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Preface

This text contains a comprehensive discussion on continuous and discrete time signals and
systems with many MATLAB® and several Simulink® examples. It is written for junior and
senior electrical and computer engineering students, and for self−study by working professionals.
The prerequisites are a basic course in differential and integral calculus, and basic electric circuit
theory.

This book can be used in a two−quarter, or one semester course. This author has taught the
subject material for many years and was able to cover all material in 16 weeks, with 2½ lecture
hours per week.

To get the most out of this text, it is highly recommended that Appendix A is thoroughly
reviewed. This appendix serves as an introduction to MATLAB, and is intended for those who
are not familiar with it. The Student Edition of MATLAB is an inexpensive, and yet a very
powerful software package; it can be found in many college bookstores, or can be obtained directly
from 

The MathWorks™ Inc., 3 Apple Hill Drive, Natick, MA 01760−2098
Phone: 508 647−7000, Fax: 508 647−7001
http://www.mathworks.com
e−mail: info@mathworks.com

The elementary signals are reviewed in Chapter 1, and several examples are given. The purpose of
this chapter is to enable the reader to express any waveform in terms of the unit step function, and
subsequently the derivation of the Laplace transform of it. Chapters 2 through 4 are devoted to
Laplace transformation and circuit analysis using this transform. Chapter 5 is an introduction to
state−space and contains many illustrative examples. Chapter 6 discusses the impulse response.
Chapters 7 and 8 are devoted to Fourier series and transform respectively. Chapter 9 introduces
discrete−time signals and the Z transform. Considerable time was spent on Chapter 10 to present
the Discrete Fourier transform and FFT with the simplest possible explanations. Chapter 11
contains a thorough discussion to analog and digital filters analysis and design procedures. As
mentioned above, Appendix A is an introduction to MATLAB. Appendix B is an introduction to
Simulink, Appendix C contains a review of complex numbers, and Appendix D is an introduction
to matrix theory.

New to the Second Edition

This is an extensive revision of the first edition. The most notable change is the inclusion of the
solutions to all exercises at the end of each chapter. It is in response to many readers who
expressed a desire to obtain the solutions in order to check their solutions to those of the author
and thereby enhancing their knowledge. Another reason is that this text is written also for self−



2

study by practicing engineers who need a review before taking more advanced courses such as
digital image processing.

Another major change is the addition of a rather comprehensive summary at the end of each
chapter. Hopefully, this will be a valuable aid to instructors for preparation of view foils for
presenting the material to their class.

New to the Third Edition

The most notable change is the inclusion of Simulink modeling examples. The pages where they
appear can be found in the Table of Contents section of this text. Another change is the
improvement of the plots generated by the latest revisions of the MATLAB® Student Version,
Release 14. 

The author wishes to express his gratitude to the staff of The MathWorks™, the developers of
MATLAB and Simulink, especially to Ms. Courtney Esposito, for the encouragement and
unlimited support they have provided me with during the production of this text. 

Our heartfelt thanks also to Ms. Sally Wright, P.E., of Renewable Energy Research Laboratory
University of Massachusetts, Amherst, for bringing some errors on the previous editions to our
attention.

New to the Fourth Edition

The most notable change is the inclusion of Appendix E on window functions. The plots were
generated generated with the latest revisions of the MATLAB® R2008a edition. Also, two end-
of- chapter exercises were added in Chapter 10 to illustrate the use of the fft and ifft MATLAB
functions

The author wishes to express his gratitude to the staff of The MathWorks™, the developers of
MATLAB and Simulink, especially to The MathWorks™ Book Program Team, for the
encouragement and unlimited support they have provided me with during the production of this
and all other texts by this publisher.

Orchard Publications
www.orchardpublications.com
info@orchardpublications.com



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Third Edition i
Copyright © Orchard Publications

Table of Contents
1        Elementary Signals 1−1

1.1 Signals Described in Math Form .............................................................................1−1
1.2 The Unit Step Function ..........................................................................................1−2
1.3 The Unit Ramp Function ......................................................................................1−10
1.4 The Delta Function ............................................................................................... 1−11

1.4.1 The Sampling Property of the Delta Function ............................................1−12
1.4.2 The Sifting Property of the Delta Function ................................................1−13

1.5 Higher Order Delta Functions...............................................................................1−14
1.6 Summary ................................................................................................................1−22
1.7 Exercises.................................................................................................................1−23
1.8 Solutions to End−of−Chapter Exercises ................................................................1−24

MATLAB Computing
Pages 1−20, 1−21

Simulink Modeling
Page 1−18

2        The Laplace Transformation 2−1

2.1 Definition of the Laplace Transformation...............................................................2−1
2.2 Properties and Theorems of the Laplace Transform ...............................................2−2

2.2.1 Linearity Property ........................................................................................2−3
2.2.2 Time Shifting Property .................................................................................2−3
2.2.3 Frequency Shifting Property ........................................................................2−4
2.2.4 Scaling Property ...........................................................................................2−4
2.2.5 Differentiation in Time Domain Property ...................................................2−4
2.2.6 Differentiation in Complex Frequency Domain Property ...........................2−6
2.2.7 Integration in Time Domain Property .........................................................2−6
2.2.8 Integration in Complex Frequency Domain Property .................................2−8
2.2.9 Time Periodicity Property ............................................................................2−8
2.2.10 Initial Value Theorem..................................................................................2−9
2.2.11 Final Value Theorem .................................................................................2−10
2.2.12 Convolution in Time Domain Property.....................................................2−11
2.2.13 Convolution in Complex Frequency Domain Property.............................2−12

2.3 The Laplace Transform of Common Functions of Time.......................................2−14
2.3.1 The Laplace Transform of the Unit Step Function ..........................2−14
2.3.2 The Laplace Transform of the Ramp Function ................................2−14
2.3.3 The Laplace Transform of ..............................................................2−15

u0 t( )
u1 t( )

t nu0 t( )



  

ii Signals and Systems with MATLAB  Computing and Simulink  Modeling, Third Edition
Copyright © Orchard Publications

2.3.4 The Laplace Transform of the Delta Function ................................. 2−18
2.3.5 The Laplace Transform of the Delayed Delta Function .............. 2−18
2.3.6 The Laplace Transform of .......................................................... 2−19
2.3.7 The Laplace Transform of ....................................................... 2−19
2.3.8 The Laplace Transform of ......................................................... 2−20
2.3.9 The Laplace Transform of ......................................................... 2−20
2.3.10 The Laplace Transform of ................................................. 2−21
2.3.11 The Laplace Transform of ................................................. 2−22

2.4 The Laplace Transform of Common Waveforms .................................................. 2−23
2.4.1 The Laplace Transform of a Pulse............................................................... 2−23
2.4.2 The Laplace Transform of a Linear Segment .............................................. 2−23
2.4.3 The Laplace Transform of a Triangular Waveform .................................... 2−24
2.4.4 The Laplace Transform of a Rectangular Periodic Waveform.................... 2−25
2.4.5 The Laplace Transform of a Half−Rectified Sine Waveform ..................... 2−26

2.5 Using MATLAB for Finding the Laplace Transforms of Time Functions ............ 2−27
2.6 Summary ................................................................................................................ 2−28
2.7 Exercises................................................................................................................. 2−31

The Laplace Transform of a Sawtooth Periodic Waveform ............................... 2−32
The Laplace Transform of a Full−Rectified Sine Waveform.............................. 2−32

2.8 Solutions to End−of−Chapter Exercises................................................................. 2−33

3       The Inverse Laplace Transform 3−1

3.1 The Inverse Laplace Transform Integral ..................................................................3−1
3.2 Partial Fraction Expansion........................................................................................3−1

3.2.1 Distinct Poles..................................................................................................3−2
3.2.2 Complex Poles ................................................................................................3−5
3.2.3 Multiple (Repeated) Poles..............................................................................3−8

3.3 Case where F(s) is Improper Rational Function.....................................................3−13
3.4 Alternate Method of Partial Fraction Expansion...................................................3−15
3.5 Summary .................................................................................................................3−19
3.6 Exercises..................................................................................................................3−21
3.7 Solutions to End−of−Chapter Exercises .................................................................3−22

MATLAB Computing
Pages 3−3, 3−4, 3−5, 3−6, 3−8, 3−10, 3−12, 3−13, 3−14, 3−22

4       Circuit Analysis with Laplace Transforms 4−1

4.1 Circuit Transformation from Time to Complex Frequency.................................... 4−1
4.1.1 Resistive Network Transformation ............................................................... 4−1
4.1.2 Inductive Network Transformation .............................................................. 4−1
4.1.3 Capacitive Network Transformation ............................................................ 4−1

δ t( )
δ t a–( )

e at– u0 t( )

t ne
at–

u0 t( )
ωt u0tsin
ωcos t u0t

e at– ωt u0sin t( )
e at– ωcos t u0 t( )



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Third Edition iii
Copyright © Orchard Publications

4.2 Complex Impedance Z(s).........................................................................................4−8
4.3 Complex Admittance Y(s) .....................................................................................4−11
4.4 Transfer Functions .................................................................................................4−13
4.5 Using the Simulink Transfer Fcn Block.................................................................4−17
4.6 Summary.................................................................................................................4−20
4.7 Exercises .................................................................................................................4−21
4.8 Solutions to End−of−Chapter Exercises.................................................................4−24

MATLAB Computing
Pages 4−6, 4−8, 4−12, 4−16, 4−17, 4−18, 4−26, 4−27, 4−28, 4−29, 4−34

Simulink Modeling
Page 4−17

5       State Variables and State Equations 5−1

5.1 Expressing Differential Equations in State Equation Form................................... 5−1
5.2 Solution of Single State Equations ........................................................................ 5−6
5.3 The State Transition Matrix ................................................................................. 5−9
5.4 Computation of the State Transition Matrix ...................................................... 5−11

5.4.1 Distinct Eigenvalues ................................................................................. 5−11
5.4.2 Multiple (Repeated) Eigenvalues ............................................................. 5−15

5.5 Eigenvectors......................................................................................................... 5−18
5.6 Circuit Analysis with State Variables.................................................................. 5−22
5.7 Relationship between State Equations and Laplace Transform.......................... 5−30
5.8 Summary .............................................................................................................. 5−38
5.9 Exercises .............................................................................................................. 5−41
5.10 Solutions to End−of−Chapter Exercises .............................................................. 5−43

MATLAB Computing
Pages 5−14, 5−15, 5−18, 5−26, 5−36, 5−48, 5−51

Simulink Modeling
Pages 5−27, 5−37, 5−45

6       The Impulse Response and Convolution 6−1

6.1 The Impulse Response in Time Domain ................................................................ 6−1
6.2 Even and Odd Functions of Time .......................................................................... 6−4
6.3 Convolution ............................................................................................................ 6−7
6.4 Graphical Evaluation of the Convolution Integral................................................. 6−8
6.5 Circuit Analysis with the Convolution Integral ................................................... 6−18
6.6 Summary ............................................................................................................... 6−21
6.7 Exercises................................................................................................................ 6−23



  

iv Signals and Systems with MATLAB  Computing and Simulink  Modeling, Third Edition
Copyright © Orchard Publications

6.8 Solutions to End−of−Chapter Exercises................................................................ 6−25

MATLAB Applications
Pages 6−12, 6−15, 6−30

7       Fourier Series 7−1

7.1 Wave Analysis......................................................................................................... 7−1
7.2 Evaluation of the Coefficients................................................................................. 7−2
7.3 Symmetry in Trigonometric Fourier Series ............................................................. 7−6

7.3.1 Symmetry in Square Waveform..................................................................... 7−8
7.3.2 Symmetry in Square Waveform with Ordinate Axis Shifted ........................ 7−8
7.3.3 Symmetry in Sawtooth Waveform................................................................. 7−9
7.3.4 Symmetry in Triangular Waveform............................................................... 7−9
7.3.5 Symmetry in Fundamental, Second, and Third Harmonics........................ 7−10

7.4 Trigonometric Form of Fourier Series for Common Waveforms.......................... 7−10
7.4.1 Trigonometric Fourier Series for Square Waveform................................... 7−11
7.4.2 Trigonometric Fourier Series for Sawtooth Waveform............................... 7−14
7.4.3 Trigonometric Fourier Series for Triangular Waveform ............................. 7−16
7.4.4 Trigonometric Fourier Series for Half−Wave Rectifier Waveform............. 7−17
7.4.5 Trigonometric Fourier Series for Full−Wave Rectifier Waveform.............. 7−20

7.5 Gibbs Phenomenon ............................................................................................... 7−24
7.6 Alternate Forms of the Trigonometric Fourier Series .......................................... 7−24
7.7 Circuit Analysis with Trigonometric Fourier Series............................................. 7−28
7.8 The Exponential Form of the Fourier Series ........................................................ 7−31
7.9 Symmetry in Exponential Fourier Series .............................................................. 7−33

7.9.1 Even Functions ........................................................................................... 7−33
7.9.2 Odd Functions ............................................................................................ 7−34
7.9.3 Half-Wave Symmetry ................................................................................. 7−34
7.9.4 No Symmetry .............................................................................................. 7−34
7.9.5 Relation of   to ................................................................................ 7−34

7.10 Line Spectra.......................................................................................................... 7−36
7.11 Computation of RMS Values from Fourier Series................................................ 7−41
7.12 Computation of Average Power from Fourier Series ........................................... 7−44
7.13 Evaluation of Fourier Coefficients Using Excel® ................................................ 7−46
7.14 Evaluation of Fourier Coefficients Using MATLAB® ........................................ 7−47
7.15 Summary ............................................................................................................... 7−50
7.16 Exercises ............................................................................................................... 7−53
7.17 Solutions to End−of−Chapter Exercises ............................................................... 7−55

MATLAB Computing
Pages 7−38, 7−47

C n– Cn



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Third Edition v
Copyright © Orchard Publications

Simulink Modeling
Page 7−31

8       The Fourier Transform 8−1

8.1 Definition and Special Forms ................................................................................ 8−1
8.2 Special Forms of the Fourier Transform ................................................................ 8−2

8.2.1 Real Time Functions.................................................................................. 8−3
8.2.2 Imaginary Time Functions ......................................................................... 8−6

8.3 Properties and Theorems of the Fourier Transform .............................................. 8−9
8.3.1 Linearity...................................................................................................... 8−9
8.3.2 Symmetry.................................................................................................... 8−9
8.3.3 Time Scaling............................................................................................. 8−10
8.3.4 Time Shifting............................................................................................ 8−11
8.3.5 Frequency Shifting ................................................................................... 8−11
8.3.6 Time Differentiation ................................................................................ 8−12
8.3.7 Frequency Differentiation ........................................................................ 8−13
8.3.8 Time Integration ...................................................................................... 8−13
8.3.9 Conjugate Time and Frequency Functions.............................................. 8−13
8.3.10 Time Convolution .................................................................................... 8−14
8.3.11 Frequency Convolution............................................................................ 8−15
8.3.12 Area Under ........................................................................................ 8−15
8.3.13 Area Under ...................................................................................... 8−15
8.3.14 Parseval’s Theorem................................................................................... 8−16

8.4 Fourier Transform Pairs of Common Functions .................................................. 8−18
8.4.1 The Delta Function Pair .......................................................................... 8−18
8.4.2 The Constant Function Pair .................................................................... 8−18
8.4.3 The Cosine Function Pair ........................................................................ 8−19
8.4.4 The Sine Function Pair............................................................................. 8−20
8.4.5 The Signum Function Pair........................................................................ 8−20
8.4.6 The Unit Step Function Pair .................................................................... 8−22

8.4.7 The  Function Pair .................................................................... 8−24

8.4.8 The  Function Pair ............................................................... 8−24

8.4.9 The  Function Pair ............................................................... 8−25

8.5 Derivation of the Fourier Transform from the Laplace Transform .................... 8−25
8.6 Fourier Transforms of Common Waveforms ...................................................... 8−27

8.6.1 The Transform of ....................................... 8−27

8.6.2 The Transform of ........................................... 8−28

8.6.3 The Transform of ........... 8−29

f t( )
F ω( )

e
jω0t–

u0 t( )

ω0tcos( ) u0t( )

ω0sin t( ) u0t( )

f t( ) A u0 t T+( ) u0 t T–( )–[ ]=

f t( ) A u0 t( ) u0 t 2T–( )–[ ]=

f t( ) A u0 t T+( ) u+ 0 t( ) u0 t T–( )– u0 t 2T–( )–[ ]=



  

vi Signals and Systems with MATLAB  Computing and Simulink  Modeling, Third Edition
Copyright © Orchard Publications

8.6.4 The Transform of .............................. 8−30

8.6.5 The Transform of a Periodic Time Function with Period T..................... 8−31

8.6.6 The Transform of the Periodic Time Function .... 8−32

8.7 Using MATLAB for Finding the Fourier Transform of Time Functions............ 8−33

8.8 The System Function and Applications to Circuit Analysis............................... 8−34
8.9 Summary .............................................................................................................. 8−42
8.10 Exercises............................................................................................................... 8−47
8.11 Solutions to End−of−Chapter Exercises .............................................................. 8−49

MATLAB Computing
Pages 8−33, 8−34, 8−50, 8−54, 8−55, 8−56, 8−59, 8−60

9        Discrete−Time Systems and the Z Transform 9−1

9.1 Definition and Special Forms of the Z Transform ............................................... 9−1
9.2 Properties and Theorems of the Z Transform...................................................... 9−3

9.2.1 Linearity ..................................................................................................... 9−3
9.2.2 Shift of   in the Discrete−Time Domain ..................................... 9−3
9.2.3 Right Shift in the Discrete−Time Domain ................................................ 9−4
9.2.4 Left Shift in the Discrete−Time Domain................................................... 9−5

9.2.5 Multiplication by  in the Discrete−Time Domain................................. 9−6

9.2.6 Multiplication by  in the Discrete−Time Domain ........................... 9−6
9.2.7 Multiplication by  and  in the Discrete−Time Domain ..................... 9−6
9.2.8 Summation in the Discrete−Time Domain ............................................... 9−7
9.2.9 Convolution in the Discrete−Time Domain ............................................. 9−8
9.2.10 Convolution in the Discrete−Frequency Domain ..................................... 9−9
9.2.11 Initial Value Theorem ............................................................................... 9−9
9.2.12 Final Value Theorem............................................................................... 9−10

9.3 The Z Transform of Common Discrete−Time Functions.................................. 9−11
9.3.1 The Transform of the Geometric Sequence.............................................9−11
9.3.2 The Transform of the Discrete−Time Unit Step Function ......................9−14
9.3.3 The Transform of the Discrete−Time Exponential Sequence .................9−16
9.3.4 The Transform of the Discrete−Time Cosine and Sine Functions ..........9−16
9.3.5 The Transform of the Discrete−Time Unit Ramp Function....................9−18

9.4 Computation of the Z Transform with Contour Integration .............................9−20
9.5 Transformation Between s− and z−Domains .......................................................9−22
9.6 The Inverse Z Transform ...................................................................................9−25

f t( ) A ω0t u0 t T+( ) u0 t T–( )–[ ]cos=

f t( ) A δ t nT–( )
n ∞–=

∞

∑=

f n[ ]u0 n[ ]

an

e naT–

n n2



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Third Edition vii
Copyright © Orchard Publications

9.6.1 Partial Fraction Expansion .....................................................................9−25
9.6.2 The Inversion Integral............................................................................9−32
9.6.3 Long Division of Polynomials ................................................................9−36

9.7 The Transfer Function of Discrete−Time Systems ............................................9−38
9.8 State Equations for Discrete−Time Systems ......................................................9−45
9.9 Summary.............................................................................................................9−48
9.10 Exercises .............................................................................................................9−53
9.11 Solutions to End−of−Chapter Exercises .............................................................9−55

MATLAB Computing
Pages 9−35, 9−37, 9−38, 9−41, 9−42, 9−59, 9−61

Simulink Modeling
Page 9−44

Excel Plots
Pages 9−35, 9−44

10      The DFT and the FFT Algorithm 10−1

10.1 The Discrete Fourier Transform (DFT) ............................................................10−1
10.2 Even and Odd Properties of the DFT................................................................10−9
10.3 Common Properties and Theorems of the DFT ..............................................10−10

10.3.1 Linearity ...............................................................................................10−10
10.3.2 Time Shift ............................................................................................10−11
10.3.3 Frequency Shift ....................................................................................10−12
10.3.4 Time Convolution ...............................................................................10−12
10.3.5 Frequency Convolution .......................................................................10−13

10.4 The Sampling Theorem ...................................................................................10−13
10.5 Number of Operations Required to Compute the DFT ..................................10−16
10.6 The Fast Fourier Transform (FFT) ..................................................................10−17
10.7 Summary...........................................................................................................10−28
10.8 Exercises ...........................................................................................................10−31
10.9 Solutions to End−of−Chapter Exercises...........................................................10−33

MATLAB Computing
Pages 10−5, 10−7, 10−34

Excel Analysis ToolPak
Pages 10−6, 10−8

11      Analog and Digital Filters

11.1 Filter Types and Classifications......................................................................... 11−1
11.2 Basic Analog Filters........................................................................................... 11−2



  

viii Signals and Systems with MATLAB  Computing and Simulink  Modeling, Third Edition
Copyright © Orchard Publications

11.2.1 RC Low−Pass Filter ............................................................................... 11−2
11.2.2 RC High−Pass Filter .............................................................................. 11−4
11.2.3 RLC Band−Pass Filter.............................................................................11−7
11.2.4 RLC Band−Elimination Filter ................................................................11−8

11.3 Low−Pass Analog Filter Prototypes ..................................................................11−10
11.3.1 Butterworth Analog Low−Pass Filter Design .......................................11−14
11.3.2 Chebyshev Type I Analog Low−Pass Filter Design..............................11−25
11.3.3 Chebyshev Type II Analog Low−Pass Filter Design ............................11−38
11.3.4 Elliptic Analog Low−Pass Filter Design ...............................................11−39

11.4 High−Pass, Band−Pass, and Band−Elimination Filter Design..........................11−41
11.5 Digital Filters ....................................................................................................11−51
11.6 Digital Filter Design with Simulink..................................................................11−70

11.6.1 The Direct Form I Realization of a Digital Filter.................................11−70
11.6.2 The Direct Form II Realization of a Digital Filter................................11−71
11.6.3 The Series Form Realization of a Digital Filter ....................................11−73
11.6.4 The Parallel Form Realization of a Digital Filter .................................11−75
11.6.5 The Digital Filter Design Block............................................................11−78

11.7 Summary...........................................................................................................11−87
11.8 Exercises ...........................................................................................................11−91
11.9 Solutions to End−of−Chapter Exercises ...........................................................11−97

MATLAB Computing
Pages 11−3, 11−4, 11−6, 11−7, 11−9, 11−15, 11−19, 11−23, 11−24, 11−31, 
11−35, 11−36, 11−37, 11−38, 11−40, 11−41, 11−42, 11−43, 11−45, 11−46,
11−48, 11−50, 11−55, 11−56, 11−57, 11−60, 11−62, 11−64, 11−67, 11−68,
and 11−97 through 11−106

Simulink Modeling
Pages 11−71, 11−74, 11−77, 11−78, 11−80, 11−82, 11−83, 11−84

A         Introduction to MATLAB A−1

A.1 MATLAB® and Simulink® ........................................................................... A−1
A.2 Command Window ......................................................................................... A−1
A.3 Roots of Polynomials ....................................................................................... A−3
A.4 Polynomial Construction from Known Roots ................................................. A−4
A.5 Evaluation of a Polynomial at Specified Values .............................................. A−6
A.6 Rational Polynomials ....................................................................................... A−8
A.7 Using MATLAB to Make Plots..................................................................... A−10
A.8 Subplots ......................................................................................................... A−18
A.9 Multiplication, Division, and Exponentiation .............................................. A−18
A.10 Script and Function Files .............................................................................. A−26
A.11 Display Formats ............................................................................................. A−31



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Third Edition ix
Copyright © Orchard Publications

MATLAB Computing
Pages A−3 through A−8, A−10, A−13, A−14, A−16, A−17,
A−21, A−22, A−24, A−27

B          Introduction to Simulink B−1

B.1 Simulink and its Relation to MATLAB............................................................. B−1
B.2 Simulink Demos ............................................................................................... B−20

MATLAB Computing
Page B−4

Simulink Modeling
Pages B−7, B−12, B−14, B−18

C          A Review of Complex Numbers C−1

C.1 Definition of a Complex Number....................................................................... C−1
C.2 Addition and Subtraction of Complex Numbers ...............................................C−2
C.3 Multiplication of Complex Numbers..................................................................C−3
C.4 Division of Complex Numbers ...........................................................................C−4
C.5 Exponential and Polar Forms of Complex Numbers..........................................C−4

MATLAB Computing
Pages C−6, C−7, C−8

Simulink Modeling
Page C−7

D          Matrices and Determinants D−1

D.1 Matrix Definition.............................................................................................D−1
D.2 Matrix Operations ...........................................................................................D−2
D.3 Special Forms of Matrices................................................................................D−6
D.4 Determinants .................................................................................................D−10
D.5 Minors and Cofactors ....................................................................................D−12
D.6 Cramer’s Rule ................................................................................................D−17
D.7 Gaussian Elimination Method.......................................................................D−19
D.8 The Adjoint of a Matrix ................................................................................D−21
D.9 Singular and Non−Singular Matrices ............................................................D−21
D.10 The Inverse of a Matrix .................................................................................D−22
D.11 Solution of Simultaneous Equations with Matrices ......................................D−24
D.12 Exercises.........................................................................................................D−31



  

x Signals and Systems with MATLAB  Computing and Simulink  Modeling, Third Edition
Copyright © Orchard Publications

MATLAB Computing
Pages D−3, D−4, D−5, D−7, D−8, D−9, D−10, 
D−12, D−19, D−23, D−27, D−29

Simulink Modeling
Page D−3

Excel Spreadsheet
Page D−28

E        Window Functions E−1

E.1 Window Function Defined .................................................................................. E−1
E.2 Common Window Functions ............................................................................... E−1

E.2.1 Rectangular Window Function ................................................................. E−2
E.2.2 Triangular Window Function.................................................................... E−5
E.2.3 Hanning Window Function....................................................................... E−7
E.2.4 Hamming Window Function..................................................................... E−9
E.2.5 Blackman Window Function................................................................... E−12
E.2.6 Kaiser Family of Window Functions ....................................................... E−14

E.3 Other Window Functions .................................................................................. E−15
E.4 Fourier Series Method for Approximating an FIR Amplitude Response .......... E−17

               References R−1

               Index IN−1



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition 1−1
Copyright © Orchard Publications

Chapter 1

Elementary Signals

his chapter begins with a discussion of elementary signals that may be applied to electric
networks. The unit step, unit ramp, and delta functions are then introduced. The sampling
and sifting properties of the delta function are defined and derived. Several examples for

expressing a variety of waveforms in terms of these elementary signals are provided. Throughout
this text, a left justified horizontal bar will denote the beginning of an example, and a right justi-
fied horizontal bar will denote the end of the example. These bars will not be shown whenever an
example begins at the top of a page or at the bottom of a page. Also, when one example follows
immediately after a previous example, the right justified bar will be omitted.

1.1 Signals Described in Math Form

Consider the network of Figure 1.1 where the switch is closed at time .

Figure 1.1. A switched network with open terminals

We wish to describe  in a math form for the time interval . To do this, it is conve-
nient to divide the time interval into two parts, , and .

For the time interval , the switch is open and therefore, the output voltage  is zero.
In other words,

(1.1)

For the time interval , the switch is closed. Then, the input voltage  appears at the
output, i.e.,

(1.2)

Combining (1.1) and (1.2) into a single relationship, we obtain

(1.3)

T

t 0=

+
−

+

−

vout

vS

t 0=R

open terminals

vout ∞ t +∞< <–

∞ t 0< <– 0 t ∞< <

∞ t 0< <– vout

vout 0  for  ∞ t 0  < <–=

0 t ∞< < vS

vout vS  for  0 t ∞  < <=

vout
0   ∞– t 0< <
vS   0 t ∞< <




=
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We can express (1.3) by the waveform shown in Figure 1.2.

Figure 1.2. Waveform for  as defined in relation (1.3)

The waveform of Figure 1.2 is an example of a discontinuous function. A function is said to be dis-
continuous if it exhibits points of discontinuity, that is, the function jumps from one value to
another without taking on any intermediate values. 

1.2 The Unit Step Function 

A well known discontinuous function is the unit step function * which is defined as

(1.4)

It is also represented by the waveform of Figure 1.3.

Figure 1.3. Waveform for 

In the waveform of Figure 1.3, the unit step function  changes abruptly from  to  at
. But if it changes at  instead, it is denoted as . In this case, its waveform and

definition are as shown in Figure 1.4 and relation (1.5) respectively.

Figure 1.4. Waveform for 

* In some books, the unit step function is denoted as , that is, without the subscript 0. In this text, however, we
will reserve the  designation for any input when we will discuss state variables in Chapter 5.

0

voutvS

t

vout

u0 t( )

u0 t( )

u t( )
u t( )

u0 t( )
0 t 0<
1 t 0>




=

u0 t( )

0

1

t

u0 t( )

u0 t( ) 0 1

t 0= t t0= u0 t t0–( )

1

t00

u0 t t0–( )
t

u0 t t0–( )
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The Unit Step Function

(1.5)

If the unit step function changes abruptly from  to  at , it is denoted as . In
this case, its waveform and definition are as shown in Figure 1.5 and relation (1.6) respectively.

Figure 1.5. Waveform for 

(1.6)

Example 1.1  

Consider the network of Figure 1.6, where the switch is closed at time .

Figure 1.6. Network for Example 1.1

Express the output voltage  as a function of the unit step function, and sketch the appropriate
waveform.

Solution:

For this example, the output voltage  for , and  for . Therefore,

 (1.7)

and the waveform is shown in Figure 1.7.

u0 t t0–( )
0 t t0<

1 t t0>



=

0 1 t t0–= u0 t t0+( )

t−t0 0

1 u0 t t0+( )

u0 t t0+( )

u0 t t0+( )
0 t t0–<

1 t t0–>



=

t T=

+
−

+

−

vout

vS

t T=R

open terminals

vout

vout 0= t T< vout vS= t T>

vout vSu0 t T–( )=
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Figure 1.7. Waveform for Example 1.1

Other forms of the unit step function are shown in Figure 1.8.

Figure 1.8. Other forms of the unit step function

Unit step functions can be used to represent other time−varying functions such as the rectangular
pulse shown in Figure 1.9.

Figure 1.9. A rectangular pulse expressed as the sum of two unit step functions

T
 t

0

vSu0 t T–( )
vout

0
t

t

t t
Τ −Τ

0

00

0 Τ

0

0

t

tt

0 0t t

−Τ

−ΤΤ

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

−A −A −A

−A −A −A

A A A
Au0 t–( )

A– u0 t( ) A– u0 t T–( ) A– u0 t T+( )

Au0 t– T+( ) Au0 t– T–( )

A– u0 t–( ) A– u0 t– T+( ) A– u0 t– T–( )

0 0 0
t t t

1

1

1
u0 t( )

u0 t 1–( )–
a( ) b( ) c( )
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The Unit Step Function

Thus, the pulse of Figure 1.9(a) is the sum of the unit step functions of Figures 1.9(b) and 1.9(c)
and it is represented as .

The unit step function offers a convenient method of describing the sudden application of a volt-
age or current source. For example, a constant voltage source of  applied at , can be
denoted as . Likewise, a sinusoidal voltage source  that is applied to
a circuit at , can be described as . Also, if the excitation in a
circuit is a rectangular, or triangular, or sawtooth, or any other recurring pulse, it can be repre-
sented as a sum (difference) of unit step functions.

Example 1.2  

Express the square waveform of Figure 1.10 as a sum of unit step functions. The vertical dotted
lines indicate the discontinuities at , and so on.

Figure 1.10. Square waveform for Example 1.2

Solution:

Line segment  has height , starts at , and terminates at . Then, as in Example 1.1, this
segment is expressed as

(1.8)

Line segment  has height , starts at  and terminates at . This segment is
expressed as 

(1.9)

Line segment  has height , starts at  and terminates at . This segment is expressed
as 

(1.10)

Line segment  has height , starts at , and terminates at . It is expressed as 

(1.11)

u0 t( ) u0 t 1–( )–

24 V t 0=

24u0 t( ) V v t( ) Vm ωt Vcos=

t t0= v t( ) Vm ωtcos( )u0 t t0–( ) V=

T 2T 3T,,

t

v t( )

3T

A

0
A–

T 2T

A t 0= t T=

v1 t( ) A u0 t( ) u0 t T–( )–[ ]=

A– t T= t 2T=

v2 t( ) A– u0 t T–( ) u0 t 2T–( )–[ ]=

A t 2T= t 3T=

v3 t( ) A u0 t 2T–( ) u0 t 3T–( )–[ ]=

A– t 3T= t 4T=

v4 t( ) A– u0 t 3T–( ) u0 t 4T–( )–[ ]=
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Thus, the square waveform of Figure 1.10 can be expressed as the summation of (1.8) through
(1.11), that is,

(1.12)

Combining like terms, we obtain

(1.13)

Example 1.3  

Express the symmetric rectangular pulse of Figure 1.11 as a sum of unit step functions.

Figure 1.11. Symmetric rectangular pulse for Example 1.3

Solution:

This pulse has height , starts at , and terminates at . Therefore, with refer-
ence to Figures 1.5 and 1.8 (b), we obtain

(1.14)

Example 1.4  

Express the symmetric triangular waveform of Figure 1.12 as a sum of unit step functions.

Figure 1.12. Symmetric triangular waveform for Example 1.4

Solution:

v t( ) v1 t( ) v2 t( ) v3 t( ) v4 t( )+ + +=

A u0 t( ) u0 t T–( )–[ ] A– u0 t T–( ) u0 t 2T–( )–[ ]=

+A u0 t 2T–( ) u0 t 3T–( )–[ ] A– u0 t 3T–( ) u0 t 4T–( )–[ ]

v t( ) A u0 t( ) 2u0 t T–( )– 2u0 t 2T–( ) 2u0 t 3T–( )– …+ +[ ]=

t

A

T– 2⁄ T 2⁄0

i t( )

A t T 2⁄–= t T 2⁄=

i t( ) Au0 t T
2
---+ 

  Au0 t T
2
---– 

 – A u0 t T
2
---+ 

  u0 t T
2
---– 

 –= =

t

1

0T 2⁄–

v t( )

T 2⁄
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The Unit Step Function

We first derive the equations for the linear segments  and  shown in Figure 1.13.

Figure 1.13. Equations for the linear segments of Figure 1.12

For line segment ,

(1.15)

and for line segment ,

(1.16)

Combining (1.15) and (1.16), we obtain

(1.17)

Example 1.5  

Express the waveform of Figure 1.14 as a sum of unit step functions.

Figure 1.14. Waveform for Example 1.5

Solution:

t

1

0T 2⁄–

v t( )

T 2⁄

2
T
---– t 1+

2
T
--- t 1+

v1 t( ) 2
T
--- t 1+ 
  u0 t T

2
---+ 

  u0 t( )–=

v2 t( ) 2
T
---– t 1+ 

  u0 t( ) u0 t T
2
---– 

 –=

v t( ) v1 t( ) v2 t( )+=

2
T
--- t 1+ 
  u0 t T

2
---+ 

  u0 t( )– 2
T
---– t 1+ 

  u0 t( ) u0 t T
2
---– 

 –+=

1

2

3

1 2 30
t

v t( )
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As in the previous example, we first find the equations of the linear segments linear segments 

and  shown in Figure 1.15.

Figure 1.15. Equations for the linear segments of Figure 1.14

Following the same procedure as in the previous examples, we obtain

Multiplying the values in parentheses by the values in the brackets, we obtain

and combining terms inside the brackets, we obtain

(1.18)

Two other functions of interest are the unit ramp function, and the unit impulse or delta function.
We will introduce them with the examples that follow.

Example 1.6  

In the network of Figure 1.16  is a constant current source and the switch is closed at time
. Express the capacitor voltage  as a function of the unit step.

1

2

3

1 2 30

2t 1+

v t( )

t

t– 3+

v t( ) 2t 1+( ) u0 t( ) u0 t 1–( )–[ ] 3 u0 t 1–( ) u0 t 2–( )–[ ]+=

 + t– 3+( ) u0 t 2–( ) u0 t 3–( )–[ ]

v t( ) 2t 1+( )u0 t( ) 2t 1+( )u0 t 1–( )– 3u0 t 1–( )+=

3u0 t 2–( )– t– 3+( )u0 t 2–( ) t– 3+( )u0 t 3–( )–+

v t( ) 2t 1+( )u0 t( ) 2t 1+( )– 3+[ ]u0 t 1–( )+=

 + 3– t– 3+( )+[ ]u0 t 2–( ) t– 3+( )u0 t 3–( )–

v t( ) 2t 1+( )u0 t( ) 2 t 1–( )u0 t 1–( )– t– u0 t 2–( ) t 3–( )u0 t 3–( )+=

iS

t 0= vC t( )
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The Unit Step Function

Figure 1.16. Network for Example 1.6

Solution:

The current through the capacitor is , and the capacitor voltage  is

* (1.19)

where  is a dummy variable.

Since the switch closes at , we can express the current  as

(1.20)

and assuming that  for , we can write (1.19) as

(1.21)

or

(1.22)

Therefore, we see that when a capacitor is charged with a constant current, the voltage across it is
a linear function and forms a ramp with slope  as shown in Figure 1.17.

Figure 1.17. Voltage across a capacitor when charged with a constant current source

* Since the initial condition for the capacitor voltage was not specified, we express this integral with  at the lower limit of
integration so that any non-zero value prior to  would be included in the integration.
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vC t( ) 1
C
---- iC τ( ) τd

∞–

t
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∫
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∫
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iS
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0

t

∫+= =
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iS
C
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0
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1.3 The Unit Ramp Function 

The unit ramp function, denoted as , is defined as

(1.23)

where  is a dummy variable.

We can evaluate the integral of (1.23) by considering the area under the unit step function 
from  as shown in Figure 1.18.

Figure 1.18. Area under the unit step function from 

Therefore, we define  as

(1.24)

Since  is the integral of , then  must be the derivative of , i.e.,

(1.25)

Higher order functions of  can be generated by repeated integration of the unit step function. For
example, integrating  twice and multiplying by , we define  as

(1.26)

Similarly,

(1.27)

and in general,

(1.28)

Also,

u1 t( )

u1 t( )

u1 t( ) u0 τ( ) τd
∞–

t

∫=

τ

u0 t( )

∞ to t–

Area 1 τ× τ t= = =
1

τ t

∞ to t–

u1 t( )

u1 t( )
0 t 0<
t t 0≥




=

u1 t( ) u0 t( ) u0 t( ) u1 t( )

d
dt
-----u1 t( ) u0 t( )=

t
u0 t( ) 2 u2 t( )

u2 t( )
0 t 0<

t2 t 0≥



= or u2 t( ) 2 u1 τ( ) τd
∞–

t

∫=

u3 t( )
0 t 0<

t3 t 0≥



= or u3 t( ) 3 u2 τ( ) τd
∞–

t

∫=

un t( )
0 t 0<

t n t 0≥



= or un t( ) 3 un 1– τ( ) τd
∞–

t
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The Delta Function

(1.29)

Example 1.7  

In the network of Figure 1.19, the switch is closed at time  and  for . Express
the inductor current  in terms of the unit step function.

Figure 1.19. Network for Example 1.7

Solution: 
The voltage across the inductor is

(1.30)

and since the switch closes at ,
(1.31)

Therefore, we can write (1.30) as

(1.32)

But, as we know,  is constant (  or ) for all time except at  where it is discontinuous.
Since the derivative of any constant is zero, the derivative of the unit step  has a non−zero
value only at . The derivative of the unit step function is defined in the next section.

1.4 The Delta Function 

The unit impulse or delta function, denoted as , is the derivative of the unit step . It is also
defined as

(1.33)

and
(1.34)

un 1– t( ) 1
n
--- d

dt
-----un t( )=

t 0= iL t( ) 0= t 0<

iL t( )

R

iS

t 0=

L

vL t( )iL t( )
+

−

vL t( ) L
diL
dt
-------=

t 0=

iL t( ) iS u0 t( )=

vL t( ) LiS
d
dt
-----u0 t( )=

u0 t( ) 0 1 t 0=

u0 t( )

t 0=

δ t( )

δ t( ) u0 t( )

δ τ( ) τd
∞–

t

∫ u0 t( )=

δ t( ) 0  for all  t 0≠=
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To better understand the delta function , let us represent the unit step  as shown in Fig-
ure 1.20 (a). 

Figure 1.20. Representation of the unit step as a limit

The function of Figure 1.20 (a) becomes the unit step as . Figure 1.20 (b) is the derivative of
Figure 1.20 (a), where we see that as ,  becomes unbounded, but the area of the rect-
angle remains . Therefore, in the limit, we can think of  as approaching a very large spike or
impulse at the origin, with unbounded amplitude, zero width, and area equal to .

Two useful properties of the delta function are the sampling property and the sifting property.

1.4.1 The Sampling Property of the Delta Function 
The sampling property of the delta function states that 

(1.35)

or, when ,
(1.36)

that is, multiplication of any function  by the delta function  results in sampling the func-
tion at the time instants where the delta function is not zero. The study of discrete−time systems is
based on this property.

Proof:

Since  then, 

(1.37)
We rewrite  as

(1.38)

Integrating (1.37) over the interval  and using (1.38), we obtain

δ t( ) u0 t( )

−ε ε

1
2ε

Figure (a)

Figure (b)Area =1

ε−ε

1

t

t
0

0

ε 0→
ε 0→ 1 2⁄ ε

1 δ t( )
1

δ t( )

f t( )δ t a–( ) f a( )δ t( )=

a 0=
f t( )δ t( ) f 0( )δ t( )=

f t( ) δ t( )

δ t( ) 0  for  t 0  and  t 0><=

f t( )δ t( ) 0  for  t 0  and  t 0><=

f t( )
f t( ) f 0( ) f t( ) f 0( )–[ ]+=

∞ to t–
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The Delta Function

(1.39)

The first integral on the right side of (1.39) contains the constant term ; this can be written
outside the integral, that is,

(1.40)

The second integral of the right side of (1.39) is always zero because

and

Therefore, (1.39) reduces to

(1.41)

Differentiating both sides of (1.41), and replacing  with , we obtain

(1.42)

1.4.2 The Sifting Property of the Delta Function 
The sifting property of the delta function states that

(1.43)

that is, if we multiply any function  by , and integrate from , we will obtain
the value of  evaluated at .

Proof:

Let us consider the integral

(1.44)

We will use integration by parts to evaluate this integral. We recall from the derivative of prod-
ucts that

(1.45)

and integrating both sides we obtain

f τ( )δ τ( ) τd
∞–

t

∫ f 0( )δ τ( ) τd
∞–

t

∫ f τ( ) f 0( )–[ ]δ τ( ) τd
∞–

t

∫+=

f 0( )

f 0( )δ τ( ) τd
∞–

t

∫ f 0( ) δ τ( ) τd
∞–

t

∫=

δ t( ) 0  for  t 0  and  t 0><=

f τ( ) f 0( )–[ ] τ 0=
f 0( ) f 0( )– 0= =

f τ( )δ τ( ) τd
∞–

t

∫ f 0( ) δ τ( ) τd
∞–

t

∫=

τ t

   f t( )δ t( ) f 0( )δ t( )=

Sampling Property of  δ t( )

δ t( )

f t( )δ t α–( ) td
∞–

∞

∫ f α( )=

f t( ) δ t α–( ) ∞ to +∞–

f t( ) t α=

f t( )δ t α–( ) t  where  a α b< <d
a

b

∫

d xy( ) xdy ydx  or  xdy+ d xy( ) ydx–= =
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(1.46)

Now, we let ; then, . We also let ; then, . By sub-
stitution into (1.44), we obtain

(1.47)

We have assumed that ; therefore,  for , and thus the first term of the
right side of (1.47) reduces to . Also, the integral on the right side is zero for , and there-
fore, we can replace the lower limit of integration  by . We can now rewrite (1.47) as

and letting , we obtain

(1.48)

1.5 Higher Order Delta Functions

An nth-order delta function is defined as the  derivative of , that is,

(1.49)

The function  is called doublet,  is called triplet, and so on. By a procedure similar to the
derivation of the sampling property of the delta function, we can show that 

(1.50)

Also, the derivation of the sifting property of the delta function can be extended to show that

(1.51)

x yd∫ xy y xd∫–=

x f t( )= dx f t( )′= dy δ t α–( )= y u0 t α–( )=

f t( )δ t α–( ) td
a

b

∫ f t( )u0 t α–( )
a
b u0 t α–( )f t( )′ td

a

b

∫–=

a α b< < u0 t α–( ) 0= α a<

f b( ) α a<
a α

f t( )δ t α–( ) td
a

b

∫ f b( ) f t( )′ td
α

b

∫– f b( ) f b( ) f α( )+–= =

a ∞  and  b ∞  for any α ∞<   →–→

  f t( )δ t α–( ) td
∞–

∞

∫ f α( )=

Sifting Property of  δ t( )

nth u0 t( )

δn t( ) δn

dt
----- u0 t( )[ ]=

δ' t( ) δ'' t( )

f t( )δ' t a–( ) f a( )δ' t a–( ) f ' a( )δ t a–( )–=

f t( )δn t α–( ) td
∞–

∞

∫ 1–( )n d n

dt n
-------- f t( )[ ]

t α=

=
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Higher Order Delta Functions

Example 1.8  

Evaluate the following expressions:

a. b. c. 

Solution:

a. The sampling property states that  For this example,  and
. Then,

b. The sifting property states that . For this example,  and

. Then,

c. The given expression contains the doublet; therefore, we use the relation

Then, for this example,

Example 1.9  

a. Express the voltage waveform  shown in Figure 1.21 as a sum of unit step functions for the
time interval .

b. Using the result of part (a), compute the derivative of  and sketch its waveform.

3t4δ t 1–( ) tδ t 2–( ) td
∞–

∞

∫ t2δ' t 3–( )

f t( )δ t a–( ) f a( )δ t a–( )= f t( ) 3t4=

a 1=

3t4δ t 1–( ) 3t4
t 1=

{ }δ t 1–( ) 3δ t 1–( )= =

f t( )δ t α–( ) td
∞–

∞

∫ f α( )= f t( ) t=

α 2=

  tδ t 2–( ) td
∞–

∞

∫ f 2( ) t t 2=
2= = =

f t( )δ' t a–( ) f a( )δ' t a–( ) f ' a( )δ t a–( )–=

t2δ' t 3–( ) t2
t 3=

δ' t 3–( ) d
dt
-----t2

t 3=
δ t 3–( )– 9δ' t 3–( ) 6δ t 3–( )–= =

v t( )
1 t 7 s< <–

v t( )
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Figure 1.21. Waveform for Example 1.9

Solution:

a. We begin with the derivation of the equations for the linear segments of the given waveform as
shown in Figure 1.22.

Figure 1.22. Equations for the linear segments of Figure 1.21

Next, we express  in terms of the unit step function , and we obtain

(1.52)

Multiplying and collecting like terms in (1.52), we obtain

−1

−2

−1

1

2

3

1 2 3 4 5 6 7
0

V( )

t s( )

v t( )

−1

−2

−1

1

2

3

1 2 3 4 5 6 7
0

v t( )

t– 6+

t– 5+

2t

t s( )

V( )v t( )

v t( ) u0 t( )

v t( ) 2t u0 t 1+( ) u0 t 1–( )–[ ] 2 u0 t 1–( ) u0 t 2–( )–[ ]+=

 + t– 5+( ) u0 t 2–( ) u0 t 4–( )–[ ] u0 t 4–( ) u0 t 5–( )–[ ]+

 + t– 6+( ) u0 t 5–( ) u0 t 7–( )–[ ]
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or

b. The derivative of  is

(1.53)

From the given waveform, we observe that discontinuities occur only at , , and
. Therefore, , , and , and the terms that contain

these delta functions vanish. Also, by application of the sampling property,

and by substitution into (1.53), we obtain 

(1.54)

The plot of  is shown in Figure 1.23.

v t( ) 2tu0 t 1+( ) 2tu0 t 1–( )– 2u0 t 1–( )– 2u0 t 2–( )– tu0 t 2–( )–=

 + 5u0 t 2–( ) tu0 t 4–( ) 5u0 t 4–( )– u0 t 4–( ) u0 t 5–( )–+ +

 tu0 t 5–( ) 6u0 t 5–( ) tu0 t 7–( ) 6u0 t 7–( )–+ +–

v t( ) 2tu0 t 1+( ) 2t– 2+( )u0 t 1–( ) t– 3+( )u0 t 2–( )+ +=

 + t 4–( )u0 t 4–( ) t– 5+( )u0 t 5–( ) t 6–( )u0 t 7–( )+ +

v t( )

dv
dt
------ 2u0 t 1+( ) 2tδ t 1+( ) 2u0 t 1–( )– 2t– 2+( )δ t 1–( )+ +=

u0 t 2–( )– t– 3+( )δ t 2–( ) u0 t 4–( ) t 4–( )δ t 4–( )+ + +

u0 t 5–( )– t– 5+( )δ t 5–( ) u0 t 7–( ) t 6–( )δ t 7–( )+ + +

t 1–= t 2=

t 7= δ t 1–( ) 0= δ t 4–( ) 0= δ t 5–( ) 0=

2tδ t 1+( ) 2t t 1–=
{ }δ t 1+( ) 2δ t 1+( )–= =

t– 3+( )δ t 2–( ) t– 3+( ) t 2=
{ }δ t 2–( ) δ t 2–( )= =

t 6–( )δ t 7–( ) t 6–( ) t 7=
{ }δ t 7–( ) δ t 7–( )= =

dv
dt
------ 2u0 t 1+( ) 2– δ t 1+( ) 2u0 t 1–( ) u0 t 2–( )––=

 δ t 2–( ) u0 t 4–( ) u0 t 5–( )– u0 t 7–( ) δ t 7–( )+ + + +

dv dt⁄
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Figure 1.23. Plot of the derivative of the waveform of Figure 1.21

We observe that a negative spike of magnitude  occurs at , and two positive spikes of
magnitude  occur at , and . These spikes occur because of the discontinuities at
these points.

It would be interesting to observe the given signal and its derivative on the Scope block of the
Simulink* model of Figure 1.24. They are shown in Figure 1.25.

Figure 1.24. Simulink model for Example 1.9

The waveform created by the Signal Builder block is shown in Figure 1.25.

* A brief introduction to Simulink is presented in Appendix B. For a detailed procedure for generating piece-wise
linear functions with Simulink’s Signal Builder block, please refer to Introduction to Simulink with Engineering
Applications, ISBN 0−9744239−7−1 

−1

−1

1

2

1 2 3 4 5 6 70

2δ t 1+( )–

dv
dt
------ V s⁄( )

δ t 2–( ) δ t 7–( )

t s( )

2 t 1–=

1 t 2= t 7=
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Figure 1.25. Piece−wise linear waveform for the Signal Builder block in Figure 1.24

The waveform in Figure 1.25 is created with the following procedure:

1. We open a new model by clicking on the new model icon shown as a blank page on the left cor-
ner of the top menu bar. Initially, the name Untitled appears on the top of this new model. We
save it with the name Figure_1.25 and Simulink appends the .mdl extension to it.

2. From the Sources library, we drag the Signal Builder block into this new model. We also drag
the Derivative block from the Continuous library, the Bus Creator block from the Com-
monly Used Blocks library, and the Scope block into this model, and we interconnect these
blocks as shown in Figure 1.24.

3. We double−click on the Signal Builder block in Figure 1.24, and on the plot which appears as a
square pulse, we click on the y−axis and we enter Minimum: −2.5, and Maximum: 3.5. Like-
wise we right−click anywhere on the plot and we specify the Change Time Range at Min time:
−2, and Max time: 8. 

4. To select a particular point, we position the mouse cursor over that point and we left−click. A
circle is drawn around that point to indicate that it is selected.

5. To select a line segment, we left−click on that segment. That line segment is now shown as a
thick line indicating that it is selected. To deselect it, we press the Esc key.
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6. To drag a line segment to a new position, we place the mouse cursor over that line segment and
the cursor shape shows the position in which we can drag the segment.

7. To drag a point along the y−axis, we move the mouse cursor over that point, and the cursor
changes to a circle indicating that we can drag that point. Then, we can move that point in a
direction parallel to the x−axis. 

8. To drag a point along the x−axis, we select that point, and we hold down the Shift key while
dragging that point.

9. When we select a line segment on the time axis (x−axis) we observe that at the lower end of
the waveform display window the Left Point and Right Point fields become visible. We can
then reshape the given waveform by specifying the Time (T) and Amplitude (Y) points.

Figure 1.26. Waveforms for the Simulink model of Figure 1.24

The two positive spikes that occur at , and , are clearly shown in Figure 1.26.
MATLAB* has built-in functions for the unit step, and the delta functions. These are denoted by
the names of the mathematicians who used them in their work. The unit step function  is
referred to as Heaviside(t), and the delta function  is referred to as Dirac(t). Their use is illus-
trated with the examples below.

syms k a t; %  Define symbolic variables
u=k*sym('Heaviside(t−a)') %  Create unit step function at t = a

u =
k*Heaviside(t-a)

d=diff(u) % Compute the derivative of the unit step function

d =
k*Dirac(t-a)

* An introduction to MATLAB® is given in Appendix A.

t 2= t 7=

u0 t( )

δ t( )
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int(d) % Integrate the delta function

ans =
Heaviside(t-a)*k
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1.6 Summary

• The unit step function  is defined as

• The unit step function offers a convenient method of describing the sudden application of a
voltage or current source.

• The unit ramp function, denoted as , is defined as

• The unit impulse or delta function, denoted as , is the derivative of the unit step . It is
also defined as

and

• The sampling property of the delta function states that 

or, when ,

• The sifting property of the delta function states that

• The sampling property of the doublet function  states that

u0 t( )

u0 t( )
0 t 0<
1 t 0>




=

u1 t( )

u1 t( ) u0 τ( ) τd
∞–

t

∫=

δ t( ) u0 t( )

δ τ( ) τd
∞–

t

∫ u0 t( )=

δ t( ) 0  for all  t 0≠=

f t( )δ t a–( ) f a( )δ t( )=

a 0=
f t( )δ t( ) f 0( )δ t( )=

f t( )δ t α–( ) td
∞–

∞

∫ f α( )=

δ' t( )

f t( )δ' t a–( ) f a( )δ' t a–( ) f ' a( )δ t a–( )–=
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Exercises

1.7 Exercises
1. Evaluate the following functions:

a.  b.  c.  

d.  e.  f.  

2.
a. Express the voltage waveform  shown below as a sum of unit step functions for the time

interval .

b. Using the result of part (a), compute the derivative of , and sketch its waveform. This
waveform cannot be used with Sinulink’s Function Builder block because it contains the
decaying exponential segment which is a non−linear function.

tδsin t π
6
---– 

  2tδcos t π
4
---– 

  t2 δ t π
2
---– 

 cos

2tδtan t π
8
---– 

  t2e
t–
δ t 2–( ) td

∞–

∞

∫ t2 δ1 t π
2
---– 

 sin

v t( )
0 t 7 s< <

−10

−20

10

20

1 2 3 4 5 6 7

0

v t( )

t s( )

e 2t–

V( )v t( )

v t( )
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1.8 Solutions to End−of−Chapter Exercises
Dear Reader:

The remaining pages on this chapter contain the solutions to the exercises.

You must, for your benefit, make an honest effort to solve the problems without first looking at
the solutions that follow. It is recommended that first you go through and solve those you feel that
you know. For the exercises that you are uncertain, review this chapter and try again. If your
results do not agree with those provided, look over your procedures for inconsistencies and com-
putational errors. Refer to the solutions as a last resort and rework those problems at a later date.

You should follow this practice with the exercises on all chapters of this book.
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Solutions to End−of−Chapter Exercises

1. We apply the sampling property of the  function for all expressions except (e) where we
apply the sifting property. For part (f) we apply the sampling property of the doublet.

We recall that the sampling property states that . Thus,

a.  

b.  

c.  

d.  

We recall that the sampling property states that . Thus,

e.  

We recall that the sampling property for the doublet states that

Thus,

f.  

2.

a.  

δ t( )

f t( )δ t a–( ) f a( )δ t a–( )=

tδsin t π
6
---– 

  t t π 6⁄=
δ t π

6
---– 

 sin π
6
---δ t π

6
---– 

 sin 0.5δ t π
6
---– 

 = = =

2tδcos t π
4
---– 

  2t t π 4⁄=
δ t π

4
---– 

 cos π
2
---δ t π

4
---– 

 cos 0= = =

t2 δ t π
2
---– 

 cos 1
2
--- 1 2tcos+( )

t π 2⁄=

δ t π
2
---– 

  1
2
--- 1 πcos+( )δ t π

2
---– 

  1
2
--- 1 1–( )δ t π

2
---– 

  0= = = =

2tδtan t π
8
---– 

  2t t π 8⁄=
δtan t π

8
---– 

  π
4
---δ t π

8
---– 

 tan δ t π
8
---– 

 = = =

f t( )δ t α–( ) td
∞–

∞

∫ f α( )=

t2e
t–
δ t 2–( ) td

∞–

∞

∫ t2e
t–

t 2=
4e 2– 0.54= = =

f t( )δ' t a–( ) f a( )δ' t a–( ) f ' a( )δ t a–( )–=

t2 δ1 t π
2
---– 

 sin t t π 2⁄=
2 δ1 t π

2
---– 

 sin d
dt
----- t t π 2⁄=

2 δ t π
2
---– 

 sin–=

1
2
--- 1 2tcos–( ) t π 2⁄=

δ1 t π
2
---– 

  2t t π 2⁄=
δ t π

2
---– 

 sin–=

1
2
--- 1 1+( )δ1 t π

2
---– 

  πδ t π
2
---– 

 sin– δ1 t π
2
---– 

 ==

v t( ) e 2t– u0 t( ) u0 t 2–( )–[ ] 10t 30–( ) u0 t 2–( ) u0 t 3–( )–[ ]+=

 + 10– t 50+( ) u0 t 3–( ) u0 t 5–( )–[ ] 10t 70–( ) u0 t 5–( ) u0 t 7–( )–[ ]+

v t( ) e 2t– u0 t( ) e 2t– u0 t 2–( ) 10tu0 t 2–( ) 30u0 t 2–( ) 10tu0 t 3–( ) 30u0 t 3–( )+––+–=

10tu0 t 3–( )– 50u0 t 3–( ) 10tu0 t 5–( ) 50u0 t 5–( ) 10tu0 t 5–( )+–+ +

70u0 t 5–( ) 10tu0 t 7–( ) 70u0 t 7–( )+––
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b.

  (1)

Referring to the given waveform we observe that discontinuities occur only at , ,
and . Therefore,  and . Also, by the sampling property of the delta
function

and with these simplifications (1) above reduces to

The waveform for  is shown below.

v t( ) e 2t– u0 t( ) e 2t– 10t 30–+–( )u0 t 2–( ) 20t 80+–( )u0 t 3–( ) 20t 120–( )u0 t 5–( )+ + +=

+ 10t 70+–( )u0 t 7–( )

dv
dt
------ 2e 2t– u0 t( ) e 2t– δ t( ) 2e 2t– 10+( )u0 t 2–( ) e 2t– 10t 30–+–( )δ t 2–( )+ + +–=

20u0 t 3–( ) 20t– 80+( )δ t 3–( ) 20u0 t 5–( ) 20t 120–( )δ t 5–( )+ + +–

10u0 t 7–( ) 10t– 70+( )δ t 7–( )+–

t 2= t 3=

t 5= δ t( ) 0= δ t 7–( ) 0=

e 2t– 10t 30–+–( )δ t 2–( ) e 2t– 10t 30–+–( ) t 2=
δ t 2–( )= 10δ t 2–( )–≈

20t– 80+( )δ t 3–( ) 20t– 80+( ) t 3=
δ t 3–( )= 20δ t 3–( )=

20t 120–( )δ t 5–( ) 20t 120–( ) t 5=
δ t 5–( )= 20– δ t 5–( )=

dv dt⁄ 2e 2t– u0 t( ) 2e 2t– u0 t 2–( ) 10u0 t 2–( ) 10δ t 2–( )–+ +–=

20u0 t 3–( ) 20δ t 3–( ) 20u0 t 5–( ) 20δ t 5–( ) 10u0 t 7–( )––+ +–

2e 2t– u0 t( ) u0 t 2–( )–[ ] 10δ t 2–( ) 10 u0 t 2–( ) u0 t 3–( )–[ ] 20δ t 3–( )+ +––=

10 u0 t 3–( ) u0 t 5–( )–[ ]– 20δ t 5–( ) 10 u0 t 5–( ) u0 t 7–( )–[ ]+–

dv dt⁄

dv dt⁄

20
10

V s⁄( )

t s( )

20–

10– 1 2 3 4 5 6 7
10δ t 2–( )–

20δ t 3–( )

20δ t 5–( )–2e 2t–
–
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Chapter 2

The Laplace Transformation

his chapter begins with an introduction to the Laplace transformation, definitions, and
properties of the Laplace transformation. The initial value and final value theorems are also
discussed and proved. It continues with the derivation of the Laplace transform of common

functions of time, and concludes with the derivation of the Laplace transforms of common wave-
forms.

2.1 Definition of the Laplace Transformation
The two−sided or bilateral Laplace Transform pair is defined as

 (2.1)

(2.2)

where  denotes the Laplace transform of the time function ,  denotes the
Inverse Laplace transform, and  is a complex variable whose real part is , and imaginary part

, that is, .

In most problems, we are concerned with values of time  greater than some reference time, say
, and since the initial conditions are generally known, the two−sided Laplace trans-

form pair of (2.1) and (2.2) simplifies to the unilateral or one−sided Laplace transform defined as

(2.3)

(2.4)

The Laplace Transform of (2.3) has meaning only if the integral converges (reaches a limit), that
is, if

T

L f t( ){ } F s( )= f t( )
∞–

∞

∫ e st– dt=

L 1– F s( ){ } f t( )= 1
2πj
-------- F s( )

σ jω–

σ jω+

∫ estds=

L f t( ){ } f t( ) L 1– F s( ){ }
s σ

ω s σ jω+=

t
t t0 0= =

L f t( ){ } F= s( ) f t( )
t0

∞

∫ e st– dt f t( )
0

∞

∫ e st– dt= =

L 1– F s( ){ } f= t( ) 1
2πj
-------- F s( )

σ jω–

σ jω+

∫ estds=
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 (2.5)

To determine the conditions that will ensure us that the integral of (2.3) converges, we rewrite
(2.5) as

(2.6)

The term  in the integral of (2.6) has magnitude of unity, i.e., , and thus the con-
dition for convergence becomes

(2.7)

Fortunately, in most engineering applications the functions  are of exponential order*. Then,
we can express (2.7) as,

(2.8)

and we see that the integral on the right side of the inequality sign in (2.8), converges if .
Therefore, we conclude that if  is of exponential order,  exists if

(2.9)

where  denotes the real part of the complex variable .

Evaluation of the integral of (2.4) involves contour integration in the complex plane, and thus, it
will not be attempted in this chapter. We will see in the next chapter that many Laplace trans-
forms can be inverted with the use of a few standard pairs, and thus there is no need to use (2.4)
to obtain the Inverse Laplace transform.

In our subsequent discussion, we will denote transformation from the time domain to the com-
plex frequency domain, and vice versa, as

(2.10)

2.2 Properties and Theorems of the Laplace Transform
The most common properties and theorems of the Laplace transform are presented in Subsec-
tions 2.2.1 through 2.2.13 below.

* A function  is said to be of exponential order if .

f t( )
0

∞

∫ e st– dt ∞<

f t( )e σt–

0

∞

∫ e jωt– dt ∞<

e jωt– e jωt– 1=

f t( )e σt–

0

∞

∫ dt ∞<

f t( )

f t( ) f t( ) ke
σ0t

  for all  t 0≥<

f t( )e σt–

0

∞

∫ dt ke
σ0t

e σt–

0

∞

∫ dt<

σ σ0>

f t( ) L f t( ){ }

Re s{ } σ σ0>=

Re s{ } s

f t( ) F s( )⇔
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Properties and Theorems of the Laplace Transform

2.2.1 Linearity Property
The linearity property states that if

have Laplace transforms

respectively, and

are arbitrary constants, then,

(2.11)

Proof:

Note 1:

It is desirable to multiply  by the unit step function  to eliminate any unwanted non−

zero values of  for .

2.2.2 Time Shifting Property
The time shifting property states that a right shift in the time domain by  units, corresponds to

multiplication by  in the complex frequency domain. Thus,

(2.12)

Proof:

(2.13)

Now, we let ; then,  and . With these substitutions and with ,
the second integral on the right side of (2.13) is expressed as

f1 t( ) f2 t( ) … fn t( ), , ,

F1 s( ) F2 s( ) … Fn s( ), , ,

c1 c2 … cn, , ,

c1 f1 t( ) c2 f2 t( ) … cn fn t( )+ + + c1 F1 s( ) c2 F2 s( ) … cn Fn s( )+ + +⇔

L c1 f1 t( ) c2 f2 t( ) … cn fn t( )+ + +{ } c1 f1 t( ) c2 f2 t( ) … cn fn t( )+ + +[ ]
t0

∞

∫ dt=

c1 f1 t( )
t0

∞

∫ e st– dt c2 f2 t( )
t0

∞

∫ e st– dt … + cn fn t( )
t0

∞

∫ e st– dt+ +=

c1 F1 s( ) c2 F2 s( ) … cn Fn s( )+ + +=

f t( ) u0 t( )

f t( ) t 0<

a

e as–

f t a–( )u0 t a–( ) e as– F s( )⇔

L f t a–( )u0 t a–( ){ } 0
0

a

∫ e st– dt f t a–( )
a

∞

∫ e st– dt+=

t a– τ= t τ a+= dt dτ= a 0→

f τ( )
0

∞

∫ e s τ a+( )– dτ e as– f τ( )
0

∞

∫ e sτ– dτ e as– F s( )= =
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2.2.3 Frequency Shifting Property
The frequency shifting property states that if we multiply a time domain function  by an expo-

nential function  where  is an arbitrary positive constant, this multiplication will produce a
shift of the s variable in the complex frequency domain by  units. Thus,

(2.14)

Proof:

Note 2:

A change of scale is represented by multiplication of the time variable  by a positive scaling fac-
tor . Thus, the function  after scaling the time axis, becomes .

2.2.4 Scaling Property
Let  be an arbitrary positive constant; then, the scaling property states that 

(2.15)

Proof:

and letting , we obtain

Note 3: 
Generally, the initial value of  is taken at  to include any discontinuity that may be

present at . If it is known that no such discontinuity exists at , we simply interpret

 as .

2.2.5 Differentiation in Time Domain Property
The differentiation in time domain property states that differentiation in the time domain corre-
sponds to multiplication by  in the complex frequency domain, minus the initial value of  at

. Thus,

f t( )

e at– a
a

e at– f t( ) F s a+( )⇔

L e at– f t( ){ } e at– f t( )
0

∞

∫ e st– dt f t( )
0

∞

∫ e s a+( )t– dt F s a+( )= = =

t
a f t( ) f at( )

a

f at( ) 1
a
---F s

a
-- 

 ⇔

L f at( ){ } f at( )
0

∞

∫ e st– dt=

t τ a⁄=

L f at( ){ } f τ( )
0

∞

∫ e s τ a⁄( )– d τ
a
-- 

  1
a
--- f τ( )

0

∞

∫ e s a⁄( ) τ– d τ( ) 1
a
---F s

a
-- 

 = = =

f t( ) t 0−=

t 0= t 0−=

f 0−( ) f 0( )

s f t( )

t 0−=
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(2.16)

Proof:

Using integration by parts where

(2.17)

we let  and . Then, , , and thus

The time differentiation property can be extended to show that

(2.18)

(2.19)

and in general

(2.20)

To prove (2.18), we let

and as we found above,

Then,

Relations (2.19) and (2.20) can be proved by similar procedures.

f ' t( ) d
dt
----- f t( )= sF s( ) f 0−( )–⇔

L f ' t( ){ } f ' t( )
0

∞

∫ e st– dt=

v ud∫ uv u vd∫–=

du f ' t( )= v e st–= u f t( )= dv se st––=

L f ' t( ){ } f t( )e st–

0−

∞
s f t( )

0−

∞

∫ e st– dt+ f t( )e st–

0−

a

a ∞→
lim sF s( )+= =

e sa– f a( ) f 0−( )–[ ]
a ∞→
lim sF s( )+ 0 f 0−( )– sF s( )+==

d 2

dt 2
-------- f t( ) s 2F s( ) sf 0−( )– f ' 0−( )–⇔

d 3

dt 3
-------- f t( ) s3F s( ) s2f 0−( )– sf ' 0−( )– f '' 0−( )–⇔

d n

dt n
-------- f t( ) snF s( ) sn 1– f 0−( )– sn 2– f ' 0−( )– … f– n 1– 0−( )–⇔

g t( ) f ' t( ) d
dt
----- f t( )= =

L g ' t( ){ } sL g t( ){ } g 0−( )–=

L f '' t( ){ } sL f ' t( ){ } f ' 0−( )– s sL f t( )[ ] f 0−( )–[ ] f ' 0−( )–= =

s 2F s( ) sf 0−( )– f ' 0−( )–=
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We must remember that the terms , and so on, represent the initial condi-
tions. Therefore, when all initial conditions are zero, and we differentiate a time function  
times, this corresponds to  multiplied by  to the  power.

2.2.6 Differentiation in Complex Frequency Domain Property
This property states that differentiation in complex frequency domain and multiplication by minus
one, corresponds to multiplication of  by  in the time domain. In other words,

(2.21)

Proof:

Differentiating with respect to  and applying Leibnitz’s rule* for differentiation under the integral,
we obtain

In general,

(2.22)

The proof for  follows by taking the second and higher−order derivatives of  with
respect to .

2.2.7 Integration in Time Domain Property
This property states that integration in time domain corresponds to  divided by  plus the ini-

tial value of  at , also divided by . That is,

* This rule states that if a function of a parameter  is defined by the equation  where f is some known

function of integration x and the parameter , a and b are constants independent of x and , and the partial derivative

 exists and it is continuous, then .

f 0−( )  f ' 0−( )  f '' 0−( ),,
f t( ) n

F s( ) s nth

f t( ) t

tf t( ) d
ds
-----– F s( )⇔

L f t( ){ } F s( ) f t( )
0

∞

∫ e st– dt= =

s

α F α( ) f x α,( ) xd
a

b

∫=

α α

f∂ α∂⁄ dF
dα
------- x α,( )∂

α( )∂
----------------- xd

a

b

∫=

d
ds
-----F s( ) d

ds
----- f t( )

0

∞

∫ e st– dt
s∂

∂
0

∞

∫ e st– f t( )dt t–
0

∞

∫ e st– f t( )dt tf t( )[ ]
0

∞

∫ e st– dt– L tf t( )[ ]–= = = = =

t nf t( ) 1–( )n d n

dsn
--------F s( )⇔

n 2≥ F s( )
s

F s( ) s

f t( ) t 0−= s
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(2.23)

Proof:

We begin by expressing the integral on the left side of (2.23) as two integrals, that is,

(2.24)

The first integral on the right side of (2.24), represents a constant value since neither the upper,
nor the lower limits of integration are functions of time, and this constant is an initial condition
denoted as . We will find the Laplace transform of this constant, the transform of the sec-
ond integral on the right side of (2.24), and will prove (2.23) by the linearity property. Thus,

(2.25)

This is the value of the first integral in (2.24). Next, we will show that

We let

then,

and

Now,

f τ( )
∞–

t

∫ dτ F s( )
s

---------- f 0−( )
s

-------------+⇔

f τ( )
∞–

t

∫ dτ f τ( )
∞–

0

∫ dτ f τ( )
0

t

∫ dτ+=

f 0−( )

L f 0−( ){ } f 0−( )
0

∞

∫ e st– dt f 0−( ) e st–

0

∞

∫ dt f 0−( )e st–

s–
--------

0

∞

= = =

f 0−( ) 0 f 0−( )
s

-------------– 
 –× f 0−( )

s
------------==

f τ( )
0

t

∫ dτ F s( )
s

----------⇔

g t( ) f τ( )
0

t

∫ dτ=

g' t( ) f τ( )=

g 0( ) f τ( )
0

0

∫ dτ 0= =

L g' t( ){ } G s( ) sL g t( ){ } g 0−( )– G s( ) 0–= = =

sL g t( ){ } G s( )=

L g t( ){ } G s( )
s

-----------=
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(2.26)

and the proof of (2.23) follows from (2.25) and (2.26).

2.2.8 Integration in Complex Frequency Domain Property
This property states that integration in complex frequency domain with respect to  corresponds to

division of a time function  by the variable , provided that the limit  exists. Thus,

(2.27)

Proof:

Integrating both sides from  to , we obtain

Next, we interchange the order of integration, i.e., 

and performing the inner integration on the right side integral with respect to , we obtain

2.2.9 Time Periodicity Property
The time periodicity property states that a periodic function of time with period  corresponds to

the integral  divided by  in the complex frequency domain. Thus, if we let

 be a periodic function with period , that is, , for  we obtain
the transform pair

L f τ( )
0

t

∫ dτ
 
 
  F s( )

s
----------=

s

f t( ) t f t( )
t

--------
t 0→
lim

f t( )
t

-------- F s( ) sd
s

∞

∫⇔

F s( ) f t( )
0

∞

∫ e st– dt=

s ∞

F s( ) sd
s

∞

∫ f t( )
0

∞

∫ e st– dt sd
s

∞

∫=

F s( ) sd
s

∞

∫ e st–

s

∞

∫ sd f t( ) td
0

∞

∫=

s

F s( ) sd
s

∞

∫ 1
t
---– e st–

s

∞
f t( ) td

0

∞

∫
f t( )

t
--------e st– td

0

∞

∫ L f t( )
t

--------
 
 
 

= = =

T

f t( )
0

T

∫ e st– dt 1 e sT––( )

f t( ) T f t( ) f t nT+( )= n 1 2 3 …, , ,=
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(2.28)

Proof:

The Laplace transform of a periodic function can be expressed as

In the first integral of the right side, we let , in the second , in the third
, and so on. The areas under each period of  are equal, and thus the upper and

lower limits of integration are the same for each integral. Then,

(2.29)

Since the function is periodic, i.e., , we can write
(2.29) as

(2.30)

By application of the binomial theorem, that is,

(2.31)

we find that expression (2.30) reduces to

2.2.10 Initial Value Theorem

The initial value theorem states that the initial value  of the time function  can be found
from its Laplace transform multiplied by  and letting .That is,

(2.32)

f t nT+( )
f t( )

0

T

∫ e st– dt

1 e sT––
------------------------------⇔

L f t( ){ } f t( )
0

∞

∫ e st– dt f t( )
0

T

∫ e st– dt f t( )
T

2T

∫ e st– dt f t( )
2T

3T

∫ e st– dt …+ + += =

t τ= t τ T+=

t τ 2T+= f t( )

L f t( ){ } f τ( )
0

T

∫ e sτ– dτ f τ T+( )
0

T

∫ e s τ T+( )– dτ f τ 2T+( )
0

T

∫ e s τ 2T+( )– dτ …+ + +=

f τ( ) f τ T+( ) f τ 2T+( ) … f τ nT+( )= = = =

L f τ( ){ } 1 e sT– e 2sT– …+ + +( ) f τ( )
0

T

∫ e sτ– dτ=

1 a a2 a3 …+ + + + 1
1 a–
-----------=

L f τ( ){ }
f τ( )

0

T

∫ e sτ– dτ

1 e sT––
----------------------------------=

f 0−( ) f t( )
s s ∞→

f t( )
t 0→
lim sF s( )

s ∞→
lim f 0−( )= =



Chapter 2  The Laplace Transformation

2−10 Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition
Copyright © Orchard Publications

Proof:

From the time domain differentiation property,

or

Taking the limit of both sides by letting , we obtain

Interchanging the limiting process, we obtain

and since

the above expression reduces to

or

2.2.11 Final Value Theorem
The final value theorem states that the final value  of the time function  can be found
from its Laplace transform multiplied by , then, letting . That is,

(2.33)

Proof:
From the time domain differentiation property,

or

d
dt
----- f t( ) sF s( ) f 0−( )–⇔

L d
dt
----- f t( )

 
 
 

sF s( ) f 0−( )– d
dt
----- f t( )

0

∞

∫ e st– dt= =

s ∞→

sF s( ) f 0−( )–[ ]
s ∞→
lim d

dt
----- f t( )

ε

T

∫ e st– dt
T ∞→
ε 0→

lim
s ∞→
lim=

sF s( ) f 0−( )–[ ]
s ∞→
lim d

dt
----- f t( )

ε

T

∫ e st–

s ∞→
lim dt

T ∞→
ε 0→

lim=

e st–

s ∞→
lim 0=

sF s( ) f 0−( )–[ ]
s ∞→
lim 0=

sF s( )
s ∞→
lim f 0−( )=

f ∞( ) f t( )
s s 0→

f t( )
t ∞→
lim sF s( )

s 0→
lim f ∞( )= =

d
dt
----- f t( ) sF s( ) f 0−( )–⇔
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Taking the limit of both sides by letting , we obtain

and by interchanging the limiting process, the expression above is written as

Also, since

it reduces to

Therefore,

2.2.12 Convolution in Time Domain Property

Convolution* in the time domain corresponds to multiplication in the complex frequency domain,
that is,

(2.34)

* Convolution is the process of overlapping two time functions  and . The convolution integral indicates

the amount of overlap of one function as it is shifted over another function The convolution of two time functions

 and  is denoted as , and by definition,  where  is a dummy

variable. Convolution is discussed in detail in Chapter 6.

L d
dt
----- f t( )

 
 
 

sF s( ) f 0−( )–
d
dt
----- f t( )

0

∞

∫ e st– dt= =

s 0→

sF s( ) f 0−( )–[ ]
s 0→
lim d

dt
----- f t( )

ε

T

∫ e st– dt
T ∞→
ε 0→

lim
s 0→
lim=

sF s( ) f 0−( )–[ ]
s 0→
lim d

dt
----- f t( )

ε

T

∫ e st–

s 0→
lim dt

T ∞→
ε 0→

lim=

e st–

s 0→
lim 1=

sF s( ) f 0−( )–[ ]
s 0→
lim d

dt
----- f t( )

ε

T

∫ dt
T ∞→
ε 0→

lim f t( )
ε

T

∫
T ∞→
ε 0→

lim f T( ) f ε( )–[ ]
T ∞→
ε 0→

lim f ∞( ) f 0−( )–= = = =

sF s( )
s 0→
lim f ∞( )=

f1 t( ) f2 t( )

f1 t( ) f2 t( ) f1 t( )*f2 t( ) f1 t( )*f2 t( ) f1 τ( )f2 t τ–( )
∞–

∞

∫ dτ= τ

f1 t( )*f2 t( ) F1 s( )F2 s( )⇔
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Proof:

(2.35)

We let ; then, , and . Then, by substitution into (2.35),

2.2.13 Convolution in Complex Frequency Domain Property
Convolution in the complex frequency domain divided by , corresponds to multiplication in
the time domain. That is,

(2.36)

Proof:

(2.37)

and recalling that the Inverse Laplace transform from (2.2) is

by substitution into (2.37), we obtain

We observe that the bracketed integral is ; therefore,

For easy reference, the Laplace transform pairs and theorems are summarized in Table 2.1.
 

L f1 t( )*f2 t( ){ } L f1 τ( )f2 t τ–( )
∞–

∞

∫ dτ f1 τ( )f2 t τ–( )
0

∞

∫ dτ
0

∞

∫ e st– dt= =

f1 τ( ) f2 t τ–( )
0

∞

∫ e st– dt
0

∞

∫ dτ=

t τ– λ= t λ τ+= dt dλ=

L f1 t( )*f2 t( ){ } f1 τ( ) f2 λ( )
0

∞

∫ e s λ τ+( )– dλ
0

∞

∫ dτ f1 τ( )e sτ– dτ
0

∞

∫ f2 λ( )
0

∞

∫ e sλ– dλ= =

F1 s( )F2 s( )=

1 2πj⁄

f1 t( )f2 t( ) 1
2πj
-------- F1 s( )*F2 s( )⇔

L f1 t( )f2 t( ){ } f1 t( )f2 t( )
0

∞

∫ e st– dt=

f1 t( ) 1
2πj
-------- F1

σ jω–

σ jω+

∫ µ( )eµtdµ=

L f1 t( )f2 t( ){ } 1
2πj
-------- F1

σ jω–

σ jω+

∫ µ( )eµtdµ f2 t( )
0

∞

∫ e st– dt 1
2πj
-------- F1

σ jω–

σ jω+

∫ µ( ) f2 t( )
0

∞

∫ e s µ–( )t– dt dµ= =

F2 s µ–( )

L f1 t( )f2 t( ){ } 1
2πj
-------- F1

σ jω–

σ jω+

∫ µ( )F2 s µ–( )dµ 1
2πj
--------F1 s( )*F2 s( )= =
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TABLE 2.1  Summary of Laplace Transform Properties and Theorems

Property/Theorem Time Domain Complex Frequency Domain

1 Linearity

2 Time Shifting

3 Frequency Shifting

4 Time Scaling

5 Time Differentiation
See also (2.18) through (2.20)

6 Frequency Differentiation
See also (2.22)

7 Time Integration

8 Frequency Integration

9 Time Periodicity

10 Initial Value Theorem

11 Final Value Theorem

12 Time Convolution

13 Frequency Convolution

c1 f1 t( ) c2 f2 t( )+

     + … cn fn t( )+

c1 F1 s( ) c2 F2 s( )+

       + … cnFn s( )+

f t a–( )u0 t a–( ) e as– F s( )

e as– f t( ) F s a+( )

f at( ) 1
a
---F s

a
-- 

 

d
dt
----- f t( ) sF s( ) f 0−( )–

tf t( ) d
ds
-----– F s( )

f τ( )
∞–

t
∫ dτ F s( )

s
---------- f 0−( )

s
-------------+

f t( )
t

-------- F s( ) sd
s

∞

∫

f t nT+( )
f t( )

0

T

∫ e st– dt

1 e sT––
------------------------------

f t( )
t 0→
lim sF s( )

s ∞→
lim f 0−( )=

f t( )
t ∞→
lim sF s( )

s 0→
lim f ∞( )=

f1 t( )*f2 t( ) F1 s( )F2 s( )

f1 t( )f2 t( ) 1
2πj
-------- F1 s( )*F2 s( )
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2.3 The Laplace Transform of Common Functions of Time
In this section, we will derive the Laplace transform of common functions of time. They are pre-
sented in Subsections 2.3.1 through 2.3.11 below.

2.3.1 The Laplace Transform of the Unit Step Function 
We begin with the definition of the Laplace transform, that is,

or

Thus, we have obtained the transform pair

(2.38)

for .*

2.3.2 The Laplace Transform of the Ramp Function 
We apply the definition

or

We will perform integration by parts by recalling that

(2.39)

We let

then,

* This condition was established in relation (2.9), Page 2−2.

u0 t( )

L f t( ){ } F s( ) f t( )
0

∞

∫ e st– dt= =

L u0 t( ){ } 1
0

∞

∫ e st– dt est–
s

---------
0

∞

0 1
s
---– 

 –
1
s
---  = = = =

u0 t( ) 1
s
--- ⇔

Re s{ } σ 0>=

u1 t( )

L f t( ){ } F s( ) f t( )
0

∞

∫ e st– dt= =

L u1 t( ){ } L t{ } t
0

∞

∫ e st– dt= =

u vd∫ uv v ud∫–=

u t  and  dv e st–= =

du 1  and  v e st––
s

-----------= =
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By substitution into (2.39),

(2.40)

Since the upper limit of integration in (2.40) produces an indeterminate form, we apply L’ Hôpi-
tal’s rule*, that is, 

Evaluating the second term of (2.40), we obtain 

Thus, we have obtained the transform pair

(2.41)

for .

2.3.3 The Laplace Transform of 
Before deriving the Laplace transform of this function, we digress to review the gamma or gener-
alized factorial function  which is an improper integral† but converges (approaches a limit) for
all . It is defined as

* Often, the ratio of two functions, such as , for some value of x, say a, results in an indeterminate form. To work

around this problem, we consider the limit , and we wish to find this limit, if it exists. To find this limit, we use

L’Hôpital’s rule which states that if , and if the limit  as x approaches a exists, then,

† Improper integrals are two types and these are:

a.  where the limits of integration a or b or both are infinite

b.  where f(x) becomes infinite at a value x between the lower and upper limits of integration inclusive.

L t{ } t– e st–

s
-------------

0

∞
e st––
s

-----------
0

∞

∫– dt t– e st–

s
------------- e st–

s2
--------–

0

∞

= =

f x( )
g x( )
-----------

f x( )
g x( )
-----------

x a→
lim

f a( ) g a( ) 0= = d
dx
------f x( ) d

dx
------g x( )⁄

f x( )
g x( )
-----------

x a→
lim d

dx
------f x( ) d

dx
------g x( )⁄ 

 
x a→
lim=

te st–

t ∞→
lim t

est
------

t ∞→
lim td

d t( )

td
d est( )
----------------

t ∞→
lim 1

sest
--------

t ∞→
lim 0= = = =

L t{ } 1
s2
----=

t 1
s2
----  ⇔

σ 0>

t nu0 t( )

Γ n( )

f x( ) xd
a

b

∫

f x( ) xd
a

b

∫

n 0>
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(2.42)

We will now derive the basic properties of the gamma function, and its relation to the well known
factorial function

The integral of (2.42) can be evaluated by performing integration by parts. Thus, in (2.42) we let

Then,

and (2.42) is written as

(2.43)

With the condition that , the first term on the right side of (2.43) vanishes at the lower limit
. It also vanishes at the upper limit as . This can be proved with L’ Hôpital’s rule by

differentiating both numerator and denominator  times, where . Then,

Therefore, (2.43) reduces to

and with (2.42), we have

(2.44)

By comparing the integrals in (2.44), we observe that

Γ n( ) xn 1– e x– xd
0

∞

∫=

n! n n 1–( ) n 2–( )   ⋅ ⋅ 3 2 1⋅ ⋅=

u e x–    and   dv xn 1–==

du e x–– dx   and   v xn

n
-----==

Γ n( ) xne x–

n
-------------

x 0=

∞
1
n
--- xne x– xd

0

∞

∫+=

n 0>
x 0= x ∞→

m m n≥

xne x–

n
-------------

x ∞→
lim xn

nex
--------

x ∞→
lim xm

m

d

d xn

xm

m

d

d nex
--------------------

x ∞→
lim xm 1–

m 1–

d

d nxn 1–

xm 1–

m 1–

d

d ne
x

------------------------------------
x ∞→
lim …= = = =

n n 1–( ) n 2–( )… n m– 1+( )xn m–

nex
-------------------------------------------------------------------------------------

x ∞→
lim n 1–( ) n 2–( )… n m– 1+( )

xm n– e
x

--------------------------------------------------------------------
x ∞→
lim 0= ==

Γ n( ) 1
n
--- xne x– xd

0

∞

∫=

Γ n( ) xn 1– e x– xd
0

∞

∫
1
n
--- xne x– xd

0

∞

∫= =
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(2.45)

or

(2.46)

It is convenient to use (2.45) for , and (2.46) for . From (2.45), we see that 
becomes infinite as .

For , (2.42) yields

(2.47)

and thus we have obtained the important relation,

(2.48)

From the recurring relation of (2.46), we obtain

(2.49)

and in general

(2.50)

for 

The formula of (2.50) is a noteworthy relation; it establishes the relationship between the 
function and the factorial 

We now return to the problem of finding the Laplace transform pair for , that is,

(2.51)

To make this integral resemble the integral of the gamma function, we let , or ,
and thus . Now, we rewrite (2.51) as

Therefore, we have obtained the transform pair

Γ n( ) Γ n 1+( )
n

---------------------=

nΓ n( ) Γ n 1+( )=

n 0< n 0> Γ n( )
n 0→

n 1=

Γ 1( ) e x– xd
0

∞

∫ e x–
0

∞
– 1= = =

Γ 1( ) 1=

Γ 2( ) 1 Γ⋅ 1( ) 1= =

Γ 3( ) 2 Γ⋅ 2( ) 2 1⋅ 2!= = =

Γ 4( ) 3 Γ⋅ 3( ) 3 2⋅ 3!= = =

Γ n 1+( ) n!=

n 1 2 3 …, , ,=

Γ n( )
n!

t nu0t

L t nu0t{ } t n

0

∞

∫ e st– dt=

st y= t y s⁄=

dt dy s⁄=

L t nu0t{ } y
s
--- 

  n

0

∞

∫ e y– d y
s
--- 

  1
sn 1+
----------- yn

0

∞

∫ e y– dy Γ n 1+( )
sn 1+

-------------------- n!

sn 1+
-----------= = = =
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(2.52)

for positive integers of  and .

2.3.4 The Laplace Transform of the Delta Function 
We apply the definition

and using the sifting property of the delta function,* we obtain

Thus, we have the transform pair 

(2.53)

for all .

2.3.5 The Laplace Transform of the Delayed Delta Function 
We apply the definition

and again, using the sifting property of the delta function, we obtain

Thus, we have the transform pair 

(2.54)

for .

* The sifting property of the  is described in Subsection 1.4.2, Chapter 1, Page 1−13.

t nu0 t( ) n!

sn 1+
-----------⇔

n σ 0>

δ t( )

L δ t( ){ } δ t( )
0

∞

∫ e st– dt=

δ t( )

L δ t( ){ } δ t( )
0

∞

∫ e st– dt e s 0( )– 1= = =

δ t( ) 1⇔

σ

δ t a–( )

L δ t a–( ){ } δ t a–( )
0

∞

∫ e st– dt=

L δ t a–( ){ } δ t a–( )
0

∞

∫ e st– dt e as–= =

δ t a–( ) e as–⇔

σ 0>
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2.3.6 The Laplace Transform of 
We apply the definition

 Thus, we have the transform pair 

(2.55)

for .

2.3.7 The Laplace Transform of 
For this derivation, we will use the transform pair of (2.52), i.e.,

(2.56)

and the frequency shifting property of (2.14), that is,

(2.57)

Then, replacing  with  in (2.56), we obtain the transform pair

(2.58)

where  is a positive integer, and . Thus, for , we obtain the transform pair

(2.59)

for .

For , we obtain the transform

(2.60)

and in general,

e at– u0 t( )

L e at– u0 t( ){ } e at–

0

∞

∫ e st– dt e s a+( )t–

0

∞

∫ dt= 1
s a+
-----------– 

  e s a+( )t–

0

∞
1

s a+
-----------= = =

e at– u0 t( ) 1
s a+
-----------⇔

σ a–>

t ne at– u0 t( )

t nu0 t( ) n!

sn 1+
-----------⇔

e at– f t( ) F s a+( )⇔

s s a+

t ne
at–

u0 t( ) n!

s a+( )n 1+
-------------------------⇔

n σ a–> n 1=

te at– u0 t( ) 1
s a+( )2

------------------⇔

σ a–>

n 2=

t 2e
at–

u0 t( ) 2!

s a+( )3
------------------⇔
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(2.61)

for .

2.3.8 The Laplace Transform of 

We apply the definition

and from tables of integrals*

Then,

Thus, we have obtained the transform pair

(2.62)

for .

2.3.9 The Laplace Transform of 
We apply the definition

* This can also be derived from , and the use of (2.55) where . By the linearity

property, the sum of these terms corresponds to the sum of their Laplace transforms. Therefore,

t ne
at–

u0 t( ) n!

s a+( )n 1+
-------------------------⇔

σ a–>

ωt u0sin t( )

L ωt u0sin t( ){ } ωtsin( )
0

∞

∫ e st– dt ωtsin( )
0

a

∫ e st– dt
a ∞→
lim= =

ωtsin 1
j2
----- e jωt e jωt––( )= e at– u0 t( ) 1

s a+
-----------⇔

L ωtu0sin t( )[ ] 1
j2
----- 1

s jω–
-------------- 1

s jω+
--------------– 

  ω
s2 ω2+
-----------------= =

eax bxsin∫ dx eax a bxsin b bxcos–( )
a2 b2+

------------------------------------------------------=

L ωt u0sin t( ){ } e st– s– ωtsin ω ωtcos–( )
s2 ω2+

-----------------------------------------------------------
0

a

a ∞→
lim=

e as– s– ωasin ω ωacos–( )
s2 ω2+

-------------------------------------------------------------- ω
s2 ω2+
-----------------+

a ∞→
lim ω

s2 ω2+
-----------------==

ωt u0tsin ω
s2 ω2+
-----------------⇔

σ 0>

ωcos t u0 t( )

L ωcos t u0 t( ){ } ωtcos( )
0

∞

∫ e st– dt ωtcos( )
0

a

∫ e st– dt
a ∞→
lim= =
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and from tables of integrals*

Then,

Thus, we have the fransform pair

(2.63)

for .

2.3.10 The Laplace Transform of 
From (2.62),

Using the frequency shifting property of (2.14), that is,

(2.64)

we replace  with , and we obtain

(2.65)

for  and .

* We can use the relation  and the linearity property, as in the derivation of the transform of

 on the footnote of the previous page. We can also use the transform pair ; this is the time

differentiation property of (2.16). Applying this transform pair for this derivation, we obtain

ωtcos 1
2
--- e jωt e jωt–+( )=

ωsin t d
dt
----- f t( ) sF s( ) f 0−( )–⇔

L ωcos tu0 t( )[ ] L 1
ω
---- d

dt
----- ωsin tu0 t( ) 1

ω
----L d

dt
----- ωsin tu0 t( ) 1

ω
----s ω

s2 ω2+
----------------- s

s2 ω2+
-----------------= = = =

eax bxcos∫ dx eax bxacos b bxsin+( )
a2 b2+

------------------------------------------------------=

L ωcos t u0 t( ){ } e st– s– ωtcos ω ωtsin+( )
s2 ω2+

-----------------------------------------------------------
0

a

a ∞→
lim=

e as– s– ωacos ω ωasin+( )
s2 ω2+

-------------------------------------------------------------- s
s2 ω2+
-----------------+

a ∞→
lim s

s2 ω2+
-----------------==

ωcos t u0t s
s2 ω2+
-----------------⇔

σ 0>

e at– ωt u0sin t( )

ωtu0tsin ω
s2 ω2+
-----------------⇔

e at– f t( ) F s a+( )⇔

s s a+

e at– ωt u0sin t( ) ω
s a+( )2 ω2+

-------------------------------⇔

σ 0> a 0>
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2.3.11 The Laplace Transform of 
From (2.63),

and using the frequency shifting property of (2.14), we replace  with , and we obtain

(2.66)

for  and .

For easy reference, we have summarized the above derivations in Table 2.2.

TABLE 2.2  Laplace Transform Pairs for Common Functions

1

2

3

4
5

6

7

8

9

10

11

e at– ωcos t u0 t( )

ωcos t u0 t( ) s
s2 ω2+
-----------------⇔

s s a+

e at– ωcos t u0 t( ) s a+

s a+( )2 ω2+
-------------------------------⇔

σ 0> a 0>

f t( ) F s( )

u0 t( ) 1 s⁄

t u0 t( ) 1 s2⁄

t nu0 t( ) n!

sn 1+
-----------

δ t( ) 1
δ t a–( ) e as–

e at– u0 t( ) 1
s a+
-----------

t ne
at–

u0 t( ) n!

s a+( )n 1+
-------------------------

ωt u0 t( )sin ω
s2 ω2+
-----------------

ωcos t u0 t( ) s
s2 ω2+
-----------------

e at– ωt u0 t( )sin ω
s a+( )2 ω2+

-------------------------------

e at– ωcos t u0 t( ) s a+

s a+( )2 ω2+
-------------------------------
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2.4 The Laplace Transform of Common Waveforms
In this section, we will present procedures for deriving the Laplace transform of common wave-
forms using the transform pairs of Tables 1 and 2. The derivations are described in Subsections
2.4.1 through 2.4.5 below.

2.4.1 The Laplace Transform of a Pulse
The waveform of a pulse, denoted as , is shown in Figure 2.1.

Figure 2.1. Waveform for a pulse

We first express the given waveform as a sum of unit step functions as we’ve learned in Chapter
1. Then,

(2.67)
From Table 2.1, Page 2−13,

and from Table 2.2, Page 2−22

Thus,

and

Then, in accordance with the linearity property, the Laplace transform of the pulse of Figure 2.1
is

2.4.2 The Laplace Transform of a Linear Segment
The waveform of a linear segment, denoted as , is shown in Figure 2.2.

fP t( )

fP t( )

A

a t0

fP t( ) A u0 t( ) u0 t a–( )–[ ]=

f t a–( )u0 t a–( ) e as– F s( )⇔

u0 t( ) 1 s⁄   ⇔

Au0 t( ) A s⁄⇔

Au0 t a–( ) e as– A
s
----⇔

A u0 t( ) u0 t a–( )–[ ] A
s
---- e as–– A

s
---- A

s
---- 1 e as––( )=⇔

fL t( )
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Figure 2.2. Waveform for a linear segment

We must first derive the equation of the linear segment. This is shown in Figure 2.3. 

Figure 2.3. Waveform for a linear segment with the equation that describes it

Next, we express the given waveform in terms of the unit step function as follows:

From Table 2.1, Page 2−13,

and from Table 2.2, Page 2−22,

Therefore, the Laplace transform of the linear segment of Figure 2.2 is 

(2.68)

2.4.3 The Laplace Transform of a Triangular Waveform
The waveform of a triangular waveform, denoted as , is shown in Figure 2.4.

 

Figure 2.4. Triangular waveform

The equations of the linear segments are shown in Figure 2.5.

1
t

0

1

2

fL t( )

1
t

0

1

2

fL t( ) t 1–

fL t( ) t 1–( )u0 t 1–( )=

f t a–( )u0 t a–( ) e as– F s( )⇔

tu0 t( ) 1
s2
----  ⇔

t 1–( )u0 t 1–( ) e s– 1
s2
----⇔

fT t( )

1 t
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1
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Figure 2.5. Triangular waveform with the equations of the linear segments

Next, we express the given waveform in terms of the unit step function.

Collecting like terms, we obtain

From Table 2.1, Page 2−13, 

and from Table 2.2, Page 2−22,

Then,

or

Therefore, the Laplace transform of the triangular waveform of Figure 2.4 is 

(2.69)

2.4.4 The Laplace Transform of a Rectangular Periodic Waveform
The waveform of a rectangular periodic waveform, denoted as , is shown in Figure 2.6. This
is a periodic waveform with period , and we can apply the time periodicity property

1 t
0

1

2

fT t( )
t– 2+t

fT t( ) t u0 t( ) u0 t 1–( )–[ ] t– 2+( ) u0 t 1–( ) u0 t 2–( )–[ ]+=

tu0 t( ) tu0 t 1–( )– tu0 t 1–( )– 2u0 t 1–( ) tu0 t 2–( ) 2u0 t 2–( )–+ +=

fT t( ) tu0 t( ) 2 t 1–( )u0 t 1–( ) t 2–( )u0 t 2–( )+–=

  f t a–( )u0 t a–( ) e as– F s( )⇔

tu0 t( ) 1
s2
----⇔

tu0 t( ) 2 t 1–( )u0 t 1–( ) t 2–( )u0 t 2–( )+– 1
s2
---- 2e–

s– 1
s2
---- e 2s– 1

s2
----+⇔

tu0 t( ) 2 t 1–( )u0 t 1–( ) t 2–( )u0 t 2–( )+– 1
s2
---- 1 2e s–– e 2s–+( )⇔

fT t( ) 
1
s2
---- 1 e s––( )

2
⇔

fR t( )

T 2a=

L f τ( ){ }
f τ( )

0

T

∫ e sτ– dτ

1 e sT––
--------------------------------=
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where the denominator represents the periodicity of .

Figure 2.6. Rectangular periodic waveform
For this waveform,

(2.70)

2.4.5 The Laplace Transform of a Half−Rectified Sine Waveform
The waveform of a half-rectified sine waveform, denoted as , is shown in Figure 2.7. This is
a periodic waveform with period , and we can apply the time periodicity property
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where the denominator represents the periodicity of .

Figure 2.7. Half-rectified sine waveform*

For this waveform, 

(2.71)

2.5 Using MATLAB for Finding the Laplace Transforms of Time Functions 
We can use the MATLAB function laplace to find the Laplace transform of a time function. For
examples, please type 

help laplace

in MATLAB’s Command prompt.

We will be using this function extensively in the subsequent chapters of this book.

* This waveform was produced with the following MATLAB script:
t=0:pi/64:5*pi; x=sin(t); y=sin(t−2*pi); z=sin(t−4*pi); plot(t,x,t,y,t,z); axis([0 5*pi 0 1])
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--------------------------==
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-----------------------------------------------=
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2.6 Summary
• The two−sided or bilateral Laplace Transform pair is defined as

 

where  denotes the Laplace transform of the time function ,  denotes
the Inverse Laplace transform, and  is a complex variable whose real part is , and imaginary
part , that is, .

• The unilateral or one−sided Laplace transform defined as

• We denote transformation from the time domain to the complex frequency domain, and vice
versa, as

• The linearity property states that

• The time shifting property states that

• The frequency shifting property states that

• The scaling property states that 

• The differentiation in time domain property states that

Also,

L f t( ){ } F s( )= f t( )
∞–

∞

∫ e st– dt=

L 1– F s( ){ } f t( )= 1
2πj
-------- F s( )

σ jω–

σ jω+

∫ estds=
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L f t( ){ } F= s( ) f t( )
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∞

∫ e st– dt f t( )
0

∞

∫ e st– dt= =

f t( ) F s( )⇔

c1 f1 t( ) c2 f2 t( ) … cn fn t( )+ + + c1 F1 s( ) c2 F2 s( ) … cn Fn s( )+ + +⇔

f t a–( )u0 t a–( ) e as– F s( )⇔

e at– f t( ) F s a+( )⇔
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a
---F s

a
-- 
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----- f t( )= sF s( ) f 0−( )–⇔
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Summary

and in general

where the terms , and so on, represent the initial conditions.

• The differentiation in complex frequency domain property states that

and in general,

• The integration in time domain property states that

• The integration in complex frequency domain property states that

provided that the limit  exists.

• The time periodicity property states that

• The initial value theorem states that

d 2

dt 2
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d 3
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t
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s

-------------+⇔
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• The final value theorem states that

• Convolution in the time domain corresponds to multiplication in the complex frequency
domain, that is,

• Convolution in the complex frequency domain divided by , corresponds to multiplica-
tion in the time domain. That is,

• The Laplace transforms of some common functions of time are shown in Table 2.1, Page 2−13

• The Laplace transforms of some common waveforms are shown in Table 2.2, Page2−22

• We can use the MATLAB function laplace to find the Laplace transform of a time function

f t( )
t ∞→
lim sF s( )

s 0→
lim f ∞( )= =

f1 t( )*f2 t( ) F1 s( )F2 s( )⇔

1 2πj⁄

f1 t( )f2 t( ) 1
2πj
-------- F1 s( )*F2 s( )⇔
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2.7 Exercises
1. Derive the Laplace transform of the following time domain functions:

a.       b.       c.       d.       e.  

2. Derive the Laplace transform of the following time domain functions:

a.       b.       c.       d.       e.  

3. Derive the Laplace transform of the following time domain functions:

a.       b.  

c.       d.  

e.    Be careful with this! Comment and you may skip derivation.

4. Derive the Laplace transform of the following time domain functions:

a.       b.       c.   

d.    e.  

5. Derive the Laplace transform of the following time domain functions:

a.       b.       c.  

d.       e.  

6. Derive the Laplace transform of the following time domain functions:

a.       b.       c.       d.       e.  

7. Derive the Laplace transform of the following time domain functions:

a.       b.       c.       d.         e.

12 6u0 t( ) 24u0 t 12–( ) 5tu0 t( ) 4t 5u0 t( )

j8 j5 90°–∠ 5e 5t– u0 t( ) 8t 7e 5t– u0 t( ) 15δ t 4–( )
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d t 2e
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τ

---------- τd
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∫
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------------ τcos
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----------- τd
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∞

∫
e τ–

τ
------- τd
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∞
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8. Derive the Laplace transform for the sawtooth waveform  below.

9. Derive the Laplace transform for the full−rectified waveform  below.

Write a simple MATLAB script that will produce the waveform above.

fST t( )

A

a 2a
t

fST t( )

3a

fFR t( )

fFR t( )

π 2π 3π 4π
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Solutions to End−of−Chapter Exercises

2.8 Solutions to End−of−Chapter Exercises
1. From the definition of the Laplace transform or from Table 2.2, Page 2−22, we obtain:

a      b.       c.       d.       e.  

2. From the definition of the Laplace transform or from Table 2.2, Page 2−22, we obtain:

a.   b.   c.   d.   e. 

3.

a. From Table 2.2, Page 2−22, and the linearity property, we obtain 

b.  and 

c.   d.   e. 

This answer for part (e) looks suspicious because  and the Laplace transform is
unilateral, that is, there is one−to−one correspondence between the time domain and the
complex frequency domain. The fallacy with this procedure is that we assumed that if

 and , we cannot conclude that . For this exercise

, and as we’ve learned, multiplication in the time domain corre-

sponds to convolution in the complex frequency domain. Accordingly, we must use the

Laplace transform definition  and this requires integration by parts. We skip

this analytical derivation. The interested reader may try to find the answer with the MAT-
LAB script

syms s t; 2*laplace(sin(4*t)/cos(4*t))

4. From (2.22), Page 2−6,

a.

12 s⁄ 6 s⁄ e 12s– 24
s

------⋅ 5 s2⁄ 4 5!

s6
-----⋅

j8 s⁄ 5 s⁄ 5
s 5+
----------- 8 7!

s 5+( )8
------------------⋅ 15e 4s–

3!

s4
----- 3 2!×

s3
-------------- 4

s2
---- 3

s
---+ + +

3 2t 3–( )δ t 3–( ) 3 2t 3–( ) t 3=
δ t 3–( ) 9δ t 3–( )= = 9δ t 3–( ) 9e 3s–⇔

3 5
s2 52+
----------------⋅ 5 s

s2 32+
----------------⋅ 2 4ttan 2 4tsin

4tcos
-------------⋅ 2 4 s2 22+( )⁄

s s2 22+( )⁄
----------------------------⋅ 8

s
---=⇔=

8 s⁄ 8u0 t( )⇔

f1 t( ) F1 s( )⇔ f2 t( ) F2 s( )⇔
f1 t( )
f2 t( )
-----------

F1 s( )
F2 s( )
-------------⇔

f1 t( ) f2 t( )⋅ 4t 1
4tcos

-------------⋅sin=

2 4ttan( )e st– td
0

∞

∫

t nf t( ) 1–( )n d n

dsn
--------F s( )⇔

3 1–( )1 d
ds
----- 5

s2 52+
---------------- 

  3 5 2s( )⋅–

s2 25+( )
2

------------------------– 30s

s2 25+( )
2

------------------------= =
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b.

c.

d.

e.

 and 

5.
a. 

b.

c.

2 1–( )2 d2

ds2
-------- s

s2 32+
---------------- 

  2 d
ds
----- s2 32 s 2s( )–+

s2 9+( )
2

----------------------------------- 2 d
ds
----- s2– 9+

s2 9+( )
2

---------------------
 
 
 

= =

2 s2 9+( )
2

2s–( ) 2 s2 9+( ) 2s( ) s2– 9+( )–

s2 9+( )
4

--------------------------------------------------------------------------------------------------⋅=

2 s2 9+( ) 2s–( ) 4s s2– 9+( )–

s2 9+( )
3

--------------------------------------------------------------------⋅ 2 2s3– 18s– 4s3 36s–+

s2 9+( )
3

--------------------------------------------------------⋅==

2 2s3 54s–

s2 9+( )
3

----------------------⋅ 2 2s s2 27–( )

s2 9+( )
3

---------------------------⋅ 4s s2 27–( )

s2 9+( )
3

---------------------------= ==

2 5×
s 5+( )2 52+

------------------------------ 10
s 5+( )2 25+

-------------------------------=

8 s 3+( )
s 3+( )2 42+

------------------------------ 8 s 3+( )
s 3+( )2 16+

-------------------------------=

t π 4⁄ δcos t π 4⁄–( ) 2 2⁄( )δ t π 4⁄–( )= 2 2⁄( )δ t π 4⁄–( ) 2 2⁄( )e π 4⁄( )s–⇔

5tu0 t 3–( ) 5 t 3–( ) 15+[ ]u0 t 3–( ) e 3s– 5
s2
---- 15

s
------+ 

  5
s
---e 3s– 1

s
--- 3+ 
 =⇔=

2t 2 5t 4+–( )u0 t 3–( ) 2 t 3–( )2 12t 18– 5t– 4+ +[ ]u0 t 3–( )=

2 t 3–( )2 7t 14–+[ ]u0 t 3–( )=

2 t 3–( )2 7 t 3–( ) 21 14–+ +[ ]u0 t 3–( )=

2 t 3–( )2 7 t 3–( ) 7+ +[ ]u0 t 3–( ) e 3s– 2 2!×
s3

-------------- 7
s2
---- 7

s
---+ + 

 ⇔=

t 3–( )e 2t– u0 t 2–( ) t 2–( ) 1–[ ]e 2 t 2–( )– e 4– u0 t 2–( )⋅=

 e 4– e 2s– 1
s 2+( )2

------------------ 1
s 2+( )

----------------–⋅ e 4– e 2s– s 1+( )–

s 2+( )2
-------------------⋅=⇔
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d.

e.

6.
a.

b.

c.

