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Kari Skallerud Bj0rner 

the best thing that ever happened to me 



Caminante, son tus huellas 
el camino, y nada mas; 
caminante, no hay camino, 
se hace camino al andar. 
Al andar se hace el camino, 
y al volver la vista atras 
se ve la senda que nunca 
se ha de volver a pisar. 
Caminante, no hay camino, 
sino estelas en la mar. 

Walker, your footseps 
are the road, and nothing more. 

Walker, there is no road, 
the road is made by walking. 
Walking you make the road, 

and turning to look behind 
you see the path you never 

again will step upon. 
Walker, there is no road, 

only foam trails on the sea. 

Proverbios y cantares, 29 
Campos de Castilla 
Antonio Machado 
Page 280 [31] 

Proverbs and Songs, 29 
Fields of Castilla 

Page 281 [31], Translated by Willis Barnstone 
Border of a Dream: 

Selected Poems of Antonio Machado 





Preface — to Vols. 1-3 

This preface covers the three volumes of Software Engineering, of which this 
volume is the first. 

• Software engineering — art/discipline/craft/science/logic: Soft­
ware engineering is the art [326-328], discipline [194], craft [441], sci­
ence [245], logic [275] and practice [276] of 
* synthesizing (i.e., building, constructing) software, i.e., technology, 

based on scientific insight, and 
* analysing (i.e., studying, investigating) existing software technology 

in order to ascertain and discover its possible scientific content. 

To succeed in this, 

• Software engineering — abstraction and specification: Software 
engineering makes use of abstraction and specification. 
* Abstraction is used to segment development into manageable parts, 

from high-level abstractions in phases, stages and steps to low-level 
abstractions, i.e., concretisations. 

* Specification records and relates all levels of abstraction. 

Volumes 1 and 2 of the three-volume book cover abstraction and specification 
in detail. 

• Software engineering — the triptych: Software engineering composes 
analysis of application domains with synthesis and analysis of requirements 
(to new software) into design (i.e., synthesis and analysis) of that software. 
Hence software engineering consists of 
* domain engineering, which, as these volumes will show you, is a rich 

field of many disciplines, etc., 
* requirements engineering, which, as we shall again see, in these 

volumes, has many aspects and facets not usually covered in textbooks, 
and 
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* software design, with concerns of software architecture, component 
composition and design, and so on. 

Volume 3 of the book covers this triptych in detail. 

• Software engineering — practical concerns: Software engineering, 
besides, consists of many practical concerns: Project and product man­
agement; principles, techniques and tools for making sure that groups of 
possibly geographically widely located people work effectively together, for 
choosing, adapting, monitoring and controlling work according to one of 
a variety of development process models; planning, scheduling and allo­
cating development resources (people, materials, monies and time); and 
related matters, including cost estimation, legacy systems, legalities, etc. 

We shall not be covering these management-oriented facets of software engi­
neering in this book. 

• • • 

Each chapter of this volume and its companion volumes starts with a synopsis. 
An example — relevant for this preface — follows: 

• Assumptions: You have taken this book into your hands since you are 
interested in knowing about, and possibly learning a new approach to 
software engineering. 

• Aims: The main aim of these volumes is to introduce you to a new way 
of looking at software: One that emphasises (I) that software engineering 
is part of informatics, and that informatics is a discipline otherwise based 
on (i) mathematics, (ii) the computer & computing sciences, (hi) linguis­
tics, (iv) the availability of the hard information technologies (computers 
and communication, sensors and actuators) and, last but not least, (v) 
applications. Furthermore (II) that informatics "hinges" on a number of 
philosophical issues commonly known under the subtitles — epistemology, 
ontology, mereology, etc. 

• Objectives: To help you become a truly professional software develop­
ment engineer in the widest sense of that term, such as promulgated by 
these volumes. 

• Treatment: Nontechnical, discursive. 

To develop large-scale software systems is hard. To construct them such that 
they (i) solve real problems, (ii) are correct and pleasing and (hi) will serve 
well in the acquiring organisation is very hard. 

This series of volumes offers techniques that have proven (i) to make the 
development of large-scale software systems much less hard than most current 
software engineers find it, (ii) to result in higher-quality systems than normally 
experienced and (iii) to enable delivery on time. 

Thus we emphasise the software engineering attributes aimed at in this 
series: Trustworthy and believable methods, higher-quality software products, 
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higher-quality software development projects, and the personal satisfaction of 
developers and acquirers, that is, the software engineers and their manage­
ment, respectively the users and their management. We aim at much less, if 
any, frustration, and much more fascination and joy! 

Reasons for Writ ing These Volumes 

A number of reasons1 can be given for why these volumes had to be written: 

• Formal techniques apply in all phases, stages and steps of software engi­
neering, and in the development of all kinds of software. But there was no 
published textbook available that covered software engineering, such as we 
shall later characterise that term, from a basis also in formal techniques 
(besides other, "non-formal" bases). 

• Formal development (that is, specification, refinement and verification) 
books were more like monographs than they were textbooks, and they cov­
ered their topic from a rather narrow viewpoint: usually just specification 
of software, that is, of abstract software designs and their concretisation. 
Formal specification, in these volumes, applies not just to software, but 
also to their requirements prescription, and, as a new contribution (in any 
book or set of lecture notes), also to domain descriptions. 

• The author of these volumes has long been less than happy with the way 
in which current textbooks purport to cover the subject of software engi­
neering. 
* "All" current textbooks on software engineering fail2 with respect to 

very basic issues of programming methodology, in particular with re­
spect to (wrt) formal techniques. If they do, as some indeed do, bring 
material on so-called "Formal Methods", then that material is typi­
cally "tucked away" in a separate chapter (so named). In our mind, 
the interplay between informal and formal techniques, that is, between 
informal descriptions and formal specifications, informal reasoning and 
formal verification, and so on, permeates all of software engineering. 
The potential of (using) formal techniques shapes all phases, stages 
and steps of development. Classical software engineering topics, such 
as software processes, project management, requirements, prototyping, 
validation (not to speak of verification), testing, quality assurance & 
control, legacy systems, and version control & configuration manage­
ment, these auxiliary, but crucial, concerns of software engineering, 
can be handled better, we show, through a judicious blend of informal 
and formal techniques. Needless to say, these volumes will redress this 
"complaint". 

1 Usually, when more than one "excuse" is given for some "mistake", none apply. 
This series of volumes, however, is no mistake. 

2With the notable exception of [240]. 
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* All current textbooks, in our mind, fail in not properly taking into 
account the issue of the software developer not having a thorough un­
derstanding of the domain in which the software is to be inserted, that 
is, the domain from which sprang the desire to have "that new soft­
ware" ! As mentioned above, a major new "feature" of our books is the 
separation of concerns illustrated in the software development process 
— when the developer initially spends much time and effort to under­
stand and document an understanding of the application domain. 

* All current textbooks, in our mind, fail in not systematically, i.e., 
methodically, presenting principles, techniques and tools that "carry 
through" and "scale up". By carry through I mean principles, tech­
niques and tools that are shown, by extensive examples, to cover all the 
major phases, stages and steps of development. By scaling up I mean 
principles, techniques and tools that can be applied to the largest-scale 
software development projects. 

* Some current textbooks, in our mind, fail the programming, that is, the 
design issues completely. There is no assumption on any methodological 
approach to the development of software from the point of view of 
programming methodology.3 

* Other current textbooks, in our mind, fail the stepwise refinement, that 
is, the implementation relation development point of view.4 

* And yet other current textbooks fail the design point of view.5 

* Finally all current textbooks fail, we believe, in not properly inte­
grating the above, albeit more theoretical, points of view, with the 
points of view of mundane, engineering issues such as (i) development 
process models ("waterfall", "spiral", "iterative", "evolutionary", "ex­
treme programming", etc.), (ii) quality management, (ii) testing & val­
idation, (iv) legacy systems, (v) software re-engineering, and so on. 

Shortcomings of These Volumes 

The major shortcoming of the current set of three volumes is our all too brief 
coverage of correctness issues, that is, of the verification (theorem proving, 
model checking) of properties of single and pairs of (development-step-related) 
specifications. 

3By the programming methodology point of view we mean a view that concerns 
itself with such issues as establishing invariants when specifying loops, as securing 
proper programming abstractions in terms of routines (procedures, functions), etc. 

4By the stepwise refinement point of view we mean the concern that abstractions, 
even when informally expressed, are rendered into correct concretisations — when 
expressed as code. 

5By the design point of view we mean the programming concern for choosing 
appropriate algorithms and data structures, for their justification and validation. 



Preface — to Vols. 1-3 XI 

Elsewhere, and where appropriate in these volumes, we explain why we 
have not introduced substantial material on verification. 

The reader, seeking this knowledge, is referred to an abundance of texts 
(books, and articles in journals and in proceedings), or may have to wait till 
we feel competent to write a textbook of sufficient generality on this topic. 
Current texts are very much linked to a specific notational system (i.e., spec­
ification language). 

• • • 

Obviously we do not know all there is to know about how to develop all 
possible kinds of software, and not all that we know is in these volumes. To 
develop software, in general, takes a diverse range of techniques and tools. 

Whatever special techniques and tools we cover, we cover them to some 
non-trivial depth, but not to the depth that is sufficient for a professional 
engineer in the relevant field. For example: 

• Development of compilers: We cover quite a lot, but not all that is 
necessary for the really professional compiler developer. We cover what 
we believe all software engineers ought know. And we cover it in a way 
that we find is sorely missing from all compiler textbooks. We refer to 
Chaps. 16-20 of Vol. 2. 

• Development of operating and distributed systems: We cover only 
general principles and techniques of specifying concurrent systems. 

• Development of embedded, safety-critical and real-time systems: 
Basically the same coverage as for operating and distributed systems de­
velopment: We emphasise that Vol. 2 covers techniques for specifying 
embedded, safety-critical and real-time systems. These techniques and 
their underlying notations are those of Petri nets [313,421,435-437], 
message [302-304] and live sequence charts [171,270,325], statecharts 
[265,266,268,269,271], temporal logics [205,360,361,400,429] and the 
duration calculi [537,538]. 

Chapter 28 in Vol. 3, Domain-Specific Architectures, will, however, go into 
some depth, showing which principles, techniques and tools apply in the de­
velopment of translation systems (interpreters and compilers), information 
systems (database management systems), reactive systems (i.e., embedded, 
real-time and safety-critical systems), workpiece systems (worksheet systems), 
client/server systems, workflow systems, etcetera. Our treatment in that chap­
ter is novel, and is inspired, strongly, by Michael Jackson's concept of Problem 
Frames [310]. 

Thus we cover what we believe all software engineers, whatever their spe­
cialty is, should know. And we believe they should know far more than most 
textbooks in software engineering offer. 

As explained elsewhere, these volumes suggest that education and training 
in the specialised fields mentioned above can follow after having studied Vol. 3. 
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And much of the textbooks of those specialised fields really, then, ought be 
rewritten: be adapted to formal specification, and so on. 

Methods of Approach 

Our didactics seeks to go to the "roots of the matter". We see these roots 
to be formed from basic understandings of such issues as (i) the linguistics 
of "how to describe", (ii) the near-philosophical issues of "what to describe", 
(iii) the linguistic, i.e., semiotic issues of pragmatics, semantics and syntax, 
and (iv) the issues of constructing concise, objective formulations in terms 
of mathematics, i.e., of using formal specification languages (and, in turn, 
understanding their pragmatics, semantics and syntax — independent of the 
pragmatics, semantics and syntax of the application phenomena). 

Thus this book begins by exploring the above four issues. In Vol. 2 we 
then take up this theme of semiotics (pragmatics, semantics and syntax) in 
four separate chapters (Chaps. 6-9 inch). 

Also this is new: Existing textbooks on software engineering completely 
avoid any mention of these issues. For a modern, professional software engineer 
to graduate from any reputable academic institution without a proper grasp 
on these four didactic bases (i-iv) is, to this author, unthinkable! Alas! It is 
today the rule rather than the exception: That they do not even see these 
issues at all! 

A New Look at Software 

These volumes will provide the reader with a new way of looking at software 
and at the process of developing software. They will provide the reader with an 
altogether dramatically different approach to understand and to develop soft­
ware. That "new look" can perhaps best be characterised as follows: Software 
is seen as intellectual artifacts, as the product of a rather intellectual process 
of thinking (analysing), of describing (of synthesising) and of contemplating 
(of reasoning). Software, as a product, has less material, quantitative measures 
by which to be grasped (no cheaper, faster, smaller, etc., catchwords) than 
it has intellectual, qualitative measures — such as affinity to application do­
main (it is, or is not, the right product), fitness for human use (computer-user 
interaction), correctness (the product is, or is not, right), etc. 

Grasping abstraction — a major issue of these volumes — affords any 
developer a far better chance of getting the right product and the product 
right than not grasping abstraction — even when these same people do not 
use many of the formal techniques of these volumes. Most practicing software 
engineers do not grasp abstraction. Yet software, by its very nature is and must 
be abstract: When supporting the automation of what used to be human work 
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processes, the automating software is not "those human processes", it is only 
a model, an approximation, an abstraction of them. 

We wish to perpetrate a view of software development as something that 
proceeds in phases, stages and steps of development and for which there are 
now available clear techniques of relating these phases, these stages, these 
steps to one another. Yet such development is hardly covered in standard 
textbooks on software engineering. We wish to perpetrate a view of software 
development where the specification of the phases, stages and steps can be 
done formally, and where the relations can be formalised and, in cases where 
warranted, can even be formally verified. This view has been possible, at least 
in the small to medium, for at least 20 years. Yet such development is hardly 
covered in standard textbooks on software engineering. We wish to further a 
view of software development where the developers create, nurture and deploy 
abstractions. Where the programmers at all levels take pride and have fun in 
"isolating", as it were, beautiful abstractions and let them find their way into 
programs. In the end these programmers let those abstractions determine 
major structures of systems, and beauty: Simplicity and elegance, as felt by 
users, arises! Such development is scalable to large systems. It is now possible, 
manageable and affordable. It can be taught and it can be learned by most 
academically trainable students. 

Formal Techniques "Light" 

Many practicing programmers abstain from and some academics express reser­
vations about formal reasoning6 or just formal specification.7 

Our approach is a pragmatic one. We allow for a spectrum from systematic 
via rigorous to formal development. By a systematic development we mean 
one which specifies some of the steps of development formally. By a rigorous 
development we mean one which expresses and formally proves some of the 
proof obligations of a systematic development. By a formal development we 
mean one which formally proves a significant majority of proof obligations as 
well as other lemmas and theorems of a rigorous development. 

In order to follow the principles and techniques of these volumes, we advise 
going "light": Start by being systematic. Specify crucial facets — of your 
application domain, your requirements and your software designs — formally. 
Then program (i.e., code) from there! 

It seems, from practice [155], that by far the most significant improvements in 
correctness of software development accrues from being systematic. And these 

6Example: Proving, in some mathematical logic, some lemma about program 
properties. 

7Example: Describing, in addition to informally, but concisely, some domain, or 
prescribing some requirements, or specifying some software design formally, in some 
formal specification language. 
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volumes are primarily, possibly almost exclusively, focused on being system­
atic. Certain kinds of applications warrant higher trust, and it then seems 
that being rigorous achieves the next higher step of believability. Finally, a 
few customers are willing to accept today's rather high cost of formal develop­
ment: heart pacemakers, hearing-aid implants, hybrid controllers for nuclear 
power plants, driverless metro trains, and the like. 

Volume 3, Chap. 32, Sect. 32.2 discusses a rather large number of dogmas, 
misconceptions and myths about so-called "formal methods". Section 1.5.3 of 
this volume and Vol. 3, Chap. 3, Sect. 3.1 discuss why methods cannot be 
formal, but that some techniques can. 

The "Super Programmer" 

Many practicing programmers and some academics believe strongly in the 
unchecked individualism of the programmer: They are worried that having to 
adhere to a number of method principles and formal techniques may squash 
the creativity and productivity of "super programmers". We are not worried. 
We have generated well over a 100 MSc thesis candidates. Most work in fewer 
than eight software houses in Denmark. All follow, more-or-less, many of the 
principles and techniques of these volumes. Most of them are super program­
mers. 

The following has been expressed by other academics and most of my 
former students and likewise those of my colleagues around the world who 
similarly teach and propagate principles and techniques like those of these 
volumes. I emphasise it here: 

The principles and techniques of these volumes, even when adhered to only 
"lightly", even when hardly followed explicitly, are such that if you have 
grasped them, while studying these volumes, they will have changed your 
attitude to software engineering. It will never be the same. 

We are sure that you will, from then on, enjoy far more doing "super program­
ming", being a super programmer, and "being clever in many small ways, de­
vising smart tricks to do things better and faster.77 We shall not deny a central 
role8 for being low level clever, for being smart. We will augment whatever 
skills you may have in this direction with a number of teachable engineer­
ing principles and techniques. "The successful programmer is both beast and 
angel." 

We claim that we can also point to several medium-scale software develop­
ment projects where knowing or being aware of the principles of these volumes 
seems to have helped significantly in devising elegant, beautiful products. And 
'Beauty is our Business' [224]. 

8The two slanted "quotes" of this paragraph are from an e-mail, Sunday, January 
20, 2002, from Prof. Bertrand Meyer [5,375,376], ETH Zurich, Switzerland, and ISE, 
Santa Barbara, California, USA. 
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W h a t Is Software Engineering? 

We continue the characterisation of software engineering that we began on 
the very first page of this preface. 

• Software engineering: To us, in a most general sense, 'software engi­
neering', as are all kinds of engineering, is a set of professions which based 
on scientific insight construct technologies, or which analyses technologies 
to ascertain their scientific content (including value), or, usually, do both. 

• "Software Engineer": Thus the software engineer (but see the follow­
ing for a critique of this term) "walks the bridge'7 between computer and 
computing science, on one side, and software artifacts (software technolo­
gies), on the other side, and constructs — or studies — the latter based 
on insight gained from the body of knowledge established in the many 
disciplines of computer and computing sciences. 

In a more mundane way, software engineering embodies general and specific 
principles, techniques and tools (i) for analysing problems amenable to so­
lution or support through computing; (ii) for synthesising such (program, 
such as software) solutions; (iii) for doing this analysis and synthesis in large 
projects, that is, projects involving more than one developer, and/or projects 
for which the resulting software is to be used by other (people) than the devel­
oper (s); and (iv) for managing such projects and products (including planning, 
budgeting, monitoring and controlling the projects and the products). 

But because we can term a subject software engineering does not necessar­
ily mean that we can speak of "software engineers". As formulated above, and 
this must be understood clearly by all readers of these volumes, software engi­
neering is a body of principles, techniques and tools available to such people as 
we may otherwise have wished to label "software engineers". But for any one 
person to be labeled a software engineer without further, more "narrowing" 
qualifications seems problematic. It would give the "recipient" of the message 
that person is a software engineer the belief that the person in question is 
able to professionally tackle the development of well nigh any software. With 
Jackson [307] we claim that there are no software engineers! There are com­
piler engineers, there are embedded systems (software) engineers, there are 
information (cum database) systems (software) engineers, there are banking 
software engineers, and so on, just as we speak of automotive engineers and 
of electrical power engineers rather than mechanical or electrical engineers. 

Thus the principles, techniques and tools of these volumes apply, we claim, 
across a broad spectrum of specialty software engineers. These volumes bring 
examples of applications of the principles, techniques and tools across the 
broadest possible spectrum. The fact that principles, techniques and tools 
are generally useful and can be deployed across a broad field of occupations 
and applications only means that the student must also, additionally, study 
special texts on the chosen profession, compiler development, development of 
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safety-critical real-time software, database systems, etc., to become a proper 
specialty software engineer. 

The Author's Aspirations 

So these then were and are my aspirations: To provide you with a differ­
ent kind of textbook; to bring more than 30 years of exciting programming 
methodological studies and controlled experimental practice into the larger 
arena of software engineering; to show you what a beautiful world software 
development can be when following the didactic cornerstones of linguistics, 
philosophy, semiotics and mathematics; and to unload more than 25 years of 
evolving lecture notes into a set of three coherent, consistent and relatively 
complete volumes. 

I have written these volumes because I wanted to understand how to 
develop large-scale software systems. When I started, some 25 years 
ago, writing lecture notes on this subject, I knew less than I do now. 
Meanwhile I have had the great pleasure of having many clever and 
eager students follow the practice. I have initiated the large-scale com­
mercial developments of compilers for such unwieldy programming 
languages as CHILL [254,255] and Ada [128,129,155], and I have thus 
honed and corrected my thinking. Writing about software engineering 
while testing out the ideas has been a sobering experience. There are 
still many corners of software engineering tha t I have to write about , 
think and experience. Meanwhile, this is what you get! 

These volumes thus represent my chef d'ceuvre. 

Role of These Volumes in an SE Education Programme 

Who are the target readers of these volumes? Tha t question is indirectly 
answered in the following. 

Wha t roles do we see these volumes serve in the larger context of an 
academic software engineering education, one tha t leads to a Master 's degree 
in the subject? Figure 1 shall assist us in answering tha t question.9 

The labelled boxes of Fig. 1 designate topics that enter into the software en­
gineer's daily practice, and which are therefore useful topics of learning. In Fig. 1 
two-way arrows between boxes indicate that the designated topics can be studied 
simultaneously. Directed (one-way) arrows between boxes designate a suitable, pro­
posed precedence relation between the learning of these topics. A "fan in" (multiple 
source) arrow shows that a topic may need (i.e., have as prerequisites) the knowledge 
of one or more (predecessor) topics. A "fan out" (possibly multiple target) arrow 
shows that the arrow source topic is a "must" for one or more successor topics. 
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Mathematical 
Logic (1) 

Imperative 
Programming 

(Java) 

SOFTWARE ENGINEERING 
Volume 1 

Basic Abstraction Principles 

Recursive 
Function 
Theory 

Functional 
Programming 
(Standard ML) 

Mathematical 
Logic (II) 

i 
Logic 

Programming 
(Prolog) 

Algebra 

J 
Parallel 

Programming 
(occam) 

SOFTWARE ENGINEERING 
Volume 2 

Advanced Specification Techniques 

SOFTWARE ENGINEERING 
Volume 3 

From Domains via Requirements to Software 

SOFTWARE ENGINEERING 
A suitable Text on 

Software Engineering Management 

Fig. 1. Courses based on these volumes: a first setting 

We emphasise that we here place these volumes in the context of an academic 
Software Engineering MSc education programme — not to be confused with an 
academic Computer Science MSc education. The former aims at the produc­
tion of industry programmers: developers of commercial software. The latter 
aims at theoreticians, useful in an academic institution of study. Another ex­
planation, wrt. another diagram, would thus have to be given for an equally 
likely setting in the context of an academic programme for an MSc degree 
in (theoretical) computer science, and yet another one for an undergraduate 
course of an academic software engineering BSc education programme. 

• Prerequisite or "concurrent" courses: We assume that the reader of 
these volumes is — or while following a course based on Vol. 1 of these 
volumes becomes — familiar with the general topics of imperative, func­
tional, logic, parallel and machine programming. Teaching in these topics 
must cover both skill-learning and training wrt. specific languages such as, 
for example, SML (Standard ML) [261,389] for functional programming, 
Prolog [295,351] for logic programming, Modula-3 [262,401], Oberon [527] 
and Java [10,20,243,348,470,511] for modular (i.e., object-oriented) pro­
gramming, and occam [364] and a machine language for some well-chosen, 
"current-technology" hardware (e.g., Intel-like) chip. Their teaching must 
also cover — to a basic extent — the knowledge acquisition wrt. the theo­
retical background for these programming styles and languages: recursive 
function theory [136,444], logic for logic programming [295,351], Hoare 
Logic for imperative programming [15,16] and process algebras for concur­
rency (CSP [288,289,448,456] and Petri nets [313,421,435-437]). The ma­
chine programming topic [379,501,511] is the only real hardware-oriented, 
but not hardware-design-oriented [279,418], course. Codesign [482], that 
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is, design of combined hardware/software systems (typical, for example, 
for embedded systems, see below) is not covered. But one could "add 
other boxes"! Included in the above kinds of course, or additional to these, 
we expect the reader to have some working knowledge of algorithms and 
data structures, i.e., to be familiar with the classical as well as modern 
such algorithms and data structures and measures of concrete complex­
ity [7,357,371,495,524]. 
Auxiliaries: The reader is assumed to be — or to become, in conjunc­
tion with the software engineering study of which these volumes are part 
— comfortable with mathematics — to a Bachelor's degree level in the 
subjects listed. We suggest [534], a delightful "smallish" introduction, and 
the substantial introduction to discrete mathematics [213]. We find [213] 
to be an excellent textbook for an entirely separate, and major, course on 
that topic. One that every software engineer is assumed to take. 
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Fig. 2. Courses based on these volumes: a second setting 

Similarly, but more thought of as part of term projects and other forms 
of laboratory (including self-study) work, we expect the reader to be rea­
sonably comfortable with practical, existing platform technologies (the 
Software Tools Laboratory box). 
Main course: These volumes are then to serve in a main set of three 
courses on software engineering — and before the breadth and depth of the 
follow-on courses are attempted. We additionally would advise acquisition 
of the two books [236,238], the first as supplementary, the second to fill 
out especially the verification (i.e., the design calculi) parts which are not 
developed in these volumes. 
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• Follow-on courses: Classical software engineering has focused rather 
much on the "navel-gazing", i.e., introspective parts of computing systems: 
compilers, database systems, distributed systems, operating systems, real­
time (fault-tolerant and) embedded systems, etc. Ideally such topics should 
now be covered on the basis of, and from the point of view of, formal spec­
ification and design calculi. The embedded systems topic (given 1-3 units 
of work load) could go as far as including hardware/software codesign [482] 
and otherwise rely strongly on other systems engineering issues. 
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Fig. 3. Courses based on these volumes: a third setting 

Additionally we plead that each software engineering student take two 
"practica": A large, project and colloquium/seminar-oriented "systems 
programming" and a similar "applications systems" course which exper­
imentally and exploratively researches and develops a non-trivial hard­
ware/software control system, respectively a commercial, industrial, or 
other application such as amply hinted at in these volumes! 

• A final software engineering course is hinted at: "Software Engineering 
Management". We have quite some material for lectures on this topic. For 
the time being we refer to the excellent book by Hans van Vliet [512]. 

The linguistics of formal languages, including theories of formal semantics, is 
crucial knowledge to be possessed by the professional engineer. Two courses 
relate to this: the leftmost boxes in rows three and four of Fig. 3. The lin­
guistics course could be based, for example, on David A. Schmidt's or John 
Reynolds' works. References are [455], respectively [442]. The semantics course 
could be based, for example, on any of [183,252,443,454,497,521]. 
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Why So Much Material? 

These volumes are more-or-less self-contained. We expect these volumes to be 
used in university and college courses, and to be studied by readers on their 
own. Some universities and some colleges cover material in courses that lie 
early in the course curriculum that we also bring here. So it could be assumed, 
and left out? No, not quite, since other universities and colleges do not cover 
such prerequisite material. Hence these volumes, again and again, must make 
these excursions. Since these volumes significantly rely on mathematics — 
not anything advanced, not something for which any deep theorems need be 
known or used — we need to recapitulate some of this material in Chaps. 3-9. 
There we also explain and illustrate the A-calculus. 

Since actual life phenomena have to be perceived, whether manifest or 
not, that is, have to be conceptualised, we make deep excursions, in Vol. 3's 
Chaps. 3,5,6 and 7, into what constitutes a methodology, what are definitions, 
what are phenomena and concepts, and what is a description. 

Since language is such an important basis for all we do in software en­
gineering, and since we cannot rely on the necessary topics having already 
been learned, i.e., being known, we need also to make deep excursions into 
the pragmatics, the semantics and the syntax, in toto, the semiotics of lan­
guages, whether formal or informal. Since automata and finite state machines 
likewise form an indispensable component of our science and engineering we 
need also cover that topic in Vol. 2's Chap. 11. In covering all these adjunct 
ideas we supply their treatment with a twist: We present them from unconven­
tional angles. We expect, thereby, that the reader achieves a different view on 
these matters, one that is more relevant to engineering than perhaps science, 
more relevant to practice than to theory. In any actual course the lecturer can 
therefore, based on local course curricula, leave out some of the "excursion" 
material. 

How to Use These Volumes in a Course 

Together with these volumes it is planned to make available over the Internet: 

• http://www.imm.dtu.dk/~db/The-SE-Books 

a comprehensive set of electronic documents: 

• a large variety of suggested course structures (with references to volume 
chapters and slides) 

• group project descriptions — some with solutions 
• large-scale development examples 
• URLs to formal methods pages 
• URLs to formal methods tools 
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Via the publisher there will, from the day the book is published, be available, 
for bona fide lecturers, 

• several thousand postscript/pdf lecture slides 
• selected exercise solutions 
• representative (student) project reports 

The slides will cover a large subset of the text of these volumes. By means 
of viewing facilities on most computers the lecturer will be able to personally 
select those slides that cover suitable lectures. 

Brief Guide to the Book 

The book is divided into three volumes. Each volume is divided into several 
parts. Most parts are composed from several chapters or appendixes. 

Most chapters offer exercises. A special set of exercises has been formu­
lated. Their presentation spans almost the entire Vol. 1. These exercises are 
introduced in Appendix A. 

All volumes have extensive cross-referencing indexes and bibliographic ref­
erences. There is, in Vol. 1, a Glossary, Appendix B. It is intended to cover 
all three volumes. The glossary can be read independently of the rest of these 
volumes. 

Appendix A of Vol. 2 brings our conventions for naming identifications of 
types, values, functions, variables, channels, objects and schemes, as well as 
parameters over most of these. 

Brief Guide to This Volume 

This volume has several chapters. The chapters are grouped into parts. Fig­
ure 4 abstracts a precedence relation between chapters. It is one that approx­
imates suggested sequences of studying this volume. 

• Chapter 1 is considered a prerequisite for the study of any chapter. 
• Chapters 2-4 may be skipped by readers with some schooling in discrete 

mathematics. 
• Chapters 5-6 may be skipped by readers with a bit more schooling in 

discrete mathematics. 
• Chapters 7-9 can only be skipped by readers who have a reasonably firm 

grip on the topics mentioned. 
• Chapters 10-16 form the core of Vol. 1. 
• If, after Chap. 1, you continue with Chap. 2, then you should study all of 

Chaps. 2-9. 
• If, after Chap. 1, you continue with Chap. 5, then you should study all of 

Chaps. 5-9. 
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Fig. 4. Chapter precedence graph 

• If, after Chap. 1, you continue with Chap. 7, then you should study all of 
Chaps. 7-9. 

