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Introduction

The progress of GIS (Geographic Information System) over the past two
decades has been phenomenal. The quantity and quality of research litera-
ture contributed, new applications developed and systems engineered using
GIS are indicators of its growing popularity among researchers, industry and
the user community. Though GIS derives its acronym from Geographic Infor-
mation System, it has emerged as a platform for computing spatio-temporal
data obtained through a heterogeneous array of sensors from Land-Air-Sea
in a continuous time frame. Therefore, GIS can easily be connoted as Spatio-
Temporal Information (STI) system.

The capability of continuous acquisition of high spatial and high spectral
data has resulted in the availability of a large volume of spatial data. This has
led to the design, analysis, development and optimization of new algorithms
for extraction of spatio-temporal patterns from the data. The trend analy-
sis in spatial data repository has led to the development of data analytics.
The progress in the design of new computing techniques to analyze, visualize,
quantify and measure spatial objects using high volume spatial data has led
to research in the development of robust and optimized algorithms in GIS.

The collaborative nature of GIS has borrowed modeling techniques, scien-
tific principles and algorithms from different fields of science and technology.
Principles of geodesy, geography, geomatics, geometry, cartography, statis-
tics, remote sensing, and digital image processing (DIP) have immensely con-
tributed to its growth. In this book I have attempted to compile the essential
computing principles required for the development of GIS. The modeling,
mathematical transformations, algorithms and computation techniques which
form the basis of GIS are discussed. Each chapter gives the underlying comput-
ing principle in the form of CDF (Concept-Definition-Formula). The overall
arrangement of the chapters follows the principle of IPO (Input-Processing-
Output) of spatial data by GIS.

This book is intended to encourage the scientific thoughts of students,
researchers and users by explaining the mathematical principles of GIS.

xxi





Preface

Each time I wanted to experiment and analyze the spatial data presented to
me, I was confronted with many queries such as: Which GIS function will
be suitable to read the spatial data format? Which set of functions will be
suitable for the analysis? How to visualize and analyze the resulted outputs?
Which COTS GIS has all the related functions to meaningfully read, analyze,
visualize and measure the spatio-temporal event in the data?

Even if I were to select a COTS GIS system which is most suitable to an-
swer all these queries, the cumbersome process of fetching the COTS GIS along
with its high cost and strict licensing policy discourages me from procuring
it. That made me a very poor user of COTS GIS and associated tools.

But the quest to analyze, visualize, estimate and measure spatial informa-
tion has led me to search for the mathematical methods, formulae, algorithms
that can accomplish the task. To visualize terrain as it is through modeling of
spatial data has always challenged the computing skills that I acquired during
my academic and professional career.

The alternatives left are to experiment with the growing list of open source
GIS tools available or to design and develop a GIS software. Compelled by
all these circumstances I developed a set of GIS tools for visualization and
analysis ab initio.

The design and development of GIS functions need deeper understanding
of the algorithms and mathematical methods inherent in the process. The first
principle approach of development has its own merit and challenges. This has
led me to delve into the mathematical aspects of geodesy, cartography, map
projection, spatial interpolation, spatial statistics, coordinate transformation
etc. This book is the outcome of the associated scientific computations along
with the applications of computational geometry, differential geometry and
affine geometry in GIS.

Putting all these scientific principles together I came up with a new defi-
nition. GIS is a collaborative platform for visualization and analysis of spatio-
temporal data using computing methods of geodesy, photogrammetry, cartog-
raphy, computer science, computational geometry, affine geometry, differential
geometry, spatial statistics, spatial interpolation, remote sensing, and digital
image processing.

This book is intended for students, researchers and professionals engaged
in analysis, visualization and estimation of spatio-temporal data, objects and
events.
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Introduction

Geographical Information System (GIS) is a popular information system for
processing spatio-temporal data. It is used as a collaborative platform for vi-
sualization, analysis and computation involving spatio-temporal data. GIS is
the name for a generic information domain that can process spatial, a-spatial
or non-spatial and spatio-temporal data pertaining to the objects occur in to-
pography, bathymetry and space. It is used for many decision support systems
and analysis using multiple criteria. It has emerged as one of the important
systems for collaborative operation planning and execution using multi cri-
teria decision analysis involving land, sea and air. The popularity and usage
of GIS can be judged by the large amount of literature available in the form
of books [21], [31], [20], [12],[25], [4],[8], [57], [41], scientific journals such as
the International Journal of Geographical Information Science, Cartography
and Geographic Information Science, Computers and Geosciences, Journal of
Geographic Information and Decision Analysis, Journal of Geographical Sys-
tems, Geoinformatica, Transactions in GIS, The Cartographic Journal, The
American Geographer, Auto-Carto, Cartographics and the research publica-
tions from academic and scientific organizations. From these research litera-
tures the growing trend in design of algorithms and novel computing technique
for visualization and analysis of spatio-temporal data is evident.

GIS is evolving as a platform for scientific visualization, simulation and
computations pertaining to spatio-temporal data. New techniques are being
devised and proposed for modelling and computation of geo-spatial data and
new computing techniques are being researched and implemented to match
the increasing capability of modern day computing platforms, and ease of
availability of spatio-temporal data. In computer science the word comput-
ing is an all-inclusive term for scientific methods, functions, transformations,
algorithms and formal mathematical approaches and formulas which can be
programmed and software codes which can be generated using high and low
level programming languages. The scientific aspects of GIS are evolving as GI
science [41]. Some of the computing algorithms having the capability to solve
problems in different application domains are discussed in [13].
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2 Computing in Geographic Information Systems

1.1 Definitions and Different Perspectives of GIS

There are different ways to describe and specify a GIS. The prime descriptive
criteria of a GIS are:

1. Input domain of GIS.

2. Functional description of GIS.

3. Output range of GIS.

4. Architecture of GIS.

5. GIS as a collaborative platform for multi-sensor data fusion.

1.1.1 Input Domain of GIS

The potential of an information system in general, and GIS in particular,
can be studied by understanding the input domain it can process. A review of
digital data commonly available and some of the practical problems associated
with directly utilizing them by GIS is discussed by Dangermond [14]. The
versatility of GIS is directly proportional to the cardinality of the input domain
it can process. Therefore, it is pertinent to study the input domain of GIS, i.e.
the various aspects of input data such as the content of the data, organisation
or format of the data, quality, sources and agencies and the way they are
modeled for various uses. The input domain of an information system can be
formally defined as ‘the set of input data and events that it can process to
give meaningful information’.

There is no empirical formula that associates the cardinality of the input
domain of software to its strength and versatility; nevertheless, the anatomy
of GIS can be analysed by studying the input domain of the GIS. In the next
section an attempt has been made to portray the strength of GIS through
its input domain. It is also important to understand the issues associated
with spatial data viz. sources and agencies from where the data originates,
considerations of modeling the digital data for different usage, the quality etc.

Satellite technology has brought a sweeping change to the way space imag-
ing is done. In tandem with this progress, geo-spatial data capturing has wit-
nessed phenomenal growth in the frequency at which the images of a particular
portion of the Earth can be taken with varying resolution. In other words, the
frequency (temporal resolution) of capturing spatial data has increased, and
so has the spatial resolution, spectral resolution and readiometric resolution
of the spatial data, i.e. the data obtained can capture in greater detail, the
features of the Earth’s surface. To cope with this advancement in data cap-
turing, geo-spatial technology is trying to keep pace by providing powerful
spatial processing capabilities, that can handle a large volume of spatial data
for extracting meaningful information efficiently. Innovative products such as
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Google Earth, Google Sky, Yahoo Street Map, WikiMapia etc. are examples
of such systems that are now in common use on the internet.

A growing input domain means growing areas of applications such as loca-
tion services, navigation services, area services etc. This has led to increased
user domain of GIS. Therefore, GIS which earlier was largely confined to stand-
alone computing platforms accessed by single user has emerged as a common
resource of spatial data and computing. This has led to creation of spatial
data infrastructure by large organizations. The spatial data infrastructure is
accessed by large group of users through world wide web (WWW). This has
led to an increased research effort for architecting and designing of efficient
and multi-user GIS. The services offered by spatial data infrastructure had
led to designing of enterprise GIS. Use of enterprise GIS by the internet com-
munity has pushed the research effort to integrate large volume of spatial and
non-spatial data sourced from the internet users. The need for analysis of the
crowd sourced data in the spatial context has pushed the geo-spatial commu-
nity to evolve an innovative set of techniques known as the spatial data fusion
and spatial data mining techniques. Choosing the appropriate geo-spatial data
from a spatial database for a specific application then becomes an issue. The
issues that need to be resolved are:

1. What spatial data formats to choose.

2. What is the geodetic datum to be used?

3. What should be the coordinate system of the data?

4. What map projection is suitable for the data?

5. Which geo-referencing method or map projection method is to be
applied on the data?

The answer to all such queries can be resolved by careful study of the input
domain and associated metadata. This calls for creating a database of meta-
data of the available geo-spatial data. Designing of a database of metadata of
the spatial data resources has become a national concern. This is discussed
in detail at the end of this chapter. To analyze various aspects of the input
domain, it has been listed in a tabular form along with their content and
format.

The broad specification of the inputs processed by a GIS along with their
formats and the topology are listed in Table 1.1. This is an example set of
inputs to GIS and by no means exhaustive and complete. The input domain
of GIS is ever increasing and augmented because of emerging new GIS appli-
cations and creative products.

1.1.2 Functional Profiling of GIS

GIS can be considered as a set of functions which are program manifestation of
algorithms in a computing platform. The set of algorithms or functions act on
the spatial data (input domain) and transform them through computations
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Input Data Type Source Topology / Format
Raster scanned
data

Scanner, unmanned
aerial vehicle (UAV),
oblique photography

Matrix of pixels with the header
containing the boundary infor-
mation, GeoTIFF, GIF, PCX,
XWD, CIB, NITF, CADRG

Satellite image Satellite BIL, BIP,BSQ
Vector map Field survey, output of

Raster to Vector (R2V)
conversion through digi-
tization

DGN, DVD, DXF, DWG

Attribute data Field survey, statistical
observation, census data

Textual records binding several
attribute fields stored in various
RDBMS e.g. Oracle, Sybase,
PostgreSQL etc.

Elevation data Sensors, GPS, DGPS,
LIDAR, RADAR, hyper-
spectral scanner, digital
compass

Matrix of height values approxi-
mating the height of a particular
grid of Earth’s surface. DTED-
0/1/2, DEM, NMEA, GRD,
TIN

Marine navigation
charts or bathymet-
ric charts

Marine survey, coast and
island survey, hydro-
graphic and maritime
survey through SONAR

S52, S57, S56, S63 electronic
navigation charts, coast and is-
land map data

Ellipsoid parame-
ters, geodetic da-
tum, geo-referenced
information, co-
ordinate system
information

Geodetic survey, marine
survey, satellite based
measurements through
laser beams, geodatic
triangulations

Topology: semi-major axis,
semi-minor axis, flatten-
ing/eccentricity, origin of the
coordinate center, the orienta-
tion of the axis with respect to
the axis of rotation of Earth,
Earth centered Earth fixed
reference frame

Projection parame-
ters

Geodetic survey organi-
sations or agencies

As metadata or supporting data
to the main spatial data-often
saved as header information of
the main file

Almanac and
metrological data

Almanac tables Time of sunrise, sunset, moon
rise, moon set, weather infor-
mation including day and night
temperature and wind speed
etc.

TABLE 1.1
Input Domain of a GIS

to various outputs (Output Range) required by the user. To facilitate this
process of transforming the inputs to outputs, the user interacts with the GIS
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system through a GUI (Graphical User Interface) selecting different spatial
and non-spatial data, value of parameters and options.

To understand the GIS functions, profiling its macro and micro functions
gives an indepth processing capability of the GIS. The exhaustive set of func-
tions in a GIS gives the cardinality of its computing capability. Further efficacy
and strength of each of its functions can be measured by analyzing the order
of space and time complexity of corresponding algorithms. In a way GIS can
be defined through the following empirical equations:

Output Range ← GIS(Input Domain)
GIS = {Fi : i=1,2,..,n is a set of n functions}
Fi = {Stack of Algorithms}
Yi ← F (Xi)

where Xi can be an atomic spatial data or set of spatial data in the form
of pixels in case the input is an image or vector elements describing spatial
objects such as points, lines and polygons etc.
In the above equation, function F (Xi) is an algorithm if F has the following
properties:

• Finiteness; i.e. it must act on the data through a finite set of instructions
and complete computing in a finite time.

• Definiteness; i.e. it must result with a definite output.

• Input; i.e. the function must take some tangible input data.

• Output; i.e. the function must generate tangible output as result.

• Processing; i.e. the function must transform the input data to output
data.

Therefore if the F satisfies the above conditions then it can be considered
as an algorithm A and the equation can be rewritten as:

Yi ← A(Xi) (1.1)

In a sense the set of algorithms in a GIS can be thought of as the kernel
of the GIS. They can manifest in the form of software components such as
classes, objects, Component Object Models (COM), and Distributed Compo-
nent Object Models (DCOM). The interfaces of these software components
are sets of API (Application Program Interfaces) which are exposed to users
or programmers to customize the GIS according to the requirements of var-
ious systems. A macro functional view of a GIS is depicted in Figure 1.1.
Often the GIS algorithms act on the spatial data sets sequentially or in a
cascaded manner or concurrently. Sometimes the output of one algorithm can
be input to the next algorithm. This can be depicted in the following meta
equation.

Output← AnOAn−1......A1(Input) (1.2)
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FIGURE 1.1
Block diagram depicting the macro GIS functions

As an example, computing the shortest path between start location and
destination location, the computing steps can be performed through the fol-
lowing series of algorithms:

Input = {Source Location, Destination Location, Vector Topo Sheet with
Communication Layers, Digital Elevation Model Corresponding to the Topo
Sheet, Weather Information, Attribute Data}

• Step 1: Read the vector data and extract the communication Layer from
it.

• Step 2: Generate a DAG (Directed Acyclic Graph) from the communication
layer.

• Step 3: Store the DAG in a 2D array or a linked list.

• Step 4: Apply Dijkstra’s shortest path algorithm.

• Step 5: Display the shortest path and all paths in user defined colours on
the map and store the shortest path as a table.

One can observe from the above sequence of steps that the first two steps
are pre-processing of the spatial data and are input to the main computing
algorithm ‘Dijkstra’s Shortest Path’ algorithm. The outputs are both visual
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and numerical. There can be many choices to the main algorithm in the form
of A-star algorithm, Belman Ford, Ant Colony Optimization etc.

Therefore, to understand and specify the computing capability of a GIS it
is important to profile its functional capability and the crucial algorithms used
to realize them. A naive functional description or macro functional description
of GIS is given in Figure 1.1. Each of these functional blocks can be further
analyzed to trace the atomic or micro functions and algorithms.

Each chapter in this book has taken up the macro functions and the com-
puting principle behind the function is described. Although this cannot claim
to be complete, the most frequently computing method is discussed in each
chapter.

1.1.3 Output Profiling of GIS

Output profiling of GIS is important to understand the cardinality of its com-
putation power. The application of GIS depends on its output range. Because
of rapid research and development in spatio-temporal processing methods,
the output range of GIS is ever increasing and so is its application domain.
Therefore it is naive to profile all the output that the GIS system can pro-
duce. Nevertheless the GIS outputs can be listed by categorizing them into
the following:

1. Preliminary outputs of GIS are the visualization and measurements
of spatio-temporal objects produced by GIS.

2. Secondary outputs of GIS can be computed or inferred using the
preliminary outputs. These are the analytical outputs of GIS.

3. The visual output, visual and numeric simulations performed by
GIS can be termed as the extended output of GIS.

1.1.4 Information Architecture of GIS

Architecture is an important design artefact of any system. Architecture gives
the skeletal picture of the assembly and subassembly of the entire system.
Therefore to understand the design of any information system in general and
GIS in particular it is important to understand its information architecture.
Information architecture gives the flow of information in the system. The flow
of information from the database to the user through a series of request- re-
sponse cycles. The traversing of the information from the database through
software, network, hardware and finally to the GUI of the user is decided by
the architecture of the GIS system. Architecture plays a crucial role in the way
the user utilizes the service of a system. The information architecture decides
the response time of the system, the reliability of its services, its efficiency etc.
Architecture is always described through examples such as architecture of the
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city, temple, building, land scape, information system etc. Therefore architec-
ture is a design artefact which is a pre or post qualifier of any major system.
It is important to put a quasi definition of architecture for completeness.

Architecture is an artefact or formal specification of the system and sub-
systems describing the components, their topology and interrelationship in
the overall system.

In software engineering paradigm generally architecture is designed, com-
ponents are implemented, assembled or made and the system is integrated.
Therefore design is considered as a highly skilled engineering task compared
to development and integration.

GIS is a major driving force for innovation in information architecture.
Architecture plays a crucial role in deciding the end user application or system
where GIS is a component or system in itself. Architecture plays a crucial role
to convey and express the idea of constructing the components, subsystems
and the overall system to the actual builders and developers of the system.
Also it is a guiding factor to make a set of developers to develop a system
coherently so that the individual components can be integrated smoothly to
get the end objective. It helps to convey the overall idea of the system to
the developers, financers, engineers and integrators. Also the architecture is
important to market the system in the post development scenario.

1.1.4.1 Different Architectural Views of GIS

GIS was in its infant stage when large computing machines such as main frame
systems were the main source of collaborative computing. The emergence of
desktop architecture has enabled a platform for desktop GIS, where a priv-
ileged user uses the complete computing resources to analyze and visualize
spatial data stored in the local hard disk drive. This system suffers from lim-
ited usages and exploitation of GIS. Sometimes the services are denied because
of system down- time due to wear and tear or a complete crash of the system.
Often it is very difficult even to retrieve the high valued and strategically im-
portant data. Therefore to minimize the above limitations and to maximize
the utilization of the services of the overall system client server architecture in
hardware emerged. GIS graduated to adopt to the client server architecture
allowing multiple users to access a centralized database server holding spatial
data. In this scenario both the data and GIS server are collocated in a central
server where a set of common user access the services through a network en-
vironment. Client server architecture has advantage of maximizing utilization
of the GIS computing and spatial data resources by a set of close user groups
through a Local Area Network (LAN). However the client server GIS suffers
from the following anomalies:

1. The request-response cycle of the user for fetching services gets
unexpectedly delayed when the system is accessed by the maximum
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FIGURE 1.2
Multi-tier architecture in GIS

number of users. Therefore the load balancing of the database server
as well as the GIS application server gets degraded.

2. A malicious user can cripple the database as well as the GIS server
through access points leading to unnecessary denial of services to
the genuine users.

3. Poor utilization of computing as well as the spatial data services.

Therefore to overcome the above anomalies, multi-tier architecture GIS has
evolved. Multi-tier information architecture is an information architecture de-
ployed in a LAN or a Wide Area Network (WAN) where the backend database
server is abstracted from the users. The three-tier architecture is particular
instance of a multi-tier information architecture. The typical configuration of
a three-tier architecture GIS is depicted in Figure 1.2.

One can observe from the block diagram that the database server which is
a backend server holding the crucial spatial data is abstracted from the users
by a web-server and a GIS application server. The direct request for comput-
ing, visualization or analysis service by users are handled through a series of
request-response cycles.

The typical sequence a request-response cycle is:

1. User’s request for services is channelled through the web server.

2. Web server in turn requests the spatial computing service from the
GIS application server.

3. The GIS application server requests the spatial data required from
the backend data server.
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4. The back end database server responds with appropriate spatial
data back to the GIS application server which processes and com-
putes as per the request of the user.

5. The processed spatial information is sent as a response through the
web server to the appropriate request through the browser.

Therefore in the multi-tier information architecture, the GIS is referred as
enterprise GIS or Web GIS or three-tier GIS depending on its configuration
and usage. This has overcome the following limitations of the client-server
architecture:

1. Abstraction of the spatial data server from the direct intervention
of the user protecting it from malicious attacks.

2. The GIS application tier and the database tier can be mirrored
or the multiple instances of the systems can be configured in the
network to act as hot-standby or as disaster recovery facility which
can address the load balancing of user requests for performance
optimisations and for enhancing the reliability and availability of
the services to enforce measured usages by authorized users of data
and services.

3. Multi-tier GIS helps to leverage the GIS services by a vast com-
munity of users through a WAN geographically spanned across the
globe. Some of the active examples of enterprise GIS are Google
Earth, Google Sky, Yahoo Street Map, WikiMapia.

In multi-tier architecture GIS the clients can be classified as:

1. Rich or thick clients which enjoy high bandwidth services between
the clients and server. Rich clients are privileged to access GIS
service requiring high data transfer rate, high degree of comput-
ing function such as 3D terrain visualization, fly through and walk
through simulations etc.

2. Thin clients are those who use generic GIS services such as
map visualization, thematic map composition and measurement
services.

The three-tier GIS architecture is a popular architecture which has over-
come most of the limitations of the client server architectures.

With the high availability of processed spatial data and low cost spa-
tial computing devices and sensors the services of GIS are becoming rapidly
popular by large sets of users empowered with low cost computing and com-
munication devices such as cellular phones, tablet PCs etc. The popular GIS
services available through mobile devices include location based services, nav-
igation services, measurement services, query services, weather information
services, traffic information services, facility location services etc. This has led
to the emergence of service oriented architecture where an atomic service can
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be defined as a self contained process embedding the request and response cy-
cle with the spatial data and requested information in a single control thread.
GIS enabled by the service oriented architecture has created a vast global user
community spanning across land, air and sea. Therefore from the inception of
GIS to its current state it has enabled and driven research in the evolution
of information architecture. In some cases GIS has meta-morphed itself into
systems amenable to the architecture. In some cases it has put the challenge to
the research community for evolving architectures and computing paradigms.
The computing paradigms such as distributed computing, grid computing,
cloud computing, network computing, and quantum computing make their
impact in GIS by evolving new algorithms, processing large volumes of spatial
data.

1.1.5 GIS as a Platform for Multi-Sensor Data Fusion

GIS inherently collates, collects, processes and disseminates processed spatio-
temporal data and information. Sensors such as Global Positioning System
(GPS), Differential Global Positioning System (DGPS), Light Detection and
Ranging ( LiDAR), Radio Detection and Ranging (RADAR), Sound Naviga-
tion and Ranging (SONAR), digital compass, multi and hyper spectral scanner
etc. basically produce data about the location, speed, direction, heights etc. of
the spatial objects. Therefore the common basis of outputs of all these sensors
are spatial coordinate and geometric measurements. Often these sensors are
placed and operated through some platforms such as satellites, Unmanned
Aerial Vehicle (UAV), Unmanned Ground Vehicle (UGV), ships etc. There-
fore GIS becomes a platform for bringing these data to a common frame of
reference for understanding, visualization and analysis. The common frame of
reference can be imparted using GIS by modeling these data to a common
datum, coordinate reference system and cartographic projection before dis-
playing them in a digital container such as Large Screen Projection (LSP)
system or computer screen. This process of bringing them into a common
frame of reference is often referred to as Multi-Sensor Data Fusion (MSDF).
Algorithms are embedded in GIS to read these sensor data online and process
them for producing a common sensor picture.

The next level of MSDF is replacing the less accurate, less resolved at-
tribute of the spatial object captured by one sensor by more accurate and
high resolution attributes captured by other sensors, thus improving the reso-
lution and accuracy of the data. The processing of the spatial data to improve
its resolution and accuracy using the other sensors is the next level of sensor
data fusion. In fact multiple levels of sensor data fusion technique to col-
late and improve the visualization of spatial data exist in the sub domain of
MSDF.

Because of the spatial data handling capacity of GIS, it has emerged as
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FIGURE 1.3
Collaborative diagram depicting various contributing branches of science and
technology; GIS as a platform for scientific computing

the natural choice as a platform for MSDF providing a Common Operating
Picture (COP) for sensors.

1.1.6 GIS as a Platform for Scientific Visualization

GIS has emerged as a platform for simulation, modelling and visualization
of spatio-temporal data (Figure 1.3). It is used for visualization of scientific
and natural phenomena occuring in the spatial extend. Therefore GIS can
be thought of as a scientific computing platform for visualization and simula-
tion of natural, manmade and scientific phenomena. In achieving the scientific
modelling and computations, the algorithms and computing techniques from
different streams of studies have contributed to GIS. Algorithms from the
fields of computational geometry, differential geometry, affine geometry, re-
mote sensing techniques [19], bathymetric, cartographic techniques such as
map projection, coordinate transformations, geodesic computations, and pho-
togrammetric technique forms the core set of computation sin GIS. Algorithms
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form DIP (Digital Image Processing) [26], Artificial Intelligence (AI), Neural
Network (NN), fuzzy logic, computer science, graph algorithms, dynamic pro-
gramming etc. help in inferential computations in GIS.

1.2 Computational Aspects of GIS

Geometric quantities pertaining to Earth such as geodesic distance, eccen-
tricity, radius of Earth etc. form the study of geodesy. Measurement of these
parameters requires a formidable mathematical modelling. The mathematical
modelling of the shape of Earth gives the datum parameters. The datum pa-
rameter is associated with a reference frame so as to compute the geometric
quantities associated with Earth’s objects. Imparting a frame of reference to
Earth’s surface for deriving topological relationship among the spatial objects
on Earth surface is facilitated by coordinate systems such as ECEF (Earth
Centered Earth Fixed), EC (Earth Centered), ITRF (Inertial Terrestrial Ref-
erence Frame) etc.

The coordinate system, coordinate transformation, datum transformation
etc. are basically mathematical formulae which play a crucial role in referenc-
ing each and every location of Earth. These transformations when repeatedly
performed for a large quantity of contiguous spatial data are implemented
through computing functions.

Cartography, or the art of map making, is crucial to transform the 3D
spherical model of Earth to a 2D flat map. This is achieved through map pro-
jection. Map projections are mathematical transformations which transform
the 3D Earth model to a 2D Earth model keeping the topological and geodesic
relations among spatial objects intact. The outputs of map projection in dig-
ital form are the input to a GIS. Hence datum, coordinate system, geodesy
and map projection acts as the pre-processing computations of GIS [45]. Com-
puter cartography or digital cartograph is instrumental in the rapid progress of
Geographical Information Systems [11]. Different map projection techniques
their mathematical derivations and applications are discussed thoroughly by
Snyder in [52], [54], [53], and a compendium of map projections have been
discussed in the book entitled cartographic science by Dr. Donald Fenna [15].

Therefore datum, coordinate system, geodesy and map projection form
the formidable mathematical basis providing the fundamental geo-spatial data
which are the basic inputs to a GIS.

The processing of spatial information essentially can be categorized into
three geral categories viz. visualization, measurement and analysis of spatial
data. Visualization can be in the form of two dimension (2D), two and half
dimension (21

2
) and three dimension (3D), Digital Elevation Mode l(DEM),

Triangular Irregular Network (TIN), Sun Shaded Relief (SSR) model, or colour
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coded chloropath etc. Terrain modeling using dominant points extracted from
DEM has been discussed by Panigrahi et. al. in [42].

Measurement of spatio-temporal objects or phenomena results in numeric
quantities associated with spatial objects. The spatial measurements are com-
putation of location in the form of geographic coordinate (latitude, longi-
tude) or rectangular coordinate (Easting, Northing). Computing the distance
between two locations has different connotations such as geodesic distance,
planar distance, cumulative distance of intermediate measurements of con-
secutive locations or shortest distance etc. The direction measurements can
be thought of as direction measurement from true north or with respect to
magnetic north.

GIS involves computations of derived geometric quantities such as slope,
aspect, area, perimeter, volume and height of spatial objects. Such quanti-
ties sometimes characterize a general area or surface giving a meaningful de-
scription of the spatio-temporal object under consideration. These quantities
also have different connotation under different datum and coordinate systems.
Therefore the mathematical computation of these parameters forms a crucial
computing element in GIS.

Often these measurements are well formed mathematical formula applied
to spatial data. Not very often the spatial data describing the spatial objects
are simple rather the data may be complex and degenerate. They may not
fit to a set geometric pattern. Therefore measuring these quantities requires a
step by step process resulting in an algorithm. The algorithms for processing
spatial data are designed keeping in mind the geometry of the data and the
structure of the data. Therefore the algorithms of computational geometry,
differential geometry, affine geometry and projective geometry play a critical
role in processing and analyzing the spatial data.

1.3 Computing Algorithms in GIS

Table 1.2 gives a glimpse of algorithms, modelling techniques and transfor-
mations used in GIS and their possible applications in GIS. These are merely
a candidate set of computing techniques commonly found in many GIS and
used for computation of spatial data. Often there are multiple techniques to
compute the same spatial quantity and they are dependent on the type and
format of spatial data used for computation.

1.4 Purpose of the Book

GIS can be perceived as a bundle of computing techniques, modelling, and
transferring, projecting, visualizing and analyzing spatial data successively.
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Name of Computing Algorithm Usage in GIS

Computing of eccentricity ‘e’, flattening ‘f’
given the semi major and semi minor axis of
an ellipse

Geodesic modelling of Earth

Computing radius of curvature at prime
meridian and prime vertical of Earth

Geodesy

Computing (latitude, Longitude) at any point
on the surface of Earth

Geographic mapping and navi-
gation

Computation or (Easting, Northing) given
(latitude, Longitude) on a map

Map conversion, Navigation

Transformation of coordinate from spheri-
cal2rectangular, spherical2cylindrical, spher-
ical2polar, polar2rectangular WGS84-to-
NAD27, WGS-2-UAD, Molodonsky’s datum
transformation etc.

Coordinate transformation from
one system to another, datum
transformation

Map projection such as UTM, LCC, spherical,
cylindrical, planar, orthographic, perspective,
genomic etc.

Projection of cartographic data
for preparation of maps and dig-
ital display

Computation of height, distance, direction,
perimeter, area, volume, slope, aspect, curva-
ture

Measurement services

Computation of shortest path, optimum path,
critical path, alternate path from source to
destination.

Operation planning and naviga-
tion

Creation of thematic maps, colour coded ele-
vation, shaded relief map etc.

Map analysis and thematic map
composition and analysis

Visualization of 3D perspective view, ortho-
graphic view etc.

Terrain visualization and analy-
sis

Fly thru, walk thru, see thru of terrain surface Simulation and modelling of ter-
rain visualization and analysis

Computation of deterministic statistical meth-
ods such as mean, mode, median, standard
deviation, kurtosis and inferential statistical
methods such as Pearson’s correlation coeffi-
cient ‘r’, Moran’s ‘I’, Gerey’s ‘G’ etc.

For statistical analysis of spatial
data and interpolation of trends
from the surveyed population.

Spatial interpolation methods such as Inverse
Distance Weight method (IDW), Triangular
Irregular Network (TIN), Voronoi’s Polygon,
kriging etc.

For interpolation of spatial data
from the surveyed population.

Computation of line-line intersection, Point in-
side triangle, point inside polygon, point in-
side sphere, convex hull computation, Delau-
nay triangulation, Dirichlet’s Tessellation etc.

Spatial and geometric queries.
Computation of geometric
quantity from spatial data

TABLE 1.2
Computing Algorithms and Their Usage in GIS
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The core computing modules that make GIS are geodesic modelling which
models planet Earth, sea and space to an approximate geometry. The outcome
of this modelling is a mathematically defined surface or modelled surface. All
the spatial objects are located, measured and referenced with respect to the
modelled surface. The next set of computing involved in GIS is imparting
a suitable ‘frame of reference’ or ‘coordinate system’ to the datum surface.
There are different types of coordinate systems designed and being used in
different datum surfaces and different applications. In GIS often there is a need
to transform spatial data captured using one datum and coordinate system to
another datum or coordinate system for the sake of convenient visualization,
analysis and measurement. Therefore ‘coordinate transformation’ is a set of
mathematical transformations performing the task.

Cartographic map projection is a set of geometrical transformations which
intake the spatial data, datum and coordinate parameters and project the
spatial data to a regular geometric surface for preparation of a map.

Computing physical parameters of spatial objects is important to give a de-
scriptive measure of the spatial object. A set of mathematical formulae which
compute the location, height, distance, direction, perimeter, area, volume,
slope, aspect, curvature etc. of a physical surface or object are important con-
stituents of GIS measurement. These descriptive quantities form the primary
quantitative output of any GIS.

A distinct set of computations and mathematical formulae from differen-
tial geometry, affine geometry and computational or combinatorial geometry
are used for image registration [22], geometric computations [42], [28] us-
ing structured spatial data in the form of DTED (Digital Terrain Elevation
Model) or raster satellite image. The predictive logic of spatial and geomet-
ric queries is being performed on spatial data using computational geometric
methods.

Spatial statistics are an emerging set of computational statistics consisting
of both predictive and inferential statistical functions. These statistical func-
tions can infer subtle trend about spatial data population from the observed
samples. They can act on bivariate and multi-variate data for geospatial anal-
ysis. Spatial interpolation techniques are a set of mathematical techniques for
interpolation and extrapolation of spatial data from sparsely observed data
sets. IDW (Inverse Distance Weight), kriging, triangulation, tessellation etc.
are popular spatial interpolation techniques with variants for different vari-
eties of spatial data. Beside the above computations there is a set of hybrid
computing techniques which are popularly used in GIS for application specific
analysis and visualization of spatial data.

The application specific computations in GIS, the spatial interpolation
techniques, spatial statistical methods and spatial analysis methods are emerg-
ing and therefore I felt it apt to compile these techniques and name them
under ‘Computing in Geographic Information Systems’ or more appropriately
‘Computational GIS’.
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1.5 Organization of the Book

This book deals with the computational aspects of GIS. Chapter 2 delves into
the mathematical modelling of Earth through geodetic datum and geodesic
measurements. Chapter 3 defines the characteristics of a reference system and
the usefulness of a frame of reference or coordinate system is discussed. Chap-
ter 4 discusses some of the established frames of references being used in GIS,
geodesy and spatial information systems. Chapter 5 is about cartographic
modelling and transformation projections. Chapter 6 deals with the mathe-
matical aspects of cartographic transformations in the form of different map
projections. In Chapter 7, the mathematical formulae used for measurement
of spatial objects and useful computing techniques used in GIS are discussed.

Chapter 8 discusses the useful differential geometric methods for compu-
tation of spatial attributes. Chapter 9 discusses the Computational geometric
algorithms and their applications in GIS. The affine property, transforma-
tions and their applications for image registrations are discussed in Chapter
10. Spatial interpolation techniques are a set of tools useful for computing and
generating missing spatial data from pre-surveyed data. Spatial interpolation
techniques are discussed in Chapter 11. Chapter 12 discusses some of the spa-
tial analysis techniques useful for multi-criteria-decision-analysis and used in
spatio-temporal decision support systems.

FIGURE 1.4
Organization of chapters

The book consists of 12 chapters. The organization of the chapters is given
in Figure 1.4. Chapters 1–4 deal with the modelling and pre processing of spa-
tial data and prepare the spatial data as input to the GIS system. Chapters
5–8 describe the various techniques of computing the spatial data using differ-
ent geometric and statistical techniques. Finally Chapters 9–11 describe the
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technique for image registration computation and measurements of spatial
objects and phenomena.

Detection and analysis of change in terrain using multi-dated satellite im-
ages of the same area is an important and popular GIS function. This is also a
candidate application where almost all the computing techniques used in GIS
are applicable. Therefore to give full details of these techniques the change
detection of terrain is described in the last chapter as an application of these
computational methods.

1.6 Summary

This chapter introduces GIS and its computing aspects. To encourage the in-
terest of the reader, the information is explained through a pattern of CDF
(Concept-Definition-Formulation). Multiple definitions of GIS from different
perspectives are discussed. The IPO (Input-Processing-Output) pattern of the
GIS as a system is analyzed. The analysis of its input domain, processing ca-
pabilities and output range are carried out through examples. The system
concept of GIS as a platform for multi-sensor data fusion or platform for inte-
gration of sensor data has been explained through an example. The scientific
visualization capability of GIS brings different fields of science and technology
together in collaboration to make use of the spatio-temporal processing ca-
pabilities of GIS. This concept has been explained through a block diagram.
Also the spatio-temporal integration capability of GIS makes it a platform
for collaborative processing. The computational aspects of GIS have been ex-
plained through some candidate algorithms often used in GIS. Finally, the
organization of the book has been depicted through a block diagram which
essentially describes a MVC (Mode-View-Compute) philosophy of this GIS
book.
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Computational Geodesy

Mathematical modelling of the shape of the Earth and computational methods
to measure its shape parameters is known as geodesy. In other words geodesy
models the overall shape of the Earth through mathematical modelling. The
physical properties exhibited by Earth such as its gravity field, magnetic field,
polar and Keplarian motion etc. forms the basis for modelling the shape of
Earth. In recent years direct measurement of the diameter of the Earth by
focusing the laser beams from the satellite gives a credible accuracy of the
estimations arrived by geodesic estimations. A glimpse of various applications
of geodesy and its principles in measuring the physical parameters of Earth
is given to make the reading of the subject interesting. A formal definition of
geodesy can be the mathematical modelling of the shape of Earth and mea-
surement of its geometrical parameters by modelling the physical phenomena
exhibited by Earth such as its magnetic and gravity fields. The direct mea-
surement of the shape of Earth is performed by focusing of laser beams fitted
on the satellites revolving around the Earth. In other words geodesy is mod-
elling, measurement and study of the physical shape of the Earth, its geometry
through laser range finder, magnetic and gravity field modelling.

This chapter starts with the definition of geodesy followed with the con-
cepts of physical, geometric and satellite geodesy. The concepts of geoid and
ellipsoid are discussed. Important physical parameters of Earth such as semi
major axis (a), semi minor axis (b) flattening (f) and eccentricity (e) are de-
fined. Measurements such as radius, radius of curvature, perimeter, area and
volume with respect to defined shape parameters of Earth are illustrated.

2.1 Definition of Geodesy

The dictionary meaning of geodesy is ‘Dividing the Earth and measurement of
the Earth’. For our purposes, geodesy is the science dealing with the techniques
and methods for precise measurements of the geometry of Earth surface and its
objects. The theory of modelling the shape and size of Earth through different
mathematical methods such as determination of the radius of the Earth at any
location, curvature measurement and computation of geodatic datum forms
an important part of geodesy. Methods for measuring the spatial locations of

19



20 Computing in Geographic Information Systems

the objects on the surface of Earth form a part of geodesy. Geodesy can be
broadly classified into three branches:

1. Physical geodesy

2. Geometric geodesy

3. Satellite geodesy

Physical geodesy deals with computational techniques which allow the so-
lutions of geodetic problems by use of precise measurement of Earth’s shape
through astro-geodetic methods. This method uses astro-determination of lat-
itude, longitude, azimuth through geodetic operation such as triangulation,
trilateration, base measurement etc. These methods may be considered as
belonging to physical geodesy fully as much as the gravimetric methods.

Geometry geodesy appears to be purely geometrical science as it deals
with the geometry i.e. the shape and size of the Earth. Determination of
geographical positions on the surface of Earth can be made by observing
celestial bodies and thus comes under geodetic astronomy, but can also be
included under geometric geodesy.

Earth gravity field is an entity and is involved in most of the geodetic
measurements, even the purely geometric ones. The measurements of geodetic
astronomy, triangulation and levelling, all make essential use of plumb line
being the direction of gravity vector.

Thus, as a general distinction astro-geodetic methods come under geomet-
ric geodesy which uses the direction of gravity vector, employing geometrical
techniques, where as the gravimetric methods come under physical geodesy,
which operates with the magnitude of ‘g’ using potential theory. A sharp
demarcation is impossible and there are frequent overlaps.

Satellite geodesy comprises the observation and computational techniques
which allow the solution of geodetic problems by the use of precise measure-
ments to, from or between spatial locations, mostly near the Earth’s satellite.

2.2 Mathematical Models of Earth

To understand how the size and shape of the Earth varies, three reference
surfaces are studied widely by geodesists. The models of interest to geodesists
are:

• Physical surface of Earth

• The reference geoid

• The reference ellipsoid

Mathematically describing the reference surfaces such as geoid and ellipsoid
are fundamental to the understanding of geodesy.
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Geoid
height

Geoid

Ellipsoid

FIGURE 2.1
Separation of geoid and ellipsoid undulation

2.2.1 Physical Surface of Earth

The physical surface of the Earth is with all undulations (mountains and
depressions). This is roughly an oblate ellipsoid (obtained by revolving an
ellipse about its minor axis). It the actual topographical surfaces on which
Earth measurements are to be made. It is not suitable for exact mathematical
computation, because the formula which would be required to take the irregu-
larities into account would necessitate a prohibitive amount of computations.

2.2.2 The Reference Geoid

On the other hand, the ellipsoid is much less suitable as a reference surface
for vertical coordinates (heights). Instead, the geoid is used. It is defined as
that level surface of the gravity field which best fits the mean sea level, and
may extend inside the solid body of the Earth. The vertical separation be-
tween the geoid and particular reference ellipsoid is called geoidal undulation
and is denoted by n. Figure 2.1 represents the ellipsoid, geoid and geoidal
undulation.

The geoid is an equipotential surface of Earth’s attraction and rotation.
It is nearly ellipsoidal but a complex surface. The geoid is essentially mean
sea level, i.e., it may be described as a surface coinciding with mean sea level
in oceans and lying under the land at the sea level to which the sea would
reach if admitted by small frictionless channels. The geoid is a physical reality.
At sea level (geoid) the direction of gravity and axis of a level theodolite is
perpendicular to it.

The mean sea level (MSL) or geoid is the datum for height measurement.
The geoid may depart from ellipsoidal shape by varying amounts, up to 100m
or even more.

The MSL differs from the geoid due to the following reasons:
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1. The MSL surface is overlaid by air, whose pressure varies. It is not
quite a free surface.

2. The wind applies horizontal force to the surface.

3. The density of water varies with temperature and salinity.

4. The sources of water, rain, river and melting of ice, do not coincide
with the areas where water is lost by evaporation.

2.2.3 The Reference Ellipsoid

The ellipsoidal surface is smooth and so is convenient for mathematical op-
erations. This is why the ellipsoid is widely used as the reference surface for
horizontal coordinates in a geodetic network. It is a mathematical surface
with an arbitrarily defined geometrical figure. It is closely approximate to the
geoid or actual topographical surface. Since the reference ellipsoids are smooth
mathematical surfaces (user defined), computations are quite easy to be per-
formed on this surface. It is an ideal surface for referencing the horizontal
position of the points on the surface of the Earth. The reference ellipsoids are
of two categories.

1. In the first category the reference ellipsoid is chosen in such a way
that the center of gravity of the actual Earth coincides with the
center of the ellipsoid. This type of ellipsoid is called a geocentric
ellipsoids, for example WGS-72, WGS-84 etc.

2. In the second category, the ellipsoids are chosen in such a way that
it fits with the local datum of interest as closely as possible. For
example Everest, Bessel etc.

Though several reference ellipsoids are used in the world (see Table 13.1) in the
Indian context, most of the computations are performed using Everest ellipsoid
on which the topographical map coordinates are referenced. For satellite based
measurements and for computing the location of spatial objects on Earth’s
surface for scientific computations WGS-84 (World Geodatic Survey 1984),
which is a geocentric ellipsoid, is used.

2.3 Geometry of Ellipse and Ellipsoid

It is important to revisit some of the geometric concepts and algebraic rela-
tionships of ellipse. The equation of ellipse with semi major axis ‘a’ and semi
minor axis ‘b’ is given by

x2

a2
+
y2

b2
= 1 (2.1)
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where, b2 = a2(1 − e2) and ‘e’ is the eccentricity, 0 < e < 1. In ellipse the
locus of a point moves in a plane such that its distance from a fixed point (i.e.
focus) is a constant ratio from a fixed line (i.e. directrix). This ratio is called
eccentricity and is denoted by ‘e’. An ellipse has two foci.

Another definition of an ellipse is the locus of a point which moves in a
plane such that the sum of its distance from two fixed points in the same plane
is always constant. The parametric representation of an ellipse can be given
by Figure 2.2 a generic coordinate of any point on the ellipse.

ON = OP1cosβ = acosβ (2.2)

PN = P2Q = OP2sinβ = bsinβ (2.3)

P (x, y) ≡ (acosβ, bsinβ) (2.4)

When the ellipse is rotated about any of the axes, we get a tri-axial ellip-
soid. An tri-axial ellipsoid with semi major axis ‘a’, ‘b’ and ‘c’ in the cardinal
axis directions ‘x’, ‘y’ and ‘z’ respectively is given by 1

a2 0 0
0 1

b2
0

0 0 1
c2

 ∗
 x2

y2

z2

 = 1 (2.5)

⇒ x2

a2
+
y2

b2
+
z2

c2
= 1 (2.6)

If the bi-axial ellipse is rotated around the semi-minor axis ‘b’, it will
generate an ellipsoid of revolution which is also known as an oblate ellipsoid.
The mathematical equation of the ellipsoid is given by equation. An ellipsoid
is 3D (three dimensional) as depicted in the figure somewhat like a sphere with
a uniform bulge at the diameter and depression at the poles. The equation of
oblate ellipsoid is given by:

⇒ x2

a2
+
y2

a2
+
z2

b2
= 1 (2.7)

The above equation of an ellipsoid can be expressed in matrix form: 1
a2 0 0
0 1

a2 0
0 0 1

b2

 ∗
 x2

y2

z2

 = 1 (2.8)

An auxiliary circle is a circle formed by the locus of the geometric figure
when an ellipse is revolved around its minor axis and projected onto a 2D
plane as depicted in Figure 2.2.

The dotted circles in the figure are known as auxiliary circles. The line PS
is ellipsoid normal at P. The ∠P 1OA = β is known as reduced latitude. The
∠PRA = θ known as geodatic latitude.
Eccentricity and flattening are the computable geometric quantities of an el-
lipse which gives the sense of its variation from that of a circle. There are
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FIGURE 2.2
Auxilary circle, the 2D projected ellipsoid

three variants of eccentricity of ellipse which has a value between [0,..,1]. The
formulae for first and second eccentricity ‘e’ of ellipse is given by

e2 =
a2 − b2

a2
(2.9)

⇒ a2e2 = a2 − b2 (2.10)

⇒ b2 = a2(1− e2) (2.11)

The secondary eccentricity is denoted by e
′

and is given by

e
′

=
a2 − b2

b2
(2.12)

Another computable geometric quantity of ellipse is flattening which is given
by the formulae first flattening ‘f’.

f =
a− b
a

(2.13)

The second flattening f
′

is given by the formula

f
′

=
a− b
b

(2.14)
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2.3.1 Relation between ‘e’ and ‘f ’

The eccentricity and flattening of any point on the the ellipsoid are related
and can be computed given the value of either.

f =
a− b
a

(2.15)

Multiplying both sides of the above equation by (a+ b)/a we get

(a+ b)

a
f =

(a+ b)

a

(a− b)
a

(2.16)

(a− b+ 2b)

a
f = e2 (2.17)

a− b
a

+
2b

a
f = e2 (2.18)

f + 2(1− f)f = e2 (2.19)

2f − f2 = e2 (2.20)

Therefore if the value of ‘e’ at any point on the datum surface is given the
value of ‘f’ can be computed and vice versa.

