




Lines
Slope of line through (x1, y1) and (x2, y2):

m =
y2 − y1

x2 − x1

Point-slope equation of line through (x1, y1)

with slope m:

y − y1 = m(x − x1)

Slope-intercept equation of line with slope m

and y-intercept b:

y = b + mx

Rules of Exponents

axat = ax+t

ax

at
= ax−t

(ax)t = axt

Definition of Natural Log

y = lnx means ey = x

ex: ln 1 = 0 since e0 = 1

1

1

x

y

y = lnx

y = ex

Identities

ln ex = x

eln x = x

Rules of Natural Logarithms

ln(AB) = lnA + lnB

ln
(

A

B

)

= lnA − lnB

lnAp = p lnA

Distance and Midpoint Formulas
Distance D between (x1, y1) and (x2, y2):

D =

√

(x2 − x1)
2 + (y2 − y1)

2

Midpoint of (x1, y1) and (x2, y2):

(

x1 + x2

2
,
y1 + y2

2

)

Quadratic Formula
If ax2 + bx + c = 0, then

x =
−b ±

√

b2 − 4ac

2a

Factoring Special Polynomials

x2 − y2 = (x + y)(x − y)

x3 + y3 = (x + y)(x2 − xy + y2)

x3 − y3 = (x − y)(x2 + xy + y2)

Circles

Center (ℎ, k) and radius r:

(x − ℎ)2 + (y − k)2 = r2

Ellipse

x2

a2
+

y2

b2
= 1

−a a

−b

b

x

y

Hyperbola

x2

a2
−

y2

b2
= 1

a
x

y

y = bx∕a

y = −bx∕a



Geometric Formulas
Conversion Between Radians and Degrees: � radians = 180◦

Triangle

A =
1

2
bℎ

=
1

2
ab sin �

�

✲✛ b

a
ℎ

Circle

A = �r2

C = 2�r

r

Sector of Circle

A =
1

2
r2� (� in radians)

s = r� (� in radians)

�

r

r s

Sphere

V =
4

3
�r3 A = 4�r2

Cylinder

V = �r2ℎ

Cone

V =
1

3
�r2ℎ

Trigonometric Functions

sin � =
y

r

cos � =
x

r

tan � =
y

x

tan � =
sin �

cos �

cos2 � + sin2 � = 1

✛

✛

r

(x, y)

�

✻

❄

y

✲✛ x

sin(A±B) = sinA cosB±cosA sinB

cos(A±B) = cosA cosB∓sinA sinB

sin(2A) = 2 sinA cosA

cos(2A) = 2 cos2 A−1 = 1−2 sin2 A

� 2�

−1

1 y = sin x

x

y

� 2�

−1

1 y = cos x

x

y

−� �

y = tan x

x

y

The Binomial Theorem

(x + y)n = xn + nxn−1y +
n(n − 1)

1 ⋅ 2
xn−2y2 +

n(n − 1)(n − 2)

1 ⋅ 2 ⋅ 3
xn−3y3 +⋯ + nxyn−1 + yn

(x − y)n = xn − nxn−1y +
n(n − 1)

1 ⋅ 2
xn−2y2 −

n(n − 1)(n − 2)

1 ⋅ 2 ⋅ 3
xn−3y3 +⋯ ± nxyn−1 ∓ yn
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PREFACE

Calculus is one of the greatest achievements of the human intellect. Inspired by problems in astronomy,

Newton and Leibniz developed the ideas of calculus 300 years ago. Since then, each century has demonstrated

the power of calculus to illuminate questions in mathematics, the physical sciences, engineering, and the social

and biological sciences.

Calculus has been so successful both because its central theme—change—is pivotal to an analysis of the

natural world and because of its extraordinary power to reduce complicated problems to simple procedures.

Therein lies the danger in teaching calculus: it is possible to teach the subject as nothing but procedures—

thereby losing sight of both the mathematics and of its practical value. This edition of Calculus continues our

effort to promote courses in which understanding and computation reinforce each other. It reflects the input

of users at research universities, four-year colleges, community colleges, and secondary schools, as well as

of professionals in partner disciplines such as engineering and the natural and social sciences.

Mathematical Thinking Supported by Theory and Modeling
The first stage in the development of mathematical thinking is the acquisition of a clear intuitive picture of the

central ideas. In the next stage, the student learns to reason with the intuitive ideas in plain English. After this

foundation has been laid, there is a choice of direction. All students benefit from both theory and modeling,

but the balance may differ for different groups. Some students, such as mathematics majors, may prefer more

theory, while others may prefer more modeling. For instructors wishing to emphasize the connection between

calculus and other fields, the text includes:

• A variety of problems from the physical sciences and engineering.

• Examples from the biological sciences and economics.

• Models from the health sciences and of population growth.

Active Learning: Good Problems
As instructors ourselves, we know that interactive classrooms and well-crafted problems promote student

learning. Since its inception, the hallmark of our text has been its innovative and engaging problems. These

problems probe student understanding in ways often taken for granted. Praised for their creativity and variety,

these problems have had influence far beyond the users of our textbook.

The Seventh Edition continues this tradition. Under our approach, which we call the “Rule of Four,” ideas

are presented graphically, numerically, symbolically, and verbally, thereby encouraging students to deepen

their understanding. Graphs and tables in this text are assumed to show all necessary information about the

functions they represent, including direction of change, local extrema, and discontinuities.

Problems in this text include:

• Strengthen Your Understanding problems at the end of every section. These problems ask students

to reflect on what they have learned by deciding “What is wrong?” with a statement and to “Give an

example” of an idea.

• ConcepTests promote active learning in the classroom. These can be used with or without personal re-

sponse systems (e.g., clickers), and have been shown to dramatically improve student learning. Available

in a book or on the web at www.wiley.com/college/hughes-hallett.

• Class Worksheets allow instructors to engage students in individual or group class-work. Samples are

available in the Instructor’s Manual, and all are on the web at www.wiley.com/college/hughes-hallett.

• Data and Models. Many examples and problems throughout the text involve data-driven models.

• Drill Exercises build student skill and confidence.

v
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Enhancing Learning Online

This Seventh Edition provides opportunities for students to experience the concepts of calculus in ways that

would not be possible in a traditional textbook. The E-Text of Calculus, powered by VitalSource, provides in-

teractive demonstrations of concepts, embedded videos that illustrate problem-solving techniques, and built-in

assessments that allow students to check their understanding as they read. The E-Text also contains additional

content not found in the print edition:

• Worked example videos by Donna Krawczyk at the University of Arizona, which provide students the

opportunity to see and hear hundreds of the book’s examples being explained and worked out in detail

• Embedded Interactive Explorations, applets that present and explore key ideas graphically and dynamically—

especially useful for display of three-dimensional graphs

• Material that reviews and extends the major ideas of each chapter: Chapter Summary, Review Exercises

and Problems, CAS Challenge Problems, and Projects

• Challenging problems that involve further exploration and application of the mathematics in many sec-

tions

• Appendices that include preliminary ideas useful in this course

Problems Available in WileyPLUS

Students and instructors can access a wide variety of problems through WileyPLUS with ORION, Wiley’s

digital learning environment. ORION Learning provides an adaptive, personalized learning experience that

delivers easy-to-use analytics so instructors and students can see exactly where they’re excelling and where

they need help. WileyPLUS with ORION features the following resources:

• Online version of the text, featuring hyperlinks to referenced content, applets, videos, and supplements.

• Homework management tools, which enable the instructor to assign questions easily and grade them

automatically, using a rich set of options and controls.

• QuickStart pre-designed reading and homework assignments. Use them as-is or customize them to fit the

needs of your classroom.

• Intelligent Tutoring questions, in which students are prompted for responses as they step through a prob-

lem solution and receive targeted feedback based on those responses.

Online resources and support are also available through WebAssign. WebAssign for Hughes-Hallett Calculus

Seventh Edition contains a vast range of assignable and autogradable homework questions as well as an

Enhanced VitalSouce e-text with embedded videos, interatives, and questions.

Content

This content represents our vision of how calculus can be taught. It is flexible enough to accommodate indi-

vidual course needs and requirements. Topics can easily be added or deleted, or the order changed.

Changes to the text in the Seventh Edition are in italics. In all chapters, chapters, problems were added

and others were updated. In total, there are more than 300 new problems.

Chapter 12: Functions of Several Variables

This chapter introduces functions of many variables from several points of view, using surface graphs, contour

diagrams, and tables. We assume throughout that functions of two or more variables are defined on regions

with piecewise smooth boundaries. We conclude with a section on continuity.

Chapter 13: A Fundamental Tool: Vectors

This chapter introduces vectors geometrically and algebraically and discusses the dot and cross product.

An application of the cross product to angular velocity is given.
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Chapter 14: Differentiating Functions of Several Variables

Partial derivatives, directional derivatives, gradients, and local linearity are introduced. The chapter also dis-

cusses higher order partial derivatives, quadratic Taylor approximations, and differentiability.

Chapter 15: Optimization

The ideas of the previous chapter are applied to optimization problems, both constrained and unconstrained.

Chapter 16: Integrating Functions of Several Variables

This chapter discusses double and triple integrals in Cartesian, polar, cylindrical, and spherical coordinates.

Chapter 17: Parameterization and Vector Fields

This chapter discusses parameterized curves and motion, vector fields and flowlines.

Additional problems are provided on parameterizing curves in 3-space that are not contained in a coor-

dinate plane.

Chapter 18: Line Integrals

This chapter introduces line integrals and shows how to calculate them using parameterizations. Conservative

fields, gradient fields, the Fundamental Theorem of Calculus for Line Integrals, and Green’s Theorem are

discussed.

Chapter 19: Flux Integrals and Divergence

This chapter introduces flux integrals and shows how to calculate them over surface graphs, portions of cylin-

ders, and portions of spheres. The divergence is introduced and its relationship to flux integrals discussed in

the Divergence Theorem.

We calculate the surface area of the graph of a function using flux.

Chapter 20: The Curl and Stokes’ Theorem

The purpose of this chapter is to give students a practical understanding of the curl and of Stokes’ Theorem

and to lay out the relationship between the theorems of vector calculus.

Chapter 21: Parameters, Coordinates, and Integrals

This chapter covers parameterized surfaces, the change of variable formula in a double or triple integral, and

flux though a parameterized surface.

Appendices

There are appendices on roots, accuracy, and bounds; complex numbers; Newton’s Method; and determinants.

Supplementary Materials and Additional Resources

Supplements for the instructor can be obtained online at the book companion site or by contacting your Wiley

representative. The following supplementary materials are available for this edition:

• Instructor’s Manual containing teaching tips, calculator programs, overhead transparency masters, sam-

ple worksheets, and sample syllabi.

• Computerized Test Bank, comprised of nearly 7,000 questions, mostly algorithmically-generated,which

allows for multiple versions of a single test or quiz.

• Instructor’s Solution Manual with complete solutions to all problems.

• Student Solution Manual with complete solutions to half the odd-numbered problems.

• Graphing Calculator Manual, to help students get the most out of their graphing calculators, and to

show how they can apply the numerical and graphing functions of their calculators to their study of

calculus.

• Additional Material, elaborating specially marked points in the text and password-protected electronic

versions of the instructor ancillaries, can be found on the web at www.wiley.com/college/hughes-hallett.
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ConcepTests

ConcepTests, modeled on the pioneering work of Harvard physicist Eric Mazur, are questions designed to

promote active learning during class, particularly (but not exclusively) in large lectures. Our evaluation data

show students taught with ConcepTests outperformed students taught by traditional lecture methods 73%

versus 17% on conceptual questions, and 63% versus 54% on computational problems.
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To Students: How to Learn from this Book

• This book may be different from other math textbooks that you have used, so it may be helpful to know

about some of the differences in advance. This book emphasizes at every stage the meaning (in practical,

graphical or numerical terms) of the symbols you are using. There is much less emphasis on “plug-and-

chug” and using formulas, and much more emphasis on the interpretation of these formulas than you may

expect. You will often be asked to explain your ideas in words or to explain an answer using graphs.

• The book contains the main ideas of multivariable calculus in plain English. Your success in using this

book will depend on your reading, questioning, and thinking hard about the ideas presented. Although

you may not have done this with other books, you should plan on reading the text in detail, not just the

worked examples.

• There are very few examples in the text that are exactly like the homework problems. This means that you

can’t just look at a homework problem and search for a similar–looking “worked out” example. Success

with the homework will come by grappling with the ideas of calculus.

• Many of the problems that we have included in the book are open-ended. This means that there may be

more than one approach and more than one solution, depending on your analysis. Many times, solving a

problem relies on common sense ideas that are not stated in the problem but which you will know from

everyday life.

• Some problems in this book assume that you have access to a graphing calculator or computer; preferably

one that can draw surface graphs, contour diagrams, and vector fields, and can compute multivariable

integrals and line integrals numerically. There are many situations where you may not be able to find an

exact solution to a problem, but you can use a calculator or computer to get a reasonable approximation.

• This book attempts to give equal weight to three methods for describing functions: graphical (a picture),

numerical (a table of values) and algebraic (a formula). Sometimes you may find it easier to translate a

problem given in one form into another. For example, if you have to find the maximum of a function, you

might use a contour diagram to estimate its approximate position, use its formula to find equations that

give the exact position, then use a numerical method to solve the equations. The best idea is to be flexible

about your approach: if one way of looking at a problem doesn’t work, try another.

• Students using this book have found discussing these problems in small groups very helpful. There are a

great many problems which are not cut-and-dried; it can help to attack them with the other perspectives

your colleagues can provide. If group work is not feasible, see if your instructor can organize a discussion

session in which additional problems can be worked on.

• You are probably wondering what you’ll get from the book. The answer is, if you put in a solid effort, you

will get a real understanding of one of the most important accomplishments of the millennium – calculus

– as well as a real sense of the power of mathematics in the age of technology.
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12.1 FUNCTIONS OF TWO VARIABLES

Function Notation
Suppose you want to calculate your monthly payment on a five-year car loan; this depends on both

the amount of money you borrow and the interest rate. These quantities can vary separately: the loan

amount can change while the interest rate remains the same, or the interest rate can change while the

loan amount remains the same. To calculate your monthly payment you need to know both. If the

monthly payment is $m, the loan amount is $L, and the interest rate is r%, then we express the fact

that m is a function of L and r by writing:

m = f (L, r).

This is just like the function notation of one-variable calculus. The variablem is called the dependent

variable, and the variables L and r are called the independent variables. The letter f stands for the

function or rule that gives the value of m corresponding to given values of L and r.

A function of two variables can be represented graphically, numerically by a table of values, or

algebraically by a formula. In this section, we give examples of each.

Graphical Example: A Weather Map
Figure 12.1 shows a weather map from a newspaper. What information does it convey? It displays

the predicted high temperature, T , in degrees Fahrenheit (◦F), throughout the US on that day. The

curves on the map, called isotherms, separate the country into zones, according to whether T is in

the 60s, 70s, 80s, 90s, or 100s. (Iso means same and therm means heat.) Notice that the isotherm

separating the 80s and 90s zones connects all the points where the temperature is exactly 90◦F.

Example 1 Estimate the predicted value of T in Boise, Idaho; Topeka, Kansas; and Buffalo, New York.

Solution Boise and Buffalo are in the 70s region, and Topeka is in the 80s region. Thus, the predicted tem-

perature in Boise and Buffalo is between 70 and 80 while the predicted temperature in Topeka is

between 80 and 90. In fact, we can say more. Although both Boise and Buffalo are in the 70s, Boise

is quite close to the T = 70 isotherm, whereas Buffalo is quite close to the T = 80 isotherm. So we

estimate the temperature to be in the low 70s in Boise and in the high 70s in Buffalo. Topeka is about

halfway between the T = 80 isotherm and the T = 90 isotherm. Thus, we guess the temperature in

Topeka to be in the mid-80s. In fact, the actual high temperatures for that day were 71◦F for Boise,

79◦F for Buffalo, and 86◦F for Topeka.

60s

70s

70s
Boise

80s

90s
90s

60s

90s

100s

Topeka

90s

70s

80s

Buffalo60s

70s

70s
Boise

80s

90s
90s

60s

90s

100s

Topeka

90s

70s

80s

Buffalo

Figure 12.1: Weather map showing predicted high temperatures, T , on a summer day
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The predicted high temperature, T , illustrated by the weather map is a function of (that is, de-

pends on) two variables, often longitude and latitude, or miles east-west and miles north-south of

a fixed point, say, Topeka. The weather map in Figure 12.1 is called a contour map or contour di-

agram of that function. Section 12.2 shows another way of visualizing functions of two variables

using surfaces; Section 12.3 looks at contour maps in detail.

Numerical Example: Body Mass Index (BMI)
The body mass index (BMI) is a value that attempts to quantify a person’s body fat based on their

height ℎ and weight w. In function notation, we write:

BMI = f (ℎ,w).

Table 12.1 contains values of this function for ℎ in inches and w in pounds. Values of w are across

the top, values of ℎ are down the left side, and corresponding values of f (ℎ,w) are in the table.1

For example, to find the value of f (66, 140), we look in the row corresponding to ℎ = 66 under

w = 140, where we find the number 22.6. Thus,

f (66, 140) = 22.6.

This means that if an individual is 66 inches tall and weights 140 lbs, their body mass index is 22.6.

Table 12.1 Body mass index (BMI)

Height ℎ

(inches)

Weight w (lbs)

120 140 160 180 200

60 23.4 27.3 31.2 35.2 39.1

63 21.3 24.8 28.3 31.9 35.4

66 19.4 22.6 25.8 29.0 32.3

69 17.7 20.7 23.6 26.6 29.5

72 16.3 19.0 21.7 24.4 27.1

75 15.0 17.5 20.0 22.5 25.0

Notice how this table differs from the table of values of a one-variable function, where one row

or one column is enough to list the values of the function. Here many rows and columns are needed

because the function has a value for every pair of values of the independent variables.

Algebraic Examples: Formulas
In the weather map example there is no formula for the underlying function. That is usually the case

for functions representing real-life data. On the other hand, for many models in physics, engineering,

and economics, there are exact formulas.

Example 2 Give a formula for the function M = f (B, t) where M is the amount of money in a bank account

t years after an initial investment of B dollars, if interest is accrued at a rate of 1.2% per year com-

pounded annually.

Solution Annual compounding means that M increases by a factor of 1.012 every year, so

M = f (B, t) = B(1.012)t.

Example 3 A cylinder with closed ends has radius r and height ℎ. If its volume is V and its surface area is A,

find formulas for the functions V = f (r, ℎ) and A = g(r, ℎ).

Solution Since the area of the circular base is �r2, we have

V = f (r, ℎ) = Area of base ⋅ Height = �r2ℎ.

1http://www.cdc.gov. Last accessed January 8, 2016.
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The surface area of the side is the circumference of the bottom, 2�r, times the height ℎ, giving 2�rℎ.

Thus,

A = g(r, ℎ) = 2 ⋅ Area of base + Area of side = 2�r2 + 2�rℎ.

A Tour of 3-Space
In Section 12.2 we see how to visualize a function of two variables as a surface in space. Now we

see how to locate points in three-dimensional space (3-space).

Imagine three coordinate axes meeting at the origin: a vertical axis, and two horizontal axes at

right angles to each other. (See Figure 12.2.) Think of the xy-plane as being horizontal, while the

z-axis extends vertically above and below the plane. The labels x, y, and z show which part of each

axis is positive; the other side is negative. We generally use right-handed axes in which looking down

the positive z-axis gives the usual view of the xy-plane. We specify a point in 3-space by giving its

coordinates (x, y, z) with respect to these axes. Think of the coordinates as instructions telling you

how to get to the point: start at the origin, go x units along the x-axis, then y units in the direction

parallel to the y-axis, and finally z units in the direction parallel to the z-axis. The coordinates can

be positive, zero or negative; a zero coordinate means “don’t move in this direction,” and a negative

coordinate means “go in the negative direction parallel to this axis.” For example, the origin has

coordinates (0, 0, 0), since we get there from the origin by doing nothing at all.

Example 4 Describe the position of the points with coordinates (1, 2, 3) and (0, 0,−1).

Solution We get to the point (1, 2, 3) by starting at the origin, going 1 unit along the x-axis, 2 units in the

direction parallel to the y-axis, and 3 units up in the direction parallel to the z-axis. (See Figure 12.3.)

To get to (0, 0,−1), we don’t move at all in the x- and the y-directions, but move 1 unit in the

negative z-direction. So the point is on the negative z-axis. (See Figure 12.4.) You can check that

the position of the point is independent of the order of the x, y, and z displacements.

z

y

x

O

Figure 12.2: Coordinate axes in

three-dimensional space

x

y

z

(1, 2, 3)

Figure 12.3: The point

(1, 2, 3) in 3-space

x

y

z

(0, 0,−1)

Figure 12.4: The point

(0, 0,−1) in 3-space

Example 5 You start at the origin, go along the y-axis a distance of 2 units in the positive direction, and then

move vertically upward a distance of 1 unit. What are the coordinates of your final position?

Solution You started at the point (0, 0, 0). When you went along the y-axis, your y-coordinate increased to 2.

Moving vertically increased your z-coordinate to 1; your x-coordinate did not change because you

did not move in the x-direction. So your final coordinates are (0, 2, 1). (See Figure 12.5.)

x

y

z

(0, 2, 1)

Figure 12.5: The point (0, 2, 1) is reached by moving 2 along the y-axis and 1 upward
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It is often helpful to picture a three-dimensional coordinate system in terms of a room. The

origin is a corner at floor level where two walls meet the floor. The z-axis is the vertical intersection

of the two walls; the x- and the y-axis are the intersections of each wall with the floor. Points with

negative coordinates lie behind a wall in the next room or below the floor.

Graphing Equations in 3-Space

We can graph an equation involving the variables x, y, and z in 3-space; such a graph is a picture of

all points (x, y, z) that satisfy the equation.

Example 6 What do the graphs of the equations z = 0, z = 3, and z = −1 look like?

Solution To graph z = 0, we visualize the set of points whose z-coordinate is zero. If the z-coordinate is

0, then we must be at the same vertical level as the origin; that is, we are in the horizontal plane

containing the origin. So the graph of z = 0 is the middle plane in Figure 12.6. The graph of z = 3

is a plane parallel to the graph of z = 0, but three units above it. The graph of z = −1 is a plane

parallel to the graph of z = 0, but one unit below it.

Figure 12.6: The planes z = −1, z = 0, and z = 3

The plane z = 0 contains the x- and the y-coordinate axes, and is called the xy-plane. There

are two other coordinate planes. The yz-plane contains both the y- and the z-axis, and the xz-plane

contains the x- and the z-axis. (See Figure 12.7.)

Figure 12.7: The three coordinate planes

Example 7 Which of the points A = (1,−1, 0), B = (0, 3, 4), C = (2, 2, 1), and D = (0,−4, 0) lies closest to the

xz-plane? Which point lies on the y-axis?

Solution The magnitude of the y-coordinate gives the distance to the xz-plane. The point A lies closest to

that plane, because it has the smallest y-coordinate in magnitude. To get to a point on the y-axis,

we move along the y-axis, but we don’t move at all in the x- or the z-direction. Thus, a point on the

y-axis has both its x- and z-coordinates equal to zero. The only point of the four that satisfies this is

D. (See Figure 12.8.)
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In general, if a point has one of its coordinates equal to zero, it lies in one of the coordinate

planes. If a point has two of its coordinates equal to zero, it lies on one of the coordinate axes.

x

y

z

D

A

C

B

Figure 12.8: Which point lies closest to the xz-plane? Which

point lies on the y-axis?
Figure 12.9: The line x = 0, z = −2

Example 8 You are 2 units below the xy-plane and in the yz-plane. What are your coordinates?

Solution Since you are 2 units below the xy-plane, your z-coordinate is −2. Since you are in the yz-plane, your

x-coordinate is 0; your y-coordinate can be anything. Thus, you are at the point (0, y,−2). The set

of all such points forms a line parallel to the y-axis, 2 units below the xy-plane, and in the yz-plane.

(See Figure 12.9.)

Example 9 You are standing at the point (4, 5, 2), looking at the point (0.5, 0, 3). Are you looking up or down?

Solution The point you are standing at has z-coordinate 2, whereas the point you are looking at has z-

coordinate 3; hence you are looking up.

Example 10 Imagine that the yz-plane in Figure 12.7 is a page of this book. Describe the region behind the page

algebraically.

Solution The positive part of the x-axis pokes out of the page; moving in the positive x-direction brings you

out in front of the page. The region behind the page corresponds to negative values of x, so it is the

set of all points in 3-space satisfying the inequality x < 0.

Distance Between Two Points

In 2-space, the formula for the distance between two points (x, y) and (a, b) is given by

Distance =
√

(x − a)2 + (y − b)2.

The distance between two points (x, y, z) and (a, b, c) in 3-space is represented by PG in Fig-

ure 12.10. The side PE is parallel to the x-axis, EF is parallel to the y-axis, and FG is parallel to

the z-axis.

Using Pythagoras’ theorem twice gives

(PG)2 = (PF )2 + (FG)2 = (PE)2 + (EF )2 + (FG)2 = (x − a)2 + (y − b)2 + (z − c)2.

Thus, a formula for the distance between the points (x, y, z) and (a, b, c) in 3-space is

Distance =
√

(x − a)2 + (y − b)2 + (z − c)2.
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Figure 12.10: The diagonal PG gives the distance between the points (x, y, z) and (a, b, c)

Example 11 Find the distance between (1, 2, 1) and (−3, 1, 2).

Solution Distance =
√

(−3 − 1)2 + (1 − 2)2 + (2 − 1)2 =
√

18 = 4.243.

Example 12 Find an expression for the distance from the origin to the point (x, y, z).

Solution The origin has coordinates (0, 0, 0), so the distance from the origin to (x, y, z) is given by

Distance =
√

(x − 0)2 + (y − 0)2 + (z − 0)2 =
√

x2 + y2 + z2.

Example 13 Find an equation for a sphere of radius 1 with center at the origin.

Solution The sphere consists of all points (x, y, z) whose distance from the origin is 1, that is, which satisfy

the equation
√

x2 + y2 + z2 = 1.

This is an equation for the sphere. If we square both sides we get the equation in the form

x2 + y2 + z2 = 1.

Note that this equation represents the surface of the sphere. The solid ball enclosed by the sphere is

represented by the inequality x2 + y2 + z2 ≤ 1.

Exercises and Problems for Section 12.1 Online Resource: Additional Problems for Section 12.1
EXERCISES

1. Which of the points P = (1, 2, 1) and Q = (2, 0, 0) is

closest to the origin?

2. Which two of the three points P1 = (1, 2, 3), P2 =

(3, 2, 1) and P3 = (1, 1, 0) are closest to each other?

3. Which of the points P1 = (−3, 2, 15), P2 = (0,−10, 0),

P3 = (−6, 5, 3) and P4 = (−4, 2, 7) is closest to P =

(6, 0, 4)?

4. Which of the points A=(1.3,−2.7, 0), B=(0.9, 0, 3.2),

C = (2.5, 0.1,−0.3) is closest to the yz-plane? Which

one lies on the xz-plane? Which one is farthest from the

xy-plane?
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5. You are at the point (3, 1, 1), standing upright and fac-

ing the yz-plane. You walk 2 units forward, turn left,

and walk another 2 units. What is your final position?

From the point of view of an observer looking at the

coordinate system in Figure 12.2 on page 654, are you

in front of or behind the yz-plane? To the left or to the

right of the xz-plane? Above or below the xy-plane?

6. On a set of x, y and z axes oriented as in Figure 12.5 on

page 654, draw a straight line through the origin, lying

in the yz-plane and such that if you move along the line

with your y-coordinate increasing, your z-coordinate is

increasing.

7. What is the midpoint of the line segment joining the

points (−1, 3, 9) and (5, 6,−3)?

In Exercises 8–11, which of (I)–(IV) lie on the graph of the

equation?

I. (2, 2, 4) II. (−1, 1, 0)

III. (−3,−2,−1) IV. (−2,−2, 4)

8. z = 4 9. x + y + z = 0

10. x2 + y2 + z2 = 14 11. x − y = 0

In Exercises 12–15 sketch graphs of the equations in 3-space.

12. z = 4 13. x = −3

14. y = 1 15. z = 2 and y = 4

16. With the z-axis vertical, a sphere has center (2, 3, 7) and

lowest point (2, 3,−1). What is the highest point on the

sphere?

17. Find an equation of the sphere with radius 5 centered at

the origin.

18. Find the equation of the sphere with radius 2 and cen-

tered at (1, 0, 0).

19. Find the equation of the vertical plane perpendicular to

the y-axis and through the point (2, 3, 4).

Exercises 20–22 refer to the map in Figure 12.1 on page 652.

20. Give the range of daily high temperatures for:

(a) Pennsylvania (b) North Dakota

(c) California

21. Sketch a possible graph of the predicted high tempera-

ture T on a line north-south through Topeka.

22. Sketch possible graphs of the predicted high tempera-

ture on a north-south line and an east-west line through

Boise.

For Exercises 23–25, refer to Table 12.1 on page 653 where

w is a person’s weight (in lbs), and ℎ their height (in inches).

23. Compute a table of values of BMI, with ℎ fixed at 60

inches and w between 120 and 200 lbs at intervals of

20.

24. Medical evidence suggests that BMI values between

18.5 and 24.9 are healthy values.2 Estimate the range of

weights that are considered healthy for a woman who is

6 feet tall.

25. Estimate the BMI of a man who weighs 90 kilograms

and is 1.9 meters tall.

PROBLEMS

26. The temperature adjusted for wind chill is a tempera-

ture which tells you how cold it feels, as a result of the

combination of wind and temperature.3 See Table 12.2.

Table 12.2 Temperature adjusted for wind chill (◦F) as a

function of wind speed and temperature

Wind

Speed

(mph)

Temperature (◦F)

35 30 25 20 15 10 5 0

5 31 25 19 13 7 1 −5 −11

10 27 21 15 9 3 −4 −10 −16

15 25 19 13 6 0 −7 −13 −19

20 24 17 11 4 −2 −9 −15 −22

25 23 16 9 3 −4 −11 −17 −24

(a) If the temperature is 0◦F and the wind speed is 15

mph, how cold does it feel?

(b) If the temperature is 35◦F, what wind speed makes

it feel like 24◦F?

(c) If the temperature is 25◦F, what wind speed makes

it feel like 12◦F?

(d) If the wind is blowing at 20 mph, what temperature

feels like 0◦F?

In Problems 27–28, use Table 12.2 to make tables with the

given properties.

27. The temperature adjusted for wind chill as a function of

wind speed for temperatures of 20◦F and 0◦F.

28. The temperature adjusted for wind chill as a function of

temperature for wind speeds of 5 mph and 20 mph.

For Problems 29–31, refer to Table 12.3 which contains val-

ues of beef consumption C (in pounds per week per house-

hold) as a function of household income, I (in thousands

2http://www.cdc.gov. Accessed January 10, 2016.
3www.nws.noaa.gov. Accessed January 10, 2016.
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of dollars per year), and the price of beef, p (in dollars per

pound). Values of p are shown across the top, values of I are

down the left side, and corresponding values of beef con-

sumption C = f (I, p) are given in the table.4

Table 12.3 Quantity of beef bought

(pounds/household/week)

Household

income

per year,

I

($1000)

Price of beef ($/lb)

3.00 3.50 4.00 4.50

20 2.65 2.59 2.51 2.43

40 4.14 4.05 3.94 3.88

60 5.11 5.00 4.97 4.84

80 5.35 5.29 5.19 5.07

100 5.79 5.77 5.60 5.53

29. Give tables for beef consumption as a function of p,

with I fixed at I = 20 and I = 100. Give tables for beef

consumption as a function of I , with p fixed at p = 3.00

and p = 4.00. Comment on what you see in the tables.

30. Make a table of the proportion, P , of household income

spent on beef per week as a function of price and in-

come. (Note that P is the fraction of income spent on

beef.)

31. How does beef consumption vary as a function of

household income if the price of beef is held constant?

For Problems 32–35, a person’s body mass index (BMI) is

a function of their weight W (in kg) and height H (in m)

given by B(W ,H) = W ∕H2.

32. What is the BMI of a 1.72 m tall man weighing 72 kg?

33. A 1.58 m tall woman has a BMI of 23.2. What is her

weight?

34. With a BMI less than 18.5, a person is considered un-

derweight. What is the possible range of weights for an

underweight person 1.58 m tall?

35. For weight w in lbs and height ℎ in inches, a per-

sons BMI is approximated using the formula f (w, ℎ) =

703w∕ℎ2. Check this approximation by converting the

formula B(W ,H).

36. A car rental company charges $40 a day and 15 cents a

mile for its cars.

(a) Write a formula for the cost, C , of renting a car as

a function, f , of the number of days, d, and the

number of miles driven, m.

(b) If C = f (d,m), find f (5, 300) and interpret it.

37. A cable company charges $100 for a monthly subscrip-

tion to its services and $5 for each special feature movie

that a subscriber chooses to watch.

(a) Write a formula for the monthly revenue, R in dol-

lars, earned by the cable company as a function of

s, the number of monthly subscribers it serves, and

m, the total number of special feature movies that

its subscribers view.

(b) If R = f (s, m), find f (1000, 5000) and interpret it

in terms of revenue.

38. The gravitational force, F newtons, exerted on an ob-

ject by the earth depends on the object’s mass, m kilo-

grams, and its distance, r meters, from the center of the

earth, so F = f (m, r). Interpret the following statement

in terms of gravitation: f (100, 7000000) ≈ 820.

39. A heating element is attached to the center point of a

metal rod at time t = 0. Let H = f (d, t) represent the

temperature in ◦C of a point d cm from the center after

t minutes.

(a) Interpret the statement f (2, 5) = 24 in terms of

temperature.

(b) If d is held constant, is H an increasing or a de-

creasing function of t? Why?

(c) If t is held constant, is H an increasing or a de-

creasing function of d? Why?

40. The pressure, P atmospheres, of 10 moles of nitrogen

gas in a steel cylinder depends on the temperature of the

gas, T Kelvin, and the volume of the cylinder, V liters,

so P = f (T , V ). Interpret the following statement in

terms of pressure: f (300, 5) = 49.2.

41. The monthly payment, m dollars, for a 30-year fixed rate

mortgage is a function of the total amount borrowed, P

dollars, and the annual interest rate, r%. In other words,

m = f (P , r).

(a) Interpret the following statement in the context of

monthly payment: f (300,000, 5) = 1610.46.

(b) If P is held constant, is m an increasing or a de-

creasing function of r? Why?

(c) If r is held constant, ism an increasing or a decreas-

ing function of P ? Why?

42. Consider the acceleration due to gravity, g, at a distance

ℎ from the center of a planet of mass m.

(a) If m is held constant, is g an increasing or decreas-

ing function of ℎ? Why?

(b) If ℎ is held constant, is g an increasing or decreas-

ing function of m? Why?

43. A cube is located such that its top four corners have

the coordinates (−1, −2, 2), (−1, 3, 2), (4, −2, 2) and

(4, 3, 2). Give the coordinates of the center of the cube.

44. Describe the set of points whose distance from the x-

axis is 2.

45. Describe the set of points whose distance from the x-

axis equals the distance from the yz-plane.

4Adapted from Richard G. Lipsey, An Introduction to Positive Economics, 3rd ed. (London: Weidenfeld and Nicolson,

1971).
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46. Find the point on the x-axis closest to the point (3, 2, 1).

47. Does the line parallel to the y-axis through the point

(2, 1, 4) intersect the plane y = 5? If so, where?

48. Find a formula for the shortest distance between a point

(a, b, c) and the y-axis.

49. Find the equations of planes that just touch the sphere

(x − 2)2 + (y − 3)2 + (z − 3)2 = 16 and are parallel to

(a) The xy-plane (b) The yz-plane

(c) The xz-plane

50. Find an equation of the largest sphere contained in the

cube determined by the planes x = 2, x = 6; y = 5, y =

9; and z = −1, z = 3.

51. A cube has edges parallel to the axes. One corner is

at A = (5, 1, 2) and the corner at the other end of the

longest diagonal through A is B = (12, 7, 4).

(a) What are the coordinates of the other three vertices

on the bottom face?

(b) What are the coordinates of the other three vertices

on the top face?

52. An equilateral triangle is standing vertically with a ver-

tex above the xy-plane and its two other vertices at

(7, 0, 0) and (9, 0, 0). What is its highest point?

53. (a) Find the midpoint of the line segment joining A =

(1, 5, 7) to B = (5, 13, 19).

(b) Find the point one quarter of the way along the line

segment from A to B.

(c) Find the point one quarter of the way along the line

segment from B to A.

Strengthen Your Understanding

In Problems 54–56, explain what is wrong with the state-

ment.

54. In 3-space, y = 1 is a line parallel to the x-axis.

55. The xy-plane has equation xy = 0.

56. The distance from (2, 3, 4) to the x-axis is 2.

In Problems 57–58, give an example of:

57. A formula for a function f (x, y) that is increasing in x

and decreasing in y.

58. A point in 3-space with all its coordinates negative and

farther from the xz-plane than from the plane z = −5.

Are the statements in Problems 59–72 true or false? Give

reasons for your answer.

59. If f (x, y) is a function of two variables defined for all x

and y, then f (10, y) is a function of one variable.

60. The volume V of a box of height ℎ and square base of

side length s is a function of ℎ and s.

61. If H = f (t, d) is the function giving the water temper-

ature H◦C of a lake at time t hours after midnight and

depth d meters, then t is a function of d and H .

62. A table for a function f (x, y) cannot have any values of

f appearing twice.

63. If f (x) and g(y) are both functions of a single variable,

then the product f (x) ⋅ g(y) is a function of two vari-

ables.

64. The point (1, 2, 3) lies above the plane z = 2.

65. The graph of the equation z = 2 is a plane parallel to

the xz-plane.

66. The points (1, 0, 1) and (0,−1, 1) are the same distance

from the origin.

67. The point (2,−1, 3) lies on the graph of the sphere

(x − 2)2 + (y + 1)2 + (z − 3)2 = 25.

68. There is only one point in the yz-plane that is a distance

3 from the point (3, 0, 0).

69. There is only one point in the yz-plane that is a distance

5 from the point (3, 0, 0).

70. If the point (0, b, 0) has distance 4 from the plane y = 0,

then b must be 4.

71. A line parallel to the z-axis can intersect the graph of

f (x, y) at most once.

72. A line parallel to the y-axis can intersect the graph of

f (x, y) at most once.

12.2 GRAPHS AND SURFACES

The weather map on page 652 is one way of visualizing a function of two variables. In this section

we see how to visualize a function of two variables in another way, using a surface in 3-space.

Visualizing a Function of Two Variables Using a Graph

For a function of one variable, y = f (x), the graph of f is the set of all points (x, y) in 2-space such

that y = f (x). In general, these points lie on a curve in the plane. When a computer or calculator

graphs f , it approximates by plotting points in the xy-plane and joining consecutive points by line

segments. The more points, the better the approximation.

Now consider a function of two variables.
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The graph of a function of two variables, f , is the set of all points (x, y, z) such that

z = f (x, y). In general, the graph of a function of two variables is a surface in 3-space.

Plotting the Graph of the Function f (x, y) = x
2 + y

2

To sketch the graph of f we connect points as for a function of one variable. We first make a table

of values of f , such as in Table 12.4.

Table 12.4 Table of values of f (x, y) = x2 + y2

x

y

−3 −2 −1 0 1 2 3

−3 18 13 10 9 10 13 18

−2 13 8 5 4 5 8 13

−1 10 5 2 1 2 5 10

0 9 4 1 0 1 4 9

1 10 5 2 1 2 5 10

2 13 8 5 4 5 8 13

3 18 13 10 9 10 13 18

Now we plot points. For example, we plot (1, 2, 5) because f (1, 2) = 5 and we plot (0, 2, 4)

because f (0, 2) = 4. Then, we connect the points corresponding to the rows and columns in the

table. The result is called a wire-frame picture of the graph. Filling in between the wires gives a

surface. That is the way a computer drew the graphs in Figures 12.11 and 12.12. As more points are

plotted, we get the surface in Figure 12.13, called a paraboloid.

You should check to see if the sketches make sense. Notice that the graph goes through the

origin since (x, y, z) = (0, 0, 0) satisfies z = x2 + y2. Observe that if x is held fixed and y is allowed

to vary, the graph dips down and then goes back up, just like the entries in the rows of Table 12.4.

Similarly, if y is held fixed and x is allowed to vary, the graph dips down and then goes back up, just

like the columns of Table 12.4.

x

y

z

Figure 12.11: Wire frame picture

of f (x, y) = x2 + y2 for

−3 ≤ x ≤ 3, −3 ≤ y ≤ 3

x

y

z

Figure 12.12: Wire frame picture

of f (x, y) = x2 + y2 with more

points plotted

x y

z

Figure 12.13: Graph of

f (x, y) = x2 + y2 for

−3 ≤ x ≤ 3,−3 ≤ y ≤ 3

New Graphs from Old

We can use the graph of a function to visualize the graphs of related functions.

Example 1 Let f (x, y) = x2 + y2. Describe in words the graphs of the following functions:

(a) g(x, y) = x2 + y2 + 3, (b) ℎ(x, y) = 5 − x2 − y2, (c) k(x, y) = x2 + (y − 1)2.



662 Chapter 12 FUNCTIONS OF SEVERAL VARIABLES

Solution We know from Figure 12.13 that the graph of f is a paraboloid, or a bowl, with its vertex at the

origin. From this we can work out what the graphs of g, ℎ, and k will look like.

(a) The function g(x, y) = x2 + y2 + 3 = f (x, y) + 3, so the graph of g is the graph of f , but raised

by 3 units. See Figure 12.14.

(b) Since−x2−y2 is the negative of x2+y2, the graph of−x2−y2 is a paraboloid opening downward.

Thus, the graph of ℎ(x, y) = 5−x2−y2 = 5−f (x, y) looks like a downward-opening paraboloid

with vertex at (0, 0, 5), as in Figure 12.15.

(c) The graph of k(x, y) = x2 + (y − 1)2 = f (x, y − 1) is a paraboloid with vertex at x = 0, y = 1,

since that is where k(x, y) = 0, as in Figure 12.16.

x
y

z

q
(0, 0, 3)

Figure 12.14: Graph of

g(x, y) = x2 + y2 + 3

x
y

z

✛ (0, 0, 5)

Figure 12.15: Graph of

ℎ(x, y) = 5 − x2 − y2

x
y

z

(0, 1, 0)

Figure 12.16: Graph of

k(x, y) = x2 + (y − 1)2

Example 2 Describe the graph of G(x, y) = e−(x
2+y2). What symmetry does it have?

Solution Since the exponential function is always positive, the graph lies entirely above the xy-plane. From

the graph of x2 + y2 we see that x2 + y2 is zero at the origin and gets larger as we move farther

from the origin in any direction. Thus, e−(x
2+y2) is 1 at the origin, and gets smaller as we move away

from the origin in any direction. It can’t go below the xy-plane; instead it flattens out, getting closer

and closer to the plane. We say the surface is asymptotic to the xy-plane. (See Figure 12.17.) Now

consider a point (x, y) on the circle x2 + y2 = r2. Since

G(x, y) = e−(x
2+y2) = e−r

2
,

the value of the function G is the same at all points on this circle. Thus, we say the graph of G has

circular symmetry.

x

y

z

✛ (0, 0, 1)

Figure 12.17: Graph of G(x, y) = e−(x
2+y2)

Cross-Sections and the Graph of a Function

We have seen that a good way to analyze a function of two variables is to let one variable vary while

the other is kept fixed.
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For a function f (x, y), the function we get by holding x fixed and letting y vary is called a

cross-section of f with x fixed. The graph of the cross-section of f (x, y) with x = c is the

curve, or cross-section, we get by intersecting the graph of f with the plane x = c. We define

a cross-section of f with y fixed similarly.

For example, the cross-section of f (x, y) = x2 + y2 with x = 2 is f (2, y) = 4 + y2. The graph

of this cross-section is the curve we get by intersecting the graph of f with the plane perpendicular

to the x-axis at x = 2. (See Figure 12.18.)

Figure 12.18: Cross-section of

the surface z = f (x, y) by the

plane x = 2

x

y

z

✙
Curve

f (a, y)

Surface

f (x, y)

Figure 12.19: The curves

z = f (a, y) with a constant:

cross-sections with x fixed

x

y

z

✙
Curve

f (x, b)

Surface

f (x, y)

Figure 12.20: The curves

z = f (x, b) with b constant:

cross-sections with y fixed

Figure 12.19 shows graphs of other cross-sections of f with x fixed; Figure 12.20 shows graphs

of cross-sections with y fixed.

Example 3 Describe the cross-sections of the function g(x, y) = x2 − y2 with y fixed and then with x fixed. Use

these cross-sections to describe the shape of the graph of g.

Solution The cross-sections with y fixed at y = b are given by

z = g(x, b) = x2 − b2.

Thus, each cross-section with y fixed gives a parabola opening upward, with minimum z = −b2.

The cross-sections with x fixed are of the form

z = g(a, y) = a2 − y2,

which are parabolas opening downward with a maximum of z = a2. (See Figures 12.21 and 12.22.)

The graph of g is shown in Figure 12.23. Notice the upward-opening parabolas in the x-direction

and the downward-opening parabolas in the y-direction. We say that the surface is saddle-shaped.

−4

−1

z

x

✛
{

y = ±2

z = x2 − 4

✛
{

y = ±1

z = x2 − 1

✛
{

y = 0

z = x2

Figure 12.21: Cross-sections of

g(x, y) = x2 − y2 with y fixed

✛
{

x = ±2

z = 4 − y2

✛
{

x = ±1

z = 1 − y2

✛
{

x = 0

z = −y2

y

z

1

4

Figure 12.22: Cross-sections of

g(x, y) = x2 − y2 with x fixed

x

y

z

Figure 12.23: Graph of

g(x, y) = x2 − y2 showing

cross-sections
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Linear Functions

Linear functions are central to single-variable calculus; they are equally important in multivariable

calculus. You may be able to guess the shape of the graph of a linear function of two variables. (It’s

a plane.) Let’s look at an example.

Example 4 Describe the graph of f (x, y) = 1 + x − y.

Solution The plane x = a is vertical and parallel to the yz-plane. Thus, the cross-section with x = a is the

line z = 1 + a − y which slopes downward in the y-direction. Similarly, the plane y = b is parallel

to the xz-plane. Thus, the cross-section with y = b is the line z = 1 + x− b which slopes upward in

the x-direction. Since all the cross-sections are lines, you might expect the graph to be a flat plane,

sloping down in the y-direction and up in the x-direction. This is indeed the case. (See Figure 12.24.)

Figure 12.24: Graph of the plane z = 1 + x − y showing cross-section with x = a

When One Variable Is Missing: Cylinders

Suppose we graph an equation like z = x2 which has one variable missing. What does the surface

look like? Since y is missing from the equation, the cross-sections with y fixed are all the same

parabola, z = x2. Letting y vary up and down the y-axis, this parabola sweeps out the trough-

shaped surface shown in Figure 12.25. The cross-sections with x fixed are horizontal lines obtained

by cutting the surface by a plane perpendicular to the x-axis. This surface is called a parabolic

cylinder, because it is formed from a parabola in the same way that an ordinary cylinder is formed

from a circle; it has a parabolic cross-section instead of a circular one.

x

y

z

Figure 12.25: A parabolic

cylinder z = x2

x y

z

Figure 12.26: Circular cylinder

x2 + y2 = 1

Example 5 Graph the equation x2 + y2 = 1 in 3-space.
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Solution Although the equation x2 + y2 = 1 does not represent a function, the surface representing it can be

graphed by the method used for z = x2. The graph of x2 + y2 = 1 in the xy-plane is a circle. Since z

does not appear in the equation, the intersection of the surface with any horizontal plane will be the

same circle x2 + y2 = 1. Thus, the surface is the cylinder shown in Figure 12.26.

Exercises and Problems for Section 12.2 Online Resource: Additional Problems for Section 12.2
EXERCISES

In Exercises 1–4, which of (I)–(IV) lie on the graph of the

function z = f (x, y)?

I. (1, 0, 1) II. (
√

8, 1, 3)

III. (−3, 7,−3) IV. (1, 1, 1∕2)

1. f (x, y) = −3 2. f (x, y) =
√

x2 + y2

3. f (x, y) = 1∕(x2 + y2) 4. f (x, y) = 4 − y

5. Figure 12.27 shows the graph of z = f (x, y).

(a) Suppose y is fixed and positive. Does z increase or

decrease as x increases? Graph z against x.

(b) Suppose x is fixed and positive. Does z increase or

decrease as y increases? Graph z against y.

Figure 12.27

6. Without a calculator or computer, match the functions

with their graphs in Figure 12.28.

(a) z = 2 + x2 + y2 (b) z = 2 − x2 − y2

(c) z = 2(x2 + y2) (d) z = 2 + 2x − y

(e) z = 2

(I) (II)

(III)
(IV)

(V)

Figure 12.28

7. Without a calculator or computer, match the functions

with their graphs in Figure 12.29.

(a) z =
1

x2 + y2
(b) z = −e−x

2−y2

(c) z = x + 2y + 3 (d) z = −y2

(e) z = x3 − sin y.

y

z

x

(I)

x
y

z(II)

xy

z(III)

x

y

z(IV)

x

y

z(V)

Figure 12.29

In Exercises 8–15, sketch a graph of the surface and briefly

describe it in words.

8. z = 3 9. x2 + y2 + z2 = 9

10. z = x2 + y2 + 4 11. z = 5 − x2 − y2

12. z = y2 13. 2x + 4y + 3z = 12

14. x2 + y2 = 4 15. x2 + z2 = 4

In Exercises 16–18, find the equation of the surface.

16. A cylinder of radius
√

7 with its axis along the y-axis.

17. A sphere of radius 3 centered at
(

0,
√

7, 0
)

.

18. The paraboloid obtained by moving the surface z =

x2 +y2 so that its vertex is at (1, 3, 5), its axis is parallel

to the x-axis, and the surface opens towards negative x

values.
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PROBLEMS

19. Consider the function f given by f (x, y) = y3 + xy.

Draw graphs of cross-sections with:

(a) x fixed at x = −1, x = 0, and x = 1.

(b) y fixed at y = −1, y = 0, and y = 1.

Problems 20–22 concern the concentration, C , in mg per

liter, of a drug in the blood as a function of x, the amount,

in mg, of the drug given and t, the time in hours since the

injection. For 0 ≤ x ≤ 4 and t ≥ 0, we have C = f (x, t) =

te−t(5−x).

20. Find f (3, 2). Give units and interpret in terms of drug

concentration.

21. Graph the following single-variable functions and ex-

plain their significance in terms of drug concentration.

(a) f (4, t) (b) f (x, 1)

22. Graph f (a, t) for a = 1, 2, 3, 4 on the same axes. De-

scribe how the graph changes as a increases and explain

what this means in terms of drug concentration.

Problems 23–24 concern the kinetic energy, E = f (m, v) =
1

2
mv2, in joules, of a moving object as a function of its mass

m ≥ 0, in kg, and its speed v ≥ 0, in m/sec.

23. Find f (2, 10). Give units and interpret this quantity in

the context of kinetic energy.

24. Graph the following single-variable functions and ex-

plain their significance in terms of kinetic energy.

(a) f (6, v) (b) f (m, 20)

In Problems 25–26, the atmospheric pressure, P = f (y, t) =

(950+2t)e−y∕7 , in millibars, on a weather balloon, is a func-

tion of its height y ≥ 0, in km above sea level after t hours

with 0 ≤ t ≤ 48.

25. Find f (2, 12). Give units and interpret this quantity in

the context of atmospheric pressure.

26. Graph the following single-variable functions and ex-

plain the significance of the shape of the graph in terms

of atmospheric pressure.

(a) f (3, t) (b) f (y, 24)

27. Without a computer or calculator, match the equations

(a)–(i) with the graphs (I)–(IX).

(a) z = xye−(x
2+y2) (b) z = cos

(

√

x2 + y2
)

(c) z = sin y (d) z = −
1

x2 + y2

(e) z = cos2 x cos2 y (f) z =
sin(x2 + y2)

x2 + y2

(g) z = cos(xy) (h) z = |x||y|

(i) z = (2x2 +y2)e1−x
2−y2

x y

z(I)

x
y

z(II)

x y

z(III)

x
y

z(IV)

x

y

z(V)

x y

z(VI)

x

y

z(VII)

x
y

z(VIII)

x
y

z(IX)

28. Decide whether the graph of each of the following equa-

tions is the shape of a bowl, a plate, or neither. Consider

a plate to be any flat surface and a bowl to be anything

that could hold water, assuming the positive z-axis is

up.

(a) z = x2 + y2 (b) z = 1 − x2 − y2

(c) x + y + z = 1 (d) z = −
√

5 − x2 − y2

(e) z = 3

29. Sketch cross-sections for each function in Problem 28.

30. Without a calculator or computer, match the functions

with their cross-sections with x fixed in Figure 12.30.

(a) z = 1∕(1 + x2 + y2) (b) z = 1 + x + y

(c) z = e−x+y (d) z = ex−y

(e) z = sin(xy) (f) z = x2.
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−2 2

−2

2

y

z(I)

−2 2

1

y

z(II)

−2 2

2

4

6

y

z(III)

−2 2

1

4

9

y

z(IV)

−2 2

−1

1

y

z(V)

−2 2

2

4

6

y

z(VI)

Figure 12.30

31. Without a calculator or computer, for z = x2 + 2xy2,

determine which of (I)–(II) in Figure 12.31 are cross-

sections with x fixed and which are cross-sections with

y fixed.

−2 2

−4

4

z(I)

−2 2

−2

4

z(II)

Figure 12.31

32. You like pizza and you like cola. Which of the graphs

in Figure 12.32 represents your happiness as a function

of how many pizzas and how much cola you have if

(a) There is no such thing as too many pizzas and too

much cola?

(b) There is such a thing as too many pizzas or too

much cola?

(c) There is such a thing as too much cola but no such

thing as too many pizzas?

(I) (II)

(III) (IV)

Figure 12.32

33. For each of the graphs I–IV in Problem 32, draw:

(a) Two cross-sections with pizza fixed

(b) Two cross-sections with cola fixed.

For Problems 34–37, give a formula for a function whose

graph is described. Sketch it using a computer or calculator.

34. A bowl which opens upward and has its vertex at 5 on

the z-axis.

35. A plane which has its x-, y-, and z-intercepts all posi-

tive.

36. A parabolic cylinder opening upward from along the

line y = x in the xy-plane.

37. A cone of circular cross-section opening downward and

with its vertex at the origin.

38. Sketch cross-sections of f (r, ℎ) = �r2ℎ, first keeping ℎ

fixed, then keeping r fixed.

39. By setting one variable constant, find a plane that inter-

sects the graph of z = 4x2 − y2 + 1 in a:

(a) Parabola opening upward

(b) Parabola opening downward

(c) Pair of intersecting straight lines.

40. Sketch cross-sections of the equation z = y − x2 with

x fixed and with y fixed and use them to sketch a graph

of z = y − x2.

41. A wave travels along a canal. Let x be the distance along

the canal, t be the time, and z be the height of the water

above the equilibrium level. The graph of z as a func-

tion of x and t is in Figure 12.33.

(a) Draw the profile of the wave for t = −1, 0, 1, 2.

(Put the x-axis to the right and the z-axis vertical.)
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(b) Is the wave traveling in the direction of increasing

or decreasing x?

(c) Sketch a surface representing a wave traveling in

the opposite direction.

t

x

z

Figure 12.33

42. The pressure of a fixed amount of compressed nitrogen

gas in a cylinder is given, in atmospheres, by

P = f (T , V ) =
10T

V
,

where T is the temperature of the gas, in Kelvin, and

V is the volume of the cylinder, in liters. Figures 12.34

and 12.35 give cross-sections of the function f.

(a) Which figure shows cross-sections of f with T

fixed? What does the shape of the cross-sections

tell you about the pressure?

(b) Which figure shows cross-sections of f with V

fixed? What does the shape of the cross-sections

tell you about the pressure?

P

Figure 12.34

P

Figure 12.35

Strengthen Your Understanding

In Problems 43–44, explain what is wrong with the state-

ment.

43. The graph of the function f (x, y) = x2 + y2 is a circle.

44. Cross-sections of the function f (x, y) = x2 with x fixed

are parabolas.

In Problems 45–47, give an example of:

45. A function whose graph lies above the xy-plane and in-

tersects the plane z = 2 in a single point.

46. A function which intersects the xz-plane in a parabola

and the yz-plane in a line.

47. A function which intersects the xy-plane in a circle.

Are the statements in Problems 48–61 true or false? Give

reasons for your answer.

48. The function given by the formula f (v,w) = ev∕w is an

increasing function of v when w is a nonzero constant.

49. A function f (x, y) can be an increasing function of x

with y held fixed, and be a decreasing function of ywith

x held fixed.

50. A function f (x, y) can have the property that g(x) =

f (x, 5) is increasing, whereas ℎ(x) = f (x, 10) is de-

creasing.

51. The plane x + 2y − 3z = 1 passes through the origin.

52. The plane x + y + z = 3 intersects the x-axis when

x = 3.

53. The sphere x2+y2+z2 = 10 intersects the plane x = 10.

54. The cross-section of the function f (x, y) = x+ y2 with

y = 1 is a line.

55. The function g(x, y) = 1 − y2 has identical parabolas

for all cross-sections with x constant.

56. The function g(x, y) = 1 − y2 has lines for all cross-

sections with y constant.

57. The graphs of f (x, y) = sin(xy) and g(x, y) = sin(xy)+

2 never intersect.

58. The graphs of f (x, y) = x2+y2 and g(x, y) = 1−x2−y2

intersect in a circle.

59. If all the cross-sections of the graph of f (x, y) with x

constant are lines, then the graph of f is a plane.

60. The only point of intersection of the graphs of f (x, y)

and −f (x, y) is the origin.

61. The point (0, 0, 10) is the highest point on the graph of

the function f (x, y) = 10 − x2 − y2.

62. The object in 3-space described by x = 2 is

(a) A point (b) A line

(c) A plane (d) Undefined.

12.3 CONTOUR DIAGRAMS

The surface which represents a function of two variables often gives a good idea of the function’s

general behavior—for example, whether it is increasing or decreasing as one of the variables in-

creases. However, it is difficult to read numerical values off a surface and it can be hard to see all

of the function’s behavior from a surface. Thus, functions of two variables are often represented by

contour diagrams like the weather map on page 652. Contour diagrams have the additional advantage

that they can be extended to functions of three variables.
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Topographical Maps

One of the most common examples of a contour diagram is a topographical map like that shown in

Figure 12.36. It gives the elevation in the region and is a good way of getting an overall picture of the

terrain: where the mountains are, where the flat areas are. Such topographical maps are frequently

colored green at the lower elevations and brown, red, or white at the higher elevations.
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Figure 12.36: A topographical map showing the region around South Hamilton, NY

The curves on a topographical map that separate lower elevations from higher elevations are

called contour lines because they outline the contour or shape of the land.5 Because every point

along the same contour has the same elevation, contour lines are also called level curves or level

sets. The more closely spaced the contours, the steeper the terrain; the more widely spaced the

contours, the flatter the terrain (provided, of course, that the elevation between contours varies by

a constant amount). Certain features have distinctive characteristics. A mountain peak is typically

surrounded by contour lines like those in Figure 12.37. A pass in a range of mountains may have

contours that look like Figure 12.38. A long valley has parallel contour lines indicating the rising

elevations on both sides of the valley (see Figure 12.39); a long ridge of mountains has the same type

of contour lines, only the elevations decrease on both sides of the ridge. Notice that the elevation

numbers on the contour lines are as important as the curves themselves. We usually draw contours

for equally spaced values of z.
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Figure 12.37: Mountain peak

500

300

500

300

80
0

600 7
0
0800

Figure 12.38: Pass between two

mountains
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Figure 12.39: Long valley

20
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100

Figure 12.40: Impossible

contour lines

Notice that two contours corresponding to different elevations cannot cross each other as shown

in Figure 12.40. If they did, the point of intersection of the two curves would have two different

elevations, which is impossible (assuming the terrain has no overhangs).

5In fact they are usually not straight lines, but curves. They may also be in disconnected pieces.
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Corn Production

Contour maps can display information about a function of two variables without reference to a sur-

face. Consider the effect of weather conditions on US corn production. Figure 12.41 gives corn

production C = f (R, T ) as a function of the total rainfall, R, in inches, and average temperature,

T , in degrees Fahrenheit, during the growing season.6 At the present time, R = 15 inches and

T = 76◦F. Production is measured as a percentage of the present production; thus, the contour

through R = 15, T = 76, has value 100, that is, C = f (15, 76) = 100.

Example 1 Use Figure 12.41 to estimate f (18, 78) and f (12, 76) and interpret in terms of corn production.

110

100
908070

60

50

4
0 113

Present

80

78

76

74

72

6 9 12 15 18 21 24

T (temperature in ◦F)

R (rainfall in inches)

Figure 12.41: Corn production, C, as a function of rainfall and temperature

Solution The point with R-coordinate 18 and T -coordinate 78 is on the contourC = 100, so f (18, 78) = 100.

This means that if the annual rainfall were 18 inches and the temperature were 78◦F, the country

would produce about the same amount of corn as at present, although it would be wetter and warmer

than it is now.

The point with R-coordinate 12 and T -coordinate 76 is about halfway between the C = 80 and

the C = 90 contours, so f (12, 76) ≈ 85. This means that if the rainfall fell to 12 inches and the

temperature stayed at 76◦, then corn production would drop to about 85% of what it is now.

Example 2 Use Figure 12.41 to describe in words the cross-sections with T and R constant through the point

representing present conditions. Give a common-sense explanation of your answer.

Solution To see what happens to corn production if the temperature stays fixed at 76◦F but the rainfall changes,

look along the horizontal line T = 76. Starting from the present and moving left along the line

T = 76, the values on the contours decrease. In other words, if there is a drought, corn production

decreases. Conversely, as rainfall increases, that is, as we move from the present to the right along

the line T = 76, corn production increases, reaching a maximum of more than 110% when R = 21,

and then decreases (too much rainfall floods the fields).

If, instead, rainfall remains at the present value and temperature increases, we move up the

vertical line R = 15. Under these circumstances corn production decreases; a 2◦F increase causes a

10% drop in production. This makes sense since hotter temperatures lead to greater evaporation and

hence drier conditions, even with rainfall constant at 15 inches. Similarly, a decrease in temperature

leads to a very slight increase in production, reaching a maximum of around 102% when T = 74,

followed by a decrease (the corn won’t grow if it is too cold).

6Adapted from S. Beaty and R. Healy, “The Future of American Agriculture,” Scientific American 248, No. 2, February

1983.
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Contour Diagrams and Graphs

Contour diagrams and graphs are two different ways of representing a function of two variables.

How do we go from one to the other? In the case of the topographical map, the contour diagram was

created by joining all the points at the same height on the surface and dropping the curve into the

xy-plane.

How do we go the other way? Suppose we wanted to plot the surface representing the corn

production functionC = f (R, T ) given by the contour diagram in Figure 12.41. Along each contour

the function has a constant value; if we take each contour and lift it above the plane to a height equal

to this value, we get the surface in Figure 12.42.

110
10
0

110

10090
80

70605040

✛ 110 contour raised 110 units
❘

100 contour raised 100 units

Figure 12.42: Getting the graph of the corn yield function from the contour diagram

Notice that the raised contours are the curves we get by slicing the surface horizontally. In

general, we have the following result:

Contour lines, or level curves, are obtained from a surface by slicing it with horizontal planes.

A contour diagram is a collection of level curves labeled with function values.

Finding Contours Algebraically

Algebraic equations for the contours of a function f are easy to find if we have a formula for f (x, y).

Suppose the surface has equation

z = f (x, y).

A contour is obtained by slicing the surface with a horizontal plane with equation z = c. Thus, the

equation for the contour at height c is given by:

f (x, y) = c.

Example 3 Find equations for the contours of f (x, y) = x2 + y2 and draw a contour diagram for f . Relate the

contour diagram to the graph of f .

Solution The contour at height c is given by

f (x, y) = x2 + y2 = c.

This is a contour only for c ≥ 0, For c > 0 it is a circle of radius
√

c. For c = 0, it is a single point (the
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origin). Thus, the contours at an elevation of c = 1, 2, 3, 4,… are all circles centered at the origin of

radius 1,
√

2,
√

3, 2, …. The contour diagram is shown in Figure 12.43. The bowl–shaped graph of

f is shown in Figure 12.44. Notice that the graph of f gets steeper as we move further away from

the origin. This is reflected in the fact that the contours become more closely packed as we move

further from the origin; for example, the contours for c = 6 and c = 8 are closer together than the

contours for c = 2 and c = 4.
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−3
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y

4
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2

2

6

6

8

8

Figure 12.43: Contour diagram for

f (x, y) = x2 + y2 (even values of c only)
Figure 12.44: The graph of f (x, y) = x2 + y2

Example 4 Draw a contour diagram for f (x, y) =
√

x2 + y2 and relate it to the graph of f .

Solution The contour at level c is given by

f (x, y) =
√

x2 + y2 = c.

For c > 0 this is a circle, just as in the previous example, but here the radius is c instead of
√

c. For

c = 0, it is the origin. Thus, if the level c increases by 1, the radius of the contour increases by 1. This

means the contours are equally spaced concentric circles (see Figure 12.45) which do not become

more closely packed further from the origin. Thus, the graph of f has the same constant slope as we

move away from the origin (see Figure 12.46), making it a cone rather than a bowl.

1

2

3

x

y

Figure 12.45: A contour diagram for

f (x, y) =
√

x2 + y2

x y

z

Figure 12.46: The graph of

f (x, y) =
√

x2 + y2

In both of the previous examples the level curves are concentric circles because the surfaces

have circular symmetry. Any function of two variables which depends only on the quantity (x2 +y2)

has such symmetry: for example, G(x, y) = e−(x
2+y2) or H(x, y) = sin

(

√

x2 + y2
)

.
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Example 5 Draw a contour diagram for f (x, y) = 2x + 3y + 1.

Solution The contour at level c has equation 2x+ 3y+ 1 = c. Rewriting this as y = −(2∕3)x+ (c − 1)∕3, we

see that the contours are parallel lines with slope −2∕3. The y-intercept for the contour at level c is

(c − 1)∕3; each time c increases by 3, the y-intercept moves up by 1. The contour diagram is shown

in Figure 12.47.
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Figure 12.47: A contour diagram for f (x, y) = 2x + 3y + 1

Contour Diagrams and Tables

Sometimes we can get an idea of what the contour diagram of a function looks like from its table.

Example 6 Relate the values of f (x, y) = x2 − y2 in Table 12.5 to its contour diagram in Figure 12.48.

Table 12.5 Table of values of f (x, y) = x2 − y2

y

3 0 −5 −8 −9 −8 −5 0

2 5 0 −3 −4 −3 0 5

1 8 3 0 −1 0 3 8

0 9 4 1 0 1 4 9

−1 8 3 0 −1 0 3 8

−2 5 0 −3 −4 −3 0 5

−3 0 −5 −8 −9 −8 −5 0

−3 −2 −1 0 1 2 3

x 321−1−2−3
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y
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4
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−4

Figure 12.48: Contour map of f (x, y) = x2 − y2

Solution One striking feature of the values in Table 12.5 is the zeros along the diagonals. This occurs because

x2 − y2 = 0 along the lines y = x and y = −x. So the z = 0 contour consists of these two lines.

In the triangular region of the table that lies to the right of both diagonals, the entries are positive.

To the left of both diagonals, the entries are also positive. Thus, in the contour diagram, the positive

contours lie in the triangular regions to the right and left of the lines y = x and y = −x. Further,

the table shows that the numbers on the left are the same as the numbers on the right; thus, each

contour has two pieces, one on the left and one on the right. See Figure 12.48. As we move away

from the origin along the x-axis, we cross contours corresponding to successively larger values. On

the saddle-shaped graph of f (x, y) = x2 − y2 shown in Figure 12.49, this corresponds to climbing

out of the saddle along one of the ridges. Similarly, the negative contours occur in pairs in the top

and bottom triangular regions; the values get more and more negative as we go out along the y-axis.

This corresponds to descending from the saddle along the valleys that are submerged below the xy-
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plane in Figure 12.49. Notice that we could also get the contour diagram by graphing the family of

hyperbolas x2 − y2 = 0, ±2, ±4, ….

Figure 12.49: Graph of f (x, y) = x2 − y2 showing plane z = 0

Using Contour Diagrams: The Cobb-Douglas Production Function

Suppose you decide to expand your small printing business. Should you start a night shift and hire

more workers? Should you buy more expensive but faster computers which will enable the current

staff to keep up with the work? Or should you do some combination of the two?

Obviously, the way such a decision is made in practice involves many other considerations—

such as whether you could get a suitably trained night shift, or whether there are any faster computers

available. Nevertheless, you might model the quantity, P , of work produced by your business as a

function of two variables: your total number, N , of workers, and the total value, V , of your equip-

ment. What might the contour diagram of the production function look like?

Example 7 Explain why the contour diagram in Figure 12.50 does not model the behavior expected of the pro-

duction function, whereas the contour diagram in Figure 12.51 does.

N

V

P = 1

P = 2

P = 3

Figure 12.50: Incorrect contours

for printing production

V

N

✠
P = 3

✠
P = 2

✠
P = 1

Figure 12.51: Correct contours for

printing production

Solution Look at Figure 12.50. Notice that the contourP = 1 intersects theN- and the V-axes, suggesting that

it is possible to produce work with no workers or with no equipment; this is unreasonable. However,

no contours in Figure 12.51 intersect either the N- or the V-axis.

In Figure 12.51, fixing V and letting N increase corresponds to moving to the right, crossing

contours less and less frequently. Production increases more and more slowly because hiring addi-

tional workers does little to boost production if the machines are already used to capacity.

Similarly, if we fix N and let V increase, Figure 12.51 shows production increasing, but at a

decreasing rate. Buying machines without enough people to use them does not increase production

much. Thus Figure 12.51 fits the expected behavior of the production function best.
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Formula for a Production Function

Production functions are often approximated by formulas of the form

P = f (N, V ) = cN�V �

where P is the quantity produced and c, �, and � are positive constants, 0 < � < 1 and 0 < � < 1.

Example 8 Show that the contours of the function P = cN�V � have approximately the shape of the contours

in Figure 12.51.

Solution The contours are the curves where P is equal to a constant value, say P0, that is, where

cN�V � = P0.

Solving for V, we get

V =

(

P0

c

)1∕�

N−�∕� .

Thus, V is a power function of N with a negative exponent, so its graph has the general shape shown

in Figure 12.51.

The Cobb-Douglas Production Model

In 1928, Cobb and Douglas used a similar function to model the production of the entire US economy

in the first quarter of this century. Using government estimates of P , the total yearly production

between 1899 and 1922, of K , the total capital investment over the same period, and of L, the total

labor force, they found that P was well approximated by the Cobb-Douglas production function

P = 1.01L0.75K0.25.

This function turned out to model the US economy surprisingly well, both for the period on which

it was based and for some time afterward.7

Exercises and Problems for Section 12.3

EXERCISES

In Exercises 1–4, sketch a possible contour diagram for each

surface, marked with reasonable z-values. (Note: There are

many possible answers.)

1.

x y

z 2.

x

y

z

3. 4.

x
y

z

In Exercises 5–13, sketch a contour diagram for the func-

tion with at least four labeled contours. Describe in words

the contours and how they are spaced.

5. f (x, y) = x + y 6. f (x, y) = 3x + 3y

7. f (x, y) = x2 + y2 8. f (x, y) = −x2 − y2 + 1

9. f (x, y) = xy 10. f (x, y) = y − x2

11. f (x, y) = x2 + 2y2 12. f (x, y) =
√

x2 + 2y2

13. f (x, y) = cos
√

x2 + y2

14. Let f (x, y) = 3x2y + 7x + 20. Find an equation for the

contour that goes through the point (5, 10).

15. (a) For z = f (x, y) = xy, sketch and label the level

curves z = ±1, z = ±2.

(b) Sketch and label cross-sections of f with x = ±1,

x = ±2.

(c) The surface z = xy is cut by a vertical plane con-

taining the line y = x. Sketch the cross-section.

7Cobb, C. and Douglas, P., "A Theory of Production", American Economic Review 18 (1928: Supplement), pp. 139–165.
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16. Match the surfaces (a)–(e) in Figure 12.52 with the con-

tour diagrams (I)–(V) in Figure 12.53.

x y

z(a)

x y

z(b)

x

y

z(c)

x

y

z(d)

x

y

z

(e)

Figure 12.52
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✠

✠ 0

−4(III) y

x

✠

✾

1

6

(IV)

y

x
1 6 1

(V)

Figure 12.53

17. Figure 12.54 shows the contour diagram of z = f (x, y).

Which of the points (I)–(VI) lie on the graph of z =

f (x, y)?

I. (1, 0, 2) II. (1, 1, 1)

III. (0,−1,−2) IV. (−1, 0,−2)

V. (0, 1, 1) VI. (−1,−1, 0)

−2 −1 1 2

−2

−1

1

2

−2

−1

0
1

1
2

2

x

y

Figure 12.54

18. Match Tables 12.6–12.9 with contour diagrams (I)–

(IV) in Figure 12.55.

Table 12.6

y∖x −1 0 1

−1 2 1 2

0 1 0 1

1 2 1 2

Table 12.7

y∖x −1 0 1

−1 0 1 0

0 1 2 1

1 0 1 0

Table 12.8

y∖x −1 0 1

−1 2 0 2

0 2 0 2

1 2 0 2

Table 12.9

y∖x −1 0 1

−1 2 2 2

0 0 0 0

1 2 2 2

(I)

x

y

3
2

1

0

1
2
3

(II)

x

y

0

1
2
3
4

(III)

x

y

2

1
0
−
1
−
2

(IV)

x

y

3 2 1 0 1 2 3

Figure 12.55
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PROBLEMS

19. Figure 12.56 shows a graph of f (x, y) = (sin x)(cos y)

for −2� ≤ x ≤ 2�, −2� ≤ y ≤ 2�. Use the surface

z = 1∕2 to sketch the contour f (x, y) = 1∕2.

Figure 12.56

20. Total sales,Q, of a product are a function of its price and

the amount spent on advertising. Figure 12.57 shows a

contour diagram for total sales. Which axis corresponds

to the price of the product and which to the amount

spent on advertising? Explain.

1 2 3 4 5 6

1

2

3

4

5

6

✛ Q = 5000

✛ Q = 4000

✛ Q = 3000

Q = 2000

x

y

Figure 12.57

21. Each contour diagram (a)–(c) in Figure 12.58 shows

satisfaction with quantities of two items X and Y com-

bined. Match (a)–(c) with the items in (I)–(III).

10

20

30

40

50

X

Y(a)

10

20

30

40

50

X

Y(b)

50

40

30

20

10

X

Y(c)

Figure 12.58

(I) X: Income; Y : Leisure time

(II) X: Income; Y : Hours worked

(III) X: Hours worked; Y : Time spent commuting

22. Figure 12.59 shows a contour plot of job satisfaction

as a function of the hourly wage and the safety of the

workplace (higher values mean safer). Match the jobs

at points P , Q, and R with the three descriptions.

(a) The job is so unsafe that higher pay alone would

not increase my satisfaction very much.

(b) I could trade a little less safety for a little more pay.

It would not matter to me.

(c) The job pays so little that improving safety would

not make me happier.

5 10 15 20

5

10

15

20
P

Q

R
hourly wage

safety level

Figure 12.59

23. Figure 12.60 shows a contour diagram of Dan’s happi-

ness with snacks of different numbers of cherries and

grapes.

(a) What is the slope of the contours?

(b) What does the slope tell you?

1 2 3 4 5

2

4

6

8

10

2

4

6

8

10

12

14

16

18

cherries

grapes

Figure 12.60

24. Figure 12.61 shows contours of f (x, y) = 100ex−50y2.

Find the values of f on the contours. They are equally

spaced multiples of 10.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Figure 12.61
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25. Figure 12.62 shows contours for a person’s body mass

index, BMI = f (w, ℎ) = 703w∕ℎ2, where w is weight

in pounds and ℎ is height in inches. Find the BMI con-

tour values bounding the underweight and normal re-

gions.

120 140 160 180 200 220

63

66

69

72

75

78
Underweight

Normal

Overweight

Obese

w (lbs)

ℎ (in)

Figure 12.62

26. Match the functions (a)–(f) with the level curves (I)–

(VI):

(a) f (x, y) = x2 − y2 − 2x + 4y − 3

(b) g(x, y) = x2 + y2 − 2x − 4y + 15

(c) ℎ(x, y) = −x2 − y2 + 2x + 4y − 8

(d) j(x, y) = −x2 + y2 + 2x − 4y + 3

(e) k(x, y) =
√

(x − 1)2 + (y − 2)2

(f) l(x, y) = −
√

(x − 1)2 + (y − 2)2

−7
−6

−5

−4

x

y(I)

2

1.5

1

0.5

x

y(II)

−2

−1
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−1

−2

x

y(III)

2

1

0

1

2

x

y(IV)

−2

−1.5

−1

−0.5

x

y(V)

14
13
12

11

x

y(VI)

27. The wind chill tells you how cold it feels as a function

of the air temperature and wind speed. Figure 12.63 is

a contour diagram of wind chill (◦F).

(a) If the wind speed is 15 mph, what temperature feels

like −20◦F?

(b) Estimate the wind chill if the temperature is 0◦F

and the wind speed is 10 mph.

(c) Humans are at extreme risk when the wind chill is

below −50◦F. If the temperature is−20◦F, estimate

the wind speed at which extreme risk begins.

(d) If the wind speed is 15 mph and the temperature

drops by 20◦F, approximately how much colder do

you feel?

−60 −40 −20 0 20 40

10

20

30

−80

−60
−40

−20 0 20

air temp, ◦F

wind speed, mph

Figure 12.63

28. Figure 12.64 shows contour diagrams of f (x, y)

and g(x, y). Sketch the smooth curve with equation

f (x, y) = g(x, y).

10

10
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4

6

8

10 12 14 16 18

0
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10

12

14

16

x

y

Figure 12.64: Black: f (x, y). Blue: g(x, y)

29. Figure 12.65 shows the level curves of the temperature

H in a room near a recently opened window. Label the

three level curves with reasonable values of H if the

house is in the following locations.

(a) Minnesota in winter (where winters are harsh).

(b) San Francisco in winter (where winters are mild).

(c) Houston in summer (where summers are hot).

(d) Oregon in summer (where summers are mild).

Window

Room

Figure 12.65
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30. You are in a room 30 feet long with a heater at one

end. In the morning the room is 65◦F. You turn on the

heater, which quickly warms up to 85◦F. Let H(x, t) be

the temperature x feet from the heater, t minutes after

the heater is turned on. Figure 12.66 shows the contour

diagram for H . How warm is it 10 feet from the heater

5 minutes after it was turned on? 10 minutes after it was

turned on?

5 10 15 20 25 30

10

20

30

40

50

60

x (feet)

85

80

75

70

65

t (minutes)

Figure 12.66

31. Using the contour diagram in Figure 12.66, sketch

the graphs of the one-variable functions H(x, 5) and

H(x, 20). Interpret the two graphs in practical terms,

and explain the difference between them.

32. Figure 12.67 shows a contour map of a hill with two

paths, A and B.

(a) On which path,A orB, will you have to climb more

steeply?

(b) On which path, A or B, will you probably have a

better view of the surrounding countryside? (As-

sume trees do not block your view.)

(c) Alongside which path is there more likely to be a

stream?

A

❃

B

✻

z = 100

z = 200

z = 300
Goal

Figure 12.67

In Problems 33–36, for the two given points:

(a) Find the distance ℎ from the first to the second point.

(b) Use Figure 12.68, the contour diagram of f (x, y), to

find Δf , the difference between the values of f from

the first to the second point.

(c) Find Δf∕ℎ, the average rate of change of f (x, y) from

the first to the second point.
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Figure 12.68

33. (0, 0) and (2, 0) 34. (0,−1) and (1, 0)

35. (−1, 1) and (1, 2) 36. (0,−2) and (0, 2)

37. Figure 12.69 is a contour diagram of the monthly pay-

ment on a 5-year car loan as a function of the interest

rate and the amount you borrow. The interest rate is 13%

and you borrow $6000 for a used car.

(a) What is your monthly payment?

(b) If interest rates drop to 11%, how much more can

you borrow without increasing your monthly pay-

ment?

(c) Make a table of how much you can borrow without

increasing your monthly payment, as a function of

the interest rate.
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3,000

4,000

5,000

6,000

7,000

8,000
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140

loan amount ($)

interest
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Figure 12.69

38. Hiking on a level trail going due east, you decide to

leave the trail and climb toward the mountain on your

left. The farther you go along the trail before turning

off, the gentler the climb. Sketch a possible topograph-

ical map showing the elevation contours.

39. The total productivity f (n, T ) of an advertising agency

(in ads per day) depends on the number n of workers

and the temperature T of the office in degrees Fahren-

heit. More workers create more ads, but the farther the

temperature from 75◦F, the slower they work. Draw a

possible contour diagram for the function f (n, T ).
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40. Match the functions (a)–(d) with the shapes of their

level curves (I)–(IV). Sketch each contour diagram.

(a) f (x, y) = x2 (b) f (x, y) = x2 + 2y2

(c) f (x, y) = y − x2 (d) f (x, y) = x2 − y2

I. Lines II. Parabolas

III. Hyperbolas IV. Ellipses

41. Match the functions (a)–(d) with the shapes of their typ-

ical level curves (I)–(IV).

(a) f (x, y) =
y

x2 + 1
(b) f (x, y) =

1

x2 + 2y2

(c) f (x, y) =
x2 + 1

y2 + 1
(d) f (x, y) =

x

x2 + y2 + 1

I. Circles II. Parabolas

III. Hyperbolas IV. Ellipses

42. Figure 12.70 shows the density of the fox population P

(in foxes per square kilometer) for southern England.8

Draw two different cross-sections along a north-south

line and two different cross-sections along an east-west

line of the population density P .
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Figure 12.70

43. A manufacturer sells two goods, one at a price of $3000

a unit and the other at a price of $12,000 a unit. A quan-

tity q1 of the first good and q2 of the second good are

sold at a total cost of $4000 to the manufacturer.

(a) Express the manufacturer’s profit, �, as a function

of q1 and q2.

(b) Sketch curves of constant profit in the q1q2-plane

for � = 10,000, � = 20,000, and � = 30,000 and

the break-even curve � = 0.

44. A shopper buys x units of item A and y units of item B,

obtaining satisfaction s(x, y) from the purchase. (Sat-

isfaction is called utility by economists.) The contours

s(x, y) = xy = c are called indifference curves because

they show pairs of purchases that give the shopper the

same satisfaction.

(a) A shopper buys 8 units of A and 2 units of B. What

is the equation of the indifference curve showing

the other purchases that give the shopper the same

satisfaction? Sketch this curve.

(b) After buying 4 units of item A, how many units of

B must the shopper buy to obtain the same satis-

faction as obtained from buying 8 units of A and 2

units of B?

(c) The shopper reduces the purchase of item A by k,

a fixed number of units, while increasing the pur-

chase of B to maintain satisfaction. In which of the

following cases is the increase in B largest?

• Initial purchase of A is 6 units

• Initial purchase of A is 8 units

45. Match each Cobb-Douglas production function (a)–(c)

with a graph in Figure 12.71 and a statement (D)–(G).

(a) F (L,K) = L 0.25K 0.25

(b) F (L,K) = L 0.5K 0.5

(c) F (L,K) = L 0.75K 0.75

(D) Tripling each input triples output.

(E) Quadrupling each input doubles output.

(G) Doubling each input almost triples output.
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L
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1
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3

F = 4

F = 3

F = 2
F = 1
L

K(III)

Figure 12.71

46. A Cobb-Douglas production function has the form

P = cL�K� with �, � > 0.

What happens to production if labor and capital are both

scaled up? For example, does production double if both

labor and capital are doubled? Economists talk about

• increasing returns to scale if doubling L and K

more than doubles P ,

• constant returns to scale if doubling L and K ex-

actly doubles P ,

• decreasing returns to scale if doubling L and K

less than doubles P .

What conditions on � and � lead to increasing, constant,

or decreasing returns to scale?

8From “On the spatial spread of rabies among foxes”, Murray, J. D. et al, Proc. R. Soc. Lond. B, 229: 111–150, 1986.
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47. (a) Match f (x, y) = x0.2y0.8 and g(x, y) = x0.8y0.2 with

the level curves in Figures (I) and (II). All scales on

the axes are the same.

(b) Figure (III) shows the level curves of ℎ(x, y) =

x�y1−� for 0 < � < 1. Find the range of possi-

ble values for �. Again, the scales are the same on

both axes.

x

y(I)

x

y(II)

x

y(III)

48. Match the functions (a)–(d) with the contour diagrams

in Figures I–IV.

(a) f (x, y) = 0.7 lnx + 0.3 ln y

(b) g(x, y) = 0.3 lnx + 0.7 ln y

(c) ℎ(x, y) = 0.3x2 + 0.7y2

(d) j(x, y) = 0.7x2 + 0.3y2

4

4

x

y(I)

4

4

x

y(II)

4

4

x

y(III)

4

4

x

y(IV)

49. Figure 12.72 is the contour diagram of f (x, y). Sketch

the contour diagram of each of the following functions.

(a) 3f (x, y) (b) f (x, y) − 10

(c) f (x − 2, y − 2) (d) f (−x, y)

−2

−1

0

1

2

x

y

Figure 12.72

50. Figure 12.73 shows part of the contour diagram of

f (x, y). Complete the diagram for x < 0 if

(a) f (−x, y) = f (x, y) (b) f (−x, y) = −f (x, y)

0
1

2
3
4
5 x

y

Figure 12.73

51. The contour at level 0 of f (x, y) = (x+2y)2−(3x−4y)2

consists of two intersecting lines in the xy-plane. Find

equations for the lines.

52. Let z = f (x, y) = x2∕(x2 + y2).

(a) Why are there no contours for z < 0?

(b) Why are there no contours for z > 1?

(c) Sketch a contour diagram for f (x, y) with at least

four labeled contours.

53. Let f (x, y) = x2 −y2 = (x−y)(x+y). Use the factored

form to sketch the contour f (x, y) = 0 and to find the

regions in the xy-plane where f (x, y) > 0 and the re-

gions where f (x, y) < 0. Explain how this sketch shows

that the graph of f (x, y) is saddle-shaped at the origin.

54. Use Problem 53 to find a formula for a “monkey sad-

dle” surface z = g(x, y) which has three regions with

g(x, y) > 0 and three with g(x, y) < 0.

55. The power P produced by a windmill is proportional to

the square of the diameter d of the windmill and to the

cube of the speed v of the wind.9

(a) Write a formula for P as a function of d and v.

(b) A windmill generates 100 kW of power at a certain

wind speed. If a second windmill is built having

twice the diameter of the original, what fraction of

the original wind speed is needed by the second

windmill to produce 100 kW?

(c) Sketch a contour diagram for P .

9From www.ecolo.org/documents/documents_in_english/WindmillFormula.htm, accessed October 9, 2011.
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Strengthen Your Understanding

In Problems 56–57, explain what is wrong with the state-

ment.

56. A contour diagram for z = f (x, y) is a surface in xyz-

space.

57. The functions f (x, y) =
√

x2 + y2 and g(x, y) = x2+y2

have the same contour diagram.

In Problems 58–59, give an example of:

58. A function f (x, y) whose z = 10 contour consists of

two or more parallel lines.

59. A function whose contours are all parabolas.

Decide if the statements in Problems 60–64 must be true,

might be true, or could not be true. The function z = f (x, y)

is defined everywhere.

60. The level curves corresponding to z = 1 and z = −1

cross at the origin.

61. The level curve z = 1 consists of the circle x2 + y2 = 2

and the circle x2 + y2 = 3, but no other points.

62. The level curve z = 1 consists of two lines which inter-

sect at the origin.

63. If z = e−(x
2+y2), there is a level curve for every value of

z.

64. If z = e−(x
2+y2), there is a level curve through every

point (x, y).

Are the statements in Problems 65–72 true or false? Give

reasons for your answer.

65. Two isotherms representing distinct temperatures on a

weather map cannot intersect.

66. A weather map can have two isotherms representing the

same temperature that do not intersect.

67. The contours of the function f (x, y) = y2 + (x−2)2 are

either circles or a single point.

68. If the contours of g(x, y) are concentric circles, then the

graph of g is a cone.

69. If the contours for f (x, y) get closer together in a certain

direction, then f is increasing in that direction.

70. If all of the contours of f (x, y) are parallel lines, then

the graph of f is a plane.

71. If the f = 10 contour of the function f (x, y) is identi-

cal to the g = 10 contour of the function g(x, y), then

f (x, y) = g(x, y) for all (x, y).

72. The f = 5 contour of the function f (x, y) is identical to

the g = 0 contour of the function g(x, y) = f (x, y)−5.

12.4 LINEAR FUNCTIONS

What Is a Linear Function of Two Variables?

Linear functions played a central role in one-variable calculus because many one-variable functions

have graphs that look like a line when we zoom in. In two-variable calculus, a linear function is one

whose graph is a plane. In Chapter 14, we see that many two-variable functions have graphs which

look like planes when we zoom in.

What Makes a Plane Flat?

What makes the graph of the function z = f (x, y) a plane? Linear functions of one variable have

straight line graphs because they have constant slope. On a plane, the situation is a bit more com-

plicated. If we walk around on a tilted plane, the slope is not always the same: it depends on the

direction in which we walk. However, at every point on the plane, the slope is the same as long as

we choose the same direction. If we walk parallel to the x-axis, we always find ourselves walking up

or down with the same slope;10 the same is true if we walk parallel to the y-axis. In other words, the

slope ratios Δz∕Δx (with y fixed) and Δz∕Δy (with x fixed) are each constant.

Example 1 A plane cuts the z-axis at z = 5 and has slope 2 in the x-direction and slope −1 in the y-direction.

What is the equation of the plane?

Solution Finding the equation of the plane means constructing a formula for the z-coordinate of the point on

the plane directly above the point (x, y) in the xy-plane. To get to that point start from the point above

the origin, where z = 5. Then walk x units in the x-direction. Since the slope in the x-direction is 2,

the height increases by 2x. Then walk y units in the y-direction; since the slope in the y-direction is

−1, the height decreases by y units. Since the height has changed by 2x − y units, the z-coordinate

10To be precise, walking in a vertical plane parallel to the x-axis while rising or falling with the plane you are on.
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is 5 + 2x − y. Thus, the equation for the plane is

z = 5 + 2x − y.

For any linear function, if we know its value at a point (x0, y0), its slope in the x-direction,

and its slope in the y-direction, then we can write the equation of the function. This is just like the

equation of a line in the one-variable case, except that there are two slopes instead of one.

If a plane has slope m in the x-direction, has slope n in the y-direction, and passes through

the point (x0, y0, z0), then its equation is

z = z0 + m(x − x0) + n(y − y0).

This plane is the graph of the linear function

f (x, y) = z0 + m(x − x0) + n(y − y0).

If we write c = z0 − mx0 − ny0, then we can write f (x, y) in the equivalent form

f (x, y) = c + mx + ny.

Just as in 2-space a line is determined by two points, so in 3-space a plane is determined by three

points, provided they do not lie on a line.

Example 2 Find the equation of the plane passing through the points (1, 0, 1), (1,−1, 3), and (3, 0,−1).

Solution The first two points have the same x-coordinate, so we use them to find the slope of the plane in

the y-direction. As the y-coordinate changes from 0 to −1, the z-coordinate changes from 1 to 3,

so the slope in the y-direction is n = Δz∕Δy = (3 − 1)∕(−1 − 0) = −2. The first and third points

have the same y-coordinate, so we use them to find the slope in the x-direction; it is m = Δz∕Δx =

(−1 − 1)∕(3 − 1) = −1. Because the plane passes through (1, 0, 1), its equation is

z = 1 − (x − 1) − 2(y − 0) or z = 2 − x − 2y.

You should check that this equation is also satisfied by the points (1,−1, 3) and (3, 0,−1).

Example 2 was made easier by the fact that two of the points had the same x-coordinate and two

had the same y-coordinate. An alternative method, which works for any three points, is to substitute

the x, y, and z-values of each of the three points into the equation z = c + mx + ny. The resulting

three equations in c, m, n are then solved simultaneously.

Linear Functions from a Numerical Point of View

To avoid flying planes with empty seats, airlines sell some tickets at full price and some at a discount.

Table 12.10 shows an airline’s revenue in dollars from tickets sold on a particular route, as a function

of the number of full-price tickets sold, f , and the number of discount tickets sold, d.

In every column, the revenue jumps by $40,000 for each extra 200 discount tickets. Thus, each

column is a linear function of the number of discount tickets sold. In addition, every column has the

same slope, 40,000∕200 = 200 dollars/ticket. This is the price of a discount ticket. Similarly, each

row is a linear function and all the rows have the same slope, 450, which is the price in dollars of a
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Table 12.10 Revenue from ticket sales (dollars)

Discount

tickets (d)

Full-price tickets (f )

100 200 300 400

200 85,000 130,000 175,000 220,000

400 125,000 170,000 215,000 260,000

600 165,000 210,000 255,000 300,000

800 205,000 250,000 295,000 340,000

1000 245,000 290,000 335,000 380,000

full-fare ticket. Thus, R is a linear function of f and d, given by:

R = 450f + 200d.

We have the following general result:

A linear function can be recognized from its table by the following features:

• Each row and each column is linear.

• All the rows have the same slope.

• All the columns have the same slope (although the slope of the rows and the slope of the

columns are generally different).

Example 3 The table contains values of a linear function. Fill in the blank and give a formula for the function.

x∖y 1.5 2.0

2 0.5 1.5

3 −0.5 ?

Solution In the first column the function decreases by 1 (from 0.5 to −0.5) as x goes from 2 to 3. Since the

function is linear, it must decrease by the same amount in the second column. So the missing entry

must be 1.5−1 = 0.5. The slope of the function in the x-direction is −1. The slope in the y-direction

is 2, since in each row the function increases by 1 when y increases by 0.5. From the table we get

f (2, 1.5) = 0.5. Therefore, the formula is

f (x, y) = 0.5 − (x − 2) + 2(y− 1.5) = −0.5 − x + 2y.

What Does the Contour Diagram of a Linear Function Look Like?

The formula for the airline revenue function in Table 12.10 is R = 450f + 200d, where f is the

number of full fares and d is the number of discount fares sold.

Notice that the contours of this function in Figure 12.74 are parallel straight lines. What is the

practical significance of the slope of these contour lines? Consider the contour R = 100,000; that

means we are looking at combinations of ticket sales that yield $100,000 in revenue. If we move

down and to the right on the contour, the f -coordinate increases and the d-coordinate decreases,

so we sell more full fares and fewer discount fares. This is because to receive a fixed revenue of

$100,000, we must sell more full fares if we sell fewer discount fares. The exact trade-off depends

on the slope of the contour; the diagram shows that each contour has a slope of about−2. This means

that for a fixed revenue, we must sell two discount fares to replace one full fare. This can also be

seen by comparing prices. Each full fare brings in $450; to earn the same amount in discount fares

we need to sell 450∕200 = 2.25 ≈ 2 fares. Since the price ratio is independent of how many of each

type of fare we sell, this slope remains constant over the whole contour map; thus, the contours are

all parallel straight lines.
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Notice also that the contours are evenly spaced. Thus, no matter which contour we are on, a

fixed increase in one of the variables causes the same increase in the value of the function. In terms

of revenue, no matter how many fares we have sold, an extra fare, whether full or discount, brings

the same revenue as before.
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Figure 12.74: Revenue as a function of full and

discount fares, R = 450f + 200d
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Figure 12.75: Contour map of linear function

f (x, y)

Example 4 Find the equation of the linear function whose contour diagram is in Figure 12.75.

Solution Suppose we start at the origin on the z = 0 contour. Moving 2 units in the y-direction takes us to

the z = 6 contour, so the slope in the y-direction is Δz∕Δy = 6∕2 = 3. Similarly, a move of 2 units

in the x-direction from the origin takes us to the z = 2 contour, so the slope in the x-direction is

Δz∕Δx = 2∕2 = 1. Since f (0, 0) = 0, we have f (x, y) = x + 3y.

Exercises and Problems for Section 12.4 Online Resource: Additional Problems for Section 12.4
EXERCISES

Exercises 1–2 each contain a partial table of values for a lin-

ear function. Fill in the blanks.

1.
x∖y 0.0 1.0

0.0 1.0

2.0 3.0 5.0

2.
x∖y −1.0 0.0 1.0

2.0 4.0

3.0 3.0 5.0

In Exercises 3–6, could the tables of values represent a linear

function?

3.

x

y

0 1 2

0 0 1 4

1 1 0 1

2 4 1 0

4.

x

y

0 1 2

0 10 13 16

1 6 9 12

2 2 5 8

5.

x

y

0 1 2

0 0 5 10

1 2 7 12

2 4 9 14

6.

x

y

0 1 2

0 5 7 9

1 6 9 12

2 7 11 15

7. Find the equation of the linear function z = c+mx+ny

whose graph contains the points (0, 0, 0), (0, 2,−1), and

(−3, 0,−4).

8. Find the linear function whose graph is the plane

through the points (4, 0, 0), (0, 3, 0) and (0, 0, 2).

9. Find an equation for the plane containing the line in

the xy-plane where y = 1, and the line in the xz-plane

where z = 2.

10. Find the equation of the linear function z = c+mx+ny

whose graph intersects the xz-plane in the line z =

3x+4 and intersects the yz-plane in the line z = y+4.

11. Suppose that z is a linear function of x and y with slope

2 in the x-direction and slope 3 in the y-direction.

(a) A change of 0.5 in x and −0.2 in y produces what

change in z?

(b) If z = 2 when x = 5 and y = 7, what is the value

of z when x = 4.9 and y = 7.2?

12. (a) Find a formula for the linear function whose graph

is a plane passing through point (4, 3,−2) with

slope 5 in the x-direction and slope −3 in the y-

direction.

(b) Sketch the contour diagram for this function.



686 Chapter 12 FUNCTIONS OF SEVERAL VARIABLES

In Exercises 13–14, could the contour diagram represent a

linear function?

13.
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14.
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PROBLEMS

15. An internet video streaming company offers a basic and

premium monthly streaming subscription package. Fig-

ure 12.76 shows the revenue (in dollars per month) of

the company as a function of the number, c, of basic

subscribers and the number, d, of premium subscribers

it has. What is the price of a basic subscription? What

is the price of a premium subscription?
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1000
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Figure 12.76

16. The charge, C , in dollars, for access to a company’s 4G

LTE network is a function of m, the number of months

of use, and t, the total number of gigabytes used:

C = f (m, t) = 99 + 30m + 10t.

(a) Is f a linear function?

(b) Give units for the coefficients of m and t, and inter-

pret them as charges.

(c) Interpret the intercept 99 as a charge.

(d) Find f (3, 8) and interpret your answer.

17. A manufacturer makes two products out of two raw

materials. Let q1, q2 be the quantities sold of the two

products, p1, p2 their prices, and m1, m2 the quantities

purchased of the two raw materials. Which of the fol-

lowing functions do you expect to be linear, and why?

In each case, assume that all variables except the ones

mentioned are held fixed.

(a) Expenditure on raw materials as a function of m1

and m2.

(b) Revenue as a function of q1 and q2.

(c) Revenue as a function of p1 and q1.

Problems 18–20 concern Table 12.11, which gives the

number of calories burned per minute for someone roller-

blading, as a function of the person’s weight and speed.11

Table 12.11

Calories burned per minute

Weight 8 mph 9 mph 10 mph 11 mph

120 lbs 4.2 5.8 7.4 8.9

140 lbs 5.1 6.7 8.3 9.9

160 lbs 6.1 7.7 9.2 10.8

180 lbs 7.0 8.6 10.2 11.7

200 lbs 7.9 9.5 11.1 12.6

18. Does the data in Table 12.11 look approximately linear?

Give a formula for B, the number of calories burned per

minute in terms of the weight, w, and the speed, s. Does

the formula make sense for all weights or speeds?

19. Who burns more total calories to go 10 miles: A 120-

lb person going 10 mph or a 180-lb person going 8

mph? Which of these two people burns more calories

per pound for the 10-mile trip?

20. Use Problem 18 to give a formula for P , the number

of calories burned per pound, in terms of w and s, for a

person weighing w lbs roller-blading 10 miles at s mph.

11From the August 28, 1994, issue of Parade Magazine.
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For Problems 21–22, find a possible equation for a linear

function with the given contour diagram.

21.

−3 −2 −1 1 2 3
−3

−2

−1

1

2

3

y

x

−
1
0

−
8

−
6

−
4

−
2

0
2

4

6
8

10

22.

−3 −2 −1 1 2 3
−3

−2

−1

1

2

3

y

x

−
4

−
2

0

2

4

6

8

10

12

In Problems 23–24, could the contour diagram represent a

linear function? If so, find an equation for that function.

23.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

−4 1 5

24.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

−
3

0 1

4

x

y

For Problems 25–26, find an equation for the linear function

with the given values.

25.
x∖y −1 0 1 2

0 1.5 1 0.5 0

1 3.5 3 2.5 2

2 5.5 5 4.5 4

3 7.5 7 6.5 6

26.
x∖y 10 20 30 40

100 3 6 9 12

200 2 5 8 11

300 1 4 7 10

400 0 3 6 9

In Problems 27–34, could the table of values represent a lin-

ear function? If so, find a possible formula for the function.

If not, give a reason why not.

27.

x

y

1 2 3

1 1 5 9

2 2 6 10

3 3 7 11

28.

x

y

0 1 2

0 1 2 1

1 2 3 2

2 3 4 3

29.

x

y

-2 0 2

-2 2 2 2

0 5 5 5

2 8 8 8

30.

x

y

2 4 6

1 0 3 6

3 1 4 7

5 4 7 10

31.

x

y

0 1 2

0 -5 -7 -9

2 -2 -4 -6

4 1 -1 -3

32.

x

y

1 2 3

1 1 2 3

2 4 5 6

4 7 8 9

33.

x

y

0 2 5

0 3 5 8

1 5 7 10

3 9 11 14

34.

x

y

0 2 5

0 0 4 10

1 1 5 11

2 4 6 14

In Problems 35–38, use the contours of the linear function

z = f (x, y) in Figure 12.77 to create possible contour la-

bels for the linear function z = g(x, y) satisfying the given

condition.

f (x, y)

x

y

10

20

30

40

50

0.5 1 1.5 2

1

2

3

4
g(x, y)

x

y

?

?

?

?

?

0.5 1 1.5 2

1

2

3

4

Figure 12.77

35. The graph of g is parallel but different from the graph

of f .

36. The graph of g is parallel to the graph of f and passes

through the point (2, 2, 0).

37. The graph of g has the same contour as f for the value

z = 30 but is different from the graph of f .

38. The graph of g has the same contour as f for the value

z = 40, and a negative slope in the x-direction.



688 Chapter 12 FUNCTIONS OF SEVERAL VARIABLES

In Problems 39–42, graph the linear function by plotting the

x, y, and z-intercepts and joining them by a triangle as in

Figure 12.78. This shows the part of the plane in the octant

where x ≥ 0, y ≥ 0, z ≥ 0. If the intercepts are not all posi-

tive, the same method works if the x, y, and z-axes are drawn

from a different perspective.

Figure 12.78

39. z = 2 − 2x + y 40. z = 2 − x − 2y

41. z = 4 + x − 2y 42. z = 6 − 2x − 3y

43. Figure 12.79 is the contour diagram of a linear function

f (x, y) = mx + 4y + c. What is the value of m?

−3 3

−3

3

x

y

Figure 12.79

44. For the contour diagrams (I)–(IV) on −2 ≤ x ≤ 2,

−2 ≤ y ≤ 2, pick the corresponding function.

f (x, y) = 2x + 3y + 10 k(x, y) = −2x + 3y + 12

g(x, y) = 2x + 3y + 60 m(x, y) = −2x + 3y + 60

ℎ(x, y) = 2x − 3y + 12 n(x, y) = −2x − 3y + 14

j(x, y) = 2x − 3y + 60 p(x, y) = −2x − 3y + 60

10
12

14
x

y(I)

12
10

8

x

y(II)

12
14

16

x

y(III)

64
62

60

x

y(IV)

45. A linear function has the formula f (x, y) = a+10x−5y,

but you don’t know the value of a. Give a numerical

value for the following, if possible.

(a) f (50, 62)

(b) f (51, 60)

(c) f (51, 60) − f (50, 62)

Strengthen Your Understanding

In Problems 46–47, explain what is wrong with the state-

ment.

46. If the contours of f are all parallel lines, then f is lin-

ear.

47. A function f (x, y) with linear cross-sections for x fixed

and linear cross-sections for y fixed is a linear func-

tion.

In Problems 48–49, give an example of:

48. A table of values, with three rows and three columns,

for a nonlinear function that is linear in each row and in

each column.

49. A linear function whose contours are lines with slope 2.

Are the statements in Problems 50–62 true or false? Give

reasons for your answer.

50. The planes z = 3+2x+4y and z = 5+2x+4y intersect.

51. The function represented in Table 12.12 is linear.

Table 12.12

u∖v 1.1 1.2 1.3 1.4

3.2 11.06 12.06 13.06 14.06

3.4 11.75 12.82 13.89 14.96

3.6 12.44 13.58 14.72 15.86

3.8 13.13 14.34 15.55 16.76

4.0 13.82 15.10 16.38 17.66

52. Contours of f (x, y) = 3x + 2y are lines with slope 3.

53. If f is a non-constant linear function, then the contours

of f are parallel lines.



12.5 FUNCTIONS OF THREE VARIABLES 689

54. If f (0, 0) = 1, f (0, 1) = 4, f (0, 3) = 5, then f cannot

be linear.

55. The graph of a linear function is always a plane.

56. The cross-section x = c of a linear function f (x, y) is

always a line.

57. There is no linear function f (x, y) with a graph parallel

to the xy-plane.

58. There is no linear function f (x, y) with a graph parallel

to the xz-plane.

59. A linear function f (x, y) = 2x+3y−5, has exactly one

point (a, b) satisfying f (a, b) = 0.

60. In a table of values of a linear function, the columns

have the same slope as the rows.

61. There is exactly one linear function f (x, y) whose f =

0 contour is y = 2x + 1.

62. If the contours of f (x, y) = c + mx + ny are vertical

lines, then n = 0.

12.5 FUNCTIONS OF THREE VARIABLES

In applications of calculus, functions of any number of variables can arise. The density of matter in

the universe is a function of three variables, since it takes three numbers to specify a point in space.

Models of the US economy often use functions of ten or more variables. We need to be able to apply

calculus to functions of arbitrarily many variables.

One difficulty with functions of more than two variables is that it is hard to visualize them. The

graph of a function of one variable is a curve in 2-space, the graph of a function of two variables is a

surface in 3-space, so the graph of a function of three variables would be a solid in 4-space. Since we

can’t easily visualize 4-space, we won’t use the graphs of functions of three variables. On the other

hand, it is possible to draw contour diagrams for functions of three variables, only now the contours

are surfaces in 3-space.

Representing a Function of Three Variables Using a Family of Level Surfaces

A function of two variables, f (x, y), can be represented by a family of level curves of the form

f (x, y) = c for various values of the constant, c.

A level surface, or level set of a function of three variables, f (x, y, z), is a surface of the form

f (x, y, z) = c, where c is a constant. The function f can be represented by the family of level

surfaces obtained by allowing c to vary.

The value of the function, f , is constant on each level surface.

Example 1 The temperature, in ◦C, at a point (x, y, z) is given by T = f (x, y, z) = x2 + y2 + z2. What do the

level surfaces of the function f look like and what do they mean in terms of temperature?

Solution The level surface corresponding to T = 100 is the set of all points where the temperature is 100◦C.

That is, where f (x, y, z) = 100, so

x2 + y2 + z2 = 100.

This is the equation of a sphere of radius 10, with center at the origin. Similarly, the level surface

corresponding to T = 200 is the sphere with radius
√

200. The other level surfaces are concentric

spheres. The temperature is constant on each sphere. We may view the temperature distribution as a

set of nested spheres, like concentric layers of an onion, each one labeled with a different temperature,

starting from low temperatures in the middle and getting hotter as we go out from the center. (See

Figure 12.80.) The level surfaces become more closely spaced as we move farther from the origin

because the temperature increases more rapidly the farther we get from the origin.
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Figure 12.80: Level surfaces of T = f (x, y, z) = x2 + y2 + z2, each one having a constant temperature

Example 2 What do the level surfaces of f (x, y, z) = x2 + y2 and g(x, y, z) = z − y look like?

Solution The level surface of f corresponding to the constant c is the surface consisting of all points satisfying

the equation

x2 + y2 = c.

Since there is no z-coordinate in the equation, z can take any value. For c > 0, this is a circular

cylinder of radius
√

c around the z-axis. The level surfaces are concentric cylinders; on the narrow

ones near the z-axis, f has small values; on the wider ones, f has larger values. See Figure 12.81.

The level surface of g corresponding to the constant c is the plane

z − y = c.

Since there is no x variable in the equation, these planes are parallel to the x-axis and cut the yz-plane

in the line z − y = c. See Figure 12.82.

Figure 12.81: Level surfaces of f (x, y, z) = x2 + y2
Figure 12.82: Level surfaces of

g(x, y, z) = z − y

We say g(x, y, z) = z−y in Example 2 is a linear function of the three variables x, y, z, whereas

f (x, y) = x2 + y2 and f (x, y, z) = x2 + y2 + z2 are quadratic functions of three variables.

Example 3 What do the level surfaces of f (x, y, z) = x2 + y2 − z2 look like?

Solution In Section 12.3, we saw that the two-variable quadratic function g(x, y) = x2 − y2 has a saddle-

shaped graph and three types of contours. The contour equation x2 − y2 = c gives a hyperbola

opening right-left when c > 0, a hyperbola opening up-down when c < 0, and a pair of intersecting

lines when c = 0. Similarly, the three-variable quadratic function f (x, y, z) = x2 + y2 − z2 has three

types of level surfaces depending on the value of c in the equation x2 + y2 − z2 = c.

Suppose that c > 0, say c = 1. Rewrite the equation as x2 + y2 = z2 + 1 and think of what
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happens as we cut the surface perpendicular to the z-axis by holding z fixed. The result is a circle,

x2 + y2 = constant, of radius at least 1 (since the constant z2 + 1 ≥ 1). The circles get larger as z

gets larger. If we take the x = 0 cross-section instead, we get the hyperbola y2 − z2 = 1. The result

is shown in Figure 12.86, with a = b = c = 1.

Suppose instead that c < 0, say c = −1. Then the horizontal cross-sections of x2 + y2 = z2 − 1

are again circles except that the radii shrink to 0 at z = ±1 and between z = −1 and z = 1 there are

no cross-sections at all. The result is shown in Figure 12.87 with a = b = c = 1.

When c = 0, we get the equation x2 + y2 = z2. Again the horizontal cross-sections are circles,

this time with the radius shrinking down to exactly 0 when z = 0. The resulting surface, shown in

Figure 12.88 with a = b = c = 1, is the cone z =
√

x2 + y2 studied in Section 12.3, together with

the lower cone z = −
√

x2 + y2.

A Catalog of Surfaces

For later reference, here is a small catalog of the surfaces we have encountered.

Figure 12.83: Elliptical

paraboloid z =
x2

a2
+

y2

b2

Figure 12.84: Hyperbolic

paraboloid z = −
x2

a2
+

y2

b2

Figure 12.85: Ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1

Figure 12.86: Hyperboloid of

one sheet
x2

a2
+

y2

b2
−

z2

c2
= 1

Figure 12.87: Hyperboloid of two

sheets
x2

a2
+

y2

b2
−

z2

c2
= −1

Figure 12.88: Cone
x2

a2
+

y2

b2
−

z2

c2
= 0

Figure 12.89: Plane

ax + by + cz = d

Figure 12.90: Cylindrical

surface x2 + y2 = a2
Figure 12.91: Parabolic

cylinder y = ax2

(These are viewed as equations in three variables x, y, and z)
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How Surfaces Can Represent Functions of Two Variables and Functions of Three Variables

You may have noticed that we have used surfaces to represent functions in two different ways. First,

we used a single surface to represent a two-variable function f (x, y). Second, we used a family of

level surfaces to represent a three-variable function g(x, y, z). These level surfaces have equation

g(x, y, z) = c.

What is the relation between these two uses of surfaces? For example, consider the function

f (x, y) = x2 + y2 + 3.

Define

g(x, y, z) = x2 + y2 + 3 − z

The points on the graph of f satisfy z = x2 + y2 + 3, so they also satisfy x2 + y2 + 3 − z = 0. Thus

the graph of f is the same as the level surface

g(x, y, z) = x2 + y2 + 3 − z = 0.

In general, we have the following result:

A single surface that is the graph of a two-variable function f (x, y) can be thought of as one

member of the family of level surfaces representing the three-variable function

g(x, y, z) = f (x, y) − z.

The graph of f is the level surface g = 0.

Conversely, a single level surface g(x, y, z) = c can be regarded as the graph of a function

f (x, y) if it is possible to solve for z. Sometimes the level surface is pieced together from the graphs

of two or more two-variable functions. For example, if g(x, y, z) = x2 + y2 + z2, then one member

of the family of level surfaces is the sphere

x2 + y2 + z2 = 1.

This equation defines z implicitly as a function of x and y. Solving it gives two functions

z =
√

1 − x2 − y2 and z = −
√

1 − x2 − y2.

The graph of the first function is the top half of the sphere and the graph of the second function is

the bottom half.

Exercises and Problems for Section 12.5

EXERCISES

1. Match the following functions with the level surfaces in

Figure 12.92.

(a) f (x, y, z) = y2 + z2 (b) ℎ(x, y, z) = x2 + z2.

x

y

z(I)

x

y

z(II)

Figure 12.92

2. Match the functions with the level surfaces in Fig-

ure 12.93.

(a) f (x, y, z) = x2 + y2 + z2

(b) g(x, y, z) = x2 + z2.

x

y

z(I)

y

z

x

(II)

Figure 12.93
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3. Write the level surface x+ 2y + 3z = 5 as the graph of

a function f (x, y).

4. Find a formula for a function f (x, y, z) whose level sur-

face f = 4 is a sphere of radius 2, centered at the origin.

5. Write the level surface x2 + y+
√

z = 1 as the graph of

a function f (x, y).

6. Find a formula for a function f (x, y, z) whose level sur-

faces are spheres centered at the point (a, b, c).

7. Which of the graphs in the catalog of surfaces on

page 691 is the graph of a function of x and y?

In Exercises 8–11, use the catalog on page 691 to identify

the surface.

8. x2 + y2 − z = 0 9. −x2 − y2 + z2 = 1

10. x + y = 1 11. x2 + y2∕4 + z2 = 1

In Exercises 12–15, decide if the given level surface can be

expressed as the graph of a function, f (x, y).

12. z − x2 − 3y2 = 0 13. 2x + 3y − 5z − 10 = 0

14. x2 + y2 + z2 − 1 = 0 15. z2 = x2 + 3y2

16. Match the functions (a)–(d) with the descriptions of

their level surfaces in I–IV.

(a) f (x, y, z) =
√

9 − x2 − y2

(b) f (x, y, z) =
√

x2 + y2 + z2

(c) f (x, y, z) =
1

x2 + y2 + z2

(d) f (x, y, z) = 5 + y2 + z2

I. Cylinders that get larger as the function value increases

II. Cylinders that get smaller as the function value increases

III. Spheres that get larger as the function value increases

IV. Spheres that get smaller as the function value increases

PROBLEMS

In Problems 17–19, represent the surface whose equation is

given as the graph of a two-variable function, f (x, y), and as

the level surface of a three-variable function, g(x, y, z) = c.

There are many possible answers.

17. The plane 4x − y − 2z = 6

18. The top half of the sphere x2 + y2 + z2 − 10 = 0

19. The bottom half of the ellipsoid x2 + y2 + z2∕2 = 1

20. The balance, B, in dollars, in a bank account depends

on the amount deposited, A dollars, the annual interest

rate, r%, and the time, t, in months since the deposit, so

B = f (A, r, t).

(a) Is f an increasing or decreasing function of A? Of

r? Of t?

(b) Interpret the statement f (1250, 1, 25) ≈ 1276.

Give units.

21. A person’s basal metabolic rate (BMR) is the mini-

mal number of daily calories needed to keep their body

functioning at rest. The BMR (in kcal/day) of a man of

mass m (in kg), height ℎ (in cm) and age a (in years)

can be approximated by12

P = f (m, ℎ, a) = 14m + 5ℎ − 7a + 66

and for women by

P = g(m, ℎ, a) = 10m + 2ℎ − 5a + 655.

(a) What is the BMR of a 28-year-old man 180 cm tall

weighing 59 kg?

(b) What is the BMR of a 43-year-old woman 162 cm

tall weighing 52 kg?

(c) Describe the level surface P = 2000 for a woman

and explain what the points on this level surface

represent.

(d) If a 40-year-old man 175 cm tall weighing 77 kg re-

stricts himself to a diet with a daily caloric intake

of 1600 kcal, should he expect to lose weight?

22. The monthly payments, P dollars, on a mortgage in

which A dollars were borrowed at an annual interest

rate of r% for t years is given by P = f (A, r, t). Is f

an increasing or decreasing function of A? Of r? Of t?

23. The balance in a bank account, B dollars, is given by

B = f (P , r, t) = P (1 + 0.01r)t , where P dollars is the

principal amount invested, r% is the annual interest rate,

and t years is the time since the investment was made.

(a) Find a formula for the level surface of f containing

the point (P , r, t) = (1000, 5, 20), and explain the

significance of this surface in terms of balance.

(b) Find another point on the level surface in part (a),

and explain the significance of this point in terms

of balance.

24. The pressure of gas in a storage container, in atmo-

spheres, is given by

P = f (n, T , V ) =
82nT

V
,

where n is the amount of gas, in kilomoles, T is the tem-

perature of the gas, in Kelvin, and V is the volume of

the storage container, in liters.

(a) Find a formula for the level surface of f containing

the point (n, T , V ) = (1, 270, 20), and explain the

significance of this surface in terms of pressure.

12www.wikipedia.org, accessed May 11, 2016.
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(b) Find another point on the level surface in part (a),

and explain the significance of this point in terms

of pressure.

25. The mass, in grams, of a rod in the shape of a right cir-

cular cylinder, is given by m = f (r, ℎ, �) = �r2ℎ�,

where the rod has a radius of r cm, a height of ℎ cm,

and a uniform density of � gm/cm3.

(a) Find a formula for the level surface of f contain-

ing the point (r, ℎ, �) = (2, 10, 3), and explain the

significance of this surface in terms of mass.

(b) Find another point on the level surface in part (a),

and explain the significance of this point in terms

of mass.

26. Find a function f (x, y, z) whose level surface f = 1 is

the graph of the function g(x, y) = x + 2y.

27. Find two functions f (x, y) and g(x, y) so that the graphs

of both together form the ellipsoid x2+y2∕4+z2∕9 = 1.

28. Find a formula for a function g(x, y, z) whose level sur-

faces are planes parallel to the plane z = 2x + 3y − 5.

29. Which of the following functions have planes as level

surfaces?

f (x, y, z) = ex+z r(x, y, z) = x3

g(x, y, z) = ex + z m(x, y, z) = ln (x + z)

30. The surface S is the graph of f (x, y) =
√

1 − x2 − y2.

(a) Explain whyS is the upper hemisphere of radius 1,

with equator in the xy-plane, centered at the origin.

(b) Find a level surface g(x, y, z) = c representing S.

31. The surface S is the graph of f (x, y) =
√

1 − y2.

(a) Explain why S is the upper half of a circular cylin-

der of radius 1, centered along the x-axis.

(b) Find a level surface g(x, y, z) = c representing S.

32. A cone C , with height 1 and radius 1, has its base in the

xz-plane and its vertex on the positive y-axis. Find a

function g(x, y, z) such thatC is part of the level surface

g(x, y, z) = 0. [Hint: The graph of f (x, y) =
√

x2 + y2

is a cone which opens up and has vertex at the origin.]

33. Describe the level surface f (x, y, z) = x2∕4 + z2 = 1

in words.

34. Describe the level surface g(x, y, z) = x2 +y2∕4+z2 =

1 in words. [Hint: Look at cross-sections with constant

x, y, and z values.]

35. Describe in words the level surfaces of the function

g(x, y, z) = x + y + z.

36. Describe in words the level surfaces of f (x, y, z) =

sin(x + y + z).

37. Describe the surface x2 + y2 = (2 + sin z)2. In general,

if f (z) ≥ 0 for all z, describe the surface x2 + y2 =

(f (z))2.

38. What do the level surfaces of f (x, y, z) = x2 − y2 + z2

look like? [Hint: Use cross-sections with y constant in-

stead of cross-sections with z constant.]

39. Describe in words the level surfaces of g(x, y, z) =

e−(x
2+y2+z2).

40. Describe in words the level surfaces of f (x, y, z) =

z∕x.

41. Show that the level surfaces of g(x, y, z) = ax+by+cz

where c ≠ 0 are parallel planes.

42. Sketch and label level surfaces of ℎ(x, y, z) = ez−y for

ℎ = 1, e, e2.

43. Sketch and label level surfaces of f (x, y, z) = 4 − x2 −

y2 − z2 for f = 0, 1, 2.

44. Sketch and label level surfaces of g(x, y, z) = 1−x2−y2

for g = 0,−1,−2.

45. What is the relationship between the level surfaces of

g(x, y, z) = f (x, y) − z and the graph of z = f (x, y)?

46. Describe the level surfaces of g(x, y, z) = y − f (x).

Strengthen Your Understanding

In Problems 47–49, explain what is wrong with the state-

ment.

47. The graph of a function f (x, y, z) is a surface in 3-

space.

48. The level surfaces of f (x, y, z) = x2 −y2 are all saddle-

shaped.

49. The level surfaces of f (x, y, z) = x2 + y2 are

paraboloids.

In Problems 50–53, give an example of:

50. A function f (x, y, z) whose level surfaces are equally

spaced planes perpendicular to the yz-plane.

51. A function f (x, y, z) whose level sets are concentric

cylinders centered on the y-axis.

52. A nonlinear function f (x, y, z) whose level sets are par-

allel planes.

53. A function f (x, y, z) whose level sets are paraboloids.

Are the statements in Problems 54–64 true or false? Give

reasons for your answer.

54. The graph of the function f (x, y) = x2 + y2 is the same

as the level surface g(x, y, z) = x2 + y2 − z = 0.

55. The graph of f (x, y) =
√

1 − x2 − y2 is the same as the

level surface g(x, y, z) = x2 + y2 + z2 = 1.
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56. Any surface which is the graph of a two-variable func-

tion f (x, y) can also be represented as the level surface

of a three-variable function g(x, y, z).

57. Any surface which is the level surface of a three-

variable function g(x, y, z) can also be represented as

the graph of a two-variable function f (x, y).

58. The level surfaces of the function g(x, y, z) = x+2y+z

are parallel planes.

59. The level surfaces of g(x, y, z) = x2 + y+ z2 are cylin-

ders with axis along the y-axis.

60. A level surface of a function g(x, y, z) cannot be a single

point.

61. If g(x, y, z) = ax + by + cz + d, where a, b, c, d

are nonzero constants, then the level surfaces of g are

planes.

62. If the level surfaces of g are planes, then g(x, y, z) =

ax + by + cz + d, where a, b, c, d are constants.

63. If the level surfaces g(x, y, z) = k1 and g(x, y, z) = k2
are the same surface, then k1 = k2.

64. If x2 + y2 + z2 = 1 is the level surface g(x, y, z) = 1,

then x2 +y2 +z2 = 4 is the level surface g(x, y, z) = 4.

12.6 LIMITS AND CONTINUITY

The sheer face of Half Dome, in Yosemite National Park in California, was caused by glacial activity

during the Ice Age. (See Figure 12.94.) As we scale the rock from the west, the height of the terrain

rises abruptly by nearly 5000 feet from the valley floor, 2000 feet of it vertical.

If we consider the functionℎ giving the height of the terrain above sea level in terms of longitude

and latitude, then ℎ has a discontinuity along the path at the base of the cliff of Half Dome. Looking

at the contour map of the region in Figure 12.95, we see that in most places a small change in position

results in a small change in height, except near the cliff. There, no matter how small a step we take,

we get a large change in height. (You can see how crowded the contours get near the cliff; some end

abruptly along the discontinuity.)

This geological feature illustrates the ideas of continuity and discontinuity. Roughly speaking, a

function is said to be continuous at a point if its values at places near the point are close to the value

at the point. If this is not the case, the function is said to be discontinuous.

The property of continuity is one that, practically speaking, we usually assume of the functions

we are studying. Informally, we expect (except under special circumstances) that values of a function

do not change drastically when making small changes to the input variables. Whenever we model a

one-variable function by an unbroken curve, we are making this assumption. Even when functions

come to us as tables of data, we usually make the assumption that the missing function values between

data points are close to the measured ones.

In this section we study limits and continuity a bit more formally in the context of functions

of several variables. For simplicity we study these concepts for functions of two variables, but our

discussion can be adapted to functions of three or more variables.

One can show that sums, products, and compositions of continuous functions are continuous,

©Clint Spencer/iStockphoto

Figure 12.94: Half Dome in Yosemite National Park
Figure 12.95: A contour map of Half Dome
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while the quotient of two continuous functions is continuous everywhere the denominator function

is nonzero. Thus, each of the functions

cos(x2y), ln(x2 + y2),
ex+y

x + y
, ln(sin(x2 + y2))

is continuous at all points (x, y) where it is defined. As for functions of one variable, the graph of a

continuous function over an unbroken domain is unbroken—that is, the surface has no holes or rips

in it.

Example 1 From Figures 12.96–12.99, which of the following functions appear to be continuous at (0, 0)?

(a) f (x, y) =

⎧

⎪

⎨

⎪

⎩

x2y

x2 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

(b) g(x, y) =

{

x2

x2 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

Figure 12.96: Graph of z = x2y∕(x2 + y2)
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Figure 12.97: Contour diagram of z = x2y∕(x2 + y2)

Figure 12.98: Graph of z = x2∕(x2 + y2)
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Figure 12.99: Contour diagram of z = x2∕(x2 + y2)

Solution (a) The graph and contour diagram of f in Figures 12.96 and 12.97 suggest that f is close to 0 when

(x, y) is close to (0, 0). That is, the figures suggest that f is continuous at the point (0, 0); the

graph appears to have no rips or holes there.

However, the figures cannot tell us for sure whether f is continuous. To be certain we must

investigate the limit analytically, as is done in Example 2(a) on page 697.
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(b) The graph of g and its contours near (0, 0) in Figure 12.98 and 12.99 suggest that g behaves

differently from f : The contours of g seem to “crash” at the origin and the graph rises rapidly

from 0 to 1 near (0, 0). Small changes in (x, y) near (0, 0) can yield large changes in g, so we

expect that g is not continuous at the point (0, 0). Again, a more precise analysis is given in

Example 2(b).

The previous example suggests that continuity at a point depends on a function’s behavior near

the point. To study behavior near a point more carefully we need the idea of a limit of a function of two

variables. Suppose that f (x, y) is a function defined on a set in 2-space, not necessarily containing

the point (a, b), but containing points (x, y) arbitrarily close to (a, b); suppose that L is a number.

The function f has a limit L at the point (a, b), written

lim
(x,y)→(a,b)

f (x, y) = L,

if f (x, y) is as close to L as we please whenever the distance from the point (x, y) to the point

(a, b) is sufficiently small, but not zero.

We define continuity for functions of two variables in the same way as for functions of one

variable:

A function f is continuous at the point (a, b) if

lim
(x,y)→(a,b)

f (x, y) = f (a, b).

A function is continuous on a region R in the xy-plane if it is continuous at each point in R.

Thus, if f is continuous at the point (a, b), then f must be defined at (a, b) and the limit,

lim(x,y)→(a,b) f (x, y), must exist and be equal to the value f (a, b). If a function is defined at a point

(a, b) but is not continuous there, then we say that f is discontinuous at (a, b).

We now apply the definition of continuity to the functions in Example 1, showing that f is

continuous at (0, 0) and that g is discontinuous at (0, 0).

Example 2 Let f and g be the functions in Example 1. Use the definition of the limit to show that:

(a) lim
(x,y)→(0,0)

f (x, y) = 0 (b) lim
(x,y)→(0,0)

g(x, y) does not exist.

Solution To investigate these limits of f and g, we consider values of these functions near, but not at, the

origin, where they are given by the formulas

f (x, y) =
x2y

x2 + y2
g(x, y) =

x2

x2 + y2
.

(a) The graph and contour diagram of f both suggest that lim(x,y)→(0,0) f (x, y) = 0. To use the

definition of the limit, we estimate |f (x, y) − L| with L = 0:

|f (x, y) − L| =
|

|

|

|

|

x2y

x2 + y2
− 0

|

|

|

|

|

=
|

|

|

|

x2

x2 + y2

|

|

|

|

|y| ≤ |y| ≤
√

x2 + y2.
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Now
√

x2 + y2 is the distance from (x, y) to (0, 0). Thus, to make |f (x, y) − 0| < 0.001,

for example, we need only require that (x, y) be within 0.001 of (0, 0). More generally, for any

positive number u, no matter how small, we are sure that |f (x, y)− 0| < u whenever (x, y) is no

farther than u from (0, 0). This is what we mean by saying that the difference |f (x, y)−0| can be

made as small as we wish by choosing the distance to be sufficiently small. Thus, we conclude

that

lim
(x,y)→(0,0)

f (x, y) = lim
(x,y)→(0,0)

x2y

x2 + y2
= 0.

Notice that since this limit equals f (0, 0), the function f is continuous at (0, 0).

(b) Although the formula defining the function g looks similar to that of f , we saw in Example 1 that

g’s behavior near the origin is quite different. If we consider points (x, 0) lying along the x-axis

near (0, 0), then the values g(x, 0) are equal to 1, while if we consider points (0, y) lying along

the y-axis near (0, 0), then the values g(0, y) are equal to 0. Thus, within any distance (no matter

how small) from the origin, there are points where g = 0 and points where g = 1. Therefore the

limit lim(x,y)→(0,0) g(x, y) does not exist, and thus g is not continuous at (0, 0).

While the notions of limit and continuity look formally the same for one- and two-variable

functions, they are somewhat more subtle in the multivariable case. The reason for this is that on the

line (1-space), we can approach a point from just two directions (left or right) but in 2-space there

are an infinite number of ways to approach a given point.

Exercises and Problems for Section 12.6

EXERCISES

In Exercises 1–6, is the function continuous at all points in

the given region?

1.
1

x2 + y2
on the square −1 ≤ x ≤ 1,−1 ≤ y ≤ 1

2.
1

x2 + y2
on the square 1 ≤ x ≤ 2, 1 ≤ y ≤ 2

3.
y

x2 + 2
on the disk x2 + y2 ≤ 1

4.
esin x

cos y
on the rectangle −

�

2
≤ x ≤

�

2
, 0 ≤ y ≤

�

4

5. tan(xy) on the square −2 ≤ x ≤ 2,−2 ≤ y ≤ 2

6.
√

2x − y on the disk x2 + y2 ≤ 4

In Exercises 7–11, find the limit as (x, y) → (0, 0) of f (x, y).

Assume that polynomials, exponentials, logarithmic, and

trigonometric functions are continuous.

7. f (x, y) = e−x−y

8. f (x, y) = x2 + y2

9. f (x, y) =
x

x2 + 1

10. f (x, y) =
x + y

(sin y) + 2

11. f (x, y) =
sin(x2 + y2)

x2 + y2
[Hint: lim

t→0

sin t

t
= 1.]

In Exercises 12–15, use the contour diagram for f (x, y)

in Figure 12.100 to suggest an estimate for the limit, or ex-

plain why it may not exist.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

0

10

0

10

2 4
6

8

24
6

8

24
6

8

2 4
6

8

Figure 12.100

12. lim
(x,y)→(2,1)

f (x, y) 13. lim
(x,y)→(−1,2)

f (x, y)

14. lim
(x,y)→(−2,0)

f (x, y) 15. lim
(x,y)→(0,0)

f (x, y)
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PROBLEMS

In Problems 16–17, show that the function f (x, y) does not

have a limit as (x, y) → (0, 0). [Hint: Use the line y = mx.]

16. f (x, y) =
x + y

x − y
, x ≠ y

17. f (x, y) =
x2 − y2

x2 + y2

18. By approaching the origin along the positive x-axis and

the positive y-axis, show that the following limit does

not exist:

lim
(x,y)→(0,0)

2x − y2

2x + y2
.

19. Show that f (x, y) has no limit as (x, y) → (0, 0) if

f (x, y) =
xy

|xy|
, x ≠ 0 and y ≠ 0.

20. Show that the function f does not have a limit at (0, 0)

by examining the limits of f as (x, y) → (0, 0) along

the curve y = kx2 for different values of k:

f (x, y) =
x2

x2 + y
, x2 + y ≠ 0.

21. Let f (x, y) =

⎧

⎪

⎨

⎪

⎩

|x|

x
y for x ≠ 0

0 for x = 0.

Is f (x, y) continuous

(a) On the x-axis? (b) On the y-axis?

(c) At (0, 0)?

In Problems 22–23, determine whether there is a value for

the constant c making the function continuous everywhere.

If so, find it. If not, explain why not.

22. f (x, y) =

{

c + y, x ≤ 3,

5 − x, x > 3.

23. f (x, y) =

{

c + y, x ≤ 3,

5 − y, x > 3.

24. Is the following function continuous at (0, 0)?

f (x, y) =

{

x2 + y2 if (x, y) ≠ (0, 0)

2 if (x, y) = (0, 0)

25. What value of c makes the following function continu-

ous at (0, 0)?

f (x, y) =

{

x2 + y2 + 1 if (x, y) ≠ (0, 0)

c if (x, y) = (0, 0)

26. (a) Use a computer to draw the graph and the contour

diagram of the following function:

f (x, y) =

{

xy(x2 − y2)

x2 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

(b) Do your answers to part (a) suggest that f is con-

tinuous at (0, 0)? Explain your answer.

27. The function f , whose graph and contour diagram are

in Figures 12.101 and 12.102, is given by

f (x, y) =

{ xy

x2 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

(a) Show that f (0, y) and f (x, 0) are each continuous

functions of one variable.

(b) Show that rays emanating from the origin are con-

tained in contours of f .

(c) Is f continuous at (0, 0)?

Figure 12.101: Graph of z = xy∕(x2 + y2)
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z = xy∕(x2 + y2)
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Strengthen Your Understanding

In Problems 28–29, explain what is wrong with the state-

ment.

28. If a function f (x, y) has a limit as (x, y) approaches

(a, b), then it is continuous at (a, b).

29. If both f and g are continuous at (a, b), then so are

f + g, fg and f∕g.

In Problems 30–31, give an example of:

30. A function f (x, y) which is continuous everywhere ex-

cept at (0, 0) and (1, 2).

31. A function f (x, y) that approaches 1 as (x, y) ap-

proaches (0, 0) along the x-axis and approaches 2 as

(x, y) approaches (0, 0) along the y-axis.

In Problems 32–34, construct a function f (x, y) with the

given property.

32. Not continuous along the line x = 2; continuous every-

where else.

33. Not continuous at the point (2, 0); continuous every-

where else.

34. Not continuous along the curve x2+y2 = 1; continuous

everywhere else.

Are the statements in Problems 35–40 true or false? Give

reasons for your answer.

35. If the limit of f (x, y) is 1 as (x, y) approaches (0, 0)

along the x-axis, and the limit of f (x, y) is 1 as (x, y)

approaches (0, 0) along the y-axis, then

lim
(x,y)→(0,0)

f (x, y) exists.

36. If f (1, 0) = 2, then lim
(x,y)→(1,0)

f (x, y) = 2.

37. If f (x, y) is continuous and f (1, 0) = 2, then

lim
(x,y)→(1,0)

f (x, y) = 2.

38. If lim
(x,y)→(0,0)

f (x, y) = 3, then the limit of f (x, y) is 3 as

(x, y) approaches (0, 0) along the x-axis.

39. If f (x, y) is continuous at (a, b), then its limit exists at

(a, b).

40. If lim
(x,y)→(a,b)

f (x, y) exists then f (x, y) is continuous at

(a, b).

Online Resource: Review problems and Projects
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13.1 DISPLACEMENT VECTORS

Suppose you are a pilot planning a flight from Dallas to Pittsburgh. There are two things you must

know: the distance to be traveled (so you have enough fuel to make it) and in what direction to go (so

you don’t miss Pittsburgh). Both these quantities together specify the displacement or displacement

vector between the two cities.

The displacement vector from one point to another is an arrow with its tail at the first point

and its tip at the second. The magnitude (or length) of the displacement vector is the dis-

tance between the points and is represented by the length of the arrow. The direction of the

displacement vector is the direction of the arrow.

Figure 13.1 shows a map with the displacement vectors from Dallas to Pittsburgh, from Al-

buquerque to Oshkosh, and from Los Angeles to Buffalo, SD. These displacement vectors have the

same length and the same direction. We say that the displacement vectors between the corresponding

cities are the same, even though they do not coincide. In other words,

Displacement vectors which point in the same direction and have the same magnitude are

considered to be the same, even if they do not coincide.

Dallas

Pittsburgh
OshkoshBuffalo, SD

Los Angeles
Albuquerque

Figure 13.1: Displacement vectors between cities

Notation and Terminology

The displacement vector is our first example of a vector. Vectors have both magnitude and direction;

in comparison, a quantity specified only by a number, but no direction, is called a scalar.1 For in-

stance, the time taken by the flight from Dallas to Pittsburgh is a scalar quantity. Displacement is a

vector since it requires both distance and direction to specify it.

In this book, vectors are written with an arrow over them, v⃗ , to distinguish them from scalars.

Other books use a bold v to denote a vector. We use the notation ⃖⃖⃖⃖⃖⃗PQ to denote the displacement

vector from a point P to a point Q. The magnitude, or length, of a vector v⃗ is written ‖v⃗ ‖.

Addition and Subtraction of Displacement Vectors

Suppose NASA commands a robot on Mars to move 75 meters in one direction and then 50 meters

in another direction. (See Figure 13.2.) Where does the robot end up? Suppose the displacements

are represented by the vectors v⃗ and w⃗ , respectively. Then the sum v⃗ + w⃗ gives the final position.

1So named by W. R. Hamilton because they are merely numbers on the scale from −∞ to ∞.
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The sum, v⃗ + w⃗ , of two vectors v⃗ and w⃗ is the combined displacement resulting from first

applying v⃗ and then w⃗ . (See Figure 13.3.) The sum w⃗ + v⃗ gives the same displacement.

Combined
displacement

75 m

50 m

Start

Finish

Figure 13.2: Sum of displacements of robots on Mars

v⃗

w⃗

v⃗ + w⃗

v⃗

w⃗

Start

Finish

Figure 13.3: The sum v⃗ + w⃗ = w⃗ + v⃗

Suppose two different robots start from the same location. One moves along a displacement

vector v⃗ and the second along a displacement vector w⃗ . What is the displacement vector, x⃗ , from

the first robot to the second? (See Figure 13.4.) Since v⃗ + x⃗ = w⃗ , we define x⃗ to be the difference

x⃗ = w⃗ − v⃗ . In other words, w⃗ − v⃗ gets you from the first robot to the second.

The difference, w⃗ − v⃗ , is the displacement vector that, when added to v⃗ , gives w⃗ . That is,

w⃗ = v⃗ + (w⃗ − v⃗ ). (See Figure 13.4.)

w⃗

v⃗

x⃗ = w⃗ − v⃗

First robot

Second robot

Start

Figure 13.4: The difference w⃗ − v⃗

If the robot ends up where it started, then its total displacement vector is the zero vector, 0⃗ . The

zero vector has no direction.

The zero vector, 0⃗ , is a displacement vector with zero length.

Scalar Multiplication of Displacement Vectors

If v⃗ represents a displacement vector, the vector 2v⃗ represents a displacement of twice the magnitude

in the same direction as v⃗ . Similarly, −2v⃗ represents a displacement of twice the magnitude in the

opposite direction. (See Figure 13.5.)

v⃗

0.5v⃗

2v⃗

−2v⃗

Figure 13.5: Scalar multiples of the vector v⃗



704 Chapter 13 A FUNDAMENTAL TOOL: VECTORS

If � is a scalar and v⃗ is a displacement vector, the scalar multiple of v⃗ by �, written �v⃗ , is

the displacement vector with the following properties:

• The displacement vector �v⃗ is parallel to v⃗ , pointing in the same direction if � > 0 and

in the opposite direction if � < 0.

• The magnitude of �v⃗ is |�| times the magnitude of v⃗ , that is, ‖�v⃗ ‖ = |�| ‖v⃗ ‖ .

Note that |�| represents the absolute value of the scalar � while ‖�v⃗ ‖ represents the magnitude

of the vector �v⃗ .

Example 1 Explain why w⃗ − v⃗ = w⃗ + (−1)v⃗ .

Solution The vector (−1)v⃗ has the same magnitude as v⃗ , but points in the opposite direction. Figure 13.6

shows that the combined displacement w⃗ + (−1)v⃗ is the same as the displacement w⃗ − v⃗ .

v⃗

w⃗

w⃗

(−1)v⃗

w⃗ − v⃗
Finish

Start

Figure 13.6: Explanation for

why w⃗ − v⃗ = w⃗ + (−1)v⃗

Parallel Vectors

Two vectors v⃗ and w⃗ are parallel if one is a scalar multiple of the other, that is, if w⃗ = �v⃗ , for

some scalar �.

Components of Displacement Vectors: The Vectors i⃗, j⃗, and ⃖⃗k

Suppose that you live in a city with equally spaced streets running east-west and north-south and

that you want to tell someone how to get from one place to another. You’d be likely to tell them how

many blocks east-west and how many blocks north-south to go. For example, to get from P to Q in

Figure 13.7, we go 4 blocks east and 1 block south. If i⃗ and j⃗ are as shown in Figure 13.7, then the

displacement vector from P to Q is 4i⃗ − j⃗ .

4i⃗

−j⃗

j⃗

i⃗

P

Q

Figure 13.7: The displacement vector

from P to Q is 4i⃗ − j⃗

We extend the same idea to 3 dimensions. First we choose a Cartesian system of coordinate

axes. The three vectors of length 1 shown in Figure 13.8 are the vector i⃗ , which points along the

positive x-axis, the vector j⃗ , along the positive y-axis, and the vector k⃗ , along the positive z-axis.
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x y

z

i⃗ j⃗

k⃗

1

1 1

Figure 13.8: The vectors i⃗ , j⃗ and k⃗ in

3-space

1 2 3

1

2

x

y

2j⃗

3i⃗

v⃗

(3, 2)

Figure 13.9: We resolve v⃗ into

components by writing v⃗ = 3i⃗ + 2j⃗

Writing Displacement Vectors Using i⃗, j⃗, ⃖⃗k

Any displacement in 3-space or the plane can be expressed as a combination of displacements in

the coordinate directions. For example, Figure 13.9 shows that the displacement vector v⃗ from the

origin to the point (3, 2) can be written as a sum of displacement vectors along the x- and y-axes:

v⃗ = 3i⃗ + 2j⃗ .

This is called resolving v⃗ into components. In general:

We resolve v⃗ into components by writing v⃗ in the form

v⃗ = v1i⃗ + v2j⃗ + v3k⃗ ,

where v1, v2, v3 are scalars. We call v1i⃗ , v2 j⃗ , and v3k⃗ the components of v⃗ .

An Alternative Notation for Vectors

Many people write a vector in three dimensions as a string of three numbers, that is, as

v⃗ = (v1, v2, v3) instead of v⃗ = v1i⃗ + v2j⃗ + v3k⃗ .

Since the first notation can be confused with a point and the second cannot, we usually use the second

form.

Example 2 Resolve the displacement vector, v⃗ , from the point P1 = (2, 4, 10) to the point P2 = (3, 7, 6) into

components.

Solution To get from P1 to P2, we move 1 unit in the positive x-direction, 3 units in the positive y-direction,

and 4 units in the negative z-direction. Hence v⃗ = i⃗ + 3j⃗ − 4k⃗ .

Example 3 Decide whether the vector v⃗ = 2i⃗ + 3j⃗ + 5k⃗ is parallel to each of the following vectors:

w⃗ = 4i⃗ + 6j⃗ + 10k⃗ , a⃗ = −i⃗ − 1.5j⃗ − 2.5k⃗ , b⃗ = 4i⃗ + 6j⃗ + 9k⃗ .

Solution Since w⃗ = 2v⃗ and a⃗ = −0.5v⃗ , the vectors v⃗ , w⃗ , and a⃗ are parallel. However, b⃗ is not a multiple

of v⃗ (since, for example, 4∕2 ≠ 9∕5), so v⃗ and b⃗ are not parallel.
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In general, Figure 13.10 shows us how to express the displacement vector between two points

in components:

Components of Displacement Vectors

The displacement vector from the pointP1 = (x1, y1, z1) to the point P2 = (x2, y2, z2) is given

in components by

⃖⃖⃖⃖⃖⃖⃖⃖⃗P1P2 = (x2 − x1)i⃗ + (y2 − y1)j⃗ + (z2 − z1)k⃗ .

Position Vectors: Displacement of a Point from the Origin

A displacement vector whose tail is at the origin is called a position vector. Thus, any point (x0, y0, z0)

in space has associated with it the position vector r⃗ 0 = x0i⃗ + y0j⃗ + z0k⃗ . (See Figure 13.11.) In

general, a position vector gives the displacement of a point from the origin.

x

y

z

P1 = (x1, y1, z1)

P2 = (x2, y2, z2)
⃖⃖⃖⃖⃖⃖⃖⃗P1P2

Figure 13.10: The displacement vector

⃖⃖⃖⃖⃖⃖⃖⃗P1P2 = (x2 − x1)i⃗ + (y2 − y1)j⃗ + (z2 − z1)k⃗

z

x

y
y0

x0

(x0, y0, z0)

✛

✛

z0r⃗ 0

Figure 13.11: The position vector

r⃗ 0 = x0 i⃗ + y0j⃗ + z0k⃗

The Components of the Zero Vector

The zero displacement vector has magnitude equal to zero and is written 0⃗ . So 0⃗ = 0i⃗ + 0j⃗ + 0k⃗ .

The Magnitude of a Vector in Components

For a vector, v⃗ = v1i⃗ + v2j⃗ , the Pythagorean theorem is used to find its magnitude, ‖v⃗ ‖. (See

Figure 13.12.) The angle � gives the direction of v⃗ .

v1

v2

‖v⃗ ‖ = Length =
√

v2
1
+ v2

2

y

x
�

v⃗

Figure 13.12: Magnitude, ‖v⃗ ‖, of a 2-dimensional vector, v⃗

In three dimensions, for a vector v⃗ = v1i⃗ + v2j⃗ + v3k⃗ , we have

Magnitude of v⃗ = ‖v⃗ ‖ = Length of the arrow =

√

v2
1
+ v2

2
+ v2

3
.

For instance, if v⃗ = 3i⃗ − 4j⃗ + 5k⃗ , then ‖v⃗ ‖ =
√

32 + (−4)2 + 52 =
√

50.
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Addition and Scalar Multiplication of Vectors in Components

Suppose the vectors v⃗ and w⃗ are given in components:

v⃗ = v1i⃗ + v2j⃗ + v3k⃗ and w⃗ = w1i⃗ +w2j⃗ +w3k⃗ .

Then

v⃗ + w⃗ = (v1 +w1)i⃗ + (v2 +w2)j⃗ + (v3 +w3)k⃗ ,

and

�v⃗ = �v1i⃗ + �v2j⃗ + �v3k⃗ .

Figures 13.13 and 13.14 illustrate these properties in two dimensions. Finally, v⃗ − w⃗ = v⃗ +

(−1)w⃗ , so we can write v⃗ − w⃗ = (v1 −w1)i⃗ + (v2 −w2)j⃗ + (v3 −w3)k⃗ .

w⃗

v⃗ + w⃗

v⃗

w⃗

v1

v2

w1

w2

Figure 13.13: Sum v⃗ + w⃗ in

components

v2
v⃗

v1

2v1

2v⃗

2v2

v1

v2

−3v2
−3v⃗

−3v1

v⃗

Figure 13.14: Scalar multiples of vectors showing v⃗ , 2v⃗ , and −3v⃗

How to Resolve a Vector into Components

You may wonder how we find the components of a 2-dimensional vector, given its length and direc-

tion. Suppose the vector v⃗ has length v and makes an angle of � with the x-axis, measured counter-

clockwise, as in Figure 13.15. If v⃗ = v1i⃗ + v2 j⃗ , Figure 13.15 shows that

v1 = v cos � and v2 = v sin �.

Thus, we resolve v⃗ into components by writing

v⃗ = (v cos �)i⃗ + (v sin �)j⃗ .

Vectors in 3-space are resolved using direction cosines; see Problem 66 (available online).

v cos �

v sin �

✛

✛

v

�

y

x

Figure 13.15: Resolving a vector: v⃗ = (v cos �)i⃗ + (v sin �)j⃗

Example 4 Resolve v⃗ into components if ‖v⃗ ‖ = 2 and � = �∕6.

Solution We have v⃗ = 2 cos(�∕6)i⃗ + 2 sin(�∕6)j⃗ = 2
(
√

3∕2
)

i⃗ + 2(1∕2)j⃗ =
√

3i⃗ + j⃗ .
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Unit Vectors

A unit vector is a vector whose magnitude is 1. The vectors i⃗ , j⃗ , and k⃗ are unit vectors in the

directions of the coordinate axes. It is often helpful to find a unit vector in the same direction as a

given vector v⃗ . Suppose that ‖v⃗ ‖ = 10; a unit vector in the same direction as v⃗ is v⃗ ∕10. In general,

a unit vector in the direction of any nonzero vector v⃗ is

u⃗ =
v⃗

‖v⃗ ‖
.

Example 5 Find a unit vector, u⃗ , in the direction of the vector v⃗ = i⃗ + 3j⃗ .

Solution If v⃗ = i⃗ + 3j⃗ , then ‖v⃗ ‖ =
√

12 + 32 =
√

10. Thus, a unit vector in the same direction is given by

u⃗ =
v⃗

√

10
=

1
√

10
(i⃗ + 3j⃗ ) =

1
√

10
i⃗ +

3
√

10
j⃗ ≈ 0.32i⃗ + 0.95j⃗ .

Example 6 Find a unit vector at the point (x, y, z) that points directly outward away from the origin.

Solution The vector from the origin to (x, y, z) is the position vector

r⃗ = xi⃗ + yj⃗ + zk⃗ .

Thus, if we put its tail at (x, y, z) it will point away from the origin. Its magnitude is

‖r⃗ ‖ =
√

x2 + y2 + z2,

so a unit vector pointing in the same direction is

r⃗

‖r⃗ ‖
=

xi⃗ + yj⃗ + zk⃗
√

x2 + y2 + z2
=

x
√

x2 + y2 + z2
i⃗ +

y
√

x2 + y2 + z2
j⃗ +

z
√

x2 + y2 + z2
k⃗ .

Exercises and Problems for Section 13.1 Online Resource: Additional Problems for Section 13.1
EXERCISES

In Exercises 1–6, resolve the vectors into components.

1.

−2 −1 1 2 3

−2

−1

1

2

3

x

y

b⃗

a⃗

w⃗

v⃗

2.

1 2 3 4

−1

1

2

3

x

y

a⃗

b⃗

c⃗

d⃗

e⃗

3. A vector starting at the point Q = (4, 6) and ending at

the point P = (1, 2).

4. A vector starting at the point P = (1, 2) and ending at

the point Q = (4, 6).
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5.

x

y

z

b⃗

c⃗

d⃗

a⃗

e⃗

f⃗

✛

✛

3

✛

✛
2

✛

✛

1

6.

x

y

z

✛

✛

2

✛ ✛1

✛

✛

1

u⃗v⃗

For Exercises 7–14, perform the indicated computation.

7. (4i⃗ + 2j⃗ ) − (3i⃗ − j⃗ )

8. (i⃗ + 2j⃗ ) + (−3)(2i⃗ + j⃗ )

9. −4(i⃗ − 2j⃗ ) − 0.5(i⃗ − k⃗ )

10. 2(0.45i⃗ − 0.9j⃗ − 0.01k⃗ ) − 0.5(1.2i⃗ − 0.1k⃗ )

11. (3i⃗ − 4j⃗ + 2k⃗ ) − (6i⃗ + 8j⃗ − k⃗ )

12. (4i⃗ − 3j⃗ + 7k⃗ ) − 2(5i⃗ + j⃗ − 2k⃗ )

13. (0.6i⃗ + 0.2j⃗ − k⃗ ) + (0.3i⃗ + 0.3k⃗ )

14.
1

2
(2i⃗ − j⃗ + 3k⃗ ) + 3(i⃗ −

1

6
j⃗ +

1

2
k⃗ )

In Exercises 15–19, find the length of the vectors.

15. v⃗ = i⃗ − j⃗ + 2k⃗ 16. z⃗ = i⃗ − 3j⃗ − k⃗

17. v⃗ = i⃗ − j⃗ + 3k⃗

18. v⃗ = 7.2i⃗ − 1.5j⃗ + 2.1k⃗

19. v⃗ = 1.2i⃗ − 3.6j⃗ + 4.1k⃗

For Exercises 20–25, perform the indicated operations on

the following vectors:

a⃗ = 2j⃗ + k⃗ , b⃗ = −3i⃗ + 5j⃗ + 4k⃗ , c⃗ = i⃗ + 6j⃗ ,

x⃗ = −2i⃗ + 9j⃗ , y⃗ = 4i⃗ − 7j⃗ , z⃗ = i⃗ − 3j⃗ − k⃗ .

20. 4z⃗ 21. 5a⃗ + 2b⃗ 22. a⃗ + z⃗

23. 2c⃗ + x⃗ 24. 2a⃗ +7b⃗ −5z⃗ 25. ‖y⃗ − x⃗ ‖

26. (a) Draw the position vector for v⃗ = 5i⃗ − 7j⃗ .

(b) What is ‖v⃗ ‖?

(c) Find the angle between v⃗ and the positive x-axis.

27. Find the unit vector in the direction of 0.06i⃗ − 0.08k⃗ .

28. Find the unit vector in the opposite direction to i⃗ − j⃗ +

k⃗ .

29. Find a unit vector in the opposite direction to 2i⃗ − j⃗ −
√

11k⃗ .

30. Find a vector with length 2 that points in the same di-

rection as i⃗ − j⃗ + 2k⃗ .

PROBLEMS

31. Find the value(s) of a making v⃗ = 5ai⃗ −3j⃗ parallel to

w⃗ = a2i⃗ + 6j⃗ .

32. (a) For a = 1, 2, and 3, draw position vectors for

(i) v⃗ = a2i⃗ + 6j⃗ (ii) w⃗ = 5i⃗ − a2j⃗

(b) Explain why there is no value of a that makes v⃗

and w⃗ parallel.

33. (a) Find a unit vector from the point P = (1, 2) and

toward the point Q = (4, 6).

(b) Find a vector of length 10 pointing in the same di-

rection.

34. If north is the direction of the positive y-axis and east is

the direction of the positive x-axis, give the unit vector

pointing northwest.

35. Resolve the following vectors into components:

(a) The vector in 2-space of length 2 pointing up and

to the right at an angle of �∕4 with the x-axis.

(b) The vector in 3-space of length 1 lying in the xz-

plane pointing upward at an angle of �∕6 with the

positive x-axis.

36. (a) From Figure 13.16, read off the coordinates of

the five points, A, B, C , D, E, and thus resolve

into components the following two vectors: u⃗ =

(2.5) ⃖⃖⃖⃖⃖⃗AB+(−0.8)⃖⃖⃖⃖⃖⃖⃗CD, v⃗ = (2.5) ⃖⃖⃖⃖⃖⃗BA−(−0.8)⃖⃖⃖⃖⃖⃖⃗CD

(b) What is the relation between u⃗ and v⃗ ? Why was

this to be expected?

A

B

D

E

C

1 2 3 4 5 6 7

1

2

3

4

x

y

Figure 13.16

37. Find the components of a vector p⃗ that has the same di-

rection as ⃖⃖⃖⃖⃖⃗EA in Figure 13.16 and whose length equals

two units.

38. For each of the four statements below, answer the fol-

lowing questions: Does the statement make sense? If

yes, is it true for all possible choices of a⃗ and b⃗ ? If no,

why not?

(a) a⃗ + b⃗ = b⃗ + a⃗

(b) a⃗ + ‖b⃗ ‖ = ‖a⃗ + b⃗ ‖

(c) ‖b⃗ + a⃗ ‖ = ‖a⃗ + b⃗ ‖

(d) ‖a⃗ + b⃗ ‖ = ‖a⃗ ‖ + ‖b⃗ ‖.
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39. For each condition, find unit vectors a⃗ and b⃗ or explain

why no such vectors exist.

(a) ‖a⃗ + b⃗ ‖ = 0 (b) ‖a⃗ + b⃗ ‖ = 1

(c) ‖a⃗ + b⃗ ‖ = 2 (d) ‖a⃗ + b⃗ ‖ = 3

40. Two adjacent sides of a regular hexagon are given as the

vectors u⃗ and v⃗ in Figure 13.17. Label the remaining

sides in terms of u⃗ and v⃗ .

u⃗

v⃗

Figure 13.17

41. For what values of t are the following pairs of vectors

parallel?

(a) 2i⃗ + (t2 +
2

3
t + 1)j⃗ + tk⃗ , 6i⃗ + 8j⃗ + 3k⃗

(b) ti⃗ + j⃗ + (t − 1)k⃗ , 2i⃗ − 4j⃗ + k⃗

(c) 2ti⃗ + tj⃗ + tk⃗ , 6i⃗ + 3j⃗ + 3k⃗ .

42. Show that the unit vector v⃗ = xi⃗ + yj⃗ is not parallel

to w⃗ = yi⃗ − xj⃗ for any choice of x and y.

43. Find all unit vectors v⃗ = xi⃗ + yj⃗ parallel to w⃗ =

yi⃗ + xj⃗ .

44. Find all vectors v⃗ in 2 dimensions having ‖v⃗ ‖ = 5 such

that the i⃗ -component of v⃗ is 3i⃗ .

45. (a) Find the point on the x-axis closest to the point

(a, b, c).

(b) Find a unit vector that points from the point you

found in part (a) toward (a, b, c).

46. Figure 13.18 shows a molecule with four atoms at

O,A,B and C . Check that every atom in the molecule

is 2 units away from every other atom.

x
y

z

A(2, 0, 0)

B(1,
√

3, 0)

C(1, 1∕
√

3, 2
√

2∕3)

0

Figure 13.18

Strengthen Your Understanding

In Problems 47–50, explain what is wrong with the state-

ment.

47. If ‖u⃗ ‖ = 1 and ‖v⃗ ‖ > 0, then ‖u⃗ + v⃗ ‖ ≥ 1.

48. The vector cu⃗ has the same direction as u⃗ .

49. ‖v⃗ −u⃗ ‖ is the length of the shorter of the two diagonals

of the parallelogram determined by u⃗ and v⃗ .

50. Given three vectors u⃗ , v⃗ , and w⃗ , if u⃗ + w⃗ = u⃗ then it

is possible for v⃗ + w⃗ ≠ v⃗ .

In Problems 51–53, give an example of:

51. A vector v⃗ of length 2 with a positive k⃗ -component

and lying on a plane parallel to the yz-plane.

52. Two unit vectors u⃗ and v⃗ for which v⃗ − u⃗ is also a unit

vector.

53. Two vectors u⃗ and v⃗ that have difference vector w⃗ =

2i⃗ + 3j⃗ .

Are the statements in Problems 54–63 true or false? Give

reasons for your answer.

54. There is exactly one unit vector parallel to a given

nonzero vector v⃗ .

55. The vector
1
√

3
i⃗ +

−1
√

3
j⃗ +

2
√

3
k⃗ is a unit vector.

56. The length of the vector 2v⃗ is twice the length of the

vector v⃗ .

57. If v⃗ and w⃗ are any two vectors, then ‖v⃗ + w⃗ ‖ =

‖v⃗ ‖ + ‖w⃗ ‖.

58. If v⃗ and w⃗ are any two vectors, then ‖v⃗ − w⃗ ‖ =

‖v⃗ ‖ − ‖w⃗ ‖.

59. The vectors 2i⃗ − j⃗ + k⃗ and i⃗ − 2j⃗ + k⃗ are parallel.

60. The vector u⃗ + v⃗ is always larger in magnitude than

both u⃗ and v⃗ .

61. For any scalar c and vector v⃗ we have ‖cv⃗ ‖ = c‖v⃗ ‖.

62. The displacement vector from (1, 1, 1) to (1, 2, 3) is

−j⃗ − 2k⃗ .

63. The displacement vector from (a, b) to (c, d) is the same

as the displacement vector from (c, d) to (a, b).

13.2 VECTORS IN GENERAL

Besides displacement, there are many quantities that have both magnitude and direction and are

added and multiplied by scalars in the same way as displacements. Any such quantity is called a

vector and is represented by an arrow in the same manner we represent displacements. The length of

the arrow is the magnitude of the vector, and the direction of the arrow is the direction of the vector.
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Velocity Versus Speed

The speed of a moving body tells us how fast it is moving, say 80 km/hr. The speed is just a number;

it is therefore a scalar. The velocity, on the other hand, tells us both how fast the body is moving and

the direction of motion; it is a vector. For instance, if a car is heading northeast at 80 km/hr, then its

velocity is a vector of length 80 pointing northeast.

The velocity vector of a moving object is a vector whose magnitude is the speed of the object

and whose direction is the direction of its motion.

The velocity vector is the displacement vector if the object moves at constant velocity for one

unit of time.

Example 1 A car is traveling north at a speed of 100 km/hr, while a plane above is flying horizontally southwest

at a speed of 500 km/hr. Draw the velocity vectors of the car and the plane.

Solution Figure 13.19 shows the velocity vectors. The plane’s velocity vector is five times as long as the car’s,

because its speed is five times as great.

✲Velocity vector
of car

✲Velocity vector
of plane

N
or

th

✻

Figure 13.19: Velocity vector of the car is 100 km/hr north and of the plane is 500 km/hr southwest

The next example illustrates that the velocity vectors for two motions add to give the velocity

vector for the combined motion, just as displacements do.

Example 2 A riverboat is moving with velocity v⃗ and a speed of 8 km/hr relative to the water. In addition, the

river has a current c⃗ and a speed of 1 km/hr. (See Figure 13.20.) What is the physical significance

of the vector v⃗ + c⃗ ?

v⃗ + c⃗

v⃗ = Velocity relative to water
‖v⃗ ‖ = 8 km/hr

c⃗ = Velocity of current
‖c⃗ ‖ = 1 km/hr

Figure 13.20: Boat’s velocity relative to the river bed is the sum v⃗ + c⃗

Solution The vector v⃗ shows how the boat is moving relative to the water, while c⃗ shows how the water is

moving relative to the riverbed. During an hour, imagine that the boat first moves 8 km relative to the

water, which remains still; this displacement is represented by v⃗ . Then imagine the water moving

1 km while the boat remains stationary relative to the water; this displacement is represented by c⃗ .

The combined displacement is represented by v⃗ + c⃗ . Thus, the vector v⃗ + c⃗ is the velocity of the

boat relative to the riverbed.

Note that the effective speed of the boat is not necessarily 9 km/hr unless the boat is moving in

the direction of the current. Although we add the velocity vectors, we do not necessarily add their

lengths.

Scalar multiplication also makes sense for velocity vectors. For example, if v⃗ is a velocity vector,

then −2v⃗ represents a velocity of twice the magnitude in the opposite direction.
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Example 3 A ball is moving with velocity v⃗ when it hits a wall at a right angle and bounces straight back, with

its speed reduced by 20%. Express its new velocity in terms of the old one.

Solution The new velocity is −0.8v⃗ , where the negative sign expresses the fact that the new velocity is in the

direction opposite to the old.

We can represent velocity vectors in components in the same way we did on page 707.

Example 4 Represent the velocity vectors of the car and the plane in Example 1 using components. Take north

to be the positive y-axis, east to be the positive x-axis, and upward to be the positive z-axis.

Solution The car is traveling north at 100 km/hr, so the y-component of its velocity is 100j⃗ and the x-

component is 0i⃗ . Since it is traveling horizontally, the z-component is 0k⃗ . So we have

Velocity of car = 0i⃗ + 100j⃗ + 0k⃗ = 100j⃗ .

The plane’s velocity vector also has k⃗ component equal to zero. Since it is traveling southwest, its i⃗

and j⃗ components have negative coefficients (north and east are positive). Since the plane is traveling

at 500 km/hr, in one hour it is displaced 500∕
√

2 ≈ 354 km to the west and 354 km to the south.

(See Figure 13.21.) Thus,

✻

❄

500∕
√

2 ≈ 354

✲✛ 500∕
√

2

✻
❄
100✲Distance traveled by

the car in one hour

✲Distance traveled by
the plane in one hour

✛

✛

50
0

✻
N

or
th

45◦

Figure 13.21: Distance traveled by the plane and car in one hour

Velocity of plane = −(500 cos 45◦)i⃗ − (500 sin 45◦)j⃗ ≈ −354i⃗ − 354j⃗ .

Of course, if the car were climbing a hill or if the plane were descending for a landing, then the k⃗

component would not be zero.

Acceleration

Another example of a vector quantity is acceleration. Acceleration, like velocity, is specified by both

a magnitude and a direction — for example, the acceleration due to gravity is 9.81 m/sec2 vertically

downward.

Force

Force is another example of a vector quantity. Suppose you push on an open door. The result depends

both on how hard you push and in what direction. Thus, to specify a force we must give its magnitude

(or strength) and the direction in which it is acting. For example, the gravitational force exerted on an

object by the earth is a vector pointing from the object toward the center of the earth; its magnitude

is the strength of the gravitational force.
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Example 5 The earth travels around the sun in an ellipse. The gravitational force on the earth and the velocity

of the earth are governed by the following laws:

Newton’s Law of Gravitation: The gravitational attraction, F⃗ , of a massm1 on a massm2 at a distance

r has magnitude ||F⃗ || = Gm1m2∕r
2, where G is a constant, and is directed from m2 toward m1.

Kepler’s Second Law: The line joining a planet to the sun sweeps out equal areas in equal times.

(a) Sketch vectors representing the gravitational force of the sun on the earth at two different posi-

tions in the earth’s orbit.

(b) Sketch the velocity vector of the earth at two points in its orbit.

Solution (a) Figure 13.22 shows the earth orbiting the sun. Note that the gravitational force vector always

points toward the sun and is larger when the earth is closer to the sun because of the r2 term in

the denominator. (In fact, the real orbit looks much more like a circle than we have shown here.)

(b) The velocity vector points in the direction of motion of the earth. Thus, the velocity vector is

tangent to the ellipse. See Figure 13.23. Furthermore, the velocity vector is longer at points of

the orbit where the planet is moving quickly, because the magnitude of the velocity vector is

the speed. Kepler’s Second Law enables us to determine when the earth is moving quickly and

when it is moving slowly. Over a fixed period of time, say one month, the line joining the earth

to the sun sweeps out a sector having a certain area. Figure 13.23 shows two sectors swept out

in two different one-month time-intervals. Kepler’s law says that the areas of the two sectors are

the same. Thus, the earth must move farther in a month when it is close to the sun than when

it is far from the sun. Therefore, the earth moves faster when it is closer to the sun and slower

when it is farther away.

Earth

Sun

Force, F⃗

Force, F⃗

Earth

Earth’s orbit

Figure 13.22: Gravitational force, F⃗ , exerted by the sun on

the earth: Greater magnitude closer to sun

Earth

SunVelocity, v⃗

Velocity, v⃗

Earth

Earth’s orbit

Figure 13.23: The velocity vector, v⃗ , of the earth:

Greater magnitude closer to the sun

Properties of Addition and Scalar Multiplication

In general, vectors add, subtract, and are multiplied by scalars in the same way as displacement

vectors. Thus, for any vectors u⃗ , v⃗ , and w⃗ and any scalars � and �, we have the following properties:

Commutativity

1. v⃗ + w⃗ = w⃗ + v⃗

Distributivity

4. (� + �)v⃗ = �v⃗ + �v⃗

5. �(v⃗ + w⃗ ) = �v⃗ + �w⃗

Associativity

2. (u⃗ + v⃗ ) + w⃗ = u⃗ + (v⃗ + w⃗ )

3. �(�v⃗ ) = (��)v⃗

Identity

6. 1v⃗ = v⃗

7. 0v⃗ = 0⃗

8. v⃗ + 0⃗ = v⃗

9. w⃗ + (−1)v⃗ = w⃗ − v⃗

Problems 28–35 at the end of this section ask for a justification of these results in terms of

displacement vectors.
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Using Components

Example 6 A plane, heading due east at an airspeed of 600 km/hr, experiences a wind of 50 km/hr blowing

toward the northeast. Find the plane’s direction and ground speed.

Solution We choose a coordinate system with the x-axis pointing east and the y-axis pointing north. See

Figure 13.24.
y

x

v⃗ = Velocity
relative to air

v⃗ + w⃗ w⃗ =Wind velocity

45◦❄

�

Figure 13.24: Plane’s velocity relative to the ground is the sum v⃗ + w⃗

The airspeed tells us the speed of the plane relative to still air. Thus, the plane is moving due

east with velocity v⃗ = 600i⃗ relative to still air. In addition, the air is moving with a velocity w⃗ .

Writing w⃗ in components, we have

w⃗ = (50 cos 45◦)i⃗ + (50 sin 45◦)j⃗ = 35.4i⃗ + 35.4j⃗ .

The vector v⃗ + w⃗ represents the displacement of the plane in one hour relative to the ground.

Therefore, v⃗ + w⃗ is the velocity of the plane relative to the ground. In components, we have

v⃗ + w⃗ = 600i⃗ +
(

35.4i⃗ + 35.4j⃗
)

= 635.4i⃗ + 35.4j⃗ .

The direction of the plane’s motion relative to the ground is given by the angle � in Figure 13.24,

where

tan � =
35.4

635.4
so

� = arctan
(

35.4

635.4

)

= 3.2◦.

The ground speed is the speed of the plane relative to the ground, so

Ground speed = ||v⃗ + w⃗ || =
√

635.42 + 35.42 = 636.4 km/hr.

Thus, the speed of the plane relative to the ground has been increased slightly by the wind. (This

is as we would expect, as the wind has a positive component in the direction in which the plane is

traveling.) The angle � shows how far the plane is blown off course by the wind.

Vectors in n Dimensions

Using the alternative notation v⃗ = (v1, v2, v3) for a vector in 3-space, we can define a vector in n

dimensions as a string of n numbers. Thus, a vector in n dimensions can be written as

c⃗ = (c1, c2,… , cn).

Addition and scalar multiplication are defined by the formulas

v⃗ + w⃗ = (v1, v2,… , vn) + (w1, w2,… , wn) = (v1 +w1, v2 +w2,… , vn +wn)

and

�v⃗ = �(v1, v2,… , vn) = (�v1, �v2,… , �vn).
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Why Do We Want Vectors in n Dimensions?

Vectors in two and three dimensions can be used to model displacement, velocities, or forces. But

what about vectors in n dimensions? There is another interpretation of 3-dimensional vectors (or

3-vectors) that is useful: they can be thought of as listing three different quantities—for example, the

displacements parallel to the x-, y-, and z-axes. Similarly, the n-vector

c⃗ = (c1, c2,… , cn)

can be thought of as a way of keeping n different quantities organized. For example, a population

vector N⃗ shows the number of children and adults in a population:

N⃗ = (Number of children, Number of adults),

or, if we are interested in a more detailed breakdown of ages, we might give the number in each

ten-year age bracket in the population (up to age 110) in the form

N⃗ = (N1, N2, N3, N4,… , N10, N11),

where N1 is the population aged 0–9, and N2 is the population aged 10–19, and so on.

A consumption vector

q⃗ = (q1, q2,… , qn)

shows the quantities q1, q2, …, qn consumed of each of n different goods. A price vector

p⃗ = (p1, p2,… , pn)

contains the prices of n different items.

In 1907, Hermann Minkowski used vectors with four components when he introduced space-

time coordinates, whereby each event is assigned a vector position v⃗ with four coordinates, three

for its position in space and one for time:

v⃗ = (x, y, z, t).

Example 7 Suppose the vector I⃗ represents the number of copies, in thousands, made by each of four copy

centers in the month of December and J⃗ represents the number of copies made at the same four

copy centers during the previous eleven months (the “year-to-date”). If I⃗ = (25, 211, 818, 642), and

J⃗ = (331, 3227, 1377, 2570), compute I⃗ + J⃗ . What does this sum represent?

Solution The sum is

I⃗ + J⃗ = (25 + 331, 211 + 3227, 818 + 1377, 642 + 2570) = (356, 3438, 2195, 3212).

Each term in I⃗ + J⃗ represents the sum of the number of copies made in December plus those in

the previous eleven months, that is, the total number of copies made during the entire year at that

particular copy center.

Example 8 The price vector p⃗ = (p1, p2, p3) represents the prices in dollars of three goods. Write a vector that

gives the prices of the same goods in cents.

Solution The prices in cents are 100p1, 100p2, and 100p3 respectively, so the new price vector is

(100p1, 100p2, 100p3) = 100p⃗ .
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Exercises and Problems for Section 13.2 Online Resource: Additional Problems for Section 13.2
EXERCISES

In Exercises 1–5, say whether the given quantity is a vector

or a scalar.

1. The population of the US.

2. The distance from Seattle to St. Louis.

3. The temperature at a point on the earth’s surface.

4. The magnetic field at a point on the earth’s surface.

5. The populations of each of the 50 states.

6. Give the components of the velocity vector for wind

blowing at 10 km/hr toward the southeast. (Assume

north is in the positive y-direction.)

7. Give the components of the velocity vector of a boat

that is moving at 40 km/hr in a direction 20◦ south of

west. (Assume north is in the positive y-direction.)

8. A car is traveling at a speed of 50 km/hr. The positive

y-axis is north and the positive x-axis is east. Resolve

the car’s velocity vector (in 2-space) into components if

the car is traveling in each of the following directions:

(a) East (b) South

(c) Southeast (d) Northwest.

9. Which is traveling faster, a car whose velocity vector is

21i⃗ +35j⃗ or a car whose velocity vector is 40i⃗ , assum-

ing that the units are the same for both directions?

10. What angle does a force of F⃗ = 15i⃗ + 18j⃗ make with

the x-axis?

PROBLEMS

11. The velocity of the current in a river is c⃗ = 0.6i⃗ +0.8j⃗

km/hr. A boat moves relative to the water with velocity

v⃗ = 8i⃗ km/hr.

(a) What is the speed of the boat relative to the

riverbed?

(b) What angle does the velocity of the boat relative to

the riverbed make with the vector v⃗ ? What does

this angle tell us in practical terms?

12. The current in Problem 11 is twice as fast and in the

opposite direction. What is the speed of the boat with

respect to the riverbed?

13. A boat is heading due east at 25 km/hr (relative to the

water). The current is moving toward the southwest at

10 km/hr.

(a) Give the vector representing the actual movement

of the boat.

(b) How fast is the boat going, relative to the ground?

(c) By what angle does the current push the boat off of

its due east course?

14. A truck is traveling due north at 30 km/hr approach-

ing a crossroad. On a perpendicular road a police car is

traveling west toward the intersection at 40 km/hr. Both

vehicles will reach the crossroad in exactly one hour.

Find the vector currently representing the displacement

from the police car to the truck.

15. An airplane heads northeast at an airspeed of 700

km/hr, but there is a wind blowing from the west at 60

km/hr. In what direction does the plane end up flying?

What is its speed relative to the ground?

16. Two forces, represented by the vectors F⃗ 1 = 8i⃗ − 6j⃗

and F⃗ 2 = 3i⃗ +2j⃗ , are acting on an object. Give a vec-

tor representing the force that must be applied to the

object if it is to remain stationary.

17. An airplane is flying at an airspeed of 500 km/hr in

a wind blowing at 60 km/hr toward the southeast. In

what direction should the plane head to end up going

due east? What is the airplane’s speed relative to the

ground?

18. The current in a river is pushing a boat in direction 25◦

north of east with a speed of 12 km∕hr. The wind is

pushing the same boat in a direction 80◦ south of east

with a speed of 7 km∕hr. Find the velocity vector of the

boat’s engine (relative to the water) if the boat actually

moves due east at a speed of 40 km∕hr relative to the

ground.

19. A large ship is being towed by two tugs. The larger tug

exerts a force which is 25% greater than the smaller tug

and at an angle of 30 degrees north of east. Which di-

rection must the smaller tug pull to ensure that the ship

travels due east?

20. An object P is pulled by a force F⃗1 of magnitude 15 lb

at an angle of 20 degrees north of east. Give the com-

ponents of a force F⃗2 of magnitude 20 lb to ensure that

P moves due east.

21. An object is to be moved vertically upward by a crane.

As the crane cannot get directly above the object, three

ropes are attached to guide the object. One rope is

pulled parallel to the ground with a force of 100 new-

tons in a direction 30◦ north of east. The second rope is

pulled parallel to the ground with a force of 70 newtons

in a direction 80◦ south of east. If the crane is attached

to the third rope and can pull with a total force of 3000

newtons, find the force vector for the crane. What is the

resulting (total) force on the object? (Assume vector i⃗

points east, vector j⃗ points north, and vector k⃗ points

vertically up.)
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22. The earth is at the origin, the moon is at the point

(384, 0), and a spaceship is at (280, 90), where distance

is in thousands of kilometers.

(a) What is the displacement vector of the moon rel-

ative to the earth? Of the spaceship relative to the

earth? Of the spaceship relative to the moon?

(b) How far is the spaceship from the earth? From the

moon?

(c) The gravitational force on the spaceship from the

earth is 461 newtons and from the moon is 26 new-

tons. What is the resulting force?

23. A particle moving with speed v hits a barrier at an an-

gle of 60◦ and bounces off at an angle of 60◦ in the op-

posite direction with speed reduced by 20 percent. See

Figure 13.25. Find the velocity vector of the object after

impact.

60◦ 60◦

x

y

Before
impact

After
impact

Figure 13.25

24. There are five students in a class. Their scores on the

midterm (out of 100) are given by the vector v⃗ =

(73, 80, 91, 65, 84). Their scores on the final (out of 100)

are given by w⃗ = (82, 79, 88, 70, 92). If the final counts

twice as much as the midterm, find a vector giving the

total scores (as a percentage) of the students.

25. The price vector of beans, rice, and tofu is

(1.6, 1.28, 2.60) in dollars per pound. Express it in dol-

lars per ounce.

26. An object is moving counterclockwise at a constant

speed around the circle x2 + y2 = 1, where x and y are

measured in meters. It completes one revolution every

minute.

(a) What is its speed?

(b) What is its velocity vector 30 seconds after it

passes the point (1, 0)? Does your answer change

if the object is moving clockwise? Explain.

27. An object is attached by a string to a fixed point and

rotates 30 times per minute in a horizontal plane. Show

that the speed of the object is constant but the velocity

is not. What does this imply about the acceleration?

In Problems 28–35, use the geometric definition of addition

and scalar multiplication to explain each of the properties.

28. w⃗ + v⃗ = v⃗ + w⃗ 29. (� + �)v⃗ = �v⃗ + �v⃗

30. �(v⃗ + w⃗ ) = �v⃗ + �w⃗ 31. �(�v⃗ ) = (��)v⃗

32. v⃗ + 0⃗ = v⃗ 33. 1v⃗ = v⃗

34. v⃗ + (−1)w⃗ = v⃗ − w⃗

35. (u⃗ + v⃗ ) + w⃗ = u⃗ + (v⃗ + w⃗ )

36. In the game of laser tag, you shoot a harmless laser gun

and try to hit a target worn at the waist by other play-

ers. Suppose you are standing at the origin of a three-

dimensional coordinate system and that the xy-plane is

the floor. Suppose that waist-high is 3 feet above floor

level and that eye level is 5 feet above the floor. Three

of your friends are your opponents. One is standing so

that his target is 30 feet along the x-axis, another lying

down so that his target is at the point x = 20, y = 15,

and the third lying in ambush so that his target is at a

point 8 feet above the point x = 12, y = 30.

(a) If you aim with your gun at eye level, find the vec-

tor from your gun to each of the three targets.

(b) If you shoot from waist height, with your gun one

foot to the right of the center of your body as you

face along the x-axis, find the vector from your gun

to each of the three targets.

37. A car drives northeast downhill on a 5◦ incline at a con-

stant speed of 60 miles per hour. The positive x-axis

points east, the y-axis north, and the z-axis up. Resolve

the car’s velocity into components.

Strengthen Your Understanding

In Problems 38–39, explain what is wrong with the state-

ment.

38. Two vectors in 3-space that have equal k⃗-components

and the same magnitude must be the same vector.

39. A vector v⃗ in the plane whose i⃗-component is 0.5 has

smaller magnitude than the vector w⃗ = 2i⃗ .

In Problems 40–41, give an example of:

40. A nonzero vector F⃗ on the plane that when combined

with the force vector G⃗ = i⃗ + j⃗ results in a combined

force vector R⃗ with a positive i⃗-component and a neg-

ative j⃗ -component.

41. Nonzero vectors u⃗ and v⃗ such that ‖u⃗ + v⃗ ‖ = ‖u⃗ ‖ +

‖v⃗ ‖.

In Problems 42–47, is the quantity a vector? Give a reason

for your answer.

42. Velocity 43. Speed 44. Force

45. Area 46. Acceleration 47. Volume
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13.3 THE DOT PRODUCT

We have seen how to add vectors; can we multiply two vectors together? In the next two sections we

will see two different ways of doing so: the scalar product (or dot product), which produces a scalar,

and the vector product (or cross product), which produces a vector.

Definition of the Dot Product

The dot product links geometry and algebra. We already know how to calculate the length of a vector

from its components; the dot product gives us a way of computing the angle between two vectors.

For any two vectors v⃗ = v1 i⃗ + v2 j⃗ + v3k⃗ and w⃗ = w1i⃗ +w2j⃗ +w3k⃗ , shown in Figure 13.26, we

define a scalar as follows:

The following two definitions of the dot product, or scalar product, v⃗ ⋅ w⃗ , are equivalent:

• Geometric definition

v⃗ ⋅ w⃗ = ‖v⃗ ‖‖w⃗ ‖ cos � where � is the angle between v⃗ and w⃗ and 0 ≤ � ≤ �.

• Algebraic definition

v⃗ ⋅ w⃗ = v1w1 + v2w2 + v3w3.

Notice that the dot product of two vectors is a number, not a vector.

Why don’t we give just one definition of v⃗ ⋅ w⃗ ? The reason is that both definitions are equally

important; the geometric definition gives us a picture of what the dot product means and the algebraic

definition gives us a way of calculating it.

How do we know the two definitions are equivalent—that is, they really do define the same

thing? First, we observe that the two definitions give the same result in a particular example. Then

we show why they are equivalent in general.

�

w⃗

v⃗

Figure 13.26: The vectors v⃗ and

w⃗

1 2

2

x

y

�

w⃗

v⃗

Figure 13.27: Calculating the dot product of the vectors v = i⃗

and w⃗ = 2i⃗ + 2j⃗ geometrically and algebraically gives the

same result

Example 1 Suppose v⃗ = i⃗ and w⃗ = 2i⃗ + 2j⃗ . Compute v⃗ ⋅ w⃗ both geometrically and algebraically.

Solution To use the geometric definition, see Figure 13.27. The angle between the vectors is �∕4, or 45◦, and

the lengths of the vectors are given by

‖v⃗ ‖ = 1 and ‖w⃗ ‖ = 2
√

2.

Thus,

v⃗ ⋅ w⃗ = ‖v⃗ ‖‖w⃗ ‖ cos � = 1 ⋅ 2
√

2 cos
(

�

4

)

= 2.

Using the algebraic definition, we get the same result:

v⃗ ⋅ w⃗ = 1 ⋅ 2 + 0 ⋅ 2 = 2.
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Why the Two Definitions of the Dot Product Give the Same Result

In the previous example, the two definitions give the same value for the dot product. To show that

the geometric and algebraic definitions of the dot product always give the same result, we must show

that, for any vectors v⃗ = v1i⃗ + v2j⃗ + v3k⃗ and w⃗ = w1i⃗ + w2 j⃗ + w3k⃗ with an angle � between

them:

‖v⃗ ‖‖w⃗ ‖ cos � = v1w1 + v2w2 + v3w3.

One method follows; a method that does not use trigonometry is given in Problem 105 (available

online).

Using the Law of Cosines. Suppose that 0 < � < �, so that the vectors v⃗ and w⃗ form a

triangle. (See Figure 13.28.) By the Law of Cosines, we have

‖v⃗ − w⃗ ‖

2 = ‖v⃗ ‖2 + ‖w⃗ ‖

2 − 2‖v⃗ ‖‖w⃗ ‖ cos �.

This result is also true for � = 0 and � = �. We calculate the lengths using components:

‖v⃗ ‖2 = v2
1
+ v2

2
+ v2

3

‖w⃗ ‖

2 = w2
1
+w2

2
+w2

3

‖v⃗ − w⃗ ‖

2 = (v1 −w1)
2 + (v2 −w2)

2 + (v3 −w3)
2

= v2
1
− 2v1w1 +w2

1
+ v2

2
− 2v2w2 +w2

2
+ v2

3
− 2v3w3 +w2

3
.

Substituting into the Law of Cosines and canceling, we see that

−2v1w1 − 2v2w2 − 2v3w3 = −2‖v⃗ ‖‖w⃗ ‖ cos �.

Therefore we have the result we wanted, namely that:

v1w1 + v2w2 + v3w3 = ‖v⃗ ‖‖w⃗ ‖ cos �.

�

w⃗

v⃗

v⃗ − w⃗

Figure 13.28: Triangle used in the justification of ‖v⃗ ‖‖w⃗ ‖ cos � = v1w1 + v2w2 + v3w3

Properties of the Dot Product

The following properties of the dot product can be justified using the algebraic definition; see Prob-

lem 101. For a geometric interpretation of Property 3, see Problem 103 (both available online).

Properties of the Dot Product. For any vectors u⃗ , v⃗ , and w⃗ and any scalar �,

1. v⃗ ⋅ w⃗ = w⃗ ⋅ v⃗

2. v⃗ ⋅ (�w⃗ ) = �(v⃗ ⋅ w⃗ ) = (�v⃗ ) ⋅ w⃗

3. (v⃗ + w⃗ ) ⋅ u⃗ = v⃗ ⋅ u⃗ + w⃗ ⋅ u⃗

Perpendicularity, Magnitude, and Dot Products

Two vectors are perpendicular if the angle between them is �∕2 or 90◦. Since cos(�∕2) = 0, if v⃗

and w⃗ are perpendicular, then v⃗ ⋅ w⃗ = 0. Conversely, provided that v⃗ ⋅ w⃗ = 0, then cos � = 0, so

� = �∕2 and the vectors are perpendicular. Thus, we have the following result:
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Two nonzero vectors v⃗ and w⃗ are perpendicular, or orthogonal, if and only if

v⃗ ⋅ w⃗ = 0.

For example: i⃗ ⋅ j⃗ = 0, j⃗ ⋅ k⃗ = 0, i⃗ ⋅ k⃗ = 0.

If we take the dot product of a vector with itself, then � = 0 and cos � = 1. For any vector v⃗ :

Magnitude and dot product are related as follows:

v⃗ ⋅ v⃗ = ‖v⃗ ‖2.

For example: i⃗ ⋅ i⃗ = 1, j⃗ ⋅ j⃗ = 1, k⃗ ⋅ k⃗ = 1.

Using the Dot Product

Depending on the situation, one definition of the dot product may be more convenient to use than

the other. In Example 2, the geometric definition is the only one that can be used because we are not

given components. In Example 3, the algebraic definition is used.

Example 2 Suppose the vector b⃗ is fixed and has length 2; the vector a⃗ is free to rotate and has length 3. What

are the maximum and minimum values of the dot product a⃗ ⋅ b⃗ as the vector a⃗ rotates through all

possible positions in the plane? What positions of a⃗ and b⃗ lead to these values?

Solution The geometric definition gives a⃗ ⋅ b⃗ = ‖a⃗ ‖‖b⃗ ‖ cos � = 3 ⋅ 2 cos � = 6 cos �. Thus, the maximum

value of a⃗ ⋅ b⃗ is 6, and it occurs when cos � = 1 so � = 0, that is, when a⃗ and b⃗ point in the same

direction. The minimum value of a⃗ ⋅ b⃗ is −6, and it occurs when cos � = −1 so � = �, that is, when

a⃗ and b⃗ point in opposite directions. (See Figure 13.29.)

b⃗

a⃗
a⃗

a⃗

When a⃗ is in this
position, a⃗ ⋅ b⃗ = 0

When a⃗ is in this
position, a⃗ ⋅ b⃗ = −6

When a⃗ is in this
position, a⃗ ⋅ b⃗ = 6

Figure 13.29: Maximum and minimum values of a⃗ ⋅ b⃗ obtained

from a fixed vector b⃗ of length 2 and rotating vector a⃗ of length 3

Example 3 Which pairs from the following list of 3-dimensional vectors are perpendicular to one another?

u⃗ = i⃗ +
√

3 k⃗ , v⃗ = i⃗ +
√

3 j⃗ , w⃗ =
√

3 i⃗ + j⃗ − k⃗ .

Solution The geometric definition tells us that two vectors are perpendicular if and only if their dot product

is zero. Since the vectors are given in components, we calculate dot products using the algebraic

definition:
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v⃗ ⋅ u⃗ = (i⃗ +
√

3 j⃗ + 0k⃗ ) ⋅ (i⃗ + 0j⃗ +
√

3 k⃗ ) = 1 ⋅ 1 +
√

3 ⋅ 0 + 0 ⋅
√

3 = 1,

v⃗ ⋅ w⃗ = (i⃗ +
√

3 j⃗ + 0k⃗ ) ⋅ (
√

3 i⃗ + j⃗ − k⃗ ) = 1 ⋅
√

3 +
√

3 ⋅ 1 + 0(−1) = 2
√

3,

w⃗ ⋅ u⃗ = (
√

3 i⃗ + j⃗ − k⃗ ) ⋅ (i⃗ + 0j⃗ +
√

3 k⃗ ) =
√

3 ⋅ 1 + 1 ⋅ 0 + (−1) ⋅
√

3 = 0.

So the only two vectors that are perpendicular are w⃗ and u⃗ .

Example 4 Compute the angle between the vectors v⃗ and w⃗ from Example 3.

Solution We know that v⃗ ⋅ w⃗ = ‖v⃗ ‖‖w⃗ ‖ cos �, so cos � =
v⃗ ⋅ w⃗

‖v⃗ ‖‖w⃗ ‖

. From Example 3, we know that

v⃗ ⋅ w⃗ = 2
√

3. This gives:

cos � =
2
√

3

‖v⃗ ‖‖w⃗ ‖

=
2
√

3
√

12 +
(
√

3
)2

+ 02

√

(
√

3
)2

+ 12 + (−1)2

=

√

3
√

5

so � = arccos

(
√

3
√

5

)

= 39.2315◦.

Normal Vectors and the Equation of a Plane

In Section 12.4 we wrote the equation of a plane given its x-slope, y-slope and z-intercept. Now we

write the equation of a plane using a vector n⃗ and a point P0. The key idea is that all the displacement

vectors from P0 that are perpendicular to n⃗ form a plane. To picture this, imagine a pencil balanced

on a table, with other pencils fanned out on the table in different directions. The upright pencil is n⃗ ,

its base is P0, the other pencils are perpendicular displacement vectors, and the table is the plane.

More formally, a normal vector to a plane is a vector that is perpendicular to the plane, that is, it is

perpendicular to every displacement vector between any two points in the plane. Let n⃗ = ai⃗ +bj⃗ +ck⃗

be a normal vector to the plane, let P0 = (x0, y0, z0) be a fixed point in the plane, and let P = (x, y, z)

be any other point in the plane. Then ⃖⃖⃖⃖⃖⃖⃗P0P = (x−x0)i⃗ +(y−y0)j⃗ +(z−z0)k⃗ is a vector whose head

and tail both lie in the plane. (See Figure 13.30.) Thus, the vectors n⃗ and ⃖⃖⃖⃖⃖⃖⃗P0P are perpendicular, so

n⃗ ⋅ ⃖⃖⃖⃖⃖⃖⃗P0P = 0. The algebraic definition of the dot product gives n⃗ ⋅ ⃖⃖⃖⃖⃖⃖⃗P0P = a(x−x0)+b(y−y0)+c(z−z0),

so we obtain the following result:

Figure 13.30: Plane with normal n⃗ and containing a fixed point (x0, y0, z0)
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The equation of the plane with normal vector n⃗ = ai⃗ + bj⃗ + ck⃗ and containing the point

P0 = (x0, y0, z0) is

a(x − x0) + b(y − y0) + c(z − z0) = 0.

Letting d = ax0 + by0 + cz0 (a constant), we can write the equation of the plane in the form

ax + by + cz = d.

Example 5 (a) Find the equation of the plane perpendicular to n⃗ = −i⃗ +3j⃗ +2k⃗ and passing through the point

(1, 0, 4).

(b) Find a vector parallel to the plane.

Solution (a) The equation of the plane is

−(x − 1) + 3(y − 0) + 2(z − 4) = 0,

which can be written as

−x + 3y + 2z = 7.

(b) Any vector v⃗ that is perpendicular to n is also parallel to the plane, so we look for any vector

satisfying v⃗ ⋅ n⃗ = 0; for example, v⃗ = 3i⃗ + j⃗ . There are many other possible vectors.

Example 6 Find a normal vector to the plane with equation (a) x − y + 2z = 5 (b) z = 0.5x + 1.2y.

Solution (a) Since the coefficients of i⃗ , j⃗ , and k⃗ in a normal vector are the coefficients of x, y, and z in the

equation of the plane, a normal vector is n⃗ = i⃗ − j⃗ + 2k⃗ .

(b) Before we can find a normal vector, we rewrite the equation of the plane in the form

0.5x + 1.2y − z = 0.

Thus, a normal vector is n⃗ = 0.5i⃗ + 1.2j⃗ − k⃗ .

The Dot Product in n Dimensions

The algebraic definition of the dot product can be extended to vectors in higher dimensions.

If u⃗ = (u1,… , un) and v⃗ = (v1,… , vn) then the dot product of u⃗ and v⃗ is the scalar

u⃗ ⋅ v⃗ = u1v1 +⋯ + unvn.

Example 7 A video store sells videos, tapes, CDs, and computer games. We define the quantity vector q⃗ =

(q1, q2, q3, q4), where q1, q2, q3, q4 denote the quantities sold of each of the items, and the price

vector p⃗ = (p1, p2, p3, p4), where p1, p2, p3, p4 denote the price per unit of each item. What does the

dot product p⃗ ⋅ q⃗ represent?

Solution The dot product is p⃗ ⋅ q⃗ = p1q1 + p2q2 + p3q3 + p4q4. The quantity p1q1 represents the revenue

received by the store for the videos, p2q2 represents the revenue for the tapes, and so on. The dot

product represents the total revenue received by the store for the sale of these four items.
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Resolving a Vector into Components: Projections

In Section 13.1, we resolved a vector into components parallel to the axes. Now we see how to

resolve a vector, v⃗ , into components, called v⃗ parallel and v⃗ perp, which are parallel and perpendicular,

respectively, to a given nonzero vector, u⃗ . (See Figure 13.31.)

�

u⃗v⃗

v⃗ perp v⃗ parallel

(a)

�

v⃗ parallel

v⃗

u⃗v⃗ perp
(b)

Figure 13.31: Resolving v⃗ into components parallel and perpendicular to u⃗

(a) 0 < � < �∕2 (b) �∕2 < � < �

The projection of v⃗ on u⃗ , written v⃗ parallel, measures (in some sense) how much the vector v⃗ is

aligned with the vector u⃗ . The length of v⃗ parallel is the length of the shadow cast by v⃗ on a line in

the direction of u⃗ .

To compute v⃗ parallel, we assume u⃗ is a unit vector. (If not, create one by dividing by its length.)

Then Figure 13.31(a) shows that, if 0 ≤ � ≤ �∕2:

‖v⃗ parallel‖ = ‖v⃗ ‖ cos � = v⃗ ⋅ u⃗ (since ‖u⃗ ‖ = 1).

Now v⃗ parallel is a scalar multiple of u⃗ , and since u⃗ is a unit vector,

v⃗ parallel = (‖v⃗ ‖ cos �)u⃗ = (v⃗ ⋅ u⃗ )u⃗ .

A similar argument shows that if �∕2 < � ≤ �, as in Figure 13.31(b), this formula for v⃗ parallel still

holds. The vector v⃗ perp is specified by

v⃗ perp = v⃗ − v⃗ parallel.

Thus, we have the following results:

Projection of v⃗ on the Line in the Direction of the Unit Vector u⃗

If v⃗ parallel and v⃗ perp are components of v⃗ that are parallel and perpendicular, respectively, to

u⃗ , then

Projection of v⃗ onto u⃗ = v⃗ parallel = (v⃗ ⋅ u⃗ )u⃗ provided ‖u⃗ ‖ = 1

and v⃗ = v⃗ parallel + v⃗ perp so v⃗ perp = v⃗ − v⃗ parallel.

Example 8 Figure 13.32 shows the force the wind exerts on the sail of a sailboat. Find the component of the

force in the direction in which the sailboat is traveling.

Sail

✲

❥❄

❥

✲
✲u⃗

30◦

Wind direction

Boat’s direction of travel

F⃗ wind

Component of F⃗ wind
in boat’s direction of travel

Figure 13.32: Wind moving a sailboat
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Solution Let u⃗ be a unit vector in the direction of travel. The force of the wind on the sail makes an angle of

30◦ with u⃗ . Thus, the component of this force in the direction of u⃗ is

F⃗ parallel = (F⃗ ⋅ u⃗ )u⃗ = ‖F⃗ ‖(cos 30◦)u⃗ = 0.87‖F⃗ ‖u⃗ .

Thus, the boat is being pushed forward with about 87% of the total force due to the wind. (In fact,

the interaction of wind and sail is much more complex than this model suggests.)

A Physical Interpretation of the Dot Product: Work

In physics, the word “work” has a different meaning from its everyday meaning. In physics, when a

force of magnitude F acts on an object through a distance d, we say the work, W , done by the force

is

W = Fd,

provided the force and the displacement are in the same direction. For example, if a 1 kg body falls

10 meters under the force of gravity, which is 9.8 newtons, then the work done by gravity is

W = (9.8 newtons) ⋅ (10 meters) = 98 joules.

What if the force and the displacement are not in the same direction? Suppose a force F⃗ acts on

an object as it moves along a displacement vector d⃗ . Let � be the angle between F⃗ and d⃗ . First, we

assume 0 ≤ � ≤ �∕2. Figure 13.33 shows how we can resolve F⃗ into components that are parallel

and perpendicular to d⃗ :

F⃗ = F⃗ parallel + F⃗ perp.

Then the work done by F⃗ is defined to be

W = ‖F⃗ parallel‖ ‖d⃗ ‖.

We see from Figure 13.33 that F⃗ parallel has magnitude ‖F⃗ ‖ cos �. So the work is given by the dot

product:

W = (‖F⃗ ‖ cos �)‖d⃗ ‖ = ‖F⃗ ‖‖d⃗ ‖ cos � = F⃗ ⋅ d⃗ .

�

d⃗

F⃗

F⃗ perp

F⃗ parallel

Figure 13.33: Resolving the force F⃗ into two forces, one parallel to d⃗ , one perpendicular to d⃗

The formula W = F⃗ ⋅ d⃗ holds when �∕2 < � ≤ � also. In that case, the work done by the force

is negative and the object is moving against the force. Thus, we have the following definition:

The work, W , done by a force F⃗ acting on an object through a displacement d⃗ is given by

W = F⃗ ⋅ d⃗ .

Example 9 How much work does the wind do on the sailboat from Example 8 if the boat moves 20 m and the

wind’s force is 120 newtons?
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Solution From Example 8, we know that the force of the wind F⃗ makes a 30◦ angle with the boat’s displace-

ment d⃗ . Since ‖F⃗ ‖ = 120 and ‖d⃗ ‖ = 20, the work done by the wind on the boat is

W = F⃗ ⋅ d⃗ = ‖F⃗ ‖‖d⃗ ‖ cos 30◦ = 2078.461 joules.

Notice that if the vectors F⃗ and d⃗ are parallel and in the same direction, with magnitudes F

and d, then cos � = cos 0 = 1, so W = ‖F⃗ ‖‖d⃗ ‖ = Fd, which is the original definition. When the

vectors are perpendicular, cos � = cos(�∕2) = 0, so W = 0 and no work is done in the technical

definition of the word. For example, if you carry a heavy box across the room at the same horizontal

height, no work is done by gravity because the force of gravity is vertical but the motion is horizontal.

Exercises and Problems for Section 13.3 Online Resource: Additional Problems for Section 13.3
EXERCISES

In Exercises 1–4, evaluate the dot product.

1. (3i⃗ + 2j⃗ − 5k⃗ ) ⋅ (i⃗ − 2j⃗ − 3k⃗ )

2. (i⃗ + j⃗ + k⃗ ) ⋅ (4i⃗ + 5j⃗ + 6k⃗ )

3. (3i⃗ − 2j⃗ − 4k⃗ ) ⋅ (3i⃗ − 2j⃗ − 4k⃗ )

4. (2i + 5k⃗ ) ⋅ 10j⃗

In Exercises 5–6, evaluate u⃗ ⋅ w⃗ .

5. ‖u⃗ ‖ = 3, ‖w⃗ ‖ = 5; the angle between u⃗ and w⃗ is 45◦.

6. ‖u⃗ ‖ = 10, ‖w⃗ ‖ = 20; the angle between u⃗ and w⃗

is 120◦.

For Exercises 7–15, perform the following operations on the

given 3-dimensional vectors.

a⃗ = 2j⃗ + k⃗ b⃗ = −3i⃗ + 5j⃗ + 4k⃗ c⃗ = i⃗ + 6j⃗

y⃗ = 4i⃗ − 7j⃗ z⃗ = i⃗ − 3j⃗ − k⃗

7. a⃗ ⋅ y⃗ 8. c⃗ ⋅ y⃗

9. a⃗ ⋅ b⃗ 10. a⃗ ⋅ z⃗

11. c⃗ ⋅ a⃗ + a⃗ ⋅ y⃗ 12. a⃗ ⋅ (c⃗ + y⃗ )

13. (a⃗ ⋅ b⃗ )a⃗ 14. (a⃗ ⋅ y⃗ )(c⃗ ⋅ z⃗ )

15. ((c⃗ ⋅ c⃗ )a⃗ ) ⋅ a⃗

In Exercises 16–20, find a normal vector to the plane.

16. 2x + y − z = 5

17. 2(x − z) = 3(x + y)

18. 1.5x + 3.2y + z = 0

19. z = 3x + 4y − 7

20. �(x − 1) = (1 − �)(y − z) + �

In Exercises 21–27, find an equation of a plane that satisfies

the given conditions.

21. Through (1, 5, 2) perpendicular to 3i⃗ − j⃗ + 4k⃗ .

22. Through (2,−1, 3) perpendicular to 5i⃗ + 4j⃗ − k⃗ .

23. Through (1, 3, 5) and normal to i⃗ − j⃗ + k⃗ .

24. Perpendicular to 5i⃗ + j⃗ − 2k⃗ and passing through

(0, 1,−1).

25. Parallel to 2x + 4y − 3z = 1 and through (1, 0,−1).

26. Through (−2, 3, 2) and parallel to 3x + y + z = 4.

27. Perpendicular to v⃗ = 2i⃗ − 3j⃗ + 5k⃗ and through

(4, 5,−2).

In Exercises 28–32, compute the angle between the vectors.

28. i⃗ + j⃗ + k⃗ and i⃗ − j⃗ − k⃗ .

29. i⃗ + k⃗ and j⃗ − k⃗ .

30. i⃗ + j⃗ − k⃗ and 2 i⃗ + 3 j⃗ + k⃗ .

31. i⃗ + j⃗ and i⃗ + 2 j⃗ − k⃗ .

32. i⃗ and 2 i⃗ + 3 j⃗ − k⃗ .

33. Match statements (a)-(c) with diagrams (I)-(III) of vec-

tors u⃗ and w⃗ in Figure 13.34.

(a) u⃗ ⋅ w⃗ = 0 (b) u⃗ ⋅ w⃗ > 0 (c) u⃗ ⋅ w⃗ < 0

(I) (II) (III)

Figure 13.34
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PROBLEMS

34. Are the dot products of the two-dimensional vectors in

Figure 13.34 positive, negative, or zero?

(a) a⃗ ⋅ b⃗ (b) a⃗ ⋅ c⃗ (c) b⃗ ⋅ c⃗

c⃗

b⃗

a⃗

Figure 13.35

35. Give a unit vector

(a) In the same direction as v⃗ = 2i⃗ + 3j⃗ .

(b) Perpendicular to v⃗ .

36. A plane has equation z = 5x − 2y + 7.

(a) Find a value of � making the vector �i⃗ + j⃗ +0.5k⃗

normal to the plane.

(b) Find a value of a so that the point (a + 1, a, a − 1)

lies on the plane.

37. Consider the plane 5x − y + 7z = 21.

(a) Find a point on the x-axis on this plane.

(b) Find two other points on the plane.

(c) Find a vector perpendicular to the plane.

(d) Find a vector parallel to the plane.

38. (a) Find a vector perpendicular to the plane

z = 2 + 3x − y.

(b) Find a vector parallel to the plane.

39. (a) Find a vector perpendicular to the plane

z = 2x + 3y.

(b) Find a vector parallel to the plane.

40. Consider the plane x + 2y − z = 5 and the vector

v⃗ = 2i⃗ − 5j⃗ + 3k⃗ .

(a) Find a normal vector to the plane.

(b) What is the angle between v⃗ and the vector you

found in part (a)?

(c) What is the angle between v⃗ and the plane?

41. Match the planes in (a)–(d) with one or more of the de-

scriptions in (I)–(IV). No reasons are needed.

(a) 3x − y + z = 0 (b) 4x + y + 2z − 5 = 0

(c) x + y = 5 (d) x = 5

I Goes through the origin.

II Has a normal vector parallel to the xy-plane.

III Goes through the point (0, 5, 0).

IV Has a normal vector whose dot products with i⃗ , j⃗ ,

k⃗ are all positive.

42. Which pairs (if any) of vectors from the following list

(a) Are perpendicular?

(b) Are parallel?

(c) Have an angle less than �∕2 between them?

(d) Have an angle of more than �∕2 between them?

a⃗ = i⃗ − 3j⃗ − k⃗ , b⃗ = i⃗ + j⃗ + 2k⃗ ,

c⃗ = −2i⃗ − j⃗ + k⃗ , d⃗ = −i⃗ − j⃗ + k⃗ .

43. List any vectors that are parallel to each other and any

vectors that are perpendicular to each other:

v⃗ 1 = i⃗ − 2j⃗ v⃗ 2 = 2i⃗ + 4j⃗

v⃗ 3 = 3i⃗ + 1.5j⃗ v⃗ 4 = −1.2i⃗ + 2.4j⃗

v⃗ 5 = −5i⃗ − 2.5j⃗ v⃗ 6 = 12i⃗ − 12j⃗

v⃗ 7 = 4i⃗ + 2j⃗ v⃗ 8 = 3i⃗ − 6j⃗

v⃗ 9 = 0.70i⃗ − 0.35j⃗

44. (a) Give a vector that is parallel to, but not equal to,

v⃗ = 4i⃗ + 3j⃗ .

(b) Give a vector that is perpendicular to v⃗ .

45. For what values of t are u⃗ = ti⃗ − j⃗ + k⃗ and v⃗ =

ti⃗ + tj⃗ − 2k⃗ perpendicular? Are there values of t for

which u⃗ and v⃗ are parallel?

46. Let � be the angle between v⃗ and w⃗ , with 0 < � < �∕2.

What is the effect on v⃗ ⋅w⃗ of increasing each of the fol-

lowing quantities? Does v⃗ ⋅ w⃗ increase or decrease?

(a) ||v⃗ || (b) �

In Problems 47–49, for two-dimensional vectors a⃗ and b⃗ , if

‖a⃗ ‖ = 2 and ‖b⃗ ‖ = 4, find ‖a⃗ + b⃗ ‖ for the given a⃗ ⋅ b⃗ .

47. a⃗ ⋅ b⃗ = −8 48. a⃗ ⋅ b⃗ = 8 49. a⃗ ⋅ b⃗ = 0

50. For a fixed two-dimensional vector a⃗ with ‖a⃗ ‖ = 2,

determine how many vectors there are with ‖b⃗ ‖ = 4

and a⃗ ⋅ b⃗ = 4.

51. Write a⃗ = 3i⃗ +2j⃗ −6k⃗ as the sum of two vectors, one

parallel and one perpendicular to d⃗ = 2i⃗ − 4j⃗ + k⃗ .

52. Find angle BAC if A = (2, 2, 2), B = (4, 2, 1), and

C = (2, 3, 1).

53. The points (5, 0, 0), (0,−3, 0), and (0, 0, 2) form a tri-

angle. Find the lengths of the sides of the triangle and

each of its angles.

54. Let S be the triangle with vertices A = (2, 2, 2), B =

(4, 2, 1), and C = (2, 3, 1).

(a) Find the length of the shortest side of S.

(b) Find the cosine of the angle BAC at vertex A.

In Problems 55–57, find the work done by a force F⃗ moving

an object on the line from point P to point Q. Give answers

in joules and foot-pounds, using 1 joule ≈ 0.73756 ft-lb.

55. F⃗ = 3i⃗ + 4j⃗ newtons, P = (3, 4) meters, Q =

(8, 10) meters
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56. F⃗ = 4i⃗ + 2j⃗ newtons, P = (10, 9) meters, Q =

(12, 2) meters

57. F⃗ = 20i⃗ + 30j⃗ pounds, P = (9, 3) feet, Q =

(12, 5) feet

In Problems 58–63, given v⃗ = 3i⃗ +4j⃗ and force vector F⃗ ,

find:

(a) The component of F⃗ parallel to v⃗ .

(b) The component of F⃗ perpendicular to v⃗ .

(c) The work, W, done by force F⃗ through displacement v⃗ .

58. F⃗ = 4i⃗ + j⃗ 59. F⃗ = 0.2i⃗ − 0.5j⃗

60. F⃗ = 9i⃗ + 12j⃗ 61. F⃗ = −0.4i⃗ + 0.3j⃗

62. F⃗ = −3i⃗ − 5j⃗ 63. F⃗ = −6i⃗ − 8j⃗

In Problems 64–67, the force on an object is F⃗ = −20j⃗ .

For vector v⃗ , find:

(a) The component of F⃗ parallel to v⃗ .

(b) The component of F⃗ perpendicular to v⃗ .

(c) The work W done by force F⃗ through displacement v⃗ .

64. v⃗ = 2i⃗ + 3j⃗ 65. v⃗ = 5i⃗ − j⃗

66. v⃗ = 3j⃗ 67. v⃗ = 5i⃗

68. A basketball gymnasium is 25 meters high, 80 meters

wide and 200 meters long. For a half-time stunt, the

cheerleaders want to run two strings, one from each of

the two corners above one basket to the diagonally op-

posite corners of the gym floor. What is the cosine of

the angle made by the strings as they cross?

69. An inner diagonal of a cube runs from one vertex

through the center to the opposite vertex. For the cube

with vertices (±1,±1,±1), at what acute angle do two

distinct inner diagonals intersect?