• You can skip Chaps. 17 and/or 18 before continuing with Chaps. 19-21. 
• You can exit your study of this volume after any of Chaps. 16-21. 
• It is no harm to study Chap. 22. 

Within most chapters many sections can be skipped. Typically those with 
larger examples or towards the end of the chapters. 

In this way a teacher or a reader can compose a number of suitable courses 
and studies. 
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Introduction 

• The prerequisites for studying this chapter are that you have academic 
training in programming, that is, in algorithms and data structures, say 
using two or more of the Standard ML, Java and Prolog programming 
languages. 

• The aims are to set the stage for the entire set of volumes, to introduce 
the "triptych" concept of domain engineering, requirements engineering 
and software design, to emphasize the importance of documentation and 
of descriptions, to preview the concepts of formal techniques, methods 
and methodology, and to introduce the concepts of syntax, semantics and 
pragmatics. 

• The objective is to guide you in the direction of what we think are to be 
the important aspects of software engineering; that is, to set, with respect 
to the aims and objectives of this book, your "spinal chord" to as close as 
possible a "state" as that of their author. 

• The treatment is informal and discursive. 

This chapter has been written so as to be read, if not in excruciating detail, 
then at least such that the reader is hopefully "tuned" to somewhere near 
the "wavelength" of the author of this chapter. The present chapter may 
thus be read in between the study of most subsequent chapters. 

1.1 Setting the Stage 

Characterisation. Engineering is the mathematics, the profession, the dis­
cipline, the craft and the art of turning scientific insight and human needs 
into technological products. • 

The sciences of software engineering are those of computers and computing. 
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Characterisation. Computer science is the study and knowledge of what 
kind of "things" may (or can) exist "inside" computers, that is, data (i.e., 
values and their types) and processes, and hence their functions, events and 
communication. • 

Characterisation. Computing science is the study and knowledge of how 
to construct those "things". • 

These volumes will provide material for teaching you some of the core as­
pects of the mathematics, the profession, the discipline, the craft and the art 
of software engineering. The engineer walks the bridge between science and 
technology, creating technology from scientific results, and analysing technol­
ogy to ascertain whether it possesses scientific values. These volumes will teach 
you some of the science of computing, exemplify current software technologies, 
and help you to become a professional engineer "walking that bridge"! 

Students of these volumes are not expected to have any acquaintance with 
the disciplines in the following list of computer science topics: automata, for­
mal languages and computability [296,319], programming language semantics 
[183,252,443,454,497,521], type theory [1,241,407], complexity theory [319], 
cryptography [363], and others as covered in, for example, [344]. The topics of 
the above list, other than the first, will either be introduced in these volumes 
or can be studied after having studied the present text. 

Students of these volumes are expected to possess some fluency in the 
following computing science topics: functional programming [261], logic pro­
gramming [295,351], imperative programming [20,243,290], parallel program­
ming [449], and algorithms and data structures [7,161,326-328]. 

The keywords art [326-328], discipline [194], craft [441], science [245], 
logic [275], and practice [276], are also prefix terms of the titles of semi­
nal textbooks on programming, as referenced. In a sense these references also 
serve to indicate our basic approach to programming. But software engineer­
ing goes beyond what has been implied by the above listings of computer and 
computing science topics. Software engineering goes beyond the algorithm 
and data structure, cum programming language skills. These computer and 
computing science skills can and must first be reasonably mastered by the 
individual, by the professional, academically educated and trained program­
mer. Software engineering is as much about making groups of two or more 
programmers work productively together.1 And software engineering is about 
producing software which can be further deployed in the development of larger 
computing systems by other developers. 

To fulfill these latter aspirations, software engineering must augment the 
knowledge of computer and computing sciences with such disciplines as project 
and product management. By project management we colloquially mean: How 
do project leaders plan (schedule and allocate) development resources, how 

1 However, the principles, techniques and tools covered by these volumes are also 
required to be used even by the "lone" programmer developing her "own" software. 
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do they monitor and control "progress", and so on? By product management 
we colloquially mean: How does a software house determine a, or its, product 
strategy and tactics, that is, which projects to undertake, which products to 
market, how to price, service and extend them, and so on? 

We detail a number of project management issues: (1) choice and planning 
of development process, (2) scheduling and allocation of resources, (3) mon­
itoring and control of work progress, (4) monitoring and control of quality: 
assurance and assessment, (5) version control and configuration management, 
(6) legacy systems, (7) cost estimation, (8) legal issues, etc. There are other 
issues, but listing just these shows, up here, early in these volumes, the large 
variety of development concerns. 

(1) Process (choice and) modelling is a project management issue. How 
do the engineers proceed, what does one do first, then after that, etc.? There 
is not just one right way of doing things, of proceeding in phases, stages and 
steps, rather there are many eligible process models. First, the development 
process is determined by the problem frame; second, by the novelty of the 
problem; third, by the experience of the programmers and of management; 
and so forth. 

(2) Planning, scheduling and allocation of resources is another project 
management issue. In planning we decide on which things to do. In scheduling 
we decide on when to do these things, and in allocation we decide on which 
resources (monies, people, machines, etc.) to deploy. 

(3) Monitoring and control of work progress extends the list of project 
management concerns. Once the project proper starts, after planning, one 
needs to regularly and continuously check what has been achieved. And, if 
what has been achieved is according to plan, then just continue. But if plans 
are not being followed, then control must be asserted by possibly changing 
the plan, rescheduling and/or reallocating development resources. 

(4) Monitoring and control of quality assurance and assessment further 
extends our project management concern list. The web of application do­
main knowledge that goes into a software product, the maze of hundreds of 
mostly unrelated requirements that are expected fulfilled from the software 
product and the "Babylonic towers" of software design techniques and tools 
(languages, etc.) all necessitate careful formulations of what is meant by prod­
uct quality, as well as close scrutiny of the development process, in order to 
ascertain whether quality objectives are at risk or are being met. 

(5) Version control <fc configuration management: In the development of 
software the programmers usually construct several versions, or "generations", 
of code. One must monitor and control these generations and versions. This 
is called version control. It can be a sizable undertaking when, as is often the 
case, there exist hundreds, if not up towards thousands, of such alternative 
and complementary versions. Some of these versions may enter into one re­
lease of a product, while other subsets of versions enter into other releases 
of related products. Combining such versions into software products is called 
configuration management. 
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(6) Legacy systems: At any time customers (users, acquirers, buyers) of 
software operate computing systems composed from often "age-old" parts, 
and these have to be maintained: adapted to new hardware and to new soft­
ware, perfected to offer relevant performance, and corrected (by removing 
"bugs"). All three maintenance aspects become increasingly problematic as 
the original software is either programmed in languages for which there are 
no longer adequate, let alone "recent" compilers and related support tools, 
or is documented in a style basically unfamiliar to new generations of pro­
grammers, or not documented at all. This kind of software and these kinds of 
problems constitute the concept of legacy software. 

(7) Cost estimation: Two issues of cost estimation may be relevant: es­
timating the cost of developing new (or maintaining old) software, and es­
timating competitive, profitable prices for software. The problem of cost es­
timation is intertwined with the problems of software development process 
models, project and product management, quality assurance, version control 
and configuration management, legacy systems, etc. 

(8) Legal issues related to software: There are many legal issues related to 
software. There are software patents, which establish intellectual, and prop­
erty rights. There is software curriculum accreditation, that is, the approval of 
a university or college curriculum in software engineering. And there is soft­
ware house accreditation: the approval (usually, typically by, or through some 
ISO-related agency), generally, of a software house as a trustworthy developer 
of software. There is software engineer certification: the approval (usually by 
some national engineering society) of a person being a bona fide professional. 
Finally there is software product certification: the approval (usually by some 
international agency, such as Lloyd's Register of Shipping, Bureaux Veritas, Nor­
wegian Veritas, TUV, or others) of a specific software product to meet certain 
standards of quality. 

• • • 

Software engineering is anchored in programming: (1) in the design of software, 
(2) before that in constructing the software requirements, (3) and before that 
in understanding the application domain. 

These volumes spend most of their pages on the development aspects of 
software engineering: on principles and techniques for developing proper ap­
plication domain understandings, on principles and techniques for developing 
proper software requirements and on principles and techniques for developing 
proper software designs. These volumes unfold these principles and techniques 
based on the tools of both informal and formal languages for describing do­
mains, prescribing requirements and specifying (designing) software. 
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1.2 A Software Engineering Triptych 

It is a definite new contribution of Vol. 3 tha t it focuses, in a "special way", on 
the tr iptych2 of domain engineering, requirements engineering and software 
design. Tha t way emphasises tha t domain engineering, "ideally and logically 
speaking", precedes requirements engineering, which (and there is nothing 
new in this), ideally and logically speaking, precedes software design. The 
new contribution is the central role given to domain engineering. 

1.2.1 Software Versus S y s t e m s D e v e l o p m e n t 

Although these volumes are primarily about the engineering of software, we 
cannot avoid getting involved, to a nontrivial degree, in the more general 
engineering of computing systems. 

Character i sa t ion . By a computing system we mean a combination of hard­
ware and software tha t together implement some requirements. • 

Typically a computing system is distributed, over local areas as well as glob­
ally, and thus very typically requires extensive da ta communication hardware 
and software. When, in the following, we say 'software' or 'system' we can 
usually substi tute the more general term 'computing system'. 

1.2.2 M o t i v a t i n g t h e Triptych 

We motivate the roles of the three triptych constituents as follows: Before we 
can (3) design software we must understand the (2) requirements put to this 
software. And before we can prescribe the (2) requirements we must under­
stand the application (1) domain. Wha t is discussed, again and again in these 
volumes, is how we interpret the "ideal and logical" precedences mentioned 
above. But first we will take a look at the three triptych components, or, 
as we shall also refer to them in these volumes, the three phases of software 
development. 

1.2.3 D o m a i n E n g i n e e r i n g 

Character i sa t ion . By domain engineering we mean the engineering of do­
main descriptions. • 

2 Triptych: (i) Prom Greek 'triptychos', having three folds, (ii) an ancient Roman 
writing tablet with three waxed leaves hinged together, (iii) a picture (as an altar-
piece) or carving in three panels side by side, (iv) something composed or presented 
in three parts or sections. Same as trilogy. 
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Characterisation. By a domain we mean (i) an area of human activity, (ii) 
and/or an area of semi- or fully mechanised activity, (iii) and/or an area of 
nature that can be described, and parts or all of which that can potentially 
be subject to partial or total computerisation. • 

Example 1.1 Three Domains: Examples of (respective) domains, related to 
the above enumeration (i-iii), are: (i) book-keeping; (ii) the sending of freight 
from a harbour of origin, on ships via other harbours, to a destination harbour; 
and (iii) the planetary movements, i.e., celestial mechanics [494]. • 

We understand a domain when we can describe it in an objective way. 

Characterisation. By a domain description we mean an indicatively ex­
pressed description of the properties of the following domain facets: the in-
trinsics (the basic, invariant, and core), the enterprise (business, institution) 
processes, the technology supports, the management and organisation, the 
rules and regulation, the human behaviour, and possibly of other facets of the 
domain. • 

Domain descriptions explain the domain as it is. No reference can be made 
to any requirements to desired software — that comes later! Furthermore, no 
reference can be made to the desired software — that also comes later! So, 
a domain description really has nothing to do with information technology 
(IT) or software — other than what is already installed and deployed in the 
domain, and then only if reference to such existing IT and software is deemed 
relevant. 

Example 1.2 A Logistics Domain: We are not describing the example do­
main, only informing about it, but in almost descriptional terms: A logistics 
domain consists (a) of senders and receivers of freight; (b) of logistics firms 
which arrange for senders and receivers to send or, respectively, receive freight; 
(c) of hubs (like harbours, railway stations, truck terminals and airport air 
cargo centres) where freight may be loaded onto or, respectively, unloaded 
from conveyors; (d) of conveyors (such as ships, freight trains, trucks, respec­
tively air planes) that are owned and/or operated by transport companies; 
(e) of transport companies (like cargo liners, railway operators, trucking com­
panies, airlines); and (f) of the networks of transport routes (shipping lanes, 
railway lines, highways or, respectively, air corridors). 

Some further descriptions can be hinted at: A conveyor path3 is a con­
nection between two hubs. A conveyor route is a sequence of one or more 
connected paths. Some hubs are of two or more kinds, viz., harbours and 
railway stations, air cargo centres and truck terminals, etc. Conveyors travel 
their routes according to fixed time tables. A conveyor fee table prescribes 
costs of transporting freight, per cubic meter, between hubs. This example is 
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continued in Example 1.3. Notice that there were no references to either re­
quirements or to possibly desired software (i.e., computing system), let alone 
to such a system. • 

A domain description, to repeat, describes the domain as it is. Chapter 5 of 
Vol. 3 covers principles, techniques and tools for describing any universe of 
discourse, whether domain, requirements or software. Part IV (Chaps. 8-16) 
of Vol. 3 covers principles, techniques and tools for proper domain description. 
Domain knowledge need be acquired, that is, elicited from those who work in 
and are affected by the domain. 

1.2.4 Requirements Engineering 

Characterisation. By requirements engineering we mean the engineering of 
requirements prescriptions. • 

Requirements arise as a natural consequence of a contractual relation between 
a client who procures (who is to acquire) some desired software (i.e., software 
to be delivered), and the deliverer or the developer of that software. By re­
quirements we mean a list of one or more putatively expressed statements as 
to which properties are expected from the software to be developed. Require­
ments must be acquired, that is, elicited from those who may be affected by 
the eventually acquired software. 

Example 1.3 Some Logistics Requirements: This example continues Exam­
ple 1.2. We do not exemplify a proper requirements prescription, we just hint 
at what it might deal with. A logistics system needs software support for (at 
least) the following kinds of activities: 

First we exemplify some domain requirements. These are requirements 
that solely pertain to the domain, and whose professional terms are domain 
terms. Examples are: Software support for handling inquiries, from potential 
senders, with logistics firms, as to possible routing of freight, schedules and 
costs; software support for handling requests, from actual senders, to logistics 
firms, for the dispatch of freight, and hence the issuance of bills of lading 
(waybills) and the handling (passing on) of freight to be sent; software support 
for logistics firms tracing the whereabouts of freight at hubs or with the owner 
transport companies of scheduled conveyors; software support for the hub 
management of conveyors in and out of hubs, the unloading and loading of 
conveyors, and the receipt of freight from, and delivery of freight to logistics 
firms. 

Then we exemplify some machine requirements. These are require­
ments that primarily pertain to the machine to be built, that is: the soft-
ware+hardware of the desired computing system, in other words, whose pro­
fessional terms additionally include information technology terms in general. 

3Examples of paths: Sea lanes, rail lines, roads, and air corridors. 
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Examples are: The computing system shall have a mean time between failures 
of two years; when the system is "down" it must at most be so for two hours, 
and so on. 

Finally, we exemplify some interface requirements. These are requirements 
that pertain both to the domain and to the machine to be built, to the interface 
between the machine and the domain, human users of the domain as well as 
(other) natural phenomena and man-made equipment of the domain. Interface 
requirements are about the phenomena that are shared between the domain 
and the machine. Examples are: senders and receivers shall be able to ascertain 
the transport status of their own freight from their own, home PCs based on 
standard Internet browsers; the computing system shall display, for logistics 
firms, the route networks in some "zoom-able" manners, and so on. 

This example is continued in Example 1.4. • 

Notice how Example 1.3 introduced three notions of requirements: domain 
requirements, interface requirements and machine requirements. 

This decomposition represents a pragmatic separation of concerns. Do­
main requirements, to repeat, are requirements that pertain solely to domain 
phenomena, i.e., they are requirements whose professional terms are domain 
terms. Interface requirements, to repeat, are requirements that pertain both 
to the domain and to the machine to be built, to the interface between the 
machine and the domain, human users of the domain as well as (other) natural 
phenomena and man-made equipment of the domain.That is, to phenomena 
shared between the environment and the machine. Machine requirements, to 
repeat, are requirements that primarily pertain to the machine to be built, 
that is, the software + hardware of the desired computing system. In other 
words, the professional terms of machine requirements additionally include 
information technology terms in general. 

Notice how we, in rough sketching some requirements, relied on domain 
terms having been previously described. We did, however, not precisely de­
scribe those terms. But we hinted at how it is the purpose of a domain de­
scription to explicate all such domain specific terms. We likewise relied on 
machine (hardware + software technology, that is: IT) terms also having been 
precisely specified, elsewhere! 

Notice also how we "sneaked" the crucial concepts of domain, interface and 
machine requirements into the example! Part V (Chaps. 17-24) of Vol. 3 covers 
principles, techniques and tools for the proper prescription of requirements. 

A popular view of requirements makes the following distinctions: user re­
quirements, system requirements, and non-functional requirements. How are 
we to take these? User requirements form one entire set of requirements: do­
main, interface and machine requirements. So do system requirements. Non­
functional requirements are what we refer to as some interface and most, if 
not all machine requirements. How does this work? User requirements do not 
need to be complete, they can be, as we shall call them, rough-sketches, al­
though they are typically well-structured and carefully cross-referenced, and 
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they form input for the development of system requirements. System require­
ments must be consistent and relatively complete: they "improve" upon the 
user requirements, and they form input to software design. 

1.2.5 Software Design 

Software: Code and Documents 

Character isa t ion. By software we mean not only the code based on which 
computers can act, but also all the documentation that is necessary for the 
proper deployment of the code. This includes the business process reengineer-
ing manuals that are necessary for the enterprise (the institution) acquiring 
the computing system to function most optimally when using this system, the 
installation manuals that are necessary when initially installing the computing 
system, the user training and daily use manuals that are needed in prepara­
tory training of future system users as well as in their daily use of the system 
as installed, the maintenance manuals that are needed during the daily facil­
ities management of the installed system (for (adaptive) up- or downgrades, 
for performance (perfective) enhancements, and for error corrections), and the 
disposal manuals that are needed when dismantling the system. Ideally soft­
ware also includes a precise record of the software validation and verification 
history: stakeholder responses, verification and tests, including test suites and 
the results expected from, and actually recorded during, actual tests using 
these test suites. By a test suite we mean a collection of data serving as input 
to a test. • 

Software Design, I 

Character isa t ion. By software design we mean the implementation of (re­
quired) software, not just coding, but its stage and stepwise development and 
documentation. • 

Phases, Stages and Steps of Development 

Characterisation. By software development we mean the combined devel­
opment of domain descriptions, requirements prescriptions, and software de­
signs. • 

Software, as well as domain descriptions and requirements prescriptions, is 
usually rather complex. Hence these need be developed according to the prin­
ciple of separation of concerns, i.e., of divide and conquer. Therefore we divide 
the development phases of domain descriptions, requirements prescriptions 
and software design into stages and steps. A first development, one that is 
reasonably illustrative of a multistep development, is given in Examples 16.10 
to 16.21. Part VI (Chaps. 25-30) of Vol. 3 covers software design. 
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Software Design, II 

Conventionally we think of establishing, in stages of software design, first 
the software architecture,4 which in a sense explained, in Chap. 26 of Vol. 3, 
implements a "high-level design" of the domain requirements, the interface 
requirements and the machine requirements. In the second stage we establish 
the program components which in a sense, explained in Chaps. 27 and 28 of 
Vol. 3, designs the gross and detailed modular structure of the software. The 
final or implementation stage, which usually consists of many steps, includes 
platform reuse design in which available software components are examined 
for their possible reuse in the implementation, modularisation or objectivisa-
tion, in which a fine grained decomposition of the program organisation into 
modules takes place, and finally the coding itself in which final lines of code 
are specified. That is, the instructions to the computer as expressed in some 
programming languages and in calls to run-time system facilities and (other 
platform) components. 

In Example 1.4 we give an informally expressed software architecture de­
sign. 

Example 1.4 A Logistics System Software Design: This example continues 
Examples 1.2 and 1.3. We do not exemplify a proper software design speci­
fication. We just hint at what it might deal with. A logistics computing and 
communication system is implemented as follows: Each sender or receiver, 
each logistics firm, each transport firm, each hub and each conveyor (of a 
transport firm) is implemented as a separate, concurrently operating process 
with its own state. None of the processes share global state components, but 
instead operate based on synchronised and communicated messages. Freights 
are not implemented as objects, i.e., as independent processes. Shared data 
is implemented as a separate process whose state represents the shared data 
(i.e., a database). • 

1.2.6 Discussion 

General Issues 

This ends our exposition of core concepts of the software development triptych. 
In summary we emphasise two sets of relations between the three software 
development phases. The three kinds (cum phases) of engineering development 
can be summarised as follows: In domain engineering we describe the domain 
as it is. In requirements engineering we prescribe the requirements to software 
(i.e., a computing system) for the support of activities in the domain as we 

4Wherever we say software architecture we could say computing systems archi­
tecture. 
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would like to have them. In (the early stages of) software design we specify 
the software such as we have decided it shall be. 

The relations between the three kinds of documents arise from respective 
development phases. Domain descriptions are indicative [308], as we seriously 
believe the domain essentially is. We must make sure to describe all possible 
behaviours of the domain, including as we normally expect well-functioning 
actors to perform, but to also include erroneous, faulty, less diligent, sloppy, 
or even outright criminal behaviours. Requirements prescriptions are puta­
tive [308], as we would mandate the software to behave. A requirements 
prescription would naturally focus on well-functioning behaviour and try to 
ensure correct behaviour of all actors, whether men or machines. Software 
specifications are imperative [308], that is, mandatory. 

When a domain description is formalised, the hedge 'may' is lost. And 
when a requirements prescription is formalised, the hedge 'must' is likewise 
lost. Formal domain descriptions, requirements prescriptions and software (de­
sign) specifications have in common a certain "authoritative air" which the 
domain description can never have. A domain description is only an abstrac­
tion, or a model of some reality, but it is not that reality, whereas a require­
ments prescription is intended to be a precise exact model of the software to 
be implemented. 

The triptych approach to software engineering is central to these volumes. 
We shall endeavour to enunciate clear principles, techniques and tools for the 
development of domain descriptions, requirements prescriptions and software 
specifications. Within domain descriptions we find such concepts as domain 
attributes, stakeholders and their perspectives, and domain facets. Within re­
quirements prescriptions we find such concepts as domain requirements, inter­
face requirements, and machine requirements. Independently of these we find 
such requirements techniques as domain projection, instantiation, extension 
and initialisation. Within software design we find such concepts as software 
architecture, program organisation and structure, and modularisation. 

1.3 Documentation 

This section is a precursor for a later chapter, Chap. 2 of Vol. 3, which in­
cludes many examples and enunciates many documentation principles, tech­
niques and tools. Since documentation is all pervasive and is all important in 
software engineering, we shall this early in these volumes "lift the curtain" on 
documents enough that we can refer broadly and generally to the document 
types in the text that follows between this section and Chap. 2 of Vol. 3 in 
which we finally dispose of the subject. 

We saw, in the previous section, that software development entails three 
major phases, possibly several stages within phases and possibly several steps 
within stages. Carrying out each of the steps results in documents. These are 



14 1 Introduction 

documents on domains descriptions, requirements prescriptions and software 
specifications. 

There is nothing else5 emanating from steps, stages and phases than docu­
ments, on paper or electronically. So the question is: What kind of documents? 
In this section we will briefly overview three kinds of documents that result 
from the engineering of the steps, stages and phases. It is important that 
the reader keeps the universe of discourse in mind, either the domain, the 
requirements, the software, the two first (domain and requirements), the two 
last (requirements and software) or all three (an entire development). That is, 
the various documents, even the informative ones, all have a specific universe 
of discourse in mind. It must first be clearly stated, lest one of the "parties" 
to a development contract gets confused from the very start! 

1.3.1 Document Kinds 

There are basically three kinds of documents that emerge from the develop­
ment process, and which the developer hence should be aiming at. These are: 
(1) informative documents, or document parts, such as partners and current 
situation, needs and ideas, product concepts and facilities, scope and span de­
lineations, assumptions and dependencies, implicit/derivative goals, synopsis, 
design briefs, contracts, logbook; (2) the description documents, or docu­
ment parts, such as rough sketches (records of "brainstorming"), terminolo­
gies, narratives, and formal models; and finally (3) the analytic documents, 
or document parts, such as description property verifications, verification of 
correctness of development transition (i.e., development step), and validation 
of formal and informal descriptions. 

We will briefly review these kinds of documents, both as concerns their 
pragmatics: why they are necessary, and as concerns their multitude: why 
there are so many seemingly different kinds of documents. 

1.3.2 Phase, Stage and Step Documents 

A development phase results in a comprehensive, definitive set of informative, 
descriptive and analytic documents. A development stage results, similarly, 
in a comprehensive set of informative, descriptive and analytic documents, 
or in a set of relatively complete domain, interface or machine requirements 
prescriptions. 

The boundaries between a subphase and a stage, and the comprehensive­
ness of either, are not sharp. It serves no purpose here, or for the approaches 
advocated in these volumes, to try sharpen such distinctions. The stage and 

5Strictly speaking: Understanding also emerges, and so do closer relations be­
tween client (acquirer, customer) and developer (deliverer, provider), etcetera. But, 
contractwise, unless, for example, education and training is also part of a project, 
documents are the only tangible goods delivered! 
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step concepts are simply pragmatic. One could go on defining sub-steps, etc., 
but we refrain. Let the actual project determine a need for finer granularities! 

If a distinction need be made between a phase and a stage, then the com­
prehensive set of stage documents represents one of more than one "stage" of 
development within the phase. 

A step of development produces only a part of a comprehensive set of 
documents, for example: a comprehensive set of informative, descriptive or 
analytic documents or document parts, or just, as a substep, one of these 
documents, or document parts. More will emerge as we progress deeper into 
these volumes. 

1.3.3 Informative Documents 

Characterisation. By an informative document we mean a document, or a 
document part, which informs, it does not necessarily describe a designatable, 
manifest phenomena or concept. • 

As the name implies, informative documents give information which takes 
many forms. Informative documents include those of perceived or already 
enunciated needs, product concepts and facilities, scope and span delineations, 
assumptions and dependencies, implicit/derivative goals, synopsis, contracts, 
design briefs, and so on. 

Current Situation Documentation 

Need for software development, or for requirements prescription, or for do­
main description usually arise out of a current situation. A current situation 
may be that the domain is not well-understood, or that software is required. 
Professional software development projects therefore produce an informative 
document — two-three pages — which inform of the current situation that 
leads to needs. 

Needs Documentation 

Needs refer to perceived or actual needs for the product being desired, whether 
a domain description, a requirements prescription, a software design (i.e., 
specification), or just plainly, as is most often the case, the software itself. 
Needs can be expressed in many ways: We must understand the domain; we 
must establish requirements; "So ein Ding muss Ich auch haben"6; software 
to automate humanly menial, boring processes; software to speed up slow 
processes; and so on. Needs must be quantified, if possible. 

"I must also have such a 'thing'" (i.e., software). 



16 1 Introduction 

Product Concepts and Facilities 

Product concepts and facilities refer to "brainstorming" or ideas ("dreams"). 
That is, what the universe of discourse "contains", or is to contain, what aims 
and objectives the proposers have for the "product", what roles, in a larger 
socioeconomic context, the product is to serve (or fulfill). That is, what are 
the strategic or tactical objectives of the developer and/or customers, how it 
might complement earlier products, and/or how it might open the way for, or 
be, a next-generation product. 

Design Briefs 

Design briefs refer to documents which state what kind of project is to take 
place: for which universe of discourse, specifically (aiming at a very specific 
client), or generally (aiming at a largest class of such clients), or something 
in-between. Whether the project is an ordinary development, or a research, or 
some advanced project encompassing both R&D. Finally it also encompasses 
what general deliveries are expected, the time frame, costs, institutions in­
volved, and so on. 

Usually a scope and span delineation is part of or strictly adjoins the design 
brief. To this we turn next. 

Scope and Span Delineations 

Scope and span delineations refer to the more specific subjects of the universe 
of discourse to be dealt with in the project, that is, the target and modal scope, 
for example: railways, or health care, or financial services; respectively new 
development (incl. R&D), or maintenance, or other. The target and modal 
span, for example, rolling stock monitoring and control, or electronic patient 
journals, or stock trading; respectively off-the-shelf commercial, one-of-a-kind, 
or other product. 

Synopsis 

Synopsis refer to a "capsule" (i.e., short overview) characterisation of the 
product being desired, whether a domain description, a requirements pre­
scription or a software design. A synopsis is like a movie "trailer". It tells, in 
a few words, what the whole thing (domain, requirements or software) is all 
about. A synopsis is not a description (a prescription, a specification), "but 
almost". It mentions all the most important phenomena of the universe of 
discourse, their entities, types, values, actions, events and behaviours. It men­
tions their semantics and syntax, but it does so incompletely. And a synopsis 
"links" these phenomena components to their pragmatics, that is what role 
they serve, and so on. 

Synopses often form an important introductory part of contracts. 
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Contracts 

A contract describes parties to the contract, the subject matter and consid­
erations. 

Contracts refer to the legal documents that name contractors (the parties: 
clients and developers); and that define what is to be developed: If software, 
then the contract would normally refer to an already existing requirements 
prescription; if requirements, then the contract would normally refer to an 
already existing domain description; or if a domain description then the scope 
and span delineation would be an important document part. In addition (the 
considerations) contracts prescribe the development costs (estimates): If soft­
ware is to be developed, then the estimate should be rather binding. If require­
ments are to be developed, then costs could be based on fixed hourly rates 
and some usually negotiable rough time estimates. Precise numbers cannot 
be given since much, unforeseeable interaction needs to take place between the 
contracting parties. Or if a domain description is to be developed—in which 
case the project is basically a joint research effort—then the costs are usually 
negotiable, and billed on a, say, monthly basis. A contract would (further con­
siderations) refer to legal conditions. Many other considerations may be part 
of a contract document. 

Discussion 

We have outlined essential informative documents. We emphasise that the 
developer (and/or client) may, in the extreme, have to "repeat" such docu­
ments for each phase, stage and, in a few cases, step of development and their 
transitions. That is, informative documents may be needed for each and all 
of the triptych phases: domains, requirements and software design. 