2.4 Computing Radius of Curvature

The radius of curvature at the prime meridian and prime vertical of the ellip-
soid are often used for measurement of the grid locations. Radius of curvature
at prime meridian is also required to compute Cartesian coordinate (EN) of
the corresponding geographic coordinate (latitude, longitude) of any location
on the ellipsoid. Also the curvature is an important supplementary parameter
for transformation of the geodetic coordinates to Cartesian coordinate or map
coordinates.The formulae for radius of curvature of geometric surfaces using
differential geometry are given by

K =
x
′
y
′′ − y′x′′

(x′2 + y′2)
3
2

(2.21)

K =
d2y
dx2

(1 + ( dy
dx

)2)
3
2

(2.22)

where, the parametric location of a point on the ellipsoid is given by x = acosβ
and y = bsinβ. Using the above parametric values, their first and second par-
tial derivative can be computed using x

′
= −asinβ and x

′′
= −acosβ

y
′

= bcosβ and y
′′

= −bsinβ.
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Therefore, the parametric form of curvature at any point on the ellipsoid
can be derived as

K =
(−asinβ)(−bsinβ)− (−acosβ)(bcosβ)

(a2sin2β + b2cos2β)
3
2

(2.23)

K =
ab(sin2β + cos2β)

(a2sin2β + a2(1− e2)cos2β)
3
2

(2.24)

K =
b

a2(1− e2cos2β)
3
2

(2.25)

The radius of curvature in parametric form which is inverse of the curvature
is given by

ρ =
a2(1− e2cos2β)

3
2

b
(2.26)

Given, ‘a’, ‘e’ and β the reduced latitude at any point of a datum surface the
curvature and radius of curvature can be computed using the above equation.
But the reduced latitude is a theoretical quantity. Therefore, one needs to
establish a relation ship between the theoretical latitude β and the practical
value of the latitude φ so that the curvature can be computed for practical
purposes. The equation of ellipse is given by

x2

a2
+
y2

b2
= 1 (2.27)

On differentiating both sides of the above equation one gets

2x

a2
+

2y

b2
dy

dx
= 0 (2.28)

dy

dx
= −x

y

b2

a2
(2.29)

dy

dx
= −xa

2(1− e2)

ya2
= −x(1− e2)

y
(2.30)

where dy
dx is the slope of the tangent at any point p(x, y) of the ellipse. Slope

of the normal at the point is negative reciprocal of the slope at the point
(by using m1m2 = −1). Slope of the normal is given by − 1

dy
dx

. By definition,

latitude at a point is the slope of the normal at the point. Therefore

tanφ =
y

x(1− e2)
(2.31)

By substituting the parametric value (acosβ, bsinβ) of the coordinate (x, y)
in the above equation we can obtain the relation.

tanφ =
a

b
tanβ (2.32)
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Therefore the radius of curvature at the meridian which was derived in terms
of the reduced latitude can be derived for the actual latitude of the point on
the ellipsoid for practical use as given below:

ρ =
a2(1− e2cos2β)

3
2

b
(2.33)

ρ =
a2

b
(1− e2 a2cos2φ

a2cos2φ+ b2sin2φ
)

3
2 (2.34)

ρ =
a2

b
(1− e2a2cos2φ

a2 − e2a2sin2φ
)

3
2 (2.35)

ρ =
a2

b
(1− e2cos2φ

1− e2sin2φ
)

3
2 (2.36)

ρ =
a2

b
(

1− e2

1− e2sin2φ
)

3
2 (2.37)

ρ =
a2

a(1− e2)
1
2

(
1− e2

1− e2sin2φ
)

3
2 (2.38)

Therefore the radius of curvature at prime meridian given in terms of latitude
is

ρ =
a(1− e2)

(1− e2sin2φ)
3
2

(2.39)

2.4.1 Radius of Curvature at Prime Vertical Section

Refer to Figure 2.2. The raduis of curvature at the prime vertical section can
be derived by using the following equations.

PN(radius− of − curvature− at− prime− vertical) =
acosβ

cosφ
(2.40)

cosβ =
acosφ

cosφ
√
a2cos2φ+ b2sin2φ

(2.41)

γ =
aacosφ

cosφ
√
a2cos2φ+ b2sin2φ

(2.42)

γ =
a2√

a2cos2φ+ a2(1− e2)sin2φ
(2.43)

γ =
a2√

a2 − a2e2sin2φ
(2.44)

γ =
a√

1− e2sin2φ
(2.45)

The value of radius of curvatures at φ = 0 i.e. at the equatorial plane and
φ = 90o i.e. at the pole of the ellipsoid one can compute as a special case using
the above equations. At φ = 0
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ρ = a(1− e2) = a
b2

a2
=
b2

a
(2.46)

γ = a (2.47)

Atφ = 90o (2.48)

ρ = a
1− e2

(1− e2)
3
2

=
a2

b
(2.49)

γ =
a√

1− e2
=
a2

b
(2.50)

One can observe that the radius curvature at the prime vertical and meridian
has the same value.

2.5 Concept of Latitude

We often think of the Earth as simply oval (ellipsoid), but in reality the surface
of the Earth is very complex to analyze mathematically. The levels of the sur-
face are different at different position, so for ease of analysis an approximated
model of Earth called geoid is used. The geoid is approximated to an ellipsoid
(more precisely an oblate ellipsoid). Now, determining the position of a point
on the geoid is the real challenge. For this the concept of latitude (angle with
respect to equatorial plane) and longitude (angle with respect to the meridian
plane) is used. In this section we will discuss the concept of latitude.

2.5.1 Modified Definition of Latitude

Latitude of a point on the geoid is defined as the angle subtended by the
normal passing through the point and the equatorial plane. It is usually rep-
resented by the symbol φ (Greek letter Phi).

There are various different measures of latitude depending upon the model
of the geoid. In this section we will discuss the most popular latitude measures
often used in geodesy.

2.5.2 Geodetic Latitude

It is the globally accepted definition of latitude. Geodetic latitude of a point
on the surface of the geoid is defined as angle subtended by the normal at
that point with the equatorial plane (Figure 2.3). It is usually denoted by φ.
geodetic latitude is taken as the reference for the mathematical definition of
the other forms of latitude.
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FIGURE 2.3
Geodetic and geocentric latitude

2.5.3 Geocentric Latitude

Geocentric latitude of a point on the geoid is defined as the angle subtended by
the radius passing through that point and the equatorial plane. Refer to Figure
2.3. Let ‘O’ be the center of the geoid and ‘P’ be an arbitrary point on the
surface of the geoid. Therefore the angle subtended by OP with the equatorial
plane is the Geocentric latitude of that point. It is usually designated by the
symbol ψ (Greek small letter Psi). The relation between the geocentric latitude
(ψ) and geodetic latitude(φ) is given by the equation:

ψ(φ) = tan−1[(tanφ)(1− e2)] (2.51)

2.5.4 Spherical Latitude

In this case the geoid is assumed to be a perfect sphere. So the normal to
any point passes through the center. The angle between that normal and the
equatorial plane is called the spherical latitude of that point.

2.5.5 Reduced Latitude

This latitude system is based on the auxiliary circle of the ellipse (more pre-
cisely the auxiliary sphere of the ellipsoid) (see Figure 2.4). It is usually de-
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FIGURE 2.4
Reduced latitude

noted by the symbol β (Greek small letter beta). This is also known as para-
metric latitude.

In Figure 2.4, ‘O’ is the center of the datum surface and ‘P’ is an arbitrary
point on the datum surface. ‘M’ is the foot of the perpendicular from ‘P’ on
the equatorial plane, similarly ‘D’ is the foot of the perpendicular from ‘P’ on
the meridian plane.
PD = OM = q
PM = z
OB = b
OA = OQ = a
Using geometrical principle
p = a cosβ
z = b sinβ
The parametric latitude can be expressed as a function of the geodetic latitude
by the equation:

β(φ) = tan−1[
√

1− e2 tanφ] (2.52)

2.5.6 Rectifying Latitude

The concept of rectifying latitude is based on meridian distance. On a sphere
the normal passes through the center and the latitude is therefore equal to
the angle subtended at the prime meridian arc from the equator to the point



Computational Geodesy 31

concerned. The meridian distance of the point is given by:

m(φ) = R.φ (2.53)

In the case of rectifying latitude the meridian distance is scaled so that the
values of the poles is π

2 . Rectifying latitude is denoted by the symbol ‘µ’ (Greek
small letter mu) and can be expressed as a function of Geodetic latitude:

µ(φ) = π
2
m(φ)
mp

where, m(φ) = meridian distance from equator to latitude φ, and is given by:

a(1− e2)
φ∫
0

(1− e2 sin2 φ)
3
2 dφ

mp is the length of meridian quadrant from equator to pole.
mp = m(π

2
)

From the rectifying latitude approximation, the radius of the geoid is given
by:

Rµ =
2mp

π
(2.54)

2.5.7 Authalic Latitude

Authalic latitude gives an area preserving transformation to a sphere. It is
usually denoted by the symbol ξ (Greek small letter xi). Albers equal area
conic projection is an example of the use of authalic latitude. It can be repre-
sented as a function of geodetic latitude by the equation:

ξ(φ) = sin−1 q(φ)

qp
(2.55)

where:

q(φ) = (1−e2) sinφ
1−e2 sin2(φ)

− 1−e2
2e ln 1−e sinφ

1+e sinφ

= (1−e2) sinφ
1−e2 sin2(φ)

− 1−e2
e sinh−1(e sinφ)

qp = q(π2 ) = 1− 1−e2
2e ln( 1−e

1+e )

= 1 + 1−e2
e tanh−1 e

From the authalic approximation, the radius of the geoid is given by:

Rq = a

√
qp
2

(2.56)

2.5.8 Conformal Latitude

The conformal latitude defines a transformation from the ellipsoid to a sphere
of arbitrary radius such that the angle of intersection between any two lines
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on the ellipsoid is the same as the corresponding angle on the sphere. That
means it retains the conformality of mapping by giving an area preserv-
ing transformation. It is usually denoted by the symbol χ (Greek small
letter chi) and can be expressed as a function of geodetic latitude by the
equation:

χ(φ) = 2 tan−1

[(
1 + sinφ

1− sinφ

)(
1− e sinφ

1 + e sinφ

)e] 1
2

− π

2
(2.57)

⇒ χ(φ) = sin−1[tanh(tan−1(sinφ))− e tanh−1(e sinφ)] (2.58)

2.5.9 Isometric Latitude

Isometric latitude is used in development of normal Mercator projection and
transverse Mercator projection. This is usually denoted by the symbol Ψ
(Greek capital letter Psi - not to be confused with geocentric latitude). The
name isometric arises from the fact that at any point on the ellipsoid, equal
increments of Ψ and λ gives equal distance displacements along the meridian
and parallels respectively. The graticules defined by the lines of constant Ψ
and constant λ divide the surface of the ellipsoid into a mesh of squares (of
variable size ). The isometric latitude is 0 at the equator, but rapidly diverges
from geodetic latitude and becomes infinite at poles. It can be expressed as a
function of geodetic latitude by the equation:

Ψ(φ) = ln[tan(
π

4
+
φ

2
)] +

e

2
ln[

1− e sinφ

1 + e sinφ
] (2.59)

⇒ Ψ(φ) = tanh−1(sinφ)− e tan−1(e sinφ) (2.60)

2.5.10 Astronomical Latitude

This is the angle between the equatorial plane and the true vertical at a
point on the surface. The true vertical is the direction of gravity field at that
point (the gravity field is the resultant of the acceleration due to gravity and
centrifugal acceleration at that point).

Astronomical latitude is calculated from angles measured between the
zenith and the stars whose declination is actually known.

The zenith is an imaginary point directly above a particular location on the
celestial field. Above means in the vertical direction opposite to the apparent
gravitational force at that point.
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2.6 Applications of Geodesy

Geodesic methods find many applications such as engineering survey, precisely
locating the position of Earth objects by triangulation, trilateration and tra-
verse. Some of the important applications of geodesy are as follows.

1. Establishment of triangulation for geodatic survey by triangulation,
trilateration and traverse.

2. Measurement of height of objects and locations above the sea level
by triangulation and spirit leveling.

3. Computation of latitude, longitude and azimuth of locations
through astronomical observations.

4. Observation of direction of gravity by astronomical observations of
latitude, longitude.

5. Determination of the relative change in position of ground and its
height from sea level for determination of crustal movement.

Some of the geodesic applications are:

1. To study the polar motion and its effect on the location of objects.

2. Primary or zero order triangulation, trilateration and traverse.

3. Astronomical observation of latitude, longitude and azimuth to lo-
cate origins of surveys, and to control their direction.

4. Observation of the intensity of gravity by the pendulum and other
apparatus.

5. To deduce the exact form of Earth’s sea level equi-potential surfaces
at all heights.

6. Polar motion studies.

7. Earth tides.

8. The separation between the geoid and the mean sea level.

9. Engineering survey.

10. Satellite geodesy: includes the modern techniques of positioning by
space method. e.g. GPS, SLR, VLBI, etc.

2.7 The Indian Geodetic Reference System (IGRS)

The Indian geodetic reference system has taken into account the existence of
Mount Everest in its region. Hence the ellipsoidal model of the Indian region
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has computed a model known as the Everest ellipsoid. The constants of the
Everest ellipsoid were determined in 1830 and are given by:

1. a (semi major axis) = 6377301.243 m

2. b (semi major axis) = 6356100.231 m

3. f (flattening) = a−b
a = 1

300.8017

4. e2 (square of eccentricity) = (a2−b2)
a2 = 0.00663784607

2.8 Summary

Geodesic computations play a major role in computing the geometric quanti-
ties of the Earth. Geodesy models the shape of Earth through observations of
various physical phenomena exhibited by the Earth such as its gravity field,
rotational motion etc. This chapter starts with the definition of geodesy fol-
lowed with the definition of the mathematical models of Earth such as geoid
and ellipsoid. The geometric quantities describing the ellipsoid such as eccen-
tricity, flattening are derived. The computation of radius of curvature prime
vertical and meridian are derived. The chapter gives a elaborate definition
and mathematical formulations of different types of latitudes such as geode-
tic, geocentric, reduced, authalic, conformal, astronomical latitude and their
inter relationships are given with mathematical formulations so as to compute
them from geodetic latitude. Applications of geodesy and its allied computing
methods are in use for measurement of different physical phenomena exhibited
by Earth.
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Reference Systems and Coordinate
Transformations

If geodesy is about modelling the Earth’s surface and shape, the coordinate
system connects the model produced by geodesic modelling to a frame of ref-
erence for measurement. The coordinate system or reference frame or frame
of reference is a mathematical concept for imparting order to a distributed set
of objects in sea, space or terrain. The frame of reference helps in conceptual-
izing the location of the objects with respect to the common frame and with
respect to its surroundings objects. A reference system is a mathematical con-
cept for modelling the real world. This chapter starts with the mathematical
definition of a coordinate reference system. Then we discuss different types
of coordinate systems and their characterization, since the mathematical and
computing aspects of GIS used to represent a point in the coordinate system
are quite intriguing. Map projection and coordinate system are interrelated
mathematically. A discussion on coordinate systems and map projections can
be found in Maling [35].

3.1 Definition of Reference System

A reference system is defined by the following:

1. Origin of the reference system

2. The orthogonal or non-orthogonal directrix as reference frames with
orientations with respect to each other.

The dimension of the reference system is the number of directrix used to
describe the objects. Therefore depending on the number of directrix in the
reference frame the coordinate system can be classified as 1D,2D,3D,..,nD,
where ‘D’ stands for dimension. Depending on the orientation of the coor-
dinates with respect to each other they can be classified as orthogonal or
non-orthogonal.

The origin of the frame of reference can be fitted to a real world object
such as planet Earth, the moon, a constellation of stars, space, the center of
a city or a building etc. Also it can be attached to some known geometrical

35
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shape such as a sphere, cylinder or plane. Depending on the position of the
origin and its orientation with geometrical object the coordinate system can
be classified into world coordinate system, Earth Centered Earth Fixed coor-
dinate system (ECEF), celestial coordinate system. According to geometrical
shape reference frame can be classified into planar, cylindrical, spherical etc.
coordinate reference systems are useful in

1. Imparting an orderliness to a set of spatially distributed objects.

2. Imparting topological ordering to spatial objects in the frame of
reference.

3. As a concept for mathematical method for geometric and spatial
modelling.

Hence coordinate systems are handy and useful in geometry modelling,
ordering, indexing visualization and computations of spatio-temporal objects.
Therefore the coordinate reference system is integral part of GIS in general
and of spatio-temporal systems in particular.

3.2 Classification of Reference Systems

There are a number of coordinate systems in use in mathematics, geodesy, GIS
and computer graphics. Classifying them into few major groups is very diffi-
cult because many of them possess similar mathematical properties classifying
them into more than one type of system. The major classification criteria for
coordinate systems can be as follows.

1. Depending upon the dimension or number of axis of the coordinate
system: 1D,2D,3D,..,nD

2. Depending on the orientation of the axis: orthogonal and non-
orthogonal

3. Depending upon the quantity for representation of the coordinate :
rectangular coordinate system also known as Cartesian coordinate
system or curvilinear (polar) coordinate system

4. Depending upon the orientation of the coordinate system: right
handed coordinate system or left handed coordinate system

5. Depending upon the area of influence or extend of representation:
local coordinate system, global coordinate system or universal co-
ordinate system

6. Depending upon the object to which the coordinate system is em-
bedded: planar, spherical, conical, cylindrical coordinate system
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7. Miscellaneous category of coordinate systems are homogenous coor-
dinate system or non homogenous coordinate system and Barycen-
tric coordinate system

3.3 Datum and Coordinate System

The foundation of a coordinate system is a datum surface. Coordinates with-
out a specified datum have no meaning because they cannot answer questions
such as:

1. Where is the origin of the coordinate system?

2. What is the height of the coordinate of a point? Or height above
what reference plane?

3. On which or what surface is the object located or lies?

A meaningful real world coordinate system must answer these questions unam-
biguously. If it cannot answer such questions there is no real world attachment
and real use of the coordinates.

3.4 Attachment of Datum to the Real World

A datum surface or a datum model attaches a real world system to a hypo-
thetical frame of reference making it meaningful. Therefore, for a coordinate
system to become meaningful a numerical origin, or a starting point, is a ne-
cessity. Also a clearly defined surface is necessary for the real world spatial
objects to correlate it with the theoretical frame of reference. A datum can
be thought of as a foundation to the otherwise abstract coordinate system.
Also datum can be thought of as an architectural drawing of a building to
be constructed. Therefore attachment of an abstract datum with a real world
object is essential for meaningful computations.

Datum is a mathematically modelled surface corresponding to a real world
object such as Earth. Therefore datum surfaces exhibit perfect mathematical
and geometrical behaviour and are abstract errorless surfaces. On a datum
every point has a unique and accurate coordinate. There is no distortion and
ambiguity of location. For example, the position of any point on the datum
can be stated exactly, and it can be accurately transformed into coordinates
on another datum with no discrepancy whatsoever. All of these wonderful
things are possible only as long as a datum has no connection to anything in
the physical world. In that case, it is perfectly accurate and perfectly useless.
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Suppose, however, that one wishes to assign coordinates to objects on the
floor of a very real rectangular room. A Cartesian coordinate system could
work, if it is fixed to the room with a well-defined orientation. For example,
one could put the origin at the southwest corner and use the floor as the
reference plane. With this datum, one not only has the advantage that all of
the coordinates are positive, but one can also define the location of any object
on the floor of the room. The coordinate pairs would consist of two distances,
the distance east and the distance north from the origin in the corner. As long
as everything stays on the floor, you can assign numerical pairs of coordinates
to the object. In this case, there is no error in the datum, of course, but there
are inevitably errors in the coordinates. These errors are due to the less-than-
perfect flatness of the floor, the impossibility of perfect measurement from the
origin to any object, the ambiguity of finding the precise center of any of the
objects being assigned coordinates, and similar factors. In short, as soon as
one brings in the real world, things get messy. Now if the rectangular room is
a part of a multi storied building than the origin can be attached to the base
of the building with altitude as the third dimension in addition to east and
north to describe the aerial location of the rooms in the building.

3.5 Different Coordinate Systems Used in GIS

Coordinate systems are a key characteristic of spatial data. They give spatial
ordering to spatial objects for searching, sorting, visualizing and understand-
ing the spatial relationship of an object with its surroundings. The spatial
ordering of spatial objects helps to understand and create a mental picture
of the terrain. There are many well known coordinate systems being used
for representation of spatial data. Each of these coordinate systems has some
mathematical properties which make it suitable for representing spatial data
associated with a particular domain. This section describes the key features
of different coordinate systems. The concept of datum or geo-datic datum to
mathematically model the shape of the Earth is important before applying a
coordinate system. The concept of datum with specific emphasis on WGS-84
(World Geodatic Datum 1984) which is a terrestrial reference frame univer-
sally accepted by many agencies worldwide is discussed.

There are many coordinate systems prevailing and under use in GIS. Some
prominent coordinate system used in GIS are listed below. Each one of these
coordinate systems has its strengths and weaknesses and was developed with
different constraints keeping in mind the specific application. Therefore the
application specific coordinate systems are:

1. Rectangular Cartesian coordinate system

2. Geographic coordinate system
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3. Spherical coordinate system

4. Cylindrical coordinate system

5. Polar and log-polar coordinate system

6. Earth centered Earth fixed (ECEF) coordinate system

7. Inertial terrestrial reference frame (ITRF)

8. Concept of grid, UTM, Mercator’s grid and military GRID

9. Celestial coordinate system

3.5.1 The Rectangular Coordinate System

Cartesian coordinates then are rectangular, or orthogonal if one prefers, de-
fined by perpendicular axes from an origin, along a reference surface. These
elements can define a datum, or framework, for meaningful coordinates. As
a matter of fact, two-dimensional Cartesian coordinates are an important el-
ement in the vast majority of coordinate systems, State plane coordinates
in the United States, the Universal Transverse Mercator (UTM) coordinate
system, and most others. The datums for these coordinate systems are well
established. There are also local Cartesian coordinate systems whose origins
are often entirely arbitrary. For example, if surveying, mapping, or other work
is done for the construction of a new building, there may be no reason for the
coordinates used to have any fixed relation to any other coordinate systems.
In that case, a local datum may be chosen for the specific project with north
and east fairly well defined and the origin moved far to the west and south
of the project to ensure that there will be no negative coordinates. Such an
arrangement is good for local work, but it does preclude any easy combina-
tion of such small independent systems. Large scale Cartesian datums, on the
other hand, are designed to include positions across significant portions of the
Earth’s surface into one system. Of course, these are also designed to represent
our decidedly round planet on the flat Cartesian plane, which is no easy task.
But how would a flat Cartesian datum with two axes represent the Earth?
Distortion is obviously inherent in the idea.

3.5.2 The Spherical Coordinate System

A spherical coordinate system is a coordinate system for three-dimensional
space where the position of a point is specified by three numbers: (a) the
radial distance of that point from a fixed origin, (b) its polar angle measured
from a fixed zenith direction, (c) the azimuth angle of its orthogonal projection
on a reference plane that passes through the origin and is orthogonal to the
zenith, measured from a fixed reference direction on that plane.

To define a spherical coordinate system, one must choose two orthogonal
directions, the zenith and the azimuth reference, and an origin point in space.
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These choices determine the reference plane that contains the origin and is
perpendicular to the zenith. The spherical coordinates of a point P are then
defined as follows:

1. The radius or radial distance ‘r’ which is the Euclidean distance
from the origin O to P.

2. The inclination θ (or polar angle) is the angle between the zenith
direction and the line segment OP.

3. The azimuth φ (or azimuthal angle) is the signed angle measured
from the azimuth reference direction to the orthogonal projection
of the line segment OP on the reference plane.

4. The sign of the azimuth is determined by choosing what is a positive
sense of turning about the zenith. This choice is arbitrary, and is
part of the coordinate system’s definition.

Often the radial distance is also called the radius or radial coordinate.
The polar angle may be called co-latitude, zenith angle, normal angle, or
inclination angle. The use of symbols and the order of the coordinates differ
for different areas of applications. Generally these quantities are given by the
triple (r, θ, φ) or (ρ, θ, φ) which is interpreted as radial distance, polar angle,
and azimuthal angle in physics where as in mathematics it is interpreted as
radial distance, azimuthal angle, and polar angle.

In GIS the spherical system is known as the geographic coordinate system
where the location of the spatial objects are expressed by (latitude, longitude),
where the radial distance which is equivalent to the mean radius of the Earth
is implicit and is treated as a constant for the spherical datum. The latitude
is the complement of the polar angle and the longitude is equivalent to the
azimuthal angle of the corresponding conventional spherical system.

There are a number of different celestial coordinate systems based on dif-
ferent fundamental planes and with different terms for the various coordinates.
The spherical coordinate systems used in mathematics normally use radians
rather than degrees and measure the azimuthal angle counter clockwise rather
than clockwise. The inclination angle is often replaced by the elevation an-
gle measured from the reference plane. Elevation angle of zero is known as
the horizon. The concept of spherical coordinates can be extended to higher
dimensional spaces and is then referred to as hyper-spherical coordinates.

3.5.3 The Cylindrical Coordinate System

A cylindrical coordinate system is a 3D reference frame which specifies each
point in the reference frame by a 3-triple (ρ,Φ, z), where:

ρ = the distance of the point from the cylindrical axis of the reference frame
known as the radial distance or radius.
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FIGURE 3.1
Spherical coordinate system

Φ = the azimuth angle between the reference direction on the chosen plane
and the line from the origin to the projection of ‘ρ’ on the plane.

z = the height, which is a signed distance from the chosen plane to the point
P.

The reference system consists of an axis which is symmetrically placed to
the center of a cylindrical space or object as depicted in Figure 3.2. The points
in the space are specified by distance from the chosen axis, the direction from
the axis relative to the reference direction and the reference plane perpendic-
ular to the axis. Often the axis is referred as the cylindrical axis so that it
can be unambiguously referred axis of cylindrical reference frame rather than
the polar axis. The cylindrical reference system is embedded to objects which
have cylindrical shape or symmetry along the longitudinal axis.

The cylindrical coordinate system is useful for projection of Earth’s datum
surface. It is used to describe the objects and phenomena which have rota-
tional symmetry about the longitudinal axis such as the electromagnetic field
produced by a cylindrical conductor carrying current or to position the stars
in a galaxy.



42 Computing in Geographic Information Systems

FIGURE 3.2
Cylindrical coordinate system

3.5.4 The Polar and Log-Polar Coordinate System

There is another way of looking at a direction. It can be one component
of a coordinate. A procedure familiar to surveyors using optical instruments
involves the occupation of a station with an established coordinate. A back
sighting is taken either on another station with a coordinate on the same
datum or some other reference, such as Polaris. With two known positions, the
occupied and the sighted, a beginning azimuth or bearing is calculated. Next,
a new station is sighted ahead, or fore-sighted, on which a new coordinate will
be established. The angle is measured from the back sight to the fore sight,
fixing the azimuth or bearing from the occupied station to the new station. A
distance is measured to the new station. This direction and distance together
can be considered the coordinate of the new station. They constitute what is
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known as a polar coordinate. In surveying, polar coordinates are often a first
step toward calculating coordinates in other systems.

A polar coordinate defines a position with an angle and distance. As in a
Cartesian coordinate system, they are reckoned from an origin, which in this
case is also known as the center or the pole. The angle used to define the
direction is measured from the polar axis, which is a fixed line pointing to the
east, in the configuration used by mathematicians. Note that many disciplines
presume east as the reference line for directions, CAD utilities, for example.
Mappers, cartographers, and surveyors tend to use north as the reference for
directions in polar coordinates.

In the typical format for recording polar coordinates, the Greek letter rho,
ρ, indicates the length of the radius vector, which is the line from the origin
to the point of interest. The angle from the polar axis to the radius vector is
represented by the Greek letter theta, θ, and is called the vectorial angle, the
central angle, or the polar angle. These values, ρ and θ, are given in ordered
pairs, like Cartesian coordinates. The length of the radius vector is first and
the vectorial angle second - for example, P1(65, 6450), P2(77, 7292).

There is a significant difference between Cartesian coordinates and po-
lar coordinates. In an established datum using Cartesian coordinates, one and
only one ordered pair can represent a particular position. Any change in either
the northing or the easting implies that the coordinate represent a completely
different point. However, in the polar coordinates the same position might be
represented in many different ways, with many different ordered pairs stand-
ing for the very same point. For example, (65, 45) can just as correctly be
written as (65, 405). Here the vectorial angle swings through 360 degrees and
continues past the pole through another 45 degrees. It could also be written as
(65, -315). In other words, there are several ways to represent the same point
in polar coordinates. This is not the case in rectangular coordinates, nor is it
the case for the polar coordinate system used for surveying, mapping, and car-
tography. In mapping and cartography, directions are consistently measured
from north and the polar axis points north as shown in Figure 3.3. For math-
ematical computations and mathematical convenience in the arrangement of
polar coordinates, a counter clockwise vector angle is treated as negative and
a clockwise measured angle is positive. The angle may be measured in degrees,
radians, or grads, but if it is clockwise, it is positive.

3.5.5 Earth-Centered Earth-Fixed (ECEF) Coordinate
System

The ECEF coordinate system is a right handed, 3D, barycentric coordinate
system where the center of the coordinate system is fixed at the center of mass
of Earth. The positive Z-axis is along the rotation axis of the Earth, X-Y plane
is the equatorial plane of the Earth with the X-axis perpendicular to the prime
meridian (zero point of longitude). The Y-axis lies in the equatorial plane
perpendicular to the X-axis and set to make it right handed (it is directed
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FIGURE 3.3
Polar coordinate system

towards the Indian Ocean). Since Earth is a non rigid body with varying
mass density, the center of mass of Earth is computed by solving the volume
integral given by the integral summation of position vector times the density
vector equated to zero. ∑

ρ(x, y, z) = 0 (3.1)

Since the center of mass of Earth is varying due to numerous disturbing forces
therefore the center of the ECEF is also varying. Also the axis of rotation of
Earth is in a non uniform rotational axis. Rather it is wobbling due to many
non secular gravitational forces. Hence though the ECEF is known as Earth
centered and Earth fixed, nothing is fixed in this coordinate system, rather
it is constantly moving and rotating along with the Earth. ECEF is used by
most of the satellite sensors and Radars to fix the location of ground objects
or objects in space. Most of the Global Positioning Systems (GPS) use ECEF
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to specify the location of objects on the surface or subsurface of the Earth.
ECEF is used extensively because it does not need any datum parameter to
fix the position of objects. It only needs the center of mass of Earth and
the orientation parameter of its axis. To convert a coordinate given in ECEF
to any other Earth coordinate the geodetic datum parameter is necessary as
an additional parameter. The ECEF coordinate system is essentially a 3D
Cartesian coordinate system.

3.5.6 Inertial Terrestrial Reference Frame (ITRF)

The Earth is constantly changing shape. To understand the context, when the
motion of the Earth’s crust is observed, it must be referenced. A terrestrial
reference frame provides a set of coordinates of some points located on the
Earth’s surface. It can be used to measure plate tectonic and regional sub-
sidence. It is also used to represent the Earth when measuring its rotation
in space. This rotation is measured with respect to a frame tied to stellar
objects, called a celestial reference frame. The International Earth Rotation
and Reference Systems Service (IERS) was created in 1988 to establish and
maintain a celestial reference frame, the ICRF, which is a terrestrial reference
frame, the ITRF. The Earth Orientation Parameters (EOPs) connect these
two frames. These frames provide a common reference to compare observations
and results from different locations. Nowadays, four main geodetic techniques
are used to compute accurate coordinates: the GPS, VLBI, SLR, and DORIS.
Since the tracking network equipped with the instruments of those techniques
is evolving and the period of data available increases with time, the ITRF is
constantly being updated. There were eleven realizations of the ITRS were set
up from 1988. The latest is the ITRF2005. All these realizations include sta-
tion positions and velocities. They model secular Earth’s crust changes which
is why they can be used to compare observations from different epochs. All the
higher frequencies of the station displacements can be accessed with the IERS
conventions. Continuity between the realizations has been ensured as much
as possible when adopting conventions for ITRF definitions. The relationship
linking all these solutions is of utmost importance. They are supplied here by
the transformation parameters.

The International Terrestrial Reference System (ITRS) is a world spatial
reference system co-rotating with the Earth in its diurnal motion in space. The
IERS, in charge of providing global references to the astronomical, geodetic
and geophysical communities, supervises the realization of the ITRS. Realiza-
tions of the ITRS are produced by the IERS ITRS Product Center (ITRS-PC)
under the name International Terrestrial Reference Frames (ITRF). ITRF co-
ordinates were obtained by combination of individual TRF solutions computed
by IERS analysis centers using the observations of Space Geodesy techniques:
GPS, VLBI, SLR, LLR and DORIS. They all use networks of stations located
on sites covering the whole Earth.
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A Terrestrial Reference System (TRS) is a spatial reference system co-
rotating with the Earth in its diurnal motion in space. In such a system, po-
sitions of points anchored on the Earth’s solid surface have coordinates which
undergo only small variations with time, due to geophysical effects (tectonic or
tidal deformations). A Terrestrial Reference Frame (TRF) is a set of physical
points with precisely determined coordinates in a specific coordinate system
(Cartesian, geographic, mapping) attached to a TRS. Such a TRF is said to
be a realization of the TRS.

An ideal TRS is defined as a tri-dimensional reference frame (in the math-
ematical sense) close to the Earth and co-rotating with it. In the Newtonian
background, the geometry of the physical space considered as an euclidian
affine space of three dimension provides a standard and rigorous model of
such a system through the selection of an affine frame (O,E). O is a point of
the space named origin. E is a vector base of the associated vector space.The
currently adopted restrictions to E are to be orthogonal with same length
for the base vectors. Moreover, one adopts a direct orientation. The common
length of these vectors will express the scale of the TRS and the set of unit
vectors collinear to the base of its orientation.

3.5.7 Celestial Coordinate System

It is useful to impose on the celestial sphere a coordinate system that is anal-
ogous to the latitude-longitude system employed for the surface of the Earth.
This model is also known as astronomy without a telescope. Such a coordinate
system is illustrated in the Figure 3.4. In celestial coordinate system the Earth
should be imagined to be a point at the center of the celestial sphere.

In the celestial coordinate system the north and south celestial poles are
determined by projecting the rotation axis of the Earth to intersect the celes-
tial sphere, which in turn defines a celestial equator. The celestial equivalent
of latitude is called declination and is measured in degrees north (positive
numbers) or south (negative numbers) of the celestial equator. The celestial
equivalent of longitude is called right ascension. Right ascension can be mea-
sured in degrees, but for historical reasons it is more common to measure it
in time (hours, minutes, seconds): the sky turns 360 degrees in 24 hours and
therefore it must turn 15 degrees every hour; thus, 1 hour of right ascension
is equivalent to 15 degrees of (apparent) sky rotation.

The zero point for celestial longitude (that is, for right ascension) is the
vernal equinox, which is that intersection of the ecliptic and the celestial equa-
tor near where the Sun is located in the Northern Hemisphere Spring. The
other intersection of the celestial equator and the ecliptic is termed the autum-
nal equinox. When the Sun is at one of the equinoxes the lengths of day and
night are equivalent (equinox derives from a root meaning ‘equal night’). The
time of the Vernal Equinox is typically about March 21 and of the autumnal
equinox about September 22. The point on the ecliptic where the Sun is most
north of the celestial equator is termed the summer solstice and the point
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FIGURE 3.4
Celestial coordinate system

where it is most south of the celestial equator is termed the winter solstice.
In the northern hemisphere the hours of daylight are longest when the Sun is
near the summer solstice (around June 22) and shortest when the Sun is near
the winter solstice (around December 22). The opposite is true in the southern
hemisphere. The term solstice derives from a root that means to ‘stand still’;
at the solstices the Sun reaches its most northern or most southern position in
the sky and begins to move back toward the celestial equator. Thus, it ‘stands
still’ with respect to its apparent north-south drift on the celestial sphere at
that time. Traditionally, northern hemisphere spring and autumn begin at the
times of the corresponding equinoxes, while northern hemisphere winter and
summer begin at the corresponding solstices. In the southern hemisphere, the
seasons are reversed (e.g., southern hemisphere spring begins at the time of
the autumnal equinox).

The right ascension (RA) and declination (dec) of an object on the celestial
sphere specify its position uniquely, just as the latitude and longitude of an
object on the Earth’s surface define a unique location. Thus, for example,
the star Sirius has celestial coordinates 6 hr 45 min RA and -16 degrees 43
minutes declination, as illustrated in the Figure This tells us that when the
vernal equinox is on our celestial meridian, it will be 6 hours and 45 minutes
before Sirius crosses our celestial meridian, and also that Sirius is a little more
than 16 degrees south of the celestial equator.
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FIGURE 3.5
Celestial coordinate of constallation Sirus defined by RA and declination

3.5.8 Concept of GRID, UTM, Mercator’s GRID and Mili-
tary GRID

Within each zone we draw a transverse Mercator projection centered on the
middle of the zone. Thus for zone 1, with longitudes ranging from 180 degrees
west to 174 degrees west, the central meridian for the transverse Mercator
projection is 177 degrees west. Since the equator meets the central meridian
of the system at right angles, we use this point to orient the grid system as
depicted in Figure 3.6. Two forms of the UTM system are in common use.
The first, used for civilian applications, sets up a single grid for each zone. To
establish an origin for the zone, we work separately for the two hemispheres.
For the southern hemisphere, the zero northing is the south pole, and we give
northings in meters north of this reference point. Fortunately, the meter was
originally defined as one ten millionth of the distance from the pole to the
equator, actually measured on the meridian passing through Paris. While the
distance varies according to which meridian is measured, the value 10 million
is sufficient for most cartographic applications.

The numbering of northings start again at the equator, which is ei-
ther 10,000,000 meters north in southern hemisphere coordinates or ‘0’ me-
ters north in northern hemisphere coordinates. Northings then increase to
10,000,000 meters at the North Pole Note that as we approach the poles the
distortions of the latitude-longitude grid drift farther and farther from the
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FIGURE 3.6
Universal transverse Mercator grid system

UTM grid. It is customary, therefore, to use the UTM system neither beyond
the land limits of North America, nor for the continent of Antarctica. This
means that the limits are 84 degrees north and 80 degrees south. For the
polar regions, the Universal Polar Stereographic (UPS) coordinate system is
used.

For eastings a false origin is established beyond the westerly limit of each
zone. The actual distance is about half a degree, but the numbering is chosen
so that the central meridian has an easting of 500,000 meters. This has the
dual advantage of allowing overlap between zones for mapping purposes, and
of giving all eastings positive numbers. Also, we can tell from our easting if
we are east or west of the central meridian, and therefore the relationship
between true north and grid north at any point. To give a specific example,
Hunter College is located at UTM coordinate 4,513,410 meters north; 587,310
meters east; zone 18, northern hemisphere. The reader is advised to locate
Hunter College on a Google image or WikiMapia. UTM grid north would
therefore appear to be east of true north. Another example of expressing
location through UTM grid coordinate is the location of Sir C.V. Raman
Nagar, Bangalore in India which has UTM coordinate 143637 meters north;
788804 meters east, in the UTM zone 43P at a height of 900 meters from
MSL. The geographic reference of Sir C.V. Raman Nagar is expressed by
12◦ : 59

′
: 44

′′
latitude and 77◦ : 39

′
: 43

′′
longitude and falls in the Survey of

India’s 1:50K topo-sheet number 57H9. The reader is advised to locate Hunter
College and Sir C.V. Raman Nagar on a Google image or WikiMapia. UTM
grid north would therefore appear to be east of true north.
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For geo-coding of objects using the UTM system 16 digits are enough to
store the location to a precision of 1 meter, with one digit restricted to a binary
(northern or southern hemisphere), and the first digit of the zone restricted
to 0 to 6 (60 is the largest zone number).

This coordinate system has two real cartographic advantages. First, ge-
ometric computations can be performed on geographic data as if they were
located not on the surface of a sphere but on a plane. Over small distances, the
errors in doing so are minimal, although it should be noted that area compu-
tations over large regions are especially cartographically dangerous. Distances
and bearings can similarly be computed over small areas. The second advan-
tage is that the level of precision can be adapted to the application. For many
purposes, especially at small scales, the last UTM digit can be dropped, de-
creasing the resolution to 10 meters. This strategy is often used at scales of
1:250,000 and smaller. Similarly, sub meter resolution can be added simply
by using decimals in the eastings and northings. In practice, few applications
except for precision surveying and geodesy need precision of less than 1 meter,
although it is often used to prevent computer rounding error.

3.6 Shape of Earth

People have been proposing theories about the shape and size of the planet
Earth for thousands of years. In 200 B.C. Eratosthenes got the circumference
about right, but a real breakthrough came in 1687 when Sir Isaac Newton
suggested that the Earth’s shape was ellipsoidal in the first edition of his
Principia. The shape of Earth is better described through a grid of latitudes
and longitudes.

3.6.1 Latitude and Longitude

Latitude and longitude are coordinates that represent a position with angles
instead of distances. Usually the angles are measured in degrees, but grads and
radians are also used. Depending on the precision required, the degrees (with
360 degrees comprising a full circle) can be subdivided into 60 minutes of arc,
which are themselves divided into 60 seconds of arc. In other words, there are
3600 sec in a degree. Seconds can be subsequently divided into decimals of
seconds. The arc is usually dropped from their names, because it is usually
obvious that the minutes and seconds are in space rather than time. In any
case, these subdivisions are symbolized by θ for degrees, ′, for minutes, and ′′

for seconds. This system is called sexadesimal.
Lines of latitude and longitude always cross each other at right angles,

just like the lines of a Cartesian grid, but latitude and longitude exist on a
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curved rather than a flat surface. There is imagined to be an infinite number
of these lines on the ellipsoidal model of the Earth. In other words, any and
every place has a line of latitude and a line of longitude passing through it,
and it takes both of them to fully define a place. If the distance from the
surface of the ellipsoid is then added to a latitude and a longitude, one has
a three-dimensional (3D) coordinate. This distance component is sometimes
the elevation above the ellipsoid, also known as the ellipsoidal height, and
sometimes it is measured all the way from the center of the ellipsoid.

In mapping, latitude is usually represented by φ (the Greek small letter
phi), longitude is usually represented by λ (the Greek small letter lambda).
In both cases the angles originate at a plane that is imagined to intersect
the ellipsoid. In both latitude and longitude, the planes of origination, are
intended to include the center of the Earth. Angles of latitude most often
originate at the plane of the equator, and angles of longitude originate at the
plane through an arbitrarily chosen place, now Greenwich, England. Latitude
is an angular measurement of the distance a particular point lies north or south
of the plane through the equator measured in degrees, minutes, seconds, and
usually decimals of a second. Longitude is also an angle measured in degrees,
minutes, seconds, and decimals of a second east and west of the plane through
the chosen prime, or zero, position.

3.6.2 Latitude

Two angles are sufficient to specify any location on a reference ellipsoid rep-
resenting the Earth. Latitude is an angle between a plane and a line through
a point.

Imagine a flat plane intersecting an ellipsoidal model of the Earth. De-
pending on exactly how it is done, the resulting intersection would be either a
circle or an ellipse, but if the plane is coincident or parallel with the equator,
as all latitudes are, the result is always a parallel with the latitude. The equa-
tor is a unique parallel of latitude that also contains the center of the ellipsoid.
A flat plane parallel to the equator creates a circle of latitude smaller then
the equator.

The equator is 0◦ latitude, and the North and south poles have +90◦ north
and −90◦ south latitude respectively. In other words, values for latitude range
from a minimum of 0◦ to a maximum of 90◦. The latitudes north of the equator
are positive, and those to the south are negative.

Lines of latitude, circles actually, are called parallels because they are
always parallel to each other as they proceed around the globe. They do not
converge as meridians do or cross each other.

3.6.3 Longitude

Longitude is an angle between two places. In other words, it is a dihedral
angle. A dihedral angle is measured at the intersection of the two planes.
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The first plane passes through the point of interest, and the second plane
passes through an arbitrarily chosen point agreed upon as representing zero
longitude. That place is Greenwich, England. The measurement of angles of
longitude is imagined to take place where the two planes meet, the polar axis
that is the axis of rotation of the ellipsoid.

These planes are perpendicular to the equator, and where they intersect
the ellipsoidal model of the Earth they create an elliptical line on its surface.
The elliptical line is then divided into two meridians, cut apart by the poles.
One half of the meridians constitutes the east longitudes, which are labelled
E or given positive (+) values, and the other half of meridians of longitude
are denoted by W and given negative (–) values.

The location of the prime meridian is arbitrary. The idea that it passes
through the principal transit instrument, the main telescope, at the Obser-
vatory at Greenwich, England, was formally established at the international
Meridian Conference in Washington, D.C. There it was decided that there
would be a single zero meridian rather than the many used before. Therefore
meridian through Greenwich is called the prime meridian. Several other deci-
sions were made at the meeting as well, and among them was the agreement
that all longitude would be calculated both east and west from this meridian
up to 180◦ east longitude is positive and west longitude is negative.

The 180◦ meridian is a unique longitude; like the prime meridian it divides
the eastern hemisphere from the western hemisphere. It it also represents the
international date line. The calendars west of the line are one day ahead of
those east of the line. This division could theoretically occur anywhere on the
globe, but it is convenient for it to be 180◦ from Greenwich in a part of the
world mostly covered by ocean.

3.7 Coordinate Transformations

From the preceding section it is clear that there are a number of coordinate sys-
tems developed which are in use for specific purposes in GIS. The description
of same object in different coordinate systems is different. Often the spatial
data captured in one coordinate system need to be transformed to another
coordinate system for convenience of computation, visualization, analysis and
measurements. The conversion of coordinates transformation from one system
to another is performed through mathematical operations. These mathemati-
cal transformations of coordinate systems are important cartographic features
in GIS systems. In this section mathematics governing different coordinate
transformations are discussed.

Therefore for ‘n’ coordinate systems theoretically there are n(n-1) forward
coordinate transformations possible. To consider both the forward and reverse
transformations there will be 2n(n-1) transformations possible. Since there are
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many coordinate systems in use it will be difficult to accomodate all of them in
this chapter. Therefore it is prudent to discuss the important transformation
methods which are relevent for representing Earth models after classifying
them into 2D and 3D categories.

3.7.1 2D Coordinate Transformations

Let the 2D Cartesian coordinate of a point be given by (x, y) and its polar
equivalent are given by (r, θ). The frequently used 2D coordinate transforma-
tions in GIS are:

1. Cartesian coordinate to polar coordinate transformation

2. Cartesian coordinate to log-polar transformation

3. Cartesian coordinates from bipolar coordinates

The equations governing the computations of Cartesian 2D coordinates
from their equivalent polar coordinates are given by

x = rcosθ (3.2)

y = rsinθ (3.3)

∂(x, y)

∂(r, θ)
=

(
cosθ −rsinθ
sinθ rcosθ

)
(3.4)

det
∂(x, y)

∂(r, θ)
= r (3.5)

The reverse transformation of polar coordinates from Cartesian coordi-
nates is given by

r =
√
x2 + y2 (3.6)

θ′ = arctan
y

x
(3.7)

The correct value of the angle of the coordinate can be computed from θ′

using the logic if (θ
′
< 90◦) then θ = θ

′

else if (θ
′
> 90◦) and (θ

′
< 180◦) then θ = π − θ′

else if (θ
′
> 180◦) and (θ

′
< 270◦) then θ = π + θ

′

else if (θ
′
> 270◦) and (θ

′
< 360◦) then θ = 2π − θ′

Also one can use the following pair of equations to compute (r, θ)

r =
√
x2 + y2 (3.8)

θ = 2arctan
y

x+ r
(3.9)
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To compute the log-polar coordinates (ρ, θ) from Cartesian coordinates
(x, y)

ρ = log
√
x2 + y2 (3.10)

θ = arctan
y

x
(3.11)

To compute Cartesian coordinates (x, y) from log-polar coordinates (ρ, θ)

x = eρcosθ (3.12)

y = eρsinθ (3.13)

3.7.2 3D Coordinate Transformations

Let the Cartesian coordinate in standard three dimension form be represented
by (x, y, z) and its equivalent spherical coordinate in the standard form be
represented by (ρ, θ,Φ).

Then the frequently used 3D coordinate transformations in GIS are

1. Spherical to 3D-rectangular coordinate transformation

2. Cylindrical to 3D-rectangular coordinate transformation

3. 3D Cartesian coordinate to 3D spherical coordinate transformation

The equations governing the 3D coordinate transformations from spherical
coordinates to Cartesian coordinates are given by

x = ρsinΦcosθ (3.14)

y = ρsinΦsinθ (3.15)

z = ρcosΦ (3.16)

The Jaccobian matrix is given by

∂(x, y, z)

∂(ρ,Φ, θ)
=

 sinΦcosθ ρcosΦcosθ −ρsinΦsinθ
sinΦsinθ ρcosΦsinθ ρsinΦcosθ
cosΦ −ρsinΦ 0

 (3.17)

The transformation equations to compute the 3D Cartesian coordinates from
a general cylindrical coordinates given by (r, θ, h) are given by

x = rcosθ (3.18)

y = rsinθ (3.19)

z = h (3.20)

The corresponding Jaccobian matrix is given by

∂(x, y, z)

∂(r, θ, h)
=

 cosθ −rsinθ 0
sinθ rcosθ 0

0 0 1

 (3.21)

(3.22)
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To compute the 3D spherical coordinate from the 3D Cartesian coordinate
the transformation equations are given by

ρ =
√
x2 + y2 + z2 (3.23)

Φ = arctan(
y

x
) (3.24)

Φ = arccos(
x√

x2 + y2
) (3.25)

Φ = arcsin(
y√

x2 + y2
) (3.26)

θ = arctan(

√
x2 + y2

z
) (3.27)

To compute the spherical coordinates from cylindrical coordinates the trans-
formation equations are given by

ρ =
√
r2 + h2 (3.28)

Φ = Φ (3.29)

θ = arctan(
r

h
) (3.30)

To compute the cylindrical coordinates from Cartesian coordinates the
transformation equation are given by

r =
√
x2 + y2 (3.31)

θ = arctan(
y

x
) + π(−x)sgny (3.32)

h = z (3.33)

3.8 Datum Transformation

As assumed by most of us, Earth is not a rigid body. It is a heterogeneous
mixture of solid, semi-solid, liquid and gas constantly revolving and spinning
around its axis. In addition, a number of secular forces are acting on Earth
due to gravitational interactions and magnetic fields.