70. A 100-meter dash is run on a track in the direction of

the vector v⃗ = 2i⃗ +6j⃗ . The wind velocity w⃗ is 5i⃗ + j⃗

km/hr. The rules say that a legal wind speed measured in

the direction of the dash must not exceed 5 km/hr. Will

the race results be disqualified due to an illegal wind?

Justify your answer.

71. An airplane is flying toward the southeast. Which of the

following wind velocity vectors increases the plane’s

speed the most? Which slows down the plane the most?

w⃗ 1 = −4i⃗ − j⃗ w⃗ 2 = i⃗ − 2j⃗ w⃗ 3 = −i⃗ + 8j⃗

w⃗ 4 = 10i⃗ + 2j⃗ w⃗ 5 = 5i⃗ − 2j⃗

72. A canoe is moving with velocity v⃗ = 5i⃗ + 3j⃗ m/sec

relative to the water. The velocity of the current in the

water is c⃗ = i⃗ + 2j⃗ m/sec.

(a) What is the speed of the current?

(b) What is the speed of the current in the direction of

the canoe’s motion?

73. A planet at the point (30, 60, 90) is in a circular orbit

about the line through the origin in the direction of the

unit vector u⃗ = 2∕3i⃗ + 2∕3j⃗ − 1∕3k⃗ . For the orbit,

find the

(a) Center (b) Radius

74. Find the shortest distance between the planes 2x−5y+

z = 10 and z = 5y − 2x.

75. A street vendor sells six items, with prices p1 dol-

lars per unit, p2 dollars per unit, and so on. The ven-

dor’s price vector is p⃗ = (p1, p2, p3, p4, p5, p6) =

(1.00, 3.50, 4.00, 2.75, 5.00, 3.00). The vendor sells q1
units of the first item, q2 units of the second item,

and so on. The vendor’s quantity vector is q⃗ =

(q1, q2, q3, q4, q5, q6) = (43, 57, 12, 78, 20, 35). Find p⃗ ⋅

q⃗ , give its units, and explain its significance to the ven-

dor.

76. A course has four exams, weighted 10%, 15%, 25%,

50%, respectively. The class average on each of these

exams is 75%, 91%, 84%, 87%, respectively. What do

the vectors a⃗ = (0.75, 0.91, 0.84, 0.87) and w⃗ =

(0.1, 0.15, 0.25, 0.5) represent, in terms of the course?

Calculate the dot product w⃗ ⋅ a⃗ . What does it repre-

sent, in terms of the course?

77. A consumption vector of three goods is defined by

x⃗ = (x1, x2, x3), where x1, x2 and x3 are the quanti-

ties consumed of the three goods. A budget constraint

is represented by the equation p⃗ ⋅ x⃗ = k, where p⃗ is

the price vector of the three goods and k is a constant.

Show that the difference between two consumption vec-

tors corresponding to points satisfying the same budget

constraint is perpendicular to the price vector p⃗ .

78. What does Property 2 of the dot product in the box on

page 719 say geometrically?

79. Show that the vectors (b⃗ ⋅ c⃗ )a⃗ − (a⃗ ⋅ c⃗ )b⃗ and c⃗ are

perpendicular.

80. Show that if u⃗ and v⃗ are two vectors such that

u⃗ ⋅ w⃗ = v⃗ ⋅ w⃗

for every vector w⃗ , then

u⃗ = v⃗ .

81. The Law of Cosines for a triangle with side lengths a,

b, and c, and with angle C opposite side c, says

c2 = a2 + b2 − 2ab cosC.

On page 719, we used the Law of Cosines to show that

the two definitions of the dot product are equivalent.

In this problem, use the geometric definition of the dot

product and its properties in the box on page 719 to

prove the Law of Cosines. [Hint: Let u⃗ and v⃗ be the

displacement vectors from C to the other two vertices,

and express c2 in terms of u⃗ and v⃗ .]
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82. For any vectors v⃗ and w⃗ , consider the following func-

tion of t:

q(t) = (v⃗ + tw⃗ ) ⋅ (v⃗ + tw⃗ ).

(a) Explain why q(t) ≥ 0 for all real t.

(b) Expand q(t) as a quadratic polynomial in t using

the properties on page 719.

(c) Using the discriminant of the quadratic, show that

|

|

v⃗ ⋅ w⃗ |

|

≤ ‖v⃗ ‖‖w⃗ ‖.

Strengthen Your Understanding

In Problems 83–85, explain what is wrong with the state-

ment.

83. For any 3-dimensional vectors u⃗ , v⃗ , w⃗ , we have (u⃗ ⋅

v⃗ ) ⋅ w⃗ = u⃗ ⋅ (v⃗ ⋅ w⃗ ).

84. If u⃗ = i⃗ + j⃗ and v⃗ = 2i⃗ + j⃗ , then the component of

v⃗ parallel to u⃗ is v⃗ parallel = (v⃗ ⋅ u⃗ )u⃗ = 3i⃗ + 3j⃗ .

85. A normal vector for the plane z = 2x + 3y is 2i⃗ + 3j⃗ .

In Problems 86–87, give an example of:

86. A point (a, b) such that the displacement vector from

(1, 1) to (a, b) is perpendicular to i⃗ + 2j⃗ .

87. A linear function f (x, y) = mx + ny + c whose graph

is perpendicular to i⃗ + 2j⃗ + 3k⃗ .

Are the statements in Problems 88–99 true or false? Give

reasons for your answer.

88. The quantity u⃗ ⋅ v⃗ is a vector.

89. The plane x+2y−3z = 5 has normal vector i⃗ +2j⃗ −3k⃗ .

90. If u⃗ ⋅ v⃗ < 0 then the angle between u⃗ and v⃗ is greater

than �∕2.

91. An equation of the plane with normal vector i⃗ + j⃗ + k⃗

containing the point (1, 2, 3) is z = x + y.

92. The triangle in 3-space with vertices (1, 1, 0), (0, 1, 0)

and (0, 1, 1) has a right angle.

93. The dot product v⃗ ⋅ v⃗ is never negative.

94. If u⃗ ⋅ v⃗ = 0 then either u⃗ = 0 or v⃗ = 0.

95. If u⃗ , v⃗ and w⃗ are all nonzero, and u⃗ ⋅ v⃗ = u⃗ ⋅ w⃗ , then

v⃗ = w⃗ .

96. For any vectors u⃗ and v⃗ : (u⃗ + v⃗ ) ⋅ (u⃗ − v⃗ ) = ‖u⃗ ‖2 −

‖v⃗ ‖2.

97. If ‖u⃗ ‖ = 1, then the vector v⃗ −(v⃗ ⋅u⃗ )u⃗ is perpendicular

to u⃗ .

98. If u⃗ ⋅ v⃗ = ‖u⃗ ‖‖v⃗ ‖ then ‖u⃗ + v⃗ ‖ = ‖u⃗ ‖ + ‖v⃗ ‖.

99. The two nonzero vectors v⃗ = xi⃗ +yj⃗ and w⃗ = yi⃗ −xj⃗

are orthogonal for any choice of x and y.

13.4 THE CROSS PRODUCT

In the previous section we combined two vectors to get a number, the dot product. In this section

we see another way of combining two vectors, this time to get a vector, the cross product. Any two

vectors in 3-space form a parallelogram. We define the cross product using this parallelogram.

The Area of a Parallelogram

Consider the parallelogram formed by the vectors v⃗ and w⃗ with an angle of � between them. Then

Figure 13.36 shows

Area of parallelogram = Base ⋅ Height = ‖v⃗ ‖‖w⃗ ‖ sin �.

How would we compute the area of the parallelogram if we were given v⃗ and w⃗ in components,

v⃗ = v1i⃗ + v2j⃗ + v3k⃗ and w⃗ = w1i⃗ +w2j⃗ +w3k⃗ ? Project 1 (available online) shows that if v⃗ and

w⃗ are in the xy-plane so that v3 = w3 = 0, then

Area of parallelogram = |

|

v1w2 − v2w1
|

|

.

✻

❄

‖w⃗ ‖ sin �

v⃗

w⃗

�

✲✛
‖v⃗ ‖

Figure 13.36: Parallelogram formed by v⃗ and w⃗ has

Area = ‖v⃗ ‖‖w⃗ ‖ sin �



13.4 THE CROSS PRODUCT 729

What if v⃗ and w⃗ do not lie in the xy-plane? The cross product will enable us to compute the area

of the parallelogram formed by any two vectors.

Definition of the Cross Product

We define the cross product of the vectors v⃗ and w⃗ , written v⃗ × w⃗ , to be a vector perpendicular

to both v⃗ and w⃗ . The magnitude of this vector is the area of the parallelogram formed by the two

vectors. The direction of v⃗ × w⃗ is given by the normal vector, n⃗ , to the plane defined by v⃗ and w⃗ . If

we require that n⃗ be a unit vector, there are two choices for n⃗ , pointing out of the plane in opposite

directions. We pick one by the following rule (see Figure 13.37):

The right-hand rule: Place v⃗ and w⃗ so that their tails coincide and curl the fingers of your

right hand through the smaller of the two angles from v⃗ to w⃗ ; your thumb points in the

direction of the normal vector, n⃗ .

Like the dot product, there are two equivalent definitions of the cross product:

The following two definitions of the cross product or vector product v⃗ × w⃗ are equivalent:

• Geometric definition

If v⃗ and w⃗ are not parallel, then

v⃗ × w⃗ =

(

Area of parallelogram

with edges v⃗ and w⃗

)

n⃗ = (‖v⃗ ‖‖w⃗ ‖ sin �)n⃗ ,

where 0 ≤ � ≤ � is the angle between v⃗ and w⃗ and n⃗ is the unit vector perpendicular to

v⃗ and w⃗ pointing in the direction given by the right-hand rule. If v⃗ and w⃗ are parallel,

then v⃗ × w⃗ = 0⃗ .

• Algebraic definition

v⃗ × w⃗ = (v2w3 − v3w2)i⃗ + (v3w1 − v1w3)j⃗ + (v1w2 − v2w1)k⃗

where v⃗ = v1 i⃗ + v2j⃗ + v3k⃗ and w⃗ = w1 i⃗ +w2j⃗ +w3k⃗ .

Problems 79 and 82 (available online) show that the geometric and algebraic definitions of the

cross product give the same result.

Figure 13.37: Area of parallelogram = ‖v⃗ × w⃗ ‖

�

v⃗

w⃗

v⃗ × w⃗

Figure 13.38: The cross product v⃗ × w⃗

The geometric definition shows us that the cross product is rotation invariant. Imagine the two

vectors v⃗ and w⃗ as two metal rods welded together. Attach a third rod whose direction and length

correspond to v⃗ × w⃗ . (See Figure 13.38.) Then, no matter how we turn this set of rods, the third will

still be the cross product of the first two.

The algebraic definition is more easily remembered by writing it as a 3 × 3 determinant. (See

Appendix E.)
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v⃗ × w⃗ =

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗

v1 v2 v3

w1 w2 w3

|

|

|

|

|

|

|

|

= (v2w3 − v3w2)i⃗ + (v3w1 − v1w3)j⃗ + (v1w2 − v2w1)k⃗ .

Example 1 Find i⃗ × j⃗ and j⃗ × i⃗ .

Solution The vectors i⃗ and j⃗ both have magnitude 1 and the angle between them is �∕2. By the right-hand

rule, the vector i⃗ × j⃗ is in the direction of k⃗ , so n⃗ = k⃗ and we have

i⃗ × j⃗ =
(

‖i⃗ ‖‖j⃗ ‖ sin
�

2

)

k⃗ = k⃗ .

Similarly, the right-hand rule says that the direction of j⃗ × i⃗ is −k⃗ , so

j⃗ × i⃗ =
(

‖j⃗ ‖‖i⃗ ‖ sin
�

2

)(

−k⃗
)

= −k⃗ .

Similar calculations show that j⃗ × k⃗ = i⃗ and k⃗ × i⃗ = j⃗ .

Example 2 For any vector v⃗ , find v⃗ × v⃗ .

Solution Since v⃗ is parallel to itself, v⃗ × v⃗ = 0⃗ .

Example 3 Find the cross product of v⃗ = 2i⃗ + j⃗ − 2k⃗ and w⃗ = 3i⃗ + k⃗ and check that the cross product is

perpendicular to both v⃗ and w⃗ .

Solution Writing v⃗ × w⃗ as a determinant and expanding it into three two-by-two determinants, we have

v⃗ × w⃗ =

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗

2 1 −2

3 0 1

|

|

|

|

|

|

|

|

= i⃗
|

|

|

|

|

1 −2

0 1

|

|

|

|

|

− j⃗
|

|

|

|

|

2 −2

3 1

|

|

|

|

|

+ k⃗
|

|

|

|

|

2 1

3 0

|

|

|

|

|

= i⃗ (1(1) − 0(−2)) − j⃗ (2(1) − 3(−2)) + k⃗ (2(0) − 3(1))

= i⃗ − 8j⃗ − 3k⃗ .

To check that v⃗ × w⃗ is perpendicular to v⃗ , we compute the dot product:

v⃗ ⋅ (v⃗ × w⃗ ) = (2i⃗ + j⃗ − 2k⃗ ) ⋅ (i⃗ − 8j⃗ − 3k⃗ ) = 2 − 8 + 6 = 0.

Similarly,

w⃗ ⋅ (v⃗ × w⃗ ) = (3i⃗ + 0j⃗ + k⃗ ) ⋅ (i⃗ − 8j⃗ − 3k⃗ ) = 3 + 0 − 3 = 0.

Thus, v⃗ × w⃗ is perpendicular to both v⃗ and w⃗ .
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Properties of the Cross Product

The right-hand rule tells us that v⃗ × w⃗ and w⃗ × v⃗ point in opposite directions. The magnitudes of

v⃗ × w⃗ and w⃗ × v⃗ are the same, so w⃗ × v⃗ = −(v⃗ × w⃗ ). (See Figure 13.39.)

v⃗

w⃗

v⃗ × w⃗

w⃗ × v⃗

v⃗

w⃗

Figure 13.39: Diagram showing v⃗ × w⃗ = −(w⃗ × v⃗ )

This explains the first of the following properties. The other two are derived in Problems 74, 75,

and 82 (available online).

Properties of the Cross Product

For vectors u⃗ , v⃗ , w⃗ and scalar �

1. w⃗ × v⃗ = −(v⃗ × w⃗ )

2. (�v⃗ ) × w⃗ = �(v⃗ × w⃗ ) = v⃗ × (�w⃗ )

3. u⃗ × (v⃗ + w⃗ ) = u⃗ × v⃗ + u⃗ × w⃗ .

The Equation of a Plane Through Three Points

As we saw on page 721, the equation of a plane is determined by a point P0 = (x0, y0, z0) on the

plane, and a normal vector, n⃗ = ai⃗ + bj⃗ + ck⃗:

a(x − x0) + b(y − y0) + c(z − z0) = 0.

However, a plane can also be determined by three points on it (provided they do not lie on the same

line). In that case we can find an equation of the plane by first determining two vectors in the plane

and then finding a normal vector using the cross product, as in the following example.

Example 4 Find an equation of the plane containing the points P = (1, 3, 0), Q = (3, 4,−3), and R = (3, 6, 2).

Solution Since the pointsP andQ are in the plane, the displacement vector between them, ⃖⃖⃖⃖⃖⃗PQ, is in the plane,

where
⃖⃖⃖⃖⃖⃗PQ = (3 − 1)i⃗ + (4 − 3)j⃗ + (−3 − 0)k⃗ = 2i⃗ + j⃗ − 3k⃗ .

The displacement vector ⃖⃖⃖⃖⃖⃗PR is also in the plane, where

⃖⃖⃖⃖⃖⃗PR = (3 − 1)i⃗ + (6 − 3)j⃗ + (2 − 0)k⃗ = 2i⃗ + 3j⃗ + 2k⃗ .

Thus, a normal vector, n⃗ , to the plane is given by

n⃗ = ⃖⃖⃖⃖⃖⃗PQ × ⃖⃖⃖⃖⃖⃗PR =

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗

2 1 −3

2 3 2

|

|

|

|

|

|

|

|

= 11i⃗ − 10j⃗ + 4k⃗ .
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Since the point (1, 3, 0) is on the plane, the equation of the plane is

11(x− 1) − 10(y− 3) + 4(z − 0) = 0,

which simplifies to

11x − 10y+ 4z = −19.

You should check that P , Q, and R satisfy this equation, since they lie on the plane.

Areas and Volumes Using the Cross Product and Determinants

We can use the cross product to calculate the area of the parallelogram with sides v⃗ and w⃗ . We say

that v⃗ × w⃗ is the area vector of the parallelogram. The geometric definition of the cross product

tells us that v⃗ × w⃗ is normal to the parallelogram and gives us the following result:

Area of a parallelogram with edges v⃗ = v1 i⃗ + v2j⃗ + v3k⃗ and w⃗ = w1i⃗ +w2 j⃗ +w3k⃗ is

given by

Area = ‖v⃗ × w⃗ ‖, where v⃗ × w⃗ =

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗

v1 v2 v3

w1 w2 w3

|

|

|

|

|

|

|

|

.

Example 5 Find the area of the parallelogram with edges v⃗ = 2i⃗ + j⃗ − 3k⃗ and w⃗ = i⃗ + 3j⃗ + 2k⃗ .

Solution We calculate the cross product:

v⃗ × w⃗ =

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗

2 1 −3

1 3 2

|

|

|

|

|

|

|

|

= (2 + 9)i⃗ − (4 + 3)j⃗ + (6 − 1)k⃗ = 11i⃗ − 7j⃗ + 5k⃗ .

The area of the parallelogram with edges v⃗ and w⃗ is the magnitude of the vector v⃗ × w⃗ :

Area = ‖v⃗ × w⃗ ‖ =
√

112 + (−7)2 + 52 =
√

195.

Volume of a Parallelepiped

Consider the parallelepiped with sides formed by a⃗ , b⃗ , and c⃗ . (See Figure 13.40.) Since the base is

formed by the vectors b⃗ and c⃗ , we have

Area of base of parallelepiped = ‖b⃗ × c⃗ ‖.

a⃗

b⃗

c⃗

Figure 13.40: Volume of a

parallelepiped

a⃗

b⃗

c⃗

�
b⃗ × c⃗

Figure 13.41: The vectors a⃗ , b⃗ , c⃗ are

called a right-handed set

c⃗

b⃗

a⃗
�

b⃗ × c⃗

Figure 13.42: The vectors a⃗ , b⃗ , c⃗ are

called a left-handed set
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The vectors a⃗ , b⃗ , and c⃗ can be arranged either as in Figure 13.41 or as in Figure 13.42. In either

case,

Height of parallelepiped = ‖a⃗ ‖ cos �,

where � is the angle shown in the figures. In Figure 13.41 the angle � is less than �∕2, so the product,

(b⃗ × c⃗ ) ⋅ a⃗ , called the triple product, is positive. Thus, in this case

Volume of parallelepiped = Base ⋅ Height = ‖b⃗ × c⃗ ‖ ⋅ ‖a⃗ ‖ cos � = (b⃗ × c⃗ ) ⋅ a⃗ .

In Figure 13.42, the angle, � − �, between a⃗ and b⃗ × c⃗ is more than �∕2, so the product (b⃗ × c⃗ ) ⋅ a⃗

is negative. Thus, in this case we have

Volume = Base ⋅ Height = ‖b⃗ × c⃗ ‖ ⋅ ‖a⃗ ‖ cos � = −‖b⃗ × c⃗ ‖ ⋅ ‖a⃗ ‖ cos(� − �)

= −(b⃗ × c⃗ ) ⋅ a⃗ =
|

|

|

(b⃗ × c⃗ ) ⋅ a⃗
|

|

|

.

Therefore, in both cases the volume is given by
|

|

|

(b⃗ × c⃗ ) ⋅ a⃗
|

|

|

. Using determinants, we can write

Volume of a parallelepiped with edges a⃗ , b⃗ , c⃗ is given by

Volume =
|

|

|

(b⃗ × c⃗ ) ⋅ a⃗
|

|

|

= Absolute value of the determinant

|

|

|

|

|

|

|

|

a1 a2 a3

b1 b2 b3

c1 c2 c3

|

|

|

|

|

|

|

|

.

Angular Velocity

) Angular velocity, which describes rotation about an axis, can be represented by a vector. For ex-

ample, the angular velocity of the rotating flywheel in Figure 13.43 is represented by the vector !⃗ ,

whose direction is parallel to the axis of rotation in the direction given by the right-hand rule. If the

fingers of the right-hand curl around the axis in the direction of the rotation, then the thumb points

along the axis in the direction of !⃗ . The magnitude ‖!⃗ ‖ is the angular speed of rotation, for example

in radians per unit time or revolutions per unit time.

Every point on the flywheel travels a circular orbit around the axis. Since one orbit is 2� radians,

Time to complete one orbit =
Angle traveled

Angular speed
=

2�

‖!⃗ ‖

.

In Figure 13.43, let r⃗ be the vector from the center of the orbit to the point P . In one orbit, the point

P travels a distance of 2�‖r⃗ ‖ around the circumference of a circle, so

Speed =
Distance

Time
=

2�‖r⃗ ‖

2�∕‖!⃗ ‖

= ‖!⃗ ‖ ⋅ ‖r⃗ ‖.

The velocity vector v⃗ is tangent to the orbit, so v⃗ is perpendicular to both the axis and the radius

of the orbit. The magnitude of v⃗ is the speed of P , so ‖v⃗ ‖ = ‖!⃗ ‖ ⋅ ‖r⃗ ‖. Since the cross product

!⃗ × r⃗ has the same direction as the velocity (both !⃗ × r⃗ and v⃗ are perpendicular to !⃗ and to r⃗ ),

and the same magnitude as the velocity (both magnitudes are ‖!⃗ ‖ ⋅ ‖r⃗ ‖), we have

v⃗ = !⃗ × r⃗ .
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The formula v⃗ = !⃗ × r⃗ holds for r⃗ a vector from any point on the axis of rotation to the point

P . This is because r⃗ can be expressed as the sum of two component vectors, one parallel to the axis

and the other a radius vector of the orbit. Only the radial component contributes to the cross product.

See Figure 13.44.

!⃗

r⃗

v⃗
P

Figure 13.43: Rotating flywheel

!⃗

r⃗

v⃗

P

Figure 13.44: Rotating flywheel

Example 6 The world record for the fastest spin by a figure skater, 342 revolutions per minute, is held by Olivia

Oliver.2

(a) Find Olivia’s angular velocity vector, assuming she is vertical and spinning her fastest to her left.

(b) Let her skates touch the ice at the point (0, 0, 0) and her left elbow be at P = (10, 15, 110), where

distances are in centimeters. Find the velocity of her elbow.

(c) Find the speed of her elbow in centimeters per minute.

Solution (a) Since she is spinning around a vertical axis, we have !⃗ = ck⃗ where c, the rate of rotation, is

positive because she is spinning to her left. Since 1 revolution corresponds to 2� radians, we

have c = 2� ⋅ 342 = 2149. Hence !⃗ = 2149k⃗ radians per minute.

(b) Her elbow has position vector r⃗ = 10i⃗ + 15j⃗ + 110k⃗ cm. Her elbow velocity is the vector

v⃗ = !⃗ × r⃗ = −32,235i⃗ + 21,490j⃗ cm∕min.

(c) Her elbow is moving with speed

‖v⃗ ‖ =
√

(−32,235)2 + (21,490)2 = 38,742 cm∕min.

This is a speed of about 6.5 meters per second.

Exercises and Problems for Section 13.4 Online Resource: Additional Problems for Section 13.4
EXERCISES

In Exercises 1–7, use the algebraic definition to find v⃗ × w⃗ .

1. v⃗ = k⃗ , w⃗ = j⃗

2. v⃗ = −i⃗ , w⃗ = j⃗ + k⃗

3. v⃗ = i⃗ + k⃗ , w⃗ = i⃗ + j⃗

4. v⃗ = i⃗ + j⃗ + k⃗ , w⃗ = i⃗ + j⃗ + −k⃗

5. v⃗ = 2i⃗ − 3j⃗ + k⃗ , w⃗ = i⃗ + 2j⃗ − k⃗

6. v⃗ = 2i⃗ − j⃗ − k⃗ , w⃗ = −6i⃗ + 3j⃗ + 3k⃗

7. v⃗ = −3i⃗ + 5j⃗ + 4k⃗ , w⃗ = i⃗ − 3j⃗ − k⃗

In Exercises 8–9, use the geometric definition to find:

8. 2i⃗ × (i⃗ + j⃗ ) 9. (i⃗ + j⃗ ) × (i⃗ − j⃗ )

In Exercises 10–11, use the properties on page 731 to find:

10.
(

(i⃗ + j⃗ ) × i⃗

)

× j⃗ 11. (i⃗ + j⃗ ) × (i⃗ × j⃗ )

2From www.guinnessworldrecords.com, accessed May 12, 2016.
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12. For a⃗ = 3i⃗ + j⃗ − k⃗ and b⃗ = i⃗ − 4j⃗ + 2k⃗ , find a⃗ × b⃗

and check that it is perpendicular to both a⃗ and b⃗ .

13. If v⃗ = 3i⃗ −2j⃗ +4k⃗ and w⃗ = i⃗ +2j⃗ −k⃗ , find v⃗ ×w⃗ and

w⃗ × v⃗ . What is the relation between the two answers?

In Exercises 14–15, find an equation for the plane through

the points.

14. (1, 0, 0), (0, 1, 0), (0, 0, 1).

15. (3, 4, 2), (−2, 1, 0), (0, 2, 1).

In Exercises 16–19, find the volume of the parallelepiped

with edges a⃗ , b⃗ , c⃗ .

16. a⃗ = 3i⃗ +4j⃗ +5k⃗ , b⃗ = 5i⃗ +4j⃗ +3k⃗ , c⃗ = i⃗ + j⃗ + k⃗ .

17. a⃗ = −i⃗ + j⃗ + k⃗ , b⃗ = i⃗ − j⃗ + k⃗ , c⃗ = i⃗ + j⃗ − k⃗ .

18. a⃗ = −i⃗ + 8j⃗ + 7k⃗ , b⃗ = 2j⃗ + 9k⃗ , c⃗ = 3k⃗ .

19. a⃗ = i⃗ + j⃗ + 2k⃗ , b⃗ = i⃗ + k⃗ , c⃗ = j⃗ + k⃗ .

In Exercises 20–23, the point is rotating around an axis

through the origin with angular velocity !⃗ = 2i⃗ + j⃗ − 3k⃗ .

Find its velocity vector.

20. (1, 2, 1) 21. (1, 0,−1)

22. (2,−2, 0) 23. (4, 2,−6)

PROBLEMS

24. Find a vector parallel to the line of intersection of the

planes given by 2y − z = 2 and −2x + y = 4.

25. Find an equation of the plane through the origin that is

perpendicular to the line of intersection of the planes in

Problem 24.

26. Find an equation of the plane through the point (4, 5, 6)

and perpendicular to the line of intersection of the

planes in Problem 24.

27. Find an equation for the plane through the origin con-

taining the points (1, 3, 0) and (2, 4, 1).

28. Find a vector parallel to the line of intersection of the

two planes 4x − 3y + 2z = 12 and x + 5y − z = 25.

29. Find a vector parallel to the intersection of the planes

2x − 3y + 5z = 2 and 4x + y − 3z = 7.

30. Find an equation of the plane through the origin that is

perpendicular to the line of intersection of the planes in

Problem 29.

31. Find an equation of the plane through the point (4, 5, 6)

that is perpendicular to the line of intersection of the

planes in Problem 29.

32. Find the equation of a plane through the origin and per-

pendicular to x − y + z = 5 and 2x + y − 2z = 7.

33. Given the points P = (1, 2, 3), Q = (3, 5, 7), and

R = (2, 5, 3), find:

(a) A unit vector perpendicular to a plane containing

P , Q, R.

(b) The angle between PQ and PR.

(c) The area of the triangle PQR.

(d) The distance from R to the line through P and Q.

34. Let A = (−1, 3, 0), B = (3, 2, 4), and C = (1,−1, 5).

(a) Find an equation for the plane that passes through

these three points.

(b) Find the area of the triangle determined by these

three points.

35. Consider the plane z + 2y + x = 4.

(a) Find a point on the x-axis on this plane.

(b) Find a point on the y-axis on this plane.

(c) Find a point on the z-axis on this plane.

(d) Find the area of the region of this plane with x ≥ 0,

y ≥ 0 and z ≥ 0.

36. If v⃗ and w⃗ are both parallel to the xy-plane, what can

you conclude about v⃗ × w⃗ ? Explain.

37. Suppose v⃗ ⋅ w⃗ = 5 and ||v⃗ × w⃗ || = 3, and the angle

between v⃗ and w⃗ is �. Find

(a) tan � (b) �.

38. If v⃗ × w⃗ = 2i⃗ − 3j⃗ + 5k⃗ , and v⃗ ⋅ w⃗ = 3, find tan �

where � is the angle between v⃗ and w⃗ .

39. Suppose v⃗ ⋅ w⃗ = 8 and v⃗ × w⃗ = 12i⃗ − 3j⃗ + 4k⃗ and

that the angle between v⃗ and w⃗ is �. Find

(a) tan � (b) �

40. If v⃗ ⋅ (i⃗ + j⃗ + k⃗ ) = 6 and v⃗ ×(i⃗ + j⃗ + k⃗ ) = 0⃗ , find v⃗ .

41. Why does a baseball curve? The baseball in Fig-

ure 13.45 has velocity v⃗ meters/sec and is spinning at

! radians per second about an axis in the direction of

the unit vector n⃗ . The ball experiences a force, called

the Magnus force,3 F⃗M , that is proportional to !n⃗ × v⃗ .

(a) What is the effect on F⃗M of increasing !?

(b) The ball in Figure 13.45 is moving away from you.

What is the direction of the Magnus force?

ω

~n

Figure 13.45: Spinning baseball

3Named after German physicist Heinrich Magnus, who first described it in 1853.



736 Chapter 13 A FUNDAMENTAL TOOL: VECTORS

42. The London Eye Ferris wheel rotates in a counterclock-

wise direction when viewed from the east and com-

pletes one full rotation in 30 minutes.4

(a) Let the x-axis point east, the y-axis north, and the

z-axis up. Find the angular velocity, !⃗ , of the Lon-

don Eye.

(b) The passenger capsules of the London Eye are a

distance of approximately 200 feet from the cen-

ter. If the center of the London Eye is at (0, 0, 0),

find the velocity vector of a passenger capsule at

its highest point.

(c) Find the speed of the capsule.

43. The point P in Figure 13.46 has position vector v⃗ ob-

tained by rotating the position vector r⃗ of the point

(x, y) by 90◦ counterclockwise about the origin.

(a) Use the geometric definition of the cross product

to explain why v⃗ = k⃗ × r⃗ .

(b) Find the coordinates of P .

(x, y)

P

r⃗

v⃗

x

y

Figure 13.46

44. The points P1 = (0, 0, 0), P2 = (2, 4, 2), P3 = (3, 0, 0),

and P4 = (5, 4, 2) are vertices of a parallelogram.

(a) Find the displacement vectors along each of the

four sides. Check that these are equal in pairs.

(b) Find the area of the parallelogram.

In Problems 45–46, find an area vector for the parallelogram

with given vertices.

45. P = (2, 1, 1), Q = (3, 3, 0), R = (4, 0, 2), S = (5, 2, 1)

46. P = (−1,−2, 0), Q = (0,−1, 0), R = (−2,−4, 1),

S = (−1,−3, 1)

47. A parallelogram P formed by the vectors v⃗ = i⃗ −2j⃗ +

k⃗ and w⃗ = i⃗ +2j⃗ −2k⃗ has area vector A⃗ = v⃗ × w⃗ =

2i⃗ +3j⃗ +4k⃗ . Find area vectors of each of the following

parallelograms and explain how they are related to A⃗ .

(a) The parallelogram obtained by projecting P onto

the xy-plane.

(b) The parallelogram obtained by projecting P onto

the xz-plane.

(c) The parallelogram obtained by projecting P onto

the yz-plane.

48. Using the parallelogram in Problem 44 as a base, cre-

ate a parallelopiped with side ⃖⃖⃖⃖⃖⃖⃖⃗P1P5 where P5 = (1, 0, 4).

Find the volume of this parallelepiped.

In Problems 49–51, if 0 ≤ � ≤ �, what are the possible val-

ues for the angle, �, between two nonzero vectors v⃗ and w⃗

satisfying the inequality?

49. |

|

v⃗ ⋅ w⃗ |

|

= ‖v⃗ × w⃗ ‖ 50. |

|

v⃗ ⋅ w⃗ |

|

< ‖v⃗ × w⃗ ‖

51. |

|

v⃗ ⋅ w⃗ |

|

> ‖v⃗ × w⃗ ‖

52. Use a parallelepiped to show that a⃗ ⋅(b⃗ ×c⃗ ) = (a⃗ ×b⃗ )⋅c⃗

for any vectors a⃗ , b⃗ , and c⃗ .

53. Figure 13.47 shows the tetrahedron determined by three

vectors a⃗ , b⃗ , c⃗ . The area vector of a face is a vector per-

pendicular to the face, pointing outward, whose magni-

tude is the area of the face. Show that the sum of the

four outward-pointing area vectors of the faces equals

the zero vector.

b⃗

b⃗ − c⃗

a⃗

c⃗

b⃗ − a⃗

c⃗ − a⃗

Figure 13.47

In Problems 54–56, find the vector representing the area of a

surface. The magnitude of the vector equals the magnitude of

the area; the direction is perpendicular to the surface. Since

there are two perpendicular directions, we pick one by giving

an orientation for the surface.

54. The rectangle with vertices (0, 0, 0), (0, 1, 0), (2, 1, 0),

and (2, 0, 0), oriented so that it faces downward.

55. The circle of radius 2 in the yz-plane, facing in the di-

rection of the positive x-axis.

56. The triangle ABC , oriented upward, where A =

(1, 2, 3), B = (3, 1, 2), and C = (2, 1, 3).

4http://en.wikipedia.org, accessed May 12, 2016.
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57. This problem relates the area of a parallelogramS lying

in the plane z = mx+ny+c to the area of its projection

R in the xy-plane. Let S be determined by the vectors

u⃗ = u1 i⃗ + u2j⃗ + u3k⃗ and v⃗ = v1 i⃗ + v2j⃗ + v3k⃗ . See

Figure 13.48.

(a) Find the area of S.

(b) Find the area of R.

(c) Find m and n in terms of the components of u⃗

and v⃗ .

(d) Show that

Area of S =
√

1 + m2 + n2 ⋅ Area of R.

Figure 13.48

Strengthen Your Understanding

In Problems 58–59, explain what is wrong with the state-

ment.

58. There is only one unit vector perpendicular to two non-

parallel vectors in 3-space.

59. u⃗ × v⃗ = 0⃗ when u⃗ and v⃗ are perpendicular.

In Problems 60–61, give an example of:

60. A vector u⃗ whose cross product with v⃗ = i⃗ + j⃗ is

parallel to k⃗ .

61. A vector v⃗ such that ‖u⃗ ×v⃗ ‖ = 10, where u⃗ = 3i⃗ +4j⃗ .

Are the statements in Problems 62–72 true or false? Give

reasons for your answer.

62. u⃗ × v⃗ is a vector.

63. u⃗ × v⃗ has direction parallel to both u⃗ and v⃗ .

64. ‖u⃗ × v⃗ ‖ = ‖u⃗ ‖‖v⃗ ‖.

65. (i⃗ × j⃗ ) ⋅ k⃗ = i⃗ ⋅ (j⃗ × k⃗ ).

66. If v⃗ is a nonzero vector and v⃗ × u⃗ = v⃗ × w⃗ , then

u⃗ = w⃗ .

67. The value of v⃗ ⋅ (v⃗ × w⃗ ) is always 0.

68. The value of v⃗ × w⃗ is never the same as v⃗ ⋅ w⃗ .

69. The area of the triangle with two sides given by i⃗ + j⃗

and j⃗ + 2k⃗ is 3∕2.

70. Given a nonzero vector v⃗ in 3-space, there is a nonzero

vector w⃗ such that v⃗ × w⃗ = 0⃗ .

71. It is never true that v⃗ × w⃗ = w⃗ × v⃗ .

72. Two points are circling an axis at a rate of 5 rad/sec.

The point closer to the axis has the greater speed.

Online Resource: Review problems and Projects
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14.1 THE PARTIAL DERIVATIVE

The derivative of a one-variable function measures its rate of change. In this section we see how a

two-variable function has two rates of change: one as x changes (with y held constant) and one as y

changes (with x held constant).

Rate of Change of Temperature in a Metal Rod: a One-Variable Problem

Imagine an unevenly heated metal rod lying along the x-axis, with its left end at the origin and x

measured in meters. (See Figure 14.1.) Let u(x) be the temperature (in ◦C) of the rod at the point x.

Table 14.1 gives values of u(x). We see that the temperature increases as we move along the rod,

reaching its maximum at x = 4, after which it starts to decrease.

x (m)
0 1 2 3 4 5

Figure 14.1: Unevenly heated metal rod

Table 14.1 Temperature u(x) of the rod

x (m) 0 1 2 3 4 5

u(x) (◦C) 125 128 135 160 175 160

Example 1 Estimate the derivative u′(2) using Table 14.1 and explain what the answer means in terms of tem-

perature.

Solution The derivative u′(2) is defined as a limit of difference quotients:

u′(2) = lim
ℎ→0

u(2 + ℎ) − u(2)

ℎ
.

Choosing ℎ = 1 so that we can use the data in Table 14.1, we get

u′(2) ≈
u(2 + 1) − u(2)

1
=

160 − 135

1
= 25.

This means that the temperature increases at a rate of approximately 25◦C per meter as we go from

left to right, past x = 2.

Rate of Change of Temperature in a Metal Plate

Imagine an unevenly heated thin rectangular metal plate lying in the xy-plane with its lower left

corner at the origin and x and y measured in meters. The temperature (in ◦C) at the point (x, y) is

T (x, y). See Figure 14.2 and Table 14.2. How does T vary near the point (2, 1)? We consider the

horizontal line y = 1 containing the point (2, 1). The temperature along this line is the cross section,

T (x, 1), of the function T (x, y) with y = 1. Suppose we write u(x) = T (x, 1).

1 2 3 4 5
0

1

2

3

x = 2

y = 1

x (m)

y (m)

(2, 1)

Figure 14.2: Unevenly heated metal plate

Table 14.2 Temperature (◦C) of a metal plate

y (m)

3 85 90 110 135 155 180

2 100 110 120 145 190 170

1 125 128 135 160 175 160

0 120 135 155 160 160 150

0 1 2 3 4 5

x (m)

What is the meaning of the derivative u′(2)? It is the rate of change of temperature T in the

x-direction at the point (2, 1), keeping y fixed. Denote this rate of change by Tx(2, 1), so that

Tx(2, 1) = u′(2) = lim
ℎ→0

u(2 + ℎ) − u(2)

ℎ
= lim

ℎ→0

T (2 + ℎ, 1) − T (2, 1)

ℎ
.
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We call Tx(2, 1) the partial derivative of T with respect to x at the point (2, 1). Taking ℎ = 1, we

can read values of T from the row with y = 1 in Table 14.2, giving

Tx(2, 1) ≈
T (3, 1) − T (2, 1)

1
=

160 − 135

1
= 25◦C/m.

The fact that Tx(2, 1) is positive means that the temperature of the plate is increasing as we move past

the point (2, 1) in the direction of increasing x (that is, horizontally from left to right in Figure 14.2).

Example 2 Estimate the rate of change of T in the y-direction at the point (2, 1).

Solution The temperature along the line x = 2 is the cross-section of T with x = 2, that is, the function

v(y) = T (2, y). If we denote the rate of change of T in the y-direction at (2, 1) by Ty(2, 1), then

Ty(2, 1) = v′(1) = lim
ℎ→0

v(1 + ℎ) − v(1)

ℎ
= lim

ℎ→0

T (2, 1 + ℎ) − T (2, 1)

ℎ
.

We call Ty(2, 1) the partial derivative of T with respect to y at the point (2, 1). Taking ℎ = 1 so that

we can use the column with x = 2 in Table 14.2, we get

Ty(2, 1) ≈
T (2, 1 + 1) − T (2, 1)

1
=

120 − 135

1
= −15◦C/m.

The fact that Ty(2, 1) is negative means that at (2, 1), the temperature decreases as y increases..

Definition of the Partial Derivative

We study the influence of x and y separately on the value of the function f (x, y) by holding one

fixed and letting the other vary. This leads to the following definitions.

Partial Derivatives of f with Respect to x and y

For all points at which the limits exist, we define the partial derivatives at the point (a, b)

by

fx(a, b) =
Rate of change of f with respect to x

at the point (a, b)
= lim

ℎ→0

f (a + ℎ, b) − f (a, b)

ℎ
,

fy(a, b) = Rate of change of f with respect to y

at the point (a, b)

= lim
ℎ→0

f (a, b + ℎ) − f (a, b)

ℎ
.

If we let a and b vary, we have the partial derivative functions fx(x, y) and fy(x, y).

Just as with ordinary derivatives, there is an alternative notation:

Alternative Notation for Partial Derivatives

If z = f (x, y), we can write

fx(x, y) =
)z

)x
and fy(x, y) =

)z

)y
,

fx(a, b) =
)z

)x

|

|

|

|(a,b)

and fy(a, b) =
)z

)y

|

|

|

|(a,b)

.
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We use the symbol ) to distinguish partial derivatives from ordinary derivatives. In cases where

the independent variables have names different from x and y, we adjust the notation accordingly. For

example, the partial derivatives of f (u, v) are denoted by fu and fv.

Visualizing Partial Derivatives on a Graph

The ordinary derivative of a one-variable function is the slope of its graph. How do we visualize

the partial derivative fx(a, b)? The graph of the one-variable function f (x, b) is the curve where the

vertical plane y = b cuts the graph of f (x, y). (See Figure 14.3.) Thus, fx(a, b) is the slope of the

tangent line to this curve at x = a.

y

x

z

✲Point
(a, b, f (a, b))

Line has slope
fx(a, b)

✛ Graph of
f (x, b)

Figure 14.3: The curve z = f (x, b) on the

graph of f has slope fx(a, b) at x = a

x

y

z

✛ Point
(a, b, f (a, b))✲Graph of

f (a, y)

Line has slope
fy(a, b)

Figure 14.4: The curve z = f (a, y) on the

graph of f has slope fy(a, b) at y = b

Similarly, the graph of the function f (a, y) is the curve where the vertical plane x = a cuts the

graph of f , and the partial derivative fy(a, b) is the slope of this curve at y = b. (See Figure 14.4.)

Example 3 At each point labeled on the graph of the surface z = f (x, y) in Figure 14.5, say whether each partial

derivative is positive or negative.

x

y

z

❘

Q

✛ P

Figure 14.5: Decide the signs of fx and fy at P and Q

Solution The positivex-axis points out of the page. Imagine heading off in this direction from the point marked

P ; we descend steeply. So the partial derivative with respect to x is negative at P , with quite a large

absolute value. The same is true for the partial derivative with respect to y at P , since there is also

a steep descent in the positive y-direction.

At the point marked Q, heading in the positive x-direction results in a gentle descent, whereas

heading in the positive y-direction results in a gentle ascent. Thus, the partial derivative fx at Q is

negative but small (that is, near zero), and the partial derivative fy is positive but small.

Estimating Partial Derivatives from a Contour Diagram

The graph of a function f (x, y) often makes clear the sign of the partial derivatives. However, nu-

merical estimates of these derivatives are more easily made from a contour diagram than a surface

graph. If we move parallel to one of the axes on a contour diagram, the partial derivative is the rate

of change of the value of the function on the contours. For example, if the values on the contours are

increasing as we move in the positive direction, then the partial derivative must be positive.



14.1 THE PARTIAL DERIVATIVE 743

Example 4 Figure 14.6 shows the contour diagram for the temperature H(x, t) (in ◦C) in a room as a function

of distance x (in meters) from a heater and time t (in minutes) after the heater has been turned on.

What are the signs of Hx(10, 20) and Ht(10, 20)? Estimate these partial derivatives and explain the

answers in practical terms.

5 10 15 20 25 30

10

20

30

40

50

60

x (meters)

30

25

20

15

10

t (minutes)

✲✛ 14

✻

❄

32

Figure 14.6: Temperature in a heated room: Heater at x = 0 is turned on at t = 0

Solution The point (10, 20) is nearly on the H = 25 contour. As x increases, we move toward the H = 20

contour, so H is decreasing and Hx(10, 20) is negative. This makes sense because the H = 30

contour is to the left: As we move further from the heater, the temperature drops. On the other hand,

as t increases, we move toward the H = 30 contour, so H is increasing; as t decreases H decreases.

Thus, Ht(10, 20) is positive. This says that as time passes, the room warms up.

To estimate the partial derivatives, use a difference quotient. Looking at the contour diagram,

we see there is a point on the H = 20 contour about 14 units to the right of the point (10, 20). Hence,

H decreases by 5 when x increases by 14, so we find

Rate of change of H with respect to x = Hx(10, 20) ≈
−5

14
≈ −0.36◦C/meter.

This means that near the point 10 m from the heater, after 20 minutes the temperature drops

about 0.36, or one third, of a degree, for each meter we move away from the heater.

To estimate Ht(10, 20), we notice that the H = 30 contour is about 32 units directly above the

point (10, 20). So H increases by 5 when t increases by 32. Hence,

Rate of change of H with respect to t = Ht(10, 20) ≈
5

32
= 0.16◦C/minute.

This means that after 20 minutes the temperature is going up about 0.16, or 1/6, of a degree each

minute at the point 10 m from the heater.

Using Units to Interpret Partial Derivatives

The meaning of a partial derivative can often be explained using units.

Example 5 Suppose that your weight w in pounds is a function f (c, n) of the number c of calories you consume

daily and the number n of minutes you exercise daily. Using the units for w, c and n, interpret in

everyday terms the statements

)w

)c
(2000, 15) = 0.02 and

)w

)n
(2000, 15) = −0.025.
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Solution The units of )w∕)c are pounds per calorie. The statement

)w

)c
(2000, 15) = 0.02

means that if you are presently consuming 2000 calories daily and exercising 15 minutes daily, you

will weigh 0.02 pounds more for each extra calorie you consume daily, or about 2 pounds for each

extra 100 calories per day. The units of )w∕)n are pounds per minute. The statement

)w

)n
(2000, 15) = −0.025

means that for the same calorie consumption and number of minutes of exercise, you will weigh

0.025 pounds less for each extra minute you exercise daily, or about 1 pound less for each extra

40 minutes per day. So if you eat an extra 100 calories each day and exercise about 80 minutes more

each day, your weight should remain roughly steady.

Exercises and Problems for Section 14.1

EXERCISES

1. Given the following table of values for z = f (x, y), es-

timate fx(3, 2) and fy(3, 2), assuming they exist.

x ∖ y 0 2 5

1 1 2 4

3 −1 1 2

6 −3 0 0

2. Using difference quotients, estimate fx(3, 2) and

fy(3, 2) for the function given by

f (x, y) =
x2

y + 1
.

[Recall: A difference quotient is an expression of the

form (f (a + ℎ, b) − f (a, b))∕ℎ.]

3. Use difference quotients with Δx = 0.1 and Δy = 0.1

to estimate fx(1, 3) and fy(1, 3), where

f (x, y) = e−x sin y.

Then give better estimates by using Δx = 0.01 and

Δy = 0.01.

4. The price P in dollars to purchase a used car is a func-

tion of its original cost, C , in dollars, and its age, A, in

years.

(a) What are the units of )P∕)A?

(b) What is the sign of )P∕)A and why?

(c) What are the units of )P∕)C?

(d) What is the sign of )P∕)C and why?

5. Your monthly car payment in dollars is P = f (P0, t, r),

where $P0 is the amount you borrowed, t is the num-

ber of months it takes to pay off the loan, and r% is the

interest rate. What are the units, the financial meaning,

and the signs of )P∕)t and )P∕)r?

6. A drug is injected into a patient’s blood vessel. The

function c = f (x, t) represents the concentration of the

drug at a distance x mm in the direction of the blood

flow measured from the point of injection and at time

t seconds since the injection. What are the units of the

following partial derivatives? What are their practical

interpretations? What do you expect their signs to be?

(a) )c∕)x (b) )c∕)t

7. You borrow $A at an interest rate of r% (per month) and

pay it off over t months by making monthly payments

of P = g(A, r, t) dollars. In financial terms, what do the

following statements tell you?

(a) g(8000, 1, 24) = 376.59

(b)
)g

)A

|

|

|

|

|(8000,1,24)

= 0.047

(c)
)g

)r

|

|

|

|

|(8000,1,24)

= 44.83

8. The sales of a product, S = f (p, a), are a function of

the price, p, of the product (in dollars per unit) and the

amount, a, spent on advertising (in thousands of dol-

lars).

(a) Do you expect fp to be positive or negative? Why?

(b) Explain the meaning of the statement fa(8, 12) =

150 in terms of sales.

9. The quantity, Q, of beef purchased at a store, in kilo-

grams per week, is a function of the price of beef, b, and

the price of chicken, c, both in dollars per kilogram.

(a) Do you expect )Q∕)b to be positive or negative?

Explain.
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(b) Do you expect )Q∕)c to be positive or negative?

Explain.

(c) Interpret the statement )Q∕)b = −213 in terms of

quantity of beef purchased.

In Exercises 10–15, a point A is shown on a contour diagram

of a function f (x, y).

(a) Evaluate f (A).

(b) Is fx(A) positive, negative, or zero?

(c) Is fy(A) positive, negative, or zero?

10.

A

7 1
0

1
3

1
6

x

y 11.

A

5

10

15

20

x

y

12.

A

54

58

62

66

x

y 13.

A

94

88

82

76

x

y

14.

A

23

24

25

26

27

x

y 15.

A
36

38

40

42

44

x

y

In Exercises 16–19, determine the sign of fx and fy at the

point using the contour diagram of f in Figure 14.7.

P

QR

S

11

13

15
17

19

x

y

Figure 14.7

16. P 17. Q 18. R 19. S

20. Values of f (x, y) are in Table 14.3. Assuming they

exist, decide whether you expect the following partial

derivatives to be positive or negative.

(a) fx(−2,−1) (b) fy(2, 1)

(c) fx(2, 1) (d) fy(0, 3)

Table 14.3

x ∖ y −1 1 3 5

−2 7 3 2 1

0 8 5 3 2

2 10 7 5 4

4 13 10 8 7

PROBLEMS

21. Figure 14.8 is a contour diagram for z = f (x, y). Is fx

positive or negative? Is fy positive or negative? Esti-

mate f (2, 1), fx(2, 1), and fy(2, 1).

1 2 3 4 5

1

2

3

4

5

−6

−2

2

6

10

14

18 x

y

Figure 14.8

22. Approximate fx(3, 5) using the contour diagram of

f (x, y) in Figure 14.9.

2 4 6 8 10

2

4

6

8

10

2

4

6
8

10

12

14

16

x

y

Figure 14.9

23. When riding your bike in winter, the windchill temper-

ature is a measure of how cold you feel as a result of the

induced breeze caused by your travel. If W represents

windchill temperature (in ◦F) that you experience, then

W = f (T , v), where T is the actual air temperature (in
◦F) and v is your speed, in meters per second. Match

each of the practical interpretations below with a math-

ematical statement that most accurately describes it be-
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low. For the remaining mathematical statement, give a

practical interpretation.

(i) “The faster you ride, the colder you’ll feel.”

(ii) “The warmer the day, the warmer you’ll feel.”

(a) fT (T , v) > 0 (b) f (0, v) ≤ 0 (c) fv(T , v) < 0

24. People commuting to a city can choose to go either by

bus or by train. The number of people who choose ei-

ther method depends in part upon the price of each. Let

f (P1, P2) be the number of people who take the bus

when P1 is the price of a bus ride and P2 is the price of a

train ride. What can you say about the signs of )f∕)P1

and )f∕)P2? Explain your answers.

25. The average price of large cars getting low gas mileage

(“gas guzzlers”) is x and the average price of a gallon

of gasoline is y. The number, q1, of gas guzzlers bought

in a year, depends on both x and y, so q1 = f (x, y).

Similarly, if q2 is the number of gallons of gas bought

to fill gas guzzlers in a year, then q2 = g(x, y).

(a) What do you expect the signs of )q1∕)x and

)q2∕)y to be? Explain.

(b) What do you expect the signs of )q1∕)y and

)q2∕)x to be? Explain.

For Problems 26–28, refer to Table 12.2 on page 658 giv-

ing the temperature adjusted for wind chill, C , in ◦F, as a

function f (w, T ) of the wind speed, w, in mph, and the tem-

perature, T , in ◦F. The temperature adjusted for wind chill

tells you how cold it feels, as a result of the combination of

wind and temperature.

26. Estimate fw(10, 25). What does your answer mean in

practical terms?

27. Estimate fT (5, 20). What does your answer mean in

practical terms?

28. From Table 12.2 you can see that when the temperature

is 20◦F, the temperature adjusted for wind-chill drops

by an average of about 0.8◦F with every 1 mph increase

in wind speed from 5 mph to 10 mph. Which partial

derivative is this telling you about?

29. An experiment to measure the toxicity of formalde-

hyde yielded the data in Table 14.4. The values show

the percent, P = f (t, c), of rats surviving an expo-

sure to formaldehyde at a concentration of c (in parts

per million, ppm) after t months. Estimate ft(18, 6) and

fc(18, 6). Interpret your answers in terms of formalde-

hyde toxicity.

Table 14.4

Conc. c
(ppm)

Time t (months)

14 16 18 20 22 24

0 100 100 100 99 97 95

2 100 99 98 97 95 92

6 96 95 93 90 86 80

15 96 93 82 70 58 36

30. Figure 14.10 shows contours of f (x, y) with values of

f on the contours omitted. If fx(P ) > 0, find the sign:

(a) fy(P ) (b) fy(Q) (c) fx(Q)

−5 5

−5

5

Q

P

f (x, y)

x

y

Figure 14.10

31. Figure 14.11 shows the contour diagram of g(x, y).

Mark the points on the contours where

(a) gx = 0 (b) gy = 0

10

10

10

20

30

40

50

60

5060

x

y

Figure 14.11

32. The surface z = f (x, y) is shown in Figure 14.12. The

points A and B are in the xy-plane.

(a) What is the sign of

(i) fx(A)? (ii) fy(A)?

(b) The point P in the xy-plane moves along a straight

line from A to B. How does the sign of fx(P )

change? How does the sign of fy(P ) change?

x

y

z

✲B ✠

A

Figure 14.12
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33. Figure 14.13 shows the saddle-shaped surface z =

f (x, y).

(a) What is the sign of fx(0, 5)?

(b) What is the sign of fy(0, 5)?

x

y

z

❄

(0, 5, 3)

Figure 14.13

34. Figure 14.14 shows the graph of the function f (x, y) on

the domain 0 ≤ x ≤ 4 and 0 ≤ y ≤ 4. Use the graph to

rank the following quantities in order from smallest to

largest: fx(3, 2), fx(1, 2), fy(3, 2), fy(1, 2), 0.

x y

z

Figure 14.14

35. Figure 14.15 shows a contour diagram for the monthly

payment P as a function of the interest rate, r%, and

the amount, L, of a 5-year loan. Estimate )P∕)r and

)P∕)L at the following points. In each case, give the

units and the everyday meaning of your answer.

(a) r = 8, L = 4000 (b) r = 8, L = 6000

(c) r = 13, L = 7000

1 3 5 7 9 11 13 15
2000

3000

4000

5000

6000

7000

8000

r(%)

L($)

60

80

100

120

140

160

Figure 14.15

36. Figure 14.16 shows a contour diagram for the tempera-

ture T (in ◦C) along a wall in a heated room as a function

of distance x along the wall and time t in minutes. Esti-

mate )T ∕)x and )T ∕)t at the given points. Give units

and interpret your answers.

(a) x = 15, t = 20 (b) x = 5, t = 12

5 10 15 20 25 30

10

20

30

40

50

60

x (meters)

30

25

20

15

10

t (minutes)

Figure 14.16

In Problems 37–39, we use Figure 14.17 to model the heat

required to clear an airport of fog by heating the air. The

amount of heat, H(T ,w), required (in calories per cubic me-

ter of fog) is a function of the temperature T (in degrees Cel-

sius) and the water content w (in grams per cubic meter of

fog). Note that Figure 14.17 is not a contour diagram, but

shows cross-sections of H with w fixed at 0.1, 0.2, 0.3, 0.4.

10 20 30 40
0

100

200

300

400

500

600

T (◦C)

H (calories∕m3)

H(T , 0.4)

H(T , 0.3)

H(T , 0.2)

H(T , 0.1)

Figure 14.17

37. Use Figure 14.17 to estimate HT (10, 0.1). Interpret the

partial derivative in practical terms.

38. Make a table of values for H(T , w) from Figure 14.17,

and use it to estimate HT (T ,w) for T = 10, 20, and 30

and w = 0.1, 0.2, and 0.3.

39. Repeat Problem 38 for Hw(T ,w) at T = 10, 20, and 30

and w = 0.1, 0.2, and 0.3. What is the practical mean-

ing of these partial derivatives?
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40. The cardiac output, represented by c, is the volume of

blood flowing through a person’s heart per unit time.

The systemic vascular resistance (SVR), represented by

s, is the resistance to blood flowing through veins and

arteries. Let p be a person’s blood pressure. Then p is a

function of c and s, so p = f (c, s).

(a) What does )p∕)c represent?

Suppose now that p = kcs, where k is a constant.

(b) Sketch the level curves of p. What do they repre-

sent? Label your axes.

(c) For a person with a weak heart, it is desirable

to have the heart pumping against less resistance,

while maintaining the same blood pressure. Such a

person may be given the drug nitroglycerine to de-

crease the SVR and the drug dopamine to increase

the cardiac output. Represent this on a graph show-

ing level curves. Put a point A on the graph repre-

senting the person’s state before drugs are given

and a point B for after.

(d) Right after a heart attack, a patient’s cardiac output

drops, thereby causing the blood pressure to drop.

A common mistake made by medical residents is

to get the patient’s blood pressure back to normal

by using drugs to increase the SVR, rather than by

increasing the cardiac output. On a graph of the

level curves of p, put a point D representing the pa-

tient before the heart attack, a point E representing

the patient right after the heart attack, and a third

point F representing the patient after the resident

has given the drugs to increase the SVR.

41. In each case, give a possible contour diagram for the

function f (x, y) if

(a) fx > 0 and fy > 0 (b) fx > 0 and fy < 0

(c) fx < 0 and fy > 0 (d) fx < 0 and fy < 0

In Problems 42–45, give a possible contour diagram for the

function f (x, y) if

42. fx = 0,

fy ≠ 0

43. fy = 0,

fx ≠ 0

44. fx = 1 45. fy = −2

Strengthen Your Understanding

In Problems 46–47, explain what is wrong with the state-

ment.

46. For f (x, y), )f∕)x has the same units as )f∕)y.

47. The partial derivative with respect to y is not defined for

functions such as f (x, y) = x2 + 5 that have a formula

that does not contain y explicitly.

In Problems 48–49, give an example of:

48. A table of values with three rows and three columns of

a linear function f (x, y) with fx < 0 and fy > 0.

49. A function f (x, y) with fx > 0 and fy < 0 everywhere.

Are the statements in Problems 50–60 true or false? Give

reasons for your answer.

50. If f (x, y) is a function of two variables and fx(10, 20)

is defined, then fx(10, 20) is a scalar.

51. If f (x, y) = x2 + y2, then fy(1, 1) < 0.

52. If the graph of f (x, y) is a hemisphere centered at the

origin, then fx(0, 0) = fy(0, 0) = 0.

53. If P = f (T , V ) is a function expressing the pressure P

(in grams∕cm3) of gas in a piston in terms of the tem-

perature T (in degrees ◦C) and volume V (in cm3), then

)P∕)V has units of grams.

54. If fx(a, b) > 0, then the values of f decrease as we

move in the negative x-direction near (a, b).

55. If g(r, s) = r2 +s, then for fixed s, the partial derivative

gr increases as r increases.

56. Let P = f (m, d) be the purchase price (in dollars) of

a used car that has m miles on its engine and originally

cost d dollars when new. Then )P∕)m and )P∕)d have

the same sign.

57. If f (x, y) is a function with the property that fx(x, y)

and fy(x, y) are both constant, then f is linear.

58. If f (x, y) has fx(a, b) = fy(a, b) = 0 at the point (a, b),

then f is constant everywhere.

59. If fx = 0 and fy ≠ 0, then the contours of f (x, y) are

horizontal lines.

60. If the contours of f (x, y) are vertical lines, then fy = 0.

14.2 COMPUTING PARTIAL DERIVATIVES ALGEBRAICALLY

Since the partial derivative fx(x, y) is the ordinary derivative of the function f (x, y) with y held

constant and fy(x, y) is the ordinary derivative of f (x, y) with x held constant, we can use all the

differentiation formulas from one-variable calculus to find partial derivatives.

Example 1 Let f (x, y) =
x2

y + 1
. Find fx(3, 2) algebraically.
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Solution We use the fact that fx(3, 2) equals the derivative of f (x, 2) at x = 3. Since

f (x, 2) =
x2

2 + 1
=

x2

3
,

differentiating with respect to x, we have

fx(x, 2) =
)

)x

(

x2

3

)

=
2x

3
, and so fx(3, 2) = 2.

Example 2 Compute the partial derivatives with respect to x and with respect to y for the following functions.

(a) f (x, y) = y2e3x (b) z = (3xy + 2x)5 (c) g(x, y) = ex+3y sin(xy)

Solution (a) This is the product of a function of x (namely e3x) and a function of y (namely y2). When we

differentiate with respect to x, we think of the function of y as a constant, and vice versa. Thus,

fx(x, y) = y2
)

)x

(

e3x
)

= 3y2e3x,

fy(x, y) = e3x
)

)y
(y2) = 2ye3x.

(b) Here we use the chain rule:

)z

)x
= 5(3xy+ 2x)4

)

)x
(3xy+ 2x) = 5(3xy+ 2x)4(3y+ 2),

)z

)y
= 5(3xy+ 2x)4

)

)y
(3xy + 2x) = 5(3xy+ 2x)43x = 15x(3xy+ 2x)4.

(c) Since each function in the product is a function of both x and y, we need to use the product rule

for each partial derivative:

gx(x, y) =
(

)

)x
(ex+3y)

)

sin(xy) + ex+3y
)

)x
(sin(xy)) = ex+3y sin(xy) + ex+3yy cos(xy),

gy(x, y) =

(

)

)y
(ex+3y)

)

sin(xy) + ex+3y
)

)y
(sin(xy)) = 3ex+3y sin(xy) + ex+3yx cos(xy).

For functions of three or more variables, we find partial derivatives by the same method: Dif-

ferentiate with respect to one variable, regarding the other variables as constants. For a function

f (x, y, z), the partial derivative fx(a, b, c) gives the rate of change of f with respect to x along the

line y = b, z = c.

Example 3 Find all the partial derivatives of f (x, y, z) =
x2y3

z
.

Solution To find fx(x, y, z), for example, we consider y and z as fixed, giving

fx(x, y, z) =
2xy3

z
, and fy(x, y, z) =

3x2y2

z
, and fz(x, y, z) = −

x2y3

z2
.
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Interpretation of Partial Derivatives

Example 4 A vibrating guitar string, originally at rest along the x-axis, is shown in Figure 14.18. Let x be the

distance in meters from the left end of the string. At time t seconds the point x has been displaced

y = f (x, t) meters vertically from its rest position, where

y = f (x, t) = 0.003 sin(�x) sin(2765t).

Evaluate fx(0.3, 1) and ft(0.3, 1) and explain what each means in practical terms.

0.5

−0.003

0.003

0
1

x (meters)

y (meters)

✠

f (x, 2)

✠

f (x, 1)

■

f (x, 10)

Figure 14.18: The position of a vibrating guitar string at several

different times: Graph of f (x, t) for t = 1, 2, 10.

Solution Differentiating f (x, t) = 0.003 sin(�x) sin(2765t) with respect to x, we have

fx(x, t) = 0.003� cos(�x) sin(2765t).

In particular, substituting x = 0.3 and t = 1 gives

fx(0.3, 1) = 0.003� cos(�(0.3)) sin(2765) ≈ 0.002.

To see what fx(0.3, 1) means, think about the function f (x, 1). The graph of f (x, 1) in Figure 14.19

is a snapshot of the string at the time t = 1. Thus, the derivative fx(0.3, 1) is the slope of the string

at the point x = 0.3 at the instant when t = 1.

Similarly, taking the derivative of f (x, t) = 0.003 sin(�x) sin(2765t) with respect to t, we get

ft(x, t) = (0.003)(2765) sin(�x) cos(2765t) = 8.3 sin(�x) cos(2765t).

Since f (x, t) is in meters and t is in seconds, the derivative ft(0.3, 1) is in m/sec. Thus, substituting

x = 0.3 and t = 1,

ft(0.3, 1) = 8.3 sin(�(0.3)) cos(2765(1)) ≈ 6 m/sec.

0.5 1

f (x, 1)

0

0.001

0.002

Slope = fx(0.3, 1) = 0.002

x (meters)

y (meters)

Figure 14.19: Graph of f (x, 1): Snapshot of the shape of the string at t = 1 sec

To see what ft(0.3, 1)means, think about the function f (0.3, t). The graph of f (0.3, t) is a posi-

tion versus time graph that tracks the up-and-downmovement of the point on the string where x = 0.3.
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(See Figure 14.20.) The derivative ft(0.3, 1) = 6 m/sec is the velocity of that point on the string at

time t = 1. The fact that ft(0.3, 1) is positive indicates that the point is moving upward when t = 1.

0.996 1 1.004

−0.002

−0.001

0.001

0.002

0.003

Slope = ft(0.3, 1) = 6 m/sec

t (seconds)

y (meters)

Figure 14.20: Graph of f (0.3, t): Position versus time graph of the point x = 0.3 m

from the left end of the guitar string

Exercises and Problems for Section 14.2

EXERCISES

1. (a) If f (x, y) = 2x2 + xy + y2, approximate fy(3, 2)

using Δy = 0.01.

(b) Find the exact value of fy(3, 2).

In Exercises 2–40, find the partial derivatives. The variables

are restricted to a domain on which the function is defined.

2. fx and fy if f (x, y) = 5x2y3 + 8xy2 − 3x2

3. fx(1, 2) and fy(1, 2) if f (x, y) = x3 + 3x2y − 2y2

4.
)

)y
(3x5y7 − 32x4y3 + 5xy)

5.
)z

)x
and

)z

)y
if z = (x2 + x − y)7

6. fx and fy if f (x, y) = A�x�+�y1−�−�

7. fx and fy if f (x, y) = ln(x0.6y0.4)

8. zx if z =
1

2x2ay
+

3x5abc

y

9. zx if z = x2y + 2x5y 10.
)

)x
(a
√

x)

11. Vr if V =
1

3
�r2ℎ 12.

)

)T

(

2�r

T

)

13.
)

)x
(xe

√

xy) 14.
)

)t
esin(x+ct)

15. Fm if F = mg 16. av if a =
v2

r

17.
)A

)ℎ
if A =

1

2
(a + b)ℎ 18.

)

)m

(

1

2
mv2

)

19.
)

)B

(

1

u0
B2

)

20.
)

)r

(

2�r

v

)

21. Fv if F =
mv2

r
22.

)

)v0
(v0 + at)

23. zx if z = sin(5x3y − 3xy2)

24.
)z

)y

|

|

|

|

|(1,0.5)

if z = ex+2y sin y

25. gx if g(x, y) = ln(yexy)

26.
)f

)x

|

|

|

|(�∕3,1)

if f (x, y) = x ln(y cos x)

27. zx and zy for z = x7 + 2y + xy

28. fx if f (x, y) = exy(ln y)

29.
)F

)m2

if F =
Gm1m2

r2

30.
)

)x

(

1

a
e−x

2∕a2
)

31.
)

)a

(

1

a
e−x

2∕a2
)

32.
)

)t
(v0t +

1

2
at2)

33.
)

)�
(sin (���) + ln(�2 + �))

34.
)

)M

(

2�r3∕2
√

GM

)

35. fa if f (a, b) = ea sin(a + b)

36. FL if F (L,K) = 3
√

LK

37.
)V

)r
and

)V

)ℎ
if V =

4

3
�r2ℎ

38. uE if u =
1

2
�0E

2 +
1

2�0

B2

39.
)

)x

(

1
√

2��
e−(x−�)

2∕(2�2)

)

40.
)Q

)K
if Q = c(a1K

b1 + a2L
b2 )
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PROBLEMS

In Problems 41–43:

(a) Find fx(1, 1) and fy(1, 1).

(b) Use part (a) to match f (x, y) with one of the contour di-

agrams (I)–(III), each shown centered at (1, 1) with the

same scale in the x and y directions.

(I) (II)

(III)

41. f (x, y) = x2 + y2 42. f (x, y) = ex
2
+ y2

43. f (x, y) = x2 + ey
2

44. (a) Letf (x, y) = x2+y2. Estimate fx(2, 1) and fy(2, 1)

using the contour diagram for f in Figure 14.21.

(b) Estimate fx(2, 1) and fy(2, 1) from a table of val-

ues for f with x = 1.9, 2, 2.1 and y = 0.9, 1, 1.1.

(c) Compare your estimates in parts (a) and (b) with

the exact values of fx(2, 1) and fy(2, 1) found al-

gebraically.

321−1−2−3

3

2

1

−1

−2

−3

x

y

4

4

2

2

6

6

8

8

Figure 14.21

45. (a) Let f (w, z) = ew ln z. Use difference quotients with

ℎ = 0.01 to approximate fw(2, 2) and fz(2, 2).

(b) Now evaluate fw(2, 2) and fz(2, 2) exactly.

46. (a) The surface S is given, for some constant a, by

z = 3x2 + 4y2 − axy

Find the values of a which ensure that S is sloping

upward when we move in the positive x-direction

from the point (1, 2).

(b) With the values of a from part (a), if you move in

the positive y-direction from the point (1, 2), does

the surface slope up or down? Explain.

47. Money in a bank account earns interest at a continuous

rate, r. The amount of money, $B, in the account de-

pends on the amount deposited, $P , and the time, t, it

has been in the bank according to the formula

B = Pert.

Find )B∕)t and )B∕)P and interpret each in financial

terms.

48. The acceleration g due to gravity, at a distance r from

the center of a planet of mass m, is given by

g =
Gm

r2
,

where G is the universal gravitational constant.

(a) Find )g∕)m and )g∕)r.

(b) Interpret each of the partial derivatives you found

in part (a) as the slope of a graph in the plane and

sketch the graph.

49. The Dubois formula relates a person’s surface area, s,

in m2, to weight, w, in kg, and height, ℎ, in cm, by

s = f (w, ℎ) = 0.01w0.25ℎ0.75.

Find f (65, 160), fw(65, 160), and fℎ(65, 160). Inter-

pret your answers in terms of surface area, height, and

weight.

50. The energy, E, of a body of mass m moving with speed

v is given by the formula

E = mc2

(

1
√

1 − v2∕c2
− 1

)

.

The speed, v, is nonnegative and less than the speed of

light, c, which is a constant.

(a) Find )E∕)m. What would you expect the sign of

)E∕)m to be? Explain.

(b) Find )E∕)v. Explain what you would expect the

sign of )E∕)v to be and why.

51. Let ℎ(x, t) = 5 + cos(0.5x − t) describe a wave. The

value of ℎ(x, t) gives the depth of the water in cm at a

distance x meters from a fixed point and at time t sec-

onds. Evaluate ℎx(2, 5) and ℎt(2, 5) and interpret each

in terms of the wave.

52. A one-meter-long bar is heated unevenly, with temper-

ature in ◦C at a distance x meters from one end at time

t given by

H(x, t) = 100e−0.1t sin(�x) 0 ≤ x ≤ 1.

(a) Sketch a graph of H against x for t = 0 and t = 1.

(b) Calculate Hx(0.2, t) and Hx(0.8, t). What is the

practical interpretation (in terms of temperature)

of these two partial derivatives? Explain why each

one has the sign it does.

(c) Calculate Ht(x, t). What is its sign? What is its in-

terpretation in terms of temperature?
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53. Show that the Cobb-Douglas function

Q = bK�L1−� where 0 < � < 1

satisfies the equation

K
)Q

)K
+L

)Q

)L
= Q.

In Problems 54–57, find all points where the partial deriva-

tives of f (x, y) are both 0.

54. f (x, y) = x2 + y2

55. f (x, y) = xey

56. f (x, y) = ex
2+2x+y2

57. f (x, y) = x3 + 3x2 + y3 − 3y

58. Is there a function f which has the following partial

derivatives? If so, what is it? Are there any others?

fx(x, y) = 4x3y2 − 3y4,

fy(x, y) = 2x4y − 12xy3.

Strengthen Your Understanding

In Problems 59–60, explain what is wrong with the state-

ment.

59. The partial derivative of f (x, y) = x2y3 is 2xy3+3y2x2.

60. For f (x, y), if
f (0.01, 0)−f (0, 0)

0.01
>0, then fx(0, 0)>0.

In Problems 61–63, give an example of:

61. A nonlinear function f (x, y) such that fx(0, 0) = 2 and

fy(0, 0) = 3.

62. Functions f (x, y) and g(x, y) such that fx = gx but

fy ≠ gy.

63. A non-constant function f (x, y) such that fx = 0 ev-

erywhere.

Are the statements in Problems 64–71 true or false? Give

reasons for your answer.

64. There is a function f (x, y) with fx(x, y) = y and

fy(x, y) = x.

65. The function z(u, v) = u cos v satisfies the equation

cos v
)z

)u
−

sin v

u

)z

)v
= 1.

66. If f (x, y) is a function of two variables and g(x) is a

function of a single variable, then

)

)y
(g(x)f (x, y)) = g(x)fy(x, y).

67. The function k(r, s) = rses is increasing in the s-

direction at the point (r, s) = (−1, 2).

68. There is a function f (x, y) with fx(x, y) = y2 and

fy(x, y) = x2.

69. If f (x, y) has fy(x, y) = 0 then f must be a constant.

70. If f (x, y) = yeg(x) then fx = f .

71. If f is a symmetric two-variable function, that is

f (x, y) = f (y, x), then fx(x, y) = fy(x, y).

72. Which of the following functions satisfy the following

equation (called Euler’s Equation):

xfx + yfy = f?

(a) x2y3 (b) x+y+1 (c) x2 + y2 (d) x0.4y0.6

14.3 LOCAL LINEARITY AND THE DIFFERENTIAL

In Sections 14.1 and 14.2 we studied a function of two variables by allowing one variable at a time

to change. We now let both variables change at once to develop a linear approximation for functions

of two variables.

Zooming In to See Local Linearity

For a function of one variable, local linearity means that as we zoom in on the graph, it looks like a

straight line. As we zoom in on the graph of a two-variable function, the graph usually looks like a

plane, which is the graph of a linear function of two variables. (See Figure 14.22.)
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✲ ✲

Figure 14.22: Zooming in on the graph of a function of two variables until the graph looks like a plane

Similarly, Figure 14.23 shows three successive views of the contours near a point. As we zoom

in, the contours look more like equally spaced parallel lines, which are the contours of a linear

function. (As we zoom in, we have to add more contours.)

Figure 14.23: Zooming in on a contour diagram until the lines look parallel and equally spaced

This effect can also be seen numerically by zooming in with tables of values. Table 14.5 shows

three tables of values for f (x, y) = x2 + y3 near x = 2, y = 1, each one a closer view than the

previous one. Notice how each table looks more like the table of a linear function.

Table 14.5 Zooming in on values of f (x, y) = x2 + y3 near (2, 1) until the table looks linear

x

y

0 1 2

1 1 2 9

2 4 5 12

3 9 10 17

x

y

0.9 1.0 1.1

1.9 4.34 4.61 4.94

2.0 4.73 5.00 5.33

2.1 5.14 5.41 5.74

x

y

0.99 1.00 1.01

1.99 4.93 4.96 4.99

2.00 4.97 5.00 5.03

2.01 5.01 5.04 5.07

Zooming in Algebraically: Differentiability

Seeing a plane when we zoom in at a point tells us (provided the plane is not vertical) that f (x, y) is

closely approximated near that point by a linear function, L(x, y):

f (x, y) ≈ L(x, y).

The Tangent Plane

The graph of the function z = L(x, y) is the tangent plane at that point. See Figure 14.24. Provided the

approximation is sufficiently good, we say that f (x, y) is differentiable at the point. Section 14.8 on
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Figure 14.24: The tangent plane to the surface z = f (x, y) at the point (a, b)

page 799 defines precisely what is meant by the approximation being sufficiently good. The functions

we encounter are differentiable at most points in their domain.

What is the equation of the tangent plane? At the point (a, b), the x-slope of the graph of f

is the partial derivative fx(a, b) and the y-slope is fy(a, b). Thus, using the equation for a plane on

page 683 of Chapter 12, we have the following result:

Tangent Plane to the Surface z = f (x, y) at the Point (a, b)

Assuming f is differentiable at (a, b), the equation of the tangent plane is

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y− b).

Here we are thinking of a and b as fixed, so f (a, b), and fx(a, b), and fy(a, b) are constants.

Thus, the right side of the equation is a linear function of x and y.

Example 1 Find the equation for the tangent plane to the surface z = x2 + y2 at the point (3, 4).

Solution We have fx(x, y) = 2x, so fx(3, 4) = 6, and fy(x, y) = 2y, so fy(3, 4) = 8. Also, f (3, 4) = 32+42 =

25. Thus, the equation for the tangent plane at (3, 4) is

z = 25 + 6(x − 3) + 8(y − 4).

Local Linearization

Since the tangent plane lies close to the surface near the point at which they meet, z-values on the

tangent plane are close to values of f (x, y) for points near (a, b). Thus, replacing z by f (x, y) in the

equation of the tangent plane, we get the following approximation:

Tangent Plane Approximation to f (x, y) for (x, y) Near the Point (a, b)

Provided f is differentiable at (a, b), we can approximate f (x, y):

f (x, y) ≈ f (a, b) + fx(a, b)(x− a) + fy(a, b)(y− b).

We are thinking of a and b as fixed, so the expression on the right side is linear in x and y.

The right side of this approximation gives the local linearization of f near x = a, y = b.
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Figure 14.25 shows the tangent plane approximation graphically.

Figure 14.25: Local linearization: Approximating f (x, y) by the z-value from the tangent plane

Example 2 Find the local linearization of f (x, y) = x2 + y2 at the point (3, 4). Estimate f (2.9, 4.2) and f (2, 2)

using the linearization and compare your answers to the true values.

Solution Let z = f (x, y) = x2 + y2. In Example 1, we found the equation of the tangent plane at (3, 4) to be

z = 25 + 6(x − 3) + 8(y − 4).

Therefore, for (x, y) near (3, 4), we have the local linearization

f (x, y) ≈ 25 + 6(x − 3) + 8(y − 4).

Substituting x = 2.9, y = 4.2 gives

f (2.9, 4.2) ≈ 25 + 6(−0.1) + 8(0.2) = 26.

This compares favorably with the true value f (2.9, 4.2) = (2.9)2 + (4.2)2 = 26.05.

However, the local linearization does not give a good approximation at points far away from

(3, 4). For example, if x = 2, y = 2, the local linearization gives

f (2, 2) ≈ 25 + 6(−1) + 8(−2) = 3,

whereas the true value of the function is f (2, 2) = 22 + 22 = 8.

Example 3 Designing safe boilers depends on knowing how steam behaves under changes in temperature and

pressure. Steam tables, such as Table 14.6, are published giving values of the function V = f (T , P )

where V is the volume (in ft3) of one pound of steam at a temperature T (in ◦F) and pressure P (in

lb/in2).

(a) Give a linear function approximating V = f (T , P ) for T near 500◦F and P near 24 lb/in2.

(b) Estimate the volume of a pound of steam at a temperature of 505◦F and a pressure of 24.3 lb/in2.
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Table 14.6 Volume (in cubic feet) of one pound of steam at various

temperatures and pressures

Temperature

T

(◦F)

Pressure P (lb/in2)

20 22 24 26

480 27.85 25.31 23.19 21.39

500 28.46 25.86 23.69 21.86

520 29.06 26.41 24.20 22.33

540 29.66 26.95 24.70 22.79

Solution (a) We want the local linearization around the point T = 500, P = 24, which is

f (T , P ) ≈ f (500, 24) + fT (500, 24)(T − 500) + fP (500, 24)(P − 24).

We read the value f (500, 24) = 23.69 from the table.

Next we approximate fT (500, 24) by a difference quotient. From the P = 24 column, we

compute the average rate of change between T = 500 and T = 520:

fT (500, 24) ≈
f (520, 24) − f (500, 24)

520 − 500
=

24.20 − 23.69

20
= 0.0255.

Note that fT (500, 24) is positive, because steam expands when heated.

Next we approximatefP (500, 24)by looking at the T = 500 row and computing the average

rate of change between P = 24 and P = 26:

fP (500, 24) ≈
f (500, 26) − f (500, 24)

26 − 24
=

21.86 − 23.69

2
= −0.915.

Note thatfP (500, 24) is negative, because increasing the pressure on steam decreases its volume.

Using these approximations for the partial derivatives, we obtain the local linearization:

V = f (T , P ) ≈ 23.69 + 0.0255(T − 500) − 0.915(P − 24) ft3
for T near 500 ◦F

and P near 24 lb∕in2.

(b) We are interested in the volume at T = 505◦F and P = 24.3 lb/in2. Since these values are close

to T = 500◦F and P = 24 lb/in2, we use the linear relation obtained in part (a):

V ≈ 23.69 + 0.0255(505− 500) − 0.915(24.3− 24) = 23.54 ft3.

Local Linearity with Three or More Variables

Local linear approximations for functions of three or more variables follow the same pattern as for

functions of two variables. The local linearization of f (x, y, z) at (a, b, c) is given by

f (x, y, z) ≈ f (a, b, c) + fx(a, b, c)(x − a) + fy(a, b, c)(y− b) + fz(a, b, c)(z− c).
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The Differential

We are often interested in the change in the value of the function as we move from the point (a, b)

to a nearby point (x, y). We rewrite the tangent plane approximation as

f (x, y) − f (a, b)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Δf

≈ fx(a, b) (x − a)
⏟⏟⏟

Δx

+fy(a, b) (y − b)
⏟⏟⏟

Δy

,

giving us a relationship between Δf , Δx, and Δy:

Δf ≈ fx(a, b)Δx+ fy(a, b)Δy.

If a and b are fixed, fx(a, b)Δx + fy(a, b)Δy is a linear function of Δx and Δy that can be used to

estimate Δf for small Δx and Δy. We introduce new variables dx and dy to represent changes in x

and y.

The Differential of a Function z = f (x, y)

The differential, df (or dz), at a point (a, b) is the linear function of dx and dy given by the

formula

df = fx(a, b) dx + fy(a, b) dy.

The differential at a general point is often written df = fx dx + fy dy.

Example 4 Compute the differentials of the following functions.

(a) f (x, y) = x2e5y (b) z = x sin(xy) (c) f (x, y) = x cos(2x)

Solution (a) Since fx(x, y) = 2xe5y and fy(x, y) = 5x2e5y, we have

df = 2xe5y dx + 5x2e5y dy.

(b) Since )z∕)x = sin(xy) + xy cos(xy) and )z∕)y = x2 cos(xy), we have

dz = (sin(xy) + xy cos(xy)) dx + x2 cos(xy) dy.

(c) Since fx(x, y) = cos(2x) − 2x sin(2x) and fy(x, y) = 0, we have

df = (cos(2x) − 2x sin(2x)) dx+ 0 dy = (cos(2x) − 2x sin(2x)) dx.

Example 5 The density � (in g/cm3) of carbon dioxide gas CO2 depends upon its temperature T (in ◦C) and

pressure P (in atmospheres). The ideal gas model for CO2 gives what is called the state equation:

� =
0.5363P

T + 273.15
.

Compute the differential d�. Explain the signs of the coefficients of dT and dP .

Solution The differential for � = f (T , P ) is

d� = fT (T , P ) dT + fP (T , P )dP =
−0.5363P

(T + 273.15)2
dT +

0.5363

T + 273.15
dP .
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The coefficient of dT is negative because increasing the temperature expands the gas (if the pressure

is kept constant) and therefore decreases its density. The coefficient of dP is positive because increas-

ing the pressure compresses the gas (if the temperature is kept constant) and therefore increases its

density.

Where Does the Notation for the Differential Come From?

We write the differential as a linear function of the new variables dx and dy. You may wonder why

we chose these names for our variables. The reason is historical: The people who invented calculus

thought of dx and dy as “infinitesimal” changes in x and y. The equation

df = fxdx + fydy

was regarded as an infinitesimal version of the local linear approximation

Δf ≈ fxΔx + fyΔy.

In spite of the problems with defining exactly what “infinitesimal” means, some mathematicians,

scientists, and engineers think of the differential in terms of infinitesimals.

Figure 14.26 illustrates a way of thinking about differentials that combines the definition with

this informal point of view. It shows the graph of f along with a view of the graph around the point

(a, b, f (a, b)) under a microscope. Since f is locally linear at the point, the magnified view looks

like the tangent plane. Under the microscope, we use a magnified coordinate system with its origin

at the point (a, b, f (a, b)) and with coordinates dx, dy, and dz along the three axes. The graph of

the differential df is the tangent plane, which has equation dz = fx(a, b) dx + fy(a, b) dy in the

magnified coordinates.

x
y

z

✠

Surface is
graph off

✲

dx dy

dz

✠

Plane is
graph of df

Figure 14.26: The graph of f , with a view through a microscope showing the tangent plane in the

magnified coordinate system

Exercises and Problems for Section 14.3

EXERCISES

In Exercises 1–8, find the equation of the tangent plane at

the given point.

1. z = yex∕y at the point (1, 1, e)

2. z = sin(xy) at x = 2, y = 3�∕4

3. z = ln(x2 + 1) + y2 at the point (0, 3, 9)

4. z = ey + x + x2 + 6 at the point (1, 0, 9)

5. z =
1

2
(x2 + 4y2) at the point (2, 1, 4)

6. x2 + y2 − z = 1 at the point (1, 3, 9)

7. x2y2 + z − 40 = 0 at x = 2, y = 3

8. x2y + ln(xy) + z = 6 at the point (4, 0.25, 2)

In Exercises 9–12, find the differential of the function.

9. f (x, y) = sin(xy)

10. g(u, v) = u2 + uv

11. z = e−x cos y

12. ℎ(x, t) = e−3t sin(x + 5t)

In Exercises 13–16, find the differential of the function at the

point.

13. g(x, t) = x2 sin(2t) at (2, �∕4)

14. f (x, y) = xe−y at (1, 0)

15. P (L,K) = 1.01L0.25K0.75 at (100, 1)

16. F (m, r) = Gm∕r2 at (100, 10)
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In Exercises 17–20, assume points P and Q are close. Esti-

mate Δf = f (Q) − f (P ) using the differential df .

17. df = 10 dx − 5 dy, P = (200, 400), Q = (202, 405)

18. df = y dx + x dy, P = (10, 5), Q = (9.8, 5.3)

19. df = 6
√

1 + 4x + 2y dx + 3
√

1 + 4x + 2y dy, P =

(1, 2), Q = (1.03, 2.05)

20. df = (2x + 2y + 5) dx + (2x + 3) dy, P = (0, 0),

Q = (0.1,−0.2)

In Exercises 21–24, assume points P and Q are close. Esti-

mate g(Q).

21. P = (60, 80), Q = (60.5, 82), g(P ) = 100, gx(P ) = 2,

gy(P ) = −3.

22. P = (−150, 200), Q = (−152, 203), g(P ) = 2500,

gx(P ) = 10, gy(P ) = 20.

23. P = (5, 8),Q = (4.97, 7.99), g(P ) = 12, gx(P ) = −0.1,

gy(P ) = −0.2.

24. P = (30, 125), Q = (25, 135), g(P ) = 840, gx(P ) = 4,

gy(P ) = 1.5.

PROBLEMS

25. At a distance of x feet from the beach, the price in dol-

lars of a plot of land of area a square feet is f (a, x).

(a) What are the units of fa(a, x)?

(b) What does fa(1000, 300) = 3 mean in practical

terms?

(c) What are the units of fx(a, x)?

(d) What does fx(1000, 300) = −2 mean in practical

terms?

(e) Which is cheaper: 1005 square feet that are 305 feet

from the beach or 998 square feet that are 295 feet

from the beach? Justify your answer.

26. A student was asked to find the equation of the tan-

gent plane to the surface z = x3 − y2 at the point

(x, y) = (2, 3). The student’s answer was

z = 3x2(x − 2) − 2y(y − 3) − 1.

(a) At a glance, how do you know this is wrong?

(b) What mistake did the student make?

(c) Answer the question correctly.

27. (a) Check the local linearity of f (x, y) = e−x sin y near

x = 1, y = 2 by making a table of values of

f for x = 0.9, 1.0, 1.1 and y = 1.9, 2.0, 2.1.

Express values of f with 4 digits after the deci-

mal point. Then make a table of values for x =

0.99, 1.00, 1.01 and y = 1.99, 2.00. 2.01, again

showing 4 digits after the decimal point. Do both

tables look nearly linear? Does the second table

look more linear than the first?

(b) Give the local linearization of f (x, y) = e−x sin y

at (1, 2), first using your tables, and second using

the fact that fx(x, y) = −e−x sin y and fy(x, y) =

e−x cos y.

28. Find the local linearization of the function f (x, y) =

x2y at the point (3, 1).

29. The tangent plane to z = f (x, y) at the point (1, 2) is

z = 3x + 2y − 5.

(a) Find fx(1, 2) and fy(1, 2).

(b) What is f (1, 2)?

(c) Approximate f (1.1, 1.9).

30. Find an equation for the tangent plane to z = f (x, y) at

(3,−2) if the differential at (3,−2) is df = 5dx + dy

and f (3,−2) = 8.

31. Find df at (2,−4) if the tangent plane to z = f (x, y) at

(2,−4) is z = −3(x − 2) + 2(y + 4) + 3.

32. Give a linear function approximating z = f (x, y) near

(1,−1) using its contour diagram in Figure 14.27.

−2 −1 1 2

−2

−1

1

2

1 2 3 4

1234

0

−1

−2
−3

−1
−2

−3

x

y

Figure 14.27

33. For the differentiable function ℎ(x, y), we are told

that ℎ(600, 100) = 300 and ℎx(600, 100) = 12 and

ℎy(600, 100) = −8. Estimate ℎ(605, 98).

34. (a) Find the equation of the plane tangent to the graph

of f (x, y) = x2exy at (1, 0).

(b) Find the linear approximation of f (x, y) for (x, y)

near (1, 0).

(c) Find the differential of f at the point (1, 0).

35. Find the differential of f (x, y) =
√

x2 + y3 at the point

(1, 2). Use it to estimate f (1.04, 1.98).

36. (a) Find the differential of g(u, v) = u2 + uv.

(b) Use your answer to part (a) to estimate the change

in g as you move from (1, 2) to (1.2, 2.1).

37. An unevenly heated plate has temperature T (x, y) in ◦C

at the point (x, y). If T (2, 1) = 135, and Tx(2, 1) = 16,

and Ty(2, 1) = −15, estimate the temperature at the

point (2.04, 0.97).

38. A right circular cylinder has a radius of 50 cm and

a height of 100 cm. Use differentials to estimate the

change in volume of the cylinder if its height and ra-

dius are both increased by 1 cm.
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39. Give the local linearization for the monthly car-loan

payment function at each of the points investigated in

Problem 35 on page 747.

40. In Example 3 on page 756 we found a linear approxima-

tion for V = f (T , P ) near (500, 24). Now find a linear

approximation near (480, 20).

41. In Example 3 on page 756 we found a linear approxi-

mation for V = f (T , p) near (500, 24).

(a) Test the accuracy of this approximation by com-

paring its predicted value with the four neighbor-

ing values in the table. What do you notice? Which

predicted values are accurate? Which are not? Ex-

plain your answer.

(b) Suggest a linear approximation for f (T , p) near

(500, 24) that does not have the property you no-

ticed in part (a). [Hint: Estimate the partial deriva-

tives in a different way.]

42. In a room, the temperature is given by T = f (x, t) de-

grees Celsius, where x is the distance from a heater (in

meters) and t is the elapsed time (in minutes) since the

heat has been turned on. A person standing 3 meters

from the heater 5 minutes after it has been turned on

observes the following: (1) The temperature is increas-

ing by 1.2◦C per minute, and (2) As the person walks

away from the heater, the temperature decreases by 2◦C

per meter as time is held constant. Estimate how much

cooler or warmer it would be 2.5 meters from the heater

after 6 minutes.

43. Van der Waal’s equation relates the pressure, P , and the

volume, V , of a fixed quantity of a gas at constant tem-

perature T . For a, b, n, R constants, the equation is

(

P +
n2a

V 2

)

(V − nb) = nRT .

(a) Express P as a function of T and V .

(b) Write a linear approximation for the change in

pressure, ΔP = P − P0, resulting from a change

in temperature ΔT = T − T0 and a change in pres-

sure, ΔV = V − V0.

44. The gas equation for one mole of oxygen relates its pres-

sure, P (in atmospheres), its temperature, T (in K), and

its volume, V (in cubic decimeters, dm3):

T = 16.574
1

V
− 0.52754

1

V 2
− 0.3879P + 12.187V P .

(a) Find the temperature T and differential dT if the

volume is 25 dm3 and the pressure is 1 atmosphere.

(b) Use your answer to part (a) to estimate how much

the volume would have to change if the pressure

increased by 0.1 atmosphere and the temperature

remained constant.

45. The coefficient, �, of thermal expansion of a liquid re-

lates the change in the volume V (in m3) of a fixed

quantity of a liquid to an increase in its temperature T

(in ◦C):

dV = �V dT .

(a) Let � be the density (in kg/m3) of water as a func-

tion of temperature. (For a mass m of liquid, we

have � = m∕V .) Write an expression for d� in

terms of � and dT .

(b) The graph in Figure 14.28 shows density of water

as a function of temperature. Use it to estimate �

when T = 20◦C and when T = 80◦C.

0 20 40 60 80 100

960

970

980

990

1000

� (kg/m3)

T (◦C)

Figure 14.28

46. A fluid moves through a tube of length 1 meter and

radius r = 0.005 ± 0.00025 meters under a pressure

p = 105±1000 pascals, at a rate v = 0.625⋅10−9 m3 per

unit time. Use differentials to estimate the maximum er-

ror in the viscosity � given by

� =
�

8

pr4

v
.

47. The period, T , of oscillation in seconds of a pendulum

clock is given by T = 2�
√

l∕g, where g is the accel-

eration due to gravity. The length of the pendulum, l,

depends on the temperature, t, according to the formula

l = l0(1+ �(t− t0)) where l0 is the length of the pendu-

lum at temperature t0 and � is a constant which charac-

terizes the clock. The clock is set to the correct period

at the temperature t0. How many seconds a day does

the clock gain or lose when the temperature is t0 + Δt?

Show that this gain or loss is independent of l0.

48. Two functions that have the same local linearization at

a point have contours that are tangent at this point.

(a) If fx(a, b) or fy(a, b) is nonzero, use the local lin-

earization to show that an equation of the line tan-

gent at (a, b) to the contour of f through (a, b) is

fx(a, b)(x − a) + fy(a, b)(y − b) = 0.

(b) Find the slope of the tangent line if fy(a, b) ≠ 0.

(c) Find an equation for the line tangent to the contour

of f (x, y) = x2 + xy at (3, 4).

In Problems 49–52, the point is on the surface in 3-space.

(a) Find the differential of the equation (that is, of each

side).
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(b) Find dz at the point.

(c) Find an equation of the tangent plane to the surface at

the point.

49. 2x2 + 13 = y2 + 3z2, (2, 3, 2)

50. x2 + y2 + z2 + 1 = xyz + 2x2 + 3y2 − 2z2, (1, 1, 1)

51. xey + z2 + 1 = cos(x − 1) +
√

z2 + 3, (1, 0, 1)

52. xz2 + xy + 5 = x2 + z2, (2,−1, 1)

Strengthen Your Understanding

In Problems 53–55, explain what is wrong with the state-

ment.

53. An equation for the tangent plane to the surface z =

f (x, y) at the point (3, 4) is

z = f (3, 4) + fx(3, 4)x + fy(3, 4)y.

54. If fx(0, 0) = gx(0, 0) and fy(0, 0) = gy(0, 0), then the

surfaces z = f (x, y) and z = g(x, y) have the same

tangent planes at the point (0, 0).

55. The tangent plane to the surface z = x2y at the point

(1, 2) has equation

z = 2 + 2xy(x − 1) + x2(y − 2).

In Problems 56–57, give an example of:

56. Two different functions with the same differential.

57. A surface in three space whose tangent plane at (0, 0, 3)

is the plane z = 3.

Are the statements in Problems 58–65 true or false? Give

reasons for your answer.

58. The tangent plane approximation of f (x, y) = yex
2

at

the point (0, 1) is f (x, y) ≈ y.

59. If f is a function with df = 2y dx + sin(xy) dy, then

f changes by about −0.4 between the points (1, 2) and

(0.9, 2.0002).

60. The local linearization of f (x, y) = x2 + y2 at (1,1)

gives an overestimate of the value of f (x, y) at the point

(1.04, 0.95).

61. If two functions f and g have the same differential at

the point (1, 1), then f = g.

62. If two functions f and g have the same tangent plane at

a point (1, 1), then f = g.

63. If f (x, y) is a constant function, then df = 0.

64. If f (x, y) is a linear function, then df is a linear func-

tion of dx and dy.

65. If you zoom close enough near a point (a, b) on the con-

tour diagram of a differentiable function, the contours

are precisely parallel and exactly equally spaced.

14.4 GRADIENTS AND DIRECTIONAL DERIVATIVES IN THE PLANE

The Rate of Change in an Arbitrary Direction: The Directional Derivative

The partial derivatives of a function f tell us the rate of change of f in the directions parallel to

the coordinate axes. In this section we see how to compute the rate of change of f in an arbitrary

direction.

Example 1 Figure 14.29 shows the temperature, in ◦C, at the point (x, y). Estimate the average rate of change of

temperature as we walk from point A to point B.

100 200 300

100

200

300

x (m)

y (m)

50

45

35

B

A

②

40

Figure 14.29: Estimating rate of change on a temperature map
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Solution At the pointAwe are on theH = 45◦C contour. AtB we are on theH = 50◦C contour. The displace-

ment vector from A to B has x component approximately −100i⃗ and y component approximately

25j⃗ , so its length is
√

(−100)2 + 252 ≈ 103. Thus, the temperature rises by 5◦C as we move 103

meters, so the average rate of change of the temperature in that direction is about 5∕103 ≈ 0.05◦C/m.

Suppose we want to compute the rate of change of a function f (x, y) at the point P = (a, b) in

the direction of the unit vector u⃗ = u1i⃗ + u2 j⃗ . For ℎ > 0, consider the point Q = (a+ ℎu1, b+ℎu2)

whose displacement from P is ℎu⃗ . (See Figure 14.30.) Since ‖u⃗ ‖ = 1, the distance from P to Q

is ℎ. Thus,

Average rate of change

in f from P to Q
=

Change in f

Distance from P to Q
=

f (a + ℎu1, b + ℎu2) − f (a, b)

ℎ
.

(a, b)

P

Q

(a + ℎu1, b + ℎu2)

ℎu⃗

Figure 14.30: Displacement of ℎu⃗ from the point (a, b)

Taking the limit as ℎ → 0 gives the instantaneous rate of change and the following definition:

Directional Derivative of f at (a, b) in the Direction of a Unit Vector u⃗

If u⃗ = u1 i⃗ + u2j⃗ is a unit vector, we define the directional derivative, fu⃗ , by

fu⃗ (a, b) =

Rate of change

of f in direction

of u⃗ at (a, b)

= lim
ℎ→0

f (a + ℎu1, b + ℎu2) − f (a, b)

ℎ
,

provided the limit exists. Note that the directional derivative is a scalar.

Notice that if u⃗ = i⃗ , so u1 = 1, u2 = 0, then the directional derivative is fx, since

f
i⃗
(a, b) = lim

ℎ→0

f (a + ℎ, b) − f (a, b)

ℎ
= fx(a, b).

Similarly, if u⃗ = j⃗ then the directional derivative f
j⃗
= fy.

What If We Do Not Have a Unit Vector?

We defined fu⃗ for u⃗ a unit vector. If v⃗ is not a unit vector, v⃗ ≠ 0⃗ , we construct a unit vector

u⃗ = v⃗ ∕‖v⃗ ‖ in the same direction as v⃗ and define the rate of change of f in the direction of v⃗ as fu⃗ .

Example 2 For each of the functions f , g, and ℎ in Figure 14.31, decide whether the directional derivative at

the indicated point is positive, negative, or zero, in the direction of the vector v⃗ = i⃗ +2j⃗ , and in the

direction of the vector w⃗ = 2i⃗ + j⃗ .
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Figure 14.31: Contour diagrams of three functions with direction vectors v⃗ = i⃗ + 2j⃗ and w⃗ = 2i⃗ + j⃗ marked on each

Solution On the contour diagram for f , the vector v⃗ = i⃗ + 2j⃗ appears to be tangent to the contour. Thus, in

this direction, the value of the function is not changing, so the directional derivative in the direction

of v⃗ is zero. The vector w⃗ = 2i⃗ + j⃗ points from the contour marked 4 toward the contour marked

5. Thus, the values of the function are increasing and the directional derivative in the direction of w⃗

is positive.

On the contour diagram for g, the vector v⃗ = i⃗ + 2j⃗ points from the contour marked 6 toward

the contour marked 5, so the function is decreasing in that direction. Thus, the rate of change is

negative. On the other hand, the vector w⃗ = 2i⃗ + j⃗ points from the contour marked 6 toward the

contour marked 7, and hence the directional derivative in the direction of w⃗ is positive.

Finally, on the contour diagram for ℎ, both vectors point from the ℎ = 10 contour to the ℎ = 9

contour, so both directional derivatives are negative.

Example 3 Calculate the directional derivative of f (x, y) = x2 + y2 at (1, 0) in the direction of the vector i⃗ + j⃗ .

Solution First we have to find the unit vector in the same direction as the vector i⃗ + j⃗ . Since this vector has

magnitude
√

2, the unit vector is

u⃗ =
1
√

2
(i⃗ + j⃗ ) =

1
√

2
i⃗ +

1
√

2
j⃗ .

Thus,

fu⃗ (1, 0) = lim
ℎ→0

f (1 + ℎ∕
√

2, ℎ∕
√

2) − f (1, 0)

ℎ
= lim

ℎ→0

(1 + ℎ∕
√

2)2 + (ℎ∕
√

2)2 − 1

ℎ

= lim
ℎ→0

√

2ℎ + ℎ2

ℎ
= lim

ℎ→0
(
√

2 + ℎ) =
√

2.

Computing Directional Derivatives from Partial Derivatives

If f is differentiable, we will now see how to use local linearity to find a formula for the directional

derivative which does not involve a limit. If u⃗ is a unit vector, the definition of fu⃗ says

fu⃗ (a, b) = lim
ℎ→0

f (a + ℎu1, b + ℎu2) − f (a, b)

ℎ
= lim

ℎ→0

Δf

ℎ
,

where Δf = f (a + ℎu1, b + ℎu2) − f (a, b) is the change in f . We write Δx for the change in x, so

Δx = (a + ℎu1) − a = ℎu1; similarly, Δy = ℎu2. Using local linearity, we have

Δf ≈ fx(a, b)Δx+ fy(a, b)Δy = fx(a, b)ℎu1 + fy(a, b)ℎu2.

Thus, dividing by ℎ gives
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Δf

ℎ
≈

fx(a, b)ℎu1 + fy(a, b)ℎu2

ℎ
= fx(a, b)u1 + fy(a, b)u2.

This approximation becomes exact as ℎ → 0, so we have the following formula:

fu⃗ (a, b) = fx(a, b)u1 + fy(a, b)u2.

Example 4 Use the preceding formula to compute the directional derivative in Example 3. Check that we get

the same answer as before.

Solution We calculate fu⃗ (1, 0), where f (x, y) = x2 + y2 and u⃗ =
1
√

2
i⃗ +

1
√

2
j⃗ .

The partial derivatives are fx(x, y) = 2x and fy(x, y) = 2y. So, as before,

fu⃗ (1, 0) = fx(1, 0)u1 + fy(1, 0)u2 = (2)

(

1
√

2

)

+ (0)

(

1
√

2

)

=
√

2.

The Gradient Vector

Notice that the expression for fu⃗ (a, b) can be written as a dot product of u⃗ and a new vector:

fu⃗ (a, b) = fx(a, b)u1 + fy(a, b)u2 = (fx(a, b)i⃗ + fy(a, b)j⃗ ) ⋅ (u1i⃗ + u2 j⃗ ).

The new vector, fx(a, b)i⃗ + fy(a, b)j⃗ , turns out to be important. Thus, we make the following defi-

nition:

The Gradient Vector of a differentiable function f at the point (a, b) is

gradf (a, b) = fx(a, b)i⃗ + fy(a, b)j⃗

The formula for the directional derivative can be written in terms of the gradient as follows:

The Directional Derivative and the Gradient

If f is differentiable at (a, b) and u⃗ = u1 i⃗ + u2 j⃗ is a unit vector, then

fu⃗ (a, b) = fx(a, b)u1 + fy(a, b)u2 = gradf (a, b) ⋅ u⃗ .

The change in f corresponding to a small change Δr⃗ = Δxi⃗ + Δyj⃗ can be estimated using the

gradient:

Δf ≈ gradf ⋅ Δr⃗ .

Example 5 Find the gradient vector of f (x, y) = x + ey at the point (1, 1).

Solution Using the definition, we have

grad f = fxi⃗ + fyj⃗ = i⃗ + eyj⃗ ,

so at the point (1, 1)

grad f (1, 1) = i⃗ + ej⃗ .
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Alternative Notation for the Gradient

You can think of
)f

)x
i⃗ +

)f

)y
j⃗ as the result of applying the vector operator (pronounced “del”)

∇=
)

)x
i⃗ +

)

)y
j⃗

to the function f . Thus, we get the alternative notation

gradf = ∇f.

If z = f (x, y), we can write grad z or ∇z for gradf or for ∇f .

What Does the Gradient Tell Us?

The fact that fu⃗ = gradf ⋅ u⃗ enables us to see what the gradient vector represents. Suppose � is the

angle between the vectors gradf and u⃗ . At the point (a, b), we have

fu⃗ = gradf ⋅ u⃗ = ‖ gradf‖ ‖u⃗ ‖
⏟⏟⏟

1

cos � = ‖ gradf‖ cos �.

Imagine that gradf is fixed and that u⃗ can rotate. (See Figure 14.32.) The maximum value of

fu⃗ occurs when cos � = 1, so � = 0 and u⃗ is pointing in the direction of gradf . Then

Maximum fu⃗ = ‖ gradf‖ cos 0 = ‖ gradf‖.

The minimum value of fu⃗ occurs when cos � = −1, so � = � and u⃗ is pointing in the direction

opposite to gradf . Then

Minimum fu⃗ = ‖ gradf‖ cos� = −‖ gradf‖.

When � = �∕2 or 3�∕2, so cos � = 0, the directional derivative is zero.

Zero fu⃗
at � = −�∕2

Max fu⃗
at � = 0

Zero fu⃗
at � = �∕2

Min fu⃗
at � = �

grad f
u⃗ �

Figure 14.32: Values of the directional derivative at different angles to the gradient

Properties of the Gradient Vector

We have seen that the gradient vector points in the direction of the greatest rate of change at a point

and the magnitude of the gradient vector is that rate of change.

Figure 14.33 shows that the gradient vector at a point is perpendicular to the contour through that

point. If the contours represent equally spaced f -values and f is differentiable, local linearity tells

us that the contours of f around a point appear straight, parallel, and equally spaced. The greatest

rate of change is obtained by moving in the direction that takes us to the next contour in the shortest

possible distance; that is, perpendicular to the contour. Thus, we have the following:
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Geometric Properties of the Gradient Vector in the Plane

If f is a differentiable function at the point (a, b) and gradf (a, b) ≠ 0⃗ , then:

• The direction of gradf (a, b) is

· Perpendicular1 to the contour of f through (a, b);

· In the direction of the maximum rate of increase of f .

• The magnitude of the gradient vector, ‖ gradf‖, is

· The maximum rate of change of f at that point;

· Large when the contours are close together and small when they are far apart.

(a, b)

✛ Contour where
f (x, y) = c

✛ Contour where
f (x, y) = c + Δc

✮

Shortest path to next
contour gives greatest
rate of change

❲

Change in f isΔc

for both paths

❲

Figure 14.33: Close-up view of the contours around (a, b),

showing the gradient is perpendicular to the contours

100 200 300

100

200

300

x (m)

y (m)

A
C

■
❨

50

45

40

35

Figure 14.34: A temperature map showing

directions and relative magnitudes of two

gradient vectors

Examples of Directional Derivatives and Gradient Vectors

Example 6 Explain why the gradient vectors at pointsA andC in Figure 14.34 have the direction and the relative

magnitudes they do.

Solution The gradient vector points in the direction of greatest increase of the function. This means that in

Figure 14.34, the gradient points directly toward warmer temperatures. The magnitude of the gradient

vector measures the rate of change. The gradient vector at A is longer than the gradient vector at C

because the contours are closer together at A, so the rate of change is larger.

Example 2 on page 763 shows how the contour diagram can tell us the sign of the directional

derivative. In the next example we compute the directional derivative in three directions, two that

are close to that of the gradient vector and one that is not.

Example 7 Use the gradient to find the directional derivative of f (x, y) = x+ey at the point (1, 1) in the direction

of the vectors i⃗ − j⃗ , i⃗ + 2j⃗ , i⃗ + 3j⃗ .

Solution In Example 5 we found

gradf (1, 1) = i⃗ + ej⃗ .

A unit vector in the direction of i⃗ − j⃗ is s⃗ = (i⃗ − j⃗ )∕
√

2, so

fs⃗ (1, 1) = gradf (1, 1) ⋅ s⃗ = (i⃗ + ej⃗ ) ⋅

(

i⃗ − j⃗
√

2

)

=
1 − e
√

2
≈ −1.215.

1This assumes that the same scale is used on both axes.
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A unit vector in the direction of i⃗ + 2j⃗ is v⃗ = (i⃗ + 2j⃗ )∕
√

5, so

fv⃗ (1, 1) = gradf (1, 1) ⋅ v⃗ = (i⃗ + ej⃗ ) ⋅

(

i⃗ + 2j⃗
√

5

)

=
1 + 2e
√

5
≈ 2.879.

A unit vector in the direction of i⃗ + 3j⃗ is w⃗ = (i⃗ + 3j⃗ )∕
√

10, so

fw⃗ (1, 1) = gradf (1, 1) ⋅ w⃗ = (i⃗ + ej⃗ ) ⋅

(

i⃗ + 3j⃗
√

10

)

=
1 + 3e
√

10
≈ 2.895.

Now look back at the answers and compare with the value of ‖ gradf‖ =
√

1 + e2 ≈ 2.896.

One answer is not close to this value; the other two, fv⃗ = 2.879 and fw⃗ = 2.895, are close but

slightly smaller than ‖ gradf‖. Since ‖ gradf‖ is the maximum rate of change of f at the point, we

have for any unit vector u⃗ :

fu⃗ (1, 1) ≤ ‖ gradf‖.

with equality when u⃗ is in the direction of gradf . Since e ≈ 2.718, the vectors i⃗ + 2j⃗ and i⃗ + 3j⃗

both point roughly, but not exactly, in the direction of the gradient vector gradf (1, 1) = i⃗ + ej⃗ .

Thus, the values of fv⃗ and fw⃗ are both close to the value of ‖ gradf‖. The direction of the vector

i⃗ − j⃗ is not close to the direction of grad f and the value of fs⃗ is not close to the value of ‖ gradf‖.

Exercises and Problems for Section 14.4 Online Resource: Additional Problems for Section 14.4
EXERCISES

In Exercises 1–14, find the gradient of the function. Assume

the variables are restricted to a domain on which the function

is defined.

1. f (x, y) =
3

2
x5 −

4

7
y6 2. Q = 50K + 100L

3. f (m, n) = m2 + n2 4. z = xey

5. f (�, �) =
√

5�2 + � 6. f (r, ℎ) = �r2ℎ

7. z = (x + y)ey 8. f (K,L) = K0.3L0.7

9. f (r, �) = r sin � 10. f (x, y) = ln(x2 + y2)

11. z = sin(x∕y) 12. z = tan−1(x∕y)

13. f (�, �) =
2� + 3�
2� − 3�

14. z = x
ey

x + y

In Exercises 15–22, find the gradient at the point.

15. f (x, y) = x2y + 7xy3, at (1, 2)

16. f (m, n) = 5m2 + 3n4, at (5, 2)

17. f (r, ℎ) = 2�rℎ + �r2, at (2, 3)

18. f (x, y) = esin y, at (0, �)

19. f (x, y) = sin (x2) + cos y, at (
√

�

2
, 0)

20. f (x, y) = ln(x2 + xy), at (4, 1)

21. f (x, y) = 1∕(x2 + y2), at (−1, 3)

22. f (x, y) =
√

tan x + y, at (0, 1)

In Exercises 23–28, which of the following vectors gives the

direction of the gradient vector at point A on the contour di-

agram? The scales on the x- and y-axes are the same.

i⃗ −i⃗ j⃗ −j⃗

i⃗ + j⃗ i⃗ − j⃗ −i⃗ + 2j⃗ −2i⃗ − j⃗
23.

A

7 1
0

1
3

1
6

x

y 24.

A

5

10

15

20

x

y

25.

A

54

58

62

66

x

y 26.

A

94

88

82

76

x

y

27.

A

23

24

25

26

27

x

y 28.

A

36

38

40

42

44

x

y
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In Exercises 29–34, use the contour diagram of f in Fig-

ure 14.35 to decide if the specified directional derivative is

positive, negative, or approximately zero.

321−1−2−3

3

2

1

−1

−2

−3

x

y

4

4

2

2

6

6

8

8

Figure 14.35

29. At point (−2, 2), in direction i⃗ .

30. At point (0,−2), in direction j⃗ .

31. At point (0,−2), in direction i⃗ + 2j⃗ .

32. At point (0,−2), in direction i⃗ − 2j⃗ .

33. At point (−1, 1), in direction i⃗ + j⃗ .

34. At point (−1, 1), in direction −i⃗ + j⃗ .

In Exercises 35–42, use the contour diagram of f in Fig-

ure 14.35 to find the approximate direction of the gradient

vector at the given point.

35. (−2, 0) 36. (0,−2) 37. (2, 0) 38. (0, 2)

39. (−2, 2) 40. (−2,−2) 41. (2, 2) 42. (2,−2)

In Exercises 43–44, approximate the directional derivative

of f in the direction from P to Q.

43. P = (10, 12), Q = (10.3, 12.1), f (P ) = 50, f (Q) =

52.

44. P = (−120, 45), Q = (−122, 47), f (P ) =200, f (Q) =

205.

In Exercises 45–48, find the directional derivative fu⃗ (1, 2)

for the function f with u⃗ = (3i⃗ − 4j⃗ )∕5.

45. f (x, y) = xy + y3 46. f (x, y) = 3x − 4y

47. f (x, y) = x2 − y2 48. f (x, y) = sin(2x − y)

49. If f (x, y) = x2y and v⃗ = 4i⃗ − 3j⃗ , find the directional

derivative at the point (2, 6) in the direction of v⃗ .

In Exercises 50–51, find the differential df from the gradi-

ent.

50. grad f = yi⃗ + xj⃗

51. grad f = (2x + 3ey)i⃗ + 3xeyj⃗

In Exercises 52–53, find grad f from the differential.

52. df = 2xdx + 10ydy

53. df = (x + 1)yexdx + xexdy

In Exercises 54–55, assuming P and Q are close, approxi-

mate f (Q).

54. P = (100, 150), Q = (101, 153), f (P ) = 2000,

gradf (P ) = 2i⃗ − 2j⃗ .

55. P = (10, 10), Q = (10.2, 10.1), f (P ) = 50,

gradf (P ) = 0.5i⃗ + j⃗ .

56. Where is gradf longer: at a point where contour lines

of f are far apart or at a point where contour lines of f

are close together?

PROBLEMS

57. A student was asked to find the directional derivative

of f (x, y) = x2ey at the point (1, 0) in the direction of

v⃗ = 4i⃗ + 3j⃗ . The student’s answer was

fu⃗ (1, 0) = grad f (1, 0) ⋅ u⃗ =
8

5
i⃗ +

3

5
j⃗ .

(a) At a glance, how do you know this is wrong?

(b) What is the correct answer?

In Problems 58–64, find the quantity. Assume that g is a

smooth function and that

∇g(2, 3) = −2i⃗ + j⃗ and ∇g(2.4, 3) = 4i⃗

58. gy(2.4, 3) 59. gx(2, 3)

60. A vector perpendicular to the level curve of g that

passes through the point (2.4, 3)

61. A vector parallel to the level curve of g that passes

through the point (2, 3)

62. The slope of the graph of g at the point (2.4, 3) in the

direction of the vector i⃗ + 3j⃗ .

63. The slope of the graph of g at the point (2, 3) in the di-

rection of the vector i⃗ + 3j⃗ .

64. The greatest slope of the graph of g at the point (2, 3).

65. For f (x, y) = (x + y)∕(1 + x2), find the directional

derivative at (1,−2) in the direction of v⃗ = 3i⃗ +4j⃗ .

66. For g(x, y) with g(5, 10) = 100 and gu⃗ (5, 10) = 0.5,

where u⃗ is the unit vector in the direction of the vector

i⃗ + j⃗ , estimate g(5.1, 10.1).

67. Let f (P ) = 15 and f (Q) = 20 where P = (3, 4) and

Q = (3.03, 3.96). Approximate the directional deriva-

tive of f at P in the direction of Q.
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68. (a) Give Q, the point at a distance of 0.1 from P =

(4, 5) in the direction of v⃗ = −i⃗ + 3j⃗ . Give five

decimal places in your answer.

(b) UseP andQ to approximate the directional deriva-

tive of f (x, y) =
√

x + y in the direction of v⃗ .

(c) Give the exact value for the directional derivative

you estimated in part (b).

69. For f (x, y) = ex tan(y) + 2x2y, find the directional

derivative at the point (0, �∕4) in the direction

(a) i⃗ − j⃗ (b) i⃗ +
√

3j⃗

70. Find the rate of change of f (x, y) = x2 +y2 at the point

(1, 2) in the direction of the vector u⃗ = 0.6i⃗ + 0.8j⃗ .

71. (a) Let f (x, y) = (x+y)∕(1+x2). Find the directional

derivative of f at P = (1,−2) in the direction of:

(i) v⃗ = 3i⃗ − 2j⃗ (ii) v⃗ = −i⃗ + 4j⃗

(b) What is the direction of greatest increase of f atP ?

72. Let f (5, 10) = 200 and f (5.2, 9.9) = 197.

(a) Approximate the directional derivative at (5, 10) in

the direction from (5, 10) toward (5.2, 9.9).

(b) Approximate f (Q) at the point Q that is distance

0.1 from (5, 10) in the direction of (5.2, 9.9).

(c) Give coordinates for the point Q.

73. Let f (100, 100) = 500 and gradf (100, 100) = 2i⃗ +3j⃗ .

(a) Find the directional derivative of f at the point

(100, 100) in the direction i⃗ + j⃗ .

(b) Use the directional derivative to approximate

f (102, 102).

74. Let gradf (50, 60) = 0.3i⃗ + 0.5j⃗ . Approximate the di-

rectional derivative of f at the point (50, 60) in the di-

rection of the point (49.5, 62).

75. Let f (x, y) = x2y3. At the point (−1, 2), find a vector

(a) In the direction of maximum rate of change.

(b) In the direction of minimum rate of change.

(c) In a direction in which the rate of change is zero.

76. Let f (x, y) = exy. At the point (1, 1), find a unit vector

(a) In the direction of the steepest ascent.

(b) In the direction of the steepest descent.

(c) In a direction in which the rate of change is zero.

For Problems 77–81 use Figure 14.36, showing level curves

of f (x, y), to estimate the directional derivatives.

1 2 3 4 5 6

1

2

3

4

0
1 2 3 4 5

y

x

Figure 14.36

77. fi⃗ (4, 1) 78. fj⃗ (4, 1)

79. fu⃗ (4, 1) where u⃗ = (i⃗ − j⃗ )∕
√

2

80. fu⃗ (4, 1) where u⃗ = (−i⃗ + j⃗ )∕
√

2

81. fu⃗ (4, 1) with u⃗ = (−2i⃗ + j⃗ )∕
√

5

82. The surface z = g(x, y) is in Figure 14.37. What is the

sign of each of the following directional derivatives?

(a) gu⃗ (2, 5) where u⃗ = (i⃗ − j⃗ )∕
√

2.

(b) gu⃗ (2, 5) where u⃗ = (i⃗ + j⃗ )∕
√

2.

x

y

z

❘

(2, 5, 2)
(0, 5, 4)

(0, 12, 4)

Figure 14.37

83. The table gives values of a differentiable function

f (x, y). At the point (1.2, 0), into which quadrant does

the gradient vector of f point? Justify your answer.

x

y

−1 0 1

1.0 0.7 0.1 −0.5

1.2 4.8 4.2 3.6

1.4 8.9 8.3 7.7

84. The gradient of f at a point P has magnitude 10 and

is in the direction of A in Figure 14.38. Find the direc-

tional derivatives of f at P in the six directions shown.

P

A

B

C

D

E

F
90◦ 20◦

70◦
60◦

Figure 14.38
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85. Figure 14.39 represents the level curves f (x, y) = c ;

the values of f on each curve are marked. In each of

the following parts, decide whether the given quantity

is positive, negative or zero. Explain your answer.

(a) The value of ∇f ⋅ i⃗ at P .

(b) The value of ∇f ⋅ j⃗ at P .

(c) )f∕)x at Q.

(d) )f∕)y at Q.

4

3

2

1

x

y

❘

P

✛ Q

Figure 14.39

86. In Figure 14.39, which is larger: ‖∇f‖ at P or ‖∇f‖ at

Q? Explain how you know.

87. Let P , Q, R and S be four distinct points in the plane.

Let u⃗ be the unit vector in the direction from P to Q,

v⃗ the unit vector in the direction from P to R, and

w⃗ the unit vector in the direction from P to S. Let

f (x, y) be a linear function with f (P ) = 10, f (Q) = 7,

f (R) = 15, and f (S) = 10. List the directional deriva-

tives fu⃗ (P ), fv⃗ (P ), and fw⃗ (P ) in increasing order.

88. Let fx(3, 1) = −5 and fy(3, 1) = 2. Find a unit vector

u⃗ such that:

(a) fu⃗ (3, 1) > 0 (b) fu⃗ (3, 1) < 0

(c) fu⃗ (3, 1) = 0

89. Let f (0, 0) = −4 and fu⃗ (0, 0) = 20 for a unit vector u⃗ .

Suppose that points P and Q in Figure 14.40 are close.

Find approximate values of f (P ) and f (Q).

P
0.5u⃗

u⃗

Q −u⃗

(0,0)

Figure 14.40

In Problems 90–93, check that the point (2, 3) lies on the

curve. Then, viewing the curve as a contour of f (x, y), use

grad f (2, 3) to find a vector normal to the curve at (2, 3) and

an equation for the tangent line to the curve at (2, 3).

90. x2 + y2 = 13 91. xy = 6

92. y = x2 − 1 93. (y − x)2 + 2 = xy − 3

94. The temperature H in ◦Fahrenheit y miles north of

the Canadian border t hours after midnight is given by

H = 30 − 0.05y − 5t. A moose runs north at a speed

of 20 mph. At what rate does the moose perceive the

temperature to be changing?

95. At a certain point on a heated plate, the greatest rate

of temperature increase, 5◦ C per meter, is toward the

northeast. If an object at this point moves directly north,

at what rate is the temperature increasing?

96. An ant is at the point (1, 1, 3) on the surface of a bowl

with equation z = x2 +2y2, where x and y are in cm. In

what two horizontal directions can the ant move away

from the point (1, 1, 3) so that its initial rate of ascent is

2 vertical cm for each horizontal cm moved? Give your

answers as vectors in the plane.

97. Let T = f (x, y) = 100e−(x
2∕2)−y2 represent the temper-

ature, in ◦C, at the point (x, y) with x and y in meters.

(a) Describe the contours of f, and explain their

meaning in the context of this problem.

(b) Find the rate at which the temperature changes as

you move away from the point (1, 1) toward the

point (2, 3). Give units in your answer.

(c) In what direction would you move away from (1, 1)

for the temperature to increase as fast as possible?

98. You are climbing a mountain by the steepest route at a

slope of 20◦ when you come upon a trail branching off

at a 30◦ angle from yours. What is the angle of ascent

of the branch trail?

99. You are standing at the point (1, 1, 3) on the hill whose

equation is given by z = 5y − x2 − y2.

(a) If you choose to climb in the direction of steepest

ascent, what is your initial rate of ascent relative to

the horizontal distance?

(b) If you decide to go straight northwest, will you be

ascending or descending? At what rate?

(c) If you decide to maintain your altitude, in what di-

rections can you go?

Strengthen Your Understanding

In Problems 100–102, explain what is wrong with the state-

ment.

100. A function f has a directional derivative given by

fu⃗ (0, 0) = 3i⃗ + 4j⃗ .

101. A function f has gradient grad f (0, 0) = 7.

102. The gradient vector grad f (x, y) is perpendicular to the

contours of f , and the closer together the contours for

equally spaced values of f , the shorter the gradient vec-

tor.
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In Problems 103–104, give an example of:

103. A unit vector u⃗ such that fu⃗ (0, 0) < 0, given that

fx(0, 0) = 2 and fy(0, 0) = 3.

104. A contour diagram of a function with two points in the

domain where the gradients are parallel but different

lengths.

Are the statements in Problems 105–116 true or false? Give

reasons for your answer.

105. If the point (a, b) is on the contour f (x, y) = k, then

the slope of the line tangent to this contour at (a, b) is

fy(a, b)∕fx(a, b).

106. The gradient vector grad f (a, b) is a vector in 3-space.

107. grad(fg) = (grad f ) ⋅ (grad g)

108. The gradient vector grad f (a, b) is tangent to the con-

tour of f at (a, b).

109. If you know the gradient vector of f at (a, b) then you

can find the directional derivative fu⃗ (a, b) for any unit

vector u⃗ .

110. If you know the directional derivative fu⃗ (a, b) for all

unit vectors u⃗ then you can find the gradient vector of

f at (a, b).

111. The directional derivative fu⃗ (a, b) is parallel to u⃗ .

112. The gradient grad f (3, 4) is perpendicular to the vector

3i⃗ + 4j⃗ .

113. If grad f (1, 2) = i⃗ , then f decreases in the−i⃗ direction

at (1, 2).

114. If grad f (1, 2) = i⃗ , then f (10, 2) > f (1, 2).

115. At the point (3, 0), the function g(x, y) = x2 + y2 has

the same maximal rate of increase as that of the function

ℎ(x, y) = 2xy.

116. If f (x, y) = ex+y, then the directional derivative in any

direction u⃗ (with ‖u⃗ ‖ = 1) at the point (0, 0) is always

less than or equal to
√

2.

14.5 GRADIENTS AND DIRECTIONAL DERIVATIVES IN SPACE

The Gradient Vector and Directional Derivative of a Function of Three Variables
The gradient of a function of three variables is defined in the same way as for two variables:

The gradient vector of a differentiable function f (x, y, z) is

gradf = fxi⃗ + fyj⃗ + fzk⃗ .

As in two dimensions, directional derivatives in space give the rate of change of a function in

the direction of a unit vector u⃗ . If a function f of three variables is differentiable at the point (a, b, c)

and u⃗ = u1i⃗ + u2 j⃗ + u3k⃗ , then the directional derivative fu⃗ is related to the gradient by

fu⃗ (a, b, c) = fx(a, b, c)u1 + fy(a, b, c)u2 + fz(a, b, c)u3 = gradf (a, b, c) ⋅ u⃗ .

Since gradf (a, b, c)⋅u⃗ = ‖ gradf (a, b, c)‖ cos �, where � is the angle between gradf (a, b, c) and u⃗ ,

the value offu⃗ (a, b, c) is largest when � = 0, that is, when u⃗ is in the same direction as gradf (a, b, c).

In addition, fu⃗ (a, b, c) = 0 when � = �∕2, so gradf (a, b, c) is perpendicular to the level surface of

f . The properties of gradients in space are similar to those in the plane:

Properties of the Gradient Vector in Space

If f is differentiable at (a, b, c) and u⃗ is a unit vector, then

fu⃗ (a, b, c) = gradf (a, b, c) ⋅ u⃗ .

If, in addition, gradf (a, b, c) ≠ 0⃗ , then

• gradf (a, b, c) is perpendicular to the level surface of f at (a, b, c)

• gradf (a, b, c) is in the direction of the greatest rate of increase of f

• ‖ gradf (a, b, c)‖ is the maximum rate of change of f at (a, b, c).

Example 1 Find the directional derivative of f (x, y, z) = xy + z at the point (−1, 0, 1) in the direction of the

vector v⃗ = 2i⃗ + k⃗ .
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Solution The magnitude of v⃗ is ‖v⃗ ‖ =
√

22 + 1 =
√

5, so a unit vector in the same direction as v⃗ is

u⃗ =
v⃗

‖v⃗ ‖
=

2
√

5
i⃗ + 0j⃗ +

1
√

5
k⃗ .

The partial derivatives of f are fx(x, y, z) = y and fy(x, y, z) = x and fz(x, y, z) = 1. Thus,

fu⃗ (−1, 0, 1) = fx(−1, 0, 1)u1 + fy(−1, 0, 1)u2 + fz(−1, 0, 1)u3

= (0)

(

2
√

5

)

+ (−1)(0) + (1)

(

1
√

5

)

=
1
√

5
.

Example 2 Let f (x, y, z) = x2 + y2 and g(x, y, z) = −x2 − y2 − z2. What can we say about the direction of the

following vectors?

(a) gradf (0, 1, 1) (b) gradf (1, 0, 1) (c) grad g(0, 1, 1) (d) grad g(1, 0, 1).

Solution The cylinder x2 + y2 = 1 in Figure 14.41 is a level surface of f and contains both the points (0, 1, 1)

and (1, 0, 1). Since the value of f does not change at all in the z-direction, all the gradient vectors

are horizontal. They are perpendicular to the cylinder and point outward because the value of f

increases as we move out.

Similarly, the points (0, 1, 1) and (1, 0, 1) also lie on the same level surface of g, namely g(x, y, z) =

−x2 − y2 − z2 = −2, which is the sphere x2 + y2 + z2 = 2. Part of this level surface is shown in

Figure 14.42. This time the gradient vectors point inward, since the negative signs mean that the

function increases (from large negative values to small negative values) as we move inward.

x y

z

Figure 14.41: The level surface

f (x, y, z) = x2 + y2 = 1 with two gradient vectors

x y

z

Figure 14.42: The level surface

g(x, y, z) = −x2 − y2 − z2 = −2 with two gradient

vectors

Example 3 Consider the functions f (x, y) = 4−x2 −2y2 and g(x, y) = 4−x2. Calculate a vector perpendicular

to each of the following:

(a) The level curve of f at the point (1, 1) (b) The surface z = f (x, y) at the point (1, 1, 1)

(c) The level curve of g at the point (1, 1) (d) The surface z = g(x, y) at the point (1, 1, 3)

Solution (a) The vector we want is a 2-vector in the plane. Since gradf = −2xi⃗ − 4yj⃗ , we have

gradf (1, 1) = −2i⃗ − 4j⃗ .

Any nonzero multiple of this vector is perpendicular to the level curve at the point (1, 1).

(b) In this case we want a 3-vector in space. To find it we rewrite z = 4 − x2 − 2y2 as the level
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surface of the function F , where

F (x, y, z) = 4 − x2 − 2y2 − z = 0.

Then

gradF = −2xi⃗ − 4yj⃗ − k⃗ ,

so

gradF (1, 1, 1) = −2i⃗ − 4j⃗ − k⃗ ,

and gradF (1, 1, 1) is perpendicular to the surface z = 4 − x2 − 2y2 at the point (1, 1, 1). Notice

that −2i⃗ − 4j⃗ − k⃗ is not the only possible answer: any multiple of this vector will do.

(c) We are looking for a 2-vector. Since grad g = −2xi⃗ + 0j⃗ , we have

grad g(1, 1) = −2i⃗ .

Any multiple of this vector is perpendicular to the level curve also.

(d) We are looking for a 3-vector. We rewrite z = 4 − x2 as the level surface of the function G,

where

G(x, y, z) = 4 − x2 − z = 0.

Then

gradG = −2xi⃗ − k⃗

So

gradG(1, 1, 3) = −2i⃗ − k⃗ ,

and any multiple of gradG(1, 1, 3) is perpendicular to the surface z = 4 − x2 at this point.

Example 4 (a) A hiker on the surface f (x, y) = 4−x2 −2y2 at the point (1,−1, 1) starts to climb along the path

of steepest ascent. What is the relation between the vector gradf (1,−1) and a vector tangent to

the path at the point (1,−1, 1) and pointing uphill?

(b) At the point (1,−1, 1) on the surface f (x, y) = 4−x2 −2y2, calculate a vector, n⃗ , perpendicular

to the surface and a vector, T⃗ , tangent to the curve of steepest ascent.

1
2

0

3

−1
−3

−5

x

y

❑

Figure 14.43: Contour diagram for

z = f (x, y) = 4 − x2 − 2y2 showing

direction of grad f (1,−1)

Figure 14.44: Graph of

f (x, y) = 4 − x2 − 2y2 showing

path of steepest ascent from the

point (1,−1, 1)
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Solution (a) The hiker at the point (1,−1, 1) lies directly above the point (1,−1) in the xy-plane. The vector

gradf (1,−1) lies in 2-space, pointing like a compass in the direction in which f increases

most rapidly. Therefore, gradf (1,−1) lies directly under a vector tangent to the hiker’s path at

(1,−1, 1) and pointing uphill. (See Figures 14.43 and 14.44.)

(b) The surface is represented by F (x, y, z) = 4−x2−2y2−z = 0. Since gradF = −2xi⃗ −4yj⃗ − k⃗ ,

a normal, n⃗ , to the surface is given by

n⃗ = gradF (1,−1, 1) = −2(1)i⃗ − 4(−1)j⃗ − k⃗ = −2i⃗ + 4j⃗ − k⃗ .

We take the i⃗ and j⃗ components of T⃗ to be the vector gradf (1,−1) = −2i⃗ + 4j⃗ . Thus, we

have that, for some a > 0,

T⃗ = −2i⃗ + 4j⃗ + ak⃗

We want n⃗ ⋅ T⃗ = 0, so

n⃗ ⋅ T⃗ = (−2i⃗ + 4j⃗ − k⃗ ) ⋅ (−2i⃗ + 4j⃗ + ak⃗ ) = 4 + 16 − a = 0

So a = 20 and hence

T⃗ = −2i⃗ + 4j⃗ + 20k⃗ .

Example 5 Find the equation of the tangent plane to the sphere x2 + y2 + z2 = 14 at the point (1, 2, 3).

Solution We write the sphere as a level surface as follows:

f (x, y, z) = x2 + y2 + z2 = 14.

We have

gradf = 2xi⃗ + 2yj⃗ + 2zk⃗ ,

so the vector

gradf (1, 2, 3) = 2i⃗ + 4j⃗ + 6k⃗

is perpendicular to the sphere at the point (1, 2, 3). Since the vector gradf (1, 2, 3) is normal to the

tangent plane, the equation of the plane is

2x + 4y + 6z = 2 ⋅ 1 + 4 ⋅ 2 + 6 ⋅ 3 = 28 or x + 2y + 3z = 14.

We could also try to find the tangent plane to the level surface f (x, y, z) = k by solving alge-

braically for z and using the method of Section 14.3, page 755. (See Problem 47.) Solving for z can

be difficult or impossible, however, so the method of Example 5 is preferable.

Tangent Plane to a Level Surface

If f (x, y, z) is differentiable at (a, b, c), then an equation for the tangent plane to the level

surface of f at the point (a, b, c) is

fx(a, b, c)(x − a) + fy(a, b, c)(y − b) + fz(a, b, c)(z− c) = 0.
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Caution: Scale on the Axis and the Geometric Interpretation of the Gradient

When we interpreted the gradient of a function geometrically (page 767), we tacitly assumed that

the units and scales along the x and y axes were the same. If the scales are not the same, the gradient

vector may not look perpendicular to the contours. Consider the function f (x, y) = x2 + y with

gradient vector gradf = 2xi⃗ + j⃗ . Figure 14.45 shows the gradient vector at (1, 1) using the same

scales in the x and y directions. As expected, the gradient vector is perpendicular to the contour

line. Figure 14.46 shows contours of the same function with unequal scales on the two axes. Notice

that the gradient vector no longer appears perpendicular to the contour lines. Thus, we see that the

geometric interpretation of the gradient vector requires that the same scale be used on both axes.

1 2 3

1

2

1 2 3 4

x

y

Figure 14.45: The gradient vector with x and y

scales equal

1 2 3

1

2

3

4

1

2

3

4 5 6

x

y

Figure 14.46: The gradient vector with x and y

scales unequal

Exercises and Problems for Section 14.5 Online Resource: Additional Problems for Section 14.5
EXERCISES

In Exercises 1–12, find the gradient of the function.

1. f (x, y, z) = x2

2. f (x, y, z) = x2 + y3 − z4

3. f (x, y, z) = ex+y+z

4. f (x, y, z) = cos(x + y) + sin(y + z)

5. f (x, y, z) = yz2∕(1 + x2)

6. f (x, y, z) = 1∕(x2 + y2 + z2)

7. f (x, y, z) =
√

x2 + y2 + z2

8. f (x, y, z) = xey sin z

9. f (x, y, z) = xy + sin (ez)

10. f (x1, x2, x3) = x2
1
x3
2
x4
3

11. f (p, q, r) = ep + ln q + er
2

12. f (x, y, z) = ez
2
+ y ln(x2 + 5)

In Exercises 13–18, find the gradient at the point.

13. f (x, y, z) = zy2, at (1, 0, 1)

14. f (x, y, z) = 2x + 3y + 4z, at (1, 1, 1)

15. f (x, y, z) = x2 + y2 − z4, at (3, 2, 1)

16. f (x, y, z) = xyz, at (1, 2, 3)

17. f (x, y, z) = sin(xy) + sin(yz), at (1, �,−1)

18. f (x, y, z) = x ln(yz), at (2, 1, e)

In Exercises 19–24, find the directional derivative using

f (x, y, z) = xy + z2.

19. At (1, 2, 3) in the direction of i⃗ + j⃗ + k⃗ .

20. At (1, 1, 1) in the direction of i⃗ + 2j⃗ + 3k⃗ .

21. As you leave the point (1, 1, 0) heading in the direction

of the point (0, 1, 1).

22. As you arrive at (0, 1, 1) from the direction of (1, 1, 0).

23. At the point (2, 3, 4) in the direction of a vector making

an angle of 3�∕4 with grad f (2, 3, 4).

24. At the point (2, 3, 4) in the direction of the maximum

rate of change of f .

In Exercises 25–30, check that the point (−1, 1, 2) lies on the

given surface. Then, viewing the surface as a level surface for

a function f (x, y, z), find a vector normal to the surface and

an equation for the tangent plane to the surface at (−1, 1, 2).

25. x2 − y2 + z2 = 4 26. z = x2 + y2

27. y2 = z2 − 3 28. x2 − xyz = 3

29. cos(x + y) = exz+2 30. y = 4∕(2x + 3z)

In Exercises 31–32, the gradient of f and a point P on the

level surface f (x, y, z) = 0 are given. Find an equation for

the tangent plane to the surface at the point P .

31. grad f = yzi⃗ + xzj⃗ + xyk⃗ , P = (1, 2, 3)

32. grad f = 2xi⃗ + z2j⃗ + 2yzk⃗ , P = (10,−10, 30)
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In Exercises 33–37, find an equation of the tangent plane to

the surface at the given point.

33. x2 + y2 + z2 = 17 at the point (2, 3, 2)

34. x2 + y2 = 1 at the point (1, 0, 0)

35. z = 2x + y + 3 at the point (0, 0, 3)

36. 3x2 − 4xy + z2 = 0 at the point (a, a, a), where a ≠ 0

37. z = 9∕(x + 4y) at the point where x = 1 and y = 2

38. Forf (x, y, z) = 3x2y2+2yz, find the directional deriva-

tive at the point (−1, 0, 4) in the direction of (a) i⃗ −k⃗

(b) −i⃗ + 3j⃗ + 3k⃗

39. If f (x, y, z) = x2+3xy+2z, find the directional deriva-

tive at the point (2, 0,−1) in the direction of 2i⃗ +j⃗ −2k⃗ .

40. (a) Let f (x, y, z) = x2 + y2 − xyz. Find grad f .

(b) Find the equation for the tangent plane to the sur-

face f (x, y, z) = 7 at the point (2, 3, 1).

41. Find the equation of the tangent plane at the point

(3, 2, 2) to z =
√

17 − x2 − y2.

42. Find the equation of the tangent plane to z = 8∕(xy) at

the point (1, 2, 4).

43. Find an equation of the tangent plane and of a normal

vector to the surface x = y3z7 at the point (1,−1,−1).

PROBLEMS

44. Let f (x, y, z) represent the temperature in ◦C at the

point (x, y, z) with x, y, z in meters. Let v⃗ be your ve-

locity in meters per second. Give units and an interpre-

tation of each of the following quantities.

(a) || grad f || (b) grad f ⋅ v⃗ (c) || grad f ||⋅||v⃗ ||

45. Consider the surface g(x, y) = 4 − x2. What is the rela-

tion between grad g(−1,−1) and a vector tangent to the

path of steepest ascent at (−1,−1, 3)? Illustrate your an-

swer with a sketch.

46. Match the functions f (x, y, z) in (a)–(d) with the de-

scriptions of their gradients in (I)–(IV).

(a) x2 + y2 + z2 (b) x2 + y2

(c)
1

x2 + y2 + z2
(d)

1

x2 + y2

I Points radially outward from the z-axis.

II Points radially inward toward the z-axis.

III Points radially outward from the origin.

IV Points radially inward toward the origin.

47. Find the equation of the tangent plane at (2, 3, 1) to the

surface x2 + y2 − xyz = 7. Do this in two ways:

(a) Viewing the surface as the level set of a function

of three variables, F (x, y, z).

(b) Viewing the surface as the graph of a function of

two variables z = f (x, y).

48. At what point on the surface z = 1+x2+y2 is its tangent

plane parallel to the following planes?

(a) z = 5 (b) z = 5 + 6x − 10y.

49. Let gx(2, 1, 7) = 3, gy(2, 1, 7) = 10, gz(2, 1, 7) = −5.

Find the equation of the tangent plane to g(x, y, z) = 0

at the point (2, 1, 7).

50. The vector ∇f at point P and four unit vectors

u⃗ 1, u⃗ 2, u⃗ 3, u⃗ 4 are shown in Figure 14.47. Arrange the

following quantities in ascending order

fu⃗ 1
, fu⃗ 2

, fu⃗ 3
, fu⃗ 4

, the number 0.

The directional derivatives are all evaluated at the point

P and the function f (x, y) is differentiable at P .

u⃗ 1

u⃗ 4

u⃗ 3

u⃗ 2

∇f

P

Figure 14.47

51. Let f (x, y, z) = x2 + y2 + z2. At the point (1, 2, 1), find

the rate of change of f in the direction perpendicular to

the plane x + 2y + 3z = 8 and moving away from the

origin.

52. Let f (x, y) = cos x sin y and let S be the surface z =

f (x, y).

(a) Find a normal vector to the surface S at the point

(0, �∕2, 1).

(b) What is the equation of the tangent plane to the sur-

face S at the point (0, �∕2, 1)?

53. Let f (x, y, z) = sin(x2 + y2 + z2).

(a) Describe in words the shape of the level surfaces

of f .

(b) Find grad f .

(c) Consider the two vectors r⃗ = xi⃗ + yj⃗ + zk⃗ and

grad f at a point (x, y, z) where sin(x2 +y2 +z2) ≠

0. What is (are) the possible values(s) of the angle

between these vectors?
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54. Each diagram (I) – (IV) in Figure 14.48 represents the

level curves of a function f (x, y). For each function f ,

consider the point above P on the surface z = f (x, y)

and choose from the lists of vectors and equations that

follow:

(a) A vector which could be the normal to the surface

at that point;

(b) An equation which could be the equation of the

tangent plane to the surface at that point.

y

x

P

4

3

2

1

(I) y

x

P

1

2

3

4

(II)

y

x

P

4

3

2

1

(III) y

x

P

1

2

3

4

(IV)

Figure 14.48

Vectors

(E) 2i⃗ + 2j⃗ − 2k⃗

(F) 2i⃗ + 2j⃗ + 2k⃗

(G) 2i⃗ − 2j⃗ + 2k⃗

(H) −2i⃗ + 2j⃗ + 2k⃗

Equations
(J) x + y + z = 4

(K) 2x − 2y − 2z = 2

(L) −3x − 3y + 3z = 6

(M) −
x

2
+

y

2
−

z

2
= −7

55. (a) What is the shape of the curve in which the follow-

ing surface cuts the yz-plane:

5(x − 1)2 + 2(y + 1)2 + 2(z − 3)2 = 25?

(b) Does the curve in part (a) go through the origin?

(c) Find an expression for a vector perpendicular to the

surface at the origin.

56. Find the points on the surface y = 4 + x2 + z2 where

the gradient is parallel to i⃗ + j⃗ + k⃗ .

57. A particle moves at a speed of 3 units per second per-

pendicular to the surface x = 4+y2 +z2 from the point

(9, 1, 2) toward the yz-plane.

(a) What is the particle’s velocity vector?

(b) Where is the particle after one second?

58. For the surface z + 7 = 2x2 + 3y2, where does the tan-

gent plane at the point (−1, 1,−2) meet the three axes?

59. Find a vector perpendicular to the surface z = 4−x2−y2

at the point above the point (1, 1, 0). (The z-axis is ver-

tical.)

60. (a) Where does the surface x2 + y2 − (z − 1)2 = 0 cut

the xy-plane? What is the shape of the curve?

(b) At the points where the surface cuts the xy-plane,

do vectors perpendicular to the surface lie in the

xy-plane?

61. A unit vector is perpendicular to the surface z = x2−y2.

At which point on the surface does this unit vector have

the largest dot product with the vector i⃗ + 2j⃗ + 3k⃗?

62. The surface S is represented by the equation F = 0

where F (x, y, z) = x2 − (y∕z2).

(a) Find the unit vectors u⃗ 1 and u⃗ 2 pointing in the di-

rection of maximum increase of F at the points

(0, 0, 1) and (1, 1, 1) respectively.

(b) Find the tangent plane to S at the points (0, 0, 1)

and (1, 1, 1).

(c) Find all points on S where a normal vector is par-

allel to the xy-plane.

63. Consider the function f (x, y) = (ex−x) cos y. Suppose

S is the surface z = f (x, y).

(a) Find a vector which is perpendicular to the level

curve of f through the point (2, 3) in the direction

in which f decreases most rapidly.

(b) Suppose v⃗ = 5i⃗ + 4j⃗ + ak⃗ is a vector in 3-space

which is tangent to the surface S at the point P

lying on the surface above (2, 3). What is a?

64. (a) Find the tangent plane to the surface x2+y2+3z2 =

4 at the point (0.6, 0.8, 1).

(b) Is there a point on the surface x2 + y2 + 3z2 = 4

at which the tangent plane is parallel to the plane

8x + 6y + 30z = 1? If so, find it. If not, explain

why not.

65. Your house lies on the surface z = f (x, y) = 2x2 − y2

directly above the point (4, 3) in the xy-plane.

(a) How high above the xy-plane do you live?

(b) What is the slope of your lawn as you look from

your house directly toward the z-axis (that is, along

the vector −4i⃗ − 3j⃗ )?

(c) When you wash your car in the driveway, on this

surface above the point (4, 3), which way does

the water run off? (Give your answer as a two-

dimensional vector.)

(d) What is the equation of the tangent plane to this

surface at your house?

66. (a) Sketch the contours of z = y − sin x for z =

−1, 0, 1, 2.

(b) A bug starts on the surface at the point (�∕2, 1, 0)

and walks on the surface z = y − sin x in the di-

rection parallel to the y-axis, in the direction of in-

creasing y. Is the bug walking in a valley or on top

of a ridge? Explain.

(c) On the contour z = 0 in your sketch for part (a),

draw the gradients of z at x = 0, x = �∕2, and

x = �.
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67. The function f (x, y, z) = 2x − 3y + z + 10 gives the

temperature, T , in degrees Celsius, at the point (x, y, z).

(a) In words, describe the isothermal surfaces.

(b) Calculate fz(0, 0, 0) and interpret in terms of tem-

perature.

(c) If you are standing at the point (0, 0, 0), in what

direction should you move to increase your tem-

perature the fastest?

(d) Is z = −2x+ 3y+ 17 an isothermal surface? If so,

what is the temperature on this isotherm?

68. The concentration of salt in a fluid at (x, y, z) is given

by F (x, y, z) = x2 + y4 + x2z2 mg/cm3. You are at the

point (−1, 1, 1).

(a) In which direction should you move if you want the

concentration to increase the fastest?

(b) You start to move in the direction you found in part

(a) at a speed of 4 cm/sec. How fast is the concen-

tration changing?

69. The temperature of a gas at the point (x, y, z) is given

by G(x, y, z) = x2 − 5xy + y2z.

(a) What is the rate of change in the temperature at the

point (1, 2, 3) in the direction v⃗ = 2i⃗ + j⃗ − 4k⃗ ?

(b) What is the direction of maximum rate of change

of temperature at the point (1, 2, 3)?

(c) What is the maximum rate of change at the point

(1, 2, 3)?

70. The temperature at the point (x, y, z) in 3-space is given,

in degrees Celsius, by T (x, y, z) = e−(x
2+y2+z2).

(a) Describe in words the shape of surfaces on which

the temperature is constant.

(b) Find grad T .

(c) You travel from the point (1, 0, 0) to the point

(2, 1, 0) at a speed of 3 units per second. Find the

instantaneous rate of change of the temperature as

you leave the point (1, 0, 0). Give units.

71. A spaceship is plunging into the atmosphere of a planet.

With coordinates in miles and the origin at the center of

the planet, the pressure of the atmosphere at (x, y, z) is

P = 5e−0.1
√

x2+y2+z2 atmospheres.

The velocity, in miles/sec, of the spaceship at (0, 0, 1)

is v⃗ = i⃗ − 2.5k⃗ . At (0, 0, 1), what is the rate of change

with respect to time of the pressure on the spaceship?

72. The earth has mass M and is located at the origin in

3-space, while the moon has mass m. Newton’s Law of

Gravitation states that if the moon is located at the point

(x, y, z) then the attractive force exerted by the earth on

the moon is given by the vector

F⃗ = −GMm
r⃗

‖r⃗ ‖3
,

where r⃗ = xi⃗ + yj⃗ + zk⃗ . Show that F⃗ = grad',

where ' is the function given by

'(x, y, z) =
GMm

‖r⃗ ‖
.

73. Let r⃗ = xi⃗ + yj⃗ + zk⃗ and a⃗ be a constant vector. For

each of the quantities in (a)–(c), choose the statement

in (I)–(V) that describes it. No reasons are needed.

(a) grad(r⃗ + a⃗ ) (b) grad(r⃗ ⋅ a⃗ ) (c) grad(r⃗ × a⃗ )

I Scalar, independent of a⃗ .

II Scalar, depends on a⃗ .

III Vector, independent of a⃗ .

IV Vector, depends on a⃗ .

V Not defined.

Strengthen Your Understanding

In Problems 74–75, explain what is wrong with the state-

ment.

74. The gradient vector grad f (x, y) points in the direction

perpendicular to the surface z = f (x, y).

75. The tangent plane at the origin to a surface f (x, y, z) =

1 that contains the point (0, 0, 0) has equation

fx(0, 0, 0)x + fy(0, 0, 0)y + fz(0, 0, 0)z + 1 = 0.

In Problems 76–78, give an example of:

76. A surface z = f (x, y) such that the vector i⃗ −2j⃗ − k⃗ is

normal to the tangent plane at the point where (x, y) =

(0, 0).

77. A function f (x, y, z) such that grad f = 2i⃗ +3j⃗ +4k⃗ .

78. Two nonparallel unit vectors u⃗ and v⃗ such that

fu⃗ (0, 0, 0) = fv⃗ (0, 0, 0) = 0, where f (x, y, z) =

2x − 3y.

Are the statements in Problems 79–82 true or false? Give

reasons for your answer.

79. An equation for the tangent plane to the surface z =

x2 + y3 at (1, 1) is z = 2 + 2x(x − 1) + 3y2(y − 1).

80. There is a function f (x, y) which has a tangent plane

with equation z = 0 at a point (a, b).

81. There is a function with ‖ grad f‖ = 4 and f
k⃗

= 5 at

some point.

82. There is a function with ‖ grad f‖ = 5 and f
k⃗
= −3 at

some point.
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14.6 THE CHAIN RULE

Composition of Functions of Many Variables and Rates of Change

The chain rule enables us to differentiate composite functions. If we have a function of two variables

z = f (x, y) and we substitute x = g(t), y = ℎ(t) into z = f (x, y), then we have a composite function

in which z is a function of t:

z = f (g(t), ℎ(t)).

If, on the other hand, we substitute x = g(u, v), y = ℎ(u, v), then we have a different composite

function in which z is a function of u and v:

z = f (g(u, v), ℎ(u, v)).

The next example shows how to calculate the rate of change of a composite function.

Example 1 Corn production, C , depends on annual rainfall, R, and average temperature, T , so C = f (R, T ).

Global warming predicts that both rainfall and temperature depend on time. Suppose that according

to a particular model of global warming, rainfall is decreasing at 0.2 cm per year and temperature is

increasing at 0.1◦C per year. Use the fact that at current levels of production, fR = 3.3 and fT = −5

to estimate the current rate of change, dC∕dt.

Solution By local linearity, we know that changes ΔR and ΔT generate a change, ΔC , in C given approxi-

mately by

ΔC ≈ fRΔR + fTΔT = 3.3ΔR − 5ΔT .

We want to know how ΔC depends on the time increment, Δt. A change Δt causes changesΔR and

ΔT , which in turn cause a change ΔC . The model of global warming tells us that

dR

dt
= −0.2 and

dT

dt
= 0.1.

Thus, a time increment, Δt, generates changes of ΔR and ΔT given by

ΔR ≈ −0.2Δt and ΔT ≈ 0.1Δt.

Substituting for ΔR and ΔT in the expression for ΔC gives us

ΔC ≈ 3.3(−0.2Δt) − 5(0.1Δt) = −1.16Δt.

Thus,
ΔC

Δt
≈ −1.16 and, therefore,

dC

dt
≈ −1.16.

The relationship between ΔC and Δt, which gives the value of dC∕dt, is an example of the

chain rule. The argument in Example 1 leads to more general versions of the chain rule.

The Chain Rule for z = f (x, y), x = g(t), y = h(t)

Since z = f (g(t), ℎ(t)) is a function of t, we can consider the derivative dz∕dt. The chain rule gives

dz∕dt in terms of the derivatives of f, g, and ℎ. Since dz∕dt represents the rate of change of z with

t, we look at the change Δz generated by a small change, Δt.

We substitute the local linearizations

Δx ≈
dx

dt
Δt and Δy ≈

dy

dt
Δt
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into the local linearization

Δz ≈
)z

)x
Δx +

)z

)y
Δy,

yielding

Δz ≈
)z

)x

dx

dt
Δt +

)z

)y

dy

dt
Δt

=

(

)z

)x

dx

dt
+

)z

)y

dy

dt

)

Δt.

Thus,

Δz

Δt
≈

)z

)x

dx

dt
+

)z

)y

dy

dt
.

Taking the limit as Δt → 0, we get the following result.

If f , g, and ℎ are differentiable and if z = f (x, y), and x = g(t), and y = ℎ(t), then

dz

dt
=

)z

)x

dx

dt
+

)z

)y

dy

dt
.

Visualizing the Chain Rule with a Diagram

The diagram in Figure 14.49 provides a way of remembering the chain rule. It shows the chain of

dependence: z depends on x and y, which in turn depend on t. Each line in the diagram is labeled

with a derivative relating the variables at its ends.

z

x y

t

)z

)x

)z

)y

dx

dt

dy

dt

Figure 14.49: Diagram for z = f (x, y), x = g(t), y = ℎ(t). Lines represent dependence of z on x and y, and of x

and y on t

The diagram keeps track of how a change in t propagates through the chain of composed func-

tions. There are two paths from t to z, one through x and one through y. For each path, we multiply

together the derivatives along the path. Then, to calculate dz∕dt, we add the contributions from the

two paths.

Example 2 Suppose that z = f (x, y) = x sin y, where x = t2 and y = 2t + 1. Let z = g(t). Compute g′(t)

directly and using the chain rule.
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Solution Since z = g(t) = f (t2, 2t+1) = t2 sin(2t+1), it is possible to compute g′(t) directly by one-variable

methods:

g′(t) = t2
d

dt
(sin(2t + 1)) +

(

d

dt
(t2)

)

sin(2t + 1) = 2t2 cos(2t + 1) + 2t sin(2t+ 1).

The chain rule provides an alternative route to the same answer. We have

dz

dt
=

)z

)x

dx

dt
+

)z

)y

dy

dt
= (sin y)(2t) + (x cos y)(2) = 2t sin(2t+ 1) + 2t2 cos(2t+ 1).

Example 3 The capacity,C , of a communication channel, such as a telephone line, to carry information depends

on the ratio of the signal strength, S, to the noise, N . For some positive constant k,

C = k ln
(

1 +
S

N

)

.

Suppose that the signal and noise are given as a function of time, t in seconds, by

S(t) = 4 + cos(4�t) N(t) = 2 + sin(2�t).

What is dC∕dt one second after transmission started? Is the capacity increasing or decreasing at that

instant?

Solution By the chain rule

dC

dt
=

)C

)S

dS

dt
+

)C

)N

dN

dt

=
k

1 + S∕N
⋅

1

N
(−4� sin 4�t) +

k

1 + S∕N

(

−
S

N2

)

(2� cos 2�t).

When t = 1, the first term is zero, S(1) = 5, and N(1) = 2, so

dC

dt
=

k

1 + S(1)∕N(1)

(

−
S(1)

(N(1))2

)

⋅ 2� =
k

1 + 5∕2

(

−
5

4

)

⋅ 2�.

Since dC∕dt is negative, the capacity is decreasing at time t = 1 second.

How to Formulate a General Chain Rule

A diagram can be used to write the chain rule for general compositions.

To find the rate of change of one variable with respect to another in a chain of composed

differentiable functions:

• Draw a diagram expressing the relationship between the variables, and label each link in

the diagram with the derivative relating the variables at its ends.

• For each path between the two variables, multiply together the derivatives from each step

along the path.

• Add the contributions from each path.

The diagram keeps track of all the ways in which a change in one variable can cause a change

in another; the diagram generates all the terms we would get from the appropriate substitutions into

the local linearizations.
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z

x y

u v

)z

)x

)z

)y

)x

)v

)x

)u

)y

)u

)y

)v

Figure 14.50: Diagram for z = f (x, y), x = g(u, v), y = ℎ(u, v). Lines represent

dependence of z on x and y, and of x and y on u and v

For example, we can use Figure 14.50 to find formulas for )z∕)u and )z∕)v. Adding the con-

tributions for the two paths from z to u, we get the following results:

If f , g, ℎ are differentiable and if z = f (x, y), with x = g(u, v) and y = ℎ(u, v), then

)z

)u
=

)z

)x

)x

)u
+

)z

)y

)y

)u
,

)z

)v
=

)z

)x

)x

)v
+

)z

)y

)y

)v
.

Example 4 Let w = x2ey, x = 4u, and y = 3u2 − 2v. Compute )w∕)u and )w∕)v using the chain rule.

Solution Using the previous result, we have

)w

)u
=

)w

)x

)x

)u
+

)w

)y

)y

)u
= 2xey(4) + x2ey(6u) = (8x + 6x2u)ey

= (32u+ 96u3)e3u
2−2v.

Similarly,

)w

)v
=

)w

)x

)x

)v
+

)w

)y

)y

)v
= 2xey(0) + x2ey(−2) = −2x2ey

= −32u2e3u
2−2v.

Example 5 A quantity z can be expressed either as a function of x and y, so that z = f (x, y), or as a function of

u and v, so that z = g(u, v). The two coordinate systems are related by

x = u + v, y = u − v.

(a) Use the chain rule to express )z∕)u and )z∕)v in terms of )z∕)x and )z∕)y.

(b) Solve the equations in part (a) for )z∕)x and )z∕)y.

(c) Show that the expressions we get in part (b) are the same as we get by expressing u and v in

terms of x and y and using the chain rule.
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Solution (a) We have )x∕)u = 1 and )x∕)v = 1, and also )y∕)u = 1 and )y∕)v = −1. Thus,

)z

)u
=

)z

)x
(1) +

)z

)y
(1) =

)z

)x
+

)z

)y

and
)z

)v
=

)z

)x
(1) +

)z

)y
(−1) =

)z

)x
−

)z

)y
.

(b) Adding together the equations for )z∕)u and )z∕)v, we get

)z

)u
+

)z

)v
= 2

)z

)x
, so

)z

)x
=

1

2

)z

)u
+

1

2

)z

)v
.

Similarly, subtracting the equations for )z∕)u and )z∕)v yields

)z

)y
=

1

2

)z

)u
−

1

2

)z

)v
.

(c) Alternatively, we can solve the equations

x = u + v, y = u − v

for u and v, which yields

u =
1

2
x +

1

2
y, v =

1

2
x −

1

2
y.

Now we can think of z as a function of u and v, and u and v as functions of x and y, and apply

the chain rule again. This gives us

)z

)x
=

)z

)u

)u

)x
+

)z

)v

)v

)x
=

1

2

)z

)u
+

1

2

)z

)v

and
)z

)y
=

)z

)u

)u

)y
+

)z

)v

)v

)y
=

1

2

)z

)u
−

1

2

)z

)v
.

These are the same expressions we got in part (b).

An Application to Physical Chemistry

A chemist investigating the properties of a gas such as carbon dioxide may want to know how the

internal energy U of a given quantity of the gas depends on its temperature, T , pressure, P , and

volume, V . The three quantities T , P , and V are not independent, however. For instance, according

to the ideal gas law, they satisfy the equation

PV = kT

where k is a constant which depends only upon the quantity of the gas. The internal energy can then

be thought of as a function of any two of the three quantities T , P , and V :

U = U1(T , P ) = U2(T , V ) = U3(P , V ).

The chemist writes, for example,
(

)U

)T

)

P
to indicate the partial derivative of U with respect to

T holding P constant, signifying that for this computation U is viewed as a function of T and P .

Thus, we interpret
(

)U

)T

)

P
as

(

)U

)T

)

P
=

)U1(T , P )

)T
.

If U is to be viewed as a function of T and V , the chemist writes
(

)U

)T

)

V
for the partial derivative

of U with respect to T holding V constant: thus,
(

)U

)T

)

V
=

)U2(T ,V )

)T
.
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Each of the functions U1, U2, U3 gives rise to one of the following formulas for the differential

dU :

dU =
(

)U

)T

)

P
dT +

(

)U

)P

)

T
dP corresponds to U1,

dU =
(

)U

)T

)

V
dT +

(

)U

)V

)

T
dV corresponds to U2,

dU =
(

)U

)P

)

V
dP +

(

)U

)V

)

P
dV corresponds to U3.

All the six partial derivatives appearing in formulas for dU have physical meaning, but they are

not all equally easy to measure experimentally. A relationship among the partial derivatives, usually

derived from the chain rule, may make it possible to evaluate one of the partials in terms of others

that are more easily measured.

Example 6 Suppose a gas satisfies the equation PV = 2T and P = 3 when V = 4. If
(

)U

)P

)

V
= 7 and

(

)U

)V

)

P
= 8, find the values of

(

)U

)P

)

T
and

(

)U

)T

)

P
.

Solution Since we know the values of
(

)U

)P

)

V
and

(

)U

)V

)

P
, we think of U as a function of P and V and use

the function U3 to write

dU =
(

)U

)P

)

V
dP +

(

)U

)V

)

P
dV

dU = 7dP + 8dV .

To calculate
(

)U

)P

)

T
and

(

)U

)T

)

P
, we think of U as a function of T and P . Thus, we want to substitute

for dV in terms of dT and dP . Since PV = 2T , we have

PdV + V dP = 2dT ,

3dV + 4dP = 2dT .

Solving gives dV = (2dT − 4dP )∕3, so

dU = 7dP + 8
(

2dT − 4dP

3

)

dU = −
11

3
dP +

16

3
dT .

Comparing with the formula for dU obtained from U1,

dU =
(

)U

)T

)

P
dT +

(

)U

)P

)

T
dP ,

we have
(

)U

)T

)

P
=

16

3
and

(

)U

)P

)

T
= −

11

3
.

In Example 6, we could have substituted for dP instead of dV , leading to values of
(

)U

)T

)

V

and
(

)U

)V

)

T
. See Problem 41.

In general, if for some particular P , V , and T , we can measure two of the six quantities
(

)U

)P

)

V
,

(

)U

)V

)

P
,
(

)U

)P

)

T
,
(

)U

)T

)

P
,
(

)U

)V

)

T
,
(

)U

)T

)

V
, then we can compute the other four using the relationship

between dP , dV , and dT given by the gas law. General formulas for each partial derivative in terms

of others can be obtained in the same way. See the following example and Problem 41.



786 Chapter 14 DIFFERENTIATING FUNCTIONS OF SEVERAL VARIABLES

Example 7 Express
(

)U

)T

)

P
in terms of

(

)U

)T

)

V
and

(

)U

)V

)

T
and

(

)V

)T

)

P
.

Solution Since we are interested in the derivatives
(

)U

)T

)

V
and

(

)U

)V

)

T
, we think of U as a function of T and

V and use the formula

dU =
(

)U

)T

)

V
dT +

(

)U

)V

)

T
dV corresponding to U2.

We want to find a formula for
(

)U

)T

)

P
, which means thinking of U as a function of T and P .

Thus, we want to substitute for dV . Since V is a function of T and P , we have

dV =
(

)V

)T

)

P
dT +

(

)V

)P

)

T
dP .

Substituting for dV into the formula for dU corresponding to U2 gives

dU =
(

)U

)T

)

V
dT +

(

)U

)V

)

T

((

)V

)T

)

P
dT +

(

)V

)P

)

T
dP

)

.

Collecting the terms containing dT and the terms containing dP gives

dU =
((

)U

)T

)

V
+
(

)U

)V

)

T

(

)V

)T

)

P

)

dT +
(

)U

)V

)

T

(

)V

)P

)

T
dP .

But we also have the formula

dU =
(

)U

)T

)

P
dT +

(

)U

)P

)

T
dP corresponding to U1.

We now have two formulas for dU in terms of dT and dP . The coefficients of dT must be identical,

so we conclude
(

)U

)T

)

P
=
(

)U

)T

)

V
+
(

)U

)V

)

T

(

)V

)T

)

P
.

Example 7 expresses
(

)U

)T

)

P
in terms of three other partial derivatives. Two of them, namely

(

)U

)T

)

V
, the constant-volume heat capacity, and

1

V

(

)V

)T

)

P
, the expansion coefficient, can be easily

measured experimentally. The third, the internal pressure,
(

)U

)V

)

T
, cannot be measured directly but

can be related to
(

)P

)T

)

V
, which is measurable. Thus,

(

)U

)T

)

P
can be determined indirectly using

this identity.

Exercises and Problems for Section 14.6 Online Resource: Additional Problems for Section 14.6
EXERCISES

For Exercises 1–6, find dz∕dt using the chain rule. Assume

the variables are restricted to domains on which the func-

tions are defined.

1. z = xy2, x = e−t, y = sin t

2. z = x sin y + y sinx, x = t2, y = ln t

3. z = sin(x∕y), x = 2t, y = 1 − t2

4. z = ln(x2 + y2), x = 1∕t, y =
√

t

5. z = xey, x = 2t, y = 1 − t2

6. z = (x + y)ey, x = 2t, y = 1 − t2

For Exercises 7–15, find )z∕)u and )z∕)v. The variables are

restricted to domains on which the functions are defined.

7. z = sin(x∕y), x = ln u, y = v

8. z = ln(xy), x = (u2 + v2)2, y = (u3 + v3)2

9. z = xey, x = ln u, y = v

10. z = (x + y)ey, x = ln u, y = v

11. z = xey, x = u2 + v2, y = u2 − v2

12. z = (x + y)ey, x = u2 + v2, y = u2 − v2

13. z = xe−y + ye−x, x = u sin v, y = v cos u

14. z = cos (x2 + y2), x = u cos v, y = u sin v

15. z = tan−1(x∕y), x = u2 + v2, y = u2 − v2
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PROBLEMS

16. Use the chain rule to find dz∕dt, and check the result

by expressing z as a function of t and differentiating

directly.

z = x3y2, x = t3, y = t2

17. Use the chain rule to find )w∕)� and )w∕)�, given that

w = x2 + y2 − z2,

and

x = � sin� cos �, y = � sin� sin �, z = � cos�.

18. Let z = f (x, y) where x = g(t), y = ℎ(t) and f, g, ℎ

are all differentiable functions. Given the information

in the table, find
)z

)t

|

|

|

|t=1

.

f (3, 10) = 7 f (4, 11) = −20

fx(3, 10) = 100 fy(3, 10) = 0.1

fx(4, 11) = 200 fy(4, 11) = 0.2

f (3, 4) = −10 f (10, 11) = −1

g(1) = 3 ℎ(1) = 10

g′(1) = 4 ℎ′(1) = 11

19. A bison is charging across the plain one morning. His

path takes him to location (x, y) at time t where x and y

are functions of t and north is in the direction of increas-

ing y. The temperature is always colder farther north.

As time passes, the sun rises in the sky, sending out

more heat, and a cold front blows in from the east. At

time t the air temperature H near the bison is given by

H = f (x, y, t). The chain rule expresses the derivative

dH∕dt as a sum of three terms:

dH

dt
=

)f

)x

dx

dt
+

)f

)y

dy

dt
+

)f

)t
.

Identify the term that gives the contribution to the

change in temperature experienced by the bison that is

due to

(a) The rising sun.

(b) The coming cold front.

(c) The bison’s change in latitude.

20. The voltage, V (in volts), across a circuit is given by

Ohm’s law: V = IR, where I is the current (in amps)

flowing through the circuit and R is the resistance (in

ohms). If we place two circuits, with resistance R1 and

R2, in parallel, then their combined resistance, R, is

given by
1

R
=

1

R1

+
1

R2

.

Suppose the current is 2 amps and increasing at 10−2

amp/sec and R1 is 3 ohms and increasing at 0.5

ohm/sec, while R2 is 5 ohms and decreasing at 0.1

ohm/sec. Calculate the rate at which the voltage is

changing.

21. The air pressure is decreasing at a rate of 2 pascals per

kilometer in the eastward direction. In addition, the air

pressure is dropping at a constant rate with respect to

time everywhere. A ship sailing eastward at 10 km/hour

past an island takes barometer readings and records a

pressure drop of 50 pascals in 2 hours. Estimate the time

rate of change of air pressure on the island. (A pascal is

a unit of air pressure.)

22. A steel bar with square cross sections 5 cm by 5 cm and

length 3meters is being heated. For each dimension, the

bar expands 13 ⋅ 10−6meters for each 1◦C rise in tem-

perature.2 What is the rate of change in the volume of

the steel bar?

23. Corn production, C , is a function of rainfall, R, and

temperature, T . (See Example 1 on page 780.) Fig-

ures 14.51 and 14.52 show how rainfall and tempera-

ture are predicted to vary with time because of global

warming. Suppose we know that ΔC ≈ 3.3ΔR− 5ΔT .

Use this to estimate the change in corn production be-

tween the year 2020 and the year 2021. Hence, estimate

dC∕dt when t = 2020.

2020 2040

13

14

15

t (years)

R (in)

Figure 14.51: Rainfall as a function of time

2020 2040

23

25

27

t (years)

T (◦C)

Figure 14.52: Temperature as a function of time

24. At a point x miles east and y miles north of a camp-

ground, the height above sea level is f (x, y) feet. Let

∇f (10, 2) = −2i⃗ + j⃗ and v⃗ = i⃗ + 3j⃗ .

Find the following quantities, including units, as you

leave a point 10 miles east and 2 miles north of the

campground.

(a) The slope of the land in the direction of v⃗ .

2www.engineeringtoolbox.com, accessed January 10th, 2016.
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(b) Your vertical speed if you move in the direction of

v⃗ at a speed of 2 miles per hour.

(c) Your vertical speed if you move east at a speed of

2 miles per hour.

25. The function g(x, y) gives the temperature, in degrees

Fahrenheit, x miles east and y miles north of a camp-

ground. Let u⃗ be the unit vector in the direction of

v⃗ = i⃗ + 3j⃗ and

∇g(−1,−3) = i⃗ .

A camper located one mile to the west and three miles

to the south of the camp starts walking back to camp

in the direction u⃗ at a speed of 2.5 miles∕hr. Find the

value of the following expressions, and interpret each

in everyday terms for the camper.

(a) gu⃗ (−1,−3) (b) 2.5gu⃗ (−1,−3)

(c) 2.5gi⃗ (−1,−3)

26. Mina’s score on her weekly multivariable calculus quiz,

S, in points, is a function of the number of hours, H ,

she spends studying the course materials and the num-

ber of problems, P , she solves per week.

• Her score S goes up 2 points for each additional

hour spent per week studying the course materials.

• Her score S goes up by 3 points for each additional

5 problems solved during the week.

• The number of weekly hours, H , she spends study-

ing the course materials has been decreasing at a

rate of 1.5 hours per week.

Mina’s weekly quiz score does not change from week

to week.

(a) Find the value of dP∕dt, where t is time in weeks,

include units.

(b) What can Mina learn from the value of the deriva-

tive in part (a)?

27. Let z = g(u, v,w) and u = u(s, t), v = v(s, t), w =

w(s, t). How many terms are there in the expression for

)z∕)t?

28. Suppose w = f (x, y, z) and that x, y, z are functions of

u and v. Use a tree diagram to write down the chain rule

formula for )w∕)u and )w∕)v.

29. Suppose w = f (x, y, z) and that x, y, z are all functions

of t. Use a tree diagram to write down the chain rule for

dw∕dt.

30. Let z = f (t)g(t). Use the chain rule applied to ℎ(x, y) =

f (x)g(y) to show that dz∕dt = f ′(t)g(t) + f (t)g′(t).

The one-variable product rule for differentiation is a

special case of the two-variable chain rule.

31. Let F (u, v) be a function of two variables. Find f ′(x) if

(a) f (x) = F (x, 3) (b) f (x) = F (3, x)

(c) f (x) = F (x, x) (d) f (x) = F (5x, x2)

32. The function g(�) is graphed in Figure 14.53. Let

� =
√

x2 + y2 + z2. Define f , a function of x, y, z by

f (x, y, z) = g

(

√

x2 + y2 + z2
)

. Let F⃗ = grad f .

(a) Describe precisely in words the level surfaces of f .

(b) Give a unit vector in the direction of F⃗ at the point

(1, 2, 2).

(c) Estimate ||F⃗ || at the point (1, 2, 2).

(d) Estimate F⃗ at the point (1, 2, 2).

(e) The points (1, 2, 2) and (3, 0, 0) are both on the

sphere x2 + y2 + z2 = 9. Estimate F⃗ at (3, 0, 0).

(f) If P and Q are any two points on the sphere x2 +

y2 + z2 = k2:

(i) Compare the magnitudes of F⃗ at P and at Q.

(ii) Describe the directions of F⃗ at P and at Q.

1 2 3 4 5

1

2

3 g(�)

�

Figure 14.53

In Problems 33–34, let z = f (x, y), x = x(u, v), y = y(u, v)

and x(1, 2) = 5, y(1, 2) = 3, calculate the partial derivative

in terms of some of the numbers a, b, c, d, e, k, p, q:

fx(1, 2) = a fy(1, 2) = c xu(1, 2) = e yu(1, 2) = p

fx(5, 3) = b fy(5, 3) = d xv(1, 2) = k yv(1, 2) = q

33. zu(1, 2) 34. zv(1, 2)

In Problems 35–36, let z = f (x, y), x = x(u, v), y = y(u, v)

and x(4, 5) = 2, y(4, 5) = 3. Calculate the partial derivative

in terms of a, b, c, d, e, k, p, q, r, s, t, w:

fx(4, 5) = a fy(4, 5) = c xu(4, 5) = e yu(4, 5) = p

fx(2, 3) = b fy(2, 3) = d xv(4, 5) = k yv(4, 5) = q

xu(2, 3) = r yu(2, 3) = s xv(2, 3) = t yv(2, 3) = w

35. zu(4, 5) 36. zv(4, 5)

For Problems 37–38, suppose that x > 0, y > 0 and that

z can be expressed either as a function of Cartesian coor-

dinates (x, y) or as a function of polar coordinates (r, �), so

that z = f (x, y) = g(r, �). [Recall that x = r cos �, y =

r sin �, r =
√

x2 + y2, and, for x > 0, y > 0, � =

arctan(y∕x).]

37. (a) Use the chain rule to find )z∕)r and )z∕)� in terms

of )z∕)x and )z∕)y.

(b) Solve the equations you have just written down for

)z∕)x and )z∕)y in terms of )z∕)r and )z∕)�.

(c) Show that the expressions you get in part (b) are

the same as you would get by using the chain rule

to find )z∕)x and )z∕)y in terms of )z∕)r and

)z∕)�.
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38. Show that

(

)z

)x

)2

+

(

)z

)y

)2

=
(

)z

)r

)2

+
1

r2

(

)z

)�

)2

.

Problems 39–44 are continuations of the physical chemistry

example on page 786.

39. Write
(

)U

)P

)

V
as a partial derivative of one of the func-

tions U1, U2, or U3.

40. Write
(

)U

)P

)

T
as a partial derivative of one of the func-

tions U1, U2, U3.

41. For the gas in Example 6, find
(

)U

)T

)

V
and

(

)U

)V

)

T
.

[Hint: Use the same method as the example, but sub-

stitute for dP instead of dV .]

42. Show that
(

)T

)V

)

P
= 1

/

(

)V

)T

)

P
.

43. Use Example 7 and Problem 42 to show that

(

)U

)V

)

P

=
(

)U

)V

)

T

+

(

)U

)T

)

V
(

)V

)T

)

P

.

44. In Example 6, we calculated values of ()U∕)T )P and

()U∕)P )T using the relationship PV = 2T for a spe-

cific gas. In this problem, you will derive general rela-

tionships for these two partial derivatives.

(a) Think of V as a function of P and T and write an

expression for dV .

(b) Substitute for dV into the following formula for

dU (thinking of U as a function of P and V ):

dU =
(

)U

)P

)

V

dP +
(

)U

)V

)

P

dV .

(c) Thinking of U as a function of P and T , write an

expression for dU .

(d) By comparing coefficients of dP and dT in your

answers to parts (b) and (c), show that

(

)U

)T

)

P

=
(

)U

)V

)

P

⋅

(

)V

)T

)

P
(

)U

)P

)

T

=
(

)U

)P

)

V

+
(

)U

)V

)

P

⋅

(

)V

)P

)

T

.

Strengthen Your Understanding

In Problems 45–47, explain what is wrong with the state-

ment.

45. If z = f (g(t), ℎ(t)), then dz∕dt = f (g′(t), ℎ(t)) +

f (g(t), ℎ′(t)).

46. If C = C(R, T ), R = R(x, y), T = T (x, y)

and R(0, 2) = 5, T (0, 2) = 1, then Cx(0, 2) =

CR(0, 2)Rx(0, 2) + CT (0, 2)Tx(0, 2).

47. If z = f (x, y) and x = g(t), y = ℎ(t) with g(0) = 2 and

ℎ(0) = 3, then

dz

dt

|

|

|

|t=0

= fx(0, 0)g
′(0) + fy(0, 0)ℎ

′(0).

In Problems 48–52, give an example of:

48. Functions x = g(t) and y = ℎ(t) such that (dz∕dt)|t=0 =

9, given that z = x2y.

49. A function z = f (x, y) such that dz∕dt|t=0 = 10, given

that x = e2t and y = sin t.

50. Functions z, x and y where you need to follow the dia-

gram in order to answer questions about the derivative

of z with respect to the other variables.

z

x y

t

)z

)x

)z

)y

dx

dt

dy

dt

51. Functions w, u and v where you need to follow the dia-

gram in order to answer questions about the derivative

of w with respect to the other variables.

w

u v

s t s t

)w

)u

)w

)v

)u

)s

)u

)t

)v

)s

)v

)t

52. Function z = f (x, y) where x and y are functions of

one variable, t, for which
)z

)t
= 2.

53. Let z = g(u, v) and u = u(x, y, t), v = v(x, y, t) and

x = x(t), y = y(t). Then the expression for dz∕dt has

(a) Three terms (b) Four terms

(c) Six terms (d) Seven terms

(e) Nine terms (f) None of the above
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14.7 SECOND-ORDER PARTIAL DERIVATIVES

Since the partial derivatives of a function are themselves functions, we can differentiate them, giving

second-order partial derivatives. A function z = f (x, y) has two first-order partial derivatives, fx
and fy, and four second-order partial derivatives.

The Second-Order Partial Derivatives of z = f (x, y)

)2z

)x2
= fxx = (fx)x,

)2z

)x)y
= fyx = (fy)x,

)2z

)y)x
= fxy = (fx)y,

)2z

)y2
= fyy = (fy)y.

It is usual to omit the parentheses, writing fxy instead of (fx)y and
)2z

)y )x
instead of

)

)y

(

)z

)x

)

.

Example 1 Compute the four second-order partial derivatives of f (x, y) = xy2 + 3x2ey.

Solution From fx(x, y) = y2 + 6xey we get

fxx(x, y) =
)

)x
(y2 + 6xey) = 6ey and fxy(x, y) =

)

)y
(y2 + 6xey) = 2y + 6xey.

From fy(x, y) = 2xy + 3x2ey we get

fyx(x, y) =
)

)x
(2xy + 3x2ey) = 2y + 6xey and fyy(x, y) =

)

)y
(2xy + 3x2ey) = 2x + 3x2ey.

Observe that fxy = fyx in this example.

Example 2 Use the values of the function f (x, y) in Table 14.7 to estimate fxy(1, 2) and fyx(1, 2).

Table 14.7 Values of f (x, y)

y∖x 0.9 1.0 1.1

1.8 4.72 5.83 7.06

2.0 6.48 8.00 9.60

2.2 8.62 10.65 12.88

Solution Since fxy = (fx)y, we first estimate fx

fx(1, 2) ≈
f (1.1, 2) − f (1, 2)

0.1
=

9.60 − 8.00

0.1
= 16.0,

fx(1, 2.2) ≈
f (1.1, 2.2) − f (1, 2.2)

0.1
=

12.88 − 10.65

0.1
= 22.3.
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Thus,

fxy(1, 2) ≈
fx(1, 2.2) − fx(1, 2)

0.2
=

22.3 − 16.0

0.2
= 31.5.

Similarly,

fyx(1, 2) ≈
fy(1.1, 2) − fy(1, 2)

0.1
≈

1

0.1

(

f (1.1, 2.2) − f (1.1, 2)

0.2
−

f (1, 2.2) − f (1, 2)

0.2

)

=
1

0.1

(

12.88 − 9.60

0.2
−

10.65 − 8.00

0.2

)

= 31.5.

Observe that in this example also, fxy = fyx.

The Mixed Partial Derivatives Are Equal

It is not an accident that the estimates for fxy(1, 2) and fyx(1, 2) are equal in Example 2, because the

same values of the function are used to calculate each one. The fact that fxy = fyx in Examples 1 and

2 corroborates the following general result; Problem 71 (available online) suggests why you might

expect it to be true.3

Theorem 14.1: Equality of Mixed Partial Derivatives

If fxy and fyx are continuous at (a, b), an interior point of their domain, then

fxy(a, b) = fyx(a, b).

For most functions f we encounter and most points (a, b) in their domains, not only are fxy and

fyx continuous at (a, b), but all their higher-order partial derivatives (such as fxxy or fxyyy) exist and

are continuous at (a, b). In that case we say f is smooth at (a, b). We say f is smooth on a region R

if it is smooth at every point of R.

What Do the Second-Order Partial Derivatives Tell Us?

Example 3 Let us return to the guitar string of Example 4, page 750. The string is 1 meter long and at time t

seconds, the point x meters from one end is displaced f (x, t) meters from its rest position, where

f (x, t) = 0.003 sin(�x) sin(2765t).

Compute the four second-order partial derivatives of f at the point (x, t) = (0.3, 1) and describe the

meaning of their signs in practical terms.

Solution First we compute fx(x, t) = 0.003� cos(�x) sin(2765t), from which we get

fxx(x, t) =
)

)x
(fx(x, t)) = −0.003�2 sin(�x) sin(2765t), so fxx(0.3, 1) ≈ −0.01;

and

fxt(x, t) =
)

)t
(fx(x, t)) = (0.003)(2765)� cos(�x) cos(2765t), so fxt(0.3, 1) ≈ 14.

On page 750 we saw thatfx(x, t) gives the slope of the string at any point and time. Therefore,

3For a proof, see M. Spivak, Calculus on Manifolds, p. 26 (New York: Benjamin, 1965).
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fxx(x, t) measures the concavity of the string. The fact that fxx(0.3, 1) < 0 means the string is

concave down at the point x = 0.3 when t = 1. (See Figure 14.54.)

On the other hand, fxt(x, t) is the rate of change of the slope of the string with respect to time.

Thus, fxt(0.3, 1) > 0 means that at time t = 1 the slope at the point x = 0.3 is increasing. (See

Figure 14.55.)

0

A
B

0.3 1
x

The slope atB is less
than the slope atA

Figure 14.54: Interpretation of fxx(0.3, 1) < 0:

The concavity of the string at t = 1

x
A

B

0 0.3 1

t = 1 + ℎ

t = 1

The slope atB is greater
than the slope atA

Figure 14.55: Interpretation of

fxt(0.3, 1) > 0: The slope of one point on

the string at two different times

Now we compute ft(x, t) = (0.003)(2765) sin(�x) cos(2765t), from which we get

ftx(x, t) =
)

)x
(ft(x, t)) = (0.003)(2765)� cos(�x) cos(2765t), so ftx(0.3, 1) ≈ 14

and

ftt(x, t) =
)

)t
(ft(x, t)) = −(0.003)(2765)2 sin(�x) sin(2765t), so ftt(0.3, 1) ≈ −7200.

On page 750 we saw that ft(x, t) gives the velocity of the string at any point and time. Therefore,

ftx(x, t) and ftt(x, t) will both be rates of change of velocity. That ftx(0.3, 1) > 0 means that at time

t = 1 the velocities of points just to the right of x = 0.3 are greater than the velocity at x = 0.3. (See

Figure 14.56.) That ftt(0.3, 1) < 0 means that the velocity of the point x = 0.3 is decreasing at time

t = 1. Thus, ftt(0.3, 1) = −7200 m/sec2 is the acceleration of this point. (See Figure 14.57.)

x
0

A B

0.3 1
x

✻
✻

The velocity atB is greater
than the velocity at A

Figure 14.56: Interpretation of ftx(0.3, 1) > 0:

The velocity of different points on the string

at t = 1

x
A

❘
B

0 0.3 1

✻
✻ ✠

t = 1
✠

t = 1 + ℎ
The velocity at B is less
than the velocity atA

Figure 14.57: Interpretation of

ftt(0.3, 1) < 0: Negative acceleration. The

velocity of one point on the string at two

different times

Taylor Approximations

We use second derivatives to construct quadratic Taylor approximations. In Section 14.3, we saw

how to approximate f (x, y) by a linear function (its local linearization). We now see how to improve

this approximation of f (x, y) using a quadratic function.

Linear and Quadratic Approximations Near (0,0)

For a function of one variable, local linearity tells us that the best linear approximation is the degree-1

Taylor polynomial

f (x) ≈ f (a) + f ′(a)(x − a) for x near a.
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A better approximation to f (x) is given by the degree-2 Taylor polynomial:

f (x) ≈ f (a) + f ′(a)(x− a) +
f ′′(a)

2
(x − a)2 for x near a.

For a function of two variables the local linearization for (x, y) near (a, b) is

f (x, y) ≈ L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y− b).

In the case (a, b) = (0, 0), we have:

Taylor Polynomial of Degree 1 Approximating f (x, y) for (x, y) near (0,0)

If f has continuous first-order partial derivatives, then

f (x, y) ≈ L(x, y) = f (0, 0) + fx(0, 0)x+ fy(0, 0)y.

We get a better approximation to f by using a quadratic polynomial. We choose a quadratic

polynomial Q(x, y), with the same partial derivatives as the original function f . You can check that

the following Taylor polynomial of degree 2 has this property.

Taylor Polynomial of Degree 2 Approximating f (x, y) for (x, y) near (0,0)

If f has continuous second-order partial derivatives, then

f (x, y) ≈ Q(x, y)

= f (0, 0) + fx(0, 0)x+ fy(0, 0)y+
fxx(0, 0)

2
x2 + fxy(0, 0)xy+

fyy(0, 0)

2
y2.

Example 4 Let f (x, y) = cos(2x + y) + 3 sin(x + y)

(a) Compute the linear and quadratic Taylor polynomials, L and Q, approximating f near (0, 0).

(b) Explain why the contour plots of L and Q for −1 ≤ x ≤ 1, −1 ≤ y ≤ 1 look the way they do.

Solution (a) We have f (0, 0) = 1. The derivatives we need are as follows:

fx(x, y) = −2 sin(2x + y) + 3 cos(x + y) so fx(0, 0) = 3,

fy(x, y) = − sin(2x + y) + 3 cos(x + y) so fy(0, 0) = 3,

fxx(x, y) = −4 cos(2x + y) − 3 sin(x + y) so fxx(0, 0) = −4,

fxy(x, y) = −2 cos(2x + y) − 3 sin(x + y) so fxy(0, 0) = −2,

fyy(x, y) = − cos(2x + y) − 3 sin(x + y) so fyy(0, 0) = −1.

Thus, the linear approximation, L(x, y), to f (x, y) at (0, 0) is given by

f (x, y) ≈ L(x, y) = f (0, 0) + fx(0, 0)x+ fy(0, 0)y = 1 + 3x + 3y.

The quadratic approximation, Q(x, y), to f (x, y) near (0, 0) is given by

f (x, y) ≈ Q(x, y)

= f (0, 0) + fx(0, 0)x+ fy(0, 0)y+
fxx(0, 0)

2
x2 + fxy(0, 0)xy+

fyy(0, 0)

2
y2

= 1 + 3x + 3y − 2x2 − 2xy −
1

2
y2.
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Notice that the linear terms in Q(x, y) are the same as the linear terms in L(x, y). The quadratic

terms in Q(x, y) can be thought of as “correction terms” to the linear approximation.

(b) The contour plots of f (x, y), L(x, y), and Q(x, y) are in Figures 14.58–14.60.

1−1

1

−1

2

1
0

−1

−2

x

y

Figure 14.58: Original function, f (x, y)

1−1

1

−1

2

1

0
−1

−2

x

y

Figure 14.59: Linear approximation,

L(x, y)

1−1

1

−1

2

1

0
−1

−2

x

y

Figure 14.60: Quadratic approximation,

Q(x, y)

Notice that the contour plot of Q is more similar to the contour plot of f than is the contour

plot of L. Since L is linear, the contour plot of L consists of parallel, equally spaced lines.

An alternative, and much quicker, way to find the Taylor polynomial in the previous example is

to use the single-variable approximations. For example, since

cos u = 1 −
u2

2!
+

u4

4!
+⋯ and sin v = v −

v3

3!
+⋯ ,

we can substitute u = 2x+ y and v = x+ y and expand. We discard terms beyond the second (since

we want the quadratic polynomial), getting

cos(2x + y) = 1 −
(2x + y)2

2!
+

(2x + y)4

4!
+⋯ ≈ 1 −

1

2
(4x2 + 4xy + y2) = 1 − 2x2 − 2xy −

1

2
y2

and

sin(x + y) = (x + y) −
(x + y)3

3!
+⋯ ≈ x + y.

Combining these results, we get

cos(2x + y) + 3 sin(x + y) ≈ 1 − 2x2 − 2xy −
1

2
y2 + 3(x + y) = 1 + 3x + 3y − 2x2 − 2xy −

1

2
y2.

Linear and Quadratic Approximations Near (a, b)

The local linearization for a function f (x, y) at a point (a, b) is

Taylor Polynomial of Degree 1 Approximating f (x, y) for (x, y) Near (a, b)

If f has continuous first-order partial derivatives, then

f (x, y) ≈ L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y− b).
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This suggests that a quadratic polynomial approximation Q(x, y) for f (x, y) near a point (a, b)

should be written in terms of (x−a) and (y−b) instead of x and y. If we require that Q(a, b) = f (a, b)

and that the first- and second-order partial derivatives of Q and f at (a, b) be equal, then we get the

following polynomial:

Taylor Polynomial of Degree 2 Approximating f (x, y) for (x, y) Near (a, b)

If f has continuous second-order partial derivatives, then

f (x, y) ≈ Q(x, y)

= f (a, b) + fx(a, b)(x − a) + fy(a, b)(y− b)

+
fxx(a, b)

2
(x − a)2 + fxy(a, b)(x − a)(y − b) +

fyy(a, b)

2
(y − b)2.

These coefficients are derived in exactly the same way as for (a, b) = (0, 0).

Example 5 Find the Taylor polynomial of degree 2 at the point (1, 2) for the function f (x, y) =
1

xy
.

Solution Table 14.8 contains the partial derivatives and their values at the point (1, 2).

Table 14.8 Partial derivatives of f (x, y) = 1∕(xy)

Derivative Formula Value at (1, 2) Derivative Formula Value at (1, 2)

f (x, y) 1∕(xy) 1∕2 fxx(x, y) 2∕(x3y) 1

fx(x, y) −1∕(x2y) −1∕2 fxy(x, y) 1∕(x2y2) 1∕4

fy(x, y) −1∕(xy2) −1∕4 fyy(x, y) 2∕(xy3) 1∕4

So, the quadratic Taylor polynomial for f near (1, 2) is

1

xy
≈ Q(x, y)

=
1

2
−

1

2
(x − 1) −

1

4
(y − 2) +

1

2
(1)(x− 1)2 +

1

4
(x − 1)(y − 2) +

(

1

2

)(

1

4

)

(y − 2)2

=
1

2
−

x − 1

2
−

y − 2

4
+

(x − 1)2

2
+

(x − 1)(y− 2)

4
+

(y − 2)2

8
.

Exercises and Problems for Section 14.7 Online Resource: Additional Problems for Section 14.7
EXERCISES

In Exercises 1–11, calculate all four second-order partial

derivatives and check that fxy = fyx. Assume the variables

are restricted to a domain on which the function is defined.

1. f (x, y) = (x + y)2 2. f (x, y) = (x + y)3

3. f (x, y) = 3x2y + 5xy3 4. f (x, y) = e2xy

5. f (x, y) = (x + y)ey 6. f (x, y) = xey

7. f (x, y) = sin(x∕y) 8. f (x, y) =
√

x2 + y2

9. f (x, y) = 5x3y2 − 7xy3 + 9x2 + 11

10. f (x, y) = sin(x2 + y2)

11. f (x, y) = 3 sin 2x cos 5y
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In Exercises 12–19, find the quadratic Taylor polynomials

about (0, 0) for the function.

12. (y − 1)(x + 1)2 13. (x − y + 1)2

14. e−2x
2−y2 15. ex cos y

16. 1∕(1 + 2x − y) 17. cos(x + 3y)

18. sin 2x + cos y 19. ln(1 + x2 − y)

In Exercises 20–21, find the best quadratic approximation

for f (x, y) for (x, y) near (0, 0).

20. f (x, y) = ln(1 + x − 2y)

21. f (x, y) =
√

1 + 2x − y

In Exercises 22–31, use the level curves of the function

z = f (x, y) to decide the sign (positive, negative, or zero)

of each of the following partial derivatives at the point P .

Assume the x- and y-axes are in the usual positions.

(a) fx(P ) (b) fy(P ) (c) fxx(P )

(d) fyy(P ) (e) fxy(P )

22.

P

5 4 3 2 1

23.

5 4 3 2 1

P

24.

P

1 2 3 4 5

25.

P

1 2 3 4 5

26.

P

5

4

3

2

1

27.

P

5

4

3

2

1

28.

P

5
4
3
2
1

29.

P

1
2
3
4
5

30.

✛ 5

✛ 3

✛ 1
P

31.

✛ 1

✛ 3

✛ 5
P

PROBLEMS

In Problems 32–35 estimate the quantity, if possible. If it is

not possible, explain why. Assume that g is smooth and

∇g(2, 3) = −7i⃗ + 3j⃗

∇g(2.4, 3) = −10.2i⃗ + 4.2j⃗

32. gyx(2, 3) 33. gxx(2, 3) 34. gyy(2, 3) 35. gxy(2, 3)

In Problems 36–39 estimate the quantity, if possible. If it is

not possible, explain why. Assume that ℎ is smooth and

∇ℎ(2.4, 3) = −20.4i⃗ + 8.4j⃗

∇ℎ(2.4, 2.7) = −22.2i⃗ + 9j⃗

36. ℎyy(2.4, 2.7) 37. ℎxx(2.4, 3)

38. ℎxy(2.4, 2.7) 39. ℎyx(2.4, 2.7)

In Problems 40–44, find the linear, L(x, y), and quadratic,

Q(x, y), Taylor polynomials valid near (1, 0). Compare the

values of the approximations L(0.9, 0.2) and Q(0.9, 0.2)

with the exact value of the function f (0.9, 0.2).

40. f (x, y) =
√

x + 2y 41. f (x, y) = x2y

42. f (x, y) = xe−y

43. F (x, y)= ex sin y + ey sin x

44. f (x, y) = sin(x − 1) cos y

In Problems 45–46, show that the function satisfies

Laplace’s equation, Fxx + Fyy = 0.

45. F (x, y) = e−x sin y

46. F (x, y) = arctan(y∕x)
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47. If u(x, t) = eat sin (bx) satisfies the heat equation ut =

uxx, find the relationship between a and b.

48. (a) Check that u(x, t) satisfies the heat equation ut =

uxx for t > 0 and all x, where

u(x, t) =
1

2
√

�t
e−x

2∕(4t)

(b) Graph u(x, t) against x for t = 0.01, 0.1, 1, 10.

These graphs represent the temperature in an in-

finitely long insulated rod that at t = 0 is 0◦C ev-

erywhere except at the origin x = 0, and that is

infinitely hot at t = 0 at the origin.

49. Figure 14.61 shows a graph of z = f (x, y). Is fxx(0, 0)

positive or negative? Is fyy(0, 0) positive or negative?

Give reasons for your answers.

x

y

z

Figure 14.61

50. If z = f (x) + yg(x), what can you say about zyy? Ex-

plain your answer.

51. If zxy = 4y, what can you say about the value of

(a) zyx? (b) zxyx? (c) zxyy?

52. A contour diagram for the smooth function z = f (x, y)

is in Figure 14.62.

(a) Is z an increasing or decreasing function of x? Of

y?

(b) Is fx positive or negative? How about fy?

(c) Is fxx positive or negative? How about fyy?

(d) Sketch the direction of grad f at points P and Q.

(e) Is grad f longer at P or at Q? How do you know?

1 2 3 4 5 6

1

2

3

4

5

6 P

Q

1

2
3

4

5
6 7 8 9 10

x

y

Figure 14.62

Problems 53–56 give tables of values of quadratic polyno-

mials P (x, y) = a + bx + cy+ dx2 + exy + fy2. Determine

whether each of the coefficients d, e and f of the quadratic

terms is positive, negative, or zero.

53.

y

x

10 12 14

10 35 37 39

15 45 47 49

20 55 57 59

54.

y

x

10 12 14

10 26 36 54

15 31 41 59

20 36 46 64

55.

y

x

10 12 14

10 90 82 74

15 75 87 99

20 10 42 74

56.

y

x

10 12 14

10 13 33 61

15 28 28 36

20 93 73 61

57. You are hiking on a level trail going due east and plan-

ning to strike off cross country up the mountain to your

left. The slope up to the left is too steep now and seems

to be gentler the further you go along the trail, so you

decide to wait before turning off.

(a) Sketch a topographical contour map that illustrates

this story.

(b) What information does the story give about partial

derivatives? Define all variables and functions that

you use.

(c) What partial derivative influenced your decision to

wait before turning?

58. The weekly production, Y , in factories that manufacture

a certain item is modeled as a function of the quantity of

capital, K , and quantity of labor, L, at the factory. Data

shows that hiring a few extra workers increases produc-

tion. Moreover, for two factories with the same number

of workers, hiring a few extra workers increases pro-

duction more for the factory with more capital. (With

more equipment, additional labor can be used more ef-

fectively.) What does this tell you about the sign of

(a) )Y ∕)L?

(b) )2Y ∕()K)L)?

59. Data suggests that human surface area, S, can reason-

ably be modeled as a function of height, ℎ, and weight,

w. In the Dubois model, we have )2S∕)w2 < 0 and

)2S∕()ℎ)w) > 0. Two people A and B each gain 1

pound. Which experiences the greater increase in sur-

face area if

(a) They have the same weight but A is taller?

(b) They have the same height, but A is heavier?
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60. You plan to buy a used car. You are debating between a

5-year old car and a 10-year old car and thinking about

the price. Experts report that the original price matters

more when buying a 5-year old car than a 10-year old

car. This suggests that we model the average market

price, P , in dollars as a function of two variables: the

original price, C , in dollars, and the age of the car, A,

in years.

(a) Give units for the following partial derivatives and

say whether you think they are positive or negative.

Explain your reasoning.

(i) )P∕)A (ii) )P∕)C

(b) Express the experts’ report in terms of partial

derivatives.

(c) Using a quadratic polynomial to model P , we have

P = a + bC + cA + dC2 + eCA + fA2.

Which term in this polynomial is most relevant to

the experts’ report?

61. The tastiness, T , of a soup depends on the volume, V ,

of the soup in the pot and the quantity, S, of salt in

the soup. If you have more soup, you need more salt

to make it taste good. Match the three stories (a)–(c) to

the three statements (I)–(III) about partial derivatives.

(a) I started adding salt to the soup in the pot. At first

the taste improved, but eventually the soup became

too salty and continuing to add more salt made it

worse.

(b) The soup was too salty, so I started adding unsalted

soup. This improved the taste at first, but eventually

there was too much soup for the salt, and continu-

ing to add unsalted soup just made it worse.

(c) The soup was too salty, so adding more salt would

have made it taste worse. I added a quart of un-

salted soup instead. Now it is not salty enough, but

I can improve the taste by adding salt.

(I) )2T ∕)V 2 < 0

(II) )2T ∕)S2 < 0

(III) )2T ∕)V )S > 0

62. Figure 14.63 shows the level curves of a function

f (x, y) around a maximum or minimum, M . One of the

points P and Q has coordinates (x1, y1) and the other

has coordinates (x2, y2). Suppose b > 0 and c > 0.

Consider the two linear approximations to f given by

f (x, y) ≈ a + b(x − x1) + c(y − y1)

f (x, y) ≈ k + m(x − x2) + n(y − y2).

(a) What is the relationship between the values of a

and k?

(b) What are the coordinates of P ?

(c) Is M a maximum or a minimum?

(d) What can you say about the sign of the constants

m and n?

x

y

M

❘

P

✠

Q

Figure 14.63

63. Consider the function f (x, y) = (sin x)(sin y).

(a) Find the Taylor polynomials of degree 2 for f

about the points (0, 0) and (�∕2, �∕2).

(b) Use the Taylor polynomials to sketch the con-

tours of f close to each of the points (0, 0) and

(�∕2, �∕2).

64. Let f (x, y) =
√

x + 2y + 1.

(a) Compute the local linearization of f at (0, 0).

(b) Compute the quadratic Taylor polynomial for f at

(0, 0).

(c) Compare the values of the linear and quadratic

approximations in part (a) and part (b) with the

true values for f (x, y) at the points (0.1, 0.1),

(−0.1, 0.1), (0.1,−0.1), (−0.1,−0.1). Which ap-

proximation gives the closest values?

65. Using a computer and your answer to Problem 64, draw

the six contour diagrams of f (x, y) =
√

x + 2y + 1

and its linear and quadratic approximations, L(x, y) and

Q(x, y), in the two windows [−0.6, 0.6]×[−0.6, 0.6] and

[−2, 2]×[−2, 2]. Explain the shape of the contours, their

spacing, and the relationship between the contours of f ,

L, and Q.

Strengthen Your Understanding

In Problems 66–67, explain what is wrong with the state-

ment.

66. If f (x, y) ≠ 0, then the Taylor polynomial of degree 2

approximating f (x, y) near (0, 0) is also nonzero.

67. There is a function f (x, y) with partial derivatives fx =

xy and fy = y2.

In Problems 68–70, give an example of:

68. A function f (x, y) such that fxx ≠ 0, fyy ≠ 0, and

fxy = 0.

69. Formulas for two different functions f (x, y) and g(x, y)

with the same quadratic approximation near (0, 0).

70. Contour diagrams for two different functions f (x, y)

and g(x, y) that have the same quadratic approximations

near (0, 0).



14.8 DIFFERENTIABILITY 799

14.8 DIFFERENTIABILITY

In Section 14.3 we gave an informal introduction to the concept of differentiability. We called a

function f (x, y) differentiable at a point (a, b) if it is well approximated by a linear function near

(a, b). This section focuses on the precise meaning of the phrase “well approximated.” By looking

at examples, we shall see that local linearity requires the existence of partial derivatives, but they do

not tell the whole story. In particular, existence of partial derivatives at a point is not sufficient to

guarantee local linearity at that point.

We begin by discussing the relation between continuity and differentiability. As an illustration,

take a sheet of paper, crumple it into a ball and smooth it out again. Wherever there is a crease it would

be difficult to approximate the surface by a plane—these are points of nondifferentiability of the

function giving the height of the paper above the floor. Yet the sheet of paper models a graph which

is continuous—there are no breaks. As in the case of one-variable calculus, continuity does not imply

differentiability. But differentiability does require continuity: there cannot be linear approximations

to a surface at points where there are abrupt changes in height.

Differentiability for Functions of Two Variables
For a function of two variables, as for a function of one variable, we define differentiability at a

point in terms of the error and the distance from the point. If the point is (a, b) and a nearby point is

(a + ℎ, b + k), the distance between them is
√

ℎ2 + k2. (See Figure 14.64.)

A function f (x, y) is differentiable at the point (a, b) if there is a linear function L(x, y) =

f (a, b) + m(x − a) + n(y − b) such that if the error E(x, y) is defined by

f (x, y) = L(x, y) + E(x, y),

and if ℎ = x − a, k = y − b, then the relative error E(a + ℎ, b + k)∕
√

ℎ2 + k2 satisfies

lim
ℎ→0

k→0

E(a + ℎ, b + k)
√

ℎ2 + k2
= 0.

The function f is differentiable on a region R if it is differentiable at each point of R. The

function L(x, y) is called the local linearization of f (x, y) near (a, b).

Figure 14.64: Graph of function z = f (x, y) and its local linearization z = L(x, y) near the point (a, b)

Partial Derivatives and Differentiability

In the next example, we show that this definition of differentiability is consistent with our previous

notion — that is, that m = fx and n = fy and that the graph of L(x, y) is the tangent plane.

Example 1 Show that if f is a differentiable function with local linearization L(x, y) = f (a, b) + m(x − a) +

n(y − b), then m = fx(a, b) and n = fy(a, b).
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Solution Since f is differentiable, we know that the relative error in L(x, y) tends to 0 as we get close to (a, b).

Suppose ℎ > 0 and k = 0. Then we know that

0 = lim
ℎ→0

E(a + ℎ, b + k)
√

ℎ2 + k2
= lim

ℎ→0

E(a + ℎ, b)

ℎ
= lim

ℎ→0

f (a + ℎ, b) − L(a + ℎ, b)

ℎ

= lim
ℎ→0

f (a + ℎ, b) − f (a, b) − mℎ

ℎ

= lim
ℎ→0

(

f (a + ℎ, b) − f (a, b)

ℎ

)

− m = fx(a, b) − m.

A similar result holds if ℎ < 0, so we have m = fx(a, b). The result n = fy(a, b) is found in a similar

manner.

The previous example shows that if a function is differentiable at a point, it has partial derivatives

there. Therefore, if any of the partial derivatives fail to exist, then the function cannot be differen-

tiable. This is what happens in the following example of a cone.

Example 2 Consider the function f (x, y) =
√

x2 + y2. Is f differentiable at the origin?

Solution If we zoom in on the graph of the function f (x, y) =
√

x2 + y2 at the origin, as shown in Fig-

ure 14.65, the sharp point remains; the graph never flattens out to look like a plane. Near its vertex,

the graph does not look as if is well approximated (in any reasonable sense) by any plane.

x y

z

✿

Figure 14.65: The function f (x, y) =
√

x2 + y2 is not locally linear at (0, 0): Zooming in around (0, 0)

does not make the graph look like a plane

Judging from the graph of f , we would not expect f to be differentiable at (0, 0). Let us check

this by trying to compute the partial derivatives of f at (0, 0):

fx(0, 0) = lim
ℎ→0

f (ℎ, 0) − f (0, 0)

ℎ
= lim

ℎ→0

√

ℎ2 + 0 − 0

ℎ
= lim

ℎ→0

|ℎ|

ℎ
.

Since |ℎ|∕ℎ = ±1, depending on whether ℎ approaches 0 from the left or right, this limit does not

exist and so neither does the partial derivative fx(0, 0). Thus, f cannot be differentiable at the origin.

If it were, both of the partial derivatives, fx(0, 0) and fy(0, 0), would exist.

Alternatively, we could show directly that there is no linear approximation near (0, 0) that satis-

fies the small relative error criterion for differentiability. Any plane passing through the point (0, 0, 0)

has the form L(x, y) = mx + ny for some constants m and n. If E(x, y) = f (x, y) − L(x, y), then

E(x, y) =
√

x2 + y2 − mx − ny.

Then for f to be differentiable at the origin, we would need to show that

lim
ℎ→0

k→0

√

ℎ2 + k2 − mℎ − nk
√

ℎ2 + k2
= 0.
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Taking k = 0 gives

lim
ℎ→0

|ℎ| − mℎ

|ℎ|
= 1 − m lim

ℎ→0

ℎ

|ℎ|
.

This limit exists only if m = 0 for the same reason as before. But then the value of the limit is 1 and

not 0 as required. Thus, we again conclude f is not differentiable.

In Example 2 the partial derivatives fx and fy did not exist at the origin and this was sufficient

to establish nondifferentiability there. We might expect that if both partial derivatives do exist, then

f is differentiable. But the next example shows that this not necessarily true: the existence of both

partial derivatives at a point is not sufficient to guarantee differentiability.

Example 3 Consider the function f (x, y) = x1∕3y1∕3. Show that the partial derivatives fx(0, 0) and fy(0, 0)

exist, but that f is not differentiable at (0, 0).

Solution See Figure 14.66 for the part of the graph of z = x1∕3y1∕3 when z ≥ 0. We have f (0, 0) = 0 and we

compute the partial derivatives using the definition:

fx(0, 0) = lim
ℎ→0

f (ℎ, 0) − f (0, 0)

ℎ
= lim

ℎ→0

0 − 0

ℎ
= 0,

and similarly

fy(0, 0) = 0.