We have chosen the wording documents (and documentation) so as to 
indicate that one may view each of the listed informative document types as 
designating instantiation of individual, separately "bound" documents. For 
the next category of documents, the descriptive ones, we choose a wording that 
allow their various types to designate document parts that can be "mingled" 
(woven together) into larger documents. 

1.3.4 Descriptive Documents 

Characterisation. By a descriptive document we mean a document, or a 
document part, which describes a manifest phenomenon or a concept. • 

The term describe, and hence the terms description, and descriptive, are here 
used in a rather specific, narrow sense. A description designates (i.e., is some 
text that sets forth, in words) either some physically existing part of nature 
(one that centres around physical behaviours usually governed by laws of 
physics) or some man-made part of the world (one that centres around human 
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activities, including their interaction with artifacts) or some combination of 
these two classes of worlds. 

Thus a description, such as we shall deploy the term, tends to focus on 
what might eventually "fit within a computer". It may well be that what we 
describe concerning a domain is not computable and cannot be "mimicked" 
by a computer. A requirements prescription, however, "cuts down" on its 
underlying domain description and makes sure that what is required is also 
computable. Hence opinions, emotions, metaphysical, political or such other 
similar subjective texts are not here considered descriptions. 

It can be seen from the above, and it will reappear, again and again later, 
that it is not a simple, straightforward matter to delineate precisely when 
something is a description (a prescription, a specification), and what can be 
described, that is, what can exist. Chapters 5, 6 and 7 of Vol. 3 focus on 
principles and techniques for forming proper descriptions (specifications) and 
touch on the philosophical issues of being. 

We (thus) consider three kinds of descriptions: domain descriptions, re­
quirements prescriptions, and software designs. We point out that we use three 
different terms synonymously: descriptions, prescriptions and designs (speci­
fications). Domain descriptions are about what already exists, "the world as 
it is" .7 Michael Jackson [308] refers to domain descriptions as indicative. Re­
quirements prescriptions are about what we expect from software, "the world 
as we would like it to be". Michael Jackson [308] refers to requirements pre­
scriptions as putative. Software (design) specifications then outline the design 
structure of software, that is, specifications of specific types, values, functions, 
events and behaviours. Michael Jackson [308] refers to domain descriptions as 
imperative. 

Descriptive Document Kinds and Types 

We see basically two kinds of description documents: informal and formal. And 
we see basically four types of description documents: rough sketches (docu­
ments which record results of "brainstorming"), terminologi.e., narratives and 
formal models. One could consider the latter two types (narratives and formal 
models) to stand for one type, the type of 'proper description documents', both 
informal and formal. We shall stick with the above compartmentalisation. 

Rough Sketches 

Characterisation. By a rough sketch document we mean a descriptive doc­
ument which is a draft and whose description is incomplete, and/or is not well 
structured. • 

7Prom an epistemological point of view we may have to say: a world as we 
subjectively observe it. 
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When we first, as an initial act of proper development, attempt to develop 
something, we then "brainstorm". Recording the ideas that arose during 
"brainstorming" results in a rough sketch. We are told either to develop a 
domain description or a requirements prescription or a software design. And 
we are not quite sure where to begin in the chosen universe of discourse. So 
we "doodle", or we rough sketch. A rough sketch is basically an unstructured 
nonsystematic effort at describing whatever has to be described (prescribed, 
specified). 

A rough sketch serves the purpose — in the style of explorative, experi­
mental work — of coming to grips with the concepts that are central to the 
universe of discourse, and from there with the derivative concepts. A rough 
sketch shall then serve, as it is being developed, i.e., as a means to identify 
the core concepts, and their relations. This identification process is of utmost 
importance. It is of analytic nature, and is further discussed in Section 1.3.5. 
Section 2.5.1 of Vol. 3 presents examples, principles and techniques of rough 
sketching. 

Terminology 

Characterisation. By a terminology document we mean a description doc­
ument which, in a systematic, but not necessarily a complete or exhaustive 
manner, lists and briefly explains a number of terms. • 

The rough sketch descriptive step together with the concept formation an­
alytic step serves to identify and consolidate the important concepts (i.e., 
abstractions of phenomena, whether in domains, requirements or software). 
This identification contains an element of naming these concepts. A list of 
all these concept names and their characterisation (description, explanation, 
definition) is what call a terminology. We could also call the list a glossary 
or a dictionary or even an ontology We refer to Sect. B.l for discussions of 
these four and the related terms of encyclopedia and thesaurus. 

We consider it to be a very important and indispensable part of every phase 
of software development to perform the following four terminology-related 
actions: (1) to establish a (phase-oriented) terminology; (2) to use and hence 
adhere to such a terminology; (3) to update, i.e., maintain such terminologies 
and let changes be reflected back in all the documents where referenced terms 
are used; (4) and to make available such terminologies. 

Failure to do as advised above usually has dire consequences. 
Section 2.5.2 of Vol. 3 will present examples, principles and techniques for 

creating a terminology. 

Narrative 

Characterisation. By a narrative document we mean a description docu­
ment which systematically and reasonably comprehensively, in natural, yet 
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most likely (application domain-specific) professional language, explains the 
entities, functions and behaviours (including events) of a designated universe 
of discourse. • 

To narrate is to "tell a story". The story (the narration) to be told here is 
that of the chosen universe of discourse, be it a domain, or part of a domain, 
a requirement, or a software design. The narrative must be such that the 
listener (i.e., the reader) as well as, of course, the narrator, can formalise 
the story: That is, we put down as a constraint upon the narratives that 
they can be given mathematical, i.e., computing science, models or otherwise 
be characterised mathematically. It is not a constraint on domain descriptions 
that what is described is computable: that it can be "mimicked" (mechanised, 
simulated) by a computer. It is indeed a constraint on domain requirements 
prescriptions as well as on software design specifications that they constitute 
computational models. 

This insistence on formalisation can be justified as follows: The domain 
requirements must imply something computable. After all, they are about a 
computing system. The software design certainly must also imply something 
computable. 

But why insist on the domain description being formalisable? First, we 
must accept that domain requirements, as mentioned in Example 1.3, are 
derived from domain descriptions, and we would like the derivation operations 
to be formally well understood. Second, we must accept that the original 
role, as well as the successful pursuit of this role over the last two and a 
half millennia, has been to formalise phenomena of the actual world, first 
the physical ones, and now the human-made ones. So why not also attempt 
this for domains — essential parts of which cannot be said to be understood 
unless we indeed have a formal model. Third, it must be understood that 
we shall only attempt to formalise the semantic and the syntactic aspects 
of domains, not their pragmatic imports.8 Finally, we must accept that we 
today, November 2, 2005, do not quite know how to formalise all aspects of 
domains and requirements! That last caveat applies in particular to domain 
descriptions and to interface and machine requirements prescriptions. 

Thus the task is clear: describe, principally, what can or what ought be for­
malised. The style of the informal narrative follows from this dogma: Present 
first text on the classes of entities (i.e., types: abstract type (sorts) and con­
crete types). Then postulate any fixed, i.e., constant, instantiations (i.e., val­
ues), if and when needed. Then postulate all the functions that apply to enti­
ties (i.e., observers, generators, predicates, auxiliaries), and characterise these 
functions: Start by stating to which types of entities they apply (the input) 
and the type of the resulting, the yielded (the output) entity; then characterise 
the functional relationship between inputs and outputs. Similarly identify the 

8For a discourse on pragmatics, semantics and syntax we refer to later material 
in Sect. 1.6.2 and in Part IV (Chaps. 6-9 inclusive) of Vol. 2. 
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behaviours (i.e., processes); and their interaction (i.e., their shared events, 
such as synchronisation and communication). 

We are guided in the task of informally describing something when we 
follow the above "recipe", the above "narration" dogma — which leads on to 
the formalisation itself. 

Chapter 2 of Vol. 3 (Sect. 2.5.3) presents examples, principles and tech­
niques for the construction of proper narratives. These principles and tech­
niques emerge from most chapters in Vols. 1 and 2. Specific domain, require­
ments, and software design narration principles and techniques are then cov­
ered in Parts IV-VI, respectively, of Vol. 3. 

Formal Model 

Characterisation. By a formal document we mean a document which ex­
presses a model (of some universe of discourse) in a formal language. • 

A formal model is a model expressed in some mathematical notation or in 
some formal language. A mathematical expression permits conventional, al­
beit precise reasoning, such as is normally done in textbooks on mathematics. 
A formal language is one with a precise syntax, a precise semantics and a 
mathematical logic proof system, that is, a set of proof rules that allow for­
mal reasoning, such as is done in textbooks on mathematical logic but here 
with a twist! The informal narrative and a formal model may be intertwined, 
textually, such as we often see in mathematics and physics textbooks. The 
relation between the informal narrative and its formal model is necessarily in­
formal. That is, is one that can never be proven correct, it must be validated. 

Volumes 1 and 2 contain many chapters which present examples, principles 
and techniques for the construction of proper formal models. Specific domain, 
requirements and software design formalisation principles and techniques are 
then covered in Parts IV-VI, respectively, of Vol. 3. 

Discussion 

The informal rough sketch, the more structured, but still informal narration, 
and the formal model, may be manifested in separate documents or may be 
combined and intertwined with the analytic documents. Usually the rough 
sketch is not documented in a manner suitable for release other than to the 
directly involved client and developer staff, and then usually only to the devel­
opment staff. We say that the informal narratives, the terminologies and the 
formal models may constitute deliverables. And we normally assume that the 
rough sketches remain proprietary documents of the development enterprise. 
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1.3.5 Analytic Documents 

Characterisation. By an analytic document we mean a document whose 
subject is a descriptive document. The text of an analytic document analyses 
a descriptive document. • 

As the term indicates, analytic documents are documents whose content rep­
resents analyses of other documents, here the descriptive documents. We con­
sider four kinds of analytic documents: those that represent (i) formation of 
concepts from rough sketches (during brainstorming), (ii) validation of formal 
and informal description documents, (hi) description property verifications, 
and (iv) verification of the correctness of development transitions (i.e., devel­
opment steps). 

There may be other analytic documents. Examples: documents whose con­
tent analyses behavioural aspects of the intended computing system, such as 
expected interface response times based on queueing theoretic studies; ex­
pected machine computation times based on complexity theoretic studies; 
details of dictionary or database hashing algorithms based on statistical stud­
ies of reference patterns; and so on. Also included may be documents whose 
contents analyse pragmatic issues such as, production line flow (congestion), 
based on statistical studies, for a project and production planning, monitoring 
and control computing system; company cash flow, based on similar studies, 
for a financial services or an electronic trading computing system; and so 
on. Further kinds of analytic documents can be imagined. We shall, in these 
volumes, only cover those just mentioned. 

Rough Sketch Analysis and Concept Formation 

The most important task in describing a domain, prescribing some require­
ments or specifying some software design is to identify the core concepts 
around which the universe of discourse evolves. On one hand are the phe­
nomena in the domain, the facilities that are desired from the software or 
the software program constructs (data structures, procedures, etc.). On the 
other hand these phenomena, in the actual world, these facilities (to be made 
manifest in the required software), or these program code constructs are to be 
conceptualised (as for the domain) or are indeed concepts, that is, abstract 
ideas, once captured as requirements or in software code. 

Thus we see a transition from a concrete, manifest, actual world of usually 
tangible phenomena to an abstract, intellectually perceivable, but usually in­
tangible world of concepts. It is this transition, from what is perceivable, via 
what is conceivable, to that which is "made into" software, that we need to 
record. 

We do so for the domain by first brainstorming, that is by sketching rough 
domain descriptions and, from those, through analysis, identifying domain 
concepts. Then for the requirements by conceiving. In that case by sketching 
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rough requirements "prescriptions" and, from those, through analysis, identi­
fying requirements concepts. And finally we do this for the software by "cast­
ing", that is, by sketching rough software "designs" and, from those, through 
analysis, identifying proper software constructs. 

Analysis with the aim of forming concepts is an art. Perhaps the hardest 
thing to learn is to do it right, or at least to do it in such a way that pleasing, 
elegant and "economic" concepts emerge. But reading lots of analysis exam­
ples might help. Chapters 13 and 21 of Vol. 3 therefore present analysis and 
concept formation examples, principles and techniques that are found useful 
in conducting the analyses hinted at above. 

Validation of Descriptions, Prescriptions and Specifications 

Characterisation. By a validation document we mean an analytic document 
which validates the text of a description document (&c.) with respect to the 
stakeholders of the described universe of discourse. • 

By &c. we mean: prescription and specification document. 
Domain descriptions must be validated, they are, most likely, written by a 

small group of primarily developers, aided by a likewise small group of client 
staff. But larger, more definitively representative groups of client staff need re­
view domain descriptions in order to concur. The same holds for requirements 
prescriptions. 

Domain description and requirements prescription validation is necessarily 
a process of interaction between client staff and developers, and is necessarily 
a process based on informal narrative and terminology descriptions. This kind 
of validation is a crucial one: It is necessarily an informal, human process, and 
it serves the role of getting the right product. Chapters 14 and 22 of Vol. 3 
present validation examples, principles and techniques that are found useful 
in conducting the analyses hinted at above. 

Verification of Properties of Specifications 

Characterisation. By a verification document we mean an analytic docu­
ment which proves, model checks, or tests statements made about the prop­
erties of a description or a prescription or a specification. • 

A domain description denotes a theory. The description is only a model of 
the domain, not the real domain. Expressed in precise English, and especially 
expressed in some formal language, the model designated by a domain de­
scription possesses some properties. The sum total of all these properties is a 
theory for the domain. The same is true for requirements prescriptions and 
software design specifications. 

We can informally reason about such properties when given a consistent 
and relatively complete description (or prescription or specification). And we 
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may record this reasoning formally when we also have a formal description 
(formal prescription, formal [design] specification). The usefulness of formal 
models is that such theorems may be proven. Proof of such theorems affords 
a higher trust in the descriptions. 

Example 1.5 Towards a Domain Theory: Assume that we have described a 
railway system, its network of lines and stations, its train timetables and the 
actual train traffic according to timetables. Let us further assume that the 
train timetables, and hence the traffic is modulo 24 hours: repeats itself daily 
and is always on time. Now a property that transpires only very indirectly 
from the train timetables (and hence the train traffic) could be the following 
variant of Kirchhoff's Law: For any station in the network, the number of 
trains arriving, over any 24 hour period, at that station, minus the number of 
trains ending their journies at that station, plus the number of trains starting 
their journey at that station, equals the number of trains departing from that 
station, all over the same 24 hour period. • 

Informatics models of domains can be made into theories, just as were models 
of physical phenomena such as Newton's Theory of Mechanics, Thermody­
namics, etc. Chapter 15 of Vol. 3 presents domain theory examples, principles 
and techniques that are useful in establishing domain theories as above. 

Correctness of Development Phase, Stage or Step Transition 

When we make the transition from the phase of describing a domain to the 
phase of prescribing requirements to software for support of activities in that 
domain we correctness-relate that transition, from the latter to the former. 
When we make the transition from the phase of prescribing requirements 
to software to the phase of specifying the required software we correctness-
relate from the latter to the former. These correctness relations, when stated 
properly (and so they must be if we are to have trust in the development), 
can be informally reasoned about. And, if the descriptions, prescriptions and 
(design) specifications are formally expressed and the relations likewise, then 
the reasoning may be formally supported: Formal proofs of correctness may 
be made. 

Phases can be decomposed into stages of development, and transitions 
between stages may be correctness-related and argued about. Stages can 
similarly be decomposed into steps, and transitions between steps may be 
correctness-related and argued about. 

Note that we sometimes used the term 'can', and sometimes 'may'. We can 
always try reason informally, as do mathematicians. But it is not always pos­
sible today to formally prove properties and transition correctness. Reasons 
for this may be of the following: We may have constructed some unwieldy 
models that make the proofs too cumbersome. Or computing science, cum 
specification language designers, may not yet have researched and developed 
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appropriate specification language constructs and proof systems. Or we, the 
developers, are simply not good enough at stating and proving auxiliary lem­
mas and theorems. Or we are trying to prove a non-theorem, something that 
is false. 

Discussion 

We have surveyed the analytic documents that may arise during software de­
velopment. There are at least four kinds of analytic document parts: con­
cept formation, description (prescription and design specification) valida­
tion, property verification and correctness verification. Some analytic work is 
"inspiration-guided", such as concept formation seems to be. Other analytic 
work is guided by human interaction, such as validation is. And yet other an­
alytic work is formalisable, such as property and correctness verification can 
be. 

To give a proper, comprehensive presentation of these three kinds of an­
alytic work is, however, not a goal of these volumes. Instead we refer to spe­
cialised texts and monographs on software verification. 

1.4 Formal Techniques and Formal Tools 

Reading of this section can be skipped till the reader has read Chaps. 2-9 
of the present volume. The section may to some lay readers appear a bit 

| esoteric. | 

The aim of this early section is to make the reader aware of the fact that 
the languages in which one expresses domain descriptions and requirements 
prescriptions are not programming languages, but are specification languages. 
These specification languages need allow the expression of abstractions, so as 
to make easy the expression of essential properties, while allowing freedom of 
software design implementations. 

1.4.1 On Formal Techniques and Languages 

Characterisation. By a formal technique we mean both of the following: 
a technique that has a mathematical foundation, and thus can be explained 
mathematically, and a technique by which its user expresses descriptions, pre­
scriptions and (design) specifications formally and is able to reason formally 
about what is expressed. • 

Thus a formal technique implies: Formal specification using subsidiary tech­
niques and the possibility of formal verifications, with their subsidiary tech­
niques. Therefore a formal technique requires a formal specification language. 
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Character i sa t ion . By a formal specification language we mean all of the 
following: a language which has: a formal, mathematical syntax; a formal, 
mathematical semantics; and a formal, mathematical logic proof system. • 

In Chap. 9 of this volume we explain what is meant by a proof system. In 
Vol. 2, Pa r t IV we will explain what is meant by formal syntax and formal 
semantics. 

Normally, in conventional software engineering, only the last step of de­
velopment uses an almost9 formal language, namely the coding (i.e., the com­
puter programming) language. We shall advocate the use of formal languages 
from the very beginning, for all phases, stages and steps of development. In 
conventional software engineering many different kinds of informal description, 
prescription and (design) specification languages are deployed, some with one 
form of diagrammatic constructs, others with other constructs, but all without 
a proper syntax, let alone any discernible semantics. 

1.4.2 Formal Techniques in S E T e x t b o o k s 

The aims and objectives of these volumes hinge crucially on the ideas of for­
mal techniques and formal tools. The purpose of this section is to motivate 
this central role of formality. Most, if not all, existing textbooks on software 
engineering shy away from propagating these ideas of formalism. If other text­
books on software engineering bring any material on what they call 'formal 
methods ' , it is usually in the form of a separate chapter appearing some­
where in the book. In these volumes formal techniques permeate all technical 
chapters. Formal techniques are deployable, and are hence to be taught in 
connection with all technical aspects of software engineering. 

1.4.3 S o m e P r o g r a m m i n g Languages 

A language, when seen as the means for expressing an engineering objective, 
can be considered a tool. As such, formal languages represent one class of 
software engineering tools. As for all crafts, many tools are needed, different 
size hammers, different size saws, different size screwdrivers, different size 
planners, etc., are needed for carpentry. Tha t is, the artifact to be constructed, 
tha t is, its "nature" or its a t t r ibutes (properties), determines exactly which 
of many different tools are to be deployed. 

We have very many different kinds of programming languages, "past" 
and "current"1 0 : functional programming languages such as LISP [370], • 
S t a n d a r d ML [261,389], • Miranda [502], and • H a s k e l l [498], to mention 
a few; logic programming languages, including • P r o l o g [295,351], and CLPR 

'Usually most programming languages still do not possess a proof system. 
"Current' programming languages are marked with a bullet: •. 
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[312]; the imperative1 1 programming languages of F o r t r a n [14], Cobol [12], 
Algo l 60 [24], A lgo l 68 [510], P a s c a l [522],• C [321]; object-oriented pro­
gramming languages, such as Simula 67 [54], • C++ [489], Modula 2 and 
Modula 3 [262,401,525], • E i f f e l [377,378], Oberon [434,526,528-530], and • 
J ava [10,20,243,348,470,511]; and finally the parallel programming languages 
of PL / I [13,37], CHILL [145], Ada [128], and • occam [301,364,449]. 

1.4.4 S o m e Formal Speci f icat ion Languages 

We can also expect to have many different kinds of formal specification lan­
guages tha t are model-oriented or property-oriented. 

O n M o d e l - O r i e n t e d Speci f icat ion Languages 

Some specification languages are model-oriented:12 • VDM-SL [120,121,226, 
317], • Z [281,476,477,533], and • B [3]. 

Character i sa t ion . By a model-oriented specification language we mean one 
which expresses whatever it specifies in terms of mathematical constructions 
(i.e., models) such as sets, Cartesians, lists, functions, etc. • 

O n P r o p e r t y - O r i e n t e d Speci f icat ion Languages 

Other specification languages are property-oriented (algebraic semantics) 
specification languages:1 3 0BJ3 [233], • CafeOBJ [190,232], and • CASL 
[49,397,399]. 

Character i sa t ion . By a property-oriented specification language we under­
stand one which expresses whatever it specifies in terms of logical properties 
of what is specified. • 

11 An imperative programming language is one which primarily focuses on 
assignable variables, hence assignments, and hence has statements, and usually 
therefore statement labels and GOTOs. Statements, in a sense, prescribe: Do this, 
then do that — "imperially". 

12 A model-oriented specification language allows for the expression of models in 
terms of mathematical entities such as sets, Cartesians, lists, maps, functions, etc. 
Chaps. 12-16 (of the present volume) will make the first presentations of model-
orientedness. 

13A property-oriented specification language allows for the expression of mod­
els in terms of logically expressed algebras. Chapters 9 and 12 will make the first 
presentations of algebras and property-orientedness. 
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On Property-Oriented + Mo del-Oriented Specification Languages 

Other specification languages are "mixed" property- and model-oriented spec­
ification languages: • RSL [236,238,239]. 

In these volumes we mostly use the RAISE Specification Language, RSL. 
But, really, nothing prevents a lecturer from using, for example, VDM-SL or Z 
instead. 

More on Programming Languages 

One selects a programming language according to what one wishes to express, 
that is, the values one wishes to speak of. Different programming language 
categories, as listed above, favour different value spaces. 

In functional programming we handle functions, their definition, applica­
tion and composition, because functions (including ordinary operator/operand 
expressions) are thought to best capture the problem at hand. 

In logic programming we express propositions and predicates, i.e., handle 
logical values, because it is thought that one can best express certain com­
puting problems by characterising their properties. 

In imperative programming we establish, initialise, update and read states, 
i.e., assignable variables, because states and state changes are thought to best 
capture the problem to be solved. 

In object-oriented programming we establish, initialise, update and read 
special clusters of state components called objects, because dividing the prob­
lem up into a set of such objects and solving the problem by expressing the 
interaction between objects is thought to best capture the problem at hand. 

In parallel programming we establish, initialise and compose processes, 
and select among processes in various deterministic or nondeterministic ways. 
In addition we express cooperation among processes through their synchro­
nisation and communication because it is thought that one can best express 
certain computing problems by their decomposition into cooperating and con­
currently operating processes. 

Specification Languages Resumed 

The situation is not that simple with formal specification languages. Indeed, 
there is the distinction between model-oriented and property-oriented formal 
specification languages mentioned above. So one can choose one from either 
category depending on what it is one wishes to express, and how. 

Purists might choose either the Z (since 1980) or the B (since around 
1990) specification language paradigm. Both are based on simple set theo­
retic notions, are utterly elegant and can traditionally handle what one would 
consider simple state-oriented sequential problems. Z has been extended in 
various ways: to express concurrency, or to express objects beyond its own 
basic, elegant modularity concept. 
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VDM [120,121,226] represents possibly the first full-fledged formal specifi­
cation language concept (since early 1970s), and is still flourishing in the form 
of the ISO standardised VDM-SL. The RAISE [236,238] Specification Language 
(RSL) was conceived, in the mid-1980s, as a successor to the VDM specification 
language, then colloquially known as Met a-IV. 

RSL, which we primarily use in these volumes, features both property-
oriented and model-oriented means of expression, has a somewhat sophis­
ticated object-oriented means of compositionality, and borrows from CSP 
[288, 289, 448, 456] to offer a means of expressing concurrency. Extensions 
to RSL have also been proposed, for example with timing [535], and with 
Duration Calculus, that is, temporal logic ideas [274]. 

1.4.5 Insufficiency of Current, Formal Languages 

The story as told above may give you the impression that the formal (pro­
gramming as well as specification) languages offer sufficient expressibility 
to handle all situations, but this is not so. Few, if any, professionally sup­
ported programming languages offer means for expressing temporal notions 
such as absolute times, relative time (intervals), delays, etc. The same is true 
for specification languages. Accordingly we see a bevy of very fascinating 
programming languages focusing on expressing synchrony: Es t e r e l [47,48], 
Lustre [256] and Signal [248]. We also see specification languages involving 
temporal notions: Timed Automata [9], TLA (Temporal Logic of Actions) [331] 
and Duration Calculus [537,538]. We also find some which provide for the 
expression of state transitions: P e t r i Nets [313,421,435^437], MSCs (Message 
Sequence Charts) [302-304] and LSCs (Live Sequence Charts) [171,270,325], 
and S ta t echa r t s [265,266,268,269,271]. We shall have more to say about 
Petri nets, sequence charts, statecharts and the duration calculi [537,538] in 
Vol. 2's Chaps. 12-15. 

What does this plethora of programming and specification languages sig­
nify? First, it tells us that we are still in the early days of computing science, 
and hence software engineering. Proposals for new and better languages, or 
for altogether different language paradigms, are being put forward continually. 
It also probably tells us that we should not seek "universal" languages, that 
could handle all the "things" that one wishes to express. We shall probably 
have to settle for using combinations of different languages when specifying 
and when implementing problems. 

More generally, it tells us that we shall, in these volumes, be content with 
the formal specification languages that are available today, while recognising 
their (and our) shortcomings. That is, there are situations in these volumes 
where we would like to show a formal specification of a problem, but where 
that would entail a longer introduction of a "new" notation, or where we 
simply have to give up because no pleasing or adequate or even known such 
language can be found! 
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1.4.6 Other Formal Tools 

The most well-known formal tool for software development is a compiler: It 
accepts programs in a formal language, the source programming language, it 
checks that input programs satisfy a wide variety of static properties, and 
if so, it generates an output program in a target coding language, such that 
the meaning of the input program is preserved in the meaning of the output 
program. To do this properly a compiler embodies a number of instantiations 
of theoretical artifacts. These include a finite state machine which processes 
(ASCII) character strings into either keyword or identifier tokens, and other 
symbols into appropriate delimiter or operator tokens; a push-down stack 
machine which processes strings of tokens and creates, while checking, suitable 
internal representations of the input program (dictionaries, a parse tree, etc.); 
a rewrite system that transforms these internal representations into other, 
sometimes claimed optimised representations; and another rewrite system that 
finally transforms possibly resulting internal representations into output code. 

Other formal tools are possible and exist: type checkers for abstract specifi­
cations; general data or control flow analysers, proof checkers, proof assistants; 
model checkers, theorem provers, and program interpreters. These, together 
with compilers, are all examples of what we in general call abstract inter­
preters, or partial evaluators. The current understanding of the role and pos­
sibilities of abstract interpretation is far from complete [163,164,215,231,320]. 

1.4.7 Why Formal Techniques and Formal Tools? 

Some Rationale 

Engineering, in its classical forms, civil, mechanical, electrical, all deploy cal­
culations in one form or another. They do so in order to determine structural 
properties and design parameters, for example, for reinforced concrete or steel 
constructions, aircraft wing design, electrical transformer design, and so on. 
When we drive over a bridge, fly in an aircraft, or use some electrical appli­
ance, we do so with some confidence that the classical design engineers have 
been properly trained in how to, and, when required, can, and indeed do, 
perform such calculations. 

When we use an ordinary text processing system, yes, even when we send 
otherwise "innocent" (read: unimportant) e-mails, then we do not bother 
much about the "error-freeness" of that software. But when we fly an air­
craft, or live next to a nuclear power plant, or receive our monthly paycheck 
(calculated from a myriad of interdependent tax regulations), or follow in­
structions from a medical doctor, and when we are told that any of these, 
the aircraft, the power plant, the paycheck processing and the medical advice, 
are monitored and partly or fully controlled by a computer, we may wonder 
about the correctness of the relevant software! But are the software engineers 
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comparatively well trained in the many calculi that do indeed exist today for 
securing trust in the software, and, if so, are they actually deploying such cal­
culi? The answer is, wrt. current practice, sadly, no! These volumes will teach 
you some, but certainly far from enough, such calculi, i.e., formal techniques. 

The answer to the rhetorical question of this section, Why formal tech­
niques and formal tools? is therefore: Because we need the highest possible 
degree of trust, given today's knowledge, in our software! Since it can be done, 
namely, ensuring highest possible degree of trust, it must be done. Not en­
suring so would be tantamount to cheating the customer — also known as 
criminal neglect! 

Anecdotal cum Analogical Evidence 

Until the mid-1700s most ships' captains (and their ships' mates) did not 
know how to reckon the longitude14. The chronometer was first fully available 
and known by the last quarter of the 1700s. Samuel Pepys15 commented on 
the pathetic state of navigation: 

It is most plain, from the confusion all these people are in, how to make 
good their reckonings, even each man's with itself, and the nonsensical 
arguments they would make use of to do it, and the disorder they are in 
about it, that it is by God's Almighty Providence and great chance, 
and the wideness of the sea, that there are not a great many more 
misfortunes, and ill chances in navigation than there are. 

We bring that story here for analogical purposes. 
We claim that developing software without using formal techniques is like 

sailing the high seas without knowing how to compute the current longitude. 
We claim that nobody can become a ship's mate, much less a captain, if they 
do not know how to compute the longitude. 

It is as simple as that, but the problem itself is not simple. It was, perhaps, 
more obvious, that the chronometer had indeed solved the longitude problem. 
To some it is still not obvious that formal specification and related techniques 
(verification, etc.) have brought us a long way towards having solved the 
software development problem. 

1.5 Method and Methodology 

We refer to Vol. 3's Chap. 3 for a more thorough treatment of the concepts of 
method, methodology, principles, techniques and tools. Suffice it here to give 
a brief account of these terms. 