Thus,

and

2t 4–( )e 2 t 2–( )u0 t 3–( ) 2 t 3–( ) 6 4–+[ ]e 2 t 3–( )– e 2– u0 t 3–( )⋅=

 e 2– e 3s– 2
s 3+( )2

------------------ 2
s 3+( )

----------------+⋅ 2e 2– e 3s– s 4+

s 3+( )2
------------------⋅=⇔

4te 3t– 2tcos( )u0 t( ) 4 1–( )1 d
ds
----- s 3+

s 3+( )2 22+
------------------------------ 4– d

ds
----- s 3+

s2 6s 9 4+ + +
-----------------------------------=⇔

 4–
d
ds
----- s 3+

s2 6s 13+ +
----------------------------- 4 s2 6s 13 s 3+( ) 2s 6+( )–+ +

s2 6s 13+ +( )
2

------------------------------------------------------------------------–=⇔

 4 s2 6s 13 2s2– 6s– 6s– 18–+ +

s2 6s 13+ +( )
2

------------------------------------------------------------------------------ 4 s2 6s 5+ +( )

s2 6s 13+ +( )
2

------------------------------------=–⇔

3t 3
s2 32+
----------------⇔sin d

dt
-----f t( ) sF s( ) f 0−( )–⇔ f 0−( ) 3tsin t 0=

0= =

td
d 3tsin( ) s 3

s2 32+
---------------- 0– 3s

s2 9+
--------------=⇔

3e 4t– 3
s 4+
-----------⇔ d

dt
-----f t( ) sF s( ) f 0−( )–⇔ f 0−( ) 3e 4t–

t 0=
3= =

td
d 3e 4t–( ) s 3

s 4+
----------- 3– 3s

s 4+
----------- 3 s 4+( )

s 4+
-------------------– 12–

s 4+
-----------= =⇔

2tcos s
s2 22+
----------------⇔ t 2 2tcos 1–( )2 d2

ds2
-------- s

s2 4+
--------------⇔

d
ds
----- s2 4 s 2s( )–+

s2 4+( )
2

--------------------------------- d
ds
----- s– 2 4+

s2 4+( )
2

--------------------- s2 4+( )
2

2s–( ) s– 2 4+( ) s2 4+( )2 2s( )–

s2 4+( )
4

-------------------------------------------------------------------------------------------------= =

s2 4+( ) 2s–( ) s– 2 4+( ) 4s( )–
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3

------------------------------------------------------------------------ 2s3– 8s– 4s3 16s–+
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3

----------------------------------------------------- 2s s2 12–( )
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3
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d.

e.

7.
a.

 but to find  we must first show that the limit  exists. Since

, this condition is satisfied and thus . From tables of integrals, 

. Then,  and the constant of integra-

tion  is evaluated from the final value theorem. Thus,

 and 

b.

From (a) above,  and since , it follows that

c.

From (a) above  and since , it follows that

td
d t 2 2tcos( ) sF s( ) f 0−( )–⇔

 s2s s2 12–( )

s2 4+( )
3

--------------------------- 0– 2s2 s2 12–( )
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------------------------------=⇔
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s2 22+
----------------⇔ e 2t– 2tsin 2
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-----f t( ) sF s( ) f 0−( )–⇔
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 or 

d.

, , and from tables of integrals,

. Then,  and the constant of inte-

gration  is evaluated from the final value theorem. Thus,

 and using  we

obtain

e.

, , and from tables of integrals . Then,

 and the constant of integration  is evaluated from the final value

theorem. Thus,

and using , we obtain

8. 

This is a periodic waveform with period , and its Laplace transform is

atsin
at

------------ 1
a
--- 1 s⁄

a
--------- 
 1–

tan⇔ atsin
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------------ a s⁄( )1–tan⇔
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----------- sd∫ s 1+( )ln C+= C

f t( )
t ∞→
lim sF s( )

s 0→
lim s s 1+( )ln C+[ ]

s 0→
lim 0= = =

f τ( )
∞–

t

∫ dτ F s( )
s

---------- f 0−( )
s

-------------+⇔

e τ–

τ
------- τd

t

∞

∫
1
s
--- s 1+( )ln⇔

A

a 2a
t

fST t( )

3a

A
a
----t

T a=



Chapter 2  The Laplace Transformation

2−38 Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition
Copyright © Orchard Publications

  (1)

and from (2.41), Page 2-14, and limits of integration  to , we obtain

Adding and subtracting  in the last expression above, we obtain

By substitution into (1) we obtain

9.
This is a periodic waveform with period  and its Laplace transform is

From tables of integrals,

Then,

The full−rectified waveform can be produced with the MATLAB script

t=0:pi/16:4*pi; x=sin(t); plot(t,abs(x)); axis([0 4*pi 0 1])
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------------------ A

a
----te st– td

0
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∫
A
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-------------------------- te st– td
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∫= =
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Chapter 3

The Inverse Laplace Transformation

his chapter is a continuation to the Laplace transformation topic of the previous chapter
and presents several methods of finding the Inverse Laplace Transformation. The partial
fraction expansion method is explained thoroughly and it is illustrated with several exam-

ples. 

3.1 The Inverse Laplace Transform Integral
The Inverse Laplace Transform Integral was stated in the previous chapter; it is repeated here for
convenience.

(3.1)

This integral is difficult to evaluate because it requires contour integration using complex vari-
ables theory. Fortunately, for most engineering problems we can refer to Tables of Properties, and
Common Laplace transform pairs to lookup the Inverse Laplace transform.

3.2 Partial Fraction Expansion
Quite often the Laplace transform expressions are not in recognizable form, but in most cases
appear in a rational form of , that is,

(3.2)

where  and  are polynomials, and thus (3.2) can be expressed as

(3.3)

The coefficients  and  are real numbers for , and if the highest power  of
 is less than the highest power  of , i.e., ,  is said to be expressed as a proper

rational function. If ,  is an improper rational function.

In a proper rational function, the roots of  in (3.3) are found by setting ; these are
called the zeros of . The roots of , found by setting , are called the poles of .
We assume that  in (3.3) is a proper rational function. Then, it is customary and very conve-

T

L 1– F s( ){ } f t( )= 1
2πj
-------- F s( )

σ jω–

σ jω+

∫ estds=

s

F s( ) N s( )
D s( )
-----------=

N s( ) D s( )

F s( ) N s( )
D s( )
-----------

bmsm bm 1– sm 1– bm 2– sm 2– … b1s b0+ + + + +

ansn an 1– sn 1– an 2– sn 2– … a1s a0+ + + + +
--------------------------------------------------------------------------------------------------------------------= =

ak bk k 1 2 … n, , ,= m

N s( ) n D s( ) m n< F s( )
m n≥ F s( )

N s( ) N s( ) 0=

F s( ) D s( ) D s( ) 0= F s( )
F s( )
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nient to make the coefficient of  unity; thus, we rewrite  as

(3.4)

The zeros and poles of (3.4) can be real and distinct, repeated, complex conjugates, or combina-
tions of real and complex conjugates. However, we are mostly interested in the nature of the
poles, so we will consider each case separately, as indicated in Subsections 3.2.1 through 3.2.3
below.

3.2.1 Distinct Poles
If all the poles  of  are distinct (different from each another), we can factor the
denominator of  in the form 

(3.5)

where  is distinct from all other poles. Next, using the partial fraction expansion method,*we can
express (3.5) as

(3.6)

where  are the residues, and  are the poles of .

To evaluate the residue , we multiply both sides of (3.6) by ; then, we let , that is,

(3.7)

Example 3.1  

Use the partial fraction expansion method to simplify  of (3.8) below, and find the time
domain function  corresponding to .

* The partial fraction expansion method applies only to proper rational functions. It is used extensively in integration, and in
finding the inverses of the Laplace transform, the Fourier transform, and the z-transform. This method allows us to decom-
pose a rational polynomial into smaller rational polynomials with simpler denominators from which we can easily recognize
their integrals and inverse transformations. This method is also being taught in intermediate algebra and introductory cal-
culus courses. 

sn F s( )

F s( ) N s( )
D s( )
-----------

1
an
----- bmsm bm 1– sm 1– bm 2– sm 2– … b1s b0+ + + + +( )

sn an 1–

an
-----------sn 1– an 2–

an
-----------sn 2– …

a1
an
-----s

a0
an
-----+ + + + +

-------------------------------------------------------------------------------------------------------------------------------= =

p1 p2 p3 … pn, , , , F s( )

F s( )

F s( ) N s( )
s p1–( ) s p2–( ) s p3–( ) … s pn–( )⋅ ⋅ ⋅ ⋅

-------------------------------------------------------------------------------------------------=

pk

F s( ) r1

s p1–( )
------------------ r2

s p2–( )
------------------ r3

s p3–( )
------------------ …

rn
s pn–( )

------------------+ + + +=

r1 r2 r3 … rn, , , , p1 p2 p3 … pn, , , , F s( )

rk s pk–( ) s pk→

rk s pk–( )F s( )
s pk→
lim s pk–( )F s( )

s pk=
= =

F1 s( )

f1 t( ) F1 s( )
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Partial Fraction Expansion

(3.8)

Solution:

Using (3.6), we obtain

(3.9)

The residues are

(3.10)

and

(3.11)

Therefore, we express (3.9) as

(3.12)

and from Table 2.2, Chapter 2, Page 2−22, we find that

(3.13)

Therefore,

(3.14)

The residues and poles of a rational function of polynomials such as (3.8), can be found easily
using the MATLAB residue(a,b) function. For this example, we use the script

Ns = [3, 2]; Ds = [1, 3, 2]; [r, p, k] = residue(Ns, Ds)

and MATLAB returns the values

r =
     4
    -1
p =
    -2
    -1
k =
     []

F1 s( ) 3s 2+

s2 3s 2+ +
--------------------------=

F1 s( ) 3s 2+

s2 3s 2+ +
-------------------------- 3s 2+

s 1+( ) s 2+( )
--------------------------------- r1

s 1+( )
---------------- r2

s 2+( )
----------------+= = =

r1 s 1+( )F s( )
s 1–→
lim 3s 2+

s 2+( )
----------------

s 1–=

1–= = =

r2 s 2+( )F s( )
s 2–→
lim 3s 2+

s 1+( )
----------------

s 2–=

4= = =

F1 s( ) 3s 2+

s2 3s 2+ +
-------------------------- 1–

s 1+( )
---------------- 4

s 2+( )
----------------+= =

e at– u0 t( ) 1
s a+
-----------⇔

F1 s( ) 1–
s 1+( )

---------------- 4
s 2+( )

----------------+= e t–– 4e 2t–+( ) u0 t( ) f1 t( )=⇔
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For the MATLAB script above, we defined Ns and Ds as two vectors that contain the numerator
and denominator coefficients of . When this script is executed, MATLAB displays the r and
p vectors that represent the residues and poles respectively. The first value of the vector r is asso-
ciated with the first value of the vector p, the second value of r is associated with the second
value of p, and so on.

The vector k is referred to as the direct term and it is always empty (has no value) whenever 
is a proper rational function, that is, when the highest degree of the denominator is larger than
that of the numerator. For this example, we observe that the highest power of the denominator is

, whereas the highest power of the numerator is  and therefore the direct term is empty.

We can also use the MATLAB ilaplace(f) function to obtain the time domain function directly
from . This is done with the script that follows. 

syms s t; Fs=(3*s+2)/(s^2+3*s+2); ft=ilaplace(Fs); pretty(ft)

When this script is executed, MATLAB displays the expression

   4 exp(-2 t)- exp(-t)

Example 3.2  

Use the partial fraction expansion method to simplify  of (3.15) below, and find the time
domain function  corresponding to .

(3.15)

Solution:

First, we use the MATLAB factor(s) symbolic function to express the denominator polynomial of
 in factored form. For this example,

syms s; factor(s^3 + 12*s^2 + 44*s + 48)

ans =
(s+2)*(s+4)*(s+6)

Then, 

(3.16)

The residues are

F s( )

F s( )

s2 s

F s( )

F2 s( )

f2 t( ) F2 s( )

F2 s( ) 3s2 2s 5+ +

s3 12s+
2

44s 48+ +
-------------------------------------------------=

F2 s( )

F2 s( ) 3s2 2s 5+ +

s3 12s+
2

44s 48+ +
------------------------------------------------- 3s2 2s 5+ +

s 2+( ) s 4+( ) s 6+( )
-------------------------------------------------- r1

s 2+( )
---------------- r2

s 4+( )
---------------- r3

s 6+( )
----------------+ += = =
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Partial Fraction Expansion

(3.17)

(3.18)

(3.19)

Then, by substitution into (3.16) we obtain

(3.20)

From Table 2.2, Chapter 2, Page 2−22,

(3.21)

Therefore,

(3.22)

Check with MATLAB:

syms s t; Fs = (3*s^2 + 4*s + 5) / (s^3 + 12*s^2 + 44*s + 48); ft = ilaplace(Fs)

ft =
-37/4*exp(-4*t)+9/8*exp(-2*t)+89/8*exp(-6*t)

3.2.2 Complex Poles

Quite often, the poles of  are complex,* and since complex poles occur in complex conjugate
pairs, the number of complex poles is even. Thus, if  is a complex root of , then, its com-

plex conjugate pole, denoted as , is also a root of . The partial fraction expansion method
can also be used in this case, but it may be necessary to manipulate the terms of the expansion in
order to express them in a recognizable form. The procedure is illustrated with the following
example.

* A review of complex numbers is presented in Appendix C

r1
3s2 2s 5+ +
s 4+( ) s 6+( )

---------------------------------
s 2–=

9
8
---= =

r2
3s2 2s 5+ +
s 2+( ) s 6+( )

---------------------------------
s 4–=

37
4

------–= =

r3
3s2 2s 5+ +
s 2+( ) s 4+( )

---------------------------------
s 6–=

89
8

------= =

F2 s( ) 3s2 2s 5+ +

s3 12s+
2

44s 48+ +
------------------------------------------------- 9 8⁄

s 2+( )
---------------- 37 4⁄–

s 4+( )
---------------- 89 8⁄

s 6+( )
----------------+ += =

e at– u0 t( ) 1
s a+
-----------⇔

F2 s( ) 9 8⁄
s 2+( )

---------------- 37 4⁄–
s 4+( )

---------------- 89 8⁄
s 6+( )

----------------+ += 9
8
---e 2t– 37

4
------– e 4t– 89

8
------e 6t–+ 

  u0 t( ) f2 t( )=⇔

F s( )
pk D s( )

pk∗ D s( )
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Example 3.3  

Use the partial fraction expansion method to simplify  of (3.23) below, and find the time
domain function  corresponding to .

(3.23)

Solution:

Let us first express the denominator in factored form to identify the poles of  using the
MATLAB factor(s) symbolic function. Then,

syms s; factor(s^3 + 5*s^2 + 12*s + 8)

ans =
(s+1)*(s^2+4*s+8)

The factor(s) function did not factor the quadratic term. We will use the roots(p) function.

p=[1  4  8]; roots_p=roots(p)

roots_p =
  -2.0000 + 2.0000i
  -2.0000 - 2.0000i

Then,

or

(3.24)

The residues are

(3.25)

(3.26)

(3.27)

F3 s( )

f3 t( ) F3 s( )

F3 s( ) s 3+

s3 5s+
2

12s 8+ +
-------------------------------------------=

F3 s( )

F3 s( ) s 3+

s3 5s+
2

12s 8+ +
------------------------------------------- s 3+

s 1+( ) s 2 j2+ +( ) s 2 j2–+( )
------------------------------------------------------------------------= =

F3 s( ) s 3+

s3 5s+
2

12s 8+ +
------------------------------------------- r1

s 1+( )
---------------- r2

s 2 j2+ +( )
---------------------------

r2∗
s 2 j– 2+( )

-------------------------+ += =

r1
s 3+

s2 4s 8+ +
--------------------------

s 1–=

2
5
---= =

r2
s 3+

s 1+( ) s 2 j– 2+( )
------------------------------------------

s 2– j2–=

1 j2–
1– j2–( ) j4–( )

------------------------------------ 1 j2–
8– j4+

------------------= = =

1 j2–( )
8– j4+( )

----------------------- 8– j4–( )
8– j4–( )

----------------------- 16– j12+
80

------------------------ 1
5
---– j3

20
------+= ==

r2∗
1
5
---– j3

20
------+ 

 ∗ 1
5
---– j3

20
------–= =
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Partial Fraction Expansion

By substitution into (3.24),

(3.28)

The last two terms on the right side of (3.28), do not resemble any Laplace transform pair that we
derived in Chapter 2. Therefore, we will express them in a different form. We combine them into
a single term*, and now (3.28) is written as

(3.29)

For convenience, we denote the first term on the right side of (3.29) as , and the second as
. Then,

(3.30)

Next, for 

(3.31)

From Table 2.2, Chapter 2, Page 2−22,

(3.32)

Accordingly, we express  as 

(3.33)

Addition of (3.30) with (3.33) yields

* Here, we used MATLAB function simple((−1/5 +3j/20)/(s+2+2j)+(−1/5 −3j/20)/(s+2−2j)). The simple function,
after several simplification tools that were displayed on the screen, returned (-2*s-1)/(5*s^2+20*s+40).

F3 s( ) 2 5⁄
s 1+( )

---------------- 1 5⁄– j3 20⁄+
s 2 j2+ +( )

----------------------------------- 1 5⁄– j3 20⁄–
s 2 j– 2+( )

-----------------------------------+ +=

F3 s( ) 2 5⁄
s 1+( )

---------------- 1
5
--- 2s 1+( )

s2 4s 8+ +( )
-------------------------------⋅–=

F31 s( )

F32 s( )

F31 s( ) 2 5⁄
s 1+( )

----------------= 2
5
---e t– f31 t( )=⇔

F32 s( )

F32 s( ) 1
5
---– 2s 1+( )

s2 4s 8+ +( )
-------------------------------⋅=

e at– ωtu0tsin ω
s a+( )2 ω2+

-------------------------------⇔

e at– ωtu0tcos s a+

s a+( )2 ω2+
-------------------------------⇔

F32 s( )

F32 s( ) 2
5
---–

s 1
2
--- 3

2
--- 3

2
---–+ +

s 2 )+ 2 22+( )
---------------------------------
 
 
 
 

2
5
---– s 2+

s 2 )+ 2 22+( )
--------------------------------- 3 2⁄–

s 2 )+ 2 22+( )
---------------------------------+ 

 = =

2
5
---–

s 2+

s 2 )+ 2 22+( )
--------------------------------- 

  6 10⁄
2

------------- 2
s 2 )+ 2 22+( )

--------------------------------- 
 +=

2
5
---– s 2+

s 2 )+ 2 22+( )
--------------------------------- 

  3
10
------ 2

s 2 )+ 2 22+( )
--------------------------------- 

 +=
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Check with MATLAB:

syms a s t w; % Define several symbolic variables
Fs=(s + 3)/(s^3 + 5*s^2 + 12*s + 8); ft=ilaplace(Fs)

ft =
2/5*exp(-t)-2/5*exp(-2*t)*cos(2*t)
+3/10*exp(-2*t)*sin(2*t)

3.2.3 Multiple (Repeated) Poles
In this case,  has simple poles, but one of the poles, say , has a multiplicity . For this con-
dition, we express it as

(3.34)

Denoting the  residues corresponding to multiple pole  as , the partial frac-
tion expansion of (3.34) is expressed as

(3.35)

For the simple poles , we proceed as before, that is, we find the residues from

(3.36)

The residues  corresponding to the repeated poles, are found by multiplication

of both sides of (3.35) by . Then, 

(3.37)

F3 s( ) F31 s( ) F32 s( )+
2 5⁄
s 1+( )

---------------- 2
5
---–

s 2+

s 2 )+ 2 22+( )
--------------------------------- 

  3
10
------ 2

s 2 )+ 2 22+( )
--------------------------------- 

 += =

 2
5
---e t– 2

5
---e 2t– 2t 3

10
------e 2t– 2tsin+cos– f3 t( )=⇔

F s( ) p1 m

F s( ) N s( )
s p1–( )m s p2–( )… s pn 1––( ) s pn–( )

------------------------------------------------------------------------------------------=

m p1 r11 r12 r13 … r1m, , , ,

F s( ) r11

s p1–( )m
--------------------- r12

s p1–( )m 1–
---------------------------- r13

s p1–( )m 2–
---------------------------- … r1m

s p1–( )
------------------+ + + +=

 + 
r2

s p2–( )
------------------ r3

s p3–( )
------------------ …

rn
s pn–( )

------------------+ + +

p1 p2 … pn, , ,

rk s pk–( )F s( )
s pk→
lim s pk–( )F s( )

s pk=
= =

r11 r12 r13 … r1m, , , ,

s p–( )m

s p1–( )mF s( ) r11 s p1–( )r12 s p1–( )2r13 … s p1–( )m 1– r1m+ + + +=

 + s p1–( )m r2

s p2–( )
------------------ r3

s p3–( )
------------------ …

rn
s pn–( )

------------------+ + + 
 
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Partial Fraction Expansion

Next, taking the limit as  on both sides of (3.37), we obtain

or

(3.38)

and thus (3.38) yields the residue of the first repeated pole.

The residue  for the second repeated pole , is found by differentiating (3.37) with respect to

 and again, we let , that is, 

(3.39)

In general, the residue  can be found from

(3.40)

whose  derivative of both sides is

(3.41)

or

(3.42)

Example 3.4  

Use the partial fraction expansion method to simplify  of (3.43) below, and find the time
domain function  corresponding to .

(3.43)

Solution:

We observe that there is a pole of multiplicity 2 at , and thus in partial fraction expansion
form,  is written as

s p1→

s p1–( )mF s( )
s p1→
lim r11 s p1–( )r12 s p1–( )2r13 … s p1–( )m 1– r1m+ + +[ ]

s p1→
lim+=

 + s p1–( )m r2

s p2–( )
------------------ r3

s p3–( )
------------------ …

rn
s pn–( )

------------------+ + + 
 

s p1→
lim

r11 s p1–( )mF s( )
s p1→
lim=

r12 p1

s s p1→

r12
d
ds
-----

s p1→
lim s p1–( )mF s( )[ ]=

r1k

s p1–( )mF s( ) r11 r12 s p1–( ) r13 s p1–( )2 …+ + +=

m 1–( )th

k 1–( )!r1k
1

k 1–( )!
------------------

s p1→
lim d k 1–

dsk 1–
-------------- s p1–( )mF s( )[ ]=

r1k
1

k 1–( )!
------------------

s p1→
lim d k 1–

dsk 1–
-------------- s p1–( )mF s( )[ ]=

F4 s( )

f4 t( ) F4 s( )

F4 s( ) s 3+

s 2+( ) s 1+( )2
-----------------------------------=

s 1–=

F4 s( )
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(3.44)

The residues are

The value of the residue  can also be found without differentiation as follows:

Substitution of the already known values of  and  into (3.44), and letting *, we obtain

or

from which  as before. Finally, 

(3.45)

Check with MATLAB:

syms s t; Fs=(s+3)/((s+2)*(s+1)^2); ft=ilaplace(Fs)

ft = exp(-2*t)+2*t*exp(-t)-exp(-t)

We can use the following script to check the partial fraction expansion.

syms s
Ns = [1  3]; % Coefficients of the numerator N(s) of F(s)
expand((s + 1)^2); % Expands (s + 1)^2 to s^2 + 2*s + 1;
d1 = [1  2  1]; % Coefficients of (s + 1)^2 = s^2 + 2*s + 1 term in D(s)
d2 = [0  1  2]; % Coefficients of (s + 2) term in D(s)
Ds=conv(d1,d2); % Multiplies polynomials d1 and d2 to express the

% denominator D(s) of F(s) as a polynomial
[r,p,k]=residue(Ns,Ds)

* This is permissible since (3.44) is an identity.

F4 s( ) s 3+

s 2+( ) s 1+( )2
-----------------------------------

r1
s 2+( )

----------------
r21

s 1+( )2
------------------

r22
s 1+( )

----------------+ += =

r1
s 3+

s 1+( )2
------------------

s 2–=

1= =

r21
s 3+
s 2+
-----------

s 1–=

2= =

r22
d
ds
----- s 3+

s 2+
----------- 

 

s 1–=

s 2+( ) s 3+( )–

s 2+( )2
---------------------------------------

s 1–=

1–= = =

r22

r1 r21 s 0=

s 3+

s 1+( )2 s 2+( )
-----------------------------------

s 0=

1
s 2+( )

----------------
s 0=

2
s 1+( )2

------------------
s 0=

r22
s 1+( )

----------------
s 0=

+ +=

3
2
--- 1

2
--- 2 r22+ +=

r22 1–=

F4 s( ) s 3+

s 2+( ) s 1+( )2
-----------------------------------= 1

s 2+( )
---------------- 2

s 1+( )2
------------------ 1–

s 1+( )
----------------+ += e 2t– 2te t– e t––+ f4 t( )=⇔
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r =
    1.0000
   -1.0000
    2.0000
p =
   -2.0000
   -1.0000
   -1.0000
k =
     []

Example 3.5  

Use the partial fraction expansion method to simplify  of (3.46) below, and find the time
domain function  corresponding to the given .

(3.46)

Solution:

We observe that there is a pole of multiplicity  at , and a pole of multiplicity  at .
Then, in partial fraction expansion form,  is written as

(3.47)

The residues are

F5 s( )

f5 t( ) F5 s( )

F5 s( ) s2 3+ s 1+

s 1+( )3 s 2+( )2
--------------------------------------=

3 s 1–= 2 s 2–=

F5 s( )

F5 s( ) r11

s 1+( )3
------------------ r12

s 1+( )2
------------------ r13

s 1+( )
---------------- r21

s 2+( )2
------------------ r22

s 2+( )
----------------+ + + +=

r11
s2 3+ s 1+

s 2+( )2
--------------------------

s 1–=

1–= =

r12
d
ds
----- s2 3+ s 1+

s 2+( )2
--------------------------
 
 
 

s 1–=

=

s 2+( )2 2s 3+( ) 2 s 2+( ) s2 3+ s 1+( )–

s 2+( )4
----------------------------------------------------------------------------------------------

s 1–=

s 4+

s 2+( )3
------------------

s 1–=

3= ==
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Next, for the pole at ,

and

By substitution of the residues into (3.47), we obtain

(3.48)

We will check the values of these residues with the MATLAB script below.

syms s; % The function collect(s) below multiplies (s+1)^3 by (s+2)^2
% and we use it to express the denominator D(s) as a polynomial so that we can
% use the coefficients of the resulting polynomial with the residue function

Ds=collect(((s+1)^3)*((s+2)^2))

Ds =
s^5+7*s^4+19*s^3+25*s^2+16*s+4

Ns=[1 3 1];  Ds=[1 7 19 25 16 4];  [r,p,k]=residue(Ns,Ds)
r =
    4.0000
    1.0000
   -4.0000
    3.0000
   -1.0000

r13
1
2!
----- d 2

ds2
-------- s2 3+ s 1+

s 2+( )2
--------------------------
 
 
 

s 1–=

1
2
--- d

ds
----- d

ds
----- s2 3+ s 1+

s 2+( )2
--------------------------
 
 
 

s 1–=

= =

1
2
--- d

ds
----- s 4+

s 2+( )3
------------------ 

 

s 1–=

1
2
--- s 2+( )3 3 s 2+( )2 s 4+( )–

s 2+( )6
----------------------------------------------------------------

s 1–=

==

1
2
--- s 2 3s– 12–+

s 2+( )4
----------------------------------- 

 

s 1–=

s– 5–

s 2+( )4
------------------

s 1–=

4–= ==

s 2–=

r21
s2 3+ s 1+

s 1+( )3
--------------------------

s 2–=

1= =

r22
d
ds
----- s2 3+ s 1+

s 1+( )3
--------------------------
 
 
 

s 2–=

s 1+( )3 2s 3+( ) 3 s 1+( )2 s2 3+ s 1+( )–

s 1+( )6
---------------------------------------------------------------------------------------------------

s 2–=

= =

s 1+( ) 2s 3+( ) 3 s2 3+ s 1+( )–

s 1+( )4
-----------------------------------------------------------------------------

s 2–=

s2– 4s–

s 1+( )4
--------------------

s 2–=

4= ==

F5 s( ) 1–

s 1+( )3
------------------ 3

s 1+( )2
------------------ 4–

s 1+( )
---------------- 1

s 2+( )2
------------------ 4

s 2+( )
----------------+ + + +=
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Case where F(s) is Improper Rational Function

p =
   -2.0000
   -2.0000
   -1.0000
   -1.0000
   -1.0000
k =
     []

From Table 2.2, Chapter 2, Page 2−22,

 

and with these, we derive  from (3.48) as

(3.49)

We can verify (3.49) with MATLAB as follows:

syms s t; Fs=-1/((s+1)^3) + 3/((s+1)^2) - 4/(s+1) + 1/((s+2)^2) + 4/(s+2); ft=ilaplace(Fs)

ft = -1/2*t^2*exp(-t)+3*t*exp(-t)-4*exp(-t)
          +t*exp(-2*t)+4*exp(-2*t)

3.3 Case where F(s) is Improper Rational Function

Our discussion thus far, was based on the condition that  is a proper rational function. How-
ever, if  is an improper rational function, that is, if , we must first divide the numerator

 by the denominator  to obtain an expression of the form

(3.50)

where  is a proper rational function.

Example 3.6  

Derive the Inverse Laplace transform  of

(3.51)

e at– 1
s a+
-----------⇔ te at– 1

s a+( )2
------------------⇔ t n 1– e at– n 1–( )!

s a+( )n
------------------⇔

f5 t( )

f5 t( ) 1
2
---– t 2e t– 3te t– 4e t–– te 2t– 4e 2t–+ + +=

F s( )
F s( ) m n≥

N s( ) D s( )

F s( ) k0 k1s k2s2 … km n– sm n– N s( )
D s( )
-----------+ + + + +=

N s( ) D s( )⁄

f6 t( )

F6 s( ) s2 2s 2+ +
s 1+

--------------------------=
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Solution:

For this example,  is an improper rational function. Therefore, we must express it in the form
of (3.50) before we use the partial fraction expansion method.

By long division, we obtain

Now, we recognize that

and

but

To answer that question, we recall that

and
 

where  is the doublet of the delta function. Also, by the time differentiation property

Therefore, we have the new transform pair

(3.52)
and thus,

(3.53)

In general,

(3.54)

We verify (3.53) with MATLAB as follows:

Ns = [1  2  2]; Ds = [1  1]; [r, p, k] = residue(Ns, Ds)

r =
     1
p =
    -1

F6 s( )

F6 s( ) s2 2s 2+ +
s 1+

-------------------------- 1
s 1+
----------- 1 s+ += =

1
s 1+
----------- e t–⇔

1 δ t( )⇔

s ?⇔

u0' t( ) δ t( )=

u0'' t( ) δ' t( )=

δ' t( )

u0'' t( ) δ' t( )= s2F s( ) sf 0( ) f '– 0( )–⇔ s2F s( ) s2 1
s
---⋅ s= = =

s δ' t( )⇔

F6 s( ) s2 2s 2+ +
s 1+

-------------------------- 1
s 1+
----------- 1 s+ += = e t– δ t( ) δ' t( )+ + f6 t( )=⇔

d n

dt n
--------δ t( ) sn⇔
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Alternate Method of Partial Fraction Expansion

k =
     1     1

The direct terms k= [1 1] above are the coefficients of  and  respectively.

3.4 Alternate Method of Partial Fraction Expansion
Partial fraction expansion can also be performed with the method of clearing the fractions, that is,
making the denominators of both sides the same, then equating the numerators. As before, we
assume that  is a proper rational function. If not, we first perform a long division, and then
work with the quotient and the remainder as we did in Example 3.6. We also assume that the
denominator  can be expressed as a product of real linear and quadratic factors. If these

assumptions prevail, we let  be a linear factor of , and we assume that  is the
highest power of  that divides . Then, we can express  as

 (3.55)

Let  be a quadratic factor of , and suppose that  is the highest power
of this factor that divides . Now, we perform the following steps:

1. To this factor, we assign the sum of n partial fractions, that is,

2. We repeat step 1 for each of the distinct linear and quadratic factors of 

3. We set the given  equal to the sum of these partial fractions

4. We clear the resulting expression of fractions and arrange the terms in decreasing powers of 

5. We equate the coefficients of corresponding powers of 

6. We solve the resulting equations for the residues

Example 3.7  

Express  of (3.56) below as a sum of partial fractions using the method of clearing the frac-
tions.

δ t( ) δ' t( )

F s( )

D s( )

s a–( ) D s( ) s a–( )m

s a–( ) D s( ) F s( )

F s( ) N s( )
D s( )
-----------

r1
s a–
-----------

r2

s a–( )2
------------------ …

rm

s a–( )m
-------------------+ += =

s2 αs β+ + D s( ) s2 αs β+ +( )
n

D s( )

r1s k1+

s2 αs β+ +
---------------------------

r2s k2+

s2 αs β+ +( )
2

---------------------------------- …
rns kn+

s2 αs β+ +( )
n

----------------------------------+ + +

D s( )

F s( )

s

s

F7 s( )
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(3.56)

Solution:

Using Steps 1 through 3 above, we obtain

(3.57)

With Step 4,

(3.58)

and with Step 5,

(3.59)

Relation (3.59) will be an identity is  if each power of  is the same on both sides of this relation.
Therefore, we equate like powers of  and we obtain

(3.60)

Subtracting the second equation of (3.60) from the fourth, we obtain

or
(3.61)

By substitution of (3.61) into the first equation of (3.60), we obtain

or
(3.62)

Next, substitution of (3.61) and (3.62) into the third equation of (3.60) yields

or
(3.63)

Finally by substitution of (3.61), (3.62), and (3.63) into the fourth equation of (3.60), we obtain

F7 s( ) 2s– 4+

s2 1+( ) s 1–( )2
-------------------------------------=

F7 s( ) 2s– 4+

s2 1+( ) s 1–( )2
------------------------------------- r1s A+

s2 1+( )
------------------ r21

s 1–( )2
------------------ r22

s 1–( )
----------------+ += =

2s– 4+ r1s A+( ) s 1–( )2 r21 s2 1+( ) r22 s 1–( ) s2 1+( )+ +=

2s– 4+ r1 r22+( )s3 2r1– A r22 r21+–+( )s2+=

 + r1 2A– r22+( ) s A r22– r21+( )+

s s
s

0 r1 r22+=

0 2r1– A r22 r21+–+=

2– r1 2A– r22+=

4 A r22– r21+=

4 2r1=

r1 2=

0 2 r22+=

 r22 2–=

2– 2 2A– 2–=

A 1=
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Alternate Method of Partial Fraction Expansion

or
(3.64)

Substitution of these values into (3.57) yields

(3.65)

Example 3.8  

Use partial fraction expansion to simplify  of (3.66) below, and find the time domain func-
tion  corresponding to .

(3.66)

Solution:

This is the same transform as in Example 3.3, Page 3−6, where we found that the denominator
 can be expressed in factored form of a linear term and a quadratic. Thus, we write  as

(3.67)

and using the method of clearing the fractions, we express (3.67) as

(3.68)

As in Example 3.3,

(3.69)

Next, to compute  and , we follow the procedure of this section and we obtain

 (3.70)

Since  is already known, we only need two equations in  and . Equating the coefficient of 

on the left side, which is zero, with the coefficients of  on the right side of (3.70), we obtain

(3.71)

4 1 2 r21+ +=

r21 1=

F7 s( ) 2s– 4+

s2 1+( ) s 1–( )2
------------------------------------- 2s 1+

s2 1+( )
------------------ 1

s 1–( )2
------------------ 2

s 1–( )
----------------–+= =

F8 s( )

f8 t( ) F8 s( )

F8 s( ) s 3+

s3 5s+
2

12s 8+ +
-------------------------------------------=

D s( ) F8 s( )

F8 s( ) s 3+

s 1+( ) s2 4s 8+ +( )
------------------------------------------------=

F8 s( ) s 3+

s 1+( ) s2 4s 8+ +( )
------------------------------------------------

r1
s 1+
-----------

r2s r3+

s2 4s 8+ +
--------------------------+= =

r1
s 3+

s2 4s 8+ +
--------------------------

s 1–=

2
5
---= =

r2 r3

s 3+( ) r1 s2 4s 8+ +( ) r2s r3+( ) s 1+( )+=

r1 r2 r3 s2

s2

0 r1= r2+
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and since , it follows that .

To obtain the third residue , we equate the constant terms of (3.70). Then,  or
, or . Then, by substitution into (3.68), we obtain 

(3.72)

as before.

The remaining steps are the same as in Example 3.3, and thus  is the same as , that is,
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Summary

3.5 Summary
• The Inverse Laplace Transform Integral defined as

is difficult to evaluate because it requires contour integration using complex variables theory. 

• For most engineering problems we can refer to Tables of Properties, and Common Laplace
transform pairs to lookup the Inverse Laplace transform.

• The partial fraction expansion method offers a convenient means of expressing Laplace trans-
forms in a recognizable form from which we can obtain the equivalent time−domain functions.

• If the highest power  of the numerator  is less than the highest power  of the denomi-
nator , i.e., ,  is said to be expressed as a proper rational function. If , 
is an improper rational function.

• The Laplace transform  must be expressed as a proper rational function before applying the
partial fraction expansion. If  is an improper rational function, that is, if , we must
first divide the numerator  by the denominator  to obtain an expression of the form

• In a proper rational function, the roots of numerator  are called the zeros of  and the
roots of the denominator  are called the poles of .

• The partial fraction expansion method can be applied whether the poles of  are distinct,
complex conjugates, repeated, or a combination of these.

• When  is expressed as 

 are called the residues and  are the poles of .

• The residues and poles of a rational function of polynomials can be found easily using the
MATLAB residue(a,b) function. The direct term is always empty (has no value) whenever

 is a proper rational function.

• We can use the MATLAB factor(s) symbolic function to convert the denominator polynomial
form of  into a factored form.
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• We can use the MATLAB collect(s) and expand(s) symbolic functions to convert the
denominator factored form of  into a polynomial form.

• In this chapter we introduced the new transform pair

and in general,

• The method of clearing the fractions is an alternate method of partial fraction expansion.

F2 s( )

s δ' t( )⇔

d n

dt n
--------δ t( ) sn⇔
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Exercises

3.6 Exercises
1. Find the Inverse Laplace transform of the following:

a.       b.       c.       d.       e.  

2. Find the Inverse Laplace transform of the following:

a.       b.       c.  

d.       e.  

3. Find the Inverse Laplace transform of the following:

a.       b.       Hint: 

c.       d.       e.  

4. Use the Initial Value Theorem to find  given that the Laplace transform of  is

Compare your answer with that of Exercise 3(c).

5. It is known that the Laplace transform  has two distinct poles, one at , the other at
. It also has a single zero at , and we know that . Find  and

.
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3.7 Solutions to End−of−Chapter Exercises
1.

a.        b.       c.  

d.  

e.  

2.

a.

b.

c. Using the MATLAB factor(s) function we obtain:

syms s; factor(s^2+3*s+2), factor(s^3+5*s^2+10.5*s+9)

ans = (s+2)*(s+1)
ans = 1/2*(s+2)*(2*s^2+6*s+9)

Then,

4
s 3+
----------- 4e 3t–⇔ 4

s 3+( )2
------------------ 4te 3t–⇔ 4

s 3+( )4
------------------ 4

3!
-----t3e

3t– 2
3
---t3e

3t–
=⇔

3s 4+

s 3+( )5
------------------ 3 s 4 3 5 3⁄ 5 3⁄–+⁄+( )

s 3+( )5
----------------------------------------------------------- 3 s 3+( ) 5 3⁄–

s 3+( )5
--------------------------------⋅ 3 1

s 3+( )4
------------------⋅ 5 1

s 3+( )5
------------------⋅–= = =

 3
3!
-----t3e 3t– 5

4!
-----t4e 3t–– 1

2
--- t3e 3t– 5

12
------t4e 3t–– 

 =⇔

s2 6s 3+ +

s 3+( )5
-------------------------- s2 6s 9 6–+ +

s 3+( )5
----------------------------------- s 3+( )2

s 3+( )5
------------------ 6

s 3+( )5
------------------– 1

s 3+( )3
------------------ 6 1

s 3+( )5
------------------⋅–= = =

 1
2!
-----t2e 3t– 6

4!
-----t4e 3t––

1
2
--- t2e 3t– 1

2
---t4e 3t–– 

 =⇔

3s 4+

s2 4s 85+ +
----------------------------- 3 s 4 3 2 3⁄ 2 3⁄–+⁄+( )

s 2+( )2 81+
----------------------------------------------------------- 3 s 2+( ) 2 3⁄–

s 2+( )2 92+
--------------------------------⋅ 3 s 2+( )

s 2+( )2 92+
------------------------------⋅ 1

9
--- 2 9×

s 2+( )2 92+
------------------------------⋅–= = =

3 s 2+( )
s 2+( )2 92+

------------------------------⋅ 2
9
--- 9

s 2+( )2 92+
------------------------------⋅ 3e 2t– 9tcos 2

9
---e 2t– 9tsin–⇔–=

4s 5+

s2 5s 18.5+ +
--------------------------------- 4s 5+

s2 5s 6.25 12.25+ + +
----------------------------------------------------- 4s 5+

s 2.5+( )2 3.52+
--------------------------------------- 4 s 5 4⁄+

s 2.5+( )2 3.52+
---------------------------------------⋅= = =

4 s 10 4⁄ 10 4⁄– 5 4⁄+ +

s 2.5+( )2 3.52+
---------------------------------------------------------⋅ 4 s 2.5+

s 2.5+( )2 3.52+
---------------------------------------⋅ 1

3.5
------- 5 3.5×

s 2.5+( )2 3.52+
---------------------------------------⋅–==

4 s 2.5+( )
s 2.5+( )2 3.52+

---------------------------------------⋅ 10
7
------ 3.5

s 2.5+( )2 3.52+
---------------------------------------⋅– 4e 2.5t– 3.5tcos 10

7
------e 2.5t– 3.5tsin–⇔=



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition 3−23                                                                                                                         
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

d.

e.

3.

a.  

b.  

c.  
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d.  

e.

4. The initial value theorem states that . Then,

The value  is the same as in the time domain expression that we found in Exercise
3(c).

5. We are given that  and . Then, 

Therefore,

that is,

and we observe that
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Chapter 4

Circuit Analysis with Laplace Transforms

his chapter presents applications of the Laplace transform. Several examples are presented
to illustrate how the Laplace transformation is applied to circuit analysis. Complex imped-
ance, complex admittance, and transfer functions are also defined. 

4.1 Circuit Transformation from Time to Complex Frequency
In this section we will show the voltage−current relationships for the three elementary circuit
networks, i.e., resistive, inductive, and capacitive in the time and complex frequency domains.
They are shown in Subsections 4.1.1 through 4.1.3 below.

4.1.1 Resistive Network Transformation
The time and complex frequency domains for purely resistive networks are shown in Figure 4.1.

Figure 4.1. Resistive network in time domain and complex frequency domain

4.1.2 Inductive Network Transformation
The time and complex frequency domains for purely inductive networks are shown in Figure 4.2.

Figure 4.2. Inductive network in time domain and complex frequency domain

4.1.3 Capacitive Network Transformation
The time and complex frequency domains for purely capacitive networks are shown in Figure 4.3.
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Figure 4.3. Capacitive circuit in time domain and complex frequency domain

Note:
In the complex frequency domain, the terms  and  are referred to as complex inductive
impedance, and complex capacitive impedance respectively. Likewise, the terms and  and 
are called complex capacitive admittance and complex inductive admittance respectively.

Example 4.1  
Use the Laplace transform method and apply Kirchoff’s Current Law (KCL) to find the voltage

 across the capacitor for the circuit of Figure 4.4, given that .

Figure 4.4. Circuit for Example 4.1

Solution:

We apply KCL at node  as shown in Figure 4.5.

Figure 4.5. Application of KCL for the circuit of Example 4.1
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Circuit Transformation from Time to Complex Frequency

(4.1)

The Laplace transform of (4.1) is

By partial fraction expansion,

Therefore,

Example 4.2  
Use the Laplace transform method and apply Kirchoff’s Voltage Law (KVL) to find the voltage

 across the capacitor for the circuit of Figure 4.6, given that .

Figure 4.6. Circuit for Example 4.2

Solution:

This is the same circuit as in Example 4.1. We apply KVL for the loop shown in Figure 4.7.
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Figure 4.7. Application of KVL for the circuit of Example 4.2

and with  and , we obtain

(4.2)

Next, taking the Laplace transform of both sides of (4.2), we obtain

 

or

Check: From Example 4.1,

Then,

(4.3)

The presence of the delta function in (4.3) is a result of the unit step that is applied at .

Example 4.3  

In the circuit of Figure 4.8, switch  closes at , while at the same time, switch  opens.
Use the Laplace transform method to find  for .

R

C

−
++

−
V 1 F

1 Ω

12u0 t( )

vS

vC t( )
iC t( )

RiC t( ) 1
C
---- iC t( ) td

∞–

t

∫+ 12u0 t( )=

R 1= C 1=

iC t( ) iC t( ) td
∞–

t

∫+ 12u0 t( )=

IC s( )
IC s( )

s
------------

vC 0−( )
s

----------------+ + 12
s

------=

1 1
s
---+ 

  IC s( ) 12
s

------ 6
s
---– 6

s
---= =

s 1+
s

----------- 
  IC s( ) 6

s
---=

IC s( ) 6
s 1+
-----------= iC t( ) 6e t– u0 t( )=⇔

vC t( ) 12 6e t––( )u0 t( )=

iC t( ) C
dvC
dt

--------- dvC
dt

---------
td

d 12 6e t––( )u0 t( ) 6e t– u0 t( ) 6δ t( )+= = = =

t 0=

S1 t 0= S2

vout t( ) t 0>



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition 4−5
Copyright © Orchard Publications

Circuit Transformation from Time to Complex Frequency

Figure 4.8. Circuit for Example 4.3

Solution:

Since the circuit contains a capacitor and an inductor, we must consider two initial conditions
One is given as . The other initial condition is obtained by observing that there is
an initial current of  in inductor ; this is provided by the  current source just before

switch  opens. Therefore, our second initial condition is .

For , we transform the circuit of Figure 4.8 into its s−domain* equivalent shown in Figure
4.9.

Figure 4.9. Transformed circuit of Example 4.3

In Figure 4.9 the current in inductor  has been replaced by a voltage source of . This is
found from the relation

(4.4)

The polarity of this voltage source is as shown in Figure 4.9 so that it is consistent with the direc-
tion of the current  in the circuit of Figure 4.8 just before switch  opens. The initial
capacitor voltage is replaced by a voltage source equal to .

* Henceforth, for convenience, we will refer the time domain as t−domain and the complex frequency domain as s−domain.
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Applying KCL at node  we obtain

(4.5)

and after simplification

(4.6)

We will use MATLAB to factor the denominator  of (4.6) into a linear and a quadratic fac-
tor.

p=[1  8  10  4]; r=roots(p) % Find the roots of D(s)

r =
  -6.5708         
  -0.7146 + 0.3132i
  -0.7146 - 0.3132i

y=expand((s + 0.7146 − 0.3132j)*(s + 0.7146 + 0.3132j)) % Find quadratic form

y =
s^2+3573/2500*s+3043737/5000000

3573/2500 % Simplify coefficient of s

ans =
    1.4292

3043737/5000000 % Simplify constant term

ans =
    0.6087

Therefore,

(4.7)

Next, we perform partial fraction expansion.

(4.8)

(4.9)

The residues  and  are found from the equality 
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------------------- r2 s r3+

s2 1.43s 0.61+ +
-----------------------------------------+==

r1
2s s 3+( )

s2 1.43s 0.61+ +
-----------------------------------------

s 6.57–=

1.36= =

r2 r3
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Circuit Transformation from Time to Complex Frequency

(4.10)

Equating constant terms of (4.10), we obtain

and by substitution of the known value of  from (4.9), we obtain

Similarly, equating coefficients of , we obtain

and using the known value of , we obtain

(4.11)
By substitution into (4.8),

*

or

(4.12)

Taking the Inverse Laplace of (4.12), we obtain

(4.13)

From (4.13), we observe that as , . This is to be expected because  is
the voltage across the inductor as we can see from the circuit of Figure 4.9. The MATLAB script
below will plot the relation (4.13) above.

* We perform these steps to express the term  in a form that resembles the transform pairs

 and . The remaining steps are carried out in (4.12).

2s s 3+( ) r1 s2 1.43s 0.61+ +( ) r2 s r3+( ) s 6.57+( )+=

0 0.61r1 6.57r3+=

r1

r3 0.12–=

s2

2 r1 r2+=

r1

r2 0.64=

Vout s( ) 1.36
s 6.57+
------------------- 0.64s 0.12–

s2 1.43s 0.61+ +
-----------------------------------------+ 1.36

s 6.57+
------------------- 0.64s 0.46 0.58–+

s2 1.43s 0.51 0.1+ + +
-------------------------------------------------------+= =

0.64s 0.12–

s2 1.43s 0.61+ +
-----------------------------------------

e at– ωtu0 t( )cos s a+

s a+( )2 ω2+
-------------------------------⇔ e at– ωtu0 t( )sin ω

s a+( )2 ω2+
-------------------------------⇔

Vout s( ) 1.36
s 6.57+
------------------- 0.64( ) s 0.715 0.91–+

s 0.715+( )2 0.316( )2+
--------------------------------------------------------+=

1.36
s 6.57+
------------------- 0.64 s 0.715+( )

s 0.715+( )2 0.316( )2+
-------------------------------------------------------- 0.58

s 0.715+( )2 0.316( )2+
--------------------------------------------------------–+=

1.36
s 6.57+
------------------- 0.64 s 0.715+( )

s 0.715+( )2 0.316( )2+
-------------------------------------------------------- 1.84 0.316×

s 0.715+( )2 0.316( )2+
--------------------------------------------------------–+=

vout t( ) 1.36e 6.57t– 0.64e 0.715t– 0.316tcos 1.84e 0.715t– 0.316tsin–+( )u0 t( )=

t ∞→ vout t( ) 0→ vout t( )
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t=0:0.01:10;...
Vout=1.36.*exp(−6.57.*t)+0.64.*exp(−0.715.*t).*cos(0.316.*t)−1.84.*exp(−0.715.*t).*sin(0.316.*t);...
plot(t,Vout); grid

Figure 4.10. Plot of  for the circuit of Example 4.3

4.2 Complex Impedance Z(s)

Consider the   series circuit of Figure 4.11, where the initial conditions are
assumed to be zero.

Figure 4.11. Series RLC circuit in s−domain

For this circuit, the sum  represents the total opposition to current flow. Then,

(4.14)

and defining the ratio  as , we obtain

(4.15)

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

vout t( )

s domain– RLC

−

+
R 

+

VS s( )
I s( )

sL

1
sC
------

Vout s( )−

R sL 1
sC
------+ +

I s( )
VS s( )

R sL 1 sC⁄+ +
------------------------------------=

Vs s( ) I s( )⁄ Z s( )

Z s( )
VS s( )
I s( )

--------------≡ R sL 1
sC
------+ +=
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Complex Impedance Z(s)

and thus, the  current  can be found from the relation (4.16) below.

(4.16)

where

(4.17)

We recall that . Therefore,  is a complex quantity, and it is referred to as the
complex input impedance of an   series circuit. In other words,  is the ratio of
the voltage excitation  to the current response  under zero state (zero initial condi-
tions).

Example 4.4  

For the network of Figure 4.12, all values are in  (ohms). Find  using:

a. nodal analysis

b. successive combinations of series and parallel impedances

Figure 4.12. Circuit for Example 4.4
Solution:
a.

We will first find , and we will compute  using (4.15). We assign the voltage  at
node  as shown in Figure 4.13.

Figure 4.13. Network for finding  in Example 4.4
By nodal analysis,

s domain– I s( )

I s( )
VS s( )
Z s( )

--------------=

Z s( ) R sL 1
sC
------+ +=

s σ jω+= Z s( )
s domain– RLC Z s( )

Vs s( ) I s( )

Ω Z s( )

−

+

1 

VS s( )

1 s⁄

s s

I s( ) Z s( ) VA s( )

A

−

+
1 

VS s( )

1 s⁄

s s
I s( )

VA s( )
A

I s( )
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The current  is now found as

and thus, 

(4.18)

b.
The impedance  can also be found by successive combinations of series and parallel
impedances, as it is done with series and parallel resistances. For convenience, we denote the
network devices as  and  shown in Figure 4.14.

Figure 4.14. Computation of the impedance of Example 4.4 by series − parallel combinations

To find the equivalent impedance , looking to the right of terminals  and , we start on
the right side of the network and we proceed to the left combining impedances as we would
combine resistances where the symbol  denotes parallel combination. Then,

(4.19)

We observe that (4.19) is the same as (4.18).

VA s( ) VS s( )–

1
-----------------------------------

VA s( )
s

---------------
VA s( )
s 1 s⁄+
------------------+ + 0=

1 1
s
--- 1

s 1 s⁄+
------------------+ + 

 VA s( ) VS s( )=

VA s( ) s3 1+

s3 2s2 s 1+ + +
------------------------------------- VS s( )⋅=

I s( )

I s( )
VS s( ) VA s( )–

1
----------------------------------- 1 s3 1+

s3 2s2 s 1+ + +
-------------------------------------–

 
 
 

VS s( ) 2s2 1+

s3 2s2 s 1+ + +
------------------------------------- VS s( )⋅= = =

Z s( )
VS s( )
I s( )

-------------- s3 2s2 s 1+ + +

2s2 1+
-------------------------------------= =

Z s( )

Z1 Z2 Z3, , Z4

1 1 s⁄

s sZ s( )
Z1

Z2

Z3
Z4

a

b

Z s( ) a b

||

Z s( ) Z3 Z4+( ) || Z2[ ] Z1+=

Z s( ) s s 1 s⁄+( )
s s 1 s⁄+ +
-------------------------- 1+ s2 1+

2s2 1+( ) s⁄
---------------------------- 1+ s3 s+

2s2 1+
----------------- 1+ s3 2s2 s 1+ + +

2s2 1+
-------------------------------------= = = =
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Complex Admittance Y(s)

4.3 Complex Admittance Y(s)

Consider the   parallel circuit of Figure 4.15 where the initial conditions are
zero.

Figure 4.15. Parallel GLC circuit in s−domain

For the circuit of Figure 4.15,

Defining the ratio  as , we obtain

(4.20)

and thus the  voltage  can be found from

(4.21)

where

(4.22)

We recall that . Therefore,  is a complex quantity, and it is referred to as the
complex input admittance of an   parallel circuit. In other words,  is the ratio
of the current excitation  to the voltage response  under zero state (zero initial condi-
tions).

 

Example 4.5  

Compute  and  for the circuit of Figure 4.16. All values are in  (ohms). Verify your
answers with MATLAB.

s domain– GLC

G 

+

−IS s( )
V s( ) 1

sL
------ sC

GV s( ) 1
sL
------V s( ) sCV s( )+ + I s( )=

G 1
sL
------ sC+ + 

  V s( )( ) I s( )=

IS s( ) V s( )⁄ Y s( )

Y s( ) I s( )
V s( )
-----------≡ G 1

sL
------ sC+ + 1

Z s( )
-----------= =

s domain– V s( )

V s( )
IS s( )
Y s( )
------------=

Y s( ) G 1
sL
------ sC+ +=

s σ jω+= Y s( )
s domain– GLC Y s( )

IS s( ) V s( )

Z s( ) Y s( ) Ω
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Figure 4.16. Circuit for Example 4.5

Solution:

It is convenient to represent the given circuit as shown in Figure 4.17.

Figure 4.17. Simplified circuit for Example 4.5

where

Then,

Check with MATLAB:

syms s; % Define symbolic variable s
z1 = 13*s + 8/s; z2 = 5*s + 10; z3 = 20 + 16/s; z = z1 + z2 * z3 / (z2+z3)

z =
13*s+8/s+(5*s+10)*(20+16/s)/(5*s+30+16/s)

Z s( )

Y s( )

13s 8 s⁄

5s 16 s⁄

10 20

Z3Z2

Z1

Z s( )  Y s( ),

Z1 13s 8
s
---+ 13s2 8+

s
--------------------= =

Z2 10 5s+=

Z3 20 16
s

------+ 4 5s 4+( )
s

-----------------------= =

Z s( ) Z1
Z2Z3

Z2 Z3+
------------------+ 13s2 8+

s
--------------------

10 5s+( ) 4 5s 4+( )
s

----------------------- 
 

10 5s+ 4 5s 4+( )
s

-----------------------+
----------------------------------------------------+ 13s2 8+

s
--------------------

10 5s+( ) 4 5s 4+( )
s

----------------------- 
 

5s2 10s 4 5s 4+( )+ +
s

----------------------------------------------------
-----------------------------------------------------+= = =

13s2 8+
s

-------------------- 20 5s2 14s 8+ +( )
5s2 30s 16+ +

-------------------------------------------+ 65s4 490s3 528s2 400s 128+ + + +

s 5s2 30s 16+ +( )
-------------------------------------------------------------------------------------==
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Transfer Functions

z10 = simplify(z)

z10 =
(65*s^4+490*s^3+528*s^2+400*s+128)/s/(5*s^2+30*s+16)

pretty(z10)

               4        3        2
           65 s  + 490 s  + 528 s  + 400 s + 128
           -------------------------------------
                         2
                   s (5 s  + 30 s + 16)

The complex input admittance  is found by taking the reciprocal of , that is,

(4.23)

4.4 Transfer Functions

In an  circuit, the ratio of the output voltage  to the input voltage 

under zero state conditions, is of great interest* in network analysis. This ratio is referred to as the
voltage transfer function and it is denoted as , that is, 

(4.24)

Similarly, the ratio of the output current  to the input current  under zero state condi-

tions, is called the current transfer function denoted as , that is, 

(4.25)

The current transfer function of (4.25) is rarely used; therefore, from now on, the transfer func-
tion will have the meaning of the voltage transfer function, i.e., 

* To appreciate the usefulness of the transfer function, let us express relation (4.24) as .
This relation indicates that if we know the transfer function of a network, we can compute its output by multi-
plication of the transfer function by its input. We should also remember that the transfer function concept exists
only in the complex frequency domain. In the time domain this concept is known as the impulse response, and
it is discussed in Chapter 6 of this text.

Y s( ) Z s( )

Y s( ) 1
Z s( )
----------- s 5s2 30s 16+ +( )

65s4 490s3 528s2 400s 128+ + + +
-------------------------------------------------------------------------------------= =

s domain– Vout s( ) Vin s( )

Vout s( ) Gv s( ) Vin s( )⋅=

Gv s( )

Gv s( )
Vout s( )
Vin s( )
------------------≡

Iout s( ) Iin s( )

Gi s( )

Gi s( )
Iout s( )
Iin s( )
----------------≡
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(4.26)

Example 4.6  

Derive an expression for the transfer function  for the circuit of Figure 4.18, where  repre-
sents the internal resistance of the applied (source) voltage , and  represents the resistance
of the load that consists of , , and .

Figure 4.18. Circuit for Example 4.6

Solution:

No initial conditions are given, and even if they were, we would disregard them since the transfer
function was defined as the ratio of the output voltage  to the input voltage  under

zero initial conditions. The  circuit is shown in Figure 4.19.

Figure 4.19. The s−domain circuit for Example 4.6

The transfer function  is readily found by application of the voltage division expression of
the  circuit of Figure 4.19. Thus,

G s( )
Vout s( )
Vin s( )
------------------≡

G s( ) Rg

VS RL

RL L C

+

−

Rg

RL

L

C

vout

vg
−
+

Vout s( ) Vin s( )

s domain–

+−

+

−
Vin s( )

Rg

RL

sL

1
sC
------

Vout s( )

G s( )
s domain–
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Transfer Functions

Therefore,

(4.27)

Example 4.7  

Compute the transfer function  for the circuit of Figure 4.20 in terms of the circuit con-
stants  Then, replace the complex variable  with , and the circuit con-
stants with their numerical values and plot the magnitude  versus radian

frequency .

Figure 4.20. Circuit for Example 4.7
Solution:
The complex frequency domain equivalent circuit is shown in Figure 4.21.

Figure 4.21. The s−domain circuit for Example 4.7

Next, we write nodal equations at nodes 1 and 2. At node 1,

(4.28)

Vout s( )
RL sL 1 sC⁄+ +

Rg RL sL 1 sC⁄+ + +
----------------------------------------------------Vin s( )=

G s( )
Vout s( )
Vin s( )
------------------=

RL Ls 1 sC⁄+ +

Rg RL Ls 1 sC⁄+ + +
----------------------------------------------------=

G s( )
R1 R2 R3 C1 and C2, , , , s jω

G s( ) Vout s( ) Vin s( )⁄=

ω

vin vout

40 K

200 K 50K

25 nF

10 nFR2
R1

C2

C1

R3

R2

1/sC1

R3R1

1/sC2

Vin (s) Vout (s)

1 2
V1 s( ) V2 s( )

V1 s( ) Vin s( )–

R1
------------------------------------ V1

1 sC1⁄
---------------

V1 s( ) Vout s( )–

R2
-------------------------------------- V1 s( ) V2 s( )–

R3
---------------------------------+ + + 0=
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At node 2,

(4.29)

Since  (virtual ground), we express (4.29) as

(4.30)

and by substitution of (4.30) into (4.28), rearranging, and collecting like terms, we obtain:

or

(4.31)

To simplify the denominator of (4.31), we use the MATLAB script below with the given values of
the resistors and the capacitors.

syms s; % Define symbolic variable s
R1=2*10^5; R2=4*10^4; R3=5*10^4; C1=25*10^(-9); C2=10*10^(-9);...
DEN=R1*((1/R1+1/R2+1/R3+s*C1)*(s*R3*C2)+1/R2); simplify(DEN)

ans =
1/200*s+188894659314785825/75557863725914323419136*s^2+5

188894659314785825/75557863725914323419136 % Simplify coefficient of s^2

ans =
  2.5000e-006

1/200 % Simplify coefficient of s^2

ans =
    0.0050

Therefore,

By substitution of  with  we obtain

                (4.32)

V2 s( ) V1 s( )–
R3

---------------------------------
Vout s( )
1 sC2⁄

-------------------=

V2 s( ) 0=

V1 s( ) sR– 3C2( )Vout s( )=

1
R1
----- 1

R2
----- 1

R3
----- sC1+ + + 

  sR– 3C2( ) 1
R2
-----– Vout s( ) 1

R1
-----Vin s( )=

G s( )
Vout s( )
Vin s( )
-------------------= 1–

R1 1 R1⁄ 1 R2⁄ 1 R3⁄ sC1+ + +( ) sR3C2( ) 1 R2⁄+[ ]
--------------------------------------------------------------------------------------------------------------------------------=

G s( )
Vout s( )
Vin s( )
------------------= 1–

2.5 10 6–× s2 5 10 3–× s 5+ +
--------------------------------------------------------------------=

s jω

G jω( )
Vout jω( )
Vin jω( )
----------------------= 1–

2.5 10 6–× ω2 j5 10 3–× ω 5+–
------------------------------------------------------------------------=
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Using the Simulink Transfer Fcn Block

We use MATLAB to plot the magnitude of (4.32) on a semilog scale with the following script:

w=1:10:10000; Gs=−1./(2.5.*10.^(−6).*w.^2−5.*j.*10.^(−3).*w+5);...
semilogx(w,abs(Gs)); xlabel('Radian Frequency w'); ylabel('|Vout/Vin|');... 
title('Magnitude Vout/Vin vs. Radian Frequency'); grid

The plot is shown in Figure 4.22. We observe that the given op amp circuit is a second order
low−pass filter whose cutoff frequency ( ) occurs at about .

Figure 4.22.  versus  for the circuit of Example 4.7

4.5 Using the Simulink Transfer Fcn Block

The Simulink Transfer Fcn block implements a transfer function where the input  and
the output  can be expressed in transfer function form as

(4.33)

Example 4.8  
Let us reconsider the active low−pass filter op amp circuit of Figure 4.21, Page 4-15 where we
found that the transfer function is 

3 dB– 700 r s⁄

10
0

10
1

10
2

10
3

10
4

0

0.05

0.1

0.15

0.2

Radian Frequency w

|V
ou

t/
V

in
|

Magnitude Vout/Vin vs. Radian Frequency

G jω( ) ω

VIN s( )

VOUT s( )

G s( )
VOUT s( )
VIN s( )

---------------------=
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(4.34)

and for simplicity, let , and . By substitution into (4.34) we
obtain

(4.35)

Next, we let the input be the unit step function , and as we know from Chapter 2,
. Therefore,

(4.36)

To find , we perform partial fraction expansion, and for convenience, we use the MAT-
LAB residue function as follows:

num=−1; den=[1 3 1 0];[r p k]=residue(num,den)

r =
   -0.1708
    1.1708
   -1.0000
p =
   -2.6180
   -0.3820
         0
k =
     []

Therefore,

(4.37)

The plot for  is obtained with the following MATLAB script, and it is shown in Figure
4.23.

t=0:0.01:10; ft=−1+1.171.*exp(−0.382.*t)−0.171.*exp(−2.618.*t); plot(t,ft); grid

The same plot can be obtained using the Simulink model of Figure 4.24, where in the Function
Block Parameters dialog box for the Transfer Fcn block we enter  for the numerator, and

 for the denominator. After the simulation command is executed, the Scope block dis-
plays the waveform of Figure 4.25.

G s( )
Vout s( )
Vin s( )
-------------------= 1–

R1 1 R1⁄ 1 R2⁄ 1 R3⁄ sC1+ + +( ) sR3C2( ) 1 R2⁄+[ ]
--------------------------------------------------------------------------------------------------------------------------------=

R1 R2 R3 1 Ω= = = C1 C2 1 F= =

G s( )
Vout s( )
Vin s( )
-------------------= 1–

s2 3s 1+ +
-------------------------=

u0 t( )

u0 t( ) 1 s⁄⇔

Vout s( ) G s( ) Vin s( )⋅ 1
s
--- 1–

s2 3s 1+ +
-------------------------⋅ 1–

s3 3s2 s+ +
---------------------------= = =

vout t( )

1
s
--- 1–

s2 3s 1+ +
-------------------------⋅ 1

s
---– 1.171

s 0.382+
---------------------- 0.171

s 2.618+
----------------------–+= 

  1– 1.171e 0.382t– 0.171e 2.618t––+⇔ vout t( )=

vout t( )

1–

1   3   1[ ]
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Using the Simulink Transfer Fcn Block

Figure 4.23. Plot of  for Example 4.8.

Figure 4.24. Simulink model for Example 4.8

Figure 4.25. Waveform for the Simulink model of Figure 4.24

0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

vout t( )
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4.6 Summary
• The Laplace transformation provides a convenient method of analyzing electric circuits since

integrodifferential equations in the  are transformed to algebraic equations in the
.

• In the  the terms  and  are called complex inductive impedance, and com-
plex capacitive impedance respectively. Likewise, the terms and  and  are called com-
plex capacitive admittance and complex inductive admittance respectively.

• The expression

is a complex quantity, and it is referred to as the complex input impedance of an 
 series circuit. 

• In the  the current  can be found from

• The expression

is a complex quantity, and it is referred to as the complex input admittance of an 
 parallel circuit.

• In the  the voltage  can be found from

• In an  circuit, the ratio of the output voltage  to the input voltage 
under zero state conditions is referred to as the voltage transfer function and it is denoted as

, that is, 

t domain–

s domain–

s domain– sL 1 sC⁄
sC 1 sL⁄

Z s( ) R sL 1
sC
------+ +=

s domain–

RLC

s domain– I s( )

I s( )
VS s( )
Z s( )

--------------=

Y s( ) G 1
sL
------ sC+ +=

s domain–

GLC

s domain– V s( )

V s( )
IS s( )
Y s( )
------------=

s domain– Vout s( ) Vin s( )

G s( )

G s( )
Vout s( )
Vin s( )
------------------≡
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Exercises

4.7 Exercises

1. In the circuit below, switch  has been closed for a long time, and opens at . Use the
Laplace transform method to compute  for .

2. In the circuit below, switch  has been closed for a long time, and opens at . Use the
Laplace transform method to compute  for .

3. Use mesh analysis and the Laplace transform method, to compute  and  for the cir-

cuit below, given that  and .

4. For the  circuit below,

a.  compute the admittance 

b.  compute the  value of  when , and all initial conditions are
zero.

S t 0=

iL t( ) t 0>

1 mH

t 0=

iL t( ) +
−

L 32 V

10 Ω

20 Ω

R1

R2
S

S t 0=

vc t( ) t 0>

S

t 0=

+
−

72 V

6 KΩ
C

−
+60 KΩ

30 KΩ 20 KΩ

10 KΩ
40
9

------µF

vC t( )

R1

R2

R3 R4

R5

i1 t( ) i2 t( )

iL(0− ) 0= vC(0− ) 0=

+
− C

−
+

1 Ω

3 Ω

1 F
i1 t( ) +

−

1 H

v1 t( ) u0 t( )=
v2 t( ) 2u0 t( )=

2 H

i2 t( )

L1

R1

R2

L2

s domain–

Y s( ) I1 s( ) V1 s( )⁄=

t domain– i1 t( ) v1 t( ) u0 t( )=
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5. Derive the transfer functions for the networks (a) and (b) below.

6. Derive the transfer functions for the networks (a) and (b) below.

7. Derive the transfer functions for the networks (a) and (b) below.

8. Derive the transfer function for the networks (a) and (b) below.

R1

R2
+
−

1 Ω

+

R3

1 Ω
3 Ω1 s⁄

V1 s( )

−VC s( )I1 s( )

+−

V2 s( ) 2VC s( )=2 ΩR4

R C

−
++

−
Vin s( ) Vout s( ) R

L+

−

Vin s( )
−

+
Vout s( )

(a) (b)

R
C

−

++

−
Vin s( ) Vout s( )

R
L

+

−
Vin s( )

−

+
Vout s( )

(a) (b)

R
C

−

++

−
Vin s( ) Vout s( )

R
L

+

−

Vin s( )

−

+

Vout s( )

(a)
(b)

L

C

R2R1

C

R1

Vin s( ) Vout s( )

R2

C

Vin s( )

(a) (b)

Vout s( )
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Exercises

9. Derive the transfer function for the network below. Using MATLAB, plot  versus fre-
quency in Hertz, on a semilog scale.

G s( )

R1

R2

R3

C1
C2

Vout s( )
Vin s( )

R1 = 11.3 kΩ
R2 = 22.6 kΩ
R3=R4 = 68.1 kΩ

C1=C2 = 0.01 µF
R4
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4.8 Solutions to End−of−Chapter Exercises

1. At , the switch is closed, and the  circuit is as shown below where the 
resistor is shorted out by the inductor.

Then,

and thus the initial condition has been established as 

For all  the  and  circuits are as shown below.

From the  circuit on the right side above we obtain

2. At , the switch is closed and the  circuit is as shown below.

Then, 

t 0 −
= t domain– 20 Ω

1 mH

S

iL t( )

+
−

32 V

10 Ω

20 Ω

iL t( )
t 0-=

32
10
------ 3.2 A= =

iL 0 −( ) 3.2 A=

t 0> t domain– s domain–

1 mH iL 0 −( ) 3.2 A=

+
−

20 Ω

LiL 0 −( ) 3.2 10 3–  V×=

20 Ω
IL s( )10 3– s

s domain–

IL s( ) 3.2 10 3–×
20 10 3– s+
------------------------- 3.2

s 20000+
-----------------------= = 3.2e 20000t– u0 t( ) iL t( )=⇔

t 0 −
= t domain–

+
−

72 V

6 KΩ

−

+
60 KΩ

30 KΩ 20 KΩ

10 KΩvC t( )
iT t( )

i2 t( )
S
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and

Therefore, the initial condition is

For all , the  circuit is as shown below.

Then,

3. The  circuit is shown below where , , and 

Then,

iT 0 −( ) 72 V
6 KΩ 60 KΩ 60 KΩ||+
------------------------------------------------------------- 72 V

6 KΩ 30 KΩ+
-------------------------------------- 72 V

36 KΩ
-----------------= = 2 mA= =

i2 0 −( ) 1
2
---iT 0 −( ) 1 mA= =

vC 0 −( ) 20 KΩ 10 KΩ+( ) i2 0 −( )⋅ 30 KΩ( ) 1 mA( )⋅ 30 V= = =

t 0> s domain–

+
−

60 KΩ

30 KΩ 20 KΩ

10 KΩ

1
40 9⁄ 10 6– s×
----------------------------------

30 s⁄

+
−

9 106×
40s

-------------------

30 s⁄

60 KΩ 30 KΩ+( ) 20 KΩ 10 KΩ+( )|| 22.5 KΩ=

VC s( ) VR

VR VC s( )=

+

−
22.5 KΩ

VC s( ) VR
22.5 103×

9 106× 40s⁄ 22.5 103×+
------------------------------------------------------------- 30

s
------⋅ 30 22.5 103××

9 106× 40⁄ 22.5 103s×+
-------------------------------------------------------------= = =

30 22.5 103××( ) 22.5 103×( )⁄
9 106× 40 22.5 103××( )⁄ s+

---------------------------------------------------------------------------- 30
9 106× 90 104×⁄ s+
--------------------------------------------------- 30

10 s+
--------------= ==

VC s( ) 30
s 10+
--------------= 30e 10t– u0 t( ) V⇔ vC t( )=

s domain– z1 2s= z2 1 1 s⁄+= z3 s 3+=

+
−

−
+

I1 s( ) +
−I2 s( )

2s
1 s

1 s⁄1 s⁄
2 s⁄

3

z1

z3

z2
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and in matrix form

We use the MATLAB script below we obtain the values of the currents.

Z=[z1+z2  −z2; −z2  z2+z3]; Vs=[1/s  −2/s]'; Is=Z\Vs; fprintf(' \n');...
disp('Is1 = '); pretty(Is(1)); disp('Is2 = '); pretty(Is(2))

Is1 = 
                                           2
                                 2 s - 1 + s
                        -------------------------------
                                      2      3
                        (6 s + 3 + 9 s  + 2 s ) 
Is2 = 

                                      2
                                  4 s  + s + 1
                       - -------------------------------
                                      2      3
                         (6 s + 3 + 9 s  + 2 s ) conj(s)

Therefore,

  (1)

  (2)

We use MATLAB to express the denominators of (1) and (2) as a product of a linear and a
quadratic term.

p=[2  9  6  3]; r=roots(p); fprintf(' \n'); disp('root1 ='); disp(r(1));...
disp('root2 ='); disp(r(2)); disp('root3 ='); disp(r(3)); disp('root2 + root3 ='); disp(r(2)+r(3));...
disp('root2 * root3 ='); disp(r(2)*r(3))

 root1 =
   -3.8170

root2 =
  -0.3415 + 0.5257i

z1 z2+( )I1 s( ) z2I2 s( )– 1 s⁄=

z2I1 s( )– z2 z3+( )I2 s( )+ 2– s⁄=

z1 z2+( ) z2–

z2– z2 z3+( )
I1 s( )
I2 s( )

⋅ 1 s⁄
2– s⁄

=

I1 s( ) s2 2s 1–+

2s3 9s2 6s 3+ + +
--------------------------------------------=

I2 s( ) 4s2 s 1+ +

2s3 9s2 6s 3+ + +
--------------------------------------------–=



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition 4−27
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

root3 =
  -0.3415 - 0.5257i

root2 + root3 =
   -0.6830

root2 * root3 =
    0.3930

and with these values (1) is written as

  (3)

Multiplying every term by the denominator and equating numerators we obtain

Equating , , and constant terms we obtain

We will use MATLAB to find these residues.

A=[1  1  0; 0.683  3.817  1; 0.393  0  3.817]; B=[1  2  −1]'; r=A\B; fprintf(' \n');...
fprintf('r1 = %5.2f \t',r(1)); fprintf('r2 = %5.2f \t',r(2)); fprintf('r3 = %5.2f',r(3))

 r1 = 0.48   r2 = 0.52   r3 = -0.31

By substitution of these values into (3) we obtain

   (4)

By inspection, the Inverse Laplace of first term on the right side of (4) is

  (5)

The second term on the right side of (4) requires some manipulation. Therefore, we will use
the MATLAB ilaplace(s) function to find the Inverse Laplace as shown below.

syms s t
IL=ilaplace((0.52*s-0.31)/(s^2+0.68*s+0.39));
pretty(IL)

I1 s( ) s2 2s 1–+

s 3.817+( ) s2 0.683s 0.393+ +( )⋅
-----------------------------------------------------------------------------------

r1
s 3.817+( )

---------------------------
r2s r3+

s2 0.683s 0.393+ +( )
----------------------------------------------------+= =

s2 2s 1–+ r1 s2 0.683s 0.393+ +( ) r2s r3+( ) s 3.817+( )+=

s2 s

r1 r2+ 1=

0.683r1 3.817r2 r3+ + 2=

0.393r1 3.817r3+ 1–=

I1 s( )
r1

s 3.817+( )
---------------------------

r2s r3+

s2 0.683s 0.393+ +( )
----------------------------------------------------+ 0.48

s 3.817+( )
--------------------------- 0.52s 0.31–

s2 0.683s 0.393+ +( )
----------------------------------------------------+= =

0.48
s 3.82+( )

------------------------ 0.48e 3.82t–⇔
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      1217       17      1/2            1/2
    - ---- exp(- -- t) 14    sin(7/50 14    t)
      4900       50
           13       17               1/2
         + -- exp(- -- t) cos(7/50 14    t)
           25       50

Thus, 

Next, we will find . We found earlier that

and following the same procedure we obtain

  (6)

Multiplying every term by the denominator and equating numerators we obtain

Equating , , and constant terms, we obtain

We will use MATLAB to find these residues.

A=[1  1  0; 0.683  3.817  1; 0.393  0  3.817]; B=[−4  −1  −1]'; r=A\B; fprintf(' \n');...
fprintf('r1 = %5.2f \t',r(1)); fprintf('r2 = %5.2f \t',r(2)); fprintf('r3 = %5.2f',r(3))

r1 = -4.49   r2 = 0.49   r3 = 0.20

By substitution of these values into (6) we obtain

  (7)

By inspection, the Inverse Laplace of first term on the right side of (7) is

i1 t( ) 0.48e 3.82t– 0.93e 0.34t– 0.53t 0.52e 0.34t– 0.53tcos+sin–=

I2 s( )

I2 s( ) 4s2 s 1+ +

2s3 9s2 6s 3+ + +
--------------------------------------------–=

I2 s( ) 4s2 s– 1––

s 3.817+( ) s2 0.683s 0.393+ +( )⋅
-----------------------------------------------------------------------------------

r1
s 3.817+( )

---------------------------
r2s r3+

s2 0.683s 0.393+ +( )
----------------------------------------------------+= =

4s2 s– 1–– r1 s2 0.683s 0.393+ +( ) r2s r3+( ) s 3.817+( )+=

s2 s

r1 r2+ 4–=

0.683r1 3.817r2 r3+ + 1–=

0.393r1 3.817r3+ 1–=

I1 s( )
r1

s 3.817+( )
---------------------------

r2s r3+

s2 0.683s 0.393+ +( )
----------------------------------------------------+ 4.49–

s 3.817+( )
--------------------------- 0.49s 0.20+

s2 0.683s 0.393+ +( )
----------------------------------------------------+= =



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition 4−29
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

  (8)

The second term on the right side of (7) requires some manipulation. Therefore, we will use
the MATLAB ilaplace(s) function to find the Inverse Laplace as shown below.

syms s t
IL=ilaplace((0.49*s+0.20)/(s^2+0.68*s+0.39)); pretty(IL)

  167        17     1/2            1/2                             
 ---- exp(- -- t) 14    sin(7/50 14    t)
  9800       50

    49       17               1/2
 + --- exp(- -- t) cos(7/50 14    t)
   100       50                         

Thus, 

4.

a. Mesh 1:

or
  (1)

Mesh 2:
  (2)

Addition of (1) and (2) yields

or

and thus

0.48
s 3.82+( )

------------------------ 4.47– e 3.82t–⇔

i2 t( ) 4.47– e 3.82t– 0.06e 0.34t– 0.53t 0.49e 0.34t– 0.53tcos+sin+=

+
−

1

+

1

31 s⁄

V1 s( )
−VC s( )

I1 s( )

+−

V2 s( ) 2VC s( )=2
I2 s( )

2 1 s⁄+( ) I1 s( )⋅ I2 s( )– V1 s( )=

6 2 1 s⁄+( ) I1 s( )⋅ 6I2 s( )– 6V1 s( )=

I1– s( ) 6I2 s( )+ V– 2 s( ) 2 s⁄( )I1 s( )–= =

12 6 s⁄+( ) I1 s( )⋅ 2 s⁄ 1–( ) I1 s( )⋅+ 6V1 s( )=

11 8 s⁄+( ) I1 s( )⋅ 6V1 s( )=

Y s( )
I1 s( )
V1 s( )
-------------- 6

11 8 s⁄+
--------------------- 6s

11s 8+
------------------= ==
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b. With  we obtain

5.

Network (a):

and thus

Network (b):

and thus

Both of these networks are first−order low−pass filters.

6.

Network (a):

and

V1 s( ) 1 s⁄=

I1 s( ) Y s( ) V1 s( )⋅ 6s
11s 8+
------------------ 1

s
---⋅ 6

11s 8+
------------------ 6 11⁄

s 8 11⁄+
---------------------= = = =

6
11
------e 8 11⁄( )t– i1 t( )=⇔

R

−

++

−
Vin s( ) Vout s( )

1 Cs⁄

+

−
Vin s( )

Ls
R

+

−
Vout s( )

b( )a( )

Vout s( ) 1 Cs⁄
R 1 Cs⁄+
------------------------ Vin s( )⋅=

G s( )
Vout s( )
Vin s( )
------------------ 1 Cs⁄

R 1 Cs⁄+
------------------------ 1 Cs⁄

RCs 1+( ) Cs( )⁄
---------------------------------------- 1

RCs 1+
-------------------- 1 RC⁄

s 1 RC⁄+
------------------------= = = = =

Vout s( ) R
Ls R+
---------------- Vin s( )⋅=

G s( )
Vout s( )
Vin s( )
------------------ R

Ls R+
---------------- R L⁄

s R L⁄+
--------------------= = =

R
−

++

−
Vin s( ) Vout s( )1 Cs⁄ + R

Vin s( )
−

Ls
+

−

b( )a( )

Vout s( )

Vout s( ) R
1 Cs R+⁄
------------------------ Vin s( )⋅=

G s( )
Vout s( )
Vin s( )
------------------ R

1 Cs R+⁄
------------------------ RCs

RCs 1+( )
------------------------- s

s 1 RC⁄+
------------------------= = = =
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Network (b):

and

Both of these networks are first−order high−pass filters.

7.

Network (a):

and thus

This network is a second−order band−pass filter.

Network (b):

and

This network is a second−order band−elimination (band−reject) filter.

Vout s( ) Ls
R Ls+
---------------- Vin s( )⋅=

G s( )
Vout s( )
Vin s( )
------------------ Ls

R Ls+
---------------- s

s R L⁄+
--------------------= = =

R
−

++

−
Vin s( ) Vout s( )1 Cs⁄Ls

+

Vin s( )

−

R
Ls

1 Cs⁄

+

−

Vout s( )

b( )
a( )

Vout s( ) R
Ls 1+ Cs R+⁄
------------------------------------ Vin s( )⋅=

G s( )
Vout s( )
Vin s( )
------------------ R

Ls 1+ Cs R+⁄
------------------------------------ RCs

LCs2 1 RCs+ +
--------------------------------------- R L⁄( )s

s2 R L⁄( )s 1 LC⁄+ +
---------------------------------------------------= = = =

Vout s( ) Ls 1+ Cs⁄
R Ls 1+ + Cs⁄
------------------------------------ Vin s( )⋅=

G s( )
Vout s( )
Vin s( )
------------------ Ls 1+ Cs⁄

R Ls 1+ + Cs⁄
------------------------------------ LCs2 1+

LCs2 RCs 1+ +
--------------------------------------- s2 1 LC⁄+

s2 R L⁄( )s 1 LC⁄+ +
---------------------------------------------------= = = =
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8.

Network (a):

Let  and . For inverting op amps , and

thus

This network is a first−order active low−pass filter.

Network (b):

Let  and . For inverting op-amps , and thus

This network is a first−order active high−pass filter.

R2R1

Vin s( )
Vout s( )

1 Cs⁄

Vin s( )

R11 Cs⁄

R2

Vout s( )

a( ) b( )

z1 R1= z2 R2 1 Cs⁄|| R2 1 Cs⁄×
R2 1 Cs⁄+
--------------------------= =

Vout s( )
Vin s( )
------------------

z2
z1
-----–=

G s( )
Vout s( )
Vin s( )
------------------

R2 1 Cs⁄×( ) R2 1 Cs⁄+( )⁄[ ]–

R1
--------------------------------------------------------------------------

R2 1 Cs⁄×( )–

R1 R2 1 Cs⁄+( )⋅
------------------------------------------

R1C–

s 1 R2C⁄+
--------------------------= = = =

z1 R1 1 Cs⁄+= z2 R2=
Vout s( )
Vin s( )
------------------

z2
z1
-----–=

G s( )
Vout s( )
Vin s( )
------------------

R2–

R1 1 Cs⁄+
--------------------------

R2 R1⁄( )s–

s 1 R1C⁄+
---------------------------= = =
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9.

At Node :

  (1)

At Node :

and since , we express the last relation above as

  (2)

At Node :

  (3)

R1

R2

R3

Vout s( )
Vin s( )

R4

R1 = 11.3 KΩ
R2 = 22.6 KΩ
R3=R4 = 68.1 KΩ

C1=C2 = 0.01 µF

V3
V2

V1

1 C1s⁄

1 C2s⁄

V1

V1 s( )
R3

--------------
V1 s( ) Vout s( )–

R4
--------------------------------------+ 0=

1
R3
------ 1

R4
------+ 

 V1 s( ) 1
R4
------Vout s( )=

V3

V3 s( ) V2 s( )–

R2
----------------------------------

V3 s( )
1 C1s⁄
----------------+ 0=

V3 s( ) V1 s( )≈

V1 s( ) V2 s( )–

R2
---------------------------------- C1sV1 s( )+ 0=

1
R2
------ C1s+ 

 V1 s( ) 1
R2
------V2 s( )=

V2

V2 s( ) Vin s( )–

R1
------------------------------------

V2 s( ) V1 s( )–

R2
----------------------------------

V2 s( ) Vout s( )–

1 C2s⁄
--------------------------------------+ + 0=

1
R1
------ 1

R2
------ C2s+ + 

 V2 s( )
Vin s( )

R1
---------------

V1 s( )
R2

-------------- C2sVout s( )+ +=
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From (1)

  (4)

From (2)

and with (4)

  (5)

By substitution of (4) and (5) into (3) we obtain

and thus

By substitution of the given values and after simplification we obtain

We use the MATLAB script below to plot this function.

w=1:10:10000; s=j.*w; Gs=7.83.*10.^7./(s.^2+1.77.*10.^4.*s+5.87.*10.^7);...
semilogx(w,abs(Gs)); xlabel('Radian Frequency w'); ylabel('|Vout/Vin|');... 
title('Magnitude Vout/Vin vs. Radian Frequency'); grid

V1 s( )
1 R4⁄( )

R3 R4+( ) R3R4⁄
-----------------------------------------Vout s( )

R3
R3 R4+( )

------------------------Vout s( )= =

V2 s( ) R2
1

R2
------ C1s+ 
 V1 s( ) 1 R2C1s+( )V1 s( )= =

V2 s( )
R3 1 R2C1s+( )

R3 R4+( )
------------------------------------Vout s( )=

1
R1
------ 1

R2
------ C2s+ + 

 R3 1 R2C1s+( )
R3 R4+( )

------------------------------------Vout s( )
Vin s( )

R1
--------------- 1

R2
------

R3
R3 R4+( )

------------------------Vout s( ) C2sVout s( )+ +=

1
R1
------ 1

R2
------ C2s+ + 

 R3 1 R2C1s+( )
R3 R4+( )

------------------------------------ 1
R2
------

R3
R3 R4+( )

------------------------– C2s– Vout s( ) 1
R1
------Vin s( )=

G s( )
Vout s( )
Vin s( )
------------------ 1

R1
1

R1
------ 1

R2
------ C2s+ + 

 R3 1 R2C1s+( )
R3 R4+( )

------------------------------------ 1
R2
------

R3
R3 R4+( )

------------------------– C2s–

----------------------------------------------------------------------------------------------------------------------------------------------= =

G s( ) 7.83 107×
s2 1.77 104s× 5.87 107×+ +
----------------------------------------------------------------------=
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The plot above indicates that this circuit is a second−order low−pass filter.
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Chapter 5

State Variables and State Equations

his chapter is an introduction to state variables and state equations as they apply in circuit
analysis. The state transition matrix is defined, and the state−space to transfer function
equivalence is presented. Several examples are presented to illustrate their application.

5.1 Expressing Differential Equations in State Equation Form
As we know, when we apply Kirchoff’s Current Law (KCL) or Kirchoff’s Voltage Law (KVL) in
networks that contain energy−storing devices, we obtain integro−differential equations. Also,
when a network contains just one such device (capacitor or inductor), it is said to be a first−order
circuit. If it contains two such devices, it is said to be second−order circuit, and so on. Thus, a first
order linear, time−invariant circuit can be described by a differential equation of the form

(5.1)

A second order circuit can be described by a second−order differential equation of the same form
as (5.1) where the highest order is a second derivative.

An nth−order differential equation can be resolved to  first−order simultaneous differential
equations with a set of auxiliary variables called state variables. The resulting first−order differen-
tial equations are called state−space equations, or simply state equations. These equations can be
obtained either from the nth−order differential equation, or directly from the network, provided
that the state variables are chosen appropriately. The state variable method offers the advantage
that it can also be used with non−linear and time−varying devices. However, our discussion will
be limited to linear, time−invariant circuits.

State equations can also be solved with numerical methods such as Taylor series and Runge−
Kutta methods, but these will not be discussed in this text*. The state variable method is best
illustrated with several examples presented in this chapter. 

Example 5.1  

A series  circuit with excitation 

(5.2)

* These are discussed in “Numerical Analysis Using MATLAB and Excel”, Third Edition, ISBN 978-1-934404-03-4.

T

a1
dy
dt
------ a0 y t( )+ x t( )=

n

RLC

vS t( ) e jωt=
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is described by the integro−differential equation

(5.3)

Differentiating both sides and dividing by  we obtain

(5.4)

or

(5.5)

Next, we define two state variables  and  such that

(5.6)
and

(5.7)

Then,

(5.8)

where  denotes the derivative of the state variable . From (5.5) through (5.8), we obtain the
state equations

(5.9)

It is convenient and customary to express the state equations in matrix* form. Thus, we write the
state equations of (5.9) as

(5.10)

We usually write (5.10) in a compact form as

(5.11)
where

* For a review of matrix theory, please refer to Appendix D.

Ri Ldi
dt
----- 1

C
---- i td

∞–

t

∫+ + e jωt=

L

d2t
dt2
------- R

L
---- di

dt
----- 1

LC
-------- i+ + 1

L
---jωe jωt=

d2t
dt2
------- R

L
---- di

dt
----- 1

LC
-------- i 1

L
---jωe jωt+––=

x1 x2

x1 i=

x2
di
dt
----- dx1

dt
-------- x· 1= = =

x· 2 d2i dt2⁄=

x· k xk

x· 1 x2=

x· 2
R
L
---x2–

1
LC
-------x1–

1
L
---jωe jωt+=

x· 1

x· 2

0 1
1

LC
-------– R

L
---–

x1

x2

0
1
L
--- jωe jωt u+=

x· Ax bu+=
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 (5.12)

The output  is expressed by the state equation

(5.13)

where  is another matrix, and  is a column vector. 

In general, the state representation of a network can be described by the pair of the of the state−
space equations

 (5.14)

The state space equations of (5.14) can be realized with the block diagram of Figure 5.1.

Figure 5.1. Block diagram for the realization of the state equations of (5.14)

We will learn how to solve the matrix equations of (5.14) in the subsequent sections.

Example 5.2  
A fourth−οrder network is described by the differential equation

(5.15)

where  is the output representing the voltage or current of the network, and  is any
input. Express (5.15) as a set of state equations.

Solution:
The differential equation of (5.15) is of fourth−order; therefore, we must define four state vari-
ables which will be used with the resulting four first−order state equations. 

x· x· 1

x· 2

A  
0 1
1

LC
-------– R

L
---–

x,=, x1

x2

   b
0

1
L
--- jωe jωt  and  u,=, any input= = =

y t( )

y Cx du+=

C d

x· Ax bu+=

y Cx du+=

u b

A

C

d

x

+ +

++ yΣ Σdt∫x·

d 4y
dt4
--------- a3

d 3y
dt3
--------- a2

d2y
dt2
-------- a1

dy
dt
------ a0 y t( )+ + + + u t( )=

y t( ) u t( )
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We denote the state variables as , and , and we relate them to the terms of the given
differential equation as

(5.16)

We observe that

(5.17)

and in matrix form 

(5.18)

In compact form, (5.18) is written as
(5.19)

where

We can also obtain the state equations directly from given circuits. We choose the state variables
to represent inductor currents and capacitor voltages. In other words, we assign state variables to
energy storing devices. The examples below illustrate the procedure.

Example 5.3  

Write state equation(s) for the circuit of Figure 5.2, given that , and  is the unit
step function.

x1 x2 x3, ,  x4

x1 y t( )= x2
dy
dt
------= x3

d 2y
dt2
---------= x4

d 3y
dt3
---------=

x· 1 x2=

x· 2 x3=

x· 3 x4=

d 4y
dt4
--------- x· 4 a0x1– a1x2 a2x3–– a3x4– u t( )+= =

x· 1

x· 2

x· 3

x· 4

0 1 0 0
0 0 1 0
0 0 0 1
a0– a1– a2– a3–

x1

x2

x3

x4

0
0
0
1

u t( )+=

x· Ax bu+=

x·

x· 1

x· 2

x· 3

x· 4

=      A

0 1 0 0
0 0 1 0
0 0 0 1
a0– a1– a2– a3–

=      x

x1

x2

x3

x4

=      b

0
0
0
1

     and u,=, , , u t( )=

vC 0−( ) 0= u0 t( )
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Expressing Differential Equations in State Equation Form

Figure 5.2. Circuit for Example 5.3
Solution:
This circuit contains only one energy−storing device, the capacitor. Therefore, we need only one
state variable. We choose the state variable to denote the voltage across the capacitor as shown
in Figure 5.3. The output is defined as the voltage across the capacitor.

Figure 5.3. Circuit for Example 5.3 with state variable x assigned to it

For this circuit,

and

By KVL,

or

Therefore, the state equations are

(5.20)

Example 5.4  

Write state equation(s) for the circuit of Figure 5.4 assuming , and the output  is
defined as .

+−

R

−
+

CvS u0 t( )
vC t( ) vout t( )=

+−

R

−
+

C

+ −

i
vS u0 t( )

vR t( )
vC t( ) vout t( ) x= =

iR i iC C
dvC
dt

--------- Cx·= = = =

vR t( ) Ri RCx·= =

vR t( ) vC t( )+ vS u0 t( )=

RCx· x+ vSu0 t( )=

x· 1
RC
--------x– vS u0 t( )+=

y x=

iL 0−( ) 0= y
y i t( )=
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Figure 5.4. Circuit for Example 5.4
Solution:

This circuit contains only one energy−storing device, the inductor; therefore, we need only one
state variable. We choose the state variable to denote the current through the inductor as shown
in Figure 5.5. 

Figure 5.5. Circuit for Example 5.4 with assigned state variable x

By KVL,

or

or

Therefore, the state equations are

(5.21)

5.2 Solution of Single State Equations
If a circuit contains only one energy−storing device, the state equations are written as

(5.22)

where , , , and  are scalar constants, and the initial condition, if non−zero, is denoted as

(5.23)

+
−

R

L

vSu0 t( )

i t( )

+
−

R

L

vS u0 t( )

i t( ) x=

vR vL+ vS u0 t( )=

Ri Ldi
dt
-----+ vS u0 t( )=

Rx Lx·+ vS u0 t( )=

x· R
L
----x– 1

L
---vS u0 t( )+=

y x=

x· αx βu+=

y k1x k2u+=

α β k1 k2

x0 x t0( )=
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Solution of Single State Equations

We will now prove that the solution of the first state equation in (5.22) is

(5.24)

Proof:

First, we must show that (5.24) satisfies the initial condition of (5.23). This is done by substitu-
tion of  in (5.24). Then, 

(5.25)

The first term in the right side of (5.25) reduces to  since

(5.26)

The second term of (5.25) is zero since the upper and lower limits of integration are the same.
Therefore, (5.25) reduces to  and thus the initial condition is satisfied.

Next, we must prove that (5.24) satisfies also the first equation in (5.22). To prove this, we dif-
ferentiate (5.24) with respect to  and we obtain

or

or

(5.27)

We observe that the bracketed terms of (5.27) are the same as the right side of the assumed solu-
tion of (5.24). Therefore, 

and this is the same as the first equation of (5.22).

In summary, if  and  are scalar constants, the solution of

(5.28)

x t( ) e
α t t0–( )

x0 eα t e ατ– βu τ( ) τd
t0

t

∫+=

t t0=

x t0( ) e
α t0 t0–( )

x0 eα t e α– τβu τ( ) τd
t0

t0

∫+=

x0

e
α t0 t0–( )

x0 e0x0 x0= =

x t0( ) x0=

t

x· t( ) d
dt
----- e

α t t0–( )
x0( ) d

dt
----- eαt e ατ– βu τ( ) τd

t0

t

∫ 
 
 

+=

x· t( ) αe
α t t0–( )

x0 αeαt e ατ– βu τ( ) τ eαt e ατ– βu τ( )[ ] τ t=
+d

t0

t

∫+=

α e
α t t0–( )

x0 eα t e ατ– βu τ( ) τd
t0

t

∫+ eα te αt– βu t( )+=

x· t( ) α e
α t t0–( )

x0 eα t τ–( )βu τ( ) τd
t0

t

∫+ βu t( )+=

x· αx βu+=

α β

x· αx βu+=
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with initial condition
(5.29)

is obtained from the relation

(5.30)

Example 5.5  

Use (5.28) through (5.30) to find the capacitor voltage  of the circuit of Figure 5.6 for ,

given that the initial condition is 

Figure 5.6. Circuit for Example 5.5
Solution:

From (5.20) of Example 5.3, Page 5−5,

and by comparison with (5.28),

and

Then, from (5.30),

or

(5.31)

Assuming that the output  is the capacitor voltage, the output state equation is

x0 x t0( )=

x t( ) e
α t t0–( )

x0 eαt e α– τβu τ( ) τd
t0

t

∫+=

vC t( ) t 0>

vC 0−( ) 1 V=

+
− −

+

0.5 F

R

2u0 t( )
vC t( )

2 Ω C

x· 1
RC
--------x– vSu0 t( )+=

α 1
RC
--------– 1–

2 0.5×
---------------- 1–= = =

β 2=

x t( ) e
α t t0–( )

x0 eαt e α– τβu τ( ) τd
t0

t

∫+ e 1– t 0–( )1 e t– eτ2u τ( ) τd
0

t

∫+= =

e t– 2e t– eτ τd
0

t

∫+ e t– 2e t– eτ[ ] 0

t
+ e t– 2e t– et 1–( )+= ==

vC t( ) x t( ) 2 e t––( )u0 t( )= =

y
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The State Transition Matrix

(5.32)

5.3 The State Transition Matrix          
In Section 5.1, relation (5.14), we defined the state equations pair

(5.33)

where for two or more simultaneous differential equations,  and  are  or higher order
matrices, and  and  are column vectors with two or more rows. In this section we will intro-

duce the state transition matrix , and we will prove that the solution of the matrix differential
equation 

(5.34)
with initial conditions

(5.35)
is obtained from the relation

(5.36)

Proof:

Let  be any  matrix whose elements are constants. Then, another  matrix denoted as
, is said to be the state transition matrix of (5.34), if it is related to the matrix  as the

matrix power series

(5.37)

where  is the  identity matrix.

From (5.37), we find that

(5.38)

Differentiation of (5.37) with respect to  yields

(5.39)

and by comparison with (5.37) we obtain

y t( ) x t( ) 2 e t––( )u0 t( )= =

x· Ax bu+=

y Cx du+=

A C 2 2×
b d

eAt

x· Ax bu+=

x t0( ) x0=

x t( ) e
A t t0–( )

x0 eAt e A– τbu τ( ) τd
t0

t

∫+=

A n n× n n×
ϕ t( ) A

ϕ t( ) eAt I At 1
2!
-----A2t2 1

3!
-----A3t3 … 1

n!
-----Antn+ + + + +=≡

I n n×

ϕ 0( ) eA0 I A0 …+ + I= = =

t

ϕ' t( ) d
dt
-----eAt 0 A 1 A2t …+ +⋅+ A A2t …+ += = =
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(5.40)

To prove that (5.36) is the solution of (5.34), we must prove that it satisfies both the initial con-
dition and the matrix differential equation. The initial condition is satisfied from the relation

(5.41)

where we have used (5.38) for the initial condition. The integral is zero since the upper and lower
limits of integration are the same.

To prove that (5.34) is also satisfied, we differentiate the assumed solution

with respect to  and we use (5.40), that is,

Then,

or

(5.42)

We recognize the bracketed terms in (5.42) as , and the last term as . Thus, the expres-
sion (5.42) reduces to

In summary, if  is an  matrix whose elements are constants, , and  is a column vec-
tor with n elements, the solution of

(5.43)
with initial condition

(5.44)
is

(5.45)

Therefore, the solution of second or higher order circuits using the state variable method, entails

the computation of the state transition matrix , and integration of (5.45).

d
dt
-----eAt AeAt=

x t0( ) e
A t0 t0–( )

x0 e
At0 e A– τbu τ( ) τd

t0

t0

∫+ eA0x0 0+ Ix0 x0= = = =

x t( ) e
A t t0–( )

x0 eAt e A– τbu τ( ) τd
t0

t

∫+=

t

d
dt
-----eAt AeAt=

x· t( ) Ae
A t t0–( )

x0 AeAt e A– τbu τ( ) τd
t0

t

∫ eAte A– tbu t( )+ +=

x· t( ) A e
A t t0–( )

x0 eAt e A– τbu τ( ) τd
t0

t

∫+ eAte A– tbu t( )+=

x t( ) bu t( )

x· t( ) Ax bu+=

A n n× n 2≥ b

x· t( ) Ax bu+=

x0 x t0( )=

x t( ) e
A t t0–( )

x0 eAt e A– τbu τ( ) τd
t0

t

∫+=

eAt
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Computation of the State Transition Matrix

5.4 Computation of the State Transition Matrix 

Let  be an  matrix, and  be the  identity matrix. By definition, the eigenvalues ,
 of  are the roots of the nth order polynomial

(5.46)

We recall that expansion of a determinant produces a polynomial. The roots of the polynomial of
(5.46) can be real (unequal or equal), or complex numbers.

Evaluation of the state transition matrix  is based on the Cayley−Hamilton theorem. This theo-
rem states that a matrix can be expressed as an  degree polynomial in terms of the
matrix  as

(5.47)

where the coefficients  are functions of the eigenvalues .

We accept (5.47) without proving it. The proof can be found in Linear Algebra and Matrix The-
ory textbooks.

Since the coefficients  are functions of the eigenvalues , we must consider the two cases dis-
cussed in Subsections 5.4.1 and 5.4.2 below.

5.4.1 Distinct Eigenvalues (Real of Complex)

If , that is, if all eigenvalues of a given matrix  are distinct, the coeffi-
cients  are found from the simultaneous solution of the following system of equations:

(5.48)

Example 5.6  

Compute the state transition matrix  given that

eAt

A n n× I n n× λi

i 1 2 … n, , ,= A

det A λI–[ ] 0=

eAt

n 1–( )th
A

eAt a0I a1A a2A2 … an 1– An 1–+ + + +=

ai λ

ai λ

λ1 λ2 λ3 … λn≠ ≠ ≠ ≠ A

ai

a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + + e
λ1t

=

a0 a1λ2 a2λ2
2 … an 1– λ2

n 1–+ + + + e
λ2t

=

…

a0 a1λn a2λn
2 … an 1– λn

n 1–+ + + + e
λnt

=

eAt
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Solution:

We must first find the eigenvalues  of the given matrix . These are found from the expansion
of

For this example,

or

Therefore,
(5.49)

Next, we must find the coefficients  of (5.47). Since  is a  matrix, we only need to con-
sider the first two terms of that relation, that is,

(5.50)

The coefficients  and  are found from (5.48). For this example,

or

(5.51)

Simultaneous solution of (5.51) yields

(5.52)

and by substitution into (5.50),

A 2– 1
0 1–

=

λ A

det A λI–[ ] 0=

det A λI–[ ] det 2– 1
0 1–

λ 1 0
0 1

–
 
 
 

det 2– λ– 1
0 1– λ–

0= = =

2– λ–( ) 1– λ–( ) 0==

λ 1+( ) λ 2+( ) 0=

λ1 1  and  λ2 2–=–=

ai A 2 2×

eAt a0I a1A+=

a0 a1

a0 a1λ1+ e
λ1t

=

a0 a1λ2+ e
λ2t

=

a0 a1 1–( )+ e t–=

a0 a1 2–( )+ e 2t–=

a0 2e t– e 2t––=

a1 e t– e 2t––=

eAt 2e t– e 2t––( ) 1 0
0 1

e t– e 2t––( ) 2– 1
0 1–

+=
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or

(5.53)

In summary, we compute the state transition matrix  for a given matrix  using the following
procedure:

1. We find the eigenvalues  from . We can write  at once by sub-
tracting  from each of the main diagonal elements of . If the dimension of  is a 
matrix, it will yield two eigenvalues; if it is a  matrix, it will yield three eigenvalues, and
so on. If the eigenvalues are distinct, we perform steps 2 through 4; otherwise we refer to Sub-
section 5.4.2 below.

2. If the dimension of  is a  matrix, we use only the first 2 terms of the right side of the
state transition matrix 

(5.54)

If  matrix is a  matrix, we use the first 3 terms of (5.54), and so on.

3. We obtain the  coefficients from

We use as many equations as the number of the eigenvalues, and we solve for the coefficients
.

4. We substitute the  coefficients into the state transition matrix of (5.54), and we simplify.

Example 5.7  

Compute the state transition matrix  given that

eAt e 2t– e t– e 2t––

0 e t–
=

eAt A

λ det A λI–[ ] 0= A λI–[ ]
λ A A 2 2×

3 3×

A 2 2×

eAt a0I a1A a2A2 … an 1– An 1–+ + + +=

A 3 3×

ai

a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + + e
λ1t

=

a0 a1λ2 a2λ2
2 … an 1– λ2

n 1–+ + + + e
λ2t

=

…

a0 a1λn a2λn
2 … an 1– λn

n 1–+ + + + e
λnt

=

ai

ai

eAt
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(5.55)

Solution:

1. We first compute the eigenvalues from . We obtain  at once, by sub-
tracting  from each of the main diagonal elements of . Then,

(5.56)

and expansion of this determinant yields the polynomial

 (5.57)

We will use MATLAB roots(p) function to obtain the roots of (5.57).

p=[1  −6  11  −6]; r=roots(p); fprintf(' \n'); fprintf('lambda1 = %5.2f \t', r(1));...
fprintf('lambda2 = %5.2f \t', r(2)); fprintf('lambda3 = %5.2f', r(3))

lambda1 = 3.00   lambda2 = 2.00   lambda3 = 1.00

and thus the eigenvalues are

(5.58)

2. Since  is a  matrix, we use the first  terms of (5.54), that is,

(5.59)

3. We obtain the coefficients  from 

or

(5.60)

A
5 7 5–
0 4 1–
2 8 3–

=

det A λI–[ ] 0= A λI–[ ]
λ A

det A λI–[ ] det
5 λ– 7 5–

0 4 λ– 1–
2 8 3– λ–

0= =

λ3 6λ2 11λ 6–+– 0=

λ1 1= λ2 2= λ3 3=

A 3 3× 3

eAt a0I a1A a2A2+ +=

a0 a1 and a2, ,

a0 a1λ1 a2λ1
2+ + e

λ1t
=

a0 a1λ2 a2λ2
2+ + e

λ2t
=

a0 a1λ3 a2λ3
2+ + e

λ3t
=

a0 a1 a2+ + et=

a0 2a1 4a2+ + e2t=

a0 3a1 9a2+ + e3t=
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We will use the following MATLAB script for the solution of (5.60).

B=sym('[1  1  1; 1  2  4; 1  3  9]'); b=sym('[exp(t); exp(2*t); exp(3*t)]'); a=B\b; fprintf(' \n');...
disp('a0 = '); disp(a(1)); disp('a1 = '); disp(a(2)); disp('a2 = '); disp(a(3))

a0 = 
3*exp(t)-3*exp(2*t)+exp(3*t)
a1 = 
-5/2*exp(t)+4*exp(2*t)-3/2*exp(3*t)
a2 = 
1/2*exp(t)-exp(2*t)+1/2*exp(3*t)

Thus,

(5.61)

4. We also use MATLAB to perform the substitution into the state transition matrix, and to per-
form the matrix multiplications. The script is shown below.

syms t; a0 = 3*exp(t)+exp(3*t)−3*exp(2*t); a1 = −5/2*exp(t)−3/2*exp(3*t)+4*exp(2*t);...
a2 = 1/2*exp(t)+1/2*exp(3*t)−exp(2*t);...
A = [5  7  −5;  0  4  −1;  2  8  -3]; eAt=a0*eye(3)+a1*A+a2*A^2

eAt =
[-2*exp(t)+2*exp(2*t)+exp(3*t),  -6*exp(t)+5*exp(2*t)+exp(3*t),   
4*exp(t)-3*exp(2*t)-exp(3*t)]
[-exp(t)+2*exp(2*t)-exp(3*t),  -3*exp(t)+5*exp(2*t)-exp(3*t),   
2*exp(t)-3*exp(2*t)+exp(3*t)]
[-3*exp(t)+4*exp(2*t)-exp(3*t), -9*exp(t)+10*exp(2*t)-exp(3*t),   
6*exp(t)-6*exp(2*t)+exp(3*t)]

Thus,

5.4.2 Multiple (Repeated) Eigenvalues
In this case, we will assume that the polynomial of

(5.62)

a0 3et 3e2t– e3t+=

a1
5
2
---et– 4e2t 3

2
---e3t–+=

a2
1
2
---et e2t– 1

2
---e3t+=

eAt
2et– 2e2t e3t+ + 6– et 5e2t e3t+ + 4et 3e2t– e3t–

et– 2e2t e3t–+ 3et– 5e2t e3t–+ 2et 3e2t– e3t+

3et– 4e2t e3t–+ 9et– 10e2t e3t–+ 6et 6e2t– e3t+

=

det A λI–[ ] 0=
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has  roots, and  of these roots are equal. In other words, the roots are 

(5.63)

The coefficients  of the state transition matrix

(5.64)

are found from the simultaneous solution of the system of equations of (5.65) below.