Figure 14.66: Graph of z = x1∕3y1∕3 for z ≥ 0

So, if there did exist a linear approximation near the origin, it would have to be L(x, y) = 0. But

we can show that this choice of L(x, y) does not result in the small relative error that is required for

differentiability. In fact, since E(x, y) = f (x, y) − L(x, y) = f (x, y), we need to look at the limit

lim
ℎ→0

k→0

ℎ1∕3k1∕3
√

ℎ2 + k2
.

If this limit exists, we get the same value no matter how ℎ and k approach 0. Suppose we take

k = ℎ > 0. Then the limit becomes

lim
ℎ→0

ℎ1∕3ℎ1∕3
√

ℎ2 + ℎ2
= lim

ℎ→0

ℎ2∕3

ℎ
√

2
= lim

ℎ→0

1

ℎ1∕3
√

2
.

But this limit does not exist, since small values for ℎ will make the fraction arbitrarily large. So

the only possible candidate for a linear approximation at the origin does not have a sufficiently small

relative error. Thus, this function is not differentiable at the origin, even though the partial derivatives

fx(0, 0) and fy(0, 0) exist. Figure 14.66 confirms that near the origin the graph of z = f (x, y) is not

well approximated by any plane.
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In summary,

• If a function is differentiable at a point, then both partial derivatives exist there.

• Having both partial derivatives at a point does not guarantee that a function is differen-

tiable there.

Continuity and Differentiability

We know that differentiable functions of one variable are continuous. Similarly, it can be shown that

if a function of two variables is differentiable at a point, then the function is continuous there.

In Example 3 the function f was continuous at the point where it was not differentiable. Ex-

ample 4 shows that even if the partial derivatives of a function exist at a point, the function is not

necessarily continuous at that point if it is not differentiable there.

Example 4 Suppose that f is the function of two variables defined by

f (x, y) =

{ xy

x2 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

Problem 27 on page 699 showed that f (x, y) is not continuous at the origin. Show that the partial

derivatives fx(0, 0) and fy(0, 0) exist. Could f be differentiable at (0, 0)?

Solution From the definition of the partial derivative we see that

fx(0, 0) = lim
ℎ→0

f (ℎ, 0) − f (0, 0)

ℎ
= lim

ℎ→0

(

1

ℎ
⋅

0

ℎ2 + 02

)

= lim
ℎ→0

0

ℎ
= 0,

and similarly

fy(0, 0) = 0.

So, the partial derivatives fx(0, 0) and fy(0, 0) exist. However, f cannot be differentiable at the

origin since it is not continuous there.

In summary,

• If a function is differentiable at a point, then it is continuous there.

• Having both partial derivatives at a point does not guarantee that a function is continuous

there.

How Do We Know If a Function Is Differentiable?

Can we use partial derivatives to tell us if a function is differentiable? As we see from Examples 3 and

4, it is not enough that the partial derivatives exist. However, the following theorem gives conditions

that do guarantee differentiability4:

Theorem 14.2: Continuity of Partial Derivatives Implies Differentiability

If the partial derivatives, fx and fy, of a function f exist and are continuous on a small disk

centered at the point (a, b), then f is differentiable at (a, b).

4For a proof, see M. Spivak, Calculus on Manifolds, p. 31 (New York: Benjamin, 1965).
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We will not prove this theorem, although it provides a criterion for differentiability which is often

simpler to use than the definition. It turns out that the requirement of continuous partial derivatives is

more stringent than that of differentiability, so there exist differentiable functions which do not have

continuous partial derivatives. However, most functions we encounter will have continuous partial

derivatives. The class of functions with continuous partial derivatives is given the name C1.

Example 5 Show that the function f (x, y) = ln(x2 + y2) is differentiable everywhere in its domain.

Solution The domain of f is all of 2-space except for the origin. We shall show that f has continuous partial

derivatives everywhere in its domain (that is, the function f is in C1). The partial derivatives are

fx =
2x

x2 + y2
and fy =

2y

x2 + y2
.

Since each of fx and fy is the quotient of continuous functions, the partial derivatives are continuous

everywhere except the origin (where the denominators are zero). Thus,f is differentiable everywhere

in its domain.

Most functions built up from elementary functions have continuous partial derivatives, except

perhaps at a few obvious points. Thus, in practice, we can often identify functions as being C1

without explicitly computing the partial derivatives.

Exercises and Problems for Section 14.8

EXERCISES

In Exercises 1–10, list the points in the xy-plane, if any, at

which the function z = f (x, y) is not differentiable.

1. z = −
√

x2 + y2 2. z =
√

(x + 1)2 + y2

3. z = |x| + |y| 4. z = |x + 2| − |y − 3|

5. z = e−(x
2+y2) 6. z = x1∕3 + y2

7. z = |x − 3|2 + y3 8. z = (sin x)(cos |y|)

9. z = 4 +
√

(x − 1)2 + (y − 2)2

10. z = 1 +
(

(x − 1)2 + (y − 2)2
)2

PROBLEMS

In Problems 11–14, a function f is given.

(a) Use a computer to draw a contour diagram for f .

(b) Is f differentiable at all points (x, y) ≠ (0, 0)?

(c) Do the partial derivatives fx and fy exist and are they

continuous at all points (x, y) ≠ (0, 0)?

(d) Is f differentiable at (0, 0)?

(e) Do the partial derivatives fx and fy exist and are they

continuous at (0, 0)?

11. f (x, y) =

⎧

⎪

⎨

⎪

⎩

x

y
+

y

x
, x ≠ 0 and y ≠ 0,

0, x = 0 or y = 0.

12. f (x, y) =

{

2xy

(x2 + y2)2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

13. f (x, y) =

{

x2y

x4 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

14. f (x, y) =

{ xy
√

x2 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

15. Consider the function

f (x, y) =

{

xy2

x2 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

(a) Use a computer to draw the contour diagram for f .

(b) Is f differentiable for (x, y) ≠ (0, 0)?

(c) Show that fx(0, 0) and fy(0, 0) exist.

(d) Is f differentiable at (0, 0)?

(e) Suppose x(t) = at and y(t) = bt, where a and b

are constants, not both zero. If g(t) = f (x(t), y(t)),

show that

g′(0) =
ab2

a2 + b2
.

(f) Show that

fx(0, 0)x
′(0) + fy(0, 0)y

′(0) = 0.

Does the chain rule hold for the composite function

g(t) at t = 0? Explain.

(g) Show that the directional derivative fu⃗ (0, 0) exists

for each unit vector u⃗ . Does this imply that f is

differentiable at (0, 0)?
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16. Consider the function f (x, y) =
√

|xy|.

(a) Use a computer to draw the contour diagram for f .

Does the contour diagram look like that of a plane

when we zoom in on the origin?

(b) Use a computer to draw the graph of f . Does the

graph look like a plane when we zoom in on the

origin?

(c) Is f differentiable for (x, y) ≠ (0, 0)?

(d) Show that fx(0, 0) and fy(0, 0) exist.

(e) Is f differentiable at (0, 0)? [Hint: Consider the di-

rectional derivative fu⃗ (0, 0) for u⃗ = (i⃗ + j⃗ )∕
√

2.]

17. Consider the function

f (x, y) =

{

xy2

x2 + y4
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

(a) Use a computer to draw the contour diagram for f .

(b) Show that the directional derivative fu⃗ (0, 0) exists

for each unit vector u⃗ .

(c) Is f continuous at (0, 0)? Is f differentiable at

(0, 0)? Explain.

18. Suppose f (x, y) is a function such that fx(0, 0) = 0 and

fy(0, 0) = 0, and fu⃗ (0, 0) = 3 for u⃗ = (i⃗ + j⃗ )∕
√

2.

(a) Is f differentiable at (0, 0)? Explain.

(b) Give an example of a function f defined on 2-space

which satisfies these conditions. [Hint: The func-

tion f does not have to be defined by a single for-

mula valid over all of 2-space.]

19. Consider the following function:

f (x, y) =

{

xy(x2 − y2)

x2 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

The graph of f is shown in Figure 14.67, and the con-

tour diagram of f is shown in Figure 14.68.

(a) Find fx(x, y) and fy(x, y) for (x, y) ≠ (0, 0).

(b) Show that fx(0, 0) = 0 and fy(0, 0) = 0.

(c) Are the functions fx and fy continuous at (0, 0)?

(d) Is f differentiable at (0, 0)?

x y

z

Figure 14.67: Graph of
xy(x2 − y2)

x2 + y2

.05
.25

.45
.65
.85

−
.0
5

−
.2
5

−
.45

−.65
−.8

5

.25

−.25

.25

−.
25

−.25

.25
x

y

Figure 14.68: Contour diagram of

xy(x2 − y2)

x2 + y2

20. Suppose a function f is differentiable at the point (a, b).

Show that f is continuous at (a, b).

Strengthen Your Understanding

In Problems 21–22, explain what is wrong with the state-

ment.

21. If f (x, y) is continuous at the origin, then it is differen-

tiable at the origin.

22. If the partial derivatives fx(0, 0) and fy(0, 0) both exist,

then f (x, y) is differentiable at the origin.

In Problems 23–24, give an example of:

23. A continuous function f (x, y) that is not differentiable

at the origin.

24. A continuous function f (x, y) that is not differentiable

on the line x = 1.

25. Which of the following functions f (x, y) is differen-

tiable at the given point?

(a)
√

1 − x2 − y2 at (0, 0) (b)
√

4 − x2 − y2 at (2, 0)

(c) −
√

x2 + 2y2 at (0, 0) (d) −
√

x2 + 2y2 at (2, 0)

Online Resource: Review problems and Projects
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15.1 CRITICAL POINTS: LOCAL EXTREMA AND SADDLE POINTS

Functions of several variables, like functions of one variable, can have local and global extrema.

(That is, local and global maxima and minima.) A function has a local extremum at a point where

it takes on the largest or smallest value in a small region around the point. Global extrema are the

largest or smallest values anywhere on the domain under consideration. (See Figures 15.1 and 15.2.)

x

y

z

Figure 15.1: Local and global extrema for a

function of two variables on 0 ≤ x ≤ a,

0 ≤ y ≤ b

a

b

x

y

−1

−3

0

1

3
1

6
11

Figure 15.2: Contour map of the function

in Figure 15.1

More precisely, considering only points at which f is defined, we say:

• f has a local maximum at the point P0 if f (P0) ≥ f (P ) for all points P near P0.

• f has a local minimum at the point P0 if f (P0) ≤ f (P ) for all points P near P0.

For example, the function whose contour map is shown in Figure 15.2 has a local minimum

value of −3 and local maximum values of 3 and 11 in the rectangle shown.

How Do We Detect a Local Maximum or Minimum?

Recall that if the gradient vector of a function is defined and nonzero, then it points in a direction in

which the function increases. Suppose that a function f has a local maximum at a point P0 which

is not on the boundary of the domain. If the vector gradf (P0) were defined and nonzero, then we

could increase f by moving in the direction of gradf (P0). Since f has a local maximum at P0, there

is no direction in which f is increasing. Thus, if gradf (P0) is defined, we must have

gradf (P0) = 0⃗ .

Similarly, suppose f has a local minimum at the point P0. If gradf (P0) were defined and nonzero,

then we could decrease f by moving in the direction opposite to gradf (P0), and so we must again

have gradf (P0) = 0⃗ . Therefore, we make the following definition:

Points where the gradient is either 0⃗ or undefined are called critical points of the function.

If a function has a local maximum or minimum at a point P0, not on the boundary of its domain,

thenP0 is a critical point. For a function of two variables, we can also see that the gradient vector must

be zero or undefined at a local maximum by looking at its contour diagram and a plot of its gradient

vectors. (See Figures 15.3 and 15.4.) Around the maximum the vectors are all pointing inward,

perpendicularly to the contours. At the maximum the gradient vector must be zero or undefined. A

similar argument shows that the gradient must be zero or undefined at a local minimum.
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1

2

3

4

5

y

x

Figure 15.3: Contour diagram around a

local maximum of a function

x

y

Figure 15.4: Gradients pointing toward the local maximum of

the function in Figure 15.3

Finding and Analyzing Critical Points

To find critical points of f we set gradf = fxi⃗ + fyj⃗ + fzk⃗ = 0⃗ , which means setting all the

partial derivatives of f equal to zero. We must also look for the points where one or more of the

partial derivatives is undefined.

Example 1 Find and analyze the critical points of f (x, y) = x2 − 2x + y2 − 4y + 5.

Solution To find the critical points, we set both partial derivatives equal to zero:

fx(x, y) = 2x − 2 = 0

fy(x, y) = 2y − 4 = 0.

Solving these equations gives x = 1, y = 2. Hence, f has only one critical point, namely (1, 2). To

see the behavior of f near (1, 2), look at the values of the function in Table 15.1.

Table 15.1 Values of f (x, y) near the point (1, 2)

y

x

0.8 0.9 1.0 1.1 1.2

1.8 0.08 0.05 0.04 0.05 0.08

1.9 0.05 0.02 0.01 0.02 0.05

2.0 0.04 0.01 0.00 0.01 0.04

2.1 0.05 0.02 0.01 0.02 0.05

2.2 0.08 0.05 0.04 0.05 0.08

The table suggests that the function has a local minimum value of 0 at (1, 2). We can confirm

this by completing the square:

f (x, y) = x2 − 2x + y2 − 4y + 5 = (x − 1)2 + (y − 2)2.

Figure 15.5 shows that the graph of f is a paraboloid with vertex at the point (1, 2, 0). It is the

same shape as the graph of z = x2 + y2 (see Figure 12.12 on page 661), except that the vertex has

been shifted to (1, 2). So the point (1, 2) is a local minimum of f (as well as a global minimum).

x

y

z

(1, 2, 0)

Figure 15.5: The graph of f (x, y) = x2 − 2x + y2 − 4y + 5 with a local minimum at the point (1, 2)
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Example 2 Find and analyze any critical points of f (x, y) = −
√

x2 + y2.

Solution We look for points where gradf = 0⃗ or is undefined. The partial derivatives are given by

fx(x, y) = −
x

√

x2 + y2
,

fy(x, y) = −
y

√

x2 + y2
.

These partial derivatives are never simultaneously zero, but they are undefined at x = 0, y = 0.

Thus, (0, 0) is a critical point and a possible extreme point. The graph of f (see Figure 15.6) is a

cone, with vertex at (0, 0). So f has a local and global maximum at (0, 0).

x y

z

✯
Local maximum
Global maximum

Figure 15.6: Graph of f (x, y) = −
√

x2 + y2

Example 3 Find and analyze any critical points of g(x, y) = x2 − y2.

Solution To find the critical points, we look for points where both partial derivatives are zero:

gx(x, y) = 2x = 0

gy(x, y) = −2y = 0.

Solving gives x = 0, y = 0, so the origin is the only critical point.

Figure 15.7 shows that near the origin g takes on both positive and negative values. Since

g(0, 0) = 0, the origin is a critical point which is neither a local maximum nor a local minimum. The

graph of g looks like a saddle.

x

y

z

Figure 15.7: Graph of

g(x, y) = x2 − y2, showing saddle

shape at the origin

x y

z

Figure 15.8: Graph of ℎ(x, y) = x2 + y2, showing minimum

at the origin

The previous examples show that critical points can occur at local maxima or minima, or at

points which are neither: The functions g and ℎ in Figures 15.7 and 15.8 both have critical points

at the origin. Figure 15.9 shows level curves of g. They are hyperbolas showing both positive and

negative values of g near (0, 0). Contrast this with the level curves of ℎ near the local minimum in

Figure 15.10.
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Figure 15.9: Contours of g(x, y) = x2 − y2,

showing a saddle shape at the origin

−3 −2 −1 1 2 3
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1
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4

6

8

10

12

Figure 15.10: Contours of ℎ(x, y) = x2 + y2,

showing a local minimum at the origin

Example 4 Find the local extrema of the function f (x, y) = 8y3 + 12x2 − 24xy.

Solution We begin by looking for critical points:

fx(x, y) = 24x − 24y,

fy(x, y) = 24y2 − 24x.

Setting these expressions equal to zero gives the system of equations

x = y, x = y2,

which has two solutions, (0, 0) and (1, 1). Are these local maxima, local minima or neither? Fig-

ure 15.11 shows contours of f near the points. Notice that f (1, 1) = −4 and the contours at nearby

points have larger function values. This suggests f has a local minimum at (1, 1).

We have f (0, 0) = 0 and the contours near (0, 0) show that f takes both positive and negative

values nearby. This suggests that (0, 0) is a critical point which is neither a local maximum nor a

local minimum.

−0.5 0.5 1 1.5 2
−0.5

0.5

1

1.5

2

x

y

−4

−1

−2

−3

0

0

1

2

3

Figure 15.11: Contour diagram of f (x, y) = 8y3 + 12x2 − 24xy showing critical points at (0, 0) and (1, 1)

Classifying Critical Points
We can see whether a critical point of a function, f , is a local maximum, local minimum, or neither

by looking at the contour diagram. There is also an analytic method for making this distinction.

Quadratic Functions of the Form f (x, y) = ax
2 + bxy + cy

2

Near most critical points, a function has the same behavior as its quadratic Taylor approximation
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about that point. Thus, we start by investigating critical points of quadratic functions of the form

f (x, y) = ax2 + bxy + cy2, where a, b and c are constants.

Example 5 Find and analyze the local extrema of the function f (x, y) = x2 + xy + y2.

Solution To find critical points, we set

fx(x, y) = 2x + y = 0,

fy(x, y) = x + 2y = 0.

The only critical point is (0, 0), and the value of the function there is f (0, 0) = 0. If f is always

positive or zero near (0, 0), then (0, 0) is a local minimum; if f is always negative or zero near

(0, 0), it is a local maximum; if f takes both positive and negative values, it is neither. The graph in

Figure 15.12 suggests that (0, 0) is a local minimum.

How can we be sure that (0, 0) is a local minimum? We complete the square. Writing

f (x, y) = x2 + xy + y2 =
(

x +
1

2
y

)2

+
3

4
y2,

shows that f (x, y) is a sum of two nonnegative terms, so it is always greater than or equal to zero.

Thus, the critical point is both a local and a global minimum.

x

y

z

✒
Local minimum

Figure 15.12: Graph of f (x, y) = x2 + xy+ y2 = (x+
1

2
y)2 +

3

4
y2 showing local minimum at the origin

The Shape of the Graph of f (x, y) = ax
2 + bxy + cy

2

In general, a function of the form f (x, y) = ax2+bxy+cy2 has one critical point at (0, 0). Assuming

a ≠ 0, we complete the square and write

ax2 + bxy + cy2 = a

[

x2 +
b

a
xy +

c

a
y2
]

= a

[

(

x +
b

2a
y

)2

+

(

c

a
−

b2

4a2

)

y2
]

= a

[

(

x +
b

2a
y

)2

+

(

4ac − b2

4a2

)

y2
]

.

The shape of the graph of f depends on whether the coefficient of y2 is positive, negative, or zero.

The sign of the discriminant, D = 4ac − b2, determines the sign of the coefficient of y2.

• If D > 0, then the expression inside the square brackets is positive or zero, so the function has

a local maximum or a local minimum.

∙ If a > 0, the function has a local minimum, since the graph is a paraboloid opening upward,

like z = x2 + y2. (See Figure 15.13.)

∙ If a < 0, the function has a local maximum, since the graph is a paraboloid opening down-

ward, like z = −x2 − y2. (See Figure 15.14.)

• If D < 0, then the function goes up in some directions and goes down in others, like z = x2−y2.

We say the function has a saddle point, that is, a critical point at which the function value

increases in some directions but decreases in others. (See Figure 15.15.)

• If D = 0, then the quadratic function is a(x+by∕2a)2, whose graph is a parabolic cylinder. (See

Figure 15.16.)
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Figure 15.13: Local minimum:

D > 0 and a > 0

Figure 15.14: Local maximum:

D > 0 and a < 0

Figure 15.15: Saddle point:

D < 0

Figure 15.16: Parabolic

cylinder: D = 0

More generally, the graph of g(x, y) = a(x− x0)
2 + b(x− x0)(y− y0) + c(y− y0)

2 has the same

shape as the graph of f (x, y) = ax2 + bxy + cy2, except that the critical point is at (x0, y0) rather

than (0, 0).1

Classifying the Critical Points of a Function

Suppose that f is any function with gradf (0, 0) = 0⃗ . Its quadratic Taylor polynomial near (0, 0),

f (x, y) ≈ f (0, 0) + fx(0, 0)x+ fy(0, 0)y

+
1

2
fxx(0, 0)x

2 + fxy(0, 0)xy+
1

2
fyy(0, 0)y

2,

can be simplified using fx(0, 0) = fy(0, 0) = 0, which gives

f (x, y) − f (0, 0) ≈
1

2
fxx(0, 0)x

2 + fxy(0, 0)xy+
1

2
fyy(0, 0)y

2.

The discriminant of this quadratic polynomial is

D = 4ac − b2 = 4
(

1

2
fxx(0, 0)

)(

1

2
fyy(0, 0)

)

−
(

fxy(0, 0)
)2
,

which simplifies to

D = fxx(0, 0)fyy(0, 0) − (fxy(0, 0))
2.

There is a similar formula forD if the critical point is at (x0, y0). An analogy with quadratic functions

suggests the following test for classifying a critical point of a function of two variables:

Second-Derivative Test for Functions of Two Variables

Suppose (x0, y0) is a point where gradf (x0, y0) = 0⃗ . Let

D = fxx(x0, y0)fyy(x0, y0) − (fxy(x0, y0))
2.

• If D > 0 and fxx(x0, y0) > 0, then f has a local minimum at (x0, y0).

• If D > 0 and fxx(x0, y0) < 0, then f has a local maximum at (x0, y0).

• If D < 0, then f has a saddle point at (x0, y0).

• If D = 0, anything can happen: f can have a local maximum, or a local minimum, or a

saddle point, or none of these, at (x0, y0).

Example 6 Find the local maxima, minima, and saddle points of f (x, y) =
1

2
x2 + 3y3 + 9y2 − 3xy + 9y − 9x.

Solution Setting the partial derivatives of f to zero gives

fx(x, y) = x − 3y − 9 = 0,

fy(x, y) = 9y2 + 18y − 3x + 9 = 0.

1We assumed that a ≠ 0. If a = 0 and c ≠ 0, the same argument works. If both a = 0 and c = 0, then f (x, y) = bxy,

which has a saddle point.
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Eliminating x gives 9y2 + 9y− 18 = 0, with solutions y = −2 and y = 1. The corresponding values

of x are x = 3 and x = 12, so the critical points of f are (3,−2) and (12, 1). The discriminant is

D(x, y) = fxxfyy − f 2
xy

= (1)(18y+ 18) − (−3)2 = 18y+ 9.

Since D(3,−2) = −36 + 9 < 0, we know that (3,−2) is a saddle point of f . Since D(12, 1) =

18 + 9 > 0 and fxx(12, 1) = 1 > 0, we know that (12, 1) is a local minimum of f .

The second-derivative test does not give any information if D = 0. However, as the following

example illustrates, we may still be able to classify the critical points.

Example 7 Classify the critical points of f (x, y) = x4 + y4, and g(x, y) = −x4 − y4, and ℎ(x, y) = x4 − y4.

Solution Each of these functions has a critical point at (0, 0). Since all the second partial derivatives are 0

there, each function has D = 0. Near the origin, the graphs of f , g and ℎ look like the surfaces in

Figures 15.13–15.15, respectively, so f has a local minimum at (0, 0), and g has a local maximum

at (0, 0), and ℎ is saddle-shaped at (0, 0).

We can get the same results algebraically. Since f (0, 0) = 0 and f (x, y) > 0 elsewhere, f has

a local minimum at the origin. Since g(0, 0) = 0 and g(x, y) < 0 elsewhere, g has a local maximum

at the origin. Lastly, ℎ is saddle-shaped at the origin since ℎ(0, 0) = 0 and, away from the origin,

ℎ(x, y) > 0 on the x-axis and ℎ(x, y) < 0 on the y-axis.

Exercises and Problems for Section 15.1

EXERCISES

1. Figures (I)–(VI) show level curves of six functions

around a critical point P . Does each function have a lo-

cal maximum, a local minimum, or a saddle point at P ?
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2. Which of the points A,B, C in Figure 15.17 appear to

be critical points? Classify those that are critical points.

0
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2
1

2

1
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1
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Figure 15.17

3. Which of the points D–G in Figure 15.17 appear to be

(a) Local maxima?

(b) Local minima?

(c) Saddle points?
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4. A function f (x, y) has partial derivatives fx(1, 2) = 3,

fy(1, 2) = 5. Explain how you know that f does not

have a minimum at (1, 2).

5. Assume f (x, y) has a critical point at (2, 3) with

f (2, 3) = 5. Draw possible cross-sections for x = 2

and y = 3, and label one value on each axis, if f (2, 3)

is:

(a) A local minimum

(b) A local maximum

(c) A saddle point

In Exercises 6–13, the function has a critical point at (0, 0).

What sort of critical point is it?

6. f (x, y) = x2 − cos y 7. f (x, y) = x sin y

8. g(x, y) = x4 + y3 9. f (x, y) = x6 + y6

10. k(x, y) = sinx sin y 11. ℎ(x, y) = cos x cos y

12. g(x, y) = (x − ex)(1 − y2)

13. ℎ(x, y) = x2 − xy + sin2 y

In Exercises 14–27, find the critical points and classify them

as local maxima, local minima, saddle points, or none of

these.

14. f (x, y) = x2 − 2xy + 3y2 − 8y

15. f (x, y) = 5 + 6x − x2 + xy − y2

16. f (x, y) = x2 − y2 + 4x + 2y

17. f (x, y) = 400 − 3x2 − 4x + 2xy − 5y2 + 48y

18. f (x, y) = 15 − x2 + 2y2 + 6x − 8y

19. f (x, y) = x2y + 2y2 − 2xy + 6

20. f (x, y) = 2x3 − 3x2y + 6x2 − 6y2

21. f (x, y) = x3 − 3x + y3 − 3y

22. f (x, y) = x3 + y3 − 3x2 − 3y + 10

23. f (x, y) = x3 + y3 − 6y2 − 3x + 9

24. f (x, y) = (x + y)(xy + 1)

25. f (x, y) = 8xy −
1

4
(x + y)4

26. f (x, y) =
3
√

x2 + y2

27. f (x, y) = e2x
2+y2

PROBLEMS

28. Let f (x, y) = 3x2 +ky2 +9xy. Determine the values of

k (if any) for which the critical point at (0, 0) is:

(a) A saddle point

(b) A local maximum

(c) A local minimum

29. Let f (x, y) = x3 + ky2 − 5xy. Determine the values of

k (if any) for which the critical point at (0, 0) is:

(a) A saddle point

(b) A local maximum

(c) A local minimum

30. Find A and B so that f (x, y) = x2 +Ax+ y2 +B has a

local minimum value of 20 at (1, 0).

31. For f (x, y) = x2 +xy+ y2 + ax+ by+ c, find values of

a, b, and c giving a local minimum at (2, 5) and so that

f (2, 5) = 11.

32. (a) Find critical points for f (x, y) = e−(x−a)
2−(y−b)2 .

(b) Find a and b such that the critical point is at (−1, 5).

(c) For the values of a and b in part (b), is (−1, 5) a lo-

cal maximum, local minimum, or a saddle point?

33. Let f (x, y) = kx2 + y2 − 4xy. Determine the values of

k (if any) for which the critical point at (0, 0) is:

(a) A saddle point

(b) A local maximum

(c) A local minimum

For Problems 34–36, use the contours of f in Figure 15.18.
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Figure 15.18

34. Decide whether you think each point is a local maxi-

mum, local minimum, saddle point, or none of these.

(a) P (b) Q (c) R (d) S

35. Sketch the direction of ∇f at points surrounding each

of P , R, S, and T .

36. At which of P , Q, R, S, or T does ‖∇f‖ seem

largest?.
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For Problems 37–40, find critical points and classify them as

local maxima, local minima, saddle points, or none of these.

37. f (x, y) = x3 + e−y
2

38. f (x, y) = sinx sin y

39. f (x, y) = 1 − cos x + y2∕2

40. f (x, y) = ex(1 − cos y)

41. At the point (1, 3), suppose that fx = fy = 0 and

fxx > 0, fyy > 0, fxy = 0.

(a) What can you conclude about the behavior of the

function near the point (1, 3)?

(b) Sketch a possible contour diagram.

42. At the point (a, b), suppose that fx = fy = 0, fxx > 0,

fyy = 0, fxy > 0.

(a) What can you conclude about the shape of the

graph of f near the point (a, b)?

(b) Sketch a possible contour diagram.

43. Let ℎ(x, y) = f (x)g(y) where f (0) = g(0) = 0 and

f ′(0) ≠ 0, g′(0) ≠ 0. Show that (0, 0) is a saddle point

of ℎ.

44. Let ℎ(x, y) = f (x) + g(y). Show that ℎ has a critical

point at (a, b) if f ′(a) = g′(b) = 0, and, assuming

f ′′(a) ≠ 0 and g′′(b) ≠ 0, it is a local maximum or min-

imum when f ′′(a) and g′′(b) have the same sign and a

saddle point when they have opposite signs.

45. Let ℎ(x, y) = (f (x))2 + (g(y))2. Show that if f (a) =

g(b) = 0, then (a, b) is a local minimum.

46. Draw a possible contour diagram of f such that

fx(−1, 0) = 0, fy(−1, 0) < 0, fx(3, 3) > 0, fy(3, 3) >

0, and f has a local maximum at (3,−3).

47. Draw a possible contour diagram of a function with a

saddle point at (2, 1), a local minimum at (2, 4), and no

other critical points. Label the contours.

48. For constants a and b with ab ≠ 0 and ab ≠ 1, let

f (x, y) = ax2 + by2 − 2xy − 4x − 6y.

(a) Find the x- and y-coordinates of the critical point.

Your answer will be in terms of a and b.

(b) If a = b = 2, is the critical point a local maxi-

mum, a local minimum, or neither? Give a reason

for your answer.

(c) Classify the critical point for all values of a and b

with ab ≠ 0 and ab ≠ 1.

49. (a) Find the critical point of f (x, y) = (x2−y)(x2+y).

(b) Show that at the critical point, the discriminant

D = 0, so the second-derivative test gives no in-

formation about the nature of the critical point.

(c) Sketch contours near the critical point to determine

whether it is a local maximum, a local minimum,

a saddle point, or none of these.

50. On a computer, draw contour diagrams for functions

f (x, y) = k(x2 + y2) − 2xy

for k = −2, −1, 0, 1, 2. Use these figures to classify the

critical point at (0, 0) for each value of k. Explain your

observations using the discriminant, D.

51. The behavior of a function can be complicated near a

critical point where D = 0. Suppose that

f (x, y) = x3 − 3xy2.

Show that there is one critical point at (0, 0) and that

D = 0 there. Show that the contour for f (x, y) = 0

consists of three lines intersecting at the origin and that

these lines divide the plane into six regions around the

origin where f alternates from positive to negative.

Sketch a contour diagram for f near (0, 0). The graph

of this function is called a monkey saddle.

52. The contour diagrams for four functions z = f (x, y)

are in (a)–(d). Each function has a critical point with

z = 0 at the origin. Graphs (I)–(IV) show the value of

z for these four functions on a small circle around the

origin, expressed as function of �, the angle between

the positive x-axis and a line through the origin. Match

the contour diagrams (a)–(d) with the graphs (I)–(IV).

Classify the critical points as local maxima, local min-

ima or saddle points.
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Strengthen Your Understanding

In Problems 53–55, explain what is wrong with the state-

ment.

53. If fx = fy = 0 at (1, 3), then f has a local maximum or

local minimum at (1, 3).

54. For f (x, y), if D = fxxfyy − (fxy)
2 = 0 at (a, b), then

(a, b) is a saddle point.

55. A critical point (a, b) for the function f must be a local

minimum if both cross-sections for x = a and y = b are

concave up.

In Problems 56–57, give an example of:

56. A nonlinear function having no critical points

57. A function f (x, y) with a local maximum at (2,−3, 4).

Are the statements in Problems 58–69 true or false? Give

reasons for your answer.

58. If fx(P0) = fy(P0) = 0, then P0 is a critical point of f .

59. If fx(P0) = fy(P0) = 0, then P0 is a local maximum or

local minimum of f .

60. If P0 is a critical point of f , then P0 is either a local

maximum or local minimum of f .

61. If P0 is a local maximum or local minimum of f , and

not on the boundary of the domain of f , then P0 is a

critical point of f .

62. The function whose contour diagram is shown in Fig-

ure 15.19 has a saddle point at P .
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Figure 15.19

63. The function f (x, y) =
√

x2 + y2 has a local minimum

at the origin.

64. The function f (x, y) = x2 − y2 has a local minimum at

the origin.

65. If f has a local minimum at P0 then so does the function

g(x, y) = f (x, y) + 5.

66. If f has a local minimum at P0 then the function

g(x, y) = −f (x, y) has a local maximum at P0.

67. Every function has at least one local maximum.

68. If P0 is a local maximum of f , then f (a, b) ≤ f (P0) for

all points (a, b) in 2-space.

69. If P0 is a local maximum of f , then P0 is also a global

maximum of f .

15.2 OPTIMIZATION

Suppose we want to find the highest and the lowest points in Colorado. A contour map is shown

in Figure 15.20. The highest point is the top of a mountain peak (point A on the map, Mt. Elbert,

14,440 feet high). What about the lowest point? Colorado does not have large pits without drainage,

like Death Valley in California. A drop of rain falling at any point in Colorado will eventually flow

out of the state. If there is no local minimum inside the state, where is the lowest point? It must be

on the state boundary at a point where a river is flowing out of the state (point B where the Arikaree

River leaves the state, 3,315 feet high). The highest point in Colorado is a global maximum for the

elevation function in Colorado and the lowest point is the global minimum.
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Figure 15.20: The highest and lowest points in the state of Colorado
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In general, if we are given a function f defined on a region R, we say:

• f has a global maximum on R at the point P0 if f (P0) ≥ f (P ) for all points P in R.

• f has a global minimum on R at the point P0 if f (P0) ≤ f (P ) for all points P in R.

The process of finding a global maximum or minimum for a function f on a region R is called

optimization. If the region R is not stated explicitly, we take it to be the whole xy-plane unless the

context of the problem suggests otherwise.

How Do We Find Global Maxima and Minima?
As the Colorado example illustrates, a global extremum can occur either at a critical point inside

the region or at a point on the boundary of the region. This is analogous to single-variable calculus,

where a function achieves its global extrema on an interval either at a critical point inside the interval

or at an endpoint of the interval.

To locate global maxima and minima for a function f on a region R:

• Find the critical points of f in the region R.

• Investigate whether the critical points give global maxima or minima.

• If the region R has a boundary, investigate whether f attains a global maximum or min-

imum on the boundary of R.

Investigating the boundary of a region for possible maxima and minima is the topic of Sec-

tion 15.1. In this section, we focus on finding global maxima and minima of functions on regions

that do not include boundaries.

Not all functions have a global maximum or minimum: it depends on the function and the region.

First, we consider applications in which global extrema are expected from practical considerations.

At the end of this section, we examine the conditions that lead to global extrema. In general, the

fact that a function has a single local maximum or minimum does not guarantee that the point is

the global maximum or minimum. (See Problem 38.) An exception is if the function is quadratic, in

which case the local maximum or minimum is the global maximum or minimum. (See Example 1

on page 807 and Example 5 on page 810.)

Maximizing Profit and Minimizing Cost
In planning production of an item, a company often chooses the combination of price and quantity

that maximizes its profit. We use

Profit = Revenue − Cost,

and, provided the price is constant,

Revenue = Price ⋅ Quantity = pq.

In addition, we need to know how the cost and price depend on quantity.

Example 1 A company manufactures two items which are sold in two separate markets where it has a monopoly.

The quantities, q1 and q2, demanded by consumers, and the prices, p1 and p2 (in dollars), of each

item are related by

p1 = 600 − 0.3q1 and p2 = 500 − 0.2q2.

Thus, if the price for either item increases, the demand for it decreases. The company’s total produc-

tion cost is given by

C = 16 + 1.2q1 + 1.5q2 + 0.2q1q2.

To maximize its total profit, how much of each product should be produced? What is the maximum

profit? 2

2Adapted from M. Rosser and P. Lis, Basic Mathematics for Economists, 3rd ed. (New York: Routledge, 2016), p. 351.
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Solution The total revenue, R, is the sum of the revenues, p1q1 and p2q2, from each market. Substituting for

p1 and p2, we get

R = p1q1 + p2q2 = (600 − 0.3q1)q1 + (500 − 0.2q2)q2

= 600q1 − 0.3q2
1
+ 500q2 − 0.2q2

2
.

Thus, the total profit P is given by

P = R − C = 600q1 − 0.3q2
1
+ 500q2 − 0.2q2

2
− (16 + 1.2q1 + 1.5q2 + 0.2q1q2)

= −16 + 598.8q1 − 0.3q2
1
+ 498.5q2 − 0.2q2

2
− 0.2q1q2.

Since q1 and q2 cannot be negative,3 the region we consider is the first quadrant with boundary q1 = 0

and q2 = 0.

To maximize P , we look for critical points by setting the partial derivatives equal to 0:

)P

)q1
= 598.8 − 0.6q1 − 0.2q2 = 0,

)P

)q2
= 498.5 − 0.4q2 − 0.2q1 = 0.

Since gradP is defined everywhere, the only critical points of P are those where gradP = 0⃗ . Thus,

solving for q1, and q2, we find that

q1 = 699.1 and q2 = 896.7.

The corresponding prices are

p1 = 390.27 and p2 = 320.66.

To see whether or not we have found a local maximum, we compute second partial derivatives:

)2P

)q2
1

= −0.6,
)2P

)q2
2

= −0.4,
)2P

)q1)q2
= −0.2,

so,

D =
)2P

)q2
1

)2P

)q2
2

−

(

)2P

)q1)q2

)2

= (−0.6)(−0.4) − (−0.2)2 = 0.2.

Therefore we have found a local maximum. The graph of P is a paraboloid opening downward, so

(699.1, 896.7) is a global maximum. This point is within the region, so points on the boundary give

smaller values of P .

The company should produce 699.1 units of the first item priced at $390.27 per unit, and 896.7

units of the second item priced at $320.66per unit. The maximum profitP (699.1, 896.7) ≈ $433,000.

Example 2 A delivery of 480 cubic meters of gravel is to be made to a landfill. The trucker plans to purchase an

open-top box in which to transport the gravel in numerous trips. The total cost to the trucker is the

cost of the box plus $80 per trip. The box must have height 2 meters, but the trucker can choose the

length and width. The cost of the box is $100/m2 for the ends, $50/m2 for the sides and $200/m2 for

the bottom. Notice the tradeoff: A smaller box is cheaper to buy but requires more trips. What size

box should the trucker buy to minimize the total cost?4

3Restricting prices to be nonnegative further restricts the region but does not alter the solution.
4Adapted from Claude McMillan, Jr., Mathematical Programming, 2nd ed. (New York: Wiley, 1978), pp. 156–157.
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Solution We first get an algebraic expression for the trucker’s cost. Let the length of the box be x meters and

the width be y meters; the height is 2 meters. (See Figure 15.21.)

xy

✛

✛

2m

Figure 15.21: The box for transporting gravel

Table 15.2 Trucker’s itemized cost

Expense Cost in dollars

Travel: 480∕(2xy) at $80/trip 80 ⋅ 480∕(2xy)

Ends: 2 at $100/m2
⋅ 2y m2 400y

Sides: 2 at $50/m2
⋅ 2x m2 200x

Bottom: l at $200/m2
⋅ xy m2 200xy

The volume of the box is 2xy m3, so delivery of 480 m3 of gravel requires 480∕(2xy) trips. The

number of trips is a whole number; however, we treat it as continuous so that we can optimize using

derivatives. The trucker’s cost is itemized in Table 15.2. The problem is to minimize

Total cost = 80 ⋅
480

2xy
+ 400y+ 200x+ 200xy = 200

(

96

xy
+ 2y + x + xy

)

.

The length and width of the box must be positive. Thus, the region is the first quadrant but it does

not contain the boundary, x = 0 and y = 0.

Our problem is to minimize

f (x, y) =
96

xy
+ 2y + x + xy.

The critical points of this function occur where

fx(x, y) = −
96

x2y
+ 1 + y = 0

fy(x, y) = −
96

xy2
+ 2 + x = 0.

We put the 96∕(x2y) and 96∕(xy2) terms on the other side of the the equation, divide, and simplify:

96∕(x2y)

96∕(xy2)
=

1 + y

2 + x
so

y

x
=

1 + y

2 + x
giving 2y = x.

Substituting x = 2y in the equation fy(x, y) = 0 gives

−
96

2y ⋅ y2
+ 2 + 2y = 0

y4 + y3 − 24 = 0.

The only positive solution to this equation is y = 2, so the only critical point in the region is (4, 2).

To check that the critical point is a local minimum, we use the second-derivative test. Since

D(4, 2) = fxxfyy − (fxy)
2 =

192

43 ⋅ 2
⋅

192

4 ⋅ 23
−
(

96

42 ⋅ 22
+ 1

)2

= 9 −
25

4
> 0

and fxx(4, 2) > 0, the point (4, 2) is a local minimum. Since the value of f increases without bound

as x or y increases without bound and as x → 0+ and y → 0+, it can be shown that (4, 2) is a global

minimum. (See Problem 42.) Thus, the optimal box is 4 meters long and 2 meters wide. With a box

of this size, the trucker would need to make 30 trips to haul all of the gravel. This large number lends

some credibility to our decision to treat the number of trips as a continuous variable.
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Fitting a Line to Data: Least Squares

Suppose we want to fit the “best” line to some data in the plane. We measure the distance from a

line to the data points by adding the squares of the vertical distances from each point to the line. The

smaller this sum of squares is, the better the line fits the data. The line with the minimum sum of

square distances is called the least squares line, or the regression line. If the data is nearly linear,

the least squares line is a good fit; otherwise it may not be. (See Figure 15.22.)

Data almost linear: line fits well Data not very linear: line does not fit well

Figure 15.22: Fitting lines to data points

Example 3 Find a least squares line for the following data points: (1, 1), (2, 1), and (3, 3).

Solution Suppose the line has equation y = b + mx. If we find b and m then we have found the line. So,

for this problem, b and m are the two variables. Any values of m and b are possible, so this is an

unconstrained problem. We want to minimize the function f (b, m) that gives the sum of the three

squared vertical distances from the points to the line in Figure 15.23.

1 2 3
0

1

2

3

x

y

(1, 1) (2, 1)

(3, 3)

(1, b + m)

(2, b + 2m)

(3, b + 3m)

y = b + mx

✻❄

✻
❄

✻❄

Figure 15.23: The least squares line minimizes the sum of the squares of these vertical distances

The vertical distance from the point (1, 1) to the line is the difference in the y-coordinates 1 −

(b + m); similarly for the other points. Thus, the sum of squares is

f (b, m) = (1 − (b + m))2 + (1 − (b + 2m))2 + (3 − (b + 3m))2.

To minimize f we look for critical points. First we differentiate f with respect to b:

)f

)b
= −2(1 − (b + m)) − 2(1 − (b + 2m)) − 2(3 − (b + 3m))

= −2 + 2b + 2m − 2 + 2b + 4m− 6 + 2b + 6m

= −10 + 6b + 12m.
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Now we differentiate with respect to m:

)f

)m
= 2(1 − (b + m))(−1) + 2(1 − (b + 2m))(−2) + 2(3 − (b + 3m))(−3)

= −2 + 2b + 2m − 4 + 4b + 8m − 18 + 6b + 18m

= −24 + 12b + 28m.

The equations
)f

)b
= 0 and

)f

)m
= 0 give a system of two linear equations in two unknowns:

−10 + 6b + 12m = 0,

−24 + 12b + 28m = 0.

The solution to this pair of equations is the critical point b = −1∕3 and m = 1. Since

D = fbbfmm − (fmb)
2 = (6)(28) − 122 = 24 and fbb = 6 > 0,

we have found a local minimum. The graph of f (b, m) is a parabola opening upward, so the local

minimum is the global minimum of f . Thus, the least squares line is

y = x −
1

3
.

As a check, notice that the line y = x passes through the points (1, 1) and (3, 3). It is reasonable that

introducing the point (2, 1) moves the y-intercept down from 0 to −1∕3.

The general formulas for the slope and y-intercept of a least squares line are in Project 2 (avail-

able online). Many calculators have built-in formulas for b and m, as well as for the correlation

coefficient, which measures how well the data points fit the least squares line.

How Do We Know Whether a Function Has a Global Maximum or Minimum?

Under what circumstances does a function of two variables have a global maximum or minimum?

The next example shows that a function may have both a global maximum and a global minimum

on a region, or just one, or neither.

Example 4 Investigate the global maxima and minima of the following functions:

(a) ℎ(x, y) = 1 + x2 + y2 on the disk x2 + y2 ≤ 1.

(b) f (x, y) = x2 − 2x + y2 − 4y + 5 on the xy-plane.

(c) g(x, y) = x2 − y2 on the xy-plane.

Solution (a) The graph of ℎ(x, y) = 1 + x2 + y2 is a bowl-shaped paraboloid with a global minimum of 1 at

(0, 0), and a global maximum of 2 on the edge of the region, x2 + y2 = 1.

(b) The graph of f in Figure 15.5 on page 807 shows that f has a global minimum at the point (1, 2)

and no global maximum (because the value of f increases without bound as x → ∞, y → ∞).

(c) The graph of g in Figure 15.7 on page 808 shows that g has no global maximum because

g(x, y) → ∞ as x → ∞ if y is constant. Similarly, g has no global minimum because g(x, y) →

−∞ as y → ∞ if x is constant.

Sometimes a function is guaranteed to have a global maximum and minimum. For example, a

continuous function, ℎ(x), of one variable has a global maximum and minimum on every closed

interval a ≤ x ≤ b. On a non-closed interval, such as a ≤ x < b or a < x < b, or on an unbounded

interval, such as a < x < ∞, ℎ may not have a maximum or minimum value.
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What is the situation for functions of two variables? As it turns out, a similar result is true for

continuous functions defined on regions which are closed and bounded, analogous to the closed and

bounded interval a ≤ x ≤ b. In everyday language we say

• A closed region is one which contains its boundary;

• A bounded region is one which does not stretch to infinity in any direction.

More precise definitions follow. SupposeR is a region in 2-space. A point (x0, y0) is a boundary

point of R if, for every r > 0, the circular disk with center (x0, y0) and radius r contains both

points which are in R and points which are not in R. See Figure 15.24. A point (x0, y0) can be a

boundary point of the region R without belonging to R. The collection of all the boundary points is

the boundary of R. The region R is closed if it contains its boundary.

A region R in 2-space is bounded if the distance between every point (x, y) in R and the origin

is less than some constant K . Closed and bounded regions in 3-space are defined in the same way.

Example 5 (a) Consider the square −1 ≤ x ≤ 1, −1 ≤ y ≤ 1. Every point in this region is within distance
√

2

of the origin, so the region is bounded. The region’s boundary consists of four line segments, all

of which belong to the region, so the region is closed.

(b) Consider the first quadrant x ≥ 0, y ≥ 0. The boundary of this region consists of the origin, the

positive x-axis, and the positive y-axis. All of these belong to the region, so the region is closed.

However, the region is not bounded, since there is no upper bound on distances between points

in the region and the origin.

(c) The disk x2 + y2 < 1 is bounded, because each point in the region is within distance 1 of the

origin. However, the disk is not closed, because (1, 0) is a boundary point of the region but not

included in the region.

(d) The half-plane y > 0 is neither closed nor bounded. The origin is a boundary point of this region

but is not included in the region.

The reason that closed and bounded regions are useful is the following theorem, which is also

true for functions of three or more variables:5

Theorem 15.1: Extreme Value Theorem for Multivariable Functions

If f is a continuous function on a closed and bounded regionR, then f has a global maximum

at some point (x0, y0) in R and a global minimum at some point (x1, y1) in R.

If f is not continuous or the region R is not closed and bounded, there is no guarantee that f

achieves a global maximum or global minimum on R. In Example 4, the function g is continuous

but does not achieve a global maximum or minimum in 2-space, a region which is closed but not

bounded. Example 6 illustrates what can go wrong when the region is bounded but not closed.

R

(x0, y0)

Figure 15.24: Boundary point (x0, y0) of R

5For a proof, see Walter Rudin, Principles of Mathematical Analysis, 3rd ed. (New York: McGraw-Hill, 1976), p. 89.
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Example 6 Does the function f have a global maximum or minimum on the regionR given by 0 < x2 + y2 ≤ 1?

f (x, y) =
1

x2 + y2

Solution The region R is bounded, but it is not closed since it does not contain the boundary point (0, 0).

We see from the graph of z = f (x, y) in Figure 15.25 that f has a global minimum on the circle

x2 + y2 = 1. However, f (x, y) → ∞ as (x, y) → (0, 0), so f has no global maximum.

x y

z

Figure 15.25: Graph showing f (x, y) =
1

x2+y2
has no global maximum on 0 < x2 + y2 ≤ 1

Exercises and Problems for Section 15.2

EXERCISES

1. By looking at the weather map in Figure 12.1 on page 652, find the maximum and minimum daily high temperatures in

the states of Mississippi, Alabama, Pennsylvania, New York, California, Arizona, and Massachusetts.

In Exercises 2–4, estimate the position and approximate value of the global maxima and minima on the closed region shown.

2.

7654321
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5

4

3

2

1

x

y
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−
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In Problems 5–9, without calculus, find the highest and low-

est points (if they exist) on the surface. The z-axis is upward.

5. x2 + y2 + (z − 1)2 = 49

6. (x + 1)2 + (y − 3)2 + 2z2 = 162

7. z = (x − 5)2 + (y − �)2 + 2�

8. z = 44 − 2x2 − 2y2

9. x = 4 + y2 + 2z2

10. The surface z = 27 − x2 − y2 cuts the plane z = 2 in

a curve. Without calculus, find the point on this curve

with the greatest y-coordinate.

In Exercises 11–13, find the global maximum and minimum

of the function on −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, and say whether

it occurs on the boundary of the square. [Hint: Use graphs.]

11. z = x2 + y2 12. z = −x2−y2 13. z = x2 − y2

In Problems 14–21, does the function have a global maxi-

mum? A global minimum?

14. f (x, y) = x2 − 2y2 15. g(x, y) = x2y2

16. ℎ(x, y) = x3 + y3 17. f (x, y) = −2x2 −7y2

18. f (x, y) = ex
2+y2 19. ℎ(x, y) = 1 − y2exy

20. f (x, y) = x2∕2 + 3y3 + 9y2 − 3x

21. g(x, y) = x2 − cos(x + y)
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PROBLEMS

22. (a) Compute and classify the critical points of

f (x, y) = 2x2 − 3xy + 8y2 + x − y.

(b) By completing the square, plot the contour diagram

of f and show that the local extremum found in

part (a) is a global one.

In Problems 23–26, find and classify the critical points of

the function. Then decide whether the function has global

extrema on the xy-plane, and find them if they exist.

23. f (x, y) = y2 + 2xy − y − x3 − x + 2

24. f (x, y) = 2x2 − 4xy + 5y2 + 9y + 2

25. f (x, y) = −x4 + 2xy2 − 2y3

26. f (x, y) = xe−x
2−y2

27. A closed rectangular box has volume 32 cm3. What are

the lengths of the edges giving the minimum surface

area?

28. A closed rectangular box with faces parallel to the co-

ordinate planes has one bottom corner at the origin and

the opposite top corner in the first octant on the plane

3x+2y+ z = 1. What is the maximum volume of such

a box?

29. An international airline has a regulation that each pas-

senger can carry a suitcase having the sum of its width,

length and height less than or equal to 135 cm. Find the

dimensions of the suitcase of maximum volume that a

passenger may carry under this regulation.

30. Design a rectangular milk carton box of widthw, length

l, and height ℎ which holds 512 cm3 of milk. The sides

of the box cost 1 cent∕cm2 and the top and bottom cost

2 cent∕cm2. Find the dimensions of the box that mini-

mize the total cost of materials used.

31. Find the point on the plane 3x+2y+z = 1 that is closest

to the origin by minimizing the square of the distance.

32. What is the shortest distance from the surface xy+3x+

z2 = 9 to the origin?

33. For constants a, b, and c, let f (x, y) = ax+ by+ c be a

linear function, and let R be a region in the xy-plane.

(a) If R is any disk, show that the maximum and min-

imum values of f on R occur on the boundary of

the disk.

(b) If R is any rectangle, show that the maximum and

minimum values of f on R occur at the corners of

the rectangle. They may occur at other points of the

rectangle as well.

(c) Use a graph of the plane z = f (x, y) to explain

your answers in parts (a) and (b).

34. Two products are manufactured in quantities q1 and q2
and sold at prices of p1 and p2, respectively. The cost of

producing them is given by

C = 2q2
1
+ 2q2

2
+ 10.

(a) Find the maximum profit that can be made, assum-

ing the prices are fixed.

(b) Find the rate of change of that maximum profit as

p1 increases.

35. A company operates two plants which manufacture the

same item and whose total cost functions are

C1 = 8.5 + 0.03q2
1

and C2 = 5.2 + 0.04q2
2
,

where q1 and q2 are the quantities produced by each

plant. The company is a monopoly. The total quantity

demanded, q = q1 + q2, is related to the price, p, by

p = 60 − 0.04q.

How much should each plant produce in order to max-

imize the company’s profit?6

36. The quantity of a product demanded by consumers is

a function of its price. The quantity of one product de-

manded may also depend on the price of other prod-

ucts. For example, if the only chocolate shop in town (a

monopoly) sells milk and dark chocolates, the price it

sets for each affects the demand of the other. The quan-

tities demanded, q1 and q2, of two products depend on

their prices, p1 and p2, as follows:

q1 = 150 − 2p1 − p2

q2 = 200 − p1 − 3p2.

(a) What does the fact that the coefficients of p1 and

p2 are negative tell you? Give an example of two

products that might be related this way.

(b) If one manufacturer sells both products, how

should the prices be set to generate the maximum

possible revenue? What is that maximum possible

revenue?

37. A company manufactures a product which requires cap-

ital and labor to produce. The quantity,Q, of the product

manufactured is given by the Cobb-Douglas function

Q = AKaLb,

where K is the quantity of capital; L is the quantity of

labor used; and A, a, and b are positive constants with

0 < a < 1 and 0 < b < 1. One unit of capital costs $k

and one unit of labor costs $l. The price of the product

is fixed at $p per unit.

(a) If a + b < 1, how much capital and labor should

the company use to maximize its profit?

(b) Is there a maximum profit in the case a + b = 1?

What about a + b ≥ 1? Explain.

6Adapted from M. Rosser and P. Lis, Basic Mathematics for Economists, 3rd ed. (New York: Routledge, 2016), p. 354.
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38. Let f (x, y) = x2(y + 1)3 + y2. Show that f has only

one critical point, namely (0, 0), and that point is a lo-

cal minimum but not a global minimum. Contrast this

with the case of a function with a single local minimum

in one-variable calculus.

39. Find the parabola of the form y = ax2 + b which best

fits the points (1, 0), (2, 2), (3, 4) by minimizing the sum

of squares, S, given by

S = (a + b)2 + (4a + b − 2)2 + (9a + b − 4)2.

40. For the data points (11, 16), (12, 17), (13, 17), and

(16, 20), find an expression for f (b, m), the sum of

squared errors that are minimized on the least squares

line y = b + mx. (You need not do the minimization.)

41. Find the least squares line for the data points

(0, 4), (1, 3), (2, 1).

42. Let f (x, y) = 80∕(xy)+20y+10x+10xy in the region

R where x, y > 0.

(a) Explain why f (x, y) > f (2, 1) at every point in R

where

(i) x > 20 (ii) y > 20

(iii) x < 0.01 and y ≤ 20

(iv) y < 0.01 and x ≤ 20

(b) Explain why f must have a global minimum at a

critical point in R.

(c) Explain why f must have a global minimum in R

at the point (2, 1).

43. Let f (x, y) = 2∕x+3∕y+4x+5y in the region Rwhere

x, y > 0.

(a) Explain why f must have a global minimum at

some point in R.

(b) Find the global minimum.

44. (a) The energy, E, required to compress a gas from a

fixed initial pressure P0 to a fixed final pressure PF

through an intermediate pressure p is7

E =

(

p

P0

)2

+

(

PF

p

)2

− 1.

How should p be chosen to minimize the energy?

(b) Now suppose the compression takes place in two

stages with two intermediate pressures, p1 and p2.

What choices of p1 and p2 minimize the energy if

E =

(

p1

P0

)2

+

(

p2

p1

)2

+

(

PF

p2

)2

− 2?

45. The Dorfman-Steiner rule shows how a company which

has a monopoly should set the price, p, of its product

and how much advertising, a, it should buy. The price

of advertising is pa per unit. The quantity, q, of the prod-

uct sold is given by q = Kp−Ea� , where K > 0, E > 1,

and 0 < � < 1 are constants. The cost to the company

to make each item is c.

(a) How does the quantity sold, q, change if the price,

p, increases? If the quantity of advertising, a, in-

creases?

(b) Show that the partial derivatives can be written in

the form )q∕)p = −Eq∕p and )q∕)a = �q∕a.

(c) Explain why profit, �, is given by � = pq−cq−paa.

(d) If the company wants to maximize profit, what

must be true of the partial derivatives, )�∕)p and

)�∕)a?

(e) Find )�∕)p and )�∕)a.

(f) Use your answers to parts (d) and (e) to show that

at maximum profit,

p − c

p
=

1

E
and

p − c

pa
=

a

�q
.

(g) By dividing your answers in part (f), show that at

maximum profit,

paa

pq
=

�

E
.

This is the Dorfman-Steiner rule, that the ratio of

the advertising budget to revenue does not depend

on the price of advertising.

Strengthen Your Understanding

In Problems 46–48, explain what is wrong with the state-

ment.

46. A function having no critical points in a region R can-

not have a global maximum in the region.

47. No continuous function has a global minimum on an

unbounded region R.

48. If f (x, y) has a local maximum value of 1 at the origin,

then the global maximum is 1.

In Problems 49–50, give an example of:

49. A continuous function f (x, y) that has no global maxi-

mum and no global minimum on the xy-plane.

50. A function f (x, y) and a region R such that the maxi-

mum value of f on R is on the boundary of R.

Are the statements in Problems 51–59 true or false? Give

reasons for your answer.

51. If P0 is a global maximum of f , where f is defined on

all of 2-space, then P0 is also a local maximum of f .

52. Every function has a global maximum.

7Adapted from Aris Rutherford, Discrete Dynamic Programming, p. 35 (New York: Blaisdell, 1964).
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53. The region consisting of all points (x, y) satisfying x2 +

y2 < 1 is bounded.

54. The region consisting of all points (x, y) satisfying x2 +

y2 < 1 is closed.

55. The function f (x, y) = x2 + y2 has a global minimum

on the region x2 + y2 < 1.

56. The function f (x, y) = x2 + y2 has a global maximum

on the region x2 + y2 < 1.

57. If P and Q are two distinct points in 2-space, and f has

a global maximum at P , then f cannot have a global

maximum at Q.

58. The function f (x, y) = sin(1 + exy) must have a global

minimum in the square region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

59. If P0 is a global minimum of f on a closed and bounded

region, then P0 need not be a critical point of f .

15.3 CONSTRAINED OPTIMIZATION: LAGRANGE MULTIPLIERS

Many, perhaps most, real optimization problems are constrained by external circumstances. For ex-

ample, a city wanting to build a public transportation system that will serve the greatest possible

number of people has only a limited number of tax dollars it can spend on the project. In this sec-

tion, we see how to find an optimum value under such constraints.

In Section 15.2, we saw how to optimize a function f (x, y) on a region R. If the region R is the

entire xy-plane, we have unconstrained optimization; if the region R is not the entire xy-plane, that

is, if x or y is restricted in some way, then we have constrained optimization.

Graphical Approach: Maximizing Production Subject to a Budget Constraint

Suppose we want to maximize production under a budget constraint. Suppose production, f , is a

function of two variables, x and y, which are quantities of two raw materials, and that

f (x, y) = x2∕3y1∕3.

If x and y are purchased at prices of p1 and p2 thousands of dollars per unit, what is the maximum

production f that can be obtained with a budget of c thousand dollars?

To maximize f without regard to the budget, we simply increase x and y. However, the budget

constraint prevents us from increasing x and y beyond a certain point. Exactly how does the budget

constrain us? With prices of p1 and p2, the amount spent on x is p1x and the amount spent on y is

p2y, so we must have

g(x, y) = p1x + p2y ≤ c,

where g(x, y) is the total cost of the raw materials and c is the budget in thousands of dollars.

Let’s look at the case when p1 = p2 = 1 and c = 3.78. Then

x + y ≤ 3.78.

Figure 15.26 shows some contours of f and the budget constraint represented by the line x+y =

3.78. Any point on or below the line represents a pair of values of x and y that we can afford. A point

on the line completely exhausts the budget, while a point below the line represents values of x and

y which can be bought without using up the budget. Any point above the line represents a pair of

values that we cannot afford.

To maximize f , we find the point which lies on the level curve with the largest possible value of

f and which lies within the budget. The point must lie on the budget constraint because production

is maximized when we spend all the available money. Unless we are at a point where the budget

constraint is tangent to a contour of f , we can increase f by moving in some direction along the line

representing the budget constraint in Figure 15.26. For example, if we are on the line to the left of

the point of tangency, moving right on the constraint will increase f ; if we are on the line to the right

of the point of tangency, moving left will increase f . Thus, the maximum value of f on the budget

constraint occurs at the point where the budget constraint is tangent to the contour f = 2.



826 Chapter 15 OPTIMIZATION: LOCAL AND GLOBAL EXTREMA

x

y
Level curves of production

✛ f = 1
✛ f = 2

✛ f = 3

Budget constraint
x + y = 3.78

✲
✠

Maximum production

P

Figure 15.26: Optimal point, P , where budget constraint

is tangent to a level of production function

Analytical Solution: Lagrange Multipliers

Figure 15.26 suggests that maximum production is achieved at the point where the budget constraint

is tangent to a level curve of the production function. The method of Lagrange multipliers uses this

fact in algebraic form. Figure 15.27 shows that at the optimum point, P , the gradient of f and the

normal to the budget line g(x, y) = x + y = 3.78 are parallel. Thus, at P , gradf and grad g are

parallel, so for some scalar �, called the Lagrange multiplier,

gradf = � gradg.

Calculating the gradients, we find that
(

2

3
x−1∕3y1∕3

)

i⃗ +
(

1

3
x2∕3y−2∕3

)

j⃗ = �

(

i⃗ + j⃗

)

.

Equating components gives

2

3
x−1∕3y1∕3 = � and

1

3
x2∕3y−2∕3 = �.

Eliminating � gives

2

3
x−1∕3y1∕3 =

1

3
x2∕3y−2∕3, which leads to 2y = x.

Since the constraint x + y = 3.78 must be satisfied, we have x = 2.52 and y = 1.26. Then

f (2.52, 1.26) = (2.52)2∕3(1.26)1∕3 ≈ 2.

As before, we see that the maximum value of f is approximately 2. Thus, to maximize production

on a budget of $3780, we should use 2.52 units of one raw material and 1.26 units of the other.

grad f = � grad g

✒
✒

x

y
Level curves of production

✛ f = 1
✛ f = 2

✛ f = 3

Budget constraint
g(x, y) = 3.78

✲

P

Figure 15.27: At the point, P , of maximum production,

the vectors grad f and grad g are parallel
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Lagrange Multipliers in General

Suppose we want to optimize an objective function f (x, y) subject to a constraint g(x, y) = c. We

look for extrema among the points which satisfy the constraint. We make the following definition.

Suppose P0 is a point satisfying the constraint g(x, y) = c.

• f has a local maximum at P0 subject to the constraint if f (P0) ≥ f (P ) for all points

P near P0 satisfying the constraint.

• f has a global maximum at P0 subject to the constraint if f (P0) ≥ f (P ) for all points

P satisfying the constraint.

Local and global minima are defined similarly.

As we saw in the production example, constrained extrema occur at points of tangency of con-

tours of f and g; they can also occur at endpoints of constraints. At a point of tangency, gradf is

perpendicular to the constraint and so parallel to grad g. At interior points on the constraint where

gradf is not perpendicular to the constraint, the value of f can be increased or decreased by moving

along the constraint. Therefore constrained extrema occur only at points where gradf and grad g

are parallel or at endpoints of the constraint. (See Figure 15.28.) At points where the gradients are

parallel, provided grad g ≠ 0⃗ , there is a constant � such that gradf = � gradg.

Optimizing f Subject to the Constraint g = c:

If a smooth function, f , has a maximum or minimum subject to a smooth constraint g = c at

a point P0, then either P0 satisfies the equations

gradf = � gradg and g = c,

or P0 is an endpoint of the constraint, or grad g(P0) = 0⃗ . To investigate whether P0 is a global

maximum or minimum, compare values of f at the points satisfying these three conditions.

The number � is called the Lagrange multiplier.

If the set of points satisfying the constraint is closed and bounded, such as a circle or line seg-

ment, then there must be a global maximum and minimum of f subject to the constraint. If the

constraint is not closed and bounded, such as a line or hyperbola, then there may or may not be a

global maximum and minimum.

✗

✎

P0

✗✗

grad f

grad g

grad f

grad g f = 1

f = 2

f = 3

f = 4

g = c

Figure 15.28: Maximum and minimum values

of f (x, y) on g(x, y) = c are at points where

grad f is parallel to grad g
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Example 1 Find the maximum and minimum values of x + y on the circle x2 + y2 = 4.

Solution The objective function is

f (x, y) = x + y,

and the constraint is

g(x, y) = x2 + y2 = 4.

Since gradf = fxi⃗ + fyj⃗ = i⃗ + j⃗ and grad g = gxi⃗ + gyj⃗ = 2xi⃗ + 2yj⃗ , the condition gradf =

� grad g gives

1 = 2�x and 1 = 2�y,

so

x = y.

We also know that

x2 + y2 = 4,

giving x = y =
√

2 or x = y = −
√

2. The constraint has no endpoints (it’s a circle) and grad g ≠ 0⃗

on the circle, so we compare values of f at (
√

2,
√

2) and (−
√

2,−
√

2). Since f (x, y) = x + y, the

maximum value of f is f (
√

2,
√

2) = 2
√

2; the minimum value is f (−
√

2,−
√

2) = −2
√

2. (See

Figure 15.29.)

f = 2
√

2
f = 2

f = 1

f = 0

f = −1

f = −2

f = −2
√

2

Maximum f

(
√

2,
√

2)

(−
√

2,−
√

2)
Minimum f

x

yx2 + y2 = 4

❘

Figure 15.29: Maximum and minimum values of f (x, y) = x + y on the circle

x2 + y2 = 4 are at points where contours of f are tangent to the circle

How to Distinguish Maxima from Minima

There is a second-derivative test8 for classifying the critical points of constrained optimization prob-

lems, but it is more complicated than the test in Section 15.1. However, a graph of the constraint and

some contours usually shows which points are maxima, which points are minima, and which are

neither.

Optimization with Inequality Constraints

The production problem that we looked at first was to maximize production f (x, y) subject to a

budget constraint

g(x, y) = p1x + p2y ≤ c.

8See J. E. Marsden and A. J. Tromba, Vector Calculus, 6th ed. (New York: W.H. Freeman, 2011), p. 220..
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Since the inputs are nonnegative, x ≥ 0 and y ≥ 0, we have three inequality constraints, which

restrict (x, y) to a region of the plane rather than to a curve in the plane. In principle, we should first

check to see whether or not f (x, y) has any critical points in the interior:

p1x + p2y < c, x > 0 y > 0.

However, in the case of a budget constraint, we can see that the maximum of f must occur when the

budget is exhausted, so we look for the maximum value of f on the boundary line:

p1x + p2y = c, x ≥ 0 y ≥ 0.

Strategy for Optimizing f (x, y) Subject to the Constraint g(x, y) ≤ c

• Find all points in the region g(x, y) < c where gradf is zero or undefined.

• Use Lagrange multipliers to find the local extrema of f on the boundary g(x, y) = c.

• Evaluate f at the points found in the previous two steps and compare the values.

From Section 15.2 we know that if f is continuous on a closed and bounded region, R, then f

is guaranteed to attain its global maximum and minimum values on R.

Example 2 Find the maximum and minimum values of f (x, y) = (x − 1)2 + (y − 2)2 subject to the constraint

x2 + y2 ≤ 45.

Solution First, we look for all critical points of f in the interior of the region. Setting

fx(x, y) = 2(x − 1) = 0

fy(x, y) = 2(y − 2) = 0,

we find f has exactly one critical point at x = 1, y = 2. Since 12 + 22 < 45, that critical point is in

the interior of the region.

Next, we find the local extrema of f on the boundary curve x2 + y2 = 45. To do this, we use

Lagrange multipliers with constraint g(x, y) = x2 + y2 = 45. Setting gradf = � gradg, we get

2(x − 1) = � ⋅ 2x,

2(y − 2) = � ⋅ 2y.

We can’t have x = 0 since the first equation would become −2 = 0. Similarly, y ≠ 0. So we can

solve each equation for � by dividing by x and y. Setting the expressions for � equal gives

x − 1

x
=

y − 2

y
,

so

y = 2x.

Combining this with the constraint x2 + y2 = 45, we get

5x2 = 45,

so

x = ±3.

Since y = 2x, we have possible local extrema at x = 3, y = 6 and x = −3, y = −6.
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We conclude that the only candidates for the maximum and minimum values of f in the region

occur at (1, 2), (3, 6), and (−3,−6). Evaluating f at these three points, we find

f (1, 2) = 0, f (3, 6) = 20, f (−3,−6) = 80.

Therefore, the minimum value of f is 0 at (1, 2) and the maximum value is 80 at (−3,−6).

The Meaning of �

In the uses of Lagrange multipliers so far, we never found (or needed) the value of �. However, �

does have a practical interpretation. In the production example, we wanted to maximize

f (x, y) = x2∕3y1∕3

subject to the constraint

g(x, y) = x + y = 3.78.

We solved the equations

2

3
x−1∕3y1∕3 = �,

1

3
x2∕3y−2∕3 = �,

x + y = 3.78,

to get x = 2.52, y = 1.26 and f (2.52, 1.26) ≈ 2. Continuing to find � gives us

� ≈ 0.53.

Now we do another, apparently unrelated, calculation. Suppose our budget is increased by one, from

3.78 to 4.78, giving a new budget constraint of x + y = 4.78. Then the corresponding solution is at

x = 3.19 and y = 1.59 and the new maximum value (instead of f = 2) is

f = (3.19)2∕3(1.59)1∕3 ≈ 2.53.

Notice that the amount by which f has increased is 0.53, the value of �. Thus, in this example, the

value of � represents the extra production achieved by increasing the budget by one—in other words,

the extra “bang” you get for an extra “buck” of budget. In fact, this is true in general:

• The value of � is approximately the increase in the optimum value of f when the budget is

increased by 1 unit.

More precisely:

• The value of � represents the rate of change of the optimum value of f as the budget increases.

An Expression for �

To interpret �, we look at how the optimum value of the objective function f changes as the value

c of the constraint function g is varied. In general, the optimum point (x0, y0) depends on the con-

straint value c. So, provided x0 and y0 are differentiable functions of c, we can use the chain rule to

differentiate the optimum value f (x0(c), y0(c)) with respect to c:

df

dc
=

)f

)x

dx0

dc
+

)f

)y

dy0

dc
.

At the optimum point (x0, y0), we have fx = �gx and fy = �gy, and therefore

df

dc
= �

(

)g

)x

dx0

dc
+

)g

)y

dy0

dc

)

= �
dg

dc
.

But, as g(x0(c), y0(c)) = c, we see that dg∕dc = 1, so df∕dc = �. Thus, we have the following

interpretation of the Lagrange multiplier �:
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The value of � is the rate of change of the optimum value of f as c increases (where g(x, y) =

c). If the optimum value of f is written as f (x0(c), y0(c)), then

d

dc
f (x0(c), y0(c)) = �.

Example 3 The quantity of goods produced according to the function f (x, y) = x2∕3y1∕3 is maximized subject

to the budget constraint x + y ≤ 3.78. The budget is increased to allow for a small increase in

production. What is the price of the product if the sale of the additional goods covers the budget

increase?

Solution We know that � = 0.53, which tells us that df∕dc = 0.53. The constraint corresponds to a budget of

$3.78 thousand. Therefore increasing the budget by $1000 increases production by about 0.53 units.

In order to make the increase in budget profitable, the extra goods produced must sell for more than

$1000. Thus, if p is the price of each unit of the good, then 0.53p is the revenue from the extra 0.53

units sold. Thus, we need 0.53p ≥ 1000 so p ≥ 1000∕0.53 = $1890.

The Lagrangian Function
Constrained optimization problems are frequently solved using a Lagrangian function, . For exam-

ple, to optimize f (x, y) subject to the constraint g(x, y) = c, we use the Lagrangian function

(x, y, �) = f (x, y) − �(g(x, y) − c).

To see how the function  is used, compute the partial derivatives of :

)

)x
=

)f

)x
− �

)g

)x
,

)

)y
=

)f

)y
− �

)g

)y
,

)

)�
= −(g(x, y) − c).

Notice that if (x0, y0) is an extreme point of f (x, y) subject to the constraint g(x, y) = c and �0 is

the corresponding Lagrange multiplier, then at the point (x0, y0, �0) we have

)

)x
= 0 and

)

)y
= 0 and

)

)�
= 0.

In other words, (x0, y0, �0) is a critical point for the unconstrained Lagrangian function, (x, y, �).

Thus, the Lagrangian converts a constrained optimization problem to an unconstrained problem.

Example 4 A company has a production function with three inputs x, y, and z given by

f (x, y, z) = 50x2∕5y1∕5z1∕5.

The total budget is $24,000 and the company can buy x, y, and z at $80, $12, and $10 per unit,

respectively. What combination of inputs will maximize production?9

Solution We need to maximize the objective function

f (x, y, z) = 50x2∕5y1∕5z1∕5,

subject to the constraint

g(x, y, z) = 80x + 12y+ 10z = 24,000.

9Adapted from M. Rosser and P. Lis, Basic Mathematics for Economists, 3rd ed. (New York: Routledge, 2016), p. 360.
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The method for functions of two variables works for functions of three variables, so we construct

the Lagrangian function

(x, y, z, �) = 50x2∕5y1∕5z1∕5 − �(80x + 12y + 10z − 24,000),

and solve the system of equations we get from grad = 0⃗ :

)

)x
= 20x−3∕5y1∕5z1∕5 − 80� = 0,

)

)y
= 10x2∕5y−4∕5z1∕5 − 12� = 0,

)

)z
= 10x2∕5y1∕5z−4∕5 − 10� = 0,

)

)�
= −(80x + 12y + 10z − 24,000) = 0.

Simplifying this system gives

� =
1

4
x−3∕5y1∕5z1∕5,

� =
5

6
x2∕5y−4∕5z1∕5,

� = x2∕5y1∕5z−4∕5,

80x + 12y + 10z = 24,000.

Eliminating z from the first two equations gives x = 0.3y. Eliminating x from the second and third

equations gives z = 1.2y. Substituting for x and z into 80x + 12y+ 10z = 24,000 gives

80(0.3y) + 12y+ 10(1.2y) = 24,000,

so y = 500. Then x = 150 and z = 600, and f (150, 500, 600) = 4,622 units.

The graph of the constraint, 80x+12y+10z = 24,000, is a plane. Since the inputs x, y, z must

be nonnegative, the graph is a triangle in the first octant, with edges on the coordinate planes. On

the boundary of the triangle, one (or more) of the variables x, y, z is zero, so the function f is zero.

Thus production is maximized within the budget using x = 150, y = 500, and z = 600.

Exercises and Problems for Section 15.3 Online Resource: Additional Problems for Section 15.3
EXERCISES

In Exercises 1–18, use Lagrange multipliers to find the max-

imum and minimum values of f subject to the given con-

straint, if such values exist.

1. f (x, y) = x + y, x2 + y2 = 1

2. f (x, y) = x + 3y + 2, x2 + y2 = 10

3. f (x, y) = (x − 1)2 + (y + 2)2, x2 + y2 = 5

4. f (x, y) = x3 + y, 3x2 + y2 = 4

5. f (x, y) = 3x − 2y, x2 + 2y2 = 44

6. f (x, y) = xy, 4x2 + y2 = 8

7. f (x, y) = 2xy, 5x + 4y = 100

8. f (x1, x2) = x1
2 + x2

2, x1 + x2 = 1

9. f (x, y) = x2 + y, x2 − y2 = 1

10. f (x, y, z) = x + 3y + 5z, x2 + y2 + z2 = 1

11. f (x, y, z) = x2 − y2 − 2z, x2 + y2 = z

12. f (x, y, z) = xyz, x2 + y2 + 4z2 = 12

13. f (x, y) = x2 + 2y2, x2 + y2 ≤ 4

14. f (x, y) = x + 3y, x2 + y2 ≤ 2

15. f (x, y) = xy, x2 + 2y2 ≤ 1

16. f (x, y) = x3 + y, x + y ≥ 1

17. f (x, y) = (x + 3)2 + (y − 3)2, x2 + y2 ≤ 2

18. f (x, y) = x2y + 3y2 − y, x2 + y2 ≤ 10
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19. For each point marked in Figure 15.30, decide whether:

(a) The point is a local minimum, maximum, or nei-

ther for the function f constrained by the loop.

(b) The point is a global minimum, maximum, or nei-

ther subject to the constraint.

Q

P

S

R
❘

Constraint

f = 10

f = 20

f = 30 f = 40
f = 50

f = 60

Figure 15.30

In Exercises 20–23, a Cobb-Douglas production function

P (K,L) and budget B(K,L) are given, where K represents

capital and L represents labor. Use Lagrange multipliers to

find the values of K and L that maximize production given

a budget constraint or minimize budget given a production

constraint. Then give the value for � and its meaning.

20. Maximize production: P = K1∕4L3∕4

Budget constraint: B = 2K + L = 40

21. Maximize production: P = K2∕3L1∕3

Budget constraint: B = 10K + 4L = 60

22. Maximize production: P = K2∕5L3∕5

Budget constraint: B = 4K + 5L = 100

23. Minimize budget: B = 4K + L

Production constraint: P = K1∕2L1∕2 = 200

PROBLEMS

24. Find the maximum value of f (x, y) = x + y − (x − y)2

on the triangular region x ≥ 0, y ≥ 0, x + y ≤ 1.

25. For f (x, y) = x2 + 6xy, find the global maximum

and minimum on the closed region in the first quadrant

bounded by the line x + y = 4 and the curve xy = 3.

26. (a) Draw contours of f (x, y) = 2x + y for

z = −7,−5,−3,−1, 1, 3, 5, 7.

(b) On the same axes, graph the constraint x2+y2 = 5.

(c) Use the graph to approximate the points at which

f has a maximum or a minimum value subject to

the constraint x2 + y2 = 5.

(d) Use Lagrange multipliers to find the maximum and

minimum values of f (x, y) = 2x + y subject to

x2 + y2 = 5.

27. Let f (x, y) = x�y1−� for 0 < � < 1. Find the value

of � such that the maximum value of f on the line

2x + 3y = 6 occurs at (1.5, 1).

28. Figure 15.31 shows contours of f . Does f have a max-

imum value subject to the constraint g(x, y) = c for

x ≥ 0, y ≥ 0? If so, approximately where is it and what

is its value? Does f have a minimum value subject to

the constraint? If so, approximately where and what?

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

x

y

✠

g(x, y) = c

☛

f = 700

✢

f = 600

✠

f = 500

❂

f = 400

✙
f = 300

✾ f = 200

✠

f = 100

Figure 15.31

29. Each person tries to balance his or her time between

leisure and work. The tradeoff is that as you work less

your income falls. Therefore each person has indiffer-

ence curves which connect the number of hours of

leisure, l, and income, s. If, for example, you are in-

different between 0 hours of leisure and an income of

$1125 a week on the one hand, and 10 hours of leisure

and an income of $750 a week on the other hand, then

the points l = 0, s = 1125, and l = 10, s = 750 both

lie on the same indifference curve. Table 15.3 gives in-

formation on three indifference curves, I, II, and III.

Table 15.3

Weekly income Weekly leisure hours

I II III I II III

1125 1250 1375 0 20 40

750 875 1000 10 30 50

500 625 750 20 40 60

375 500 625 30 50 70

250 375 500 50 70 90

(a) Graph the three indifference curves.

(b) You have 100 hours a week available for work and

leisure combined, and you earn $10/hour. Write an

equation in terms of l and s which represents this

constraint.

(c) On the same axes, graph this constraint.

(d) Estimate from the graph what combination of

leisure hours and income you would choose under

these circumstances. Give the corresponding num-

ber of hours per week you would work.
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30. Figure 15.32 shows ∇f for a function f (x, y) and two

curves g(x, y) = 1 and g(x, y) = 2. Mark the following:

(a) The point(s) A where f has a local maximum.

(b) The point(s) B where f has a saddle point.

(c) The point C where f has a maximum on g = 1.

(d) The point D where f has a minimum on g = 1.

(e) If you used Lagrange multipliers to find C , what

would the sign of � be? Why?

✲g = 2

✲g = 1

Figure 15.32

31. The point P is a maximum or minimum of the function

f subject to the constraint g(x, y) = x + y = c, with

x, y ≥ 0. For the graphs (a) and (b), does P give a max-

imum or a minimum of f? What is the sign of �? If P

gives a maximum, where does the minimum of f oc-

cur? If P gives a minimum, where does the maximum

of f occur?

x

y

✛ f = 3
✛ f = 2
✛ f = 1

g(x, y) = c✛

P

(a)

x

y

✛ f = 1
✛ f = 2
✛ f = 3

g(x, y) = c✛

P

(b)

32. Figure 15.33 shows the optimal point (marked with a

dot) in three optimization problems with the same con-

straint. Arrange the corresponding values of � in in-

creasing order. (Assume � is positive.)

f = 3

f = 2

f = 1
x

y(I)

❄

f = 3

✠

f = 2

✛ f = 1
x

y(II)

❄

f = 3

✠

f = 2

✛ f = 1
x

y(III)

Figure 15.33

33. If the right side of the constraint in Exercise 5 is

changed by the small amount Δc, by approximately how

much do the maximum and minimum values change?

34. If the right side of the constraint in Exercise 6 is

changed by the small amount Δc, by approximately how

much do the maximum and minimum values change?

35. The function P (x, y) gives the number of units pro-

duced and C(x, y) gives the cost of production.

(a) A company wishes to maximize production at a

fixed cost of $50,000. What is the objective func-

tion f? What is the constraint equation? What is

the meaning of � in this situation?

(b) A company wishes to minimize costs at a fixed pro-

duction level of 2000 units. What is the objective

function f? What is the constraint equation? What

is the meaning of � in this situation?

36. Design a closed cylindrical container which holds

100 cm3 and has the minimal possible surface area.

What should its dimensions be?

37. A company manufactures x units of one item and y units

of another. The total cost in dollars, C , of producing

these two items is approximated by the function

C = 5x2 + 2xy + 3y2 + 800.

(a) If the production quota for the total number of

items (both types combined) is 39, find the min-

imum production cost.

(b) Estimate the additional production cost or savings

if the production quota is raised to 40 or lowered

to 38.

38. An international organization must decide how to spend

the $2,000,000 they have been allotted for famine relief

in a remote area. They expect to divide the money be-

tween buying rice at $38.5/sack and beans at $35/sack.

The number, P , of people who would be fed if they buy

x sacks of rice and y sacks of beans is given by

P = 1.1x + y −
xy

108
.

What is the maximum number of people that can be fed,

and how should the organization allocate its money?

39. The quantity, q, of a product manufactured depends on

the number of workers, W , and the amount of capital

invested, K , and is given by

q = 6W 3∕4K1∕4.

Labor costs are $10 per worker and capital costs are $20

per unit, and the budget is $3000.

(a) What are the optimum number of workers and the

optimum number of units of capital?

(b) Show that at the optimum values of W and K ,

the ratio of the marginal productivity of labor

()q∕)W ) to the marginal productivity of capital
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()q∕)K) is the same as the ratio of the cost of a

unit of labor to the cost of a unit of capital.

(c) Recompute the optimum values of W and K when

the budget is increased by one dollar. Check that in-

creasing the budget by $1 allows the production of

� extra units of the good, where � is the Lagrange

multiplier.

40. A neighborhood health clinic has a budget of $600,000

per quarter. The director of the clinic wants to allocate

the budget to maximize the number of patient visits, V ,

which is given as a function of the number of doctors,

D, and the number of nurses, N , by

V = 1000D0.6N0.3.

A doctor gets $40,000 per quarter; nurses get $10,000

per quarter.

(a) Set up the director’s constrained optimization

problem.

(b) Describe, in words, the conditions which must be

satisfied by )V ∕)D and )V ∕)N for V to have an

optimum value.

(c) Solve the problem formulated in part (a).

(d) Find the value of the Lagrange multiplier and in-

terpret its meaning in this problem.

(e) At the optimum point, what is the marginal cost

of a patient visit (that is, the cost of an additional

visit)? Will that marginal cost rise or fall with the

number of visits? Why?

41. (a) In Problem 39, does the value of � change if the

budget changes from $3000 to $4000?

(b) In Problem 40, does the value of � change if the

budget changes from $600,000 to $700,000?

(c) What condition must a Cobb-Douglas production

function, Q = cKaLb, satisfy to ensure that the

marginal increase of production (that is, the rate of

increase of production with budget) is not affected

by the size of the budget?

42. The production function P (K,L) gives the number of

pairs of skis produced per week at a factory operating

with K units of capital and L units of labor. The con-

tour diagram for P is in Figure 15.34; the parallel lines

are budget constraints for budgets, B, in dollars.

(a) On each budget constraint, mark the point that

gives the maximum production.

(b) Complete the table, where the budget, B, is in dol-

lars and the maximum production is the number of

pairs of skis to be produced each week.

B 2000 4000 6000 8000 10000

M

(c) Estimate the Lagrange multiplier � = dM∕dB at

a budget of $6000. Give units for the multiplier.

5 10 15 20

5

10

15

20

20
30
40

50

60

70

80

P = 90

2000

4000

6000

B = 8000

10,000

K , capital

L, labor

Figure 15.34

43. A doctor wants to schedule visits for two patients who

have been operated on for tumors so as to minimize the

expected delay in detecting a new tumor. Visits for pa-

tients 1 and 2 are scheduled at intervals of x1 and x2

weeks, respectively. A total ofm visits per week is avail-

able for both patients combined.

The recurrence rates for tumors for patients 1 and

2 are judged to be v1 and v2 tumors per week, respec-

tively. Thus, v1∕(v1 +v2) and v2∕(v1 +v2) are the prob-

abilities that patient 1 and patient 2, respectively, will

have the next tumor. It is known that the expected de-

lay in detecting a tumor for a patient checked every x

weeks is x∕2. Hence, the expected detection delay for

both patients combined is given by10

f (x1, x2) =
v1

v1 + v2
⋅

x1

2
+

v2

v1 + v2
⋅

x2

2
.

Find the values of x1 and x2 in terms of v1 and v2 that

minimize f (x1, x2) subject to the fact that m, the num-

ber of visits per week, is fixed.

44. What is the value of the Lagrange multiplier in Prob-

lem 43? What are the units of �? What is its practical

significance to the doctor?

45. Figure 15.35 shows two weightless springs with spring

constants k1 and k2 attached between a ceiling and floor

without tension or compression. A mass m is placed be-

tween the springs which settle into equilibrium as in

Figure 15.36. The magnitudes f1 and f2 of the forces

of the springs on the mass minimize the complementary

energy

f 2
1

2k1
+

f 2
2

2k2

subject to the force balance constraint f1 + f2 = mg.

(a) Determine f1 and f2 by the method of Lagrange

multipliers.

10Adapted from Daniel Kent, Ross Shachter, et al., “Efficient Scheduling of Cystoscopies in Monitoring for Recurrent

Bladder Cancer,” Medical Decision Making (Philadelphia: Hanley and Belfus, 1989).



836 Chapter 15 OPTIMIZATION: LOCAL AND GLOBAL EXTREMA

(b) If you are familiar with Hooke’s law, find the mean-

ing of �.

k2

k1

Figure 15.35

m

Figure 15.36

46. (a) If
∑3

i=1
xi = 1, find the values of x1, x2, x3 making

∑3

i=1
xi

2 minimum.

(b) Generalize the result of part (a) to find the mini-

mum value of
∑n

i=1
xi

2 subject to
∑n

i=1
xi = 1.

47. Let f (x, y) = ax2 +bxy+cy2. Show that the maximum

value of f (x, y) subject to the constraint x2 + y2 = 1 is

equal to �, the Lagrange multiplier.

48. Find the minimum distance from the point (1, 2, 10) to

the paraboloid given by the equation z = x2 + y2. Give

a geometric justification for your answer.

49. A company produces one product from two inputs (for

example, capital and labor). Its production function

g(x, y) gives the quantity of the product that can be pro-

duced with x units of the first input and y units of the

second. The cost function (or expenditure function) is

the three-variable function C(p, q, u) where p and q are

the unit prices of the two inputs. For fixed p, q, and u,

the value C(p, q, u) is the minimum of f (x, y) = px+qy

subject to the constraint g(x, y) = u.

(a) What is the practical meaning of C(p, q, u)?

(b) Find a formula for C(p, q, u) if g(x, y) = xy.

50. A utility function U (x, y) for two items gives the util-

ity (benefit) to a consumer of x units of item 1 and y

units of item 2. The indirect utility function is the three-

variable function V (p, q, I) where p and q are the unit

prices of the two items. For fixed p, q, and I , the value

V (p, q, I) is the maximum of U (x, y) subject to the con-

straint px + qy = I .

(a) What is the practical meaning of V (p, q, I)?

(b) The Lagrange multiplier � that arises in the max-

imization defining V is called the marginal utility

of money. What is its practical meaning?

(c) Find formulas for V (p, q, I) and � if U (x, y) = xy.

51. The function ℎ(x, y) = x2 + y2 − �(2x+ 4y− 15) has a

minimum value m(�) for each value of �.

(a) Find m(�).

(b) For which value of � is m(�) the largest and what

is that maximum value?

(c) Find the minimum value of f (x, y) = x2 + y2 sub-

ject to the constraint 2x+4y = 15 using the method

of Lagrange multipliers and evaluate �.

(d) Compare your answers to parts (b) and (c).

52. Let f be differentiable and grad f (2, 1) = −3i⃗ + 4j⃗ .

You want to see if (2, 1) is a candidate for the maxi-

mum and minimum values of f subject to a constraint

satisfied by the point (2, 1).

(a) Show (2, 1) is not a candidate if the constraint is

x2 + y2 = 5.

(b) Show (2, 1) is a candidate if the constraint is (x −

5)2 + (y + 3)2 = 25. From a sketch of the contours

for f near (2, 1) and the constraint, decide whether

(2, 1) is a candidate for a maximum or minimum.

(c) Do the same as part (b), but using the constraint

(x + 1)2 + (y − 5)2 = 25.

53. A person’s satisfaction from consuming a quantity x1

of one item and a quantity x2 of another item is given

by

S = u(x1, x2) = a ln x1 + (1 − a) ln x2,

where a is a constant, 0 < a < 1. The prices of the two

items are p1 and p2 respectively, and the budget is b.

(a) Express the maximum satisfaction that can be

achieved as a function of p1, p2, and b.

(b) Find the amount of money that must be spent to

achieve a particular level of satisfaction, c, as a

function of p1, p2, and c.

Strengthen Your Understanding

In Problems 54–55, explain what is wrong with the state-

ment.

54. The function f (x, y) = xy has a maximum of 2 on the

constraint x + y = 2.

55. If the level curves of f (x, y) and the level curves of

g(x, y) are not tangent at any point on the constraint

g(x, y) = c, x ≥ 0, y ≥ 0, then f has no maximum

on the constraint.

In Problems 56–60, give an example of:

56. A function f (x, y) whose maximum subject to the con-

straint x2 + y2 = 5 is at (3, 4).

57. A function f (x, y) to be optimized with constraint x2 +

2y2 ≤ 1 such that the minimum value does not change

when the constraint is changed to x2 + y2 ≤ 1 + c for

c > 0.

58. A function f (x, y) with a minimum at (1, 1) on the con-

straint x + y = 2.
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59. A function f (x, y) that has a maximum but no minimum

on the constraint x + y = 4.

60. A contour diagram of a function f whose maximum

value on the constraint x+2y = 6, x ≥ 0, y ≥ 0 occurs

at one of the endpoints.

For Problems 61–62, use Figure 15.37. The grid lines are

one unit apart.

f = 1

f = 2

f = 3

f = 4

f = 5
g = c

f = 0
x

y

Figure 15.37

61. Find the maximum and minimum values of f on g = c.

At which points do they occur?

62. Find the maximum and minimum values of f on the

triangular region below g = c in the first quadrant.

Are the statements in Problems 63–67 true or false? Give

reasons for your answer.

63. If f (x, y) has a local maximum at (a, b) subject to the

constraint g(x, y) = c, then g(a, b) = c.

64. If f (x, y) has a local maximum at (a, b) subject to the

constraint g(x, y) = c, then gradf (a, b) = 0⃗ .

65. The function f (x, y) = x + y has no global maximum

subject to the constraint x − y = 0.

66. The point (2,−1) is a local minimum of f (x, y) =

x2 + y2 subject to the constraint x + 2y = 0.

67. If grad f (a, b) and grad g(a, b) point in opposite direc-

tions, then (a, b) is a local minimum of f (x, y) con-

strained by g(x, y) = c.

In Problems 68–75, suppose that M and m are the maxi-

mum and minimum values of f (x, y) subject to the con-

straint g(x, y) = c and that (a, b) satisfies g(a, b) = c. Decide

whether the statements are true or false. Give an explanation

for your answer.

68. If f (a, b) = M , then fx(a, b) = fy(a, b) = 0.

69. If f (a, b) = M , then f (a, b) = �g(a, b) for some value

of �.

70. If grad f (a, b) = � grad g(a, b), then f (a, b) = M or

f (a, b) = m.

71. If f (a, b) = M and fx(a, b)∕fy(a, b) = 5, then

gx(a, b)∕gy(a, b) = 5.

72. If f (a, b) = m and gx(a, b) = 0, then fx(a, b) = 0.

73. Increasing the value of c increases the value of M .

74. Suppose that f (a, b) = M and that grad f (a, b) =

3 grad g(a, b). Then increasing the value of c by 0.02

increases the value of M by about 0.06.

75. Suppose that f (a, b) = m and that grad f (a, b) =

3 grad g(a, b). Then increasing the value of c by 0.02

decreases the value of m by about 0.06.

Online Resource: Review problems and Projects
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840 Chapter 16 INTEGRATING FUNCTIONS OF SEVERAL VARIABLES

16.1 THE DEFINITE INTEGRAL OF A FUNCTION OF TWO VARIABLES

The definite integral of a continuous one-variable function, f , is a limit of Riemann sums:

∫

b

a

f (x) dx = lim
Δx→0

∑

i

f (xi) Δx,

where xi is a point in the ith subdivision of the interval [a, b]. In this section we extend this definition

to functions of two variables. We start by considering how to estimate total population from a two-

variable population density.

Population Density of Foxes in England
The fox population in parts of England can be important to public health officials because animals

can spread diseases, such as rabies. Biologists use a contour diagram to display the fox population

density, D; see Figure 16.1, where D is in foxes per square kilometer.1 The bold contour is the

coastline, which may be thought of as the D = 0 contour; clearly the density is zero outside it. We

can think of D as a function of position, D = f (x, y) where x and y are in kilometers from the

southwest corner of the map.
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Figure 16.1: Population density of foxes in southwestern England

Example 1 Estimate the total fox population in the region represented by the map in Figure 16.1.

Solution We subdivide the map into the rectangles shown in Figure 16.1 and estimate the population in each

rectangle. For simplicity, we use the population density at the northeast corner of each rectangle. For

example, in the bottom left rectangle, the density is 0 at the northeast corner; in the next rectangle to

the east (right), the density in the northeast corner is 1. Continuing in this way, we get the estimates

in Table 16.1. To estimate the population in a rectangle, we multiply the density by the area of the

rectangle, 30 ⋅ 25 = 750 km2. Adding the results, we obtain

Estimate of population = (0.2 + 0.7 + 1.2 + 1.2 + 0.1 + 1.6 + 0.5 + 1.4

+ 1.1 + 1.6 + 1.5 + 1.8 + 1.5 + 1.3 + 1.1 + 2.0

+ 1.4 + 1.0 + 1.0 + 0.6 + 1.2)750 = 18,000 foxes.

1From “On the spatial spread of rabies among foxes”, Murray, J. D. et al, Proc. R. Soc. Lond. B, 229: 111–150, 1986.
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Taking the upper and lower bounds for the population density on each rectangle enables us to find

upper and lower estimates for the population. Using the same rectangles, the upper estimate is ap-

proximately 35,000 and the lower estimate is 4,000. There is a wide discrepancy between the upper

and lower estimates; we could make them closer by taking finer subdivisions.

Table 16.1 Estimates of population density (northeast corner)

0.0 0.0 0.2 0.7 1.2 1.2

0.0 0.0 0.0 0.0 0.1 1.6

0.0 0.0 0.5 1.4 1.1 1.6

0.0 0.0 1.5 1.8 1.5 1.3

0.0 1.1 2.0 1.4 1.0 0.0

0.0 1.0 0.6 1.2 0.0 0.0

Definition of the Definite Integral

The sums used to approximate the fox population are Riemann sums. We now define the definite

integral for a functionf of two variables on a rectangular region. Given a continuous functionf (x, y)

defined on a region a ≤ x ≤ b and c ≤ y ≤ d, we subdivide each of the intervals a ≤ x ≤ b and

c ≤ y ≤ d into n and m equal subintervals respectively, giving nm subrectangles. (See Figure 16.2.)

x1 x2 x3

y1

y2

y3

x

y

a = x0 b = xn

c = y0

d = ym

Figure 16.2: Subdivision of a rectangle into nm subrectangles

The area of each subrectangle is ΔA = Δx Δy, where Δx = (b − a)∕n is the width of each

subdivision on the x-axis, and Δy = (d − c)∕m is the width of each subdivision on the y-axis. To

compute the Riemann sum, we multiply the area of each subrectangle by the value of the function

at a point in the rectangle and add the resulting numbers. Choosing the maximum value, Mij , of the

function on each rectangle and adding for all i, j gives the upper sum,
∑

i,j MijΔxΔy.

The lower sum,
∑

i,j LijΔxΔy, is obtained by taking the minimum value on each rectangle. If

(uij , vij ) is any point in the ij-th subrectangle, any other Riemann sum satisfies

∑

i,j

LijΔxΔy ≤
∑

i,j

f (uij , vij) ΔxΔy ≤
∑

i,j

MijΔxΔy.

We define the definite integral by taking the limit as the numbers of subdivisions, n and m, tend to

infinity. By comparing upper and lower sums, as we did for the fox population, it can be shown that

the limit exists when the function, f , is continuous. We get the same limit by letting Δx and Δy tend

to 0. Thus, we have the following definition:
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Suppose the function f is continuous on R, the rectangle a ≤ x ≤ b, c ≤ y ≤ d. If (uij , vij)

is any point in the ij-th subrectangle, we define the definite integral of f over R

∫R
f dA = lim

Δx,Δy→0

∑

i,j

f (uij , vij)ΔxΔy.

Such an integral is called a double integral.

The case when R is not rectangular is considered on page 844. Sometimes we think of dA as

being the area of an infinitesimal rectangle of length dx and height dy, so that dA = dx dy. Then

we use the notation2

∫R
f dA =

∫R
f (x, y) dx dy.

For this definition, we used a particular type of Riemann sum with equal-sized rectangular sub-

divisions. In a general Riemann sum, the subdivisions do not all have to be the same size.

Interpretation of the Double Integral as Volume

Just as the definite integral of a positive one-variable function can be interpreted as an area, so the

double integral of a positive two-variable function can be interpreted as a volume. In the one-variable

case we visualize the Riemann sums as the total area of rectangles above the subdivisions. In the

two-variable case we get solid bars instead of rectangles. As the number of subdivisions grows, the

tops of the bars approximate the surface better, and the volume of the bars gets closer to the volume

under the graph of the function. (See Figure 16.3.)

y

x

z

y

x

z

Figure 16.3: Approximating volume under a graph with finer and finer Riemann sums

Thus, we have the following result:

If x, y, z represent length and f is positive, then

Volume under graph

of f above region R
=
∫R

f dA.

Example 2 Let R be the rectangle 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Use Riemann sums to make upper and lower

estimates of the volume of the region above R and under the graph of z = e−(x
2+y2).

2Another common notation for the double integral is ∫ ∫
R
fdA.
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Solution If R is the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, the volume we want is given by

Volume =
∫R

e−(x
2+y2) dA.

We divide R into 16 subrectangles by dividing each edge into four parts. Figure 16.4 shows that

f (x, y) = e−(x
2+y2) decreases as we move away from the origin. Thus, to get an upper sum we

evaluate f on each subrectangle at the corner nearest the origin. For example, in the rectangle 0 ≤

x ≤ 0.25, 0 ≤ y ≤ 0.25, we evaluate f at (0, 0). Using Table 16.2, we find that

x

y

z

Figure 16.4: Graph of e−(x
2+y2) above the rectangle R

Upper sum = (1 + 0.9394 + 0.7788 + 0.5698

+ 0.9394 + 0.8825 + 0.7316 + 0.5353

+ 0.7788 + 0.7316 + 0.6065 + 0.4437

+ 0.5698 + 0.5353 + 0.4437 + 0.3247)(0.0625) = 0.68.

To get a lower sum, we evaluate f at the opposite corner of each rectangle because the surface

slopes down in both the x and y directions. This yields a lower sum of 0.44. Thus,

0.44 ≤
∫R

e−(x
2+y2) dA ≤ 0.68.

To get a better approximation of the volume under the graph, we use more subdivisions. See

Table 16.3.

Table 16.2 Values of f (x, y) = e−(x
2+y2) on the rectangle R

x

y

0.0 0.25 0.50 0.75 1.00

0.0 1 0.9394 0.7788 0.5698 0.3679

0.25 0.9394 0.8825 0.7316 0.5353 0.3456

0.50 0.7788 0.7316 0.6065 0.4437 0.2865

0.75 0.5698 0.5353 0.4437 0.3247 0.2096

1.00 0.3679 0.3456 0.2865 0.2096 0.1353

Table 16.3 Riemann sum approximations to ∫
R
e−(x

2+y2) dA

Number of subdivisions in x and y directions

8 16 32 64

Upper 0.6168 0.5873 0.5725 0.5651

Lower 0.4989 0.5283 0.5430 0.5504
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The exact value of the double integral, 0.5577…, is trapped between the lower and upper sums.

Notice that the lower sum increases and the upper sum decreases as the number of subdivisions

increases. However, even with 64 subdivisions, the lower and upper sums agree with the exact value

of the integral only in the first decimal place.

Interpretation of the Double Integral as Area

In the special case that f (x, y) = 1 for all points (x, y) in the region R, each term in the Riemann

sum is of the form 1 ⋅ ΔA = ΔA and the double integral gives the area of the region R:

Area(R) =
∫R

1 dA =
∫R

dA

Interpretation of the Double Integral as Average Value
As in the one-variable case, the definite integral can be used to define the average value of a function:

Average value of f

on the region R
=

1

Area of R ∫R
f dA

We can rewrite this as

Average value × Area of R =
∫R

f dA.

If we interpret the integral as the volume under the graph of f , then we can think of the average

value of f as the height of the box with the same volume that is on the same base. (See Figure 16.5.)

Imagine that the volume under the graph is made out of wax. If the wax melted within the perimeter

of R, then it would end up box-shaped with height equal to the average value of f .

x

y

z

✛

✛

Average value of f✲Base of the box

is the rectangle R

Figure 16.5: Volume and average value

Integral over Regions that Are Not Rectangles
We defined the definite integral ∫

R
f (x, y) dA, for a rectangular region R. Now we extend the defi-

nition to regions of other shapes, including triangles, circles, and regions bounded by the graphs of

piecewise continuous functions.

To approximate the definite integral over a region, R, which is not rectangular, we use a grid

of rectangles approximating the region. We obtain this grid by enclosing R in a large rectangle and

subdividing that rectangle; we consider just the subrectangles which are inside R.

As before, we pick a point (uij , vij) in each subrectangle and form a Riemann sum
∑

i,j

f (uij , vij)ΔxΔy.

This time, however, the sum is over only those subrectangles within R. For example, in the case of

the fox population we can use the rectangles which are entirely on land. As the subdivisions become
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finer, the grid approximates the region R more closely. For a function, f , which is continuous on R,

we define the definite integral as follows:

∫R
f dA = lim

Δx,Δy→0

∑

i,j

f (uij , vij)ΔxΔy

where the Riemann sum is taken over the subrectangles inside R.

You may wonder why we can leave out the rectangles which cover the edge ofR—if we included

them, might we get a different value for the integral? The answer is that for any region that we are

likely to meet, the area of the subrectangles covering the edge tends to 0 as the grid becomes finer.

Therefore, omitting these rectangles does not affect the limit.

Convergence of Upper and Lower Sums to Same Limit

We have said that if f is continuous on the rectangleR, then the difference between upper and lower

sums for f converges to 0 as Δx and Δy approach 0. In the following example, we show this in a

particular case. The ideas in this example can be used in a general proof.

Example 3 Let f (x, y) = x2y and let R be the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Show that the difference between

upper and lower Riemann sums for f on R converges to 0, as Δx and Δy approach 0.

Solution The difference between the sums is

∑

MijΔxΔy −
∑

Lij ΔxΔy =
∑

(Mij − Lij) ΔxΔy,

whereMij and Lij are the maximum and minimum of f on the ij-th subrectangle. Since f increases

in both the x and y directions, Mij occurs at the corner of the subrectangle farthest from the origin

and Lij at the closest. Moreover, since the slopes in the x and y directions don’t decrease as x and y

increase, the difference Mij−Lij is largest in the subrectangleRnm which is farthest from the origin.

Thus,
∑

(Mij − Lij ) ΔxΔy ≤ (Mnm − Lnm)
∑

ΔxΔy = (Mnm − Lnm)Area(R).

Thus, the difference converges to 0 as long as (Mnm − Lnm) does. The maximum Mnm of f on the

nm-th subrectangle occurs at (1, 1), the subrectangle’s top right corner, and the minimumLnm occurs

at the opposite corner, (1 − 1∕n, 1 − 1∕m). Substituting into f (x, y) = x2y gives

Mnm − Lnm = (1)2(1) −
(

1 −
1

n

)2 (

1 −
1

m

)

=
2

n
−

1

n2
+

1

m
−

2

nm
+

1

n2m
.

The right-hand side converges to 0 as n, m → ∞, that is, as Δx,Δy → 0.

Exercises and Problems for Section 16.1 Online Resource: Additional Problems for Section 16.1
EXERCISES

1. Table 16.4 gives values of the function f (x, y), which

is increasing in x and decreasing in y on the region

R ∶ 0 ≤ x ≤ 6, 0 ≤ y ≤ 1. Make the best possible

upper and lower estimates of ∫
R
f (x, y) dA.

Table 16.4

y

x

0 3 6

0 5 7 10

0.5 4 5 7

1 3 4 6

2. Values of f (x, y) are in Table 16.5. Let R be the rect-

angle 1 ≤ x ≤ 1.2, 2 ≤ y ≤ 2.4. Find Riemann

sums which are reasonable over and underestimates for

∫
R
f (x, y) dA with Δx = 0.1 and Δy = 0.2.

Table 16.5

y

x

1.0 1.1 1.2

2.0 5 7 10

2.2 4 6 8

2.4 3 5 4
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3. Figure 16.6 shows contours of g(x, y) on the region R,

with 5 ≤ x ≤ 11 and 4 ≤ y ≤ 10. Using Δx =

Δy = 2, find an overestimate and an underestimate for

∫
R
g(x, y) dA.

5 7 9 11
4

6

8

10

1
2

3

4

5

x

y

Figure 16.6
4. Figure 16.7 shows contours of f (x, y) on the rectangle

R with 0 ≤ x ≤ 30 and 0 ≤ y ≤ 15. Using Δx = 10

and Δy = 5, find an overestimate and an underestimate

for ∫
R
f (x, y) dA.

10 20 30
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2
4

6

8

10

x

y

Figure 16.7

5. Figure 16.8 shows a contour plot of population density,

people per square kilometer, in a rectangle of land 3 km

by 2 km. Estimate the population in the region repre-

sented by Figure 16.8.

1 2 3

1

2

1000
800

4
0

0

600

400 20
0

20
0

400

600
600

x

y

Figure 16.8

In Exercises 6–7, for x and y in meters and R a region on the

xy-plane, what does the integral represent? Give units.

6.
∫
R

�(x, y) dA, where �(x, y) is bacteria population, in

thousands per m2.

7.
1

Area of R ∫
R

ℎ(x, y) dA, where ℎ(x, y) is the height of

a tent, in meters.
PROBLEMS

In Problems 8–14, decide (without calculation) whether the

integrals are positive, negative, or zero. Let D be the region

inside the unit circle centered at the origin, let R be the right

half of D, and let B be the bottom half of D.

8. ∫
D
1dA 9. ∫

R
5x dA

10. ∫
B
5x dA 11. ∫

D
(y3 + y5) dA

12. ∫
B
(y3 + y5) dA 13. ∫

D
(y − y3) dA

14. ∫
B
(y − y3) dA

15. Figure 16.9 shows contours of f (x, y). Let R be the

square −0.5 ≤ x ≤ 1, −0.5 ≤ y ≤ 1. Is the integral

∫
R
f dA positive or negative? Explain your reasoning.

−1.0 −0.5 0 0.5 1.0 1.5 2.0
−1.0

−0.5

0

0.5

1.0

1.5

2.0

x

y

−1

0

1

2

2

3

4

Figure 16.9

16. Table 16.6 gives values of f (x, y), the number of

milligrams of mosquito larvae per square meter in a

swamp. If x and y are in meters and R is the rectan-

gle 0 ≤ x ≤ 8, 0 ≤ y ≤ 6, estimate ∫
R
f (x, y) dA. Give

units and interpret your answer.

Table 16.6

y

x

0 4 8

0 1 3 6

3 2 5 9

6 4 9 15

17. Table 16.7 gives values of f (x, y), the depth of volcanic

ash, in meters, after an eruption. If x and y are in kilo-

meters and R is the rectangle 0 ≤ x ≤ 100, 0 ≤ y ≤

100, estimate the volume of volcanic ash in R in km3.

Table 16.7

y

x

0 50 100

0 0.82 0.56 0.43

50 0.63 0.45 0.3

100 0.55 0.44 0.26

18. Table 16.8 gives the density of cacti, f (x, y), in a desert

region, in thousands of cacti per km2. If x and y are in

kilometers and R is the square 0 ≤ x ≤ 30, 0 ≤ y ≤ 30,

estimate the number of cacti in the region R.
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Table 16.8

y

x

0 10 20 30

0 8.5 8.2 7.9 8.1

10 9.5 10.6 10.5 10.1

20 9.3 10.5 10.4 9.5

30 8.3 8.6 9.3 9.1

19. Use four subrectangles to approximate the volume of

the object whose base is the region 0 ≤ x ≤ 4 and

0 ≤ y ≤ 6, and whose height is given by f (x, y) = x+y.

Find an overestimate and an underestimate and average

the two.

20. Figure 16.10 shows the rainfall, in inches, in Tennessee

on May 1–2, 2010.3 Using three contours (red, yellow,

and green), make a rough estimate of how many cubic

miles of rain fell on the state during this time.

Figure 16.10

Strengthen Your Understanding

In Problems 21–22, explain what is wrong with the state-

ment.

21. For all f , the integral ∫
R
f (x, y) dA gives the volume

of the solid under the graph of f over the region R.

22. IfR is a region in the third quadrant where x < 0, y < 0,

then ∫
R
f (x, y) dA is negative.

In Problems 23–24, give an example of:

23. A function f (x, y) and rectangle R such that the Rie-

mann sums obtained using the lower left-hand corner

of each subrectangle are an overestimate.

24. A function f (x, y) whose average value over the square

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 is negative.

Are the statements in Problems 25–34 true or false? Give

reasons for your answer.

25. The double integral ∫
R
f dA is always positive.

26. If f (x, y) = k for all points (x, y) in a region R then

∫
R
f dA = k ⋅ Area(R).

27. If R is the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 then

∫
R
exy dA > 3.

28. If R is the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3 and

S is the rectangle −2 ≤ x ≤ 0,−3 ≤ y ≤ 0, then

∫
R
f dA = − ∫

S
f dA.

29. Let �(x, y) be the population density of a city, in people

per km2. If R is a region in the city, then ∫
R
� dA gives

the total number of people in the region R.

30. If ∫
R
f dA = 0, then f (x, y) = 0 at all points of R.

31. If g(x, y) = kf (x, y), where k is constant, then

∫
R
g dA = k ∫

R
f dA.

32. If f and g are two functions continuous on a region R,

then ∫
R
f ⋅ g dA = ∫

R
f dA ⋅ ∫

R
g dA.

33. If R is the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 2 and S is

the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, then ∫
R
f dA =

2 ∫
S
f dA.

34. If R is the rectangle 2 ≤ x ≤ 4, 5 ≤ y ≤ 9, f (x, y) = 2x

and g(x, y) = x + y, then the average value of f on R

is less than the average value of g on R.

16.2 ITERATED INTEGRALS

In Section 16.1 we approximated double integrals using Riemann sums. In this section we see how

to compute double integrals exactly using one-variable integrals.

The Fox Population Again: Expressing a Double Integral as an Iterated Integral

To estimate the fox population, we computed a sum of the form

Total population ≈
∑

i,j

f (uij , vij)ΔxΔy,

where 1 ≤ i ≤ n and 1 ≤ j ≤ m and the values f (uij , vij) can be arranged as in Table 16.9.

3www.srh.noaa.gov/images/ohx/rainfall/TN_May2010_rainfall_map.png, accessed June 13, 2016.
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Table 16.9 Estimates for fox population densities for n = m = 6

0.0 0.0 0.2 0.7 1.2 1.2

0.0 0.0 0.0 0.0 0.1 1.6

0.0 0.0 0.5 1.4 1.1 1.6

0.0 0.0 1.5 1.8 1.5 1.3

0.0 1.1 2.0 1.4 1.0 0.0

0.0 1.0 0.6 1.2 0.0 0.0

For any values of n and m, we can either add across the rows first or add down the columns first.

If we add rows first, we can write the sum in the form

Total population ≈

m
∑

j=1

(

n
∑

i=1

f (uij , vij)Δx

)

Δy.

The inner sum,

n
∑

i=1

f (uij , vij) Δx, approximates the integral ∫
180

0
f (x, vij) dx. Thus, we have

Total population ≈

m
∑

j=1

(

∫

180

0

f (x, vij) dx

)

Δy.

The outer Riemann sum approximates another integral, this time with integrand ∫
180

0
f (x, y) dx,

which is a function of y. Thus, we can write the total population in terms of nested, or iterated, one-

variable integrals:

Total population =
∫

150

0

(

∫

180

0

f (x, y) dx

)

dy.

Since the total population is represented by ∫
R
f dA, this suggests the method of computing

double integrals in the following theorem:4

Theorem 16.1: Writing a Double Integral as an Iterated Integral

If R is the rectangle a ≤ x ≤ b, c ≤ y ≤ d and f is a continuous function on R, then the

integral of f over R exists and is equal to the iterated integral

∫R
f dA =

∫

y=d

y=c

(

∫

x=b

x=a

f (x, y) dx

)

dy.

The expression ∫
y=d

y=c

(

∫
x=b

x=a
f (x, y) dx

)

dy can be written ∫
d

c
∫
b

a
f (x, y) dx dy.

To evaluate the iterated integral, first perform the inside integral with respect to x, holding y

constant; then integrate the result with respect to y.

Example 1 A building is 8 meters wide and 16 meters long. It has a flat roof that is 12 meters high at one corner

and 10 meters high at each of the adjacent corners. What is the volume of the building?

Solution If we put the high corner on the z-axis, the long side along the y-axis, and the short side along the

x-axis, as in Figure 16.11, then the roof is a plane with z-intercept 12, and x slope (−2)∕8 = −1∕4,

and y slope (−2)∕16 = −1∕8. Hence, the equation of the roof is

z = 12 −
1

4
x −

1

8
y.

4For a proof, see M. Spivak, Calculus on Manifolds, pp. 53 and 58 (New York: Benjamin, 1965).
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The volume is given by the double integral

Volume =
∫R

(12 −
1

4
x −

1

8
y) dA,

where R is the rectangle 0 ≤ x ≤ 8, 0 ≤ y ≤ 16. Setting up an iterated integral, we get

Volume =
∫

16

0 ∫

8

0

(12 −
1

4
x −

1

8
y) dx dy.

The inside integral is

∫

8

0

(12 −
1

4
x −

1

8
y) dx =

(

12x −
1

8
x2 −

1

8
xy

)

|

|

|

|

x=8

x=0

= 88 − y.

Then the outside integral gives

Volume =
∫

16

0

(88 − y) dy = (88y−
1

2
y2)

|

|

|

|

16

0

= 1280.

The volume of the building is 1280 cubic meters.

x (m)
y (m)

z (m)

✻

❄

10

✻

❄
12

✻

❄

10

✛

✛

16 ✛

✛

8

Figure 16.11: A slant-roofed building Figure 16.12: Cross-section of a building

Notice that the inner integral ∫
8

0
(12 −

1

4
x −

1

8
y) dx in Example 1 gives the area of the cross

section of the building perpendicular to the y-axis in Figure 16.12.

The iterated integral ∫
16

0
∫
8

0
(12 −

1

4
x −

1

8
y) dxdy thus calculates the volume by adding the

volumes of thin cross-sectional slabs.

The Order of Integration

In computing the fox population, we could have chosen to add columns (fixed x) first, instead of the

rows. This leads to an iterated integral where x is constant in the inner integral instead of y. Thus,

∫R
f (x, y) dA =

∫

b

a

(

∫

d

c

f (x, y) dy

)

dx

where R is the rectangle a ≤ x ≤ b and c ≤ y ≤ d.

For any function we are likely to meet, it does not matter in which order we integrate over a

rectangular region R; we get the same value for the double integral either way.

∫R
f dA =

∫

d

c

(

∫

b

a

f (x, y) dx

)

dy =
∫

b

a

(

∫

d

c

f (x, y) dy

)

dx
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Example 2 Compute the volume of Example 1 as an iterated integral by integrating with respect to y first.

Solution Rewriting the integral, we have

Volume =
∫

8

0

(

∫

16

0

(12 −
1

4
x −

1

8
y) dy

)

dx =
∫

8

0

(

(12y−
1

4
xy −

1

16
y2)

|

|

|

|

y=16

y=0

)

dx

=
∫

8

0

(176 − 4x) dx = (176x− 2x2)
|

|

|

|

8

0

= 1280 meter3.

Iterated Integrals Over Non-Rectangular Regions

Example 3 The density at the point (x, y) of a triangular metal plate, as shown in Figure 16.13, is �(x, y). Express

its mass as an iterated integral.

y = 2 − 2x

2

1

y

x

Figure 16.13: A triangular metal plate with density �(x, y) at the point (x, y)

Solution Approximate the triangular region using a grid of small rectangles of sides Δx and Δy. The mass of

one rectangle is given by

Mass of rectangle ≈ Density ⋅ Area ≈ �(x, y)ΔxΔy.

Summing over all rectangles gives a Riemann sum which approximates the double integral:

Mass =
∫R

�(x, y) dA,

where R is the triangle. We want to compute this integral using an iterated integral.

Think about how the iterated integral over the rectangle a ≤ x ≤ b, c ≤ y ≤ d works:

∫

b

a ∫

d

c

f (x, y) dy dx.

The inside integral with respect to y is along vertical strips which begin at the horizontal line y = c

and end at the line y = d. There is one such strip for each x between x = a and x = b. (See

Figure 16.14.)

For the triangular region in Figure 16.13, the idea is the same. The only difference is that the

individual vertical strips no longer all go from y = c to y = d. The vertical strip that starts at the

point (x, 0) ends at the point (x, 2 − 2x), because the top edge of the triangle is the line y = 2 − 2x.

See Figure 16.15. On this vertical strip, y goes from 0 to 2 − 2x. Hence, the inside integral is

∫

2−2x

0

�(x, y) dy.
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a b

c

d

x

y

x

Figure 16.14: Integrating over a

rectangle using vertical strips

(x, 0)

(x, 2 − 2x)

y

x
1

2

Figure 16.15: Integrating over a

triangle using vertical strips

1

2

(0, y)
(1 −

1

2
y, y)

x

y

Figure 16.16: Integrating over a

triangle using horizontal strips

Finally, since there is a vertical strip for each x between 0 and 1, the outside integral goes from

x = 0 to x = 1. Thus, the iterated integral we want is

Mass =
∫

1

0 ∫

2−2x

0

�(x, y) dy dx.

We could have chosen to integrate in the opposite order, keeping y fixed in the inner integral

instead of x. The limits are formed by looking at horizontal strips instead of vertical ones, and ex-

pressing the x-values at the end points in terms of y. See Figure 16.16. To find the right endpoint

of the strip, we use the equation of the top edge of the triangle in the form x = 1 −
1

2
y. Thus, a

horizontal strip goes from x = 0 to x = 1 −
1

2
y. Since there is a strip for every y from 0 to 2, the

iterated integral is

Mass =
∫

2

0 ∫

1−
1

2
y

0

�(x, y) dx dy.

Limits on Iterated Integrals

• The limits on the outer integral must be constants.

• The limits on the inner integral can involve only the variable in the outer integral. For

example, if the inner integral is with respect to x, its limits can be functions of y.

Example 4 Find the mass M of a metal plate R bounded by y = x and y = x2, with density given by �(x, y) =

1 + xy kg∕meter2. (See Figure 16.17.)

y = x2

y = x

(1, 1)
y (meters)

x (meters)

Figure 16.17: A metal plate with density �(x, y)
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Solution The mass is given by

M =
∫R

�(x, y) dA.

We integrate along vertical strips first; this means we do the y integral first, which goes from the

bottom boundary y = x2 to the top boundary y = x. The left edge of the region is at x = 0 and the

right edge is at the intersection point of y = x and y = x2, which is (1, 1). Thus, the x-coordinate of

the vertical strips can vary from x = 0 to x = 1, and so the mass is given by

M =
∫

1

0 ∫

x

x2
�(x, y) dy dx =

∫

1

0 ∫

x

x2
(1 + xy) dy dx.

Calculating the inner integral first gives

M =
∫

1

0 ∫

x

x2
(1 + xy) dy dx =

∫

1

0

(

y + x
y2

2

)

|

|

|

|

y=x

y=x2
dx

=
∫

1

0

(

x − x2 +
x3

2
−

x5

2

)

dx =

(

x2

2
−

x3

3
+

x4

8
−

x6

12

)

|

|

|

|

1

0

=
5

24
= 0.208 kg.

Example 5 A semicircular city of radius 3 km borders the ocean on the straight side. Find the average distance

from points in the city to the ocean.

Solution Think of the ocean as everything below the x-axis in the xy-plane and think of the city as the upper

half of the circular disk of radius 3 bounded by x2 + y2 = 9. (See Figure 16.18.)

(
√

9 − y2, y)(−
√

9 − y2, y)

(x, 0)

(x,
√

9 − x2)
x2 + y2 = 9

x

y

−3 3

3

Figure 16.18: The city by the ocean showing a typical vertical strip and a typical horizontal strip

The distance from any point (x, y) in the city to the ocean is the vertical distance to the x-axis,

namely y. Thus, we want to compute

Average distance =
1

Area(R) ∫R
y dA,

where R is the region between the upper half of the circle x2 + y2 = 9 and the x-axis. The area of R

is �32∕2 = 9�∕2.

To compute the integral, let’s take the inner integral with respect to y. A vertical strip goes from

the x-axis, namely y = 0, to the semicircle. The upper limit must be expressed in terms of x, so we

solve x2 + y2 = 9 to get y =
√

9 − x2. Since there is a strip for every x from −3 to 3, the integral is:

∫R
y dA =

∫

3

−3

⎛

⎜

⎜

⎝

∫

√

9−x2

0

y dy

⎞

⎟

⎟

⎠

dx =
∫

3

−3

⎛

⎜

⎜

⎝

y2

2

|

|

|

|

y=
√

9−x2

y=0

⎞

⎟

⎟

⎠

dx

=
∫

3

−3

1

2
(9 − x2) dx =

1

2

(

9x −
x3

3

)

|

|

|

|

3

−3

=
1

2
(18 − (−18)) = 18.
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Therefore, the average distance is 18∕(9�∕2) = 4∕� = 1.273 km.

What if we choose the inner integral with respect to x? Then we get the limits by looking at

horizontal strips, not vertical, and we solve x2 + y2 = 9 for x in terms of y. We get x = −
√

9 − y2

at the left end of the strip and x =
√

9 − y2 at the right. There is a strip for every y from 0 to 3, so

∫R
y dA =

∫

3

0

(

∫

√

9−y2

−
√

9−y2
y dx

)

dy =
∫

3

0

⎛

⎜

⎜

⎝

yx
|

|

|

|

x=
√

9−y2

x=−
√

9−y2

⎞

⎟

⎟

⎠

dy =
∫

3

0

2y
√

9 − y2 dy

= −
2

3
(9 − y2)3∕2

|

|

|

|

3

0

= −
2

3
(0 − 27) = 18.

We get the same result as before. The average distance to the ocean is (2∕(9�))18 = 4∕� = 1.273 km.

In the examples so far, a region was given and the problem was to determine the limits for an

iterated integral. Sometimes the limits are known and we want to determine the region.

Example 6 Sketch the region of integration for the iterated integral
∫

6

0 ∫

2

x∕3

x
√

y3 + 1 dy dx.

Solution The inner integral is with respect to y, so we imagine the region built of vertical strips. The bottom

of each strip is on the line y = x∕3, and the top is on the horizontal line y = 2. Since the limits of the

outer integral are 0 and 6, the whole region is contained between the vertical lines x = 0 and x = 6.

Notice that the lines y = 2 and y = x∕3 meet where x = 6. See Figure 16.19.

6
x

y

(6, 2)

y = x∕3

y = 2
2

Figure 16.19: The region of integration for Example 6, showing the vertical strip

Reversing the Order of Integration

It is sometimes helpful to reverse the order of integration in an iterated integral. An integral which

is difficult or impossible with the integration in one order can be quite straightforward in the other.

The next example is such a case.

Example 7 Evaluate
∫

6

0 ∫

2

x∕3

x
√

y3 + 1 dy dx using the region sketched in Figure 16.19.

Solution Since
√

y3 + 1 has no elementary antiderivative, we cannot calculate the inner integral symbolically.

We try reversing the order of integration. From Figure 16.19, we see that horizontal strips go from

x = 0 to x = 3y and that there is a strip for every y from 0 to 2. Thus, when we change the order of

integration we get

∫

6

0 ∫

2

x∕3

x
√

y3 + 1 dy dx =
∫

2

0 ∫

3y

0

x
√

y3 + 1 dx dy.

Now we can at least do the inner integral because we know the antiderivative of x. What about the
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outer integral?

∫

2

0 ∫

3y

0

x
√

y3 + 1 dx dy =
∫

2

0

(

x2

2

√

y3 + 1

)

|

|

|

|

x=3y

x=0

dy =
∫

2

0

9y2

2
(y3 + 1)1∕2 dy

= (y3 + 1)3∕2
|

|

|

|

2

0

= 27 − 1 = 26.

Thus, reversing the order of integration made the integral in the previous problem much easier.

Notice that to reverse the order it is essential first to sketch the region over which the integration is

being performed.

Exercises and Problems for Section 16.2 Online Resource: Additional Problems for Section 16.2
EXERCISES

In Exercises 1–4, sketch the region of integration.

1.
∫

�

0 ∫

x

0

y sinx dy dx 2.
∫

1

0 ∫

y

y2

xy dx dy

3.
∫

2

0 ∫

y2

0

y2x dxdy 4.
∫

1

0 ∫

cos �x

x−2

y dy dx

For Exercises 5–12, evaluate the integral.

5.

∫

3

0 ∫

4

0

(4x + 3y) dxdy

6.

∫

2

0 ∫

3

0

(x2 + y2) dy dx

7.
∫

3

0 ∫

2

0

6xy dy dx 8.
∫

1

0 ∫

2

0

x2y dy dx

9.
∫

1

0 ∫

1

0

yexy dx dy 10.
∫

2

0 ∫

y

0

y dx dy

11.
∫

3

0 ∫

y

0

sin xdx dy 12.
∫

�∕2

0 ∫

sinx

0

x dy dx

For Exercises 13–20, sketch the region of integration and

evaluate the integral.

13.
∫

3

1 ∫

4

0

ex+y dy dx 14.
∫

2

0 ∫

x

0

ex
2
dy dx

15.
∫

5

1 ∫

2x

x

sinx dy dx 16.
∫

4

1 ∫

y

√

y

x2y3 dxdy

17.
∫

2

1 ∫

3y

y

xy dx dy 18.
∫

1

0 ∫

√

x

x

30x dy dx

19.
∫

2

0 ∫

2x

0

xex
3
dy dx 20.

∫

1

0 ∫

1+x2

1

x
√

y
dy dx

In Exercises 21–26, write ∫
R
fdA as an iterated integral for

the shaded region R.

21.

1 2 3 4
0

1

2

x

y 22.

4

12

x

y

23.

−1 1 2 3

−2

1

x

y 24.

3 5

6

x

y

25.

1 2 3
0

1

2

3

x

y 26.

1 2 3 4
0

1

2

x

y

For Exercises 27–28, write ∫
R
fdA as an iterated integral in

two different ways for the shaded region R.

27.

1 2
0

1

2

x

y 28.

1 2
0

1

2

x

y
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For Exercises 29–33, evaluate the integral.

29. ∫
R

√

x + y dA, where R is the rectangle 0 ≤ x ≤ 1,

0 ≤ y ≤ 2.

30. The integral in Exercise 29 using the other order of in-

tegration.

31. ∫
R
(5x2 + 1) sin 3y dA, where R is the rectangle −1 ≤

x ≤ 1, 0 ≤ y ≤ �∕3.

32. ∫
R
xy dA, where R is the triangle x+y ≤ 1, x ≥ 0, y ≥

0.

33. ∫
R
(2x + 3y)2 dA, where R is the triangle with vertices

at (−1, 0), (0, 1), and (1, 0).

PROBLEMS

In Problems 34–37, integrate f (x, y) = xy over the regionR.

34.

1

2

R
x

y 35.

−1

1

R

x

y

36.

2

R

(1, 1)

x

y 37.

2

1

R

x

y

38. (a) Use four subrectangles to approximate the volume

of the object whose base is the region 0 ≤ x ≤ 4

and 0 ≤ y ≤ 6, and whose height is given by

f (x, y) = xy. Find an overestimate and an under-

estimate and average the two.

(b) Integrate to find the exact volume of the three-

dimensional object described in part (a).

For Problems 39–42, sketch the region of integration then

rewrite the integral with the order of integration reversed.

39.
∫

3

0 ∫

6

2y

f (x, y) dx dy

40.
∫

2

0 ∫

√

4−x2

0

f (x, y) dy dx

41.
∫

3

−3 ∫

9−x2

0

f (x, y) dy dx

42.
∫

2

0 ∫

2−y

y−2

f (x, y) dx dy

In Problems 43–50, evaluate the integral by reversing the or-

der of integration.

43.
∫

1

0 ∫

1

y

ex
2
dx dy 44.

∫

1

0 ∫

1

y

sin (x2) dx dy

45.
∫

1

0 ∫

1

√

y

√

2 + x3 dx dy 46.
∫

3

0 ∫

9

y2

y sin(x2) dxdy

47.
∫

1

0 ∫

e

ey

x

ln x
dx dy 48.

∫

1

0 ∫

1

x

cos(y2) dy dx

49.
∫

8

0 ∫

2

3
√

y

1

1 + x4
dx dy 50.

∫

1

0 ∫

x

0

e2y−y
2
dy dx

51. Each of the integrals (I)–(VI) takes one of two distinct

values. Without evaluating, group them by value.

I.
∫

5

0 ∫

10

0

xy2 dx dy II.
∫

5

0 ∫

10

0

xy2 dy dx

III.
∫

10

0 ∫

5

0

xy2 dxdy IV.
∫

10

0 ∫

5

0

xy2 dy dx

V.
∫

5

0 ∫

10

0

uv2 du dv VI.
∫

5

0 ∫

10

0

uv2 dv du

52. Find the volume under the graph of the function

f (x, y) = 6x2y over the region shown in Figure 16.20.

1 2 3 4
0

2

4

6

8

x

y

Figure 16.20

53. (a) Find the volume below the surface z = x2 +y2 and

above the xy-plane for −1 ≤ x ≤ 1,−1 ≤ y ≤ 1.

(b) Find the volume above the surface z = x2 + y2

and below the plane z = 2 for −1 ≤ x ≤ 1,

−1 ≤ y ≤ 1.

54. Compute the integral

∫ ∫
R

(2x2 + y) dA,

where R is the triangular region with vertices at (0, 1),

(−2, 3) and (2, 3).

55. (a) Sketch the region in the xy-plane bounded by the

x-axis, y = x, and x + y = 1.

(b) Express the integral of f (x, y) over this region in

terms of iterated integrals in two ways. (In one, use

dx dy; in the other, use dy dx.)

(c) Using one of your answers to part (b), evaluate the

integral exactly with f (x, y) = x.
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56. Let f (x, y) = x2ex
2

and let R be the triangle bounded

by the lines x = 3, x = y∕2, and y = x in the xy-plane.

(a) Express ∫
R
f dA as a double integral in two differ-

ent ways.

(b) Evaluate one of them.

57. Find the average value of f (x, y) = x2 +4y on the rect-

angle 0 ≤ x ≤ 3 and 0 ≤ y ≤ 6.

58. Find the average value of f (x, y) = xy2 on the rectangle

0 ≤ x ≤ 4, 0 ≤ y ≤ 3.

59. Figure 16.21 shows two metal plates carrying electri-

cal charges. The charge density (in coulombs per square

meter) of each at the point (x, y) is �(x, y) = 6x+ 6 for

x, y in meters.

(a) Without calculation, decide which plate carries a

greater total charge, and explain your reasoning.

(b) Find the total charge on both plates, and compare

to your answer from part (a).

1

1

x

y

Plate 1

1

1

x

y

Plate 2

Figure 16.21

60. The population density in people per km2 for the

trapezoid-shaped town in Figure 16.22 for x, y in kilo-

meters is �(x, y) = 100x + 200y. Find the town’s pop-

ulation.

0 6

3

6

x

y

Figure 16.22

61. The quarter-disk-shaped metal plate in Figure 16.23 has

radius 3 and density �(x, y) = 2y gm/cm2, with x, y in

cm. Find the mass of the plate.

3

3

x

y

Figure 16.23

In Problems 62–63 set up, but do not evaluate, an iterated

integral for the volume of the solid.

62. Under the graph of f (x, y) = 25 − x2 − y2 and above

the xy-plane.

63. Below the graph of f (x, y) = 25 − x2 − y2 and above

the plane z = 16.

64. A solid with flat base in the xy-plane is bounded by the

vertical planes y = 0 and y − x = 4, and the slanted

plane 2x + y + z = 4.

(a) Draw the base of the solid.

(b) Set up, but do not evaluate, an iterated integral for

the volume of the solid.

In Problems 65–69, find the volume of the solid region.

65. Under the graph of f (x, y) = xy and above the square

0 ≤ x ≤ 2, 0 ≤ y ≤ 2 in the xy-plane.

66. Under the graph of f (x, y) = x2 + y2 and above the

triangle 0 ≤ y ≤ x, 0 ≤ x ≤ 1.

67. Under the graph of f (x, y) = x+y and above the region

y2 ≤ x, 0 ≤ x ≤ 9, y ≥ 0.

68. Under the graph of 2x + y + z = 4 in the first octant.

69. The solid region R bounded by the coordinate planes

and the graph of ax + by + cz = 1. Assume a, b, and

c > 0.

70. If R is the region x + y ≥ a, x2 + y2 ≤ a2, with a > 0,

evaluate the integral

∫
R

xy dA.

71. The region W lies below the surface f (x, y) =

2e−(x−1)
2−y2 and above the disk x2 + y2 ≤ 4 in the xy-

plane.

(a) Describe in words the contours of f , using

f (x, y) = 1 as an example.

(b) Write an integral giving the area of the cross-

section of W in the plane x = 1.

(c) Write an iterated double integral giving the volume

of W .

72. Find the average distance to the x-axis for points in the

region in the first quadrant bounded by the x-axis and

the graph of y = x − x2.

73. Give the contour diagram of a function f whose aver-

age value on the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 is

(a) Greater than the average of the values of f at the

four corners of the square.

(b) Less than the average of the values of f at the four

corners of the square.

74. The function f (x, y) = ax+ by has an average value of

20 on the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3.

(a) What can you say about the constants a and b?
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(b) Find two different choices for f that have average

value 20 on the rectangle, and give their contour

diagrams on the rectangle.

75. The function f (x, y) = ax2 + bxy+ cy2 has an average

value of 20 on the square 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.

(a) What can you say about the constants a, b, and c?

(b) Find two different choices for f that have average

value 20 on the square, and give their contour dia-

grams on the square.

Strengthen Your Understanding

In Problems 76–77, explain what is wrong with the state-

ment.

76. ∫
1

0
∫

x

0
f (x, y) dy dx = ∫

1

0
∫

y

0
f (x, y) dx dy

77. ∫
1

0
∫

y

0
xy dx dy = ∫

y

0
∫

1

0
xy dy dx

In Problems 78–80, give an example of:

78. An iterated double integral, with limits of integration,

giving the volume of a cylinder standing vertically with

a circular base in the xy-plane.

79. A nonconstant function, f , whose integral is 4 over the

triangular region with vertices (0, 0), (1, 0), (1, 1).

80. A double integral representing the volume of a triangu-

lar prism of base area 6.

Are the statements in Problems 81–88 true or false? Give

reasons for your answer.

81. The iterated integral ∫
1

0
∫

12

5
f dx dy is computed over

the rectangle 0 ≤ x ≤ 1, 5 ≤ y ≤ 12.

82. If R is the region inside the triangle with vertices

(0, 0), (1, 1) and (0, 2), then the double integral ∫
R
f dA

can be evaluated by an iterated integral of the form

∫
2

0
∫

1

0
f dx dy.

83. The region of integration of the iterated integral

∫
2

1
∫

x3

x2
f dy dx lies completely in the first quadrant

(that is, x ≥ 0, y ≥ 0).

84. If the limits a, b, c and d in the iterated integral

∫
b

a
∫

d

c
f dy dx are all positive, then the value of

∫
b

a
∫

d

c
f dy dx is also positive.

85. If f (x, y) is a function of y only, then ∫
b

a
∫

1

0
f dxdy =

∫
b

a
fdy.

86. If R is the region inside a circle of radius a, centered at

the origin, then ∫
R
f dA = ∫

a

−a
∫

√

a2−x2

0
f dy dx.

87. If f (x, y) = g(x) ⋅ ℎ(y), where g and ℎ are single-

variable functions, then

∫

b

a
∫

d

c

f dy dx =

(

∫

b

a

g(x) dx

)

⋅

(

∫

d

c

ℎ(y) dy

)

.

88. If f (x, y) = g(x) + ℎ(y), where g and ℎ are single-

variable functions, then

∫

b

a
∫

d

c

f dx dy =

(

∫

b

a

g(x) dx

)

+

(

∫

d

c

ℎ(y) dy

)

.

16.3 TRIPLE INTEGRALS

A continuous function of three variables can be integrated over a solid region W in 3-space in the

same way as a function of two variables is integrated over a flat region in 2-space. Again, we start

with a Riemann sum. First we subdivide W into smaller regions, then we multiply the volume of

each region by a value of the function in that region, and then we add the results. For example, if W

is the box a ≤ x ≤ b, c ≤ y ≤ d, p ≤ z ≤ q, then we subdivide each side into n, m, and l pieces,

thereby chopping W into nml smaller boxes, as shown in Figure 16.24.

Figure 16.24: Subdividing a three-dimensional box

The volume of each smaller box is

ΔV = ΔxΔyΔz,
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where Δx = (b − a)∕n, and Δy = (d − c)∕m, and Δz = (q − p)∕l. Using this subdivision, we pick

a point (uijk, vijk, wijk) in the ijk-th small box and construct a Riemann sum
∑

i,j,k

f (uijk, vijk, wijk) ΔV .

If f is continuous, as Δx, Δy, andΔz approach 0, this Riemann sum approaches the definite integral,

∫W
f dV , called a triple integral, which is defined as

∫W
f dV = lim

Δx,Δy,Δz→0

∑

i,j,k

f (uijk, vijk, wijk) ΔxΔyΔz.

As in the case of a double integral, we can evaluate this integral as an iterated integral:

Triple integral as an iterated integral

∫W
f dV =

∫

q

p

(

∫

d

c

(

∫

b

a

f (x, y, z) dx

)

dy

)

dz,

where y and z are treated as constants in the innermost (dx) integral, and z is treated as a

constant in the middle (dy) integral. Other orders of integration are possible.

Example 1 A cube C has sides of length 4 cm and is made of a material of variable density. If one corner is at

the origin and the adjacent corners are on the positive x, y, and z axes, then the density at the point

(x, y, z) is �(x, y, z) = 1 + xyz gm/cm3. Find the mass of the cube.

Solution Consider a small piece ΔV of the cube, small enough so that the density remains close to constant

over the piece. Then

Mass of small piece = Density ⋅ Volume ≈ �(x, y, z) ΔV .

To get the total mass, we add the masses of the small pieces and take the limit as ΔV → 0. Thus,

the mass is the triple integral

M =
∫C

� dV =
∫

4

0 ∫

4

0 ∫

4

0

(1 + xyz) dx dy dz =
∫

4

0 ∫

4

0

(

x +
1

2
x2yz

)

|

|

|

|

x=4

x=0

dy dz

=
∫

4

0 ∫

4

0

(4 + 8yz) dy dz =
∫

4

0

(

4y + 4y2z
) |

|

|

|

y=4

y=0

dz =
∫

4

0

(16 + 64z) dz = 576 gm.

Example 2 Express the volume of the building described in Example 1 on page 848 as a triple integral.

Solution The building is given by 0 ≤ x ≤ 8, 0 ≤ y ≤ 16, and 0 ≤ z ≤ 12 − x∕4 − y∕8. (See Figure 16.25.)

To find its volume, divide it into small cubes of volume ΔV = ΔxΔyΔz and add. First, make a

vertical stack of cubes above the point (x, y, 0). This stack goes from z = 0 to z = 12 − x∕4 − y∕8,

so

Volume of vertical stack ≈
∑

z

ΔV =
∑

z

ΔxΔyΔz =

(

∑

z

Δz

)

ΔxΔy.
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Next, line up these stacks parallel to the y-axis to form a slice from y = 0 to y = 16. So

Volume of slice ≈

(

∑

y

∑

z

ΔzΔy

)

Δx.

Finally, line up the slices along the x-axis from x = 0 to x = 8 and add up their volumes, to get

Volume of building ≈
∑

x

∑

y

∑

z

ΔzΔyΔx.

Thus, in the limit,

Volume of building =
∫

8

0 ∫

16

0 ∫

12−x∕4−y∕8

0

1 dz dy dx.

x

y

z

(0, 16, 10)

(0, 16, 0)

(8, 16, 0)

✠

(8, 16, 8)

✠

(x, y, 12 −
1

4
x −

1

8
y)

(x, y, 0)
✛

✛

✛

✛

8

16

(0, 0, 12)

(8, 0, 10)

(8, 0, 8)

(8, 0, 0)

x

y

z

Δx

Δy

✻

❄
Δz

(8, 0, 10)

(0, 0, 12)

8

16

Figure 16.25: Volume of building (shown to left) divided into blocks and slabs for a triple integral

The preceding examples show that the triple integral has interpretations similar to the double

integral:

• If �(x, y, z) is density, then
∫W

� dV is the total quantity in the solid region W .

•
∫W

1 dV is the volume of the solid region W .

Example 3 Set up an iterated integral to compute the mass of the solid cone bounded by z =
√

x2 + y2 and

z = 3, if the density is given by �(x, y, z) = z.

Solution We break the cone in Figure 16.26 into small cubes of volumeΔV = ΔxΔyΔz, on which the density

is approximately constant, and approximate the mass of each cube by �(x, y, z) ΔxΔyΔz. Stacking

the cubes vertically above the point (x, y, 0), starting on the cone at height z =
√

x2 + y2 and going

up to z = 3, tells us that the inner integral is

∫

3

√

x2+y2
�(x, y, z) dz =

∫

3

√

x2+y2
z dz.
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There is a stack for every point in the xy-plane in the shadow of the cone. The cone z =
√

x2 + y2

intersects the horizontal plane z = 3 in the circle x2 + y2 = 9, so there is a stack for all (x, y) in the

region x2 + y2 ≤ 9. Lining up the stacks parallel to the y-axis gives a slice from y = −
√

9 − x2 to

y =
√

9 − x2, for each fixed value of x. Thus, the limits on the middle integral are

∫

√

9−x2

−
√

9−x2 ∫

3

√

x2+y2
z dz dy.

Finally, there is a slice for each x between −3 and 3, so the integral we want is

Mass =
∫

3

−3 ∫

√

9−x2

−
√

9−x2 ∫

3

√

x2+y2
z dz dy dx.

Notice that setting up the limits on the two outer integrals was just like setting up the limits for

a double integral over the region x2 + y2 ≤ 9.

Figure 16.26: The cone z =
√

x2 + y2 with its

shadow on the xy-plane

As the previous example illustrates, for a region W contained between two surfaces, the inner-

most limits correspond to these surfaces. The middle and outer limits ensure that we integrate over

the “shadow” of W in the xy-plane.

Limits on Triple Integrals

∙ The limits for the outer integral are constants.

∙ The limits for the middle integral can involve only one variable (that in the outer integral).

∙ The limits for the inner integral can involve two variables (those on the two outer integrals).

Exercises and Problems for Section 16.3 Online Resource: Additional Problems for Section 16.3
EXERCISES

In Exercises 1–4, find the triple integrals of the function over

the region W .

1. f (x, y, z) = x2 + 5y2 − z, W is the rectangular box

0 ≤ x ≤ 2, −1 ≤ y ≤ 1, 2 ≤ z ≤ 3.

2. ℎ(x, y, z) = ax + by + cz, W is the rectangular box

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 2.

3. f (x, y, z) = sin x cos(y+ z), W is the cube 0 ≤ x ≤ �,

0 ≤ y ≤ �, 0 ≤ z ≤ �.

4. f (x, y, z) = e−x−y−z, W is the rectangular box with cor-

ners at (0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c).
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Sketch the region of integration in Exercises 5–13.

5.
∫

1

0 ∫

1

−1 ∫

√

1−x2

0

f (x, y, z) dzdx dy

6.
∫

1

0 ∫

1

−1 ∫

√

1−z2

0

f (x, y, z) dy dz dx

7.
∫

1

0 ∫

1

−1 ∫

√

1−x2

−
√

1−x2
f (x, y, z) dzdx dy

8.
∫

1

−1 ∫

1

0 ∫

√

1−z2

−
√

1−z2
f (x, y, z) dy dz dx

9.
∫

1

−1 ∫

√

1−x2

−
√

1−x2 ∫

√

1−x2−z2

0

f (x, y, z) dy dz dx

10.
∫

1

0 ∫

√

1−z2

−
√

1−z2 ∫

√

1−x2−z2

0

f (x, y, z) dy dx dz

11.
∫

1

0 ∫

√

1−y2

0 ∫

√

1−x2−y2

−
√

1−x2−y2
f (x, y, z) dz dx dy

12.
∫

1

0 ∫

√

1−z2

−
√

1−z2 ∫

√

1−y2−z2

−
√

1−y2−z2
f (x, y, z) dxdy dz

13.
∫

1

0 ∫

√

1−z2

0 ∫

√

1−x2−z2

−
√

1−x2−z2
f (x, y, z) dy dx dz

In Exercises 14–15, for x, y and z in meters, what does the

integral over the solid region E represent? Give units.

14.
∫
E

1 dV

15.
∫
E

�(x, y, z) dV , where �(x, y, z) is density, in kg/m3.

PROBLEMS

In Problems 16–20, decide whether the integrals are positive,

negative, or zero. Let S be the solid sphere x2 +y2 +z2 ≤ 1,

and T be the top half of this sphere (with z ≥ 0), and B be

the bottom half (with z ≤ 0), and R be the right half of the

sphere (with x ≥ 0), and L be the left half (with x ≤ 0).

16.
∫
T

ez dV 17.
∫
B

ez dV 18.
∫
S

sin z dV

19.
∫
T

sin z dV 20.
∫
R

sin z dV

Let W be the solid cone bounded by z =
√

x2 + y2 and

z = 2. For Problems 21–29, decide (without calculating its

value) whether the integral is positive, negative, or zero.

21. ∫
W
y dV 22. ∫

W
x dV

23. ∫
W
z dV 24. ∫

W
xy dV

25. ∫
W
xyz dV 26. ∫

W
(z − 2) dV

27. ∫
W

√

x2 + y2 dV 28. ∫
W
e−xyz dV

29. ∫
W
(z −

√

x2 + y2) dV

In Problems 30–34, let W be the solid cylinder bounded by

x2 + y2 = 1, z = 0, and z = 2. Decide (without calculating

its value) whether the integral is positive, negative, or zero.

30. ∫
W
x dV 31. ∫

W
z dV

32. ∫
W
(x2 + y2 − 2) dV 33. ∫

W
(z − 1) dV

34. ∫
W
e−y dV

35. Find the volume of the region bounded by the planes

z = 3y, z = y, y = 1, x = 1, and x = 2.

36. Find the volume of the region bounded by z = x2,

0 ≤ x ≤ 5, and the planes y = 0, y = 3, and z = 0.

37. Find the volume of the region in the first octant bounded

by the coordinate planes and the surface x+ y+ z = 2.

38. A trough with triangular cross-section lies along the x-

axis for 0 ≤ x ≤ 10. The slanted sides are given by

z = y and z = −y for 0 ≤ z ≤ 1 and the ends by x = 0

and x = 10, where x, y, z are in meters. The trough

contains a sludge whose density at the point (x, y, z) is

� = e−3x kg per m3.

(a) Express the total mass of sludge in the trough in

terms of triple integrals.

(b) Find the mass.

39. Find the volume of the region bounded by z = x+y, z =

10, and the planes x = 0, y = 0.

In Problems 40–45, write a triple integral, including limits

of integration, that gives the specified volume.

40. Between z = x + y and z = 1 + 2x + 2y and above

0 ≤ x ≤ 1, 0 ≤ y ≤ 2.

41. Between the paraboloid z = x2 + y2 and the sphere

x2 + y2 + z2 = 4 and above the disk x2 + y2 ≤ 1.

42. Between 2x+2y+z = 6 and 3x+4y+z = 6 and above

x + y ≤ 1, x ≥ 0, y ≥ 0.

43. Under the sphere x2 +y2 +z2 = 9 and above the region

between y = x and y = 2x − 2 in the xy-plane in the

first quadrant.

44. Between the top portion of the sphere x2 + y2 + z2 = 9

and the plane z = 2.

45. Under the sphere x2 +y2 +z2 = 4 and above the region

x2 + y2 ≤ 4, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2 in the xy-plane.
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In Problems 46–49, write limits of integration for the inte-

gral ∫
W
f (x, y, z) dV where W is the quarter or half sphere

or cylinder shown.

46.

x y

z

r
1

r

47.

1
2

2

x

y

z

48.

r
r

r

x
y

z 49.

r
r

r

x

y

z

50. Find the volume of the region between the plane z = x

and the surface z = x2, and the planes y = 0, and y = 3.

51. Find the volume of the region bounded by z = x + y,

0 ≤ x ≤ 5, 0 ≤ y ≤ 5, and the planes x = 0, y = 0, and

z = 0.

52. Find the volume of the pyramid with base in the plane

z = −6 and sides formed by the three planes y = 0 and

y − x = 4 and 2x + y + z = 4.

53. Find the volume between the planes z = 1 + x + y and

x + y + z = 1 and above the triangle x + y ≤ 1, x ≥ 0,

y ≥ 0 in the xy-plane.

54. Find the mass of a triangular-shaped solid bounded by

the planes z = 1 + x, z = 1 − x, z = 0, and with

0 ≤ y ≤ 3. The density is � = 10 − z gm/cm3, and

x, y, z are in cm.

55. Find the mass of the solid bounded by the xy-plane, yz-

plane, xz-plane, and the plane (x∕3)+(y∕2)+(z∕6) = 1,

if the density of the solid is given by �(x, y, z) = x+ y.

56. Find the mass of the pyramid with base in the plane

z = −6 and sides formed by the three planes y = 0 and

y−x = 4 and 2x+ y+ z = 4, if the density of the solid

is given by �(x, y, z) = y.

57. Let E be the solid pyramid bounded by the planes

x + z = 6, x − z = 0, y + z = 6, y − z = 0, and

above the plane z = 0 (see Figure 16.27). The density

at any point in the pyramid is given by �(x, y, z) = z

grams per cm3, where x, y, and z are measured in cm.

(a) Explain in practical terms what the triple integral

∫
E
z dV represents.

(b) In evaluating the integral from part (a), how many

separate triple integrals would be required if we

chose to integrate in the z-direction first?

(c) Evaluate the triple integral from part (a) by inte-

grating in a well-chosen order.

Figure 16.27

58. (a) What is the equation of the plane passing through

the points (1, 0, 0), (0, 1, 0), and (0, 0, 1)?

(b) Find the volume of the region bounded by this

plane and the planes x = 0, y = 0, and z = 0.

Problems 59–61 refer to Figure 16.28, which shows triangu-

lar portions of the planes 2x+4y+z = 4, 3x−2y = 0, z = 2,

and the three coordinate planes x = 0, y = 0, and z = 0. For

each solid region E, write down an iterated integral for the

triple integral ∫
E
f (x, y, z) dV .

Figure 16.28

59. E is the region bounded by y = 0, z = 0, 3x − 2y = 0,

and 2x + 4y + z = 4.

60. E is the region bounded by x = 0, y = 0, z = 0, z = 2,

and 2x + 4y + z = 4.

61. E is the region bounded by x = 0, z = 0, 3x − 2y = 0,

and 2x + 4y + z = 4.

62. Figure 16.29 shows part of a spherical ball of radius

5 cm. Write an iterated triple integral which represents

the volume of this region.

✻

❄

2 cm

Figure 16.29
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63. A solid region D is a half cylinder of radius 1 lying hor-

izontally with its rectangular base in the xy-plane and

its axis along the y-axis from y = 0 to y = 10. (The

region is above the xy-plane.)

(a) What is the equation of the curved surface of this

half cylinder?

(b) Write the limits of integration of the integral

∫
D
f (x, y, z) dV in Cartesian coordinates.

64. Set up, but do not evaluate, an iterated integral for the

volume of the solid formed by the intersections of the

cylinders x2 + z2 = 1 and y2 + z2 = 1.

Problems 65–67 refer to Figure 16.30, which shows E, the

region in the first octant bounded by the parabolic cylinder

z = 6y2 and the elliptical cylinder x2 + 3y2 = 12. For the

given order of integration, write an iterated integral equiva-

lent to the triple integral ∫
E
f (x, y, z) dV .

Figure 16.30

65. dz dxdy 66. dx dz dy 67. dy dz dx

Problems 68–71 refer to Figure 16.31, which shows E, the

region in the first octant bounded by the planes z = 5 and

5x + 3z = 15 and the elliptical cylinder 4x2 + 9y2 = 36.

For the given order of integration, write an iterated integral

equivalent to the triple integral ∫
E
f (x, y, z) dV .

Figure 16.31

68. dz dy dx 69. dz dx dy

70. dy dz dx 71. dy dx dz

Problems 72–74 refer to Figure 16.32, which shows E, the

region in the first octant bounded by the plane x + y = 2

and the parabolic cylinder z = 4 − x2. For the given order

of integration, write an iterated integral, or sum of integrals,

equivalent to the triple integral ∫
E
f (x, y, z) dV .

Figure 16.32

72. dz dy dx 73. dy dz dx 74. dy dx dz

Problems 75–76 concern the center of mass, the point at

which the mass of a solid body in motion can be considered

to be concentrated. If the object has density �(x, y, z) at the

point (x, y, z) and occupies a region W , then the coordinates

(x̄, ȳ, z̄) of the center of mass are given by

x̄ =
1

m ∫
W

x� dV ȳ =
1

m ∫
W

y� dV z̄ =
1

m ∫
W

z� dV

where m = ∫
W
� dV is the total mass of the body.

75. A solid is bounded below by the square z = 0, 0 ≤ x ≤

1, 0 ≤ y ≤ 1 and above by the surface z = x + y + 1.

Find the total mass and the coordinates of the center of

mass if the density is 1 gm/cm3 and x, y, z are measured

in centimeters.

76. Find the center of mass of the tetrahedron that is

bounded by the xy, yz, xz planes and the plane x +

2y+ 3z = 1. Assume the density is 1 gm/cm3 and x, y,

z are in centimeters.

Strengthen Your Understanding

In Problems 77–78, explain what is wrong with the state-

ment.

77. Let S be the solid sphere x2 + y2 + z2 ≤ 1 and let U be

the upper half of S where z ≥ 0. Then

∫
S
f (x, y, z) dV = 2 ∫

U
f (x, y, z) dV .

78. ∫
1

0
∫

x

0
∫

y

0
f (x, y, z) dz dy dx = ∫

1

0
∫

1

y
∫

x

0
f (x, y, z) dz dx dy

In Problems 79–80, give an example of:

79. A function f such that ∫
R
fdV = 7, where R is the

cylinder x2 + y2 ≤ 4, 0 ≤ z ≤ 3.

80. A nonconstant function f (x, y, z) such that if B is the

region enclosed by the sphere of radius 1 centered at the

origin, the integral ∫
B
f (x, y, z) dx dy dz is zero.
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Are the statements in Problems 81–90 true or false? Give

reasons for your answer.

81. If �(x, y, z) is mass density of a material in 3-space,

then ∫
W
�(x, y, z) dV gives the volume of the solid re-

gion W .

82. The region of integration of the triple iterated inte-

gral ∫
1

0
∫

1

0
∫

x

0
f dz dy dx lies above a square in the xy-

plane and below a plane.

83. If W is the unit ball x2 + y2 + z2 ≤ 1 then an iterated

integral over W is ∫
1

0
∫

√

1−x2

0
∫

√

1−x2−y2

0
f dz dy dx.

84. The iterated integrals ∫
1

0
∫

1−x

0
∫

1−x−y

0
f dz dy dx and

∫
1

0
∫

1−z

0
∫

1−y−z

0
f dx dy dz are equal.

85. The iterated integrals ∫
1

−1
∫

1

0
∫

1−x2

0
f dz dy dx and

∫
1

0
∫

1

0
∫

√

1−z

−
√

1−z
f dx dy dz are equal.

86. If W is a rectangular solid in 3-space, then ∫
W
f dV =

∫
b

a
∫

d

c
∫

k

e
fdz dy dx, where a, b, c, d, e, and k are con-

stants.

87. If W is the unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1

and ∫
W
f dV = 0, then f = 0 everywhere in the unit

cube.

88. If f > g at all points in the solid region W , then

∫
W
f dV > ∫

W
g dV .

89. If W1 and W2 are solid regions with volume(W1) >

volume(W2) then ∫
W1

f dV > ∫
W2

f dV .

90. Both double and triple integrals can be used to compute

volume.

16.4 DOUBLE INTEGRALS IN POLAR COORDINATES

Integration in Polar Coordinates

We started this chapter by putting a rectangular grid on the fox population density map, to estimate

the total population using a Riemann sum. However, sometimes a polar grid is more appropriate.

Example 1 A biologist studying insect populations around a circular lake divides the area into the polar sectors

of radii 2, 3, and 4 km in Figure 16.33. The approximate population density in each sector is shown

in millions per square km. Estimate the total insect population around the lake.

Shore of the lake

Lake

13

20
17

10

14

8

17
10

2 3 4

Figure 16.33: An insect-infested lake showing the insect population density by sector

Solution To get the estimate, we multiply the population density in each sector by the area of that sector.

Unlike the rectangles in a rectangular grid, the sectors in this grid do not all have the same area. The

inner sectors have area
1

4
(�32 − �22) =

5�

4
≈ 3.93 km2,

and the outer sectors have area

1

4
(�42 − �32) =

7�

4
≈ 5.50 km2,

so we estimate

Population ≈ (20)(3.93) + (17)(3.93) + (14)(3.93) + (17)(3.93)

+(13)(5.50) + (10)(5.50) + (8)(5.50) + (10)(5.50)

= 492.74 million insects.
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What Is dA in Polar Coordinates?

The previous example used a polar grid rather than a rectangular grid. A rectangular grid is con-

structed from vertical and horizontal lines of the form x = k (a constant) and y = l (another con-

stant). In polar coordinates, r = k gives a circle of radius k centered at the origin and � = l gives a

ray emanating from the origin (at angle l with the x-axis). A polar grid is built out of these circles

and rays. Suppose we want to integrate f (r, �) over the region R in Figure 16.34.

�0 = �

�n = �

r0 = a

rm = b

x

y

✠

R

Figure 16.34: Dividing up a region using a polar grid

❯
■

✛

✛

Δr

Δ�

☛
�

r

❨
Arc of circle
of radius r

rΔ�

✙
ΔA

x

y

Figure 16.35: Calculating area ΔA in polar coordinates

Choosing (rij, �ij ) in the ij-th bent rectangle in Figure 16.34 gives a Riemann sum:
∑

i,j

f (rij , �ij) ΔA.

To calculate the area ΔA, look at Figure 16.35. If Δr and Δ� are small, the shaded region is approx-

imately a rectangle with sides rΔ� and Δr, so

ΔA ≈ rΔ�Δr.

Thus, the Riemann sum is approximately
∑

i,j

f (rij , �ij) rij Δ�Δr.

If we take the limit as Δr and Δ� approach 0, we obtain

∫R
f dA =

∫

�

� ∫

b

a

f (r, �) r dr d�.

When computing integrals in polar coordinates, use x = r cos �, y = r sin �, x2 + y2 = r2. Put

dA = r dr d� or dA = r d� dr.

Example 2 Compute the integral of f (x, y) = 1∕(x2 + y2)3∕2 over the region R shown in Figure 16.36.

�

4

x

y

1 2

R

Figure 16.36: Integrate f over the polar region
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Solution The region R is described by the inequalities 1 ≤ r ≤ 2, 0 ≤ � ≤ �∕4. In polar coordinates,

r =
√

x2 + y2, so we can write f as

f (x, y) =
1

(x2 + y2)3∕2
=

1

(r2)3∕2
=

1

r3
.

Then

∫R
f dA =

∫

�∕4

0 ∫

2

1

1

r3
r dr d� =

∫

�∕4

0

(

∫

2

1

r−2 dr

)

d�

=
∫

�∕4

0

−
1

r

|

|

|

|

r=2

r=1

d� =
∫

�∕4

0

1

2
d� =

�

8
.

Example 3 For each region in Figure 16.37, decide whether to integrate using polar or Cartesian coordinates.

On the basis of its shape, write an iterated integral of an arbitrary function f (x, y) over the region.

1 3

−1

1

2

x

y(a)

−3 3

−3

3

x

y(b)

2
−1

1

2

3

x

y(c)

1

2

−2 −1
x

y(d)

Figure 16.37

Solution (a) Since this is a rectangular region, Cartesian coordinates are likely to be a better choice. The

rectangle is described by the inequalities 1 ≤ x ≤ 3 and −1 ≤ y ≤ 2, so the integral is

∫

2

−1 ∫

3

1

f (x, y) dx dy.

(b) A circle is best described in polar coordinates. The radius is 3, so r goes from 0 to 3, and to

describe the whole circle, � goes from 0 to 2�. The integral is

∫

2�

0 ∫

3

0

f (r cos �, r sin �) r dr d�.

(c) The bottom boundary of this trapezoid is the line y = (x∕2) − 1 and the top is the line y = 3,

so we use Cartesian coordinates. If we integrate with respect to y first, the lower limit of the

integral is (x∕2) − 1 and the upper limit is 3. The x limits are x = 0 to x = 2. So the integral is

∫

2

0 ∫

3

(x∕2)−1

f (x, y) dy dx.

(d) This is another polar region: it is a piece of a ring in which r goes from 1 to 2. Since it is in the

second quadrant, � goes from �∕2 to �. The integral is

∫

�

�∕2 ∫

2

1

f (r cos �, r sin �) r dr d�.
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Exercises and Problems for Section 16.4 Online Resource: Additional Problems for Section 16.4
EXERCISES

For the regions R in Exercises 1–4, write ∫
R
f dA as an it-

erated integral in polar coordinates.

1. y

x

0.5

0.5

2.
√

2

−
√

2

−
√

2
√

2

x

y

3.

−1 1

2

x

y 4.

1

2

−2 −1
x

y

In Exercises 5–8, choose rectangular or polar coordinates to

set up an iterated integral of an arbitrary function f (x, y)

over the region.

5.

1 5

2

4

x

y 6.

−5 5

−5

5

x

y

7. −4 −2 2 4

−4

−2

x
y 8.

2

1

3

5

x

y

Sketch the region of integration in Exercises 9–15.

9.
∫

4

0 ∫

�∕2

−�∕2

f (r, �) r d� dr

10.
∫

�

�∕2 ∫

1

0

f (r, �) r dr d�

11.
∫

2�

0 ∫

2

1

f (r, �) r dr d�

12.
∫

�∕3

�∕6 ∫

1

0

f (r, �) r dr d�

13.
∫

�∕4

0 ∫

1∕ cos �

0

f (r, �) r dr d�

14.
∫

4

3 ∫

3�∕2

3�∕4

f (r, �) r d� dr

15.
∫

�∕2

�∕4 ∫

2∕ sin �

0

f (r, �) r dr d�

PROBLEMS

In Problems 16–18, evaluate the integral.

16. ∫
R

√

x2 + y2 dxdy where R is 4 ≤ x2 + y2 ≤ 9.

17. ∫
R
sin(x2 + y2) dA, where R is the disk of radius 2 cen-

tered at the origin.

18. ∫
R
(x2 −y2) dA, where R is the first quadrant region be-

tween the circles of radius 1 and radius 2.

Convert the integrals in Problems 19–21 to polar coordinates

and evaluate.

19.
∫

0

−1 ∫

√

1−x2

−
√

1−x2
xdy dx 20.

∫

√

6

0 ∫

x

−x

dy dx

21.
∫

√

2

0 ∫

√

4−y2

y

xy dx dy

Problems 22–26 concern Figure 16.38, which shows regions

R1, R2, and R3 contained in the semicircle x2 + y2 = 4 with

y ≥ 0.

−2 −1 2

2

R1 R2

R3

✛ √

3x + y = 0

✠
x2 + y2 = 4

x

y

Figure 16.38

22. In Cartesian coordinates, write ∫
R1

2y dA as an iterated

integral in two different ways and then evaluate it.

23. In Cartesian coordinates, write ∫
R2

2y dA as an iterated

integral in two different ways.

24. Evaluate ∫
R3
(x2 + y2) dA.

25. Evaluate ∫
R
12y dA, where R is the region formed by

combining the regions R1 and R2.
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26. Evaluate ∫
S
x dA, where S is the region formed by

combining the regions R2 and R3.

27. Consider the integral ∫
3

0
∫

1

x∕3
f (x, y) dy dx.

(a) Sketch the region R over which the integration is

being performed.

(b) Rewrite the integral with the order of integration

reversed.

(c) Rewrite the integral in polar coordinates.

28. Describe the region of integration for ∫
�∕2

�∕4
∫

4∕ sin �

1∕ sin �
f (r, �)r dr d�.

29. Evaluate the integral by converting it into Cartesian co-

ordinates:

∫

�∕6

0 ∫

2∕ cos �

0

r dr d�.

30. (a) Sketch the region of integration of

∫

1

0 ∫

√

4−x2

√

1−x2
x dy dx +

∫

2

1 ∫

√

4−x2

0

xdy dx

(b) Evaluate the quantity in part (a).

31. Find the volume of the region between the graph of

f (x, y) = 25 − x2 − y2 and the xy plane.

32. Find the volume of an ice cream cone bounded by

the hemisphere z =
√

8 − x2 − y2 and the cone z =
√

x2 + y2.

33. (a) For a > 0, find the volume under the graph of

z = e−(x
2+y2) above the disk x2 + y2 ≤ a2.

(b) What happens to the volume as a → ∞?

34. A circular metal disk of radius 3 lies in the xy-plane

with its center at the origin. At a distance r from the ori-

gin, the density of the metal per unit area is � =
1

r2 + 1
.

(a) Write a double integral giving the total mass of the

disk. Include limits of integration.

(b) Evaluate the integral.

35. A city surrounds a bay as shown in Figure 16.39. The

population density of the city (in thousands of people

per square km) is �(r, �), where r and � are polar coor-

dinates and distances are in km.

(a) Set up an iterated integral in polar coordinates giv-

ing the total population of the city.

(b) The population density decreases the farther you

live from the shoreline of the bay; it also decreases

the farther you live from the ocean. Which of the

following functions best describes this situation?

(i) �(r, �) = (4 − r)(2 + cos �)

(ii) �(r, �) = (4 − r)(2 + sin �)

(iii) �(r, �) = (r + 4)(2 + cos �)

(c) Estimate the population using your answers to

parts (a) and (b).

City

■
Bay

x (km)

y (km)

Ocean

1

4

Figure 16.39

36. A disk of radius 5 cm has density 10 gm/cm2 at its cen-

ter and density 0 at its edge, and its density is a linear

function of the distance from the center. Find the mass

of the disk.

37. Electric charge is distributed over the xy-plane, with

density inversely proportional to the distance from the

origin. Show that the total charge inside a circle of ra-

dius R centered at the origin is proportional to R. What

is the constant of proportionality?

38. (a) Graph r = 1∕(2 cos �) for −�∕2 ≤ � ≤ �∕2 and

r = 1.

(b) Write an iterated integral representing the area in-

side the curve r = 1 and to the right of r =

1∕(2 cos �). Evaluate the integral.

39. (a) Sketch the circles r = 2 cos � for −�∕2 ≤ � ≤ �∕2

and r = 1.

(b) Write an iterated integral representing the area in-

side the circle r = 2 cos � and outside the circle

r = 1. Evaluate the integral.

Strengthen Your Understanding

In Problems 40–44, explain what is wrong with the state-

ment.

40. If R is the region bounded by x = 1, y = 0, y = x, then

in polar coordinates ∫
R
x dA = ∫

�∕4

0
∫

1

0
r2 cos � dr d�.

41. If R is the region x2 + y2 ≤ 4, then ∫
R
(x2 + y2) dA =

∫
2�

0
∫

2

0
r2 dr d�.

42. ∫
1

0
∫

1

0

√

x2 + y2 dy dx = ∫
�∕2

0
∫

1

0
r2 dr d�

43. ∫
2

1
∫

√

4−x2

0
1 dy dx = ∫

�∕2

0
∫

2

1
r dr d�

44. ∫
1

0
∫

�

0
r dr d� = ∫

�

0
∫

1

0
r dr d�

In Problems 45–48, give an example of:

45. A region R of integration in the first quadrant which

suggests the use of polar coordinates.

46. An integrand f (x, y) that suggests the use of polar co-

ordinates.
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47. A function f (x, y) such that ∫
R
f (x, y) dy dx in polar

coordinates has an integrand without a factor of r.

48. A region R such that ∫
R
f (x, y) dA must be broken into

two integrals in Cartesian coordinates, but only needs

one integral in polar coordinates.

49. Which of the following integrals give the area of the

unit circle?

(a)
∫

1

−1 ∫

√

1−x2

−
√

1−x2
dy dx (b)

∫

1

−1 ∫

√

1−x2

−
√

1−x2
x dy dx

(c)
∫

2�

0 ∫

1

0

r dr d� (d)
∫

2�

0 ∫

1

0

dr d�

(e)
∫

1

0 ∫

2�

0

r d� dr (f)
∫

1

0 ∫

2�

0

d� dr

Are the statements in Problems 50–55 true or false? Give

reasons for your answer.

50. The integral ∫
2�

0
∫

1

0
dr d� gives the area of the unit cir-

cle.

51. The quantity 8 ∫
7

5
∫

�∕4

0
r d� dr gives the area of a ring

with radius between 5 and 7.

52. Let R be the region inside the semicircle x2 + y2 = 9

with y ≥ 0. Then ∫
R
(x + y) dA = ∫

�

0
∫

3

0
r dr d�

53. The integrals ∫
�

0
∫

1

0
r2 cos � dr d� and 2 ∫

�∕2

0
∫

1

0
r2 cos � dr d�

are equal.

54. The integral ∫
�∕4

0
∫

1∕ cos �

0
r dr d� gives the area of the

region 0 ≤ x ≤ 1, 0 ≤ y ≤ x.

55. The integral ∫
2�

0
∫

1

0
r3 dr d� gives the area of the unit

circle.

16.5 INTEGRALS IN CYLINDRICAL AND SPHERICAL COORDINATES

Some double integrals are easier to evaluate in polar, rather than Cartesian, coordinates. Similarly,

some triple integrals are easier in non-Cartesian coordinates.

Cylindrical Coordinates

The cylindrical coordinates of a point (x, y, z) in 3-space are obtained by representing the x and y

coordinates in polar coordinates and letting the z-coordinate be the z-coordinate of the Cartesian

coordinate system. (See Figure 16.40.)

Relation Between Cartesian and Cylindrical Coordinates

Each point in 3-space is represented using 0 ≤ r < ∞, 0 ≤ � ≤ 2�, −∞ < z < ∞.

x = r cos �,

y = r sin �,

z = z.

As with polar coordinates in the plane, note that x2 + y2 = r2.

x

y

z

� r

(r, �, 0)

P = (r, �, z)

z

Figure 16.40: Cylindrical

coordinates: (r, �, z)
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A useful way to visualize cylindrical coordinates is to sketch the surfaces obtained by setting

one of the coordinates equal to a constant. See Figures 16.41–16.43.

x y

z

✠

r = 1

✲r = 2

Figure 16.41: The surfaces r = 1 and

r = 2

Figure 16.42: The surfaces � = �∕4

and � = 3�∕4

Figure 16.43: The surfaces z = −1 and

z = 3

Setting r = c (where c is constant) gives a cylinder around the z-axis whose radius is c. Setting

� = c gives a half-plane perpendicular to the xy plane, with one edge along the z-axis, making an

angle c with the x-axis. Setting z = c gives a horizontal plane |c| units from the xy-plane. We call

these fundamental surfaces.

The regions that can most easily be described in cylindrical coordinates are those regions whose

boundaries are such fundamental surfaces. (For example, vertical cylinders, or wedge-shaped parts

of vertical cylinders.)

Example 1 Describe in cylindrical coordinates a wedge of cheese cut from a cylinder 4 cm high and 6 cm in

radius; this wedge subtends an angle of �∕6 at the center. (See Figure 16.44.)

Solution The wedge is described by the inequalities 0 ≤ r ≤ 6, and 0 ≤ z ≤ 4, and 0 ≤ � ≤ �∕6.

x

y

z

✛

✛

4 cm

✛

✛

6 cm
✛ �

6

Figure 16.44: A wedge of cheese

Integration in Cylindrical Coordinates

To integrate a double integral ∫
R
f dA in polar coordinates, we had to express the area element dA

in terms of polar coordinates: dA = r dr d�. To evaluate a triple integral ∫
W

f dV in cylindrical

coordinates, we need to express the volume element dV in cylindrical coordinates.

In Figure 16.45, consider the volume element ΔV bounded by fundamental surfaces. The area

of the base is ΔA ≈ rΔrΔ�. Since the height is Δz, the volume element is given approximately by

ΔV ≈ rΔrΔ�Δz.
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When computing integrals in cylindrical coordinates, put dV = r dr d� dz. Other orders of

integration are also possible.

✛ ΔV

Δ�

✛

✛

✻

❄
Δz

✻

❄

z

✛ ✛✛ ✛rΔ� Δr

r

z

x

y

Figure 16.45: Volume element in cylindrical coordinates

Example 2 Find the mass of the wedge of cheese in Example 1, if its density is 1.2 grams/cm3.

Solution If the wedge is W , its mass is

∫W
1.2 dV .

In cylindrical coordinates this integral is

∫

4

0 ∫

�∕6

0 ∫

6

0

1.2 r dr d� dz =
∫

4

0 ∫

�∕6

0

0.6r2
|

|

|

|

6

0

d� dz = 21.6
∫

4

0 ∫

�∕6

0

d� dz

= 21.6
(

�

6

)

4 = 45.239 grams.

Example 3 A water tank in the shape of a hemisphere has radius a; its base is its plane face. Find the volume,

V , of water in the tank as a function of ℎ, the depth of the water.

Solution In Cartesian coordinates, a sphere of radius a has the equation x2 +y2 +z2 = a2. (See Figure 16.46.)

In cylindrical coordinates, r2 = x2 + y2, so this becomes

r2 + z2 = a2.

Thus, if we want to describe the amount of water in the tank in cylindrical coordinates, we let r go

from 0 to
√

a2 − z2, we let � go from 0 to 2�, and we let z go from 0 to ℎ, giving

Volume

of water
=
∫W

1 dV =
∫

2�

0 ∫

ℎ

0 ∫

√

a2−z2

0

r dr dz d� =
∫

2�

0 ∫

ℎ

0

r2

2

|

|

|

|

r=
√

a2−z2

r=0

dz d�

=
∫

2�

0 ∫

ℎ

0

1

2
(a2 − z2) dz d� =

∫

2�

0

1

2

(

a2z −
z3

3

)

|

|

|

|

z=ℎ

z=0

d�

=
∫

2�

0

1

2

(

a2ℎ −
ℎ3

3

)

d� = �

(

a2ℎ −
ℎ3

3

)

.
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x

z

✻

❄

ℎ

✛

✛

r

r2 + z2 = a2

Figure 16.46: Hemispherical water tank with radius a and water of depth ℎ

Spherical Coordinates

In Figure 16.47, the point P has coordinates (x, y, z) in the Cartesian coordinate system. We define

spherical coordinates �, �, and � for P as follows: � =
√

x2 + y2 + z2 is the distance of P from the

origin; � is the angle between the positive z-axis and the line through the origin and the point P ;

and � is the same as in cylindrical coordinates.

Figure 16.47: Spherical coordinates: (�,�, �)

In cylindrical coordinates,

x = r cos �, and y = r sin �, and z = z.

From Figure 16.47 we have z = � cos� and r = � sin�, giving the following relationship:

Relation Between Cartesian and Spherical Coordinates

Each point in 3-space is represented using 0 ≤ � < ∞, 0 ≤ � ≤ �, and 0 ≤ � ≤ 2�.

x = � sin� cos �

y = � sin� sin �

z = � cos�.

Also, �2 = x2 + y2 + z2.

This system of coordinates is useful when there is spherical symmetry with respect to the ori-

gin, either in the region of integration or in the integrand. The fundamental surfaces in spherical

coordinates are � = k (a constant), which is a sphere of radius k centered at the origin, � = k (a

constant), which is the half-plane with its edge along the z-axis, and � = k (a constant), which is a

cone if k ≠ �∕2 and the xy-plane if k = �∕2. (See Figures 16.48–16.50.)
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Figure 16.48: The surfaces

� = 1 and � = 2

Figure 16.49: The surfaces � = �∕4

and � = 3�∕4

Figure 16.50: The surfaces � = �∕6 and

� = 2�∕3

Integration in Spherical Coordinates
To use spherical coordinates in triple integrals we need to express the volume element, dV , in spher-

ical coordinates. From Figure 16.51, we see that the volume element can be approximated by a box

with curved edges. One edge has length Δ�. The edge parallel to the xy-plane is an arc of a cir-

cle made from rotating the cylindrical radius r (= � sin�) through an angle Δ�, and so has length

� sin�Δ�. The remaining edge comes from rotating the radius � through an angle Δ�, and so has

length �Δ�. Therefore, ΔV ≈ Δ�(�Δ�)(� sin�Δ�) = �2 sin�Δ�Δ�Δ�.

x

y

z

❘
Δ�

Δ�

✠

�Δ�
� sin�Δ�

■
Δ�

�

�

❄

✛

✛

�

✛

✛� sin�

Figure 16.51: Volume element in spherical coordinates
Thus:

When computing integrals in spherical coordinates, put dV = �2 sin�d� d� d�. Other orders

of integration are also possible.

Example 4 Use spherical coordinates to derive the formula for the volume of a ball of radius a.

Solution In spherical coordinates, a ball of radius a is described by the inequalities 0 ≤ � ≤ a, 0 ≤ � ≤ 2�,

and 0 ≤ � ≤ �. Note that � goes from 0 to 2�, whereas � goes from 0 to �. We find the volume by

integrating the constant density function 1 over the ball:

Volume =
∫R

1 dV =
∫

2�

0 ∫

�

0 ∫

a

0

�2 sin�d� d� d� =
∫

2�

0 ∫

�

0

1

3
a3 sin�d� d�

=
1

3
a3

∫

2�

0

− cos�
|

|

|

|

�

0

d� =
2

3
a3

∫

2�

0

d� =
4�a3

3
.
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Example 5 Find the magnitude of the gravitational force exerted by a solid hemisphere of radius a and constant

density � on a unit mass located at the center of the base of the hemisphere.

Solution Assume the base of the hemisphere rests on the xy-plane with center at the origin. (See Figure 16.52.)

Newton’s law of gravitation says that the force between two masses m1 and m2 at a distance r apart

is F = Gm1m2∕r
2, where G is the gravitational constant.

In this example, symmetry shows that the net component of the force on the particle at the origin

due to the hemisphere is in the z direction only. Any force in the x or y direction from some part of

the hemisphere is canceled by the force from another part of the hemisphere directly opposite the

first.

To compute the net z-component of the gravitational force, we imagine a small piece of the

hemisphere with volume ΔV , located at spherical coordinates (�, �, �). This piece has mass �ΔV

and exerts a force of magnitude F on the unit mass at the origin. The z-component of this force

is given by its projection onto the z-axis, which can be seen from the figure to be F cos�. The

distance from the mass �ΔV to the unit mass at the origin is the spherical coordinate �. Therefore,

the z-component of the force due to the small piece ΔV is

z-component

of force
=

G(�ΔV )(1)

�2
cos�.

Adding the contributions of the small pieces, we get a vertical force with magnitude

F =
∫

2�

0 ∫

�∕2

0 ∫

a

0

(

G�

�2

)

(cos�)�2 sin�d� d� d� =
∫

2�

0 ∫

�∕2

0

G�(cos� sin�)�
|

|

|

|

�=a

�=0

d�d�

=
∫

2�

0 ∫

�∕2

0

G�a cos� sin�d� d� =
∫

2�

0

G�a

(

−
(cos�)2

2

)

|

|

|

|

�=�∕2

�=0

d�

=
∫

2�

0

G�a

(

1

2

)

d� = G�a�.

The integral in this example is improper because the region of integration contains the origin, where

the force is undefined. However, it can be shown that the result is nevertheless correct.

x

y

z

✠
ΔV

�

✛ ✛a✒

Unit mass

✲z-component
of force

✛ Force, F , due
to mass �dV

Figure 16.52: Gravitational force of hemisphere on mass at origin

Exercises and Problems for Section 16.5 Online Resource: Additional Problems for Section 16.5
EXERCISES

1. Match the equations in (a)–(f) with one of the surfaces

in (I)–(VII).

(a) x = 5 (b) x2 + z2 = 7 (c) � = 5

(d) z = 1 (e) r = 3 (f) � = 2�

(I) Cylinder, centered on x-axis.

(II) Cylinder, centered on y-axis.

(III) Cylinder, centered on z-axis.

(IV) Plane, perpendicular to the x-axis.

(V) Plane, perpendicular to the y-axis.

(VI) Plane, perpendicular to the z-axis.

(VII) Sphere.
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In Exercises 2–7, find an equation for the surface.

2. The vertical plane y = x in cylindrical coordinates.

3. The top half of the sphere x2+y2+z2 = 1 in cylindrical

coordinates.

4. The cone z =
√

x2 + y2 in cylindrical coordinates.

5. The cone z =
√

x2 + y2 in spherical coordinates.

6. The plane z = 10 in spherical coordinates.

7. The plane z = 4 in spherical coordinates.

In Exercises 8–9, evaluate the triple integrals in cylindrical

coordinates over the region W .

8. f (x, y, z) = sin(x2 + y2), W is the solid cylinder with

height 4 and with base of radius 1 centered on the z axis

at z = −1.

9. f (x, y, z) = x2 + y2 + z2, W is the region 0 ≤ r ≤ 4,

�∕4 ≤ � ≤ 3�∕4, −1 ≤ z ≤ 1.

In Exercises 10–11, evaluate the triple integrals in spherical

coordinates.

10. f (�, �, �) = sin�, over the region 0 ≤ � ≤ 2�,

0 ≤ � ≤ �∕4, 1 ≤ � ≤ 2.

11. f (x, y, z) = 1∕(x2 + y2 + z2)1∕2 over the bottom half of

the sphere of radius 5 centered at the origin.

For Exercises 12–18, choose coordinates and set up a triple

integral, including limits of integration, for a density func-

tion f over the region.

12. 13.

14. 15.

16. A piece of a sphere; angle at the center is �∕3.

17.

18.

PROBLEMS

In Problems 19–21, if W is the region in Figure 16.53, what

are the limits of integration?

x

y

z

4

(2, 0, 4)

Figure 16.53: Cone with flat top,

symmetric about z-axis

19.
∫

?

? ∫

?

? ∫

?

?

f (r, �, z)r dz dr d�

20.
∫

?

? ∫

?

? ∫

?

?

g(�,�, �)�2 sin�d� d� d�

21.
∫

?

? ∫

?

? ∫

?

?

ℎ(x, y, z) dz dy dx

22. Write a triple integral in cylindrical coordinates giving

the volume of a sphere of radius K centered at the ori-

gin. Use the order dz dr d�.

23. Write a triple integral in spherical coordinates giving

the volume of a sphere of radius K centered at the ori-

gin. Use the order d� d� d�.
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In Problems 24–26, for the regions W shown, write the lim-

its of integration for ∫
W

dV in the following coordinates:

(a) Cartesian (b) Cylindrical (c) Spherical

24.

x

One-eighth sphere

y

z

1

1

−1

25.

x

y

z

1

Cone, topped by sphere
of radius 1 centered at origin, 90◦ at vertex

26.

x
y

z

1∕
√

2

Cone, flat on top,
�∕2 at vertex

27. Write a triple integral representing the volume above

the cone z =
√

x2 + y2 and below the sphere of radius

2 centered at the origin. Include limits of integration but

do not evaluate. Use:

(a) Cylindrical coordinates

(b) Spherical coordinates

28. Write a triple integral representing the volume of the

region between spheres of radius 1 and 2, both centered

at the origin. Include limits of integration but do not

evaluate. Use:

(a) Spherical coordinates.

(b) Cylindrical coordinates. Write your answer as the

difference of two integrals.

In Problems 29–34, write a triple integral including limits of

integration that gives the specified volume.

29. Under � = 3 and above � = �∕3.

30. Under � = 3 and above z = r.

31. The region between z = 5 and z = 10, with 2 ≤

x2 + y2 ≤ 3 and 0 ≤ � ≤ �.

32. Between the cone z =
√

x2 + y2 and the first quadrant

of the xy-plane, with x2 + y2 ≤ 7.

33. The cap of the solid sphere x2 + y2 + z2 ≤ 10 cut off by

the plane z = 1.

34. Below the cone z = r, above the xy-plane, and inside

the sphere x2 + y2 + z2 = 8.

35. (a) Write an integral (including limits of integration)

representing the volume of the region inside the

cone z =
√

3(x2 + y2) and below the plane z = 1.

(b) Evaluate the integral.

36. Find the volume between the cone z =
√

x2 + y2 and

the plane z = 10 + x above the disk x2 + y2 ≤ 1.

37. Find the volume between the cone x =
√

y2 + z2 and

the sphere x2 + y2 + z2 = 4.

38. The sphere of radius 2 centered at the origin is sliced

horizontally at z = 1. What is the volume of the cap

above the plane z = 1?

39. Suppose W is the region outside the cylinder x2 +y2 =

1 and inside the sphere x2 + y2 + z2 = 2. Calculate

∫
W

(x2 + y2) dV .

40. Write and evaluate a triple integral representing the vol-

ume of a slice of the cylindrical cake of height 2 and

radius 5 between the planes � = �∕6 and � = �∕3.

41. Write a triple integral representing the volume of the

cone in Figure 16.54 and evaluate it.

✛

✛

5
cm

✲✛ 5∕
√

2 cm

Figure 16.54

42. Find the average distance from the origin of

(a) The points in the interval |x| ≤ 12.

(b) The points in the plane in the disc r ≤ 12.

(c) The points in space in the ball � ≤ 12.
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In Problems 43–44, without performing the integration, de-

cide whether the integral is positive, negative, or zero.

43. W1 is the unit ball, x2 + y2 + z2 ≤ 1.

(a) ∫
W1

sin�dV (b) ∫
W1

cos�dV

44. W2 is 0 ≤ z ≤
√

1 − x2 − y2, the top half of the unit

ball.

(a) ∫
W2
(z2 − z) dV (b) ∫

W2
(−xz) dV

45. The insulation surrounding a pipe of length l is the re-

gion between two cylinders with the same axis. The in-

ner cylinder has radius a, the outer radius of the pipe,

and the insulation has thickness ℎ. Write a triple inte-

gral, including limits of integration, giving the volume

of the insulation. Evaluate the integral.

46. Assume p, q, r are positive constants. Find the volume

contained between the coordinate planes and the plane

x

p
+

y

q
+

z

r
= 1.

47. A cone stands with its flat base on a table. The cone’s

circular base has radius a; the vertex (tip) is at a height

of ℎ above the center of the base. Write a triple integral,

including limits of integration, representing the volume

of the cone. Evaluate the integral.

48. A half-melon is approximated by the region between

two concentric spheres, one of radius a and the other

of radius b, with 0 < a < b. Write a triple integral, in-

cluding limits of integration, giving the volume of the

half-melon. Evaluate the integral.

49. A bead is made by drilling a cylindrical hole of ra-

dius 1 mm through a sphere of radius 5 mm. See Fig-

ure 16.55.

(a) Set up a triple integral in cylindrical coordinates

representing the volume of the bead.

(b) Evaluate the integral.

✲✛
5 mm

✲✛❄

1mm

Figure 16.55

50. A pile of hay is in the region 0 ≤ z ≤ 2−x2 −y2, where

x, y, z are in meters. At height z, the density of the hay

is � = (2 − z) kg/m3.

(a) Write an integral representing the mass of hay in

the pile.

(b) Evaluate the integral.

51. Find the mass M of the solid region W given in spher-

ical coordinates by 0 ≤ � ≤ 3, 0 ≤ � < 2�, 0 ≤ � ≤

�∕4. The density, �(P ), at any point P is given by the

distance of P from the origin.

52. Write an integral representing the mass of a sphere of

radius 3 if the density of the sphere at any point is twice

the distance of that point from the center of the sphere.

53. A sphere has density at each point proportional to the

square of the distance of the point from the z-axis. The

density is 2 gm∕cm3 at a distance of 2 cm from the axis.

What is the mass of the sphere if it is centered at the ori-

gin and has radius 3 cm?

54. The density of a solid sphere at any point is proportional

to the square of the distance of the point to the center

of the sphere. What is the ratio of the mass of a sphere

of radius 1 to a sphere of radius 2?

55. A spherical shell centered at the origin has an inner ra-

dius of 6 cm and an outer radius of 7 cm. The density, �,

of the material increases linearly with the distance from

the center. At the inner surface, � = 9 gm/cm3; at the

outer surface, � = 11 gm/cm3.

(a) Using spherical coordinates, write the density, �,

as a function of radius, �.

(b) Write an integral giving the mass of the shell.

(c) Find the mass of the shell.

56. (a) Write an iterated integral which represents the

mass of a solid ball of radius a. The density at each

point in the ball is k times the distance from that

point to a fixed plane passing through the center of

the ball.

(b) Evaluate the integral.

57. In the region under z = 4 − x2 − y2 and above the xy-

plane the density of a gas is � = e−x−ygm/cm3, where

x, y, z are in cm. Write an integral, with limits of inte-

gration, representing the mass of the gas.

58. The density, �, of the cylinder x2 + y2 ≤ 4, 0 ≤ z ≤ 3

varies with the distance, r, from the z-axis:

� = 1 + r gm∕cm3
.

Find the mass of the cylinder if x, y, z are in cm.

59. The density of material at a point in a solid cylinder is

proportional to the distance of the point from the z-axis.

What is the ratio of the mass of the cylinder x2+y2 ≤ 1,

0 ≤ z ≤ 2 to the mass of the cylinder x2 + y2 ≤ 9,

0 ≤ z ≤ 2?
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60. Electric charge is distributed throughout 3-space, with

density proportional to the distance from the xy-plane.

Show that the total charge inside a cylinder of radius R

and height ℎ, sitting on the xy-plane and centered along

the z-axis, is proportional to R2ℎ2.

61. Electric charge is distributed throughout 3-space with

density inversely proportional to the distance from the

origin. Show that the total charge inside a sphere of ra-

dius R is proportional to R2.

For Problems 62–65, use the definition of center of mass

given on page 863. Assume x, y, z are in cm.

62. Let C be a solid cone with both height and radius 1

and contained between the surfaces z =
√

x2 + y2 and

z = 1. If C has constant mass density of 1 gm/cm3, find

the z-coordinate of C’s center of mass.

63. The density of the cone C in Problem 62 is given by

�(z) = z2 gm/cm3. Find

(a) The mass of C .

(b) The z-coordinate of C’s center of mass.

64. For a > 0, consider the family of solids bounded be-

low by the paraboloid z = a(x2 + y2) and above by the

plane z = 1. If the solids all have constant mass density

1 gm/cm3, show that the z-coordinate of the center of

mass is 2∕3 and so independent of the parameter a.

65. Find the location of the center of mass of a hemisphere

of radius a and density b gm/cm3.

Strengthen Your Understanding

In Problems 66–68, explain what is wrong with the state-

ment.

66. The integral
∫

2�

0 ∫

�

0 ∫

1

0

1 d� d� d� gives the volume

inside the sphere of radius 1.

67. Changing the order of integration gives

∫

2�

0 ∫

�∕4

0 ∫

2∕ cos�

0

�2 sin�d� d� d�

=
∫

2∕ cos�

0 ∫

�∕4

0 ∫

2�

0

�2 sin�d� d� d�.

68. The volume of a cylinder of height and radius 1 is

∫

2�

0 ∫

1

0 ∫

1

0

1 dz dr d�.

In Problems 69–70, give an example of:

69. An integral in spherical coordinates that gives the vol-

ume of a hemisphere.

70. An integral for which it is more convenient to use spher-

ical coordinates than to use Cartesian coordinates.

71. Which of the following integrals give the volume of the

unit sphere?

(a)
∫

2�

0 ∫

2�

0 ∫

1

0

1 d� d� d�

(b)
∫

�

0 ∫

2�

0 ∫

1

0

1 d� d� d�

(c)
∫

�

0 ∫

2�

0 ∫

1

0

�2 sin� d� d� d�

(d)
∫

�

0 ∫

2�

0 ∫

1

0

�2 sin� d� d� d�

(e)
∫

�

0 ∫

2�

0 ∫

1

0

� d� d� d�

16.6 APPLICATIONS OF INTEGRATION TO PROBABILITY

To represent how a quantity such as height or weight is distributed throughout a population, we use

a density function. To study two or more quantities at the same time and see how they are related,

we use a multivariable density function.

Density Functions

Distribution of Weight and Height in Expectant Mothers

Table 16.10 shows the distribution of weight and height in a survey of expectant mothers. The his-

togram in Figure 16.56 is constructed so that the volume of each bar represents the percentage in the

corresponding weight and height range. For example, the bar representing the mothers who weighed

60–70 kg and were 160–165 cm tall has base of area 10 kg ⋅ 5 cm = 50 kg cm. The volume of this

bar is 12%, so its height is 12%∕50 kg cm = 0.24%∕ kg cm. Notice that the units on the vertical axis

are % per kg cm, so the volume of a bar is a %. The total volume is 100% = 1.
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Table 16.10 Distribution of weight and height in a survey of expectant mothers, in %

45-50 kg 50-60 kg 60-70 kg 70-80 kg 80-105 kg Totals by height

150-155 cm 2 4 4 2 1 13

155-160 cm 0 12 8 2 1 23

160-165 cm 1 7 12 4 3 27

165-170 cm 0 8 12 6 2 28

170-180 cm 0 1 3 4 1 9

Totals by weight 3 32 39 18 8 100

0.05%

0.10%

0.15%

0.20%

0.25%

45

65

85

105
150

155
160

165
170

175
180kg

cm

percent

per kg cm

Figure 16.56: Histogram representing the data in Table 16.10

Example 1 Find the percentage of mothers in the survey with height between 170 and 180 cm.

Solution We add the percentages across the row corresponding to the 170–180 cm height range; this is equiv-

alent to adding the volumes of the corresponding rectangular solids in the histogram.

Percentage of mothers = 0 + 1 + 3 + 4 + 1 = 9%.

Smoothing the Histogram

If we group the data using narrower weight and height groups (and a larger sample), we can draw

a smoother histogram and get finer estimates. In the limit, we replace the histogram with a smooth

surface, in such a way that the volume under the surface above a rectangle is the percentage of

mothers in that rectangle. We define a density function, p(w, ℎ), to be the function whose graph is

the smooth surface. It has the property that

Fraction of sample with

weight between a and b and

height between c and d

=

Volume under graph of p

over the rectangle

a ≤ w ≤ b, c ≤ ℎ ≤ d

=
∫

b

a ∫

d

c

p(w, ℎ) dℎ dw.

This density also gives the probability that a mother is in these height and weight groups.
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Joint Probability Density Functions

We generalize this idea to represent any two characteristics, x and y, distributed throughout a popu-

lation.

A function p(x, y) is called a joint probability density function, or pdf, for x and y if

Probability that member of

population has x between a and b

and y between c and d

=

Volume under graph of p

above the rectangle

a ≤ x ≤ b, c ≤ y ≤ d

=
∫

b

a ∫

d

c

p(x, y) dy dx,

where

∫

∞

−∞ ∫

∞

−∞

p(x, y) dy dx = 1 and p(x, y) ≥ 0 for all x and y.

The probability that x falls in an interval of width Δx around x0 and y falls in an interval of

width Δy around y0 is approximately p(x0, y0)ΔxΔy.

A joint density function need not be continuous, as in Example 2. In addition, as in Example 4,

the integrals involved may be improper and must be computed by methods similar to those used for

improper one-variable integrals.

Example 2 Let p(x, y) be defined on the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 by p(x, y) = x+ y; let p(x, y) = 0 if (x, y)

is outside this square. Check that p is a joint density function. In terms of the distribution of x and y

in the population, what does it mean that p(x, y) = 0 outside the square?

Solution First, we have p(x, y) ≥ 0 for all x and y. To check that p is a joint density function, we show that

the total volume under the graph is 1:

∫

∞

−∞ ∫

∞

−∞

p(x, y) dy dx =
∫

1

0 ∫

1

0

(x + y) dy dx

=
∫

1

0

(

xy +
y2

2

)

|

|

|

|

1

0

dx =
∫

1

0

(

x +
1

2

)

dx =

(

x2

2
+

x

2

)

|

|

|

|

1

0

= 1.

The fact that p(x, y) = 0 outside the square means that the variables x and y never take values outside

the interval [0, 1]; that is, the value of x and y for any individual in the population is always between

0 and 1.

Example 3 Two variables x and y are distributed in a population according to the density function of Example 2.

Find the fraction of the population with x ≤ 1∕2, the fraction with y ≤ 1∕2, and the fraction with

both x ≤ 1∕2 and y ≤ 1∕2.

Solution The fraction with x ≤ 1∕2 is the volume under the graph to the left of the line x = 1∕2:

∫

1∕2

0 ∫

1

0

(x + y) dy dx =
∫

1∕2

0

(

xy +
y2

2

)

|

|

|

|

1

0

dx =
∫

1∕2

0

(

x +
1

2

)

dx

=

(

x2

2
+

x

2

)

|

|

|

|

1∕2

0

=
1

8
+

1

4
=

3

8
.

Since the function and the regions of integration are symmetric in x and y, the fraction with y ≤ 1∕2
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is also 3∕8. Finally, the fraction with both x ≤ 1∕2 and y ≤ 1∕2 is

∫

1∕2

0 ∫

1∕2

0

(x + y) dy dx =
∫

1∕2

0

(

xy +
y2

2

)

|

|

|

|

1∕2

0

dx =
∫

1∕2

0

(

1

2
x +

1

8

)

dx

=
(

1

4
x2 +

1

8
x

)

|

|

|

|

1∕2

0

=
1

16
+

1

16
=

1

8
.

Recall that a one-variable density function p(x) is a function such that p(x) ≥ 0 for all x, and

∫
∞

−∞ p(x) dx = 1.

Example 4 Let p1 and p2 be one-variable density functions for x and y, respectively. Check that p(x, y) =

p1(x)p2(y) is a joint density function.

Solution Since both p1 and p2 are density functions, they are nonnegative everywhere. Thus, their product

p1(x)p2(x) = p(x, y) is nonnegative everywhere. Now we must check that the volume under the

graph of p is 1. Since ∫
∞

−∞
p2(y) dy = 1 and ∫

∞

−∞
p1(x) dx = 1, we have

∫

∞

−∞ ∫

∞

−∞

p(x, y) dy dx =
∫

∞

−∞ ∫

∞

−∞

p1(x)p2(y) dy dx =
∫

∞

−∞

p1(x)

(

∫

∞

−∞

p2(y) dy

)

dx

=
∫

∞

−∞

p1(x)(1) dx =
∫

∞

−∞

p1(x) dx = 1.

Example 5 A machine in a factory is set to produce components 10 cm long and 5 cm in diameter. In fact, there

is a slight variation from one component to the next. A component is usable if its length and diameter

deviate from the correct values by less than 0.1 cm. With the length, x, in cm and the diameter, y, in

cm, the probability density function is

p(x, y) =
50

√

2

�
e−100(x−10)

2
e−50(y−5)

2
.

What is the probability that a component is usable? (See Figure 16.57.)

Figure 16.57: The density function p(x, y) =
50

√

2

�
e−100(x−10)

2
e−50(y−5)

2

Solution We know that

Probability that x and y satisfy

x0 − Δx ≤ x ≤ x0 + Δx

y0 − Δy ≤ y ≤ y0 + Δy

=
50

√

2

� ∫

y0+Δy

y0−Δy
∫

x0+Δx

x0−Δx

e−100(x−10)
2
e−50(y−5)

2
dx dy.
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Thus,

Probability that

component is usable
=

50
√

2

� ∫

5.1

4.9 ∫

10.1

9.9

e−100(x−10)
2
e−50(y−5)

2
dx dy.

The double integral must be evaluated numerically. This yields

Probability that

component is usable
=

50
√

2

�
(0.02556) = 0.57530.

Thus, there is a 57.530% chance that the component is usable.

Exercises and Problems for Section 16.6

EXERCISES

In Exercises 1–6, check whether p is a joint density function.

Assume p(x, y) = 0 outside the region R.

1. p(x, y) = 1∕2, where R is 4 ≤ x ≤ 5,−2 ≤ y ≤ 0

2. p(x, y) = 1, where R is 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

3. p(x, y) = x + y, where R is −1 ≤ x ≤ 1, 0 ≤ y ≤ 1

4. p(x, y) = 6(y − x), where R is 0 ≤ x ≤ y ≤ 2

5. p(x, y) = (2∕�)(1 − x2 − y2), where R is x2 + y2 ≤ 1

6. p(x, y) = xye−x−y, where R is x ≥ 0, y ≥ 0

In Exercises 7–10, a joint probability density function is

given by p(x, y) = xy∕4 in R, the rectangle 0 ≤ x ≤ 2,

0 ≤ y ≤ 2, and p(x, y) = 0 else. Find the probability that a

point (x, y) satisfies the given conditions.

7. x ≤ 1 and y ≤ 1 8. x ≥ 1 and y ≥ 1

9. x ≥ 1 and y ≤ 1 10. 1∕3 ≤ x ≤ 1

In Exercises 11–14, a joint probability density function is

given by p(x, y) = 0.005x + 0.025y in R, the rectangle

0 ≤ x ≤ 10, 0 ≤ y ≤ 2, and p(x, y) = 0 else. Find the

probability that a point (x, y) satisfies the given conditions.

11. x ≤ 4 12. y ≥ 1

13. x ≤ 4 and y ≥ 1 14. x ≥ 5 and y ≥ 1

In Exercises 15–22, let p be the joint density function such

that p(x, y) = xy in R, the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 1,

and p(x, y) = 0 outsideR. Find the fraction of the population

satisfying the given constraints.

15. x ≥ 3 16. x = 1

17. x + y ≤ 3 18. −1 ≤ x ≤ 1

19. x ≥ y 20. x + y ≤ 1

21. 0 ≤ x ≤ 1, 0 ≤ y ≤ 1∕2

22. Within a distance 1 from the origin

PROBLEMS

23. Let x and y have joint density function

p(x, y) =

{

2

3
(x + 2y) for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.

Find the probability that

(a) x > 1∕3. (b) x < (1∕3) + y.

24. The joint density function for x, y is given by

f (x, y) =

{

kxy for 0 ≤ x ≤ y ≤ 1,

0 otherwise.

(a) Determine the value of k.

(b) Find the probability that (x, y) lies in the shaded

region in Figure 16.58.

1
0

1

x

y
y = x

y =
√

x

Figure 16.58
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25. A joint density function is given by

f (x, y) =

{

kx2 for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1,

0 otherwise.

(a) Find the value of the constant k.

(b) Find the probability that (x, y) satisfies x + y ≤ 2.

(c) Find the probability that (x, y) satisfies x ≤ 1 and

y ≤ 1∕2.

26. A point is chosen at random from the region S in the

xy-plane containing all points (x, y) such that −1 ≤ x ≤

1,−2 ≤ y ≤ 2 and x − y ≥ 0 (“at random” means that

the density function is constant on S).

(a) Determine the joint density function for x and y.

(b) If T is a subset of S with area �, then find the prob-

ability that a point (x, y) is in T .

27. A probability density function on a square has constant

values in different triangular regions as shown in Fig-

ure 16.59. Find the probability that

(a) x ≥ 2

(b) y ≥ x

(c) y ≥ x and x ≥ 2

1 2 3 4

1

2

3

4

0.01

0.06

0.01

0.12

0.02

0.16

0.04

0.08

x (m)

y (m)

Figure 16.59: Probability density on a

square (per m2)

28. A health insurance company wants to know what pro-

portion of its policies are going to cost the company a

lot of money because the insured people are over 65 and

sick. In order to compute this proportion, the company

defines a disability index, x, with 0 ≤ x ≤ 1, where

x = 0 represents perfect health and x = 1 represents

total disability. In addition, the company uses a density

function, f (x, y), defined in such a way that the quantity

f (x, y) ΔxΔy

approximates the fraction of the population with dis-

ability index between x and x+Δx, and aged between y

and y+Δy. The company knows from experience that a

policy no longer covers its costs if the insured person is

over 65 and has a disability index exceeding 0.8. Write

an expression for the fraction of the company’s policies

held by people meeting these criteria.

29. The probability that a radioactive substance will decay

at time t is modeled by the density function

p(t) = �e−�t

for t ≥ 0, and p(t) = 0 for t < 0. The positive constant

� depends on the material, and is called the decay rate.

(a) Check that p is a density function.

(b) Two materials with decay rates � and � decay inde-

pendently of each other; their joint density function

is the product of the individual density functions.

Write the joint density function for the probabil-

ity that the first material decays at time t and the

second at time s.

(c) Find the probability that the first substance decays

before the second.

30. Figure 16.60 represents a baseball field, with the bases

at (1, 0), (1, 1), (0, 1), and home plate at (0, 0). The outer

bound of the outfield is a piece of a circle about the

origin with radius 4. When a ball is hit by a batter we

record the spot on the field where the ball is caught. Let

p(r, �) be a function in the plane that gives the density

of the distribution of such spots. Write an expression

that represents the probability that a hit is caught in

(a) The right field (region R).

(b) The center field (region C).

1 4

1

4

x

y

C

R

�

6

�

6

�

6

Figure 16.60

31. Two independent random numbers x and y between 0

and 1 have joint density function

p(x, y) =
{

1 if 0 ≤ x, y ≤ 1

0 otherwise.

This problem concerns the average z = (x+y)∕2, which

has a one-variable probability density function of its

own.

(a) Find F (t), the probability that z ≤ t. Treat sepa-

rately the cases t ≤ 0, 0 < t ≤ 1∕2, 1∕2 < t ≤ 1,

1 < t. Note that F (t) is the cumulative distribution

function of z.

(b) Find and graph the probability density function of

z.

(c) Are x and y more likely to be near 0, 1∕2, or 1?

What about z?
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Strengthen Your Understanding

In Problems 32–33, explain what is wrong with the state-

ment.

32. If p1(x, y) and p2(x, y) are joint density functions, then

p1(x, y) + p2(x, y) is a joint density function.

33. If p(w,ℎ) is the probability density function of the

weight and height of mothers discussed in Section 16.6,

then the probability that a mother weighs 60 kg and has

a height of 170 cm is p(60, 170).

In Problems 34–35, give an example of:

34. Values for a, b, c and d such that f is a joint density

function:

f (x, y) =

{

1 for a ≤ x ≤ b and c ≤ y ≤ d,

0 otherwise

35. A one-variable function g(y) such that f is a joint den-

sity function:

f (x, y) =

{

g(y) for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1,

0 otherwise

For Problems 36–39, let p(x, y) be a joint density function

for x and y. Are the following statements true or false?

36.
∫

b

a
∫

∞

−∞

p(x, y) dy dx is the probability that a ≤ x ≤ b.

37. 0 ≤ p(x, y) ≤ 1 for all x.

38.
∫

b

a

p(x, y) dx is the probability that a ≤ x ≤ b.

39.
∫

∞

−∞ ∫

∞

−∞

p(x, y) dy dx = 1.

Online Resource: Review problems and Projects



Contents
17.1 Parameterized Curves . . . . . . . . . . . . . . . . . . . . . 886

Parametric Equations in Three Dimensions. . . . . 886

Using Position Vectors to Write Parameterized 
 Curves as Vector-Valued Functions  . . . . . . . . . . 888

Parametric Equation of a Line. . . . . . . . . . . . . . . . 889

Intersection of Curves and Surfaces. . . . . . . . . . . 890

17.2 Motion, Velocity, and Acceleration. . . . . . . . . . . 896

The Velocity Vector  . . . . . . . . . . . . . . . . . . . . . . . 896

Computing the Velocity  . . . . . . . . . . . . . . . . . . . . 896

The Components of the Velocity Vector . . . . . . . . . 897

Velocity Vectors and Tangent Lines . . . . . . . . . . . . 898

The Acceleration Vector. . . . . . . . . . . . . . . . . . . . 899

 Components of the Acceleration Vector  . . . . . . . . . 899

Motion in a Circle and Along a Line . . . . . . . . . . 899

The Length of a Curve . . . . . . . . . . . . . . . . . . . . . 901

17.3 Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905

Introduction to Vector Fields  . . . . . . . . . . . . . . . . 905

Velocity Vector Fields  . . . . . . . . . . . . . . . . . . . . . 905

Force Fields  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906

Defi nition of a Vector Field  . . . . . . . . . . . . . . . . . 906

Visualizing a Vector Field Given by a Formula . . . . 907

Finding a Formula for a Vector Field . . . . . . . . . . . 908

Gradient Vector Fields . . . . . . . . . . . . . . . . . . . . . 909

17.4 The Flow of a Vector Field  . . . . . . . . . . . . . . . . . 913

How Do We Find a Flow Line? . . . . . . . . . . . . . . 913

Approximating Flow Lines Numerically . . . . . . . 916

Chapter Seventeen

PARAMETERIZATION 
AND VECTOR 

FIELDS



886 Chapter 17 PARAMETERIZATION AND VECTOR FIELDS

17.1 PARAMETERIZED CURVES

A curve in the plane may be parameterized by a pair of equations of the form x = f (t), y = g(t).