14Those "funny" lines (on a map of the world, or, as here, more appropriately, of 
the seas) which stretch between the arctic poles. 

15 Prom a trip as a high official of the British Royal Navy, 1683, from England to 
Tangier. 
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1.5.1 Method 

Character isa t ion. By a method we understand a set of principles for select­
ing and applying a number of analysis and synthesis (construction) techniques 
and tools in order efficiently to construct an efficient artifact, here software 
(i.e., a computing system). • 

The above will be our guiding characterisation of the concept method. It 
will flavour these volumes. We will endeavour to enunciate such principles, 
techniques and tools that will guide the software engineer in where to start, 
how to proceed and where to end. 

In the above characterisation we have also emphasized the things about or 
to which the principles, techniques and tools are concerned or apply, select­
ing, applying, analysis, synthesis (construction) and efficiency. Humans select 
the principles, techniques and tools. Hence choices of selection form a crucial 
aspect of a method. We, humans, or machines, i.e., tools, apply techniques. 
Hence modes of application form a crucial aspect of a method, likewise for 
analysis and construction. Efficiency, as a concept, applies both to the devel­
opment process and to the developed artifact. We have added efficiency as an 
attribute of the concept of a method. 

1.5.2 Methodology 

Characterisation. By methodology we understand the study of, and the 
knowledge about one or more methods. • 

These volumes also cover methodology: We will contrast several methods, 
including several alternative principles, techniques and tools. No one method 
suffices for all software. There are a number of principles, techniques and tools 
that can help us. But for any one method there are still principles, techniques 
and tools to be identified, studied and tried out. 

1.5.3 Discussion 

The principles are to be interpreted by humans. The selection and analysis is 
to be mostly performed by humans. Some techniques and some tools can be 
used by machine, i.e., are formalised. But far from all. Hence it is a misnomer 
to refer to a concept of formal methods. It seems appropriate to refer to some 
techniques and some tools as being formal. So we conclude: Methods cannot 
be formal. 

1.5.4 Meta-methodology 

In this book, that is, in these volumes we shall highlight certain pieces of 
texts. These highlighted texts are concerned with 
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• characterisations, 
• definitions, 
• principles, 
• techniques, 
• tools, and 
• examples 

as follows. In the text the following kinds of highlighted texts will stand out. 
Please take appropriate note of these texts. 

Characterisation. Characterisations are descriptive texts. They are not pre­
cise definitions. • 

Definition. Definitions are descriptive texts at the level of mathematical 
precision. We present definitions either as shown in the present definition, as 
numbered and highlighted paragraphs, or as mathematical texts or as RSL 
specifications. • 

Principles. Principles are here seen as comprehensive and fundamental laws, 
doctrines, assumptions or rules (codes) of conduct underlying the pursuit of 
software engineering. It is our principle to enunciate characterisations, defini­
tions, principles, techniques and tools, and to bring many examples. • 

Techniques. Techniques are here concerned with the manner in which tech­
nical details are treated by the software engineer. The techniques of presenting 
highlighted characterisations, definitions, principles, techniques and tools are 
basically those used for descriptive texts. • 

Tools. Tools are here seen as intellectual (or even software) devices that 
aid in accomplishing a task, that is, are used in performing an operation or 
necessary in the practice of the profession of software engineering. The tool 
for presenting highlighted characterisations, definitions, principles, techniques 
and tools is that of English. • 

Example 1.6 The previous five boldface highlighted paragraphs together 
exemplified the ideas enunciated in this section. They all ended with the "•" 
symbol; and so does does this example. • 

1.6 The Very Bases of Software 

This section previews the core issues of software engineering. The treatment 
here is, perhaps, a bit taxing, that is, it requires careful reading. You may 
wish to skip this section and return to read it after having studied, for 
example, the first half of this volume! 
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Before introducing types, functions and relations, algebras, and logic, we must, 
however, first cover some even more basic material: What is meant by didactics 
and paradigms, and what is meant by semiotics, that is, pragmatics, semantics 
and syntax. In other words, this section collects and presents a number of basic 
concepts, and as such it is a prelude to Part II of this volume. 

1.6.1 Didactics and Paradigms 

Life is rather a subject of wonder, than of didactics 

Ralph Waldo Emerson 1803-1882 

We are guided by paradigms, see Sect. 1.6.3. Good paradigms, we claim, reflect 
reasonably clarified didactics. 

The Shorter Oxford English Dictionary [350] (OED) defines: didactics hav­
ing the character or manner of a teacher; characterised by giving instructions; 
instructive; preceptive; and systematic instruction. 

We shall, in these volumes, take the word didactics to mean the basic 
ideas of practical or theoretical nature upon which the practice of a field of 
human activity is (best, or reasonably) pursued. We claim that our rendi­
tion is commensurate with the OED explanation. There are other didactic and 
practical bases for software engineering than just types, functions, algebras 
and mathematical logic such as mentioned earlier. Although we shall in later 
volumes devote separate chapters to covering these other didactic bases in 
detail, we shall, in order that we may be able to refer to the very essence of 
these bases (before we reach those chapters), cover the concepts briefly. They 
are semiotics and descriptions. 

1.6.2 Pragmatics, Semantics and Syntax 

Semiotics can, for our purposes, fruitfully be understood as the study and 
knowledge of pragmatics, semantics and syntax of language. That is, respec­
tively the use, meaning, and analysis and synthesis of language texts. 

Pragmatics 

Characterisation. By the pragmatics of a language we mean its use in social 
context: Why a particular expression used? What "ultimate" motive lies 
(seems to lie) behind an utterance, an expression. • 

We have some ulterior motives when specifying: What is it? What are they? 
Pragmatics, characterised somewhat convolutely, is that which cannot be for­
malised! Pragmatics is the "real thing". Syntax and semantics enable us to 
convey and, it is hoped, to understand, those "real things"! 

Software specification languages and, more generally, computing systems 
specification languages serve to describe domains, prescribe requirements and 
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specify software designs. Thus their pragmatics, as well as the pragmatics of 
the individual domain, requirements and software design specifications, are 
that they are able to cover that spectrum, and that they, individually, allow 
for certain kinds of for example trustworthy and manageable development. 
Thus the design of any specification language, such as B, Cafe-OB J, CASL, 
RSL, VDM-SL and Z, has taken into account which target applications that 
language best caters to. The main specification language of these volumes 
is RSL. As we shall see, RSL covers a rather broad spectrum. Two, amongst 
several more, important aspects of RSL are that it allows modular, reusable 
development and provably correct development. 

Semantics 

Characterisation. Semantic is about the meaning of what we express syn­
tactically. • 

We shall later sharpen this characterisation, but first we express some deeply 
felt dogmas. Semantics, in some sense, is what it is all about abstractly! Prag­
matics, in that sense, is what it is about concretely, in a specific social, human 
context. If we cannot express the essence abstractly, then we have not under­
stood it. Then we can only have little trust in any software derived from 
such an incomplete understanding. Software is, by nature, abstract and is 
necessarily conceptual. Therefore it is more important to capture, mentally, 
the semantics before we search for a way to express it syntactically. Our best 
abstractions are those of mathematics. Mathematics is the science of abstrac­
tion. 

So what is the semantics of RSL specifications? To appreciate and under­
stand the choice made for the semantics of RSL, let us consider some very 
basic RSL specifications. Usually a specification names "things". 

Example 1.7 Semantics of Class Specifications: Our example is just that: It 
does not model anything "practical", but illustrates, at a minimum cost of 
symbols, what we wish to say about semantics. 

[0] scheme EXAMPLE = 
[ 1] class 
[2] type 
[3] A = Int, B = Nat 
[ 4 ] value 
[5] f : A - > B 
[ 6 ] axiom 
[7] [ bijection ] 
[8] V a:A,a':A • a^a ' => f(a)^f(a') 
9 end 
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Five things are named: (i) A class expression (EXAMPLE, lines [1-8]), (ii-iii) 
two types of values, A and B (lines [2-3]), (iv) a function, a value, f (lines [4-5]) 
that maps As (integers) into Bs (natural numbers), and (v) an axiom bijection 
(lines [6-7]) that expresses that f for distinct arguments yields distinct results. 

Of the five things named only four designate specific mathematical entities. 
The axiom name, always enclosed in brackets, [...], may be put before the 
axiom keyword, and is there for a pragmatic reason so that we can refer to 
that axiom. Thus axiom names are optional and can be omitted. 

Now what semantics does RSL ascribe to the identifiers EXAMPLE, A, B 
and f? We start "inside out": A and B stand for the sets of integer, respec­
tively sets of natural number values, and f for any function that satisfies the 
axiom. The class definition, EXAMPLE, etc. (lines [0-8]) now stands for a set 
of models, where a model provides a mapping from identifiers, such as A, B 
and f, into their meanings. All members of the set of models have A and B 
stand for the same universes of integers, respectively natural numbers, but 
each member of the set has f map into a distinct function from A into B, such 
that this set of models exhibits all such functions f in fact infinitely many! 
Hence EXAMPLE stands for an infinite set of models. 

We summarise: Each type and value thing named by the specifier, e.g., 
you, in a specification, has a meaning. And that meaning may determinis-
tically be a value, or a specific set of (typed) values, as for type names, or 
nondeterministically be one or another from amongst a possible infinity of 
values, as for the illustrated function name. So, functions can be values. The 
set of all values contains the set of all functions. Combining two or more such 
meaningful identifiers as here in a class expression, or just as a juxtaposition 
of definitions without the class keyword and class name results in a named, 
respectively unnamed set of (one or more) models. Axioms may be so con­
straining that there may be no model that satisfies the axioms. Or there may 
be a finite number of models, including just one! 

Let us "display" the set of models for the class expression (lines [0-8]): 

{ 
[A H. { .. ,-2,-1,0,1,2,..- }, 
B -> { 0,1,2,... }, 
f i-> Aa • if a<0 then 

3*(2*(—a)) else if a=0 then 0 else 3*(l+2*a) end end, 
... ], 
[A •-> { . . ,-2,-1,0,1,2,. . . }, 
B -> { 0,1,2,... }, 
f t-> Aa • if a<0 then 

5*(2*(—a)) else if a=0 then 0 else 5*(l+2*a) end end, 
... ], 
[A •-> { . . ,-2,-1,0,1,2,. . . }, 
B -> { 0,1,2,... }, 
f i-> Aa • if a<0 then 
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7*(2*(—a)) else if a=0 then 0 else 7*(l+2*a) end end, 

By Aa:A«E(a) we mean the function which when applied to an argument x in 
A yields a value as prescribed by the function body E(x), i.e., where all free 
a in E{a) have been replaced hy x. By the ellipses, that is, . . . , we intend to 
show that the model may contain parts which map other identifiers into other 
mathematical values. • 

In the rest of these volumes we shall return, again and again, to semantic 
models of the above kind. 

Syntax 

Characterisation. Syntax is about how we can, in our case, write down 
specifications: rules of form, basic forms and their proper compositions. These 
rules for formal languages are to be of such a nature that the forms, that is, 
the language expressions, can be analysed, and such that, from the analysis, 
one can 'construct' (construe) the meaning. • 

Syntax is, of course, important, but its importance is secondary to semantics! 
We should strive for semantic clarity, then syntactic elegance. If the idea to 
be expressed is "muddled", then no matter how beautiful the syntactic forms 
may be, humans will not easily understand them! 

You have already seen some RSL syntax, for example, the scheme definition 
of Example 1.7. Since RSL is aimed at a rather wide spectrum of applications 
and at a full spectrum of development, from descriptions of actual domains, 
via requirements prescriptions to abstract software designs, the RSL syntax is 
rather "rich". That is: has many entities. We shall try unravel these, gently, 
as we go along in these volumes, and only introduce the syntax that we need 
up to any given point in these volumes. 

The syntax of class expressions, as exemplified above, thus appears to be 
covered by: 

<class_expression> ::= 
class 

type 
< type-definitions > 

value 
<value_definitions> 

axiom 
< axiom_definitions > 

end 
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But since there are many more aspects to class expressions than illustrated 
so far, the syntax is more complicated than hinted at above. 

When explaining a specification language construct we ought systemati­
cally cover its general forms and its static semantics, that is: which constraints 
limit the use of for example identifiers, operator symbols, keywords, delim­
iters, etc. and its meaning. We will, however, only give cursory explanations, 
leaving details to the RSL Reference Handbook [236]. 

1.6.3 On Specification and Programming Paradigms 

We are guided by paradigms: 

(1) Paradigm: thing copied. 
(2) Model: pattern, standard, rule, original, mirror; 

(3) Prototype: archetype, antetype; 
(4) Precedent: lead, representative, epitome 

Rogers International Thesaurus [445]. 

Using paradigms we construct artifacts: 

The universe . . . was made exactly conformable 
to its Paradigme, or universal Examplar. 

(The Shorter Oxford English Dictionary [350].) 

These volumes are structured according to a set of specification paradigms. 
And these again rest on what we believe are the didactic bases of the practice 
and theory of software engineering. 

So which are the "most basic" paradigms? Generally, we can say this: 
Abstraction is a specification paradigm; so is "favouring, encouraging" non-
determinism in specification. Respective programming styles — functional 
(also referred to as applicative), logic, imperative, and parallel program­
ming — represent a programming paradigm. Favouring a specification style 
that allows formally verifiable transformations of (more) abstract specifica­
tions into (more) concrete ones, and these finally into 'executable programs 
— is a software development paradigm. There are then paradigms within 
paradigms: Practicing the functional specification (or the functional pro­
gramming) paradigm may then be according to, for example, the continu­
ation [59, 63, 315, 392, 404, 440, 471, 487, 513, 514] programming paradigm. 
Likewise practicing the parallel specification (or the parallel programming) 
paradigm may then be according to, for example, the CSP, i.e., the communi­
cating sequential processes, [287,288,448] paradigm, and so on. 

1.6.4 Descript ions, Prescriptions and Specifications 

We shall, in these volumes, try strictly to use the following terms consistently 
and according to the following overlapping classification: 
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• Description: As a general term encompassing the below, and as a special 
term in connection with textual characterisations of domains. 

• Prescription: As a specific term used primarily in connection with require­
ments. 

• Specification: As a general term encompassing the above, and as a special 
term in connection with textual characterisations of software designs. 

• Definition: As a general term encompassing formalisations, also of the 
above; and as a special term in connection with certain textual char­
acterisations, namely and specifically, those parts that constitute proper 
definitions as distinguished from designations and refutable assertions. 

Software Specifications, Requirements Prescriptions and Domain 
Descriptions 

To direct a computer to perform any computation it must be so instructed. 
These instructions form a program. A program is a finite specification of 
possibly infinite sets of possibly infinite computations. So, descriptions, pre­
scriptions and specifications form the most essential object of our endeavour: 
to develop software. We first explain the idea of specification, then the idea 
of prescription, and finally we explain the idea of description. 

We specify computations; thus: to design software we specify how the 
computations should proceed: the how is an end goal. We prescribe the what, 
that is, the requirements that we expect the subsequently designed software 
to fulfill. And, before all that we describe the actual world in which these 
computations are to occur, that is, the (application) domain. 

1.6.5 Metalanguages 

We use language, say Ai, to describe or "to talk about" other languages, say 
C. One cannot use C to describe C. It leads to nonsense. M is said to be a 
metalanguage for C. To describe M we need another metalanguage, or, as we 
could call it, a meta-metalanguage M!. 

The language, say A4, in which we explain mathematics, i.e., the notation 
of mathematics and its meaning, A/", is thus necessarily different from N. We 
do not describe M. 

1.6.6 Summary 

We have briefly introduced the notions of didactics and paradigms; and of 
semiotics: pragmatics, semantics and syntax. We have also introduced docu­
ments: informative, descriptive and analytic, as well as (domain) descriptions, 
(requirements) prescriptions and (software) specifications. We have finally in­
troduced the notions of metalanguages, and object languages. 

We shall later cover these in quite some detail. Suffice it, for now, to say 
that the reader now knows that these are basic concepts whose reasonable un­
derstanding is indispensable when pursuing professional software engineering. 
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1.7 Aims and Objectives 

By the 'aims of these volumes' we mean the topics that we will be covering or 
dealing with. By the 'objectives of these volumes' we understand that which 
we wish to achieve through covering certain material. 

1.7.1 Aims 

The Main Aims 

The main aims are to teach you general software engineering principles, tech­
niques and tools. That is (in Vol. 3): those of domain engineering, of require­
ments engineering and of software design. Among these we additionally single 
out and teach principles, techniques and tools of abstraction and modelling 
in (Vols. 1-2); of description (in Vol. 3); and of documentation (in Vol. 3). 

Some Other Aims 

Additional aims are those of providing appropriate mathematical foundations, 
(Vol. 1, Part II), of ensuring appropriate understanding of semiotics issues: 
pragmatics, semantics and syntax (Vol. 2, Part IV), and of doing all of this 
within an appropriate framework of models and definitions (Vol. 3, Chaps. 4 
and 6). 

An aim, altogether "orthogonal" to the other aims above, is to illustrate 
development components of software for the support of large, distributed and 
concurrent infrastructure subsystems and systems. 

1.7.2 Objectives 

The Main Objectives 

The main objectives are to help ensure that you become a professional engi­
neer within software, to thus help ensure that the software (cum computing) 
systems, in whose development you are involved, become trustworthy systems 
of highest attainable quality, and through our emphasis on exemplifying the 
development of software (cum computing) systems for infrastructure compo­
nents to help ensure that you, with colleagues, believably can develop highly 
sophisticated systems. 

Some Other Objectives 

Other objectives are to put the broader concerns of software engineering, 
such as treated in these volumes, in the context of other, indispensable and 
more specialised computing science disciplines such as artificial intelligence 
and knowledge-based systems, compiler systems, concurrent, safety-critical 
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and real-time application systems, database management systems, distributed 
systems, operating systems, secure, en- and decryptable systems, and so on. 
Another objective is to show that formal techniques are applicable, in all 
phases, stages and steps of development, and to all kinds of computing sys­
tems. 

1.7.3 Discussion 

The usual aims and objectives section has been dispensed with, but with a 
change: usually the two concepts, aims and objectives, are "lumped" into one 
treatment. Here we have separated them, properly. 

There is a conceptual triangle: there is the author of these volumes; there 
is you, the reader, who studies its contents; and there is the most important 
thing: the subject itself: software engineering. Aims are about which software 
engineering topics the author wishes to cover, i.e., to teach you. Objectives 
are about which effects, with respect to the discipline of software engineering, 
the learning of these topics is to have on you. In other words aims are about 
'what'; objectives are about 'why'. 

1.8 Bibliographical Notes 

This book, all three volumes of it, is different from most other textbooks on 
software engineering. We shall single out the following major ways in which 
this book differs from the following textbooks: [423,430,475,512]. First they 
really are short on real development examples: there are hardly any real ex­
amples of specification and design. The present book, all three volumes of it, 
hinges crucially on real examples of specification and design. Second, when 
they bring a chapter on formal methods, do so in a separate chapter "tucked 
away" somewhere, ad hoc. The present book emphasises the use of formal 
techniques in all phases, stages and steps of development. Third, they, also 
including [240], do not bring any material on domain engineering. It is perhaps 
the last thing, domain engineering, in which this book is really new. 

One very nice book, [240], does show a lot of formal techniques. Ours 
show almost all, if not all, of these techniques, and many, many more, and 
puts these techniques in the context of an overall methodology. The book by 
Watts Humphrey [298] is a wise book on management. "Hard to beat". The 
book by Hans van Vliet [512] is, in our mind, the best overall of the above-
referenced books when it comes to these practical and management issues. 

1.9 Exercises 

Exercise 1.1. The Sciences: Can you define what we, in these volumes, mean 
by computer science, and what we mean by computing science. 
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Exercise 1.2. Project Management Issues: Can you list some of the more 
practical, i.e., project management issues of software engineering. 

Exercise 1.3. The Triptych of Software Engineering: Please list the three 
main phases of software engineering as put forward in this volume. 

Exercise 1.4. Documentation: Can you list the three major classes of doc­
uments (as put forward in this volume) and, within each of the classes, can 
you list some of the major document parts. 

Exercise 1.5. Formal Techniques and Formal Languages: Please define what 
these volumes mean by formal techniques and by formal languages. 

Exercise 1.6. Method and Methodology: What does these volumes mean by 
(an efficient) method, and by methodology? 

Exercise 1.7. The Very Bases: What does this chapter hint at as the meaning 
of a specification? 



Part II 

DISCRETE MATHEMATICS 

We cover basic notions of mathematics in a somewhat circuitous way: in-
between treatments of numbers (Chap. 2), sets (Chap. 3), Cartesians (Chap. 4), 
functions (Chap. 6), A-calculus (Chap. 7), algebras (Chap. 8) and logics 
(Chap. 9), we put a treatment of types (Chap. 5). There is a reason for this. A 
reasonable sequence of topics would be numbers, sets, Cartesians, functions, 
A-calculus, algebras and logics. Each of these mathematical domains entails 
sets of values. We group characterisable subsets of these into types, where 
types, naively, are sets of values: types whose values are sets, and types whose 
values are Cartesians. The members of sets and the elements of Cartesian 
values are just postulated to be of some type. 

From types (of values) we can then construct new types: types whose values 
are functions, typically from values of Cartesian types to values, etc. And then 
we can present algebras as typed sets of entities and operations over these. 
Finally, we can introduce mathematical logic — allowing quantifications to 
range over specified types. Types thus permeate our treatment of the mathe­
matical universes of numbers, sets, Cartesians, functions, A-calculus, algebras 
and logics. Some textbooks on discrete mathematics are [260,420,425,481]. 
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Numbers 

• The prerequisite for studying this chapter is that you possess at least a 
simple level of mathematical maturity. 

• The aim is to introduce the simple concepts of numbers. 
• The objective is to help ensure that the reader, in the future, handles 

the various types of numbers: natural numbers, integers, rationals, reals, 
transcendentals, with ease, naturally and correctly. 

• The treatment is informal, but systematic. 

"God created the integers, all else is the work of man," so said Kronecker, 
or so it is believed he said. 

2.1 Introduction 

Our interest, in these volumes, and hence in modelling some universe of 
discourse phenomenon by means of numbers, is not in the deeper number-
theoretic properties,1 but in the simpler, rather more shallow properties: Num­
bers are strictly ordered and reals are densely packed. 

There are many kinds of numbers, to wit: natural numbers: 0,1,2, . . . ; 
integers: . . . , —2,—1,0,1,2, . . . ; rationals: consisting of both integer (viz., 
ijj) and fractions, | , for all integers i, j where j / 0; irrational numbers; 
real, imaginary and complex numbers; and transcendental numbers. Although 
we shall have occasion, even for a very large variety of typically man-made 
"systems", to use only natural numbers, integers and reals, it may be a good 
idea to become familiar with all these other number concepts as well. The 
aim is to make sure that you are well aware of those means we have chosen 
to make available for our modelling endeavours, and those we have not! 

1 Properties such as prime numbers, factorisation, irrationality or transcendental 
numbers: Euler's Theorem and Fermat's Little Theorem, Euler's phi-function, de 
Polignac's formula, Mersenne primes, Mobius's function, Euclid's algorithm, Pell's 
equation, and so on [263]. 
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2.2 Numerals and Numbers 

A numeral is a name for a number. No-one (in a s tate of sober mind) has 
ever seen a number. Numbers are abstract mathematical quantities. They 
are characterised by their properties. For every number tha t exists in the 
universe of mathematics , there is exactly one copy: the original. For many 
numbers there are simple names, and often there is more than one distinct 
simple name for the same number: 

7, seven, sieben, sept, syv, ... 

For most numbers there are simple or composite names: 

14/2, 6+1, 2*4-1, ... ; vii, III, mini. ... 

By a digit we understand a simple numeral for a special number: If in radix 
(i.e., base) ten, then the digits are the decimal digits, usually written 0, 1, 2, 
3, 4, 5, 6, 7, 8 and 9. If in radix two, then the "digits"2 are the binary digits, 
usually writ ten 0 and I. If in radix one (!), the "digit" is a marker, or its 
absence: i. If we can speak of Roman "digits" they would be: I, V, X, L, C, D 
and M. 

2.3 Subsets of Numbers 

We shall briefly survey such facts about numbers tha t will turn out useful in 
specifications, natural numbers and integers, rational numbers and reals. We 
also take a brief look at other kinds of numbers: irrational and transcendental 
numbers. 

2.3.1 N a t u r a l N u m b e r s : N a t 

By the natural numbers we understand those tha t are basically characterised 
by Peano's Axioms (Example 9.21 on page 190). By N a t we designate the set 
of all natural numbers. We write the natural numbers based on the following 
B N F 3 grammar: 

<NatNum> : : = <DecDig> I <DecDig> <NatNum> 
<DecDig> : : = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

<DecDig> stand for decimal digits. 

2We really should reserve the name digit only for the base numerals in base-10 
systems, since 'digitus', in Latin, stands for finger. 

3By BNF we mean 'Backus Normal (or Naur) Form'. We assume that the reader is 
familiar with the notion of such BNF grammars, including is familiar with the notion 
of context-free grammars. 
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Example 2.1 Semantics of Decimal Digit Natural Numerals: Let us perform 
the following thought experiment: Let 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 "somehow 
be" the natural numbers corresponding, left to right, to the decimal digits 0, 
1, 2, 3, 4, 5, 6, 7, 8, 9; then 

M: <NatNum> - • Num 
M(d,n) = 10*M(d) + M(n) 
M(d) = case d of 0-^0,1->1,...,9->9 end 

informally explicates the meaning of a natural number numeral. • 

Notice that M is a morphism (see Sect. 8.4.4 for the concept of morphism). 
We explain the notation used in the above example. We owe you an ex­

planation as to how M is able to distinguish between the natural number, 
<NatNum> which is just a decimal digit, <DecDig> and one which is the com­
posite form, <DecDig><NatNum>. Later, when we have introduced the appro­
priate "machinery", we can also present the syntax and type definition forms 
by means of which RSL, and other specification languages, solve the distin-
guishability problem. 

But we can explain the rest: If the number is of the composite form then 
M(d,n) is the sum of ten times the value of the first digit and the value of 
the rest of the numeral. If the number is just a digit then there are 10 cases 
to distinguish. If the digit is the digit 0 then the value is the mathematical 
number 0, etc. Had we chosen to write the digits by the character strings 
zero, one, two, . . . , nine then the case distinction would have been on these 
character strings, but resulting, to the right of the —»'s, in the same boldfaced 
number designators. 

Example 2.2 Semantics of "Quadruplet" Binary Digit Natural Numerals: 
By "quadruplet" binary numerals we mean those strings of one or more special 
quadruplets of Os and Is, namely: 0 0 0 0 , 0001, 0010, 0011 1000, 1001. 
Then we again have the same right-hand sides: 

type 
(QuaNum) ::= (QuaNum) (QuaDig) | (QuaDig) 

value 
M: (NatNum) - • Num 
M(d,n) = 10*M(d) + M(n) 
M(d) = case d of 0 0 0 0 - > 0 , 000I->1, ..., 1 0 0 0 ^ 8 , IOOI->9 end 

Explanation of Some RSL Constructs 

In other words, the "case e of p\ —>e[, P2—^2? . . . ,pn—>ef
n end" construct has 

a first argument which is an expression e of any value and of any type, and a 
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second argument which is a sequence of "triples" separated by commas: Pi-te^ 
for i being 1 for the first triple, right after the of keyword, 2 for the next, etc. 
If the value of e can be expressed as the pattern, inclusive, as here, of having 
the value of that pattern, then the value of the whole case construct is that of 
the value of ej, else we try the next triple. If no triple yields a comparison that 
equals, that is, that 'matches', then the value of (the whole case construct) 
expression is chaos. We shall have more to say about patterns later. 

2.3.2 Integers: Int 

Integers derive from natural numbers by including those numbers that are 
negations of natural numbers. That is, if i is an integer, and — i = j is its 
negation, then i+ j = 0. 

Properties 

Let a, b and c stand for integers. Some important properties of integers are: 

[ Associativity and Commutativity of + and *: ] 
a+(b+c) = (a+b)+c, a+b = b+a 
a*(b*a) = (a*b)*c, a*b = b*a 

[ Distributivity of* over +: ] 
a*(b+c) = a*b + a*c 

[ Properties of 0 and 1: ] 
0+a = a, l*a = a, 0*a = 0 

[ Properties of —: ] 
(—a)+a = 0, (—a)*b = —(a*b), (—a)*(—b) = a*b 

[ Cancellation Laws: ] 
a+b = a+c => b=c, a^O —> (a*b=a*c => b=c) 

[ Properties of Order: ] 
a>0 A b>0 => a*b > 0 
V a:Int • a<0 V a=0 V a>0 [ Trichotomy ] 

[ Definition of Addition and Multiplication: ] 
s:Int->lnt, s(i) = i+1 = i' 
a+0 = a, a+s(b) = s(a+b) = a+b+1 
a*0 = 0, a*s(b) = (a*b)+a 

[ Integer Division: ] 
a / b as (q,r) where a = b*q+r A 0<r<b 

The RSL Integer Algebra 

The RSL integers can be indefinitely large, positive or negative. The usual 
operators are defined, as well as some not so usual operators \ and / . 
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value 
+,- , / ,* ,V Int x Int >̂ Int 
<,<,=,7^,>,>: Int x Int - • Bool 
- , t: Int - • Int 
abs: Int -> {| i:Int • i>0 |} 

axiom 
V n:Nat • abs —n = n = abs n 

The slash, / , and the backslash, \ , operators designate the integer division 
and remainder functions: 

V i , j : l n t . j ^ 0 ^ i = ( i / j ) * j + ( a \ b ) 

The t designates the integer exponentiation function. The second argument 
must be a natural number. If both arguments are zero then the result is chaos. 

2.3.3 Real Numbers: Real 

Real numbers, besides the integers, are additionally those that can be written 
(i.e., can be represented) as a pair of possibly infinite sequences of digits 
separated by, for example, a period. We indicate two extremes, the finitely 
writable reals: 

dndn-i . . . d\.d1d2 . . . dm_1dm 

and the doubly infinitely writable reals: 

...d'!dU---d'(.d'l'd'i'...d'l'_ld';1... 

for all combinations of digits dk,df
k,, d'^,,, d'l',,, ranging over 0,1, 2,3,4, 5, 6, 7,8 

and 9, for k,kf finite, and for — oo < k", k"1 < oo, whatever that means! 
Obviously, in RSL we can only write the finitely representable reals. 