This dynamic system undergoes many perturbing forces such as tremors,
earthquakes, volcanic eruptions, tsunamis and other external as well as inter-
nal forces. These forces cause a random change in the structure of the Earth
resulting in immeasurable changes. These changes can result in a shifting of
the mass balance of the Earth causing a shifting of its center of mass of Earth
leading to change in the axis of rotation etc. These changes manifest in the
form of physical change in the shape, size, slope, aspect and shift of location
of major Earth objects. This phenomenon is depicted in Figure 3.7.
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FIGURE 3.7
Transformation of the datum surface

Therefore the modelled datum surface , although appearing constant, keeps
changing and varying. This can be thought of as a transformation of the da-
tum surface defined at an epoch of time ‘t’ by (Origin O (x,y,z), semi-major
axis (a), semi-minor axis (b), its orientation (α, θ, φ) ) to a new datum surface
(o′, x′, y′, z′α

′
, θ
′
, φ
′
, a′, b′). These changes can be modelled as a conglomera-

tion of rotation, translation and scaling of the ECEF coordinate system which
is attached to the original datum surface. This leads to a change in the posi-
tion of center of mass of Earth as well as in the position of each point on the
datum surface.

The change in the datum results in a change in the location measure-
ment and other measurable parameters of the map. To accurately compute
the position of the center of mass of Earth as well as the position of special
objects with respect to ECEF coordinates, transformations of the datum pa-
rameter are necessary. This transformation has been proposed, modeled and
experimented by Mikhail Molodensky of Russia and later by Helmert.
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3.8.1 Helmert Transformation

Due to the secular forces acting on it, the Earth basically undergoes three
types of motion:

• Translational motion

• Rotational motion

• Rotational motion

The transformation due to the translational motion can be easily derived
and is given by :

Xs = Xr + TX (3.34)

Ys = Yr + TY (3.35)

Zs = Zr + TZ (3.36)

Given a sufficient number of points where coordinates are known in both
reference systems, the datum shifts TX, TY and TZ can be determined. Else
if we can know the shifts (i.e. TX, TY and TZ) we can easily determine the
new transformed coordinates. So we can easily apply this transformation for
the translational distortion of the Earth.

The above datum transformation model assumes that the axes of the two
systems are parallel, the systems have the same scale, and the geodetic network
has been consistently computed. Reality is that none of these assumptions
occurs, and thus TX, TY and TZ can vary from point to point. A more
general transformation involves seven parameters:

1. A change in scale factor

2. The rotation of the axes between two systems.(RX , RY , RZ)

3. The three translation factor (TX, TY, TZ)

This transformation procedure is known as the Helmert Transformation
and it can be written as:

 X
Y
Z

 =

 TX
TY
TZ

+ (1 + ∆S)

 X
Y
Z

+

 0 RZ RY
−RZ 0 RX
RY −RX 0

 (3.37)

The parameters are given by:

TX(t) = 0.9910m

TY(t) = -1.9072m

TZ(t) = -0.5129m

RX(t) = [125033+258(t-1997.0)](10−12) radians
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RY (t) = [46785 - 3599(t-1997.0)](10−12) radians

RZ(t) = [56529 - 153(t-1997.0)](10−12) radians

∆S(t) = 0.0

3.8.2 Molodenskey Transformation

Mikhail Molodensky of Russia has proposed a datum transformation to trans-
form the existing spatial data from previous datum to the modified datum,
which is well known as Molodensky Transformation. The equation is given by:

fWGS84 = fLocal +Df (3.38)

lWGS84 = lLocal +Dl (3.39)

hWGS84 = hLocal +Dh (3.40)

Where Df, Dl and Dh are provided by the standard Molodensky Transfor-
mation formulas of:

Df ′′ = {−DX sin f cos l−DY sin f sin l+DZ cos f+Da
(RN + e2 sin f cos f)

a
+

Df [RM (
a

b
+RN

b

a
)] sin f cos f}[(RM + h) sin 1′′]

Dl′′ = [−DX sin l +DY cos l] ∗ [(RN + h) cos f sin 1′′]
−1

Dh = DX cos f cos l +DY cos f sin l +DZ sin f −Da(
a

RN
) +Df(

b

a
)

where f,l,h are geodetic coordinates of the points on the local datum.

3.9 Usage of Coordinate Systems

From these discussions it can be safely concluded that there are inumerable
coordinate systems theorized, modeled and put into practice for proof of many
scientific phenomena. The prominent or widely used coordinate systems which
are useful in geodesy, geography and GIS are discussed in earlier session.
The first and foremost usage of coordinate systems are for the understanding
of geometric concepts in mathematics. Therefore, 2D and 3D geometry and
related concepts is the basis of understanding of location, direction, distance,
area, volume etc. in the Cartesian plane or 3D space. These concepts are
further used in physics. The prominent applications of coordinate systems in
geodesy are in the form of ECEF, ITRF, UTM and UPS grids. To locate
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and track military objects in the battle field separate military grid coordinate
systems are devised where some of its parameters such as its origin, extend
etc. are kept secret for operational secrecy. The celestial coordinate systems
and universal coordinate systems are used for tracking of celestial objects viz.
planets, stars, comets and satellites.

3.10 Summary

In this chapter the important concept of reference frame or coordinate refer-
ence system is discussed. The mathematical definition of a reference frame is
given and how the real world spatial data are referenced through a coordi-
nate system by attaching the mathematical model datum to a real world is
discussed. Because of the requirement of referring the real world objects, var-
ious coordinate system are being developed. The special coordinate systems
e.g. rectangular, spherical, cylindrical, polar, log-polar coordinate system are
discussed. Further the coordinate system used for referring the Earth such as
ECEF, ITRF, UTM, UPS, military grid, celestial coordinate system are dis-
cussed. This chapter delves into different transformation of spatial coordinates
and their formula. Similarly the datum transformation which is necessary for
accurate location of spatial objects on a datum surface is discussed.





4

Basics of Map Projection

This chapter focuses on the key concept of map projection. The sequence
of mathematical operations which leads to preparation of maps is explained
through a sequence diagram. The important map transformations or map
projections and their characteristics are explained. Some of the important ap-
plications of map projections are tabulated along with their properties. The
classification of map projections from different mathematical perspectives and
cartographic aspects is given. This chapter deals with the basic concepts of
map projection and answers generic queries such as ‘What is map projection?’,
‘Why is map projection required?’, ‘Why there are so many projections de-
vised?’, ‘Which map projections are suitable for a particular application?’ etc.
How map projections are designed and developed for different regions of the
Earth’s surface is explained. Classification of different map projections using
different development surfaces, perspective positions and positions of tangent
surface is explained. The categorization of map projections under different
categories such as development surface, usage and characteristics is discussed.
The mathematical formulae for forward and reverse map projections are de-
rived ab initio. The chapter ends with a discussion on how to choose a map
projection for a specific purpose and for a specific region of the world. All the
concepts introduced here are supplemented by illustrations and key notes.

4.1 What Is Map Projection? Why Is It Necessary?

A map is a two-dimensional piece-wise representation of the Earth’s crust on a
paper surface (Snyder 1989; 1994). The shape of the Earth cannot be equated
to any conventional geometric shapes i.e. it cannot be represented or modeled
to any standard geometric shape like a sphere, ellipse etc. Depicting Earth’s
surface on a two-dimensional paper surface without distortion is akin to past-
ing an orange peel on the table surface so as to get a uniform and continuous
strip on the surface without tearing and stretching the peel, in other words,
a near impossible job. But cartographers and scientists have devised a num-
ber of mathematical formulae to accomplish the job. For the map projections
the Earth’s surface is modeled as an ellipsoid, spheroid or geoid for different
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purposes. Actually, the Earth is more nearly an oblate spheroid - an ellipse
rotated about its minor axis. Then an appropriate mathematical formula is
designed so as to represent the modeled Earth’s surface on a flat paper surface.
These mathematical formulae, which project or translate the Earth’s surface
to paper surface with minimum distortion, are known as map projections.
Earth is modeled as a globe for numerous cartographic reasons, but it is not
possible to make a globe on a very large scale. If anyone wants to make a globe
on a scale of one inch to a mile, the radius of the globe will have to be 330
ft. It would be difficult to make and handle such a globe and uncomfortable
to carry it to the field for reference. A small globe is useless for referring to a
small country or landscape because it distorts the smaller land surfaces and
depicts the land surfaces inappropriately. So for practical purposes a globe
is least useful or helpful in the field. Moreover it is neither easy to compare
in detail different regions of the Earth over the globe, nor is it convenient to
measure distances over it. Hence maps were devised to overcome such diffi-
culties. A map is a two-dimensional representation of a globe drawn on paper
map which is convenient to fold and carry in the field and easy to compare
and locate different parts of the Earth. Locating a known feature, guiding
and navigating from one position to another and comparing two different re-
gions over a map are convenient and easy. Transforming a three-dimensional
globe to a two-dimensional paper map is accomplished using map projection.
Topographical maps of different scales, atlases and wall maps are prepared us-
ing map projections. Thus map projection plays a crucial role in preparation
of different types of maps with different scales, coordinate systems and themes.

4.2 Mathematical Definition of Map Projection

A map projection is defined as a mathematical function or formula which
projects any point (φ, λ) on the spherical surface of Earth to the two-
dimensional point (x, y) on a plane surface. The forward map projection is
given by

(x, y) = f(φ, λ) (4.1)

Often the geographic data obtained in Cartesian coordinate needs to be
transformed to spherical coordinates. This necessitates the reverse process
which is known as inverse map projection. The inverse map projection is given
by

(φ, λ) = f−1(x, y) (4.2)

Thus, the mathematical function, which realizes the map projection, essen-
tially projects the 3D spatial features onto 2D map surfaces. Invaluable re-
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FIGURE 4.1
Map projection, the mapping of Earth coordinates to map coordinates

sources for the mathematical formulations of different map projections are
Snyder [52], [54], and Fenna [15]. From Figure 4.1 it can be concluded that
map projection is a systematic mapping of points on the globe to a 2D rect-
angular surface.

Another definition of map projection is a mathematical equation or series
of equations, which takes a three-dimensional location on the Earth and pro-
vides corresponding two-dimensional coordinates to be plotted on a paper or
computer screen.

Map projections are treated mathematically as the transformation of
geodetic coordinates (φ, λ) into rectangular grid coordinates often called east-
ing and northing. This transformation is expressed as a series of equations
and implemented as a computer algorithm.

4.3 Process Flow of Map Projection

Figure 4.2 depicts the flow of cartographic process for map projection. The
real Earth is modelled with a suitable mathematical surface known as the
datum surface or the geodatic datum. The datum surface is scaled down.
The scaled down datum surface is warped with a suitable geometric surface.
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FIGURE 4.2
Process flow of map projection

The geometric surface is unwarped to prepare the map using suitable map
projection techniques.

4.4 Azimuthal Map Projection

See Figure 4.3 for azimuthal projection.

• ‘O’ is the center of the the Earth i.e. scale reduced of the Earth with a
spherical datum.

• ‘R’ is the mean radius of the Earth.

• ‘V’ is the view point or eye point of the observer.

• ‘F’ is the point representing the pole of the Earth which concides with the
point on the map container.

• α is the view angle i.e. the angle subtended by the eye looking at the point
‘P’.

• P(Φ, λ) is a generic point on the surface of the Earth.

• β is the angle subtended by chord PF at the center of the Earth.

• P ′(x, y) is the azimuthal projection of point ‘P’ on the map surface.
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FIGURE 4.3
Schematic of azimuthal map projection

In ∆P
′
V F the radial distance i.e. P

′
F = ρ is given by the equation

P
′
F = ρ = hRtanα (4.3)

In ∆ POF PD = DF as OD is the perpendicular bisector of the chord PF
∠PDG = ∠FDG = π

2
Using the SAS (Side-Angle-Side) rule for congruency of triangles
In ∆ODP ∼= ∆ODF
⇒ ∠POD = ∠FOD = β

2

Now PD = DF = R sin β
2

PF = 2R sin
β

2
(4.4)

Now ∠ DFO = ∠ DPO = π
2
− β

2
Now in ∆V PF

∠V PF = Π− (α+
π

2
− β

2
) (4.5)

⇒ ∠V PF =
π

2
+
β

2
+ α (4.6)

Now applying sine rule in ∆V PF

V F

sin∠V PF
=

PF

sin∠PV F
(4.7)
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Now substituting the values from equation 4.6

hR

sin π
2 + β

2 + α
=

PF

sin∠PV F
(4.8)

⇒ h sinα = 2 sin
β

2
cos(

β

2
− α) (4.9)

⇒ h sinα = 2 sin
β

2
cos

β

2
cosα+ 2 sin2 β

2
sinα (4.10)

⇒ sin(h− 2 sin2 β

2
) = cosα sinβ (4.11)

⇒ tanα =
sinβ

h− 2 sin2 β
2

(4.12)

Now putting the value of tanα in the equation one can obtain

ρ =
hR sinβ

h− 2 sin2 β
2

=
hR sinβ

h− 1 + cosβ
(4.13)

⇒ ρ =
hR cos Φ

h− 1 + sin Φ
(4.14)

Now substituting the radial distance in the equation 4.14 one can obtain

x = ρ sin(λ− λx) (4.15)

⇒ x = (
hR sinβ

h− 1 + cosβ
) sin(λ− λx) (4.16)

y = ρ cos(λ− λx) (4.17)

⇒ y = (
hR sinβ

h− 1 + cosβ
) cos(λ− λx) (4.18)

4.4.1 Special Cases of Azimuthal Projection

Specific instances of the azimuthal projection can be obtained by substituting
the values of ‘h’ one can obtain the following specific projections.

• For h = 1 The projection is called gnomonic projection

• For h = 2 The projection is called stereographic projection

• For h =∞ The projection is called orthographic projection

For gnomonic projection i.e. h=1

x = R tan β sin(λ− λx) = R cot Φ sin(λ− λx) (4.19)

y = R tanβ cos(λ− λx) = R cot Φ cos(λ− λx) (4.20)
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For stereographic projection i.e. h=2

x = 2R tan
β

2
sin(λ− λx) = 2R cot Φ sin(λ− λx) (4.21)

y = 2R tan
β

2
cos(λ− λx) = 2R cot Φ cos(λ− λx) (4.22)

For orthographic projection i.e. h=∞

x = lim
h→∞

(
hR sinβ

h− 1 + cosβ
) sin(λ− λx) (4.23)

= lim
h→∞

(
hR cos Φ

h− 1 + sin Φ
) sin(λ− λx) (4.24)

= lim
h→∞

(
R cos Φ

1− 1
h

+ sin Φ
h

) sin(λ− λx) (4.25)

= R cos Φ sin(λ− λx) (4.26)

similarly : y = R cos Φ cos(λ− λx) (4.27)

4.4.2 Inverse Azimuthal Projection

Inverse azimuthal projection transforms the Cartesian coordinates of a point
on a map to the spherical coordinates of the datum surface of the Earth.

x2 + y2 = (
hR cos Φ

h− 1 + sin Φ
)2 (4.28)

For gnomonic projection i.e. h=1√
x2 + y2 =

R cos Φ

sin Φ
(4.29)

⇒ Φ = cot−1(

√
x2 + y2

R
) (4.30)

For stereographic projection i.e. h=2√
x2 + y2 =

2R cos Φ

1 + sin Φ
(4.31)

⇒
√
x2 + y2

2R
=

1−tan2 Φ
2

1+tan2 Φ
2

1 +
2 tan Φ

2

1+tan2 Φ
2

(4.32)

=
1− tan2 Φ

2

1 + tan2 Φ
2 + 2 tan Φ

2

(4.33)

=

1−tan Φ
2

1+tan Φ
2

(1 + tan Φ
2 )2

(4.34)
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=
1− tan Φ

2

1 + tan Φ
2

(4.35)

= tan(
Π

4
− Φ

2
) (4.36)

⇒ Φ =
Π

2
− 2 tan−1(

√
x2 + y2

2R
) (4.37)

For orthographic projection i.e. h =∞

x2 = R2cos2Φ sin2(λ− λx) (4.38)

y2 = R2cos2Φ cos2(λ− λx) (4.39)

⇒ x2 + y2 = R2 cos2 Φ (4.40)

⇒ Φ = cos−1(
x2 + y2

R2
) (4.41)

Using the sub equations from equation 4.39 and dividing them one can obtain

x
y = tan(λ− λx)

⇒ λ− λx = tan−1 x
y

λ = λx + tan−1 x

y
(4.42)

4.5 Cylindrical Map Projection

The diagram and equations developed for projecting onto the azimuthal plane
are applied similarly to the cylindrical situation (see Figure 4.4).

If the double dotted lines are seen as Earth’s axis and dashed line as the
equator then

y = ρ = hR tanα (4.43)

Asuming the central meridian lies along Y axis with north at the top of
the map, the generic equations for the cylindrical mode at simple aspects are

x = Rλ (4.44)

y = hR tanα (4.45)
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FIGURE 4.4
Schematic of cylindrical map projection

From the previous calculations of azimuthal projection we have
tanα = sin β

h−1+cosβ
For the cylindrical coordinate system β = Φ
⇒ tanα = sin Φ

h−1+cosφ
Substituting the value of tanα we get

x = Rλ (4.46)

y =
hR sin Φ

h− 1 + cos Φ
(4.47)

4.5.1 Special Cases of Cylindrical Projection

Like the case of azimuthal map projection we can derive the special cases for
the cylindrical projection i.e.

• Gnomonic projection

• Stereographic projection

• Orthographic projection
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4.5.1.1 Gnomonic Projection

In gnomonic projection the observer is at the center of the Earth i.e. h = 0.

x = Rλ (4.48)

y = R tan Φ (4.49)

4.5.1.2 Stereographic Projection

In stereographic projection the observer is placed at opposite of the diameter
of the Earth i.e the value of h = 2.

x = Rλ (4.50)

y = 2R tan
Φ

2
(4.51)

4.5.1.3 Orthographic Projection

In orthographic projection the observer stands at infinite distance from the
surface of the Earth. Therefore the value of h =∞.

x = Rλ (4.52)

Now
y = limh→∞ ( hR sin Φ

h−1+cos Φ )

y = limh→∞ ( R sin Φ
1− 1

h+ cos Φ
h

)

⇒ y = R sin Φ (4.53)

4.5.2 Inverse Transformation

Here we will make the inverse transformation from cylindrical coordinate sys-
tem to the Cartesian coordinate sysytem.

λ = x
R

y = hR sin Φ
h−1+cos Φ

For gnomonic projection i.e. h=1
y = RsinΦ

cos Φ

⇒ Φ = tan−1 y

R
(4.54)

For stereographic projection i.e. h=2
y = 2R sin Φ

1+cos Φ

⇒ y
2R

=

4 tan Φ
2

1+tan2 φ
2

1+
1−tan2 φ

2

1+tan2 Φ
2
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= 2 tan Φ
2

⇒ Φ = 2 tan−1 y

4R
(4.55)

For orthographic projection we have h =∞
y = R sin Φ

⇒ Φ = sin−1 y

R
(4.56)

4.6 Conical Map Projection

Figure 4.5 shows that conic map projection has a lot of similarity to the
diagram and equations for cylindrical map projection. Therefore conical map
projection can be developed with slight modification and difference. The taper
of the cone is characterised by the ratio of its cross sectional radius to the
length of the slope from its apex. This ratio is constant for any distance from
the apex of a given cone and is called constant of the cone c given by the
equation

c = sinα (4.57)

where α is the semi-apex angle of the cone. Also angle AGF forms the com-
plement for both α and Φ0, Therefore α = Φ0

c = sin|Φ0| (4.58)

If the distance along slope from the apex of the cone is ρ, cross-section
radial length is given by

radial − length = cρ (4.59)

In the triangle GAF
ρ0 = Rcotα (4.60)

To develop a cone into a map requires cutting it lengthwise so as to flatten
the surface (Figure 4.6). Assume s is the central meridian and cut down a
ray on the opposite side of the cone. The resulting map has the shape of a
sector of disk with A as the center. So ray carrying mapped points of any
one meridian becomes radial line of sector and angle θ between any two ray
becomes c times the angle at poles between their respective meridians.

θ = cλ (4.61)

X = ρsinθ = ρsin(cλ) (4.62)

Y = ρ0 − ρ1cosθ = Rcotφ0 − ρ0cos(cλ) (4.63)
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FIGURE 4.5
Schematic of conical map projection
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FIGURE 4.6
Flattened cone after cutting along a central meridian
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Now by analyzing the figure one can derive

PF =
hRsin(φ− φ0)

h− 1 + cos(φ− φ0)
(4.64)

ρ = ρ0 − PF = RCotφ0 −
hRsin(φ− φ0)

h− 1 + cos(φ− φ0)
(4.65)

X = ρsin(cλ) = R(cotφ0 −
hRsin(φ− φ0)

h− 1 + cos(φ− φ0)
)sin(cλ) (4.66)

Y = Rcotφ0 −R(cotφ0 −
hsin(φ− φ0)

h− 1 + cos(φ− φ0)
)coscλ (4.67)

The gnomonic, stereographic and orthographic versions of the conical pro-
jection can be obtained from the above equations by substituting the value of
h = 1, h = 2 and h =∞ respectively. By rearranging the above forward conic
projection equations one can obtain

X = ρsincλ = R(cotφ0 −
hsin(φ− φ0)

h− 1 + cos(φ− φ0)
)sincλ (4.68)

Rcotφ0 − Y = R(cotφ0 −
hsin(φ− φ0)

h− 1 + cos(φ− φ0)
)coscλ (4.69)

The inverse transformation of the conic transformation can be obtained
by squaring and adding the equations

X2 + (Rcotφ0 − y)
2

= R2(cotφ0 −
hsin(φ− φ0)

h− 1 + cos(φ− φ0)
)
2

(4.70)

Rhsin(φ− φ0)

h− 1 + cos(φ− φ0)
= Rcotφ0 −

√
(x2 + (Rcotφ0 − Y )

2
) (4.71)

By substituting h = 1 in the above equation one can obtain

Rtan(φ− φ0) = Rcotφ0 −
√

(x2 + (Rcotφ0 − Y )
2
) (4.72)

φ = φ0 + tan−1(
Rcotφ0 −

√
x2 + (Rcotφ0 − Y )

2

R
) (4.73)

For stereographic projection, by substituting h = 2 in the above equation
one can obtain

2Rsin(φ− φ0)

1 + cos(φ− φ0)
= Rcotφ0 −

√
x2 + (Rcotφ0 − Y )

2
(4.74)

2Rtan
φ− φ0

2
= Rcotφ0 −

√
x2 + (Rcotφ0 − Y )

2
(4.75)

φ = φ0 + 2tan−1(
Rcotφ0 −

√
x2 + (Rcotφ0 − Y )

2

2R
) (4.76)
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For orthopgraphic projection, by substituting h = ∞ in the above equation
one can obtain

Rsin(φ− φ0) = Rcotφ0 −
√
x2 + (Rcotφ0 − Y )

2
(4.77)

φ = φ0 + sin−1(
Rcotφ0 −

√
x2 + (Rcotφ0 − Y )

2

R
) (4.78)

The value of meridian λ can be obtained from

Tancλ =
X

Rcotφ0 − Y
(4.79)

λ =
1

c
tan−1 X

Rcotφ0 − Y
(4.80)

4.7 Classification of Map Projections

After studying the standard map projection methods and their mathematical
derivations one can state that map projections are functions of (φ, λ) and
datum parameters. A datum surface is a mathematical model of Earth. Also
it is clear that no one datum parameters can exactly model the shape of the
Earth accurately. Because infinite numbers of datum are possible, therefore
theoretically infinite numbers of map projections are possible for the same
value of (φ, λ) but different datum parameters.

Therefore out of the theoretically infinite possible map projections it is
necessary to find the map projections which are highly accurate and prac-
tically useful for the purpose. This challenging job has been simplified by
listing finitely many datum which are practically useful and give a good ap-
proximation of the shape of Earth for a particular region. The list of useful
datum is given in Table 13.1 of the Appendix. WGS-84 is one of the best
fit datum globally accepted and is being used by satellite navigation systems
worldwide.

One way of finding a useful map projection out of the many theoretical
possibilities is to classify them into few categories such that each category of
the projections exhibits some common property. The classification is possible
because many of the map projections have common cartographic, geometric
and physical properties. The map projection classification method based on
the criteria and their characteristics is discussed in this section.

Map projection varies with size and location of different areas on the sur-
face of Earth. While cylindrical projection is appropriate for the equatorial
region, conical projection gives the best fit for tropical to polar regions and
azimuthal projection is best for polar region surrounding the pole. Not only
that, map projection varies with respect to the purpose for which the map is
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to be used. While transferring the datum surface to the map surface there are
certain things that should be kept in view.

Various important criteria that forms the basis of classification of map
projections are listed in Table 4.7.

Criteria of Map Trans-
formation

Classes of Map Projection

Depending on preserva-
tion of cartographic mea-
surements

Distance preserving, direction preserv-
ing, area preserving

Depending upon the loca-
tion of the viewer or the
light source with respect
to the projection surface

Gnomonic, stereographic or ortho-
graphic

Depending on the geome-
try of the projection sur-
face

Cylindrical, conical, planner

Depending on the place-
ment of the projection sur-
face with respect to the
datum surface

Tangent or secant

Depending on the orienta-
tion of the projection sur-
face with respect to the
datum surface

Orthogonal, oblique, transverse

TABLE 4.1
Criteria of Projecting Earth Surface and Classes of Map Projections

4.7.1 Classification Based on the Cartographic Quantity
Preserved

Map projection is the mathematical transformation of the 3D surface of Earth
to a 2D planar map. It is clear from this mathematical definition that map pro-
jections are always erroneous transformations. The fundamental cartographic
quantities that can be measured on a map are the area, shape, distance or
direction. A single map projection can not give correct measurements of these
three quantities simultaneously on a map. These are mutually exclusive carto-
graphic measurements in a projected map. A map projection can preserve one
of the quantities accurately at the expense of the other quantities. Therefore
map projections can be classified into three classes on the basis of the carto-
graphic quantity they preserve. The classes of map projection depending on
the cartographic quantity they preserve and their likely area of applications
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are listed below.

1. Equal area or homolographic projection: This projection pre-
serves the area measurement on the map. In this projection system
the graticules are prepared in such a way that every quadrilateral
on it may appear proportionally equal in area to the corresponding
spherical quadrilateral. These map projections are useful for appli-
cations involving estimation of land use, land cover measurement,
land partitioning, city and town planning, area-wise resource allo-
cation, cadastral applications etc.

2. Orthomorphic projection: These types of projections preserve
the shape of the mapping surface. They are also known as confor-
mal projections. It is relatively difficult to preserve the shape of
large mapped area. But the shape of small areas are preserved. So
in order to increase the quality of orthomorphism certain modifica-
tions are carried out in the projection. These projections are useful
for preparation of small scale maps where the overall shape of the
land mass has to be preserved such as the preparation of political
maps.

3. Azimuthal projection: These types of map projections preserve
the direction or bearing of one point from the other point of the
surface. In this type of projection the true bearing or the azimuths
are preserved. This can be done most efficiently by zenithal pro-
jection, in which the datum surface is viewed either from the cen-
ter (gnomonic projection), or from the anti point of center (stereo-
graphic projection) or from infinity (orthographic projection). For
the map to show all directions correctly, the rectangular quality
of the spherical quadrilateral as well as the true proportion of its
length and breadth is maintained. The direction and distance pre-
serving map projection is quite useful for preparation of maps for
navigational applications. Long distance navigation charts of land,
sea and air are preparted using azimuthal projections.

4.7.2 Classification Based on the Position of the Viewer

Map projections can be classified depending on the position of the viewer with
respect to the datum surface. In cartographic science a light source is kept
with respect to the viewer position. The point of projection is derived from
the correspondence established by the ray of light which cuts the transparent
datum surface at a point and falls on the map surface at a particular unique
location. Depending on the position of the light source at the center of the
datum surface, anti podal or at deep space with respect to the projection
plane, the projections are known as gnomonic, stereographic or orthographic
respectively. The three types of map projections are depicted in Figure 4.7.
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FIGURE 4.7
Map projections based on the position of the viewer

1. Gnomonic: In gnomonic projection which is also known as the
central projection the observer is placed at the center of the Earth.
This projection is most suitable for the point on the polar region to
the pole.

2. Stereographic: In this type of projection which is also known as
perspective transformation the observer can be thought of at any
anti point of the center, i.e. at poles. If perfectly calibrated this can
give a conformal projection. This projection gives the best fit for
the tropical region of the Earth.

3. Orthographic: This projection is also known as the deep space
projection. The observer observes the datum surface from deep
space. The lines of sight fall perpendicular to the mapping surface
and are parallel sets of lines from a position far away from the da-
tum surface. This projection is best suited for satellite photography
of the Earth surface.

4. Others: This includes the generic type of projection, where the ob-
server can be anywhere on the datum surface. This can give promis-
ing results if we want to find the projection of a point with respect
to any arbitrary point on the datum surface.

4.7.3 Classification Based on Method of Construction

1. Perspective: In perspective projection the lights coming from the
object (in this context the map surface or the datum surface) con-
verges at a particular points, and the point of convergence is the
best position for the eye of the observer. gnomonic projection, stere-
ographic projections etc. the examples of the perspective projection.

2. Non-perspective: In non-perspective projection the lights coming
from the map surface or the datum surface converges at infinity,
i.e. they are parallel to each other. Orthographic projection is an
example of non-perspective projection.
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4.7.4 Classification Based on Developable Map Surface

One of the important criteria of classifying map projections is based on the
geometry of the projection surface. The geometrical surfaces which are used
in cartography for projection of the datum surface are cylinder, plane or cone.
These are known as map developable surfaces. Therefore depending on the
type of the developable surface map projections can be classified into cylindri-
cal, conical, planar or azimuthal projection. Also depending upon the contact
of the developable surface with that of the datum surface the map projec-
tions are further classified into tangent, secant, normal or oblique type. These
classes of map projections are depicted in Figure 4.8 and 4.9.

FIGURE 4.8
Geometry of map developable surfaces: (A) planar, (B) cylindrical, (C) conical
placed tangent to the datum surface

1. Cylindrical: In cylindrical map projection the development sur-
face is a cylinder wrapped around the datum surface and is normal
to the equatorial plane. Cylindrical projections are best suited for
the equatorial region and are widely used. Mercator projection is a
cylindrical projection used universally for many applications.

2. Azimuthal: In this type of projection the map surface is a plane
tangent or secant to the datum surface. This type of projection is
best suited for the polar regions of the Earth.

3. Conical: In this class of projections the map surface is assumed to
be a cone wrapped around the datum surface. The surface of the
cone can be tangent or secant to the datum surface. Often multiple
cones are fitted to a region and the cone surface is unfolded to
develop the map. Lambert Conformal Conic (LCC) projection is an
example of conical projection. This class of projection is best suited
for the regions in between the pole and the equator i.e. the tropical
zone of the Earth’s surface.
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FIGURE 4.9
Geometry of map developable surfaces: (A) planar, (B) cylindrical, (C) conical
placed secant to the datum surface

4.7.5 Classification Based on the Point of Contact

Map projections can be classified based on the point of contact of the map
surface with that of the datum surface. Based on the point of contact of the
tangent surface with the datum surface three classes of map projections are
derived viz. polar, equatorial and oblique as depicted in Figure 4.10.

1. Polar: In this type of projection the map surface is a tangent to
the datum surface and the point of contact is the north pole or

FIGURE 4.10
Geometry of the map projections depending upon the orientation of the map
surface with the datum surface: (A) normal, (B) transverse, (C) oblique
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the south pole depending upon the requirement. Therefore the map
surface is parallel to the equatorial plane.

2. Equatorial or Normal: In normal map projection the map surface
is a tangent to the datum surface, and is perpendicular to the plane
of equator.

3. Oblique: In oblique map projection the map surface touches the
datum surface at any angle with the equatorial plane [53]. This type
of projection is mostly useful to find the projection of a particular
area with respect to another point on the datum surface.

4.8 Application of Map Projections

4.8.1 Cylindrical Projections

Mercator projection is a cylindrical map projection having a conformal prop-
erty. This map projection is used to display accurate compass bearings for
navigation at sea. Therefore any straight line drawn on a map projected us-
ing the Mercator projection represents a line with each point having constant
compass bearing or true direction. A line on a map having constant bearing
is known as a ‘loxodrome’ or ‘rhumb’ line. Rhumb lines are useful for naviga-
tion at sea with only the aid of the map and compass. The sailing direction
or course along the great circle changes constantly and at every moment. A
great circle line is also known as an ‘Orthodrome’. One of the best known
and widely used cylindrical projections is the Mercator cylindrical projection
which is used for topographical mapping [52].

4.8.1.1 Universal Transverse Mercator (UTM)

Universal Transverse Mercator (UTM) or Transverse Mercator projections are
best known examples of normal cylindrical projections. UTM is an equidistant
cylindrical projection also known as ‘Plate Carree’ projection. Plate Carree
projection is used for projecting the world in its entirety.

UTM uses a transverse cylinder fitted as secant to the reference surface.
This projection was highly recommended for topographic mapping by the
United Nations cartographic committee in 1952. The UTM divides the world
into 60 narrow longitudinal zones (see Figure 3.6) of 6 degrees each numbered
1 to 60. The narrow zones of 6 degrees and the secant surface to the datum
surface make the distortions very small such that the error can be ignored
while preparing large scale maps of 1:10,000.

UTM is designed to cover the world excluding the Artic and Antarctic
regions. The areas not included in the UTM system i.e. the regions north of
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80◦ north and south of 80◦ south are mapped using UPS (Universal Polar
Stereographic) projection. The figure shows the UTM zones indexing system.
Each zone index constitutes a ‘number-alpha’ index scheme where the number
refers to the 8◦ zone and / or the column designator and the character (‘A’-
‘X’) are used as the row designator of the UTM zones. Each UTM zone has a
central meridian which has a scale factor of 0.9996.

In order to avoid negative coordinates for portions located west of the cen-
tral meridian the central meridian has been assigned a (false) easting value of
5000,000 (meters). The equator has been given a northing value of ‘0’ meter.
For measuring the positions north of the equator a (false) northing value of
10,000,000 meters has been assigned to the equator for designating positions
south of the equator. If a map series crosses more than one UTM zone then
the easing value will change suddenly at the zone junction. To overcome this
problem a 40 km overlap into the adjacent zone is allowed.

4.8.1.2 Transverse Mercator projection

Transverse Mercator projection is a transverse cylindrical projection of the
datum surface. This is also known by the name ‘Gauss-Kruger’ or ‘Gauss-
conformal’ projection. For small area maps prepared by transverse Mercator
projection the angles and slopes are measure correctly as a result of confor-
mality.

Transverse Mercator projection is useful in many countries for local map
preparation when high-scale mapping is carried out. Pan-Europe mapping at
large scale 1:500, 000 is carried out using transverse Mercator projection.

4.8.1.3 Equidistant Cylindrical Projection

An Equidistant Cylindrical Projection (ECP), also known as cylindrical pro-
jection, simple cylindrical projection or ‘Plate Carree’ has a true scale along all
meridians. Google Earth uses ECP for displaying its images. The transverse
version of ECP is also known as Cassini projection. Lambert’s Cylindrical
Equal Area (LCEA) projection represents areas correctly but does not have
noticeable sharp distortions towards the polar region.

4.8.1.4 Pseudo-Cylindrical Projection

Pseudo-cylindrical projections are map projections in which the parallels
are represented by parallel straight lines and meridians by curves. Pseudo-
cylindrical projections are equal area projections. Robinson’s projection is
an example of a pseudo-cylindrical projection which is neither conformal nor
equal-area but the distortions are very low within about 45◦ of the center and
along the equator. Therefore Robinson’s projection which is more frequently
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used for thematic world mapping provides a more realistic view of the world
than rectangular maps such as Mercator.

4.8.2 Conic Map Projection

Conic map projection has following four variants which are well known and
used by cartographic community for various applications.

1. Lambert’s Conformal Conic (LCC)

2. Simple conic projection

3. Albers equal area

4. Polyconic

These projections are very useful for mapping mid latitude regions of
Earth’s surface and for countries that do not have span extent in latitude.

4.8.2.1 Lambert’s Conformal Conic

The properties of LCC projections which make it useful for small scale map-
ping of mid latitude regions such as India are:

1. LCC is a conformal map projection.

2. Parallels and meridian intersect at right angle.

Though areas in the maps are inaccurate in conformal projections it is
widely used for topographic maps of 1:500,0000 scale.

4.8.2.2 Simple Conic Projection

A simple conic is a normal conformal projection with one standard parallel.
The scale of the maps is true scale along all meridians. It produces maps which
are equidistant along the meridians. In these projections both shape and area
are reasonably well preserved. Russia and Europe are better portrayed on
conic projection with two standard parallels.

4.8.2.3 Albers Equal Area Projection

Albers equal-area projection uses two standard parallels. It represents areas
correctly with reasonable shape distortion between the standard parallels. This
projection is best suited for mapping regions predominantly with East-West
extent and located land masses in mid latitude regions. Albers equal-area
projection is used for mapping the US thematic map and for the preparation
of world atlases.

4.8.2.4 Polyconic Projection

Polyconic projections are neither conformal nor equal area. It is projected into
ones tangent to each parallel so that meridians are curved not straight lines.
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Scale is true only along the central meridian and parallel. The meridional scale
increases as we proceed away from the central meridian. The projection is not
suitable beyond 30◦ on each side of the central meridians. The shape gets dis-
torted in polar regions. Therefore it is restricted within 20◦ of pole. Polyconic
projection is useful for large-scale mapping of the US and for preparation of
costal charts by US coast geodetic survey.

4.8.3 Azimuthal Projections

Azimuthal or zenithal or planer map projection is a plane tangent (or secant)
to the reference surface. All azimuthal projections possess the property of
maintaining correct azimuth or true directions from the center of the map.
In the polar cases, the meridians radiate out from the pole at correct angular
distance. The azimuthal projections assumes the position of the light source or
the map viewer into three cardinal points of the datum surface. Depending on
the position of the viewer there are three well known types of map projections
viz.

1. Gnomonic map projection where the perspective point is at the
center of the Earth.

2. Stereographic map projection where the perspective center is at the
opposite pole to the point of tangency of the map surface.

3. Orthographic map projection where the perspective points are at
infinite distance from the point of tangency of the map surface to
the datum surface. The parallel incidence lines are incident from
the opposite side of the Earth.

Two well-known non-perspective azimuthal projections are azimuthal
equidistant projection and Lambert’s equal-area projection.

Table 4.2 lists the applications of important map projections.

4.9 Summary

This chapter on map projection starts with answers to the questions such as
‘What is map projection?’ and ‘Why is it necessary?’ It gives an unambiguous
mathematical definition of map projection. The process flow of map projec-
tion is depicted through a sequence diagram. The three important classes (a)
azimuthal projection, (b) cylindrical projection and (c) conical projection are
discussed with complete mathematical derivations and diagrams. A generic
case of map projection is derived to illustrate the geometrical concepts of
map projection. The generic case is further used to derive the special cases
of map projections from the perspective of the viewer such as the gnomonic,
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Name of the Map Projection Applications
Cylindrical map projections Topographical mapping and navigation
Mercator Display accurate compass bearing for navigation

at sea
Transverse Mercator Preparation of large scale maps of 1:10, 000, Pan-

Europe mapping at large scale 1:500000 is car-
ried out using transverse Mercator projection

Universal transverse Mercator Projecting the world in its entirety, for indexing
of UTM zones

Cylindrical equidistant For display of space and aerial images. Google
Earth uses the equidistant cylindrical projection
(ECP) for displaying its images

Pseudo-cylindrical For preparation of thematic world mapping, for
a more realistic view of the world

Albers equal area conic For mapping of the US thematic map and for the
preparation of world atlases, for management of
land resources

Lamberts Conformal Conic
(LCC)

For preparation of topographic maps of
1:5,00,0000 scale in the mid-latitude region of
the world for planning of land resources

Simple conic Maps of Russia and Europe are better portrayed
using conic projection with two standard paral-
lels

Polyconic For large-scale mapping of the US and for prepa-
ration of coastal charts by US coastal geodetic
survey

Gnomonic cylindrical For flight navigation and preparation of air nav-
igation charts

Azimuthal
Azimuthal equal area (oblique) For sea map preparation of the Pacific ocean for

hydrocarbon exploration
Azimuthal equal area (polar) For mapping of the south and north polar re-

gions for polar expeditions
Orthographic (oblique) For surveillance and recognisance of targets in

aerial photo and oblique aerial photography, for
creating pictorial view of Earth or its portions

Stereographic (oblique) For space exploration and for identification of
location of space voyage for landing of spacecraft

Stereographic (polar) For mapping of Arctic and Antarctica regions or
polar regions of Earth

Azimuthal equidistant Large scale mapping of the world
Sinusoidal For mapping of Moon surface and Mars surface

for exploration
Space oblique Mercator Satellite image mapping

TABLE 4.2
Applications of Map Projections
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stereographic and orthographic map projections. Also the inverse map pro-
jections are derived for the three major classes of projections. The different
types of map projections are classified from the perspective of the plane of
projection, cartographic quantities they preserve, the location of the viewer
and the way the projection surface touches the datum surface. Finally, to ap-
preciate the use of map projections, a list of applications of map projections
is given.
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Algorithms for Rectification of Geometric
Distortions

A large subset of the input domain of GIS constitutes images obtained from
different sources and sensors. Images of Earth acquired through satellite or
airborne platforms carrying sensors such as RADAR, thermal, infrared (IR),
optical, microwave etc. are major input sources of GIS. All these platforms
carrying the sensors acquire the image of the Earth’s surface corresponding
to the IFOV (Instantaneous Field of View) of the sensors. These images have
both the signature of the objects and the time stamp of the instance of the
image acquired. These images are prone to various errors because of the insta-
bility of the platform acquiring the image, imprecise calibration of the sensors
or due to radiometric disturbance in the atmosphere in between the sensors
and the Earth’s surface. Therefore, removal of these errors is important to its
further processing by GIS. Also registration of the images precisely with the
area of the Earth’s surface is an essential prerequisite for effective analysis
and measurement in a GIS environment.

In this chapter we give a small survey of research literature on image
registration followed by the definition of image registration. Various sources
and reasons for these errors are discussed. The steps required for registration
of images is discussed. Important algorithms used for registration of satellite
images and their analysis are carried out with illustrations. A set of important
applications of these registration algorithms is given for a better appreciation
of their usage in different domains.

Image registration has been an active area of research for more than three
decades. Survey and classification of image registration methods can be found
in literature by Zitova et al. [58], Brown [7] and Panigrahi et al.[45]. Sepa-
rate collections of work covering methods for registration for medical images
have been edited by Maintz et al. [34] in a special issue on image registration
and vision computing and in a special issue of IEEE Transactions on Med-
ical Imaging. A special collection of work covering general methodologies in
image registration has been edited by Goshtasby and LeMoigne in a special
issue of Pattern Recognition [22]. An algorithm for rectification of geometric
distortions in satellite images has been illustrated in [45].

87
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5.1 Sources of Geometric Distortion

There are potentially many sources of geometric distortion in remotely sensed
images obtained through satellites or airborne platforms. These distortions
are more severe and their effects more prominent than radiometric distortions
[27]. Listed below are number of factors that may cause geometric distortions
in images.

1. The effect of rotation of the Earth during image acquisition.

2. The finite rate of scan of the sensors imaging the Earth’s surface.

3. The dimension and geometry of the IFOV of the sensor.

4. The curvature of the Earth at the IFOV.

5. Sensor non-linearity and idealities.

6. Variations in platform altitude and velocity during the image ac-
quisition.

7. Instability of the sensor platform.

8. Panoramic effects related to the imaging geometry.

Zitova and Flusser [58] have investigated a number of algorithms which
process and remove geometric distortions in satellite images. Ortho-correction
and geometric error correction, are a few important examples where removal
of geometric distortions plays a crucial role. These algorithms require supple-
mentary meta-information of the satellite images such as ground control points
and correspondence, sensor orientation details, elevation profile of the terrain
etc. to establish corresponding transformations. The pre-processing algorithm
which removes systematic distortions in the satellite image is discussed. These
algorithms which are also known as output-to-input transformations compute
the value of the pixels in the input image, for each of the spatial locations
in the output image. Efficient methods for implementation of registering im-
age to image were discussed in Pratt [48] and Panigrahi et al. [41]. The
transformation computes the coordinate of each output pixel corresponding
to the input pixel of an image based on the model established by the Poly-
nomial Affine Transformation (PAT). The transformation is established by
the exact amount of scaling, rotation and translation needed for each pixel in
the input image so that the distortion induced during the recording stage is
corrected.

Following image pre-processing, all images appear as if they were acquired
from the same sensor received by remote sensing and represent the geometry
and geometric properties on the ground. To detect the change from multi-
dated satellite images, geometric error has to be removed first. Geometric error
correction becomes especially important when scene to scene comparisons of
individual pixels in applications such as change detection are being sought.
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In the next section we discuss the prominent registration algorithms used for
satellite image registration.

5.1.1 Definition and Terminologies

Image registration is the process of spatially aligning two or more images of
the same scene taken from the same or different sensors. This basic capability
is needed in various image analysis applications.

Before we discuss different image registration algorithms it is pertinent to
define the following terminologies which are commonly used in image regis-
tration.

1. Reference Image: One of the images in a set of two. This image is kept
unchanged and is used as the reference. The reference image is also known as
the source image.
2. Sensed Image: The second image in a set of two multi-dated images. This
image is resampled to register the reference image. The second image is also
known as the target image.
3. Transformation Function: The function that maps the sensed image to
the reference image. Transformation function is determined using the coordi-
nates of the number of correspondence points in the images.

5.1.2 Steps in Image Registration

Given two or more images of the same scene taken at different times or taken
by different sensors, the following steps are usually taken to register the im-
ages.

Step 1: Image Pre-Processing: This involves preparing the images
for feature selection and to establish correspondence between the features
using methods such as scale adjustment, noise removal, and segmentation.
When pixel sizes in the images to be registered are different but known, one
image is resampled to the scale of the other image. This scale adjustment
facilitates feature correspondence. If the given images are known to be noisy,
they are smoothed to reduce the noise. Image segmentation is the process
of partitioning an image into regions so that features can be extracted. The
general pre-processing operations used in satellite image registration include
image rotation, image smoothing, image sharpening, and image segmentation.
There is often a need to pre-process images before registration. Noise reduction
and removal of motion blur or haze in images improve feature selection. Image
segmentation and edge detection also facilitate feature selection.

Step 2: Feature Selection: Image features are unique image properties
that can be used to establish correspondence between two images. The most
desired features are pixels or point features, because their coordinates can
be directly used to determine the parameters of a transformation function
that registers the images. In some images it may not be possible to detect
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point features; however, lines or regions may be abundant. In such situations
points are derived from the lines and regions. For example, the intersections
of corresponding line pairs produce corresponding points and centroids of cor-
responding regions produce corresponding points. To register two images, a
number of features are selected from the images and correspondence is estab-
lished between them. Knowing the correspondences, a transformation function
is then found to resample the sensed image to the geometry of the reference
image. Generally the features used for image registration are corners, lines,
templates, regions, and patches. The signature of objects in a satellite image
have structured geometry such as line, square, rectangle, pyramid etc. which
are man made objects whereas the natural objects such as mountains, lakes
etc. have irregular geometry of contours or irregular polygons. In 3D image,
surface patches and regions are often present. Templates are abundant in both
2D and 3D images and are being used as features to register images.

Feature selection is one of the current areas of research in image regis-
tration [42]. Many algorithms have been proposed for feature selection. The
literature on image registration over the past decade indicates a consistent
effort to select features from images which are invariant to sensor geometry
and calibration, noise in the atmosphere, intervening lighting condition etc.
Hence the effort is to obtain PSRT (Position, Scale, Rotation and Translation)
invariant features from the scene. Also, efforts are in place to develop robust
and efficient algorithms for feature selection in the scene.

There are many methods for selection of features reported in the literature.
Of particular interest are methods involving detection of corners by Harris
corner detector [24], line detection by Canny’s operator [10], region detection
and templates such as Low’s SIFT (Scale Invariant Feature Transform) [33],
Panigrahi et al. [43].