(5.65)

Example 5.8  

Compute the state transition matrix  given that

Solution:

1. We first find the eigenvalues  of the matrix  and these are found from the polynomial of
. For this example,

and thus,

n m

λ1 λ2= λ3= … λm,  λm 1+  ,  λn=

ai

eAt a0I a1A a2A2 … an 1– An 1–+ + + +=

a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + + e
λ1t

=

d
dλ1
--------- a0 a1λ1 a2λ1

2 … an 1– λ1
n 1–+ + + +( ) d

dλ1
--------e

λ1t
=

d 2

dλ1
2

-------- a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + +( ) d 2

dλ1
2

--------e
λ1t

=

…

d m 1–

dλ1
m 1–

--------------- a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + +( ) d m 1–

dλ1
m 1–

---------------e
λ1t

=

a0 a1λm 1+ a2λm 1+
2 … an 1– λm 1+

n 1–+ + + + e
λ m 1+ t

=

…

a0 a1λn a2λn
2 … an 1– λn

n 1–+ + + + e
λnt

=

eAt

A 1– 0
2 1–

=

λ A
det A λI–[ ] 0=

det A λI–[ ] det 1– λ– 0
2 1– λ–

0= = 1– λ–( ) 1– λ–( ) 0= λ 1+( )2 0=
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Computation of the State Transition Matrix

2. Since  is a  matrix, we only need the first two terms of the state transition matrix, that
is,

(5.66)

3. We find  and  from (5.65). For this example,

or

and by substitution with , we obtain

Simultaneous solution of the last two equations yields

(5.67)

4. By substitution of (5.67) into (5.66), we obtain 

or

(5.68)

We can use the MATLAB eig(x) function to find the eigenvalues of an  matrix. To find out
how it is used, we invoke the help eig command.

λ1 λ2 1–= =

A 2 2×

eAt a0I a1A+=

a0 a1

a0 a1λ1+ e
λ1t

=

d
dλ1
--------- a0 a1λ1+( ) d

dλ1
---------e

λ1t
=

a0 a1λ1+ e
λ1t

=

a1 te
λ1t

=

λ1 λ2 1–= =

a0 a1– e t–=

a1 te t–=

a0 e t– te t–+=

a1 te t–=

eAt e t– te t–+( ) 1 0
0 1

te t– 1– 0
2 1–

+=

eAt e t– 0

2te t– e t–
=

n n×
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We will first use MATLAB to verify the values of the eigenvalues found in Examples 5.6 through
5.8, and we will briefly discuss eigenvectors in the next section.

Example 5.6:

A= [−2  1; 0  −1]; lambda=eig(A)

lambda =
    -2
    -1

Example 5.7:

B = [5  7  −5;  0  4  −1;  2  8  −3]; lambda=eig(B)

lambda =
    1.0000
    3.0000
    2.0000

Example 5.8:

C = [−1  0; 2  −1]; lambda=eig(C)

lambda =
    -1
    -1

5.5 Eigenvectors
Consider the relation

(5.69)

where  is an  matrix,  is a column vector, and  is a scalar number. We can express this
relation in matrix form as

 (5.70)

We write (5.70) as

(5.71)

Then, (5.71) can be written as

AX λX=

A n n× X λ

a11 a12 … a1n

a21 a22 … a2n

… … … …
an1 an2 … ann

x1

x2

…
xn

λ

x1

x2

…
xn

=

A λI–( )X 0=
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Eigenvectors

(5.72)

The equations of (5.72) will have non−trivial solutions if and only if its determinant is zero*, that
is, if

(5.73)

Expansion of the determinant of (5.73) results in a polynomial equation of degree  in , and it
is called the characteristic equation.

We can express (5.73) in a compact form as

(5.74)

As we know, the roots  of the characteristic equation are the eigenvalues of the matrix , and
corresponding to each eigenvalue , there is a non-trivial solution of the column vector , i.e.,

. This vector  is called eigenvector. Obviously, there is a different eigenvector for each
eigenvalue. Eigenvectors are generally expressed as unit eigenvectors, that is, they are normalized
to unit length. This is done by dividing each component of the eigenvector by the square root of
the sum of the squares of their components, so that the sum of the squares of their components is
equal to unity.

In many engineering applications the unit eigenvectors are chosen such that  where

 is the transpose of the eigenvector , and  is the identity matrix.

Two vectors  and  are said to be orthogonal if their inner (dot) product is zero. A set of eigen-
vectors constitutes an orthonormal basis if the set is normalized (expressed as unit eigenvectors)
and these vector are mutually orthogonal. An orthonormal basis can be formed with the Gram-
Schmidt Orthogonalization Procedure; it is beyond the scope of this chapter to discuss this proce-
dure, and therefore it will not be discussed in this text. It can be found in Linear Algebra and
Matrix Theory textbooks.

* This is because we want the vector X in (5.71) to be a non-zero vector and the product  to be zero.

a11 λ–( )x1 a12x2 … a1nxn

a21x1 a22 λ–( )x2 … a2nxn

… … … …
an1x1 an2x2 … ann λ–( )xn

0=

A λI–( )X

det

a11 λ–( ) a12 … a1n

a21 a22 λ–( ) … a2n

… … … …
an1 an2 … ann λ–( )

0=

n λ

det A λI–( ) 0=

λ A
λ X

X 0≠ X

X XT⋅ I=

XT X I

X Y
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The example below illustrates the relationships between a matrix , its eigenvalues, and eigen-
vectors.

Example 5.9  
Given the matrix

a. Find the eigenvalues of 

b. Find eigenvectors corresponding to each eigenvalue of 

c. Form a set of unit eigenvectors using the eigenvectors of part (b).

Solution:

a. This is the same matrix as in Example 5.7, relation (5.55), Page 5−14, where we found the
eigenvalues to be

b. We start with

and we let

Then,

(5.75)

or

(5.76)

Equating corresponding rows and rearranging, we obtain

A

A
5 7 5–
0 4 1–
2 8 3–

=

A

A

λ1 1= λ2 2= λ3 3=

AX λX=

X
x1

x2

x3

=

5 7 5–
0 4 1–
2 8 3–

x1

x2

x3

λ
x1

x2

x3

=

5x1 7x2 5x3–

0 4x2 x3–

2x1 8x2 3x3–

λx1

λx2

λx3

=
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Eigenvectors

(5.77)

For , (5.77) reduces to

(5.78)

By Crame’s rule, or MATLAB, we obtain the indeterminate values

(5.79)

Since the unknowns  are scalars, we can assume that one of these, say , is
known, and solve  and  in terms of . Then, we obtain , and . There-
fore, an eigenvector for  is

(5.80)

since any eigenvector is a scalar multiple of the last vector in (5.80).

Similarly, for , we obtain , and . Then, an eigenvector for  is

(5.81)

Finally, for , we obtain , and . Then, an eigenvector for  is

(5.82)

c. We find the unit eigenvectors by dividing the components of each vector by the square root of
the sum of the squares of the components. These are:

5 λ–( )x1 7x2 5x3–

0 4 λ–( )x2 x3–

2x1 8x2 3 λ–( )x3–

0
0
0

=

λ 1=

4x1 7x2 5x3–+ 0=

3x2 x3– 0=

2x1 8x2 4x3–+ 0=

x1 0 0⁄= x2 0 0⁄= x3 0 0⁄=

x1 x2  and x3, , x2

x1 x3 x2 x1 2x2= x3 3x2=

λ 1=

Xλ 1=

x1

x2

x3

=
2x2

x2

3x2

x2

2
1
3

2
1
3

= = =

λ 2= x1 x2= x3 2x2= λ 2=

Xλ 2=

x1

x2

x3

=
x2

x2

2x2

x2

1
1
2

1
1
2

= = =

λ 3= x1 x– 2= x3 x2= λ 3=

Xλ 3=

x1

x2

x3

=
x– 2

x2

x2

x2

1–
1
1

1–
1
1

= = =
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The unit eigenvectors are

 (5.83)

We observe that for the first unit eigenvector the sum of the squares is unity, that is,

(5.84)

and the same is true for the other two unit eigenvectors in (5.83).

5.6 Circuit Analysis with State Variables
In this section we will present two examples to illustrate how the state variable method is used in
circuit analysis.

Example 5.10  

For the circuit of Figure 5.7, the initial conditions are , and . Use the

state variable method to compute  and .

Figure 5.7. Circuit for Example 5.10

22 12 32+ + 14=

12 12 22+ + 6=

1–( )2 12 12+ + 3=

Unit Xλ 1=

2
14

----------

1
14

----------

3
14

----------

= Unit Xλ 2=

1
6

-------

1
6

-------

2
6

-------

= Unit Xλ 3=

1–

3
-------

1
3

-------

1
3

-------

=

2
14

---------- 
  2 1

14
---------- 
  2 3

14
---------- 
  2

+ + 4
14
------ 1

14
------ 9

14
------+ + 1= =

iL 0−( ) 0= vC 0−( ) 0.5 V=

iL t( ) vC t( )

−

+

R L

+−
C1 Ω

vS t( ) u0 t( )=

vC t( )
i t( )

1 4⁄  H

4 3⁄  F
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Circuit Analysis with State Variables

Solution:

For this example,

and

Substitution of given values and rearranging, yields

or

(5.85)

Next, we define the state variables  and . Then,

(5.86)

and

Also,

and thus,

or

(5.87)

Therefore, from (5.85), (5.86), and (5.87), we obtain the state equations

and in matrix form,

(5.88)

i iL=

RiL L
diL

dt
------- vC+ + u0 t( )=

1
4
---diL

dt
------- 1–( )iL vC– 1+=

diL

dt
------- 4iL– 4vC– 4+=

x1 iL= x2 vC=

x· 1
diL

dt
-------=

x· 2
dvC

dt
---------=

iL C
dvC

dt
---------=

x1 iL C
dvC

dt
--------- Cx· 2

4
3
---x· 2= = = =

x· 2
3
4
---x1=

x· 1 4x1– 4x2– 4+=

x· 2
3
4
--- x1=

x· 1

x· 2

4– 4–
3 4⁄ 0

x1

x2

4
0

u0 t( )+=
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We will compute the solution of (5.88) using

(5.89)

where

    (5.90)

First, we compute the state transition matrix . We find the eigenvalues from

Then,

Therefore,

The next step is to find the coefficients . Since  is a  matrix, we only need the first two
terms of the state transition matrix, that is,

(5.91)

The constants  and  are found from

and with , we obtain

(5.92)

Simultaneous solution of (5.92) yields

(5.93)

We now substitute these values into (5.91), and we obtain

x t( ) e
A t t0–( )

x0 eAt e A– τbu τ( ) τd
t0

t

∫+=

A 4– 4–
3 4⁄ 0

= x0
iL 0( )
vC 0( )

0
1 2⁄

= = b 4
0

=

eAt

det A λI–[ ] 0=

det A λI–[ ] det 4– λ– 4–
3 4⁄ λ–

0= = λ–( ) 4– λ–( ) 3+ 0= λ2 4λ 3+ + 0=

λ1 1  and  λ2 3–=–=

ai A 2 2×

eAt a0I a1A+=

a0 a1

a0 a1λ1+ e
λ1t

=

a0 a1λ2+ e
λ2t

=

λ1 1  and  λ2 3–=–=

a0 a1– e t–=

a0 3a– 1 e 3t–=

a0 1.5e t– 0.5e 3t––=

a1 0.5e t– 0.5e 3t––=
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Circuit Analysis with State Variables

or

The initial conditions vector is the second vector in (5.90); then, the first term of (5.89)
becomes

or

(5.94)

We also need to evaluate the integral on the right side of (5.89). From (5.90)

and denoting this integral as , we obtain

or

(5.95)

eAt 1.5e t– 0.5e 3t––( ) 1 0
0 1

0.5e t– 0.5e 2t––( ) 4– 4–
3 4⁄ 0

+=

1.5e t– 0.5e 3t–– 0

0 1.5e t– 0.5e 3t––

2– e t– 2e 3t–+ 2– e t– 2e 3t–+

3
8
---e t– 3

8
---e

3t–
– 0

+=

eAt 0.5– e t– 1.5e 3t–+ 2– e t– 2e 3t–+

3
8
---e t– 3

8
---e

3t–
– 1.5e t– 0.5e 3t––

=

eAtx0

0.5– e t– 1.5e 3t–+ 2– e t– 2e 3t–+

3
8
---e t– 3

8
---e

3t–
– 1.5e t– 0.5e 3t––

0
1 2⁄

=

eAtx0
e t–– e 3t–+

0.75e t– 0.25e 3t––
=

b 4
0

1
0

4= =

Int

Int
0.5– e t τ–( )– 1.5e 3 t τ–( )–+ 2– e t τ–( )– 2e 3 t τ–( )–+

3
8
---e t τ–( )– 3

8
---e

3 t τ–( )–
– 1.5e t τ–( )– 0.5e 3 t τ–( )––

1
0

4 τd
t0

t

∫=

Int
0.5– e t τ–( )– 1.5e 3 t τ–( )–+

3
8
---e t τ–( )– 3

8
---e

3 t τ–( )–
–

4 τd
t0

t

∫=
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The integration in (5.95) is with respect to ; then, integrating the column vector under the inte-
gral, we obtain

or

By substitution of these values, the solution of

is

Then,

(5.96)
and

(5.97)

Other variables of the circuit can now be computed from (5.96) and (5.97). For example, the
voltage across the inductor is

We use the MATLAB script below to plot the relation of (5.97). 

t=0:0.01:10; x2=1−0.75.*exp(−t)+0.25.*exp(−3.*t);...
plot(t,x2); grid

The plot is shown in Figure 5.8.

τ

Int 4 0.5– e t τ–( )– 0.5e 3 t τ–( )–+

0.375e t τ–( )– 0.125e 3 t τ–( )––
τ 0=

t

=

Int 4 0.5– 0.5+
0.375 0.125–

4 0.5– e t– 0.5e 3t–+

0.375e t– 0.125e 3t––
– 4 0.5e t– 0.5– e 3t–

0.25 0.375– e t– 0.125e 3t–+
= =

x t( ) e
A t t0–( )

x0 eAt e A– τbu τ( ) τd
t0

t

∫+=

x1

x2

e t–– e 3t–+

0.75e t– 0.25e 3t––
4 0.5e t– 0.5– e 3t–

0.25 0.375– e t– 0.125e 3t–+
+ e t– e– 3t–

1 0.75– e t– 0.25e 3t–+
= =

x1 iL e t– e– 3t–= =

x2 vC 1 0.75e– t– 0.25e 3t–+= =

vL L
diL
dt
------- 1

4
--- d

dt
----- e t– e– 3t–( ) 1

4
---e t–– 3

4
---e 3t–+= = =
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Circuit Analysis with State Variables

Figure 5.8. Plot for relation (5.97)

We can obtain the plot of Figure 5.8 with the Simulink State−Space block with the unit step
function as the input using the Step block, and the capacitor voltage as the output displayed on
the Scope block as shown in the model of Figure 5.9 where for the State−Space block Function
Block Parameters dialog box we have entered:

A: [−4  −4; 3/4  0]
B: [4  0]’
C: [0  1]
D: [ 0 ]
Initial conditions: [0  1/2]

Figure 5.9. Simulink model for Example 5.10

The waveform for the capacitor voltage for the simulation time interval  seconds is

shown in Figure 5.10 where we observe that the initial condition  is also dis-
played.

0 1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

0 t 10≤ ≤

vC 0−( ) 0.5 V=
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Figure 5.10. Input and output waveforms for the model of Figure 5.9

Example 5.11  
A network is described by the state equation

(5.98)
where

            and  (5.99)

Compute the state vector

Solution:

We compute the eigenvalues from

For this example,

Then,

Since  is a  matrix, we only need the first two terms of the state transition matrix to find
the coefficients , that is,

(5.100)

The constants  and  are found from

x· Ax bu+=

A 1 0
1 1–

= x0
1
0

= b 1–
1

= u δ t( )=

x x1

x2

=

det A λI–[ ] 0=

det A λI–[ ] det 1 λ– 0
1 1 λ––

0= = 1 λ–( ) 1– λ–( ) 0=

λ1 1  and  λ2 1–==

A 2 2×
ai

eAt a0I a1A+=

a0 a1
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Circuit Analysis with State Variables

(5.101)

and with , we obtain

(5.102)

and simultaneous solution of (5.102) yields

By substitution of these values into (5.100), we obtain

(5.103)

The values of the vector  are found from

(5.104)

Using the sifting property of the delta function we find that (5.104) reduces to

Therefore,

(5.105)

a0 a1λ1+ e
λ1t

=

a0 a1λ2+ e
λ2t

=

λ1 1  and  λ2 1–==

a0 a1+ et=

a0 a– 1 e t–=

a0
et e t–+

2
---------------- tcosh= =

a1
et e t––

2
---------------- tsinh= =

eAt tcosh I tsinh A+ tcosh 1 0
0 1

tsinh 1 0
1 1–

+ tcosh tsinh+ 0
tsinh tcosh tsinh–

= ==

x

x t( ) e
A t t0–( )

x0 eAt e A– τbu τ( ) τd
t0

t

∫+ eAtx0 eAt e A– τbδ τ( ) τd
0

t

∫+= =

x t( ) eAtx0 eAtb+ eAt x0 b+( ) eAt 1
0

1–
1

+
 
 
 

eAt 0
1

= = = =

tcosh tsinh+ 0
tsinh tcosh tsinh–

0
1

x1

x2

==

x
x1

x2

0
tcosh tsinh–

0

e t–
= = =
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5.7 Relationship between State Equations and Laplace Transform
In this section, we will show that the state transition matrix can be computed from the Inverse
Laplace transform. We will also show that the transfer function can be found from the coefficient
matrices of the state equations.

Consider the state equation
(5.106)

Taking the Laplace of both sides of (5.106), we obtain

or
(5.107)

Multiplying both sides of (5.107) by , we obtain

(5.108)

Comparing (5.108) with

(5.109)

we observe that the right side of (5.108) is the Laplace transform of (5.109). Therefore, we can

compute the state transition matrix  from the Inverse Laplace of , that is, we can use
the relation

(5.110)

Next, we consider the output state equation 

(5.111)

Taking the Laplace of both sides of (5.111), we obtain

(5.112)
and using (5.108), we obtain

(5.113)

If the initial condition , (5.113) reduces to

(5.114)

x· Ax bu+=

sX s( ) x 0( )– AX s( ) bU s( )+=

sI A–( )X s( ) x 0( ) bU s( )+=

sI A–( ) 1–

X s( ) sI A–( ) 1– x 0( ) sI A–( ) 1– bU s( )+=

x t( ) eAtx0 eAt e A– τbu τ( ) τd
0

t

∫+=

eAt sI A–( ) 1–

eAt L 1– sI A–( ) 1–{ }=

y Cx du+=

Y s( ) CX s( ) dU s( )+=

Y s( ) C sI A–( ) 1– x 0( ) C sI A–( ) 1– b d+[ ]U s( )+=

x 0( ) 0=

Y s( ) C sI A–( ) 1– b d+[ ]U s( )=
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In (5.114),  is the Laplace transform of the input ; then, division of both sides by 
yields the transfer function

 (5.115)

Example 5.12  
In the circuit of Figure 5.11, all initial conditions are zero. Compute the state transition matrix

 using the Inverse Laplace transform method.

Figure 5.11. Circuit for Example 5.12

Solution:

For this circuit,

and

Substitution of given values and rearranging, yields

(5.116)

Now, we define the state variables

and

Then,

(5.117)

and

Also,

U s( ) u t( ) U s( )

G s( ) Y s( )
U s( )
----------- C sI A–( ) 1– b d+= =

eAt

−

+

R L

+
−

C3 Ω

vS t( ) u0 t( )=

vC t( )
i t( )

1 H

1 2⁄  F

i iL=

RiL L
diL

dt
------- vC+ + u0 t( )=

diL

dt
------- 3– iL vC– 1+=

x1 iL=

x2 vC=

x· 1
diL

dt
------- 3– iL vC– 1+= =

x· 2
dvC

dt
---------=
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 (5.118)

and thus,

or
(5.119)

Therefore, from (5.117) and (5.119) we obtain the state equations

 (5.120)

and in matrix form,

(5.121)

By inspection,

(5.122)

Now, we will find the state transition matrix from

(5.123)
where

Then,

We find the Inverse Laplace of each term by partial fraction expansion. Thus,

Now, we can find the state variables representing the inductor current and the capacitor voltage
from

iL C
dvC

dt
--------- 0.5

dvC

dt
---------= =

x1 iL 0.5
dvC

dt
--------- 0.5x· 2= = =

x· 2 2x1=

x· 1 3x1– x2– 1+=

x· 2 2x1=

x· 1

x· 2

3– 1–
2 0

x1

x2

1
0

1+=

A 3– 1–
2 0

=

eAt L 1– sI A–( ) 1–{ }=

sI A–( ) s 0
0 s

3– 1–
2 0

– s 3+ 1
2– s

= =

sI A–( ) 1– adj sI A–( )
det sI A–( )
---------------------------- 1

s2 3s 2+ +
-------------------------- s 1–

2 s 3+

s
s 1+( ) s 2+( )

--------------------------------- 1–
s 1+( ) s 2+( )

---------------------------------

2
s 1+( ) s 2+( )

--------------------------------- s 3+
s 1+( ) s 2+( )

---------------------------------
= = =

eAt L 1– sI A–( ) 1–{ } e t–– 2e 2t–+ e t–– e 2t–+

2e t– 2e 2t–– 2e t– e 2t––
= =
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using the procedure of Example 5.11.

MATLAB provides two very useful functions to convert state−space (state equations), to trans-
fer function (s−domain), and vice versa. The function ss2tf (state−space to transfer function)
converts the state space equations

* (5.124)

to the rational transfer function form

(5.125)

This is used with the statement [num,den]=ss2tf(A,B,C,D,iu) where A, B, C, D are the matrices
of (5.124) and iu is  if there is only one input. The MATLAB help command provides the fol-
lowing information:

help ss2tf

 SS2TF  State-space to transfer function conversion.
    [NUM,DEN] = SS2TF(A,B,C,D,iu) calculates the
     transfer function:
                NUM(s)          -1
        G(s) = -------- = C(sI-A) B + D
                DEN(s)
    of the system:
        x = Ax + Bu
        y = Cx + Du
from the iu'th input. Vector DEN contains the coefficients of   the
denominator in descending powers of s. The numerator coefficients are
returned in matrix NUM with as many rows as there     are outputs y.

    See also TF2SS

The other function, tf2ss, converts the transfer function of (5.125) to the state−space equations
of (5.124). It is used with the statement [A,B,C,D]=tf2ss(num,den) where A, B, C, and D are
the matrices of (5.124), and num, den are  and  of (5.125) respectively. The MATLAB
help command provides the following information:

* We have used capital letters for vectors b and c to be consistent with MATLAB’s designations.

x t( ) eAtx0 eAt e A– τbu τ( ) τd
0

t

∫+=

x· Ax Bu+=

y Cx Du+=

G s( ) N s( )
D s( )
-----------=

1

N s( ) D s( )
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help tf2ss

 TF2SS  Transfer function to state-space conversion.
    [A,B,C,D] = TF2SS(NUM,DEN) calculates the state-space 
    representation:

        x = Ax + Bu
        y = Cx + Du
    of the system:
                 NUM(s) 
        G(s) = --------
                 DEN(s)
from a single input. Vector DEN must contain the coefficients of the
denominator in descending powers of s. Matrix NUM must contain the
numerator coefficients with as many rows as there are outputs y. The
A,B,C,D matrices are returned in controller canonical form. This calcu-
lation also works for discrete systems. To avoid confusion when using
this function with discrete systems, always use a numerator polynomial
that has been padded with zeros to make it the same length as the denom-
inator. See the User's guide for more details.

    See also SS2TF.

Example 5.13  
For the circuit of Figure 5.12, all initial conditions are zero.

Figure 5.12. Circuit for Example 5.13

a. Derive the state equations and express them in matrix form as 

b. Derive the transfer function

c. Verify your answers with MATLAB.

−
+

R L

+
−

C1 Ω

vS t( ) u0 t( )=

vC t( ) vout t( )=
i t( )

1 H

1 F

x· Ax Bu+=

y Cx Du+=

G s( ) N s( )
D s( )
-----------=
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Solution:

a. The differential equation describing the circuit is

and with the given values,

or

We let

and

Then,

and

Thus, the state equations are

and in matrix form, 

(5.126)

b. The  circuit is shown in Figure 5.13 below.

Ri Ldi
dt
----- vC+ + u0 t( )=

i di
dt
----- vC+ + u0 t( )=

di
dt
----- i vC– u0 t( )+–=

x1 iL i= =

x2 vC vout= =

x· 1
di
dt
-----=

x· 2
dvc
dt

-------- x1= =

x· 1 x1 x2– u0 t( )+–=

x· 2 x1=

y x2=

x· Ax Bu+=
x· 1

x· 2

1– 1–
1 0

x1

x2

1
0

u0 t( )+=↔

y Cx Du+= y 0 1
x1

x 2
0 u0 t( )+=↔

s domain–
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Figure 5.13. Transformed circuit for Example 5.13

By the voltage division expression,

or 

Therefore,
(5.127)

c.
A = [−1  −1; 1  0]; B = [1  0]';  C = [0  1]; D = [0]; % The matrices of (5.126)
[num, den] = ss2tf(A, B, C, D, 1) % Verify coefficients of G(s) in (5.127)

num =
     0     0     1

den =
    1.0000    1.0000    1.0000

num = [0  0  1]; den = [1  1  1]; % The coefficients of G(s) in (5.127)
[A  B  C  D] = tf2ss(num, den) % Verify the matrices of (5.126)

A =
    -1    -1
     1     0

B =
     1
     0

C =
     0     1

D =
     0

The equivalence between the state−space equations of (5.126) and the transfer function of
(5.127) is also evident from the Simulink models shown in Figure 5.14 where for the State−
Space block Function Block Parameters dialog box we have entered:

−
+

R L

+
−

C
1 Ω

Vin s( )

VC s( ) Vout s( )=

s

1 s⁄

Vout s( ) 1 s⁄
1 s 1 s⁄+ +
---------------------------Vin s( )=

Vout s( )
Vin s( )
------------------ 1

s2 s 1+ +
----------------------=

G s( )
Vout s( )
Vin s( )
------------------ 1

s2 s 1+ +
----------------------= =
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A: [−1  −1; 3/4  0]
B: [1  0]’
C: [0  1]
D: [ 0 ]
Initial conditions: [0  0]

For the Transfer Fcn block Function Block Parameters dialog box we have entered:

Numerator coefficient: [ 1 ]
Denominator coefficient: [1  1  1]

Figure 5.14. Models to show the equivalence between relations (5.126) and (5.127)

After the simulation command is executed, both Scope 1 and Scope 2 blocks display the input
and output waveforms shown in Figure 5.15.

Figure 5.15. Waveforms displayed by Scope 1 and Scope 2 blocks for the models in Figure 5.14
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5.8 Summary

• An nth−order differential equation can be resolved to  first−order simultaneous differential
equations with a set of auxiliary variables called state variables. The resulting first−order differ-
ential equations are called state−space equations, or simply state equations. 

• The state−space equations can be obtained either from the nth−order differential equation, or
directly from the network, provided that the state variables are chosen appropriately.

• When we obtain the state equations directly from given circuits, we choose the state variables
to represent inductor currents and capacitor voltages. 

• The state variable method offers the advantage that it can also be used with non−linear and
time−varying devices.

• If a circuit contains only one energy−storing device, the state equations are written as

where , , , and  are scalar constants, and the initial condition, if non−zero, is denoted
as

• If  and  are scalar constants, the solution of  with initial condition 
is obtained from the relation

• The solution of the state equations pair

where  and  are  or higher order matrices, and  and  are column vectors with two

or more rows, entails the computation of the state transition matrix , and integration of

• The eigenvalues , where , of an  matrix  are the roots of the nth order
polynomial

where  is the  identity matrix.

n

x· αx βu+=

y k1x k2u+=

α β k1 k2

x0 x t0( )=

α β x· αx βu+= x0 x t0( )=

x t( ) e
α t t0–( )

x0 eαt e α– τβu τ( ) τd
t0

t

∫+=

x· Ax bu+=

y Cx du+=

A C 2 2× b d

eAt

x t( ) e
A t t0–( )

x0 eAt e A– τbu τ( ) τd
t0

t

∫+=

λi i 1 2 … n, , ,= n n× A

det A λI–[ ] 0=

I n n×
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Summary

• The Cayley−Hamilton theorem states that a matrix can be expressed as an  degree
polynomial in terms of the matrix  as

where the coefficients  are functions of the eigenvalues .

• If all eigenvalues of a given matrix  are distinct, that is, if

the coefficients  are found from the simultaneous solution of the system of equations

• If some or all eigenvalues of matrix  are repeated, that is, if

the coefficients  of the state transition matrix are found from the simultaneous solution of
the system of equations

n 1–( )th
A

eAt a0I a1A a2A2 … an 1– An 1–+ + + +=

ai λ

A

λ1 λ2 λ3 … λn≠ ≠ ≠ ≠

ai

a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + + e
λ1t

=

a0 a1λ2 a2λ2
2 … an 1– λ2

n 1–+ + + + e
λ2t

=

…

a0 a1λn a2λn
2 … an 1– λn

n 1–+ + + + e
λnt

=

A

λ1 λ2= λ3= … λm,  λm 1+  ,  λn=

ai

a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + + e
λ1t

=

d
dλ1
--------- a0 a1λ1 a2λ1

2 … an 1– λ1
n 1–+ + + +( ) d

dλ1
--------e

λ1t
=

d 2

dλ1
2

-------- a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + +( ) d 2

dλ1
2

--------e
λ1t

=

…

d m 1–

dλ1
m 1–

--------------- a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + +( ) d m 1–

dλ1
m 1–

---------------e
λ1t

=

a0 a1λm 1+ a2λm 1+
2 … an 1– λm 1+

n 1–+ + + + e
λ m 1+ t

=

…

a0 a1λn a2λn
2 … an 1– λn

n 1–+ + + + e
λnt

=
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• We can use the MATLAB eig(x) function to find the eigenvalues of an  matrix.

• A column vector  that satisfies the relation

where  is an  matrix and  is a scalar number, is called an eigenvector.

• There is a different eigenvector for each eigenvalue.

• Eigenvectors are generally expressed as unit eigenvectors, that is, they are normalized to unit
length. This is done by dividing each component of the eigenvector by the square root of the
sum of the squares of their components, so that the sum of the squares of their components is
equal to unity.

• Two vectors  and  are said to be orthogonal if their inner (dot) product is zero.

• A set of eigenvectors constitutes an orthonormal basis if the set is normalized (expressed as
unit eigenvectors) and these vector are mutually orthogonal.

• The state transition matrix can be computed from the Inverse Laplace transform using the rela-
tion 

• If  is the Laplace transform of the input  and  is the Laplace transform of the out-
put , the transfer function can be computed using the relation

 

• MATLAB provides two very useful functions to convert state−space (state equations), to
transfer function (s-domain), and vice versa. The function ss2tf (state−space to transfer func-
tion) converts the state space equations to the transfer function equivalent, and the function
tf2ss, converts the transfer function to state−space equations.

n n×

X

AX λX=

A n n× λ

X Y

eAt L 1– sI A–( ) 1–{ }=

U s( ) u t( ) Y s( )
y t( )

G s( ) Y s( )
U s( )
----------- C sI A–( ) 1– b d+= =



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition 5−41
Copyright © Orchard Publications

Exercises

5.9 Exercises
1. Express the integrodifferential equation below as a matrix of state equations where

 are constants.

2. Express the matrix of the state equations below as a single differential equation, and let
.

3. For the circuit below, all initial conditions are zero, and  is any input. Write state equa-
tions in matrix form.

4. In the circuit below, all initial conditions are zero. Write state equations in matrix form.

5. In the below, . Use the state variable method to find  for .

k1 k2  and k3, ,

dv2

dt2
-------- k3

dv
dt
------ k2v k1 v td

0

t

∫+ + + 3tsin 3tcos+=

x y( ) y t( )=

x· 1

x· 2

x· 3

x· 4

0 1 0 0
0 0 1 0
0 0 0 1
1– 2– 3– 4–

x1

x2

x3

x4

⋅

0
0
0
1

u t( )+=

u t( )

R 

L+
−

C

u t( )

R 

C1
1 Ω 1 H

2 F 2 F

C2

Vp ωtu0 t( )cos

L 

iL 0−( ) 2 A= iL t( ) t 0>

R 

L+
−

10u0 t( )

2 Ω
2 H
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6. Compute the eigenvalues of the matrices , , and  below.

Hint: One of the eigenvalues of matrix C is .

7. Compute  given that

Observe that this is the same matrix as  of Exercise 6.

8. Find the solution of the matrix state equation  given that

9. In the circuit below, , and .

a. Write state equations in matrix form.

b. Compute  using the Inverse Laplace transform method.

c. Find  and  for .

A B C

A 1 2
3 1–

= B a 0
a– b

= C
0 1 0
0 0 1
6– 11– 6–

=

1–

eAt

A
0 1 0
0 0 1
6– 11– 6–

=

C

x· Ax bu+=

A 1 0
2– 2

=    b 1
2

=    x0
1–
0

=    u δ t( )=    t0 0=, , , ,

iL 0−( ) 0= vC 0−( ) 1 V=

eAt

iL t( ) vC t( ) t 0>

R L
C

3 4⁄  Ω 4 3⁄  F
4 H
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Solutions to End−of−Chapter Exercises

5.10 Solutions to End−of−Chapter Exercises

1. Differentiating the given integrodifferential equation with respect to  we obtain

or

  (1)

We let

Then, 

and by substitution into (1)

and thus the state equations are

and in matrix form

2. Expansion of the given matrix yields

            

Letting  we obtain

t

dv3

dt3
-------- k3

dv2

dt2
-------- k2

dv
dt
------ k1v+ + + 3 3t 3 3tsin–cos 3 3t 3tsin–cos( )= =

dv3

dt3
-------- k3

dv2

dt2
--------–= k2–

dv
dt
------ k1– v 3 3t 3tsin–cos( )+

v x1= dv
dt
------ x2 x1

·= = dv2

dt2
-------- x3 x2

·= =

dv3

dt3
-------- x3

·=

x3
· k1x1– k2x2– k3x3– 3 3t 3tsin–cos( )+=

x1
· x2=

x2
· x3=

x3
· k1x1– k2x2– k3x3– 3 3t 3tsin–cos( )+=

x1
·

x2
·

x3
·

0 1 0
0 0 1
k1– k2– k– 3

x1

x2

x3

⋅
0
0
1

3 3t 3tsin–cos( )⋅+=

x1
· x2= x2

· x3= x3
· x2= x4

· x– 1 2x2– 3x3– 4x4– u t( )+=

x y=

dy4

dt4
-------- 4 dy3

dt3
-------- 3dy2

dt2
-------- 2dy

dt
------ y+ + ++ u t( )=
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3.

We let  and . By KCL,  or

or

Also,

Then,

 and 

and in matrix form

4.

We let , , and . By KCL,

or 

or
  (1)

By KVL,

R 

L+− C
u t( )

iC
iT iL vC−

+

iL x1= vC x2= iT iL iC+=

u t( ) vC–

R
---------------------- iL C

dvC
dt

---------+=

u t( ) x2–

R
--------------------- x1 Cx2

·
+=

x2 Lx1
·

=

x1
· 1

L
---x2= x2

· 1
C
----x1– 1

RC
--------x2– 1

RC
--------u t( )+=

x1
·

x2
·

0 1 L⁄
1– C⁄ 1– RC⁄

x1

x2

⋅ 0
1 RC⁄

u t( )⋅+=

R 

C1
1 Ω 1 H

2 F 2 F

C2

Vp ωtu0 t( )cos

L 

+
−vC1

iL

+
−

vC2

vC1

iL x1= vC1 x2= vC2 x3=

vC1 Vp ωtu0 t( )cos–

1
------------------------------------------------- 2

dvC1
dt

------------ iL+ + 0=

x2 Vp ωtu0 t( )cos– 2x2
· x1+ + 0=

x2
· 1

2
---x1–

1
2
---x2–

1
2
---Vp ωtu0 t( )cos+=



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition 5−45
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

or 

or 
  (2)

Also,

or

or
  (3)

Combining (1), (2), and (3) into matrix form we obtain

We will create a Simulink model with  and output . The model is shown below
where for the State−Space block Function Block Parameters dialog box we have entered:

A: [0   1  −1; −1/2  −1/2  0; 1/2  0  0]
B: [0  1/2  0]’
C: [0  0  1]
D: [ 0 ]
Initial conditions: [0  0  0]

and for the Sine Wave block Function Block Parameters dialog box we have entered:

Amplitude: 1 
Phase: pi/2

The input and output waveforms are shown below.

vC1 L
diL
dt
------- vC2+=

x2 1x1
· x3+=

x1
· x2 x3–=

iL C
dvC2

dt
------------=

x1 2x3
·=

x3
· 1

2
---x1=

x1
·

x2
·

x3
·

0 1 1–
1– 2⁄ 1– 2⁄ 0
1 2⁄ 0 0

x1

x2

x3

⋅
0

1 2⁄
0

Vp ωtu0 t( )cos⋅+=

Vp 1= y x3=
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5.

From (5.21) of Example 5.4, Page 5−6,

For this exercise,  and . Then,

and denoting the current  as the output  we obtain

6.
a.

R 

L+
−

10u0 t( )

2 Ω

2 H

x· R
L
----x– 1

L
---vS u0 t( )+=

α R– L⁄ 1–= = b 10 1 L⁄( )× 5= =

x t( ) e
α t t0–( )

x0 eαt e α– τβu τ( ) τd
t0

t

∫+=

e 1– t 0–( )2 e t– eτ5u0 τ( ) τd
0

t

∫+ 2e t– 5e t– eτ τd
0

t

∫+==

2e t– 5e t– et 1–( )+ 2e t– 5 5– e t–+ 5 3e t––( )u0 t( )= ==

iL y

y t( ) x t( ) 5 3e t––( )u0 t( )= =

A 1 2
3 1–

= det A λI–( ) det 1 2
3 1–

λ 1 0
0 1

–
 
 
 

det 1 λ– 2
3 1– λ–

0= = =

1 λ–( ) 1– λ–( ) 6– 0=
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and thus

b.

and thus

c.

and it is given that . Then,

and thus

7.
a. Matrix  is the same as Matrix C in Exercise 6. Then,

and since  is a  matrix the state transition matrix is

  (1)
Then,

1– λ– λ λ2 6–+ + 0=

λ2 7=

λ1 7= λ2 7–=

B a 0
a– b

= det B λI–( ) det a 0
a– b

λ 1 0
0 1

–
 
 
 

det a λ– 0
a– b λ–

0= = =

a λ–( ) b λ–( ) 0=

λ1 a= λ2 b=

C
0 1 0
0 0 1
6– 11– 6–

= det C λI–( ) det
0 1 0
0 0 1
6– 11– 6–

λ
1 0 0
0 1 0
0 0 1

–

 
 
 
 
 

=

det
λ– 1 0
0 λ– 1
6– 11– 6 λ––

0==

λ2 6– λ–( ) 6– 11–( ) λ–( )– λ3 6λ2 11λ 6+ + + 0= =

λ1 1–=

λ3 6λ2 11λ 6+ + +
λ 1+( )

---------------------------------------------- λ2 5λ 6+ + λ 1+( ) λ 2+( ) λ 3+( )⇒ 0= =

λ1 1–= λ2 2–= λ1 3–=

A

λ1 1–= λ2 2–= λ1 3–=

A 3 3×

eAt a0I a1A a2A2+ +=
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syms t; A=[1  −1  1; 1  −2  4; 1  −3  9];...
a=sym('[exp(−t); exp(−2*t); exp(−3*t)]'); x=A\a; fprintf(' \n');...
disp('a0 = '); disp(x(1)); disp('a1 = '); disp(x(2)); disp('a2 = '); disp(x(3))

a0 = 
3*exp(-t)-3*exp(-2*t)+exp(-3*t)
a1 = 
5/2*exp(-t)-4*exp(-2*t)+3/2*exp(-3*t)
a2 = 
1/2*exp(-t)-exp(-2*t)+1/2*exp(-3*t)

Thus, 

Now, we compute  of (1) with the following MATLAB script:

syms t; a0=3*exp(−t)−3*exp(−2*t)+exp(−3*t); a1=5/2*exp(−t)−4*exp(−2*t)+3/2*exp(−3*t);...
a2=1/2*exp(−t)-exp(−2*t)+1/2*exp(−3*t); A=[0 1 0; 0 0 1; −6  −11  −6]; fprintf(' \n');...
eAt=a0*eye(3)+a1*A+a2*A^2

eAt =
[3*exp(-t)-3*exp(-2*t)+exp(-3*t),   5/2*exp(-t)-4*exp(-2*t)+3/
2*exp(-3*t),     1/2*exp(-t)-exp(-2*t)+1/2*exp(-3*t)]
[-3*exp(-t)+6*exp(-2*t)-3*exp(-3*t),  -5/2*exp(-t)+8*exp(-2*t)-
9/2*exp(-3*t),  -1/2*exp(-t)+2*exp(-2*t)-3/2*exp(-3*t)]
[3*exp(-t)-12*exp(-2*t)+9*exp(-3*t), 5/2*exp(-t)-16*exp(-
2*t)+27/2*exp(-3*t),   1/2*exp(-t)-4*exp(-2*t)+9/2*exp(-3*t)]

Thus,

a0 a1λ1 a2λ1
2+ + e

λ1t
= a0 a1– a2+ e t–=⇒

a0 a1λ2 a2λ2
2+ + e

λ2t
= a0 2a1– 4a2+ e 2t–=⇒

a0 a1λ3 a2λ3
2+ + e

λ3t
= a0 3a1– 9a2+ e 3t–=⇒

a0 3e t– 3e 2t–– 3e 3t–+=

a1 2.5e t– 4e 2t–– 1.5e 3t–+=

a2 0.5e t– e 2t–– 0.5e 3t–+=

eAt

eAt
3e t– 3e 2t–– e 3t–+ 2.5e t– 4e 2t–– 1.5e 3t–+ 0.5e t– e 2t–– 0.5e 3t–+

3– e t– 6e 2t– 3e 3t––+ 2.5– e t– 8e 2t– 4.5e 3t––+ 0.5– e t– 2e 2t– 1.5e 3t––+

3e t– 12e 2t–– 9e 3t–+ 2.5e t– 16e 2t–– 13.5e 3t–+ 0.5e t– 4e 2t–– 4.5e 3t–+

=
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Solutions to End−of−Chapter Exercises

8.

  (1)

We use the following MATLAB script to find the eigenvalues  and .

A=[1  0; −2  2]; lambda=eig(A); fprintf(' \n');...
fprintf('lambda1 = %4.2f  \t',lambda(1)); fprintf('lambda2 = %4.2f  \t',lambda(2))

lambda1 = 2.00  lambda2 = 1.00

Next,

Then,

and

By substitution into (1) we obtain

and thus

A 1 0
2– 2

=    b 1
2

=    x0
1–
0

=    u δ t( )=    t0 0=, , , ,

x t( ) eA t 0–( )x0 eAt e A– τbu τ( ) τd
0

t

∫+ eAtx0 eAt e A– τbδ τ( ) τd
0

t

∫+= =

eAtx0 eAtb+ eAt x0 b+( ) eAt 1–
0

1
2

+
 
 
 

eAt 0
2

== ==

λ1 λ2

a0 a1λ1+ e
λ1t

= a0 a1+ et=⇒

a0 a1λ2+ e
λ2t

= a0 2a1+ e2t=⇒

a0 2et e2t–= a1 e2t et–=

eAt a0I a1A+ 2et e2t–( ) 1 0
0 1

e2t et–( ) 1 0
2– 2

+= =

2et e2t– 0

0 2et e2t–

e2t et– 0

2e– 2t 2et+ 2e2t 2et–
+ et 0

2et 2e2t– e2t
==

x t( ) eAt 0
2

et 0

2et 2e2t– e2t

0
2

⋅ 0

2e2t
= = =

x1 0= x2 2e2t=
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9.

We let

Then,

a.

or

  (1)

Also,

or

  (2)

From (1) and (2)

and thus

b.

R L
C

3 4⁄  Ω 4 3⁄  F4 H

iLiR
iC+

− vC 0−( ) 1 V=

iL 0−( ) 0=
vC

x1 iL= x2 vC=

iR iL iC+ + 0=

vC
R
------ iL C

vC
dt
------+ + 0=

x2
3 4⁄
--------- x1

4
3
---x2

·+ + 0=

x2
· 3

4
---– x1 x2–=

vL vC L
diL
dt
------- 4x1

· x2= = = =

x1
· 1

4
---x

2
=

x1
·

x2
·

0 1 4⁄
3– 4⁄ 1–

x1

x2

⋅=

A 0 1 4⁄
3– 4⁄ 1–

=

eAt L 1– sI A–[ ] 1–{ }=
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Solutions to End−of−Chapter Exercises

We use MATLAB to find  with the script below.

syms s t

Fs1=(s+1)/(s^2+s+3/16); Fs2=(1/4)/(s^2+s+3/16); Fs3=(−3/4)/(s^2+s+3/16); Fs4=s/
(s^2+s+3/16);...
fprintf(' \n'); disp('a11 = '); disp(simple(ilaplace(Fs1))); disp('a12 = '); disp(simple(ila-
place(Fs2)));...
disp('a21 = '); disp(simple(ilaplace(Fs3))); disp('a22 = '); disp(simple(ilaplace(Fs4)))

a11 = 
-1/2*exp(-3/4*t)+3/2*exp(-1/4*t)
a12 = 
1/2*exp(-1/4*t)-1/2*exp(-3/4*t)
a21 = 
-3/2*exp(-1/4*t)+3/2*exp(-3/4*t)
a22 = 
3/2*exp(-3/4*t)-1/2*exp(-1/4*t)

Thus,

sI A–[ ] s 0
0 s

0 1 4⁄
3– 4⁄ 1–

– s 1– 4⁄
3 4⁄ s 1+

= =

∆ det sI A–[ ] det s 1– 4⁄
3 4⁄ s 1+

s2 s 3 16⁄+ += s 1 4⁄+( ) s 3 4⁄+( )= = =

adj sI A–[ ] adj s 1– 4⁄
3 4⁄ s 1+

s 1+ 1 4⁄
3– 4⁄ s

= =

sI A–[ ] 1– 1
∆
---adj sI A–[ ] 1

s 1 4⁄+( ) s 3 4⁄+( )
----------------------------------------------- s 1+ 1 4⁄

3– 4⁄ s
= =

s 1+
s 1 4⁄+( ) s 3 4⁄+( )

----------------------------------------------- 1 4⁄
s 1 4⁄+( ) s 3 4⁄+( )

-----------------------------------------------

3– 4⁄
s 1 4⁄+( ) s 3 4⁄+( )

----------------------------------------------- s
s 1 4⁄+( ) s 3 4⁄+( )

-----------------------------------------------
=

eAt L 1– sI A–[ ] 1–{ }=

eAt 1.5e 0.25t– 0.5e 0.75t–– 0.5e 0.25t– 0.5e 0.75t––

1.5– e 0.25t– 1.5e 0.75t–+ 0.5– e 0.25t– 1.5e 0.75t–+
=
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c.

and thus for ,

x t( ) eA t 0–( )x0 eAt e A– τbu τ( ) τd
0

t

∫+ eAtx0 0+ eAt 0
1

0
0

+
 
 
 

= = =

1.5e 0.25t– 0.5e 0.75t–– 0.5e 0.25t– 0.5e 0.75t––

1.5– e 0.25t– 1.5e 0.75t–+ 0.5– e 0.25t– 1.5e 0.75t–+

0
1

0.5e 0.25t– 0.5e 0.75t––

0.5– e 0.25t– 1.5e 0.75t–+
==

t 0>

x1 iL 0.5e 0.25t– 0.5e 0.75t––= = x2 vC 0.5– e 0.25t– 1.5e 0.75t–+= =
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Chapter 6

The Impulse Response and Convolution

his chapter begins with the definition of the impulse response, that is, the response of a cir-
cuit that is subjected to the excitation of the impulse function. Then, it defines convolution
and how it is applied to circuit analysis. Evaluation of the convolution integral using graph-

ical methods is also presented and illustrated with several examples.

6.1 The Impulse Response in Time Domain
In this section we will discuss the impulse response of a network, that is, the output (voltage or
current) of a network when the input is the delta function. Of course, the output can be any volt-
age or current that we choose as the output. The computation of the impulse response assumes
zero initial conditions.

We learned in the previous chapter that the state equation 

(6.1)
has the solution

(6.2)

Therefore, with initial condition , and with the input , the solution of (6.2)
reduces to

(6.3)

Using the sifting property of the delta function, i.e.,

(6.4)

and denoting the impulse response as , we obtain 

(6.5)

where the unit step function  is included to indicate that this relation holds for .

T

x· Ax bu+=

x t( ) e
A t t0–( )

x0 eAt e A– τbu τ( ) τd
0

t

∫+=

x0 0= u t( ) δ t( )=

x t( ) eAt e A– τbδ τ( ) τd
0

t

∫=

f t( )δ τ( ) τd
∞–

∞

∫ f 0( )=

h t( )

h t( ) eAtbu0 t( )=

u0 t( ) t 0>
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Example 6.1  

Compute the impulse response of the series  circuit of Figure 6.1 in terms of the constants 

and , where the response is considered to be the voltage across the capacitor, and .
Then, compute the current through the capacitor.

Figure 6.1. Circuit for Example 6.1
Solution:
We assign currents  and  with the directions shown in Figure 6.2, and we apply KCL.

Figure 6.2. Application of KCL for the circuit for Example 6.1
Then,

or
(6.6)

We assign the state variable

Then,

and (6.6) is written as

or
(6.7)

Equation (6.7) has the form

and as we found in (6.5),

For this example,

RC R

C vC 0−( ) 0=

+
−

R

−
+C

h t( ) vC t( ) vout t( )= =

δ t( )

iC iR

+−

R

−
+C

h t( ) vC t( ) vout t( )= =
δ t( )

iC

iR

iR iC+ 0=

C
dvC

dt
--------- vC δ t( )–

R
---------------------+ 0=

vC x=

dvC

dt
--------- x·=

Cx· x
R
----+ δ t( )

R
---------=

x· 1
RC
--------x–

1
RC
--------δ t( )+=

x· ax bu+=

h t( ) eAtbu0 t( )=

a 1 RC⁄–=
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The Impulse Response in Time Domain

and

Therefore,

or
(6.8)

The current  can now be computed from

Thus,

Using the sampling property of the delta function, we obtain

(6.9)

Example 6.2  

For the circuit of Figure 6.3, compute the impulse response  given that the initial

conditions are zero, that is, , and .

Figure 6.3. Circuit for Example 6.2
Solution:
This is the same circuit as that of Example 5.10, Chapter 5, Page 5−22, where we found that

and

b 1 RC⁄=

h t( ) vC t( ) e t RC⁄– 1
RC
--------= =

h t( ) 1
RC
-------- e t RC⁄– u0 t( )=

iC

iC C
dvC

dt
---------=

iC C d
dt
-----h t( ) C d

dt
----- 1

RC
-------- e t RC⁄– u0 t( )⎝ ⎠

⎛ ⎞= =

1
R 2C
----------- e t RC⁄––

1
R
---- e t RC⁄– δ t( )+=

iC
1
R
----δ t( ) 1

R 2C
----------- e t RC⁄––=

h t( ) vC t( )=

iL 0−( ) 0= vC 0−( ) 0=

−
+

R L

+−
C1 Ω

δ t( )

h t( ) vC t( )=
1 4⁄  H

4 3⁄  F

b 4
0

=
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The impulse response is obtained from (6.5), Page 6−1, that is,

then,

(6.10)

In Example 5.10, Chapter 5, Page 5−22, we defined

and

Then,

or 

(6.11)

Of course, this answer is not the same as that of Example 5.10, because the inputs and initial con-
ditions were defined differently.

6.2 Even and Odd Functions of Time

A function  is an even function of time if the following relation holds.

(6.12)

that is, if in an even function we replace  with , the function  does not change. Thus, poly-
nomials with even exponents only, and with or without constants, are even functions. For
instance, the cosine function is an even function because it can be written as the power series

Other examples of even functions are shown in Figure 6.4.

eAt 0.5– e t– 1.5e 3t–+ 2– e t– 2e 3t–+

3
8
---e t– 3

8
---e

3t–
– 1.5e t– 0.5e 3t––

=

h t( ) x t( )= eAtbu0 t( )=

h t( ) x t( )=
x1

x2

0.5– e t– 1.5e 3t–+ 2– e t– 2e 3t–+

3
8
---e t– 3

8
---e

3t–
– 1.5e t– 0.5e 3t––

4
0

u0 t( )
2– e t– 6e 3t–+

3
2
---e t– 3

2
---e

3t–
–

u0 t( )= = =

x1 iL=

x2 vC=

h t( ) x2 vC t( ) 1.5e t– 1.5e 3t––= = =

h t( ) vC t( ) 1.5 e t– e 3t––( )= =

f t( )

f t–( ) f t( )=

t t– f t( )

tcos 1 t2

2!
----- t4

4!
-----+– t6

6!
-----– …+=
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Even and Odd Functions of Time

Figure 6.4. Examples of even functions

A function  is an odd function of time if the following relation holds.

(6.13)

that is, if in an odd function we replace  with , we obtain the negative of the function .
Thus, polynomials with odd exponents only, and no constants are odd functions. For instance,
the sine function is an odd function because it can be written as the power series

Other examples of odd functions are shown in Figure 6.5.

Figure 6.5. Examples of odd functions

We observe that for odd functions, . However, the reverse is not always true; that is, if
, we should not conclude that  is an odd function. An example of this is the function

 in Figure 6.4.

The product of two even or two odd functions is an even function, and the product of an even
function times an odd function, is an odd function.

Henceforth, we will denote an even function with the subscript , and an odd function with the
subscript . Thus,  and  will be used to represent even and odd functions of time
respectively.

For an even function ,

(6.14)

and for an odd function ,

t

f(t)

t

f(t)

t

f(t)

k

0 0 0

t2
t2 k+

f t( )

f– t–( ) f t( )=

t t– f t( )

tsin t t3

3!
----- t5

5!
-----+– t7

7!
-----– …+=

t

f(t)

mt

t

f(t)

t

f(t)

0 0 0

t3

f 0( ) 0=

f 0( ) 0= f t( )

f t( ) t2=

e
o fe t( ) fo t( )

fe t( )

fe t( ) td
T–

T

∫ 2 fe t( ) td
0

T

∫=

fo t( )
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(6.15)

A function  that is neither even nor odd can be expressed as

(6.16)

or as

(6.17)

Addition of (6.16) with (6.17) yields

(6.18)

that is, any function of time can be expressed as the sum of an even and an odd function.

Example 6.3  
Determine whether the delta function is an even or an odd function of time.

Solution:
Let  be an arbitrary function of time that is continuous at . Then, by the sifting property
of the delta function

and for ,

Also, 

and

As stated earlier, an odd function  evaluated at  is zero, that is, . Therefore,
from the last relation above,

(6.19)

fo t( ) td
T–

T

∫ 0=

f t( )

fe t( ) 1
2
--- f t( ) f t–( )+[ ]=

fo t( ) 1
2
--- f t( ) f– t–( )[ ]=

f t( ) fe t( ) fo t( )+=

f t( ) t t0=

f t( )δ t t0–( ) td
∞–

∞

∫ f t0( )=

t0 0=

f t( )δ t( ) td
∞–

∞

∫ f 0( )=

fe t( )δ t( ) td
∞–

∞

∫ fe 0( )=

fo t( )δ t( ) td
∞–

∞

∫ fo 0( )=

fo t( ) t 0= fo 0( ) 0=

fo t( )δ t( ) td
∞–

∞

∫ fo 0( ) 0= =
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Convolution

and this indicates that the product  is an odd function of . Then, since  is odd, it

follows that  must be an even function of  for (6.19) to hold.

6.3 Convolution

Consider a network whose input is , and its output is the impulse response . We can rep-
resent the input−output relationship as the block diagram shown below.

In general,

Next, we let  be any input whose value at  is . Then,

 

Multiplying both sides by the constant , integrating from , and making use of the fact
that the delta function is even, i.e., , we obtain

Using the sifting property of the delta function, we find that the second integral on the left side
reduces to  and thus

The integral

 (6.20)

fo t( )δ t( ) t fo t( )

δ t( ) t

δ t( ) h t( )

Network
h t( )δ t( )

Network
δ t τ–( ) h t τ–( )

u t( ) t τ= u τ( )

Network
u τ( )δ t τ–( ) u τ( )h t τ–( )

dτ ∞ to +∞–

δ t τ–( ) δ τ t–( )=

u τ( )δ t τ–( ) τd
∞–

∞

∫

u τ( )δ τ t–( ) τd
∞–

∞

∫
⎭
⎪
⎪
⎬
⎪
⎪
⎫ u τ( )h t τ–( ) τd

∞–

∞

∫

u t τ–( )h τ( ) τd
∞–

∞

∫
⎩
⎪
⎪
⎨
⎪
⎪
⎧

Network

u t( )

Networku t( )

u τ( )h t τ–( ) τd
∞–

∞

∫

u t τ–( )h τ( ) τd
∞–

∞

∫
⎩
⎪
⎪
⎨
⎪
⎪
⎧

u τ( )h t τ–( ) τ     or     u t τ–( )h τ( ) τd
∞–

∞

∫d
∞–

∞

∫
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is known as the convolution integral; it states that if we know the impulse response of a network, we
can compute the response to any input  using either of the integrals of (6.20).

The convolution integral is usually represented as  or , where the asterisk (*)
denotes convolution.

In Section 6.1, we found that the impulse response for a single input is . Therefore, if
we know , we can use the convolution integral to compute the response  of any input

 using the relation 

(6.21)

6.4 Graphical Evaluation of the Convolution Integral
The convolution integral is more conveniently evaluated by the graphical evaluation. The proce-
dure is best illustrated with the following examples.

Example 6.4  

The signals  and  are as shown in Figure 6.6. Compute  using the graphical eval-
uation.

Figure 6.6. Signals for Example 6.4
Solution:
The convolution integral states that

(6.22)

where  is a dummy variable, that is,  and , are considered to be the same as  and
. We form  by first constructing the image of ; this is shown as  in Figure

6.7.
 

u t( )

u t( )*h t( ) h t( )*u t( )

h t( ) eAtb=

h t( ) y t( )
u t( )

y t( ) eA t τ–( )bu τ( ) τd
∞–

∞

∫ eAt e A– τbu τ( ) τd
∞–

∞

∫= =

h t( ) u t( ) h t( )*u t( )

1 1

1
t t

00

h t( ) t– 1+=

1

u t( ) u0 t( ) u0 t 1–( )–=

h t( )∗u t( ) u t τ–( )h τ( ) τd
∞–

∞

∫=

τ u τ( ) h τ( ) u t( )
h t( ) u t τ–( ) u τ( ) u τ–( )
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Graphical Evaluation of the Convolution Integral

Figure 6.7. Construction of  for Example 6.4

Next, we form  by shifting  to the right by some value  as shown in Figure 6.8.

Figure 6.8. Formation of  for Example 6.4

Now, evaluation of the convolution integral

entails multiplication of  by  for each value of , and computation of the area from
. Figure 6.9 shows the product  as point  moves to the right.

Figure 6.9. Formation of the product  for Example 6.4

We observe that . Shifting  to the right so that , we obtain the

sketch of Figure 6.10 where the integral of the product is denoted by the shaded area, and it
increases as point  moves further to the right.

Figure 6.10. Shift of  for Example 6.4

1

−1 0

u τ–( )

τ

u τ–( )

u t τ–( ) u τ–( ) t

1

t0

u t τ–( )

τ

u t τ–( )

h t( )∗u t( ) u t τ–( )h τ( ) τd
∞–

∞

∫=

u t τ–( ) h τ( ) t
∞ to +∞– u t τ–( )h τ( ) A

1

0−1
A

u t τ–( )*h τ( ) 0 for t 0= =u t τ–( )  t, 0=

h τ( )

τ

u t τ–( )*h τ( )

u t τ–( ) t 0=
u τ–( )= u t τ–( ) t 0>

A

1

0

A
1t

h τ( )

τ

u t τ–( )  t, 0>

u t τ–( )
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The maximum area is obtained when point  reaches  as shown in Figure 6.11.

Figure 6.11. Signals for Example 6.4 when 

Using the convolution integral, we find that the area as a function of time  is

(6.23)

Figure 6.12 shows how  increases during the interval . This is not an exponen-

tial increase; it is the function  in (6.23), and each point on the curve of Figure 6.12 rep-
resents the area under the convolution integral.

Figure 6.12. Curve for the convolution of  for  in Example 6.4

Evaluating (6.23) at , we obtain

(6.24)

The plot for the interval  is shown in Figure 6.13.

As we continue shifting  to the right, the area starts decreasing, and it becomes zero at
, as shown in Figure 6.14.

A t 1=

1

0

A
1

u t τ–( )  t, 0=

h τ( )

τ

t 1=

t

u t τ–( )h τ( ) τd
∞–

∞

∫ u t τ–( )h τ( ) τd
0

t

∫ 1( ) τ– 1+( ) τd
0

t

∫ τ τ2

2
----–

0

t

t t2

2
---–= = = =

u τ( )*h τ( ) 0 t 1< <

t t2 2⁄–

u(t)*h(t)

t

u τ( )*h τ( ) 0 t 1< <

t 1=

t t2

2
---–

t 1=

1
2
---=

0 t 1≤ ≤

u t τ–( )
t 2=
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Graphical Evaluation of the Convolution Integral

Figure 6.13. Convolution of  at  for Example 6.4

Figure 6.14. Convolution for interval  of Example 6.4

Using the convolution integral, we find that the area for the interval  is

(6.25)

Thus, for , the area decreases in accordance with .

Evaluating (6.25) at , we find that . For , the product  is
zero since there is no overlap between these two signals. The convolution of these signals for

, is shown in Figure 6.15.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

t t2 2⁄–

u τ( )*h τ( ) t 1=

1

0

A
1t − 1

1

0 1 2

A
t 

u t τ–( )  1, t 2< <

h τ( )h τ( )

u t τ–( )  , t 2=

ττ

1 t 2< <

1 t 2< <

u t τ–( )h τ( ) τd
∞–

∞

∫ u t τ–( )h τ( ) τd
t 1–

1

∫ 1( ) τ– 1+( ) τd
t 1–

1

∫ τ τ2

2
----–

t 1–

1

= = =

1 1
2
--- t 1–( )–– t2 2t 1+–

2
------------------------+ t2

2
--- 2t– 2+==

1 t 2< < t2 2⁄ 2t– 2+

t 2= u τ( )*h τ( ) 0= t 2> u t τ–( )h τ( )

0 t 2≤ ≤
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Figure 6.15. Convolution for  of the signals of Example 6.4

The plot of Figure 6.15 was obtained with the MATLAB script below.

t1=0:0.01:1; x=t1−t1.^2./2; axis([0  1  0  0.5]);...
t2=1:0.01:2; y=t2.^2./2−2.*t2+2; axis([1  2  0  0.5]); plot(t1,x,t2,y); grid

Example 6.5  

The signals  and  are as shown in Figure 6.16. Compute  using the graphical
evaluation method.

Figure 6.16. Signals for Example 6.5
Solution:
Following the same procedure as in the previous example, we form  by first constructing
the image of . This is shown as  in Figure 6.17.

Figure 6.17. Construction of  for Example 6.5
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Graphical Evaluation of the Convolution Integral

Next, we form  by shifting  to the right by some value  as shown in Figure 6.18.

Figure 6.18. Formation of  for Example 6.5

As in the previous example, evaluation of the convolution integral

entails multiplication of  by  for each value ot , and computation of the area from
. Figure 6.19 shows the product  as point  moves to the right.

Figure 6.19. Formation of the product  for Example 6.5

We observe that . Shifting  to the right so that , we obtain the

sketch of Figure 6.20 where the integral of the product is denoted by the shaded area, and it
increases as point  moves further to the right.

Figure 6.20. Shift of  for Example 6.5

The maximum area is obtained when point  reaches  as shown in Figure 6.21.
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Figure 6.21. Convolution of  at  for Example 6.5

Its value for  is

(6.26)

Evaluating (6.26) at , we obtain

(6.27)

The plot for the interval  is shown in Figure 6.22. 

Figure 6.22. Convolution of  for  in Example 6.5

As we continue shifting  to the right, the area starts decreasing. As shown in Figure 6.23,
it approaches zero as  becomes large but never reaches the value of zero.
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Graphical Evaluation of the Convolution Integral

Figure 6.23. Convolution for interval  of Example 6.5

Therefore, for the time interval , we have

(6.28)

Evaluating (6.28) at , we find that .

For , the product  approaches zero as . The convolution of these signals for
, is shown in Figure 6.24.

Figure 6.24. Convolution for  of the signals of Example 6.5

The plot of Figure 6.24 was obtained with the MATLAB script below.

t1=0:0.01:1; x=1−exp(−t1); axis([0 1 0 0.8]);...
t2=1:0.01:2; y=1.718.*exp(−t2); axis([1 2 0 0.8]); plot(t1,x,t2,y); grid

Example 6.6  

Perform the convolution  where  and  are as shown in Figure 6.25.
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Figure 6.25. Signals for Example 6.6
Solution:
We will use the convolution integral

(6.29)

The computation steps are as in the two previous examples, and are evident from the sketches of
Figures 6.26 through 6.29.

Figure 6.26 shows the formation of .

Figure 6.26. Formation of  for Example 6.6

Figure 6.27 shows the formation of  and convolution with  for .

Figure 6.27. Formation of  and convolution with 

For ,
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Graphical Evaluation of the Convolution Integral

Figure 6.28 shows the convolution of  with  for .

Figure 6.28. Convolution of  with  for 
For ,

(6.31)

Figure 6.29 shows the convolution of  with  for .

Figure 6.29. Convolution of  with  for 
For 

(6.32)

From (6.30), (6.31), and (6.32), we obtain the waveform of Figure 6.30 that represents the con-
volution of the signals  and .

Figure 6.30. Convolution of  with  for 
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In summary, the procedure for the graphical evaluation of the convolution integral, is as follows:

1. We substitute  and  with  and  respectively.

2. We fold (form the mirror image of)  or  about the vertical axis to obtain  or

.

3. We slide  or  to the right a distance t to obtain  or .

4. We multiply the two functions to obtain the product , or .

5. We integrate this product by varying t from .

6.5 Circuit Analysis with the Convolution Integral
We can use the convolution integral in circuit analysis as illustrated by the following example.

Example 6.7  
For the circuit of Figure 6.31, use the convolution integral to find the capacitor voltage when the
input is the unit step function , and .

Figure 6.31. Circuit for Example 6.7
Solution:
Before we apply the convolution integral, we must know the impulse response of this circuit.
The circuit of Figure 6.31 was analyzed in Example 6.1, Page 6−2, where we found that

(6.33)

With the given values, (6.33) reduces to

(6.34)

Next, we use the graphical evaluation of the convolution integral as shown in Figures 6.32
through 6.34.

The formation of  is shown in Figure 6.32.
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Circuit Analysis with the Convolution Integral

Figure 6.32. Formation of  for Example 6.7

Figure 6.33 shows the formation of .

Figure 6.33. Formation of  for Example 6.7

Figure 6.34 shows the convolution .

Figure 6.34. Convolution of  for Example 6.7

Therefore, for the interval , we obtain

(6.35)

and the convolution  is shown in Figure 6.35.
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Figure 6.35. Convolution of  for Example 6.7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1 e t–
–( )u0 t( )

u0 t( )∗h t( )



Signals and Systems with MATLAB ® Computing and Simulink ® Modeling, Fourth Edition 6−21
Copyright © Orchard Publications

Summary

6.6 Summary
• The impulse response is the output (voltage or current) of a network when the input is the

delta function. 

• The determination of the impulse response assumes zero initial conditions.

• A function  is an even function of time if the following relation holds.

• A function  is an odd function of time if the following relation holds.

• The product of two even or two odd functions is an even function, and the product of an even
function times an odd function, is an odd function.

• A function  that is neither even nor odd, can be expressed as

or as

where  denotes an even function and  denotes an odd function.

• Any function of time can be expressed as the sum of an even and an odd function, that is,

• The delta function is an even function of time.

• The integral

 

or

is known as the convolution integral.

• If we know the impulse response of a network, we can compute the response to any input 
with the use of the convolution integral.
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• The convolution integral is usually denoted as  or , where the asterisk (*)
denotes convolution.

• The convolution integral is more conveniently evaluated by the graphical evaluation method.

u t( )*h t( ) h t( )*u t( )
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Exercises

6.7 Exercises

1. Compute the impulse response  in terms of  and  for the circuit below. Then,

compute the voltage  across the inductor.

2.  Repeat Example 6.4, Page 6−8, by forming  instead of , that is, use the convolu-
tion integral

3. Repeat Example 6.5, Page 6−12, by forming  instead of .

4. Compute  given that

         

5. For the series  circuit shown below, the response is the current . Use the convolution
integral to find the response when the input is the unit step .

6. Compute  for the network shown below using the convolution integral, given that
.
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7. Compute  for the network shown below given that . Using
MATLAB, plot  for the time interval .

Hint: Use the result of Exercise 6.
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Solutions to End−of−Chapter Exercises

6.8 Solutions to End−of−Chapter Exercises
1.

Letting state variable , the above relation is written as

and this has the form  where , , and . Its solution is 

and from (6.5), Page 6−1,

The voltage  across the inductor is found from

and using the sampling property of the delta function, the above relation reduces to

2.

From the plots above we observe that the area reaches the maximum value of  at ,
and then decreases to zero at . Alternately, using the convolution integral we obtain
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where , , , and .
Then, for ,

and we observe that at , 

Next, for ,

and we observe that at , 

3.

From the plots above we observe that the area reaches its maximum value at , and then
decreases exponentially to zero as . Alternately, using the convolution integral we obtain

where , , , and . Then, for 
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Solutions to End−of−Chapter Exercises

4.

From tables of integrals,

and thus

Check:

, , 

syms s t; ilaplace(4/(s^3+2*s^2))

ans =
2*t-1+exp(-2*t)

5.
To use the convolution integral, we must first find the impulse response. It was found in Exer-
cise 1 as

and with the given values,
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When the input is the unit step ,

6.

We will first compute the impulse response, that is, the output when the input is the delta func-
tion, i.e., . Then, by KVL

and with 
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Solutions to End−of−Chapter Exercises

or

By comparison with , we observe that  and .
From (6.5)

Now, we compute  when  by convolving the impulse response
 with this input , that is, . The remaining steps are as in Exam-

ple 6.5 and are shown below.

7.

From Exercise 6,
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The plot for the time interval  is shown below.
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The plot above was obtained with the MATLAB script below.

t1=0:0.01:1; x=exp(−t1); axis([0 1 0 1]);...
t2=1:0.01:5; y=−1.718.*exp(−t2); axis([1 5 0 1]); plot(t1,x,t2,y); grid
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Chapter 7

Fourier Series

his chapter is an introduction to Fourier series. We begin with the definition of sinusoids
that are harmonically related and the procedure for determining the coefficients of the trig-
onometric form of the series. Then, we discuss the different types of symmetry and how

they can be used to predict the terms that may be present. Several examples are presented to
illustrate the approach. The alternate trigonometric and the exponential forms are also pre-
sented.

7.1 Wave Analysis
The French mathematician Fourier found that any periodic waveform, that is, a waveform that
repeats itself after some time, can be expressed as a series of harmonically related sinusoids, i.e.,
sinusoids whose frequencies are multiples of a fundamental frequency (or first harmonic). For
example, a series of sinusoids with frequencies , , , and so on, contains the
fundamental frequency of , a second harmonic of , a third harmonic of ,
and so on. In general, any periodic waveform  can be expressed as

(7.1)

or

(7.2)

where the first term  is a constant, and represents the  (average) component of .
Thus, if  represents some voltage , or current , the term  is the average value of

 or .

The terms with the coefficients  and  together, represent the fundamental frequency compo-

nent *. Likewise, the terms with the coefficients  and  together, represent the second har-
monic component , and so on.

Since any periodic waveform ) can be expressed as a Fourier series, it follows that the sum of

* We recall that  where  is a constant.
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the , the fundamental, the second harmonic, and so on, must produce the waveform .
Generally, the sum of two or more sinusoids of different frequencies produce a waveform that is
not a sinusoid as shown in Figure 7.1.

Figure 7.1. Summation of a fundamental, second and third harmonic

7.2 Evaluation of the Coefficients 

Evaluations of  and  coefficients of (7.1) is not a difficult task because the sine and cosine are
orthogonal functions, that is, the product of the sine and cosine functions under the integral eval-
uated from  to  is zero. This will be shown shortly.

Let us consider the functions  and  where  and  are any integers. Then,

(7.3)

(7.4)

(7.5)

The integrals of (7.3) and (7.4) are zero since the net area over the  to  area is zero. The
integral of (7.5) is also is zero since

 

This is also obvious from the plot of Figure 7.2, where we observe that the net shaded area above
and below the time axis is zero.
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Evaluation of the Coefficients

Figure 7.2. Graphical proof of 

Moreover, if  and  are different integers, then,

(7.6)

since

The integral of (7.6) can also be confirmed graphically as shown in Figure 7.3, where  and
. We observe that the net shaded area above and below the time axis is zero.

Figure 7.3. Graphical proof of  for  and 

Also, if  and  are different integers, then,
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(7.7)

since

The integral of (7.7) can also be confirmed graphically as shown in Figure 7.4, where  and
. We observe that the net shaded area above and below the time axis is zero.

Figure 7.4. Graphical proof of  for  and 

However, if in (7.6) and (7.7), , then,

(7.8)

and
(7.9)

The integrals of (7.8) and (7.9) can also be seen to be true graphically with the plots of Figures
7.5 and 7.6.

It was stated earlier that the sine and cosine functions are orthogonal to each other. The simpli-
fication obtained by application of the orthogonality properties of the sine and cosine functions,
becomes apparent in the discussion that follows.

In (7.1), Page 7−1, for simplicity, we let . Then,
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Evaluation of the Coefficients

Figure 7.5. Graphical proof of 

Figure 7.6. Graphical proof of 

To evaluate any coefficient in (7.10), say , we multiply both sides of (7.10) by . Then,

Next, we multiply both sides of the above expression by , and we integrate over the period 
to . Then,
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We observe that every term on the right side of (7.11) except the term

is zero as we found in (7.6) and (7.7). Therefore, (7.11) reduces to

or

and thus we can evaluate this integral for any given function . The remaining coefficients
can be evaluated similarly. 

The coefficients , , and  are found from the following relations.

(7.12)

(7.13)

(7.14)

The integral of (7.12) yields the average ( ) value of .

7.3 Symmetry in Trigonometric Fourier Series
With a few exceptions such as the waveform of the half−rectified waveform, Page 7−17, the most
common waveforms that are used in science and engineering, do not have the average, cosine,
and sine terms all present. Some waveforms have cosine terms only, while others have sine terms
only. Still other waveforms have or have not  components. Fortunately, it is possible to pre-
dict which terms will be present in the trigonometric Fourier series, by observing whether or not
the given waveform possesses some kind of symmetry.

b2 2tsin( )2 td
0

2π

∫

f t( ) 2tsin td
0

2π

∫ b2 2tsin( )2 td
0

2π

∫ b2π= =

b2
1
π
--- f t( ) 2tsin td

0

2π

∫=

f t( )

a0 an bn

1
2
---a0

1
2π
------ f t( ) td

0

2π

∫=

an
1
π
--- f t( ) nt tdcos

0

2π

∫=

bn
1
π
--- f t( ) nt tdsin

0

2π

∫=

DC f t( )

DC



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition 7−7
Copyright © Orchard Publications

Symmetry in Trigonometric Fourier Series

We will discuss three types of symmetry* that can be used to facilitate the computation of the
trigonometric Fourier series form. These are:

1. Odd symmetry − If a waveform has odd symmetry, that is, if it is an odd function, the series will
consist of sine terms only. In other words, if  is an odd function, all the

 coefficients including , will be zero.

2. Even symmetry − If a waveform has even symmetry, that is, if it is an even function, the series
will consist of cosine terms only, and  may or may not be zero. In other
words, if  is an even function, all the  coefficients will be zero.

3. Half−wave symmetry − If a waveform has half−wave symmetry (to be defined shortly), only odd
(odd cosine and odd sine) harmonics will be present. In other words, all
even (even cosine and even sine) harmonics will be zero.

We defined odd and even functions in Chapter 6. We recall that odd functions are those for
which

(7.15)
and even functions are those for which

(7.16)

Examples of odd and even functions were given in Chapter 6. Generally, an odd function has odd
powers of the independent variable , and an even function has even powers of the independent
variable . Thus, the product of two odd functions or the product of two even functions will
result in an even function, whereas the product of an odd function and an even function will
result in an odd function. However, the sum (or difference) of an odd and an even function will
yield a function which is neither odd nor even.

To understand half−wave symmetry, we recall that any periodic function with period , is
expressed as

(7.17)

that is, the function with value  at any time , will have the same value again at a later time
.

A periodic waveform with period , has half−wave symmetry if

(7.18)

* Quartet-wave symmetry is another type of symmetry where a digitally formed waveform with a series of zeros
and ones contains only sine odd harmonics. We will not discuss this type of symmetry in this text. For a brief
discussion, please refer to Introduction to Simulink with Engineering Applications, Page 7-18, ISBN 978-1-
934404-09-6.
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that is, the shape of the negative half−cycle of the waveform is the same as that of the positive
half-cycle, but inverted.

We will test the most common waveforms for symmetry in Subsections 7.3.1 through 7.3.5
below.

7.3.1 Symmetry in Square Waveform
For the waveform of Figure 7.7, the average value over one period  is zero, and therefore,

. It is also an odd function and has half−wave symmetry since  and
.

Figure 7.7. Square waveform test for symmetry

An easy method to test for half−wave symmetry is to choose any half−period  length on the
time axis as shown in Figure 7.7, and observe the values of  at the left and right points on the
time axis, such as  and . If there is half−wave symmetry, these will always be equal but
will have opposite signs as we slide the half-period  length to the left or to the right on the
time axis at non−zero values of .

7.3.2 Symmetry in Square Waveform with Ordinate Axis Shifted
If in the square waveform of Figure 7.7 we shift the ordinate axis  radians to the right, as
shown in Figure 7.8, we will observe that the square waveform now becomes an even function,
and has half−wave symmetry since  and . Also, .

Obviously, if the ordinate axis is shifted by any other value other than an odd multiple of ,
the waveform will have neither odd nor even symmetry.
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Symmetry in Trigonometric Fourier Series

Figure 7.8. Square waveform with ordinate shifted by 

7.3.3 Symmetry in Sawtooth Waveform
For the sawtooth waveform of Figure 7.9, the average value over one period  is zero and there-
fore, . It is also an odd function because , but has no half−wave symmetry
since 

Figure 7.9. Sawtooth waveform test for symmetry

7.3.4 Symmetry in Triangular Waveform
For this triangular waveform of Figure 7.10, the average value over one period  is zero and
therefore, . It is also an odd function since . Moreover, it has half−wave sym-
metry because .

Figure 7.10. Triangular waveform test for symmetry
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7.3.5 Symmetry in Fundamental, Second, and Third Harmonics
Figure 7.11 shows a fundamental, second, and third harmonic of a typical sinewave.

Figure 7.11. Fundamental, second, and third harmonic test for symmetry

In Figure 7.11, the half period , is chosen as the half period of the period of the fundamental
frequency. This is necessary in order to test the fundamental, second, and third harmonics for
half−wave symmetry. The fundamental has half−wave symmetry since the  and  values,
when separated by , are equal and opposite. The second harmonic has no half−wave symme-
try because the ordinates  on the left and  on the right, although are equal, there are not
opposite in sign. The third harmonic has half−wave symmetry since the  and  values, when
separated by  are equal and opposite. These waveforms can be either odd or even depending
on the position of the ordinate. Also, all three waveforms have zero average value unless the
abscissa axis is shifted up or down.

In the expressions of the integrals in (7.12) through (7.14), Page 7−6, the limits of integration for
the coefficients  and  are given as  to , that is, one period . Of course, we can choose
the limits of integration as  to . Also, if the given waveform is an odd function, or an even
function, or has half−wave symmetry, we can compute the non−zero coefficients  and  by
integrating from  to  only, and multiply the integral by . Moreover, if the waveform has
half−wave symmetry and is also an odd or an even function, we can choose the limits of integra-
tion from  to  and multiply the integral by . The proof is based on the fact that, the prod-
uct of two even functions is another even function, and also that the product of two odd func-
tions results also in an even function. However, it is important to remember that when using
these shortcuts, we must evaluate the coefficients  and  for the integer values of  that will
result in non−zero coefficients. This point will be illustrated in Subsection 7.4.2, Page 7−14.

7.4 Trigonometric Form of Fourier Series for Common Waveforms
The trigonometric Fourier series of the most common periodic waveforms are derived in Subsec-
tions 7.4.1 through 7.4.5 below.
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Trigonometric Form of Fourier Series for Common Waveforms

7.4.1 Trigonometric Fourier Series for Square Waveform
For the square waveform of Figure 7.12, the trigonometric series consist of sine terms only
because, as we already know from Page 7−8, this waveform is an odd function. Moreover, only
odd harmonics will be present since this waveform has also half−wave symmetry. However, we
will compute all coefficients to verify this. Also, for brevity, we will assume that 

Figure 7.12. Square waveform as odd function

The  coefficients are found from

(7.19)

and since  is an integer (positive or negative) or zero, the terms inside the parentheses on the
second line of (7.19) are zero and therefore, all  coefficients are zero, as expected since the
square waveform has odd symmetry. Also, by inspection, the average ( ) value is zero, but if
we attempt to verify this using (7.19), we will obtain the indeterminate form . To work
around this problem, we will evaluate  directly from (7.12), Page 7−6. Thus,
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as expected, since the square waveform has half−wave symmetry.

For , (7.21) reduces to

and thus 

and so on.

Therefore, the trigonometric Fourier series for the square waveform with odd symmetry is

(7.22)

It was stated above that, if the given waveform has half−wave symmetry, and it is also an odd or
an even function, we can integrate from  to , and multiply the integral by . This property
is verified with the following procedure.

Since the waveform is an odd function and has half−wave symmetry, we are only concerned with
the odd  coefficients. Then,

(7.23)

For , (7.23) becomes

(7.24)

as before, and thus the series is as we found earlier.

Next let us consider the square waveform of Figure 7.13 where the ordinate has been shifted to
the right by  radians, and has become an even function. However, it still has half−wave sym-
metry. Therefore, the trigonometric Fourier series will consist of odd cosine terms only.
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Trigonometric Form of Fourier Series for Common Waveforms

Figure 7.13. Square waveform as even function

Since the waveform has half−wave symmetry and is an even function, it will suffice to integrate
from  to , and multiply the integral by . The  coefficients are found from

(7.25)

We observe that for , all  coefficients are zero, and thus all even harmonics are zero
as expected. Also, by inspection, the average ( ) value is zero.

For , we observe from (7.25) that , will alternate between  and  depending

on the odd integer assigned to . Thus,
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For , and so on, (7.26) becomes

and for , and so on, it becomes
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(7.27)

The trigonometric series of (7.27) can also be derived as follows:

0
π / 2

2π

T

ωt

A

−A

π
3π / 2

0 π 2⁄ 4 an

an 4 1
π
--- f t( ) ntcos td

0

π 2⁄

∫
4
π
--- A ntcos td

0

π 2⁄

∫
4A
nπ
------- ntsin 0

π 2⁄( ) 4A
nπ
------- nπ

2
---sin 

 = = = =

n even= an

DC

n odd= n π
2
---sin +1 1–

n

an
4A
nπ
-------±=

n 1 5 9 13, , ,=

an
4A
nπ
-------=

n 3 7 11 15, , ,=

an
4A–
nπ

----------=

f t( ) 4A
π

------- ωcos t 1
3
---– 3ωt 1

5
--- 5ωtcos …–+cos 

  4A
π

------- 1–( )
n 1–( )

2
----------------1

n
--- ncos ωt

n odd=
∑= =



Chapter 7  Fourier Series

7−14 Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition
Copyright © Orchard Publications

Since the waveform of Figure 7.12 is the same as that of Figure 7.13, but shifted to the right by
 radians, we can use the relation (7.22), Page 7−12, i.e.,

(7.28)

and substitute  with , that is, we let . With this substitution, relation
(7.28) becomes

(7.29)

and using the identities , , and so on, we rewrite
(7.29) as 

(7.30)

and this is the same as (7.27).

Therefore, if we compute the trigonometric Fourier series with reference to one ordinate, and
afterwards we want to recompute the series with reference to a different ordinate, we can use the
above procedure to save computation time.

7.4.2 Trigonometric Fourier Series for Sawtooth Waveform
The sawtooth waveform of Figure 7.14 is an odd function with no half−wave symmetry; there-
fore, it contains sine terms only with both odd and even harmonics. Accordingly, we only need
to find all  coefficients.

 
Figure 7.14. Sawtooth waveform
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Trigonometric Form of Fourier Series for Common Waveforms

since

However, we can choose the limits from  to , and thus we will only need one integration
since

Better yet, since the waveform is an odd function, we can integrate from  to , and multiply the
integral by ; this is what we will do.

From tables of integrals,

(7.31)

Then,

(7.32)

We observe that:

1. If ,  and . Then, (7.32) reduces to

that is, the even harmonics have negative coefficients.

2. If , , . Then,

that is, the odd harmonics have positive coefficients.

Thus, the trigonometric Fourier series for the sawtooth waveform with odd symmetry is

(7.33)
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7.4.3 Trigonometric Fourier Series for Triangular Waveform
The sawtooth waveform of Figure 7.15 is an odd function with half−wave symmetry; then, the
trigonometric Fourier series will contain sine terms only with odd harmonics. Accordingly, we
only need to evaluate the  coefficients. We will choose the limits of integration from  to

, and will multiply the integral by . As before, we will assume that .

 
Figure 7.15. Triangular waveform

By inspection, the  component is zero. From tables of integrals,

(7.34)

Then, 

(7.35)

We are only interested in the odd integers of , and we observe that:

For odd integers of , the sine term yields

Thus, the trigonometric Fourier series for the triangular waveform with odd symmetry is

(7.36)
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7.4.4 Trigonometric Fourier Series for Half−Wave Rectifier Waveform
The circuit of Figure 7.16 is a half−wave rectifier whose input is the sinusoid , and
its output  is defined as

(7.37)

Figure 7.16. Circuit for half−wave rectifier

We will express  as a trigonometric Fourier series, and we will assume that . The
input and output waveforms are shown in Figures 7.17 and 7.18 respectively.

Figure 7.17. Input  for the circuit of Figure 7.16 

Figure 7.18. Output  for the circuit of Figure 7.16 

We choose the ordinate at point  as shown in Figure 7.19.
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Figure 7.19. Half−wave rectifier waveform for the circuit of Figure 7.16

By inspection, the average is a non−zero value, and the waveform has neither odd nor even sym-
metry. Therefore, we expect all terms to be present.

The  coefficients are found from

or

and from tables of integrals

Then,

(7.38)

Using the trigonometric identities

and

we obtain

and

Then, by substitution into (7.38),
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or

(7.39)

Now, we can evaluate all the  coefficients, except , from (7.39).

First, we will evaluate  to obtain the  value. By substitution of , we obtain

Therefore, the  value is
(7.40)

We cannot use (7.39) to obtain the value of  because this relation is not valid for ;
therefore, we will evaluate the integral

From tables of integrals,

and thus,

(7.41)

From (7.39) with , we obtain

(7.42)

(7.43)

We see that for odd integers of n, . However, for , we obtain

(7.44)

(7.45)
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(7.46)

and so on. 

Next, we need to evaluate the  coefficients. For this waveform,

 

and from tables of integrals,

Therefore,

that is, all the  coefficients, except , are zero.

We will find  by direct substitution into (7.14), Page 7−6, for . Thus,

(7.47)

Combining (7.40), with (7.42) through (7.47), we find that the trigonometric Fourier series for
the half−wave rectifier with no symmetry is

(7.48)

7.4.5 Trigonometric Fourier Series for Full−Wave Rectifier Waveform
Figure 7.20 shows a full−wave rectifier circuit with input the sinusoid . The out-
put of that circuit is . 
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Figure 7.20. Full-wave rectifier circuit

The input and output waveforms are shown in Figures 7.21 and 7.22 respectively. We will
express  as a trigonometric Fourier series, and we will assume that .

Figure 7.21. Input sinusoid for the full−rectifier circuit of Figure 7.20

       
Figure 7.22. Output waveform for full−rectifier circuit of Figure 7.20

We choose the ordinate as shown in Figure 7.23.

      
Figure 7.23. Full−wave rectified waveform with even symmetry
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By inspection, the average is a non−zero value. We choose the period of the input sinusoid so
that the output will be expressed in terms of the fundamental frequency. We also choose the lim-
its of integration as  and , we observe that the waveform has even symmetry. Therefore, we
expect only cosine terms to be present.

The  coefficients are found from

where for this waveform,

(7.49)

and from tables of integrals,

Since

we express (7.49) as

(7.50)

To simplify the last expression in (7.50), we make use of the trigonometric identities

and
 

Then, (7.50) simplifies to 

(7.51)
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Now, we can evaluate all the  coefficients, except , from (7.51). First, we will evaluate  to
obtain the  value. By substitution of , we obtain

Therefore, the  value is

(7.52)

From (7.51) we observe that for all , other than , .

To obtain the value of , we must evaluate the integral 

From tables of integrals,

and thus,

(7.53)

For , from (7.51) we obtain

(7.54)

(7.55)

(7.56)

(7.57)

and so on. Then, combining the terms of (7.52) with (7.54) through (7.57) we obtain

(7.58)
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Therefore, the trigonometric form of the Fourier series for the full-wave rectifier with even symme-
try is

(7.59)

This series of (7.59) shows that there is no component of the input (fundamental) frequency.
This is because we chose the period to be from  and . Generally, the period is defined as
the shortest period of repetition. In any waveform where the period is chosen appropriately, it is
very unlikely that a Fourier series will consist of even harmonic terms only.

7.5 Gibbs Phenomenon
In Subsection 7.4.1, Page 7−12, we found that the trigonometric form of the Fourier series of the
square waveform is

Figure 7.24 shows the first 11 harmonics and their sum. As we add more and more harmonics,
the sum looks more and more like the square waveform. However, the crests do not become flat-
tened; this is known as Gibbs phenomenon and it occurs because of the discontinuity of the per-
fect square waveform as it changes from  to .

Figure 7.24. Gibbs phenomenon

7.6 Alternate Forms of the Trigonometric Fourier Series
We recall that the trigonometric Fourier series is expressed as

(7.60)
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If a given waveform does not have any kind of symmetry, it may be advantageous of using the
alternate form of the trigonometric Fourier series where the cosine and sine terms of the same fre-
quency are grouped together, and the sum is combined to a single term, either cosine or sine.
However, we still need to compute the  and  coefficients separately.

For the derivation of the alternate forms, we will use the triangle shown in Figure 7.25. 

Figure 7.25. Derivation of the alternate form of the trigonometric Fourier series

We assume , and for , we rewrite (7.60) as

and, in general, for , we obtain

(7.61)
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(7.62)

When used in circuit analysis, (7.61) and (7.62) can be expressed as phasors. Since it is custom-
ary to use the cosine function in the time domain to phasor transformation, we choose to use the
transformation of (7.63) below.

(7.63)

Example 7.1  
Find the first 5 terms of the alternate form of the trigonometric Fourier series for the waveform of
Figure 7.26.

Figure 7.26. Waveform for Example 7.1

Solution:

The given waveform has no symmetry; thus, we expect both cosine and sine functions with odd
and even terms present. Also, by inspection the  value is not zero.

We will compute the  and  coefficients, the  value, and we will combine them to obtain
an expression in the form of (7.63). Then,

(7.64)
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(7.65)

and
(7.66)

The  value is

(7.67)

The  coefficients are

(7.68)

Then,
(7.69)
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(7.71)

(7.72)
From (7.63),
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(7.74)
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 (7.75)

(7.76)

and

(7.77)

Combining the terms of (7.67) with (7.74) through (7.77), we find that the alternate form of the
trigonometric Fourier series representing the waveform of this example is

(7.78)

7.7 Circuit Analysis with Trigonometric Fourier Series
When the excitation of an electric circuit is a non−sinusoidal waveform such as those we pre-
sented thus far, we can use Fouries series to determine the response of a circuit. The procedure is
illustrated with the examples that follow.

Example 7.2  
The input to the series RC circuit of Figure 7.27, is the square waveform of Figure 7.28. Compute
the voltage  across the capacitor. Consider only the first three terms of the series, and
assume .

Figure 7.27. Circuit for Example 7.2
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Circuit Analysis with Trigonometric Fourier Series

Figure 7.28. Input waveform for the circuit of Figure 7.27
Solution:

In Subsection 7.4.1, Page 7−11, we found that the waveform of Figure 7.28 can be represented by
the trigonometric Fourier series as

 (7.79)

Since this series is the sum of sinusoids, we will use phasor analysis to obtain the solution. The
equivalent phasor circuit is shown in Figure 7.29.

Figure 7.29. Phasor circuit for Example 7.2

We let  represent the number of terms in the Fourier series. For this example, we are only inter-
ested in the first three odd terms, that is, .

By the voltage division expression,

(7.80)

With reference to (7.79) the phasors of the first 3 odd terms of (7.80) are

(7.81)

(7.82)
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(7.83)

By substitution of (7.81) through (7.83) into (7.80), we obtain the phasor and time domain volt-
ages indicated in (7.84) through (7.86) below.

(7.84)

(7.85)

(7.86)

Thus, the capacitor voltage in the time domain is

(7.87)

Assuming that in the circuit of Figure 7.27 the capacitor is initially discharged, we expect that
capacitor voltage will consist of alternating rising and decaying exponentials. Let us plot relation
(7.87) using the MATLAB script below assuming that .

t=0:pi/64:4*pi; Vc=(4./pi).*((sqrt(2)./2).*cos(t−135.*pi./180)+...
(sqrt(10)./30).*cos(3.*t−161.6.*pi./180)+(sqrt(26)./130).*cos(5.*t−168.7.*pi./180)); plot(t,Vc)

Figure 7.30. Waveform for relation (7.87)
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The Exponential Form of the Fourier Series

The waveform of Figure 7.30 is a rudimentary presentation of the capacitor voltage for the circuit
of Figure 7.27. However, it will improve if we add a sufficient number of harmonics in (7.87).

We can obtain a more accurate waveform for the capacitor voltage of Figure 7.27 with the Sim-
ulink model of Figure 7.31.

Figure 7.31. Simulink model for the circuit of Figure 7.27

The input and output waveforms are shown in Figure 7.32.

Figure 7.32. Input and output waveforms for the model of Figure 7.31

7.8 The Exponential Form of the Fourier Series 
The Fourier series are often expressed in exponential form. The advantage of the exponential
form is that we only need to perform one integration rather than two, one for the , and
another for the  coefficients in the trigonometric form of the series. Moreover, in most cases
the integration is simpler.

The exponential form is derived from the trigonometric form by substitution of

(7.88)

(7.89)
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into . Thus,

(7.90)

and grouping terms with same exponents, we obtain

(7.91)

The terms of (7.91) in parentheses are usually denoted as

(7.92)

(7.93)

(7.94)

Then, (7.91) is written as

(7.95)

We must remember that the  coefficients, except , are complex and occur in complex con-
jugate pairs, that is,

(7.96)

We can derive a general expression for the complex coefficients , by multiplying both sides of

(7.95) by  and integrating over one period, as we did in the derivation of the  and 
coefficients of the trigonometric form. Then, with ,

(7.97)

We observe that all the integrals on the right side of (7.96) are zero except the last. Therefore,
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or

(7.98)

and, in general, for ,

(7.99)

or

(7.100)

We can derive the trigonometric Fourier series from the exponential series by addition and sub-
traction of the exponential form coefficients  and . Thus, from (7.92) and (7.93),

or
(7.101)

Similarly, 
(7.102)

or
(7.103)

7.9 Symmetry in Exponential Fourier Series
Since the coefficients of the Fourier series in exponential form appear as complex numbers, we
can use the properties in Subsections 7.9.1 through 7.9.5 below to determine the symmetry in the
exponential Fourier series.

7.9.1 Even Functions

For even functions, all coefficients are real.

We recall from (7.92) and (7.93) that

(7.104)
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and

(7.105)

Since even functions have no sine terms, the  coefficients in (7.104) and (7.105) are zero.
Therefore, both  and  are real.

7.9.2 Odd Functions

For odd functions, all coefficients are imaginary.

Since odd functions have no cosine terms, the  coefficients in (7.104) and (7.105) are zero.
Therefore, both  and  are imaginary.

7.9.3 Half−Wave Symmetry
If there is half−wave symmetry,  for .

We recall from the trigonometric Fourier series that if there is half−wave symmetry, all even har-
monics are zero. Therefore, in (7.104) and (7.105) the coefficients  and  are both zero for

, and thus, both  and  are also zero for .

7.9.4 No Symmetry
If there is no symmetry,  is complex.

This is evident from Subparagraphs 7.9.1 and 7.9.2, and relations (7.104) and (7.105).

7.9.5 Relation of  to 

 always.

This is evident from (7.104) and (7.105).

Example 7.3  
Compute the exponential Fourier series for the square waveform of Figure 7.33 below. Assume
that .

Cn
1
2
--- an

bn
j

-----+ 
  1

2
--- an j– bn( )= =

bn

C n– Cn

Ci
 

an

C n– Cn

Cn 0= n even=

an bn

n even= C n– Cn n even=

f t( )

C n– Cn∗

C n– Cn∗=

ω 1=



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition 7−35
Copyright © Orchard Publications

Symmetry in Exponential Fourier Series

Figure 7.33. Waveform for Example 7.3

Solution:
This is the same waveform as in Subsection 7.4.1, Page 7−11, and as we know, it is an odd func-
tion, has half−wave symmetry, and its  component is zero. Therefore, the  coefficients will
be imaginary,  for , and . Using (7.99), Page 7−33, with , we
obtain

and for ,

as expected.

For ,

(7.106)

For , ; then,

(7.107)

as expected.

For , . Therefore,
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(7.108)

Using (7.94), Page 7-32, that is,

we obtain the exponential Fourier series for the square waveform with odd symmetry as

(7.109)

The minus (−) sign of the first two terms within the parentheses results from the fact that
. For instance, since , it follows that . We

observe that  is purely imaginary, as expected, since the waveform is an odd function.

To prove that (7.109) above and (7.22), Page 7−12 are the same, we group the two terms inside
the parentheses of (7.109) for which ; this will produce the fundamental frequency .
Then, we group the two terms for which , and this will produce the third harmonic

, and so on.

7.10 Line Spectra
When the Fourier series are known, it is useful to plot the amplitudes of the harmonics on a fre-
quency scale that shows the first (fundamental frequency) harmonic, and the higher harmonics
times the amplitude of the fundamental. Such a plot is known as line spectrum and shows the
spectral lines that would be displayed by a spectrum analyzer*.

Figure 7.34 shows the line spectrum of the square waveform in Subsection 7.4.1, Page 7−11.

Figure 7.34. Line spectrum for square waveform in Subsection 7.4.1

Figure 7.35 shows the line spectrum for the half−wave rectifier in Subsection 7.4.4, Page 7−18.

* An instrument that displays the spectral lines of a waveform.
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Line Spectra

Figure 7.35. Line spectrum for half−wave rectifier, Page 7−17 

The line spectra of other waveforms can be easily constructed from the Fourier series.

Example 7.4  
Compute the exponential Fourier series for the waveform of Figure 7.36, and plot its line spectra.
Assume .

Solution:
This recurrent rectangular pulse is used extensively in digital communications systems. To deter-
mine how faithfully such pulses will be transmitted, it is necessary to know the frequency compo-
nents.

Figure 7.36. Waveform for Example 7.4

As shown in Figure 7.36, the pulse duration is . Thus, the recurrence interval (period) , is
 times the pulse duration. In other words,  is the ratio of the pulse repetition time to the dura-

tion of each pulse. For this example, the components of the exponential Fourier series are found
from

(7.110)

The value of the average (  component) is found by letting . Then, from (7.110) we
obtain

or
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(7.111)

For the values for , integration of (7.110) yields

or

(7.112)

and thus,

(7.113)

The relation of (7.113) has the  form, and the line spectra are shown in Figures 7.37
through 7.39, for ,  and  respectively by using the MATLAB scripts below.

fplot('sin(2.*x)./(2.*x)',[−4  4  −0.4  1.2])

fplot('sin(5.*x)./(5.*x)',[−4  4  −0.4  1.2])

fplot('sin(10.*x)./(10.*x)',[−4  4 −0.4  1.2])

Figure 7.37. Line spectrum of (7.113) for 
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Line Spectra

Figure 7.38. Line spectrum of (7.113) for 

Figure 7.39. Line spectrum of (7.113) for 

The spectral lines are separated by the distance  and thus, as  becomes larger, the lines get
closer together while the lines are further apart as  gets smaller.

Example 7.5  
Use the result of Example 7.4 to compute the exponential Fourier series of the unit impulse train

 shown in Figure 7.40.

Solution:

From relation (7.112), Page 7−38, 
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Figure 7.40. Impulse train for Example 7.4

(7.114)

and the pulse width was defined as , that is,

(7.115)

Next, let us represent the impulse train of Figure 7.40, as a recurrent pulse with amplitude

(7.116)

as shown in Figure 7.41.

Figure 7.41. Recurrent pulse with amplitude 

By substitution of (7.116) into (7.114), we obtain

(7.117)

and as , we observe from Figure 7.41, that each recurrent pulse becomes a unit impulse,
and the total number of the pulses reduce to a unit impulse train. Moreover, recalling that

, we see that (7.117) reduces to , that is, all coefficients of the exponential

Fourier series have the same amplitude and thus,
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Computation of RMS Values from Fourier Series

(7.118)

The series of (7.118) reveals that the line spectrum of the impulse train of Figure 7.40, consists of
a train of equal amplitude, and are equally spaced harmonics as shown in Figure 7.42.

Figure 7.42. Line spectrum for Example 7.5

Since these spectral lines extend from , the bandwidth approaches infinity.

Let us reconsider the train of recurrent pulses shown in Figure 7.43.

Figure 7.43. Recurrent pulse with 

Now, let us suppose that the pulses to the left and right of the pulse centered around zero,
become less and less frequent; or in other words, the period  approaches infinity. In this case,
there is only one pulse left (the one centered around zero). As , the fundamental fre-
quency approaches zero, that is,  as  approaches infinity. Accordingly, the frequency dif-
ference between consecutive harmonics becomes smaller. In this case, the lines in the line spec-
trum come closer together, and the line spectrum becomes a continuous spectrum. This forms
the basis of the Fourier transform that we will study in the next chapter.

7.11 Computation of RMS Values from Fourier Series

The  value of a waveform consisting of sinusoids of different frequencies, is equal to the
square root of the sum of the squares of the  values of each sinusoid. Thus, if

f t( ) 1
2π
------ e jnωt

n ∞–=

∞

∑=

0 1
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2 3 4−1
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1 2π⁄
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(7.119)

where  represents a constant current, and  represent the amplitudes of the sinuso-
ids, the  value of  is found from

(7.120)

or

(7.121)

The proof of (7.120) is based on Parseval’s theorem; we will state this theorem in the next chap-
ter. A brief description of the proof of (7.120) follows.

We recall that the  (effective) value of a function, such as current , is defined as

(7.122)

Substitution of (7.119) into (7.122), will produce the terms , , and other
similar terms representing higher order harmonics. The result will also contain products of cosine
functions multiplied by a constant, or other cosine terms of different harmonic frequencies. But
as we know, from the orthogonality principle, the integration of (7.122), will produce all zero
terms except the cosine squared terms which, for each harmonic, will be

(7.123)

as in (7.121).

Example 7.6  
Consider the waveform of Figure 7.44.

Figure 7.44. Waveform for Example 7.6
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Find the  value of this waveform by application of

a. relation (7.122)

b. relation (7.121)

Solution:

a. By inspection, the period is  as shown in Figure 7.45.

Figure 7.45. Waveform of Example 7.6 showing period 

Then,

or

b. In Subsection 7.4.1, Page 7−11, we found that the given waveform may be written as

(7.124)

and as we know, the  value of a sinusoid is a real number independent of the frequency
and the phase angle, and it is equal to  times its maximum value, that is,

. Then, from (7.121) and (7.124),

(7.125)

This is a good approximation to unity, considering that higher harmonics have been
neglected.
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7.12 Computation of Average Power from Fourier Series
We can compute the average power of a Fourier series from the relation

(7.126)

The proof is obtained from the definition of average power, i.e.,

(7.127)

and the expression for the alternate trigonometric Fourier series, that is, 

(7.128)

where  can represent voltages and currents. Then, by substitution of these series for  and 
into (7.127), we will find that the products of  and  that have different frequencies, will be
zero, and only the products of the same frequency terms will have non-zero values. The non−zero
values will represent the average power for each harmonic in (7.126).

Example 7.7  
For the circuit of Figure 7.46, compute:

a. The current  given that  where .

b. The average power  delivered by the voltage source.

Figure 7.46. Circuit for Example 7.7

Solution:

a. We will use the subscripts  and  to represent the quantities due to the fundamental and
third harmonic frequencies respectively. Since the excitation consists of two sinusoids of dif-
ferent frequencies, we can use phasor quantities, and we will denote them with capital letters.
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Then,

(7.129)

Next,

(7.130)

From (7.129) and (7.130),

(7.131)

b. The average power delivered by the voltage source is

(7.132)

or
(7.133)

Check:

The average power absorbed by the capacitor is zero, and therefore, the average power
absorbed by the resistor, must be equal to the average power delivered by the source. The
average power absorbed by the resistor is
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7.13 Evaluation of Fourier Coefficients Using Excel®
The use of Fourier series is not restricted to electric circuit analysis. It is also applied in the anal-
ysis of the behavior of physical systems subjected to periodic disturbances. Examples include
cable stress analysis in suspension bridges, and mechanical vibrations.

Quite often, it is necessary to construct the Fourier expansion of a function based on observed
values instead of an analytic expression. Examples are meteorological or economic quantities
whose period may be a day, a week, a month or even a year. In these situations, we need to eval-
uate the integral(s) using numerical integration.

The procedure presented here, will work for both the waveforms that have an analytical solution
and those that do not. Even though we may already know the Fourier series from analytical
methods, we can use this procedure to check our results.

Consider the waveform of  shown in Figure 7.47, were we have divided it into small pulses of
width . Obviously, the more pulses we use, the better the approximation.

If the time axis is in degrees, we can choose  to be  and it is convenient to start at the zero
point of the waveform. Then, using a spreadsheet, such as Microsoft Excel, we can divide the
period  to  in  intervals, and enter these values in Column  of the spreadsheet.

 

Figure 7.47. Waveform whose analytical expression is unknown

Since the arguments of the sine and the cosine are in radians, we multiply degrees by 
(3.1459...) and divide by  to perform the conversion. We enter these in Column  and we
denote them as . In Column  we enter the corresponding values of  as measured
from the waveform. In Columns  and  we enter the values of  and the product 
respectively. Similarly, we enter the values of  and  in Columns  and  respectively.

Next, we form the sums of  and , we multiply these by , and we divide by  to
obtain the coefficients  and . To compute the coefficients of the higher order harmonics, we

f x( )
∆x

∆x 2.5°

0° 360° 2.5° A

x

f x( )

π
180 B

x C y f x( )=

D E xcos y xcos
xsin y xsin F G

y xcos y xsin ∆x π
a1 b1
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form the products , , , , and so on, and we enter these in subse-
quent columns of the spreadsheet.
Figure 7.48 is a partial table showing the computation of the coefficients of the square waveform,
and Figure 7.49 is a partial table showing the computation of the coefficients of a clipped sine
waveform. The complete tables extend to the seventh harmonic to the right and to  down.

7.14 Evaluation of Fourier Coefficients Using MATLAB®
We can also use MATLAB to evaluate the coefficients of a Fourier series as illustrated with the
following simple example. 

Example 7.8  

Let  where . Use the exponential Fourier series to evaluate the average value
 and the first 3 harmonics  using MATLAB.