Rational Numbers 

A rational number is a real which can be expressed as the division of two 
integers where the denominator is non-zero.: 

Rat = {| i/j • i,j:Int A j^O |} 

Every integer is a rational number. 

Operations on Reals 

RSL defines the following operations on real numbers: 
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value 
+,—,/,*: Real x Real >̂ Real 
< ,< ,= ,A> ,>: Real x Real -» Bool 
- : Real -» Real 
abs: Real -^ {| r:Real • r>0 |} 
int: Real —> Int 
real: Int —> Real 

axiom 
V n:Nat • abs —n = n = abs n 

The int and real functions convert a real to the integer nearest 0, respectively 
an integer to a real: 

int 2.71 = 2, int -2.71 = - 2 , real 5 = 5.0, and so on 

Thus intr is the greatest integer that is smaller than or equal to the absolute 
value of the real (r), with the sign being that of the real. 

2.3.4 Irrational Numbers 

The irrational numbers are all those reals which are not rational. 

2.3.5 Algebraic Numbers 

The algebraic numbers are all those real or imaginary numbers which are 
roots, r, of polynomial equations of the form: 

a * xn + b * xn~x H \-c*x + d = 0 

where n is any integer and where coefficients a, 6 , . . . , c, d are integers, A/2 is 
an algebraic number. A root is any number, r, which makes the value of the 
polynomial expression: 

a * xr + b * xr~x + \- c* x + d 

equal 0. We shall not have any basic need to deal with algebraic numbers. If, 
however, we were to develop a software system for calculations over polyno­
mials, then we would abstractly define polynomials as syntactic structures, 
and we would define functions that, for example, solve polynomial equations. 

2.3.6 Transcendental Numbers 

A real number which is not algebraic is called transcendental. Existence of 
transcendental numbers was first shown by the French mathematician Joseph 
Liouville4 in 1844. Examples of transcendental numbers are e and n. Again, 
in these volumes, we shall have no occasion to wish to express transcendental 
numbers, but we will provide means for modelling them. 

4See, e.g., h t t p : //www. s t e t son . edu/~ef r iedma/per iodic table /html/Lu. html. 
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2.3.7 Complex and Imaginary Numbers 

Complex numbers arise as the solution to certain kinds of polynomial equa­
tions. Such numbers (c) are, in ordinary mathematics, normally written as a 
pair of a real (a) and an imaginary (i b) number (where a and b are themselves 
reals): 

c : a + \b 

There is no explicit means for writing complex numbers in RSL, as RAISE was 
not intended for such applications where expressing or denoting complex num­
bers arise. If, however, we need to deal with complex number "representation" 
and operations, then we model them as pairs: 

type 
Complex = Real x Real 

value 
add, sub, mpy, div: Complex x Complex —> Complex 

add((al,ibl),(a2,ib2)) = (al+a2,ibl+ib2) 
sub((al,ibl),(a2,ib2)) = (a l -a2, ib l - ib2) 
mpy((al,ibl),(a2,ib2)) = (al*a2-ibl*ib2,al*ib2+a2*ibl) 
div((al,ibl),(a2,ib2)) = ... /* left as exercise */ ... 

2.4 Type Definitions: Numbers 

So when and where are numbers used when modelling domains, requirements 
and software? We model certain (concrete) phenomena and certain (abstract) 
concepts by means of numbers when operations on the phenomena and con­
cepts necessarily entail those of for example addition, subtraction, multipli­
cation, and, more rarely, division. 

A (concrete) type definition is something which to a type name associates 
a type expression. The type expressions introduce in this chapter were: 

type 
Nat, Int, Real 

Let TV, / and R be (arbitrarily selected) type names, then: 

type 
N = Nat 
I = Int 
R = Real 
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are examples of type definitions. N stands for the type, i.e., the class, of 
natural number values. / and R for integers and reals. 

With a person one can associate a height and a weight. With a country one 
can associate a population (i.e., number of citizens) and its decomposition into 
females and males. With that same population one can associate the annual 
increment or the decrement in population, i.e., deviation. Suggested types are 
therefore: 

type 
Height, Weight = Real 
Population, Female, Male = Nat 
Deviation = Int 

The above just constitutes a very first beginning in which we model 'kinds' 
of phenomena and concepts 

2.5 Summary 

We have introduced the natural number Nat, the integer Int and the real 
Real number types. In addition, we have shown how to express their values, 
and covered the usual operations on each of these kinds of values. The other 
number types mentioned are not directly designatable in RSL. 

Integers are usually deployed to model indices into arbitrary arrays of 
mathematics and hence in such programming languages which are used for 
mathematical calculations over arrays (vectors, matrices, tensors, etc.). Sim­
ilarly natural numbers larger than 0 are usually deployed to model indices 
into list data values, including, for example, sequences of sentence structures. 
Sometimes, in ordinary programs of ordinary programming languages, integers 
and natural numbers are occasionally used as programmer-chosen encodings 
of other phenomena than numbers themselves. 

Example 2.3 Undesirable Encodings: Typical encodings in "old" program­
ming styles were: 1 for truth and 0 for falsity; the numbers 1,2,3,4 for des­
ignating the suit, s, of a card, in a deck of cards: 1 ~ • , 2 ~ <^,3 ~ ?̂ and 
4 ~ A; and the numbers 1 , . . . , 13 for representing, within each suit, the face 
value, v, of the card: 1 ~ ace, i = i, 1 < i < 10, 11 ~ knight, 12 ~ queen, 
and 13 ~ king. As a result any ordinary (i.e., non-joker) card is encoded as a 
number pair (s,v), and such that the joker (card) may be represented as, for 
example, (5,14)! • 

We leave it to the reader to imagine for which purposes we use reals in abstract 
model specifications. 
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2.6 Bibliographical Notes 

The classical textbook cum monograph on number theory is that of Hardy 
[263]. 

2.7 Exercises 

Exercise 2 .1 . A Radix 0 Numeral Number System. Let natural numerals 
be represented by sequences of diamonds, o, such that o designates 0, oo 
designates 1, o o o designates 2, etc. 

(1) Define a BNF5 grammar for these radix 0 numerals. 
(2) Define a function R0R10, and another function R10R0, such that R0R10 

converts a radix 0 numeral to a radix 10 numeral, and such that R10R0 con­
verts a radix 10 numeral to a radix 0 numeral. Assume a modulo function 
which when applied to numbers m and n, i.e., modulo(ra,n), yields a pair, 
(ra', d), of numbers such that 0 < d < n, and m = n x ra' + d. 

(3) Define suitable arithmetic operators, addition, multiplication and in­
teger division, that take radix 0 numerals and return radix 0 numerals. 

Exercise 2.2. A Radix 8 Numeral Number System (I). Based on the idea 
of the informal Example 2.1, devise a grammar for a radix 8 natural number 
system, and an informal meaning function that converts radix 8 numerals into 
radix 10 numbers. 

Exercise 2.3. A Radix 8 Numeral Number System (II). Given a radix 10 
number, convert it to a radix 8 numeral. That is: Define, informally, a function 
which takes a natural number and yields a radix 8 numeral. Assume a function 
modulo which takes two arguments, ra,n, both natural numbers, both larger 
than 0, and yields a pair w, r such that w x n + r = ra. 

Exercise 2.4. Real Numerals. Suggest a BNF grammar for real numerals, that 
is, a pair of sequences of digits separated by a period. Then suggest an informal 
function definition which converts a real numeral to a real number. 

Exercise 2.5. Imaginary Numbers. We refer to Sect. 2.3.4. Please define the 
division of complex numbers (i.e., complex reals). 

Throughout this volume we shall use the triplets of 4ks to set off exercises that 
pertain to the "running" exercises of transportation nets, container logistics 
and financial service industries. The single X after the initial Exercise literal 
and exercise number shall signal that the exercise in question belongs to these 
running exercises. 

5We refer to Page 46 for an example BNF grammar. 
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Exercise 2.6. X Numbers in the Transportation Net Domain. 
We refer to Appendix A, Sect. A.l, Transportation Net. 
Reading, carefully, the rough sketch description given in Sect. A.l, try 

to identify as many entitites which can be, in a reasonable way, modelled as 
numbers. State their type definitions as outlined in Sect. 2.4 on page 51. 

Exercise 2.7. X Numbers in the Container Logistics Domain. 
We refer to Appendix A, Sect. A.2, Container Logistics. 
Reading, carefully, the rough sketch description given in Sect. A.2, try 

to identify as many entitites which can be, in a reasonable way, modelled as 
numbers. State their type definitions as outlined in Sect. 2.4 on page 51. 

Exercise 2.8. X Numbers in the Financial Service Industry Domain. 
We refer to Appendix A, Sect. A.3, Financial Service Industry. 
Reading, carefully, the rough sketch description given in Sect. A.2, try 

to identify as many entitites which can be, in a reasonable way, modelled as 
numbers. State their type definitions as outlined in Sect. 2.4 on page 51. 
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Sets 

• The prerequisite for studying this chapter is that you are willing to learn 
about simple mathematical concepts. 

• The aim is to introduce the basic mathematical concepts of simple sets. 
• The objective is to help ensure that the reader gets a head start on the 

most important of all model-oriented abstractions: sets. 
• The treatment is rigorous to formal. 

Characterisation. By a set we shall, loosely, understand an unordered col­
lection of distinct elements (i.e., entities), something for which it is meaningful 
to speak about (i) an entity being a member of a set (or not) G, (ii) the union 
(merging) of two or more sets into a set (of all the elements of the argument 
sets) U, (iii) the intersection of two or more sets into a set (of those elements 
which are in all argument sets) H, (iv) the complement of one set with respect 
to another set \ , (v) whether one set is a subset of another set C and C and 
(vi) the cardinality of a (finite) set (i.e., how many members it contains), card 
and a few more. • 

The concepts of sets and set elements are left undefined. Above we have hinted 
at some set forming and other operations over sets and their elements. What 
sets "really are" is usually defined in mathematics by establishing what is 
called an axiom system1. Axiomatically speaking, sets and their operations are 
what a number of axioms of a set theory define them to be! There are several 
axiom systems for set theory. They each define a set theory. The different 
set theories may therefore not be exactly the same. The perhaps best-known 
axiom system for set theory is that put forward by Zermelo/Fraenkel (ZF) 
[211,230]2. 

xWe shall later, in Chap. 9, define what we mean by axiom system. 
2See, for example: 

http://plato.stanford.edu/entries/set-theory/ZF.html 
http://mathworld.wolfram.com/Zermelo-FraenkelAxioms.html 
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3.1 Background 

Set theory is a major branch of mathematics . One can start by explaining 
mathematics from a basis of set theory, or from a basis of mathematical logic. 
We refer to seminal texts in set theory for a discussion of sets as a foundation 
for mathematics [46,211,230,258,273,394,491,500,505]. These texts also put 
set theory into a historical context. 

3.2 Mathematical Sets 

Let e i , e 2 , . . . , e n be arbi trary elements (i.e., mathematical entities). Let us 
assume, without loss of generality (of what we shall have to say next) , tha t 
they are all distinct and elementary, i.e., atomic. Tha t is, no ei involve func­
tions, or other sets, etc. Then when writing {ei , e 2 , . . . , en} we mean the set, 
which we may name s, of n distinct elements e^ for i = 1 . . . n . {} designates 
the empty set3 (of no elements). { and } are the set-forming braces. 

We take membership, G, of a set, e G s, to be a further unexplained 
primitive function, e G s holds, i.e., is t rue , if e is one of the e« for i = 1 . . . n. 
Otherwise the expression e G s i s false. 

Based on the membership function we can now define4 the s tandard col­
lection of operations over sets. Let e, s, s' designate any element and any two 
sets: 

s U s' = {e | e G s We G s'} 

s f l sf = {e | e G s A e G sf} 

s \ sr = {e | e G s A e 0 sr} 

s J s' = {e | e G sf A e 0 s} 

s C s' = Ve • e G s =^ e G s' A 3e • e G s' A e ^ s 

s C s ' = V e * e G s = > e G s / 

s = s' = s C s' A s' C s 

s ^ sf = -i(s = s') 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Since this an early exposition of logical formulas, let us "read" these: 

• Equation (3.1): The union of two sets, s and s', is the set of elements e 
such tha t e is a member of either the set s or the set s', or both. 

• Equation (3.2): The intersection of two sets, s and s', is the set of elements 
e such tha t e is a member of both the set s and the set s'. 

http://planetmath.org/encyclopedia/ZermeloPraenkelAxioms.html 
http://www.britannica.com/eb/article?tocld=24035, etc. 

3Sometimes the empty set is designated 0 . 
definitions 3.1-3.8 are all in the classical style of mathematics. 
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• Equation (3.3): The difference of set s wrt. set sr is the set of elements e 
such that e is a member of s but not of the set s'. 

• Equation (3.4): The complement of set s wrt. set sf is the set of elements 
e such that e is a member of sf but not of the set s. 

• Equation (3.5): s is a proper subset of set s' if all (V) members of s are 
also members of s', and such that there exists (3) members of s' which are 
not members of s. 

• Equation (3.6): s is a subset of set sf if all members of s are also members 
of*'. 

• Equation (3.7): Two sets are equal if one is a subset of the other, and vice 
versa. 

• Equation (3.8): Two sets are unequal if they are not equal. 

Definitions (3.1)-(3.4) exemplify set comprehension:6 

{e | V(e)} 

Figure 3.1 illustrates six of the above operations. The black circle to the left 
of the upper-leftmost subfigure stands for a set A; the other black circle to 
the right stands for another set B. The same is true for the subfigures of the 
first two rows. 

c 
• 
A f l B 

C ^_fi 

Fig. 3.1. Informal illustration of six set operations 

Thus the operator symbols of Eqs. (3.1)-(3.8) read as follows: V: or, A: and, 
0: not member of, Ve*: for all elements it is the case that, 3e*: there exists 
an element such that, -•: not. The first four definitions are by set compre­
hension. The last four definitions use universal and existential quantification. 

5When expressing set comprehension in the RSL notation we shall "add" a type 
binding: {e | e : T • V[e)}. 
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The symbol | reads: such that. The logic of these equations (i.e., definitions) 
is covered in Chap. 9. 

In summary: There are two ways of expressing sets: by enumeration: {}, 
{a}, {a, b}, etc., and by comprehension: {e \ e : T • P(e)}. We did not show 
the typing, T, of elements e in Eqs. (3.1)-(3.8). Take, for example, Eq. 3.1: 

s U sr = {e\e:T £ sV e£ S1} 

That is, we shall later bind elements of sets to specific types, and hence express 
that sets are typed sets. But we did show the use of the predicate (P over e). 
Later we will explain typing (Chap. 5) and predicates (Chap. 9). 

3.3 Special Sets 

3.3.1 Axiom of Extension 

The axiom of extension states that a set is completely determined by its 
elements. 

3.3.2 Partitions 

Let s be a set, say {01,02^0^,0^,0^,00}. A partition of s is a set of disjoint, i.e., 
nonoverlapping sets, for example, {si,S2,ss} = {{&i}? {^2,^3}, {&4,a5,ae}}, 
such that the union of these: {ai}U {02, Os}U {04,05,0$}, forms the set s. 

3.3.3 Power Sets 

Given a set, s, the power set of s, V{s), is the set of all its subsets. Thus, 
for o = {en,0,2,0,3}, V{s) is {{}, {ai}, {a2}, {a3}, {o1,a2}, {a i ,a 3 }, {a2,o3}, 
{ai ,a 2 , a 3 }}. 

3.4 Sorts and Type Definitions: Sets 

3.4.1 Set Abstractions 

So when and where are sets used when modelling domains, requirements and 
software? We model certain concrete phenomena and certain abstract concepts 
by means of sets when operations on these phenomena and these concepts 
necessarily entail those of for example a phenomenon (or a concept) being a 
member of a class of such, or a set union of such, or a set intersection of such, 
or one phenomenon (or concept) being set included in another, etc. 
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3.4.2 Set Type Expressions and Type Definitions 

A (concrete) type definition is something which to a type name associates a 
type expression. The set type expression introduced in this chapter was: 

B-set 

where B is any type (expression). Let B be an already defined type name, 
then: 

type 
A = B-set 

is an example of a type definition. A then stands for the type, i.e., the class, 
of sets of B elements. 

Example 3.1 Sociology: If a neighbourhood, N, of people consists of a set 
of people, if a clan (i.e., a family), C, similarly, and if a society (of people), 
5, consists of a set of neighbourhoods, then: 

type 
P 
N = P-set 
C = P-set 
S = N-set 

models neighbourhoods, clans, and societies, in terms of the undefined sort of 
people, P. m 

The above just constitutes a very first beginning in which we model kinds of 
phenomena and concepts. 

3.4.3 Sorts 

By a sort we shall understand a type about whose elements we make no further 
statements, that is, we do not, at present, say what they are. In other words, 
we leave them further undefined. 

3.5 Sets in RSL 

In Chap. 13 we shall cover, in excruciating detail, the concept of sets in RSL: 
how they are typed, enumerated, comprehended, operated upon, and used in 
various abstractions. 
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3.6 Bibliographical Notes 

Set theory and logic are classical mathematical disciplines, and are strongly 
related. Seminal textbooks in set theory are: [46,211,230,258,273,394,491, 
500,505]. 

3.7 Exercises 

Exercise 3.1. Simple Set Enumerations and Operations. (1) List, as set ex­
pressions, i.e., with curly braces and separated by commas, i.e., {_,_,..., _} the 
following finite sets: (a) The set of the first 10 Fibonacci numbers, (b) the set 
of the first 6 factorial numbers, and (c) the set of the first 6 square numbers. 
(2) Then list the set of elements resulting from the intersection set of a and 
b, the complement of a wrt. b (i.e., a\b), and the complement of b wrt. to a 
(i.e., a/b). 

Exercise 3.2. Set Statements. Fill in the texts implied by | j j and |_2j below: 

• If an element e is in An(BUC) then it is the same as saying that e is in 
|_jj and in 
If an element e is in (AnB)UC then it is the same as saying that e is in 
\l\ or in | 
If an element e is in A\(BC\C) then it is the same as saying that e is in 
111 but not in |_2_|. 

Notes for the next exercises: Let A be the main type of some domain 
(i.e., the Transportation Net, the Container Logistics, or the Financial Service 
Industry — such as outlined in Appendix Chap. A). If some major, i.e., an 
immediate subentity of entities of type A can be modelled as sets of entities 
of type B, then we can also say that we can observe these sets of (type B) 
entities: 

type 
A, B 

value 
obs_Bs: A ->> B-set 

Here obs_Bs is said to be an observer function that applies to entities of type 
A and yields sets of entities of type B. We say that we can observe these latter 
sets from elements of type A. 



3.7 Exercises 61 

Exercise 3.3. X Sets in the Transportation Net Domain: 
We refer to Appendix A, Sect. A.l, Transportation Net. 
Reading, carefully, the rough sketch description given in Sect. A.l, try 

identify as many entities which can be, in a reasonable way, modelled as sets. 
State their type definitions as outlined in Sect. 3.4 on page 58. Suggest related 
observer functions. 

Exercise 3.4. X Sets in the Container Logistics Domain. 
We refer to Appendix A, Sect. A.2, Container Logistics. 
Reading, carefully, the rough sketch description given in Sect. A.2, try 

identify as many entities which can be, in a reasonable way, modelled as sets. 
State their type definitions as outlined in Sect. 3.4 on page 58. Suggest related 
observer functions. 

Exercise 3.5. X Sets in the Financial Service Industry Domain. 
We refer to Appendix A, Sect. A.3, Financial Service Industry. 
Reading, carefully, the rough sketch description given in Sect. A.3, try 

identify as many entities which can be, in a reasonable way, modelled as sets. 
State their type definitions as outlined in Sect. 3.4 on page 58. Suggest related 
observer functions. 
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Cartesians 

• The prerequisite for studying this chapter is that you possess at least a 
simple level of mathematical maturity. 

• The aim is to cover the classical mathematical concept of Cartesians. 
• The objective is to make sure that the reader, in the future, will handle 

the issues of certain kinds of aggregations, compounds, products, records, 
structures, etc., as possible examples of Cartesians. 

• The treatment is informal, yet precise. 

We have chosen the name Cartesians, for the kind of mathematical struc­
tures unveiled in this chapter, after the French philosopher and mathemati­
cian Rene Descartes. Other, more common, terms are: structures, records, 
groupings or aggregations. At the end of the chapter we provide a "borrowed" 
biography of Rene Descartes. 

Characterisation. By a Cartesian we understand, loosely, a fixed grouping 
(i.e., aggregation) of a number of not necessarily distinct entities such that 
it is meaningful to speak of (i) the composition of these entities, e ,̂ into a 
Cartesian, (e i ,e2, . . . ,e n ) , and of (ii) the decomposition of a Cartesian, c, 
into its components: let (idi, icfe,..., idn) = c in . . . end, etc. • 

4.1 The Issues 

Between elements (i.e., members) of a set there is no other relation than their 
being distinct members of that set. If one wishes to express a mathematical 
entity which has a fixed number of possibly distinct entities such that their 
position is fixed, but not ordinal, then it is suggested to model such an entity 
as a Cartesian. 
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4.2 Cartesian-Valued Expressions 

By a Cartesian we understand a finite grouping of two or more values.1 By 
a grouping we understand a composite value which can be uniquely decom­
posed:2 

t y p e 
X , Y , Z 

value 
x:X, y:Y, z:Z 
(x,y,z) / * expresses a Cartesian */ 
/ * assume k to be a three—component Cartesian: */ 
let (x,y,z) = k in ...x...y...z... e n d 

a x i o m 
V x:X,y:Y,z:Z • 

let k=(x,y,z) in let (x' ,y ' ,z ')=k in x = x'Ay = y'Az = z' e n d e n d 

Thus left and right parentheses are used to delineate a comma-separated list 
of two or more elements and to form, i.e., to construct, a Cartesian. 

The a x i o m (see Chap. 9) expresses tha t for any Cartesian structure (i.e., 
grouping, composition) of individual values we uniquely get exactly these 
values back when decomposing the structure. 

While emphasising the semantic idea of compositions, par ts and wholes, 
we incidentally also illustrated extensions to the syntax of let . . . in ... e n d 
clauses. 

4.3 Cartesian Types 

To express the type of Cartesian values, say over respective sorts3 X, Y, and 
Z, we write the type expression: 

X x Y x Z 

Tha t is: x is the infix Cartesian type constructor. Giving names, for example 
K, to Cartesian types is exemplified below: 

xIt does not make sense, we think, to speak of Cartesians of zero elements, or 
of just one element. (), as an expression, in RSL, stands for the value of type Unit , 
that is: A type of just one value: (). Let v be of type A, then the type of the value 
of the expression (v) is A. 

2In the formulas below (i.e., above!) we introduce some first bits of the RSL 
notation: By t y p e X we roughly mean a set of entities of the same type, here named 
X. By value x:X, y:Y, z:Z we mean the naming of, as here, arbitrary values, x, y, z of 
respective types. By axiom V x:X,y:Y,z:Z • P(x,y,z) we mean to express a property 
^(x.y.z) that always holds for all the values x, y, z. 

3The term sort is used in lieu of the term type when the type is not further 
defined. 
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type 
X , Y , Z 
K = X x Y x Z 

The meaning of X x Y x Z is the (unnamed) type whose values are uniquely 
decomposable into exactly three components of respective types X, Y and Z. 

Any type expression can be grouped: 

XxYxZ, (XxYxZ), (XxY)xZ, Xx(YxZ), etc. 

The first two of the parenthesised expressions are not different, XxYxZ and 
(XxYxZ) denote the same type spaces. But the last two, repeated below, are 
different. That is, the three spaces, Kl , K2 and K3 are distinct: 

type 
Kl = Xx(YxZ) 
K2 = XxYxZ 
K3 = (XxY)xZ 

axiom 
[ informally: ] 

Kl n K2 = {} A Kl n K3 = {} A K2 H K3 = {} 
[ formally: ] 

V x:X,y:Y,z:Z • (x,(y,z))^(x,y,z)A(x,y,z)^((x,y),z)A((x,y),z)^(x,(y,z)) 

Although we have yet to introduce the concept of axioms, we can read the 
informal and the formal bits: The three type spaces share no values. For no 
combinations of x, y, and z values in respective types (i.e., type spaces) are 
the specific combinations, which correspond to the three type spaces Kl , K2 
and K3, equal. 

4.4 Cartesian Arity 

In general, let Di, . . . , D n , (also written as D_l, etc.) stand for type names 
(or type expressions), then 

D_l x D_2 x ... x D_n 
type 

C = D_l x D_2 x ... x D_n 

stand for the n-ary Cartesians over respective D^s. The arity of a Cartesian 
is thus its number of components. 
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4.5 Cartesian Equality 

We define only one operator on Cartesians. The equality expression: 

( a i , a 2 , . . . , a m ) = (&i,&2, • • •, K) 

holds if and only if m = n and, for all i in the interval [l . .ra]4 we have tha t 
di = bi. 

4.6 Some Construed Examples 

The examples of this section are construed, or made up, to serve as illustra­
tions, however artificial, of uses of Cartesians. They furthermore violate our 
edict, our language design decision, tha t Cartesians have at least arity 2, in 
tha t we also, in the below examples, claim to deal with Cartesians of arity 0 
and l . 5 

E x a m p l e 4.1 A Simple Language of Cartesian Numerals: Consider the fol­
lowing encoding of natural numbers in terms of Cartesians. Let token be any 
atomic value. 

0: token, 
1: (token), 
2: (token,token), 
3: (token,token,token), 

n: (token,token,...,token) n times token 

Now consider the following "operations" on these Cartesian numerals: 

+ : (token,token,...,token) + (token, token,...,token) = (token,token,...,token) 
n times token m times token m + n times token 

The question is: How do we express this operation? Here is a proposal: 

cn l + cn2 = 
c a s e (cnl,cn2) of 

(token,("lst2")) - • cn2, 
(("lst l") , token) -> cn l , 

4In RSL, the specification language mostly used in these volumes, an interval of 
integers from j to k is designated by the two period range expression: [j..k]. 

5Of course, we could just change our design decision wrt. the arity of Cartesians 
and allow arities 0 and 1. We would then have to provide a way in which to express 
Cartesians of those arities, and could perhaps choose: () and (A), where A is any 
type. 
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(("lstl"),("lst2")) _> (lstl,lst2) 
end 

where "lsti" stands for any list of tokens, for example, t l , t2 , . . . ,tn. 
The proposal works only if you believe it works! That is, you have to agree 

with the writer of the above formulas that "lstl" and "1st2" stand for lists 
of "token,token,...,token". This form of "text and ellipss" expressions may 
work, intuitively, but rarely works in formal practice. That is, one can easily, 
or maybe not so easily, come up with examples where the above-suggested 
metalinguistic variables (i.e., "lstl" and "lst2") lead to ambiguities. 

Along that line: How is one to represent the subtraction, the multiplication 
and the integer division operations? 

We have brought this example so as to motivate the need for a meta­
language, here RSL, in which to model constructions like those of the present 
example. We say metalanguage, since it is being used in order to express 
properties about another language — here that of Cartesian numerals. • 

Example 4.2 A Simple Language of Cartesian Lists: Consider ( and ) to be 
delimiters of list expressions, that is, (a,b,c) designates the list of elements a, 
b and c, and in that order: a being the first list element, b being the second, 
and c being the third element. Now consider using just pairs of Cartesians to 
designate lists: 

(token,token) = {) 
((a),token) = (a) 
((a),((b),token)) = (a,b) 
((a),((b),((c),token))) = (a,b,c) 

That is, (token,token) designates the empty list, and ((a),£) designates the 
list whose first element is a and whose tail is the Cartesian list L 

Does this work? Well, only if the pairs obey, for example, this restricted 
syntax: 

<CL> ::= (token,token) | ( <A> , <CL> ) 
<A> ::= a | b | c | ... 

A is any set (i.e., type) of, for example, atomic (non-Cartesian) values. 
With this language of Cartesian lists, how do we express concatenation, 

~, of two lists: 

(a,b,c) ^ (d,e) = (a,b,c,d,e) ? 

Well, let us try: 

(token,token)^((a),f) = ((a),£) 
((a),fT(token,token) = ((a),£) 
( ( a ) , € H ( a V ) = ( ( a ) , r ( ( a ' ) / ) ) . 
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Let us define hd (head) and t l (tail) of lists: 

hd () = chaos 
hd (a)"tail = a 
t l () = chaos 
t l (a)"tail = tail 

i.e.: 
hd (token,token) = chaos 
hd ((a),£) = a 
t l (token,token) = chaos 
t l ((a),^) = L 

chaos denotes the undefined value. • 

We leave it as an exercise to define the following operations on Cartesian lists: 
length of a list, index set (inds) of a list, element set (elems) of a list and 
the list indexing operation £(i). 

4.7 Sorts and Type Definitions: Cartesians 

4.7.1 Cartesian Abstractions 

So when and where are Cartesians used when modelling domains, require­
ments and software? We model certain concrete phenomena and certain ab­
stract concepts by means of Cartesians when these are seen as consisting of a 
fixed combination of an a priori known number of distinct entities. 

4.7.2 Cartesian Type Expressions and Type Definitions 

A concrete type definition is something which to a type name associates a 
type expression. The Cartesian type expressions introduced in this chapter 
were of the form: 

B x C x ... x D 

where B, C, . . . , D are any types (i.e., any type expressions). Let B, C, D be 
already defined type names, then: 

type 
A = B x C x D 

is an example of a type definition. A then stands for the type, i.e., the class, 
of Cartesians of (b,c,d) elements, that is: Where b is in B, c is in C and d is 
in D, also written b:B, c:C, d:D. 
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Example 4.3 Complex Numbers: Let R be real numbers, and i" likewise, 
then 

type 
R, I = Real 
C = R x I 

models complex numbers. • 

The above just constitutes a very first beginning in which we model kinds of 
phenomena and concepts. 

4.8 Cartesians in RSL 

In Chap. 14 we shall cover, in excruciating detail, the concept of Cartesians 
in RSL: how they are typed, enumerated, operated upon, and used in various 
abstractions. 