Step 3: Establishing Feature Correspondence: Having obtained the
invariant features in the scene, the next step of image registration is to estab-
lish a correspondence between the features of the different scenes. This can
be achieved either by selecting features in the reference image and searching
for them in the sensed image or by selecting features in both images indepen-
dently and then determining the correspondence between them. The former
method is chosen when the features contain considerable information, such
as image regions or templates. The latter method is used when individual
features such as points and lines do not contain sufficient information. If the
features are not points, it is important that from each pair of corresponding
features at least one pair of corresponding points is determined. The coordi-
nates of the corresponding points are used to determine the transformation
parameters. For instance, if templates are used, the center of corresponding
templates represents corresponding points; if lines are used, the intersection
of corresponding line pairs represents corresponding points; and if curves are
used, locally maximum curvature points on corresponding curves represent
corresponding points. Methods used for establishing correspondence between
features are SIFT, PA SIFT, Minimum Mean Square (MMS) difference etc.
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Step 4: Determination of Transformation Function: Knowing the
coordinates of a set of corresponding points in the images, a transformation
function is established to resample the sensed image to the geometry of the
reference image. The type of transformation function used should depend on
the type of geometric difference between images. If geometric difference be-
tween the images is known, in the form of translation, rotation and scaling
then the transformation can easily adapt to the geometric difference between
the images. Prominent among the transformation functions used to resample
sensed satellite image are Log-Polar Transformation and PAT [41].

Step 5: Image Resampling: After establishing the transformation func-
tion, the final process of image registration is to apply the transformation
function to the sensed image to resample to the geometry of the reference
image. This enables fusion of the information in the images or detection of
changes in the scenes.

5.2 Algorithms for Satellite Image Registration

Often the images to be registered have scale differences and contain noise,
motion blur, haze, and sensor nonlinearities. The size of pixels in terms of
ground length or image length are often known and, therefore, either image
can be resampled to the scale of the other, or both images can be resam-
pled to a common scale. This resampling facilitates the feature selection and
correspondence step of image registration. Depending upon the features to
be selected, it may be necessary to segment the images. In this section the
prominent satellite image registration methods listed below are discussed.

1. PAT

2. Similarity transformation

3. SIFT

4. Fourier Mellin transform (log-polar transformation)

5.2.1 Polynomial Affine Transformation (PAT)

The equation for a general affine transformation [41] in R2 is defined by M :
R2 → R2 and given by a simple equation

(k, l) = M(i, j) (5.1)

where (i, j) is the coordinate of output image with affine error and (k, l) is the
coordinate of input image, obtained at an earlier date say at date (D) in this
case. M is the affine transformation, which transforms set of (i, j) ∈ R2 to set
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of (k, l) ∈ R2. In other words, for each pixel (i, j) in the output image, compute
its corresponding location (k, l) in input image, obtain the pixel value from
input image and put it in output image. Since a reverse computation of pixel
location is used, this process is also known as reverse transformation or inverse
transformation or output-to-input transformation. The above transformation
can be expressed through a pair of polynomials as 5.2 and 5.3

k = Q(i, j) = q0 + q1i+ q2j + q3ij (5.2)

and
l = R(i, j) = r0 + r1i+ r2j + r3ij (5.3)

These polynomial equations can be represented in matrix form. Since the
affine transformation is represented through a set of polynomials, it is called
PAT. The unknown coefficients qi and ri are obtained after solving the fol-
lowing system matrix representing polynomial.

K = MQ (5.4)

and
Q = M−1K (5.5)

The dimension and condition of the system matrix M depends upon the
number of GCP-CP pairs selected and their spatial distribution in the image.
At least 3 pairs of non-collinear GCP need to be selected to establish an affine
frame in R2. If 3 pairs of GCP are selected then we get a 3x3 square matrix
representing the transformation, which can solve the translation, rotation and
scaling distortions in the input image. If the GCPs are collinear and densely
populated then the matrix is ill-conditioned and sometimes it leads to incon-
sistency and rank deficiency. Hence choice of more numbers of GCP-CP pairs
leads to removal of highly irregular geometric distortions and to greater accu-
racy. Least Squares Method (LSM) is used to avoid inconsistency and solve
the above matrix equation for robust results. By definition, LSM is the one
that minimizes

||K −MQ||2, which when solved leads to 5.6

QLSM = [MTM ]−1MTK (5.6)

Similarly matrix equation for second polynomial can be derived and solved
for R resulting in 5.7

RLSM = [MTM ]−1MTL (5.7)

5.2.2 Similarity Transformation

The similarity transformation or the transformation of the Cartesian coor-
dinate system represents global translation, rotation, and scaling difference
between two images. This is defined by the pair of equations 5.8a and 5.8b
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X = S[x cos θ + y sin θ] + h (5.8a)

and
Y = S[−x sin θ + y cos θ] + k (5.8b)

where S, θ and (h, k) are scaling, rotational, and translational differences be-
tween the images respectively. These four parameters can be determined if the
coordinates of two corresponding points in the images are known. The rota-
tional difference is computed from the angle between the lines connecting the
two points in the image. The scaling difference between the images is deter-
mined from the the of the distances between the images. Knowing the scaling
and rotation the translation parameters (h, k) are determined by substituting
the coordinates of midpoints of the lines connecting the points into the above
equations and solving for h and k. Therefore similarity transformation can be
applied to image to image registration where, the exact amount or scaling,
rotation and translation of the image to be registered is known.

5.3 Scale Invariant Feature Transform (SIFT)

Automatic extraction of key point, dominant point [42], Ground Correlation
Point (GCP) [55] or Control Points (CP) from images in general and satellite
images in particular is an active area of research. Extraction of key point set
from satellite images is a precursor to establishing correspondence between
images to be registered. Once correspondence is established, the transforma-
tion can be established for registration. A good key point in an image is one
which is invariant to radiometric and geometric disturbance in the image.
Considerable research in computer vision has been carried out to extract key
points from an image. SIFT proposed by Lowe [33] extracts fairly stable key
features in the image which are invariant under geometric, radiometric and il-
lumination variations. The features are in variant to image scale and rotation,
and are shown to provide robust matching across a substantial range of affine
distortion, change in 3D viewpoint, addition of noise, and change in illumi-
nation. The features are highly distinctive, in the sense that a single feature
can be correctly matched with high probability against a large database of
features from many images.

The following are the major computation steps used to generate the set of
image features which are scale invariant:
Detection of Scale-Space Extrema: The first stage of computation
searches overall scales and image locations. It is implemented efficiently by
using a difference-of-Gaussian function to identify potential interest points
that are invariant to scale and orientation.
Localization of Key Points: At each candidate location, a detailed model is
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fit to determine location and scale. Key points are selected based on measures
of their stability.
Orientation Assignment: One or more orientations are assigned to each
keypoint location based on local image gradient directions. All future opera-
tions are performed on image data that has been transformed relative to the
assigned orientation, scale, and location for each feature, thereby providing
invariance to these transformations.
Key Point Descriptor: The local image gradients are measured at the se-
lected scale in the region around each key point. These are transformed into
a representation that allows for significant levels of local shape distortion and
change in illumination.

5.3.1 Detection of Scale-Space Extrema

Key points are detected using a cascade filtering approach. The first stage of
key point detection is to identify locations and scales that can be repeatably
assigned under differing views of the same object. Detecting locations that are
invariant to scale change of the image is accomplished by searching for stable
features across all possible scales, using a continuous function of scale known
as scale space as depicted in Figure 5.2. It has been shown by Koenderink
and Lindeberg [28], [29] that under a variety of reasonable assumptions the
only possible scale-space kernel is the Gaussian function. Therefore, the scale
space of an image is defined as a function, L(x, y, σ), that is produced from
the convolution of a variable-scale Gaussian, G(x, y, σ), with an input image,
I(x, y):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (5.9)

where ‘*’ is the convolution operation in ‘x’ and ‘y’ and

G(x, y, σ) =
1

2πσ2
exp−

x2+y2

2σ2 (5.10)

To efficiently detect stable key point locations in scale space, Lowe [33]
proposed searching for key points using scale-space extrema. Where the scale
space is simulated using the Difference-of-Gaussian (DoG) function convolved
with the image, D(x, y, σ). DoG is computed from the difference of two images
from nearby scales separated by a constant multiplicative factor k:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, (k − 1)σ)) ∗ I(x, y) (5.11)

5.3.2 Local Extrema Detection

In order to detect the local maxima and minima of D(x, y, σ), the intensity
value of each sample point is compared to its eight neighbours in the current
image and nine neighbours in the scale above and below. It is selected only if
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its intensity is larger than all of these neighbours or smaller than all of them.
The process of computing SIFT features from a satellite image is depicted in
Figure 5.1

5.3.3 Accurate Key Point Localization

Once a key point candidate has been found by comparing a pixel to its neigh-
bours, the next step is to perform a detailed fit to the nearby data for location,
scale, and ratio of principal curvatures. This information allows points to be
rejected that have low contrast (and are therefore sensitive to noise) or are
poorly localized along an edge. The initial implementation of this approach
by Lowe [33] simply located key points in images at various scales.

Figure 5.2 depicts the scale-space pyramid representation as framework for
multi-scale signal representation. Scale-space theory is a framework for multi-
scale signal representation developed by the computer vision, image process-
ing and signal processing communities with complementary motivations from
physics and biological vision. It is a formal theory for handling image structure
points, at different scales, by representing an image as a one-parameter fam-
ily of smoothed images, the scale-space representation, parameterized by the
size of the smoothing kernel used for suppressing fine-scale structures. The
parameter ‘σ’ in this family is referred to as the scale parameter, with the
interpretation that image structures of spatial size smaller than about have
largely been smoothed away in the scale-space level at scale ‘σ’. The main
type of scale space is the linear (Gaussian) scale space, which has wide appli-
cability as well as the attractive property of being possible to derive from a
small set of scale-space axioms.

However, recently Lowe [32] has developed a method for fitting a 3D
quadratic function to the local sample points to determine the interpolated
location of the maximum, and his experiments showed that this provides a sub-
stantial improvement to matching and stability. This approach uses the Taylor
expansion up to the quadratic terms) of the scale-space function, D(x, y, σ),
shifted so that the origin is at the sample point.

D(x) = D +
∂DT

∂x
x+

1

2
xT

∂2D

∂x2
x (5.12)

where ‘D’ and its derivatives are evaluated at the sample point and x =
(x, y, σ)

T
is the offset from this point. The location of the extremum, ‘x’, is

determined by taking the derivative of this function with respect to x and
setting it to zero, giving

X
′

= −∂
2D−1

∂x2

∂D

∂x
(5.13)

In Figure 5.3, the image is convolved with Gaussian function. Due to the
convolution with Gaussian function the high frequency component is removed.
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FIGURE 5.1
Steps of computing key points from satellite image using SIFT, detection
of key points form image using DOG and maximization rule. The image is
convolved with Gaussian function. Due to this the high frequency noise is
removed from the image and the image become blurred. The high frequency
corresponds to minute image details that are never common between two
different images so these are removed. The blurred images are subsequently
subtracted from each other to again remove details in two subsequent blurs.
Now using maximization rule a pixel which has the highest magnitude of all
its neighbours is selected as key point.
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FIGURE 5.2
Gaussian blurred image pyramid, depicting the scale space of an image

The Gaussian convolved images appear blurred in comparison to the original
image simulating the scale-space visualization of the image. The high fre-
quency corresponds to minute image details that are never common between
two different images so these are removed. The blurred images are subse-
quently subtracted from each other to again remove details in two subsequent
blurs. These successive blurred images in each stage of convolution are desig-
nated in Figure 5.3 as Bi and Di. Using maximization rule [33] a pixel which
has the highest magnitude of all its neighbours in the present scale, preceeding
scale and succeeding scale is selected as the key point.

As suggested by Lowe [33], the hessian and derivative of D(x) which is the
difference of Gaussian at x, are approximated by using differences of intensity
values of the neighbouring sample points. The resulting 3x3 linear system can
be solved with minimal cost. If the offset ‘x’ is larger than 0.5 in any dimension,
then it means that the extremum lies closer to a different sample point. In
this case, the sample point is changed and the interpolation performed instead
about that point. The final offset ‘x’ is added to the location of its sample point
to get the interpolated estimate for the location of the extremum. The function
value at the extremum, D(x’), is useful for rejecting unstable extrema with
low contrast. This can be obtained by substituting equation 5.12 into 5.11,
giving

Dx
′

= D(x′) + 0.5
∂DT

∂x
x
′

(5.14)
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FIGURE 5.3
Detection of keypoint from image using DoG and maximization rule.
The D0 to D4 are the Difference of Gaussian (DoG) images obtained after
computing the difference of successive Gaussian blurred images. K1 to K3 are
the set of key features of the image computed using SIFT.

From the experiments that have been carried out, all extrema with a value
of |D(x′)| less than 0.03 were discarded.

5.3.4 Eliminating Edge Responses

For stability, it is not sufficient to reject key points with low contrast. The
DoG function will have a strong response along edges, even if the location
along the edge is poorly determined and therefore unstable to small amounts
of noise. A poorly defined peak in the DoG function will have a large principal
curvature across the edge but a small one in the perpendicular direction. The
principal curvatures can be computed from a 2x2 Hessian matrix, H, com-
puted at the location and scale of the key point

H(x, y) =

(
∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2

)
(5.15)

The derivatives are estimated by taking differences of neighbouring sample
points. The eigenvalues of H are proportional to the principal curvatures of
D. Borrowing from the approach used by Harris and Stephens [24], we can
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(a) (b) (c)

FIGURE 5.4
Example of registration of satellite image pair using Log-Polar transformation:
(a) base image, (b) image with geometric error, (c) image (b) registered and
resampled with respect to image (a)

avoid explicit computing of the eigenvalues, as of H and their product from
the determinant:

Tr(H) = Dxx +Dyy (5.16)

Det(H) = DxxDyy −D2
xy (5.17)

In the unlikely event that the determinant is negative, the curvatures have
different signs so the point is discarded as not being an extremum. Let ‘r’ be
the ratio between the largest magnitude eigenvalue and the smaller one, so that
λmax = rλmin. Then ‘r’ depends only on the ratio of the eigenvalues rather

than their individual values. The quantity 2(r+1)
r is at a minimum when the

two eigenvalues are equal and it increases with ‘r’. To eliminate edge response
we need to check the key points which meet the criteria.

Tr(H)2

Det(H)
≤ (r + 1)2

r2
(5.18)

If we set r = 10 then the key points that have ratio of principal curvature
greater than 10 are eliminated from the list of key points thus eliminating the
key points which are in the edge of an image and are considered as highly
unstable.

Finally the SIFT features computed using this method is used for estab-
lishing correspondence between multi-dated satellite image for registration as
depicted in Figure 5.5.
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(a) (b) (c) (d)

FIGURE 5.5
Satellite images: (a) base image, (b) image with geometric distortion, (c) im-
age, (b) registered with respect to image (a), (d) final registered image (b)

5.4 Fourier Mellin Transform

The Fourier Transform (FT) is an operation that transforms one complex-
valued function of a real variable into another. In applications such as signal
processing, the signal is a function of time domain. The transformed function
is of frequency domain, therefore called the frequency domain representation
of the time domain function. The FT and the inverse transformation are given
by following equations respectively

ˆF (ξ) =

∫
f(x)e−2πIxξ dx (5.19)

and the inverse FT

F (x) =

∫
ˆf(x)e2πIxξ dξ (5.20)

For automatic registration of spatial images, the FT-based method makes
use of the Fourier shift theorem, which guarantees that the phase of a spe-
cially defined ‘ratio’ is equal to the phase difference between the images. It
is known that if two images I1 and I2 differ only by a shift, (x0, y0), i.e.,
I2(x, y) = I1(x− x0, y − y0), then their FTs are related by the formula

F2(ξ, η) = e−j2∗π∗(ξ.x0+η∗y0) ∗ F1(ξ, η) (5.21)

The ratio of two images I1 and I2 is defined as:

R =
F1(ξ, η) ∗ conj(F2(ξ, η))

|(F1(ξ, η))| ∗ |(F2(ξ, η))|
(5.22)
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where conj is the complex conjugate, and abs is absolute value. By taking
the inverse FT of R, we see that the resulting function is approximately zero
everywhere except for a small neighbourhood around a single point. This single
point is where the absolute value of the inverse Fourier transfer of R attains
its maximum value. It can be shown that the location of this point is exactly
the displacement (x0, y0) needed to optimally register the images. If the two
images differ by shift, rotation and scaling, then converting abs (F) from
rectangular coordinates (x, y) to log-polar coordinates makes it possible to
represent both rotation and scaling as shifts. The Fourier Mellin transform is a
useful mathematical tool for image recognition because its resulting spectrum
is invariant in rotation, translation and scaling. The Fourier transform itself
is translation invariant and its conversion to log-polar coordinates converts
the scale and rotation differences to vertical and horizontal offsets that can be
measured. A second FT, called the Mellin transform (MT) gives a transform-
space image that is invariant to translation, rotation and scale.

M(u, v) =

∫ ∫
f(x, y)x−ju−1y−jv−1dxdy (5.23)

FT-based automatic registration relies on the Fourier shift theorem, which
guarantees that the phase of a specifically defined ‘ratio’ is equal to the phase
difference between the images. To find displacement between two images, com-
pute the ratio R = F1conj(F2)/|F1F2|) and apply inverse Fourier transform.
By applying the inverse Fourier transform to the ratio, we get an array of
numbers returned that is zero everywhere except for a small area around a
single point. By using the Max function one can find the maximum value. The
location of the Max value is exactly the displacement (x0, y0) that is needed
to optimally register the images.

5.4.1 The Log-Polar Transformation Algorithm

The following computing steps describe the log-polar transformation which
when applied to a pair of unregistered satellite images, register the second
image with geometric distortions to the first image. In this the first image is
treated as the base image and the second image is considered as the currently
obtained image to be registered with respect to the base image.

1. Read in I1 - the base image to register against

2. Read in I2 - the image to be registered

3. Take the FFT of I1, shifting it to center on zero frequency

4. Take the FFT of I2, shifting it to center on zero frequency

5. Convolve the magnitude of (3) with a high pass filter

6. Convolve the magnitude of (4) with a high pass filter



102 Computing in Geographic Information Systems

7. Transform (5) into log polar space

8. Transform (6) into log polar space

9. Take the FFT of (7)

10. Take the FFT of (8)

11. Compute phase correlation of (9) and (10)

12. Find the location (x, y) in (11) of the peak of the phase correlation

13. Compute angle (360 / Image Y Size) * y from (12)

14. Rotate the image from (2) by - angle from (13)

15. Rotate the image from (2) by - angle + 180 from (13)

16. Take the FFT of (14)

17. Take the FFT of (15)

18. Compute phase correlation of (3) and (16)

19. Compute phase correlation of (3) and (17)

20. Find the location (x,y) in (18) of the peak of the phase correlation

21. Find the location (x,y) in (19) of the peak of the phase correlation

22. If phase peak in (20) ≥ phase peak in (21), (y,x) from (20) is the
translation

23. (a) Else (y,x) from (21) is the translation and also:

24. (b) If the angle from (13) ≤ 180, add 180 to it, else subtract 180
from it.

The above method is applied to a pair of satellite image and the results
are displayed in the Figure 5.5.

5.5 Multiresolution Image Analysis

Multiresolution image analysis through multi-scale approximation of image is
an important technique for analyzing an image in different scale. The con-
tents of an image such as pixels, edges and objects can be analyzed in differ-
ent scale and summed up to study the overall analysis of the image contents.
This image processing method makes use of different techniques such as Dis-
crete Wavelet Transforms (DWT), Laplacian of Gaussian (LoG), Difference of
Gaussian (DoG) etc. to simulate the scale-space representation of an image.
The multi-resolution technique has its utilization in many signal processing
applications in general and image processing applications in particular. The
main idea of image pyramid or ‘pyramid representation’ of an image is a type
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of multi-scale signal representation developed by the computer vision, image
processing and signal processing communities, in which a signal or an image
is subject to repeated smoothing and subsampling. Historically, pyramid rep-
resentation is a predecessor to scale-space representation and multiresolution
analysis.

The first multi-resolution technique was introduced by Stephane Mallat
and Yves Meyer in 1988-89 [36]. Witkin made use of the theory for scale-
space filtering of signals [56]. The microlocal analysis of image structures using
image pyramid and difference equations was introduced by Peter J. Burt et.
al., in 1981-83 [9].

There are two main types of image pyramid: lowpass pyramids and band-
pass pyramids. A lowpass pyramid is generated by first smoothing the image
with an appropriate smoothing filter and then subsampling the smoothed
image, usually by a factor of two along each coordinate direction [1]. This
smoothed image is then subjected to the same processing, resulting in a yet
smaller image. As this process proceeds, the result will be a set of gradually
more smoothed images, where the spatial sampling density decreases level by
level. If illustrated graphically, this multiscale representation will look like
a pyramid, from which the name has been obtained. A bandpass pyramid
is obtained by forming the difference between adjacent levels in a pyramid,
where in addition to sampling some kind of interpolation is performed between
representations at adjacent levels of resolution, to enable the computation of
pixel-wise differences.

A variety of different smoothing kernels have been proposed for gener-
ating pyramids. Gaussian, Laplacian of Gaussian and Wavelet are some of
the highly used smoothing kernel in an image processing community [1], [50],
[18]. In the early days of computer vision, pyramids were used as the main
type of multi-scale representation for computing multi-scale image features
from real-world image data [37]. More recent techniques include scale-space
representation, which has been popular among some researchers due to its
theoretical foundation, the ability to decouple the subsampling stage from
the multi-scale representation, the more powerful tools for theoretical analy-
sis as well as the ability to compute a representation at any desired scale, thus
avoiding the algorithmic problems of relating image representations at differ-
ent resolution. Nevertheless, pyramids are still frequently used for expressing
computationally efficient approximations to scale-space representation.

5.6 Applications of Image Registration

Image registration in general and satellite image registration in particular
finds numerous applications in the domain of Digital Image Processing (DIP),
Medical Image Processing (MIP), Spatial Data Mining and Computer Vision
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Name of the Registra-
tion Algorithm

Areas of Applications

Polynomial Affine Transfor-
mation (PAT)

Satellite image registration with topographic vec-
tor map. Registration of multi-dated satellite im-
age for image change detection and Land use land
cover change detection.

Similarity Transformation
(ST)

Registration of medical image for change detec-
tion analysis of ocular deformation and malign
tumor detection.

Scale Invariant Feature De-
tection (SIFT)

Registration of images with varying scale and
lighting conditions. For multi-sensor data fusion
and computer vision applications.

Log-Polar Transformation For registration of medical image in data mining
applications such as detection of cancerous cells
in the MRI (Magnetic Resonance Imaging)

TABLE 5.1
Applications of Image Registration Algorithms

(CV), GIS. Image registration is an essential prerequisite for image change
detection which has a vast array of applications in diverse domains. The table
below gives a candidate application of image registration algorithms.

Applications of these image registration techniques in different domains
are given for a better appreciation their usage 5.6. Image registration is very
important for fusion of images from same sensor or from different sensors
so that the pixel level correlation of the images is obtained. Image fusion
is used for sharpening of defocused images or restoration of noisy images.
Also to enhance images radiometric and spatial resolution image fusion is
used which in turn depends on highly accurate image registration techniques.
Registration of medical images obtained using PET or MRI of the similar area
of the body in a controlled environment, Similarity transformation is used
for registration. Medical image registration is a prerequisite for detection of
change. Generally the changes are detected in retinal cell of the eye ball or
detection of tumor or cancerous cells from medical images. Change detection
using multi-dated satellite images finds application in many domains. One
such application is for land use and land cover analysis using remotely sensed
images. Because the images used are obtained using same satellite, PAT is
the best used for registration of these multi-dated satellite images. Detection
of objects of operational interest from satellite images using different sensors
or images taken with different radiometric and illumination conditions are
useful for extraction of terrain intelligence. Since the images to be registered
or compared are of different scale and illumination condition, SIFT is the best
prescribed method for feature extraction and registration.
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5.7 Summary

This chapter presents a brief review of research literatures reporting the im-
age registration techniques. The various sources of errors in satellite image
are discussed. The definition of image registration followed with the basic
concepts and taxonomy of image registration techniques are given for better
appreciation of the computing steps involved. The generic steps involved in
registration of images are discussed. Important image registration techniques
such as Polynomial Affine Transformation (PAT), Similarity Transform, Scale
Invariant Feature Transform (SIFT), Fourier Mellin Transformation and Log-
Polar Transformation were discussed in detail. From the analysis of these
registration algorithms it can be easily concluded that if the translation, ro-
tation and scaling parameters of the image with respect to the image to be
registered are known then similarity transformation is to be used to achieve
the registration. This registration process is the easiest and highly accurate.
If none of the parameters of the images to be registered are known and few
distinguished features are common between the images then PAT is the best
method for registration. PAT achieves relatively low accuracy registration in
comparison to similarity transformation. If the images to be registered are
obtained in different lighting and radiometric conditions SIFT is the best to
select the similar features and establishing correspondence between them be-
fore registration. This is a highly robust and efficient technique which used
scale space properties of the image for selection of key feature in the image for
correspondence. If the images are taken in a controlled environment such as
medical images then Fourier Mellin Transformation and Log-Polar Transform
are the best techniques for registration.





6

Differential Geometric Principles and
Operators

Differential geometry constitutes of a set of mathematical methods and opera-
tors which are useful in computing geometric quantities of discrete continuous
structures using differential calculus as discussed by Koenderink [28],[29]. It
can be described as a mathematical tool box for describing shape through
derivatives. The assumption made in differential geometry is that the geo-
metrical structures such as curves, surfaces, lattices etc. are everywhere dif-
ferentiable and there are no sharp discontinuities such as corners or cuts. In
differential geometry of shape measures, there is no global coordinate system.
All measurements are made relative to the local tangent plane or normal. Al-
though image is spatial data, there is no coordinate system associated with
an image. In case of a geo-coded, geo-referenced satellite image, a global co-
ordinate system such as UTM (Universal Transverse Mercator) is implicitly
associated. Also for the sake of referencing, the positional value of each pixel in
an image it is often associated with a coordinate system that defines the posi-
tion of the origin. The intensity of the images is treated as perpendicular to the
image plane or the ‘Z’ coordinate of the image making it a 3D surface. Further
the application of pure geometry in GIS is discussed by Brannan et al. [6].

The following geometric quantities can be computed from the intensity
profile corresponding to an image and analyzed using differential geometry.

1. Gradient

2. Curvature

3. Hessian

4. Principal curvature, Gaussian curvature and mean curvature

5. Laplacian

6.1 Gradient (First Derivative)

Gradient is the primary first-order differential quantity of a surface. For the
intensity profile of an image, gradient at pixel location can be computed. The
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gradient of a function f(x, y) is defined by Equation 6.1.

5f(x, y) =

(
df(x,y)
dx

df(x,y)
dy

)
(6.1)

Gradient 5f is a 2D vector quantity. It has both direction and magnitude
which vary at every point. Following are the properties of gradient or inferences
that can be concluded from the gradient:

1. The gradient direction at a point is the direction of the steepest
ascent/descent that point.

2. The gradient magnitude is the steepness of that ascent/descent

3. The gradient direction is the normal to the level curve at that point.

4. The gradient defines the tangent plane at that point.

Hence the gradient can be made use of to compute universal first order in-
formation about the change of gradient which is akin to spectral undulation in
the terrain surface at the point of an image. One of the fundamental concepts
of differential geometry is that, we can describe local surface properties with
respect to the coordinate system dictated by the local surface which in our
case is an image surface. It is not computed with respect to a global frame of
reference or coordinate system. This concept is known as ‘gauge coordinate’,
which is a coordinate system that the surface carries along with itself wherever
it goes. This is apt for image surfaces which are being analyzed independent
of the global coordinate system in a display device, hard copy or projected
screen. Gradient direction is one of the intrinsic properties of the image, in-
dependent of the choice of spatial coordinate axis. The gradient direction and
its perpendicular constitute the first order gauge coordinates, which are best
understood in terms of the images level. An iso-phote is a curve of constant
intensity. The normal to the iso-phote curve is the gradient direction of the
image.

6.2 Concept of Curvature

In mathematics, curvature refers to a number of loosely related concepts in
different areas of geometry. Intuitively, curvature is the amount by which a
geometric object deviates from being flat, or straight in the case of a line.
Curvature is defined in different ways depending on the context. There is a
key distinction between extrinsic curvature and intrinsic curvature. Extrinsic
curvature is defined for objects embedded in Euclidean space in a way that
relates to the radius of curvature of circles that touch the object. Intrinsic
curvature of an object is defined at each point in a Riemannian manifold. The
canonical example of extrinsic curvature is that of a circle, which everywhere
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has curvature equal to the reciprocal of its radius. Smaller circles bend more
sharply, and hence have higher curvature. The curvature of a smooth curve is
defined as the curvature of its osculating circle at each point.

In a plane, this is a scalar quantity, but in three or more dimensions it is
described by a curvature vector that takes into account the direction of the
bend as well as its sharpness. The curvature of more complex objects (such as
surfaces or even curved n-dimensional spaces) is described by more complex
objects from linear algebra, such as the general Riemannian curvature tensor.

From differential geometric point of view curvature is the second order
derived geometric quantity of a curve or surface. Curvature is the simplest
form of expressing the magnitude or rate of change of gradient at a point in
the surface. The curvature which usually is used in calculus is the extrinsic
curvature.

In 2D plane let the optical profile be defined by the parametric equation
x = x(t) and y = y(t). Then the curvature ‘K’ is defined by equation 6.2

dΦ

dt
=

dΦ
ds
ds
dt

=
dΦ
ds√

(dxdt )2 + (dydt )2
(6.2)

where Φ is the tangent angle to the surface and ‘t’ is the arc length of the
surface. Curvature has the unit of inverse distance. The derivative of the
numerator of the above equation can be derived using the identity

tanΦ =
dy

dx
=

dy
dt
dx
dt

=
y
′

x′
(6.3)

Therefore,
d(tanΦ)

dt
= Sec2Φ

dΦ

dt
=
x
′
y
′′ − y′x′′

x′2
(6.4)

dΦ

dt
=

1

Sec2Φ

d(tanΦ)

dt
=

1

1 + tan2Φ

x
′
y
′′ − y′x′′

x′2
=
x
′
y
′′ − y′x′′

x′2 + y′2
(6.5)

Combining equations 6.4 and 6.5 the curvature can be computed using the
differentiale equation 6.6

k =
x
′
y
′′ − y′x′′

3
√
x′2 + y′2

(6.6)

The curvature derived in the above equation 6.6 is for a parametric surface.
The curvature in this is known as principal curvature and is usually computed
where the surface is continuous and differential and double differential of the
surface function is easily computable. For a one-dimensional curve function
given by y = f(x) the above formula reduces to

k =
d2y
dx2

3

√
(1 + ( dy

dx
)2)

(6.7)
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For normal terrain surface where the change in the elevation is not rapid
with respect to the displacement in the plane the slope is varying gradually.
Hence one can assume the dy/dx < 1 and hence the square of the gradient is far
less than one making the denominator of the above equation approximately
equals to unity. This assumption may not hold true for highly undulated
terrain surface.

k =
d2y

dx2
(6.8)

In the case of a satellite image which represents the optical profile of the
terrain surface, the terrain surface is a grid of pixel values. This is a discrete
representation of the continuous surface in the form of a matrix. The pixel
values are discrete surrounded by eight pixels in all cardinal directions, except
for the pixels in the boundary of the image. To compute the curvature of such
surfaces at any grid point, the above formula given in equation 6.8 is used in
a modified manner known as Hessian.

An approximate computation of curvature of a continuous surface can be
obtained from the second order differential of the surface. This concept is
extended to a discrete surface represented in the form of a matrix of values
and is implemented through Hessian. Hence curvature of the optical profile of
an image given in the form of a matrix is computed using the Hessian matrix
which is discussed in the next section.

6.3 Hessian: The Second Order Derivative

The second-order derivative of a surface gives the rate of change of the gradient
in the surface which is often connoted as the curvature. This is computed using
the matrix of the second order derivatives which is known as the Hessian.
An image can be mathematically modeled to be a surface in 2D given by
I = f(x, y), where I is the value of intensity which is a function of the spatial
location (x, y) in the image plane. The Hessian of such a surface is given by
equation 6.9:

H(x, y) =

(
∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2

)
(6.9)

As the image is not associated with any coordinate system, the ordering
of the pixel index can be considered from any arbitrary origin of the image.
Therefore

∂2I

∂x∂y
=

∂2I

∂y∂x
(6.10)

Also, the value of intensity in an image is always positive and definite.
There is no negative intensity value in the image profile. These two make the
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Hessian matrix a real, symmetric matrix. One can use Hessian to calculate
the second order derivatives in any direction because Hessian is a real and
symmetric matrix having the following mathematical properties.

• Its determinant is equal to the product of its eigenvalues and is invariant to
the selection of the spatial coordinate (x, y).

• The trace of Hessian matrix Tr(H) (i.e. the sum of the diagonal elements)
is also invariant to selection of x and y.

The eigenvalues and eigenvectors of Hessian matrix have great significance
which is exploited in the next section to study the geometrical topology of the
surface. Eigenvalues play a crucial role to classify the changed pixels into 2D
(planar) change or 3D (curved) change category. The physical significances of
the eigenvalues are:

1. The first eigenvector (corresponding to the higher eigenvalue) is the
direction of the surface curvature with maximum magnitude

2. The second eigenvector (corresponding to the smaller eigenvalue)
has the smallest magnitude) is the direction of least curvature in
the surface.

3. The magnitude of curvature in the surface is proportional to the
magnitude of the eigenvalues.

The eigenvalues of ‘H’ are called the principal direction of pure curvature
and they are always orthogonal. The eigenvalues of Hessian are also called the
principal curvature and are invariant under rotation. The principal curvatures
are denoted as λ1 and λ2 and are always real valued. Principal curvature of a
surface is the intrinsic property of the surface. This means the direction and
magnitude of principal curvature are independent of the embedding of the
surface in any frame of reference or coordinate system.

6.4 Gaussian Curvature

Gaussian curvature is the determinant of Hessian matrix ‘H’ which is equal to
the product of principal curvatures λ1 and λ2. Gaussian curvature is denoted
as ‘K’, and is computed by equation 6.11.

K = Det(H) = (λ1 ∗ λ2) (6.11)

The physical significance of Gaussian curvature can be interpreted as the un-
dulated amount of the surface of the terrain which is in excess to its perimeter.
In other words, if one has to make a surface flat, the excess surface with re-
spect to its planimetric area held by the perimeter of the surface has to be
removed. This excess surface area is equivalent to the Gaussian curvature.



112 Computing in Geographic Information Systems

FIGURE 6.1
Edge surface with Gaussian curvature K = 0, λ1 = 0 and λ2 < 0. The princi-
pal eigenvalues are directed in orthogonal directions.

The classification of the image surface can be done using the mean gaus-
sain curvature. For elliptic surface patches the curvature is positive in any
directions i.e. K ≥ 0.

In other words if H ≥ 0 then the surface is convex.
If H ≤ 0 then the surface is concave and curvature in any direction is

negative.
For hyperbolic patches: K ≤ 0, the curvature is positive in some direction

and negative in some other direction.
For K = 0, i.e. one or both of the principal curvature is zero, the surfaces

are known as parabolic curved surfaces and they lie in the boundary of elliptic
and hyperbolic regions.

Surfaces where λ1 = λ2 have principal curvature is same in all directions
then the surface can be categorized as planar surface or smooth surface. Often
such smooth surfaces are known as ‘umbilics’.

Surfaces where λ1 = −λ2 points having principal curvature same in mag-
nitude but opposite-sign are known as minimal points. The different types
of surfaces according to the relative value of Gaussian curvature and surface
normal are explained pictorially in Figures 6.1 to 6.3.

6.5 Mean Curvature

Mean curvature is the average of the principal curvatures λ1 and λ2 . It is
equivalent to half of the trace of Hessian matrix. The mean curvature is in-
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FIGURE 6.2
Saddle surface with Gaussian curvature K < 0, λ1 < 0 and λ2 > 0 The, prin-
cipal eigenvalues directed in orthogonal directions of the dominant curvatures

FIGURE 6.3
Blob-like surface with Gaussian curvature K > 0, λ1 < 0 and λ2 < 0, a convex
surface

variant to the selection of x and y making it an intrinsic property of the
surface. The mean curvature is given by equation 6.12.

H = (λ1 + λ2)/2 (6.12)
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6.6 The Laplacian

The Laplacian is simply twice the mean curvature and is equivalent to the
trace of H. It is also invariant to the rotation of the plane. The Laplacian is
given by equation 6.13.

Trace(H) = (λ1 + λ2) (6.13)

The measure of undulation of a terrain surface which can be proportional
to its mean curvature can be computed using equation 6.14. To understand
the concept of the deviation from flatness of a terrain surface the amount of
the undulated terrain in the surface can be computed using the eigenvalues
as given in equation 6.14.

Undulation = λ2
1 + λ2

2 (6.14)

Curvatures play an important role in study of shape of the terrain sur-
face [28],[29] for ‘shape classification’ in the coordinate system spanned by
the principal eigenvectors λ1Xλ2. However the shape descriptors are better
explained through its polar coordinate systems as given in equations 6.15 and
6.16 as shape angle and degree of curvature respectively.

S = tan−1λ1

λ2
(6.15)

C =
√

(λ2
1 + λ2

2) (6.16)

Degree of curvature is the square root of the deviation from flatness. Hence
image points with same S and having different C values can be thought of as
being the same shape with different stretch or scale.

6.7 Properties of Gaussian, Hessian and Difference of
Gaussian

Properties of Gaussian and Hessian functions poses important mathematical
properties to characterize profiles of geometric objects in general and topol-
ogy of the intensity profiles of the image in particular. Hence we discuss the
characteristics and mathematical properties of these functions manifested as
a window operator while processing images. What they yield when applied to
spatial data in the form of two dimensional matrix is quite interesting.
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6.7.1 Gaussian Function

The 2D Gaussian function is given in equation 6.17

G(x, y) =
1

2πσ2
∗ exp

x2+y2

2σ2 (6.17)

where x is the distance from the origin in the horizontal axis, y is the dis-
tance from the origin in the vertical axis, and σ is the standard deviation
of the Gaussian distribution. When applied in two dimensions, this formula
produces a surface whose contours are concentric circles with a Gaussian dis-
tribution from the center point. Values from this distribution are used to build
a convolution matrix which is applied to the original image. By computing the
2D Gaussian of a 3x3 window, the central pixel’s new value is set to a weighted
average of pixels surrounding it. The original pixel’s value receives the highest
weight and neighbouring pixels receive smaller weights as their distance to
the original pixel increases. Gaussian function applied to a 2D image through
a sliding window over the intensity profile of the image blurs the image by
reducing the local sharpness of the pixels. The amount of blurring depends
upon the spatial arrangements of the pixels, the size of the kernel and the
standard deviation of the Gaussian kernel. Hence successive application of
the Gaussian to an image captured as a 2D intensity profile of the surface
generates the scale space effect whereby it generates successive images which
the human eye perceives while moving away from the object. Gaussian func-
tion being exponential in nature does not alter the prime characteristic of
the image as the differential / integral / Fourier transformation of the Gaus-
sian results in a Gaussian function itself. Hence it is a potential method to
analyze and compare the image in the scale-space without altering its prime
characteristics.

6.7.2 Hessian Function

The Hessian function is given in equation 6.18 in the form of a 2D matrix
operator. Hessian when applied to a function gives the local curvature of the
function. 2D-Hessian manifests itself as a matrix of double differential of the
intensity profile of the image. Thus the local undulation of the terrain in the
form of intensity profile is captured in the 2D Hessian window of the image as
given in equation 6.18. For an image, which is a 2D matrix of intensity values,
the Hessian of the image is a square matrix of second-order partial derivatives
of the images intensity profile. Given the real-valued function f(x, y) = I the
Hessian is computed by a 2D matrix as given below.

H(x, y) =

(
∂2I
∂x∂x

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y∂y

)
(6.18)
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6.7.3 Difference of Gaussian

Difference of Gaussian (DoG) is an operation where the pixel-by-pixel differ-
ence of the Gaussian convolved gray scale image is obtained. First the gray
scale image I(x, y) is smoothened by convolving with the Gaussian kernel with
certain standard deviation σ to get
G(x, y) = Gσ(x, y) ∗ I(x, y)
where

Gσ =
1√

(2πσ2
exp[−x

2 + y2

2σ2
] (6.19)

Let the Gaussian at two different σ1 and σ2 be given by Gσ1
and Gσ2

respectively. The difference of Gaussian operator smoothes the high gray level
intensity of the image profile simulating the scale space as given by following
equation.

Gσ1
−Gσ2

=
1√
(2π)

[
1

σ2
1

exp
− (x2+y2)

2σ2
1 − 1

σ2
2

exp
− (x2+y2)

2σ2
2 ] (6.20)

DoG has a strong application in the area of computer vision and detection
of blobs [44],[43]. Some of the applications of differential geometry in analyzing
and visualizing digital images are discussed by Koenderink et al. [28],[29],[30].
Detection of blob refers in computer vision to detecting points and/or regions
in the image that differ in properties like brightness or colour compared to
the surrounding but have soft boundaries as opposed to crisp boundaries like
land and water interface. There are two main classes of blob detectors (1)
differential methods based on derivative expressions and (2) methods based
on local extrema in the intensity landscape. With the more recent terminol-
ogy used in the field, these operators can also be referred to as interest point
operators, or alternatively interest region operators. There are several mo-
tivations for studying and developing blob detectors. One main reason is to
provide complementary information about regions, which is not obtained from
edge detectors or corner detectors or algebraic method of change detectors. In
early work in the area, blob detection was used to obtain regions of interest
for further processing. These regions could signal the presence of objects or
parts of objects in the image domain with application to object recognition
and/or object tracking. In other domains, such as change detection and study
of curvature from intensity profile of image, blob descriptors can also be used
for peak detection with application to segmentation. Another common use of
blob descriptors is as main primitives for texture analysis and texture recog-
nition. In more recent work, blob descriptors have found increasingly popular
use as interest points of images with varying curvature that can be classified
into flat, elongated or spherical objects.
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6.8 Summary

Differential geometry plays a crucial role in computing and analyzing the ge-
ometric quantities from gridded data used in GIS. The differential geometric
methods Laplacian, Hessian, Gaussian can be modeled as difference equations
to compute values from 2D gridded data. Therefore in analyzing images the
image is modeled as a 2D array of intensity values often normalized to re-
alize a 3D surface. In this chapter the differential geometry methods such
as Laplacian and Hessian are used to compute the gradient and curvature
of the intensity surface. The relative value of the eigenvalues computed us-
ing the Hessian gives the geometric type of the surface. The interpretation of
the eigenvalues of the intensity surface is given for understanding the local
geometric property of the image surface.





7

Computational Geometry and Its
Application to GIS

Computational geometry is defined broadly as the design and analysis of al-
gorithms for solving problems involving geometric objects. Use of the term
‘computational geometry’ and its meaning differs in different application con-
texts. Most researchers in computer science interpret the subject as design
and optimization of algorithms involving geometric problems. The term ‘al-
gorithm design’ carries the connotation of discrete algorithms as opposed to
the algorithms used in numerical analysis. The numerical analysis problems
are used for solving computational problems in continuous domains. Com-
putational geometry is useful in solving problems of discrete combinatorial
geometry rather than continuous geometry. This chapter describes the com-
putational geometric algorithms in the context of their applications in GIS and
how these algorithms are used to process spatial data which are the primary
inputs of GIS.

Computational geometry emerged as a field of research three decades ago.
Since this area has been identified, a number of core geometric problems have
emerged. A number of computational geometric algorithms have been designed
to solve these problems. These algorithms are optimized for their computa-
tion time and memory. Research in computational geometry is progressing to
compute large volumes of geometric data and degenerate data. Therefore the
robust versions of these algorithms have been devised for processing the degen-
erate spatial data often encountered by GIS. These algorithms are important
for many applications, of great generality and applicability.

7.1 Introduction

Many of the problems that arise in application areas such as computer graph-
ics, computer-aided design and manufacturing, robotics, GIS, computer vision,
human-computer interface, astronomy, computational fluid dynamics, molec-
ular biology etc. can be described using discrete geometrical structures. These
problems can be solved using a set of algorithms known as computational
geometric algorithms. However it should be remembered that not all the geo-
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metric applications can be modelled using the discrete geometric structures or
solved using computational geometric algorithms. For example, problems in
computer vision and computer graphics to some extent are not modelled on the
Euclidean plane, but using a matrix of digitized locations of pixels. Problems
in computer-aided manufacturing often involve curved surfaces rather than
polyhedral surfaces. Problems in fluid dynamics are generally of a continuous
nature defined by differential equations. Thus, computational geometry as it
is commonly defined is not quite broad enough to address all problems in all
these areas. However, the field is broad enough such that virtually all of these
application areas can use some of the algorithms in computational geometry.
A good introduction to computational geometry along with the algorithms
and data structures has been compiled by Preparata and Shamos in [49].

The algorithms in computational geometry discussed in this chapter along
with their applications to GIS in the context of processing spatial data per-
taining to land, sea and air are listed below.

1. Algorithms to determine line-line intersection.

2. Algorithms to find whether a point lies inside a triangle, polygon,
circle, or sphere.

3. Algorithms for computing convex hull.

4. Computing triangulation of a simple polygon in 2D.

5. Computing Delaunay triangulation of a set of points in a plane.

6. Computing the Voronoi tessellation of a set of points in a plane.

These sets of algorithms are often called Computational Geometric Algo-
rithmic Library (CGAL). The input to CGAL algorithms are typically a finite
collection of geometric elements such as points(locations associated with place
names in the map), lines or line segments (communication lines such as roads,
rails, power transmission lines etc.), polygons (coverage of states within the
geographic boundary of a country, water bodies), polyhedrons, circles, spheres
in the Euclidean space.

7.2 Definitions

7.2.1 Triangulation and Partitioning

Triangulation is a generic method for subdividing a complex domain into a dis-
joint collection of ‘simple’ objects. A triangle is the simplest region into which
one can decompose a plane and this process is known as triangulation. The
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higher dimensional generalization of a triangle in 3D is a tetrahedron. There-
fore a 3D bounded volume can be decomposed to tetrahedrals. Triangulation
or domain decomposition or tessellation is typically a first step performed in
number of algorithms. These triangles are then subjected to computational
operations through an iterative process to compute the objective and analyze
the overall domain.

Triangulation ‘T ’ is tessellation of a polygonal region of the plane into non-
overlapping, continuous triangles Ti such that, their intersection is empty, or
it is coincident with a vertex, or an edge of both triangles.

T =

|Ti|∑
i=1

Ti (7.1)

where, |ti| is the number of triangles in the domain. Hence the domain of T
is the plane curved by its triangles. In addition to the above definition, if the
triangulation of the domain is such that, the circumcircle of each triangles
does not contains any other points of the domain then it is called Delaunay
Triangulation (DT). This is known as the empty circumcircle property of DT.

7.2.2 Convex Hull

Perhaps the first problem in the field of computational geometry is the problem
of computing convex hulls, that is, the smallest convex shape that surrounds a
given set of objects. In other words, it suffices to say that the convex hull can
be imagined as a stretched elastic membrane surrounding the objects which
snap tightly around the objects. It is an interesting problem both because of
its applications as an initial step towards solving other algorithms, and the
number of interesting algorithmic approaches that have been devised to solve
this problem.

Mathematically Convex Hull (CH) can be defined through the set theoretic
operations as follows.

Let S be a set of discrete objects in 2D plane. The set S is convex if

XεS ∧ Y εS ⇔ X̄Y εS (7.2)

Generally segment x̄y is the set of points x, y of the form αx+βy = 1 and
α ≥ 0 and β ≥ 0.