Solution:
We use the following MATLAB script where the statement int(f,t,a,b) where f represents the
function to be integrated, t is a symbolic variable for the symbolic expression, and a and b are
numeric values for the definite integral a to b.

syms t % Define symbolic variable t
T=1; % Period of the signal
w=2*pi/T; % radian frequency omega
for n=0:3 % Evaluate DC component and first 3 harmonics
Cn=(1/T)*int(cos(w*t)*exp(−j*w*n*t), t, 0, 1) % Exponential Fourier Series, relation (7.99)
end

MATLAB displays the following:

Cn = 0     Cn = 1/2     Cn = 0     Cn = 0

The values displayed by MATLAB indicate that  is the only nonzero frequency com-
ponent, and since  is an even function, all  coefficients in relation (7.95), Page 7−32 are
real and . Therefore,

Also, for the trigonometric Fourier series, from (7.100), Page 7−33,

y 2xcos y 2xsin y 3xcos y 3xsin

360°

f t( ) ωtcos= ω 1=
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Cn 1 2⁄=
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f t( ) … 0 1
2
---e jωt– 0 1

2
---e jωt 0 …+ + + + + + e jωt e jωt–+

2
--------------------------- ωtcos= = =

an Cn C n–+ 1
2
--- 1

2
---+ 1= = =
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Figure 7.48. Numerical computation of the coefficients of the square waveform (partial listing)
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Figure 7.49. Numerical computation of the coefficients of a clipped sine waveform (partial listing)
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7.15 Summary

• Any periodic waveform  can be expressed as

where the first term  is a constant, and represents the  (average) component of .
The terms with the coefficients  and  together, represent the fundamental frequency
component . Likewise, the terms with the coefficients  and  together, represent the sec-
ond harmonic component , and so on. The coefficients , , and  are found from the
following relations:

• If a waveform has odd symmetry, that is, if it is an odd function, the series will consist of sine
terms only. We recall that odd functions are those for which .

• If a waveform has even symmetry, that is, if it is an even function, the series will consist of
cosine terms only, and  may or may not be zero. We recall that even functions are those for
which 

• A periodic waveform with period , has half−wave symmetry if

that is, the shape of the negative half−cycle of the waveform is the same as that of the positive
half-cycle, but inverted. If a waveform has half−wave symmetry only odd (odd cosine and odd
sine) harmonics will be present. In other words, all even (even cosine and even sine) harmon-
ics will be zero. 

• The trigonometric Fourier series for the square waveform with odd symmetry is
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Summary

• The trigonometric Fourier series for the square waveform with even symmetry is

• The trigonometric Fourier series for the sawtooth waveform with odd symmetry is

• The trigonometric Fourier series for the triangular waveform with odd symmetry is

• The trigonometric Fourier series for the half−wave rectifier with no symmetry is

• The trigonometric form of the Fourier series for the full−wave rectifier with even symmetry is

• The Fourier series are often expressed in exponential form as

where the  coefficients are related to the trigonometric form coefficients as

• The  coefficients, except , are complex, and appear as complex conjugate pairs, that is,

• In general, for ,
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• We can derive the trigonometric Fourier series from the exponential series from the relations

and

• For even functions, all coefficients are real

• For odd functions, all coefficients are imaginary

• If there is half−wave symmetry,  for 

•  always 

• A line spectrum is a plot that shows the amplitudes of the harmonics on a frequency scale.

• The frequency components of a recurrent rectangular pulse follow a  form.

• Τhe line spectrum of an impulse train consists of a train of equal amplitude, and are equally
spaced harmonics.

• Τhe  value of a waveform consisting of sinusoids of different frequencies, is equal to the
square root of the sum of the squares of the  values of each sinusoid. Thus,

or

• We can compute the average power of a Fourier series from the relation

• We can evaluate the Fourier coefficients of a function based on observed values instead of an
analytic expression using numerical evaluations with the aid of a spreadsheet.
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Exercises

7.16  Exercises
1. Compute the first 5 components of the trigonometric Fourier series for the waveform shown

below. Assume .

2. Compute the first 5 components of the trigonometric Fourier series for the waveform shown
below. Assume .

3. Compute the first 5 components of the exponential Fourier series for the waveform shown
below. Assume .

4.Compute the first 5 components of the exponential Fourier series for the waveform shown
below. Assume . 

ω 1=

0
ωt

A

f t( )

ω 1=

0
ωt

A
f t( )

ω 1=

0
ωt

A
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0 ωt
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5. Compute the first 5 components of the exponential Fourier series for the waveform shown
below. Assume .

6. Compute the first 5 components of the exponential Fourier series for the waveform shown
below. Assume .
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ωt
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f t( )
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0
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−A

f t( )
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7.17 Solutions to End−of−Chapter Exercises
1.

This is an even function; therefore, the series consists of cosine terms only. There is no half−
wave symmetry and the average (  component) is not zero. We will integrate from  to 
and multiply by . Then,

  (1)

From tables of integrals,

and thus (1) becomes

and since  for all integer ,

  (2)

We cannot evaluate the average  from (2); we must use (1). Then, for ,

or
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0
ωt

A
f t( ) A

π
----t

2π– π– π 2π

DC 0 π
2

an
2
π
--- A

π
----t ntcos td

0

π

∫
2A
π2
------- t ntcos td

0

π

∫= =

x axcos xd∫
1
a2
----- axcos x

a
--- asin x+=

an
2A
π2
------- 1

n2
----- ntcos t

n
--- ntsin+ 

 

0

π 2A
π2
------- 1

n2
----- nπcos t

n
--- ntπ 1

n2
-----– 0–sin+ 

 = =

ntπsin 0= n

an
2A
π2
------- 1

n2
----- nπcos 1

n2
-----– 

  2A

n2π
2

----------- nπ 1–cos( )= =

1 2⁄( )a0 n 0=

1
2
---a0

2A
2π2
--------- t td

0

π

∫
A
π2
----- t2

2
----⋅

0

π
A
π2
----- π2

2
-----⋅= = =

1 2⁄( ) a0⁄ A 2⁄=

n even= an even= 0=

for n 1  a1
4A
π2
-------–  for n,=, 3  a3

4A–

32π
2

-----------  for n 5  a5
4A

52π
2

-----------–  for n,=, 7  a3
4A–

72π
2

-----------=,= =,=,= =



Chapter 7  Fourier Series

7−56 Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition
Copyright © Orchard Publications

and so on. Therefore,

2.

This is an even function; therefore, the series consists of cosine terms only. There is no half−
wave symmetry and the average (  component) is not zero.

  (1)

and with

relation (1) above simplifies to

and since  for all integer ,

We observe that the fourth harmonic and all its multiples are zero. Therefore,
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3.

This is neither an even nor an odd function and has no half−wave symmetry; therefore, the
series consists of both cosine and sine terms. The average (  component) is not zero. Then,

and with 

The  value is 

For ,

Recalling that

for ,  and for , . Then,

and

By substitution into

we find that 

f t( ) 3A
4

------- 4A
π2
------- tcos 1

2
--- 2tcos 1

9
--- 3tcos …+ + + 

 –=

0
ωt

A
f t( )

2ππ

DC

Cn
1

2π
------ f t( )e jnωt– ωt( )d

0

2π

∫=

ω 1=

Cn
1

2π
------ f t( )e jnt– td

0

2π

∫
1

2π
------ Ae jnt– td

0

π

∫ 0e jnt– td
π

2π

∫+
A
2π
------ e jnt– td

0

π

∫= ==

DC

C0
A
2π
------ e0 td

0

π

∫
A
2π
------t

0

π A
2
----= = =

n 0≠

Cn
A
2π
------ e jnt– td

0

π

∫
A

j2– nπ
---------------e jnt–

0

π

=
A

j2nπ
------------ 1 e jnπ––( )= =

e jnπ– nπ j nπsin–cos=

n even= e jnπ– 1= n odd= e jnπ– 1–=

Cn even=
A

j2nπ
------------ 1 1–( ) 0= =

Cn odd=
A

j2nπ
------------ 1 1–( )–[ ] A

jnπ
--------= =

f t( ) … C 2– e j2ωt– C 1– e jωt– C0 C1e jωt C2ej2ωt …+ + + + + +=
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The minus (−) sign of the first two terms within the parentheses results from the fact that
. For instance, since , it follows that . We

observe that  is complex, as expected, since there is no symmetry.

4.

This is the same waveform as in Exercise 3 where the  component has been removed.
Then,

It is also the same waveform as in Example 7.3, Page 7−34, except that the amplitude is
halved. This waveform is an odd function and thus the expression for  is imaginary.

5.

This is the same waveform as in Exercise 3 where the vertical axis has been shifted to make
the waveform an even function. Therefore, for this waveform  is real. Then,

The  value is 

For ,

f t( ) A
2
---- A

jπ
----- … 1

3
---e j3ωt– e jωt––– ejωt 1

3
---ej3ωt …+ + + 

 +=

C n– Cn∗= C1 2A jπ⁄= C 1– C1∗ 2A– jπ⁄= =

f t( )

0 ωt

f t( )
A 2⁄

A– 2⁄

DC

f t( ) A
jπ
----- … 1

3
---e j3ωt– e jωt––– ejωt 1

3
---ej3ωt …+ + + 

 =

f t( )

0 ωt

A

f t( )

π

π 2⁄π– 2⁄
π–

Cn

Cn
1

2π
------ f t( )e jnt– td

π–

π

∫
A
2π
------ e jnt– td

π– 2⁄

π 2⁄

∫==

DC

C0
A
2π
------t

π– 2⁄

π 2⁄ A
2π
------ π

2
--- π

2
---+ 

  A
2
----= = =

n 0≠
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and we observe that for , 

For ,  alternates in plus (+) and minus (−) signs, that is,

Thus,

where the plus (+) sign is used with  and the minus (−) sign is used with
. We can express  in a more compact form as

6.

We will find the exponential form coefficients  from

From tables of integrals

Then,

Cn
A
2π
------ e jnt– td

π– 2⁄

π 2⁄

∫
A

j2– nπ
---------------e jnt–

π– 2⁄

π 2⁄

=
A

j2– nπ
--------------- e jnπ 2⁄– e jnπ 2⁄–( )= =

A
j2nπ
------------ e jnπ 2⁄ e jnπ 2⁄––( ) A

nπ
------ e jnπ 2⁄ e jnπ 2⁄––

j2
-------------------------------------- 

  A
nπ
------ nπ

2
------sin= ==

n even= Cn 0=

n odd= Cn

Cn
A
nπ
------  if  n 1 5 9 …, , ,= =

Cn
A
nπ
------–   if  n 3 7 11 …, , ,= =

f t( ) A
2
---- A

nπ
------e jnωt± 

 

n odd=
∑+=

n 1 5 9 …, , ,=

n 3 7 11 …, , ,= f t( )

f t( ) A
2
---- 1–( ) n 1–( ) 2⁄ A

nπ
------e jnωt

n odd=
∑+=

0
ωt

A

−A

f t( ) 2A
π

-------t 1–

ππ–

π– 2⁄ π 2⁄

Cn

Cn
1

2π
------ f t( )e jnt– td

π–

π

∫=

xeax xd∫
eax

a2
------- ax 1–( )=



Chapter 7  Fourier Series

7−60 Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition
Copyright © Orchard Publications

Integrating and rearranging terms we obtain

and since  for all integer ,

For ,  and for , , and 

Also, by inspection, the  component . Then,

The coefficients of the terms  and  are positive because all coefficients of  are
real. This is to be expected since  is an even function. It also has half−wave symmetry and
thus  for  as we’ve found.

Cn
1

2π
------ 2A

π
-------– t 1– 

  e jnt– td
π–

0

∫
2A
π

-------t 1– 
  e jnt– td

0

π

∫+=

Cn
1

2π
------ 4A

n2π
---------–

4A
n2π
--------- nπ e jnπ e jnπ––

j2
----------------------------⋅ e jnπ e jnπ–+

2
----------------------------+ 

  2A
n

------- e jnπ e jnπ––
j2

----------------------------⋅–+=

4A
2n2π2
-------------- 1– nπ nπsin nπcos nπ

2
------ nπsin–+ + 

 =

nπsin 0= n

Cn
2A

n2π2
----------- nπcos 1–( )=

n even= Cn 0= n odd= nπcos 1–= Cn
4– A

n2π2
-----------=

DC C0 0=

f t( ) 4A
π2
-------– … 1

9
---e j3ωt– e jωt– ejωt 1

9
---ej3ωt …+ + + + + 

 =

e j3ωt– e jωt– Cn

f t( )
Cn 0= n even=
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Chapter 8

The Fourier Transform

his chapter introduces the Fourier Transform, also known as the Fourier Integral. The defi-
nition, theorems, and properties are presented and proved. The Fourier transforms of the
most common functions are derived, the system function is defined, and several examples

are provided to illustrate its application in circuit analysis.

8.1 Definition and Special Forms
We recall that the Fourier series for periodic functions of time, such as those we discussed on the
previous chapter, produce discrete line spectra with non-zero values only at specific frequencies
referred to as harmonics. However, other functions of interest such as the unit step, the unit
impulse, the unit ramp, and a single rectangular pulse are not periodic functions. The frequency
spectra for these functions are continuous as we will see later in this chapter.

We may think of a non-periodic signal as one arising from a periodic signal in which the period
extents from . Then, for a signal that is a function of time with period from ,
we form the integral

(8.1)

and assuming that it exists for every value of the radian frequency , we call the function  the Fou-
rier transform or the Fourier integral.

The Fourier transform is, in general, a complex function. We can express it as the sum of its real
and imaginary components, or in exponential form, that is, as

(8.2)

The Inverse Fourier transform is defined as

(8.3)

We will often use the following notation to express the Fourier transform and its inverse.

(8.4)
and

(8.5)

T

∞ to– ∞+ ∞ to– ∞+

F ω( ) f t( )e jωt– td
∞–

∞

∫=

ω F ω( )

F ω( ) Re F ω( ){ } jIm F ω( ){ }+ F ω( ) ejϕ ω( )= =

f t( ) 1
2π
------ F ω( )e jωt ωd

∞–

∞

∫=

F f t( ){ } F ω( )=

F 1–
F ω( ){ } f t( )=
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8.2 Special Forms of the Fourier Transform

The time function  is, in general, complex, and thus we can express it as the sum of its real
and imaginary parts, that is, as

(8.6)

The subscripts  and  will be used often to denote the real and imaginary parts respectively.
These notations have the same meaning as  and .

By substitution of (8.6) into the Fourier integral of (8.1), we obtain

(8.7)

and by Euler’s identity

(8.8)

From (8.8), we see that the real and imaginary parts of  are 

(8.9)

and
(8.10)

We can derive similar forms for the Inverse Fourier transform as follows:

Substitution of (8.2) into (8.3) yields 

(8.11)

and by Euler’s identity,

(8.12)

Therefore, the real and imaginary parts of  in terms of the Inverse Fourier transform are

(8.13)

and

f t( )

f t( ) fRe t( ) j fIm t( )+=

Re Im
Re f t( ){ } Im f t( ){ }

F ω( ) fRe t( )e jωt– t j fIm t( )e jωt– td
∞–

∞

∫+d
∞–

∞

∫=

F ω( ) fRe t( ) ωtcos fIm t( ) ωtsin+[ ] td
∞–

∞

∫ j fRe t( ) ωtsin fIm– t( ) ωcos t[ ] td
∞–

∞

∫–=

F ω( )

FRe ω( ) fRe t( ) ωtcos fIm t( ) ωtsin+[ ] td
∞–

∞

∫=

FIm ω( ) fRe t( ) ωtsin fIm– t( ) ωcos t[ ] td
∞–

∞

∫–=

f t( ) 1
2π
------ FRe ω( ) jFIm ω( )+[ ]e jωt ωd

∞–

∞

∫=

f t( ) 1
2π
------ FRe ω( ) ωtcos FIm ω( )– ωtsin[ ] ωd

∞–

∞

∫
            + j 1

2π
------ FRe ω( ) ωtsin FIm ω( ) ωcos t+[ ] ωd

∞–

∞

∫

=

f t( )

fRe t( ) 1
2π
------ FRe ω( ) ωtcos FIm ω( )– ωtsin[ ] ωd

∞–

∞

∫=
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Special Forms of the Fourier Transform

(8.14)

Now, we will use the above relations to derive the time to frequency domain correspondence for
real, imaginary, even, and odd functions in both the time and the frequency domains. We will
show these in tabular form, as indicated in Table 8.1. The derivations are shown in Subsections
8.2.1 and 8.2.2.

8.2.1 Real Time Functions
If  is real, (8.9) and (8.10) reduce to

(8.15)

and

(8.16)

Conclusion: If  is real,  is, in general, complex. We indicate this result with a check
mark in Table 8.2.

We know that any function  can be expressed as the sum of an even and an odd function.
Therefore, we will also consider the cases when  is real and even, and when  is real and
odd*.

TABLE 8.1 Time Domain and Frequency Domain Correspondence (Refer to Tables 8.2 − 8.7)

Real Imaginary Complex Even Odd
Real
Real and Even
Real and Odd
Imaginary
Imaginary and Even
Imaginary and Odd

* In our subsequent discussion, we will make use of the fact that the cosine is an even function, while the sine is an odd func-
tion. Also, the product of two odd functions or the product of two even functions will result in an even function, whereas the
product of an odd function and an even function will result in an odd function. 

fIm t( ) 1
2π
------ FRe ω( ) ωtsin FIm ω( ) ωcos t+[ ] ωd

∞–

∞

∫=

f t( ) F ω( )

f t( )

FRe ω( ) fRe t( ) ωtcos td
∞–

∞

∫=

FIm ω( ) fRe t( ) ωtsin td
∞–

∞

∫–=

f t( ) F ω( )

f t( )
f t( ) f t( )
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a.  is even

If , the product , with respect to , is even, while the product
 is odd. In this case, (8.15) and (8.16) reduce to:

(8.17)

and

(8.18)

Therefore, if ,  is real as seen in (8.17).

To determine whether  is even or odd when , we must perform a test for
evenness or oddness with respect to . Thus, substitution of  for  in (8.17), yields

(8.19)

Conclusion: If  is real and even,  is also real and even. We indicate this result in
Table 8.3.

b.  is odd

If , the product , with respect to , is odd, while the product
 is even. In this case, (8.15) and (8.16) reduce to:

TABLE 8.2  Time Domain and Frequency Domain Correspondence (Refer also to Tables 8.3 − 8.7)

Real Imaginary Complex Even Odd
Real
Real and Even
Real and Odd
Imaginary
Imaginary and Even
Imaginary and Odd

f t( ) F ω( )

fRe t( )

fRe t–( ) fRe t( )= fRe t( ) ωtcos t

fRe t( ) ωsin t

FRe ω( ) 2 fRe t( ) ωtcos td
0

∞

∫= fRe t( ) even=

FIm ω( ) fRe t( ) ωtsin td
∞–

∞

∫– 0= = fRe t( ) even=

fRe t( ) even= F ω( )

F ω( ) fRe t( ) even=

ω ω– ω

FRe ω–( ) 2 fRe t( ) ω–( )tcos td
0

∞

∫ 2 fRe t( ) ωtcos td
0

∞

∫ FRe ω( )= = =

f t( ) F ω( )

fRe t( )

fRe– t–( ) fRe t( )= fRe t( ) ωtcos t

fRe t( ) ωsin t
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(8.20)

and

(8.21)

Therefore, if ,  is imaginary.

To determine whether  is even or odd when , we perform a test for evenness
or oddness with respect to . Thus, substitution of  for  in (8.21), yields

(8.22)

Conclusion: If  is real and odd,  is imaginary and odd. We indicate this result in
Table 8.4.

TABLE 8.3  Time Domain and Frequency Domain Correspondence (Refer also to Tables 8.4 − 8.7)

Real Imaginary Complex Even Odd
Real
Real and Even
Real and Odd
Imaginary
Imaginary and Even
Imaginary and Odd

TABLE 8.4  Time Domain and Frequency Domain Correspondence (Refer also to Tables 8.5 − 8.7)

Real Imaginary Complex Even Odd
Real
Real and Even
Real and Odd
Imaginary
Imaginary and Even
Imaginary and Odd

f t( ) F ω( )

FRe ω( ) fRe t( ) ωtcos td
∞–

∞

∫ 0= = fRe t( ) odd=

FIm ω( ) 2 fRe t( ) ωtsin td
0

∞

∫–= fRe t( ) odd=

fRe t( ) odd= F ω( )

F ω( ) fRe t( ) odd=

ω ω– ω

FIm ω–( ) 2 fRe t( ) ω–( )tsin td
0

∞

∫– 2 fRe t( ) ωtsin td
0

∞

∫ F– Im ω( )= = =

f t( ) F ω( )

f t( ) F ω( )
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8.2.2 Imaginary Time Functions
If  is imaginary, (8.9) and (8.10) reduce to

(8.23)

and
(8.24)

Conclusion: If  is imaginary,  is, in general, complex. We indicate this result in Table
8.5.

Next, we will consider the cases where  is imaginary and even, and  is imaginary and odd.

a.  is even

If , the product , with respect to , is even while the product
 is odd. In this case, (8.23) and (8.24) reduce to:

(8.25)

and

(8.26)

Therefore, if ,  is imaginary.

To determine whether  is even or odd when , we perform a test for even-
ness or oddness with respect to . Thus, substitution of  for  in (8.26) yields 

TABLE 8.5  Time Domain and Frequency Domain Correspondence (Refer also to Tables 8.6 − 8.7)

Real Imaginary Complex Even Odd
Real
Real and Even
Real and Odd
Imaginary
Imaginary and Even
Imaginary and Odd

f t( )

FRe ω( ) fIm t( ) ωsin t td
∞–

∞

∫=

FIm ω( ) fIm t( ) ωcos t td
∞–

∞

∫=

f t( ) F ω( )

f t( ) F ω( )

f t( ) f t( )

fIm t( )

fIm t–( ) fIm t( )= fIm t( ) ωtcos t

fIm t( ) ωsin t

FRe ω( ) fIm t( ) ωsin t td
∞–

∞

∫ 0= = fIm t( ) even=

FIm ω( ) 2 fIm t( ) ωcos t td
0

∞

∫= fIm t( ) even=

fIm t( ) even= F ω( )

F ω( ) fIm t( ) even=

ω ω– ω



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition 8−7
Copyright © Orchard Publications
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(8.27)

Conclusion: If  is imaginary and even,  is also imaginary and even. We indicate this
result in Table 8.6.

b.  is odd

If , the product , with respect to , is odd, while the product
 is even. In this case, (8.23) and (8.24) reduce to

(8.28)

and

(8.29)

Therefore, if ,  is real.

To determine whether  is even or odd when , we perform a test for evenness
or oddness with respect to . Thus, substitution of  for  in (8.28) yields

(8.30)

Conclusion: If  is imaginary and odd,  is real and odd. We indicate this result in
Table 8.7.

TABLE 8.6  Time Domain and Frequency Domain Correspondence (Refer also to Table 8.7)

Real Imaginary Complex Even Odd
Real
Real and Even
Real and Odd
Imaginary
Imaginary and Even
Imaginary and Odd

FIm ω–( ) 2 fIm t( ) ω–( )tcos td
0

∞

∫ 2 fIm t( ) ωtcos td
0

∞

∫ FIm ω( )= = =

f t( ) F ω( )

f t( ) F ω( )

fIm t( )

fIm– t–( ) fIm t( )= fIm t( ) ωtcos t

fIm t( ) ωsin t

FRe ω( ) fIm t( ) ωsin t td
∞–

∞

∫ 2 fIm t( ) ωsin t td
0

∞

∫= = fIm t( ) odd=

FIm ω( ) fIm t( ) ωcos t td
∞–

∞

∫ 0= = fIm t( ) odd=

fIm t( ) odd= F ω( )

F ω( ) fIm t( ) odd=

ω ω– ω

FRe ω–( ) 2 fIm t( ) ω–( )tsin td
0

∞

∫ 2– fIm t( ) ωtsin td
0

∞

∫ F– Re ω( )= = =

f t( ) F ω( )
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Table 8.7 is now complete and shows that if  is real (even or odd), the real part of  is
even, and the imaginary part is odd. Then,

(8.31)

and
(8.32)

Since,
(8.33)

it follows that

or

(8.34)

Now, if  of some function of time  is known, and  is such that , can
we conclude that  is real? The answer is yes; we can verify this with (8.14), Page 8−3,  which
is repeated here for convenience.

(8.35)

We observe that the integrand of (8.35) is zero since it is an odd function with respect to 
because both products inside the brackets are odd functions*.

Therefore, , that is,  is real.

TABLE 8.7  Time Domain and Frequency Domain Correspondence (Completed Table)

f(t) F(ω)

Real Imaginary Complex Even Odd
Real
Real and Even
Real and Odd
Imaginary
Imaginary and Even
Imaginary and Odd

* In relations (8.31) and (8.32) above, we determined that  is even and  is odd.

f t( ) F ω( )

FRe ω–( ) FRe ω( )= f t( ) Real=

FIm ω–( ) FIm ω( )–= f t( ) Real=

F ω( ) FRe ω( ) jFIm ω( )+=

F ω–( ) FRe ω–( ) jFIm ω–( )+ FRe ω( ) jFIm– ω( )= =

F ω–( ) F∗ ω( )= f t( ) Real=

F ω( ) f t( ) F ω( ) F ω–( ) F∗ ω( )=

f t( )

fIm t( ) 1
2π
------ FRe ω( ) ωtsin FIm ω( ) ωcos t+[ ] ωd

∞–

∞

∫=

ω

FRe ω( ) FIm ω( )

fIm t( ) 0= f t( )
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Accordingly, we can state that a necessary and sufficient condition for  to be real, is that
.

Also, if it is known that  is real, the Inverse Fourier transform of (8.3) can be simplified as fol-
lows:

From (8.13), Page 8−2, 

(8.36)

and since the integrand is an even function with respect to , we rewrite (8.36) as

(8.37)

8.3 Properties and Theorems of the Fourier Transform
The most common properties and theorems of the Fourier transform are described in Subsections
8.3.1 through 8.3.14 below.

8.3.1 Linearity

If  is the Fourier transform of ,  is the transform of , and so on, the linear-
ity property of the Fourier transform states that

(8.38)

where  is some arbitrary real constant.

Proof:

The proof is easily obtained from (8.1), Page 8−1, that is, the definition of the Fourier transform.
The procedure is the same as for the linearity property of the Laplace transform in Chapter 2.

8.3.2 Symmetry
If  is the Fourier transform of , the symmetry property of the Fourier transform states that

(8.39)

f t( )

F ω–( ) F∗ ω( )=

f t( )

fRe t( ) 1
2π
------ FRe ω( ) ωtcos FIm ω( )– ωtsin[ ] ωd

∞–

∞

∫=

ω

fRe t( ) 2 1
2π
------ FRe ω( ) ωtcos FIm ω( )– ωtsin[ ] ωd

0

∞

∫=

1
π
--- A ω( ) ωt ϕ ω( )+[ ]cos ωd

0

∞

∫
1
π
---Re F ω( )e j ωt ϕ ω( )+[ ] ωd

0

∞

∫==

F1 ω( ) f1 t( ) F2 ω( ) f2 t( )

a1 f1 t( ) a2 f2 t( ) … an fn t( )+ + + a1F1 ω( ) a2F2 ω( ) … anFn ω( )+ + +⇔

ai

F ω( ) f t( )

F t( ) 2πf ω–( )⇔
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that is, if in , we replace  with , we obtain the Fourier transform pair of (8.39).

Proof:

Since

then,

Interchanging  and , we obtain

and (8.39) follows.

8.3.3 Time Scaling
If  is a real constant, and  is the Fourier transform of , then,

(8.40)

that is, the time scaling property of the Fourier transform states that if we replace the variable  in
the time domain by , we must replace the variable  in the frequency domain by , and
divide  by the absolute value of .

Proof:

We must consider both cases  and .

For ,

(8.41)

We let ; then, , and (8.41) becomes

For ,

F ω( ) ω t

f t( ) 1
2π
------ F ω( )e jωt ωd

∞–

∞

∫=

2πf t–( ) F ω( )e j– ωt ωd
∞–

∞

∫=

t ω

2πf ω–( ) F t( )e j– ωt td
∞–

∞

∫=

a F ω( ) f t( )

f at( ) 1
a
-----F ω

a
---- 

 ⇔

t
at ω ω a⁄

F ω a⁄( ) a

a 0> a 0<

a 0>

F f at( ){ } f at( )e jωt– td
∞–

∞

∫=

at τ= t τ a⁄=

F f τ( ){ } f τ( )e
jω τ

a
-- 

 – τ
a
-- 

 d
∞–

∞

∫
1
a
--- f τ( )e

j ω
a
---- 

  τ–

τd
∞–

∞

∫
1
a
---F ω

a
---- 

 = = =

a 0<

F f at–( ){ } f at–( )e jωt– td
∞–

∞

∫=
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and making the above substitutions, we find that the multiplying factor is . Therefore, for
 we obtain (8.40).

8.3.4 Time Shifting
If  is the Fourier transform of , then,

(8.42)

that is, the time shifting property of the Fourier transform states that if we shift the time function 
by a constant , the Fourier transform magnitude does not change, but the term  is added to
its phase angle.

Proof:

We let ; then, , , and thus

or

8.3.5 Frequency Shifting
If  is the Fourier transform of , then,

(8.43)

that is, multiplication of the time function  by , where  is a constant, results in shifting
the Fourier transform by .

Proof:

or

Also, from (8.40) and (8.43)

1 a⁄–

1 a⁄

F ω( ) f t( )

f t t0–( ) F ω( )e
jωt0–

⇔

f t( )
t0 ωt0

F f t t0–( ){ } f t t0–( )e jωt– td
∞–

∞

∫=

t t0– τ= t τ t0+= dt dτ=

F f t t0–( ){ } f τ( )e
jω τ t0+( )–

τd
∞–

∞

∫ e
jωt0–

f τ( )e jω τ( )– τd
∞–

∞

∫= =

F f t t0–( ){ } e
jωt0–

F ω( )=

F ω( ) f t( )

e
jω0t

f t( ) F ω ω0–( )⇔

f t( ) e
jω0t

ω0

ω0

F e
jω0t

f t( ){ } e
jω0t

f t( )e jωt– td
∞–

∞

∫=

F e
jω0t

f t( ){ } f t( )e
j ω ω0–( )–

td
∞–

∞

∫ F ω ω0–( )= =
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(8.44)

The Frequency Shifting Property, that is, (8.43) is also used to derive the Fourier transform of the
modulated signals  and . Thus, from

and

we obtain

(8.45)

Similarly,

(8.46)

8.3.6 Time Differentiation
If  is the Fourier transform of , then,

(8.47)

that is, the Fourier transform of , if it exists, is .

Proof:

Differentiating the Inverse Fourier transform, we obtain

and (8.47) follows.

e
jω0t

f at( ) 1
a
-----F

ω ω0–
a

---------------- 
 ⇔

f t( ) ωtcos f t( ) ωtsin

e
jω0t

f t( ) F ω ω0–( )⇔

ω0tcos e
jω0t

e
j– ω0t

+
2

-------------------------------=

f t( ) ω0tcos
F ω ω0–( ) F ω ω0+( )+

2
----------------------------------------------------------⇔

f t( ) ω0sin t
F ω ω0–( ) F– ω ω0+( )

j2
-------------------------------------------------------⇔

F ω( ) f t( )

d n

dt n
-------- f t( ) jω( )nF ω( )⇔

d n

dt n
-------- f t( ) jω( )nF ω( )

d n

dt n
-------- f t( ) d n

dt n
-------- 1

2π
------ F ω( )e jωt ωd

∞–

∞

∫ 
  1

2π
------ F ω( ) d n

dt n
--------e jωt ωd

∞–

∞

∫= =

1
2π
------ F ω( ) jω( )ne jωt ωd

∞–

∞

∫ jω( )n 1
2π
------ F ω( )e jωt ωd

∞–

∞

∫ 
 ==
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8.3.7 Frequency Differentiation
If  is the Fourier transform of , then,

(8.48)

Proof:

Using the Fourier transform definition, we obtain

and (8.48) follows.

8.3.8 Time Integration
If  is the Fourier transform of , then,

(8.49)

Proof:

We postpone the proof of this property until we derive the Fourier transform of the Unit Step
Function  in Subsection 8.4.6, Page 8−22, and the proof for the Time Integration Property,
Page 8−23. In the special case where in (8.49) , then, 

(8.50)

and this is easily proved by integrating both sides of the Inverse Fourier transform.

8.3.9 Conjugate Time and Frequency Functions
If  is the Fourier transform of the complex function , then,

(8.51)

that is, if the Fourier transform of  is , then, the Fourier transform of

 is .

F ω( ) f t( )

j– t( )nf t( ) d n

dωn
--------- F ω( )⇔

d n

dωn
--------- F ω( ) d n

dωn
--------- f t( )e j– ωt td

∞–

∞

∫ 
  f t( ) d n

dωn
---------e j– ωt td

∞–

∞

∫= =

f t( ) j– t( )ne j– ωt td
∞–

∞

∫ j– t( )n f t( )e j– ωt td
∞–

∞

∫==

F ω( ) f t( )

f τ( ) τd
∞–

t

∫ F ω( )
jω

------------ πF 0( )δ ω( )+⇔

u0 t( )

F 0( ) 0=

f τ( ) τd
∞–

t

∫
F ω( )

jω
------------⇔

F ω( ) f t( )

f∗ t( ) F∗ ω–( )⇔

f t( ) fRe t( ) fIm t( )+= F ω( )

f∗ t( ) fRe t( ) fIm– t( )= F∗ ω–( )
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Proof:

Then,

 

Replacing  with , we obtain

and (8.51) follows.

8.3.10 Time Convolution
If  is the Fourier transform of , and  is the Fourier transform of , then,

(8.52)

that is, convolution in the time domain, corresponds to multiplication in the frequency domain.

Proof: 

(8.53)

and letting , then, , and by substitution into (8.53),

The first integral above is  while the second is , and thus (8.52) follows.

Alternate Proof:

We can apply the time shifting property  into the bracketed integral of

(8.53); then, replacing it with , we obtain

F ω( ) f t( )e jωt– td
∞–

∞

∫ fRe t( ) jfIm t( )+[ ]e jωt– td
∞–

∞

∫= =

fRe t( )e jωt– td
∞–

∞

∫ j fIm t( )e jωt– td
∞–

∞

∫+=

F∗ ω( ) fRe t( )e jωt td
∞–

∞

∫ j– fIm t( )e jωt td
∞–

∞

∫=

ω ω–

F∗ ω–( ) fRe t( ) jfIm t( )–[ ]e j– ωt td
∞–

∞

∫=

F1 ω( ) f1 t( ) F2 ω( ) f2 t( )

f1 t( )∗f2 t( ) F1 ω( )F2 ω( )⇔

F f1 t( )∗f2 t( ){ } f1 τ( )f2 t τ–( ) τd
∞–

∞

∫ e jωt– td
∞–

∞

∫=

f1 τ( ) f2 t τ–( )e jωt– td
∞–

∞

∫ τd
∞–

∞

∫=

t τ– σ= dt dσ=

F f1 t( )∗f2 t( ){ } f1 τ( ) f2 σ( )e jωτ– e jωσ– σd
∞–

∞

∫ τd
∞–

∞

∫ f1 τ( )e jωτ– τd f2 σ( )e jωσ– σd
∞–

∞

∫
∞–

∞

∫= =

F1 ω( ) F2 ω( )

f t t0–( ) F ω( )e
jωt0–

⇔

F 2 ω( )e
jωt0–
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8.3.11 Frequency Convolution
If  is the Fourier transform of , and  is the Fourier transform of , then,

(8.54)

that is, multiplication in the time domain, corresponds to convolution in the frequency domain
divided by the constant .

Proof:

and (8.54) follows.

8.3.12 Area Under f(t)
If  is the Fourier transform of , then,

 (8.55)

that is, the area under a time function  is equal to the value of its Fourier transform evaluated
at .

Proof: 

Using the definition of  and that , we observe that (8.55) follows.

8.3.13 Area Under 

If  is the Fourier transform of , then,

F f1 t( )∗f2 t( ){ } f1 τ( ) f2 t τ–( )e jωt– td
∞–

∞

∫ τd
∞–

∞

∫ f1 τ( ) τF 2 ω( )e
jωt0–

d
∞–

∞

∫= =

f1 τ( )e jωt– τF2 ω( )d
∞–

∞

∫ F1 ω( )F2 ω( )==

F1 ω( ) f1 t( ) F2 ω( ) f2 t( )

f1 t( )f2 t( ) 1
2π
------F1 ω( )∗F2 ω( )⇔

1 2π⁄

F f1 t( )f2 t( ){ } f1 t( ) f2 t( )[ ]e jωt– td
∞–

∞

∫
1

2π
------ F1 χ( )e jχt

χd
∞–

∞

∫ f2 t( )e jωt– td
∞–

∞

∫= =

1
2π
------ F1 χ( ) f2 t( )e j ω χ–( )t– td

∞–

∞

∫ χd
∞–

∞

∫
1

2π
------ F1 χ( )F2 ω χ–( ) χd

∞–

∞

∫==

F ω( ) f t( )

F 0( ) f t( ) td
∞–

∞

∫=

f t( )
ω 0=

F ω( ) e jωt–
ω 0=

1=

F ω( )

F ω( ) f t( )
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(8.56)

that is, the value of the time function , evaluated at , is equal to the area under its Fou-
rier transform  times .

Proof: 

In the Inverse Fourier transform of (8.3), we let , and (8.56) follows.

8.3.14 Parseval’s Theorem
If  is the Fourier transform of , Parseval’s theorem states that

(8.57)

that is, if the time function  represents the voltage across, or the current through an 

resistor, the instantaneous power absorbed by this resistor is either , , , or , .
Then, the integral of the magnitude squared, represents the energy (in watt-seconds or joules)
dissipated by the resistor. For this reason, the integral is called the energy of the signal. Relation
(8.57) then, states that if we do not know the energy of a time function , but we know the
Fourier transform of this function, we can compute the energy without the need to evaluate the
Inverse Fourier transform.

Proof: 

From the frequency convolution property,

 

or

(8.58)

Since (8.58) must hold for all values of , it must also be true for , and under this condi-
tion, it reduces to

(8.59)

For the special case where , and the conjugate functions property ,
by substitution into (8.59), we obtain:

f 0( ) 1
2π
------ F ω( ) ωd

∞–

∞

∫=

f t( ) t 0=

F ω( ) 1 2π⁄

ejωt
t 0=

1=

F ω( ) f t( )

f t( ) 2 td
∞–

∞

∫
1

2π
------ F ω( ) 2 ωd

∞–

∞

∫=

f t( ) 1 Ω

v 2 R⁄ v 2 1⁄ v 2 i 2R i 2

f t( )

f1 t( )f2 t( ) 1
2π
------F1 ω( )∗F2 ω( )⇔

F f1 t( )f2 t( ){ } f1 t( )f2 t( )[ ]e jωt– td
∞–

∞

∫
1

2π
------ F1 χ( )F2 ω χ–( ) χd

∞–

∞

∫= =

ω ω 0=

f1 t( )f2 t( )[ ] td
∞–

∞

∫
1

2π
------ F1 χ( )F2 χ–( ) χd

∞–

∞

∫=

f2 t( ) f1∗ t( )= f∗ t( ) F∗ ω–( )⇔
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Since  and , Parseval’s theorem is proved.

For convenience, the Fourier transform properties and theorems are summarized in Table 8.8.

TABLE 8.8  Fourier Transform Properties and Theorems

Property
Linearity

Symmetry

Time Scaling

Time Shifting

Frequency Shifting

Time Differentiation

Frequency Differentiation

Time Integration

Conjugate Functions

Time Convolution

Frequency Convolution

Area under 

Area under 

Parseval’s Theorem

f t( )f∗ t( )[ ] td
∞–

∞

∫
1

2π
------ F ω( )F∗ ω–( )–[ ] ωd

∞–

∞

∫
1

2π
------ F ω( )F∗ ω( ) ωd

∞–

∞

∫= =

f t( )f∗ t( ) f t( ) 2= F ω( )F∗ ω( ) F ω( ) 2=

f t( ) F ω( )

a1 f1 t( ) a2 f2 t( ) …+ + a1 F1 ω( ) a2 F2 ω( ) …+ +

F t( ) 2πf ω–( )

f at( ) 1
a
-----F ω

a
---- 

 

f t t0–( )
F ω( )e

jωt0–

e
jω0t

f t( )
F ω ω0–( )

d n

dt n
--------- f t( ) jω( )

nF ω( )

jt–( )
nf t( ) d n

dω
n

-----------F ω( )

f τ( ) τd
∞–

t
∫

F ω( )
jω

------------ πF 0( )δ ω( )+

f∗ t( ) F∗ ω–( )

f1 t( )∗f2 t( ) F1 ω( ) F2 ω( )⋅

f1 t( ) f2 t( )⋅ 1
2π
------F1 ω( )∗F2 ω( )

f t( )
F 0( ) f t( ) td

∞–

∞

∫=

F ω( )
f 0( ) 1

2π
------ F ω( ) ωd

∞–

∞

∫=

f t( ) 2 td
∞–

∞

∫ 1
2π
------ F ω( ) 2 ωd

∞–

∞

∫=
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8.4 Fourier Transform Pairs of Common Functions
The Fourier transform pair of the most common functions described in Subsections 8.4.1 through
8.4.9 below.

8.4.1 The Delta Function Pair

(8.60)

Proof:

The sifting theorem of the delta function states that

and if  is defined at , then,

By the definition of the Fourier transform

and (8.60) follows.

Likewise, the Fourier transform for the shifted delta function  is

(8.61)

We will use the notation  to show the time domain to frequency domain correspon-
dence. Thus, (8.60) may also be denoted as in Figure 8.1.

Figure 8.1. The Fourier transform of the delta function

8.4.2 The Constant Function Pair

(8.62)

δ t( ) 1⇔

f t( )δ t t0–( ) td
∞–

∞

∫ f t0( )=

f t( ) t 0=

f t( )δ t( ) td
∞–

∞

∫ f 0( )=

F ω( ) δ t( )e jωt– td
∞–

∞

∫ e jωt–
t 0=

1= = =

δ t t0–( )

δ t t0–( ) e
jωt0–

⇔

f t( ) F ω( )↔

0 t

1

ω0

f t( )

δ t( )

F ω( )

A 2Aπδ ω( )⇔
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Proof:

and (8.62) follows.

The  correspondence is also shown in Figure 8.2.

Figure 8.2. The Fourier transform of constant A

Also, by direct application of the Inverse Fourier transform, or the frequency shifting property
and (8.62), we derive the transform

(8.63)

The transform pairs of (8.62) and (8.63) can also be derived from (8.60) and (8.61) by using the
symmetry property 

8.4.3 The Cosine Function Pair

(8.64)

Proof:

This transform pair follows directly from (8.63). The  correspondence is also shown
in Figure 8.3.

Figure 8.3. The Fourier transform of 

F 1–
2Aπδ ω( ){ } 1

2π
------ 2Aπδ ω( )e jωt ωd

∞–

∞

∫ A δ ω( )e jωt ωd
∞–

∞

∫ Ae jωt
ω 0=

A= = = =

f t( ) F ω( )↔

A

ω
0 0

t

f t( ) F ω( )
2Aπδ ω( )

e
jω0t

2πδ ω ω0–( )⇔

F t( ) 2πf ω–( )⇔

ω0tcos 1
2
--- e

jω0t
e

j– ω0t
+( ) πδ ω ω0–( ) πδ ω ω0+( )+⇔=

f t( ) F ω( )↔

ω0

π

−ω0 ω0

π

ω0tcos

t

FRe ω( )

t

f t( ) ω0tcos=
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We know that  is real and even function of time, and we found out that its Fourier trans-
form is a real and even function of frequency. This is consistent with the result in Table 8.7.

8.4.4 The Sine Function Pair

(8.65)

Proof:

This transform pair also follows directly from (8.63). The  correspondence is also
shown in Figure 8.4.

Figure 8.4. The Fourier transform of 

We know that  is real and odd function of time, and we found out that its Fourier trans-
form is an imaginary and odd function of frequency. This is consistent with the result in Table
8.7.

8.4.5 The Signum Function Pair

(8.66)

where  denotes the signum function shown in Figure 8.5.

Figure 8.5. The signum function

ω0tcos

ω0sin t 1
j2
----- e

jω0t
e

j– ω0t
–( ) jπδ ω ω0–( ) jπ– δ ω ω0+( )⇔=

f t( ) F ω( )↔

ω0

π

−ω0

ω0

−π

t

FIm ω( )ω0sin t

t

f t( ) ω0sin t=

ω0sin t

t( )sgn u0 t( ) u0 t–( )–
2

jω
------⇔=

t( )sgn

1

−1

t

f t( )
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Proof:

To derive the Fourier transform of the  function, it is convenient to express it as an expo-
nential that approaches a limit as shown in Figure 8.6.

Figure 8.6. The signum function as an exponential approaching a limit

Then,

(8.67)

and

(8.68)

The  correspondence is also shown in Figure 8.7.

Figure 8.7. The Fourier transform of 

We now know that  is real and odd function of time, and we found out that its Fourier
transform is an imaginary and odd function of frequency. This is consistent with the result in
Table 8.7.

t( )sgn

f t( )

e at– u0 t( )

e at–– u0 t–( )

1

−1

0

t( )sgn e at– u0 t( ) eatu0 t–( )–[ ]
a 0→
lim=

F t( )sgn{ } e– at

∞–

0

∫ e j– ωtdt e a– t

0

∞

∫ e j– ωtdt+
a 0→
lim=

e– a j– ω( )t

∞–

0

∫ dt e a jω+( )– t

0

∞

∫ dt+
a 0→
lim=

1–
a jω–
-------------- 1

a jω+
---------------+

a 0→
lim 1–

jω–
--------- 1

jω
------+ 2

jω
------= ==

f t( ) F ω( )↔

1

−1

t

f t( )

0

FIm ω( )

0
ω

t( )sgn
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8.4.6 The Unit Step Function Pair

(8.69)

Proof:

If we attempt to verify the transform pair of (8.69) by direct application of the Fourier transform
definition, we will find that

(8.70)

but we cannot say that approaches 0 as , because , that is, the magni-

tude of  is always unity, and its angle changes continuously as  assumes greater and greater
values. Since the upper limit cannot be evaluated, the integral of (8.70) does not converge.

To work around this problem, we will make use of the  function which we express as 

(8.71)

This expression is derived from the waveform of Figure 8.8 below.

Figure 8.8. Alternate expression for the signum function

We rewrite (8.71) as

(8.72)

and since we know that  and , by substitution of these into (8.72)
we obtain

and this is the same as(8.69). This is a complex function in the frequency domain whose real part
is  and imaginary part .

u0 t( ) πδ ω( ) 1
jω
------+⇔

F ω( ) f t( )e jωt– td
∞–

∞

∫ F ω( ) e jωt– td
0

∞

∫ e jωt–

jω–
-----------

0

∞

= = = =

e jωt– t ∞→ e jωt– 1 ωt–∠=

e jωt– t

t( )sgn

t( )sgn 2u0 t( ) 1–=

2

−1

t
0

f t( )

u0 t( ) 1
2
--- 1 t( )sgn+[ ] 1

2
--- 1

2
--- t( )sgn+= =

1 2πδ ω( )⇔ t( )sgn 2 jω( )⁄⇔

u0 t( ) πδ ω( ) 1
jω
------+⇔

πδ ω( ) 1 ω⁄–
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The  correspondence is also shown in Figure 8.9.

Figure 8.9. The Fourier transform of the unit step function

Since  is real but neither even nor odd function of time, its Fourier transform is a complex
function of frequency as shown in (8.69). This is consistent with the result in Table 8.7.

Now, we will prove the time integration property of (8.49), Page 8−13, that is,

as follows:

By the convolution integral,

and since  for , and it is zero otherwise, the above integral reduces to

Next, by the time convolution property,

and since

using these results and the sampling property of the delta function, we obtain

Thus, the time integration property is proved.

f t( ) F ω( )↔

1

t

f t( )

ω

π

FIm ω( )

FIm ω( )
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f τ( ) τd
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t
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u0 t( )∗f t( ) f τ( )u0 t τ–( ) τd
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t
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8.4.7 The  Function Pair

(8.73)

Proof:

From the Fourier transform of the unit step function,

and the frequency shifting property,

we obtain (8.73).

8.4.8 The  Function Pair

(8.74)

Proof:

We express the cosine function as

From (8.73),

and

Now, using

we obtain (8.74).

e jω0t– u0 t( )

e
jω0t–

u0 t( ) πδ ω ω0–( ) 1
j ω ω0–( )
-----------------------+⇔

u0 t( ) πδ ω( ) 1
jω
------+⇔

e
jω0t

f t( ) F ω ω0–( )⇔

ω0tcos( )u0 t( )

ω0tcos( ) u0t( ) π
2
--- δ ω ω0–( ) δ ω ω0+( )+[ ] 1

2j ω ω0–( )
-------------------------- 1

2j ω ω0+( )
---------------------------+ +⇔

 π
2
--- δ ω ω0–( ) δ ω ω0+( )+[ ] jω

ω0
2 ω2–

------------------+⇔

ω0tcos 1
2
--- e

jω0t
e

j– ω0t
+( )=

e
jω0t–

u0 t( ) πδ ω ω0–( ) 1
j ω ω0–( )
-----------------------+⇔

e
jω0t

u0 t( ) πδ ω ω0+( ) 1
j ω ω0+( )
-----------------------+⇔

u0 t( ) πδ ω( ) 1
jω
------+⇔
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Derivation of the Fourier Transform from the Laplace Transform

8.4.9 The  Function Pair

(8.75)

Proof:

We express the sine function as

From (8.73),

and

Using

we obtain (8.75).

8.5 Derivation of the Fourier Transform from the Laplace Transform

If a time function  is zero for , we can obtain the Fourier transform of  from the one-
sided Laplace transform of  by substitution of  with .

Example 8.1  

It is known that . Compute 

Solution:

Thus, we have obtained the following Fourier transform pair.

 (8.76)

ω0sin t( )u0 t( )

ω0sin t( ) u0t( ) π
j2
----- δ ω ω0–( ) δ ω ω0+( )+[ ] ω2

ω0
2 ω2–

------------------+⇔

ω0sin t 1
j2
----- e

jω0t
e

j– ω0t
–( )=

e
jω0t–

u0 t( ) πδ ω ω0–( ) 1
j ω ω0–( )
-----------------------+⇔

e
jω0t

u0 t( ) πδ ω ω0+( ) 1
j ω ω0+( )
-----------------------+⇔

u0 t( ) πδ ω( ) 1
jω
------+⇔

f t( ) t 0≤ f t( )
f t( ) s jω

L e αt– u0 t( )[ ] 1
s α+
------------= F e α t– u0 t( ){ }

F e αt– u0 t( ){ } L e αt– u0 t( )[ ]
s jω=

1
s α+
------------

s jω=

1
jω α+
----------------= = =

e αt– u0 t( ) 1
jω α+
----------------⇔



Chapter 8  The Fourier Transform

8−26 Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition
Copyright © Orchard Publications

Example 8.2  
It is known that

Compute 

Solution:

Thus, we have obtained the following Fourier transform pair.

(8.77)

We can also find the Fourier transform of a time function  that has non−zero values for ,
and it is zero for all . But because the one−sided Laplace transform does not exist for ,
we must first express the negative time function in the  domain, and compute the one−sided
Laplace transform. Then, the Fourier transform of  can be found by substituting  with .
In other words, when  for , and  for , we use the substitution

(8.78)

Example 8.3  

Compute the Fourier transform of 

a. using the Fourier transform definition

b. by substitution into the Laplace transform equivalent

Solution:

a. Using the Fourier transform definition, we obtain

L e αt– ω0tcos( )u0 t( )[ ] s α+

s α+( )2 ω0
2+

--------------------------------=

F e α t– ω0tcos( )u0 t( ){ }

F e αt– ω0tcos( ) u0 t( ){ } L e αt– ω0tcos( )u0 t( )[ ]
s jω=

=

s α+

s α+( )2 ω0
2+

--------------------------------
s jω=

jω α+

jω α+( )2 ω0
2+

------------------------------------==

e αt– ω0tcos( )u0 t( ) jω α+

jω α+( )2 ω0
2+

------------------------------------⇔

f t( ) t 0<
t 0> t 0<

t 0>
f t( ) s jω–

f t( ) 0= t 0≥ f t( ) 0≠ t 0<

F f t( ){ } L f t–( )[ ] s j– ω=
=

f t( ) e a t–=
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and thus we have the transform pair

(8.79)

b.By substitution into the Laplace transform equivalent, we obtain

and this result is the same as (8.79). We observe that since  is real and even,  is also real
and even.

8.6 Fourier Transforms of Common Waveforms
In this section, we will derive the Fourier transform of some common time domain waveforms.
These are described in Subsections 8.6.1 through 8.6.6 below.

8.6.1 The Transform of 
The symmetric rectangular pulse waveform

(8.80)
is shown in Figure 8.10. 

Figure 8.10. Rectangular pulse waveform 

Using the definition of the Fourier transform, we obtain

F e a t–{ } eate jωt– td
∞–

0

∫ e a– te jωt– td
0

∞

∫+ e a jω–( )t td
∞–

0

∫ e a jω+( )– t td
0

∞

∫+= =

1
a jω–
-------------- 1

a jω+
---------------+ 2

ω2 a2+
------------------==

e a t– 2
ω2 a2+
------------------⇔

F e a t–{ } L e at–[ ] s jω=
L eat[ ] s j– ω=

+ 1
s a+
-----------

s jω=

1
s a+
-----------

s j– ω=

+= =

1
jω a+
--------------- 1

jω– a+
-------------------+ 2

ω2 a2+
------------------==

f t( ) F ω( )

f t( ) A u0 t T+( ) u0 t T–( )–[ ]=

f t( ) A u0 t T+( ) u0 t T–( )–[ ]=

A

−T T
t

0

f t( )

f t( ) A u0 t T+( ) u0 t T–( )–[ ]=
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We observe that the transform of this pulse has the  form, and has its maximum value
 at .* Thus, we have the waveform pair

(8.81)

The  correspondence is also shown in Figure 8.11, where we observe that the  axis
crossings occur at values of  where  is an integer.

Figure 8.11. The waveform  and its Fourier transform

We also observe that since  is real and even,  is also real and even.

8.6.2 The Transform of 
The shifted−to−the−right rectangular waveform

(8.82)
is shown in Figure 8.12.

Figure 8.12. Pulse for 

* We recall that 

F ω( ) f t( )e jωt– td
∞–

∞

∫ Ae jωt– td
T–

T

∫ Ae jωt–

jω–
----------------

T–

T

= = =

Ae jωt–

jω
----------------

T

T–
A e jωt e jωt––( )

jω
------------------------------------- 2A ωTsin

ω
---------------- 2AT ωTsin

ωT
----------------= = ==

xsin x⁄

2AT ωT 0=

xsin
x

----------
x 0→
lim 1=

A u0 t T+( ) u0 t T–( )–[ ] 2AT ωTsin
ωT

----------------⇔

f t( ) F ω( )↔ ω
ωT nπ±= n

0 ωT−2π 2π
π−π

A

−T T
t

0

f t( )
F ω( )

f t( ) A u0 t T+( ) u0 t T–( )–[ ]=

f t( ) F ω( )

f t( ) A u0 t( ) u0 t 2T–( )–[ ]=

f t( ) A u0 t( ) u0 t 2T–( )–[ ]=

A

2T
t

0

f t( )

f t( ) A u0 t( ) u0 t 2T–( )–[ ]=



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition 8−29
Copyright © Orchard Publications

Fourier Transforms of Common Waveforms

Using the definition of the Fourier transform, we obtain

and making the substitutions

(8.83)

we obtain

(8.84)

Alternate Derivation:

We can obtain the Fourier transform of (8.82) using the time shifting property, i.e,

and the result of Subsection 8.6.1. Thus, multiplying  by , we obtain (8.84).

We observe that  is complex* since  is neither an even nor an odd function.

8.6.3 The Transform of 
The waveform

(8.85)

is shown in Figure 8.13.

Figure 8.13. Waveform for 

We observe that this waveform is the sum of the waveforms of Subsections 8.6.1 and 8.6.2. We
also observe that this waveform is obtained by the graphical addition of the waveforms of Figures

* We recall that  consists of a real and an imaginary part.

F ω( ) f t( )e jωt– td
∞–

∞

∫ Ae jωt– td
0

2T

∫ Ae jωt–

jω–
----------------

0

2T
Ae jωt–

jω
----------------

2T

0
A 1 e jω2T––( )

jω
---------------------------------= = = = =

1 ejωT e jωT–⋅=

e jω2T– e j– ωT e jωT–⋅=

F ω( ) Ae jωT–

ω
----------------- ejωT e jωT––

j
----------------------------- 

  2Ae jωT– ωTsin
ω

---------------- 
  2ATe jωT– ωTsin

ωT
---------------- 

 = = =

f t t0–( ) F ω( )e
jωt0–

⇔

2AT ωTsin
ωT

---------------- e jωT–

F ω( ) f t( )

e jωT–

f t( ) A u0 t T+( ) u0 t( ) u0 t T–( )– u0 t 2T–( )–+[ ]=

f t( ) A u0 t T+( ) u+ 0 t( ) u0 t T–( )– u0 t 2T–( )–[ ]=

2A

2T
t

0 T−T

A

f t( )

f t( ) A u0 t T+( ) u+ 0 t( ) u0 t T–( )– u0 t 2T–( )–[ ]=
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8.10 and 8.12. Therefore, we will apply the linearity property to obtain the Fourier transform of
this waveform.

We denote the transforms of Subsections 8.6.1 and 8.6.2 as  and  respectively, and
we obtain

(8.86)

We observe that  is complex since  of (8.85) is neither an even nor an odd function.

8.6.4 The Transform of 

The transform of the waveform

(8.87)

can be obtained from (8.45), Page 8−12, that is, 

and from (8.81), Page 8−28, that is,

Then,

(8.88)

We also observe that since  is real and even,  is also real and even.*

* The  is an even function.

F1 ω( ) F2 ω( )

F ω( ) F1 ω( ) F2 ω( )+ 2AT ωTsin
ωT

---------------- 2ATe jωT– ωTsin
ωT

---------------- 
 += =

2AT 1 e jωT–+( ) ωTsin
ωT

---------------- 2ATe
jωT

2
--------–

e
jωT

2
--------

e
jωT

2
--------–

+
 
 
  ωTsin

ωT
----------------==

4ATe
jωT

2
--------– ωT

2
-------- 

  ωTsin
ωT

----------------cos=

F ω( ) f t( )

f t( ) A ω0tcos u0 t T+( ) u0 t T–( )–[ ]=

f t( ) A ω0t u0 t T+( ) u0 t T–( )–[ ]cos=

f t( ) ω0tcos
F ω ω0–( ) F ω ω0+( )+

2
----------------------------------------------------------⇔

A u0 t T+( ) u0 t T–( )–[ ] 2AT ωTsin
ωT

----------------⇔

A ω0t u0 t T+( ) u0 t T–( )–[ ]cos AT ω ω0–( )T[ ]sin
ω ω0–( )T

-------------------------------------- ω ω0+( )T[ ]sin
ω ω0+( )T

--------------------------------------+⇔

f t( ) F ω( )

xsin x⁄
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8.6.5 The Transform of a Periodic Time Function with Period T 

The Fourier transform of a periodic time function with period  can be derived from the defini-
tion of the exponential Fourier series, that is,

(8.89)

where , and from (8.63), Page 8-19, that is,

Then,

(8.90)

Taking the Fourier transform of (8.89), and applying the linearity property for the transforms of
(8.90), we obtain

(8.91)

The line spectrum of the Fourier transform of (8.91) is shown in Figure 8.14.

Figure 8.14. Line spectrum for relation (8.91)

The line spectrum of Figure 8.14 reveals that the Fourier transform of a periodic time function
with period , consists of a train of equally spaced delta functions. The strength of each

 is equal to  times the coefficient . 

T

f t( ) Cne
jnω0t

n ∞–=

∞

∑=

ω0 2π T⁄=

e
jω0t

2πδ ω ω0–( )⇔

Cne
jω0t

2πC1δ ω ω0–( )⇔

Cne
j2ω0t

2πC2δ ω 2ω0–( )⇔

…

Cne
jnω0t

2πCnδ ω nω0–( )⇔

F f t( ){ } F Cne
jnω0t

n ∞–=

∞

∑ 
 
 

CnF e
jnω0t

{ }

n ∞–=

∞

∑ 2π Cnδ ω nω0–( )
n ∞–=

∞

∑= = =

ω
. . . . .. . . . .

F ω( )

2πC 4–
2πC 3–

2πC 2–

2πC 1–

2πC0

2πC1
2πC2

2πC3
2πC4

4ω0– 3ω0– 2ω0– ω0– 0 ω0 2ω0 3ω0 4ω0

T
δ ω nω0–( ) 2π Cn
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8.6.6 The Transform of the Periodic Time Function  

The periodic time function

(8.92)

consists of a train of equally spaced delta functions in the time domain, and each has the same
strength , as shown in Figure 8.15.

Figure 8.15. Waveform for 

Since this is a periodic function of time, its Fourier transform is as derived in Subsection 8.6.5,
that is, relation (8.91). Then,

(8.93)

where , and  is found from the exponential Fourier series

(8.94)

From the waveform of Figure 8.15, we observe that, within the limits of integration from  to
, there is only the impulse  at the origin. Therefore, replacing  with  and using

the sifting property of the delta function, we obtain

(8.95)

Thus, we see that all  coefficients are equal to , and (8.93) is expressed as

(8.96)

f t( ) A δ t nT–( )
n ∞–=

∞

∑=

f t( ) A δ t nT–( )
n ∞–=

∞

∑=

A

0
t

Α

. . . . .

Τ−Τ−4Τ −3Τ −2Τ 2Τ 3Τ 4Τ

. . . . .

f t( )

f t( ) A δ t nT–( )
n ∞–=

∞

∑=

F ω( ) 2π Cnδ ω nω0–( )
n ∞–=

∞

∑=

ω0 2π T⁄= Cn

Cn
1
T
--- f t( )e

jnω0t–

T 2⁄–

T 2⁄

∫ dt=

T– 2⁄
+T 2⁄ δ t( ) f t( ) δ t( )

Cn
1
T
--- δ t( )e

jnω0t–

T 2⁄–

T 2⁄

∫ dt 1
T
---= =

Cn 1 T⁄

F ω( ) 2π
T

------ δ ω nω0–( )
n ∞–=

∞

∑=
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The Fourier transform of the waveform of Figure 8.15 is shown in Figure 8.16.

Figure 8.16. The Fourier transform of a train of equally spaced delta functions

Figure 8.16 shows that the Fourier transform of a periodic train of equidistant delta functions in
the time domain, is a periodic train of equally spaced delta functions in the frequency domain.
This result is the basis for the proof of the sampling theorem which states that a time function 
can be uniquely determined from its values at a sequence of equidistant points in time.

8.7 Using MATLAB for Finding the Fourier Transform of Time Functions
MATLAB has the built−in fourier and ifourier functions to compute the Fourier transform and
its inverse. Their descriptions and examples, can be displayed with the help fourier and help
ifourier commands. In examples 8.4 through 8.7 we present some Fourier transform pairs, and
how they are verified with MATLAB.

Example 8.4  

(8.97)

This time function, like the time function of Subsection 8.6.6, is its own Fourier transform multi-
plied by the constant .

syms  t  v  w  x; ft=exp(−t^2/2); Fw=fourier(ft)

Fw =
2^(1/2)*pi^(1/2)*exp(-1/2*w^2)

pretty(Fw)

               1/2   1/2            2
              2    pi    exp(- 1/2 w )

% Check answer by computing the Inverse using "ifourier"
ft=ifourier(Fw)

ft =
exp(-1/2*x^2)

ω

Α

. . . . .. . . . .

F ω( )

4ω0– 3ω0– 2ω0– ω0– 0 ω0 2ω0 3ω0 4ω0

f t( )

e
1
2
--- t2

–

2πe
1
2
---ω2

–

⇔

2π
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Example 8.5  

(8.98)

syms  t  v  w  x; ft=t*exp(−t^2); Fw=fourier (ft)

Fw =
-1/2*i*pi^(1/2)*w*exp(-1/4*w^2)

pretty(Fw)

                   1/2              2
         - 1/2 i pi    w exp(- 1/4 w )

Example 8.6  

(8.99)

syms  t  v  w  x; fourier(sym('−exp(−t)*Heaviside(t)+3*Dirac(t)'))

ans =
-1/(1+i*w)+3

Example 8.7  

(8.100)

syms  t  v  w  x; u0=sym('Heaviside(t)'); Fw=fourier(u0)

Fw =
pi*Dirac(w)-i/w

We have summarized the most common Fourier transform pairs in Table 8.9. 

8.8 The System Function and Applications to Circuit Analysis
We recall from Chapter 6 that, by definition, the convolution integral is

(8.101)

We let
(8.102)

 

te t2
– 1

2
---j πωe

1
4
---ω2

–

⇔

e t– u0 t( )– 3δ t( )+ 1
jω 1+
---------------– 3+⇔

u0 t( ) πδ ω( ) 1
jω
------+⇔

h t( )*u(t) u t τ–( )h τ( ) τd
∞–

∞

∫=

g t( ) f t( )∗h t( )=
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and recalling that convolution in the time domain corresponds to multiplication in the frequency
domain, we obtain

(8.103)

We call  the system function. From (8.103), we see that the system function  and the
impulse response  form the Fourier transform pair

TABLE 8.9  Common Fourier transform pairs

f t( ) F ω( )

δ t( ) 1
δ t t0–( ) e

jωt0–

1 2πδ ω( )

e
jωt0– 2πδ ω ω0–( )

t( )sgn 2 jω( )⁄

u0 t( ) 1
jω
------ πδ ω( )+

ω0tcos π δ ω ω0–( ) δ ω ω0+( )+[ ]

ω0sin t jπ δ ω ω0–( ) δ– ω ω0+( )[ ]

e at– u0 t( )

a 0>

1
jω a+
---------------

a 0>

te at– u0 t( )

a 0>

1
jω a+( )2

----------------------

a 0>

e at– ω0tucos 0 t( )

a 0>

jω a+

jω a+( )2 ω2+
-----------------------------------

a 0>

e at– ω0sin tu0 t( )

a 0>

ω

jω a+( )2 ω2+
-----------------------------------

a 0>

A u0 t T+( ) u0 t T–( )–[ ] 2AT ωTsin
ωT

----------------

f t( )∗h t( ) g t( ) G ω( ) F ω( ) H ω( )⋅=⇔=

H ω( ) H ω( )
h t( )
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(8.104)

Therefore, if we know the impulse response , we can compute the response  of any input
, by multiplication of the Fourier transforms  and  to obtain . Then, we take

the Inverse Fourier transform of  to obtain the response .

Example 8.8  
For the linear network of Figure 8.17 (a) below, it is known that the impulse response is as shown
in Figure 8.17 (b). Use the Fourier transform method to compute the response  when the
input  is as shown in Figure 8.17 (c).

Figure 8.17. Figure for Example 8.8.
Solution:
To facilitate the computations, we denote the input as  where

and

The system function  is the Fourier transform of the impulse response . Thus,

Let  be the Fourier transform of , that is,

Then,

or

h t( ) H ω( )⇔

h t( ) g t( )
f t( ) H ω( ) F ω( ) G ω( )

G ω( ) g t( )

g t( )
f t( )

3

2

1
t t

00 2 3(c)(b)(a)

Linear
Network

+ +
− −

f t( ) g t( ) h t( ) 3e 2t–
=

f t( ) 2 u0 t( ) u0 t 3–( )–[ ]=

f t( ) f1 t( ) f2 t( )+=

f1 t( ) 2u0 t( )=

f2 t( ) 2u0 t 3–( )–=

H ω( ) h t( )

F h t( ){ } H ω( ) 3
jω 2+
---------------= =

F1 ω( ) f1 t( )

F f1 t( ){ } F1 ω( ) 2 πδ ω( ) 1
jω
------+ 

 = =

G1 ω( ) H ω( ) F1 ω( )⋅ 3
jω 2+
--------------- 2 πδ ω( ) 1

jω
------+ 

 ⋅= =
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(8.105)

To evaluate the first term of (8.105), we apply the sampling property of the delta function, i.e.,

and this term reduces to  or . Since , the Inverse Fourier trans-
form of this term is 

(8.106)

To find the Inverse Fourier transform of the second term in (8.105), we use partial fraction
expansion. Thus,

and therefore,

or

(8.107)

Next, we denote the response due to the second term of the input as , and replacing 

in (8.107) with , we obtain

(8.108)

Now, we combine (8.107) with (8.108), and we obtain

or

Example 8.9  

For the circuit of Figure 8.18, use the Fourier transform method, and the system function 

to compute . Assume .

G1 ω( ) 6π
jω 2+
---------------δ ω( ) 3

jω jω 2+( )
--------------------------+=

X ω( ) δ ω( )⋅ X 0( ) δ ω( )⋅=

3πδ ω( ) 1.5 2πδ ω( )[ ] 1 2πδ ω( )⇔

F 1–
1.5 2πδ ω( )[ ]{ } 1.5=

3
jω jω 2+( )
-------------------------- 1.5

jω
------- 1.5

jω 2+( )
--------------------–=

g1 t( ) 1.5 F 1– 1.5
jω
------- 1.5

jω 2+( )
--------------------–

 
 
 

+ 1.5 F 1–
0.75 2

jω
------ 1.5

jω 2+( )
--------------------–

 
 
 

+= =

g1 t( ) 1.5 0.75 t( ) 1.5e 2t– u0 t( )–sgn+=

1.5 0.75 2u0 t( ) 1–[ ] 1.5e 2t– u0 t( )–+ 0.75 1.5 1 e 2t––( )u0 t( )+==

g2 t( ) u0 t( )

u0 t 3–( )

g2 t( ) 0.75 1.5 1 e 2 t 3–( )––( )u0 t 3–( )+=

g t( ) g1 t( ) g2– t( )=

g t( ) 1.5 1 e 2t––( )u0 t( ) 1 e 2 t 3–( )––( )u0 t 3–( )–{ }=

H ω( )

vL t( ) iL 0−( )
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Figure 8.18. Circuit for Example 8.9
Solution:

We will find the system function  from the phasor equivalent circuit shown in Figure 8.19.

Figure 8.19. Phasor circuit for Example 8.9

From the phasor circuit of Figure 8.19,

and the system function is

Also, 

Then,

and by partial fraction expansion, we find that  and . Thus,

and

or

(8.109)

+
−

2 H

+

−

R

vL t( )
4 Ω L

vin t( ) 5e 3t– u0 t( )=

H ω( )

+
−

+

−

R

VL ω( ) Vout ω( )=
4 Ω L

Vin ω( ) j2ω

Vout ω( ) j2ω
4 j2ω+
------------------Vin ω( ) jω

jω 2+
---------------Vin ω( )= =

H ω( )
Vout ω( )
Vin ω( )

--------------------- jω
jω 2+
---------------= =

vin t( ) 5e 3t– u0 t( ) Vin ω( )⇔ 5
jω 3+
---------------= =

Vout ω( ) H ω( )Vin ω( ) jω
jω 2+
--------------- 5

jω 3+
---------------⋅

r1

jω 2+
--------------- r2

jω 3+
---------------+= = =

r1 10–= r2 15=

Vout ω( ) 15
jω 3+
--------------- 10

jω 2+
---------------–=

vL t( ) vout t( ) F 1– 15
jω 3+
--------------- 10–

jω 2+
---------------–

 
 
 

15e 3t– 10e 2t––= = =

vL t( ) 5 3e 3t– 2e 2t––( )u0 t( )=
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Example 8.10  
For the linear network of Figure 8.20, the input−output relationship is 

(8.110)

where  is as shown in Figure 8.20. Use the Fourier transform method, and the system func-
tion  to compute the output .

Figure 8.20. Network for Example 8.10

Solution:

Taking the Fourier transform of both sides of (8.110), and recalling that

we obtain,

or

and thus,

(8.111)

Also,

(8.112)

and

By partial fraction expansion, we find that  and . Then,

(8.113)

Therefore,

d
dt
-----vout t( ) 4vout t( )+ 10vin t( )=

vin t( )

H ω( ) vout t( )

3

t
0

Linear
Network

+ +
−

vin t( ) 3e 2t–=
−

vin t( ) vout t( )

d n

dtn
------- f t( ) jω( )nF ω( )⇔

jωVout ω( ) 4Vout ω( )+ 10Vin ω( )=

jω 4+( )Vout ω( ) 10Vin ω( )=

H ω( )
Vout ω( )
Vin ω( )
-------------------- 10

jω 4+
---------------= =

Vin ω( ) F vin t( ){ } F 3e 2t– u0 t( )( ) 3
jω 2+
---------------= ==

Vout ω( ) H ω( ) Vin ω( )⋅ 10
jω 4+
--------------- 3

jω 2+
---------------⋅

r1

jω 4+
--------------- r2

jω 2+
---------------+= = =

r1 15–= r2 15=

Vout ω( ) 15
jω 2+
--------------- 15–

jω 4+
---------------+=
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(8.114)

Example 8.11  

The voltage across an  resistor is known to be . Compute the energy dissi-
pated in this resistor for , and verify the result by application of Parseval’s theorem.

Solution:

The instantaneous power absorbed by the resistor is

(8.115)
and thus, the energy is

(8.116)

Parseval’s theorem states that 

(8.117)

Since

(8.118)

and

(8.119)

by substitution into the right integral of (8.117) we obtain

(8.120)

We observe that the integrand of (8.120) is an even function of ; therefore, we can multiply the
integral by , and integrate from  to . Then,

(8.121)

From tables of integrals,

vout t( ) F 1– 15
jω 2+
--------------- 15–

jω 4+
---------------+

 
 
 

15 e 2t– e 4t––( )u0 t( )= =

1 Ω vR t( ) 3e 2t– u0 t( )=

0 t ∞< <

pR vR
2 1⁄ vR

2 9e 4t– u0 t( )= = =

WR vR
2 td

0

∞

∫ 9e 4t– td
0

∞

∫ 9e 4t–

4–
--------

0

∞
9
4
---e 4t–

∞

0
2.25  joules= = = = =

f t( ) 2 td
∞–

∞

∫
1

2π
------ F ω( ) 2 ωd

∞–

∞

∫=

F ω( ) F 3e 2t– u0 t( ){ } 3
jω 2+
---------------= =

F ω( ) 2 F ω( ) F∗ ω( )⋅ 9
ω2 22+
------------------= =

WR
1

2π
------ 9

ω2 22+
------------------ ωd

∞–

∞

∫=

ω
2 0 ∞

WR
2

2π
------ 9

ω2 22+
------------------ ωd

0

∞

∫
9
π
--- 1

ω2 22+
------------------ ωd

0

∞

∫= =
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Thus,

(8.122)

We observe that (8.122) is in agreement with (8.116).

1
a2 x2+
---------------- xd∫

1
a
--- x

a
---atan C+=

WR
9
π
--- 1

2
--- ω

2
----atan 

 

0

∞
9

2π
------ π

2
---⋅ 2.25  joules= = =
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8.9 Summary
• The Fourier transform is defined as

• The Inverse Fourier transform is defined as

• The Fourier transform is, in general, a complex function. We can express it as the sum of its
real and imaginary components, or in exponential form as

• We often use the following notations to express the Fourier transform and its inverse.

• If  is real,  is, in general, complex.

• If  is real and even,  is also real and even.

• If  is real and odd,  is imaginary and odd.

• If  is imaginary,  is, in general, complex.

• If  is imaginary and even,  is also imaginary and even.

• If  is imaginary and odd,  is real and odd.

• If ,  is real.

• The linearity property states that

• The symmetry property states that

• The scaling property states that

F ω( ) f t( )e jωt– td
∞–

∞

∫=

f t( ) 1
2π
------ F ω( )e jωt ωd

∞–

∞

∫=

F ω( ) Re F ω( ){ } jIm F ω( ){ }+ F ω( ) ejϕ ω( )= =

F f t( ){ } F ω( )=

F 1–
F ω( ){ } f t( )=

f t( ) F ω( )

f t( ) F ω( )

f t( ) F ω( )

f t( ) F ω( )

f t( ) F ω( )

f t( ) F ω( )

F ω–( ) F∗ ω( )= f t( )

a1 f1 t( ) a2 f2 t( ) … an fn t( )+ + + a1F1 ω( ) a2F2 ω( ) … anFn ω( )+ + +⇔

F t( ) 2πf ω–( )⇔

f at( ) 1
a
-----F ω

a
---- 

 ⇔
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Summary

• The time shifting property states that

• The frequency shifting property states that

• The Fourier transforms of the modulated signals  and  are

• The time differentiation property states that

• The frequency differentiation property states that

• The time integration property states that

• If  is the Fourier transform of the complex function , then,

• The time convolution property states that

• The frequency convolution property states that

• The area under a time function  is equal to the value of its Fourier transform evaluated at
. In other words,

f t t0–( ) F ω( )e
jωt0–

⇔

e
jω0t

f t( ) F ω ω0–( )⇔

f t( ) ωtcos f t( ) ωtsin

f t( ) ω0tcos
F ω ω0–( ) F ω ω0+( )+

2
----------------------------------------------------------⇔

f t( ) ω0sin t
F ω ω0–( ) F– ω ω0+( )

j2
-------------------------------------------------------⇔

d n

dt n
-------- f t( ) jω( )nF ω( )⇔

j– t( )nf t( ) d n

dωn
--------- F ω( )⇔

f τ( ) τd
∞–

t

∫ F ω( )
jω

------------ πF 0( )δ ω( )+⇔

F ω( ) f t( )

f∗ t( ) F∗ ω–( )⇔

f1 t( )∗f2 t( ) F1 ω( )F2 ω( )⇔

f1 t( )f2 t( ) 1
2π
------F1 ω( )∗F2 ω( )⇔

f t( )
ω 0=
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• The value of a time function , evaluated at , is equal to the area under its Fourier
transform  times . In other words,

• Parseval’s theorem states that

• The delta function and its Fourier transform are as shown below.

• The unity time function and its Fourier transform are as shown below.

• The Fourier transform of the complex time function  is as indicated below.

• The Fourier transforms of the time functions , and  are as shown below.

F 0( ) f t( ) td
∞–

∞

∫=

f t( ) t 0=

F ω( ) 1 2π⁄

f 0( ) 1
2π
------ F ω( ) ωd

∞–

∞

∫=

f t( ) 2 td
∞–

∞

∫
1

2π
------ F ω( ) 2 ωd

∞–

∞

∫=

0 t

1

ω0

f t( )

δ t( )

F ω( )

1

ω0 0t

f t( ) F ω( )
2πδ ω( )

e
jω0t

e
jω0t

2πδ ω ω0–( )⇔

ω0tcos ω0sin t

ω0

π

−ω0 ω0

π

ω0tcos

t

FRe ω( )ω0tcos

t
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Summary

• The signum function and its Fourier transform are as shown below.

• The unit step function and its Fourier transform are as shown below.
.

• The Fourier transform pairs of , , and  are as follows:

• If a time function  is zero for , we can obtain the Fourier transform of  from the
one-sided Laplace transform of  by substitution of  with .

ω0

π

−ω0

ω0

−π

t

FIm ω( )ω0sin t

t

1

−1

t

f t( )

0

FIm ω( )

0
ω

1

t

f t( )

ω

π

FIm ω( )

FIm ω( )

FRe ω( )

e
jω0t–

u0 t( ) u0 t( ) ω0tcos u0 t( ) ω0sin t

e
jω0t–

u0 t( ) πδ ω ω0–( ) 1
j ω ω0–( )
----------------------+⇔

u0 t( ) ω0tcos π
2
--- δ ω ω0–( ) δ ω ω0+( )+[ ] jω

ω0
2 ω2–

------------------+⇔

u0 t( ) ω0sin t π
j2
----- δ ω ω0–( ) δ ω ω0+( )+[ ] ω2

ω0
2 ω2–

------------------+⇔

f t( ) t 0≤ f t( )
f t( ) s jω
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• If a time function  for , and  for , we use the substitution

to obtain the Fourier transform of  from the one-sided Laplace transform of .

•The pulse function  and its Fourier transform are as shown below.

• The Fourier transform of a periodic time function with period  is 

• The Fourier transform of a periodic train of equidistant delta functions in the time domain, is a
periodic train of equally spaced delta functions in the frequency domain.

• The system function  and the impulse response  form the Fourier transform pair

and

f t( ) 0= t 0≥ f t( ) 0≠ t 0<

F f t( ){ } L f t–( )[ ] s j– ω=
=

f t( ) f t( )

f t( ) A u0 t T+( ) u0 t T–( )–[ ]=

0 ωT−2π 2π
π−π

A

−T T
t

0

f t( )
F ω( )

T

F f t( ){ } F Cne
jnω0t

n ∞–=

∞

∑ 
 
 

CnF e
jnω0t

{ }

n ∞–=

∞

∑ 2π Cnδ ω nω0–( )
n ∞–=

∞

∑= = =

H ω( ) h t( )

h t( ) H ω( )⇔

f t( )∗h t( ) g t( ) G ω( ) F ω( ) H ω( )⋅=⇔=
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Exercises

8.10 Exercises
1. Prove that

2. Compute

3. Sketch the time and frequency waveforms of

4. Derive the Fourier transform of

5. Derive the Fourier transform of

6. Derive the Fourier transform of 

7. For the circuit below, use the Fourier transform method to compute .

8. The input−output relationship in a certain network is

Use the Fourier transform method to compute  given that .

9. In a bandpass filter, the lower and upper cutoff frequencies are , and 
respectively. Compute the  energy of the input, and the percentage that appears at the

output, if the input signal is  volts.

u0 t( )δ t( ) td
∞–

∞

∫ 1 2⁄=

F te at– u0 t( ){ }  a 0>

f t( ) ω0tcos u0 t T+( ) u0 t T–( )–[ ]=

f t( ) A u0 t 3T+( ) u0 t T+( )– u0 t T–( ) u0 t 3T–( )–+[ ]=

f t( ) A
T
----t u0 t T+( ) u0– t T–( )[ ]=

f t( ) A
T
---- t A+ 

  u0 t T+( ) u0 t( )–[ ] A
T
----– t A+ 

  u0 t( ) u0 t T
2
---– 

 –+=

vC t( )

−
+C

1 Fvin t( )
vC t( )

1 Ω

0.5 Ω

R1

R2

vin t( ) 50 4tucos 0 t( )=

d 2

dt2
-------vout t( ) 5 d

dt
-----vout t( ) 6vout t( )+ + 10vin t( )=

vout t( ) vin t( ) 2e t– u0 t( )=

f1 2 Hz= f2 6 Hz=

1 Ω

vin t( ) 3e 2t– u0 t( )=
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10. In Subsection 8.6.1, Page 8−27, we derived the Fourier transform pair

Compute the percentage of the  energy of  contained in the interval 
of .

11. In Subsection 8.6.2, Page 8-28, we derived the Fourier transform pair

Use the fplot MATLAB command to plot the Fourier transform of this rectangular wave-
form.

A u0 t T+( ) u0 t T–( )–[ ] 2AT ωTsin
ωT

----------------⇔

0 ωT−2π 2π
π−π

A

−T T
t

0

f t( )
F ω( )

1 Ω f t( ) π T⁄– ω π T⁄≤ ≤
F ω( )

A u0 t( ) u0 t 2T–( )–[ ] 2ATe jωT– ωTsin
ωT

---------------- 
 ⇔
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Solutions to End−of−Chapter Exercises

8.11 Solutions to End−of−Chapter Exercises
1.

and since at ,  whereas at , , we replace the limits of inte-
gration with  and . Then,

2.

From tables of integrals

Then,

With the upper limit of integration we obtain

To evaluate the lower limit of integration, we apply L’Hôpital’s rule, i.e.,

and thus

Check:

and since

u0 t( )δ t( ) td
∞–

∞

∫ u0 t( ) td
d u0 t( ) td

∞–

∞

∫ u0 t( ) u0 t( )( )d
∞–

∞

∫= =

t  +∞= u0 t( ) 1= t ∞–= u0 t( ) 0=

1 0

u0 t( ) u0 t( )( )d
0

1

∫
u0

2 t( )
2

------------
0

1

1 2⁄= =

F ω( ) f t( )e jωt– td
∞–

∞

∫ te at– e jωt– td
0

∞

∫ te jω a+( )t– td
0

∞

∫= = =

xeax xd∫
eax

a2
------- ax 1–( )=

F ω( ) e jω a+( )t– jω a+( )t– 1–[ ]⋅

jω a+( )2
------------------------------------------------------------------

0

∞
jω a+( )t 1+[ ]

e jω a+( )t jω a+( )2⋅
----------------------------------------------

∞

0
= =

F ω( ) t 0=
1

jω a+( )2
----------------------=

jω a+( )t 1+[ ]

e jω a+( )t jω a+( )2⋅
----------------------------------------------

∞

d
dt
----- jω a+( )t 1+[ ]

d
dt
----- e jω a+( )t jω a+( )2⋅[ ]
--------------------------------------------------------

t ∞→
lim jω a+( )

jω a+( )e jω a+( )t jω a+( )2⋅
------------------------------------------------------------------

t ∞→
lim 0= = =

F ω( ) 1
jω a+( )2

----------------------=

F ω( ) F s( ) s jω=
=
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it follows that

3.
From Subsection 8.6.4, Page 8−30,

and using the MATLAB script below,

fplot('cos(x)',[−2*pi  2*pi  −1.2  1.2])
fplot('sin(x)./x',[−20  20  −0.4  1.2])

we obtain the plots below.

4.

From Subsection 8.6.1, Page 8−27,

and from the time shifting property,

te at– u0 t( ) 1
s a+( )2

------------------⇔

F ω( ) 1
s a+( )2

------------------
s jω=

1
jω a+( )2

----------------------= =

A ω0t u0 t T+( ) u0 t T–( )–[ ]cos AT ω ω0–( )T[ ]sin
ω ω0–( )T

-------------------------------------- ω ω0+( )T[ ]sin
ω ω0+( )T

--------------------------------------+⇔

F ω( )

f t( )A

0 TT– 0

AT

ω0– ω0
2π
T
------

t ω

f t( ) A u0 t 3T+( ) u0 t T+( )– u0 t T–( ) u0 t 3T–( )–+[ ]=

t
0T– T

f t( )

A

3T– 2T– 2T 3T

A u0 t T+( ) u0 t T–( )–[ ] 2AT ωTsin
ωT

----------------⇔

f t t0–( ) F ω( )e
jωt0–

⇔
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Then,

or

5.

From tables of integrals or integration by parts,

Then,

and multiplying both the numerator and denominator by  we obtain

We observe that since  is real and odd,  is imaginary and odd.

f t( ) A u0 t 3T+( ) u0 t T+( )– u0 t T–( ) u0 t 3T–( )–+[ ]= F ω( ) 2AT ωTsin
ωT

---------------- ej2ωt e j– 2ωt+( )⋅=⇔

F ω( ) 4AT ωTsin
ωT

---------------- ej2ωt e j– 2ωt+
2

------------------------------- 
 ⋅ 4AT 2ωT ωTsin

ωT
----------------cos==

0

f t( ) A
T
---- t=

t

A

A–

T–
T

f t( ) A
T
---- t u0 t T+( ) u0– t T–( )[ ]=

F ω( ) f t( )e jωt– td
∞–

∞

∫ A
T
---- te jωt– td

T–

T

∫ A
T
---- te jωt– td

T–

T

∫= = =

xeax xd∫
eax

a2
------- ax 1–( )=

F ω( ) A
T
---- e jωt–

jω( )2
------------- jωt– 1–( )⋅ ⋅

T–

T
A
T
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ω– 2
----------- jωt– 1–( )⋅ ⋅

T–

T
A
T
---- e jωt–

ω– 2
----------- jωt 1+( )–[ ]⋅ ⋅

T–

T

= = =

A

ω2
T

------------ e jωT– jωT 1+( )⋅ ejωT j– ωT 1+( )⋅–[ ]=

A

ω2
T

------------ jωT e jωT– e jωT–+⋅ jωT ejωT ejωT–⋅+( )=

A

ω2
T

------------ jωT ejωT e jωT–+( )⋅ ejωT e jωT––( )–[ ]=

j2

F ω( ) j2A

ω2
T

------------ jωT ejωT e jωT–+( )
j2

--------------------------------------------- ejωT e jωT––( )
j2

----------------------------------– j2A

ω2
T

------------ ωT ωTcos ωsin T–( )= =

f t( ) F ω( )
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Alternate Solution:

The waveform of  is the derivative of the waveform of  and thus . From
Subsection 8.6.1, Page 8−27,

From the frequency differentiation property, transform pair (8.48), Page 8−13,

or

Then,

6. 
We denote the given waveform as , that is,

0

f1 t( ) A
T
---- t=

t

A

A–

T–
T −T T

t
0

f2 t( )
A T⁄

f2 t( ) f1 t( ) f1 t( ) tf2 t( )=

f2 t( ) 2A
T
----T ωTsin

ωT
---------------- 2A ωTsin

ωT
----------------=⇔

j– t( )nf t( ) d n

dωn
--------- F ω( )⇔

tnf t( ) jn d n

dωn
--------- F ω( )⇔

F f1 t( ) tf2 t( )={ } j d
dω
------- 2A ωTsin

ωT
---------------- 

  j2A d
dω
------- ωTsin

ωT
---------------- 

 = 
 =

j2A ωT( )T ωTcos T ωsin T( )–

ωT( )2
----------------------------------------------------------------- j2A

ω2T
---------- ωT ωTcos ωTsin–( )==

f1 t( )

f1 t( ) A
T
---- t A+ 

  u0 t T+( ) u0 t( )–[ ] A
T
----– t A+ 

  u0 t( ) u0 t T
2
---– 

 –+=

0

f1 t( ) A
T
---- t=

t

A

T– T −T

T
t

0

f2 t( )

A T⁄

A– T⁄
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b
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We observe that  is the integral of . Therefore, we will find , and by integra-
tion we will find .

We begin by finding the Fourier Transform of the pulse denoted as , and using  and
the time shifting and linearity properties, we will find .

Using the time shifting property 

the Fourier transform of the left pulse  of  is

Likewise, the Fourier transform of the right pulse  of  is

and using the linearity property we obtain

This  curve is shown below and it is created with the following MATLAB script:

fplot('sin(x./2).^2./x',[0 16*pi 0 0.5])

f1 t( ) f2 t( ) F2 ω( )

F1 ω( )

f3 t( ) F3 ω( )

F2 ω( )

F3 ω( ) A
T
----e jωt– td

T 2⁄–

T 2⁄

∫
A
T
---- e jωt–

jω–
----------- 

 
T 2⁄–

T 2⁄
A
T
---- e jωt–

jω
----------- 

 
T 2⁄

T 2⁄–

= ==

A
T
---- e jω T 2⁄( ) e jω T 2⁄( )––

jω
----------------------------------------------- 

  2A
ωT
-------- ωT

2
--------sin A ωT 2⁄( )sin

ωT 2⁄
---------------------------= ==

f t t0–( ) F ω( )e
jωt0–

⇔

a f2 t( )

F2a ω( ) A ωT 2⁄( )sin
ωT 2⁄

--------------------------- e jω T 2⁄( )⋅=

b f2 t( )

F2b ω( ) A–
ωT 2⁄( )sin

ωT 2⁄
--------------------------- e j– ω T 2⁄( )⋅=

F2 ω( ) F2a ω( ) F2b ω( )+ A ωT 2⁄( )sin
ωT 2⁄

--------------------------- e jω T 2⁄( ) e j– ω T 2⁄( )–( )⋅= =

j2A ωT 2⁄( )sin
ωT 2⁄

--------------------------- e jω T 2⁄( ) e j– ω T 2⁄( )–
j2

------------------------------------------------ 
 ⋅ j2A ωT 2⁄( )2sin

ωT 2⁄
------------------------------==

x( )2sin x⁄

0 ω
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Now, we find  of the triangular waveform of  with the use of the integration prop-
erty by multiplying  by . Thus,

We can plot  by letting . Then,  simplifies to the form 

This curve is shown below and it is created with the following MATLAB script.

fplot('(sin(x)./x).^2',[-8*pi 8*pi 0 1])

7.   

By KCL

Taking the Fourier transform of both sides we obtain

and since
,

F1 ω( ) f1 t( )

F2 ω( ) 1 jω⁄

F1 ω( ) 1 jω⁄( ) F2 ω( )⋅ 1
jω
------ j2A ωT 2⁄( )2sin

ωT 2⁄
------------------------------⋅ 2A

ω
------- ωT 2⁄( )2sin

ωT 2⁄
------------------------------⋅ 2A

ω2T 2⁄
----------------- ωT 2⁄( )2sin⋅= = = =

F1 ω( ) T 2⁄ 1= F1 ω( ) K xsin( ) x⁄[ ]2

ω
0

1

−
+

1 Fvin t( )

vC t( )

1 Ω

0.5 Ω

vC t( ) vin t( )–

1
-------------------------------- 1

dvC
dt

---------⋅
vC t( )
0.5

-------------+ + 0=

dvC
dt

--------- 3vC+ vin=

jωVC ω( ) 3VC ω( )+ Vin ω( )=

jω 3+( )VC ω( ) Vin ω( )=

Vout ω( ) VC ω( )=
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and

where

Then,

and

Next, using the sifting property of , we simplify the above to

8.

Taking the Fourier transform of both sides we obtain

We use the following MATLAB script for partial fraction expansion where we let .

syms s; collect((s+1)*(s+2)*(s+3))

jω 3+( )Vout ω( ) Vin ω( )=

H ω( )
Vout ω( )
Vin ω( )
-------------------- 1

jω 3+
---------------= =

vin t( ) 50 4tucos 0 t( )= Vin ω( )⇔ 50π δ ω 4–( ) δ ω 4+( )+[ ]=

Vout ω( ) VC ω( ) H ω( ) Vin ω( )⋅ 1
jω 3+
--------------- 50π δ ω 4–( ) δ ω 4+( )+[ ]⋅= = =

vC t( ) F 1–
VC ω( ){ } 1

2π
------ 50π δ ω 4–( ) δ ω 4+( )+[ ]

jω 3+
---------------------------------------------------------------- ejωt⋅ ωd

∞–

∞

∫= =

25 δ ω 4–( )
jω 3+

--------------------- ejωt⋅ ωd
∞–

∞

∫ 25 δ ω 4+( )
jω 3+

--------------------- ejωt⋅ ωd
∞–

∞

∫+=

δ ω( )

vC t( ) 25 e j4t

j4 3+
-------------- e j– 4t

j4 3+
--------------+ 

  25 e j4t

5e j53.1°
------------------ e j– 4t

5e j– 53.1°
--------------------+

 
 
 

5 e j4t e j– 53.1°⋅ e j– 4t e j53.1°⋅+( )= = =

10 e j 4t 53.1°–( ) e j– 4t 53.1°–( )+
2

------------------------------------------------------------- 10 4t 53.1°–( )cos==

d 2

dt2
-------vout t( ) 5 d

dt
-----vout t( ) 6vout t( )+ + 10vin t( ) 2e t– u0 t( )= =

jω( )2 5jω 6+ +[ ]Vout ω( ) 10Vin ω( ) 10 2
jω 1+
---------------⋅= =

jω 2+( ) jω 3+( )⋅[ ]Vout ω( ) 10Vin ω( ) 20
jω 1+
---------------= =

Vout ω( ) 20
jω 1+( ) jω 2+( ) jω 3+( )⋅ ⋅

----------------------------------------------------------------------=

jω s=
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 ans =
 s^3+6*s^2+11*s+6

num=[0  0  0  20]; den=[1  6  11  6]; [num,den]=residue(num,den); fprintf(' \n');...
fprintf('r1 = %4.2f \t', num(1)); fprintf('p1 = %4.2f', den(1)); fprintf(' \n');...
fprintf('r2 = %4.2f \t', num(2)); fprintf('p2 = %4.2f', den(2)); fprintf(' \n');...
fprintf('r3 = %4.2f \t', num(3)); fprintf('p3 = %4.2f', den(3))

r1 =  10.00  p1 = -3.00 
r2 = -20.00  p2 = -2.00 
r3 =  10.00  p3 = -1.00

Then,

and thus

9.
The input energy in joules is

and the Fourier transform  of the input  is

The energy at the output for the frequency interval  or 
is

and from tables of integrals

Then,

Vout ω( ) 20
jω 1+( ) jω 2+( ) jω 3+( )⋅ ⋅

---------------------------------------------------------------------- 10
jω 1+( )

-------------------- 20–
jω 2+( )

-------------------- 10
jω 3+( )

--------------------+ ++=

vout t( ) F 1–
Vout ω( ){ } 10e t– 20e 2t–– 10e 3t–+= =

10 e t– 2e 2t–– e 3t–+( )u0 t( )=

Win vin t( ) 2 td
∞–

∞

∫ 3e 2t– 2
td

0

∞

∫ 3e 2t– 2
td

0

∞

∫ 9e 4t– td
0

∞

∫= = = =

9e 4t–

4–
------------

0

∞
9e 4t–

4
------------

∞

0
9
4
--- 2.25 J= = ==

Fin ω( ) vin t( )

F vin t( ){ } F 3e 2t– u0 t( ){ } 3
jω 2+
---------------= =

2 Hz f 6 Hz≤ ≤ 4π rad ω 12π rad≤ ≤

Wout
1

2π
------ F ω( ) 2 ωd

∞–

∞

∫
1

2π
------ 3

jω 2+
---------------

2
ωd

∞–

∞

∫
1

2π
------ 9

ω2 22+
------------------ ωd

4π

12π

∫= = =

1
x2 a2+
---------------- xd∫

1
a
--- x

a
---atan=
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fprintf(' \n'); fprintf('atan(6*pi) = %4.2f \t', atan(6*pi)); fprintf('atan(2*pi) = %4.2f', atan(2*pi))

atan(6*pi) = 1.52   atan(2*pi) = 1.41

and thus

Therefore, the percentage of the input appearing at the output is

10.

First, we compute the total energy of the pulse in terms of .

and since  is an even function,

Next, we denote the energy in the frequency interval  as  in the
frequency domain we obtain

Wout
9

2π
------ 1

2
--- ω

2
----atan⋅

4π

12π 9
4π
------ 12π

2
---------atan 4π

2
------atan– 

  9
4π
------ 6πatan 2πatan–( )= = =

Wout
9

4π
------ 1.52 1.41–( ) 0.08 J= =

Wout
Win
------------ 100× 0.08

2.25
---------- 3.56%= =

A u0 t T+( ) u0 t T–( )–[ ] 2AT ωTsin
ωT

----------------⇔

0 ωT−2π 2π
π−π

A

−T T
t

0

f t( )
F ω( )

f t( )

Wtotal f t( ) 2 td
∞–

∞

∫ A2 td
T–

T

∫= =

f t( )

Wtotal 2 A2 td
0

T

∫ 2A2t 0

T
2A2T= = =

π– T⁄  rad ω π T⁄  rad≤ ≤ Wout

Wout
1

2π
------ F ω( ) 2 ωd

∞–

∞

∫
1

2π
------ 2AT ωTsin

ωT
----------------

2
ωd

π T⁄–

π T⁄

∫= =
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and since  is an even function,

  (1)

For simplicity, we let . Then,  and . Also, when ,
, and when  or , . With these substitutions we express (1) as

  (2)

But the last integral in (2) is an improper integral and does not appear in tables of integrals.*

Therefore, we will attempt to simplify (2) using integration by parts. We start with the familiar
relation

from which

or

Letting  and , it follows that  and .
With these substitutions (2) is written as

  (3)

The last integral in (3) is also an improper integral. Fortunately, some handbooks of mathe-
matical tables include numerical values of the integral

* It is shown in Advanced Calculus textbooks that if the upper limit is , then

but for other finite limits are not equal.

F ω( )

Wout 2 1
2π
------ 4A2T 2 ωT2sin

ωT( )2
------------------ ωd

0

π T⁄

∫
4A2T 2

π
----------------- ωT2sin

ωT( )2
------------------ ωd

0

π T⁄

∫= =

ωT y= ω y T⁄= ωd 1 T⁄( )dy= ω 0=

y 0= ω π T⁄= ωT π= y π=

Wout
4A2T 2

π
----------------- y2sin

y T⁄( )T( )2
-------------------------- yd

0

π

∫
4A2T 2

πT
----------------- y2sin

y2
------------- yd

0

π

∫
4A2T

π
-------------- y2sin

y2
------------- yd

0

π

∫= = =

∞

xsin
x

---------- xd
0

∞

∫
x2sin

x2
------------- xd

0

∞

∫ π
2
---= =

d uv( ) udv vdu+=

d∫ uv( ) u∫ dv vdu∫+=

u∫ dv uv vdu∫–=

u y2sin= dv 1 y2⁄= du 2 y ysincos 2ysin= = v 1– y⁄=

Wout
4A2T

π
-------------- y2sin

y–
-------------

0

π
1–

y
------ 2ysin yd

0

π

∫–
4A2T

π
-------------- 0 2ysin

y
-------------- yd

0

π

∫+= =

2 4A2T
π

-------------- 2ysin
2y

-------------- yd
0

π

∫⋅ 8A2T
π

-------------- 2ysin
2y

-------------- yd
0

π

∫==

xsin
x

---------- xd
0

π
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for arguments of  in the interval . Then, replacing  with  we obtain ,
, , and for ,  whereas for , . Then, by

substitution into (3) we obtain

  (4)

From Table 5.3 of Handbook of Mathematical Functions, 1972 Edition, Dover Publications,
with  or  we obtain

and thus (4) reduces to

Therefore, the percentage of the output for the frequency interval  is

Since this computation involves numerical integration, we can obtain the same result much
faster and easier with MATLAB as follows:

First, we define the function fourierxfm1 and we save it as an .m file as shown below. This file
must be created with MATLAB’s editor (or any other editor) and saved as an .m file in a drive
that has been added to MATLAB’s path. 

function y1=fourierxfm1(x)
x=x+(x==0)*eps;% This statement avoids the sin(0)/0 value.
% It says that if x=0, then (x==0) = 1
% but if x is not zero, then (x==0) = 0
% and eps is approximately equal to 2.2e-16
% It is used to avoid division by zero.
y1=sin(x)./x;

Then, at MATLAB’s Command prompt, we write and execute the program below.

% The quad function below performs numerical integration from 0 to 2*pi
% using a form of Simpson's rule of numerical integration.

value1=quad('fourierxfm1',0,2*pi)

value1 =
    1.4182

πx 0 x 10≤ ≤ 2y w w 2y=

y w 2⁄= dy 1 2⁄( ) dw⁄= y 0= w 0= y π= w 2π=

Wout
8A2T

π
-------------- wsin

w
------------ 1

2
--- wd 

 
0

2π

∫
4A2T

π
-------------- wsin

w
------------ wd

0

2π

∫= =

πx 2π= x 2=

wsin
w

------------ wd
0

2π

∫
x 2=

1.418=

Wout
4A2T

π
--------------1.418=

π– T⁄  rad ω π T⁄  rad≤ ≤

Wout
Wtotal
--------------- 100%× 4A2T π⁄( ) 1.418⋅

2A2T
-------------------------------------------- 100%× 2 1.418×

π
---------------------- 100%× 90.3%= = =
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We could also have used numerical integration with the integral

thereby avoiding the integration by parts procedure. Shown below are the function
fourierxfm2 which is saved as an .m file and the program execution using this function.

function y2=fourierxfm2(x)
x=x+(x==0)*eps;
y2=(sin(x)./x).^2;

and after this file is saved, we execute the statement below observing that the limits of integra-
tion are from  to .

value2=quad('fourierxfm2',0,pi)

value2 =
    1.4182

11.

fplot('abs(2.*exp(−j.*w)*(sin(w)/w))',[0 4*pi 0 2])

x2sin
x2

------------- xd
0

π

∫

0 π

0 2 4 6 8 10 12
0

0.5

1

1.5

2
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Chapter 9

Discrete−Time Systems and the Z Transform

his chapter is devoted to discrete−time systems, and introduces the one−sided Z Trans-
form. The definition, theorems, and properties are discussed, and the Z transforms of the
most common discrete−time functions are derived. The discrete transfer function is also

defined, and several examples are given to illustrate its application. The Inverse Z transform, and
the methods available for finding it, are also discussed.

9.1 Definition and Special Forms
The Z transform performs the transformation from the domain of discrete−time signals, to
another domain which we call . It is used with discrete−time signals,* the same way
the Laplace and Fourier transforms are used with continuous−time signals. The Z transform
yields a frequency domain description for discrete−time signals, and forms the basis for the design
of digital systems, such as digital filters. Like the Laplace transform, there is the one−sided, and
the two−sided Z transform. We will restrict our discussion to the one−sided Z transform  of
a discrete−time function  defined as

(9.1)

and the Inverse Z transform is defined as

(9.2)

We can obtain a discrete−time waveform from an analog (continuous or with a finite number of
discontinuities) signal, by multiplying it by a train of impulses. We denote the continuous signal
as , and the impulses as

(9.3)

Multiplication of  by  produces the signal  defined as

(9.4)

* Whereas continuous-time signals are described by differential equations, discrete−time signals are described by
difference equations. 

T

z domain–

F z( )
f n[ ]

F z( ) f n[ ]z n–

n 0=

∞

∑=

f n[ ] 1
j2π
-------- F z( )zk 1–∫° dz=

f t( )

δ n[ ] δ t nT–[ ]
n 0=

∞

∑=

f t( ) δ n[ ] g t( )

g t( ) f t( ) δ n[ ]⋅ f t( ) δ t nT–[ ]
n 0=

∞

∑= =
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These signals are shown in Figure 9.1.

Figure 9.1. Formation of discrete−time signals

Of course, after multiplication by , the only values of  which are not zero, are those for
which , and thus we can express (9.4) as

(9.5)

Next, we recall from Chapter 2, that the  to  transform pairs for the delta

function are  and . Therefore, taking the Laplace transform of both sides
of (9.5), and, for simplicity, letting , we obtain

(9.6)

t

n

t
0

0

0

f t( )

δ n[ ]

f t( )δ n[ ]

a( )

c( )

b( )

δ n[ ] f t( )
t nT=

g t( ) f nT[ ] δ t nT–[ ]
n 0=

∞

∑ f nT[ ]δ t nT–[ ]
n 0=

∞

∑= =

t domain– s domain–

δ t( ) 1⇔ δ t T–( ) e sT–⇔
f nT[ ] f n[ ]=

G s( ) L f n[ ] δ t nT–[ ]
n 0=

∞

∑ 
 
 

f n[ ] e nsT–

n 0=

∞

∑ f n[ ]
n 0=

∞

∑ e nsT–= = =
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Properties and Theorems of the Z Transform

Relation (9.6), with the substitution , becomes the same as (9.1), and like ,  is also a
complex variable.

The Z and Inverse Z transforms are denoted as

(9.7)

and
(9.8)

The function , as defined in (9.1), is a series of complex numbers and converges outside the
circle of radius , that is, it converges (approaches a limit) when . In complex variables
theory, the radius  is known as the radius of absolute convergence.

In the complex  the region of convergence is the set of  for which the magnitude of 
is finite, and the region of divergence is the set of  for which the magnitude of  is infinite.

9.2 Properties and Theorems of the Z Transform
The properties and theorems of the Z transform are similar to those of the Laplace transform. In
this section, we will state and prove the most common Z transforms listed in Subsections 9.2.1
through 9.2.12 below.

9.2.1 Linearity

(9.9)

where are arbitrary real or complex constants.

Proof:

The proof is easily obtained by application of the definition of the Z transform to each term on
the left side.

In our subsequent discussion, we will denote the discrete unit step function as .

9.2.2 Shift of  in the Discrete−Time Domain

(9.10)

Proof:

Applying the definition of the Z transform, we obtain

z esT= s z

F z( ) Z f n[ ]{ }=

f n[ ] Z 1– F z( ){ }=

F z( )
R z R>

R

z plane– z F z( )
z F z( )

af1 n[ ] bf2 n[ ] cf3 n[ ] …+ + + aF1 z( ) bF2 z( ) cF3 z( ) …+ + +⇔

a b c …, , ,

u0 n[ ]

f n[ ]u0 n[ ]

f n m–[ ]u0 n m–[ ] z m– F z( )⇔
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and since  for  and  for , the above expression reduces to

Now, we let ; then, , and when  or , . Therefore,

9.2.3 Right Shift in the Discrete−Time Domain
This property is a generalization of the previous property, and allows use of non−zero values for

. The transform pair is

(9.11)

Proof:

By application of the definition of the Z transform, we obtain

We let ; then, , and when , . Therefore,

When , , and when , . Then, by substitution into the last summa-
tion term above, we obtain

Z f n m–[ ]u0 n m–[ ]{ } f n m–[ ]u0 n m–[ ]z n–

n 0=

∞

∑=

u0 n m–[ ] 0= n m< u0 n m–[ ] 1= n m>
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∞
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k 0=

∞
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∞
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k 0=

∞

∑ z m– F z( )= = = =

n 0<
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∞
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∞
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∞
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∞
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∑+==

k m–= n 0= k 1–= n m 1–=

Z f n m–[ ]{ } z m– F z( ) f n m–[ ]zm n–
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Properties and Theorems of the Z Transform

and this is the same as (9.11). 

For , (9.11) reduces to

(9.12)

and for , reduces to

(9.13)

9.2.4 Left Shift in the Discrete−Time Domain

(9.14)

that is, if  is a discrete−time signal, and  is a positive integer, the  left shift of  is
.

Proof: 

We let ; then, , and when , . Then,

When , , and when , . Then, by substitution into the last sum-
mation term of the above expression, we obtain

and this is the same as (9.14).

For , the above expression reduces to

(9.15)
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∞
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∞
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n m–=

1–

∑+ zmF z( ) f n m+[ ]z n–

n m–=

1–

∑+= =

m 1=

Z f n 1+[ ]{ } zF z( ) f 0[ ]z–=



Chapter 9  Discrete−Time Systems and the Z Transform

9−6 Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition
Copyright © Orchard Publications

and for , reduces to

(9.16)

9.2.5 Multiplication by  in the Discrete−Time Domain

(9.17)

Proof: 

9.2.6 Multiplication by  in the Discrete−Time Domain

(9.18)

Proof:

9.2.7 Multiplication by  and  in the Discrete−Time Domain

(9.19)

Proof: 

By definition,

 

and taking the first derivative of both sides with respect to , we obtain

m 2=

Z f n 2+[ ]{ } z2F z( ) f 0[ ]z2– f 1[ ]z–=

an

anf n[ ] F z
a
-- 

 ⇔

Z anf n[ ]{ } anf n[ ]z n–

k 0=

∞

∑
1

a n–
------- f n[ ]z n–

k 0=

∞

∑ f n[ ] z
a
-- 

  n–

k 0=

∞

∑ F z
a
-- 

 = = = =

e naT–

e naT– f n[ ] F eaTz( )⇔

Z e naT– f n[ ]{ } e naT– f n[ ] z n–

k 0=

∞

∑ f n[ ] eaTz( )
n–

k 0=

∞

∑ F eaTz( )= = =

n n2

   nf n[ ] z d
dz
------F z( )–⇔

 n2f n[ ] z d
dz
------F z( ) z2 d 2

dz2
--------F z( )+⇔

F z( ) f n[ ]z n–

n 0=

∞

∑=

z

d
dz
------F z( ) n–( )f n[ ]z n– 1–

n 0=

∞

∑ z– 1– nf n[ ]z n–

n 0=

∞

∑= =
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Multiplication of both sides by  yields

Differentiating one more time, we obtain the second pair in (9.19).