4.9 Bibliographical Notes 

We refer to an Internet-based biography about Rene Descartes: 

www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Descartes.html 

It is authored by J. J. O'Connor and E. F. Robertson, of the Univ. of St An­
drews, Centre for Interdisciplinary Research in Computational Algebra. The 
book of historical interest to us is Discours de la methode pour bien conduire 
sa raison et chercher la verite dans les sciences, with three appendices: La 
Dioptrique, Les Meteores, and La Geometrie [185,189]. 

4.10 Exercises 

Exercise 4.1. Simple Cartesians. Is (1,2) = (2,1)? And is (\/T6, (-2)3 , \) = 
(4,x/64,6/24)? 

Exercise 4.2. Cartesian Sets. Let the sets A,X be {a^b^c}, respectively 
{p, q}. List the elements of the sets Ax A,Ax B,B x B, and B x A. 

Exercise 4.3. Further Operations on Cartesian Lists. We refer to Exam­
ple 4.2 on page 67. 

Define the following operations on Cartesian lists: 
(1) length of a list: The number of (zero, one or more) elements that it 

contains. 
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(2) index set (inds) of a list: The set of indices, from 1 to and including 
the length of the list. If the list is empty then the index set is the empty set. 

(3) element set (elems) of a list: The set of distinct elements of the list. 
If the list is empty then the element set is the empty set. 

(4) The list indexing operation £(i). where, if the list is empty then the 
operations is undefined, i.e., ends in the result chaos. 

I * •(• •!• 

Exercise 4.4. X Cartesians in the Transportation Net Domain 
We refer to Appendix A, Sect. A.l, Transportation Net. 
Reading, carefully, the rough sketch description given in Sect. A.l, try 

to identify as many entities which can be, in a reasonable way, modelled as 
Cartesians. State their type definitions as outlined in Sect. 4.7 on page 68. 

Hint: The directions of traffic along a segment may be modelled in terms 
of a set of zero (the segment is closed to traffic), one (it is a one way segment), 
or two pairs of distinct segment identifiers. 

Find more examples yourself. 

Exercise 4.5. X Cartesians in the Container Logistics Domain. 
We refer to Appendix A, Sect. A.2, Container Logistics. 
Reading, carefully, the rough sketch description given in Sect. A.2, try 

to identify as many entities which can be, in a reasonable way, modelled as 
Cartesians. State their type definitions as outlined in Sect. 4.7 on page 68. 

Hint: A container terminal consists of a quay (or a set of quays), and a 
container storage area. [You may wish to also include the harbour basin in 
"what a container terminal consists of".] 

Find more examples yourself. 

Exercise 4.6. X Cartesians in the Financial Service Industry Domain. 
We refer to Appendix A, Sect. A.3, Financial Service Industry. 
Reading, carefully, the rough sketch description given in Sect. A.3, try 

to identify as many entities which can be, in a reasonable way, modelled as 
Cartesians. State their type definitions as outlined in Sect. 4.7 on page 68. 

Hint: (i) A bank consists of a catalog of customers and (all their) accounts, 
(ii) A buy [sell] order consists of a customer identification, a securities instru­
ment identification, a quantity indication (of number of to be bought [sold]), 
a time period during which the ordered transaction is expected to be fulfilled, 
and a price interval ("lo"-"hi") within which the 'buy' ['sell'] price is expected 
to fall. 

Find more examples yourself. 
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Types 

• The prerequisites for studying this chapter are that you possess knowl­
edge of the type concept of ordinary programming languages as well as 
of the mathematical concepts of sets and Cartesians as covered in earlier 
chapters. 

• The aim is to give a first overview of the type concept that we shall further 
develop in subsequent chapters. 

• The objective is to help ensure that the reader eventually becomes fluent 
in the selection, expression and use of types. 

• The treatment is from systematic to semiformal. 

The type concept is, perhaps, the greatest contribution computer science has 
made to mathematics. The type concept is all pervasive, but it is not quite 
the same as the dimension and unit concepts of, for example, physics. 

Characterisation. By a type we shall, loosely speaking, understand a named 
(i.e., an identified) set of values. • 

Types are, simplifying, taken to be sets of values. The values of type sets, i.e., 
their elements, are such as Booleans, numbers, sets, Cartesians, functions, re­
lations, lists and maps where the composite types (sets, Cartesians, functions, 
relations, lists and maps) themselves consists of values. 

In this section we will briefly introduce the reader to the fundamental 
concept of types. The professional software engineer repeatedly thinks in terms 
of types. That is, the concept of type and its abstract and concrete mastery 
is crucial to professional software engineering. 

This section is cursory. The type concept will be identified. Chaps. 2-4 
have introduced types, and Chaps. 6-9, as well as Chaps. 10 and 13-16 will 
introduce type concepts. The RSL type concept will then be summarized in 
Chap. 18. Thereafter it will be used in the rest of these volumes. So, with the 
present introductory section we will start a long journey into possibly that 
most important concept of software engineering, type theory and practice! 
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• • • 

The world is full of manifest things (i.e., of phenomena): entities that one can 
point to. Some share properties and are "of the same kind", others do not, 
and are "of different kinds". The type concept was introduced first, in some 
abstract sense, by philosophers, then by mathematicians and, much later, in 
programming languages to cope with "sameness", respectively "distinctness". 

We assume some basic familiarity with rudimentary aspects of the type 
concept of some programming languages. From examples of such a program­
ming language type concept and its analysis, we unfold, below, some very 
basic ideas of more abstract type concepts. In this way we can, little by little, 
introduce a concept of specification language type concept. 

In this section we shall introduce the very basics of the type concept upon 
which we shall later be basing further ideas of type. These basics are: sorts (i.e., 
abstract types), concrete types, atomic types, type names, type expressions, 
type constructors, and the fact that values and types form complementary 
notions. 

5.1 Values and Types 

How do we motivate the concept of types? We do so as follows: Around us we 
see phenomena such as a person being 1 meter, 79 centimeters tall, 67 years 
old, and weighing, oh well, too much! We shall, in these volumes, refer to the 
'person' phenomenon as an entity The person is an entity describable, i.e., 
characterisable, through, in this example, the three entity attributes just men­
tioned. On first reflection, the attributes represent, i.e., characterise values, 
and on second thought, these attributes are types: height, age, and weight. 
So an entity has an attribute value which is of an atomic or composite type. 

The person attribute value was of, or had composite type, and the compos­
ite type components included the height, age and weight types, which were 
atomic types, that is, could not be further decomposed. Some entities have 
constant values, others have variable values. A person's birth date is definitely 
fixed. A person's gender is (usually) fixed. A person's age changes all the time! 

Entities rarely change type. A rather construed example of an entity that 
may be considered to change type is the following: Some thing, an entity, 
which, "to begin with" may be considered or registered as a wooden chair. 
That is, of utility. Then the chair "changes" type to become an antique, ex­
hibited, but not sat in. It is no longer of utility depending on one's viewpoint, 
of course. Or it is wrecked and becomes a "heap of wood", and is thence pos­
sibly considered burning material for a stove. That is, again of utility, but of 
a different one! Modelling types — including type changes — is often referred 
to as data modelling. In other words: types and values go hand-in-hand. 

In these volumes we shall have much more to say on the concepts of types, 
attributes (a kind of types) and values, as well as on the use of these con-
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cepts in (domain) modelling the actual world, in (requirements) modelling 
expectations to software and in expressing software implementation models. 

5.2 Phenomena and Concept Types 

5.2.1 Phenomena and Concepts 

Characterisation. By a phenomenon we mean some physically manifest 
thing, something that one can point to or measure by means of some physical 
instrument. • 

Any specific person is such a phenomenon. 

Characterisation. By a concept we mean an abstraction, something of our 
mind. • 

Concepts usually abstract classes of related phenomena. 
We bundle, following what was expressed in earlier sections, classes of 

like phenomena or like concepts into types. In this section we shall examine 
relations between phenomena, concepts and types. 

5.2.2 Entities: Atomic and Composite 

Characterisation. By an entity we mean a representation of a phenomena 
or a concept. • 

Characterisation. By a representation (of something) we loosely mean "a 
way of talking" about that "something", a way of "writing it down". • 

A representation of a phenomenon is not that phenomenon, but it is only our 
way of referring to it. 

As an aside: A representation of a phenomenon, however represented, as 
long as it is not represented "inside" a computing (and communications) sys­
tem, is spoken of as information. Once represented inside a computing (and 
communications) system we speak of it as data. Data is formalised represen­
tation of information. 

Characterisation. By an atomic entity we mean an entity which does not 
itself consist of proper sub-entities. • 

A person could be considered an atomic entity in that that person's head, 
arms, legs, etc., should not from some point of view be considered entities in 
their own right. Perhaps they are considered so by a surgeon, but certainly 
not desirably so by any one person: one does not compose, as in mechanical 
engineering, a person from one head, one left leg, etc.! 

Please note that it is you who decides whether to consider a phenomenon 
(or a concept) to be atomic, that is, indivisible or not. 
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Characterisation. By a composite entity we mean an entity which can be 
said to be independently composed from other proper subentities. • 

A motor car can be said to be a composite entity in that it can be said to be 
composed from an engine, a transmission system, a left front door, etc., where 
each of these subentities are being considered entities in their own right, as 
entities, by those who manufacture, that is, assemble them. 

5.2.3 Attributes and Values 

Characterisation. By an attribute we mean a named property which has 
an associated type that for the same named attribute of different entities may 
have different or the same values. • 

Atomic Entity Attributes and Values 

An atomic entity may possess one or more attributes. 
A person, which we here consider an atomic entity, has, we decide, amongst 

many other attributes, the following ones: name (with some fixed value, say 
Dines Bj0rner), (current) height (with some varying value, say 179 centime­
ters), gender (with fixed value, male), etc. 

So, the "full value" of an atomic entity may be a composite value! 

Composite Entity Attributes and Values 

The way in which a composite entity is composed can be said to be an at­
tribute of the composite entity which is different from the composition of the 
attributes of the proper subentities. 

Example 5.1 Roadnet: Entities and Attributes: A roadnet is composed from 
a set of segments and a set of connectors. Segments do not contain connectors, 
but ends in, or has exactly two such. A segment is an entity. Connectors do 
not contain segments, but connect one or more segments (one if a road is a 
cul-de-sac). A connector is an entity. Each segment, we decide, has attributes: 
unique segment identity, road name, segment length, segment curvature, seg­
ment cover (tarmac, or other), etc., none of which are separable entities. Each 
connector, we decide, has attributes: connector identity, possibly a connec­
tor name, set of identifiers of segments incident (and/or emanating from) the 
connector, etc., none of which are (separable) entities. The roadnet has as at­
tribute that of the compositions of its entities (consists of, ends in, connects). 
• 

Characterisation. Composite Entity Attributes: We make the distinction 
between the attributes of component entities of a composite entity and the 
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attribute of the composite entity: Let composite entity J consist of entities 
c\ C2, . . . , cm . Each of the individual Q , for i = 1 . . . ra, have attributes C^, 
d2, . . . , Cin. In addition, the composite entity c has attributes C. The latter 
attribute outlines how the consist of relation is manifested, i.e., how we decide 
it is so. For example: C is: c consists of a sequence of components Cj, or C is: 
c consists of a set of components c^, or C is: c consists of a component C£p 

next to a component C£q next to . . . next to a component C£r. • 

It is this ontology of sequence of, set of, next to, etcetera, which we shall later 
capture by means of type operators, that is, operators on types that define 
how component types make up overall types 

Characterisation. Composite Entity Values: To each attribute we associate 
a current value. Let composite entity c consist of entities ci, C2, . . . , cm. Each 
of the individual Q , for i = 1 . . . ra, have overall current values vVi , vCi , . . . , 
vCin. In addition, the composite entity c has value vc for attribute C. The 
overall current value of c is thus vv, combined, as prescribed by C, with the 
overall current subentity values: vCii, vCi2, . . . , vCin . • 

Example 5.2 Roadnet Values: We continue Example 5.1 on the preceding 
page. A particular roadnet is composed from three segments, as shown in 
Fig. 5.1 subfigures [A]-[C]. The composition that two connected segments 
meet in a connector is adhered to. Subfigures [A] and [B] show two, respec­
tively three cul-de-sacs. 

C1 C4 

C1 C2 C3 C4 s i \ /̂ 3 

• # # # T c2 
s1 s2 s3 c^ 

Road Net [A] S2 

• 
c3 

Road Net TBI 

Fig. 5.1. Representation of three different roadnet values 

The overall roadnet values are different by virtue, primarily of their specific 
topologies. The three segments could all have the same values, that is, same 
length, the same identifications, the same names, etc., as also indicated. But 
what you first notice, we claim, when observing Fig. 5.1, is the difference in 
the three attribute roadnet values. • 

• • • 

c2 s3 c3 

Road Net [C] 
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We have tried, somewhat informally, to outline some ideas of atomic and 
composite entities, and of their attributes and values. These ideas need to be 
sharpened, i.e., made more precise. That is a main rationale of the present 
volume! 

Discussion 

In ordinary mathematics, some would abstract roadnets in terms of graphs: 

GiiS^C.K)1 

S stands for a set of segments. For example, {si,S2; £3}- C stands for a set 
of connectors. For example, {01,02,03,04}, as in either of subfigures [A] and 
[B] of Fig. 5.1 on the preceding page, or {01,02,03} as in subfigure [C] of 
Fig. 5.1 on the page before. K stands for the specific connections of segments 
to connectors. For example, [sr> {01,02}] as in subfigure [A] of Fig. 5.1 on 

the preceding page. The gist of Chaps. 12-18 is that we offer several ways in 
which roadnets (i.e., graphs) can be abstractly modelled: 

The property-oriented algebraic sort and analytic function presentation: 

type 
GO, S, C 

value 
obs _Ss: GO - • S-set 

obs_Cs: GO - • C-set 
obs_K: GO -+ (C ^ (S T* O ) 

would for gO being the roadnet of subfigure [A] of Fig. 5.1 on the page before 
yield: 

obs_Ss(gO) = {sl,s2,s3} 
obs_Cs(gO) = {cl,c2,c3,c4} 
obs_K(gO) = [C1H^{S1},C2H^{S1,S2},C3H>{S2,S3},C4^{S3}] 

The model-oriented set-, Cartesian- and map-oriented specifications: 

type 
Gl = (C x S x C)-set 
G2 = C ^ (S ^ C) 

yield the following values of gl and g2 for the same roadnet (subfigure [A] of 
Fig. 5.1): 

gl: {(Cl,sl,c2),(c2,sl,cl),(c2,s2,c3),(c3,s2,c2),(c3,s3,c4),(c4,s3,c3)} 
g2: [cl^[sl^c2],c2h^[sl^cl,s2h^c3],c3^[s2h^c2,s3H^c4],c4h-).[s3^c3]] 

xThe expression G: (S,C,K) is not in the style we shall be using in these volumes. 
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That is, the type definition facility promulgated by this volume replaces the 
ordinary way in which mathematicians define mathematical structures. Our 
type definition facility ties in with the function definition facility and permits 
the definition of very rich and novel mathematical structures with entities and 
functions. 

5.3 Programming Language Type Concepts 

We review some standard concepts of programming languages. 

Some Examples 

From classical programming languages, such as Algol 60, Pascal, C, C++ and 
Java, we know of a type concept similar to the one now summarised. 

Example 5.3 Simple Types: The three syntactic constructs after the key­
word var: 

[1] var i i n t ege r , 
[2] b Boolean, 
[3] c charac te r ; 

prescribe that storage for three variables be allocated, one ([1]), i , to have 
enough storage space to contain in teger values ranging, for example, between 
—2n and +2 n — 1 (for some such n as, for example, 16 or 32 or 64) where n 
is the size, in bits, of a storage cell (also called a half-word, a word, or a 
double word). Another ([2]), b, to have enough storage space, say one bit, to 
contain a Boolean value — either true or false. And a final ([3]), c, to have 
enough storage space, say a byte or two bytes, to contain character values such 
as the characters "a", "b" , . . . , "z" , and possibly others (such as digits, 
symbols and operators: "0" , " 1 " , . . . , "9" , " , " , " ; " , " . " , . . . , "-", 
"+", "*", " / " , . . .)• 

We observe a number of things that seem relevant for the understanding 
of the above examples: (i) the use of the keyword var (or declared variable or 
some such variant) to indicate that a variable is declared; (ii) that there seem 
to be three declarations; (iii) that each of these declarations has two parts: 
a variable name ( i , b, respectively c), and a constant ("built-in") type name 
( in teger , Boolean, respectively character) ; (iv) that to each variable a 
concrete storage representation is (implicitly) prescribed; and (v) that variable 
names (most likely uniquely) identify storage space that may contain values 
of the prescribed type. • 
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E x a m p l e 5.4 Composite Types: 

[4] t y p e r = 
[5] r e c o r d ( i i n t e g e r , 
[6] b Boo lean , 
[7] a a r r a y [ 1 . . m , 1 . . n ] of c h a r ) ; 
[8] v a r p r ; 

As before we observe a variable declaration (line [8]), but now the vari­
able name, p, is associated with a defined type, of name r (rather than, as 
previously, a constant, built-in type). The defined type name is shorthand 
for, i.e., is defined by, the right-hand side of the ' = ' in line [4] of the exam­
ple, i.e., by lines [5-7]. There we observe tha t the defined type is of t y p e 
r e c o r d , i.e., certain compositions of values of other types, and tha t it is to 
have three named fields whose corresponding storage location parts are to 
contain values of t y p e s i n t e g e r , Boolean and a matr ix of m rows and n 
columns of charac ter elements. Included in our examples above is the illus­
trat ion of the variable bounds ( [ 1 . .m, 1. . n ] ) a r r a y type (actually a matr ix 
such as defined). Incidentally, just to provoke some possible confusion (see 
Example 5.5) we have chosen field selector names "similar" (with respect to 
identifiers), to the previously (correspondingly) introduced variable names. 

Concerning p ([8]): It is an entity (a variable) of type r, and p (besides hav­
ing the overall a t t r ibute of being a variable) also has par t a t t r ibutes integer, 
Boolean and character. • 

E x a m p l e 5.5 Type Checking Expressions and Assignments: 

[9] i := i + 1; 
[10] b := ( i f i > p . i t h e n t r u e e l s e f a l s e e n d ) ; 
[11] p . i := p . i + i ; 
[12] c := p . a [ i , p . i ] ; 

This last example is really extraneous to our main purpose of bringing 
and discussing these examples. Tha t purpose was to introduce the type con­
cept as it is found in classical programming languages. Instead the current 
example illustrates such imperative programming language concepts as as­
signment, expressions, and record field value selection. The above illustrates 
four assignment statements. In line [9] we show a simple assignment: The 
i n t e g e r variable i has its value incremented by one. In line [10] we show an­
other assignment, a conditional expression, and a record field value selection: 
The Boolean variable b has its value set to t rue if the value of variable i is 
larger than the value contained in record p field i , otherwise it is set to false. 
And, finally, in line [12] we show an assignment involving a seemingly "tricky" 
array element indexing: The value of charac ter variable c is prescribed set to 
the value of the charac ter element of the record array field tha t is indexed 
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along one dimension by the value of the simple integer variable i and along 
the other dimension by the value of the record i field. • 

D i s c u s s i o n 

We observed tha t two kinds of keywords are used in connection with types: 
type names and type constructors. Type names are those, like i n t e g e r , 
Boolean and c h a r a c t e r tha t denote types of specific kinds of values, viz.: 
integers, Booleans and characters. These keywords stand for built-in or given 
types. Type constructore are those, like r e c o r d and a r r a y which, together 
with other linguistic markers (delimiters), identifiers and type names, help 
construct or form new, defined types. These keywords stand for higher-order 
functions. Tha t is, we speak of type names, which are identifiers, either built-in 
(as i n t e g e r , Boo lean , c h a r a c t e r ) or defined (such as) r , and of composite 
type expressions such as r e c o r d ( i d l t e l , i d2 t e 2 , . . . , i d n t e n ) where 
i d j and t e j stand for record field selector identifiers and type expressions, 
respectively. Type names are simple type expressions. We also observe, in the 
above examples, tha t we pair type definitions, a type name, such as r , with 
a type expression, such as r e c o r d ( i d l t e l , i d 2 t e 2 , . . . , i d n t e n ) . 

We say tha t the type name r is being defined concretely: It is given a 
model. The model given for r is tha t of records as laid out in storage: selector-
named consecutive fields of proper storage location (and cell) par ts . We shall 
soon see tha t not all type names need be given concrete models. 

The record type forming type constructor looks something like: 

r e c o r d ( * * , * * , . . . , * *) 

where the first * of the replicated pairs of * * are thought of as places into 
which one can insert distinct record field selector identifiers, and where the 
second * (of the replicated pairs) are similarly thought of as places into which 
one can insert not necessarily distinct type names or, more generally, type 
expressions. 

The array type forming type constructor looks something like: 

a r r a y [ * . . * , * . . * , . . . , * . . * ] of * 

where the first, respectively second * of the replicated pairs of * * are places 
where one can insert integer-valued expressions designating lower, respectively 
upper, bounds for respective dimensions of the array, and where the last *, 
after the keyword of, is a placeholder for a type expression. 

Apart from the storage space allocation, with its possible constraints on 
layout,2 the above type and value concepts are to be found in well-nigh any 

2Such constraints could, for example, be: vector arrays are consecutively laid 
out in storage from "higher addresses down"; matrix arrays have first dimension 
elements referred to as columns, and second-dimension elements as rows; and are 
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abstract specification language, and hence in RSL. We consider the examples 
given to be those of concrete data structures, whereas what we shall initially 
be modelling (in domain specifications and in requirements prescriptions) are 
information structures. We consider data to be computerised representations 
of information. That is, in domain specification and requirements prescrip­
tion we abstract from any storage representation. But otherwise we shall have 
great use for types, and for typed variable names (even though we shall mostly 
be using nonassignable, that is applicative or functional programming, vari­
ables). 

5.4 Sorts or Abstract Types 

We now turn to type issues, not of programming languages, but of specification 
languages. Most specification languages offer built-in types such as integers, 
Booleans and characters. Such built-in type names usually stand for atomic 
types, that is, for types of values which are atomic, in other words, those for 
which it is not meaningful to decompose the value into proper part values. 
Some specification languages, typically the primarily model-oriented ones, say 
RSL, VDM-SL and Z, offer type constructors not unlike the record and array 
constructs, to build composite types from other, already existing or defined 
types. We shall in this section only introduce the Cartesian type constructor. 

A number of specification languages, archetypically the algebraic ones, 
Cafe-OBJ [192,234] and CASL [398], allow the introduction of abstract types 
or sorts. Sorts are types for which no model (say, in terms of sets, Cartesians, 
functions, etc.) has been explicitly suggested: 

type 
A, B, C 

The sorts A, B and C are named, but no further definition is given. 
We have introduced a bit of RSL syntax: The keyword type signals to the 

reader that what follows — before other such keywords — are type declara­
tions. The above-illustrated type declarations introduced the names A, B and 
C, as names of types. To help you think of the sorts A, B and C, we suggest 
that you imagine them as spaces (i.e., sets) of values of type A, B or C. 

It may turn out, now or later, in your considerations, that a sort is either 
atomic, or it is composite. In the latter case, its values can be analysed into 
proper constituent parts (i.e., values) of specific component types. 

to be laid out row-orderwise, that is, they are laid out consecutively, first row first, 
etc., and again from "higher addresses down". 
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5.5 Built-in and Concrete Types 

The RSL type concept will be introduced in stages. We have already introduced 
some parts of the concept above. We will introduce some more now, and then, 
throughout the next many chapters, we will introduce even more. For now, we 
ask you to simply think of a type as a set, possibly an infinite set, of values, 
i.e., of entities of some kind. 

We need some syntax to name and to define types: 

[0 ] type 
[1] I = Int, B = Bool, C = Char 
[2] P, Q,R 
[3] K = P x Q x R 

Int, Bool and Char are literals. They are built-in names; they come with RSL. 
They name, respectively, disjoint sets of integers, Booleans and characters. P, 
Q and R are user-defined type names. They denote sorts, i.e., abstract types. 
K is a user-defined type name. It denotes a set of Cartesians, i.e., of products, 
or "three-groupings", of values of respective sorts. The RSL form: 

[4] value 
[5] p,p',...,p":P, q,q',.»,q":Q, r,r',...,r":R 

designates a set of bindings. The identifiers p,p ' , . . . and p" are all distinct and 
designate arbitrary (nondeterministically chosen) values of type P. Similarly, 
the identifiers q,q',... and q" are all distinct and designate arbitrary (non­
deterministically chosen) values of type Q, and the identifiers r,r ' , . . . and r" 
are all distinct and designate arbitrary (nondeterministically chosen) values 
of type R. 

The value bindings (in line [10]): 

[6 ] type 
[7] A , B 
[8] L = A x B x ... x C 
[9] value 
[10] (a,b,...,c),(a',b',...,c'),(a",b",...,c"), .... (a'",b'",...,c'"):L 

bind the free and distinct names a, a', . . . , a", b, b', . . . , b", c, c', . . . and c" to 
arbitrary values of respective types. The types K and L stand for Cartesian 
values.3 

Let us comment on the bits and pieces of syntax that have been introduced 
in lines [0..10]. In this case it is RSL syntax. The keyword type [0,6] expresses 
that what follows are type names or type definitions. In [1], the first line 
after the keyword type, we show three concrete type definitions; in [2], the 

3The use of ellipses, . . . , is metalinguistic: RSL expressions do not allow for the 
use of ellipses such as in ordinary mathematics. 
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second line, we show three abstract type definitions, that is, sort definitions; 
and in [3], the last line, we again show a concrete type definition. The first 
three concrete type definitions, [1], merely give other names (namely I, B, 
C) to Integer, Boolean, respectively Character types. The concrete type 
definition, [3], K = P x Q x R , gives the name K to the Cartesian types P x Q x R . 
The infix x symbol is similar to the distributed-Gx record ( , , . . . , ) type 
constructor. That is, x is a Cartesian type constructor, and similarly for line 
[8]. 

The keyword value, [4,6], expresses that what follows, first [5], are usually 
typed names of values: p,p',..-,p", and thus are distinct names which stand for 
not necessarily distinct values, all of type P, etc. 

The composite bindings, [10], (a, b, ..., c), (a', b', ..., c'), (a", b", ..., c"), ... 
and (a'", b'", ..., c'") express that the individual values of (unprimed, single or 
multiply primed) a, b, c's are grouped into Cartesian (or product, or grouping, 
or record, or structure) values. That is, to repeat: We shall use the terms: 
Cartesians, products, groupings, records, and structures synonymously. 

5.6 Type Checking 

The idea of associating types with identifiers is twofold: to inform the reader 
as to the intentional use of the identifiers, while at the same time to allow 
a specification language processor, a type checker, to analyse whether incor­
rect uses are made of the typed identifiers. We shall briefly examine the last 
proposition. 

5.6.1 Typed Variables and Expressions 

Let us consider the following program fragment, from Sect. 5.3: 

[0] var i in teger := 7, 
[1] b Boolean := t r u e , 
[2] c charac ter := cd}; 

[3] type r = 

[4] record (i integer, 

[5] b Boolean, 

[6] a a r r a y [ 1 . . 4 , 1 . . 2 ] of char) 

[7] var p r ; 

[8] i := i + 1; 
[9] b := ( if i > p . i then t r u e e l se f a l s e end); 
[10] p . i := p . i + i ; 

The above expressions and statements seem pretty innocent! 
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5.6.2 Type Errors 

If in line [9] we had written b*7, or if in line [10] we had written if b > 
p . a , or if in line [11] we had written p . i := c, then, somehow, we could 
argue that something was wrong. 

What is wrong? 
In line [9] (now with b*7) b is known as a Boolean, and one cannot mul­

tiply with Boolean-valued operands. In line [10] (now with if b > p.a) b is 
(still) known as a Boolean, and p . a is known as a character, and one cannot 
compare Booleans and characters. In line [11] (now with p . i := c) p . i is 
known as an integer-valued variable, and c is known as a character-valued 
variable, and one cannot assign characters to integer variables. 

Example 5.6 Well-formed Roadnets: We continue the roadnet Exam­
ple 5.1 on page 74 and 5.2 on page 75. 

We exemplify two kinds of type constraints for which an appropriate road-
net must be checked. 

(1) If, by a roadnet we meant one in which no roads were isolated then the 
characterisation of Example 5.1 on page 74 must be sharpened: (lr) The road­
net must be such that from any connector one can reach any other connector 
(of the same roadnet). (1") Another way of formulating this is: The roadnet 
graph must not deteriorate into two or more isolated subgraphs. Isolation in 
the above sense hinges on all roads being two way roads. 

(2) If, by a roadnet we meant one in which non-cul-de-sac segments were 
either one-way or two-way segments, then the characterisation of Exam­
ple 5.1 on page 74 must be extended to ensure nonisolation: (2') cul-de-sacs 
are all two-way segments, and (2") any other segment is either a one-way 
segment or a two-way segment. (2'") From any connector one can reach any 
other connector (of the same roadnet), only by following the direction of the 
connected segments. (That is: A one way segment has a single direction.) • 

5.6.3 Detection of Type Errors 

Having "annotated" various variables with types we can deduce which op­
erators, indexing and assignments seem correct, and which do not. This is 
called type checking. We shall later, much later in these volumes, define, more 
properly what is meant by is known to be of type, and how to assess such 
knowledge. That is, we shall show how to formalise and possibly automate 
certain type checks. 

Many computer scientists and software engineers consider the concept of 
type to only be related to, i.e., motivated, by type checking. We shall take 
a broader view: Type checking is important to catch specification mistakes 
early. But abstracting in terms of sorts and concrete types is also considered 
important, because it focuses the mind. 
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5.7 Types as Sets, Types as Lattices 

In this chapter we have treated types as sets of values. This is often a reason­
able way of modelling types, but not always. When a type, D, is expected to 
include the space of functions from D into D, then a set-theoretic treatment 
does not suffice. It would simply not be able to explain the meaning of the 
type equation: 

D = D -+D 

To solve such equations as D = D -± D one may need to impose, for example, 
an ordering amongst the "type set" elements, called the "type domain". We 
shall just hint at this type theory here. It is a type theory in the sense of 
being able to solve arbitrary type equations. That is, to give proper meaning 
to reflexive function types is a hallmark of computer science. Dana Scott 
founded type theory in the sense hinted at above [251,458-462,464,466-468]. 
We refer to [241,282,424,532] for introductions to type theory. 