As the parameter t changes, the point (x, y) traces out the curve. In this section we find parametric

equations for curves in three dimensions, and we see how to write parametric equations using position

vectors.

Parametric Equations in Three Dimensions

We describe motion in the plane by giving parametric equations for x and y in terms of t. To describe

a motion in 3-space parametrically, we need a third equation giving z in terms of t.

Example 1 Find parametric equations for the curve y = x2 in the xy-plane.

Solution A possible parameterization in two dimensions is x = t, y = t2. Since the curve is in the xy-plane,

the z-coordinate is zero, so a parameterization in three dimensions is

x = t, y = t2, z = 0.

Example 2 Find parametric equations for a particle that starts at (0, 3, 0) and moves around a circle as shown in

Figure 17.1.

x

y

z

■ Start

Figure 17.1: Circle of radius 3 in the yz-plane, centered at origin

Solution Since the motion is in the yz-plane, we have x = 0 at all times t. Looking at the yz-plane from the

positive x-direction we see motion around a circle of radius 3 in the clockwise direction. Thus,

x = 0, y = 3 cos t, z = −3 sin t.

Example 3 Describe in words the motion given parametrically by

x = cos t, y = sin t, z = t.

Solution The particle’s x- and y-coordinates give circular motion in the xy-plane, while the z-coordinate

increases steadily. Thus, the particle traces out a rising spiral, like a coiled spring. (See Figure 17.2.)

This curve is called a helix.
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x

y

z

Figure 17.2: The helix x = cos t, y = sin t, z = t

Example 4 Find parametric equations for the line parallel to the vector 2i⃗ + 3j⃗ + 4k⃗ and through the point

(1, 5, 7).

Solution Let’s imagine a particle at the point (1, 5, 7) at time t = 0 and moving through a displacement of

2i⃗ + 3j⃗ + 4k⃗ for each unit of time, t. When t = 0, x = 1 and x increases by 2 units for every unit

of time. Thus, at time t, the x-coordinate of the particle is given by

x = 1 + 2t.

Similarly, the y-coordinate starts at y = 5 and increases at a rate of 3 units for every unit of time.

The z-coordinate starts at y = 7 and increases by 4 units for every unit of time. Thus, the parametric

equations of the line are

x = 1 + 2t, y = 5 + 3t, z = 7 + 4t.

We can generalize the previous example as follows:

Parametric Equations of a Line through the point (x0, y0, z0) and parallel to the vector ai⃗ +

bj⃗ + ck⃗ are

x = x0 + at, y = y0 + bt, z = z0 + ct.

Notice that the coordinates x, y, and z are linear functions of the parameter t.

Example 5 (a) Describe in words the curve given by the parametric equations x = 3 + t, y = 2t, z = 1 − t.

(b) Find parametric equations for the line through the points (1, 2,−1) and (3, 3, 4).

Solution (a) The curve is a line through the point (3, 0, 1) and parallel to the vector i⃗ + 2j⃗ − k⃗.

(b) The line is parallel to the vector between the points P = (1, 2,−1) and Q = (3, 3, 4).

⃖⃖⃖⃖⃖⃗PQ = (3 − 1)i⃗ + (3 − 2)j⃗ + (4 − (−1))k⃗ = 2i⃗ + j⃗ + 5k⃗ .

Thus, using the point P , the parametric equations are

x = 1 + 2t, y = 2 + t, z = −1 + 5t.

Using the point Q gives the equations x = 3 + 2t, y = 3 + t, z = 4 + 5t, which represent the

same line. The point where t = 0 in the second equations is given by t = 1 in the first equations.
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Using Position Vectors to Write Parameterized Curves as Vector-Valued Functions

A point in the plane with coordinates (x, y) can be represented by the position vector r⃗ = xi⃗ + yj⃗

in Figure 17.3. Similarly, in 3-space we write r⃗ = xi⃗ + yj⃗ + zk⃗ . (See Figure 17.4.)

x

y
(x, y)

r⃗

xi⃗

yj⃗

Figure 17.3: Position vector r⃗ for the point

(x, y)

x

y

z

xi⃗

yj⃗

zk⃗

(x, y, z)

r⃗

Figure 17.4: Position vector r⃗ for the

point (x, y, z)

We can write the parametric equations x = f (t), y = g(t), z = ℎ(t) as a single vector equation

r⃗ (t) = f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗

called a parameterization. As the parameter t varies, the point with position vector r⃗ (t) traces out a

curve in 3-space. For example, the circular motion in the plane

x = cos t, y = sin t can be written as r⃗ = (cos t)i⃗ + (sin t)j⃗

and the helix in 3-space

x = cos t, y = sin t, z = t can be written as r⃗ = (cos t)i⃗ + (sin t)j⃗ + tk⃗ .

See Figure 17.5.

x

y

z

a b

r⃗ (b)

r⃗ (a)
r⃗ (t)

C

Figure 17.5: The parameterization sends the interval, a ≤ t ≤ b, to the curve, C , in 3-space

Example 6 Use vectors to give a parameterization for the circle of radius
1

2
centered at the point (−1, 2).

Solution The circle of radius 1 centered at the origin is parameterized by the vector-valued function

r⃗ 1(t) = cos ti⃗ + sin tj⃗ , 0 ≤ t ≤ 2�.

The point (−1, 2) has position vector r⃗ 0 = −i⃗ +2j⃗ . The position vector, r⃗ (t), of a point on the circle

of radius
1

2
centered at (−1, 2) is found by adding

1

2
r⃗ 1 to r⃗ 0. (See Figures 17.6 and 17.7.) Thus,

r⃗ (t) = r⃗ 0 +
1

2
r⃗ 1(t) = −i⃗ + 2j⃗ +

1

2
(cos ti⃗ + sin tj⃗ ) = (−1 +

1

2
cos t)i⃗ + (2 +

1

2
sin t)j⃗ ,

or, equivalently,

x = −1 +
1

2
cos t, y = 2 +

1

2
sin t, 0 ≤ t ≤ 2�.
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−1 1

1

−1

x

y

❄

r⃗1 (t) = cos ti⃗ + sin tj⃗

Figure 17.6: The circle x2 + y2 = 1 parameterized

by r⃗ 1(t) = cos ti⃗ + sin tj⃗

−1

1.5

2.5

1

0.5

2

r⃗ 0

1

2
r⃗ 1

r⃗

x

y

Figure 17.7: The circle of radius
1

2
and center

(−1, 2) parameterized by r⃗ (t) = r⃗ 0 +
1

2
r⃗ 1(t)

Parametric Equation of a Line

Consider a straight line in the direction of a vector v⃗ passing through the point (x0, y0, z0) with

position vector r⃗ 0. We start at r⃗ 0 and move up and down the line, adding different multiples of v⃗ to

r⃗ 0. (See Figure 17.8.)

v⃗

r⃗
r⃗ 0

t = −1
t = 0

t = 1
t = 2

t = 3

Figure 17.8: The line r⃗ (t) = r⃗ 0 + tv⃗

In this way, every point on the line can be written as r⃗ 0 + tv⃗ , which yields the following:

Parametric Equation of a Line in Vector Form

The line through the point with position vector r⃗0 = x0i⃗ + y0 j⃗ + z0k⃗ in the direction of the

vector v⃗ = ai⃗ + bj⃗ + ck⃗ has parametric equation

r⃗ (t) = r⃗ 0 + tv⃗ .

Example 7 (a) Find parametric equations for the line passing through the points (2,−1, 3) and (−1, 5, 4).

(b) Represent the line segment from (2,−1, 3) to (−1, 5, 4) parametrically.

Solution (a) The line passes through (2,−1, 3) and is parallel to the displacement vector v⃗ = −3i⃗ + 6j⃗ + k⃗

from (2,−1, 3) to (−1, 5, 4). Thus, the parametric equation is

r⃗ (t) = 2i⃗ − j⃗ + 3k⃗ + t(−3i⃗ + 6j⃗ + k⃗ ).

(b) In the parameterization in part (a), t = 0 corresponds to the point (2,−1, 3) and t = 1 corresponds

to the point (−1, 5, 4). So the parameterization of the segment is

r⃗ (t) = 2i⃗ − j⃗ + 3k⃗ + t(−3i⃗ + 6j⃗ + k⃗ ), 0 ≤ t ≤ 1.
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Intersection of Curves and Surfaces
Parametric equations for a curve enable us to find where a curve intersects a surface.

Example 8 Find the points at which the line x = t, y = 2t, z = 1 + t pierces the sphere of radius 10 centered at

the origin.

Solution The equation for the sphere of radius 10 and centered at the origin is

x2 + y2 + z2 = 100.

To find the intersection points of the line and the sphere, substitute the parametric equations of the

line into the equation of the sphere, giving

t2 + 4t2 + (1 + t)2 = 100,

so

6t2 + 2t − 99 = 0,

which has the two solutions at approximately t = −4.23 and t = 3.90. Using the parametric equation

for the line, (x, y, z) = (t, 2t, 1 + t), we see that the line cuts the sphere at the two points

(x, y, z) = (−4.23, 2(−4.23), 1+ (−4.23)) = (−4.23,−8.46,−3.23),

and

(x, y, z) = (3.90, 2(3.90), 1+ 3.90) = (3.90, 7.80, 4.90).

We can also use parametric equations to find the intersection of two curves.

Example 9 Two particles move through space, with equations r⃗ 1(t) = ti⃗ + (1 + 2t)j⃗ + (3 − 2t)k⃗ and r⃗ 2(t) =

(−2 − 2t)i⃗ + (1 − 2t)j⃗ + (1 + t)k⃗ . Do the particles ever collide? Do their paths cross?

Solution To see if the particles collide, we must find out if they pass through the same point at the same time

t. So we must find a solution to the vector equation r⃗ 1(t) = r⃗ 2(t), which is the same as finding a

common solution to the three scalar equations

t = −2 − 2t, 1 + 2t = 1 − 2t, 3 − 2t = 1 + t.

Separately, the solutions are t = −2∕3, t = 0, and t = 2∕3, so there is no common solution, and the

particles don’t collide. To see if their paths cross, we find out if they pass through the same point at

two possibly different times, t1 and t2. So we solve the equations

t1 = −2 − 2t2, 1 + 2t1 = 1 − 2t2, 3 − 2t1 = 1 + t2.

We solve the first two equations simultaneously and get t1 = 2, t2 = −2. Since these values also

satisfy the third equation, the paths cross. The position of the first particle at time t = 2 is the same

as the position of the second particle at time t = −2, namely the point (2, 5,−1).

Example 10 Are the lines x = −1+ t, y = 1+ 2t, z = 5− t and x = 2+ 2t, y = 4+ t, z = 3+ t parallel? Do they

intersect?

Solution In vector form the lines are parameterized by

r⃗ = −i⃗ + j⃗ + 5k⃗ + t(i⃗ + 2j⃗ − k⃗ )

r⃗ = 2i⃗ + 4j⃗ + 3k⃗ + t(2i⃗ + j⃗ + k⃗ )
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Their direction vectors i⃗ + 2j⃗ − k⃗ and 2i⃗ + j⃗ + k⃗ are not multiples of each other, so the lines are

not parallel. To find out if they intersect, we see if they pass through the same point at two possibly

different times, t1 and t2:

−1 + t1 = 2 + 2t2, 1 + 2t1 = 4 + t2, 5 − t1 = 3 + t2.

The first two equations give t1 = 1, t2 = −1. Since these values do not satisfy the third equation, the

paths do not cross, and so the lines do not intersect.

The next example shows how to tell if two different parameterizations give the same line.

Example 11 Show that the following two lines are the same:

r⃗ = −i⃗ − j⃗ + k⃗ + t(3i⃗ + 6j⃗ − 3k⃗ )

r⃗ = i⃗ + 3j⃗ − k⃗ + t(−i⃗ − 2j⃗ + k⃗ )

Solution The direction vectors of the two lines, 3i⃗ + 6j⃗ − 3k⃗ and −i⃗ − 2j⃗ + k⃗ , are multiples of each other,

so the lines are parallel. To see if they are the same, we pick a point on the first line and see if it is on

the second line. For example, the point on the first line with t = 0 has position vector −i⃗ − j⃗ + k⃗ .

Solving

i⃗ + 3j⃗ − k⃗ + t(−i⃗ − 2j⃗ + k⃗ ) = −i⃗ − j⃗ + k⃗ ,

we get t = 2, so the two lines have a point in common. Thus, they are the same line, parameterized

in two different ways.

Exercises and Problems for Section 17.1 Online Resource: Additional Problems for Section 17.1
EXERCISES

In Exercises 1–6, find a parameterization for the curve.

1.

−1 1

−2

−1

x

y

1

2.

2

2

x

y

3.

1 2 3

1

2

x

y 4.

−1 1
x

y

1

5.

1 2

1

2

x

y

3

6.

1 2

1

x

y

2 Segment
of parabola

In Exercises 7–17, find parametric equations for the line.

7. The line in the direction of the vector i⃗ − k⃗ and through

the point (0, 1, 0).

8. The line in the direction of the vector i⃗ + 2j⃗ − k⃗ and

through the point (3, 0,−4).

9. The line parallel to the z-axis passing through the point

(1, 0, 0).

10. The line in the direction of the vector 5j⃗ + 2k⃗ and

through the point (5,−1, 1).

11. The line in the direction of the vector 3i⃗ − 3j⃗ + k⃗ and

through the point (1, 2, 3).

12. The line in the direction of the vector 2i⃗ +2j⃗ −3k⃗ and

through the point (−3, 4,−2).

13. The line through (−3,−2, 1) and (−1,−3,−1).

14. The line through the points (1, 5, 2) and (5, 0,−1).

15. The line through the points (2, 3,−1) and (5, 2, 0).

16. The line through (3,−2, 2) and intersecting the y-axis

at y = 2.

17. The line intersecting the x-axis at x = 3 and the z-axis

at z = −5.
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In Exercises 18–34, find a parameterization for the curve.

18. A line segment between (2, 1, 3) and (4, 3, 2).

19. A circle of radius 3 centered on the z-axis and lying in

the plane z = 5.

20. A line perpendicular to the plane z = 2x − 3y + 7 and

through the point (1, 1, 6).

21. The circle of radius 2 in the xy-plane, centered at the

origin, clockwise.

22. The circle of radius 2 parallel to the xy-plane, cen-

tered at the point (0, 0, 1), and traversed counterclock-

wise when viewed from below.

23. The circle of radius 2 in the xz-plane, centered at the

origin.

24. The circle of radius 3 parallel to the xy-plane, centered

at the point (0, 0, 2).

25. The circle of radius 3 in the yz-plane, centered at the

point (0, 0, 2).

26. The circle of radius 5 parallel to the yz-plane, centered

at the point (−1, 0,−2).

27. The curve x = y2 in the xy-plane.

28. The curve y = x3 in the xy-plane.

29. The curve x = −3z2 in the xz-plane.

30. The curve in which the plane z = 2 cuts the surface

z =
√

x2 + y2.

31. The curve y = 4 − 5x4 through the point (0, 4, 4), par-

allel to the xy-plane.

32. The ellipse of major diameter 5 parallel to the y-axis

and minor diameter 2 parallel to the z-axis, centered at

(0, 1,−2).

33. The ellipse of major diameter 6 along the x-axis and

minor diameter 4 along the y-axis, centered at the ori-

gin.

34. The ellipse of major diameter 3 parallel to the x-axis

and minor diameter 2 parallel to the z-axis, centered at

(0, 1,−2).

In Exercises 35–42, find a parametric equation for the curve

segment.

35. Line from (−1, 2,−3) to (2, 2, 2).

36. Line from P0 = (−1,−3) to P1 = (5, 2).

37. Line from P0 = (1,−3, 2) to P1 = (4, 1,−3).

38. Semicircle from (0, 0, 5) to (0, 0,−5) in the yz-plane

with y ≥ 0.

39. Semicircle from (1, 0, 0) to (−1, 0, 0) in the xy-plane

with y ≥ 0.

40. Graph of y =
√

x from (1, 1) to (16, 4).

41. Arc of a circle of radius 5 from P = (0, 0) to Q =

(10, 0).

42. Quarter-ellipse from (4, 0, 3) to (0,−3, 3) in the plane

z = 3.

In Exercises 43–46, find parametric equations for a helix sat-

isfying the given conditions.

43. Centered on the z-axis, with radius 10.

44. Centered on the x-axis, with radius 5.

45. Centered on the y-axis, with radius 2.

46. Centered on the vertical line passing through (3, 5, 0),

with radius 1.

PROBLEMS

In Problems 47–51, parameterize the line through P = (2, 5)

and Q = (12, 9) so that the points P and Q correspond to the

given parameter values.

47. t = 0 and 1 48. t = 0 and 5

49. t = 20 and 30 50. t = 10 and 11

51. t = 0 and −1

52. At the point where t = −1, find an equation for the plane

perpendicular to the line

x = 5 − 3t, y = 5t − 7,
z

t
= 6.

53. Determine whether the following line is parallel to the

plane 2x − 3y + 5z = 5:

x = 5 + 7t, y = 4 + 3t, z = −3 − 2t.

54. Show that the equations x = 3 + t, y = 2t, z = 1 − t

satisfy the equations x+ y+ 3z = 6 and x− y− z = 2.

What does this tell you about the curve parameterized

by these equations?

55. (a) Explain why the line of intersection of two planes

must be parallel to the cross product of a normal

vector to the first plane and a normal vector to the

second.

(b) Find a vector parallel to the line of intersection of

the two planes x+2y−3z = 7 and 3x−y+z = 0.

(c) Find parametric equations for the line in part (b).

56. Find an equation for the plane containing the point

(2, 3, 4) and the line x = 1 + 2t, y = 3 − t, z = 4 + t.

57. (a) Find an equation for the line perpendicular to the

plane 2x − 3y = z and through the point (1, 3, 7).

(b) Where does the line cut the plane?

(c) What is the distance between the point (1, 3, 7) and

the plane?



17.1 PARAMETERIZED CURVES 893

58. Consider two points P0 and P1 in 3-space.

(a) Show that the line segment from P0 to P1 can be

parameterized by

r⃗ (t) = (1 − t) ⃖⃖⃖⃖⃖⃖⃗OP0 + t ⃖⃖⃖⃖⃖⃖⃗OP1, 0 ≤ t ≤ 1.

(b) What is represented by the parametric equation

r⃗ (t) = t ⃖⃖⃖⃖⃖⃖⃗OP0 + (1 − t) ⃖⃖⃖⃖⃖⃖⃗OP1, 0 ≤ t ≤ 1?

59. (a) Find a vector parallel to the line of intersection of

the planes 2x − y − 3z = 0 and x + y + z = 1.

(b) Show that the point (1,−1, 1) lies on both planes.

(c) Find parametric equations for the line of intersec-

tion.

60. Find the intersection of the line x = 5 + 7t, y = 4 + 3t,

z = −3 − 2t and the plane 2x − 3y + 5z = −7.

In Problems 61–64, are the lines L1 and L2 the same line?

61. L1: x = 5 + t, y = 3 − 2t, z = 5t

L2: x = 5 + 2t, y = 3 − 4t, z = 10t

62. L1: x = 2 + 3t, y = 1 + 4t, z = 6 − t

L2: x = 2 + 6t, y = 4 + 3t, z = 3 − 2t

63. L1: x = 2 + 3t, y = 1 + 4t, z = 6 − t

L2: x = 5 + 6t, y = 5 + 8t, z = 5 − 2t

64. L1: x = 1 + 2t, y = 1 − 3t, z = 1 + t

L2: x = 1 − 4t, y = 6t, z = 4 − 2t

In Problems 65–67 two parameterized lines are given. Are

they the same line?

65. r⃗ 1(t) = (5 − 3t)i⃗ + 2tj⃗ + (7 + t)k⃗

r⃗ 2(t) = (5 − 6t)i⃗ + 4tj⃗ + (7 + 3t)k⃗

66. r⃗ 1(t) = (5 − 3t)i⃗ + (1 + t)j⃗ + 2tk⃗

r⃗ 2(t) = (2 + 6t)i⃗ + (2 − 2t)j⃗ + (2 − 4t)k⃗

67. r⃗ 1(t) = (5 − 3t)i⃗ + (1 + t)j⃗ + 2tk⃗

r⃗ 2(t) = (2 + 6t)i⃗ + (2 − 2t)j⃗ + (3 − 4t)k⃗

68. If it exists, find the value of c for which the lines l(t) =

(c + t, 1 + t, 5 + t) and m(s) = (s, 1 − s, 3 + s) intersect.

69. (a) Where does the line r⃗ = 2i⃗ +5j⃗ + t(3i⃗ + j⃗ +2k⃗ )

cut the plane x + y + z = 1?

(b) Find a vector perpendicular to the line and lying in

the plane.

(c) Find an equation for the line that passes through

the point of intersection of the line and plane, is

perpendicular to the line, and lies in the plane.

In Problems 70–73, find parametric equations for the line.

70. The line of intersection of the planes x− y+ z = 3 and

2x + y − z = 5.

71. The line of intersection of the planes x+ y+ z = 3 and

x − y + 2z = 2.

72. The line perpendicular to the surface z = x2 + y2 at the

point (1, 2, 5).

73. The line through the point (−4, 2, 3) and parallel to a

line in the yz-plane which makes a 45◦ angle with the

positive y-axis and the positive z-axis.

74. Is the point (−3,−4, 2) visible from the point (4, 5, 0) if

there is an opaque ball of radius 1 centered at the origin?

75. Two particles are traveling through space. At time t the

first particle is at the point (−1 + t, 4 − t,−1 + 2t) and

the second particle is at (−7 + 2t,−6 + 2t,−1 + t).

(a) Describe the two paths in words.

(b) Do the two particles collide? If so, when and

where?

(c) Do the paths of the two particles cross? If so,

where?

76. Match the parameterizations with their graphs in Fig-

ure 17.9.

(a) x = 2 cos 4�t, y = 2 sin 4�t, z = t

(b) x = 2 cos 4�t, y = sin 4�t, z = t

(c) x = 0.5t cos 4�t, y = 0.5t sin 4�t, z = t

(d) x = 2 cos 4�t, y = 2 sin 4�t, z = 0.5t3

x

y

z

(I)

x

y

z(II)

x

y

z(III)

x

y

z(IV)

Figure 17.9

In Problems 77–80 find c so that one revolution about the z-

axis of the helix gives an increase of Δz in the z-coordinate.

77. x = 2 cos t, y = 2 sin t, z = ct, Δz = 15
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78. x = 2 cos t, y = 2 sin t, z = ct, Δz = 50

79. x = 2 cos 3t, y = 2 sin 3t, z = ct, Δz = 10

80. x = 2 cos �t, y = 2 sin �t, z = ct, Δz = 20

81. For t > 0, a particle moves along the curve x =

a + b sin kt, y = a + b cos kt, where a, b, k are positive

constants.

(a) Describe the motion in words.

(b) What is the effect on the curve of the following

changes?

(i) Increasing b

(ii) Increasing a

(iii) Increasing k

(iv) Setting a and b equal

82. In the Atlantic Ocean off the coast of Newfoundland,

Canada, the temperature and salinity (saltiness) vary

throughout the year. Figure 17.10 shows a parametric

curve giving the average temperature, T (in ◦C) and

salinity (in grams of salt per kg of water) for t in months,

with t = 1 corresponding to mid-January.1

(a) Why does the parameterized curve form a loop?

(b) When is the water temperature highest?

(c) When is the water saltiest?

(d) Estimate dT ∕dt at t = 6, and give the units. What

is the meaning of your answer for seawater?

✻
t = 1

✲t = 3

T (◦C)

salinity (gm/kg)

14 16 18 20 22
35.7

35.9

36.1

Figure 17.10

83. A light shines on the helix of Example 3 on page 886

from far down each axis. Sketch the shadow the helix

casts on each of the coordinate planes: xy, xz, and yz.

84. The paraboloid z = x2+y2 and the plane z = 2x+4y+4

intersect in a curve in 3-space.

(a) Show that the shadow of the intersection in the xy-

plane is a circle and find its center and radius.

(b) Parameterize the circle in the xy-plane.

(c) Parameterize the intersection of the paraboloid and

the plane in 3-space.

85. For a positive constant a and t ≥ 0, the parametric

equations I-V represent the curves described in (a)-(e).

Match each description (a)-(e) with its parametric equa-

tions and write an equation involving only x and y for

the curve.

(a) Line through the origin.

(b) Line not through the origin.

(c) Hyperbola opening along x-axis.

(d) Circle traversed clockwise.

(e) Circle traversed counterclockwise.

I. x = a sin t, y = a cos t II. x = a sin t, y = a sin t

III. x = a cos t, y = a sin t IV. x = a cos2 t, y = a sin2 t

V. x = a∕ cos t, y = a tan t

86. (a) Find a parametric equation for the line through the

point (2, 1, 3) and in the direction of ai⃗ + bj⃗ + ck⃗ .

(b) Find conditions on a, b, c so that the line you found

in part (a) goes through the origin. Give a reason

for your answer.

87. Consider the line x = 5− 2t, y = 3 + 7t, z = 4t and the

plane ax + by + cz = d. All the following questions

have many possible answers. Find values of a, b, c, d

such that:

(a) The plane is perpendicular to the line.

(b) The plane is perpendicular to the line and through

the point (5, 3, 0).

(c) The line lies in the plane.

88. Explain the significance of the constants � > 0 and

� > 0 in the family of helices given by r⃗ = � cos ti⃗ +

� sin tj⃗ + �tk⃗ .

89. Find parametric equations of the line passing through

the points (1, 2, 3), (3, 5, 7) and calculate the shortest

distance from the line to the origin.

90. Show that for a fixed value of �, the line parameterized

by x = cos � + t sin �, y = sin � − t cos � and z = t lies

on the graph of the hyperboloid x2 + y2 = z2 + 1.

91. A line has equation r⃗ = a⃗ +tb⃗ where r⃗ = xi⃗ +yj⃗ +zk⃗

and a⃗ and b⃗ are constant vectors such that a⃗ ≠ 0⃗ , b⃗ ≠

0⃗ , b⃗ not parallel or perpendicular to a⃗ . For each of the

planes (a)–(c), pick the equation (i)–(ix) which repre-

sents it. Explain your choice.

(a) A plane perpendicular to the line and through the

origin.

(b) A plane perpendicular to the line and not through

the origin.

(c) A plane containing the line.

(i) a⃗ ⋅ r⃗ = ||b⃗ || (ii) b⃗ ⋅ r⃗ = ||a⃗ ||

(iii) a⃗ ⋅ r⃗ = b⃗ ⋅ r⃗ (iv) (a⃗ × b⃗ ) ⋅ (r⃗ − a⃗ ) = 0

(v) r⃗ − a⃗ = b⃗ (vi) a⃗ ⋅ r⃗ = 0

(vii) b⃗ ⋅ r⃗ = 0 (viii) a⃗ + r⃗ = b⃗

(ix) (a⃗ ×b⃗ )⋅(r⃗ −b⃗ ) = ||a⃗ ||

92. (a) Find a parametric equation for the line through the

point (1, 5, 2) and in the direction of the vector

2i⃗ + 3j⃗ − k⃗ .

(b) By minimizing the square of the distance from a

point on the line to the origin, find the exact point

on the line which is closest to the origin.

1Based on http://www.vub.ac.be. Accessed November, 2011.
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93. A plane from Denver, Colorado, (altitude 1650 meters)

flies to Bismark, North Dakota (altitude 550 meters).

It travels at 650 km/hour at a constant height of 8000

meters above the line joining Denver and Bismark. Bis-

mark is about 850 km in the direction 60◦ north of east

from Denver. Find parametric equations describing the

plane’s motion. Assume the origin is at sea level be-

neath Denver, that the x-axis points east and the y-axis

points north, and that the earth is flat. Measure distances

in kilometers and time in hours.

94. The vector n⃗ is perpendicular to the plane P1. The vec-

tor v⃗ is parallel to the line L.

(a) If n⃗ ⋅ v⃗ = 0, what does this tell you about the di-

rections of P1 and L? (Are they parallel? Perpen-

dicular? Or is it impossible to tell?)

(b) Suppose n⃗ × v⃗ ≠ 0⃗ . The plane P2 has normal

n⃗ × v⃗ . What can you say about the directions of

(i) P1 and P2? (ii) L and P2?

95. Figure 17.11 shows the parametric curve x = x(t), y =

y(t) for a ≤ t ≤ b.

x

y

Figure 17.11

(a) Match a graph to each of the parametric curves

given, for the same t values, by

(i) (−x(t),−y(t)) (ii) (−x(t), y(t))

(iii) (x(t) + 1, y(t)) (iv) (x(t) + 1, y(t) + 1)

x

y(A)

x

y(B)

x

y(C)

x

y(D)

x

y(E)

x

y(F)

x

y(G)

x

y(H)

(b) Which of the following could be the formulas for

the functions x(t), y(t)?

(i) x = 10 cos t y = 10 sin t

(ii) x = (10 + 8t) cos t y = (10 + 8t) sin t

(iii) x = et
2∕200 cos t y = et

2∕200 sin t

(iv) x = (10 − 8t) cos t y = (10 − 8t) sin t

(v) x = 10 cos(t2 + t) y = 10 sin(t2 + t)

Strengthen Your Understanding

In Problems 96–97, explain what is wrong with the state-

ment.

96. The curve parameterized by r⃗ 1(t) = r⃗ (t − 2), defined

for all t, is a shift in the i⃗ -direction of the curve param-

eterized by r⃗ (t).

97. All points of the curve r⃗ (t) = R cos ti⃗ +R sin tj⃗ + tk⃗

are the same distance, R, from the origin.

In Problems 98–100, give an example of:

98. Parameterizations of two different circles that have the

same center and equal radii.

99. Parameterizations of two different lines that intersect at

the point (1, 2, 3).

100. A parameterization of the line x = t, y = 2t, z = 3+ 4t

that is not given by linear functions.

Are the statements in Problems 101–112 true or false? Give

reasons for your answer.

101. The parametric curve x = 3t+2, y = −2t for 0 ≤ t ≤ 5

passes through the origin.

102. The parametric curve x = t2, y = t4 for 0 ≤ t ≤ 1 is a

parabola.

103. A parametric curve x = g(t), y = ℎ(t) for a ≤ t ≤ b is

always the graph of a function y = f (x).

104. The parametric curve x = (3t + 2)2, y = (3t + 2)2 − 1

for 0 ≤ t ≤ 3 is a line.

105. The parametric curve x = − sin t, y = − cos t for

0 ≤ t ≤ 2� traces out a unit circle counterclockwise

as t increases.

106. A parameterization of the graph of y = ln x for x > 0

is given by x = et, y = t for −∞ < t < ∞.
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107. Both x = −t + 1, y = 2t and x = 2s, y = −4s + 2

describe the same line.

108. The line of intersection of the two planes z = x + y

and z = 1 − x − y can be parameterized by x = t, y =
1

2
− t, z =

1

2
.

109. The two lines given by x = t, y = 2 + t, z = 3 + t and

x = 2s, y = 1 − s, z = s do not intersect.

110. The line parameterized by x = 1, y = 2t, z = 3 + t is

parallel to the x-axis.

111. The equation r⃗ (t) = 3ti⃗ + (6t + 1)j⃗ parameterizes a

line.

112. The lines parameterized by r⃗ 1(t) = ti⃗ +(−2t+1)j⃗ and

r⃗ 2(t) = (2t + 5)i⃗ + (−t)j⃗ are parallel.

17.2 MOTION, VELOCITY, AND ACCELERATION

In this section we see how to find the vector quantities of velocity and acceleration from a parametric

equation for the motion of an object.

The Velocity Vector

The velocity of a moving particle can be represented by a vector with the following properties:

The velocity vector of a moving object is a vector v⃗ such that:

∙ The magnitude of v⃗ is the speed of the object.

∙ The direction of v⃗ is the direction of motion.

Thus, the speed of the object is ‖v⃗ ‖ and the velocity vector is tangent to the object’s path.

Example 1 A child is sitting on a Ferris wheel of diameter 10 meters, making one revolution every 2 minutes.

Find the speed of the child and draw velocity vectors at two different times.

Solution The child moves at a constant speed around a circle of radius 5 meters, completing one revolution

every 2minutes. One revolution around a circle of radius 5 is a distance of 10�, so the child’s speed is

10�∕2 = 5� ≈ 15.7m/min. Hence, the magnitude of the velocity vector is 15.7m/min. The direction

of motion is tangent to the circle, and hence perpendicular to the radius at that point. Figure 17.12

shows the direction of the vector at two different times.

5 m

5m Velocity
15.7 m/min

Velocity
15.7 m/min

Figure 17.12: Velocity vectors of a child on a Ferris wheel (note that vectors

would be in opposite direction if viewed from the other side)

Computing the Velocity

We find the velocity, as in one-variable calculus, by taking a limit. If the position vector of the

particle is r⃗ (t) at time t, then the displacement vector between its positions at times t and t + Δt is

Δr⃗ = r⃗ (t + Δt) − r⃗ (t). (See Figure 17.13.) Over this interval,

Average velocity =
Δr⃗

Δt
.

In the limit as Δt goes to zero we have the instantaneous velocity at time t:
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The velocity vector, v⃗ (t), of a moving object with position vector r⃗ (t) at time t is

v⃗ (t) = lim
Δt→0

Δr⃗

Δt
= lim

Δt→0

r⃗ (t + Δt) − r⃗ (t)

Δt
,

whenever the limit exists. We use the notation v⃗ =
dr⃗

dt
= r⃗ ′(t).

Notice that the direction of the velocity vector r⃗ ′(t) in Figure 17.13 is approximated by the

direction of the vector Δr⃗ and that the approximation gets better as Δt → 0.

r⃗ ′(t)

r⃗ (t)

r⃗ (t + Δt)

✠

Δr⃗ = r⃗ (t + Δt) − r⃗ (t)

Figure 17.13: The change, Δr⃗ , in the position vector for a particle moving on a

curve and the velocity vector v⃗ = r⃗ ′(t)

The Components of the Velocity Vector

If we represent a curve parametrically by x = f (t), y = g(t), z = ℎ(t), then we can write its position

vector as: r⃗ (t) = f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗ . Now we can compute the velocity vector:

v⃗ (t) = lim
Δt→0

r⃗ (t + Δt) − r⃗ (t)

Δt

= lim
Δt→0

(f (t + Δt)i⃗ + g(t + Δt)j⃗ + ℎ(t + Δt)k⃗ ) − (f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗ )

Δt

= lim
Δt→0

(

f (t + Δt) − f (t)

Δt
i⃗ +

g(t + Δt) − g(t)

Δt
j⃗ +

ℎ(t + Δt) − ℎ(t)

Δt
k⃗

)

= f ′(t)i⃗ + g′(t)j⃗ + ℎ′(t)k⃗

=
dx

dt
i⃗ +

dy

dt
j⃗ +

dz

dt
k⃗ .

Thus, we have the following result:

The components of the velocity vector of a particle moving in space with position vector

r⃗ (t) = f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗ at time t are given by

v⃗ (t) = f ′(t)i⃗ + g′(t)j⃗ + ℎ′(t)k⃗ =
dx

dt
i⃗ +

dy

dt
j⃗ +

dz

dt
k⃗ .

Example 2 Find the components of the velocity vector for the child on the Ferris wheel in Example 1 using a

coordinate system which has its origin at the center of the Ferris wheel and which makes the rotation

counterclockwise.

Solution The Ferris wheel has radius 5 meters and completes 1 revolution counterclockwise every 2 minutes.

The motion is parameterized by an equation of the form

r⃗ (t) = 5 cos(!t)i⃗ + 5 sin(!t)j⃗ ,
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where ! is chosen to make the period 2 minutes. Since the period of cos(!t) and sin(!t) is 2�∕!,

we must have
2�

!
= 2, so ! = �.

Thus, the motion is described by the equation

r⃗ (t) = 5 cos(�t)i⃗ + 5 sin(�t)j⃗ ,

where t is in minutes. The velocity is given by

v⃗ =
dx

dt
i⃗ +

dy

dt
j⃗ = −5� sin(�t)i⃗ + 5� cos(�t)j⃗ .

To check, we calculate the magnitude of v⃗ ,

‖v⃗ ‖ =

√

(−5�)2 sin2(�t) + (5�)2 cos2(�t) = 5�

√

sin2(�t) + cos2(�t) = 5� ≈ 15.7,

which agrees with the speed we calculated in Example 1. To see that the direction is correct, we must

show that the vector v⃗ at any time t is perpendicular to the position vector of the child at time t. To

do this, we compute the dot product of v⃗ and r⃗ :

v⃗ ⋅ r⃗ = (−5� sin(�t)i⃗ + 5� cos(�t)j⃗ ) ⋅ (5 cos(�t)i⃗ + 5 sin(�t)j⃗ )

= −25� sin(�t) cos(�t) + 25� cos(�t) sin(�t) = 0.

So the velocity vector, v⃗ , is perpendicular to r⃗ and hence tangent to the circle. The direction is

counterclockwise, since in the first quadrant,x is decreasing while y is increasing. (See Figure 17.14.)

x

y

v⃗ = −5� sin(�t)i⃗ + 5� cos(�t)j⃗

r⃗ = 5 cos(�t)i⃗ + 5 sin(�t)j⃗

Figure 17.14: Velocity and radius vector of motion around a circle

Velocity Vectors and Tangent Lines

Since the velocity vector is tangent to the path of motion, it can be used to find parametric equations

for the tangent line, if there is one.

Example 3 Find the tangent line at the point (1, 1, 2) to the curve defined by the parametric equation

r⃗ (t) = t2 i⃗ + t3j⃗ + 2tk⃗ .

Solution At time t = 1 the particle is at the point (1, 1, 2) with position vector r⃗ 0 = i⃗ + j⃗ + 2k⃗ . The velocity

vector at time t is r⃗ ′(t) = 2ti⃗ +3t2j⃗ +2k⃗ , so at time t = 1 the velocity is v⃗ = r⃗ ′(1) = 2i⃗ +3j⃗ +2k⃗ .

The tangent line passes through (1, 1, 2) in the direction of v⃗ , so it has the parametric equation

r⃗ (t) = r⃗ 0 + tv⃗ = (i⃗ + j⃗ + 2k⃗ ) + t(2i⃗ + 3j⃗ + 2k⃗ ).
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The Acceleration Vector

Just as the velocity of a particle moving in 2-space or 3-space is a vector quantity, so is the rate of

change of the velocity of the particle, namely its acceleration. Figure 17.15 shows a particle at time

t with velocity vector v⃗ (t) and then a little later at time t+Δt. The vector Δv⃗ = v⃗ (t+Δt) − v⃗ (t) is

the change in velocity and points approximately in the direction of the acceleration. So,

Average acceleration =
Δv⃗

Δt
.

In the limit as Δt → 0, we have the instantaneous acceleration at time t:

The acceleration vector of an object moving with velocity v⃗ (t) at time t is

a⃗ (t) = lim
Δt→0

Δv⃗

Δt
= lim

Δt→0

v⃗ (t + Δt) − v⃗ (t)

Δt
,

if the limit exists. We use the notation a⃗ =
dv⃗

dt
=

d2r⃗

dt2
= r⃗ ′′(t).

v⃗ (t)

v⃗ (t + Δt)

v⃗ (t)

v⃗ (t + Δt)
Δv⃗ = v⃗ (t + Δt) − v⃗ (t)

Figure 17.15: Computing the difference between two velocity vectors

Components of the Acceleration Vector

If we represent a curve in space parametrically by x = f (t), y = g(t), z = ℎ(t), we can express the

acceleration in components. The velocity vector v⃗ (t) is given by

v⃗ (t) = f ′(t)i⃗ + g′(t)j⃗ + ℎ′(t)k⃗ .

From the definition of the acceleration vector, we have

a⃗ (t) = lim
Δt→0

v⃗ (t + Δt) − v⃗ (t)

Δt
=

dv⃗

dt
.

Using the same method to compute dv⃗ ∕dt as we used to compute dr⃗ ∕dt on page 897, we obtain

The components of the acceleration vector, a⃗ (t), at time t of a particle moving in space with

position vector r⃗ (t) = f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗ at time t are given by

a⃗ (t) = f ′′(t)i⃗ + g′′(t)j⃗ + ℎ′′(t)k⃗ =
d2x

dt2
i⃗ +

d2y

dt2
j⃗ +

d2z

dt2
k⃗ .

Motion in a Circle and Along a Line
We now consider the velocity and acceleration vectors for two basic motions: uniform motion around

a circle, and motion along a straight line.
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Example 4 Find the acceleration vector for the child on the Ferris wheel in Examples 1 and 2.

Solution The child’s position vector is given by r⃗ (t) = 5 cos(�t)i⃗ + 5 sin(�t)j⃗ . In Example 2 we saw that the

velocity vector is

v⃗ (t) =
dx

dt
i⃗ +

dy

dt
j⃗ = −5� sin(�t)i⃗ + 5� cos(�t)j⃗ .

Thus, the acceleration vector is

a⃗ (t) =
d2x

dt2
i⃗ +

d2y

dt2
j⃗ = −(5�) ⋅ � cos(�t)i⃗ − (5�) ⋅ � sin(�t)j⃗

= −5�2 cos(�t)i⃗ − 5�2 sin(�t)j⃗ .

Notice that a⃗ (t) = −�2r⃗ (t). Thus, the acceleration vector is a multiple of r⃗ (t) and points toward the

origin.

The motion of the child on the Ferris wheel is an example of uniform circular motion, whose

properties follow. (See Problem 45.)

Uniform Circular Motion: For a particle whose motion is described by

r⃗ (t) = R cos(!t)i⃗ +R sin(!t)j⃗

• Motion is in a circle of radius R with period 2�∕|!|.

• Velocity, v⃗ , is tangent to the circle and speed is constant ‖v⃗ ‖ = |!|R.

• Acceleration, a⃗ , points toward the center of the circle with ‖a⃗ ‖ = ‖v⃗ ‖2∕R.

In uniform circular motion, the acceleration vector is perpendicular to the velocity vector, v⃗ ,

because v⃗ does not change in magnitude, only in direction. There is no acceleration in the direction

of v⃗ .

We now look at straight-line motion in which the velocity vector always has the same direction

but its magnitude changes. In straight-line motion, the acceleration vector points in the same direction

as the velocity vector if the speed is increasing and in the opposite direction to the velocity vector if

the speed is decreasing.

Example 5 Consider the motion given by the vector equation

r⃗ (t) = 2i⃗ + 6j⃗ + (t3 + t)(4i⃗ + 3j⃗ + k⃗ ).

Show that this is straight-line motion in the direction of the vector 4i⃗ + 3j⃗ + k⃗ and relate the

acceleration vector to the velocity vector.

Solution The velocity vector is

v⃗ = (3t2 + 1)(4i⃗ + 3j⃗ + k⃗ ).

Since (3t2 + 1) is a positive scalar, the velocity vector v⃗ always points in the direction of the vector

4i⃗ + 3j⃗ + k⃗ . In addition,

Speed = ‖v⃗ ‖ = (3t2 + 1)
√

42 + 32 + 12 =
√

26(3t2 + 1).

Notice that the speed is decreasing until t = 0, then starts increasing. The acceleration vector is

a⃗ = 6t(4i⃗ + 3j⃗ + k⃗ ).
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For t > 0, the acceleration vector points in the same direction as 4i⃗ + 3j⃗ + k⃗ , which is the

same direction as v⃗ . This makes sense because the object is speeding up. For t < 0, the acceleration

vector 6t(4i⃗ + 3j⃗ + k⃗ ) points in the opposite direction to v⃗ because the object is slowing down.

Motion in a Straight Line: For a particle whose motion is described by

r⃗ (t) = r⃗ 0 + f (t)v⃗

• Motion is along a straight line through the point with position vector r⃗ 0 parallel to v⃗ .

• Velocity, v⃗ , and acceleration, a⃗ , are parallel to the line.

If f (t) = t, then we have r⃗ (t) = r⃗ 0 + tv, the equation of a line obtained on page 889.

The Length of a Curve

The speed of a particle is the magnitude of its velocity vector:

Speed = ‖v⃗ ‖ =

√

(

dx

dt

)2

+

(

dy

dt

)2

+
(

dz

dt

)2

.

As in one dimension, we can find the distance traveled by a particle along a curve by integrating its

speed. Thus,

Distance traveled =
∫

b

a

‖v⃗ (t)‖ dt.

If the particle never stops or reverses its direction as it moves along the curve, the distance it travels

will be the same as the length of the curve. This suggests the following formula, which is justified

in Problem 71 (available online):

If the curve C is given parametrically for a ≤ t ≤ b by smooth functions and if the velocity

vector v⃗ is not 0⃗ for a < t < b, then

Length of C =
∫

b

a

‖v⃗ ‖dt.

Example 6 Find the circumference of the ellipse given by the parametric equations

x = 2 cos t, y = sin t, 0 ≤ t ≤ 2�.

Solution The circumference of this curve is given by an integral which must be calculated numerically:

Circumference =
∫

2�

0

√

(

dx

dt

)2

+

(

dy

dt

)2

dt =
∫

2�

0

√

(−2 sin t)2 + (cos t)2 dt

=
∫

2�

0

√

4 sin2 t + cos2 t dt = 9.69.

Since the ellipse is inscribed in a circle of radius 2 and circumscribes a circle of radius 1, we

would expect the length of the ellipse to be between 2�(2) ≈ 12.57 and 2�(1) ≈ 6.28, so the value

of 9.69 is reasonable.
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Exercises and Problems for Section 17.2 Online Resource: Additional Problems for Section 17.2
EXERCISES

In Exercises 1–6, find the velocity and acceleration vectors.

1. x = 2 + 3t, y = 4 + t, z = 1 − t

2. x = 2 + 3t2, y = 4 + t2, z = 1 − t2

3. x = t, y = t2, z = t3

4. x = t, y = t3 − t

5. x = 3 cos t, y = 4 sin t

6. x = 3 cos (t2), y = 3 sin (t2), z = t2

In Exercises 7–12, find the velocity v⃗ (t) and speed ‖v⃗ (t)‖.

Find any times at which the particle stops.

7. x = t, y = t2, z = t3

8. x = cos 3t, y = sin 5t

9. x = 3t2, y = t3 + 1

10. x = (t − 1)2, y = 2, z = 2t3 − 3t2

11. x = 3 sin(t2) − 1, y = 3 cos(t2)

12. x = 3 sin2 t, y = cos t − 1, z = t2

In Exercises 13–16, find the length of the curve.

13. x = 3 + 5t, y = 1 + 4t, z = 3 − t for 1 ≤ t ≤ 2. Check

by calculating the length by another method.

14. x = cos 3t, y = sin 5t for 0 ≤ t ≤ 2�.

15. x = cos(et), y = sin(et) for 0 ≤ t ≤ 1. Check by calcu-

lating the length by another method.

16. r⃗ (t) = 2ti⃗ + ln tj⃗ + t2k⃗ for 1 ≤ t ≤ 2.

In Exercises 17–18, find the velocity and acceleration vec-

tors of the uniform circular motion and check that they are

perpendicular. Check that the speed and magnitude of the

acceleration are constant.

17. x = 3 cos(2�t), y = 3 sin(2�t), z = 0

18. x = 2�, y = 2 sin(3t), z = 2 cos(3t)

In Exercises 19–20, find the velocity and acceleration vec-

tors of the straight-line motion. Check that the acceleration

vector points in the same direction as the velocity vector if

the speed is increasing and in the opposite direction if the

speed is decreasing.

19. x = 2 + t2, y = 3 − 2t2, z = 5 − t2

20. x = −2t3 − 3t + 1, y = 4t3 + 6t − 5, z = 6t3 + 9t − 2

21. Find parametric equations for the tangent line at t = 2

for Exercise 10.

PROBLEMS

22. A particle passes through the point P = (5, 4,−2)

at time t = 4, moving with constant velocity v⃗ =

2i⃗ − 3j⃗ + k⃗ . Find a parametric equation for its mo-

tion.

In Problems 23–24, find all values of t for which the particle

is moving parallel to the x-axis and to the y-axis. Determine

the end behavior and graph the particle’s path.

23. x = t2 − 6t, y = t3 − 3t

24. x = t3 − 12t, y = t2 + 10t

25. The table gives x and y coordinates of a particle in

the plane at time t. Assuming that the particle moves

smoothly and that the points given show all the major

features of the motion, estimate the following quanti-

ties:

(a) The velocity vector and speed at time t = 2.

(b) Any times when the particle is moving parallel to

the y-axis.

(c) Any times when the particle has come to a stop.

t 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

x 1 4 6 7 6 3 2 3 5

y 3 2 3 5 8 10 11 10 9

26. A particle starts at the point P = (3, 2,−5) and moves

along a straight line toward Q = (5, 7,−2) at a speed of

5 cm/sec. Let x, y, z be measured in centimeters.

(a) Find the particle’s velocity vector.

(b) Find parametric equations for the particle’s mo-

tion.

27. A particle moves at a constant speed along a line from

the point P = (2,−1, 5) at time t = 0 to the point

Q = (5, 3,−1). Find parametric equations for the parti-

cle’s motion if:

(a) The particle takes 5 seconds to move from P to Q.

(b) The speed of the particle is 5 units per second.

28. A particle travels along the line x = 1 + t, y =

5 + 2t, z = −7 + t, where t is in seconds and x, y, z

are in meters.

(a) When and where does the particle hit the plane

x + y + z = 1?

(b) How fast is the particle going when it hits the

plane? Give units.
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29. A stone is thrown from a rooftop at time t = 0 seconds.

Its position at time t is given by

r⃗ (t) = 10ti⃗ − 5tj⃗ + (6.4 − 4.9t2)k⃗ .

The origin is at the base of the building, which is stand-

ing on flat ground. Distance is measured in meters. The

vector i⃗ points east, j⃗ points north, and k⃗ points up.

(a) How high is the rooftop above the ground?

(b) At what time does the stone hit the ground?

(c) How fast is the stone moving when it hits the

ground?

(d) Where does the stone hit the ground?

(e) What is the stone’s acceleration when it hits the

ground?

30. A child wanders slowly down a circular staircase from

the top of a tower. With x, y, z in feet and the origin at

the base of the tower, her position t minutes from the

start is given by

x = 10 cos t, y = 10 sin t, z = 90 − 5t.

(a) How tall is the tower?

(b) When does the child reach the bottom?

(c) What is her speed at time t?

(d) What is her acceleration at time t?

31. The origin is on flat ground and the z-axis points up-

ward. For time 0 ≤ t ≤ 10 in seconds and distance in

centimeters, a particle moves along a path given by

r⃗ = 2ti⃗ + 3tj⃗ + (100 − (t − 5)2)k⃗ .

(a) When is the particle at the highest point? What is

that point?

(b) When in the interval 0 ≤ t ≤ 10 is the particle

moving fastest? What is its speed at that moment?

(c) When in the interval 0 ≤ t ≤ 10 is the particle

moving slowest? What is its speed at that moment?

32. The function w = f (x, y, z) has grad f (7, 2, 5) = 4i⃗ −

3j⃗ + k⃗ . A particle moves along the curve r⃗ (t), arriving

at the point (7, 2, 5) with velocity 2i⃗ + 3j⃗ + 6k⃗ when

t = 0. Find the rate of change of w with respect to time

at t = 0.

33. Suppose x measures horizontal distance in meters, and

ymeasures distance above the ground in meters. At time

t = 0 in seconds, a projectile starts from a point ℎ me-

ters above the origin with speed v meters/sec at an angle

� to the horizontal. Its path is given by

x = (v cos �)t, y = ℎ + (v sin �)t −
1

2
gt2.

Using this information about a general projectile, ana-

lyze the motion of a ball which travels along the path

x = 20t, y = 2 + 25t − 4.9t2.

(a) When does the ball hit the ground?

(b) Where does the ball hit the ground?

(c) At what height above the ground does the ball

start?

(d) What is the value of g, the acceleration due to grav-

ity?

(e) What are the values of v and �?

34. A particle is moving on a path in the xz-plane given by

x = 20t, z = 5t − 0.5t2, where z is the height of the

particle above the ground in meters, x is the horizontal

distance in meters, and t is time in seconds.

(a) What is the equation of the path in terms of x and

z only?

(b) When is the particle at ground level?

(c) What is the velocity of the particle at time t?

(d) What is the speed of the particle at time t?

(e) Is the speed ever 0?

(f) When is the particle at the highest point?

35. The base of a 20-meter tower is at the origin; the base

of a 20-meter tree is at (0, 20, 0). The ground is flat

and the z-axis points upward. The following paramet-

ric equations describe the motion of six projectiles each

launched at time t = 0 in seconds.

(I) r⃗ (t) = (20 + t2)k⃗

(II) r⃗ (t) = 2t2j⃗ + 2t2k⃗

(III) r⃗ (t) = 20i⃗ + 20j⃗ + (20 − t2)k⃗

(IV) r⃗ (t) = 2tj⃗ + (20 − t2)k⃗

(V) r⃗ (t) = (20 − 2t)i⃗ + 2tj⃗ + (20 − t)k⃗

(VI) r⃗ (t) = ti⃗ + tj⃗ + tk⃗

(a) Which projectile is launched from the top of the

tower and goes downward? When and where does

it hit the ground?

(b) Which projectile hits the top of the tree? When?

From where is it launched?

(c) Which projectile is not launched from somewhere

on the tower and hits the tree? Where and when

does it hit the tree?

36. A particle moves on a circle of radius 5 cm, centered

at the origin, in the xy-plane (x and y measured in cen-

timeters). It starts at the point (0, 5) and moves counter-

clockwise, going once around the circle in 8 seconds.

(a) Write a parameterization for the particle’s motion.

(b) What is the particle’s speed? Give units.

37. A particle moves along a curve with velocity vector

v⃗ (t) = − sin ti⃗ + cos tj⃗ . At time t = 0 the particle

is at (2, 3).

(a) Find the displacement vector for the particle from

time t = 0 to t = �.

(b) Find the position of the particle at time t = �.

(c) Find the distance traveled by the particle from time

t = 0 to time t = �.



904 Chapter 17 PARAMETERIZATION AND VECTOR FIELDS

38. Determine the position vector r⃗ (t) for a rocket which is

launched from the origin at time t = 0 seconds, reaches

its highest point of (x, y, z) = (1000, 3000, 10,000),

where x, y, z are in meters, and after the launch is sub-

ject only to the acceleration due to gravity, 9.8 m/sec2.

39. Emily is standing on the outer edge of a merry-go-

round, 10 meters from the center. The merry-go-round

completes one full revolution every 20 seconds. As

Emily passes over a point P on the ground, she drops a

ball from 3 meters above the ground.

(a) How fast is Emily going?

(b) How far from P does the ball hit the ground? (The

acceleration due to gravity is 9.8 m/sec2.)

(c) How far from Emily does the ball hit the ground?

40. A point P moves in a circle of radius a. Show that r⃗ (t),

the position vector of P , and its velocity vector r⃗ ′(t) are

perpendicular.

41. A wheel of radius 1 meter rests on the x-axis with its

center on the y-axis. There is a spot on the rim at the

point (1, 1). See Figure 17.16. At time t = 0 the wheel

starts rolling on the x-axis in the direction shown at a

rate of 1 radian per second.

(a) Find parametric equations describing the motion of

the center of the wheel.

(b) Find parametric equations describing the motion of

the spot on the rim. Plot its path.

−1 0 1

2

1

x

y

Spot

Figure 17.16

42. Suppose r⃗ (t) = cos t i⃗ + sin t j⃗ + 2t k⃗ represents the

position of a particle on a helix, where z is the height

of the particle above the ground.

(a) Is the particle ever moving downward? When?

(b) When does the particle reach a point 10 units above

the ground?

(c) What is the velocity of the particle when it is 10

units above the ground?

(d) When it is 10 units above the ground, the particle

leaves the helix and moves along the tangent. Find

parametric equations for this tangent line.

43. Show that the helix r⃗ = � cos ti⃗ + � sin tj⃗ + �tk⃗ is

parameterized with constant speed.

44. An ant crawls along the radius from the center to the

edge of a circular disk of radius 1 meter, moving at a

constant rate of 1 cm/sec. Meanwhile, the disk is turn-

ing counterclockwise about its center at 1 revolution per

second.

(a) Parameterize the motion of the ant.

(b) Find the velocity and speed of the ant.

(c) Determine the acceleration and magnitude of the

acceleration of the ant.

45. The motion of a particle is given by r⃗ (t) = R cos(!t)i⃗ +

R sin(!t)j⃗ , with R > 0, ! > 0.

(a) Show that the particle moves on a circle and find

the radius, direction, and period.

(b) Determine the velocity vector of the particle and

its direction and speed.

(c) What are the direction and magnitude of the accel-

eration vector of the particle?

46. You bicycle along a straight flat road with a safety light

attached to one foot. Your bike moves at a speed of 25

km/hr and your foot moves in a circle of radius 20 cm

centered 30 cm above the ground, making one revolu-

tion per second.

(a) Find parametric equations for x and y which de-

scribe the path traced out by the light, where y is

distance (in cm) above the ground.

(b) Sketch the light’s path.

(c) How fast (in revolutions/sec) would your foot have

to be rotating if an observer standing at the side of

the road sees the light moving backward?

47. How do the motions of objects A and B differ, if A

has position vector r⃗ A(t) and B has position vector

r⃗ B(t) = r⃗ A(2t) for t ≥ 0. Illustrate your answer with

r⃗ A(t) = ti⃗ + t2j⃗ .

48. At time t = 0 an object is moving with velocity vector

v⃗ = 2i⃗ + j⃗ and acceleration vector a⃗ = i⃗ + j⃗ . Can it

be in uniform circular motion about some point in the

plane?

49. Figure 17.17 shows the velocity and acceleration vec-

tors of an object in uniform circular motion about a

point in the plane at a particular moment. Is it moving

round the circle in the clockwise or counterclockwise

direction?

a⃗

v⃗

Figure 17.17
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50. Let v⃗ (t) be the velocity of a particle moving in the

plane. Let s(t) be the magnitude of v⃗ and let �(t) be

the angle of v⃗ (t) with the positive x-axis at time t, so

that v⃗ = s cos � i⃗ + s sin � j⃗ .

Let T⃗ be the unit vector in the direction of v⃗ , and

let N⃗ be the unit vector in the direction of k⃗ × v⃗ , per-

pendicular to v⃗ . Show that the acceleration a⃗ (t) is given

by

a⃗ =
ds

dt
T⃗ + s

d�

dt
N⃗ .

This shows how to separate the acceleration into the

sum of one component,
ds

dt
T⃗ , due to changing speed

and a perpendicular component, s
d�

dt
N⃗ , due to chang-

ing direction of the motion.

Strengthen Your Understanding

In Problems 51–53, explain what is wrong with the state-

ment.

51. When a particle moves around a circle its velocity and

acceleration are always orthogonal.

52. A particle with position r⃗ (t) at time t has acceleration

equal to 3 m/sec2 at time t = 0.

53. A parameterized curve r⃗ (t), A ≤ t ≤ B, has length

B − A.

In Problems 54–55, give an example of:

54. A function r⃗ (t) such that the particle with position r⃗ (t)

at time t has velocity v⃗ = i⃗ + 2j⃗ and acceleration

a⃗ = 4i⃗ + 6k⃗ at t = 0.

55. An interval a ≤ t ≤ b corresponding to a piece of the

helix r⃗ (t) = cos ti⃗ + sin tj⃗ + tk⃗ of length 10.

Are the statements in Problems 56–63 true or false? Give

reasons for your answer.

56. A particle whose motion in the plane is given by r⃗ (t) =

t2 i⃗ +(1−t)j⃗ has the same velocity at t = 1 and t = −1.

57. A particle whose motion in the plane is given by r⃗ (t) =

t2 i⃗ + (1 − t)j⃗ has the same speed at t = 1 and t = −1.

58. If a particle is moving along a parameterized curve r⃗ (t)

then the acceleration vector at any point is always per-

pendicular to the velocity vector at that point.

59. If a particle is moving along a parameterized curve r⃗ (t)

then the acceleration vector at a point cannot be parallel

to the velocity vector at that point.

60. If r⃗ (t) for a ≤ t ≤ b is a parameterized curve, then

r⃗ (−t) for a ≤ t ≤ b is the same curve traced backward.

61. If r⃗ (t) for a ≤ t ≤ b is a parameterized curve C and the

speed ||v⃗ (t)|| = 1, then the length of C is b − a.

62. If a particle moves with motion r⃗ (t) = 3ti⃗ + 2tj⃗ + tk⃗ ,

then the particle stops at the origin.

63. If a particle moves with constant speed, the path of the

particle must be a line.

For Problems 64–67, decide if the statement is true or false

for all smooth parameterized curves r⃗ (t) and all values of t

for which r⃗ ′(t) ≠ 0⃗ .

64. The vector r⃗ ′(t) is tangent to the curve at the point with

position vector r⃗ (t).

65. r⃗ ′(t) × r⃗ (t) = 0⃗

66. r⃗ ′(t) ⋅ r⃗ (t) = 0

67. r⃗ ′′(t) = −!2r⃗ (t)

17.3 VECTOR FIELDS

Introduction to Vector Fields

A vector field is a function that assigns a vector to each point in the plane or in 3-space. One example

of a vector field is the gradient of a function f (x, y); at each point (x, y) the vector gradf (x, y)

points in the direction of maximum rate of increase of f . In this section we look at other vector

fields representing velocities and forces.

Velocity Vector Fields

Figure 17.18 shows the flow of a part of the Gulf Stream, a current in the Atlantic Ocean.2 It is an

example of a velocity vector field: each vector shows the velocity of the current at that point. The

current is fastest where the velocity vectors are longest in the middle of the stream. Beside the stream

are eddies where the water flows round and round in circles.

2Based on data supplied by Avijit Gangopadhyay of the Jet Propulsion Laboratory.
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Figure 17.18: The velocity vector field of the Gulf Stream

Force Fields

Another physical quantity represented by a vector is force. When we experience a force, sometimes it

results from direct contact with the object that supplies the force (for example, a push). Many forces,

however, can be felt at all points in space. For example, the earth exerts a gravitational pull on all

other masses. Such forces can be represented by vector fields.

Figure 17.19 shows the gravitational force exerted by the earth on a mass of one kilogram at

different points in space. This is a sketch of the vector field in 3-space. You can see that the vectors

all point toward the earth (which is not shown in the diagram) and that the vectors farther from the

earth are smaller in magnitude.

Figure 17.19: The gravitational field of the earth

Definition of a Vector Field

Now that you have seen some examples of vector fields, we give a more formal definition.
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A vector field in 2-space is a function F⃗ (x, y) whose value at a point (x, y) is a 2-dimensional

vector. Similarly, a vector field in 3-space is a function F⃗ (x, y, z) whose values are 3-

dimensional vectors.

Notice the arrow over the function, F⃗ , indicating that its value is a vector, not a scalar. We often

represent the point (x, y) or (x, y, z) by its position vector r⃗ and write the vector field as F⃗ (r⃗ ).

Visualizing a Vector Field Given by a Formula

Since a vector field is a function that assigns a vector to each point, a vector field can often be given

by a formula.

Example 1 Sketch the vector field in 2-space given by F⃗ (x, y) = −yi⃗ + xj⃗ .

Solution Table 17.1 shows the value of the vector field at a few points. Notice that each value is a vector. To

plot the vector field, we plot F⃗ (x, y) with its tail at (x, y). (See Figure 17.20.)

Table 17.1 Values of F⃗ (x, y) = −yi⃗ + xj⃗

x

y

−1 0 1

−1 i⃗ − j⃗ −j⃗ −i⃗ − j⃗

0 i⃗ 0⃗ −i⃗

1 i⃗ + j⃗ j⃗ −i⃗ + j⃗

Now we look at the formula. The magnitude of the vector at (x, y) is the distance from (x, y) to

the origin since

‖F⃗ (x, y)‖ = ‖ − yi⃗ + xj⃗ ‖ =
√

x2 + y2.

Therefore, all the vectors at a fixed distance from the origin (that is, on a circle centered at the origin)

have the same magnitude. The magnitude gets larger as we move farther from the origin.

What about the direction? Figure 17.20 suggests that at each point (x, y) the vector F⃗ (x, y) is

perpendicular to the position vector r⃗ = xi⃗ + yj⃗ . We confirm this using the dot product:

r⃗ ⋅ F⃗ (x, y) = (xi⃗ + yj⃗ ) ⋅ (−yi⃗ + xj⃗ ) = 0.

Thus, the vectors are tangent to circles centered at the origin and get longer as we go out. In Fig-

ure 17.21, the vectors have been scaled so that they do not obscure each other.

x

y

−1

1

−1

1

Figure 17.20: The value F⃗ (x, y) is

placed at the point (x, y)

x

y

Figure 17.21: The vector field F⃗ (x, y) = −yi⃗ + xj⃗ , vectors

scaled smaller to fit in diagram
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Example 2 Sketch the vector fields in 2-space given by (a) F⃗ (x, y) = xj⃗ (b) G⃗ (x, y) = xi⃗ .

Solution (a) The vector xj⃗ is parallel to the y-direction, pointing up when x is positive and down when x is

negative. Also, the larger |x| is, the longer the vector. The vectors in the field are constant along

vertical lines since the vector field does not depend on y. (See Figure 17.22.)

x

y

Figure 17.22: The vector field F⃗ (x, y) = xj⃗

x

y

Figure 17.23: The vector field F⃗ (x, y) = xi⃗

(b) This is similar to the previous example, except that the vector xi⃗ is parallel to the x-direction,

pointing to the right when x is positive and to the left when x is negative. Again, the larger |x|

is the longer the vector, and the vectors are constant along vertical lines, since the vector field

does not depend on y. (See Figure 17.23.)

Example 3 Describe the vector field in 3-space given by F⃗ (r⃗ ) = r⃗ , where r⃗ = xi⃗ + yj⃗ + zk⃗ .

Solution The notation F⃗ (r⃗ ) = r⃗ means that the value of F⃗ at the point (x, y, z) with position vector r⃗ is the

vector r⃗ with its tail at (x, y, z). Thus, the vector field points outward. See Figure 17.24. Note that

the lengths of the vectors have been scaled down so as to fit into the diagram.

Figure 17.24: The vector field F⃗ (r⃗ ) = r⃗

M

m

F⃗

Figure 17.25: Force exerted

on mass m by mass M

Finding a Formula for a Vector Field

Example 4 Newton’s Law of Gravitation states that the magnitude of the gravitational force exerted by an object

of massM on an object of massm is proportional toM andm and inversely proportional to the square

of the distance between them. The direction of the force is from m to M along the line connecting

them. (See Figure 17.25.) Find a formula for the vector field F⃗ (r⃗ ) that represents the gravitational

force, assuming M is located at the origin and m is located at the point with position vector r⃗ .
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Solution Since the mass m is located at r⃗ , Newton’s law says that the magnitude of the force is given by

‖F⃗ (r⃗ )‖ =
GMm

‖r⃗ ‖2
,

where G is the universal gravitational constant. A unit vector in the direction of the force is −r⃗ ∕‖r⃗ ‖,

where the negative sign indicates that the direction of force is toward the origin (gravity is attractive).

By taking the product of the magnitude of the force and a unit vector in the direction of the force,

we obtain an expression for the force vector field:

F⃗ (r⃗ ) =
GMm

‖r⃗ ‖2

(

−
r⃗

‖r⃗ ‖

)

=
−GMmr⃗

‖r⃗ ‖
3

.

We have already seen a picture of this vector field in Figure 17.19.

Gradient Vector Fields

The gradient of a scalar function f is a function that assigns a vector to each point, and is therefore

a vector field. It is called the gradient field of f . Many vector fields in physics are gradient fields.

Example 5 Sketch the gradient field of the functions in Figures 17.26–17.28.

1

7

5

3

x

y

Figure 17.26: The contour map of

f (x, y) = x2 + 2y2

3

−3

−1

1

y

x

Figure 17.27: The contour map of

g(x, y) = 5 − x2 − 2y2

5

1

9

−3

y

x

Figure 17.28: The contour map of

ℎ(x, y) = x + 2y + 3

Solution See Figures 17.29–17.31.For a functionf (x, y), the gradient vector of f at a point is perpendicular to

the contours in the direction of increasing f and its magnitude is the rate of change in that direction.

The rate of change is large when the contours are close together and small when they are far apart.

Notice that in Figure 17.29 the vectors all point outward, away from the local minimum of f , and

in Figure 17.30 the vectors of grad g all point inward, toward the local maximum of g. Since ℎ is a

linear function, its gradient is constant, so gradℎ in Figure 17.31 is a constant vector field.

x

y

Figure 17.29: grad f

x

y

Figure 17.30: grad g

x

y

Figure 17.31: gradℎ
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Exercises and Problems for Section 17.3

EXERCISES

For Exercises 1–6, find formulas for the vector fields. (There

are many possible answers.)

1.

x

y 2.

x

y

3.

x

y 4.

x

y

5.

x

y 6.

x

y

In Exercises 7–10, assume x, y > 0 and decide if

(a) The vector field is parallel to the x-axis, parallel to the

y-axis, or neither.

(b) As x increases, the length increases, decreases, or nei-

ther.

(c) As y increases, the length increases, decreases, or nei-

ther.

Assume x, y > 0.

7. F⃗ = xj⃗ 8. F⃗ = yi⃗ + j⃗

9. F⃗ = (x + e1−y)i⃗ 10. grad(x4 + e3y)

Sketch the vector fields in Exercises 11–19 in the xy-plane.

11. F⃗ (x, y) = 2i⃗ + 3j⃗ 12. F⃗ (x, y) = yi⃗

13. F⃗ (x, y) = −yj⃗ 14. F⃗ (r⃗ ) = 2r⃗

15. F⃗ (r⃗ ) = r⃗ ∕‖r⃗ ‖ 16. F⃗ (r⃗ ) = −r⃗ ∕‖r⃗ ‖3

17. F⃗ = yi⃗ − xj⃗ 18. F⃗ (x, y) = 2xi⃗ + xj⃗

19. F⃗ (x, y) = (x + y)i⃗ + (x − y)j⃗

20. Match vector fields A⃗ –D⃗ in the tables with vector

fields (I)–(IV) in Figure 17.32.

Vector field A⃗

y∖x −1 1

−1 i⃗ + j⃗ i⃗ + j⃗

1 i⃗ + j⃗ i⃗ + j⃗

Vector field B⃗

y∖x −1 1

−1 −i⃗ − j⃗ −i⃗ − j⃗

1 i⃗ + j⃗ i⃗ + j⃗

Vector field C⃗

y∖x −1 1

−1 −2i⃗ + j⃗ 2i⃗ + j⃗

1 −2i⃗ + j⃗ 2i⃗ + j⃗

Vector field D⃗

y∖x −1 1

−1 i⃗ + j⃗ −i⃗ − j⃗

1 −i⃗ + j⃗ i⃗ − j⃗

(I) (II)

(III) (IV)

Figure 17.32

21. For each description of a vector field in (a)-(d), choose

one or more of the vector fields I-IX.

(a) Pointing radially outward, increasing in length

away from the origin.

(b) Pointing in a circular direction around the origin,

remaining the same length.

(c) Pointing towards the origin, increasing in length

farther from the origin.

(d) Pointing clockwise around the origin.

I.
xi⃗ + yj⃗
√

x2 + y2
II.

−yi⃗ + xj⃗
√

x2 + y2
III. r⃗

IV. −r⃗ V. −yi⃗ + xj⃗ VI. yi⃗ − xj⃗

VII. yi⃗ + xj⃗ VIII.
r⃗

||r⃗ ||3
IX. −

r⃗

||r⃗ ||3
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22. Each vector field in Figures (I)–(IV) represents the force

on a particle at different points in space as a result of an-

other particle at the origin. Match up the vector fields

with the descriptions below.

(a) A repulsive force whose magnitude decreases

as distance increases, such as between electric

charges of the same sign.

(b) A repulsive force whose magnitude increases as

distance increases.

(c) An attractive force whose magnitude decreases as

distance increases, such as gravity.

(d) An attractive force whose magnitude increases as

distance increases.

(I) (II)

(III) (IV)

PROBLEMS

In Problems 23–27, give an example of a vector field F⃗ (x, y)

in 2-space with the stated properties.

23. F⃗ is constant

24. F⃗ has a constant direction but ‖F⃗ ‖ is not constant

25. ‖F⃗ ‖ is constant but F⃗ is not constant

26. Neither ‖F⃗ ‖ nor the direction of F⃗ is constant

27. F⃗ is perpendicular to G⃗ = (x+y)i⃗ +(1+y2)j⃗ at every

point

28. Match the level curves in (I)–(IV) with the gradient

fields in (A)–(D). All figures use the same square win-

dow.

−
3

−
2

−
1

0
1

2

3

(I)

3

2

1

0
−
1

−
2

−
3

(II)

−
0.5

0 0.5

1

0.5

0
−
0.5

(III)

0.5

0 −
0.5

−
1

−
0.5

0
0.5

(IV)

(A) (B)

(C) (D)

Problems 29–30 concern the vector fields F⃗ = xi⃗ + yj⃗ ,

G⃗ = −yi⃗ + xj⃗ , and H⃗ = xi⃗ − yj⃗ .

29. Match F⃗ , G⃗ , H⃗ with their sketches in (I)–(III).

x

y(I)

x

y(II)

x

y(III)

30. Match the vector fields with their sketches, (I)–(IV).

(a) F⃗ + G⃗ (b) F⃗ +H⃗ (c) G⃗ + H⃗ (d) −F⃗ +G⃗

x

y(I)

x

y(II)

x

y(III)

x

y(IV)
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31. Match vector fields (a)–(f) with their graphs (I)–(VI).

(a) −yi⃗ + xj⃗ (b) xi⃗

(c) yj⃗ (d) zk⃗

(e) 2k⃗ (f) r⃗

x y

z(I)

x y

z(II)

x y

z(III)

x y

z(IV)

x y

z(V)

x y

z(VI)

In Problems 32–34, write formulas for vector fields with the

given properties.

32. All vectors are parallel to the x-axis; all vectors on a

vertical line have the same magnitude.

33. All vectors point toward the origin and have constant

length.

34. All vectors are of unit length and perpendicular to the

position vector at that point.

35. (a) Let F⃗ = xi⃗ + (x + y)j⃗ + (x − y + z)k⃗ . Find a

point at which F⃗ is parallel to l, the line x = 5+ t,

y = 6 − 2t, z = 7 − 3t.

(b) Find a point at which F⃗ and l are perpendicular.

(c) Give an equation for and describe in words the set

of all points at which F⃗ and l are perpendicular.

In Problems 36–37, let F⃗ = xi⃗ + yj⃗ and G⃗ = −yi⃗ + xj⃗ .

36. Sketch the vector field L⃗ = aF⃗ + G⃗ if:

(a) a = 0 (b) a > 0 (c) a < 0

37. Sketch the vector field L⃗ = F⃗ + bG⃗ if:

(a) b = 0 (b) b > 0 (c) b < 0

38. In the middle of a wide, steadily flowing river there is a

fountain that spouts water horizontally in all directions.

The river flows in the i⃗ -direction in the xy-plane and

the fountain is at the origin.

(a) If A > 0, K > 0, explain why the following ex-

pression could represent the velocity field for the

combined flow of the river and the fountain:

v⃗ = Ai⃗ +K(x2 + y2)−1(xi⃗ + yj⃗ ).

(b) What is the significance of the constants A and K?

(c) Using a computer, sketch the vector field v⃗ forK =

1 and A = 1 and A = 2, and for A = 0.2, K = 2.

39. Figures 17.33 and 17.34 show the gradient of the func-

tions z = f (x, y) and z = g(x, y).

(a) For each function, draw a rough sketch of the level

curves, showing possible z-values.

(b) The xz-plane cuts each of the surfaces z = f (x, y)

and z = g(x, y) in a curve. Sketch each of these

curves, making clear how they are similar and how

they are different from one another.

x

y

Figure 17.33: Gradient of

z = f (x, y)

x

y

Figure 17.34: Gradient of

z = g(x, y)

40. Let F⃗ = ui⃗ +vj⃗ be a vector field in 2-space with mag-

nitude F = ‖F⃗ ‖.

(a) Let T⃗ = (1∕F )F⃗ . Show that T⃗ is the unit vector

in the direction of F⃗ . See Figure 17.35.

(b) Let N⃗ = (1∕F )(k⃗ × F⃗ ) = (1∕F )(−vi⃗ + uj⃗ ).

Show that N⃗ is the unit vector pointing to the left

of and at right angles to F⃗. See Figure 17.35.

F⃗

T⃗

N⃗

x

y

Figure 17.35
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Strengthen Your Understanding

In Problems 41–42, explain what is wrong with the state-

ment.

41. A plot of the vector field G⃗ (x, y, z) = F⃗ (2x, 2y, 2z)

can be obtained from a plot of the vector field F⃗ (x, y, z)

by doubling the lengths of all the arrows.

42. A vector field F⃗ is defined by the formula F⃗ (x, y, z) =

x2 − yz.

In Problems 43–44, give an example of:

43. A nonconstant vector field that is parallel to i⃗ + j⃗ + k⃗

at every point.

44. A nonconstant vector field with magnitude 1 at every

point.

17.4 THE FLOW OF A VECTOR FIELD

When an iceberg is spotted in the North Atlantic, it is important to be able to predict where the

iceberg is likely to be a day or a week later. To do this, one needs to know the velocity vector field

of the ocean currents, that is, how fast and in what direction the water is moving at each point.

In this section we use differential equations to find the path of an object in a fluid flow. This path

is called a flow line. Figure 17.36 shows several flow lines for the Gulf Stream velocity vector field

in Figure 17.18 on page 906. The arrows on each flow line indicate the direction of flow.

0 100 200 300 400 500 600

0

100

200

300

400

500

600

km

km

Figure 17.36: Flow lines for objects in the Gulf Stream with different starting points

How Do We Find a Flow Line?

Suppose that F⃗ is the velocity vector field of water on the surface of a creek and imagine a seed

being carried along by the current. We want to know the position vector r⃗ (t) of the seed at time t.

We know

Velocity of seed

at time t
=

Velocity of current at seed’s position

at time t;

that is,

r⃗ ′(t) = F⃗ (r⃗ (t)).
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We make the following definition:

A flow line of a vector field v⃗ = F⃗ (r⃗ ) is a path r⃗ (t) whose velocity vector equals v⃗ . Thus,

r⃗ ′(t) = v⃗ = F⃗ (r⃗ (t)).

The flow of a vector field is the family of all of its flow lines.

A flow line is also called an integral curve or a streamline. We define flow lines for any vector

field, as it turns out to be useful to study the flow of fields (for example, electric and magnetic) that

are not velocity fields.

After resolving F⃗ and r⃗ into components, F⃗ = F1i⃗ + F2j⃗ and r⃗ (t) = x(t)i⃗ + y(t)j⃗ , the

definition of a flow line tells us that x(t) and y(t) satisfy the system of differential equations

x′(t) = F1(x(t), y(t)) and y′(t) = F2(x(t), y(t)).

Solving these differential equations gives a parameterization of the flow line.

Example 1 Find the flow line of the constant velocity field v⃗ = 3i⃗ + 4j⃗ cm/sec that passes through the point

(1, 2) at time t = 0.

Solution Let r⃗ (t) = x(t)i⃗ + y(t)j⃗ be the position in cm of a particle at time t, where t is in seconds. We have

x′(t) = 3 and y′(t) = 4.

Thus,

x(t) = 3t + x0 and y(t) = 4t + y0.

Since the path passes the point (1, 2) at t = 0, we have x0 = 1 and y0 = 2 and so

x(t) = 3t + 1 and y(t) = 4t + 2.

Thus, the path is the line given parametrically by

r⃗ (t) = (3t + 1)i⃗ + (4t + 2)j⃗ .

(See Figure 17.37.) To find an explicit equation for the path, eliminate t between these expressions

to get
x − 1

3
=

y − 2

4
or y =

4

3
x +

2

3
.

(1, 2)

Flow line

x

y

Figure 17.37: Vector field F⃗ = 3i⃗ + 4j⃗ with the flow line through (1, 2)
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Example 2 The velocity of a flow at the point (x, y) is F⃗ (x, y) = i⃗ + xj⃗ . Find the path of motion of an object

in the flow that is at the point (−2, 2) at time t = 0.

Solution Figure 17.38 shows this field. Since r⃗ ′(t) = F⃗ (r⃗ (t)), we are looking for the flow line that satisfies

the system of differential equations

x′(t) = 1, y′(t) = x(t) satisfying x(0) = −2 and y(0) = 2.

x

y

Figure 17.38: The velocity field

v⃗ = i⃗ + xj⃗

(−2, 2)

Flow line

x

y

Figure 17.39: A flow line of the

velocity field v⃗ = i⃗ + xj⃗

Solving for x(t) first, we get x(t) = t+x0, where x0 is a constant of integration. Thus, y′(t) = t+x0,

so y(t) =
1

2
t2 + x0t + y0, where y0 is also a constant of integration. Since x(0) = x0 = −2 and

y(0) = y0 = 2, the path of motion is given by

x(t) = t − 2, y(t) =
1

2
t2 − 2t + 2,

or, equivalently,

r⃗ (t) = (t − 2)i⃗ + (
1

2
t2 − 2t + 2)j⃗ .

The graph of this flow line in Figure 17.39 looks like a parabola. We check this by seeing that an

explicit equation for the path is y =
1

2
x2.

Example 3 Determine the flow of the vector field v⃗ = −yi⃗ + xj⃗ .

Solution Figure 17.40 suggests that the flow consists of concentric counterclockwise circles, centered at the

origin. The system of differential equations for the flow is

x′(t) = −y(t) y′(t) = x(t).

The equations (x(t), y(t)) = (a cos t, a sin t) parameterize a family of counterclockwise circles of

radius a, centered at the origin. We check that this family satisfies the system of differential equations:

x′(t) = −a sin t = −y(t) and y′(t) = a cos t = x(t).
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x

y

Figure 17.40: The flow of the

vector field v⃗ = −yi⃗ + xj⃗

Approximating Flow Lines Numerically
Often it is not possible to find formulas for the flow lines of a vector field. However, we can approx-

imate them numerically by Euler’s method for solving differential equations. Since the flow lines

r⃗ (t) = x(t)i⃗ + y(t)j⃗ of a vector field v⃗ = F⃗ (x, y) satisfy the differential equation r⃗ ′(t) = F⃗ (r⃗ (t)),

we have

r⃗ (t + Δt) ≈ r⃗ (t) + (Δt)r⃗ ′(t)

= r⃗ (t) + (Δt)F⃗ (r⃗ (t)) for Δt near 0.

To approximate a flow line, we start at a point r⃗ 0 = r⃗ (0) and estimate the position r⃗ 1 of a particle

at time Δt later:

r⃗ 1 = r⃗ (Δt) ≈ r⃗ (0) + (Δt)F⃗ (r⃗ (0))

= r⃗ 0 + (Δt)F⃗ (r⃗ 0).

We then repeat the same procedure starting at r⃗ 1, and so on. The general formula for getting from

one point to the next is

r⃗ n+1 = r⃗ n + (Δt)F⃗ (r⃗ n).

The points with position vectors r⃗ 0, r⃗ 1, . . . trace out the path, as shown in the next example.

Example 4 Use Euler’s method to approximate the flow line through (1, 2) for the vector field v⃗ = y2i⃗ + 2x2j⃗ .

Solution The flow is determined by the differential equations r⃗ ′(t) = v⃗ , or equivalently

x′(t) = y2, y′(t) = 2x2.

We use Euler’s method with Δt = 0.02, giving

r⃗ n+1 = r⃗ n + 0.02 v⃗ (xn, yn)

= xni⃗ + ynj⃗ + 0.02(y2
n
i⃗ + 2x2

n
j⃗ ),

or equivalently

xn+1 = xn + 0.02yn
2, yn+1 = yn + 0.02 ⋅ 2xn

2.

When t = 0, we have (x0, y0) = (1, 2). Then

x1 = x0 + 0.02 ⋅ y0
2 = 1 + 0.02 ⋅ 22 = 1.08,

y1 = y0 + 0.02 ⋅ 2x2
0
= 2 + 0.02 ⋅ 2 ⋅ 12 = 2.04.

So after one step x(0.02) ≈ 1.08 and y(0.02) ≈ 2.04. Similarly, x(0.04) = x(2Δt) ≈ 1.16, y(0.04) =

y(2Δt) ≈ 2.08 and so on. Farther values along the flow line are given in Table 17.2 and plotted in

Figure 17.41.
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Table 17.2 Approximated flow line starting at (1, 2) for the vector field v⃗ = y2 i⃗ + 2x2j⃗

t 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

x 1 1.08 1.16 1.25 1.34 1.44 1.54 1.65 1.77 1.90

y 2 2.04 2.08 2.14 2.20 2.28 2.36 2.45 2.56 2.69

1 2
0

2

3

x

y

Figure 17.41: Euler’s method solution to x′ = y2, y′ = 2x2

Exercises and Problems for Section 17.4

EXERCISES

In Exercises 1–3, sketch the vector field and its flow.

1. v⃗ = 2j⃗ 2. v⃗ = 3i⃗ 3. v⃗ = 3i⃗ − 2j⃗

In Exercises 4–9, sketch the vector field and the flow. Then

find the system of differential equations associated with the

vector field and check that the flow satisfies the system.

4. v⃗ = xi⃗ ; x(t) = aet, y(t) = b

5. v⃗ = xj⃗ ; x(t) = a, y(t) = at + b

6. v⃗ = xi⃗ + yj⃗ ; x(t) = aet, y(t) = bet

7. v⃗ = xi⃗ − yj⃗ ; x(t) = aet, y(t) = be−t

8. v⃗ = yi⃗ − xj⃗ ; x(t) = a sin t, y(t) = a cos t

9. v⃗ = yi⃗ + xj⃗ ; x(t) = a(et + e−t), y(t) = a(et − e−t)

10. Use a computer or calculator with Euler’s method to

approximate the flow line through (1, 2) for the vector

field v⃗ = y2 i⃗ + 2x2j⃗ using 5 steps with Δt = 0.1.

PROBLEMS

For Problems 11–14, find the region of the Gulf Stream ve-

locity field in Figure 17.18 on page 906 represented by the

given table of velocity vectors (in cm/sec).

11.
35i⃗ + 131j⃗ 48i⃗ + 92j⃗ 47i⃗ + j⃗

−32i⃗ + 132j⃗ −44i⃗ + 92j⃗ −42i⃗ + j⃗

−51i⃗ + 73j⃗ −119i⃗ + 84j⃗ −128i⃗ + 6j⃗

12.
10i⃗ − 3j⃗ 11i⃗ + 16j⃗ 20i⃗ + 75j⃗

53i⃗ − 7j⃗ 58i⃗ + 23j⃗ 64i⃗ + 80j⃗

119i⃗ − 8j⃗ 121i⃗ + 31j⃗ 114i⃗ + 66j⃗

13.
97i⃗ − 41j⃗ 72i⃗ − 24j⃗ 54i⃗ − 10j⃗

134i⃗ − 49j⃗ 131i⃗ − 44j⃗ 129i⃗ − 18j⃗

103i⃗ − 36j⃗ 122i⃗ − 30j⃗ 131i⃗ − 17j⃗

14.
−95i⃗ − 60j⃗ 18i⃗ − 48j⃗ 82i⃗ − 22j⃗

−29i⃗ + 48j⃗ 76i⃗ + 63j⃗ 128i⃗ − 16j⃗

26i⃗ + 105j⃗ 49i⃗ + 119j⃗ 88i⃗ + 13j⃗

15. F⃗ (x, y) and G⃗ (x, y) = 2F⃗ (x, y) are two vector fields.

Illustrating your answer with F⃗ (x, y) = −yi⃗ + xj⃗ , de-

scribe the graphical difference between:

(a) The vector fields (b) Their flows
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16. Match the vector fields (a)–(f) with their flow lines (I)–

(VI). Put arrows on the flow lines indicating the direc-

tion of flow.

(a) yi⃗ + xj⃗ (b) −yi⃗ + xj⃗

(c) xi⃗ + yj⃗ (d) −yi⃗ + (x + y∕10)j⃗

(e) −yi⃗ + (x − y∕10)j⃗ (f) (x − y)i⃗ + (x − y)j⃗

−1 1

−1

1

x

y(I)

−1 1

−1

1

x

y(II)

−1 1

−1

1

x

y(III)

−2 −1 1 2

−1

1

x

y
(IV)

−5 5

−5

5

x

y(V)

−5 5

−5

5

x

y(VI)

17. Show that the acceleration a⃗ of an object flowing in a

velocity field F⃗ (x, y) = u(x, y)i⃗ + v(x, y)j⃗ is given by

a⃗ = (uxu + uyv)i⃗ + (vxu + vyv)j⃗ .

18. A velocity vector field v⃗ = −Hyi⃗ + Hxj⃗ is based on

the partial derivatives of a smooth functionH(x, y). Ex-

plain why

(a) v⃗ is perpendicular to gradH .

(b) the flow lines of v⃗ are along the level curves of H .

In Problems 19–21, show that every flow line of the vector

field v⃗ lies on a level curve for the function f (x, y).

19. v⃗ = xi⃗ − yj⃗ , f (x, y) = xy

20. v⃗ = yi⃗ + xj⃗ , f (x, y) = x2 − y2

21. v⃗ = ayi⃗ + bxj⃗ , f (x, y) = bx2 − ay2

22. A velocity vector field, F⃗ (x, y) = (x + 2y)i⃗ + xyj⃗ ,

in meters per sec, has x and y in meters. For an object

starting at (2, 1), use Euler’s method withΔt = 0.01 sec

to approximate its position 0.01 sec later.

23. A solid metal ball has its center at the origin of a fixed

set of axes. The ball rotates once every 24 hours around

the z-axis. The direction of rotation is counterclockwise

when viewed from above. Let v⃗ (x, y, z) be the velocity

vector of the particle of metal at the point (x, y, z) inside

the ball. Time is in hours and x, y, z are in meters.

(a) Find a formula for the vector field v⃗ . Give units for

your answer.

(b) Describe in words the flow lines of v⃗ .

24. (a) Show that ℎ(t) = e−2at(x2 + y2) is constant along

any flow line of v⃗ = (ax − y)i⃗ + (x + ay)j⃗ .

(b) Show that points moving with the flow that are on

the unit circle centered at the origin at time 0 are

on the circle of radius eat centered at the origin at

time t.

Strengthen Your Understanding

In Problems 25–26, explain what is wrong with the state-

ment.

25. The flow lines of a vector field whose components are

linear functions are all straight lines.

26. If the flow lines of a vector field are all straight lines

with the same slope pointing in the same direction, then

the vector field is constant.

In Problems 27–28, give an example of:

27. A vector field F⃗ (x, y, z) such that the path r⃗ (t) =

ti⃗ + t2 j⃗ + t3k⃗ is a flow line.

28. A vector field whose flow lines are rays from the origin.

Are the statements in Problems 29–38 true or false? Give

reasons for your answer.

29. The flow lines for F⃗ (x, y) = xj⃗ are parallel to the y-

axis.

30. The flow lines of F⃗ (x, y) = yi⃗ − xj⃗ are hyperbolas.

31. The flow lines of F⃗ (x, y) = xi⃗ are parabolas.

32. The vector field in Figure 17.42 has a flow line which

lies in the first and third quadrants.

Figure 17.42
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33. The vector field in Figure 17.42 has a flow line on which

both x and y tend to infinity.

34. If F⃗ is a gradient vector field, F⃗ (x, y) = ∇f (x, y), then

the flow lines for F⃗ are the contours for f .

35. If the flow lines for the vector field F⃗ (r⃗ ) are all con-

centric circles centered at the origin, then F⃗ (r⃗ ) ⋅ r⃗ = 0

for all r⃗ .

36. If the flow lines for the vector field F⃗ (x, y) are all

straight lines parallel to the constant vector v⃗ = 3i⃗ +

5j⃗ , then F⃗ (x, y) = v⃗ .

37. No flow line for the vector field F⃗ (x, y) = xi⃗ +2j⃗ has

a point where the y-coordinate reaches a relative maxi-

mum.

38. The vector field F⃗ (x, y) = exi⃗ +yj⃗ has a flow line that

crosses the x-axis.

Online Resource: Review problems and Projects
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18.1 THE IDEA OF A LINE INTEGRAL

Imagine that you are rowing on a river with a noticeable current. At times you may be working

against the current and at other times you may be moving with it. At the end you have a sense

of whether, overall, you were helped or hindered by the current. The line integral, defined in this

section, measures the extent to which a curve in a vector field is, overall, going with the vector field

or against it.

Orientation of a Curve
A curve can be traced out in two directions, as shown in Figure 18.1. We need to choose one direction

before we can define a line integral.

A curve is said to be oriented if we have chosen a direction of travel on it.

P

Q

P

Q

Figure 18.1: A curve with two different orientations represented by arrowheads

Definition of the Line Integral

Consider a vector field F⃗ and an oriented curve C . We begin by dividing C into n small, almost

straight pieces along which F⃗ is approximately constant. Each piece can be represented by a dis-

placement vector Δr⃗ i = r⃗ i+1 − r⃗ i and the value of F⃗ at each point of this small piece of C is

approximately F⃗ (r⃗ i). See Figures 18.2 and 18.3.

r⃗ 0
✗

P

C

r⃗ 1
✕
✒...

✸r⃗ i

r⃗ i+1 ✶
...
✿

r⃗ n−1✲ r⃗ n③
Q

■

Δr⃗ i = r⃗ i+1 − r⃗ i

Figure 18.2: The curve C , oriented from P to

Q, approximated by straight line segments

represented by displacement vectors

Δr⃗ i = r⃗ i+1 − r⃗ i

P

QC

F⃗ (r⃗ 0)

F⃗ (r⃗ 1)

F⃗ (r⃗ i)

F⃗ (r⃗ i+1) F⃗ (r⃗ n−1)

F⃗ (r⃗ n)

Figure 18.3: The vector field F⃗ evaluated at the points with

position vector r⃗ i on the curve C oriented from P to Q

Returning to our initial example, the vector field F⃗ represents the current and the oriented curve

C is the path of the person rowing the boat. We wish to determine to what extent the vector field F⃗

helps or hinders motion along C . Since the dot product can be used to measure to what extent two

vectors point in the same or opposing directions, we form the dot product F⃗ (r⃗ i) ⋅Δr⃗ i for each point

with position vector r⃗ i on C . Summing over all such pieces, we get a Riemann sum:

n−1
∑

i=0

F⃗ (r⃗ i) ⋅ Δr⃗ i.

We define the line integral, written ∫
C
F⃗ ⋅ dr⃗ , by taking the limit as ‖Δr⃗ i‖ → 0. Provided the

limit exists, we make the following definition:
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The line integral of a vector field F⃗ along an oriented curve C is

∫C
F⃗ ⋅ dr⃗ = lim

‖Δr⃗ i‖→0

n−1
∑

i=0

F⃗ (r⃗ i) ⋅ Δr⃗ i.

How Does the Limit Defining a Line Integral Work?

The limit in the definition of a line integral exists if F⃗ is continuous on the curve C and if C is made

by joining end to end a finite number of smooth curves. (A vector field F⃗ = F1i⃗ + F2 j⃗ + F3k⃗ is

continuous if F1, F2, and F3 are continuous, and a smooth curve is one that can be parameterized by

smooth functions.) We subdivide the curve using a parameterization that goes from one end of the

curve to the other, in the forward direction, without retracing any portion of the curve. A subdivision

of the parameter interval gives a subdivision of the curve. All the curves we consider in this book

are piecewise smooth in this sense. Section 18.2 shows how to use a parameterization to compute a

line integral.

Example 1 Find the line integral of the constant vector field F⃗ = i⃗ + 2j⃗ along the path from (1, 1) to (10, 10)

shown in Figure 18.4.

(1, 1)
(10, 1)

(10, 10)

C1C1

x

y

C2

Figure 18.4: The constant vector field F⃗ = i⃗ + 2j⃗ and the path from (1, 1) to (10, 10)

Solution Let C1 be the horizontal segment of the path going from (1, 1) to (10, 1). When we break this path

into pieces, each piece Δr⃗ is horizontal, so Δr⃗ = Δxi⃗ and F⃗ ⋅Δr⃗ = (i⃗ + 2j⃗ ) ⋅Δxi⃗ = Δx. Hence,

∫C1

F⃗ ⋅ dr⃗ =
∫

x=10

x=1

dx = 9.

Similarly, along the vertical segment C2, we have Δr⃗ = Δyj⃗ and F⃗ ⋅Δr⃗ = (i⃗ + 2j⃗ ) ⋅Δyj⃗ = 2Δy,

so

∫C2

F⃗ ⋅ dr⃗ =
∫

y=10

y=1

2 dy = 18.

Thus,

∫C
F⃗ ⋅ dr⃗ =

∫C1

F⃗ ⋅ dr⃗ +
∫C2

F⃗ ⋅ dr⃗ = 9 + 18 = 27.
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What Does the Line Integral Tell Us?

Remember that for any two vectors u⃗ and v⃗ , the dot product u⃗ ⋅ v⃗ is positive if u⃗ and v⃗ point roughly

in the same direction (that is, if the angle between them is less than �∕2). The dot product is zero

if u⃗ is perpendicular to v⃗ and is negative if they point roughly in opposite directions (that is, if the

angle between them is greater than �∕2).

The line integral of F⃗ adds the dot products of F⃗ and Δr⃗ along the path. If ||F⃗ || is constant,

the line integral gives a positive number if F⃗ is mostly pointing in the same direction as C , and a

negative number if F⃗ is mostly pointing in the opposite direction to C . The line integral is zero if

F⃗ is perpendicular to the path at all points or if the positive and negative contributions cancel out.

In general, the line integral of a vector field F⃗ along a curve C measures the extent to which C is

going with F⃗ or against it.

Example 2 The vector field F⃗ and the oriented curves C1, C2, C3, C4 are shown in Figure 18.5. The curves C1

and C3 are the same length. Which of the line integrals ∫
Ci
F⃗ ⋅ dr⃗ , for i = 1, 2, 3, 4, are positive?

Which are negative? Arrange these line integrals in ascending order.

C2

C3

C4

C1

Figure 18.5: Vector field and paths C1, C2, C3, C4

Solution The vector field F⃗ and the line segments Δr⃗ are approximately parallel and in the same direction

for the curves C1, C2, and C3. So the contributions of each term F⃗ ⋅Δr⃗ are positive for these curves.

Thus, ∫
C1

F⃗ ⋅ dr⃗ , ∫
C2

F⃗ ⋅ dr⃗ , and ∫
C3

F⃗ ⋅ dr⃗ are each positive. For the curve C4, the vector field

and the line segments are in opposite directions, so each term F⃗ ⋅ Δr⃗ is negative, and therefore the

integral ∫
C4

F⃗ ⋅ dr⃗ is negative.

Since the magnitude of the vector field is smaller along C1 than along C3, and these two curves

are the same length, we have

∫C1

F⃗ ⋅ dr⃗ <
∫C3

F⃗ ⋅ dr⃗ .

In addition, the magnitude of the vector field is the same along C2 and C3, but the curve C2 is longer

than the curve C3. Thus,

∫C3

F⃗ ⋅ dr⃗ <
∫C2

F⃗ ⋅ dr⃗ .

Putting these results together with the fact that ∫
C4

F⃗ ⋅ dr⃗ is negative, we have

∫C4

F⃗ ⋅ dr⃗ <
∫C1

F⃗ ⋅ dr⃗ <
∫C3

F⃗ ⋅ dr⃗ <
∫C2

F⃗ ⋅ dr⃗ .
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Interpretations of the Line Integral

Work

Recall from Section 13.3 that if a constant force F⃗ acts on an object while it moves along a straight

line through a displacement d⃗ , the work done by the force on the object is

Work done = F⃗ ⋅ d⃗ .

Now suppose we want to find the work done by gravity on an object moving far above the surface

of the earth. Since the force of gravity varies with distance from the earth and the path may not

be straight, we can’t use the formula F⃗ ⋅ d⃗ . We approximate the path by line segments which are

small enough that the force is approximately constant on each one. Suppose the force at a point with

position vector r⃗ is F⃗ (r⃗ ), as in Figures 18.2 and 18.3. Then

Work done by force F⃗ (r⃗ i)

over small displacement Δr⃗ i

≈ F⃗ (r⃗ i) ⋅ Δr⃗ i,

and so,

Total work done by force

along oriented curve C
≈

∑

i

F⃗ (r⃗ i) ⋅ Δr⃗ i.

Taking the limit as ‖Δr⃗ i‖ → 0, we get

Work done by force F⃗ (r⃗ )

along curve C
= lim

‖Δr⃗ i‖→0

∑

i

F⃗ (r⃗ i) ⋅ Δr⃗ i = ∫C
F⃗ ⋅ dr⃗ .

Example 3 A mass lying on a flat table is attached to a spring whose other end is fastened to the wall. (See

Figure 18.6.) The spring is extended 20 cm beyond its rest position and released. If the axes are as

shown in Figure 18.6, when the spring is extended by a distance of x, by Hooke’s Law, the force

exerted by the spring on the mass is given by

F⃗ (x) = −kxi⃗ ,

where k is a positive constant that depends on the properties of the particular spring.

Suppose the mass moves back to the rest position. How much work is done by the force exerted

by the spring?

F⃗

0 ✲✛x

❄

Rest position

Wall

Figure 18.6: Force on mass due to an extended

spring

0 Δr⃗

Δx✲✛ x

20

Figure 18.7: Dividing up the interval 0 ≤ x ≤ 20 in

order to calculate the work done

Solution The path fromx = 20 to x = 0 is divided as shown in Figure 18.7, with a typical segment represented

by

Δr⃗ = Δxi⃗ .

Since we are moving from x = 20 to x = 0, the quantity Δx will be negative. The work done by the
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force as the mass moves through this segment is approximated by

Work done ≈ F⃗ ⋅ Δr⃗ = (−kxi⃗ ) ⋅ (Δxi⃗ ) = −kxΔx.

Thus, we have

Total work done ≈
∑

−kxΔx.

In the limit, as ‖Δx‖ → 0, this sum becomes an ordinary definite integral. Since the path starts at

x = 20, this is the lower limit of integration; x = 0 is the upper limit. Thus, we get

Total work done =
∫

x=0

x=20

−kx dx = −
kx2

2

|

|

|

|

0

20

=
k(20)2

2
= 200k.

Note that the work done is positive, since the force acts in the direction of motion.

Example 3 shows how a line integral over a path parallel to the x-axis reduces to a one-variable

integral. Section 18.2 shows how to convert any line integral into a one-variable integral.

Example 4 A particle with position vector r⃗ is subject to a force, F⃗ , due to gravity. What is the sign of the work

done by F⃗ as the particle moves along the path C1, a radial line through the center of the earth,

starting 8000 km from the center and ending 10,000 km from the center? (See Figure 18.8.)

Solution We divide the path into small radial segments, Δr⃗ , pointing away from the center of the earth and

parallel to the gravitational force. The vectors F⃗ and Δr⃗ point in opposite directions, so each term

F⃗ ⋅ Δr⃗ is negative. Adding all these negative quantities and taking the limit results in a negative

value for the total work. Thus, the work done by gravity is negative. The negative sign indicates that

we would have to do work against gravity to move the particle along the path C1.

Earth

C2

C1

8000

10,000

Figure 18.8: The earth

Example 5 Find the sign of the work done by gravity along the curve C1 in Example 4, but with the opposite

orientation.

Solution Tracing a curve in the opposite direction changes the sign of the line integral because all the segments

Δr⃗ change direction, and so every term F⃗ ⋅ Δr⃗ changes sign. Thus, the result will be the negative

of the answer found in Example 4. Therefore, the work done by gravity as a particle moves along C1

toward the center of the earth is positive.

Example 6 Find the work done by gravity as a particle moves along C2, an arc of a circle 8000 km long at a

distance of 8000 km from the center of the earth. (See Figure 18.8.)
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Solution Since C2 is everywhere perpendicular to the gravitational force, F⃗ ⋅ Δr⃗ = 0 for all Δr⃗ along C2.

Thus,

Work done =
∫C2

F⃗ ⋅ dr⃗ = 0,

so the work done is zero. This is why satellites can remain in orbit without expending any fuel, once

they have attained the correct altitude and velocity.

Circulation

The velocity vector field for the Gulf Stream on page 906 shows distinct eddies or regions where the

water circulates. We can measure this circulation using a closed curve, that is, one that starts and

ends at the same point.

If C is an oriented closed curve, the line integral of a vector field F⃗ around C is called the

circulation of F⃗ around C .

Circulation is a measure of the net tendency of the vector field to point around the curve C . To

emphasize that C is closed, the circulation is sometimes denoted ∮
C
F⃗ ⋅ dr⃗ , with a small circle on

the integral sign.

Example 7 Describe the rotation of the vector fields in Figures 18.9 and 18.10. Find the sign of the circulation

of the vector fields around the indicated paths.

C1

Figure 18.9: A circulating flow

C2

Figure 18.10: A flow with zero

circulation

Solution Consider the vector field in Figure 18.9. If you think of this as representing the velocity of water

flowing in a pond, you see that the water is circulating. The line integral around C1, measuring the

circulation around C1, is positive, because the vectors of the field are all pointing in the direction of

the path. By way of contrast, look at the vector field in Figure 18.10. Here the line integral aroundC2

is zero because the vertical portions of the path are perpendicular to the field and the contributions

from the two horizontal portions cancel out. This means that there is no net tendency for the water

to circulate around C2.

It turns out that the vector field in Figure 18.10 has the property that its circulation around any

closed path is zero. Water moving according to this vector field has no tendency to circulate around

any point, and a leaf dropped into the water will not spin. We’ll look at such special fields again later

when we introduce the notion of the curl of a vector field.
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Properties of Line Integrals

Line integrals share some basic properties with ordinary one-variable integrals:

For a scalar constant �, vector fields F⃗ and G⃗ , and oriented curves C , C1, and C2,

1.
∫C

�F⃗ ⋅ dr⃗ = �
∫C

F⃗ ⋅ dr⃗ . 2.
∫C

(F⃗ + G⃗ ) ⋅ dr⃗ =
∫C

F⃗ ⋅ dr⃗ +
∫C

G⃗ ⋅ dr⃗ .

3.
∫−C

F⃗ ⋅ dr⃗ = −
∫C

F⃗ ⋅ dr⃗ . 4.
∫C1+C2

F⃗ ⋅ dr⃗ =
∫C1

F⃗ ⋅ dr⃗ +
∫C2

F⃗ ⋅ dr⃗ .

Properties 3 and 4 are concerned with the curve C over which the line integral is taken. If C

is an oriented curve, then −C is the same curve traversed in the opposite direction, that is, with the

opposite orientation. (See Figure 18.11.) Property 3 holds because if we integrate along −C , the

vectors Δr⃗ point in the opposite direction and the dot products F⃗ ⋅ Δr⃗ are the negatives of what

they were along C .

If C1 and C2 are oriented curves with C1 ending where C2 begins, we construct a new oriented

curve, called C1 + C2, by joining them together. (See Figure 18.12.) Property 4 is the analogue for

line integrals of the property for definite integrals which says that

∫

b

a

f (x) dx =
∫

c

a

f (x) dx +
∫

b

c

f (x) dx.

P

QC

P

Q−C

Figure 18.11: A curve, C , and its opposite, −C

P

Q

R

C1

C2

P

R
C1 + C2

Figure 18.12: Joining two curves, C1, and C2, to make a

new one, C1 + C2

Exercises and Problems for Section 18.1 Online Resource: Additional Problems for Section 18.1
EXERCISES

In Exercises 1–6, say whether you expect the line integral of

the pictured vector field over the given curve to be positive,

negative, or zero.

1.

2.

3.

4.

5.

6.
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In Exercises 7–15, calculate the line integral of the vector

field along the line between the given points.

7. F⃗ = xj⃗ , from (1, 0) to (3, 0)

8. F⃗ = xj⃗ , from (2, 0) to (2, 5)

9. F⃗ = 6i⃗ − 7j⃗ , from (0, 0) to (7, 6)

10. F⃗ = 6i⃗ + y2 j⃗ , from (3, 0) to (7, 0)

11. F⃗ = 3i⃗ + 4j⃗ , from (0, 6) to (0, 13)

12. F⃗ = xi⃗ , from (2, 0) to (6, 0)

13. F⃗ = xi⃗ + yj⃗ , from (2, 0) to (6, 0)

14. F⃗ = r⃗ = xi⃗ + yj⃗ , from (2, 2) to (6, 6)

15. F⃗ = xi⃗ + 6j⃗ − k⃗ , from (0,−2, 0) to (0,−10, 0)

In Exercises 16–18, find ∫
C
F⃗ ⋅ dr⃗ for the given F⃗ and C .

16. F⃗ = 5i⃗ + 7j⃗ , and C is the x-axis from (−1, 0) to

(−9, 0).

17. F⃗ = x2 i⃗ +y2 j⃗ , and C is the x-axis from (2, 0) to (3, 0).

18. F⃗ = 6xi⃗ + (x + y2)j⃗ ; C is the y-axis from (0, 3) to

(0, 5).

In Exercises 19–23, calculate the line integral.

19.
∫
C

(2j⃗ +3k⃗ ) ⋅dr⃗ where C is the y-axis from the origin

to the point (0, 10, 0).

20. ∫
C
(2xi⃗ + 3yj⃗ ) ⋅ dr⃗ , where C is the line from (1, 0, 0)

to (1, 0, 5).

21.
∫
C

((2y + 7)i⃗ + 3xj⃗ ) ⋅ dr⃗ , where C is the line from

(1, 0, 0) to (5, 0, 0).

22.
∫
C

(xi⃗ + yj⃗ + zk⃗ ) ⋅dr⃗ where C is the unit circle in the

xy-plane, oriented counterclockwise.

23.
∫
C

(3zi⃗ + 4x2j⃗ − xyk⃗ ) ⋅ dr⃗ , where C is the line from

(2, 1, 3) to (2, 1, 8).

In Exercises 24–27, find the work done by the force F⃗ along

the curve C .

24. F⃗ = 3i⃗ − xj⃗ , C is the line from (2, 6) to (9, 6).

25. F⃗ = y3 i⃗ +2xyj⃗ , C is the line from (−1, 0) to (−1, 3).

26. F⃗ = 7i⃗ − 5j⃗ , C is the line from (2,−2) to (1, 6).

27. F⃗ = −xi⃗ − yj⃗ , C is the upper half of the unit circle

from (1, 0) to (−1, 0).

PROBLEMS

In Problems 28–31, let C1 be the line from (0, 0) to (0, 1); let

C2 be the line from (1, 0) to (0, 1); let C3 be the semicircle in

the upper half plane from (−1, 0) to (1, 0). Do the line inte-

grals of the vector field along each of the paths C1, C2, and

C3 appear to be positive, negative, or zero?

28.

x

y 29.

x

y

30.

x

y 31.

x

y

32. Consider the vector field F⃗ shown in Figure 18.13, to-

gether with the paths C1, C2, and C3. Arrange the line

integrals ∫
C1

F⃗ ⋅ dr⃗ , ∫
C2

F⃗ ⋅ dr⃗ and ∫
C3

F⃗ ⋅ dr⃗ in as-

cending order.

C2

C1

C3

Figure 18.13

33. Compute ∫
C
F⃗ ⋅ dr⃗ , where C is the oriented curve in

Figure 18.14 and F⃗ is a vector field constant on each

of the three straight segments of C:

F⃗ =

⎧

⎪

⎨

⎪

⎩

i⃗ on PQ

2i⃗ − j⃗ on QR

3i⃗ + j⃗ on RS.

1 2 3 4

1

2

3

4

P

Q

R

S

x

y

Figure 18.14
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34. An object moves along the curve C in Figure 18.15

while being acted on by the force field F⃗ (x, y) = yi⃗ +

x2j⃗ .

(a) Evaluate F⃗ at the points (0,−1), (1,−1), (2,−1),

(3,−1), (4,−1), (4, 0), (4, 1), (4, 2), (4, 3).

(b) Make a sketch showing the force field along C .

(c) Find the work done by F⃗ on the object.

x

y

(0,−1) (4,−1)

(4, 3)

Figure 18.15

35. Let F⃗ be the constant force field j⃗ in Figure 18.16. On

which of the paths C1, C2, C3 is zero work done by F⃗ ?

Explain.

C1

C2 C3

x

y

Figure 18.16

In Problems 36–40, give conditions on one or more of the

constants a, b, c to ensure that the line integral ∫
C
F⃗ ⋅ dr⃗

has the given sign.

36. Positive for F⃗ = ai⃗ + bj⃗ + ck⃗ and C is the line from

the origin to (10, 0, 0).

37. Positive for F⃗ = ayi⃗ + ck⃗ and C is the unit circle in

the xy-plane, centered at the origin and oriented coun-

terclockwise when viewed from above.

38. Negative for F⃗ = bj⃗ +ck⃗ and C is the parabola y = x2

in the xy-plane from the origin to (3, 9, 0).

39. Positive for F⃗ = ayi⃗ − axj⃗ + (c − 1)k⃗ and C is the

line segment from the origin to (1, 1, 1).

40. Negative for F⃗ = ai⃗ +bj⃗ −k⃗ and C is the line segment

from (1, 2, 3) to (1, 2, c).

41. (a) For each of the vector fields, F⃗ , shown in Fig-

ure 18.17, sketch a curve for which the integral

∫
C
F⃗ ⋅ d r⃗ is positive.

(b) For which of the vector fields is it possible to make

your answer to part (a) a closed curve?

x

y(i)

x

y(ii)

x

y(iii)

x

y(iv)

Figure 18.17

For Problems 42–46, say whether you expect the given vec-

tor field to have positive, negative, or zero circulation around

the closed curve C = C1 +C2 +C3 +C4 in Figure 18.18. The

segments C1 and C3 are circular arcs centered at the origin;

C2 and C4 are radial line segments. You may find it helpful

to sketch the vector field.

1 2

2

−2

−1

1

x

y

C4

C2

C3

C1

Figure 18.18

42. F⃗ (x, y) = xi⃗ + yj⃗ 43. F⃗ (x, y) = −yi⃗ + xj⃗

44. F⃗ (x, y) = yi⃗ − xj⃗ 45. F⃗ (x, y) = x2 i⃗

46. F⃗ (x, y) = −
y

x2 + y2
i⃗ +

x

x2 + y2
j⃗

In Problems 47–50, C1 and C2 are oriented curves, and C1

ends where C2 begins. Find the integral given that ∫
C1

F⃗ ⋅

dr⃗ = 8, ∫
C1

G⃗ ⋅dr⃗ = 3, ∫
C2

F⃗ ⋅dr⃗ = −5, and ∫
C2

G⃗ ⋅dr⃗ =

15.

47.
∫
C1

(

F⃗ + G⃗

)

⋅ dr⃗ 48.
∫
C2

3G⃗ ⋅ dr⃗

49.
∫
C1+C2

2F⃗ ⋅ dr⃗ 50.
∫
C1+C2

(

G⃗ − F⃗

)

⋅ dr⃗

51. A force F⃗ moves an object in a line from (1, 1) to (2, 4)

with force F⃗ = 2i⃗ + 3j⃗ , and then along a line from

(2, 4) to (3, 3) with force F⃗ = i⃗ − j⃗ . How much work

does the force do on the object in total?
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52. Find the work done by a constant force F⃗ moving an

object through straight line displacement r⃗ if

(a) F⃗ is in the same direction as r⃗ , ‖F⃗ ‖ = 5 newtons

and ‖r⃗ ‖ = 3 meters.

(b) F⃗ and r⃗ are perpendicular.

(c) F⃗ = 4i⃗ + j⃗ +4k⃗ pounds and r⃗ = i⃗ + j⃗ + k⃗ foot.

53. A horizontal square has sides of 1000 km running

north-south and east-west. A wind blows from the east

and decreases in magnitude toward the north at a rate of

6 meter/sec for every 500 km. Compute the circulation

of the wind counterclockwise around the square.

54. Let F⃗ = xi⃗ + yj⃗ and let C1 be the line joining (1, 0)

to (0, 2) and let C2 be the line joining (0, 2) to (−1, 0).

Is ∫
C1

F⃗ ⋅ dr⃗ = − ∫
C2
F⃗ ⋅ dr⃗ ? Explain.

55. The vector field F⃗ has ||F⃗ || ≤ 7 everywhere and C

is the circle of radius 1 centered at the origin. What is

the largest possible value of ∫
C
F⃗ ⋅ dr⃗ ? The smallest

possible value? What conditions lead to these values?

56. Along a curve C , a vector field F⃗ is everywhere tan-

gent to C in the direction of orientation and has con-

stant magnitude ‖F⃗ ‖ = m. Use the definition of the

line integral to explain why

∫
C

F⃗ ⋅ dr⃗ = m ⋅ Length of C.

57. Explain why the following statement is true: Whenever

the line integral of a vector field around every closed

curve is zero, the line integral along a curve with fixed

endpoints has a constant value independent of the path

taken between the endpoints.

58. Explain why the converse to the statement in Prob-

lem 57 is also true: Whenever the line integral of a vec-

tor field depends only on endpoints and not on paths,

the circulation around every closed curve is zero.

In Problems 59–60, use the fact that the force of gravity on

a particle of mass m at the point with position vector r⃗ is

F⃗ = −
GMmr⃗

‖r⃗ ‖
3

where G is a constant and M is the mass of the earth.

59. Calculate the work done by the force of gravity on a

particle of mass m as it moves radially from 8000 km

to 10,000 km from the center of the earth.

60. Calculate the work done by the force of gravity on a

particle of mass m as it moves radially from 8000 km

from the center of the earth to infinitely far away.

Strengthen Your Understanding

In Problems 61–62, explain what is wrong with the state-

ment.

61. If F⃗ is a vector field and C is an oriented curve, then

∫
−C

F⃗ ⋅ dr⃗ must be less than zero.

62. It is possible that for a certain vector field F⃗ and ori-

ented path C , we have ∫
C
F⃗ ⋅ dr⃗ = 2i⃗ − 3j⃗ .

In Problems 63–64, give an example of:

63. A nonzero vector field F⃗ such that ∫
C
F⃗ ⋅ dr⃗ = 0,

where C is the straight line curve from (0, 0) to (1, 1).

64. Two oriented curves C1 and C2 in the plane such that,

for F⃗ (x, y) = xj⃗ , we have ∫
C1

F⃗ ⋅ dr⃗ > 0 and

∫
C2

F⃗ ⋅ dr⃗ < 0.

Are the statements in Problems 65–67 true or false? Explain

why or give a counterexample.

65. ∫
C
F⃗ ⋅ dr⃗ is a vector.

66. Suppose C1 is the unit square joining the points (0, 0),

(1, 0), (1, 1), (0, 1) oriented clockwise and C2 is the

same square but traversed twice in the opposite direc-

tion. If ∫
C1

F⃗ ⋅ dr⃗ = 3, then ∫
C2

F⃗ ⋅ dr⃗ = −6.

67. The line integral of F⃗ = xi⃗ + yj⃗ = r⃗ along the semi-

circle x2 + y2 = 1, y ≥ 0, oriented counterclockwise, is

zero.

Are the statements in Problems 68–74 true or false? Give

reasons for your answer.

68. The line integral ∫
C
F⃗ ⋅ dr⃗ is a scalar.

69. If C1 and C2 are oriented curves and C1 is longer than

C2, then ∫
C1

F⃗ ⋅ dr⃗ > ∫
C2

F⃗ ⋅ dr⃗ .

70. If C is an oriented curve and ∫
C
F⃗ ⋅ dr⃗ = 0, then

F⃗ = 0⃗ .

71. If F⃗ = i⃗ is a vector field in 2-space, then ∫
C
F⃗ ⋅dr⃗ > 0,

where C is the oriented line from (0, 0) to (1, 0).

72. If F⃗ = i⃗ is a vector field in 2-space, then ∫
C
F⃗ ⋅dr⃗ > 0,

where C is the oriented line from (0, 0) to (0, 1).
73. If C1 is the upper semicircle x2 + y2 = 1, y ≥ 0 and C2

is the lower semicircle x2+y2 = 1, y ≤ 0, both oriented

counterclockwise, then for any vector field F⃗ , we have

∫
C1

F⃗ ⋅ dr⃗ = − ∫
C2

F⃗ ⋅ dr⃗ .

74. The work done by the force F⃗ = −yi⃗ +xj⃗ on a particle

moving clockwise around the boundary of the square

−1 ≤ x ≤ 1,−1 ≤ y ≤ 1 is positive.

18.2 COMPUTING LINE INTEGRALS OVER PARAMETERIZED CURVES

The goal of this section is to show how to use a parameterization of a curve to convert a line integral

into an ordinary one-variable integral.
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Using a Parameterization to Evaluate a Line Integral

Recall the definition of the line integral,

∫C
F⃗ ⋅ dr⃗ = lim

‖Δr⃗ i‖→0

∑

F⃗ (r⃗ i) ⋅ Δr⃗ i,

where the r⃗ i are the position vectors of points subdividing the curve into short pieces. Now suppose

we have a smooth parameterization, r⃗ (t), of C for a ≤ t ≤ b, so that r⃗ (a) is the position vector of

the starting point of the curve and r⃗ (b) is the position vector of the end. Then we can divide C into n

pieces by dividing the interval a ≤ t ≤ b into n pieces, each of size Δt = (b−a)∕n. See Figures 18.19

and 18.20.

At each point r⃗ i = r⃗ (ti) we want to compute

F⃗ (r⃗ i) ⋅ Δr⃗ i.

t0 = a t1
… …

✲✛Δt

ti ti+1 tn−1 tn = b
t

Figure 18.19: Subdivision of the interval a ≤ t ≤ b

✸

r⃗ (t0) = r⃗ (a)

r⃗ (t1)

...
r⃗ (ti)

r⃗ (ti+1)
...

r⃗ (tn−1)

r⃗ (tn) = r⃗ (b)

.

■
Δr⃗ i = r⃗ (ti+1) − r⃗ (ti)

Figure 18.20: Corresponding subdivision of the

parameterized path C

Since ti+1 = ti + Δt, the displacement vectors Δr⃗i are given by

Δr⃗i = r⃗ (ti+1) − r⃗ (ti)

= r⃗ (ti + Δt) − r⃗ (ti)

=
r⃗ (ti + Δt) − r⃗ (ti)

Δt
⋅ Δt

≈ r⃗ ′(ti)Δt,

where we use the facts that Δt is small and that r⃗ (t) is differentiable to obtain the last approximation.

Therefore,

∫C
F⃗ ⋅ dr⃗ ≈

∑

F⃗ (r⃗ i) ⋅ Δr⃗ i ≈
∑

F⃗ (r⃗ (ti)) ⋅ r⃗
′(ti) Δt.

Notice that F⃗ (r⃗ (ti)) ⋅ r⃗
′(ti) is the value at ti of a one-variable function of t, so this last sum is really

a one-variable Riemann sum. In the limit as Δt → 0, we get a definite integral:

lim
Δt→0

∑

F⃗ (r⃗ (ti)) ⋅ r⃗
′(ti) Δt = ∫

b

a

F⃗ (r⃗ (t)) ⋅ r⃗ ′(t) dt.

Thus, we have the following result:

If r⃗ (t), for a ≤ t ≤ b, is a smooth parameterization of an oriented curve C and F⃗ is a vector

field which is continuous on C , then

∫C
F⃗ ⋅ dr⃗ =

∫

b

a

F⃗ (r⃗ (t)) ⋅ r⃗ ′(t) dt.

In words: To compute the line integral of F⃗ over C , take the dot product of F⃗ evaluated on C

with the velocity vector, r⃗ ′(t), of the parameterization of C , then integrate along the curve.
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Even though we assumed that C is smooth, we can use the same formula to compute line inte-

grals over curves which are piecewise smooth, such as the boundary of a rectangle. If C is piecewise

smooth, we apply the formula to each one of the smooth pieces and add the results by applying

property 4 on page 928.

Example 1 Compute ∫
C
F⃗ ⋅ dr⃗ where F⃗ = (x + y)i⃗ + yj⃗ and C is the quarter unit circle, oriented counter-

clockwise as shown in Figure 18.21.

C

x

y

Figure 18.21: The vector field F⃗ = (x + y)i⃗ + yj⃗ and the quarter circle C

Solution Since most of the vectors in F⃗ along C point generally in a direction opposite to the orientation of

C , we expect our answer to be negative. The first step is to parameterize C by

r⃗ (t) = x(t)i⃗ + y(t)j⃗ = cos ti⃗ + sin tj⃗ , 0 ≤ t ≤
�

2
.

Substituting the parameterization into F⃗ , we get F⃗ (x(t), y(t)) = (cos t+ sin t)i⃗ + sin tj⃗ . The vector

r⃗ ′(t) = x′(t)i⃗ + y′(t)j⃗ = − sin ti⃗ + cos tj⃗ . Then

∫C
F⃗ ⋅ dr⃗ =

∫

�∕2

0

((cos t + sin t)i⃗ + sin tj⃗ ) ⋅ (− sin ti⃗ + cos tj⃗ )dt

=
∫

�∕2

0

(− cos t sin t − sin2 t + sin t cos t)dt

=
∫

�∕2

0

− sin2 t dt = −
�

4
≈ −0.7854.

So the answer is negative, as expected.

Example 2 Consider the vector field F⃗ = xi⃗ + yj⃗ .

(a) Suppose C1 is the line segment joining (1, 0) to (0, 2) and C2 is a part of a parabola with its

vertex at (0, 2), joining the same points in the same order. (See Figure 18.22.) Verify that

∫C1

F⃗ ⋅ dr⃗ =
∫C2

F⃗ ⋅ dr⃗ .

(b) If C is the triangle shown in Figure 18.23, show that ∫
C
F⃗ ⋅ dr⃗ = 0.

1

1

2

x

y

C1

C2

Figure 18.22

1

1

2

x

y

C

Figure 18.23
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Solution (a) We parameterize C1 by r⃗ (t) = (1 − t)i⃗ + 2tj⃗ with 0 ≤ t ≤ 1. Then r⃗ ′(t) = −i⃗ + 2j⃗ , so

∫C1

F⃗ ⋅ dr⃗ =
∫

1

0

F⃗ (1 − t, 2t) ⋅ (−i⃗ + 2j⃗ ) dt =
∫

1

0

((1 − t)i⃗ + 2tj⃗ ) ⋅ (−i⃗ + 2j⃗ ) dt

=
∫

1

0

(5t − 1) dt =
3

2
.

To parameterizeC2, we use the fact that it is part of a parabola with vertex at (0, 2), so its equation

is of the form y = −kx2 + 2 for some k. Since the parabola crosses the x-axis at (1, 0), we find

that k = 2 and y = −2x2 + 2. Therefore, we use the parameterization r⃗ (t) = ti⃗ + (−2t2 + 2)j⃗

with 0 ≤ t ≤ 1, which has r⃗ ′ = i⃗ − 4tj⃗ . This traces out C2 in reverse, since t = 0 gives (0, 2),

and t = 1 gives (1, 0). Thus, we make t = 0 the upper limit of integration and t = 1 the lower

limit:

∫C2

F⃗ ⋅ dr⃗ =
∫

0

1

F⃗ (t,−2t2 + 2) ⋅ (i⃗ − 4tj⃗ ) dt = −
∫

1

0

(ti⃗ + (−2t2 + 2)j⃗ ) ⋅ (i⃗ − 4tj⃗ ) dt

= −
∫

1

0

(8t3 − 7t) dt =
3

2
.

So the line integrals of F⃗ along C1 and C2 have the same value.

(b) We break ∫
C
F⃗ ⋅ dr⃗ into three pieces, one of which we have already computed (namely, the

piece connecting (1, 0) to (0, 2), where the line integral has value 3∕2). The piece running from

(0, 2) to (0, 0) can be parameterized by r⃗ (t) = (2 − t)j⃗ with 0 ≤ t ≤ 2. The piece running from

(0, 0) to (1, 0) can be parameterized by r⃗ (t) = ti⃗ with 0 ≤ t ≤ 1. Then

∫C
F⃗ ⋅ dr⃗ =

3

2
+
∫

2

0

F⃗ (0, 2 − t) ⋅ (−j⃗ ) dt +
∫

1

0

F⃗ (t, 0) ⋅ i⃗ dt

=
3

2
+
∫

2

0

(2 − t)j⃗ ⋅ (−j⃗ ) dt +
∫

1

0

ti⃗ ⋅ i⃗ dt

=
3

2
+
∫

2

0

(t − 2) dt+
∫

1

0

t dt =
3

2
+ (−2) +

1

2
= 0.

Example 3 Let C be the closed curve consisting of the upper half-circle of radius 1 and the line forming its

diameter along the x-axis, oriented counterclockwise. (See Figure 18.24.) Find ∫
C
F⃗ ⋅ dr⃗ where

F⃗ (x, y) = −yi⃗ + xj⃗ .

−1 1

1 C1

C2
x

y

Figure 18.24: The curve C = C1 + C2 for Example 3

Solution We write C = C1 + C2 where C1 is the half-circle and C2 is the line, and compute ∫
C1

F⃗ ⋅ dr⃗ and

∫
C2

F⃗ ⋅ dr⃗ separately. We parameterize C1 by r⃗ (t) = cos ti⃗ + sin tj⃗ , with 0 ≤ t ≤ �. Then

∫C1

F⃗ ⋅ dr⃗ =
∫

�

0

(− sin ti⃗ + cos tj⃗ ) ⋅ (− sin ti⃗ + cos tj⃗ ) dt
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=
∫

�

0

(sin2 t + cos2 t) dt =
∫

�

0

1 dt = �.

For C2, we have ∫
C2

F⃗ ⋅ dr⃗ = 0, since the vector field F⃗ has no i⃗ component along the x-axis

(where y = 0) and is therefore perpendicular to C2 at all points.

Finally, we can write

∫C
F⃗ ⋅ dr⃗ =

∫C1

F⃗ ⋅ dr⃗ +
∫C2

F⃗ ⋅ dr⃗ = � + 0 = �.

It is no accident that the result for ∫
C1

F⃗ ⋅ dr⃗ is the same as the length of the curve C1. See

Problem 56 on page 931 and Problem 41 on page 938.

The next example illustrates the computation of a line integral over a path in 3-space.

Example 4 A particle travels along the helix C given by r⃗ (t) = cos ti⃗ + sin tj⃗ + 2tk⃗ and is subject to a force

F⃗ = xi⃗ + zj⃗ − xyk⃗ . Find the total work done on the particle by the force for 0 ≤ t ≤ 3�.

Solution The work done is given by a line integral, which we evaluate using the given parameterization:

Work done =
∫C

F⃗ ⋅ dr⃗ =
∫

3�

0

F⃗ (r⃗ (t)) ⋅ r⃗ ′(t) dt

=
∫

3�

0

(cos ti⃗ + 2tj⃗ − cos t sin tk⃗ ) ⋅ (− sin ti⃗ + cos tj⃗ + 2k⃗ ) dt

=
∫

3�

0

(− cos t sin t + 2t cos t − 2 cos t sin t) dt

=
∫

3�

0

(−3 cos t sin t + 2t cos t) dt = −4.

The Differential Notation ∫
C
P dx +Qdy +Rdz

There is an alternative notation for line integrals that is often useful. For the vector field F⃗ =

P (x, y, z)i⃗ +Q(x, y, z)j⃗ +R(x, y, z)k⃗ and an oriented curve C , if we write dr⃗ = dxi⃗ +dyj⃗ +dzk⃗

we have

∫C
F⃗ ⋅ dr⃗ =

∫C
P (x, y, z)dx +Q(x, y, z)dy+R(x, y, z)dz.

Example 5 Evaluate
∫C

xy dx − y2 dy where C is the line segment from (0, 0) to (2, 6).

Solution We parameterize C by x = t, y = 3t, 0 ≤ t ≤ 2. Thus, dx = dt, dy = 3dt, so

∫C
xy dx − y2 dy =

∫

2

0

t(3t)dt− (3t)2(3dt) =
∫

2

0

(−24t2) dt = −64.

Line integrals can be expressed either using vectors or using differentials. If the independent

variables are distances, then visualizing a line integral in terms of dot products can be useful. How-

ever, if the independent variables are, for example, temperature and volume, then the dot product

does not have physical meaning, so differentials are more natural.
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Independence of Parameterization

Since there are many different ways of parameterizing a given oriented curve, you may be wondering

what happens to the value of a given line integral if you choose another parameterization. The answer

is that the choice of parameterization makes no difference. Since we initially defined the line integral

without reference to any particular parameterization, this is exactly as we would expect.

Example 6 Consider the oriented path which is a straight-line segment L running from (0, 0) to (1, 1). Calculate

the line integral of the vector field F⃗ = (3x− y)i⃗ + xj⃗ along L using each of the parameterizations

(a) A(t) = (t, t), 0 ≤ t ≤ 1, (b) D(t) = (et − 1, et − 1), 0 ≤ t ≤ ln 2.

Solution The line L has equation y = x. Both A(t) and D(t) give a parameterization of L: each has both

coordinates equal and each begins at (0,0) and ends at (1,1). Now let’s calculate the line integral of

the vector field F⃗ = (3x − y)i⃗ + xj⃗ using each parameterization.

(a) Using A(t), we get

∫L
F⃗ ⋅ dr⃗ =

∫

1

0

((3t− t)i⃗ + tj⃗ ) ⋅ (i⃗ + j⃗ ) dt =
∫

1

0

3t dt =
3t2

2

|

|

|

|

1

0

=
3

2
.

(b) Using D(t), we get

∫L
F⃗ ⋅ dr⃗ =

∫

ln 2

0

(

(

3(et − 1) − (et − 1)
)

i⃗ + (et − 1)j⃗
)

⋅ (eti⃗ + etj⃗ ) dt

=
∫

ln 2

0

3(e2t − et) dt = 3

(

e2t

2
− et

)

|

|

|

|

ln 2

0

=
3

2
.

The fact that both answers are the same illustrates that the value of a line integral is independent

of the parameterization of the path. Problems 59–61 (available online) give another way of seeing

this.

Exercises and Problems for Section 18.2 Online Resource: Additional Problems for Section 18.2
EXERCISES

In Exercises 1–3, write ∫
C
F⃗ ⋅ dr⃗ in the form ∫

b

a
g(t) dt.

(Give a formula for g and numbers for a and b. You do not

need to evaluate the integral.)

1. F⃗ = yi⃗ + xj⃗ and C is the semicircle from (0, 1) to

(0,−1) with x > 0.

2. F⃗ = xi⃗ +z2k⃗ andC is the line from (0, 1, 0) to (2, 3, 2).

3. F⃗ = (cos x)i⃗ + (cos y)j⃗ + (cos z)k⃗ and C is the unit

circle in the plane z = 10, centered on the z-axis and

oriented counterclockwise when viewed from above.

In Exercises 4–8, find the line integral.

4.
∫
C

(3i⃗ + (y + 5)j⃗ ) ⋅ dr⃗ where C is the line from (0, 0)

to (0, 3).

5.
∫
C

(2xi⃗ + 3yj⃗ ) ⋅ dr⃗ where C is the line from (1, 0, 0)

to (5, 0, 0).

6. ∫
C
(2y2 i⃗ + xj⃗ ) ⋅ dr⃗ where C is the line segment from

(3, 1) to (0, 0).

7. ∫
C
(xi⃗ + yj⃗ ) ⋅ dr⃗ where C is the semicircle with cen-

ter at (2, 0) and going from (3, 0) to (1, 0) in the region

y > 0.

8. Find ∫
C
((x2 + y)i⃗ + y3 j⃗ ) ⋅ dr⃗ where C consists of the

three line segments from (4, 0, 0) to (4, 3, 0) to (0, 3, 0)

to (0, 3, 5).

In Exercises 9–23, find ∫
C
F⃗ ⋅ dr⃗ for the given F⃗ and C .

9. F⃗ = 2i⃗ + j⃗ ; C is the x-axis from x = 10 to x = 7.

10. F⃗ = 3j⃗ − i⃗ ; C is the line y = x from (1, 1) to (5, 5).

11. F⃗ = xi⃗ + yj⃗ and C is the line from (0, 0) to (3, 3).

12. F⃗ = yi⃗ − xj⃗ and C is the right-hand side of the unit

circle, starting at (0, 1).

13. F⃗ = x2 i⃗ + y2 j⃗ and C is the line from the point (1, 2)

to the point (3, 4).

14. F⃗ = −y sinxi⃗ + cos xj⃗ and C is the parabola y = x2

between (0, 0) and (2, 4).

15. F⃗ = y3 i⃗ + x2j⃗ and C is the line from (0, 0) to (3, 2).
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16. F⃗ = 2yi⃗ − (sin y)j⃗ counterclockwise around the unit

circle C starting at the point (1, 0).

17. F⃗ = ln yi⃗ + ln xj⃗ and C is the curve given parametri-

cally by (2t, t3), for 2 ≤ t ≤ 4.

18. F⃗ = xi⃗ + 6j⃗ − k⃗ , and C is the line x = y = z from

(0, 0, 0) to (2, 2, 2).

19. F⃗ = (2x−y+4)i⃗ +(5y+3x−6)j⃗ and C is the triangle

with vertices (0, 0), (3, 0), (3, 2) traversed counterclock-

wise.

20. F⃗ = xi⃗ + 2zyj⃗ + xk⃗ and C is r⃗ = ti⃗ + t2 j⃗ + t3k⃗ for

1 ≤ t ≤ 2.

21. F⃗ = x3 i⃗ + y2j⃗ + zk⃗ and C is the line from the origin

to the point (2, 3, 4).

22. F⃗ = −yi⃗ + xj⃗ + 5k⃗ and C is the helix x = cos t, y =

sin t, z = t, for 0 ≤ t ≤ 4�.

23. F⃗ = eyi⃗ +ln(x2 +1)j⃗ + k⃗ and C is the circle of radius

2 centered at the origin in the yz-plane in Figure 18.25.

x

y

z

■
Start

Figure 18.25

24. Every line integral can be written in both vector nota-

tion and differential notation. For example,

∫
C

(2xi⃗ + (x + y)j⃗ ) ⋅ dr⃗ =
∫
C

2x dx + (x + y) dy.

(a) Express ∫
C
3 dx + xy dy in vector notation.

(b) Express ∫
C
(100 cos xi⃗ + ey sinxj⃗ ) ⋅ dr⃗ in differ-

ential notation.

In Exercises 25–26, express the line integral ∫
C
F⃗ ⋅ dr⃗ in

differential notation.

25. F⃗ = 3xi⃗ − y sin xj⃗

26. F⃗ = y2 i⃗ + z2j⃗ + (x2 − 5)k⃗

In Exercises 27–28, find F⃗ so that the line integral equals

∫
C
F⃗ ⋅ dr⃗ .

27. ∫
C
(x + 2y)dx + x2y dy

28. ∫
C
e−3y dx − yz(sin x) dy + (y + z) dz

Evaluate the line integrals in Exercises 29–34.

29. ∫
C
y dx + x dy where C is the parameterized path x =

t2, y = t3, 1 ≤ t ≤ 5.

30. ∫
C
dx + y dy + z dz where C is one turn of the helix

x = cos t, y = sin t, z = 3t, 0 ≤ t ≤ 2�.

31. ∫
C
3y dx+4x dy where C is the straight-line path from

(1, 3) to (5, 9).

32. ∫
C
x dx + z dy − y dz where C is the circle of radius 3

in the yz-plane centered at the origin, oriented counter-

clockwise when viewed from the positive y-axis.

33. ∫
C
(x+ y) dx+ x2 dy where C is the path x = t2, y = t,

0 ≤ t ≤ 10.

34. ∫
C
x dy where C is the quarter circle centered at the ori-

gin going counterclockwise from (2, 0) to (0, 2).

PROBLEMS

35. Evaluate the line integral of F⃗ = (3x − y)i⃗ + xj⃗ over

two different paths from (0, 0) to (1, 1).

(a) The path (t, t2), with 0 ≤ t ≤ 1

(b) The path (t2, t), with 0 ≤ t ≤ 1

36. Curves C1 and C2 are parameterized as follows:

C1 is (x(t), y(t)) = (0, t) for − 1 ≤ t ≤ 1

C2 is (x(t), y(t)) = (cos t, sin t) for
�

2
≤ t ≤

3�

2
.

(a) Sketch C1 and C2 with arrows showing their orien-

tation.

(b) Suppose F⃗ = (x+3y)i⃗ +yj⃗ . Calculate ∫
C
F⃗ ⋅dr⃗ ,

where C is the curve given by C = C1 + C2.

37. Calculate the line integral of F⃗ = (3x−y)i⃗ +xj⃗ along

the line segment L from (0, 0) to (1, 1) using each of the

parameterizations

(a) B(t) = (2t, 2t), 0 ≤ t ≤ 1∕2

(b) C(t) =

(

t2 − 1

3
,
t2 − 1

3

)

, 1 ≤ t ≤ 2

In Problems 38–39 evaluate the line integral using a shortcut

available in two special situations.

• If F⃗ is perpendicular to C at every point of C , then

∫
C

F⃗ ⋅ dr⃗ = 0.

• If F⃗ is tangent toC at every point of C and has constant

magnitude on C , then

∫
C

F⃗ ⋅ dr⃗ = ±‖F⃗ ‖ × Length of C.

Choose the + sign if F⃗ points in the direction of inte-

gration and choose the − sign if F⃗ points in the direc-

tion opposite to the direction of integration.
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38. ∫
C
(xi⃗ + yj⃗ ) ⋅ dr⃗ , where C is the circle of radius 10

centered at the origin, oriented counterclockwise.

39. ∫
C
(−yi⃗ + xj⃗ ) ⋅ dr⃗ , where C is the circle of radius 10

centered at the origin, oriented counterclockwise.

40. Justify the following without parameterizing the paths.

(a) ∫
C
(x2 + cos y) dy = 0 where C is the straight line

path from (10, 5) to (20, 5).

(b) ∫
C
(x2 + cos y) dx = 0 where C is the straight line

path from (10, 5) to (10, 50).

41. Let F⃗ = −yi⃗ +xj⃗ and let C be the unit circle oriented

counterclockwise.

(a) Show that F⃗ has a constant magnitude of 1 on C .

(b) Show that F⃗ is always tangent to the circle C .

(c) Show that ∫
C
F⃗ ⋅ dr⃗ = Length of C .

42. A spiral staircase in a building is in the shape of a helix

of radius 5 meters. Between two floors of the building,

the stairs make one full revolution and climb by 4 me-

ters. A person carries a bag of groceries up two floors.

The combined mass of the person and the groceries is

m = 70 kg and the gravitational force is mg downward,

where g = 9.8 m∕sec2 is the acceleration due to gravity.

Calculate the work done by the person against gravity.

43. If C is r⃗ = (t+1)i⃗ +2tj⃗ +3tk⃗ for 0 ≤ t ≤ 1, we know

∫
C
F⃗ (r⃗ ) ⋅ dr⃗ = 5. Find the value of the integrals:

(a) ∫
0

1
F⃗ ((t + 1)i⃗ + 2tj⃗ + 3tk⃗ ) ⋅ (i⃗ + 2j⃗ + 3k⃗ ) dt

(b) ∫
1

0
F⃗ ((t2+1)i⃗ +2t2 j⃗ +3t2 k⃗ )⋅(2ti⃗ +4tj⃗ +6tk⃗ ) dt

(c) ∫
1

−1
F⃗ ((t2+1)i⃗ +2t2 j⃗ +3t2k⃗ )⋅(2ti⃗ +4tj⃗ +6tk⃗ ) dt

Strengthen Your Understanding

In Problems 44–45, explain what is wrong with the state-

ment.

44. For the vector field F⃗ = xi⃗ − yj⃗ and oriented path C

parameterized by x = cos t, y = sin t, 0 ≤ t ≤ �∕2, we

have

∫
C

F⃗ ⋅dr⃗ =
∫

�∕2

0

(cos ti⃗ −sin tj⃗ ) ⋅ (cos ti⃗ +sin tj⃗ ) dt.

45. If ∫
C
F⃗ ⋅dr⃗ = 0, then F⃗ is perpendicular to C at every

point on C .

In Problems 46–47, give an example of:

46. A vector field F⃗ such that, for the parameterized path

r⃗ (t) = 3 cos ti⃗ + 3 sin tj⃗ , −�∕2 ≤ t ≤ �∕2, the inte-

gral ∫
C
F⃗ ⋅dr⃗ can be computed geometrically, without

using the parameterization.

47. A parameterized path C such that, for the vector field

F⃗ (x, y) = sin yi⃗ , the integral ∫
C
F⃗ ⋅dr⃗ is nonzero and

can be computed geometrically, without using the pa-

rameterization.

Are the statements in Problems 48–56 true or false? Give

reasons for your answer.

48. If C1 and C2 are oriented curves with C2 beginning

where C1 ends, then ∫
C1+C2

F⃗ ⋅ dr⃗ > ∫
C1

F⃗ ⋅ dr⃗ .

49. The line integral ∫
C
4i⃗ ⋅ dr⃗ over the curve C parame-

terized by r⃗ (t) = ti⃗ + t2 j⃗ , for 0 ≤ t ≤ 2, is positive.

50. If C1 is the curve parameterized by r⃗ 1(t) = cos ti⃗ +

sin tj⃗ , with 0 ≤ t ≤ �, and C2 is the curve parameter-

ized by r⃗ 2(t) = cos ti⃗ − sin tj⃗ , 0 ≤ t ≤ �, then for any

vector field F⃗ we have ∫
C1

F⃗ ⋅ dr⃗ = ∫
C2

F⃗ ⋅ dr⃗ .

51. If C1 is the curve parameterized by r⃗ 1(t) = cos ti⃗ +

sin tj⃗ , with 0 ≤ t ≤ �, and C2 is the curve parameter-

ized by r⃗ 2(t) = cos(2t)i⃗ +sin(2t)j⃗ , 0 ≤ t ≤
�

2
, then for

any vector field F⃗ we have ∫
C1

F⃗ ⋅ dr⃗ = ∫
C2
F⃗ ⋅ dr⃗ .

52. If C is the curve parameterized by r⃗ (t), for a ≤ t ≤ b

with r⃗ (a) = r⃗ (b), then ∫
C
F⃗ ⋅ dr⃗ = 0 for any vector

field F⃗ . (Note thatC starts and ends at the same place.)

53. If C1 is the line segment from (0, 0) to (1, 0) and C2 is

the line segment from (0, 0) to (2, 0), then for any vector

field F⃗ , we have ∫
C2

F⃗ ⋅ dr⃗ = 2 ∫
C1

F⃗ ⋅ dr⃗ .

54. If C is a circle of radius a, centered at the origin and ori-

ented counterclockwise, then ∫
C
(2xi⃗ + yj⃗ ) ⋅ dr⃗ = 0.

55. If C is a circle of radius a, centered at the origin and ori-

ented counterclockwise, then ∫
C
(2yi⃗ + xj⃗ ) ⋅ dr⃗ = 0.

56. If C1 is the curve parameterized by r⃗ 1(t) = ti⃗ + t2 j⃗ ,

with 0 ≤ t ≤ 2, and C2 is the curve parameterized by

r⃗ 2(t) = (2 − t)i⃗ + (2 − t)2j⃗ , 0 ≤ t ≤ 2, then for any

vector field F⃗ we have ∫
C1

F⃗ ⋅ dr⃗ = − ∫
C2

F⃗ ⋅ dr⃗ .

57. If C1 is the path parameterized by r⃗ 1(t) = (t, t), 0 ≤

t ≤ 1, and if C2 is the path parameterized by r⃗ 2(t) =

(1 − t, 1 − t), 0 ≤ t ≤ 1, and if F⃗ = xi⃗ + yj⃗ , which of

the following is true?

(a) ∫
C1

F⃗ ⋅ dr⃗ > ∫
C2

F⃗ ⋅ dr⃗

(b) ∫
C1

F⃗ ⋅ dr⃗ < ∫
C2

F⃗ ⋅ dr⃗

(c) ∫
C1

F⃗ ⋅ dr⃗ = ∫
C2

F⃗ ⋅ dr⃗

58. If C1 is the path parameterized by r⃗ 1(t) = (t, t), for

0 ≤ t ≤ 1, and if C2 is the path parameterized by

r⃗ 2(t) = (sin t, sin t), for 0 ≤ t ≤ 1, and if F⃗ = xi⃗ +yj⃗ ,

which of the following is true?

(a) ∫
C1

F⃗ ⋅ dr⃗ > ∫
C2

F⃗ ⋅ dr⃗

(b) ∫
C1

F⃗ ⋅ dr⃗ < ∫
C2

F⃗ ⋅ dr⃗

(c) ∫
C1

F⃗ ⋅ dr⃗ = ∫
C2

F⃗ ⋅ dr⃗
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For a function, f , of one variable, the Fundamental Theorem of Calculus tells us that the definite

integral of a rate of change, f ′, gives the total change in f :

∫

b

a

f ′(t) dt = f (b) − f (a).

What about functions of two or more variables? The quantity that describes the rate of change

is the gradient vector field. If we know the gradient of a function f , can we compute the total change

in f between two points? The answer is yes, using a line integral.

Finding the Total Change in f from grad f : The Fundamental Theorem

To find the change in f between two points P and Q, we choose a smooth path C from P to Q, then

divide the path into many small pieces. See Figure 18.26.

First we estimate the change in f as we move through a displacement Δr⃗ i from r⃗ i to r⃗ i+1.

Suppose u⃗ is a unit vector in the direction of Δr⃗ i. Then the change in f is given by

f (r⃗ i+1) − f (r⃗ i) ≈ Rate of change of f × Distance moved in direction of u⃗

= fu⃗ (r⃗ i)‖Δr⃗ i‖

= gradf ⋅ u⃗ ‖Δr⃗ i‖

= gradf ⋅ Δr⃗ i. since Δr⃗ i = ‖Δr⃗ i‖u⃗

Therefore, summing over all pieces of the path, the total change in f is given by

Total change = f (Q) − f (P ) ≈

n−1
∑

i=0

gradf (r⃗ i) ⋅ Δr⃗ i.

In the limit as ‖Δr⃗i ‖ approaches zero, this suggests the following result:

Theorem 18.1: The Fundamental Theorem of Calculus for Line Integrals

Suppose C is a piecewise smooth oriented path with starting point P and ending point Q. If

f is a function whose gradient is continuous on the path C , then

∫C
gradf ⋅ dr⃗ = f (Q) − f (P ).

Notice that there are many different paths from P to Q. (See Figure 18.27.) However, the value

of the line integral ∫
C
gradf ⋅ dr⃗ depends only on the endpoints of C ; it does not depend on where

C goes in between. Problem 88 (available online) shows how the Fundamental Theorem for Line

Integrals can be derived from the one-variable Fundamental Theorem of Calculus.

✸

r⃗ 0

P
r⃗ 1

...
r⃗ i

r⃗ i+1

... r⃗ n−1 r⃗ n

Q

❄

Δr⃗ i = r⃗ i+1 − r⃗ i

Figure 18.26: Subdivision of the path from

P to Q. We estimate the change in f along Δr⃗ i

P

Q

Figure 18.27: There are many different paths from P

to Q: all give the same value of ∫
C
grad f ⋅ dr⃗
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Example 1 Suppose that gradf is everywhere perpendicular to the curve joiningP andQ shown in Figure 18.28.

(a) Explain why you expect the path joining P and Q to be a contour.

(b) Using a line integral, show that f (P ) = f (Q).

P

Q

Figure 18.28: The gradient vector field of the function f

Solution (a) The gradient of f is everywhere perpendicular to the path from P to Q, as you expect along a

contour.

(b) Consider the path from P to Q shown in Figure 18.28 and evaluate the line integral

∫C
gradf ⋅ dr⃗ = f (Q) − f (P ).

Since gradf is everywhere perpendicular to the path, the line integral is 0. Thus, f (Q) = f (P ).

Example 2 Consider the vector field F⃗ = xi⃗ + yj⃗ . In Example 2 on page 933 we calculated ∫
C1

F⃗ ⋅ dr⃗ and

∫
C2

F⃗ ⋅ dr⃗ over the oriented curves shown in Figure 18.29 and found they were the same. Find a

scalar function f with gradf = F⃗ . Hence, find an easy way to calculate the line integrals, and

explain why we could have expected them to be the same.

1

1

2

x

y

C1

C2

Figure 18.29: Find the line integral of F⃗ = xi⃗ + yj⃗ over the curves C1 and C2

Solution We want to find a function f (x, y) for which fx = x and fy = y. One possibility for f is

f (x, y) =
x2

2
+

y2

2
.

You can check that gradf = xi⃗ + yj⃗ . Now we can use the Fundamental Theorem to compute the

line integral. Since F⃗ = gradf we have

∫C1

F⃗ ⋅ dr⃗ =
∫C1

gradf ⋅ dr⃗ = f (0, 2) − f (1, 0) =
3

2
.

Notice that the calculation looks exactly the same for C2. Since the value of the integral depends

only on the values of f at the endpoints, it is the same no matter what path we choose.
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Path-Independent, or Conservative, Vector Fields

In the previous example, the line integral was independent of the path taken between the two (fixed)

endpoints. We give vector fields whose line integrals have this property a special name.

A vector field F⃗ is said to be path-independent, or conservative, if for any two points P and

Q, the line integral ∫
C
F⃗ ⋅ dr⃗ has the same value along any piecewise smooth path C from P

to Q lying in the domain of F⃗ .

If, on the other hand, the line integral ∫
C
F⃗ ⋅dr⃗ does depend on the path C joining P to Q, then

F⃗ is said to be a path-dependent vector field.

Now suppose that F⃗ is any continuous gradient field, so F⃗ = gradf . If C is a path from P to

Q, the Fundamental Theorem for Line Integrals tells us that

∫C
F⃗ ⋅ dr⃗ = f (Q) − f (P ).

Since the right-hand side of this equation does not depend on the path, but only on the endpoints of

the path, the vector field F⃗ is path-independent. Thus, we have the following important result:

If F⃗ is a continuous gradient vector field, then F⃗ is path-

independent.

Why Do We Care About Path-Independent, or Conservative, Vector Fields?

Many of the fundamental vector fields of nature are path-independent—forexample, the gravitational

field and the electric field of particles at rest. The fact that the gravitational field is path-independent

means that the work done by gravity when an object moves depends only on the starting and ending

points and not on the path taken. For example, the work done by gravity (computed by the line

integral) on a bicycle being carried to a sixth floor apartment is the same whether it is carried up the

stairs in a zig-zag path or taken straight up in an elevator.

When a vector field is path-independent, we can define the potential energy of a body. When the

body moves to another position, the potential energy changes by an amount equal to the work done

by the vector field, which depends only on the starting and ending positions. If the work done had

not been path-independent, the potential energy would depend both on the body’s current position

and on how it got there, making it impossible to define a useful potential energy.

Project 1 (available online) explains why path-independent force vector fields are also called

conservative vector fields: When a particle moves under the influence of a conservative vector field,

the total energy of the particle is conserved. It turns out that the force field is obtained from the

gradient of the potential energy function.

Path-Independent Fields and Gradient Fields

We have seen that every gradient field is path-independent. What about the converse? That is, given

a path-independent vector field F⃗ , can we find a function f such that F⃗ = gradf? The answer is

yes, provided that F⃗ is continuous.

How to Construct f from ⃖⃖⃗F

First, notice that there are many different choices for f , since we can add a constant to f without

changing gradf . If we pick a fixed starting point P , then by adding or subtracting a constant to f ,

we can ensure that f (P ) = 0. For any other point Q, we define f (Q) by the formula

f (Q) =
∫C

F⃗ ⋅ dr⃗ , where C is any path from P to Q.
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Since F⃗ is path-independent, it does not matter which path we choose from P to Q. On the other

hand, if F⃗ is not path-independent, then different choices might give different values for f (Q), so

f would not be a function (a function has to have a single value at each point).

We still have to show that the gradient of the function f really is F⃗ ; we do this on page 943.

However, by constructing a function f in this manner, we have the following result:

Theorem 18.2: Path-independent Fields Are Gradient Fields

If F⃗ is a continuous path-independent vector field on an open region R, then F⃗ = gradf for

some f defined on R.

Combining Theorems 18.1 and 18.2, we have

A continuous vector field F⃗ defined on an open region is path-independent if

and only if F⃗ is a gradient vector field.

The function f is sufficiently important that it is given a special name:

If a vector field F⃗ is of the form F⃗ = gradf for some scalar function f , then f is called a

potential function for the vector field F⃗ .

Warning

Physicists use the convention that a function� is a potential function for a vector field F⃗ if F⃗ = −grad�.

See Problem 89 (available online).

Example 3 Show that the vector field F⃗ (x, y) = y cosxi⃗ + (sinx + y)j⃗ is path-independent.

Solution Let’s suppose F⃗ does have a potential function f , so that F⃗ = grad f . This means

)f

)x
= y cosx and

)f

)y
= sinx + y.

Integrating the expression for )f∕)x with respect to x shows that

f (x, y) = y sin x + C(y) where C(y) is a function of y only.

The constant of integration here is an arbitrary function C(y) of y, since )(C(y))∕)x = 0. Differen-

tiating this expression for f (x, y) with respect to y and using )f∕)y = sin x + y gives

)f

)y
= sin x + C ′(y) = sin x + y.

Thus, we must have C ′(y) = y, so g(y) = y2∕2 + A, where A is some constant. Thus,

f (x, y) = y sin x +
y2

2
+ A

is a potential function for F⃗ . Therefore, F⃗ is path-independent.
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Example 4 The gravitational field, F⃗ , of an object of mass M is given by

F⃗ = −
GM

r3
r⃗ .

Show that F⃗ is a gradient field by finding f , a potential function for F⃗ .

Solution The vector F⃗ points directly in toward the origin. If F⃗ = gradf , then F⃗ must be perpendicular

to the level surfaces of f , so the level surfaces of f must be spheres. Also, if gradf = F⃗ , then

‖ gradf‖ = ‖F⃗ ‖ = GM∕r2 is the rate of change of f in the direction toward the origin. Now,

differentiating with respect to r gives the rate of change in a radially outward direction. Thus, if we

write w = f (x, y, z), we have

dw

dr
= −

GM

r2
= GM

(

−
1

r2

)

= GM
d

dr

(

1

r

)

.

So for the potential function, let’s try

w =
GM

r
or f (x, y, z) =

GM
√

x2 + y2 + z2
.

We check that f is the potential function by calculating

fx =
)

)x

GM
√

x2 + y2 + z2
=

−GMx

(x2 + y2 + z2)3∕2
,

fy =
)

)y

GM
√

x2 + y2 + z2
=

−GMy

(x2 + y2 + z2)3∕2
,

fz =
)

)z

GM
√

x2 + y2 + z2
=

−GMz

(x2 + y2 + z2)3∕2
.

So

gradf = fxi⃗ + fyj⃗ + fzk⃗ =
−GM

(x2 + y2 + z2)3∕2
(xi⃗ + yj⃗ + zk⃗ ) =

−GM

r3
r⃗ = F⃗ .

Our computations show that F⃗ is a gradient field and that f = GM∕r is a potential function for F⃗ .

Path-independent vector fields are rare, but often important. Section 18.4 gives a method for

determining whether a vector field has the property.

Why Path-Independent Vector Fields Are Gradient Fields: Showing grad f = ⃖⃖⃗F

Suppose F⃗ is a path-independent vector field. On page 941 we defined the function f , which we

hope will satisfy gradf = F⃗ , as follows:

f (x0, y0) = ∫C
F⃗ ⋅ dr⃗ ,

where C is a path from a fixed starting point P to a point Q = (x0, y0). This integral has the same

value for any path from P to Q because F⃗ is path-independent. Now we show why gradf = F⃗ .

We consider vector fields in 2-space; the argument in 3-space is essentially the same.

First, we write the line integral in terms of the components F⃗ (x, y) = F1(x, y)i⃗ +F2(x, y)j⃗ and

the components dr⃗ = dxi⃗ + dyj⃗ :

f (x0, y0) = ∫C
F1(x, y) dx + F2(x, y) dy.

We want to compute the partial derivatives of f , that is, the rate of change of f at (x0, y0) parallel

to the axes. To do this easily, we choose a path which reaches the point (x0, y0) on a horizontal or

vertical line segment. Let C ′ be a path from P which stops short of Q at a fixed point (a, b) and let
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P

Q = (x0, y0)

C ′

Lx

Ly

(a, b)

(a, y0)

✕

✲

✻

Figure 18.30: The path C ′ + Ly +Lx is used

to show fx = F1

P

Q = (x0, y0)

C ′ Kx

Ky(a, b)

(x0, b)

✕

✲ ✻

Figure 18.31: The path C ′ +Kx +Ky is used

to show fy = F2

Lx and Ly be the paths shown in Figure 18.30. Then we can split the line integral into three pieces.

Since dr⃗ = j⃗ dy on Ly and dr⃗ = i⃗ dx on Lx, we have:

f (x0, y0) = ∫C ′

F⃗ ⋅dr⃗ +
∫Ly

F⃗ ⋅dr⃗ +
∫Lx

F⃗ ⋅dr⃗ =
∫C ′

F⃗ ⋅dr⃗ +
∫

y0

b

F2(a, y) dy+∫

x0

a

F1(x, y0) dx.

The first two integrals do not involve x0. Thinking of x0 as a variable and differentiating with

respect to it gives

fx0
(x0, y0) =

)

)x0 ∫C ′

F⃗ ⋅ dr⃗ +
)

)x0 ∫

y0

b

F2(a, y)dy +
)

)x0 ∫

x0

a

F1(x, y0)dx

= 0 + 0 + F1(x0, y0) = F1(x0, y0),

and thus

fx(x, y) = F1(x, y).

A similar calculation for y using the path from P to Q shown in Figure 18.31 gives

fy0
(x0, y0) = F2(x0, y0).

Therefore, as we claimed,

gradf = fxi⃗ + fyj⃗ = F1i⃗ + F2 j⃗ = F⃗ .

Exercises and Problems for Section 18.3 Online Resource: Additional Problems for Section 18.3
EXERCISES

1. If F⃗ = grad(x2 + y4), find ∫
C
F⃗ ⋅ dr⃗ where C is the

quarter of the circle x2 + y2 = 4 in the first quadrant,

oriented counterclockwise.

2. If F⃗ = grad(sin(xy) + ez), find ∫
C
F⃗ ⋅ dr⃗ where C

consists of a line from (0, 0, 0) to (0, 0, 1) followed by a

line to (0,
√

2, 3), followed by a line to (
√

2,
√

5, 2).

In Exercises 3–6, let C be the curve consisting of a square of

side 2, centered at the origin with sides on the lines x = ±1,

y = ±1 and traversed counterclockwise. What is the sign

of the line integrals of the vector fields around the curve C?

Indicate whether each vector field is path-independent.

3.

x

y 4.

x

y

5.

x

y 6.

x

y

In Exercises 7–12, does the vector field appear to be path-

independent (conservative)?

7. 8.
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9. 10.

11. 12.

13. Find f if grad f = 2xyi⃗ + x2j⃗ .

14. Find f if grad f = 2xyi⃗ + (x2 + 8y3)j⃗ .

15. Find f if grad f = (yzexyz+z2 cos(xz2))i⃗ +xzexyzj⃗ +

(xyexyz + 2xz cos(xz2))k⃗ .

16. Let f (x, y, z) = x2 + 2y3 + 3z4 and F⃗ = grad f . Find

∫
C
F⃗ ⋅ dr⃗ where C consists of four line segments from

(4, 0, 0) to (4, 3, 0) to (0, 3, 0) to (0, 3, 5) to (0, 0, 5).

In Exercises 17–25, use the Fundamental Theorem of Line

Integrals to calculate ∫
C
F⃗ ⋅ dr⃗ exactly.

17. F⃗ = 3x2 i⃗ +4y3 j⃗ around the top of the unit circle from

(1, 0) to (−1, 0).

18. F⃗ = (x+ 2)i⃗ + (2y+ 3)j⃗ and C is the line from (1, 0)

to (3, 1).

19. F⃗ = 2 sin(2x+ y)i⃗ + sin(2x+ y)j⃗ along the path con-

sisting of a line from (�, 0) to (2, 5) followed by a line

to (5�, 0) followed by a quarter circle to (0, 5�).

20. F⃗ = 2xi⃗ − 4yj⃗ + (2z − 3)k⃗ and C is the line from

(1, 1, 1) to (2, 3,−1).

21. F⃗ = x2∕3 i⃗ + e7yj⃗ and C is the unit circle oriented

clockwise.

22. F⃗ = x2∕3 i⃗ + e7yj⃗ and C is the quarter of the unit cir-

cle in the first quadrant, traced counterclockwise from

(1, 0) to (0, 1).

23. F⃗ = yexyi⃗ + xexyj⃗ + (cos z)k⃗ along the curve con-

sisting of a line from (0, 0, �) to (1, 1, �) followed by

the parabola z = �x2 in the plane y = 1 to the point

(3, 1, 9�).

24. F⃗ = y sin(xy)i⃗ + x sin(xy)j⃗ and C is the parabola

y = 2x2 from (1, 2) to (3, 18).

25. F⃗ = 2xy2zex
2y2zi⃗ + 2x2yzex

2y2zj⃗ + x2y2ex
2y2zk⃗ and

C is the circle of radius 1 in the plane z = 1, centered

on the z-axis, starting at (1, 0, 1) and oriented counter-

clockwise viewed from above.

PROBLEMS

26. Let v⃗ = grad(x2 + y2). Consider the path C which is a

line between any two of the following points:

(0, 0); (5, 0); (−5, 0); (0, 6); (0,−6); (5, 4); (−3,−5).

Suppose you want to choose the path C in order to max-

imize ∫
C
v⃗ ⋅ dr⃗ . What point should be the start of C?

What point should be the end of C? Explain your an-

swer.

27. Let F⃗ = grad(2x2 +3y2). Which one of the three paths

PQ, QR, and RS in Figure 18.32 should you choose as

C in order to maximize ∫
C
F⃗ ⋅ dr⃗ ?

1 2 3 4

1

2

3

4

P

Q

R

S

x

y

Figure 18.32

28. Compute
∫
C

(

cos(xy)esin(xy)(yi⃗ + xj⃗ ) + k⃗

)

⋅dr⃗ where

C is the line from (�, 2, 5) to (0.5, �, 7).

29. The vector field F⃗ (x, y) = xi⃗ +yj⃗ is path-independent.

Compute geometrically the line integrals over the three

paths A, B, and C shown in Figure 18.33 from (1, 0)

to (0, 1) and check that they are equal. Here A is a por-

tion of a circle, B is a line, and C consists of two line

segments meeting at a right angle.

y

x

B

A

C

✠

(1, 0)

(0, 1)

Figure 18.33

30. The vector field F⃗ (x, y) = xi⃗ +yj⃗ is path-independent.

Compute algebraically the line integrals over the three

paths A, B, and C shown in Figure 18.34 from (0, 0)

to (1, 1) and check that they are equal. Here A is a line

segment, B is part of the graph of f (x) = x2, and C

consists of two line segments meeting at a right angle.
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(1, 1)

A
C

B

x

y

Figure 18.34

In Problems 31–34, decide whether the vector field could be

a gradient vector field. Justify your answer.

31. F⃗ (x, y) = xi⃗

32. G⃗ (x, y) = (x2 − y2)i⃗ − 2xyj⃗

33. F⃗ (r⃗ ) = r⃗ ∕||r⃗ ||3, where r⃗ = xi⃗ + yj⃗ + zk⃗

34. F⃗ (x, y, z) =
−z

√

x2 + z2
i⃗ +

y
√

x2 + z2
j⃗ +

x
√

x2 + z2
k⃗

35. Find a potential function for F⃗ = 5yi⃗ +(5x+y)j⃗ . Use

it to evaluate the integral ∫
C
F⃗ ⋅ dr⃗ on the path C if

(a) C runs from (10, 0) to (0,−10) along the circle of

radius 10 centered at the origin.

(b) C runs from (10, 0) to (0,−10) along a straight line.

36. Suppose C is a path that begins and ends at the same

pointP = (15, 20). What, if anything, can you say about

∫
C
(p(x, y)i⃗ + q(x, y)j⃗ ) ⋅ dr⃗ ?

(a) With no assumptions about p and q.

(b) If p(x, y)i⃗ + q(x, y)j⃗ has a potential function.

37. Let F⃗ = −yi⃗ + xj⃗ and let C be the circle of radius 5

centered at the origin, oriented counterclockwise.

(a) Evaluate ∫
C
F⃗ ⋅ dr⃗ .

(b) Give a potential function for F⃗ or explain why

there are none.

38. Let F⃗ = yi⃗ .

(a) Evaluate ∫
C1

F⃗ ⋅ dr⃗ if C1 is the straight line path

from (0, 0) to (1, 0).

(b) Evaluate ∫
C2

F⃗ ⋅ dr⃗ if C2 is the path along three

edges of a square, from (0, 0) to (0, 1) to (1, 1) to

(1, 0).

(c) Does F⃗ have a potential function? Either give one

or explain why there are none.

39. If df = p dx + q dy for smooth f , explain why

)p

)y
=

)q

)x
.

40. If F⃗ (x, y, z) = 2xex
2+yzi⃗ + zex

2+yzj⃗ + yex
2+yzk⃗ , find

exactly the line integral of F⃗ along the curve consisting

of the two half circles in the plane z = 0 in Figure 18.35.

3
x

y

Figure 18.35

41. Let grad f = 2xex
2
sin yi⃗ +ex

2
cos yj⃗ . Find the change

in f between (0, 0) and (1, �∕2):

(a) By computing a line integral.

(b) By computing f .

42. Let C be the quarter of the unit circle centered at the

origin, traversed counterclockwise starting on the neg-

ative x-axis. Find the exact values of

(a)
∫
C

(2�xi⃗ + y2j⃗ ) ⋅ dr⃗ (b)
∫
C

(−2yi⃗ + xj⃗ ) ⋅ dr⃗

For the vector fields in Problems 43–46, find the line inte-

gral along the curve C from the origin along the x-axis to the

point (3, 0) and then counterclockwise around the circumfer-

ence of the circle x2 + y2 = 9 to the point (3∕
√

2, 3∕
√

2).

43. F⃗ = xi⃗ + yj⃗

44. H⃗ = −yi⃗ + xj⃗

45. F⃗ = y(x + 1)−1 i⃗ + ln(x + 1)j⃗

46. G⃗ = (yexy + cos(x + y))i⃗ + (xexy + cos(x + y))j⃗

47. Let C be the helix x = cos t, y = sin t, z = t for

0 ≤ t ≤ 1.25�. Find ∫
C
F⃗ ⋅ dr⃗ exactly for

F⃗ = yz2exyz
2
i⃗ + xz2exyz

2
j⃗ + 2xyzexyz

2
k⃗ .

48. Let F⃗ = 2xi⃗ + 2yj⃗ + 2zk⃗ and G⃗ = (2x + y)i⃗ +

2yj⃗ + 2zk⃗ . Let C be the line from the origin to the

point (1, 5, 9). Find ∫
C
F⃗ ⋅ dr⃗ and use the result to find

∫
C
G⃗ ⋅ dr⃗ .

49. (a) If F⃗ = yexi⃗ + exj⃗ , explain how the Fundamen-

tal Theorem of Calculus for Line Integrals enables

you to calculate ∫
C
F⃗ ⋅ dr⃗ where C is any curve

going from the point (1, 2) to the point (3, 7). Ex-

plain why it does not matter how the curve goes.

(b) If C is the line from the point (1, 2) to the point

(3, 7), calculate the line integral in part (a) without

using the Fundamental Theorem.



18.3 GRADIENT FIELDS AND PATH-INDEPENDENT FIELDS 947

50. Calculate the line integral ∫
C
F⃗ ⋅ dr⃗ exactly, where C

is the curve from P to Q in Figure 18.36 and

F⃗ = sin
(

x

2

)

sin
(

y

2

)

i⃗ − cos
(

x

2

)

cos
(

y

2

)

j⃗ .

The curves PR, RS and SQ are trigonometric func-

tions of period 2� and amplitude 1.

(−
3�

2
,
3�

2
)P

R(
3�

2
,
3�

2
)

S(
3�

2
,−

3�

2
)

(−
3�

2
,−

3�

2
)Q

x

y

Figure 18.36

51. The domain of f (x, y) is the xy-plane; values of f are

in Table 18.1. Find ∫
C

grad f ⋅ dr⃗ , where C is

(a) A line from (0, 2) to (3, 4).

(b) A circle of radius 1 centered at (1, 2) traversed

counterclockwise.

Table 18.1

y ⧵
x 0 1 2 3 4

0 53 57 59 58 56

1 56 58 59 59 57

2 57 58 59 60 59

3 59 60 61 62 61

4 62 63 65 66 69

52. Figure 18.37 shows the vector field F⃗ (x, y) = xj⃗ .

(a) Find paths C1, C2, and C3 from P to Q such that

∫
C1

F⃗ ⋅dr⃗ = 0,
∫
C2

F⃗ ⋅dr⃗ > 0,
∫
C3

F⃗ ⋅dr⃗ < 0.

(b) Is F⃗ a gradient field? Explain.

x

y

Q P

Figure 18.37

53. (a) Figure 18.38 shows level curves of f (x, y). Sketch

a vector at P in the direction of grad f .

(b) Is the length of grad f at P longer, shorter, or the

same length as the length of grad f at Q?

(c) If C is a curve going from P to Q, find ∫
C
grad f ⋅

dr⃗ .

P

Q

1
3

5 7

9

x

y

Figure 18.38

54. Consider the line integrals, ∫
Ci
F⃗ ⋅dr⃗ , for i = 1, 2, 3, 4,

whereCi is the path fromPi toQi shown in Figure 18.39

and F⃗ = grad f . Level curves of f are also shown in

Figure 18.39.

(a) Which of the line integral(s) is (are) zero?

(b) Arrange the four line integrals in ascending order

(from least to greatest).

(c) Two of the nonzero line integrals have equal and

opposite values. Which are they? Which is nega-

tive and which is positive?

P1 P2

P3

P4

Q1

Q2

Q3

Q4 ✻

Increasing
values of f

Figure 18.39

55. Consider the vector field F⃗ shown in Figure 18.40.

C

x

y

Figure 18.40

(a) Is ∫
C
F⃗ ⋅ d⃗r positive, negative, or zero?
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(b) From your answer to part (a), can you determine

whether or not F⃗ = grad f for some function f?

(c) Which of the following formulas best fits F⃗ ?

F⃗1 =
x

x2 + y2
i⃗ +

y

x2 + y2
j⃗ ,

F⃗2 = −yi⃗ + xj⃗ ,

F⃗3 =
−y

(x2 + y2)2
i⃗ +

x

(x2 + y2)2
j⃗ .

56. If F⃗ is a path-independent vector field, with

∫
(1,0)

(0,0)
F⃗ ⋅ dr⃗ = 5.1 and ∫

(1,1)

(1,0)
F⃗ ⋅ dr⃗ = 3.2 and

∫
(1,1)

(0,1)
F⃗ ⋅ dr⃗ = 4.7, find

∫

(0,0)

(0,1)

F⃗ ⋅ dr⃗ .

57. The path C is a line segment of length 10 in the plane

starting at (2, 1). For f (x, y) = 3x + 4y, consider

∫
C

grad f ⋅ dr⃗ .

(a) Where should the other end of the line segment C

be placed to maximize the value of the integral?

(b) What is the maximum value of the integral?

58. Let r⃗ = xi⃗ + yj⃗ + zk⃗ and a⃗ = a1 i⃗ + a2j⃗ + a3k⃗ , a

constant vector.

(a) Find grad(r⃗ ⋅ a⃗ ).

(b) Let C be a path from the origin to the point with

position vector r⃗0 . Find ∫
C
grad(r⃗ ⋅ a⃗ ) ⋅ dr⃗ .

(c) If ||r⃗ 0|| = 10, what is the maximum possible value

of ∫
C
grad(r⃗ ⋅ a⃗ ) ⋅ dr⃗ ? Explain.

59. The force exerted by gravity on a refrigerator of mass

m is F⃗ = −mgk⃗ .

(a) Find the work done against this force in moving

from the point (1, 0, 0) to the point (1, 0, 2�) along

the curve x = cos t, y = sin t, z = t by calculating

a line integral.

(b) Is F⃗ conservative (that is, path independent)? Give

a reason for your answer.

60. A particle subject to a force F⃗ (x, y) = yi⃗ − xj⃗ moves

clockwise along the arc of the unit circle, centered at

the origin, that begins at (−1, 0) and ends at (0, 1).

(a) Find the work done by F⃗ . Explain the sign of your

answer.

(b) Is F⃗ path-independent? Explain.

Strengthen Your Understanding

In Problems 61–63, explain what is wrong with the state-

ment.

61. If F⃗ is a gradient field and C is an oriented path from

point P to point Q, then ∫
C
F⃗ ⋅ dr⃗ = F⃗ (Q) − F⃗ (P ).

62. Given any vector field F⃗ and a point P , the function

f (Q) = ∫
C
F⃗ ⋅ dr⃗ , where C is a path from P to Q, is a

potential function for F⃗ .

63. If a vector field F⃗ is not a gradient vector field, then

∫
C
F⃗ ⋅ dr⃗ can’t be evaluated.

In Problems 64–65, give an example of:

64. A vector field F⃗ such that ∫
C
F⃗ ⋅ dr⃗ = 100, for every

oriented path C from (0, 0) to (1, 2).

65. A path-independent vector field.

In Problems 66–69, each of the statements is false. Explain

why or give a counterexample.

66. If ∫
C
F⃗ ⋅ dr⃗ = 0 for one particular closed path C , then

F⃗ is path-independent.

67. ∫
C
F⃗ ⋅ dr⃗ is the total change in F⃗ along C .

68. If the vector fields F⃗ and G⃗ have ∫
C
F⃗ ⋅dr⃗ = ∫

C
G⃗ ⋅dr⃗

for a particular path C , then F⃗ = G⃗ .

69. If the total change of a function f along a curve C is

zero, then C must be a contour of f .

Are the statements in Problems 70–80 true or false? Give

reasons for your answer.

70. The fact that the line integral of a vector field F⃗ is zero

around the unit circle x2 + y2 = 1 means that F⃗ must

be a gradient vector field.

71. If C is the line segment that starts at (0, 0) and ends at

(a, b) then ∫
C
(xi⃗ + yj⃗ ) ⋅ dr⃗ =

1

2
(a2 + b2).

72. The circulation of any vector field F⃗ around any closed

curve C is zero.

73. If F⃗ = grad f , then F⃗ is path-independent.

74. If F⃗ is path-independent, then ∫
C1

F⃗ ⋅dr⃗ = ∫
C2

F⃗ ⋅dr⃗ ,

where C1 and C2 are any paths.

75. The line integral ∫
C
F⃗ ⋅ dr⃗ is the total change of F⃗

along C .

76. If F⃗ is path-independent, then there is a potential func-

tion for F⃗ .

77. If f (x, y) = ecos(xy), and C1 is the upper semicircle

x2+y2 = 1 from (−1, 0) to (1, 0), and C2 is the line from

(−1, 0) to (1, 0), then ∫
C1

grad f ⋅dr⃗ = ∫
C2

grad f ⋅dr⃗ .

78. If F⃗ is path-independent, and C is any closed curve,

then ∫
C
F⃗ ⋅ dr⃗ = 0.

79. The vector field F⃗ (x, y) = y2 i⃗ + kj⃗ , where k is con-

stant, is a gradient field.

80. If ∫
C
F⃗ ⋅ dr⃗ = 0, where C is any circle of the form

x2 + y2 = a2, then F⃗ is path-independent.
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18.4 PATH-DEPENDENT VECTOR FIELDS AND GREEN’S THEOREM

Suppose we are given a vector field but are not told whether it is path-independent. How can we tell

if it has a potential function, that is, if it is a gradient field?

How to Tell If a Vector Field Is Path-Dependent Using Line Integrals

One way to decide if a vector field is path-dependent is to find two paths with the same endpoints

such that the line integrals of the vector field along the two paths have different values.

Example 1 Is the vector field G⃗ shown in Figure 18.41 path-independent? At any point G⃗ has magnitude equal

to the distance from the origin and direction perpendicular to the line joining the point to the origin.

x

y

C1

C2

C2

Q

P

Figure 18.41: Is this vector field

path-independent?

Solution We choose P = (1, 0) and Q = (0, 1) and two paths between them: C1, a quarter circle of radius 1,

and C2, formed by parts of the x- and y-axes. (See Figure 18.41.)

Along C1, the line integral ∫
C1

G⃗ ⋅ dr⃗ > 0, since G⃗ points in the direction of the curve.

Along C2, however, we have ∫
C2

G⃗ ⋅ dr⃗ = 0, since G⃗ is perpendicular to C2 everywhere.

Thus, G⃗ is not path-independent.

Path-Dependent Fields and Circulation

Notice that the vector field in the previous example has nonzero circulation around the origin. What

can we say about the circulation of a general path-independent vector field F⃗ around a closed curve,

C? Suppose C is a simple closed curve, that is, a closed curve that does not cross itself. If P and Q

are any two points on the path, then we can think of C (oriented as shown in Figure 18.42) as made

up of the path C1 followed by −C2. Since F⃗ is path-independent, we know that

∫C1

F⃗ ⋅ dr⃗ =
∫C2

F⃗ ⋅ dr⃗ .

Thus, we see that the circulation around C is zero:

∫C
F⃗ ⋅ dr⃗ =

∫C1

F⃗ ⋅ dr⃗ +
∫−C2

F⃗ ⋅ dr⃗ =
∫C1

F⃗ ⋅ dr⃗ −
∫C2

F⃗ ⋅ dr⃗ = 0.

If the closed curveC does cross itself, we break it into simple closed curves as shown in Figure 18.43

and apply the same argument to each one.

Now suppose we know that the line integral around any closed curve is zero. For any two points,

P and Q, with two paths, C1 and C2, between them, create a closed curve, C , as in Figure 18.42.

Since the circulation around this closed curve, C , is zero, the line integrals along the two paths, C1

and C2, are equal.1 Thus, F⃗ is path-independent.

1A similar argument is used in Problems 57 and 58 on page 931.
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P

Q

C2

C1

C

Figure 18.42: A simple closed curve C

broken into two pieces, C1 and C2

C

Figure 18.43: A curve C which crosses

itself can be broken into simple closed

curves

Thus, we have the following result:

A vector field is path-independent if and only if
∫C

F⃗ ⋅ dr⃗ = 0 for every closed curve C .

Hence, to see if a field is path-dependent, we look for a closed path with nonzero circulation.

For instance, the vector field in Example 1 has nonzero circulation around a circle around the origin,

showing it is path-dependent.

How to Tell If a Vector Field Is Path-Dependent Algebraically: The Curl

Example 2 Does the vector field F⃗ = 2xyi⃗ + xyj⃗ have a potential function? If so, find it.

Solution Let’s suppose F⃗ does have a potential function, f , so F⃗ = gradf . This means that

)f

)x
= 2xy and

)f

)y
= xy.

Integrating the expression for )f∕)x shows that we must have

f (x, y) = x2y + C(y) where C(y) is a function of y.

Differentiating this expression for f (x, y) with respect to y and using the fact that )f∕)y = xy, we

get
)f

)y
= x2 + C ′(y) = xy.

Thus, we must have

C ′(y) = xy − x2.

But this expression for C ′(y) is impossible because C ′(y) is a function of y alone. This argument

shows that there is no potential function for the vector field F⃗ .

Is there an easier way to see that a vector field has no potential function, other than by trying

to find the potential function and failing? The answer is yes. First we look at a 2-dimensional vector

field F⃗ = F1 i⃗ + F2 j⃗ . If F⃗ is a gradient field, then there is a potential function f such that

F⃗ = F1 i⃗ + F2 j⃗ =
)f

)x
i⃗ +

)f

)y
j⃗ .

Thus,

F1 =
)f

)x
and F2 =

)f

)y
.
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Let us assume that f has continuous second partial derivatives. Then, by the equality of mixed partial

derivatives,
)F1

)y
=

)2f

)y)x
=

)2f

)x)y
=

)F2

)x
.

Thus, we have the following result:

If F⃗ (x, y) = F1i⃗ + F2 j⃗ is a gradient vector field with continuous partial derivatives, then

)F2

)x
−

)F1

)y
= 0.

If F⃗ (x, y) = F1i⃗ +F2 j⃗ is an arbitrary vector field, then we define the 2-dimensional or scalar

curl of the vector field F⃗ to be

)F2

)x
−

)F1

)y
.

Notice that we now know that if F⃗ is a gradient field, then its curl is 0. We do not (yet) know

whether the converse is true. (That is: If the curl is 0, does F⃗ have to be a gradient field?) However,

the curl already enables us to show that a vector field is not a gradient field.

Example 3 Show that F⃗ = 2xyi⃗ + xyj⃗ cannot be a gradient vector field.

Solution We have F1 = 2xy and F2 = xy. Since )F1∕)y = 2x and )F2∕)x = y, in this case

)F2∕)x − )F1∕)y ≠ 0

so F⃗ cannot be a gradient field.

Green’s Theorem

We now have two ways of seeing that a vector field F⃗ in the plane is path-dependent. We can evaluate

∫
C
F⃗ ⋅ dr⃗ for some closed curve and find it is not zero, or we can show that )F2∕)x − )F1∕)y ≠ 0.

It’s natural to think that

∫C
F⃗ ⋅ dr⃗ and

)F2

)x
−

)F1

)y

might be related. The relation is called Green’s Theorem.

Theorem 18.3: Green’s Theorem

Suppose C is a piecewise smooth simple closed curve that is the boundary of a region R in

the plane and oriented so that the region is on the left as we move around the curve. See

Figure 18.44. Suppose F⃗ = F1i⃗ + F2j⃗ is a smooth vector field on a region2 containing R

and C . Then

∫C
F⃗ ⋅ dr⃗ =

∫R

(

)F2

)x
−

)F1

)y

)

dx dy.

The online supplement at www.wiley.com/college/hughes-hallett contains a proof of Green’s

Theorem with different, but equivalent, conditions on the region R.

2The region is an open region containing R and C .
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R

C

x

y

Figure 18.44: Boundary C oriented

with R on the left

We first prove Green’s Theorem in the case where the region R is the rectangle a ≤ x ≤ b, c ≤

y ≤ d. Figure 18.45 shows the boundary of R divided into four curves.

On C1, where y = c and dy = 0, we have dr⃗ = dxi⃗ and thus

∫C1

F⃗ ⋅ dr⃗ =
∫

b

a

F1(x, c) dx.

Similarly, on C3 where y = d we have

∫C3

F⃗ ⋅ dr⃗ =
∫

a

b

F1(x, d) dx = −
∫

b

a

F1(x, d) dx.

Hence

∫C1+C3

F⃗ ⋅ dr⃗ =
∫

b

a

F1(x, c) dx −
∫

b

a

F1(x, d) dx = −
∫

b

a

(F1(x, d) − F1(x, c)) dx.

By the Fundamental Theorem of Calculus,

F1(x, d) − F1(x, c) = ∫

d

c

)F1

)y
dy

and therefore

∫C1+C3

F⃗ ⋅ dr⃗ = −
∫

b

a ∫

d

c

)F1

)y
dy dx = −

∫

d

c ∫

b

a

)F1

)y
dx dy.

Along the curve C2, where x = b, and the curve C4, where x = a, we get, by a similar argument,

∫C2+C4

F⃗ ⋅ dr⃗ =
∫

d

c

(F2(b, y) − F2(a, y)) dy = ∫

d

c ∫

b

a

)F2

)x
dx dy.

Adding the line integrals over C1 + C3 and C2 + C4, we get

∫C
F⃗ ⋅ dr⃗ =

∫R

(

)F2

)x
−

)F1

)y

)

dx dy.

If R is not a rectangle, we subdivide it into small rectangular pieces as shown in Figure 18.46.

The contribution to the integral of the non-rectangular pieces can be made as small as we like by

making the subdivision fine enough. The double integrals over each piece add up to the double

integral over the whole region R. Figure 18.47 shows how the circulations around adjacent pieces

cancel along the common edge, so the circulations around all the pieces add up to the circulation

around the boundary C . Since Green’s Theorem holds for the rectangular pieces, it holds for the

whole region R.
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a b

c

d

C1

C2

C3

C4

x

y

Figure 18.45: The

boundary of a rectangle

broken into C1, C2,

C3, C4

✣ ✕ R

C

Figure 18.46: Region R bounded

by a closed curve C and split

into many small regions, ΔR

Figure 18.47: Two adjacent small

closed curves

Example 4 Use Green’s Theorem to evaluate
∫C

(

y2 i⃗ + xj⃗

)

⋅dr⃗ where C is the counterclockwise path around

the perimeter of the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3.

Solution We have F1 = y2 and F2 = x. By Green’s Theorem,

∫C

(

y2 i⃗ + xj⃗

)

⋅ dr⃗ =
∫R

(

)F2

)x
−

)F1

)y

)

dx dy =
∫

3

0 ∫

2

0

(1 − 2y) dx dy = −12.

The Curl Test for Vector Fields in the Plane

We already know that if F⃗ = F1 i⃗ +F2 j⃗ is a gradient field with continuous partial derivatives, then

)F2

)x
−

)F1

)y
= 0.

Now we show that the converse is true if the domain of F⃗ has no holes in it. This means that we

assume that
)F2

)x
−

)F1

)y
= 0

and show that F⃗ is path-independent. If C is any oriented simple closed curve in the domain of F⃗

and R is the region inside C , then

∫R

(

)F2

)x
−

)F1

)y

)

dx dy = 0

since the integrand is identically 0. Therefore, by Green’s Theorem,

∫C
F⃗ ⋅ dr⃗ =

∫R

(

)F2

)x
−

)F1

)y

)

dxdy = 0.

Thus, F⃗ is path-independent and therefore a gradient field. This argument is valid for every closed

curve, C , provided the region R is entirely in the domain of F⃗ . Thus, we have the following result:

The Curl Test for Vector Fields in 2-Space

Suppose F⃗ = F1 i⃗ + F2j⃗ is a vector field with continuous partial derivatives such that

• The domain of F⃗ has the property that every closed curve in it encircles a region that lies

entirely within the domain. In particular, the domain of F⃗ has no holes.

•
)F2

)x
−

)F1

)y
= 0.

Then F⃗ is path-independent, so F⃗ is a gradient field and has a potential function.
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Why Are Holes in the Domain of the Vector Field Important?

The reason for assuming that the domain of the vector field F⃗ has no holes is to ensure that the

region R inside C is actually contained in the domain of F⃗ . Otherwise, we cannot apply Green’s

Theorem. The next two examples show that if )F2∕)x − )F1∕)y = 0 but the domain of F⃗ contains

a hole, then F⃗ can either be path-independent or be path-dependent.

Example 5 Let F⃗ be the vector field given by F⃗ (x, y) =
−yi⃗ + xj⃗

x2 + y2
.

(a) Calculate
)F2

)x
−

)F1

)y
. Does the curl test imply that F⃗ is path-independent?

(b) Calculate
∫C

F⃗ ⋅dr⃗ , where C is the unit circle centered at the origin and oriented counterclock-

wise. Is F⃗ a path-independent vector field?

(c) Explain why the answers to parts (a) and (b) do not contradict Green’s Theorem.

Solution (a) Taking partial derivatives, we have

)F2

)x
=

)

)x

(

x

x2 + y2

)

=
1

x2 + y2
−

x ⋅ 2x

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
.

Similarly,

)F1

)y
=

)

)y

(

−y

x2 + y2

)

=
−1

x2 + y2
+

y ⋅ 2y

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
.

Thus,

)F2

)x
−

)F1

)y
= 0.

Since F⃗ is undefined at the origin, the domain of F⃗ contains a hole. Therefore, the curl test

does not apply.

(b) See Figure 18.49. On the unit circle, F⃗ is tangent to the circle and ||F⃗ || = 1. Thus,3

∫C
F⃗ ⋅ dr⃗ = ||F⃗ || ⋅ Length of curve = 1 ⋅ 2� = 2�.

Since the line integral around the closed curve C is nonzero, F⃗ is not path-independent. We ob-

serve that F⃗ = grad(arctan(y∕x)) and arctan(y∕x) is � from polar coordinates, for −�∕2 < � <

�∕2. The fact that � increases by 2� each time we wind once around the origin counterclockwise

explains why F⃗ is not path-independent.

(c) The domain of F⃗ is the “punctured plane,” as shown in Figure 18.48. Since F⃗ is not defined at

the origin, which is inside C , Green’s Theorem does not apply. In this case

2� =
∫C

F⃗ ⋅ dr⃗ ≠
∫R

(

)F2

)x
−

)F1

)y

)

dxdy = 0.

3See Problem 56 on page 931.
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x

y

Figure 18.48: The domain of F⃗ (x, y) =
−yi⃗ +xj⃗

x2+y2
is

the plane minus the origin

x

y

R

C

1

Figure 18.49: The region R is not contained in the

domain of F⃗ (x, y) =
−yi⃗ +xj⃗

x2+y2

Although the vector field F⃗ in the last example was not defined at the origin, this by itself does

not prevent the vector field from being path-independent, as we see in the following example.

Example 6 Consider the vector field F⃗ given by F⃗ (x, y) =
xi⃗ + yj⃗

x2 + y2
.

(a) Calculate
)F2

)x
−

)F1

)y
. Does the curl test imply that F⃗ is path-independent?

(b) Explain how we know that
∫C

F⃗ ⋅ dr⃗ = 0, where C is the unit circle centered at the origin and

oriented counterclockwise. Does this imply that F⃗ is path-independent?

(c) Check that f (x, y) =
1

2
ln(x2 + y2) is a potential function for F⃗ . Does this imply that F⃗ is

path-independent?

Solution (a) Taking partial derivatives, we have

)F2

)x
=

)

)x

(

y

x2 + y2

)

=
−2xy

(x2 + y2)2
, and

)F1

)y
=

)

)y

(

x

x2 + y2

)

=
−2xy

(x2 + y2)2
.

Therefore,

)F2

)x
−

)F1

)y
= 0.

This does not imply that F⃗ is path-independent: The domain of F⃗ contains a hole since F⃗ is

undefined at the origin. Thus, the curl test does not apply.

(b) Since F⃗ (x, y) = xi⃗ + yj⃗ = r⃗ on the unit circle C , the field F⃗ is everywhere perpendicular to

C . Thus

∫C
F⃗ ⋅ dr⃗ = 0.

The fact that ∫
C
F⃗ ⋅dr⃗ = 0 when C is the unit circle does not imply that F⃗ is path-independent.

To be sure that F⃗ is path-independent, we would have to show that ∫
C
F⃗ ⋅ dr⃗ = 0 for every

closed curve C in the domain of F⃗ , not just the unit circle.

(c) To check that gradf = F⃗ , we differentiate f :

fx =
1

2

)

)x
ln(x2 + y2) =

1

2

2x

x2 + y2
=

x

x2 + y2
,
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and

fy =
1

2

)

)y
ln(x2 + y2) =

1

2

2y

x2 + y2
=

y

x2 + y2
,

so that

gradf =
xi⃗ + yj⃗

x2 + y2
= F⃗ .

Thus, F⃗ is a gradient field and therefore is path-independent—even though F⃗ is undefined at

the origin.

The Curl Test for Vector Fields in 3-Space

The curl test is a convenient way of deciding whether a 2-dimensional vector field is path-independent.

Fortunately, there is an analogous test for 3-dimensional vector fields, although we cannot justify it

until Chapter 20.

If F⃗ (x, y, z) = F1i⃗ + F2j⃗ + F3k⃗ is a vector field on 3-space we define a new vector field,

curl F⃗ , on 3-space by

curl F⃗ =

(

)F3

)y
−

)F2

)z

)

i⃗ +

(

)F1

)z
−

)F3

)x

)

j⃗ +

(

)F2

)x
−

)F1

)y

)

k⃗ .

The vector field curl F⃗ can be used to determine whether the vector field F⃗ is path-independent.

The Curl Test for Vector Fields in 3-Space

Suppose F⃗ is a vector field on 3-space with continuous partial derivatives such that

• The domain of F⃗ has the property that every closed curve in it can be contracted to a

point in a smooth way, staying at all times within the domain.

• curl F⃗ = 0⃗ .

Then F⃗ is path-independent, so F⃗ is a gradient field and has a potential function.

For the 2-dimensional curl test, the domain of F⃗ must have no holes. This meant that if F⃗ was

defined on a simple closed curve C , then it was also defined at all points inside C . One way to test

for holes is to try to “lasso” them with a closed curve. If every closed curve in the domain can be

pulled to a point without hitting a hole, that is, without straying outside the domain, then the domain

has no holes. In 3-space, we need the same condition to be satisfied: we must be able to pull every

closed curve to a point, like a lasso, without straying outside the domain.

Example 7 Decide if the following vector fields are path-independent and whether or not the curl test applies.

(a) F⃗ =
xi⃗ + yj⃗ + zk⃗

(x2 + y2 + z2)3∕2
(b) G⃗ =

−yi⃗ + xj⃗

x2 + y2
+ z2k⃗

Solution (a) Suppose f = −(x2 + y2 + z2)−1∕2. Then fx = x(x2 + y2 + z2)−3∕2 and fy and fz are similar,

so gradf = F⃗ . Thus, F⃗ is a gradient field and therefore path-independent. Calculations show

curl F⃗ = 0⃗ . The domain of F⃗ is all of 3-space minus the origin, and any closed curve in the

domain can be pulled to a point without leaving the domain. Thus, the curl test applies.

(b) Let C be the circle x2+y2 = 1, z = 0 traversed counterclockwise when viewed from the positive
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z-axis. Since z = 0 on the curve C , the vector field G⃗ reduces to the vector field in Example 5

and is everywhere tangent to C and of magnitude 1, so

∫C
G⃗ ⋅ dr⃗ = ‖G⃗ ‖ ⋅ Length of curve = 1 ⋅ 2� = 2�.

Since the line integral around this closed curve is nonzero, G⃗ is path-dependent. Computations

show curl G⃗ = 0⃗ . However, the domain of G⃗ is all of 3-space minus the z-axis, and it does not

satisfy the curl test domain criterion. For example, the circle, C , is lassoed around the z-axis,

and cannot be pulled to a point without hitting the z-axis. Thus, the curl test does not apply.

Exercises and Problems for Section 18.4

EXERCISES

In Exercises 1–10, decide if the given vector field is the gra-

dient of a function f . If so, find f . If not, explain why not.

1. yi⃗ − xj⃗

2. 2xyi⃗ + x2j⃗

3. yi⃗ + yj⃗

4. 2xyi⃗ + 2xyj⃗

5. (x2 + y2)i⃗ + 2xyj⃗

6. (2xy3 + y)i⃗ + (3x2y2 + x)j⃗

7.
i⃗

x
+

j⃗

y
+

k⃗

z

8.
i⃗

x
+

j⃗

y
+

k⃗

xy

9. 2x cos(x2 + z2)i⃗ + sin(x2 + z2)j⃗ + 2z cos(x2 + z2)k⃗

10.
y

x2 + y2
i⃗ −

x

x2 + y2
j⃗

In Exercises 11–14, use Green’s Theorem to calculate the

circulation of F⃗ around the curve, oriented counterclock-

wise.

11. F⃗ = yi⃗ − xj⃗ around the unit circle.

12. F⃗ = xyj⃗ around the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

13. F⃗ = (2x2+3y)i⃗ +(2x+3y2)j⃗ around the triangle with

vertices (2, 0), (0, 3), (−2, 0).

14. F⃗ = 3yi⃗ + xyj⃗ around the unit circle.

15. Use Green’s Theorem to evaluate ∫
C

(

y2 i⃗ + xj⃗

)

⋅

dr⃗ where C is the counterclockwise path around the

perimeter of the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3.

16. If C goes counterclockwise around the perimeter of

the rectangleR with vertices (10, 10), (30, 10), (30, 20),

and (10, 20), use Green’s theorem to evaluate

∫
C

−y dx + xdy.

17. Calculate ∫
C
((3x + 5y)i⃗ + (2x + 7y)j⃗ ) ⋅ dr⃗ where C

is the circular path with center (a, b) and radius m, ori-

ented counterclockwise. Use Green’s Theorem.

PROBLEMS

18. Find the line integral of F⃗ = ex
2
i⃗ + (7x + 1)j⃗ around

the closed curve C consisting of the two line segments

and the circular arc in Figure 18.50.

5

5

x

y

C

Figure 18.50

19. (a) Sketch F⃗ = yi⃗ and determine the sign of the cir-

culation of F⃗ around the unit circle centered at the

origin and oriented counterclockwise.

(b) Use Green’s Theorem to compute the circulation in

part (a) exactly.

20. Let F⃗ = (sinx)i⃗ + (x + y)j⃗ . Find the line integral of

F⃗ around the perimeter of the rectangle with corners

(3, 0), (3, 5), (−1, 5), (−1, 0), traversed in that order.

21. Find
∫
C

((sin(x2) cos y)i⃗ + (sin(y2) + ex)j⃗ ) ⋅ dr⃗ where

C is the square of side 1 in the first quadrant of the xy-

plane, with one vertex at the origin and sides along the

axes, and oriented counterclockwise when viewed from

above.
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In Problems 22–23 find the line integral of F⃗ around the

closed curve in Figure 18.51. The arc is part of a circle.

3

45◦
x

y

Figure 18.51

22. F⃗ = (x − y)i⃗ + xj⃗

23. F⃗ = (x + y)i⃗ + sin yj⃗

24. Let F⃗ = 2xeyi⃗ + x2eyj⃗ and G⃗ = (x− y)i⃗ + (x+ y)j⃗ .

Let C be the line from (0, 0) to (2, 4). Find exactly:

(a) ∫
C
F⃗ ⋅ dr⃗ (b) ∫

C
G⃗ ⋅ dr⃗

25. Let F⃗ = yi⃗ +xj⃗ and G⃗ = 3yi⃗ −3xj⃗ . In Figure 18.52,

the curve C2 is the semicircle centered at the origin

from (−1, 1) to (1,−1) and C1 is the line segment from

(−1, 1) to (1,−1), and C = C2 −C1. Find the following

line integrals:

(a)
∫
C1

F⃗ ⋅ dr⃗ (b)
∫
C

F⃗ ⋅ dr⃗

(c)
∫
C2

F⃗ ⋅ dr⃗ (d)
∫
C2

G⃗ ⋅ dr⃗

(e)
∫
C

G⃗ ⋅ dr⃗ (f)
∫
C1

G⃗ ⋅ dr⃗

(g)
∫
C

(F⃗ + G⃗ ) ⋅ dr⃗

C1

C2

x

y

Figure 18.52

26. Calculate ∫
C

(

(x2 − y)i⃗ + (y2 + x)j⃗
)

⋅ dr⃗ if:

(a) C is the circle (x − 5)2 + (y − 4)2 = 9 oriented

counterclockwise.

(b) C is the circle (x − a)2 + (y − b)2 = R2 in the

xy-plane oriented counterclockwise.

27. Let C1 be the curve consisting of the circle of radius 2,

centered at the origin and oriented counterclockwise,

and C2 be the curve consisting of the line segment from

(0, 0) to (1, 1) followed by the line segment from (1, 1)

to (3, 1). Let F⃗ = 2xy2 i⃗ + (2yx2 + 2y)j⃗ and let

G⃗ = (y + x)i⃗ + (y − x)j⃗ . Compute the following line

integrals.

(a) ∫
C1
F⃗ ⋅ dr⃗ (b) ∫

C2
F⃗ ⋅ dr⃗

(c) ∫
C1

G⃗ ⋅ dr⃗ (d) ∫
C2

G⃗ ⋅ dr⃗

28. Prove that Green’s theorem is true when the integrand

of the line integral has a potential function.

29. Consider the following parametric equations:

C1 ∶ r⃗ (t) = t cos(2�t) i⃗ + t sin(2�t) k⃗ , 0 ≤ t ≤ 2

C2 ∶ r⃗ (t) = t cos(2�t) i⃗ + t j⃗ + t sin(2�t) k⃗ , 0 ≤ t ≤ 2

(a) Describe, in words, the motion of a particle mov-

ing along each of the paths.

(b) Evaluate ∫
C2

F⃗ ⋅ dr⃗ , for the vector field F⃗ =

yz i⃗ + z(x + 1) j⃗ + (xy + y + 1) k⃗ .

(c) Find a nonzero vector field G⃗ such that:

∫
C1

G⃗ ⋅ dr⃗ =
∫
C2

G⃗ ⋅ dr⃗ .

Explain how you reasoned to find G⃗ .

(d) Find two different, nonzero vector fields H⃗1 , H⃗2

such that:

∫
C1

H⃗1 ⋅ dr⃗ =
∫
C1

H⃗2 ⋅ dr⃗ .

Explain how you reasoned to find the two fields.

30. Show that the line integral of F⃗ = xj⃗ around a closed

curve in the xy-plane, oriented as in Green’s Theorem,

measures the area of the region enclosed by the curve.

In Problems 31–33, use the result of Problem 30 to calcu-

late the area of the region within the parameterized curves.

In each case, sketch the curve.

31. The ellipse x2∕a2 + y2∕b2 = 1 parameterized by x =

a cos t, y = b sin t, for 0 ≤ t ≤ 2�.

32. The hypocycloid x2∕3 + y2∕3 = a2∕3 parameterized by

x = a cos3 t, y = a sin3 t, 0 ≤ t ≤ 2 �.

33. The folium of Descartes, x3 + y3 = 3xy, parameterized

by x =
3t

1 + t3
, y =

3t2

1 + t3
, for 0 ≤ t < ∞.

34. The vector field F⃗ is defined on the disk D of radius 5

centered at the origin in the plane:

F⃗ = (−y3 + y sin (xy))i⃗ + (4x(1 − y2) + x sin (xy))j⃗ .

Consider the line integral ∫
C
F⃗ ⋅ dr⃗ , where C is some

closed curve contained in D. For which C is the value

of this integral the largest? [Hint: Assume C is a closed

curve, made up of smooth pieces and never crossing it-

self, and oriented counterclockwise.]
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35. Example 1 on page 949 showed that the vector field in

Figure 18.53 could not be a gradient field by showing

that it is not path-independent. Here is another way to

see the same thing. Suppose that the vector field were

the gradient of a function f . Draw and label a diagram

showing what the contours of f would have to look like,

and explain why it would not be possible for f to have

a single value at any given point.

x

y

Figure 18.53

36. Repeat Problem 35 for the vector field in Problem 52

on page 947.

37. (a) By finding potential functions, show that each of

the vector fields F⃗ , G⃗ , H⃗ is a gradient field on

some domain (not necessarily the whole plane).

(b) Find the line integrals of F⃗ , G⃗ , H⃗ around the unit

circle in the xy-plane, centered at the origin, and

traversed counterclockwise.

(c) For which of the three vector fields can Green’s

Theorem be used to calculate the line integral in

part (b)? Why or why not?

F⃗ = yi⃗ + xj⃗ , G⃗ =
yi⃗ − xj⃗

x2 + y2
, H⃗ =

xi⃗ + yj⃗

(x2 + y2)1∕2

38. (a) For which of the following can you use Green’s

Theorem to evaluate the integral? Explain.

I
∫
C

(x2 + y2) dx+ (x2 + y2) dy where C is the

curve defined by y = x, y = x2, 0 ≤ x ≤ 1

with counterclockwise orientation.

II
∫
C

1
√

x2 + y2
dx −

1
√

x2 + y2
dy where C is

the unit circle centered at the origin, oriented

counterclockwise.

III
∫
C

F⃗ ⋅ dr⃗ where F⃗ = xi⃗ + yj⃗ where C is

the line segment from the origin to (1, 1).

(b) Use Green’s Theorem to evaluate the integrals in

part (a) that can be done that way.

39. Arrange the line integrals L1, L2, L3 in ascending or-

der, where

Li = ∫
Ci

(−x2yi⃗ + (xy2 − x)j⃗ ) ⋅ dr⃗ .

The points A, B, D lie on the unit circle and Ci is one

of the curves shown in Figure 18.54.

C1: Line segment A to B

C2: Line segment A to D followed by line segment

D to B

C3: Semicircle ADB

−1 1

A

C1C1

C2 C2

C3 C3

D

B
x

y

Figure 18.54

40. For all x, y, let F⃗ = F1(x, y)i⃗ + F2(x, y)j⃗ satisfy

)F2

)x
−

)F1

)y
= 3.

(a) Calculate ∫
C1

F⃗ ⋅ dr⃗ where C1 is the unit circle in

the xy-plane centered at the origin, oriented coun-

terclockwise.

(b) Calculate ∫
C2

F⃗ ⋅ dr⃗ where C2 is the boundary of

the rectangle of 4 ≤ x ≤ 7, 5 ≤ y ≤ 7, oriented

counterclockwise.

(c) Let C3 be the circle of radius 7 centered at the point

(10, 2); let C4 be the circle of radius 8 centered at

the origin; let C5 be the square of side 14 centered

at (7, 7) with sides parallel to the axes; C3, C4, C5

are all oriented counterclockwise. Arrange the in-

tegrals ∫
C3

F⃗ ⋅ dr⃗ , ∫
C4

F⃗ ⋅ dr⃗ , ∫
C5

F⃗ ⋅ dr⃗ in in-

creasing order.

41. Let F⃗ = (3x2y+y3 +ex)i⃗ +(ey
2
+12x)j⃗ . Consider the

line integral of F⃗ around the circle of radius a, centered

at the origin and traversed counterclockwise.

(a) Find the line integral for a = 1.

(b) For which value of a is the line integral a maxi-

mum? Explain.

42. Let

F⃗ (x, y) =
−yi⃗ + xj⃗

x2 + y2

and let oriented curves C1 and C2 be as in Figure 18.55.

The curve C2 is an arc of the unit circle centered at the

origin. Show that

(a) The curl of F⃗ is zero.

(b) ∫
C1

F⃗ ⋅ dr⃗ = ∫
C2

F⃗ ⋅ dr⃗ .
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(c) ∫
C1

F⃗ ⋅ dr⃗ = �, the angle at the origin subtended

by the oriented curve C1.

A

B

C

D

�

C1

C2

x

y

Figure 18.55

43. The electric field E⃗ , at the point with position vector r⃗

in 3-space, due to a charge q at the origin is given by

E⃗ (r⃗ ) = q
r⃗

||r⃗ ||3
.

(a) Compute curl E⃗ . Is E⃗ a path-independent vector

field? Explain.

(b) Find a potential function ' for E⃗ , if possible.

Strengthen Your Understanding

In Problems 44–45, explain what is wrong with the state-

ment.

44. If ∫
C
F⃗ ⋅ dr⃗ = 0 for a specific closed path C , then F⃗

must be path-independent.

45. Let F⃗ = F1(x, y)i⃗ + F2(x, y)j⃗ with

)F2

)x
−

)F1

)y
= 3

and let C be the path consisting of line segments from

(0, 0) to (1, 1) to (2, 0). Then

∫
C

F⃗ ⋅ dr⃗ = 3.

In Problems 46–48, give an example of:

46. A function Q(x, y) such that F⃗ = xyi⃗ + Q(x, y)j⃗ is a

gradient field.

47. Two oriented curves, C1 and C2, from (1, 0) to (0, 1)

such that if

F⃗ (x, y) =
−yi⃗ + xj⃗

x2 + y2
,

then

∫
C1

F⃗ ⋅ dr⃗ ≠
∫
C2

F⃗ ⋅ dr⃗ .