9.2.8 Summation in the Discrete−Time Domain

(9.20)

that is, the Z transform of the sum of the values of a signal, is equal to  times the Z
transform of the signal. This property is equivalent to time integration in the continuous time
domain since integration in the discrete−time domain is summation. We will see on the next sec-
tion that the term  is the Z transform of the discrete unit step function , and

recalling that in the 

and

then, the similarity of the Laplace and Z transforms becomes apparent.

Proof:

Let

(9.21)

and let us express (9.21) as

(9.22)

Since the summation symbol in (9.21) is , then the summation symbol in (9.22) is ,
and thus we can write (9.22) as

(9.23)

Next, we take the Z transform of both sides of (9.23), and using the property

z–

nf n[ ]z n–

n 0=

∞

∑ z d
dz
------– F z( )=

f m[ ]
m 0=

n

∑
z

z 1–
----------- 

  F z( )⇔

z z 1–( )⁄

z z 1–( )⁄ u0 n[ ]

s domain–

u0 t( ) 1
s
--- ⇔

f τ( )
0

t

∫ dτ F s( )
s

----------⇔

y n[ ] x m[ ]
m 0=

n

∑=

y n[ ] x m[ ]
m 0=

n 1–

∑ x n[ ]+=

y n[ ] y n 1–[ ]

y n[ ] y n 1–[ ] x n[ ]+=

x n m–[ ]u0 n m–[ ] z m– X z( )⇔
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we obtain

or

and this relation is the same as (9.20).

9.2.9 Convolution in the Discrete−Time Domain
Let the impulse response of a discrete−time system be denoted as , that is, an impulse ,
produces a response . Likewise, a delayed impulse  produces a delayed response

, and so on. Therefore, any discrete−time input signal can be considered as an impulse
train, in which each impulse has a weight equal to its corresponding sampled value. Then, for any
other input , we obtain

and the response at any arbitrary value m, is obtained by summing all the components that have
occurred up to that point, that is, if  is the output due to the input  convolved with

, then,

 (9.24)

or

 (9.25)

We will now prove that convolution in the discrete−time domain corresponds to multiplication in
the Z domain, that is,

(9.26)

Proof:

Taking the Z transform of both sides of (9.24), we obtain

Y z( ) z 1– Y z( ) X z( )+=

Y z( ) 1
1 z 1––
---------------- X z( ) z

z 1–
----------- X z( )= =

h n[ ] δ n[ ]
h n[ ] δ n m–[ ]

h n m–[ ]

x 0[ ] x 1[ ] x 2[ ],, … x m[ ], ,

x 0[ ]δ 0[ ] x 0[ ]h n[ ]→
x 1[ ]δ n 1–[ ] x 1[ ]h n 1–[ ]→
x 2[ ]δ n 2–[ ] x 2[ ]h n 2–[ ]→

…
x m[ ]δ n m–[ ] x m[ ]h n m–[ ]→

y n[ ] x m[ ]
h n[ ]

y n[ ] x m[ ]h n m–[ ]
m 0=

n

∑=

y n[ ] h n m–[ ]x m[ ]
m 0=

n

∑=

f1 n[ ]∗f2 n[ ] F1 z( ) F2 z( )⋅⇔
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and interchanging the order of the summation, we obtain

Next, we let , then, , and thus,

or
(9.27)

9.2.10 Convolution in the Discrete−Frequency Domain

If  and  are two sequences with Z transforms  and  respectively, then,

(9.28)

where  is a dummy variable, and is a closed contour inside the overlap convergence regions

for  and . The proof requires contour integration; it will not be provided here.

9.2.11 Initial Value Theorem

(9.29)

Proof:

For all , as 

and under these conditions  also. Taking the limit as  in

Y z( ) Z x m[ ]h n m–[ ]
m 0=

∞

∑ 
 
 

x m[ ]h n m–[ ]
m 0=

∞

∑ z n–

n 0=

∞

∑= =

Y z( ) x m[ ]h n m–[ ]z n–

n 0=

∞

∑
m 0=

∞

∑ x m[ ] h n m–[ ]
n 0=

∞

∑ z n–

m 0=

∞

∑= =

k n m–= n k m+=

Y z( ) x m[ ] h k[ ]
n 0=

∞

∑ z k m+( )–

m 0=

∞

∑ x m[ ]z m– h k[ ]
n 0=

∞

∑ z k–

m 0=

∞

∑= =

Y z( ) X z( ) H z( )⋅=

f1 n[ ] f2 n[ ] F1 z( ) F2 z( )

f1 n[ ] f2 n[ ]⋅  1
j2π
--------  xF1 v( )F2

z
v
--- 

  v 1– dv ∫°⇔

v   ∫°
X1 v( ) X2 z v⁄( )

f 0[ ] X z( )
z ∞→
lim=

n 1≥ z ∞→

z n– 1
zn
-----= 0→

f n[ ]z n– 0→ z ∞→

F z( ) f n[ ] z n–

n 0=

∞

∑=
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we observe that the only non−zero value in the summation is that of . Then,

Therefore,

9.2.12 Final Value Theorem
This theorem states that if  approaches a limit as , we can find that limit, if it exists, by
multiplying the Z transform of  by , and taking the limit of the product as . That
is,

 (9.30)

Proof:

Let us consider the Z transform of the sequence , i.e.,

We replace the upper limit of the summation with k, and we let . Then,

(9.31)

From (9.15),
(9.32)

and by substitution of (9.32) into (9.31), we obtain

Taking the limit as  on both sides, we obtain

n 0=

f n[ ]z n–

n 0=

∞

∑ f 0[ ] z 0– f 0[ ]= =

X z( )
z ∞→
lim f 0[ ]=

f n[ ] n ∞→
f n[ ] z 1–( ) z 1→

f n[ ]
n ∞→
lim z 1–( )

z 1→
lim F z( )=

f n 1+[ ] f n[ ]–

Z f n 1+[ ] f n[ ]–{ } f n 1+[ ] f n[ ]–( )z n–

n 0=

∞

∑=

k ∞→

Z f n 1+[ ] f n[ ]–{ } f n 1+[ ] f n[ ]–( )z n–

n 0=

k

∑k ∞→
lim=

Z f n 1+[ ]{ } zF z( ) f 0[ ]z–=

zF z( ) f 0[ ]z– F z( )– f n 1+[ ] f n[ ]–( )z n–

n 0=

k

∑k ∞→
lim=

z 1→

z 1–( )F z( ) f 0[ ]z–{ }
z 1→
lim f n 1+[ ] f n[ ]–( )z n–

n 0=

k

∑k ∞→
lim

 
 
 

z 1→
lim=

f n 1+[ ] f n[ ]–( )z n–

z 1→
lim

n 0=

k

∑k ∞→
lim=
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We must remember, however, that if the sequence  does not approach a limit, the final
value theorem is invalid. The right side of (9.30) may exist even though  does not approach
a limit. In instances where we cannot determine whether  exists or not, we can be certain
that it exists if  can be expressed in a proper rational form as

where  and  are polynomials with real coefficients.

For convenience, we summarize the properties and theorems of the Z transform in Table 9.1.

9.3 The Z Transform of Common Discrete−Time Functions
In this section we will provide several examples to find the Z transform of some discrete−time
functions. In this section, we will derive the Z transforms of the most common discrete−time
functions in Subsections 9.3.1 through 9.3.5 below.

9.3.1 The Transform of the Geometric Sequence
The geometric sequence is defined as

(9.33)

From the definition of the Z transform,

(9.34)

To evaluate this infinite summation, we form a truncated version of  which contains the
first  terms of the series. We denote this truncated version as . Then,

z 1–( )F z( ) f 0[ ]z
z 1→
lim–

z 1→
lim f n 1+[ ] f n[ ]–{ } z n–

z 1→
lim

n 0=

k

∑k ∞→
lim=

z 1–( )F z( ) f 0[ ]–
z 1→
lim f n 1+[ ]{ } f n[ ]–

n 0=

k

∑k ∞→
lim=

f k[ ] f 0[ ]–{ }
k ∞→
lim f k[ ] f 0[ ]–

k ∞→
lim==

f k[ ]
k ∞→
lim z 1–( )F z( )

z 1→
lim=

f n[ ]
f n[ ]

f n[ ]
X z( )

X z( ) A z( )
B z( )
------------=

A z( ) B z( )

f n[ ]
0 n 1 2 3 …,–,–,–=

an n 0 1 2 3 …, , , ,=



=

F z( ) f n[ ]z n–

n 0=

∞

∑ anz n–

n 0=

∞

∑ az 1–( )
n

n 0=

∞

∑= = =

F z( )
k Fk z( )
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(9.35)

and we observe that as , (9.35) becomes the same as (9.34).

To express (9.35) in a closed form, we multiply both sides by . Then,

TABLE 9.1  Properties and Theorems of the Z transform

Property / Theorem  Time Domain Z transform
Linearity

Shift of 

Right Shift 

Left Shift

Multiplication by 

Multiplication by 

Multiplication by n 

Multiplication by 

Summation in Time

 Time Convolution

 Frequency Convolution

Initial Value Theorem

Final Value Theorem

af1 n[ ] bf2 n[ ] …+ + aF1 z( ) bF2 z( ) …+ +

x n[ ]u0 n[ ] f n m–[ ]u0 n m–[ ] z m– F z( )

f n m–[ ]
z m– F z( ) f n m–[ ]z n–

n 0=

m 1–

∑+

f n m+[ ]
zmF z( ) f n m+[ ]z n–

n m–=

1–

∑+

an anf n[ ] F z
a
-- 

 

e naT– e naT– f n[ ] F eaTz( )

nf n[ ] z d
dz
------F z( )–

n2 n2f n[ ] z d
dz
------F z( ) z2 d 2

dz2
--------F z( )+

f m[ ]
m 0=

n

∑
z

z 1–
----------- 

  F z( )

f1 n[ ]∗f2 n[ ] F1 z( ) F2 z( )⋅

f1 n[ ] f2 n[ ]⋅ 1
j2π
--------  xF1 v( )F2

z
v
--- 

  v 1– dv ∫°
f 0[ ] F z( )

z ∞→
lim=

f n[ ]
n ∞→
lim z 1–( )

z 1→
lim F z( )=

Fk z( ) anz n–

n 0=

k 1–

∑ 1 az 1– a2z 2– … ak 1– z k 1–( )–+ + + += =

k ∞→

az 1–
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(9.36)

Subtracting (9.36) from (9.35), we obtain

or

(9.37)

for 

To determine  from , we examine the behavior of the term in the numerator of

(9.37). We write the terms and in polar form, that is,  and

(9.38)

From (9.38) we observe that, for the values of  for which , the magnitude of the com-

plex number  as  and therefore,

(9.39)

for 

For the values of  for which , the magnitude of the complex number  becomes

unbounded as , and therefore,  is unbounded for .

In summary, the transform

converges to the complex number  for , and diverges for . Also,
since

then,  implies that , while  implies  and thus,

az 1– Fk z( ) az 1– a2z 2– a3z 3– … akz k–+ + + +=

Fk z( ) az 1– Fk z( )– 1 akz k––=

Fk z( ) 1 akz k––

1 az 1––
--------------------- 1 az 1–( )

k
–

1 az 1––
--------------------------= =

az 1– 1≠

F z( ) Fk z( ) az 1–( )
k

az 1– az 1–( )
k

az 1– az 1– ejθ=

az 1–( )
k

az 1– k
ejkθ=

z az 1– 1<

az 1–( )
k

0→ k ∞→

F z( ) Fk z( )
k ∞→
lim 1

1 az 1––
------------------- z

z a–
-----------= = =

az 1– 1<

z az 1– 1> az 1–( )
k

k ∞→ F z( ) Fk z( )
k ∞→
lim= az 1– 1>

F z( ) az 1–( )
n

n 0=

∞

∑=

z z a–( )⁄ az 1– 1< az 1– 1>

az 1– a
z
-- a

z
-----= =

az 1– 1< z a> az 1– 1> z a<
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(9.40)

The regions of convergence and divergence for the sequence of (9.40) are shown in Figure 9.2.

Figure 9.2. Regions of convergence and divergence for the geometric sequence 

To determine whether the circumference of the circle, where |, lies in the region of con-
vergence or divergence, we evaluate the sequence  at . Then, 

(9.41)

We see that this sequence becomes unbounded as , and therefore, the circumference of the
circle lies in the region of divergence.

9.3.2 The Transform of the Discrete−Time Unit Step Function

The definition and the waveform of the discrete−time unit step function  are as shown in Fig-
ure 9.3.

Figure 9.3. The discrete unit step function 

From the definition of the Z transform,

Z anu0 n[ ]{ } anz n–

n 0=

∞

∑
z

z a–
-----------   for   z a>

unbounded   for   z a<





= =

|a|

Re[z]

Im[z]

Region of
Divergence

Region of
Convergence

F z( ) ∞→

F z( ) z
z a–
-----------=

an

z a=

Fk z( ) z a=

Fk z( ) anz n–

n 0=

k 1–

∑ 1 az 1– a2z 2– … ak 1– z k 1–( )–+ + + +=
z a=

=

1 1 1 … 1+ + + + k==

k ∞→

u0 n[ ]

n
0

1

. . . .u0 n[ ]
0 n 0<
1 n 0≥




=

u0 n[ ]

u0 n[ ]
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(9.42)

As in Subsection 9.3.1, to evaluate this infinite summation, we form a truncated version of 
which contains the first k terms of the series, and we denote this truncated version as .
Then,

(9.43)

and we observe that as , (9.43) becomes the same as (9.42). To express (9.43) in a closed

form, we multiply both sides by  and we obtain

(9.44)

Subtracting (9.44) from (9.43), we obtain

or

(9.45)

for 

Since , as , . Therefore,

(9.46)

for , and the region of convergence lies outside the unit circle.

Alternate Derivation:

The discrete unit step  is a special case of the sequence  with , and since ,
by substitution into (9.40) we obtain

(9.47)

F z( ) f n[ ]z n–

n 0=

∞

∑ 1[ ]z n–

n 0=

∞

∑= =

F z( )
Fk z( )

Fk z( ) z n–

n 0=

k 1–

∑ 1 z 1– z 2– … z k 1–( )–+ + + += =

k ∞→

z 1–

z 1– Fk z( ) z 1– z 2– z 3– … z k–+ + + +=

Fk z( ) z 1– Fk z( )– 1 z k––=

Fk z( ) 1 z k––

1 z 1––
---------------- 1 z 1–( )

k
–

1 z 1––
-----------------------= =

z 1–
1≠

z 1–( )
k

z 1– k
ejkθ= k ∞→ z 1–( )

k
0→

F z( ) Fk z( )
k ∞→
lim 1

1 z 1––
---------------- z

z 1–
-----------= = =

z 1>

u0 n[ ] an a 1= 1n 1=

Z u0 n[ ]{ } 1[ ]z n–

n 0=

∞

∑
z

z 1–
-----------   for   z 1>

unbounded   for   z 1<





= =
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9.3.3 The Transform of the Discrete−Time Exponential Sequence
The discrete−time exponential sequence is defined as

Then,

and this is a geometric sequence which can be expressed in closed form as

(9.48)

for .

9.3.4 The Transform of the Discrete−Time Cosine and Sine Functions 
Let 

and

To derive the Z transform of  and , we use (9.48) of Subsection 9.3.3, that is,

and replacing  with  we obtain

Equating real and imaginary parts, we obtain the transform pairs

(9.49)

f n[ ] e naT– u0 n[ ]=

F z( ) e naT– z n–

n 0=

∞

∑ 1 e aT– z 1– e 2aT– z 2– e 3aT– z 3– …+ + + += =

Z e naT– u0 n[ ][ ] 1
1 e aT– z 1––
-------------------------- z

z e aT––
------------------  = =

e aT– z 1– 1<

f1 n[ ] ncos aT=

f2 n[ ] naTsin=

f1 n[ ] f2 n[ ]

e naT– z
z e aT––
------------------⇔

naT– jnaT

Z e jnaT[ ] Z naTcos j naTsin+[ ] z
z e jaT–
--------------------= =

Z naTcos[ ] jZ nsin aT[ ]+
z

z e jaT–
------------------- z e j– aT–

z e j– aT–
--------------------⋅==

Z naTcos[ ] jZ nsin aT[ ]+ z2 z aTcos– jz aTsin+

z2 2z aTcos– 1+
-------------------------------------------------------==

naTcos z2 z aTcos–

z2 2z aTcos– 1+
------------------------------------------⇔
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and

(9.50)

To define the regions of convergence and divergence, we express the denominator of (9.49) or
(9.50) as

(9.51)

We see that both pairs of (9.49) and (9.50) have two poles, one at  and the other at

, that is, the poles lie on the unity circle as shown in Figure 9.4.

Figure 9.4. Regions of convergence and divergence for  and 

From Figure 9.4, we see that the poles separate the regions of convergence and divergence. Also,
since the circumference of the circle lies on the region of divergence, as we have seen before, the
poles lie on the region of divergence. Therefore, for the discrete−time cosine and sine functions
we have the pairs

(9.52)

and

(9.53)

It is shown in complex variables theory that if  is a proper rational function*, all poles lie
outside the region of convergence, but the zeros can lie anywhere on the -plane.

* This was defined in Chapter 3, page 3−1.

nsin aT z aTcos
z2 2z aTcos– 1+
------------------------------------------⇔

z e jaT–( ) z e j– aT–( )⋅

z e jaT=

z e j– aT=

1

Re[z]

Im[z]

Region of
Divergence

Region of
Convergence

×

×Pole

Pole

ncos aT nsin aT

naTcos z2 z aTcos–

z2 2z aTcos– 1+
------------------------------------------    for  z 1>⇔

nsin aT z asin T
z2 2z aTcos– 1+
------------------------------------------     for  z 1>⇔

F z( )
z
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9.3.5 The Transform of the Discrete−Time Unit Ramp Function
The discrete−time unit ramp function is defined as

Then, 

(9.54)

We can express (9.54) in closed form using the discrete unit step function transform pair

(9.55)

Differentiating both sides of (9.55) with respect to , we obtain

or

Multiplication by  yields

and thus we have the transform pair

(9.56)

We summarize the transform pairs we have derived, and others, given as exercises at the end of
this chapter, in Table 9.2.

f n[ ] nu0 n[ ]=

Z nu0 n[ ]{ } nz n–

n 0=

∞

∑ 0 z 1– 2z 2– 3z 3– …+ + + += =

Z u0 n[ ]{ } 1( )z n–

n 0=

∞

∑
z

z 1–
-----------   for   z 1>= =

z

zd
d 1( )z n–

n 0=

∞

∑ 
 

zd
d z

z 1–
----------- 

 =

n– z n– 1–

n 0=

∞

∑ 1–

z 1–( )2
------------------=

z–

nz n–

n 0=

∞

∑ n 1( ) z n–

n 0=

∞

∑ z
z 1–( )2

------------------= =

nu0 n[ ] z
z 1–( )2

------------------⇔
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TABLE 9.2  The Z transform of common discrete−time functions

f n[ ] F z( )

δ n[ ] 1

δ n m–[ ] z m–

anu0 n[ ] z
z a–
----------- z a>

u0 n[ ] z
z 1–
----------- z 1>

e naT–( )u0 n[ ] z
z e aT––
------------------ e aT– z 1– 1<

naTcos( )u0 n[ ] z2 z aTcos–

z2 2z aTcos– 1+
------------------------------------------  z 1>

nsin aT( )u0 n[ ] z asin T
z2 2z aTcos– 1+
------------------------------------------  z 1>

an naTcos( )u0 n[ ] z2 az aTcos–

z2 2az aTcos– a2+
-----------------------------------------------   z a>

an naTsin( )u0 n[ ] az asin T
z2 2az aTcos– a2+
-----------------------------------------------   z a>

u0 n[ ] u0– n m–[ ] zm 1–

zm 1– z 1–( )
-----------------------------

nu0 n[ ] z z 1–( )2⁄

n2u0 n[ ] z z 1+( ) z 1–( )3⁄

n 1+[ ]u0 n[ ] z2 z 1–( )2⁄

annu0 n[ ] az( ) z a–( )2⁄

ann
2
u0 n[ ] az z a+( ) z a–( )3⁄

ann n 1+[ ]u0 n[ ] 2az2 z a–( )3⁄
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9.4 Computation of the Z Transform with Contour Integration*

Let  be the Laplace transform of a continuous time function  and  the transform of
the sampled time function  which we denote as . It is shown in complex variables theory
that  can be derived from  by the use of the contour integral

(9.57)

where  is a contour enclosing all singularities (poles) of , and  is a dummy variable for .
We can compute the Z transform of a discrete−time function  using the transformation

(9.58)

By substitution of (9.58) into (9.57), and replacing  with , we obtain

(9.59)

Next, we use Cauchy’s Residue Theorem to express (9.59) as

(9.60)

Example 9.1  

Derive the Z transform of the discrete unit step function  using the residue theorem.

Solution:
We learned in Chapter 2, that

Then, by residue theorem of (9.60),

* This section may be skipped without loss of continuity. It is intended for readers who have prior knowledge of complex vari-
ables theory. However, the following examples will show that this procedure is not difficult.

F s( ) f t( ) F∗ s( )

f t( ) f∗ t( )

F∗ s( ) F s( )

F∗ s( ) 1
j2π
-------- F v( )

1 e sT–– evT
--------------------------- dv

C
∫°=

C F s( ) v s
f n[ ]

F z( ) F∗ s( )
z esT

=
=

v s

F z( ) 1
j2π
-------- F s( )

1 z 1–– esT
------------------------ ds

C
∫°=

F z( ) Res F s( )

1 z 1–– esT
------------------------

k
∑

s pk=

s pk–( )
s pk→
lim F s( )

1 z 1–– esT
------------------------= =

u0 n[ ]

L u0 t( )[ ] 1 s⁄=
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for , and this is the same as (9.47), Page 9−15.

Example 9.2  

Derive the Z transform of the discrete exponential function  using the residue theo-
rem.

Solution:
From Chapter 2,

Then, by residue theorem of (9.60),

for  and this is the same as (9.48), Page 9−16.

Example 9.3  

Derive the Z transform of the discrete unit ramp function  using the residue theorem.

Solution:

From Chapter 2,

Since  has a second order pole at , we need to apply the residue theorem applicable to a
pole of order n. This theorem states that

(9.61)

F z( ) s pk–( )
s pk→
lim F s( )

1 z 1–– esT
------------------------ s 0–( )

s 0→
lim 1 s⁄

1 z 1–– esT
------------------------= =

s
s 0→
lim 1 s⁄

1 z 1–– esT
------------------------ 1

1 z 1–– esT
--------------------------

s 0→
lim 1

1 z 1––
---------------- z

z 1–
-----------= = ==

z 1>

e naT– u0 n[ ]

L e at– u0 t( )[ ] 1
s a+
-----------=

F z( ) s pk–( )
s pk→
lim F s( )

1 z 1–– esT
------------------------ s a+( )

s a–→
lim 1 s a+( )⁄

1 z 1–– esT
------------------------= =

1
1 z 1–– esT
-------------------------

s a–→
lim 1

1 z 1– e a– T–
-------------------------- z

z e a– T–
------------------= ==

z 1>

nu0 n[ ]

L tu0 t( )[ ] 1 s2⁄=

F s( ) s 0=

F z( ) 1
n 1–( )!

------------------ 
  s pk–( )

s pk→
lim d n 1–

dsn 1–
-------------- F s( )

1 z 1–– esT
------------------------=
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Thus, for this example,

for , and this is the same as (9.56), Page 9−18.

9.5 Transformation Between s and z Domains
It is shown in complex variables textbooks that every function of a complex variable maps (trans-
forms) a plane  to another plane . In this section, we will investigate the mapping of the
plane of the complex variable , into the plane of the complex variable .

Let us reconsider expressions (9.6) and (9.1), Pages 9−2 and 9−1 respectively, which are repeated
here for convenience.

(9.62)

and

(9.63)

By comparison of (9.62) with (9.63),

(9.64)

Thus, the variables  and  are related as 

(9.65)

and

(9.66)

Therefore,

(9.67)

Since , and  are both complex variables, relation (9.67) allows the mapping (transformation) of
regions of the -plane into the -plane. We find this transformation by recalling that 
and therefore, expressing  in magnitude-phase form and using (9.65), we obtain

F z( ) d
ds
-----

s 0→
lim s2 1 s2⁄

1 z 1–– esT
------------------------= d

ds
-----

s 0→
lim 1

1 z 1–– esT
------------------------ z

z 1–( )2
------------------= =

z 1>

xy uv
s z

G s( ) f n[ ]
n 0=

∞

∑ e nsT–=

F z( ) f n[ ]z n–

n 0=

∞

∑=

G s( ) F z( )
z esT

=
=

s z

z esT=

s 1
T
--- zln=

F z( ) G s( )
s 1

T
--- zln=

=

s z
s z s σ jω+=

z



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition 9−23
Copyright © Orchard Publications

Transformation Between s and z Domains

(9.68)
where,

(9.69)
and

(9.70)
Since

the period  defines the sampling frequency . Then,  or , and

Therefore, we express (9.70) as

(9.71)

and by substitution of (9.69) and (9.71) into (9.68), we obtain

(9.72)

The quantity  in (9.72), defines the unity circle; therefore, let us examine the behav-
ior of  when  is negative, zero, or positive.

Case I : When  is negative, from (9.69), we see that , and thus the left half of the
-plane maps inside the unit circle of the -plane, and for different negative val-

ues of , we obtain concentric circles with radius less than unity.

Case II : When  is positive, from (9.69), we see that , and thus the right half of the
-plane maps outside the unit circle of the -plane, and for different positive val-

ues of  we obtain concentric circles with radius greater than unity.

Case III : When  is zero, from (9.72), we see that  and all values of 
lie on the circumference of the unit circle. For illustration purposes, we have
mapped several fractional values of the sampling radian frequency , and
these are shown in Table 9.3.

From Table 9.3, we see that the portion of the  axis for the interval  in the −plane,
maps on the circumference of the unit circle in the −plane as shown in Figure 9.5. Thus, in dig-
ital signal processing the unit circle represents frequencies from zero to the sampling frequency,
and the frequency response is the discrete−time transfer function evaluated on the unit circle.

z z θ∠ z e jθ eσTe jωT= = =

z eσT=

θ ωT=

T 1 fs⁄=

T fs ωs 2πfs= fs ωs 2π⁄=

T 2π( ) ωs⁄=

θ ω2π
ωs
------ 2π ω

ωs
------= =

z eσTe j2π ω ωs⁄( )=

e j2π ω ωs⁄( )

z σ

σ 0< σ z 1<
s z

σ

σ 0> σ z 1>
s z

σ

σ 0= σ z e j2π ω ωs⁄( )= ω

ωs

jω 0 ω ωs≤ ≤ s

z
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Figure 9.5. Mapping of the s−plane to z−plane

The mapping from the −plane to the −plane is a multi−valued transformation since, as we have
seen, , and it is shown in complex variables textbooks that

(9.73)

TABLE 9.3  Mapping of multiples of sampling frequency

ω θ

0 1 0

1

1

1

1

1

1

1

1

z

ωs 8⁄ π 4⁄

ωs 4⁄ π 2⁄

3ωs 8⁄ 3π 4⁄

ωs 2⁄ π

5ωs 8⁄ 5π 4⁄

3ωs 4⁄ 3π 2⁄

7ωs 8⁄ 7π 4⁄

ωs 2π

0

z−planes−plane Im z[ ]

Re z[ ]

σ 0< σ 0>σ 0=
σ

jω

ω 0.25ωs=

ω 0.5ωs=

ω 0.75ωs=

ω ωs=

ω 0=
0.75ωs

ωs

0.25ωs

0.5ωs
0.375ωs

0.125ωs

0.875ωs

0.625ωs

z 1=

x

x

x

x

x

x

x

x

0.125ωs
0.375ωs

0.625ωs 0.875ωs

z s
s 1 T⁄( ) zln=

zln z j2nπ+ln=
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9.6 The Inverse Z Transform

The Inverse Z transform enables us to extract  from . It can be found by any of the fol-
lowing three methods:

a. Partial Fraction Expansion

b. The Inversion Integral

c. Long Division of polynomials

These methods are described in Subsections 9.6.1 through 9.6.3 below.

9.6.1 Partial Fraction Expansion
This method is very similar to the partial fraction expansion method that we used in finding the
Inverse Laplace transform, that is, we expand  into a summation of terms whose inverse is
known. These terms have the form

(9.74)

where  is a constant, and  and  represent the residues and poles respectively; these can be
real or complex.

Before we expand  into partial fractions, we must express it as a proper rational function.
This is done by expanding  instead of , that is, we expand it as

(9.75)

and after the residues are found from

(9.76)

we rewrite (9.75) as

(9.77)

Example 9.4  
Use the partial fraction expansion method to compute the Inverse Z transform of

(9.78)

f n[ ] F z( )

F z( )

k  
r1z

z p1–
-------------  

r2z

z p1–( )2
---------------------  

r3z
z p2–
-------------   …, ,, ,

k ri pi

F z( )
F z( ) z⁄ F z( )

F z( )
z

----------- k
z
--- r1

z p1–
------------- r2

z p2–
------------- …+ + +=

rk z pk–( )F z( )
z

-----------
z pk→
lim z pk–( )F z( )

z
-----------

z pk=

= =

F z( ) k r1z
z p1–
------------- r2z

z p2–
------------- …+ + +=

F z( ) 1
1 0.5z 1–

–( ) 1 0.75z 1–
–( ) 1 z 1–

–( )
------------------------------------------------------------------------------------=
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Solution:

We multiply both numerator and denominator by  to eliminate the negative powers of . Then,

Next, we form , and we expand in partial fractions as

The residues are

Then,

and multiplication of both sides by  yields

(9.79)

To find the Inverse Z transform of (9.79), we recall that

for . Therefore, the discrete−time sequence is

(9.80)

Check with MATLAB:

Dz=(z−0.5)*(z−0.75)*(z−1) % The denominator of F(z)
collect(Dz); % Multiply the three factors of D(z) to obtain a polynomial

ans =
 z^3-9/4*z^2+13/8*z-3/8

z3 z

F z( ) z3

z 0.5–( ) z 0.75–( ) z 1–( )
--------------------------------------------------------------=

F z( ) z⁄

F z( )
z

----------- z2

z 0.5–( ) z 0.75–( ) z 1–( )
-------------------------------------------------------------- r1

z 0.5–( )
--------------------- r2

z 0.75–( )
------------------------ r3

z 1–( )
----------------+ += =

r1
z2

z 0.75–( ) z 1–( )
----------------------------------------

z 0.5=

0.5( )2

0.5 0.75–( ) 0.5 1–( )
-------------------------------------------------- 2= = =

r2
z2

z 0.5–( ) z 1–( )
-------------------------------------

z 0.75=

0.75( )2

0.75 0.5–( ) 0.75 1–( )
----------------------------------------------------- 9–= = =

r3
z2

z 0.5–( ) z 0.75–( )
---------------------------------------------

z 1=

12

1 0.5–( ) 1 0.25–( )
---------------------------------------------- 8= = =

F z( )
z

----------- z2

z 0.5–( ) z 0.75–( ) z 1–( )
-------------------------------------------------------------- 2

z 0.5–( )
--------------------- 9–

z 0.75–( )
------------------------ 8

z 1–( )
----------------+ += =

z

F z( ) z3

z 0.5–( ) z 0.75–( ) z 1–( )
-------------------------------------------------------------- 2z

z 0.5–( )
--------------------- 9z–

z 0.75–( )
------------------------ 8z

z 1–( )
----------------+ += =

an z
z a–
-----------⇔

z a>

f n[ ] 2 0.5( )n 9 0.75( )n– 8+=
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num=[0  1  0  0]; % The coefficients of the numerator
den=[1  −9/4   13/8   −3/8]; % The coefficients of the denominator
fprintf(' \n');
[num,den]=residue(num,den); % Verify the residues in (9.79)
fprintf('r1 = %4.2f \t', num(1)); fprintf('p1 = %4.2f \t', den(1));...
fprintf('r2 = %4.2f \t', num(2)); fprintf('p2 = %4.2f \t', den(2));...
fprintf('r3 = %4.2f \t', num(3)); fprintf('p3 = %4.2f \t', den(3))

 r1 = 8.00 p1 = 1.00   r2 = -9.00 p2 = 0.75   r3 = 2.00 p3 = 0.50

syms n z
fn=2*(0.5)^n−9*(0.75)^n+8; % This is the answer in (9.80)
Fz=ztrans(fn,n,z); simple(Fz) % Verify answer by first taking Z transform of f[n]

ans =
 8*z^3/(2*z-1)/(4*z-3)/(z-1)

iztrans(Fz) % Now, verify that Inverse of F(z) gives back f[n]

ans =
 2*(1/2)^n-9*(3/4)^n+8

We can use Microsoft Excel to obtain and plot the values of . The spreadsheet of Figure 9.6
shows the first 25 values of  but only part of the spreadsheet is shown.

Figure 9.6. The discrete−time sequence  for Example 9.4

f n[ ]
n

n f[n]
0.000 1.0000
1.000 2.2500
2.000 3.438
3.000 4.453
4.000 5.277
5.000 5.927
6.000 6.429
7.000 6.814
8.000 7.107
9.000 7.328

10.000 7.495
11.000 7.621
12.000 7.715
13.000 7.786
14.000 7.84
15.000 7.88

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19 21 23 25

Discrete Time Sequence f[n] = 2(0.5)n − 9(0.75)n + 8

f n[ ] 2 0.5( )n 9 0.75( )n– 8+=
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Example 9.5  
Use the partial fraction expansion method to compute the Inverse Z transform of

(9.81)

Solution:

Division of both sides by  and partial expansion yields

The residues are

Then,

or

Now, we recall that

and

for .

Therefore, the discrete−time sequence is

(9.82)

Check with MATLAB:

syms n z; fn=3*(−1)^n+6*n−3; Fz=ztrans(fn); simple(Fz)

ans =

F z( ) 12z
z 1+( ) z 1–( )2

------------------------------------=

z

F z( )
z

----------- 12
z 1+( ) z 1–( )2

------------------------------------ r1

z 1+( )
---------------- r2

z 1–( )2
------------------ r3

z 1–( )
----------------+ += =

r1
12

z 1–( )2
------------------

z 1–=

12
1– 1–( )2

----------------------- 3= = =

r2
12

z 1+( )
----------------

z 1=

12
1 1+( )

----------------- 6= = =

r3
d

dz
------ 12

z 1+
------------ 

 

z 1=

12–

z 1+( )2
------------------- 3–= = =

F z( )
z

----------- 12
z 1+( ) z 1–( )2

------------------------------------ 3
z 1+( )

---------------- 6
z 1–( )2

------------------ 3–
z 1–( )

----------------+ += =

F z( ) 12z
z 1+( ) z 1–( )2

------------------------------------ 3z
z 1–( )–( )

------------------------ 6z
z 1–( )2

------------------ 3z–
z 1–( )

----------------+ += =

u0 n[ ] z
z 1–
-----------⇔

nu0 n[ ] z
z 1–( )2

------------------⇔

z 1>

f n[ ] 3 1–( )n 6n 3–+=
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 12*z/(z+1)/(z-1)^2

We can also use the MATLAB dimpulse function to compute and display  for any range of

values of . The following script will display the first 20 values of  in (9.82).

% First, we must express the denominator of F(z) as a polynomial
denpol=collect((z+1)*((z−1)^2))

denpol =
 z^3-z^2-z+1

num=[12  0]; % The coefficients of the numerator of F(z) in (9.81)
den=[1 −1 −1  1]; % The coefficients of the denominator in polynomial form
fn=dimpulse(num,den,20) % Compute the first 20 values of f[n]

fn =
     0
     0
    12
    12
    24
    24
    36
    36
    48
    48
    60
    60
    72
    72
    84
    84
    96
    96
   108
   108

The MATLAB function dimpulse(num,den) plots the impulse response of the polynomial
transfer function  where  and  contain the polynomial
coefficients in descending powers of . Thus, the MATLAB script

num=[0  0  12  0]; den=[1 −1 −1  1]; dimpulse(num,den)

displays the plot of Figure 9.7.

f n[ ]

n f n[ ]

G z( ) num z( ) den z( )⁄= num z( ) den z( )
z
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Figure 9.7. The impulse response for Example 9.5

Example 9.6  
Use the partial fraction expansion method to compute the Inverse Z transform of

(9.83)

Solution:

Dividing both sides by  and performing partial fraction expansion, we obtain

(9.84)

The residues are

Then,

or

F z( ) z 1+

z 1–( ) z2 2z 2+ +( )
------------------------------------------------=

z

F z( )
z

----------- z 1+

z z 1–( ) z2 2z 2+ +( )
--------------------------------------------------- r1

z
---- r2

z 1–
----------- r3

z 1 j–+( )
------------------------ r4

z 1 j+ +( )
------------------------+ + += =

r1
z 1+

z 1–( ) z2 2z 2+ +( )
------------------------------------------------

z 0=

1
2–

------ 0.5–= = =

r2
z 1+

z( ) z2 2z 2+ +( )
---------------------------------------

z 1=

2
5
--- 0.4= = =

r3
z 1+

z( ) z 1–( ) z 1 j+ +( )
-------------------------------------------------

z 1– j+=

j
1– j+( ) 2– j+( ) j2( )

--------------------------------------------------- 0.05 j0.15+= = =

r4 r∗3 0.05 j0.15–= =

F z( )
z

----------- z 1+

z z 1–( ) z2 2z 2+ +( )
--------------------------------------------------- 0.5–

z
---------- 0.4

z 1–
----------- 0.05 j0.15+

z 1 j–+( )
----------------------------- 0.05 j0.15–

z 1 j+ +( )
-----------------------------+ + += =
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Recalling that

and

for , we find that the discrete−time sequence is

or

(9.85)

We will use the MATLAB dimpulse function to display the first 8 values of  in (9.85). We
recall that his function requires that  is expressed as a ratio of polynomials in descending
order.

syms n z
collect((z−1)*(z^2+2*z+2))   % First, expand denominator of given F(z)

ans =
 z^3+z^2-2

The following script displays the first 10 values of  and plots the impulse response shown in
Figure 9.8.

num=[0  0  1  1]; den=[1  1  0  −2]; fn=dimpulse(num,den,11), dimpulse(num,den,16)

fn =
     0
     0
     1

F z( ) 0.5– 0.4z
z 1–
----------- 0.05 j0.15+( )z

z 1 j–+( )
------------------------------------- 0.05 j0.15–( )z

z 1 j+ +( )
------------------------------------+ + +=

0.5– 0.4z
z 1–
----------- 0.05 j0.15+( )z

z 1– j+( )–
------------------------------------- 0.05 j0.15–( )z

z 1– j–( )–
------------------------------------+ + +=

0.5– 0.4z
z 1–
----------- 0.05 j0.15+( )z

z 2e j135°–
------------------------------------- 0.05 j0.15–( )z

z 2e j– 135°–
------------------------------------+ + +=

δ n[ ] 1⇔

anu0 n[ ] z
z a–
-----------⇔

z a>

f n[ ] 0.5δ n[ ]– 0.4 1( )n 0.05 j0.15+( ) 2e j135°( )
n

+ +=

+ 0.05 j– 0.15( ) 2e j– 135°( )
n

0.5δ n[ ]– 0.4 0.05 2
n
e jn135°( ) 0.05 2

n
e j– n135°( )+ + +=

 + j0.15 2
n
e jn135°( ) j0.15 2

n
e j– n135°( )–

f n[ ] 0.5δ n[ ]– 0.4 2
n

10
--------- n135° 3 2

n

10
------------ n135°sin–cos+ +=

f n[ ]
F z( )

f n[ ]
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     0
     0
     2
    -2
     2
    -6
    10

Figure 9.8. The impulse response for Example 9.6

9.6.2 The Inversion Integral

The inversion integral * states that

(9.86)

where  is a closed curve that encloses all poles of the integrant, and by Cauchy’s residue theo-
rem, this integral can be expressed as

(9.87)

where  represents a pole of  and  represents a residue at .

* This section may be skipped without loss of continuity. It is intended for readers who have prior knowledge of complex vari-
ables theory.

f n[ ] 1
j2π
-------- F z( )zn 1– dz

C
∫°=

C

f n[ ] Res F z( )zn 1–[ ]
k
∑

z pk=

=

pk F z( )zn 1–[ ] Res F z( )zn 1–[ ] z pk=
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Example 9.7  
Use the inversion integral method to find the Inverse Z transform of

(9.88)

Solution:

Multiplication of the numerator and denominator by  yields

(9.89)

and by application of (9.87),

(9.90)

We are interested in the values , that is, values of .

For , (9.90) becomes

(9.91)

The first term on the right side of (9.91) has a pole of order 2 at ; therefore, we must eval-
uate the first derivative of

at . Thus, for , (9.91) reduces to

or

F z( ) 1 2z 1– z 3–+ +

1 z 1––( ) 1 0.75z 1––( )
-----------------------------------------------------=

z3

F z( ) z3 2z2 1+ +
z z 1–( ) z 0.75–( )
-------------------------------------------=

f n[ ] Res z3 2z2 1+ +( )zn 1–

z z 1–( ) z 0.75–( )
----------------------------------------------

k
∑

z pk=

Res z3 2z2 1+ +( )zn 2–

z 1–( ) z 0.75–( )
----------------------------------------------

k
∑

z pk=

= =

f 0[ ] f 1[ ] f 2[ ] …, , , n 0 1 2 …, , ,=

n 0=

f 0[ ] Res z3 2z2 1+ +( )

z2 z 1–( ) z 0.75–( )
----------------------------------------------

k
∑

z pk=

=

Res z3 2z2 1+ +( )

z2 z 1–( ) z 0.75–( )
----------------------------------------------

z 0=

Res z3 2z2 1+ +( )

z2 z 1–( ) z 0.75–( )
----------------------------------------------

z 1=

+=

 + Res z3 2z2 1+ +( )

z2 z 1–( ) z 0.75–( )
----------------------------------------------

z 0.75=

z 0=

z3 2z2 1+ +( )
z 1–( ) z 0.75–( )

----------------------------------------

z 0= n 0=

f 0[ ] d
dz
------ z3 2z2 1+ +( )

z 1–( ) z 0.75–( )
----------------------------------------

z 0=

z3 2z2 1+ +( )

z2 z 0.75–( )
----------------------------------

z 1=

z3 2z2 1+ +( )

z2 z 1–( )
----------------------------------

z 0.75=

+ +=
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(9.92)

For , (9.90) becomes

(9.93)

For  there are no poles at , that is, the only poles are at  and . There-
fore,

(9.94)

for .

From (9.94), we observe that for all values of , the exponential factor  is always unity for
, but varies for values . Then,

(9.95)

f 0[ ] 28
9

------ 16 163
9

---------–+ 1= =

n 1=

f 1[ ] Res z3 2z2 1+ +( )
z z 1–( ) z 0.75–( )
-------------------------------------------

k
∑

z pk=

=

Res z3 2z2 1+ +( )
z z 1–( ) z 0.75–( )
-------------------------------------------

z 0=

Res z3 2z2 1+ +( )
z z 1–( ) z 0.75–( )
-------------------------------------------

z 1=

+=

 + Res z3 2z2 1+ +( )
z z 1–( ) z 0.75–( )
-------------------------------------------

z 0.75=

z3 2z2 1+ +( )
z 1–( ) z 0.75–( )

----------------------------------------
z 0=

z3 2z2 1+ +( )
z z 0.75–( )

----------------------------------
z 1=

z3 2z2 1+ +( )
z z 1–( )

-----------------------------------
z 0.75=

+ +=

4
3
--- 16 163

12
---------–+ 15

4
------==

n 2≥ z 0= z 1= z 0.75=

f n[ ] Res
z3 2z2 1+ +( )zn 2–

z 1–( ) z 0.75–( )
-----------------------------------------------

k
∑

z pk=

=

Res
z3 2z2 1+ +( )zn 2–

z 1–( ) z 0.75–( )
-----------------------------------------------

z 1=

Res
z3 2z2 1+ +( )zn 2–

z 1–( ) z 0.75–( )
-----------------------------------------------

z 0.75=

+=

z3 2z2 1+ +( )zn 2–

z 0.75–( )
-----------------------------------------------

z 1=

z3 2z2 1+ +( )zn 2–

z 1–( )
-----------------------------------------------

z 0.75=

+=

n 2≥

n 2≥ zn 2–

z 1= z 1≠

f n[ ] z3 2z2 1+ +( )
z 0.75–( )

----------------------------------
z 1=

z3 2z2 1+ +( )zn 2–

z 1–( )
----------------------------------------------

z 0.75=

+=

4
0.25
---------- 0.753 2 0.75( )2 1+ +[ ] 0.75( )n 2–

0.25–
-------------------------------------------------------------------------------+=
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or

for . 

We can express for all  as

 (9.96)

where the coefficients of  and  are the residues that were found in (9.92) and (9.93)
for  and  respectively at . The coefficient  is multiplied by  to
emphasize that this value exists only for  and coefficient  is multiplied by  to
emphasize that this value exists only for . 

Check with MATLAB:

syms z n; Fz=(z^3+2*z^2+1)/(z*(z−1)*(z−0.75)); iztrans(Fz)

ans =
  4/3*charfcn[1](n)+28/9*charfcn[0](n)+16-163/9*(3/4)^n

We evaluate and plot  for the first 20 values. This is shown on the spreadsheet of Figure 9.9.

Figure 9.9. The discrete−time sequence for Example 9.7

Example 9.8  
Use the inversion integral method to find the Inverse Z transform of

f n[ ] 16 163 64⁄( ) 0.75( )n

0.25–( ) 0.75( )2
------------------------------------------+ 16 163

9
--------- 0.75( )n–= =

n 2≥

f n[ ] n 0≥

f n[ ] 28
9

------δ n[ ] 4
3
---δ n 1–[ ] 16 163

9
--------- 0.75( )n–+ +=

δ n[ ] δ n 1–[ ]
n 0= n 1= z 0= 28 9⁄ δ n[ ]

n 0= 4 3⁄ δ n 1–[ ]
n 1=

f n[ ]

n f[n]
0 1.000
1 3.750
2 5.813
3 8.359
4 10.270
5 11.702
6 12.777
7 13.582
8 14.187
9 14.640

10 14.980
11 15.235
12 15.426
13 15.570

0

4

8

12

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Discrete Time Sequence of  f[0] = 1, f[1] = 3.75, 
and f[n] = 16−(163/9)*(3/4)n for n ≥ 2
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(9.97)

Solution:

Multiplication of the numerator and denominator by  yields

 (9.98)

This function has no poles at . The poles are at  and . Then by (9.87),

(9.99)

9.6.3 Long Division of Polynomials
To apply this method,  must be a rational function, and the numerator and denominator
must be polynomials arranged in descending powers of . 

Example 9.9  

Use the long division method to determine  for , given that

(9.100)

Solution:

First, we multiply numerator and denominator by , expand the denominator to a polynomial,
and arrange the numerator and denominator polynomials in descending powers of . Then,

F z( ) 1
1 z 1––( ) 1 0.75z 1––( )

-----------------------------------------------------=

z2

F z( ) z2

z 1–( ) z 0.75–( )
----------------------------------------=

z 0= z 1= z 0.75=

f n[ ] Res z2zn 1–

z 1–( ) z 0.75–( )
----------------------------------------

k
∑

z pk=

Res zn 1+

z 1–( ) z 0.75–( )
----------------------------------------

k
∑

z pk=

= =

Res zn 1+

z 1–( ) z 0.75–( )
----------------------------------------

z 1=

Res zn 1+

z 1–( ) z 0.75–( )
----------------------------------------

z 0.75=

+=

zn 1+

z 0.75–( )
------------------------

z 1=

zn 1+

z 1–( )
----------------

z 0.75=

+ 1n 1+

0.25
------------ 0.75( )n 1+

0.25–( )
------------------------+==

4 0.75( )n

0.25( ) 0.75( )
-------------------------------– 4 16

3
------ 0.75( )n–==

F z( )
z

f n[ ] n 0 1 and 2, ,=

F z( ) 1 z 1– 2z 2– 3z 3–+ + +

1 0.25z 1––( ) 1 0.5z 1––( ) 1 0.75z 1––( )
----------------------------------------------------------------------------------------------=

z3

z
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Next, we use the MATLAB collect function to expand the denominator to a polynomial.

syms z; den=collect((z−0.25)*(z−0.5)*(z−0.75))

den =
 z^3-3/2*z^2+11/16*z-3/32

Thus,

(9.101)

Now, we perform long division as shown in Figure 9.10.

Figure 9.10. Long division for the polynomials of Example 9.9

We find that the quotient  is

(9.102)

By definition of the Z transform,

(9.103)

Equating like terms in (9.102) and (9.103), we obtain

(9.104)

F z( ) z3 z2 2z 3+ + +
z 0.25–( ) z 0.5–( ) z 0.75–( )

---------------------------------------------------------------------=

F z( ) z3 z2 2z 3+ + +

z3 3 2⁄( )z2 11 16⁄( )z+– 3 32⁄–
--------------------------------------------------------------------------------=

z3 3
2
---z2 11

16
------z+– 3

32
------– z3 z2 2z 3+ + +

1 5
2
--- z 1– 81

16
------ z 2– …+ + +Divisor

Dividend

Quotient

z3 3
2
---z2 11

16
------z+– 3

32
------–

5
2
---z2 21

16
------ z 35

32
------+ + 1st Remainder

5
2
---z2 15

4
------– z 55

32
------ 15

64
------z 1––+

81
16
------ z … …+– 2nd Remainder

Q z( )

Q z( ) 1 5
2
--- z 1– 81

16
------ z 2– …+ + +=

F z( ) f n[ ] z n–

n 0=

∞

∑ f 0[ ] f 1[ ]z 1– f 2[ ]z 2– …+ + += =

f 0[ ] 1   f 1[ ], 5 2⁄   and  f 2[ ] 81 16⁄= = =
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We will use the MATLAB dimpulse function to verify the answers, and to obtain the sequence
of the first 15 values of .

num=[1  1  2  3]; den=[1  −3/2  11/16  −3/32]; fn=dimpulse(num,den,15),...
dimpulse(num,den,16)

fn =
    1.0000
    2.5000
    5.0625
    8.9688
   10.2070
    9.6191
    8.2522
    6.7220
    5.3115
    4.1195
    3.1577
    2.4024
    1.8189
    1.3727
    1.0338

Figure 9.11. Impulse response for Example 9.9

Table 9.4 lists the advantages and disadvantages of the three methods of evaluating the Inverse Z
transform.

9.7 The Transfer Function of Discrete−Time Systems
The discrete−time system of Figure 9.12, can be described by the linear difference equation 

f n[ ]
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TABLE 9.4  Methods of Evaluation of the Inverse Z transform

Figure 9.12. Block diagram for discrete−time system

(9.105)

where  and  are constant coefficients. In a compact form, relation (9.105) is expressed as

(9.106)

Assuming that all initial conditions are zero, taking the Z transform of both sides of (9.106), and
using the Z transform pair

we obtain

(9.107)

Method Advantages Disadvantages

Partial Fraction Expansion • Most familiar

• Can use the MATLAB 
   residue function 

• Requires that  is a
   proper rational function

Inversion Integral • Can be used whether 
   is a rational function or not

• Requires familiarity with
   the Residues theorem

Long Division • Practical when only a small 
   sequence of numbers is desired

• Useful when Inverse Z
   has no closed form solution

• Can use the MATLAB 
   dimpulse function for
   large sequence of numbers

• Requires that  is a
   proper rational function

• Division may be endless

F z( )

F z( )

F z( )

Linear Discrete−Time System
x n[ ] y n[ ]

y n[ ] b1y n 1–[ ] b2y n 2–[ ] … bky n k–[ ]+ + + +

a0x n[ ] a1x n 1–[ ] a2x n 2–[ ] … akx n k–[ ]+ + + +=

ai bi

y n[ ] aix n i–[ ]

i 0=

k

∑ biy n i–[ ]

i 0=

k

∑–=

f n m–[ ][ ] z m– F z( )⇔

Y z( ) b1z 1– Y z( ) b2z 2– Y z( ) … bkz k– Y z( )+ + + +

        a0X z( ) a1z 1– X z( ) a2z 2– X z( ) … akz k– X z( )+ + + +=
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(9.108)

(9.109)

We define the discrete−time system transfer function  as

(9.110)

and by substitution of (9.110) into (9.109), we obtain

(9.111)

The discrete impulse response  is the response to the input , and since

we can find the discrete−time impulse response  by taking the Inverse Z transform of the dis-
crete transfer function , that is,

(9.112)

Example 9.10  
The difference equation describing the input−output relationship of a discrete−time system with
zero initial conditions, is

(9.113)
Compute:

a. The transfer function 

b. The discrete−time impulse response 

c. The response when the input is the discrete unit step 

1 b1z 1– b2z 2– … bkz k–+ + + +( )Y z( )

                 a0 a1z 1– a2z 2– … akz k–+ + + +( ) X z( )=

Y z( )
a0 a1z 1– a2z 2– … akz k–+ + + +

1 b1z 1– b2z 2– … bkz k–+ + + +
---------------------------------------------------------------------------X z( )=

H z( )

H z( ) N z( )
D z( )
------------

a0 a1z 1– a2z 2– … akz k–+ + + +

1 b1z 1– b2z 2– … bkz k–+ + + +
---------------------------------------------------------------------------= =

Y z( ) H z( )X z( )=

h n[ ] x n[ ] δ n[ ]=

Z δ n[ ]{ } δ n[ ]z n–

n 0=

∞

∑ 1= =

h n[ ]
H z( )

h n[ ] Z 1– H z( ){ }=

y n[ ] 0.5y n 1–[ ]– 0.125y n 2–[ ]+ x n[ ] x n 1–[ ]+=

H z( )

h n[ ]

u0 n[ ]
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Solution:

a. Taking the Z transform of both sides of (9.113), we obtain

and thus

(9.114)

b. To obtain the discrete−time impulse response , we need to compute the Inverse Z trans-
form of (9.114). We first divide both sides by  and we obtain:

(9.115)

Using the MATLAB residue function, we obtain the residues and the poles of (9.115) as fol-
lows:

num=[0  1  1]; den=[1  −0.5  0.125]; [num,den]=residue(num,den);fprintf(' \n');...
disp('r1 = '); disp(num(1)); disp('p1 = '); disp(den(1));...
disp('r2 = '); disp(num(2)); disp('p2 = '); disp(den(2))

r1 = 
   0.5000 - 2.5000i
p1 = 
   0.2500 + 0.2500i
r2 = 
   0.5000 + 2.5000i
p2 = 
   0.2500 - 0.2500i

and thus,

or

(9.116)

Recalling that

for , the discrete impulse response sequence  is

Y z( ) 0.5– z 1– Y z( ) 0.125z 2– Y z( )+ X z( ) z 1– X z( )+=

H z( ) Y z( )
X z( )
------------ 1 z 1–+

1 0.5– z 1– 0.125z 2–+
------------------------------------------------- z2 z+

z2 0.5z– 0.125+
-----------------------------------------= = =

h n[ ]
z

H z( )
z

------------ z 1+

z2 0.5z– 0.125+
-----------------------------------------=

H z( )
z

------------ 0.5 j2.5–
z 0.25– j0.25–
------------------------------------- 0.5 j2.5+

z 0.25– j0.25+
--------------------------------------+=

H z( ) 0.5 j2.5–( )z
z 0.25 j0.25+( )–
------------------------------------------ 0.5 j2.5+( )z

z 0.25 j0.25–( )–
------------------------------------------+ 0.5 j2.5–( )z

z 0.25 2e j45°–
--------------------------------------- 0.5 j2.5+( )z

z 0.25 2e j– 45°–
----------------------------------------+= =

anu0 n[ ] z
z a–
-----------⇔

z a> h n[ ]
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or
(9.117)

c. From , the transform , and using the result of part (a) we

obtain:

or

(9.118)

We will use the MATLAB residue function to compute the residues and poles of expression
(9.117). First, we must express the denominator as a polynomial.

syms z; denom=(z^2−0.5*z+0.125)*(z−1); collect(denom)

ans =
 z^3-3/2*z^2+5/8*z-1/8

Then,

(9.119)

Now, we compute the residues and poles.

num=[0  1  1  0]; den=[1  −3/2  5/8  −1/8]; [num,den]=residue(num,den); fprintf(' \n');...
disp('r1 = '); disp(num(1)); disp('p1 = '); disp(den(1));...
disp('r2 = '); disp(num(2)); disp('p2 = '); disp(den(2));...
disp('r3 = '); disp(num(3)); disp('p3 = '); disp(den(3))

r1 = 
    3.2000
p1 = 
    1.0000
r2 = 

h n[ ] 0.5 j2.5–( ) 0.25 2e j45°( )
n

0.5 j2.5+( ) 0.25 2e j– 45°( )
n

+=

0.5 0.25 2( )
n
e jn45°[ ] 0.5 0.25 2( )

n
e j– n45°[ ]+=

j2.5 0.25 2( )
n
e jn45°[ ]– j2.5 0.25 2( )

n
e j– n45°[ ]+

0.5 0.25 2( )
n

e jn45° e j– n45°+( )[ ] j2.5 0.25 2( )
n

e jn45° e j– n45°–( )–=

h n[ ] 2
4

------- 
 

n
n45° 5 n45°sin+cos( )=

Y z( ) H z( )X z( )= u0 n[ ] z
z 1–
-----------⇔

Y z( ) z2 z+

z2 0.5z– 0.125+
----------------------------------------- z

z 1–
-----------⋅ z z2 z+( )

z2 0.5z– 0.125+( ) z 1–( )
---------------------------------------------------------------= =

Y z( )
z

------------ z2 z+( )

z2 0.5z– 0.125+( ) z 1–( )
---------------------------------------------------------------=

Y z( )
z

------------ z2 z+
z3 3 2⁄( )z2– 5 8⁄( )z 1 8⁄–+
-----------------------------------------------------------------------=
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  -1.1000 + 0.3000i
p2 = 
   0.2500 + 0.2500i
r3 = 
  -1.1000 - 0.3000i
p3 = 
   0.2500 - 0.2500i

With these values, we express (9.119) as

(9.120)

or

(9.121)

Recalling that

for |, we find that the discrete output response sequence is

or

(9.122)

The plots for the discrete−time sequences  and  are shown in Figure 9.13.

The plot for  can be readily obtained with the Simulink model shown in Figure 9.14
where in the Function Block Parameters dialog box for the Discrete Transfer Fcn block the
Numerator and Denominator coefficients were specified as  and 
respectively in accordance with the transfer function of relation (9.114), Page 9−41, where we
found that

Y z( )
z

------------ z2 z+
z3 3 2⁄( )z2– 5 8⁄( )z 1 8⁄–+
----------------------------------------------------------------------- 3.2

z 1–
----------- 1.1– j0.3+

z 0.25– j– 0.25
-------------------------------- 1.1– j– 0.3

z 0.25– j0.25+
-----------------------------------+ += =

Y z( ) 3.2z
z 1–
----------- 1.1– j0.3+( )z

z 0.25– j– 0.25
----------------------------------- 1.1– j– 0.3( )z

z 0.25– j0.25+
-----------------------------------+ +=

3.2z
z 1–
----------- 1.1– j0.3+( )z

z 0.25 2e j45°–
--------------------------------------- 1.1– j– 0.3( )z

z 0.25 2e j– 45°–
----------------------------------------+ +=

anu0 n[ ] z
z a–
-----------⇔

z a>

y n[ ] 3.2 1.1– j0.3+( ) 0.25 2e j45°( )
n

1.1 j0.3+( ) 0.25 2e j– 45°( )
n

–+=

3.2 1.1 0.25 2( )
n

e jn45° e j– n45°+( )[ ]– j0.3 0.25 2( )
n

e jn45° e j– n45°–( )[ ]+=

y n[ ] 3.2 2.2 2
4

------- 
 

n
n45°cos 0.6–

2
4

------- 
 

n
n45°sin–=

3.2 2
4

------- 
 

n
2.2 n45°cos 0.6 n45°sin+( )–=

h n[ ] y n[ ]

y n[ ]

1  1  0[ ] 1  0.5   0.125–[ ]

H z( ) Y z( )
X z( )
------------ 1 z 1–+

1 0.5– z 1– 0.125z 2–+
------------------------------------------------- z2 z+

z2 0.5z– 0.125+
-----------------------------------------= = =
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Figure 9.13. Plots of  and  for Example 9.10

Figure 9.14. Model for Example 9.10

The plot for , displayed on the Scope block of Figure 9.14, is shown in Figure 9.15.

Figure 9.15. Output waveform for the model of Figure 9.14

n h[n] y[n]
0.000 1.000 1.000
1.000 1.500 2.500
2.000 0.625 3.125
3.000 0.125 3.250
4.000 -0.02 3.234
5.000 -0.02 3.211
6.000 -0.010 3.201
7.000 -0 3.199
8.000 0.000 3.199
9.000 0.000 3.200

10.000 0.000 3.200
11.000 3E-05 3.200
12.000 -0 3.200
13.000 -0 3.200

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4 5 6 7 8 9 10 11

h[n] and y[n] for Example 9.10

h n[ ] y n[ ]

y n[ ]
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9.8 State Equations for Discrete−Time Systems
As with continuous time systems, we choose state variables for discrete−time systems, either from
block diagrams that relate the input−output information, or directly from a difference equation.

Consider the block diagram of Figure 9.16.

Figure 9.16. Block diagram for a continuous time system

We learned in Chapter 5 that the state equations representing this continuous time system are

(9.123)

In a discrete−time block diagram, the integrator is replaced by a delay device. The analogy
between an integrator and a unit delay device is shown in Figure 9.17.

Figure 9.17. Analogy between integration and delay devices

Example 9.11  
The input−output relation for a discrete−time system is

(9.124)

where is any input, and  is the output. Write the discrete−time state equations for this
system. 

u b

A

C

d

x

+ +

++ yΣ Σtd∫x·

x· Ax bu+=

y Cx du+=

Delayx· t( )

continuous−time discrete−time

L x t( )[ ]

s−domain z−domain

td∫ x t( )
x n 1+[ ] x n[ ]

Z x n 1+[ ]{ } Z x n[ ]{ }
z 1–1 s⁄

L x· t( )[ ]

y n 3+[ ] 2y n 2+[ ] 5y n 1+[ ] y n[ ]+ + + u n[ ]=

u n[ ] y n[ ]
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Solution:

We choose our state variables as the output and the output advanced by one and by two time
steps. Thus, we choose the discrete state variables as

(9.125)
Then,

Thus, the state equations are

and in matrix form,

(9.126)

The general form of the solution is

(9.127)

The discrete−time state equations are written in a more compact form as

(9.128)

We can use the MATLAB c2d function to convert the continuous−time state−space equation

(9.129)

to the discrete−time state space equation

(9.130)

x1 n[ ] y n[ ]= x2 n[ ] y n 1+[ ]= x3 n[ ] y n 2+[ ]=

x3 n 1+[ ] y n 3+[ ]=

x2 n 1+[ ] y n 2+[ ] x3 n[ ]= =

x1 n 1+[ ] y n 1+[ ] x2 n[ ]= =

x1 n 1+[ ] x2 n[ ]=

x2 n 1+[ ] x3 n[ ]=

x3 n 1+[ ] 2x3 n[ ] 5x2 n[ ] x1 n[ ]––– u n[ ]= =

x1 n 1+[ ]
x2 n 1+[ ]
x3 n 1+[ ]

0 1 0
0 0 1
1– 5– 2–

x1 n[ ]
x2 n[ ]
x3 n[ ]

⋅
0
0
1

u n[ ]+=

x n[ ] Anx 0[ ] An 1– i–

i 0=

n 1–

∑ b i[ ]u i[ ]+=

x n 1+[ ] Ax n[ ] bu n[ ]+=

y n[ ] Cx n[ ] du n[ ]+=

x· t( ) Ax t( ) bu t( )+=

x n 1+[ ] Adisc x n[ ] bdiscu n[ ]+=
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where the subscript  stands for discrete,  indicates the present sample, and  indicates
the next sample. 

Example 9.12  
Use the MATLAB c2d function to convert the continuous time state space equation

where

 and (9.131)

to discrete−time state space equation with sampling period .

Solution:

Adisc=[0   1;  −3   −4]; bdisc=[0   1]'; [Adisc,bdisc]=c2d(Adisc,bdisc,0.1)

Adisc =
    0.9868    0.0820
   -0.2460    0.6588
bdisc =
    0.0044
    0.0820

and therefore, the equivalent discrete−time state−space equation is

(9.132)

The MATLAB d2c function converts the discrete−time state equation

to the continuous time state equation

We can invoke the MATLAB command help d2c to obtain a detailed description of this func-
tion.

disc n n 1+

x· t( ) Ax t( ) bu t( )+=

A 0 1
3– 4–

= b 0
1

=

TS 0.1 s=

x1 n 1+[ ]
x2 n 1+[ ]

0.9868 0.0820
0.2460– 0.6588

x1 n[ ]
x2 n[ ]

⋅ 0.0044
0.0820

u n[ ]+=

x n 1+[ ] Adiscx n[ ] bdiscu n[ ]+=

x· t( ) Ax t( ) bu t( )+=
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9.9 Summary
• The Z transform performs the transformation from the domain of discrete−time signals, to

another domain which we call . It is used with discrete−time signals, the same way
the Laplace and Fourier transforms are used with continuous−time signals. 

• The one-sided Z transform  of a discrete−time function  defined as

and it is denoted as

• The Inverse Z transform is defined as

and it is denoted as

• The linearity property of the Z transform states that

• The shifting of  where  is the discrete unit step function, produces the Z trans-
form pair

• The right shifting of  allows use of non-zero values for  and produces the Z transform
pair

For , this transform pair reduces to

and for , reduces to

z domain–

F z( ) f n[ ]

F z( ) f n[ ]z n–

n 0=

∞

∑=

F z( ) Z f n[ ]{ }=

f n[ ] 1
j2π
-------- F z( )zk 1–∫° dz=

f n[ ] Z 1– F z( ){ }=

af1 n[ ] bf2 n[ ] cf3 n[ ] …+ + + aF1 z( ) bF2 z( ) cF3 z( ) …+ + +⇔

f n[ ]u0 n[ ] u0 n[ ]

f n m–[ ]u0 n m–[ ] z m– F z( )⇔

f n[ ] n 0<

f n m–[ ] z m– F z( ) f n m–[ ]z n–

n 0=

m 1–

∑+⇔

m 1=

f n 1–[ ] z 1– F z( ) f 1–[ ]+⇔
m 2=

f n 2–[ ] z 2– F z( ) f 2–[ ] z 1– f 1–[ ]+ +⇔
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Summary

• The  left shifting of  where  is a positive integer, produces the Z transform pair

For , the above expression reduces to

and for , reduces to

• Multiplication by  produces the Z transform pair

• Multiplication by  produces the Z transform pair

• Multiplications by  and  produce the Z transform pairs

• The summation property of the Z transform states that

• Convolution in the discrete−time domain corresponds to multiplication in the -domain, that
is,

• Multiplication in the discrete−time domain corresponds to convolution in the -domain, that
is,

mth f n[ ] m

f n m+[ ] zmF z( ) f n m+[ ]z n–

n m–=

1–

∑+⇔

m 1=

Z f n 1+[ ]{ } zF z( ) f 0[ ]z–=

m 2=

Z f n 2+[ ]{ } z2F z( ) f 0[ ]z2– f 1[ ]z–=

an

anf n[ ] F z
a
-- 

 ⇔

e naT–

e naT– f n[ ] F eaTz( )⇔

n n2

   nf n[ ] z d
dz
------F z( )–⇔

 n2f n[ ] z d
dz
------F z( ) z2 d 2

dz2
--------F z( )+⇔

f m[ ]
m 0=

n

∑
z

z 1–
----------- 

  F z( )⇔

z

f1 n[ ]∗f2 n[ ] F1 z( ) F2 z( )⋅⇔

z

f1 n[ ] f2 n[ ]⋅  1
j2π
--------  xF1 v( )F2

z
v
--- 

  v 1– dv∫°⇔
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• The initial value theorem of the Z transform states that

• The final value theorem of the Z transform states that

• The Z transform of the geometric sequence

is

• The Z transform of the discrete unit step function  shown below

is

• The Z transform of the discrete exponential sequence

is

for 

• The Z transforms of the discrete−time functions  and  are
respectively

f 0[ ] X z( )
z ∞→
lim=

f n[ ]
n ∞→
lim z 1–( )

z 1→
lim F z( )=

f n[ ]
0 n 1 2 3 …,–,–,–=

an n 0 1 2 3 …, , , ,=



=

Z an[ ] anz n–

n 0=

∞

∑
z

z a–
-----------   for   z a>

unbounded   for   z a<





= =

u0 n[ ]

n
0

1

. . . .u0 n[ ]
0 n 0<
1 n 0≥




=

u0 n[ ]

Z u0 n[ ][ ] 1[ ]z n–

n 0=

∞

∑
z

z 1–
-----------   for   z 1>

unbounded   for   z 1<





= =

f n[ ] e naT–=

Z e naT–[ ] 1
1 e aT– z 1––
-------------------------- z

z e aT––
------------------  = =

e aT– z 1– 1<

f1 n[ ] ncos aT= f2 n[ ] naTsin=
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Summary

• The Z transform of the discrete unit ramp  is

• The Z transform can also be found by means of the contour integral

and the residue theorem.

• The variables  and  are related as

and

• The relation

allows the mapping (transformation) of regions of -plane to -plane.

• The Inverse Z transform can be found by partial fraction expansion, the inversion integral,
and long division of polynomials.

• The discrete−time system transfer function  is defined as

• The input  and output  are related by the system transfer function  as

• The discrete−time impulse response  and the discrete transfer function  are related
as

naTcos z2 z aTcos–

z2 2z aTcos– 1+
------------------------------------------    for  z 1>⇔

nsin aT z asin T
z2 2z aTcos– 1+
------------------------------------------    for  z 1>⇔

f n[ ] nu0 n[ ]=

nu0 n[ ] z
z 1–( )2

------------------⇔

F∗ s( ) 1
j2π
-------- F v( )

1 e sT–– evT
--------------------------- dv

C
∫°=

s z

z esT=

s 1
T
--- zln=

F z( ) G s( )
s 1

T
--- zln=

=

s z

H z( )

H z( ) N z( )
D z( )
------------

a0 a1z 1– a2z 2– … akz k–+ + + +

1 b1z 1– b2z 2– … bkz k–+ + + +
---------------------------------------------------------------------------= =

X z( ) Y z( ) H z( )

Y z( ) H z( )X z( )=

h n[ ] H z( )

h n[ ] Z 1– H z( ){ }=
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• The discrete−time state equations are

and the general form of the solution is

• The MATLAB c2d function converts the continuous time state space equation

to the discrete−time state space equation

• The MATLAB d2c function converts the discrete−time state equation

to the continuous time state equation

x n 1+[ ] Ax n[ ] bu n[ ]+=

y n[ ] Cx n[ ] du n[ ]+=

x n[ ] Anx 0[ ] An 1– i–

i 0=

n 1–

∑ b i[ ]u i[ ]+=

x· t( ) Ax t( ) bu t( )+=

x n 1+[ ] Adisc x n[ ] bdiscu n[ ]+=

x n 1+[ ] Adiscx n[ ] bdiscu n[ ]+=

x· t( ) Ax t( ) bu t( )+=
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Exercises

9.10 Exercises

1. Find the Z transform of the discrete−time pulse  defined as

2. Find the Z transform of  where  is defined as in Exercise 1.

3. Prove the following Z transform pairs:

a.       b.       c.  

d.       e.  

4. Use the partial fraction expansion to find  given that

5. Use the partial fraction expansion method to compute the Inverse Z transform of

6. Use the Inversion Integral to compute the Inverse Z transform of

7. Use the long division method to compute the first 5 terms of the discrete−time sequence
whose Z transform is

8.
a. Compute the transfer function of the difference equation

b. Compute the response  when the input is 

p n[ ]

p n[ ]
1    n 0 1 2 … m 1–, , , ,=

0                     otherwise



=

anp n[ ] p n[ ]

δ n[ ] 1⇔ δ n 1–[ ] z m–⇔ nanu0 n[ ] az
z a–( )2

------------------⇔

n2anu0 n[ ] az z a+( )

z a–( )3
----------------------⇔ n 1+[ ]u0 n[ ] z2

z 1–( )2
------------------⇔

f n[ ] Z 1– F z( )[ ]=

F z( ) A
1 z 1––( ) 1 0.5z 1––( )

--------------------------------------------------=

F z( ) z2

z 1+( ) z 0.75–( )2
-------------------------------------------=

F z( ) 1 2z 1– z 3–+ +

1 z 1––( ) 1 0.5z 1––( )
--------------------------------------------------=

F z( ) z 1– z 2– z 3––+

1 z 1– z 2– 4z 3–+ + +
-----------------------------------------------=

y n[ ] y n 1–[ ]– Tx n 1–[ ]=

y n[ ] x n[ ] e naT–=
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9. Given the difference equation

a. Compute the discrete transfer function 

b. Compute the response to the input 

10. A discrete−time system is described by the difference equation

where

a. Compute the transfer function 

b. Compute the impulse response 

c. Compute the response when the input is 

11. Given the discrete transfer function

write the difference equation that relates the output  to the input .

y n[ ] y n 1–[ ]–
T
2
--- x n[ ] x n 1–[ ]+{ }=

H z( )

x n[ ] e naT–=

y n[ ] y n 1–[ ]+ x n[ ]=

y n[ ] 0  for  n 0<=

H z( )

h n[ ]

x n[ ] 10  for  n 0≥=

H z( ) z 2+

8z2 2z– 3–
-----------------------------=

y n[ ] x n[ ]
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Solutions to End−of−Chapter Exercises

9.11 Solutions to End−of−Chapter Exercises
1.

By the linearity property

2.

and from Exercise 1,

Then,

or

3.
a.

b.

and since  is zero for all  except , it follows that

p n[ ]
1    n 0 1 2 … m 1–, , , ,=

0                     otherwise



=

0 1 2 3 m 1–

1 p n[ ] u0 n[ ] u0 n m–[ ]–=

u0 n[ ] z
z 1–
-----------⇔

u0 n m–[ ] z m– z
z 1–
-----------⇔

Z p n[ ]{ } z
z 1–
----------- z m– z

z 1–
-----------– z 1 z m––( )

z 1–
------------------------- 1 z m––

1 z 1––
-----------------= = =

anf n[ ] F z
a
-- 

 ⇔

p n[ ] 1 z m––

1 z 1––
-----------------⇔

anp n[ ] 1 z a⁄( ) m––

1 z a⁄( ) 1––
----------------------------- a m– z m––( ) a m–⁄

a 1– z 1––( ) a 1–⁄
---------------------------------------- a 1– a m– z m––( )

a m– a 1– z 1––( )
----------------------------------- am a m– z m––( )

a a 1– z 1––( )
----------------------------------= = =⇔ 1 amz m––

1 az 1––
------------------------=

anp n[ ] z 1 amz m––( )
z a–

--------------------------------⇔

Z δ n[ ]{ } δ n[ ]z n–

n 0=

∞

∑ δ 0[ ]z 0– 1= = =

Z δ n m–[ ]{ } δ n m–[ ]z n–

n 0=

∞

∑=

δ n m–[ ] n n m=

Z δ n m–[ ]{ } δ 0[ ]z m–

n 0=

∞

∑ z m–= =
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c.
From (9.40), Page 9−14,

  (1)

Differentiating (1) with respect to  and multiplying by  we obtain

  (2)

Also, from the multiplication by  property

  (3)

and from (2) and (3)

  (4)

we observe that for  (4) above reduces to

d.
From (9.40), Page 9−14,

  (1)

and taking the second derivative of (1) with respect to  we obtain

  (2)

Also, from the multiplication by  property

  (3)

From Exercise 9.3(c), relation (2)

  (4)

and by substitution of (2) and (4) into (3) we obtain

f n[ ] anu0 n[ ]= F z( )⇔ z
z a–
-----------=

z z–

z d
dz
------F z( )– zz a– z–

z a–( )2
--------------------– az

z a–( )2
------------------= =

n

nf n[ ] n anu0 n[ ]( )= z d
dz
------F z( )–⇔

n anu0 n[ ]( ) az
z a–( )2

------------------⇔

a 1=

nu0 n[ ] z
z 1–( )2

------------------⇔

f n[ ] anu0 n[ ]= F z( )⇔ z
z a–
-----------=

z

d2

dz2
--------F z( ) d2

dz2
-------- z

z a–
----------- 

  d
dz
------ d

dz
------ z

z a–
----------- 

  d
dz
------ a–

z a–( )2
------------------ 2a z a–( )

z a–( )4
---------------------- 2a

z a–( )3
------------------= = = = =

n2

n2f n[ ] n2 anu0 n[ ]( )= z d
dz
------F z( ) z2 d 2

dz2
--------F z( )+⇔

z d
dz
------F z( ) a– z

z a–( )2
------------------=
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Solutions to End−of−Chapter Exercises

We observe that for  the above reduces to

e.
Let  and we know that 

  (1)

The term  represents the sum of the first  values, including , of 
and thus it can be written as the summation

Since summation in the discrete−time domain corresponds to integration in the continu-
ous time domain, it follows that 

where  represents the discrete unit ramp. Now, from the summation in time property,

and with (1) above

and thus

4.

First, we multiply the numerator and denominator by  to eliminate the negative exponents
of .

Then, 

n2 anu0 n[ ]( ) a– z
z a–( )2

------------------ z2 2a
z a–( )3

------------------+⇔ 2az2 az– z a–( )

z a–( )3
--------------------------------------- 2az2 az2– a2z+

z a–( )3
---------------------------------------- az z a+( )

z a–( )3
----------------------= = =

a 1=

n2u0 n[ ] z z 1+( )

z 1–( )3
-------------------⇔

f n[ ] u0 n[ ]=

u0 n[ ] z
z 1–
-----------⇔

n 1+( )u0 n[ ] n n 0= u0 n[ ]

g n[ ] n 1+( )u0 n[ ] u0 k[ ]

k 0=

n

∑= =

u1 n[ ] n 1+( )u0 n[ ]=

u1 n[ ]

f k[ ]
k 0=

n

∑
z

z 1–
----------- 

  F z( )⇔

G z( ) z
z 1–
----------- 

  F z( ) z
z 1–
----------- z

z 1–
-----------⋅ z2

z 1–( )2
------------------= = =

n 1+[ ]u0 n[ ] z2

z 1–( )2
------------------⇔

z2

z
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or

Since

it follows that

5.

  (1)

and clearing of fractions yields

  (2)

With  (2) reduces to  from which 

With  (2) reduces to  from which 

With  (2) reduces to 

or  from which 

By substitution into (1) and multiplication by  we obtain

F z( ) A
1 z 1––( ) 1 0.5z 1––( )

-------------------------------------------------- Az2

z 1–( ) z 0.5–( )
-------------------------------------= =

F z( )
z

----------- Az
z 1–( ) z 0.5–( )

-------------------------------------
r1

z 1–
-----------

r2
z 0.5–
----------------+= =

r1
Az

z 0.5–
----------------

z 1=

2A= = r2
Az

z 1–
-----------

z 0.5=

A–= =

F z( )
z

----------- 2A
z 1–
----------- A

z 0.5–
----------------–=

F z( ) 2Az
z 1–
----------- Az

z 0.5–
----------------–=

z
z 1–
----------- 1⇔ z

z a–
----------- an⇔

Z 1– F z( )[ ] f n[ ] 2A A 1
2
--- 

  n
– A 2 1

2
--- 

  n
–= = =

F z( )
z

-----------
r1

z 1+
------------

r2
z 0.75–
-------------------

r3

z 0.75–( )2
--------------------------+ + z

z 1+( ) z 0.75–( )2
-------------------------------------------= =

r1 z 0.75–( )2 r2 z 1+( ) z 0.75–( ) r3 z 1+( )+ + z=

z 0.75= 1.75r3 0.75= r3 3 7⁄=

z 1–= 1.75–( )2r1 1–= r1 16– 49⁄=

z 0= 0.75–( )2r1 0.75r2– r3+ 0=

3 4⁄( )2 16– 49⁄( )× 3 4⁄( )r2– 3 7⁄+ 0= r2 16 49⁄=

z

F z( ) 16– 49⁄( )z
z 1–( )–

--------------------------- 16 49⁄( )z
z 0.75–

----------------------- 4 7⁄( ) 0.75z( )⋅

z 0.75–( )2
-------------------------------------+ +=
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Using the transforms , , and  we obtain

Check with MATLAB:

syms z n; Fz=z^2/((z+1)*(z−0.75)^2); iztrans(Fz)

ans =
   -16/49*(-1)^n+16/49*(3/4)^n+4/7*(3/4)^n*n

6.

Multiplication by  yields

From (9.87), Page 9−32,

and for this exercise,

Next, we examine  to find out if there are any values of  for which there is a pole at the
origin. We observe that for  there is a second order pole at  because

Also, for  there is a simple pole at . But for  the only poles are  and
. Then, following the same procedure as in Example 9.12, for  we obtain:

u0 n[ ] z
z 1–
-----------⇔ anu0 n[ ] z

z a–
-----------= nanu0 n[ ] az

z a–( )2
------------------=

f n[ ] 16
49
------– 

  1–( )n 16
49
------ 

  0.75( )n 4
7
---n 0.75( )n+ +=

z3

F z( ) z3 2z2 1+ +
z z 1–( ) z 0.5–( )
----------------------------------------=

f n[ ] Res F z( )zn 1–[ ]
k
∑

z pk=

=

f n[ ] Res z3 2z2 1+ +( )zn 2–

z 1–( ) z 0.5–( )
----------------------------------------------

k
∑

z pk=

=

zn 2– n
n 0= z 0=

zn 2–
n 0=

z 2– 1
z2
-----= =

n 1= z 0= n 2≥ z 1=

z 0.5= n 0=

f 0[ ] Res z3 2z2 1+ +( )

z2 z 1–( ) z 0.5–( )
-------------------------------------------

k
∑

z pk=

=

Res z3 2z2 1+ +( )

z2 z 1–( ) z 0.5–( )
-------------------------------------------

z 0=

Res z3 2z2 1+ +( )

z2 z 1–( ) z 0.5–( )
-------------------------------------------

z 1=

Res z3 2z2 1+ +( )

z2 z 1–( ) z 0.5–( )
-------------------------------------------

z 0.5=

+ +=
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The first term on the right side of the above expression has a pole of order 2 at ; there-
fore, we must evaluate the first derivative of

at . Thus, for , it reduces to

For , it reduces to 

or

For  there are no poles at , that is, the only poles are at  and .
Therefore,

for .

z 0=

z3 2z2 1+ +( )
z 1–( ) z 0.5–( )

-------------------------------------

z 0= n 0=

f 0[ ] d
dz
------ z3 2z2 1+ +( )

z 1–( ) z 0.5–( )
-------------------------------------

z 0=

z3 2z2 1+ +( )

z2 z 0.5–( )
----------------------------------

z 1=

z3 2z2 1+ +( )

z2 z 1–( )
----------------------------------

z 0.5=

+ +=

6 8 13–+ 1==

n 1=

f 1[ ] Res z3 2z2 1+ +( )
z z 1–( ) z 0.5–( )
----------------------------------------

k
∑

z pk=

=

Res z3 2z2 1+ +( )
z z 1–( ) z 0.5–( )
----------------------------------------

z 0=

Res z3 2z2 1+ +( )
z z 1–( ) z 0.5–( )
----------------------------------------

z 1=

Res z3 2z2 1+ +( )
z z 1–( ) z 0.75–( )
-------------------------------------------

z 0.5=

+ +=

f 1[ ] z3 2z2 1+ +( )
z 1–( ) z 0.75–( )

----------------------------------------
z 0=

z3 2z2 1+ +( )
z z 0.75–( )

----------------------------------
z 1=

z3 2z2 1+ +( )
z z 1–( )

-----------------------------------
z 0.5=

+ +=

2 8 13 0.5( )⋅–+ 3.5==

n 2≥ z 0= z 1= z 0.5=

f n[ ] Res
z3 2z2 1+ +( )zn 2–

z 1–( ) z 0.5–( )
-----------------------------------------------

k
∑

z pk=

=

Res
z3 2z2 1+ +( )zn 2–

z 1–( ) z 0.5–( )
-----------------------------------------------

z 1=

Res
z3 2z2 1+ +( )zn 2–

z 1–( ) z 0.5–( )
-----------------------------------------------

z 0.5=

+=

z3 2z2 1+ +( )zn 2–

z 0.5–( )
-----------------------------------------------

z 1=

z3 2z2 1+ +( )zn 2–

z 1–( )
-----------------------------------------------

z 0.5=

+=

n 2≥
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We can express  for all  as

 

where the coefficients of  and  are the residues that were found for  and
 at .The coefficient  is multiplied by  to emphasize that this value exists

only for  and coefficient  is multiplied by  to emphasize that this value exists only
for . 

Check with MATLAB:

syms z n; Fz=(z^3+2*z^2+1)/(z*(z−1)*(z−0.5)); iztrans(Fz)

ans =
   2*charfcn[1](n)+6*charfcn[0](n)+8-13*(1/2)^n

7.

Multiplication of each term by  yields

The long division of the numerator by the denominator is shown below.

Therefore,

  (1)
Also,

  (2)

f n[ ] n 0≥

f n[ ] 6δ n[ ] 2δ n 1–[ ] 8 13 0.5( )n–+ +=

δ n[ ] δ n 1–[ ] n 0=

n 1= z 0= 6 δ n[ ]
n 0= 2 δ n[ ]

n 1=

z3

F z( ) z 1– z 2– z 3––+

1 z 1– z 2– 4z 3–+ + +
----------------------------------------------- z2 z 1–+

z3 z2 z 1+ + +
-----------------------------------==

z 1– …+

z3 z2 z 1+ + +

z 1– 2– z 3– z 4– …+ +Divisor Quotient

z2 z 1–+ Dividend

z2 z 1 z 1–+ + +

2– z 1–– 1st Remainder

2– 2 z 1–– 2 z 2–– 2 z 3––

z 1– 2z 2– 2z 3–+ + 2nd Remainder

… … …

F z( ) z 1– 2– z 3– z 4– …+ +=

F z( ) f n[ ]z n–

0

∞

∑ f 0[ ] f 1[ ] z 1– f 2[ ] z 2– f 3[ ] z 3– f 4[ ] z 4– …+ + + + += =
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Equating like terms on the right sides of (1) and (2) we obtain

8.
a. 

Taking the Z transform of both sides we obtain

and thus

b. 

Then,

or
  (1)

By substitution into (1) and multiplication by  we obtain

Recalling that  and  we obtain

9.
a.

Taking the Z transform of both sides we obtain

f 0[ ] 0= f 1[ ] 1= f 2[ ] 0= f 3[ ] 2–= f 4[ ] 1=

y n[ ] y n 1–[ ]– Tx n 1–[ ]=

Y z( ) z 1– Y z( )– Tz 1– X z( )=

H z( ) Y z( )
X z( )
------------ Tz 1–

1 z 1––
---------------- T

z 1–
-----------= = =

x n[ ] e naT–= X z( )⇔ z
z e aT––
------------------=

Y z( ) H z( )X z( ) T
z 1–
----------- z

z e aT––
------------------⋅ Tz

z 1–( ) z e aT––( )⋅
--------------------------------------------= = =

Y z( )
z

------------ T
z 1–( ) z e aT––( )⋅

--------------------------------------------
r1

z 1–
-----------

r2

z e aT––
------------------+= =

r1
T

z e aT––
------------------

z 1=

T
1 e aT––
-------------------= = r2

T
z 1–
-----------

z e aT–
=

T–

1 e aT––
-------------------= =

z

Y z( ) Tz 1 e aT––( )⁄
z 1–( )

---------------------------------- Tz 1 e aT––( )⁄

z e aT––( )
----------------------------------–=

z
z 1–
----------- u0 n[ ]⇔ z

z a–
----------- anu0 n[ ]⇔

y n[ ] T
1 e aT––
------------------- Te naT–

1 e aT––
-------------------–

T
1 e aT––
------------------- 1 e naT––( )u0 n[ ]= =

y n[ ] y n 1–[ ]–
T
2
--- x n[ ] x n 1–[ ]+{ }=
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Solutions to End−of−Chapter Exercises

and thus

b. 

Then,

or

  (1)

By substitution into (1) and multiplication by  we obtain

Recalling that  and  we obtain

10.
a.

Taking the Z transform of both sides we obtain

Y z( ) z 1– Y z( )–
T
2
--- X z( ) z 1– X z( )+[ ]=

1 z 1––( )Y z( ) T
2
--- 1 z 1–+( )X z( )=

H z( ) Y z( )
X z( )
------------ T

2
--- 1 z 1–+

1 z 1––
----------------⋅ T

2
--- z 1+

z 1–
------------⋅= = =

x n[ ] e naT–= X z( )⇔ z
z e aT––
------------------=

Y z( ) H z( )X z( ) T
2
--- z 1+

z 1–
------------ z

z e aT––
------------------⋅ ⋅ Tz z 1+( )

2 z 1–( ) z e aT––( )⋅
------------------------------------------------= = =

Y z( )
z

------------ T z 1+( )

2 z 1–( ) z e aT––( )⋅
------------------------------------------------

r1
z 1–
-----------

r2

z e aT––
------------------+= =

r1
T
2
--- z 1+

z e aT––
------------------⋅

z 1=

T
2
--- 2

1 e aT––
-------------------⋅ T

1 e aT––
-------------------= = =

r2
T
2
--- z 1+

z 1–
------------⋅

z e aT–
=

T
2
--- e aT– 1+

e aT– 1–
-------------------⋅ T

1 e aT––
-------------------= = =

z

Y z( ) Tz 1 e aT––( )⁄
z 1–( )

---------------------------------- Tz 2⁄( ) e aT– 1+( )⋅[ ] 1 e aT––( )⁄

z e aT––( )
--------------------------------------------------------------------------------+=

z
z 1–
----------- u0 n[ ]⇔ z

z a–
----------- anu0 n[ ]⇔

y n[ ] T
1 e aT––
------------------- T

2
--- e aT– 1+

e aT– 1–
-------------------e naT–⋅+

T
1 e aT––
------------------- T

2
--- aT

2
------ 

  e naT–coth–= =

y n[ ] y n 1–[ ]+ x n[ ]=

y n[ ] 0  for  n 0<=
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and thus

b.

c. 

11.

Multiplication of each term by  yields

and taking the Inverse Z transform, we obtain

1 z 1–+( )Y z( ) X z( )=

H z( ) Y z( )
X z( )
------------ 1

1 z 1–+
---------------- z

z 1+
------------ z

z 1–( )–
-------------------= == =

h n[ ] Z 1– H z( ){ } Z 1– z
z 1–( )–
-------------------

 
 
 

1–( )n= = =

x n[ ] 10  for  n 0≥=

X z( ) 10 z
z 1–
-----------⋅=

Y z( ) H z( )X z( ) z
z 1+
------------ 10z

z 1–
-----------⋅ 10z2

z 1+( ) z 1–( )
---------------------------------= = =

Y z( )
z

------------ 10z
z 1+( ) z 1–( )

---------------------------------
r1

z 1+
------------

r2
z 1–
-----------+ 5

z 1+
------------ 5

z 1–
-----------+= = =

Y z( ) 5z
z 1–( )–
------------------- 5z

z 1–
-----------+= f n[ ] 5 1–( )n 5+=⇔

H z( ) z 2+

8z2 2z– 3–
-----------------------------=

1 8z2⁄

H z( ) Y z( )
X z( )
------------ 1 8⁄ z 1– 2z 2–+( )⋅

1 1 4⁄( ) z 1–– 3 8⁄( ) z 2––
-------------------------------------------------------------= =

1 1
4
--- z 1––

3
8
--- z 2–– Y z( )⋅ 1

8
--- z 1– 2z 2–+( ) X z( )⋅ ⋅=

y n[ ] 1
4
---y n 1–[ ]–

3
8
---y n 2–[ ]–

1
8
---x n 1–[ ] 1

4
---x n 2–[ ]+=
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Chapter 10

The DFT and the FFT Algorithm

his chapter begins with the actual computation of frequency spectra for discrete time sys-
tems. For brevity, we will use the acronyms DFT for the Discrete Fourier Transform and
FFT for Fast Fourier Transform algorithm respectively. The definition, theorems, and prop-

erties are also discussed, and several examples are presented to illustrate their uses.

10.1 The Discrete Fourier Transform (DFT)
In the Fourier series topic, Chapter 7, we learned that a periodic and continuous time function,
results in a non periodic and discrete frequency function. Next, in the Fourier transform topic,
Chapter 8, we saw that a non−periodic and continuous time function, produces a non−periodic
and continuous frequency function. In Chapter 9 we learned that the Z and Inverse Z transforms
produce a periodic and continuous frequency function, since these transforms are evaluated on
the unit circle. This is because the frequency spectrum of a discrete time sequence  is

obtained from its Z transform by the substitution of  as we saw from the mapping
of the −plane to the −plane in Chapter 9, Page 9−23. It is continuous because there is an infi-
nite number of points in the interval  to , although, in practice, we compute only a finite
number of equally spaced points.

In this chapter we will see that a periodic and discrete time function results in a periodic and dis-
crete frequency function. For convenience, we summarize these facts in Table 10.1.

In our subsequent discussion we will denote a discrete time signal as , and its discrete fre-
quency transform as .

Let us consider again the definition of the Z transform, that is,

TABLE 10.1  Characteristics of Fourier and Z transforms

Topic Time Function Frequency Function

Fourier Series Continuous, Periodic Discrete, Non−Periodic
Fourier Transform Continuous, Non−Periodic Continuous, Non−Periodic
Z transform Discrete, Non−Periodic Continuous, Periodic
Discrete Fourier Transform Discrete, Periodic Discrete, Periodic

T

f n[ ]

z esT e jωT= =

s z
0 2π

x n[ ]
X m[ ]
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(10.1)

Its value on the unit circle of the -plane, is

(10.2)

This represents an infinite summation; it must be truncated before it can be computed. Let this
truncated version be represented by

(10.3)

where  represents the number of points that are equally spaced in the interval  to  on the
unit circle of the -plane, and

for . We refer to relation (10.3) as the  DFT of .

The Inverse DFT is defined as

(10.4)

for .

In general, the discrete frequency transform  is complex, and thus we can express it as

 (10.5)

for .

Since

(10.6)

we can express (10.3) as

(10.7)

F z( ) f n[ ]z n–

n 0=

∞

∑=

z

F e jωT( ) f n[ ]e nj– ωT

n 0=

∞

∑=

X m[ ] x n[ ]e
j2πmn

N
--------–

n 0=

N 1–

∑=

N 0 2π
z

ω 2π
NT
-------- 

  m=

m 0 1 2 … N 1–, , , ,= N point– X m[ ]

x n[ ] 1
N
---- X m[ ]e

j2πmn
N

--------

m 0=

N 1–

∑=

n 0 1 2 … N 1–, , , ,=

X m[ ]

X m[ ] Re X m[ ]{ } Im X m[ ]{ }+=

m 0 1 2 … N 1–, , , ,=

e
j2πmn

N
--------– 2πmn

N
--------------- j 2πmn

N
---------------sin–cos=

X m[ ] x n[ ]e
j2πmn

N
--------–

n 0=

N 1–

∑ x n[ ] 2πmn
N

---------------cos
n 0=

N 1–

∑ j x n[ ] 2πmn
N

---------------sin
n 0=

N 1–

∑–= =
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The Discrete Fourier Transform (DFT)

For , (10.7) reduces to . Then, the real part  can be computed
from

(10.8)

and the imaginary part  from

(10.9)

We observe that the summation in (10.8) and (10.9) is from  to  since 
appears in (10.8).

Example 10.1  
A discrete time signal is defined by the sequence

and  for all other . Compute the frequency components .

Solution:

Since we are given four discrete values of , we will use a −point DFT, that is, for this exam-
ple, . Using (10.8) with , we obtain

(10.10)

Next, for , we obtain:

(10.11)

Now, we compute the imaginary components using (10.9). For this example,

n 0= X m[ ] x 0[ ]= Re X m[ ]{ }

Re X m[ ]{ } x 0[ ] x n[ ] 2πmn
N

---------------   for   mcos
n 1=

N 1–

∑+ 0 1 2 … N 1–, , , ,= =

Im X m[ ]{ }

Im X m[ ]{ } x n[ ] 2πmn
N

---------------sin    for   m
n 1=

N 1–

∑– 0 1 2 … N 1–, , , ,= =

n 1= n N 1–= x 0[ ]

x 0[ ] 1=   x 1[ ] 2=   x 2[ ] 2=   and  x 3[ ], , , 1=

x n[ ] 0= n X m[ ]

x n[ ] 4
N 4= n 0 1 2 and 3, , ,=

Re X m[ ]{ } x 0[ ] x n[ ] 2πmn
N

---------------cos
n 1=

3

∑+=

1 2 2πm 1( )
4

-------------------cos 2 2πm 2( )
4

-------------------cos 2πm 3( )
4

-------------------cos+ + +=

1 2 mπ
2

--------cos 2 mπcos 3mπ
2

-----------cos+ + +=

m 0 1 2 and 3, , ,=

m 0= Re X 0[ ]{ } 1 2 1( ) 2 1( ) 1 1( )⋅+⋅+⋅+ 6= =

m 1= Re X 1[ ]{ } 1 2 0( ) 2 1–( ) 1 0( )⋅+⋅+⋅+ 1–= =

m 2= Re X 2[ ]{ } 1 2 1–( ) 2 1( ) 1 1–( )⋅+⋅+⋅+ 0= =

m 3= Re X 3[ ]{ } 1 2 0( ) 2 1–( ) 1 0( )⋅+⋅+⋅+ 1–= =
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and for , we obtain:

(10.12)

The discrete frequency components  for , and  are found by addition of the
real and imaginary components  of (10.11) and  of (10.12). Thus,

(10.13)

Example 10.2  
Use the Inverse DFT, i.e., relation (10.4), and the results of Example 10.1, to compute the values
of the discrete time sequence .

Solution:

Since we are given four discrete values of , we will use a −point DFT, that is, for this exam-
ple, . Then, (10.4) for , reduces to

(10.14)

The discrete frequency components  for , are:

Im X m[ ]{ } x n[ ] 2πmn
N

---------------sin
n 1=

3

∑– 2 mπ
2

--------sin 2 mπsin– 3mπ
2

-----------sin––= =

m 0 1 2 and 3, , ,=

m 0= Im X 0[ ]{ } 2– 0( ) 2– 0( ) 1– 0( )⋅⋅⋅ 0= =

m 1= Im X 1[ ]{ } 2– 1( ) 2– 0( ) 1– 1–( )⋅⋅⋅ 1–= =

m 2= Im X 2[ ]{ } 2– 0( ) 2– 0( ) 1– 0( )⋅⋅⋅ 0= =

m 3= Im X 3[ ]{ } 2– 1–( ) 2– 0( ) 1– 1( )⋅⋅⋅ 1= =

X m[ ] m 0 1 2, ,= 3
Xre i[ ] Xim i[ ]

X 0[ ] 6 j0+ 6= =

X 1[ ] 1– j–=

X 2[ ] 0 j0+ 0= =

X 3[ ] 1– j+=

x n[ ]

x n[ ] 4
N 4= m 0 1 2 and 3, , ,=

x n[ ] 1
4
--- X m[ ]e

j2πmn
4

--------

m 0=

3

∑
1
4
--- X m[ ]e

jπmn
2

--------

m 0=

3

∑= =

1
4
--- X 0[ ] X 1[ ]e

jπn
2
---

X 2[ ]ejπn X 3[ ]e
jπ3n

2
------

+ + +=

x n[ ] n 0 1 2 and 3, , ,=

x 0[ ] 1
4
--- X 0[ ] X 1[ ] X 2[ ] X 3[ ]+ + +{ }=

1
4
--- 6 1– j–( ) 0 1– j+( )+ + +{ } 1==
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The Discrete Fourier Transform (DFT)

We observe that these are the same values as in Example 10.1.

We will check the answers of Examples 10.1 and 10.2 with MATLAB and Excel.

With MATLAB, we use the fft(x) function to compute the DFT, and the ifft(x) function to com-
pute the Inverse DFT.

xn=[1  2  2  1]; % The discrete time sequence of Example 10.1
Xm=fft(xn) % Compute the FFT of this discrete time sequence

Xm =
   6.0000   -1.0000-1.0000i   0   -1.0000+1.0000i

Xm = [6   −1−j   0   −1+j]; % The discrete frequency components of Example 10.2 
xn=ifft(Xm) % Compute the Inverse FFT

xn =
   1.0000  2.0000+0.0000i  2.0000  1.0000-0.0000i

To use Excel for the computation of the DFT, the Analysis ToolPak must have been installed. If
not, it can installed it by clicking Add−Ins on the Tools drop menu, and following the instructions
on the screen.

With Excel’s Fourier Analysis Tool, we get the spreadsheet shown in Figure 10.1. The instruc-
tions on how to use it, are given on the spreadsheet.

The term  is a rotating vector, where the range  is divided into  equal
segments. Therefore, it is convenient to represent it as , that is, we let

(10.15)

x 1[ ] 1
4
--- X 0[ ] X 1[ ] j⋅ X 2[ ] 1–( )⋅ X 3[ ] j–( )⋅+ + +{ }=

1
4
--- 6 1– j–( ) j⋅ 0 1–( )⋅ 1– j+( ) j–( )⋅+ + +{ } 2==

x 2[ ] 1
4
--- X 0[ ] X 1[ ] 1–( )⋅ X 2[ ] 1⋅ X 3[ ] 1–( )⋅+ + +{ }=

1
4
--- 6 1– j–( ) 1–( )⋅ 0 1⋅ 1– j+( ) 1–( )⋅+ + +{ } 2==

x 3[ ] 1
4
--- X 0[ ] X 1[ ] j–( )⋅ X 2[ ] 1–( )⋅ X 3[ ] j⋅+ + +{ }=

1
4
--- 6 1– j–( ) j–( )⋅ 0 1–( )⋅ 1– j+( ) j⋅+ + +{ } 1==

e j2π( ) N⁄– 0 θ 2π≤ ≤ 360 N⁄

WN

WN e
j2π
N

--------–
=
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Figure 10.1. Using Excel to find the DFT and Inverse DFT

and consequently
(10.16)

Henceforth, the DFT pair will be denoted as

(10.17)

and

(10.18)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E
Input data x(n) are same as in Example 10.1
and are entered in cells A11 through A14

From the Tools drop down menu, we select 
Data Analysis and from it, Fourier Analysis

The Input Range is A11 through A14 (A11:A14) 
and the Output Range is B11 through B14 (B11:B14)

x(n) X(m)
1 6
2 -1-i
2 0
1 -1+i

To obtain the discrete time sequence, we select
Inverse from the Fourier Analysis menu

Input data are the same as in Example 10.2

The Input Range is A25 through A28 (A25:A28) 
and the Output Range is B25 through B28 (B25:B28)

X(m) x(n)
6 1

-1-j 2
0 2

-1+j 1

WN
1– e

j2π
N

--------
=

X m[ ] x n( )WN
mn

n 0=

N 1–

∑=

x n[ ] 1
N
---- X m( )WN

m– n

n 0=

N 1–

∑=
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The Discrete Fourier Transform (DFT)

Also, the correspondence between  and  will be denoted as

(10.19)

In Example 10.1, we found that, although the discrete time sequence  is real, the discrete
frequency sequence  is complex. However, in most applications we are interested in

, that is, the magnitude of .

Example 10.3  
Use MATLAB to compute the magnitude of the frequency components of the following discrete
time function. Then, use Excel to display the time and frequency values.

Solution:

We compute the magnitude of the frequency spectrum with the MATLAB script below.

xn=[1  1.5  2  2.3  2.7  3  3.4  4.1  4.7  4.2  3.8  3.6  3.2  2.9  2.5  1.8]; magXm=abs(fft(xn));...
fprintf(' \n'); fprintf('magXm1 = %4.2f \t', magXm(1)); fprintf('magXm2 = %4.2f \t', magXm(2));...
fprintf('magXm3 = %4.2f \t', magXm(3)); fprintf(' \n'); fprintf('magXm4 = %4.2f \t', magXm(4));...
fprintf('magXm5 = %4.2f \t', magXm(5)); fprintf('magXm6 = %4.2f \t', magXm(6)); fprintf(' \n');...
fprintf('magXm7 = %4.2f \t', magXm(7)); fprintf('magXm8 = %4.2f \t', magXm(8));...
fprintf('magXm9 = %4.2f \t', magXm(9)); fprintf(' \n');...
fprintf('magXm10 = %4.2f \t', magXm(10)); fprintf('magXm11 = %4.2f \t', magXm(11)); ...
fprintf('magXm12 = %4.2f \t', magXm(12)); fprintf(' \n');...
fprintf('magXm13 = %4.2f \t', magXm(13)); fprintf('magXm14 = %4.2f \t', magXm(14));...
fprintf('magXm15 = %4.2f \t', magXm(15))

magXm1 = 46.70  magXm2 = 11.03   magXm3 =  0.42  
magXm4 =  2.41  magXm5 =  0.22   magXm6 =  1.19  
magXm7 =  0.07  magXm8 =  0.47   magXm9 =  0.10  
magXm10 = 0.47  magXm11 = 0.07   magXm12 = 1.19  
magXm13 = 0.22  magXm14 = 2.41   magXm15 = 0.42 

Now, we use Excel to plot the  and  values. These are shown in Figure 10.2.

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10] x[11] x[12] x[13] x[14] x[15]

1.0 1.5 2.0 2.3 2.7 3.0 3.4 4.1 4.7 4.2 3.8 3.6 3.2 2.9 2.5 1.8

x n[ ] X m[ ]

x n[ ] X m[ ]⇔

x n[ ]
X m[ ]

X m[ ] X m[ ]

x n[ ] X m[ ]
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Figure 10.2. Plots of  and  values for Example 10.3

On the plot of  in Figure 10.2, the first value  represents the DC component.
We observe that after the  value, the magnitude of the frequency components for the
range , are the mirror image of the components in the range . This is not a
coincidence; it is a fact that if  is an −point real discrete time function, only  of the fre-
quency components of  are unique.

Figure 10.3 shows typical discrete time and frequency magnitude waveforms, for a −point
DFT.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

A B C D E F G H I J
n x(n) m |X(m)|

0 1.0 0 46.70
1 1.5 1 11.03
2 2.0 2 0.42
3 2.3 3 2.41
4 2.7 4 0.22
5 3.0 5 1.19
6 3.4 6 0.07
7 4.1 7 0.47
8 4.7 8 0.10
9 4.2 9 0.47

10 3.8 10 0.07
11 3.6 11 1.19
12 3.2 12 0.22
13 2.9 13 2.41
14 2.5 14 0.42
15 1.8 15 11.03

x(n)

1.0
1.5

2.0
2.3

2.7
3.0

3.4

4.1
4.7

4.2
3.8 3.6

3.2
2.9

2.5

1.8

|X(m)|

46
.7

0

11
.0

3

0.
42 2.

41

0.
22 1.
19

0.
07

0.
47

0.
10

0.
47

0.
07 1.
19

0.
22 2.

41

0.
42

11
.0

3

x n[ ] X m[ ]

X m[ ] X 0[ ] 46.70=

X 8[ ] 0.10=

9 m 15≤ ≤ 1 m 7≤ ≤
x n[ ] N N 2⁄

X m[ ]

N 16=
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Even and Odd Properties of the DFT

Figure 10.3.  and  for a −point DFT

Next, we will examine the even and odd properties of the DFT.

10.2  Even and Odd Properties of the DFT
The discrete time and frequency functions are defined as even or odd in accordance with the fol-
lowing relations: 

(10.20)

(10.21)

(10.22)

(10.23)

n

N-1

N

0

0

(End of Period)

(Start of New Period)

N/2(N/2)-1 (N/2)+1

m

N-1

(End of Period)

N

(Start of New Period)

x n[ ]

X m[ ]

x n[ ] X m[ ] N 16=

Even Time Function f N n–[ ] f n[ ]=

Odd Time Function f N n–[ ] f– n[ ]=

Even Frequency Function F N m–[ ] F m[ ]=

Odd Frequency Function F N m–[ ] F– m[ ]=
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In Chapter 8, we developed Table 8-7, Page 8−8, showing the even and odd properties of the Fou-
rier transform. Table 10.2 shows the even and odd properties of the DFT. 

The even and odd properties of the DFT shown in Table 10.2 can be proved by methods similar
to those that we have used for the continuous Fourier transform. For instance, to prove the first
entry we expand

into its real and imaginary parts using Euler’s identity, and we equate these with the real and
imaginary parts of . Now, since the real part contains the cosine, and
the imaginary contains the sine function, and  while , this
entry is proved.

10.3 Common Properties and Theorems of the DFT
The most common properties and theorems of the DFT are presented in Subsections 10.3.1
through 10.3.5 below. For brevity, we will denote the DFT and Inverse DFT as follows:

(10.24)
and

(10.25)

10.3.1 Linearity

(10.26)

TABLE 10.2  Even and Odd Properties of the DFT

Discrete Time Sequence Discrete Frequency Sequence 
Real Complex

Real part is Even
Imaginary Part is Odd

Real and Even Real and Even

Real and Odd Imaginary and Odd

Imaginary Complex
Real part is Odd
Imaginary Part is Even

Imaginary and Even Imaginary and Even

Imaginary and Odd Real and Odd

f n[ ] F m[ ]

X m[ ] x n[ ]WN
mn

n 0=

N 1–

∑=

X m[ ] Xre m[ ] jXim m[ ]+=

m–( )cos mcos= m–( )sin msin–=
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ax1 n[ ] bx2 n[ ] …+ + aX1 m[ ] bX2 m[ ] …+ +⇔
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Common Properties and Theorems of the DFT

where , , and  and  are arbitrary constants.