5.8 Summary 

This completes our first coverage of the RSL type concept. It is the naming of 
basic, primitive, that is, built-in types (Int, Bool, Char), which all stand for 
concrete, in this case atomic types. We also covered the definition of abstract 
types, that is, sorts, and the definition of concrete, composite types, in this 
case Cartesians (record, products, groupings, structures), by means of the 
infix type constructor x. 

We shall, throughout these volumes, introduce further aspects of the RSL 
type concept. Section 6.5.2 enlarges upon the type concept. 

5.9 Exercises 

Jft Note: The next three exercises, 5.1, 5.2 on the next page and 5.3 on the 
facing page share the same three 'Common Exercise Topics'. Hence they are 
marked X- See Appendix Sect. A.l, Transportation Net, Sect. A.2, Container 
Logistics, and Sect. A.3, Financial Service Industry. We also refer to Sect. 5.2 
and to Examples 5.1 on page 74 and 5.2 on page 75. The exercises of this 
chapter are in line with the referenced section and examples. 

Exercise 5.1. X Atomic Entities of the Transportation Net, Container Lo­
gistics, or Financial Service Industry Domain. 

1. Identify (i.e., name) a number of possible atomic entities. 
2. For each entity identify (i.e., name) a number of attributes. 
3. For each named attribute identify its possible values. 
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Exercise 5.2. X Composite Entities of the Transportation Net, Container 
Logistics, or Financial Service Industry Domain. We refer to Exercise 5.1 on 
the preceding page (above). The questions below refer to the same physical 
phenomenon, either in the Transportation Net, Container Logistics, or Finan­
cial Service Industry domain. 

1. Identify (i.e., name) some possible composite entities. 
2. For some such (distinct kind of) entity list its component (i.e., sub-)entities. 
3. For some composite component (i.e., sub-)entity list its component (i.e., 

subsub-)entities, etcetera. 
4. For some composite component entity identify (i.e., name) a number of 

composite component attributes. 
5. For some such named composite component entity attribute identify its 

possible composite component values. 

Exercise 5.3. X Type Checking Entity Descriptions of the Transportation 
Net, Container Logistics, or Financial Service Industry Domain. We refer to 
Exercises 5.1 on the facing page and 5.2. The questions below refer to the same 
physical phenomenon, either in the Transportation Net, Container Logistics, 
or Financial Service Industry domain. 

1. Atomic Entity Attribute Value Constraints. Recall Question 3 on the fac­
ing page of Exercise 5.1. Can you think of some type check that has to be 
performed when presented with some possible atomic entity attribute val­
ues? Please list some such. Hint: The constraint on the value of an atomic 
entity attribute may to be formulated relative to the values of some other 
(atomic or composite) attributes. 

2. Composite Entity Attribute Value Constraints. Recall Question 2 of Exer­
cise 5.2. Can you think of some type check that has to be performed when 
presented with some possible composite entity attribute values? Please 
list some such. Hint: The constraint on the value of a composite entity at­
tribute may to be formulated relative to the values of some other (atomic 
or composite) attributes. 
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Functions 

• The prerequisite for studying this chapter is that you understand the 
notions of sets and Cartesians as covered in earlier chapters. 

• The aim is to introduce you to the mathematical concept of functions such 
as we understand it in computing science and software engineering. 

• The objective is to enable the reader to use and handle that concept of 
functions, with ease, in order to achieve one of the most important aspects 
of software development, namely abstraction. We shall endeavour to ensure 
that the reader learns to think in terms of mathematical functions. 

• The treatment is from systematic to semiformal. 

The function concept, such as we shall introduce and use it, is a mathematical 
concept. It is, next to types, of paramount importance. Nobody has ever seen 
a function. Mathematical functions can be "observed" through their being 
applied to argument values and yielding result values. 

Characterisation. By a function we understand a mathematical entity that 
can be applied to an argument (i.e., an entity) and then yields, i.e., results, 
in a value "of the function of that argument". • 

To speak of spaces (or classes, or types) of functions and relations we need the 
type concept, first illustrated in Chap. 5. In Chap. 8 we shall cover the concept 
of algebras, but to do so we need the concept of functions. That explains our 
sequence: first types, then functions and relations, and then algebras. 

Some presentations of the concepts of functions and relations start with 
relations, and then bring in functions later. We shall start with functions be­
cause we find introducing functions first, in a software engineering setting,1 

more natural, and relations could, in this context, be considered a "mechani­
cal" means of explaining functions. If this reasoning puzzles you, then read on 
and return, after having read the present chapter, to reread this paragraph. 

xWe will be dealing more, throughout these volumes, with functions than with 
relations. 
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Example 6.1 Example of Everyday Functions: We refer to Example 5.1 on 
page 74 and 5.2 on page 75 of Sect. 5.2. 

Let S, C and V name the types of segments, connectors and vehicles. 
Let, accordingly, suitably decorated lower case versions of these type names 
stand for segment, connector and vehicle values. Let N name the type of 
roadnets. Thus n stands for specific nets. From, or in, a roadnet one can 
observe its segments and connectors. Now let any segment, as a composite 
entity include the values of zero, one or more vehicles (on that segment). 
Similarly for connectors. That is, from a segment and from a connector one 
can observe the set of vehicles on that road (respectively in that intersection). 
To "observe" is to apply a function to an argument value and obtain a result 
value. 

type 
N, S, C, V, Si, Ci, Vi 

value 
obs_Ss: N - • S-set 
obs_Cs: N - • C-set 
obs_Vs: (S|C) - • V-set 
obs_Cis: S —> Ci-set 
obs_Sis: C —> Si-set 

From a segment one can observe the identity of the two connectors it is con­
nected to. From a connector one can observe the set of identities of segments 
leading to (and from) that connector. 

When driving a vehicle on a segment, to enter that vehicle into a connector 
is to perform a function. Likewise when leaving a connector and entering a 
segment. 

value 
enter: S x V x C ^ S x C 
enter(s,v,c) as (s',c') 
pre: v G obs_Vs(s) A v ^ obs_Vs(c) 
post: v 0 obs_Cs(s') A v e obs_Vs(c') A 

obs_Cs(s') = obs_Cs(s)\{v} A obs_Vs(c') = obs_Vs(c) U {v} 

leave: C x V x S ^ C x S 
leave(c,v,s) as (c',s') ... 

Entering a vehicle, v, from a segment, s, into a connector, c, results in changing 
the segment and connector values into s', cr. The vehicle value is unchanged, 
hence not mentioned as a result value. The only difference in the before, s, 
and after value, s', of the segment is that the segment no longer "contains" 
vehicle v, with the reverse being true for the connector. • 
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The gist of Chaps. 12-18 is to explain the kind of abstractions exemplified 
above, while the gist of the present chapter is to introduce you to the basic 
notion of functions, f, that is, those things whose value was expressed above 
as type f: A —> B. 

6.1 General Overview 

We shall first place the concept of a function in context and present some in­
tuitive notions of functions: function definitions, maps (i.e., function graphs), 
types and attributes. Then we shall "restart" by presenting an attempt at 
informally motivating "how functions come about". 

Structure of This Chapter 

Three indispensable topics occupy this chapter: (1) the function algebra: what 
functions "really" are, function space type constructors, function attributes 
(nondeterministic, constant, and strictness) and operations (abstraction, ap­
plication, composition, definition, respectively range set); (2) Currying2; and 
(3) relations as models of functions. 

6.1.1 Special Remarks 

Different ways of looking at functions will be introduced: 

(a) functions which can be defined syntactically, 
(b) functions whose meanings are mathematical functions, and 
(c) functions whose syntax and meaning are "one and the same thing". 

These three facets (a-c) should emerge from items below. There are (i) func­
tions which (i.a) can be defined syntactically, as textual entities (see function 
definitions, Sect. 6.2.2) and (i.b) where these syntactical forms have a seman­
tics, or a meaning, which resembles the functions known from mathematics 
(see function maps (graphs), Sect. 6.2.2 on the following page). Furthermore 
(ii) there are functions which (ii.a) can, again, be defined syntactically, but 
(ii.c) which can be given a "syntactic" meaning by a set of rewriting rules 
that "massage" (edit, translate) these syntactic expressions into syntactic ex­
pressions of the same form (Chap. 7). 

To repeat: There are two different syntactic function expression forms, and 
two different notions of functions: one syntactic, the other mathematical. We 
also introduce the mathematical concept of relations. Relations are then used 
to explain the abstract concept of functions. 

2The term Currying derives from the name of the American mathematician 
Haskell B. Curry. 
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6.2 The Issues 

We start by placing the notion of functions in both a mathematical context 
and a programming language context. We proceed to informally present some 
easy-to-understand notions of function definitions, function "maps" (graphs), 
function types and attributes of functions, that is, special classes of functions. 

6.2.1 Background 

In mathematics we use and define functions. The sine and cosine functions of 
trigonometry were used and were (as we shall see, axiomatically) defined by 
their properties before we, in numerical mathematics, learned to approximate 
their computation through suitably defined functions. And in programming 
we define and use functions only we may call them by some other names: 
procedures, routines, methods, etc. In this section we shall take a first look at 
the kind of functions that we shall be dealing with in these volumes the func­
tions that we wish to be abstract counterparts of the procedures or methods 
of programming languages; and the functions that we wish to represent the 
meaning (the denotations) of described phenomena of some actual world, or 
of requirements-prescribed phenomena. 

Functions are obviously fundamental to any understanding of computing, 
and, we shall argue, to any understanding of the actual world around us! 
Functions, in mathematics, are not just abstract notions. They sometimes 
need be computed, whether, as in the old days, by hand, through reckoning, 
or, as now, by computers, through computation. The function concept that 
we focus mostly on in this section ties the above together: The definable as 
well as the denoting functions, that is, the mathematical functions. We do 
not necessarily focus on those for which we can devise an algorithm for their 
computation, but on functions in general. 

6.2.2 Some Concepts of Functions 

We shall, in turn, treat ideas of function definitions, function "maps" (i.e., 
function graphs), function types and classes of functions. 

Function Definitions 

Characterisation. By a function definition we shall understand a text, say, 
/ (a) = 5(a), which states the name, / , of the function, the name of an 
archetypical argument (or argument list), a, a definition symbol, =, and a 
body, 5(a), which is usually some clause (expression or statement) in which 
the argument, a, is free. • 

First some example formal function definitions and some intuition. 
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E x a m p l e 6.2 Two Function Definitions: You are familiar with the factorial 
and the Fibonacci functions. These two functions are chosen only as examples. 
In RSL we might express these functions as follows: 

t y p e v a l u e 
N a t l = {| n : N a t • n > l |} fib: N a t l -> N a t l 

v a l u e fib(n) = 
fact: N a t l -> N a t l c a se n of: 

fact(n) = 1 - • l j 
i f n = l 2 - • 1, 

t h e n 1 _ - • fib(n-2)+fib(n-l) 
e lse n*fact(n—1) e n d 

e n d 

The "underline" (wildcard) symbol stands for the "otherwise" alternative. • 

Since the above formulas represent another early occurrence of some formal 
RSL text, let us "read" these definitions "aloud": 

Natl is the set of natural numbers larger than or equal to 1, i.e., N a t , but 
excluding 0. (We say tha t Natl is a proper subtype of N a t . ) Both factorial and 
Fibonacci, as identifiers, denote functions (as indicated by the right arrow: —>), 
and they both take natural numbers as arguments and yield non-zero natural 
numbers as results (as indicated by the left and right Nat ls) . The factorial 
function definition body expresses tha t if the argument is one then the result 
is one, otherwise the result is the value of the product of the argument and the 
factorial of an argument which is one smaller than the original argument. The 
situation is similar for the Fibonacci function definition. Its body expresses 
tha t if the argument is one, then the result is one, otherwise, if the argument 
is two, then the result is (also) one, otherwise,3 i.e., for all other larger values of 
the argument, the result is the sum of the "two previous Fibonacci numbers"! 
Thus the first and the second Fibonacci numbers are both 1. 

Now to some RSL syntax: The keyword v a l u e signals, to the reader, tha t 
RSL bindings of identifiers to values now follow.4 The names being bound are 
here fact and Fib. These names are bound in this case to function values. Thus 
we here have two function definitions each consisting of a pair of clauses: the 
function signature and the function definition proper. The former consists of 
the function name and a function space type expression, usually a type expres­
sion tha t contains (at least) one infix function space type constructor, either 
->> or ^>. The latter consists, in the above example, of a triple: (i) a function 

3The "otherwise" is designated by the "wildcard" symbol _. 
4An abstract t y p e clause: t y p e A, or a concrete t y p e clause: t y p e A = ... 

designates a binding of type identifiers to sorts, respectively concrete types (i.e., 
value spaces). 
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name and a possibly empty list of arguments enclosed in parentheses,5 (ii) the 
identity symbol = , which separates the function definition header from (iii) 
the function definition body, which is always an RSL expression — here both 
are simple conditional expressions. 

The reason for presenting the above two function definition examples is 
now to relate them, still as examples, to an informal concept of function 
"maps". 

F u n c t i o n "Maps" (Graphs) 

Character i sa t ion . By a function "map" we understand, loosely, the set of 
pairs, (a,r), of all those function arguments, a, for which the function is 
defined and then yields a result value r. • 

We use the terms function "map" and function graph interchangeably. We 
deliberately use quotation marks around the term map here. Unquoted map 
references shall, later, designate a special kind of functions. Tha t is, functions 
for which the definition set can be computed. A function definition set is the 
set of argument values for which the function is defined. 

Figure 6.1 on the next page illustrates two function "maps" .6 They purport 
to illustrate how arguments of the definition sets, "under" the functions, map 
into, i.e., yield results of the range (range set), or image (image set) of the 
functions. 

The idea of the function "map" (graph) is to visualise tha t specific elements 
of the definition set "map" into specific elements of the range set. Please refer 
to the definition of the factorial and the Fibonacci functions (Example 6.2) in 
order to see tha t the function "maps" of Fig. 6.1 "correspond to" , i.e., visualise 
fragments of these functions. 

Later we shall see examples where there are elements of what is claimed to 
be the definition set for which the function "map" prescribes no corresponding 
range element (Fig. 6.3). We refer to the question symbol ? of the injective, 
partial function and the surjective, likewise partial function. 

T y p e s of F u n c t i o n Spaces and F u n c t i o n S ignatures 

This is the first of two sections on function types. The presentation is informal, 
and short. The subsequent (Sect. 6.5.2) is a bit more systematic. Here we 

5The parentheses (...) surrounding two or more arguments effectively compose 
these into a Cartesian. RSL does not provide for one element Cartesians. Hence a 
function invocation expression / (a ) could as well be written / a. The parentheses in 
/ (a ) are merely there for disambiguation should one happen to write fa but mean 
/ a (i.e., / (a ) ) . 

6The figure title of Fig. 6.1 lists names of functions in double quotes. As is 
common practice, we use double quotes to signal that we do not quite mean what 
the quote says! In the case of Fig. 6.1 the pictures only purport to show something: 
They are not the functions named, only "pictures" of fragments of them! 
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"The Factorial Function" "The Fibonacci Function" 

Definition set Range set Definition set Range set 

Fig. 6 .1 . Concrete function "maps" (i.e., graphs) 

outline our form of writing down type expressions for functions spaces. Later 
we will assume this intuition. 

The two function "maps" of Fig. 6.1 both contain three elements: the 
function definition sets, the function range sets and the function "map ar­
rows" (the graph arrows, i.e., the "map" set of the function). These three are 
summarised in Fig. 6.2. 

Definition set Range set 

| A _ L i £ J B ] 

F = A > B 

Fig. 6.2. Function Types 

The notation BA is sometimes used to designate the function space A-¥B. If 
|X| expresses the "cardinality" of the set X then \B\\A\ expresses the "cardi­
nality" of the set BA.7 

These three elements naturally form the basis for our linguistic way of 
expressing function spaces: 

A - • B, t y p e F = A - • B 

The type expression A ->> B denotes the space of all total functions from 
definition set A into (or onto) range set B. The type definition F = A —> B 
"assigns" the identifier F as the type name for tha t space of functions. The 
form: F = A —> B is also called the signature of a function, or its function 
signature. 

7Of course, if either of the cardinalities are infinite, then it really does not make 
sense to talk of a cardinality, hence the double quotes. 
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Classes of Functions 

Functions whose results are truth values are called predicate functions and 
the others just functions (optionally, of nontruth value result types). 

Without detailing what the specific functionalities could be, we can "pic­
ture" some other functions (Fig. 6.3). By the definition set of a function we 
mean the set, A'CA, of exactly all the arguments for which a function is de­
fined. By the image (or range) of a function we mean the set, B'CB, of exactly 
all the result values for defined arguments. A function which is not defined for 
all values of its postulated definition set is a partial function. We syntactically 
express the space of all total and partial functions from definition set A into 
(or onto) range set B by A^»B. 

A B A = A' B = B' A B = B' 

Injective, Partial Function Bijective, Total Function Surjective, Partial Function 

Fig. 6.3. Conceptual function "maps" (i.e., graphs) 

A function which maps values of its postulated definition set into some, but not 
all elements of its range is an injective function. A function which maps values 
of its postulated definition set into all elements of its range is a surjective 
function. A function which is surjective and which maps all definition set 
elements (i.e., a function which is a total function) into distinct range elements 
is a bijective function. 

6.3 How Do Functions Come About? 

In a few steps of reasoning we shall try motivate how functions come about! In 
the next paragraphs we first cover the concepts of (1) names and (2) values, 
including constant and variable names; (3) then the concepts of expressions, 
of expression evaluation and of free variables. And from that we (4) intro­
duce the concepts of functions and abstracted functions. From this we, very 
cursorily, (5) mention the notions of function application, function result and 
the substitution of values for free variables. This sequence, from names, via 
expressions with free variables, to functions, thus motivates the concept of A 
functions — to be more formally introduced in Chap. 7. So here we go! 

(1-2) There are names, and names designate values, either constant or 
variable: 7, t rue , and "a", respectively i, b and c are examples of constant, 
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respectively variable, names. 8 Some such constant or variable values are val­
ues like numbers, Booleans, characters, records or arrays of these etc. Thus, 
7, true, "a" , r(i:7,b:true,c:"a"), and <1,2,3 I5,8,13> are example constant value 
expressions. Other such constant or variable values are function values like 
addition (of numbers) +, subtraction - , etc., or conjunction (of Booleans) A, 
disjunction V, list concatenation ^ , etc. Thus: +, - , A, V, and ^ , respec­
tively, are example function names. When written as shown, as noncharacter 
symbols, we call them operator names or operator symbols or just operators, 
or, if Boolean, we call them connectives. 

(3) There are expressions, and expressions are built up from constant 
or variable names and delimiters (such as, for example, (, ) , > , < and , ) , 
and such expressions designate values: i+7 , < " a " > ^ < l , 2 , 3 , 5 , 8 , 1 3 > , and 
a A t r u e . If all expression names designate constant values, then the expres­
sion designates, i.e., evaluates9 to, a constant value. If one or more names of 
an expression designate variable values, such as i in i+7 , or a in a A t r u e , 
or p and q i n < l , p , 3 , q , 8 , 1 3 > , then we say tha t they are free variables in 
those expressions. 

(4) Expressions, typically with free variables — generally written: £(x, y, 
. . . , z), where x, y and z are the free variables of expression £(#, ? / , . . . , z) — 
denote10 a function. Tha t is, a function from values (eg. a,/? and 7) tha t can 
be associated with x, y, respectively z, to the value of the (constant) expression 
where a , f3 and 7 have been substi tuted for x, y, respectively z. We say tha t the 
expression has been (function) abstracted and tha t the expression constitutes 
the body in the abstracted function. An example is: If a and /? are the values 
7 and 9, respectively, and are associated with p and q in < l , p , 3 , q , 8 , 1 3 > , 
then the value of < l , p , 3 , q , 8 , 1 3 > becomes ( 1 , 7 , 3 , 9 , 8 , 1 3 ) . n 

(5) We express by: \x*\y ... \x*£(x, y,... ,z) "the function of x, y, ..., z 
which when applied to arguments a,/3, . - .77? yields the value of£(x,y,...,z) 
where a , / ? , . . . , 7 have (first) been substituted for x,y,... ,z in £(x, y,...,z)." 
£(x, ? / , . . . , z) is the body of the function expression \x*\y ... Xx»£(x, y,...,z) 

We have written in italic those terms which stand for computing science con­
cepts. We have written in t e l e type font those terms which stand for examples. 
Having done this in the introductory lines we shall only, in this section, use these 
type fonts when introducing new concepts. 

9See Sect. 6.4 for an informal explanation of the term evaluate. 
10We have used the two terms designate and denote almost interchangeably: We 

use designate when an evaluation should lead to what one would normally consider 
the value (of the expression). And we use denote when an evaluation should lead, 
not to such a value, but to a function from contexts into such values — where the 
contexts associate variables to values. 

11 Observe our two uses of digits: The syntactic use expressed in the t e l e type 
font : 0, 1, 2, . . . , 9, and the semantic use which is expressed in the mathe­
matical font: 0,1, 2 , . . . , 9, and the two uses of 'angles': The < and > in expressions, 
and the ( . . . ) in value forms as if we could "write" values! We cannot, of course, but 
use numerals to speak of numbers, etc. 
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Thus functions arise from free variable names of expressions. To summarise 
the above: From (1) constant names we abstracted to (2) variables, from there 
to (3) expressions over constants and variables, and from there to (4) func­
tions. The latter were seen as abstractions of expressions with free variables. 
It is on this basis that, in Chap. 7, we introduce the "pure" A-calculus. Notice 
that the Xx in Xx*£(x) makes us say: "the function of' x that when applied to 
an argument a yields a value as denoted by £(a)". 

6.4 An Aside: On the Concept of Evaluation 

We cover, briefly, concepts of evaluation, interpretation and elaboration; ex­
amples of function evaluation (etc.); and the concept of function application 
(i.e., invocation). 

6.4.1 [E]Valuation, Interpretation and Elaboration 

In the previous section we mentioned the term evaluate. The concept of eval­
uation applies to syntactic quantities and can be thought of as a procedure, 
or as a metafunction, which is applied to a syntactic construct, and usually 
something we call its semantic context, and which then yields a value. That is, 
if we wish to find the value of an expression, then we evaluate the expression. 
If the expression contains variables, then we need look up, somewhere, namely 
in the semantic context, to find the value of these variables. Usually we shall 
use the term environment12 in lieu of the term semantic context. 

Other words for evaluate (evaluation) are valuate (valuation), interpret 
(interpretation), and elaborate (elaboration). Much later in these volumes we 
shall distinguish between these three terms. Meanwhile, we refer the reader 
to the present volume index. 

6.4.2 Two Evaluation Examples 

Examples help. 

Example 6.3 Function Evaluations: The Fibonacci function as given in Ex­
ample 6.2 can be represented as a set of argument/result value pairs, i.e., as 
a relation, as implied by Fig. 6.1: 

{(1,1), (2,1), (3,2), (4,3), (5,5), (6,8),. . .} 

12Note that we now use the term environment in two senses in these volumes: (i) 
as above, for a semantic context in which free variables are associated with values, 
and (ii) as the context, in some domain, in which some machine, i.e., some computing 
system (hardware + software) is placed and with which that machine interacts. 
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Correspondingly, we can talk of two bases of evaluating the Fibonacci function. 
Based on the relational representation above we can very informally sketch 
one form of evaluation by: 

fib = {(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),...} 

evaluate (fib,4) = 

evaluate({(l,l),(2,l),(3,2),(4,3),(5,5),(6,8),...},4) = 

select the pair (i,j) 
whose first element = 4 
and yield its second element, here 3 

We shall later return to this form of function representation (Sect. 6.7). We 
shall call the above form of evaluation a relation search. Based on the function 
definition in Sect. 6.2 we can likewise, without much explanation and thus very 
informally sketch another form of evaluation. In the present form we replace 
invocation text, viz., fib(i), for some (constant) i, with the function definition 
body text where the function argument, n, has been replaced by the constant 

fib(4) = 
case 4 of: 1 - • 1, 2 - • 1, _ - • fib(2) + fib(3) end 

fib(2) + fib(3) = 
case 2 of: 1 - • 1, 2 - • 1, _ - • fib(O) + fib(l) end + 
case 3 of: 1 - • 1, 2 - • 1, _ -+ fib(l) + fib(2) end 

1 + fib(l) + fib(2) 

1 + 
case 1 of: 1 - • 1, 2 - • 1, _ - • fib(-l) + fib(O) end + 
case 2 of: 1 - • 1, 2 - • 1, _ - • fib(O) + fib(l) end 

1 + 1 + 1 

3 

We shall later have more to say about this form of combined syntactic rewrit­
ing and simple arithmetic and Boolean test expression calculation. We shall 
call this form of evaluation symbolic interpretation. 
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6.4.3 Function Invocation/"Function Call" 

We have used the term function application. Above, in the informal function 
evaluation examples, we saw what application might imply: some form of 
evaluation. The examples show several examples of function applications, or, 
as we shall also call them, function invocations, or function calls: 

evaluate (relation, argument), or 
fib(4),fib(3),fib(2),fib(l),fib(0),fib(-l),fib(-2),... 

In Example 6.3, evaluation by relation search is a metainvocation: In other 
words, the metalinguistic evaluator function evaluate "simulates" the applica­
tion of the function representation relation to the function argument argument: 

vrelation'(vargument') 

By function application we understand the mathematical phenomenon of ap­
plying a function, as a mathematical quantity, to an argument of its definition 
set, also mathematical quantities. By function invocation, or function call, we 
understand the same: namely the first step in simulating or evaluating the 
"application of a function". By symbolic function evaluation, we understand 
the "sequence of things" that goes on, as shown in the syntactic rewriting and 
simple arithmetic and Boolean test expression calculations shown above for 
the Fibonacci example (Example 6.3). 

6.5 Function Algebras 

We can summarise a number of things said earlier in this section on functions. 
That is, basically no new material is now presented, but a review of what we 
shall need in the future is given. We do so by presenting the notion of functions 
as an algebra. As we shall see in Chap. 8, an algebra consists of a set of values 
and a set of operations. To this we add a name for the algebra. In this section 
we shall treat these three issues in a permuted order: Values, names of algebras 
and operations. 

6.5.1 Functions 

The values of a function algebra is the space of all functions of that algebra. 
A function is that "mysterious thing" which when applied to an argument of 
its definition set yields a result of its range set. Nobody has ever seen a function 
— just as nobody has ever seen a number. Rather, these are mathematical 
entities that are characterised by their properties. 

6.5.2 Function Types 

First, we treat how we write down type expressions that denote function 
spaces, then how we express higher-order function types. We syntactically 
distinguish between total, —>, and partial, ^>, functions: 



6.5 Function Algebras 99 

Type expression: Type definition: 

A - • B type 
A H> B TF = A -> B 

PF = A ^ B 

These are understood as follows: The type expressions A— B̂ and A^»B are 
the composite names (i.e., signatures) of function algebras. The type names 
TF and PF are the simple names of function algebras. The fact that we write 
f = A ^» B amounts to typing the function f. 

Thus —> is an infix type constructor function: It takes two argument types 
(i.e., sets of values), A and B, and yields the space of all total functions from 
all of the definition set (i.e., type) A to within13 the range set (i.e., within the 
type) B. And -3* is an infix type constructor function: It takes two argument 
types (i.e., sets of values), A and B, and yields the space of all partial functions 
from within the type A to within the range set (i.e., type) B. That is, there are 
(possibly different) values in A for which each function in A^»B is not defined. 

Above we explained the —> and ^> symbols semantically. Now we explain 
them syntactically: —> is an infix operator. Its two operands are to be type 
expressions. Likewise for ^>. 

6.5.3 Higher-Order Function Types 

Types A and/or B may themselves be function types: 

type 
A = P -> Q 
B = U-> V 
F = (P - • Q) -> (U -> V) = A -> B 

More generally, the type expressions: 

A - ^ B - > C = A - ^ ( B - > C ) ^ ( A - > B ) - > C 

That is, the infix function space type constructor associates to the right. 
Above we have used the = and the / operators in a metalinguistic sense: They 
look like RSL operators, but they are not. They are here to be understood as 
mathematical operators (since in RSL one cannot compare types). 

6.5.4 Nondeterministic Functions 

Let f and g be functions defined by: 

By within A we mean either all of A or a proper subset of A. 
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value 
m,n:Nat 

f: Nat ^ Nat, f(i) = let j:Nat • j>i in i+j end 
... f(7) ... f(9) ... f(13) ... 

g: Real —> Nat, g(j) = m 
... g( l / i f n=0 then 100000000000000 else n end) ... g ( l / ( l+n)) ... 

where Real and Nat stand for the types of reals, respectively natural num­
bers, then we say that function f is nondeterministic. That is, it delivers an 
arbitrary, but some natural number, not necessarily the same for every invo­
cation of f, but "skewed upward". Nondeterministic functions, from type A to 
type B are given the partial function signature: A ^> B. 

6.5.5 Constant Functions 

Function g (defined above) is a constant function. In the above definition of 
g, the definition relies on the nondeterministic definition of m; m may take 
on any natural number value. But m is defined only once. Thereafter it is a 
constant, hence g is a constant function. Constant functions, when invoked, 
each yield the same result value irrespective of their argument value(s), if any. 
Specifically: 

type 
A 

value 
a:A 
f: Unit - • A, f() = a 

hints at the view that values of arbitrary type can be seen as constant func­
tions:14 

value 
zero, one, two, ..., nine: Unit —> Nat 
zeroQ = 0, oneQ = 1, twoQ = 2, ..., nineQ = 9 
tt, ff: Unit - • Bool 
tt() = true, ff() = false 

14The literal Unit designates the value (). It is used wherever we wish to define 
functions of no arguments. Invocation of such argumentless functions, f, is written 
f()-
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6.5.6 Strict Functions 

Function g (defined above) is a strict function: It depends on whether the ar­
gument is defined, i.e., chaos — value m above could be 0 — or not. Note that 
g(chaos) = chaos, chaos is not a real number, hence the function signature 
is that of a total function. 