7.2.3 Voronoi Diagram and Delaunay Triangulation

Given a collection of points in space, perhaps the most important geometric
data structures for describing the relationships among these points and the
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relationship of any points in space to these points are very well addressed
by structures of the Voronoi diagram and DT. A number of important prob-
lems such as the notion of ‘proximity’ and ‘line of sight’ can be solved using
these two structures. These structures possess a number of beautiful mathe-
matical properties that distinguish them as important geometric structures.
Informally, the Voronoi diagram of a finite set of points in the plane is a sub-
division of the plane into disjoint regions, one for each point. The Voronoi
region of a point consists of the points in the plane for which this point is the
closest point of the set. The dual graph of the Voronoi diagram is the Delaunay
triangulation. Given a set P of M unique random points in an n-dimensional
space, Let us define a region Di such that
Di = {x : |x− pi| ≤ |x− Pj |,∀(i, j)}

Then the collection of the subdivisions Di is defined as the Voronoi tes-
sellation or Dirichilet tessellation of the set of points P that satisfies the
constraint

D =
m∑
m=1

Dm (7.3)

7.3 Geometric Computational Techniques

The most important aspect of solving computational geometric problems is
learning the design techniques needed in the creation of algorithms. Some of
the standard algorithm design techniques pursued in solving any problems
in computer science are divide-and-conquer, dynamic programming, greedy
technique etc. These techniques work perfectly with alpha numeric data or
data where indexing and sorting can be carried out easily. Spatial geometric
data often is associated with dimension and randomness. Therefore prepro-
cessing techniques have been developed to bring the spatial geometric data to
a representation where ordering and indexing can be applied. Some of these
techniques which are often treated as the pre-processing techniques in com-
putational geometry are:

1. Plane Sweep
2-dimensional problems can be converted into a dynamic 1-
dimensional problem by sweeping an imaginary line across the place
and solving the problem incrementally as the line sweeps across. In
general, if you can solve a dynamic version of a (d-1)-dimensional
problem efficiently, you can use that to solve a static d-dimensional
problem using this technique. A radial sweep line algorithm for con-
struction of Triangular Irregular Network (TIN) has been developed
by Mirante et al. [38]. An Implementation of Watsons algorithm for
computing 2D Delaunay triangulation is discussed in [46],[47].
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2. Randomized incremental algorithms
One of the simplest techniques for the construction of geometric
structures is the technique of adding objects to the structure one
by one in some order [16]. It turns out that for any data set there
may be particularly bad orders in which to insert things (leading
to inefficient running times), as well as particularly good orders
(leading to efficient running times). It is difficult to know in advance
what the proper insertion order of items should be, but it is true
for many problems that a random insertion order is efficient with
high probability.

3. Fractional cascading
One important technique needed in the design of efficient geometric
search problems is that of cascading a sequence of complex decisions
up a search tree to generate a longer sequence of simple decisions.
This technique has applications in a large number of search prob-
lems.

7.4 Triangulation of Simple Polygons

The problem of triangulating polygons can be introduced by way of an ex-
ample in the field of combinatorial geometry. Combinatorial geometry is the
field of mathematics that deals with counting problems in geometry. Combi-
natorial geometry and computational geometry are closely related, because
the analysis and design of efficient geometric algorithms often depends on a
knowledge of how many times or how many things can arise in an arbitrary
geometric configuration of a given size.

A polygonal curve is a finite sequence of line segments, called edges
joined end to end. The endpoints of the edges are vertices. For example,
let v0, v1, .., vn denote the set of n+1 vertices, and let e0, e1, .., en−1 denote
a sequence of n edges, where ei = vivi+1. A polygonal curve is closed if the
last endpoint equals the first vn = v0. A polygonal curve is simple if it is not
self-intersecting. More precisely this means that each edge ei does not inter-
sect any other edge, except for the endpoints it shares with its adjacent edges
(Figure 7.1).

The famous Jordan curve theorem states that every simple closed plane
curve divides the place into two regions i.e. the interior and the exterior re-
gions. Although the theorem seems intuitively obvious, it is quite difficult to
prove, and many erroneous proofs were announced before Jordan finally pro-
duced a correct proof. A polygon can be defined as the region of the plane
bounded by a simple, closed polygonal curve. The term simple polygon is also
often used to emphasize the simplicity of the polygonal curve.
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FIGURE 7.1
Polygonal curves

Let us denote the interior of the polygon, as int(P), as an open set which
does not contain the boundary. When discussing a polygon P, sometimes it
is the interior region of the polygon, that is of interest. Therefore unless ex-
plicitely mentioned a polygon means unambiguously the int(P).

O’Rourke makes the rather standard convention that when dealing with
polygons, the edges are directed in counter clockwise order about the bound-
ary. Thus the interior of the polygon int(P) is locally to the left of the directed
boundary. Such a listing of the edges is called a boundary traversal.

7.4.1 Theory of Polygon Triangulation

Before getting to discussion of algorithms for polygon triangulation, it is per-
tinent to establish some basic facts about polygons and triangulations. These
facts may seem obvious but one must look at them carefully when making ge-
ometric arguments. It is quite easy to draw pictures so that a fact appears to
be true but in fact the fact is false. For example, many of the facts described
here do not hold in 3D space.

Lemma: Every polygon contains at least one strictly convex vertex (a ver-
tex whose interior angle is strictly less than π).

Proof: Consider the lowest vertex v in P (i.e. having the minimum y-
coordinated). If there are more that one such vertices consider the rightmost.
Consider a horizontal line L passing through v. Clearly the vertices adjacent
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FIGURE 7.2
Existence of a diagonal

to v lie on or above L, and the vertex immediately following v must lie strictly
above L. It follows that the interior angle at v is less that π.

Lemma: Every polygon of n ≥ 4 vertices has at least one diagonal.

Proof: Let v be a strictly convex vertex (one exists). Let a and b be the
vertices adjacent to v. If ab is a diagonal then we are done. If not, because
n ≥ 4, the closed triangle avb contains at least one vertex of P . Let L be the
line through ab. Imagine for concreteness that L is horizontal. See Figure 7.2

Move a line parallel to L through v upwards, and let x be the first vertex
hit by this line within the triangle. The portion of the triangle swept by the
line is empty of the boundary of P , and so the segment xv is a diagonal.

The above lemma does NOT hold for polyhedral in 3D or higher dimen-
sions.

Lemma: Every polygon with n vertices can be partitioned into triangles
by the addition of (zero or more) diagonals.

Proof: The proof is by induction on n. If n = 3 then the polygon is a
triangle and we are done. If not, then by the previous lemma we can find
a diagonal. The addition of this diagonal partitions the polygons, each with
fewer vertices than the original . By the induction hypothesis, we can partition
these into triangles.

Lemma: The number of diagonals in the triangulation of a n vertex poly-
gon is n-3. The number of triangles is n-2.
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FIGURE 7.3
Dual graph triangulation

Proof: Because the addition of each diagonal breaks the polygon into two,
one with k vertices (k ≥ 3) and the other with nk + 2 vertices (the extra 2
are because the two vertices on the diagonal are shared by both parts), the
following recurrence relation holds.

D(3) = 0
D(n) = 1 + D(k) + D(n k +2) for 3 ≤ k ≤ n− 1

and

T(3) = 1
T(n) = T(k) + T(n k +2) for 3 ≤ k ≤ n− 1

These can be solved easily by induction on n, D(n) = n3 and T (n) = n−2.
Note that the specific value of k is irrelevant; the argument works for any k
in the specified range.

An immediate corollary to the above proof is that the sum of internal an-
gles is (n− 2)π, because each triangle contributes π to the sum, and the sum
of triangle angles is the sum of interior angles.

7.4.2 Dual Tree

A graph can be created in which each vertex of the graph is a triangle of the
triangulation, and two vertices in this graph are adjacent if and only if the
two triangles share a common diagonal. Such a graph is called the dual graph
of the triangulation. An important property of the dual graph is the following.
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Lemma: The dual of a triangulation of a simple polygon is a tree (i.e. a
connected, acyclic graph) of degree at most 3.

Proof: The fact that the degree is at most 3 is a simple consequence of
the fact that a triangle can have at most 3 diagonals. It is easy to see that
the graph is connected, because the interior of the polygon is connected. To
see that there are no cycles, imagine to the contrary that there was a cycle.
From this cycle in the dual graph, one can construct a closed path in the
interior of the polygon. Either side of this path contains at least one vertex
of the polygon. Since each vertex of the polygon is on the boundary of the
polygon, this path separates the exterior of the polygon into two disconnected
regions. However, by the Jordan curve theorem, the exterior of the polygon is
a connected region.

Define an ear to be a triangle of the triangulation that has two edges on
the boundary of the polygon, and the other edge is a diagonal. An interesting
(and important) fact about polygon triangulations is the following:

Lemma: Every triangulation of a polygon with n ≥ 4 vertices has at least
2 ears.

Proof: An ear is represented as a leaf in the dual tree. Every polygon
with at least 4 vertices has at least 2 triangles, and hence at least 2 nodes in
its dual tree. It is well known that every (free) tree of at least 2 nodes has at
least 2 leaves.

We cannot give the proof that the triangulation of every polygon can be 3
coloured. The proof is by induction. If n = 3 then this easy. If n ≥ 4, then cut
off an ear of the triangulation. Inductively colour the remaining triangulation
graph. Now restore the ear. The ear shares two vertices in common with the
coloured polygon, and so these clolours are fixed. We have exactly no choice for
the remaining vertex. (Note that this not only implies that the triangulation
graph is 3 colourable, but up to a permutation of the colours, the colouring is
unique.)

7.4.3 Polygon Triangulation

The discussion of the implementation of a very simple (but asymptotically
inefficient) algorithm for polygon triangulation is continued in [39], [40].

7.4.3.1 Order Type

The fundamental primitive operation upon which most of the theory of 1-
dimensional sorting and searching is based is the notion of ordering, namely
that numbers are drawn from a totally ordered domain, and this total ordering
can be used for organizing data for fast retrieval.

Unfortunately, there does not seem to be a corresponding natural notion
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of ordering for 2 and higher-dimensional data. However, interestingly there is
still a notion of order type.

Given two (1-dimensional) numbers, a and b, there are 3 possible relation-
ships, or order types, that can hold between them:

a<b, a = b, a>b

This relation can be described as the sign of the quantity, ab. More gener-
ally, in dimension 2, we can define the order type of three points, a, b, and c
as:

1. a, b, and c form a clockwise triple.

2. a, b, and c are collinear.

3. a, b, c form a counter clockwise triple.

Similarly, for four points in dimension 3, we can define the order type of
these points as: they form a left-handed screw, they are coplanar, or they form
a right-handed screw. Interestingly, all of these order-relations fall out from
a single determinant of the points represented. These can be illustrated for
pairs a and b in 1-space, triples a, b, and c in the plane, and quadruples a, b, c
and d in 3 space. The coordinates of a point a are denoted (a0, a1, a2, ..., ad−1).

Ord(a, b) =

∣∣∣∣ a0 1
b0 1

∣∣∣∣
ord(a, b, c) =

∣∣∣∣∣∣
a0 a11
b0 b11
c0 c11

∣∣∣∣∣∣
ord(a, b, c, d) =

∣∣∣∣∣∣∣∣
a0 a1a21
b0 b1b21
c0 c1c21
d0 d1d21

∣∣∣∣∣∣∣∣
It is well known that the value of Ord(a,b,c) in the plane is the signed

area of the parallelogram defined by these vectors, or twice the area of the
triangle defined by these points. The area is signed so that if the points are
given in counter clockwise order the area is positive, and if given in clockwise
order the area is negative. In general, it gives d times the signed volume of
the simplex defined by the points. An interesting consequence of this is the
following formula.

Theorem: Area of a polygon Given a simple polygon P with vertices
v0, v1, ., vn−1, where vi = (xi, yi) the area of P is given by: 2A(P ) =∑n−1
i=0 (xiyi + 1− yixi + 1)
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Proof: The proof comes about by computing the sums of the signed area
of the triangles defined by any point in the plane (e.g. the origin) and the
edges of the polygon, and expanding all the determinants given above, and
then simplifying.

This theorem can also be generalized for computing volumes, where the
term in the summation is over the determinants of the simplicial faces (e.g.
triangles in 3-space) of the boundary of the polyhedron.

Note that in low dimensional space (2 and 3) these determinants can be
computed by simply expanding their definitions. In higher dimensions it is
usually better to compute determinants by converting it into upper triangular
form by, say, Gauss elimination method, and then computing the product of
the diagonal elements.

7.4.4 Line Segment Intersection

In the naive triangulation algorithm, an important geometric primitive which
needs to be solved is computing whether two line segments intersect one an-
other. This is used to determine whether the segment joining two endpoints
vi and vj is a diagonal. The problem is, given two line segments, represented
by their endpoints, (a, b) and (c, d), to determine whether these segments
intersect one another. The straight forward way to solve this problem is
to

1. Determine the line equations on which the segments lie. (Beware:
If either of the lines are vertical, the standard slope/intercept rep-
resentation will be undefined.)

2. Determine the (x,y) coordinates at which these two lines intersect.
(Beware: If the lines are parallel, or if they coincide, these must
be treated as special cases. Observe that even if the input points
are integers, this point will generally be a non-integer [rational]
value.)

3. Determine whether this point occurs within both of the line seg-
ments.

In spite of the obvious importance of this simple primitive, the above
code is rather complex and contains a number of special cases which require
careful coding. A number of the different types of segments and special cases
to consider are shown below.

A methods which uses only integer arithmetic (assuming the input coor-
dinates are integers) and avoids any of these problems is proposed. A test
is built up by combining primitive operations, starting with the orientation
test. Because the orientation test returns twice the signed area of the triangle,
O’Rourke [40] calls it Area2.
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FIGURE 7.4
Types of line segment intersections

Int Area2(a, b, c) { return a[0]*b[1] a[1]*b[0]+ a[a]*c[0] [0]*c[1]+ b[0]*c[1]
b[1]*c[0]; }
The first primitive is a test whether a point c lies to the left of the directed
line segment āb.
bool Left(a, b, c)
{
return Area2(a, b, c) >0; // is c left of ab?
}
bool Lefton(a, b, c)
{
return Area2(a, b,c) >=0; // is c left of or on ab?
}
bool Collinear(a, b, c)
{
return Area(a, b, c) == 0; // is c on ab?
}

To determine whether two line segments intersect, one can begin by dis-
tinguishing two special cases, one is where the segments intersect transversely
(they intersect in a single point in their interiors). O’Rourke calls this a proper
intersection. This is the normal case, so we test for it first. Notice that if there
is a non-proper intersection (collinear lines, T-junction, or end-to-end), then
at least 3 points must be collinear. Otherwise, it suffices to test that the points
c and d lie on opposite sides of the line segment āb. From this we get the fol-
lowing code for proper intersection.

bool IntersectProp(a, b, c, d)
{
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If((Collinear(a,b,c) ||Collinear(a, b, d) ||Collinear(c, d, a) ||Collinear(c, d, b))
return False;
else
return Xor((Left(a, b, c), Left(a, b, d)) && Xor(Left(c, d, a), Left(c, d, b));
}

The function Xor is the eXclusive-or operator, which returns ‘True’ if one
and only one of the arguments is True. For improper intersections, it is needed
to test whether one of the endpoints of ‘cd’ lies within the segment āb, or vice
versa. This can be done by a betweenness test, which determines whether a
point ‘c’ is collinear and lying on the segment āb (including the segment’s
endpoints). The overall intersection test just tests for proper and improper
intersections.

bool Between(a, b, c)
{
If( ! Collinear(a, b, c)) return False; // not collinear
If((a[X] ! = b[X])
return ((a[x] <= c[x] && c[x] <= b[x])) ||((a[x] >= c[x] && (c[x] >= b[x]));
else
return(( a[y] <= c[y] (c[y] <= b[y])) ((a[y] >= c[y] && ( c[y] >= b[y]));
}

bool Intersect(a, b, c, d)
{
If(IntersectProp(a, b, c d)) return True;
else if(Between(a, b, c) ||Between(a, b, d) ||Between(c, d, a) ||Between(c, d,
b)) return True;
return False;
}

7.4.5 Finding Diagonals in a Polygon

One can use the code above to test whether a line segment vivj in a polygon
is a diagonal Figure. 7.5. The test consists of two parts.

1. Test whether vivj intersects any edge vkv(k+1) along the boundary
of the polygon. (Note that indices are taken modulo n.) The edges
that are adjacent to vi and vj should not be included among these
edges.

2. Test whether the segment vivj lies interior to the polygon locally
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FIGURE 7.5
Diagonal test in a polygon

in the vicinity of vi and vj . This is needed to discard segments that
lie entirely on the exterior of the polygon.

The second test can be performed using the same left predicate. Details
are in O’Rourke [40]. Observe that intersection testing runs in O(1) time,
and since we repeat this against every edge of the polygon the whole test is
O(n) in time, where n is the number of vertices in the polygon. A detailed
discussion of implementing computational geometric algorithms using c and
C++ computer language has been discussed by Joseph O’Rourke in his book
Computational Geometry Using C [40].

7.4.6 Naive Triangulation Algorithm

A simple but not very inefficient triangulation algorithm for triangulating a
polygon can be designed using the diagonal finding test. Test for each potential
diagonal, vivj , using the diagonal test. Each such test takes O(n) time. When
you find a diagonal, remove it. Split the polygon into two sub-polygonals,
times O(n) for each diagonal test, followed by two recursive calls. Since there
are a total of (n - 3) diagonals to be found, one can argue that the worst-case
running time for this algorithm is O(n4).

An improvement to the above method can be done by observing that the
test needs to be performed for ear-diagonals. We consider each ear-diagonal,
vi−1, vi+1, and apply our diagonal test. Each such test takes O(n) time. Since
there are only O(n) potential ears, and hence O(n) potential ear-diagonals,
this takes O(n2) time. We still need to apply this O(n) times to find diagonals,
leading to an O(n3) algorithm.
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FIGURE 7.6
Graham’s scan

7.5 Convex Hulls in Two Dimensions

In this section three algorithms, the Graham’s scan algorithm, the divide
and conquer algorithm and the QuickHull algorithm, are discussed. These
algorithms compute the convex hull of a set of random points given in the 2D
plane.

7.5.1 Graham’s Scan:

The first O(n logn) worst-case algorithm for computing the convex hull for a
set of points in 2D was developed by Graham. The idea is to first topologically
sort the points, and then use this ordering to organize the construction of the
hull. How do we topologically sort the points? A good method is to sort
cyclically around some point that lies either inside or on the convex hull.
A convenient choice is lowest point (and rightmost if there are ties). Call
this point p0. Compute the angle formed between a horizontal ray in the +x
direction from this point and each point of the set. Sort the points by these
angles. (If there are ties, we place points closer to p0 earlier in the sorted
order.)

We will walk through the points in sorted order, keeping track of the hull
formed by the first point seen so far. These points will be stored in a stack.
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(O’Rourke suggests using a linked list to represent this stack.) The essential
issue at each step is how to process the next point, pi. Let pt and pt−1 denote
the vertices that currently at the top and next to top positions on the stack.
If pi lies strictly to the left of the directed segment ¯pt−1pt (which we can
determine by an orientation test) then we add pi to the stack. Otherwise, we
know that pt cannot be on the convex hull. Why not? (Because the point pt
lies within the triangle popt−1pi , and hence cannot be on the hull.) We pop
pt off the stack. We repeat the popping until pi is strictly to the left of the
previous hull edge. Graham’s scan algorithm has been discussed by Preparata
et al. in [49].

7.5.1.1 Steps of Graham’s Scan

1. Find the rightmost lowest point p[0];

2. Sort points angularly about p[0], store in p[l],p[2],.. ,p[n 1];

3. Stack S = Φ. Push n - 1. Push 0. i = 1;

4. While i <n do:

•if p[i] is strictly left of (p[S[( top l]],p[S[t]]) then push i and i
= i+ 1;

•otherwise pop S;

5. Pop S (since p[n 1] was pushed twice).

6. Output the contents of S.

To analyze the running time of Graham’s scan, observe that we spend
O(n logn) initially in sorting the points. Each subsequent iteration of the loop
takes O(1) time to either (1) push a new point on the stack of hull vertices, or
(2) pop a point off this stack. Observe that each point in the data set can be
pushed at most once, and popped at most once. Therefore, the total number
of pushes and pops is at most 2n. Since each can be processed in O(1) time,
the overall time is O(n logn) for sorting plus O(n) time for hull computation.

The implementation of Graham’s scan is given in O’Rourke. In its im-
plementation, one thing which is an important primitive is that of computing
angles while sorting the points. The standard method for doing this is to com-
pute the vectors ri = pi − po for 1 ≤ i<n. The angle we desire is essentially
the slope of the vector ri, which can be computed using a inbuilt function in
standard mathlib procedure atan2(). An improvement and better method is
not to compute angles at all, but work with slopes. It can be observed that to
sort the vectors ri according to slope the basic comparison which is needed is
whether

ri[X]

ri[Y ]
<
rj [X]

rj [Y ]
(7.4)
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FIGURE 7.7
Push and pop operation

Recall that because of the choice of p0, all the y-coordinates of these vec-
tors are non-negative. Thus we can convert this into an equivalent integer
condition:

ri[X] ∗ rj [Y ]<rj [X] ∗ ri[Y ] (7.5)

A further improvement to this method is to use the orientation test already
discussed in the previous section. To compare p1 with p2 in the ordering, it
suffices to test the orientation of the triple (p0, p1, p2). If positive then p1<p2,
if negative then p2<p1, and if zero, we need to compute the vectors r1 and
r2 and compare their (squared) lengths. This has the advantage of using the
already constructed tools.

7.6 Divide and Conquer Algorithm

Another O(n logn) algorithm for computation of convex hull is based on the
divide and conquer strategy. This algorithm can be viewed as a generalization
of the merge sort algorithm. The outline of the algorithm is given below.
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7.6.1 Divide and Conquer Convex Hull

1. Sort the points by x-coordinate.

2. Divide the points into two sets A and B, where A consists of the
left [n/2] points and B consists of the right [n/2] points.

3. Recursively compute HA = conv(A) and HB = conv(B). (Note: The
sorting step does not need to be repeated here.)

4. Merge the two hulls into a common convex hull, H and output this
hull.

The recursion bottoms out when the current set consists of three or fewer
points, in which case it is trivial to compute the hull in O(1) time. Clearly the
initial sorting takes O(n logn) time. For the rest of the algorithm, the running
time is given by the recurrence relation,

T (n) = f(n) + 2T (
n

2
) (7.6)

It is known that this recurrence solves to T(n) ε O(nlogn) if f(n) ε O(n).
Thus, we need to figure out how to merge two convex hulls of size n/s in
time O(n). One thing that simplifies the algorithm is the knowledge that the
hulls are separated from each other by a vertical line (assuming no duplicate
x-coordinates). The merging process boils down to computing two tangent
lines, an common upper tangent and a common lower tangent to the two hulls
and then discarding the portions of the hulls lying between these tangents.
This process is depicted in Figure 7.8.

How are these tangents computed? Let’s concentrate on the lower tangent.
The upper tangent is similar. The algorithm operates by a simple walking pro-
cedure. We initialize a to be the rightmost point of HA and b is the leftmost
point of HB . (These can be found in linear time.) Lower tangency is a condi-
tion that can be tested locally by an orientation test of the two vertices and
neighbouring vertices on the hull. (This is a simple exercise.) We iterate the
following two loops, which march a and b down, until they reach the point’s
lower tangency.

7.6.1.1 Lower Tangent

1. Let a be the rightmost point of HA

2. Let b be the leftmost point of HB

3. While ab is not a lower tangent for HA and HB do:

While ab is not a lower tangent to HA do a = a + 1; (move a
clockwise)

While ab is not a lower tangent to HB do b = b +1 ; (move b
counter clockwise)

4. Return ab
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FIGURE 7.8
Computing the lower tangent

7.6.2 Quick Hull

One technique for constructing geometric algorithms for 2-dimensional prob-
lems is to attempt to generalize some 1-dimensional algorithm. Here is one
method for generalizing QuickSort, called QuickHull. Like QuickSort, this al-
gorithm runs in O(n logn) time for favorable inputs and 0(n2) time for unfa-
vorable inputs. However, unlike QuickSort, there is no obvious way to convert
it into a randomized algorithm with 0(n logn) expected running time. How-
ever, like QuickSort, this algorithm tends to perform very well in practice,
because the worst-case scenarios tend to be rare.

The intuition is that most of the points lie within the hull, rather than
on its boundary, so think of a method that discards interior points as quickly
as possible. QuickHull begins by computing the points with the maximum
and minimum, x- and y-coordinates. Clearly these points must be on the
hull. Horizontal and vertical lines passing through these points are support
lines for the hull, and so define a bounding rectangle, within which the hull
is contained (Figure 7.9). Furthermore, the convex quadrilateral defined by
these four points lies within the convex hull, so the points lying within this
quadrilateral can be eliminated from further consideration. All of this can be
done in 0(n) time.

To continue the algorithm, we classify the remaining points into the 1
corner triangles that remain. In general, as this algorithm executes, we will
have an inner convex polygon, and associated with each edge we have a set of
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FIGURE 7.9
QuickHulls initial quadrilateral

points that lie outside of that edge. (More formally, these points are witness
to the fact that this edge is not on the convex hull, because they lie outside
the half-plane defined by this edge.) When this set of points is empty, the edge
is a final edge of the hull. Consider some edge ‘ab’. Assume that the points
that lie outside of this hull edge have been place in a bucket that is associated
with ‘ab’. The task is to find a point ‘c’ among these points that lies on the
hull, discard the points in the triangle ‘abc’, and split the remaining points
into two subsets, those that lie outside ‘ac’ and those than lie outside of ‘cb’.
This process is depicted in the Figure 7.10 (a) and (b).

How should ‘c’ be selected? There are a number of possible selection criteria
that one might think of. The suggested method is that c be the point that
maximizes the perpendicular distance from the line ab. (Another possible
choice might be the point that maximizes the angle cba or cab. It turns out
that these are poor choices because they do not produce even splits of the
remaining points.) We replace the edge ab with the two edges ac and cb, and
classify the points as lying in one of 3 groups: those that lie in the triangle abc,
which are discarded, those that lie outside of ac, and those that lie outside
of cb. We put these points in buckets for these edges, and recurse. (We claim
that it is not hard to classify each point p, by computing the orientations of
the triples ‘acp’ and ‘cbp’.)

The running time of QuickHull algorithm along with QuickSort, depends
on how evenly the points are split at each stage. If we let T(n) denote the
running time on the algorithm, where the n is the number of points that re-
main in the current bucket, then the time is given by the recurrence:

T(0) = 1
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FIGURE 7.10
QuickHull elimination procedure

T(n) = cn + T(n1) + T(n2)

where, n1 and n2 are the number of points remaining in the two buckets. It
should be a familiar fact from the QuickSort analysis that this running time
will be good as long as max(n1, n2) is not too close to n.

7.7 Voronoi Diagrams

A Voronoi diagram (like convex hull) is one of the most important structures
in computational geometry. A Voronoi diagram records information about the
spatial relationship among the objects such as which spatial object is close to
what other spatial object or objects.

Let P = p1, p2, .., pn be a collection of points in the plane. For a given
point ‘q’ in the plane, the nearest neighbour of ‘q’ is the point in ‘P’ whose
distance from ‘q’ is minimum. (In general there can be more than one nearest
neighbour if points are equidistant from q.) Define V(pi), the Voronoi polygon
for pi, to be the set of points in the plane for which pi is the nearest neighbour
of that point. If we let | pq | denote the distance from ‘p’ to ‘q’, then we can
state this as:
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FIGURE 7.11
Voronoi diagram

V (pi) = {q | pi − q |≤| pj − q | ∀j 6= i} (7.7)

The Voronoi polygons subdivide the plane into a collection of regions. (The
term polygon is used in a more general sense than defined earlier, because these
polygons may be unbounded, stretching to infinity.) The interiors of these
regions are pair-wise disjoint, and the boundaries correspond to points in the
plane whose nearest neighbour is not unique. The union of the boundaries of
the Voronoi polygons is called the Voronoi diagram of P, denoted by VD(P).
An example of the Voronoi diagram is depicted in Figure 7.11.

A detail implementation of the Voronoi diagram or Dirichlet tessellation is
discussed by Bowyer [5], Green [23] and Fortune [17]. A survey on the Voronoi
diagram as a geometric data structure has been carried out by Aurenhammer
[3].

7.7.1 Properties of Voronoi Diagrams

Some theoretical observations about the Voronoi diagram are as follows.

1. Half Plane Formulation: Recall from high school geometry that
the set of points that are equidistant between two points is just
the perpendicular bisector. In general, the set of points that are
closer to point pi, than pj is the half-plane lying to one side of this
bisector, H(pi, pj). It is easy to see that, V(pi) can be defined as the
intersection of these half-planes.
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V (pi) =
⋂
j 6=i

H(pi, pj) (7.8)

2. Convex: It is well known that the intersection of two convex sets
is convex. Therefore, since half-planes are convex sets, V(pi) is a
convex set, and hence a convex polygon (but possibly unbounded).

3. Voronoi Vertices: The vertex at which three Voronoi cells V(pi),
V(pj) and V(pk) intersect must be equidistant from all three. Thus
it is the center of the circle passing through these points. This circle
can contain no other points (since by definition, these are the three
closest points to this vertex).

4. Convex Hull: A cell of the Voronoi diagram is unbounded if and
only if the corresponding site lies on the convex hull. (Observe that
a point is on the convex hull if and only if it is the closest point
from some point at infinity.)

7.8 Delaunay Triangulation

Observe in Figure 7.12 that if points are in general position, and in particular,
if no four points are co-circular, then each Voronoi vertex is incident to exactly
three edges of the Voronoi diagram. Since the Voronoi diagram is just a planar
graph, we can consider its dual graph. In particular, we connect two points of
P in this dual graph if and only if they share an edge in the Voronoi diagram.
If the points are in general position, the faces of the resulting dual graph
(except for the exterior face) will be triangles (because the Voronoi vertices
have degree 3).

An efficient algorithm for generation of mesh using Delaunay triangulation
has been developed by Watson and reported in [51]. An implementation of
Watson’s algorithm for generation of 2D Delaunay triangulation has been
discussed in [38].

7.8.1 Properties of Delaunay Triangulation

Delaunay triangulations have a number of interesting properties, that are con-
sequences of the structure of the Voronoi diagram.

1. Convex Hull: The exterior face of the Delaunay triangulation is
the convex hull of the point set.

2. Circumcircle Property: The circumcircle of any triangle in the
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FIGURE 7.12
Delaunay triangulation

Delaunay triangulation is empty (contains no other points of the
domain).

3. Empty Circle Property: Two points pi and pj are connected by
an edge in the Delaunay triangulation, if there is an empty circle
passing through pi and pj . (One direction of the proof is trivial
from the circumcircle property. In general, if there is an empty cir-
cumcircle passing through pi and pj , then the center c of this circle
is a point on the edge of the Voronoi diagram between pi and pj ,
because c is equidistant from each of these points and there is no
closer point.)

4. Max-Min Angle Criterion: Among all triangulations of the point
set P, the Delaunay triangulation maximizes the minimum angle in
the triangulation. (This property of the Delaunay triangulation is
valid in 2D only.)

5. MST Property: The minimum spanning tree of a set of points
in the plane is a subgraph of the Delaunay triangulation.

This observation is used to develop a good algorithm to compute
MST of a set of points in the 2D plane. First compute the Delaunay
triangulation of the point set which can be computed in O(nlogn)
time. The ortho centers of the Delaunay triangles are computed.
These points are further taken as inpur to Kruskal’s algorithm for
computing the MST. This process takes O(nlogn) time to compute
the minimum spanning tree of this sparse graph by joining the ortho
centers of the delaynay triangles by shortest medial axis.

Further Delaunay triangulation can be used to compute and gen-
erate three different types of graph structures. The Gabriel graph
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(GG) which is defined as follows: two points pi and pj are connected
by an edge if the circle with diameter pipj is empty. The relative
neighbourhood graph (RNG) which is defined as: two points pi and
pj are connected by an edge if there is no point which is simultane-
ously closer to pi and pj . The relationship between these graphs is
given by the following set relationship:

MST ⊆ RNG ⊆ GG ⊆ DT. (7.9)

7.9 Delaunay Triangulation: Randomized Incremental
Algorithm

A simple yet a powerful design technique is randomized incremental algorithm.
randomized incemental algorithm for computing Delaunay triangulations from
a set of points in the 2D plane has many advantages listed below.

1. It is very simple to understand and implement.

2. It is not hard to generalize it to higher dimensions.

3. It has a simple (backwards) analysis.

Another feature of the algorithm is that it can be modified to produce
a data structure for performing point location queries. This is the problem
of determining which triangle of the final triangulation contains the query
point in O(logn) time. Because triangulations are often used for other pur-
poses, having a point location data structure is a nice additional feature. (We
will show later that point location data structures can be built separately.)
The algorithm is not hard to adapt for computing Voronoi diagrams as well
(but the associated point location algorithm runs somewhat more slowly, in
O(log2 n) time).

As with any randomized incremental algorithm, the idea is to insert points
in random order, one at a time, and update the triangulation with each new
addition. The issues involved with the analysis will be showing that the num-
ber of structural changes in the diagram is not very large. As with other
incremental algorithms, we need some way of keeping track of where newly
inserted points are to be placed in the diagram. As we did with trapezoidal
decomposition, this can be done by bucketing the points according to the tri-
angles they lie in. In this case, we will need to argue that the number of times
that a point is reclassified on average is not too large.

7.9.1 Incremental Update

The basic issue in the design of the algorithm is how to update the triangu-
lation when a new point is added. In order to do this, we first investigate the
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basic properties of a Delaunay triangulation. Recall that a triangle ∆abc is
in the Delaunay triangulation, if and only if the circumcircle of this triangle
contains no other point in its interior. (We will make the usual general po-
sition assumption that no 4 points are co-circular.) How to test whether a
point d lies within the interior of the circumcircle of ∆abc? It turns out that
this can be reduced to a computable determinant. The point d lies within the
circumcircle defined by ∆abc if and only if:

ln(a, b, c, d) = det


ax ay ax

2 + ay
2 1

bx by bx
2 + by

2 1
cx cy cx

2 + cy
2 1

dx dy dx
2 + dy

2 1

<0 (7.10)

Assuming that this primitive In(a,b,c,d) is available to us when we add the
next point, pi, the major steps used by the algorithm to convert the current
triangulation into the new triangulation is achieved by the following two steps:

1. Adding a point to the middle of a triangle, and creating three new
edges

2. Swapping one or more edges of the triangulation to restore the
triangulation as Delaunay triangulation.

Both of these operations can be performed in O(1) time, assuming a
winged-edge or quad-edge representation of the triangulation (Figure 7.13).

Here is how the algorithm works. We start with an initial triangulation.
Guibas, Knuth and Sharir suggest starting with a triangle of three points ‘at
infinity’. A somewhat more direct approach is to enclose your points within
a large bounding rectangle, and add either of the diagonals. This will be a
Delaunay triangulation. Either guarantees that all points to be added, will lie
within some triangle of the triangulation.

The points are added in random order. When a new point p is added,
we find the triangle abc of the current triangulation that contains this point,
insert the point in this triangle, and join this point to the three surrounding
vertices. This creates three new triangles, pab, pbc, and pca, each of which
may or may not satisfy the empty-circle condition. How to test this? For each
of the triangles that have been added, we check the vertex of the triangle that
lies on the other side of the edge that does not include p. If this vertex fails
the incircle test, then we swap the edge (creating two new triangles that are
adjacent to p) and repeat the same test with these triangles. An example of
the process is depicted in Figure 7.14.

The following is a description of the algorithm (Guibas, Knuth, and Sharir
give a nonrecursive version). The current triangulation is kept in a global data
structure. The edges in the following algorithm are actually pointers to the
quad-edge data structure.
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FIGURE 7.13
Basic triangulation changes

FIGURE 7.14
Point insertion
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Insert(p)
{
Find the triangle ∆abc containing p;
Insert edges pa, pb, and pc into triangulation;
SwapTest(ab);
SwapTest(bc);
SwapTest(ca);
}
SwapTest(ab)
{
If (ab is an edge on the exterior face) return;
Let d be the vertex to the right of edge ab;
If(in(p. a, b, d))
{
Replace edge ab with pd;
SwapTest(ad);
SwapTest(db);

}
}

As one can observe, the algorithm is very simple. The data structures and
the routines that need to be implemented are:

1. The quad-edge or winged-edge data structure operations.

2. The incircle test.

3. Locating the triangle that contains the point ‘P’ to be inserted to
the triangulation.

Task (1) is easy to implement once you have an implementation of the
quad-edge or winged-edge data structure. Task (2) is easy. Task (3) can be
accomplished by classifying each point according to the triangle that it lies
in (point-inside-a-triangle). When an edge is swapped, or when a triangle is
split into three triangles through point insertion, the points associated with
the affected triangles need to be reclassified. We will discuss an alternative
method based on a history search later.

There is only one major issue in establishing the correctness of the algo-
rithm. When we performed empty-circle tests, we only tested:

1. Triangles containing the point p.

2. Only points that lay on the opposite side of an edge of such a
triangle.

To establish (1), observe that it suffices to consider only triangles contain-
ing p because since p is the only newly added point. Therefore it is the only
point that can cause a violation of the empty-circumcircle property.
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To establish (2) we argue that if for every point d, which is opposite from
p along some edge ab, lies outside the circumcircle of pab, then all these cir-
cumcircles are empty. A complete proof takes some effort, but here is a simple
justification. What could go wrong? It might be that d lies outside the cir-
cumcircle, but there is some other point (e.g. a vertex e of a triangle adjacent
to d that lies inside the circumcircle). This is illustrated in Figure 7.14.

7.10 Delaunay Triangulations and Convex Hulls

At first, Delaunay triangulations and convex hulls appear to be quite different
structures; one is based on metric properties (distances) and the other on
affine properties (collinearity, coplanarity). It can be shown that it is possible
to convert the problem of computing a Delaunay triangulation in dimension
D to that of computing a convex hull in dimension (D + 1). Thus, there is a
remarkable relationship between these two structures.

It can be demonstrated that the Delaunay triangulation in dimension two
can be constructed by computing a convex hull in dimension three. This may
be hard to visualize, but can be proved through geometrical means. This also
can be reasoned by an analogy in one lower dimension of Delaunay triangula-
tions in 1D and convex hull in 2D. The complexities of the structures are not
really apparent in this case.

The connection between the two structures is the paraboloid z = x2 + y2.
Observe that this equation defines a surface whose vertical cross sections (con-
stant x or constant y) are parabolas and whose horizontal cross sections (con-
stant z) are circles. For each point in the plane (x, y), the vertical projection of
this point, onto this paraboloid is (x, y, x2, y2) in 3-space. Given of points S in
the plane, let S′ denote the projection of every point in S onto this paraboloid
consider the lower convex hull of S′. This is the portion of the convex hull of
S which is visible to a viewer standing at z = −∞. We claim that if we take
the lower convex hull of S′, and project back onto the plane, then we get the
Delaunay triangulation of S. In particular, let p, q, rεS and let p, q, r denote
the projections of these points onto the paraboloid. Then p′q′r′ define a fixed
convex hull of S′ if and only if ∆pqr is a triangle of the Delaunay triangulation
of S. The process is illustrated in Figure 7.15.

The question is, why does this work? To find out, we need to establish
the connection between the triangles of the Delaunay triangulation and the
faces of the convex hull of transferred points. In particular, recall conditions
of Delaunay triangulation and convex hull.

• Delaunay condition: Three points p, q and r ε S form a Delaunay triangle
if and only if the circumcircle of these points contains no other point of the
domain S.
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FIGURE 7.15
Delaunay triangulations and convex hulls

• Convex hull condition: Three points p’, q’, and r’ ε S’ form a face of the
convex hull of S if and only if the plane passing through p’, q’ and r’ has all
the points of S’ lying to one of its side.

Clearly, the connection we need to establish is between the emptiness of
circumcircles in the plane and the emptiness of halfspaces in 3-space. It can
be proven by the following claim.

Lemma: Consider four distinct points p,q,r,s in the plane, and let p’, q’,
r’ and s’ be their respective projections onto the paraboloid, z = x2 + y2. The
point s lies within the circumcircle of p,q,r if and only if s lies on the lower
side of the plane passing through p’, q’, r’.

Proof: To prove the lemma, first consider an arbitrary (non-vertical) plane
in 3-space, which we assume is tangent to the paraboloid above some point
(a, b) in the plane. To determine the equation of this tangent plane, we take
derivatives of the equation z = x2 + y2 with respect to x and y giving

∂z

∂x
= 2x (7.11)

and

∂z

∂y
= 2y (7.12)

At the point (a, b, a2 + b2) these evaluate to 2a and 2b. It follows that the
plane passing through these point has the form

Z = 2ax+ 2by + γ (7.13)



Computational Geometry and Its Application to GIS 149

To solve for γ we know that the plane passes through (a, b, a2 + b2) so by
solving it gives

a2 + b2 = 2a.a+ 2b.b+ γ

⇒ γ = −(a2 + b2) (7.14)

Thus the plane equation is

z = 2ax+ 2by − (a2 + b2)

If we shift the plane upwards by some positive amount r2 we get the plane

z = 2ax+ 2by − (a2 + b2) + r2

How does this plane intersect the paraboloid? Since the paraboloid is de-
fined by z = x2 + y2 we can eliminate z giving:

x2 + y2 = 2ax+ 2by − (a2 + b2) + r2

which after some simple rearrangements is equal to

(x− a)2 + (y − b)2 = r2 (7.15)

This is just a circle (Figure 7.16). Thus, we have shown that the intersection
of a plane with the paraboloid produces a space curve (which turns out to be
an ellipse), which when projected back onto the (x, y)-coordinate plane is a
circle centered at (a, b).

Thus it can be concluded that the intersection of an arbitrary lower half-
space with the paraboloid, when projected onto the (x, y)-plane is the interior
of a circle. Going back to the lemma, when we project the points p, q, r onto
the paraboloid, the projected points p, q and r define a plane. Since p, q and r
lay at the intersection of the plane and paraboloid, the original points p, q, r
lie on the projected circle. Thus this circle is the (unique) circumcircle passing
through these p, q and r. Thus, the point ‘s’ lies within this circumcircle, if
and only if its projection s onto the paraboloid lies within the lower half-space
of the plane passing through p, q, r.

Now we can prove the main result.

Theorem: Given a set of point S in the plane (assume no 4 are cocir-
cular), and given three points p, q, r ε S, the triangle ∆pqr is a triangle to
the Delaunay triangulation of S if and only if triangle ∆p’q’r’ is a face of the
lower convex hull of the projected set S

′
.

From the definition of Delaunay triangulations we know that ∆pqr is in the
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FIGURE 7.16
Planes and circles

Delaunay triangulation if and only if there is no point sεS that lies within the
circumcircle of pqr. From the previous lemma this is equivalent to saying that
there is no point s

′
that lies in the lower convex hull of S

′
, which is equivalent

to saying that p
′
q
′
r
′

is face of the lower convex hull. This completes the proof.
In order to test whether a point s lies within the circumcircle defined by

p, q, r, it suffices to test whether s
′

lies within the lower half-space of the place
passing through p

′
, q
′
, r
′
. If we assume that p, q, r are oriented counterclock-

wise in the plane this reduces to determing whether the quadruple p
′
, q
′
, r
′
, s
′

is positively oriented, or equivalently whether s lies to the left of the oriented
circle passing through p, q, r. This leads to the incircle test given by:

In(p, q, r, s) = det


px py px

2 + py
2 1

qx qy qx
2 + qy

2 1
rx ry rx

2 + ry
2 1

sx sy sx
2 + sy

2 1

<0 (7.16)
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7.11 Applications of Voronoi Diagram and Delaunay Tri-
angulation

1. Arrangements
The Voronoi diagram and Delaunay triangulations seem to be
among the most important structures that can be derived from
a set of points in the plane, when one considers the local struc-
ture of space. When one is interested in problems relating to the
global structures of a set of points, it turns out that an altogether
different structure is important, and this structure appears at first
glance to have nothing to do with points, it has to do with line
segments. An arrangement of a set of lines in the plane (or, gener-
ally, (d-1)-dimensional hyperplanes in d-dimensional space) is the
graph whose vertices are the intersection points of the lines and
whose edges are the line segments joining consecutive intersection
points. The remarkable fact about line arrangements is that a large
number of problems involving point sets can be solved by comput-
ing arrangements. The connection between the two is a concept of
point-line duality, which allows us to translate problems on point
sets into equivalent problems on sets of lines. Computing the line
arrangement is a common first step in solving these problems.

2. Search
Geometric search problems are of the following general form. Given
a data set (e.g. points, lines, polygons) which will not change, pre-
process this data set into a data structure so that some type of query
can be answered as efficiently as possible. For example, a nearest
neighbour search query is to determine the point of the data set
that is closest to a given query point. A range query is to determine
the set of points (or count the number of points) from the data set
that lie within a given region. The region may be a rectangle, disc,
or polygonal shape, like a triangle.

3. Motion Planning and Visibility
Problems in this area include determining the shortest path between
two points in the plane, given a set of polygonal obstacles that are
to be avoided. This can be viewed as a geometric variant of the
shortest path problem is graphs. It turns out that such shortest
paths are made up of line segments that travel along lines of sight
between obstacles, it is closely related to the problem of determining
global visibility: namely, what objects can see what others.
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7.11.1 Applications of Voronoi Diagrams

Voronoi diagrams have a number of important applications. These include:

1. Nearest Neighbour Queries
One of the most important problems in computational geometry is
solving nearest neighbour queries. Given a point set P , and given a
query point q, determine the closest points in P to q. This can be
answered by first computing a Voronoi diagram and then locating
the cell of the diagram that contains q. This has many applications
of pattern recognition and learning theory.

2. Computational Morphology
Some of the most important operations in morphology are those
of ‘growing’ and ‘shrinking’ (or ‘thinning’) objects. If we grow a
collection of points, by imagining a grass fire starting simultaneously
from each point, then the places where the grass fires meet will be
along the Voronoi diagram. The medial axis of a shape (used in
computer vision) is just a Voronoi diagram of its boundary. Region
growing finds wider applications in computer vision.

3. Finding Nearest Facility Location
If one want to establish a public utility facility such that, it should
be placed as far as possible from any existing similar facilities.
Where should it be placed? It turns out that the vertices of the
Voronoi diagram are the points that locate at maximum distances
from any other point in the set.

4. High Clearance Path Planning
A robot wants to move around a set of obstacles avoiding collision.
To minimize the possibility of collisions, it should stay as far away
from the obstacles as possible. To do this, it should walk along the
edges of the Voronoi diagram constructed with the 2D locations of
the objects as the input domain.

7.12 Summary

A set of powerful tools for computing and analyzing the unstructured ge-
ometric data given in the form of a random set of points, lines, polygons
and polyhedrons is defined as computational geometry. This chapter starts
with the definition of some of the computational geometric primitives such
as convex hull, Delaunay triangulation, Voronoi tessellation etc. The generic
computational techniques to analyze the unstructured geometric data are dis-
cussed in terms of plane sweep method, randomized incremental algorithm
and fractional cascading. The algorithms used to compute line-line intersec-
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tion, convex hull computation, point inside a triangle, triangulation of simple
polygon are discussed with their analysis. Further, the algorithms for comput-
ing the Delaunay triangulation and Voronoi tessellation are given with their
properties and applications. Finally, applications of computational geometry
in performing various functions of GIS are given with examples.





8

Spatial Interpolation Techniques

Spatial interpolation methods are important techniques for computation of
spatial data at unsampled locations from sample data available in the domain.
A number of methods have been developed for spatial interpolation in various
disciplines and there are a number of different terms used to distinguish them,
such as ‘interpolating’ and ‘non-interpolating’ methods or ‘interpolators’ and
‘non-interpolators’. In this chapter, all these methods are referred to as spatial
interpolation methods or spatial interpolators. Many of these methods have
modified versions suitable to compute different variants of spatial data. The
spatial interpolation methods covered in this chapter are only those commonly
used in GIS and other spatial domains. As such, the list of the methods dis-
cussed in this chapter is not exhaustive. Only the frequently used methods
and their variants are discussed.

In this chapter, important spatial interpolation methods used in GIS are
described. They fall into three categories: (1) non-geostatistical methods, (2)
geostatistical methods, and (3) combined methods. In geostatistics, the meth-
ods that are capable of using secondary information are often referred to as
‘multivariate’, while the methods that do not use the secondary information
are called ‘univariate’ methods. Here it must be noted that multivariate usu-
ally refers to more than one response variable, despite of the fact that in some
references it also refers to more than one explanatory variable (usually referred
to as multiple variables). A brief introduction to geostatistics is provided prior
to the descriptions of the geostatistical methods. The level of description of
each method depends on the nature of the method.

Estimations of nearly all spatial interpolation methods can be represented
as weighted averages of sampled data. They all share the same general esti-
mation formula given by the equation

ẑ(x0) =
n∑
i=1

λiz(xi) (8.1)

where

ẑ(x0) is the estimated value of an attribute at the point of interest x0

Z(xi) is the observed value at the sampled point xi

λi, is the weight assigned to the sampled point

n represents the number of sampled points used for the estimation

155
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8.1 Non-Geostatistical Interpolators

In this section twelve non-geostatistical interpolation methods are briefly de-
scribed.