[Note that the scalar curl of F⃗ is 0 where F⃗ is defined.]

48. A vector field that is not a gradient field.

Are the statements in Problems 49–56 true or false? Give

reasons for your answer.

49. If f (x) and g(y) are continuous one-variable functions,

then the vector field F⃗ = f (x)i⃗ + g(y)j⃗ is path-

independent.

50. If F⃗ = grad f , and C is the perimeter of a square of

side length a oriented counterclockwise and surround-

ing the region R, then

∫
C

F⃗ ⋅ dr⃗ =
∫
R

f dA.

51. If F⃗ and G⃗ are both path-independent vector fields,

then F⃗ + G⃗ is path-independent.

52. If F⃗ and G⃗ are both path-dependent vector fields, then

F⃗ + G⃗ is path-dependent.

53. The vector field F⃗ (r⃗ ) = r⃗ in 3-space is path-

independent.

54. A constant vector field F⃗ = ai⃗ + bj⃗ is path-

independent.

55. If F⃗ is path-independent and k is a constant, then the

vector field kF⃗ is path-independent.

56. If F⃗ is path-independent and ℎ(x, y) is a scalar

function, then the vector field ℎ(x, y)F⃗ is path-

independent.
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19.1 THE IDEA OF A FLUX INTEGRAL

Flow Through a Surface

Imagine water flowing through a fishing net stretched across a stream. Suppose we want to measure

the flow rate of water through the net, that is, the volume of fluid that passes through the surface per

unit time.

Example 1 A flat square surface of area A, in m2, is immersed in a fluid. The fluid flows with constant velocity

v⃗ , in m/sec, perpendicular to the square. Write an expression for the rate of flow in m3/sec.

v⃗

✛ A

Figure 19.1: Fluid flowing perpendicular

to a surface

Solution In one second a given particle of water moves a distance of ‖v⃗ ‖ in the direction perpendicular to the

square. Thus, the entire body of water moving through the square in one second is a box of length

‖v⃗ ‖ and cross-sectional area A. So the box has volume ‖v⃗ ‖A m3, and

Flow rate = ‖v⃗ ‖A m3/sec.

This flow rate is called the flux of the fluid through the surface. We can also compute the flux

of vector fields, such as electric and magnetic fields, where no flow is actually taking place. If the

vector field is constant and perpendicular to the surface, and if the surface is flat, as in Example 1,

the flux is obtained by multiplying the speed by the area.

Next we find the flux of a constant vector field through a flat surface that is not perpendicular

to the vector field, using a dot product. In general, we break a surface into small pieces which are

approximately flat and where the vector field is approximately constant, leading to a flux integral.

Orientation of a Surface

Before computing the flux of a vector field through a surface, we need to decide which direction of

flow through the surface is the positive direction; this is described as choosing an orientation.1

At each point on a smooth surface there are two unit normals, one in each direction. Choosing

an orientation means picking one of these normals at every point of the surface in a contin-

uous way. The unit normal vector in the direction of the orientation is denoted by n⃗ . For a

closed surface (that is, the boundary of a solid region), we choose the outward orientation

unless otherwise specified.

We say the flux through a piece of surface is positive if the flow is in the direction of the orien-

tation and negative if it is in the opposite direction. (See Figure 19.2.)

1Although we will not study them, there are a few surfaces for which this cannot be done. See page 968.
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Negative flow

Direction of orientation:
Positive flow

Figure 19.2: An oriented surface showing

directions of positive and negative flow

A⃗

n⃗

S

Figure 19.3: Area vector A⃗ = n⃗ A of flat surface

with area A and orientation n⃗

The Area Vector

The flux through a flat surface depends both on the area of the surface and its orientation. Thus, it is

useful to represent its area by a vector as shown in Figure 19.3.

The area vector of a flat, oriented surface is a vector A⃗ such that

• The magnitude of A⃗ is the area of the surface.

• The direction of A⃗ is the direction of the orientation vector n⃗ .

The Flux of a Constant Vector Field Through a Flat Surface

Suppose the velocity vector field, v⃗ , of a fluid is constant and A⃗ is the area vector of a flat surface.

The flux through this surface is the volume of fluid that flows through in one unit of time. The

skewed box in Figure 19.4 has cross-sectional area ‖A⃗ ‖ and height ‖v⃗ ‖ cos �, so its volume is
(

‖v⃗ ‖ cos �
)

‖A⃗ ‖ = v⃗ ⋅ A⃗ . Thus, we have the following result:

If v⃗ is constant and A⃗ is the area vector of a flat surface, then

Flux through surface = v⃗ ⋅ A⃗ .

✻

❄

‖v⃗ ‖ cos �

v⃗

A⃗

�

Figure 19.4: Flux of v⃗ through a surface with area vector A⃗ is the volume of this skewed box

Example 2 Water is flowing down a cylindrical pipe 2 cm in radius with a velocity of 3 cm/sec. Find the flux of

the velocity vector field through the ellipse-shaped region shown in Figure 19.5. The normal to the

ellipse makes an angle of � with the direction of flow and the area of the ellipse is 4�∕(cos �) cm2.
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�

✛ A⃗ (where ‖A⃗ ‖ = 4�∕ (cos �) cm2)

✛ v⃗ ( where ‖v⃗ ‖ = 3 cm/sec)

✻

❄
2 cm

Figure 19.5: Flux through ellipse-shaped region across a cylindrical pipe

Solution There are two ways to approach this problem. One is to use the formula we just derived, which gives

Flux through ellipse = v⃗ ⋅ A⃗ = ‖v⃗ ‖‖A⃗ ‖ cos � = 3(Area of ellipse) cos �

= 3
(

4�

cos �

)

cos � = 12� cm3∕sec.

The second way is to notice that the flux through the ellipse is equal to the flux through the circle

perpendicular to the pipe in Figure 19.5. Since the flux is the rate at which water is flowing down

the pipe, we have

Flux through circle =
Velocity

of water
×

Area of

circle
=
(

3
cm

sec

)

(�22 cm2) = 12� cm3∕sec.

The Flux Integral

If the vector field, F⃗ , is not constant or the surface, S, is not flat, we divide the surface into a

patchwork of small, almost flat pieces. (See Figure 19.6.) For a particular patch with area ΔA, we

pick a unit orientation vector n⃗ at a point on the patch and define the area vector of the patch, ΔA⃗ ,

as

ΔA⃗ = n⃗ΔA.

(See Figure 19.7.) If the patches are small enough, we can assume that F⃗ is approximately constant

on each piece. Then we know that

Flux through patch ≈ F⃗ ⋅ ΔA⃗ ,

so, adding the fluxes through all the small pieces, we have

Flux through whole surface ≈
∑

F⃗ ⋅ ΔA⃗ ,

As each patch becomes smaller and ‖ΔA⃗ ‖ → 0, the approximation gets better and we get

Flux through S = lim
‖ΔA⃗ ‖→0

∑

F⃗ ⋅ ΔA⃗ .

Thus, provided the limit exists, we make the following definition:

The flux integral of the vector field F⃗ through the oriented surface S is

∫S
F⃗ ⋅ dA⃗ = lim

‖ΔA⃗ ‖→0

∑

F⃗ ⋅ ΔA⃗ .

If S is a closed surface oriented outward, we describe the flux through S as the flux out of S.
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n⃗ ΔA⃗

❄

AreaΔA

❘

P

Figure 19.6: Surface S divided into small, almost flat pieces,

showing a typical orientation vector n⃗ and area vector ΔA⃗

n⃗ ΔA⃗

Vector field
F⃗ (x, y, z)

S

Figure 19.7: Flux of a vector field

through a curved surface S

In computing a flux integral, we have to divide the surface up in a reasonable way, or the limit

might not exist. In practice this problem seldom arises; however, one way to avoid it is to define flux

integrals by the method used to compute them shown in Section 21.3.

Flux and Fluid Flow

If v⃗ is the velocity vector field of a fluid, we have

Rate fluid flows

through surface S
=

Flux of v⃗

through S
=

∫S
v⃗ ⋅ dA⃗

The rate of fluid flow is measured in units of volume per unit time.

Example 3 Find the flux of the vector field B⃗ (x, y, z) shown in Figure 19.8 through the squareS of side 2 shown

in Figure 19.9, oriented in the j⃗ direction, where

B⃗ (x, y, z) =
−yi⃗ + xj⃗

x2 + y2
.

Figure 19.8: The vector field B⃗ in

planes z = 0, z = 1, z = 2, where

B⃗ (x, y, z) =
−yi⃗ + xj⃗

x2 + y2

x

y

z

3

1

2S

B⃗

Figure 19.9: Flux of B⃗ through the

square S of side 2 in xy-plane and

oriented in j⃗ direction

x

y

z

S 2

1
3

ΔA⃗

✛

✛ ✛

Δx

✛

✛

Δz

Figure 19.10: A small patch of surface with

area ‖ΔA⃗ ‖ = ΔxΔz

Solution Consider a small rectangular patch with area vectorΔA⃗ in S, with sides Δx and Δz so that ‖ΔA⃗ ‖ =

ΔxΔz. Since ΔA⃗ points in the j⃗ direction, we have ΔA⃗ = j⃗ ΔxΔz. (See Figure 19.10.)

At the point (x, 0, z) in S, substituting y = 0 into B⃗ gives B⃗ (x, 0, z) = (1∕x)j⃗ . Thus, we have

Flux through small patch ≈ B⃗ ⋅ ΔA⃗ =
(

1

x
j⃗

)

⋅ (j⃗ ΔxΔz) =
1

x
ΔxΔz.
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Therefore,

Flux through surface =
∫S

B⃗ ⋅ dA⃗ = lim
‖ΔA⃗ ‖→0

∑

B⃗ ⋅ ΔA⃗ = lim
Δx → 0

Δz → 0

∑ 1

x
ΔxΔz.

This last expression is a Riemann sum for the double integral ∫
R

1

x
dA, where R is the square 1 ≤

x ≤ 3, 0 ≤ z ≤ 2. Thus,

Flux through surface =
∫S

B⃗ ⋅ dA⃗ =
∫R

1

x
dA =

∫

2

0 ∫

3

1

1

x
dx dz = 2 ln 3.

The result is positive since the vector field is passing through the surface in the positive direction.

Example 4 Each of the vector fields in Figure 19.11 consists entirely of vectors parallel to the xy-plane, and is

constant in the z direction (that is, the vector field looks the same in any plane parallel to the xy-

plane). For each one, say whether you expect the flux through a closed surface surrounding the origin

to be positive, negative, or zero. In part (a) the surface is a closed cube with faces perpendicular to

the axes; in parts (b) and (c) the surface is a closed cylinder. In each case we choose the outward

orientation. (See Figure 19.12.)

y

x

(a) y

x

(b) y

x

(c)

Figure 19.11: Flux of a vector field through the closed surfaces whose cross-sections are shown in the xy-plane

x
y

z

n⃗

x
y

z

n⃗

Figure 19.12: The closed cube and closed cylinder, both oriented outward

Solution (a) Since the vector field appears to be parallel to the faces of the cube which are perpendicular to

the y- and z-axes, we expect the flux through these faces to be zero. The fluxes through the two

faces perpendicular to the x-axis appear to be equal in magnitude and opposite in sign, so we

expect the net flux to be zero.

(b) Since the top and bottom of the cylinder are parallel to the flow, the flux through them is zero.

On the curved surface of the cylinder, v⃗ and ΔA⃗ appear to be everywhere parallel and in the

same direction, so we expect each term v⃗ ⋅ ΔA⃗ to be positive, and therefore the flux integral

∫
S
v⃗ ⋅ dA⃗ to be positive.

(c) As in part (b), the flux through the top and bottom of the cylinder is zero. In this case v⃗ and ΔA⃗

are not parallel on the round surface of the cylinder, but since the fluid appears to be flowing

inward as well as swirling, we expect each term v⃗ ⋅ ΔA⃗ to be negative, and therefore the flux

integral to be negative.
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Calculating Flux Integrals Using d⃖ ⃖⃗A = ⃖⃗n dA

For a small patch of surface ΔS with unit normal n⃗ and area ΔA, the area vector is ΔA⃗ = n⃗ ΔA.

The next example shows how we can use this relationship to compute a flux integral.

Example 5 An electric charge q is placed at the origin in 3-space. The resulting electric field E⃗ (r⃗ ) at the point

with position vector r⃗ is given by

E⃗ (r⃗ ) = q
r⃗

‖r⃗ ‖3
, r⃗ ≠ 0⃗ .

Find the flux of E⃗ out of the sphere of radius R centered at the origin. (See Figure 19.13.)

ΔA⃗

✠

S

Figure 19.13: Flux of E⃗ = qr⃗ ∕‖r⃗ ‖3 through the surface of a sphere of radius R centered at the origin

Solution This vector field points radially outward from the origin in the same direction as n⃗ . Thus, since n⃗ is

a unit vector,

E⃗ ⋅ ΔA⃗ = E⃗ ⋅ n⃗ ΔA = ‖E⃗ ‖ΔA.

On the sphere, ‖E⃗ ‖ = q∕R2, so

∫S
E⃗ ⋅ dA⃗ = lim

‖ΔA⃗ ‖→0

∑

E⃗ ⋅ ΔA⃗ = lim
ΔA→0

∑ q

R2
ΔA =

q

R2
lim

ΔA→0

∑

ΔA.

The last sum approximates the surface area of the sphere. In the limit as the subdivisions get finer

we have

lim
ΔA→0

∑

ΔA = Surface area of sphere.

Thus, the flux is given by

∫S
E⃗ ⋅ dA⃗ =

q

R2
lim

ΔA→0

∑

ΔA =
q

R2
⋅ (Surface area of sphere) =

q

R2
(4�R2) = 4�q.

This result is known as Gauss’s law.

To compute a flux with an integral instead of Riemann sums, we often write dA⃗ = n⃗ dA, as in

the next example.

Example 6 Let S be the surface of the cube bounded by the six planes x = ±1, y = ±1, and z = ±1. Compute

the flux of the electric field E⃗ of the previous example outward through S.

Solution It is enough to compute the flux of E⃗ through a single face, say the top face S1 defined by z = 1,

where −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. By symmetry, the flux of E⃗ through the other five faces of S

must be the same.

On the top face, S1, we have dA⃗ = n⃗ dA = k⃗ dx dy and

E⃗ (x, y, 1) = q
xi⃗ + yj⃗ + k⃗

(x2 + y2 + 1)3∕2
.
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The corresponding flux integral is given by

∫S1

E⃗ ⋅ dA⃗ = q
∫

1

−1∫

1

−1

xi⃗ + yj⃗ + k⃗

(x2 + y2 + 1)3∕2
⋅ k⃗ dx dy = q

∫

1

−1∫

1

−1

1

(x2 + y2 + 1)3∕2
dx dy.

Computing this integral numerically shows that

Flux through top face =
∫S1

E⃗ ⋅ dA⃗ ≈ 2.0944q.

Thus,

Total flux of E⃗ out of cube =
∫S

E⃗ ⋅ dA⃗ ≈ 6(2.0944q) = 12.5664q.

Example 5 on page 967 showed that the flux of E⃗ through a sphere of radius R centered at the

origin is 4�q. Since 4� ≈ 12.5664, Example 6 suggests that

Total flux of E⃗ out of cube = 4�q.

By computing the flux integral in Example 6 exactly, it is possible to verify that the flux of E⃗ through

the cube and the sphere are exactly equal. When we encounter the Divergence Theorem in Chapter 20

we will see why this is so.

Notes on Orientation

Two difficulties can occur in choosing an orientation. The first is that if the surface is not smooth,

it may not have a normal vector at every point. For example, a cube does not have a normal vector

along its edges. When we have a surface, such as a cube, which is made of a finite number of smooth

pieces, we choose an orientation for each piece separately. The best way to do this is usually clear.

For example, on the cube we choose the outward orientation on each face. (See Figure 19.14.)

n⃗
✠

P

Figure 19.14: The orientation vector field n⃗ on the

cube surface determined by the choice of unit

normal vector at the point P

Figure 19.15: The Möbius strip is

an example of a non-orientable

surface

The second difficulty is that there are some surfaces which cannot be oriented at all, such as the

Möbius strip in Figure 19.15.

Exercises and Problems for Section 19.1 Online Resource: Additional Problems for Section 19.1
EXERCISES

In Exercises 1–4, find the area vector of the oriented flat sur-

face.

1. The triangle with vertices (0, 0, 0), (0, 2, 0), (0, 0, 3) ori-

ented in the negative x direction.

2. The circular disc of radius 5 in the xy-plane, oriented

upward.

3. y = 10, 0 ≤ x ≤ 5, 0 ≤ z ≤ 3, oriented away from the

xz-plane.

4. y = −10, 0 ≤ x ≤ 5, 0 ≤ z ≤ 3, oriented away from

the xz-plane.
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5. Find an oriented flat surface with area vector 150j⃗ .

6. Let S be the disk of radius 3 perpendicular the the y-

axis, centered at (0, 6, 0) and oriented away from the

origin. Is
∫
S

(xi⃗ + yj⃗ ) ⋅ dA⃗ a vector or a scalar?

7. Compute
∫
S

(4i⃗ + 5k⃗ ) ⋅ dA⃗ , where S is the square of

side length 3 perpendicular to the z-axis, centered at

(0, 0,−2) and oriented

(a) Toward the origin. (b) Away from the origin.

8. Compute
∫
S

(2i⃗ + 3k⃗ ) ⋅ dA⃗ , where S is the disk of ra-

dius 4 perpendicular to the x-axis, centered at (5, 0, 0)

and oriented

(a) Toward the origin. (b) Away from the origin.

In Exercises 9–12, for each of the surfaces in (a)–(e), say

whether the flux of F⃗ through the surface is positive, nega-

tive, or zero. The normal vector shows the orientation.

x
y

z(a)

x
y

z(b)

x

y

z(c)

x

y

z(d)

x

y

z(e)

9. F⃗ (x, y, z) = i⃗ + 2j⃗ + k⃗ .

10. F⃗ (x, y, z) = zi⃗ .

11. F⃗ (x, y, z) = −zi⃗ + xk⃗ .

12. F⃗ (r⃗ ) = r⃗ .

In Exercises 13–16, compute the flux of v⃗ = i⃗ + 2j⃗ − 3k⃗

through the rectangular region with the orientation shown.

13.

x

y

z

(0, 0, 2)

(2, 0, 2)

(0, 2, 2)

(2, 2, 2)

14.

x

y

z

(3, 0, 0)

(3, 2, 0)

(3, 2, 4)

(3, 0, 4)

15.

x

y

z

(2, 2, 0)

(2, 0, 4)
(0, 0, 4)

(0, 2, 0)

16.

x

y

z

(2, 0, 0)

(2, 2, 0)

(0, 2, 3)
(0, 0, 3)

For Exercises 17–20 find the flux of the constant vector field

v⃗ = i⃗ − j⃗ + 3k⃗ through the given surface.

17. A disk of radius 2 in the xy-plane oriented upward.

18. A triangular plate of area 4 in the yz-plane oriented in

the positive x-direction.

19. A square plate of area 4 in the yz-plane oriented in the

positive x-direction.

20. The triangular plate with vertices (1, 0, 0), (0, 1, 0),

(0, 0, 1), oriented away from the origin.

In Exercises 21–23, find the flux of H⃗ = 2i⃗ + 3j⃗ + 5k⃗

through the surface S.

21. S is the cylinder x2 + y2 = 1, closed at the ends by the

planes z = 0 and z = 1 and oriented outward.

22. S is the disk of radius 1 in the plane x = 2 oriented in

the positive x-direction.

23. S is the disk of radius 1 in the plane x + y + z = 1

oriented in upward.

Find the flux of the vector fields in Exercises 24–26 out of

the closed box 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3.

24. F⃗ = 3i⃗ + 2j⃗ + k⃗ 25. G⃗ = xi⃗

26. H⃗ = zxk⃗

In Exercises 27–30, calculate the flux integral.

27.
∫
S

(xi⃗ +4j⃗ )⋅dA⃗ whereS is the disk of radius 5 perpen-

dicular to the x-axis, centered at (3, 0, 0) and oriented

toward the origin.

28. ∫
S
r⃗ ⋅ dA⃗ where S is the sphere of radius 3 centered at

the origin.

29. ∫
S
(sinx i⃗ +(y2 +z2)j⃗ +y2k⃗ ) ⋅dA⃗ where S is a disk of

radius � in the plane x = 3�∕2, oriented in the positive

x-direction.

30. ∫
S
(5i⃗ +5j⃗ +5k⃗ ) ⋅ dA⃗ where S is a disk of radius 3 in

the plane x + y + z = 1, oriented upward.
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In Exercises 31–34, calculate the flux integral using a short-

cut arising from two special cases:

• If F⃗ is tangent at every point of S, then ∫
S
F⃗ ⋅ dA⃗ = 0.

• If F⃗ is perpendicular at every point of S and has con-

stant magnitude on S, then

∫
S

F⃗ ⋅ dA⃗ = ±‖F⃗ ‖ ⋅ Area of S.

Choose the positive sign if F⃗ points in the same direc-

tion as the orientation of S; choose the negative sign if

F⃗ points in the direction opposite the orientation of S.

31. ∫
S
(xi⃗ +yj⃗ ) ⋅dA⃗ , where S is the cylinder of radius 10,

centered on the z-axis between z = 0 and z = 10 and

oriented away from the z-axis.

32. ∫
S
(−yi⃗ + xj⃗ ) ⋅ dA⃗ , where S is the cylinder of radius

10, centered on the z-axis between z = 0 and z = 10

and oriented away from the z-axis.

33. ∫
S
(xi⃗ +yj⃗ +zk⃗ ) ⋅dA⃗ , where S is the sphere of radius

20, centered at the origin and oriented outward.

34. ∫
S
(−yi⃗ +xj⃗ ) ⋅dA⃗ , where S is the sphere of radius 20,

centered at the origin and oriented outward.

In Exercises 35–57, calculate the flux of the vector field

through the surface.

35. F⃗ = 2{⃗ + 3|⃗ through the square of side � in the xy-

plane, oriented upward.

36. F⃗ = 2{⃗ + 3|⃗ through the unit disk in the yz-plane,

centered at the origin and oriented in the positive x-

direction.

37. F⃗ = xi⃗ + yj⃗ + zk⃗ through the square of side 1.6 cen-

tered at (2, 5, 8), parallel to the xz-plane and oriented

away from the origin.

38. F⃗ = zk⃗ through a square of side
√

14 in a horizontal

plane 2 units below the xy-plane and oriented down-

ward.

39. F⃗ = −yi⃗ + xj⃗ and S is the square plate in the yz-

plane with corners at (0, 1, 1), (0,−1, 1), (0, 1,−1), and

(0,−1,−1), oriented in the positive x-direction.

40. F⃗ = 7i⃗ +6j⃗ +5k⃗ and S is a disk of radius 2 in the yz-

plane, centered at the origin and oriented in the positive

x-direction.

41. F⃗ = xi⃗ +2yj⃗ +3zk⃗ and S is a square of side 2 in the

plane y = 3, oriented in the positive y-direction.

42. F⃗ = 7i⃗ +6j⃗ +5k⃗ andS is a sphere of radius � centered

at the origin.

43. F⃗ = −5r⃗ through the sphere of radius 2 centered at

the origin.

44. F⃗ = xi⃗ + yj⃗ + (z2 + 3)k⃗ and S is the rectangle z = 4,

0 ≤ x ≤ 2, 0 ≤ y ≤ 3, oriented in the positive z-

direction.

45. F⃗ = 6i⃗ + 7j⃗ through a triangle of area 10 in the plane

x + y = 5, oriented in the positive x-direction.

46. F⃗ = 6i⃗ + x2j⃗ − k⃗ , through the square of side 4 in

the plane y = 3, centered on the y-axis, with sides par-

allel to the x and z axes, and oriented in the positive

y-direction.

47. F⃗ = (x+3)i⃗ +(y+5)j⃗ +(z+7)k⃗ through the rectangle

x = 4, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3, oriented in the positive

x-direction.

48. F⃗ = 7r⃗ through the sphere of radius 3 centered at the

origin.

49. F⃗ = −3r⃗ through the sphere of radius 2 centered at

the origin.

50. F⃗ = 2zi⃗ + xj⃗ + xk⃗ through the rectangle x = 4,

0 ≤ y ≤ 2, 0 ≤ z ≤ 3, oriented in the positive x-

direction.

51. F⃗ = i⃗ + 2j⃗ through a square of side 2 lying in the

plane x + y + z = 1, oriented away from the origin.

52. F⃗ = (x2 + y2)k⃗ through the disk of radius 3 in the

xy-plane, centered at the origin and oriented upward.

53. F⃗ = cos(x2 + y2)k⃗ through the disk x2 + y2 ≤ 9 ori-

ented upward in the plane z = 1.

54. F⃗ = ey
2+z2 i⃗ through the disk of radius 2 in the yz-

plane, centered at the origin and oriented in the positive

x-direction.

55. F⃗ = −yi⃗ + xj⃗ through the disk in the xy-plane with

radius 2, oriented upward and centered at the origin.

56. F⃗ = r⃗ through the disk of radius 2 parallel to the xy-

plane oriented upward and centered at (0, 0, 2).

57. F⃗ = (2 − x)i⃗ through the cube whose vertices include

the points (0, 0, 0), (3, 0, 0), (0, 3, 0), (0, 0, 3), and ori-

ented outward.

PROBLEMS

58. LetB be the surface of a box centered at the origin, with

edges parallel to the axes and in the planes x = ±1,

y = ±1, z = ±1, and let S be the sphere of radius 1

centered at origin.

(a) Indicate whether the following flux integrals are

positive, negative, or zero. No reasons needed.

(a) ∫
B
xi⃗ ⋅ dA⃗ (b) ∫

B
yi⃗ ⋅ dA⃗

(c) ∫
S
|x|i⃗ ⋅ dA⃗ (d) ∫

S
(y − x)i⃗ ⋅ dA⃗

(b) Explain with reasons how you know which flux in-

tegral is greater:

∫
S

xi⃗ ⋅ dA⃗ or
∫
B

xi⃗ ⋅ dA⃗ ?
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59. Suppose that E⃗ is a uniform electric field on 3-space,

so E⃗ (x, y, z) = a{⃗ + b|⃗ + ck⃗ , for all points (x, y, z),

where a, b, c are constants. Show, with the aid of sym-

metry, that the flux of E⃗ through each of the following

closed surfaces S is zero:

(a) S is the cube bounded by the planes x = ±1,

y = ±1, and z = ±1.

(b) S is the sphere x2 + y2 + z2 = 1.

(c) S is the cylinder bounded by x2 + y2 = 1, z = 0,

and z = 2.

60. Water is flowing down a cylindrical pipe of radius 2 cm;

its speed is (3−(3∕4)r2) cm/sec at a distance r cm from

the center of the pipe. Find the flux through the circu-

lar cross section of the pipe, oriented so that the flux is

positive.

61. (a) What do you think will be the electric flux through

the cylindrical surface that is placed as shown in

the constant electric field in Figure 19.16? Why?

(b) What if the cylinder is placed upright, as shown in

Figure 19.17? Explain.

Figure 19.16

Figure 19.17

62. Let S be part of a cylinder centered on the y-axis. Ex-

plain why the three vectors fields F⃗ , G⃗ , and H⃗ have

the same flux through S. Do not compute the flux.

F⃗ = xi⃗ + 2yzk⃗

G⃗ = xi⃗ + y sin xj⃗ + 2yzk⃗

H⃗ = xi⃗ + cos(x2 + z)j⃗ + 2yzk⃗

63. Find the flux of F⃗ = r⃗ ∕‖r⃗ ‖3 out of the sphere of radius

R centered at the origin.

64. Find the flux of F⃗ = r⃗ ∕||r||2 out of the sphere of radius

R centered at the origin.

65. Consider the flux of the vector field F⃗ = r⃗ ∕||r⃗ ||p for

p ≥ 0 out of the sphere of radius 2 centered at the origin.

(a) For what value of p is the flux a maximum?

(b) What is that maximum value?

66. Let S be the cube with side length 2, faces parallel to

the coordinate planes, and centered at the origin.

(a) Calculate the total flux of the constant vector field

v⃗ = −i⃗ + 2j⃗ + k⃗ out of S by computing the flux

through each face separately.

(b) Calculate the flux out of S for any constant vector

field v⃗ = ai⃗ + bj⃗ + ck⃗ .

(c) Explain why the answers to parts (a) and (b) make

sense.

67. Let S be the tetrahedron with vertices at the origin and

at (1, 0, 0), (0, 1, 0) and (0, 0, 1).

(a) Calculate the total flux of the constant vector field

v⃗ = −i⃗ + 2j⃗ + k⃗ out of S by computing the flux

through each face separately.

(b) Calculate the flux out of S in part (a) for any con-

stant vector field v⃗ .

(c) Explain why the answers to parts (a) and (b) make

sense.

68. Let P (x, y, z) be the pressure at the point (x, y, z) in a

fluid. Let F⃗ (x, y, z) = P (x, y, z)k⃗ . Let S be the sur-

face of a body submerged in the fluid. If S is oriented

inward, show that ∫
S
F⃗ ⋅dA⃗ is the buoyant force on the

body, that is, the force upward on the body due to the

pressure of the fluid surrounding it. [Hint: F⃗ ⋅ dA⃗ =

P (x, y, z)k⃗ ⋅ dA⃗ = (P (x, y, z) dA⃗ ) ⋅ k⃗ .]

69. A region of 3-space has a temperature which varies

from point to point. Let T (x, y, z) be the temperature

at a point (x, y, z). Newton’s law of cooling says that

grad T is proportional to the heat flow vector field, F⃗ ,

where F⃗ points in the direction in which heat is flowing

and has magnitude equal to the rate of flow of heat.

(a) Suppose F⃗ = k grad T for some constant k. What

is the sign of k?

(b) Explain why this form of Newton’s law of cooling

makes sense.

(c) Let W be a region of space bounded by the surface

S. Explain why

Rate of heat

loss from W
= k

∫
S

(grad T ) ⋅ dA⃗ .

70. The z-axis carries a constant electric charge density of

� units of charge per unit length, with � > 0. The re-

sulting electric field is E⃗ .

(a) Sketch the electric field, E⃗ , in the xy-plane, given

E⃗ (x, y, z) = 2�
xi⃗ + yj⃗

x2 + y2
.
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(b) Compute the flux of E⃗ outward through the cylin-

der x2 + y2 = R2, for 0 ≤ z ≤ ℎ.

71. An infinitely long straight wire lying along the z-axis

carries an electric current I flowing in the k⃗ direction.

Ampère’s Law in magnetostatics says that the current

gives rise to a magnetic field B⃗ given by

B⃗ (x, y, z) =
I

2�

−yi⃗ + xj⃗

x2 + y2
.

(a) Sketch the field B⃗ in the xy-plane.

(b) Let S1 be the disk with center at (0, 0, ℎ), radius a,

and parallel to the xy-plane, oriented in the k⃗ di-

rection. What is the flux of B⃗ through S1? Does

your answer seem reasonable?

(c) Let S2 be the rectangle given by x = 0, a ≤ y ≤ b,

0 ≤ z ≤ ℎ, and oriented in the −i⃗ direction. What

is the flux of B⃗ through S2? Does your answer

seem reasonable?

Strengthen Your Understanding

In Problems 72–73, explain what is wrong with the state-

ment.

72. For a certain vector field F⃗ and oriented surface S, we

have ∫
S
F⃗ ⋅ dA⃗ = 2i⃗ − 3j⃗ + k⃗ .

73. If S is a region in the xy-plane oriented upwards then

∫
S
F⃗ ⋅ dA⃗ > 0.

In Problems 74–75, give an example of:

74. A nonzero vector field F⃗ such that ∫
S
F⃗ ⋅ dA⃗ = 0,

where S is the triangular surface with corners (1, 0, 0),

(0, 1, 0), (0, 0, 1), oriented away from the origin.

75. A nonconstant vector field F⃗ (x, y, z) and an oriented

surface S such that ∫
S
F⃗ ⋅ dA⃗ = 1.

Are the statements in Problems 76–85 true or false? Give

reasons for your answer.

76. The value of a flux integral is a scalar.

77. The area vector A⃗ of a flat, oriented surface is parallel

to the surface.

78. If S is the unit sphere centered at the origin, oriented

outward and the flux integral ∫
S
F⃗ ⋅ dA⃗ is zero, then

F⃗ = 0⃗ .

79. The flux of the vector field F⃗ = i⃗ through the plane

x = 0, with 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, oriented in the i⃗

direction is positive.

80. If S is the unit sphere centered at the origin, oriented

outward and F⃗ = xi⃗ + yj⃗ + zk⃗ = r⃗ , then the flux

integral ∫
S
F⃗ ⋅ dA⃗ is positive.

81. If S is the cube bounded by the six planes x = ±1, y =

±1, z = ±1, oriented outward, and F⃗ = k⃗ , then

∫
S
F⃗ ⋅ dA⃗ = 0.

82. If S is an oriented surface in 3-space, and −S is the

same surface, but with the opposite orientation, then

∫
S
F⃗ ⋅ dA⃗ = − ∫

−S
F⃗ ⋅ dA⃗ .

83. If S1 is a rectangle with area 1 and S2 is a rectangle

with area 2, then 2∫
S1
F⃗ ⋅ dA⃗ = ∫

S2
F⃗ ⋅ dA⃗ .

84. If F⃗ = 2G⃗ , then ∫
S
F⃗ ⋅ dA⃗ = 2 ∫

S
G⃗ ⋅ dA⃗ .

85. If ∫
S
F⃗ ⋅ dA⃗ > ∫

S
G⃗ ⋅ dA⃗ then ||F⃗ || > ||G⃗ || at all

points on the surface S.

86. For each of the surfaces in (a)–(e), pick the vector field

F⃗ 1, F⃗ 2, F⃗ 3, F⃗ 4, F⃗ 5, with the largest flux through the

surface. The surfaces are all squares of the same size.

Note that the orientation is shown.

F⃗ 1 = 2i⃗ − 3j⃗ − 4k⃗

F⃗ 2 = i⃗ − 2j⃗ + 7k⃗

F⃗ 3 = −7i⃗ + 5j⃗ + 6k⃗

F⃗ 4 = −11i⃗ + 4j⃗ − 5k⃗

F⃗ 5 = −5i⃗ + 3j⃗ + 5k⃗

x
y

z(a)

x
y

z(b)

x

y

z(c)

x

y

z(d)

x

y

z(e)
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19.2 FLUX INTEGRALS FOR GRAPHS, CYLINDERS, AND SPHERES

In Section 19.1 we computed flux integrals in certain simple cases. In this section we see how to

compute flux through surfaces that are graphs of functions, through cylinders, and through spheres.

Flux of a Vector Field Through the Graph of z = f (x, y)

Suppose S is the graph of the differentiable function z = f (x, y), oriented upward, and that F⃗ is

a smooth vector field. In Section 19.1 we subdivided the surface into small pieces with area vector

ΔA⃗ and defined the flux of F⃗ through S as follows:

∫S
F⃗ ⋅ dA⃗ = lim

‖ΔA⃗ ‖→0

∑

F⃗ ⋅ ΔA⃗ .

How do we divide S into small pieces? One way is to use the cross sections of f with x or y

constant and take the patches in a wire frame representation of the surface. So we must calculate the

area vector of one of these patches, which is approximately a parallelogram.

The Area Vector of a Coordinate Patch

According to the geometric definition of the cross product on page 729, the vector v⃗ × w⃗ has mag-

nitude equal to the area of the parallelogram formed by v⃗ and w⃗ and direction perpendicular to this

parallelogram and determined by the right-hand rule. Thus, we have

Area vector of parallelogram = A⃗ = v⃗ × w⃗ .

x

z

r⃗ y

✠

r⃗ x

✠

Coordinate patch

Δx

❘
Δy

Figure 19.18: Surface showing coordinate patch and tangent

vectors r⃗ x and r⃗ y

Δx

Δy

v⃗ y

v⃗ x

Figure 19.19: Parallelogram-shaped patch in

the tangent plane to the surface

Consider the patch of surface above the rectangular region with sides Δx and Δy in the xy-

plane shown in Figure 19.18. We approximate the area vector, ΔA⃗ , of this patch by the area vector

of the corresponding patch on the tangent plane to the surface. See Figure 19.19. This patch is the

parallelogram determined by the vectors v⃗ x and v⃗ y, so its area vector is given by

ΔA⃗ ≈ v⃗ x × v⃗ y.

To find v⃗ x and v⃗ y, notice that a point on the surface has position vector r⃗ = xi⃗ + yj⃗ + f (x, y)k⃗ .

Thus, a cross section of S with y constant has tangent vector

r⃗ x =
)r⃗

)x
= i⃗ + fxk⃗ ,

and a cross section with x constant has tangent vector

r⃗ y =
)r⃗

)y
= j⃗ + fyk⃗ .
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The vectors r⃗ x and v⃗ x are parallel because they are both tangent to the surface and parallel to

the xz-plane. Since the x-component of r⃗ x is i⃗ and the x-component of v⃗ x is (Δx)i⃗ , we have v⃗ x =

(Δx)r⃗ x. Similarly, we have v⃗ y = (Δy)r⃗ y. So the upward-pointing area vector of the parallelogram

is

ΔA⃗ ≈ v⃗ x × v⃗ y =
(

r⃗ x × r⃗ y

)

ΔxΔy =
(

−fxi⃗ − fyj⃗ + k⃗

)

ΔxΔy.

This is our approximation for the area vectorΔA⃗ on the surface. Replacing ΔA⃗ , Δx, andΔy by dA⃗ ,

dx and dy, we write

dA⃗ =
(

−fxi⃗ − fyj⃗ + k⃗

)

dx dy.

The Flux of F⃗ Through a Surface Given by a Graph of z = f (x, y)

Suppose the surfaceS is the part of the graph of z = f (x, y) above2 a regionR in the xy-plane,

and suppose S is oriented upward. The flux of F⃗ through S is

∫S
F⃗ ⋅ dA⃗ =

∫R
F⃗ (x, y, f (x, y)) ⋅

(

−fxi⃗ − fyj⃗ + k⃗

)

dx dy.

Example 1 Compute ∫
S
F⃗ ⋅ dA⃗ where F⃗ (x, y, z) = zk⃗ and S is the rectangular plate with corners (0, 0, 0),

(1, 0, 0), (0, 1, 3), (1, 1, 3), oriented upward. See Figure 19.20.

x

y

z

(1, 0, 0)

(1, 1, 3)

(0, 1, 3)

Figure 19.20: The vector field F⃗ = zk⃗ on the rectangular surface S

Solution We find the equation for the plane S in the form z = f (x, y). Since f is linear, with x-slope equal

to 0 and y-slope equal to 3, and f (0, 0) = 0, we have

z = f (x, y) = 0 + 0x + 3y = 3y.

Thus, we have

dA⃗ = (−fxi⃗ − fyj⃗ + k⃗ ) dx dy = (0i⃗ − 3j⃗ + k⃗ ) dx dy = (−3j⃗ + k⃗ ) dx dy.

The flux integral is therefore

∫S
F⃗ ⋅ dA⃗ =

∫

1

0 ∫

1

0

3yk⃗ ⋅ (−3j⃗ + k⃗ ) dx dy =
∫

1

0 ∫

1

0

3y dx dy = 1.5.

2The formula is also correct when the graph is below the region R.
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Surface Area of a Graph

Since the magnitude of an area vector is area, we can find area of a surface by integrating the mag-

nitude ‖dA⃗ ‖. If a surface is the graph of a function z = f (x, y), we have

‖dA⃗ ‖ = ‖ − fxi⃗ − fyj⃗ + k⃗ ‖ dx dy =

√

(fx)
2 + (fy)

2 + 1 dx dy.

Thus we have the following result:

Suppose a surface S is the part of the graph z = f (x, y) where (x, y) is in a region R in the

xy-plane. Then

Area of S =
∫R

√

(fx)
2 + (fy)

2 + 1 dx dy.

Example 2 Find the area of the surface z = f (x, y) where 0 ≤ x ≤ 4, 0 ≤ y ≤ 5, when:

(a) f (x, y) = 2x + 3y + 4 (b) f (x, y) = x2 + y2

Solution (a) Since fx = 2 and fy = 3, we have

Area =
∫

5

0 ∫

4

0

√

22 + 32 + 1 dx dy = 20
√

14.

(b) Since fx = 2x and fy = 2y. we have

Area =
∫

5

0 ∫

4

0

√

4x2 + 4y2 + 1 dx dy = 140.089.

Surface area integrals can often only be evaluated numerically.

Flux of a Vector Field Through a Cylindrical Surface

Consider the cylinder of radius R centered on the z-axis illustrated in Figure 19.21 and oriented

away from the z-axis. The coordinate patch in Figure 19.22 has surface area given by

ΔA ≈ RΔ�Δz.

x y

z

r⃗ z

n⃗

r⃗ �

S

✛ ✛R

Figure 19.21: Outward-oriented

cylinder

x

y

z

�

Δ�
✛

✛R
✻

❄
ΔzRΔ

�

n⃗

✠

Coordinate patch

Figure 19.22: Coordinate patch with area ΔA⃗ on surface

of a cylinder
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The outward unit normal n⃗ points in the direction of xi⃗ + yj⃗ , so

n⃗ =
xi⃗ + yj⃗

‖xi⃗ + yj⃗ ‖
=

R cos �i⃗ + R sin �j⃗

R
= cos �i⃗ + sin �j⃗ .

Therefore, the area vector of the coordinate patch is approximated by

ΔA⃗ = n⃗ ΔA ≈
(

cos �i⃗ + sin �j⃗
)

RΔzΔ�.

Replacing ΔA⃗ , Δz, and Δ� by dA⃗ , dz, and d�, we write

dA⃗ =
(

cos �i⃗ + sin �j⃗
)

Rdzd�.

This gives the following result:

The Flux of a Vector Field Through a Cylinder

The flux of F⃗ through the cylindrical surface S, of radius R and oriented away from the

z-axis, is given by

∫S
F⃗ ⋅ dA⃗ =

∫T
F⃗ (R, �, z) ⋅

(

cos �i⃗ + sin �j⃗
)

Rdzd�,

where T is the �z-region corresponding to S.

Example 3 Compute ∫
S
F⃗ ⋅ dA⃗ where F⃗ (x, y, z) = yj⃗ and S is the part of the cylinder of radius 2 centered on

the z-axis with x ≥ 0, y ≥ 0, and 0 ≤ z ≤ 3. The surface is oriented toward the z-axis.

x

y

z

Figure 19.23: The vector field F⃗ = yj⃗ on the surface S

Solution In cylindrical coordinates, we have R = 2 and F⃗ = yj⃗ = 2 sin �j⃗ . Since the orientation of S is

toward the z-axis, the flux through S is given by

∫S
F⃗ ⋅ dA⃗ = −

∫T
2 sin �j⃗ ⋅ (cos �i⃗ + sin �j⃗ )2 dz d� = −4

∫

�∕2

0 ∫

3

0

sin2 � dz d� = −3�.
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Flux of a Vector Field Through a Spherical Surface

Consider the piece of the sphere of radius R centered at the origin, oriented outward, as illustrated

in Figure 19.24. The coordinate patch in Figure 19.24 has surface area given by

ΔA ≈ R2 sin�Δ�Δ�.

The outward unit normal n⃗ points in the direction of r⃗ = xi⃗ + yj⃗ + zk⃗ , so

n⃗ =
r⃗

‖r⃗ ‖
= sin� cos �i⃗ + sin� sin �j⃗ + cos�k⃗.

Therefore, the area vector of the coordinate patch is approximated by

ΔA⃗ ≈ n⃗ ΔA =
r⃗

‖r⃗ ‖
ΔA =

(

sin� cos �i⃗ + sin� sin �j⃗ + cos�k⃗
)

R2 sin�Δ�Δ�.

Replacing ΔA⃗ , Δ�, and Δ� by dA⃗ , d�, and d�, we write

dA⃗ =
r⃗

‖r⃗ ‖
dA =

(

sin� cos �i⃗ + sin� sin �j⃗ + cos�k⃗
)

R2 sin�d� d�.

Thus, we obtain the following result:

The Flux of a Vector Field Through a Sphere

The flux of F⃗ through the spherical surface S, with radius R and oriented away from the

origin, is given by

∫S
F⃗ ⋅ dA⃗ =

∫S
F⃗ ⋅

r⃗

‖r⃗ ‖
dA

=
∫T

F⃗ (R, �, �) ⋅
(

sin� cos �i⃗ + sin� sin �j⃗ + cos�k⃗
)

R2 sin�d� d�,

where T is the ��-region corresponding to S.

�

�

x

y

z

Δ�

Δ�

n⃗

⑥
❘
❃✮ ✛ R sin�Δ�

RΔ�
✠

(R, �, �)

✻

❄

R

✛ Coordinate patch

Figure 19.24: Coordinate patch with area ΔA⃗ on surface of a sphere
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Example 4 Find the flux of F⃗ = zk⃗ throughS, the upper hemisphere of radius 2 centered at the origin, oriented

outward.

Solution The hemisphere S is parameterized by spherical coordinates � and �, with 0 ≤ � ≤ 2� and 0 ≤ � ≤

�∕2. Since R = 2 and F⃗ = zk⃗ = 2 cos�k⃗ , the flux is

∫S
F⃗ ⋅ dA⃗ =

∫S
2 cos�k⃗ ⋅ (sin� cos �i⃗ + sin� sin �j⃗ + cos�k⃗ )4 sin�d� d�

=
∫

2�

0 ∫

�∕2

0

8 sin� cos2 �d� d� = 2�

(

8

(

− cos3 �

3

)

|

|

|

|

�∕2

�=0

)

=
16�

3
.

Example 5 The magnetic field B⃗ due to an ideal magnetic dipole, �⃗ , located at the origin is a multiple of

B⃗ (r⃗ ) = −
�⃗

‖r⃗ ‖3
+

3(�⃗ ⋅ r⃗ )r⃗

‖r⃗ ‖5
.

Figure 19.25 shows a sketch of B⃗ in the plane z = 0 for the dipole �⃗ = i⃗ . Notice that B⃗ is similar

to the magnetic field of a bar magnet with its north pole at the tip of the vector i⃗ and its south pole

at the tail of the vector i⃗ .

Compute the flux of B⃗ outward through the sphere S with center at the origin and radius R.

y

x

Figure 19.25: The magnetic field of a dipole, i⃗ , at the origin: B⃗ = −
i⃗

‖r⃗ ‖3
+

3(i⃗ ⋅ r⃗ )r⃗

‖r⃗ ‖5

Solution Since i⃗ ⋅ r⃗ = x and ‖r⃗ ‖ = R on the sphere of radius R, we have

∫S
B⃗ ⋅ dA⃗ =

∫S

(

−
i⃗

‖r⃗ ‖3
+

3(i⃗ ⋅ r⃗ )r⃗

‖r⃗ ‖5

)

⋅

r⃗

‖r⃗ ‖
dA =

∫S

(

−
i⃗ ⋅ r⃗

‖r⃗ ‖4
+

3(i⃗ ⋅ r⃗ )‖r⃗ ‖2

‖r⃗ ‖6

)

dA

=
∫S

2i⃗ ⋅ r⃗

‖r⃗ ‖4
dA =

∫S

2x

‖r⃗ ‖4
dA =

2

R4 ∫S
x dA.

But the sphere S is centered at the origin. Thus, the contribution to the integral from each positive

x-value is canceled by the contribution from the corresponding negative x-value; so ∫
S
x dA = 0.

Therefore,

∫S
B⃗ ⋅ dA⃗ =

2

R4 ∫S
x dA = 0.
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Exercises and Problems for Section 19.2

EXERCISES

In Exercises 1–4, find the area vector dA⃗ for the surface

z = f (x, y), oriented upward.

1. f (x, y) = 3x − 5y 2. f (x, y) = 8x + 7y

3. f (x, y) = 2x2 − 3y2 4. f (x, y) = xy + y2

In Exercises 5–8, write an iterated integral for the flux of

F⃗ through the surface S, which is the part of the graph of

z = f (x, y) corresponding to the region R, oriented upward.

Do not evaluate the integral.

5. F⃗ (x, y, z) = 10i⃗ + 20j⃗ + 30k⃗

f (x, y) = 2x − 3y

R: −2 ≤ x ≤ 3, 0 ≤ y ≤ 5

6. F⃗ (x, y, z) = zi⃗ + xj⃗ + yk⃗

f (x, y) = 50 − 4x + 10y

R: 0 ≤ x ≤ 4, 0 ≤ y ≤ 8

7. F⃗ (x, y, z) = yzi⃗ + xyj⃗ + xyk⃗

f (x, y) = cos x + sin 2y

R: Triangle with vertices (0, 0), (0, 5), (5, 0)

8. F⃗ (x, y, z) = cos(x + 2y)j⃗

f (x, y) = xe3y

R: Quarter disk of radius 5 centered at the origin,

in quadrant I

In Exercises 9–12, compute the flux of F⃗ through the sur-

face S, which is the part of the graph of z = f (x, y) corre-

sponding to region R, oriented upward.

9. F⃗ (x, y, z) = 3i⃗ − 2j⃗ + 6k⃗

f (x, y) = 4x − 2y

R: 0 ≤ x ≤ 5, 0 ≤ y ≤ 10

10. F⃗ (x, y, z) = i⃗ − 2j⃗ + zk⃗

f (x, y) = xy

R: 0 ≤ x ≤ 10, 0 ≤ y ≤ 10

11. F⃗ (x, y, z) = cos yi⃗ + zj⃗ + k⃗

f (x, y) = x2 + 2y

R: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

12. F⃗ (x, y, z) = xi⃗ + zk⃗

f (x, y) = x + y + 2

R: Triangle with vertices (−1, 0), (1, 0), (0, 1)

In Exercises 13–16, write an iterated integral for the flux

of F⃗ through the cylindrical surface S centered on the z-

axis, oriented away from the z-axis. Do not evaluate the in-

tegral.

13. F⃗ (x, y, z) = i⃗ + 2j⃗ + 3k⃗

S: radius 10, x ≥ 0, y ≥ 0, 0 ≤ z ≤ 5

14. F⃗ (x, y, z) = xi⃗ + 2yj⃗ + 3zk⃗

S: radius 10, 0 ≤ z ≤ 5

15. F⃗ (x, y, z) = z2 i⃗ + exj⃗ + k⃗

S: radius 6, inside sphere of radius 10

16. F⃗ (x, y, z) = x2yzj⃗ + z3k⃗

S: radius 2, between the xy-plane and the

paraboloid z = x2 + y2

In Exercises 17–20, compute the flux of F⃗ through the cylin-

drical surface S centered on the z-axis, oriented away from

the z-axis.

17. F⃗ (x, y, z) = zj⃗ + 6xk⃗

S: radius 5, y ≥ 0, 0 ≤ z ≤ 20

18. F⃗ (x, y, z) = yi⃗ + xzk⃗

S: radius 10, x ≥ 0, y ≥ 0, 0 ≤ z ≤ 3

19. F⃗ (x, y, z) = xyzj⃗ + xezk⃗

S: radius 2, 0 ≤ y ≤ x, 0 ≤ z ≤ 10

20. F⃗ (x, y, z) = xyi⃗ + 2zj⃗

S: radius 1, x ≥ 0, 0 ≤ y ≤ 1∕2, 0 ≤ z ≤ 2

In Exercises 21–24, write an iterated integral for the flux of

F⃗ through the spherical surface S centered at the origin,

oriented away from the origin. Do not evaluate the integral.

21. F⃗ (x, y, z) = i⃗ + 2j⃗ + 3k⃗

S: radius 10, z ≥ 0

22. F⃗ (x, y, z) = xi⃗ + 2yj⃗ + 3zk⃗

S: radius 5, entire sphere

23. F⃗ (x, y, z) = z2 i⃗

S: radius 2, x ≥ 0

24. F⃗ (x, y, z) = exk⃗

S: radius 3, y ≥ 0, z ≤ 0

In Exercises 25–27, compute the flux of F⃗ through the

spherical surface S centered at the origin, oriented away

from the origin.

25. F⃗ (x, y, z) = zi⃗

S: radius 20, x ≥ 0, y ≥ 0, z ≥ 0

26. F⃗ (x, y, z) = yi⃗ − xj⃗ + zk⃗

S: radius 4, entire sphere
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27. F⃗ (x, y, z) = xi⃗ + yj⃗

S: radius 1, above the cone � = �∕4.

In Exercises 28–29, compute the flux of v⃗ = zk⃗ through the

rectangular region with the orientation shown.

28.

x

y

z

(2, 2, 0)

(2, 0, 4)
(0, 0, 4)

(0, 2, 0)

29.

x

y

z

(2, 0, 0)

(2, 2, 0)

(0, 2, 3)
(0, 0, 3)

PROBLEMS

In Problems 30–46 compute the flux of the vector field F⃗

through the surface S.

30. F⃗ = zk⃗ and S is the portion of the plane x+y+z = 1

that lies in the first octant, oriented upward.

31. F⃗ = (x−y)i⃗ +zj⃗ +3xk⃗ and S is the part of the plane

z = x + y above the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3,

oriented upward.

32. F⃗ = 2xj⃗ + yk⃗ and S is the part of the surface

z = −y + 1 above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

oriented upward.

33. F⃗ = −yj⃗ + zk⃗ and S is the part of the surface

z = y2 + 5 over the rectangle −2 ≤ x ≤ 1, 0 ≤ y ≤ 1,

oriented upward.

34. F⃗ = ln(x2)i⃗ + exj⃗ + cos(1 − z)k⃗ and S is the part of

the surface z = −y + 1 above the square 0 ≤ x ≤ 1,

0 ≤ y ≤ 1, oriented upward.

35. F⃗ = 5i⃗ +7j⃗ + zk⃗ and S is a closed cylinder of radius

3 centered on the z-axis, with −2 ≤ z ≤ 2, and oriented

outward.

36. F⃗ = xi⃗ +yj⃗ +zk⃗ and S is a closed cylinder of radius

2 centered on the y-axis, with−3 ≤ y ≤ 3, and oriented

outward.

37. F⃗ = 3xi⃗ + yj⃗ + zk⃗ and S is the part of the surface

z = −2x − 4y + 1, oriented upward, with (x, y) in the

triangle R with vertices (0, 0), (0, 2), (1, 0).

38. F⃗ = xi⃗ + yj⃗ and S is the part of the surface

z = 25 − (x2 + y2) above the disk of radius 5 centered

at the origin, oriented upward.

39. F⃗ = cos(x2 + y2)k⃗ and S is as in Exercise 38.

40. F⃗ = r⃗ and S is the part of the plane x + y + z = 1

above the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3, oriented

downward.

41. F⃗ = r⃗ and S is the part of the surface z = x2 + y2

above the disk x2 + y2 ≤ 1, oriented downward.

42. F⃗ = xzi⃗ + yk⃗ and S is the hemisphere

x2 + y2 + z2 = 9, z ≥ 0, oriented upward.

43. F⃗ = −xzi⃗ −yzj⃗ +z2k⃗ andS is the cone z =
√

x2 + y2

for 0 ≤ z ≤ 6, oriented upward.

44. F⃗ = yz4 i⃗ − xz4j⃗ + ez
2
k⃗ and S is the cone z =

√

x2 + y2 for 1 ≤ z ≤ 2, oriented upward.

45. F⃗ = yi⃗ + j⃗ − xzk⃗ and S is the surface y = x2 + z2,

with x2 + z2 ≤ 1, oriented in the positive y-direction.

46. F⃗ = x2 i⃗ + y2j⃗ + z2k⃗ and S is the oriented triangular

surface shown in Figure 19.26.

x

y

z

S

1

1

1

Figure 19.26

In Problems 47–50 find the area of the surface z = f (x, y)

over the region R in the xy-plane.

47. f (x, y) = 50 + 5x − y, R: −5 ≤ x ≤ 5, 0 ≤ y ≤ 10

48. f (x, y) = 50 + 5x− y, R: circle of radius 3 centered at

the origin

49. f (x, y) = xey, R: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

50. f (x, y) = (sinx)(sin y), R: 0 ≤ x ≤ �∕2, 0 ≤ y ≤ �∕2

51. Let S be the hemisphere x2 + y2 + z2 = a2 of radius a,

where z ≥ 0.

(a) Express the surface area of S as an integral in

Cartesian coordinates.
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(b) Change variables to express the area integral in po-

lar coordinates.

(c) Find the area of S.

In Problems 52–53, compute the flux of F⃗ through the cylin-

drical surface in Figure 19.27, oriented away from the z-axis.

x
y

z

11

6

S

Figure 19.27

52. F⃗ = xi⃗ + yj⃗

53. F⃗ = xzi⃗ + yzj⃗ + z3k⃗

In Problems 54–57, compute the flux of F⃗ through the

spherical surface, S.

54. F⃗ = zk⃗ and S is the upper hemisphere of radius 2

centered at the origin, oriented outward.

55. F⃗ = yi⃗ − xj⃗ + zk⃗ and S is the spherical cap given by

x2 + y2 + z2 = 1, z ≥ 0, oriented upward.

56. F⃗ = z2k⃗ and S is the upper hemisphere of the sphere

x2 + y2 + z2 = 25, oriented away from the origin.

57. F⃗ = xi⃗ + yj⃗ + zk⃗ and S is the surface of the sphere

x2 + y2 + z2 = a2, oriented outward.

58. Compute the flux of F⃗ = xi⃗ +yj⃗ +zk⃗ over the quarter

cylinder S given by x2 + y2 = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 ≤ z ≤ 1, oriented outward.

59. Compute the flux of F⃗ = xi⃗ + j⃗ + k⃗ through the sur-

face S given by x = sin y sin z, with 0 ≤ y ≤ �∕2,

0 ≤ z ≤ �∕2, oriented in the direction of increasing x.

60. Compute the flux of F⃗ = (x + z)i⃗ + j⃗ + zk⃗ through

the surface S given by y = x2 + z2, with 0 ≤ y ≤ 1,

x ≥ 0, z ≥ 0, oriented toward the xz-plane.

61. Let F⃗ = (xzeyz)i⃗ +xzj⃗ +(5+x2+y2)k⃗ . Calculate the

flux of F⃗ through the disk x2 + y2 ≤ 1 in the xy-plane,

oriented upward.

62. Let H⃗ = (exy+3z+5)i⃗ +(exy+5z+3)j⃗ +(3z+exy)k⃗ .

Calculate the flux of H⃗ through the square of side 2

with one vertex at the origin, one edge along the posi-

tive y-axis, one edge in the xz-plane with x > 0, z > 0,

and the normal n⃗ = i⃗ − k⃗ .

63. The vector field, F⃗ , in Figure 19.28 depends only on z;

that is, it is of the form g(z)k⃗ , where g is an increasing

function. The integral ∫
S
F⃗ ⋅ dA⃗ represents the flux of

F⃗ through this rectangle, S, oriented upward. In each

of the following cases, how does the flux change?

(a) The rectangle is twice as wide in the x-direction,

with new corners at the origin, (2, 0, 0), (2, 1, 3),

(0, 1, 3).

(b) The rectangle is moved so that its corners are at

(1, 0, 0), (2, 0, 0), (2, 1, 3), (1, 1, 3).

(c) The orientation is changed to downward.

(d) The rectangle is tripled in size, so that its new cor-

ners are at the origin, (3, 0, 0), (3, 3, 9), (0, 3, 9).

x

y

z

(1, 0, 0)

(1, 1, 3)

(0, 1, 3)

Figure 19.28

64. Electric charge is distributed in space with density (in

coulomb/m3) given in spherical coordinates by

�(�,�, �) =

{

�0 (a constant) � ≤ a

0 � > a.

(a) Describe the charge distribution in words.

(b) Find the electric field E⃗ due to �. Assume that E⃗

can be written in spherical coordinates as E⃗ =

E(�)e⃗ �, where e⃗ � is the unit outward normal to the

sphere of radius �. In addition, E⃗ satisfies Gauss’s

Law for any simple closed surface S enclosing a

volume W :

∫
S

E⃗ ⋅ dA⃗ = k
∫
W

� dV , k a constant.

65. Electric charge is distributed in space with density (in

coulomb/m3) given in cylindrical coordinates by

�(r, �, z) =

{

�0 (a constant) if r ≤ a

0 if r > a

(a) Describe the charge distribution in words.

(b) Find the electric field E⃗ due to �. Assume that E⃗

can be written in cylindrical coordinates as E⃗ =

E(r)e⃗ r, where e⃗ r is the unit outward vector to the

cylinder of radius r, and that E⃗ satisfies Gauss’s

Law (see Problem 64).
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Strengthen Your Understanding

In Problems 66–67, explain what is wrong with the state-

ment.

66. Flux outward through the cone, given in cylindrical co-

ordinates by z = r, can be computed using the formula

dA⃗ =
(

cos �i⃗ + sin �j⃗
)

Rdz d�.

67. For the surface z = f (x, y) oriented upward, the for-

mula

dA⃗ = n⃗ dA =
(

−fxi⃗ − fyj⃗ + k⃗

)

dx dy

gives n⃗ = −fxi⃗ − fyj⃗ + k⃗ and dA = dx dy.

In Problems 68–69, give an example of:

68. A function f (x, y) such that, for the surface z = f (x, y)

oriented upwards, we have dA⃗ = (i⃗ + j⃗ + k⃗ ) dx dy.

69. An oriented surface S on the cylinder of radius 10 cen-

tered on the z-axis such that ∫
S
F⃗ ⋅ dA⃗ = 600, where

F⃗ = xi⃗ + yj⃗ .

Are the statements in Problems 70–72 true or false? Give

reasons for your answer.

70. If S is the part of the graph of z = f (x, y) above

a ≤ x ≤ b, c ≤ y ≤ d, then S has surface area

∫
b

a
∫

d

c

√

(fx)
2 + (fy)

2 + 1dx dy.

71. If A⃗ (x, y) is the area vector for z = f (x, y) oriented

upward and B⃗ (x, y) is the area vector for z = −f (x, y)

oriented upward, then A⃗ (x, y) = −B⃗ (x, y).

72. If S is the sphere x2 + y2 + z2 = 1 oriented outward

and ∫
S
F⃗ ⋅ dA⃗ = 0, then F⃗ (x, y, z) is perpendicular to

xi⃗ + yj⃗ + zk⃗ at every point of S.

19.3 THE DIVERGENCE OF A VECTOR FIELD

Imagine that the vector fields in Figures 19.29 and 19.30 are velocity vector fields describing the

flow of a fluid.3 Figure 19.29 suggests outflow from the origin; for example, it could represent the

expanding cloud of matter in the big-bang theory of the origin of the universe. We say that the origin

is a source. Figure 19.30 suggests flow into the origin; in this case we say that the origin is a sink.

In this section we use the flux out of a closed surface surrounding a point to measure the outflow

per unit volume there, also called the divergence, or flux density.

x

y

Figure 19.29: Vector field

showing a source

x

y

Figure 19.30: Vector field

showing a sink

Definition of Divergence

To measure the outflow per unit volume of a vector field at a point, we calculate the flux out of a

small sphere centered at the point, divide by the volume enclosed by the sphere, then take the limit

of this flux-to-volume ratio as the sphere contracts around the point.

Geometric Definition of Divergence

The divergence, or flux density, of a smooth vector field F⃗ , written divF⃗ , is a scalar-valued

function defined by

div F⃗ (x, y, z) = lim
Volume→0

∫
S
F⃗ ⋅ dA⃗

Volume of S
.

Here S is a sphere centered at (x, y, z), oriented outward, that contracts down to (x, y, z) in the

limit. The limit can be computed using other shapes as well, such as the cubes in Example 2.

3Although not all vector fields represent physically realistic fluid flows, it is useful to think of them in this way.
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In Cartesian coordinates, the divergence can also be calculated using the following formula. We

show these definitions are equivalent later in the section.

Cartesian Coordinate Definition of Divergence

If F⃗ = F1 i⃗ + F2j⃗ + F3k⃗ , then

div F⃗ =
)F1

)x
+

)F2

)y
+

)F3

)z
.

The dot product formula gives an easy way to remember the Cartesian coordinate definition,

and suggests another common notation for div F⃗ , namely ∇ ⋅ F⃗ . Using ∇ =
)

)x
i⃗ +

)

)y
j⃗ +

)

)z
k⃗ ,

we can write

div F⃗ = ∇⋅ F⃗ =

(

)

)x
i⃗ +

)

)y
j⃗ +

)

)z
k⃗

)

⋅ (F1i⃗ + F2j⃗ + F3k⃗ ) =
)F1

)x
+

)F2

)y
+

)F3

)z
.

Example 1 Calculate the divergence of F⃗ (r⃗ ) = r⃗ at the origin

(a) Using the geometric definition.

(b) Using the Cartesian coordinate definition.

Solution (a) Using the method of Example 5 on page 967, we can calculate the flux of F⃗ out of the sphere

of radius a, centered at the origin; it is 4�a3. So we have

div F⃗ (0, 0, 0) = lim
a→0

Flux

Volume
= lim

a→0

4�a3

4

3
�a3

= lim
a→0

3 = 3.

(b) In Cartesian coordinates, F⃗ (x, y, z) = xi⃗ + yj⃗ + zk⃗ , so

div F⃗ =
)

)x
(x) +

)

)y
(y) +

)

)z
(z) = 1 + 1 + 1 = 3.

The next example shows that the divergence can be negative if there is net inflow to a point.

Example 2 (a) Using the geometric definition, find the divergence of v⃗ = −xi⃗ at: (i) (0, 0, 0) (ii) (2, 2, 0).

(b) Confirm that the coordinate definition gives the same results.

Solution (a) (i) The vector field v⃗ = −xi⃗ is parallel to the x-axis and is shown in the xy-plane in Fig-

ure 19.31. To compute the flux density at (0, 0, 0), we use a cube S1, centered at the origin

with edges parallel to the axes, of length 2c. Then the flux through the faces perpendicular

to the y- and z-axes is zero (because the vector field is parallel to these faces). On the faces

perpendicular to the x-axis, the vector field and the outward normal are parallel but point

in opposite directions. On the face at x = c, where v⃗ = −ci⃗ and ΔA⃗ = ‖A⃗ ‖i⃗ , we have

v⃗ ⋅ ΔA⃗ = −c ‖ΔA⃗ ‖.

On the face at x = −c, where v⃗ = ci⃗ and ΔA⃗ = −‖A⃗ ‖i⃗ , the dot product is still negative:

v⃗ ⋅ ΔA⃗ = −c ‖ΔA⃗ ‖.
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Therefore, the flux through the cube is given by

∫S1

v⃗ ⋅ dA⃗ =
∫Face x=−c

v⃗ ⋅ dA⃗ +
∫Face x=c

v⃗ ⋅ dA⃗

= −c ⋅ Area of one face + (−c) ⋅ Area of other face = −2c(2c)2 = −8c3.

Thus,

div v⃗ (0, 0, 0) = lim
Volume→0

∫S
v⃗ ⋅ dA⃗

Volume of cube
= lim

c→0

(

−8c3

(2c)3

)

= −1.

Since the vector field points inward toward the yz-plane, it makes sense that the divergence

is negative at the origin.

(ii) Take S2 to be a cube as before, but centered this time at the point (2, 2, 0). See Figure 19.31.

As before, the flux through the faces perpendicular to the y- and z-axes is zero. On the face

at x = 2 + c,

v⃗ ⋅ ΔA⃗ = −(2 + c) ‖ΔA⃗ ‖.

On the face at x = 2 − c with outward normal, the dot product is positive, and

v⃗ ⋅ ΔA⃗ = (2 − c) ‖ΔA⃗ ‖.

Therefore, the flux through the cube is given by

∫S2

v⃗ ⋅ dA⃗ =
∫Face x=2−c

v⃗ ⋅ dA⃗ +
∫Face x=2+c

v⃗ ⋅ dA⃗

= (2 − c) ⋅ Area of one face − (2 + c) ⋅ Area of other face = −2c(2c)2 = −8c3.

Then, as before,

div v⃗ (2, 2, 0) = lim
Volume→0

∫
S
v⃗ ⋅ dA⃗

Volume of cube
= lim

c→0

(

−8c3

(2c)3

)

= −1.

Although the vector field is flowing away from the point (2, 2, 0) on the left, this outflow is

smaller in magnitude than the inflow on the right, so the net outflow is negative.

(b) Since v⃗ = −xi⃗ + 0j⃗ + 0k⃗ , the formula gives

div v⃗ =
)

)x
(−x) +

)

)y
(0) +

)

)z
(0) = −1 + 0 + 0 = −1.

S2

S1
x

y

✠

(2, 2, 0)

✒

(0, 0, 0)

Figure 19.31: Vector field v⃗ = −xi⃗ in the xy-plane
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Why Do the Two Definitions of Divergence Give the Same Result?

The geometric definition defines div F⃗ as the flux density of F⃗ . To see why the coordinate definition

is also the flux density, imagine computing the flux out of a small box-shaped surfaceS at (x0, y0, z0),

with sides of length Δx, Δy, and Δz parallel to the axes. On S1 (the back face of the box shown in

Figure 19.32, where x = x0), the outward normal is in the negative x-direction, so dA⃗ = −dy dz i⃗ .

Assuming F⃗ is approximately constant on S1, we have

∫S1

F⃗ ⋅ dA⃗ =
∫S1

F⃗ ⋅ (−i⃗ ) dy dz ≈ −F1(x0, y0, z0)∫S1

dy dz

= −F1(x0, y0, z0) ⋅ Area of S1 = −F1(x0, y0, z0) ΔyΔz.

On S2, the face where x = x0 + Δx, the outward normal points in the positive x-direction, so

dA⃗ = dy dz i⃗ . Therefore,

∫S2

F⃗ ⋅ dA⃗ =
∫S2

F⃗ ⋅ i⃗ dy dz ≈ F1(x0 + Δx, y0, z0)∫S2

dy dz

= F1(x0 + Δx, y0, z0) ⋅ Area of S2 = F1(x0 + Δx, y0, z0) ΔyΔz.

(x0, y0, z0)

❘

S1 (Back)

ΔzS3

S6

S2

✻

S5 (Bottom)

✠

S4 (Back)

Δx

Δyz

x

y

Figure 19.32: Box used to find div F⃗ at (x0, y0, z0)

Thus,

∫S1

F⃗ ⋅ dA⃗ +
∫S2

F⃗ ⋅ dA⃗ ≈ F1(x0 + Δx, y0, z0)ΔyΔz − F1(x0, y0, z0)ΔyΔz

=
F1(x0 + Δx, y0, z0) − F1(x0, y0, z0)

Δx
ΔxΔyΔz

≈
)F1

)x
ΔxΔyΔz.

By an analogous argument, the contribution to the flux from S3 and S4 (the surfaces perpendicular

to the y-axis) is approximately
)F2

)y
ΔxΔyΔz,

and the contribution to the flux from S5 and S6 is approximately

)F3

)z
ΔxΔyΔz.

Thus, adding these contributions, we have

Total flux through S ≈
)F1

)x
ΔxΔyΔz +

)F2

)y
ΔxΔyΔz +

)F3

)z
ΔxΔyΔz.
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Since the volume of the box is ΔxΔyΔz, the flux density is

Total flux through S

Volume of box
≈

)F1

)x
ΔxΔyΔz +

)F2

)y
ΔxΔyΔz +

)F3

)z
ΔxΔyΔz

ΔxΔyΔz

=
)F1

)x
+

)F2

)y
+

)F3

)z
.

Divergence-Free Vector Fields

A vector field F⃗ is said to be divergence free or solenoidal if divF⃗ = 0 everywhere that F⃗ is

defined.

Example 3 Figure 19.33 shows, for three values of the constant p, the vector field

E⃗ =
r⃗

‖r⃗ ‖p
r⃗ = xi⃗ + yj⃗ + zk⃗ , r⃗ ≠ 0⃗ .

(a) Find a formula for div E⃗ .

(b) Is there a value of p for which E⃗ is divergence-free? If so, find it.

p = 0

x

y

p = 1

x

y

p = 3

x

y

Figure 19.33: The vector field E⃗ (r⃗ ) = r⃗ ∕‖r⃗ ‖p for p = 0, 1, and 3 in the xy-plane

Solution (a) The components of E⃗ are

E⃗ =
x

(x2 + y2 + z2)p∕2
i⃗ +

y

(x2 + y2 + z2)p∕2
j⃗ +

z

(x2 + y2 + z2)p∕2
k⃗ .

We compute the partial derivatives

)

)x

(

x

(x2 + y2 + z2)p∕2

)

=
1

(x2 + y2 + z2)p∕2
−

px2

(x2 + y2 + z2)(p∕2)+1

)

)y

(

y

(x2 + y2 + z2)p∕2

)

=
1

(x2 + y2 + z2)p∕2
−

py2

(x2 + y2 + z2)(p∕2)+1

)

)z

(

z

(x2 + y2 + z2)p∕2

)

=
1

(x2 + y2 + z2)p∕2
−

pz2

(x2 + y2 + z2)(p∕2)+1
.

So

div E⃗ =
3

(x2 + y2 + z2)p∕2
−

p(x2 + y2 + z2)

(x2 + y2 + z2)(p∕2)+1

=
3 − p

(x2 + y2 + z2)p∕2
=

3 − p

‖r⃗ ‖p
.

(b) The divergence is zero when p = 3, so F⃗ (r⃗ ) = r⃗ ∕‖r⃗ ‖3 is a divergence-free vector field. Notice

that the divergence is zero even though the vectors point outward from the origin.
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Magnetic Fields

An important class of divergence-free vector fields is the magnetic fields. One of Maxwell’s Laws

of Electromagnetism is that the magnetic field B⃗ satisfies

div B⃗ = 0.

Example 4 An infinitesimal current loop, similar to that shown in Figure 19.34, is called a magnetic dipole. Its

magnitude is described by a constant vector �⃗ , called the dipole moment. The magnetic field due to

a magnetic dipole with moment �⃗ is a multiple of

B⃗ = −
�⃗

‖r⃗ ‖3
+

3(�⃗ ⋅ r⃗ )r⃗

‖r⃗ ‖5
, r⃗ ≠ 0⃗ .

Show that div B⃗ = 0.

�⃗

❥
Area = a

Figure 19.34: A current loop

Solution To show that div B⃗ = 0 we can use the following version of the product rule for the divergence: if

g is a scalar function and F⃗ is a vector field, then

div(gF⃗ ) = (grad g) ⋅ F⃗ + g div F⃗ .

(See Problem 37 on page 990.) Thus, since �⃗ is constant and div �⃗ = 0, we have

div

(

�⃗

‖r⃗ ‖3

)

= div

(

1

‖r⃗ ‖3
�⃗

)

= grad

(

1

‖r⃗ ‖3

)

⋅ �⃗ +

(

1

‖r⃗ ‖3

)

0

and

div

(

(�⃗ ⋅ r⃗ )r⃗

‖r⃗ ‖5

)

= div

(

�⃗ ⋅ r⃗
r⃗

||r⃗ ||5

)

= grad(�⃗ ⋅ r⃗ ) ⋅
r⃗

‖r⃗ ‖5
+ (�⃗ ⋅ r⃗ ) div

(

r⃗

‖r⃗ ‖5

)

.

From Problems 83 and 84 of Section 14.5 (available online) and Example 3 on page 986, we have

grad

(

1

‖r⃗ ‖3

)

=
−3r⃗

‖r⃗ ‖5
, grad(�⃗ ⋅ r⃗ ) = �⃗ , div

(

r⃗

‖r⃗ ‖5

)

=
−2

‖r⃗ ‖5
.

Putting these results together gives

div B⃗ = −grad

(

1

‖r⃗ ‖3

)

⋅ �⃗ + 3 grad(�⃗ ⋅ r⃗ ) ⋅
r⃗

‖r⃗ ‖5
+ 3(�⃗ ⋅ r⃗ ) div

(

r⃗

‖r⃗ ‖5

)

=
3r⃗ ⋅ �⃗

‖r⃗ ‖5
+

3�⃗ ⋅ r⃗

‖r⃗ ‖5
−

6�⃗ ⋅ r⃗

‖r⃗ ‖5

= 0.



988 Chapter 19 FLUX INTEGRALS AND DIVERGENCE

Exercises and Problems for Section 19.3 Online Resource: Additional Problems for Section 19.3
EXERCISES

Are the quantities in Exercises 1–2 vectors or scalars? Cal-

culate them.

1. div
(

(x2 + y)i⃗ + (xyez)j⃗ − ln(x2 + y2)k⃗
)

2. div
(

(2 sin(xy) + tan z)i⃗ + (tan y)j⃗ + (ex
2+y2 )k⃗

)

3. Which of the following two vector fields, sketched in

the xy-plane, appears to have the greater divergence at

the origin? The scales are the same on each.

x

y(I)

x

y(II)

In Exercises 4–12, find the divergence of the vector field.

(Note: r⃗ = xi⃗ + yj⃗ + zk⃗ .)

4. F⃗ (x, y) = −yi⃗ + xj⃗

5. F⃗ (x, y) = −xi⃗ + yj⃗

6. F⃗ (x, y, z) = (−x + y)i⃗ + (y + z)j⃗ + (−z + x)k⃗

7. F⃗ (x, y) = (x2 − y2)i⃗ + 2xyj⃗

8. F⃗ (x, y, z) = 3x2 i⃗ − sin(xz)(i⃗ + k⃗ )

9. F⃗ =
(

ln
(

x2 + 1
)

i⃗ + (cos y) j⃗ + (xyez) k⃗
)

10. F⃗ (r⃗ ) = a⃗ × r⃗

11. F⃗ (x, y) =
−yi⃗ + xj⃗

x2 + y2

12. F⃗ (r⃗ ) =
r⃗ − r⃗ 0

‖r⃗ − r⃗ 0‖
, r⃗ ≠ r⃗ 0

13. For each of the following vector fields, sketched in the

xy-plane, decide if the divergence is positive, zero, or

negative at the indicated point.

x

y(a)

x

y(b)

x

y(c)

PROBLEMS

14. Draw two vector fields that have positive divergence ev-

erywhere.

15. Draw two vector fields that have negative divergence

everywhere.

16. Draw two vector fields that have zero divergence every-

where.

17. A small sphere of radius 0.1 surrounds the point

(2, 3,−1). The flux of a vector field G⃗ into this sphere

is 0.00004�. Estimate div G⃗ at the point (2, 3,−1).

18. A smooth vector field F⃗ has div F⃗ (1, 2, 3) = 5. Esti-

mate the flux of F⃗ out of a small sphere of radius 0.01

centered at the point (1, 2, 3).

19. Let F⃗ be a vector field with div F⃗ = x2 + y2 − z.

(a) Estimate ∫
S
F⃗ ⋅ dA⃗ where S is

(i) A sphere of radius 0.1 centered at (2, 0, 0).

(ii) A box of side 0.2 with edges parallel to the

axes and centered at (0, 0, 10).

(b) The point (2, 0, 0) is called a source for the vector

field F⃗ ; the point (0, 0, 10) is called a sink. Explain

the reason for these names using your answer to

part (a).

20. The flux of F⃗ out of a small sphere of radius 0.1 cen-

tered at (4, 5, 2) is 0.0125. Estimate:

(a) div F⃗ at (4, 5, 2)

(b) The flux of F⃗ out of a sphere of radius 0.2 centered

at (4, 5, 2).

21. (a) Find the flux of F⃗ = 2xi⃗ − 3yj⃗ + 5zk⃗ through

a cube with four of its corners at the points

(a, b, c), (a+w, b, c), (a, b+w, c), (a, b, c +w) and

edge length w. See Figure 19.35.

(b) Use the geometric definition and part (a) to find

div F⃗ at the point (a, b, c).

(c) Find div F⃗ using partial derivatives.
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x

y

z

S3
S2

S6

(a + w, b, c)

✲(a, b, c)

✲(a, b, c +w)
❄

S1 (Back)

✠

S4 (Back)

■
S5 (Bottom)

Figure 19.35

22. Suppose F⃗ = (3x + 2)i⃗ + 4xj⃗ + (5x + 1)k⃗ . Use the

method of Exercise 21 to find div F⃗ at the point (a, b, c)

by two different methods.

23. Use the geometric definition of divergence to find div v⃗

at the origin, where v⃗ = −2r⃗ . Check that you get the

same result using the definition in Cartesian coordi-

nates.

24. (a) Let f (x, y) = axy + ax2y + y3. Find div grad f .

(b) Choose a so that div grad f = 0 for all x, y.

25. Let F⃗ = (9a2x + 10ay2)i⃗ + (10z3 − 6ay)j⃗ − (3z +

10x2 + 10y2)k⃗ . Find the value(s) of a making div F⃗

(a) 0 (b) A minimum

26. Let F⃗ (r⃗ ) = r⃗ ∕‖r⃗ ‖3 (in 3-space), r⃗ ≠ 0⃗ .

(a) Calculate div F⃗ .

(b) Sketch F⃗ . Does F⃗ appear to have nonzero di-

vergence? Does this agree with your answer to

part (a)?

27. The vector field F⃗ (r⃗ ) = r⃗ ∕||r⃗ ||3 is not defined at the

origin. Nevertheless, we can attempt to use the flux def-

inition to compute div F⃗ at the origin. What is the re-

sult?

28. Let F⃗ (x, y, z) = zk⃗ .

(a) Calculate div F⃗ .

(b) Sketch F⃗ . Does F⃗ appear to have nonzero di-

vergence? Does this agree with your answer to

part (a)?

29. The divergence of a magnetic vector field B⃗ must be

zero everywhere. Which of the following vector fields

cannot be a magnetic vector field?

(a) B⃗ (x, y, z) = −yi⃗ + xj⃗ + (x + y)k⃗

(b) B⃗ (x, y, z) = −zi⃗ + yj⃗ + xk⃗

(c) B⃗ (x, y, z) = (x2 − y2 − x)i⃗ + (y − 2xy)j⃗

Problems 30–31 involve electric fields. Electric charge pro-

duces a vector field E⃗ , called the electric field, which rep-

resents the force on a unit positive charge placed at the

point. Two positive or two negative charges repel one an-

other, whereas two charges of opposite sign attract one an-

other. The divergence of E⃗ is proportional to the density of

the electric charge (that is, the charge per unit volume), with

a positive constant of proportionality.

30. A certain distribution of electric charge produces the

electric field shown in Figure 19.36. Where are the

charges that produced this electric field concentrated?

Which concentrations are positive and which are nega-

tive?

−4 −3 −2 −1 1 2
x

y

Figure 19.36

31. The electric field at the point r⃗ as a result of a point

charge at the origin is E⃗ (r⃗ ) = kr⃗ ∕‖r⃗ ‖3.

(a) Calculate div E⃗ for r⃗ ≠ 0⃗ .

(b) Calculate the limit suggested by the geometric def-

inition of div E⃗ at the point (0, 0, 0).

(c) Explain what your answers mean in terms of

charge density.

32. Due to roadwork ahead, the traffic on a highway slows

linearly from 55 miles/hour to 15 miles/hour over a

2000-foot stretch of road, then crawls along at 15

miles/hour for 5000 feet, then speeds back up linearly

to 55 miles/hour in the next 1000 feet, after which it

moves steadily at 55 miles/hour.

(a) Sketch a velocity vector field for the traffic flow.

(b) Write a formula for the velocity vector field v⃗

(miles/hour) as a function of the distance x feet

from the initial point of slowdown. (Take the di-

rection of motion to be i⃗ and consider the various

sections of the road separately.)

(c) Compute div v⃗ at x = 1000, 5000, 7500, 10,000.

Be sure to include the proper units.

33. The velocity field v⃗ in Problem 32 does not give a com-

plete description of the traffic flow, for it takes no ac-

count of the spacing between vehicles. Let � be the den-

sity (cars/mile) of highway, where we assume that � de-

pends only on x.

(a) Using your highway experience, arrange in ascend-

ing order: �(0), �(1000), �(5000).

(b) What are the units and interpretation of the vector

field �v⃗ ?

(c) Would you expect �v⃗ to be constant? Why? What

does this mean for div(�v⃗ )?

(d) Determine �(x) if �(0) = 75 cars/mile and �v⃗ is

constant.

(e) If the highway has two lanes, find the approximate

number of feet between cars at x = 0, 1000, and

5000.
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34. For r⃗ = xi⃗ + yj⃗ + zk⃗ , an arbitrary function f (x, y, z),

and an arbitrary vector field F⃗ (x, y, z), which of the fol-

lowing is a vector field and which is a constant vector

field?

(a) grad f (b) (div F⃗ )i⃗ (c) (div r⃗ )i⃗

(d) (div i⃗ )F⃗ (e) grad(div F⃗ )

35. Let r⃗ = xi⃗ + yj⃗ + zk⃗ and c⃗ = c1 i⃗ + c2j⃗ + c3k⃗ , a

constant vector; let S be a sphere of radius R centered

at the origin. Find

(a) div(r⃗ × c⃗ ) (b) ∫
S
(r⃗ × c⃗ ) ⋅ dA⃗

36. Show that if a⃗ is a constant vector and f (x, y, z) is a

function, then div(fa⃗ ) = (grad f ) ⋅ a⃗ .

37. Show that if g(x, y, z) is a scalar-valued function and

F⃗ (x, y, z) is a vector field, then

div(gF⃗ ) = (grad g) ⋅ F⃗ + g div F⃗ .

38. If f (x, y, z) and g(x, y, z) are functions with continuous

second partial derivatives, show that

div(grad f × grad g) = 0.

In Problems 39–41, use Problems 37 and 38 to find the diver-

gence of the vector field. The vectors a⃗ and b⃗ are constant.

39. F⃗ =
1

‖r⃗ ‖p
a⃗ × r⃗ 40. B⃗ =

1

xa
r⃗

41. G⃗ = (b⃗ ⋅ r⃗ )a⃗ × r⃗

42. A vector field, v⃗ , in the plane is a point source at the

origin if its direction is away from the origin at every

point, its magnitude depends only on the distance from

the origin, and its divergence is zero away from the ori-

gin.

(a) Explain why a point source at the origin must be

of the form v⃗ =
(

f (x2 + y2)
)

(xi⃗ + yj⃗ ) for some

positive function f .

(b) Show that v⃗ = K(x2 + y2)−1(xi⃗ + yj⃗ ) is a point

source at the origin if K > 0.

(c) What is the magnitude ‖v⃗ ‖ of the source in part (b)

as a function of the distance from its center?

(d) Sketch the vector field v⃗ = (x2 + y2)−1(xi⃗ + yj⃗ ).

(e) Show that � =
K

2
log(x2 + y2) is a potential func-

tion for the source in part (b).

43. A vector field, v⃗ , in the plane is a point sink at the ori-

gin if its direction is toward the origin at every point, its

magnitude depends only on the distance from the ori-

gin, and its divergence is zero away from the origin.

(a) Explain why a point sink at the origin must be of

the form v⃗ =
(

f (x2 + y2)
)

(xi⃗ + yj⃗ ) for some

negative function f .

(b) Show that v⃗ = K(x2 + y2)−1(xi⃗ + yj⃗ ) is a point

sink at the origin if K < 0.

(c) Determine the magnitude ‖v⃗ ‖ of the sink in part

(b) as a function of the distance from its center.

(d) Sketch v⃗ = −(x2 + y2)−1(xi⃗ + yj⃗ ).

(e) Show that � =
K

2
log(x2 + y2) is a potential func-

tion for the sink in part (b).

Strengthen Your Understanding

In Problems 44–46, explain what is wrong with the state-

ment.

44. div(2xi⃗ ) = 2i⃗ .

45. For F⃗ (x, y, z) = (x2 + y)i⃗ + (2y+ z)j⃗ − z2k⃗ we have

div F⃗ = 2xi⃗ + 2j⃗ − 2zk⃗ .

46. The divergence of f (x, y, z) = x2 + yz is given by

div f (x, y, z) = 2x + z + y.

In Problems 47–49, give an example of:

47. A vector field F⃗ (x, y, z) whose divergence is a nonzero

constant.

48. A nonzero vector field F⃗ (x, y, z) whose divergence is

zero.

49. A vector field that is not divergence free.

Are the statements in Problems 50–62 true or false? Give

reasons for your answer.

50. div(F⃗ + G⃗ ) = div F⃗ + div G⃗

51. grad(F⃗ ⋅ G⃗ ) = F⃗ (div G⃗ ) + (div F⃗ )G⃗

52. div F⃗ is a scalar whose value can vary from point to

point.

53. If F⃗ is a vector field in 3-space, then divF⃗ is also a

vector field.

54. A constant vector field F⃗ = ai⃗ + bj⃗ + ck⃗ has zero

divergence.

55. If a vector field F⃗ in 3-space has zero divergence then

F⃗ = ai⃗ + bj⃗ + ck⃗ where a, b and c are constants.

56. If F⃗ is a vector field in 3-space, and f is a scalar func-

tion, then div(fF⃗ ) = fdivF⃗ .

57. If F⃗ is a vector field in 3-space, and F⃗ = grad f, then

div F⃗ = 0.

58. If F⃗ is a vector field in 3-space, then grad(div F⃗ ) = 0⃗ .

59. The field F⃗ (r⃗ ) = r⃗ is divergence free.

60. If f (x, y, z) is any given continuous scalar function,

then there is at least one vector field F⃗ such that

divF⃗ = f.

61. If F⃗ and G⃗ are vector fields satisfying divF⃗ = divG⃗

then F⃗ = G⃗ .

62. There exist a scalar function f and a vector field F⃗ sat-

isfying div(grad f ) = grad(div F⃗ ).
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19.4 THE DIVERGENCE THEOREM

The Divergence Theorem is a multivariable analogue of the Fundamental Theorem of Calculus;

it says that the integral of the flux density over a solid region equals the flux integral through the

boundary of the region.

The Boundary of a Solid Region

The boundary, S, of a solid region, W , may be thought of as the skin between the interior of the

region and the space around it. For example, the boundary of a solid ball is a spherical surface, the

boundary of a solid cube is its six faces, and the boundary of a solid cylinder is a tube sealed at

both ends by disks. (See Figure 19.37). A surface which is the boundary of a solid region is called a

closed surface.

W = Ball
S = Sphere

W = Solid cube
S = 6 square faces

W =Solid cylinder
S = Tube and two disks

Figure 19.37: Several solid regions and their boundaries

Calculating the Flux from the Flux Density

Consider a solid region W in 3-space whose boundary is the closed surface S. There are two ways

to find the total flux of a vector field F⃗ out of W . One is to calculate the flux of F⃗ through S:

Flux out of W =
∫S

F⃗ ⋅ dA⃗ .

Another way is to use div F⃗ , which gives the flux density at any point in W . We subdivide W

into small boxes, as shown in Figure 19.38. Then, for a small box of volume ΔV ,

Flux out of box ≈ Flux density ⋅ Volume = div F⃗ ΔV .

What happens when we add the fluxes out of all the boxes? Consider two adjacent boxes, as

shown in Figure 19.39. The flux through the shared wall is counted twice, once out of the box on

each side. When we add the fluxes, these two contributions cancel, so we get the flux out of the solid

region formed by joining the two boxes. Continuing in this way, we find that

✛ ΔV

Figure 19.38: Subdivision of

region into small boxes

✠

Fluxes through
inner wall cancel

Figure 19.39: Adding the flux out

of adjacent boxes
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Flux out of W =
∑

Flux out of small boxes ≈
∑

div F⃗ ΔV .

We have approximated the flux by a Riemann sum. As the subdivision gets finer, the sum approaches

an integral, so

Flux out of W =
∫W

div F⃗ dV .

We have calculated the flux in two ways, as a flux integral and as a volume integral. Therefore,

these two integrals must be equal. This result holds even if W is not a rectangular solid. Thus, we

have the following result.4

Theorem 19.1: The Divergence Theorem

If W is a solid region whose boundaryS is a piecewise smooth surface, and if F⃗ is a smooth

vector field on a solid region5 containing W and S, then

∫S
F⃗ ⋅ dA⃗ =

∫W
div F⃗ dV ,

where S is given the outward orientation.

Example 1 Use the Divergence Theorem to calculate the flux of the vector field F⃗ (r⃗ ) = r⃗ through the sphere

of radius a centered at the origin.

Solution In Example 5 on page 967 we computed the flux using the definition of a flux integral, giving

∫S
r⃗ ⋅ dA⃗ = 4�a3.

Now we use div F⃗ = div(xi⃗ + yj⃗ + zk⃗ ) = 3 and the Divergence Theorem:

∫S
r⃗ ⋅ dA⃗ =

∫W
div F⃗ dV =

∫W
3 dV = 3 ⋅

4

3
�a3 = 4�a3.

Example 2 Use the Divergence Theorem to calculate the flux of the vector field

F⃗ (x, y, z) = (x2 + y2)i⃗ + (y2 + z2)j⃗ + (x2 + z2)k⃗

through the cube in Figure 19.40.

4A proof of the Divergence Theorem using the coordinate definition of the divergence can be found in the online supple-

ment at www.wiley.com/college/hughes-hallett.
5The region containing W and S is open.
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x y

z

1 1

1

Figure 19.40

Solution The divergence of F⃗ is div F⃗ = 2x + 2y + 2z. Since div F⃗ is positive everywhere in the first

quadrant, the flux through S is positive. By the Divergence Theorem,

∫S
F⃗ ⋅ dA⃗ =

∫

1

0 ∫

1

0 ∫

1

0

2(x + y + z) dx dy dz =
∫

1

0 ∫

1

0

(x2 + 2x(y+ z))
|

|

|

|

1

0

dy dz

=
∫

1

0 ∫

1

0

1 + 2(y+ z) dy dz =
∫

1

0

(y + y2 + 2yz)
|

|

|

|

1

0

dz

=
∫

1

0

(2 + 2z) dz = (2z + z2)
|

|

|

|

1

0

= 3.

The Divergence Theorem and Divergence-Free Vector Fields

An important application of the Divergence Theorem is the study of divergence-free vector fields.

Example 3 In Example 3 on page 986 we saw that the following vector field is divergence free:

F⃗ (r⃗ ) =
r⃗

‖r⃗ ‖3
, r⃗ ≠ 0⃗ .

Calculate ∫
S
F⃗ ⋅ dA⃗ , using the Divergence Theorem if possible, for the following surfaces:

(a) S1 is the sphere of radius a centered at the origin.

(b) S2 is the sphere of radius a centered at the point (2a, 0, 0).

Solution (a) We cannot use the Divergence Theorem directly because F⃗ is not defined everywhere inside the

sphere (it is not defined at the origin). Since F⃗ points outward everywhere on S1, the flux out

of S1 is positive. On S1,

F⃗ ⋅ dA⃗ = ‖F⃗ ‖dA =
a

a3
dA,

so

∫S1

F⃗ ⋅ dA⃗ =
1

a2 ∫S1

dA =
1

a2
(Area of S1) =

1

a2
4�a2 = 4�.

Notice that the flux is not zero, although div F⃗ is zero everywhere it is defined.

(b) Let W be the solid region enclosed by S2. Since div F⃗ = 0 everywhere in W , we can use the

Divergence Theorem in this case, giving

∫S2

F⃗ ⋅ dA⃗ =
∫W

div F⃗ dV =
∫W

0 dV = 0.
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The Divergence Theorem applies to any solid regionW and its boundaryS, even in cases where

the boundary consists of two or more surfaces. For example, if W is the solid region between the

sphereS1 of radius 1 and the sphereS2 of radius 2, both centered at the same point, then the boundary

of W consists of both S1 and S2. The Divergence Theorem requires the outward orientation, which

on S2 points away from the center and on S1 points toward the center. (See Figure 19.41.)

S2

✒

S1

✲W

Figure 19.41: Cutaway view of the region W between two spheres,

showing orientation vectors

Example 4 Let S1 be the sphere of radius 1 centered at the origin and let S2 be the ellipsoid x2 +y2 +4z2 = 16,

both oriented outward. For

F⃗ (r⃗ ) =
r⃗

‖r⃗ ‖3
, r⃗ ≠ 0⃗ ,

show that

∫S1

F⃗ ⋅ dA⃗ =
∫S2

F⃗ ⋅ dA⃗ .

Solution The ellipsoid contains the sphere; let W be the solid region between them. Since W does not contain

the origin, div F⃗ is defined and equal to zero everywhere in W . Thus, if S is the boundary of W ,

then

∫S
F⃗ ⋅ dA⃗ =

∫W
div F⃗ dV = 0.

But S consists of S2 oriented outward and S1 oriented inward, so

0 =
∫S

F⃗ ⋅ dA⃗ =
∫S2

F⃗ ⋅ dA⃗ −
∫S1

F⃗ ⋅ dA⃗ ,

and thus

∫S2

F⃗ ⋅ dA⃗ =
∫S1

F⃗ ⋅ dA⃗ .

In Example 3 we showed that ∫
S1

F⃗ ⋅ dA⃗ = 4�, so ∫
S2

F⃗ ⋅ dA⃗ = 4� also. Note that it would have

been more difficult to compute the integral over the ellipsoid directly.

Electric Fields

The electric field produced by a positive point charge q placed at the origin is

E⃗ = q
r⃗

‖r⃗ ‖3
.

Using Example 3, we see that the flux of the electric field through any sphere centered at the origin

is 4�q. In fact, using the idea of Example 4, we can show that the flux of E⃗ through any closed
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surface containing the origin is 4�q. See Problems 37 and 38 on page 997. This is a special case of

Gauss’s Law, which states that the flux of an electric field through any closed surface is proportional

to the total charge enclosed by the surface. Carl Friedrich Gauss (1777–1855) also discovered the

Divergence Theorem, which is sometimes called Gauss’s Theorem.

Exercises and Problems for Section 19.4

EXERCISES

For Exercises 1–5, compute the flux integral ∫
S
F⃗ ⋅ dA⃗ in

two ways, if possible, directly and using the Divergence The-

orem. In each case, S is closed and oriented outward.

1. F⃗ (r⃗ ) = r⃗ and S is the cube enclosing the volume

0 ≤ x ≤ 2, 0 ≤ y ≤ 2, and 0 ≤ z ≤ 2.

2. F⃗ = yj⃗ and S is a closed vertical cylinder of height 2,

with its base a circle of radius 1 on the xy-plane, cen-

tered at the origin.

3. F⃗ = x2 i⃗ +2y2 j⃗ +3z2k⃗ and S is the surface of the box

with faces x = 1, x = 2, y = 0, y = 1, z = 0, z = 1.

4. F⃗ = (z2 + x)i⃗ + (x2 + y)j⃗ + (y2 + z)k⃗ and S is the

closed cylinder x2 + z2 = 1, with 0 ≤ y ≤ 1, oriented

outward.

5. F⃗ = −zi⃗ + xk⃗ and S is a square pyramid with height

3 and base on the xy-plane of side length 1.

In Exercises 6–12, find the flux of the vector field out of the

closed box 0 ≤ x ≤ 2, 0 ≤ y ≤ 3, 0 ≤ z ≤ 4.

6. F⃗ = 4i⃗ + 7j⃗ − k⃗

7. G⃗ = yi⃗ + zk⃗

8. H⃗ = xyi⃗ + zj⃗ + yk⃗

9. J⃗ = xy2j⃗ + xk⃗

10. N⃗ = ezi⃗ + sin(xy)k⃗

11. M⃗ = (3x + 4y)i⃗ + (4y + 5z)j⃗ + (5z + 3x)k⃗

12. M⃗ where div M⃗ = xy + 5

PROBLEMS

13. Find the flux of F⃗ = zi⃗ + yj⃗ + xk⃗ out of a sphere of

radius 3 centered at the origin.

14. Find the flux of F⃗ = xyi⃗ + yzj⃗ + zxk⃗ out of a sphere

of radius 1 centered at the origin.

15. Find the flux of F⃗ = x3 i⃗ + y3j⃗ + z3k⃗ through the

closed surface bounding the solid region x2 + y2 ≤ 4,

0 ≤ z ≤ 5, oriented outward.

16. The region W lies between the spheres x2 +y2 +z2 = 4

and x2 +y2 +z2 = 9 and within the cone z =
√

x2 + y2

with z ≥ 0; its boundary is the closed surface, S, ori-

ented outward. Find the flux of F⃗ = x3 i⃗ + y3j⃗ + z3k⃗

out of S.

17. For F⃗ = (2x + sin z)i⃗ + (xz − y)j⃗ + (ex + 2z)k⃗ ,

find the flux of F⃗ out of the closed silo-shaped region

within the cylinder x2 + y2 = 1, below the hemisphere

z = 1 +
√

1 − x2 − y2, and above the xy-plane.

18. Find the flux of F⃗ through the closed cylinder of ra-

dius 2, centered on the z-axis, with 3 ≤ z ≤ 7, if

F⃗ = (x + 3eyz)i⃗ + (ln(x2z2 + 1) + y)j⃗ + zk⃗ .

19. Find the flux of F⃗ = ey
2z2 i⃗ +(tan(0.001x2z2)+y2)j⃗ +

(ln(1 + x2y2) + z2)k⃗ out of the closed box 0 ≤ x ≤ 5,

0 ≤ y ≤ 4, 0 ≤ z ≤ 3.

20. Find the flux of F⃗ = x2 i⃗ + zj⃗ + yk⃗ out of the closed

cone x =
√

y2 + z2, with 0 ≤ x ≤ 1.

21. Suppose F⃗ is a vector field with div F⃗ = 10. Find the

flux of F⃗ out of a cylinder of height a and radius a,

centered on the z-axis and with base in the xy-plane.

22. Let F⃗ = (5x+7y)i⃗ +(7y+9z)j⃗ +(9z+11x)k⃗ , and let

Qi be the flux of F⃗ through the surfaces Si for i =1–4.

Arrange Qi in ascending order, where

(a) S1 is the sphere of radius 2 centered at the origin

(b) S2 is the cube of side 2 centered at the origin and

with sides parallel to the axes

(c) S3 is the sphere of radius 1 centered at the origin

(d) S4 is a pyramid with all four corners lying on S3

23. A cone has its tip at the point (0, 0, 5), and its base is

the disk D, x2 + y2 ≤ 1, in the xy-plane. The surface

of the cone is the curved and slanted face, S, oriented

upward, and the flat base, D, oriented downward. The

flux of the constant vector field F⃗ = ai⃗ + bj⃗ + ck⃗

through S is given by

∫
S

F⃗ ⋅ dA⃗ = 3.22.

Is it possible to calculate ∫
D
F⃗ ⋅ dA⃗ ? If so, give the

answer. If not, explain what additional information you

would need to be able to make this calculation.

24. If V is a volume surrounded by a closed surfaceS, show

that
1

3
∫
S
r⃗ ⋅ dA⃗ = V .

25. A vector field F⃗ satisfies divF⃗ = 0 everywhere. Show

that ∫
S
F⃗ ⋅ dA⃗ = 0 for every closed surface S.
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26. Let S be the cube in the first quadrant with side 2, one

corner at the origin and edges parallel to the axes. Let

F⃗ 1 = (xy2 + 3xz2)i⃗ + (3x2y + 2yz2)j⃗ + 3zy2k⃗

F⃗ 2 = (xy2 + 5eyz)i⃗ + (yz2 + 7 sin(xz))j⃗ + (x2z + cos(xy))k⃗

F⃗ 3 =

(

xz2 +
x3

3

)

i⃗ +

(

yz2 +
y3

3

)

j⃗ +

(

zy2 +
z3

3

)

k⃗ .

Arrange the flux integrals of F⃗ 1, F⃗ 2, F⃗ 3 out of S in

increasing order.

27. Let div F⃗ = 2(6 − x) and 0 ≤ a, b, c ≤ 10.

(a) Find the flux of F⃗ out of the rectangular box given

by 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c.

(b) For what values of a, b, c is the flux largest? What

is that largest flux?

28. (a) Find div(r⃗ ∕||r⃗ ||2) where r⃗ = xi⃗ + yj⃗ for r⃗ ≠ 0⃗ .

(b) Can you use the Divergence Theorem to compute

the flux of r⃗ ∕||r⃗ ||2 out of a closed cylinder of ra-

dius 1, length 2, centered at the origin, and with its

axis along the z-axis?

(c) Compute the flux of r⃗ ∕||r⃗ ||2 out of the cylinder in

part (b).

(d) Find the flux of r⃗ ∕||r⃗ ||2 out of a closed cylinder of

radius 2, length 2, centered at the origin, and with

its axis along the z-axis.

29. Let r⃗ = xi⃗ + yj⃗ + zk⃗ and let F⃗ be the vector field

given by

F⃗ =
r⃗

||r⃗ ||3
.

(a) Find the flux of F⃗ out of the sphere x2+y2+z2 = 1

oriented outward.

(b) Calculate div F⃗ . Show your work and simplify

your answer completely.

(c) Use your answers to parts (a) and (b) to calculate

the flux out of a box of side 10 centered at the ori-

gin and with sides parallel to the coordinate planes.

(The box is also oriented outward.)

In Problems 30–31, find the flux of F⃗ = r⃗ ∕||r⃗ ||3 through

the surface. [Hint: Use the method of Problem 29.]

30. S is the ellipsoid x2 + 2y2 + 3z2 = 6.

31. S is the closed cylinder y2 + z2 = 4, −2 ≤ x ≤ 2.

32. (a) Let div F⃗ = x2 +y2 +z2 +3. Calculate ∫
S1
F⃗ ⋅dA⃗

where S1 is the sphere of radius 1 centered at the

origin.

(b) Let S2 be the sphere of radius 2 centered at the

origin; let S3 be the sphere of radius 3 centered at

the origin; let S4 be the box of side 6 centered at

the origin with edges parallel to the axes. Without

calculating them, arrange the following integrals in

increasing order:

∫
S2

F⃗ ⋅ dA⃗ ,
∫
S3

F⃗ ⋅ dA⃗ ,
∫
S4

F⃗ ⋅ dA⃗ .

33. Suppose div F⃗ = xyz2.

(a) Find div F⃗ at the point (1, 2, 1). [Note: You are

given div F⃗ , not F⃗ .]

(b) Using your answer to part (a), but no other infor-

mation about the vector field F⃗ , estimate the flux

out of a small box of side 0.2 centered at the point

(1, 2, 1) and with edges parallel to the axes.

(c) Without computing the vector field F⃗ , calculate

the exact flux out of the box.

34. Suppose div F⃗ = x2+y2+3. Find a surface S such that

∫
S
F⃗ ⋅ dA⃗ is negative, or explain why no such surface

exists.

35. As a result of radioactive decay, heat is generated uni-

formly throughout the interior of the earth at a rate of

30 watts per cubic kilometer. (A watt is a rate of heat

production.) The heat then flows to the earth’s surface

where it is lost to space. Let F⃗ (x, y, z) denote the rate

of flow of heat measured in watts per square kilome-

ter. By definition, the flux of F⃗ across a surface is the

quantity of heat flowing through the surface per unit of

time.

(a) What is the value of div F⃗ ? Include units.

(b) Assume the heat flows outward symmetrically.

Verify that F⃗ = �r⃗ , where r⃗ = xi⃗ +yj⃗ +zk⃗ and

� is a suitable constant, satisfies the given condi-

tions. Find �.

(c) Let T (x, y, z) denote the temperature inside the

earth. Heat flows according to the equation F⃗ =

−k grad T , where k is a constant. Explain why this

makes sense physically.

(d) If T is in ◦C, then k = 30,000 watts/km◦C. Assum-

ing the earth is a sphere with radius 6400 km and

surface temperature 20◦C, what is the temperature

at the center?

36. If a surface S is submerged in an incompressible fluid,

a force F⃗ is exerted on one side of the surface by the

pressure in the fluid. If the z-axis is vertical, with the

positive direction upward and the fluid level at z = 0,

then the component of force in the direction of a unit

vector u⃗ is given by the following:

F⃗ ⋅ u⃗ = −
∫
S

z�gu⃗ ⋅ dA⃗ ,

where � is the density of the fluid (mass/volume), g

is the acceleration due to gravity, and the surface is

oriented away from the side on which the force is ex-

erted. In this problem we consider a totally submerged

closed surface enclosing a volume V . We are interested

in the force of the liquid on the external surface, so S is

oriented inward. Use the Divergence Theorem to show

that:

(a) The force in the i⃗ and j⃗ directions is zero.

(b) The force in the k⃗ direction is �gV , the weight of

the volume of fluid with the same volume as V .

This is Archimedes’ Principle.
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37. According to Coulomb’s Law, the electrostatic field E⃗

at the point r⃗ due to a charge q at the origin is given by

E⃗ (r⃗ ) = q
r⃗

‖r⃗ ‖3
.

(a) Compute div E⃗ .

(b) Let Sa be the sphere of radius a centered at the ori-

gin and oriented outward. Show that the flux of E⃗

through Sa is 4�q.

(c) Could you have used the Divergence Theorem in

part (b)? Explain why or why not.

(d) LetS be an arbitrary, closed, outward-oriented sur-

face surrounding the origin. Show that the flux of

E⃗ through S is again 4�q. [Hint: Apply the Diver-

gence Theorem to the solid region lying between a

small sphere Sa and the surface S.]

38. According to Coulomb’s Law, the electric field E⃗ at the

point r⃗ due to a charge q at the point r⃗ 0 is given by

E⃗ (r⃗ ) = q
(r⃗ − r⃗ 0)

‖r⃗ − r⃗ 0‖
3
.

Suppose S is a closed, outward-oriented surface and

that r⃗ 0 does not lie on S. Use Problem 37 to show that

∫
S

E⃗ ⋅ dA⃗ =

{

4�q if q lies inside S,

0 if q lies outside S.

Strengthen Your Understanding

In Problems 39–40, explain what is wrong with the state-

ment.

39. The flux integral ∫
S
F⃗ ⋅ dA⃗ can be evaluated using the

Divergence Theorem, where F⃗ = 2xi⃗ − 3j⃗ and S

is the triangular surface with corners (1, 0, 0), (0, 1, 0),

(0, 0, 1) oriented away from the origin.

40. If S is the boundary of a solid region W , where S is

oriented outward, and F⃗ is a vector field, then

∫
S

div F⃗ dA⃗ =
∫
W

F⃗ dV .

In Problems 41–42, give an example of:

41. A surface S that is the boundary of a solid region such

that ∫
S
F⃗ ⋅ dA⃗ = 0 if F⃗ (x, y, z) = yi⃗ + xzj⃗ + y2k⃗ .

42. A vector field F⃗ such that the flux of F⃗ out of a sphere

of radius 1 centered at the origin is 3.

Are the statements in Problems 43–47 true or false? The

smooth vector field F⃗ is defined everywhere in 3-space and

has constant divergence equal to 4.

43. The field F⃗ has a net inflow per unit volume at the

point (−3, 4, 0).

44. The vector field F⃗ could be F⃗ = xi⃗ + (3y)j⃗ + (y −

5x)k⃗ .

45. The vector field F⃗ could be a constant field.

46. The flux of F⃗ through a circle of radius 5 lying any-

where on the xy-plane and oriented upward is 4(�52).

47. The flux of F⃗ through a closed cylinder of radius 1 cen-

tered along the y-axis, 0 ≤ y ≤ 3 and oriented outward

is 4(3�).

Are the statements in Problems 48–55 true or false? Give

reasons for your answer.

48. ∫
S
F⃗ ⋅ dA⃗ = div F⃗ .

49. If F⃗ is a divergence-free vector field in 3-space and S is

a closed surface oriented inward, then ∫
S
F⃗ ⋅ dA⃗ = 0.

50. If F⃗ is a vector field in 3-space satisfying div F⃗ =

1, and S is a closed surface oriented outward, then

∫
S
F⃗ ⋅ dA⃗ is equal to the volume enclosed by S.

51. Let W be the solid region between the sphere S1 of ra-

dius 1 and S2 of radius 2, both centered at the origin

and oriented outward. If F⃗ is a vector field in 3-space,

then ∫
W
div F⃗ dV = ∫

S2
F⃗ ⋅ dA⃗ − ∫

S1
F⃗ ⋅ dA⃗ .

52. Let S1 be the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 0 ori-

ented downward and letS2 be the square 0 ≤ x ≤ 1, 0 ≤

y ≤ 1, z = 1 oriented upward. If F⃗ is a vector field,

then ∫
W
div F⃗ dV = ∫

S2
F⃗ ⋅ dA⃗ + ∫

S1
F⃗ ⋅ dA⃗ , where

W is the solid cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

53. Let S1 be the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 0 ori-

ented downward and letS2 be the square 0 ≤ x ≤ 1, 0 ≤

y ≤ 1, z = 1 oriented upward. If F⃗ = cos(xyz)k⃗ , then

∫
W
div F⃗ dV = ∫

S2
F⃗ ⋅ dA⃗ + ∫

S1
F⃗ ⋅ dA⃗ , where W

is the solid cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

54. If S is a sphere of radius 1, centered at the origin,

oriented outward, and F⃗ is a vector field satisfying

∫
S
F⃗ ⋅ dA⃗ = 0, then div F⃗ = 0 at all points inside

S.

55. Let Sℎ be the surface consisting of a cylinder of height

ℎ, closed at the top. The curved sides are x2 + y2 = 1,

for 0 ≤ z ≤ ℎ, and the top x2 + y2 ≤ 1, for z = ℎ, ori-

ented outward. If F⃗ is divergence free, then ∫
Sℎ

F⃗ ⋅dA⃗

is independent of the height ℎ.
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20.1 THE CURL OF A VECTOR FIELD

The divergence is a scalar derivative which measures the outflow of a vector field per unit volume.

Now we introduce a vector derivative, the curl, which measures the circulation of a vector field.

Imagine holding the paddle-wheel in Figure 20.1 in the flow shown by Figure 20.2. The speed at

which the paddle-wheel spins measures the strength of circulation. Notice that the angular velocity

depends on the direction in which the stick is pointing. If the stick is pointing horizontally the paddle-

wheel does not spin; if the stick is vertical, the paddle wheel spins.

Figure 20.1: A device for

measuring circulation

Figure 20.2: A vector field (in the planes z = 1,

z = 2, z = 3) with circulation about the z-axis

Circulation Density

We measure the strength of the circulation using a closed curve. Suppose C is a circle with center

P = (x, y, z) in the plane perpendicular to n⃗ , traversed in the direction determined from n⃗ by the

right-hand rule. (See Figures 20.3 and 20.4.)

P

C

n⃗

Figure 20.3: Direction of C relates to

direction of n⃗ by the right-hand rule

Figure 20.4: When the thumb points in the direction of n⃗ ,

the fingers curl in the forward direction around C

We make the following definition:

The circulation density of a smooth vector field F⃗ at (x, y, z) around the direction of the

unit vector n⃗ is defined, provided the limit exists, to be

circn⃗ F⃗ (x, y, z) = lim
Area→0

Circulation around C

Area inside C
= lim

Area→0

∫C
F⃗ ⋅ dr⃗

Area inside C
,

The circle C is in the plane perpendicular to n⃗ and oriented by the right-hand rule.
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We can use other closed curves for C, such as rectangles, that lie in a plane perpendicular to n⃗

and include the point (x, y, z).

The circulation density determines the angular velocity of the paddle-wheel in Figure 20.1 pro-

vided you could make one sufficiently small and light and insert it without disturbing the flow.

Example 1 Consider the vector field F⃗ in Figure 20.2. Suppose that F⃗ is parallel to the xy-plane and that at a

distance r from the z-axis it has magnitude 2r. Calculate circn⃗ F⃗ at the origin for

(a) n⃗ = k⃗ (b) n⃗ = −k⃗ (c) n⃗ = i⃗ .

Solution (a) Take a circle C of radius a in the xy-plane, centered at the origin, traversed in a direction deter-

mined from k⃗ by the right-hand rule. Then, since F⃗ is tangent to C everywhere and points in

the forward direction around C , we have

Circulation around C =
∫C

F⃗ ⋅ dr⃗ = ‖F⃗ ‖ ⋅ Circumference of C = 2a(2�a) = 4�a2.

Thus, the circulation density is

circ
k⃗
F⃗ = lim

a→0

Circulation around C

Area inside C
= lim
a→0

4�a2

�a2
= 4.

(b) If n⃗ = −k⃗ the circle is traversed in the opposite direction, so the line integral changes sign.

Thus,

circ
−k⃗

F⃗ = −4.

(c) The circulation around i⃗ is calculated using circles in the yz-plane. Since F⃗ is everywhere

perpendicular to such a circle C ,

∫C
F⃗ ⋅ dr⃗ = 0.

Thus, we have

circ
i⃗
F⃗ = lim

a→0

∫
C
F⃗ ⋅ dr⃗

�a2
= lim
a→0

0

�a2
= 0.

Definition of the Curl

Example 1 shows that the circulation density of a vector field can be positive, negative, or zero,

depending on the direction. We assume that there is one direction in which the circulation density is

greatest and define a single vector quantity that incorporates all these different circulation densities.

We give two definitions, one geometric and one algebraic, which turn out to lead to the same result.

Geometric Definition of Curl

The curl of a smooth vector field F⃗ , written curl F⃗ , is the vector field with the following

properties:

• The direction of curl F⃗ (x, y, z) is the direction n⃗ for which circn⃗ F⃗ (x, y, z) is the greatest.

• The magnitude of curl F⃗ (x, y, z) is the circulation density of F⃗ around that direction.

If the circulation density is zero around every direction, then we define the curl to be 0⃗ .



1002 Chapter 20 THE CURL AND STOKES’ THEOREM

Cartesian Coordinate Definition of Curl

If F⃗ = F1 i⃗ + F2j⃗ + F3k⃗ , then

curl F⃗ =

(

)F3

)y
−
)F2

)z

)

i⃗ +

(

)F1

)z
−
)F3

)x

)

j⃗ +

(

)F2

)x
−
)F1

)y

)

k⃗ .

The cross-product formula gives an easy way to remember the Cartesian coordinate definition

and suggests another common notation for curl F⃗ , namely ∇ × F⃗ . Using ∇ =
)

)x
i⃗ +

)

)y
j⃗ +

)

)z
k⃗ ,

we can write

curl F⃗ = ∇ × F⃗ =

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗
)

)x

)

)y

)

)z

F1 F2 F3

|

|

|

|

|

|

|

|

.

Example 2 For each field in Figure 20.5, use the sketch and the geometric definition to decide whether the curl

at the origin appears to point up or down, or to be the zero vector. Then check your answer using

the coordinate definition of curl and the formulas in the caption of Figure 20.5. Note that the vector

fields have no k⃗ -components and are independent of z.

x

y(a) y

x

(b)

x

y(c)

Figure 20.5: Sketches in the xy-plane of (a) F⃗ = xi⃗ + yj⃗ (b) F⃗ = yi⃗ − xj⃗ (c) F⃗ = −(y + 1)i⃗

Solution (a) This vector field shows no rotation, and the circulation around any circle in the xy-plane centered

at the origin appears to be zero, so we suspect that the circulation density around k⃗ is zero. The

coordinate definition of curl gives

curl F⃗ =

(

)(0)

)y
−
)y

)z

)

i⃗ +

(

)x

)z
−
)(0)

)x

)

j⃗ +

(

)y

)x
−
)x

)y

)

k⃗ = 0⃗ .

(b) This vector field appears to be rotating around the z-axis. By the right-hand rule, the circulation

density around k⃗ is negative, so we expect the z-component of the curl to point down. The

coordinate definition gives

curl F⃗ =

(

)(0)

)y
−
)(−x)

)z

)

i⃗ +

(

)y

)z
−
)(0)

)x

)

j⃗ +

(

)(−x)

)x
−
)y

)y

)

k⃗ = −2k⃗ .

(c) At first glance, you might expect this vector field to have zero curl, as all the vectors are parallel

to the x-axis. However, if you find the circulation around the curve C in Figure 20.6, the sides

contribute nothing (they are perpendicular to the vector field), the bottom contributes a negative

quantity (the curve is in the opposite direction to the vector field), and the top contributes a larger

positive quantity (the curve is in the same direction as the vector field and the magnitude of the
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vector field is larger at the top than at the bottom). Thus, the circulation aroundC is positive and

hence we expect the curl to be nonzero and point up. The coordinate definition gives

curl F⃗ =

(

)(0)

)y
−
)(0)

)z

)

i⃗ +

(

)(−(y + 1))

)z
−
)(0)

)x

)

j⃗ +

(

)(0)

)x
−
)(−(y + 1))

)y

)

k⃗ = k⃗ .

Another way to see that the curl is nonzero in this case is to imagine the vector field representing

the velocity of moving water. A boat sitting in the water tends to rotate, as the water moves faster

on one side than the other.

C

x

y

Figure 20.6: Rectangular curve in xy-plane

!⃗

r⃗

v⃗
P

Figure 20.7: Rotating flywheel

Example 3 A flywheel is rotating with angular velocity !⃗ and the velocity of a point P with position vector r⃗

is given by v⃗ = !⃗ × r⃗ . (See Figure 20.7.) Calculate curl v⃗ .

Solution If !⃗ = !1i⃗ + !2j⃗ + !3k⃗ , using the determinant notation introduced in Section 13.4, we have

v⃗ = !⃗ × r⃗ =

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗

!1 !2 !3

x y z

|

|

|

|

|

|

|

|

= (!2z − !3y)i⃗ + (!3x − !1z)j⃗ + (!1y − !2x)k⃗ .

The curl formula can also be written using a determinant:

curl v⃗ =

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗
)

)x

)

)y

)

)z

!2z − !3y !3x − !1z !1y − !2x

|

|

|

|

|

|

|

|

=

(

)

)y
(!1y − !2x) −

)

)z
(!3x − !1z)

)

i⃗ +

(

)

)z
(!2z − !3y) −

)

)x
(!1y − !2x)

)

j⃗

+

(

)

)x
(!3x − !1z) −

)

)y
(!2z − !3y)

)

k⃗

= 2!1i⃗ + 2!2j⃗ + 2!3k⃗ = 2!⃗ .

Thus, as we would expect, curl v⃗ is parallel to the axis of rotation of the flywheel (namely, the

direction of !⃗ ) and the magnitude of curl v⃗ is larger the faster the flywheel is rotating (that is, the

larger the magnitude of !⃗ ).
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Why Do the Two Definitions of Curl Give the Same Result?

Using Green’s Theorem in Cartesian coordinates, we can show that for curl F⃗ defined in Cartesian

coordinates

curl F⃗ ⋅ n⃗ = circn⃗ F⃗ .

This shows that curl F⃗ defined in Cartesian coordinates satisfies the geometric definition, since the

left-hand side takes its maximum value when n⃗ points in the same direction as curl F⃗ , and in that

case its value is ‖ curl F⃗ ‖.

The following example justifies this formula in a specific case.

Example 4 Use the definition of curl in Cartesian coordinates and Green’s Theorem to show that

(

curl F⃗
)

⋅ k⃗ = circ
k⃗
F⃗ .

Solution Using the definition of curl in Cartesian coordinates, the left-hand side of the formula is

(

curl F⃗
)

⋅ k⃗ =
)F2

)x
−
)F1

)y
.

Now let’s look at the right-hand side. The circulation density around k⃗ is calculated using circles

perpendicular to k⃗ ; hence, the k⃗ -component of F⃗ does not contribute to it; that is, the circulation

density of F⃗ around k⃗ is the same as the circulation density of F1 i⃗ + F2 j⃗ around k⃗ . But in any

plane perpendicular to k⃗ , z is constant, so in that plane F1 and F2 are functions of x and y alone.

Thus, F1 i⃗ +F2 j⃗ can be thought of as a two-dimensional vector field on the horizontal plane through

the point (x, y, z) where the circulation density is being calculated. Let C be a circle in this plane,

with radius a and centered at (x, y, z), and let R be the region enclosed by C . Green’s Theorem says

that

∫C
(F1i⃗ + F2 j⃗ ) ⋅ dr⃗ =

∫R

(

)F2

)x
−
)F1

)y

)

dA.

When the circle is small, )F2∕)x − )F1∕)y is approximately constant on R, so

∫R

(

)F2

)x
−
)F1

)y

)

dA ≈

(

)F2

)x
−
)F1

)y

)

⋅ Area of R =

(

)F2

)x
−
)F1

)y

)

�a2.

Thus, taking a limit as the radius of the circle goes to zero, we have

circ
k⃗
F⃗ (x, y, z) = lim

a→0

∫C
(F1i⃗ + F2j⃗ ) ⋅ dr⃗

�a2
= lim
a→0

∫R

(

)F2

)x
−
)F1

)y

)

dA

�a2
=
)F2

)x
−
)F1

)y
.

Curl-Free Vector Fields

A vector field is said to be curl free or irrotational if curl F⃗ = 0⃗ everywhere that F⃗ is defined.
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Example 5 Figure 20.8 shows the vector field B⃗ for three values of the constant p, where B⃗ is defined on 3-space

by

B⃗ =
−yi⃗ + xj⃗

(x2 + y2)p∕2
.

(a) Find a formula for curl B⃗ .

(b) Is there a value of p for which B⃗ is curl free? If so, find it.

Figure 20.8: The vector field B⃗ (r⃗ ) = (−yi⃗ + xj⃗ )∕(x2 + y2)p∕2 for p = 0, 2, and 4

Solution (a) We can use the following version of the product rule for curl. If � is a scalar function and F⃗ is

a vector field, then

curl(�F⃗ ) = � curl F⃗ + (grad�) × F⃗ .

(See Problem 32 on page 1007.) We write B⃗ = �F⃗ =
1

(x2 + y2)p∕2
(−yi⃗ + xj⃗ ). Then

curl F⃗ = curl(−yi⃗ + xj⃗ ) = 2k⃗

grad� = grad

(

1

(x2 + y2)p∕2

)

=
−p

(x2 + y2)(p∕2)+1
(xi⃗ + yj⃗ ).

Thus, we have

curl B⃗ =
1

(x2 + y2)p∕2
curl(−yi⃗ + xj⃗ ) + grad

(

1

(x2 + y2)p∕2

)

× (−yi⃗ + xj⃗ )

=
1

(x2 + y2)p∕2
2k⃗ +

−p

(x2 + y2)(p∕2)+1
(xi⃗ + yj⃗ ) × (−yi⃗ + xj⃗ )

=
1

(x2 + y2)p∕2
2k⃗ +

−p

(x2 + y2)(p∕2)+1
(x2 + y2)k⃗

=
2 − p

(x2 + y2)p∕2
k⃗ .

(b) The curl is zero when p = 2. Thus, when p = 2 the vector field is curl free:

B⃗ =
−yi⃗ + xj⃗

x2 + y2
.
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Exercises and Problems for Section 20.1 Online Resource: Additional Problems for Section 20.1
EXERCISES

In Exercises 1–5, is the quantity a vector or a scalar? Calcu-

late it.

1. curl(zi⃗ − xj⃗ + yk⃗ )

2. circi⃗ (zi⃗ − xj⃗ + yk⃗ )

3. curl(−2zi⃗ − zj⃗ + xyk⃗ )

4. circ
k⃗
(−2zi⃗ − zj⃗ + xyk⃗ )

5. curl(xi⃗ + yj⃗ + zk⃗ )

In Exercises 6–13, compute the curl of the vector field.

6. F⃗ = 3xi⃗ − 5zj⃗ + yk⃗

7. F⃗ = (x2 − y2)i⃗ + 2xyj⃗

8. F⃗ = (−x + y)i⃗ + (y + z)j⃗ + (−z + x)k⃗

9. F⃗ = 2yzi⃗ + 3xzj⃗ + 7xyk⃗

10. F⃗ = x2 i⃗ + y3j⃗ + z4k⃗

11. F⃗ = exi⃗ + cos yj⃗ + ez
2
k⃗

12. F⃗ = (x + yz)i⃗ + (y2 + xzy)j⃗ + (zx3y2 + x7y6)k⃗

13. F⃗ (r⃗ ) = r⃗ ∕‖r⃗ ‖

In Exercises 14–17, does the vector field appear to have

nonzero curl at the origin? The vector field is shown in the

xy-plane; it has no z-component and is independent of z.

14.

x

y 15.

x

y

16.

x

y 17.

x

y

PROBLEMS

18. Let F⃗ be the vector field in Figure 20.2 on page 1000.

It is rotating counterclockwise around the z-axis when

viewed from above. At a distance r from the z-axis, F⃗

has magnitude 2r.

(a) Find a formula for F⃗ .

(b) Find curl F⃗ using the coordinate definition and re-

late your answer to circulation density.

19. Use the geometric definition to find the curl of the vec-

tor field F⃗ (r⃗ ) = r⃗ . Check your answer using the coor-

dinate definition.

20. A smooth vector field G⃗ has curl G⃗ (0, 0, 0) = 2i⃗ −

3j⃗ +5k⃗ . Estimate the circulation around a circle of ra-

dius 0.01 centered at the origin in each of the following

planes:

(a) xy-plane, oriented counterclockwise when viewed

from the positive z-axis.

(b) yz-plane, oriented counterclockwise when viewed

from the positive x-axis.

(c) xz-plane, oriented counterclockwise when viewed

from the positive y-axis.

21. Three small circles, C1, C2, and C3, each with radius

0.1 and centered at the origin, are in the xy-, yz-, and

xz-planes, respectively. The circles are oriented coun-

terclockwise when viewed from the positive z-, x-, and

y-axes, respectively. A vector field, F⃗ , has circulation

around C1 of 0.02�, around C2 of 0.5�, and around C3

of 3�. Estimate curl F⃗ at the origin.

22. Using your answers to Exercises 10–11, make a conjec-

ture about a particular form of the vector field F⃗ ≠ 0⃗

that has curl F⃗ = 0⃗ . What form? Show why your con-

jecture is true.

23. (a) Find curl G⃗ if G⃗ = (ay3 + bez)i⃗ + (cz+ dx2)j⃗ +

(e sin x + fy)k⃗ and a, b, c, d, e, f are constants.

(b) If curl G⃗ is everywhere parallel to the yz-plane,

what can you say about the constants a–f?

(c) If curl G⃗ is everywhere parallel to the z-axis, what

can you say about the constants a–f?

24. Figure 20.9 gives a sketch of the velocity vector field

F⃗ = yi⃗ + xj⃗ in the xy-plane.

(a) What is the direction of rotation of a thin twig

placed at the origin along the x-axis?

(b) What is the direction of rotation of a thin twig

placed at the origin along the y-axis?

(c) Compute curl F⃗ .

x

y

Figure 20.9
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25. A tornado is formed when a tube of air circling a hori-

zontal axis is tilted up vertically by the updraft from a

thunderstorm. If t is time, this process can be modeled

by the wind velocity field

F⃗ (t, x, y, z) = (cos tj⃗ +sin tk⃗ )× r⃗ and 0 ≤ t ≤
�

2
.

Determine the direction of curl F⃗ :

(a) At t = 0 (b) At t = �∕2

(c) For 0 < t < �∕2

26. A large fire becomes a fire-storm when the nearby air

acquires a circulatory motion. The associated updraft

has the effect of bringing more air to the fire, causing it

to burn faster. Records show that a fire-storm developed

during the Chicago Fire of 1871 and during the Second

World War bombing of Hamburg, Germany, but there

was no fire-storm during the Great Fire of London in

1666. Explain how a fire-storm could be identified us-

ing the curl of a vector field.

27. A vortex that rotates at constant angular velocity !

about the z-axis has velocity vector field v⃗ = !(−yi⃗ +

xj⃗ ).

(a) Sketch the vector field with ! = 1 and the vector

field with ! = −1.

(b) Determine the speed ‖v⃗ ‖ of the vortex as a func-

tion of the distance from its center.

(c) Compute div v⃗ and curl v⃗ .

(d) Compute the circulation of v⃗ counterclockwise

about the circle of radius R in the xy-plane, cen-

tered at the origin.

28. A central vector field is one of the form F⃗ = f (r)r⃗

where f is any function of r = ‖r⃗ ‖. Show that any

central vector field is irrotational.

29. Show that curl (F⃗ + C⃗ ) = curl F⃗ for a constant vector

field C⃗ .

30. If F⃗ is any vector field whose components have contin-

uous second partial derivatives, show div curl F⃗ = 0.

31. We have seen that the Fundamental Theorem of Calcu-

lus for Line Integrals implies ∫
C
grad f ⋅dr⃗ = 0 for any

smooth closed path C and any smooth function f .

(a) Use the geometric definition of curl to deduce that

curl grad f = 0⃗ .

(b) Show that curl grad f = 0⃗ using the coordinate

definition.

32. Show that curl (�F⃗ ) = � curl F⃗ + (grad�) × F⃗ for a

scalar function � and a vector field F⃗ .

33. Show that if F⃗ = f grad g for some scalar functions f

and g, then curl F⃗ is everywhere perpendicular to F⃗ .

Strengthen Your Understanding

In Problems 34–35, explain what is wrong with the state-

ment.

34. A vector field F⃗ has curl given by curl F⃗ = 2x − 3y.

35. If all the vectors of a vector field F⃗ are parallel, then

curl F⃗ = 0⃗ .

In Problems 36–37, give an example of:

36. A vector field F⃗ (x, y, z) such that curl F⃗ = 0⃗ .

37. A vector field F⃗ (x, y, z) such that curl F⃗ = j⃗ .

In Problems 38–46, is the statement true or false? Assume

F⃗ and G⃗ are smooth vector fields and f is a smooth function

on 3-space. Explain.

38. The circulation density, circn⃗ F⃗ (x, y, z), is a scalar.

39. curl grad f = 0.

40. If F⃗ is a vector field with divF⃗ = 0 and curlF⃗ = 0⃗ ,

then F⃗ = 0⃗ .

41. If F⃗ and G⃗ are vector fields, then curl(F⃗ + G⃗ ) =

curlF⃗ + curlG⃗ .

42. If F⃗ and G⃗ are vector fields, then curl(F⃗ ⋅ G⃗ ) =

curlF⃗ ⋅ curlG⃗ .

43. If F⃗ and G⃗ are vector fields, then curl(F⃗ × G⃗ ) =

(curlF⃗ ) × (curlG⃗ ).

44. curl(fG⃗ ) = (grad f ) × G⃗ + f (curl G⃗ ).

45. For any vector field F⃗ , the curl of F⃗ is perpendicular

at every point to F⃗ .

46. If F⃗ is as shown in Figure 20.10, then curl F⃗ ⋅ j⃗ > 0.

Figure 20.10

47. Of the following vector fields, which ones have a curl

which is parallel to one of the axes? Which axis?

(a) yi⃗ −xj⃗ +zk⃗ (b) yi⃗ +zj⃗ +xk⃗ (c) −zi⃗ +yj⃗ +xk⃗

(d) xi⃗ +zj⃗ −yk⃗ (e) zi⃗ +xj⃗ +yk⃗
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20.2 STOKES’ THEOREM

The Divergence Theorem says that the integral of the flux density over a solid region is equal to the

flux through the surface bounding the region. Similarly, Stokes’ Theorem says that the integral of

the circulation density over a surface is equal to the circulation around the boundary of the surface.

The Boundary of a Surface

The boundary of a surface S is the curve or curves running around the edge of S (like the hem

around the edge of a piece of cloth). An orientation of S determines an orientation for its boundary,

C , as follows. Pick a positive normal vector n⃗ on S, nearC , and use the right-hand rule to determine

a direction of travel around n⃗ . This in turn determines a direction of travel around the boundary C .

See Figure 20.11. Another way of describing the orientation on C is that someone walking along C

in the forward direction, body upright in the direction of the positive normal on S, would have the

surface on their left. Notice that the boundary can consist of two or more curves, as the surface on

the right in Figure 20.11 shows.

n⃗

S
C C

C

S

n⃗

n⃗

Figure 20.11: Two oriented surfaces and their boundaries

Calculating the Circulation from the Circulation Density

Consider a closed, oriented curveC in 3-space. We can find the circulation of a vector field F⃗ around

C by calculating the line integral:

Circulation

around C
=
∫C

F⃗ ⋅ dr⃗ .

If C is the boundary of an oriented surface S, there is another way to calculate the circulation using

curl F⃗ . We subdivide S into pieces as shown on the surface on the left in Figure 20.11. If n⃗ is

a positive unit normal vector to a piece of surface with area ΔA, then ΔA⃗ = n⃗ΔA. In addition,

circn⃗ F⃗ is the circulation density of F⃗ around n⃗ , so

Circulation of F⃗ around

boundary of the piece
≈
(

circn⃗ F⃗
)

ΔA = ((curl F⃗ ) ⋅ n⃗ )ΔA = (curlF⃗ ) ⋅ ΔA⃗ .

Next we add up the circulations around all the small pieces. The line integral along the common edge

of a pair of adjacent pieces appears with opposite sign in each piece, so it cancels out. (See Figure

20.12.) When we add up all the pieces the internal edges cancel and we are left with the circulation

around C , the boundary of the entire surface. Thus,

Circulation

around C
=
∑ Circulation around

boundary of pieces
≈
∑

curl F⃗ ⋅ ΔA⃗ .

Taking the limit as ΔA → 0, we get

Circulation

around C
=
∫S

curl F⃗ ⋅ dA⃗ .
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Figure 20.12: Two adjacent pieces of the surface

We have expressed the circulation as a line integral aroundC and as a flux integral overS; thus,

the two integrals must be equal. Hence we have1

Theorem 20.1: Stokes’ Theorem

If S is a smooth oriented surface with piecewise smooth, oriented boundary C , and if F⃗ is a

smooth vector field on a solid region2 containing S and C , then

∫C
F⃗ ⋅ dr⃗ =

∫S
curl F⃗ ⋅ dA⃗ .

The orientation of C is determined from the orientation of S according to the right-hand rule.

Example 1 Let F⃗ (x, y, z) = −2yi⃗ + 2xj⃗ . Use Stokes’ Theorem to find ∫
C
F⃗ ⋅ dr⃗ , where C is a circle.

(a) Parallel to the yz-plane, of radius a, centered at a point on the x-axis, with either orientation.

(b) Parallel to the xy-plane, of radius a, centered at a point on the z-axis, oriented counterclockwise

as viewed from a point on the z-axis above the circle.

Solution We have curl F⃗ = 4k⃗ . Figure 20.13 shows sketches of F⃗ and curl F⃗ .

(a) Let S be the disk enclosed by C . Since S lies in a vertical plane and curl F⃗ points vertically

everywhere, the flux of curl F⃗ through S is zero. Hence, by Stokes’ Theorem,

∫C
F⃗ ⋅ dr⃗ =

∫S
curl F⃗ ⋅ dA⃗ = 0.

It makes sense that the line integral is zero. If C is parallel to the yz-plane (even if it is not lying

in the plane), the symmetry of the vector field means that the line integral of F⃗ over the top half

of the circle cancels the line integral over the bottom half.

Figure 20.13: The vector fields F⃗ and curl F⃗ (in the planes z = −1, z = 0, z = 1)

1A proof of Stokes’ Theorem using the coordinate definition of curl can be found in the online supplement at

www.wiley.com/college/hughes-hallett.
2The region containing S and C is open.
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(b) Let S be the horizontal disk enclosed by C . Since curl F⃗ is a constant vector field pointing in

the direction of k⃗ , we have, by Stokes’ Theorem,

∫C
F⃗ ⋅ dr⃗ =

∫S
curl F⃗ ⋅ dA⃗ = ‖ curl F⃗ ‖ ⋅ Area of S = 4�a2.

Since F⃗ is circling around the z-axis in the same direction as C , we expect the line integral to

be positive. In fact, in Example 1 on page 1001, we computed this line integral directly.

Curl-Free Vector Fields

Stokes’ Theorem applies to any oriented surface S and its boundary C , even in cases where the

boundary consists of two or more curves. This is useful in studying curl-free vector fields.

Example 2 A current I flows along the z-axis in the k⃗ direction. The induced magnetic field B⃗ (x, y, z) is

B⃗ (x, y, z) =
2I

c

(

−yi⃗ + xj⃗

x2 + y2

)

,

where c is the speed of light. Example 5 on page 1005 shows that curl B⃗ = 0⃗ .

(a) Compute the circulation of B⃗ around the circle C1 in the xy-plane of radius a, centered at the

origin, and oriented counterclockwise when viewed from above.

(b) Use part (a) and Stokes’ Theorem to compute ∫
C2
B⃗ ⋅ dr⃗ , where C2 is the ellipse x2 + 9y2 = 9

in the plane z = 2, oriented counterclockwise when viewed from above.

Solution (a) On the circle C1, we have ‖B⃗ ‖ = 2I∕(ca). Since B⃗ is tangent to C1 everywhere and points in

the forward direction around C1,

∫C1

B⃗ ⋅ dr⃗ = ‖B⃗ ‖ ⋅ Length of C1 =
2I

ca
⋅ 2�a =

4�I

c
.

(b) We cannot use Stokes’ Theorem on the elliptical disk bounded by C2 in the plane z = 2 because

curl B⃗ is not defined at (0, 0, 2). Instead, we will use the theorem on a conical surface connecting

C1 and C2.

Let S be the conical surface extending fromC1 to C2 in Figure 20.14. The boundary of this

surface has two pieces, −C2 and C1. The orientation of C1 leads to the outward normal on S,

which forces us to choose the clockwise orientation on C2. By Stokes’ Theorem,

∫S
curl B⃗ ⋅ dA⃗ =

∫−C2

B⃗ ⋅ dr⃗ +
∫C1

B⃗ ⋅ dr⃗ = −
∫C2

B⃗ ⋅ dr⃗ +
∫C1

B⃗ ⋅ dr⃗ .

Since curl B⃗ = 0⃗ , we have
∫S

curl B⃗ ⋅ dA⃗ = 0, so the two line integrals must be equal:

∫C2

B⃗ ⋅ dr⃗ =
∫C1

B⃗ ⋅ dr⃗ =
4�I

c
.
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x

y

z

C1

−C2

n⃗

S

Figure 20.14: Surface joining C1 to C2,

oriented to satisfy the conditions of

Stokes’ Theorem

S1

n⃗1

C

S2

n⃗2

Figure 20.15: The flux of a curl is the same

through the two surfaces S1 and S2 if they

determine the same orientation on the

boundary, C

Curl Fields
A vector field F⃗ is called a curl field if F⃗ = curl G⃗ for some vector field G⃗ . Recall that if F⃗ =

gradf , then f is called a potential function. By analogy, if a vector field F⃗ = curl G⃗ , then G⃗ is

called a vector potential for F⃗ . The following example shows that the flux of a curl field through

a surface depends only on the boundary of the surface. This is analogous to the fact that the line

integral of a gradient field depends only on the endpoints of the path.

Example 3 Suppose F⃗ = curl G⃗ , and that S1 and S2 are two oriented surfaces with the same boundary C .

Show that, if S1 and S2 determine the same orientation on C (as in Figure 20.15), then

∫S1

F⃗ ⋅ dA⃗ =
∫S2

F⃗ ⋅ dA⃗ .

If S1 and S2 determine opposite orientations on C , then

∫S1

F⃗ ⋅ dA⃗ = −
∫S2

F⃗ ⋅ dA⃗ .

Solution If S1 and S2 determine the same orientation on C , then since F⃗ = curl G⃗ , by Stokes’ Theorem we

have

∫S1

F⃗ ⋅ dA⃗ =
∫S1

curl G⃗ ⋅ dA⃗ =
∫C

G⃗ ⋅ dr⃗

and

∫S2

F⃗ ⋅ dA⃗ =
∫S2

curl G⃗ ⋅ dA⃗ =
∫C

G⃗ ⋅ dr⃗ .

In each case the line integral on the right must be computed using the orientation determined by the

surface. Thus, the two flux integrals of F⃗ are the same if the orientations are the same and they are

opposite if the orientations are opposite.

Exercises and Problems for Section 20.2

EXERCISES

1. If curl F⃗ = k⃗ , find the circulation of F⃗ around C , a

circle of radius 1, centered at the origin, with

(a) C in the xy-plane, oriented counterclockwise when

viewed from above.

(b) C in the yz-plane, oriented counterclockwise when

viewed from the positive x-axis.
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In Exercises 2–3, for the circle C and curl F⃗ as described,

is the circulation of F⃗ around C positive, negative, or zero?

2. C is in the xy-plane oriented counterclockwise when

viewed from above, and curl F⃗ points parallel to j⃗ ev-

erywhere.

3. C is in the yz-plane oriented clockwise when viewed

from the positive x-axis, and curl F⃗ points parallel to

and in the direction of −i⃗ .

In Exercises 4–8, calculate the circulation, ∫
C
F⃗ ⋅dr⃗ , in two

ways, directly and using Stokes’ Theorem.

4. F⃗ = (x + z)i⃗ + xj⃗ + yk⃗ and C is the upper half of

the circle x2 + z2 = 9 in the plane y = 0, together with

the x-axis from (3, 0, 0) to (−3, 0, 0), traversed counter-

clockwise when viewed from the positive y-axis.

5. F⃗ = yi⃗ − xj⃗ and C is the boundary of S, the part of

the surface z = 4−x2 −y2 above the xy-plane, oriented

upward.

6. F⃗ = (x−y+z)(i⃗ +j⃗ ) andC is the triangle with vertices

(0, 0, 0), (5, 0, 0), (5, 5, 0), traversed in that order.

7. F⃗ = xyi⃗ + yzj⃗ + xzk⃗ and C is the boundary of S,

the surface z = 1 − x2 for 0 ≤ x ≤ 1 and −2 ≤ y ≤ 2,

oriented upward. Sketch S and C .

8. F⃗ = yi⃗ + zj⃗ + xk⃗ and C is the boundary of S, the

paraboloid z = 1 − (x2 + y2), z ≥ 0 oriented upward.

[Hint: Use polar coordinates.]

In Exercises 9–12, use Stokes’ Theorem to calculate the in-

tegral.

9. ∫
C
F⃗ ⋅dr⃗ where F⃗ = x2 i⃗ +y2j⃗ +z2k⃗ and C is the unit

circle in the xz-plane, oriented counterclockwise when

viewed from the positive y-axis.

10. ∫
C
F⃗ ⋅ dr⃗ where F⃗ = (y − x)i⃗ + (z − y)j⃗ + (x − z)k⃗

and C is the circle x2 +y2 = 5 in the xy-plane, oriented

counterclockwise when viewed from above.

11. ∫
S

curl F⃗ ⋅ dA⃗ where F⃗ = −yi⃗ + xj⃗ + (xy+ cos z)k⃗

and S is the disk x2 + y2 ≤ 9, oriented upward in the

xy-plane.

12. ∫
S

curl F⃗ ⋅ dA⃗ where F⃗ = (x + 7)j⃗ + ex+y+zk⃗ and S

is the rectangle 0 ≤ x ≤ 3, 0 ≤ y ≤ 2 , z = 0, oriented

upward.

13. Let F⃗ = yi⃗ − xj⃗ and let C be the unit circle in the

xy-plane centered at the origin and oriented counter-

clockwise when viewed from above.

(a) Calculate ∫
C
F⃗ ⋅ dr⃗ by parameterizing the circle.

(b) Calculate curl F⃗ .

(c) Calculate ∫
C
F⃗ ⋅dr⃗ using your result from part (b).

(d) What theorem did you use in part (c)?

14. (a) If F⃗ = (cos x)i⃗ + eyj⃗ +(x−y−z)k⃗ , find curl F⃗ .

(b) Find ∫
C
F⃗ ⋅ dr⃗ where C is the circle of radius 3 in

the plane x+y+z = 1, centered at (1, 0, 0) oriented

counterclockwise when viewed from above.

15. Can you use Stokes’ Theorem to compute the line inte-

gral ∫
C
(2xi⃗ + 2yj⃗ + 2zk⃗ ) ⋅ dr⃗ where C is the straight

line from the point (1, 2, 3) to the point (4, 5, 6)? Why

or why not?

PROBLEMS

16. At all points in 3-space curl F⃗ points in the direction

of i⃗ − j⃗ − k⃗ . Let C be a circle in the yz-plane, oriented

clockwise when viewed from the positive x-axis. Is the

circulation of F⃗ around C positive, zero, or negative?

17. If curl F⃗ = (x2 + z2)j⃗ + 5k⃗ , find ∫
C
F⃗ ⋅ dr⃗ , where C

is a circle of radius 3, centered at the origin, with

(a) C in the xy-plane, oriented counterclockwise when

viewed from above.

(b) C in the xz-plane, oriented counterclockwise when

viewed from the positive y-axis.

18. (a) Find curl(yi⃗ + zj⃗ + xk⃗ ).

(b) Find ∫
C
(yi⃗ +zj⃗ +xk⃗ ) ⋅dr⃗ where C is the bound-

ary of the triangle with vertices (2, 0, 0), (0, 3, 0),

(−2, 0, 0), traversed in that order.

19. (a) Let F⃗ = yi⃗ + zj⃗ + xk⃗ . Find curl F⃗ .

(b) Calculate ∫
C
F⃗ ⋅ dr⃗ where C is

(i) A circle of radius 2 centered at (1, 1, 3) in the

plane z = 3, oriented counterclockwise when

viewed from above.

(ii) The triangle obtained by tracing out the path

(2, 0, 0) to (2, 0, 5) to (2, 3, 5) to (2, 0, 0).

20. (a) Find curl(zi⃗ + xj⃗ + yk⃗ ).

(b) Find ∫
C
(zi⃗ + xj⃗ + yk⃗ ) ⋅ dr⃗ where C is a square

of side 2 lying in the plane x+ y+ z = 5, oriented

counterclockwise when viewed from the origin.

In Problems 21–26, find ∫
C
F⃗ ⋅ dr⃗ where C is a circle of

radius 2 in the plane x + y + z = 3, centered at (1, 1, 1) and

oriented clockwise when viewed from the origin.

21. F⃗ = i⃗ + j⃗ + 3k⃗

22. F⃗ = −yi⃗ + xj⃗ + zk⃗

23. F⃗ = yi⃗ − xj⃗ + (y − x)k⃗

24. F⃗ = (2y+ ex)i⃗ + ((sin y) − x)j⃗ + (2y − x+ cos z2)k⃗

25. F⃗ = −zj⃗ + yk⃗

26. F⃗ = (z − y)i⃗ + (x − z)j⃗ + (y − x)k⃗

27. For positive constants a, b, and c, let

f (x, y, z) = ln(1 + ax2 + by2 + cz2).

(a) What is the domain of f?
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(b) Find gradf .

(c) Find curl(gradf ).

(d) Find ∫
C
F⃗ ⋅ dr⃗ where C is the helix x = cos t,

y = sin t, z = t for 0 ≤ t ≤ 13�∕2 and

F⃗ =
2xi⃗ + 4yj⃗ + 6zk⃗

1 + x2 + 2y2 + 3z2
.

28. Figure 20.16 shows an open cylindrical can, S, stand-

ing on the xy-plane. (S has a bottom and sides, but no

top.)

(a) Give equation(s) for the rim, C .

(b) If S is oriented outward and downward, find

∫
S
curl(−yi⃗ + xj⃗ + zk⃗ ) ⋅ dA⃗ .

x

y

z

2C

✲x2 + y2 = 9

Figure 20.16

29. Evaluate ∫
C
(−zi⃗ +yj⃗ +xk⃗ ) ⋅dr⃗ , where C is a circle of

radius 2, parallel to the xz-plane and around the y-axis

with the orientation shown in Figure 20.17.

x y

z

C

✛

✛

2

Figure 20.17

30. Evaluate the circulation of G⃗ = xyi⃗ +zj⃗ +3yk⃗ around

a square of side 6, centered at the origin, lying in the yz-

plane, and oriented counterclockwise viewed from the

positive x-axis.

31. Find the flux of F⃗ = curl((x3 + cos(z2))i⃗ + (x +

sin(y2))j⃗ +(y2 sin(x2))k⃗ ) through the upper half of the

sphere of radius 2, with center at the origin and oriented

upward.

32. Suppose that C is a closed curve in the xy-plane,

oriented counterclockwise when viewed from above.

Show that
1

2
∫
C
(−yi⃗ + xj⃗ ) ⋅ dr⃗ equals the area of the

region R in the xy-plane enclosed by C .

33. In the region between the circles C1 ∶ x
2 + y2 = 4 and

C2 ∶ x2 + y2 = 25 in the xy-plane, the vector field F⃗

has curl F⃗ = 3k⃗ . If C1 and C2 are both oriented coun-

terclockwise when viewed from above, find the value

of

∫
C2

F⃗ ⋅ dr⃗ −
∫
C1

F⃗ ⋅ dr⃗ .

34. Let curl F⃗ = 3xi⃗ + 3yj⃗ − 6zk⃗ and let C1 and C2 be

the closed curves in the planes z = 0 and z = 5 in

Figure 20.18. Find

∫
C1

F⃗ ⋅ dr⃗ +
∫
C2

F⃗ ⋅ dr⃗ .

x

y

z

✻

❄

5x2 + y2 = 4

C1

C2

Figure 20.18

35. (a) Find curl(x3 i⃗ + sin(y3)j⃗ + ez
3
k⃗ ).

(b) What does your answer to part (a) tell you about

∫
C
(x3 i⃗ +sin(y3)j⃗ +ez

3
k⃗ )⋅dr⃗ whereC is the circle

(x−10)2 + (y−20)2 = 1 in the xy-plane, oriented

clockwise?

(c) If C is any closed curve, what can you say about

∫
C
(x3 i⃗ + sin(y3)j⃗ + ez

3
k⃗ ) ⋅ dr⃗ ?

36. For C , the intersection of the cylinder x2 + y2 = 9 and

the plane z = −2 − x + 2y oriented counterclockwise

when viewed from above, use Stokes’ Theorem to find

∫
C

(

(x2 − 3y2)i⃗ + (
z2

2
+ y)j⃗ + (x + 2z2)k⃗

)

⋅ dr⃗ .

37. Let F⃗ (x, y, z) = F1(x, y)i⃗ + F2(x, y)j⃗ , where F1 and

F2 are continuously differentiable for all x, y.

(a) Describe in words how F⃗ varies through space.

(b) Find an expression for curl F⃗ in terms of F1

and F2.

(c) Let C be a closed curve in the xy-plane, oriented

counterclockwise when viewed from above, and let

S be the region enclosed by C . Use your answer to

part (b) to simplify the statement of Stokes’ Theo-

rem for this F⃗ and C .

(d) The result in part (c) is usually known by another

name. What is it?
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38. Water in a bathtub has velocity vector field near the

drain given, for x, y, z in cm, by

F⃗ = −
y + xz

(z2 + 1)2
i⃗ −

yz − x

(z2 + 1)2
j⃗ −

1

z2 + 1
k⃗ cm/sec.

(a) Rewriting F⃗ as follows, describe in words how the

water is moving:

F⃗ =
−yi⃗ + xj⃗

(z2 + 1)2
+

−z(xi⃗ + yj⃗ )

(z2 + 1)2
−

k⃗

z2 + 1
.

(b) The drain in the bathtub is a disk in the xy-plane

with center at the origin and radius 1 cm. Find the

rate at which the water is leaving the bathtub. (That

is, find the rate at which water is flowing through

the disk.) Give units for your answer.

(c) Find the divergence of F⃗ .

(d) Find the flux of the water through the hemisphere

of radius 1, centered at the origin, lying below the

xy-plane and oriented downward.

(e) Find ∫
C
G⃗ ⋅ dr⃗ where C is the edge of the drain,

oriented clockwise when viewed from above, and

where

G⃗ =
1

2

(

y

z2 + 1
i⃗ −

x

z2 + 1
j⃗ −

x2 + y2

(z2 + 1)2
k⃗

)

.

(f) Calculate curl G⃗ .

(g) Explain why your answers to parts (d) and (e) are

equal.

Strengthen Your Understanding

In Problems 39–40, explain what is wrong with the state-

ment.

39. The line integral ∫
C
F⃗ ⋅ dr⃗ can be evaluated using

Stokes’ Theorem, where F⃗ = 2xi⃗ − 3j⃗ + k⃗ and C

is an oriented curve from (0, 0, 0) to (3, 4, 5).

40. If S is the unit circular disc x2 + y2 ≤ 1, z = 0, in the

xy-plane, oriented downward, C is the unit circle in the

xy-plane oriented counterclockwise, and F⃗ is a vector

field, then

∫
C

F⃗ ⋅ dr⃗ =
∫
S

curl F⃗ ⋅ dA⃗ .

In Problems 41–42, give an example of:

41. An oriented closed curve C such that ∫
C
F⃗ ⋅ dr⃗ = 0,

where F⃗ (x, y, z) = xi⃗ + y2j⃗ + z3k⃗ .

42. A surface S, oriented appropriately to use Stokes’ The-

orem, which has as its boundary the circle C of radius

1 centered at the origin, lying in the xy-plane, and ori-

ented counterclockwise when viewed from above.

In Problems 43–51, is the statement true or false? Give a

reason for your answer.

43. If curl F⃗ is everywhere perpendicular to the z-axis, and

C is a circle in the xy-plane, then the circulation of F⃗

around C is zero.

44. If S is the upper unit hemisphere x2 + y2 + z2 = 1, z ≥

0, oriented upward, then the boundary of S used in

Stokes’ Theorem is the circle x2 + y2 = 1, z = 0,

with orientation counterclockwise when viewed from

the positive z-axis.

45. Let S be the cylinder x2 + z2 = 1, 0 ≤ y ≤ 2, oriented

with inward-pointing normal. Then the boundary of S

consists of two circles C1 (x2 + z2 = 1, y = 0) and C2

(x2 + z2 = 1, y = 2), both oriented clockwise when

viewed from the positive y-axis.

46. If C is the boundary of an oriented surface S, oriented

by the right-hand rule, then ∫
C
curl F⃗ ⋅dr⃗ = ∫

S
F⃗ ⋅dA⃗ .

47. Let S1 be the disk x2 + y2 ≤ 1, z = 0 and let S2

be the upper unit hemisphere x2 + y2 + z2 = 1, z ≥

0, both oriented upward. If F⃗ is a vector field then

∫
S1

curlF⃗ ⋅ dA⃗ = ∫
S2

curlF⃗ ⋅ dA⃗ .

48. LetS be the closed unit sphere x2+y2+z2 = 1, oriented

outward. If F⃗ is a vector field, then ∫
S

curlF⃗ ⋅dA⃗ = 0.

49. If F⃗ and G⃗ are vector fields satisfying curlF⃗ = curlG⃗ ,

then ∫
C
F⃗ ⋅ dr⃗ = ∫

C
G⃗ ⋅ dr⃗ , where C is any oriented

circle in 3-space.

50. If F⃗ is a vector field satisfying curlF⃗ = 0⃗ , then

∫
C
F⃗ ⋅ dr⃗ = 0, where C is any oriented path around

a rectangle in 3-space.

51. Let S be an oriented surface, with oriented bound-

ary C , and suppose that F⃗ is a vector field such that

∫
C
F⃗ ⋅ dr⃗ = 0. Then curl F⃗ = 0⃗ everywhere on S.

52. The circle C has radius 3 and lies in a plane through the

origin. Let F⃗ = (2z + 3y)i⃗ + (x − z)j⃗ + (6y − 7x)k⃗ .

What is the equation of the plane and what is the orien-

tation of the circle that make the circulation, ∫
C
F⃗ ⋅dr⃗ ,

a maximum? [Note: You should specify the orientation

of the circle by saying that it is clockwise or counter-

clockwise when viewed from the positive or negative

x- or y- or z-axis.]
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20.3 THE THREE FUNDAMENTAL THEOREMS

We have now seen three multivariable versions of the Fundamental Theorem of Calculus. In this

section we will examine some consequences of these theorems.

Fundamental Theorem of Calculus for Line Integrals

∫C
gradf ⋅ dr⃗ = f (Q) − f (P ).

Stokes’ Theorem

∫S
curl F⃗ ⋅ dA⃗ =

∫C
F⃗ ⋅ dr⃗ .

Divergence Theorem

∫W
divF⃗ dV =

∫S
F⃗ ⋅ dA⃗ .

Notice that, in each case, the region of integration on the right is the boundary of the region on

the left (except that for the first theorem we simply evaluate f at the boundary points); the integrand

on the left is a sort of derivative of the integrand on the right; see Figure 20.19.

C

P

Q

The boundary of the curveC
consists of the points P andQ

S

C

Boundary of surface
S is curveC

Boundary of region
W is surface S

W

S

Figure 20.19: Regions and their boundaries for the three fundamental theorems

The Gradient and the Curl

Suppose that F⃗ is a smooth gradient field, so F⃗ = gradf for some function f . Using the Funda-

mental Theorem for Line Integrals, we saw in Chapter 18 that

∫C
F⃗ ⋅ dr⃗ = 0

for any closed curve C . Thus, for any unit vector n⃗

circn⃗ F⃗ = lim
Area→0

∫C
F⃗ ⋅ dr⃗

Area of C
= lim

Area→0

0

Area
= 0,

where the limit is taken over circles C in a plane perpendicular to n⃗ , and oriented by the right-hand

rule. Thus, the circulation density of F⃗ is zero in every direction, so curl F⃗ = 0⃗ , that is,

curl gradf = 0⃗ .

(This formula can also be verified using the coordinate definition of curl. See Problem 31 on page 1007.)
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Is the converse true? Is any vector field whose curl is zero a gradient field? Suppose that curl F⃗ =

0⃗ and let us consider the line integral ∫
C
F⃗ ⋅ dr⃗ for a closed curve C contained in the domain of F⃗ .

If C is the boundary curve of an oriented surface S that lies wholly in the domain of curl F⃗ , then

Stokes’ Theorem asserts that

∫C
F⃗ ⋅ dr⃗ =

∫S
curl F⃗ ⋅ dA⃗ =

∫S
0⃗ ⋅ dA⃗ = 0.

If we knew that ∫
C
F⃗ ⋅ dr⃗ = 0 for every closed curve C , then F⃗ would be path-independent, and

hence a gradient field. Thus, we need to know whether every closed curve in the domain of F⃗ is

the boundary of an oriented surface contained in the domain. It can be quite difficult to determine

if a given curve is the boundary of a surface (suppose, for example, that the curve is knotted in a

complicated way). However, if the curve can be contracted smoothly to a point, remaining all the

time in the domain of F⃗ , then it is the boundary of a surface, namely, the surface it sweeps through

as it contracts. Thus, we have proved the test for a gradient field that we stated in Chapter 18.

The Curl Test for Vector Fields in 3-Space

Suppose F⃗ is a smooth vector field on 3-space such that

• The domain of F⃗ has the property that every closed curve in it can be contracted to a

point in a smooth way, staying at all times within the domain.

• curl F⃗ = 0⃗ .

Then F⃗ is path-independent, and thus is a gradient field.

Example 7 on page 956 shows how the curl test is applied.

The Curl and the Divergence

In this section we will use the second two fundamental theorems to get a test for a vector field to be

a curl field, that is, a field of the form F⃗ = curl G⃗ for some G⃗ .

Example 1 Suppose that F⃗ is a smooth curl field. Use Stokes’ Theorem to show that for any closed surface, S,

contained in the domain of F⃗ ,

∫S
F⃗ ⋅ dA⃗ = 0.

Solution Suppose F⃗ = curl G⃗ . Draw a closed curveC on the surfaceS, thus dividing S into two surfacesS1

andS2 as shown in Figure 20.20. Pick the orientation forC corresponding toS1; then the orientation

of C corresponding to S2 is the opposite. Thus, using Stokes’ Theorem,

∫S1

F⃗ ⋅ dA⃗ =
∫S1

curl G⃗ ⋅ dA⃗ =
∫C

G⃗ ⋅ dr⃗ = −
∫S2

curl G⃗ ⋅ dA⃗ = −
∫S2

F⃗ ⋅ dA⃗ .

Thus, for any closed surface S, we have

∫S
F⃗ ⋅ dA⃗ =

∫S1

F⃗ ⋅ dA⃗ +
∫S2

F⃗ ⋅ dA⃗ = 0.
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n⃗ 1

n⃗ 2

C

✠

Orientation ofC corresponding toS1

■

Orientation ofC corresponding toS2

S

S1 S2

Figure 20.20: The closed surface S divided into two surfaces S1 and S2

Thus, if F⃗ = curl G⃗ , we use the result of Example 1 to see that

div F⃗ = lim
Volume→0

∫S
F⃗ ⋅ dA⃗

Volume enclosed by S
= lim

Volume→0

0

Volume
= 0,

where the limit is taken over spheres S contracting down to a point. So we conclude that:

div curl G⃗ = 0.

(This formula can also be verified using coordinates. See Problem 30 on page 1007.)

Is every vector field whose divergence is zero a curl field? It turns out that we have the following

analogue of the curl test, though we will not prove it.

The Divergence Test for Vector Fields in 3-Space

Suppose F⃗ is a smooth vector field on 3-space such that

• The domain of F⃗ has the property that every closed surface in it is the boundary of a

solid region completely contained in the domain.

• div F⃗ = 0.

Then F⃗ is a curl field.

Example 2 Consider the vector fields E⃗ = q
r⃗

‖r⃗ ‖3
and B⃗ =

2I

c

(

−yi⃗ + xj⃗

x2 + y2

)

.

(a) Calculate div E⃗ and div B⃗ .

(b) Do E⃗ and B⃗ satisfy the divergence test?

(c) Is either E⃗ or B⃗ a curl field?

Solution (a) Example 3 on page 986 shows that div E⃗ = 0. The following calculation shows div B⃗ = 0 also:

div B⃗ =
2I

c

(

)

)x

(

−y

x2 + y2

)

+
)

)y

(

x

x2 + y2

)

+
)

)z
(0)

)
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=
2I

c

(

2xy

(x2 + y2)2
+

−2yx

(x2 + y2)2

)

= 0.

(b) The domain of E⃗ is 3-space minus the origin, so a region is contained in the domain if it misses

the origin. Thus, the surface of a sphere centered at the origin is contained in the domain of E,

but the solid ball inside is not. Hence, E⃗ does not satisfy the divergence test.

The domain of B⃗ is 3-space minus the z-axis, so a region is contained in the domain if it

avoids the z-axis. If S is a surface bounding a solid region W , then the z-axis cannot pierce

W without piercing S as well. Hence, if S avoids the z-axis, so does W . Thus, B⃗ satisfies the

divergence test.

(c) In Example 3 on page 993 we computed the flux of r⃗ ∕‖r⃗ ‖3 through a sphere centered at the

origin, and found it was 4�, so the flux of E⃗ through this sphere is 4�q. Thus, E⃗ cannot be a

curl field, because by Example 1, the flux of a curl field through a closed surface is zero.

On the other hand, B⃗ satisfies the divergence test, so it must be a curl field. In fact, Prob-

lem 26 shows that

B⃗ = curl
(

−I

c
ln(x2 + y2)k⃗

)

.

Exercises and Problems for Section 20.3Online Resource: Additional Problems for Section 20.3
EXERCISES

In Exercises 1–6, is the vector field a gradient field?

1. F⃗ = 2xi⃗ + zj⃗ + yk⃗

2. F⃗ = yi⃗ + zj⃗ + xk⃗

3. F⃗ = (y + 2z)i⃗ + (x + z)j⃗ + (2x + y)k⃗

4. F⃗ = (y − 2z)i⃗ + (x − z)j⃗ + (2x − y)k⃗

5. G⃗ = −yi⃗ + xj⃗

6. F⃗ = yzi⃗ + (xz + z2)j⃗ + (xy + 2yz)k⃗

In Exercises 7–12, is the vector field a curl field?

7. F⃗ = zi⃗ + xj⃗ + yk⃗

8. F⃗ = zi⃗ + yj⃗ + xk⃗

9. F⃗ = 2xi⃗ − yj⃗ − zk⃗

10. F⃗ = (x + y)i⃗ + (y + z)j⃗ + (x + z)k⃗

11. F⃗ = (−xy)i⃗ + (2yz)j⃗ + (yz − z2))k⃗

12. F⃗ = (xy)i⃗ + (xy)j⃗ + (xy)k⃗

13. Let F⃗ be a vector field defined everywhere except the

z-axis and with curl F⃗ = 0 at all points of its do-

main. Determine whether Stokes’ Theorem implies that

∫
C
F⃗ ⋅ dr⃗ = 0 for a circle C of radius 1, where

(a) C is parallel to the xy-plane with center (0, 0, 1).

(b) C is parallel to the yz-plane with center (1, 0, 0).

14. Let F⃗ be a vector field defined everywhere except the

origin and with div F⃗ = 0 at all points of its domain.

Determine whether the Divergence Theorem implies

that ∫
S
F⃗ ⋅ dA⃗ = 0 for a sphere S of radius 1, where

(a) S is centered at (0, 1, 1).

(b) S is centered at (0.5, 0, 0).

In Exercises 15–18, can the curl test and the divergence test

be applied to a vector field whose domain is the given re-

gion?

15. All points (x, y, z) such that z > 0.

16. All points (x, y, z) not on the y-axis.

17. All points (x, y, z) not on the positive z-axis.

18. All points (x, y, z) except the x-axis with 0 ≤ x ≤ 1.

PROBLEMS

19. Let B⃗ = bk⃗ , for some constant b. Show that the fol-

lowing are all possible vector potentials for B⃗ :

(a) A⃗ = −byi⃗ (b) A⃗ = bxj⃗

(c) A⃗ =
1

2
B⃗ × r⃗ .

20. Find a vector field F⃗ such that curl F⃗ = 2i⃗ −3j⃗ +4k⃗ .

[Hint: Try F⃗ = v⃗ × r⃗ for some vector v⃗ .]
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21. Find a vector potential for the constant vector field B⃗

whose value at every point is b⃗ .

22. Express (3x+2y)i⃗ +(4x+9y)j⃗ as the sum of a curl-free

vector field and a divergence-free vector field.

In Problems 23–24, does a vector potential exist for the vec-

tor field given? If so, find one.

23. G⃗ = x2 i⃗ + y2j⃗ + z2k⃗

24. F⃗ = 2xi⃗ + (3y − z2)j⃗ + (x − 5z)k⃗

25. An electric charge q at the origin produces an electric

field E⃗ = qr⃗ ∕‖r⃗ ‖3.

(a) Does curl E⃗ = 0⃗ ?

(b) Does E⃗ satisfy the curl test?

(c) Is E⃗ a gradient field?

26. Show that A⃗ =
−I

c
ln(x2 + y2)k⃗ is a vector potential

for

B⃗ =
2I

c

(

−yi⃗ + xj⃗

x2 + y2

)

.

27. Suppose c is the speed of light. A thin wire along the

z-axis carrying a current I produces a magnetic field

B⃗ =
2I

c

(

−yi⃗ + xj⃗

x2 + y2

)

.

(a) Does curl B⃗ = 0⃗ ?

(b) Does B⃗ satisfy the curl test?

(c) Is B⃗ a gradient field?

28. Use Stokes’ Theorem to show that if u(x, y) and v(x, y)

are two functions of x and y and C is a closed curve in

the xy-plane oriented counterclockwise, then

∫
C

(ui⃗ + vj⃗ ) ⋅ dr⃗ =
∫
R

(

)v

)x
−
)u

)y

)

dxdy

where R is the region in the xy-plane enclosed by C .

This is Green’s Theorem.

29. Suppose that A⃗ is a vector potential for B⃗ .

(a) Show that A⃗ + grad is also a vector potential

for B⃗ , for any function  with continuous second-

order partial derivatives. (The vector potentials A⃗

and A⃗ +grad are called gauge equivalent and the

transformation, for any  , from A⃗ to A⃗ + grad 

is called a gauge transformation.)

(b) What is the divergence of A⃗ +grad ? How should

 be chosen such that A⃗ + grad has zero diver-

gence? (If div A⃗ = 0, the magnetic vector potential

A⃗ is said to be in Coulomb gauge.)

Strengthen Your Understanding

In Problems 30–31, explain what is wrong with the state-

ment.

30. The curl of a vector field F⃗ is given by curl F⃗ = xi⃗ .

31. For a certain vector field F⃗ , we have curl div F⃗ = yi⃗ .

In Problems 32–33, give an example of:

32. A vector field F⃗ that is not the curl of another vector

field.

33. A function f such that div grad f ≠ 0.

In Problems 34–37, is the statement true or false? Give a

reason for your answer.

34. There exists a vector field F⃗ with curlF⃗ = i⃗ .

35. There exists a vector field F⃗ (whose components

have continuous second partial derivatives) satisfying

curlF⃗ = xi⃗ .

36. Let S be an oriented surface, with oriented bound-

ary C , and suppose that F⃗ is a vector field such that

∫
S

curlF⃗ ⋅ dA⃗ = 0. Then F⃗ is a gradient field.

37. If F⃗ is a gradient field, then ∫
S
curl F⃗ ⋅ dA⃗ = 0, for

any smooth oriented surface, S, in 3-space.

38. Let f (x, y, z) be a scalar function with continuous sec-

ond partial derivatives. Let F⃗ (x, y, z) be a vector field

with continuous second partial derivatives. Which of

the following quantities are identically zero?

(a) curl grad f (b) F⃗ × curl F⃗

(c) grad div F⃗ (d) div curl F⃗

(e) div grad f

Online Resource: Review problems and Projects
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21.1 COORDINATES AND PARAMETERIZED SURFACES

In Chapter 17 we parameterized curves in 2- and 3-space, and in Chapter 16 we used polar, cylin-

drical, and spherical coordinates to simplify iterated integrals. We now take a second look at pa-

rameterizations and coordinate systems, and see that they are the same thing in different disguises:

functions from one space to another.

We have already seen this with parameterized curves, which we view as a function from an

interval a ≤ t ≤ b to a curve in xyz-space. See Figure 21.1.

x

y

z

a b

r⃗ (b)

r⃗ (a)
r⃗ (t)

C

Figure 21.1: The parameterization is a function from the interval, a ≤ t ≤ b, to 3-space, whose image

is the curve, C

Polar, Cylindrical, and Spherical Coordinates Revisited

The equations for polar coordinates,

x = r cos �

y = r sin �,

can also be viewed as defining a function from the r�-plane into the xy-plane. This function trans-

forms the rectangle on the left of Figure 21.2 into the quarter disk on the right. We need two param-

eters to describe this disk because it is a two-dimensional object.

Polar Coordinates as Families of Parameterized Curves

Polar coordinates give two families of parameterized curves, which form the polar coordinate grid.

The lines r = Constant in the r�-plane correspond to circles in the xy-plane, each circle param-

eterized by �; the lines � = Constant correspond to rays in the xy-plane, each ray parameterized

by r.

Cylindrical and Spherical Coordinates

Similarly, cylindrical and spherical coordinates may be viewed as functions from 3-space to 3-space.

Cylindrical coordinates take rectangular boxes in r�z-space and map them to cylindrical regions in

xyz-space; spherical coordinates take rectangular boxes in ���-space and map them to spherical

regions in xyz-space.

1 2 3 4

�∕8

�∕4

3�∕8

�∕2

� = �∕8

� = �∕4

� = 3�∕8

r = 1 r = 2 r = 3

✲

r

�

1 2 3 4

1

2

3

x

y

� = 3�∕8

� = �∕4

� = �∕8

Figure 21.2: A grid in the r�-plane and the corresponding curved grid in the xy-plane
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General Parameterizations

In general, a parameterization or coordinate system provides a way of representing a curved object

by means of a simple region in the parameter space (an interval, rectangle, or rectangular box), along

with a function mapping that region into the curved object. In the next section, we use this idea to

parameterize curved surfaces in 3-space.

How Do We Parameterize a Surface?

In Section 17.1 we parameterized a circle in 2-space using the equations

x = cos t, y = sin t.

In 3-space, the same circle in the xy-plane has parametric equations

x = cos t, y = sin t, z = 0.

We add the equation z = 0 to specify that the circle is in the xy-plane. If we wanted a circle in the

plane z = 3, we would use the equations

x = cos t, y = sin t, z = 3.

Suppose now we let z vary freely, as well as t. We get circles in every horizontal plane, forming

a cylinder as in the left of Figure 21.3. Thus, we need two parameters, t and z, to parameterize the

cylinder.

x y

z

z = 0

z = 1

z = 2

z = 3

z = −3

❘

� = 0

❘

� = �∕6

❘

� = �∕3

❄

� = �∕2

✠

� = 2�∕3

x y

z

Figure 21.3: The cylinder x = cos t, y = sin t, z = z

We can contrast curves and surfaces. A curve, though it may live in two or three dimensions, is

itself one-dimensional; if we move along it we can only move backward and forward in one direction.

Thus, it only requires one parameter to trace out a curve.

A surface is 2-dimensional; at any given point there are two independent directions we can move.

For example, on the cylinder we can move vertically, or we can circle around the z-axis horizontally.

So we need two parameters to describe it. We can think of the parameters as map coordinates, like

longitude and latitude on the surface of the earth. Just as polar coordinates give a polar grid on a

circular region, so the parameters for a surface give a grid on the surface. See Figure 21.3 on the

right.

In the case of the cylinder our parameters are t and z, so

x = cos t, y = sin t, z = z, 0 ≤ t < 2�, −∞ < z < ∞.

The last equation, z = z, looks strange, but it reminds us that we are in three dimensions, not two,

and that the z-coordinate on our surface is allowed to vary freely.

In general, we express the coordinates, (x, y, z), of a point on a surface S in terms of two pa-

rameters, s and t:

x = f1(s, t), y = f2(s, t), z = f3(s, t).
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As the values of s and t vary, the corresponding point (x, y, z) sweeps out the surface, S. (See Fig-

ure 21.4.) The function which sends the point (s, t) to the point (x, y, z) is called the parameterization

of the surface.

R

✻
(s, t)

y
x

z

S

✻

(x, y, z) =
(

f1(s, t), f2(s, t), f3(s, t)
)

Figure 21.4: The parameterization sends each point (s, t) in the parameter region, R, to a point

(x, y, z) = (f1(s, t), f2(s, t), f3(s, t)) in the surface, S

Using Position Vectors

We can use the position vector r⃗ = xi⃗ + yj⃗ + zk⃗ to combine the three parametric equations for a

surface into a single vector equation. For example, the parameterization of the cylinderx = cos t, y =

sin t, z = z can be written as

r⃗ (t, z) = cos ti⃗ + sin tj⃗ + zk⃗ 0 ≤ t < 2�, −∞ < z < ∞.

For a general parameterized surface S, we write

r⃗ (s, t) = f1(s, t)i⃗ + f2(s, t)j⃗ + f3(s, t)k⃗ .

Parameterizing a Surface of the Form z = f (x, y)

The graph of a function z = f (x, y) can be given parametrically simply by letting the parameters s

and t be x and y:

x = s, y = t, z = f (s, t).

Example 1 Give a parametric description of the lower hemisphere of the sphere x2 + y2 + z2 = 1.

Solution The surface is the graph of the function z = −
√

1 − x2 − y2 over the region x2+y2 ≤ 1 in the plane.

Then parametric equations are x = s, y = t, z = −
√

1 − s2 − t2, where the parameters s and t vary

inside and on the unit circle.

In practice we often think of x and y as parameters rather than introduce new parameters s and

t. Thus, we may write x = x, y = y, z = f (x, y).

Parameterizing Planes

Consider a plane containing two nonparallel vectors v⃗ 1 and v⃗ 2 and a point P0 with position vector

r⃗ 0. We can get to any point on the plane by starting at P0 and moving parallel to v⃗ 1 or v⃗ 2, adding

multiples of them to r⃗ 0. (See Figure 21.5.)

v⃗1

v⃗2

P0

Figure 21.5: The plane r⃗ (s, t) = r⃗ 0 + sv⃗ 1 + tv⃗ 2 and some

points corresponding to various choices of s and t
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Since sv⃗ 1 is parallel to v⃗ 1 and tv⃗ 2 is parallel to v⃗ 2, we have the following result:

Parameterizing a Plane

The plane through the point with position vector r⃗ 0 and containing the two nonparallel vectors

v⃗ 1 and v⃗ 2 has parameterization

r⃗ (s, t) = r⃗ 0 + sv⃗ 1 + tv⃗ 2.

If r⃗ 0 = x0i⃗ + y0j⃗ + z0k⃗ , and v⃗ 1 = a1i⃗ + a2j⃗ + a3k⃗ , and v⃗ 2 = b1 i⃗ + b2j⃗ + b3k⃗ , then the

parameterization of the plane can be expressed with the parametric equations

x = x0 + sa1 + tb1, y = y0 + sa2 + tb2, z = z0 + sa3 + tb3.

Notice that the parameterization of the plane expresses the coordinates x, y, and z as linear

functions of the parameters s and t.

Example 2 Write a parameterization for the plane through the point (2,−1, 3) and containing the vectors v⃗ 1 =

2i⃗ + 3j⃗ − k⃗ and v⃗ 2 = i⃗ − 4j⃗ + 5k⃗ .

Solution A possible parameterization is

r⃗ (s, t) = r⃗ 0 + sv⃗ 1 + tv⃗ 2 = 2i⃗ − j⃗ + 3k⃗ + s(2i⃗ + 3j⃗ − k⃗ ) + t(i⃗ − 4j⃗ + 5k⃗ )

= (2 + 2s + t)i⃗ + (−1 + 3s − 4t)j⃗ + (3 − s + 5t)k⃗ ,

or equivalently,

x = 2 + 2s + t, y = −1 + 3s − 4t, z = 3 − s + 5t.

Parameterizations Using Spherical Coordinates

Recall the spherical coordinates �, �, and � introduced on page 872 of Chapter 16. On a sphere of

radius � = a we can use � and � as coordinates, similar to latitude and longitude on the surface

of the earth. (See Figure 21.6.) The latitude, however, is measured from the equator, whereas � is

measured from the north pole. If the positive x-axis passes through the Greenwich meridian, the

longitude and � are equal for 0 ≤ � ≤ �.

x

y

z

�

�

Figure 21.6: Parameterizing the sphere by � and �
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Example 3 You are at a point on a sphere with � = 3�∕4. Are you in the northern or southern hemisphere? If

� decreases, do you move closer to or farther from the equator?

Solution The equator has � = �∕2. Since 3�∕4 > �∕2, you are in the southern hemisphere. If � decreases,

you move closer to the equator.

Example 4 On a sphere, you are standing at a point with coordinates �0 and �0. Your antipodal point is the point

on the other side of the sphere on a line through you and the center. What are the �, � coordinates of

your antipodal point?

Solution Figure 21.7 shows that the coordinates are � = �0 + � if �0 < � or � = �0 − � if � ≤ �0 ≤ 2�, and

� = � − �0. Notice that if you are on the equator, then so is your antipodal point.

View from above

y

x

Point
(above xy-plane)

Antipodal Point
(below xy-plane)

�0
� + �0

z

xy-plane
seen edge-on

Side view

Point

Antipodal
Point

�0

� − �0

Figure 21.7: Two views of the xyz-coordinate system showing coordinates of antipodal points

Parameterizing a Sphere Using Spherical Coordinates

The sphere with radius 1 centered at the origin is parameterized by

x = sin� cos �, y = sin� sin �, z = cos�,

where 0 ≤ � ≤ 2� and 0 ≤ � ≤ �. (See Figure 21.8.)

x

y

z

�

�

✻

❄

cos�

sin�

Rad
ius
=
1

sin� sin �

si
n
�
co
s �

✛

✛

✛

✛

Figure 21.8: The relationship between x, y, z and �, � on a sphere of radius 1
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We can also write these equations in vector form:

r⃗ (�, �) = sin� cos � i⃗ + sin� sin � j⃗ + cos� k⃗ .

Since x2 + y2 + z2 = sin2 �(cos2 � + sin2 �) + cos2 � = sin2 � + cos2 � = 1, this verifies that

the point with position vector r⃗ (�, �) does lie on the sphere of radius 1. Notice that the z-coordinate

depends only on the parameter �. Geometrically, this means that all points on the same latitude have

the same z-coordinate.

Example 5 Find parametric equations for the following spheres:

(a) Center at the origin and radius 2.

(b) Center at the point with Cartesian coordinates (2,−1, 3) and radius 2.

Solution (a) We must scale the distance from the origin by 2. Thus, we have

x = 2 sin� cos �, y = 2 sin� sin �, z = 2 cos�,

where 0 ≤ � ≤ 2� and 0 ≤ � ≤ �. In vector form, this is written

r⃗ (�, �) = 2 sin� cos �i⃗ + 2 sin� sin �j⃗ + 2 cos�k⃗ .

(b) To shift the center of the sphere from the origin to the point (2,−1, 3), we add the vector pa-

rameterization we found in part (a) to the position vector of (2,−1, 3). (See Figure 21.9.) This

gives

r⃗ (�, �) = 2i⃗ − j⃗ + 3k⃗ + (2 sin� cos �i⃗ + 2 sin� sin �j⃗ + 2 cos�k⃗ )

= (2 + 2 sin� cos �)i⃗ + (−1 + 2 sin� sin �)j⃗ + (3 + 2 cos�)k⃗ ,

where 0 ≤ � ≤ 2� and 0 ≤ � ≤ �. Alternatively,

x = 2 + 2 sin� cos �, y = −1 + 2 sin� sin �, z = 3 + 2 cos�.

x

y

z

✒

2 sin� cos �i⃗ +
2 sin� sin �j⃗ +

2 cos�k⃗

✛ 2i⃗ − j⃗ + 3k⃗

Figure 21.9: Sphere with center at the point (2,−1, 3) and radius 2

Note that the same point can have more than one value for � or �. For example, points with

� = 0 also have � = 2�, unless we restrict � to the range 0 ≤ � < 2�. Also, the north pole, at � = 0,

and the south pole, at � = �, can have any value of �.
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Parameterizing Surfaces of Revolution

Many surfaces have an axis of rotational symmetry and circular cross sections perpendicular to that

axis. These surfaces are referred to as surfaces of revolution.

Example 6 Find a parameterization of the cone whose base is the circle x2 + y2 = a2 in the xy-plane and whose

vertex is at height ℎ above the xy-plane. (See Figure 21.10.)

x y

z

�
r⃗0

a

✻

❄

ℎ

zk⃗

r⃗ 1

a

r✻

❄

z

✻

❄

ℎ

Figure 21.10: The cone whose base is the circle x2 + y2 = a2 in the xy-plane and whose vertex is at the point (0, 0, ℎ)

and the vertical cross section through the cone

Solution We use cylindrical coordinates, r, �, z. (See Figure 21.10.) In the xy-plane, the radius vector, r⃗ 0,

from the z-axis to a point on the cone in the xy-plane is

r⃗ 0 = a cos �i⃗ + a sin �j⃗ .

Above the xy-plane, the radius of the circular cross section, r, decreases linearly from r = a when

z = 0 to r = 0 when z = ℎ. From the similar triangles in Figure 21.10,

a

ℎ
=

r

ℎ − z
.

Solving for r, we have

r =
(

1 −
z

ℎ

)

a.

The horizontal radius vector, r⃗ 1, at height z has components similar to r⃗ 0, but with a replaced by r:

r⃗ 1 = r cos �i⃗ + r sin �j⃗ =
(

1 −
z

ℎ

)

a cos �i⃗ +
(

1 −
z

ℎ

)

a sin �j⃗ .

As � goes from 0 to 2�, the vector r⃗1 traces out the horizontal circle in Figure 21.10. We get the

position vector, r⃗ , of a point on the cone by adding the vector zk⃗ , so

r⃗ = r⃗ 1 + zk⃗ = a

(

1 −
z

ℎ

)

cos �i⃗ + a

(

1 −
z

ℎ

)

sin �j⃗ + zk⃗ , for 0 ≤ z ≤ ℎ and 0 ≤ � ≤ 2�.

These equations can be written as

x =
(

1 −
z

ℎ

)

a cos �, y =
(

1 −
z

ℎ

)

a sin �, z = z.

The parameters are � and z.
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Example 7 Consider the bell of a trumpet. A model for the radius z = f (x) of the horn (in cm) at a distance x

cm from the large open end is given by the function

f (x) =
6

(x + 1)0.7
.

The bell is obtained by rotating the graph of f about the x-axis. Find a parameterization for the first

24 cm of the bell. (See Figure 21.11.)

x y

z

Figure 21.11: The bell of a trumpet obtained by rotating the

graph of z = f (x) about the x-axis

Solution At distance x from the large open end of the horn, the cross section parallel to the yz-plane is a circle

of radius f (x), with center on the x-axis. Such a circle can be parameterized by y = f (x) cos�,

z = f (x) sin �. Thus, we have the parameterization

x = x, y =

(

6

(x + 1)0.7

)

cos �, z =

(

6

(x + 1)0.7

)

sin �, 0 ≤ x ≤ 24, 0 ≤ � ≤ 2�.

The parameters are x and �.

Parameter Curves

On a parameterized surface, the curve obtained by setting one of the parameters equal to a constant

and letting the other vary is called a parameter curve. If the surface is parameterized by

r⃗ (s, t) = f1(s, t)i⃗ + f2(s, t)j⃗ + f3(s, t)k⃗ ,

there are two families of parameter curves on the surface, one family with t constant and the other

with s constant.

Example 8 Consider the vertical cylinder

x = cos t, y = sin t, z = z.

(a) Describe the two parameter curves through the point (0, 1, 1).

(b) Describe the family of parameter curves with t constant and the family with z constant.

Solution (a) Since the point (0, 1, 1) corresponds to the parameter values t = �∕2 and z = 1, there are two

parameter curves, one with t = �∕2 and the other with z = 1. The parameter curve with t = �∕2

has the parametric equations

x = cos
(

�

2

)

= 0, y = sin
(

�

2

)

= 1, z = z,

with parameter z. This is a line through the point (0, 1, 1) parallel to the z-axis.

The parameter curve with z = 1 has the parametric equations

x = cos t, y = sin t, z = 1,
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with parameter t. This is a unit circle parallel to and one unit above the xy-plane centered on the

z-axis.

(b) First, fix t = t0 for t and let z vary. The curves parameterized by z have equations

x = cos t0, y = sin t0, z = z.

These are vertical lines on the cylinder parallel to the z-axis. (See Figure 21.12.)

The other family is obtained by fixing z = z0 and varying t. Curves in this family are

parameterized by t and have equations

x = cos t, y = sin t, z = z0.

They are circles of radius 1 parallel to the xy-plane centered on the z-axis. (See Figure 21.13.)

x
y

z

Figure 21.12: The family of parameter curves

with t = t0 for the cylinder

x = cos t, y = sin t, z = z

x

y

z

Figure 21.13: The family of parameter curves

with z = z0 for the cylinder

x = cos t, y = sin t, z = z

Example 9 Describe the families of parameter curves with � = �0 and � = �0 for the sphere

x = sin� cos �, y = sin� sin �, z = cos�,

where 0 ≤ � ≤ 2�, 0 ≤ � ≤ �.

Solution Since � measures latitude, the family with� constant consists of the circles of constant latitude. (See

Figure 21.14.) Similarly, the family with � constant consists of the meridians (semicircles) running

between the north and south poles. (See Figure 21.15.)

x

y

z

Figure 21.14: The family of parameter

curves with � = �0 for the sphere

parameterized by (�, �)

x

y

z

Figure 21.15: The family of

parameter curves with � = �0 for

the sphere parameterized by (�, �)
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We have seen parameter curves before on pages 661-663 of Section 12.2: The cross sections

with x = a or y = b on a surface z = f (x, y) are examples of parameter curves. So are the grid

lines on a computer sketch of a surface. The small regions shaped like parallelograms surrounded

by nearby pairs of parameter curves are called parameter rectangles. See Figure 21.16.

✲Parameter curve:
with y = b

✛ Parameter curve:
with x = a

Figure 21.16: Parameter curves x = a or y = b on a surface z = f (x, y); the darker

region is a parameter rectangle

Exercises and Problems for Section 21.1

EXERCISES

In Exercises 1–4 decide if the parameterization describes a

curve or a surface.

1. r⃗ (s) = si⃗ + (3 − s)j⃗ + s2k⃗

2. r⃗ (s, t) = (s + t)i⃗ + (3 − s)j⃗

3. r⃗ (s, t) = cos s i⃗ + sin s j⃗ + t2k⃗

4. r⃗ (s) = cos s i⃗ + sin s j⃗ + s2k⃗

Describe in words the objects parameterized by the equa-

tions in Exercises 5–8. (Note: r and � are cylindrical coordi-

nates.)

5. x = r cos � y = r sin � z = 7

0 ≤ r ≤ 5 0 ≤ � ≤ 2�

6. x = 5 cos � y = 5 sin � z = z

0 ≤ � ≤ 2� 0 ≤ z ≤ 7

7. x = 5 cos � y = 5 sin � z = 5�

0 ≤ � ≤ 2�

8. x = r cos � y = r sin � z = r

0 ≤ r ≤ 5 0 ≤ � ≤ 2�

In Exercises 9–12, for a sphere parameterized using the

spherical coordinates � and �, describe in words the part of

the sphere given by the restrictions.

9. 0 ≤ � < 2�, 0 ≤ � ≤ �∕2

10. � ≤ � < 2�, 0 ≤ � ≤ �

11. �∕4 ≤ � < �∕3, 0 ≤ � ≤ �

12. 0 ≤ � ≤ �, �∕4 ≤ � < �∕3

PROBLEMS

In Problems 13–16, give parametric equations for the plane

through the point with position vector r⃗ 0 and containing the

vectors v⃗ 1 and v⃗ 2.

13. r⃗ 0 = i⃗ , v⃗ 1 = j⃗ , v⃗ 2 = k⃗

14. r⃗ 0 = j⃗ , v⃗ 1 = k⃗ , v⃗ 2 = i⃗

15. r⃗ 0 = i⃗ + j⃗ , v⃗ 1 = j⃗ + k⃗ , v⃗ 2 = i⃗ + k⃗

16. r⃗ 0 = i⃗ + j⃗ + k⃗ , v⃗ 1 = i⃗ − k⃗ , v⃗ 2 = −j⃗ + k⃗

In Problems 17–18, parameterize the plane that contains the

three points.

17. (0, 0, 0), (1, 2, 3), (2, 1, 0)

18. (1, 2, 3), (2, 5, 8), (5, 2, 0)

In Problems 19–20, give two nonparallel vectors and the co-

ordinates of a point in the plane with given parametric equa-

tions

19. x = 2s + 3t, y = s − 5t, z = −s + 2t

20. x = 2 + s + t, y = s − t, z = −1 + s + t

In Problems 21–22, parameterize the plane through the point

with the given normal vector.

21. (3, 5, 7), i⃗ + j⃗ + k⃗

22. (5, 1, 4), i⃗ + 2j⃗ + 3k⃗

23. Does the plane r⃗ (s, t) = (2 + s)i⃗ + (3 + s + t)j⃗ + 4tk⃗

contain the following points?

(a) (4, 8, 12) (b) (1, 2, 3)
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24. Are the following two planes parallel?

x = 2 + s + t, y = 4 + s − t, z = 1 + 2s, and

x = 2 + s + 2t, y = t, z = s − t.

In Problems 25–28, describe the families of parameter

curves with s = s0 and t = t0 for the parameterized surface.

25. x = s, y = t, z = 1 for −∞ < s < ∞, −∞ < t <

∞

26. x = s, y = cos t, z = sin t for −∞ < s < ∞,

0 ≤ t ≤ 2�

27. x = s y = t, z = s2 + t2 for −∞ < s < ∞,

−∞ < t < ∞

28. x = cos s sin t, y = sin s sin t, z = cos t for 0 ≤

s ≤ 2�, 0 ≤ t ≤ �

29. A city is described parametrically by the equation

r⃗ = (x0 i⃗ + y0j⃗ + z0k⃗ ) + sv⃗1 + tv⃗2

where v⃗ 1 = 2i⃗ − 3j⃗ + 2k⃗ and v⃗ 2 = i⃗ + 4j⃗ + 5k⃗ . A

city block is a rectangle determined by v⃗ 1 and v⃗ 2. East

is in the direction of v⃗ 1 and north is in the direction of

v⃗ 2. Starting at the point (x0, y0, z0), you walk 5 blocks

east, 4 blocks north, 1 block west and 2 blocks south.

What are the parameters of the point where you end up?

What are your x, y and z coordinates at that point?

30. You are at a point on the earth with longitude 80◦ West

of Greenwich, England, and latitude 40◦ North of the

equator.

(a) If your latitude decreases, have you moved nearer

to or farther from the equator?

(b) If your latitude decreases, have you moved nearer

to or farther from the north pole?

(c) If your longitude increases (say, to 90◦ West), have

you moved nearer to or farther from Greenwich?

31. Describe in words the curve � = �∕4 on the surface of

the globe.

32. Describe in words the curve � = �∕4 on the surface of

the globe.

33. A decorative oak post is 48′′ long and is turned on a

lathe so that its profile is sinusoidal, as shown in Fig-

ure 21.17.

(a) Describe the surface of the post parametrically us-

ing cylindrical coordinates.

(b) Find the volume of the post.

✻

❄

6′′

✲✛4′′

✛✛2′′

Figure 21.17

34. Find parametric equations for the sphere

(x − a)2 + (y − b)2 + (z − c)2 = d 2.

35. You are standing at a point on the equator of a sphere pa-

rameterized by spherical coordinates �0 and �0. If you

go halfway around the equator and halfway up toward

the north pole along a longitude, what are your new �

and � coordinates?

36. Find parametric equations for the cone x2 + y2 = z2.

37. Parameterize the cone in Example 6 on page 1028 in

terms of r and �.

38. Give a parameterization of the circle of radius a cen-

tered at the point (x0, y0, z0) and in the plane parallel to

two given unit vectors u⃗ and v⃗ such that u⃗ ⋅ v⃗ = 0.

For Problems 39–41,

(a) Write an equation in x, y, z and identify the parametric

surface.

(b) Draw a picture of the surface.

39. x = 2s y = s + t z = 1 + s − t

0 ≤ s ≤ 1 0 ≤ t ≤ 1

40. x = s y = t z =
√

1 − s2 − t2

s2 + t2 ≤ 1 s, t ≥ 0

41. x = s + t y = s − t z = s2 + t2

0 ≤ s ≤ 1 0 ≤ t ≤ 1

Strengthen Your Understanding

In Problems 42–43, explain what is wrong with the state-

ment.

42. The parameter curves of a parameterized surface inter-

sect at right angles.

43. The parameter curves for constant � on the sphere

r⃗ (�, �) = R sin� cos �i⃗ + R sin� sin �j⃗ + R cos�k⃗

are circles of radius R.

In Problems 44–46, give an example of:

44. A parameterization r⃗ (s, t) of the plane tangent to the

unit sphere at the point where � = �∕4 and � = �∕4.
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45. An equation of the form f (x, y, z) = 0 for the plane

r⃗ (s, t) = (s + 1) i⃗ + (t + 2) j⃗ + (s + t) k⃗ .

46. A parameterized curve on the sphere r⃗ (�, �) =

sin� cos �i⃗ + sin� sin �j⃗ + cos�k⃗ that is not a pa-

rameter curve.

Are the statements in Problems 47–53 true or false? Give

reasons for your answer.

47. The equations x = s+ 1, y = t− 2, z = 3 parameterize

a plane.

48. The equations x = 2s − 1, y = −s + 3, z = 4 + s

parameterize a plane.

49. If r⃗ = r⃗ (s, t) parameterizes the upper hemisphere

x2 + y2 + z2 = 1, z ≥ 0, then r⃗ = −r⃗ (s, t) parame-

terizes the lower hemisphere x2 + y2 + z2 = 1, z ≤ 0.

50. If r⃗ = r⃗ (s, t) parameterizes the upper hemisphere

x2 + y2 + z2 = 1, z ≥ 0, then r⃗ = r⃗ (−s,−t) parameter-

izes the lower hemisphere x2 + y2 + z2 = 1, z ≤ 0.

51. If r⃗1 (s, t) parameterizes a plane then r⃗2 (s, t) =

r⃗ 1(s, t) + 2i⃗ − 3j⃗ + k⃗ parameterizes a parallel plane.

52. Every point on a parameterized surface has a parameter

curve passing through it.

53. If s0 ≠ s1, then the parameter curves r⃗ (s0, t) and r⃗ (s1, t)

do not intersect.

54. Match the parameterizations (I)–(IV) with the surfaces

(a)–(d). In all cases 0 ≤ s ≤ �∕2, 0 ≤ t ≤ �∕2. Note

that only part of the surface may be described by the

given parameterization.

(a) Cylinder

(b) Plane

(c) Sphere

(d) Cone

I. x = cos s, y = sin t, z = cos s + sin t

II. x = cos s, y = sin s, z = cos t

III. x = sin s cos t, y = sin s sin t, z = cos s

IV. x = cos s, y = sin t, z =
√

cos2 s + sin2 t

21.2 CHANGE OF COORDINATES IN A MULTIPLE INTEGRAL

In Chapter 16 we used polar, cylindrical, and spherical coordinates to simplify iterated integrals.

In this section, we discuss more general changes of coordinate. In the process, we see where the

factors r and �2 sin� come from when we convert to polar, cylindrical, or spherical coordinates (see

pages 865, 871, and 873).

Polar Change of Coordinates Revisited

Consider the integral ∫
R
(x+ y) dA where R is the region in the first quadrant bounded by the circle

x2 + y2 = 16 and the x and y-axes. Writing the integral in Cartesian and polar coordinates, we have

∫R
(x + y) dA =

∫

4

0 ∫

√

16−x2

0

(x + y) dy dx =
∫

�∕2

0 ∫

4

0

(r cos � + r sin �)r drd�.

The integral on the right is over the rectangle in the r�-plane given by 0 ≤ r ≤ 4, 0 ≤ � ≤

�∕2. The conversion from polar to Cartesian coordinates changes this rectangle into a quarter-disk.

Figure 21.18 shows how a typical rectangle (shaded) in the r�-plane with sides of length Δr and Δ�

corresponds to a curved rectangle in the xy-plane with sides of length Δr and rΔ�. The extra r is

needed because the correspondence between r, � and x, y not only curves the lines r = 1, 2, 3… into

circles, it also stretches those lines around larger and larger circles.

1 2 3 4

�∕8

�∕4

3�∕8

�∕2

� = �∕8

� = �∕4

r = 2 r = 3

r

�

1 2 3 4

1

2

3

x

y

� = �∕4

� = �∕8

Figure 21.18: A grid in the r�-plane and the corresponding curved grid in the xy-plane
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General Change of Coordinates

We now consider a general change of coordinates, where x, y coordinates are related to s, t coordi-

nates by the differentiable functions

x = x(s, t) y = y(s, t).

Just as a rectangular region in the r�-plane corresponds to a region in the xy-plane, a rectangular

region, T , in the st-plane corresponds to a region, R, in the xy-plane. We assume that the change of

coordinates is one-to-one, that is, that each point in R corresponds to only one point in T .

(s, t) (s + Δs, t)

s

t

Tij

(s, t + Δt)

(x(s, t), y(s, t))

(x(s, t + Δt), y(s, t + Δt))

x

y

b⃗

Rij

(x(s + Δs, t), y(s + Δs, t))

a⃗

Figure 21.19: A small rectangle Tij in the st-plane and the corresponding region Rij of the xy-plane

We divide T into small rectangles Tij with sides of length Δs and Δt. (See Figure 21.19.) The

corresponding piece Rij of the xy-plane is a quadrilateral with curved sides. If we choose Δs and

Δt small, then by local linearity of x(s, t) and y(s, t), we know Rij is approximately a parallelogram.

Recall from Chapter 13 that the area of the parallelogram with sides a⃗ and b⃗ is ‖a⃗ × b⃗ ‖. Thus,

we need to find the sides of Rij as vectors. The side of Rij corresponding to the bottom side of Tij
has endpoints (x(s, t), y(s, t)) and (x(s + Δs, t), y(s+ Δs, t)), so in vector form that side is

a⃗ = (x(s+ Δs, t) − x(s, t))i⃗ + (y(s + Δs, t) − y(s, t))j⃗ ≈
(

)x

)s
Δs

)

i⃗ +

(

)y

)s
Δs

)

j⃗ .

Similarly, the side of Rij corresponding to the left edge of Tij is given by

b⃗ ≈
(

)x

)t
Δt

)

i⃗ +

(

)y

)t
Δt

)

j⃗ .

Computing the cross product, we get

Area Rij ≈ ‖a⃗ × b⃗ ‖ ≈
|

|

|

|

|

(

)x

)s
Δs

)

(

)y

)t
Δt

)

−
(

)x

)t
Δt

)

(

)y

)s
Δs

)

|

|

|

|

|

=
|

|

|

|

)x

)s
⋅

)y

)t
−

)x

)t
⋅

)y

)s

|

|

|

|

ΔsΔt.

Using determinant notation,1 we define the Jacobian,
)(x, y)

)(s, t)
, as follows:

)(x, y)

)(s, t)
=

)x

)s
⋅

)y

)t
−

)x

)t
⋅

)y

)s
=

|

|

|

|

|

|

|

|

|

|

)x

)s

)x

)t

)y

)s

)y

)t

|

|

|

|

|

|

|

|

|

|

.

1See Appendix E.
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Thus, we can write

Area Rij ≈
|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ΔsΔt.

To compute ∫
R
f (x, y) dA, where f is a continuous function, we look at the Riemann sum obtained

by dividing the region R into the small curved regions Rij , giving

∫R
f (x, y) dA ≈

∑

i,j

f (uij , vij) ⋅ Area of Rij ≈
∑

i,j

f (uij , vij)
|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ΔsΔt.

Each point (uij , vij) in Rij corresponds to a point (sij , tij) in Tij , so the sum can be written in terms

of s and t:
∑

i,j

f (x(sij, tij), y(sij, tij))
|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ΔsΔt.

This is a Riemann sum in terms of s and t, so as Δs and Δt approach 0, we get

∫R
f (x, y) dA =

∫T
f (x(s, t), y(s, t))

|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ds dt.

To convert an integral from x, y to s, t coordinates we make three changes:

1. Substitute for x and y in the integrand in terms of s and t.

2. Change the xy region R into an st region T .

3. Use the absolute value of the Jacobian to change the area element by making the substi-

tution dx dy =
|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ds dt.

Example 1 Check that the Jacobian
)(x, y)

)(r, �)
= r for polar coordinates x = r cos �, y = r sin �.

Solution We have
)(x, y)

)(r, �)
=

|

|

|

|

|

|

|

|

|

|

)x

)r

)x

)�

)y

)r

)y

)�

|

|

|

|

|

|

|

|

|

|

=
|

|

|

|

|

cos � −r sin �

sin � r cos �

|

|

|

|

|

= r cos2 � + r sin2 � = r.

Example 2 Find the area of the ellipse
x2

a2
+

y2

b2
= 1.

Solution Let x = as, y = bt. Then the ellipse x2∕a2 + y2∕b2 = 1 in the xy-plane corresponds to the circle

s2 + t2 = 1 in the st-plane. The Jacobian is
|

|

|

|

|

a 0

0 b

|

|

|

|

|

= ab. Thus, if R is the ellipse in the xy-plane and

T is the unit circle in the st-plane, we get

Area of xy-ellipse =
∫R

1 dA =
∫T

1 ab ds dt = ab
∫T

ds dt = ab ⋅ Area of st-circle = �ab.
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Change of Coordinates in Triple Integrals

For triple integrals, there is a similar formula. Suppose the differentiable functions

x = x(s, t, u), y = y(s, t, u), z = z(s, t, u)

define a one-to-one change of coordinates from a region S in stu-space to a region W in xyz-space.

Then, the Jacobian of this change of coordinates is given by the determinant2

)(x, y, z)

)(s, t, u)
=

|

|

|

|

|

|

|

|

)x

)s

)x

)t

)x

)u
)y

)s

)y

)t

)y

)u
)z

)s

)z

)t

)z

)u

|

|

|

|

|

|

|

|

.

Just as the Jacobian in two dimensions gives us the change in the area element, the Jacobian in three

dimensions represents the change in the volume element. Thus, we have

∫W
f (x, y, z) dx dy dz =

∫S
f (x(s, t, u), y(s, t, u), z(s, t, u))

|

|

|

|

)(x, y, z)

)(s, t, u)

|

|

|

|

ds dt du.

Problem 11 at the end of this section asks you to check that the Jacobian for the change of coor-

dinates to spherical coordinates is �2 sin�. The next example generalizes Example 2 to ellipsoids.

Example 3 Find the volume of the ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1.

Solution Let x = as, y = bt, z = cu. The Jacobian is computed to be abc. The xyz-ellipsoid corresponds to

the stu-sphere s2 + t2 + u2 = 1. Thus, as in Example 2,

Volume of xyz-ellipsoid = abc ⋅ Volume of stu-sphere = abc
4

3
� =

4

3
�abc.

Exercises and Problems for Section 21.2

EXERCISES

In Exercises 1–4, find the absolute value of the Jacobian,
|

|

|

)(x,y)

)(s,t)

|

|

|

, for the given change of coordinates.

1. x = 5s + 2t, y = 3s + t

2. x = s2 − t2, y = 2st

3. x = es cos t, y = es sin t

4. x = s3 − 3st2, y = 3s2t − t3

In Exercises 5–7, find positive numbers a and b so that the

change of coordinates s = ax, t = by transforms the integral

∫ ∫
R
dx dy into

∫ ∫
T

|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ds dt

for the given regions R and T .

5. R is the rectangle 0 ≤ x ≤ 10, 0 ≤ y ≤ 1 and T is the

square 0 ≤ s, t ≤ 1.

6. R is the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1∕4 and T is the

square 0 ≤ s, t ≤ 1.

7. R is the rectangle 0 ≤ x ≤ 50, 0 ≤ y ≤ 10 and T is the

square 0 ≤ s, t ≤ 1.

In Exercises 8–9, find a number a so that the change of coor-

dinates s = x+ay, t = y transforms the integral ∫ ∫
R
dxdy

over the parallelogram R in the xy-plane into an integral

∫ ∫
T

|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ds dt

over a rectangle T in the st-plane.

8. R has vertices (0, 0), (10, 0), (12, 3), (22, 3)

9. R has vertices (0, 0), (10, 0), (−15, 5), (−5, 5)

2See Appendix E.
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PROBLEMS

10. Find the region R in the xy-plane corresponding to the

region T consisting of points (s, t) with 0 ≤ s ≤ 3,

0 ≤ t ≤ 2 for the change of coordinates x = 2s−3t, y =

s − 2t. Check that

∫
R

dx dy =
∫
T

|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ds dt.

11. Compute the Jacobian for the change of coordinates

into spherical coordinates:

x = � sin� cos �, y = � sin� sin �, z = � cos�.

12. For the change of coordinates x = 3s−4t, y = 5s+2t,

show that
)(x, y)

)(s, t)
⋅

)(s, t)

)(x, y)
= 1

13. Use the change of coordinates x = 2s + t, y = s − t to

compute the integral ∫
R
(x+y) dA, whereR is the paral-

lelogram formed by (0, 0), (3,−3), (5,−2), and (2, 1).

14. Use the change of coordinates s = x + y, t = y to find

the area of the ellipse x2 + 2xy + 2y2 = 1.

15. Use the change of coordinates s = y, t = y−x2 to eval-

uate ∫ ∫
R
x dx dy over the region R in the first quadrant

bounded by y = 0, y = 16, y = x2, and y = x2 − 9.

16. If R is the triangle bounded by x + y = 1, x = 0, and

y = 0, evaluate the integral ∫
R
cos

(

x−y

x+y

)

dx dy.

17. Two independent random numbers x and y from a

normal distribution with mean 0 and standard de-

viation � have joint density function p(x, y) =

(1∕(2��2)e−(x
2+y2)∕(2�2). The average z = (x+ y)∕2 has

a one-variable probability density function of its own.

(a) Give a double integral expression for F (t), the

probability that z ≤ t.

(b) Give a single integral expression for F (t). To do

this, make the change of coordinates: u = (x+y)∕2,

v = (x − y)∕2 and then do the integral on dv. Use

the fact that ∫
∞

−∞
e−x

2∕a2dx = a
√

�.

(c) Find the probability density function F ′(t) of z.

(d) What is the name of the distribution of z?

18. A river follows the path y = f (x) where x, y are in

kilometers. Near the sea, it widens into a lagoon, then

narrows again at its mouth. See Figure 21.20. At the

point (x, y), the depth, d(x, y), of the lagoon is given by

d(x, y) = 40 − 160(y − f (x))2 − 40x2 meters.

The lagoon itself is described by d(x, y) ≥ 0. What is

the volume of the lagoon in cubic meters? [Hint: Use

new coordinates u = x∕2, v = y−f (x) and Jacobians.]

(1, f (1))

Sea

y

(−1, f (−1)) River, y = f (x)

■

Lagoon

Figure 21.20

Strengthen Your Understanding

In Problems 19–20, explain what is wrong with the state-

ment.

