449

Index for Examples

Example no. Description Page number
Example 1.1 Convolution of Two Rectangular Pulses 22
Example 1.2 Approximation of a Continuous-Time Convolution 25
Example 1.3 Tapped Delay Lines 26
Example 1.4a Differential Equation and Continuous-Time State Diagram 36
Example 1.4b Difference Equation and Discrete-Time State Diagram 36
Example 1.5 Correlation and Matched Filter 41
Example 1.6 Correlation for Periodic Signals with Random Noise 43
Example 2.1 Fourier Spectra of a Rectangular Wave and a Triangular Wave 65
Example 2.2 Fourier Spectrum of an Impulse Train 70
Example 2.3 CTFT Spectra of Rectangular Pulse and a Triangular Pulse 75
Example 2.4 Fourier Transform of an Exponential Function 78
Example 2.5 Fourier Transform of an Even-Symmetric Exponential Function 80
Example 2.6 Fourier Transform of the Unit Impulse Function 81
Example 2.7 Fourier Transform of a Constant Function 82
Example 2.8 Fourier Transform of the Unit Step Function 83
Example 2.9 Inverse Fourier Transform of an ideal LPF Frequency Response 84
Example 2.10 Fourier Transform of an Impulse Train 85
Example 2.11 Fourier Transform of Cosine/Sine Functions 85
Example 2.12 Sinusoidal Amplitude Modulation and Demodulation 91
Example 2.13 Ideal (Impulse or Instant) Sampler and Finite Pulsewidth 92
Sampler
Example 3.1 DTFT of a Rectangular Pulse Sequence 132
Example 3.2 DTFT of an Exponential Sequence 133
Example 3.3 DTFT of a Symmetrical Exponential Sequence 134
Example 3.4 DTFT of the Unit Sample (Impulse) Sequence 135
Example 3.5 IDTFT of an Ideal Lowpass Filter Frequency Response 136
Example 3.6 DTFT of a Constant Sequence 137
Example 3.7 DTFT of Cosine/Sine Sequences 137
Example 3.8 DTFT of the Unit Step Sequence 137
Example 3.9 Effect of Rectangular Windowing on the DTFT of a Cosine 140
Wave

Example 3.10 Impulse Response and Frequency Response of a FIR LPF 140
Example 3.11 DTFT of an Odd Sequence 145
Example 3.12 DTFT of an Anti-Symmetric Sequence 146
Example 3.13 Linear Convolution Using the DFT 152
Example 3.14 DFT of a Noncausal Pulse Sequence 156
Example 3.15 DFT of an Infinite-Duration Sequence 157
Example 3.16 DFT Spectrum of a Single-Tone Sinusoidal Wave 170

471

472 Index for Examples
Example no. Description Page number
Example 3.17 DFT Spectrum of a Multi-Tone Sinusoidal Wave 173
Example 3.18 DFT Spectrum of a Triangular Wave 175
Example 4.1 The z-Transform of Exponential Sequences 208
Example 4.2 A Causal Sequence Having a Multiple-Pole z-Transform 210
Example 4.3 The z-Transform of a Complex Exponential Sequence 211
Example 4.4 The z-Transform of an Exponentially Decreasing Sinusoidal 212
Sequence
Example 4.5 Applying Linearity and Time Shifting Properties of the 214
z-Transform
Example 4.6 Complex Differentiation and Partial Differentiation 217
Example 4.7 The Inverse z-Transform by Partial Fraction Expansion 220
Example 4.8 The Inverse z-Transform by Partial Fraction Expansion 222
Example 4.9 Difference Equation, System Function, and Impulse Response 227
Example 4.10 Different Difference Equations Describing the Same System 229
Example 4.11 Pole-Zero Pattern and Frequency Response 233
Example 4.12 Pole-Zero Pattern of Symmetric or Anti-Symmetric 238
Sequences
Example 5.1 Discrete-Time Interpolation 270
Example 6.1 Impulse-Invariant Transformation—-Time-Sampling Method 282
Example 6.2 Step-Invariant Transformation (Zero-Order-Hole Equivalent) 283
Example 6.3 Backward Difference Rule 285
Example 6.4 Forward Difference Rule 286
Example 6.5 Bilinear Transformation 289
Example 6.6 Bilinear Transformation with Prewarping 291
Example 6.7 Pole-Zero Mapping 292
Example 7.1 Analog Filter Design Using the MATLAB Functions 309
Example 7.2 IIR Filter Design 321
Example 7.3 Standard Band FIR Filter Design 334
Example 7.4 Multi-Band FIR Filter Design 336
Example 7.5 Anti-Symmetric Filters—Hilbert Transformer and 338
Differentiator
Example 7.6 Multi-Band CLS FIR Filter Design 340
Example 7.7 CLS (Constrained Least-Squares) FIR LPF/HPF Design 341
Example 7.8 Complex-Coefficient, Arbitrary Magnitude Response FIR 343
Filter Design
Example 8.1 Solving a State Equation 366
Example 8.2 Transfer Function 369
Example 8.3 Discretization of a Continuous-Time State Equation 371
Example 8.4 Discretization of a Double Integrator 374
Example 8.5 Discretization of a Double Integrator with Time Delay 376
Example 8.6 Diagonal/Jordan Canonical Form of State Equation 378