8.1.1 Nearest Neighbours

The nearest neighbours (NN) method predicts the value of an attribute at an
unsampled point based on the value of the nearest sample by drawing per-
pendicular bisectors between sampled points (n), forming a structure such as
Thiessen (Dirichlet or Voronoi) polygons (Vi, i = 1, 2, .., n). This produces one
polygon per sample and the sample is located in the center of the polygon,
such that in each polygon all points are nearer to its enclosed sample point
than to any other sample points. The estimations of the attribute at unsam-
pled points within polygon Vi are the measured value at the nearest single
sampled data point xi, that is ẑ(xo) = z(xi). The weights are given by the
rule

if xiεVi (8.2)

than λi = 1 else λi = 0 (8.3)

All points (or locations) within each polygon are assigned the same value.
A number of algorithms exist to generate the Thiessen polygons from a given
set of points in plane.

8.1.2 Triangular Irregular Network

The triangular irregular network (TIN) was developed by Peuker and co-
workers in 1978 for digital elevation modelling from an altitude matrix in
the form of a grid. In TIN, all sampled points are joined into a series of
triangles based on Delaunay’s criteria known as Delaunay triangulation. The
circumcircle of each of these triangles does not contain any other point from
the sampled domain. This is known as the empty circumcircle property of
Delaunay’s triangulation. The TIN forms a different basis for making estimates
in comparison with those used in nearest neighbour. The value of a point
within a triangle is estimated by linear or cubic polynomial interpolation.
The advantages and disadvantages of interpolation method using TIN are
discussed in Burrough and McDonnell. The algorithm to generate Delaunay
triangulation from a set of points in 2D plane is discussed in Chapter 7.

8.1.3 Natural Neighbours

The natural neighbours (NaN) method was introduced by Sibson (1981). It
combines the best features of the nearest neighbour and TIN method. The
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Non-
Geostatistical

Geostatistical Combined
Method

Univariate Multivariate
Nearest
neighbours

Classification com-
bined other interpo-
lation methods

Triangular
irregular net-
work related

Simple kriging Universal kriging Trend surface anal-
ysis combined with
kriging

Interpolations Ordinary kriging SK with varying lo-
cal means

Lapse rate combined
with kriging

Inverse dis-
tance weight-
ing

Block kriging Kriging with an ex-
ternal drift

Regression trees
combined with
kriging

Regression
models

Factorial kriging Simple cokriging Residual maximum
likelihood-empirical
best linear

Dual kriging Ordinary cokriging Regression kriging
Trend surface
analysis

Ordinary cokriging Regression kriging

Trend surface
analysis

Standardised OCK Gradient plus
inverse distance
squared

Splines and
local trend
surfaces

Indicator kriging Principal compo-
nent kriging

Thin plate
splines

Disjunctive kriging Colocated cokriging

Thin plate
splines

Disjunctive kriging Colocated cokriging

Classification Model-based kriging Kriging within
strata

Regression
tree

Simulation Multivariate facto-
rial kriging

Fourier series Indicator kriging
Lapse rate Indicator cokriging

Probability kriging
Simulation

TABLE 8.1
The Spatial Interpolation Methods Considered in This Chapter
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first step in this method involves generation of a triangulation of the observed
points using Delaunay’s method, in which the apices of the triangles are the
sample points in adjacent Thiessen polygons. This triangulation is unique
except where the data are on a regular rectangular grid. To estimate the value
of a point, it is inserted into the tessellation and then its value is determined
by sample points within its bounding polygon. For each neighbour, the area
of the portion of its original polygon that became incorporated in the tile of
the new point is calculated. These areas are scaled to sum to 1 and are used
as weights for the corresponding samples.

8.1.4 Inverse Distance Weighting

The inverse distance weighting or inverse distance weighted (IDW) method
estimates the values of an attribute at unsampled points using a linear com-
bination of values at sampled points weighted by an inverse function of the
distance from the point of interest to the sampled points. The assumption is
that sampled points closer to the unsampled point are more similar to it than
those further away in their values. The weights can be expressed as:

λi =
1
dip∑n
i=1

1
dip

(8.4)

where

di is the distance between x0 and xi.

p is a power parameter.

n represents the number of sampled points used for the estimation.

The main factor influencing the accuracy of IDW is the value of the power
parameter. Weights diminish as the distance increases, especially when the
value of the power parameter increases, so nearby samples have a higher weight
and have more influence on the estimation, and the resultant spatial interpo-
lation is local in nature than global.

The choice of power parameter and neighbourhood size is arbitrary. The
most popular choice of p is 2 and the resulting method is often called inverse
square distance or inverse distance squared (IDS). The power parameter can
also be chosen on the basis of error measurement e.g. minimum mean absolute
error, resulting in an optimal IDW. The smoothness of the estimated surface
increases as the power parameter increases.

• IDW is referred to as “moving average” interpolation method when p = 0.

• IDW is referred as “linear interpolation” method when p = 1.

• IDW is referred as “weighted moving average” interpolation method when
p is not equal to 1.
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8.1.5 Regression Models

This method is essentially a linear regression model (LRM) and assumes that
the data are independent of each other, normally distributed and homogeneous
in variance. Regression methods explore a possible functional relationship be-
tween the primary variable and explanatory variables (e.g., geographical co-
ordinates, elevation) that are easy to measure. These explanatory variables
are usually referred to as secondary variables, auxiliary variables or ancillary
variables. The information provided by these variables is called secondary in-
formation. The final model can be selected by a thorough understanding of
the relationships between the primary variable and secondary variables or by
using Bayesian information criteria (BIC).

8.1.6 Trend Surface Analysis

The trend surface analysis (TSA) is a special case of LRM, which only uses
geographical coordinates to predict the values of the primary variable. TSA
separates the data into regional trends and local variations. TSA shares the
same assumption as LRM, and always contains all variables. It has also been
extended to include other variables, in which case, it should be classified as
LRM.

8.1.7 Splines and Local Trend Surfaces

The splines consist of polynomials with each polynomial of degree p being
local rather than global. The polynomials describe pieces of a line or surface
(i.e. they are fitted to a small number of data points exactly) and are fitted
together so that they join smoothly. The places where the pieces join are called
knots. The choice of knots is arbitrary and may have a dramatic impact on
the estimation. For degree p= 1, 2, or 3, a spline is called linear, quadratic
or cubic respectively. Typically the splines are of degree 3 and they are cubic
splines.

The local trend surfaces (LTS) fit a polynomial surface for each predicted
point using the nearby samples. There are two approaches in LTS. The first
is a local polynomial regression fitting that is detailed by Cleveland et al. and
Cleveland and Devlin (1988). The second is a bilinear or bicubic spline that
was developed to implement bivariate interpolation onto a grid for irregularly
spaced point data. This method is also known as Akima’s interpolator (AK).
Both approaches are unable to choose the smoothness.

8.1.8 Thin Plate Splines

Thin plate splines (TPS), formally known as ”laplacian smoothing splines”,
were developed principally by Wahba and Wendelberger (1980) for interpola-
tion of climatic data. The smoothing parameter is calculated by minimising
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the generalised cross validation function (GCV). This method is relatively
robust because the minimisation of GCV directly addresses the predictive
accuracy and is less dependent on the veracity of the underlying statistical
model. TPS provides a measure of spatial accuracy.

8.1.9 Classification Methods

The classification method uses easily accessible soft information (e.g., soil
types, vegetation types, or administrative areas) to divide the region of in-
terest into sub-regions that can be characterised by the moments (i.e., mean,
variance) of the attribute measured at locations within the region of interest
(Burrough and McDonnell [8]). The model for classification is:

ẑ(x0) = µ+ αk + ε (8.5)

where

ẑ is the estimated value of the attribute at location x0.

µ is the general mean of the attribute over the region of interest.

αk is the deviation between µ and the mean of type k.

ε is the residual error.

The class of the sample can be computed using the analysis of variance
method or LM by specifying the attribute as a response variable and the soft
information as an explanatory factor with k classes. This method shares the
same assumptions as LM.

8.1.10 Regression Tree

The regression tree, also known as binary decision trees, uses binary recursive
partitioning whereby the data of the primary variable are successively split
along the gradient of the explanatory variables into two descendent subsets or
nodes. These splits occur so that at any node the split is selected to maximise
the difference between two split groups or branches. The mean value of the
primary variable in each terminal node can then be used to map the variable
across the region of interest.

8.1.11 Fourier series

The Fourier series (FS) method is used to estimate the values of an attribute
by interpolating the samples using a linear combination of sine and cosine
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waves in two-dimensional space, as follows:

Ẑ =

∞∑
m=1

∞∑
n=1

αnm cos
2nπXi

λx
cos

2nπYi
λy

+

∞∑
m=1

∞∑
n=1

βnm cos
2nπXi

λx
sin

2nπYi
λy

+
∞∑
m=1

∞∑
n=1

γnm sin
2nπXi
λx

cos
2nπYi
λy

+
∞∑
m=1

∞∑
n=1

δnm sin
2nπXi

λx
sin

2nπYi
λy

(8.6)

8.1.12 Lapse Rate

The lapse rate (LR) was developed to estimate air temperature with respect to
elevation/altitude. It uses the temperature value of the nearest weather station
and the difference in elevation to estimate air temperature at the unsampled
point on the basis of the relationship between air temperature and elevation
for a region. It is also termed smart interpolation. It makes the assumption
that the lapse rate is constant across the study region. Several variants of LR
have been proposed for air temperature, given it is limited to only predicting
temperature using elevation.

8.2 Geostatistics

In this section twelve geostatistical interpolation methods are briefly de-
scribed.

8.2.1 Introduction of Geostatistics

Geostatistics is usually believed to have originated from the work in geology
and mining by Krige (1951), but it can be traced back to the early 1910s in
agronomy and 1930s in meteorology. It was developed further by Matheron
(1963) with his theory of regionalised variables.” A mineralized phenomenon
can be characterized by the spatial distribution of a certain number of mea-
surable quantities called regionalized variables,” and this concept is termed
regionalisation. Other key concepts of geostatistics are: When a variable is
distributed in space, it is said to be regionalized and geostatistical theory is
based on the observation that the variabilities of all regionalized variables
have a particular structure. Geostatistics includes several methods that use
kriging algorithms for estimating continuous attributes. Kriging is a generic
name for a family of generalised least-squares regression algorithms, named in
recognition of the pioneering work of Danie Krige (1951).
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FIGURE 8.1
Variogram with range, nugget and sill

8.2.2 Semivariance and Variogram

Semivariance γ of Z between two data points is an important concept in
geostatistics and is defined as:

γ(xi, x0) = γ(h) =
1

2
var[Z(xi)− Z(x0)] (8.7)

where h is the distance between point xi and x0 and γ(h) is the semivariogram
commonly referred to as variogram.

A plot of xi and x0 and γ(h) against h is known as the experimental var-
iogram, which displays several important features. Various parameters that
can be derived from a semi variogram is depicted in Figure 8.1. The “nugget”,
is a positive value of γ(h) as h close to 0, which is the residual reflecting the
variance of sampling errors and the spatial variance at shorter distance than
the minimum sample spacing. The “range” is a value of distance at which the
“sill” is reached. Samples separated by a distance larger than the range are
spatially independent because the estimated semivariance of differences will
be invariant with sample separation distance. If the ratio of sill to nugget is
close to 1, then most of the variability is non-spatial. The range provides in-
formation about the size of a search window used in the spatial interpolation
methods.

The semivariance can be estimated from the data using the equation

γ̂(h) =
1

2n

n∑
i=1

(z(xi)− z(xi + h))2 (8.8)

where n is the number of pairs of sample points separated by distance h.
Variogram modelling and estimation is extremely important for structural
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analysis and spatial interpolation. The variogram models may consist of simple
models, including nugget, exponential, spherical, Gaussian, linear, and power
model or the nested sum of one or more simple models. Four commonly used
variogram models are illustrated in Figure 8.2.

8.2.3 Kriging Estimator

All kriging estimators are variants of the basic equation, which is a slight
modification of equation, as follows:

Ẑ(x0)− µ =
n∑
i=1

λi[Z(xi)− µ(x0)] (8.9)

where

µ is a known stationary mean, assumed to be constant over the whole domain
and calculated as the average of the data

λi is kriging weight

n is the number of sampled points used to make the estimation and depends
on the size of the search window

µ(x0) is the mean of samples within the search window

(a)

C0

C1

Sill

Commonly used Variogram models: (a) Spherical; (b) Exponential; (c) Linear; and (d) Gaussian

y(h)

Nugget
Range a

(c)

C0

C1

Sill

y(h)

Lag(h)

Lag(h)

Nugget

(b)

C0

C1

Sill

y(h)

Nugget
Range a

(d)

C0

C1

Sill

y(h)

Lag(h)

Lag(h)

Nugget
Range a

FIGURE 8.2
Commonly used variogram models: (a) spherical; (b) exponential; (c) linear;
and (d) Gaussian
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The kriging weights are estimated by minimising the variance, as follows:

V ar[Ẑ(x0)]=E[Ẑ(x0)−z(x0)
2
] (8.10)

V ar[Ẑ(x0)]=E[ẑ(x0)
2
+Z(x0)

2 − 2ẑ(x0)z(x0)] (8.11)

V ar[Ẑ(x0)]=

n∑
i=1

n∑
j=1

λiλjC(xi − xj)+C(x0 − x0)− 2

n∑
i=1

λiC(xi − x0) (8.12)

where

Z(x0) is the true value expected at point x0

n represents the number of observations to be included in the estimation

C(xi − xj) = Cov[Z(xi), Z(xj)] is the covariance matrix

The assumptions of kriging are stationary of difference between x and
x+h and variance of difference, which define the requirements for the intrinsic
hypothesis. This means that semivariance does not depend on the location of
samples but depends only on the distance between samples, thus semivariance
is isotropic in nature.

Kriging is a generic method for many geostatistical interpolation tech-
niques. Geostatistical approaches are used to describe spatial patterns and
interpolate the value of the primary variable at unsampled locations. Also it
models the uncertainty of the error of the estimated surface. There are many
variants of kriging, depending upon the models. The variants are discussed
below.

8.2.4 Simple Kriging

The estimation of simple kriging (SK) is a modified variant of the kriging
estimator is given by the equation

Ẑ(x0) =
n∑
i=1

λiZ(xi) + [1−
n∑
i=1

λi]µ (8.13)

where µ is a known stationary mean. The parameter µ is assumed constant
over the entire domain and calculated as the average of the data. It is also
known as kriging with known mean because it is used to estimate residuals
from the reference value µ given apriori. Here the parameter µ(x0) of the
kriging estimator is replaced by the stationary mean µ. Simple kriging does
not have a non-bias condition, 1 −

∑n
i=1 λi is not necessarily equal to zero.

The greater the value of 1 −
∑n
i=1 λi, the estimator will move toward the

mean and in general the value of 1−
∑n
i=1 λi is relatively poor in the sampled

regions. SK assumes second-order stationary that is constant mean, variance
and covariance over the domain or the region of interest. Because of such an
assumption it is often too restrictive.
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8.2.5 Ordinary Kriging

Ordinary kriging (OK) is similar to SK and the only difference is that OK
estimates the value of the attribute using equations 8.9 and 8.13 by replacing
µ with a local mean µ(x0) that is the mean of samples within the search
window, and forcing [1−

∑n
i=1 λi] = 0 that is

∑n
i=1 λi = 1, which is achieved

by plugging it into equation 8.13. OK estimates the local constant mean, then
performs SK on the corresponding residuals, and only requires the stationary
mean of the local search window.

8.2.6 Kriging with a Trend

Kriging with a trend (KT) is normally called universal kriging (UK) and was
proposed by Matheron in 1969. It is an extension of OK by incorporating
the local trend within the neighbourhood search window as a smoothly vary-
ing function of the coordinates. UK estimates the trend components within
each search neighbourhood window and then performs simple kriging on the
corresponding residuals.

8.2.7 Block Kriging

Block kriging (BK) is a generic name for estimation of average values of the
primary variable over a segment, a surface, or a volume of any size or shape.
It is an extension of OK and estimates a block value instead of a point value
by replacing the point-to-point covariance with the point-to-block covariance.
Essentially, BK is block ordinary kriging and ordinary kriging is ”point” or-
dinary kriging.

8.2.8 Factorial Kriging

Factorial kriging (FK) is designed to determine the origins of the value of a
continuous attribute. It models the experimental semivariogram as a linear
combination of a few basic structure models to represent the different factors
operating at different scales (e.g., local and regional scales). FK can decompose
the kriging estimates into different components such as nugget, short-range,
long-range and trend, and such components could be filtered in mapping if
considered as noise. For example, the nugget component at sampled points
could be filtered to remove discontinuities (peaks) at the sampled points,
while the long-range component could be filtered to enhance the short-range
variability of the attribute. FK assumes that noise and the underlying signal
are additive.
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8.2.9 Dual Kriging

Dual kriging (DuK) estimates the covariance values instead of data values to
elucidate the filtering properties of kriging. It also reduces the computational
cost of kriging when used with a global search neighbourhood. It includes dual
SK, dual OK, and dual FK. Its uses are restricted to some specific applications.

8.2.10 Simple Kriging with Varying Local Means

Simple kriging with varying local means (SKVLM) is an extension of SK by
replacing the stationary mean with known varying means at each point that
depends on the secondary information. If the secondary variable is categorical,
the primary local mean is the mean of the primary variable within a specific
category of the secondary variable. If it is continuous, the primary local mean
is a function of the secondary variable or can be acquired by discretising it
into classes. SK is then used to produce the weights and estimates.

8.2.11 Kriging with an External Drift

Kriging with an external drift (KED) is similar to UK but incorporates the
local trend within the neighbourhood search window as a linear function of
a smoothly varying secondary variable instead of as a function of the spatial
coordinates. The trend of the primary variable must be linearly related to
that of the secondary variable. This secondary variable should vary smoothly
in space and is measured at all primary data points and at all points being
estimated. KED is also called UK or external drift kriging in Pebesma (2004).
KED could be extended to include both secondary variables and coordinate
information if gstat is used.

8.2.12 Cokriging

Unlike SK within strata (see Section 2.3.15), SKlm and KED that require the
availability of information of secondary variables at all points being estimated,
cokriging (CK) is proposed to use non-exhaustive secondary information and
to explicitly account for the spatial cross correlation between the primary
and secondary variables. Equation 8.13 can be extended to incorporate the
additional information to derive equation for CK as follows:

Ẑ1(x0)−µ1 =

n1∑
i1=1

λi1 [Z1(x1i)−µ1(xi1)] +

ni∑
j=2

∑
ij

= 1njλij [Zj(xij )−µj(xij )]

(8.14)
where

µi is a known stationary mean of the primary variable

zj(xij) is the data of the primary variable
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µj(xij) is the mean of samples within the search window

ni is the number of sampled points within the search window for point x0

used to make the estimation

λi1 is the weight selected to minimize the estimation variance of the primary
variable

ni is the number of secondary variables

nj is the number of jth secondary variable within the search widow

ref is the weight assigned to (ref) point of h secondary variable, Z (xi ) is
the data at ref point of ref secondary variable, and is the mean of samples
of ref secondary variable within the search window

The cross-semi variance (or cross-variogram) can be estimated from data using
the following equation 8.15:

γ̂12(h) =
1

2n

n∑
i=1

[z1(xi)− z1(xi + h)][z2(xi)− z2(xi + h)] (8.15)

where n is the number of pairs of sample points of variable zj and z2 at
point x, xi + h separated by distance h. Cross-semivariances can increase
or decrease with h depending on the correlation between the two variables
and the Cauchy-Schwarz relation must be checked to ensure a positive CK
estimation variance in all circumstances.

8.3 Summary

This chapter discusses the important methods of spatial interpolation. It starts
with the definition of spatial interpolation as a technique for computation of
spatial data at unsampled locations from given sampled data. It classifies
the spatial interpolation techniques available so far into two categories non-
geostatistical interpolators and geostatistical interpolators. Among the promi-
nent non-geostatistical interpolators discussed are the nearest neighbour, tri-
angular irregular network (TIN), natural neighbour, inverse distance weighting
(IDW), regression methods, trend surface analysis, thin plate splines, classifi-
cation techniques and Fourier series methods. The geostatistical methods start
with introduction of variance and semi variogram. The methods discussed un-
der this category are variogram method, Kriging, and its variants such as
ordinary kriging, block kriging, factorial kriging, kriging with external drift
and cokriging. The application of these interpolation techniques to spatial data
from different domain are discussed at the end of the chapter. This chapter
gives good exposure to different spatial interpolation methods through a clear
definition, mathematical explanation and applications in various application
domains.
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Spatial Statistical Methods

Statistics plays an important role in describing the sample data and exploring
the behavior of population behavior from sample data. The traditional statis-
tical methods have been developed keeping in view describing the behavior of
univariate data sample. To incorporate the behavior of spatial data and geo-
metric data which are inherently univariate or multivariate in nature, a set of
tools has been developed under the aegis of spatial statistics or geostatistics.
In this chapter we discuss the spatial statistical methods and their usage. The
standard statistical tools useful for describing the behavior of univariate data
sample are discussed.

GIS is a computing system capable of collecting, collating and processing
samples of spatial data to visualize and analyze the patterns present in the
spatial data population through a set of descriptive and inferential statistical
methods.

9.1 Definition of Statistics

Statistics is the study of how to collect, organizes, analyze, and interpret nu-
merical information from data. Descriptive statistics involves methods of or-
ganizing, picturing and summarizing information from data. Inferential statis-
tics involves methods of using information from a sample to draw conclusions
about the data population.

Statistical inferences are as accurate as the data samples they are applied
to. Statistical results should be interpreted by one who understands the meth-
ods used as well as the subject matter. Statistical methods are so widely used
today that it is difficult to enumerate the various spheres of their application;
statistics is used in every department of government and industry.

Statistics deals with aggregates of objects and does not take cognizance of
individual items. For example, in finding the statures of a class, a statistician
is not very much interested in the height of individual students but in their
average height. It is immaterial for him whether a particular student is five
feet or seven feet. One wants to have a bird’s-eye view, so to say, of their
height perhaps by way of comparing it with the average heights of students
in the same class at some other college or in a different class at the same

169
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institution. Statistical laws are not exact. The results of statistical enquiry are
not expressed in the form of categorical certainty but in terms of probabilities
only. A statistical enquiry passes through various stages as given below:

• Collection of sample data or field survey.

• Organization and preprocessing of survey data and classification or catego-
rization of the sample data.

• Analysis of the data using statistical operators and methods.

• Interpretation of the patterns and trends in the data.

9.2 Spatial Statistics

Spatial statistics can be defined as a set of analytical techniques to determine
the spatial distribution of a variable, the relationship between the spatial
distribution of variables, and the association of the variables of a spatial extent
or area. Spatial analysis is often referred to as spatial modeling. It refers to the
analysis of phenomena distributed in space and having physical dimensions
(the location of, proximity to, or orientation of objects with respect to one
another; relating to an area of a map as in spatial information and spatial
analysis; referenced or relating to a specific location on the Earth’s surface).

Spatial analysis is the process of extracting or creating new information
from a set of spatial features to perform assessment, evaluation, analysis or
modeling of data in a spatial extent or area based on pre-established and
computerized criteria and standards. Spatial analysis is a process of model-
ing, examining, and interpreting model results useful for evaluating suitability
and capability, for estimating and predicting, and for interpreting and under-
standing of spatial phenomena.

Generally there are four traditional types of spatial analysis practiced in
GIS. They are spatial overlay analysis and contiguity analysis, surface analysis,
linear analysis, and raster analysis. Spatial analysis includes GIS functions
such as topological analysis of overlays using computational geometric queries,
buffer generation around spatial objects and filtering of a specific type of
spatial object within the buffer zone, and spatial or network modeling and
analysis of shortest, optimum and alternate routes between chosen source
and destination. Spatial analysis also includes analysis of spatial patterns and
spatial relationships among objects and events.

Spatial statistics can be seen as a set of computing methods performing
the following functions:

• Analysis of point pattern in 2D and 3D space.

• Computing spatial autocorrelation of objects.

• Computing correlation and regression of spatial phenomena.
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9.3 Classification of Statistical Methods

Based on the type of data they operate and inference they draw, statistical
methods can be classified into (a) descriptive statistical method and (b) infer-
ential statistical method. Generally descriptive statistics operate of univariate
sample set of data and describe the behavior through a quantity derived from
the set. Inferential statistical methods operate on multivariate samples and
show the correlation and relationship among various parameters of spatial
phenomena. Before explaining the significance of the univariate, descriptive
statistical methods, it is pertinent to have a fair understanding of the differ-
ence between univariate and bivariate data, and descriptive and inferential
statistics. Table 9.1 delineates the difference between univariate and bivariate
data.

Univariate analysis explores each variable in a data set separately. It looks
at the range of values, as well as the central tendency of the values. It de-
scribes the pattern of response to the variable. It describes each variable on
its own. Descriptive statistics describe and summarize data. Univariate de-
scriptive statistics describe individual variables.

9.3.1 Descriptive Statistics

Descriptive statistics is the discipline of quantitatively describing the main
features of a collection of data. Descriptive statistics are distinguished from
inferential statistics (or inductive statistics) in that descriptive statistics aim
to summarize a sample, rather than use the data to learn about the population
that the sample of data is thought to represent.

Descriptive statistics provides simple summaries about the sample and
about the observations that have been made. Such summaries may be ei-
ther quantitative, i.e. summary statistics, or visual, i.e. simple-to-understand
graphs. These summaries may either form the basis of the initial description
of the data as part of a more extensive statistical analysis, or they may be
sufficient in and of themselves for a particular investigation.

In statistics, statistical inference is the process of drawing conclusions from
data that is subject to random variation, for example, observational errors or
sampling variation. More substantially, the terms statistical inference, sta-
tistical induction and inferential statistics are used to describe systems of
procedures that can be used to draw conclusions from data sets arising from
systems affected by random variation, such as observational errors or random
sampling.
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Univariate Data Bivariate Data

• Data involving a single variable. • Data involving two variables.

• Does not deal with causes or rela-
tionships.

• Deals with causes or relationships.

• The major purpose of univariate
analysis is to describe.

• The major purpose of bivariate
analysis is to explain.

• Central tendency of data is mea-
sured using mean, mode, median.

• The dispersion or spread of the data
is measured through range, variance,
max, min, quartiles, standard devi-
ation.

• The frequency distributions is de-
scribed through bar graph, his-
togram, pie chart, line graph, box-
and-whisker plot.

• Analysis of two variables simulta-
neously.

• Correlations are used to under-
stand the relationship between the
variables.

• Bivariate analysis leads to com-
parison between attributes,
discovers emperical relationships
among correlated attributes, ex-
plains cause and effect relationship
among variables.

• Discovers the independent and de-
pendent variables.

Sample Question: How many of the
students in the freshman class are fe-
male?

Sample Question: Is there a re-
lationship between the number of
females in computer programming
and their scores in mathematics?

TABLE 9.1
Comparison of Univariate and Bivariate Data
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9.4 Role of Statistics in GIS

The following example will show how an emerging set of tools that rely on
spatial statistics provides GIS users the capability to conduct spatial analysis
of the information we have.

1. Calculating the center, dispersion, and trend
Statistics can describe the characteristics of a set of features, includ-
ing the center of the features and the extent to which features are
clustered or dispersed around the center, and any directional trend.
Analyzing the distribution of features is useful for studying change
over time for example, to see if the center of cases of a particular
disease changes position over the course of several months, or for
computing two or more sets of features.

2. Identifying patterns in spatial data
We can use spatial statistics to measures whether and to what ex-
tent the distribution of features creates a pattern.

For example, extracting the prevalence and spread of a particular
disease like malaria or water born disease in an area. Depending on
the spread the hygienic condition or the source of the water-borne
disease can be identified in the area. If we find the classes of disease
are clustered, the source is likely somewhere inside the cluster, such
as a pond harbouring infected mosquitoes.

We can also identify patterns in the distribution of attribute
values associated with the features. For example, we might calculate
the degree to which student test scores in a city are clustered. If
similarly high or low scores occur together, it may mean money
and other resources are affecting the scores.

3. Identifying spatial clusters
Here we discuss the importance of identifying clusters. We can de-
termine if the features or values associated with the features occur
together, and measure the strength of the relationship. For exam-
ple, a public health analyst could determine the extent to which
economic or demographic factors are related to the quality of infant
health in neighbourhoods across a country. We can use relationships
to make predictions about where features or certain attribute values
will osculate action or when we want to find the cause of the cluster,
so we know what action to take. A public health department would
take immediate action to notify people living a flu cluster has been
identified to watch for symptoms. They could then try to identify
the source of the outbreak—if it’s a school, they would know to
begin inoculating the children. We can also use statistics to identify
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clusters of features with similar values. For example, a tax assessor
could create neighbourhoods by identifying clusters of block groups
with similar median house values.

4. Geo-statistics is a branch of statistics focusing on spatial or spatio-
temporal data sets.

5. Spatial analysis or spatial statistics
This includes any of the formal techniques which study entities using
their topological, geometric, or geographic properties. It refers to a
variety of techniques, many still in their early development, using
different analytic approaches and applied in diverse fields.

9.5 Descriptive Statistical Methods

Some of the frequently computed descriptive statistical methods are:

Mean

Median

Mode

Variance

Standard deviation

Standard error

Range

Skewness

Kurtosis

For univariate data population Y1, Y2, .., YN , the statistical quantity such
as mean, mode, median, variance, standard deviation, best estimation of stan-
dard deviation, mean deviation, range, skewness and kurtosis are some of the
statistical parameters which give quantitative trend measures of the sample
population.

9.5.1 Mean

The sum of a list of numbers, divided by the total number of numbers in the list
is the mean. The arithmetic mean of a set of values is the quantity commonly
called the mean or the average. Given a set of samples, the arithmetic mean
is given by equation 9.1.
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Ŷ = µ =
1

N

∑
i=1

NYi (9.1)

where Ŷ = µ is the mean, N is the sample size, and Yi is the ith sample.

9.5.2 Median

Median is the middle value of the ordered list of values—the smallest number
such that at least half the numbers in the list are no greater than it. If the list
has an odd number of entries, the median is the middle entry in the list after
sorting the list into increasing order. If the list has an even number of entries,
the median is equal to the sum of the two middle numbers divided by two.

9.5.3 Mode

The mode is the value that appears most often in a set of data. Like the statis-
tical mean and median, the mode is a way of expressing, in a single number,
important information about a random variable or a population. The numeri-
cal value of the mode is the same as that of the mean and median in a normal
distribution, and it may be very different in highly skewed distributions. The
mode is not necessarily unique, since the same maximum frequency may be
attained at different values. The most extreme case occurs in uniform distri-
butions, where all values occur equally frequently.

9.5.4 Variance

In statistics, in a population of samples, the mean of the squares of the differ-
ences between the respective samples and the sample mean is called variance.
It is expressed mathematically as equation 9.2.

σ2 =
1

N

N∑
i=1

(Yi − Ŷ )2 (9.2)

where σ2 is the standard deviation, Ŷ is the sample mean, N is the sample
size and Yi is the ith sample.

9.5.5 Standard Deviation

The square root of the sample variance of a set of N values is called standard
deviation (SD) of the sample and given by equation 9.3.

SN =

√√√√ 1

N

N∑
i=1

(Yi − Ŷ )2 (9.3)
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9.5.5.1 Best Estimation of Standard Deviation

The square of the sample variance of a set of N values is called standard
deviation. By best estimation, we mean that the estimator should be unbiased.
Hence the formula for best estimation is given by the equation 9.4.

S2 =
1

N − 1
[
N∑
i=1

Y 2
i −N ∗ Ŷ 2

N ] (9.4)

where S is the mean square for the sample, N is the number of the samples,
Ŷ is the mean.

9.5.5.2 Mean Deviation

The mean deviation is the mean of the absolute deviation of a set of data
about the N data’s mean. For the sample size N having Ŷ as the mean of the
distribution the mean deviation is given by equation 9.5.

MD =
1

N

N∑
i=1

| Yi − Ŷ | (9.5)

9.5.6 Standard Error

The standard error of a statistic is the standard deviation of the sampling
distribution of the statistic. The standard error of a statistic depends on the
sample size. In general, the larger the sample’s size the smaller is the standard
error. Standard errors are important because they reflect how much sampling
fluctuation a statistic will show. The formula for the standard error of the
mean is given by the equation 9.6

σM =
σ√
N

(9.6)

where σ is the standard deviation of the original distribution and N is the
sample size.

9.5.7 Range

Range is the difference between the greatest and the least value of the variant.
It is easy to calculate it and it gives a general idea about the distribution. Its
use is very much limited as it does not take into account the central tendency
of the form of the distribution. Note that the range is a single number, not
many numbers.
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9.5.8 Skewness

Skewness is the lack of symmetry and is termed as positive if the longer tail of
the frequency curve is towards the higher value of variant. The skewness for
a normal distribution is zero and any symmetric data should have skewness
near zero.

• Negative value for the skewness indicates that data are skewed left. By
skewed left, we mean that the left tail is heavier than the right tail.

• Positive value for the skewness indicates that data are skewed right. By
skewed right, we mean that the right tail is heavier than the left tail.

For univariate data Y1, Y2, .., YN the formula for skewness is given by equa-
tion 9.7.

Skewness =

N∑
i=1

(Yi − Ŷ )3

(N − 1)3
(9.7)

where Ŷ is the mean, S is standard deviation and N is the number of data
points in the sample population.

9.5.9 Kurtosis

Kurtosis is a measure of whether the data are peaked or flat relative to a
normal distribution, i.e. data sets with high kurtosis tend to have a distinct
peak near the mean, decline rather rapidly, and have heavy tails. Data sets
with low kurtosis tend to have a flat top near the mean rather than a sharp
peak. A uniform distribution would be the extreme case.

Kurtosis is based on the size of a distribution’s tails. Distributions with
relatively large tails are called ‘leptokurtic’, those with small tails are called
‘platykurtic’. A distribution with the same kurtosis as the normal distribution
is called ‘mesokurtic’. The standard normal distribution has a kurtosis of
zero. Positive kurtosis indicates a ‘peaked’ distribution and negative kurtosis
indicates a ‘flat’ distribution.

For univariate data Y1, Y2, .., YN the formula for kurtosis is given by equa-
tion 9.8.

kurtosis =

N∑
i=1

(Yi − Ŷ )4

(N − 1)4
(9.8)

where Ŷ is the mean, S is standard deviation and N is the number of data
points in the sample population.
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9.6 Inferential Statistics

Description and descriptive statistics deals with obtaining summary measures
to describe a set of data, whereas inference and inferential statistics are con-
cerned with making inferences about the population from the surveyed sam-
ples. Inferential statistics is concerned with making legitimate inferences about
underlying processes from observed patterns. Therefore inferential statistics is
often used for sample space where obtaining data through survey and observa-
tion is difficult. Applications such as astronomy, radiation monitoring, natural
disaster use inferential statistics to study the observations and predict about
the phenomena.

In most situations, there is a lack of availability of data for an entire pop-
ulation with all possible occurrences. Most statistical measures are estimated
based on sample data and calculated from samples which are estimates of pop-
ulation parameters. Sampling is carried out by human beings measuring the
parameter or measured through sensors. Therefore, there is always an element
of chance or error in the sampling process. Sometimes two different statistical
measures on the same sample may yield different results. Then the question
arises whether an observed difference (say between two statistics) could have
arisen due to chance associated with the sampling process, or reflects a real
difference in the underlying population(s). The answers to this question in-
volve the concepts of statistical inference and statistical hypothesis testing. It
is always important to explore before any firm conclusions are drawn. How-
ever, before taking any decision based on statistical significances, it should be
kept in mind that, statistical significance does not always equate to scientific
(or substantive) significance. In GIS often the data size is large and the sam-
ple size is big enough. Therefore statistical significance is easily achieved for
spatial data in GIS.

The inferential statistical tools discussed in this section are correlation
coefficient, weights matrix, join count statistics. The statistics of correlated
spatial characteristics are inferred using Moran’s I, Geary’s C, and General G.

9.6.1 Correlation Coefficient (R)

Correlation and regression of two variables are defined for both standard vari-
ables and spatial variables. Correlation coefficient is one of the classic descrip-
tive Statistics measure for bivariate variables. This is also known as Pearson
Product Moment Correlation Coefficient (PPMCC) and designated as R. The
R measures the degree of association or strength of the relationship between
two continuous variables. The computation of R for a bivariate sample popu-
lation is carried out through equation 9.9.
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R =

n∑
i=1

(xi − X̄)(yi − Ȳ )

nSxSy
(9.9)

where

Sx =

√
n∑
i=1

(xi−X̄)2

N

and Sy =

√
n∑
i=1

(yi−Ȳ )2

N

The Sx and Sy are standard deviations in x and y directions respectively.

The computed value of R for any data population varies on a scale from
+1 through 0 to −1.

• R = +1 implies perfect positive association, whereby as values of one rise
they also rise of the other. The phenomena of increase in real estate rate in
a locality implies high and increased income of occupants and increase per
capita income of the locality.

• R = 0 implies no association between the phenomena or attribute under
study. For example the annual rate of rainfall over an area has no correlation
to the education index of the locality.

• R = −1 implies perfect negative association, whereby as values of one vari-
able rise, those of the other fall. A perfect example of negative association
can be that as the price of commodity increases the quantity purchased by
the consumer decreases. If the education level of human population in a
locality increases the rate of crime decreases.

9.6.2 Moran’s Index, or Moran’s I

Moran’s I is a measure of spatial autocorrelation developed by Patrick A. P.
Moran. Spatial autocorrelation is characterized by a correlation in a signal
among nearby locations in space. It is more complex than one-dimensional
autocorrelation because is multi-dimensional (i.e. 2 or 3 dimensions of space)
and multi-directional.

Moran’s I is defined by equation 9.10

I =
N∑

i

∑
j

wij

∑
i

∑
j
wij(Xi − X̂)(Xj − X̂)∑

i

(Xi − X̂)2
(9.10)

where N is the number of spatial units measured at locations indexed by i and
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j. X is the variable of interest, X̂ is the mean of Xi and wij is an element of
a matrix of spatial weights.

Moran’s I is applied to a continuous variable of polygons or points. It is
similar to correlation coefficient R and its value varies between −1.0and+ 1.0
through 0.

1. I = 0 or close to zero [technically, close to −1
n−1

], indicate a random
sampling pattern or no spatial autocorrelation among the observa-
tions.

2. I = +1 or indices above −1
n−1 (towards +1) indicate a strong ten-

dency toward clustering of spatial observations; autocorrelation is
high and positive.

3. I = −1 or indices below −1
n−1 (toward -1) indicate a tendency toward

dispersion or spread uniformly with no clustering or autocorrelation
is negative.

Therefore Moran’s Index is used for inferring the dispersion, randomness
or cluster patterns of a spatially varying point patterns. Moran’s I, differs
from correlation coefficient R in the following aspects:

1. It involves one variable only, not two variables.

2. It incorporates weights matrix (wij), which is an index of relative
location of the observations.

3. It may be seen as the correlation between neighbouring values on a
variable.

4. The correlation between variable X and the spatial lag of X is
formed by averaging all the values of X for the neighbouring sam-
ples.

9.6.3 Geary’s C

Geary’s contiguity ratio is also known as Geary’s C, Geary’s ratio, or the
Geary’s index. This statistic was developed by Roy C. Geary. Geary’s C is a
measure of spatial autocorrelation. Like autocorrelation, spatial autocorrela-
tion means that adjacent observations of the same phenomenon are correlated.
However, autocorrelation is about proximity in time. Spatial autocorrelation
is about proximity in (two-dimensional) space. Spatial autocorrelation is more
complex than autocorrelation because the correlation is two-dimensional and
bi-directional.

Geary’s C is defined by equation 9.11:

C =

(N − 1)
∑
i

∑
j
wij(Xi −Xj)

2

2W
∑
i

(Xi − X̂)
2 (9.11)



Spatial Statistical Methods 181

where N is the number of spatial units indexed by i and j; X is the variable
of interest; X̂ is the mean of X; wij is a matrix of spatial weights; W is the
sum of all wij .

The value of Geary’s C lies between [0, 2].

1. Geary’s C = 1 means no spatial autocorrelation and the variable is
spatially random.

2. Geary’s C = 0 indicates perfect positive autocorrelation and the
data is spatially clustered.

3. Geary’s C = 2 indicates perfect negative autocorrelation and data
is spatially spread.

Values lower than 1 demonstrate increasing positive spatial autocorrela-
tion, whereas values higher than 1 indicate increasing negative spatial auto-
correlation. In general,

1. If (0 < C < 1) then the clustered pattern in which adjacent points
show similar characteristics.

2. If (C ≈ 1) then the random pattern in which points do not show
particular patterns of similarity.

3. If (1 < C < 2) then the pattern is dispersed / uniform pattern in
which adjacent points show different characteristics.

Geary’s C is inversely related to Moran’s I, but they are not identical.
Moran’s I is a measure of global spatial autocorrelation and is applied to
observations spread globally, while Geary’s C is more sensitive to local spatial
autocorrelation and is applied to closely surveyed samples.

9.6.4 General G Statistic

Moran’s I and Geary’s C are used to indicate clustering or positive spatial
autocorrelation but cannot infer the concentration of the population. Often it
is necessary to identify whether the cluster is of high value population or of low
value population indicating the severity of the variable under consideration.
If high values, e.g. neighbourhoods with high crime rates or clusters with high
income group, are to be identified or if clusters with low crime rate or low
income group are to be identified in an area, then Moran’s I and Geary’s C
cannot infer from the data population. Clusters with high value of the variable
are often called hot spots. Similarly if low values cluster together these are
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called cold spots. These situations cannot be distinguished by the I and C
ratios.

To identify and distinguish between the hot and cold spots in a spatially
dispersed population the General G statistic has been developed which dis-
tinguishes between hot spots and cold spots. General G identifies the spatial
concentrations of the population and is given by equation 9.12.

G(d) =

∑
i
∑
jWij(d)xixj∑
i
∑
jxixj

(9.12)

where d is the neighbourhood distance between the observations xi and xj .
The weight matrix wij has value 1 or 0 depending whether observation xj
is within distance d of xi. The value of d the distance bound is generally
judiciously choosen by the spread of the observations.

• The value of G is relatively large if high values cluster together.

• The value of G is relatively low if low values cluster together.

• The General G statistic is interpreted relative to its expected value (value
for which there is no spatial association).

• Larger value of G or value larger than expected implies potential hotspot.

• Smaller value of G or value smaller than expected implies potential coldspot.

The G test statistic is used to see if the difference is sufficient to be statisti-
cally significant. Calculation of G must begin by identifying a neighbourhood
distance within which a cluster is expected to occur.

• For the General G, the terms in the numerator (top) are calculated within
a distance bound (d), and are then expressed relative to totals for the entire
region under study.

• As with all of these measures, if adjacent x terms are both large with the
same sign (indicating positive spatial association), the numerator (top) will
be large.

• If they are both large with different signs (indicating negative spatial asso-
ciation), the numerator (top) will again be large, but negative.

9.7 Point Pattern Analysis in GIS

Most of the spatial data are modeled and processed by GIS in the form of
points, lines and polygons representing discrete and continuous spatial objects.
A dwelling area can be modeled in GIS as a set of points in a vector map.
Therefore, to study the density and other factors it is necessary to study the
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pattern of points, and so point pattern analysis, pattern analysis, etc. are
parts of inferential statistics.

How the point pattern deviates from a random pattern can be studied by
computing the possible clustering among the point population. Sometimes it
is better understood by applying a uniform grid to the sample area and an-
alyzing the point pattern. This study is known as quadrant analysis. Other
forms of inferential statistics are nearest neighbour analysis and spatial auto-
correlation.

9.8 Applications of Spatial Statistical Methods

Spatial statistics finds its applications in many areas of GIS and statistical
geography [8]. In research where spatial data are sampled across a region to
study the spatio-temporal behavior of the region, spatio-statistical techniques
are employed for deduction of effective inference. Following are some of the
applications of spatial statistics.

1. To describe and summarize spatial data

2. To make generalizations concerning complex spatial patterns

3. To estimate the probability of outcomes for an event at a given
location e.g. earthquake, tsunami etc.

4. To use the surveyed sample of spatial data to predict and infer the
characteristics for the larger set of geographic data (population)

5. To determine if the magnitude or frequency of some phenomenon
differ from one location to another

6. To compare and learn the spatial pattern of simulated data with
the actual spatial pattern

9.9 Summary

This chapter starts with the definition of statistics. The definition is further ex-
tended to spatial statistics. The role of statistical methods in GIS is discussed.
The difference between the univariate data with that of bivariate data is pre-
cursor to the understanding of the salient difference between the descriptive
statistical methods and the inferential statistical methods. The two distinct
types of statistical methods, the predictive statistics and the inferential sta-
tistical methods has been classified with the explanation of the differences
between them. The different descriptive statistical methods such as the mean,
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mode, median, standard deviation, standard errors, range, skewness and kur-
tosis and their mathematical equations are then discussed. The second half
of the chapter delves into inferential statistics. Inferential statistical methods
such as Moran’s Index, Geary’s C and General G statistical index are ex-
plained with the equations and the associated parameters. How the spatial
data is used to generate this index and how to interpret them to draw infer-
ence are explained with examples. The chapter ends with the explanation of
spatial correlation and the spatial correlation coefficient.
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An Introduction to Bathymetry

10.1 Introduction and Definition

Bathymetry is the science of measuring the depths of the oceans, seas, etc.
and charting the shape and topography of the ocean floor. The name comes
from Greek terms bathus meaning deep, and metron meaning measure. Hence
bathymetry can be understood as the measurement of depth of deep sea or
hydrographic body. In other words bathymetry is the study of underwater
depth of lake or ocean beds. Bathymetric measurements can determine the
topography of the ocean floor. Using bathymetric data one can study the sea
floor, which is varied, complex, and ever-changing, containing plains, canyons,
active and extinct volcanoes, mountain ranges, and hot springs. Some features,
such as mid-ocean ridges where oceanic crust is constantly produced and sub-
duction zones, also called deep-sea trenches, where it is constantly destroyed,
are analyzed using the bathymetric data.

Bathymetric mapping involves the production of ocean and sea maps based
upon bathymetric data. Bathymetric maps represent the ocean depth as a
function of geographical coordinates in the same way topographic maps repre-
sent the altitude of Earth’s surface at different geographic points. Bathymetry
data can be used for modeling the sea floor surface digitally, and artificial illu-
mination techniques are used to visualize the depths being portrayed. Paleo-
bathymetry is the study of past underwater depths.

Bathymetric charts are typically produced to support safety of surface or
subsurface navigation, and usually show sea floor relief or terrain as contour
lines. Bathymetric contours are called depth contours or isobaths. Isobaths
along with selected depths (soundings) provide crucial surface navigational
information.

10.2 Bathymetric Techniques

For hundreds of years, the only way to measure ocean depth was the sounding
line, a weighted rope or wire that was lowered overboard until it touched the
ocean floor. Not only was this method time-consuming, it was inaccurate;

185
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FIGURE 10.1
(a) Ray diagram of working sonar; (b) multi-beam sonar working principle

ship drift or water currents could drag the line off at an angle, which would
exaggerate the depth reading. It was also difficult to tell when the sounding
line had actually touched bottom.

In the twentieth century, sounding lines were entirely replaced by sonar
systems. Sonar (Sound Navigation Ranging), invented during World War 2
(1939–1945) measures depth by emitting a short pulse of high-frequency sound
and measuring the time until an echo is heard. The data collected using sonar
made it possible to prepare the complete bathymetric charts of the world’s
oceans. For the first time, scientists knew what 70% of Earth’s surface really
looked like. Radar, which produces images by bouncing radio waves rather
than sound waves off distant objects, cannot be used for bathymetry because
water absorbs radio waves.

Many sonar techniques have been developed for bathymetry. When high-
resolution images are desired, an echo sounder (sonar) is mounted beneath
or over the side of a boat, pinging a beam of sound downward at the sea
floor. Remote sensing LIDAR or LADAR systems (side scan sonar see Figure
10.1(a)) are also used to collect high resolution bathymetric data. The amount
of time it takes for the sound or light to travel through the water, bounce off
the sea floor, and return to the sounder tells the equipment what the distance
to the sea floor is.