19. If R is the region 0 ≤ x ≤ 1, 0 ≤ y ≤ 4 and T is the re-

gion 0 ≤ s ≤ 1, −2 ≤ t ≤ 2, using the formulas x = s,

y = t2, we have

∫
R

f (x, y) dx dy =
∫
T

f (s, t2)
|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ds dt.

20. If R and T are corresponding regions of the xy- and st-

planes, the change of coordinates x = t3, y = s leads to

the formula

∫
R

(x + 2y) dx dy =
∫
T

(

t3 + 2s
) (

−3t2
)

ds dt.

In Problems 21–22, give an example of:

21. A change of coordinates x = x(s, t), y = y(s, t) where

the rectangle 0 ≤ s ≤ 1, 0 ≤ t ≤ 1 in the st-plane

corresponds to a different rectangle in the xy-plane.

22. A change of coordinates x = x(s, t), y = y(s, t) where

every region in the st-plane corresponds to a region in

the xy-plane with twice the area.

In Problems 23–24, consider a change of variable in the in-

tegral ∫
R
f (x, y) dA from x, y to s, t. Are the following state-

ments true or false?

23. If the Jacobian
|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

> 1, the value of the s, t-

integral is greater than the original x, y-integral.

24. The Jacobian cannot be negative.
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21.3 FLUX INTEGRALS OVER PARAMETERIZED SURFACES

Most of the flux integrals we are likely to encounter can be computed using the methods of Sec-

tions 19.1 and 19.2. In this section, we briefly consider the general case: how to compute the flux of

a smooth vector field F⃗ through a smooth oriented surface, S, parameterized by

r⃗ = r⃗ (s, t),

for (s, t) in some region R of the parameter space. The method is similar to the one used for graphs

in Section 19.2. We consider a parameter rectangle on the surface S corresponding to a rectangular

region with sides Δs and Δt in the parameter space. (See Figure 21.21.)

✻
❄Δt

✲✛
Δs

t

s

✲R ✒

)r⃗

)t
Δt

■

)r⃗

)s
Δs

❘

Parameter
rectangle

S

Figure 21.21: Parameter rectangle on the surface S corresponding to a small rectangular region in the

parameter space, R

If Δs and Δt are small, the area vector, ΔA⃗ , of the patch is approximately the area vector of the

parallelogram defined by the vectors

r⃗ (s + Δs, t) − r⃗ (s, t) ≈
)r⃗

)s
Δs, and r⃗ (s, t+ Δt) − r⃗ (s, t) ≈

)r⃗

)t
Δt.

Thus,

ΔA⃗ ≈
)r⃗

)s
×
)r⃗

)t
ΔsΔt.

We assume that the vector )r⃗ ∕)s×)r⃗ ∕)t is never zero and points in the direction of the unit normal

orientation vector n⃗ . If the vector )r⃗ ∕)s × )r⃗ ∕)t points in the opposite direction to n⃗ , we reverse

the order of the cross product. Replacing ΔA⃗ , Δs, and Δt by dA⃗ , ds, and dt, we write

dA⃗ =

(

)r⃗

)s
×
)r⃗

)t

)

ds dt.

The Flux of a Vector Field Through a Parameterized Surface

The flux of a smooth vector field F⃗ through a smooth oriented surface S parameterized by

r⃗ = r⃗ (s, t), where (s, t) varies in a parameter region R, is given by

∫S
F⃗ ⋅ dA⃗ =

∫R
F⃗ (r⃗ (s, t)) ⋅

(

)r⃗

)s
×
)r⃗

)t

)

ds dt.

We choose the parameterization so that )r⃗ ∕)s×)r⃗ ∕)t is never zero and points in the direction

of n⃗ everywhere.
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Example 1 Find the flux of the vector field F⃗ = xi⃗ + yj⃗ through the surface S, oriented downward and given

by

x = 2s, y = s + t, z = 1 + s − t, where 0 ≤ s ≤ 1, 0 ≤ t ≤ 1.

Solution Since S is parameterized by

r⃗ (s, t) = 2si⃗ + (s + t)j⃗ + (1 + s − t)k⃗ ,

we have
)r⃗

)s
= 2i⃗ + j⃗ + k⃗ and

)r

)t
= j⃗ − k⃗ ,

so

)r⃗

)s
×
)r⃗

)t
=

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗

2 1 1

0 1 −1

|

|

|

|

|

|

|

|

= −2i⃗ + 2j⃗ + 2k⃗ .

Since the vector −2i⃗ + 2j⃗ + 2k⃗ points upward, we use 2i⃗ − 2j⃗ − 2k⃗ for downward orientation.

Thus, the flux integral is given by

∫S
F⃗ ⋅ dA⃗ =

∫

1

0 ∫

1

0

(2si⃗ + (s + t)j⃗ ) ⋅ (2i⃗ − 2j⃗ − 2k⃗ ) ds dt

=
∫

1

0 ∫

1

0

(4s − 2s − 2t) dsdt =
∫

1

0 ∫

1

0

(2s − 2t) ds dt

=
∫

1

0

(

s2 − 2st
|

|

|

|

s=1

s=0

)

dt =
∫

1

0

(1 − 2t) dt = t − t2
|

|

|

|

1

0

= 0.

Area of a Parameterized Surface

The area ΔA of a small parameter rectangle is the magnitude of its area vector ΔA⃗ . Therefore,

Area of S =
∑

ΔA =
∑

‖ΔA⃗ ‖ ≈
∑

‖

‖

‖

‖

)r⃗

)s
×
)r⃗

)t

‖

‖

‖

‖

ΔsΔt.

Taking the limit as the area of the parameter rectangles tends to zero, we are led to the following

expression for the area of S.

The Area of a Parameterized Surface

The area of a surfaceS which is parameterized by r⃗ = r⃗ (s, t), where (s, t)varies in a parameter

region R, is given by

∫S
dA =

∫R

‖

‖

‖

‖

)r⃗

)s
×
)r⃗

)t

‖

‖

‖

‖

ds dt.
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Example 2 Compute the surface area of a sphere of radius a.

Solution We take the sphere S of radius a centered at the origin and parameterize it with the spherical coor-

dinates � and �. The parameterization is

x = a sin� cos �, y = a sin� sin �, z = a cos�, for 0 ≤ � ≤ 2�, 0 ≤ � ≤ �.

We compute

)r⃗

)�
×
)r⃗

)�
= (a cos� cos �i⃗ + a cos� sin �j⃗ − a sin�k⃗ ) × (−a sin� sin �i⃗ + a sin� cos �j⃗ )

= a2(sin2 � cos �i⃗ + sin2 � sin �j⃗ + sin� cos�k⃗ )

and so
‖

‖

‖

‖

)r⃗

)�
×
)r⃗

)�

‖

‖

‖

‖

= a2 sin�.

Thus, we see that the surface area of the sphere S is given by

Surface area =
∫S

dA =
∫R

‖

‖

‖

‖

)r⃗

)�
×
)r⃗

)�

‖

‖

‖

‖

d�d� =
∫

�

�=0 ∫

2�

�=0

a2 sin�d� d� = 4�a2.

Exercises and Problems for Section 21.3

EXERCISES

In Exercises 1–4 compute dA⃗ for the given parameterization

for one of the two orientations.

1. x = s + t, y = s − t, z = st

2. x = sin t, y = cos t, z = s + t

3. x = es, y = cos t, z = sin t

4. x = 0, y = u + v, z = u − v

In Exercises 5–9 compute the flux of the vector field F⃗

through the parameterized surface S.

5. F⃗ = zk⃗ and S is oriented upward and given, for

0 ≤ s ≤ 1, 0 ≤ t ≤ 1, by

x = s + t, y = s − t, z = s2 + t2.

6. F⃗ = xi⃗ + yj⃗ and S is oriented downward and given,

for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, by

x = 2s, y = s + t, z = 1 + s − t.

7. F⃗ = xi⃗ through the surface S oriented downward and

parameterized for 0 ≤ s ≤ 4, 0 ≤ t ≤ �∕6 by

x = es, y = cos(3t), z = 6s.

8. F⃗ = yi⃗ + xj⃗ and S is oriented away from the z-axis

and given, for 0 ≤ s ≤ �, 0 ≤ t ≤ 1, by

x = 3 sin s, y = 3 cos s, z = t + 1.

9. F⃗ = x2y2zk⃗ and S is the cone
√

x2 + y2 = z, with

0 ≤ z ≤ R, oriented downward. Parameterize the cone

using cylindrical coordinates. (See Figure 21.22.)

x

y

z

n⃗

r⃗ �

r⃗ r

(0, 0, R)

Figure 21.22

In Exercises 10–11, find the surface area.

10. A cylinder of radius a and length L.

11. The region S in the plane z = 3x + 2y such that

0 ≤ x ≤ 10 and 0 ≤ y ≤ 20.
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PROBLEMS

12. Compute the flux of the vector field F⃗ = (x + z)i⃗ +

j⃗ + zk⃗ through the surface S given by y = x2 + z2,

1∕4 ≤ x2 + z2 ≤ 1 oriented away from the y-axis.

13. Find the area of the ellipseS on the plane 2x+y+z = 2

cut out by the circular cylinder x2 + y2 = 2x. (See Fig-

ure 21.23.)

x

y

z

S

Figure 21.23

14. Consider the surface S formed by rotating the graph of

y = f (x) around the x-axis between x = a and x = b.

Assume that f (x) ≥ 0 for a ≤ x ≤ b. Show that the

surface area of S is 2� ∫
b

a
f (x)

√

1 + f ′(x)2 dx.

15. A rectangular channel of width w and depth ℎ me-

ters lies in the j⃗ direction. At a point d1 meters from

one side and d2 meters from the other side, the veloc-

ity vector of fluid in the channel is v⃗ = kd1d2j⃗ me-

ters/sec. Find the flux through a rectangle stretching the

full width and depth of the channel, and perpendicular

to the flow.

16. The base of a cone is the unit circle centered at the

origin in the xy-plane and vertex P = (a, b, c), where

c > 0.

(a) Parameterize the cone.

(b) Express the surface area of the cone as an integral.

(c) Use a numerical method to find the surface area of

the cone with vertex P = (2, 0, 1).

As we remarked in Section 19.1, the limit defining a flux

integral might not exist if we subdivide the surface in the

wrong way. One way to get around this is to take the formula

for a flux integral over a parameterized surface that we have

developed in this section and to use it as the definition of the

flux integral. In Problems 17–20 we explore how this works.

17. Use a parameterization to verify the formula for a flux

integral over a surface graph on page 974.

18. Use a parameterization to verify the formula for a flux

integral over a cylindrical surface on page 976.

19. Use a parameterization to verify the formula for a flux

integral over a spherical surface on page 977.

20. One problem with defining the flux integral using a pa-

rameterization is that the integral appears to depend

on the choice of parameterization. However, the flux

through a surface ought not to depend on how the sur-

face is parameterized. Suppose that the surface S has

two parameterizations, r⃗ = r⃗ (s, t) for (s, t) in the re-

gion R of st-space, and also r⃗ = r(u, v) for (u, v) in the

region T in uv-space, and suppose that the two param-

eterizations are related by the change of coordinates

u = u(s, t) v = v(s, t).

Suppose that the Jacobian determinant )(u, v)∕)(s, t) is

positive at every point (s, t) in R. Use the change of co-

ordinates formula for double integrals on page 1035 to

show that computing the flux integral using either pa-

rameterization gives the same result.

Strengthen Your Understanding

In Problems 21–22, explain what is wrong with the state-

ment.

21. The area of the surface parameterized by x = s, y =

t, z = f (s, t) above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 is

given by the integral

Area =
∫

1

0 ∫

1

0

f (s, t) ds dt.

22. The surface S parameterized by x = f (s, t), y = g(s, t),

z = ℎ(s, t), where 0 ≤ s ≤ 2, 0 ≤ t ≤ 3, has area 6.

In Problems 23–24, give an example of:

23. A parameterization r⃗ = r⃗ (s, t) of the xy-plane such

that dA = 2 ds dt.

24. A vector field F⃗ such that ∫
S
F⃗ ⋅ dA⃗ > 0, where S is

the surface r⃗ = (s − t)i⃗ + t2 j⃗ + (s + t)k⃗ , 0 ≤ s ≤ 1,

0 ≤ t ≤ 1, oriented in the direction of
)r⃗

)s
×

)r⃗

)t
.

Are the statements in Problems 25–27 true or false? Give

reasons for your answer.

25. If r⃗ (s, t), 0 ≤ s ≤ 1, 0 ≤ t ≤ 1 is an oriented pa-

rameterized surface S, and F⃗ is a vector field that is

everywhere tangent to S, then the flux of F⃗ through S

is zero.

26. For any parameterization of the surface x2−y2+z2 = 6,

dA⃗ at (1, 2, 3) is a multiple of (2i⃗ − 4j⃗ + 6k⃗ )dxdy.

27. If you parameterize the plane 3x + 4y + 5z = 7, then

there is a constant c such that, at any point (x, y, z),

dA⃗ = c(3i⃗ + 4j⃗ + 5k⃗ )dx dy.
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28. Let S be the hemisphere x2 + y2 + z2 = 1 with x ≤ 0,

oriented away from the origin. Which of the following

integrals represents the flux of F⃗ (x, y, z) through S?

(a)
∫
R

F⃗ (x, y, z(x, y)) ⋅
)r⃗

)x
×

)r⃗

)y
dx dy

(b)
∫
R

F⃗ (x, y, z(x, y)) ⋅
)r⃗

)y
×

)r⃗

)x
dy dx

(c)
∫
R

F⃗ (x, y(x, z), z) ⋅
)r⃗

)x
×

)r⃗

)z
dx dz

(d)
∫
R

F⃗ (x, y(x, z), z) ⋅
)r⃗

)z
×

)r⃗

)x
dz dx

(e)
∫
R

F⃗ (x(y, z), y, z) ⋅
)r⃗

)y
×

)r⃗

)z
dy dz

(f)
∫
R

F⃗ (x(y, z), y, z) ⋅
)r⃗

)z
×

)r⃗

)y
dz dy

Online Resource: Review problems and Projects
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Multivariable Functions

Points in 3-space are represented by a system of Cartesian

coordinates (p. 654). The distance between (x, y, z) and

(a, b, c) is
√

(x − a)2 + (y − b)2 + (z − c)2 (p. 656).

Functions of two variables can be represented by

graphs (p. 661), contour diagrams (p. 668), cross-sections

(p. 663), and tables (p. 653).

Functions of three variables can be represented by the

family of level surfaces f (x, y, z) = c for various values of

the constant c (p. 689).

A linear function f (x, y) has equation

f (x, y) = z0 +m(x − x0) + n(y − y0) (p. 683)

= c + mx + ny, where c = z0 − mx0 − ny0.

Its graph is a plane with slopem in the x-direction, slope n in

the y-direction, through (x0, y0, z0) (p. 683). Its table of val-

ues has linear rows (of same slope) and linear columns (of

same slope) (p. 684). Its contour diagram is equally spaced

parallel straight lines (p. 684).

The limit of f at the point (a, b), written

lim(x,y)→(a,b) f (x, y), is the number L, if one exists, such that

f (x, y) is as close to L as we please whenever the distance

from the point (x, y) to the point (a, b) is sufficiently small,

but not zero. (p. 697).

A function f is continuous at the point (a, b) if

lim(x,y)→(a,b) f (x, y) = f (a, b). A function is continuous on

a region R if it is continuous at each point of R (p. 697).

Vectors

A vector v⃗ has magnitude (denoted ‖v⃗ ‖) and direction.

Examples are displacement vectors (p. 702), velocity and

acceleration vectors (pp. 711, 712). and force (p. 712). We

can add vectors, and multiply a vector by a scalar (p. 703).

Two non-zero vectors, v⃗ and w⃗ , are parallel if one is a

scalar multiple of the other (p. 704).

A unit vector has magnitude 1. The vectors i⃗ , j⃗ , and

k⃗ are unit vectors in the directions of the coordinate axes.

A unit vector in the direction of any nonzero vector v⃗ is

u⃗ = v⃗ ∕‖v⃗ ‖ (p. 708). We resolve v⃗ into components by

writing v⃗ = v1i⃗ + v2j⃗ + v3k⃗ (p. 705).

If v⃗ = v1 i⃗ + v2j⃗ + v3k⃗ and w⃗ = w1 i⃗ + w2j⃗ +w3k⃗

then

‖v⃗ ‖ =

√

v2
1
+ v2

2
+ v2

3
(p. 706)

v⃗ + w⃗ = (v1 +w1)i⃗ + (v2 +w2)j⃗ + (v3 +w3)k⃗ (p. 707),

�v⃗ = �v1 i⃗ + �v2j⃗ + �v3k⃗ (p. 707).

The displacement vector from P1 = (x1, y1, z1) to P2 =

(x2, y2, z2) is

⃖⃖⃖⃖⃖⃖⃖⃗P1P2 = (x2 − x1)i⃗ + (y2 − y1)j⃗ + (z2 − z1)k⃗ (p. 706).

The position vector ofP = (x, y, z) is ⃖⃖⃖⃖⃖⃗OP (p. 706). A vector

in n dimensions is a string of numbers v⃗ = (v1, v2,… , vn)

(p. 714).

Dot Product (Scalar Product) (p. 718).

Geometric definition: v⃗ ⋅w⃗ = ‖v⃗ ‖‖w⃗ ‖ cos � where

� is the angle between v⃗ and w⃗ and 0 ≤ � ≤ �.

Algebraic definition: v⃗ ⋅ w⃗ = v1w1 + v2w2 + v3w3.

Two nonzero vectors v⃗ and w⃗ are perpendicular if and

only if v⃗ ⋅ w⃗ = 0 (p. 720). Magnitude and dot product

are related by v⃗ ⋅ v⃗ = ‖v⃗ ‖2 (p. 720). If u⃗ = (u1,… , un)

and v⃗ = (v1,… , vn) then the dot product of u⃗ and v⃗ is

u⃗ ⋅ v⃗ = u1v1 +… + unvn (p. 722).

The equation of the plane with normal vector n⃗ =

ai⃗ + bj⃗ + ck⃗ and containing the point P0 = (x0, y0, z0) is

n⃗ ⋅ (r⃗ − r⃗ 0) = a(x − x0) + b(y − y0) + c(z − z0) = 0 or

ax + by + cz = d, where d = ax0 + by0 + cz0 (p. 721).

If v⃗ parallel and v⃗ perp are components of v⃗ which are par-

allel and perpendicular, respectively, to a unit vector u⃗ , then

v⃗ parallel = (v⃗ ⋅ u⃗ )u⃗ and v⃗ perp = v⃗ − v⃗ parallel (p. 723).

The work, W , done by a force F⃗ acting on an object

through a displacement d⃗ is W = F⃗ ⋅ d⃗ (p. 724).

Cross Product (Vector Product) (p. 729, 729)

Geometric definition

v⃗ × w⃗ =

(

Area of parallelogram

with edges v⃗ and w⃗

)

n⃗

= (‖v⃗ ‖‖w⃗ ‖ sin �)n⃗ ,

where 0 ≤ � ≤ � is the angle between v⃗ and w⃗ and n⃗

is the unit vector perpendicular to v⃗ and w⃗ pointing

in the direction given by the right-hand rule.

Algebraic definition

v⃗ × w⃗ = (v2w3 − v3w2)i⃗ + (v3w1 − v1w3)j⃗

+(v1w2 − v2w1)k⃗

v⃗ = v1 i⃗ + v2j⃗ + v3k⃗ , w⃗ = w1 i⃗ +w2j⃗ +w3k⃗ .

To find the equation of a plane through three points

that do not lie on a line, determine two vectors in the

plane and then find a normal vector using the cross prod-

uct (p. 731). The area of a parallelogram with edges v⃗ and

w⃗ is ‖v⃗ × w⃗ ‖. The volume of a parallelepiped with edges

a⃗ , b⃗ , c⃗ is
|

|

|

(b⃗ × c⃗ ) ⋅ a⃗
|

|

|

(p. 733).

The angular velocity (p. 733) of a flywheel can be rep-

resented by a vector !⃗ whose direction is parallel to the

axis of rotation and magnitude is the angular speed of ro-

tation. The velocity vector v⃗ of a point P on the flywheel is

v⃗ = !⃗ × r⃗ where r⃗ is a vector from the axis of rotation to

P .
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Differentiation of Multivariable Functions

Partial derivatives of f (p. 741).

fx(a, b) =
Rate of change of f with respect to x

at the point (a, b)

= lim
ℎ→0

f (a + ℎ, b) − f (a, b)

ℎ
,

fy(a, b) = Rate of change of f with respect to y

at the point (a, b)

= lim
ℎ→0

f (a, b + ℎ) − f (a, b)

ℎ
.

On the graph of f , the partial derivatives fx(a, b) and

fy(a, b) give the slope in the x and y directions, respectively

(p. 742). The tangent plane to z = f (x, y) at (a, b) is

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) (p. 755).

Partial derivatives can be estimated from a contour diagram

or table of values using difference quotients (p. 742), and can

be computed algebraically using the same rules of differen-

tiation as for one-variable calculus (p. 748). Partial deriva-

tives for functions of three or more variables are defined and

computed in the same way (p 749).

The gradient vector grad f of f is grad f (a, b) =

fx(a, b)i⃗ + fy(a, b)j⃗ (2 variables) (p. 765) or

grad f (a, b, c) = fx(a, b, c)i⃗ + fy(a, b, c)j⃗ + fz(a, b, c)k⃗

(3 variables) (p. 772). The gradient vector at P : Points in

the direction of increasing f ; is perpendicular to the level

curve or level surface of f through P ; and has magnitude

‖ grad f‖ equal to the maximum rate of change of f at P

(pp. 767, 772). The magnitude is large when the level curves

or surfaces are close together and small when they are far

apart.

The directional derivative of f at P in the direction of

a unit vector u⃗ is (pp. 763, 765)

fu⃗ (P ) =

Rate of change

of f in direction

of u⃗ at P

= grad f (P ) ⋅ u⃗

The tangent plane approximation to f (x, y) for (x, y)

near the point (a, b) is

f (x, y) ≈ f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b).

The right-hand side is the local linearization (p. 755). The

differential of z = f (x, y) at (a, b) is the linear function of

dx and dy

df = fx(a, b) dx + fy(a, b) dy (p. 758).

Local linearity with three or more variables follows the same

pattern as for functions of two variables (p. 757).

The tangent plane to a level surface of a function of

three-variables f at (a, b, c) is (p. 775)

fx(a, b, c)(x− a) + fy(a, b, c)(y− b) + fz(a, b, c)(z− c) = 0.

The Chain Rule for the partial derivative of one variable

with respect to another in a chain of composed functions

(p. 782):

• Draw a diagram expressing the relationship between the

variables, and label each link in the diagram with the

derivative relating the variables at its ends.

• For each path between the two variables, multiply to-

gether the derivatives from each step along the path.

• Add the contributions from each path.

If z = f (x, y), and x = g(t), and y = ℎ(t), then

dz

dt
=

)z

)x

dx

dt
+

)z

)y

dy

dt
(p. 781).

If z = f (x, y), with x = g(u, v) and y = ℎ(u, v), then

)z

)u
=

)z

)x

)x

)u
+

)z

)y

)y

)u
,

)z

)v
=

)z

)x

)x

)v
+

)z

)y

)y

)v
(p. 783).

Second-order partial derivatives (p. 790)

)2z

)x2
= fxx = (fx)x,

)2z

)x)y
= fyx = (fy)x,

)2z

)y)x
= fxy = (fx)y,

)2z

)y2
= fyy = (fy)y.

Theorem: Equality of Mixed Partial Derivatives. If

fxy and fyx are continuous at (a, b), an interior point of their

domain, then fxy(a, b) = fyx(a, b) (p. 791).

Taylor Polynomial of Degree 1 Approximating

f (x, y) for (x, y) near (a, b) (p. 794)

f (x, y) ≈ L(x, y) = f (a, b)+fx(a, b)(x−a)+fy(a, b)(y−b).

Taylor Polynomial of Degree 2 (p. 795)

f (x, y) ≈ Q(x, y)

= f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

+
fxx(a, b)

2
(x − a)2 + fxy(a, b)(x − a)(y − b)

+
fyy(a, b)

2
(y − b)2.

Definition of Differentiability (p. 799). A function f (x, y)

is differentiable at the point (a, b) if there is a linear func-

tion L(x, y) = f (a, b) + m(x − a) + n(y − b) such that if the

error E(x, y) is defined by

f (x, y) = L(x, y) + E(x, y),

and if ℎ = x − a, k = y − b, then the relative error

E(a + ℎ, b + k)∕
√

ℎ2 + k2 satisfies

lim
ℎ→0
k→0

E(a + ℎ, b + k)
√

ℎ2 + k2
= 0.

Theorem: Continuity of Partial Derivatives Implies

Differentiability (p. 802). If the partial derivatives, fx and

fy, of a function f exist and are continuous on a small disk

centered at the point (a, b), then f is differentiable at (a, b).
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Optimization

A function f has a local maximum at the pointP0 iff (P0) ≥

f (P ) for all points P near P0, and a local minimum at the

point P0 if f (P0) ≤ f (P ) for all points P near P0 (p. 806).

A critical point of a function f is a point where grad f is

either 0⃗ or undefined. If f has a local maximum or min-

imum at a point P0, not on the boundary of its domain,

then P0 is a critical point (p. 806). A quadratic function

f (x, y) = ax2 + bxy + cz2 generally has one critical point,

which can be a local maximum, a local minimum, or a sad-

dle point (p. 809).

Second derivative test for functions of two vari-

ables (p. 811). Suppose grad f (x0, y0) = 0⃗ . Let D =

fxx(x0, y0)fyy(x0, y0) − (fxy(x0, y0))
2.

• If D > 0 and fxx(x0, y0) > 0, then f has a local mini-

mum at (x0, y0).

• If D > 0 and fxx(x0, y0) < 0, then f has a local maxi-

mum at (x0, y0).

• If D < 0, then f has a saddle point at (x0, y0).

• If D = 0, anything can happen.

Unconstrained optimization

A function f defined on a region R has a global maximum

on R at the point P0 if f (P0) ≥ f (P ) for all points P in R,

and a global minimum on R at the point P0 if f (P0) ≤ f (P )

for all points P in R (p. 816). For an unconstrained opti-

mization problem, find the critical points and investigate

whether the critical points give global maxima or minima

(p. 816).

A closed region is one which contains its boundary; a

bounded region is one which does not stretch to infinity in

any direction (p. 821).

Extreme Value Theorem for Multivariable Func-

tions. If f is a continuous function on a closed and bounded

region R, then f has a global maximum at some point

(x0, y0) in R and a global minimum at some point (x1, y1)

in R (p. 821).

Constrained optimization

Suppose P0 is a point satisfying the constraint g(x, y) = c.

A function f has a local maximum at P0 subject to the

constraint if f (P0) ≥ f (P ) for all points P near P0 satisfy-

ing the constraint (p. 827). It has a global maximum at P0

subject to the constraint if f (P0) ≥ f (P ) for all points P

satisfying the constraint (p. 827). Local and global minima

are defined similarly (p. 827). A local maximum or mini-

mum of f (x, y) subject to a constraint g(x, y) = c occurs at

a point where the constraint is tangent to a level curve of f ,

and thus where grad g is parallel to grad f (p. 827).

To optimize f subject to the constraint g = c

(p. 827), find the points satisfying the equations

grad f = � grad g and g = c.

Then compare values of f at these points, at points on the

constraint where grad g = 0⃗ , and at the endpoints of the con-

straint. The number � is called the Lagrange multiplier.

To optimize f subject to the constraint g ≤ c

(p. 829), find all points in the interior g(x, y) < c where

grad f is zero or undefined; then use Lagrange multipliers

to find the local extrema of f on the boundary g(x, y) = c.

Evaluate f at the points found and compare the values.

The value of � is the rate of change of the optimum

value of f as c increases (where g(x, y) = c) (p. 831). The

Lagrangian function (x, y, �) = f (x, y) − �(g(x, y) − c)

can be used to convert a constrained optimization problem

for f subject the constraint g = c into an unconstrained prob-

lem for  (p. 831).

Multivariable Integration

The definite integral of f , a continuous function of two

variables, over R, the rectangle a ≤ x ≤ b, c ≤ y ≤ d,

is called a double integral, and is a limit of Riemann sums

∫
R

f dA = lim
Δx,Δy→0

∑

i,j

f (uij , vij )ΔxΔy (p. 842).

The Riemann sum is constructed by subdividing R into sub-

rectangles of width Δx and height Δy, and choosing a point

(uij , vij ) in the ij-th rectangle.

A triple integral of f , a continuous function of three

variables, over W , the box a ≤ x ≤ b, c ≤ y ≤ d, p ≤ z ≤ q

in 3-space, is defined in a similar way using three-variable

Riemann sums (p. 858).

Interpretations

If f (x, y) is positive, ∫
R
f dA is the volume under graph of

f above the region R (p. 842). If f (x, y) = 1 for all x and y,

then the area of R is ∫
R
1 dA = ∫

R
dA (p. 844). If f (x, y) is

a density, then ∫
R
f dA is the total quantity in the region

R (p. 840). The average value of f (x, y) on the region R

is
1

Area of R
∫
R
f dA (p. 844). In probability, if p(x, y) is a

joint density function then ∫
b

a
∫

d

c
p(x, y) dy dx is the frac-

tion of population with a ≤ x ≤ b and c ≤ y ≤ d (p. 880).

Iterated integrals

Double and triple integrals can be written as iterated inte-

grals

∫
R

f dA =
∫

d

c
∫

b

a

f (x, y) dxdy (p. 848)

∫
W

f dV =
∫

q

p
∫

d

c
∫

b

a

f (x, y, z) dx dy dz (p. 858)

Other orders of integration are possible. For iterated inte-

grals over non-rectangular regions (p. 850), limits on outer

integral are constants and limits on inner integrals involve

only the variables in the integrals further out (pp. 851, 860).

Integrals in other coordinate systems

When computing double integrals in polar coordinates, put

dA = r dr d� or dA = r d� dr (p. 864). Cylindrical coor-

dinates are given by x = r cos �, y = r sin �, z = z, for

0 ≤ r < ∞, 0 ≤ � ≤ 2�, −∞ < z < ∞ (p. 869). Spherical

coordinates are given by x = � sin� cos �, y = � sin� sin �,

z = � cos�, for 0 ≤ � < ∞, 0 ≤ � ≤ �, 0 ≤ � ≤ 2�

(p. 872). When computing triple integrals in cylindrical or
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spherical coordinates, put dV = r dr d� dz for cylindrical

coordinates (p. 871), dV = �2 sin�d� d� d� for spherical

coordinates (p. 873). Other orders of integration are also pos-

sible.

For a change of variables x = x(s, t), y = y(s, t), the

Jacobian is

)(x, y)

)(s, t)
=

)x

)s
⋅

)y

)t
−

)x

)t
⋅

)y

)s
=

|

|

|

|

|

|

|

|

|

|

|

)x

)s

)x

)t

)y

)s

)y

)t

|

|

|

|

|

|

|

|

|

|

|

(p. 1034).

To convert an integral from x, y to s, t coordinates (p. 1035):

Substitute for x and y in terms of s and t, change the xy re-

gion R into an st region T , and change the area element by

making the substitution dxdy =
|

|

|

)(x,y)

)(s,t)

|

|

|

dsdt. For triple in-

tegrals, there is a similar formula (p. 1036).

Parameterizations and Vector Fields

Parameterized curves

The motion of a particle is described by parametric equa-

tions x = f (t), y = g(t) (2-space) or x = f (t), y = g(t), z =

ℎ(t) (3-space). The path of the particle is a parameterized

curve (p. 886). Parameterizations are also written in vector

form r⃗ (t) = f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗ (p. 888). For a curve

segment we restrict the parameter to to a closed interval

a ≤ t ≤ b (p. 889). Parametric equations for the graph

of y = f (x) are x = t, y = f (t).

Parametric equations for a line through (x0, y0) in the

direction of v⃗ = ai⃗ + bj⃗ are x = x0 + at, y = y0 + bt. In

3-space, the line through (x0, y0, z0) in the direction of v⃗ =

ai⃗ +bj⃗ +ck⃗ is x = x0+at, y = y0+bt, z = z0+ct (p. 887). In

vector form, the equation for a line is r⃗ (t) = r⃗ 0 + tv⃗ , where

r⃗ 0 = x0 i⃗ + y0j⃗ + z0k⃗ (p. 889).

Parametric equations for a circle of radius R in the

plane, centered at the origin are x = R cos t , y = R sin t

(counterclockwise), x = R cos t, y = −R sin t (clockwise).

To find the intersection points of a curve r⃗ (t) =

f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗ with a surface F (x, y, z) = c, solve

F (f (t), g(t), ℎ(t)) = c for t (p. 890). To find the intersection

points of two curves r⃗ 1(t) and r⃗ 2(t), solve r⃗ 1(t1) = r⃗ 2(t2)

for t1 and t2 (p. 890).

The length of a curve segment C given parametrically

for a ≤ t ≤ b with velocity vector v⃗ is ∫
b

a
‖v⃗ ‖dt if v⃗ ≠ 0⃗

for a < t < b (p. 901).

The velocity and acceleration of a moving object with po-

sition vector r⃗ (t) at time t are

v⃗ (t) = lim
Δt→0

Δr⃗

Δt
(p. 897)

a⃗ (t) = lim
Δt→0

Δv⃗

Δt
(p. 899)

We write v⃗ =
dr⃗

dt
= r⃗ ′(t) and a⃗ =

dv⃗

dt
=

d2r⃗

dt2
= r⃗ ′′(t).

The components of the velocity and acceleration vec-

tors are

v⃗ (t) =
dx

dt
i⃗ +

dy

dt
j⃗ +

dz

dt
k⃗ (p. 897)

a⃗ (t) =
d2x

dt2
i⃗ +

d2y

dt2
j⃗ +

d2z

dt2
k⃗ (p. 899)

The speed is ‖v⃗ ‖ =
√

(dx∕dt)2 + (dy∕dt)2 + (dz∕dt)2

(p. 901). Analogous formulas for velocity, speed, and accel-

eration hold in 2-space.

Uniform Circular Motion (p. 900) For a particle

r⃗ (t) = R cos(!t)i⃗ + R sin(!t)j⃗ : motion is in a circle of

radius R with period 2�∕!; velocity, v⃗ , is tangent to the cir-

cle and speed is constant ‖v⃗ ‖ = !R; acceleration, a⃗ , points

toward the center of the circle with ‖a⃗ ‖ = ‖v⃗ ‖2∕R.

Motion in a Straight Line (p. 901) For a particle

r⃗ (t) = r⃗ 0 + f (t)v⃗ 0: Motion is along a straight line through

the point with position vector r⃗ 0 parallel to v⃗ 0; velocity, v⃗ ,

and acceleration, a⃗ , are parallel to the line.

Vector fields

A vector field in 2-space is a function F⃗ (x, y) whose value

at a point (x, y) is a 2-dimensional vector (p. 905). Similarly,

a vector field in 3-space is a function F⃗ (x, y, z)whose values

are 3-dimensional vectors (p. 905). Examples are the gradi-

ent of a differentiable function f , the velocity field of a fluid

flow, and force fields (p. 905). A flow line of a vector field

v⃗ = F⃗ (r⃗ ) is a path r⃗ (t)whose velocity vector equals v⃗ , thus

r⃗ ′(t) = v⃗ = F⃗ (r⃗ (t)) (p. 914). The flow of a vector field is

the family of all of its flow line (p. 914). Flow lines can be

approximated numerically using Euler’s method (p. 916).

Parameterized surfaces

We parameterize a surface with two parameters, x =

f1(s, t), y = f2(s, t), z = f3(s, t) (p. 1024). We also use

the vector form r⃗ (s, t) = f1(s, t)i⃗ + f2(s, t)j⃗ + f3(s, t)k⃗

(p. 1024). Parametric equations for the graph of z =

f (x, y) are x = s, y = t, and z = f (s, t) (p. 1024). Para-

metric equation for a plane through the point with posi-

tion vector r⃗ 0 and containing the two nonparallel vectors v⃗ 1

and v⃗ 2 is r⃗ (s, t) = r⃗ 0 + sv⃗ 1 + tv⃗ 2 (p. 1025). Paramet-

ric equation for a sphere of radius R centered at the ori-

gin is r⃗ (�, �) = R sin� cos � i⃗ + R sin� sin � j⃗ + cos� k⃗ ,

0 ≤ � ≤ 2�, 0 ≤ � ≤ � (p. 1025). Parametric equa-

tion for a cylinder of radius R along the z-axis is r⃗ (�, z) =

R cos �i⃗ + R sin �j⃗ + zk⃗ , 0 ≤ � ≤ 2�,−∞ < z < ∞

(p. 1023). A parameter curve is the curve obtained by hold-

ing one of the parameters constant and letting the other vary

(p. 1029).

Line Integrals

The line integral of a vector field F⃗ along an oriented

curve C (p. 922) is

∫
C

F⃗ ⋅ dr⃗ = lim
‖Δr⃗ i‖→0

n−1
∑

i=0

F⃗ (r⃗ i) ⋅ Δr⃗ i,

where the direction of Δr⃗ i is the direction of the orientation

(p. 923).
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The line integral measures the extent to which C is go-

ing with F⃗ or against it (p. 924). For oriented curves C ,

C1, and C2, ∫
−C

F⃗ ⋅ dr⃗ = − ∫
C
F⃗ ⋅ dr⃗ , where −C is

the curve C parameterized in the opposite direction, and

∫
C1+C2

F⃗ ⋅dr⃗ = ∫
C1

F⃗ ⋅dr⃗ +∫
C2
F⃗ ⋅dr⃗ , where C1+C2 is the

curve obtained by joining the endpoint of C1 to the starting

point of C2 (p. 928).

The work done by a force F⃗ along a curve C is

∫
C
F⃗ ⋅dr⃗ (p. 925). The circulation of F⃗ around an oriented

closed curve is ∫
C
F⃗ ⋅ dr⃗ (p. 927).

Given a parameterization of C , r⃗ (t), for a ≤ t ≤ b,

the line integral can be calculated as

∫
C

F⃗ ⋅ dr⃗ =
∫

b

a

F⃗ (r⃗ (t)) ⋅ r⃗ ′(t) dt (p. 932).

Fundamental Theorem for Line Integrals (p. 939):

Suppose C is a piecewise smooth oriented path with starting

point P and endpoint Q. If f is a function whose gradient is

continuous on the path C , then

∫
C

grad f ⋅ dr⃗ = f (Q) − f (P ).

Path-independent fields and gradient fields

A vector field F⃗ is said to be path-independent, or con-

servative, if for any two points P and Q, the line integral

∫
C
F⃗ ⋅ dr⃗ has the same value along any piecewise smooth

pathC fromP toQ lying in the domain of F⃗ (p. 941). A gra-

dient field is a vector field of the form F⃗ = grad f for some

scalar function f , and f is called a potential function for the

vector field F⃗ (p. 942). A vector field F⃗ is path-independent

if and only if F⃗ is a gradient vector field (p. 942). A vector

field F⃗ is path-independent if and only if ∫
C
F⃗ ⋅ dr⃗ = 0 for

every closed curve C (p. 950). If F⃗ is a gradient field, then
)F2

)x
−

)F1

)y
= 0 (p. 951). The quantity

)F2

)x
−

)F1

)y
is called the

2-dimensional or scalar curl of F⃗ .

Green’s Theorem (p. 951):

Suppose C is a piecewise smooth simple closed curve that is

the boundary of an open region R in the plane and oriented

so that the region is on the left as we move around the curve.

Suppose F⃗ = F1 i⃗ + F2j⃗ is a smooth vector field defined at

every point of the region R and boundary C . Then

∫
C

F⃗ ⋅ dr⃗ =
∫
R

(

)F2

)x
−

)F1

)y

)

dx dy.

Curl test for vector fields in 2-space: If
)F2

)x
−

)F1

)y
=

0 and the domain of F⃗ has no holes, then F⃗ is path-

independent, and hence a gradient field (p. 953). The con-

dition that the domain have no holes is important. It is not

always true that if the scalar curl of F⃗ is zero then F⃗ is a

gradient field (p. 954).

Surface Integrals

A surface is oriented if a unit normal vector n⃗ has been cho-

sen at every point on it in a continuous way (p. 962). For a

closed surface, we usually choose the outward orientation

(p. 962). The area vector of a flat, oriented surface is a vec-

tor A⃗ whose magnitude is the area of the surface, and whose

direction is the direction of the orientation vector n⃗ (p. 963).

If v⃗ is the velocity vector of a constant fluid flow and A⃗ is

the area vector of a flat surface, then the total flow through

the surface in units of volume per unit time is called the flux

of v⃗ through the surface and is given by v⃗ ⋅ A⃗ (p. 963).

The surface integral or flux integral of the vector field F⃗

through the oriented surface S is

∫
S

F⃗ ⋅ dA⃗ = lim
‖ΔA⃗ ‖→0

∑

F⃗ ⋅ ΔA⃗ ,

where the direction of ΔA⃗ is the direction of the orientation

(p. 964). If v⃗ is a variable vector field and then ∫
S
v⃗ ⋅ dA⃗ is

the flux through the surface S (p. 965).

Simple flux integrals can be calculated by putting

dA⃗ = n⃗ dA and using geometry or converting to a double

integral (p. 967).

The flux through a graph of z = f (x, y) above a re-

gion R in the xy-plane, oriented upward, is

∫
R

F⃗ (x, y, f (x, y)) ⋅
(

−fxi⃗ − fyj⃗ + k⃗

)

dx dy (p. 974).

The area of the part of the graph of z = f (x, y) above

a region R in the xy-plane is

Area of S =
∫
R

√

(fx)
2 + (fy)

2 + 1 dx dy (p. 975).

The flux through a cylindrical surface S of radius R

and oriented away from the z-axis is

∫
T

F⃗ (R, �, z) ⋅
(

cos �i⃗ + sin �j⃗
)

Rdz d� (p. 976),

where T is the �z-region corresponding to S.

The flux through a spherical surface S of radius R

and oriented away from the origin is

∫
T
F⃗ (R, �, �) ⋅

(

sin� cos �i⃗ + sin� sin �j⃗ + cos�k⃗
)

R2 sin�d�d�, (p. 977)

where T is the ��-region corresponding to S.

The flux through a parameterized surface S, param-

eterized by r⃗ = r⃗ (s, t), where (s, t) varies in a parameter

region R, is

∫
R

F⃗ (r⃗ (s, t)) ⋅

(

)r⃗

)s
×

)r⃗

)t

)

ds dt (p. 1038).

We choose the parameterization so that )r⃗ ∕)s × )r⃗ ∕)t is

never zero and points in the direction of n⃗ everywhere.
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The area of a parameterized surface S, parameter-

ized by r⃗ = r⃗ (s, t), where (s, t) varies in a parameter region

R, is

∫
S

dA =
∫
R

‖

‖

‖

‖

‖

)r⃗

)s
×
)r⃗

)t

‖

‖

‖

‖

‖

ds dt (p. 1039).

Divergence and Curl

Divergence

Definition of Divergence (p. 982).

Geometric definition: The divergence of F⃗ is

div F⃗ (x, y, z) = lim
Volume→0

∫
S
F⃗ ⋅ dA⃗

Volume of S
.

Here S is a sphere centered at (x, y, z), oriented out-

wards, that contracts down to (x, y, z) in the limit.

Cartesian coordinate definition: If F⃗ = F1 i⃗ +F2j⃗ +

F3k⃗ , then

div F⃗ =
)F1

)x
+

)F2

)y
+

)F3

)z
.

The divergence can be thought of as the outflow per unit vol-

ume of the vector field. A vector field F⃗ is said to be diver-

gence free or solenoidal if divF⃗ = 0 everywhere that F⃗ is

defined. Magnetic fields are divergence free (p. 986).

The Divergence Theorem (p. 992). If W is a solid region

whose boundary S is a piecewise smooth surface, and if F⃗

is a smooth vector field which is defined everywhere in W

and on S, then

∫
S

F⃗ ⋅ dA⃗ =
∫
W

div F⃗ dV ,

where S is given the outward orientation. In words, the Di-

vergence Theorem says that the total flux out of a closed

surface is the integral of the flux density over the volume

it encloses.

Curl

The circulation density of a smooth vector field F⃗ at

(x, y, z) around the direction of the unit vector n⃗ is defined

to be

circn⃗ F⃗ (x, y, z) = lim
Area→0

Circulation around C

Area inside C

= lim
Area→0

∫
C

F⃗ ⋅ dr⃗

Area inside C
(p. 1000).

Circulation density is calculated using the right-hand rule

(p. 1000).

Definition of curl (p. 1001).

Geometric definition The curl of F⃗ , written curl F⃗ ,

is the vector field with the following properties

• The direction of curl F⃗ (x, y, z) is the direction n⃗

for which circn⃗ (x, y, z) is greatest.

• The magnitude of curl F⃗ (x, y, z) is the circula-

tion density of F⃗ around that direction.

Cartesian coordinate definition If F⃗ = F1 i⃗ +F2j⃗ +

F3k⃗ , then

curl F⃗ =

(

)F3

)y
−

)F2

)z

)

i⃗ +

(

)F1

)z
−

)F3

)x

)

j⃗

+

(

)F2

)x
−

)F1

)y

)

k⃗ .

Curl and circulation density are related by circn⃗ F⃗ =

curl F⃗ ⋅ n⃗ (p. 1004). A vector field is said to be curl free

or irrotational if curl F⃗ = 0⃗ everywhere that F⃗ is defined

(p. 1004).

Given an oriented surface S with a boundary curve C

we use the right-hand rule to determine the orientation of C

(p. 1008).

Stokes’ Theorem (p. 1009). If S is a smooth oriented sur-

face with piecewise smooth, oriented boundary C , and if F⃗

is a smooth vector field which is defined on S and C , then

∫
C

F⃗ ⋅ dr⃗ =
∫
S

curl F⃗ ⋅ dA⃗ .

Stokes’ Theorem says that the total circulation around C is

the integral over S of the circulation density. A curl field is

a vector field F⃗ that can be written as F⃗ = curl G⃗ for some

vector field G⃗ , called a vector potential for F⃗ (p. 1011).

Relation between divergence, gradient, and curl

The curl and gradient are related by curl grad f = 0

(p. 1015). Divergence and curl are related by div curl F⃗ = 0

(p. 1017).

The curl test for vector fields in 3-space (p. 1016)

Suppose that curl F⃗ = 0⃗ , and that the domain of F⃗ has the

property that every closed curve in it can be contracted to

a point in a smooth way, staying at all times within the do-

main. Then F⃗ is path-independent, so F⃗ is a gradient field

and has a potential function.

The divergence test for vector fields in 3-space

(p. 1017) Suppose that div F⃗ = 0, and that the domain of F⃗

has the property that every closed surface in it is the bound-

ary of a solid region completely contained in the domain.

Then F⃗ is a curl field.
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ANSWERS TO ODD NUMBERED PROBLEMS

Section 12.1
1 Q

3 (−4, 2, 7)

5 (1,−1, 1); Front, left, above

7 (2, 4.5,3)

9 (−1, 1, 0), (−2,−2, 4)

11 (2, 2, 4), (−2,−2, 4)

13
31

x

y

z

x = −3

−3

15 z

x

y
2

4

(0, 4, 2)

(2, 4, 2)

(4, 4, 2)

17 x2 + y2 + z2 = 25

19 y = 3

21

✲north✛ south

100

90

80

70

Topeka
distance from
Topeka

predicted high temperature

23 f (w, 60): 23.4, 27.3, 31.2, 35.2, 39.1

25 25

29 f (20, p): 2.65, 2.59, 2.51, 2.43
f (100, p): 5.79, 5.77, 5.60, 5.53
f (I, 3.00): 2.65, 4.14, 5.11, 5.35, 5.79
f (I, 4.00): 2.51, 3.94, 4.97, 5.19, 5.60

31 Increasing function

33 57.9 kg

37 (a) R = 100s + 5m
(b) 125,000 dollars

39 (b) Increasing

(c) Decreasing

41 (b) Increasing

(c) Increasing

43 (1.5, 0.5, −0.5)

45 Cone, tip at origin, along x-axis with slope of

1

47 Yes; (2, 5, 4)

49 (a) z = 7, z = −1
(b) x = 6, x = −2
(c) y = 7, y = −1

51 (a) (12, 7, 2); (5, 7, 2); (12, 1, 2)
(b) (5, 1, 4); (5, 7, 4); (12, 1, 4)

53 (a) (3, 9, 13)
(b) (2, 7, 10)
(c) (4, 11, 16)

55 xy-plane is z = 0
xy = 0 is yz-plane and xz-plane

57 f (x, y) = x − y

59 True

61 False

63 True

65 False

67 False

69 False

71 True

73 (a) yz-plane: circle (y + 3)2 + (z − 2)2 = 3
xz-plane: none

xy-plane: point (1,−3, 0)

(b) Does not intersect

Section 12.2
1 (III)

3 (I), (IV)

5 (a) Decreases

x

z

(b) Increases

y

z

7 (a) I

(b) V

(c) IV

(d) II

(e) III

9 Sphere, radius 3

3 3

3

x y

z

11 Upside-down bowl, vertex (0, 0, 5)

5

x
y

z

13 Plane, x-intercept 6, y-intercept 3, z-intercept

4

6 3

4

x y

z

15 Circular cylinder extended in the y-direction

2

2

x
y

z

17 x2 + (y −
√

7)2 + z2 = 9

19 (a)

−1

1−2 2

−5

5

−10

10 x = 1

x = 0

x = −1

y

(b)

−2 −1 1 2

−3

−2

−1

1

2

3
✛ y = 1

✛ y = −1

✠

y = 0

x
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21 (a)

1 2 3 4 5

0.1

0.2

0.3 C = f (4, t)

C (mg per liter)

t (hours)

(b)

1 2 3 4 5

0.1
0.2
0.3
0.4
0.5

C = f (x, 1)

x (mg)

C (mg per liter)

23 f (2, 10) = 100 joules

25 f (2, 12) = 731.9 millibars.

27 (a) is (IV)

(b) is (IX)

(c) is (VII)

(d) is (I)

(e) is (VIII)

(f) is (II)

(g) is (VI)

(h) is (III)

(i) is (V)

29 (a)

0−2 2−4 4

4

16

25

✛ x = 1

■
x = 0
y

z(i)

0−2 2−4 4

4

16

25

✛ y = 1

■
y = 0
x

z(ii)

(b)
2 4

5

1

−4

−16

−25 ✒

x = 1

✠

x = 0y

z(i)

2

4 5

1

−4

−16

−25 ✒

y = 1

✠

y = 0x

z(ii)

(c)

−4 4

4

−4

y

z✠

x = 0

✒

x = 1

(i)

−4 4

4

−4

x

z✠

y = 0

✒

y = 1

(ii)

(d)

−2.5

2.5

−2

2

✒

x = 0

■

x = 1

y

z
(i)

−2.5

2.5

−2

2

✒

y = 0

■

y = 1

x

z(ii)

(e)

4−4

−3

3

y

z

❘

x = 0

✠

x = 1(i)

4−4

−3

3

x

z

❘

y = 0

✠

y = 1(ii)

31 (I) cross-sections with x fixed, (II) cross-

sections with y fixed

33 Cross-sections graph I:

4 8
0

0.5

1
❄

pizza fixed at 4

✻

pizza fixed at 1
(or pizza fixed at 7)

cola

happiness

(a)

4 8
0

0.5

1
❄

cola fixed at 4

✻

cola fixed at 1
(or cola fixed at 7)

pizza

happiness

(b)

Cross-sections graph II:

2 4
0

0.5

1

cola

happiness

0.5

❄

pizza fixed at 2

❄

pizza fixed at 4
(or pizza fixed at 0)

(a)

2 4
0

1

2

3

pizza

happiness

✻
cola fixed at 1

❄

cola fixed at 2(b)
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Cross-sections graph III:

2 4
0

2

4

cola

happiness

✻
pizza fixed at 1

❄

pizza fixed at 2(a)

1 2
0

1

2

pizza

happiness

❘

cola
fixed at 2

■
cola fixed at 1
(or cola fixed at 3)

(b)

Cross-sections graph IV:

1 2
0

2

4

cola

happiness

❘

pizza
fixed at 2

■
pizza fixed at 1

(a)

1 2
0

2

4

pizza

happiness

❘

cola
fixed at 2

■
cola fixed at 1

(b)

35

y

x

z

37

yx

z

39 (a) y = 0
(b) x = 0
(c) z = 1

41 (a)

x

z
t = −1

x

z
t = 0

t = 1

x

z

t = 2
z

x

(b) Increasing x

(c)

x

t

z

43 Graph is surface in 3-space

45 f (x, y) = x2 + y2 + 2

47 f (x, y) = 1 − x2 − y2

49 True

51 False

53 False

55 True

57 True

59 False

61 True

63 (a)

�

−1

1 ❄

t = 0

✠

t = �∕4

x

� 2�

−1

1
❄

x = �∕2

❄

x = �∕4

t

(b) f = 0; ends of string don’t move

Section 12.3
1

x

y

4

3
2
1

3

x

y

z = 1
z = 2

z = 3

5 Contours evenly spaced parallel lines

x

y

−2 −1 1 2

−2

−1

1

2

c
=
0c

=
−
1

c
=
−
2

c
=
−
3

c
=
1

c
=
2

c
=
3

7

x

y

c
=
1

c
=
2

c
=
3

c
=
4

c = 0

−2 −1 1 2

−2

−1

1

2
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9

x

y

c
=
−
1c

=
−
2c

=
−
3

c
=
−
4

c
=
−
1

c
=
−
2

c
=
−
3

c
=
−
4

c
=
1c

=
2c

=
3c

=
4

c
=
1

c
=
2

c
=
3

c
=
4

c
=
0

11

−2 −1 1 2

−2

−1

1

2

x

y

c = 1

c = 4

c = 0

15 (a)

z = 1
z = 2

z = −1

z = −2

x

y

z = −1
z = −2

z = 1

z = 2

(b)

y

z

z = −2y (x = −2)

z = 2y (x = 2)

z = y (x = 1)

z = −y (x = −1)

(c)

Line x = y

z
Curve z = x2

17 (I), (IV), (VI)

19

−2� −� � 2�

−2�

−�

�

2�

x

y

21 (a) is (II)

(b) is (I)

(c) is (III)

23 (a) −2 Grapes∕Cherry

(b) No change in happiness when replacing

2 grapes with one cherry

25 Underweight: below 18.5, Normal: 18.5-25

27 (a) About 0◦F

(b) About −16◦F

(c) About 23 mph

(d) About 25◦F

29 Answers in ◦C:

(a)

−10

0

10

(b)

5

10

15

(c)

40

35

30

(d)

26

24

22

31

5 10 15 20 25 30
0

65

70

75

80

85

x

H

t = 20

t = 5

33 (a) 2
(b) −2
(c) −1

35 (a)
√

5
(b) 0
(c) 0

37 (a) About $137
(b) About $250

(a) About $122
(b) About $350

39 Other answers possible

20 40 60 80 100
50

60

70
75
80

90

100

2 6 10 14 18

n, workers

T ◦F

41 (a) II

(b) IV

(c) III

(d) I

43 (a) � = 3q1 + 12q2 − 4 (thousands)

(b)

2 4 6 8

1

2

3

q1

q2

� = 0

� = 10

� = 20

� = 30

45 (a) (II) (E)

(b) (I) (D)

(c) (III) (G)

47 (a) (I) g

(II)f

(b) 0.2 < � < 0.8

49 (a)

−6
−3
0
3
6

x

y

(b)

−12
−11
−10
−9
−8

x

y

(c)

−4
−3
−2
−1
0

x

y

(d)

−2
−1
0
1
2

x

y
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51 y = 2x, y = (1∕3)x

55 (a) P (d, v) = kd2v3

(b) 1∕
3
√

4
(c)

50

40

1000

100,000

10,000,000

x

y

57 Spacing of the contours of f and g are differ-

ent

59 f (x, y) = y − x2

61 Might be true

63 Not true

65 True

67 True

69 False

71 False

Section 12.4
1 −1.0

3 Not a linear function

5 Linear function

7 z =
4

3
x −

1

2
y

9 z = −2y + 2

11 Δz = 0.4; z = 2.4

13 Linear

15 Basic subscription cost $8
Premium subscription cost $12

17 (a) Linear

(b) Linear

(c) Not linear

19 180 lb person at 8 mph

120 lb person at 10 mph

21 g(x, y) = 3x + y

23 Not linear

25 f (x, y) = 2x − 0.5y + 1

27 Could be linear; z = −4 + x + 4y

29 Could be linear; z = 5 + (3∕2)x

31 Could be linear; z = −5 + (3∕2)x − 2y

33 Could be linear; z = 2x + y + 3

35

x

y

60

70

80

90

100

0.5 1 1.5 2

1

2

3

4

Other answers possible

37

x

y

20

25

30

35

40

0.5 1 1.5 2

1

2

3

4

Other answers are possible

39

x

y

z

1

−2

2

41

x

y

z

2

−4

4

43 8

45 (a) Impossible

(b) Impossible

(c) 20

47 f (x, y) = xy has linear cross-sections

49 z = −2x + y

51 False

53 True

55 True

57 False

59 False

61 False

65 (a) 7∕
√

29

(b) −5∕
√

104

Section 12.5
1 (a) I

(b) II

3 f (x, y) =
1

3
(5 − x − 2y)

5 f (x, y) = (1 − x2 − y)2

7 Elliptical and hyperbolic paraboloid, plane

9 Hyperboloid of two sheets

11 Ellipsoid

13 Yes, f (x, y) = (2x + 3y − 10)∕5

15 No

17 f (x, y) = 2x − (y∕2) − 3
g(x, y, z) = 4x − y − 2z = 6

19 f (x, y) = −
√

2(1 − x2 − y2)
g(x, y, z) = x2 + y2 + z2∕2 = 1

21 (a) 1596 kcal/day

(b) 1284 kcal/day

(c) Plane; weight, height, age combinations of

woman whose BMR is 2000 kcal/day

(d) Lose weight

23 (a) P (1 + 0.01r)t = 2653.3
(b) (P , r, t) = (1628.9, 5, 10); other answers

possible

25 (a) r2ℎ� = 120
(b) (r, ℎ, �) = (2, 5, 6); other answers possible

27 f (x, y) = 3
√

1 − x2 − y2∕4;

g(x, y) = −3
√

1 − x2 − y2∕4

29 f (x, y, z), r(x, y, z), m(x, y, z)

31 (a) Graph of f is the graph of

y2 + z2 = 1, z ≥ 0

(b)
√

1 − y2 − z = 0

33 Elliptical cylinder along y-axis

35 Parallel planes

37 Surface of rotation

39 Spheres

43

y

z

x ✒

f = 2

✲f = 1

❘

f = 0

45 Vertical shifts

47 Graph of f (x, y, z) needs 4 dimensions

49 Level surfaces cylinders

51 f (x, y, z) = x2 + z2

53 f (x, y, z) = x2 + y2 − z

55 False

57 False

59 False

61 True

63 True

Section 12.6
1 Not continuous

3 Continuous

5 Not continuous

7 1

9 0

11 1

13 2

15 Does not exist

23 No

25 c = 1

27 (c) No

29 For quotient, need g(a, b) ≠ 0

31 f (x, y) = (x2 + 2y2)∕(x2 + y2)

33 f (x, y) = 1∕((x − 2)2 + y2)

35 False

37 True

39 True

Chapter 12 Review
1 A, B, C

3

x

y

z
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5 Not a function

7 IV

9 (a) is (I)

(b) is (IV)

(c) is (II)

(d) is (III)

11 y = k

−2 −1 1 2
−2

−1

1

2

x

y

−0.2

0.2
0.4

−0.4
−0.6

0.6
0.8

−0.8

0.95

0.95

−0.95

−0.95

13 2x2 + y2 = k

15 (x − 1)2 + (y − 2)2 + (z − 3)2 = 25

17 (−2, 3,−6); 7

19 Linear

21 f (x, y, z) = x2 + y2

23 z = f (x, y) = 4 − 2x − 4y∕3
g(x, y, z) = (x∕2) + (y∕3) + (z∕4) = 1

25 z = f (x, y) = −
√

4 − (x − 3)2 − y2

g(x, y, z) = (x − 3)2 + y2 + z2 = 4

27 Cylinder

29 g(x, y) = 200x + 100y

31 Doubles production

37 (a) No

(b) No

(c) No

(e) 0.5 of GPA

39 (a)

10

10

x

y

T = 0

T = 50
T = 75

T = 25
Motion of bug

✛
✛
✛

✛
✒✒
✒
✒

T = 100

❥

(b) Toward origin

41 (a)

x

y

1

.5
0

−
.5

−
1

−
.5

0.5

.5 0−
.5

(b)

−� �

1
x

z

(c)

−� �

1
r

z

45 (a) For t = 0:

�∕2 �

1

x

y

For t = �∕4:

�∕2 �

√

2

2

x

y

For t = �∕2:

�
x

y

For t = 3�∕4:

�∕2 �

−

√

2

2

x
y

For t = �:

�∕2 �
x

−1

y

47 (a) (1,
√

3, 0)

(b) (1, 1∕
√

3, 2
√

2∕
√

3)
(c) Tetrahedron

49 (a) f (1, 1, 3) ≈ 26, f (1, 2, 1) ≈ 12
(b) f (1, 1, 3) exact, f (1, 2, 1) not exact

(c) 5x2 + 2yz + 3zx3 + 6 ⋅ 2x−y

(d) f (1, 1, 3) = 26, f (1, 2, 1) = 15

Section 13.1
1 a⃗ = i⃗ + 3j⃗

b⃗ = 3i⃗ + 2j⃗

v⃗ = −2i⃗ − 2j⃗

w⃗ = −i⃗ + 2j⃗

3 −3i⃗ − 4j⃗

5 a⃗ = b⃗ = c⃗ = 3k⃗
d⃗ = 2i⃗ + 3k⃗
e⃗ = j⃗

f⃗ = −2i⃗

7 i⃗ + 3j⃗

9 −4.5i⃗ + 8j⃗ + 0.5k⃗

11 −3i⃗ − 12j⃗ + 3k⃗

13 0.9i⃗ + 0.2j⃗ − 0.7k⃗

15
√

6

17
√

11

19 5.6

21 −6i⃗ + 20j⃗ + 13k⃗

23 21j⃗

25 2
√

73

27 0.6i⃗ − 0.8k⃗

29 −i⃗ ∕2 + j⃗ ∕4 +
√

11k⃗ ∕4

31 0,−10

33 (a) (3∕5)i⃗ + (4∕5)j⃗

(b) 6i⃗ + 8j⃗

35 (a)
√

2i⃗ +
√

2j⃗

(b) (
√

3∕2)i⃗ + k⃗ ∕2

37 p⃗ = −
4
√

5

5
i⃗ −

2
√

5

5
j⃗

39 (a) a⃗ = i⃗ and b⃗ = −i⃗ ; other answers possi-

ble

(b) a⃗ = (1∕
√

2)i⃗ − (1∕
√

2)j⃗ and b⃗ =

(1∕
√

2)j⃗ + (1∕
√

2)k⃗ ; other answers pos-

sible

(c) a⃗ = i⃗ and b⃗ = i⃗ ; other answers possible

(d) Not possible

41 (a) t = 1
(b) No t values

(c) Any t values

43 (i⃗ + j⃗ )∕
√

2, (i⃗ − j⃗ )∕
√

2, (−i⃗ + j⃗ )∕
√

2,

(−i⃗ − j⃗ )∕
√

2

45 (a) (a, 0, 0)

(b)
(

b∕
√

b2 + c2
)

j⃗ +
(

c∕
√

b2 + c2
)

k⃗

47 ‖u⃗ + v⃗ ‖ could be less than 1

49 Longer diagonal if angle between u⃗ and v⃗

more than 90◦

51 v⃗ = j⃗ +
√

3 k⃗

53 u⃗ = i⃗ , v⃗ = 3i⃗ + 3j⃗

55 False

57 False

59 False

61 False

63 False

Section 13.2
1 Scalar

3 Scalar

5 Vector

7 −37.59i⃗ ,−13.68j⃗

9 21i⃗ + 35j⃗

11 (a) 8.64 km/hr

(b) 0.093 radian or about 5◦ off course

13 (a) 17.93i⃗ − 7.07j⃗
(b) 19.27 km/hr

(c) 21.52◦ south of east

15 48.3◦ east of north
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744 km/hr

17 4.87◦ north of east

540.63 km/hr

19 38.7◦ south of east

21 −98.76i⃗ + 18.94j⃗ + 2998.31k⃗
2998.31 newtons directly up

23 0.4vi⃗ + 0.7vj⃗

25 0.1i⃗ +0.08j⃗ +0.1625k⃗ or (0.1, 0.08, 0.1625)

37 42.265i⃗ + 42.265j⃗ − 5.229k⃗ mph

39 Not if |j⃗ -component| ≥ 2

41 Let v⃗ = cv⃗ for any c > 0

43 No

45 No

47 No

49 3.4◦ north of east

Section 13.3
1 14

3 29

5 7.5
√

2

7 −14

9 14

11 −2

13 28j⃗ + 14k⃗

15 185

17 i⃗ + 3j⃗ + 2k⃗ (multiples of)

19 3i⃗ + 4j⃗ − k⃗ (multiples of)

21 3x − y + 4z = 6

23 x − y + z = 3

25 2x + 4y − 3z = 5

27 2x − 3y + 5z = −17

29 2�∕3 radians (120◦)

31 �∕6 radians (30◦)

33 (a) - (II)

(b) - (I)

(c) - (III)

35 (a) (2∕
√

13)i⃗ + (3∕
√

13)j⃗

(b) Multiples of 3i⃗ − 2j⃗

37 (a) (21∕5, 0, 0)
(b) (0,−21, 0); (0, 0, 3) (for example)

(c) n⃗ = 5i⃗ − j⃗ + 7k⃗ (for example)

(d) 21j⃗ + 3k⃗ (for example)

39 Possible answers:

(a) 2i⃗ + 3j⃗ − k⃗

(b) 3i⃗ − 2j⃗

41 (a) is (I); (b) is (III), (IV); (c) is (II), (III); (d)

is (II)

43 v⃗ 1, v⃗ 4, v⃗ 8 all parallel

v⃗ 3, v⃗ 5, v⃗ 7 all parallel

v⃗ 1, v⃗ 4, v⃗ 8 perpendicular to v⃗ 3, v⃗ 5, v⃗ 7

v⃗ 2 and v⃗ 9 perpendicular

45 u⃗ ⟂ v⃗ for t = 2 or −1.

No values of t make u⃗ parallel to v⃗

47 2

49
√

20

51 a⃗ = −
8

21
d⃗ + (

79

21
i⃗ +

10

21
j⃗ −

118

21
k⃗ )

53 Lengths:
√

34,
√

29,
√

13
Angles: 37.235◦, 64.654◦, 78.111◦

55 39 joules; 28.765 foot-pounds

57 120 foot-pounds; 162.698 joules

59 (a) F⃗ parallel = −0.168i⃗ − 0.224j⃗

(b) F⃗ perp = 0.368i⃗ − 0.276j⃗

(c) W = −1.4

61 (a) F⃗ parallel = 0⃗

(b) F⃗ perp = F⃗

(c) W = 0

63 (a) F⃗ parallel = F⃗

(b) F⃗ perp = 0⃗

(c) W = −50

65 (a) F⃗ parallel = 3.846i⃗ − 0.769j⃗

(b) F⃗ perp = −3.846i⃗ − 19.231j⃗

(c) W = 20

67 (a) F⃗ parallel = 0⃗

(b) F⃗ perp = F⃗

(c) W = 0

69 70.529◦

71 w⃗ 4 increases most

w⃗ 3 decreases most

73 (a) (20, 20,−10)
(b) 108.167

75 $710 revenue

83 Can’t take dot product of a scalar and a vector

85 Normal vector is 2i⃗ + 3j⃗ − k⃗

87 f (x, y) = (−1∕3)x + (−2∕3)y

89 True

91 False

93 True

95 False

97 True

99 True

Section 13.4
1 −i⃗

3 −i⃗ + j⃗ + k⃗

5 i⃗ + 3j⃗ + 7k⃗

7 7i⃗ + j⃗ + 4k⃗

9 −2k⃗

11 i⃗ − j⃗

13 v⃗ × w⃗ = −6i⃗ + 7j⃗ + 8k⃗

w⃗ × v⃗ = 6i⃗ − 7j⃗ − 8k⃗
v⃗ × w⃗ = −(w⃗ × v⃗ )

15 x − y − z = −3

17 4

19 0

21 −i⃗ − j⃗ − k⃗

23 0⃗

25 x + 2y + 2z = 0

27 3x − y − 2z = 0

29 4i⃗ + 26j⃗ + 14k⃗

31 4(x − 4) + 26(y − 5) + 14(z − 6) = 0

33 (a) u⃗ and −u⃗ where

u⃗ =
12

13
i⃗ −

4

13
j⃗ −

3

13
k⃗

(b) � ≈ 49.76◦

(c) 13∕2

(d) 13∕
√

29

35 (a) (4, 0, 0)
(b) (0, 2, 0)
(c) (0, 0, 4)
(d) 9.798

37 (a) 0.6
(b) 0.540

39 (a) 1.625
(b) 1.019

41 (a) Increases force

(b) Ball moves down and to the left

43 (b) (−y, x)

45 i⃗ − 3j⃗ − 5k⃗

47 (a) 4k⃗
(b) 3j⃗

(c) 2i⃗

49 � = �∕4 or 3�∕4

51 0 ≤ � < �∕4 or 3�∕4 < � ≤ �

55 4�i⃗

57 (a) ((u2v3 −u3v2)
2 + (u3v1 −u1v3)

2 + (u1v2 −
u2v1)

2)1∕2

(b) |

|

u1v2 − u2v1
|

|

(c) m = (u2v3 − u3v2)∕(u2v1 − u1v2),
n = (u3v1 − u1v3)∕(u2v1 − u1v2)

59 Parallel, not perpendicular

61 v⃗ = (8i⃗ − 6j⃗ )∕5

63 False

65 True

67 True

69 True

71 False

Chapter 13 Review
1 Scalar; −1

3 −1

5 a⃗ = −2j⃗ , b⃗ = 3i⃗ , c⃗ = i⃗ + j⃗ ,

d⃗ = 2j⃗ , e⃗ = i⃗ − 2j⃗ , f⃗ = −3i⃗ − j⃗

7 5i⃗ + 30j⃗

9 3
√

2

11 3i⃗ + 7j⃗ − 4k⃗

13 −3

15 0⃗

17 0

19 0⃗

21 −5i⃗ + 3j⃗ + k⃗ (multiples of)

23 (a) 4

(b) −4i⃗ − 11j⃗ − 17k⃗

(c) 3.64i⃗ + 2.43j⃗ − 2.43k⃗
(d) 79.0◦

(e) 0.784.

(f) 2i⃗ − 2j⃗ + k⃗ (many answers possible)

(g) −4i⃗ − 11j⃗ − 17k⃗ .

25 ±(−i⃗ + j⃗ − 2k⃗ )∕
√

6

27 n⃗ = 4i⃗ + 6k⃗

29 −3i⃗ + 4j⃗

31 u⃗ and w⃗ ; v⃗ and q⃗ .

33 F⃗ parallel = F⃗

F⃗ perp = 0⃗

W = −10

35 F⃗ parallel = −(6∕5)i⃗ + (8∕5)j⃗

F⃗ perp = (16∕5)i⃗ + (12∕5)j⃗

W = −10

37 F⃗ parallel = 2j⃗

F⃗ perp = 5i⃗

W = 6
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39 (a) True

(b) False

(c) False

(d) True

(e) True

(f) False

41 548.6 km/hr

43

P R

Q

45 Parallel:

3i⃗ +
√

3j⃗ and
√

3i⃗ + j⃗
Perpendicular:
√

3i⃗ + j⃗ and i⃗ −
√

3j⃗

3i⃗ +
√

3j⃗ and i⃗ −
√

3j⃗

47 2, 8

49 2x − 3y + 7z = 19

51
√

6∕2

53 (a) 1.5
(b) y = 1

55 9x − 16y + 12z = 5
0.23

57 7.0710i⃗ + 2.5882j⃗ + 6.580k⃗

59 0, 0⃗

61 (a) c⃗ = −i⃗ − 4j⃗ + 3k⃗ or c⃗ = i⃗ + 4j⃗ − 3k⃗

(b) i⃗ + 4j⃗ − 3k⃗

63 (a) (tv − sw − ty +wy + sz − vz)i⃗ + (−tu +

rw + tx − wx − rz + uz)j⃗ + (su − rv −

sx + vx + ry − uy)k⃗
(b) ((s(u − x) + vx − uy+

r(−v + y))∕c)(ai⃗ + bj⃗ + ck⃗ )

Section 14.1
1 fx(3, 2) ≈ −2∕5; fy(3, 2) ≈ 3∕5

3 −0.0493, −0.3660
−0.0501, −0.3629

5 )P ∕)t:
dollars/month

Rate of change in pay-

ments with time

negative

)P ∕)r:
dollars/percentage point

Rate of change in pay-

ments with interest rate

positive

7 (a) Payment $376.59/mo at 1% for 24 mos

(b) 4.7c/ extra/mo for $1 increase

(c) Approx $44.83 increase for 1% interest in-

crease

9 (a) Negative

(b) Positive

11 (a) f (A) = 15
(b) Zero

(c) Negative

13 (a) f (A) = 88
(b) Negative

(c) Negative

15 (a) f (A) = 40
(b) Negative

(c) Positive

17 fx > 0, fy < 0

19 fx < 0, fy > 0

21 Positive, Negative, 10, 2, −4

23 (i)(c); (ii)(a)

25 (a) Both negative

(b) Both negative

27 fT (5, 20) ≈ 1.2◦F∕◦F

29 −1.5 and −1.22

31 (a)

10

10

10
20
30

40
50

60

5060

x

y

(b)

10

10

10
20
30

40
50
60

50
60

x

y

33 (a) Negative

(b) Positive

35 (a) 2.5, 0.02
(b) 3.33, 0.02
(c) 3.33, 0.02

37 −2.5

39

T (◦C)

w (gm/m3)

0.1 0.2 0.3

10 1300 900 1200

20 800 800 900

30 800 700 800

41 (a)

−
5

−
4

−
3

−
2

−
1

0

1
2
3
4
5

x

y

(b)

−
5

−
4

−
3

−
2

−
1

0

1

2
3
4
5

x

y

(c)

−
5−

4−
3−

2−
10

1

2
3

4
5

x

y

(d)

5
4
3
2
1

0

−
1

−
2

−
3

−
4

−
5

x

y

43 There are many possibilities.

−8

−6

−4

−2

0

24

6

8

x

y

45 There are many possibilities.

−2 −1 1 2

−2

−1

1

2

−4

−2

0

2 4

x

y

47 fy = 0

49 f (x, y) = 4x − y

51 False

53 False

55 True

57 True

59 True

Section 14.2
1 (a) 7.01

(b) 7
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3 fx(1, 2) = 15,

fy(1, 2) = −5

5 )z∕)x =
14x+7

(x2+x−y)−6

)z∕)y = −7(x2 + x − y)6

7 fx = 0.6∕x
fy = 0.4∕y

9 2xy + 10x4y

11 Vr =
2

3
�rℎ

13 e
√

xy(1 +
√

xy∕2)

15 g

17 (a + b)∕2

19 2B∕u0

21 2mv∕r

23 (15x2y − 3y2) cos(5x3y − 3xy2)

25 y

27 zx = 7x6 + yxy−1

zy = 2y ln 2 + xy ln x

29 Gm1∕r
2

31 −e−x
2∕a2 (a2 − 2x2)∕a4

33 cos(���) ⋅ �� +
1

�2 + �
⋅ 2�

35 fa = ea sin(a + b) + ea cos(a + b)

37 )V ∕)r =
8

3
�rℎ,

)V ∕)ℎ =
4

3
�r2

39 −(x − �)e−(x−�)
2∕(2�2)∕(

√

2��3)

41 (a) fx(1, 1) = 2; fy(1, 1) = 2
(b) (II)

43 (a) fx(1, 1) = 2; fy(1, 1) = 2e
(b) (I)

45 (a) fw(2, 2) ≈ 2.78
fz(2, 2) ≈ 4.01

(b) fw(2, 2) ≈ 2.773
fz(2, 2) = 4

47 (a) P rert

(b) ert

49 1.277 m2, 0.005 m2/kg, 0.006 m2/cm

51 ℎx(2, 5) ≈ −0.38 cm/meter

ℎt(2, 5) ≈ 0.76 cm/second

55 No such points exist

57 (0, 1), (0,−1), (−2, 1) and (−2,−1)

59 )f∕)x or )f∕)y?

61 f (x, y) = 2x + 3y + x2

63 f (x, y) = y2 + 1

65 True

67 False

69 False

71 False

Section 14.3
1 z = ex

3 z = 6y − 9

5 z = −4 + 2x + 4y

7 z = −36x − 24y + 148

9 df = y cos(xy) dx + x cos(xy) dy

11 dz = −e−x cos(y)dx − e−x sin(y)dy

13 dg = 4 dx

15 dP ≈ 2.395dK + 0.008 dL

17 −5

19 0.99

21 95

23 12.005

25 (a) Dollars∕Square foot

(b) Larger plots at same distance $3∕ft2 more

(c) Dollars∕Foot

(d) Farther from beach but same area $2∕ft

less

(e) 998 ft2

27 (b) f (x, y) ≈
0.3345 − 0.33(x − 1) − 0.15(y − 2)

(c) f (x, y) ≈ 0.3345 −
0.3345(x − 1) − 0.1531(y − 2)

29 (a) fx(1, 2) = 3; fy(1, 2) = 2
(b) 2

(c) 2.1

31 df = −3dx + 2dy at (2,−4)

33 376

35 df =
1

3
dx + 2dy

f (1.04, 1.98) ≈ 2.973

37 136.09◦C

39 P (r, L) ≈
80 + 2.5(r − 8) + 0.02(L − 4000)
P (r, L) ≈
120 + 3.33(r − 8) + 0.02(L − 6000)
P (r, L) ≈
160 + 3.33(r − 13) + 0.02(L − 7000)

43 (a) nRT∕(V − nb) − n2a∕V 2

(b) ΔP ≈ (nR∕(V0 − nb))ΔT + (2n2a∕V 3
0
−

nRT0∕((V0 − nb)
2))ΔV

45 (a) d� = −��dT
(b) 0.00015, � ≈ 0.0005

47 −43200Δt
Slow if Δt > 0; fast if Δt < 0

49 (a) 4x dx = 2y dy + 6z dz

(b) dz =
2

3
dx −

1

2
dy

(c) z = 2 +
2

3
(x − 2) −

1

2
(y − 3)

51 (a) ey dx+xey dy+2z dz = −sin(x−1) dx+
z

√

z2+3
dz

(b) dz = −
2

3
dx −

2

3
dy

(c) z = 1 −
2

3
(x − 1) −

2

3
(y − 0)

53 z = f (3, 4) + fx(3, 4)(x−3)+ fy(3, 4)(y−4)

55 Equation not linear

57 sphere of radius 3 centered at the origin

59 True

61 False

63 True

65 False

Section 14.4
1 (

15

2
x4)i⃗ − (

24

7
y5)j⃗

3 2mi⃗ + 2nj⃗

5

(

5�
√

5�2+�

)

i⃗ +

(

1

2

√

5�2+�

)

j⃗

7 ∇z = eyi⃗ + ey(1 + x + y)j⃗

9 sin �i⃗ + r cos �j⃗

11 ∇z =
1

y
cos (

x

y
)i⃗ −

x

y2
cos (

x

y
)j⃗

13

(

−12�

(2� − 3�)2

)

i⃗ +

(

12�

(2� − 3�)2

)

j⃗

15 60i⃗ + 85j⃗

17 10�i⃗ + 4�j⃗

19 (�∕2)1∕2 i⃗

21
1

100
(2i⃗ − 6j⃗ )

23 i⃗

25 i⃗ + j⃗

27 i⃗ − j⃗

29 Negative

31 Negative

33 Approximately zero

35 −i⃗

37 i⃗

39 −i⃗ + j⃗

41 i⃗ + j⃗

43 6.325

45 −46∕5

47 22∕5

49 84∕5

51 (2x + 3ey)dx + 3xeydy

53 (x + 1)yexi⃗ + xexj⃗

55 50.2

57 (a) Should be number

(b) 11∕5

59 −2

61 i⃗ + 2j⃗ or any multiple

63 0.316

65 1

67 100

69 (a) −
√

2∕2

(b)
√

3 + 1∕2

71 (a) 2∕
√

13

(b) 1∕
√

17

(c) i⃗ +
1

2
j⃗

73 (a) 5∕
√

2
(b) 510

75 (a) −16i⃗ + 12j⃗

(b) 16i⃗ − 12j⃗

(c) 12i⃗ + 16j⃗ ; answers may vary

77 1.7; closer estimate is 1.35

79 2.5; better estimate is 1.8

81 −0.9; better estimate is −1.8

83 Fourth quadrant

85 (a) Negative

(b) Positive

(c) Positive

(d) Negative

87 fu⃗ (P ) < fw⃗ (P ) < fv⃗ (P )

89 f (P ) ≈ 6, f (Q) ≈ −24

91 3i⃗ + 2j⃗ ; 3(x − 2) + 2(y − 3) = 0

93 −5i⃗ ; x = 2

95 5∕
√

2

97 (a) ellipses centered at (0, 0)
(b) decreasing at 49.9◦C per meter

(c) −i⃗ − 2j⃗ . Other answers possible

99 (a)
√

13 meters ascended/horizontal meter

(b) 3.54 meters ascended/horizontal meter

(c) u⃗ = 3i⃗ + 2j⃗ ; u⃗ = −3i⃗ − 2j⃗

101 grad f (0, 0) is vector, not scalar

103 −i⃗

105 False

107 False
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109 True

111 False

113 True

115 True

117 (a) Perpendicular to contour of f at P

(b) Maximum directional derivative of f at P

(c) Directional derivative fu⃗ (P )

119 19.612

121 356.5

123 (a) −3.268
(b) −4.919

125 Yes

127 Yes

129 (a)

x
y

z

(b)

z = 4

z = 1

z = 0

z = 1
z = 4

z = 9

z = 164

−2

x

y

(c) j⃗

131 (a) Circles centered at P

(b) away from P

(c) 1

133 (3
√

5 − 2
√

2)i⃗ + (4
√

2 − 3
√

5)j⃗

135 4
√

2,

6i⃗ + 2j⃗

139 (a)
√

m2 + n2

(b) (C2 − C1)∕
√

m2 + n2

141 (a) ai⃗ + 2bj⃗

(b)
√

(2 + a)∕(2 − a)

(c)
√

(2 − a)∕(2 + a)

143 True

145 True

147 False

Section 14.5
1 2xi⃗

3 exeyez(i⃗ + j⃗ + k⃗ )

5
−2xyz2

(1 + x2)2
i⃗ +

z2

1 + x2
j⃗ +

2yz

1 + x2
k⃗

7 (xi⃗ + yj⃗ + zk⃗ )∕
√

x2 + y2 + z2

9 yi⃗ + xj⃗ + ez cos (ez) k⃗

11 epi⃗ + (1∕q)j⃗ + 2rer
2
k⃗

13 0⃗

15 6i⃗ + 4j⃗ − 4k⃗

17 −�i⃗ − �k⃗

19 9∕
√

3

21 −1∕
√

2

23 −
√

77∕2

25 −2i⃗ − 2j⃗ + 4k⃗ ;

−2(x + 1) − 2(y − 1) + 4(z − 2) = 0

27 2j⃗ − 4k⃗ ; 2(y − 1) − 4(z − 2) = 0

29 −2i⃗ + k⃗ ; −2(x + 1) + (z − 2) = 0

31 6(x − 1) + 3(y − 2) + 2(z − 1) = 0

33 2x + 3y + 2z = 17

35 z = 2x + y + 3

37 x + 4y + 10z = 18

39 10∕3

41 2z + 3x + 2y = 17

43 x + 3y + 7z = −9

i⃗ + 3j⃗ + 7k⃗

45 grad g(−1,−1) lies directly under path of

steepest descent

47 (a) (x − 2) + 4(y − 3) − 6(z − 1) = 0
(b) z = 1 + (1∕6)(x − 2) + (2∕3)(y − 3)

49 3x + 10y − 5z + 19 = 0

51 16∕
√

14

53 (a) Spheres centered at the origin

(b) 2x sin(x2 + y2 + z2)i⃗ + 2y sin(x2 + y2 +

z2)j⃗ + 2z sin(x2 + y2 + z2)k⃗
(c) 0, 180◦

55 (a) Circle: (y + 1)2 + (z − 3)2 = 10
(b) Yes

(c) Multiples of −10i⃗ + 4j⃗ − 12k⃗

57 (a) (−3i⃗ + 6j⃗ + 12k⃗ )∕
√

21
(b) (8.345, 2.309, 4.619)

59 Any multiple of 2i⃗ + 2j⃗ + k⃗

61 (−1∕6, 1∕3,−1∕12)

63 (a) 6.33i⃗ + 0.76j⃗
(b) −34.69

65 (a) 23

(b) −9.2
(c) −16i⃗ + 6j⃗
(d) 16x − 6y − z = 23

67 (a) Parallel planes: 2x − 3y + z = T − 10
(b) fz(0, 0, 0) = 1, temp increases 1◦C per

unit in z-direction

(c) 2i⃗ − 3j⃗ + k⃗
(d) Yes; 27◦C

69 (a) −25∕
√

21

(b) −8i⃗ + 7j⃗ + 4k⃗

(c)
√

129

71 1.131 atm/sec

73 (a) is (V); (b) is (IV); (c) is (V)

75 fx(0, 0, 0)x + fy(0, 0, 0)y
+ fz(0, 0, 0)z = 0

77 f (x, y, z) = 2x + 3y + 4z + 100

79 False

81 False

Section 14.6
1

dz

dt
= e−t sin(t)(2 cos t − sin t)

3 2 cos
(

2t

1−t2

)

1+t2

(1−t2)2

5 2e1−t
2
(1 − 2t2)

7
)z

)u
=

1

vu
cos

(

ln u

v

)

)z

)v
= −

ln u

v2
cos

(

ln u

v

)

9
)z

)u
=
ev

u
)z

)v
= ev ln u

11
)z

)u
= 2ue(u

2−v2)(1 + u2 + v2)

)z

)v
= 2ve(u

2−v2 )(1 − u2 − v2)

13
)z

)u
=

(e−v cos u − v(cos u)e−u sinv) sin v
− (−u(sin v)e−v cos u + e−u sin v)v sin u
)z

)v
=

(e−v cos u − v(cos u)e−u sinv)u cos v
+ (−u(sin v)e−v cos u + e−u sin v) cos u

15
)z

)u
=

−2uv2

u4 + v4

)z

)v
=

2vu2

u4 + v4

17 −2� cos 2�, 0

19 (a) )f∕)t
(b) ()f∕)x)(dx∕dt)
(c) ()f∕)y)(dy∕dt)

21 −5 pascal/hour

23 −0.6

25 (a) 1∕
√

10 = 0.316 ◦F/mile

(b) 2.5∕
√

10 = 0.791◦F∕hr

(c) 2.5 ◦F∕hr

27 Three

29
dw

dt
=

)w

)x

dx

dt
+

)w

)y

dy

dt
+

)w

)z

dz

dt

31 (a) Fu(x, 3)
(b) Fv(3, x)
(c) Fu(x, x) + Fv(x, x)
(d) Fu(5x, x

2)(5) + Fv(5x, x
2)(2x)

33 b ⋅ e + d ⋅ p

35 b ⋅ e + d ⋅ p

37 (a)
)z

)r
= cos �

)z

)x
+ sin �

)z

)y
)z

)�
= r(cos �

)z

)y
− sin �

)z

)x
)

(b)
)z

)y
= sin �

)z

)r
+

cos �

r

)z

)�
)z

)x
= cos �

)z

)r
−

sin �

r

)z

)�

39 (
)U3
)P

)V

41 (
)U

)T
)V = 7∕2

(
)U

)V
)T = 11∕4

45 dz∕dt = fx(g(t), ℎ(t))g
′(t) +

fy(g(t), ℎ(t))ℎ
′(t)

47 dz∕dt|t=0 = fx(2, 3)g
′(0) + fy(2, 3)ℎ

′(0)

49 f (x, y) = 4x + 2y

51 w = uv, u = 2s2 + t and v = est, many other

answers are possible

53 (c)

57 ∫
b

0
Fu(x, y) dy

Section 14.7
1 fxx = 2
fyy = 2
fyx = 2
fxy = 2

3 fxx = 6y
fxy = 6x + 15y2
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fyx = 6x + 15y2

fyy = 30xy

5 fxx = 0
fyx = ey = fxy
fyy = ey(x + 2 + y)

7 fxx = −
(

sin
(

x

y

))(

1

y2

)

fxy = −
(

sin
(

x

y

))(

−x

y2

)(

1

y

)

+
(

cos
(

x

y

))(

−1

y2

)

= fyx

fyy = −
(

sin
(

x

y

))(

−x

y2

)2

+
(

cos
(

x

y

))(

2x

y3

)

9 fxx = 30xy2 + 18
fxy = 30x2y − 21y2

fyx = 30x2y − 21y2

fyy = 10x3 − 42xy

11 fxx = −12 sin 2x cos 5y
fxy = −30 cos 2x sin 5y
fyx = −30 cos 2x sin 5y
fyy = −75 sin 2x cos 5y

13 Q(x, y) = 1 + 2x − 2y + x2 − 2xy + y2

15 Q(x, y) = 1 + x + x2∕2 − y2∕2

17 Q(x, y) = 1 − x2∕2 − 3xy − (9∕2)y2

19 Q(x, y) = −y + x2 − y2∕2

21 1 + x − y∕2 − x2∕2 + xy∕2 − y2∕8

23 (a) Negative

(b) Zero

(c) Negative

(d) Zero

(e) Zero

25 (a) Positive

(b) Zero

(c) Positive

(d) Zero

(e) Zero

27 (a) Zero

(b) Negative

(c) Zero

(d) Negative

(e) Zero

29 (a) Positive

(b) Positive

(c) Zero

(d) Zero

(e) Zero

31 (a) Positive

(b) Negative

(c) Negative

(d) Negative

(e) Positive

33 −8

35 3

37 Not possible

39 6

41 L(x, y) = y

Q(x, y) = y + 2(x − 1)y
L(0.9, 0.2) = 0.2
Q(0.9, 0.2) = 0.16
f (0.9, 0.2) = 0.162

47 a = −b2

49 Positive, negative

51 (a) zyx = 4y
(b) zxyx = 0
(c) zxyy = 4

53 d = e = f = 0

55 d = 0, e > 0, f < 0

57 (a)

Trail

1000

101
0

10
20

990980

Elevation in meters

(b) )ℎ∕)x = 0, )ℎ∕)y > 0, ()2ℎ)∕()x)y) <
0

(c) ()2ℎ)∕()x)y)

59 (a) A

(b) B

61 (a) (II)

(b) (I)

(c) (III)

63 (a) xy

1 −
1

2
(x −

�

2
)2 −

1

2
(y −

�

2
)2

(b)

x

y

0

0

x

y

�

2

�

2

65 f (x, y):

−0.6 0.6

−0.6

0.6

0.8

1.1

1.4

x

y

L(x, y):

−0.6 0.6

−0.6

0.6

0.8

1.1

1.4

1.7

x

y

Q(x, y):

−0.6 0.6

−0.6

0.6

0.8

1.1

1.4

x

y

f (x, y):

−2 2

−2

2

0.8
1.1

1.4

1.7

2.0

2.3

2.6

x

y

L(x, y):

−2 2

−2

2

0.8
1.1
1.4
1.7

2.0
2.3
2.6
2.9
3.2
3.5
3.8

x

y

Q(x, y):
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−2 2

−2

2

0.8
1.1

1.4

1.4

1.1
0.8

x

y

67 None since fxy ≠ fyx

69 f (x, y) = 2x + y2, g(x, y) = 2x + y2 + x3

Section 14.8
1 (0, 0)

3 x-axis and y-axis

5 None

7 None

9 (1, 2)

11 (a)

2

2

4

4

3

3

4
3

43

−
4 −
3

−3
−4

−3
−4

−
3 −
4

−2 2

−2

2

x

y

(b) No

(c) No

(d) No

(e) Exist, not continuous

13 (a)

−2 2

−2

2

x

y

−
.2 −
.4

−
.2

−.
4

.2 .4.2
.4

−
.2

−
.4

−
.2

−.4

.2.4 .2

.4

(b) Yes

(c) Yes

(d) No

(e) Exist, not continuous

15 (a)

−2 2

−2

2

x

y

−.8

−.6
−.4

−.2

.8
.6
.4

.2

−.8

−.6
−.4

−.2

.8
.6
.4

.2

(b) Yes

(d) No

(f) No

17 (a)

−2 2

−2

2

x

y

−.
4

−.4
−.2

−
.2

−.4

−.4
−.2

−
.2

.4

.4

.2

.2

.4

.4

.2

.2

(c) No, no

19 (a) fx(x, y) =
(x4y + 4x2y3 − y5)∕(x2 + y2)2

fy(x, y) =

(x5 − 4x3y2 − xy4)∕(x2 + y2)2

(c) Yes

(d) Yes

21 Counterexample:
√

x2 + y2

23 f (x, y) =
√

x2 + y2

25 (a) Differentiable

(b) Not differentiable

(c) Not differentiable

(d) Differentiable

Chapter 14 Review
1 Vector; 3e−1 i⃗ −

1

2
e−1 j⃗

3 Vector;−(sinx)eyi⃗ + (cosx)eyj⃗ + k⃗

5 fx = 2xy + 3x2 − 7y6

fy = x2 − 42xy5

7 �∕
√

lg

9 fx =
2xy3

(x2+y2)2
, fy =

x4−x2y2

(x2+y2)2

11 )f∕)p = (1∕q)ep∕q

)f∕)q = −(p∕q2)ep∕q

13 fN = c�N�−1V �

15 x∕
(

2
√

!x cos2
(

√

!x

))

17
270x3y7 − 168x2y6 − 15xy2 + 16y

(15xy − 8)2

19 �xy∕
√

2�xyw − 13x7y3v

21
7

2

(

w−1

x2yw−xy3w7

)−9∕2

(

x2y+6xy3w7−7xy3w6

(w−1)2

)

23 −1∕(4�L
√

LC)

25 uxx = ex sin y, uyy = −ex sin y

27 fxxy = fyxx = 2cos(x − 2y)

29 2xi⃗ + (2y + 3y2)j⃗

31 −((1∕x)i⃗ + (1∕y)j⃗ + (1∕z)k⃗ )∕(xyz)

33 ∇z = 2x cos (x2 + y2)i⃗

+ 2y cos (x2 + y2)j⃗

35 cos(x2 + y2 + z2)
(

2xi⃗ + 2yj⃗ + 2zk⃗
)

37 −
(t2−2t+4)

(2s
√

s)
i⃗ +

(2t−2)
√

s
j⃗

39 y[cos(xy) − sin(xy)]i⃗

+ x[cos(xy) − sin(xy)]j⃗

41 2i⃗ + k⃗

43 −1

45 0

47 2∕
√

3

49 5i⃗ + 4j⃗ + 3k⃗

51 −4x − 3y + 4z = 9

53 x + y + z = 3

55 cos t sin(cos t) − sin2 t cos(cos t)

57 100t3

59 3∕t + 2t∕(t2 + 1)

61 Q(x, y) = 2 + 6x + y + 6x2 + 3xy

63 Q(x, y) = 1 + (x − 3) −
1

2
(y − 5)

−
1

2
(x − 3)2 +

1

2
(x − 3)(y − 5) −

1

8
(y − 5)2

65 (a) 2x − 4y + az = a − 2
(b) a = 2

67 (a) Q,R

(b) Q, P

(c) P ,Q,R, S

(d) None

71 F = 684 newtons,

)F∕)m = 9.77 newtons/kg,

)F∕)r = −0.000214 newtons/meter

73 (a) 20 hours per day

(b) 18.615 hours per day

75 (a) P , S

(b) R, S

(c) P ,Q,R, S

(d) None

77 0.3

79 0.8

81 0

83 (a) −5
√

2∕2

(b) 4i⃗ + j⃗

85 (a) 98.387 ft/mile

(b) 295.161 ft/hour

87 (a) −4e−81 ◦C∕meter

(b) −40e−81 ◦C∕sec

(c)
√

932e−81 ◦C∕meter

89 −2xi⃗ − 2yj⃗

91 Yes

95 (a) Fu(x, y, 3)
(b) Fw(3, y, x)
(c) Fu(x, y, x) + Fw(x, y, x)
(d) Fu(x, y, xy) + yFw(x, y, xy)

97 dP ≈ 47.6dL + 17.8dK

101 (a) −3i⃗ + 4j⃗ − k⃗

(b) −3i⃗ + 4j⃗

105 15◦C/minute

107 Approx 7.5 at (1.94, 1.08)

109 x − y

111 (a) Negative, positive,

Up if positive, down if negative

(b) � < t < 2�
(c) 0 < x < 3�∕2 and

0 < t < �∕2 or 3�∕2 < t < 5�∕2

113 (a) A0 +A1 + 2A2 +A3 + 2A4 + 4A5 + (A1 +
2A3+2A4)(x−1)+(A2+A4+4A5)(y−2),
1 + B1t, 2 + C1t

(b) A1B1 +2A3B1 +2A4B1 +A2C1 +A4C1 +
4A5C1
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115
)w

)x

)x

)u

du

dt
+

)w

)y

)y

)u

du

dt
+

)w

)x

)x

)v

dv

dt
+

)w

)y

)y

)v

dv

dt
+

)w

)z

dz

dt

Section 15.1
1 (I) and (V) Local maximum, (II) and (VI) Lo-

cal minimum, (III) and (IV) Saddle point

3 (a) None

(b) E, G

(c) D, F

5 (a)

3

5

Crosssection for x = 2

y

z

2

5

Crosssection for y = 3

x

z

(b)

3

5

Crosssection for x = 2

y

z

2

5

Crosssection for y = 3

x

z

(c)

3

5

Crosssection for x = 2

y

z

2

5

Crosssection for y = 3

x

z

7 Saddle point

9 Local minimum

11 Local maximum

13 Local minimum

15 Local max: (4, 2)

17 Local max: (1, 5)

19 Saddle point: (0, 0)
Saddle point: (2, 0)
Local min: (1, 0.25)

21 Saddle pts: (1,−1), (−1, 1)
Local max: (−1,−1)
Local min: (1, 1)

23 Local max: (−1, 0)
Saddle pts: (1, 0), (−1, 4)
Local min: (1, 4)

25 Saddle point: (0, 0)
Local max: (1, 1), (−1,−1)

27 Local min: (0, 0)

29 (a) All values of k

(b) None

(c) None

31 a = −9, b = −12, c = 50

33 (a) k < 4
(b) None

(c) k ≥ 4

35

QR

P

S
T✗✒✿③❘❲☛

✙■
❖

❨✯
✛✲❘ ✠◆✌

✒✒ ❑❑

123
−1
−2
−3

1 23
−1
−2
−3

0

00

0

1

−1−1 −2−2

2

2

−3−3

3

3

37 Saddle point: (0, 0).

39 Critical points: (0, 0), (±�, 0),
(±2�, 0), (±3�, 0), ⋯

Local minima: (0, 0),
(±2�, 0), ±4�, 0), ⋯

Saddle points: (±�, 0),
(±3�, 0), (±5�, 0), ⋯

41 (a) (1, 3) is a local minimum

(b)

1

3

x

y

✠

0

1
41632

64
12
0

47

−1 1 2 3 4 5 6
−1

1

2

3

4

5

6

0 1 2 3 4

−1

−1

−2
−3

−4

x

y

49 (a) (0, 0)
(b) D = −24x2

(c) Saddle point

51

−2
−1 21

0
0

−1
−2

0

11
2

0

−1
−2

0

11
2

✛
y = x∕

√

3

✛
y = −x∕

√

3

f > 0f < 0

f < 0f > 0

f > 0 f < 0

x

y

53 (1, 3) could be saddle point

55 Can be saddle if fxy large

57 f (x, y) = 4 − (x − 2)2 − (y + 3)2

59 False

61 True

63 True

65 True

67 False

69 False

Section 15.2
1 Mississippi:

87 − 88 (max), 83 − 87 (min)

Alabama:

88 − 89 (max), 83 − 87 (min)

Pennsylvania:

89 − 90 (max), 80 (min)

New York:

81 − 84 (max), 74 − 76 (min)

California:

100 − 101 (max), 65 − 68 (min)

Arizona:

102 − 107 (max), 85 − 87 (min)

Massachusetts:

81 − 84 (max), 70 (min)

3 Max: 30.5 at (0, 0)
Min: 20.5 at (2.5, 5)

5 High: (0, 0, 8)
Low: (0, 0,−6)

7 High: None

Low: (5, �, 2�)

9 None

11 Min = 0 at (0, 0)
(not on boundary)
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Max = 2 at (1, 1), (1,−1),
(−1,−1) and (−1, 1)

(on boundary)

13 max= 1 at (1, 0) and (−1, 0)
(on boundary)

min= −1 at (0, 1), (0,−1)
(on boundary)

15 Global min; no global max

17 Global max; no global min

19 Global max; no global min

21 Global min at (0, 2�n), all n

No global max

23 Saddle at (0, 1∕2); local min at (−2∕3, 7∕6);
no global max or min

25 Saddle at (0, 0); local max at (2∕9, 4∕27); no

global max or min

27 All edges (32)1∕3 cm

29 l = w = ℎ = 45 cm

31 (3∕14, 1∕7, 1∕14)

35 q1 = 300, q2 = 225.

37 (a) L =

[

pA

(

a

k

)a (
l

b

)(a−1)
]1∕(1−a−b)

K =
la

kb
L

(b) No

39 y = 24x2∕49 − 2∕7

41 y =
25

6
−

3

2
x

43 (b) f (
√

1∕2,
√

3∕5) =

4
√

2 + 2
√

15 ≈ 13.403

45 (a) Decrease; increase

(d) Both zero

47 Some do, like f (x, y) = x2 + y2; some don’t

49 f (x, y) = x + y

51 True

53 True

55 True

57 False

59 True

Section 15.3
1 Min = −

√

2, max =
√

2

3 Max: 20 at (−1, 2);
Min: 0 at (1,−2)

5 Min = −22, max = 22

7 Maximum f (10, 12.5) = 250;

No minimum

9 Min =
3

4
, no max

11 Max = 0, no min

13 Max:f (0, 2) = f (0,−2) = 8
Min:f (0, 0) = 0

15 Max =

√

2

4
, min = −

√

2

4

17 Max: 32 at (1,−1);
Min:8 at (−1, 1)

19 (a) P minimum, Q minimum, R neither, S

maximum

(b) P minimum, Q neither, R neither, S max-

imum

21 K = 4, L = 5, � = 0.072

23 K = 100, L = 400, � = 4

25 Global max (12∕5, 8∕5); global min (1, 3)

27 0.5

29 (a)

20 40 60 80 100

500

1000

1500
I

II
III

(50, 500)

s = 1000 − 10l

l

s

(b) s = 1000 − 10l

31 (a) Min; max at endpt of constraint

� neg

(b) Max; min at endpt of constraint

� pos

33 Δc∕4; −Δc∕4

37 (a) C = $4349
(b) $182

39 (a) W = 225
K = 37.5

(c) W = 225
K = 37.5
� = 0.29

41 (a) No

(b) Yes

(c) a + b = 1

43 x1 = ((v1)
1∕2 + (v2)

1∕2)∕(m(v1 )
1∕2)

x2 = ((v1)
1∕2 + (v2)

1∕2)∕(m(v2 )
1∕2)

45 (a) f1 =
k1

k1+k2
mg, f2 =

k2
k1+k2

mg

(b) Distance the mass stretches the top spring

and compresses the lower spring

49 (a) Cost of producing quantity u when prices

are p, q

(b) 2
√

pqu

51 (a) −5�2 + 15�
(b) 1.5, 11.25
(c) 11.25, 1.5
(d) same

53 (a) S = ln(aa(1 − a)(1−a)) + ln b − a ln p1 −
(1 − a) ln p2

(b) b = ecpa
1
p
(1−a)

2
∕(aa(1 − a)(1−a) )

55

6

3

6
−
2 −

1
0

−
2
6

−
1
8

−
3
4

x

y

57 f (x, y) = x2 + y2

59 f (x, y) = 10 − x2 − y2

63 True

65 True

67 False

69 False

71 True

73 False

75 False

77 (a)

1 2 3 4

1

2

3

4

8

11

14

17

5

2

x

y

(b)

1 2 3 4
0

5

10

15

20

y = 1
y = 2

y = 3
y = 4

y = 5

x

z

Chapter 15 Review
1 (3,−1), Saddle point

3 Saddle pt: (0,−5)
Local min: (2,−5)

5 (2, 1); local min

7 (2, 3): Local and global max

9 Local minimum: (1, 2)
Local maximum: (−1,−2)
Saddle points: (1,−2) and (−1, 2)
No global maximum or minimum

11 Minimum f (−3∕
√

5, 4∕
√

5) = −5
√

5,

Maximum f (3∕
√

5,−4∕
√

5) = 5
√

5

13 Min = 11.25; no max

15 Minimum f (27.907, 23.256) = 1860.484;

No maximum

17 Max = 5∕2, min = −2

19 Maxima: (−1, 1) and (1,−1)
Minimum: (0, 0)

21 Max = 1
Min = −1

23 Minimum

25 Neither

27 (a)
√

(x − 3)2 + (y − 4)2

(b) 4 at (0.6, 0.8)
(c) 6 at (−0.6,−0.8)

29 y = 2∕3 − x∕2

31 A = 10, B = 4, C = −2

33 q1 = 50 units

q2 = 150 units

35 6340

37 (a) Reduce K by 1∕2 unit,

increase L by 1 unit.

39 Along line x = 2y

41 p1 = 110, p2 = 115.

43 x ≈ 23.47, y ≈ 23.47, z ≈ 75.1

45 (a) i1 = R2I∕(R1 + R2),
i2 = R1I∕(R1 + R2)

(b) � = 2 ⋅ Voltage

49 d ≈ 5.37 m, w ≈ 6.21 m,

� = �∕3 radians
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51 Student B correct. Local max, not global

Section 16.1
1 24; 43.5

3 Over: Approx 137

Under: Approx 60

5 about 2300

7 Average height of a tent in meters

9 Positive

11 Zero

13 Zero

15 Positive

17 About 4.888 km3

19 210

21 Need f nonnegative everywhere

23 f (x, y) = 5 − x− y; R is square with vertices

(±1,±1)

25 False

27 False

29 True

31 True

33 False

35 25.2◦C

Section 16.2
1

�

�

∫

�

0 ∫

x

0

y sinx dy dx

x

y

3

2 4

1

2

∫

2

0 ∫

y2

0

y2x dx dy

x

y

5 150

7 54

9 e − 2

11 3 − sin 3

13 (e4 − 1)(e2 − 1)e

15 −2.678

17 15

19
2

3
(e8 − 1)

21 ∫
4

1
∫

2

1
f dy dx or ∫

2

1
∫

4

1
f dx dy

23 ∫
3

−1
∫

(1−3x)∕4

−2
f dy dx

or ∫
1

−2
∫

(1−4y)∕3

−1
f dx dy

25 ∫
3

1
∫

−
1
2
(y−5)

1
2
(y−1)

f dx dy or

∫
1

0
∫

2x+1

1
f dydx+

∫
2

1
∫

−2x+5

1
f dydx

27 ∫
2

1
∫
x

0
f dy dx or

∫
1

0
∫

2

1
f dxdy+

∫
2

1
∫

2

y
f dxdy

29
4

15
(9
√

3 − 4
√

2 − 1) = 2.38176

31 32∕9

33 13∕6

35 0

37 2/3

39 ∫
6

0
∫
x∕2

0
f (x, y)dy dx

41 ∫
9

0
∫

√

9−y

−
√

9−y
f (x, y) dx dy

43 (e − 1)∕2

45
2

9
(3
√

3 − 2
√

2)

47
1

2
(e2 − 1)

49 ln(17)∕4

51 {(I),(IV),(V)}, {(II),(III),(VI)}

53 (a) 8∕3
(b) 16∕3

55 (a) ∫
1∕2

0
∫

1−y

y
f (x, y) dx dy

∫
1∕2

0
∫
x

0
f (x, y)dy dx +

∫
1

1∕2
∫

1−x

0
f (x, y) dy dx

(b) 1/8

57 15

59 (a) Plate 1

(b) Plate 1: 5 coulombs; Plate 2: 4 coulombs

61 18 gm

63 ∫
3

−3
∫

√

9−y2

−

√

9−y2
(9 − x2 − y2) dx dy

65 4

67 117.45

69 Volume = 1∕(6abc)

71 (a) Circles centered at (1, 0)

(b) ∫

√

3

−
√

3
e−y

2
dy

(c) ∫
2

−2
∫

√

4−x2

−
√

4−x2
e−(x−1)

2−y2 dy dx

73 (a)

1

1

100

98

96
94

x

y

(b)

1

1

0

0.1

0.2
0.3

x

y

75 (a) (4∕3)a + b + (4∕3)c = 20

(b) f (x, y) = x2 +
44

3
xy + 3y2:

x

y

f (x, y) = −3x2 + 24xy:

x

y

77 Outside limits on right should be constants

79 f (x, y) = 12x

81 False

83 True

85 True

87 True

89 Volume = 6

91 k(a3b + ab3)∕3

Section 16.3
1 2

3 −8

5

x y

z

1 1

1

7

x

y

z

1

1

1

9

1
1

1

x
y

z
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11

1
1

1

x
y

z

13

1
1

1

x

y

z

15 Mass of E in kg

17 Positive

19 Positive

21 Zero

23 Positive

25 Zero

27 Positive

29 Positive

31 Positive

33 Zero

35 1

37 4∕3

39 500∕3

41 V = ∫
1

−1
∫

√

1−x2

−
√

1−x2
∫

√

4−x2−y2

x2+y2
1 dz dy dx

Can reverse order x, y

43 V = ∫
2

0
∫

(y+2)∕2

y
∫

√

9−x2−y2

0
1 dz dx dy

45 V = ∫
1

0
∫

√

4−x2

0
∫

√

4−x2−y2

0
1 dz dy dx

47 ∫
1

0
∫

2

−2
∫

√

4−z2

0
f (x, y, z) dy dz dx

49 ∫
r

0
∫

√

r2−x2

−
√

r2−x2
∫

√

r2−x2−y2

0
f (x, y, z) dz dy dx

51 125∕3

53 2∕3

55 15∕2

57 (a) Mass of pyramid in grams

(b) Four

(c) 27 grams

59 ∫
3∕4

0
∫

2−2y

2y
3

∫
4−2x−4y

0
f (x, y, z) dz dx dy

61 ∫

1
2

0
∫

4−8x

0
∫

1−
x
2
−
z
4

3x
2

f (x, y, z) dy dz dx

63 (a) z =
√

1 − x2, 0 ≤ y ≤ 10

(b) ∫
10

0
∫

1

−1
∫

√

1−x2

0
f (x, y, z) dz dx dy

65 ∫
2

0
∫

√

12−3y2

0
∫

6y2

0
f (x, y, z) dz dx dy

67 ∫

√

12

0
∫

24−2x2

0
∫

√

12−x2

3
√

z
6

f (x, y, z) dy dz dx

69 ∫
2

0
∫

(3∕2)

√

4−y2

0
∫

5

(15−5x)∕3
f (x, y, z) dz dx dy

71 ∫
5

0
∫

(15−3z)∕5

0
∫

(2∕3)
√

9−x2

0
f (x, y, z) dy dx dz

73 ∫
2

0
∫

4−x2

0
∫

2−x

0
f (x, y, z) dy dz dx

75 m = 2;

(x̄, ȳ, z̄) = (13∕24, 13∕24, 25∕24)

77 Not true for f (x, y, z) = z

79 f (x, y, z) = 7∕(12�)

81 False

83 False

85 True

87 False

89 False

91 4

93 1

95 (a) ∫
2

0
∫

4−x
2

√

x
2

∫
4−x−2y

0
f (x, y, z) dz dy dx

(b) ∫
2

0
∫

4−x−
√

2x

0
∫

4−x−z
2

√

x
2

f (x, y, z) dy dz dx

97 m(b2 + c2)∕3

Section 16.4
1 ∫

�∕2

0
∫

1∕2

0
f rdr d�

3 ∫
3�∕4

�∕4
∫

2

0
f rdr d�

5 ∫
5

1
∫

4

2
f (x, y) dy dx

7 ∫
2�

�
∫

4

2
f (r cos �, r sin �) r dr d�

9

x

y

� = −�∕2

� = �∕2 ✠

r = 4

11

1 2
x

y

✠

r = 2

✙
r = 1

13

x

y

� = �∕4

r = 1∕ cos �
or r cos � = 1
or x = 1

15

x

y

r = 2∕ sin �
or r sin � = 2
or y = 2

� = �∕4

17 �(1 − cos 4)

19 −2∕3

21 1.

23 ∫
0

−1
∫

−
√

3x

0
2y dy dx; ∫

√

3

0
∫

−y∕
√

3

−1
2y dx dy

25 16

27 (a)

x

y

1

3

y = x∕3

(b) ∫
1

0
∫

3y

0
f (x, y) dx dy

(c) ∫
�∕2

tan−1(1∕3)
∫

1∕ sin�

0

f (r cos �, r sin �)r dr d�

29 2∕
√

3

31 625�∕2

33 (a) �(1 − e−a
2
)

(b) Volume tends to �

35 (a) ∫
3�∕2

�∕2
∫

4

1
�(r, �) rdr d�

(b) (i)

(c) About 39,000

37 Total charge = 2k�R

39 (a)

1 2

r = 2 cos �r = 1 ❄

� = �∕3

✻

� = −�∕3

x

y

(b)
√

3∕2 + �∕3

41 Integrand r3 instead of r2

43 Regions of integration are not the same

45 Quarter disk 0 ≤ x ≤ 1, 0 ≤ y ≤
√

1 − x2

47 f (x, y) = 1∕
√

x2 + y2

49 (a), (c), (e)

51 True

53 False

55 False

57 (a) ∫

√

3∕2

−
√

3∕2
∫

√

1−y2

1−

√

1−y2
dxdy

(b) ∫
1

0
∫

arccos(r∕2)

− arccos(r∕2)
r d�dr

Section 16.5
1 (a) is (IV); (b) is (II); (c) is (VII); (d) is (VI);

(e) is (III); (f) is (V)

3 z =
√

1 − r2

5 � = �∕4
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7 � = 4∕ cos�

9 200�∕3

11 25�

13 ∫
1

0
∫

2�

0
∫

4

0
f ⋅ rdr d� dz

15 ∫
�

0
∫
�

0
∫

3

2
f ⋅ �2 sin� d� d�d�

17 ∫
5

0
∫

2

0
∫
x∕5

0
f dz dy dx

19 ∫
2�

0
∫

2

0
∫

4

2r
f (r, �, z)r dz dr d�

21 ∫
2

−2
∫

√

4−x2

−
√

4−x2

∫
4

2

√

x2+y2
ℎ(x, y, z) dz dy dx

23 ∫
�

0
∫
K

0
∫

2�

0
�2 sin�d� d� d�

25 (a) ∫
1∕

√

2

−1∕
√

2
∫

√

(1∕2)−x2

−

√

(1∕2)−x2

∫

√

1−x2−y2

√

x2+y2
dz dy dx

(b) ∫
2�

0
∫

1∕
√

2

0
∫

√

1−r2

r
r dz dr d�

(c) ∫
2�

0
∫
�∕4

0
∫

1

0
�2 sin�d� d� d�

27 (a) ∫
2�

0
∫

√

2

0
∫

√

4−r2

r
r dz dr d�

(b) ∫
2�

0
∫
�∕4

0
∫

2

0
�2 sin�d� d� d�

29 V = ∫
2�

0
∫
�∕3

0
∫

3

0
�2 sin�d� d� d�

Order of integration can be altered;

other coordinates can be used

31 V = ∫
�

0
∫

√

3
√

2
∫

10

5
r dz dr d�;

Order of integration can be altered;

other coordinates can be used

33 V = ∫
2�

0
∫

3

0
∫

√

10−r2

1
r dz dr d�

or

V = ∫
2�

0
∫

√

10

1
∫

√

10−z2

0
r dr dz d� Order of

integration can be altered;

other coordinates can be used

35 (a) ∫
2�

0
∫

1∕
√

3

0
∫

1
√

3r
r dz dr d�

(b) �∕9

37 16�(
√

2 − 1)∕(3
√

2)

39 28�∕15

41 ∫
2�

0
∫

5∕
√

2

0
∫

5∕
√

2

r
r dz dr d� =

125�∕(6
√

2) = 46.28 cm3

43 (a) Positive

(b) Zero

45 ∫
2�

0
∫
l

0
∫
a+ℎ

a
r drdzd� =

�l((a + ℎ)2 − a2)

47 ∫
2�

0
∫
a

0
∫
ℎ

ℎr∕a
r dzdrd� = �ℎa2∕3

49 (a) ∫
2�

0
∫

5

1
∫

√

25−r2

−
√

25−r2
r dz dr d�

(b) 64
√

6� = 492.5 mm3

51 81�(−
√

2 + 2)∕4

53 324�∕5 gm

55 1702� gm

57 Mass = ∫
2

−2
∫

√

4−x2

−
√

4−x2

∫
4−x2−y2

0
e−x−y dz dy dx gm

59 1∕27

61 Total charge = 2�kR2

63 (a) �∕5
(b) 5∕6

65 3a∕8b above center of base

67 Limits of outer integral not constant

69 ∫
2�

0
∫
�∕2

0
∫

5

0
�2 sin�d� d�d�

71 (c)

73 W = ∫
1

0
∫

2�

0
∫

(
√

9−r2)−1
√

1−r2
r dz d�dr +

∫
2
√

2

1
∫

2�

0
∫

(
√

9−r2)−1

0
r dz d� dr

75 3I = 6

5
a2; I = 2

5
a2

77 (q2∕8��)((1∕a) − (1∕b))

79 r2 sin � dr d� d�

Section 16.6
1 Is a joint density function

3 Not a joint density function

5 Is joint density function

7 1∕16

9 3∕16

11 0.28

13 0.19

15 0

17 1

19 7∕8

21 1∕16

23 (a) 20/27

(b) 199/243

25 (a) k = 3∕8
(b) 15/32

(c) 1/16

27 (a) 0.60
(b) 0.70
(c) 0.32

29 (a) �∕(� + �)

31 (a) 0 if t ≤ 0, 2t2 if 0 < t ≤ 1∕2,

1 − 2(1 − t)2 if 1∕2 < t ≤ 1,

1 if 1 < t
(b) 0 if t ≤ 0, 4t if 0 < t ≤ 1∕2,

4 − 4t if 1∕2 < t ≤ 1,

0 if 1 < t

0.5 1

2

0
x

p(t)

(c) x, y: All equally likely

z: Near 1∕2

33 p(60, 170) not a probability

35 g(y) = y

37 False

39 True

Chapter 16 Review
1 94.5

3 14

5

−2

2

x

y

✲x2 + y2 = 4

7

1

�

2

x

y

y = sinx or

x = sin−1 y

11 ∫
2�

0
∫

2

0
∫

3

0
fr drdzd�

13 ∫
�∕2

0
∫
�

0
∫

5

0
f�2 sin�d�d�d�

15 (a)

2

4

x

y

x = −(y − 4)∕2 or y = −2x + 4

(b) ∫
2

0
∫

−2x+4

0
g(x, y) dy dx

17 10(e − 2)

19 (1∕20) sin5 1

21 (�∕2)(1 − e−1)

23 1/48

25 ∫
2�

0
∫
�

3�∕4
∫

√

2

0
f (�, �, �)�2 sin�d� d� d�

27 ∫
1

−1
∫

√

1−x2

−
√

1−x2
∫

−

√

x2+y2

−

√

2−x2−y2
ℎ(x, y, z) dz dy dx

29 Positive

31 Positive

33 Negative

35 Zero

37 Positive

39 1.571

41 (a) ∫
2�

0
∫
�∕2

�∕4
∫

3∕ sin�

0
�2 sin�d� d�d�

(b) 18�

43 z

z = 3

z = 2

∫
2�

0
∫

3

2
∫

√

6
√

5
r dr dz d�

Order of integration can be changed
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45

x

z

✠

Sphere: x2 + y2 + z2 = 9

✠

Cylinder: x2 + y2 = 1

∫
2�

0
∫

1

0
∫

√

9−r2

0
r dz dr d�

47 Negative

49 Can’t tell

51 Zero

53 Zero

55 Zero

57 Negative

59 �(3 − 2 ln 2)

61 162�∕5

63 (a)

2
√

8

2

√

8

y = x

x2 + y2 = 8

x

y

(b) �(1 − e−8)∕8

65 (a) z =
√

1 − (y − 1)2 0 ≤ y ≤ 2 0 ≤

x ≤ 10

(b) ∫
10

0
∫

2

0
∫

√

1−(y−1)2

0
f (x, y, z) dz dy dx

67 (a) Half cylinder, radius 1, along x-axis,

y ≥ 0, −1 ≤ x ≤ 1
(b) 2�∕5

69 ∫
2�

0
∫

4

0
∫

√

25−r2

3
r dz dr d�

= 52�∕3 = 54.45 cm3

71 ∫
2�

0
∫

arccos(3∕5)

0
∫

5

3∕ cos�
�2 sin�d� d� d�

= 52�∕3 = 54.45 cm3

73 8� gm

75 ∫
1

−1
∫

√

1−x2

−
√

1−x2
∫

√

1−x2−y2

−1+

√

2−x2−y2
dzdydx

= 2�((7∕6) − 2
√

2∕3)

77 8�R5∕15

79 (a) 3∕2000
(b) 343∕1000

81 6�∕7

83 a, b + c, 0

Section 17.1
1 x = 0, y = t, −2 ≤ t ≤ 1

3 x = 1 + 2t, y = 1 + t, 0 ≤ t ≤ 1

5 x = t, y = 3 − 3t, 0 ≤ t ≤ 1

7 x = t, y = 1, z = −t

9 x = 1, y = 0, z = t

11 x = 1 + 3t, y = 2 − 3t, z = 3 + t

13 x = −3 + 2t, y = −2 − t, z = 1 − 2t

15 x = 2 + 3t, y = 3 − t, z = −1 + t

17 x = 3 − 3t, y = 0, z = −5t

19 x = 3 cos t, y = 3 sin t, z = 5, 0 ≤ t < 2�

21 x = 2 cos t, y = −2 sin t, z = 0

23 x = 2 cos t, y = 0, z = 2 sin t

25 x = 0, y = 3 cos t, z = 2 + 3 sin t

27 x = t2, y = t, z = 0

29 x = −3t2, y = 0, z = t

31 x = t, y = 4 − 5t4, z = 4

33 x = 3 cos t, y = 2 sin t, z = 0

35 x = −1 + 3t, y = 2, z = −3 + 5t

37 r⃗ (t) = i⃗ − 3j⃗ + 2k⃗ + t(3i⃗ + 4j⃗ − 5k⃗ ),
0 ≤ t ≤ 1, x = 1+3t, y = −3+4t, z = 2−5t,
0 ≤ t ≤ 1

39 x = cos t, y = sin t, z = 0, 0 ≤ t ≤ �

41 Two arcs:

r⃗ (t) = 5i⃗ + 5(− cos ti⃗ + sin tj⃗ ),
0 ≤ t ≤ � or

r⃗ (t) = 5i⃗ + 5(cos ti⃗ + sin tj⃗ ),
� ≤ t ≤ 2�

43 x = 10 cos t, y = 10 sin t, z = t

45 x = 2 cos t, y = t, z = 2 sin t

47 r⃗ (t) = (2 + 10t)i⃗ + (5 + 4t)j⃗

49 r⃗ (t) = (2 + ((t − 20)∕10)10)i⃗

+(5 + ((t − 20)∕10)4)j⃗

51 r⃗ (t) = (2 − 10t)i⃗ + (5 − 4t)j⃗

53 No

55 (b) −i⃗ − 10j⃗ − 7k⃗

(c) r⃗ = (1 − t)i⃗ + (3 − 10t)j⃗ − 7tk⃗

57 (a) r⃗ = (i⃗ + 3j⃗ + 7k⃗ ) + t(2i⃗ − 3j⃗ − k⃗ )
(b) (3, 0, 6)

(c)
√

14

59 (a) 2i⃗ − 5j⃗ + 3k⃗
(c) x = 1 + 2t, y = −1 − 5t, z = 1 + 3t

61 Same

63 Same

65 Different lines

67 Different lines

69 (a) (−1, 4,−2)

(b) −i⃗ − j⃗ + 2k⃗ ; other answers possible

(c) r⃗ = −i⃗ + 4j⃗ − 2k⃗ + t(−i⃗ − j⃗ + 2k⃗ )

71 x = −
3

2
t +

5

2
, y =

1

2
t +

1

2
, z = t.

73 x = −4, y = 2 + t, z = 3 + t

75 (a) Straight lines

(b) No

(c) (1, 2, 3)

77 15∕(2�)

79 15∕�

81 (a) Circle, center (a, a), rad b, per 2�∕k
(b) (i) Increases radius

(ii) Center moves outward on y = x

(iii) Speeds up

(iv) Touches axes

83 Circle, cosine, sine

−1 1

−1

1

x

y
x = cos t
y = sin t

−1 0 1

5

10

x

z

x = cos t
z = t

−1 0 1

5

10

y

z

y = sin t
z = t

85 (a) II, y = x

(b) IV, x + y = a
(c) V, x2 − y2 = a2

(d) I, x2 + y2 = a2

(e) III, x2 + y2 = a2

87 Many possible answers

(a) a = −2, b = 7, c = 4, d = 0
(b) a = −2, b = 7, c = 4, d = 11
(c) a = 7, b = 2, c = 0, d = 41

89 Line Equation:

x = 1 + 2t
y = 2 + 3t
z = 3 + 4t

Shortest distance:
√

6∕29

91 (a) (vii)

(b) (ii)

(c) (iv)

93 r⃗ = 9.65k⃗ + t(325i⃗ + 563j⃗ − 0.84k⃗ )

95 (a) (i) is (C); (ii) is (A); (iii) is (D); (iv)

is (G)

(b) (iii)

97 Distance |R| from z-axis

Distance
√

R2 + t2 from origin

99 i⃗ + 2j⃗ + 3k⃗ + t
(

i⃗ + 2j⃗
)

i⃗ + 2j⃗ + 3k⃗ + t
(

i⃗ − k⃗
)

101 False

103 False

105 False

107 True

109 True

111 True

113 (a) Center: (a∕2, b∕2), Radius:
√

c + (a2 + b2)∕4.
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(b) x = a∕2 +
√

c + (a2 + b2)∕4 cos t

y = b∕2 +
√

c + (a2 + b2)∕4 sin t
0 ≤ t ≤ 2�

(c) x = a∕2 +
√

c + (a2 + b2)∕4 cos t

y = b∕2 +
√

c + (a2 + b2)∕4 sin t
z = (a2 + b2)∕2 +

c + a
√

c + (a2 + b2)∕4 cos t +

b
√

c + (a2 + b2)∕4 sin t
0 ≤ t ≤ 2�

115 (a) −2e−1∕3 �g/m3/m

(b) t = ±
√

3∕2 sec

Section 17.2
1 v⃗ = 3i⃗ + j⃗ − k⃗ , a⃗ = 0⃗

3 v⃗ = i⃗ + 2tj⃗ + 3t2k⃗ , a⃗ = 2j⃗ + 6tk⃗

5 v⃗ = −3 sin ti⃗ + 4cos tj⃗ ,

a⃗ = −3cos ti⃗ − 4 sin tj⃗

7 v⃗ = i⃗ + 2tj⃗ + 3t2k⃗ ,

Speed =
√

1 + 4t2 + 9t4 ,
Particle never stops

9 v⃗ = 6ti⃗ + 3t2 j⃗ ,

‖v⃗ ‖ = 3|t| ⋅
√

4 + t2,
Stops when t = 0

11 v⃗ = 6t cos(t2)i⃗ − 6t sin(t2)j⃗ ,
‖v⃗ ‖ = 6|t|,
Stops when t = 0

13 Length =
√

42

15 Length = e − 1

17 v⃗ = −6� sin(2�t)i⃗ + 6� cos(2�t)j⃗ ,

a⃗ = −12�2 cos(2�t)i⃗ − 12�2 sin(2�t)j⃗ ,

v⃗ ⋅ a⃗ = 0, ‖v⃗ ‖ = 6�, ‖a⃗ ‖ = 12�2

19 Line through (2, 3, 5) in direction of

i⃗ − 2j⃗ − k⃗ ,

v⃗ = 2t(i⃗ − 2j⃗ − k⃗ ), a⃗ = 2(i⃗ − 2j⃗ − k⃗ )

21 x = 1 + 2(t − 2), y = 2, z = 4 + 12(t − 2)

23 Vertical: t = 3
Horizontal: t = ±1
As t→ ∞, x→ ∞, y → ∞
As t→ −∞, x→ ∞, y → −∞

−10 10 20
−10

40

90

140

190

x

y

25 (a) v⃗ (2) ≈ −4i⃗ + 5j⃗ ,

Speed ≈
√

41
(b) About t = 1.5
(c) About t = 3

27 (a) x = 2 + 0.6t, y = −1 + 0.8t, z = 5 − 1.2t,
0 ≤ t ≤ 5

(b) x = 2 + 1.92t, y = −1 + 2.56t, z =
5 − 3.84t, 0 ≤ t ≤ 1.56

29 (a) 6.4 meters

(b) 1.14 sec

(c) 15.81 m/sec

(d) (11.4,−5.7, 0)
(e) −9.8 m/sec2

31 (a) 5 secs; (10, 15, 100)

(b) t = 0, 10 secs,
√

113 cm/sec

(c) 5 secs,
√

13 cm/sec

33 (a) t = 5.181 sec

(b) x = 103.616 meters

(c) 2 meters

(d) 9.8 meters/sec2

(e) � = 0.896; v = 32.016 meters/sec

35 (a) (IV); 4.5 sec; (0, 8.9 m, 0)
(b) (II); 3.2 sec; base of tower

(c) (V); 10 sec; halfway up

37 (a) −2i⃗
(b) (0, 3)
(c) �

39 (a) � m/sec

(b) 2.45 m

(c) 3.01 m

41 (a) (x, y) = (t, 1)
(b) (x, y) = (t + cos t, 1 − sin t)

x

y

43 SHORT ANSWER NOT WRITTEN

45 (a) R, counterclockwise, 2�∕!

(b) v⃗ = −!R sin(!t)i⃗ + !R cos(!t)j⃗
(c) a⃗ = −!2r⃗

47 Same path, B moves twice as fast

49 Counterclockwise

51 Orthogonal only if speed is constant

53 Length = ∫
B

A
‖v⃗ (t)‖ dt

55 0 ≤ t ≤ 10∕
√

2

57 True

59 False

61 True

63 False

65 False

67 False

69 (a) x −
√

6y + z = 3 − 7
√

6i
(b) �∕3
(c) 4 ppm/sec

Section 17.3
1 V⃗ = xi⃗

3 V⃗ = xi⃗ + yj⃗ = r⃗

5 V⃗ = −xi⃗ − yj⃗ = −r⃗

7 (a) y-axis

(b) Increasing

(c) Neither

9 (a) x-axis

(b) Increases

(c) Decreases

11

x

y

13

x

y

15

x

y

17

x

y

19

x

y

21 (a) III

(b) II

(c) IV

(d) VI

23 3i⃗ − 4j⃗ , other answers possible

25 (1∕
√

1 + x2)(i⃗ −xj⃗ ), other answers possible

27 F⃗ (x, y) = (y + cosx)((1 + y2)i⃗ − (x + y)j⃗ ),
other answers possible

29 I, II, III

31 (a) (III)

(b) (II)

(c) (VI)

(d) (V)

(e) (IV)

(f) (I)
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33 F⃗ (x, y) =
−xi⃗ −yj⃗
√

x2+y2
(for example)

35 (a) (1,−3,−7); other answers possible

(b) (0, 0, 0); other answers possible

(c) −4x + y − 3z = 0; plane through origin

37 (a) Radiates out from origin

x

y

(b) Spirals outward counterclockwise around

origin

x

y

(c) Spirals outward clockwise around origin

x

y

39 (a) z = f (x, y):

5
4
3
2
10

x

y

z = g(x, y):

5
43
2
1

0

x

y

(b)

x

z

f (x, y)

g(x, y)

41 To plot G⃗ (x, y, z) move arrows of

F⃗ (2x, 2y, 2z) halfway to origin

43 (x2 + 1)
(

i⃗ + j⃗ + k⃗
)

Section 17.4
1 Field:

−12 12

−12

12

x

y

Flow, x = constant:

−12 12

−12

12

x

y

3 Field:

−9 9

−9

9

x

y

Flow, y = −(2∕3)x + c:

−9 9

−9

9

x

y

5 Field:

x

y

Flow:

−12 12

−12

12

x

y

7 Field:

x

y

Flow:

x

y



1071

9 Field:

x

y

Flow:

x

y

15 (a) Same directions, different magnitudes

(b) Same curves, different parameterizations

23 (a) v⃗ = �(−yi⃗ + xj⃗ )∕12
(b) Horizontal circles

25 Counterexample: F⃗ = −yi⃗ + xj⃗

27 F⃗ (x, y, z) = i⃗ + 2xj⃗ + 3yk⃗

29 True

31 False

33 True

35 True

37 True

Chapter 17 Review
1 r⃗ = 2i⃗ − j⃗ + 3k⃗ + t(5i⃗ + 4j⃗ − k⃗ )

3 x = t, y = 5

5 x = 4 + 4 sin t, y = 4 − 4 cos t

7 x = 2 − t, y = −1 + 3t, z = 4 + t.

9 x = 1 + 2t, y = 1 − 3t, z = 1 + 5t.

11 x = 3 cos t
y = 5
z = −3 sin t

13 r⃗ = 10 cos (2�t∕30)i⃗ − 10 sin (2�t∕30)j⃗ +

7k⃗

15 v⃗ = i⃗ + (3t2 − 1)j⃗

17 v⃗ = 6ti⃗ + 2tj⃗ − 2tk⃗

19 Vector;
(

(3 cos
√

2t + 1)i⃗ −

(3 sin
√

2t + 1)j⃗ + k⃗
)

∕
√

2t + 1

21 Vector; −(cos t∕(2
√

3 + sin t))i⃗ −

(sin t∕(2
√

3 + cos t))j⃗

23 No

25 Same direction −i⃗ + 4j⃗ − 2k⃗ ,

point (3, 3,−1) in common

27

x

y

29

x

y

31 (a) (2, 3, 0)
(b) 2
(c) No; not on line

33 (b) (i) Yes

(ii) No

(iii) Yes

(iv) No

35 E⃗ : (IV); F⃗ : (I);

G⃗ : (II); H⃗ : (III)

37 v⃗ = 0.2i⃗ − 0.4j⃗ + 0.4k⃗ m/sec

a⃗ = 0⃗

39 (a) Max rate change temp with distance;
◦C/cm

(b)
√

(g′(t))2 + (k′ (t))2 ; cm/sec

(c) fx ⋅ g
′(t) + fy ⋅ k

′(t); ◦C/sec

41 (a) Yes, t = 1, (x, y) = (−2,−1)
(b) Yes, t = −1, (x, y) = (2, 3)
(c) No

43 (a) x(t) = 5 sin t, y(t) = 5 cos t, z(t) = 8

(b) v⃗ = −5j⃗ , a⃗ = −5i⃗
(c) xtt(t) = ytt(t) = 0,

ztt(t) = −g,

xt(0) = zt(0) = 0,

yt(0) = −5, xt(0) = 5, yt(0) = 0, zt(0) =
8

45 (a) In the direction given by the vector: i⃗ − j⃗
(b) Directions given by unit vectors:

1
√

2
i⃗ +

1
√

2
j⃗

−
1
√

2
i⃗ −

1
√

2
j⃗

(c) −4

47 −(2 + 4t2)∕(t3(1 + t2)2)

49 (a) 52∕
√

13, (8, 12)

(b) 52∕
√

13, (18, 62)

51 No, since the point (0, 1) is not on the curve

53 !: Rate of change of polar angle � of particle,

a: Rate of change of particle’s distance from

origin

55 (a)
1

x2+y2+z2

(b)
1

√

x2+y2+z2

(c)
x

√

x2+y2+z2
i⃗ +

y
√

x2+y2+z2
j⃗

+
z

√

x2+yy+z2
k⃗

(d)
−x

√

x+y2+z2
i⃗ +

−y
√

x2+y2+z2
j⃗

+
−z

√

x2+yy+z2
k⃗

(e)
cos t

2
√

2
i⃗ +

sin t

2
√

2
j⃗ +

1

2
√

2
k⃗

(f)
1
√

2

57 No

59 (b) i⃗ + 2j⃗ + 3k⃗ + 5 cos t((1∕
√

2)i⃗ −

(1∕
√

2)j⃗ )+5 sin t((1∕
√

6)i⃗ +(1∕
√

6)j⃗ −

(
√

2∕
√

3)k⃗ )

61 (b) e−t i⃗ − 2e−t j⃗ ,

(0.0025e3t + 0.9975e−t)i⃗
+(0.005e3t − 1.995e−t)j⃗ ,

(−0.0025e3t + 1.0025e−t)i⃗
+(−0.005e3t + 2.005e−t)j⃗

Section 18.1
1 Negative

3 Zero

5 Zero

7 0

9 0

11 28

13 16

15 −48

17 19∕3

19 20

21 28

23 −10

25 −9

27 0

29 C1 is zero; C2 is pos; C3 is neg

31 C1 is 0; C2 is neg; C3 is pos

33 −8

35 C1, C2

37 a < 0

39 c > 1

41 (a)

x

y(i)

x

y(ii)

x

y(iii)
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x

y(iv)

(b) (i), (iii)

43 Positive

45 0

47 11

49 6

51 13

53 −1.2 ⋅ 107 meter2∕sec

55 14�; tangent to C

Same direction, ||F⃗ || = 7
−14�; tangent to C

Opposite direction, ||F⃗ || = 7

59 −2.5 ⋅ 10−5GMm

61 If ∫
C
F⃗ ⋅ dr⃗ < 0, then ∫

−C
F⃗ ⋅ dr⃗ > 0

63 F⃗ = i⃗ − j⃗

65 False

67 True

69 False

71 True

73 False

75 − ∫
C
E⃗ ⋅ dr⃗

77 Spheres centered at origin

Section 18.2
1 ∫

�

0
(cos2 t − sin2 t) dt

Other answers are possible

3 ∫
2�

0
(− sin t cos(cos t) + cos t cos(sin t))dt

5 24

7 −4

9 −6

11 9

13 82∕3

15 12

17 116.28

19 12

21 21

23 0

25 ∫
C
3xdx − y sin xdy

27 (x + 2y)i⃗ + x2yj⃗

29 3124

31 144

33 77,000/3

35 (a) 11∕6
(b) 7∕6

37 (a) 3∕2
(b) 3∕2

39 200�

43 (a) −5
(b) 5

(c) 0

45 F could point with C at some points and

against C at others

47 y = �∕2, x = t, 0 ≤ t ≤ 3, ∫
C
F⃗ ⋅ dr⃗ = 3

49 True

51 True

53 False

55 False

57 (a)

Section 18.3
1 12

3 Negative, not path-independent

5 Negative, not path-independent

7 Path-independent

9 Path-independent

11 Path-independent

13 f (x, y) = x2y +K

15 f (x, y, z) = exyz + sin(xz2) + C
C = constant

17 −2

19 2

21 0

23 e3 − 1

25 0

27 PQ

31 Yes

33 Yes.

35 5xy + y2∕2

(a) 50

(b) 50

37 (a) 50�
(b) No, integral over closed path not zero

39 Use fxy = fyx

41 (a) e

(b) e

43 9/2

45
3
√

2
ln(

3
√

2
+ 1)

47 e(1.25�)
2∕2 − 1

49 (a) 7e3 − 2e
(b) 7e3 − 2e

51 (a) 9
(b) 0

53 (a)

P

Q

1
3

5 7

9

x

y

(b) Shorter

(c) 6

55 (a) Positive

(b) Not gradient

(c) F⃗2

57 (a) (8, 9)
(b) 50

59 (a) 2�mg
(b) Yes

61 f (Q) − f (P ) where F⃗ = grad f

63 Methods other than Theorem 18.1 can be used

65 Gradient of any function

71 True

73 True

75 False

77 True

79 False

83 If A′(x) = a(x), then f (x, y) = A(x) is poten-

tial function

x + x2∕2 + x3∕3 + C , any C

85 (a) F⃗ − grad� = −y gradℎ
(b) 30

87 (a) F⃗ − grad� = −(x + 2y) gradℎ
(b) −50

89 (a) Increases

Section 18.4
1 No

3 No

5 f (x, y) = x3∕3 + xy2 + C

7 Yes, f = lnA|xyz| where A > 0

9 No

11 −2�

13 −6

15 −12

17 −3�m2

19 (a)

1−1

1

−1

x

y

(b) −�

21 e − cos 1

23 −9�∕8

25 (a) 0
(b) 0
(c) 0
(d) −6�
(e) −6�
(f) 0
(g) −6�

27 (a) 0
(b) 10
(c) −8�
(d) 7

29 (b) 0

(c) G⃗ = ∇(xyz + zy + z)

(d) H⃗1 = ∇(yx2), H⃗2 = ∇(y(x + z))

31 �ab

a

b

x

y
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33 3∕2

2

2

x

y

35

x

y

37 (a) Possible answers are:

F⃗ = grad(xy)

G⃗ = grad(arctan(x∕y)), y ≠ 0

H⃗ = grad
(

(x2 + y2)1∕2
)

, (x, y) ≠ (0, 0)
(b) 0, −2�, 0

(c) Does not apply to G⃗ , H⃗ ; holes in domain

39 L1 < L2 < L3

41 (a) 21�∕2
(b) 2

43 (a) 0⃗
(b) q∕||r⃗ ||

45 Green’s Theorem does not apply;

Line integral depends on F⃗

47

C1

C2

(0, 1)

(1, 0)
x

y

49 True

51 True

53 True

55 True

Chapter 18 Review
1 Positive

3 (a) Zero

(b) C1, C3: Zero

C2: Negative

C4: Positive

(c) Zero

5 Scalar; 12

7 −58

9 50

11 18

13 1372

15 Not path-independent

17 Path-independent

19 Path-independent

21 Path-independent

23 350

25 27�∕2

27 45

29 0, 100

31 (ii), (iv)

33 (a) 24

(b) 12

(c) −12

37 18

39 −36

41 (a) 0

(b) 24

43 (a) 0
(b) 6
(c) 75�∕2
(d) 14

45 (a) 9∕2
(b) −9∕2

47

(0,−1)

(0, 1)

x

y

C

49 (a) Closed curve oriented counterclockwise

(b) Closed curve oriented clockwise

with y > 0 or

Closed curve oriented counterclockwise

if y < 0
(Other answers are possible)

51 (a)

1 2

1

22.7

23
23.3

Q
P

x

y

(b) Longer

(c) −0.3

53 (a) �∕2
(b) 0

57 (a) ! = 3000 rad/hr

K = 3 ⋅ 107 m2
⋅rad/hr

(b) Inside tornado:

x

y

View from great distance:

x

y

(c) r < 100 m, circulation is 2!�r2

r ≥ 100 m, circulation is 2K�

59 (a) −(�∕2)(−6a2 + a4), a =
√

3
(b) Integrand 3 − x2 − y2 positive inside disk

of radius
√

3, negative outside

61 18a + 18b + 36c + (81d∕2),
−18a − 18b − 36c − (81d∕2),
curves go in opposite directions

Section 19.1
1 −3i⃗

3 15j⃗

5 Rectangle in xz plane with area 150, oriented

pos y direction

7 (a) 45
(b) −45

9 (a) Positive

(b) Positive

(c) Negative

(d) Negative

(e) Positive

11 (a) Negative

(b) Positive

(c) Negative

(d) Negative

(e) Zero

13 −12

15 4

17 12�

19 4

21 0

23 10�∕
√

3

25 6

27 −75�

29 −�3

31 2000�

33 32000�

35 0

37 12.8

39 Zero

41 24

43 −160�

45 130∕
√

2

47 42

49 −96�

51 4
√

3

53 � sin 9



1074

55 0

57 −27

61 (a) Zero

(b) Zero

63 4�

65 (a) 0

(b) 32�

67 (a) Zero

(b) Zero

71 (a)

−2−4 2 4
−2

−4

2

4

x

y

(b) 0

(c) Iℎ ln |b∕a|∕2�

73 Sign of ∫
S
F⃗ ⋅dA⃗ depends on both F⃗ and S

75 F⃗ = zk⃗

S: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 1,

oriented upwards

77 False

79 True

81 True

83 False

85 False

87 (a) 0

(b) 0

Section 19.2
1

(

−3i⃗ + 5j⃗ + k⃗
)

dx dy

3
(

−4xi⃗ + 6yj⃗ + k⃗
)

dx dy

5 ∫
3

−2
∫

5

0
70 dy dx

7 ∫
5

0
∫

5−x

0
(yz sin x − 2xy cos 2y + xy) dy dx

9 −500

11 −5∕3 − sin 1 = −2.508

13 ∫
�∕2

0
∫

5

0
10 (cos � + 2 sin �) dz d�

15 ∫
2�

0
∫

8

−8

(

6z2 cos � + 6 sin �e6 cos �
)

dz d�

17 2000

19 100
√

2∕3

21 ∫
2�

0
∫
�∕2

0
100 (sin� cos � + 2 sin� sin �

+ 3 cos�) sin� d�d�

23 ∫
�∕2

−�∕2
∫
�

0
16 cos2 � sin2 � cos � d� d�

25 8000∕3

27 (8 − 5
√

2)�∕6 = 0.486

29 6

31 6

33 18

35 36�

37 7∕3

39 � sin 25

41 �∕2

43 1296�

45 �

47 100
√

27

49 2.228

51 (a) ∫
R
a∕

√

a2 − x2 − y2 dx dy

(b) ∫
2�

0
∫
a

0
ar∕

√

a2 − r2 dr d�.

(c) 2�a2

53 36�

55 2�∕3

57 4�a3

59 −1

61 11�∕2

65 (a) Constant inside cylinder radius a

(b) E⃗ =

⎧

⎪

⎨

⎪

⎩

1

2
k�0re⃗ r if r ≤ a

1

2
k�0

a2

r
e⃗ r if r > a

67 n⃗ =
(

−fxi⃗ − fyj⃗ + k⃗
)

∕
√

f 2
x
+ f 2

y
+ 1

dA =
√

f 2
x
+ f 2

y
+ 1dx dy

69 r = 10, 0 ≤ � ≤ 2, 0 ≤ z ≤ 3, oriented

outwards

71 False

Section 19.3
1 2x + xez

3 (I)

5 0

7 4x

9 2x∕(x2 + 1) − sin y + xyez

11 0

13 (a) Positive

(b) Zero

(c) Negative

15

x

y

x

y

17 −0.030

19 (a) (i) 0.016�∕3

(ii) −0.08
(b) Flux positive at (2, 0, 0) and negative at

(0, 0, 10)

21 (a) 4w3

(b) 4
(c) 4

23 div v⃗ = −6

25 (a) −1∕3, 1
(b) 1∕3

27 Undefined

29 (b)

31 (a) 0
(b) Undefined

33 (a) �(0) < �(1000) < �(5000)
(b) cars/hour

(d) �(x) = 4125∕(55 − x∕50)
if 0 ≤ x < 2000
�(x) = 4125∕15 = 275

if 2000 ≤ x < 7000

�(x) =
4125

(15 + (x − 7000)∕25)
if 7000 ≤ x < 8000
�(x) = 4125∕55 = 75

if x ≥ 8000
(e) 139 ft. at x = 0

89 ft. at x = 1000
38 ft. at x = 5000

35 (a) 0

(b) 0

39 0

41 b⃗ ⋅ (a⃗ × r⃗ )

43 (d)

45 div F⃗ = 2x + 2 − 2z

47 F⃗ (x, y, z) = 2xi⃗ + 3yj⃗ + 4zk⃗

49 F⃗ (x, y) = 2xi⃗

51 False

53 False

55 False

57 False

59 False

61 False

Section 19.4
1 24

3 8

5 Zero

7 24

9 72

11 288

13 36�

15 620�

17 5�

19 420

21 10�a3

23 Yes; −3.22

25 ∫
S
F⃗ ⋅ dA⃗ = ∫

W
div F⃗ dV = 0

27 (a) cb(12a − a2)
(b) 6, 10, 10; 3600

29 (a) 4�
(b) 0

(c) 4�

31 4�

33 (a) 2
(b) 0.016
(c) 0.016053⋯
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35 (a) 30 watts/km3

(b) � = 10 watts/km3

(d) 6847◦C

37 (a) 0
(c) No

39 S not the boundary of a solid region

41 Any sphere

43 False

45 False.

47 True.

49 True

51 True

53 True

55 True

Chapter 19 Review
1 Scalar; −100�

3 0

5 0

7 75�

9 80

11 −12

13 0

15 Zero

17 3(8 + sin 4)

19 20

21 2�

23 b > 0

25 a > 0

27 (a) 3/2

(b) 3/2

29 32�

31 162

33 120�

35 Flux through S1 = Flux through S2 < Flux

through S3 < Flux through S4

37 a = 6
Cannot say anything about b and c

39 (a) Negative

(b) Positive

(c) Zero

41 (a) Flux = c3

(b) div F⃗ = 1

(c) div F⃗ = 1

43 (a) 2c3

(b) 2
(c) 2

45 −2�

47 42�

49 −7(i⃗ + k⃗ )∕(16�)

51 (a) div F⃗ = 0
(b) 12

53 (20,000�∕3) − 128

55 (a) 35�
(b) 105�
(c) 70�

57 (a) 0, except at origin

(b) 4�
(c) 0
(d) 4�
(e) 4� if origin inside

0 if origin outside

61 (a) (i) Total charge inside W

(ii) Total current out of S

63 (b) ‖v⃗ ‖ = K∕r2

(c) Flux = 4�K∕3
(d) Zero

65 (a)

−x
y

z

(b) 32�∕5

Section 20.1
1 Vector; i⃗ + j⃗ − k⃗

3 Vector; (x + 1)i⃗ − (y + 2)j⃗

5 Vector; 0⃗

7 4yk⃗

9 4xi⃗ − 5yj⃗ + zk⃗

11 0⃗

13 0⃗

15 Zero curl

17 Nonzero curl

19 0

21 50i⃗ + 300j⃗ + 2k⃗

23 (a) (f−c)i⃗ +(bez−e cosx)j⃗ +(2dx−3ay2)k⃗
(b) f = c
(c) f = c, b = e = 0

25 (a) Horizontal

(b) Vertical

(c) Parallel to the yz-plane,

making angle t with horizontal

27 (a) w = 1

y

x

w = −1

y

x

(b) |!| ⋅
√

x2 + y2

(c) div v⃗ = 0

curl v⃗ = 2!k⃗
(d) 2�!R2

35 Counterexample: F⃗ = yi⃗

37 F⃗ = zi⃗

39 True.

41 True

43 False

45 False

47 (a)-z, (c)-y, (d)-x

Section 20.2
1 (a) �

(b) 0

3 Positive

5 −8�

7 −2

9 0

11 18�

13 (a) −2�

(b) −2k⃗
(c) −2�
(d) Stokes’ Theorem

15 No

17 (a) 45�
(b) 81�∕2

19 (a) −i⃗ − j⃗ − k⃗
(b) (i) −4�

(ii) 15∕2

21 0

23 0

25 8�∕
√

3

27 (a) All 3-space

(b)
2axi⃗ +2byj⃗ +2czk⃗

1+ax2+by2+cz2

(c) 0

(d) ln(3 + 507�2∕4) − ln(2)

29 −8�

31 4�

33 63�

35 (a) 0⃗
(b) 0
(c) 0

37 (a) Parallel to xy-plane; same in all horizontal

planes

(b) ()F2∕)x − )F1∕)y)k⃗
(d) Green’s Theorem

39 C not the boundary of a surface

41 Any oriented circle

43 True

45 False

47 True

49 True

51 False

Section 20.3
1 Yes

3 Yes

5 No

7 Yes

9 Yes
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11 Yes

13 (a) No

(b) Yes

15 Curl yes; Divergence yes

17 Curl yes; Divergence yes

21 (1∕2)b⃗ × r⃗

23 No

25 (a) Yes

(b) Yes

(c) Yes

27 (a) Yes

(b) No

(c) No

29 (b) ∇2 = −div A⃗

31 Curl of scalar function not defined

33 f (x, y, z) = x2

35 False

37 True

39 (a) curl E⃗ = 0⃗
(b) 3-space minus a point if p > 0

3-space if p ≤ 0.

(c) Satisfies test for all p.

�(r) = r2−p if p ≠ 2.

�(r) = ln r if p = 2.

Chapter 20 Review
1 i⃗ − j⃗ − k⃗

3 (c), (d), (f )

5 C2, C3, C4, C6

7 Defined; scalar

9 Defined; vector

11 Nonzero curl

13 div F⃗ = y + z + x

curl F⃗ = −yi⃗ − zj⃗ − xk⃗

F⃗ not solenoidal; not irrotational

15 div F⃗ = 0
curl F⃗ = (2y − cos(x + z))i⃗

−
(

2x − ey+z
)

j⃗ +
(

cos(x + z) − ey+z
)

k⃗

F⃗ is solenoidal; not irrotational

17 (a) 18�
(b) 18�

19 20�

21 0

23 (a) is (I); (b) is (I); (c) is (V); (d) is (III); (e) is

(IV); (f) is (V)

25 (a) −1125�
(b) Not defined

(c) 0

(d) Not defined

(e) 384�∕5
(f) 353∕4
(g) Not defined

(h) 54

27 (a) 23

(b) Approx 0.0003�∕
√

3

29 (a) div F⃗ < 0, div G⃗ < 0

(b) curl F⃗ = 0, curl G⃗ = 0
(c) Yes

(d) Yes

(e) No

(f) No

31 0

33 4�

35 210

37 12�∕5

39 150�

41 e − 1

43 (a) 18
(b) 81∕2

45 (a) No

(b) No

47 (a) 2�

(b) 0⃗ except on z-axis

(c) No

(d) Yes; 0

(e) No

49 (a) 50
(b) 30�
(c) 8
(d) −18�

51 (a) (4(p + q)�R3∕3)
(b) (4(p + q)�R3∕3)

Section 21.1
1 Curve

3 Surface

5 Horizontal disk of radius 5 in plane z = 7

7 Helix radius 5 about z-axis

9 Top hemisphere

11 Vertical segment

13 x = 1
y = s
z = t

15 x = 1 + t
y = 1 + s
z = s + t

17 r⃗ (s, t) = (s + 2t)i⃗ + (2s + t)j⃗ + 3sk⃗ ,

other answers possible

19 (0, 0, 0), 2i⃗ + j⃗ − k⃗ , 3i⃗ − 5j⃗ + 2k⃗

21 r⃗ (s, t) = (3 + s + t)i⃗ + (5 − s)j⃗ + (7 − t)k⃗ ,

other answers possible

23 (a) Yes

(b) No

25 s = s0: lines parallel to y-axis with z = 1
t = t0 : lines parallel to x-axis with z = 1

27 s = s0: parabolas in planes parallel to yz-

plane

t = t0 : parabolas in planes parallel to xz-plane

29 s = 4, t = 2
(x, y, z) = (x0 + 10, y0 − 4, z0 + 18)

31 Horizontal circle

33 (a) x =
(

cos
(

�

3
t

)

+ 3
)

cos �

y =
(

cos
(

�

3
t

)

+ 3
)

sin �

z = t 0 ≤ � ≤ 2�, 0 ≤ t ≤ 48
(b) 456� in3

35 If � < �, then (� + �, �∕4)
If � ≥ �, then (� − �, �∕4)

37 x = r cos �, 0 ≤ r ≤ a

y = r sin �, 0 ≤ � ≤ 2�
z = (1 − r∕a) ℎ

39 (a) −x + y + z = 1,

0 ≤ x ≤ 2,

−1 ≤ y − z ≤ 1

(b)

x y

z

41 (a) z = (x2∕2) + (y2∕2)
0 ≤ x + y ≤ 2
0 ≤ x − y ≤ 2

(b)

x

y

z

43 Radius: R sin�

45 x + y − z − 3 = 0

47 True

49 True

51 True

53 False

Section 21.2
1 1

3 e2s

5 a = 1∕10, b = 1

7 a = 1∕50, b = 1∕10

9 3

11 �2 sin�

13 13.5

15 72

17 (a) (1∕(2��2 ) ∫
∞

−∞
∫

2t−x

−∞
e−(x

2+y2)∕(2�2)dy dx

(b) (1∕(
√

��)) ∫
t

−∞
e−u

2∕�2du

(c) (1∕(
√

��))e−t
2∕�2

(d) Normal, mean 0, standard deviation �∕
√

2

19 R does not correspond to T

21 x = 2s, y = 3t

23 False

Section 21.3
1 ((s + t)i⃗ − (s − t)j⃗ − 2k⃗ ) ds dt

3 −es(cos t j⃗ + sin t k⃗ ) ds dt

5 4/3

7 6(e4 − 1)

9 −�R7∕28

11 200
√

14

13
√

6�

15 kℎw3∕6 meter3∕sec.

21 Integral gives volume

23 r⃗ (s, t) = 2si⃗ + tj⃗

25 True
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27 False

Chapter 21 Review
1 Cone, height 7 and radius 14

3 a = 1∕15, b = 1∕15

5 −1∕2

7 0

9 x = 2 + 5 sin� cos �
y = −1 + 5 sin� sin �
z = 3 + 5 cos�

11 (a) Cylinder

(b) Helices

13 x = a sin� cos � 0 ≤ � ≤ �

y = b sin� sin � 0 ≤ � ≤ 2�
z = c cos�

15 (a) x2 + y2 = 9, x ≥ 0, 1 ≤ z ≤ 2.

(b)

x

y

z

17 0

19 2�c(a2 + b2)

Appendix A
1 (a) y ≤ 30

(b) two zeros

3 −1.05

5 2.5

7 x = −1.1

9 0.45

11 1.3

13 (a) x = −1.15
(b) x = 1, x = 1.41,

and x = −1.41

15 (a) x ≈ 0.7
(b) x ≈ 0.4

17 (a) 4 zeros

(b) [0.65, 0.66], [0.72, 0.73],
[1.43, 1.44], [1.7, 1.71]

19 (b) x ≈ 5.573

21 Bounded −5 ≤ f (x) ≤ 4

23 Not bounded

Appendix B
1 2ei�∕2

3
√

2ei�∕4

5 0ei� , for any �.

7
√

10ei(arctan(−3)+�)

9 −3 − 4i

11 −5 + 12i

13 1∕4 − 9i∕8

15 −1∕2 + i
√

3∕2

17 −125i

19
√

2∕2 + i
√

2∕2

21
√

3∕2 + i∕2

23 −250

25 2i
3
√

4

27 (1∕
√

2) cos(−�∕12) + (i∕
√

2) sin(−�∕12)

29 −i, −1, i, 1
i−36 = 1, i−41 = −i

31 A1 = 1 + i
A2 = 1 − i

37 True

39 False

41 True

Appendix C
1 (a) f ′(x) = 3x2 + 6x + 3

(b) At most one

(c) [0, 1]
(d) x ≈ 0.913

3
4
√

100 ≈ 3.162

5 x ≈ 0.511

7 x ≈ 1.310

9 x ≈ 1.763

11 x ≈ 0.682328

Appendix D
1 3, 0 radians

3 2, 3�∕4 radians

5 7j⃗

7 ‖3i⃗ + 4j⃗ ‖ = ‖ − 5i⃗ ‖ = ‖5j⃗ ‖, ‖i⃗ + j⃗ ‖ =

‖

√

2j⃗ ‖

9 5j⃗ and −6j⃗ ;
√

2j⃗ and −6j⃗

11 (a) (−3∕5)i⃗ + (4∕5)j⃗

(b) (3∕5)i⃗ + (−4∕5)j⃗

13 8i⃗ − 6j⃗

15 i⃗ + 2j⃗

17 Equal

19 Equal

21 i⃗ + j⃗ ,
√

2, i⃗ − j⃗

23 Pos: (1∕
√

2)i⃗ + (1∕
√

2)j⃗

Vel: (−1∕
√

2)i⃗ + (1∕
√

2)j⃗
Speed: 1
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∇f , gradient, 766

∇⋅ F⃗ , divergence, 983

∫
C
F⃗ ⋅ dr⃗ , 922

∇ × F⃗ , curl, 1002

)∕)x, partial derivative, 741

�, �, �, spherical coordinates, 872

∫
S
F⃗ ⋅ dA⃗ , 964

i⃗ , j⃗ , k⃗ , 705

v⃗ × w⃗ , cross product, 729

v⃗ ⋅ w⃗ , dot product, 718

i, the number, online

r, �, z, cylindrical coordinates, 869

∫
C

P dx +Qdy + Rdz, 935

acceleration, 899–901

straight line motion, 901

uniform circular motion, 900

vector, 712, 899–901, 1047, on-

line

components of, 899

limit definition, 899

accuracy, online

to p decimal places, online

addition of vectors, online

components, 707

geometric view, 702

properties, 713

Ampere’s law, 972, online

approximation

bisection, online

linear, 753–757

Newton’s method, online

quadratic, 792–795

tangent plane, 755

arc length, 901, 1047, online

Archimedes’ Principle, 996

area

double integral for, 844

of parallelogram, 732

of parameterized surface, 1039

area vector, 732, 736, 963

of parallelogram, 973

average value of function

two-variable, 844, 1046

axes

coordinate, 654

right-handed, 654

basketball, online

beef consumption, 659

birthdays, online

bisection, method of, online

body mass index, BMI, 653

bound

best possible, online

greatest lower, online

least upper, online

lower, online

upper, online

boundary

of region, 821

of solid region, 991

of surface, 1008

point, 755, 821

bounded region, 821

Brahe, Tycho (1546–1601), online

bridge design, online

cardiac output, 748

Cartesian coordinates

conversion to

cylindrical, 869

spherical, 872

three-dimensional, 654

catalog of surfaces, 691

center of mass, 878

triple integral for, 863

central vector field, online

chain rule, 780–784

application to chemistry, 784

diagram for, 781

multivariable, 1045

change of coordinates, 1033–1036

channel capacity, 782

chaos, online

circulation, 927

density, 1000, 1049

path-dependent field and, 950

closed curve, 927

closed region, 821

closed surface, 962, 991

coaxial cable, online

Cobb-Douglas function, 675, 753, on-

line

contour diagram of, 674

formula for, 675

returns to scale, 680

completing the square, 810

complex number

algebra of, online

complex plane, online

conjugates, online

definition, online

imaginary part, online

polar representation, online

powers of, online

real part, online

roots of, online

complex plane, online

polar coordinates, online

components of vector, 705, 707, on-

line

composite functions, 780

cone, 691

parameterization of, 1028

conjugates, online

conservation of energy, online

conservative force, online

conservative vector field, 941

constrained optimization, 825–830,

1046

graphical approach, 826

inequality constraint, 829

Lagrange multiplier, 827

Lagrangian function, 831

constraint, 827

consumption vector, 715

continuity

differentiability and, 802

of function, 697

of vector field, 923

contour diagram, 668–675

algebraic formula, 671

Cobb-Douglas, 674

critical point, 808

local maximum, 806

density and, 840

linear function, 684

partial derivative and, 742

reading, 652

saddle, 673

table and, 673

contour line, 669

convergence

of upper and lower sums, 845

coordinate

plane, 655

axis, 654

coordinates

Cartesian, three-space, 654

cylindrical, 869–870

space-time, 715

For “online” material, please see www.wiley.com/college/hughes-hallett.
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spherical, 872–874
corn production, 670, 780

correlation coefficient, 820

Coulomb’s law, online

critical point, 806, 1046

classifying, 809, 811

contour diagram and, 808

discriminant and, 811

extrema and, 806

how to find, 807

local maximum

contour diagram and, 806

graph of, 808

local minimum

graph of, 807

second derivative test and, 809,

811

cross product, 728–733, 1044

components of, online

definition, 729, online

determinant and, 733

diagram of, 731

equation of plane and, 731

properties, 731

cross-section of functions, 662–663

curl, 1000–1002, 1049

alternative notation, 1002

definition

Cartesian coordinate, 1001

geometric, 1001

device for measuring, 1000

divergence and, 1016

formula for, 1001

gradient and, 1015

scalar, 951

test for gradient field, 1016,

1049

three-space, 956

two-space, 953

curl field, 1011, 1049

divergence test for, 1017

curl free, 1004, 1010

curve

closed, 927

indifference, 833

integral, 914

length of, 901, online

level, 669

graph and, 671

oriented, 922

parameter, 1029

parameterization, 886

piecewise smooth, 923

curve fitting, 819

cylinder

parabolic, 664, 691

parameterization of, 1023

cylindrical coordinates, 869–870

conversion to Cartesian, 869

integration in, 870

volume and, 871

volume element, 871

definite integral

int∞
−∞

e−x
2
dx, online

one variable, 840

definite integral, double, 840–853

change of coordinates, 1035

change of variables, 1047

definition, 841, 842, 1046

for area, 844

for average value, 844

for fraction of population, 880

for probability, 880

for surface area, 1039

for volume, 842

of joint density function, 880

polar coordinates, 864–867

definite integral, triple, 857–860

change of coordinates, 1036

cylindrical coordinates, 869–

872

for center of mass, 863

for electrical energy, online

for moment of inertia, online

spherical coordinates, 872–874

degree

homogeneous function, online

density

circulation, 1000

density function

definite integral and, 840

flux, 982

joint, 880

properties of, 880

two-variable, 847, 878, 880

probability and, 880

dependent variable, 652

derivative

directional, 762–765, 772

higher-order partial, 790

of integral, online

ordinary, 740

partial, 740–744

second-order partial, 790

determinant, online

area and, 732

cross product, online

Jacobian, 1034

volume and, 732

diagram, for chain rule, 781

difference quotient

partial derivative and, 741

differentiability, 754, 799

continuity and, 802

partial derivatives and, 799, 802

differential, 758–759

computing, 758

local linearity, and, 758

notation, 759

differential equations

Euler’s method, 916

flow of vector field, 914

differential notation

for line integral, 935

dipole, 978, 987, online

direction cosine, 707, online

direction of vector, online

directional derivative, 762–765, 1045

definition, 763

examples, 767

from contour diagram, 762

gradient vector and, 765

partial derivatives and, 764

three-variable, 772

disability index, 883

discriminant, 810, 811

displacement vector, 702–706, online

direction of, 702

magnitude of, 702

distance formula

in three-space, 656

in two-space, 656

divergence, 982–983, 1049

alternative notation, 983

curl and, 1016

definition

Cartesian coordinate, 983

geometric, 982

test for curl field, 1017, 1049

with spherical symmetry, online

Divergence Theorem, 991–994, 1015,

1049

divergence-free, 986, 993

Dorfman-Steiner rule, 824

dot product, 718–720, 1044

definition, 718

equation of plane and, 721

line integral and, 922

properties, 719

work and, 724

double angle formulas, online

double integral, 1046

Dubois formula, 752

electric field, 989, online

electric potential, online

ellipsoid, 691

ellipsoid, volume of, 1036

energy

conservation of, online

potential, 941

entropy function, online

Envelope Theorem, online



INDEX 1081

equipotential surface, online

error, online

Euler’s formula, online

Euler’s method

for flow lines, 916

Euler’s theorem, 753

Euler, Leonhard (1707-1783), online

extrema, 806

global, 821

Extreme Value Theorem, 821

extremum

on closed bounded region, 821

factoring, online

family of level surfaces, 692

flow

fluid, 905

flux and, 965

through surface, 963

flow line, 1047

definition, 913

Euler’s method, 916

numerical solution, 916

fluid flow and flux, 965

flux

orientation and, 962

through cylinder, 976

through function graph, 974

through parameterized surface,

1038

through sphere, 977

flux density, 982

flux diagram, online

flux integral, 962–968, 1048

definition, 964

Divergence Theorem and, 991

independent of parameteriza-

tion, 1041

fog clearance, 747

force

conservative, online

gravitational, 712

vector, 712

fox population, 840, 847

fraction of population

from density function, 880

function

bounded, online

Cobb-Douglas, 675, 753

composite, 780

continuous, 695, 697

at a point, 697

cross-section of, 662–663

density

two-variable, 880

differentiable

two-variable, 799–803

differential of, 758

discontinuous, 695

fixing one variable, 663

joint cost, online

Lagrangian, 831

limit of, 697

linear, 664, 682–685, 690, 1044

multivariable, 1044

notation, 652

objective, 827

potential, 942

probability density, 880

quadratic, 690, 809

graph of, 810

smooth, 791

three-variable, 689

level surface of, 689

surface, 692

two-variable, 652

algebraic formula, 653

contour diagram of, 668

graph of, 660–663

surface, 692

unbounded, online

utility, 836

zeros of, online

Fundamental Theorem of Calculus,

939

for Line Integrals, 939, 1015,

1048

gauge equivalent, 1019

Gauss’s law, 967, online

Gauss’s Theorem, 995

Gauss, Carl Friedrich (1777–1855),

995

genetics, online

global extremum, 806

closed bounded region, 821

definition, 816

how to find, 816, 820

global maxima/minima, 806

global warming, 787

gradient field, 1048

curl and, 1015

curl test for, 1016

line integral of, 939

path-independence and, 942

gradient vector, 765, 1045

alternative notation, 766

examples, 767

field, 909

geometric properties, 766, 772

three-variable, 772

two-variable, 765

graph

circular symmetry of, 662

in three-space, 655

partial derivative and, 742

plane, 683

two-variable function, 683

gravitational constant, 909

gravitational field, online

picture of, 906

Gravity, Law of, 908

greatest lower bound, online

Green’s Theorem, 951, 1019, 1048

guitar string, vibrating, 750

Gulf Stream, 905, 913

Half Dome

Yosemite National Park, 695

heat equation, online

heated metal plate, 740

heater in room, 743, online

helix, 886

higher-order partial derivative, 790

histogram, 879

homogeneous function, online

hyperboloid

of one sheet, 691

of two sheets, 691

ideal gas equation, 758

imaginary numbers, online

imaginary part of complex number,

online

independent variable, 652

indifference curve, 680, 833

inertia, moment of, online

triple integral for, online

instantaneous

rate of change, 741

velocity, 896

integral

definite

one variable, 840

double

limits of, 851

iterated, 847, 848

triple

limits of, 860

integration

Cartesian coordinates, 848, 858

cylindrical coordinates, 870

iterated, 847

limits of, 851, 860

non-rectangular region, 844,

850–853

order of, 849, 853

polar coordinates, 864–867

spherical coordinates, 873

interior

point, 755

intersection

of curve and surface, 890

of two curves, 890
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irrotational vector field, 1004

island species, online

isotherms, 652

iterated integral, 847, 848, 1046

double integral and, 848

limits of, 851

non-rectangular region, 850–

853

numerical view, 847

triple integral and, 858

iteration, online

Jacobian, 1034, 1047

joint cost function, online

joint density function, 880

Kepler’s Laws, 713, online

Kepler, Johann (1571–1630), online

Lagrange multiplier, 827, 1046

constrained optimization, 827

meaning of, 830–831

Lagrange, Joseph-Louis (1736–

1813), 825

Lagrangian function, 831

Laplace equation, online

Law

of Cosines, 719, 727

law

Ampere’s, online

Kepler’s, online

least squares, 819, online

least upper bound, online

level

curve, 669

graph and, 671

set, 669, 671, 689

surface, 689, 692

tangent plane to, 775

limit, 697

line

contour, 669

least squares, 819

parametric equation for, 887,

889, 1047

regression, 819

line integral, 922–928, 1047

circulation, 927

computing, 931–936

conversion to one-variable inte-

gral, 932

definition, 922

differential notation for, 935

for electric potential, online

for work, 925

Fundamental Theorem of Cal-

culus for, 939, 1015, 1048

justification, online

independent of parameteriza-

tion, 936

meaning of, 924

of gradient field, 939

properties, 928

simple case, 931

using parameterization, 932

linear approximation, 755

linear function, 664, 682–685, 690,

1044

contour diagram of, 684

equation for, 683

numerical view, 683

table of, 684

two-variable, 682

linearization, local, 753–757

differential, and, 758

from table, 756

three-variable or more, 757

two-variable function, 753, 755

local extrema, 806

how to find, 806, 811

local maxima/minima, 806

lower bound, online

magnetic field, 987, online

magnitude of vector, online

Magnus force, 735

marginal utility, 836

metal plate, heated, 740

mixed partials, 791

Mobius strip, 968

modeling

with random numbers, online

moment of inertia

triple integral for, online

monkey saddle, 681, 814

motion

parametric equations, 886

position vectors and, online

straight line, 901

uniform circular, 900

Newton’s method, online

chaos, online

failure, online

initial estimate, online

Newton, Isaac (1642–1727)

Law of Gravity, 713, 908, online

Noise levels, online

normal vector, 721

to curve, 766

to plane, 721

numerical methods

accuracy, online

bisection, online

decimal answer, online

error, online

Euler’s method

for flow lines, 916

iterative, online

Newton’s method, online

objective function, 827

optimization

constrained, 825–830

unconstrained, 815–822

orientation

of curve, 922

of surface, 962

origin, 654

orthogonal surfaces, online

parabolic cylinder, 664, 691

paraboloid, 661

parallelepiped, volume of, 733

parallelogram

area of, 732

parameter

curve, 1029

rectangle, 1031

parameterization, 1031

line integral and, 932, 936

of cone, 1028

of curve, 886

of cylinder, 1023

of helix, 886

of line, 887, 889, 1047

of plane, 1025, 1047

of sphere, 1025

of surface, 1023–1031

of surface of revolution, 1028

of torus, online

surface

cylindrical coordinates, 1028

using position vector, 888, 1024

parametric curve, 886, 1047

parametric equations, 886

partial derivative, 740–744, 1045

alternative notation, 741

computing

algebraically, 748

graphically, 743

contour diagram and, 742

definition, 741

difference quotient and, 741

differentiability and, 799, 802

directional derivatives and, 764

graph and, 742

higher-order, 790

interpretation of, 743

rate of change and, 740–741

second-order, 790

units of, 743

path-dependent vector field

circulation and, 950
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definition, 941

path-independent vector field, 941–

944

definition, 941, 1048

gradient field and, 942, 943

pendulum, 761

permittivity, online

perpendicular vector, 719

piecewise smooth curve, 923

plane, 682, 691

contour diagram of, 684

coordinate, 655

equation for, 683, 721, 731

parameterization of, 1025, 1047

points on, 683

tangent, 754

planimeter, online

point

boundary, 755, 821

interior, 755

sink, 990

source, 990

polar coordinates

area element, 865

cylindrical, 869–870

integration in, 864–867

spherical, 872–874

polynomial

factoring, online

population vector, 715

position vector, 706, online

motion and, online

notation for vector field, 907

parameterization, 888

parameterization with, 1024

positive flow, 962

potential

electric

line integral for, online

energy, 941

function, 942

vector, 1011

potential function, 1048

price vector, 715

probability, 878

density function and, 880

double integral for, 880

histogram, 879

production function

Cobb-Douglas, 675

general formula, 675

profit

maximizing, 816

projection

of vector on line, 723

projection, stereographic, online

properties of

addition and scalar multiplica-

tion, 713

cross product, 731

dot product, 719

gradient vector, 766

line integral, 928

Pythagoras’ theorem, 656

quadratic approximation, 792–795

quadratic formula, online

quadratic function, 690, 809

discriminant of, 810

graph of, 810

quadratic polynomial

second derivative test and, 809

Rankine model of tornado, online

rate of change, 740–741, 762

rate of substitution

economic and technical, online

real part of complex number, online

rectangle

parameter, 1031

region

bounded, 821

closed, 821

regression line, 819

returns to scale, 680

Riemann sum

three-variable, 857

two-variable, 841

right-hand rule, 729, 731, 1000

right-handed axes, 654

roots, online

by bisection method, online

by factoring, online

by Newton’s method, online

by numerical methods, online

by zooming, online

saddle, 663, 808

monkey, 814

saddle point, 810

scalar, 702, online

scalar curl, online

scalar multiplication, online

definition, 703

properties, 713

vectors

components, 707

scalar product, 718

second derivative test, 809, 811, 1046

second-order partial derivative, 790

interpretation of, 791

sink, 982, 988, 990

smooth

curve, 923

function, 791

solenoidal vector field, 986

solid angle, online

source, 982, 988, 990

space-time coordinates, 715

species on islands, online

speed, 901, online

velocity and, 711

sphere

equation for, 657

parameterization of, 1025

surface area of, 1040

spherical coordinates, 872–874

conversion to Cartesian, 872

integration in, 873

parameterizing a sphere, 1026

volume element, 873

spinning baseball, 735

spring, 835

state equation, 758

stereographic projection, online

Stokes’ Theorem, 1008–1011, 1015,

1049

streamline, 914

subtraction of vectors

components, 707

geometric view, 703

surface

of revolution

parametric equations, 1028

boundary of, 1008

catalog of, 691

closed, 962, 991

cylindrical, 691

level, 689

nonorientable, 968

orientation of, 962

parameterization, 1023–1031

saddle-shaped, 663, 808

three-variable function, 692

two-variable function, 692

surface area, 1039, 1049

of sphere, 1040

of surface of revolution, 1041

table

contour diagram and, 673

linear function and, 684

reading, 653

two-variable function, 653

tangent

approximation, 756

plane, 754

tangent line

for parametric curves, 898

velocity vector and, 898

tangent plane, 1045

to level surface, 775

tangential surfaces, online



1084 INDEX

Taylor polynomial

degree one, 793, 794

degree two, 793, 795, 1045

theorem

Divergence, 992, 1015, 1049

Euler’s, 753

Extreme Value, 821

Fundamental, for Line Integrals,

939, 1015

Green’s, 951, 1019, 1048

Pythagoras’, 656

Stokes’, 1008, 1009, 1015, 1049

thermal conductivity, online

topographical map, 669

tornado model, online

torus, online

trigonometric identity

addition formula, online

double angle, online

truss, online

unbounded function, online

unconstrained optimization, 815–822

unit vector, 708

universal gravitational constant, 909

upper bound, online

utility, 680

utility function, 836

Van der Waal’s equation, 761

variable

dependent, 652

independent, 652

vector, 702, 1044, online

n-dimensional, 714

acceleration, 712, 899, online

addition, 702, 707, online

area, 732, 736, 963

components, 705, 707, online

consumption, 715

cross product, 728–733

direction, online

displacement, 702–706, online

dot product, 718–720

force, 712

geometric definition, 702

gradient, 765

magnitude, 706, 720, online

normal, 721

notation, 705

orthogonal, 719

parallel, 704

perpendicular, 719

population, 715

position, 706, online

price, 715

projection on line, 723

scalar multiplication, 703, on-

line

subtraction, 703, 707

unit, 708, online

velocity, 711, 896–898, online

zero, 706

vector area

of parallelogram, 973

vector field, 905–910, 1047

central, online

conservative, 941

continuous, 923

curl of, 1000–1002

curl-free, 1004, 1010

definition, 907

divergence free, 986

divergence of, 982–983

divergence-free, 993

electric, 989, 994, online

flow, 913, 914

flow line of, 914

force, 906

gradient, 909, 939

gravitational, 906, 908, online

integral curve, 914

irrotational, 1004

magnetic, 987, online

path-independent, 941–944

solenoidal, 986

streamline, 914

velocity, 905

writing with position vector,

907

vector potential, 1011, 1049

gauge equivalence, 1019

velocity

instantaneous, 896

speed and, 711, 901

vector, 711, 896–898, 1047, on-

line

components of, 897

geometric definition, 896

limit definition, 897

tangent line and, 898

vector field, 905

vibrating guitar string, 750

volume

double integral for, 842

element, 857

cylindrical, 870

spherical, 873

of ellipsoid, 1036

of parallelepiped, 732

vortex, free, online

vorticity, online

wave, 667

wave-guide, online

weather map, 652

wind chill, 658, 678, 746

work, 724, 1044, 1048

definition, 724, 925

dot product and, 724, 925

line integral for, 925

Yosemite National Park

Half Dome, 695

zero vector, 703

components of, 706

zeros, online

zooming, online



Differentiation Formulas

1. (f (x) ± g(x))′ = f ′(x) ± g′(x) 2. (kf (x))′ = kf ′(x)

3. (f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x) 4.

(

f (x)

g(x)

)′

=
f ′(x)g(x) − f (x)g′(x)

(g(x))2

5. (f (g(x)))′ = f ′ (g(x)) ⋅ g′(x) 6.
d

dx
(xn) = nxn−1

7.
d

dx
(ex) = ex 8.

d

dx
(ax) = ax ln a (a > 0) 9.

d

dx
(lnx) =

1

x

10.
d

dx
(sinx) = cosx 11.

d

dx
(cosx) = − sin x 12.

d

dx
(tanx) =

1

cos2 x

13.
d

dx
(arcsinx) =

1
√

1 − x2
14.

d

dx
(arctanx) =

1

1 + x2

A Short Table of Indefinite Integrals

I. Basic Functions

1.
∫

xn dx =
1

n + 1
xn+1 + C , n ≠ −1

2.
∫

1

x
dx = ln |x| + C

3.
∫

ax dx =
1

ln a
ax + C , a > 0

4.
∫

ln x dx = x lnx − x + C

5.
∫

sin x dx = − cosx + C

6.
∫

cosx dx = sin x + C

7.
∫

tanx dx = − ln | cosx| + C

II. Products of ex, cosx, and sinx

8.
∫

eax sin(bx) dx =
1

a2 + b2
eax[a sin(bx) − b cos(bx)] + C

9.
∫

eax cos(bx) dx =
1

a2 + b2
eax[a cos(bx) + b sin(bx)] + C

10.
∫

sin(ax) sin(bx) dx =
1

b2 − a2
[a cos(ax) sin(bx) − b sin(ax) cos(bx)] + C , a ≠ b

11.
∫

cos(ax) cos(bx) dx =
1

b2 − a2
[b cos(ax) sin(bx) − a sin(ax) cos(bx)] + C , a ≠ b

12.
∫

sin(ax) cos(bx) dx =
1

b2 − a2
[b sin(ax) sin(bx) + a cos(ax) cos(bx)] + C , a ≠ b

III. Product of Polynomial p(x) with lnx, ex, cosx, sinx

13.
∫

xn lnx dx =
1

n + 1
xn+1 lnx −

1

(n + 1)2
xn+1 + C , n ≠ −1

14.
∫

p(x)eax dx =
1

a
p(x)eax −

1

a ∫
p′(x)eax dx

=
1

a
p(x)eax −

1

a2
p′(x)eax +

1

a3
p′′(x)eax −⋯

(+ − + −…)

(signs alternate)



15.
∫

p(x) sin ax dx = −
1

a
p(x) cosax +

1

a ∫
p′(x) cos ax dx

= −
1

a
p(x) cosax +

1

a2
p′(x) sin ax +

1

a3
p′′(x) cos ax −⋯

(− + + − − + +…)

(signs alternate in pairs after first term)

16.
∫

p(x) cosax dx =
1

a
p(x) sin ax −

1

a ∫
p′(x) sin ax dx

=
1

a
p(x) sin ax +

1

a2
p′(x) cosax −

1

a3
p′′(x) sin ax −⋯

(+ + − − + + − −…) (signs alternate in pairs)

IV. Integer Powers of sinx and cosx

17.
∫

sinn x dx = −
1

n
sinn−1 x cosx +

n − 1

n ∫
sinn−2 x dx, n positive

18.
∫

cosn x dx =
1

n
cosn−1 x sinx +

n − 1

n ∫
cosn−2 x dx, n positive

19.
∫

1

sinm x
dx =

−1

m − 1

cosx

sinm−1 x
+

m − 2

m − 1 ∫

1

sinm−2 x
dx, m ≠ 1, m positive

20.
∫

1

sin x
dx =

1

2
ln
|

|

|

|

(cosx) − 1

(cosx) + 1

|

|

|

|

+ C

21.
∫

1

cosm x
dx =

1

m − 1

sinx

cosm−1 x
+

m − 2

m − 1 ∫

1

cosm−2 x
dx, m ≠ 1, m positive

22.
∫

1

cosx
dx =

1

2
ln
|

|

|

|

(sin x) + 1

(sin x) − 1

|

|

|

|

+ C

23.
∫

sinm x cosn x dx: If m is odd, let w = cosx. If n is odd, let w = sin x. If both m and n are even and positive,

convert all to sinx or all to cosx (using sin2 x + cos2 x = 1), and use IV-17 or IV-18. If m and n are even and

one of them is negative, convert to whichever function is in the denominator and use IV-19 or IV-21. If both m

and n are even and negative, substitute w = tanx, which converts the integrand to a rational function that can

be integrated by the method of partial fractions.

V. Quadratic in the Denominator

24.
∫

1

x2 + a2
dx =

1

a
arctan

x

a
+ C , a ≠ 0

25.
∫

bx + c

x2 + a2
dx =

b

2
ln |x2 + a2| +

c

a
arctan

x

a
+ C , a ≠ 0

26.
∫

1

(x − a)(x − b)
dx =

1

a − b
(ln |x − a| − ln |x − b|) + C , a ≠ b

27.
∫

cx + d

(x − a)(x − b)
dx =

1

a − b
[(ac + d) ln |x − a| − (bc + d) ln |x − b|] + C , a ≠ b

VI. Integrands Involving
√

a
2 + x

2,
√

a
2 − x

2,
√

x
2 − a

2, a > 0

28.
∫

1
√

a2 − x2
dx = arcsin

x

a
+ C

29.
∫

1
√

x2 ± a2
dx = ln

|

|

|

x +
√

x2 ± a2
|

|

|

+ C

30.
∫

√

a2 ± x2 dx =
1

2

(

x
√

a2 ± x2 + a2
∫

1
√

a2 ± x2
dx

)

+ C

31.
∫

√

x2 − a2 dx =
1

2

(

x
√

x2 − a2 − a2
∫

1
√

x2 − a2
dx

)

+ C
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A ROOTS, ACCURACY, AND BOUNDS

It is often necessary to find the zeros of a polynomial or the points of intersection of two curves. So
far, you have probably used algebraic methods, such as the quadratic formula, to solve such prob-
lems. Unfortunately, however, mathematicians’ search for similar solutions to more complicated
equations has not been all that successful. The formulas for the solutions to third- and fourth-degree
equations are so complicated that you’d never want to use them. Early in the nineteenth century, it
was proved that there is no algebraic formula for the solutions to equations of degree 5 and higher.
Most non-polynomial equations cannot be solved using a formula either.

However, we can still find roots of equations, provided we use approximation methods, not for-
mulas. In this section we will discuss three ways to find roots: algebraic, graphical, and numerical.
Of these, only the algebraic method gives exact solutions.

First, let’s get some terminology straight. Given the equation x2 = 4, we call x = −2 and
x = 2 the roots, or solutions of the equation. If we are given the function f(x) = x2 − 4, then −2

and 2 are called the zeros of the function; that is, the zeros of the function f are the roots of the
equation f(x) = 0.

The Algebraic Viewpoint: Roots by Factoring
If the product of two numbers is zero, then one or the other or both must be zero, that is, if AB = 0,
then A = 0 or B = 0. This observation lies behind finding roots by factoring. You may have spent
a lot of time factoring polynomials. Here you will also factor expressions involving trigonometric
and exponential functions.

Example 1 Find the roots of x2 − 7x = 8.

Solution Rewrite the equation as x2 − 7x − 8 = 0. Then factor the left side: (x + 1)(x − 8) = 0. By our
observation about products, either x+ 1 = 0 or x− 8 = 0, so the roots are x = −1 and x = 8.

Example 2 Find the roots of
1

x
−

x

(x+ 2)
= 0.

Solution Rewrite the left side with a common denominator:

x+ 2− x2

x(x + 2)
= 0.

Whenever a fraction is zero, the numerator must be zero. Therefore we must have

x+ 2− x2
= (−1)(x2 − x− 2) = (−1)(x− 2)(x+ 1) = 0.

We conclude that x − 2 = 0 or x + 1 = 0, so 2 and −1 are the roots. They can be checked by
substitution.

Example 3 Find the roots of e−x sinx− e−x cosx = 0.

Solution Factor the left side: e−x(sinx− cosx) = 0. The factor e−x is never zero; it is impossible to raise e
to a power and get zero. Therefore, the only possibility is that sinx − cosx = 0. This equation is
equivalent to sinx = cosx. If we divide both sides by cosx, we get

sinx

cosx
=

cosx

cosx
so tanx = 1.

The roots of this equation are

. . . ,
−7π

4
,
−3π

4
,
π

4
,
5π

4
,
9π

4
,
13π

4
, . . . .
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Warning: Using factoring to solve an equation only works when one side of the equation is 0.
It is not true that if, say, AB = 7 then A = 7 or B = 7. For example, you cannot solve x2−4x = 2

by factoring x(x− 4) = 2 and then assuming that either x or x− 4 equals 2.
The problem with factoring is that factors are not easy to find. For example, the left side of the

quadratic equation x2 − 4x − 2 = 0 does not factor, at least not into “nice” factors with integer
coefficients. For the general quadratic equation

ax2
+ bx+ c = 0,

there is the quadratic formula for the roots:

x =
−b±

√
b2 − 4ac

2a
.

Thus the roots of x2 − 4x− 2 = 0 are (4±
√
24)/2, or 2 +

√
6 and 2−

√
6.

Notice that in each of these examples, we have found the roots exactly.

The Graphical Viewpoint: Roots by Zooming
To find the roots of an equation f(x) = 0, it helps to draw the graph of f . The roots of the equation,
that is the zeros of f , are the values of x where the graph of f crosses the x-axis. Even a very rough
sketch of the graph can be useful in determining how many zeros there are and their approximate
values. If you have a computer or graphing calculator, then finding solutions by graphing is the
easiest method, especially if you use the zoom feature. However, a graph can never tell you the
exact value of a root, only an approximate one.

Example 4 Find the roots of x3 − 4x− 2 = 0.

Solution Attempting to factor the left side with integer coefficients will convince you it cannot be done, so
we cannot easily find the roots by algebra. We know the graph of f(x) = x3 − 4x− 2 will have the
usual cubic shape; see Figure A.1.

There are clearly three roots: one between x = −2 and x = −1, another between x = −1

and x = 0, and a third between x = 2 and x = 3. Zooming in on the largest root with a graphing
calculator or computer shows that it lies in the following interval:

2.213 < x < 2.215.

Thus, the root is x = 2.21, accurate to two decimal places. Zooming in on the other two roots shows
them to be x = −1.68 and x = −0.54, accurate to two decimal places.

Useful trick: Suppose you want to solve the equation sinx− cosx = 0 graphically. Instead of
graphing f(x) = sinx− cosx and looking for zeros, you may find it easier to rewrite the equation
as sinx = cosx and graph g(x) = sinx and h(x) = cosx. (After all, you already know what these
two graphs look like. See Figure A.2.) The roots of the original equation are then precisely the x
coordinates of the points of intersection of the graphs of g(x) and h(x).

−2 2

−6

−4

−2

2

4

f(x)6

x

Figure A.1: The cubic
f(x) = x3 − 4x− 2

− 3π
4

π
4

5π
4

x

sin xcos x

Figure A.2: Finding roots of
sin x− cosx = 0
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Example 5 Find the roots of 2 sinx− x = 0.

Solution Rewrite the equation as 2 sinx = x, and graph both sides. Since g(x) = 2 sinx is always between
−2 and 2, there are no roots of 2 sinx = x for x > 2 or for x < −2. We need only consider the
graphs between −2 and 2 (or between −π and π, which makes graphing the sine function easier).
Figure A.3 shows the graphs. There are three points of intersection: one appears to be at x = 0, one
between x = π/2 and x = π, and one between x = −π/2 and x = −π. You can tell that x = 0 is
the exact value of one root because it satisfies the original equation exactly. Zooming in shows that
there is a second root x ≈ 1.9, and the third root is x ≈ −1.9 by symmetry.

−2

−π

−π
2

π
2

π 3π
2

2π

2

x

h(x) = x

g(x) = 2 sin x

Figure A.3: Finding roots of 2 sin x− x = 0

The Numerical Viewpoint: Roots by Bisection
We now look at a numerical method of approximating the solutions to an equation. This method
depends on the idea that if the value of a function f(x) changes sign in an interval, and if we believe
there is no break in the graph of the function there, then there is a root of the equation f(x) = 0 in
that interval.

Let’s go back to the problem of finding the root of f(x) = x3−4x−2 = 0 between 2 and 3. To
locate the root, we close in on it by evaluating the function at the midpoint of the interval, x = 2.5.
Since f(2) = −2, f(2.5) = 3.625, and f(3) = 13, the function changes sign between x = 2 and
x = 2.5, so the root is between these points. Now we look at x = 2.25.

Since f(2.25) = 0.39, the function is negative at x = 2 and positive at x = 2.25, so there
is a root between 2 and 2.25. Now we look at 2.125. We find f(2.125) = −0.90, so there is a
root between 2.125 and 2.25, . . . and so on. (You may want to round the decimals as you work.)
See Figure A.4. The intervals containing the root are listed in Table A.1 and show that the root is
x = 2.21 to two decimal places.

2

2.1875 2.21875

2.125

2.25

f(x) = x3 − 4x− 2

2.5 3

��
x

Figure A.4: Locating a root of x3 − 4x− 2 = 0

Table A.1 Intervals containing root of
x3 − 4x− 2 = 0 (Note: [2, 3] means 2 ≤ x ≤ 3)

[2, 3]

[2, 2.5]

[2, 2.25]

[2.125, 2.25]

[2.1875, 2.25]
So x = 2.2 rounded
to one decimal place

[2.1875, 2.21875]

[2.203125, 2.21875]

[2.2109375, 2.21875]

[2.2109375, 2.2148438]
So x = 2.21 rounded
to two decimal places
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This method of estimating roots is called the Bisection Method:
• To solve an equation f(x) = 0 using the bisection method, we need two starting values

for x, say, x = a and x = b, such that f(a) and f(b) have opposite signs and f is
continuous on [a, b].

• Evaluate f at the midpoint of the interval [a, b], and decide in which half-interval the root
lies.

• Repeat, using the new half-interval instead of [a, b].

There are some problems with the bisection method:
• The function may not change signs near the root. For example, f(x) = x2 − 2x + 1 = 0 has

a root at x = 1, but f(x) is never negative because f(x) = (x − 1)2, and a square cannot be
negative. (See Figure A.5.)

• The function f must be continuous between the starting values x = a and x = b.

• If there is more than one root between the starting values x = a and x = b, the method will
find only one of the roots. For example, if we had tried to solve x3 − 4x − 2 = 0 starting at
x = −12 and x = 10, the bisection method would zero in on the root between x = −2 and
x = −1, not the root between x = 2 and x = 3 that we found earlier. (Try it! Then see what
happens if you use x = −10 instead of x = −12.)

• The bisection method is slow and not very efficient. Applying bisection three times in a row
only traps the root in an interval (12 )

3 = 1
8 as large as the starting interval. Thus, if we initially

know that a root is between, say, 2 and 3, then we would need to apply the bisection method at
least four times to know the first digit after the decimal point.

There are much more powerful methods available for finding roots, such as Newton’s method, which
are more complicated but which avoid some of these difficulties.

1
x

f(x) = (x− 1)2

Figure A.5: f does not change sign at
the root

1 2 3 4 5

−4

−2

2

4

6

8

x

y

y = ex

y = 5
x

Figure A.6: Intersection of y = ex

and y = 5/x

Table A.2 Bisection method for
f(x) = xex − 5 = 0 (Note that
[1, 2] means the interval 1 ≤ x ≤ 2)

Interval Containing Root

[1, 2]

[1, 1.5]

[1.25, 1.5]

[1.25, 1.375]

[1.3125, 1.375]

[1.3125, 1.34375]

Example 6 Find all the roots of xex = 5 to at least one decimal place.

Solution If we rewrite the equation as ex = 5/x and graph both sides, as in Figure A.6, it is clear that there
is exactly one root, and it is somewhere between 1 and 2. Table A.2 shows the intervals obtained by
the bisection method. After five iterations, we have the root trapped between 1.3125 and 1.34375,
so we can say the root is x = 1.3 to one decimal place.
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Iteration

Both zooming in and bisection as discussed here are examples of iterative methods, in which a
sequence of steps is repeated over and over again, using the results of one step as the input for the
next. We can use such methods to locate a root to any degree of accuracy. In bisection, each iteration
traps the root in an interval that is half the length of the previous one. Each time you zoom in on a
calculator, you trap the root in a smaller interval; how much smaller depends on the settings on the
calculator.

Accuracy and Error
In the previous discussion, we used the phrase “accurate to 2 decimal places.” For an iterative pro-
cess where we get closer and closer estimates of some quantity, we take a common-sense approach
to accuracy: we watch the numbers carefully, and when a digit stays the same for several iterations,
we assume it has stabilized and is correct, especially if the digits to the right of that digit also stay
the same. For example, suppose 2.21429 and 2.21431 are two successive estimates for a zero of
f(x) = x3 − 4x − 2. Since these two estimates agree to the third digit after the decimal point, we
probably have at least 3 decimal places correct.

There is a problem with this, however. Suppose we are estimating a root whose true value is
1, and the estimates are converging to the value from below—say, 0.985, 0.991, 0.997 and so on.
In this case, not even the first decimal place is “correct,” even though the difference between the
estimates and the actual answer is very small—much less than 0.1. To avoid this difficulty, we say
that an estimate a for some quantity r is accurate to p decimal places if the error, which is the
absolute value of the difference between a and r, or |r − a|, is as follows:

Accuracy to p decimal places means Error less than

p = 1 0.05

2 0.005

3 0.0005
...

...

n 0. 000 . . . 0︸ ︷︷ ︸
n

5

This is the same as saying that r must lie in an interval of length twice the maximum error,
centered on a. For example, if a is accurate to 1 decimal place, r must lie in the following interval:

a− 0.05 a a+ 0.05

Since both the graphing calculator and the bisection method give us an interval in which the
root is trapped, this definition of decimal accuracy is a natural one for these processes.

Example 7 Suppose the numbers
√
10, 22/7, and 3.14 are given as approximations to π = 3.1415 . . . . To how

many decimal places is each approximation accurate?

Solution Using
√
10 = 3.1622 . . . ,

|
√
10− π| = |3.1622 . . .− 3.1415 . . . | = 0.0206 . . . < 0.05,

so
√
10 is accurate to one decimal place. Similarly, using 22/7 = 3.1428 . . . ,∣∣∣∣227 − π

∣∣∣∣ = |3.1428 . . .− 3.1415 . . . | = 0.0013 . . . < 0.005,
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so 22/7 is accurate to two decimal places. Finally,

|3.14− 3.1415 . . . | = 0.0015 . . . < 0.005,

so 3.14 is accurate to two decimal places.

Warning:

• Saying that an approximation is accurate to, say, 2 decimal places does not guarantee that its
first two decimal places are “correct,” that is, that the two digits of the approximation are the
same as the corresponding two digits in the true value. For example, an approximate value of
5.997 is accurate to 2 decimal places if the true value is 6.001, but neither of the 9s in the
approximation agrees with the 0s in the true value (nor does the digit 5 agree with the digit 6).

• When finding a root r of an equation, the number of decimal places of accuracy refers to the
number of digits that have stabilized in the root. It does not refer to the number of digits of
f(r) that are zero. For example, Table A.1 on page 1098 shows that x = 2.2 is a root of
f(x) = x3 − 4x − 2 = 0, accurate to one decimal place. Yet, f(2.2) = −0.152, so f(2.2)
does not have one zero after the decimal point. Similarly, x = 2.21 is the root accurate to two
decimal places, but f(2.21) = −0.046 does not have two zeros after the decimal point.

Example 8 Is x = 2.2143 a zero of f(x) = x3 − 4x− 2 accurate to four decimal places?

Solution We want to know whether r, the exact value of the zero, lies in the interval

2.2143− 0.00005 < r < 2.2143 + 0.00005

which is the same as
2.21425 < r < 2.21435.

Since f(2.21425) < 0 and f(2.21435) > 0, the zero does lie in this interval, and so r = 2.2143 is
accurate to four decimal places.

How to Write a Decimal Answer

The graphing calculator and bisection method naturally give an interval for a root or a zero. How-
ever, other numerical techniques do not give a pair of numbers bounding the true value, but rather a
single number near the true value. What should you do if you want a single number, rather than an
interval, for an answer? In general, averaging the endpoint of the interval is the best solution.

When giving a single number as an answer and interpreting it, be careful about giving rounded
answers. For example, suppose you know a root lies in the interval between 0.81 and 0.87. Averag-
ing gives 0.84 as a single number estimating the root. But it would be wrong to round 0.84 to 0.8 and
say that the answer is 0.8 accurate to one decimal place; the true value could be 0.86, which is not
within 0.05 of 0.8. The right thing to say is that the answer is 0.84 accurate to one decimal place.
Similarly, to give an answer accurate to, say, 2 decimal places, you may have to show 3 decimal
places in your answer.

Bounds of a Function
Knowing how big or how small a function gets can sometimes be useful, especially when you can’t
easily find exact values of the function. You can say, for example, that sinx always stays between
−1 and 1 and that 2 sinx + 10 always stays between 8 and 12. But 2x is not confined between any
two numbers, because 2x will exceed any number you can name if x is large enough. We say that
sinx and 2 sinx+ 10 are bounded functions, and that 2x is an unbounded function.
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A function f is bounded on an interval if there are numbers L and U such that

L ≤ f(x) ≤ U

for all x in the interval. Otherwise, f is unbounded on the interval.

We say that L is a lower bound for f on the interval, and that U is an upper bound for f on
the interval.

Example 9 Use Figures A.7 and A.8 to decide which of the following functions are bounded.

(a) x3 on −∞ < x < ∞; on 0 ≤ x ≤ 100.
(b) 2/x on 0 < x < ∞; on 1 ≤ x < ∞.

100

106

x3

x

Figure A.7: Is x3 bounded?

1

2

2/x

x

Figure A.8: Is 2/x bounded?

Solution (a) The graph of x3 in Figure A.7 shows that x3 will exceed any number, no matter how large, if x is
big enough, so x3 does not have an upper bound on −∞ < x < ∞. Therefore, x3 is unbounded
on −∞ < x < ∞. But on the interval 0 ≤ x ≤ 100, x3 stays between 0 (a lower bound) and
1003 = 1,000,000 (an upper bound). Therefore, x3 is bounded on the interval 0 ≤ x ≤ 100.
Notice that upper and lower bounds, when they exist, are not unique. For example, −100 is
another lower bound and 2,000,000 another upper bound for x3 on 0 ≤ x ≤ 100.

(b) 2/x is unbounded on 0 < x < ∞, since it has no upper bound on that interval. But 0 ≤ 2/x ≤ 2

for 1 ≤ x < ∞, so 2/x is bounded, with lower bound 0 and upper bound 2, on 1 ≤ x < ∞.
(See Figure A.8.)

Best Possible Bounds

Consider a group of people whose height in feet, h, ranges from 5 feet to 6 feet. Then 5 feet is a
lower bound for the people in the group and 6 feet is an upper bound:

5 ≤ h ≤ 6.

But the people in this group are also all between 4 feet and 7 feet, so it is also true that

4 ≤ h ≤ 7.

So, there are many lower bounds and many upper bounds. However, the 5 and the 6 are considered
the best bounds because they are the closest together of all the possible pairs of bounds.

The best possible bounds for a function, f , over an interval are numbers A and B such that,
for all x in the interval,

A ≤ f(x) ≤ B

and where A and B are as close together as possible. A is called the greatest lower bound
and B is the least upper bound.
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What Do Bounds Mean Graphically?

Upper and lower bounds can be represented on a graph by horizontal lines. See Figure A.9.

Lower bound

Greatest lower bound

Least upper bound

Upper bound

L = −2

L = −0.9

U = 0.92

U = 1.5

x

f(x)

Figure A.9: Upper and lower bounds for the function f

Exercises for Appendix A

1. Use a calculator or computer graph of f(x) = 13−20x−
x2 − 3x4 to determine:

(a) The range of this function;
(b) The number of zeros of this function.

For Problems 2–12, determine the roots or points of intersec-
tion to an accuracy of one decimal place.

2. (a) The root of x3 − 3x+ 1 = 0 between 0 and 1
(b) The root of x3 − 3x+ 1 = 0 between 1 and 2
(c) The smallest root of x3 − 3x+ 1 = 0

3. The root of x4 − 5x3 +2x− 5 = 0 between −2 and −1

4. The root of x5 + x2 − 9x− 3 = 0 between −2 and −1

5. The largest real root of 2x3 − 4x2 − 3x+ 1 = 0

6. All real roots of x4 − x− 2 = 0

7. All real roots of x5 − 2x2 + 4 = 0

8. The smallest positive root of x sin x− cos x = 0

9. The left-most point of intersection between y = 2x and
y = cosx

10. The left-most point of intersection between y = 1/2x

and y = sin x

11. The point of intersection between y = e−x and y = ln x

12. All roots of cos t = t2

13. Estimate all real zeros of the following polynomials, ac-
curate to 2 decimal places:

(a) f(x) = x3 − 2x2 − x+ 3
(b) f(x) = x3 − x2 − 2x+ 2

14. Find the largest zero of

f(x) = 10xe−x − 1

to two decimal places, using the bisection method. Make
sure to demonstrate that your approximation is as good
as you claim.

15. (a) Find the smallest positive value of x where the
graphs of f(x) = sin x and g(x) = 2−x intersect.

(b) Repeat with f(x) = sin 2x and g(x) = 2−x.

16. Use a graphing calculator to sketch y = 2 cos x and
y = x3 + x2 + 1 on the same set of axes. Find the pos-
itive zero of f(x) = 2 cos x − x3 − x2 − 1. A friend
claims there is one more real zero. Is your friend correct?
Explain.

17. Use the table below to investigate the zeros of the func-
tion

f(θ) = (sin 3θ)(cos 4θ) + 0.8

in the interval 0 ≤ θ ≤ 1.8.

θ 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

f(θ) 0.80 1.19 0.77 0.08 0.13 0.71 0.76 0.12 −0.19 0.33

(a) Decide how many zeros the function has in the in-
terval 0 ≤ θ ≤ 1.8.

(b) Locate each zero, or a small interval containing each
zero.

(c) Are you sure you have found all the zeros in the in-
terval 0 ≤ θ ≤ 1.8? Graph the function on a calcu-
lator or computer to decide.
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18. (a) Use Table A.3 to locate approximate solution(s) to

(sin 3x)(cos 4x) =
x3

π3

in the interval 1.07 ≤ x ≤ 1.15. Give an interval of
length 0.01 in which each solution lies.

Table A.3

x x
3
/π3 (sin 3x)(cos 4x)

1.07 0.0395 0.0286

1.08 0.0406 0.0376

1.09 0.0418 0.0442

1.10 0.0429 0.0485

1.11 0.0441 0.0504

1.12 0.0453 0.0499

1.13 0.0465 0.0470

1.14 0.0478 0.0417

1.15 0.0491 0.0340

(b) Make an estimate for each solution accurate to two
decimal places.

19. (a) With your calculator in radian mode, take the arc-
tangent of 1 and multiply that number by 4. Now,
take the arctangent of the result and multiply it by
4. Continue this process 10 times or so and record
each result as in the accompanying table. At each
step, you get 4 times the arctangent of the result of
the previous step.

1

3.14159. . .

5.05050 . . .

5.50129 . . .
...

(b) Your table allows you to find a solution of the equa-
tion

4 arctan x = x.

Why? What is that solution?

(c) What does your table in part (a) have to do with Fig-
ure A.10?
[Hint: The coordinates of P0 are (1, 1). Find the co-
ordinates of P1, P2, P3,. . . ]

P0

P1

P2

P3

P4

P5

y = x

y = 4arctan x

y

x

Figure A.10

(d) In part (a), what happens if you start with an initial
guess of 10? Of −10? What types of behavior do
you observe? (That is, for which initial guesses is
the sequence increasing, and for which is it decreas-
ing; does the sequence approach a limit?) Explain
your answers graphically, as in part (c).

20. Using radians, apply the iteration method of Problem 19
to the equation

cos x = x.

Represent your results graphically, as in Figure A.10.

For Problems 21–23, draw a graph to decide if the function
is bounded on the interval given. Give the best possible upper
and lower bounds for any function which is bounded.

21. f(x) = 4x− x2 on [−1, 4]

22. h(θ) = 5 + 3 sin θ on [−2π, 2π]

23. f(t) =
sin t

t2
on [−10, 10]

B COMPLEX NUMBERS

The quadratic equation
x2 − 2x+ 2 = 0

is not satisfied by any real number x. If you try applying the quadratic formula, you get

x =
2±

√
4− 8

2
= 1±

√
−4

2
.

Apparently, you need to take a square root of −4. But −4 does not have a square root, at least, not
one which is a real number. Let’s give it a square root.

We define the imaginary number i to be a number such that

i2 = −1.

Using this i, we see that (2i)2 = −4, so
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x = 1±

√
−4

2
= 1±

2i

2
= 1± i.

This solves our quadratic equation. The numbers 1+ i and 1− i are examples of complex numbers.

A complex number is defined as any number that can be written in the form

z = a+ bi,

where a and b are real numbers and i2 = −1, so we say i =
√
−1.

The real part of z is the number a; the imaginary part is the number b.

Calling the number i imaginary makes it sound as if i does not exist in the same way that real
numbers exist. In some cases, it is useful to make such a distinction between real and imaginary
numbers. For example, if we measure mass or position, we want our answers to be real numbers.
But the imaginary numbers are just as legitimate mathematically as the real numbers are.

As an analogy, consider the distinction between positive and negative numbers. Originally,
people thought of numbers only as tools to count with; their concept of “five” or “ten” was not far
removed from “five arrows” or “ten stones.” They were unaware that negative numbers existed at all.
When negative numbers were introduced, they were viewed only as a device for solving equations
like x + 2 = 1. They were considered “false numbers,” or, in Latin, “negative numbers.” Thus,
even though people started to use negative numbers, they did not view them as existing in the same
way that positive numbers did. An early mathematician might have reasoned: “The number 5 exists
because I can have 5 dollars in my hand. But how can I have −5 dollars in my hand?” Today we
have an answer: “I have−5 dollars” means I owe somebody 5 dollars. We have realized that negative
numbers are just as useful as positive ones, and it turns out that complex numbers are useful too.
For example, they are used in studying wave motion in electric circuits.

Algebra of Complex Numbers
Numbers such as 0, 1, 1

2 , π, and
√
2 are called purely real because they contain no imaginary

components. Numbers such as i, 2i, and
√
2i are called purely imaginary because they contain only

the number i multiplied by a nonzero real coefficient.
Two complex numbers are called conjugates if their real parts are equal and if their imaginary

parts are opposites. The complex conjugate of the complex number z = a+ bi is denoted z, so we
have

z = a− bi.

(Note that z is real if and only if z = z.) Complex conjugates have the following remarkable
property: if f(x) is any polynomial with real coefficients (x3+1, say) and f(z) = 0, then f(z) = 0.
This means that if z is the solution to a polynomial equation with real coefficients, then so is z.
• Two complex numbers are equal if and only if their real parts are equal and their imaginary

parts are equal. Consequently, if a+ bi = c+ di, then a = c and b = d.

• Adding two complex numbers is done by adding real and imaginary parts separately:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

• Subtracting is similar:

(a+ bi)− (c+ di) = (a− c) + (b− d)i.