Proof:

The proof is readily obtained by using the definition of the DFT.

10.3.2 Time Shift

(10.27)

Proof:

By definition,

and if  is shifted to the right by  sampled points for , we must change the lower and
upper limits of the summation from  to , and from  to  respectively. Then,
replacing  with  in the definition above, we obtain

(10.28)

Now, we let ; then , and when , . Therefore, the above relation
becomes

(10.29)

We must remember, however, that although the magnitudes of the frequency components are
not affected by the shift, a phase shift of  radians is introduced as a result of the time
shift. To prove this, let us consider the relation . Taking the DFT of both sides of
this relation, we obtain

(10.30)

Since both  and  are complex quantities, they can be expressed in magnitude and
phase angle form as

and
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By substitution of these into (10.30), we obtain

(10.31)

and since , it follows that

(10.32)

10.3.3 Frequency Shift

(10.33)

Proof:

 (10.34)

and we observe that the last term on the right side of (10.34) is the same as  except that
m is replaced with . Therefore,

 (10.35)

10.3.4 Time Convolution

(10.36)

Proof:

Since

then,

(10.37)

Next, interchanging the order of the indices  and  in the lower limit of the summation, and
also changing the range of summation from  to  for the bracketed term on the right
side of (10.37), we obtain
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The Sampling Theorem

(10.38)

Now, from the time shifting theorem,

(10.39)

and by substitution into (10.38),

(10.40)

10.3.5 Frequency Convolution

(10.41)

Proof:

The proof is obtained by taking the Inverse DFT, changing the order of the summation, and let-
ting .

10.4  The Sampling Theorem
The sampling theorem, also known as Shannon’s Sampling Theorem, states that if a continuous time
function  is band−limited with its highest frequency component less than , then  can be com-
pletely recovered from its sampled values, if the sampling frequency if equal to or greater than .

For example, if we assume that the highest frequency component in a signal is , this sig-
nal must be sampled at  or higher so that it can be completed specified by
its sampled values. If the sampled frequency remains the same, i.e., , and the highest fre-
quency of this signal is increased to, say , this signal cannot be recovered by any digital−
to−analog converter.

A typical digital signal processing system contains a low−pass analog filter, often called pre−sam-
pling filter, to ensure that the highest frequency allowed into the system, will be equal or less the
sampling rate so that the signal can be recovered. The highest frequency allowed by the pre−sam-
pling filter is referred to as the Nyquist frequency, and it is denoted as .
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If a signal is not band−limited, or if the sampling rate is too low, the spectral components of the
signal will overlap each another and this condition is called aliasing. To avoid aliasing, we must
increase the sampling rate.

A discrete time signal may have an infinite length; in this case, it must be limited to a finite inter-
val before it is sampled. We can terminate the signal at the desired finite number of terms, by mul-
tiplying it by a window function. There are several window functions such as the rectangular, trian-
gular, Hamming, Hanning, Kaiser, etc. Window functions are introduced in Appendix E. To obtain
a truncated sequence, we multiply an infinite sequence by one of these window functions. How-
ever, we must choose a suitable window function; otherwise, the sequence will be terminated
abruptly producing the effect of leakage. As an example of how leakage can occur, let us review
Subsection 8.6.4, Chapter 8, Page 8−30, and the solution of Exercise 8.3, Page 8−50, where the
infinite sequence , or  is multiplied by the window function 
or . We can see that the spectrum spreads or leaks over the neighbor-
hood of . Selection of an appropriate window function to avoid leakage is beyond the scope of
this book, and will not be discussed here.

A third problem that may arise in using the DFT, results from the fact the spectrum of the DFT is
not continuous; it is a discrete function where the spectrum consists of integer multiples of the
fundamental frequency. It is possible, however, that some significant frequency component lies
between two spectral lines and goes undetected. This is called picket−fence effect since we can only
see discrete values of the spectrum. This problem can be alleviated by adding zeros at the end of
the discrete signal, thereby changing the period, which in turn changes the location of the spec-
tral lines.We should remember that the sampling theorem states that the original time sequence
can be completely recovered if the sampling frequency is adequate, but does not guarantee that all
frequency components will be detected.

To gain a better understanding of the sampling frequency , Nyquist frequency , number of
samples , and the periods in the time and frequency domains, we will adopt the following nota-
tions:

These quantities are shown in Figure 10.4. Thus, we have the relations

(10.42)

ω0tcos naTcos A u0 t T+( ) u0 t T–( )–[ ]

A u0 n m+( ) u0 n m–( )–[ ]

ω0±

fs fn

N

N number of samples in time or frequency period=

fs sampling frequency samples per ondsec= =

Tt period of  a periodic discrete time function=

tt  interval between the N samples in time period Tt=

Tf period of  a periodic discrete frequency function=

tf interval between the N samples in frequency period Tf=

tt
Tt
N
-----= fs

1
tt
---= tf

Tf
N
-----= tt

1
Tf
-----= tf

1
Tt
-----=
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The Sampling Theorem

Figure 10.4. Intervals between samples and periods in discrete time and frequency domains

Example 10.4  

The period of a periodic discrete time function is  millisecond, and it is sampled at 
equally spaced points. It is assumed that with this number of samples, the sampling theorem is
satisfied and thus there will be no aliasing.

a.  Compute the period of the frequency spectrum in .

b.  Compute the interval between frequency components in .

c.  Compute the sampling frequency 

d.  Compute the Nyquist frequency 

n

N−1

N

0

0

(End of Period)

(Start of New Period)

N/2(N/2)−1 (N/2)+1

m

N−1
(End of Period)

N
(Start of New Period)

x n[ ]

X m[ ]

Tt

tt

Tf

tf

0.125 1024

KHz

KHz

fs

fn
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Solution:

For this example,  and . Therefore, the time between successive
time components is

Then,

a. the period  of the frequency spectrum is

b. the interval  between frequency components is

c. the sampling frequency  is

d. the Nyquist frequency must be equal or less than half the sampling frequency, that is, 

10.5  Number of Operations Required to Compute the DFT

Let us consider a signal whose highest (Nyquist) frequency is , the sampling frequency is
, and 1024 samples are taken, i.e., . The time required to compute the entire

DFT would be

(10.43)

To compute the number of operations required to complete this task, let us expand the −point
DFT defined as

(10.44)
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1
2
--- 8.2 MHz× 4.1 MHz≤ ≤ ≤

18 KHz
50 KHz N 1024=

t 1024 samples
50 10 3 samples per ondsec×
---------------------------------------------------------------------------- 20.48 ms= =

N

X m[ ] x n[ ]WN
mn

n 0=

N 1–

∑=



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition 10−17
Copyright © Orchard Publications

The Fast Fourier Transform (FFT)

Then,

(10.45)

and it is worth remembering that

(10.46)

Since  is a complex number, the computation of any frequency component , requires 
complex multiplications and  complex additions, that is,  complex arithmetic operations are
required to compute any frequency component of . If we assume that  is real, then

only  of the |  components are unique. Therefore, we would require 
complex operations to compute the entire frequency spectrum. Thus, for an −point

DFT, such as the one with  signal, we would require  complex
operations, and these would have to be completed within  as we found in (10.43).
Although the means of doing this task may be possible with today’s technology, it seems imprac-
tical.

Fortunately, many of the  terms in (10.45) are unity. Moreover, because of some symmetry
properties, the number of complex operations can be reduced considerably. This is possible with
the algorithm known as FFT (Fast Fourier Transform) that was developed by Cooley and Tukey,
and it is very well documented. This algorithm is the subject of the next section.

10.6  The Fast Fourier Transform (FFT)
In this section, we will be making extensive use of the complex rotating vector

(10.47)

and the additional properties of  in (10.48) below.
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(10.48)

We rewrite the array of (10.45) in matrix form as shown in (10.49) below.

(10.49)

This is a complex Vandermonde matrix and it is expressed in a more compact form as

(10.50)

The algorithm that was developed by Cooley and Tukey, is based on matrix decomposition meth-
ods, where the matrix  in (10.50) is factored into  smaller matrices, that is,

(10.51)

where  is chosen as  or .

Each row of the matrices on the right side of (10.51) contains only two non-zero terms, unity and
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(10.52)

The FFT computation begins with matrix  in (10.52). This matrix operates on vector 

producing a new vector, and each component of this new vector, is obtained by one multiplica-
tion and one addition. This is because there are only two non−zero elements on a given row, and
one of these elements is unity. Since there are  components on , there will be  complex
additions and  complex multiplications. This new vector is then operated on by the 

matrix, then on , and so on, until the entire computation is completed. It appears that

the entire computation would require  complex multiplications, and also 

additions for a total of  arithmetic operations. However, since , ,

and other reductions, it is estimated that only about half of these, that is,  total arith-

metic operations are required by the FFT versus the computations required by the DFT.

Under those assumptions, we construct Table 10.3 to compare the percentage of computations
achieved by the use of FFT versus the DFT. 

A plethora of FFT algorithms has been developed and published. They are divided into two main
categories:

Category I 

a. Decimation in Time

b. Decimation in Frequency

TABLE 10.3  DFT and FFT Computations

DFT FFT FFT/DFT

%

8 64 24 37.5

16 256 64 25

32 1024 160 15.6

64 4096 384 9.4

128 16384 896 5.5

256 65536 2048 3.1

512 262144 4608 1.8

1024 1048576 10240 1

2048 4194304 22528 0.5
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Category II

a. In−Place

b. Natural Input−Output (Double−Memory Technique)

To define Category I, we need to refer to the DFT and Inverse DFT definitions. They are
repeated below for convenience.

(10.53)

and

(10.54)

We observe that (10.53) and (10.54) differ only by the factor , and the replacement of 

with . If the DFT algorithm is developed in terms of the direct DFT of (10.53), it is referred
to as decimation in time, and if it is developed in terms of the Inverse DFT of (10.54), it is referred
to as decimation in frequency. In the latter case, the vector

is replaced by its complex conjugate

that is, the sine terms are reversed in sign, and the multiplication by the factor  can be done
either at the input or output.

The Category II algorithm schemes are described in the Table 10.4 along with their advantages
and disadvantages.

TABLE 10.4  In-Place and Natural Input−Output algorithms

Category II Description Advantages Disadvantages

In−Place The process where the result 
of a computation of a new 
vector is stored in the same 
memory location as the result 
of the previous computation

Eliminates the need for 
intermediate storage 
and memory require-
ments 

The output appears in an 
unnatural order and must 
be re−ordered.

Natural
Input−Output
(Double Memory)

The process where the output 
appears in same (natural) 
order as the input

No re−ordering is 
required

Requires more 
internal memory to pre-
serve the natural order
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Now, we will explain how the unnatural order occurs and how it can be re−ordered. 

Consider the discrete time sequence ; its DFT is found from

(10.55)

We assume that  is a power of  and thus, it is divisible by . Then, we can decompose the
sequence  into two subsequences,  which contains the even components, and

 which contains the odd components. In other words, we choose these as

and

for 

Each of these subsequences has a length of  and thus, their DFTs are, respectively,

(10.56)

and

(10.57)

where

(10.58)

For an −point DFT, . Expanding (10.55) for  we obtain 
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(10.60)

Expanding also (10.57) for  and using , we obtain

(10.61)

The vector  is the same in (10.59), (10.60) and (10.61), and . Then,

Multiplying both sides of (10.61) by , we obtain

(10.62)

and from (10.59), (10.60) and (10.62), we observe that
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Continuing the process, we decompose  into  and
. These are sequences of length .

Denoting their DFTs as  and , and using the relation
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The sequences of (10.65) and (10.66) cannot be decomposed further. They justify the statement
made earlier, that each computation produces a vector where each component of this vector, for

 is obtained by one multiplication and one addition. This is often referred to as a
butterfly operation.

Substitution of (10.65) and (10.66) into (10.60), yields

(10.67)

Likewise,  can be decomposed into DFTs of length 2; then,  can be computed from

(10.68)

for . Of course, this procedure can be extended for any  that is divisible by 2.

Figure 10.5 shows the signal flow graph of a decimation in time, in−place FFT algorithm for
, where the input is shuffled in accordance with the above procedure. The subscript  in

 has been omitted for clarity.

Figure 10.5. Signal flow graph of a decimation in time, in-place FFT algorithm, for 

n 1 2 3 … 7, , , ,=

Feven m[ ] Feven1 m[ ] WN
2mFeven2 m[ ]+=

Fodd m[ ] F m[ ]

F m( ) Feven m( ) WN
m Fodd m( )   m+ 0 1 2 … 7, , , ,= =

N 8= N

N 8= N
W

W 0

W 4

W 0

W 4

W 0

W 4

W 0

W 4

W 0

W 1

W 2

W 4

W 2

W 4

W 6

W 0

W 2

W 4

W 6

W 0

W 3

W 5

W 6

W 7

Column 0 (x[n]) Column 1 (N /4 ) Column 2 (N / 2) Column 3 (N)

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

x 0[ ]

x 4[ ]

x 2[ ]

x 6[ ]

x 1[ ]

x 5[ ]

x 3[ ]

x 7[ ] X 7[ ]

X 6[ ]

X 5[ ]

X 4[ ]

X 0[ ]

X 1[ ]

X 2[ ]

X 3[ ]

X[m]

N 8=
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In the signal flow graph of Figure 10.5, the input  appears in Column . The , , and
−point FFTs are in Columns , , and  respectively. 

In simplified form, the output of the node associated with row  and column , indicated as
, is found from

(10.69)

where , , and the exponent  in  is indicated on the signal flow graph.

The binary input words and the bit−reversed words applicable to the this signal flow graph, are
shown in Table 10.5.

We will illustrate the use of (10.69) with the following example.

Example 10.5  

Using (10.69) with the signal flow graph of Figure 10.5, compute the spectral component  in

terms of the inputs  and vectors . Then, verify that the result is the same as that obtained
by direct application of the DFT.

Solution:

The −point FFT appears in Column 1. Using (10.69) we obtain:

TABLE 10.5  Binary words for the signal flow graph of Figure 10.5

n Binary Word Reversed-Bit Word Input Order

0 000 000 x[0]

1 001 100 x[4]

2 010 010 x[2]

3 011 110 x[6]

4 100 001 x[1]

5 101 101 x[5]

6 110 011 x[3]

7 111 111 x[7]

x n[ ] 0 N 4⁄ N 2⁄
N 1 2 3

R C
Y R C,( )

Y R C,[ ]
Y Ri C 1–,[ ]

Dash line

W mY Rj C 1–,[ ]

Solid line

+=                

0 R 7≤ ≤ 0 C 3≤ ≤ m W m

X 3[ ]

x i[ ] W j

N 4⁄
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 (10.70)

The −point FFT appears in Column 2. Using (10.69) we obtain: 

(10.71)

The −point FFT appears at the outputs of Column 3, where

(10.72)

Y 0 1,[ ] x 0[ ] W 0x 4[ ]+ Y 0 0,[ ] W 0Y 1 0,[ ]+= =

Y 1 1,[ ] x 0[ ] W 4x 4[ ]+ Y 0 0,[ ] W 4Y 1 0,[ ]+= =

Y 2 1,[ ] x 2[ ] W 0x 6[ ]+ Y 2 0,[ ] W 0Y 3 0,[ ]+= =

Y 3 1,[ ] x 2[ ] W 4x 6[ ]+ Y 2 0,[ ] W 4Y 3 0,[ ]+= =

Y 4 1,[ ] x 1[ ] W 0x 5[ ]+ Y 4 0,[ ] W 0Y 5 0,[ ]+= =

Y 5 1,[ ] x 1[ ] W 4x 5[ ]+ Y 4 0,[ ] W 4Y 5 0,[ ]+= =

Y 6 1,[ ] x 3[ ] W 0x 7[ ]+ Y 6 0,[ ] W 0Y 7 0,[ ]+= =

Y 7 1,[ ] x 3[ ] W 0x 7[ ]+ Y 6 0,[ ] W 4Y 7 0,[ ]+= =

N 2⁄

Y 0 2,[ ] Y 0 1,[ ] W 0Y 2 1,[ ]+=

Y 1 2,[ ] Y 1 1,[ ] W 2Y 3 1,[ ]+=

Y 2 2,[ ] Y 0 1,[ ] W 4Y 2 1,[ ]+=

Y 3 2,[ ] Y 1 1,[ ] W 6Y 3 1,[ ]+=

Y 4 2,[ ] Y 4 1,[ ] W 0Y 6 1,[ ]+=

Y 5 2,[ ] Y 5 1,[ ] W 2Y 7 1,[ ]+=

Y 6 2,[ ] Y 4 1,[ ] W 4Y 6 1,[ ]+=

Y 7 2,[ ] Y 5 1,[ ] W 6Y 7 1,[ ]+=

N

Y 0 3,[ ] Y 0 2,[ ] W 0Y 4 2,[ ]+=

Y 1 3,[ ] Y 1 2,[ ] W 1Y 5 2,[ ]+=

Y 2 3,[ ] Y 2 2,[ ] W 2Y 6 2,[ ]+=

Y 3 3,[ ] Y 3 2,[ ] W 3Y 7 2,[ ]+=

Y 4 3,[ ] Y 0 2,[ ] W 4Y 4 2,[ ]+=

Y 5 3,[ ] Y 1 2,[ ] W 5Y 5 2,[ ]+=

Y 6 3,[ ] Y 2 2,[ ] W 6Y 6 2,[ ]+=

Y 7 3,[ ] Y 3 2,[ ] W 7Y 7 2,[ ]+=
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With the equations of (10.70), (10.71), and (10.72), we can determine any of the  spectral com-
ponents. Our example calls for ; then, with reference to the signal flow chart of Figure 10.5
and the fourth of the equations in (10.72), 

(10.73)
Also, from (10.71)

(10.74)
and

 (10.75)
Finally, from (10.70)

(10.76)

and making these substitutions into (10.73), we obtain

Rearranging in ascending powers of , we obtain

(10.77)

From the signal flow graph of Figure 10.5, we observe that

and

Therefore, we express (10.77) as

8
X 3[ ]

X 3[ ] Y= 3 3,[ ] Y 3 2,[ ] W 3Y 7 2,[ ]+=

Y 3 2,[ ] Y 1 1,[ ] W 6Y 3 1,[ ]+=

Y 7 2,[ ] Y 5 1,[ ] W 6Y 7 1,[ ]+=

Y 1 1,[ ] Y 0 0,[ ] W 4Y 1 0,[ ]+=

Y 3 1,[ ] Y 2 0,[ ] W 4Y 3 0,[ ]+=

Y 5 1,[ ] Y 4 0,[ ] W 4Y 5 0,[ ]+=

Y 7 1,[ ] Y 6 0,[ ] W 4Y 7 0,[ ]+=

Y 3 3,[ ] Y 3 2,[ ] W 3Y 7 2,[ ]+=

Y 1 1,[ ] W 6Y 3 1,[ ] W 3 Y 5 1,[ ] W 6Y 7 1,[ ]+{ }+ +=

Y 0 0,[ ] W 4Y 1 0,[ ] W 6 Y 2 0,[ ] W 4Y 3 0,[ ]+{ }+ +=

 + W 3 Y 4 0,[ ] W 4Y 5 0,[ ]+( ) W 6 Y 6 0,[ ] W 4Y 7 0,[ ]+( )+{ }

Y 0 0,[ ] W 4Y 1 0,[ ] W 6Y 2 0,[ ] W 10Y 3 0,[ ]+ + +=

 + W 3Y 4 0,[ ] W 7Y 5 0,[ ] W 9Y 6 0,[ ] W 13Y 7 0,[ ]+ + +

W

Y 3 3,[ ] Y 0 0,[ ] W 3Y 4 0,[ ] W 4Y 1 0,[ ] W 6Y 2 0,[ ]+ + +=

 + W 7Y 5 0,[ ] W 9Y 6 0,[ ] W 10Y 3 0,[ ] W 13Y 7 0,[ ]+ + +

Y 0 0,[ ] x 0[ ]= Y 4 0,[ ] x 1[ ]=

Y 1 0,[ ] x 4[ ]= Y 2 0,[ ] x 2[ ]=

Y 5 0,[ ] x 5[ ]= Y 6 0,[ ] x 3[ ]=

Y 3 0,[ ] x 6[ ]= Y 7 0,[ ] x 7[ ]=

Y 3 3,[ ] X 3[ ]=
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(10.78)

We will verify that this expression is correct by the use of the direct DFT of (10.17), that is, 

For  and , we obtain

(10.79)

and from (10.48),

Now, with , and , we obtain . Then,

and by substitution into (10.79),

(10.80)

We observe that (10.80) is the same as (10.78).

The signal flow graph of Figure 10.5, represents a shuffled input, natural output algorithm. Oth-
ers are natural input, natural output, or natural input, shuffled output. These combinations occur
in both decimation in time, and decimation in frequency algorithms.

X 3[ ] x 0[ ] x 1[ ]W 3 x 4[ ]W 4 x 2[ ]W 6+ + +=

 + x 5[ ]W 7 x 3[ ]W 9 x 6[ ]W 10 x 7[ ]W 13+ + +

x 0[ ] x 1[ ]W 3 x 2[ ]W 6 x 3[ ]W 9+ + +=

 + x 4[ ]W 4 x 5[ ]W 7 x 6[ ]W 10 x 7[ ]W 13+ + +

X m[ ] x n( )WN
mn

n 0=

N 1–

∑=

m 3= n 0 1 2 … 7, , , ,=

X 3[ ] x 0[ ] x 1[ ]W 3 x 2[ ]W 6 x 3[ ]W 9+ + +=

 + x 4[ ]W 12 x 5[ ]W 15 x 6[ ]W 18 x 7[ ]W 21+ + +

W kN r+ W r=

N 8= k 1= kN 8=

W 12 W 4    W 15 W 7    W 18 W 10   and   W 21=,=, W 13= =

X 3[ ] x 0[ ] x 1[ ]W 3 x 2[ ]W 6 x 3[ ]W 9+ + +=

 + x 4[ ]W 4 x 5[ ]W 7 x 6[ ]W 10 x 7[ ]W 13+ + +
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10.7 Summary

• The −point DFT is defined as 

where  represents the number of points that are equally spaced in the interval  to  on the
unit circle of the -plane, and .

• The −point Inverse DFT is defined as 

for .

• In general, the discrete frequency transform  is complex, and it is expressed as

The real part  can be computed from

and the imaginary part from

• We can use the fft(x) function to compute the DFT, and the ifft(x) function to compute the
Inverse DFT. 

• The term  is a rotating vector, where the range  is divided into  equal
segments and it is denoted as represent it as , that is, 

and consequently

Accordingly, the DFT pair is normally denoted as

N

X m[ ] x n[ ]e
j2πmn

N
--------–

n 0=

N 1–

∑=

N 0 2π
z m 0 1 2 … N 1–, , , ,=

N

x n[ ] 1
N
---- X m[ ]e

j2πmn
N

--------

m 0=

N 1–

∑=

n 0 1 2 … N 1–, , , ,=

X m[ ]

X m[ ] Re X m[ ]{ } Im X m[ ]{ }+=

Re X m[ ]{ }

Re X m[ ]{ } x 0[ ] x n[ ] 2πmn
N

---------------   for   mcos
n 1=

N 1–

∑+ 0 1 2 … N 1–, , , ,= =

Im X m[ ]{ } x n[ ] 2πmn
N

---------------sin    for   m
n 1=

N 1–

∑– 0 1 2 … N 1–, , , ,= =

e j2π( ) N⁄– 0 θ 2π≤ ≤ 360 N⁄

WN

WN e
j2π
N

--------–
=

WN
1– e

j2π
N

--------
=
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Summary

and

• The correspondence between  and  is denoted as

• If  is an −point real discrete time function, only  of the frequency components of
 are unique.

• The discrete time and frequency functions are defined as even or odd, in accordance with the
relations

• The even and odd properties of the DFT are similar to those of the continuous Fourier trans-
form and are listed in Table 10.2.

• The linearity property of the DFT states that

• The time shift property of the DFT states that

• The frequency shift property of the DFT states that

• The time convolution property of the DFT states that

• The frequency convolution property of the DFT states that

X m[ ] x n( )WN
mn

n 0=

N 1–

∑=

x n[ ] 1
N
---- X m( )WN

m– n

n 0=

N 1–

∑=

x n[ ] X m[ ]

x n[ ] X m[ ]⇔

x n[ ] N N 2⁄
X m[ ]

Even Time Function f N n–[ ] f n[ ]=

Odd Time Function f N n–[ ] f– n[ ]=

Even Frequency Function F N m–[ ] F m[ ]=

Odd Frequency Function F N m–[ ] F– m[ ]=

ax1 n[ ] bx2 n[ ] …+ + aX1 m[ ] bX2 m[ ] …+ +⇔

x n k–[ ] WN
kmX m[ ]⇔

WN
k– mx n[ ] X m k–[ ]⇔

x n[ ]∗h n[ ] X m[ ] H m[ ]⋅⇔

x n[ ] y n[ ]⋅ 1
N
---- X k[ ]Y m k–[ ]

k 0=

N 1–

∑
1
N
---- X m[ ]∗Y m[ ]=⇔
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• The sampling theorem, also known as Shannon’s Sampling Theorem, states that if a continuous
time function  is band-limited with its highest frequency component less than , then 
can be completely recovered from its sampled values, if the sampling frequency if equal to or
greater than .

• A typical digital signal processing system contains a low-pass analog filter, often called pre-sam-
pling filter, to ensure that the highest frequency allowed into the system, will be equal or less
the sampling rate so that the signal can be recovered. The highest frequency allowed by the pre-
sampling filter is referred to as the Nyquist frequency, and it is denoted as .

• If a signal is not band-limited, or if the sampling rate is too low, the spectral components of the
signal will overlap each another and this condition is called aliasing.

• If a discrete time signal has an infinite length, we can terminate the signal at a desired finite
number of terms, by multiplying it by a window function. However, we must choose a suitable
window function; otherwise, the sequence will be terminated abruptly producing the effect of
leakage

• If in a discrete time signal some significant frequency component that lies between two spectral
lines and goes undetected, the picket-fence effect is produced. This effect can be alleviated by
adding zeros at the end of the discrete signal, thereby changing the period, which in turn
changes the location of the spectral lines.

• The number of operations required to compute the DFT can be significantly reduced by the
FFT algorithm.

• The Category I FFT algorithms are classified either as decimation it time or decimation in fre-
quency. Decimation in time implies that DFT algorithm is developed in terms of the direct
DFT, whereas decimation in frequency implies that the DFT is developed in terms of the
Inverse DFT.

• The Category II FFT algorithms are classified either as in-place or natural input−output. In-
place refers to the process where the result of a computation of a new vector is stored in the
same memory location as the result of the previous computation. Natural input−output refers to
the process where the output appears in same (natural) order as the input.

• The FFT algorithms are usually shown in a signal flow graph. In some signal flow graphs the
input is shuffled and the output is natural, and in others the input is natural and the output is
shuffled. These combinations occur in both decimation in time, and decimation in frequency
algorithms.

f t( ) W f t( )

2W

fn
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Exercises

10.8  Exercises

1. Compute the DFT of the sequence ,  

2. A square waveform is represented by the discrete time sequence

 and 

Use MATLAB to compute and plot the magnitude  of this sequence.

3.  Prove that

     a.  

     b.  

4. The signal flow below is a decimation in time, natural−input, shuffled−output type FFT algo-
rithm. Using this graph and relation (10.69), compute the frequency component . Ver-
ify that this is the same as that found in Example 10.5.

5. The signal flow graph below is a decimation in frequency, natural input, shuffled output type
FFT algorithm. There are two equations that relate successive columns. The first is

and it is used with the nodes where two dashed lines terminate on them.

The second equation is

x 0[ ] x 1[ ] 1= = x 2[ ] x 3[ ] 1–= =

x 0[ ] x 1[ ] x 2[ ] x 3[ ] 1= = = = x 4[ ] x 5[ ] x 6[ ] x 7[ ] 1–= = = =

X m[ ]

x n[ ] 2πkn
N

-------------cos 1
2
--- X m k–[ ] X m k+[ ]+{ }⇔

x n[ ] 2πkn
N

-------------sin 1
j2
----- X m k–[ ] X m k+[ ]+{ }⇔

X 3[ ]

W 0

W 0

W 0

W 0

W 4

W 4

W 4

W 4

W 0

W 4

W 2

W 1

W 0

W 4

W 4

W 2

W 2

W 6

W 6

W 0

W 6

W 5

W 3

W 7

x 0[ ]

x 1[ ]

x 2[ ]

x 3[ ]

x 4[ ]

x 5[ ]

x 6[ ]

x 7[ ] X 7[ ]

X 3[ ]

X 5[ ]

X 1[ ]

X 0[ ]

X 4[ ]

X 2[ ]

X 6[ ]

Ydash R C,( ) Ydash Ri C 1–,( ) Ydash Rj C 1–,( )+=

Ysol R C,( ) W m Ysol Ri C 1–,( ) Ysol Rj C 1–,( )–[ ]=
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and it is used with the nodes where two solid lines terminate on them. The number inside the
circles denote the power of , and the minus (−) sign below serves as a reminder that the
bracketed term of the second equation involves a subtraction. Using this graph and the above
equations, compute the frequency component . Verify that this is the same as in Example
10.5.

6. Plot the Fourier transform of the rectangular pulse shown below, using the MATLAB fft func-
tion. Then, use the ifft function to verify that the inverse transformation produces the rectan-
gular pulse.

7. Plot the Fourier transform of the triangular pulse shown below using the MATLAB fft func-
tion. Then, use the ifft function to verify that the inverse transformation produces the rectan-
gular pulse.

WN

X 3[ ]

W 0

W 1

W 2

W 3

W 0

W 0

W 2

W 0

W 2

W 0

W 0

W 0

x 0[ ]

x 1[ ]

x 2[ ]

x 3[ ]

x 4[ ]

x 5[ ]

x 6[ ]

x 7[ ] X 7[ ]

X 3[ ]

X 5[ ]

X 1[ ]

X 0[ ]

X 4[ ]

X 2[ ]

X 6[ ]

−

−

− −

−

− −

− −

− − −

1

−1 1
t

0

f t( )

1

−1 1
t

0

f t( )
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Solutions to End−of−Chapter Exercises

10.9 Solutions to End−of−Chapter Exercises
1.

where  and , . Then,

for 

: 

: 

: 

: 

Check with MATLAB:

fn=[1  1  −1  −1]; Fm=fft(fn)

Fm =
    0   2.0000 - 2.0000i   0   2.0000 + 2.0000i

F m[ ] f n( )WN
mn

n 0=

N 1–

∑=

N 4= f 0[ ] f 1[ ] 1= = f 2[ ] f 3[ ] 1–= =

F m[ ] f n( )W4
mn

n 0=

3

∑ f 0[ ]W4
m 0[ ] f 1[ ]W4

m 1[ ] f 2[ ]W4
m 2[ ] f 3[ ]W4

m 3[ ]+ + += =

m 0 1 2 and 3, , ,=

m 0=

F 0( ) 1( ) e0( )⋅ 1( ) e0( )⋅ 1–( ) e0( )⋅ 1–( ) e0( )⋅+ + +=

1( ) 1( )⋅ 1( ) 1( )⋅ 1–( ) 1( )⋅ 1–( ) 1( )⋅+ + + 0==

m 1=

F 1( ) 1( ) e0( )⋅ 1( ) e j2π 4⁄–( ) 1×( )⋅ 1–( ) e j2π 4⁄–( ) 2×( )⋅ 1–( ) e j2π 4⁄–( ) 3×( )⋅+ + +=

1 π
2
---cos j π

2
---sin– π j πsin+cos– 3π

2
------cos– j 3π

2
------sin+ +=

1 0 j– 1 0 0– j–+ + + 2 j2–==

m 2=

F 2( ) 1( ) e0( )⋅ 1( ) e j2π 4⁄–( ) 2×( )⋅ 1–( ) e j2π 4⁄–( ) 4×( )⋅ 1–( ) e j2π 4⁄–( ) 6×( )⋅+ + +=

1 πcos j πsin– 2π j 2πsin+cos– 3πcos– j 3πsin+ +=

1 1– 0– 1– 0 1 0+ + + 0==

m 3=

F 3( ) 1( ) e0( )⋅ 1( ) e j2π 4⁄–( ) 3×( )⋅ 1–( ) e j2π 4⁄–( ) 6×( )⋅ 1–( ) e j2π 4⁄–( ) 9×( )⋅+ + +=

1 3π
2

------cos j 3π
2

------sin– 3π j 3πsin+cos– 3π
2

------cos– j 3π
2

------sin+ +=

1 0 j 1 0 0– j+ + + + + 2 j2+==
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2.
 and 

fn=[1  1  1  1  -1  -1  -1  -1]; magXm=abs(fft(fn)); fprintf(' \n');...
fprintf('magXm0 = %4.2f \t', magXm(1)); fprintf('magXm1 = %4.2f \t', magXm(2));...
fprintf('magXm2 = %4.2f \t', magXm(3)); fprintf('magXm3 = %4.2f \t', magXm(4)); fprintf('\n');...
fprintf('magXm4 = %4.2f \t', magXm(5)); fprintf('magXm5 = %4.2f \t', magXm(6));...
fprintf('magXm6 = %4.2f \t', magXm(7)); fprintf('magXm7 = %4.2f \t', magXm(8))

magXm0 = 0.00 magXm1 = 5.23 magXm2 = 0.00 magXm3 = 2.16  
magXm4 = 0.00 magXm5 = 2.16 magXm6 = 0.00 magXm7 = 5.23

The MATLAB stem command can be used to plot discrete sequence data. For this Exercise we
use the script

fn=[1  1  1  1  −1  −1  −1  −1]; stem(abs(fft(fn)))

and we obtain the plot below.

3. 

        

From the frequency shift property of the DFT 

  (1)
Then,

  (2)

Adding (1) and (2) and multiplying the sum by  we obtain

x 0[ ] x 1[ ] x 2[ ] x 3[ ] 1= = = = x 4[ ] x 5[ ] x 6[ ] x 7[ ] 1–= = = =

x n[ ] 2πkn
N

-------------cos 1
2
--- X m k–[ ] X m k+[ ]+{ }⇔ x n[ ] 2πkn

N
-------------sin 1

j2
----- X m k–[ ] X m k+[ ]+{ }⇔

WN
k– mx n[ ] X m k–[ ]⇔

WN
kmx n[ ] X m k+[ ]⇔

1 2⁄
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and thus

Likewise, subtracting (2) from (1) and multiplying the difference by  we obtain

4.

  (1)
where

and

Going backwards (to the left) we find that

WN
k– m WN

km+( ) x n[ ]( )
2

-------------------------------------------------------- e j2πkn N⁄ e j– 2πkn N⁄+( )
2

-------------------------------------------------------x n[ ] x n[ ] 2πkn
N

-------------cos= =

x n[ ] 2πkn
N

-------------cos 1
2
--- X m k–[ ] X m k+[ ]+[ ]⇔

1 j2⁄

WN
k– m WN

km–( ) x n[ ]( )
j2

-------------------------------------------------------- e j2πkn N⁄ e j– 2πkn N⁄–( )
j2

------------------------------------------------------x n[ ] x n[ ] 2πkn
N

-------------sin= =

W 0

W 0

W 0

W 0

W 4

W 4

W 4

W 4

W 0

W 4

W 2

W 1

W 0

W 4

W 4

W 2

W 2

W 6

W 6

W 0

W 6

W 5

W 3

W 7

x 0[ ]

x 1[ ]

x 2[ ]

x 3[ ]

x 4[ ]

x 5[ ]

x 6[ ]

x 7[ ] X 7[ ]

X 3[ ]

X 5[ ]

X 1[ ]

X 0[ ]

X 4[ ]

X 2[ ]

X 6[ ]

F 3( ) X 3( ) Y 6 3,( ) Y 6 2,( ) WN
3 Y 7 2,( )+= = =

Y 6 2,( ) Y 4 1,( ) WN
6 Y 6 1,( )+=

Y 7 2,( ) Y 5 1,( ) WN
6 Y 7 1,( )+=

Y 4 1,( ) Y 0 0,( ) WN
4 Y 4 0,( )+=

Y 6 1,( ) Y 2 0,( ) WN
4 Y 6 0,( )+=

Y 5 1,( ) Y 1 0,( ) WN
4 Y 5 0,( )+=

Y 7 1,( ) Y 3 0,( ) WN
4 Y 7 0,( )+=
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and by substitution into (1)

  (2)

From the DFT definition

  (3)

By comparison, we see that the first 4 terms of (3) are the same the first, second, fourth, and
sixth terms of (2) since , that is, , , and so on.

The remaining terms in (2) and (3) are also the same since  and thus ,

, , and .

5.
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Solutions to End−of−Chapter Exercises

We are asked to compute  only. However, we will derive all equations as we did in Exam-
ple 10.5. 

Column 1 (C=1):

  (1)

Column 2 (C=2):

  (2)

Column 3 (C=3):

  (3)

  (4)

F 3( )

Y 0 1,( ) Y 0 0,( ) Y 4 0,( )+=

Y 1 1,( ) Y 1 0,( ) Y 5 0,( )+=

Y 2 1,( ) Y 2 0,( ) Y 6 0,( )+=

Y 3 1,( ) Y 3 0,( ) Y 7 0,( )+=

Y 4 1,[ ] WN
0 Y 0 0,( ) Y– 4 0,( )[ ]=

Y 5 1,[ ] WN
1 Y 1 0,( ) Y– 5 0,( )[ ]=

Y 6 1,[ ] WN
2 Y 2 0,( ) Y– 6 0,( )[ ]=

Y 7 1,[ ] WN
3 Y 3 0,( ) Y– 7 0,( )[ ]=

Y 0 2,( ) Y 0 1,( ) Y 2 1,( )+=

Y 1 2,( ) Y 1 1,( ) Y 3 1,( )+=

Y 2 2,( ) WN
0 Y 0 1,( ) Y– 2 1,( )[ ]=

Y 3 2,( ) WN
2 Y 1 1,( ) Y– 3 1,( )[ ]=

Y 4 2,[ ] Y 4 1,( ) Y 6 1,( )+=

Y 5 2,[ ] Y 5 1,( ) Y 7 1,( )+=

Y 6 2,[ ] WN
0 Y 4 1,( ) Y– 6 1,( )[ ]=

Y 7 2,[ ] WN
2 Y 5 1,( ) Y– 7 1,( )[ ]=

Y 0 3,( ) Y 0 2,( ) Y 1 2,( )+=

Y 1 3,( ) WN
0 Y 0 2,( ) Y– 1 2,( )[ ]=

Y 2 3,( ) Y 2 2,( ) Y 3 2,( )+=

Y 3 3,( ) WN
0 Y 2 2,( ) Y– 3 2,( )[ ]=

Y 4 3,[ ] Y 4 2,( ) Y 5 2,( )+=

Y 5 3,[ ] WN
0 Y 4 2,( ) Y– 5 2,( )[ ]=

Y 6 3,[ ] Y 6 2,( ) Y 7 2,( )+=

Y 7 3,[ ] WN
0 Y 6 2,( ) Y– 7 2,( )[ ]=

F 3( ) X 3( ) Y 6 3,( ) Y 6 2,( ) Y 7 2,( )+= = =
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where

and

From (1)

and by substitution into (4)

  (5)

From Exercise 4, 

  (6)

Since ,  and  (see proof below), we see that

, , , , , and . Therefore,
(5) and (6) are the same.

Proof that :

6.
The rectangular pulse is produced with the MATLAB script below.

x=[linspace(−2,−1,100) linspace(−1,1,100) linspace(1,2,100)];...
y=[linspace(0,0,100) linspace(1,1,100) linspace(0,0,100)]; plot(x,y)

and the FFT is produced with

plot(x, fft(y))

The Inverse FFT is produced with

plot(x,ifft(fft(y)))
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Solutions to End−of−Chapter Exercises

The original rectangular pulse, its FFT, and the Inverse FFT are shown below.

7.
The triangular pulse is produced with the MATLAB script below.

x=linspace(−1,1,100); y=[linspace(0,1,50) linspace(1,0,50)]; plot(x,y)

and the FFT is produced with

plot(x, fft(y))

The Inverse FFT is produced with

plot(x,ifft(fft(y)))
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The original triangular pulse, its FFT, and the Inverse FFT are shown below.
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Chapter 11

Analog and Digital Filters

his chapter is an introduction to analog and digital filters. It begins with the basic analog fil-
ters, transfer functions, and frequency response. The magnitude characteristics of Butter-
worth and Chebychev filters and conversion of analog to equivalent digital filters using the

bilinear transformation is presented. It concludes with design examples using MATLAB® and
Simulink® when applicable.

11.1 Filter Types and Classifications
Analog filters are defined over a continuous range of frequencies. They are classified as low−pass,
high−pass, band−pass and band−elimination (stop−band). The ideal magnitude characteristics of each
are shown in Figure 11.1. The ideal characteristics are not physically realizable; we will see that
practical filters can be designed to approximate these characteristics.

Figure 11.1. Magnitude characteristics of the types of filters

Another, less frequently mentioned filter, is the all−pass or phase shift filter. It has a constant mag-
nitude response but is phase varies with frequency. Please refer to Exercise 4, Page 11−94, at the
end of this chapter.

A digital filter, in general, is a computational process, or algorithm that converts one sequence of
numbers representing the input signal into another sequence representing the output signal.
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Accordingly, a digital filter can perform functions as differentiation, integration, estimation, and,
of course, like an analog filter, it can filter out unwanted bands of frequency.

Analog filter functions have been used extensively as prototype models for designing digital filters
and, therefore, we will present them first.

11.2 Basic Analog Filters
An analog filter can also be classified as passive or active. Passive filters consist of passive devices
such as resistors, capacitors and inductors. Active filters are, generally, operational amplifiers
with resistors and capacitors connected to them externally. We can find out whether a filter, pas-
sive or active, is a low−pass, high−pass, etc., from its the frequency response that can be obtained
from its transfer function. The procedure is illustrated in Subsections 11.2.1 through 11.2.4
below.

11.2.1 RC Low−Pass Filter
The RC network shown in Figure 11.2 is a basic analog low−pass filter. We will derive expressions
for its magnitude and phase.

Figure 11.2. Basic low−pass RC network

Application of the voltage division expression yields

or

(11.1)

The magnitude of (11.1) is

 (11.2)

and the phase angle, also known as the argument, is

(11.3)
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 arg=arg ωRC( )1–tan–= =
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Basic Analog Filters

We can obtain a quick sketch for the magnitude  versus  by evaluating (11.2) at
, , and . Thus, 

as , 

for , 

and as , 

We will use the MATLAB script below to plot  versus radian frequency . This is shown
in Figure 11.3 where, for convenience, we let . 

w=0:0.02:10; RC=1; magGjw=1./sqrt(1+w.*RC); semilogx(w,magGjw);...
xlabel('Frequency in rad/sec − log scale'); ylabel('Magnitude of Vout/Vin');...
title('Magnitude Characteristics of basic RC low−pass filter'); grid

 
Figure 11.3. Magnitude characteristics of the basic RC low−pass filter with 

We can also obtain a quick sketch for the phase angle, i.e.,  versus  by evalu-
ating (11.3) at , , ,  and . Thus, 
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As , 

and as ,

We will use the MATLAB script below to plot the phase angle  versus radian frequency . This
is shown in Figure 11.4 where, for convenience, we let .

w=0:0.02:10; RC=1; phaseGjw=−atan(w.*RC).*180./pi; semilogx(w,phaseGjw);...
xlabel('Frequency in rad/sec − log scale'); ylabel('Phase of Vout/Vin − degrees');...
title('Phase Characteristics of basic RC low−pass filter'); grid

 
Figure 11.4. Phase characteristics of the basic RC low−pass filter with 

11.2.2 RC High−Pass Filter
The RC network shown in Figure 11.5 is a basic analog high−pass filter. We will derive expres-
sions for its magnitude and phase.

Figure 11.5. Basic high−pass RC network

Application of the voltage division expression yields
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Basic Analog Filters

 (11.4)

The magnitude of (11.4) is

(11.5)

and the phase angle or argument, is

(11.6)

We can obtain a quick sketch for the magnitude  versus  by evaluating (11.5) at
, , and . Thus,

As ,

For ,

and as ,

We will use the MATLAB script below to plot  versus radian frequency . This is shown
in Figure 11.6 where, for convenience, we let . 

Figure 11.6. Magnitude characteristics of the basic RC high−pass filter with 
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w=0:0.02:100; RC=1; magGjw=1./sqrt(1+1./(w.*RC).^2); semilogx(w,magGjw);...
xlabel('Frequency in rad/sec − log scale'); ylabel('Magnitude of Vout/Vin');...
title('Magnitude Characteristics of basic RC high−pass filter'); grid

We can also obtain a quick sketch for the phase angle, i.e.,  versus , by evalu-
ating (11.6) at , , , , and . Thus,

As ,

For ,

For , 

As , 

and as ,

We will use the MATLAB script below to plot the phase angle  versus radian frequency . This
is shown in Figure 11.7 where, for convenience, we let .

w=0:0.02:10; RC=1; phaseGjw=atan(1./(w.*RC)).*180./pi; semilogx(w,phaseGjw);...
xlabel('Frequency in rad/sec − log scale'); ylabel('Phase of Vout/Vin − degrees');...
title('Phase Characteristics of basic RC high−pass filter'); grid

Figure 11.7. Phase characteristics of an RC high−pass filter with 
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Basic Analog Filters

11.2.3 RLC Band−Pass Filter

The RLC network shown in Figure 11.8 is a basic analog band−pass filter.* We will derive expres-
sions for its magnitude and phase.

Figure 11.8. Basic band−pass RLC network

Application of the voltage division expression yields

and thus

(11.7)

There is no need to express relation (11.7) in magnitude and phase form. We will make use of
the abs(x) and angle(x) MATLAB functions for the magnitude and phase plots.

We will use the MATLAB script below to plot  versus radian frequency . This is shown
in Figure 11.9 where, for convenience, we let , and thus (11.7) simplifies to:

(11.8)

w=0:0.02:100;  magGjw=abs(−j.*w./(w.^2−j.*w−1)); semilogx(w,magGjw);...
xlabel('Frequency in rad/sec − log scale'); ylabel('Magnitude of Vout/Vin');...
title('Magnitude Characteristics of basic RLC band−pass filter'); grid

The plot for the magnitude of (11.8) is shown in Figure 11.9.

To plot the phase of (11.8), we use the MATLAB script below.

w=0:0.02:100;  phaseGjw=angle(−j.*w./(w.^2−j.*w−1)).*180./pi; semilogx(w,phaseGjw);...
xlabel('Frequency in rad/sec − log scale'); ylabel('Phase of Vout/Vin − degrees');...
title('Phase Characteristics of basic RLC band−pass filter'); grid

The plot for the phase of (11.8) is shown in Figure 11.10.

* This is the same network as (a) in Exercise 7, Chapter 4, Page 4−22.

R
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G jω( )
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---------- R

jωL 1+ jωC R+⁄
-------------------------------------------- jωRC

ω2L– C 1 jωRC+ +
------------------------------------------------ j– ω R L⁄( )

ω2 jω R L⁄( )– 1 LC⁄–
--------------------------------------------------------= = = =

G jω( ) ω
R L C 1= = =

G jω( ) j– ω

ω2 jω– 1–
---------------------------=
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Figure 11.9. Magnitude characteristics of the basic RLC band−pass filter with 

Figure 11.10. Phase characteristics of the basic RLC band−pass filter with 

11.2.4 RLC Band−Elimination Filter

The RLC network shown in Figure 11.11 is a basic analog band−elimination filter.* We will
derive expressions for its magnitude and phase.

Application of the voltage division expression yields

* This is the same network as (b) in Exercise 7, Chapter 4, Page 4−22. A band−elimination filter is also referred to as a
band−stop filter or notch filter.
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Basic Analog Filters

Figure 11.11. Basic band−elimination RLC network

and thus

(11.9)

There is no need to express relation (11.9) in magnitude and phase form. As in the previous sub-
section, we will make use of the abs(x) and angle(x) MATLAB functions for the magnitude and
phase plots.

We will use the MATLAB script below to plot  versus radian frequency . For conve-
nience, we let , and thus (11.9) simplifies to:

(11.10)

w=0:0.02:100;  magG=abs((w.^2−1)./(w.^2−j.*w−1)); semilogx(w,magG); grid

The plot for the magnitude of (11.10) is shown in Figure 11.12. 

Figure 11.12. Magnitude characteristics of the basic RLC band−elimination filter with 

To plot the phase of (11.10), we use the MATLAB script below.

w=0:0.02:100; phaseGjw=angle((w.^2−1)./(w.^2−j.*w−1)).*180./pi; semilogx(w,phaseGjw);...
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xlabel('Frequency in rad/sec − log scale'); ylabel('Phase of Vout/Vin − degrees');...
title('Phase Characteristics of basic RLC band−elimination filter'); grid

The plot for the phase of (11.10) is shown in Figure 11.13.

Figure 11.13. Phase characteristics of the basic RLC band−elimination filter with 

Other passive filter networks are presented as end−of−chapter exercises in Chapter 4. Examples
of active low−pass filters are presented in Figure 4.20, Chapter 4, Page 4−15, and at the end of this
chapter. In the next section we introduce filter prototypes and use these as a basis for filter
design.

11.3 Low−Pass Analog Filter Prototypes
In this section, we will use the analog low−pass filter as a basis. We will see later that, using trans-
formations, we can derive high−pass and the other types of filters from a basic low−pass filter. We
will discuss the Butterworth, Chebyshev Type I, Chebyshev Type II also known as Inverted Chebyshev,
and Cauer also known as elliptic filters.

The first step in the design of an analog low−pass filter is to derive a suitable magnitude−squared

function , and from it derive a  function such that

(11.11)

Since , the square of the magnitude of a complex number can be expressed as that
number and its complex conjugate. Thus, if the magnitude is , then

 (11.12)

Now,  can be considered as  evaluated at , and thus (11.11) is justified. Also,
since  is understood to represent the magnitude, it needs not be enclosed in vertical lines.
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Not all magnitude−squared functions can be decomposed to  and  rational functions;
only even functions of , positive for all , and proper rational functions* can satisfy (11.11).

Example 11.1  
It is given that

Compute .

Solution:

Since

it follows that

and

Therefore,

The general form of the magnitude−square function  is

(11.13)

where  is the DC gain,  and  are constant coefficients, and  is a positive integer denoting

the order of the filter. Once the magnitude−square function  is known, we can derive 

from (11.11) with the substitution  or , that is,

* It was stated earlier, that a rational function is said to be proper if the largest power in the denominator is equal to or
larger than that of the numerator.
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--------------------------=
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----------------------------- 3s2 5– s 7+
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--------------------------⋅ 9s4 17s2 49+ +

s4 4s2– 36+
--------------------------------------= =
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--------------------------------------

s jω=
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--------------------------------------= = =
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(11.14)

In the simplest low−pass filter, the DC gain of the magnitude−square function is unity. In this case
(11.13) reduces to

(11.15)

and at high frequencies can be approximated as

(11.16)

The attenuation rate of this approximation is  or . To understand
this, let us review the definitions of octave and decade. 

Consider two frequencies  and , and let

(11.17)

If these frequencies are such that , we say that these frequencies are separated by one
octave, and if , we say that they are separated by one decade.

To compute the attenuation rate of (11.16), we take the square root of both sides. Then, 

(11.18)

Taking the common log of both sides of (11.18) and multiplying by 20, we obtain

(11.19)

or
(11.20)

Relation (11.20) is is an equation of a straight line with , and
 as shown in Figure 11.14.

The procedure of finding the transfer function  from the magnitude−square function ,
is illustrated with the Example 11.2 below.
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–=
=
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------------------------------------------------------------------------=
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--------------≈
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u2 u1– log10ω2 log10ω1– log10
ω2
ω1
------= =

ω2 2ω1=
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A ω( )
b0 ak⁄

ωk
------------------ Cons ttan

ωk
----------------------- B

ωk
------= = =

20log10A ω( ) 20log10B 20log10ωk– 20klog10ω– 20log10B+= =

A ω( )dB 20klog10ω– 20log10B+=

slope 20k  dB decade⁄–=
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Figure 11.14. The  line

Example 11.2  
Given the magnitude−square function

(11.21)

derive a suitable transfer function 

Solution:

From relation (11.14),

(11.22)

This function has zeros at , and poles at  and .

There is no restriction on the zeros but, for stability*, we select the left−half −plane poles. We
must also select the gain constant such that .

Let
(11.23)

We must find  such that . From (11.21), 

* Generally, a system is said to be stable if a finite input produces a finite output. Alternately, a system is stable if the
impulse response  vanishes after a sufficiently long time. Stability is discussed in Feedback and Control Systems text-
books.
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or

From (11.23),

and for  we must have,

or

By substitution into (11.23), we obtain

11.3.1 Butterworth Analog Low−Pass Filter Design

In this subsection, we will consider the Butterworth low−pass filter* whose magnitude−squared
function is

(11.24)

where  is a positive integer, and  is the cutoff ( ) frequency. Figure 11.15 is a plot of the
relation (11.24) for .

Figure 11.15. Butterworth low−pass filter magnitude characteristics

* The frequency response of the Butterworth filter is maximally flat (has no ripples) in the passband, and rolls off
towards zero in the stopband. When viewed on a logarithmic Bode plot, the response slopes off linearly towards
negative infinity.
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The plot of Figure 11.15 was created with the following MATLAB script:

w_w0=0:0.02:3; Aw2k1=sqrt(1./(w_w0.^2+1)); Aw2k2=sqrt(1./(w_w0.^4+1));...
Aw2k4=sqrt(1./(w_w0.^8+1)); Aw2k8=sqrt(1./(w_w0.^16+1));...
plot(w_w0,Aw2k1,w_w0,Aw2k2,w_w0,Aw2k4,w_w0,Aw2k8);...
xlabel('Normalized Frequency (ratio of actual to cutoff)');...
ylabel('Magnitude A (square root of relation (11.24)');...
title('Butterworth Analog Low−Pass Filter characteristics for k=1, 2, 4, and 8'); grid

All Butterworth filters have the property that all poles of the transfer functions that describes
them, lie on a circumference of a circle of radius , and they are  radians apart. Thus, if

, the poles start at zero radians, and if , they start at . But regardless
whether  is odd or even, the poles are distributed in symmetry with respect to the  axis. For
stability, we choose the left half−plane poles to form . 

We can find the  roots of a the complex number  by DeMoivre’s theorem. This theorem states
that 

(11.25)

Example 11.3  

Derive the transfer function  for the third order ( ) Butterworth low−pass filter with
normalized cutoff frequency .

Solution:

With  and , (11.24) simplifies to

(11.26)

With the substitution , (11.26) becomes

(11.27)

Then,  and by DeMoivre’s theorem, with ,

Thus,
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k jω
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nth s
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As expected, these six poles lie on the circumference of the circle with radius  as shown
in Figure 11.16.

Figure 11.16. Location of the poles for the transfer function of Example 11.3

The transfer function  is formed with the left half−plane poles , , and . Then,

(11.28)

We use MATLAB to express the denominator as a polynomial.

syms s; den=(s+1/2−sqrt(3)*j/2)*(s+1)*(s+1/2+sqrt(3)*j/2)

den =
 (s+1/2-1/2*i*3^(1/2))*(s+1)*(s+1/2+1/2*i*3^(1/2))

expand(den)

ans =
s^3+2*s^2+2*s+1

Therefore, (11.28) simplifies to

(11.29)

The gain  is found from  or  and . Thus,  and

(11.30)

and this is the transfer function  for the third order ( ) Butterworth low−pass filter with
normalized cutoff frequency .
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The general form of any analog low−pass (Butterworth, Chebyshev, Elliptic, etc.) filter is

(11.31)

The pole locations and the coefficients of the corresponding denominator polynomials, have
been derived and tabulated by Weinberg in Network Analysis and Synthesis, McGraw−Hill.

Table 11.1 shows the first through the fifth order coefficients for Butterworth analog low−pass fil-
ter denominator polynomials with normalized frequency .

We can also use the MATLAB buttap and zp2tf functions to derive the coefficients. The buttap
function returns the zeros, poles, and gain for an  order normalized prototype Butterworth
analog low−pass filter. The resulting filter has  poles around the unit circle in the left half
plane, and no zeros. The zp2tf function performs the zero−pole to transfer function conversion.

Example 11.4  

Use MATLAB to derive the numerator  and denominator  coefficients for the third−order
Butterworth low−pass filter prototype with normalized cutoff frequency*. 

Solution:

[z,p,k]=buttap(3); [b,a]=zp2tf(z,p,k)

b =
     0     0     0     1
a =
    1.0000    2.0000    2.0000    1.0000

We observe that the denominator coefficients are the same as in Table 11.1.

TABLE 11.1  Values for the coefficients  in (11.31)

Coefficients of Denominator Polynomial for Butterworth Low-Pass Filters
Order a5 a4 a3 a2 a1 a0

1 1
2 1 1.4142136 1
3 1 2 2 1
4 2.6131259 3.1442136 2.6131259 1 1
5 1 3.2360680 5.2360680 5.2360680 3.2360680 1

* Henceforth, normalized cutoff frequency will be understood to be 

G s( ) lp
b0

aksk … a2s2 a1s a0+ + + +
---------------------------------------------------------------=

ωC 1  rad s⁄=

ai

Nth
N

b a

ωC 1  rad s⁄=
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Table 11.2 lists the factored forms of the denominator polynomials in terms of linear and qua-
dratic factors with normalized frequency . 

The equations shown in Table 11.2 can be derived from

(11.32)

where the factor  is to ensure that , and  denotes the poles on the left half of the
−plane. They can be found from

(11.33)

We must remember that the factors in Table 11.2 apply only when the cutoff frequency is nor-
malized to . If , we must scale the transfer function appropriately. 

We can convert to the actual transfer function using the relation

and since, usually , 

TABLE 11.2  Factored forms for Butterworth low−pass filters

Denominator in Factored form for Butterworth Low−Pass Filters with 
Denominator of Equation (11.27)
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(11.34)

that is, we replace  with 

Quite often, we require that , that is, in the stop band of the low−pass filter, the attenua-
tion to be larger than , i.e., we require a sharper cutoff. As we have seen from the
plots of Figure 11.15, Page 11−14, the Butterworth low−pass filter cutoff becomes sharper for
larger values of . Accordingly, we generate the plot for different values of  shown in Figure
11.17 using the MATLAB script below.

w_w0=1:0.02:10; dBk1=20.*log10(sqrt(1./(w_w0.^2+1)));...
dBk2=20.*log10(sqrt(1./(w_w0.^4+1))); dBk3=20.*log10(sqrt(1./(w_w0.^6+1)));...
dBk4=20.*log10(sqrt(1./(w_w0.^8+1))); dBk5=20.*log10(sqrt(1./(w_w0.^10+1)));...
dBk6=20.*log10(sqrt(1./(w_w0.^12+1))); dBk7=20.*log10(sqrt(1./(w_w0.^14+1)));...
dBk8=20.*log10(sqrt(1./(w_w0.^16+1))); semilogx(w_w0,dBk1,w_w0,dBk2,w_w0,dBk3,...
w_w0,dBk4,w_w0,dBk5,w_w0,dBk6,w_w0,dBk7,w_w0,dBk8);...
xlabel('Normalized Frequency (rads/sec) − log scale'); ylabel ('Magnitude Response (dB)');...
title('Magnitude Attenuation as a Function of Normalized Frequency');...
set(gca, 'XTick', [1  2  3  4  5  6  7  8  9  10]); grid

Figure 11.17. Attenuation for different values of k

Figure 11.17 indicates that for  the attenuation is , for  the attenua-
tion is , and so on.
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Example 11.5  

Using the attenuation curves of Figure 11.17, derive the transfer function of a Butterworth low−
pass analog filter with pass band bandwidth of , and attenuation in the stop band at least

 for frequencies larger than .

Solution:

We refer to Figure 11.17 and at , we see that the vertical line at this value
crosses the  curve at approximately , and the  curve at approximately

. Since we require that the attenuation be at least , we use the attenuation corre-
sponding to the  curve. Accordingly, we choose a fourth−order Butterworth low−pass filter
whose normalized transfer function, from Table 11.2, is

(11.35)

and since , we replace  with . Then,

 

(11.36)

Of course, our objective is to learn how to design a circuit (passive or active), that will satisfy a
transfer function such as the one above. Fortunately, the work for us has been done by others
who have developed analog filter prototypes, both passive and active. 

Some good references are:

Electronic Filter Design Handbook, Williams and Taylor, McGraw−Hill
Electronic Engineers’ Handbook, Fink and Christiansen, McGraw−Hill
Reference Data for Engineers Handbook, Van Valkenburgh, Howard Sams

As an example, the Reference Data for Engineers Handbook provides the circuit of Figure 11.18
which is known as Second Order Voltage Controlled Voltage Source (VCVS) low−pass filter.
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Figure 11.18. VCVS low−pass filter (Courtesy Reference Data for Engineers Handbook)

The transfer function of the second order VCVS low−pass filter of Figure 11.18 is given as

(11.37)

This is referred to as a second order all−pole* approximation to the ideal low−pass filter with cut-
off frequency , where  is the gain, and the coefficients  and  are provided by tables. 

For a non-inverting positive gain , the circuit of Figure 11.18 satisfies the transfer function of
(11.37) with the conditions that

(11.38)

(11.39)

(11.40)

 (11.41)

From (11.40) and (11.41), we observe that .

A fourth-order all−pole low−pass filter transfer function is a ratio of a constant to a fourth degree
polynomial. A practical method of obtaining a fourth order transfer function, is to factor it into
two second−order transfer functions of the form of relation (11.37), i.e.,

* The terminology “all−pole” stems from the fact that the s−plane contains poles only and the zeros are at , that is, the
s−plane is all poles and no zeros.
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(11.42)

Each factor in (11.42) can be realized by a stage (circuit). Then, the two stages can be cascaded
as shown in Figure 11.19.

Figure 11.19. Cascaded stages

Table 11.3 lists the Butterworth low−pass coefficients for second and fourth−order designs, where
 and  apply to the transfer functions of (11.37) and (11.42) respectively.

For a practical design of a second−order VCVS circuit, we select standard values for capacitors
 and  for the circuit of Figure 11.18, we substitute the appropriate values for the coefficients

 and  from Table 11.3, we choose desired values for the gain  and cutoff frequency , and
we substitute these in relations (11.38) through (11.41) to find the values of the resistors 
through .

Example 11.6  

Design a second−order VCVS Butterworth low−pass filter with gain  and cutoff frequency
. 

TABLE 11.3  Coefficients for Butterworth low−pass filter designs

Coefficients for Second and Fourth Order Butterworth Low−Pass Filter Designs

Order

a 1.41421

2

b 1.0000

a1 0.76537

b1 1.0000

4

a2 1.84776

b2 1.0000
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Solution:

We will use the second order VCVS prototype op amp circuit of Figure 11.18, with capacitance

values . From Table 11.3,  and .

We substitute these values into (11.38) through (11.41), to find the values of the resistors. 

We use MATLAB to do the calculations as follows:

C1=10^(−8); C2=C1; a=sqrt(2); b=1; K=2; wc=2*pi*10^3;...
% and from (11.34) through (11.37);...
R1=2/((a*C2+sqrt((a^2+4*b*(K−1))*C2^2−4*b*C1*C2))*wc);...
R2=1/(b*C1*C2*R1*wc^2);  R3=K*(R1+R2)/(K−1); R4=K*(R1+R2); fprintf(' \n');...
fprintf('R1 = %6.0f \t',R1); fprintf('R2 = %6.0f \t',R2);...
fprintf('R3 = %6.0f \t',R3); fprintf('R4 = %6.0f \t',R4)

R1 = 11254  R2 = 22508  R3 = 67524  R4 = 67524

These are the calculated values but they are not standard resistor values; we must select standard
resistor values as close as possible to the calculated values.

It will be interesting to find out what the frequency response of this filter looks like, with capaci-
tors  and standard  tolerance resistors with values ,

, and .

We now substitute these values into the equations of (11.38) through (11.41), and we solve the
first equation of this set for the cutoff frequency . Then, we use  with the transfer function
of (11.37). We do this with the following MATLAB script that produces the plot.

f=1:10:10^5; R1=11300; R2=22600; R3=68100; R4=R3; C1=10^(−8); C2=C1;...
a=sqrt(2); b=1; w=2*pi*f; fc=sqrt(1/(b*R1*R2*C1*C2))/(2*pi); wc=2*pi*fc;...
K=1+R3/R4; s=w*j; Gw=(K.*b.*wc.^2)./(s.^2+a.*wc.*s+b.*wc.^2);... 
magGw=20.*log10(abs(Gw));...
semilogx(f,magGw); xlabel('Frequency Hz'); ylabel('|Vout/Vin| (dB)');...
title ('2nd Order Butterworth Low−Pass Filter Response'); grid

The frequency response of this low−pass filter is shown in Figure 11.20. We observe that the cut-
off frequency occurs at about . As expected, the attenuation beyond  is at the rate
of  since this is a second−order low−pass filter. Also, since the circuit of a non−

inverting op amp, its DC gain is 2 and thus .

C1 C2 0.01 µF 10 8–  F= = = a 1.41421 2= = b 1=

C1 C2 0.01 µF= = 1% R1 11.3 KΩ=

R2 2 R1× 22.6 KΩ= = R3 R4 68.1 KΩ= =

ωC ωC

1 KHz 1 KHz
40 dB– decade⁄

KdB 20 10 2( )log 6≈=
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Figure 11.20. Plot for the VCVS low−pass filter of Example 11.6

We have used the MATLAB buttap function earlier to aid us in the design of Butterworth filters
with the cutoff frequency normalized to . We can also use the bode function to display
both the (asymptotic) magnitude and phase plots. The following script will produce the Bode
magnitude and phase plots for a two−pole Butterworth low-pass filter.

[z,p,k]= buttap(2); % Specify a two−pole filter;...
[b,a]=zp2tf(z,p,k); % Display in polynomial rational form;...
w=0:0.01:4; [mag,phase]=bode(b,a,w);...
b,a % Display b and a coefficients

b =
     0     0     1

a =
    1.0000    1.4142    1.0000

num=[0  0  1]; den=[1  sqrt(2)  1];...
bode(num,den); title('Butterworth 2nd Order Low−Pass Filter'); grid

The Bode plots are shown in Figure 11.21. The frequency is displayed in  and the cutoff
frequency normalized to .

We can also display the Bode plots with the frequency specified in . This can be done with the
MATLAB script below.

h=bodeplot(tf(num,den));...
setoptions(h,'FreqUnits', 'Hz'); grid

The Bode plots with the frequency specified in  are shown in Figure 11.22.
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Figure 11.21. Bode plots for example 11.6 using MATLAB’s bode function in rad/sec

Figure 11.22. Bode plots for example 11.6 using MATLAB’s bode function in Hz

11.3.2 Chebyshev Type I Analog Low−Pass Filter Design
The Chebyshev Type I filters are based on approximations derived from the Chebyshev polynomi-
als  which constitute a set of orthogonal functions.* The coefficients of these polynomials
are tabulated in math tables. See, for example, the Handbook of Mathematical Functions, Dover
Publications. These polynomials are derived from the equations

* Two functions are said to be orthogonal if, when multiplied together and integrated over the domain of interest,
the integral becomes zero. The property of orthogonality is usually applied to a class of functions that differ by
one or more variables.

-80

-60

-40

-20

0

M
ag

ni
tu

de
 (

dB
)

10
-2

10
-1

10
0

10
1

10
2

-180

-135

-90

-45

0

P
ha

se
 (

de
g)

Butterworth 2nd Order Low-Pass Filter

Frequency  (rad/sec)

-60

-40

-20

0

M
ag

ni
tu

de
 (

dB
)

10
-3

10
-2

10
-1

10
0

10
1

-180

-135

-90

-45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency  (Hz)

Ck x( )



Chapter 11  Analog and Digital Filters

11−26 Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition
Copyright © Orchard Publications

(11.43)

and

(11.44)

From (11.43), with , we obtain

(11.45)

With ,
* (11.46)

With 

(11.47)

and this is shown by letting . Then,

We can also use MATLAB to convert these trigonometric functions to algebraic polynomials.
For example,

syms x; expand(cos(2*acos(x)))

ans =
2*x^2-1

Using this iterated procedure we can show that with , we obtain

(11.48)

and so on. 

We observe that for , , and for , .

The curves representing these polynomials are shown in Figure 11.23.

The Chebyshev Type I low−pass filter magnitude−square function is defined as

(11.49)

* We recall that if , then , and .

Ck x( ) kcos 1– x( )     x 1≤( )cos=

Ck x( ) h kcosh 1– x( )     x 1>cos=

k 0=

C0 x( ) 0cos 1– x( )cos 1= =

k 1=

C1 x( ) 1cos 1– x( )cos x= =

x ycos= y cos 1– x= ycos x=

k 2=

C2 x( ) 2cos 1– x( )cos 2x2 1–= =

cos 1– x α=

C2 x( ) 2α( )cos 2cos2α 1– 2cos2 cos 1– x( ) 1–= = =

2
cos 1– x( )cos

x

cos 1– x( )cos

x
1– 2x2 1–==          

k 3 4 and 5, ,=

C3 x( ) 4x3 3x–= C4 x( ) 8x4 8x2– 1+= C5 x( ) 16x5 20x3– 5x+=

k even= Ck x( ) even= k odd= Ck x( ) odd=

A2 ω( ) α

1 ε2Ck
2 ω ωC⁄( )+

---------------------------------------------=



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition 11−27
Copyright © Orchard Publications

Low-Pass Analog Filter Prototypes

Figure 11.23. Chebyshev Type I polynomials

In relation (11.49), the quantity  is a parameter chosen to provide the desired pass−band rip-
ple, the parameter  is a constant chosen to determine the desired DC gain, the subscript 
denotes both the degree of the Chebyshev Type I polynomial and the order of the transfer func-
tion, and  is the cutoff frequency. This filter produces a sharp cutoff rate in the transition
band. 

Figure 11.24 shows Chebyshev Type I magnitude frequency responses for  and .

Figure 11.24. Chebyshev Chebyshev Type I low−pass filter for even and odd values of . 

The magnitude at  is  when  and it is   when . This is
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shown in Figure 11.24. The cutoff frequency is the largest value of  for which

(11.50)

Stated in other words, the pass−band is the range over which the ripple oscillates with constant
bounds; this is the range from  to . From (11.50), we observe that only when  the
magnitude at the cutoff frequency is  i.e., the same as in other types of filters. But when

, the cutoff frequency is greater than the conventional  cutoff frequency . 

Table 11.4 gives the ratio of the conventional cutoff frequency  to the ripple width fre-
quency  of a Chebyshev Type I low−pass filter. 

The pass−band ripple  in , is defined as 

(11.51)

where  and  are the maximum and minimum values respectively of the magnitude  in
the pass−band interval. From (11.49),

(11.52)

and  occurs when . Then, 

(11.53)

To find , we must first confirm that

TABLE 11.4  Ratio of conventional cutoff frequency to ripple width frequency

Ratio of Conventional  Cutoff Frequency to Ripple 
Width for Low−Pass Chebyshev Filters

Ripple Width 

dB k=2 k=4

0.1 1.943 1.213

0.5 1.390 1.093

1.0 1.218 1.053

ωC

A ωC( ) 1

1 ε2+
------------------=

DC ωC ε 1=

0.707
0 ε 1< < 3 dB ωC

f3 dB

fC

f3 dB

f3 dB fc⁄

r dB

rdB 10log10
Amax

2

Amin
2

------------ 20log10
Amax
Amin
------------= =

Amax Amin A

A2 ω( ) α

1 ε2Ck
2 ω ωC⁄( )+

-------------------------------------------=

Amax
2 ε2Ck

2 ω ωC⁄( ) 0=

Amax
2 α=

Amin
2

Ck
2 ω ωC⁄( ) 1≤
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This can be shown to be true by (11.43), that is,

or

Therefore,

and

(11.54)

Substitution of (11.53) and (11.54) into (11.51) yields

(11.55)

or

or
(11.56)

We have seen that when , there is a maximum at . At this frequency, (11.49)
reduces to

(11.57)

and for a unity gain,  when . 

However, for unity gain when , we must have . This is because at ,
we must have  in accordance with(11.45). Then, the relation

reduces to

or

Ck x( ) kcos 1– x( )     x 1≤cos=

Ck x( ) 1   for  1 x 1≤ ≤–≤

Ck
2 ω ωC⁄( )max 1=

Amin
2 α

1 ε2+
--------------=

rdB 10log10
Amax

2

Amin
2

------------ 10log10
α

α 1 ε2+( )⁄
--------------------------- 10log10 1 ε2+( )= = =

log10 1 ε2+( )
rdB
10
-------=

1 ε2+ 10
rdB 10⁄

=

ε2 10
rdB 10⁄

1–=

k odd= ω 0=

A2 0( ) α=

α 1= k odd=

k even= α 1 ε2+= ω 0=

Ck 0( ) 1=

A2 ω( ) α

1 ε2Ck
2 ω ωC⁄( )+

------------------------------------------=

A2 0( ) α

1 ε2Ck
2 0( )+

----------------------------- α

1 ε2+
-------------- 1= ==

α 1 ε2+=
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For this choice of , the magnitude response at maxima, corresponds to

and this will be maximum when

resulting in

or

Example 11.7  

Derive the transfer function  for the , Chebyshev Type I function that has pass−band
ripple , unity  gain, and normalized cutoff frequency at .

Solution:

From (11.49),

(11.58)

and since , for unity  gain, we must have . Then, (11.58) becomes

For 

and

Also, from (11.56),

Then,

α

A2 ωmax( ) 1 ε2+

1 ε2Ck
2 ωmax ωC⁄( )+

-----------------------------------------------------=

Ck
2 ωmax ωC⁄( ) 0=

A2 ωmax( ) 1 ε2+
1

-------------- 1 ε2+= =

A ωmax( ) 1 ε2+=

G s( ) k 2=

rdB 1 dB= DC ωC 1 rad s⁄=

A2 ω( ) α

1 ε2Ck
2 ω ωC⁄( )+

------------------------------------------=

k even= DC α 1 ε2+=

A2 ω( ) 1 ε2+

1 ε2Ck
2 ω ωC⁄( )+

-----------------------------------------=

k 2=

C2 x( ) 2x2 1–=

Ck
2 ω ωC⁄( ) Ck

2 ω( ) 2ω2 1–( )
2

4ω4 4ω 1+–= = =

ε2 10
rdB 10⁄

1– 101 10⁄ 1– 1.259 1– 0.259= = = =

A2 ω( ) 1 0.259+

1 0.259 4ω4 4ω 1+–( )+
------------------------------------------------------------ 1.259

1.036ω4 1.036ω2 1.259+–
------------------------------------------------------------------= =
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and with ,

We find the poles from the roots of the denominator using the MATLAB script below.

d=[1.036  0  1.036  0  1.259]; p=roots(d); fprintf(' \n'); disp('p1 = '); disp(p(1));...
disp('p2 = '); disp(p(2)); disp('p3 = '); disp(p(3)); disp('p4 = '); disp(p(4))

p1 = 

  -0.5488 + 0.8951i

p2 = 

  -0.5488 - 0.8951i

p3 = 

   0.5488 + 0.8951i

p4 = 

   0.5488 - 0.8951i

We now form the transfer function from the left half−plane poles  and
. Then,

We will use MATLAB script below to multiply the factors of the denominator.

syms s; den=(s+0.5488−0.8951*j)*(s+0.5488+0.8951*j); simple(expand(den))

ans =
s^2+686/625*s+22047709/20000000

686/625

ans =
    1.0976

22047709/20000000

ans =
    1.1024

Thus,

ω2 s2–=

G s( )G s–( ) 1.259
1.036s4 1.036s2 1.259+ +
---------------------------------------------------------------=

p1 0.5488– j0.8951+=

p2 0.5488– j– 0.8951=

G s( ) K
s p1–( ) s p2–( )

------------------------------------- K
s 0.5488 j0.8951–+( ) s 0.5488 j0.8951+ +( )

--------------------------------------------------------------------------------------------------------------= =



Chapter 11  Analog and Digital Filters

11−32 Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition
Copyright © Orchard Publications

and at ,

Also, , or  

Then,

or

Therefore, the transfer function for Example 11.7 is

We can plot the attenuation band for Chebyshev Type I filters, as we did with the Butterworth
filters in Figure 11.17, but we need to construct one for each value of  in the ripple region.
Instead, we will develop the following procedure.

We begin with the Chebyshev approximation

(11.59)

and, for convenience, we let . If we want the magnitude of this to be less than some value

 for , we should choose the value of  in  so that

(11.60)

that is, we need to find a suitable value of the integer  so that (11.60) will be satisfied. As we
have already seen from (11.56), the value of  can be determined from

once the band−pass ripple has been specified. 

Next, we need to find  from

G s( ) K
s2 1.0976s 1.1024+ +
-----------------------------------------------------=

s 0=

G 0( ) K
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----------------=

A2 0( ) 1= A 0( ) 1=

G 0( ) A 0( ) K
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K 1.1024=
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s2 1.0976s 1.1024+ +
-----------------------------------------------------=

dB

A2 ω( ) α

1 ε2Ck
2 ω ωC⁄( )+

------------------------------------------=

α 1=

β ω ωC≥ k Ck
2 ω ωC⁄( )

1
1 ε2Ck

2 ω ωC⁄( )+
----------------------------------------- β2≤

k
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ε2 10
rdB 10⁄

1–=

G s( )

A2 ω( ) G s( )G s–( ) s jω=
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and if we replace  by  in (11.59) where , we obtain

(11.61)

It can be shown that the poles of the left−half of the −plane are given by

(11.62)

for 

The constants  and  in (11.62) can be evaluated from 

(11.63)

and

(11.64)

where

(11.65)

The transfer function is then computed from 

(11.66)

Example 11.8  

Design a Chebyshev Type I analog low−pass filter with  band−pass ripple and
. The attenuation for  must be at least .

Solution:

From (11.56),

and the integer  must be chosen such that

ω s j⁄ α 1=

G s( ) 2 1
1 ε2Ck

2 s jωC⁄( )+
------------------------------------------=

s

si ωC b 2i 1+( )π
2k

----------------------sin jc 2i 1+( )π
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i 0 1 2 … 2k 1–, , , ,=
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b m m 1––
2

--------------------=

c m m 1–+
2
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1 k⁄
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G s( ) 1–( )k
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---------------------------=

3 dB
ωC 5 rad s⁄= ω 15  rad s⁄≥ 30 dB decade⁄

ε2 10
rdB 10⁄

1– 103 10⁄ 1– 1.9953 1 1≈–= = =

k

10log10
1

1 Ck
2 15 5⁄( )+

------------------------------------- 30–≤
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or

To find the minimum value of  which satisfies this inequality, we compute the Chebyshev poly-
nomials for . From (11.45) through (11.48), we obtain

and since  must be such that , we choose . Next, to find the poles of

left half of the −plane we first need to compute , , and . From (11.65),

or

and

Then, from (11.63) and (11.64),

and the poles for  are found from (11.62), that is,

Thus, the poles for this example are

10– log10 1 Ck
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2 3( ) 3 2 9= =

C2
2 3( ) 2 32 1–⋅( )

2
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Therefore, by substitution into (11.66) we obtain

We will use the MATLAB script below to do these computations.

−(−1.49)*(−0.745+j*4.516)*(−0.745−j*4.516)

ans =
   31.2144

syms s; den=(s+1.49)*(s+0.745−j*4.516)*(s+0.745+j*4.516); simple(expand(den))

ans =
s^3+149/50*s^2+23169381/1000000*s+3121442869/100000000

Then,

(11.67)

To verify that the derived transfer function  of (11.67) satisfies the filter specifications, we
use the MATLAB script below to plot .

w=0:0.01:100; s=j*w; Gs=31.214./(s.^3+2.98.*s.^2+23.169.*s+31.214);...
magGs=abs(Gs); dB=20.*log10(magGs); semilogx(w,dB);...
xlabel('Radian Frequency w rad/s − log scale'); ylabel('|G(w)| in dB');...
title('Magnitude of G(w) versus Radian Frequency'); grid

The plot is shown in Figure 11.25.

We can use the MATLAB cheb1ap function to design a Chebyshev Type I analog low−pass fil-
ter. Thus, the [z,p,k] = cheb1ap(N,Rp) statement where N denotes the order of the filter,
returns the zeros, poles, and gain of an  order normalized prototype Chebyshev Type I analog
low−pass filter with ripple Rp decibels in the pass band.

s0 5 0.298 π
6
---sin j1.043 π

6
---cos+– 

  0.745– j4.516+= =

s1 5 0.298 π
2
---sin j1.043 π

2
---cos+– 

  1.49–= =

s2 5 0.298 5π
6

------sin j1.043 5π
6

------cos+– 
  0.745– j4.516–= =

G s( ) 1–( )3

s s0⁄ 1–( ) s s1⁄ 1–( ) s s2⁄ 1–( )
-------------------------------------------------------------------------- 1.49–( ) 0.745– j4.516+( ) 0.745– j4.516–( )–

s 1.49+( ) s 0.745 j4.516–+( ) s 0.745 j4.516+ +( )
--------------------------------------------------------------------------------------------------------------------------= =

G s( ) 31.214
s3 2.980s2 23.169s 31.214+ + +
------------------------------------------------------------------------------=

G s( )
G jω( )

Nth
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Figure 11.25. Plot for Example 11.8

Example 11.9  
Use the MATLAB cheb1ap function to design a second−order Chebyshev Type I low−pass filter
with 3 dB ripple in the pass−band.

Solution:

We use the script

w=0:0.05:400; % Define range to plot;...
[z,p,k]=cheb1ap(2,3);...
[b,a]=zp2tf(z,p,k); % Convert zeros and poles of G(s) to polynomial form;...
[mag,phase]=bode(b,a,w); hold on;...

b,a % Display the b and a coefficients

b =
         0         0    0.5012

a =
    1.0000    0.6449    0.7079

Now, with the known values of  and  we use the bode function to produce the magnitude and
phase Bode plots as follows:

bode(b,a), title('Bode Plot for Type 1 Chebyshev Low−Pass Filter'); grid

The Bode plots are shown in Figure 11.26.
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Figure 11.26. Bode plots for the filter of Example 11.9

On the Bode plots shown in Figure 11.26, the ripple is not so obvious. The reason is that this is a
Bode plot with straight line approximations. To see the ripple, we use the MATLAB script
below.

w=0:0.01:10; [z,p,k]=cheb1ap(2,3); [b,a]=zp2tf(z,p,k); Gs=freqs(b,a,w);...
xlabel('Frequency in rad/s'), ylabel('Magnitude of G(s) (absolute values)');...
semilogx(w,abs(Gs)); title('Type 1 Chebyshev Low−Pass Filter'); grid

The generated plot is shown in Figure 11.27.

Figure 11.27. Magnitude characteristics for the Chebyshev Type I filter of Example 11.9
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11.3.3 Chebyshev Type II Analog Low−Pass Filter Design
The Chebyshev Type II, also known as Inverted Chebyshev filters, are characterized by the following
magnitude−square approximation.

(11.68)

and has the ripple in the stop−band as opposed to Type I which has the ripple in the pass−band as
shown in Figure 11.28.

Figure 11.28. Chebyshev Type II low−pass filter

In relation (11.68), the frequency  defines the beginning of the stop band.

We can design Chebyshev Type II low−pass filters with the MATLAB cheb2ap function. Thus,
the statement [z,p,k] = cheb2ap(N,Rs) where N denotes the order of the filter, returns the zeros,
poles, and gain of an  order normalized prototype Chebyshev Type II analog low−pass filter
with ripple Rs decibels in the stop band.

Example 11.10  
Using the MATLAB cheb2ap function, design a third order Chebyshev Type II analog filter with

 ripple in the stop band.

Solution:

We begin with the MATLAB script below.

w=0:0.01:1000; [z,p,k]=cheb2ap(3,3); [b,a]=zp2tf(z,p,k); Gs=freqs(b,a,w);...
semilogx(w,abs(Gs)); xlabel('Frequency in rad/sec − log scale');...
ylabel('Magnitude of G(s) (absolute values)');...
title('Type 2 Chebyshev Low−Pass Filter, k=3, 3 dB ripple in stop band'); grid

The plot for this filter is shown in Figure 11.29.

A2 ω( )
ε2Ck

2 ωC ω⁄( )

1 ε2Ck
2 ωC ω⁄( )+

------------------------------------------=

k = 4

1 dB ripple
in stop band

A ω( )

ω

ωC

Nth

3 dB
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Figure 11.29. Plot for the Chebyshev Type II filter of Example 11.10

11.3.4 Elliptic Analog Low−Pass Filter Design
The elliptic, also known as Cauer filters, are characterized by the low−pass magnitude−squared
function

(11.69)

where  represents a rational elliptic function used with elliptic integrals. Elliptic filters have
ripple in both the pass−band and the stop−band as shown in Figure 11.30.

Figure 11.30. Characteristics of an elliptic low−pass filter
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We can design elliptic low−pass filters with the MATLAB ellip function. The statement [b,a] =
ellip(N,Rp,Rs,Wn,’s’) where N is the order of the filter, designs an  order low−pass filter with
ripple Rp decibels in the pass band, ripple Rs decibels in the stop band, Wn is the cutoff fre-
quency, and ’s’ is used to specify analog elliptic filters. If ’s’ is not included in the above state-
ment, MATLAB designs a digital filter. The plot of Figure 11.30 was obtained with the MAT-
LAB script below:

w=0: 0.05: 500; [z,p,k]=ellip(5, 0.6, 20, 200, 's'); [b,a]=zp2tf(z,p,k);...
Gs=freqs(b,a,w); semilogx(w,abs(Gs));...
xlabel('Frequency in rad/sec − log scale'); ylabel('Magnitude of G(s) (absolute values)');...
title('5−pole Elliptic Low Pass Filter'); grid

Example 11.11  

Use MATLAB to design a four−pole elliptic analog low−pass filter with  maximum ripple
in the pass−band and  minimum attenuation in the stop−band with cutoff frequency at

.

Solution:

The solution is obtained with the following MATLAB script:

w=0: 0.05: 500; [z,p,k]=ellip(4, 0.5, 20, 200, 's'); [b,a]=zp2tf(z,p,k);...
Gs=freqs(b,a,w); semilogx(w,abs(Gs)); xlabel('Frequency in rad/sec − log scale');...
ylabel('Magnitude of G(s) (absolute values)'); title('4−pole Elliptic Low Pass Filter'); grid

The plot for this example is shown in Figure 11.31.

Figure 11.31. Plot for filter of Example 11.11

Next, suppose that we need to form the transfer function  for this example. To do this, we
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need to know the coefficients  and  of the denominator and numerator respectively, of 
in descending order. Because these are large numbers, we use the format long MATLAB com-
mand:

format long;...
a,b

and MATLAB displays

a =

  1.0e+009 *

   0.00000000100000   0.00000022702032   0.00007532236403

   0.00910982722080   1.15870252829421
b =

  1.0e+009 *

   0.00000000009998  -0.00000000000000   0.00002534545964

  -0.00000000000000   1.09388572421614

Thus, the transfer function for this filter is

(11.70)

11.4 High−Pass, Band−Pass, and Band−Elimination Filter Design
Transformation methods have been developed where a low−pass filter can be converted to
another type of filter simply by transforming the complex variable . These transformations are
listed in Table 11.5 where  is the cutoff frequency of a low−pass filter. The procedure is illus-
trated with the examples below.

Example 11.12  

Compute the transfer function for a third−order band−pass Butterworth filter with  pass−

band from  to , from a third−order low−pass Butterworth filter with cutoff fre-
quency .

Solution:

We first derive the transfer function for a third−order Butterworth low−pass filter with normal-
ized frequency . Using the MATLAB function buttap we write and execute the
following script:

ai bi G s( )

G s( ) 2.0487 109×

s4 339.793s3 105866s2 16.189 106 2.072 109×+×+ + +
-----------------------------------------------------------------------------------------------------------------------------------------=

s
ωC

3 dB
3 KHz 5 KHz

fC 1 KHz=

ωC 1 rad s⁄=
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format; [z, p, k]=buttap(3); [b,a]=zp2tf(z,p,k)

b =
     0     0     0     1
a =
    1.0000    2.0000    2.0000    1.0000

Thus, the transfer function for the third−order Butterworth low−pass filter with normalized cutoff
frequency  is

(11.71)

Next, the actual cutoff frequency is given as  or . Accordingly,
in accordance with Table 11.5, we replace  with

and we obtain

TABLE 11.5  Filter transformations

Analog Filter Frequency Transformations

Filter Type, Frequency Replace  in  with

Low−Pass Filter, 3 dB pass−band, Normalized Frequency  

Low−Pass Filter, 3 dB pass−band, Non−Normalized Frequency 

High−Pass Filter, 3 dB pass−band from  to 

Band−Pass Filter, 3 dB pass−band from  to 

Band−Elimination Filter, 3 dB pass−band from  to 
, and from  to 

s G s( )

ωC No Change

ωLP sωC

ωLP
---------

ω ω2= ω ∞= ωLP ω2⋅
s

--------------------

ω ωLP= ω ω2=
ωC

s2 ωLP ω2⋅+

s ω2 ωLP–( )
-------------------------------⋅

ω 0=

ω ωLP= ω ω2= ω ∞=
ωC

s ω2 ωLP–( )

s2 ωLP ω2⋅+
-------------------------------⋅

ωc 1 rad s⁄=

G s( ) 1
s3 2s2 2s 1+ + +
----------------------------------------=

fC 1 KHz= ωC 2π 103×  rad s⁄=

s

sωC
ωLP
--------- s

2π 103×
---------------------=

G s
2π 103×
--------------------- 

  G' s( ) 1

s 2π 103×( )⁄( )
3

2 s 2π 103×( )⁄( )2 2 s 2π 103×( )⁄( ) 1+ + +
--------------------------------------------------------------------------------------------------------------------------------------------------= =
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(11.72)

Now, we replace  in the last expression of (11.72) with 

(11.73)

or

Then,

We see that the computations, using the transformations of Table 11.5 become quite tedious.
Fortunately, we can use the MATLAB lp2lp, lp2hp, lp2bp, and lp2bs functions to transform a
low pass filter with normalized cutoff frequency, to another low−pass filter with any other speci-
fied frequency, or to a high−pass filter, or to a band−pass filter, or to a band−elimination filter
respectively.

Example 11.13  
Use the MATLAB buttap and lp2lp functions to derive the transfer function of a third−order
Butterworth low−pass filter with cutoff frequency .

Solution:

We will use the buttap command to derive the transfer function  of the filter with normal-
ized cutoff frequency at . Then, we will use the command lp2lp to transform 

to  with cutoff frequency at , or .

format short e % Will be used to find coefficients for transfer function;...
%  Design 3 pole Butterworth low−pass filter (wcn=1 rad/s);...
[z,p,k]=buttap(3); % To find transfer function with normalized cutoff frequency;...
[b,a]=zp2tf(z,p,k); % Compute num, den coefficients of this filter (wcn=1rad/s);...
f=100:100:10000; % Define frequency range to plot;...
w=2*pi*f; % Convert to rads/sec;...
fc=2000; % Define actual cutoff frequency at 2 KHz;...

G' s( ) 2.48 1011×

s3 1.26 104s2× 7.89 107s× 2.48 1011×+ + +
-------------------------------------------------------------------------------------------------------------=

s

ωC
s2 ωLP ω2⋅+

s ω2 ωLP–( )
-------------------------------⋅

1 s2 2π 103× 3 2π 103×××+

s 3 2π 103×× 2π 103×–( )
---------------------------------------------------------------------⋅ s2 12 π2 106××+

s 4π 103×( )
------------------------------------------- s2 1.844 108×+

1.257 104s×
---------------------------------------= =

G'' s( ) 2.48 1011×

s2 1.844 108×+

1.257 104s×
---------------------------------------

 
 
  3

s2 1.844 108×+

1.257 104s×
---------------------------------------

 
 
  2

s2 1.844 108×+

1.257 104s×
--------------------------------------- 2.48 1011×+ + +

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

fC 2 KHz=

G s( )
ωC 1 rad s⁄= G s( )

G' s( ) fC 2 KHz= ωC 2π 2 103××  rad s⁄=
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wc=2*pi*fc; % Convert desired cutoff frequency to rads/sec;...
[bn,an]=lp2lp(b,a,wc); % Compute num, den of filter with fc = 2 kHz;...
Gsn=freqs(bn,an,w); % Compute transfer function of filter with fc = 2 kHz;...
semilogx(w,20.*log10(abs(Gsn))); xlabel('Radian Frequency w (rad/sec) − log scale'),...
ylabel('Magnitude of Transfer Function (dB)'),...
title('3−pole Butterworth low−pass filter with fc=2 kHz or wc = 12.57 kr/s'); grid

The plot for the magnitude of this transfer function is shown in Figure 11.32.

Figure 11.32. Magnitude for the transfer function for Example 11.13

The coefficients of the numerator and denominator of the transfer function are as follows:

b, a, bn, an

b =
            0            0            0  1.0000e+000
a =
  1.0000e+000  2.0000e+000  2.0000e+000  1.0000e+000
bn =
  1.9844e+012
an =
  1.0000e+000  2.5133e+004  3.1583e+008  1.9844e+012

Thus, the transfer function with normalized cutoff frequency  is

(11.74)

and with actual cutoff frequency  is

(11.75)
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ωCn 1 rad s⁄=

G s( ) 1
s3 2s2 2s 1+ + +
----------------------------------------=

ωCn 2π 2000×  rad s⁄ 1.2566 104×= =

G' s( ) 1.9844 1012×

s3 2.5133 104× s2 3.1583 108× s 1.9844 1012×+ + +
-------------------------------------------------------------------------------------------------------------------------------=
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Example 11.14  
Use the MATLAB commands cheb1ap and lp2hp to derive the transfer function of a 3−pole
Chebyshev Type I high−pass analog filter with cutoff frequency .

Solution:

We will use the cheb1ap command to derive the transfer function  of the low−pass filter
with normalized cutoff frequency at . Then, we will use the command lp2hp to
transform  to another transfer function  with cutoff frequency at  or

% Design 3 pole Type 1 Chebyshev low−pass filter, wcn=1 rad/s;...
[z,p,k]=cheb1ap(3,3);...
[b,a]=zp2tf(z,p,k); % Compute num, den coef. with wcn=1 rad/s;...
f=1000:100:100000; % Define frequency range to plot;...
fc=5000; % Define actual cutoff frequency at 5 KHz;...
wc=2*pi*fc; % Convert desired cutoff frequency to rads/sec;...
[bn,an]=lp2hp(b,a,wc); % Compute num, den of high−pass filter with fc = 5 KHz;...
Gsn=freqs(bn,an,2*pi*f); % Compute and plot transfer function of filter with fc = 5 KHz;...
semilogx(f,20.*log10(abs(Gsn)));...
xlabel('Frequency (Hz) − log scale'); ylabel('Magnitude of Transfer Function (dB)');...
title('3−pole Type 1 Chebyshev high−pass filter with fc=5 KHz '); grid

The magnitude of this transfer function is plotted as shown in Figure 11.33.

Figure 11.33. Magnitude of the transfer for Example 11.14

b, a, bn, an

The coefficients of the numerator and denominator of the transfer function are as follows:
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b =
   0            0            0  2.5059e-001

a =
   1.0000e+000  5.9724e-001  9.2835e-001  2.5059e-001

bn =
   1.0000e+000  2.2496e-011 -1.4346e-002 -6.8973e-003

an =
   1.0000e+000  1.1638e+005  2.3522e+009  1.2373e+014

Therefore, the transfer function with normalized cutoff frequency  is

(11.76)

and with actual cutoff frequency , is

(11.77)

Example 11.15  
Use the MATLAB functions buttap and lp2bp to derive the transfer function of a 3−pole Butter-
worth analog band−pass filter with the pass band frequency centered at , and band-
width .

Solution:

We will use the buttap function to derive the transfer function  of the low−pass filter with
normalized cutoff frequency at . We found this transfer function in Example 11.12
as given by (11.71), Page 11−42. However, to maintain a similar MATLAB script as in the previ-
ous examples, we will include it in the script below. Then, we will use the command lp2bp to
transform  to another transfer function  with centered frequency at  or

, and bandwidth  or 

format short e;...
[z,p,k]=buttap(3); % Design 3 pole Butterworth low-pass filter with wcn=1 rad/s;...
[b,a]=zp2tf(z,p,k); % Compute numerator and denominator coefficients for wcn=1 rad/s;...
f=100:100:100000; % Define frequency range to plot;...
f0=4000; % Define centered frequency at 4 KHz;...
W0=2*pi*f0; % Convert desired centered frequency to rads/sec;...
fbw=2000; % Define bandwidth;...
Bw=2*pi*fbw; % Convert desired bandwidth to rads/sec;...

ωCn 1 rad s⁄=

G s( ) 0.2506
s3 0.5972s2 0.9284s 0.2506+ + +
---------------------------------------------------------------------------------=

ωCn 2π 5000×  rad s⁄ 3.1416 104×= =

G' s( ) s3

s3 1.1638 10 5× s2 2.3522 10 9× s 1.2373 10 14×+ + +
---------------------------------------------------------------------------------------------------------------------------------=

f0 4 KHz=

BW 2 KHz=

G s( )
ωC 1 rad s⁄=

G s( ) G' s( ) f0 4 KHz=

ω0 2π 4 103××  rad s⁄= BW 2 KHz= BW 2π 2 103××  rad s⁄=
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[bn,an]=lp2bp(b,a,W0,Bw);% Compute num, den of band−pass filter;...
% Compute and plot the magnitude of the transfer function of the band−pass filter;...
Gsn=freqs(bn,an,2*pi*f); semilogx(f,20.*log10(abs(Gsn)));...
xlabel('Frequency f (Hz) − log scale'); ylabel('Magnitude of Transfer Function (dB)');...
title('3−pole Butterworth band−pass filter with f0 = 4 KHz, BW = 2KHz'); grid

The plot for this band−pass filter is shown in Figure 11.34.

Figure 11.34. Plot for the band-pass filter of Example 11.15

bn, an

The coefficients  and  are as follows:

bn =
  1.9844e+012  -4.6156e+001  -1.6501e+005  -2.5456e+009

an =
1.0000e+000  2.5133e+004  2.2108e+009  3.3735e+013  1.3965e+018   

  1.0028e+022  2.5202e+026

Since the numerator  and denominator  coefficients are too large to be written in a one line
equation, we have listed them in tabular form as shown below.
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Example 11.16  
Use the MATLAB functions buttap and lp2bs to derive the transfer function of a 3−pole Butter-
worth band−elimination (band−stop) filter with the stop band frequency centered at ,
and bandwidth .

Solution:

We will use the buttap function to derive the transfer function  of the low−pass filter with
normalized cutoff frequency at . We found this transfer function as (11.71) in
Example 11.12, Page 11−42. However, to maintain a similar MATLAB script as in the previous
examples, we will include it in the script which follows. Accordingly, we will use the lp2bs func-
tion to transform  to another transfer function  with centered frequency at

, or radian frequency , and bandwidth  or

.

[z,p,k]=buttap(3); % Design 3−pole Butterworth low−pass filter, wcn = 1 r/s;...
[b,a]=zp2tf(z,p,k); % Compute num, den coefficients of this filter, wcn=1 r/s;...
f=1000:100:10000; % Define frequency range to plot;...
f0=5000; % Define centered frequency at 5 kHz;...
W0=2*pi*f0; % Convert centered frequency to r/s;...
fbw=2000; % Define bandwidth;...
Bw=2*pi*fbw; % Convert bandwidth to rad/s;...
% Compute numerator and denominator coefficients of desired band stop filter;...
[bn,an]=lp2bs(b,a,W0,Bw);...
% Compute and plot magnitude of the transfer function of the band stop filter;... 
Gsn=freqs(bn,an,2*pi*f); semilogx(f,20.*log10(abs(Gsn)));...
xlabel('Frequency in Hz − log scale'); ylabel('Magnitude of Transfer Function (dB)');...
title('3-pole Butterworth band-elimination filter with f0=5 KHz, BW = 2 KHz'); grid

The magnitude response for this band−elimination filter is shown in Figure 11.35.

Power of Numerator Denominator s bn an

s6 0 1

s5 0 2.5133 10 4×

s4 0 2.2108 10 9×

s3 1.9844 10 12× 3.3735 1013×

s2 4.6156 101×– 1.3965 1018×

s 1.6501 105×– 1.0028 10 22×

Cons ttan 2.5456 109×– 2.5202 10 26×

f0 5 KHz=

BW 2 KHz=

G s( )
ωC 1 rad s⁄=

G s( ) G' s( )

f0 5 KHz= ω0 2π 5 103××  rad s⁄= BW 2 KHz=

BW 2π 2 103××  rad s⁄=
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Figure 11.35. Magnitude response for the band−elimination filter of Example 11.16

The coefficients  and  are as follows:
bn, an

bn =
1.0000e+000   -7.6352e-012   2.9609e+009   -1.5071e-002
2.9223e+018   -7.4374e+006   9.6139e+026

an =
1.0000e+000    2.5133e+004   3.2767e+009    5.1594e+013

  3.2340e+018    2.4482e+022   9.6139e+026

As in the previous example, we list the numerator  and denominator  coefficients in tabular
form as shown below.
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s bn an

s 6 1 1

s5 7.6352– 10 12–× 2.5133 10 4×

s4 2.9609 10 6–× 3.2767 10 9×

s3 1.5071– 10 2–× 5.1594 10 13×

s2 2.9223 10 18× 3.2340 10 18×

s 7.4374 10 6×– 2.4482 10 22×

Cons ttan 9.6139 10 26× 9.6139 10 26×
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In all of the above examples, we have shown the magnitude, but not the phase response of each
filter type. However, we can use the MATLAB function bode(num,den) to generate both the
magnitude and phase responses of any transfer function describing the filter type, as shown by the
following example.

Example 11.17  
Use the MATLAB bode function to plot the magnitude and phase characteristics of the 3−pole
Butterworth low-pass filter with unity gain and normalized frequency at .

Solution:

We know, from Example 11.12,  Page 11−42, that the transfer function for this type of filter is

We can obtain the magnitude and phase characteristics with the following MATLAB script:

num=[0  0  0  1]; den=[1  2  2  1]; bode(num,den),...
title('Bode Plot for 3−pole Butterworth Low−Pass Filter'); grid

The magnitude and phase characteristics are shown in Figure 11.36.

Figure 11.36. Bode plots for 3−pole Butterworth low−pass filter, Example 11.17

We conclude the discussion on analog filters with Table 11.6 listing the advantages and disad-
vantages of each type.
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11.5 Digital Filters
A digital filter is essentially a computational process (algorithm) that converts one sequence of
numbers  representing the input, to another sequence  that represents the output.
Thus, a digital filter, in addition of filtering out desired bands of frequency, can also be used as a
computational means of performing other functions such as integration, differentiation, and esti-
mation.

The input−output difference equation that relates the output to the input can be expressed in the
discrete time domain as a summation of the form

(11.78)

or, in the −domain as

(11.79)

Therefore, the design of a digital filter to perform a desired function, entails the determination of
the coefficients  and .

Digital filters are classified in terms of the duration of the impulse response, and in forms of real-
ization.

1. Impulse Response Duration

a. An Infinite Impulse Response (IIR) digital filter has infinite number of samples in its impulse

TABLE 11.6  Advantages / Disadvantages of different types of filters

Filter Type Advantages Disadvantages

Butterworth • Simplest design
• Flat pass band

• Slow rate of attenuation
   for order 4 or less

Chebyshev Type 1 • Sharp cutoff rate in transition
  (pass to stop) band

• Ripple in pass band
• Bad (non−linear) phase response

Chebyshev Type II • Sharp cutoff rate in transition
  (pass to stop) band

• Ripple in stop band
• Bad (non−linear) phase response

Elliptic (Cauer) • Sharpest cutoff rate among
  all other types of filters

• Ripple in both pass band and stop band
• Worst (most non−linear) phase response 
  among the other types of filters.
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response 

b. A Finite Impulse Response (FIR) digital filter has a finite number of samples in its impulse
response 

2. Realization

a. In a Recursive Realization digital filter the output is dependent on the input and the previous
values of the output. In a recursive digital filter, both the coefficients  and  are present.

b. In a Non−Recursive Realization digital filter the output depends on present and past values of
the input only. In a non−recursive digital filter, only the coefficients  are present, i.e.,

.

Figure 11.37 shows third−order (3−delay element) recursive realization and Figure 11.38 shows a
third−order non−recursive realization. The components of either realization are shown in Figure
11.39. Generally, IIR filters are implemented by recursive realization, whereas FIR filters are
implemented by non−recursive realization.

Filter design methods have been established, and prototype circuits have been published. Thus,
we can choose the appropriate prototype to satisfy the requirements. Transformation methods are
also available to map an analog prototype to an equivalent digital filter. Three well known trans-
formation methods are the following:

1. The Impulse Invariant Method which produces a digital filter whose impulse response consists of
the sampled values of the impulse response of an analog filter.

2. The Step Invariant Method which produces a digital filter whose step response consists of the
sampled values of the step response of an analog filter.

Figure 11.37. Recursive digital filter realization

h n[ ]

h n[ ]

ai bi

ai

bi 0=

-b3

−b2

−b1

+
a3

a2

a0

a1

x n[ ] y n[ ]
+Z 1– Z 1– Z 1–



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition 11−53
Copyright © Orchard Publications

Digital Filters

Figure 11.38. Non−recursive digital filter realization

Figure 11.39. Components of recursive and non−recursive digital filter realization

3. The Bilinear Transformation which uses the transformation

* (11.80)

to transform the left−half of the −plane into the interior of the unit circle in the −plane.

We will discuss only the bilinear transformation.

We recall from (9.67) of Chapter 9, Page 9−22, that

(11.81)

But the relation  is a multi−valued transformation and, as such, cannot be used to

derive a rational form in . It can be approximated as

 (11.82)

Substitution (11.82) into (11.81) yields

*  is the sampling period, that is, the reciprocal of the sampling frequency 
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(11.83)

and with the substitution , we obtain

(11.84)

Since the  transformation maps the unit circle into the  axis on the −plane, the quan-

tity  and  must be equal to some point  on the axis, that is, 

or

or

(11.85)

We see that the analog frequency to digital frequency transformation results in a non−linear map-
ping; this condition is known as warping. For instance, the frequency range  in the ana-
log frequency is warped into the frequency range  in the digital frequency.
To express  in terms of , we rewrite (11.85) as

Then,

and for small ,

Therefore,

(11.86)

that is, for small frequencies,
(11.87)
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In MATLAB,  is a function of normalized frequency and thus the range of frequencies in 
is from  to . Then (11.86), when used with MATLAB, becomes 

(11.88)

The effect of warping can be eliminated by pre−warping the analog filter prior to application of
the bilinear transformation. This is accomplished with the use of (11.85).

Example 11.18  

Compute the transfer function  of a low−pass digital filter with  cutoff frequency at
, and attenuation of at least  for frequencies greater than . The sampling fre-

quency  is . Compare the magnitude plot with that obtained by a low−pass analog filter
with the same specifications.

Solution:

We will apply the bilinear transformation, and using the procedure of Example 11.5, Page 11−20,
we arbitrarily choose a second order Butterworth low−pass filter which, as we see from the curves
of Figure 11.17, Page 11−19, meets the stop−band specification. 

The transfer function  of the analog low−pass filter with normalized frequency at
 is found with the MATLAB buttap function as follows:

[z,p,k]=buttap(2); [b,a] = zp2tf(z,p,k)

b =
     0     0     1
a =
    1.0000    1.4142    1.0000

Thus, the transfer function with normalized frequency, denoted as , is

(11.89)

Now, we must transform this transfer function to another with the actual cutoff frequency at
. We denote it as .

We will first pre−warp the analog frequency which, by relation (11.85), Page 11−54, is related to
the digital frequency as
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0 π

ωd
ωaTS

π
------------≈

G z( ) 3 dB
20 Hz 10 dB 40 Hz

fs 200 Hz

G s( )
ωC 1 rad s⁄=

Gn s( )

Gn s( ) 1
s2 1.414s 1+ +
------------------------------------=

20 Hz Ga s( )

ωa
2

TS
------ ωdTS

2
-------------tan⋅=



Chapter 11  Analog and Digital Filters

11−56 Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition
Copyright © Orchard Publications

where

Denoting the analog cutoff ( ) frequency as , we obtain

or

As expected from relation (11.87), Page 11−55, this frequency is very close to the the discrete−
time frequency , and thus from (11.89),

(11.90)

Relation (11.90) applies only when the cutoff frequency is normalized to to . If
, we must scale the transfer function in accordance with relation (11.34), Page 11−19, that

is,

For this example, , and thus we replace  with  and we obtain

 

We will use MATLAB to simplify this expression.

syms s; simplify(1/((s/130)^2+1.414*s/130+1))

ans =

845000/(50*s^2+9191*s+845000)

845000/50

ans =

   16900

9191/50
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  183.8200

Then,

(11.91)

and making the substitution of , we obtain

We use the MATLAB script below to simplify this expression.

syms z; simplify(16900/((400*(z−1)/(z+1))^2+183.82*400*(z−1)/(z+1)+16900))

ans =

4225*(z+1)^2/(62607*z^2-71550*z+25843)

expand(4225*(z+1)^2)

ans =

4225*z^2+8450*z+4225

and thus

(11.92)

We will use the MATLAB freqz function to plot the magnitude of , but we must first

express it in negative powers of . Dividing each term of (11.92) by , we obtain

(11.93)

The MATLAB script below will generate  and will plot the magnitude of this transfer func-

tion.

bz=[0.0675  0.1350  0.0675]; az=[1  −1.1428  0.4128]; [Gz, wT]=freqz(bz,az,20,200);...
semilogx(fs,20.*log10(abs(Gz))); xlabel('Frequency in Hz − log scale');...
ylabel('Magnitude (dB)'); title('Digital Low−Pass Filter, Example 11.18'); grid

The magnitude is shown on the plot of Figure 11.40.
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Figure 11.40. Frequency response for the digital low−pass filter of Example 11.18

Let us now plot the analog equivalent to compare the digital to the analog frequency response.
The MATLAB script below produces the desired plot.