Today, multi-beam echo sounders (MBES) are typically used, which use
hundreds of very narrow adjacent beams arranged in a fan-like swath of typi-
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cally 90 to 170 degrees across (See Figure 10.1b). The tightly packed array of
narrow individual beams provides very high angular resolution and accuracy.
In general a wide swath, which is depth dependent, allows a boat to map more
sea floor in less time than a single-beam echo sounder by making fewer passes.
The beams update many times per second (typically 0.1-50 Hz depending on
water depth), allowing faster boat speed while maintaining 100% coverage of
the sea floor. Attitude sensors allow for the correction of the boat’s roll, pitch
and yaw on the ocean surface, and a gyrocompass provides accurate heading
information to correct for vessel yaw. (Most modern MBES systems use an in-
tegrated motion-sensor and position system that measures yaw as well as the
other dynamics and position.) The global positioning system (or other global
navigation satellite system (GNSS)) positions the soundings with respect to
the surface of the Earth. Sound speed profiles (speed of sound in water as a
function of depth) of the water column correct for refraction or ‘ray-bending’
of the sound waves owing to non-uniform water column characteristics such
as temperature, conductivity, and pressure. A computer system processes all
the data, correcting for all of the above factors as well as for the angle of each
individual beam. The resulting sounding measurements are then processed ei-
ther manually, semi-automatically or automatically (in limited circumstances)
to produce a map of the area. As of 2010 a number of different outputs are
generated, including a subset of the original measurements that satisfy some
conditions (e.g. most representative likely soundings, shallowest in a region,
etc.) or integrated digital terrain models (DTM) (e.g. a regular or irregular
grid of points connected into a surface). Historically, selection of measurements
was more common in hydrographic applications while DTM construction was
used for engineering surveys, geology, flow modeling, etc. More recently, DTMs
have become more acceptable in hydrographic practice.

10.3 Difference between Bathymetry and Topography

A bathymetric chart is the submerged equivalent of an above-water topo-
graphic map. Bathymetric charts are designed to present accurate, measurable
descriptions and visual presentations of the submerged terrain.

In an ideal case, the joining of a bathymetric chart and topographic map of
the same scale and projection of the same geographic area would be seamless.
The only difference would be that the values begin increasing after crossing the
zero at the designated sea level datum. Thus in topographic maps, mountains
have the greatest values while in bathymetric charts,the greatest depths have
the greatest values. Simply put, the bathymetric chart is intended to show
the land if overlying waters were removed in exactly the same manner as the
topographic map.

A bathymetric chart differs from a hydrographic chart in that accurate
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presentation of the underwater features is the goal, while safe navigation is
the requirement for the hydrographic chart. A hydrographic chart will obscure
the actual features to present a simplified version to aid mariners in avoiding
underwater hazards.

Bathymetric surveys are a subset of the science of hydrography. They differ
slightly from the surveys required to produce the product of hydrography in its
more limited application and as conducted by the national and international
agencies tasked with producing charts and publications for safe navigation.
That chart product is more accurately termed a navigation or hydrographic
chart with a strong bias toward the presentation of essential safety informa-
tion. Bathymetric data is used for navigation in deep sea where safety to life
is in question. Therefore, a standard has been evolved by the international
maritime community known as Safety of Life at Sea (SOLACE). Bathymetry
data need to comply to SOLACE inorder to be used for navigation in sea.

Bathymetric surveys and charts are closely tied to the science of oceanog-
raphy, particularly marine geology, and underwater engineering or other spe-
cialized purposes.

10.4 Bathymetric Data Survey and Modeling

Unlike terrain surface, the sea is dynamic in nature and is shared by the in-
ternational community for transportation, exploration and expedition. The
sea is divided into two zones: (a) the exclusive economic zone (EEZ) of a
country which extends to approximately twelve nautical miles from the shore
and (b) international maritime zone which is beyond the EEZ. Therefore, the
maritime survey rights of the EEZ lie with the respective country whereas
the international maritime zone is surveyed by an organization known as the
International Hydrographic Organisation (IHO). Therefore to share the sur-
vey data among the international community a common standard must be
adhered to, which is designed and upgraded from time to time by the IHO.
The standards such as S-52, S-57, S-63 and S-100 have been designed by the
IHO for sharing of bathymetric data in the international maritime community
and industry.

10.4.1 Bathymetric Data Models

Many IHO publications describing the bathymetric data model are available
to the general public from the IHO website. Some important publications
of IHO describing the bathymetric data standards and models are the In-
ternational Hydrographic Review, International Hydrographic Bulletin, Chart
Specifications of the IHO, and The Hydrographic Dictionary. The IHO has also
published Limits of Oceans and Seas, which shows the boundaries between the
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oceans, as well as various international standards related to charting and hy-
drography, including S-57, the IHO transfer standard for digital hydrographic
data.

10.4.1.1 S-57

S-57 is the IHO standard for the exchange of digital hydrographic data. S-57
is not the ENC (electronic navigation chart) product specification, but it is
the generic framework standard for hydographic and related data. To date, it
has been used almost exclusively for encoding ENCs; however there is a need
for S-57 to support additional requirements. S-57 standards include:

• A general introduction with list of references and definitions.

• A theoretical data model on which the standard is based.

• The data structure or format that is used to implement the data model.

• General rules for encoding data in ISO/IEC 8211.

In addition to the main document, there are two appendixes in S-57.

• Appendix A is the object catalogue. It provides the official IHO-approved
data schema that can be used within an exchange set to describe real-world
entities.

• Appendix B contains the IHO-approved product specifications. These con-
tain additional sets of rules for specific applications. Currently, the only
product specification in S-57 is for an ENC.

There are several products based on the S-57 standards including:

• Additional Military Layers (AML)

• Marine Information Overlay (MIO)

• Inland ENC

• Port ENC

10.4.1.2 S-52

IHO standard S-52 provides colours and symbol specifications for ECDIS
(Electronic Chart Display and Information System). Also it describes the pre-
sentation library for ECDIS (PresLib) which comprises a set of specifications,
plus a symbol library, colour tables, look-up tables and symbolization rules.
The PresLib links every object class and attribute of the ECDIS internal data
base to the appropriate presentation of the ECDIS display. It provides details
and procedures for implementing the display specifications.
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10.4.1.3 S-63

S-63 is an IHO standard for encrypting and securing ENC data. The standard
was adopted as the official IHO standard by the IHO member states in De-
cember 2002. The S-63 standard secures data by encrypting the basic transfer
database using the Blowfish algorithm, SHA-1-hashing the data based on a
random key and adding a CRC32 check. It also defines the use of DSA format
signatures to authenticate the data originator.

10.4.1.4 S-100

S-100 came into use on 1 January 2010. It explains how the IHO will use
and extend the ISO 1900 series of geographic standards for hydrographic,
maritime and related issues. S-100 extends the scope of the existing S-57
hydrographic transfer standard. Unlike S-57, S-100 is inherently more flexi-
ble and makes provision for such things as the use of imagery and gridded
data types, enhanced metadata and multiple encoding formats. It also pro-
vides a more flexible and dynamic maintenance regime via a dedicated on-line
registry.

S-100 provides the data framework for the development of the next gener-
ation of ENC products, as well as other related digital products required by
the hydrographic, maritime and GIS communities. The key features of S-100
are:

• It provides interoperability with other ISO 19100 based profiles.

• It enables easier use of hydro data beyond HOs and ECDIS user’s coastal
zone mapping, security, inundation modeling.

• It provides plug-and-play updating of data, symbology and software en-
hancements.

• It supports imagery and gridded data, high-density bathymetry, and seafloor
classification.

• It provides 3D and time-varying data (x,y,z and time).

• It supports marine GIS and web-based services.

• It supports gridded bathymetry.

10.5 Representation of Sea Depth and Sounding

Studying and visualizing the depths of the sea is like hovering in a balloon high
above an unknown land which is hidden by clouds, because it is a peculiarity
of oceanic research that direct observations of the abyss are impracticable.
Instead of the complete picture that direct vision gives, we have to rely upon a
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patiently put together mosaic representation of the discoveries made from time
to time by sinking instruments and appliances into the deep. Sea depths are
collected as the sounding values obtained through sonar survey. The soundings
are represented as nautical charts, electronic navigation charts, and paper
navigation charts. These charts display the soundings and other hydrographic
data according to the S-52 standards.

10.5.1 Nautical Chart

A nautical chart is a graphic representation of a maritime area and adjacent
coastal regions. Depending on the scale of the chart, it may show depths of
water and heights of land (topographic map), natural features of the sea bed,
details of the coastline, navigational hazards, locations of natural and man-
made aids to navigation, information on tides and currents, local details of the
Earth’s magnetic field, and man-made structures such as harbours, buildings,
and bridges. Nautical charts are essential tools for marine navigation; many
countries require vessels, especially commercial ships, to carry them. Nautical
charting may take the form of charts printed on paper or computerised elec-
tronic navigation charts. Nautical charts are based on hydrographic surveys.
As surveying is laborious and time-consuming, hydrographic data for many
areas of sea may be dated and are not always reliable.

Nautical charts are issued by the national hydographic offices in many
countries. These charts are considered ‘official’ in contrast to those made by
commercial publishers. Many hydrographic offices provide regular, sometimes
weekly, manual updates of their charts through their sales agents. Individual
hydographic offices produce national chart series and international chart se-
ries. Coordinated by the IHO, the international chart series is a worldwide
system of charts (‘INT’ chart series), which is being developed with the goal
of unifying as many chart systems as possible. The nautical chart of New York
Harbor is depicted in Figure 10.2.

10.5.2 Details on Nautical Chart

Conventional nautical charts are printed on large sheets of paper at a variety
of scales. Electronic navigation charts, which use computer software and elec-
tronic databases to provide navigation information, can augment or in some
cases replace paper charts, though many mariners carry paper charts as a
backup in case the electronic charting system fails. Nautical charts must be
labeled with aid to navigation or navigational information such as the pilotage
information, depth information, tidal information etc.
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FIGURE 10.2
New York Harbor nautical chart

1. Pilotage information:
The chart uses symbols to provide pilotage information about the
nature and position of features useful to navigators, such as sea bed
information, sea marks and landmarks. Some symbols describe the
sea bed with information such as its depth, materials as well as pos-
sible hazards such as shipwrecks. Other symbols show the position
and characteristics of buoys, lights, lighthouses, coastal and land
features and structures that are useful for position fixing. Colours
distinguish between man-made features, dry land, sea bed that dries
with the tide and sea bed that is permanently underwater and in-
dicate water depth.

2. Depths:
Depths which have been measured are indicated by the numbers
shown on the chart. Depths on charts published in most parts of
the world use meters. Depth contour lines show the shape of un-
derwater relief. Coloured areas of the sea emphasise shallow water
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FIGURE 10.3
Chart colours and representation

and dangerous underwater obstructions. Depths are measured from
the chart datum, which is related to the local sea level. The chart
datum varies according to the standard used by each National Hy-
drographic Office. In general, the move is towards using lowest as-
tronomical tide (LAT), the lowest tide predicted in the full tidal
cycle, but in non-tidal areas and some tidal areas Mean Sea Level
(MSL) is used.

Heights are generally given using highest astronomical tide (HAT)
or mean sea level. The use of HAT for heights, and LAT for depths,
means that mariners can quickly look at the chart to ensure that
they have sufficient clearance to pass any obstruction, without the
need to do tidal calculations each time.

3. Tidal information:
Tidal races and other strong currents have special chart sym-
bols. Tidal flow information may be shown on charts using tidal-
diamonds, indicating the speed and bearing of the tidal flow during
each hour of the tidal cycle.
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10.6 Map Projection, Datum and Coordinate Systems
Used in Bathymetry

The Mercator projection is almost universally used in nautical charts. There
are, however, some exceptions for very large or small scales where projections
such as the gnomonic projection may be used. Since the Mercator projection
is conformal, that is, bearings in the chart are identical to the corresponding
angles in nature, bearings may be measured from the chart to be used at sea
or plotted on the chart from measurements taken at sea.

Positions of places shown on the chart can be measured from the longitude
and latitude scales on the borders of the chart, relative to a map datum such
as WGS 84.

A bearing is the angle between the line joining the two points of interest
and the line from one of the points to the north, such as a ships course or
a compass reading to a landmark. On nautical charts, the top of the chart
is always true north, rather than magnetic north, towards which a magnetic
compass points. Most charts include a compass rose depicting the variation
between magnetic and true north.

10.7 Application of Bathymetry Used in Preparation of
bENCs

Untill recently, we did not have electronic navigation chart (ENC) with em-
bedded bathymetry information. The bathymetric ENC (bENC) concept was
developed by a company named Seven Cs and was presented in the September
2005 issue of Hydro International, Ports and Harbors Special. The approach
aims to integrate the latest hydrographic survey data into ENC-based nav-
igation software (see Figure 10.4). According to this concept, high-density
bathymetric data are kept in separate S-57 data sets. bENCs are considered a
bathymetric complement. The idea is to use bENCs in conjunction with regu-
lar ENCs (official or non-official) rather than to replace them, i.e. it does not
involve any changes in topography or in the existing chart information, only in
bathymetry. There was no need to introduce new S-57 object classes when the
bENC concept was developed. bENCs make use of the same topology model
as standard ENCs.

The integration of high-density bathymetry to ENCs has become a ma-
jor issue. For this purpose, after acquiring, cleaning and modeling the hydro-
graphic survey data, contours at meter (or sub-meter) intervals are generated.
The contouring results are then converted into S-57 (the IHO exchange format
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FIGURE 10.4
Topobathymetry production of bENC

for ENCs) and encoded accordingly. The next step is the definition and attri-
bution of depth areas, i.e. areas enclosed by adjacent contour lines. The result
is a sort of electronic fair-sheet containing bathymetric data in S-57 format.
This fair-sheet could be used to update the bathymetry of the official ENCs
covering the relevant area. Data suitable for the production of high-density
bathymetry ENCs (bENCs) are collected by port and waterway authorities
on a regular basis. However, the data are usually not made available in S-57
format.

10.8 Differences between ENC, SENC, and RENC

Different types of navigation products and charts have been produced us-
ing the bathymetric data. The prominent charts used during sea voyages are
electronic navigation charts, system electronic navigation charts and regional
electronic navigation charts.
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10.8.1 ENC - Electronic Navigational Chart

The data base, standardised as to content, structure and format, is issued for
use with ECDIS. An ENC is equivalent to new editions of paper charts and
may contain supplementary nautical information additional to that contained
in the paper chart (e.g. sailing directions). The ENC is a subset of the ENC
database developed by the national hydrographic authorities.

10.8.2 SENC - System Electronic Navigational Chart

The data base is transformed by ECDIS of the ENC for optimum use and
updated by appropriate means. The SENC is the data base that is actually
accessed for display generation and other navigational functions. The SENC
contains the equivalent of the up-to-date paper chart. SENC distribution is a
means of equipping an ECDIS with ENCs that is faster and generally more
reliable than conventional distribution of ENCs in the S-57 format. SENC
distribution involves converting the ENC data from the S-57 transmission
format into the SENC format (a format specific to each ECDIS) in an office
environment. This SENC file can then be sent to the ship and directly copied
into the ECDIS.

10.8.3 RENC - Regional ENC Coordinating Center

The worldwide electronic navigational chart database (WEND) is the IHO
network of hydrographic offices. It is the regional node responsible as issuing
authority for official ENCs and official updates compiled of national ENC
data.

10.9 Differences between a Map and a Chart

A chart, especially a nautical chart, has special unique characteristics includ-
ing a very detailed and accurate representation of the coastline that takes into
account varying tidal levels and water forms, critical to a navigator. A map
emphasizes land forms, including the representation of relief, with shoreline
represented as an approximate delineation usually at mean sea level. For a
listing of the differences between the two, please see Table 10.1.

A chart is a working document used to plot courses for navigators to fol-
low in order to transit a certain area. It takes into account special conditions
required for one’s vessel, such as draft, bottom clearance, wrecks and obstruc-
tions which can be hazardous. Way points are identified to indicate relative
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CHART MAP
A chart, especially a nautical chart,
has special unique characteristics in-
cluding a very detailed and accu-
rate representation of the coastline,
that takes into account varying tidal
levels and water forms, critical to a
navigator.

A map emphasizes land forms, in-
cluding the representation of re-
lief, with shoreline represented as an
approximate delineation usually at
mean sea level.

A chart is a working document used
to plot courses for navigators to fol-
low in order to transit a certain
area. It takes into account special
conditions required for one’s ves-
sel, such as draft, bottom clearance,
wrecks and obstructions which can
be hazardous. Way points are identi-
fied to indicate relative position and
points at which specific maneuver
such as changing courses must be
performed.

A map is a static document that
serves as a reference guide. It can-
not be used to plot a course. It pro-
vides a predetermined course, usu-
ally a road, path, etc., to be fol-
lowed. Special consideration for the
type of vehicle is rarely present.
Maps provide predetermined points-
road intersections-to allow one a
choice to change to another prede-
termined direction.

Charts provide detailed information
about the area beneath the water
surface normally not visible to the
naked eye, which is critical for safe
and efficient navigation.

Maps merely indicate a surface path
providing no information of the con-
dition of the road. A map will not
provide information about whether
the road is under repair (except
when it is a new road) or how many
pot holes or other obstructions it
may contain. However the driver is
able to make a visual assessment of
such conditions.

NOAA Nautical Chart of Cape
Henry, VA Chesapeake Bay.

USGS Topographic Map of Cape
Henry, VA Chesapeake Bay.

TABLE 10.1
Differences between a Chart and a Map

position and points at which specific maneuvers such as changing courses must
be performed.

A map is a static document that serves as a reference guide. A map cannot
be used to plot a course. Rather it provides a predetermined course, usually
a road, path, etc., to be followed. Special consideration for the type of vehicle
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FIGURE 10.5
Example of a map

is rarely present. Maps provide predetermined points, road intersections etc.
to allow one a choice to change to another predetermined direction.

Charts provide detailed information on the area beneath the water surface,
normally not visible to the naked eye, which can be very critical for safe and
efficient navigation. Maps merely indicate surface paths and provide no infor-
mation about the condition of the road. A map will not provide information
on whether the road is under repair (except when it is a new road) or how
many potholes or other obstructions it may contain. However, the driver is
able to make a visual assessment of such conditions.
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FIGURE 10.6
Example of a chart

10.10 Summary

This chapter introduces the science of bathymetry and its associated taxon-
omy to the reader. It gives a pedagogical definition of bathymetry followed by
the different bathymetric survey techniques to measure the depth of sea floor.
How the bathymetric data are modeled and stored in international standard
formats such as S-52, S-57, S-63 and S-100 is discussed. How the sea depth
is represented in a nautical chart is explained. The datum, map projection,
and coordinate system used in bathymetry are discussed followed by different
products of bathymetry such as the ENC, SENC and RENC. A classical differ-
ence between map and chart and different types of ENCs is given. Bathymetric
concepts are integrated to the equivalent topographic concepts, explaining the
spatial characteristics of the bathymetric survey data.
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Spatial Analysis of Bathymetric Data and
Sea GIS

The results of bathymetric or hydrographic surveys are produced in the form
of nautical charts, sailing charts, coastal charts, harbor charts, electronic nav-
igation charts, raster charts, etc. These charts in conjunction with computer
aided digital display and sensors make excellent navigation equipments such
as ECDIC (Electronic Chart Display and Information System), leveraging the
power of bathymetric information and sensor information for safe navigation
in deep sea. Therefore these systems are the best examples of manifestation of
spatial information systems used for navigation, guidance and exploration of
sea. Bathymetric information is also useful for effective planning of military
operations at sea and for underwater exploration of natural resources.

One of the best examples of usage of bathymetric data is to identify a
suitable site for resting or berthing of submarines. An undulating sea floor
where the submarines can berth during operations is an important-spatio
temporal decision. The captain of a submarine can using bathymetric data.
The flat sea bed with the least slope and aspect in the vicinity of the current
location needs to be computed and presented to the submarine commander
in digital display format so as to arrive at a quick decision. This requires
bathymetric sea bed surface generation and visualization in addition to the
computation of slope and aspect.

Another example of a spatio-temporal decision to be made by the navigator
of a ship is to find a suitable anchorage area near a harbor, or whether the
ship can be safely guided to the harbor with appropriate jetty clearance, i.e.
appropriate depth clearance of the sea floor from the hull of the ship, so
that the ship does not ground. Depth contours give the general idea to a
ship commander regarding the depth clearance while sailing in the deep sea.
The scale of the depth information becomes very important when the ship is
negotiating a harbor or approaching land.

Information such as the magnitude and direction of sea current, depth,
surface and subsurface temperature, height of the waves and tide, land fea-
tures which are aids to navigation such as location of lighthouses, beacons,
sonobuoys, important landmarks, and islands are absolutely important for
guiding a ship.

This chapter discusses the outputs and systems which are the outcome
of bathymetry and hydrography. Systems such as ENC, SENC, ECDIC, and
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different forms of charts and their usefulness are discussed. The chapter starts
with an answer to the question, what is a nautical chart? The contents of
a nautical chart and the meta information associated with it are discussed
followed by definitions of various charts with explanations of some important
chart elements.

11.1 Difference between a Nautical Chart and an Elec-
tronic Chart

A nautical chart represents part of the spherical Earth on a plane surface.
It shows water depth, the shoreline of adjacent land, prominent topographic
features, aids to navigation, and other navigational information. It is a work
area on which the navigator plots courses, ascertains positions, and views
the relationship of the ship to the surrounding area. It assists the navigator in
avoiding dangers and arriving safely at his destination. Originally hand-drawn
on sheepskin, traditional nautical charts have for generations been printed on
paper.

Electronic charts consisting of a digital database and a display system
are in use and are replacing paper charts aboard many vessels. An electronic
chart is not simply a digital version of a paper chart; it introduces a new
navigation methodology with capabilities and limitations very different from
paper charts. The electronic chart is the legal equivalent of the paper chart if
it meets certain International Maritime Organization specifications.

Should a marine accident occur, the nautical chart in use at the time takes
on legal significance. In cases of grounding, collision, and other accidents,
charts become critical records for reconstructing the event and assigning li-
ability. Charts used in reconstructing the incident can also have tremendous
training value.

The different types of nautical charts depending upon the specific utiliza-
tion and application of the ENC are sailing charts, general charts, coastal
charts, and harbor charts. These are discussed below.

11.1.1 Sailing Charts

Sailing charts are the smallest scale charts. Sailing charts are used for plan-
ning, fixing position at sea and for plotting dead reckoning on a long voyage.
The scale is generally 1:600,000 or smaller. The shoreline and topography
are generalized and only offshore soundings, the principal navigational lights,
outer buoys, and landmarks visible at considerable distances are shown in the
chart.
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11.1.2 General Charts

General charts are intended for coast-wise navigation outside of outlying reefs
and shores. The scales range from about 1:150,000 to 1:600,000.

11.1.3 Coastal Charts

Coastal charts are intended for inshore coast-wise navigation, for entering or
leaving bays and harbors of considerable width, and for navigating large inland
waterways. The scales range from about 1:50,000 to 1:150,000.

11.1.4 Harbour Charts

Harbor charts are intended for navigation and anchorage in harbors and small
waterways. The scale is generally larger than 1:50,000 showing the soundings
of the paths to the harbour. The shape of the anchorage area and hazards are
clearly depicted on the chart.

11.2 Projection Used in ENC

Cartographers cannot transfer a sphere to a flat surface without distortion so
they project the surface of a sphere onto a developable surface. A developable
surface can be flattened to form a plane. This process is known as chart pro-
jection. If points on the surface of the sphere are projected from a single point,
the projection is said to be perspective or geometric. With widespread use of
electronic charts, it is important to remember the cartographic principles ap-
plied to prepare paper chart are also applied to depict them on a video screen
or electronic display.

The majority of NOAA (National Oceanic and Atmospheric Administra-
tion) charts use Mercator projection. This a cylindrical projection upon a
plane with the cylinder tangent along the equator. The Mercator is the most
common projection used in maritime navigation, primarily because rhumb
lines are plotted as straight lines.

11.2.1 Some Characteristics of a Mercator Projection

1. Both meridians and parallels are expanded at the same ratio with
increased latitude.

2. Expansion is the same in all directions, and angles are shown cor-
rectly (conformal).

3. Rhumb lines appear as straight lines, the directions of which can be
measured on a chart.
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4. Distances can be measured directly for accuracy.

11.2.2 Scale of ENC

The scale of a chart is the ratio of a given distance on the chart to the actual
distance which it represents on the Earth. It may be expressed in various ways.
The most common are:

1. A simple ratio or fraction, known as the representative fraction. For
example, 1:80,000 or 1/80,000 means that one unit (such as a meter)
on the chart represents 80,000 of the same unit on the surface of
the Earth. This is sometimes called the natural or fractional scale.

2. A statement that a given distance on the Earth equals a given mea-
sure on the chart, or vice versa. For example, 30 miles to the inch
means that 1 inch on the chart represents 30 miles of the Earth’s
surface. Similarly, 2 inches to a mile indicates that 2 inches on the
chart represent 1 mile on the Earth. This is sometimes called the
numerical scale.

3. A line or bar, called a graphic scale, may be drawn at a convenient
place on the chart and subdivided into nautical miles, meters, etc.

All charts vary somewhat in scale from point to point, and in some projec-
tions the scale is not the same in all directions about a single point. A single
subdivided line or bar for use over an entire chart is shown only when the
chart is of such scale and projection that the scale varies a negligible amount
over the chart, usually one of about 1:75,000 or larger. Since 1 minute of lat-
itude is very nearly equal to 1 nautical mile, the latitude scale serves as an
approximate graphic scale.

On most nautical charts the east and west borders are subdivided to fa-
cilitate distance measurements. On a Mercator chart the scale varies with the
latitude. This is noticeable on a chart covering a relatively large distance in
a north-south direction. On such a chart the border scale near the latitude in
question should be used for measuring distances.

Of the various methods of indicating scale, the graphical method is nor-
mally available in some form on the chart. In addition, the scale is customarily
stated on charts on which the scale does not change appreciably over the chart.

The ways of expressing the scale of a chart are easily interchangeable. For
instance, in a nautical mile there are about 72,913.39 inches. If the natural
scale of a chart is 1:80,000, one inch of the chart represents 80,000 inches of
the Earth, or a little more than a mile. To find the exact amount, divide the
scale by the number of inches in a mile, or 80,000/72,913.39 = 1.097. Thus, a
scale of 1:80,000 is the same as a scale of 1.097 (or approximately 1.1) miles
to an inch.
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Stated another way, 72,913.39/80,000 = 0.911 (approximately 0.9) inch to
a mile. Similarly, if the scale is 60 nautical miles to an inch, the representative
fraction is 1:(60 × 72,913.39) = 1:4,374,803.

A chart covering a relatively large area is called a small scale chart and one
covering a relatively small area is called a large scale chart. Since the terms
are relative, there is no sharp division between the two. Thus, a chart of scale
1:100,000 is large scale when compared with a chart of 1:1,000,000 but small
scale when compared with one of 1:25,000.

As scale decreases, the amount of detail which can be shown decreases also.
Cartographers selectively decrease the detail in a process called generalization
when producing small scale charts using large scale charts as sources. The
amount of detail shown depends on several factors, among them the coverage
of the area at larger scales and the intended use of the chart.

11.3 Elements in a Bathymetric Chart

The chart title block should be the first thing a navigator looks at when
receiving a new edition chart. The title tells what area the chart covers. The
chart’s scale and projection appear below the title. The chart will give both
vertical and horizontal datums and, if necessary, a datum conversion note.

All depths indicated on nautical charts are reckoned from a selected level of
the water called the sounding datum (sometimes referred to as the reference
plane). For most NOAA charts of the United States in coastal areas, the
sounding datum is Mean Lower Low Water (MLLW). In the Great Lakes, the
plane of reference is the International Great Lakes Datum (1985).

Depths shown on charts are the least depths to be expected under average
conditions. Since the chart datum is generally a computed mean or average
height at some state of the tide, the depth of water at any particular moment
may be less than shown on the chart. For example, if the chart datum is
MLLW, the depth of water at lower low water will be less than the charted
depth as often as it is greater.

Charts show soundings in several ways. Numbers denote individual sound-
ings. These numbers may be either vertical or slanting; both may be used
on the same chart, distinguishing between data based upon different US and
foreign surveys, different datum, or smaller scale charts. Large block letters
at the top and bottom of the chart indicate the unit of measurement used for
soundings.

Soundings in fathoms indicates soundings are in fathoms or fathoms and
fractions. Soundings in fathoms and feet indicates the soundings are in both
fathoms and feet. A similar convention is followed when the soundings are in
meters or meters and tenths.

Soundings are supplemented by depth contours, lines connecting points
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of equal depth. These lines present a picture of the bottom. On some charts
depth contours are shown in solid lines; the depth represented by each line
is shown by numbers placed in breaks in the lines, as with land contours.
Solid line depth contours are derived from intensively developed hydrographic
surveys. A broken or indefinite contour is substituted for a solid depth contour
whenever the reliability of the contour is questionable.

Depth contours are labeled with numerals in the unit of measurement of
the soundings. A chart presenting a more detailed indication of the bottom
configuration with fewer numerical soundings is useful when bottom contour
navigating. Such a chart can be made only for areas that have undergone a
detailed survey. Shoal areas often are given a blue tint. Charts designed to give
maximum emphasis to the configuration of the bottom show depths beyond
the 100-fathom curve over the entire chart by depth contours similar to the
contours shown on land areas to indicate graduations in height. These are
called bottom contour or bathymetric charts.

The side limits of dredged channels are indicated by broken lines. The
project depth and the date of dredging, if known, are shown by a statement
in or along the channel. The possibility of silting is always present. Local au-
thorities should be consulted for the controlling depth. NOS charts frequently
show controlling depths in a table, which is kept current by the Notice to
Mariners.

The chart scale is generally too small to permit all soundings to be shown.
In the selection of soundings, least depths are shown first. This conservative
sounding pattern provides safety and ensures an uncluttered chart appearance.
Steep changes in depth may be indicated by more dense soundings in the area.

The limits of shoal water indicated on the chart may be in error, and
nearby areas of undetected shallow water may not be included on the chart.
Given this possibility, areas where shoal water is known to exist should be
avoided. If the navigator must enter an area containing shoals, he must exercise
extreme caution in avoiding shallow areas which may have escaped detection.
By constructing a safety range around known shoals and ensuring his vessel
does not approach the shoal any closer than the safety range, the navigator can
increase his chances of successfully navigating through shoal water. Constant
use of the echo sounder is also important.

Abbreviations listed in a chart are used to indicate what substance forms
the bottom. The meaning of these terms can be found in the Glossary of
this volume. While in the past navigators might actually have navigated by
knowing the bottom characteristics of certain local areas, today knowing the
characteristic of the bottom is most important when anchoring.

The nautical chart conveys a wealth of information to the mariner. Some
examples of the type of information are listed below.

1. Floating aids to navigation established and maintained by the US
Coast Guard mark channels and other features such as wrecks and
obstructions.
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2. The US Army Corps of Engineers dredges channels so that deep
draft vessels can transit into and out of ports. Mariners must know
the position and depth of these channels.

3. Nautical charts delineate the location of anchorages for military,
commercial, and recreational vessels.

4. NOAA shows official geographic names in conformance with the US
Board of Geographic Names.

5. Fixed aids to navigation, such as lighthouses maintained by the US
Coast Guard, help mariners navigate safely.

6. Mariners need to know bottom characteristics in order to determine
where adequate holding grounds for anchoring are located.

7. Depths determined by NOAA surveys are critical to safe navigation.

8. Mariners must know where underwater hazards and obstructions
are located. The chart shows the precise position and depth of water
over the obstruction.

9. Most commercial ships entering a harbour need to know where pi-
lotage areas are located. These areas are used for taking on and
dropping off marine pilots.

10. Mariners need to know the position and depths of dangerous wrecks,
so they can lay out a track to avoid these features.

11. Wire drag cleared depths show the safe navigation depth. This
charting symbol indicates that there is at least 20 feet of depth
available over the top of the obstruction located here.

11.4 Summary

The applications of bathymetry or sea-GIS for navigation in the sea. The out-
come of bathymetry is different types charts are discussed, including general
charts, sailing charts, coastal charts and harbour charts. The characteristics
of ENC are discussed. The cartographic projection used for preparation of
charts is discussed. Various ways to represent scale of the chart are discussed.
Understanding of the content of an ENC which can be considered as map
equivalent of land is discussed as well as elements of a bathymetric chart. The
difference between the map and bathymetric chart are brought out to clarify
these concepts for the spatial science community dealing the topographic and
bathymetric survey and applications separately. The datum, coordinate sys-
tem and cartographic projection used in preparation of bathymetric data in
general and chart in particular are discussed.
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Measurements and Analysis Using GIS

Calculating the location, height, area, perimeter, volume, slope, aspect, dis-
tance between two points, line of sight between two points on the Earths
surface etc. are some of the most fundamental and common computations
in GIS. Advanced GIS often computes the azimuth and elevation of celestial
objects from the Earth’s surface and the almanac data pertaining to every
location on the Earth for a given date and time. Sometimes an application-
specific GIS can compute path profile between source and destination, crest
clearance of a projectile, elevation profile of a terrain cut and radio line of
sight between source and destination. Generally a GIS toolkit should have
some of these computing tools in various forms. In this chapter we discuss the
numerical formula of a representative set of such tools. It is not exhaustive
as the set is ever increasing, with more sophisticated spatial computations
emerging day by day.

12.1 Location

Location of an object in space is one of the intrinsic properties defining its
position. It is expressed with respect to a frame of reference or coordinate
system. Therefore to have an abstract idea about the location of an object
in space it is mandatory to define its location in terms of coordinates. Hence
location of an object is dependent upon the choice of frame of reference. A
coordinate system is meaningful only when it is attached to a spatial model
or to a datum surface. Therefore, intrinsically the coordinate of an object is
dependent on the following:

Geodetic datum

Reference frame

Time of observation

Therefore, location is relative and is a dynamic quantity. Because in GIS we
are mostly dealing with digital spatial data which has already been surveyed,
the coordinate system, datum and the time of survey is already there in the
form of a metadata. If we are observing the location of an object in sensor
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space through sensors such as UAV, GPS, radar etc. the time component of
the location comes into play prominently. Therefore, GIS can be thought of as
a system of computing methods to quantify, measure and visualize locations
of spatial objects in different datums, frames of reference, coordinate systems
and at different times.

Measurement of location in terms of spatial coordinates (latitude, longi-
tude, altitude), spherical coordinates and equivalent (easting, northing and
altitude) and rectangular coordinate systems is important for referencing any
object on a digital map. Similarly the coordinate for objects at sea can be de-
scribed through the latitude, longitude, and depth. The position description
of any object in space is given by latitude, longitude and up, the height here
can be orthomorphic height or height computed from the geoid surface known
as geoidal height. Also for most purposes height is measured from the refer-
ence surface of the Earth known as the vertical datum. The commonly used
vertical datum is Mean Sea Level (MSL) in the case of the Earth’s surface and
mean high tide for sea surface or depth data. GIS is a platform which gives
the computing method to quantify and visualize location of spatial objects
in different frames of reference, datums, coordinate systems and at different
epochs of time. Some of the popular location measures and their applications
are given in Table 12.1.

Measures of Spatial Position and
Their Popular Applications

Usage in GIS

Geographic coordinate Latitude, Lon-
gitude, Height (φ, λ, h)

Survey and understanding of locations
on the Earth’s surface, making of maps.

Latitude, Longitude, Depth
(φ, λ,Depth)

Bathymetry survey, marine navigation
and for preparation of bathymetric
charts.

Easting, Northing, Altitude (ENA)
where Easting and Northing can be of
2, 4, 6 or 10 digit precision

For location of military objects in the
battle field. For engagement of targets
by artillery force.

Polar coordinate in the form of (r, θ, φ) For location of origin of weapons such
as missiles, locating targets in unknown
locations in the battle field, for naviga-
tion etc.

TABLE 12.1
Spatial Location Measures and Their Applications
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12.2 Distance Measure

The notion of distance has many connotations in GIS. The distance which
gives the sense of proximity of one object with respect to another object plays
a crucial role in many spatial decisions in our daily life. Distance measure is one
of the important metric measures that correlates different spatial objects. It
imparts a topological relationship among objects and gives an idea of how near
or how far the object is from another object. Inter se distance between spatial
objects can be measured in many ways and therefore has many definitions
and measures. Some of the significant distance measures computed by GIS
and used in different applications are spatial distance, planimetric distance,
cumulative distance, geodesic distance, nautical distance, Manhattan distance
etc. The formula for computing these distances differs. Also while computing
the distance the outcome depends on different datum, coordinate systems and
projection systems used. Distance measure is one of the important co-relating
metric measure between spatial objects. The significant distance measures
which are computed by GIS are discussed here.

12.2.1 Linear Distance

Distance between any two points on a plane can also be given by simple Eu-
clidean geometry. For any two points in the space with Cartesian coordinates
(X1, Y1, Z1) and (X2, Y2, Z2) the Euclidian distance is given by the formula:

distance =
√

(X2 −X1)2 + (Y2 − Y1)2 + (Z2 − Z1)2

In geodesy, the Euclidean formula can be used to calculate distance be-
tween two very near points (so that the surface can be approximated to be a
plane). But this fails when larger distance is to be measured, as the curvature
of the surface of Earth is significant. This distance in the Cartesian coordinate
system is also known as geometric distance. This formula is used repeatitively
to compute the cumulative distance by taking the segment distance along the
digitized vector joining the two points and adding them for the entire digitized
vector.

12.2.2 Geodetic Distance

Computing distance between two points on a map has many connotations.
The distance can be the aerial shortest distance (crow-fly distance), shortest
distance as a line joining the two points drawn on flat surface, or the shortest
distance out of many paths among the paths joining the two points. One
possible computation is the shortest distance between two points P1(Φ1, λ1)



212 Computing in Geographic Information Systems

and P2(Φ2, λ2) on the Earth’s surface modelled as a sphere, depicted in Figure
12.1(a).

To find a suitable mathematical formula to compute the shortest distance,
slice the spherical Earth along the two points and the center of the spherical
Earth. One can imagine that the slice is a circle with center same as the center
of Earth and P1 and P2 lying on its circumference. The shortest distance will
be the arc length of the circle passing through these two points. If the radius
of the spherical Earth is R then the spherical distance D is given by equation

D = RCos−1(SinΦ1SinΦ2 + CosΦ1CosΦ2Cos(λ1 − λ2)) (12.1)

This distance is known as spherical distance because it is measured for a
spherical model. If the sphere is replaced with a suitable datum surface then
the value of R will depend upon the semi-major axis, semi-minor axis and
eccentricity of the datum. Then the distance computation is known as the
geodesic distance.

12.2.3 Manhattan Distance

Manhattan distance is a form of taxicab geometry, described by Hermann
Minkowski, a Japanese scientist in the 19th century, in which the usual dis-
tance function or metric of Euclidean geometry is replaced by a new metric in
which the distance between two points is the sum of the absolute differences of
their coordinates. The Manhattan distance is the simple sum of the horizontal
and vertical components, whereas the diagonal distance might be computed
by applying the Pythagorean theorem. The name Manhattan distance was
inspired from the grid layout of streets on the island of Manhattan.

The Manhattan distance, d, between two vectors, p, q in an n-dimensional
real vector space with fixed Cartesian coordinate system, is the sum of the
lengths of the projections of the line segment between the points onto the co-
ordinate axes. Manhattan distance is invariant to translation and reflection of
the coordinate system, but it varies for the rotation of the coordinate system.
Manhattan distance is depicted in Figure 12.1(b). Mathematically it can be
expressed by the formula:

d(p, q) =|| p− q ||=
n∑
i=1

| pi − qi | (12.2)

where p = (p1, p2, p3......, pn) and q = (q1, q2, q3......, qn)

12.2.4 Haversine Formula

Given a unit sphere, a triangle on the surface of the sphere is defined by the
great circles connecting three points u, v, and w on the sphere. If the lengths
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FIGURE 12.1
(a) Geodesic distance; (b) Manhattan distance

of these three sides are a (from u to v), b (from u to w), and c (from v to w),
and the angle of the corner opposite c is C, then the law of haversines states:

haversin(c) = haversin(a− b) + sin(a)sin(b)haversin(C) (12.3)

Since this is a unit sphere, the lengths a, b, and c are equal to the angles
in radians (using secant formula θ = l

r and for unit sphere i.e. r = 1, θ = l)
subtended by those sides from the center of the sphere. (For a non-unit sphere,
they are the distances divided by the radius.)

The haversine formula is used to calculate the great-circle distance between
two points; that is, the shortest distance over the Earth’s surface distance be-
tween the points (ignoring the natural undulations).

12.2.4.1 Haversine Formula for Calculating Distance

To compute the distance between two points P1(φ1, λ1) and P2(φ2, λ2) haver-
sine formula is used and is given by

haversin(
d

R
) = haversin(∆φ) + cos(φ1) cos(φ2)haversin(∆λ) (12.4)

where R is mean radius of Earth (mean radius = 6371 km).

The haversine formula remains particularly relevant for numerical compu-
tation even at small distances unlike calculations based on the spherical law of
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cosines. The versed sine is 1− cos θ, and the half-versed-sine 1−cos θ
2

= sin2( θ
2
)

as used above. It was published by Roger Sinnott in Sky and Telescope mag-
azine in 1984 (“Virtues of the Haversine”), though known about for much
longer by navigators. A marginal performance improvement can be obtained
by factoring out the terms which get squared.

12.2.5 Vincenty’s Formula

Thaddeus Vincenty devised a formula for calculating geodesic distances be-
tween a pair of points on the surface of Earth given by latitude and longitude.
This uses an accurate ellipsoidal model of the Earth. While the mathematics
is a bit difficult it is easy for programming. Vincenty’s formula is accurate to
within 0.5 mm on the ellipsoid being used. Calculations based on a spheri-
cal model, such as the haversine, are accurate to around 0.3% ,which is good
enough for most purposes. The accuracy quoted by Vincenty applies to the
theoretical ellipsoid being used, which differs from the real Earth geoid to
varying degree.

12.3 Shortest Distance

Finding the shortest path from a source to destination is an important problem
in many areas of application. Shortest path is a generic solution to many net-
works such as transport network, electrical network, communication network
etc. For shortest path computation the underlined network is first modelled
as a graph(G(v,e)), where v is a set of vertices and e is a set of edges. There
is a cost assigned to each edge in the network depending upon the modeling
criteria. The cost associated with each edge differs for different networks e.g.
in a road network the distance measures between two locations (vertices) is
the edge strength where as in communication network bandwidth or the rate
of data transfer is the strength of the edge. Similarly for an electrical network
resistance is the strength of the edge. Hence given a network it is modelled
to create edges having appropriate metric measures. Therefore shortest path
computation is an optimisation problem to compute the path between the
source vertices to the destination vertices which minimizes the cumulative
cost of the edges. In the case of a transportation network the shortest be-
tween start and end vertices should be the shortest route in terms of ground
distance. Yet another example of shortest path in a transportation network
can be a path which minimizes the consumption of fuel or travelling time.
Similarly in the case of a power transmission network the criteria of the short-
est path can be to find a route which minimizes the power loss. In this section
we investigate the shortest path computing method applicable to a homoge-
neous transport network which is modelled as a graph with the edge strength
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as ground distance.

Many algorithms have been proposed to compute shortest path of a graph.
The prominent among them are:

Dijkstra’s algorithm

Bellman-Ford algorithm

A-star algorithm

12.3.1 Dijkstra’s Algorithm

Edsger Dijkstra (Turing Award, 1972) modified Ford’s idea of shortest path
(RAND, Economics of transportation, 1956) and published it, which today
is well-known as Dijkstra’s shortest path algorithm (published in 1959). It is
just the simpler and faster (using relaxation and optimal selection) version of
Ford’s algorithm.

Let G(V, E) be a weighted graph with weight function w:E → R mapping
edges to real valued weights. If e = (u, v), we write w(u, v) for w(e). The length
of path p = <v0, v1, v2, .., vk > is the sum of the weights of its consistent edges.

Therefore length(p) =
k∑
i=1

w(vi−1, vi). The distance from u to v, denoted

by (u, v) is the length of the path from u to v if there is a path and infinite
otherwise.

Dijkstra’s algorithm gives a solution to the class of problems known as
single source shortest path problems. The problem goes as: given a di-
rected graph (directed graphs are often denoted by digraph) with positive
edge weights and a distinguished source vertex, s ∈ V, we will have to deter-
mine the distance and a shortest path from the source to every vertex in the
digraph. Now the question is how to design an optimal and efficient algorithm
for the problem. For this we will have to make some keen observations. Any
sub-path of the shortest path must be a shortest path.

12.3.1.1 Intuition behind Dijkstra’s Algorithm

1. Report the vertices in increasing order of their distance from source
to vertex.

2. Construct the shortest path tree edge by edge, at each step adding
one new edge corresponding to construction of shortest path to the
current new vertex.

12.3.1.2 Idea of Dijkstra’s Algorithm

1. Maintain an estimate d(v) of length δ(u, v) of the shortest path for
each vertex v.
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2. d[v] >δ(u, v) and d[v] equals the length of the known path i.e. d[v]
= ∞ if we have no paths so far.

3. Initially d[s] = 0 and all the other d[v] values are set to ∞. The
algorithm will process vertices one by one in some order.

Here processing a vertex u means finding new paths and updating d[u] ∀
v ∈ Adj[u] if necessary. The process by which an estimate is updated is called
relaxation. The algorithm for relaxation (in pseudo code form) is given as:

Relax(u,v,w) {
if(d[u] + w(u, v) <d[v])
{
d[v] = d[u] + w(u, v);
pred[v] = u;
}
}

When all the vertices have been processed d[v] = δ(s, v) ∀ v.

Now the problem is to find the efficient order of processing the vertices.
For this the greedy approach is being used. This approach is implemented
using priority queue.

12.3.1.3 Pseudo Code for Dijkstra’s Algorithm

Dijkstra(G,w,s) {
dist[s] ← 0; //Distance from s to v is initialized to 0.
for (∀ v ∈ V - {s})
do {
dist[v] ← ∞; // Set all the other distances to infinity.
s ← Φ; // S, the set of visited vertices is initially empty.
Q ← V; // Q, the set initially contains all the vertices.
}
while (Q != Φ) // While Q is not empty.
do {
u← mindistance(Q, dist); // Select the element in Q with minimum distance.
s ← S ∪ {u}; // Add u to the visited vertices.
}
for (∀ v ∈ neighbours[u])
do {
Relax(u, v, w); // Calling of Relax function
}
return dist;
} end Dijkstra();
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12.3.1.4 Analysis of the Time Complexity

The simplest implementation is to store the vertices in an array or linked
list. But for sparse graphs or graphs with a lot of nodes but fewer edges, the
efficient way is to store the graph by using binary heap or priority queue etc.

Many optimized alogorithms for computing shortest distance have been
formulated. Some of the algorithms are based on greedy, dynamic program-
ming or optimization approach. Prominent algorithms for computing the
shortest path are the Bellman-Ford algorithm, the A-star algorithm etc.

12.3.2 Direction

Direction is the information pertaining to the relative position of one point
with respect to another point. It is a relative quantity with respect to a frame
of reference such as true north in a ECEF coordinate system. Direction also
can be an absolute quantity measured in degree or radian with respect to
some previously agreed frame of reference or object. It is often indicated by
extending the index finger, or by the north arrow of the compass in a map.
Mathematically direction is specified by a unit vector with respect to a set
of axes defining the reference frame. In GIS direction is often measured by
azimuth or bearing. The cardinal directions used are North (N), South (S),
East (E) or West (W). For a better resolution intermediate cardinal directions
such as North-East (NE), South-East (SE), South-West (SW) and North-West
(NW) are used. A magnetic compass or a digital compass is the instrument
that reads and measures the direction in a ECEF frame of reference that is
fixed to the Earth. Direction is useful for navigation. Navigation is the field
of study dealing with the process of monitoring and controlling the movement
of a vehicle from the source to a destination. Usually one loses the sense of
direction when navigating in the desert, sea, air or space. Therefore finding
the current position of a craft, ship or self and orienting towards the destina-
tion through a predefined path calls for continuous monitoring of the current
position and direction with respect to the destination. It is essentially the
computation of position and direction. GIS with its digital maps assisted with
a GPS and digital compass is an ideal system for navigation.

12.3.2.1 Azimuth

An azimuth is one way to define the direction from point to point on the
ellipsoidal model of the Earth, such as Cartesian datum. Azimuth can be
either measured clockwise from north through a full 360◦ or measured +180◦

in a clockwise direction from north and −180◦ in a counter clockwise direction
from north.

On some Cartesian datum, an azimuth is called a grid azimuth, referring
to the rectangular grid on which a Cartesian system is built. Grid azimuths
are defined by a horizontal angle measured clockwise from north.
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12.3.2.2 Bearings

Bearings is another method of describing directions. It is always an acute
angle measured from 0◦ from at either north or south through 90◦ to either
the west or the east. They are measured both clockwise and counter clockwise.
They are expressed from 0◦ to 90◦ from north in two of the four quadrants
the northeast, 1, and northwest, 4. Bearings are also expressed from 0◦ to 90◦

from south in the two remaining quadrants, the southeast, 2, and southwest,
3.