• Multiplication works just as for polynomials, using i2 = −1:

(a+ bi)(c+ di) = a(c+ di) + bi(c+ di)

= ac+ adi + bci+ bdi2

= ac+ adi + bci− bd = (ac− bd) + (ad+ bc)i.
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• Powers of i: We know that i2 = −1; then i3 = i · i2 = −i, and i4 = (i2)2 = (−1)2 = 1. Then
i5 = i · i4 = i, and so on. Thus we have

in =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i forn = 1, 5, 9, 13, . . .

−1 forn = 2, 6, 10, 14, . . .

−i forn = 3, 7, 11, 15, . . .

1 forn = 0, 4, 8, 12, 16, . . .

• The product of a number and its conjugate is always real and nonnegative:

z · z = (a+ bi)(a− bi) = a2 − abi+ abi− b2i2 = a2 + b2.

• Dividing by a nonzero complex number is done by multiplying the denominator by its conju-
gate, thereby making the denominator real:

a+ bi

c+ di
=

a+ bi

c+ di
·
c− di

c− di
=

ac− adi + bci− bdi2

c2 + d2
=

ac+ bd

c2 + d2
+

bc− ad

c2 + d2
i.

Example 1 Compute (2 + 7i)(4− 6i)− i.

Solution (2 + 7i)(4− 6i)− i = 8 + 28i− 12i− 42i2 − i = 8 + 15i+ 42 = 50 + 15i.

Example 2 Compute
2 + 7i

4− 6i
.

Solution
2 + 7i

4− 6i
=

2 + 7i

4− 6i
·
4 + 6i

4 + 6i
=

8 + 12i+ 28i+ 42i2

42 + 62
=

−34 + 40i

52
=

−17

26
+

10

13
i.

You can check by multiplying out that (−17/26 + 10i/13)(4− 6i) = 2 + 7i.

The Complex Plane and Polar Coordinates
It is often useful to picture a complex number z = x + iy in the plane, with x along the horizontal
axis and y along the vertical. The xy-plane is then called the complex plane. Figure B.11 shows the
complex numbers −2i, 1 + i, and −2 + 3i.

−3 2

−2i

3i

x

y−2 + 3i

1 + i

0

Figure B.11: Points in the complex
plane

x

yr

z = x+ iy

θ

Figure B.12: The point z = x+ iy in the
complex plane, showing polar coordinates

The triangle in Figure B.12 shows that a complex number can be written using polar coordinates
as follows:

z = x+ iy = r cos θ + ir sin θ.
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Example 3 Express z = −2i and z = −2 + 3i using polar coordinates. (See Figure B.11.)

Solution For z = −2i, the distance of z from the origin is 2, so r = 2. Also, one value for θ is θ = 3π/2.
Using polar coordinates, −2i = 2 cos(3π/2) + i 2(sin 3π/2).

For z = −2 + 3i, we have x = −2, y = 3. So r =
√

(−2)2 + 32 ≈ 3.61, and one solution of
tan θ = 3/(−2) with θ in quadrant II is θ ≈ 2.16. So −2+ 3i ≈ 3.61 cos(2.16)+ i 3.61 sin(2.16).

Example 4 Consider the point with polar coordinates r = 5 and θ = 3π/4. What complex number does this
point represent?

Solution Since x = r cos θ and y = r sin θ we see that x = 5 cos 3π/4 = −5/
√
2, and y = 5 sin 3π/4 =

5/
√
2, so z = −5/

√
2 + i 5/

√
2.

Derivatives and Integrals of Complex-Valued Functions
Suppose z(t) = x(t) + iy(t), where t is real, then we define z′(t) and

∫
z (t) dt by treating i like

any other constant:
z′(t) = x′

(t) + iy′(t)∫
z (t) dt =

∫
x (t) dt+ i

∫
y (t) dt.

With these definitions, all the usual properties of differentiation and integration hold, such as∫
z′ (t) dt = z (t) + C, for C is a complex constant.

Euler’s Formula
Consider the complex number z lying on the unit circle in Figure B.13. Writing z in polar coordi-
nates, and using the fact that r = 1, we have

z = f(θ) = cos θ + i sin θ.

It turns out that there is a particularly beautiful and compact way of rewriting f(θ) using com-
plex exponentials. We take the derivative of f using the fact that i2 = −1:

f ′
(θ) = − sin θ + i cos θ = i cos θ + i2 sin θ.

Factoring out an i gives
f ′
(θ) = i(cos θ + i sin θ) = i · f(θ).

As you know from Chapter 11, page 610, the only real-valued function whose derivative is propor-
tional to the function itself is the exponential function. In other words, we know that if

g′(x) = k · g(x), then g(x) = Cekx

z = cos θ + i sin θ

y

x

1

θ

Figure B.13: Complex number represented by a point on the unit circle
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for some constant C. If we assume that a similar result holds for complex-valued functions, then we
have

f ′
(θ) = i · f(θ), so f(θ) = Ceiθ

for some constant C. To find C we substitute θ = 0. Now f(0) = Cei·0 = C, and since f(0) =
cos 0 + i sin 0 = 1, we must have C = 1. Therefore f(θ) = eiθ . Thus we have

Euler’s formula

eiθ = cos θ + i sin θ.

This elegant and surprising relationship was discovered by the Swiss mathematician Leonhard
Euler in the eighteenth century, and it is particularly useful in solving second-order differential
equations. Another way of obtaining Euler’s formula (using Taylor series) is given in Problem 46 on
page 551. It allows us to write the complex number represented by the point with polar coordinates
(r, θ) in the following form:

z = r(cos θ + i sin θ) = reiθ .

Similarly, since cos(−θ) = cos θ and sin(−θ) = − sin θ, we have

re−iθ
= r (cos(−θ) + i sin(−θ)) = r(cos θ − i sin θ).

Example 5 Evaluate eiπ .

Solution Using Euler’s formula, eiπ = cosπ + i sinπ = −1.

Example 6 Express the complex number represented by the point r = 8, θ = 3π/4 in Cartesian form and polar
form, z = reiθ .

Solution Using Cartesian coordinates, the complex number is

z = 8

(
cos

(
3π

4

)
+ i sin

(
3π

4

))
=

−8
√
2
+ i

8
√
2
.

Using polar coordinates, we have
z = 8ei 3π/4.

The polar form of complex numbers makes finding powers and roots of complex numbers much
easier. Writing z = reiθ , we find any power of z as follows:

zp = (reiθ)p = rpeipθ.

To find roots, we let p be a fraction, as in the following example.

Example 7 Find a cube root of the complex number represented by the point with polar coordinates (8, 3π/4).

Solution In Example 6, we saw that this complex number could be written as z = 8ei3π/4. So,

3
√
z =

(
8ei 3π/4

)1/3
= 8

1/3ei(3π/4)·(1/3) = 2eπi/4 = 2 (cos(π/4) + i sin(π/4))

= 2

(
1/

√
2 + i/

√
2

)
=

√
2(1 + i).

You can check by multiplying out that (
√
2(1 + i))3 = −(8/

√
2) + i(8/

√
2) = z.
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Using Complex Exponentials

Euler’s formula, together with the fact that exponential functions are simple to manipulate, allows
us to obtain many results about trigonometric functions easily.

The following example uses the fact that for complex z, the function ez has all the usual alge-
braic properties of exponents.

Example 8 Use Euler’s formula to obtain the double-angle identities

cos 2θ = cos
2 θ − sin

2 θ and sin 2θ = 2 cos θ sin θ.

Solution We use the fact that e2iθ = eiθ · eiθ . This can be rewritten as

cos 2θ + i sin 2θ = (cos θ + i sin θ)2.

Multiplying out (cos θ + i sin θ)2, using the fact that i2 = −1 gives

cos 2θ + i sin 2θ = cos
2 θ − sin

2 θ + i(2 cos θ sin θ).

Since two complex numbers are equal only if the real and imaginary parts are equal, we must have

cos 2θ = cos
2 θ − sin

2 θ and sin 2θ = 2 cos θ sin θ.

If we solve eiθ = cos θ + i sin θ and e−iθ = cos θ − i sin θ for sin θ and cos θ, we obtain

sin θ =
eiθ − e−iθ

2i
and cos θ =

eiθ + e−iθ

2
.

By differentiating the formula eikθ = cos(kθ) + i sin(kθ), for θ real and k a real constant, it can be
shown that

d

dθ

(
eikθ
)
= ikeikθ and

∫
eikθ dθ =

1

ik
eikθ + C.

Thus complex exponentials are differentiated and integrated just like real exponentials.

Example 9 Use cos θ =
(
eiθ + e−iθ

)
/2 to obtain the derivative formula for cos θ.

Solution Differentiating gives

d

dθ
(cos θ) =

d

dθ

(
eiθ + e−iθ

2

)
=

ieiθ − ie−iθ

2
=

i(eiθ − e−iθ)

2

= −
eiθ − e−iθ

2i
= − sin θ.

The facts that ez has all the usual properties when z is complex leads to

d

dθ
(e(a+ib)θ

) = (a+ ib)e(a+ib)θ and
∫

e(a+ib)θ dθ =
1

a+ ib
e(a+ib)θ

+ C.
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Example 10 Use the formula for
∫
e(a+ib)θ dθ to obtain formulas for

∫
eax cos bx dx and

∫
eax sin bx dx.

Solution The formula for
∫
e(a+ib)θ dθ allows us to write∫

eaxeibx dx =

∫
e(a+ib)x dx =

1

a+ ib
e(a+ib)x

+ C =
a− ib

a2 + b2
eaxeibx + C.

The left-hand side of this equation can be rewritten as∫
eaxeibx dx =

∫
eax cos bx dx+ i

∫
eax sin bx dx.

The right-hand side can be rewritten as

a− ib

a2 + b2
eaxeibx =

eax

a2 + b2
(a− ib)(cos bx+ i sin bx),

=
eax

a2 + b2
(a cos bx+ b sin bx+ i (a sin bx− b cos bx)) .

Equating real parts gives∫
eax cos bx dx =

eax

a2 + b2
(a cos bx+ b sin bx) + C,

and equating imaginary parts gives∫
eax sin bx dx =

eax

a2 + b2
(a sin bx− b cos bx) + C.

These two formulas are usually obtained by integrating by parts twice.

Example 11 Using complex exponentials, find a formula for
∫
sin 2x sin 3x dx.

Solution Replacing sin 2x and sin 3x by their exponential form, we have∫
sin 2x sin 3x dx =

∫ (
e2ix − e−2ix

)
2i

(
e3ix − e−3ix

)
2i

dx

=
1

(2i)2

∫ (
e5ix − e−ix − eix + e−5ix

)
dx

= −
1

4

(
1

5i
e5ix +

1

i
e−ix −

1

i
eix −

1

5i
e−5ix

)
+ C

= −
1

4

(
e5ix − e−5ix

5i
−

eix − e−ix

i

)
+ C

= −
1

4

(
2

5
sin 5x− 2 sinx

)
+ C

= −
1

10
sin 5x+

1

2
sinx+ C.

This result is usually obtained by using a trigonometric identity.

Exercises for Appendix B

For Problems 1–8, express the given complex number in polar
form, z = reiθ.

1. 2i 2. −5 3. 1 + i 4. −3− 4i

5. 0 6. −i 7. −1+ 3i 8. 5− 12i

For Problems 9–18, perform the indicated calculations. Give
your answer in Cartesian form, z = x+ iy.

9. (2 + 3i) + (−5− 7i) 10. (2 + 3i)(5 + 7i)

11. (2 + 3i)2 12. (1 + i)2 + (1 + i)
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13. (0.5− i)(1− i/4) 14. (2i)3 − (2i)2 + 2i− 1

15. (eiπ/3)2 16.
√
eiπ/3

17. (5ei7π/6)3 18. 4
√
10eiπ/2

By writing the complex numbers in polar form, z = reiθ,
find a value for the quantities in Problems 19–28. Give your
answer in Cartesian form, z = x+ iy.

19.
√
i 20.

√−i 21. 3
√
i

22.
√
7i 23. (1 + i)100 24. (1 + i)2/3

25. (−4 + 4i)2/3 26. (
√
3 + i)1/2 27. (

√
3+i)−1/2

28. (
√
5 + 2i)

√

2

29. Calculate in for n = −1, −2, −3, −4. What pattern do
you observe? What is the value of i−36? Of i−41?

Solve the simultaneous equations in Problems 30–31 for A1

and A2.

30. A1 + A2 = 2
(1− i)A1 + (1 + i)A2 = 3

31. A1 + A2 = 2
(i− 1)A1 + (1 + i)A2 = 0

32. (a) Calculate a and b if
3− 4i

1 + 2i
= a+ bi.

(b) Check your answer by calculating (1 + 2i)(a+ bi).

33. Check that z =
ac+ bd

c2 + d2
+

bc− ad

c2 + d2
i is the quotient

a+ bi

c+ di
by showing that the product z · (c+ di) is a+ bi.

34. Let z1 = −3− i
√
3 and z2 = −1 + i

√
3.

(a) Find z1z2 and z1/z2. Give your answer in Cartesian
form, z = x+ iy.

(b) Put z1 and z2 into polar form, z = reiθ. Find z1z2
and z1/z2 using the polar form, and verify that you
get the same answer as in part (a).

35. Let z1 = a1 + b1i and z2 = a2 + b2i. Show that
z1z2 = z̄1z̄2.

36. If the roots of the equation x2 + 2bx + c = 0 are the
complex numbers p± iq, find expressions for p and q in
terms of b and c.

Are the statements in Problems 37–42 true or false? Explain
your answer.

37. Every nonnegative real number has a real square root.

38. For any complex number z, the product z · z̄ is a real
number.

39. The square of any complex number is a real number.

40. If f is a polynomial, and f(z) = i, then f(z̄) = i.

41. Every nonzero complex number z can be written in the
form z = ew, where w is another complex number.

42. If z = x+iy, where x and y are positive, then z2 = a+ib
has a and b positive.

For Problems 43–47, use Euler’s formula to derive the fol-
lowing relationships. (Note that if a, b, c, d are real numbers,
a+ bi = c+ di means that a = c and b = d.)

43. sin2 θ + cos2 θ = 1 44. sin 2θ = 2 sin θ cos θ

45. cos 2θ = cos2 θ−sin2 θ 46.
d

dθ
sin θ = cos θ

47.
d2

dθ2
cos θ = − cos θ

48. Use complex exponentials to show that

sin (−x) = − sin x.

49. Use complex exponentials to show that

sin (x+ y) = sin x cos y + cosx sin y.

50. For real t, show that if z1(t) = x1(t) + iy1(t) and
z2(t) = x2(t) + iy2(t) then

(z1 + z2)
′ = z′1 + z′2 and (z1z2)

′ = z′1z2 + z1z
′

2.

C NEWTON’S METHOD

Many problems in mathematics involve finding the root of an equation. For example, we might have
to locate the zeros of a polynomial, or determine the point of intersection of two curves. Here we
will see a numerical method for approximating solutions which cannot be calculated exactly.

One such method, bisection, is described in Appendix A. Although it is very simple, the bisec-
tion method has two major drawbacks. First, it cannot locate a root where the curve is tangent to,
but does not cross, the x-axis. Second, it is relatively slow in the sense that it requires a considerable
number of iterations to achieve a desired level of accuracy. Although speed may not be important
in solving a single equation, a practical problem may involve solving thousands of equations as a
parameter changes. In such a case, any reduction in the number of steps can be important.
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Using Newton’s Method
We now consider a powerful root-finding method developed by Newton. Suppose we have a function
y = f(x). The equation f(x) = 0 has a root at x = r, as shown in Figure C.14. We begin with an
initial estimate, x0, for this root. (This can be a guess.) We will now obtain a better estimate x1. To
do this, construct the tangent line to the graph of f at the point x = x0, and extend it until it crosses
the x-axis, as shown in Figure C.14. The point where it crosses the axis is usually much closer to r,
and we use that point as the next estimate, x1. Having found x1, we now repeat the process starting
with x1 instead of x0. We construct a tangent line to the curve at x = x1, extend it until it crosses
the x-axis, use that x-intercept as the next approximation, x2, and so on. The resulting sequence of
x-intercepts usually converges rapidly to the root r.

Let’s see how this looks algebraically. We know that the slope of the tangent line at the initial
estimate x0 is f ′(x0), and so the equation of the tangent line is

y − f(x0) = f ′
(x0)(x− x0).

At the point where this tangent line crosses the x-axis, we have y = 0 and x = x1, so that

0− f(x0) = f ′
(x0)(x1 − x0).

Solving for x1, we obtain

x1 = x0 −
f(x0)

f ′(x0)

provided that f ′(x0) is not zero. We now repeat this argument and find that the next approximation
is

x2 = x1 −
f(x1)

f ′(x1)
.

Summarizing, for any n = 0, 1, 2, . . . , we obtain the following result.

Newton’s Method to Solve the Equation f(x) = 0

Choose x0 near a solution and compute the sequence x1, x2, x3 . . . using the rule

xn+1 = xn −
f(xn)

f ′(xn)

provided that f ′(xn) is not zero. For large n, the solution is well approximated by xn.

x1 r

x2 x0

x

f

Figure C.14: Newton’s method: successive approximations x0, x1, x2, . . . to the root, r

Example 1 Use Newton’s method to find the fifth root of 23. (By calculator, this is 1.872171231, correct to nine
decimal places.)

Solution To use Newton’s method, we need an equation of the form f(x) = 0 having 231/5 as a root. Since
231/5 is a root of x5 = 23 or x5 − 23 = 0, we take f(x) = x5 − 23. The root of this equation is
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between 1 and 2 (since 15 = 1 and 25 = 32), so we will choose x0 = 2 as our initial estimate. Now
f ′(x) = 5x4, so we can set up Newton’s method as

xn+1 = xn −
x5
n − 23

5x4
n

.

In this case, we can simplify using a common denominator, to obtain

xn+1 =
4x5

n + 23

5x4
n

.

Therefore, starting with x0 = 2, we find that x1 = 1.8875. This leads to x2 = 1.872418193
and x3 = 1.872171296. These values are in Table C.4. Since we have f(1.872171231) > 0 and
f(1.872171230) < 0, the root lies between 1.872171230 and 1.872171231. Therefore, in just four
iterations of Newton’s method, we have achieved eight-decimal accuracy.

Table C.4 Newton’s method: x0 = 2

n xn f(xn)

0 2 9

1 1.8875 0.957130661

2 1.872418193 0.015173919

3 1.872171296 0.000004020

4 1.872171231 0.000000027

Table C.5 Newton’s method: x0 = 10

n xn n xn

0 10 6 2.679422313

1 8.000460000 7 2.232784753

2 6.401419079 8 1.971312452

3 5.123931891 9 1.881654220

4 4.105818871 10 1.872266333

5 3.300841811 11 1.872171240

As a general guideline for Newton’s method, once the first correct decimal place is found, each
successive iteration approximately doubles the number of correct digits.

What happens if we select a very poor initial estimate? In the preceding example, suppose x0

were 10 instead of 2. The results are in Table C.5. Notice that even with x0 = 10, the sequence of
values moves reasonably quickly toward the solution: We achieve six-decimal place accuracy by the
eleventh iteration.

Example 2 Find the first point of intersection of the curves given by f(x) = sinx and g(x) = e−x.

Solution The graphs in Figure C.15 make it clear that there are an infinite number of points of intersection,
all with x > 0. In order to find the first one numerically, we consider the function

F (x) = f(x)− g(x) = sinx− e−x

whose derivative is F ′(x) = cosx + e−x. From the graph, we see that the point we want is fairly
close to x = 0, so we start with x0 = 0. The values in Table C.6 are approximations to the root.
Since F (0.588532744) > 0 and F (0.588532743) < 0, the root lies between 0.588532743 and
0.588532744. (Remember, your calculator must be set in radians.)

x

g(x) = e−x

f(x) = sin x

Figure C.15: Root of sin x = e−x

Table C.6 Successive approximations to root
of sinx = e−x

n xn

0 0

1 0.5

2 0.585643817

3 0.588529413

4 0.588532744

5 0.588532744
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When Does Newton’s Method Fail?
In most practical situations, Newton’s method works well. Occasionally, however, the sequence x0,
x1, x2, . . . fails to converge or fails to converge to the root you want. Sometimes, for example, the
sequence can jump from one root to another. This is particularly likely to happen if the magnitude
of the derivative f ′(xn) is small for some xn. In this case, the tangent line is nearly horizontal and
so xn+1 will be far from xn. (See Figure C.16.)

If the equation f(x) = 0 has no root, then the sequence will not converge. In fact, the sequence
obtained by applying Newton’s method to f(x) = 1 + x2 is one of the best known examples of
chaotic behavior and has attracted considerable research interest recently. (See Figure C.17.)

x0

r x1

x2

x

f(x)

Figure C.16: Problems with Newton’s
method: Converges to wrong root

x0x1
x2x3

x

f(x) = 1 + x2

Figure C.17: Problems with Newton’s
method: Chaotic behavior

Exercises for Appendix C

1. Suppose you want to find a solution of the equation

x3 + 3x2 + 3x− 6 = 0.

Consider f(x) = x3 + 3x2 + 3x− 6.

(a) Find f ′(x), and use it to show that f(x) increases
everywhere.

(b) How many roots does the original equation have?
(c) For each root, find an interval which contains it.
(d) Find each root to two decimal places, using New-

ton’s method.

For Problems 2–4, use Newton’s method to find the given
quantities to two decimal places:

2. 3
√
50 3. 4

√
100 4. 10−1/3

For Problems 5–8, solve each equation and give each answer
to two decimal places:

5. sin x = 1− x 6. cosx = x

7. e−x = ln x

8. ex cos x = 1, for 0 < x < π

9. Find, to two decimal places, all solutions of ln x = 1/x.

10. How many zeros do the following functions have? For
each zero, find an upper and a lower bound which differ
by no more than 0.1.
(a) f(x) = x3+x−1 (b) f(x) = sin x− 2

3
x

(c) f(x) = 10xe−x − 1

11. Find the largest zero of

f(x) = x3 + x− 1

to six decimal places, using Newton’s method. How do
you know your approximation is as good as you claim?

12. For any positive number, a, the problem of calculating
the square root,

√
a, is often done by applying Newton’s

method to the function f(x) = x2−a. Apply the method
to obtain an expression for xn+1 in terms of xn. Use this
to approximate

√
a for a = 2, 10, 1000, and π, correct to

four decimal places, starting at x0 = a/2 in each case.

D VECTORS IN THE PLANE

Position Vectors
Consider a point (a, b) lying on a curve C in the plane (see Figure D.18). The arrow from the
origin to the point (a, b) is called the position vector of the point, written �r . As the point moves
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�r

(a, b)

C

x

y

Figure D.18: A position vector �r

C

x

y

Figure D.19: Position vectors of points on curve C

along the curve, the position vector sweeps across the plane, the arrowhead touching the curve (see
Figure D.19).

A position vector is defined by its magnitude (or length) and its direction. Figure D.20 shows
two position vectors with the same magnitude but different directions. Figure D.21 shows two posi-
tion vectors with the same direction but different magnitudes. An object that possesses both magni-
tude and direction is called a vector, and a position vector is one example. Other physical quantities
(such as force, electric and magnetic fields, velocity and acceleration) that have both magnitude and
direction can be represented by vectors. To distinguish them from vectors, real numbers (which have
magnitude but no direction) are sometimes called scalars.

Vectors can be written in several ways. One is to write 〈a, b〉 for the position vector with tip at
(a, b)— the use of the angle brackets signifies that we’re talking about a vector, not a point. Another
notation uses the special vectors�i and �j along the axes. The position vector�i points to (1, 0) and
�j points to (0, 1); both have magnitude 1. The position vector �r pointing to (a, b) can be written

�r = a�i + b�j .

The terms a�i and b�j are called the components of the vector.
Other special vectors include the zero vector, �0 = 0�i + 0�j . Any vector with magnitude 1 is

called a unit vector.

�i

�j

(1, 0)

(0, 1)

x

y

Figure D.20: Position vectors with
same magnitude, different

direction

(1, 1)

(2, 2)

x

y

Figure D.21: Position vectors
with same direction, different

magnitude
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Example 1 What are the components of the position vector in Figure D.22?

Solution Since the vector points to (3,−
√
3), we have

�r = 3�i −
√
3�j .

Thus, the components of the vector are 3�i and −
√
3�j .

3

−√
3 �r

x

y

Figure D.22: Find the components
of this position vector

Magnitude and Direction
If �r is the position vector a�i +b�j , then the Pythagorean Theorem gives the magnitude of �r , written
||�r ||. From Figure D.23, we see

||�r || = ||a�i + b�j || =
√

a2 + b2.

The direction of a position vector �r = a�i + b�j is given by the angle θ between the vector and the
positive x-axis, measured counterclockwise. This angle satisfies

tan θ =

(
b

a

)
.

a

b

‖�r ‖ =
√
a2 + b2

y

xθ

�r

Figure D.23: Magnitude ||�r || and
direction of the position vector �r

3

−√
3

11π/6

−π/6
||�r || = 2

√
3

x

y

Figure D.24: Magnitude and direction of
the vector 3�i −√

3�j

Example 2 Find the magnitude and direction of the position vector �r = 3�i −
√
3�j in Figure D.22.

Solution The magnitude is ||�r || =
√
32 + (−

√
3)2 =

√
12 = 2

√
3. For the direction, we find arctan(−

√
3/3) =

−π/6. Thus, the angle with the positive x-axis is θ = 2π − π/6 = 11π/6. See Figure D.24.
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Describing Motion with Position Vectors
The motion given by the parametric equations

x = f(t), y = g(t)

can be represented by a changing position vector

�r (t) = f(t)�i + g(t)�j .

For example, �r (t) = cos t�i + sin t�j represents the motion x = cos t, y = sin t around the unit
circle.

Displacement Vectors
Position vectors are vectors that begin at the origin. More general vectors can start at any point in
the plane. We view such an arrow as an instruction to move from one point to another and call it
a displacement vector. Figure D.25 shows the same displacement vector starting at two different
points; we say they are the same vector since they have the same direction and magnitude. Thus, a
position vector �r is a displacement vector beginning at the origin. The zero vector �0 = 0�i + 0�j
represents no displacement at all.

�u = 3�i + 4�j �u = 3�i + 4�j

(−4, 2)

(−1, 6)

(5, 7)

(2, 3)

x

y

Figure D.25: Two equal displacement vectors:
Same magnitude and direction

Vector Operations
The sum �u 1 + �u 2 of two displacement vectors is the result of displacing an object first by �u 1 and
then by �u 2; see Figure D.26. In terms of components:

If �u 1 = a1�i + b1�j and �u 2 = a2�i + b2�j , then the sum is

�u 1 + �u 2 = (a1 + a2)�i + (b1 + b2)�j .

In other words, to add vectors, add their components separately.

�u 1 + �u 2

�u 1

�u 2

Figure D.26: Vector addition
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Example 3 Find the sum of the following pairs of vectors:

(a) 3�i + 2�j and −�i +�j (b) �i and 3�i +�j (c) �i and �j .

Solution (a) (3�i + 2�j ) + (−�i +�j ) = 2�i + 3�j
(b) (�i + 0�j ) + (3�i +�j ) = 4�i +�j
(c) (�i + 0�j ) + (0�i +�j ) =�i +�j .

Vectors can be multiplied by a number. This operation is called scalar multiplication because
it represents changing (“scaling”) the magnitude of a vector while keeping its direction the same or
reversing it. See Figure D.27.

If c is a real number and �u = a�i + b�j , then the scalar multiple of �u by c, c�u , is

c�u = ca�i + cb�j .

In other words, to multiply a vector by a scalar c, multiply each component by c.

�F

0.5�F

2�F

−2�F

Figure D.27: Scalar
multiplication

Example 4 If �u 1 = 2�i and �u 2 =�i + 3�j , evaluate 6�u 2, (−2)�u 1, and 2�u 1 + 5�u 2.

Solution We have

6�u 2 = 6�i + 18�j ,

(−2)�u 1 = −4�i ,

2�u 1 + 5�u 2 = (4�i ) + (5�i + 15�j ) = 9�i + 15�j .

Velocity Vectors
For a particle moving along a line with position s(t), the instantaneous velocity is ds/dt. For a
particle moving in the plane, the velocity is a vector. If the position vector is �r (t) = x(t)�i + y(t)�j ,
the particle’s displacement during a time interval Δt is

Δ�r (t) = Δx�i +Δy�j .
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Dividing by Δt and letting Δt → 0, we get the following result:

For motion in the plane with position vector �r (t) = x(t)�i + y(t)�j , the velocity vector is

�v (t) =
dx

dt
�i +

dy

dt
�j .

The direction of �v (t) is tangent to the curve. The magnitude ||�v (t)|| is the speed.

Notice the vector viewpoint agrees with the formulas for speed, vx and vy , given in Section 4.8, so
we write

�v (t) = vx�i + vy�j .

Recall that for motion on a line, the acceleration is a = dv/dt = d2s/dt2. For motion in the plane,
we have the following:

If the position vector is �r (t) = x(t)�i + y(t)�j , the acceleration vector is

�a (t) =
d2x

dt2
�i +

d2y

dt2
�j .

The acceleration measures both change in speed and change in direction of the velocity
vector.

Example 5 Let �r (t) = cos(2t)�i + sin(2t)�j . Find the

(a) Velocity (b) Speed (c) Acceleration

Solution (a) Differentiating �r (t) gives the velocity vector

Velocity = �v (t) = −2 sin(2t)�i + 2 cos(2t)�j .

(b) Finding the magnitude of �v (t), we have

Speed = ||�v (t)|| =
√

(−2 sin(2t))2 + (2 cos(2t))2 = 2.

Notice that the speed is constant.
(c) Differentiating �v (t) gives the acceleration vector

Acceleration = �a (t) = −4 cos(2t)�i − 4 sin(2t)�j .

Notice that even though the speed is constant, the acceleration vector is not�0 , since the velocity
vector is changing direction.
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Exercises for Appendix D
Exercises

In Exercises 1–3, find the magnitude of the vector and the an-
gle between the vector and the positive x-axis.

1. 3�i 2. 2�i +�j

3. −√
2�i +

√
2�j

In Exercises 4–6, perform the indicated operations on the fol-
lowing vectors

�u = 2�j �v =�i + 2�j �w = −2�i + 3�j .

4. �v + �w 5. 2�v + �w 6. �w + (−2)�u

Exercises 7–9 concern the following vectors:

3�i +4�j , �i +�j , −5�i , 5�j ,
√
2�j , 2�i +2�j , −6�j

.

7. Which vectors have the same magnitude?

8. Which vectors have the same direction?

9. Which vectors have opposite direction?

10. If k is any real number and �r = a�i + b�j is any vector,
show that ‖k�r ‖ = |k|‖�r ‖.

11. Find a unit vector (that is, with magnitude 1) that is

(a) In the same direction as the vector −3�i + 4�j .
(b) In the direction opposite to the vector −3�i + 4�j .

In Exercises 12–15, express the vector in components.

12. The vector of magnitude 5 making an angle of 90◦ with
the positive x-axis.

13. The vector in the same direction as 4�i − 3�j but with
twice the magnitude.

14. The vector with the same magnitude as 4�i − 3�j and in
the opposite direction.

15. The vector from (3, 2) to (4, 4).

In Exercises 16–19, determine whether the vectors are equal.

16. 6�i − 6�j and the vector from (6, 6) to (−6,−6).

17. The vector from (7, 9) to (9, 11) and the vector from
(8, 10) to (10, 12).

18. −�i +�j and the vector of length
√
2 making an angle of

π/4 with the positive x-axis.

19. 5�i − 2�j and the vector from (1, 12) to (6, 10).

In Exercises 20–22, find the velocity vector and the speed, and
acceleration.

20. �r (t) = t�i + t2�j , t = 1

21. �r (t) = et�i + ln(1 + t)�j , t = 0

22. �r (t) = 5 cos t�i + 5 sin t�j , t = π/2

23. A particle is moving along the curve �r (t) = cos t�i +
sin t�j . Find the particle’s position and velocity vectors
and its speed when t = π/4.

E DETERMINANTS

We introduce the determinant of an array of numbers. Each 2 by 2 array of numbers has another
number associated with it, called its determinant, which is given by∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣ = a1b2 − a2b1.

For example ∣∣∣∣∣ 2 5

−4 −6

∣∣∣∣∣ = 2(−6)− 5(−4) = 8.

Each 3 by 3 array of numbers also has a number associated with it, also called a determinant,
which is defined in terms of 2 by 2 determinants as follows:∣∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣ = a1

∣∣∣∣∣ b2 b3

c2 c3

∣∣∣∣∣− a2

∣∣∣∣∣ b1 b3

c1 c3

∣∣∣∣∣+ a3

∣∣∣∣∣ b1 b2

c1 c2

∣∣∣∣∣ .
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Notice that the determinant of the 2 by 2 array multiplied by ai is the determinant of the array found
by removing the row and column containing ai. Also, note the minus sign in the second term. An
example is given by∣∣∣∣∣∣∣
2 1 −3

0 3 −1

4 0 5

∣∣∣∣∣∣∣ = 2

∣∣∣∣∣3 −1

0 5

∣∣∣∣∣− 1

∣∣∣∣∣0 −1

4 5

∣∣∣∣∣+ (−3)

∣∣∣∣∣0 3

4 0

∣∣∣∣∣ = 2(15 + 0)− 1(0− (−4)) + (−3)(0− 12) = 62.

Suppose the vectors�a and�b have components�a = a1�i +a2�j +a3�k and�b = b1�i +b2�j +b3�k .
Recall that the cross product �a ×�b is given by the expression

�a ×�b = (a2b3 − a3b2)�i + (a3b1 − a1b3)�j + (a1b2 − a2b1)�k .

Notice that if we expand the following determinant, we get the cross product:∣∣∣∣∣∣∣
�i �j �k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ =�i (a2b3 − a3b2)−�j (a1b3 − a3b1) + �k (a1b2 − a2b1) = �a ×�b .

Determinants give a useful way of computing cross products.
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2 Chapter 12 ADDITIONAL PROBLEMS

Exercises and Problems for Section 12.1

Additional Problems (online only)

73. (a) Find the equations of the circles (if any) where the

sphere (x−1)2 + (y+ 3)2 + (z− 2)2 = 4 intersects

each coordinate plane.

(b) Find the points (if any) where this sphere intersects

each coordinate axis.

74. A rectangular solid lies with its length parallel to the y-

axis, and its top and bottom faces parallel to the plane

z = 0. If the center of the object is at (1, 1,−2) and it

has a length of 13, a height of 5 and a width of 6, give

the coordinates of all eight corners and draw the figure

labeling the eight corners.

Exercises and Problems for Section 12.2

Additional Problems (online only)

63. At time t, the displacement of a point on a vibrating gui-

tar string stretched between x = 0 and x = � is given

by

f (x, t) = cos t sin x, 0 ≤ x ≤ �, 0 ≤ t ≤ 2�.

(a) Sketch the cross-sections of this function with t

fixed at t = 0, �∕4 and the cross-sections with x

fixed at x = �∕4, �∕2.

(b) What is the value of f if x = 0 or x = �? Explain

why this is to be expected.

(c) Explain the relation of the cross-sections to the sur-

face representing f .

Exercises and Problems for Section 12.4

Additional Problems (online only)

63. Let f be the linear function f (x, y) = c + mx + ny,

where c, m, n are constants and n ≠ 0.

(a) Show that all the contours of f are lines of slope

−m∕n.

(b) For all x and y, show f (x + n, y −m) = f (x, y).

(c) Explain the relation between parts (a) and (b).

Problems 64–65 refer to the linear function z = f (x, y)

whose values are in Table 12.1.

Table 12.1

x

y

4 6 8 10 12

5 3 6 9 12 15

10 7 10 13 16 19

15 11 14 17 20 23

20 15 18 21 24 27

25 19 22 25 28 31

64. Each column of Table 12.1 is linear with the same slope,

m = Δz∕Δx = 4∕5. Each row is linear with the same

slope, n = Δz∕Δy = 3∕2. We now investigate the slope

obtained by moving through the table along lines that

are neither rows nor columns.

(a) Move down the diagonal of the table from the up-

per left corner (z = 3) to the lower right corner

(z = 31). What do you notice about the changes in

z? Now move diagonally from z = 6 to z = 27.

What do you notice about the changes in z now?

(b) Move in the table along a line right one step, up

two steps from z = 19 to z = 9. Then move in the

same direction from z = 22 to z = 12. What do

you notice about the changes in z?

(c) Show that Δz = mΔx + nΔy. Use this to explain

what you observed in parts (a) and (b).

65. If we hold y fixed, that is we keep Δy = 0, and step in

the positive x-direction, we get the x-slope,m. If instead

we keep Δx = 0 and step in the positive y-direction, we

get the y-slope, n. Fix a step in which neither Δx = 0

nor Δy = 0. The slope in the Δx,Δy direction is

Slope =
Rise

Run
=

Δz

Length of step

=
Δz

√

(Δx)2 + (Δy)2
.

(a) Compute the slopes for the linear function in Ta-

ble 12.1 in the direction of Δx = 5,Δy = 2.

(b) Compute the slopes for the linear function in Ta-

ble 12.1 in the direction of Δx = −10,Δy = 2.
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2 Chapter 13 ADDITIONAL PROBLEMS

Exercises and Problems for Section 13.1

Additional Problems (online only)

64. Find all vectors v⃗ in the plane such that ‖v⃗ ‖ = 1 and

‖v⃗ + i⃗ ‖ = 1.

65. Show that the medians of a triangle intersect at a point
1

3
of the way along each median from the side it bisects.

66. (a) A vector v⃗ of magnitude v makes an angle � with

the positive x-axis, angle � with the positive y-axis,

and angle  with the positive z-axis. Show that

v⃗ = v cos �i⃗ + v cos �j⃗ + v cos k⃗ .

(b) Cos �, cos �, and cos  are called direction cosines.

Show that

cos2 � + cos2 � + cos2  = 1.

Exercises and Problems for Section 13.2

Additional Problems (online only)

48. A man wishes to row the shortest possible distance from

north to south across a river that is flowing at 4 km/hr

from the east. He can row at 5 km/hr.

(a) In which direction should he steer?

(b) If there is a wind of 10 km/hr from the southwest,

in which direction should he steer to try and go di-

rectly across the river? What happens?

49. An airplane is flying at an airspeed of 600 km/hr in a

cross-wind that is blowing from the northeast at a speed

of 50 km/hr. In what direction should the plane head

to end up going due east?

Exercises and Problems for Section 13.3

Additional Problems (online only)

100. Find a vector that bisects the smaller of the two angles

formed by 3i⃗ + 4j⃗ and 5i⃗ − 12j⃗ .

101. Show why each of the properties of the dot product in

the box on page 719 follows from the algebraic defini-

tion of the dot product:

v⃗ ⋅ w⃗ = v1w1 + v2w2 + v3w3.

102. Show that

u⃗

‖u⃗ ‖2
−

v⃗

‖v⃗ ‖2
and

u⃗

‖u⃗ ‖‖v⃗ ‖
−

v⃗

‖u⃗ ‖‖v⃗ ‖

have the same magnitude where u⃗ and v⃗ are nonzero

vectors.

103. Figure 13.1 shows that, given three vectors u⃗ , v⃗ , and

w⃗ , the sum of the components of v⃗ and w⃗ in the di-

rection of u⃗ is the component of v⃗ + w⃗ in the direction

of u⃗ . (Although the figure is drawn in two dimensions,

this result is also true in three dimensions.) Use this fig-

ure to explain why the geometric definition of the dot

product satisfies (v⃗ + w⃗ ) ⋅ u⃗ = v⃗ ⋅ u⃗ + w⃗ ⋅ u⃗ .

w⃗v⃗ + w⃗

v⃗

Component
of v⃗ in the
direction of u⃗

Component
of w⃗ in the
direction of u⃗

u⃗

Component of v⃗ + w⃗
in the direction of u⃗

Figure 13.1: Component of v⃗ + w⃗ in the direction of u⃗ is the

sum of the components of v⃗ and w⃗ in that direction

104. (a) Using the geometric definition of the dot product,

show that

u⃗ ⋅ (−v⃗ ) = −(u⃗ ⋅ v⃗ ).

[Hint: What happens to the angle when you multi-

ply v⃗ by −1?]

(b) Using the geometric definition of the dot product,

show that for any negative scalar �

u⃗ ⋅ (�v⃗ ) = �(u⃗ ⋅ v⃗ )

(�u⃗ ) ⋅ v⃗ = �(u⃗ ⋅ v⃗ ).
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105. Use Problems 103 and 104 and the following steps to

show (without trigonometry) that the geometric and al-

gebraic definitions of the dot product are equivalent. Let

u⃗ = u1 i⃗ + u2 j⃗ + u3k⃗ and v⃗ = v1 i⃗ + v2j⃗ + v3k⃗

be any vectors. Write (u⃗ ⋅ v⃗ )geom for the result of the

dot product computed geometrically. Substitute u⃗ =

u1 i⃗ + u2 j⃗ + u3k⃗ and use Problems 103–104 to expand

(u⃗ ⋅ v⃗ )geom. Substitute for v⃗ and expand. Then calculate

the dot products i⃗ ⋅ i⃗ , i⃗ ⋅ j⃗ , etc. geometrically.

Exercises and Problems for Section 13.4

Additional Problems (online only)

73. Use the algebraic definition to check that

a⃗ × (b⃗ + c⃗ ) = (a⃗ × b⃗ ) + (a⃗ × c⃗ ).

74. If v⃗ and w⃗ are non-zero vectors, use the geometric def-

inition of the cross product to explain why

(�v⃗ ) × w⃗ = �(v⃗ × w⃗ ) = v⃗ × (�w⃗ ).

Consider the cases � > 0, and � = 0, and � < 0 sepa-

rately.

75. Show that ‖a⃗ × b⃗ ‖2 = ‖a⃗ ‖2‖b⃗ ‖2 − (a⃗ ⋅ b⃗ )2.

76. If a⃗ + b⃗ + c⃗ = 0⃗ , show that

a⃗ × b⃗ = b⃗ × c⃗ = c⃗ × a⃗ .

Geometrically, what does this imply about a⃗ , b⃗ , and c⃗ ?

77. If a⃗ = a1i⃗ + a2j⃗ + a3k⃗ , b⃗ = b1 i⃗ + b2j⃗ + b3k⃗ and

c⃗ = c1 i⃗ + c2j⃗ + c3k⃗ are any three vectors in space,

show that

a⃗ ⋅ (b⃗ × c⃗ ) =

|

|

|

|

|

|

|

|

a1 a2 a3

b1 b2 b3

c1 c2 c3

|

|

|

|

|

|

|

|

.

78. Use the fact that i⃗ × i⃗ = 0⃗ , i⃗ × j⃗ = k⃗ , i⃗ × k⃗ = −j⃗ ,

and so on, together with the properties on page 731 to

derive the algebraic definition for the cross product.

79. In this problem, we arrive at the algebraic definition

for the cross product by a different route. Let a⃗ =

a1i⃗ + a2j⃗ + a3k⃗ and b⃗ = b1 i⃗ + b2j⃗ + b3k⃗ . We seek a

vector v⃗ = xi⃗ +yj⃗ +zk⃗ that is perpendicular to both a⃗

and b⃗ . Use this requirement to construct two equations

for x, y, and z. Eliminate x and solve for y in terms of

z. Then eliminate y and solve for x in terms of z. Since

z can be any value whatsoever (the direction of v⃗ is

unaffected), select the value for z which eliminates the

denominator in the equation you obtained. How does

the resulting expression for v⃗ compare to the formula

we derived on page 730?

80. For vectors a⃗ and b⃗ , let c⃗ = a⃗ × (b⃗ × a⃗ ).

(a) Show that c⃗ lies in the plane containing a⃗ and b⃗ .

(b) Use Problems 52 and 75 to show that a⃗ ⋅ c⃗ = 0

and b⃗ ⋅ c⃗ = ‖a⃗ ‖2‖b⃗ ‖2 − (a⃗ ⋅ b⃗ )2.

(c) Show that

a⃗ × (b⃗ × a⃗ ) = ‖a⃗ ‖2b⃗ − (a⃗ ⋅ b⃗ )a⃗ .

81. Use the result of Problem 52 to show that the cross prod-

uct distributes over addition. First, use distributivity for

the dot product to show that for any vector d⃗ ,

[(a⃗ + b⃗ ) × c⃗ ] ⋅ d⃗ = [(a⃗ × c⃗ ) + (b⃗ × c⃗ )] ⋅ d⃗ .

Next, show that for any vector d⃗ ,

[((a⃗ + b⃗ ) × c⃗ ) − (a⃗ × c⃗ ) − (b⃗ × c⃗ )] ⋅ d⃗ = 0.

Finally, explain why you can conclude that

(a⃗ + b⃗ ) × c⃗ = (a⃗ × c⃗ ) + (b⃗ × c⃗ ).
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Exercises and Problems for Section 14.4

Additional Problems (online only)

117. For the gradient ∇f (P ) of f at a point P , describe the

geometric interpretation of its

(a) Direction

(b) Magnitude

(c) Dot product with a unit vector u⃗

In Problems 118–119, approximate the directional derivative

of f in the direction from P to Q.

118. P = (42, 70), Q = (41.2, 69.7), f (P ) = 3.4, f (Q) =

3.5.

119. P = (9000, 400), Q = (9100, 380), f (P ) = 72, 000,

f (Q) = 74, 000.

In Problems 120–121, assuming P and Q are close, approx-

imate f (Q).

120. P = (75,−40), Q = (74,−39), f (P ) = 400,

gradf (P ) = i⃗ − j⃗ .

121. P = (0, 0), Q = (−0.5, 2), f (P ) = 350, gradf (P ) =

3i⃗ + 4j⃗ .

122. You are at the point (�∕4, 1) and start to move in the

direction of the point (1 + �∕4, 2). At what rate does

the value of f (x, y) = sin(xy) change as you leave

(�∕4, 1)? Answer in units of f per unit distance.

123. (a) Let f (x, y) = x2 + ln y. Find the average rate of

change of f as you go from (3, 1) to (1, 2).

(b) Find the instantaneous rate of change of f as you

leave the point (3, 1) heading toward (1, 2).

124. (a) What is the rate of change of f (x, y) = 3xy+ y2 at

the point (2, 3) in the direction v⃗ = 3i⃗ − j⃗ ?

(b) What is the direction of maximum rate of change

of f at (2, 3)?

(c) What is the maximum rate of change?

In Problems 125–128, do the level curves of f (x, y) cross

the level curves of g(x, y) at right angles? Sketch contour

diagrams.

125. f (x, y) = x + y, g(x, y) = x − y

126. f (x, y) = 2x + 3y, g(x, y) = 2x − 3y

127. f (x, y) = x2 − y, g(x, y) = 2y + ln |x|

128. f (x, y) = x2 − y2, g(x, y) = xy

129. (a) Sketch the surface z = f (x, y) = y2 in three di-

mensions.

(b) Sketch the level curves of f in the xy-plane.

(c) If you are standing on the surface z = y2 at the

point (2, 3, 9), in which direction should you move

to climb the fastest? (Give your answer as a 2-

vector.)

130. You are standing above the point (1, 3) on the surface

z = 20 − (2x2 + y2).

(a) In which direction should you walk to descend

fastest? (Give your answer as a 2-vector.)

(b) If you start to move in this direction, what is the

slope of your path?

131. Let P be a fixed point in the plane and let f (x, y) be the

distance from P to (x, y). Answer the following ques-

tions using geometric interpretations, not formulas.

(a) What are the level curves of f?

(b) In what direction does grad f (x, y) point?

(c) What is the magnitude ‖ grad f (x, y)‖?

132. The directional derivative of z = f (x, y) at (2, 1) in

the direction toward the point (1, 3) is −2∕
√

5, and the

directional derivative in the direction toward the point

(5, 5) is 1. Compute )z∕)x and )z∕)y at (2, 1).

133. Consider the function f (x, y). If you start at the point

(4, 5) and move toward the point (5, 6), the directional

derivative is 2. Starting at the point (4, 5) and moving

toward the point (6, 6) gives a directional derivative of

3. Find ∇f at the point (4, 5).

134. (a) For g(x, y) =
√

x2 + 3y + 3, find grad g(1, 4).

(b) Find the best linear approximation of g(x, y) for

(x, y) near (1, 4).

(c) Use the approximation in part (b) to estimate

g(1.01, 3.98).

135. Find the directional derivative of z = x2−y2 at the point

(3,−1) in the direction making an angle � = �∕4 with

the x-axis. In which direction is the directional deriva-

tive the largest?

136. Figure 14.2 is a graph of the directional derivative, fu⃗ ,

at the point (a, b) versus �, the angle in Figure 14.1.

(a) Which points on the graph in Figure 14.2 corre-

spond to the greatest rate of increase of f? The

greatest rate of decrease?

(b) Mark points on the circle in Figure 14.1 corre-

sponding to the points P ,Q,R, S.

(c) What is the amplitude of the function graphed in

Figure 14.2? What is its formula?

gradfu⃗ �

Figure 14.1

R
P

Q S P

�

fu⃗

Figure 14.2
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137. In this problem we see another way of obtaining the for-

mula fu⃗ (a, b) = grad f (a, b)⋅u⃗ . Imagine zooming in on

a function f (x, y) at a point (a, b). By local linearity, the

contours around (a, b) look like the contours of a linear

function. See Figure 14.3. Suppose you want to find the

directional derivative fu⃗ (a, b) in the direction of a unit

vector u⃗ . If you move from P to Q, a small distance ℎ

in the direction of u⃗ , then the directional derivative is

approximated by the difference quotient

Change in f between P and Q

ℎ
.

(a) Use the gradient to show that

Change in f ≈ ‖ grad f‖(ℎ cos �).

(b) Use part (a) to obtain fu⃗ (a, b) = grad f (a, b) ⋅ u⃗ .

✛

✛ℎ cos �

✻

❄
ℎ

Q

u⃗

�

grad f

P = (a, b)

Figure 14.3

138. Let C be the contour C of f (x, y) through (a, b) and

grad f (a, b) ≠ 0⃗ . Show that

(a) The vector −fy(a, b)i⃗ + fx(a, b)j⃗ is tangent to C

at (a, b).

(b) The slope of the line tangent to C at the point (a, b)

is −fx(a, b)∕fy(a, b) if the tangent line is not verti-

cal.

139. Let f (x, y) = mx+ny. The equations f (x, y) = C1 and

f (x, y) = C2 define two parallel lines, L1 and L2, in the

plane. Assume C1 < C2.

(a) Find the directional derivative of f in the direction

from L1 to L2 perpendicular to the lines.

(b) Use your answer to part (b) to find the distance be-

tween the two lines.

140. The gradient of f (x, y) is defined using the directional

derivatives fx = fi⃗ and fy = fj⃗ in two perpendicu-

lar directions. In this problem you show that any other

two perpendicular directions would give the same re-

sult. Let u⃗ = cos �i⃗ +sin �j⃗ and v⃗ = − sin �i⃗ +cos �j⃗ .

(a) Show that u⃗ and v⃗ are perpendicular unit vectors.

(b) Compute fu⃗ and fv⃗ .

(c) Show that grad f = fu⃗ u⃗ + fv⃗ v⃗ .

141. Let L be a line tangent to the ellipse x2∕2 + y2 = 1 at

the point (a, b). See Figure 14.4.

(a) Find a vector perpendicular to L.

(b) Find the distance p from P = (−1, 0) to L as a

function of a.

(c) Find the distance q from Q = (1, 0) to L as a func-

tion of a.

(d) Show that pq = 1.

P Q

(a, b)

p q

L

Figure 14.4

142. Let ‖ grad f (x, y)‖ = ‖ grad g(x, y)‖ at a point P

where these gradients are not the zero vector. Show that

at P , the direction of the most rapid increase of f + g

(a) Increases f and g at equal rates.

(b) Bisects the angle between the contours of f and g

that pass through P .

Are the statements in Problems 143–147 true or false? Ex-

plain your answer.

143. fu⃗ (x0, y0) is a scalar.

144. fu⃗ (a, b) = ‖∇f (a, b)‖

145. If u⃗ is tangent to the level curve of f at some point,

then grad f ⋅ u⃗ = 0 there.

146. There is always a direction in which the rate of change

of f at (a, b) is 0.

147. There is a function with a point in its domain where

‖ grad f‖ = 0 and where there is a nonzero directional

derivative.
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Exercises and Problems for Section 14.5

Additional Problems (online only)

83. Let r⃗ be the position vector of the point (x, y, z). If

�⃗ = �1 i⃗ + �2j⃗ + �3k⃗ is a constant vector, show that

grad(�⃗ ⋅ r⃗ ) = �⃗ .

84. Let r⃗ be the position vector of the point (x, y, z). Show

that, if a is a constant,

grad(‖r⃗ ‖a) = a‖r⃗ ‖a−2 r⃗ , r⃗ ≠ 0⃗ .

85. Two surfaces are said to be tangential at a point P if

they have the same tangent plane at P . Show that the

surfaces z =
√

2x2 + 2y2 − 25 and z =
1

5
(x2 + y2) are

tangential at the point (4, 3, 5).

86. Two surfaces are said to be orthogonal to each other at

a point P if the normals to their tangent planes are per-

pendicular at P . Show that the surfaces z =
1

2
(x2+y2−

1) and z =
1

2
(1 − x2 − y2) are orthogonal at all points

of intersection.

87. Let f and g be functions on 3-space. Suppose f is dif-

ferentiable and that

grad f (x, y, z) = (xi⃗ + yj⃗ + zk⃗ )g(x, y, z).

Explain why f must be constant on any sphere centered

at the origin.

Exercises and Problems for Section 14.6

Additional Problems (online only)

54. The equation f (x, y) = f (a, b) defines a level curve

through a point (a, b) where grad f (a, b) ≠ 0⃗ . Use im-

plicit differentiation and the chain rule to show that the

slope of the line tangent to this curve at the point (a, b)

is −fx(a, b)∕fy(a, b) if fy(a, b) ≠ 0.

55. A function f (x, y) is homogeneous of degree p if

f (tx, ty) = tpf (x, y) for all t. Show that any differen-

tiable, homogeneous function of degree p satisfies Eu-

ler’s Theorem:

x fx(x, y) + y fy(x, y) = p f (x, y).

[Hint: Define g(t) = f (tx, ty) and compute g′(1).]

56. Let F (x, y, z) be a function and define a function z =

f (x, y) implicitly by letting

F (x, y, f (x, y)) = 0. Use the chain rule to show that

)z

)x
= −

)F∕)x

)F∕)z
and

)z

)y
= −

)F∕)y

)F∕)z
.

Problems 57–59 concern differentiating an integral in one

variable, y, which also involves another variable x, either in

the integrand, or in the limits, or both:

∫

5

0

(x2y+4) dy or
∫

x

0

(y+4) dy or
∫

x

0

(xy+4) dy.

To differentiate the first integral with respect to x, it can be

shown that in most cases we can differentiate with respect to

x inside the integral:

d

dx

(

∫

5

0

(x2y + 4) dy

)

=
∫

5

0

2xy dy.

Differentiating the second integral with respect to x uses the

Fundamental Theorem of Calculus:

d

dx ∫

x

0

(y + 4) dy = x + 4.

Differentiating the third integral involves the chain rule, as

shown in Problem 59. Assume that the function F is contin-

uously differentiable and b is constant throughout.

57. Let f (x) = ∫
b

0
F (x, y) dy. Find f ′(x).

58. Let f (x) = ∫
x

0
F (b, y) dy. Find f ′(x).

59. Let f (x) = ∫
x

0
F (x, y) dy. Use Problem 57 and Prob-

lem 58 to find f ′(x) by the following steps:

(a) Let G(u, w) = ∫
w

0
F (u, y) dy. Find Gu(u, w) and

Gw(u, w).

(b) Use part (a) and the chain rule applied to G(x, x) =

f (x) to show:

f ′(x) =
∫

x

0

Fx(x, y) dy + F (x, x).
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Exercises and Problems for Section 14.7

Additional Problems (online only)

71. Give an explanation of why you might expect

fxy(a, b) = fyx(a, b) using the following steps.

(a) Write the definition of fx(a, b).

(b) Write a definition of fxy(a, b) as (fx)y.

(c) Substitute for fx in the definition of fxy.

(d) Write an expression for fyx similar to the one for

fxy you obtained in part (c).

(e) Compare your answers to parts (c) and (d). What

do you have to assume to conclude that fxy and fyx

are equal?

72. Suppose that f (x, y) has continuous partial derivatives

fx and fy. Using the Fundamental Theorem of Calculus

to evaluate the integrals, show that

f (a, b) = f (0, 0) +
∫

a

t=0

fx(t, 0)dt + ∫

b

t=0

fy(a, t)dt.

73. Suppose that f (x, y) has continuous partial derivatives

and that f (0, 0) = 0 and |

|

fx(x, y)
|

|

≤ A and
|

|

|

fy(x, y)
|

|

|

≤

B for all points (x, y) in the plane. Use Problem 72 to

show that |f (x, y)| ≤ A |x| + B |y|.

This inequality shows how bounds on the partial

derivatives of f limit the growth of f .
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Exercises and Problems for Section 15.3

Additional Problems (online only)

76. Let f (x, y) = x2 + 2y2.

(a) Write down the Lagrange equations that must be

solved to find the maximum of f on the circle of

radius 1 centered at (10, 10).

(b) There are two solutions of the equations in part (a):

(x, y, �) = (9.5364, 9.1139,−20.5718)

(x, y, �) = (10.4316, 10.9021, 24.1710).

One solution corresponds to a constrained maxi-

mum of f . Determine which and give the value of

f at that point.

(c) Find the point one unit away from (10, 10) in the di-

rection of grad f (10, 10). Evaluate f at that point.

(d) Compare your answers to parts (b) and (c).

77. This problem illustrates the Envelope Theorem, which

relates the maxima of z = f (x, y) subject to the con-

straint x = c to the contour diagram in Figure 15.1 and

the cross-sections in Figure 15.2.

(a) For each value c, there is a maximum value of

f (x, y) with x = c. On Figure 15.1, sketch the

curve that goes through the points where the max-

ima are achieved.

(b) On Figure 15.2, sketch the curve going through the

points corresponding to the same maximum values

in part (a). This curve is called the envelope of the

cross-sections.

(c) Show that the Lagrange multiplier � for this con-

strained optimization problem is the slope of the

envelope curve in part (b).

1 2 3 4

1

2

3

4

8

11

14

17

5

2

x

y

Figure 15.1: Contour diagram of f

1 2 3 4
0

5

10

15

20

y = 1

y = 2

y = 3

y = 4

y = 5

x

z

Figure 15.2: Cross-sections of f
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Exercises and Problems for Section 16.1

Additional Problems (online only)

35. Figure 16.1 shows the temperature, in ◦C, in a 5 meter

by 5 meter heated room. Using Riemann sums, estimate

the average temperature in the room.

1 2 3 4 5

1

2

3

4

5

29

28

27

26

25

24

23

22
21

x (m)

y (m)

Figure 16.1

Exercises and Problems for Section 16.2

Additional Problems (online only)

89. Find the volume of the solid between the planes z =

3x+ 2y+ 1 and z = x+ y, and above the triangle with

vertices (1, 0, 0), (2, 2, 0), and (0, 1, 0) in the xy-plane.

See Figure 16.2.

x

y

z
z = 3x + 2y + 1

z = x + y

(2, 2, 0)
(0, 1, 0)

Figure 16.2

90. Show that for a right triangle the average distance from

any point in the triangle to one of the legs is one-third

the length of the other leg. (The legs of a right triangle

are the two sides that are not the hypotenuse.)

91. A rectangular plate of sides a and b is subjected to a

normal force (that is, perpendicular to the plate). The

pressure, p, at any point on the plate is proportional to

the square of the distance of that point from one corner.

Find the total force on the plate. [Note that pressure is

force per unit area.]

92. Find the area of the crescent-moon shape with circular

arcs as edges and the dimensions shown in Figure 16.3.

✻

❄

8′′

✲✛2′′ ✲✛2′′

Figure 16.3
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Exercises and Problems for Section 16.3

Additional Problems (online only)

91. Find the average value of the sum of the squares of three

numbers x, y, z, where each number is between 0 and

2.

92. Let E be the region in the first octant bounded by the

plane x + y = 2 and the parabolic cylinder z = 4 − x2.

Write a sum of integrals equivalent to the triple integral

∫
E
f (x, y, z) dV in the order dx dz dy.

93. Find the volume between the plane x + y + z = 1 and

the xy-plane, for x + y ≤ 2, x ≥ 0, y ≥ 0.

94. A solid shaped like a wedge of cheese has as its base

the xy-plane, bounded by the x-axis, the line y = x and

the line x + y = 1. Its sides are vertical, and its top is

the plane x+ y+ z = 2. At any point, the density of the

solid is four times the distance from the xy-plane.

(a) Express the mass of the region in terms of triple

integrals.

(b) Find the mass.

95. Let E be the region in the first octant bounded be-

tween the plane x + 2y + z = 4, the parabolic cylinder

x = 2y2, and the coordinate planes (see Figure 16.4).

For each of the following orders of integration, write

down an iterated integral equivalent to the triple inte-

gral ∫
E
f (x, y, z) dV .

(a) dz dy dx

(b) dy dz dx

x

y

z

Figure 16.4

Problems 96–98 concern a rotating solid body and its mo-

ment of inertia about an axis; this moment relates angular

acceleration to torque (an analogue of force). For a body of

constant density and mass m occupying a region W of vol-

ume V , the moments of inertia about the coordinate axes are

Ix =
m

V ∫
W

(y2 + z2) dV Iy =
m

V ∫
W

(x2 + z2) dV

Iz =
m

V ∫
W

(x2 + y2) dV .

96. Find the moment of inertia about the z-axis of the rect-

angular solid of mass m given by 0 ≤ x ≤ 1, 0 ≤ y ≤ 2,

0 ≤ z ≤ 3.

97. Find the moment of inertia about the x-axis of the rect-

angular solid −a ≤ x ≤ a, −b ≤ y ≤ b and −c ≤ z ≤ c

of mass m.

98. Let a, b, and c denote the moments of inertia of a homo-

geneous solid object about the x, y and z-axes respec-

tively. Explain why a + b > c.

Exercises and Problems for Section 16.4

Additional Problems (online only)

56. Polar coordinates can be centered at different points.

For example, polar coordinates r, � centered at (1, 2)

are given by

x = 1 + r cos �, y = 2 + r sin �, dA = r dr d�.

(a) Express ∫
R
(x− 1)2 + (y− 2)2 dA as an iterated in-

tegral in polar coordinates centered at (1, 2), where

R is the circle of radius 3 centered at (1, 2).

(b) Evaluate the integral.

57. Two circular disks, each of radius 1, have centers which

are 1 unit apart. Write, but do not evaluate, a double in-

tegral, including limits of integration, giving the area of

overlap of the disks in

(a) Cartesian coordinates (b) Polar coordinates
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58. Find the area inside the curve r = 2+3 cos � and outside the circle r = 2.

Exercises and Problems for Section 16.5

Additional Problems (online only)

72. Use appropriate coordinates to find the average distance

to the origin for points in the ice cream cone region

bounded by the hemisphere z =
√

8 − x2 − y2 and the

cone z =
√

x2 + y2. [Hint: The volume of this region

is computed in Problem 32 of Section 16.4.]

73. A region W consists of the points above the xy-plane

and outside the sphere of radius 1 centered at the origin

and within the sphere of radius 3 centered at (0, 0,−1).

Write an expression for the volume of W . Use cylindri-

cal coordinates and include limits of integration.

74. Compute the force of gravity exerted by a solid cylinder

of radius R, height H , and constant density � on a unit

mass at the center of the base of the cylinder.

For Problems 75–76, use the definition of moment of inertia

given on page 3.

75. The moment of inertia of a solid homogeneous ball B

of mass 1 and radius a centered at the origin is the same

about any of the coordinate axes (due to the symmetry

of the ball). It is easier to evaluate the sum of the three

integrals involved in computing the moment of inertia

about each of the axes than to compute them individu-

ally. Find the sum of the moments of inertia about the

x, y and z-axes and thus find the individual moments of

inertia.

76. Find the moment of inertia about the z-axis of the solid

“fat ice cream cone” given in spherical coordinates by

0 ≤ � ≤ a, 0 ≤ � ≤
�

3
and 0 ≤ � ≤ 2�. Assume that

the solid is homogeneous with mass m.

Problems 77–78 deal with the energy stored in an electric

field. If a region of space W contains an electric field whose

magnitude at a point (x, y, z) is E(x, y, z), then

Energy stored by field =
1

2 ∫
W

�E2 dV ,

where � is a property of the material called the permittivity.

77. The region between two concentric spheres, with radii

a < b, contains an electric field with magnitude E =

q∕(4���2), where � is the distance from the center of

the spheres and q is the charge on the inner sphere. As-

suming the permittivity, �, is constant, find the total en-

ergy stored in the region between the two spheres.

78. Figure 16.5 shows a coaxial cable consisting of two

cylindrical conductors centered on the same axis, of

radii a < b. The electric field between the conductors

has magnitude E = q∕(2��r), where r is the distance

from the axis and q is the charge per unit length on the

cable. The permittivity of the material between the con-

ductors is constant.1 Show that the stored energy per

unit length is proportional to ln(b∕a).

✛

✛

2a
✛

✛

2b

Figure 16.5

79. Figure 16.6 shows an alternative notation for spherical

coordinates, used often in electrical engineering. Write

the volume element dV in this coordinate system.

x

y

z

�

�
r

P = (x, y, z)

Figure 16.6

1See C. R. Paul and S. A. Nasar, Introduction to Electromagnetic Fields, 2nd ed. (New York: McGraw-Hill, 1987).
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Exercises and Problems for Section 17.1

Additional Problems (online only)

113. Assume that the paraboloid z = x2 + y2 and the plane

z = ax + by + c intersect in a curve in 3-space.

(a) Show that the shadow of the intersection in the xy-

plane is a circle and find its center and radius.

(b) Parameterize the circle in the xy-plane.

(c) Parameterize the intersection of the paraboloid and

the plane in 3-space.

114. Let P = (2,−2, 0) and Q = (1, 1,
√

6).

(a) Find the distances from P and Q to the origin, O.

(b) Show that the vectors u⃗ = ⃖⃖⃖⃖⃖⃗OP and v⃗ = ⃖⃖⃖⃖⃖⃗OQ are

perpendicular.

(c) Find parametric equations for the circle centered at

the origin that contains the points P and Q.

115. The concentration (in micrograms/m3) of a pollutant at

the point (x, y, z) is given, for x, y, z in meters, by

c(x, y, z) = e−(x
2+y2+z2).

(a) A particle at point (0, 1, 0) moves in the direction

of the point (−2, 2,−2). What is the rate at which

the concentration is changing with respect to dis-

tance at the moment the particle leaves the point

(0, 1, 0)?

(b) Now suppose the particle is moving along the path,

with time, t, in seconds, given by

x = 1−t2, y = t, z = 1−t2 for −∞ < t < ∞.

When is the concentration a maximum?

116. The plane x+3y−2z = 6 is colored blue and the plane

2x + y + z = 3 is colored yellow. The planes intersect

in a line, which is colored green. You are at the point

P = (1,−2,−1).

(a) You look in the direction v⃗ = i⃗ +2j⃗ + k⃗ . Do you

see the blue plane or the yellow plane?

(b) In what direction(s) are you looking directly at the

green line?

(c) In what direction(s) should you look to see the yel-

low plane? The blue plane?

Exercises and Problems for Section 17.2

Additional Problems (online only)

68. The position of a particle at time t is given by r⃗ (t). Let

r = ‖r⃗ ‖ and a⃗ be a constant vector. Differentiate:

(a) r⃗ ⋅ r⃗ (b) a⃗ × r⃗ (c) r3 r⃗

69. The function f (x, y, z) is defined and smooth at every

point in 3-space and grad f (1, 7, 2) = i⃗ − (
√

6)j⃗ + k⃗ .

The curve C is r⃗ = (t + 1)2 i⃗ + 7 cos tj⃗ + 2etk⃗ .

(a) Find an equation of the tangent plane to the level

surface of f at the point (1, 7, 2).

(b) Find the angle between the normal to the level

surface of f and the tangent to the curve C at

(1, 7, 2). (Note: There are two possible angles; give

the smaller one. Your answer should be in radians.)

(c) With x, y, z in centimeters, let f be the concentra-

tion of a pollutant in parts per million (ppm) at the

point (x, y, z). A particle moves along the curve C

with the given parameterization and t in seconds.

Find how fast the concentration is changing at the

time t = 0. Give units with your answer.

70. A point particle P is acted on by a force, F⃗ , which is

directed toward a fixed point O; this is called a central

force. Let r⃗ (t) be the position of the particle with re-

spect to O and let v⃗ (t) be its velocity. Use Newton’s

second law F⃗ = ma⃗ , where m is mass and a⃗ is accel-

eration, to show that r⃗ (t) × v⃗ (t) = c⃗ , a constant vector.

Explain why this tells us that the particle always moves

in the same plane.

71. In this problem we justify the formula for the length of a

curve given on page 901. Suppose the curve C is given

by smooth parametric equations x = x(t), y = y(t),

z = z(t) for a ≤ t ≤ b. By dividing the parameter inter-

val a ≤ t ≤ b at points t1,… , tn−1 into small segments

of length Δt = ti+1 − ti, we get a corresponding divi-

sion of the curve C into small pieces. See Figure 17.1,

where the points Pi = (x(ti), y(ti), z(ti)) on the curve

C correspond to parameter values t = ti. Let Ci be the

portion of the curve C between Pi and Pi+1.

(a) Use local linearity to show that

Length of Ci ≈

√

x′(ti)
2 + y′(ti)

2 + z′(ti)
2 Δt.

(b) Use part (a) and a Riemann sum to explain why

Length of C =
∫

b

a

√

x′(t)2 + y′(t)2 + z′(t)2 dt.
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P0

P1

P2
Pi

Pi+1

Pn

C

a = t0 t1 t2 ti ti+1 tn = b

Δt

Figure 17.1: A subdivision of the parameter interval and

the corresponding subdivision of the curve C
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In Problems 75–78 we explore the notion of the electric po-

tential of an electric field E⃗ . We chose a point P0 to be the

ground, that is, the potential at P0 is zero. Then the potential

�(P ) at a point P is defined to be the work done moving a

particle of charge 1 coulomb from P0 to P . (The potential

does not depend on the path chosen.) Q,E are constants.

75. Write a line integral for �(P ), using the fact that the

electric field acts on a particle with force E⃗ .

76. Let E⃗ =

(

Q

4��

)

r⃗

‖r⃗ ‖
3

, and let P0 be a point a units

from the origin. Describe the set of points with zero po-

tential.

77. An equipotential surface is a surface on which the po-

tential is constant. Describe the equipotential surfaces

of E⃗ =
Q

4��

r⃗

‖r⃗ ‖
3

, where the ground P0 is chosen to

be at distance a from the origin.

78. Let E⃗ =
Q

4��

r⃗

‖r⃗ ‖
3

and let the ground P0 be chosen to

be a units from the origin.

(a) Find a formula for �.

(b) Engineers often choose the ground point to be “at

infinity.” Why?

Exercises and Problems for Section 18.2

Additional Problems (online only)

In Example 6 on page 936 two parameterizations, A(t), and

D(t), are used to convert a line integral into a definite inte-

gral. In Problem 37, two other parameterizations, B(t) and

C(t), are used on the same line integral. In Problems 59–61

show that two definite integrals corresponding to two of the

given parameterizations are equal by finding a substitution

which converts one integral to the other. This gives us an-

other way of seeing why changing the parameterization of

the curve does not change the value of the line integral.

59. A(t) and B(t) 60. A(t) and C(t)

61. A(t) and D(t)

62. Suppose C is the line segment from the point (0, 0) to

the point (4, 12) and F⃗ = xyi⃗ + xj⃗ .

(a) Is ∫
C
F⃗ ⋅ dr⃗ greater than, less than, or equal to

zero? Give a geometric explanation.

(b) A parameterization of C is (x(t), y(t)) = (t, 3t) for

0 ≤ t ≤ 4. Use this to compute ∫
C
F⃗ ⋅ dr⃗ .

(c) Suppose a particle leaves the point (0, 0), moves

along the line toward the point (4, 12), stops before

reaching it and backs up, stops again and reverses

direction, then completes its journey to the end-

point. All travel takes place along the line segment

joining the point (0, 0) to the point (4, 12). If we call

this path C ′, explain why ∫
C′ F⃗ ⋅ dr⃗ = ∫

C
F⃗ ⋅ dr⃗ .

(d) A parameterization for a path like C ′ is given, for

0 ≤ t ≤ 4, by

(x(t), y(t)) =

(

t3 − 6t2 + 11t

3
, t3 − 6t2 + 11t

)

.

Check that this parameterization begins at the point

(0, 0) and ends at the point (4, 12). Check also that

all points of C ′ lie on the line segment connecting

the point (0, 0) to the point (4, 12). What are the

values of t at which the particle changes direction?

(e) Find ∫
C′ F⃗ ⋅ dr⃗ using the parameterization in

part (d). Do you get the same answer as in part (b)?

Exercises and Problems for Section 18.3

Additional Problems (online only)

81. Suppose F⃗ (x, y) − G⃗ (x, y) is parallel to gradℎ(x, y) at

every point, and that C is an oriented path from P to Q

lying entirely on a contour of ℎ.

(a) Show that ∫
C
F⃗ ⋅ dr⃗ = ∫

C
G⃗ ⋅ dr⃗ .

(b) If G⃗ = grad�, show that ∫
C
F⃗ ⋅ dr⃗ = �(Q) −

�(P ). This result can be useful when F⃗ is not a

gradient field.

82. Show that if the partial derivatives of f (x, y) are con-

stant, then f (x, y) is a linear function.

83. Show that every 1-variable differential form a(x) dx

has a potential function. (This is a major difference be-

tween 1-variable and 2-variable calculus.) Find a poten-

tial function if a(x) = 1 + x + x2.

In Problems 84–87, let F⃗ = yi⃗ + 2xj⃗ .

(a) Show that F⃗ − grad� is parallel to gradℎ.

(b) Use � and the Fundamental Theorem of Calculus for
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Line Integrals to evaluate ∫
C
F⃗ ⋅ dr⃗ , where C is the

oriented path on a contour of ℎ from P to Q.

84. � = xy, ℎ = y, P = (3, 10), Q = (8, 10)

85. � = 2xy, ℎ = x, P = (3, 5), Q = (3, 10)

86. � = 2x3∕3 + xy, ℎ = y − x2, P = (0, 4), Q = (6, 40)

87. � = x2∕2 + 3xy + y2, ℎ = x + y, P = (10, 30),

Q = (20, 20)

88. In this problem, we see how the Fundamental Theorem

for Line Integrals can be derived from the Fundamental

Theorem for ordinary definite integrals. Suppose that

(x(t), y(t)), for a ≤ t ≤ b, is a parameterization of C ,

with endpoints P = (x(a), y(a)) and Q = (x(b), y(b)).

The values of f along C are given by the single variable

function ℎ(t) = f (x(t), y(t)).

(a) Use the chain rule to show that

ℎ′(t) = fx(x(t), y(t))x
′(t) + fy(x(t), y(t))y

′(t).

(b) Use the Fundamental Theorem of Calculus applied

to ℎ(t) to show

∫
C

grad f ⋅ dr⃗ = f (Q) − f (P ).

89. Let F⃗ be a path-independent vector field. In physics,

the potential function � is usually required to satisfy

the equation F⃗ = −∇�. This problem illustrates the

significance of the negative sign.1

(a) Let the xy-plane represent part of the earth’s sur-

face with the z-axis pointing upward. (The scale is

small enough that a flat plane is a good approxima-

tion to the earth’s surface.) Let r⃗ = xi⃗ + yj⃗ + zk⃗ ,

with z ≥ 0 and x, y, z in meters, be the position

vector of a rock of unit mass. The gravitational po-

tential energy function for the rock is �(x, y, z) =

gz, where g ≈ 9.8 m/sec2. Describe in words the

level surfaces of �. Does the potential energy in-

crease or decrease with height above the earth?

(b) What is the relation between the gravitational vec-

tor, F⃗ , and the vector ∇�? Explain the significance

of the negative sign in the equation F⃗ = −∇�.

90. An ideal electric dipole consists of two equal and oppo-

site charges separated by a small distance and is repre-

sented by a dipole moment vector p⃗ . The electric field

D⃗ , at the point with position vector r⃗ , due to an ideal

electric dipole located at the origin is given by

D⃗ (r⃗ ) = 3
(r⃗ ⋅ p⃗ )r⃗

||r⃗ ||5
−

p⃗

||r⃗ ||3
.

(a) Check that ' is a potential function for D⃗ , in the

sense that D⃗ = −grad', where

'(r⃗ ) =
p⃗ ⋅ r⃗

||r⃗ ||3
.

(b) Is D⃗ a path-independent vector field?

1Adapted from V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd edition, Graduate Texts in Mathematics,

Springer, 1989. Potential energy is also discussed in Project 1 of this chapter.
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Exercises and Problems for Section 19.1

Additional Problems (online only)

87. An ideal electric dipole in electrostatics is characterized

by its position in 3-space and its dipole moment vector

p⃗ . The electric field D⃗ , at the point with position vector

r⃗ , of an ideal electric dipole located at the origin with

dipole moment p⃗ is given by

D⃗ (r⃗ ) = 3
(r⃗ ⋅ p⃗ )r⃗

‖r⃗ ‖5
−

p⃗

‖r⃗ ‖3
.

Assume p⃗ = pk⃗ , so the dipole points in the k⃗ direction

and has magnitude p.

(a) What is the flux of D⃗ through a sphere S with cen-

ter at the origin and radius a > 0?

(b) The field D⃗ is a useful approximation to the elec-

tric field E⃗ produced by two “equal and opposite”

charges, q at r⃗ 2 and −q at r⃗ 1, where the distance

‖r⃗ 2− r⃗ 1‖ is small. The dipole moment of this con-

figuration of charges is defined to be q(r⃗ 2 − r⃗ 1).

Gauss’s Law in electrostatics says that the flux of

E⃗ through S is equal to 4� times the total charge

enclosed by S. What is the flux of E⃗ through S if

the charges at r⃗ 1 and r⃗ 2 are enclosed by S? How

does this compare with your answer for the flux of

D⃗ through S if p⃗ = q(r⃗ 2 − r⃗ 1)?

Exercises and Problems for Section 19.3

Additional Problems (online only)

63. Let F⃗ (x, y) = u(x, y)i⃗ + v(x, y)j⃗ be a 2-dimensional

vector field. Let F (x, y) be the magnitude of F⃗ and let

�(x, y) be the angle of F⃗ with the positive x-axis at the

point (x, y), so that u = F cos � and v = F sin �. Let T⃗

be the unit vector in the direction of F⃗ , and let N⃗ be

the unit vector in the direction of k⃗ × F⃗ , perpendicular

to F⃗ . Show that

div F⃗ = F�
N⃗

+ F
T⃗
.

This problem shows that the divergence of the vector

field F⃗ is the sum of two terms. The first term, F�
N⃗

,

is due to changes in the direction of F⃗ perpendicular

to the flow lines, so it reflects the extent to which flow

lines of F⃗ fail to be parallel. The second term, F
T⃗

, is

due to changes in the magnitude of F⃗ along flow lines

of F⃗ .

64. In Problem 69 of Section 19.1, it was shown that the rate

of heat loss from a volume V in a region of non-uniform

temperature equals k ∫
S
(grad T )⋅dA⃗ , where k is a con-

stant, S is the surface bounding V , and T (x, y, z) is the

temperature at the point (x, y, z) in space. By taking the

limit as V contracts to a point, show that, at that point,

)T

)t
= B div grad T

where B is a constant with respect to x, y, z, but may

depend on time, t.
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Exercises and Problems for Section 20.1

Additional Problems (online only)

48. Let F⃗ be a smooth vector field and let u⃗ and v⃗ be con-

stant vectors. Using the definition of curl F⃗ in Carte-

sian coordinates, show that

grad(F⃗ ⋅ v⃗ ) ⋅ u⃗ − grad(F⃗ ⋅ u⃗ ) ⋅ v⃗ = (curl F⃗ ) ⋅ u⃗ × v⃗ .

49. Let T⃗ = ai⃗ + bj⃗ be a fixed unit vector, and let F⃗ =

F (x, y)T⃗ be a vector field everywhere parallel to T⃗ ,

but of varying magnitude F . Show that curl F⃗ equals

k⃗ times the directional derivative of F in the direction

of F⃗ × k⃗ . Do this in two ways:

(a) Graphically, using line integrals

(b) Algebraically

(Note: The direction of F⃗ × k⃗ is obtained by rotating

F⃗ through 90◦ clockwise as viewed from above the xy-

plane.)

50. Let r = (x2 + y2)1∕2. Figure 20.1 shows the vector field

rA(−yi⃗ +xj⃗ ) for r ≠ 0 and A = −1,−2, and −3. The

vector fields are shown in the xy-plane; they have no

z-component and are independent of z.

(a) Show that curl(rA(−yi⃗ + xj⃗ )) = (2 + A)rAk⃗ for

any constant A.

(b) Using your answer to part (a), find the direction

of the curl of the three vector fields for A =

−1,−2,−3.

(c) For each value of A, what (if anything) does your

answer to part (b) tell you about the sign of the

circulation around a small circle oriented counter-

clockwise when viewed from above, and centered

at (1, 1, 1)? Centered at (0, 0, 0)?

A = −1

x

y

A = −2

x

y

A = −3

x

y

Figure 20.1: The vector field rA(−yi⃗ + xj⃗ ) for three

values of A

Exercises and Problems for Section 20.3

Additional Problems (online only)

39. For constant p, consider the vector field E⃗ =
r⃗

‖r⃗ ‖p
.

(a) Find curl E⃗ .

(b) Find the domain of E⃗ .

(c) For which values of p does E⃗ satisfy the curl test?

For those values of p, find a potential function for

E⃗ .

40. The magnetic field, B⃗ , due to a magnetic dipole with

moment �⃗ satisfies div B⃗ = 0 and is given by

B⃗ = −
�⃗

‖r⃗ ‖3
+

3(�⃗ ⋅ r⃗ )r⃗

‖r⃗ ‖5
, r⃗ ≠ 0⃗ .

(a) Does B⃗ satisfy the divergence test?

(b) Show that A⃗ =
�⃗ × r⃗

‖r⃗ ‖3
is a vector potential for B⃗ .

[Hint: Use Problem 32 of Section 20.1. The iden-

tities in Example 3 on page 1003, Problem 84 of

Section 14.5, and Problem 80 of 13.4 may also be

useful.]

(c) Does your answer to part (a) contradict your an-

swer to part (b)? Explain.



Chapter 12

REVIEW MATERIAL
AND PROJECTS

CONTENTS



2 Chapter 12 REVIEW MATERIAL AND PROJECTS

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• 3-Space

Cartesian coordinates, x-, y- and z-axes, xy-, xz- and

yz-planes, distance formula.

• Functions of Two Variables

Represented by: tables, graphs, formulas, cross-

sections (one variable fixed), contours (function value

fixed); cylinders (one variable missing).

• Linear Functions

Recognizing linear functions from tables, graphs, con-

tour diagrams, formulas. Converting from one repre-

sentation to another.

• Functions of Three Variables

Sketching level surfaces (function value fixed) in 3-

space; graph of z = f (x, y) is same as level surface

g(x, y, z) = f (x, y) − z = 0.

• Continuity

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER 12

EXERCISES

1. Which of the points A = (23, 92, 48), B = (−60, 0, 0),

C = (60, 1,−92) is closest to the yz-plane? Which lies

on the xz-plane? Which is farthest from the xy-plane?

2. You are at the point (−1,−3,−3), standing upright and

facing the yz-plane. You walk 2 units forward, turn left,

and walk for another 2 units. What is your final posi-

tion? From the point of view of an observer looking at

the coordinate system in Figure 12.2 on page 654, are

you in front of or behind the yz-plane? To the left or

to the right of the xz-plane? Above or below the xy-

plane?

3. On a set of x, y, and z axes oriented as in Figure 12.5 on

page 654, draw a straight line through the origin, lying

in the xz-plane and such that if you move along the line

with your x-coordinate increasing, your z-coordinate is

decreasing.

In Exercises 4–6, determine if z is a function of x and y. If

so, find a formula for the function.

4. 6x − 4y + 2z = 10

5. x2 + y2 + z2 = 100

6. 3x2 − 5y2 + 5z = 10 + x + y

7. Figure 12.1 shows the parabolas z = f (x, b) for

b = −2,−1, 0, 1, 2. Which of the graphs of z = f (x, y)

in Figure 12.2 best fits this information?

z

x

✲f (x, 2) ✛ f (x, 1)

f (x, 0)

✛ f (x,−1)✲f (x,−2)

Figure 12.1

Figure 12.2

8. Match the pairs of functions (a)–(d) with the contour

diagrams (I)–(IV). In each case, which contours repre-

sent f and which represent g? (The x- and y-scales are

equal.)

(a) f (x, y) = x + y, g(x, y) = x − y

(b) f (x, y) = 2x + 3y, g(x, y) = 2x − 3y

(c) f (x, y) = x2 − y, g(x, y) = 2y + ln |x|

(d) f (x, y) = x2 − y2, g(x, y) = xy
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x

y(I)

x

y(II)

x

y(III)

x

y(IV)

9. Match the contour diagrams (a)–(d) with the surfaces

(I)–(IV). Give reasons for your choice.

1

3

5

7

x

y(a)

−1

−9

−25

−49

x

y(b)

−1

−3

−5

−7

x

y(c)

1

9

25

49

x

y(d)

x

y

z(I)

x
y

z(II)

x

y

z(III)

x
y

z(IV)

In Exercises 10–13, make a contour plot for the function in

the region −2 < x < 2 and−2 < y < 2. What is the equation

and the shape of the contours?

10. z = 3x − 5y + 1 11. z = sin y

12. z = 2x2 + y2 13. z = e−2x
2−y2

14. Describe the set of points whose x coordinate is 2 and

whose y coordinate is 1.

15. Find the equation of the sphere of radius 5 centered at

(1, 2, 3).

16. Find the equation of the plane through the points

(0, 0, 2), (0, 3, 0), (5, 0, 0).

17. Find the center and radius of the sphere with equation

x2 + 4x + y2 − 6y + z2 + 12z = 0.

Which of the contour diagrams in Exercises 18–19 could

represent linear functions?

18.

16
10 4

2

0

x

y

19.

−12

−8

−4

0

4

8

12

16

20

24

x

y

20. (a) Complete the table with values of a linear function

f (x, y).

(b) Find a formula for f (x, y).

x

y

2.5 3.0 3.50

−1 6 8

1 1 2

3 −6
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21. Find a formula for a function f (x, y, z) whose level sur-

faces look like those in Figure 12.3.

x y

z

Figure 12.3

In Exercises 22–25, represent the surface as the graph

of a function, f (x, y), and by level surfaces of the form

g(x, y, z) = c. (There are many possible answers.)

22. Paraboloid obtained by shifting z = x2 + y2 vertically

5 units

23. Plane with intercepts x = 2, y = 3, z = 4.

24. Upper half of unit sphere centered at the origin.

25. Lower half of sphere of radius 2 centered at (3, 0, 0).

26. Describe in words the level surfaces of the function

g(x, y, z) = cos(x + y + z).

Use the catalog on page 691 to identify the surfaces in Ex-

ercises 27–28.

27. x2 + z2 = 1 28. −x2 + y2 − z2 = 0

29. (a) What features of the contour diagram of g(x, y) in

Figure 12.4 suggest that g is linear?

(b) Assuming g is linear, find a formula for g(x, y).

−100 100

−100

100

−25000

−20000

−15000

−10000

−5000

0

25000

20000

15000
10000

5000
x

y

Figure 12.4

PROBLEMS

30. Use a computer or calculator to draw the graph of the

vibrating guitar string function:

g(x, t) = cos t sin 2x, 0 ≤ x ≤ �, 0 ≤ t ≤ 2�.

Relate the shape of the graph to the cross-sections with

t fixed and those with x fixed.

31. Consider the Cobb-Douglas production function P =

f (L,K) = 1.01L0.75K0.25. What is the effect on pro-

duction of doubling both labor and capital?

32. (a) Sketch level curves of f (x, y) =
√

x2 + y2 + x for

f = 1, 2, 3.

(b) For what values of c can level curves f = c be

drawn?

33. Values of f (x, y) =
1

2
(x + y − 2)(x + y − 1) + y are in

Table 12.1.

(a) Find a pattern in the table. Make a conjecture and

use it to complete Table 12.1 without using the for-

mula. Check by using the formula for f .

(b) Using the formula, check that the pattern holds for

all x ≥ 1 and y ≥ 1.

Table 12.1

x

y

1 2 3 4 5 6

1 1 3 6 10 15 21

2 2 5 9 14 20

3 4 8 13 19

4 7 12 18

5 11 17

6 16

34. Show that the function f does not have a limit at (0, 0)

by examining the limits of f as (x, y) → (0, 0) along

the line y = x and along the parabola y = x2:

f (x, y) =
x2y

x4 + y2
, (x, y) ≠ (0, 0).

35. By approaching the origin along the positive x-axis and

the positive y-axis, show that the following limit does

not exist:

lim
(x,y)→(0,0)

x + y2

2x + y
.
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36. Explain why the following function is not continuous

along the line y = 0:

f (x, y) =

{

1 − x, y ≥ 0,

−2, y < 0.

37. A college admissions office uses the following equation

to predict the grade point average of an incoming stu-

dent:

z = 0.003x + 0.8y − 4,

where z is the predicted college GPA on a scale of 0 to

4.3, and x is the sum of the student’s SAT Math and SAT

Verbal on a scale of 400 to 1600, and y is the student’s

high school GPA on a scale of 0 to 4.3. The college ad-

mits students whose predicted GPA is at least 2.3.

(a) Will a student with SATs of 1050 and high school

GPA of 3.0 be admitted?

(b) Will every student with SATs of 1600 be admitted?

(c) Will every student with a high school GPA of 4.3

be admitted?

(d) Draw a contour diagram for the predicted GPA z

with 400 ≤ x ≤ 1600 and 0 ≤ y ≤ 4.3. Shade

the points corresponding to students who will be

admitted.

(e) Which is more important, an extra 100 points on

the SAT or an extra 0.5 of high school GPA?

38. By setting one variable constant, find a plane that inter-

sects the graph of z = (x2 + 1) sin y + xy2 in a:

(a) Parabola

(b) Straight line

(c) Sine curve

39. The temperature T (in ◦C) at any point in the region

−10 ≤ x ≤ 10, −10 ≤ y ≤ 10 is given by the function

T (x, y) = 100 − x2 − y2.

(a) Sketch isothermal curves (curves of constant tem-

perature) for T = 100◦C, T = 75◦C, T = 50◦C,

T = 25◦C, and T = 0◦C.

(b) A heat-seeking bug is put down at a point on the

xy-plane. In which direction should it move to in-

crease its temperature fastest? How is that direction

related to the level curve through that point?

40. Find a linear function whose graph is the plane that in-

tersects the xy-plane along the line y = 2x + 2 and

contains the point (1, 2, 2).

41. (a) Sketch the level curves of z = cos
√

x2 + y2.

(b) Sketch a cross-section through the surface z =

cos
√

x2 + y2 in the plane containing the x- and z-

axes. Put units on your axes.

(c) Sketch the cross-section through the surface z =

cos
√

x2 + y2 in the plane containing the z-axis

and the line y = x in the xy-plane.

Problems 42–46 concern a vibrating guitar string. Snapshots

of the guitar string at millisecond intervals are in Figure 12.5.

�

−1

−0.54

0.54

1

x

y

✠

f (x, 0)

✠

f (x, 1)

Figure 12.5: A vibrating guitar string:

f (x, t) = cos t sinx for four t values.

The guitar string is stretched tight along the x-axis from

x = 0 to x = �. Each point on the string has an x-value,

0 ≤ x ≤ �. As the string vibrates, each point on the

string moves back and forth on either side of the x-axis. Let

y = f (x, t) be the displacement at time t of the point on the

string located x units from the left end. A possible formula

is

y = f (x, t) = cos t sinx, 0 ≤ x ≤ �, t in milliseconds.

42. Use the contour diagram for f (x, t) = cos t sin x in Fig-

ure 12.6 to describe in words the cross-sections of f

with t fixed and the cross-sections of f with x fixed.

Explain what you see in terms of the vibrating string in

Problems 43–46 on page 5.

�

�∕2

�

3�∕2

2�

5�∕2

x

t

0

0
.2
5

0
.5
0

0
.7
5

0

0.250.50
0.75

−
0
.2
5

−
0
.5
0

−
0
.7
5

Figure 12.6

43. Explain what the functions f (x, 0) and f (x, 1) repre-

sent in terms of the vibrating string.

44. Explain what the functions f (0, t) and f (1, t) represent

in terms of the vibrating string.

45. (a) Sketch graphs of y versus x for fixed t values, t = 0,

�∕4, �∕2, 3�∕4, �.

(b) Use your graphs to explain why this function could

represent a vibrating guitar string.

46. Describe the motion of the guitar strings whose dis-

placements are given by the following:

(a) y = g(x, t) = cos 2t sin x

(b) y = ℎ(x, t) = cos t sin 2x
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CAS Challenge Problems

47. Let A = (0, 0, 0) and B = (2, 0, 0).

(a) Find a point C in the xy-plane that is a distance 2

from both A and B.

(b) Find a point D in 3-space that is a distance 2 from

each of A, B, and C .

(c) Describe the figure obtained by joining A, B, C ,

and D with straight lines.

48. Let f (x, y) = 3 + x + 2y.

(a) Find formulas for f (x, f (x, y)), f (x, f (x, f (x, y)))

by hand.

(b) Consider f (x, f (x, f (x, f (x, f (x, f (x, y)))))).

Conjecture a formula for this function and check

your answer with a computer algebra system.

49. A function f (x, y, z) has the property that f (1, 0, 1) =

20, f (1, 1, 1) = 16, and f (1, 1, 2) = 21.

(a) Estimate f (1, 1, 3) and f (1, 2, 1), assuming f is a

linear function of each variable with the other vari-

ables held fixed.

(b) Suppose in fact that f (x, y, z) = ax2+byz+czx3+

d2x−y, for constants a, b, c and d. Which of your

estimates in part (a) do you expect to be exact?

(c) Suppose in addition that f (0, 0, 1) = 6. Find an

exact formula for f by solving for a, b, c, and d.

(d) Use the formula in part (c) to evaluate f (1, 1, 3)

and f (1, 2, 1) exactly. Do the values confirm your

answer to part (b)?

PROJECTS FOR CHAPTER TWELVE

1. Noise Levels at London’s Heathrow Airport

The measure used by the UK government to monitor aircraft noise is called the Loudness Equiv-

alent or Leq.1 This takes the sound energy from each aircraft in decibels (dB) and averages it

over a 16-hour day for several months. Based on the official noise output of each aircraft type

and historical data on aircraft movements and flight paths, the Leq is calculated for a wide area

around Heathrow Airport, London. The results are shown as noise contour maps such as Fig-

ure 12.7, where contours are labeled in dB. The 57 dB contour is important since community

annoyance generally becomes significant at this noise level.

(a) Identify the position of the main runways at Heathrow and estimate the noise level in dB on

the runways.

(b) Planes prefer to take off and land facing into the wind. Using the fact that the wind is gener-

ally from the west, explain the shape of the contours at the western and eastern ends of the

runways.

(c) In which direction does the sound level fall most rapidly? Explain.

(d) The loudness of a sound, B, in decibels is calculated by comparing the physical intensity of

the sound, L, to a base intensity, L0:

B = 10 log10

(

L

L0

)

.

The contour levels are show at 3 dB intervals. How do sound intensity levels (L) compare

on adjacent contours?

(e) If the sound intensity, L, of the next generation of aircraft is 50% of current values, how

will the contour map change?

1ERCD Report 1001, Environmental Research and Consultancy Department, CAA report March 2010.
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Figure 12.7: Contours, in decibels (dB), showing noise levels around Heathrow Airport, London

2. A Heater in a Room

Figure 12.8 shows the contours of the temperature along one wall of a heated room through

one winter day, with time indicated as on a 24-hour clock. The room has a heater located at the

leftmost corner of the wall and one window in the wall. The heater is controlled by a thermostat

about 2 feet from the window.

(a) Where is the window?

(b) When is the window open?

(c) When is the heat on?

(d) Draw graphs of the temperature along the wall of the room at 6 am, at 11 am, at 3 pm (15

hours) and at 5 pm (17 hours).

(e) Draw a graph of the temperature as a function of time at the heater, at the window and

midway between them.

(f) The temperature at the window at 5 pm (17 hours) is less than at 11 am. Why do you think

this might be?

(g) To what temperature do you think the thermostat is set? How do you know?

(h) Where is the thermostat?
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Figure 12.8:

3. Light in a Wave-guide

Figure 12.9 shows the contours of light intensity as a function of location and time in a micro-

scopic wave-guide.
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Figure 12.9

(a) Draw graphs showing intensity as a function of location at times 0, 2, 4, 6, 8, and 10 nanosec-

onds.

(b) If you could create an animation showing how the graph of intensity as a function of location

varies as time passes, what would it look like?

(c) Draw a graph of intensity as a function of time at locations−5, 0, and 5 microns from center

of wave-guide.

(d) Describe what the light beams are doing in this wave-guide.
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CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Vectors

Geometric definition of vector addition, subtraction and

scalar multiplication, resolving into i⃗ , j⃗ , and k⃗ com-

ponents, magnitude of a vector, algebraic properties of

addition and scalar multiplication.

• Dot Product

Geometric and algebraic definition, algebraic proper-

ties, using dot products to find angles and determine

perpendicularity, the equation of a plane with given nor-

mal vector passing through a given point, projection of

a vector in a direction given by a unit vector.

• Cross Product

Geometric and algebraic definition, algebraic proper-

ties, cross product and volume, finding the equation of

a plane through three points.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER 13

EXERCISES

In Exercises 1–2, is the quantity a vector or a scalar? Com-

pute it.

1. u⃗ ⋅ v⃗ , where u⃗ = 2i⃗ − 3j⃗ − 4k⃗ and v⃗ = k⃗ − j⃗

2. u⃗ × v⃗ , where u⃗ = 2i⃗ − 3j⃗ − 4k⃗ and v⃗ = 3i⃗ − j⃗ + k⃗ .

In Exercises 3–4, calculate the quantity.

3. (2i⃗ − 3j⃗ + 4k⃗ ) ⋅ (2i⃗ + 3j⃗ + k⃗ )

4. i⃗ ⋅ (k⃗ × j⃗ )

5. Resolve the vectors in Figure 13.1 into components.

1 2 3 4 5

1

2

3

4

5
a⃗

b⃗

c⃗

d⃗ e⃗

f⃗

x

y

Figure 13.1

6. Resolve vector v⃗ into components if ‖v⃗ ‖ = 8 and the

direction of v⃗ is shown in Figure 13.2.

40◦

v⃗

x

y

Figure 13.2

For Exercises 7–9, perform the indicated operations on the

following vectors:

c⃗ = i⃗ + 6j⃗ , x⃗ = −2i⃗ + 9j⃗ , y⃗ = 4i⃗ − 7j⃗ .

7. 5c⃗ 8. c⃗ + x⃗ + y⃗ 9. ||x⃗ − c⃗ ||

In Exercises 10–19, use v⃗ = 2i⃗ +3j⃗ −k⃗ and w⃗ = i⃗ −j⃗ +2k⃗

to calculate the given quantities.

10. v⃗ + 2w⃗ 11. 3v⃗ − w⃗ − v⃗

12. ||v⃗ + w⃗ || 13. v⃗ ⋅ w⃗

14. v⃗ × w⃗ 15. v⃗ × v⃗

16. (v⃗ ⋅ w⃗ )v⃗ 17. (v⃗ × w⃗ ) ⋅ w⃗

18. (v⃗ × w⃗ ) × w⃗ 19. (v⃗ × w⃗ ) × (v⃗ × w⃗ )

In Exercises 20–21, find a normal vector to the plane.

20. 2x + y − z = 23

21. z − 5(x − 2) = 3(5 − y)

22. Find the equation of the plane through the origin which

is parallel to z = 4x − 3y + 8.
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23. Let v⃗ = 3i⃗ + 2j⃗ − 2k⃗ and w⃗ = 4i⃗ − 3j⃗ + k⃗ . Find

each of the following:

(a) v⃗ ⋅ w⃗

(b) v⃗ × w⃗

(c) A vector of length 5 parallel to vector v⃗

(d) The angle between vectors v⃗ and w⃗

(e) The component of v⃗ in the direction of w⃗

(f) A vector perpendicular to vector v⃗

(g) A vector perpendicular to both vectors v⃗ and w⃗

In Exercises 24–30, find a vector with the given property.

24. Length 10, parallel to 2i⃗ + 3j⃗ − k⃗ .

25. Unit vector perpendicular to i⃗ + j⃗ and i⃗ − j⃗ − k⃗

26. Unit vector in the xy-plane perpendicular to 3i⃗ − 2j⃗ .

27. Normal to 4(x − 1) + 6(z + 3) = 12.

28. Perpendicular to x − y = 1 + z.

29. The vector obtained from 4i⃗ + 3j⃗ by rotating it 90◦

counterclockwise.

30. A non-zero vector perpendicular to v⃗ = 3i⃗ − j⃗ + k⃗

and w⃗ = i⃗ − 2j⃗ + k⃗ .

31. Which of the following vectors are parallel?

u⃗ = 2i⃗ + 4j⃗ − 2k⃗ , p⃗ = i⃗ + j⃗ + k⃗ ,

v⃗ = i⃗ − j⃗ + 3k⃗ , q⃗ = 4i⃗ − 4j⃗ + 12k⃗ ,

w⃗ = −i⃗ − 2j⃗ + k⃗ , r⃗ = i⃗ − j⃗ + k⃗ .

In Exercises 32–37, find the parallel and perpendicular com-

ponents of the force vector F⃗ in the direction of the displace-

ment vector d⃗ . Then find the work W done by F⃗ though the

displacement d⃗ .

32. F⃗ = 2i⃗ + 4j⃗ , d⃗ = i⃗ + 2j⃗

33. F⃗ = −2i⃗ − 4j⃗ , d⃗ = i⃗ + 2j⃗

34. F⃗ = 2i⃗ + 4j⃗ , d⃗ = 2i⃗ − 1j⃗

35. F⃗ = 2i⃗ + 4j⃗ , d⃗ = 3i⃗ − 4j⃗

36. F⃗ = 2i⃗ , d⃗ = i⃗ + j⃗

37. F⃗ = 5i⃗ + 2j⃗ , d⃗ = 3j⃗

38. Find the area of the triangle with vectors a⃗ = i⃗ +2j⃗ −k⃗

and b⃗ = 4i⃗ − 2j⃗ + k⃗ as sides.

PROBLEMS

39. Figure 13.3 shows a rectangular box containing several

vectors. Are the following statements true or false? Ex-

plain.

(a) c⃗ = f⃗ (b) a⃗ = d⃗ (c) a⃗ = −b⃗

(d) g⃗ = f⃗ + a⃗ (e) e⃗ = a⃗ − b⃗ (f) d⃗ = g⃗ − c⃗

d⃗

c⃗ g⃗

e⃗

j⃗

f⃗

b⃗
a⃗

x

y

z

Figure 13.3

40. Shortly after takeoff, a plane is climbing northwest

through still air at an airspeed of 200 km/hr, and rising

at a rate of 300 m/min. Resolve its velocity vector into

components. The x-axis points east, the y-axis points

north, and the z-axis points up.

41. A plane is heading due east and climbing at the rate of

80 km/hr. If its airspeed is 480 km/hr and there is a wind

blowing 100 km/hr to the northeast, what is the ground

speed of the plane?

42. A model rocket is shot into the air at an angle with the

earth of about 60◦. The rocket is going fast initially but

slows down as it reaches its highest point. It picks up

speed again as it falls to earth.

(a) Sketch a graph showing the path of the rocket.

Draw several velocity vectors on your graph.

(b) A second rocket has a parachute that deploys as

it begins its descent. How do the velocity vectors

from part (a) change for this rocket?

43. A car drives clockwise around the track in Figure 13.4,

slowing down at the curves and speeding up along the

straight portions. Sketch velocity vectors at the points

P , Q, and R.

P R

Q

Figure 13.4
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44. A racing car drives clockwise around the track shown

in Figure 13.4 at a constant speed. At what point on the

track does the car have the longest acceleration vector,

and in roughly what direction is it pointing? (Recall that

acceleration is the rate of change of velocity.)

45. Which pairs of the vectors
√

3i⃗ +j⃗ , 3i⃗ +
√

3j⃗ , i⃗ −
√

3j⃗

are parallel and which are perpendicular?

46. One force is pushing an object in a direction 50◦ south

of east with a force of 25 newtons. A second force is

simultaneously pushing the object in a direction 70◦

north of west with a force of 60 newtons. If the object is

to remain stationary, give the direction and magnitude

of the third force that must be applied to the object to

counterbalance the first two.

47. What values of a make v⃗ = 2ai⃗ − aj⃗ + 16k⃗ perpen-

dicular to w⃗ = 5i⃗ + aj⃗ − k⃗ ?

In Problems 48–49, find an equation of a plane that satisfies

the given conditions.

48. Perpendicular to the vector −i⃗ + 2j⃗ + k⃗ and passing

through the point (1, 0, 2).

49. Perpendicular to the vector 2i⃗ − 3j⃗ + 7k⃗ and passing

through the point (1,−1, 2).

50. Let A = (0, 4), B = (−1,−3), and C = (−5, 1). Draw

triangle ABC and find each of its interior angles.

51. Find the area of the triangle with vertices

P = (−2, 2, 0), Q = (1, 3,−1), and R = (−4, 2, 1).

52. A plane is drawn through the points A = (2, 1, 0),

B = (0, 1, 3) and C = (1, 0, 1). Find

(a) Two vectors lying in the plane.

(b) A vector perpendicular to the plane.

(c) The equation of the plane.

53. Let P = (0, 1, 0), Q = (−1, 1, 2), R = (2, 1,−1). Find

(a) The area of the triangle PQR.

(b) The equation for a plane that contains P , Q, and R.

54. Find the distance from the point P = (2,−1, 3) to the

plane 2x + 4y − z = −1.

55. Find an equation of the plane passing through the three

points (1, 1, 1), (1, 4, 5), (−3,−2, 0). Find the distance

from the origin to the plane.

56. An airport is at the point (200, 10, 0) and an approach-

ing plane is at the point (550, 60, 4). Assume that the

xy-plane is horizontal, with the x-axis pointing east-

ward and the y-axis pointing northward. Also assume

that the z-axis is upward and that all distances are mea-

sured in kilometers. The plane flies due west at a con-

stant altitude at a speed of 500 km/hr for half an hour.

It then descends at 200 km/hr, heading straight for the

airport.

(a) Find the velocity vector of the plane while it is fly-

ing at constant altitude.

(b) Find the coordinates of the point at which the plane

starts to descend.

(c) Find a vector representing the velocity of the plane

when it is descending.

57. Find the vector v⃗ with all of the following properties:

• Magnitude 10

• Angle of 45◦ with positive x-axis

• Angle of 75◦ with positive y-axis

• Positive k⃗ -component.

58. Three people are trying to hold a ferocious lion still for

the veterinarian. The lion, in the center, is wearing a

collar with three ropes attached to it and each person

has hold of a rope. Charlie is pulling in the direction

62◦ west of north with a force of 175 newtons and Sam

is pulling in the direction 43◦ east of north with a force

of 200 newtons. What is the direction and magnitude of

the force that must be exerted by Alice on the third rope

to counterbalance Sam and Charlie?

CAS Challenge Problems

59. Let a⃗ = xi⃗ + yj⃗ + zk⃗ , b⃗ = ui⃗ + vj⃗ + wk⃗ , and

c⃗ = ma⃗ +nb⃗ . Compute (a⃗ ×b⃗ )⋅c⃗ and (a⃗ ×b⃗ )×(a⃗ ×c⃗ ),

and explain the geometric meaning of your answers.

60. Let a⃗ = xi⃗ + yj⃗ + zk⃗ , b⃗ = ui⃗ + vj⃗ + wk⃗ and

c⃗ = ri⃗ + sj⃗ + tk⃗ . Show that the parallelepiped with

edges a⃗ , b⃗ , c⃗ has the same volume as the parallelepiped

with edges a⃗ , b⃗ , 2a⃗ − b⃗ + c⃗ . Explain this result geo-

metrically.

61. Let a⃗ = i⃗ + 2j⃗ + 3k⃗ and b⃗ = 2i⃗ + j⃗ + 2k⃗ , and let �

be the angle between a⃗ and b⃗ .

(a) For c⃗ = xi⃗ + yj⃗ + zk⃗ , write the following condi-

tions as equations in x, y, z and solve them:

a⃗ ⋅ c⃗ = 0, b⃗ ⋅ c⃗ = 0, ‖c⃗ ‖2 = ‖a⃗ ‖2‖b⃗ ‖2 sin2 �.

[Hint: Use the dot product to find sin2 �.]

(b) Compute the cross product a⃗ ×b⃗ and compare with

your answer in part (a). What do you notice? Ex-

plain.

62. Let A = (0, 0, 0), B = (2, 0, 0), C = (1,
√

3, 0) and

D = (1, 1∕
√

3, 2
√

2∕3).

(a) Show that A, B, C , D are all the same distance

from each other.

(b) Find the point P = (x, y, z) that is equidistant from

A,B,C andD by setting up and solving three equa-

tions in x, y, and z.

(c) Use the dot product to find the angle APB. (In

chemistry, this angle is often approximated by

109.5◦. A methane molecule can be represented by
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four hydrogen atoms at points A, B, C and D, and

a carbon atom at P .)

63. Let P = (x, y, z) , Q = (u, v,w) and R = (r, s, t) be

points on the plane ax + by + cz = d.

(a) What is the relation between ⃖⃖⃖⃖⃖⃗PQ× ⃖⃖⃖⃖⃖⃗PR and the nor-

mal vector to the plane, ai⃗ + bj⃗ + ck⃗ ?

(b) Express ⃖⃖⃖⃖⃖⃗PQ× ⃖⃖⃖⃖⃖⃗PR in terms of x, y, z, u, v,w, r, s, t.

(c) Use the equation for the plane to eliminate z, w,

and t from the expression you obtained in part (b),

and simplify. Does your answer agree with what

you said in part (a)?

PROJECTS FOR CHAPTER THIRTEEN

1. Cross Product of Vectors in the Plane

Let a⃗ = a1i⃗ + a2j⃗ and b⃗ = b1 i⃗ + b2j⃗ be two nonparallel vectors in 2-space, as in Figure 13.5.

s

r

�
�

x

y

b⃗ = b1 i⃗ + b2j⃗ = (s cos �)i⃗ + (s sin �)j⃗

a⃗ = a1 i⃗ + a2j⃗

= (r cos �)i⃗ + (r sin �)j⃗

Figure 13.5

(a) Use the identity sin(� − �) = (sin � cos� − cos � sin �) to derive the formula for the area of

the parallelogram formed by a⃗ and b⃗ :

Area of parallelogram = |a1b2 − a2b1|.

(b) Show that a1b2 − a2b1 is positive when the rotation from a⃗ to b⃗ is counterclockwise, and

negative when it is clockwise.

(c) Use parts (a) and (b) to show that the geometric and algebraic definitions of a⃗ × b⃗ give the

same result.

2. The Dot Product in Genetics1

We define2 the angle between two n-dimensional vectors, v⃗ and w⃗ , using the dot product:

cos � =
v⃗ ⋅ w⃗

‖v⃗ ‖‖w⃗ ‖

=
v1w1 + v2w2 +⋯ + vnwn

‖v⃗ ‖‖w⃗ ‖

, provided ‖v⃗ ‖, ‖w⃗ ‖ ≠ 0.

We use this idea of angle to measure how close two populations are to one another genetically.

The table shows the relative frequencies of four alleles (variants of a gene) in four populations.

Allele Eskimo Bantu English Korean

A1 0.29 0.10 0.21 0.22

A2 0.00 0.09 0.07 0.00

B 0.03 0.12 0.06 0.21

O 0.68 0.69 0.66 0.57

1Adapted from L. L. Cavalli-Sforza and A. W. F. Edwards, “Models and Estimation Procedures,” Am. J. Hum. Genet.,

Vol. 19 (1967), pp. 223-57.
2The result of Problem 82 of Section 13.3 shows that the quantity on the right-hand side of this equation is between −1

and 1, so this definition makes sense.
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Let a⃗ 1 be the 4-vector showing the square roots of the relative frequencies of the alleles

in the Eskimo population. Let a⃗ 2, a⃗ 3, a⃗ 4 be the corresponding vectors for the Bantu, English,

and Korean populations, respectively. The genetic distance between two populations is defined

as the angle between the corresponding vectors.

(a) Using this definition, is the English population closer genetically to the Bantus or to the

Koreans? Explain.

(b) Is the English population closer to a half Eskimo, half Bantu population than to the Bantu

population alone?

(c) Among all possible populations that are a mix of Eskimo and Bantu, find the mix that is

closest to the English population.

3. A Warren Truss

A Warren truss is a structure for bearing a weight such as a roof or a bridge with two supports

at either end of a gap. The truss in Figure 13.6 is loaded by weights at points D and E and is

supported by vertical forces at points A and C . The horizontal bars in the truss are 10 ft long

and the diagonal bars are 12 ft. Angles A and C are 65.38◦.

Each bar exerts a force at the two joints at its ends. The two force vectors are parallel to

the bar, equal in magnitude, and opposite in direction. If the bar pushes on the joints at its ends,

then the bar is under compression, and if it pulls it is under tension, and the magnitude of the

force is called the magnitude of the tension or compression.

Engineers need to know the magnitude of the compression or tension in each of the bars

of the truss to prevent them from bending or breaking. To determine these magnitudes, we use

the fact that at each joint the sum of the external forces from the weights and supports and the

pushing and pulling forces exerted by the bars is zero. Find the magnitudes for all seven bars in

this order:

(a) Joint A; Bars AB, AE

(b) Joint C ; Bars BC , CD

(c) Joint D; Bars BD, DE

(d) Joint E; Bar BE

A
B

C

DE

10 ft

12 ft

65.38◦

12500 lb 17500 lb

20000 lb10000 lb

Figure 13.6
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CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Partial Derivatives

Definition as a difference quotient, visualizing on a

graph, estimating from a contour diagram, computing

from a formula, interpreting units, alternative notation.

• Local Linearity

Zooming on a surface, contour diagram, or table to see

local linearity, the idea of tangent plane, formula for a

tangent plane in terms of partials, the differential.

• Directional Derivatives

Definition as a difference quotient, interpretation as a

rate of change, computation using partial derivatives.

• Gradient Vector

Definition in terms of partial derivatives, geometric

properties of gradient’s length and direction, relation to

directional derivative, relation to contours and level sur-

faces.

• Chain Rule

Local linearity and differentials for composition of

functions, tree diagrams, chain rule in general, appli-

cation to physical chemistry.

• Second- and Higher-Order Partial Derivatives

Interpretations, mixed partials are equal.

• Taylor Approximations

Linear and quadratic polynomial approximations to

functions near a point.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER 14

EXERCISES

Are the quantities in Exercises 1–4 vectors or scalars? Cal-

culate them.

1. grad(x3e−y∕2) at (1, 2)

2. The directional derivative of f (x, y) = x2y3 at the point

(1, 1) in the direction of (i⃗ + j⃗ )∕
√

2.

3. grad((cosx)ey + z)

4.
)2f

)x2
when f (x, y) = yex

2y

For Exercises 5–28, find the partial derivatives. Assume the

variables are restricted to a domain on which the function is

defined.

5. fx and fy if f (x, y) = x2y + x3 − 7xy6

6.
)w

)ℎ
if w = 320�gℎ2(20 − ℎ)

7.
)T

)l
if T = 2�

√

l

g

8.
)B

)t
and

)B

)r
when B = P (1 + r)t.

9. fx and fy if f (x, y) =
x2y

x2 + y2

10.
)F

)r
and

)F

)r
if F =

G�my

(r2 + y2)3∕2

11. fp and fq if f (p, q) = ep∕q

12. zx(2, 3) if z = (cos x) + y

13. fN if f (N,V ) = cN�V �

14. fx and fy if f (x, y) =
√

(x − a)2 + (y − b)2

15.
)

)!

(

tan
√

!x

)

16.
)y

)t
if y = sin(ct − 5x)

17. zy if z =
3x2y7 − y2

15xy − 8

18.
)�

)�
if � =

ex�−3

2y� + 5

19.
)

)w

(
√

2�xyw − 13x7y3v

)

20.
)

)�

(

x2y� − 3�5
√

�2 − 3� + 5

)

21.
)

)w

(

x2yw − xy3w7

w − 1

)−7∕2

22.
)

)x
(ex cos(xy) + ay2),

)

)y
(ex cos(xy) + ay2),

)

)a
(ex cos(xy) + ay2)

23.
)f0

)L
if f0 =

1

2�
√

LC

24. fxx and fxy if f (x, y) = 1∕
√

x2 + y2

25. uxx and uyy if u = ex sin y

26. Vrr and Vrℎ if V = �r2ℎ

27. fxxy and fyxx if f (x, y) = sin(x − 2y)

28.
)2

)x2
(eax−bt) +

)2

)t2
(eax−bt)

In Exercises 29–39, find the gradient of the function.

29. f (x, y, z) = x2 + y2 + y3

30. f (x, y, z) = x3 + z3 − xyz

31. f (x, y, z) = 1∕(xyz)

32. f (x, y) = sin(y2 − xy)
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33. z = sin(x2 + y2)

34. f (x, y, z) = xey + ln(xz)

35. f (x, y, z) = sin(x2 + y2 + z2)

36. f (�, �, �) = � sin� cos �

37. f (s, t) =
1
√

s
(t2 − 2t + 4)

38. f (x, y) =
√

x2 + y2

39. f (x, y) = sin(xy) + cos(xy)

In Exercises 40–41, find the gradient of f at the point.

40. f (x, y, z) = x2 at (0, 0, 0)

41. f (x, y, z) = x2z, at (1, 1, 1)

In Exercises 42–47, find the directional derivative of the

function.

42. f (x, y) = x3 − y3 at (2,−1) in the direction of i⃗ − j⃗

43. f (x, y) = xey at (3, 0) in the direction of 4i⃗ − 3j⃗

44. f (x, y, z) = x2 + y2 − z2 at (2, 3, 4) in the direction of

2i⃗ − 2j⃗ + k⃗

45. f (x, y, z) = 3x2y2+2yz at (−1, 0, 4) in the direction of

i⃗ − k⃗

46. f (x, y, z) = 3x2y2+2yz at (−1, 0, 4) in the direction of

−i⃗ + 3j⃗ + 3k⃗

47. f (x, y, z) = ex+z cos y at (1, 0,−1) in the direction of

i⃗ + j⃗ + k⃗

In Exercises 48–50, find a vector normal to the curve or sur-

face at the point.

48. x2 − y2 = 3 at (2, 1)

49. xy + xz + yz = 11 at (1, 2, 3)

50. z2 − 2xyz = x2 + y2 at (1, 2,−1)

51. Find an equation of the tangent plane to the surface

z2 − 4x2 − 3y2 = 9 at the point (1, 1, 4).

52. Find an equation of the tangent plane to the surface

x3 = 2y2 − z at the point (1, 0,−1).

53. Find an equation of the tangent plane to the surface

z − 1∕(xy) = 0 at the point (1, 1, 1).

54. Compute all four second-order partial derivatives of

f (x, y) = x2y2 − 5xy3.

In Exercises 55–60, find dz∕dt using the chain rule. Assume

the variables are restricted to domains on which the func-

tions are defined.

55. z = x sin y, x = sin t, y = cos t

56. z = sin(x2 + y2), x = 2t, y = t2

57. z = (x2 + y)2, x = 2t, y = t2

58. z = (x + y)ex, x = t2, y = 1 − t2

59. z = ln y + lnx, x = t3, y = t2 + 1

60. z = sin(pq), p = sin t, q = cos t2

In Exercises 61–63, find the quadratic Taylor polynomial for

the function.

61. f (x, y) = (x + 1)3(y + 2) about (0, 0)

62. f (x, y) = cos x cos 3y about (0, 0)

63. f (x, y) =
√

2x − y about (3, 5)

PROBLEMS

64. Match each function f (x, y, z) in (a)–(d) with the de-

scription of its gradient in (I)–(VI).

(a) x2 + y2 + z2 (b)
√

x2 + y2 + z2

(c) 3x + 4y (d) 3x + 4z

I Constant, parallel to xy-plane.

II Constant, parallel to xz-plane.

III Constant, parallel to yz-plane.

IV Radial, increasing in magnitude away from the ori-

gin.

V Radial, constant magnitude.

VI Radial, decreasing in magnitude away from the ori-

gin.

65. (a) Find an equation of the tangent plane to the surface

2x2 − 2xy2 + az = a at the point (1, 1, 1).

(b) For which value of a does the tangent plane pass

through the origin?

66. The monthly mortgage payment in dollars, P , for a

house is a function of three variables:

P = f (A, r,N),

where A is the amount borrowed in dollars, r is the

interest rate, and N is the number of years before the

mortgage is paid off.

(a) f (92000, 14, 30) = 1090.08. What does this tell

you, in financial terms?

(b)
)P

)r

|

|

|

|

|(92000,14,30)

= 72.82. What is the financial sig-

nificance of the number 72.82?

(c) Would you expect )P∕)A to be positive or nega-

tive? Why?

(d) Would you expect )P∕)N to be positive or nega-

tive? Why?

67. Figure 14.1 is a contour diagram of f (x, y). In each of

the following cases, list the marked points in the dia-

gram (there may be none or more than one) at which

(a) fx < 0 (b) fy > 0

(c) fxx > 0 (d) fyy < 0
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68. Figure 14.2 gives a contour diagram for the number n

of foxes per square kilometer in southwestern England.1

Estimate )n∕)x and )n∕)y at the points A, B, and C ,

where x is kilometers east and y is kilometers north.
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Figure 14.2

69. The cost of producing one unit of a product is given by

c = a + bx + ky,

where x is the amount of labor used (in man hours) and

y is the amount of raw material used (by weight) and a

and b and k are constants. What does )c∕)x = b mean?

What is the practical interpretation of b?

70. (a) Let f (u, v) = u(u2 + v2)3∕2. Use a difference quo-

tient to approximate fu(1, 3) with ℎ = 0.001.

(b) Now evaluate fu(1, 3) exactly. Was the approxima-

tion in part (a) reasonable?

71. The gravitational force, F newtons, exerted on a mass

of m kg at a distance of r meters from the center of the

earth is given by

F =
GMm

r2

where the mass of the earth M = 6 ⋅ 1024 kilograms,

and G = 6.67 ⋅ 10−11. Find the gravitational force on

a person with mass 70 kg at the surface of the earth

(r = 6.4 ⋅ 106). Calculate )F∕)m and )F∕)r for these

values of m and r. Interpret these partial derivatives in

terms of gravitational force.

72. (a) Write a formula for the number � using only the

perimeter L and the area A of a circle.

(b) Suppose that L and A are determined experimen-

tally. Show that if the relative, or percent, errors in

the measured values of L and A are � and �, re-

spectively, then the resulting relative, or percent,

error in � is 2� − �.

73. A company uses x hours of unskilled labor and y hours

of skilled labor to produce F (x, y) = 60x2∕3y1∕3 units of

output. It currently employs 400 hours of unskilled la-

bor and 50 hours of skilled labor. The company is plan-

ning to hire an additional 5 hours of skilled labor.

(a) Use a linear approximation to decide by about how

much the company can reduce its use of unskilled

labor and keep its output at current level.

(b) Calculate the exact value of the reduction.

74. One mole of ammonia gas is contained in a vessel

which is capable of changing its volume (a compart-

ment sealed by a piston, for example). The total energy

U (in joules) of the ammonia is a function of the vol-

ume V (in m3) of the container, and the temperature T

(in K) of the gas. The differential dU is given by

dU = 840 dV + 27.32 dT .

(a) How does the energy change if the volume is held

constant and the temperature is increased slightly?

(b) How does the energy change if the temperature is

held constant and the volume is increased slightly?

(c) Find the approximate change in energy if the gas is

compressed by 100 cm3 and heated by 2 K.

75. Figure 14.3 shows grad f (x, y). In each of the following

cases, list the marked points (if any) at which

(a) fx > 0 (b) fy < 0

(c) fxx > 0 (d) fyy < 0

PQ

R S

gradf

x

y

Figure 14.3

1From “On the spatial spread of rabies among foxes”, Murray, J. D. et al, Proc. R. Soc. Lond. B, 229: 111–150, 1986.
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In Problems 76–81, use the contour diagram for f (x, y) in

Figure 14.4 to estimate the directional derivative of f (x, y)

in the direction v⃗ at the point given.

1 2 3 4 5
0

1

2

3

4

5

x

y

4

3

2

1

Figure 14.4

76. v⃗ = i⃗ at (1, 1) 77. v⃗ = j⃗ at (1, 1)

78. v⃗ = i⃗ + j⃗ at (1, 1) 79. v⃗ = i⃗ + j⃗ at (4, 1)

80. v⃗ = −2i⃗ + j⃗ at (3, 3) 81. v⃗ = −2i⃗ + j⃗ at (4, 1)

82. Figure 14.4 shows the level curves of f (x, y). At the

points (1, 1) and (1, 4), draw a vector representing

grad f . Explain how you know the direction and length

of each vector.

83. Find the directional derivative of z = x2y at (1, 2) in the

direction making an angle of 5�∕4 with the x-axis. In

which direction is the directional derivative the largest?

84. An ant is crawling across a heated plate with velocity

v⃗ cm/sec, and the temperature of the plate at position

(x, y) is H(x, y) degrees, where x and y are in centime-

ters. Which of the following (if any) is correct? The rate

of change in deg/sec of the temperature felt by the ant

is:

(a) ‖ gradH‖‖v⃗ ‖, because it is the product of the

ant’s speed and the rate of change of H with re-

spect to distance.

(b) gradH ⋅ v⃗ , because it is the product of the ant’s

speed and the directional derivative of H in the di-

rection of v⃗ .

(c) Hu⃗ , where u⃗ = v⃗ ∕‖v⃗ ‖, because it is the rate of

change of H in the direction of v⃗ .

85. The depth, in feet, of a lake at a point x miles east and

y miles north of a buoy is given by

ℎ(x, y) = 150 − 30x2 − 20y2.

(a) A rowboat is 1 mile east and 2 miles south of the

buoy. At what rate is the depth changing with re-

spect to distance in the direction of the buoy?

(b) The boat starts moving toward the buoy at a rate of

3 mph. At what rate is the depth of the lake beneath

the boat changing with respect to time?

86. A differentiable function f (x, y) has the property that

f (1, 3) = 7 and grad f (1, 3) = 2i⃗ − 5j⃗ .

(a) Find the equation of the tangent line to the level

curve of f through the point (1, 3).

(b) Find the equation of the tangent plane to the sur-

face z = f (x, y) at the point (1, 3, 7).

87. Let x, y, z be in meters. At the point (x, y, z) in space,

the temperature, H , in ◦C, is given by

H = e−(x
2+2y2+3z2).

(a) A particle at the point (2, 1, 5) starts to move in the

direction of increasing x. How fast is the tempera-

ture changing with respect to distance? Give units.

(b) If the particle in part (a) moves at 10 meters∕sec,

how fast is the temperature changing with respect

to time? Give units.

(c) What is the maximum rate of change of tempera-

ture with respect to distance at the point (2, 1, 5)?

88. A differentiable function f (x, y) has the property that

f (4, 1) = 3 and fx(4, 1) = 2 and fy(4, 1) = −1. Find

the equation of the tangent plane at the point on the sur-

face z = f (x, y) where x = 4, y = 1.

89. The temperature at (x, y) is T (x, y) = 100 − x2 − y2. In

which direction should a heat-seeking bug move from

the point (x, y) to increase its temperature fastest?

90. A car is driving northwest at v mph across a sloping

plain whose height, in feet above sea level, at a point N

miles north and E miles east of a city is given by

ℎ(N,E) = 2500 + 100N + 50E.

(a) At what rate is the height above sea level changing

with respect to distance in the direction the car is

driving?

(b) Express the rate of change of the height of the car

with respect to time in terms of v.

91. Do the level curves of f (x, y) =
√

x2 + y2 + x and

g(x, y) =
√

x2 + y2 − x cross at right angles?

92. At any point (x, y, z) outside a spherically symmetric

massm located at the point (x0, y0, z0), the gravitational

potential, V , is defined by V = −Gm∕r, where r is the

distance from (x, y, z) to (x0, y0, z0) and G is a constant.

Show that, for all points outside the mass, V satisfies

Laplace’s equation:

)2V

)x2
+

)2V

)y2
+

)2V

)z2
= 0.

93. Suppose that f is any differentiable function of one

variable. Define V , a function of two variables, by

V (x, t) = f (x + ct).

Show that V satisfies the equation

)V

)t
= c

)V

)x
.
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94. Given z = u2 − uev, u = x + 2y, v = 2x − y, use the

chain rule to find:

(a) )z∕)x|(x,y)=(1,2) (b) )z∕)y|(x,y)=(1,2)

95. Let F (u, v,w) be a function of three variables. Find

Gx(x, y) if

(a) G(x, y) = F (x, y, 3) (b) G(x, y) = F (3, y, x)

(c) G(x, y) = F (x, y, x) (d) G(x, y) = F (x, y, xy)

96. In analyzing a factory and deciding whether or not to

hire more workers, it is useful to know under what

circumstances productivity increases. Suppose P =

f (x1, x2, x3) is the total quantity produced as a function

of x1, the number of workers, and any other variables

x2, x3. We define the average productivity of a worker

as P∕x1. Show that the average productivity increases

as x1 increases when marginal production, )P∕)x1, is

greater than the average productivity, P∕x1.

97. For the Cobb-Douglas function P = 40L0.25K0.75, find

the differential dP when L = 2 and K = 16.

98. The period, T , of a pendulum is T = 2�
√

l∕g. If the

approximate length is l = 2 meters, find the approxi-

mate error in T if the true length is l = 1.99 and we

take g = 9.8 as an approximation for g = 9.81 m/s2.

99. Figure 14.5 shows the monthly payment, m, on a 5-year

car loan if you borrow P dollars at r percent interest.

Find a formula for a linear function which approximates

m. What is the practical significance of the constants in

your formula?
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Figure 14.5

In Problems 100–107, the function f is differentiable and

fx(2, 1) = −3, fy(2, 1) = 4, and f (2, 1) = 7.

100. (a) Give an equation for the tangent plane to the graph

of f at x = 2, y = 1.

(b) Give an equation for the tangent line to the contour

for f at x = 2, y = 1.

101. (a) Find a vector perpendicular to the tangent plane to

the graph of f at x = 2, y = 1.

(b) Find a vector perpendicular to the tangent line to

the contour for f at x = 2, y = 1.

102. Near x = 2 and y = 1, how far apart are the contours

f (x, y) = 7 and f (x, y) = 7.3?

103. Give an approximate table of values of f for x =

1.8, 2.0, 2.2 and y = 0.9, 1.0, 1, 1.

104. Give an approximate contour diagram for f for 1 ≤ x ≤

3, 0 ≤ y ≤ 2, using contour values …5, 6, 7, 8, 9….

105. The function f gives temperature in ◦C and x and y are

in centimeters. A bug leaves (2, 1) at 3 cm/min so that it

cools off as fast as possible. In which direction does the

bug head? At what rate does it cool off, in ◦C/min?

106. Find fr(2, 1) and f�(2, 1), where r and � are polar coor-

dinates, x = r cos � and y = r sin �. If u⃗ is the unit vec-

tor in the direction 2i⃗ + j⃗ , show that fu⃗ (2, 1) = fr(2, 1)

and explain why this should be the case.

107. Find approximately the largest value of f on or inside

the circle of radius 0.1 about the point (2, 1). At what

point does f achieve this value?

108. Values of the function f (x, y) near the point x = 2,

y = 3 are given in Table 14.1. Estimate the following.

(a)
)f

)x

|

|

|

|

|(2,3)

and
)f

)y

|

|

|

|

|(2,3)

.

(b) The rate of change of f at (2, 3) in the direction of

the vector i⃗ + 3j⃗ .

(c) The maximum possible rate of change of f as you

move away from the point (2, 3). In which direction

should you move to obtain this rate of change?

(d) Write an equation for the level curve through the

point (2, 3).

(e) Find a vector tangent to the level curve of f

through the point (2, 3).

(f) Find the differential of f at the point (2, 3). If

dx = 0.03 and dy = 0.04, find df . What does

df represent in this case?

Table 14.1

y

x

2.00 2.01

3.00 7.56 7.42

3.02 7.61 7.47

109. Find the quadratic Taylor polynomial about (0, 0) for

f (x, y) = cos (x + 2y) sin (x − y).

110. Suppose f (x, y) = e(x−1)
2+(y−3)2 .

(a) Find the first-order Taylor polynomial about (0, 0).

(b) Find the second-order (quadratic) Taylor polyno-

mial about the point (1, 3).

(c) Find a 2-vector perpendicular to the level curve

through (0, 0).

(d) Find a 3-vector perpendicular to the surface z =

f (x, y) at the point (0, 0).
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111. Figure 14.6 shows a contour diagram for a vibrating

string function, f (x, t).

(a) Is ft(�∕2, �∕2) positive or negative? How about

ft(�∕2, �)? What does the sign of ft(�∕2, b) tell

you about the motion of the point on the string at

x = �∕2 when t = b?

(b) Find all t for which ft is positive, for 0 ≤ t ≤ 5�∕2.

(c) Find all x and t such that fx is positive.
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Figure 14.6

CAS Challenge Problems

112. (a) Find the quadratic Taylor polynomial about (0, 0)

of f (x, y) =
ex(1 + sin(3y))2

5 + e2x
.

(b) Find the quadratic Taylor polynomial about 0 of

the one-variable functions g(x) = ex∕(5+ e2x) and

ℎ(y) = (1 + sin(3y))2. Multiply these polynomials

together and compare with your answer to part (a).

(c) Show that if f (x, y) = g(x)ℎ(y), then the quadratic

Taylor polynomial of f about (0, 0) is the prod-

uct of the quadratic Taylor polynomials of g(x) and

ℎ(y) about 0. [If you use a computer algebra sys-

tem, make sure that f, g and ℎ do not have any pre-

viously assigned formula.]

113. Let

f (x, y) = A0 + A1x + A2y + A3x
2 + A4xy +A5y

2,

g(t) = 1 + B1t + B2t
2,

ℎ(t) = 2 + C1t + C2t
2.

(a) Find L(x, y), the linear approximation to f (x, y) at

the point (1, 2). Also find m(t) and n(t), the linear

approximations to g(t) and ℎ(t) at t = 0.

(b) Calculate (d∕dt)f (g(t), ℎ(t))|t=0 and

(d∕dt)L(m(t), n(t))|t=0. Describe what you notice

and explain it in terms of the chain rule.

114. Let f (x, y) = A0 +A1x+A2y+A3x
2 +A4xy+A5y

2.

(a) Find the quadratic Taylor approximation for

f (x, y) near the point (1, 2), and expand the result

in powers of x and y.

(b) Explain what you notice in part (a) and formulate

a generalization to points other than (1, 2).

(c) Repeat part (a) for the linear approximation. How

does it differ from the quadratic?

115. Suppose that w = f (x, y, z), that x and y are functions

of u and v, and that z, u, and v are functions of t. Use a

computer algebra system to find the derivative

d

dt
f (x(u(t), v(t)), y(u(t), v(t)), z(t))

and explain the answer using a tree diagram.

PROJECTS FOR CHAPTER FOURTEEN

1. Heat Equation

The function T (x, y, z, t) is a solution to the heat equation

Tt = K(Txx + Tyy + Tzz)
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and gives the temperature at the point (x, y, z) in 3-space and time t. The constant K is the

thermal conductivity of the medium through which the heat is flowing.

(a) Show that the function

T (x, y, z, t) =
1

(4�Kt)3∕2
e−(x

2+y2+z2)∕4Kt

is a solution to the heat equation for all (x, y, z) in 3-space and t > 0.

(b) For each fixed time t, what are the level surfaces of the function T (x, y, z, t) in 3-space?

(c) Regard t as fixed and compute gradT (x, y, z, t). What does gradT (x, y, z, t) tell us about

the direction and magnitude of the heat flow?

2. Matching Birthdays

Consider a class of m students and a year with n days. Let q(m, n) denote the probability, ex-

pressed as a number between 0 and 1, that at least two students have the same birthday. Sur-

prisingly, q(23, 365) ≈ 0.5073. (This means that there is slightly better than an even chance

that at least two students in a class of 23 have the same birthday.) A general formula for q is

complicated, but it can be shown that

)q

)m
≈ +

m

n
(1 − q) and

)q

)n
≈ −

m2

2n2
(1 − q).

(These approximations hold when n is a good deal larger than m, and m is a good deal larger

than 1.)

(a) Explain why the + and − signs in the approximations for )q∕)m and )q∕)n are to be ex-

pected.

(b) Suppose there are 21 students in a class. What is the approximate probability that at least

two students in the class have the same birthday? (Assume that a year always has 365 days.)

(c) Suppose there is a class of 24 students and you know that no one was born in the first week

of the year. (This has the effect of making n = 358.) What is the approximate value of q for

this class?

(d) If you want to bet that a certain class of 23 students has at least two matching birthdays,

would you prefer to have two more students added to the class or to be told that no one in

the class was born in December?

(e) (Optional) Find the actual formula for q. [Hint: It’s easier to find 1−q. There are n⋅n⋅n⋯ n =

nm different choices for the students’ birthdays. How many such choices have no matching

birthdays?]



Chapter 15

REVIEW MATERIAL
AND PROJECTS

CONTENTS



2 Chapter 15 REVIEW MATERIAL AND PROJECTS

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Critical Points

Definitions of local extrema, critical points, saddle

points, finding critical points algebraically, behavior

of contours near critical points, discriminant, second-

derivative test to classify critical points.

• Unconstrained Optimization

Definitions of global extrema, method of least squares,

closed and bounded regions, existence of global ex-

trema.

• Constrained Optimization

Objective function and constraint, definitions of ex-

trema subject to a constraint, geometric interpretation

of Lagrange multiplier method, solving Lagrange mul-

tiplier problems algebraically, inequality constraints,

meaning of the Lagrange multiplier �, the Lagrangian

function.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER 15

EXERCISES

For Exercises 1–6, find the critical points of the given func-

tion and classify them as local maxima, local minima, saddle

points, or none of these.

1. f (x, y) = x2 + 2xy − y2 − 4x − 8y + 9

2. f (x, y) = 2xy2 − x2 − 2y2 + 1

3. f (x, y) = x3 + y2 − 3x2 + 10y + 6

4. f (x, y) = x2y + 2y2 − 2xy + 6

5. f (x, y) =
80

xy
+ 10x + 10xy + 20y

6. f (x, y) = sin x + sin y + sin(x + y), 0 < x < �,

0 < y < �.

For Exercises 7–10, find the local maxima, local minima,

and saddle points of the function. Decide if the local max-

ima or minima are global maxima or minima. Explain.

7. f (x, y) = 10 + 12x + 6y − 3x2 − y2

8. f (x, y) = x2 + y3 − 3xy

9. f (x, y) = x + y +
1

x
+

4

y

10. f (x, y) = xy + lnx + y2 − 10, x > 0

For Exercises 11–21, use Lagrange multipliers to find the

maximum and minimum values of f subject to the con-

straint.

11. f (x, y) = 3x − 4y, x2 + y2 = 5

12. f (x, y) = x2 + y2, x4 + y4 = 2

13. f (x, y) = x2 + y2, 4x − 2y = 15

14. f (x, y) = x2 − xy + y2, x2 − y2 = 1

15. f (x, y) = x2 + 2y2, 3x + 5y = 200

16. f (x, y) = −3x2 − 2y2 + 20xy, x + y = 100

17. f (x, y, z) = x2 − 2y + 2z2, x2 + y2 + z2 = 1

18. f (x, y, z) = 2x + y + 4z, x2 + y + z2 = 16

19. z = 4x2 − xy + 4y2, x2 + y2 ≤ 2

20. f (x, y) = x2 − y2, x2 ≥ y

21. f (x, y) = x3 − y2, x2 + y2 ≤ 1

In Exercises 22–25, does f (x, y) = x2−y2 have a maximum,

a minimum, neither, or both when subject to the constraint?

22. x = 10 23. y = 10

24. x2 + y2 = 10 25. xy = 10

PROBLEMS

26. Maximize 0.3 ln x + 0.7 ln y on 2x + 3y = 6.

27. (a) Write an expression for the distance between the

points (3, 4) and (x, y).

(b) Minimize this distance if (x, y) lies on the unit cir-

cle centered at the origin. At what point does the

minimum occur?

(c) What is the maximum distance? At what point does

it occur?

28. If the right side of the constraint in Exercise 12 is

changed by the small amount Δc, by approximately how

much do the maximum and minimum values change?

29. Compute the regression line for the points (−1, 2),

(0,−1), (1, 1) using least squares.

30. At the point (1, 3), suppose fx = fy = 0 and fxx < 0,

fyy < 0, fxy = 0. Draw a possible contour diagram.

31. For f (x, y) = A− (x2 +Bx+ y2 +Cy), what values of

A, B, and C give f a local maximum value of 15 at the

point (−2, 1)?

32. A biological rule of thumb states that as the areaA of an

island increases tenfold, the number of animal species,

N , living on it doubles. The table contains data for is-
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lands in the West Indies. Assume that N is a power

function of A.

(a) Use the biological rule of thumb to find

(i) N as a function of A

(ii) lnN as a function of lnA

(b) Using the data given, tabulate lnN against lnA

and find the line of best fit. Does your answer agree

with the biological rule of thumb?

Island Area (sq km) Number of species

Redonda 3 5

Saba 20 9

Montserrat 192 15

Puerto Rico 8858 75

Jamaica 10854 70

Hispaniola 75571 130

Cuba 113715 125

33. A firm manufactures a commodity at two different fac-

tories. The total cost of manufacturing depends on the

quantities, q1 and q2, supplied by each factory, and is

expressed by the joint cost function,

C = f (q1, q2) = 2q2
1
+ q1q2 + q2

2
+ 500.

The company’s objective is to produce 200 units, while

minimizing production costs. How many units should

be supplied by each factory?

34. (a) Let f (x, y) = x2 + 2y2. Find the minimum value

m(c) of f on the line x + y = c as a function of c.

(b) Give the value of the Lagrange multiplier � at this

minimum.

(c) What is the relation between your answers in parts

(a) and (b)?

35. The maximum value of f (x, y) subject to the constraint

g(x, y) = 240 is 6300. The method of Lagrange multi-

pliers gives � = 20. Find an approximate value for the

maximum of f (x, y) subject to the constraint g(x, y) =

242.

36. An industry manufactures a product from two raw ma-

terials. The quantity produced, Q, can be given by the

Cobb-Douglas function:

Q = cxayb,

where x and y are quantities of each of the two raw ma-

terials used and a, b, and c are positive constants. The

first raw material costs $P1 per unit and the second costs

$P2 per unit. Find the maximum production possible if

$K is spent on raw materials.

37. The quantity, Q, of a product manufactured by a com-

pany is given by

Q = aK0.6L0.4,

where a is a positive constant, K is the quantity of capi-

tal and L is the quantity of labor used. Capital costs are

$20 per unit, labor costs are $10 per unit, and the com-

pany wants costs for capital and labor combined to be

no higher than $150. Suppose you are asked to consult

for the company, and learn that 5 units each of capital

and labor are being used.

(a) What do you advise? Should the company use

more or less labor? More or less capital? If so, by

how much?

(b) Write a one-sentence summary that could be used

to sell your advice to the board of directors.

38. Figure 15.1 shows contours labeled with values of

f (x, y) and a constraint g(x, y) = c. Mark the approxi-

mate points at which:

(a) grad f = � grad g

(b) f has a maximum

(c) f has a maximum on the constraint g = c.

9

10

11

12

13

14

❘

g = c

Figure 15.1

39. A mountain climber at the summit of a mountain wants

to descend to a lower altitude as fast as possible. The

altitude of the mountain is given approximately by

ℎ(x, y) = 3000 −
1

10,000
(5x2 + 4xy + 2y2) meters,

where x, y are horizontal coordinates on the earth (in

meters), with the mountain summit located above the

origin. In thirty minutes, the climber can reach any

point (x, y) on a circle of radius 1000 m. In which di-

rection should she travel in order to descend as far as

possible?

40. Let f (x, y, z) =
√

(x − a)2 + (y − b)2 + (z − c)2. Min-

imize f subject to Ax+By+Cz+D = 0. What is the

geometric meaning of your solution?
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41. A company with monopoly pricing power, like the only

grocery store in a sparsely populated area or all-night

convenience store, sells two products which are partial

substitutes for each other, such as coffee and tea. If the

price of one product rises, then the demand for the other

product rises. The quantities demanded, q1 and q2, are

given as a function of the prices, p1 and p2, by

q1 = 517 − 3.5p1 + 0.8p2, q2 = 770 − 4.4p2 + 1.4p1.

What prices should the company charge in order to

maximize the total sales revenue? 1

42. The quantity, Q, of a certain product manufactured de-

pends on the quantity of labor, L, and of capital, K ,

used according to the function

Q = 900L1∕2K2∕3.

Labor costs $100 per unit and capital costs $200 per

unit. What combination of labor and capital should be

used to produce 36,000 units of the goods at minimum

cost? What is that minimum cost?

43. A company manufactures a product using inputs x, y,

and z according to the production function

Q(x, y, z) = 20x1∕2y1∕4z2∕5.

The prices per unit are $20 for x, and $10 for y, and

$5 for z. What quantity of each input should be used in

order to manufacture 1,200 units at minimum cost?2

44. The Cobb-Douglas function models the quantity, q, of

a commodity produced as a function of the number of

workers, W , and the amount of capital invested, K:

q = cW 1−aKa,

where a and c are positive constants. Labor costs are

$p1 per worker, capital costs are $p2 per unit, and there

is a fixed budget of $b. Show that when W and K are

at their optimal levels, the ratio of marginal productiv-

ity of labor to marginal productivity of capital equals

the ratio of the cost of one unit of labor to one unit of

capital.

45. An electrical current I flows through a circuit contain-

ing the resistors R1 and R2 in Figure 15.2. The currents

i1 and i2 through the individual resistors minimize en-

ergy loss i2
1
R1+i

2
2
R2 subject to the constraint i1+i2 = I

given by Kirchhoff’s current law.

(a) Find the currents i1 and i2 by the method of La-

grange multipliers.

(b) If you are familiar with Ohm’s law, find the mean-

ing of �.

I✲

R1

R2

i1✲

i2

✲

Figure 15.2

46. An open rectangular box has volume 32 cm3. What are

the lengths of the edges giving the minimum surface

area?

47. The function f (x, y) is defined for all x, y and the ori-

gin does not lie on the surface representing z = f (x, y).

There is a unique point P = (a, b, c) on the surface

which is closest to the origin. Explain why the position

vector from the origin to P must be perpendicular to the

surface at that point.

48. In a curious game, you and your opponent will choose

three real numbers. The rules say that you must first

choose a value �, then your opponent is free to choose

any values for x and y. Your goal is to make the value

of (x, y, �) = 10−x2−y2−2x−�(2x+2y) as small as

you can, and your opponent’s goal is to make it as large

as possible. What value of � should you choose (assum-

ing you have a brilliant opponent who never makes mis-

takes)?

49. An irrigation canal has a trapezoidal cross-section of

area 50 m2, as in Figure 15.3. The average flow rate in

the canal is inversely proportional to the wetted perime-

ter, p, of the canal, that is, to the perimeter of the trape-

zoid in Figure 15.3, excluding the top. Thus, to maxi-

mize the flow rate we must minimize p. Find the depth

d, base width w, and angle � that give the maximum

flow rate.3

✻

❄

d

✲✛ w

� �

Figure 15.3

1Adapted from M. Rosser and P. Lis, Basic Mathematics for Economists, 3rd ed. (New York: Routledge, 2016), p. 353.
2Adapted from M. Rosser and P. Lis, Basic Mathematics for Economists, 3rd ed. (New York: Routledge, 2016), p. 360.
3Adapted from Robert M. Stark and Robert L. Nichols, Mathematical Foundations of Design: Civil Engineering Systems

(New York: McGraw-Hill, 1972).
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CAS Challenge Problems

50. Let f (x, y) =

√

a + x + y

1 + y +
√

a + x
, for x, y > 0, where a

is a positive constant.

(a) Find the critical points of f and classify them as lo-

cal maxima, local minima, saddle points, or none

of these.

(b) Describe how the position and type of the critical

points changes with respect to a, and explain this

in terms of the graph of f .

51. Students are asked to find the global maximum of

f (x, y) = x2 + y subject to the constraint g(x, y) =

x2+2xy+y2−9 = 0. Student A uses the method of La-

grange multipliers with the help of a computer algebra

system, and says that the global maximum is 11/4. Stu-

dent B looks at a contour diagram of f and a graph of

g = 0 and says there is no global maximum. Which stu-

dent is correct and what mistake is the other one mak-

ing?

52. Let f (x, y) = 3x + 2y + 5, g(x, y) = 2x2 − 4xy + 5y2.

(a) Find the maximum of f subject to the constraint

g = 20.

(b) Using the value of � in part (a), estimate the max-

imum of f subject to each of the constraints g =

20.5 and g = 20.2.

(c) Use Lagrange multipliers to find the two maxima in

part (b) exactly. Compare them with the estimates.

PROJECTS FOR CHAPTER FIFTEEN

1. Optimization in Manufacturing

A recycling company makes paper from a combination of two raw materialsA and B whereA is

wood pulp from a timber company and B is waste paper from a recycling depot. The production

function is Q = f (x, y) where Q is the quantity of paper the company can make using x units

of A and y units of B. The cost of acquiring these materials is given by the cost function C =

g(x, y) = px + qy, where p is the unit price of A and q is the unit price of B.

(a) If the company decides to reduce the amount of A that it buys, then it can use the money

saved to buy additional B. The economic rate of substitution, or ERS, of B for A tells how

much additional B can be bought for the cost of a unit of A. Show that the ERS is gx∕gy =

p∕q.

(b) If the company decides to reduce slightly the amount of A that it buys, then it must buy

additional B in order to maintain a constant level of production. The technical rate of sub-

stitution, or TRS, of B for A tells how much additional B to buy per unit reduction in A.

Show that the TRS is fx∕fy. [Hint: The TRS is the rate at which y increases with respect to

x as a point (x, y) slides in the direction of decreasing x along a fixed contour f (x, y) = Q

of the production function.]

(c) Show that to maximize the quantity of paper produced with a fixed budget the company

should use raw materials A and B in quantities such that ERS = TRS.

(d) Show that to minimize the cost of producing a fixed quantity of paper the company should

use raw materials A and B in quantities such that ERS = TRS.

2. Fitting a Line to Data Using Least Squares

In this problem you will derive the general formulas for the slope and y-intercept of a least

squares line. Assume that you have n data points (x1, y1), (x2, y2),… , (xn, yn). Let the equation

of the least squares line be y = b + mx.

(a) For each data point (xi, yi), show that the corresponding point directly above or below it on

the least squares line has y-coordinate b + mxi.

(b) For each data point (xi, yi), show that the square of the vertical distance from it to the point

found in part (a) is (yi − (b + mxi))
2.

(c) Form the functionf (b, m)which is the sum of all of the n squared distances found in part (b).

That is,

f (b, m) =

n
∑

i=1

(yi − (b + mxi))
2.
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Show that the partial derivatives
)f

)b
and

)f

)m
are given by

)f

)b
= −2

n
∑

i=1

(yi − (b + mxi))

and

)f

)m
= −2

n
∑

i=1

(yi − (b + mxi)) ⋅ xi.

(d) Show that the critical point equations
)f

)b
= 0 and

)f

)m
= 0 lead to a pair of simultaneous

linear equations in b and m:

nb +
(

∑

xi

)

m =
∑

yi
(

∑

xi

)

b +
(

∑

x2
i

)

m =
∑

xiyi

(e) Solve the equations in part (d) for b and m, getting

b =

(

n
∑

i=1

x2
i

n
∑

i=1

yi −

n
∑

i=1

xi

n
∑

i=1

xiyi

)

/

⎛

⎜

⎜

⎝

n

n
∑

i=1

x2
i
−

(

n
∑

i=1

xi

)2
⎞

⎟

⎟

⎠

m =

(

n

n
∑

i=1

xiyi −

n
∑

i=1

xi

n
∑

i=1

yi

)

/

⎛

⎜

⎜

⎝

n

n
∑

i=1

x2
i
−

(

n
∑

i=1

xi

)2
⎞

⎟

⎟

⎠

(f) Apply the formulas of part (e) to the data points (1, 1), (2, 1), (3, 3) to check that you get the

same result as in Example 3 on page 819.

3. Hockey and Entropy

Thirty teams compete for the Stanley Cup in the National Hockey League (after expansion in

2000). At the beginning of the season an experienced fan estimates that the probability that team

i will win is some number pi, where 0 ≤ pi ≤ 1 and

30
∑

i=1

pi = 1.

Exactly one team will actually win, so the probabilities have to add to 1. If one of the teams,

say team i, is certain to win then pi is equal to 1 and all the other pj are zero. Another extreme

case occurs if all the teams are equally likely to win, so all the pi are equal to 1∕30, and the

outcome of the hockey season is completely unpredictable. Thus, the uncertainty in the outcome

of the hockey season depends on the probabilities p1,… , p30. In this problem we measure this

uncertainty quantitatively using the following function:

S(p1,… , p30) = −

30
∑

i=1

pi
ln pi

ln 2
.

Note that as pi ≤ 1, we have − ln pi ≥ 0 and hence S ≥ 0.

(a) Show that limp→0 p ln p = 0. (This means that S is a continuous function of the pi, where

0 ≤ pi ≤ 1 and 1 ≤ i ≤ 30, if we set p ln p|p=0 equal to zero. Since S is then a continuous

function on a closed and bounded region, it attains a maximum and a minimum value on

this region.)
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(b) Find the maximum value of S(p1,… , p30) subject to the constraint p1+⋯+ p30 = 1. What

are the values of pi in this case? What does your answer mean in terms of the uncertainty

in the outcome of the hockey season?

(c) Find the minimum value of S(p1,… , p30), subject to the constraint p1 +⋯ + p30 = 1. What

are the values of pi in this case? What does your answer mean in terms of the uncertainty

in the outcome of the hockey season?

[Note: The function S is an example of an entropy function; the concept of entropy is used in

information theory, statistical mechanics, and thermodynamics when measuring the uncertainty

in an experiment (the hockey season in this problem) or physical system.]
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CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Double Integral

Definition as a limit of Riemann sum; interpretation as

volume under graph, as area, as average value, or as

total mass from density; estimating from contour dia-

grams or tables; evaluating using iterated integrals; set-

ting up in polar coordinates.

• Triple Integral

Definition as a limit of Riemann sum; interpretation as

volume of solid, as total mass, or as average value; eval-

uating using iterated integrals; setting up in cylindrical

or spherical coordinates.

• Probability

Joint density functions, using integrals to calculate

probability.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER 16

EXERCISES

For Exercises 1–3, sketch the region of integration and eval-

uate the integral.

1.
∫

3

0 ∫

2x

0

(x2 + y2) dy dx

2.
∫

�

0 ∫

x

0

sin xdy dx

3.
∫

0

−2 ∫

0

−
√

9−x2
2xy dy dx

In Exercises 4–9, sketch the region of integration.

4.
∫

1

−1 ∫

√

1−x2

−
√

1−x2
f (x, y) dy dx

5.
∫

2

0 ∫

0

−
√

4−y2
f (x, y) dx dy

6.
∫

4

1 ∫

√

y

−
√

y

f (x, y) dx dy

7.
∫

1

0 ∫

sin−1 y

0

f (x, y) dx dy

8.
∫

1

−1 ∫

1

−1 ∫

√

1−z2

0

f (x, y, z) dy dz dx

9.
∫

1

0 ∫

y

0 ∫

x

0

f (x, y, z) dz dx dy

In Exercises 10–13, choose coordinates and write a triple

integral for a function over the region. Include limits of in-

tegration.

10.

✛

✛

5 cm

✛

✛

2 cm

✛

✛

3 cm

11.
✲✛2 cm

✻

❄
3 cm

12.

✛ ✛5 cm ✛✛2 cm 13. ✻

❄

5 cm

�∕2

14. Write ∫
R
f (x, y) dA as an iterated integral if R is the

region in Figure 16.1.

−2 4

4

R

x

y

Figure 16.1

15. Consider the integral ∫
4

0
∫

−(y−4)∕2

0
g(x, y) dx dy.

(a) Sketch the region over which the integration is be-

ing performed.

(b) Write the integral with the order of the integration

reversed.

16. Evaluate ∫
R

√

x2 + y2 dA where R is the region in Fig-

ure 16.2.

−1−2 1 2

1

2

x

y

R

Figure 16.2

In Exercises 17–23, calculate the integral exactly.
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17.
∫

10

0 ∫

0.1

0

xexy dy dx

18.
∫

1

0 ∫

4

3

(sin (2 − y)) cos (3x − 7) dx dy

19.
∫

1

0 ∫

y

0

(sin3 x)(cos x)(cos y) dxdy

20.
∫

4

3 ∫

1

0

x2y cos (xy) dy dx

21.
∫

1

0 ∫

√

1−x2

−
√

1−x2
e−(x

2+y2) dy dx

22.
∫

1

0 ∫

z

0 ∫

2

0

(y + z)7 dx dy dz

23.
∫

1

0 ∫

z

0 ∫

y

0

xyz dx dy dz

24. Using Cartesian, cylindrical, or spherical coordinates,

write an equation for the following surfaces. Each equa-

tion should be of the form “Coordinate = Constant.”

x

y

2

z(a)

x

y

z

3

(b)

x

y

z

√

3

(c)

x

y

z

1
✲✛ 1

(d)

x

y
z

−5

(e)

x

y

z

(1, 1, 1)

(1, 1, 0)

(f)

If W is the region in Figure 16.3, what are the limits of in-

tegration in Problems 25–27?

y

x

z

−
√

2

(1, 0,−1)

Figure 16.3: Cone with spherical cap

25.
∫

?

? ∫

?

? ∫

?

?

f (�, �, �)�2 sin�d� d� d�

26.
∫

?

? ∫

?

? ∫

?

?

g(r, �, z)r dz dr d�

27.
∫

?

? ∫

?

? ∫

?

?

ℎ(x, y, z) dz dy dx

28. Set up ∫
R
f dV as an iterated integral in all six pos-

sible orders of integration, where R is the hemisphere

bounded by the upper half of x2 + y2 + z2 = 1 and the

xy-plane.

PROBLEMS

In Problems 29–37, decide (without calculating its value)

whether the integral is positive, negative, or zero. Let W be

the solid half-cone bounded by z =
√

x2 + y2, z = 2 and the

yz-plane with x ≥ 0.

29. ∫
W
xdV 30. ∫

W
z dV

31. ∫
W
(z −

√

x2 + y2) dV 32. ∫
W

√

x2 + y2 dV

33. ∫
W
(z − 2) dV 34. ∫

W
y dV

35. ∫
W
xy dV 36. ∫

W
xyz dV

37. ∫
W
e−xyz dV

38. (a) Set up a triple integral giving the volume of the

tetrahedron bounded by the three coordinate planes

and the plane z − x + y = 2.

(b) Evaluate the integral.

39. Let B be the solid sphere of radius 1 centered at the ori-

gin; let T be the top half of the sphere (z ≥ 0); let R be

the right half of the sphere (x ≥ 0).

(a) Without calculation, decide which of the following

integrals are zero. What are the signs of the others?

(i) ∫
B
1 dV (ii) ∫

T
z dV (iii) ∫

R
z dV
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(b) Evaluate, numerically where necessary, any of the

three integrals that is not zero.

40. Sketch the region R over which the integration is being

performed:

∫

�∕2

0 ∫

�

�∕2 ∫

1

0

f (�, �, �)�2 sin�d� d� d�.

41. (a) Convert the following triple integral to spherical

coordinates:

∫

2�

0 ∫

3

0 ∫

r

0

r dz dr d�.

(b) Evaluate either the original integral or your answer

to part (a).

In Problems 42–45, sketch the region of integration and

write a triple integral, including limits, over the region.

42. Region: 0 ≤ z ≤ 1 + x, 0 ≤ x ≤ 2, 0 ≤ y ≤ 1.

43. Region: 2 ≤ z ≤ 3, 5 ≤ x2 + y2 ≤ 6.

44. Region: 3 ≤ x2 + y2 + z2 ≤ 4, 0 ≤ � ≤ �.

45. Region: x2 + y2 + z2 ≤ 9, x2 + y2 ≤ 1, z ≥ 0.

In Problems 46–50, is the double integral positive or nega-

tive, or is it impossible to tell? The finite regions T , B,R,L

are in the xy-plane.

T lies in the region where y > 0,

R lies in the region where x > 0,

B lies in the region where y < 0,

L lies in the region where x < 0.

46.
∫
T

e−x dA 47.
∫
B

y3 dA

48.
∫
R

(x + y2) dA 49.
∫
L

y3 dA

50.
∫
L

(x + y2) dA

In Problems 51–58, decide (without calculating its value)

whether the integral is positive, negative, or zero. Let W be

the solid sphere bounded by x2 + y2 + z2 = 1.

51. ∫
W
z dV 52. ∫

W
x dV

53. ∫
W
xy dV 54. ∫

W
sin(

�

2
xy) dV

55. ∫
W
xyz dV 56. ∫

W
e−xyz dV

57. ∫
W
(z2 − 1) dV 58. ∫

W

√

x2 + y2 + z2 dV

In Problems 59–62, evaluate the integral by changing it to

cylindrical or spherical coordinates.

59.
∫

√

3

−
√

3 ∫

√

3−x2

−
√

3−x2 ∫

4−x2−y2

1

1

z2
dz dy dx

60.
∫

1

0 ∫

√

1−x2

0 ∫

√

x2+y2

0

(z +
√

x2 + y2) dz dy dx

61.
∫

3

0 ∫

√

9−z2

−
√

9−z2 ∫

√

9−y2−z2

−
√

9−y2−z2
x2 dx dy dz

62.
∫
W

z

(x2 + y2)3∕2
dV , if W is 1 ≤ x2 + y2 ≤ 4,

0 ≤ z ≤ 4

63. (a) Sketch the region of integration of

∫

√

8

2 ∫

√

8−y2

0

e−x
2−y2dx dy+

∫

2

0 ∫

y

0

e−x
2−y2dx dy

(b) Evaluate the quantity in part (a).

64. A circular lake 10 km in diameter has a circular island

2 km in diameter at its center. At t kilometers from the

island the depth of the lake is 100t(4− t) meters, where

0 ≤ t ≤ 4. What is the volume of water in the lake?

65. A solid region D is a half cylinder with radius 1 lying

horizontally with its rectangular base in the xy-plane

and its axis along the line y = 1 from x = 0 to x = 10.

(The region is above the xy-plane.)

(a) What is the equation of the curved surface of this

half cylinder?

(b) Write the limits of integration of the integral

∫
D
f (x, y, z) dV in Cartesian coordinates.

66. Find the volume of the region bounded by z = x + y,

0 ≤ x ≤ 5, 0 ≤ y ≤ 5, and the planes x = 0, y = 0, and

z = 0.

67. (a) Sketch the region of integration, or describe it pre-

cisely in words, for the following integral:

∫

1

−1 ∫

1

−1 ∫

√

1−z2

0

f (x, y, z) dy dz dx.

(b) Evaluate the integral with f (x, y, z) = (y2+z2)3∕2.

68. A thin circular disk of radius 12 cm has density which

increases linearly from 1 gm/cm2 at the center to 25

gm/cm2 at the rim.

(a) Write an iterated integral representing the mass of

the disk.

(b) Evaluate the integral.

69. Figure 16.4 shows part of a spherical ball of radius

5 cm. Write an integral in cylindrical coordinates rep-

resenting the volume of this region and evaluate it.

✻

❄

2 cm

Figure 16.4
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70. Find the mass of the solid bounded by the xy-plane, yz-

plane, xz-plane, and the plane 4x + 3y + z = 12, if the

density of the solid is given by �(x, y, z) = x2.

71. Figure 16.5 shows part of a spherical ball of radius

5 cm. Write an integral in spherical coordinates repre-

senting the volume of this region and evaluate it.

✻

❄

2 cm

Figure 16.5

72. A forest next to a road has the shape in Figure 16.6. The

population density of rabbits is proportional to the dis-

tance from the road. It is 0 at the road, and 10 rabbits

per square mile at the opposite edge of the forest. Find

the total rabbit population in the forest.

Road

Forest

✻

❄

5 miles

✲✛ 10 miles

✲✛ 6 miles

(−2, 5)

(0, 0) (6, 0)

(8, 5)

Figure 16.6

73. A solid hemisphere of radius 2 cm has density, in

gm/cm3, at each point equal to the distance in centime-

ters from the point to the center of the base. Write a

triple integral representing the total mass of the hemi-

sphere. Evaluate the integral.

74. Find the volume that remains after a cylindrical hole of

radius R is bored through a sphere of radius a, where

0 < R < a, passing through the center of the sphere

along the pole.

75. Two spheres, one of radius 1, one of radius
√

2, have

centers that are 1 unit apart. Write a triple integral, in-

cluding limits of integration, giving the volume of the

smaller region that is outside one sphere and inside the

other. Evaluate the integral.

For Problems 76–77, use the definition of moment of inertia

given for problems 96–98 of section 16.3.

76. Consider a rectangular brick with length 5, width 3,

and height 1, and of uniform density 1. Compute the

moment of inertia about each of the three axes passing

through the center of the brick, perpendicular to one of

the sides.

77. Compute the moment of inertia of a ball of radius R

about an axis passing through its center. Assume that

the ball has a constant density of 1.

78. A particle of mass m is placed at the center of one base

of a circular cylindrical shell of inner radius r1, outer ra-

dius r2, height ℎ, and constant density �. Find the force

of gravity exerted by the cylinder on the particle.

79. (a) Find the constant k such that f (x, y) = k(x + y) is

a probability density function on the quarter disk

x2 + y2 ≤ 100, x ≥ 0, y ≥ 0. [Hint: Use polar

coordinates.]

(b) Find the probability that a point chosen in the quar-

ter disk according to the probability density in

part (a) is less than 7 units from the origin.

CAS Challenge Problems

80. Let D be the region inside the triangle with vertices

(0, 0), (1, 1) and (0, 1). Express the double integral

∫
D
ey

2
dA as an iterated integral in two different ways.

Calculate whichever of the two you can do by hand, and

calculate the other with a computer algebra system if

possible. Compare the answers.

81. Let D be the region inside the circle x2 + y2 = 1. Ex-

press the integral ∫
D

3
√

x2 + y2 dA as an iterated inte-

gral in both Cartesian and polar coordinates. Calculate

whichever of the two you can do by hand, and calculate

the other with a computer algebra system if possible.

Compare the answers.

82. Compute the iterated integrals
∫

1

0 ∫

0

−1

x + y

(x − y)3
dy dx

and
∫

0

−1 ∫

1

0

x + y

(x − y)3
dx dy. Explain why your answers

do not contradict Theorem 16.1 on page 848.

83. For each of the following functions, find its average

value over the square −ℎ ≤ x ≤ ℎ, −ℎ ≤ y ≤ ℎ,

calculate the limit of your answer as ℎ → 0, and com-

pare with the value of the function at (0, 0). Assume a,

b, c, d, e, and k are constants.

F (x, y) = a + bx4 + cy4 + dx2y2 + ex3y3

G(x, y) = a sin(kx) + b cos(ky) + c

H(x, y) = ax2ex+y + by2ex−y

Formulate a conjecture from your results and explain

why it makes sense.
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1. A Connection Between e and �

In this problem you will derive one of the remarkable formulas of mathematics, namely that

∫

∞

−∞

e−x
2
dx =

√

�.

(a) Change the following double integral into polar coordinates and evaluate it:

∫

∞

−∞ ∫

∞

−∞

e−(x
2+y2)dxdy.

(b) Explain why

∫

∞

−∞ ∫

∞

−∞

e−(x
2+y2)dxdy =

(

∫

∞

−∞

e−x
2
dx

)2

.

(c) Explain why the answers to parts (a) and (b) give the formula we want.

2. Average Distance Walked to an Airport Gate

At airports, departure gates are often lined up in a terminal like points along a line. If you arrive

at one gate and proceed to another gate for a connecting flight, what proportion of the length of

the terminal will you have to walk, on average?

(a) One way to model this situation is to randomly choose two numbers, 0 ≤ x ≤ 1 and 0 ≤

y ≤ 1, and calculate the average value of |x − y|. Use a double integral to show that, on

average, you have to walk 1∕3 the length of the terminal.

(b) The terminal gates are not actually located continuously from 0 to 1, as we assumed in part

(a). There are only a finite number of gates and they are likely to be equally spaced. Suppose

there are n + 1 gates located 1∕n units apart from one end of the terminal (x0 = 0) to the

other (xn = 1). Assuming that all pairs (i, j) of arrival and departure gates are equally likely,

show that

Average distance between gates =
1

(n + 1)2
⋅

n
∑

i=0

n
∑

j=0

|

|

|

|

i

n
−

j

n

|

|

|

|

.

Identify this sum as approximately (but not exactly) a Riemann sum with n subdivisions for

the integrand used in part (a). Compute this sum for n = 5 and n = 10 and compare to the

answer of 1∕3 obtained in part (a).
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CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Parameterized Curves

Parameterizations representing motion in 2- and 3-

space, change of parameter, vector form of parametric

equations, parametric equation of a line.

• Velocity and Acceleration Vectors

Computing velocity and acceleration, uniform circular

motion, the length of a parametric curve.

• Vector Fields

Definition of vector field, visualizing fields, gradient

fields.

• Flow Lines

Parametric equations of flow lines, approximating flow

lines numerically.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER 17

EXERCISES

Write a parameterization for the curves in Exercises 1–13.

1. The equation of the line through (2,−1, 3) and parallel

to 5i⃗ + 4j⃗ − k⃗ .

2. The line passing through the points (1, 2, 3) and (3, 5, 7).

3. The horizontal line through the point (0, 5).

4. The circle of radius 2 centered at the origin starting at

the point (0, 2) when t = 0.

5. The circle of radius 4 centered at the point (4, 4) starting

on the x-axis when t = 0.

6. The circle of radius 1 in the xy-plane centered at the

origin, traversed counterclockwise when viewed from

above.

7. The line through the points (2,−1, 4) and (1, 2, 5).

8. The line through the point (1, 3, 2) perpendicular to the

xz-plane.

9. The line through the point (1, 1, 1) perpendicular to the

plane 2x − 3y + 5z = 4.

10. The circle of radius 3 in the xy-plane, centered at the

origin, counterclockwise.

11. The circle of radius 3 parallel to the xz-plane, cen-

tered at the point (0, 5, 0), and traversed counterclock-

wise when viewed from (0, 10, 0).

12. The line of intersection of the planes z = 4 + 2x + 5y

and z = 3 + x + 3y.

13. The circle of radius 10 centered at the point (0, 0, 7), ly-

ing horizontally, and traversed in a clockwise direction

viewed from the point (0, 0, 11). The parameterization

should have period 30.

In Exercises 14–18, find the velocity vector.

14. x = 3 cos t, y = 4 sin t

15. x = t, y = t3 − t

16. x = 2 + 3t, y = 4 + t, z = 1 − t

17. x = 2 + 3t2, y = 4 + t2, z = 1 − t2

18. x = t, y = t2, z = t3

In Exercises 19–22, are the following quantities vectors or

scalars? Find them.

19. The velocity of a particle moving, for t ≥ 0, along the

curve x = 2 + 3 sin
√

2t + 1, y = 4 + 3 cos
√

2t + 1,

z = 10 +
√

2t + 1.

20. The speed of a particle moving along the curve x = t2,

y = et.

21. The velocity of a particle moving along the curve x =

5 −
√

3 + sin t, y =
√

3 + cos t.

22. The acceleration of a particle moving along the curve

x = tet, y = e2t.

23. Are the lines x = 3 + 2t, y = 5 − t, z = 7 + 3t and

x = 3 + t, y = 5 + 2t, z = 7 + 2t parallel?

24. Are the lines x = 3 + 2t, y = 5 − t, z = 7 + 3t and

x = 5 + 4t, y = 3 − 2t, z = 1 + 6t parallel?

25. Explain how you know the following equations param-

eterize the same line:

r⃗ = (3 − t)i⃗ + (3 + 4t)j⃗ − (1 + 2t)k⃗

r⃗ = (1 + 2t)i⃗ + (11 − 8t)j⃗ + (4t − 5)k⃗

26. A line is parameterized by r⃗ = 10k⃗ + t(i⃗ + 2j⃗ + 3k⃗ ).

(a) Suppose we restrict ourselves to t < 0. What part

of the line do we get?

(b) Suppose we restrict ourselves to 0 ≤ t ≤ 1. What

part of the line do we get?

Sketch the vector fields in Exercises 27–29.

27. F⃗ (x, y) = −yi⃗ + xj⃗

28. F⃗ =
y

x2 + y2
i⃗ −

x

x2 + y2
j⃗

29. F⃗ =
y

√

x2 + y2
i⃗ −

x
√

x2 + y2
j⃗
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PROBLEMS

30. Where does the line x = 2t + 1, y = 3t − 2, z = −t + 3

intersect the sphere (x− 1)2 + (y+ 1)2 + (z− 2)2 = 2?

31. A particle travels along a line, with position at time t

given by r⃗ (t) = (2 + 5t)i⃗ + (3 + t)j⃗ + 2tk⃗ .

(a) Where is the particle when t = 0?

(b) When does the particle reach the point (12, 5, 4)?

(c) Does the particle ever reach (12, 4, 4)? Explain.

32. Consider the parametric equations for 0 ≤ t ≤ �:

(I) r⃗ = cos(2t)i⃗ + sin(2t)j⃗

(II) r⃗ = 2 cos ti⃗ + 2 sin tj⃗

(III) r⃗ = cos(t∕2)i⃗ + sin(t∕2)j⃗

(IV) r⃗ = 2 cos ti⃗ − 2 sin tj⃗

(a) Match the equations above with four of the curves

C1, C2, C3, C4, C5 and C6 in Figure 17.1. (Each

curve is part of a circle.)

(b) Give parametric equations for the curves which

have not been matched, again assuming 0 ≤ t ≤ �.

1 2

1

2

C1

C2

C3

C4

C5 C6

x

y

Figure 17.1

33. (a) What is meant by a vector field?

(b) Suppose a⃗ = a1i⃗ +a2j⃗ +a3k⃗ is a constant vector.

Which of the following are vector fields? Explain.

(i) r⃗ + a⃗ (ii) r⃗ ⋅ a⃗

(iii) x2 i⃗ + y2j⃗ + z2k⃗ (iv) x2 + y2 + z2

34. Match the level curves in (I)–(IV) with the gradient

fields in (A)–(D). All figures have −2 ≤ x ≤ 2,−2 ≤

y ≤ 2.

1 2 3 4

(I)

0.51 1.52

(II)

2 1 1 2

−2
−1

−1
−2

(III)

−2 −1 −1 −2

2
1

1
2

(IV)

(A) (B)

(C) (D)

35. Each of the vector fields E⃗ , F⃗ , G⃗ , H⃗ is tangent to one

of the families of curves (I)–(IV). Match them.

E⃗ = xi⃗ + yj⃗ F⃗ = xi⃗ − yj⃗

G⃗ = yi⃗ − xj⃗ H⃗ = yi⃗ + xj⃗

x

y(I)

x

y(II)

x

y(III)

x

y(IV)

36. A particle passes through the point P = (5, 4, 3) at time

t = 7, moving with constant velocity v⃗ = 3i⃗ + j⃗ +2k⃗ .

Find equations for its position at time t.
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37. An object moving with constant velocity in 3-space,

with coordinates in meters, passes through the point

(1, 1, 1), then through (2,−1, 3) five seconds later. What

is its velocity vector? What is its acceleration vector?

38. Find parametric equations for a particle moving along

the line y = −2x + 5 with speed 3.

39. The temperature in ◦C at (x, y) in the plane is H =

f (x, y), where x, y are in centimeters. A particle moves

along the curve x = g(t), y = k(t), with t in seconds.

(a) What does the quantity || grad f || represent in this

context? What is its units?

(b) Write an expression for the speed of the particle.

What is its units?

(c) Write an expression for the rate of change of the

particle’s temperature with time. What is its units?

40. Find parametric equations for motion along the line

y = 3x + 7 such that the x-coordinate decreases by 2

units for each unit of time.

41. The y-axis is vertical and the x-axis is horizontal; t rep-

resents time. The motion of a particle is given by

x = t3 − 3t, y = t2 − 2t.

(a) Does the particle ever come to a stop? If so, when

and where?

(b) Is the particle ever moving straight up or down? If

so, when and where?

(c) Is the particle ever moving straight horizontally

right or left? If so, when and where?

42. The position of a particle at time t, is given by r⃗ (t) =

cos 4ti⃗ + sin 4tj⃗ + 3tk⃗ .

(a) Find the velocity and acceleration of the particle.

(b) Find the speed of the particle.

(c) Show that the particle moves with constant speed.

(d) Find the angle between the particle’s position and

acceleration vector at time t = 0.

43. A stone is swung around on a string at a constant speed

with period 2� seconds in a horizontal circle centered at

the point (0, 0, 8). When t = 0, the stone is at the point

(0, 5, 8); it travels clockwise when viewed from above.

When the stone is at the point (5, 0, 8), the string breaks

and it moves under gravity.

(a) Parameterize the stone’s circular trajectory.

(b) Find the velocity and acceleration of the stone at

the moment before the string breaks.

(c) Write, but do not solve, the differential equations

(with initial conditions) satisfied by the coordi-

nates x, y, z giving the position of the stone after

it has left the circle.

44. The origin is on the surface of the earth, and the z-axis

points upward. For t ≥ 0, a particle moves according to

x(t) = 5t, y(t) = 3t, z(t) = 15 − t2 + 2t.

(a) What is the position, velocity, and acceleration at

time t = 0?

(b) When and where does the particle hit the ground?

How fast is it moving then?

45. Let f (x, y) =
x2 − y2

x2 + y2
.

(a) In which direction should you move from the point

(1, 1) to obtain the maximum rate of increase of f?

(b) Find a direction in which the directional derivative

at the point (1, 1) is equal to zero.

(c) Suppose you move along the curve x = e2t, y =

2t3 + 6t + 1. What is df∕dt at t = 0?

46. An ant, starting at the origin, moves at 2 units/sec along

the x-axis to the point (1, 0). The ant then moves coun-

terclockwise along the unit circle to (0, 1) at a speed

of 3�∕2 units/sec, then straight down to the origin at a

speed of 2 units/sec along the y-axis.

(a) Express the ant’s coordinates as a function of time,

t, in secs.

(b) Express the reverse path as a function of time.

47. The temperature at the point (x, y) in the plane is given

by F (x, y) = 1∕(x2 + y2). A ladybug moves along a

parabola according to the parametric equations

x = t, y = t2.

Assuming that the ladybug’s temperature is the same as

the plane at her current location, find the rate of change

in the temperature of the ladybug at time t. Use the

chain rule to show that for any temperature function

F (x, y) and any path of the ladybug r⃗ = x(t)i⃗ + y(t)j⃗ ,

then writing v⃗ (t) = dr⃗ ∕dt gives:

Rate of change of temperature = ∇F (x, y) ⋅ v⃗ .

48. The motion of the particle is given by the parametric

equations

x = t3 − 3t, y = t2 − 2t.

Give parametric equations for the tangent line to the

path of the particle at time t = −2.

49. At time t = 0 a particle in uniform circular motion in

the plane has velocity v⃗ = 6i⃗ − 4j⃗ and acceleration

a⃗ = 2i⃗ + 3j⃗ . Find the radius and center of its orbit if

at time t = 0 it is at the point

(a) P = (0, 0) (b) P = (10, 50)

50. Find parametric equations of the line passing through

the points (1, 2, 3), (3, 5, 7) and calculate the shortest

distance from the line to the origin.

51. On a calculator or a computer, plot x = 2t∕(t2 + 1),

y = (t2 − 1)∕(t2 + 1), first for −50 ≤ t ≤ 50 then for

−5 ≤ t ≤ 5. Explain what you see. Is the curve really a

circle?
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52. A cheerleader has a 0.4 m long baton with a light on one

end. She throws the baton in such a way that it moves

entirely in a vertical plane. The origin is on the ground

and the y-axis is vertical. The center of the baton moves

along a parabola and the baton rotates counterclockwise

around the center with a constant angular velocity. The

baton is initially horizontal and 1.5m above the ground;

its initial velocity is 8 m/sec horizontally and 10 m/sec

vertically, and its angular velocity is 2 revolutions per

second. Find parametric equations describing the fol-

lowing motions:

(a) The center of the baton relative to the ground.

(b) The end of the baton relative to its center.

(c) The path traced out by the end of the baton relative

to the ground.

(d) Sketch a graph of the motion of the end of the ba-

ton.

53. For a and ! positive constants and t ≥ 0, the position

vector of a particle moving in a spiral counterclockwise

outward from the origin is given by

r⃗ (t) = at cos(!t)i⃗ + at sin(!t)j⃗ .

What is the significance of the parameters ! and a?

54. An object is moving on a straight-line path. Can you

conclude at all times that:

(a) Its velocity vector is parallel to the line? Justify

your answer.

(b) Its acceleration vector is parallel to the line? Justify

your answer.

55. If F⃗ = r⃗ ∕‖r⃗ ‖3, find the following quantities in terms

of x, y, z, or t.

(a) ‖F⃗ ‖

(b) F⃗ ⋅ r⃗

(c) A unit vector parallel to F⃗ and pointing in the same

direction

(d) A unit vector parallel to F⃗ and pointing in the op-

posite direction

(e) F⃗ if r⃗ = cos ti⃗ + sin tj⃗ + k⃗

(f) F⃗ ⋅ r⃗ if r⃗ = cos ti⃗ + sin tj⃗ + k⃗

56. Each of the following vector fields represents an ocean

current. Sketch the vector field, and sketch the path of

an iceberg in this current. Determine the location of an

iceberg at time t = 7 if it is at the point (1, 3) at time

t = 0.

(a) The current everywhere is i⃗ .

(b) The current at (x, y) is 2xi⃗ + yj⃗ .

(c) The current at (x, y) is −yi⃗ + xj⃗ .

57. Wire is stretched taught from the point P = (7, 12,−10)

to the point Q = (−2,−3, 2) and from the point R =

(−20, 17, 1) to the point S = (37, 2, 25). Spherical

beads of radius 8 cm slide along each wire through holes

along an axis through their centers. Can the beads pass

each other without touching, regardless of their posi-

tion?

58. A particle moves with displacement vector r⃗ and con-

stant speed. Show that the vector representing the veloc-

ity is perpendicular to the vector representing the accel-

eration.

CAS Challenge Problems

59. Let r⃗ 0 = x0 i⃗ + y0j⃗ + z0k⃗ , and let e⃗1 and e⃗2 be per-

pendicular unit vectors. A circle of radiusR, centered at

(x0, y0, z0), and lying in the plane parallel to e⃗ 1 and e⃗ 2,

is parameterized by r⃗ (t) = r⃗ 0 + R cos te⃗ 1 + R sin te⃗ 2.

We want to parameterize a circle in 3-space with ra-

dius 5, centered at (1, 2, 3), and lying in the plane

x + y + z = 6.

(a) Let e⃗ 1 = ai⃗ + bj⃗ and e⃗ 2 = ci⃗ + dj⃗ + ek⃗ . Write

down conditions on e⃗ 1 and e⃗ 2 that make them unit

vectors, perpendicular to each other, and lying in

the given plane.

(b) Solve the equations in part (a) for a, b, c, d, and e

and write a parameterization of the circle.

60. Let F⃗ (x, y) = −y(1 − y2)i⃗ + x(1 − y2)j⃗ .

(a) Show that r⃗ ⋅ F⃗ = 0. What does this tell you about

the shape of the flow lines?

(b) Show that r⃗ (t) = cos ti⃗ +sin tj⃗ has velocity vector

parallel to F⃗ at every point, but is not a flow line.

(c) Show r⃗ (t) = (1∕(
√

1 + t2))i⃗ + (t∕(
√

1 + t2))j⃗ is

a flow line for F⃗ . What is the difference between

this curve and the one in part (b)?

61. Let F⃗ (x, y) = (x + y)i⃗ + (4x + y)j⃗ .

(a) Show that r⃗ (t) = (ae3t+be−t)i⃗ +(2ae3t−2be−t)j⃗ ,

for constant a, b, is a flow line for F⃗ .

(b) Find the flow line passing through (1,−2) at t = 0

and describe its behavior as t → ∞. Do the same

for the points (1,−1.99) and (1,−2.01). Compare

the behavior of the three flow lines.

62. Two surfaces generally intersect in a curve. For each

of the following pair of surfaces f (x, y, z) = 0 and

g(x, y, z) = 0, find a parameterization for the curve of

intersection by solving for two of the variables in terms

of the third.

(a) 3x − 5y + z = 5, 2x + y + z = 3,

(b) 3x2 − 5y + z = 5, 2x + y + z = 3,

(c) x2 + y2 = 2, 3x − y + z = 5.
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PROJECTS FOR CHAPTER SEVENTEEN

1. Shooting a Basketball

A basketball player shoots the ball from 6 feet above the ground toward a basket that is 10 feet

above the ground and 15 feet away horizontally.

(a) Suppose she shoots the ball at an angle of A degrees above the horizontal (0 < A < �∕2)

with an initial speed V . Give the x- and y-coordinates of the position of the basketball at

time t. Assume the x-coordinate of the basket is 0 and that the x-coordinate of the shooter is

−15. [Hint: There is an acceleration of−32 ft/sec2 in the y-direction; there is no acceleration

in the x-direction. Ignore air resistance.]

(b) Using the parametric equations you obtained in part (a), experiment with different values

for V and A, plotting the path of the ball on a graphing calculator or computer to see how

close the ball comes to the basket. (The tick marks on the y-axis can be used to locate the

basket.) Find some values of V and A for which the shot goes in.

(c) Find the angle A that minimizes the velocity needed for the ball to reach the basket. (This

is a lengthy computation. First find an equation in V and A that holds if the path of the

ball passes through the point 15 feet from the shooter and 10 feet above the ground. Then

minimize V .)

2. Kepler’s Second Law

The planets do not orbit in circles with the sun at the center, nor does the moon orbit in a circle

with the earth at the center. In fact, the moon’s distance from the earth varies from 220,000 to

260,000 miles. In the last half of the 16th century the Danish astronomer Tycho Brahe (1546–

1601) made measurements of the positions of the planets. Johann Kepler (1571–1630) studied

this data and arrived at three laws now known as Kepler’s Laws:

I. The orbit of each planet is an ellipse with the sun at one focus. In particular, the orbit lies in

a plane containing the sun.

II. As a planet orbits around the sun, the line segment from the sun to the planet sweeps out

equal areas in equal times. See Figure 17.2.

III. The ratio p2∕d3 is the same for every planet orbiting around the sun, where p is the period of

the orbit (time to complete one revolution) and d is the mean distance of the orbit (average

of the shortest and farthest distances from the sun).

Kepler’s Laws, impressive as they are, were purely descriptive; Newton’s great achievement

was to find an underlying cause for them. In this project, you will derive Kepler’s Second Law

from Newton’s Law of Gravity.

Consider a coordinate system centered at the sun.1 Let r⃗ be the position vector of a planet

and let v⃗ and a⃗ be the planet’s velocity and acceleration, respectively. Define L⃗ = r⃗ × v⃗ . (This

is a multiple of the planet’s angular momentum.)

(a) Show that
dL⃗

dt
= r⃗ × a⃗ .

(b) Consider the planet moving from r⃗ to r⃗ + Δr⃗ . Explain why the area ΔA about the origin

swept out by the planet is approximately
1

2
‖Δr⃗ × r⃗ ‖.

(c) Using part (b), explain why
dA

dt
=

1

2
‖L⃗ ‖.

(d) Newton’s Laws imply that the planet’s gravitational acceleration, a⃗ , is directed toward the

sun. Using this fact and part (a), explain why L⃗ is constant.

(e) Use parts (c) and (d) to explain Kepler’s Second Law.

(f) Using Kepler’s Second Law, determine whether a planet is moving most quickly when it is

closest to, or farthest from, the sun.

1We are assuming the center of the sun is the same as the center of mass of the planet/sun system. This is only approximately

true.
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Sun

Planet

Planet

Figure 17.2: The line segment joining a planet to the sun sweeps out equal areas in equal times

3. Flux Diagrams

A flux diagram uses flow lines to represent a vector field. The arrows drawn on a flow line

indicate the direction of the vector field. The flow lines are drawn in such a way that their density

is proportional to the magnitude of the vector field at each point. (The density is the number of

flow lines per unit length along a curve perpendicular to the vector field.)

Figure 17.3 is a flux diagram for the vector field in 2-space F⃗ = r⃗ ∕‖r⃗ ‖2. Since the field

points radially away from the origin, the flow lines are straight lines radiating from the origin.

The number of flow lines passing through any circle centered at the origin is a constant k. There-

fore, the flow lines passing through a small circle are more densely packed than those passing

through a large circle, indicating that the magnitude of the vector field decreases as we move

away from the origin. In fact,

Density of lines =
Number of lines passing through circle

Circumference of circle
=

k

2�r
=

k

2�
1∕r,

so that the density is proportional to 1∕r, the magnitude of the field.

Sometimes we have to start new lines to make the density proportional to the magnitude.

For example, the flow lines of v⃗ = xi⃗ are horizontal straight lines directed away from the y-axis.

However, since the magnitude of v⃗ increases linearly with x, we have to make the density of

lines increase linearly with x. We achieve this by starting new lines at regular intervals. (See

Figure 17.4.)

Draw flux diagrams for the following vector fields:

(a) v⃗ = i⃗ (b) v⃗ = −yi⃗ + xj⃗ (c) v⃗ = yi⃗ (d) v⃗ = yj⃗

x

y

Figure 17.3

x

y

Figure 17.4
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REVIEW EXERCISES AND PROBLEMS FOR CHAPTER 18

EXERCISES

The figures in Exercises 1–2 show a vector field F⃗ and a

curve C . Decide if ∫
C
F⃗ ⋅ dr⃗ is positive, zero, or negative.

1. 2.

For the vector fields in Exercises 3–4, is the line integral pos-

itive, negative, or zero along

(a) A? (b) C1, C2, C3, C4?

(c) C , the closed curve consisting of all theCs together?

3.

A

C2

C3

C4

C1

4.

A

C1

C2

C3

C4

5. Is
∫
C

(3i⃗ + 4j⃗ ) ⋅ dr⃗ , where C is the line from (5, 2) to

(1, 8), a vector or a scalar? Calculate it.

6. Is
∫
C

(xi⃗ + yj⃗ ) ⋅ dr⃗ , where C is the line from (0, 2) to

(0, 6), a vector or a scalar? Calculate it.

In Exercises 7–12, find ∫
C
F⃗ ⋅ dr⃗ for the given F⃗ and C .

7. F⃗ = 6i⃗ − 7j⃗ , and C is an oriented curve from (2,−6)

to (4, 4).

8. F⃗ = xi⃗ + yj⃗ and C is the unit circle in xy-plane ori-

ented counterclockwise.

9. F⃗ = xi⃗ + yj⃗ and C is the y-axis from the origin to

(0, 10).

10. F⃗ = (x2 − y)i⃗ + (y2 + x)j⃗ and C is the parabola

y = x2 + 1 traversed from (0, 1) to (1, 2).

11. F⃗ = xi⃗ + yj⃗ + zk⃗ and C is the path consisting of a

line from (2, 3, 0) to (4, 5, 0), followed by a line from

(4, 5, 0) to (0, 0, 7).

12. F⃗ = xyi⃗ +(x−y)j⃗ and C is the triangle joining (1, 0),

(0, 1) and (−1, 0) in the clockwise direction.

In Exercises 13–14, evaluate the line integrals.

13. ∫
C
3x2dx+4ydy where C is the path y = x2 from (1, 1)

to (5, 25).

14. ∫
C
ydx+ xdy where C is the path y = sin x from (0, 0)

to (�∕2, 1).

In Exercises 15–21, which of the vector fields are path-

independent on all of 3-space?

15. yi⃗ 16. yj⃗ 17. zk⃗

18. zj⃗ + zk⃗ 19. yi⃗ + xj⃗ 20. (x + y)i⃗
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21. yzi⃗ + zxj⃗ + xyk⃗

In Exercises 22–27, find the line integral of F⃗ = 5xi⃗ +3xj⃗

along the path C .

22. C is the line from (2, 3) to (2, 8).

23. C is the line from (2, 3) to (12, 3).

24. C is the curve y = x2 from (1, 1) to (2, 4).

25. C is the semicircle of radius 3 from (3, 0) to (−3, 0) in

the upper half plane.

26. C is the path in Figure 18.1.

−2 2

3 (3, 3)(−2, 3)

(−2, 0)

(0, 0)
x

y

Figure 18.1

27. C is the path in Figure 18.2.

1 3

1

4

(7, 3)

x

y

Figure 18.2

In Exercises 28–30, find the line integral of F⃗ around C1

and C2, where C1 is the circle of radius 3, centered at (5, 4)

and oriented clockwise and C2 is the semicircle starting at

(3, 4) and ending at (7, 4), passing above the line y = 4.

28. F⃗ = 5i⃗ + 4j⃗

29. F⃗ = 5xi⃗ + 4yj⃗

30. F⃗ = 5yi⃗ + 4xj⃗

PROBLEMS

31. Which two of the vector fields (i)-(iv) could represent

gradient vector fields on the whole plane? Give reasons

for your answer.

x

y(i)

x

y(ii)

x

y(iii)

x

y(iv)

32. Let F⃗ (x, y) be the path-independent vector field in Fig-

ure 18.3. The vector field F⃗ associates with each point

a unit vector pointing radially outward. The curves

C1, C2,… , C7 have the directions shown. Consider the

line integrals ∫
Ci
F⃗ ⋅dr⃗ , i = 1,… , 7. Without comput-

ing any integrals,

(a) List all the line integrals which you expect to be

zero.

(b) List all the line integrals which you expect to be

negative.

(c) Arrange the positive line integrals in ascending or-

der.

C4

C2

C3

C1

C6

C7

C5

x

y

Figure 18.3

33. If C is r⃗ = (cos t)i⃗ + (sin t)j⃗ for 0 ≤ t ≤ 2�, we know

∫
C
F⃗ (r⃗ ) ⋅ dr⃗ = 12. Find the value of the integrals:

(a) ∫
4�

0
F⃗ ((cos t)i⃗ +(sin t)j⃗ ) ⋅ ((− sin t)i⃗ +(cos t)j⃗ )dt
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(b) ∫
0

2�
F⃗ ((cos t)i⃗ + (sin t)j⃗ ) ⋅ ((sin t)i⃗ − (cos t)j⃗ )dt

(c) ∫
2�

0
F⃗ ((sin t)i⃗ +(cos t)j⃗ ) ⋅ ((− cos t)i⃗ −(sin t)j⃗ )dt

34. Let C be the straight path from (0, 0) to (5, 5) and let

F⃗ = (y − x + 2)i⃗ + (sin(y − x) + 2)j⃗ .

(a) At each point of C , what angle does F⃗ make with

a tangent vector to C?

(b) Find the magnitude ‖F⃗ ‖ at each point of C .

(c) Evaluate ∫
C
F⃗ ⋅ dr⃗ .

35. The line integral of F⃗ = (x + y)i⃗ + xj⃗ along each of

the following paths is 3∕2:

(i) The path (t, t2), with 0 ≤ t ≤ 1

(ii) The path (t2, t), with 0 ≤ t ≤ 1

(iii) The path (t, tn), with n > 0 and 0 ≤ t ≤ 1

Show this

(a) Using the given parameterization to compute the

line integral.

(b) Using the Fundamental Theorem of Calculus for

Line Integrals.

Problems 36–39 refer to the star-shaped region R in Fig-

ure 18.4.

(4,7)

(5,5)

(7,4)

(5,3)

(4,1)

(3,3)

(1,4)

(3,5)

Figure 18.4

36. Let C be the path from (5, 5) to (4, 7). Find

∫
C

(2i⃗ + 13j⃗ ) ⋅ dr⃗ .

37. Let C be the path from (5, 5) to (4, 7). Find

∫
C

(4xi⃗ + 3yj⃗ ) ⋅ dr⃗ .

38. Let C be the path from (5, 5) to (4, 7). Find

∫
C

((4x + 5y)i⃗ + (2x + 3y)j⃗ ) ⋅ dr⃗ .

39. Let C be the path around the outside of the star, traced

counterclockwise. Find ∫
C
((4x+5y)i⃗ +(2x+3y)j⃗ )⋅dr⃗ .

40. Let F⃗ = 2yi⃗ + 5xj⃗ . Let C be the M-shaped closed

curve consisting of line segments starting at (−5, 1), go-

ing along the line y = 1 to (15, 1), then to (10, 9), then

to (5, 1), then to (0, 9), and then back to (−5, 1). Let C1

be the part of C along the line y = 1; let C2 be the rest

of C and C = C1 + C2.

(a) Find ∫
C
F⃗ ⋅ dr⃗ .

(b) Find ∫
C1

F⃗ ⋅ dr⃗ .

(c) Find ∫
C2

F⃗ ⋅ dr⃗ .

41. Let F⃗ = 2xey i⃗ + x2eyj⃗ and G⃗ = (x− y)i⃗ + (x+ y)j⃗ .

Let C be the path consisting of lines from (0, 0) to (3, 0)

to (3, 8) to (0, 0). Find exactly:

(a) ∫
C
F⃗ ⋅ dr⃗ (b) ∫

C
G⃗ ⋅ dr⃗

42. Let F⃗ = (x2+3x2y4)i⃗ +4x3y3j⃗ and G⃗ = (x4+x3y2)i⃗ +

x2y3j⃗ . Let C1 be the path along the x-axis from (2, 0) to

(−2, 0); let C2 be the semi-circle in the upper half plane

from (2, 0) to (−2, 0). Find exactly:

(a) ∫
C1

F⃗ ⋅ dr⃗ (b) ∫
C2

F⃗ ⋅ dr⃗

(c) ∫
C1

G⃗ ⋅ dr⃗ (d) ∫
C2

G⃗ ⋅ dr⃗

43. Calculate the line integral of F⃗ = −yi⃗ + xj⃗ along the

following paths in the xy-plane.

(a) Line from the origin to the point (2, 3).

(b) Line from (2, 3) to (0, 3).

(c) Counterclockwise around a circle of radius 5 cen-

tered at the origin, starting from (5, 0) to (0,−5).

(d) Counterclockwise around the perimeter of a trian-

gle of area 7.

44. Let C1 and C2 be the curves in Figure 18.5. Let F⃗ =

(6x+y2)i⃗ +2xyj⃗ and G⃗ = (x−y)i⃗ +(x+y)j⃗ . [Note C1

is made up of line segments and C2 is part of a circle.]

Compute the following line integrals.

(a)
∫
C1

F⃗ ⋅ dr⃗ (b)
∫
C1

G⃗ ⋅ dr⃗

(c)
∫
C2

F⃗ ⋅ dr⃗ (d)
∫
C2

G⃗ ⋅ dr⃗

2

2
C1

x

y

−2 2

−2

2
C2

x

y

Figure 18.5
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45. Let F⃗ = xi⃗ + yj⃗ . Find the line integral of F⃗ :

(a) Along the x-axis from the origin to the point (3, 0).

(b) Around the path from A to B to O in Figure 18.6.

(The curve is part of a circle centered at the origin.)

3

45◦
O

A

B

x

y

Figure 18.6

46. (a) Sketch the curves C1 and C2:

C1 is (x, y) = (0, t) for − 1 ≤ t ≤ 1

C2 is (x, y) = (cos t, sin t) for �∕2 ≤ t ≤ 3∕�∕2.

(b) Find ∫
C
((x+ 3y)i⃗ + yj⃗ ⋅)dr⃗ , where C = C1 + C2.

47. Draw an oriented curve C and a vector field F⃗ along

C that is not always perpendicular to C , but for which

∫
C
F⃗ ⋅ dr⃗ = 0.

48. (a) Sketch the curve, C , consisting of three parts, C =

C1 + C2 + C3, where C1 is r⃗ = ti⃗ for 0 ≤ t ≤ 1,

and C2 is x = 1 − t, y = t for 0 ≤ t ≤ 1, and C3 is

r⃗ = (1 − t)j⃗ for 0 ≤ t ≤ 1. Label the coordinates

of the points where C1, C2, C3 meet. Each curve is

oriented in the direction of increasing t.

(b) Sketch the vector field F⃗ = −i⃗ + j⃗

(c) Find

(i) ∫
C1

F⃗ ⋅ dr⃗ (ii) ∫
C2

F⃗ ⋅ dr⃗

(iii) ∫
C3

F⃗ ⋅ dr⃗ (iv) ∫
C
F⃗ ⋅ dr⃗

49. For each of the following vector fields in the plane, use

Green’s Theorem to sketch a closed curve, C , in the

plane with ∫
C
F⃗ ⋅dr⃗ > 0. Show the orientation of your

curve.

(a) F⃗ = (x3 − y)i⃗ + (y5 + x)j⃗

(b) F⃗ = x3 i⃗ + (y5 − xy)j⃗

50. Suppose P and Q both lie on the same contour of f .

What can you say about the total change in f from P

to Q? Explain your answer in terms of ∫
C
grad f ⋅ dr⃗

where C is a part of the contour that goes from P to Q.

51. Figure 18.7 shows level curves of the function f (x, y).

(a) Sketch ∇f at P .

(b) Is the vector ∇f at P longer than, shorter than, or

the same length as, ∇f at Q?

(c) If C is a curve from P to Q, evaluate ∫
C
∇f ⋅ dr⃗ .

1 2

1

22.7

23
23.3

Q

P

x

y

Figure 18.7

52. (a) Compute ∫
C
v⃗ ⋅ dr⃗ where v⃗ = yi⃗ + 2xj⃗ and C is

(i) The line joining (0, 1) to (1, 0)

(ii) The arc of the unit circle joining (0, 1) to (1, 0)

(b) What can you conclude about v⃗ ?

53. Let C be the straight path from (0, 0) to (5, 5) and let

F⃗ = (y − x + 2)i⃗ + (sin(y − x) − 2)j⃗ .

(a) At each point of C , what angle does F⃗ make with

a tangent vector to C?

(b) Evaluate ∫
C
F⃗ ⋅ dr⃗ .

54. Let F⃗ = F1 i⃗ + F2j⃗ and

)F2

)x
−

)F1

)y
= 3(x2 + y2) − (x2 + y2)3∕2.

Let Ca be the circle of radius a in the xy-plane, cen-

tered at the origin and oriented counterclockwise. For

what value of a is the line integral ∫
Ca

F⃗ ⋅ dr⃗ largest?

What is the largest value?

55. The fact that an electric current gives rise to a magnetic

field is the basis for some electric motors. Ampère’s

Law relates the magnetic field B⃗ to a steady current

I . It says

∫
C

B⃗ ⋅ dr⃗ = kI

where I is the current1 flowing through a closed curve

C and k is a constant. Figure 18.8 shows a rod carry-

ing a current and the magnetic field induced around the

rod. If the rod is very long and thin, experiments show

that the magnetic field B⃗ is tangent to every circle that

is perpendicular to the rod and has center on the axis of

the rod (like C in Figure 18.8). The magnitude of B⃗ is

constant along every such circle. Use Ampère’s Law to

show that around a circle of radius r, the magnetic field

due to a current I has magnitude given by

‖B⃗ ‖ =
kI

2�r
.

(In other words, the strength of the field is inversely pro-

portional to the radial distance from the rod.)

1More precisely, I is the net current through any surface that has C as its boundary.
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Figure 18.8

56. A central vector field is a vector field whose direction

is always toward (or away from) a fixed point O (the

center) and whose magnitude at a point P is a function

only of the distance from P toO. In two dimensions this

means that the vector field has constant magnitude on

circles centered at O. The gravitational and electrical

fields of spherically symmetric sources are both central

fields.

(a) Sketch an example of a central vector field.

(b) Suppose that the central field F⃗ is a gradient field,

that is, F⃗ = grad f . What must be the shape of the

contours of f? Sketch some contours for this case.

(c) Is every gradient field a central vector field? Ex-

plain.

(d) In Figure 18.9, two paths are shown between the

points Q and P . Assuming that the three circles

C1, C2, and C3 are centered at O, explain why the

work done by a central vector field F⃗ is the same

for either path.

(e) It is in fact true that every central vector field is a

gradient field. Use an argument suggested by Fig-

ure 18.9 to explain why any central vector field

must be path-independent.

O

P

Q

C1 C2 C3

Figure 18.9

57. A free vortex circulating about the origin in the xy-

plane (or about the z-axis in 3-space) has vector field

v⃗ = K(x2+y2)−1(−yi⃗ +xj⃗ )whereK is a constant. The

Rankine model of a tornado hypothesizes an inner core

that rotates at constant angular velocity, surrounded by

a free vortex. Suppose that the inner core has radius 100

meters and that ‖v⃗ ‖ = 3 ⋅105 meters/hr at a distance of

100 meters from the center.

(a) Assuming that the tornado rotates counterclock-

wise (viewed from above the xy-plane) and that v⃗

is continuous, determine ! and K such that

v⃗ =

⎧

⎪

⎨

⎪

⎩

!(−yi⃗ + xj⃗ ) if
√

x2 + y2 < 100

K(x2 + y2)−1(−yi⃗ + xj⃗ )

if
√

x2 + y2 ≥ 100.

(b) Sketch the vector field v⃗ .

(c) Find the circulation of v⃗ around the circle of radius

r centered at the origin, traversed counterclock-

wise.

58. Figure 18.10 shows the tangential velocity as a func-

tion of radius for the tornado that hit Dallas on April 2,

1957. Use it and Problem 57 to estimate K and ! for

the Rankine model of this tornado.2

200 400 600 800 1000 1200

100

200

meters

km/hr

Figure 18.10

CAS Challenge Problems

59. Let Ca be the circle of radius a, centered at the origin, oriented in the counterclockwise direction, and let

F⃗ = (−y +
2

3
y3)i⃗ + (2x −

x3

3
+ xy2)j⃗ .

2Adapted from Encyclopædia Britannica, Macropædia, Vol. 16, page 477, “Climate and the Weather,” Tornados and

Waterspouts, 1991.
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(a) Evaluate ∫
Ca

F⃗ ⋅ dr⃗ . For what positive value of a

does the integral take its maximum value?

(b) Use Green’s Theorem to convert the integral to a

double integral. Without evaluating the double in-

tegral, give a geometric explanation of the value of

a you found in part (a).

60. If f is a potential function for the two-dimensional vec-

tor field F⃗ then the Fundamental Theorem of Calculus

for Line Integrals says that ∫
C
F⃗ ⋅dr⃗ = f (x, y)−f (0, 0)

where C is any path from (0, 0) to (x, y). Using this fact

and choosing C to be a straight line, find potential func-

tions for the following conservative fields (where a, b, c

are constants):

(a) F⃗ = ayi⃗ + axj⃗

(b) F⃗ = abyebxy i⃗ + (c + abxebxy)j⃗

61. Let F⃗ = (ax + by)i⃗ + (cx + dy)j⃗ . Evaluate the line

integral of F⃗ along the paths

C1 ∶ r⃗ (t) = 2ti⃗ + t2 j⃗ , 0 ≤ t ≤ 3

C2 ∶ r⃗ (t) = 2(3 − t)i⃗ + (3 − t)2 j⃗ , 0 ≤ t ≤ 3

Describe and explain the relationship between the two

integrals.

PROJECTS FOR CHAPTER EIGHTEEN

1. Conservation of Energy

(a) A particle moves with position vector r⃗ (t) = x(t)i⃗ + y(t)j⃗ + z(t)k⃗ . Let v⃗ (t) and a⃗ (t) be its

velocity and acceleration vectors. Show that

1

2

d

dt
‖v⃗ (t)‖2 = a⃗ (t) ⋅ v⃗ (t).

(b) We now derive the principle of Conservation of Energy. The kinetic energy of a particle of

mass m moving with speed v is (1∕2)mv2. Suppose the particle has potential energy f (r⃗ )

at the position r⃗ due to a force field F⃗ = −∇f . If the particle moves with position vector

r⃗ (t) and velocity v⃗ (t), then the Conservation of Energy principle says that

Total energy = Kinetic energy + Potential energy =
1

2
m‖v⃗ (t)‖2 + f (r⃗ (t)) = Constant.

Let P and Q be two points in space and let C be a path from P to Q parameterized by r⃗ (t)

for t0 ≤ t ≤ t1, where r⃗ (t0) = P and r⃗ (t1) = Q.

(i) Using part (a) and Newton’s law F⃗ = ma⃗ , show

Work done by F⃗

as particle moves along C
= Kinetic energy at Q − Kinetic energy at P .

(ii) Use the Fundamental Theorem of Calculus for Line Integrals to show that

Work done by F⃗

as particle moves along C
= Potential energy at P − Potential energy at Q.

(iii) Use parts (a) and (b) to show that the total energy at P is the same as at Q.

This problem explains why force vector fields which are path-independent are usually called

conservative (force) vector fields.

2. Planimeters

A planimeter is a mechanical device that exploits Green’s Theorem to find the area of a planar

region by tracing out its boundary.

A linear planimeter is a rod with one end, the foot, that moves along a straight track as

a wheel at the other end rolls and slides along a curve being traced. The rod acts as an axle

for the wheel so that the wheel rolls without sliding for motion perpendicular to the rod, and

slides without rolling for motion parallel to the rod. The wheel vector is defined by rotating the

displacement vector from wheel to foot clockwise 90◦. For motion in a direction making an
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angle � with the wheel vector, the ratio of roll to distance traveled is cos �. (This counts rolling

as positive for one direction of rotation and negative for the other.) A meter on the planimeter

measures the amount the wheel rolls. When the user has finished tracing out a closed curve, the

total roll of the wheel determines the area of the enclosed region. In Figure 18.11 the foot of a

planimeter of length L slides up and down the x-axis as the wheel moves along C from P to Q.

The key fact that makes this work is that the planimeter computes the line integral of the

vector field of unit vectors F⃗ in the direction of the wheel vector along the oriented curve C :

∫C
F⃗ ⋅ dr⃗ = Total roll of wheel.

To see this, divide C into n small, almost straight pieces along which F⃗ has approximately

constant direction. Each piece can be represented by a displacement vector Δr⃗ i = r⃗ i+1 − r⃗ i,

and F⃗ (r⃗ i) is the unit vector in the direction of the wheel vector at the point of C with position

vector r⃗ i. We have

F⃗ (r⃗ i)⋅Δr⃗ i = ‖F⃗ (r⃗ i)‖‖Δr⃗ i‖ cos �i ≈ 1⋅(Length of ith piece of C)⋅cos �i ≈ Roll on ith piece of C.

Summing over all the pieces and taking the limit as ‖Δr⃗ i‖ → 0 gives the result.

In the problems, we find a formula for F⃗ and use it to show how area is computed.

L C

P

Q

�

x

Figure 18.11

(a) Let L > 0, and define F⃗ (x, y) in the horizontal strip −L < y < L as follows. Let m⃗ be the

displacement vector of magnitudeL from a point (a, 0) on the x-axis to the point (x, y) in the

strip, where a < x. Let F⃗ (x, y) be the unit vector in the direction of k⃗ × m⃗ , perpendicular

to m⃗ . The flow lines of F⃗ are arcs of circles of radius L with center on the x-axis, oriented

counterclockwise. See Figure 18.12. Show that

F⃗ (x, y) =
−y

L
i⃗ +

1

L

√

L2 − y2 j⃗ .