[z,p,k]=buttap(2); [b,a]=zp2tf(z,p,k); f=1:1:100; fc=20; [bn,an]=lp2lp(b,a,fc);... 
Gs=freqs(bn,an,f);...
semilogx(f,20.*log10(abs(Gs))); xlabel('Frequency in Hz log scale'), ylabel('Magnitude (dB)');...
title('Analog Low−Pass Filter, Example 11.18'); grid

The frequency response for the analog low−pass equivalent is shown in Figure 11.41.

Figure 11.41. Frequency response for analog low−pass filter equivalent, Example 11.18

Comparing the digital filter plot of Figure 11.40 with its equivalent the analog filter of Figure
11.41, we observe that the magnitude is greater than0  for frequencies less than ,
and is smaller than ( ) for frequencies larger than . Therefore, both the digital and
analog low−pass filters meet the specified requirements.
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An analog filter transfer function can be mapped to a digital filter transfer function directly with
the MATLAB bilinear function. The procedure is illustrated with the following example.

Example 11.19  

Use the MATLAB bilinear function to derive the low−pass digital filter transfer function 
from a second-order Butterworth analog filter with a  cutoff frequency at , and sam-
pling rate .

Solution:

We will use the following MATLAB script to produce the desired digital filter transfer function.

[z,p,k]=buttap(2); [num,den]=zp2tf(z,p,k); wc=2*pi*50;...
[num1,den1]=lp2lp(num,den,wc); T=1/500; [numd,dend]=bilinear(num1,den1,1/T)

numd =
    0.0640    0.1279    0.0640
dend =
    1.0000   -1.1683    0.4241

Therefore, the transfer function  for this filter is 

(11.94)

MATLAB provides us with all the functions that we need to design digital filters using analog
prototypes. These are listed below with the indicated notations.

N = order of the filter
Wn = normalized cutoff frequency
Rp = pass band ripple
Rs = stop band ripple
B = B(z), i.e., the numerator of the discrete transfer function 
A = A(z), i.e., the denominator of the discrete transfer function 

For Low−Pass Filters

[B,A] = butter(N,Wn)
[B,A] = cheb1(N,Rp,Wn)
[B,A] = cheb2(N,Rs,Wn)
[B,A] = ellip(N,Rp,Rs,Wn)

G z( )
3 dB 50 Hz

fS 500 Hz=

G z( )

G z( ) 0.0640z2 0.1279z 0.0640+ +
z2 1.1683z 0.4241+–

----------------------------------------------------------------------=

G z( ) B z( ) A z( )⁄=

G z( )
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For High−Pass Filters

[B,A] = butter(N,Wn,'high')
[B,A] = cheb1(N,Rp,Wn,'high')
[B,A] = cheb2(N,Rs,Wn,'high')
[B,A] = ellip(N,Rp,Rs,Wn,'high')

Band−Pass Filters

[B,A] = butter(N,[Wn1,Wn2])
[B,A] = cheb1(N,Rp,[Wn1,Wn2])
[B,A] = cheb2(N,Rs,[Wn1,Wn2])
[B,A] = ellip(N,Rp,Rs,[Wn1,Wn2])

Band−Elimination Filters

[B,A] = butter(N,[Wn1,Wn2],'stop')
[B,A] = cheb1(N,Rp,[Wn1,Wn2],'stop')
[B,A] = cheb2(N,Rs,[Wn1,Wn2],'stop')
[B,A] = ellip(N,Rp,Rs,[Wn1,Wn2],'stop')

Example 11.20  
The transfer functions of (11.95) through (11.98) below, describe different types of digital filters.
Use the MATLAB freqz command to plot the magnitude versus radian frequency.

(11.95)

(11.96)

(11.97)

(11.98)

Solution:
The MATLAB script to plot each of the transfer functions of (11.95) through (11.98), is given
below where , i.e., the default value.

b1=[2.8982  8.6946  8.6946  2.8982]*10^(−3); a1=[1  −2.3741  1.9294  −0.5321];...
[G1z,w1T]=freqz(b1,a1);...
%
b2=[0.5276  −1.5828  1.5828  −0.5276]; a2=[1  −1.7600  1.1829  −0.2781];...
[G2z,w2T]=freqz(b2,a2);...

G1 z( ) 2.8982 8.6946+ z 1– 8.6946z 2–+ 2.8982z 3–+( ) 10 3–⋅

1 2.3741z 1–– 1.9294z 2– 0.5321z 3––+
--------------------------------------------------------------------------------------------------------------------------------=

G2 z( ) 0.5276 1.5828– z 1– 1.5828z 2– 0.5276– z 3–+

1 1.7600z 1–– 1.1829z 2– 0.2781z 3––+
---------------------------------------------------------------------------------------------------------=

G3 z( ) 6.8482 13.6964– z 2– 6.8482z 4–+( ) 10 4–⋅

1 3.2033z 1– 4.5244z 2– 3.1390z 3– 0.9603z 4–+ + + +
-----------------------------------------------------------------------------------------------------------------------------=

G4 z( ) 0.9270 1.2079– z 1– 0.9270z 2–+

1 1.2079z 1–– 0.8541z 2–+
-----------------------------------------------------------------------------=

N 512=
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%
b3=[6.8482  0  −13.6964  0  6.8482]*10^(−4); a3=[1  3.2033  4.5244  3.1390  0.9603];...
[G3z,w3T]=freqz(b3,a3);...
%
b4=[0.9270  −1.2079  0.9270]; a4=[1  −1.2079  0.8541];...
[G4z,w4T]=freqz(b4,a4);...
clf; % clear current figure;...
%
subplot(221), semilogx(w1T,abs(G1z)), axis([0.1 1 0 1]), title('Filter for G1(z)');...
xlabel(''),ylabel('Magnitude'),grid;...
%
subplot(222), semilogx(w2T,abs(G2z)), axis([0.1 10 0 1]), title('Filter for G2(z)');...
xlabel(''),ylabel('Magnitude'),grid;...
%
subplot(223), semilogx(w3T,abs(G3z)), axis([1 10 0 1]), title('Filter for G3(z)');...
xlabel(''),ylabel('Magnitude'),grid;...
%
subplot(224), semilogx(w4T,abs(G4z)), axis([0.1 10 0 1]), title('Filter for G4(z)');...
xlabel(''),ylabel('Magnitude'),grid

The plots are shown in Figure 11.42. We observe that the given transfer functions are for low−
pass, high−pass, band−pass, and band−elimination digital filters.

Figure 11.42. Plot for the transfer functions of Example 11.20

Example 11.21  

We are given a  total bandwidth, and within this bandwidth we must accommodate
four different signals. Each of these signals requires  bandwidth. We are asked to define
the types of filters and cutoff frequencies to avoid interference among these signals.
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Solution:
We will use Butterworth filters up to order  to obtain sharp cutoffs, and the following types and
bandwidths for each.

1. Low−pass filter with bandwidth  to , (  cutoff at )

2. Band−pass filter with bandwidth from  to 

3. High−pass filter with  frequency at 

4. Band−elimination filter with stop-band from  to  

The highest (Nyquist) frequency is  so we choose a sampling frequency of . 

The MATLAB freqz function in the script below normalizes the frequencies from  to  where
.

% N=512; % Default;...
fs=330000; % Chosen sampling frequency;...
Ts=1/fs; % Sampling period;...
fn=fs/2; % Nyquist frequency
%
f1=25000/fn;    % Low−pass filter cutoff frequency (Signal 1 End);...
f2=40000/fn;    % Band−pass left cutoff frequency (Signal 2 Start);...
f3=65000/fn;    % Band−pass right cutoff frequency (Signal 2 End);...
f4=90000/fn;    % High−pass filter cutoff frequency (Signal 3 Start);...
f5=115000/fn;  % Band−stop filter left cutoff frequency (Signal 3 End);...
f6=140000/fn;  % Band−stop filter right cutoff frequency (Signal 4 Start);...
% Signal 4 will terminate at 165 kHz
[b1,a1]=butter(12,f1);...
[b2,a2]=butter(12,[f2,f3]);...
[b3,a3]=butter(12,f4,'high');...
[b4,a4]=butter(12,[f5,f6],'stop');...
%
[G1z,wT]=freqz(b1,a1);...
[G2z,wT]=freqz(b2,a2);...
[G3z,wT]=freqz(b3,a3);...
[G4z,wT]=freqz(b4,a4);...
%
Hz=wT/(2*pi*Ts);...
%
clf; % clear current figure;...
%
plot(Hz,abs(G1z),Hz,abs(G2z),Hz,abs(G3z),Hz,abs(G4z)), axis([0 16*10^4 0 1]);...
title('Four signals separated by four digital filters');...
xlabel('Hz'); ylabel('Magnitude'); grid

The plot of Figure 11.43 shows the frequency separations for these four signals.

12
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Figure 11.43. Frequency separations for the signals of Example 11.21

In the following example, we will demonstrate the MATLAB filter function that is being used to
remove unwanted frequency components from a function. But before we use the filter function,
we must design a filter that is capable of removing those unwanted components.

Example 11.22  
In Chapter 7, Subsection 7.4.4, Page 7−20, we found that the half−wave rectifier with no symme-
try can be represented by the trigonometric Fourier series

In this example, we want to filter out just the first  terms, in other words, to remove all cosine
terms. To simplify this expression, we let  and we truncate it by eliminating all cosine
terms except the  term. Then,

(11.99)

The problem now reduces to design a low−pass digital filter, and use the filter command to
remove the cosine term in (11.99). 

Solution:

We will use a  digital low−pass Butterworth filter because we must have a sharp transi-
tion between the  and  frequency range. Also, since the highest frequency component
is , to avoid aliasing, we must specify a sampling frequency of . Thus, the
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sampling frequency must be  and therefore, the sampling period will be
. We choose ; this is sufficiently small. Also, we choose the cutoff fre-

quency of the filter to be  in order to attenuate the cosine terms.

The MATLAB script below will perform the following steps:

1. Will compute coefficients of the numerator and denominator of the transfer function with
normalized cutoff frequency.

2. Will recompute the coefficients for the desired frequency.

3. Use the bilinear function to map the analog transfer function to a digital transfer function,
and will plot the frequency response of the digital filter.

4. Will recompute the digital filter transfer function to account for the warping effect.

5. Will use the filter function to remove the cosine terms

% Step 1;...
%
[z,p,k]=buttap(6);...
[b,a]=zp2tf(z,p,k);...
%
% Step 2;...
%
wc=1.5; % Chosen cutoff frequency;...
[b1,a1]=lp2lp(b,a,wc); % Convert to actual cutoff frequency;...
%
% Step 3;...
%
T=0.5; % Define sampling period;...
[Nz,Dz]=bilinear(b1,a1,1/T); % Map to digital filter using the bilinear transformation;... 
w=0:2*pi/300:pi; % Define range for plot;...
Gz=freqz(Nz,Dz,w); % The digital filter transfer function;...
%
clf;...
%
plot(w,abs(Gz)); axis([0 2 0 1]); grid; hold on;...
% We must remember that when z is used as a function of;...
% normalized frequency, the range of frequencies of G(z) are;...
% from zero to pi and the normalized cutoff frequency on the;...
% plot is wc*T=1.5*0.5=0.75 r/s;...
%
xlabel('Radian Frequency w in rads/sec'),...
ylabel('Magnitude of G(z)'),...
title('Digital Filter Response in Normalized Frequency, Example 11.22');...
%
fprintf('Press any key to continue \n');...

fS ωS 2π⁄ 2 π⁄= =

TS 1 fS⁄ π 2⁄= = TS 0.5=

ωC 1.5 rad s⁄=
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%   
pause;...
%
% Step 4;...
%
p=6; T=0.5; % Number of poles and Sampling period;...
wc=1.5; % Analog cutoff frequency in rad/sec;...
wd=wc*T/pi; % Normalized digital filter cutoff frequency by (11.88), Page 11−55;...
[Nzp,Dzp]=butter(p,wd);...
fprintf('Summary: \n\n');...
fprintf('WITHOUT PREWARPING: \n\n');...
%
fprintf('The num N(z) coefficients in descending order of z are: \n\n');...
fprintf('%8.4f \t',[Nz]);...
fprintf('\n\n');...
fprintf('The den D(z) coefficients in descending order of z are: \n\n');...
fprintf('%8.4f \t',[Dz]);...
fprintf('\n\n');...
fprintf('WITH PREWARPING: \n\n');...
%
fprintf('The num N(z) coefficients in descending order of z are: \n\n');...
fprintf('%8.4f \t',[Nzp]);...
fprintf('\n\n');...
fprintf('The den D(z) coefficients in descending order of z are: \n\n');...
fprintf('%8.4f \t',[Dzp]);...
fprintf('\n\n');...

The plot of the low−pass filter that will remove the cosine terms is shown in Figure 11.44.

Figure 11.44. Plot of the low-pass filter of Example 11.22
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Summary: 

WITHOUT PREWARPING: 

The num N(z) coefficients in descending order of z are: 
  0.0007   0.0040   0.0100   0.0134   0.0100   0.0040   0.0007 

The den D(z) coefficients in descending order of z are: 
  1.0000  -3.2379   4.7566  -3.9273   1.8999  -0.5064   0.0578 

WITH PREWARPING: 

The num N(z) coefficients in descending order of z are: 
  0.0008   0.0050   0.0125   0.0167   0.0125   0.0050   0.0008 

The den D(z) coefficients in descending order of z are: 
  1.0000  -3.1138   4.4528  -3.5957   1.7075 

% Step 5;...
%
Nzp=[0.0008   0.0050  0.0125  0.0167  0.0125  0.0050  0.0008];...
Dzp=[1.0000  −3.1138  4.4528  −3.5957  1.7075  −0.4479  0.0504];...
n=0:150;...
T=0.5;...
gt=3+1.5*sin(n*T)−cos(2*n*T);...
yt=filter(Nzp,Dzp,gt);...
% 
% We will plot the unfiltered analog signal gta;...
% 
t=0:0.1:12;...
gta=3+1.5*sin(t)−cos(2*t);...
subplot(211), plot(t,gta), axis([0,12, 0, 6]); hold on;...
xlabel('Continuous Time t'); ylabel('Function g(t)');...
%
% We will plot the filtered analog signal y(t);...
%
subplot(212), plot(n*T,yt), axis([0,12, 0, 6]); hold on;...
xlabel('Continuous Time t'); ylabel('Filtered Output y(t)');...
%
fprintf('Press any key to continue \n'); pause;...
%
% We will plot the unfiltered discrete time signal g(n*T);...
%
subplot(211), stem(n*T,gt), axis([0,12, 0, 6]); hold on;...
xlabel('Discrete Time nT'); ylabel('Discrete Function g(n*T)');...
%
% We will plot the filtered discrete time signal y(n*T);...
subplot(212), stem(n*T,yt), axis([0,12, 0, 6]); hold on;...
xlabel('Discrete Time nT'); ylabel('Filtered Output y(n*T)')
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The analog and digital inputs and outputs are shown in Figures 11.45 and 11.46 respectively.

Figure 11.45. Continuous time input and output waveforms for Example 11.22

Figure 11.46. Discrete time input and output waveforms for Example 11.22

We conclude this section with one more example to illustrate the use of the MATLAB find
function. This function displays the subscripts of an array of numbers where a relational expres-
sion is true. For example, 

x=−2:5; % Display the integers in the range -2 <= x < =5
x =
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k =
     4     5     6     7     8

y=x(k); % Create a new array y using the indices in k

y =
     1     2     3     4     5

Example 11.23  

Given the function , use the MATLAB randn function to add random
(Gaussian) noise to  and plot this signal plus noise waveform which we denote as 

(11.100)

where . Next, use the fft function to compute the frequency components of the 512−
point FFT and plot the spectrum of this noisy signal. Finally, use the find function to restrict the
frequency range of the spectrum to identify the frequency components of the signal .

Solution:
The MATLAB script is shown below.

t=linspace(0, 10, 512); x=10*sin(2*t)−5*cos(5*t)+15*randn(size(t));...
% We plot the signal to see what it looks like;...
%
subplot(221); plot(t,x),title('x(t)=Signal plus Noise');...
%  
% The input signal x is shown in the upper left corner of the graph;...
%
% Next, we will compute the frequency domain of the signal x;...
%
X=fft(x);...
%
% The sampling period of x is found by the time difference of two samples;...
%
Ts=t(2)−t(1);...
%
% and the sampling frequency is;...
%
Ws=2*pi/Ts;...
%
% As we know, the Nyquist frequency Wn is half the sampling frequency;...
%
Wn=Ws/2;...
%
% Now, we will define the frequency domain axis;...
%

f t( ) 5 2tsin 10 5tcos–=

f t( )

x t( ) f t( ) randn N( )+ 5 2tsin 10 5t randn size t( )( )+cos–= =

0 t 512≤ ≤

f t( )
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w=linspace(0,Wn,length(t)/2);...
%
% The magnitude of the positive frequency components Xp are found from:;...
%
Xp=abs(X(1:length(t)/2));...
% We want now to plot Xp versus radian frequency w;...
%
subplot(222); plot(w,Xp),title('Spectrum of Signal & Noise in Wide Range');...
%
% We will select the frequencies of interest with the "find" function:;...
%
k=find(w<=20);...
%
% Now we will plot this restricted range;...
%
subplot(212); plot(w(k), Xp(k)),title('Spectrum of Signal & Noise in Narrow Range');...
%
% The last plot will have grid, labels and title;...
%
xlabel('Frequency, rads/sec'); ylabel('Frequency Components');...
title('Spectrum of Signal & Noise in Narrow Range'); grid

The signal is shown in Figure 11.47.

Figure 11.47. Waveforms for Example 11.23

We observe the appearance of the sinusoids at  and  in the lower plot. They were
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11.6 Digital Filter Design with Simulink
As stated earlier in this chapter, a digital filter, in general, is a computational process, or algo-
rithm that converts one sequence of numbers representing the input signal into another sequence
representing the output signal. Accordingly, a digital filter can perform functions as differentia-
tion, integration, estimation, and, of course, like an analog filter, it can filter out unwanted bands
of frequency.

In this section we provide several applications using Simulink models.

A given transfer function  of a digital filter can be realized in several forms, the most com-
mon being the Direct Form I, Direct Form II, Cascade (Series), and Parallel. These are
described in Subsections 11.6.1 through 11.6.4 below. Subsection 11.6.5 describes the Simulink
Digital Filter Design block.

11.6.1 The Direct Form I Realization of a Digital Filter
The Direct Form I Realization of a second−order digital filter is shown in Figure 11.48.

Figure 11.48. Direct Form I Realization of a second−order digital filter

At the summing junction of Figure 11.48 we obtain

and thus the transfer function of the Direct Form I Realization of the second-order digital filter of
Figure 11.48 is

(11.101)

A disadvantage of a Direct Form I Realization digital filter is that it requires  registers where 
represents the order of the filter. We observe that the second−order ( ) digital filter of Fig-

H z( )

+

y n[ ]

a1

a0

a2

b– 2

b– 1

x n[ ] z 1– z 1– z 1– z 1–

a0X z( ) a1z 1– X z( ) a2z 2– X z( ) b1–( )z 1– Y z( ) b2–( )z 1– Y z( )+ + + + Y z( )=

X z( ) a0 a1z 1– a2z 2–+ +( ) Y z( ) 1 b1z 1– b2z 2–+ +( )=

H z( ) Y z( )
X z( )
------------

a0 a1z 1– a2z 2–+ +

1 b1z 1– b2z 2–+ +
-------------------------------------------= =

2k k
k 2=
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ure 11.48 requires 4 delay (register) elements denoted as . However, this form of realization
has the advantage that there is no possibility of internal filter overflow.*

11.6.2 The Direct Form II Realization of a Digital Filter

Figure 11.49 shows the Direct Form-II† Realization of a second−order digital filter. The Sim-
ulink Transfer Fcn Direct Form II block implements the transfer function of this filter.

Figure 11.49. Direct Form-II Realization of a second−order digital filter

The transfer function for the Direct Form−II second−order digital filter of Figure 11.49 is the
same as for a Direct Form−I second−order digital filter of Figure 11.48, that is,

(11.102)

A comparison of Figures 11.48 and 11.49 shows that whereas a Direct Form−I second−order digi-
tal filter is requires  registers, where  represents the order of the filter, a Direct Form−II sec-

ond−order digital filter requires only  register elements denoted as . This is because the reg-

ister ( ) elements in a Direct Form−II realization are shared between the zeros section and the
poles section.

Example 11.24  
Figure 11.50 shows a Direct Form−II second−order digital filter whose transfer function is

(11.103)

* For a detailed discussion on overflow conditions please refer to Digital Circuit Analysis and Design with an
Introduction to CPLDs and FPGAs, ISBN 0−9744239−6−3, Section 10.5, Chapter 10, Page 10−6.

† The Direct Form−II is also known as the Canonical Form.

z 1–

x n[ ]

b2

y n[ ]

++

++

z 1–

z 1–

a1–

a2–

b1

b0

H z( )
a0 a1z 1– a2z 2–+ +

1 b1z 1– b2z 2–+ +
-------------------------------------------=

2k k

k z 1–

z 1–

H z( ) 1 1.5z 1– 1.02z 2–+ +

1 0.25z 1–– 0.75z 2–+
---------------------------------------------------=
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Figure 11.50. Model for Example 11.24

The input and output waveforms are shown in Figure 11.51.

Figure 11.51. Input and output waveforms for the model of Figure 11.50

A demo model using fixed−point Simulink blocks can be displayed by typing 

fxpdemo_direct_form2

in MATLAB’s Command prompt. This demo is an implementation of the third−order transfer
function

H z( ) 1 2.2z 1– 1.85z 2– 0.5z 3–+ + +

1 0.5– z 1– 0.84z 2– 0.09z 3–+ +
-----------------------------------------------------------------------=
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11.6.3 The Series Form Realization of a Digital Filter

For the Series* Form Realization, the transfer function is expressed as a product of first−order and
second−order transfer functions as shown in relation (11.104) below.

(11.104)

Relation (11.104) is implemented as the cascaded blocks shown in Figure 11.52.

Figure 11.52. Series Form Realization

Figure 11.53 shows the Series Form Realization of a second−order digital filter.

Figure 11.53. Series Form Realization of a second−order digital filter

The transfer function for the Series Form second−order digital filter of Figure 11.53 is

(11.105)

Example 11.25  
The transfer function of the Series Form Realization of a certain second−order digital filter is

* The Series Form Realization is also known as the Cascade Form Realization

H z( ) H1 z( ) H2 z( )…HR z( )( )⋅=

X z( ) HR z( )H2 z( )H1 z( ) Y z( )

z 1– z 1–

a1

a2

b– 1

b– 2

+ + y[n]x[n]

H z( )
1 a1z 1– a2z 2–+ +

1 b1z 1– b2z 2–+ +
------------------------------------------=

H z( ) 0.5 1 0.36– z 2–( )

1 0.1z 1– 0.72– z 2–+
----------------------------------------------=
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To implement this filter, we factor the numerator and denominator polynomials as

* (11.106)

The model is shown in Figure 11.54, and the input and output waveforms are shown in Figure
11.55. 

Figure 11.54. Model for Example 11.25

Figure 11.55. Input and output waveforms for the model of Figure 11.54

A demo model using fixed−point Simulink blocks can be displayed by typing 

fxpdemo_series_cascade_form

* The combination of the of factors in parentheses is immaterial. For instance, we can group the factors as

 and  or as  and 

H z( ) 0.5 1 0.6z 1–+( ) 1 0.6z 1––( )

1 0.9z 1–+( ) 1 0.8z 1––( )
------------------------------------------------------------------=

1 0.6z 1–
+( )

1 0.9z 1–
+( )

----------------------------- 1 0.6z 1–
–( )

1 0.8z 1–
–( )

----------------------------- 1 0.6z 1–
+( )

1 0.8z 1–
–( )

----------------------------- 1 0.6z 1–
–( )

1 0.9z 1–
+( )

-----------------------------
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in MATLAB’s Command prompt. This demo is an implementation of the third−order transfer
function

11.6.4 The Parallel Form Realization of a Digital Filter
The general form of the transfer function of a Parallel Form Realization is

(11.107)

Relation (11.107) is implemented as the parallel blocks shown in Figure 11.56.

Figure 11.56. Parallel Form Realization

As with the Series Form Realization, the ordering of the individual filters in Figure 11.56 is
immaterial. But because of the presence of the constant , we can simplify the transfer function
expression by performing partial fraction expansion after we express the transfer function in the
form .

Figure 11.57 shows the Parallel Form Realization of a second−order digital filter. The transfer
function for the Parallel Form second−order digital filter of Figure 11.57 is

(11.108)

H z( ) 1 0.5z 1–+( ) 1 1.7z 1– z 2–+ +( )

1 0.1z 1–+( ) 1 0.6– z 1– 0.9z 2–+( )
------------------------------------------------------------------------------=

H z( ) K H1 z( ) H2 z( ) … HR z( )+ + + +=

X z( )

HR z( )

H2 z( ) Y z( )

K

H1 z( )

+

K

H z( ) z⁄

H z( )
a1 a2z 2–+

1 b1z 1– b2z 2–+ +
------------------------------------------=



Chapter 11  Analog and Digital Filters

11−76 Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition
Copyright © Orchard Publications

 

Figure 11.57. Parallel Form Realization of a second−order digital filter

Example 11.26  
The transfer function of the Parallel Form Realization of a certain second−order digital filter is

To implement this filter, we first express the transfer function as 

Next, we perform partial fraction expansion.

Therefore,

z 1– z 1–

a1

a2

b– 1

b– 2

+ + y[n]x[n]

H z( ) 0.5 1 0.36– z 2–( )

1 0.1z 1– 0.72– z 2–+
----------------------------------------------=

H z( )
z

------------ 0.5 z 0.6+( ) z 0.6–( )
z z 0.9+( ) z 0.8–( )

--------------------------------------------------=

0.5 z 0.6+( ) z 0.6–( )
z z 0.9+( ) z 0.8–( )

--------------------------------------------------
r1
z
----

r2
z 0.9+( )

---------------------
r3

z 0.8–( )
---------------------+ +=

r1
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--------------------------------------------------

z 0=

0.25= =

r2
0.5 z 0.6+( ) z 0.6–( )

z z 0.8–( )
--------------------------------------------------

z 0.9–=

0.147= =
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0.5 z 0.6+( ) z 0.6–( )

z z 0.9+( )
--------------------------------------------------

z 0.8=

0.103= =

H z( )
z

------------ 0.25
z

---------- 0.147
z 0.9+
---------------- 0.103
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H z( ) 0.25 0.147z
z 0.9+
---------------- 0.103z

z 0.8–
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(11.109)

The model is shown in Figure 11.58, and the input and output waveforms are shown in Figure
11.59.

Figure 11.58. Model for Example 11.26

Figure 11.59. Input and output waveforms for the model of Figure 11.58

A demo model using fixed−point Simulink blocks can be displayed by typing 

H z( ) 0.25 0.147
1 0.9z 1–+
------------------------ 0.103

z 0.8z 1––
-----------------------+ +=
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fxpdemo_parallel_form

in MATLAB’s Command prompt. This demo is an implementation of the third−order transfer
function

11.6.5 The Digital Filter Design Block

The Digital Filter Design block is included in the Simulink Signal Processing Blockset* and
requires the installation of the Simulink program to create models related to digital filter design
applications. The functionality of this block can be observed by dragging this block into a model
and double-clicking it. When this is done, the Block Parameters dialog box appears as shown in
Figure 11.60. As indicated on the left lower part of this box, we can choose the Response Type
(Low−Pass, High−Pass, Band−Pass, or Band−Elimination), the Design Method (IIR or FIR)
where an IIR filter can be Butterworth, Chebyshev Type I, Chebyshev Type II, or Elliptic, and
FIR can be Window, Maximally Flat, etc., and the Window† can be Kaiser, Hamming, etc. We
must click on the Design Filter button at the bottom of the Block Parameters dialog box to
update the specifications. Example 11.27 below is very similar to that of Example 11.23, Page 11−
68.

Example 11.27  
The signal represented by the waveform of Figure 11.61 is the summation of the sinusoidal signals

, , and  defined in the MATLAB script below.

t=0:pi/32:16*pi; x=sin(0.25.*t); y=2.*sin(0.75.*t+pi/6); z=5.*sin(1.5.*t+pi/3); plot(t,x+y+z); grid

During transmission of this signal from its source to its destination, this signal is corrupted by the
addition of unwanted Gaussian random noise. In this example, we will create a Simulink model
that includes a digital filter to remove the Gaussian random noise.

* Blocksets are built-in blocks in Simulink that provide a comprehensive block library for different system components. FDA
stands for Filter Design and Analysis. This blockset can be obtained from The MathWorks, Inc., 3 Apple Hill Drive, Nat-
ick, MA 01760-2098, Phone: 508-647-7000, www.mathworks.com.

† A window function multiplies the infinite length impulse response (IIR) by a finite width function, referred to as window
function, so that the infinite length series will be terminated after a finite number of terms in the series. The most common
window functions are described in the Signal Processing Toolbox User’s Guide The MathWorks, Inc.

H z( ) 5.5556 3.4639
1 0.1z 1–+( )

-----------------------------– 1.0916– 3.0086z 1–+

1 0.6z 1–– 0.9z 2–+
---------------------------------------------------+=

x y z
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Figure 11.60. The Digital Filter Design Block Parameters dialog box

Figure 11.61. Signal to be transmitted for Example 11.27
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The Simulink model of Figure11.62 below contains a Random Source block to incorporate noise
into the system.This block and the three DSP Sine Wave blocks are dragged from the Signal
Processing Sources sub−library under Signal Management in the Signal Processing Blockset
into the model. The Add (Sum) and Scope blocks are dragged from the Commonly Used
Blocks main Simulink Library, and the Scope 1 and Scope 2 blocks are configured* with four and
two inputs (axes) respectively from the Scope Parameters dialog box.

Figure 11.62. Simulink model for Example 11.27

The DSP Sine Wave blocks are configured as follows:

DSP Sine Wave 1:

Amplitude: 1, Freq (Hz): 0.25, Phase: 0, Sample Time: 0.05, All other parameters in their 
default state

DSP Sine Wave 2:

Amplitude: 2, Freq (Hz): 0.75, Phase: pi/6, Sample Time: 0.05, All other parameters in 
their default state

DSP Sine Wave 3:

Amplitude: 5, Freq (Hz): 1.5, Phase: pi/3, Sample Time: 0.05, All other parameters in 
their default state

The Random Source block is configured as follows:

Source type: Gaussian, Method: Ziggurat, Initial seed: [23341], Sample Time: 0.05

When the simulation command is executed, the Scope 1 block in the model of Figure 11.62, dis-

* For a detailed discussion on configuration of the Scope block, please refer to Introduction to Simulink with Engineering
Applications, ISBN 0−9744239−7−1.
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plays the input and output waveforms shown in Figure 11.63, and the Scope 2 block displays the
input and output waveforms shown in Figure 11.64.

Figure 11.63. Input and output waveforms displayed in Scope 1 block of Figure 11.62

Figure 11.64. Input and output waveforms displayed in Scope 2 block of Figure 11.62

Next, we add an FDA Tool Digital Filter Design block as shown in Figure 11.65 to remove the
unwanted noise created by the Random Source block. The Block Parameters dialog box for the
FDA Tool Digital Filter Design block is configured as follows:

Response Type: Lowpass, Design Method: FIR, Window, Window: Rectangular, and all
other unlisted parameters in their default state. Of course, we can choose any other design
options. With those specifications, the Scope 2 block displays the waveforms shown in Figure
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11.66.

Figure 11.65. The model of Figure 11.62 with the addition of an FDA Tool Digital Filter Design block.

Figure 11.66. Input and output waveforms displayed in Scope 2 block of Figure 11.65

Figure 11.66 reveals that with the addition of the FDA Tool Digital Filter Design block, most of
the unwanted noise has been removed. However, we can remove the remaining noise with the
addition of an adaptive filter.* The Signal Processing Blockset contains blocks that implement the
Least−Mean−Square (LMS) block, the Fast Block LMS, and Recursive Least Squares (RLS)

* An adaptive filter is a digital filter that performs digital signal processing and can adapt its performance based on the
input signal. All filters we’ve considered thus far are non−adaptive filter and their characteristics are defined by their trans-
fer function. 
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adaptive filter algorithms. For our example, we will add an LMS adaptive filter to the model of
Figure 11.65. Thus, from the Signal Processing Blockset, we click on the Filtering Library, then
on the Adaptive Filters sub−library, and we drag the LMS Filter block into our model which is
connected as shown in Figure 11.67 where the Wts (Weights) port of the LMS Filter block
which outputs the filter weights is left unconnected. The waveforms displayed by the Scope 3
block are shown in Figure 11.68 where last waveform indicates the output of the Error port
which is the difference between the desired signal of the LMS filter and its output.

Figure 11.67. Model for Example 11.27 with LMS Filter block

Figure 11.68. Waveforms displayed by Scope 3 block in the model of Figure 11.67
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The error is never exactly zero and thus the adaptive filter continuously modifies the filter coeffi-
cients to provide a better approximation of the noise. We can view these coefficients as they
change with time by connecting a Vector Scope block to the Wts output port of the LMS filter
block as shown in Figure 11.69.

Figure 11.69. Model for Example 11.27 with Vector Scope block

The Block Parameters dialog box for the Vector Scope block contains four tabs, and for the
model of Figure 11.69 these are configured as follows:

Scope Properties tab: Input domain: Time, Time display span (number of frames): 1

Display Properties tab: Select the following check boxes: Show grid, Frame Number, Com-
pact Display, and Open scope at start of simulation

Axis Properties tab: Minimum Y−limit: −0.1, Maximum Y−limit: 0.5, Y−axis title: Filter Weights

Line Properties tab: Line visibilities: on, Line style: −−, Line markers: o, Line colors: [1  0  0]

Before execution of the simulation command, the configuration parameters are specified as fol-
lows:

From the Simulation drop menu, in the Solver pane, for the Stop time parameter, we enter inf.
From the Type list, we choose Fixed−step, and from the Solver list we choose discrete (no con-
tinuous states). We close the configuration parameters dialog box by clicking OK.

When the simulation command is issued, we observe that the Vector Scope window opens auto-
matically, and the filter coefficients change with time and eventually approach their steady−state
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values as shown in Figure 11.70.

Figure 11.70. The filter coefficients displayed in the Vector Scope Window in the model of Figure 11.69

Next, we double−click on the Scope 3 block in the model of Figure 11.69, and after some time
we observe that the error decreases to zero as shown in Figure 11.71, and the output of the adap-
tive LMS filter is practically the same as the original input signal. 

Figure 11.71. Waveforms displayed in the Scope 3 in the model of Figure 11.69

Since for the Stop time parameter we have specified inf, the simulation time goes on forever, and
we observe that the waveforms in Figure 11.71 are updated continuously. To stop the simulation,
we must click on the Stop simulation icon which is indicated by a small black square immedi-
ately to the left of the Stop time field in the window of our model. The Stop simulation is active
only when the Stop time is specified as inf and the simulation command has been issued. To
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pause the simulation, we must click on the Pause simulation icon indicated by two small vertical
bars immediately to the left of the Stop simulation icon.
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11.7 Summary
• Analog filters are defined over a continuous range of frequencies. They are classified as low−

pass, high−pass, band−pass and band−elimination (stop−band). 

• An all−pass or phase shift filter has a constant magnitude response but is phase varies with fre-
quency.

• A digital filter, in general, is a computational process, or algorithm that converts one sequence
of numbers representing the input signal into another sequence representing the output signal.

• A digital filter, besides filtering out unwanted bands of frequency, can perform functions of dif-
ferentiation, integration, and estimation.

• Analog filter functions have been used extensively as prototype models for designing digital fil-
ters.

• An analog filter can also be classified as passive or active. Passive filters consist of passive
devices such as resistors, capacitors and inductors. Active filters are, generally, operational
amplifiers with resistors and capacitors connected to them externally.

• If two frequencies  and  are such that , we say that these frequencies are sepa-
rated by one octave, and if , they are separated by one decade.

• The analog low−pass filter is used as a basis. Using transformations, we can derive high−pass
and the other types of filters from a basic low−pass filter. 

• In this chapter we discussed the Butterworth, Chebyshev Type I & II, and Cauer (elliptic) fil-
ters.

• The first step in the design of an analog low−pass filter is to derive a suitable magnitude−squared

function , and from it derive a  function such that

• The general form of the magnitude−square function  is

where  is the DC gain,  and  are constant coefficients, and  is a positive integer denot-
ing the order of the filter. 

• The magnitude−squared function of a Butterworth analog low−pass filter is 

ω1 ω2 ω2 2ω1=
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=
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where  is a positive integer indicating the order of the filter, and  is the cutoff ( ) fre-
quency.

• All Butterworth filters have the property that all poles of the transfer functions that describes
them, lie on a circumference of a circle of radius , and they are  radians apart. Thus,
if , the poles start at zero radians, and if , they start at . But regard-
less whether  is odd or even, the poles are distributed in symmetry with respect to the 
axis. For stability, we choose the poles of the left half of the −plane to form . 

• The general form of any analog low−pass (Butterworth, Chebyshev, Elliptic, etc.) filter is

• The MATLAB buttap and zp2tf functions are very useful functions in the design of Butter-
worth filters. The first returns the zeros, poles, and gain for an  order normalized proto-
type Butterworth analog low−pass filter. The resulting filter has  poles around the unit circle
in the left half plane, and no zeros. The second performs the zero−pole to transfer function
conversion.

• The Chebyshev Type I filters are based on approximations derived from the Chebyshev polyno-
mials  that constitute a set of orthogonal functions. The coefficients of these polynomials
are tabulated in math tables.

• We can use the MATLAB cheb1ap function to design a Chebyshev Type I analog low−pass
filter. Thus, the [z,p,k] = cheb1ap(N,Rp) statement where N denotes the order of the filter,
returns the zeros, poles, and gain of an  order normalized prototype Chebyshev Type I
analog low−pass filter with ripple Rp decibels in the pass band.

• The Chebyshev Type II, also known as Inverted Chebyshev filter, is characterized by the fol-
lowing magnitude−square approximation

and has the ripple in the stop−band as opposed to Chebyshev Type I which has the ripple in the
pass−band. The frequency  defines the beginning of the stop band.

• The elliptic (Cauer) filters are characterized by the low−pass magnitude−squared function
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where  represents a rational elliptic function used with elliptic integrals. Elliptic filters
have ripple in both the pass−band and the stop−band.

• We can design elliptic low−pass filters with the MATLAB ellip function. The statement [b,a]
= ellip(N,Rp,Rs,Wn,’s’) where N is the order of the filter, designs an  order low−pass fil-
ter with ripple Rp decibels in the pass band, a stop band with ripple Rs decibels, Wn is the cut-
off frequency, and ’s’ is used to specify analog elliptic filters. If ’s’ is not included in the above
statement, MATLAB designs a digital filter.

• Transformation methods have been developed where a low−pass filter can be converted to
another type of filter simply by transforming the complex variable . These transformations are
listed in Table 11.5 where  is the cutoff frequency of a low−pass filter.

• We can use the MATLAB lp2lp, lp2hp, lp2bp, and lp2bs functions to transform a low−pass
filter with normalized cutoff frequency, to another low−pass filter with any other specified fre-
quency, or to a high−pass filter, or to a band−pass filter, or to a band−elimination filter respec-
tively

• We can use the MATLAB function bode(num,den) to generate both the magnitude and
phase responses of any transfer function describing the filter type.

• Digital filters are classified in terms of the duration of the impulse response, and in forms of
realization.

• An Infinite Impulse Response (IIR) digital filter has infinite number of samples in its impulse
response 

• A Finite Impulse Response (FIR) digital filter has a finite number of samples in its impulse
response 

• In a Recursive Realization digital filter the output is dependent on the input and the previous
values of the output. In a recursive digital filter, both the coefficients  and  are present.

• In a Non−Recursive Realization digital filter the output depends on present and past values of
the input only. In a non−recursive digital filter, only the coefficients  are present, that is,

.

• Generally, IIR filters are implemented by recursive realization, whereas FIR filters are imple-
mented by non−recursive realization.

• Transformation methods are also available to map an analog prototype to an equivalent digital
filter. Three well known methods are the following:

A2 ω( ) 1
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h n[ ]
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1. The Impulse Invariant Method that produces a digital filter whose impulse response consists
of the sampled values of the impulse response of an analog filter.

2. The Step Invariant Method that produces a digital filter whose step response consists of the
sampled values of the step response of an analog filter.

3. The Bilinear Transformation that uses the transformation

• The analog frequency to digital frequency transformation results in a non−linear mapping; this
condition is known as warping. 

• The effect of warping can be eliminated by pre−warping the analog filter prior to application of
the bilinear transformation. 

• We can use the MATLAB freqz(b,a,N) function to plot the magnitude of 

• An analog filter transfer function can be mapped to a digital filter transfer function directly
with the MATLAB bilinear(b,a,Fs) function.

• The MATLAB filter(b,a,X) function can be used to remove unwanted frequency components
from a function.

• We can use the MATLAB find(X) function to restrict the frequency range of the spectrum in
order to identify the frequency components of the signal .

• The Digital Filter Design block is included in the Simulink Signal Processing Blockset and
requires the installation of the Simulink program to create models related to digital filter design
applications. 

s 2
Ts
----- z 1–

z 1+
------------⋅=

G z( )

f t( )
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11.8 Exercises
1. The op amp circuit below is a VCVS second−order high−pass filter whose transfer function is

and for given values of , , and desired cutoff frequency , we can calculate the values of
 to achieve the desired cutoff frequency . 

For this circuit,

and the gain  is

Using these relations, compute the appropriate values of the resistors to achieve the cutoff fre-
quency . Choose the capacitors as  and . Plot  ver-
sus frequency.

Solution using MATLAB is highly recommended.
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2. The op amp circuit below is a VCVS second−order band−pass filter whose transfer function is

 

Let , , ,
, and 

We can calculate the values of  to achieve the desired centered fre-
quency  and bandwidth . For this circuit,

Using these relations, compute the appropriate values of the resistors to achieve center fre-
quency , , and .

Choose the capacitors as . Plot  versus frequency.

Solution using MATLAB is highly recommended.

G s( )
Vout s( )
Vin s( )
------------------ K BW[ ]s

s2 BW[ ]s ω0
2+ +

-----------------------------------------= =

vin

vout

C1

R5

C2

R3

R2

R1

R4

ω0 center frequency= ω2 upper cutoff frequency= ω1 lower cutoff frequency=

Bandwidth BW ω2 ω1–= Quality Factor  Q ω0 BW⁄=

C1 C2 R1 R2 R3 and R4, , , , ,

ω0 BW

R1
2Q

C1ω0K
-----------------=

R2
2Q

C1ω0 1– K 1–( )2 8Q2++
 
 
 

---------------------------------------------------------------------------=

R3
1

C1
2ω0

2
------------- 1

R1
------ 1

R2
------+ 

      =

R4 R5 2R3= =

f0 1 KHz= Gain K 10= Q 10=

C1 C2 0.1 µF= = G s( )



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition 11−93
Copyright © Orchard Publications

Exercises

3. The op amp circuit below is a  second−order band−elimination filter whose transfer
function is

Let , , ,
, , and gain 

We can calculate the values of  to achieve the desired centered fre-
quency  and bandwidth . For this circuit,

The gain  must be unity, but  can be up to 10. Using these relations, compute the appropri-
ate values of the resistors to achieve center frequency ,  and .

Choose the capacitors as  and . Plot  versus frequency.

Solution using MATLAB is highly recommended.
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4. The op amp circuit below is a MFB second−order all−pass filter or phase shift filter whose transfer
function is

where the gain , , and the phase is given by

The coefficients  and  can be found from

For arbitrary values of , we can compute the resistances from 

For , we compute the coefficient  from

and for , from
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Using these relations, compute the appropriate values of the resistors to achieve a phase shift
 at  with .

Choose the capacitors as  and plot phase versus frequency.

Solution using MATLAB is highly recommended.

5. The op amp circuit below is also known as Bessel filter and has the same configuration as the
low−pass filter presented in Figure 4.20, Chapter 4, Page 4−15. This circuit achieves a rela-
tively constant time delay over a range . The second-order transfer function of this
filter is 

where  is the gain and the time delay  at  is given as

We recognize the transfer function  above as that of a low−pass filter where 
and the substitution of . Therefore, we can use a low−pass filter circuit such as that
above to achieve a constant delay  by specifying the resistor and capacitor values of the cir-
cuit.

The resistor values are computed from

Using these relations, compute the appropriate values of the resistors to achieve a time delay
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 with . Use capacitors  and . Plot  ver-
sus frequency.

Solution using MATLAB is highly recommended.

6. Derive the transfer function of a fourth−order Butterworth filter with .

7. Derive the magnitude−squared function for a third−order Chebyshev Type I low−pass filter
with  pass band ripple and cutoff frequency .

8. In Chapter 4, Exercise 5, Page 4−30, for the RC low−pass filter we derived the transfer function

Derive the equivalent digital filter transfer function by application of the bilinear transforma-
tion. Assume that 

9. Use MATLAB to derive the transfer function  and plot  versus  for a two−pole,
Chebyshev Type I high−pass digital filter with sampling period . The equivalent
analog filter cutoff frequency is  and has  pass band ripple. Compute the
coefficients of the numerator and denominator and plot  with and without pre−warping.
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G z( ) G z( ) ω
TS 0.25 s=

ωC 4 rad s⁄= 3 dB
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11.9 Solutions to End−of−Chapter Exercises
1. We will use MATLAB for all computations.

% PART I − Find Resistor values for second order Butterworth filter, a=sqrt(2), b = 1
%
a=sqrt(2); b =1; C1=10^(−8); C2=C1; fc=1000; wc=2*pi*fc; K=2;
R2=(4*b)/(C1*sqrt(a^2+8*b*(K−1))*wc);
R1=b/(C1^2*R2*wc^2); R3=(K*R2)/(K−1); R4=K*R2; fprintf(' \n');...
fprintf('R1 = %5.0f Ohms \t',R1); fprintf('R2 = %5.0f Ohms \t',R2);...
fprintf('R3 = %5.0f Ohms \t',R3); fprintf('R4 = %5.0f Ohms \t',R4)

R1=12582 Ohms  R2=20132 Ohms  R3=40263 Ohms  R4=40263 Ohms

We choose standard resistors as close as possible to those found above. These are shown in the
MATLAB script below. 

% PART II − Plot with standard resistors R1=12.7 K, R2=20.0 K, R3=40.2 K, R4= R3
%
f=10:10:20000; w=2*pi*f; R1=12700; R2=20000; R3=40200; R4=R3; K=1+R4/R3;...
wc=(4*b)/(C1*sqrt(a^2+8*b*(K−1))*R2); s=w*j; Gw=(K.*s.^2)./(s.^2+a.*wc.*s./b+wc.^2./b);...
semilogx(f,abs(Gw)); xlabel('Frequency, Hz log scale’), ylabel('|Vout/Vin| absolute values');...
title('2nd Order Butterworth High−Pass Filter Response'); grid
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2. We will use MATLAB for all computations.

% PART I − Find Resistor values for second order band−pass filter f0 = 1 KHz
%
Q=10; K=10; C1=10^(−7); C2=C1; f0=1000; w0=2*pi*f0; R1=(2*Q)/(C1*w0*K);...
R2=(2*Q)/(C1*w0*(−1+sqrt((K−1)^2+8*Q^2))); R3=(1/(C1^2*w0^2))*(1/R1+1/R2); R4=2*R3;...
R5=R4; fprintf('  \n'); fprintf('R1 = %5.0f Ohms \t',R1); fprintf('R2 = %5.0f Ohms \t',R2);...
fprintf('R3 = %5.0f Ohms \t',R3); fprintf('R4 = %5.0f Ohms \t',R4);...
fprintf('R5 = %5.0f Ohms \t',R5)

R1=3183 Ohms R2=1110 Ohms R3=3078 Ohms R4=6156 Ohms R5=6156 Ohms 

We choose standard resistors as close as possible to those found above. These are shown in the
MATLAB script below.

%
% PART II − Plot with standard resistors R1=3.16 K, R2=1.1 K, R3=3.09 K, R4= 6.19 K, 
% R5=R4
%
K=10; Q=10; f=10:10:10000; w=2*pi*f; R1=3160; R2=1100; R3=3090; R4=6190; R5=R4;...
w0=(2*Q)/(C1*R1*K); B=w0/Q; s=w*j; Gw=(K.*B.*s)./(s.^2+B.*s+w0.^2);...
semilogx(f,abs(Gw)); axis([100 10000 0 10]); xlabel('Frequency, Hz − log scale'),...
ylabel('|Vout/Vin| absolute values');...
title('2nd Order Butterworth Band−Pass Filter Response'); grid
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3. We will use MATLAB for all computations.

% PART I − Find Resistor values for second order Butterworth band−elimination filter
% with f0 = 1 KHz
%
Q=10; K=1; C1=10^(−7); C2=C1; C3=2*C1; f0=1000; w0=2*pi*f0;...
R1=1/(2*w0*Q*C1); R2=(2*Q)/(w0*C1); R3=(2*Q)/(C1*w0*(4*Q^2+1)); fprintf(' \n');...
fprintf('R1 = %5.0f Ohms \t',R1); fprintf('R2 = %5.0f Ohms \t',R2);...
fprintf('R3 = %5.0f Ohms \t',R3)

R1=80 Ohms  R2=31831 Ohms  R3=79 Ohms

We choose standard resistors as close as possible to those found above. These are shown in the
MATLAB script below.
%
% PART II − Plot with standard resistors R1=80.6, R2=3.16 K, R3=78.7 
%
K=1; Q=10; f=10:10:10000; w=2*pi*f; R1=80.6; R2=31600; R3=78.7;...
w0=1/(2*R1*Q*C1); B=w0/Q; s=w*j; Gw=(K.*(s.^2+w0.^2))./(s.^2+B.*s+w0.^2);...
semilogx(f,abs(Gw)); axis([100 10000 0 1]); xlabel('Frequency, Hz − log scale ');...
ylabel('|Vout/Vin| absolute values');...
title('2nd Order Butterworth Band−Elimination Filter Response'); grid
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4. Let us first solve the relation

for  in terms of  and  so that we can derive its value from the MATLAB script below. We
rewrite the above relation as

then,

% MFB 2nd order all−pass filter, f0=1 KHz 
% phase shift phi=−pi/2 and gain K=3/4. Gain must be 0<K<1
%
% PART I − Find Resistor, a and b values
%
phi0=−pi/2; K=0.75; C1=10^(−8); C2=C1; f0=1000; w0=2*pi*f0;...
a=((1−K)/(2*K*tan(phi0/2)))*(−1−sqrt((1+4*K/(1−K))*(tan(phi0/2))^2));...
b=(a+tan(−phi0/2))/tan(−phi0/2); R2=2/(a*w0*C1); R1=(1−K)*R2/(4*K);...
R3=R2/K; R4=R2/(1−K); fprintf('  \n'); fprintf('R1 = %6.0f Ohms \t',R1);...
fprintf('R2 = %6.0f Ohms \t',R2); fprintf('R3 = %6.0f Ohms \t',R3);...
fprintf('R4 = %6.0f Ohms \t',R4); fprintf('  \n');...
fprintf('a = %5.3f  \t', a); fprintf('b = %5.3f  \t', b)

R1=3456 Ohms R2=41469 Ohms  R3=55292 Ohms  R4=165875 Ohms   
a = 0.768  b = 1.768

We choose standard resistors as close as possible to those found above. These are shown in the
MATLAB script below.
%
% PART II − Plot with standard resistors R1=3.48 K, R2=41.2 K, R3=54.9 K, R4=165 K  
%
K=3/4; a=0.768; b=1.768; C1=10^(−8); C2=C1; f=10:10:100000; w=2*pi*f;...
R1=3480; R2=41200; R3=54900; R4=165000; w0=2/(a*R2*C1); s=w*j;
Gw=(K.*(s.^2−a.*w0.*s+b.*w0.^2))./(s.^2+a.*w0.*s+b.*w0.^2);...
semilogx(f,angle(Gw).*180./pi); xlabel('Frequency, Hz − log scale');...
ylabel('Phase Angle in degrees'); title('2nd Order All−Pass Filter Phase Response'); grid

φ0 φ ω0( ) 2tan 1– a
b 1–
------------ 

 –= =

b φ0 a

tan 1– a
b 1–
------------ 

  φ0

2
-----–=

tan φ0

2
-----– 

  a
b 1–
------------=

btan φ0

2
-----– 

  a tan φ0

2
-----– 

 +=

b a tan φ0 2⁄–( )+
tan φ0 2⁄–( )

-------------------------------------=
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Solutions to End-of-Chapter Exercises

The plot shown below is the phase (not magnitude) response.

5. We will use MATLAB for all computations.

% MFB 2nd order Bessel filter, T0=100 microseconds, K=2
% PART I − Find resistor values
T0=100*10^(−6); K=2; C1=10^(−8); C2=2*10^(−9); a=3; b=3; w0=12/(13*T0);...
R2=(2*(K+1))/((a*C1+sqrt(a^2*C1^2−4*b*C1*C2*(K+1)))*w0); R1=R2/K;...
R3=1/(b*C1*C2*R2*w0^2); fprintf(' \n'); fprintf('R1 = %5.0f Ohms \t',R1);...
fprintf('R2 = %5.0f Ohms \t',R2); fprintf('R3 = %5.0f Ohms \t',R3)

R1 = 7486 Ohms   R2 = 14971 Ohms   R3 = 13065 Ohms

We choose standard resistors as close as possible to those found above. These are shown in the
MATLAB script below. Part II of the script is as follows:
%
% PART II − Plot with standard resistors R1=7.5 K, R2=15.0 K, R3=13.0 K
%
K=2; a=3; b=3; C1=10^(−8); C2=2*10^(−9); f=1:10:100000; w=2*pi*f; R1=7500;...
R2=15000; R3=13000; w0=(2*(K+1))/((a*C1+sqrt(a^2*C1^2−4*b*C1*C2*(K+1)))*R2);...
s=w*j; Gw=(3.*K.*w0.^2)./(s.^2+a.*w0.*s+b.*w0.^2);...
semilogx(f,angle(Gw).*180./pi); xlabel('Frequency, Hz');...
ylabel('Phase Angle in degrees'); title('2nd Order Bessel Filter Response'); grid

The plot shown below is the phase (not magnitude) response. This filter has very good phase
response but poor magnitude response. The group delay (the slope at a particular frequency) is
practically flat at frequencies near DC.
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6. From (11.24), Page 11−14,

and with  and , we obtain

Then,

We can use DeMoivre’s theorem to find the roots of  but we will use MATLAB instead.

syms s; y=solve('s^8+1=0'); fprintf(' \n'); disp('s1 = '); disp(simple(y(1)));...
disp('s2 = '); disp(simple(y(2))); disp('s3 = '); disp(simple(y(3)));...
disp('s4 = '); disp(simple(y(4))); disp('s5 = '); disp(simple(y(5)));...
disp('s6 = '); disp(simple(y(6))); disp('s7 = '); disp(simple(y(7)));...
disp('s8 = '); disp(simple(y(8)))

s1 = 1/2*2^(3/4)*(1+i)^(1/2)      

s2 = -1/2*2^(3/4)*(1+i)^(1/2)     

s3 = 1/2*i*2^(3/4)*(1+i)^(1/2)    

s4 = -1/2*i*2^(3/4)*(1+i)^(1/2)   

s5 = 1/2*i*2^(3/4)*(-1+i)^(1/2)   
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A2 ω( ) 1
ω ωC⁄( )2k 1+

-----------------------------------=

ωC 1 rad s⁄= k 4=

A2 ω( ) 1
ω8 1+
---------------=

G s( ) G s–( )⋅ 1
s8 1+
--------------=

s8 1+

s1 1 2⁄( ) 234 1 j+⋅ ⋅=

s2 1 2⁄( )– 234 1 j+⋅ ⋅=

s3 1 2⁄( )j 234 1 j+⋅ ⋅=

s4 1 2⁄( )j– 234 1 j+⋅ ⋅=

s5 1 2⁄( )j 234 1– j+⋅ ⋅=
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Solutions to End-of-Chapter Exercises

s6 = -1/2*i*2^(3/4)*(-1+i)^(1/2)  

s7 = 1/2*2^(3/4)*(-1+i)^(1/2)     

s8 = -1/2*2^(3/4)*(-1+i)^(1/2)    

Since we are only interested in the poles of the left half of the −plane, we choose the roots ,
, , and . To express the denominator in polynomial form we use the following MATLAB

script:

denGs=(s−s2)*(s−s4)*(s−s6)*(s−s8); r=vpa(denGs,4)
r = (s+.9240+.3827*i)*(s+.3827−.9240*i)*(s+.9240−.3827*i)*(s+.3827+.9240*i)
expand(r)

ans =
s^4+2.6134*s^3+3.41492978*s^2+2.614014906886*s

+1.0004706353613841

and thus

7. From (11.49), Page 11−26,

  (1)

and with  and , we find from (11.48), Page 11−26, that

Also, from (11.56), Page 11−29, with  ripple,

and with these values (1) is written as

To express the denominator in polynomial form, we use the following MATLAB script.

syms w; denA=1+0.4125*expand((4*w^3−3*w)^2);...
denA = 1+33/5*w^6−99/10*w^4+297/80*w^2

and thus

s6 1 2⁄( )j– 234 1– j+⋅ ⋅=

s7 1 2⁄( ) 234 1– j+⋅ ⋅=

s8 1 2⁄( )– 234 1– j+⋅ ⋅=

s s2

s4 s6 s8

G s( ) 1
s4 2.61s3 3.41s2 2.61s 1+ + + +
-----------------------------------------------------------------------------=

A2 ω( ) α

1 ε2Ck
2 ω ωC⁄( )+

---------------------------------------------=

ωC 1= k 3=

Ck
2 C3

2 4ω3 3ω–( )
2

= =

1.5 dB

ε2 10 1.5 10⁄( ) 1– 0.4125= =

A2 ω( ) α

1 0.4125 4ω3 3ω–( )
2

⋅+
-------------------------------------------------------------=
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8.

and with ,

9. The approximation of (11.86), Page 11−54, with  yields .
However, using the exact relation of (11.85), Page 11−54, and solving for  we find that

and this value is not very close to unity. Therefore we will compute  with pre−warping
using the following MATLAB script.

% This script designs a 2−pole Chebyshev Type 1 high−pass digital filter with 
% analog cutoff frequency wc=4 rads/sec, sampling period Ts=0.25 sec., with 
% pass band % ripple of 3 dB. 
%
N=2; % # of poles
Rp=3; % Pass−band ripple in dB
Ts=0.25; % Sampling period
wc=4; % Analog cutoff frequency
% Let wd be the discrete time radian frequency. This frequency is related to 
% the continuous time radian frequency wc by wd=Ts*wc with no pre−warping. 
% With prewarping it is related to wc by wdp=2*arctan(wc*Ts/2).
% We divide by pi to normalize the digital cutoff frequency.
wdp=2*atan(wc*Ts/2)/pi;
% To obtain the digital cutoff frequency without prewarping we use the relation
% wd=(wc*Ts)/pi;
[Nz,Dz]=cheby1(N,Rp,wdp,'high');
%
fprintf('The numerator N(z) coefficients in descending powers of z are: \n\n');
fprintf('%8.4f \t',[Nz]); fprintf(' \n');

A2 ω( ) α

6.6ω6 9.9ω4– 3.7125ω2 1+ +
-------------------------------------------------------------------------=

G s( ) 1 RC⁄
s 1 RC⁄+
------------------------=

RC 1=

G s( ) 1
s 1+
-----------=

G z( ) G s( )
s 2

TS
------ z 1–

z 1+
------------⋅=

=

G z( ) 1
2

TS
------ z 1–

z 1+
------------⋅ 1+

----------------------------------
TS z 1+( )

2 z 1–( ) TS z 1+( )+
-------------------------------------------------

TS z 1+( )
TS 2+( )z TS 2–( )+

--------------------------------------------------= =
TS z 1+( ) TS 2+( )⁄

z TS 2–( ) TS 2+( )⁄+
-----------------------------------------------------= =

ωC ωa= ωC ωa TS⋅ 4 0.25× 1= = =

ωd

ωd 2 ωaTS( ) 2⁄1–tan 0.9273= =

G1 z( )
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Solutions to End-of-Chapter Exercises

fprintf('The denominator D(z) coefficients in descending powers of z are: \n\n');
fprintf('%8.4f \t',[Dz]); fprintf(' \n');
% 
fprintf('Press any key to see the plot \n');
pause;
%
w=0:2*pi/300:pi; Gz=freqz(Nz,Dz,w); plot(w,abs(Gz)); grid; xlabel('Frequency (rads/sec)'); 
ylabel('|H|'); title('High−Pass Digital Filter with pre−warping')

The numerator N(z) coefficients in descending powers of z are: 
  0.3914  -0.7829   0.3914 

The denominator D(z) coefficients in descending powers of z 
are:

 1.0000 -0.7153  0.4963

and thus the transfer function and the plot with pre−warping are as shown below.

Next, we will compute  without pre−warping using the following MATLAB script:

N=2; % # of poles
Rp=3; % Pass band ripple in dB
Ts=0.25; % Sampling period
wc=4; % Analog cutoff frequency
wd=(wc*Ts)/pi;
[Nz,Dz]=cheby1(N,Rp,wd,'high');
%

G1 z( ) 0.3914z2 0.7829z– 0.3914+

z2 0.7153z– 0.4963+
----------------------------------------------------------------------=
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fprintf('The numerator N(z) coefficients in descending powers of z are: \n\n');
fprintf('%8.4f \t',[Nz]); fprintf(' \n');
fprintf('The denominator D(z) coefficients in descending powers of z are: \n\n');
fprintf('%8.4f \t',[Dz]); fprintf(' \n');
% 
fprintf('Press any key to see the plot \n');
pause;
%
w=0:2*pi/300:pi; Gz=freqz(Nz,Dz,w); plot(w,abs(Gz)); grid; xlabel('Frequency (rads/sec)'); 
ylabel('|H|'); title('High−Pass Digital Filter without pre−warping')

The numerator N(z) coefficients in descending powers of z are:

  0.3689  -0.7377   0.3689  

The denominator D(z) coefficients in descending powers of z 
are:

  1.0000  -0.6028   0.4814

and thus the transfer function and the plot without pre-warping are as shown below.

G2 z( ) 0.3689z2 0.7377z– 0.3689+

z2 0.6028z– 0.4814+
----------------------------------------------------------------------=
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Appendix A

Introduction to MATLAB®

his appendix serves as an introduction to the basic MATLAB commands and functions,
procedures for naming and saving the user generated files, comment lines, access to MAT-
LAB’s Editor / Debugger, finding the roots of a polynomial, and making plots. Several exam-

ples are provided with detailed explanations.

A.1 MATLAB® and Simulink®
MATLAB and Simulink are products of The MathWorks,™ Inc. These are two outstanding soft-
ware packages for scientific and engineering computations and are used in educational institu-
tions and in industries including automotive, aerospace, electronics, telecommunications, and
environmental applications. MATLAB enables us to solve many advanced numerical problems
rapidly and efficiently. 

A.2 Command Window
To distinguish the screen displays from the user commands, important terms, and MATLAB
functions, we will use the following conventions:

Click: Click the left button of the mouse
Courier Font: Screen displays
Helvetica Font: User inputs at MATLAB’s command window prompt >> or EDU>>* 

Helvetica Bold: MATLAB functions

Times Bold Italic: Important terms and facts, notes and file names
When we first start MATLAB, we see various help topics and other information. Initially, we are
interested in the command screen which can be selected from the Window drop menu. When the
command screen, we see the prompt >> or EDU>>. This prompt is displayed also after execution
of a command; MATLAB now waits for a new command from the user. It is highly recommended
that we use the Editor/Debugger to write our program, save it, and return to the command screen
to execute the program as explained below.

To use the Editor/Debugger:

1. From the File menu on the toolbar, we choose New and click on M−File. This takes us to the
Editor Window where we can type our script (list of statements) for a new file, or open a previ-
ously saved file. We must save our program with a file name which starts with a letter. Impor-

* EDU>> is the MATLAB prompt in the Student Version

T
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tant! MATLAB is case sensitive, that is, it distinguishes between upper− and lower−case let-
ters. Thus, t and T are two different letters in MATLAB language. The files that we create are
saved with the file name we use and the extension .m; for example, myfile01.m. It is a good
practice to save the script in a file name that is descriptive of our script content. For instance,
if the script performs some matrix operations, we ought to name and save that file as
matrices01.m or any other similar name. We should also use a floppy disk or an external drive
to backup our files.

2. Once the script is written and saved as an m−file, we may exit the Editor/Debugger window by
clicking on Exit Editor/Debugger of the File menu. MATLAB then returns to the command
window.

3. To execute a program, we type the file name without the .m extension at the >> prompt;
then, we press <enter> and observe the execution and the values obtained from it. If we have
saved our file in drive a or any other drive, we must make sure that it is added it to the desired
directory in MATLAB’s search path. The MATLAB User’s Guide provides more information
on this topic.

Henceforth, it will be understood that each input command is typed after the >> prompt and fol-
lowed by the <enter> key.

The command help matlab\iofun will display input/output information. To get help with other
MATLAB topics, we can type help followed by any topic from the displayed menu. For example,
to get information on graphics, we type help matlab\graphics. The MATLAB User’s Guide con-
tains numerous help topics.

To appreciate MATLAB’s capabilities, we type demo and we see the MATLAB Demos menu.
We can do this periodically to become familiar with them. Whenever we want to return to the
command window, we click on the Close button.

When we are done and want to leave MATLAB, we type quit or exit. But if we want to clear all
previous values, variables, and equations without exiting, we should use the command clear. This
command erases everything; it is like exiting MATLAB and starting it again. The command clc
clears the screen but MATLAB still remembers all values, variables and equations that we have
already used. In other words, if we want to clear all previously entered commands, leaving only
the >> prompt on the upper left of the screen, we use the clc command.

All text after the % (percent) symbol is interpreted as a comment line by MATLAB, and thus it is
ignored during the execution of a program. A comment can be typed on the same line as the func-
tion or command or as a separate line. For instance,

conv(p,q)    % performs multiplication of polynomials p and q

% The next statement performs partial fraction expansion of p(x) / q(x)

are both correct.
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One of the most powerful features of MATLAB is the ability to do computations involving com-
plex numbers. We can use either , or  to denote the imaginary part of a complex number, such as
3-4i or 3-4j. For example, the statement

z=3−4j

displays

z = 3.0000−4.0000i

In the above example, a multiplication (*) sign between 4 and  was not necessary because the
complex number consists of numerical constants. However, if the imaginary part is a function, or
variable such as , we must use the multiplication sign, that is, we must type cos(x)*j or
j*cos(x) for the imaginary part of the complex number. 

A.3 Roots of Polynomials

In MATLAB, a polynomial is expressed as a row vector of the form . These
are the coefficients of the polynomial in descending order. We must include terms whose coeffi-
cients are zero.

We find the roots of any polynomial with the roots(p) function; p is a row vector containing the
polynomial coefficients in descending order.

Example A.1  
Find the roots of the polynomial

Solution:
The roots are found with the following two statements where we have denoted the polynomial as
p1, and the roots as roots_ p1.

p1=[1  −10  35  −50  24] %  Specify and display the coefficients of p1(x)

p1 =
     1   -10    35   -50    24

roots_ p1=roots(p1) %  Find the roots of p1(x)

roots_p1 =

   4.0000
   3.0000
   2.0000
   1.0000

i j

j

x( )cos

an  an 1–   … a2  a1  a0[ ]

p1 x( ) x4 10x3– 35x2 50x– 24+ +=
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We observe that MATLAB displays the polynomial coefficients as a row vector, and the roots as a
column vector.

Example A.2  
Find the roots of the polynomial

Solution:
There is no cube term; therefore, we must enter zero as its coefficient. The roots are found with
the statements below, where we have defined the polynomial as p2, and the roots of this polyno-
mial as roots_ p2. The result indicates that this polynomial has three real roots, and two complex
roots. Of course, complex roots always occur in complex conjugate*  pairs. 

p2=[1  −7   0  16  25  52]

p2 =
     1    -7     0    16    25    52

roots_ p2=roots(p2)

roots_p2 =
   6.5014         
   2.7428         
  -1.5711         
  -0.3366 + 1.3202i
  -0.3366 - 1.3202i

A.4 Polynomial Construction from Known Roots
We can compute the coefficients of a polynomial, from a given set of roots, with the poly(r) func-
tion where r is a row vector containing the roots.

 

Example A.3  

It is known that the roots of a polynomial are . Compute the coefficients of this
polynomial.

*  By definition, the conjugate of a complex number  is 

p2 x( ) x5 7x4– 16x2 25x+ + 52+=

A a jb+= A∗ a jb–=

1 2 3  and 4, , ,
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Solution: 

We first define a row vector, say , with the given roots as elements of this vector; then, we find
the coefficients with the poly(r) function as shown below.

r3=[1  2  3  4] %  Specify the roots of the polynomial

r3 =
     1     2     3     4

poly_r3=poly(r3) %  Find the polynomial coefficients

poly_r3 =
     1   -10    35   -50    24

We observe that these are the coefficients of the polynomial  of Example A.1.

Example A.4  

It is known that the roots of a polynomial are . Find the coeffi-
cients of this polynomial.

Solution:

We form a row vector, say , with the given roots, and we find the polynomial coefficients with
the poly(r) function as shown below.

r4=[ −1   −2   −3   4+5j   4−5j ]

r4 =
  Columns 1 through 4 
  -1.0000   -2.0000   -3.0000   -4.0000+ 5.0000i
  Column 5 
  -4.0000- 5.0000i

poly_r4=poly(r4)

poly_r4 =
     1    14   100   340   499   246

Therefore, the polynomial is

r3

p1 x( )

1  2  3  4 j5  and  4, j5–+,–,–,–

r4

p4 x( ) x
5

14x
4

100x
3

340x
2

499x 246+ + + + +=
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A.5 Evaluation of a Polynomial at Specified Values

The polyval(p,x) function evaluates a polynomial  at some specified value of the indepen-
dent variable .

Example A.5  
Evaluate the polynomial

(A.1)

at .

Solution:
p5=[1  −3   0   5  −4   3   2]; % These are the coefficients of the given polynomial

% The semicolon (;) after the right bracket suppresses the 
%  display of the row vector that contains the coefficients of p5.

%
val_minus3=polyval(p5, −3) % Evaluate p5 at x=−3; no semicolon is used here

% because we want the answer to be displayed

val_minus3 =
        1280

Other MATLAB functions used with polynomials are the following:

conv(a,b) − multiplies two polynomials a and b 

[q,r]=deconv(c,d) −divides polynomial c by polynomial d and displays the quotient q and
remainder r.

polyder(p) − produces the coefficients of the derivative of a polynomial p.

 

Example A.6  
Let 

and

Compute the product  using the conv(a,b) function.

p x( )
x

p5 x( ) x6 3x5
– 5x3 4x2

– 3x 2+ + +=
x 3–=

p1 x5 3x4
– 5x2 7x 9+ + +=

p2 2x6 8x4– 4x2 10x 12+ + +=

p1 p2⋅
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Solution:
p1=[1  −3   0  5  7  9]; % The coefficients of p1
p2=[2   0  −8  0  4  10  12]; % The coefficients of p2
p1p2=conv(p1,p2) % Multiply p1 by p2 to compute coefficients of the product p1p2

p1p2 =
2  -6  -8  34  18  -24  -74  -88  78  166  174  108

Therefore, 

Example A.7  
Let

and

Compute the quotient  using the [q,r]=deconv(c,d) function.

Solution:
% It is permissible to write two or more statements in one line separated by semicolons
p3=[1   0  −3    0   5   7    9];  p4=[2  −8   0    0   4  10  12];  [q,r]=deconv(p3,p4)

q =
    0.5000
r =
     0     4    -3     0     3     2     3

Therefore,

Example A.8  
Let

Compute the derivative  using the polyder(p) function.

p1 p2⋅ 2x11 6x10 8x9
–– 34x8 18x7 24x6

–+ +=

74x5 88x4 78x3 166x2 174x 108+ + + +––

p3 x7 3x5– 5x3 7x 9+ + +=

p4 2x6 8x5
– 4x2 10x 12+ + +=

p3 p4⁄

q 0.5= r 4x5 3x4
– 3x2 2x 3+ + +=

p5 2x6 8x4
– 4x2 10x 12+ + +=

d
dx
------p5
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Solution:
p5=[2   0   −8   0   4   10   12]; % The coefficients of p5
der_p5=polyder(p5) % Compute the coefficients of the derivative of p5

der_p5 =
    12     0   -32     0     8    10

Therefore,

A.6  Rational Polynomials
Rational Polynomials are those which can be expressed in ratio form, that is, as

(A.2)

where some of the terms in the numerator and/or denominator may be zero. We can find the roots
of the numerator and denominator with the roots(p) function as before.

As noted in the comment line of Example A.7, we can write MATLAB statements in one line, if
we separate them by commas or semicolons. Commas will display the results whereas semicolons
will suppress the display.

Example A.9  
Let

Express the numerator and denominator in factored form, using the roots(p) function. 

Solution:
num=[1  −3  0  5  7  9]; den=[1  0  −4  0  2  5  6]; % Do not display num and den coefficients
roots_num=roots(num), roots_den=roots(den) % Display num and den roots

roots_num =
   2.4186 + 1.0712i    2.4186 - 1.0712i   -1.1633         
  -0.3370 + 0.9961i   -0.3370 - 0.9961i

d
dx
------p5 12x5 32x3

– 4x2 8x 10+ + +=

R x( ) Num x( )
Den x( )
--------------------

bnxn bn 1– xn 1– bn 2– xn 2– … b1x b0+ + + + +

amxm am 1– xm 1– am 2– xm 2– … a1x a0+ + + + +
------------------------------------------------------------------------------------------------------------------------= =

R x( )
pnum
pden
------------ x5 3x4

– 5x2 7x 9+ + +

x6 4x4
– 2x2 5x 6+ + +

---------------------------------------------------------= =
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roots_den =
   1.6760 + 0.4922i     1.6760 - 0.4922i  -1.9304         
  -0.2108 + 0.9870i    -0.2108 - 0.9870i  -1.0000

As expected, the complex roots occur in complex conjugate pairs.

For the numerator, we have the factored form

and for the denominator, we have

We can also express the numerator and denominator of this rational function as a combination of
linear and quadratic factors. We recall that, in a quadratic equation of the form 
whose roots are  and , the negative sum of the roots is equal to the coefficient  of the 
term, that is, , while the product of the roots is equal to the constant term , that
is, . Accordingly, we form the coefficient  by addition of the complex conjugate roots
and this is done by inspection; then we multiply the complex conjugate roots to obtain the con-
stant term  using MATLAB as follows:

(2.4186 + 1.0712i)*(2.4186 −1.0712i)

ans = 6.9971

(−0.3370+ 0.9961i)*(−0.3370−0.9961i)

ans = 1.1058

(1.6760+ 0.4922i)*(1.6760−0.4922i)

ans = 3.0512

(−0.2108+ 0.9870i)*(−0.2108−0.9870i)

ans = 1.0186

Thus,

pnum x 2.4186– j1.0712–( ) x 2.4186– j1.0712+( ) x 1.1633+( )=

x 0.3370 j0.9961–+( ) x 0.3370 j0.9961+ +( )

pden x 1.6760– j0.4922–( ) x 1.6760– j0.4922+( ) x 1.9304+( )=

x 0.2108 j– 0.9870+( ) x 0.2108 j0.9870+ +( ) x 1.0000+( )

x2 bx c+ + 0=

x1 x2 b x

x1 x2+( )– b= c

x1 x2⋅ c= b

c

R x( )
pnum
pden
------------ x2 4.8372x– 6.9971+( ) x2 0.6740x 1.1058+ +( ) x 1.1633+( )

x2 3.3520x– 3.0512+( ) x2 0.4216x 1.0186+ +( ) x 1.0000+( ) x 1.9304+( )
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------= =
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We can check this result of Example A.9 above with MATLAB’s Symbolic Math Toolbox which is
a collection of tools (functions) used in solving symbolic expressions. They are discussed in detail
in MATLAB’s Users Manual. For the present, our interest is in using the collect(s) function that
is used to multiply two or more symbolic expressions to obtain the result in polynomial form. We
must remember that the conv(p,q) function is used with numeric expressions only, that is, poly-
nomial coefficients.

Before using a symbolic expression, we must create one or more symbolic variables such as x, y, t,
and so on. For our example, we use the following script:

syms x % Define a symbolic variable and use collect(s) to express numerator in polynomial form
collect((x^2−4.8372*x+6.9971)*(x^2+0.6740*x+1.1058)*(x+1.1633))

ans =
x^5-29999/10000*x^4-1323/3125000*x^3+7813277909/
1562500000*x^2+1750276323053/250000000000*x+4500454743147/
500000000000

and if we simplify this, we find that is the same as the numerator of the given rational expression
in polynomial form. We can use the same procedure to verify the denominator.

A.7 Using MATLAB to Make Plots
Quite often, we want to plot a set of ordered pairs. This is a very easy task with the MATLAB
plot(x,y) command that plots y versus x, where x is the horizontal axis (abscissa) and y is the ver-
tical axis (ordinate).

Example A.10  
Consider the electric circuit of Figure A.1, where the radian frequency ω (radians/second) of the
applied voltage was varied from 300 to 3000 in steps of 100 radians/second, while the amplitude
was held constant. 

Figure A.1. Electric circuit for Example A.10

A

V L

C
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R1
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The ammeter readings were then recorded for each frequency. The magnitude of the impedance
|Z| was computed as  and the data were tabulated on Table A.1.

Plot the magnitude of the impedance, that is, |Z| versus radian frequency .

Solution:

We cannot type  (omega) in the MATLAB Command prompt, so we will use the English letter
w instead.

If a statement, or a row vector is too long to fit in one line, it can be continued to the next line by
typing three or more periods, then pressing <enter> to start a new line, and continue to enter
data. This is illustrated below for the data of w and z. Also, as mentioned before, we use the semi-
colon (;) to suppress the display of numbers that we do not care to see on the screen.

The data are entered as follows:

w=[300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900....
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000];
%
z=[39.339  52.789  71.104  97.665  140.437  222.182  436.056.... 
1014.938  469.830  266.032 187.052 145.751 120.353  103.111.... 
90.603  81.088  73.588  67.513  62.481  58.240  54.611  51.468.... 
48.717  46.286  44.122  42.182  40.432  38.845];

Of course, if we want to see the values of w or z or both, we simply type w or z, and we press

TABLE A.1  Table for Example A.10

ω (rads/s) |Z| Ohms ω (rads/s) |Z| Ohms

300 39.339 1700 90.603

400 52.589 1800 81.088

500 71.184 1900 73.588

600 97.665 2000 67.513

700 140.437 2100 62.481

800 222.182 2200 58.240

900 436.056 2300 54.611

1000 1014.938 2400 51.428

1100 469.83 2500 48.717

1200 266.032 2600 46.286

1300 187.052 2700 44.122

1400 145.751 2800 42.182

1500 120.353 2900 40.432

1600 103.111 3000 38.845

Z V A⁄=

ω

ω
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<enter>. To plot  (y−axis) versus  (x−axis), we use the plot(x,y) command. For this example,
we use plot(w,z). When this command is executed, MATLAB displays the plot on MATLAB’s
graph screen and MATLAB denotes this plot as Figure 1. This plot is shown in Figure A.2.

Figure A.2. Plot of impedance  versus frequency  for Example A.10

This plot is referred to as the magnitude frequency response of the circuit.

To return to the command window, we press any key, or from the Window pull−down menu, we
select MATLAB Command Window. To see the graph again, we click on the Window pull−down
menu, and we choose Figure 1.

We can make the above, or any plot, more presentable with the following commands:

grid on: This command adds grid lines to the plot. The grid off command removes the grid. The
command grid toggles them, that is, changes from off to on or vice versa. The default* is off.

box off: This command removes the box (the solid lines which enclose the plot), and box on
restores the box. The command box toggles them. The default is on.

title(‘string’): This command adds a line of the text string (label) at the top of the plot.

xlabel(‘string’) and ylabel(‘string’) are used to label the x− and y−axis respectively.

The magnitude frequency response is usually represented with the x−axis in a logarithmic scale.
We can use the semilogx(x,y) command which is similar to the plot(x,y) command, except that
the x−axis is represented as a log scale, and the y−axis as a linear scale. Likewise, the semil-
ogy(x,y) command is similar to the plot(x,y) command, except that the y−axis is represented as a

* A default is a particular value for a variable that is assigned automatically by an operating system and remains
in effect unless canceled or overridden by the operator.
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log scale, and the x−axis as a linear scale. The loglog(x,y) command uses logarithmic scales for
both axes.

Throughout this text it will be understood that log is the common (base 10) logarithm, and ln is
the natural (base e) logarithm. We must remember, however, the function log(x) in MATLAB is
the natural logarithm, whereas the common logarithm is expressed as log10(x), and the logarithm
to the base 2 as log2(x). 

Let us now redraw the plot with the above options by adding the following statements:

semilogx(w,z); grid;   % Replaces the plot(w,z) command
title('Magnitude of Impedance vs. Radian Frequency');
xlabel('w in rads/sec'); ylabel('|Z| in Ohms')

After execution of these commands, the plot is as shown in Figure A.3.

If the y−axis represents power, voltage or current, the x−axis of the frequency response is more
often shown in a logarithmic scale, and the y−axis in dB (decibels).

Figure A.3. Modified frequency response plot of Figure A.2.

To display the voltage  in a dB scale on the y−axis, we add the relation dB=20*log10(v), and we
replace the semilogx(w,z) command with semilogx(w,dB).

The command gtext(‘string’)*  switches to the current Figure Window, and displays a cross−hair
that can be moved around with the mouse. For instance, we can use the command gtext(‘Imped-
ance |Z| versus Frequency’), and this will place a cross−hair in the Figure window. Then, using

* With the latest MATLAB Versions 6 and 7 (Student Editions 13 and 14), we can add text, lines and arrows directly into
the graph using the tools provided on the Figure Window. For advanced MATLAB graphics, please refer to The Math-
Works Using MATLAB Graphics documentation.
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the mouse, we can move the cross−hair to the position where we want our label to begin, and we
press <enter>.

The command text(x,y,’string’) is similar to gtext(‘string’). It places a label on a plot in some
specific location specified by x and y, and string is the label which we want to place at that loca-
tion. We will illustrate its use with the following example which plots a 3−phase sinusoidal wave-
form.

The first line of the script below has the form

linspace(first_value, last_value, number_of_values) 

This function specifies the number of data points but not the increments between data points. An
alternate function is

x=first: increment: last

and this specifies the increments between points but not the number of data points.

The script for the 3−phase plot is as follows:

x=linspace(0, 2*pi, 60); %  pi is a built−in function in MATLAB;
%  we could have used x=0:0.02*pi:2*pi or x = (0: 0.02: 2)*pi instead;
y=sin(x); u=sin(x+2*pi/3); v=sin(x+4*pi/3); 
plot(x,y,x,u,x,v); %  The x−axis must be specified for each function
grid on, box on, %  turn grid and axes box on
text(0.75, 0.65, 'sin(x)');  text(2.85, 0.65, 'sin(x+2*pi/3)'); text(4.95, 0.65, 'sin(x+4*pi/3)')

These three waveforms are shown on the same plot of Figure A.4.

Figure A.4. Three−phase waveforms 
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In our previous examples, we did not specify line styles, markers, and colors for our plots. How-
ever, MATLAB allows us to specify various line types, plot symbols, and colors. These, or a com-
bination of these, can be added with the plot(x,y,s) command, where s is a character string con-
taining one or more characters shown on the three columns of Table A.2. MATLAB has no
default color; it starts with blue and cycles through the first seven colors listed in Table A.2 for
each additional line in the plot. Also, there is no default marker; no markers are drawn unless
they are selected. The default line is the solid line. But with the latest MATLAB versions, we can
select the line color, line width, and other options directly from the Figure Window.

For example, plot(x,y,'m*:') plots a magenta dotted line with a star at each data point, and
plot(x,y,'rs') plots a red square at each data point, but does not draw any line because no line was
selected. If we want to connect the data points with a solid line, we must type plot(x,y,'rs−'). For
additional information we can type help plot in MATLAB’s command screen.

The plots we have discussed thus far are two−dimensional, that is, they are drawn on two axes.
MATLAB has also a three−dimensional (three−axes) capability and this is discussed next.

The plot3(x,y,z) command plots a line in 3−space through the points whose coordinates are the
elements of x, y and z, where x, y and z are three vectors of the same length.

The general format is plot3(x1,y1,z1,s1,x2,y2,z2,s2,x3,y3,z3,s3,...) where xn, yn and zn are vectors
or matrices, and sn are strings specifying color, marker symbol, or line style. These strings are the
same as those of the two−dimensional plots.

TABLE A.2 Styles, colors, and markets used in MATLAB

Symbol Color Symbol Marker Symbol Line Style

b blue . point − solid line

g green o circle : dotted line

r red x x−mark −. dash−dot line

c cyan + plus −− dashed line

m magenta * star

y yellow s square

k black d diamond

w white ∨ triangle down

∧ triangle up

< triangle left

> triangle right

p pentagram

h hexagram
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Example A.11  
Plot the function

(A.3)
Solution:
We arbitrarily choose the interval (length) shown on the script below.

x= −10: 0.5: 10; %  Length of vector x 
y= x; % Length of vector y must be same as x

z= −2.*x.^3+x+3.*y.^2−1; %  Vector z is function of both x and y* 

plot3(x,y,z); grid

The three−dimensional plot is shown in Figure A.5.

Figure A.5. Three dimensional plot for Example A.11

In a two−dimensional plot, we can set the limits of the x− and y−axes with the axis([xmin xmax
ymin ymax]) command. Likewise, in a three−dimensional plot we can set the limits of all three
axes with the axis([xmin xmax ymin ymax zmin zmax]) command. It must be placed after the
plot(x,y) or plot3(x,y,z) commands, or on the same line without first executing the plot com-
mand. This must be done for each plot. The three−dimensional text(x,y,z,’string’) command will
place string beginning at the co−ordinate (x,y,z) on the plot.

For three−dimensional plots, grid on and box off are the default states.

* This statement uses the so called dot multiplication, dot division, and dot exponentiation where the multiplication, division,
and exponential operators are preceded by a dot. These important operations will be explained in Section A.9.
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We can also use the mesh(x,y,z) command with two vector arguments. These must be defined as
 and  where . In this case, the vertices of the mesh

lines are the triples . We observe that x corresponds to the columns of Z, and y
corresponds to the rows.

To produce a mesh plot of a function of two variables, say , we must first generate the
X and Y matrices that consist of repeated rows and columns over the range of the variables x and
y. We can generate the matrices X and Y with the [X,Y]=meshgrid(x,y) function that creates the
matrix X whose rows are copies of the vector x, and the matrix Y whose columns are copies of the
vector y.

Example A.12  

The volume  of a right circular cone of radius  and height  is given by

(A.4)

Plot the volume of the cone as  and  vary on the intervals  and  meters.

Solution:
The volume of the cone is a function of both the radius r and the height h, that is,

The three−dimensional plot is created with the following MATLAB script where, as in the previ-
ous example, in the second line we have used the dot multiplication, dot division, and dot expo-
nentiation. This will be explained in Section A.9.

[R,H]=meshgrid(0: 4, 0: 6); % Creates R and H matrices from vectors r and h;...
V=(pi .* R .^ 2 .* H) ./ 3;  mesh(R, H, V);...
xlabel('x−axis, radius r (meters)'); ylabel('y−axis, altitude h (meters)');...
zlabel('z−axis, volume (cubic meters)'); title('Volume of Right Circular Cone'); box on

The three−dimensional plot of Figure A.6 shows how the volume of the cone increases as the
radius and height are increased.

The plots of Figure A.5 and A.6 are rudimentary; MATLAB can generate very sophisticated
three−dimensional plots. The MATLAB User’s Manual and the Using MATLAB Graphics Man-
ual contain numerous examples. 

length x( ) n= length y( ) m= m n,[ ] size Z( )=

x j( ) y i( ) Z i j,( ),,{ }

z f x y,( )=

V r h

V 1
3
---πr2h=

r h 0 r 4≤ ≤ 0 h 6≤ ≤

V f r h,( )=
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Figure A.6. Volume of a right circular cone.

A.8 Subplots
MATLAB can display up to four windows of different plots on the Figure window using the com-
mand subplot(m,n,p). This command divides the window into an m × n matrix of plotting areas
and chooses the pth area to be active. No spaces or commas are required between the three inte-
gers m, n and p. The possible combinations are shown in Figure A.7.

We will illustrate the use of the subplot(m,n,p) command following the discussion on multiplica-
tion, division and exponentiation that follows.

Figure A.7. Possible subplot arrangements in MATLAB

A.9  Multiplication, Division, and Exponentiation
MATLAB recognizes two types of multiplication, division, and exponentiation. These are the
matrix multiplication, division, and exponentiation, and the element−by−element multiplication,
division, and exponentiation. They are explained in the following paragraphs.
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In Section A.2, the arrays , such a those that contained the coefficients of polynomi-
als, consisted of one row and multiple columns, and thus are called row vectors. If an array has
one column and multiple rows, it is called a column vector. We recall that the elements of a row
vector are separated by spaces. To distinguish between row and column vectors, the elements of a
column vector must be separated by semicolons. An easier way to construct a column vector, is to
write it first as a row vector, and then transpose it into a column vector. MATLAB uses the single
quotation character (′) to transpose a vector. Thus, a column vector can be written either as

b=[−1; 3; 6; 11]

or as 

b=[−1  3  6  11]'

As shown below, MATLAB produces the same display with either format.

b=[−1; 3; 6; 11] 

b =
    -1
     3
     6
    11

b=[−1  3  6  11]' % Observe the single quotation character (‘)

b =
    -1
     3
     6
    11

We will now define Matrix Multiplication and Element−by−Element multiplication.

1. Matrix Multiplication (multiplication of row by column vectors)

Let

and
 

be two vectors. We observe that  is defined as a row vector whereas  is defined as a col-
umn vector, as indicated by the transpose operator (′). Here, multiplication of the row vector

 by the column vector , is performed with the matrix multiplication operator (*). Then,

(A.5)

a  b  c  …[ ]

A a1   a2   a3   …   an[ ]=

B b1   b2   b3   …   bn[ ]'=

A B

A B

A*B a1b1 a2b2 a3b3 … anbn+ + + +[ ] gle valuesin= =
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For example, if

and

the matrix multiplication  produces the single value 68, that is,

and this is verified with the MATLAB script

A=[1   2    3   4   5]; B=[ −2   6  −3   8   7]'; A*B % Observe transpose operator (‘) in B

ans =

   68

Now, let us suppose that both  and  are row vectors, and we attempt to perform a row−by−
row multiplication with the following MATLAB statements.

A=[1  2   3  4  5]; B=[−2  6  −3  8  7]; A*B % No transpose operator (‘) here

When these statements are executed, MATLAB displays the following message:

??? Error using ==> *

Inner matrix dimensions must agree.

Here, because we have used the matrix multiplication operator (*) in A*B, MATLAB expects
vector  to be a column vector, not a row vector. It recognizes that  is a row vector, and
warns us that we cannot perform this multiplication using the matrix multiplication operator
(*). Accordingly, we must perform this type of multiplication with a different operator. This
operator is defined below.

2. Element−by−Element Multiplication (multiplication of a row vector by another row vector)

Let

and
 

be two row vectors. Here, multiplication of the row vector  by the row vector  is per-
formed with the dot multiplication operator (.*). There is no space between the dot and the
multiplication symbol. Thus,

(A.6)

A 1   2   3   4   5[ ]=

B 2–    6   3–    8   7[ ]'=

A*B

A∗B 1 2–( ) 2 6 3 3–( ) 4 8 5 7×+×+×+×+× 68= =

A B

B B

C c1   c2   c3   …   cn[ ]=

D d1   d2   d3   …   dn[ ]=

C D

C.∗D c1d1    c2d2    c3d3    …    cndn[ ]=
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This product is another row vector with the same number of elements, as the elements of 
and . 

As an example, let

and

Dot multiplication of these two row vectors produce the following result.

Check with MATLAB:

C=[1  2   3   4  5]; %  Vectors C and D must have
D=[−2  6 −3   8  7]; %  same number of elements
C.*D % We observe that this is a dot multiplication

ans =
   -2    12    -9    32    35

Similarly, the division (/) and exponentiation (^) operators, are used for matrix division and
exponentiation, whereas dot division (./) and dot exponentiation (.^) are used for element−
by−element division and exponentiation, as illustrated in Examples A.11 and A.12 above.

We must remember that no space is allowed between the dot (.) and the multiplication, divi-
sion, and exponentiation operators. 

Note: A dot (.) is never required with the plus (+) and minus (−) operators.

Example A.13  
Write the MATLAB script that produces a simple plot for the waveform defined as 

(A.7)

in the  seconds interval.

Solution:
The MATLAB script for this example is as follows:

t=0: 0.01: 5;  %  Define t−axis in 0.01 increments
y=3 .* exp(−4 .* t) .* cos(5 .* t)−2 .* exp(−3 .* t) .* sin(2 .* t) + t .^2 ./ (t+1);
plot(t,y); grid; xlabel('t'); ylabel('y=f(t)'); title('Plot for Example A.13')

The plot for this example is shown in Figure A.8.

C
D

C 1   2   3   4   5[ ]=

D 2–    6   3–    8   7[ ]=

C.∗D 1 2–( )×    2 6×    3 3–( )×    4 8   5 7×× 2–    12   9–    32   35= =

y f t( ) 3e 4t– 5tcos 2e 3t– 2tsin– t2

t 1+
-----------+= =

0 t 5≤ ≤
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Figure A.8. Plot for Example A.13

Had we, in this example, defined the time interval starting with a negative value equal to or less
than , say as , MATLAB would have displayed the following message:

Warning: Divide by zero.

This is because the last term (the rational fraction) of the given expression, is divided by zero
when . To avoid division by zero, we use the special MATLAB function eps, which is a

number approximately equal to . It will be used with the next example.

The command axis([xmin xmax ymin ymax]) scales the current plot to the values specified by
the arguments xmin, xmax, ymin and ymax. There are no commas between these four argu-
ments. This command must be placed after the plot command and must be repeated for each plot.
The following example illustrates the use of the dot multiplication, division, and exponentiation,
the eps number, the axis([xmin xmax ymin ymax]) command, and also MATLAB’s capability
of displaying up to four windows of different plots.

Example A.14  
Plot the functions

in the interval  using 100 data points. Use the subplot command to display these func-
tions on four windows on the same graph.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Plot for Example A.13

1– 3 t 3≤ ≤–

t 1–=

2.2 10 16–×

y x2sin    z, x2cos    w, x2sin x2cos⋅    v, x2sin x2cos⁄= = = =

0 x 2π≤ ≤
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Solution:
The MATLAB script to produce the four subplots is as follows:

x=linspace(0,2*pi,100); % Interval with 100 data points
y=(sin(x).^ 2);  z=(cos(x).^ 2);  
w=y.* z;
v=y./ (z+eps);%  add eps to avoid division by zero
subplot(221);% upper left of four subplots
plot(x,y);  axis([0 2*pi 0 1]);
title('y=(sinx)^2');
subplot(222); % upper right of four subplots
plot(x,z);  axis([0 2*pi 0 1]);  
title('z=(cosx)^2');
subplot(223); % lower left of four subplots
plot(x,w);  axis([0 2*pi 0 0.3]);
title('w=(sinx)^2*(cosx)^2');
subplot(224); % lower right of four subplots
plot(x,v);  axis([0 2*pi 0 400]);
title('v=(sinx)^2/(cosx)^2');

These subplots are shown in Figure A.9. 

Figure A.9. Subplots for the functions of Example A.14

The next example illustrates MATLAB’s capabilities with imaginary numbers. We will introduce
the real(z) and imag(z) functions that display the real and imaginary parts of the complex quan-
tity z =  x + iy, the abs(z), and the angle(z) functions that compute the absolute value (magni-
tude) and phase angle of the complex quantity z = x + iy = r∠θ. We will also use the
polar(theta,r) function that produces a plot in polar coordinates, where r is the magnitude, theta
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is the angle in radians, and the round(n) function that rounds a number to its nearest integer.

Example A.15   
Consider the electric circuit of Figure A.10.

Figure A.10. Electric circuit for Example A.15

With the given values of resistance, inductance, and capacitance, the impedance  as a func-
tion of the radian frequency ω can be computed from the following expression:

(A.8)

a. Plot  (the real part of the impedance Z) versus frequency ω.

b. Plot  (the imaginary part of the impedance Z) versus frequency ω.

c. Plot the impedance Z versus frequency ω in polar coordinates.

Solution:

The MATLAB script below computes the real and imaginary parts of  which, for simplicity,

are denoted as , and plots these as two separate graphs (parts a & b). It also produces a polar
plot (part c).

w=0: 1: 2000; %  Define interval with one radian interval;...
z=(10+(10 .^ 4 −j .* 10 .^ 6 ./ (w+eps)) ./ (10 + j .* (0.1 .* w −10.^5./ (w+eps))));...
%
%  The first five statements (next two lines) compute and plot Re{z}
real_part=real(z);  plot(w,real_part);...
xlabel('radian frequency w');  ylabel('Real part of Z'); grid

a

b

10 Ω

10 Ω

0.1 H

10 µF
Zab

Zab

Zab Z 10 104 j 106 ω⁄( )–

10 j 0.1ω 105 ω⁄  –( )+
--------------------------------------------------------+= =

Re Z{ }

Im Z{ }

Zab

z
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Figure A.11. Plot for the real part of the impedance in Example A.15

%  The next five statements (next two lines) compute and plot Im{z}
imag_part=imag(z);  plot(w,imag_part);...
xlabel('radian frequency w');  ylabel('Imaginary part of Z'); grid

Figure A.12. Plot for the imaginary part of the impedance in Example A.15

%  The last six statements (next five lines) below produce the polar plot of z
mag=abs(z); %  Computes |Z|;...
rndz=round(abs(z)); %  Rounds |Z| to read polar plot easier;...
theta=angle(z); %  Computes the phase angle of impedance Z;...
polar(theta,rndz); %  Angle is the first argument
ylabel('Polar Plot of Z'); grid
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Figure A.13. Polar plot of the impedance in Example A.15

Example A.15 clearly illustrates how powerful, fast, accurate, and flexible MATLAB is.

A.10  Script and Function Files
MATLAB recognizes two types of files: script files and function files. Both types are referred to as
m−files since both require the .m extension.

A script file consists of two or more built−in functions such as those we have discussed thus far.
Thus, the script for each of the examples we discussed earlier, make up a script file. Generally, a
script file is one which was generated and saved as an m−file with an editor such as the MAT-
LAB’s Editor/Debugger.

A function file is a user−defined function using MATLAB. We use function files for repetitive
tasks. The first line of a function file must contain the word function, followed by the output argu-
ment, the equal sign ( = ), and the input argument enclosed in parentheses. The function name
and file name must be the same, but the file name must have the extension .m. For example, the
function file consisting of the two lines below

function y = myfunction(x)
y=x.^ 3 + cos(3.* x)

is a function file and must be saved as myfunction.m

For the next example, we will use the following MATLAB functions:

fzero(f,x) − attempts to find a zero of a function of one variable, where f is a string containing the
name of a real−valued function of a single real variable. MATLAB searches for a value near a
point where the function f changes sign, and returns that value, or returns NaN if the search fails. 
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Important: We must remember that we use roots(p) to find the roots of polynomials only, such as
those in Examples A.1 and A.2.

fplot(fcn,lims) − plots the function specified by the string fcn between the x−axis limits specified
by lims = [xmin xmax]. Using lims = [xmin xmax ymin ymax] also controls the y−axis limits.
The string fcn must be the name of an m−file function or a string with variable .

NaN (Not−a−Number) is not a function; it is MATLAB’s response to an undefined expression
such as , , or inability to produce a result as described on the next paragraph. We can
avoid division by zero using the eps number, which we mentioned earlier.

Example A.16  
Find the zeros, the minimum, and the maximum values of the function 

(A.9)

in the interval 

Solution:
We first plot this function to observe the approximate zeros, maxima, and minima using the fol-
lowing script.

x=−1.5: 0.01: 1.5;
y=1./ ((x−0.1).^ 2 + 0.01) −1./ ((x−1.2).^ 2 + 0.04) −10;
plot(x,y); grid

The plot is shown in Figure A.14.

Figure A.14. Plot for Example A.16 using the plot command

x
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The roots (zeros) of this function appear to be in the neighborhood of  and . The
maximum occurs at approximately  where, approximately, , and the minimum

occurs at approximately  where, approximately, .

Next, we define and save f(x) as the funczero01.m function m−file with the following script:

function y=funczero01(x)
% Finding the zeros of the function shown below
y=1/((x−0.1)^2+0.01)−1/((x−1.2)^2+0.04)−10;

To save this file, from the File drop menu on the Command Window, we choose New, and when
the Editor Window appears, we type the script above and we save it as funczero01. MATLAB
appends the extension .m to it.

Now, we can use the fplot(fcn,lims) command to plot  as follows:

fplot('funczero01', [−1.5  1.5]); grid

This plot is shown in Figure A.15. As expected, this plot is identical to the plot of Figure A.14
which was obtained with the plot(x,y) command as shown in Figure A.14.

Figure A.15. Plot for Example A.16 using the fplot command

We will use the fzero(f,x) function to compute the roots of  in Equation (A.9) more precisely.
The MATLAB script below will accomplish this.

x1= fzero('funczero01', −0.2);
x2= fzero('funczero01', 0.3);
fprintf('The roots (zeros) of this function are r1= %3.4f', x1);
fprintf(' and r2= %3.4f \n', x2)
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MATLAB displays the following:

The roots (zeros) of this function are r1= -0.1919 and r2= 0.3788

The earlier MATLAB versions included the function fmin(f,x1,x2) and with this function we
could compute both a minimum of some function  or a maximum of  since a maximum of

 is equal to a minimum of . This can be visualized by flipping the plot of a function 
upside−down. This function is no longer used in MATLAB and thus we will compute the maxima
and minima from the derivative of the given function.

From elementary calculus, we recall that the maxima or minima of a function  can be
found by setting the first derivative of a function equal to zero and solving for the independent
variable . For this example we use the diff(x) function which produces the approximate deriva-
tive of a function. Thus, we use the following MATLAB script:

syms x ymin zmin; ymin=1/((x−0.1)^2+0.01)−1/((x−1.2)^2+0.04)−10;...
zmin=diff(ymin)

zmin =
-1/((x-1/10)^2+1/100)^2*(2*x-1/5)+1/((x-6/5)^2+1/25)^2*(2*x-12/5)

When the command

solve(zmin)

is executed, MATLAB displays a very long expression which when copied at the command
prompt and executed, produces the following:

ans =
   0.6585 + 0.3437i
ans =
   0.6585 - 0.3437i
ans =
    1.2012

The real value  above is the value of  at which the function  has its minimum value as
we observe also in the plot of Figure A.15.

To find the value of y corresponding to this value of x, we substitute it into , that is,

x=1.2012; ymin=1 / ((x−0.1) ^ 2 + 0.01) −1 / ((x−1.2) ^ 2 + 0.04) −10

ymin = -34.1812

We can find the maximum value from  whose plot is produced with the script

x=−1.5:0.01:1.5; ymax=−1./((x−0.1).^2+0.01)+1./((x−1.2).^2+0.04)+10; plot(x,ymax); grid

and the plot is shown in Figure A.16.

f x( ) f x( )
f x( ) f x( )– f x( )

y f x( )=

x

1.2012 x y

f x( )

f x( )–



Appendix A  Introduction to MATLAB®

A−30 Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition
Copyright © Orchard Publications

Figure A.16. Plot of  for Example A.16

Next we compute the first derivative of  and we solve for  to find the value where the max-
imum of  occurs. This is accomplished with the MATLAB script below.

syms x ymax zmax; ymax=−(1/((x−0.1)^2+0.01)−1/((x−1.2)^2+0.04)−10); zmax=diff(ymax)

zmax =
 1/((x-1/10)^2+1/100)^2*(2*x-1/5)-1/((x-6/5)^2+1/25)^2*(2*x-12/5)

solve(zmax)

When the command

solve(zmax)

is executed, MATLAB displays a very long expression which when copied at the command
prompt and executed, produces the following:

ans =
   0.6585 + 0.3437i

ans =
   0.6585 - 0.3437i

ans =
    1.2012
ans =
    0.0999

From the values above we choose  which is consistent with the plots of Figures A.15
and A.16. Accordingly, we execute the following script to obtain the value of .
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x=0.0999; % Using this value find the corresponding value of ymax
ymax=1 / ((x−0.1) ^ 2 + 0.01) −1 / ((x−1.2) ^ 2 + 0.04) −10

ymax = 89.2000

A.11 Display Formats
MATLAB displays the results on the screen in integer format without decimals if the result is an
integer number, or in short floating point format with four decimals if it a fractional number. The
format displayed has nothing to do with the accuracy in the computations. MATLAB performs all
computations with accuracy up to 16 decimal places.

The output format can changed with the format command. The available MATLAB formats can
be displayed with the help format command as follows:

help format 

FORMAT Set output format.
All computations in MATLAB are done in double precision.
FORMAT may be used to switch between different output display formats
as follows:

FORMAT  Default. Same as SHORT.
FORMAT SHORT Scaled fixed point format with 5 digits.
FORMAT LONG Scaled fixed point format with 15 digits.
FORMAT SHORT E Floating point format with 5 digits.
FORMAT LONG E  Floating point format with 15 digits.
FORMAT SHORT G Best of fixed or floating point format with 5 digits.
FORMAT LONG G Best of fixed or floating point format with 15 digits.
FORMAT HEX Hexadecimal format.
FORMAT + The symbols +, - and blank are printed for positive, negative, 

and zero elements.Imaginary parts are ignored.
FORMAT BANK Fixed format for dollars and cents.
FORMAT RAT Approximation by ratio of small integers.

Spacing:

FORMAT COMPACT Suppress extra line-feeds.
FORMAT LOOSE  Puts the extra line-feeds back in.

Some examples with different format displays age given below.

format short  33.3335  Four decimal digits (default)
format long  33.33333333333334 16 digits
format short e  3.3333e+01  Four decimal digits plus exponent
format short g  33.333  Better of format short or format short e
format bank  33.33 two decimal digits
format +  only + or - or zero are printed
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format rat 100/3 rational approximation

The disp(X) command displays the array X without printing the array name. If X is a string, the
text is displayed.

The fprintf(format,array) command displays and prints both text and arrays. It uses specifiers to
indicate where and in which format the values would be displayed and printed. Thus, if %f is
used, the values will be displayed and printed in fixed decimal format, and if %e is used, the val-
ues will be displayed and printed in scientific notation format. With this command only the real
part of each parameter is processed.
This appendix is just an introduction to MATLAB.*  This outstanding software package consists
of many applications known as Toolboxes. The MATLAB Student Version contains just a few of
these Toolboxes. Others can be bought directly from The MathWorks, Inc., as add−ons.

* For more MATLAB applications, please refer to Numerical Analysis Using MATLAB and Spreadsheets,
ISBN 0−9709511−1−6.
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Appendix B

Introduction to Simulink

his appendix is a brief introduction to Simulink. This author feels that we can best intro-
duce Simulink with a few examples. Some familiarity with MATLAB is essential in under-
standing Simulink, and for this purpose, Appendix A is included as an introduction to

MATLAB.

B.1 Simulink and its Relation to MATLAB

The MATLAB and Simulink environments are integrated into one entity, and thus we can
analyze, simulate, and revise our models in either environment at any point. We invoke Simulink
from within MATLAB. We will introduce Simulink with a few illustrated examples. 

Example B.1  

For the circuit of Figure B.1, the initial conditions are , and . We will
compute .

Figure B.1. Circuit for Example B.1

For this example,

(B.1)

and by Kirchoff’s voltage law (KVL),

(B.2)

Substitution of (B.1) into (B.2) yields
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(B.3)

Substituting the values of the circuit constants and rearranging we obtain:

(B.4)

(B.5)

To appreciate Simulink’s capabilities, for comparison, three different methods of obtaining the
solution are presented, and the solution using Simulink follows.

First Method − Assumed Solution

Equation (B.5) is a second−order, non−homogeneous differential equation with constant coeffi-
cients, and thus the complete solution will consist of the sum of the forced response and the natu-
ral response. It is obvious that the solution of this equation cannot be a constant since the deriva-
tives of a constant are zero and thus the equation is not satisfied. Also, the solution cannot
contain sinusoidal functions (sine and cosine) since the derivatives of these are also sinusoids.

However, decaying exponentials of the form  where k and a are constants, are possible candi-
dates since their derivatives have the same form but alternate in sign.