Index for Remarks

Remark no. Description Page number
Remark 1.1 Analog Frequency and Digital Frequency 7
Remark 1.2a Properties of the Unit Impulse Function 9
Remark 1.2b Properties of the Unit Impulse Sequence 10
Remark 1.3 Linearity and Incremental Linearity 14
Remark 1.4 Frequency Response and Sinusoidal Steady-State Response 21
Remark 1.5 Convolution of Two Rectangular Pulses 24
Remark 1.6 Stability of LTI systems with System Function G(s)/G[z] 29
Remark 1.7 Properties of Autocorrelation 40
Remark 1.8 Convolution vs. Correlation and Matched Filter 40
Remark 1.9 xcorr()-MATLAB function for Correlation 42
Remark 2.1 Convergence of Fourier Series Reconstruction 69
Remark 2.2 Physical Meaning of Complex Exponential Fourier Series 71
Coefficients
Remark 2.3 Effects of Smoothness and Period on Spectrum 72
Remark 2.4 Physical Meaning of Fourier Transform 74
Remark 2.5 Frequency Response Existence Condition and Stability 74
Condition
Remark 2.6 Fourier Transform and Laplace Transform 74
Remark 2.7 Fourier Series and Fourier Transform 74
Remark 2.8 Fourier Transform of a Periodic Signal 76
Remark 2.9 Signal Bandwidth and System Bandwidth—Uncertainty 79
Principle
Remark 2.10 An Impulse Signal and Its (White/Flat) Spectrum 82
Remark 2.11 Physical Realizability and Causality Condition 84
Remark 3.1 Physical Meaning of DTFT 130
Remark 3.2 Frequency Response Existence Condition and Stability 131
Condition
Remark 3.3 Phase Jumps in DTFT Phase Spectrum 144
Remark 3.4 The DTFT Magnitude/Phase Spectra of a Symmetric 144
Sequence
Remark 3.5 How to Choose the DFT Size N in Connection with Zero 155
Padding
Remark 3.6 The DFT got Noncausal/Infinite-Duration Sequences 159
Remark 3.7 Relationship among the CTFS, CTFT, DTFT, and DTFS 162
(DFT/DFS)
Remark 3.8 Data Arrangement in Bit Reversed Order 166
Remark 3.9 Simplified Butterfly Computation 166

473

474 Index for Remarks

Remark no. Description Page number

Remark 3.10 DFS/DFT (Discrete Fourier Series/Transform) and Spectral 177
Leakage

Remark 3.11 The Effects of Sampling Interval T and DFT Size N on DFT 178

Remark 4.1 Region of Convergence (ROC) 209

Remark 4.2 z-Transform and DTFT (Discrete-Time Fourier Transform) 211

Remark 4.3 Poles and Zeros 212

Remark 4.4 System Function, Pole Location, ROC, Causality, and 213
Stability

Remark 4.5 Simplified Butterfly Computation 225

Remark 4.6 Computational Method for Inverse z-Transform 228

Remark 4.7 Frequency Response and Pole-Zero Pattern 232

Remark 4.8 Pole-Zero Pattern, Linear Phase of (Anti-)Symmetric 238
Sequences

Remark 5.1 z-Transform and DTFT (Discrete-Time Fourier Transform) 261

Remark 5.2 Poles and Zeros 262

Remark 5.3 Discrete-Time Interpolation, Zero Insertion, and Lowpass 270
Filtering

Remark 6.1 Equivalence Criterion and Band-Limitedness Condition 279

Remark 6.2 Time-Sampling Method—Impulse-Invariant Transformation 280

Remark 6.3 Frequency Response Aspect of Impulse-Invariant 280
Transformation

Remark 6.4 Mapping of Stability Region by Impulse-Invariant 281
Transformation

Remark 6.5 Frequency Transformation by Impulse-Invariant 282
Transformation

Remark 6.6 Mapping of Stability Region and Frequency Transformation 285

Remark 6.7 Mapping of Stability Region by Forward Difference Rule 287

Remark 6.8 Mapping of Stability Region and Frequency Transformation 289
by BLT

Remark 6.9 Prewarping 291

Remark 6.10 DC Gain Adjustment 293

Remark 8.1 Discretized State Equation and Zero-Order-Hold Equivalent 374

Remark 8.2 Similarity Transformation—Equivalence Transformation 377