L
m⃗

F⃗

(a, 0)

(x, y)

L

x

Figure 18.12

(b) Show that curl F⃗ = 1∕L, for F⃗ as in part (a).

(c) Let C be a simple closed curve oriented counterclockwise in the strip −L < y < L, and let

R be the enclosed region. Use Green’s Theorem to show that

Area of R = L
∫C

F⃗ ⋅ dr⃗ = L ⋅ (Total roll of planimeter wheel).
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3. Ampère’s Law

Ampère’s Law, introduced in Problem 55 on page 6, relates the net current, I , flowing through

a surface to the magnetic field around the boundary, C , of the surface. The law says that

∫C
B⃗ ⋅ dr⃗ = kI, for some constant k.

The orientation of C is given by the right-hand rule: if the fingers of your right hand lie against

the surface and curl in the direction of the oriented curve C , then your thumb points in the

direction of positive current.

(a) We consider an infinitely long cylindrical wire having a radius r0, where r0 > 0. Suppose

the wire is centered on the z-axis and carries a constant current, I , uniformly distributed

across a cross-section of the wire. The magnitude of B⃗ is constant along any circle which

is centered on and perpendicular to the z-axis. The direction of B⃗ is tangent to such circles.

Show that the magnitude of B⃗ , at a distance r from the z-axis, is given by

‖B⃗ ‖ =

⎧

⎪

⎨

⎪

⎩

aI

2�r
for r ≥ r0

aIr

2�r2
0

for r < r0.

(b) A torus is a doughnut-shaped surface obtained by rotating around the z-axis the circle

(x− �)2 + z2 = �2 of radius � and center (�, 0, 0), where 0 < � < �. A toroidal solenoid is

constructed by wrapping a thin wire a large number, say N , times around the torus. Exper-

iments show that if a constant current I flows though the wire, then the magnitude of the

magnetic field is constant on circles inside the torus which are centered on and perpendic-

ular to the z-axis. The direction of B⃗ is tangent to such circles. Explain why, at all points

inside the torus,

‖B⃗ ‖ =
aNI

2�r
,

and ‖B⃗ ‖ = 0 otherwise. [Hint: Apply Ampère’s Law to a suitably chosen surface S with

boundary curve C. What is the net current passing through S?]

4. Conservative Forces, Friction, and Gravity

The work done by a conservative force on an object does not depend on the path taken but only

on the endpoints—in other words, the vector field representing the force is path-independent.

Only for a conservative force is the work done stored as energy; for a non-conservative force,

the work may be dissipated.

(a) The frictional drag force F⃗ on an airplane flying through the air with velocity v⃗ is given by

F⃗ = −c||v⃗ ||v⃗ .

The constant c is positive and depends on the shape of the airplane. One airplane takes off

from an airport located at the point (2, 0, 0) and follows the path

r⃗ (t) = (2 cos t){⃗ + (2 sin t)|⃗ + 3tk⃗ , from t = 0 to t = �.

An identical airplane takes off from the same point and follows the path

r⃗ (t) =
2 − 4t

�
t{⃗ + 3tk⃗ also from t = 0 to t = �.

(i) Compute the total work done by the drag force F⃗ on each airplane.

(ii) Is the drag force conservative? Explain.
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(b) Suppose the two airplanes of the preceding problem each have mass m, while the earth has

mass M . The gravitational force F⃗ acting on either airplane at a point with position vector

r⃗ is given by

F⃗ (r⃗ ) = −GMm
r⃗

||r⃗ ||3
, where G is the gravitational constant.

(i) Compute the total work done by the gravitational force F⃗ on each airplane as it moves

from the point (2, 0, 0) to the point (−2, 0, 3�).

(ii) Is the gravitational force conservative? Explain.
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• Flux Integrals
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• Calculating flux integrals over surfaces

Graphs: dA⃗ = (−fx i⃗ − fy j⃗ + k⃗ ) dxdy

Cylinders: dA⃗ = (cos �i⃗ + sin �j⃗ )Rdz d�
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• Divergence

Geometric and coordinate definition of divergence, cal-

culating divergence, interpretation in terms of outflow

per unit volume.

• The Divergence Theorem

Statement of the theorem, divergence-free fields, har-

monic functions.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER 19

EXERCISES

1. LetS be the disk of radius 5 perpendicular to the y-axis,

centered at (0, 7, 0) and oriented toward the origin. Is

∫
S

(3i⃗ + 4j⃗ ) ⋅ dA⃗ a vector or a scalar? Calculate it.

2. Is div

(

yi⃗ − xj⃗

x2 + y2

)

a vector or a scalar? Calculate it.

In Exercises 3–6, are the flux integrals positive, negative, or

zero? Let S be a disk of radius 3 in the plane x = 7, centered

on the x-axis and oriented toward the origin.

3.
∫
S

(xj⃗ + yk⃗ ) ⋅ dA⃗ 4.
∫
S

(xi⃗ + yk⃗ ) ⋅ dA⃗

5.
∫
S

(yi⃗ + xk⃗ ) ⋅ dA⃗

6.
∫
S

((x − 10)i⃗ + (x + 10)j⃗ ) ⋅ dA⃗

In Exercises 7–22, find the flux of the vector field through

the surface S.

7. F⃗ = 2i⃗ + 3j⃗ through a disk of radius 5 in the plane

y = 2 oriented in the direction of increasing y.

8. F⃗ = i⃗ + 2j⃗ through a sphere of radius 3 at the origin.

9. F⃗ = yj⃗ through the square of side 4 in the plane y = 5.

The square is centered on the y-axis, has sides parallel

to the axes, and is oriented in the positive y-direction.

10. F⃗ = xi⃗ through a square of side 3 in the plane x = −5.

The square is centered on the x-axis, has sides parallel

to the axes, and is oriented in the positive x-direction.

11. F⃗ = (y+3)j⃗ through a square of side 2 in the xz-plane,

oriented in the negative y-direction.

12. F⃗ = xk⃗ through the square 0 ≤ x ≤ 3, 0 ≤ y ≤ 3

in the xy-plane, with sides parallel to the axes, and ori-

ented upward.

13. F⃗ = i⃗ − j⃗ − k⃗ through a cube of side 2 with sides

parallel to the axes.

14. F⃗ = 6i⃗ + x2j⃗ − k⃗ , through a square of side 2 in the

plane z = 3, oriented upward.

15. F⃗ = (x2 + y2)i⃗ + xyj⃗ and S is the square in the

xy-plane with corners at (1, 1, 0), (−1, 1, 0), (1,−1, 0),

(−1,−1, 0), and oriented upward.

16. F⃗ = zi⃗ + yj⃗ + 2xk⃗ and S is the rectangle z = 4,

0 ≤ x ≤ 2, 0 ≤ y ≤ 3, oriented in the positive z-

direction.

17. F⃗ = (x + cos z)i⃗ + yj⃗ + 2xk⃗ and S is the rectangle

x = 2, 0 ≤ y ≤ 3, 0 ≤ z ≤ 4, oriented in the positive

x-direction.

18. F⃗ = x2 i⃗ +(x+ey)j⃗ −k⃗ , and S is the rectangle y = −1,

0 ≤ x ≤ 2, 0 ≤ z ≤ 4, oriented in the negative y-

direction.

19. F⃗ = (5 + xy)i⃗ + zj⃗ + yzk⃗ and S is the 2 × 2 square

plate in the yz-plane centered at the origin, oriented in

the positive x-direction.

20. F⃗ = xi⃗ + yj⃗ and S is the surface of a closed cylinder

of radius 2 and height 3 centered on the z-axis with its

base in the xy-plane.

21. F⃗ = −yi⃗ + xj⃗ + zk⃗ and S is the surface of a closed

cylinder of radius 1 centered on the z-axis with base in

the plane z = −1 and top in the plane z = 1.

22. F⃗ = x2 i⃗ + y2j⃗ + zk⃗ and S is the cone z =
√

x2 + y2,

oriented upward with x2 + y2 ≤ 1, x ≥ 0, y ≥ 0.

In Problems 23–26, give conditions on one or more of the

constants a, b, c to ensure that the flux integral ∫
S
F⃗ ⋅ dA⃗

has the given sign.

23. Positive for F⃗ = ai⃗ + bj⃗ + ck⃗ and S is a disk per-

pendicular to the y-axis, through (0, 5, 0) and oriented

away from the origin.

24. Negative for F⃗ = ai⃗ +bj⃗ + ck⃗ and S is the upper half

of the unit sphere centered at the origin and oriented

downward.
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25. Positive for F⃗ = axi⃗ + ayj⃗ + azk⃗ and S is a sphere

centered at the origin, oriented outward.

26. Positive for F⃗ = ai⃗ + bj⃗ + ck⃗ and S is the triangle

cut off by x + y + z = 1 in the first quadrant, oriented

upward.

27. Calculate the flux of F⃗ = xyi⃗ + yzj⃗ + zxk⃗ out of the

closed box 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1

(a) Directly (b) Using the Divergence Theorem.

28. Compute the flux integral ∫
S
(x3 i⃗ + 2yj⃗ + 3k⃗ ) ⋅ dA⃗ ,

where S is the 2× 2× 2 rectangular surface centered at

the origin, oriented outward. Do this in two ways:

(a) Directly (b) Using the Divergence Theorem

In Exercises 29–34, use the Divergence Theorem to calcu-

late the flux of the vector field out of the surface.

29. F⃗ = −xi⃗ +2yj⃗ +(3+2z)k⃗ out of the sphere of radius

2 centered at (1, 2, 3).

30. F⃗ = (2x + y)i⃗ + (3y + z)j⃗ + (4z + x)k⃗ and S is the

sphere of radius 5 centered at the origin.

31. F⃗ = x2 i⃗ + y2j⃗ + exyk⃗ and S is the cube of side 3 in

the first octant with one corner at the origin, and sides

parallel to the axes.

32. F⃗ = (ez + x) i⃗ + (2y+ sin x)j⃗ +
(

ex
2
− z

)

k⃗ and S is

the sphere of radius 1 centered at (2, 1, 0).

33. F⃗ = x3 i⃗ +y3j⃗ +
(

x2 + y2
)

k⃗ and S is the closed cylin-

der x2 + y2 = 4 with 0 ≤ z ≤ 5.

34. F⃗ = xi⃗ + yj⃗ + zk⃗ and S is the open cylinder (ends

not included) x2 + y2 ≤ 1, with 0 ≤ z ≤ 1, oriented

outward.

PROBLEMS

35. Arrange the following flux integrals, ∫
Si
F⃗ ⋅ dA⃗ , with

i = 1, 2, 3, 4, in ascending order if F⃗ = −i⃗ − j⃗ + k⃗

and if the Si are the following surfaces:

∙ S1 is a horizontal square of side 1 with one corner

at (0, 0, 2), above the first quadrant of the xy-plane,

oriented upward.

∙ S2 is a horizontal square of side 1 with one cor-

ner at (0, 0, 3), above the third quadrant of the xy-

plane, oriented upward.

∙ S3 is a square of side
√

2 in the xz-plane with one

corner at the origin, one edge along the positive x-

axis, one along the negative z-axis, oriented in the

negative y- direction.

∙ S4 is a square of side
√

2with one corner at the ori-

gin, one edge along the positive y-axis, one corner

at (1, 0, 1), oriented upward.

36. Let f (x, y, z) = xy + exyz. Find

(a) grad f

(b) ∫
C
grad f ⋅ dr⃗ , where C is the line from the point

(1, 1, 1) to (2, 3, 4).

(c) ∫
S
grad f ⋅ dA⃗ , where S is the quarter disk in the

xy-plane x2 + y2 ≤ 4, x ≥ 0, y ≥ 0, oriented up-

ward.

37. The flux of the constant vector field ai⃗ + bj⃗ + ck⃗

through the square of side 2 in the plane x = 5, oriented

in the positive x-direction, is 24. Which of the constants

a, b, c can be determined from the information given?

Give the value(s).

38. (a) Let F⃗ = (x2 + 4)i⃗ + yj⃗ . Which of the following

flux integrals is the largest? Explain.

∫
S1
F⃗ ⋅dA⃗ , where S1 is the disk of radius 1 in

the plane x = 2 centered on the x-axis and oriented

away from the origin.

∫
S2
F⃗ ⋅dA⃗ , where S2 is the disk of radius 1 in

the plane y = 4 centered on the y-axis and oriented

away from the origin.

∫
S3
F⃗ ⋅ dA⃗ , where S3 is the disk of radius 1

in the plane x = −3 centered on the x-axis and

oriented toward the origin.

(b) Calculate the integral you chose in part (a).

39. Figure 19.1 shows a cross-section of the earth’s mag-

netic field. Assume that the earth’s magnetic and geo-

graphic poles coincide. Is the magnetic flux through a

horizontal plate, oriented skyward, positive, negative,

or zero if the plate is

(a) At the north pole? (b) At the south pole?

(c) On the equator?

South pole

North pole

Figure 19.1

40. (a) Let div(F⃗ ) = x2 + y2 − z2. Estimate the flux out

of a small sphere of radius 0.1 centered at each of

the following points

(i) (2, 1, 1) (ii) (0, 0, 1)

(b) What do the signs of your answers to part (a) tell

you about the vector field near each of these two

points?
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For Problems 41–43,

(a) Find the flux of the given vector field out of a cube in the

first octant with edge length c, one corner at the origin

and edges along the axes.

(b) Use your answer to part (a) to find div F⃗ at the origin

using the geometric definition.

(c) Compute div F⃗ at the origin using partial derivatives.

41. F⃗ = xi⃗

42. F⃗ = 2i⃗ + yj⃗ + 3k⃗

43. F⃗ = xi⃗ + yj⃗

In Problems 44–48, calculate the flux of F⃗ through the

cylinder x2 + y2 = 2,−3 ≤ z ≤ 3 and its base, oriented

outward. The cylinder is open at the top.

44. F⃗ = z2 i⃗ + x2j⃗ + 5k⃗

45. F⃗ = y2 i⃗ + z2 j⃗ + (x2 + y2)k⃗

46. F⃗ = zi⃗ + xj⃗ + yk⃗

47. F⃗ = y2 i⃗ + x2 j⃗ + 7zk⃗

48. F⃗ = x3 i⃗ + y3 j⃗ + k⃗

49. Find the constant vector field F⃗ parallel to i⃗ + k⃗ and

giving a flux of −7 through S, the cone z = r, with

0 ≤ z ≤ 4, oriented upward.

50. (a) Find div(F⃗ ∕||F⃗ ||

2) where F⃗ = xi⃗ + yj⃗ for

F⃗ ≠ 0⃗ .

(b) Where in 3-space is div(F⃗ ∕||F⃗ ||

2) undefined?

(c) Find the flux of F⃗ ∕||F⃗ ||

2 through the closed

cylinder of radius 2, length 3, centered at (5, 0, 0),

with its axis parallel to the z-axis.

(d) Find the flux of F⃗ ∕||F⃗ ||

2 through the curved sides

of the open cylinder in part (c).

51. (a) Let F⃗ be a smooth vector field defined throughout

3-space. What must be true of F⃗ if the flux of F⃗

through any closed surface is zero?

(b) What value of a ensures that the flux through any

closed surface of F⃗ = a(ex+y2−x)i⃗ +12y(1−ex)j⃗

is zero?

52. Let a⃗ = a1 i⃗ + a2j⃗ + a3k⃗ be a constant vector and let

r⃗ = xi⃗ + yj⃗ + zk⃗ .

(a) Calculate div(r⃗ × a⃗ ).

(b) Calculate the flux of r⃗ × a⃗ out of a cube of side

5 centered at the origin with edges parallel to the

axes.

53. Find the flux of F⃗ out of the closed surface S given

by x2 + y2 + z2 = 100. You are given that F⃗ is con-

tinuous, with div F⃗ = 3 inside the cube −2 ≤ x ≤ 2,

−2 ≤ y ≤ 2, −2 ≤ z ≤ 2 and div F⃗ = 5 outside the

cube.

54. The closed surface S consists of S1, the cone x =
√

y2 + z2 for 0 ≤ x ≤ 2, and a disk S2. Let F⃗ =

3xi⃗ + 4yj⃗ + 5zk⃗ .

(a) In what plane does the disk S2 lie? How is it ori-

ented?

(b) Find the flux of F⃗ through

(i) S2 (ii) S1

55. Find the flux integral, using r⃗ = xi⃗ + yj⃗ + zk⃗ .

(a)
∫
S1

r⃗ ⋅dA⃗ , where S1 is the disk x = 5, y2+z2 ≤ 7,

oriented away from the origin.

(b)
∫
S2

r⃗ ⋅ dA⃗ , where S2 is the closed cylinder y2 +

z2 = 7, 0 ≤ x ≤ 5.

(c)
∫
S3

r⃗ ⋅dA⃗ , where S3 is the curved side of the open

cylinder y2 + z2 = 7, 0 ≤ x ≤ 5, oriented away

from the x-axis.

56. Let F⃗ (x, y, z) = f1(x, y, z)i⃗ +f2(x, y, z)j⃗ +k⃗ be a vec-

tor field with the property that div F⃗ = 5 everywhere.

Let S be the hemisphere z = −
√

9 − x2 − y2, with its

boundary in the xy-plane and oriented downward. Find

∫
S

F⃗ ⋅ dA⃗ .

57. Let F⃗ = r⃗ ∕||r⃗ ||3.

(a) Calculate div F⃗ . Where is div F⃗ undefined?

(b) Find ∫
S
F⃗ ⋅ dA⃗ where S is a sphere of radius 10

centered at the origin.

(c) Find ∫
B1

F⃗ ⋅ dA⃗ where B1 is a box of side 1 cen-

tered at the point (3, 0, 0) with sides parallel to the

axes.

(d) Find ∫
B2

F⃗ ⋅ dA⃗ where B2 is a box of side 1 cen-

tered at the origin with sides parallel to the axes.

(e) Using your results to parts (c) and (d), explain how,

with no further calculation, you can find the flux of

this vector field through any closed surface, pro-

vided the origin does not lie on the surface.

58. The gravitational field, F⃗ , of a planet of mass m at the

origin is given by

F⃗ = −Gm
r⃗

‖r⃗ ‖3
.

Use the Divergence Theorem to show that the flux of

the gravitational field through the sphere of radius a is

independent of a. [Hint: Consider the region bounded

by two concentric spheres.]

59. A basic property of the electric field E⃗ is that its diver-

gence is zero at points where there is no charge. Sup-

pose that the only charge is along the z-axis, and that

the electric field E⃗ points radially out from the z-axis

and its magnitude depends only on the distance r from

the z-axis. Use the Divergence Theorem to show that
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the magnitude of the field is proportional to 1∕r. [Hint:

Consider a solid region consisting of a cylinder of fi-

nite length whose axis is the z-axis, and with a smaller

concentric cylinder removed.]
60. A fluid is flowing along a cylindrical pipe of radius a in

the i⃗ direction. The velocity of the fluid at a radial dis-

tance r from the center of the pipe is v⃗ = u(1−r2∕a2)i⃗ .

(a) What is the significance of the constant u?

(b) What is the velocity of the fluid at the wall of the

pipe?

(c) Find the flux through a circular cross-section of the

pipe.

61. A closed surface S encloses a volume W . The function

�(x, y, z) gives the electrical charge density at points in

space. The vector field J⃗ (x, y, z) gives the electric cur-

rent density at any point in space and is defined so that

the current through a small area dA⃗ is given by

Current through small area ≈ J⃗ ⋅ dA⃗ .

(a) What do the following integrals represent, in terms

of electricity?

(i)
∫
W

� dV (ii)
∫
S

J⃗ ⋅ dA⃗

(b) Using the fact that an electric current through a

surface is the rate at which electric charge passes

through the surface per unit time, explain why

∫
S

J⃗ ⋅ dA⃗ = −
)

)t

(

∫
W

� dV

)

.

62. (a) A river flows across the xy-plane in the positive

x-direction and around a circular rock of radius 1

centered at the origin. The velocity of the river can

be modeled using the potential function � = x +

(x∕(x2 + y2)). Compute the velocity vector field,

v⃗ = grad�.

(b) Show that div v⃗ = 0.

(c) Show that the flow of v⃗ is tangent to the circle

x2 + y2 = 1. This means that no water crosses the

circle. The water on the outside must therefore all

flow around the circle.

(d) Use a computer to sketch the vector field v⃗ in the

region outside the unit circle.

63. A vector field is a point source at the origin in 3-space

if its direction is away from the origin at every point, its

magnitude depends only on the distance from the ori-

gin, and its divergence is zero except at the origin. (Such

a vector field might be used to model the photon flow

out of a star or the neutrino flow out of a supernova.)

(a) Show that v⃗ = K(x2+y2 +z2)−3∕2(xi⃗ +yj⃗ +zk⃗ )

is a point source at the origin if K > 0.

(b) Determine the magnitude ‖v⃗ ‖ of the source in part

(a) as a function of the distance from its center.

(c) Compute the flux of v⃗ through a sphere of radius

r centered at the origin.

(d) Compute the flux of v⃗ through a closed surface that

does not contain the origin.

CAS Challenge Problems

64. Let S be the part of the ellipsoid x2 + y2 + 2z2 = 1

lying above the rectangle −1∕2 ≤ x ≤ 1∕2, −1∕2 ≤

y ≤ 1∕2, oriented upward. For each vector field (a)–(c),

say whether you expect ∫
S
F⃗ ⋅ dA⃗ to be positive, neg-

ative, or zero. Then evaluate the integral exactly using

a computer algebra system and find numerical approx-

imations for your answers. Describe and explain what

you notice.

(a) F⃗ = xi⃗

(b) F⃗ = (x + 1)i⃗

(c) F⃗ = yj⃗

65. Let F⃗ = (z+4)k⃗ , and let S be the surface with normal

pointing in the direction of the negative y-axis parame-

terized, for 0 ≤ s ≤ 2, 0 ≤ t ≤ 2�, by

r⃗ (s, t) = s2 cos ti⃗ + sj⃗ + s2 sin tk⃗ .

(a) Sketch S and, without evaluating the integral, say

whether ∫
S
F⃗ ⋅ dA⃗ is positive, negative, or zero.

Give a geometric explanation for your answer.

(b) Evaluate the flux integral. Does it agree with your

answer to part (a)?

PROJECTS FOR CHAPTER NINETEEN

1. Solid Angle

Let

F⃗ (x, y) =
xi⃗ + yj⃗ + zk⃗

(x2 + y2 + z2)3∕2

and let oriented surfaces S1 and S2 be as in Figure 19.2. The surface S2 is on the unit sphere

centered at the origin. Lines from the origin to the boundary of S1 intersect the unit sphere at

the boundary of S2. Both surfaces are oriented away from the origin. Show that

(a) The divergence of F⃗ is zero.
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(b) ∫
S1

F⃗ ⋅ dA⃗ = ∫
S2

F⃗ ⋅ dA⃗

(c) ∫
S1

F⃗ ⋅ dr⃗ = Ω, the area of S2. The value Ω is called the solid angle subtended by S1 at

the origin.

Figure 19.2

2. Divergence of Spherically Symmetric Vector Fields

A vector field is spherically symmetric about the origin if, on every sphere centered at the

origin, it has constant magnitude and points either away from or toward the origin. A vector field

that is spherically symmetric about the origin can be written in terms of the spherical coordinate

� = ‖r⃗ ‖ as F⃗ = f (�)e⃗ � where f is a function of the distance � from the origin, f (0) = 0, and

e⃗ � is a unit vector pointing away from the origin.

(a) Show that

div F⃗ =
1

�2

d

d�

(

�2f (�)
)

, � ≠ 0.

(b) Use part (a) to show that if F⃗ is a spherically symmetric vector field such that div F⃗ = 0

away from the origin then, for some constant k,

F⃗ = k
1

�2
e⃗ �, � ≠ 0.

(c) Use part (a) to confirm the Divergence Theorem for the flux of a spherically symmetric

vector field through a sphere centered at the origin.

(d) A form of Gauss’s Law for an electric field E⃗ states that div E⃗ (r⃗ ) = �(r⃗ ), where � is a

scalar-valued function giving the density of electric charge at every point. Use Gauss’s Law

and part (a) to find the electric field when the charge density is

�(r⃗ ) =

{

�0 ‖r⃗ ‖ ≤ a

0 ‖r⃗ ‖ > a,

for some nonnegative a. Assume that E⃗ is spherically symmetric and continuous every-

where.

3. Gauss’s Law Applied to a Charged Wire and a Charged Sheet

Gauss’s Law states that the flux of an electric field through a closed surface, S, is proportional

to the quantity of charge, q, enclosed within S. That is,

∫S
E⃗ ⋅ dA⃗ = kq.
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In this project we use Gauss’s Law to calculate the electric field of a uniformly charged wire in

part (a) and a flat sheet of charge in part (b).

(a) Consider the electric field due to an infinitely long, straight, uniformly charged wire. (There

is no current running through the wire—all charges are fixed.) Assuming that the wire is in-

finitely long means that we can assume that the electric field is perpendicular to any cylinder

that has the wire as an axis and that the magnitude of the field is constant on any such cylin-

der. Denote by Er the magnitude of the electric field due to the wire on a cylinder of radius

r. (See Figure 19.3.)

Imagine a closed surface S made up of two cylinders, one of radius a and one of larger

radius b, both coaxial with the wire, and the two washers that cap the ends. (See Figure 19.4.)

The outward orientation of S means that a normal on the outer cylinder points away from

the wire and a normal on the inner cylinder points toward the wire.

(i) Explain why the flux of E⃗ , the electric field, through the washers is 0.

(ii) Explain why Gauss’s Law implies that the flux through the inner cylinder is the same

as the flux through the outer cylinder. [Hint: The charge on the wire is not inside the

surface S].

(iii) Use part (ii) to show that Eb∕Ea = a∕b.

(iv) Explain why part (iii) shows that the strength of the field due to an infinitely long uni-

formly charged wire is proportional to 1∕r.

Wire

Er

Er

✻
❄
r

Figure 19.3

✲✛ Washers

✻
❄
b

✻❄a
Wire

Figure 19.4

a

b

Figure 19.5

(b) Now consider an infinite flat sheet uniformly covered with charge. As in part (a), symmetry

shows that the electric field E⃗ is perpendicular to the sheet and has the same magnitude at

all points that are the same distance from the sheet. Use Gauss’s Law to explain why, on any

one side of the sheet, the electric field is the same at all points in space off the sheet. [Hint:

Consider the flux through the box with sides parallel to the sheet shown in Figure 19.5.]

4. Flux Across a Cylinder: Obtaining Gauss’s Law from Coulomb’s Law

An electric charge q is placed at the origin in 3-space. The induced electric field E⃗ (r⃗ ) at the

point with position vector r⃗ is given by Coulomb’s Law, which says

E⃗ (r⃗ ) = q
r⃗

‖r⃗ ‖3
, r⃗ ≠ 0⃗ .

In this project, Gauss’s Law is obtained for a cylinder enclosing a point charge by direct calcu-

lation from Coulomb’s Law.

(a) Let S be the open cylinder of height 2H and radiusR given by x2+y2 = R2, −H ≤ z ≤ H ,

oriented outward.

(i) Show that the flux of E⃗ , the electric field, through S is given by

∫S
E⃗ ⋅ dA⃗ = 4�q

H
√

H2 +R2
.
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(ii) What are the limits of the flux ∫
S
E⃗ ⋅ dA⃗ if

• H → 0 or H → ∞ when R is fixed?

• R → 0 or R → ∞ when H is fixed?

(b) Let T be the outward-oriented, closed cylinder of height 2H and radius R whose curved

side is given by x2 + y2 = R2, −H ≤ z ≤ H , whose top is given by z = H , x2 + y2 ≤ R2,

and bottom by z = −H , x2 + y2 ≤ R2. Use part (a) to show that the flux of the electric

field, E⃗ , through T is given by

∫T
E⃗ ⋅ dA⃗ = 4�q.

Notice that this is Gauss’s Law. In particular, the flux is independent of both the height, H ,

and radius, R, of the cylinder.
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CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Curl

Geometric and coordinate definition of curl, calculating

curl, interpretation in terms of circulation per unit area.

• Stokes’ Theorem

Statement of the theorem, curl-free and curl fields.

• Three Fundamental Theorems

Combining the fundamental theorem of line integrals,

Stokes’ theorem and the Divergence theorem to show

curl grad f = 0⃗ and div curl G⃗ = 0.

Curl test for gradient field in 3-space.

Divergence test for curl field in 3-space.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER 20

EXERCISES

1. Find curl((x + y)i⃗ − (y + z)j⃗ + (x + z)k⃗ )

2. Find (curl n⃗ ) ⋅ j⃗

where n⃗ = (2x + 3y)i⃗ + (4y + 5z)j⃗ + (6z + 7x)k⃗

Exercises 3–5 concern the vector fields in Figure 20.1. In

each case, assume that the cross-section is the same in all

other planes parallel to the given cross-section.

C1

(a)

C2

(b)

C3

(c)

C4

(d)

C5

(e)

C6

(f)

Figure 20.1

3. Three of the vector fields have zero curl at each point

shown. Which are they? How do you know?

4. Three of the vector fields have zero divergence at each

point shown. Which are they? How do you know?

5. Four of the line integrals ∫
Ci
F⃗ ⋅dr⃗ are zero. Which are

they? How do you know?

In Exercises 6–9, are the quantities defined? For those that

are, is the quantity a vector or scalar? Let f (x, y, z) be a

smooth function and let F⃗ (r⃗ ) and G⃗ (r⃗ ) be smooth vector

fields.

6.
∫
C

(grad F⃗ ) ⋅ dr⃗ 7.
∫
S

(F⃗ (r⃗ )× G⃗ (r⃗ )) ⋅dA⃗

8. div((grad f ) × r⃗ ) 9. (curl F⃗ ) × F⃗

In Exercises 10–11 decide whether the vector fields appear

to have nonzero curl at the point marked. The vector field is

shown in the xy-plane; it has no z-component and is inde-

pendent of z.

10.

x

y 11.

x

y

In Exercises 12–15, calculate divF⃗ and curlF⃗ . Is F⃗

solenoidal or irrotational?

12. F⃗ = x2 i⃗ + y3j⃗ + z4k⃗

13. F⃗ = xyi⃗ + yzj⃗ + zxk⃗

14. F⃗ = (cos x) i⃗ + eyj⃗ + (x + y + z) k⃗

15. F⃗ = ey+z i⃗ + sin(x + z)j⃗ +
(

x2 + y2
)

k⃗

16. Let S be the curved side of the cylinder y2 + z2 = 5,

for 0 ≤ x ≤ 3, oriented outward. Let F⃗ = xzj⃗ − xyk⃗ .

Find ∫
S
curl F⃗ ⋅ dA⃗

(a) Directly (b) Using Stokes’ Theorem
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17. Compute ∫
C
((yz2 − y)i⃗ + (xz2 + x)j⃗ + 2xyzk⃗ ) ⋅ dr⃗ ,

where the line integral is around C , the circle of radius

3 in the xy-plane, centered at the origin, oriented coun-

terclockwise as viewed from the positive z-axis. Do this

in two ways:

(a) Directly (b) Using Stokes’ Theorem

18. Find the flux of curl(ex
2
i⃗ + (x + y)k⃗ ) through the disk

y2 + z2 ≤ 1, x = 0, oriented toward the positive x-axis

using:

(a) Stokes’ Theorem (b) Direct calculation

In Exercises 19–22, use Stokes’ Theorem to find the circu-

lation of the vector field around the given paths.

19. F⃗ = (z − 2y)i⃗ + (3x − 4y)j⃗ + (z + 3y)k⃗ and C is the

circle x2 + y2 = 4, z = 1, oriented counterclockwise

when viewed from above.

20. F⃗ = (2x − y)i⃗ + (x + 4y)j⃗ and C is a circle of radius

10, centered at the origin.

(a) In the xy-plane, oriented clockwise as viewed from

the positive z-axis.

(b) In the yz-plane, oriented clockwise as viewed from

the positive x-axis.

21. F⃗ = r⃗ ∕‖r⃗ ‖3 and C is the path consisting of line seg-

ments from (1, 0, 1) to (1, 0, 0) to (0, 0, 1) to (1, 0, 1).

22. F⃗ = xzi⃗ + (x + yz)j⃗ + x2k⃗ and C is the circle

x2 + y2 = 1, z = 2, oriented counterclockwise when

viewed from above.

PROBLEMS

23. Let r⃗ = xi⃗ + yj⃗ + zk⃗ and a⃗ be a constant vector.

For each of the quantities in (a)–(f), choose one of the

statements in (I)–(V).

(a) div(r⃗ + a⃗ ) (b) div(r⃗ × a⃗ ) (c) div(r⃗ ⋅ a⃗ )

(d) curl(r⃗ + a⃗ ) (e) curl(r⃗ × a⃗ ) (f) curl(r⃗ ⋅ a⃗ )

(I) Scalar, independent of a⃗ .

(II) Scalar, depends on a⃗ .

(III) Vector, independent of a⃗ .

(IV) Vector, depends on a⃗ .

(V) Not defined.

24. Calculate the following quantities or say why it is im-

possible. Let r⃗ = xi⃗ + yj⃗ + zk⃗ and let a⃗ = a1i⃗ +

a2j⃗ + a3k⃗ be a constant vector.

(a) grad(r⃗ ⋅ a⃗ ) (b) div(r⃗ ⋅ a⃗ )

(c) curl(r⃗ ⋅ a⃗ ) (d) grad(r⃗ × a⃗ )

(e) div(r⃗ × a⃗ ) (f) curl(r⃗ × a⃗ )

25. Calculate each of the following integrals or say why it

cannot be done with the methods and theorems in this

book. Let F⃗ = x3 i⃗ + y3j⃗ + z3k⃗ .

(a) ∫
S
F⃗ ⋅ dA⃗ where S is the disk of radius 3 in the

plane y = 5, oriented toward the origin.

(b) ∫
W
F⃗ dV where W is the solid sphere of radius 2

centered at the origin.

(c) ∫
S
curl F⃗ ⋅ dA⃗ where S is the disk of radius 3 in

the plane y = 5, oriented toward the origin.

(d) ∫
C
grad F⃗ ⋅ dr⃗ where C is the line from the origin

to (2, 3, 4).

(e) ∫
W
div F⃗ dV whereW is the solid sphere of radius

2 centered at the origin.

(f) ∫
C
F⃗ ⋅ dr⃗ where C is the line from the origin to

(2, 3, 4).

(g) ∫
W
curl F⃗ dV where W is the box 0 ≤ x ≤ 1, 0 ≤

y ≤ 2, 0 ≤ z ≤ 3.

(h) ∫
W
F⃗ ⋅ (i⃗ + j⃗ + k⃗ )dV where W is the box 0 ≤ x ≤

1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3.

26. Let F⃗ be a vector field with continuous partial deriva-

tives at all points in 3-space. Let S1 be the upper half

of the sphere of radius 1 centered at the origin, oriented

upward. Let S2 be the disk of radius 1 in the xy-plane

centered at the origin and oriented upward. Let C be the

unit circle in the xy-plane, oriented counterclockwise

when viewed from above. For each of the following in-

tegrals, say whether or not it is defined. If it is defined,

list which of the other integrals it must equal (if any)

and name the theorem.

(a)
∫
C

F⃗ ⋅ dr⃗ (b)
∫
C

F⃗ ⋅ dA⃗

(c)
∫
S1

F⃗ ⋅ dr⃗ (d)
∫
S2

F⃗ ⋅ dA⃗

(e)
∫
S1

curlF⃗ ⋅ dA⃗ (f)
∫
S2

curlF⃗ ⋅ dA⃗

(g)
∫
C

curlF⃗ ⋅ dr⃗

27. Let curl F⃗ = 2xi⃗ +5j⃗ −2zk⃗ , let P = (3, 2, 4), and let

C be the circle of radius 0.01 centered at P in the plane

x + y + z = 9, oriented clockwise when viewed from

the origin.

(a) Find curl F⃗ ⋅ (i⃗ + j⃗ + k⃗ ) at P .

(b) What does your answer to part (a) tell you about

∫
C
F⃗ ⋅ dr⃗ ?

28. Three small squares, S1, S2, and S3, each with side 0.1

and centered at the point (4, 5, 7), lie parallel to the xy-

, yz- and xz-planes, respectively. The squares are ori-

ented counterclockwise when viewed from the positive

z-, x-, and y-axes, respectively. A vector field G⃗ has cir-

culation aroundS1 of −0.02, aroundS2 of 6, and around

S3 of −5. Estimate curl G⃗ at the point (4, 5, 7) .
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29. Figures 20.2 and 20.3 show the vector fields F⃗ and G⃗ .

Each vector field has no z-component and is indepen-

dent of z. All the axes have the same scales.

(a) What can you say about div F⃗ and div G⃗ at the

origin?

(b) What can you say about curl F⃗ and curl G⃗ at the

origin?

(c) Is there a closed surface around the origin such that

F⃗ has a nonzero flux through it?

(d) Repeat part (c) for G⃗ .

(e) Is there a closed curve around the origin such that

F⃗ has a nonzero circulation around it?

(f) Repeat part (e) for G⃗ .

x

y

Figure 20.2: Cross-section of F⃗

x

y

Figure 20.3: Cross-section of G⃗

30. Let F⃗ = yi⃗ + �xj⃗ + zk⃗ . Find the following integrals:

(a)
∫
S

F⃗ ⋅ dA⃗ , where S is the disk x2 + y2 ≤ 10,

z =
√

5, oriented downward.

(b)
∫
C

F⃗ ⋅ dr⃗ , where C is the line from (0,
√

3, 0) to

(2,
√

3, 0).

(c)
∫
S

curl F⃗ ⋅dA⃗ , where S is the rectangle with cor-

ners at (0, 0, 0), (0,
√

3, 0), (2,
√

3, 0), (2, 0, 0), ori-

ented upward.

In Problems 31–42, calculate the integral.

31. ∫
C

(

x2 i⃗ + y2 j⃗ + (x + y + z)k⃗
)

⋅dr⃗ whereC is the cir-

cle (x−1)2+(y−2)2 = 4 in the xy-plane, oriented coun-

terclockwise when viewed from the positive z-axis.

32. ∫
C
(−y3 i⃗ + x3j⃗ + ezk⃗ ) ⋅ dr⃗ where C is x2 + y2 = 3,

z = 4, oriented counterclockwise when viewed from

above.

33. ∫
C

(

sin
(

x2
)

i⃗ + cos
(

y2
)

j⃗ + (x + y)k⃗
)

⋅ dr⃗ where C

is the circle (y−1)2 + (z−2)2 = 4 in the yz-plane, ori-

ented counterclockwise when viewed from the positive

x-axis.

34. ∫
S

curlF⃗ ⋅dA⃗ where F⃗ = (z+y)i⃗ −(z+x)j⃗ +(y+x)k⃗ .

and S is the disk y2+z2 ≤ 3, x = 0, oriented in the pos-

itive x-direction.

35. ∫
S
F⃗ ⋅ dA⃗ , where F⃗ = 3xi⃗ + 4yj⃗ + xyk⃗ and S is

the closed rectangular box whose top face has corners

(0, 0, 0), (3, 0, 0), (3, 5, 0), (0, 5, 0), and whose bottom

face contains the corner (0, 0,−2).

36. ∫
S
F⃗ ⋅dA⃗ where F⃗ =

(

y2 + 3x
)

i⃗ +
(

x2 − y
)

j⃗ +2zk⃗

and S is the unit sphere centered at the origin.

37. ∫
S
F⃗ ⋅ dA⃗ where F⃗ = x3 i⃗ + y3j⃗ + z3k⃗ and S is the

sphere of radius 1 centered at the origin.

38. ∫
C
F⃗ ⋅dr⃗ where F⃗ = (x+y)i⃗ +(y+2z)j⃗ +(z+3x)k⃗ and

C is a square of side 7 in the xz-plane, oriented coun-

terclockwise when viewed from the positive y-axis.

39. ∫
C
F⃗ ⋅ dr⃗ where F⃗ = (x− y3 + z)i⃗ + (x3 + y+ z)j⃗ +

(x+ y+ z3)k⃗ and C is the circle x2 + y2 = 10, oriented

counterclockwise when viewed from above.

40. ∫
S
F⃗ ⋅ dA⃗ where F⃗ = (y3z3)i⃗ + y3j⃗ + z3k⃗ and S is

the cylinder y2 + z2 = 16, −1 ≤ x ≤ 1.

41. ∫
S
curl F⃗ ⋅ dA⃗ where F⃗ = −xey i⃗ + yex j⃗ + x2y2zk⃗

and S is the top and sides of the cube 0 ≤ x ≤ 1, 0 ≤

y ≤ 1, 0 ≤ z ≤ 1, oriented outward.

42. ∫
C
F⃗ ⋅ dr⃗ if curl F⃗ = 4k⃗ and C is a unit circle in

the xy-plane, oriented counterclockwise when viewed

from above.

43. A box of side 1 in the first octant has faces in the planes

x = 0, x = 3, y = 0, y = 3, z = 0, z = 3. Remove the

face in the yz-plane to have an open surface, S, with a

square boundary C . Let F⃗ = (x + y)i⃗ − zj⃗ + yk⃗ .

(a) Calculate ∫
C
F⃗ ⋅ dr⃗ , where C is oriented counter-

clockwise when viewed from the positive x-axis.

(b) Calculate ∫
S
F⃗ ⋅ dA⃗ , when S is oriented in the

direction of the positive x-axis.

44. Suppose div F⃗ (x, y, z) = 4 everywhere. Which of the

following quantities can be computed from this infor-

mation? Give the value of those that can be computed.

(a) ∫
S
F⃗ ⋅dA⃗ , where S is a sphere of radius 2 centered

at the origin and oriented outward.

(b) ∫
C
F⃗ ⋅ dr⃗ , where C is the unit circle in the

xy-plane, oriented counterclockwise viewed from

above.

(c) ∫
S

curl F⃗ ⋅ dA⃗ , where S is a sphere of radius 2

centered at the origin and oriented outward.
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45. Are the following vector fields conservative?

(a) F⃗ (x, y, z) = y2zi⃗ + 2xyzj⃗ + xyk⃗

(b) The vector field in Figure 20.4.

x

y

Figure 20.4

46. Let F⃗ =
−yi⃗ + xj⃗

x2 + y2
.

(a) Calculate curl F⃗ . What is the domain of curl F⃗ ?

(b) Find the circulation of F⃗ around the unit circle C1

in the xy-plane, oriented counterclockwise when

viewed from above.

(c) Find the circulation of F⃗ around the circle C2 in

the plane z = 4 and with equation (x − 3)2 + y2 =

1, oriented counterclockwise when viewed from

above.

(d) Find the circulation of F⃗ around the square

S with corners (2, 2, 0), (−2, 2, 0), (−2,−2, 0),

(2,−2, 0), oriented counterclockwise when viewed

from above.

(e) Using your results to parts (b)–(d) explain how,

with no additional calculation, you can find the cir-

culation of F⃗ around any simple closed curve in

the xy-plane, provided it does not intersect the z-

axis. (A simple closed curve does not cross itself.)

47. Let C1 be the circle of radius 3 in the xy-plane oriented

counterclockwise and centered at the origin. Let

F⃗ =
−yi⃗ + xj⃗

x2 + y2
.

(a) Find ∫
C1

F⃗ ⋅ dr⃗ by direct computation.

(b) Calculate curl F⃗ .

(c) If possible, use Stokes’ Theorem to calculate

∫
C1

F⃗ ⋅ dr⃗ ? If it cannot be used, explain why not.

(d) Let C2 be the circle of radius 3 in the xy-plane cen-

tered at (5, 0). If possible, use Stokes’ Theorem to

calculate ∫
C2

F⃗ ⋅ dr⃗ ? If it cannot be used, explain

why not.

(e) Is F⃗ a gradient field?

48. Consider the circulation of the vector fields in parts

(a)–(c) around the sets of closed curves in (I)–(V). For

which of the sets, (I)–(V), is the circulation zero on ev-

ery curve?

(I) All closed curves in the xy-plane.

(II) All closed curves in the yz-plane.

(III) All closed curves in the xz-plane.

(IV) All closed curves in the plane x + y + z = 0.

(V) All closed curves in all planes of the form mx +

ny = d, where m, n, d are constants.

(a) F⃗ = −yi⃗ + xj⃗ (b) G⃗ = yi⃗ + xj⃗

(c) H⃗ = zj⃗

49. Let F⃗ = yi⃗ − xj⃗ + zk⃗ . Evaluate:

(a)
∫
C

F⃗ ⋅dr⃗ where C is the z-axis from the origin to

(0, 0, 10).

(b)
∫
S

F⃗ ⋅dA⃗ where S is the disk x2+y2 ≤ 3, z = 10.

(c)
∫
S

F⃗ ⋅dA⃗ where S is the closed box with edges of

length 2 in the first octant, with one corner at the

origin and edges along the axes.

(d)
∫
C

F⃗ ⋅ dr⃗ where C is the circle of radius 3, cen-

tered on the z-axis in the plane z = 4, and oriented

counterclockwise when viewed from above.

CAS Challenge Problems

50. (a) Let F⃗ = x3yi⃗ + 2xz3 j⃗ + (z3 + 4x2)k⃗ . Compute

curl F⃗ (1, 2, 1).

(b) Consider the family of curves Ca given, for 0 ≤ t ≤

2�, by

r⃗ (t) = i⃗ + (2 + a cos t)j⃗ + (1 + a sin t)k⃗ .

Evaluate the line integral ∫
Ca

F⃗ ⋅ dr⃗ and compute

the limit

lim
a→0

∫
Ca

F⃗ ⋅ dr⃗

�a2
.

(c) Repeat part (b) for the family Da given, for 0 ≤ t ≤

2�, by

r⃗ (t) = (1 + a sin t)i⃗ + 2j⃗ + (1 + a cos t)k⃗ .

(d) Repeat part (b) for the family Ea given, for 0 ≤ t ≤

2�, by

r⃗ (t) = (1 + a cos t)i⃗ + (2 + a sin t)j⃗ + k⃗ .

(e) Compare your answers to parts (b)-(d) with part (a)

and explain using the geometric definition of curl.
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51. Let S be the sphere of radius R centered at the origin

with outward orientation and let

F⃗ = (ax2 + bxz)i⃗ + (cy2 + py)j⃗ + (qz + rx3)k⃗ .

(a) Use the Divergence Theorem to express the flux

integral ∫
S
F⃗ ⋅ dA⃗ as a triple integral. Then use

symmetry and the volume formula for a sphere to

evaluate the triple integral.

(b) Check your answer in part (a) by computing the

flux integral directly.

52. Let F⃗ (x, y, z) = x2yi⃗ + 2xzj⃗ + (z3 + 4x2)k⃗ and

let Sa be the sphere of radius a centered at (1, 1, 1),

oriented outward, parameterized by r⃗ (�, �) = (1 +

a sin� cos �)i⃗ + (1 + a sin� sin �)j⃗ + (1 + a cos�)k⃗ ,

0 ≤ � ≤ �, 0 ≤ � ≤ 2�.

(a) Compute div F⃗ (1, 1, 1) .

(b) Use the geometric definition of divergence to esti-

mate ∫
Sa
F⃗ ⋅ dA⃗ for a = 0.1.

(c) Evaluate the flux integral ∫
Sa
F⃗ ⋅dA⃗ . Compare its

value for a = 0.1with your answer to part (b). Then

compute the limit

lim
a→0

∫
Sa
F⃗ ⋅ dA⃗

Volume inside Sa

and compare your result with part (a). Explain your

answer in terms of the geometric definition of the

divergence.

PROJECTS FOR CHAPTER TWENTY

1. Magnetic Field Generated by a Current in a Wire

Under steady-state conditions, a magnetic field B⃗ has curl B⃗ = 0⃗ in a region where there is

no current. We study the steady-state magnetic field B⃗ due to a constant current in an infinitely

long straight thin wire. The magnitude of the magnetic field at a point depends only on the

distance from the wire and its direction is tangent to the circle around the wire and determined

by the right-hand rule. Suppose the current is flowing upward along the z-axis. Then B⃗ is parallel

to the xy-plane and, by the right-hand rule, points counterclockwise around a circle centered on

the z-axis. (See Figure 20.5.)

(a) Find the flux of curl B⃗ through the surfaceS between two concentric circles in the xy-plane

of radius R1 and R2 centered on the wire.

(b) Calculate the circulation of B⃗ around each of the two boundary pieces of S, where their

orientations are determined by the upward orientation of S.

(c) Use Stokes’ Theorem to deduce that the magnitude of the magnetic field B⃗ is proportional

to the reciprocal of the distance from the wire.

(d) Compare the magnitude ‖B⃗ ‖ at two points P and Q if Q is twice as far from the wire as P .

(e) To decrease the magnitude of B⃗ by 20%, by what factor does the distance from the wire

have to increase?

x

y

P2

P1

S

C1

C2

R1 R2

*

*

■
B⃗

Figure 20.5: Current along positive z-axis

(out of page)
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2. Curl in Natural Coordinates

Let F⃗ (x, y) = u(x, y)i⃗ + v(x, y)j⃗ be a 2-dimensional vector field. Let F (x, y) be the mag-

nitude of F⃗ and let �(x, y) be the angle of F⃗ with the positive x-axis at the point (x, y), so that

u = F cos � and v = F sin �. Let T⃗ be the unit vector in the direction of F⃗ , and let N⃗ be the

unit vector in the direction of k⃗ × F⃗ , perpendicular to F⃗ . Show that

curl F⃗ = ck⃗ where c = F�
T⃗

− F
N⃗
.

The scalar c is called the scalar curl or the vorticity of the vector field F⃗ . This problem shows

that the vorticity is the difference of two terms, the curvature vorticity, F�
T⃗

, due to turning of

the flow lines of F⃗ , and the shear vorticity, F
N⃗

, due to changes in the magnitude of F⃗ in a

direction normal to F⃗ .
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CHAPTER SUMMARY (see also Ready Reference at the end of the book)

• Parameterized Curves and Surfaces

Parametric equations for curves in 2- and 3-space,

planes, graphs of functions, spheres, and cylinders; pa-

rameter curves.

• Change of Variable

Polar coordinates, spherical and cylindrical coordi-

nates, general change of variables and Jacobians.

• Calculating flux integrals over parameterized sur-

faces

Surfaces parameterized by r⃗ (s, t):

dA⃗ = ()r⃗ ∕)s) × ()r⃗ ∕)t) ds dt

• Area of parameterized surface

dA = ‖()r⃗ ∕)s) × ()r⃗ ∕)t)‖ ds dt

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER 21

EXERCISES

Describe in words the objects parameterized by the equa-

tions in Exercises 1–2.

1. x = 2z cos � y = 2z sin � z = z

0 ≤ z ≤ 7 0 ≤ � ≤ 2�

2. x = x y = x2 z = z

−5 ≤ x ≤ 5 0 ≤ z ≤ 7

In Exercises 3–4, find positive numbers a and b so that the

change of coordinates s = ax, t = by transforms the integral

∫ ∫
R
dx dy into

∫ ∫
T

|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ds dt

for the given regions R and T .

3. R is the circular disc of radius 15 centered at the origin

and T is the circular disc s2 + t2 ≤ 1.

4. R is the elliptical region x2∕4 + y2∕9 ≤ 1 and T is the

circular disc s2 + t2 ≤ 1.

5. Find a number a so that the change of coordinates s =

x + ay, t = y transforms the integral ∫ ∫
R
dx dy over

the parallelogram R with vertices (10, 15), (30, 15),

(20, 35), (40, 35) in the xy-plane into an integral

∫ ∫
T

|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ds dt

over a rectangle T in the st-plane.

In Exercises 6–7 compute the flux of the vector field F⃗

through the parameterized surface S.

6. F⃗ = zi⃗ + xj⃗ and S is oriented upward and given, for

0 ≤ s ≤ 1, 1 ≤ t ≤ 3, by

x = s2, y = 2s + t2, z = 5t.

7. F⃗ = −
2

x
i⃗ +

2

y
j⃗ and S is oriented upward and param-

eterized by a and �, where, for 1 ≤ a ≤ 3, 0 ≤ � ≤ �,

x = a cos �, y = a sin �, z = sin a2.

8. Parameterize the plane containing the three points

(5, 5, 5), (10,−10, 10), (0, 20, 40).

9. Find parametric equations for the sphere centered at the

point (2,−1, 3) and with radius 5.

PROBLEMS

10. Parameterize a cone of height ℎ and maximum radius a

with vertex at the origin and opening upward. Do this in

two ways, giving the range of values for each parameter

in each case: (a) Use r and �. (b) Use z and

�.

11. (a) Describe the surface given parametrically by the

equations

x = cos(s − t), y = sin(s − t), z = s + t.

(b) Describe the two families of parameter curves on

the surface.

12. Find a parameterization for the plane through (1, 3, 4)

and orthogonal to n⃗ = 2i⃗ + j⃗ − k⃗ .

13. Adapt the parameterization for the sphere to find a pa-

rameterization for the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1.

14. Parameterize a vase formed by rotating the curve z =

10
√

x − 1, 1 ≤ x ≤ 2, around the z-axis. Sketch the

vase.

15. For the surface given parametrically by

x = 3 sin s y = 3 cos s z = t + 1,
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where 0 ≤ s ≤ � and 0 ≤ t ≤ 1

(a) Write an equation in x, y, z and identify the para-

metric surface.

(b) Draw a picture of the surface.

16. Find the region R in the xy-plane corresponding to the

region T = {(s, t) | 0 ≤ s ≤ 2, s ≤ t ≤ 2} under the

change of coordinates x = s2, y = t. Check that

∫
R

dx dy =
∫
T

|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ds dt.

17. Use the change of coordinates s = x − y, t = x + y to

evaluate ∫ ∫
R
sin(x+y) dxdy over the disc x2+y2 ≤ 1.

18. Use the change of coordinates s = xy, t = xy2 to

compute ∫
R
xy2 dA, where R is the region bounded by

xy = 1, xy = 4, xy2 = 1, xy2 = 4.

19. Evaluate ∫
S
F⃗ ⋅ dA⃗ , where F⃗ = (bx∕a)i⃗ + (ay∕b)j⃗

and S is the elliptic cylinder oriented away from the z-

axis, and given by x2∕a2 + y2∕b2 = 1, |z| ≤ c, where

a, b, c are positive constants.

20. Find ∫
S
(x2 i⃗ + y2j⃗ + z2k⃗ ) ⋅ dA⃗ where S is the surface

of the sphere (x−a)2+(y−b)2+(z−c)2 = d2, oriented

outward.

PROJECTS FOR CHAPTER TWENTY-ONE

1. Stereographic Projection

We parameterize the sphere x2 + y2 + z2 = 1 by a famous method called stereographic

projection. Draw a line from a point (x, y) in the xy-plane to the north pole (0, 0, 1). This line

intersects the sphere in a point (x, y, z). This gives a parameterization of the sphere by points in

the plane.

(a) Which point corresponds to the south pole?

(b) Which points correspond to the equator?

(c) Do we get all the points of the sphere by this parameterization?

(d) Which points correspond to the upper hemisphere?

(e) Which points correspond to the lower hemisphere?

2. Parameterizing a Torus

A torus (doughnut) is constructed by rotating a small circle of radius a in a large circle of

radius b about the origin. The small circle is in a (rotating) vertical plane through the z-axis and

the large circle is in the xy-plane. See Figure 21.1. Parameterize the torus as follows.

x

y

z

a

b �

r⃗ ✠

�

Figure 21.1

(a) Parameterize the large circle.

(b) For a typical point on the large circle, find two unit vectors which are perpendicular to one

another and in the plane of the small circle at that point. Use these vectors to parameterize

the small circle relative to its center.

(c) Combine your answers to parts (b) and (c) to parameterize the torus.
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2 Theory Supplement Section A

A THE UNDERPINNINGS OF CALCULUS

Mathematics in its applied form has existed from time immemorial. Commercial arithmetic and the
geometry of land-surveying and building construction were well-developed by 1500 B.C. Gradually
people realized that simple mathematical facts may be interrelated in non-obvious ways, and that
the interrelationships themselves were worthy of study. Thales (640-546 B.C.) is said to have proved

that the sum of the angles of a triangle is two right angles. This is the oldest indication we have of
the idea of proof in geometry. In the next section we look at an example of a proof.

Over the next few centuries, people began to think of geometry as being not about points, lines,
and circles drawn with chalk on a slate, but about abstract entities: points tinier than the smallest
speck, lines that are perfectly straight, and circles that are perfectly round. In other words, what
one draws on a slate or carves into stone is merely an imperfect model of the abstract reality. Plato
(427-347 B.C.) extended this view. He believed that the entire world of experience was an imperfect
shadow of the true reality. However, one cannot reason about abstract things without taking some
of their properties for granted. In mathematics, these assumptions are called axioms or postulates.

About 300 B.C. Euclid wrote a textbook, The Elements, covering a good deal of geometry,
some number theory, and some more advanced topics concerning irrational numbers. It was and
is the most successful textbook ever written. (It is still in print.) Euclid begins his treatment of
geometry by stating several axioms concerning lines and circles. For example:

If A and B are two points, there is a circle having center A that passes through B.

This is surely a reasonable property to ascribe to the abstract points and circles that we imagine.
He goes on to prove many facts about figures in the plane and in space, including the celebrated
Pythagorean theorem: The area of the square drawn on the hypotenuse of a right triangle is equal to
the sum of the areas of the squares drawn on the two legs.

For many years The Elements was revered as the pinnacle of logical reasoning. It is quite rightly
regarded as a masterpiece, but its reasoning is no longer thought to be airtight. In fact, there is an
error (by modern standards) in the proof of the very first proposition. The argument goes as follows.

Starting from two points A and B, consider the circle with center A passing through B
and the circle with center B passing through A. (See Figure A.1.) Let these circles cut one
another at C. . .

A B

C?

Figure A.1

But why must there be a point at which these two circles intersect? It is clear from the figure that
they do, but the figure is drawn in the real world, not the abstract world of pure geometry. Perhaps
when the circles we have drawn are replaced by their abstract representations, it might turn out that
there isn’t any point where C ought to be. Here and in several other places Euclid seems to have
relied on a figure. Perhaps he did not know how to describe clearly those properties of drawings that
he believed carried over to abstract geometry and guaranteed the existence of C, and so he left it to
his readers to decide whether they believed that C would exist in the ideal realm. Although these
deficiencies were noted in classical times, The Elements retained its status as the ultimate example
of mathematical rigor until well into the nineteenth century. Finally, after centuries of study by
many mathematicians, Hilbert (1863-1943) gave what is regarded today as the definitive treatment
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of Euclidean geometry. It is important to realize that none of the theorems stated by Euclid have
been found to be wrong in substance; the difficulties lie entirely in Euclid’s incomplete statement of
the axioms on which he was relying.

Calculus belongs to a different branch of mathematics than geometry. Instead of lines, circles,
and angles, calculus studies the behavior of numerical functions: specifically, functions that repre-
sent a rate of change. Calculus also provides a language for expressing laws of nature that govern
everything from the behavior of the atomic nucleus to the life cycles of stars.

Some anticipations of calculus can be seen in Euclid and other classical writers, but most of
the ideas appear first in the seventeenth century. Newton (1642-1727) and Leibniz (1646-1716) are
generally credited with shaping the subject into a coherent theory. Newton’s most famous work,
Philosophiae Naturalis Principia Mathematica (in three volumes) appeared in 1686-1687. Its best
known result is that the Laws of Planetary Motion, which had been announced by Kepler (1571-
1630) on purely empirical evidence, can be deduced from simpler universal laws, such as the Law of
Gravity. In addition, Newton’s theory explained other astronomical phenomena, such as the irregu-
larities in the motion of the moon, and terrestrial phenomena, such as the tides. The real significance
of Principia lies in its demonstration that very complicated physical systems can be successfully
modeled by pure mathematics. Although Principia uses geometrical arguments, not calculus, the
ideas in it were, by Newton’s own statement, generated with the aid of calculus.

After its start in the seventeenth century, calculus went for over a century without a proper
axiomatic foundation. Newton wrote that it could be rigorously founded on the idea of limits, but he
never presented his ideas in detail. A limit is, roughly speaking, the value approached by a function
near a given point. During the eighteenth century many mathematicians based their work on limits,
but their definition of limit was not clear. In 1784, Lagrange (1736-1813) at the Berlin Academy
proposed a prize for a successful axiomatic foundation for calculus. He and others were interested in
being as certain of the internal consistency of calculus as they were about algebra and geometry. No
one was able to successfully respond to the challenge. It remained for Cauchy (1789-1857) to show,
around 1820, that limits can be defined rigorously by means of inequalities. The modern definition
of the limit, given on page 11, is essentially due to Cauchy.1

This rigorous definition of the limit was the advance that was needed in order to begin the
axiomatic foundations of calculus, where every result is carefully proved from axioms, or from
theorems that have already been proved. Courses in analysis follow this chain of logical reasoning.

In the textbook we concentrated on developing the solid intuitive understanding on which the
rigorous approach depends, emphasizing plausibility arguments, not proofs. In this supplement we
give some glimpses of the theoretical underpinnings of calculus. We hope that this brief excursion
into a more theoretical world encourages you to investigate further.

B A CASE STUDY IN RIGOROUS ARGUMENT: THE BINOMIAL THEOREM

In everyday life we are often content to believe things simply by observing that they seem to be true.
In mathematics, however, we decide what is true by means of logical arguments. Mathematicians
attempt to eliminate all possible sources of disagreement by carefully stating axioms (assumptions)
and definitions, formulating precise theorems (statements to be proved), and using strict rules of
logic. In this section we illustrate how theorems are formulated and proved by studying the example
of the binomial theorem. In the next section we see how, and why, an axiom is introduced, using as
an example the completeness of the real numbers.

Recall the algebraic formulas for squaring and cubing x+ y:

(x+ y)2 = x2
+ 2xy + y2

(x+ y)3 = x3
+ 3x2y + 3xy2 + y3.

1Grabiner, Judith V. “Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus.” American Mathematical

Monthly 90 (1983) pp. 185-194.
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We want to find a general formula for (x+y)n for any positive integer n. We do this in three stages:
• Find a pattern.

• Formulate a statement, called a conjecture, describing the pattern.

• Prove the conjecture.
Once we have proved the statement, it becomes a theorem.

Finding a pattern

First we look at some more examples. Multiplying out (x + y)n for n = 4, 5, 6 gives:

(x+ y)4 = x4
+ 4x3y + 6x2y2 + 4xy3 + y4

(x+ y)5 = x5
+ 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

(x+ y)6 = x6
+ 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6.

Notice that the exponents of x and y in each term on the right always add up to n. The reason
for this is that in the expansion of

(x+ y)n = (x+ y)(x+ y) · · · (x+ y)︸ ︷︷ ︸
n times

,

each term comes from choosing x’s from some of the factors and y’s from the others. The total
number of x’s and y’s chosen equals the total number of (x + y)’s, which is n. For example, in the
expansion of (x + y)3, choosing x from one of the factors and y from the other two yields a term
xy2. There are three different ways of doing this (depending on which factor x is chosen from), so
there are three terms of this form, giving 3xy2.

We arrange the coefficients in the expansion of (x + y)n in a triangle called Pascal’s triangle,
after the French mathematician Blaise Pascal.

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

The second row in this triangle gives the coefficients in the expansion of (x+y)2 = x2+2xy+
y2, namely 1, 2, and 1. The next row gives the coefficients for (x + y)3, and so on. The top row
gives the coefficients for the expansion (x + y)1 = x+ y.

There appears to be a pattern to the triangle: The outside entries are all 1s; each inside entry is
equal to the sum of the entries immediately to its left and right in the row above. For example, each
10 in the fourth row has a 4 and a 6 immediately above it, and 10 = 4 + 6.

Formulating the theorem

We want to prove that, for any n, the coefficients in the expansion of (x+ y)n satisfy the pattern we
have observed for n = 1, . . . , 6. The general case is made easier by writing Cn

k for the coefficient
of xn−kyk in the expansion of (x+ y)n, so

(x+ y)n = Cn
0 x

n
+ Cn

1 x
n−1y + Cn

2 x
n−2y2 + · · ·+ Cn

n−1xy
n−1

+ Cn
ny

n.

Thus, for example, C5
3 = 10 because the x2y3 term in the expansion of (x+ y)5 is 10x2y3.

Now
Cn

0 Cn
1 Cn

2 . . . Cn
n−1 Cn

n
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is the n-th row in Pascal’s triangle. There are two rules that described the pattern we have observed:
first, the outside entries are all 1s; second, each inside entry is the sum of the two above it. Thus, we
must show, first, that Cn

0 = 1 and Cn
n = 1 for all n, and, second, that

Cn
k = Cn−1

k−1 + Cn−1
k , 0 < k < n.

Notice, if 0 < k < n, then Cn
k is an inside entry in the triangle, and Cn−1

k−1 and Cn−1
k are the entries

immediately above it. Now we can state the theorem we want to prove as follows:

The Binomial Theorem

If n is a positive integer and we write

(x+ y)n = Cn
0 x

n
+ Cn

1 x
n−1y + Cn

2 x
n−2y2 + · · ·+ Cn

n−1xy
n−1

+ Cn
ny

n,

then
Cn

0 = Cn
n = 1, forn ≥ 1,

and
Cn

k = Cn−1
k−1 + Cn−1

k , for n ≥ 2 and 0 < k < n.

Proof In the expansion of
(x+ y)n = (x+ y)(x+ y) · · · (x+ y)︸ ︷︷ ︸

n times

,

there is only one way of getting the term xn, and that is by choosing an x from each factor. So, the
coefficient of xn is 1. By the same argument, the coefficient of yn is also 1, so

Cn
0 = Cn

n = 1.

To prove Cn
k = Cn−1

k−1 + Cn−1
k , we write

(x+ y)n = Cn
0 x

n
+ Cn

1 x
n−1y + Cn

2 x
n−2y2 + · · ·+ Cn

n−1xy
n−1

+ Cn
ny

n,

and we write

(x + y)n−1
= Cn−1

0 xn−1
+ Cn−1

1 xn−2y + Cn−1
2 xn−3y2 + · · ·+ Cn−1

n−2xy
n−2

+ Cn−1
n−1y

n−1.

Now, we will use the fact that

(x+ y)n = (x+ y)(x+ y)n−1.

Substituting in the expressions for (x + y)n−1 and (x+ y)n gives

Cn
0 x

n
+ Cn

1 x
n−1y + · · · + Cn

n−1xy
n−1

+ Cn
ny

n

= (x + y)
(
Cn−1

0 xn−1
+ Cn−1

1 xn−2y + · · · + Cn−1
n−2xy

n−2
+ Cn−1

n−1y
n−1

)
= x

(
Cn−1

0 xn−1
+ Cn−1

1 xn−2y + · · · + Cn−1
n−2xy

n−2
+ Cn−1

n−1y
n−1

)
+ y

(
Cn−1

0 xn−1
+ Cn−1

1 xn−2y + · · · + Cn−1
n−2xy

n−2
+ Cn−1

n−1y
n−1

)
= Cn−1

0 xn
+
(
Cn−1

1 + Cn−1
0

)
xn−1y + · · ·+

(
Cn−1

n−1 + Cn−1
n−2

)
xyn−1

+ Cn−1
n−1y

n.

The inside terms in this expression have the form (Cn−1
k + Cn−1

k−1 )x
n−kyk, for k = 1, . . . , n − 1.

The corresponding term in the expansion of (x+y)n is Cn
k x

n−kyk. Since the expressions are equal,
the coefficients of like terms must be equal, so

Cn
k = Cn−1

k + Cn−1
k−1 = Cn−1

k−1 + Cn−1
k ,

which is what we wanted to show.
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A Formula for the Binomial Coefficients

The numbers Cn
k are called binomial coefficients. They are usually computed using the following

formula, rather than by writing out Pascal’s triangle. (Note that k! = k(k − 1) · · · 3 · 2 · 1.)

Cn
k =

n!

k!(n− k)!
=

n(n− 1) · · · (n− k + 1)

k!

This formula holds for k = 0 and k = n if we adopt the convention that 0! = 1:

Cn
0 =

n!

0!(n− 0)!
=

n!

n!
= 1 and Cn

n =
n!

n!(n− n)!
=

n!

n!
= 1.

To prove the formula in general, we use an important technique called mathematical induction.
There are two steps:
• Prove the formula in the case n = 1.

• Prove that if it holds for a specific positive integer n then it holds for n+ 1.
The second step, called the induction step, enables us to deduce that the formula is true for all n, as
follows. Since we know by the first step that it is true for n = 1, by the induction step it is true for
n = 2. But then, by the induction step again, it is true for n = 3, and so on.

Proof We have already proved that the formula holds for n = 1 since the only binomial coefficients in that
case are C1

0 and C1
1 .

Now we prove the induction step. Suppose that our formula is true for n. That is, suppose that

Cn
k =

n!

k!(n− k)!
, 0 ≤ k ≤ n.

We want to deduce the formula for n+ 1. That is, we want to show that

Cn+1
k =

(n+ 1)!

k!(n+ 1− k)!
, 0 ≤ k ≤ n+ 1.

We already know that this is true if k = 0 or k = n+1. If 0 < k < n+1, then, using the Binomial
Theorem,

Cn+1
k = Cn

k + Cn
k−1 =

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

=
n!

k(k − 1)!(n− k)!
+

n!

(k − 1)!(n− k + 1)(n− k)!

=
n!

(k − 1)!(n− k)!

(
1

k
+

1

n− k + 1

)

=
n!

(k − 1)!(n− k)!

(
n− k + 1 + k

k(n− k + 1)

)

=
n!

(k − 1)!(n− k)!

(n+ 1)

k(n− k + 1)
=

(n+ 1)!

k!(n− k + 1)!
,

which is what we wanted to prove.
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Problems for Section B

1. The formula for the binomial coefficients gives Cn
k as a

ratio of integers. Is Cn
k necessarily an integer? Could Cn

k

be a fraction? Justify your answer.

2. Look at the entries in the first few rows of Pascal’s trian-
gle on page 4. You should see a pattern of symmetry.

(a) Describe the pattern in words.
(b) Formulate a conjecture about the binomial coeffi-

cients Cn
k that describes the pattern mathematically.

(c) Prove your conjecture.

3. Add the entries across the rows in Pascal’s triangle for the
first six rows. You should notice a pattern to the sequence
of numbers that you obtain.

(a) Formulate a general conjecture that describes the
pattern.

(b) Prove your conjecture.

C COMPLETENESS OF THE REAL NUMBERS

If two people argue about something long enough, they may eventually reveal the hidden assump-
tions that are the root of the argument. In the same way, mathematicians arrive at axioms by a pro-
cess which is somewhat like arguing with themselves. In attempting to understand something, they
question every seemingly obvious statement, hoping to eventually arrive at fundamental axioms.

We apply this method to the process of finding a root of a polynomial by zooming in on its
graph. This will lead us to a subtle property of the real numbers, called completeness. Many proofs
involving limits depend on this property.

Case Study: Finding the Roots of a Polynomial

Consider the polynomial f(x) = 3x3 − x2 + 2x − 1 on the interval [0, 1]. Since f(0) = −1 and
f(1) = 3, we expect that the graph of f crosses the x-axis at some point x = r between x = 0 and
x = 1. Since the coordinates of this point are (r, 0), we have f(r) = 0. Suppose we estimate this
root by graphing the polynomial on a calculator or computer and zooming in. We start by knowing
that

0 ≤ r ≤ 1.

By zooming in, we find f(0.4) < 0 and f(0.5) > 0, so r is trapped in a smaller interval

0.4 ≤ r ≤ 0.5.

Successive zooming in shows that
0.45 ≤ r ≤ 0.46

0.459 ≤ r ≤ 0.460

0.4598 ≤ r ≤ 0.4599.

At each stage, we divide the interval into tenths and pick any one for which f is negative at the
left end point and positive at the right. (If f is 0 at any of the endpoints, we have found r and can
stop.) Continuing this way we obtain a sequence of intervals, each one one-tenth the length of the
previous one and each one containing r. (See Figure C.2.) Although a calculator will only give us
a finite number of digits, we could in principle continue forever, generating an infinite sequence of
intervals.

r

0 1

r

0.4 0.5

r

0.45 0.46

r

0.459 0.460

r

0.4598 0.4599

Figure C.2: Zooming in on a zero of f(x) = 3x3 − x2 + 2x− 1
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It seems that this process leads us to a number r such that f(r) = 0. However, there are two
questions that can be raised:
• How do we know2 that this process of zooming in really does close in on a number, r?

• How do we know that f(r) = 0?

The Completeness Axiom

Consider the first question above (the answer to the second question is worked out in Problem 26
on page 18). The left hand endpoints of the nested intervals form an ever increasing sequence of
decimals; clearly the number r that we are looking for is the smallest number that is greater than all
these decimals. The completeness axiom says that, given any nonempty set of numbers, if there is
any number which is greater than or equal to all of the numbers in the set, then there is a smallest
such number.3 A number which is greater than or equal to all the numbers in a set is called an upper

bound for the set. We have the following:

The Completeness Axiom

Any nonempty set of real numbers which has an upper bound has a least upper bound.

Example 1 For each of the following sets, say whether it has an upper bound. If so, give the least upper bound.

(a) The set of x such that −2 < x < 3.
(b) The set of x such that −2 ≤ x ≤ 3.
(c) The set of all integers.
(d) The sequence 0.9, 0.99, 0.999, . . ..

Solution (a) The numbers 3, 4, and π are all upper bounds; 3 is the least upper bound.
(b) Same as part (a); an upper bound for a set can be in the set, since it only has to be greater than

or equal to each number in the set.
(c) There is no upper bound for this set; no matter how large a number we choose for the upper

bound, there will always be some integer bigger than it.
(d) All the numbers are less than 1, and 1 is the smallest number with this property. Thus, this

sequence has a least upper bound of 1.

In the previous example we could see directly what the least upper bounds were. In other
situations it may not be obvious. The completeness axiom guarantees the existence of the least
upper bound but offers no help in finding it.

The Nested Interval Theorem

Now we see how the completeness axiom ensures that the process of zooming in closes in on a
specific number.

Nested Interval Theorem

Given an infinite sequence of closed intervals, [an, bn], each one contained within the previ-
ous one, then there is at least one number in all the intervals.

2This is related to the question raised on page 2 about the existence of an intersection point C between two circles.
3It is possible to give a definition of the real numbers in which the completeness axiom becomes a theorem.
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Proof Because each interval [an, bn] is contained in the previous one, each an must be at least as large as
the previous one, so

a1 ≤ a2 ≤ a3 ≤ · · · ≤ an ≤ · · · .

Similarly, each bn is no larger than its predecessor, so

· · · ≤ bn ≤ · · · ≤ b3 ≤ b2 ≤ b1.

All the an are bounded above by b1, and in fact by every bn. Therefore, by the completeness axiom,
we know that the an have a least upper bound; call it r. Since r is an upper bound, r ≥ an for all n.
Since r is the least upper bound, r must be less than or equal to each of the upper bounds bn. Thus,
r is in all the intervals.

Note that in our statement of the Nested Interval Property, we did not assume that the lengths
of the intervals approached zero, so in general there may be more than one number r in all the
intervals. However, when the lengths do approach zero, as in the case of finding a root by zooming
in, there is a unique number r (see Problem 2).

The Intermediate Value Theorem

When we considered the polynomial 3x3 − x2 + 2x− 1, we assumed it must have a root between
x = 0 and x = 1 because it was negative at x = 0 and positive at x = 1. More generally, our
intuitive notion of continuity tells us that, as we follow the graph of a continuous function f from
some point (a, f(a)) to another point (b, f(b)), then f must take on all intermediate values between
f(a) and f(b). (See Figure C.3.) This is:

Intermediate Value Theorem

Suppose f is continuous on a closed interval [a, b]. If k is any number between f(a) and f(b),
then there is at least one number c in [a, b] such that f(c) = k.

Problems 26 and 27 on page 18 suggest a way of proving the Intermediate Value Theorem using
the Nested Interval Theorem.

a c b

k

(a, f(a))

(b, f(b))

x

Figure C.3: The Intermediate Value
Theorem
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Problems for Section C

1. (a) Using the definitions in this section as a guide, de-
fine the following terms:

(i) A lower bound of a set of numbers

(ii) The greatest lower bound of a set of numbers
(b) State the completeness axiom in terms of lower

bounds.

2. Let r be a number contained in each of a sequence of
nested intervals [an, bn]. Suppose that the width of the
intervals, |bn − an|, goes to 0 as n → ∞. Prove that r
is unique. [Hint: Suppose there were two such numbers,
and argue to a contradiction.]

3. In this problem we will use the completeness axiom to

show that an infinite decimal expansion actually defines
a real number, and that the first n digits of the expansion
give the number accurate to n decimal places. Let xn be
the number defined by the first n digits of the expansion;
we call xn the n-th truncation of the expansion.

(a) For any n, show that xn+(1/10n) is an upper bound
for the set of all the truncations.

(b) Deduce that there is a real number, c, such that
xn ≤ c ≤ xn + (1/10)n for all n. Thus xn rep-
resents c accurate to n places, so it’s reasonable to
say that c is the number represented by the infinite
decimal expansion.

D LIMITS AND CONTINUITY

In this section we use the example of limits and continuity to illustrate how formal definitions are
developed from intuitive ideas.

Definition of Limit

By the beginning of the 19th century, calculus had proved its worth, and there was no doubt about the
correctness of its answers. However, it was not until the work of the French mathematician Augustin
Cauchy (1789–1857) that a formal definition of the limit was given, similar to the following:

Suppose a function f , is defined on an interval around c, except perhaps not at the point
x = c. We define the limit of the function f(x) as x approaches c, written limx→c f(x), to
be a number L (if one exists) such that f(x) is as close to L as we please whenever x is
sufficiently close to c (but x 6= c). If L exists, we write

lim
x→c

f(x) = L.

Shortly, we will see how “as close as we please” and “sufficiently close” can be given a precise
meaning using inequalities. First, we look at lim

θ→0
(sin θ/θ) more closely (see Example 1 on page 68

of the textbook).

Example 1 By graphing y = (sin θ)/θ in an appropriate window, find how close θ should be to 0 in order to
make (sin θ)/θ within 0.01 of 1.

Solution Since we want (sin θ)/θ to be within 0.01 of 1, we set the y-range on the graphing window to go
from 0.99 to 1.01. Our first attempt with −0.5 ≤ θ ≤ 0.5 yields the graph in Figure D.4. Since
we want the y-values to stay within the range 0.99 < y < 1.01, we do not want the graph to
leave the window through the top or bottom. By trial and error, we find that changing the θ-range
to −0.2 ≤ θ ≤ 0.2 gives the graph in Figure D.5. Thus, the graph suggests that (sin θ)/θ will be
within 0.01 of 1 whenever θ is within 0.2 of 0. Proving this requires an analytical argument, not just
graphs from a calculator.
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1.01

0.99
−0.5 0.5

y

Figure D.4: (sin θ)/θ with
−0.5 ≤ θ ≤ 0.5

1.01

0.99
−0.2 0.2

y

Figure D.5: (sin θ)/θ with
−0.2 ≤ θ ≤ 0.2

When we say “f(x) is as close to L as we please,” we mean that we can specify a maximum
distance between f(x) and L. We express the distance using absolute values:

|f(x)− L| = Distance between f(x) and L.

Using ǫ (the Greek letter epsilon) to stand for the distance we have specified, we write

|f(x)− L| < ǫ

to indicate that the maximum distance between f(x) and L is less than ǫ. In Example 2 we used
ǫ = 0.01. In a similar manner we interpret “x is sufficiently close to c” as specifying a maximum
distance between x and c:

|x− c| < δ,

where δ (the Greek letter delta) tells us how close x should be to c. In Example 2 we found δ = 0.2.
If lim

x→c
f(x) = L, we know that no matter how narrow the band determined by ǫ in Figure D.6,

there’s always a δ which makes the graph stay within the band for c− δ < x < c+ δ.
Thus we restate the definition of a limit, using symbols:

Definition of Limit

We define lim
x→c

f(x) to be the number L (if one exists) such that for any ǫ > 0 (as small

as we want), there is a δ > 0 (sufficiently small) such that if |x − c| < δ and x 6= c, then
|f(x)− L| < ǫ.

Realize that the point of this definition is that for any ǫ we are given, we need to be able to
determine a corresponding δ. One way to do this is to give an explicit expression for δ in terms of ǫ.

c− δ c c+ δ

L− ǫ

L

L+ ǫ

✻❄
ǫ

✻❄ǫ

f(x)

x

Figure D.6: What the definition of the limit means practically
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Example 2 Use algebra to find a maximum distance between x and 2 which ensures that x2 is within 0.1 of 4.
Use a similar argument to show that lim

x→2
x2

= 4.

Solution We write x = 2 + h. We want to find the values of h making x2 within 0.1 of 4. We know

x2
= (2 + h)2 = 4 + 4h+ h2,

so x2 differs from 4 by 4h+ h2. Since we want x2 to be within 0.1 of 4, we need∣∣x2 − 4
∣∣ = ∣∣4h+ h2

∣∣ = |h| · |4 + h| < 0.1.

Assuming 0 < |h| < 1, we know |4 + h| < 5, so we need∣∣x2 − 4
∣∣ < 5 |h| < 0.1.

Thus, if we choose h such that 0 < |h| < 0.1/5 = 0.02, then x2 is less than 0.1 from 4.
An analogous argument using any small ǫ instead of 0.1 shows that if we take δ = ǫ/5, then∣∣x2 − 4

∣∣ < ǫ for all |x− 2| < ǫ/5.

Thus, we have used the definition to show that

lim
x→2

x2
= 4.

It is important to understand that the ǫ, δ definition by itself does not make it easier to calculate
limits. The advantage of the ǫ, δ definition is that it makes it possible to put calculus on a rigorous
foundation. From this foundation, we can prove the following properties. See Problems 13–16.

Theorem: Properties of Limits

Assuming all the limits on the right hand side exist:

1. If b is a constant, then lim
x→c

(bf(x)) = b
(
lim
x→c

f(x)
)

.

2. lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x).

3. lim
x→c

(f(x)g(x)) =
(
lim
x→c

f(x)
)(

lim
x→c

g(x)
)

.

4. lim
x→c

f(x)

g(x)
=

limx→c f(x)

limx→c g(x)
, provided lim

x→c
g(x) 6= 0.

5. For any constant k, lim
x→c

k = k.

6. lim
x→c

x = c.

These properties underlie many limit calculations, though we seldom acknowledge them explicitly.

Example 3 Explain how the limit properties are used in the following calculation:

lim
x→3

x2 + 5x

x+ 9
=

32 + (5)(3)

3 + 9
= 2.
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Solution We calculate this limit in stages, using the limit properties to justify each step:

lim
x→3

x2 + 5x

x+ 9
=

lim
x→3

(x2
+ 5x)

lim
x→3

(x + 9)
Property 4 (since limx→3(x + 9) 6= 0)

=

lim
x→3

(x2
) + lim

x→3
(5x)

lim
x→3

x+ lim
x→3

9
Property 2

=

(
lim
x→3

x
)2

+ 5

(
lim
x→3

x
)

lim
x→3

x+ lim
x→3

9
Properties 1 and 3

=
32 + (5)(3)

3 + 9
= 2. Properties 5 and 6

One- and Two-Sided Limits

When we write
lim
x→2

f(x),

we mean the number that f(x) approaches as x approaches 2 from both sides. We examine values
of f(x) as x approaches 2 through values greater than 2 (such as 2.1, 2.01, 2.003) and values less
than 2 (such as 1.9, 1.99, 1.994). If we want x to approach 2 only through values greater than 2, we
write

lim
x→2+

f(x)

for the number that f(x) approaches (assuming such a number exists). Similarly,

lim
x→2−

f(x)

denotes the number (if it exists) obtained by letting x approach 2 through values less than 2. We call
lim

x→2+
f(x) a right-hand limit and lim

x→2−
f(x) a left-hand limit.

2

L1

L2

f(x)

x

Figure D.7: Left- and right-hand limits at
x = 2

For the function graphed in Figure D.7, we have

lim
x→2−

f(x) = L1 lim
x→2+

f(x) = L2.

If the left- and right-hand limits were equal, that is, if L1 = L2, then it could easily be proved that
lim
x→2

f(x) exists and lim
x→2

f(x) = L1 = L2. Since L1 6= L2 in Figure D.7, we see that lim
x→2

f(x)

does not exist in this case.

When Limits Do Not Exist

Whenever there is not a number L such that lim
x→c

f(x) = L, we say lim
x→c

f(x) does not exist. In

addition to cases in which the left- and right-hand limits are not equal, there are some other cases in
which limits fail to exist. Here are three examples.
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Example 4 Explain why lim
x→2

|x− 2|

x− 2
doesn’t exist.

Solution Figure D.8 shows the problem: The right-hand limit and the left-hand limit are different. For x > 2,
we have |x− 2| = x− 2, so as x approaches 2 from the right,

lim
x→2+

|x− 2|

x− 2
= lim

x→2+

x− 2

x− 2
= lim

x→2+
1 = 1.

Similarly, if x < 2, then |x− 2| = 2− x so

lim
x→2−

|x− 2|

x− 2
= lim

x→2−

2− x

x− 2
= lim

x→2−
(−1) = −1.

So if lim
x→2

|x− 2|

x− 2
= L then L would have to be both 1 and −1. Since L cannot have two different

values, the limit does not exist.

2

−1

1

x

Figure D.8: Graph of |x−2|
x−2

x

Figure D.9: Graph of 1
x2

− 1
2π

1
2π

x

Figure D.10: Graph of sin
(

1
x

)

Example 5 Explain why lim
x→0

1

x2
doesn’t exist.

Solution As x approaches zero, 1/x2 becomes arbitrarily large, so it can’t stay close to any finite number L.
See Figure D.9. Therefore we say 1/x2 has no limit as x → 0.

Example 6 Explain why lim
x→0

sin

(
1

x

)
doesn’t exist.

Solution We know that the sine function has values between −1 and 1. The graph in Figure D.10 oscillates
more and more rapidly as x → 0. There are x-values as close to 0 as we like where sin(1/x) = 0.
There are also x-values as close to 0 as we like where sin(1/x) = 1. So if the limit existed, it would
have to be both 0 and 1. Thus, the limit does not exist.

Limits at Infinity

Sometimes we want to know what happens to f(x) as x gets large, that is, the end behavior of f .
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If f(x) gets as close to a number L as we please when x gets sufficiently large, then we write

lim
x→∞

f(x) = L.

Similarly, if f(x) approaches L as x gets more and more negative, then we write

lim
x→−∞

f(x) = L.

The symbol ∞ does not represent a number. Writing x → ∞ means that we consider arbitrarily
large values of x. If the limit of f(x) as x → ∞ or x → −∞ is L, we say that the graph of f has a
horizontal asymptote y = L.

Example 7 Investigate lim
x→∞

1

x
and lim

x→−∞

1

x
.

Solution A graph of f(x) = 1
x in a large window shows 1/x approaching zero as x increases in either the

positive or the negative direction (See Figure D.11). This is as we would expect, since dividing 1 by
larger and larger numbers yields answers which are smaller and smaller. This suggests that

lim
x→∞

1

x
= lim

x→−∞

1

x
= 0,

and f(x) = 1/x has y = 0 as a horizontal asymptote as x → ±∞.

x

y

f(x) = 1
x

Figure D.11: The end behavior of f(x) = 1
x

Definition of Continuity

We can now define continuity. Recall that the idea of continuity rules out breaks, jumps, or holes by
demanding that the behavior of a function near a point be consistent with its behavior at the point:

The function f is continuous at x = c if f is defined at x = c and

lim
x→c

f(x) = f(c).

In other words, f(x) is as close as we please to f(c) provided x is close enough to c. The
function is continuous on an interval [a, b] if it is continuous at every point in the interval.4
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Constant functions and f(x) = x are continuous. (See Problem 16.) Using the continuity of
sums and products, we can show that any polynomial is continuous. Proving that sinx, cosx, and
ex are continuous is more difficult. The following theorem, based on the properties of limits on
page 12, makes it easier to decide whether a given function is continuous.

Theorem: Continuity of Sums, Products, and Quotients of Functions

Suppose that f and g are continuous on an interval and that b is a constant. Then, on that
same interval,

1. bf(x) is continuous

2. f(x) + g(x) is continuous

3. f(x)g(x) is continuous

4. f(x)/g(x) is continuous, provided g(x) 6= 0 on the interval.

We prove the first of these properties.

Proof To prove that bf(x) is continuous, pick any point c in the interval. We must show that lim
x→c

bf(x) =

bf(c). Since f(x) is continuous, we already know that lim
x→c

f(x) = f(c). So, by the first property

of limits,
lim
x→c

(bf(x)) = b
(
lim
x→c

f(x)
)
= bf(c).

Since c was chosen arbitrarily, we have shown that bf(x) is continuous at every point in the interval.

Theorem: Continuity of Composite Functions

If f and g are continuous, and if the composite function f(g(x)) is defined on an interval,
then f(g(x)) is continuous on that interval.

Assuming the continuity of sinx and ex, this result shows us, for example, that sin(ex) and esin x

are both continuous. A proof of the continuity of composite functions is outlined in Problem 17.

Problems for Section D

1. Consider the function (sin θ)/θ. Estimate how close θ
should be to 0 to make (sin θ)/θ stay within 0.001 of 1.

2. The function g(θ) = (sin θ)/θ is not defined at θ = 0. Is
it possible to define g(0) in such a way that g is continu-
ous at θ = 0? Explain your answer.

Use a graph to estimate each of the limits in Problems 3–6.

3. lim
θ→0

sin (2θ)

θ
(use radians)

4. lim
θ→0

cos θ − 1

θ
(use radians)

5. lim
θ→0

sin θ

θ
(use degrees)

6. lim
θ→0

θ

tan(3θ)
(use radians)

7. Consider the limit

lim
x→0+

xx.

Estimate this limit either by evaluating xx for smaller and
smaller positive values of x
(say x = 0.1, 0.01, 0.001, . . .) or by zooming in on the
graph of y = xx near x = 0.

4If c is an endpoint of the interval, we define continuity at x = c using one-sided limits at c.
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8. (a) Give an example of a function such that lim
x→2

f(x) =
∞.

(b) Give an example of a function such that lim
x→2

f(x) =

−∞.

9. Consider the function f(x) = sin(1/x).

(a) Find a sequence of x-values that approach 0 such
that sin(1/x) = 0.
[Hint: Use the fact that sin(π) = sin(2π) =
sin(3π) = . . . = sin(nπ) = 0.]

(b) Find a sequence of x-values that approach 0 such
that sin(1/x) = 1.
[Hint: Use the fact that sin(nπ/2) = 1 if n =
1, 5, 9, . . . .]

(c) Find a sequence of x-values that approach 0 such
that sin(1/x) = −1.

(d) Explain why your answers to any two of parts (a)–
(c) show that lim

x→0
sin(1/x) does not exist.

10. Write the definition of the following statement both in
words and in symbols:

lim
h→a

g(h) = K.

11. For each of the following functions do the following:

(i) Make a table of values of f(x) for x = a + 0.1,
a+0.01, a+0.001, a+0.0001, a− 0.1, a− 0.01,
a− 0.001, and a− 0.0001.

(ii) Make a conjecture about the value of lim
x→a

f(x).

(iii) Graph the function to see if it is consistent with your
answers to parts (i) and (ii).

(iv) Find an interval for x containing a such that the dif-
ference between your conjectured limit and the value
of the function is less than 0.01 on that interval. (In
other words, find a window of height 0.02 such that
the graph exits the sides of the window and not the
top or bottom of the window.)

(a) f(x) =
x2 − 4

x− 2
, a = 2

(b) f(x) =
x2 − 9

x− 3
, a = 3

(c) f(x) =
sin x− 1

x− π/2
, a =

π

2

(d) f(x) =
sin 5x− 1

x− π/2
, a =

π

2

(e) f(x) =
e2x−2 − 1

x− 1
, a = 1

(f) f(x) =
e0.5x−1 − 1

x− 2
, a = 2

12. Assuming that limits as x → ∞ have the properties listed
for limits as x → c on page 12, use algebraic manipula-
tions to evaluate lim

x→∞

for the following functions:

(a) f(x) =
x+ 3

2− x
(b) f(x) =

x2 + 2x− 1

3 + 3x2

(c) f(x) =
x2 + 4

x+ 3
(d) f(x) =

2x3 − 16x2

4x2 + 3x3

(e) f(x) =
x4 + 3x

x4 + 2x5
(f) f(x) =

3ex + 2

2ex + 3

(g) f(x) =
2e−x + 3

3e−x + 2

13. This problem suggests a proof of the first property of lim-
its on page 12: lim

x→c
bf(x) = b lim

x→c
f(x).

(a) First, prove the property in the case b = 0.
(b) Now suppose that b 6= 0. Let ǫ > 0. Show that if

|f(x) − L| < ǫ/|b|, then |bf(x)− bL| < ǫ.
(c) Finally, prove that if lim

x→c
f(x) = L then

lim
x→c

bf(x) = bL. [Hint: Choose δ so that if |x−c| <
δ, then |f(x)− L| < ǫ/|b|.]

14. Prove the second property of limits: lim
x→c

(f(x) + g(x)) =

lim
x→c

f(x)+ lim
x→c

g(x). Assume that the limits on the right

exist.

15. This problem suggests a proof of the third property of
limits:

lim
x→c

(f(x)g(x)) =
(
lim
x→c

f(x)
)(

lim
x→c

g(x)
)

(assuming the limits on the right exist). Let L1 =
limx→c f(x) and L2 = limx→c g(x).

(a) First, show that if lim
x→c

f(x) = lim
x→c

g(x) = 0, then

lim
x→c

(f(x)g(x)) = 0.

(b) Show algebraically that f(x)g(x) =
(f(x)− L1) (g(x)− L2) + L1g(x) + L2f(x) −
L1L2.

(c) Use the second limit property (see Problem 14) to
explain why
lim
x→c

(f(x)− L1) = lim
x→c

(g(x)− L2) = 0.

(d) Use parts (a) and (c) to explain why
lim
x→c

(f(x)− L1) (g(x)− L2) = 0.

(e) Finally, use parts (b) and (d) and the first and second
limit properties to show that

lim
x→c

(f(x)g(x)) =
(
lim
x→c

f(x)
)(

lim
x→c

g(x)
)

.

16. Show that the following functions are both continuous
everywhere.
(a) f(x) = k (a constant) (b) g(x) = x

17. This problem suggests a proof of the theorem on conti-
nuity of composite functions on page 16: If f and g are
continuous and the composite function f (g(x)) is de-
fined on an interval, then f (g(x)) is continuous on that
interval.

Let c be a point inside the interval where f (g(x))
is defined. We must show that lim

x→c
f (g(x)) = f (g(c)).

Let d = g(c). Then the continuity of f at d means
that lim

y→d
f(y) = f(d). Thus, for a given ǫ > 0,
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we can choose δ > 0 so that |y − d| < δ implies
|f(y)− f(d)| < ǫ.

Now, take y = g(x) and show that the continu-
ity of g means that we can find a δ1 > 0 such that, if
|x − c| < δ1, then |g(x)− d| < δ. Explain how this
establishes the continuity of f (g(x)) at x = c.

For each value of ǫ in Problems 18–19, find a positive value
of δ such that the graph of the function leaves the window
a − δ < x < a + δ, b − ǫ < y < b + ǫ by the sides and not
through the top or bottom.

18. f(x) = −2x + 3; a = 0; b = 3; ǫ = 0.2, 0.1, 0.02,
0.01, 0.002, 0.001.

19. g(x) = −x3 + 2; a = 0; b = 2; ǫ = 0.1, 0.01, 0.001.

20. Show that lim
x→0

(−2x+3) = 3. You may use the result of

Problem 18.

21. Show that lim
x→0

(−x3 + 2) = 2. [Hint: Try δ = ǫ1/3.]

In Problems 22–24, modify the definition of limit on page 11
to give a definition of each of the following.

22. A right-hand limit 23. A left-hand limit

24. lim
x→∞

f(x) = L

25. Consider the function f(x) =

{
x sin

(
1

x

)
x 6= 0

0 x = 0.
Show that f is continuous everywhere, but that it is nei-
ther always increasing nor always decreasing on the in-
terval [0, ǫ] for any ǫ > 0, no matter how small.

26. On page ?? we showed how to find a sequence of in-
tervals [an, bn] that close in on a root r of f(x) =
3x3 − x2 + 2x − 1. In this problem we use the conti-
nuity of f to prove that r is in fact a root, that is, that
f(r) = 0. You may assume that all the intervals have
been chosen so that f(an) < 0 and f(bn) > 0.

(a) Suppose f(r) = L > 0. Use the definition of conti-
nuity with any ǫ such that ǫ < L to choose a δ such
that

|f(x)− L| < ǫ for all |x− r| < δ.

Find an an in the interval [r− δ, r+ δ] and arrive at
a contradiction involving f(an).

(b) Suppose f(r) = L < 0. Make a similar argument
to arrive at a contradiction involving a bn.

(c) Conclude that f(r) = 0.

27. Adapt the zooming argument on page ?? and the argu-
ment in Problem 26 to prove the Intermediate Value The-
orem: If f is continuous on [a, b] and k is between f(a)
and f(b), there is a point c in [a, b] with f(c) = k. [Hint:
Consider g(x) = f(x)− k and look for a zero of g.]

E DIFFERENTIABILITY AND LINEAR APPROXIMATION

In this section we analyze the tangent line approximation and its error. This leads us to a different
way of looking at differentiability. Recall that:

A function f is said to be differentiable at x = a if f ′(a) exists.

Most functions we deal with have a derivative at every point in their domain; they are said to be
differentiable everywhere.

How Can We Recognize Whether a Function Is Differentiable?

If a function has a derivative at a point, its graph must have a tangent line there; the slope of the
tangent line is the derivative. When we zoom in on the graph of the function, we see a nonvertical
straight line.

Occasionally we meet a function which fails to have a derivative at a few points. For example, a
discontinuous function whose graph has a break at some point cannot have a derivative at that point.
Some of the ways in which a function can fail to be differentiable at a point are if:
• The function is not continuous at the point.

• The graph has a sharp corner at that point.

• The graph has a vertical tangent line.
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Figure E.12 shows a function which appears to be differentiable at all points except x = a and
x = b. There is no tangent at A because the graph has a corner there. As x approaches a from the
left, the slope of the line joining P to A converges to some positive number. As x approaches a from
the right, the slope of the line joining P to A converges to some negative number. Thus the slopes
approach different numbers as we approachx = a from different sides. Therefore the function is not
differentiable at x = a. At B, there is no sharp corner, but as x approaches b, the slope of the line
joining B to Q does not converge; it just keeps growing larger and larger. This reflects the fact that
the graph has a vertical tangent at B. Since the slope of a vertical line is not defined, the function is
not differentiable at x = b.

a b
x

f

P

A

Q

B

Figure E.12: A function which is not differentiable at A or B

f(x) = |x|

x

Figure E.13: Graph of absolute value function,
showing point of non-differentiability at x = 0

Examples of Nondifferentiable Functions

The best-known function with a corner is the absolute value function defined as follows:

f(x) = |x| =
{
x if x ≥ 0,
−x if x < 0.

The graph of this function is in Figure E.13. Near x = 0, even close-up views of the graph of f(x)
look the same, so this is a corner which can’t be straightened out by zooming in.

Example 1 Try to compute the derivative of the function f(x) = |x| at x = 0. Is f differentiable there?

Solution To find the slope at x = 0, we want to look at

lim
h→0

f(h)− f(0)

h
= lim

h→0

|h| − 0

h
= lim

h→0

|h|

h
.

As h approaches 0 from the right, h is always positive, so |h| = h, and the ratio is always 1. As
h approaches 0 from the left, h is negative, so |h| = −h, and the ratio is −1. Since the limits are
different from each side, the limit of the difference quotient does not exist. Thus, the absolute value
function is not differentiable at x = 0. The limits of 1 and −1 correspond to the fact that the slope
of the right-hand part of the graph is 1, and the slope of the left-hand part is −1.

Example 2 Investigate the differentiability of f(x) = x1/3 at x = 0.
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Solution This function is smooth at x = 0 (no sharp corners) but appears to have a vertical tangent there.
(See Figure E.14.) Looking at the difference quotient at x = 0, we see

lim
h→0

(0 + h)1/3 − 01/3

h
= lim

h→0

h1/3

h
= lim

h→0

1

h2/3
.

As h → 0 the denominator becomes small, so the fraction grows without bound. Hence, the function
fails to have a derivative at x = 0.

−8 −4 4 8

−2

2

x

f(x) = x1/3

Figure E.14: Continuous function not
differentiable at x = 0: Vertical tangent

1 2 3

2

4

6

x

g(x)

Figure E.15: Continuous
function not differentiable at

x = 1

Example 3 Consider the function given by the formulas

g(x) =
{
x+ 1 if x ≤ 1

3x− 1 if x > 1.

This kind of function is called piecewise linear because each part of it is linear. Draw the graph of
g. Is g continuous? Is g differentiable at x = 1?

Solution The graph in Figure E.15 has no breaks in it, so the function is continuous. However, the graph has
a corner at x = 1 which no amount of magnification will remove. To the left of x = 1, the slope
is 1; to the right of x = 1, the slope is 3. Thus, the difference quotient at x = 1 will fail to have a
limit, and so the function g is not differentiable at x = 1.

A great deal of interest has been sparked in the last few years in the study of curves which do
not possess derivatives anywhere. These curves, known as fractals, arise in the modeling of natural
processes that are random and chaotic, such as the path of a water molecule in a glass of water.
As the molecule bounces off of its neighbors haphazardly, it traces out a path with many jagged,
nondifferentiable corners. Although the path may be smooth between collisions, it can be modeled
effectively by a curve that is not differentiable anywhere. The coastlines of Maine and Washington
are also examples. They never straighten out, no matter how close we look.

Differentiability and Linear Approximation

When we zoom in on the graph of a differentiable function, it looks like a straight line. In fact, the
graph is not exactly a straight line when we zoom in; however, its deviation from straightness is so
small that it can’t be detected by the naked eye. Let’s examine what this means. The straight line that
we think we see when we zoom in on the graph of f(x) at x = a has slope equal to the derivative,
f ′(a), so the equation is

y = f(a) + f ′
(a)(x − a).
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The fact that the graph looks like a line means that y is a good approximation to f(x). (See Fig-
ure E.16.) This suggests the following definition:

The Tangent Line Approximation

Suppose f is differentiable at a. Then, for values of x near a, the tangent line approximation
to f(x) is

f(x) ≈ f(a) + f ′
(a)(x − a).

The expression f(a) + f ′(a)(x− a) is called the local linearization of f near x = a. We are
thinking of a as fixed, so that f(a) and f ′(a) are constant.
The error, E(x), in the approximation is defined by

E(x) = f(x)− f(a)− f ′
(a)(x− a).

It can be shown that the tangent line approximation is the best linear approximation to f near a. See
Problem 15.

a x
x

Tangent
line

✻

❄

✠

Error E(x)

✻

❄
f(a)

✻

❄
f(a)

✲✛ x− a

✻
❄
f ′(a)(x− a)

True value f(x)

✛ Approximation

Figure E.16: The tangent line approximation and its error

Example 4 What is the tangent line approximation for f(x) = sinx near x = 0? Assume that f ′(0) = 1.

Solution The tangent line approximation of f near x = 0 is

f(x) ≈ f(0) + f ′
(0)(x− 0).

If f(x) = sinx, then f(0) = sin 0 = 0. Using the given fact that f ′(0) = 1, the approximation is

sinx ≈ x.

This means that, near x = 0, the function f(x) = sinx is well approximated by the function y = x.
If we zoom in on the graphs of the functions sinx and x near the origin, we won’t be able to tell
them apart. (See Figure E.17.)



22 Theory Supplement Section E

−π
2

π
2

y = sin x

y = x

−1

1

x

y

Figure E.17: Tangent line approximation to
y = sin x

Estimating the Error in the Approximation

Let us look at the error, E(x), which is the difference between f(x) and the local linearization.
(Look back at Figure E.16.) The fact that the graph of f looks like a line as we zoom in means that
not only is E(x) small for x near a, but also that E(x) is small relative to (x − a). To demonstrate
this, we prove the following theorem about the ratio E(x)/(x− a).

Theorem: Differentiability and Local Linearity

Suppose f is differentiable at x = a and E(x) is the error in the tangent line approximation,
that is:

E(x) = f(x)− f(a)− f ′
(a)(x− a).

Then

lim
x→a

E(x)

x− a
= 0.

Proof Using the definition of E(x), we have

E(x)

x− a
=

f(x)− f(a)− f ′(a)(x− a)

x− a
=

f(x)− f(a)

x− a
− f ′

(a).

Taking the limit as x → a and using the definition of the derivative, we see that

lim
x→a

E(x)

x− a
= lim

x→a

(
f(x) − f(a)

x− a
− f ′

(a)

)
= f ′

(a)− f ′
(a) = 0.

Why Differentiability Makes A Graph Look Straight

We can use the error E(x) to understand why differentiability makes a graph look straight when we
zoom in.
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Example 5 Consider the graph of f(x) = sinx near x = 0, and its linear approximation computed in Exam-
ple 4. Show that there is an interval around 0 with the property that the distance from f(x) = sinx
to the linear approximation is less than 0.1|x| for all x in the interval.

Solution The linear approximation of f(x) = sinx near 0 is y = x, so we write

sinx = x+ E(x).

Since sinx is differentiable at x = 0, the theorem tells us that

lim
x→0

E(x)

x
= 0.

If we take ǫ = 1/10, then the definition of limit guarantees that there is a δ > 0 such that∣∣∣∣E(x)

x

∣∣∣∣ < 0.1 for all |x| < δ.

In other words, for x in the interval (−δ, δ), we have |x| < δ, so

|E(x)| < 0.1|x|.

(See Figure E.18.)

−δ δ0

✻❄|E(x)| < 0.1|x|

✛ y = x
❄

y = sin x

x

Figure E.18: Graph of y = sin x and its linear
approximation y = x, showing a window in which the

magnitude of the error, |E(x)|, is less than 0.1|x| for all
x in the window

We can generalize from this example to explain why differentiability makes the graph of f look
straight when viewed over a small graphing window. Suppose f is differentiable at x = a. Then we

know lim
x→a

∣∣∣∣E(x)

x− a

∣∣∣∣ = 0. So, for any ǫ > 0, we can find a δ small enough so that

∣∣∣∣E(x)

x− a

∣∣∣∣ < ǫ, for a− δ < x < a+ δ.

So, for any x in the interval (a− δ, a+ δ), we have

|E(x)| < ǫ|x− a|.

Thus, the error, E(x), is less than ǫ times |x − a|, the distance between x and a. So, as we zoom in
on the graph by choosing smaller ǫ, the deviation, |E(x)|, of f from its tangent line shrinks, even
relative to the scale on the x-axis. So, zooming makes a differentiable function look straight.
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Differentiability and Continuity

The fact that a function which is differentiable at a point has a tangent line suggests that the function
is continuous there, as the next theorem shows.

Theorem: A Differentiable Function Is Continuous

If f(x) is differentiable at a point x = a, then f(x) is continuous at x = a.

Proof We assume f(x) is differentiable at x = a. Then we know

f ′
(a) = lim

x→a

f(x)− f(a)

x− a
.

So we must have

lim
x→a

(f(x)− f(a)) = lim
x→a

(
(x− a)

f(x)− f(a)

x− a

)
=

(
lim
x→a

(x− a)
)
·

(
lim
x→a

f(x)− f(a)

x− a

)
= 0 · f ′

(a) = 0.

Then,
lim
x→a

f(x) = f(a),

which means f(x) is continuous at x = a.

Problems for Section E

1. For each of the graphs in Figure E.19, list the x-values
for which the function appears to be
(i) Not continuous and (ii) Not differentiable.

1 2 3 4 5

f(x)

x

(a)

1 2 3 4 5 6

g(x)

x

(b)

Figure E.19

2. Look at the graph of f(x) = (x2 +0.0001)1/2 shown in
Figure E.20. The graph of f appears to have a sharp cor-
ner at x = 0. Do you think f has a derivative at x = 0?

−20 −10 0 10 20

10

20

x

f(x)

Figure E.20

Decide if the functions in Problems 3–5 are differentiable at
x = 0. Try zooming in on a graphing calculator, or calculating
the derivative f ′(0) from the definition.

3. f(x) = (x+ |x|)2 + 1

4. f(x) =

{
x sin(1/x) + x for x 6= 0

0 for x = 0

5. f(x) =

{
x2 sin(1/x) for x 6= 0

0 for x = 0
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6. An electric charge, Q, in a circuit is given as a function
of time, t, by

Q =
{
C for t ≤ 0
Ce−t/RC for t > 0,

where C and R are positive constants. The electric cur-
rent, I , is the rate of change of charge, so

I =
dQ

dt
.

(a) Is the charge, Q, a continuous function of time?
(b) Do you think the current, I , is defined for all times,

t? [Hint: To graph this function, take, for example,
C = 1 and R = 1.]

7. A magnetic field, B, is given as a function of the distance,
r, from the center of a wire as follows:

B =




r

r0
B0 for r ≤ r0

r0
r
B0 for r > r0.

(a) Sketch a graph of B against r. What is the meaning
of the constant B0?

(b) Is B continuous at r = r0? Give reasons.
(c) Is B differentiable at r = r0? Give reasons.

8. A cable is made of an insulating material in the shape of
a long, thin cylinder of radius r0. It has electric charge
distributed evenly throughout it. The electric field, E, at
a distance r from the center of the cable is given by

E =

{
kr for r ≤ r0

k
r20
r

for r > r0.

(a) Is E continuous at r0?
(b) Is E differentiable at r0?
(c) Sketch a graph of E as a function of r.

9. Graph the function defined by

g(r) =
{
1 + cos (πr/2) for −2 ≤ r ≤ 2
0 for r < −2 or r > 2.

(a) Is g continuous at r = 2? Explain your answer.
(b) Do you think g is differentiable at r = 2? Explain

your answer.

10. The potential, φ, of a charge distribution at a point on the
y-axis is given by

φ =


 2πσ

(√
y2 + a2 − y

)
for y ≥ 0

2πσ
(√

y2 + a2 + y
)

for y < 0

where σ and a are positive constants. [Hint: To graph this
function, take, for example, 2πσ = 1 and a = 1.]

(a) Is φ continuous at y = 0?
(b) Do you think φ is differentiable at y = 0?

11. Consider the function f(x) =
√
x. Assume f ′(4) =

1/4.

(a) Find and sketch f(x) and the tangent line approxi-
mation to f(x) near x = 4.

(b) Compare the true value of f(4.1) with the value ob-
tained by using the tangent line approximation.

(c) Compare the true and approximate values of f(16).
(d) Using a graph, explain why the tangent line approx-

imation is a good one when x = 4.1 but not when
x = 16.

12. Local linearization will give values too small for the
function x2 and too large for the function

√
x. Draw pic-

tures to explain why.

13. Find the local linearization of f(x) = x2 near x = 1.

14. Consider the graph of f(x) = x2 near x = 1. Find an in-
terval around x = 1 with the property that in any smaller
interval, the graph of f(x) = x2 never diverges from its
local linearization by more than 0.1|x−1| for all x in the
interval.

15. Consider a function f and a point a. Suppose there is a
number L such that the linear function g

g(x) = f(a) + L(x− a)

is a good approximation to f . By good approximation,
we mean that

lim
x→a

EL(x)

x− a
= 0,

where EL(x) is the approximation error defined by

f(x) = g(x) + EL(x) = f(a) + L(x− a) + EL(x).

Show that f is differentiable at x = a and that f ′(a) =
L. Thus the tangent line approximation is the only good
linear approximation.

F THE DEFINITE INTEGRAL

Recall that if f is continuous on [a, b] the definite integral is given by a limit of left or right sums:

∫ b

a

f(x) dx = lim
n→∞

n−1∑
i=0

f(xi)∆x = lim
x→∞

n∑
i=1

f(xi)∆x.
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This provides a method for approximating definite integrals numerically.5 In this section we give a
formal definition of the definite integral that makes use of more general sums.

A Special Case: Monotonic Functions

A function which is either increasing throughout an interval or decreasing throughout that interval
is said to be monotonic on the interval. In Section 5.1 we saw that if f is monotonic, the left and
right sums trap the exact value of the integral between them. Let us consider Example 1 on page 283
of the textbook, which looks at the value of ∫ 2

1

1

t
dt.

The left- and right-hand sums for n = 2, 10, 50, and 250 are listed in Table F.1.
Because the function f(t) = 1/t is decreasing, the left-hand sums converge to the integral from

above, and the right-hand sums converge from below. From the last row of the table we can deduce
that

0.6921 <

∫ 2

1

1

t
dt < 0.6941,

so
∫ 2

1
1
t dt ≈ 0.69 to two decimal places.

The Difference Between the Upper and Lower Estimates

To be sure that the left- and right-hand sums trap a unique number between them, we need to
know that the difference between them approaches zero. On page 277 we saw that for a monotonic
function f on the interval [a, b]:∣∣∣∣∣ Difference between

upper and lower estimates

∣∣∣∣∣ = |f(b)− f(a)| ·∆t,

where ∆t = (b − a)/n. We can make this difference as small as we like by choosing ∆t small
enough.

When f Is Not Monotonic

If f is not monotonic, the definite integral is not always bracketed between the left- and right-
hand sums. For example, Table F.2 gives sums for the integral

∫ 2.5

0 sin(t2) dt. Although sin (t2)
is certainly not monotonic on [0, 2.5], by the time we get to n = 250, it is pretty clear that∫ 2.5

0
sin (t2) dt ≈ 0.43 to two decimal places. Notice, however, that 0.43 does not lie between

1.2500 and 1.2085, the left- and right-hand sums for n = 2, or even between 0.4614 and 0.4531,
the two sums for n = 10. If the integrand is not monotonic, the left- and right-hand sums may both
be larger (or smaller) than the integral. (See Problems 2 and 3 for more examples of this behavior.)

Table F.1 Left- and right-hand sums for
∫ 2

1
1
t dt

n Left-hand sum Right-hand sum

2 0.8333 0.5833

10 0.7188 0.6688

50 0.6982 0.6882

250 0.6941 0.6921

5In practice, we often approximate integrals using more sophisticated numerical methods.
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Table F.2 Left- and right-hand sums for
∫ 2.5

0
sin(t2) dt

n Left-hand sum Right-hand sum

2 1.2500 1.2085

10 0.4614 0.4531

50 0.4324 0.4307

250 0.4307 0.4304

1000 0.4306 0.4305

Defining The Definite Integral by Upper and Lower Sums

When f is not monotonic, it is difficult to get upper and lower bounds for
∫ b

a f(x) dx from left and
right sums. So instead we take the following approach for any function, f . If f is continuous, this
new approach agrees with the previous approach. As before, we consider a subdivision of [a, b] into
n intervals; however, now we allow the subintervals to have different lengths. We let ∆xi be the
length of the i-th interval, and make the following definition:

Suppose that f is bounded above and below on [a, b]. A lower sum for f on the interval [a, b]
is a sum

n∑
i=1

mi∆xi,

where mi is the greatest lower bound for f on the i-th interval. An upper sum is

n∑
i=1

Mi∆xi,

where Mi is the least upper bound for f on the i-th interval.

See Figure F.21. Now instead of taking a limit as n → ∞, we consider the least upper and
greatest lower bounds of these sums. We make the following definition.

Definition of the Definite Integral

Suppose that f is bounded above and below on [a, b]. Let L be the least upper bound for all
the lower sums for f on [a, b], and let U be the greatest lower bound for all the upper sums. If

L = U , then we say that f is integrable and we define
∫ b

a f(x) dx to be equal to the common
value of L and U .

a b

Upper Sum (area
of dark and
light rectangles)

Lower Sum
(area of dark
rectangles)

x
xi xi+1

f(x)

✲✛∆x

✻

❄

Mi

✻

❄

mi

Figure F.21: Lower and upper sums approximating
∫ b

a
f(x) dx
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Using the Definition in a Proof

As an example, we will prove the theorem stated on page 306 of the textbook:

Theorem: The Mean Value Inequality for Integrals

If m ≤ f(x) ≤ M for all x in [a, b], and if f is integrable on [a, b], then

m(b− a) ≤

∫ b

a

f(x) dx ≤ M(b− a).

Geometrically, if f is positive, this theorem says that the area under the graph of f is less than
the area of the rectangle of height M , and greater than the area of the rectangle of height m. See
Figure ?? on page ?? of the textbook.

Proof The simplest subdivision of [a, b] is the one that consists of one subinterval, namely, [a, b] itself.
Although it does not give a very good approximation for the definite integral, it still counts as a
subdivision. The least upper bound for f on [a, b] is less than or equal to M , and the length of the
only subinterval in the subdivision is b − a. So the upper sum for this subdivision is less than or
equal to M(b− a). Since every upper sum is an upper estimate for

∫ b

a f(x) dx, we have∫ b

a

f(x) dx ≤ Upper sum ≤ M(b− a).

The argument for the other inequality is similar, using lower sums. (See Problem 19.)

Problem 20 gives another example of a proof using the definition of the definite integral.

Continuous Functions Are Integrable

In this section we will prove the following:

Theorem: Continuous Functions are Integrable

If f is continuous on [a, b], then
∫ b

a
f(x) dx exists.

The Key Question

It can be shown (for example, using the Extreme Value Theorem on page 196) that a continuous
function on a finite interval is bounded above and below. Since any lower sum is less than or equal
to any upper sum (see Problems 13–17), it follows that L ≤ U . (See Problem 18.) To show that f is
integrable, we need only show that L = U , so the question is the following:

Can we find a subdivision where the lower sum is as close as we like to the upper sum?

If we could, then L < U would not be a possibility, since then U − L would be a positive number,
and we would be able to find lower and upper sums less than U − L apart. In that case, either the
lower sum would be bigger than L or the upper sum less than U . This can’t happen, since L is an
upper bound for the lower sums, and U is a lower bound for the upper sums.

We have already seen that if f is monotonic we can find upper and lower sums that are arbitrar-
ily close; just take the left and right sums. This proves that monotonic functions are integrable. If f
is not monotonic, we proceed differently.
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Squeezing the Integral Between Lower and Upper Sums

For a subdivision of [a, b] we have

Difference between upper and lower sums =
n∑

i=1

(Mi −mi)∆xi,

where Mi is the least upper bound for f on the i-th subinterval and mi is the greatest lower bound.
The number Mi − mi represents the amount by which f varies on the i-th subinterval; we call
Mi − mi the variation6 of f on this subinterval. Suppose that we could choose the subdivision so
that the variation on each subinterval was less than some small positive number ǫ. Then

Difference between upper and lower sums <
n∑

i=1

ǫ∆xi = ǫ

n∑
i=1

∆xi = ǫ(b− a).

By choosing ǫ small enough we would be able to make the difference as small as we liked. Thus the
next question is:

Can we find a subdivision where the maximum variation of f
on each of the subintervals is as small as we like?

Making the Variation Small on Each Subinterval

Let ǫ be a positive number, as small as we like. We want to prove that there is a subdivision of [a, b]
such that the variation of f on each subinterval is less than ǫ. We will give an indirect proof: we
assume that there is no such subdivision, and show that this leads to impossible consequences.

Divide the interval [a, b] into two halves. If each half has a subdivision where the maximum
variation on subintervals is less than ǫ, we can put the two subdivisions together to form a subdivi-
sion of [a, b] with the same property.

So if [a, b] fails to have such a subdivision, then so does one of the halves. Choose a half that
does not have such a subdivision and divide it in half again. Once more, one of the halves must fail
to have a subdivision where the variation of f on each subinterval is less than ǫ. Continuing in this
way we find a nested sequence of intervals, each of which fails to have such a subdivision.

By the Nested Interval Theorem on page ??, these intervals all contain some number c. Since f
is continuous at c, we can find an interval around c on which the variation is less than ǫ. One of our
nested intervals must be contained in this interval, since they get arbitrarily small. So the variation
of f on one of the nested intervals is less than ǫ. This is impossible, given the way we chose each
nested interval. So our supposition that [a, b] fails to have the required subdivision is false; there
must be a subdivision of [a, b] such that the variation of f on each subinterval is less than ǫ.

Summary

We have shown by contradiction that for every positive number ǫ, no matter how small, there is a
subdivision of [a, b] such that the variation of f on each subinterval is less than ǫ. This means we

can make the upper and lower sums as close as we like; hence L = U and
∫ b

a
f(x) dx = U = L.

That is, the continuous function f is integrable.

More General Riemann Sums

Left- and right-hand sums are special cases of Riemann sums. For a general Riemann sum, as with
upper and lower sums, we allow subdivisions to have different lengths. Also, instead of evaluating

6This is not the same as the total variation used in more advanced texts.
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f only at the left or right endpoint of each subdivision, we allow it to be evaluated anywhere in the
subdivision. Thus, a general Riemann sum has the form

n∑
i=1

(Value of f at some point in i-th subdivision) · (Length of i-th subdivision).

(See Figure F.22.) As before, we let x0, x1, . . . , xn be the endpoints of the subdivisions, so the
length of the i-th subdivision is ∆xi = xi − xi−1. For each i we choose a point ci in the i-th
subinterval at which to evaluate f , leading to the following definition:

A general Riemann sum for f on the interval [a, b] is a sum of the form

n∑
i=1

f(ci)∆xi,

where a = x0 < x1 < · · · < xn = b, and, for i = 1, . . . , n, ∆xi = xi − xi−1, and
xi−1 ≤ ci ≤ xi.

We define the error in an approximation to be the magnitude of the difference between the
approximate and the true values. (Notice that error doesn’t mean mistake here.) Since the true value
of the integral is between any upper estimate and any lower estimate, the error in approximating a
definite integral by a Riemann sum must be less than the difference between the upper and lower
sums using the same subdivision. If

∫ b

a
f(x) dx exists, there is a subdivision for which the upper

and lower sums are as close as we like. So we can approximate the integral arbitrarily closely by
Riemann sums.

a xi ci xi+1 b

f(x)

✲✛∆x

✻

❄

f(ci)

x

Figure F.22: A general Riemann sum approximating
∫ b

a
f(x) dx

Problems for Section F

1. Write a few sentences in support of or in opposition to
the following statement:

“If a left-hand sum underestimates a definite integral
by a certain amount, then the corresponding right-hand
sum will overestimate the integral by the same amount.”

2. Using the graph of 2 + cosx, for 0 ≤ x ≤ 4π, list the
following quantities in increasing order: the value of the
integral

∫ 4π

0
(2+cos x) dx, the left-hand sum with n = 2

subdivisions, and the right-hand sum with n = 2 subdi-

visions.

3. Sketch the graph of a function f (you do not need to give
a formula for f ) on an interval [a, b] with the property
that with n = 2 subdivisions,∫ b

a

f(x) dx < Left-hand sum < Right-hand sum.

For Problems 4–12, find a subdivision using subintervals of
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equal length for which the lower and upper sums differ by
less than 0.1. Give these sums and an estimate for the integral
which is within 0.05 of the true value. Explain your reason-
ing. [Except for Problem 12, each function is monotonic over
the given interval.]

4.

∫ 5

0

x2 dx 5.

∫ 2

1

2x dx

6.

∫ 4

1

1√
1 + x2

dx 7.

∫ 1.5

1

sin x dx

8.

∫ π/4

0

dθ

cos θ
9.

∫
−1

−2

cos3 y dy

10.

∫ 5

1

(ln x)2 dx 11.

∫ 1.7

1.1

et ln t dt

12.

∫ 3

−3

e−t2 dt

In Problems 13–17 you will show that every lower sum for a
given bounded function f on an interval [a, b] is less than ev-
ery upper sum, using the idea of a refinement of a subdivision.
Given a subdivision of the interval [a, b], we can subdivide one
or more of its subintervals to obtain a new subdivision. We say
that the new subdivision is a refinement of the old one. Notice
that if one subdivision’s set of endpoints contains another’s,
then the first is a refinement of the second.

13. Show that the lower sum for f on [a, b] using a given sub-
division is less than or equal to the upper sum using the
same subdivision.

14. In this problem we will show that refining a subdivision
results in a lower sum which is larger than the original.
Let f be a function defined and bounded from below on
[a, b], and choose a subdivision of [a, b], with endpoints
a = x0 < x1 < · · · < xn−1 < xn = b.

(a) Suppose xi−1 ≤ y ≤ xi. Let mi be the greatest
lower bound for f on [xi−1, xi]. Show that mi is
less than or equal to the greatest lower bound for f
on [xi−1, y] and the greatest lower bound for f on
[y, xi].

(b) Show that the lower sum for f using the subdivision
a = x0 < x1 < · · · < xn−1 < xn = b is less than
or equal to the lower sum using the same subdivision
with y included.

(c) Show that the lower sum for f using the subdivision
a = x0 < x1 < · · · < xn−1 < xn = b is less
than or equal to the lower sum using any refinement
of the subdivision.

15. In this problem we will show that refining a subdivision
results in an upper sum which is smaller than the original.
Let f be a function defined and bounded from above on
[a, b], and choose a subdivision of [a, b], with endpoints
a = x0 < x1 < · · · < xn−1 < xn = b.

(a) Suppose xi−1 ≤ y ≤ xi. Let Mi be the least
upper bound for f on [xi−1, xi]. Show that Mi is
greater than or equal to the least upper bound for
f on [xi−1, y] and the least upper bound for f on
[y, xi].

(b) Show that the upper sum for f using the subdivision
a = x0 < x1 < · · · < xn−1 < xn = b is greater
than or equal to the upper sum using the same sub-
division with y included.

(c) Show that the upper sum for f using the subdivision
a = x0 < x1 < · · · < xn−1 < xn = b is greater
than or equal to the upper sum using any refinement
of the subdivision.

16. Given two subdivisions of [a, b], show that there is a third
one which is a refinement of both.

17. Show that any lower sum for f on [a, b] is less than or
equal to any upper sum. [Hint: The lower sum uses one
subdivision of [a, b]; the upper sum uses another. Use
Problem 16 to choose a common refinement of the two
subdivisions and then use Problems 13–15.]

18. Let f be a function defined and bounded on [a, b], let L
be the least upper bound for all the lower sums for f on
[a, b], and let U be the greatest lower bound for all the
upper sums.

(a) Show that if L were strictly greater than U , then
there would be a lower sum that was strictly greater
than an upper sum. [Hint: Let ǫ = L−U , and find a
lower sum within ǫ/3 of L and an upper sum within
ǫ/3 of U .]

(b) Deduce that L ≤ U .

19. On page ?? we proved one half of the Mean Value In-
equality for Integrals. Prove the other half: that is, if f is
continuous on [a, b] and f(x) ≥ m for x in [a, b], then

m(b− a) ≤
∫ b

a
f(x) dx.

20. In this problem we will prove that if f is continuous on
[a, b] and if c is in [a, b], then∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

(a) Show that if ℓ1 is a lower sum for f on [a, c], and if
ℓ2 is a lower sum for f on [c, b], then ℓ1 + ℓ2 is a
lower sum for f on [a, b].

(b) Show that if ℓ is a lower sum for f on [a, b], then
there is a lower sum ℓ1 for f on [a, c] and a lower
sum ℓ2 for f on [c, b] such that ℓ ≤ ℓ1 + ℓ2.

(c) Let L be the least upper bound of all the lower sums
on [a, b], let L1 be the least upper bound of all the
lower sums on [a, c], and let L2 be the least upper
bound of all the lower sums on [c, a]. Use parts (a)
and (b) to show that L = L1 + L2.

Since f is continuous on [a, b], L =
∫ b

a
f(x) dx, L1 =∫ c

a
f(x) dx, and L2 =

∫ b

c
f(x) dx. Thus you have

proved the required statement.
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G THEOREMS ABOUT CONTINUOUS AND DIFFERENTIABLE FUNCTIONS

In Chapter 4 of the textbook we used some basic facts without proof: for example, that a continuous
function has a maximum on a bounded, closed interval, or that a function whose derivative is positive
on an interval is increasing on that interval.

From a geometric point of view, these facts seem obvious. If we draw the graph of a continuous
function, starting at one end of a bounded, closed interval and going to the other, it seems obvious
that we must pass a highest point on the way. And if the derivative of a function is positive, then its
graph must be sloping up, so the function has to be increasing.

However, this sort of graphical reasoning is not a rigorous proof, for two reasons. First, no
matter how many pictures we imagine, we can’t be sure we have covered all possibilities. Second,
our pictures often depend on the theorems we are trying to prove.

A Continuous Function on a Closed Interval Has a Maximum

The Extreme Value Theorem

If f is continuous on the interval [a, b], then f has a global maximum and a global minimum
on that interval.

Our proof has two parts: The first is to show that f has an upper bound on [a, b], the second is to
show that if f has an upper bound then it has a global maximum on the interval. Here we prove the
second part; the first part is proved in Problems 15 and 16. Then in Problem 5 we extend the result
from maxima to minima.

Proof We assume that f is continuous and has an upper bound on the interval [a, b]. This means f has a
least upper bound M on [a, b]. Divide [a, b] into two halves. Then, on one of the halves, the least
upper bound for f is M , for if it were less than M on both halves, it would be less than M on the
whole. Choose a half on which the least upper bound is equal to M . Continue bisecting and at each
stage choose the half-interval where the least upper bound for f is M . See Figure G.23. This results
in a sequence of nested intervals. By the Nested Interval Theorem on page ??, there is a number c
in [a, b] which is contained in all these intervals.

Since M is the least upper bound for f , we have f(c) ≤ M . It is not possible that f(c) < M .
For if f(c) < M , then f(c) < M0 for some number M0 < M . (For example, we could take M0

to be half-way between M and f(c).) But then, since f is continuous, there would be a δ > 0 such
that f(x) < M0 for all x in [a, b] with c − δ < x < c + δ. (See Problem 14.) Since the nested
intervals we constructed above have width tending to zero, one of them would be contained in the
interval c − δ < x < c + δ. Therefore, f would be bounded above by M0 on one of the nested

a b

✲✛

Second
half-interval

✲✛
First

half-interval

M
f

x

Figure G.23: Successively choosing the half-interval where the least upper bound of f is M
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intervals. However, we chose each nested interval so that the least upper bound for f is M . This is
a contradiction of M0 < M.

So it is not possible that f(c) < M ; we must have f(c) = M . Thus, M is the global maximum
of f on [a, b], which is what we wanted to show.

The Extreme Value Theorem guarantees the existence of global maxima (and minima) on an
interval. To actually find the global maxima, we look at all the local maxima. The following theorem
tells us that inside an interval, local maxima only occur at critical points, where the derivative is
either zero or undefined.

Theorem: Local Extrema and Critical Points

Suppose f is defined on an interval and has a local maximum or minimum at the pointx = a,
which is not an endpoint of the interval. If f is differentiable at x = a, then f ′(a) = 0.

Proof We start with the definition of the derivative:

f ′
(a) = lim

h→0

f(a+ h)− f(a)

h
.

Remember that this is a two-sided limit:

f ′
(a) = lim

h→0−

f(a+ h)− f(a)

h
= lim

h→0+

f(a+ h)− f(a)

h
.

Suppose that f has a local maximum at x = a. By the definition of local maximum, f(a+h) ≤ f(a)
for all sufficiently small h. Thus f(a+ h)− f(a) ≤ 0 for sufficiently small h. The denominator, h,
is positive when we take the limit from the right and negative when we take the limit from the left.
Thus

lim
h→0−

f(a+ h)− f(a)

h
≥ 0 and lim

h→0+

f(a+ h)− f(a)

h
≤ 0.

Since both these limits are equal to f ′(a), we have f ′(a) ≥ 0 and f ′(a) ≤ 0, so we must have
f ′(a) = 0.

A Relationship Between Local and Global: The Mean Value Theorem

We often want to infer a global conclusion (for example, f is increasing on an interval) from local
information (f ′ is positive.) The following theorem relates the average rate of change of a function
on an interval (global information) to the instantaneous rate of change at a point in the interval (local
information).

The Mean Value Theorem

If f is continuous on [a, b] and differentiable on (a, b), then there exists a number c, with
a < c < b, such that

f ′
(c) =

f(b)− f(a)

b− a
.

In other words, f(b)− f(a) = f ′(c)(b − a).
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To understand what this theorem is saying geometrically, consider the graph in Figure G.24.
Join the points on the curve where x = a and x = b with a line and observe that the slope of this
secant line AB is given by

m =
f(b)− f(a)

b− a
.

Now consider the tangent line drawn to the curve at each point between x = a and x = b. In general,
these lines will have different slopes. For the curve shown in Figure G.24, the tangent line at x = a
is flatter than the secant line from A to B. Similarly, the tangent line at x = b is steeper than the
secant line. However, there is at least one point between a and b where the slope of the tangent line
to the curve is precisely the same as the slope of the secant line. Suppose this occurs at x = c. Then

f ′
(c) = m =

f(b)− f(a)

b− a
.

The Mean Value Theorem tells us that the point x = c exists, but it does not tell us how to find c.
Problems 17 and 18 show how the Mean Value Theorem can be deduced from the Extreme

Value Theorem.

a c b
x

❘

Slope =
f(b) − f(a)

b− a

✻
Slope
= f ′(c)

(a, f(a))

(b, f(b))

f(x)

Figure G.24: The point c with f ′(c) = f(b)−f(a)
b−a

The Increasing Function Theorem

We say that a function f is increasing on an interval if, for any two numbers x1 and x2 in the
interval such that x1 < x2, we have f(x1) < f(x2). If instead we have f(x1) ≤ f(x2), we say f is
nondecreasing.

The Increasing Function Theorem

Suppose that f is continuous on [a, b] and differentiable on (a, b).
• If f ′(x) > 0 on (a, b), then f is increasing on [a, b].

• If f ′(x) ≥ 0 on (a, b), then f is nondecreasing on [a, b].

Proof Suppose a ≤ x1 < x2 ≤ b. By the Mean Value Theorem, there is a number c, with x1 < c < x2,
such that

f(x2)− f(x1) = f ′
(c)(x2 − x1).

If f ′(c) > 0, this says f(x2) − f(x1) > 0, which means f is increasing. If f ′(c) ≥ 0, this says
f(x2)− f(x1) ≥ 0, which means f is nondecreasing.

It may seem that something as simple as the Increasing Function Theorem should follow im-
mediately from the definition of the derivative, and that the use of the Mean Value Theorem (which
in turn depends on the Extreme Value Theorem) is surprising. It is possible to give a proof which
does not use the Mean Value Theorem, but not a simple one.
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The Constant Function Theorem

If f is constant on an interval, then we know that f ′(x) = 0 on the interval. The following theorem
is the converse.

The Constant Function Theorem

Suppose that f is continuous on [a, b] and differentiable on (a, b). If f ′(x) = 0 on (a, b),
then f is constant on [a, b].

Proof The proof is the same as for the Increasing Function Theorem, only in this case f ′(c) = 0 so
f(x2)− f(x1) = 0. Thus f(x2) = f(x1) for a ≤ x1 < x2 ≤ b, so f is constant.

A proof of the Constant Function Theorem using the Increasing Function Theorem is given in
Problems 6 and 8.

The Racetrack Principle

The Racetrack Principle7

Suppose that g and h are continuous on [a, b] and differentiable on (a, b), and that g′(x) ≤
h′(x) for a < x < b.
• If g(a) = h(a), then g(x) ≤ h(x) for a ≤ x ≤ b.

• If g(b) = h(b), then g(x) ≥ h(x) for a ≤ x ≤ b.

The Racetrack Principle has the following interpretation. We can think of g(x) and h(x) as the
positions of two racehorses at time x, with horse h always moving faster than horse g. If they start
together, horse h is ahead during the whole race. If they finish together, horse g was ahead during
the whole race.

Proof Consider the function f(x) = h(x) − g(x). Since f ′(x) = h′(x) − g′(x) ≥ 0, we know that f is
nondecreasing by the Increasing Function Theorem. So f(x) ≥ f(a) = h(a) − g(a) = 0. Thus
g(x) ≤ h(x) for a ≤ x ≤ b. This proves the first part of the Racetrack Principle. Problem 7 asks
for a proof of the second part.

Example 1 Explain graphically why ex ≥ 1 + x for all values of x. Then use the Racetrack Principle to prove
the inequality.

Solution The graph of the function f(x) = ex is concave up everywhere and the equation of its tangent line
at the point (0, 1) is y = x+1. (See Figure G.25.) Since the graph always lies above its tangent, we
have the inequality

ex ≥ 1 + x.

Now we prove the inequality using the Racetrack Principle. Let g(x) = 1 + x and h(x) = ex.
Then g(0) = h(0) = 1. Furthermore, g′(x) = 1 and h′(x) = ex. Hence g′(x) ≤ h′(x) for x ≥ 0.
So by the Racetrack Principle, with a = 0, we have g(x) ≤ h(x), that is, 1 + x ≤ ex.

For x ≤ 0 we have h′(x) ≤ g′(x). So by the Racetrack Principle, with b = 0, we have
g(x) ≤ h(x), that is, 1 + x ≤ ex.

7Based on the Racetrack Principle in Calculus&Mathematica, by William Davis, Horacio Porta, Jerry Uhl (Reading:
Addison Wesley, 1994).
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1

x

y
y = ex

y = x+ 1

Figure G.25: Graph showing that ex ≥ 1 + x

Problems for Section G

1. Use the Racetrack Principle and the fact that sin 0 = 0
to show that sin x ≤ x for all x ≥ 0.

2. Use the Racetrack Principle to show that ln x ≤ x− 1.

3. Use the fact that ln x and ex are inverse functions to show
that the inequalities ex ≥ 1+x and ln x ≤ x−1 are
equivalent for x > 0.

4. Suppose that the position of a particle moving along the
x-axis is given by s = f(t), and that the initial po-
sition and velocity of the particle are f(0) = 3 and
f ′(0) = 4. Suppose that the acceleration is bounded by
5 ≤ f ′′(t) ≤ 7 for 0 ≤ t ≤ 2. What can we say about
the position f(2) of the particle at t = 2?

5. Show that if every continuous function on an interval
[a, b] has a global maximum, then every continuous func-
tion has a global minimum as well. [Hint: Consider −f .]

6. State a Decreasing Function Theorem, analogous to
the Increasing Function Theorem. Deduce your theorem
from the Increasing Function Theorem. [Hint: Apply the
Increasing Function Theorem to −f .]

7. Suppose that g and h are continuous on [a, b] and dif-
ferentiable on (a, b). Prove that if g′(x) ≤ h′(x) for
a < x < b and g(b) = h(b), then h(x) ≤ g(x) for
a ≤ x ≤ b.

8. Deduce the Constant Function Theorem from the In-
creasing Function Theorem and the Decreasing Function
Theorem (see problem 6).

9. Prove that if f ′(x) = g′(x) for all x in (a, b), then
there is a constant C such that f(x) = g(x) + C on
(a, b). [Hint: Apply the Constant Function Theorem to
h(x) = f(x)− g(x).]

10. Suppose that f ′(x) = f(x) for all x. Prove that f(x) =
Cex for some constant C. [Hint: Consider the function
f(x)/ex.]

11. Suppose that f is continuous on [a, b] and differentiable
on (a, b) and that m ≤ f ′(x) ≤ M on (a, b). Use
the Racetrack Principle to prove that f(x) − f(a) ≤
M(x − a) for all x in [a, b], and that m(x − a) ≤
f(x) − f(a) for all x in [a, b]. Conclude that m ≤
(f(b) − f(a))/(b − a) ≤ M . This is called the Mean
Value Inequality. In words: If the instantaneous rate of
change of f is between m and M on an interval, so is the
average rate of change of f over the interval.

12. Suppose that f ′′(x) ≥ 0 for all x in (a, b). We will show
the graph of f lies above the tangent line at (c, f(c)) for
any c with a < c < b.

(a) Use the Increasing Function Theorem to prove that
f ′(c) ≤ f ′(x) for c ≤ x < b and that f ′(x) ≤
f ′(c) for a < x ≤ c.

(b) Use (a) and the Racetrack Principle to conclude that
f(c) + f ′(c)(x− c) ≤ f(x), for a < x < b.

13. In this problem we use the Mean Value Theorem to give
a proof of the Fundamental Theorem of Calculus. Let f
be continuous, with antiderivative F .

(a) Let [a, b] be an interval contained in the domain of
f , and let

a = x0 < x1 < · · · < xn−1 < xn = b

be a subdivision of [a, b]. Show that there is a Rie-
mann sum for f using this subdivision which is
equal to F (b)−F (a). [Hint: Apply the Mean Value
Theorem to

F (b)− F (a) = ((F (b)− F (xn−1))

+(F (xn−1)− F (xn−2)) + · · ·
+(F (x1)− F (a)).

(b) Deduce that F (b)− F (a) =
∫ b

a
f(x) dx.
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14. Suppose that f is continuous on [a, b], and let c be in
[a, b]. Show that if f(c) < M , then there is a δ such that
f(x) < M for all x in [a, b] such that c−δ < x < c+δ.
[Hint: Let ǫ = M − f(c), and choose δ such that
|f(x)− f(c)| < ǫ if |x− c| < δ.]

On page 196 we proved that a continuous function f has a
global maximum on the interval [a, b] under the assumption
that f has an upper bound on [a, b]. In Problems 15–16 we
prove this claim.

15. (a) Suppose that f has no upper bound on [a, b]. Bisect
[a, b] into two halves. Deduce that f has no upper
bound on at least one of the halves. Call that half
[a1, b1].

(b) Continue bisecting so that at the nth stage you ob-
tain an interval [an, bn] on which f has no upper
bound. By the Nested Interval Theorem on page ??,
there is a point c in all the intervals [an, bn].

(c) Use continuity of f at c to deduce that f has an up-
per bound on [an, bn] for n sufficiently large. This
contradicts the original supposition, so f must have
an upper bound on [a, b].

16. (a) Show that if y ≥ 0, then y/(1 + y) < 1.
(b) Suppose that f is continuous on [a, b] and that

f(x) ≥ 0 on [a, b]. Define a function g by g(x) =
f(x)/(1 + f(x)). Show that g is continuous and
bounded on [a, b]. It follows from the partial proof
of the Extreme Value Theorem on page 196 that g
has a global maximum on [a, b] at some point x = c.

(c) Suppose that y1 ≥ 0 and y2 ≥ 0, and that y1/(1 +
y1) ≤ y2/(1 + y2). Show that y1 ≤ y2.

(d) Use parts (c) and (d) to show that f has a global
maximum at x = c.

(e) We have shown that if f is continuous and non-
negative on [a, b], then it is bounded above on [a, b].
Now suppose that f is continuous, but not necessar-
ily non-negative. By applying the argument to |f |,
deduce that f is also bounded above.

17. In this problem we prove a special case of the Mean
Value Theorem where f(a) = f(b) = 0. This special
case is called Rolle’s Theorem: If f is continuous on
[a, b] and differentiable on (a, b), and if f(a) = f(b) =
0, then there is a number c, with a < c < b, such that

f ′(c) = 0.

By the Extreme Value Theorem, f has a global maximum
and a global minimum on [a, b].

(a) Prove Rolle’s theorem in the case that both the
global maximum and the global minimum are at
endpoints of [a, b]. [Hint: f(x) must be a very sim-
ple function in this case.]

(b) Prove Rolle’s theorem in the case that either the
global maximum or the global minimum is not at
an endpoint. [Hint: Think about local maxima and
minima.]

18. Use Rolle’s Theorem to prove the Mean Value Theorem.
Suppose that f(x) is continuous on [a, b] and differen-
tiable on (a, b).

a b

❄

Secant
line

✻❄■
g(x)

y = f(x)

y = f(a) +

(
f(b) − f(a)

b− a

)
(x− a)

x

y

Figure G.26: g(x) is the difference between the secant line and the
graph of f(x)

(a) Let g(x) be the difference between f(x) and the
y-value on the secant line joining (a, f(a)) to
(b, f(b)). See Figure G.26. Show that

g(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

(b) Use Rolle’s Theorem to show that there must be a
point c in (a, b) such that g′(c) = 0.

(c) Show that if c is the point in part (b), then

f ′(c) =
f(b)− f(a)

b− a
.

H LIMITS AND CONTINUITY FOR FUNCTIONS OF MANY VARIABLES

The sheer vertical face of Half Dome, in Yosemite National Park in California, was caused by
glacial activity during the Ice Age. (See Figure H.27.) The height of the terrain rises abruptly by
nearly 1000 feet as we scale the rock from the west, whereas it is possible to make a gradual climb
to the top from the east.

If we consider the function h giving the height of the terrain above sea level in terms of lon-
gitude and latitude, then h has a discontinuity along the path at the base of the cliff of Half Dome.
Looking at the contour map of the region in Figure H.28, we see that in most places a small change
in position results in a small change in height, except near the cliff. There, no matter how small a
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Figure H.27: Half Dome in Yosemite
National Park

Figure H.28: A contour map of Half Dome

step we take, we get a large change in height. (You can see how crowded the contours get near the
cliff; some end abruptly along the discontinuity.)

This geological feature illustrates the ideas of continuity and discontinuity. Roughly speaking,
a function is said to be continuous at a point if its values at places near the point are close to the
value at the point. If this is not the case, the function is said to be discontinuous.

The property of continuity is one that, practically speaking, we usually assume of the functions
we are studying. Informally, we expect (except under special circumstances) that values of a function
do not change drastically when making small changes to the input variables. Whenever we model a
one-variable function by an unbroken curve, we are making this assumption. Even when functions
come to us as tables of data, we usually make the assumption that the missing function values
between data points are close to the measured ones.

In this section we study limits and continuity a bit more formally in the context of functions
of several variables. For simplicity we study these concepts for functions of two variables, but our
discussion can be adapted to functions of three or more variables.

One can show that sums, products, and compositions of continuous functions are continuous,
while the quotient of two continuous functions is continuous everywhere the denominator function
is nonzero. Thus, each of the functions

cos(x2y), ln(x2
+ y2),

ex+y

x+ y
, ln(sin(x2

+ y2))

is continuous at all points (x, y) where it is defined. As for functions of one variable, the graph of a
continuous function over an unbroken domain is unbroken—that is, the surface has no holes or rips
in it.

Example 1 From Figures H.29–H.32, which of the following functions appear to be continuous at (0, 0)?

(a) f(x, y) =




x2y

x2 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).
(b) g(x, y) =




x2

x2 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).
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Figure H.29: Graph of z = x2y/(x2 + y2)
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Figure H.30: Contour diagram of z = x2y/(x2 + y2)
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Figure H.31: Graph of z = x2/(x2 + y2)
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Figure H.32: Contour diagram of z = x2/(x2 + y2)

Solution (a) The graph and contour diagram of f in Figures H.29 and H.30 suggest that f is close to 0 when
(x, y) is close to (0, 0). That is, the figures suggest that f is continuous at the point (0, 0); the
graph appears to have no rips or holes there.

However, the figures cannot tell us for sure whether f is continuous. To be certain we must
investigate the limit analytically, as is done in Example 2(a) on page 40.

(b) The graph of g and its contours near (0, 0) in Figure H.31 and H.32 suggest that g behaves
differently from f : The contours of g seem to “crash” at the origin and the graph rises rapidly
from 0 to 1 near (0, 0). Small changes in (x, y) near (0, 0) can yield large changes in g, so we
expect that g is not continuous at the point (0, 0). Again, a more precise analysis is given in
Example 2(b) on page 40.

The previous example suggests that continuity at a point depends on a function’s behavior near

the point. To study behavior near a point more formally we need to define the limit of a function
of two variables. Suppose that f(x, y) is a function defined on a set in 2-space, not necessarily
containing the point (a, b), but containing points (x, y) arbitrarily close to (a, b); suppose that L is
a number.
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The function f has a limit L at the point (a, b), written

lim
(x,y)→(a,b)

f(x, y) = L,

if the difference |f(x, y) − L| is as small as we wish whenever the distance from the point
(x, y) to the point (a, b) is sufficiently small, but not zero.

We define continuity for functions of two variables in the same way as for functions of one
variable:

A function f is continuous at the point (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b).

A function is continuous if it is continuous at each point of its domain.

Thus, if f is continuous at the point (a, b), then f must be defined at (a, b) and the limit,
lim(x,y)→(a,b) f(x, y), must exist and be equal to the value f(a, b). If a function is defined at a point
(a, b) but is not continuous there, then we say that f is discontinuous at (a, b).

We now apply the definition of continuity to the functions in Example 1, showing that f is
continuous at (0, 0) and that g is discontinuous at (0, 0).

Example 2 Let f and g be the functions defined everywhere on 2-space except at the origin as follows (a) f(x, y) =
x2y

x2 + y2
(b) g(x, y) =

x2

x2 + y2

Use the definition of the limit to show that lim
(x,y)→(0,0)

f(x, y) = 0 and that lim
(x,y)→(0,0)

g(x, y)

does not exist.

Solution (a) The graph and contour diagram of f both suggest that lim
(x,y)→(0,0)

f(x, y) = 0. To use the

definition of the limit, we must estimate |f(x, y)− L| with L = 0:

|f(x, y)− L| =

∣∣∣∣ x2y

x2 + y2
− 0

∣∣∣∣ =
∣∣∣∣ x2

x2 + y2

∣∣∣∣ |y| ≤ |y| ≤
√
x2 + y2,

Now
√
x2 + y2 is the distance from (x, y) to (0, 0). Thus, to make |f(x, y)− 0| < 0.001,

for example, we need only require (x, y) be within 0.001 of (0, 0). More generally, for any
positive number u, no matter how small, we are sure that |f(x, y)− 0| < u whenever (x, y) is
no farther than u from (0, 0). This is what we mean by saying that the difference |f(x, y) − 0|

can be made as small as we wish by choosing the distance to be sufficiently small. Thus, we
conclude that

lim
(x,y)→(0,0)

x2y

x2 + y2
= 0.

Notice that the function f has a limit at the point (0, 0) even though f was not defined at (0, 0).
To make f continuous at (0, 0) we must define its value there to be 0, as we did in Example 1.

(b) Although the formula defining the function g looks similar to that of f , we saw in Example 1
that g’s behavior near the origin is quite different. If we consider points (x, 0) lying along the
x-axis near (0, 0), then the values g(x, 0) are equal to 1, while if we consider points (0, y) lying
along the y-axis near (0, 0), then the values g(0, y) are equal to 0. Thus, within any disk (no
matter how small) centered at the origin, there are points where g = 0 and points where g = 1.
Therefore the limit lim(x,y)→(0,0) g(x, y) does not exist.
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While the notions of limit and continuity look formally the same for one- and two-variable
functions, they are somewhat more subtle in the multivariable case. The reason for this is that on the
line (1-space), we can approach a point from just two directions (left or right) but in 2-space there
are an infinite number of ways to approach a given point.

Problems for Section H

1. Show that the function f does not have a limit at (0, 0)
by examining the limits of f as (x, y) → (0, 0) along the
curve y = kx2 for different values of k. The function is
given by

f(x, y) =
x2

x2 + y
, x2 + y 6= 0.

2. Show that the function f does not have a limit at (0, 0)
by examining the limits of f as (x, y) → (0, 0) along the
line y = x and along the parabola y = x2. The function
is given by

f(x, y) =
x2y

x4 + y2
, (x, y) 6= (0, 0).

3. Consider the following function:

f(x, y) =

{
xy(x2 − y2)

x2 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

(a) Use a computer to draw the graph and the contour
diagram of f .

(b) Do your answers to part (a) suggest that f is contin-
uous at (0, 0)? Explain your answer.

4. Consider the function f , whose graph and contour dia-
gram are in Figures H.33 and H.34, and which is given
by

f(x, y) =

{
xy

x2 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

(a) Show that f(0, y) and f(x, 0) are each continuous
functions of one variable.

(b) Show that rays emanating from the origin are con-
tained in contours of f .

(c) Is f continuous at (0, 0)?

x

y

z

Figure H.33: Graph of z = xy/(x2 + y2)
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Figure H.34: Contour diagram of
z = xy/(x2 + y2)

For Problems 5–9 compute the limits of the functions f(x, y)
as (x, y) → (0, 0). You may assume that polynomials, expo-
nentials, logarithmic, and trigonometric functions are contin-
uous.

5. f(x, y) = x2 + y2 6. f(x, y) = e−x−y

7. f(x, y) =
x

x2 + 1
8. f(x, y) =

x+ y

(sin y) + 2

9. f(x, y) =
sin(x2 + y2)

x2 + y2
[Hint: You may assume that

limt→0(sin t)/t = 1.]

For the functions in Problems 10–12, show that
lim(x,y)→(0,0) f(x, y) does not exist.
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10. f(x, y) =
x+ y

x− y
, x 6= y

11. f(x, y) =
x2 − y2

x2 + y2

12. f(x, y) =
xy

|xy| , x 6= 0 and y 6= 0

13. Show that the contours of the function g defined in Exam-
ple 1(b) on page 38 are rays emanating from the origin.
Find the slope of the contour g(x, y) = c.

14. Explain why the following function is not continuous
along the line y = 0.

f(x, y) =

{
1− x, y ≥ 0,

−2, y < 0,

In Problems 15–16, determine whether there is a value for c
making the function continuous everywhere. If so, find it. If
not, explain why not.

15. f(x, y) =

{
c+ y, x ≤ 3,

5− y, x > 3.

16. f(x, y) =

{
c+ y, x ≤ 3,

5− x, x > 3.

I DIFFERENTIABILITY FOR FUNCTIONS OF MANY VARIABLES

In Section 14.3 of the textbook we gave an informal introduction to the concept of differentiability.
We called a function f(x, y) differentiable at a point (a, b) if it is well-approximated by a linear
function near (a, b). This section focuses on the precise meaning of the phrase “well-approximated.”
By looking at examples, we shall see that local linearity requires the existence of partial derivatives,
but they do not tell the whole story. In particular, existence of partial derivatives at a point is not
sufficient to guarantee local linearity at that point.

We begin by discussing the relation between continuity and differentiability. As an illustration,
take a sheet of paper, crumple it into a ball and smooth it out again. Wherever there is a crease it
would be difficult to approximate the surface by a plane—these are points of nondifferentiability
of the function giving the height of the paper above the floor. Yet the sheet of paper models a
graph which is continuous—there are no breaks. As in the case of one-variable calculus, continuity
does not imply differentiability. But differentiability does require continuity: there cannot be linear
approximations to a surface at points where there are abrupt changes in height.

Differentiability For Functions Of Two Variables

For a function of two variables, as for a function of one variable, we define differentiability at a
point in terms of the error and the distance from the point. If the point is (a, b) and a nearby point is
(a+ h, b+ k), the distance between them is

√
h2 + k2. (See Figure I.35.)

A function f(x, y) is differentiable at the point (a, b) if there is a linear function L(x, y) =
f(a, b) +m(x− a) + n(y − b) such that if the error E(x, y) is defined by

f(x, y) = L(x, y) + E(x, y),

and if h = x− a, k = y − b, then the relative error E(a+ h, b+ k)/
√
h2 + k2 satisfies

lim
h→0

k→0

E(a+ h, b+ k)
√
h2 + k2

= 0.

The function f is differentiable if it is differentiable at each point of its domain. The
function L(x, y) is called the local linearization of f(x, y) near (a, b).
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✻
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✛

✛

Figure I.35: Graph of function z = f(x, y) and its local linearization
z = L(x, y) near the point (a, b)

Partial Derivatives and Differentiability

In the next example, we show that this definition of differentiability is consistent with our previous
notion — that is, that m = fx and n = fy and that the graph of L(x, y) is the tangent plane.

Example 1 Show that if f is a differentiable function with local linearization L(x, y) = f(a, b) +m(x− a) +
n(y − b), then m = fx(a, b) and n = fy(a, b).

Solution Since f is differentiable, we know that the relative error in L(x, y) tends to 0 as we get close to
(a, b). Suppose h > 0 and k = 0. Then we know that

0 = lim
h→0

E(a+ h, b)
√
h2 + k2

= lim
h→0

E(a+ h, b)

h
= lim

h→0

f(a+ h, b)− L(a+ h, b)

h

= lim
h→0

f(a+ h, b)− f(a, b)−mh

h

= lim
h→0

(
f(a+ h, b)− f(a, b)

h

)
−m = fx(a, b)−m.

A similar result holds if h < 0, so we have m = fx(a, b). The result n = fy(a, b) is found in a
similar manner.

The previous example shows that if a function is differentiable at a point, it has partial deriva-
tives there. Therefore, if any of the partial derivatives fail to exist, then the function cannot be
differentiable. This is what happens in the following example of a cone.

Example 2 Consider the function f(x, y) =
√
x2 + y2. Is f differentiable at the origin?
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x y

z

✿

Figure I.36: The function f(x, y) =
√

x2 + y2 is not locally linear at (0, 0): Zooming in around
(0, 0) does not make the graph look like a plane

Solution If we zoom in on the graph of the function f(x, y) =
√
x2 + y2 at the origin, as shown in Fig-

ure I.36, the sharp point remains; the graph never flattens out to look like a plane. Near its vertex,
the graph does not look like it is well approximated (in any reasonable sense) by any plane.

Judging from the graph of f , we would not expect f to be differentiable at (0, 0). Let us check
this by trying to compute the partial derivatives of f at (0, 0):

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

√
h2 + 0− 0

h
= lim

h→0

|h|

h
.

Since |h|/h = ±1, depending on whether h approaches 0 from the left or right, this limit does
not exist and so neither does the partial derivative fx(0, 0). Thus, f cannot be differentiable at the
origin. If it were, both of the partial derivatives, fx(0, 0) and fy(0, 0), would exist.

Alternatively, we could show directly that there is no linear approximation near (0, 0) that
satisfies the small relative error criterion for differentiability. Any plane passing through the point
(0, 0, 0) has the form L(x, y) = mx + ny for some constants m and n. If E(x, y) = f(x, y) −
L(x, y), then

E(x, y) =
√
x2 + y2 −mx− ny.

Then for f to be differentiable at the origin, we would need to show that

lim
h→0

k→0

√
h2 + k2 −mh− nk

√
h2 + k2

= 0.

Taking k = 0 gives

lim
h→0

|h| −mh

|h|
= 1−m lim

h→0

h

|h|
.

This limit exists only if m = 0 for the same reason as before. But then the value of the limit is 1
and not 0 as required. Thus, we again conclude f is not differentiable.

In Example 2 the partial derivatives fx and fy did not exist at the origin and this was sufficient
to establish nondifferentiability there. We might expect that if both partial derivatives do exist, then
f is differentiable. But the next example shows that this not necessarily true: the existence of both
partial derivatives at a point is not sufficient to guarantee differentiability.

Example 3 Consider the function f(x, y) = x1/3y1/3. Show that the partial derivatives fx(0, 0) and fy(0, 0)
exist, but that f is not differentiable at (0, 0).



Theory Supplement Section I 45

x

y

z

Figure I.37: Graph of z = x1/3y1/3 for z ≥ 0

Solution See Figure I.37 for the part of the graph of z = x1/3y1/3 when z ≥ 0. We have f(0, 0) = 0 and we
compute the partial derivatives using the definition:

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0,

and similarly
fy(0, 0) = 0.

So, if there did exist a linear approximation near the origin, it would have to be L(x, y) = 0. But
we can show that this choice of L(x, y) doesn’t result in the small relative error that is required for
differentiability. In fact, since E(x, y) = f(x, y)− L(x, y) = f(x, y), we need to look at the limit

lim
h→0

k→0

h1/3k1/3
√
h2 + k2

.

If this limit exists, we get the same value no matter how h and k approach 0. Suppose we take
k = h > 0. Then the limit becomes

lim
h→0

h1/3h1/3

√
h2 + h2

= lim
h→0

h2/3

h
√
2
= lim

h→0

1

h1/3
√
2
.

But this limit does not exist, since small values for h will make the fraction arbitrarily large. So the
only possible candidate for a linear approximation at the origin does not have a sufficiently small
relative error. Thus, this function is not differentiable at the origin, even though the partial derivatives
fx(0, 0) and fy(0, 0) exist. Figure I.37 confirms that near the origin the graph of z = f(x, y) is not
well approximated by any plane.

In summary,

• If a function is differentiable at a point, then both partial derivatives exist there.

• Having both partial derivatives at a point does not guarantee that a function is differen-
tiable there.

Continuity and Differentiability

We know that differentiable functions of one variable are continuous. Similarly, it can be shown that
if a function of two variables is differentiable at a point, then the function is continuous there.

In Example 3 the function f was continuous at the point where it was not differentiable. Ex-
ample 4 shows that even if the partial derivatives of a function exist at a point, the function is not
necessarily continuous at that point if it is not differentiable there.
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Example 4 Suppose that f is the function of two variables defined by

f(x, y) =

{ xy

x2 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

Problem 4 on page 41 showed that f(x, y) is not continuous at the origin. Show that the partial
derivatives fx(0, 0) and fy(0, 0) exist. Could f be differentiable at (0, 0)?

Solution From the definition of the partial derivative we see that

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

(
1

h
·

0

h2 + 02

)
= lim

h→0

0

h
= 0,

and similarly
fy(0, 0) = 0.

So, the partial derivatives fx(0, 0) and fy(0, 0) exist. However, f cannot be differentiable at the
origin since it is not continuous there.

In summary,

• If a function is differentiable at a point, then it is continuous there.

• Having both partial derivatives at a point does not guarantee that a function is continuous
there.

How Do We Know If a Function Is Differentiable?

Can we use partial derivatives to tell us if a function is differentiable? As we see from Examples 3
and 4, it is not enough that the partial derivatives exist. However, the following condition does

guarantee differentiability:

If the partial derivatives, fx and fy, of a function f exist and are continuous on a small disk
centered at the point (a, b), then f is differentiable at (a, b).

We will not prove this fact, although it provides a criterion for differentiability which is often
simpler to use than the definition. It turns out that the requirement of continuous partial derivatives
is more stringent than that of differentiability, so there exist differentiable functions which do not
have continuous partial derivatives. However, most functions we encounter will have continuous
partial derivatives. The class of functions with continuous partial derivatives is given the name C1.

Example 5 Show that the function f(x, y) = ln(x2 + y2) is differentiable everywhere in its domain.

Solution The domain of f is all of 2-space except for the origin. We shall show that f has continuous partial
derivatives everywhere in its domain (that is, the function f is in C1). The partial derivatives are

fx =
2x

x2 + y2
and fy =

2y

x2 + y2
.

Since each of fx and fy is the quotient of continuous functions, the partial derivatives are con-
tinuous everywhere except the origin (where the denominators are zero). Thus, f is differentiable
everywhere in its domain.
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Most functions built up from elementary functions have continuous partial derivatives, except
perhaps at a few obvious points. Thus, in practice, we can often identify functions as being C1

without explicitly computing the partial derivatives.

The Error in Linear and Quadratic Taylor Approximations

On page 809 of the textbook, we saw how to approximate a function f(x, y) by Taylor polynomials.
(The Taylor polynomial of degree 1 is the local linearization.) We now compare the magnitudes of
the errors in the linear and quadratic approximations.

Let’s return to the function f(x, y) = cos(2x+y)+sin(x+y). The contour plots in Example 4
on page 810 of the textbook suggest that the quadratic approximation, Q(x, y), is a better approxi-
mation to f than the linear approximation, L(x, y). Consider approximations about the point (0, 0).
The errors in the linear and the quadratic approximations are defined as

EL = f(x, y)− L(x, y) EQ = f(x, y)−Q(x, y).

Table I.3 shows how the magnitudes of these errors, |EL| and |EQ|, depend on the distance, d(x, y) =√
x2 + y2, of the point (x, y) from (0, 0). The values in Table I.3 suggest that, in this example,

EL is proportional to d2 and EQ is proportional to d3.

In general, the errors EL and EQ can be shown to be proportional to d2 and d3, respectively.

Table I.3 Magnitude of the error in the linear and quadratic

approximations to f(x, y) = cos(2x+ y) + sin(x+ y)

Point, (x, y) Distance, d Error, |EL| Error, |EQ|
x = y = 0 0 0 0

x = y = 10−1 1.4 · 10−1 5 · 10−2 4 · 10−3

x = y = 10−2 1.4 · 10−2 5 · 10−4 4 · 10−6

x = y = 10−3 1.4 · 10−3 5 · 10−6 4 · 10−9

x = y = 10−4 1.4 · 10−4 5 · 10−8 4 · 10−12

To use these approximations in practice, we need bounds on the magnitudes of the errors. If the
distance between (x, y) and (a, b) is represented by d(x, y) =

√
(x − a)2 + (y − b)2, it can be

shown that the following results hold:

Error Bound for Linear Approximation

Suppose f(x, y) is a function with continuous second-order partial derivatives such that for
d(x, y) ≤ d0,

|fxx|, |fxy|, |fyy| ≤ ML.

Suppose

f(x, y) = L(x, y) + EL(x, y)

= f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) + EL(x, y).

Then we have

|EL(x, y)| ≤ 2MLd(x, y)
2 for d(x, y) ≤ d0.

Note that the upper bound for the error term EL(x, y) has a form reminiscent of the second-
order term in the Taylor formula for f(x, y).
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Error Bound for Quadratic Approximation

Suppose f(x, y) is a function with continuous third-order partial derivatives such that for
d(x, y) ≤ d0,

|fxxx|, |fxxy|, |fxyy|, |fyyy| ≤ MQ.

Suppose

f(x, y) = Q(x, y) + EQ(x, y)

= f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
fxx(a, b)

2
(x− a)2 + fxy(a, b)(x− a)(y − b) +

fyy(a, b)

2
(y − b)2 + EQ(x, y).

Then we have

|EQ(x, y)| ≤
4

3
MQd(x, y)

3 for d(x, y) ≤ d0.

Problem 15 shows how these error estimates and the coefficients (2 and 4/3) are obtained. The
important thing to notice is the fact that, for small d, the magnitude of EL is much smaller than d
and the magnitude of EQ is much smaller than d2. In other words we have the following result:

As d(x, y) → 0:

EL(x, y)

d(x, y)
→ 0 and

EQ(x, y)

(d(x, y))2
→ 0.

This means that near the point (a, b), we can view the original function and the approximation
as indistinguishable and behaving the same way.

Example 6 Suppose that the Taylor polynomial of degree 2 for f at (0, 0) is Q(x, y) = 5x2 +3y2. Suppose we
are also told that

|fxxx|, |fxxy|, |fxyy|, |fyyy| ≤ 9.

Notice that Q(x, y) > 0 for all (x, y) except (0, 0). Show that, except at (0, 0), we have

f(x, y) > 0 for all (x, y) such that
√
x2 + y2 = d < 0.25.

Solution By the error bound for the Taylor polynomial of degree 2, we have

|EQ(x, y)| = |f(x, y)−Q(x, y)| ≤
4

3
(9)d3 = 12d3

which can be written as
−12d3 ≤ f(x, y)−Q(x, y) ≤ 12d3.

Therefore we know that
Q(x, y)− 12d3 ≤ f(x, y).

Since Q(x, y) = 5x2 + 3y2, we have

5x2
+ 3y2 − 12d3 ≤ f(x, y).
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Since 5x2 + 3y2 ≥ 3x2 + 3y2 = 3d2, we have

3d2 − 12d3 ≤ f(x, y).

Now d3 approaches 0 faster than d2, so when d is small, we have

0 ≤ 3d2 − 12d3 ≤ f(x, y).

In fact, writing 3d2 − 12d3 = 3d2(1− 4d) shows that d < 1/4 ensures that f(x, y) > 0, except at
(0, 0) where f = 0. Thus, f has the same sign as Q for points near (0, 0).

Problems for Section I

For the functions f in Problems 1–4 answer the following
questions. Justify your answers.
(a) Use a computer to draw a contour diagram for f .
(b) Is f differentiable at all points (x, y) 6= (0, 0)?
(c) Do the partial derivatives fx and fy exist and are they

continuous at all points (x, y) 6= (0, 0)?
(d) Is f differentiable at (0, 0)?
(e) Do the partial derivatives fx and fy exist and are they

continuous at (0, 0)?

1. f(x, y) =




x

y
+

y

x
, x 6= 0 and y 6= 0,

0, x = 0 or y = 0.

2. f(x, y) =

{
2xy

(x2 + y2)2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

3. f(x, y) =

{ xy√
x2 + y2

, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

4. f(x, y) =

{
x2y

x4 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

5. Consider the function

f(x, y) =

{
xy2

x2 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

(a) Use a computer to draw the contour diagram for f .
(b) Is f differentiable for (x, y) 6= (0, 0)?
(c) Show that fx(0, 0) and fy(0, 0) exist.
(d) Is f differentiable at (0, 0)?
(e) Suppose x(t) = at and y(t) = bt, where a and b

are constants, not both zero. If g(t) = f(x(t), y(t)),
show that

g′(0) =
ab2

a2 + b2
.

(f) Show that

fx(0, 0)x
′(0) + fy(0, 0)y

′(0) = 0.

Does the chain rule hold for the composite function
g(t) at t = 0? Explain.

(g) Show that the directional derivative f~u (0, 0) exists
for each unit vector ~u . Does this imply that f is dif-
ferentiable at (0, 0)?

6. Consider the function

f(x, y) =

{
xy2

x2 + y4
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

(a) Use a computer to draw the contour diagram for f .
(b) Show that the directional derivative f~u (0, 0) exists

for each unit vector ~u .
(c) Is f continuous at (0, 0)? Is f differentiable at

(0, 0)? Explain.

7. Consider the function f(x, y) =
√

|xy|.

(a) Use a computer to draw the contour diagram for f .
Does the contour diagram look like that of a plane
when we zoom in on the origin?

(b) Use a computer to draw the graph of f . Does the
graph look like a plane when we zoom in on the ori-
gin?

(c) Is f differentiable for (x, y) 6= (0, 0)?
(d) Show that fx(0, 0) and fy(0, 0) exist.
(e) Is f differentiable at (0, 0)? [Hint: Consider the di-

rectional derivative f~u (0, 0) for ~u = (~i +~j )/
√
2.]

8. Suppose a function f is differentiable at the point (a, b).
Show that f is continuous at (a, b).

9. Suppose f(x, y) is a function such that fx(0, 0) = 0 and
fy(0, 0) = 0, and f~u (0, 0) = 3 for ~u = (~i +~j )/

√
2.

(a) Is f differentiable at (0, 0)? Explain.
(b) Give an example of a function f defined on 2-space

which satisfies these conditions. [Hint: The function
f does not have to be defined by a single formula
valid over all of 2-space.]
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10. Consider the following function:

f(x, y) =

{
xy(x2 − y2)

x2 + y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

The graph of f is shown in Figure I.38, and the contour
diagram of f is shown in Figure I.39.

x y

z

Figure I.38: Graph of
xy(x2 − y2)
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Figure I.39: Contour diagram of
xy(x2 − y2)

x2 + y2

(a) Find fx(x, y) and fy(x, y) for (x, y) 6= (0, 0).
(b) Show that fx(0, 0) = 0 and fy(0, 0) = 0.
(c) Are the functions fx and fy continuous at (0, 0)?
(d) Is f differentiable at (0, 0)?

For Problems 11–14:

(a) Find the local linearization, L(x, y), to the function
f(x, y) at the origin. Estimate the error EL(x, y) =
f(x, y)− L(x, y) if |x| ≤ 0.1 and |y| ≤ 0.1.

(b) Find the degree 2 Taylor polynomial, Q(x, y), for
the function f(x, y) at the origin. Estimate the error
EQ(x, y) = f(x, y) − Q(x, y) if |x| ≤ 0.1 and |y| ≤
0.1.

(c) Use a calculator to compute exactly f(0.1, 0.1) and the
errors EL(0.1, 0.1) and EQ(0.1, 0.1). How do these val-
ues compare with the errors predicted in parts (a) and
(b)?

11. f(x, y) = (cos x)(cos y)

12. f(x, y) = (ex − x) cos y

13. f(x, y) = ex+y

14. f(x, y) = (x2 + y2)ex+y

15. It is known that if the derivatives of a one-variable func-
tion, g(t), satisfy

|g(n+1)(t)| ≤ K for |t| ≤ d0,

then the error, En, in the nth Taylor approximation,
Pn(x), is bounded as follows:

|En| = |g(t)−Pn(t)| ≤ K

(n+ 1)!
|t|n+1 for |t| ≤ d0.

In this problem, we use this result for g(t) to get the er-
ror bounds for the linear and quadratic Taylor approxi-
mations to f(x, y). For a particular function f(x, y), let
x = ht and y = kt for fixed h and k, and define g(t) as
follows:

g(t) = f(ht, kt) for 0 ≤ t ≤ 1.

(a) Calculate g′(t), g′′(t), and g′′′(t) using the chain
rule.

(b) Show that L(ht, kt) = P1(t) and that Q(ht, kt) =
P2(t), where L is the linear approximation to f at
(0, 0) and Q is the Taylor polynomial of degree 2
for f at (0, 0).

(c) What is the relation between EL = f(x, y) −
L(x, y) and E1? What is the relation between EQ =
f(x, y)−Q(x, y) and E2?

(d) Assuming that the second and third-order partial
derivatives of f are bounded for d(x, y) ≤ d0, show
that |EL| and |EQ| are bounded as on page 47.

J EXISTENCE OF GLOBAL EXTREMA FOR FUNCTIONS OF MANY VARIABLES

Under what circumstances does a function of two variables have a global maximum or minimum?
The next example shows that a function may have both a global maximum and a global minimum
on a region, or just one, or neither.
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Example 1 Investigate the global maxima and minima of the following functions:

(a) h(x, y) = 1 + x2 + y2 on the disk x2 + y2 ≤ 1.
(b) f(x, y) = x2 − 2x+ y2 − 4y + 5 on the xy-plane.
(c) g(x, y) = x2 − y2 on the xy-plane.

Solution (a) The graph of h(x, y) = 1 + x2 + y2 is a bowl shaped paraboloid with a global minimum of 1
at (0, 0), and a global maximum of 2 on the edge of the region, x2 + y2 = 1.

(b) The graph of f in Figure ?? on page ?? of the textbook shows that f has a global minimum
at the point (1, 2) and no global maximum (because the value of f increases without bound as
x → ∞, y → ∞).

(c) The graph of g in Figure ?? on page ?? of the textbook shows that g has no global maximum
because g(x, y) → ∞ as x → ∞ if y is constant. Similarly, g has no global minimum because
g(x, y) → −∞ as y → ∞ if x is constant.

There are, however, conditions that guarantee that a function has a global maximum and min-
imum. For h(x), a function of one variable, the function must be continuous on a closed interval
a ≤ x ≤ b. If h is continuous on a non-closed interval, such as a ≤ x < b or a < x < b, or on an
interval which is not bounded, such as a < x < ∞, then h need not have a maximum or minimum
value. What is the situation for functions of two variables? As it turns out, a similar result is true for
continuous functions defined on regions which are closed and bounded, analogous to the closed and
bounded interval a ≤ x ≤ b. In everyday language we say

• A closed region is one which contains its boundary;

• A bounded region is one which does not stretch to infinity in any direction.

More precise definitions are as follows. Suppose R is a region in 2-space. A point (x0, y0) is a
boundary point of R if, for every r > 0, the disk (x− x0)

2 + (y − y0)
2 < r2 with center (x0, y0)

and radius r contains both points which are in R and points which are not in R. See Figure J.40.
A point (x0, y0) can be a boundary point of the region R without actually belonging to R. A point
(x0, y0) in R is an interior point if it is not a boundary point; thus, for small enough r > 0, the disk
of radius r centered at (x0, y0) lies entirely in the region R. See Figure J.41. The collection of all
the boundary points is the boundary of R and the collection of all the interior points is the interior

of R. The region R is closed if it contains its boundary, while it is open if every point in R is an
interior point.

A region R in 2-space is bounded if the distance between every point (x, y) in R and the origin
is less than or equal to some constant number K . Closed and bounded regions in 3-space are defined
in the same way.

R

(x0, y0)

Figure J.40: Boundary point (x0, y0) of R

R

(x0, y0)

Figure J.41: Interior point (x0, y0) of R
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Example 2 (a) The square −1 ≤ x ≤ 1, −1 ≤ y ≤ 1 is closed and bounded.
(b) The first quadrant x ≥ 0, y ≥ 0 is closed but is not bounded.
(c) The disk x2 + y2 < 1 is open and bounded, but is not closed.
(d) The half-plane y > 0 is open, but is neither closed nor bounded.

The reason that closed and bounded regions are useful is the following result8:

If f is a continuous function on a closed and bounded region R, then f has a global maximum
at some point (x0, y0) in R and a global minimum at some point (x1, y1) in R.

The result is also true for functions of three or more variables.
If f is not continuous or the region R is not closed and bounded, there is no guarantee that f

will achieve a global maximum or global minimum on R. In Example 1, the function g is continuous
but does not achieve a global maximum or minimum in 2-space, a region which is closed but not
bounded. The following example illustrates what can go wrong when the region is bounded but not
closed.

Example 3 Does the following function have a global maximum or minimum on the regionR given by 0 < x2 + y2 ≤ 1?

f(x, y) =
1

x2 + y2

Solution The region R is bounded, but it is not closed since it does not contain the boundary point (0, 0).
We see from the graph of z = f(x, y) in Figure J.42 that f has a global minimum on the circle
x2 + y2 = 1. However, f(x, y) → ∞ as (x, y) → (0, 0), so f has no global maximum.

x y

z

Figure J.42: Graph showing f(x, y) = 1
x2+y2 has no global maximum on 0 < x2 + y2 ≤ 1

K CHANGE OF VARIABLES IN A MULTIPLE INTEGRAL

In Chapter 16 we used polar, cylindrical, and spherical coordinates to simplify iterated integrals.
In this section, we discuss more general changes of variable. In the process, we will see where the
extra factor of r comes from when we change from Cartesian to polar coordinates and the factor
ρ2 sinφ when we change from Cartesian to spherical coordinates.

8For a proof, see W. Rudin, Principles of Mathematical Analysis, 2nd ed., p. 89, (New York: McGraw-Hill, 1976)
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Polar Change of Variables Revisited

Consider the integral
∫
R(x+ y) dA where R is the region in the first quadrant bounded by the circle

x2 + y2 = 16 and the x and y-axes. Writing the integral in Cartesian and polar coordinates we have∫
R

(x+ y) dA =

∫ 4

0

∫ √
16−x2

0

(x + y) dy dx =

∫ π/2

0

∫ 4

0

(r cos θ + r sin θ)r drdθ.

This is an integral over the rectangle in the rθ-space given by 0 ≤ r ≤ 4, 0 ≤ θ ≤ π/2. The con-
version from polar to Cartesian coordinates changes this rectangle into a quarter-disk. Figure K.43
shows how a typical rectangle (shaded) in the rθ-plane with sides of length ∆r and ∆θ corresponds
to a curved rectangle in the xy-plane with sides of length ∆r and r∆θ. The extra r is needed be-
cause the correspondence between r, θ and x, y not only curves the lines r = 1, 2, 3 . . . into circles,
it also stretches those lines around larger and larger circles.

1 2 3 4

π/8

π/4

3π/8

π/2

θ = π/8

θ = π/4

r = 2 r = 3

r

θ

1 2 3 4

1

2

3

x

y

θ = π/4

θ = π/8

Figure K.43: A grid in the rθ-plane and the corresponding curved grid in the xy-plane

General Change of Variables

We now consider a general change of variable, where x, y coordinates are related to s, t coordinates
by the differentiable functions

x = x(s, t) y = y(s, t).

Just as a rectangular region in the rθ-plane corresponds to a circular region in the xy-plane, a
rectangular region, T , in the st-plane corresponds to a curved region,R, in the xy-plane. We assume
that the change of coordinates is one-to-one, that is, that each point R corresponds to one point in
T .

(s, t) (s+∆s, t)

s

t

Ti,j

(s, t+∆t)

(x(s, t), y(s, t))

(x(s, t+∆t), y(s, t+∆t))

x

y

~b

Ri,j

(x(s+∆s, t), y(s+∆s, t))

~a

Figure K.44: A small rectangle Ti,j in the st-plane and the corresponding region Ri,j of the xy-plane

We divide T into small rectangles Ti,j with sides of length ∆s and ∆t. (See Figure K.44.) The
corresponding piece Ri,j of the xy-plane is a quadrilateral with curved sides. If we choose ∆s and
∆t very small, then by local linearity, Ri,j is approximately a parallelogram.
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Recall from Chapter 13 that the area of the parallelogram with sides ~a and~b is ‖~a ×~b ‖. Thus,
we need to find the sides of Ri,j as vectors. The side of Ri,j corresponding to the bottom side of
Ti,j has endpoints (x(s, t), y(s, t)) and (x(s +∆s, t), y(s+∆s, t)), so in vector form that side is

~a = (x(s+∆s, t)−x(s, t))~i +(y(s+∆s, t)−y(s, t))~j +0~k ≈

(
∂x

∂s
∆s

)
~i +

(
∂y

∂s
∆s

)
~j +0~k .

Similarly, the side of Ri,j corresponding to the left edge of Ti,j is given by

~b ≈

(
∂x

∂t
∆t

)
~i +

(
∂y

∂t
∆t

)
~j + 0~k .

Computing the cross product, we get

Area Ri,j ≈ ‖~a ×~b ‖ ≈

∣∣∣∣
(
∂x

∂s
∆s

)(
∂y

∂t
∆t

)
−

(
∂x

∂t
∆t

)(
∂y

∂s
∆s

)∣∣∣∣
=

∣∣∣∣∂x∂s ·
∂y

∂t
−

∂x

∂t
·
∂y

∂s

∣∣∣∣∆s∆t.

Using determinant notation, we define the Jacobian,
∂(x, y)

∂(s, t)
, as follows

∂(x, y)

∂(s, t)
=

∂x

∂s
·
∂y

∂t
−

∂x

∂t
·
∂y

∂s
=

∣∣∣∣∣∣∣∣∣∣
∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

∣∣∣∣∣∣∣∣∣∣
.

Thus, we can write

Area Ri,j ≈

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣∆s∆t.

To compute
∫
R f(x, y) dA, where f is a continuous function, we look at the Riemann sum obtained

by dividing the region R into the small curved regions Ri,j , giving∫
R

f(x, y) dA ≈
∑
i,j

f(xi, yj) · Area of Ri,j ≈
∑
i,j

f(xi, yj)

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣∆s∆t.

Each point (xi, yj) corresponds to a point (si, tj), so the sum can be written in terms of s and t:

∑
i,j

f(x(si, tj), y(si, tj))

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣∆s∆t.

This is a Riemann sum in terms of s and t, so as ∆s and ∆t approach 0, we get∫
R

f(x, y) dA =

∫
T

f(x(s, t), y(s, t))

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣ ds dt.

To convert an integral from x, y to s, t coordinates we make three changes:
1. Substitute for x and y in the integrand in terms of s and t.

2. Change the xy region R into an st region T .

3. Introduce the absolute value of the Jacobian,

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣, representing the change in the

area element.
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Example 1 Verify that the Jacobian
∂(x, y)

∂(r, θ)
= r for polar coordinates x = r cos θ, y = r sin θ.

Solution
∂(x, y)

∂(r, θ)
=

∣∣∣∣∣∣∣∣∣∣
∂x
∂r

∂y
∂r

∂x
∂θ

∂y
∂θ

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣ cos θ sin θ

−r sin θ r cos θ

∣∣∣∣∣ = r cos2 θ + r sin2 θ = r.

Example 2 Find the area of the ellipse
x2

a2
+

y2

b2
= 1.

Solution Let x = as, y = bt. Then the ellipse x2/a2 + y2/b2 = 1 in the xy-plane corresponds to the circle

s2 + t2 = 1 in the st-plane. The Jacobian is

∣∣∣∣∣a 0

0 b

∣∣∣∣∣ = ab. Thus, if we let R be the ellipse in the

xy-plane and T the unit circle in the st-plane, we get

Area of xy-ellipse =

∫
R

1 dA =

∫
T

1ab ds dt = ab

∫
T

ds dt = ab · Area of st-circle = πab.

Change of Variables in Triple Integrals

For triple integrals, there is a similar formula. Suppose the differentiable functions

x = x(s, t, u), y = y(s, t, u), z = z(s, t, u)

define a change of variables from a region S in stu-space to a region W in xyz-space. Then, the
Jacobian of this change of variables is given by the determinant

∂(x, y, z)

∂(s, t, u)
=

∣∣∣∣∣∣∣
∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

∂x
∂u

∂y
∂u

∂z
∂u

∣∣∣∣∣∣∣ .
Just as the Jacobian in two dimensions gives us the change in the area element, the Jacobian in three
dimensions represents the change in the volume element. Thus, we have∫

W

f(x, y, z) dx dy dz =

∫
S

f(x(s, t, u), y(s, t, u), z(s, t, u))

∣∣∣∣∂(x, y, z)∂(s, t, u)

∣∣∣∣ ds dt du.
Problem 3 at the end of this section asks you to verify that the Jacobian for the change of

variables for spherical coordinates is ρ2 sinφ. The next example generalizes Example 2 to ellipsoids.

Example 3 Find the volume of the ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1.
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Solution Let x = as, y = bt, z = cu. The Jacobian is computed to be abc. The xyz-ellipsoid corresponds
to the stu-sphere s2 + t2 + u2 = 1. Thus, as in Example 2,

Volume of xyz-ellipsoid = abc · Volume of stu-sphere = abc
4

3
π =

4

3
πabc.

Problems for Section K

1. Find the region R in the xy-plane corresponding to the
region T = {(s, t) | 0 ≤ s ≤ 3, 0 ≤ t ≤ 2} under the
change of variables x = 2s−3t, y = s−2t. Check that∫

R

dx dy =

∫
T

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣ ds dt.
2. Find the region R in the xy-plane corresponding to the

region T = {(s, t) | 0 ≤ s ≤ 2, s ≤ t ≤ 2} under the
change of variables x = s2, y = t. Check that∫

R

dx dy =

∫
T

∣∣∣∣∂(x, y)∂(s, t)

∣∣∣∣ ds dt.
3. Compute the Jacobian for the change of variables into

spherical coordinates:

x = ρ sin φ cos θ, y = ρ sinφ sin θ, z = ρ cos φ.

4. For the change of variables x = 3s − 4t, y = 5s + 2t,
show that

∂(x, y)

∂(s, t)
· ∂(s, t)

∂(x, y)
= 1

5. Use the change of variables x = 2s + t, y = s − t to
compute the integral

∫
R
(x+y) dA, where R is the paral-

lelogram formed by (0, 0), (3,−3), (5,−2), and (2, 1).

6. Use the change of variables x = 1
2
s, y = 1

3
t to com-

pute the integral
∫
R
(x2 + y2) dA, where R is the region

bounded by the curve 4x2 + 9y2 = 36.

7. Use the change of variables s = xy, t = xy2 to
compute

∫
R
xy2 dA, where R is the region bounded by

xy = 1, xy = 4, xy2 = 1, xy2 = 4.

8. Evaluate the integral

∫
R

cos

(
x− y

x+ y

)
dxdy where R is

the triangle bounded by x+ y = 1, x = 0, and y = 0.

9. Find the area of the metal frames with one or four cutouts
shown in Figure K.45. Start with Cartesian coordinates x,
y aligned along one side. Consider slanted coordinates
u = x − y, v = y in which the frame is “straightened”.
[Hint: First describe the shape of the cut-out in the uv-
plane; second, calculate its area in the uv-plane; third,
using Jacobians, calculate its area in the xy-plane.]

45◦

135◦

✛

✛✛

✛✛

✛✛

✛

12′′ 12′′

8′′ 8′′

45◦ ✛

✛✛

✛

135◦

3” 3”

3” 3”

12′′ 12′′

Figure K.45

10. A river follows the path y = f(x) where x, y are in
kilometers. Near the sea, it widens into a lagoon, then
narrows again at its mouth. See Figure K.46. At the point
(x, y), the depth, d(x, y), of the lagoon is given by

d(x, y) = 40− 160(y − f(x))2 − 40x2 meters.

The lagoon itself is described by d(x, y) ≥ 0. What is
the volume of the lagoon in cubic meters? [Hint: Use new
coordinates u = x/2, v = y − f(x) and Jacobians.]

(1, f(1))

Sea

y

(−1, f(−1)) River, y = f(x)

■

Lagoon

Figure K.46
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L PROOF OF GREEN’S THEOREM

In this section we will give a proof of Green’s Theorem based on the change of variables formula
for double integrals. Assume the vector field ~F is given in components by

~F (x, y) = F1(x, y)~i + F2(x, y)~j .

Proof for Rectangles

We prove Green’s Theorem first when R is a rectangular region, as shown in Figure L.47. The
line integral in Green’s theorem can be written as

∫
C

~F · d~r =

∫
C1

~F · d~r +

∫
C2

~F · d~r +

∫
C3

~F · d~r +

∫
C4

~F · d~r

=

∫ b

a

F1(x, c) dx +

∫ d

c

F2(b, y) dy −

∫ b

a

F1(x, d) dx −

∫ d

c

F2(a, y) dy

=

∫ d

c

(F2(b, y)− F2(a, y)) dy +

∫ b

a

(−F1(x, d) + F1(x, c)) dx.

On the other hand, the double integral in Green’s theorem can be written as an iterated integral.
We evaluate the inside integral using the Fundamental Theorem of Calculus.

∫
R

(
∂F2

∂x
−

∂F1

∂y

)
dx dy =

∫
R

∂F2

∂x
dx dy +

∫
R

−
∂F1

∂y
dx dy

=

∫ d

c

∫ b

a

∂F2

∂x
dx dy +

∫ b

a

∫ d

c

−
∂F1

∂y
dy dx

=

∫ d

c

(F2(b, y)− F2(a, y)) dy +

∫ b

a

(−F1(x, d) + F1(x, c)) dx.

Since the line integral and the double integral are equal, we have proved Green’s theorem for rect-
angles.

a b

c

d

C1

C4 C2

C3

R

x

y

Figure L.47: A rectangular region R with boundary C broken
into C1, C2, C3, and C4
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Proof for Regions Parameterized by Rectangles

a b

c

d

D1

D4 D2

D3

T

s

t

C4

C3

C2

C1

R

x

y

Figure L.48: A curved region R in the xy-plane corresponding to a rectangular region T in the st-plane

Now we prove Green’s Theorem for a region R which can be transformed into a rectangular
region. Suppose we have a smooth change of coordinates

x = x(s, t), y = y(s, t).

Consider a curved region R in the xy-plane corresponding to a rectangular region T in the st-
plane, as in Figure L.48. We suppose that the change of coordinates is one-to-one on the interior of
T .

We prove Green’s theorem for R using Green’s theorem for T and the change of variables
formula for double integrals given on page ??. First we express the line integral around C∫

C

~F · d~r ,

as a line integral in the st-plane around the rectangle D = D1 +D2 +D3 +D4. In vector notation,
the change of coordinates is

~r = ~r (s, t) = x(s, t)~i + y(s, t)~j

and so
~F · d~r = ~F (~r (s, t)) ·

∂~r

∂s
ds+ ~F (~r (s, t)) ·

∂~r

∂t
dt.

We define a vector field ~G on the st-plane with components

G1 = ~F ·
∂~r

∂s
and G2 = ~F ·

∂~r

∂t
.

Then, if ~u is the position vector of a point in the st-plane, we have ~F ·d~r = G1 ds+G2 dt = ~G ·d~u .
Problem 5 at the end of this section asks you to show that the formula for line integrals along
parameterized paths leads to the following result:∫

C

~F · d~r =

∫
D

~G · d~u .

In addition, using the product rule and chain rule we can show that

∂G2

∂s
−

∂G1

∂t
=

(
∂F2

∂x
−

∂F1

∂y

) ∣∣∣∣∣
∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

∣∣∣∣∣ .
(See Problem 6 at the end of this section.) Hence, by the change of variables formula for double
integrals on page ??,∫

R

(
∂F2

∂x
−

∂F1

∂y

)
dx dy =

∫
T

(
∂F2

∂x
−

∂F1

∂y

) ∣∣∣∣∣
∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

∣∣∣∣∣ ds dt =
∫
T

(
∂G2

∂s
−

∂G1

∂t

)
ds dt.
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Thus we have shown that ∫
C

~F · d~r =

∫
D

~G · d~u

and that ∫
R

(
∂F2

∂x
−

∂F1

∂y

)
dx dy =

∫
T

(
∂G2

∂s
−

∂G1

∂t

)
ds dt.

The integrals on the right are equal, by Green’s Theorem for rectangles; hence the integrals on the
left are equal as well, which is Green’s Theorem for the region R.

Pasting Regions Together

Lastly we show that Green’s Theorem holds for a region formed by pasting together regions
which can be transformed into rectangles. Figure L.49 shows two regionsR1 andR2 that fit together
to form a region R. We break the boundary of R into C1, the part shared with R1, and C2, the part
shared with R2. We let C be the part of the the boundary of R1 which it shares with R2. So

Boundary of R = C1 + C2, Boundary of R1 = C1 + C, Boundary of R2 = C2 + (−C).

Note that when the curve C is considered as part of the boundary of R2, it receives the opposite
orientation from the one it receives as the boundary of R1. Thus∫

Boundary of R1

~F · d~r +

∫
Boundary of R2

~F · d~r =

∫
C1+C

~F · d~r +

∫
C2+(−C)

~F · d~r

=

∫
C1

~F · d~r +

∫
C

~F · d~r +

∫
C2

~F · d~r −

∫
C

~F · d~r

=

∫
C1

~F · d~r +

∫
C2

~F · d~r

=

∫
Boundary of R

~F · d~r .

So, applying Green’s Theorem for R1 and R2, we get∫
R

(
∂F2

∂x
−

∂F1

∂y

)
dx dy =

∫
R1

(
∂F2

∂x
−

∂F1

∂y

)
dx dy +

∫
R2

(
∂F2

∂x
−

∂F1

∂y

)
dx dy

=

∫
Boundary of R1

~F · d~r +

∫
Boundary of R2

~F · d~r

=

∫
Boundary of R

~F · d~r ,

which is Green’s Theorem for R. Thus, we have proved Green’s Theorem for any region formed by
pasting together regions that are smoothly parameterized by rectangles.

C1

R

C2

C

−C
R1

R2

x

y

Figure L.49: Two regions R1 and R2

pasted together to form a region R
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Example 1 Let R be the annulus (ring) centered at the origin with inner radius 1 and outer radius 2. Using polar
coordinates, show that the proof of Green’s Theorem applies to R. See Figure L.50.

Solution In polar coordinates, x = r cos t and y = r sin t, the annulus corresponds to the rectangle in the
rt-plane 1 ≤ r ≤ 2, 0 ≤ t ≤ 2π. The sides t = 0 and t = 2π are pasted together in the xy-plane
along the x-axis; the other two sides become the inner and outer circles of the annulus. Thus R is
formed by pasting the ends of a rectangle together.

1 2

2π

r

t

1 2
x

y

✠

t = 0
t = 2π

r = 2

r=1

Figure L.50: The annulus R in the xy-plane and the corresponding rectangle 1 ≤ r ≤ 2, 0 ≤ t ≤ 2π
in the rt-plane

Problems for Section L

1. Let R be the annulus centered at (−1, 2) with inner ra-
dius 2 and outer radius 3. Show that R can be parameter-
ized by a rectangle.

2. Let R be the region under the first arc of the graph of
the sine function. Show that R can be parameterized by
a rectangle.

3. Let f(x) and g(x) be two smooth functions, and suppose
that f(x) ≤ g(x) for a ≤ x ≤ b. Let R be the region
f(x) ≤ y ≤ g(x), a ≤ x ≤ b.

(a) Sketch an example of such a region.
(b) For a constant x0, parameterize the vertical line seg-

ment in R where x = x0. Choose your parameter-
ization so that the parameter starts at 0 and ends at
1.

(c) By putting together the parameterizations in part (b)
for different values of x0, show that R can be pa-
rameterized by a rectangle.

4. Let f(y) and g(y) be two smooth functions, and suppose
that f(y) ≤ g(y) for c ≤ y ≤ d. Let R be the region
f(y) ≤ x ≤ g(y), c ≤ y ≤ d.

(a) Sketch an example of such a region.
(b) For a constant y0, parameterize the horizontal line

segment in R where y = y0. Choose your parame-
terization so that the parameter starts at 0 and ends
at 1.

(c) By putting together the parameterizations in part (b)
for different values of y0, show that R can be param-
eterized by a rectangle.

5. Use the formula for calculating line integrals by parame-
terization to prove the statement on page 58:∫

C

~F · d~r =

∫
D

~G · d~u .

6. Use the product rule and the chain rule to prove the for-
mula on page 58:

∂G2

∂s
− ∂G1

∂t
=

(
∂F2

∂x
− ∂F1

∂y

)∣∣∣∣∣ ∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

∣∣∣∣∣ .

M PROOF OF THE DIVERGENCE THEOREM AND STOKES’ THEOREM

In this section we give proofs of the Divergence Theorem and Stokes’ Theorem using the definitions
in Cartesian coordinates.
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Proof of the Divergence Theorem

For the Divergence Theorem, we use the same approach as we used for Green’s Theorem; first
prove the theorem for rectangular regions, then use the change of variables formula to prove it for
regions parameterized by rectangular regions, and finally paste such regions together to form general
regions.

Proof for Rectangular Solids with Sides Parallel to the Axes

Consider a smooth vector field ~F defined on the rectangular solid V : a ≤ x ≤ b, c ≤ y ≤ d,
e ≤ z ≤ f . (See Figure M.51). We start by computing the flux of ~F through the two faces of V
perpendicular to the x-axis, A1 and A2, both oriented outward:

∫
A1

~F · d ~A +

∫
A2

~F · d ~A = −

∫ f

e

∫ d

c

F1(a, y, z) dy dz +

∫ f

e

∫ d

c

F1(b, y, z) dy dz

=

∫ f

e

∫ d

c

(F1(b, y, z)− F1(a, y, z)) dy dz.

By the Fundamental Theorem of Calculus,

F1(b, y, z)− F1(a, y, z) =

∫ b

a

∂F1

∂x
dx,

so ∫
A1

~F · d ~A +

∫
A2

~F · d ~A =

∫ f

e

∫ d

c

∫ b

a

∂F1

∂x
dx dy dz =

∫
V

∂F1

∂x
dV.

By a similar argument, we can show∫
A3

~F · d ~A +

∫
A4

~F · d ~A =

∫
V

∂F2

∂y
dV and

∫
A5

~F · d ~A +

∫
A6

~F · d ~A =

∫
V

∂F3

∂z
dV.

Adding these, we get∫
A

~F · d ~A =

∫
V

(
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)
dV =

∫
V

div ~F dV.

This is the Divergence Theorem for the region V .

x

y

z

A4

A6

A2
✲A3

(back
left)

✛ A1
(back
right)

✻

A5 (bottom)

V

Figure M.51: Rectangular solid V in
xyz-space

s

t

u

S4

S6

S2
✲S3

(back
left)

✛ S1
(back
right)

✻

S5 (bottom)

W

x

y

z
V

✻

A5 (bottom)

✲A3 (left)

❄

A1 (back)

A2

A6

A4

Figure M.52: A rectangular solid W in stu-space and the corresponding
curved solid V in xyz-space
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Proof for Regions Parameterized by Rectangular Solids

Now suppose we have a smooth change of coordinates

x = x(s, t, u), y = y(s, t, u), z = z(s, t, u).

Consider a curved solid V in xyz-space corresponding to a rectangular solid W in stu-space. See
Figure M.52. We suppose that the change of coordinates is one-to-one on the interior of W , and
that its Jacobian determinant is positive on W . We prove the Divergence Theorem for V using the
Divergence Theorem for W .

Let A be the boundary of V . To prove the Divergence Theorem for V , we must show that∫
A

~F · d ~A =

∫
V

div ~F dV.

First we express the flux through A as a flux integral in stu-space over S, the boundary of the
rectangular region W . In vector notation the change of coordinates is

~r = ~r (s, t, u) = x(s, t, u)~i + y(s, t, u)~j + z(s, t, u)~k .

The face A1 of V is parameterized by

~r = ~r (a, t, u), c ≤ t ≤ d, e ≤ u ≤ f,

so on this face

d ~A = ±
∂~r

∂t
×

∂~r

∂u
.

In fact, in order to make d ~A point outward, we must choose the negative sign. (Problem 3 on
page 66 shows how this follows from the fact that the Jacobian determinant is positive.) Thus, if S1

is the face s = a of W , ∫
A1

~F · d ~A = −

∫
S1

~F ·
∂~r

∂t
×

∂~r

∂u
dt du,

The outward pointing area element on S1 is d~S = −~i dt du. Therefore, if we choose a vector field
~G on stu-space whose component in the s-direction is

G1 = ~F ·
∂~r

∂t
×

∂~r

∂u
,

we have ∫
A1

~F · d ~A =

∫
S1

~G · d~S .

Similarly, if we define the t and u components of ~G by

G2 = ~F ·
∂~r

∂u
×

∂~r

∂s
and G3 = ~F ·

∂~r

∂s
×

∂~r

∂t
,

then ∫
Ai

~F · d ~A =

∫
Si

~G · d~S , i = 2, . . . , 6.

(See Problem 4.) Adding the integrals for all the faces, we find that∫
A

~F · d ~A =

∫
S

~G · d~S .
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Since we have already proved the Divergence Theorem for the rectangular region W , we have∫
S

~G · d~S =

∫
W

div ~G dW,

where

div ~G =
∂G1

∂s
+

∂G2

∂t
+

∂G3

∂u
.

Problems 5 and 6 on page 66 show that

∂G1

∂s
+

∂G2

∂t
+

∂G3

∂u
=

∣∣∣∣∂(x, y, z)∂(s, t, u)

∣∣∣∣
(
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)
.

So, by the three-variable change of variables formula on page ??,∫
V

div ~F dV =

∫
V

(
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)
dx dy dz

=

∫
W

(
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

) ∣∣∣∣∂(x, y, z)∂(s, t, u)

∣∣∣∣ ds dt du
=

∫
W

(
∂G1

∂s
+

∂G2

∂t
+

∂G3

∂u

)
ds dt du

=

∫
W

div ~G dW.

In summary, we have shown that∫
A

~F · d ~A =

∫
S

~G · d~S

and ∫
V

div ~F dV =

∫
W

div ~G dW.

By the Divergence Theorem for rectangular solids, the right hand sides of these equations are equal,
so the left hand sides are equal also. This proves the Divergence Theorem for the curved region V .

Pasting Regions Together

As in the proof of Green’s Theorem, we prove the Divergence Theorem for more general regions
by pasting smaller regions together along common faces. Suppose the solid region V is formed by
pasting together solids V1 and V2 along a common face, as in Figure M.53.

The surface A which bounds V is formed by joining the surfaces A1 and A2 which bound V1

and V2, and then deleting the common face. The outward flux integral of a vector field ~F through

◆

Common face

V1

V2

Figure M.53: Region V formed by
pasting together V1 and V2
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A1 includes the integral across the common face, and the outward flux integral of ~F through A2

includes the integral over the same face, but oriented in the opposite direction. Thus, when we add
the integrals together, the contributions from the common face cancel, and we get the flux integral
through A. Thus we have ∫

A

~F · d ~A =

∫
A1

~F · d ~A +

∫
A2

~F · d ~A .

But we also have ∫
V

div ~F dV =

∫
V1

div ~F dV +

∫
V2

div ~F dV.

So the Divergence Theorem for V follows from the Divergence Theorem for V1 and V2. Hence we
have proved the Divergence Theorem for any region formed by pasting together regions that can be
smoothly parameterized by rectangular solids.

Example 1 Let V be a spherical ball of radius 2, centered at the origin, with a concentric ball of radius 1
removed. Using spherical coordinates, show that the proof of the Divergence Theorem we have
given applies to V .

Solution We cut V into two hollowed hemispheres like the one shown in Figure M.54, W . In spherical
coordinates, W is the rectangle 1 ≤ ρ ≤ 2, 0 ≤ φ ≤ π, 0 ≤ θ ≤ π. Each face of this rectangle
becomes part of the boundary of W . The faces ρ = 1 and ρ = 2 become the inner and outer
hemispherical surfaces that form part of the boundary of W . The faces θ = 0 and θ = π become the
two halves of the flat part of the boundary of W . The faces φ = 0 and φ = π become line segments
along the z-axis. We can form V by pasting together two solid regions like W along the flat surfaces
where θ = constant.

x

y

z

✲ρ = 1

✲ρ = 2

✠

θ = 0

✲θ = π

■
φ = π

✠

φ = π

ρ

θ

φ

π

1

2

π

Figure M.54: The hollow hemisphere W and the corresponding rectangular region in
ρθφ-space

Proof of Stokes’ Theorem

Consider an oriented surface A, bounded by the curve B. We want to prove Stokes’ Theorem:∫
A

curl ~F · d ~A =

∫
B

~F · d~r .
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R

C

s

t

x

y

z

■

B

A

Figure M.55: A region R in the st-plane and the corresponding surface A in xyz-space; the curve C
corresponds to the boundary of B

We suppose that A has a smooth parameterization ~r = ~r (s, t), so that A corresponds to a region
R in the st-plane, and B corresponds to the boundary C of R. See Figure M.55. We prove Stokes’
Theorem for the surface A and a vector field ~F by expressing the integrals on both sides of the
theorem in terms of s and t, and using Green’s Theorem in the st-plane.

First, we convert the line integral
∫
B
~F · d~r into a line integral around C:

∫
B

~F · d~r =

∫
C

~F ·
∂~r

∂s
ds+ ~F ·

∂~r

∂t
dt.

So if we define a 2-dimensional vector field ~G = (G1, G2) on the st-plane by

G1 = ~F ·
∂~r

∂s
and G2 = ~F ·

∂~r

∂t
,

then ∫
B

~F · d~r =

∫
C

~G · d~s ,

using ~s to denote the position vector of a point in the st-plane.
What about the flux integral

∫
A
curl ~F · d ~A that occurs on the other side of Stokes’ Theorem?

In terms of the parameterization,∫
A

curl ~F · d ~A =

∫
R

curl ~F ·
∂~r

∂s
×

∂~r

∂t
ds dt.

In Problem 7 on page 67 we show that

curl ~F ·
∂~r

∂s
×

∂~r

∂t
=

∂G2

∂s
−

∂G1

∂t
.

Hence ∫
A

curl ~F · d ~A =

∫
R

(
∂G2

∂s
−

∂G1

∂t

)
ds dt.

We have already seen that ∫
B

~F · d~r =

∫
C

~G · d~s .

By Green’s Theorem, the right-hand sides of the last two equations are equal. Hence the left-hand
sides are equal as well, which is what we had to prove for Stokes’ Theorem.
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Problems for Section M

1. Let W be a solid circular cylinder along the z-axis, with
a smaller concentric cylinder removed. Parameterize W
by a rectangular solid in rθz-space, where r, θ, and z are
cylindrical coordinates.

2. In this section we proved the Divergence Theorem using
the coordinate definition of divergence. Now we use the
Divergence Theorem to show that the coordinate defini-
tion is the same as the geometric definition. Suppose ~F
is smooth in a neighborhood of (x0, y0, z0), and let UR

be the ball of radius R with center (x0, y0, z0). Let mR

be the minimum value of div ~F on UR and let MR be
the maximum value.

(a) Let SR be the sphere bounding UR. Show that

mR ≤
∫
SR

~F · d ~A
Volume of UR

≤ MR.

(b) Explain why we can conclude that

lim
R→0

∫
SR

~F · d ~A
Volume of UR

= div ~F (x0, y0, z0).

(c) Explain why the statement in part (b) remains true
if we replace UR with a cube of side R, centered at
(x0, y0, z0).

Problems 3–6 fill in the details of the proof of the Divergence
Theorem.

3. Figure M.52 on page 61 shows the solid region V in xyz-
space parameterized by a rectangular solid W in stu-
space using the change of coordinates

~r = ~r (s, t, u), a ≤ s ≤ b, c ≤ t ≤ d, e ≤ u ≤ f.

Suppose that
∂~r

∂s
·
(
∂~r

∂t
× ∂~r

∂u

)
is positive.

(a) Let A1 be the face of V corresponding to the face

s = a of W . Show that
∂~r

∂s
, if it is not zero, points

into W .

(b) Show that −∂~r

∂t
× ∂~r

∂u
is an outward pointing nor-

mal on A1.
(c) Find an outward pointing normal on A2, the face of

V where s = b.

4. Show that for the other five faces of the solid V in the
proof of the Divergence Theorem (see page 62):∫

Ai

~F · d ~A =

∫
Si

~G · d~S , i = 2, 3, 4, 5, 6.

5. Suppose that ~F is a vector field and that ~a ,~b , and ~c are
vectors. In this problem we prove the formula

grad(~F ·~b × ~c ) · ~a + grad(~F · ~c × ~a ) ·~b
+grad(~F · ~a ×~b ) · ~c = (~a ·~b × ~c ) div ~F .

(a) Interpretating the divergence as flux density, explain
why the formula makes sense. [Hint: Consider the
flux out of a small parallelepiped with edges parallel
to ~a ,~b , ~c .]

(b) Say how many terms there are in the expansion of
the left hand side of the formula in Cartesian coordi-
nates, without actually doing the expansion.

(c) Write down all the terms on the left hand side that
contain ∂F1/∂x. Show that these terms add up to

~a ·~b × ~c
∂F1

∂x
.

(d) Write down all the terms that contain ∂F1/∂y. Show
that these add to zero.

(e) Explain how the expressions involving the other
seven partial derivatives will work out, and how this
verifies that the formula holds.

6. Let ~F be a smooth vector field in 3-space, and let

x = x(s, t, u), y = y(s, t, u), z = z(s, t, u)

be a smooth change of variables, which we will write in
vector form as

~r = ~r (s, t, u) = x(s, t, u)~i +y(s, t, u)~j +z(s, t, u)~k .

Define a vector field ~G = (G1, G2, G3) on stu-space
by

G1 = ~F · ∂~r
∂t

× ∂~r

∂u
G2 = ~F · ∂~r

∂u
× ∂~r

∂s

G3 = ~F · ∂~r
∂s

× ∂~r

∂t
.

(a) Show that

∂G1

∂s
+

∂G2

∂t
+

∂G3

∂u
=

∂ ~F

∂s
· ∂~r
∂t

× ∂~r

∂u

+
∂ ~F

∂t
· ∂~r
∂u

× ∂~r

∂s
+

∂ ~F

∂u
· ∂~r
∂s

× ∂~r

∂t
.

(b) Let ~r 0 = ~r (s0, t0, u0), and let

~a =
∂~r

∂s
(~r 0), ~b =

∂~r

∂t
(~r 0), ~c =

∂~r

∂u
(~r 0).

Use the chain rule to show that(
∂G1

∂s
+

∂G2

∂t
+

∂G3

∂u

) ∣∣∣∣
~r =~r 0

=

grad(~F ·~b × ~c ) · ~a + grad(~F · ~c × ~a ) ·~b
+grad(~F · ~a ×~b ) · ~c .

(c) Use Problem 5 to show that

∂G1

∂s
+

∂G2

∂t
+

∂G3

∂u
=∣∣∣∣∂(x, y, z)∂(s, t, u)

∣∣∣∣
(
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)
.
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7. This problem completes the proof of Stokes’ Theorem.
Let ~F be a smooth vector field in 3-space, and let S
be a surface parameterized by ~r = ~r (s, t). Let ~r 0 =
~r (s0, t0) be a fixed point on S. We define a vector field
in st-space as on page 65:

G1 = ~F · ∂~r
∂s

G2 = ~F · ∂~r
∂t

.

(a) Let ~a =
∂~r

∂s
(~r 0), ~b =

∂~r

∂t
(~r 0). Show that

∂G1

∂t
(~r 0)− ∂G2

∂s
(~r 0) =

grad(~F · ~a ) ·~b − grad(~F ·~b ) · ~a .

(b) Use Problem ?? on page ?? of the textbook to show

curl ~F · ∂~r
∂s

× ∂~r

∂t
=

∂G2

∂s
− ∂G1

∂t
.
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