In other words bearing uses four quadrants of 90◦ each. A bearing of N
45◦ 15’ 35” E is an angle measured in a clockwise direction 45◦ 15’ 35” from
north toward the east. A bearing of N 21◦ 44’ 52” W is an angle measured
in a counter clockwise direction 21◦ 44’ 52” toward west from north. The
same ideas work for southwest bearings measured clockwise from south and
southeast bearings measured counter clockwise from south.

Azimuths and bearings are indispensable to locate a spatial object in ge-
ographic space. They can be derived from coordinates with an inverse cal-
culation. If the coordinates of two points are geodetic, then the azimuth or
bearing derived from them is also geodetic. If the coordinates from which a
direction is calculated are grid coordinates, the resulting azimuth will be a
grid azimuth, and the resulting bearing will be a grid bearing. Both bearings
and azimuths in a Cartesian system assume the direction to north is always
parallel with the y-axis, which is the north-south axis. On a Cartesian datum,
there is no consideration for convergence of meridional, or north-south, lines.

12.3.2.3 North, Magnetic North and Grid North

The reference for directions is north. There are four categories of north used
in GIS for different applications: (a) geodetic north, (b) astronomic north, (c)
grid north and (d) magnetic north. Geodetic north differs from astronomic,
which differs from grid north, which differs from magnetic north. The dif-
ferences between the geodetic azimuths and astronomic azimuths are a few
seconds of arc from a given point. Variations between these two are small
compared to those found with grid azimuths and magnetic azimuths. For ex-
ample, there is usually a difference of several degrees between geodetic north
and magnetic north.

Magnetic north is used throughout the world as the basis for magnetic
directions in both the northern and the southern hemispheres, but it will not
hold still. The position of the magnetic North Pole is somewhere around 79◦

N latitude and 106◦ W longitude, a long way from the geographic North Pole,
and it is moving. In fact, the magnetic North Pole has moved more than 600
miles since the early 19th century and it is still moving at a rate of about 15
miles per year, just a bit faster than it was previously.

The Earth’s magnetic field is variable. For example, if the needle of a
compass at a particular place points 15◦, at the same place 20 years later
that declination may have grown to 16◦ west of geodetic north. This kind of
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movement is called secular variation. Also known as declination, it is a change
that occurs over long periods and is probably caused by convection in the
material at the Earth’s core.

Daily variation is probably due to the effect of the solar wind on the
Earth’s magnetic field. As the Earth rotates, a particular place alternately
moves toward and away from the constant stream of ionized particles from
the sun. Therefore, it is understandable that the daily variation swings from
one side of the mean declination to the other over the course of a day. For
example, if the mean declination at a place was 15◦ west of geodetic north,
it might be 14.9◦ at 8 am, 15.0◦ at 10 am, 15.6◦ at 1 pm, and again 15.0◦

at shutdown. That magnitude of variation would be somewhat typical, but in
high latitudes the daily variation can be as much as 9◦.

The position of magnetic north is governed by natural forces, but grid north
is entirely artificial. In Cartesian coordinate systems, whether known as state
plane, Universal Transverse Mercator (UTM), a local assumed system, or any
other system, the direction to north is established by choosing one meridian
of longitude. Therefore, throughout the system, at all points, north is along a
line parallel with that chosen meridian. This arrangement purposely ignores
the fact that a meridian passes through each of the points and that all the
meridians inevitably coverage with one another. Nevertheless, the directions
to grid north and geodetic north would only agree at points on the one chosen
meridian; at all other points there is an angular difference between them. East
of the chosen meridian, which is frequently known as the central meridian, grid
north is east of geodetic north. West of the central meridian grid north is west
of geodetic north. Therefore it follows that east of the central meridian the
grid azimuth of a line is smaller than its geodetic azimuth.

12.4 Area

Area measure expresses the expanse or vastness of a spatial object as perceived
by an observer and projected to a frame of reference. In engineering practice,
area measure plays a crucial role to quantify how much space is required to
hold an object. Area is a fundamental parameter derived from terrain anal-
ysis, which is necessary for numerous decision-making processes. Generally
distance and area are the fundamental terrain parameters associated with
spatial data. They find many applications while supporting decision-making
involving spatial data such as area analysis and cadastral applications. In most
GIS, distance and area calculations are based on the vector data model, which
makes a planar approximation of spatial data. In reality, the distance or area
needs to be computed for an undulating surface. Given below is an approach
to compute true area and distance from spatial vector data when the scale
and projection are given. The spatial data is integrated with the elevation
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FIGURE 12.2
Planimetric area of a triangle

model to compute slope and aspect of each and every point, thus preserving
the undulated property of the surface.The different area measures in GIS are
described here [2].

12.4.1 Planimetric Area

The planimetric area of a triangle is depicted in Figure 12.2 and is given by:

Aj =
1

2
(X2jY1j +X3jY2j +X1jY3j −X1jY2j −X2jY3j −X3jY1j) (12.5)

Surface area of a triangle is given by:

A =
1

2

√√√√√
∣∣∣∣∣∣
X1 Y1 1
X2 Y2 1
X3 Y3 1

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
Y1 Z1 1
Y2 Z2 1
Y3 Z3 1

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
Z1 X1 1
Z2 X2 1
Z3 X3 1

∣∣∣∣∣∣
2

(12.6)

The other forms of area measures are orthogonal area measure and cumu-
lative area measure. Cumulative area measure is an iterative or finite element
approach of the area measure given above.
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FIGURE 12.3
Computation of volume using contour data

12.5 Computation of Volume

Computing the volume of a given surface area and depth marked on a 2D map
view or a 3D perspective view of terrain has many applications. Not many GIS
available today can compute the volume of a chunk of Earth’s surface from
2D spatial data stored as contours. Contours are iso-lines representing equal
height on the ground. Generally they are concentric circular patches tagged
with a height value. Computing volume from the contour data of a digital
map involves the following steps.

The ground (defined by surface area and depth) for which volume has to be
computed is cut into pieces along the contour planes. This results in a series of
horizontal slabs as depicted in Figure 12.3. Each slab is treated as a prismoid
with the height equals the contour interval and the end areas enclosed by the
contour lines. Using the finite element principle the volume of the land mass
is the sum total of volume due to these prismoids. Volume of the prismoid
between the two contours Ci and Cj is given by

VCiCj = CI
Aci + Acj

2
(12.7)

where CI is the contour interval measured from the map in meters.
Therefore the volume of the designated land mass is computed by adding

the volume of the intermediate prismoid and the volume due to the tips of the
contour. This is given by the formula

V =
CI

2
[Aci + 2(Aci + 2(Aci+1) +Aci+2+, ...+Acj−2 +Acj−1) +Acj ] (12.8)
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12.6 Computation of Slope and Aspect

Slope can be defined as the degree of steepness or incline of a surface. Therefore
slope is a continuous property of the terrain surface. Slope cannot be computed
from the point clouds generated using LIDAR or some other means directly.
To compute the slope one must first create either a raster grid, which is
a gridded representation of pixels, or a TIN (Triangular Irregular Network)
surface. Then the slope for a particular location in the surface is computed
as the maximum rate of change of elevation between that location and its
surroundings.

Slope can be expressed either in percentage or in degrees computed using
the equations given below.

PercentSlope =
Rise

Run
x100 (12.9)

DegreeSlope = arctan
Rise

Run
(12.10)

Slope for a gridded DEM is computed using the finite difference methods.
The height value of a 4×4 DEM grid locations is designated according to
the cardinal direction from the center grid as depicted in Figure 12.4. in the
Figure Z is the height at the middle cell and Ze, Zw, Zs and Zn are the height
of East, West, South and North cells respectively. Similarly Znw, Zsw, Zne,
Zse are the height of the Northwest, Southwest, Northeast and Southeast cells
respectively. Let the inter se distance between two adjacent cells be D meters.

FIGURE 12.4
Slope computed as the ratio of rise over run in terrain surface
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FIGURE 12.5
DEM grid with cardinal designator for the height

Then the slope can be computed using the slope along the X and Y direction
is computed using the following difference equations.

∂ZX
∂X

=
Ze − Zx

2D
(12.11)

∂ZY
∂Y

=
Ze − Zx

2D
(12.12)

If the slope of a middle cell in the grid is to be computed taking a 3×3
matrix of the DEM grid then the forward difference equations for computing
the slope in cardinal direction are given by

∂Zx
∂X

=
Zne + Ze + Zse − Znw − Zw − Zsw

6D
(12.13)

∂Zy
∂Y

=
Zsw + Ze + Zse − Znw − Zn− Zne

6D
(12.14)

The slope at location (x, y) is computed using the above partial derivatives
and is given by the equation

Slope =

√
(
∂Zx
∂X

)
2

+ (
∂Zy
∂Y

)
2

(12.15)

Aspect is the orientation of slope, measured clockwise in degrees from 0
to 360, where 0 is facing north, 90 is east-facing, 180 is south-facing, and 270
is west-facing. The difference method of computing the slope and aspect at a
grid location is given in the form of a difference equation 12.16.

Aspect = arctan(
∂Z
∂X
∂Z
∂Y

) (12.16)
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12.7 Curvature

The rate of change of slope i.e. the first order derivative of the slope or the
second order derivative of DTM gives the curvature of the Earth’s surface.
Generally curvature describes the terrain surface in terms of how convex,
concave or plane the surface is with respect to its surroundings. Curvature
is computed using the second order partial derivatives as given by equation
12.17.

Curvature =

√
(
∂2Z

∂X2
)
2

+ (
∂2Z

∂Y 2
)
2

(12.17)

The curvature of a particular point in the grid of DEM can also be computed
using the Hessian function as given in Chapter 6 and its subsequent inter-
pretation with respect to the physical property of the point on the Earth’s
surface.

The slope, aspect and curvature of a particular patch of Earth’s surface are
used to determine the patterns of flow of water, the flow acceleration, terrain
change detection and land evaluation for different purposes etc.

12.8 Hill Shade Analysis

Hill shading is a technique used to visualize terrain as shaded relief. In this
process the terrain surface is illuminated with a hypothetical light source. The
illumination value for each raster cell is determined by its orientation to the
light source, which is based on its slope and aspect. To simulate a natural
landscape which has a good appreciation by the human cognition system it
is advised to position the light source in the northwest which works best.
Depending on the application, one can simulate the true position of the sun
at a particular date and time of the year. Similarly, a shading pattern due to
presence of the moon and its phase can be computed known as moon shaded
relief map for appreciation of the visualization of the relief of the terrain
surface.

12.9 Visibility Analysis

12.9.1 Line of Sight Analysis

Line of sight (LOS) analysis, also called ‘view shed analysis’, can be used to
determine what can be seen from a particular location in the landscape. Con-
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FIGURE 12.6
Line of sight between the observer and various points of the terrain

versely, the same analysis also determines from where within the surroundings
that location can be seen. The first prerequisite for an LOS analysis is a three-
dimensional surface model of the landscape in the form of DEM. For most ap-
plications, the most meaningful result would take vegetation, buildings, and
other objects into account - those features not available in a bare-Earth digi-
tal elevation model (DEM). Above-ground features are usually included in a
Digital Surface Model (DSM) which is created from LiDAR survey data. LOS
computation has many variants depending upon potential usage in different
applications. Computing the Optical LOS between the observer and the ob-
ject is a popular function in every GIS. It has applications in surveillance in
the battlefield by field observers of the border guard. In near-field observa-
tions the curvature of the Earth is not taken into consideration. Rather the
local terrain undulation or the terrain profile plays a major role in deciding
the LOS between the observer and the observent. This phenomena is depicted
in Figure 12.6. For near-field observations using an optical aided instrument
such as telescope, binocular or night vision device takes into account only the
intervening obstacles such as high grounds or vegetation obstructing the LOS.
Observing ships fading into the horizon or locating a lighthouse from a ship
uses the principle of optical LOS taking into consideration the curvature of
the Earth. Line of Sight Fan (LOS Fan) or 360 degree line of sight is computed
for a complete visibility analysis around the observer. This is done to find out
the dead zone or potential areas which cannot be observed manually.

Radio or RADAR Line of Sight (RLOS) is a computation performed to
determine whether the communication line of sight is possible between the
source transmitter of the radio waves and the destination receiver. RLOS
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is generally done over an extended area and beyond optical line of sight.
Therefore bending of the radio waves due to atmosphere and multipath loss
due to vegetation and intervening terrain is taken into consideration. While
computing the RLOS, the Freshnel zone clearance is taken into consideration.
The LOS concept is extended to compute the sphere of influence of the sensors
such as sound sensor, heat sensor, microwave sensor etc. Sensor LOS is used
to compute the sphere of influence of the sensors in the terrain covering the
atmosphere too.

Some of the important uses of LOS analysis are for community plan-
ning and zoning, airport operations management, finding the ideal location
of a camera or sensor for security coverage, finding the ideal location of the
RADAR for battlefield coverage etc. Identifying a suitable location for cell
phone tower placement is a direct application for LOS. While topography
certainly has an impact on cell phone coverage, modeling cell phone signal
propagation is in reality a much more complicated problem. An LOS analysis
can be useful for planning cell phone tower placement, but to truly model cell
phone coverage, more sophisticated models such as Freshnel’s zone must be
employed.

If H is the height of the observer in meters from the MSL, then the RLOS
between the transmitter and listener D in kilometer. is given by equation

D = 3.57(
√
KH1) (12.18)

where K is an empirical constant adjusting for refraction of radio waves. Gen-
erally K = 4/3. As an offshoot of RLOS computation in GIS one can compute
the height of the observer or antenna to be installed so as to view a particular
target or range of the terrain at D kilometers from the transmitter. This leads
to computing the LOS fan whereby the observer tries to see the entire terrain
surrounding it by rotating his eye 360 degrees around its position. Here the
visible areas are highlighted in green and invisible areas are highlighted in
red. The distance between two communicating elements, e.g. a transmitter
and antenna, can be computed using the formula given by:

D = 3.57(
√
KH1 +

√
KH2) (12.19)

where K = 4
3 and H1 and H2 are the heights of the transmitter and antenna

respectively.
In computing RLOS it is assumed that there is no intervening crest or

physical obstruction between the transmitting and receiving elements. There-
fore to compute the optical LOS the height profile of the intervening terrain
between source and observer is computed for each point with a uniform range.
The height profile is compared against the line joining the observer and the
object point by point. If there is no height of terrain, that is more than the
line joining the object and observer, then a LOS does not exist.

Imagine a sector of a circle which represents the Earth (like a slice of pie as
depicted in Figure 12.7). At one end of the sector’s arc erect a tower of height
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FIGURE 12.7
Line of sight between the observer and ship at sea

H and at the other end erect a tower of height h. The tops of these are the
points between which we want to decide upon the longest LOS distance. Draw
a line connecting the tops. We want to adjust the size of the sector so that
this sight line is tangent to the circle at a point between the two bases. If the
two towers were further apart, they could not see each other. As an offshoot of
computation of LOS, a practical problem of a ship vanishing into the horizon
at sea can be explained. The problem can be posed as follows. Find the LOS
between an observer standing on a lighthouse which is at a height H meters
from the MSL and the height of the ship is h meters. To compute the longest
LOS consider Figure 12.7.

Consider the spherical Earth model with mean radius as R. Now draw a
radius from the center of the Earth to the point of tangency between the LOS
and the circle. Recall from basic geometry that the radius and the tangent line
will be perpendicular to each other. Thus, we have two right angled triangles,
one on either side of the radius to the tangent point. One of these triangles
has hypotenuse (H + R) and the other (h + r) respectively. Therefore using
the Pythagoras rule we obtain the following equations

(H +R)
2

= X2 +R2 (12.20)

(h+R)
2

= Y 2 +R2 (12.21)

The maximum LOS distance is (X+Y ) beyond which the LOS will be a secant
to the curvature of the Earth and the LOS will be obstructed and hence the
observer will not be able to see the ship further. Solving the first equation
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above for X:

X2 +R2 = (H +R)
2

(12.22)

X2 +R2 = H2 + 2HR+R2 (12.23)

X2 = H2 + 2HR (12.24)

X =
√
H2 + 2HR (12.25)

Following the same steps to solve the second equation for Y, we can then
express (X + Y ) as:

X + Y =
√
H2 + 2HR+

√
h2 + 2hR (12.26)

Therefore using the values of mean radius of Earth R, height of the mast of
the ship h and the height of the observation point H one finds the maximum
LOS between the fading ship and the observer.

12.10 Flood Inundation Analysis

Simulation of artificial flooding and analyzing its progress in time has many
applications such as to simulate urban flooding patterns due to storm water,
flooding due to hurricanes and high seas, to prepare emergency response teams
for disaster and recovery planning etc. Listed below are few examples of usage
of flood inundation simulation and analysis.

• Flood modeling is required to produce Digital Flood Insurance Rate Maps
(DFIRM). The process of preparing DFIRMs involves spatial analysis of
digital terrain model data, rainfall runoff or coastal storm surge models,
hydrologic modeling, and hydraulic analysis to prepare a map which can
classify the area into zones which are at high risk, moderate risk and no
risk from flooding. This map is used by insurance agencies to decide the
quantum and rate of insurance for different asserts.

• Flooding is used to cause potential delay or to stop an advancing contingent
of armored vehicles such as tanks, armored carrier vehicles in a battle field.
Field exercises are carried out to artificially flood potential areas where an
armored contingent can penetrate. Exercises to study the progress of flood-
ing in time and space and prepare flooding plans for strategic areas are car-
ried out regularly by battle managers. These exercises help battle managers
make decisions such as (a) suitable site for breaching (b) the dimension of
the breach (c) amount of water required to cause effective flooding to cause
the potential delay for the advancing armored contingent (d) monitoring the
intensity and progress of flooding etc.

• Study of urban flooding and identification of low-lying areas susceptible
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to flooding due to storm water is a major concern for urban management
bodies and government organizations engaged in disaster management. Also
because of global warming the mean sea level is increasing, posing a threat to
a vast population settled near the sea. Therefore flooding due to sea water is
a real threat to human settlements near the sea. This unconventional flood-
ing model need to be simulated and well understood to take precautionary
measures before an actual disaster occurs.

To determine the potential depth of flooding, one must be able to predict
how much water is in the watershed at any given time, how that amount of
water changes over time during a storm event, and how the flow of water
is impeded or obstructed by vegetation or man-made structures. Floodplain
mapping comprises an entire engineering discipline in its own right in civil
engineering. GIS are extensively useful in simulating, analyzing, and preparing
topographic maps depicting flooding patterns.

The types of decision outputs and simulation results desired from flooding
analysis are as follows.

• The ideal point of breach in an embankment so as to cause maximum flood-
ing.

• The time required for flooding a particular zone or the time required for the
flooding to affect a particular point.

• The amount of water required for the flooding to be effective.

• The size (width and depth) of the breach.

• Depth of flooding at a particular point in the flood zone.

• The safe area or safe zone in the flood zone where casualties can be evacuated
to.

Simulation of a realistic flooding model requires the following spatio-
temporal data as input.

• High quality DEM especially generated from a LiDAR-generated point cloud
of height values.

• High resolution satellite image or aerial image of the area for realistic ren-
dering of the flood zone.

• The water bodies and capacity their.

• Soil characteristics of the area.

• Weather and almanac information.
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12.11 Overlay Analysis

Thematic composition of maps and creation of overlays depicting the spatio-
temporal events occurring in discrete as well as continuous time-space are
two important characteristics of GIS. The base map or the surveyed data is
obtained after digitization of various themes. The overall map is known as
the base map or composite base map. Users of a GIS can compose a digital
map out of the base map according to the specific need of the application.
In this, the surveyed digital map is seen as a composition of various thematic
layers e.g. communication layer, road layer, rail layer, administrative zone,
agriculture, etc. This layer can be further organized into sub-layers and sub-
sub-layers depending upon the level of details of surveyed data. For example
a road layer can have sub-layer as metal road, un-metal road, foot track etc.
Further the metal road can be classified into a two lane bi-directional or one
lane unidirectional road.

Therefore depending upon the application user can chose relevant themes
out of the complete set of layers present in the back ground map. This com-
position of maps out of the composite map is known as ‘application specific
map composition’ or ’thematic map composition’ in GIS terminology.

Visualization and analysis of spatial data and events specific to an appli-
cation requires plotting of the spatial data as an overlay with the base map
in the background. This process is known as overlay analysis. In fact most
of the usage and applications of GIS by different organizations is based on
preparation of overlay based on the field survey data periodically or in a con-
tinuous time basis. Therefore overlay analysis is a spatio-temporal analysis.
Based on the time interval overlay analysis can be divided into two categories,
discrete time overlay analysis and continuous time overlay analysis, discussed
below.

12.11.1 Discrete Time Overlay Analysis

Most common overlay analysis is a depiction of spatial situations or field
survey data as an overlay in discrete time domain. In this process the data
is collected through field survey in discrete time domain and plotted as an
overlay with the base map in the background. Typical applications involve
disaster management, city infrastructure planning, traffic management etc.
For example the quantity of precipitation in different cities recorded in the
past 24 hours recorded by weather stations across the country can be plotted as
an overlay to analyze the effect of rain during the season. Speed and direction
of the wind in the coastal towns during the day can be plotted to analyze
the wind pattern in the form of a climo-graph. The percentage of citizens
exercising their franchise across the country can be plotted as an overlay to
analyze the political scenario. Most of the usage of overlay analysis using a GIS
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involves analysis of such data for understanding the spatio-temporal pattern
in different applications. These spatial data are surveyed and compiled over
a period of time and the statistics are depicted as an overlay with the base
map in the background. There are many ways to depict the discrete samples
for better visualization and analysis.

Overlays can be depicted in the form of surface density maps, point cloud
maps, pi charts, bar graphs, colour coded maps etc.

The overlay analysis involving different spatial phenomena gives the user
the correlation of one phenomena with respect to the other in space and
time. This involves the set theoretic and algebraic operations such as union,
intersection, set difference etc. performed on different overlays of the same
area to identify the similarity, common and different events and their corre-
lation. In fact there is an exhaustive set of overlay analysis known as map
algebra.

12.11.2 Continuous Time Overlay Analysis

To analyze and visualize the spatial events occurring in continuous time do-
main the events are captured through sensors in discrete time space often
known as the track data. These data are updated continuously with certain
time intervals and depicted as a layer with the base map in the background.
The overlay of tracks with a map background with continuous updates enables
the user to analyze the movement pattern of the spatial object being tracked.
A good example of these phenomena is the operation picture in the RADAR
terminal tracking multiple flying objects. For this kind of overlay analysis the
GIS is integrated with the sensor and the sensor input is piped to a com-
mon storage memory known as a buffer. The GIS continuously reads from the
buffer and refreshes the track overlay. The typical application of these kinds of
overlay analysis involves surveillance of the airspace, coastal zone or air-traffic
management. The GIS in this situation is embedded in the data processing
software of the sensor such as RADAR, SONAR, LiDAR etc.

12.12 Summary

This chapter discusses some of the measurement and analysis capability of
GIS. The measurement and analysis are the outcome of computing algorithms
applied on the spatial data. Spatial measures such as location, distance, direc-
tion, area, volume, slope, aspect, curvature etc. are discussed along with their
variants. GIS is capable of analyzing spatial data and scenario many ways.
Some of the analytical capabilities discussed are hill shed analysis to under-
stand the undulation pattern of the terrain surface and line of sight analysis
between the location of the observer and the location of the object. Flood
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inundation analysis and its applications are discussed. The generic overlay
analysis capability of GIS to analyze and simulate spatio-temporal phenom-
ena are discussed. GIS is capable of measuring and analyzing spatial objects
and phenomena in multiple ways giving alterative perspective of the spatio-
temporal phenomena.
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Appendix A

13.1 Reference Ellipsoids

Ellipsoid Semi-Major Axis 1/Flattening
Airy 1830 6377563.396 299.3249646
Modified Airy 6377340.189 299.3249646
Australian National 6378160 298.25
Bessel 1841 (Namibia) 6377483.865 299.1528128
Bessel 1841 6377397.155 299.1528128
Clarke 1866 6378206.4 294.9786982
Clarke 1880 6378249.145 293.465
Everest (India 1830) 6377276.345 300.8017
Everest (Sabah
Sarawak)

6377298.556 300.8017

Everest (India 1956) 6377301.243 300.8017
Everest (Malaysia 1969) 6377295.664 300.8017
Everest (Malaysia and
Sing)

6377304.063 300.8017

Everest (Pakistan) 6377309.613 300.8017
Modified Fischer 1960 6378155 298.3
Helmert 1906 6378200 298.3
Hough 1960 6378270 297
Indonesian 1974 6378160 298.274
International 1924 6378388 297
Krassovsky 1940 6378245 298.3
GRS 80 6378137 298.257222101
South American 1969 6378160 298.25
WGS 72 6378135 298.26
WGS 84 6378137 298.257223563

TABLE 13.1
Important Reference Parameters of Ellipsoids in Use
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13.2 Geodetic Datum Transformation Parameters
(Local to WGS-84)

• d = delta in meters

• e = error estimate in meters

• S = number of satellite measurement stations

Datum Ellipsoid dX dY dZ Region of use eX eY eZ S
Adindan Clarke 1880 -118 -14 218 Burkina Faso 25 25 25 1
Adindan Clarke 1880 -134 -2 210 Cameroon 25 25 25 1
Adindan Clarke 1880 -165 -11 206 Ethiopia 3 3 3 1
Adindan Clarke 1880 -123 -20 220 Mali 25 25 25 1
Adindan Clarke 1880 -166 -15 204 Mean for

Ethiopia;
Sudan

5 5 5 1

Adindan Clarke 1880 -128 -18 224 Senegal 25 25 25 2
Adindan Clarke 1880 -161 -14 205 Sudan 3 5 3 14

List of Geodetic Datum Transformation Parameters to (Local to WGS 84)
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13.3 Additional Figures, Charts and Maps (please see
color insert)

FIGURE 13.1
Satellite image of Chilka Lake in the state of Odisha in India depicting a land,
sea and lake with its vector map draped on it

FIGURE 13.2
A contour map covering a portion of land and sea
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FIGURE 13.3
Topobathymetry surface with vector data of topography and S-57 bathymetry
data of sea

FIGURE 13.4
Topobathymetry surface depicting the sea contours and sounding measures of
the sea depth in fathoms
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FIGURE 13.5
An instance of a flythrough visualization of a DEM draped with raster map

FIGURE 13.6
3D perspective visualization of an undulated terrain with sun shaded relief
map draped on it
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FIGURE 13.7
Colour-coded satellite image of an undulated terrain surface depicting relief
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13.4 Line of Sight

FIGURE 13.8
Computation of communication line of sight between transmitter and receiver
with the corresponding terrain profile along the LOS
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FIGURE 13.9
Computation of line-of-sight fan 360 degrees around the observer

FIGURE 13.10
Line of sight between observer and the target the visible portion is depicted
in green and invisible in red
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Appendix B

14.1 Definitions

14.1.1 Earth Sciences

Earth science, often referred as geological science in academia, is the branch of
science concerned with determining the exact position of geographical points,
the shape and size of the Earth. The branch of applied mathematics that deals
with the measurement of the shape, area of large tracts of country, the exact
position of geographical locations, the curvature, shape, and dimensions of the
Earth is known as Earth science. It is the scientific study of the origin of the
Earth along with its rocks, minerals, land forms, and life forms, and of the
processes that have affected them over the course of the Earth’s history, and
the study of the structure of a specific region of the Earth, including its rocks,
soils, mountains, fossils, and other features.

14.1.2 Geodesy

Geodesy is the scientific study of the size and shape of the Earth, its gravity
field, and modeling of varying phenomena such as the motion of the magnetic
poles and the tides; measurement of the dimension of Earth.

14.1.3 Geography

Geography is the study of the patterns and processes of human (built) and
environmental (natural) landscapes, where landscapes comprise real (objec-
tive) and perceived (subjective) space. The study of the physical features of
the Earth, its atmosphere, and of human activity as it affects and is affected
by these. The science that deals with the Earth’s physical structure and sub-
stance, its history, and the processes that act on it.

14.1.4 Bathymetry

The origin of the word bathymetry is traced to Greek literature. It is formed
from the conjunction of two Greek words bathus (deep) and metron (measure).
Bathymetry means the measurement of depth of water in oceans, seas, or

241
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lakes. The data generated by the measurements of depth of water through
bathymetry are known as bathymetry data. Bathymetric charts also known
as hydrographic charts are produced by plotting the bathymetric data and is
typically used for surface and sub-surface navigation. Bathymetric charts also
depict the seafloor relief as contour lines called depth contours or isobaths.
Some selected depths (soundings) are also depicted in the bathymetric charts
for safe navigation in the sea surface. The data used to make bathymetric
maps today typically comes from an echosounder (sonar) mounted beneath or
over the side of a boat, “pinging” a beam of sound downward at the seafloor or
from remote sensing LIDAR or LADAR systems. The amount of time it takes
for the sound or light to travel through the water, bounce off the seafloor, and
return to the sounder informs the equipment of the distance to the seafloor.
LIDAR/LADAR surveys are usually conducted by airborne systems.

14.1.5 Hypsometry

Hypsometry is a conjunction of the Greek words hupsos, which means “height”
and, metron, which means “measure”. Therefore hypsometry is the measure-
ment of land elevations relative to the datum surface of Earth which is usu-
ally taken as the mean sea level. Hypsometry is the equivalent process to
bathymetry underwater. A hypsometer is an instrument used in hypsome-
try, which estimates the elevation by boiling water. Water boils at different
temperatures depending on the air pressure, and thus measures the altitude.

14.1.6 Hydrography

Hydrography refers to the mapping or charting of water’s topographic fea-
tures. It involves measuring the depths, tides, and currents of a water body
and establishing the topography and morphology of seas, rivers, and lake beds.
Normally and historically the purpose of charting a body of water is for the
safety of shipping navigation. Such charting includes the positioning and iden-
tification of things such as wrecks, reefs, structures, navigational lights, marks
and buoys and coastline characteristics.

14.1.7 Terrain

Terrain is a general term in physical geography referring to the lay of the
land. It is usually expressed in terms of the elevation, slope, and orientation
of terrain features.

14.1.8 Contour, Isoline, Isopleths

A contour line (also isoline, isopleth, or isarithm) is a function of two variables
which is plotted as a curve along which the function has a constant value. In
cartography, a contour line (often just called a “contour”) joins points of equal
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elevation (height) above a given level, such as mean sea level. A contour map is
a map which illustrates the relief of the terrain surface. The contour interval
of a contour map is the difference in elevation between successive contour
lines which defines the magnitude of the relative height between successive
contours.

14.1.9 LIDAR

Lidar (also written LIDAR or LiDAR) is a remote sensing technology that
measures distance by illuminating a target with a laser and analyzing the re-
flected light. The term “lidar” is the acronym for Light Detection and Ranging.

14.1.10 RADAR

RADAR an acronym for RAdio Detection And Ranging. It is an object detec-
tion system which uses radio waves to determine the range, altitude, direction,
or speed of objects. It can be used to detect aircraft, ships, spacecraft, guided
missiles, motor vehicles, weather formations, and terrain. The RADAR dish
or antenna transmits pulses of radio waves or microwaves which bounce off
any object in their path. The object returns a tiny part of the wave’s energy to
a dish or antenna which is usually located at the same site as the transmitter.

14.1.11 Remote Sensing

Remote sensing is the acquisition of information about an object or phe-
nomenon without making physical contact with the object. In modern usage,
the term generally refers to the use of aerial sensor technologies to detect
and classify objects on Earth (both on the surface, and in the atmosphere
and oceans) by means of propagated signals (e.g. electromagnetic radiation
emitted from aircraft or satellites). There are two main types of remote sens-
ing: passive remote sensing and active remote sensing. Passive sensors detect
natural radiation that is emitted or reflected by the object or surrounding
areas. Reflected sunlight is the most common source of radiation measured by
passive sensors. Examples of passive remote sensors include film photography,
infrared, charge-coupled devices, and radiometers. Active collection, on the
other hand, emits energy in order to scan objects and areas whereupon a sen-
sor then detects and measures the radiation that is reflected or backscattered
from the target. RADAR and LiDAR are examples of active remote sensing
where the time delay between emission and return is measured, establishing
the location, speed and direction of an object.

14.1.12 Global Positioning System

Global Positioning System (GPS) is a space-based satellite navigation system
that provides location and time information in all weather conditions, any-
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where on or near the Earth where there is an unobstructed line of sight to four
or more GPS satellites. The system provides critical capabilities to military,
civil and commercial users around the world. It is maintained by the United
States government and is freely accessible to anyone with a GPS receiver.

14.1.13 Principal Component Analysis

Principal component analysis (PCA) is a mathematical procedure that uses
orthogonal transformation to convert a set of observations of possibly cor-
related variables into a set of values of linearly uncorrelated variables called
principal components. The number of principal components is less than or
equal to the number of original variables. This transformation is defined in
such a way that the first principal component has the largest possible variance
(that is, accounts for as much of the variability in the data as possible), and
each succeeding component in turn has the highest variance possible under
the constraint that it be orthogonal to (i.e., uncorrelated with) the preceding
components. Principal components are guaranteed to be independent if the
data set is jointly normally distributed. PCA is sensitive to the relative scaling
of the original variables.

14.1.14 Affine Transformation

An affine transformation is any transformation that preserves collinearity and
ratios of distances in the transformed image or map. That is to say all points
lying on a line in the image still lie on a line in the image after transfor-
mation. Similarly the midpoint of a line segment remains the midpoint after
transformation. In this sense, affine indicates a special class of projective trans-
formations that do not move any objects from the affine space to the plane at
infinity or conversely. An affine transformation is also called an affinity. While
an affine transformation preserves proportions on lines, it does not necessarily
preserve angles or lengths. Any triangle can be transformed into any other by
an affine transformation, so all triangles are affine and, in this sense, affine is
a generalization of congruent and similar. In general, an affine transformation
is a composition of rotations, translations, dilations, and shears.

14.1.15 Image Registration

Image registration is the process of transforming different sets of data into one
coordinate system. Data may be multiple photographs, data from different
sensors, times, depths, or viewpoints. It is used in computer vision, medical
imaging, military automatic target recognition, and compiling and analyzing
images and data from satellites. Registration is necessary in order to be able
to compare or integrate the data obtained from these different measurements.
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14.1.16 Photogrammetry

Photogrammetry is the science of making measurements from photographs.
The output of photogrammetry is typically a map, drawing, measurement, or
a 3D model of some real-world object or scene. Many of the maps used are
created with photogrammetry and photographs taken from aircraft.

14.1.17 Universal Transverse Mercator (UTM)

The Universal Transverse Mercator (UTM) geographic coordinate system is a
2D Cartesian coordinate system which references the locations on the surface
of the Earth. It is a horizontal position representation, i.e. it is used to identify
locations on the Earth independent of their vertical position, but differs from
the traditional method of latitude and longitude in several respects. The UTM
system is not a single map projection. The system instead divides the Earth
into 60 zones, each a six-degree band of longitude, and uses a secant transverse
Mercator projection in each zone.
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Glossary of GIS Terms

Algorithm: A set of computing instructions for solving a specific problem
having the following properties (a) finiteness (b) definiteness (c) input (d)
processing (e) output. An algorithm transforms an input data to output
information through the finite processing steps.

Attribute: Non-graphic or descriptive information describing the non-spatial
properties associated with the spatial object modeled as a point, line, or
area element in a GIS.

Autocorrelation: Also known as auto-covariance, is a statistical concepts
expressing the degree to which the value of an attribute at spatially adja-
cent points varies with the distance or time separating the observations.

Base layer: A primary layer for spatial reference, upon which other layers are
built. Examples of a base layer typically used are parcels, street centerlines
or the survey map of the area.

Buffering: The creation of a zone of specific width around a point, line, or
area. The buffer is a new polygon which is used in queries to determine
which entities occur within or outside the defined area.

Computer-Aided Design (CAD): An automated system for the design,
drafting and display of graphically oriented information.

Coordinate: A coordinate is a tuple specifying the location of objects with
respect to the frame of reference under consideration. location in a 2D
Cartesian coordinate system described by the tuple (x,y) and in 3D by
the tuple (x,y,z).

Cadastral map: A map showing the precise boundaries and size of land
parcels.

Cartography: The art and science of making of maps and charts.

Choropleth map: A map consisting of a series of single valued, uniform
areas separated by abrupt boundaries set according to their attribute.

Classification: The process of assigning real objects to a group or set of sur-
veyed data according to their attribute. In remote sensing image classifica-
tion, the pixels are assigned to natural classes depending on the signature
value recorded.

247
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Composite map: A single map created by joining together several thematic
layers that have been digitized separately.

Computer-Assisted Cartography (CAC): The use of computer hard-
ware and specific software for making maps and charts.

Computing environment: The set of hardware and software facilities pro-
vided by a computer and its operating system with prime specifications
of its processor, memory and operating system (OS).

Conceptual model: The abstraction, representation, and ordering of phe-
nomena using the mind.

Contour: A line connecting points of equal elevation.

Convolution: The conversion of values from one grid to another which is
different in terms of size or orientation.

Database: A logical collection of interrelated information managed and
stored as a unit. A GIS database includes data about the spatial location
and shape of geographic features recorded as points, lines, and polygons
as well as their attributes.

Delaunay triangulation: A triangular irregular network of set of unique
points in 2D plane having the properties (a) empty circumcircle; (b) the
outer boundary of the triangulation is a convex hull.

Differentiable continuous surface: The representation of a continuously
varying phenomenon using scalar or integer data so that the rate of change
across and within the area may be derived.

Digital Elevation Model (DEM): A quantitative model of a part of the
Earth’s surface in digital form. Also known as digital terrain model
(DTM). Digital elevation model is a grid of height values describing the
terrain undulation.

Digitize: To encode map features as x,y coordinates in digital form. Lines are
traced to define their shapes. This can be accomplished either manually
or by use of a scanner.

Ellipsoid: Mathematical model for the shape of the Earth, taking into ac-
count of the flattening at the poles.

Exact interpolator: An interpolation method that predicts a value of an
attribute at a sample point that is identical to the observed value.

Experimental variogram: An estimate of a semi-variogram based on sam-
pling.

Extrapolation: The estimation of values of an attribute at unsampled points
outside an area covered by existing measurements.
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Finite difference modeling: A numerical modeling technique used with
data held in regular grid form in which algebraic equations are used to
solve changes in a variable at each location.

Finite element modeling: A numeric modeling technique used with data
held in irregular grid (usually triangular) form in which algebraic equa-
tions are used to solve changes in a variable at each location.

Fourier analysis: A method of dissociating time series or spatial data into
sets of sine and cosine waves.

Geocoding: The activity of defining the position of geographical objects rel-
ative to a standard reference grid. The process of identifying a location
by one or more attributes from a base layer.

Grey scales: Levels of brightness (or darkness for displaying information on
monochromic display devices). Generally the infinite pixel intensity of an
image is scaled to value [0-255] for a gray scale image.

Grid: (a) A set of regularly spaced sample points. (b) A tessellation by
squares. (c) In cartography, an exact set of reference lines over the Earth’s
surface. (d) In utility mapping, the distribution network of the utility re-
sources, e.g. electricity or telephone lines.

Geographic Information System (GIS): (a) An organized collection of
computer hardware, software, geographic data, and personnel designed
to efficiently capture, store, update, manipulate, analyze, and display all
forms of geographically referenced information. (b) A set of computer
tools for collecting, storing, retrieving at will, transforming, and displaying
spatial data from the real for a particular set of purposes.

Geographical primitives: The smallest units of spatial information: in vec-
tor form these are points, lines, and areas (polygons); in raster form they
are pixels (2D) and voxels (3D).

Geo-reference: The referencing in space of the location of a point using a
predefined coordinate system such a latitude and longitude or a national
grid.

Global Positioning System (GPS): A satellite-based device that records
x,y,z coordinates and other data. Ground locations are calculated by sig-
nals from satellites orbiting the Earth. GPS devices can be taken into the
field to record data while walking, driving, or flying. A set of satellites
in geostationary Earth orbits used to help determine geographic location
anywhere on the Earth by means of portable electronic receivers.

Hidden line removal: A technique in 3D perspective graphics for suppress-
ing the appearance of lines that ordinarily would be obscured from view.
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Hypsometry: The measurement of the elevation of the Earth’s surface with
respect to sea level.

Indicator kriging: A kriging interpolation method which is non-linear and
in which the original data are transformed from s continuous to a binary
scale.

Inexact interpolator: Interpolation methods that provide estimates at data
locations that are not necessarily the same as the original measurements.

Input: (noun) The data entered to a computer system; (verb) the process of
entering data.

Interpolation: The estimation of values of an attribute at unsampled points
from measurements made at surrounding sites.

Isoline: a line which joints locations of equal value.

Isopleth map: A map displaying the distribution of an attribute in terms of
lines connecting points of equal value.

Kriging: Named after D.G. Krige, a set of interpolation techniques that use
regionalized variable theory to incorporate information about the stochas-
tic aspects of spatial variation when estimating interpolation weights.

Layer: A logical set of thematic data described and stored in a map library.
Layers act as digital transparencies that can be laid atop one another for
viewing or spatial analysis.

Linear interpolator: Describes a method whereby the weights assigned to
different data points are computed using a linear function of distance
between sets of data points and the point to be predicted.

Map: (a) A hand-drawn or printed document describing the spatial distribu-
tion of geographical features in terms of a recognizable and agreed sym-
bolism. (b) A collection of digital information about a part of the Earth’s
surface.

Map projection: The basic system of coordinates used to describe the spa-
tial distribution of elements in GIS.

Metadata: Data about the contents of the data. Information about a data
set. Some key metadata are the source of the data; its creation date and
format, its projection, scale, resolution, and accuracy, and its reliability
with regard to some standard.

Nugget: In kriging and variogram modeling, that part of the variance of
a regionalized variable that has no spatial component (variation due to
measurement errors and short-range spatial variation at distances within
the smallest inter-sample spacing).
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Ordinary kriging: A method for interpolating data values from sample data
using regionalized variable theory in which the prediction weights are
derived from a field variogram model.

Ortho imagery: Aerial photographs that have been rectified to produce an
accurate image of the Earth by removing tilt and relief displacements.

Orthophotos: A scale-correct photomap created by geometrically correcting
aerial photographs or satellite images.

Output: The results of processing data in a GIS; maps, tables, screen images,
tape files.

Overlay: (verb) The process of stacking digital representations of various
spatial data on top of each other so that each position in the area covered
can be analyzed in terms of these data. (noun) A data plane containing a
related set of geographic data in digital form.

Point: A single (x,y) coordinate that represents a geographic feature too
small to be displayed as a line or area at that scale.

Polygon: A figure that represents an area on a map generally encoded as a
closed sequence of line segments. Polygons have attributes that describe
the geographic feature they represent.

Photogrammetry: A series of technique for measuring position and altitude
from aerial photographs or images using a stereoscope or stereoplotter.

Pixel: An abbreviation for picture element; smallest unit of information in a
raster map such as DEM or scanned image.

Quadtree: A data structure for thematic information in a raster database
that seeks to minimize data storage.

Raster data structure: A database containing all mapped spatial informa-
tion in the form of regular grid cells.

Raster display: A device for displaying information in the form of pixels on
a computer screen or VDU.

Raster map: A map encoded in the form of a regular array of cells known
as pixels.

Resampling: A technique for transforming a raster image from one partic-
ular scale and projection to another.

Resolution: The smallest spacing between two displayed or processed ele-
ments; the smallest size of feature that can be mapped or sampled.
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R-tree: A spatial indexing technique which groups entities according to their
proximity by using minimum bounding rectangles. Hierarchies of rectan-
gles may be established. When querying the database any search is di-
rected to the rectangle and any subsequent lower-level ones which contain
the item of interest.

Run-length codes: A compact method of storing data in raster databases
which simplifies the grid on a row-by-row basis by coding the start and
end values of contiguous cells for each class.

Sampling: The technique of obtaining a series of measurements to obtain a
satisfactory representation of the real world phenomenon being studied.

Scale: The metric property of a map or an image which defines the ratio
between a distance or area on a map and the corresponding distance or
area on the ground.

Scanner: A device for converting images from maps, photographs, or from
part of the real world into digital form. The scanning head is made up of
a light or other energy source and a sensing device which records digital
values of light reflected back from the surface.

Semivariogram: (a) Given two locations x and (x+h), a measure of one-half
of the mean square differences (the semivariance) produced by assigning
the value z(x +h) to the value z(x), where h (known as the lag) is the
inter sample distance. (b) A graph of semivariance versus lag h.

Semivariogram model: One of a series of mathematical functions that are
permitted for fitting the points on an experimental variogram (linear,
spherical, exponential, Gaussian, etc.).

Sill: The maximum level of semivariance reached by a transitive semivari-
ogram.

Simple kriging: An interpolation technique in which the prediction of values
is based on a generalized linear regression under the assumption of second
order stationarity and a known mean.

Simulation: Using the digital model of the landscape in a GIS for study-
ing the possible outcome of various processes expressed in the form of
mathematical models.

Spatial analysis: The process of modeling, examining, and interpreting
model results. Spatial analysis is useful for evaluating suitability and ca-
pability, for estimating and predicting, and for interpreting and under-
standing.

Structured Query Language (SQL): A syntax for defining and manipu-
lating data from a relational database. Developed by IBM in the 1970s, it
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has become an industry standard for query languages in most relational
database management systems.

Tessellation: The process of dividing an area into smaller, contiguous tiles
with no gaps in between them.

Thematic map: A map displaying selected kinds of information relating to
specific themes, such a soil, land use, population density, suitability for
arable crops, and so on. Many thematic maps are also choropleth maps,
but when the attribute is modeled by a continuous field, representation
by isolines or colour scales is more appropriate.

Thiessen polygons: A tessellation of the plane such that any given location
is assigned to a tile according to the minimum distance between it and a
single, previously sampled point. Also known as Dirichlet tessellation or
Voronoi polygons.

Topographical map: A map showing the surface features of the Earth’s
surface (contours, roads, rivers, houses, etc.) in great accuracy and detail
relative to the map scale used.

Topology: A term used to refer to the continuity of space and spatial prop-
erties, such as connectivity, that are unaffected by continuous distortion.
In the representation of vector entities, connectivity is defined explicitly
by a directed pointer between records describing things that are somehow
linked in space (for example a junction between two roads). In regular
and irregular tessellations of continuous surfaces (e.g. grids) the topo-
logical property of connectivity between different locations may only be
implicitly defined by the spatial rate of change of attribute values over
the grid. The topology (connectivity) of gridded surfaces can be revealed
by computing first, second, or higher order derivatives of the surface

Transformation: The process of changing the scale, projection, or orienta-
tion of a map or an image.

Trend surface analysis: Methods for exploring the functional relationship
between attributes and the geographical coordinates of the sample points.

Triangular Irregular Network (TIN): A vector data structure for repre-
senting geographical information that is modeled as a continuous field
(usually elevation) which uses tessellated triangles.

Universal kriging: A simple kriging of the residuals of a regionalized vari-
able after systematic variation has been modeled by a drift or trend sur-
face.

Vector: (a) In Physics, a quantity having both magnitude and direction. (b)
In GIS, the representation of spatial data by digitized points, lines, and
polygons.
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Vector data structure: A means of coding and storing point, line, and areal
information in the form of units of data expressing magnitude, direction,
and connectivity.

Viewshed: A visualization technique in which those parts of the landscape
are visualized which can be seen from a particular point.

Voxels: Three-dimensional cubic units of space.

Weighted moving average: The value of an attribute computed for a given
point as an average of the values at surrounding data points taking account
of their distance or importance.
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FIGURE 13.1

Satellite image of Chilka Lake in the state of Odisha in India depicting a land,

sea and lake with its vector map draped on it

FIGURE 13.2

A contour map covering a portion of land and sea



FIGURE 13.3

Topobathymetry surface with vector data of topography and S-57 bathymetry

data of sea

FIGURE 13.4

Topobathymetry surface depicting the sea contours and sounding measures of

the sea depth in fathoms



FIGURE 13.5

An instance of a flythrough visualization of a DEM draped with raster map

FIGURE 13.6

3D perspective visualization of an undulated terrain with sun shaded relief

map draped on it



FIGURE 13.7

Colour-coded satellite image of an undulated terrain surface depicting relief
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FIGURE 13.8

Computation of communication line of sight between transmitter and receiver

with the corresponding terrain profile along the LOS



FIGURE 13.9

Computation of line-of-sight fan 360 degrees around the observer
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FIGURE 13.10

Line of sight between observer and the target the visible portion is depicted

in green and invisible in red
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