It can be shown* that if  and  where  and  are constants and  and  are the
roots of the characteristic equation of the homogeneous part of the given differential equation,

the natural response is the sum of the terms  and . Therefore, the total solution will
be

(B.6)

The values of  and  are the roots of the characteristic equation 

* Please refer to Circuit Analysis II with MATLAB Applications, ISBN 0−9709511−5−9, Appendix B for a
thorough discussion.
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(B.7)

Solution of (B.7) yields of  and  and with these values (B.6) is written as

(B.8)

The forced component  is found from (B.5), i.e., 

(B.9)

Since the right side of (B.9) is a constant, the forced response will also be a constant and we
denote it as . By substitution into (B.9) we obtain

or
 (B.10)

Substitution of this value into (B.8), yields the total solution as 

 (B.11)

The constants  and  will be evaluated from the initial conditions. First, using 
and evaluating (B.11) at , we obtain

 (B.12)

Also,

and

(B.13)

Next, we differentiate (B.11), we evaluate it at , and equate it with (B.13). Thus,

(B.14)

By equating the right sides of (B.13) and (B.14) we obtain

s2 4s 3+ + 0=

s1 1–= s2 3–=

vc t( ) k1e t– k2e 3– t vcf t( )+ +=

vcf t( )

d2vC

dt2
----------- 4

dvC

dt
--------- 3vC+ + 3= t 0>

vCf k3=

0 0 3k3+ + 3=

vCf k3 1= =

vC t( ) vCn t( ) vCf+= k1e t– k2e 3– t 1+ +=

k1 k2 vC 0( ) 0.5 V=

t 0=

vC 0( ) k1e0 k2e0 1+ + 0.5= =

k1 k2+ 0.5–=

iL iC C
dvC
dt

---------= =   
dvC
dt

--------- iL
C
----=,

   
dvC
dt

---------
t 0=

iL 0( )
C

------------ 0
C
---- 0= = =

t 0=

      
dvC
dt

---------
t 0=

k1– 3k2–=



  Introduction to Simulink

B−4 Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition
Copyright © Orchard Publications

(B.15)

Simultaneous solution of (B.12) and (B.15), gives  and . By substitution into
(B.8), we obtain the total solution as

(B.16)

Check with MATLAB:

syms t %  Define symbolic variable t
y0=−0.75*exp(−t)+0.25*exp(−3*t)+1; %  The total solution y(t), for our example, vc(t)
y1=diff(y0) %  The first derivative of y(t)

y1 =
3/4*exp(-t)-3/4*exp(-3*t)

y2=diff(y0,2) %  The second derivative of y(t)

y2 =
-3/4*exp(-t)+9/4*exp(-3*t)

y=y2+4*y1+3*y0 %  Summation of y and its derivatives

y =
3

Thus, the solution has been verified by MATLAB. Using the expression for  in (B.16), we
find the expression for the current as

  (B.17)

Second Method − Using the Laplace Transformation

The transformed circuit is shown in Figure B.2.

Figure B.2. Transformed Circuit for Example B.1
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By the voltage division* expression,

Using partial fraction expansion,† we let

(B.18)

and by substitution into (B.18)

Taking the Inverse Laplace transform‡ we find that 

Third Method − Using State Variables

**

* For derivation of the voltage division and current division expressions, please refer to Circuit Analysis I with
MATLAB Applications, ISBN 0−9709511−2−4.

† Partial fraction expansion is discussed in Chapter 3, this text.
‡ For an introduction to Laplace Transform and Inverse Laplace Transform, please refer Chapters 2 and 3, this

text.
** Usually, in State−Space and State Variables Analysis,  denotes any input. For distinction, we will denote

the Unit Step Function as . For a detailed discussion on State−Space and State Variables Analysis, please
refer to Chapter 5, this text.
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By substitution of given values and rearranging, we obtain

or

(B.19)

Next, we define the state variables  and . Then,

* (B.20)

and

(B.21)

Also,

and thus,

or

(B.22)

Therefore, from (B.19), (B.20), and (B.22), we obtain the state equations

and in matrix form,

(B.23)

Solution† of (B.23) yields

* The notation  (x dot) is often used to denote the first derivative of the function , that is, .

† The detailed solution of (B.23) is given in Chapter 5, Example 5.10, Page 5−23, this text.

1
4
---diL

dt
------- 1–( )iL vC– 1+=

diL

dt
------- 4iL– 4vC– 4+=

x1 iL= x2 vC=

x· 1
diL

dt
-------=

x· x x· dx dt⁄=

x· 2
dvC

dt
---------=

iL C
dvC

dt
---------=

x1 iL C
dvC

dt
--------- Cx· 2

4
3
---x· 2= = = =

x· 2
3
4
---x1=

x· 1 4x1– 4x2– 4+=

x· 2
3
4
--- x1=

x· 1

x· 2

4– 4–

3 4⁄ 0
x1

x2

4
0

u0 t( )+=
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Then,

(B.24)

and

(B.25)

Modeling the Differential Equation of Example B.1 with Simulink

To run Simulink, we must first invoke MATLAB. Make sure that Simulink is installed in your sys-
tem. In the MATLAB Command prompt, we type:

simulink

Alternately, we can click on the Simulink icon shown in Figure B.3. It appears on the top bar on
MATLAB’s Command prompt. 

Figure B.3. The Simulink icon

Upon execution of the Simulink command, the Commonly Used Blocks appear as shown in Fig-
ure B.4.

In Figure B.4, the left side is referred to as the Tree Pane and displays all Simulink libraries
installed. The right side is referred to as the Contents Pane and displays the blocks that reside in
the library currently selected in the Tree Pane.

Let us express the differential equation of Example B.1 as

(B.26)

A block diagram representing relation (B.26) above is shown in Figure B.5. We will use Simulink
to draw a similar block diagram.*

* Henceforth, all Simulink block diagrams will be referred to as models.

x1

x2

e t– e– 3t–

1 0.75– e t– 0.25e 3t–+
=

x1 iL e t– e– 3t–= =

x2 vC 1 0.75e– t– 0.25e 3t–+= =

d2vC

dt2
----------- 4

dvC

dt
--------- 3vC 3u0 t( )+––=
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Figure B.4. The Simulink Library Browser

Figure B.5. Block diagram for equation (B.26)

To model the differential equation (B.26) using Simulink, we perform the following steps:

1. On the Simulink Library Browser, we click on the leftmost icon shown as a blank page on the
top title bar. A new model window named untitled will appear as shown in Figure B.6. 

3u0 t( ) Σ dt∫ dt∫

−4

−3

d2vC

dt2
----------- dvC

dt
--------- vC
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Figure B.6. The Untitled model window in Simulink.

The window of Figure B.6 is the model window where we enter our blocks to form a block dia-
gram. We save this as model file name Equation_1_26. This is done from the File drop menu of
Figure B.6 where we choose Save as and name the file as Equation_1_26. Simulink will add
the extension .mdl. The new model window will now be shown as Equation_1_26, and all
saved files will have this appearance. See Figure B.7.

Figure B.7. Model window for Equation_1_26.mdl file

2. With the Equation_1_26 model window and the Simulink Library Browser both visible, we
click on the Sources appearing on the left side list, and on the right side we scroll down until
we see the unit step function shown as Step. See Figure B.8. We select it, and we drag it into
the Equation_1_26 model window which now appears as shown in Figure B.8. We save file
Equation_1_26 using the File drop menu on the Equation_1_26 model window (right side of
Figure B.8).

3. With reference to block diagram of Figure B.5, we observe that we need to connect an ampli-
fier with Gain 3 to the unit step function block. The gain block in Simulink is under Com-
monly Used Blocks (first item under Simulink on the Simulink Library Browser). See Figure
B.8. If the Equation_1_26 model window is no longer visible, it can be recalled by clicking on
the white page icon on the top bar of the Simulink Library Browser.

4. We choose the gain block and we drag it to the right of the unit step function. The triangle on
the right side of the unit step function block and the > symbols on the left and right sides of
the gain block are connection points. We point the mouse close to the connection point of the
unit step function until is shows as a cross hair, and draw a straight line to connect the two
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blocks.* We double−click on the gain block and on the Function Block Parameters, we
change the gain from 1 to 3. See Figure B.9.

Figure B.8. Dragging the unit step function into File Equation_1_26

Figure B.9. File Equation_1_26 with added Step and Gain blocks

* An easy method to interconnect two Simulink blocks by clicking on the source block to select it, then hold down
the Ctrl key and left−click on the destination block.
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5. Next, we need to add a thee−input adder. The adder block appears on the right side of the
Simulink Library Browser under Math Operations. We select it, and we drag it into the
Equation_1_26 model window. We double click it, and on the Function Block Parameters
window which appears, we specify 3 inputs. We then connect the output of the of the gain
block to the first input of the adder block as shown in Figure B.10.

Figure B.10. File Equation_1_26 with added gain block

6. From the Commonly Used Blocks of the Simulink Library Browser, we choose the Integra-
tor block, we drag it into the Equation_1_26 model window, and we connect it to the output
of the Add block. We repeat this step and to add a second Integrator block. We click on the
text “Integrator” under the first integrator block, and we change it to Integrator 1. Then, we
change the text “Integrator 1” under the second Integrator to “Integrator 2” as shown in Fig-
ure B.11.

Figure B.11. File Equation_1_26 with the addition of two integrators

7. To complete the block diagram, we add the Scope block which is found in the Commonly
Used Blocks on the Simulink Library Browser, we click on the Gain block, and we copy and
paste it twice. We flip the pasted Gain blocks by using the Flip Block command from the For-
mat drop menu, and we label these as Gain 2 and Gain 3. Finally, we double−click on these
gain blocks and on the Function Block Parameters window, we change the gains from to −4
and −3 as shown in Figure B.12.

Figure B.12. File Equation_1_26 complete block diagram
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8. The initial conditions , and  are entered by dou-

ble clicking the Integrator blocks and entering the values  for the first integrator, and  for
the second integrator. We also need to specify the simulation time. This is done by specifying
the simulation time to be  seconds on the Configuration Parameters from the Simulation
drop menu. We can start the simulation on Start from the Simulation drop menu or by click-

ing on the  icon.

9. To see the output waveform, we double click on the Scope block, and then clicking on the

Autoscale  icon, we obtain the waveform shown in Figure B.13. 

Figure B.13. The waveform for the function  for Example B.1

Another easier method to obtain and display the output  for Example B.1, is to use State−
Space block from Continuous in the Simulink Library Browser, as shown in Figure B.14.

Figure B.14. Obtaining the function  for Example B.1 with the State−Space block.

iL 0−( ) C dvC dt⁄( )
t 0=

0= = vc 0−( ) 0.5 V=

0 0.5

10

vC t( )

vC t( )

vC t( )
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The simout To Workspace block shown in Figure B.14 writes its input to the workspace. The
data and variables created in the MATLAB Command window, reside in the MATLAB Work-
space. This block writes its output to an array or structure that has the name specified by the
block's Variable name parameter. This gives us the ability to delete or modify selected variables.
We issue the command who to see those variables. From Equation B.23, Page B−6,

The output equation is

or

We double−click on the State−Space block, and in the Functions Block Parameters window we
enter the constants shown in Figure B.15.

Figure B.15. The Function block parameters for the State−Space block.

x· 1

x· 2

4– 4–

3 4⁄ 0
x1

x2

4
0

u0 t( )+=

y Cx du+=

y 0  1[ ] x1

x2

0[ ]u+=
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The initials conditions  are specified in MATLAB’s Command prompt as

x1=0; x2=0.5;

As before, to start the simulation we click clicking on the  icon, and to see the output wave-

form, we double click on the Scope block, and then clicking on the Autoscale  icon, we
obtain the waveform shown in Figure B.16.

Figure B.16. The waveform for the function  for Example B.1 with the State−Space block.

The state−space block is the best choice when we need to display the output waveform of three or
more variables as illustrated by the following example.

Example B.2  
A fourth−order network is described by the differential equation

(B.27)

where  is the output representing the voltage or current of the network, and  is any input,
and the initial conditions are .

a. We will express (B.27) as a set of state equations

x1  x2[ ]'

vC t( )

d 4y
dt4
--------- a3

d 3y
dt3
--------- a2

d2y
dt2
-------- a1

dy
dt
------ a0 y t( )+ + + + u t( )=

y t( ) u t( )
y 0( ) y' 0( ) y'' 0( ) y''' 0( ) 0= = = =
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b. It is known that the solution of the differential equation

(B.28)

subject to the initial conditions , has the solution

(B.29)

In our set of state equations, we will select appropriate values for the coefficients
 so that the new set of the state equations will represent the differential equa-

tion of (B.28), and using Simulink, we will display the waveform of the output .

1. The differential equation of (B.28) is of fourth−order; therefore, we must define four state vari-
ables that will be used with the four first−order state equations. 

We denote the state variables as , and , and we relate them to the terms of the
given differential equation as

(B.30)

We observe that

(B.31)

and in matrix form 

(B.32)

In compact form, (B.32) is written as

(B.33)
Also, the output is

(B.34)
where

d4y
dt4
-------- 2d2y

dt2
-------- y t( )+ + tsin=

y 0( ) y' 0( ) y'' 0( ) y''' 0( ) 0= = = =

y t( ) 0.125 3 t2–( ) 3t tcos–[ ]=

a3 a2 a1  and a0, , ,

y t( )

x1 x2 x3, ,  x4

x1 y t( )= x2
dy
dt
------= x3

d 2y
dt2
---------= x4

d 3y
dt3
---------=

x· 1 x2=

x· 2 x3=

x· 3 x4=

d 4y
dt4
--------- x· 4 a0x1– a1x2 a2x3–– a3x4– u t( )+= =

x· 1

x· 2

x· 3

x· 4

0 1 0 0
0 0 1 0
0 0 0 1
a0– a1– a2– a3–

x1

x2

x3

x4

0
0
0
1

u t( )+=

x· Ax bu+=

y Cx du+=
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(B.35)

and since the output is defined as 

relation (B.34) is expressed as

(B.36)

2. By inspection, the differential equation of (B.27) will be reduced to the differential equation of
(B.28) if we let

and thus the differential equation of (B.28) can be expressed in state−space form as

(B.37)

where

(B.38)

Since the output is defined as 

in matrix form it is expressed as

x·

x· 1

x· 2

x· 3

x· 4

=      A

0 1 0 0
0 0 1 0
0 0 0 1
a0– a1– a2– a3–

=      x

x1

x2

x3

x4

=      b

0
0
0
1

     and u,=, , , u t( )=

y t( ) x1=

y 1  0  0  0[ ]

x1

x2

x3

x4

⋅ 0[ ]u t( )+=

a3 0= a2 2= a1 0= a0 1= u t( ) tsin=

x· 1

x· 2

x· 3

x· 4

0 1 0 0
0 0 1 0
0 0 0 1
a0– 0 2– 0

x1

x2

x3

x4

0
0
0
1

tsin+=

x·

x· 1

x· 2

x· 3

x· 4

=      A

0 1 0 0
0 0 1 0
0 0 0 1
a0– 0 2– 0

=      x

x1

x2

x3

x4

=      b

0
0
0
1

     and u,=, , , tsin=

y t( ) x1=
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(B.39)

We invoke MATLAB, we start Simulink by clicking on the Simulink icon, on the Simulink
Library Browser we click on the Create a new model (blank page icon on the left of the top
bar), and we save this model as Example_1_2. On the Simulink Library Browser we select
Sources, we drag the Signal Generator block on the Example_1_2 model window, we click
and drag the State−Space block from the Continuous on Simulink Library Browser, and we
click and drag the Scope block from the Commonly Used Blocks on the Simulink Library
Browser. We also add the Display block found under Sinks on the Simulink Library
Browser. We connect these four blocks and the complete block diagram is as shown in Figure
B.17.

Figure B.17. Block diagram for Example B.2

We now double−click on the Signal Generator block and we enter the following in the Func-
tion Block Parameters:

Wave form: sine

Time (t): Use simulation time

Amplitude: 1

Frequency: 2

Units: Hertz

Next, we double−click on the state−space block and we enter the following parameter values
in the Function Block Parameters: 

A: [0  1  0  0; 0  0  1  0; 0  0  0  1; −a0  −a1 −a2  −a3]

B: [0  0  0  1]’

C: [1  0  0  0]

D: [0]

Initial conditions: x0

y 1  0  0  0[ ]

x1

x2

x3

x4

⋅ 0[ ] tsin+=
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Absolute tolerance: auto

Now, we switch to the MATLAB Command prompt and we type the following:

>> a0=1; a1=0; a2=2; a3=0; x0=[0  0  0  0]’;

We change the Simulation Stop time to , and we start the simulation by clicking on the 
icon. To see the output waveform, we double click on the Scope block, then clicking on the

Autoscale  icon, we obtain the waveform shown in Figure B.18.

Figure B.18. Waveform for Example B.2

The Display block in Figure B.17 shows the value at the end of the simulation stop time.

Examples B.1 and B.2 have clearly illustrated that the State−Space is indeed a powerful block. We
could have obtained the solution of Example B.2 using four Integrator blocks by this approach
would have been more time consuming.
 

Example B.3  
Using Algebraic Constraint blocks found in the Math Operations library, Display blocks found
in the Sinks library, and Gain blocks found in the Commonly Used Blocks library, we will create
a model that will produce the simultaneous solution of three equations with three unknowns.

The model will display the values for the unknowns , , and  in the system of the equations

(B.40)

25

z1 z2 z3

a1z1 a2z2 a3z3 k1+ + + 0=

a4z1 a5z2 a6z3 k2+ + + 0=

a7z1 a8z2 a9z3 k3+ + + 0=
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The model is shown in Figure B.19.

Figure B.19. Model for Example B.3

Next, we go to MATLAB’s Command prompt and we enter the following values:

a1=2; a2=−3; a3=−1; a4=1; a5=5; a6=4; a7=−6; a8=1; a9=2;...
k1=−8; k2=−7; k3=5;

After clicking on the simulation icon, we observe the values of the unknowns as ,
, and .These values are shown in the Display blocks of Figure B.19.

The Algebraic Constraint block constrains the input signal  to zero and outputs an algebraic
state . The block outputs the value necessary to produce a zero at the input. The output must
affect the input through some feedback path. This enables us to specify algebraic equations for
index 1 differential/algebraic systems (DAEs). By default, the Initial guess parameter is zero. We
can improve the efficiency of the algebraic loop solver by providing an Initial guess for the alge-
braic state z that is close to the solution value.

z1 2=

z2 3–= z3 5=

f z( )
z



  Introduction to Simulink

B−20 Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition
Copyright © Orchard Publications

An outstanding feature in Simulink is the representation of a large model consisting of many
blocks and lines, to be shown as a single Subsystem block.* For instance, we can group all blocks
and lines in the model of Figure B.19 except the display blocks, we choose Create Subsystem
from the Edit menu, and this model will be shown as in Figure B.20† where in MATLAB’s Com-
mand prompt we have entered:

a1=5; a2=−1; a3=4; a4=11; a5=6; a6=9; a7=−8; a8=4; a9=15;...
k1=14; k2=−6; k3=9;

Figure B.20. The model of Figure B.19 represented as a subsystem

The Display blocks in Figure B.20 show the values of , , and  for the values specified in
MATLAB’s Command prompt. 

B.2 Simulink Demos
At this time, the reader with no prior knowledge of Simulink, should be ready to learn Simulink’s
additional capabilities. It is highly recommended that the reader becomes familiar with the block
libraries found in the Simulink Library Browser. Then, the reader can follow the steps delineated
in The MathWorks Simulink User’s Manual to run the Demo Models beginning with the thermo
model. This model can be seen by typing

thermo

in the MATLAB Command prompt.

* The Subsystem block is described in detail in Chapter 2, Section 2.1, Page 2−2, Introduction to Simulink with
Engineering Applications, ISBN 0−9744239−7−1.

† The contents of the Subsystem block are not lost. We can double−click on the Subsystem block to see its con-
tents. The Subsystem block replaces the inputs and outputs of the model with Inport and Outport blocks. These
blocks are described in Section 2.1, Chapter 2, Page 2−2, Introduction to Simulink with Engineering Applica-
tions, ISBN 0−9744239−7−1.

z1 z2 z3
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Appendix C

A Review of Complex Numbers

his appendix is a review of the algebra of complex numbers. The basic operations are
defined and illustrated with several examples. Applications using Euler’s identities are pre-
sented, and the exponential and polar forms are discussed and illustrated with examples. 

C.1 Definition of a Complex Number

In the language of mathematics, the square root of minus one is denoted as , that is, .
In the electrical engineering field, we denote  as  to avoid confusion with current . Essentially,

 is an operator that produces a 90−degree counterclockwise rotation to any vector to which it is
applied as a multiplying factor. Thus, if it is given that a vector  has the direction along the
right side of the x−axis as shown in Figure C.1, multiplication of this vector by the operator  will
result in a new vector  whose magnitude remains the same, but it has been rotated counter-
clockwise by . Also, another multiplication of the new vector  by  will produce another

counterclockwise direction. In this case, the vector  has rotated  and its new value
now is . When this vector is rotated by another  for a total of , its value becomes

. A fourth  rotation returns the vector to its original position, and thus its value

is again . Therefore, we conclude that , , and .

Figure C.1. The j operator

Note: In our subsequent discussion, we will designate the x−axis (abscissa) as the real axis, and
the y−axis (ordinate) as the imaginary axis with the understanding that the “imaginary” axis is

T

i i 1–=

i j i
j

A
j

jA
90° jA j

90° A 180°
A– 90° 270°

j A–( ) jA–= 90°

A j 2 1–= j 3 j–= j 4 1=

x

y
jA

j jA( ) j2A A–= =

j A–( ) j 3A jA–= =

j jA–( ) j– 2A A= =

A
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just as “real” as the real axis. In other words, the imaginary axis is just as important as the real
axis.*

An imaginary number is the product of a real number, say , by the operator . Thus,  is a real
number and  is an imaginary number.

A complex number is the sum (or difference) of a real number and an imaginary number. For
example, the number  where  and  are both real numbers, is a complex number.
Then,  and  where  denotes real part of A, and 
the imaginary part of .

By definition, two complex numbers  and  where  and , are equal if
and only if their real parts are equal, and also their imaginary parts are equal. Thus,  if and
only if  and .

C.2 Addition and Subtraction of Complex Numbers
The sum of two complex numbers has a real component equal to the sum of the real components,
and an imaginary component equal to the sum of the imaginary components. For subtraction, we
change the signs of the components of the subtrahend and we perform addition. Thus, if

 and 
then

and

Example C.1  

It is given that , and . Find  and 

Solution:

and

* We may think the real axis as the cosine axis and the imaginary axis as the sine axis.

r j r
jr

A a jb+= a b
a Re A{ }= b Im A{ }= Re A{ } b Im A{ }=

A

A B A a jb+= B c jd+=
A B=

a c= b d=

A a jb+= B c jd+=

A B+ a c+( ) j b d+( )+=

A B– a c–( ) j b d–( )+=

A 3 j4+= B 4 j2–= A B+ A B–

A B+ 3 j4+( )= 4 j2–( )+ 3 4+( ) j 4 2–( )+ 7 j2+= =

A B– 3 j4+( )= 4 j2–( )– 3 4–( ) j 4 2+( )+ 1– j6+= =
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Multiplication of Complex Numbers

C.3 Multiplication of Complex Numbers
Complex numbers are multiplied using the rules of elementary algebra, and making use of the
fact that . Thus, if

 and 
then

and since , it follows that

(C.1)

Example C.2  

It is given that  and . Find 

Solution:

The conjugate of a complex number, denoted as , is another complex number with the same
real component, and with an imaginary component of opposite sign. Thus, if , then

.

Example C.3  

It is given that . Find 

Solution:

The conjugate of the complex number  has the same real component, but the imaginary com-
ponent has opposite sign. Then, 

If a complex number  is multiplied by its conjugate, the result is a real number. Thus, if
, then

j 2 1–=

A a jb+= B c jd+=

A B⋅ a jb+( ) c jd+( )⋅ ac jad jbc j2bd+ + += =

j 2 1–=

A B⋅ ac jad jbc b– d+ +=

ac bd–( ) j ad bc+( )+=

A 3 j4+= B 4 j2–= A B⋅

A B⋅ 3 j4+( ) 4 j2–( )⋅ 12 j6– j16 j 28–+ 20 j10+= = =

A∗
A a jb+=

A∗ a j– b=

A 3 j5+= A∗

A
A∗ 3 j– 5=

A
A a jb+=

A A∗⋅ a jb+( ) a jb–( ) a2 jab– jab j 2b2–+ a2 b2+= = =
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Example C.4  

It is given that . Find 

Solution:

C.4 Division of Complex Numbers
When performing division of complex numbers, it is desirable to obtain the quotient separated
into a real part and an imaginary part. This procedure is called rationalization of the quotient, and it
is done by multiplying the denominator by its conjugate. Thus, if  and ,
then,

(C.2)

In (C.2), we multiplied both the numerator and denominator by the conjugate of the denomina-
tor to eliminate the j operator from the denominator of the quotient. Using this procedure, we see
that the quotient is easily separated into a real and an imaginary part.

Example C.5  

It is given that , and . Find 

Solution:

Using the procedure of (C.2), we obtain

C.5 Exponential and Polar Forms of Complex Numbers
The relations

(C.3)

A 3 j5+= A A∗⋅

A A∗⋅ 3 j5+( ) 3 j5–( ) 32 52+ 9 25 34=+= = =

A a jb+= B c jd+=

A
B
---- a jb+

c jd+
-------------- a jb+( ) c jd–( )

c jd+( ) c jd–( )
------------------------------------- A

B
---- B∗

B∗
-------⋅ ac bd+( ) j bc ad–( )+

c2 d 2+
------------------------------------------------------= = = =

ac bd+( )
c2 d 2+

----------------------- j bc ad–( )
c2 d 2+

----------------------+=

A 3 j4+= B 4 j3+= A B⁄

A
B
---- 3 j4+

4 j3+
-------------- 3 j4+( ) 4 j3–( )

4 j3+( ) 4 j3–( )
-------------------------------------- 12 j9– j16 12+ +

42 32
+

-------------------------------------------- 24 j7+
25

----------------- 24
25
------ j 7

25
------+ 0.96 j0.28+= = = = ==

e jθ
θ j θsin+cos=
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Exponential and Polar Forms of Complex Numbers

and

(C.4)

are known as the Euler’s identities.

Multiplying (C.3) by the real positive constant C we obtain:

(C.5)

This expression represents a complex number, say , and thus

(C.6)

where the left side of (C.6) is the exponential form, and the right side is the rectangular form.

Equating real and imaginary parts in (C.5) and (C.6), we obtain

(C.7)

Squaring and adding the expressions in (C.7), we obtain

Then,

or

(C.8)

Also, from (C.7)

or

(C.9)

To convert a complex number from rectangular to exponential form, we use the expression

(C.10)

To convert a complex number from exponential to rectangular form, we use the expressions

    e jθ–
θ j– θsincos=

Ce jθ C θ jC θsin+cos=

a jb+

Ce jθ a jb+=

a C θcos=   and  b C θsin=

a2 b2+ C θcos( )2 C θsin( )2+ C2 θ2cos θ2sin+( ) C2= = =

C2 a2 b2+=

C a2 b2+=

b
a
--- C θsin

C θcos
--------------- θtan= =

  θ b
a
--- 

 1–tan=

a jb+ a2 b2+ e
j tan 1–  b

a
--- 

 
=



  A Review of Complex Numbers

C−6 Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition
Copyright © Orchard Publications

(C.11)

The polar form is essentially the same as the exponential form but the notation is different, that
is,

(C.12)

where the left side of (C.12) is the exponential form, and the right side is the polar form.

We must remember that the phase angle  is always measured with respect to the positive real
axis, and rotates in the counterclockwise direction.

Example C.6  
Convert the following complex numbers to exponential and polar forms:

a. 

b. 

c. 

d. 

Solution:

a. The real and imaginary components of this complex number are shown in Figure C.2.

Figure C.2. The components of 

Then,

Check with MATLAB:

Ce jθ C θ jC θsin+cos=

Ce jθ– C θ j– C θsincos=

Ce jθ C θ∠=

θ

3 j4+

1– j2+

2– j–

4 j3–

Re

Im
4

3

5

53.1°

3 j4+

3 j4+ 32 42+ e
j 4

3
---

1–
tan 

 
5e j53.1° 5 53.1°∠= = =
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Exponential and Polar Forms of Complex Numbers

x=3+j*4; magx=abs(x); thetax=angle(x)*180/pi;  disp(magx); disp(thetax)

    5
    53.1301

Check with the Simulink Complex to Magnitude−Angle block* shown in the Simulink
model of Figure C.3.

Figure C.3. Simulink model for Example C.6a

b. The real and imaginary components of this complex number are shown in Figure C.4.

Figure C.4. The components of 

Then, 

Check with MATLAB:

y=−1+j*2; magy=abs(y); thetay=angle(y)*180/pi;  disp(magy); disp(thetay)

    2.2361
  116.5651

c. The real and imaginary components of this complex number are shown in Figure C.5. 

* For a detailed description and examples with this and other related transformation blocks, please refer to Intro-
duction to Simulink with Engineering Applications, ISBN 0−9744239−7−1, Section 8.3, Chapter 8, Page 8−
24, and Section 19.8, Chapter 19, Page 19−27.

Re

Im
2

−1

116.6°
63.4°

5

1– j2+

1– j2+ 12 22+ e
j 2

1–
------

1–
tan 

 
5e j116.6° 5 116.6°∠= = =
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Figure C.5. The components of 

Then,

Check with MATLAB:

v=−2−j*1; magv=abs(v); thetav=angle(v)*180/pi;  disp(magv); disp(thetav)

    2.2361
 -153.4349

d. The real and imaginary components of this complex number are shown in Figure C.5.

Figure C.6. The components of 

Then,

Check with MATLAB:

w=4−j*3; magw=abs(w); thetaw=angle(w)*180/pi;  disp(magw); disp(thetaw)

     5
  -36.8699

Re

Im

−2

−1

206.6°

−153.4°(Measured
26.6°

Clockwise)5

2– j–

2– j– 1 22 12
+ e

j 1–
2–

------
1–

tan 
 

5e j206.6°
= = 5 206.6°∠ 5ej 153.4–( )° 5 153.4– °∠= = =

Re

Im
4

−3
5

323.1×

−36.9×

4 j3–

4 j– 3 42 32+ e
j 3–

4
------

1–
tan 

 
5e j323.1°

= = 5 323.1°∠ 5e j36.9– ° 5 36.9– °∠= = =
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Exponential and Polar Forms of Complex Numbers

Example C.7  

Express the complex number  in exponential and in rectangular forms.

Solution:

We recall that . Since each  rotates a vector by  counterclockwise, then  is
the same as  rotated counterclockwise by . Therefore,

The components of this complex number are shown in Figure C.6.

Figure C.7. The components of 

Then,

Note: The rectangular form is most useful when we add or subtract complex numbers; however,
the exponential and polar forms are most convenient when we multiply or divide complex
numbers.

To multiply two complex numbers in exponential (or polar) form, we multiply the magnitudes
and we add the phase angles, that is, if

then,

(C.13)

Example C.8  

Multiply  by 

Solution:

Multiplication in polar form yields

2 30°∠–

1– j2= j 90° 2 30°∠–

2 30°∠ 180°

2 30°∠– 2 30° 180°+( )∠ 2 210°∠ 2 150°–∠= = =

Re

Im

−1.73

−1

210°

2
−150°(Measured

30°

Clockwise)

2 150°–∠

2 150– °∠ 2e j– 150°
= 2 150° j 150°sin–cos( ) 2 0.866– j0.5–( ) 1.73– j–= = =

A M θ∠=   and  B N φ∠=

AB MN θ φ+( )∠ Me jθNe jφ MNe j θ φ+( )
= = =

A 10 53.1°∠= B 5 36.9°–∠=
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and multiplication in exponential form yields

To divide one complex number by another when both are expressed in exponential or polar form,
we divide the magnitude of the dividend by the magnitude of the divisor, and we subtract the
phase angle of the divisor from the phase angle of the dividend, that is, if

then,

(C.14)

Example C.9  

Divide  by 

Solution:

Division in polar form yields

Division in exponential form yields

AB 10 5×( ) 53.1° 36.9°–( )+[ ]∠ 50 16.2°∠= =

AB 10e j53.1°( ) 5e j– 36.9°( ) 50e j 53.1° 36.9°–( ) 50e j16.2°
= = =

A M θ∠=   and  B N φ∠=

A
B
---- M

N
----- θ φ–( )∠ Me jθ

Ne jφ
------------- M

N
----e j θ φ–( )

= = =

A 10 53.1°∠= B 5 36.9°–∠=

A
B
---- 10 53.1°∠

5 36.9°–∠
------------------------ 2 53.1° 36.9°–( )–[ ]∠ 2 90°∠= = =

A
B
---- 10e j53.1°

5e j36.9°–
--------------------- 2e j53.1°e j36.9° 2e j90°

= ==
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Appendix D

Matrices and Determinants

his appendix is an introduction to matrices and matrix operations. Determinants, Cramer’s
rule, and Gauss’s elimination method are reviewed. Some definitions and examples are not
applicable to the material presented in this text, but are included for subject continuity,

and academic interest. They are discussed in detail in matrix theory textbooks. These are
denoted with a dagger (†) and may be skipped. 

D.1 Matrix Definition

A matrix is a rectangular array of numbers such as those shown below.

In general form, a matrix A is denoted as

(D.1)

The numbers  are the elements of the matrix where the index  indicates the row, and  indi-

cates the column in which each element is positioned. For instance,  indicates the element
positioned in the fourth row and third column.

A matrix of  rows and  columns is said to be of  order matrix.

If , the matrix is said to be a square matrix of order  (or ). Thus, if a matrix has five
rows and five columns, it is said to be a square matrix of order 5.

T

2 3 7
1 1– 5

or
1 3 1
2– 1 5–

4 7– 6

A

a11 a12 a13 … a1n

a21 a22 a23 … a2n

a31 a32 a33 … a3n

… … … … …
am1 am2 am3 … amn

=

aij i j

a43

m n m n×

m n= m n
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In a square matrix, the elements  are called the main diagonal elements.
Alternately, we say that the matrix elements , are located on the main
diagonal.

† The sum of the diagonal elements of a square matrix  is called the trace* of .

† A matrix in which every element is zero, is called a zero matrix.

D.2 Matrix Operations

Two matrices  and  are equal, that is, , if and only if 

(D.2)

Two matrices are said to be conformable for addition (subtraction), if they are of the same order
.

If  and  are conformable for addition (subtraction), their sum (difference) will

be another matrix  with the same order as  and , where each element of  is the sum (dif-
ference) of the corresponding elements of  and , that is,

(D.3)

Example D.1  

Compute  and  given that

 and 

Solution:

and

* Henceforth, all paragraphs and topics preceded by a dagger ( † ) may be skipped. These are discussed in matrix
theory textbooks.

a11  a22  a33  …  ann, , , ,

a11  a22  a33  …  ann, , , ,

A A

A aij= B bij= A B=

aij bij= i 1 2 3 … m, , , ,= j 1 2 3 … n, , , ,=

m n×

A aij= B bij=

C A B C
A B

C A B± aij bij±[ ]= =

A B+ A B–

A 1 2 3
0 1 4

= B 2 3 0
1– 2 5

=

A B+ 1 2+ 2 3+ 3 0+

0 1– 1 2+ 4 5+

3 5 3
1– 3 9

= =



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition D−3
Copyright © Orchard Publications

Matrix Operations

Check with MATLAB:

A=[1  2  3;   0  1  4];  B=[2  3  0; −1  2  5]; % Define matrices A and B
A+B, A−B % Add A and B, then Subtract B from A

ans =
     3     5     3
    -1     3     9

ans =
    -1    -1     3
     1    -1    -1

Check with Simulink:

If  is any scalar (a positive or negative number), and not  which is a  matrix, then mul-
tiplication of a matrix  by the scalar  is the multiplication of every element of  by .

Example D.2  
Multiply the matrix

by 

a.  

b. 

A B– 1 2– 2 3– 3 0–

0 1+ 1 2– 4 5–

1– 1– 3
1 1– 1–

= =

Note: The elements of matrices
         A and B are specified in

                MATLAB's Command prompt

Sum 2

Sum 1

-1

1

-1

-1

3

-1

Display 2 (A-B)

3

-1

5

3

3

9

Display 1 (A+B)
B

Constant 2

A

Constant 1

k k[ ] 1 1×
A k A k

A 1 2–

2 3
=

k1 5=

k2 3– j2+=
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Solution:
a.

b.

Check with MATLAB:

k1=5; k2=(−3 + 2*j); %  Define scalars k1 and k2
A=[1 −2; 2  3]; % Define matrix A
k1*A, k2*A % Multiply matrix A by scalars k1 and k2  

ans =
     5   -10
    10    15

ans =
  -3.0000+ 2.0000i   6.0000- 4.0000i
  -6.0000+ 4.0000i  -9.0000+ 6.0000i

Two matrices  and  are said to be conformable for multiplication  in that order, only
when the number of columns of matrix  is equal to the number of rows of matrix . That is, the
product  (but not ) is conformable for multiplication only if  is an  matrix and
matrix  is an  matrix. The product  will then be an  matrix. A convenient way
to determine if two matrices are conformable for multiplication is to write the dimensions of the
two matrices side−by−side as shown below.

 

For the product  we have:

k1 A⋅ 5 1 2–

2 3
× 5 1× 5 2–( )×

5 2× 5 3×
5 10–

10 15
= = =

k2 A⋅ 3– j2+( ) 1 2–

2 3
× 3– j2+( ) 1× 3– j2+( ) 2–( )×

3– j2+( ) 2× 3– j2+( ) 3×
3– j2+ 6 j4–

6– j4+ 9– j6+
= = =

A B A B⋅
A B

A B⋅ B A⋅ A m p×
B p n× A B⋅ m n×

m × p     p × n
A           B

Shows that A and B are conformable for multiplication

Indicates the dimension of the product A ⋅ B 

B A⋅



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition D−5
Copyright © Orchard Publications

Matrix Operations

For matrix multiplication, the operation is row by column. Thus, to obtain the product , we
multiply each element of a row of  by the corresponding element of a column of ; then, we
add these products.

Example D.3  

Matrices  and  are defined as

 and 

Compute the products  and 

Solution:

The dimensions of matrices  and  are respectively ; therefore the product  is
feasible, and will result in a , that is,

The dimensions for  and  are respectively  and therefore, the product  is
also feasible. Multiplication of these will produce a  matrix as follows:

Check with MATLAB:

C=[2  3  4];  D=[1  −1  2]’; % Define matrices C and D. Observe that D is a column vector
C*D, D*C % Multiply C by D, then multiply D by C

ans =
     7

 Here, B and A are not conformable for multiplication

                     B           A 
      p × n    m × p

A B⋅
A B

C D

C 2 3 4= D
1
1–

2

=

C D⋅ D C⋅

C D 1 3  3 1×× C D⋅
1 1×

C D⋅ 2 3 4
1
1–

2
2( ) 1( )⋅ 3( ) 1–( )⋅ 4( ) 2( )⋅+ + 7= = =

D C 3 1  1 3×× D C⋅
3 3×

D C⋅
1
1–

2
2 3 4

1( ) 2( )⋅ 1( ) 3( )⋅ 1( ) 4( )⋅
1–( ) 2( )⋅ 1–( ) 3( )⋅ 1–( ) 4( )⋅

2( ) 2( )⋅ 2( ) 3( )⋅ 2( ) 4( )⋅

2 3 4
2– 3– 4–

4 6 8

= = =
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ans =
     2     3     4
    -2    -3    -4
     4     6     8

Division of one matrix by another, is not defined. However, an analogous operation exists, and it
will become apparent later in this chapter when we discuss the inverse of a matrix.

D.3 Special Forms of Matrices

† A square matrix is said to be upper triangular when all the elements below the diagonal are
zero. The matrix  of (D.4) is an upper triangular matrix. In an upper triangular matrix, not
all elements above the diagonal need to be non−zero.

(D.4)

† A square matrix is said to be lower triangular, when all the elements above the diagonal are
zero. The matrix  of (D.5) is a lower triangular matrix. In a lower triangular matrix, not all
elements below the diagonal need to be non−zero.

(D.5)

† A square matrix is said to be diagonal, if all elements are zero, except those in the diagonal. The
matrix  of (D.6) is a diagonal matrix.

A

A

a11 a12 a13 … a1n

0 a22 a23 … a2n

0 0 … … …
… … 0 … …
0 0 0 … amn

=

B

B

a11 0 0 … 0
a21 a22 0 … 0
… … … 0 0
… … … … 0

am1 am2 am3 … amn

=

C
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Special Forms of Matrices

(D.6)

† A diagonal matrix is called a scalar matrix, if  where  is a

scalar. The matrix  of (D.7) is a scalar matrix with .

(D.7)

A scalar matrix with , is called an identity matrix . Shown below are , , and
 identity matrices. 

(D.8)

The MATLAB eye(n) function displays an  identity matrix. For example,

eye(4) % Display a 4 by 4 identity matrix

ans =
     1     0     0     0
     0     1     0     0
     0     0     1     0
     0     0     0     1

Likewise, the eye(size(A)) function, produces an identity matrix whose size is the same as matrix
. For example, let matrix  be defined as

A=[1  3  1; −2  1 −5; 4 −7  6] % Define matrix A

A =
    1     3     1

    -2     1    -5
     4    -7     6

Then,

C

a11 0 0 … 0
0 a22 0 … 0
0 0 … 0 0
0 0 0 … 0
0 0 0 … amn

=

a11 a22 a33 … ann k= = = = = k

D k 4=

D

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

=

k 1= I 2 2× 3 3×
4 4×

1 0
0 1

1 0 0
0 1 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

n n×

A A
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eye(size(A))

displays

ans =
     1     0     0
     0     1     0
     0     0     1

† The transpose of a matrix , denoted as , is the matrix that is obtained when the rows and
columns of matrix  are interchanged. For example, if

(D.9)

In MATLAB, we use the apostrophe (′) symbol to denote and obtain the transpose of a matrix.
Thus, for the above example, 

A=[1  2  3;  4  5  6] % Define matrix A

A =
     1     2     3
     4     5     6

A' % Display the transpose of A

ans =
     1     4
     2     5
     3     6

† A symmetric matrix  is a matrix such that , that is, the transpose of a matrix  is the
same as . An example of a symmetric matrix is shown below.

(D.10)

† If a matrix  has complex numbers as elements, the matrix obtained from  by replacing each
element by its conjugate, is called the conjugate of , and it is denoted as , for example,

A AT

A

A 1 2 3
4 5 6

=   then  AT
1 4
2 5
3 6

=

A AT A= A
A

A
1 2 3
2 4 5–

3 5– 6

= AT
1 2 3
2 4 5–

3 5– 6

A= =

A A
A A∗

A 1 j2+ j
3 2 j3–

= A∗ 1 j2– j–
3 2 j3+

=
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Special Forms of Matrices

MATLAB has two built−in functions which compute the complex conjugate of a number. The
first, conj(x), computes the complex conjugate of any complex number, and the second,
conj(A), computes the conjugate of a matrix . Using MATLAB with the matrix  defined
as above, we obtain

A = [1+2j   j;  3   2−3j] % Define and display matrix A

A =
  1.0000 + 2.0000i        0 + 1.0000i
  3.0000             2.0000 - 3.0000i

conj_A=conj(A) % Compute and display the conjugate of A

conj_A =
  1.0000 - 2.0000i        0 - 1.0000i
  3.0000             2.0000 + 3.0000i

† A square matrix  such that  is called skew-symmetric. For example,

Therefore, matrix  above is skew symmetric.

† A square matrix  such that  is called Hermitian. For example,

Therefore, matrix  above is Hermitian.

† A square matrix  such that  is called skew−Hermitian. For example,

Therefore, matrix  above is skew−Hermitian.

A A

A AT A–=

A
0 2 3–

2– 0 4–

3 4 0

=     AT
0 2– 3
2 0 4
3– 4– 0

A–= =

A

A AT∗ A=

A
1 1 j– 2

1 j+ 3 j
2 j– 0

  AT
1 1 j+ 2

1 j– 3 j–

2 j 0

  AT*
1 1 j+ 2

1 j– 3 j–

2 j 0

A====

A

A AT∗ A–=

A
j 1 j– 2

1– j– 3j j
2– j 0

  AT
j 1– j– 2–

1 j– 3j j
2 j 0

  AT*
j– 1– j+ 2–

1 j+ 3j– j–

2 j– 0

A–====

A
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D.4 Determinants

Let matrix  be defined as the square matrix

(D.11)

then, the determinant of , denoted as , is defined as

(D.12)

The determinant of a square matrix of order n is referred to as determinant of order n.

Let  be a determinant of order , that is,

(D.13)

Then,
(D.14)

Example D.4  

Matrices  and  are defined as

 and 

Compute  and .

Solution:

Check with MATLAB:

A=[1  2; 3  4]; B=[2  −1; 2  0]; % Define matrices A and B
det(A), det(B) % Compute the determinants of A and B

A

A

a11 a12 a13 … a1n

a21 a22 a23 … a2n

a31 a32 a33 … a3n

… … … … …
an1 an2 an3 … ann

=

A detA

detA a11a22a33…ann a12a23a34…an1 a13a24a35…an2 …
             an1…a22a13… an2– …a23a14 an3…a24a15 …–––

+ + +=

A 2

A
a11 a12

a21 a22

=

detA a11a22 a21a12–=

A B

A 1 2
3 4

= B 2 1–

2 0
=

detA detB

detA 1 4⋅ 3 2⋅– 4 6– 2–= = =

detB 2 0⋅ 2 1–( )⋅– 0 2–( )– 2= = =
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Determinants

ans =
    -2

ans =
    2

Let  be a matrix of order , that is,

(D.15)

then,  is found from 

(D.16)

A convenient method to evaluate the determinant of order , is to write the first two columns to
the right of the  matrix, and add the products formed by the diagonals from upper left to
lower right; then subtract the products formed by the diagonals from lower left to upper right as
shown on the diagram of the next page. When this is done properly, we obtain (D.16) above.

This method works only with second and third order determinants. To evaluate higher order
determinants, we must first compute the cofactors; these will be defined shortly.

Example D.5  

Compute  and  if matrices  and  are defined as

 and 

A 3

A
a11 a12 a13

a21 a22 a23

a31 a32 a33

=

detA

detA a11a22a33 a12a23a31 a11a22a33+ +=

a11a22a33 a11a22a33 a11a22a33–––

3
3 3×

a11 a12 a13

a21 a22 a23

a31 a32 a33

a11 a12

a21 a22

a31 a32 +

−

detA detB A B

A
2 3 5
1 0 1
2 1 0

= B
2 3– 4–

1 0 2–

0 5– 6–

=
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Solution:

or

Likewise,

or

Check with MATLAB:

A=[2   3   5;  1   0   1;  2   1   0]; det(A) % Define matrix A and compute detA

ans =
     9

B=[2   −3   −4;  1   0   −2;  0   −5   −6];det(B) % Define matrix B and compute detB

ans =
   -18

D.5  Minors and Cofactors

Let matrix  be defined as the square matrix of order  as shown below.

(D.17)

detA
2 3 5 2 3
1 0 1 1 0
2 1 0 2 1

=

detA 2 0× 0×( ) 3 1× 1×( ) 5 1× 1×( )
2 0× 5×( )– 1 1× 2×( ) 0 1× 3×( )––

+ +
11 2– 9= =

=

detB
2 3– 4– 2 3–

1 0 2– 1 2–

0 5– 6– 2 6–

=

detB 2 0× 6–( )×[ ] 3–( ) 2–( )× 0×[ ] 4–( ) 1× 5–( )×[ ]
0 0× 4–( )×[ ]– 5–( ) 2–( )× 2×[ ] 6–( ) 1× 3–( )×[ ]––

+ +
20 38– 18–= =

=

A n

A

a11 a12 a13 … a1n

a21 a22 a23 … a2n

a31 a32 a33 … a3n

… … … … …
an1 an2 an3 … ann

=
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Minors and Cofactors

If we remove the elements of its  row, and  column, the remaining  square matrix is

called the minor of , and it is denoted as .

The signed minor  is called the cofactor of  and it is denoted as .

Example D.6  

Matrix  is defined as

(D.18)

Compute the minors ,     ,      and the cofactors ,  and .

Solution:

and

The remaining minors

and cofactors

are defined similarly.

ith jth n 1–

A Mij

1–( )i j+
Mij aij αij

A

A
a11 a12 a13

a21 a22 a23

a31 a32 a33

=

M11 M12 M13 α11 α12 α13

M11
a22 a23

a32 a33

=     M12
a21 a23

a31 a33

=     M11
a21 a22

a31 a32

=

α11 1–( )1 1+
M11 M11         α12 1–( )1 2+

M12 M12         α13 M13 1–( )1 3+
M13= =–= == =

M21    M22    M23    M31    M32    M33, , , , ,

α21 α22 α23 α31 α32 and α33, , , , ,
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Example D.7  

Compute the cofactors of matrix  defined as

(D.19)

Solution:

(D.20)

                                                   (D.21)

                        (D.22)

(D.23)

                         (D.24)

It is useful to remember that the signs of the cofactors follow the pattern below

that is, the cofactors on the diagonals have the same sign as their minors.

Let  be a square matrix of any size; the value of the determinant of  is the sum of the products
obtained by multiplying each element of any row or any column by its cofactor.

A

A
1 2 3–

2 4– 2
1– 2 6–

=

α11 1–( )1 1+ 4– 2
2 6–

20= =           α12 1–( )1 2+ 2 2
1– 6–

10= =

α13 1–( )1 3+ 2 4–

1– 2
0         α21 1–( )2 1+ 2 3–

2 6–
6= == =

α22 1–( )2 2+ 1 3–

1– 6–
9–= =           α23 1–( )2 3+ 1 2

1– 2
4–= =

α31 1–( )3 1+ 2 3–

4– 2
8–= =         α32 1–( )3 2+ 1 3–

2 2
8–= =,

α33 1–( )3 3+ 1 2
2 4–

8–= =

+ − + − +
− + − + −
+ − + − +
− + − + −
+ − + − +

A A
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Minors and Cofactors

Example D.8  

Matrix  is defined as

(D.25)

Compute the determinant of  using the elements of the first row.

Solution:

Check with MATLAB:

A=[1  2  −3; 2  −4  2; −1  2  −6]; det(A) % Define matrix A and compute detA

ans =
    40

We must use the above procedure to find the determinant of a matrix  of order  or higher.
Thus, a fourth-order determinant can first be expressed as the sum of the products of the ele-
ments of its first row by its cofactor as shown below.

(D.26)

Determinants of order five or higher can be evaluated similarly.

Example D.9  

Compute the value of the determinant of the matrix  defined as

A

A
1 2 3–

2 4– 2
1– 2 6–

=

A

detA 1 4– 2
2 6–

= 2 2 2
1– 6–

3 2 4–

1– 2
–– 1 20× 2 10–( )× 3 0×–– 40= =

A 4

A

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

a11

a22 a23 a24

a32 a33 a34

a42 a43 a44

a21

a12 a13 a14

a32 a33 a34

a42 a43 a44

–

                                            +a31

a12 a13 a14

a22 a23 a24

a42 a43 a44

a41

a12 a13 a14

a22 a23 a24

a32 a33 a34

–

= =

A
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(D.27)

Solution:

Using the above procedure, we will multiply each element of the first column by its cofactor.
Then,

Next, using the procedure of Example D.5 or Example D.8, we find

, , , 
and thus

We can verify our answer with MATLAB as follows:

A=[ 2  −1  0  −3; −1  1  0  −1; 4  0  3  −2;  −3  0  0  1]; delta = det(A)

delta =
   -33

Some useful properties of determinants are given below.

Property 1: If all elements of one row or one column are zero, the determinant is zero. An exam-
ple of this is the determinant of the cofactor  above.

Property 2: If all the elements of one row or column are m times the corresponding elements of
another row or column, the determinant is zero. For example, if

(D.28)

then,

A

2 1– 0 3–

1– 1 0 1–

4 0 3 2–

3– 0 0 1

=

A=2
1 0 1–

0 3 2–

0 0 1

a[ ]

1–( )
1– 0 3–

0 3 2–

0 0 1

–

b[ ]

 
+4

1– 0 3–

1 0 1–

0 0 1

c[ ]

3–( )
1– 0 3–

1 0 1–

0 3 2–

–

d[ ]

                               

a[ ] 6= b[ ] 3–= c[ ] 0= d[ ] 36–=

detA a[ ] b[ ] c[ ] d[ ]+ + + 6 3– 0 36–+ 33–= = =

c[ ]

A
2 4 1
3 6 1
1 2 1

=
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Cramer’s Rule

(D.29)

Here,  is zero because the second column in  is  times the first column.

Check with MATLAB:

A=[2  4  1; 3  6  1; 1  2  1]; det(A)

ans =
     0

Property 3: If two rows or two columns of a matrix are identical, the determinant is zero. This
follows from Property 2 with .

D.6  Cramer’s Rule
Let us consider the systems of the three equations below

(D.30)

and let

Cramer’s rule states that the unknowns x, y, and z can be found from the relations

(D.31)

provided that the determinant ∆ (delta) is not zero.

We observe that the numerators of (D.31) are determinants that are formed from ∆ by the sub-
stitution of the known values , , and , for the coefficients of the desired unknown.

Cramer’s rule applies to systems of two or more equations.

If (D.30) is a homogeneous set of equations, that is, if , then, 
are all zero as we found in Property 1 above. Then,  also.

detA
2 4 1
3 6 1
1 2 1

2 4
3 6
1 2

12 4 6 6 4–– 12–+ + 0= = =

detA A 2

m 1=

a11x a12y a13z+ + A=

a21x a22y a23z+ + B=

a31x a32y a33z+ + C=

∆
a11 a12 a13

a21 a22 a23

a31 a32 a33

     D1

A a11 a13

B a21 a23

C a31 a33

     D2

a11 A a13

a21 B a23

a31 C a33

     D3

a11 a12 A
a21 a22 B
a31 a32 C

====

x
D1

∆
------= y

D2

∆
------= z

D3

∆
------=

A B C

A B C 0= = = D1  D2  and D3, ,

x y z 0= = =
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Example D.10  

Use Cramer’s rule to find , , and  if

(D.32)

and verify your answers with MATLAB.

Solution:

Rearranging the unknowns , and transferring known values to the right side, we obtain

(D.33)

By Cramer’s rule,

Using relation (D.31) we obtain

(D.34)

v1 v2  v3

2v1 5– v2– 3v3+ 0=

2v3 3v2 4v1––– 8=

v2 3v1 4– v3–+ 0=

v

2v1 v2– 3v3+ 5=

4v1 3v2 2v3––– 8=

3v1 v2 v3–+ 4=

∆
2 1– 3
4– 3– 2–

3 1 1–

2 1–

4– 3–

3 1

6 6 12– 27 4 4+ + + + 35= = =

D1

5 1– 3
8 3– 2–

4 1 1–

5 1–

8 3–

4 1

15 8 24 36 10 8–+ + + + 85= = =

D2

2 5 3
4– 8 2–

3 4 1–

2 5
4– 8
3 4

16– 30– 48– 72– 16 20–+ 170–= = =

D3

2 1– 5
4– 3– 8
3 1 4

2 1–

4– 3–

3 1

24– 24– 20– 45 16– 16–+ 55–= = =

x1
D1

∆
------ 85

35
------ 17

7
------= = = x2

D2

∆
------ 170

35
---------– 34

7
------–= = = x3

D3

∆
------ 55

35
------– 11

7
------–= = =
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Gaussian Elimination Method

We will verify with MATLAB as follows:

% The following code will compute and display the values of v1, v2 and v3.
format rat % Express answers in ratio form
B=[2  −1  3;  −4  −3  −2;  3  1 −1]; % The elements of the determinant D of matrix B
delta=det(B); % Compute the determinant D of matrix B
d1=[5  −1  3;  8  −3  −2;  4  1  −1]; % The elements of D1
detd1=det(d1); % Compute the determinant of D1
d2=[2  5  3;  −4  8  −2;  3  4  −1]; % The elements of D2
detd2=det(d2); % Compute the determinant of D2
d3=[2  −1  5; −4  −3  8;  3  1  4]; % The elements of D3
detd3=det(d3); % Compute he determinant of D3
v1=detd1/delta; % Compute the value of v1
v2=detd2/delta; % Compute the value of v2
v3=detd3/delta; % Compute the value of v3

%
disp('v1=');disp(v1); % Display the value of v1
disp('v2=');disp(v2); % Display the value of v2
disp('v3=');disp(v3); % Display the value of v3

v1=
    17/7
v2=
   -34/7     
v3=
   -11/7 

These are the same values as in (D.34)

D.7  Gaussian Elimination Method

We can find the unknowns in a system of two or more equations also by the Gaussian elimina-
tion method. With this method, the objective is to eliminate one unknown at a time. This can be
done by multiplying the terms of any of the equations of the system by a number such that we
can add (or subtract) this equation to another equation in the system so that one of the
unknowns will be eliminated. Then, by substitution to another equation with two unknowns, we
can find the second unknown. Subsequently, substitution of the two values found can be made
into an equation with three unknowns from which we can find the value of the third unknown.
This procedure is repeated until all unknowns are found. This method is best illustrated with the
following example which consists of the same equations as the previous example.
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Example D.11  

Use the Gaussian elimination method to find , , and  of the system of equations

(D.35)

Solution:

As a first step, we add the first equation of (D.35) with the third to eliminate the unknown v2 and
we obtain the equation

(D.36)

Next, we multiply the third equation of (D.35) by 3, and we add it with the second to eliminate
, and we obtain the equation

(D.37)

Subtraction of (D.37) from (D.36) yields

(D.38)

Now, we can find the unknown  from either (D.36) or (D.37). By substitution of (D.38) into
(D.36) we obtain

(D.39)

Finally, we can find the last unknown  from any of the three equations of (D.35). By substitu-
tion into the first equation we obtain

(D.40)

These are the same values as those we found in Example D.10.

The Gaussian elimination method works well if the coefficients of the unknowns are small inte-
gers, as in Example D.11. However, it becomes impractical if the coefficients are large or frac-
tional numbers.

v1 v2  v3

2v1 v2– 3v3+ 5=

4v1 3v2 2v3––– 8=

3v1 v2 v3–+ 4=

5v1 2v3+ 9=

v2

5v1 5v3– 20=

7v3 11  or  v3
11
7
------–=–=

v1

5v1 2 11
7

------– 
 ⋅+ 9  or  v1

17
7

------==

v2

v2 2v1 3v3 5–+ 34
7

------ 33
7
------– 35

7
------– 34

7
------–= = =



Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition D−21
Copyright © Orchard Publications

The Adjoint of a Matrix

D.8 The Adjoint of a Matrix

Let us assume that  is an n square matrix and  is the cofactor of . Then the adjoint of ,

denoted as , is defined as the n square matrix below.

(D.41)

We observe that the cofactors of the elements of the ith row (column) of  are the elements of
the ith column (row) of .

Example D.12  

Compute  if Matrix  is defined as

(D.42)

Solution: 

D.9 Singular and Non−Singular Matrices

An  square matrix  is called singular if ; if ,  is called non−singular.

A αij aij A

adjA

adjA

α11 α21 α31 … αn1

α12 α22 α32 … αn2

α13 α23 α33 … αn3

… … … … …
α1n α2n α3n … αnn

=

A
adjA

adjA A

A
1 2 3
1 3 4
1 4 3

=

adjA

  3 4
4 3

2 3
4 3

–   2 3
3 4

1 4
1 3

–       1 3
1 3

2 3
3 4

–

1 3
1 4

    1 2
1 4

–   1 2
1 3

7– 6 1–

1 0 1–

1 2– 1

= =

n A detA 0= detA 0≠ A
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Example D.13  

Matrix  is defined as

(D.43)

Determine whether this matrix is singular or non−singular.

Solution:

Therefore, matrix  is singular.

D.10   The Inverse of a Matrix

If  and  are  square matrices such that , where  is the identity matrix,  is

called the inverse of , denoted as , and likewise,  is called the inverse of , that is,

If a matrix  is non-singular, we can compute its inverse  from the relation

(D.44)

Example D.14  

Matrix  is defined as

(D.45)

Compute its inverse, that is, find 

A

A
1 2 3
2 3 4
3 5 7

=

detA
1 2 3
2 3 4
3 5 7

1 2
2 3
3 5

21 24 30 27– 20– 28–+ + 0= = =

A

A B n AB BA I= = I B

A B A 1–= A B

A B 1–=

A A 1–

A 1– 1
detA
------------adjA=

A

A
1 2 3
1 3 4
1 4 3

=

A 1–
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The Inverse of a Matrix

Solution:

Here, , and since this is a non-zero value, it is possible to
compute the inverse of  using (D.44).

From Example D.12,

Then,

(D.46)

Check with MATLAB:

A=[1  2  3;  1  3  4;  1  4  3],  invA=inv(A)      % Define matrix A and compute its inverse

A =
     1     2     3
     1     3     4
     1     4     3

invA =
    3.5000   -3.0000    0.5000
   -0.5000         0    0.5000
   -0.5000    1.0000   -0.5000

Multiplication of a matrix  by its inverse produces the identity matrix , that is,

(D.47)

Example D.15  

Prove the validity of (D.47) for the Matrix  defined as

detA 9 8 12 9– 16– 6–+ + 2–= =

A

adjA
7– 6 1–

1 0 1–

1 2– 1

=

A 1– 1
detA
------------adjA 1

2–
------

7– 6 1–

1 0 1–

1 2– 1

3.5 3– 0.5
0.5– 0 0.5
0.5– 1 0.5–

= = =

A A 1– I

AA 1– I   or   A 1– A I ==

A

A 4 3
2 2

=
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Proof:

Then,

and

D.11  Solution of Simultaneous Equations with Matrices
Consider the relation

(D.48)

where  and  are matrices whose elements are known, and  is a matrix (a column vector)
whose elements are the unknowns. We assume that  and  are conformable for multiplication.

Multiplication of both sides of (D.48) by  yields:

(D.49)
or

(D.50)

Therefore, we can use (D.50) to solve any set of simultaneous equations that have solutions. We
will refer to this method as the inverse matrix method of solution of simultaneous equations.

Example D.16  
For the system of the equations

(D.51)

compute the unknowns  using the inverse matrix method.

detA 8 6– 2   and   adjA 2 3–

2– 4
== =

A 1– 1
detA
------------adjA 1

2
--- 2 3–

2– 4
1 3– 2⁄
1– 2

= = =

AA 1– 4 3
2 2

1 3– 2⁄
1– 2

4 3– 6– 6+

2 2– 3– 4+

1 0
0 1

I= = = =

AX B=

A B X
A X

A 1–

A 1– AX A 1– B IX A 1– B   = = =

X=A 1– B

2x1 3x2 x3+ + 9=

x1 2x2 3x3+ + 6=

3x1 x2 2x3+ + 8= 
 
 
 
 

x1 x2  and x3, ,
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Solution of Simultaneous Equations with Matrices

Solution:

In matrix form, the given set of equations is  where

(D.52)

Then,
(D.53)

or

(D.54)

Next, we find the determinant , and the adjoint .

Therefore,

and with relation (D.53) we obtain the solution as follows:

(D.55)

To verify our results, we could use the MATLAB’s inv(A) function, and then multiply  by .

However, it is easier to use the matrix left division operation ; this is MATLAB’s solu-

tion of  for the matrix equation , where matrix  is the same size as matrix .

For this example,

AX B=

A
2 3 1
1 2 3
3 1 2

=   X
x1

x2

x3

=   B
9
6
8

=, ,

X A 1– B=

x1

x2

x3

2 3 1
1 2 3
3 1 2

1–
9
6
8

=

detA adjA

detA 18=    and   adjA
1 5– 7
7 1 5–

5– 7 1

=

A 1– 1
detA
------------ adjA 1

18
------

1 5– 7
7 1 5–

5– 7 1

= =

X
x1

x2

x3

1
18
------

1 5– 7
7 1 5–

5– 7 1

9
6
8

1
18
------

35
29
5

35 18⁄
29 18⁄
5 18⁄

1.94
1.61
0.28

= = = = =

A 1– B

X A \ B=

A 1– B A X⋅ B= X B
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A=[2  3  1; 1  2  3; 3  1  2]; B=[9  6  8]'; X=A \ B

X =
    1.9444
    1.6111
    0.2778

Example D.17  
For the electric circuit of Figure D.1,

 
Figure D.1. Electric circuit for Example D.17

the loop equations are

(D.56)

Use the inverse matrix method to compute the values of the currents , , and 

Solution:

For this example, the matrix equation is or , where

The next step is to find . It is found from the relation

(D.57)

Therefore, we must find the determinant and the adjoint of . For this example, we find that

+
−

V = 100 v
9 Ω 9 Ω 4 Ω

2 Ω2 Ω1 Ω

I1 I3I2

10I1 9I2– 100=

9I1 20I2 9I3–+– 0=

9I2 15I3+– 0=

I1 I2 I3

RI V = I R 1– V=

R
10 9– 0

9– 20 9–

0 9– 15

=   V
100

0
0

   and   I
I1

I2

I3

==,

R 1–

R 1– 1
detR
------------ adjR=

R
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Solution of Simultaneous Equations with Matrices

(D.58)

Then,

and

Check with MATLAB:

R=[10  −9   0;  −9   20  −9;  0  −9  15]; V=[100  0  0]'; I=R\V; fprintf(' \n');...
fprintf('I1 = %4.2f \t', I(1)); fprintf('I2 = %4.2f \t', I(2)); fprintf('I3 = %4.2f \t', I(3)); fprintf(' \n')

I1 = 22.46   I2 = 13.85   I3 = 8.31

We can also use subscripts to address the individual elements of the matrix. Accordingly, the
MATLAB script above could also have been written as:

R(1,1)=10; R(1,2)=−9; % No need to make entry for A(1,3) since it is zero.
R(2,1)=−9; R(2,2)=20; R(2,3)=−9; R(3,2)=−9; R(3,3)=15; V=[100 0 0]'; I=R\V; fprintf(' \n');...
fprintf('I1 = %4.2f \t', I(1)); fprintf('I2 = %4.2f \t', I(2)); fprintf('I3 = %4.2f \t', I(3)); fprintf(' \n')

I1 = 22.46   I2 = 13.85   I3 = 8.31

Spreadsheets also have the capability of solving simultaneous equations with real coefficients
using the inverse matrix method. For instance, we can use Microsoft Excel’s MINVERSE (Matrix
Inversion) and MMULT (Matrix Multiplication) functions, to obtain the values of the three cur-
rents in Example D.17.

The procedure is as follows:

1. We begin with a blank spreadsheet and in a block of cells, say B3:D5, we enter the elements of
matrix R as shown in Figure D.2. Then, we enter the elements of matrix  in G3:G5.

2. Next, we compute and display the inverse of , that is, . We choose B7:D9 for the ele-
ments of this inverted matrix. We format this block for number display with three decimal

detR 975=   adjR
219 135 81
135 150 90
81 90 119

  =,

R 1– 1
detR
------------adjR 1

975
---------

219 135 81
135 150 90
81 90 119

= =

I
I1

I2

I3

1
975
---------

219 135 81
135 150 90
81 90 119

100
0
0

100
975
---------

219
135
81

22.46
13.85
8.31

= = = =

V

R R 1–
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places. With this range highlighted and making sure that the cell marker is in B7, we type the
formula

=MININVERSE(B3:D5)

and we press the Crtl-Shift-Enter keys simultaneously. We observe that  appears in these
cells.

3. Now, we choose the block of cells G7:G9 for the values of the current . As before, we high-
light them, and with the cell marker positioned in G7, we type the formula

=MMULT(B7:D9,G3:G5)

and we press the Crtl-Shift-Enter keys simultaneously. The values of  then appear in G7:G9.

Figure D.2. Solution of Example D.17 with a spreadsheet

Example D.18  
For the phasor circuit of Figure D.18

Figure D.3. Circuit for Example D.18

R 1–

I

I

1
2
3
4
5
6
7
8
9
10

A B C D E F G H
Spreadsheet for Matrix Inversion and Matrix Multiplication

10 -9 0 100
R= -9 20 -9 V= 0

0 -9 15 0

0.225 0.138 0.083 22.462
R-1= 0.138 0.154 0.092 I= 13.846

0.083 0.092 0.122 8.3077

+

−

R185 Ω

50 ΩR2

C

L

R3 = 100 Ω

IX

VS

−j100 Ω

j200 Ω

170∠0°

V1 V2
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Solution of Simultaneous Equations with Matrices

the current  can be found from the relation

(D.59)

and the voltages  and  can be computed from the nodal equations

(D.60)

and

(D.61)

Compute, and express the current  in both rectangular and polar forms by first simplifying like

terms, collecting, and then writing the above relations in matrix form as , where
, , and 

Solution:

The  matrix elements are the coefficients of  and . Simplifying and rearranging the nodal
equations of (D.60) and (D.61), we obtain

(D.62)

Next, we write (D.62) in matrix form as

(D.63)

where the matrices , , and  are as indicated.

We will use MATLAB to compute the voltages  and , and to do all other computations.
The script is shown below.

Y=[0.0218−0.005j  −0.01;  −0.01  0.03+0.01j]; I=[2; 1.7j]; V=Y\I; % Define Y, I, and find V
fprintf('\n'); % Insert a line 
disp('V1 = '); disp(V(1)); disp('V2 = '); disp(V(2)); % Display values of V1 and V2

V1 = 
 1.0490e+002 + 4.9448e+001i

IX

IX
V1 V2–

R3
-------------------=

V1 V2

V1 170 0°∠–

85
--------------------------------

V1 V2–

100
-------------------

V1 0–

j200
---------------+ + 0=

V2 170 0°∠–

j100–
--------------------------------

V2 V1–

100
-------------------

V2 0–

50
---------------+ + 0=

Ix

YV I=

Y Admit cetan= V Voltage= I Current=

Y V1 V2

0.0218 j0.005–( )V1 0.01V2– 2=

0.01– V1 0.03 j0.01+( )V2+ j1.7=

0.0218 j0.005– 0.01–

0.01– 0.03 j0.01+

Y

V1

V2

V

2
j1.7

I

=

                  

Y V I

V1 V2
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V2 = 
  53.4162 + 55.3439i

Next, we find  from

R3=100; IX=(V(1)−V(2))/R3 % Compute the value of IX

IX =
   0.5149 - 0.0590i

This is the rectangular form of . For the polar form we use the MATLAB script

magIX=abs(IX), thetaIX=angle(IX)*180/pi  % Compute the magnitude and the angle in degrees

magIX =
    0.5183

thetaIX =
   -6.5326

Therefore, in polar form

Spreadsheets have limited capabilities with complex numbers, and thus we cannot use them to
compute matrices that include complex numbers in their elements as in Example D.18.

IX

IX

IX 0.518 6.53°–∠=
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Appendix E

Window Functions

his appendix is an introduction to window functions. We discuss the rectangular, triangular,
Hanning, Hamming, Blackman, and Kaiser windows. An example using each is provided for
illustration of their uses.

E.1 Window Function Defined

A window function is a function that is zero−valued outside of some chosen interval. For instance, a
function that is constant inside the interval and zero elsewhere is called a rectangular window, and
describes the shape of its graphical representation. When another function or a signal (data) is
multiplied by a window function, the product is also zero−valued outside the interval: all that is
left is the “view” through the window. Applications of window functions include spectral analysis,
and filter design.

When selecting an appropriate window function for an application, a comparison graph may be
useful. The most important parameter is usually the stop band attenuation close to the main lobe.

All of the window functions that we will discuss are even functions of time when centered at the
origin.

E.2 Common Window Functions
Based on the discussion in the previous section, it appears that a rectangular function would be the
ideal window function to terminate an impulse response with an infinite number of terms. For
instance, let us assume that the impulse response  shown in Figure E.1(a) below converges
uniformly and is represented by a portion of the amplitude response  shown in Figure E.1(b).

Figure E.1. Impulse response with an infinite number of terms

Next, let us assume that the impulse response  is terminated abruptly without changing any of
its coefficients, as shown in Figure E.2(a). In this case, the resulting amplitude response  will
be subject to undesired oscillations and poor convergence as shown in Figure E.2(b).

T

h n[ ]
A f( )

h[n]

t

A(f)

f(a) (b)

h n[ ]
A' f( )
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Figure E.2. Resultant amplitude response when the impulse response is abruptly truncated

Therefore, we are seeking a suitable window function that will result in an amplitude response
with a lower ripple in the stop band such as the one shown in Figure E.3.

Figure E.3. Acceptable amplitude response

Although an impulse response may converge uniformly, when it is multiplied* by a rectangular
window function it results in an undesirable amplitude response. However, the rectangular win-
dow function is the basis in studying window functions, so we begin with the description of the
rectangular window function.

E.2.1 Rectangular Window Function

The rectangular window function is defined as

(E.1)

and its time−domain waveform is as shown in Figure E.4.

Figure E.4. Rectangular window function in time−domain

* We recall that multiplication in the time domain corresponds to convolution in the frequency domain.

h[n]

t

A(f)

f
(a) (b)

A(f)

f

f t( )rect 1  for  |t| τ
2
---<=

             0   otherwise=

f(t)

tτ 2⁄τ 2⁄–
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Common Window Functions

The Fourier transform of the rectangular window function for  is

(E.2)

It is customary and convenient to express the amplitude of  in a decibel scale. Then

(E.3)

and relation (F.3) is normalized with respect to the DC value . A typical amplitude response
of the rectangular window function is shown in Figure E.5, and it was created with the MATLAB
script below.

fplot('20.*log10(abs(sin(pi.*x)./(pi.*x)))',[0 5 5 −50])

Figure E.5. Typical amplitude response for the rectangular window function

The amplitude response in Figure E.5 consists of a main lobe at the middle* of the spectrum and
side lobes located on either side (positive and negative) of the main lobe.

It is desired that a window function should have a narrow main lobe and the maximum side lobe
level should be very small in relation to the main lobe. Unfortunately, both of these requirements
cannot be optimized simultaneously, and thus we must decide on a suitable compromise between
these two requirements.

Figure E.6 shows the normalized frequency domain plot for the rectangular window function cre-
ated with the rectwin MATLAB function, and the script below.

n=50; w=rectwin(n); [W,f]=freqz(w/sum(w),1,512,2); plot(f,20*log10(abs(W)));grid

* Generally, only the positive half of the response is shown in all window functions.

τ 1=

F ω( )rect
πω 2⁄( )sin

πω 2⁄
---------------------------=

F ω( )

F ω( )rect dB( ) 20 F ω( )
F 0( )

---------------log=

F 0( )
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Figure E.6. Normalized frequency domain plot for the rectangular window function created with MATLAB

We can also use the MATLAB Window Visualization Tool. The script below generates the plot
shown in Figure E.7.

L=50; wvtool(rectwin(L))

Figure E.7. Rectangular window function generated with the MATLAB Window Visualization Tool
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Common Window Functions

E.2.2 Triangular Window Function

The triangular window function is defined as

(E.4)

and its time−domain waveform is as shown in Figure E.8.

Figure E.8. Triangular window function in time−domain

The Fourier transform of the triangular window function for  is

(E.5)

A typical amplitude response of the triangular window function is shown in Figure E.9 and it was
created with the MATLAB script below.

fplot('20.*log10(abs(sin(0.5.*pi.*x)./(0.5.*pi.*x)).^2)',[0 5 5 −50])

Figure E.9. Typical amplitude response for the triangular window function

We observe that the width of the main lobe of the triangular window function is about twice as
wide as that of the rectangular window function, but the first side lobe is much lower.

Figure E.10  shows the normalized frequency domain plot for the triangular window function cre-
ated with the triang MATLAB function, and the script below.

f t( )triang 1 2 t
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---<–=
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n=50; w=triang(n); [W,f]=freqz(w/sum(w),1,512,2); plot(f,20*log10(abs(W)));grid

Figure E.10. Normalized frequency domain plot for the triangular window function created with MATLAB

We can also use the MATLAB Window Visualization Tool. The script below generates the plot
shown in Figure E.11.

L=50; wvtool(triang(L))

Figure E.11. Triangular window function generated with the MATLAB Window Visualization Tool
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Common Window Functions

E.2.3 Hanning Window Function

The Hanning* window function is defined as

(E.6)

and its time−domain waveform is as shown in Figure E.12.

Figure E.12. Hanning window function in time−domain

The Fourier transform of the Hanning window function for  is

(E.7)

A typical amplitude response of the Hanning window function is shown in Figure E.13 and it was
created with the MATLAB script below.

fplot('20.*log10(abs(sin(pi.*x)./(pi.*x)).*(1./(1−(x+eps).^2)))',[0 5 −50 0])

* This window function is also known as Hann window function or cosine−squared window function.
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Figure E.13. Typical amplitude response for the Hanning window function

Figure E.14  shows the normalized frequency domain plot for the Hanning window function cre-
ated with the hann MATLAB function, and the script below.

n=50; w=hann(n); [W,f]=freqz(w/sum(w),1,512,2); plot(f,20*log10(abs(W)));grid

Figure E.14. Normalized frequency domain plot for the Hanning window function created with MATLAB

We can also use the MATLAB Window Visualization Tool. The script below generates the plot
shown in Figure E.15.

L=50; wvtool(hann(L))
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Figure E.15. Hanning window function generated with the MATLAB Window Visualization Tool

E.2.4 Hamming Window Function

The Hamming window function is defined as

(E.8)

and its time−domain waveform is as shown in Figure E.16.

Figure E.16. Hamming window function in time−domain
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The Fourier transform of the Hamming window function for  is

(E.9)

A typical amplitude response of the Hamming window function is shown in Figure E.17 and it
was created with the MATLAB script below.

fplot('20.*log10(abs(sin(pi.*x)./(pi.*x+eps)).*((0.54−0.08.*x.^2)./(1−x.^2)))',[0 5 −60 0])

Figure E.17. Typical amplitude response for the Hamming window function

Figure E.18  shows the normalized frequency domain plot for the Hamming window function cre-
ated with the hamming MATLAB function, and the script below.

n=50; w=hamming(n); [W,f]=freqz(w/sum(w),1,512,2); plot(f,20*log10(abs(W)));grid
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Figure E.18. Normalized frequency domain plot for the Hamming window function created with MATLAB

We can also use the MATLAB Window Visualization Tool. The script below generates the plot
shown in Figure E.19.

L=50; wvtool(hamming(L))

Figure E.19. Hamming window function generated with the MATLAB Window Visualization Tool
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E.2.5 Blackman Window Function

The Blackman window function is defined as

(E.10)

and its time−domain waveform is as shown in Figure E.20.

Figure E.20. Blackman window function in time−domain

The Fourier transform of the Blackman window function for  is

(E.11)

A typical amplitude response of the Blackman window function is shown in Figure E.21 and it
was created with the MATLAB script below.

fplot('20.*log10(abs(sin(pi.*x)./(pi.*x)).*((0.54+0.5.*x.^2)./(1−x.^2)−0.08.*x.^2./(4−x.^2)))',[0 5 −50 0])
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Figure E.21. Typical amplitude response for the Blackman window function

Figure E.22  shows the normalized frequency domain plot for the Blackman window function cre-
ated with the blackman MATLAB function, and the script below.

n=50; w=blackman(n); [W,f]=freqz(w/sum(w),1,512,2); plot(f,20*log10(abs(W)));grid

Figure E.22. Normalized frequency domain plot for the Hamming window function created with MATLAB

We can also use the MATLAB Window Visualization Tool. The script below generates the plot
shown in Figure E.23.
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L=50; wvtool(blackman(L))

Figure E.23. Blackman window function generated with the MATLAB Window Visualization Tool

E.2.6 Kaiser Family of Window Functions

The Kaiser window function is a family of window functions described by the relation

(E.12)

where  is the modified Bessel function* of the first kind and order zero, and it is given as

(E.13)

The series in (E.13) converges after about 20 terms in the summation, and since , the
Kaiser window has the value  at the end points  and , and it is symmetric
about its middle point .

In (E. 12), the variable  is a parameter that can be varied to provide a trade-off between the
main lobe width and the side lobe level. Large values of  result in wider main lobe widths and

* Certain differential equations with variable coefficients resemble the Bessel equation and thus their solutions are
referred to as modified Bessel functions. For a discussion on the Bessel equation and Bessel functions, please
refer to Numerical Analysis Using MATLAB and Excel, ISBN 978−1−934404−03−4.
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smaller side lobe levels.

MATLAB provides the Kaiser window function as

w=kaiser(L, beta)

and this returns an L−point Kaiser window* in the column vector w.

Figure E. 24 shows the Kaiser functions for  with , , and . These func-
tions were plotted with the MATLAB script below.

plot([kaiser(50, 1), kaiser(50,4), kaiser(50,9)]);

Figure E.24. Kaiser window functions with L=50 and , , and 

Figure E.25 shows the corresponding frequency domain plots for the Kaiser window functions in
Figure E.24. These plots were created with the MATLAB script below.

n=50;
w1 =kaiser(n, 1); w2=kaiser(n,4); w3=kaiser(n,9);
[W1,f]=freqz(w1/sum(w1),1,512,2); [W2,f]=freqz(w2/sum(w2),1,512,2);
[W3,f]=freqz(w3/sum(w3),1,512,2); plot(f,20*log10(abs([W1 W2 W3])));grid; 

E.3 Other Window Functions
Table E.1 lists the window functions we’ve discussed in the previous sections, as well as others
along with the MATLAB function names and are included in the MATLAB Signal Processing
Toolbox.

* When the expression under the radical in (E.12) is negative, the function can be expressed in terms of the
hyperbolic sine function.
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Figure E.25. Frequency domain plots for the Kaiser functions with L=50 and , , and 

TABLE E.1 MATLAB Window Functions
Window Function MATLAB Function

Bartlett bartlett
Bartlett−Hann (modified) barthannwin
Blackman blackman
Blackman−Harris blackmanharris
Bohman bohmanwin
Chebyshev chebwin
Flat Top flattopwin
Gaussian gausswin
Hamming hamming
Hann or Hanning hann
Kaiser kaiser
Nuttall’s Blackman−Harris nuttallwin
Parzen (de la Valle−Poussin) parzenwin
Rectangular rectwin
Tukey tukeywin
Triangular triang
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E.4 Fourier Series Method for Approximating an FIR Amplitude Response

The Fourier series method for approximating an FIR amplitude response is relatively straightfor-
ward, and is best used in conjunction with window functions. This is because the amplitude
response  corresponding to a Discrete Time Linear Time Invariant (DTLTI) impulse
response  is a periodic function of frequency and thus it can be expanded in a Fourier series in
the frequency dornain.* The coefficients obtained from the Fourier series can then be related to the
impulse response, and the desired coefficients of the FIR transfer function can then be obtained.

An advantage of FIR filter functions is the capability of obtaining linear phase (or constant time
delay). To obtain time constant delay easily, it is necessary that the Fourier series in the frequency
domain have either cosine terms only or sine terms only, but not both.

Let us consider the case of a cosine series representation and let the coefficients be expressed in
normalized frequency  where  is the folding frequency,† and  is the sampling
frequency, i.e., . Also, let  be the desired amplitude response, and let  repre-

sent the approximation. Then, with this arrangement the period must always be selected as 
units on the  scale.

For the cosine series, the expression for  in exponential form is

(E.14)

where M is a finite positive integer representing the terms after which the series is terminated, and
 is the coefficient in exponential form that is computed from the integral

(E.15)

with 

Relation (E.14) can be considered as the evaluation of some unknown discrete transfer function

on the unit circle in the z−plane. We can perform this evaluation by letting .

Thus, if we denote this discrete transfer function as  and  is substituted for , we
obtain

* In Chapter 7 we studied the application of Fourier series by expanding a periodic time function in the time
domain.

† The folding frequency, also known as Nyquist frequency, is the highest frequency that can be represented in a
digital signal of a specified sampling frequency. It is equal to oneóhalf of the sampling frequency.

A ω( )
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fS 1 T⁄= Ad ν( ) A ν( )
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m M–=

M

∑=

cm

cm Ad ν( ) mπν( )cos νd
0

1
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c m– cm=

z ejωT ejmπν
= =

H1 z( ) ejmπν z
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(E.16)

Relation (E.16) represents an FIR transfer function but it is non−causal because it includes posi-
tive powers of z, and this implies that the filter would produce an output advanced in time with
respect to the input, and this is, of course, impossible. We can be overcome this problem by intro-
ducing a delay of  samples. Accordingly, we define the transfer function

(E.17)

In (E.17) we let . Then, with the substitution  we obtain

(E.18)

Let  denote the coefficients of a particular window function and let  denote the coeffi-
cients of the modified function, i.e., the given function multiplied by some window function. The
modified coefficients are then computed from

(E.19)

Example E.1  
A low−pass FIR digital filter is to be designed using the Fourier series method. The desired ampli-
tude response is

(E.20)

The sampling frequency is  and the impulse response is to be limited to  delays. Derive
the transfer function using the Fourier series method.
Solution:

To make this low−pass filter an even function of frequency, we represent it as shown in Figure
E.26 (a) in terms of the actual frequency. Let us express it in terms of the normalized frequency
scale. We do this by considering the sampling frequency which is given as . Accord-

ingly, the folding frequency* is , and in terms of the normalized

* We recall that the folding frequency is the highest frequency that can be processed by a given discrete−time sys-
tem with sampling frequency 
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 A f( ) 1  for  0 f 125 Hz≤ ≤=

                  0  elsewhere in the range  0 f f0< <
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frequency, the folding frequency becomes , the sampling frequency becomes , and the cutoff
frequency becomes . Therefore, (E.20) can be expressed as

(E.21)

and the low−pass filter in normalized frequency scale is as shown in Figure E.26(b).

(a)

(b)

Figure E.26. Low−pass filter for Example E.1

The coefficients  are computed from the integral of (E.15),* that is,

(E.22)

with .

For this example, it is stated that the impulse response should be limited to 20 delays and this
implies that the transfer function should contain  terms since one component needs not to be
delayed. The coefficients  are computed from (E.22) for  through , and for the
computations we use the MATLAB script below.

disp('m           cm'); disp('================'); m=0:10;
cm=zeros(11,2); % There are 11 terms from m=0 to m=10
cm(:,1)=m';
m=m+(m==0).*eps; % This statement avoids division by 0
cm(:,2)=sin(0.25.*m.*pi)./(m.*pi); fprintf('%2.0f\t %12.5f\n', cm')

MATLAB outputs the values shown below. 

* We recall from Chapter 7 that the Fourier series of even functions consist only of cosine terms.

1 2
fC 125 500⁄ 0.25= =

 Ad ν( ) 1  for  0.25 ν 0.25< <–=

                  0  elsewhere in the range  1 ν 1< <–

0 125
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1
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cm Ad ν( ) mπν( )cos νd
0

1

∫ mπν( )sin
mπ

------------------------
0

0.25 0.25mπ( )sin
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--------------------------------= = =
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cm m 0= m 10=
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 m        cm
================
 0      0.25000
 1      0.22508
 2      0.15915
 3      0.07503
 4      0.00000
 5     -0.04502
 6     -0.05305
 7     -0.03215
 8     -0.00000
 9      0.02501
10      0.03183

Using the relation ,* for , we obtain the table below. 

The window coefficients are applied to the non−causal form of the transfer function centered at
the origin, and thus the 10th coefficient  is considered as the origin. These coefficients repre-
sent the unmodified transfer function and thus they correspond to the coefficients of the rectan-
gular window.

* Refer to equation (E.18)

Rectangular window

0.03183

0.02501

0.00000

0.03215

0.05305

0.04502

0.00000

0.07503

0.15915

0.22508

0.25000

cm i– ai= 0 i 2M≤ ≤

ai

a0 a20,

a1 a19,

a2 a18,

a3 a17,

a4 a16,

a5 a15,

a6 a14,

a7 a13,

a8 a12,

a9 a11,

a10

a10
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We will use the values shown below to plot the components of the transfer function . These
values are entered at the MATLAB command prompt.

a0=cm(11,2); a20=a0;
a1=cm(10,2); a19=a1;
a2=cm(9,2); a18=a2;
a3=cm(8,2); a17=a3;
a4=cm(7,2); a16=a4;
a5=cm(6,2); a15=a5;
a6=cm(5,2); a14=a6;
a7=cm(4,2); a13=a7;
a8=cm(3,2); a12=a8;
a9=cm(2,2); a11=a9;
a10=cm(1,2);

Then, the transfer function is expressed as 

(E.23)

Next, at the MATLAB command prompt we enter

AR=[a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20];
freqz(AR)

and we obtain the plot shown in Figure E.27.

Figure E.27. The magnitude and phase response for the low−pass filter in Example E.1

Check with the fvtool MATLAB function:
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b=0.25*sinc(0.25*(−10:10)); fvtool(b,1)

and MATLAB outputs the normalized magnitude response shown in Figure E.28.

Figure E.28. Normalized frequency plot created with the MATLAB function fvtool

The MATLAB function fir1 uses the Fourier series approach in designing low−pass, high−pass,
band−pass, and band elimination (band−stop) FIR digital filters. The syntax is

b=fir1(n,Wn,’ftype’, window)

where n is the filter order, Wn is the cut−off frequency and must be between , with
 corresponding to half the sample (Nyquist) rate, ’ftype’ is the filter type specified as ‘low’,

‘high’, ‘bandpass’, or ‘stop’, and window is the window type, e.g., hann, blackman, and must be
n+1 elements long. If no window is specified, the function fir1 uses a Hamming window.

The filter b is real and has linear phase. The normalized gain of the filter at Wn is .

We can obtain the normalized frequency plot in Figure E.27 or E.28 using the fir1 function as fol-
lows:

b=fir1(20,0.25,'low', rectwin(21)); freqz(b)

and MATLAB outputs the magnitude and phase response shown in Figure E.29.*

* The magnitude response is the same as that in Figure E.27 because the filter in this example is a “brick−wall”
digital low−pass filter.
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Figure E.29. Normalized frequency plots for the rectwin window created with the MATLAB function fir1

Example E.2  
Compare the frequency response in Example E.1, Figure E.27, when it is multiplied by the follow-
ing window functions:

a. triangular 

b. Hanning

c. Hamming
Solution:

a. triangular

We recall from (E.4) that the triangular window function is defined as

(E.24)

Letting  and  we obtain

(E.25)
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As before, the window coefficients are applied to the non−causal form of the transfer function
centered at the origin, and thus the 10th coefficient is considered as the origin. For the com-
putations we use the MATLAB script below.

disp('m           wm')
disp('=================')
m=0:10; wm=zeros(11,2); wm(:,1)=m'; m=m+(m==0).*eps; wm(:,2)=1−m/10; 
fprintf('%2.0f\t %12.5f\n',wm')

MATLAB outputs the values shown below.

m         wm
===============

 0      1.00000
1      0.90000
2      0.80000
3      0.70000
4      0.60000
5      0.50000
6      0.40000
7      0.30000
8      0.20000
9      0.10000
10     0.00000

From (E.19)
(E.26)

For this example,

Cm=[0.2500 0.2251 0.1592 0.0750 0.0000 −0.0450 −0.0531 −0.0322 −0.0000 0.0250 0.0318];
Wm=[1.0000 0.9000 0.8000 0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000 0.0000];
B=Cm.*Wm

and MATLAB outputs the modified coefficients below.

0.2500    0.2026    0.1274    0.0525    0     −0.0225     −0.0212     −0.0097    0    0.0025    0

and we add these coefficients in the table below.

c'm wmcm=
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Next, we enter the  values at the MATLAB command prompt as shown below.

a0=wm(11,2)*cm(11,2); a20=a0;
a1=wm(10,2)*cm(10,2); a19=a1;
a2=wm(9,2)*cm(9,2); a18=a2;
a3=wm(8,2)*cm(8,2); a17=a3;
a4=wm(7,2)*cm(7,2); a16=a4;
a5=wm(6,2)*cm(6,2); a15=a5;
a6=wm(5,2)*cm(5,2); a14=a6;
a7=wm(4,2)*cm(4,2); a13=a7;
a8=wm(3,2)*cm(3,2); a12=a8;
a9=wm(2,2)*cm(2,2); a11=a9;
a10=wm(1,2)*cm(1,2);

and with

AT=[a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20];
freqz(AT)

we obtain the magnitude and phase response of the low−pass filter in Example E.1 modified
with the triangular window function shown in Figure E.30.

Rectangular Triangular

0.03183 0

0.02501 0.0025

0.00000 0

0.03215 −0.0097

0.05305 −0.0212

0.04502 −0.0225

0.00000 0

0.07503 0.0525

0.15915 0.1274

0.22508 0.2026

0.25000 0.2500

ai

a0 a20,

a1 a19,

a2 a18,

a3 a17,

a4 a16,

a5 a15,

a6 a14,

a7 a13,

a8 a12,

a9 a11,

a10

ai
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Figure E.30. Magnitude and phase response of the low−pass filter modified with the triangular window function

In comparison with the amplitude response with the rectangular window function in Figure E.29,
the amplitude response with the triangular window function in Figure F.30 shows that the cutoff
is worse than that in Figure E.29 but the sidelobes are reduced significantly.

We can obtain the normalized frequency plot in Figure E.30 using the fir1 function as follows:

b=fir1(20,0.25,'low', triang(21)); freqz(b)

and MATLAB outputs the magnitude and phase response shown in Figure E.31.

Check with the fvtool MATLAB function:

b=0.25*sinc(0.25*(−10:10)); b=b.*triang(21)’; fvtool(b,1)

and MATLAB outputs the amplitude response shown in Figure E.32.
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Figure E.31. Normalized frequency plots for the triang window created with the MATLAB function fir1

Figure E.32. Magnitude response for the triang window created with the MATLAB function fvtool

b. Hanning

We recall from (E.6) that the Hanning window function is defined as

(E.27)
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Letting  and  we obtain

(E.28)

As before, the window coefficients are applied to the non−causal form of the transfer function
centered at the origin, and thus the 10th coefficient is considered as the origin. For the com-
putations we use the MATLAB script below.

disp('m           wm')
disp('=================')
m=0:10; wm=zeros(11,2); wm(:,1)=m'; m=m+(m==0).*eps; 
wm(:,2)=0.5.*(1 +cos(pi.*m./10));
fprintf('%2.0f\t %12.5f\n',wm')

and MATLAB outputs

m           wm
=================
0      1.00000
1      0.97553
2      0.90451
3      0.79389
4      0.65451
5      0.50000
6      0.34549
7      0.20611
8      0.09549
9      0.02447
10     0.00000

From (E.19)
(E.29)

Then,

Cm=[0.2500 0.2251 0.1592 0.0750 0.0000 −0.0450 −0.0531 −0.0322 −0.0000 0.0250 
0.0318];
Wm=[1.00000 0.97553 0.90451 0.79389 0.65451 0.50000 0.34549 0.20611 0.09549 
0.02447 0.00000];

Next, 

C=Cm.*Wm

and MATLAB outputs

t mT= τ 20T=

w m( )Hann
1
2
--- 1 2π m T

20T
------------------cos+ 

  1
2
--- 1 π m

10
-----------cos+ 

          for  |m| 10≤= =

                    0   otherwise=

c'm wmcm=
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C =
0.2500 0.2196 0.1440 0.0595 0 -0.0225 -0.0183 -0.0066 0 0.0006 0

We add these coefficients in our table shown below.

Next, we enter the  values at the MATLAB command prompt as shown below.

a0=wm(11,2)*cm(11,2); a20=a0;
a1=wm(10,2)*cm(10,2); a19=a1;
a2=wm(9,2)*cm(9,2); a18=a2;
a3=wm(8,2)*cm(8,2); a17=a3;
a4=wm(7,2)*cm(7,2); a16=a4;
a5=wm(6,2)*cm(6,2); a15=a5;
a6=wm(5,2)*cm(5,2); a14=a6;
a7=wm(4,2)*cm(4,2); a13=a7;
a8=wm(3,2)*cm(3,2); a12=a8;
a9=wm(2,2)*cm(2,2); a11=a9;
a10=wm(1,2)*cm(1,2);

and with

AHn=[a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20];
freqz(AHn)

we obtain the magnitude and phase response of the low−pass filter in Example E.1 modified
with the Hanning window function shown in Figure E.33.

Rectangular Triangular Hanning

0.03183 0 0

0.02501 0.0025 0.0006

0.00000 0 0

0.03215 −0.0097 −0.0066

0.05305 −0.0212 −0.0183

0.04502 −0.0225 −0.0225

0.00000 0 0

0.07503 0.0525 0.0595

0.15915 0.1274 0.1440

0.22508 0.2026 02196

0.25000 0.2500 0.2500

ai

a0 a20,

a1 a19,

a2 a18,

a3 a17,

a4 a16,

a5 a15,

a6 a14,

a7 a13,

a8 a12,

a9 a11,

a10

ai
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Figure E.33. Magnitude and phase response of the low−pass filter modified with the Hanning window function

We can obtain the normalized frequency plot in Figure E.30 using the fir1 function as follows:

b=fir1(20,0.25,'low', hann(21)); freqz(b)

and MATLAB outputs the magnitude and phase response shown in Figure E.34.

Check with the fvtool MATLAB function:

b=0.25*sinc(0.25*(−10:10)); b=b.*hann(21)’; fvtool(b,1)

and MATLAB outputs the amplitude response shown in Figure E.35.
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Figure E.34. Normalized frequency plots for the hann window created with the MATLAB function fir1

Figure E.35. Magnitude response for the hunn window created with the MATLAB function fvtool

c. Hamming

We recall from (E.8) that the Hamming window function is defined as

(E.30)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-800

-600

-400

-200

0

Normalized Frequency  (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-150

-100

-50

0

50

Normalized Frequency  (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

f t( )Hamm 0.54 0.46 2πt
τ

--------cos+         for  |t| τ
2
---<=

             0   otherwise=



Appendix E  Window Functions

E−32 Signals and Systems with MATLAB  Computing and Simulink  Modeling, Fourth Edition
Copyright © Orchard Publications

Letting  and  we obtain

(E.31)

As before, the window coefficients are applied to the non−causal form of the transfer function
centered at the origin, and thus the 10th coefficient is considered as the origin. For the com-
putations we use the MATLAB script below.

disp('m           wm')
disp('=================')
m=0:10; wm=zeros(11,2); wm(:,1)=m'; m=m+(m==0).*eps; 
wm(:,2)=0.54+0.46.*(cos(pi.*m./10));
fprintf('%2.0f\t %12.5f\n',wm')

and MATLAB outputs

m        wm
==============
0      1.00000
1      0.97749
2      0.91215
3      0.81038
4      0.68215
5      0.54000
6      0.39785
7      0.26962
8      0.16785
9      0.10251
10     0.08000

From (E.19)
(E.32)

Then,

Cm=[0.2500 0.2251 0.1592 0.0750 0.0000 −0.0450 −0.0531 −0.0322 −0.0000 0.0250 
0.0318];
Wm=[1.00000 0.97749 0.91215 0.81038 0.68215 0.54000 0.39785 0.26962 0.16785
0.10251 0.08000];

Next, 

D=Cm.*Wm

and MATLAB outputs

t mT= τ 20T=

w m( )Hamm 0.54 0.46 2π m T
20T

------------------cos+ 0.54 0.46 π m
10

-----------cos+         for  |m| 10≤= =

                    0   otherwise=

c'm wmcm=
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D =
0.2500 0.2200 0.1452 0.0608 0 -0.0243 -0.0211 -0.0087 0  0.0026    
0.0025

and we add these coefficients in our table shown below.

Next, we enter the  values at the MATLAB command prompt as shown below.

a0=wm(11,2)*cm(11,2); a20=a0;
a1=wm(10,2)*cm(10,2); a19=a1;
a2=wm(9,2)*cm(9,2); a18=a2;
a3=wm(8,2)*cm(8,2); a17=a3;
a4=wm(7,2)*cm(7,2); a16=a4;
a5=wm(6,2)*cm(6,2); a15=a5;
a6=wm(5,2)*cm(5,2); a14=a6;
a7=wm(4,2)*cm(4,2); a13=a7;
a8=wm(3,2)*cm(3,2); a12=a8;
a9=wm(2,2)*cm(2,2); a11=a9;
a10=wm(1,2)*cm(1,2);

and with

AHm=[a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20];
freqz(AHm)

we obtain the magnitude and phase response of the low−pass filter in Example E.1 modified
with the Hanning window function shown in Figure E.36.

Rectangular Triangular Hanning Hamming

0.03183 0 0 0.0025

0.02501 0.0025 0.0006 0.0026

0.00000 0 0 0

0.03215 −0.0097 −0.0066 −0.0087

0.05305 −0.0212 −0.0183 −0.0211

0.04502 −0.0225 −0.0225 −0.0243

0.00000 0 0 0

0.07503 0.0525 0.0595 0.0608

0.15915 0.1274 0.1440 0.1452

0.22508 0.2026 02196 0.2200

0.25000 0.2500 0.2500 0.2500

ai

a0 a20,

a1 a19,

a2 a18,

a3 a17,

a4 a16,

a5 a15,

a6 a14,

a7 a13,

a8 a12,

a9 a11,

a10

ai
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Figure E.36. Magnitude and phase response of the low−pass filter modified with the Hamming window function

We can obtain the normalized frequency plot in Figure E.36 using the fir1 function* as follows:

b=fir1(20,0.25,'low'); freqz(b)

and MATLAB outputs the magnitude and phase response shown in Figure E.37.

Check with the fvtool MATLAB function:

b=0.25*sinc(0.25*(−10:10)); b=b.*hamming(21)’; fvtool(b,1)

and MATLAB outputs the amplitude response shown in Figure E.38.

* As stated earlier, if we do not specify a window, fir1 applies a Hamming window.
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Figure E.37. Normalized frequency plots for the hamming window created with the MATLAB function fir1

Figure E.38. Magnitude response for the hamming window created with the MATLAB function fvtool

Example E.3  

Obtain the magnitude response for the low−pass filter in Example E.1 with Kaiser  using:

a. the fir1 MATLAB function

b. the fvtool MATLAB function
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Solution:
a.

b=fir1(20,0.25,'low', kaiser(21,2.*pi)); freqz(b)

Figure E.39. Normalized frequency plots for the kaiser window created with the MATLAB function fir1

b.

b=0.25*sinc(0.25*(−10:10)); b=b.*kaiser(21,2.*pi)’; fvtool(b,1)

Figure E.40. Magnitude response for the kaiser window created with the MATLAB function fvtool
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main diagonal of a matrix - see matrix network transformation quit MATLAB command A-2
Math Operations in Simulink B-10      resistive 4-1
MATLAB Demos A-2      capacitive 4-1 R
MATLAB’s Editor/Debugger A-1      inductive 4-1
matrix (matrices) non-recursive realization digital filter radius of absolute convergence 9-3
     adjoint of D-21      see digital filter ramp function 1-9
     cofactor of D-13 non-singular determinant - see matrix randn MATLAB function 11-68
     conformable for addition D-2 normalized cutoff frequency 11-15 Random Source Simulink block 11-80
     conformable for subtraction D-2 notch filter - see filter rationalization of the quotient C-4
     conformable for multiplication D-4 N-point DFT - see DFT - definition of RC high-pass filter - see filter
     congugate of D-8 nth-order delta function - see delta function RC low-pass filter - see filter
     definition of D-1 numerical evaluation of Fourier coefficients real axis C-2
     determinant D-10      see Fourier series coefficients real number C-2
          minor of D-13 Nyquist frequency 10-13 real(z) MATLAB function A-23
          non-singular D-21 rectangular form C-5
          singular D-21 O rectangular pulse expressed in terms
     diagonal D-2, D-6     of the unit step function 1-4
     diagonal elements of D-2 octave defined 11-12 recursive realization digital filter
     elements of D-1 odd functions 6-5, 7-34     see digital filter
     Hermitian D-9 odd symmetry - see Fourier region of 
     identity D-7      series - symmetry     convergence 9-3
     inverse of D-22 orthogonal functions 7-2     divergence 9-3
     left division in MATLAB D-25 orthogonal vectors 5-19 relationship between state equations
     multiplication in MATLAB A-18 orthonormal basis 5-19     and Laplace Transform 5-30
     power series of 5-9 residue 3-2, 9-41
     scalar D-7 P residue MATLAB function 3-3, 3-12
     size of D-7 residue theorem 9-20, 9-21
     skew-Hermitian D-9 parallel form realization - see digital filter right shift in the discrete-time domain
     skew-symmetric D-9 Parseval’s theorem - see     see Z transform - properties of
     square D-1      Fourier transform - properties of RLC band-elimination filter - see filter
     symmetric D-8 partial fraction expansion 3-1, 3-2, 9-25 RLC band-pass filter - see filter
     trace of D-2      alternate method of 3-15 roots of polynomials in MATLAB A-3
     transpose of D-8      method of clearing the fractions 3-15 roots(p) MATLAB function 3-6, A-3
     triangular phase angle 11-2 round(n) MATLAB function A-24
          lower D-6 phase shift filter - see filter row vector in MATLAB A-3
          upper D-6 picket-fence effect 10-14 Runge-Kutta method 5-1
     zero D-2 plot MATLAB command A-10 running Simulink B-7
matrix left division in MATLAB - see matrix polar form of complex numbers C-6
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S      for discrete-time systems 9-45          Step Invariant Method 11-52
State-Space block in Simulink B-12          Bilinear transformation 11-53

sampling property of the delta function state-space equations transpose of a matrix - see matrix
     see delta function      for continuous-time systems 5-1 Tree Pane in Simulink B-7
sampling theorem 10-13      for discrete-time systems 9-45 triangular waveform expressed in terms
sawtooth waveform  - see Laplace step function - see unit step function     of the unit step function 1-4
     transform of common waveforms step invariant method - see trans- triplet - see delta function
sawtooth waveform - Fourier series of      formation methods for mapping analog Tukey - see Cooley and Tukey
     see Fourier series of           prototype filters to digital filters
          common waveforms stop-band filter - see filter U
scalar matrix - see matrix string in MATLAB A-16
scaling property of the Laplace transform subplots in MATLAB A-18 unit eigenvectors 5-19
     see Laplace transform - properties of summation in the discrete-time Domain unit impulse function (δ(t)) 1-8
Scope block in Simulink B-12      see Z transform - properties of unit ramp function (u1(t)) 1-8

script file in MATLAB A-2, A-26 symmetric matrix - see matrix unit step function (u0(t)) 1-2
second harmonic - see Fourier series symmetric rectangular pulse expressed upper triangular matrix - see matrix
     harmonics of       as sum of unit step functions 1-6 using MATLAB for finding the Laplace
semicolons in MATLAB A-8 symmetric triangular waveform expressed     transforms of time functions 2-27
semilogx MATLAB command A-12       as sum of unit step functions 1-6 using MATLAB for finding the Fourier
semilogy MATLAB command A-12 symmetry - see Fourier series - symmetry     transforms of time function 8-33
series form realization - see digital filter symmetry property of the Fourier transform
Shannon’s sampling theorem      see Fourier transform - properties of V
     see sampling theorem system function - definition of 8-35
shift of f[n] u0[n] in discrete-time domain Vandermonde matrix 10-18
     see Z transform - properties of T Vector Scope Simulink block 11-84
sifting property of the delta function
     see delta function Taylor series 5-1 W
signal flow graph 10-23 text MATLAB command A-14
signals described in math form 1-1 tf2ss MATLAB function 5-33 warping 11-54
signum function - see Fourier transform theorems of the DFT 10-10 window functions 
     of common functions theorems of the Fourier Transform 8-9     Blackman E-12
simout To Workspace block theorems of the Laplace transform 2-2     Fourier series method for approximating
     in Simulink B-12 theorems of the Z Transform 9-3          an FIR amplitude response E-17
simple MATLAB symbolic function 3-7 third harmonic - see Fourier     Hamming E-9, E-31
Simulation drop menu in Simulink B-12      series - harmonics of     Hanning E-7, E-27
simulation start icon in Simulink B-12 time convolution in DFT     Kaiser E-14, E-35
Simulink icon B-7      see DFT - common properties of     other used as MATLAB functions E-15
Simulink Library Browser B-8 time integration property of the Fourier     rectangular E-2
sine function - Fourier transform of      transform - see Fourier     triangular E-5, E-23
     see Fourier transform of           transform - properties of Window Visualization Tool in MATLAB E-4
          common functions time periodicity property of the Laplace
singular determinant - see matrix      transform 2-8 - see Laplace X
Sinks library in Simulink B-18           transform - properties of
sinω0t u0(t) Fourier transform of - see time scaling property of the Fourier xlabel MATLAB command A-12

     Fourier transform of common functions      transform - see Fourier
size of a matrix - see matrix           transform - properties of Y
skew-Hermitian matrix - see matrix time shift in DFT
skew-symmetric matrix - see matrix      see DFT - common properties of ylabel MATLAB command A-12
special forms of the Fourier transform time shift property of the Fourier transform
     see Fourier transform      see Fourier transform - properties of Z
spectrum analyzer 7-36 time shift property of the Laplace transform
square matrix - see matrix      see Laplace transform - properties of Z transform
square waveform with even symmetry - see title(‘string’) MATLAB command A-12     computation of with contour
     Fourier series of common waveforms trace of a matrix - see matrix          integration 9-20
square waveform with odd symmetry - see Transfer Fcn block in Simulink 4-17     definition of 9-1
     Fourier series of common waveforms Transfer Fcn Direct Form II     Inverse of 9-1, 9-25
ss2tf MATLAB function 5-33      Simulink block 11-71 Z transform - properties of
stability 11-13 transfer function of     convolution in the discrete
start simulation in Simulink B-12      continuous-time systems 4-13          frequency domain 9-9
state equations      discrete-time systems 9-38     convolution in the discrete
     for continuous-time systems 5-1 transformation between          time domain 9-8
     for discrete-time systems 9-45      s and z domains 9-22     final value theorem 9-10
state transition matrix 5-9 transformation methods for mapping     initial value theorem 9-9
state variables      analog prototype filters to digital filters     left shift 9-5
     for continuous-time systems 5-1           Impulse Invariant Method 11-52     linearity 9-3
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     multiplication by an  9-6
     multiplication by e-naT  9-6
     multiplication by n 9-6
     multiplication by n2 9-6
     right shift 9-4
     shift of f[n] u0[n]  9-3
     summation 9-7
Z Transform of discrete-time functions
     cosine function cosnaT 9-16
     exponential sequence e-naT u0[n]
          9-16, 9-21
     geometric sequence an 9-11
     sine function sinnaT 9-16
     unit ramp function nu0[n]  9-18, 9-21

     unit step function u0[n]  9-14, 9-20
zero matrix - see matrix
zeros 3-1, 3-2
zp2tf MATLAB function 11-17
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