RSL functions are all strict. The RSL if .. then .. else .. end operator is 
the only RSL operator (i.e., function) which is not strict: 

type 
A, B, C 

value 
h : A x B x C 4 D , p : A 4 Bool 
h(a,b,c) = if p(a) then b else c end 

If the language in which h is expressed is nonstrict, in other words is not 
RSL, then the result of a function h invocation depends on whether chaotic 
arguments are being evaluated in the body of the function. Argument c may 
thus be the totally undefined value (chaos). If the predicate function (p) 
invocation (p(a)) prevents, i.e., "circumvents" evaluation of argument c, then 
a function invocation f^'.b'.c') may still yield a defined result value. The 
above example generalises to any function of one or more arguments, i.e., of 
nonzero arity. 

6.5.7 Strict Functions and Strict Function Invocation 

A strict function is one which, no matter what its function definition body 
may prescribe, but when given any chaos valued argument, always yields the 
totally undefined value chaos. Programming languages with Call-by-Value 
have function (including procedure) invocations that are strict. Strict func­
tion invocation should not be confused with strict functions: Strict function 
invocation is a property, typically of programming languages, usually having 
the Call-by-Value property, whereas strict functions, typically in specification 
languages, usually have the Call-by-Name property. RSL has a Call-by-Value 
semantics. 

6.5.8 Operations on Functions 

So far we can speak of five operations which apply to or result in functions, 
three ([1-2-3]) that are "computable", and two ([4-5]) that are not. The com­
putable functions are: ([1]) function abstraction, \x:X»£(#);15 ([2]) function 

15By the expression Xx:X»S(x) we denote the function of x which when applied 
to arguments of type X yields values of the kind found by evauation of the body 
£{x). In Chap. 7 we introduce the A-calculus. 
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application, •(•); and ([3]) function composition, •°». (The symbol • indicates 
an argument placeholder.) 

They (i.e., [1-3]) are "computable" in the sense that we can define and 
evaluate them. This computability still allows for evaluations that do not 
terminate. But whereas we can ([4]) speak of the definition set, £>(•), and 
([5]) speak of the range set, 7£(»), of functions, we can, in general, given a 
function, not compute these sets. 

([6]) As we shall see later, we can add a sixth operation on functions: The 
fix point taking operation, Y (Sect. 7.8). 

We can illustrate the above: 

type 
F = A -> B, G = B -> C, H = A -> C 

value 
[1] Aa:A-e 
[2] (Aa:A-e)(e') 

[3] f°g = Aa:A-g(f(a)) 
pre KfC Vg 

[4] V: F - • A-set, G - • B-set 
[5] U: F -> B-set, G - • C-set 

A, B and C are arbitrary types, and F, G and H are function spaces. 
[1] expresses the abstraction of expression e into an (unnamed) function; 

a may, or may not, be free in e. Given that evaluation of e for arguments 
replacing all free occurrences of a in e by any applied value yields a value 
of type B, the function is of type F. [2] expresses the application of such a 
function to an argument, expressed by expression e'. Given that evaluation 
of e for arguments replacing all free occurrences of a in e by the value of e' 
yields a value of type B, the function result is of type B. [3] f°g expresses 
the composition of two functions. Provided the range of the first function, f, 
is a subset of the definition set of the second function, g, the result of the 
composition is defined, and is of type H. [4] V postulates a function that 
applies to (any type of) function and yields its definition set, while [5] 1Z 
postulates a function that applies to (any type of) function and yields its 
range set. 

The problem with [4-5] is that these functions are not "definable", that 
is, cannot be computed. It is not possible to decide, i.e., it is not decidable, 
given an arbitrary function, say in the form of its definition, which are exactly 
all the elements of its definition and range sets. But we can, in mathematics, 
speak of the definition set and the range set of a function. 
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6.6 Currying and A-Notation 

6.6.1 Currying 

Sometimes we think of functions as being functions of more than one ar­
gument. We therefore, in function definitions, group these arguments into 
Cartesian structures. 

Instead of writing: 

type 
X, Y, Z, R, K = XxYxZ 

value 
f : X - > Y - > Z - > R 

we may write: 

f: X x Y x Z - • R, or: f: K - • R 

And, instead of expression function application as: 

f(a)(b)(c), 

for suitable a, b, and c, we may write: 

f(a,b,c), 

or, if k is some Cartesian structure — like (a,b,c) — we may write: 

f(k). 

6.6.2 A-Notation 

This subsection is a precursor for Chap. 7. 
The following are equivalent ways of expressing function definitions in RSL: 

type 
A, B, C 

value 
f: A x B ->• C 
f(a,b) = £(a,b) 

f : A - t B 4 C 
f(a)(b) = £(a,b) 
f(a) = Ab:B.£(a,b) 
f = Aa:A.Ab:B.£ (a,b) 

That is: Moving a rightmost argument, y, "across" the definition symbol =, 
from a function header g(x)(...)(y), causes it to appear on the righthand side 
as a prefix, Ay:Y., to the function definition body £(x y).16 

16Recall an arithmetic (calculus) "analogue": p x q — r is the same as p — r/q for 
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6.6.3 Example of Currying and A-Notation 

Example 6.4 Curryed and Uncurryed Function Definitions: Let: 

type 
X , Y , Z 
K = X x Y x Z 

Next we look at various examples of expressing simple, explicit function defi­
nitions: 

[1] let f = Ax:X-Ay:Y-Az:Z.£(x,y,z) in f(a)(b)(c) end 
[2] let f (x)(y)(z) = £(x,y,z) in f'(a)(b)(c) end 
[3] let g = A(x,y,z):(XxYxZ)-£(x,y,z) in g(a,b,c) end 
[4] let g'(x,y,z) = £(x,y,z) in g'(a,b,c) end 
[5] let g" = A(x,y,z):K-£(x,y,z) in g"(a,b,c) end 
[6] let g'" = Ak:K-£(k) in g'"(abc) end 
[7] let g""(k) = £(k) in g""(abc) end 
[8] let h = A(x,y):(XxY)-Az:Z-£(x,y,z) in h(a,b)(c) end 
[9] let h'(x,y)(z) = £(x,y,z) in h'(a,b)(c) end 

The nine functions f, f, g, g', g", g//r, g""7 h and h', are meant to be identical 
due to the common function type and common body expression £(x,y,z). But 
[a — f3] below, although the same function, is not a function of the same kind 
(i.e., type) as [8-9] above: 

[a] let h" = Ax:X.A(y,z):(YxZ).E(x,y,z) in h,r(a)(b,c) end 
[/?] let h;/,(x)(y,z) = E(x,y,z) in h/,;(a)(b,c) end. 

This is so since the two types: 

(X x Y) -> Z, and X - ^ ( Y x Z ) 

are different. • 

6.7 Relations and Functions 

Characterisation. By a relation we shall understand a set of groupings of 
the same arity and component types. • 

Example 6.5 An Abstract Relation: Let e .̂ for 1 < i < n, then: 

[ \e^-i1 ? e 2 i 2 j '''-)enin)i 1 

J \el21 5 e 2 2 2 i - - - j eri2n)'? I 

[ (eim i , e2m2, . . . , e n r n J J 
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where each row designates a grouping, and the collection of rows designating 
a set could be generically a representation of a relation. • 

Typically we may define: 

type 
D_l, ..., D_n 
T = D_l x ... x D_n 
R = T-set 

Any subset of R is now said to be a relation. 

6.7.1 Predicates 

We can now explain predicate functions, for example, of signature: 

value 
p: D_l x ... x D_n -)> Bool 

as a finite or a possibly infinite subset, a relation, p_rel, of R: 

p_rel:R, e.g., p_rel = {(d_lv..,d_Q)v..,(d'_lv..,d/_n),...} 
p(r) = if r G p_rel then true else false end = r G p_rel 

The type expressions R-set and R-infset denote the set of finite, respectively 
possibly infinite, subsets of R, also known as the power set of R. 

6.7.2 Function Evaluation by Relation Search 

We can thus explain a function (from, for example, D_l x ... x D_n into D) 
as a relation, f_rel, over D_l x ... x D_n x D: 

type 
F = D_l x ... x D_n x D 

value 
f_rel:F-infset, e.g.: {(di,..., dn, d),..., (d[,..., d'n, d

1)} 

f: D_l x ... x D_n ^ D 
f(r) = 

if 3 (d_l,...,d_n,d):F-(d_l,...,d_n,d) G LrelAr=(d_l,...,d_n) 
then 

let (d_l,...,d_n,d):F-(d_l,...,d_n,d) G LrelAr=(d_l,...,d_n) 
in d end 

else chaos end 
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6.7.3 Nondeterministic Functions 

An n-ary nondeterministic function, f, is now a function for which several 
groupings in f_rel have the same first n-grouping: 

value 
is_nondeterministic: F-infset —> Bool 
is_nondeterministic(f_rel) = 

3 (d_l,...,d_n,d),(d^l,...,d'_n,d'):F • 
{(dJL,...,d_n,d),(d'_l,...,d'_n,d')} C Lrel A 
(d_l,...,d_n) = (d'_l,...,d'_n) A d^d' 

Note that we use the type constructor ^> to express either that the function 
space is one of partial functions, or one of nondeterministic functions, or, for 
that matter, both! Please also note that the above definitions of predicate 
function p, of function f, and of is_nondeterministic are all metalinguistic: they 
are not expressed in RSL, but in the informal, yet precise language of ordinary 
mathematics. 

6.8 Type Definitions 

Although covered in detail in Chap. 11 we shall briefly summarise how, in 
RSL, one defines function spaces, i.e. function types: 

type 
A, B 
F = A - • B 
G = A ^ > B 

A and B are any types, mentioned here as sorts. F denotes the space of all 
total functions, defined over all of A, into B. G denotes the space of all partial 
functions, defined over all or some of A, into B. 

6.9 Conclusion 

We have introduced the essence of functions: that they map arguments of 
their definition set into (i.e., yield) results of their range, and that they can 
be expressed (i.e., defined), named, applied and abstracted. We have also 
introduced the notion that functions have type — from (type of) definition 
set into (type of) range set. Together with the name of the function, this is 
called the signature of the function. We have seen that functions are either 
total or partial, and that functions can be further attributed as either being 
surjective, injective or bijective. 
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6.10 Bibliographical Notes 

A classic introduction to recursive function theory, a theory "lurking" behind 
our presentation in this chapter, is that of Hartley Rogers [444]. 

6.11 Exercises 

Exercise 6.1. Simple Arithmetic Operations, I. Let there be given just the 
simple RSL expression constructs: 

value 
f: A - > B 
f(a) = if Ptest (a) t n e n £con else £a^ end 
pre: -p p r e ; 

where 'Ptest *s a simple Boolean value expression which tests whether invo­
cation of / should terminate; where £con is the consequence expression, a 
simple expression which does not contain a (recursive) reference to / ; where 
£ a ^ is the alternative expression, also an expression which does contain a 
(hence recursive) reference to / ; and where Ppre is a simple Boolean value 
expression which tests whether / should be applied, a pre-condition. 

Define 

1. arithmetic (natural number) multiplication (i x j ) , and 
2. arithmetic (natural number) exponentiation (f7) 

using just addition and subtraction, or already defined functions. That is: A 
is the Cartesian of the Natural Number type, and B is that type. 

Exercise 6.2. Simple Arithmetic Operations, II. We refer to Exercise 6.1. 
Define 

1. integer division (with remainder) (i/j = (d,r)) 

Where d x i + r = i. 

Exercise 6.3. Function Application Evaluation by Relation Search. We refer 
to Exercise 6.1 and to the first part of Example 6.3 on page 96. 

Compute the sets of argument/result value pairs, i.e., as a relation (as 
implied by Fig. 6.1 on page 93) for the two functions: 

1. mult for arguments between 0 and 4, and 
2. exp for arguments between 0 and 3. 

Exercise 6.4. Function Evaluation by Recursive Function Invocation. We re­
fer to Exercise 6.1 and to the last part of Example 6.3 on page 96. 

Evaluate mult(3,4) and exp(2,3) in the manner of that part. 
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Exercise 6.5. Higher-order Arithmetic Functions. Define a function, thrice, 
which when applied to a 2-argument (i.e., a binary) arithmetic function, / , 
results in a 3 argument (etc.) function, r , which, when applied to three argu­
ments yields the result of applying / to the result of appying / to the first 
two arguments and the third argument ! 

Test your function, thrice, on the mult and exp function of Exercise 6.1. 
Show that (r(mult))(4,3,2) = 24, and that (r(exp))(4,3, 2) = 4096. 
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A A-Calculus 

• The prerequisite for studying this chapter is that you understand the 
concept of functions as covered in Chap. 6. 

• The aims are to introduce the concept of A-calculus, to introduce the 
concept of fix points of recursively defined functions and to relate the 
A-calculus expressions to the notation of RSL, the RAISE Specification 
Language. 

• The objective is to ensure that the reader can use and handle the RSL 
A-notation at ease and for proper abstraction purposes. 

• The treatment is formal and systematic. 

There is a family of calculi called the A-calculi. A calculus is a set of rules 
for calculating "something".1 We shall present two A-calculi: A "pure"A-
calculus, and a A-notation, i.e., an embedding of the (new, less than) 
"pure" A-calculus into the RSL notation. That A-calculus, and variants thereof, 
have become a de facto standard for modelling computation. 

The A-calculus was first proposed by Alonzo Church [152], in the mid-1930s, 
as a model for computation. 

Characterisation. By a X-calculus we understand a specific language (1) of 
syntactic entities called A-expressions, e: Namely (l.i) A-variables x, (l.ii) A-
functions Xx : T-e, and (l.iii) A-applications e/(ea) (or (e/ea), (e/)ea , (e/)(ea), 
or e/ea); and (2) of related "semantic" A-conversion (i.e., calculus) rules: (2.i) 
a-renaming, (2.ii) /^-reduction, and possibly other rules. • 

In this chapter we shall briefly outline some essentials of the A-calculi. 

1 You are well familiar, from first grade, with the calculus of ordinary arithmetic: 
Adding and subtracting, multiplying and dividing numbers. You are also assumed 
to be familiar with the calculi of differentiation and integrals. Later, in Chap. 8, you 
will encounter the calculi of the Boolean algebra, propositions and predicates. 
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Using the background of the previous chapter we systematically, yet very 
cursorily present a version of what we shall refer to as the "pure" A-calculus: 
its syntax, its semantics and its various forms of (terminating or possibly 
nonterminating) conversions. We then enlarge the scope by incorporating the 
A-calculus, as a notation, in the main specification language of these volumes, 
RSL. As part of that, we introduce the indispensable language construct let 
... in ... end, explained in terms of A-function application.2 We end with an 
introduction of the notion of recursively defined functions, fix points, a fix 
point operator and fix point evaluation of function application. 

7.1 Informal Introduct ion 

In the A-calculus everything is functions. To express such A-calculus func­
tion values we write A-expressions. The following are the only forms of A-
expressions: 

x, \ye, f(a) 

where A is a keyword, x and y are referred to as variables (or X-variables), and 
e, / and a are arbitrary A-expressions. A-variables are simple identifiers. The 
form Xye is referred to as a A-function: It abstracts the A-expression e. Note 
that y may or may not occur in e, the function expression body. We "read" the 
expression Aye as follows: The function ofx that the expression e designates, 
or, in more detail: The X-function expression which when "applied'7 to an 
argument X-expression a yields a resulting X-expression that arises from X-
converting expression e substituting all free occurrences of the variable x with 
X-expression a. The form / (a ) , which we also allow to be written as (fa), (/)a, 
and (/)(a), is referred to as a A-application (or a A-combination, or just a 
function application). 

7.2 A "Pure" A-Calculus Syntax 

We briefly introduce the "pure" A-calculus. The pure A-calculus does not 
contain general expressions. The A-notation, see later, will. We define the set 
of all A-expressions in an informal, yet precise style, one that we shall often 
be using. 

Definition. A-expression syntax. 

• Basis clause: If a; is a variable, then x is a A-expression. 
• Inductive clause: If a; is a variable and e, / , a are A-expressions, then so are 

Xx*e and f(a). 

2This construct has been used in very many functional programming and com­
puter science notations since it was first introduced, it is believed, by Peter Landin 
in the early 1960s [333,334,337-339]. 
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• Extremal clause: Only forms that are constructed using a finite number of 
applications of the above clauses (rules) are A-expressions. 

The above is an example of an inductive definition. • 

Since this is the the first time, in these volumes, that we properly introduce a 
language, and since we have yet to cover the material that shall later enable 
us to present such a language definition formally, we use the above informal, 
yet very precise style of presentation. This presentation represents a classical, 
mathematical way of presenting inductive3 structures, that is, usually infinite 
sets of entities (here they are syntactic entities) which have a structure. Here 
the structure is that of expressions either being atomic (no structure, really), 
as for the basis clause, or pairs of entities, a variable and an expression, or two 
expressions (i.e., the structuring is that of those two forms of composition). 

The basis clause usually lists a finite or infinite number of terms (in­
stances), here a family of variables. The inductive clause is of recursive nature: 
It assumes the existence of some terms and expresses the construction — the 
existence — of further terms. The basis clause secures the existence of initial 
terms. The inductive clause adds further terms to the language of terms. The 
extremal clause ensures that unwanted terms do not accidentally creep into 
the language. The adjective extremal expresses exclusion. 

We can give a BNF grammar4 for pure A-expressions: 

type /* A BNF Syntax: */ value /* Examples */ 
(L) : 
(V) : 
( F ) : 
(A) : 

= (V) | (F) | (A) (V): x, y, z, f, a, 
= /* variables */ (F): A x • A y • z 
= A(V)-(L) (A): (fa) 
= ( (L)(L) ) /* Application */ 

<A):(fa),r(a), (f)(a), etc. 

There are thus three basic kinds of "pure" A-expressions: variables (V), func­
tion definitions (F) and function applications (A). 

We relax the BNF syntax to allow for the variant forms of expressing func­
tion application. Which form (f a, (f a), f(a), (f)a, (f)(a) and ((f)(a))) is chosen 
depends on the "size" of the respective f and a expressions, i.e., is chosen for 
reasons of readability. The syntax relaxation can be justified by extending the 
initial BNF syntax rule: 

(L) ::= (V) | (F) | (A) | ( <L) ) 

3By inductive we mean: inferring (inducing) general conclusions from particular 
instances. 

4By BNF we mean "Backus-Naur Form". We assume that the reader is familiar 
with the notion of such BNF grammars, including is familiar with the notion of 
context-free grammars. 
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Elements of (V) are called variables. Elements of (F) are called X-functions. We 
say that the expression (L) in A(V)«(L) has been abstracted, that is, "lifted" 
to a function, also called X-abstraction. Expressions (A) are called function 
applications. 

7.3 A A-Calculus Pragmat ics 

We shall not really examine, in detail, the statement that in the A-calculus "all 
things are functions". We do, however, emphasize that even variables denote 
functions. Arguments to and results of function application are also functions. 

Thus, to model ordinary mathematics or calculi, like arithmetic or logic, 
we ought to indicate that Boolean truth values and Boolean operations, that 
integers and the arithmetic operations, and that conditional expressions, can 
indeed be modelled by A-expressions.5 We do so in Exercises 7.1-7.2. We do 
this so that you may better accept why we put such an emphasis on the 
A-calculus. From working with these exercises the reader may then become 
"relatively convinced". For more formal treatments, and "full convictions" we 
refer to the literature [26,28,152,284,334,338,465,517]. 

7.4 A "Pure" A-Calculus Semantics 

The idea of the A-calculus is that a function expression, Ax-e, designates that 
function which when applied to an argument expression, a, substitutes a for 
all free occurrences of x in e. 

Example 7.1 X-Expression Evaluation: Let us try, informally, to see some 
examples of a substitution process: Wherever we have a function application 
of the form (\p*e)(q) we substitute q for all occurrences of p in the body e: 

1. (Xxmx)(d) => a 
2. (Xx-y)(a) ^y 
3. (\x'(xy))(a) => (ay) 
4. (Xx*Xy(xy))(Xz»z) =>* Xy((Xz*z)y) => Xyy 
5. (\x*\y(yx))(\z*(zy)) => Xy(y{Xz*(zy))) 

The first four examples are straightforward, and are okay. The last example, 
line 5, is not okay! The problem is that the free y in the argument Xzm(zy), 
when substituted for x, becomes bound by the y in Xy(yx). • 

The two A-functions, Xumu and Xvv, or, more generally, the two A-functions, 
Xu*£(u) and Xv£(v), are conditionally considered the same. By changing 

5Showing integers, Booleans and conditionals indicates some of the computa­
tional power we need in order to informally convince most readers that the A-calculus 
indeed can handle "what is computable". 
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\y{yx) above to \rm(rx), the free y in the argument \z*(zy) now does not 
become bound. 

The function application expression (a y) pragmatically assumes that a is 
a function, or can at least be made into something of the form Ave. 

7.4.1 Free and Bound Variables 

To explain, more systematically, this and the problem of turning a free variable 
into a bound one, we introduce the notions of (i) free and bound variables, 
of (ii) substitution, of (iii) a-renaming and of (iv) (3-reduction — the latter 
covering the notion of function application. 

Definition. Free and bound variables. Let x, y be variable names and e, / be 
A-expressions. 

• (V): Variable x is free in x. 
• (F): x is free in Xy -e if x ^ y and x is free in e. 
• (A): x is free in /(e) if it is free in either / or e (i.e., also in both). 

A variable is bound in an expression, if it occurs in the expression, but is not 
free. • 

7.4.2 Binding and Scope 

We also say that free occurrences of a variable x in some expression e become 
bound in Ax*e. Thus the formal parameter variable, x in Ax*e, serves as the 
binding variable, and the free occurrences of x in e become bound in Ax*e. 

The scope of a binding variable is the body of its function expression exclu­
sive of any inner, i.e., properly embedded, function expressions in which that 
same binding variable is reintroduced by some ("other") function expression. 
Thus the scope of the first x in 

Ax-Ay(x Ax*(x y)) 

extends to the second (left to right), but not the third nor the fourth occur­
rence of x in the A-function expression just above. 

7.4.3 Collision and Confusion of Variables 

The first occurrence, left to right, of variable x in the expression below is said 
to collide with the second (left-to-right) occurrence: 

Ax-AyAx-x. 
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The first occurrence, left to right, of variable y in the expression below is the 
binding occurrence. It binds only the second (left to right) occurrence: 

(\x*\y(xy))(y) apply f to y yields \y(yy) 
y v ' 

/ 

However, the third (left to right) occurrence. But when performing the in­
tended substitution of the argument, i.e., the third y for the free x in Ay(xy), 
it becomes confused with the second y in Ay(xy). We thus speak of confusion 
of variables. 

Collisions, as it turns out, create no problems, but may seem "confusing". 
Confusion can be avoided by simple renaming: 

Ax-AyAx-x renaming last bound variable yields Ax«AyAz*z 

7.4.4 Subst i tu t ion 

To deal with the confusion of free and bound variables, as illustrated above, we 
introduce a proper substitution function. Substitution is a very important and 
nontrivial notion. It is needed here in order to understand function application 
in the A-calculus, i.e., the meaning of writing f(e). Somehow, intuitively the 
idea is that the e replaces all occurrences of the formal parameter of the 
function expression f. And if f is the A-expression Ax*e', then e replaces all 
free occurrences of the variable x in e'. Problems with collision and confusion of 
free and bound variables, however, dictate some caution as to "what replaces 
what". 

Substitution of an expression N for all free occurrences of x in M will be 
expressed by: subst([N/x]M). Depending on the form of the expressions N and 
M we get either of the cases shown below: 

Definition. Substitution. 

• subst([N/x]x) = N 
• subst([N/x]a) = a for all variables a^x. 
• subst([N/x](P Q)) = (subst([N/x]P) subst([N/x]Q)). 
• subst([N/x](Ax-P)) = AyP. 
• subst([N/x](AyP)) = Aysubst([N/x]P) if x ^ y and y is not free in N or 

x is not free in P. 
• subst([N/x](AyP)) =Az-subst([N/z]subst([z/y]P)) if y ^ x and y is free in 

N and x is free in P (where z is not free in (N P)). 

Substitution is a very important concept of computer science and, as you can 
see from the above, not quite a simple one. • 
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7.4.5 a-Conversion and /3-Conversion Rules 

The substitution function mandates prior renaming (see last rule above) if a 
substitution might collide a free variable with a bound scope. We single this 
renaming out, referring to it in the future as a-renaming (or a-conversion). 
Furthermore we isolate the real purpose of substitution, namely function ap­
plication, in the /^-reduction (or /3-conversion) rule. 

Definition, a-renaming: (Ax»M)=Aysubst([y/x]M). 
If x, y are distinct variables then replacing x by y in Ax-M results in 

Aysubst([y/x]M). Renaming the formal parameter of a A-function expression 
is allowed if no free variables of its body M thereby become bound. • 

Definition, /^-reduction: (Ax-M)(N)=subst([N/x]M). 
All free occurrences of x in M are replaced by the expression N provided 

that no free variables of N thereby become bound in the result. • 

7.4.6 A-Conversion 

As illustrated in the informal "substitution" examples (Example 7.1), one can 
re-apply the conversion rules multiple times. The question, naturally, is: "Will 
it, the conversion, end? " To see that there might be a termination problem, 
let us look at the following four examples: 

Example 7.2 Four X-Conversions: 

(a) (\x*(xy)(z)) ->p (zy) 
(b) (\x*(xx))(\y(yy)) - ^ (*y(yy))(><y(yy)) -+a 

(Xz»(zz))(Xy{yy)) - ^ (Xy(yy))(Xy(yy)) -> a . . . ad infinitum! 
(c) (Xxay)(Xu*(uu)Xv(vv)) 

either: —>p y, or —>p (Xx*y)(Xv(vv)Xv(vv)) 
either: —>p y, or —>p (Xx*y)(Xv(vv)Xv(vv)) 
etcetera! 

We show example (c) again, graphically laid out for visual grasp! 

(Xxmy)(Xum(u u)Xvm(v v)) 

y (Xx*y)(Xu*(u u)Xv(v v)) 

y (Xx*y)(Xu*(u u)Xv(v v)) 

y (Xx*y)(Xu*(u u)Xv(v v)) 

y : 
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(d) The last example shows all the (always) terminating conversions of a A-
expression. First the visual picture: 

((\x*(x y))(\u*(u v)))(\p»(p q)r) 

/ \ 
((At*-(t* v))y)(\p»(p q)r) ((\x»(x y))(\u»(u v)))(r q) 

(y v)((\p*(p q))r) ((\if(u v))y){r q) 

(y v)(r q) 

Then a more textual, linear layout: 

[1] ((Ax-(x y))(Au.(u v)))(Ap-((p q)r)) [5] =* (((Au-(u v)) y))(((r q))) 
[2] => ((((Au.(u v)) y)))(Ap.((p q)r)) 

[3]((Ax.(xy))(Au.(uv)))(((rq))) 
[1] ((Ax-(x y))(Au-(u v)))(Ap-((p q)r)) [5] =* (((Au-(u v)) y))(((r q))) 
[3] => ((Ax.(x y))(Au.(u v)))(((r q))) 

[4](((((yv)))))(Ap.((pq)r)) 
[2] ((((Au-(u v)) y)))(Ap-((p q)r)) [6] =* ((((y v))))(((r q))) 
[4] => (((((y v)))))(Ap.((p q)r)) 

[5](((Au.(uv))y))(((rq))) 
[2] ((((Au-(u v)) y)))(Ap-((p q)r)) [6] => ((((y v))))(((r q))) 

We observe that some A-expressions always (Example 7.2(a) and Exam­
ple 7.2(d)[1-6]) reduce to a form that no longer contains any syntactic oc­
currence of a A-function which can be further reduced. Such a form is called 
an irreducible X-expression. We also observe, Example 7.2(b), that some A-
expressions cannot be reduced to an irreducible form. Others have their con­
version either terminate, or not terminate, depending on which reducible A-
functions are chosen — as in Example 7.2(c). 

7.5 Call-by-Name Versus Call-by-Value 

Characterisation. Call-by-name: When a /3-reduction is possible, and when 
one always chooses the leftmost, outermost such (i.e., the leftmost with the 
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fewest parentheses surrounding it), then we call that sequence of reductions, 
that is, the conversion, a call-by-name, or leftmost outermost conversion. • 

Character isa t ion. Call-by-value: When a /3-reduction is possible, and when 
one always chooses the rightmost, innermost such (i.e., the rightmost with 
the largest number of parentheses surrounding it), then we call that sequence 
of reductions, that is, the conversion, a call-by-value, or rightmost innermost 
conversion. • 

Example 7.2(a) and (b) are examples of both leftmost outermost and a right­
most innermost conversion. One leads to an irreducible form, the other never! 
In Example 7.2(c) the leftmost outermost conversion leads to an irreducible 
form, whereas the rightmost innermost conversion never leads to an irreducible 
form. 

7.6 The Church-Rosser Theorems — Informal Version 

The Church-Rosser Theorems state: 

• If a A-expression has an irreducible form, then a leftmost outermost con­
version will find it. 

• If two different A-conversions lead to irreducible forms, then they are, 
modulo a-renaming, the same. 

So: call-by-name reduction is the "safest"! Usually programming languages 
provide call-by-value. 

7.7 The RSL A-Notation 

We like the ability to designate functions without always having to name 
them. We also like the ability, also through A-function abstraction, to express 
functions, concisely without too much syntactic "machinery", i.e., "syntac­
tic sugar". The simple rules for free and bound variables, for substitution, 
for a-renaming and for /^-reduction also apply in the larger context of all 
programming, and hence also all specification languages. Therefore, as is 
common practice in the computer and computing science literature, we in­
troduce an extended version of A-expressions, here into RSL. 

7.7.1 Extending A-Expressions 

We now embed A-expressions in our specification language, RSL, by allowing 
any RSL value-designating clause (statement or expression) to occur wherever 
a A-expression may occur. We type (i.e., we give a type to) the bound variable 
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argument of A-functions: \x:X»£(x). The type X is not necessarily coincident 
with (equal to) the definition set of the function. It is just a conveniently 
expressible type expression, usually a type name. The function definition set, 
however, falls within the type. Below we show a slight revision of the BNF 
Grammar for the "pure" A-syntax. 

type /* An Extended BNF Syntax */ 
(Tn) 
(L) : 
(V) 
<F> : 
(A) 
(E) : 

::= /* Type names */ 
:= (V) | (F) | (A) 
:= /* variables, i.e., identifiers */ 
:= A(V> : (Tn) • <E) 
:= ( (E)(E) ) 
:= (L) | ( (E) ) | etcetera 

/* Any ordinary RSL (or other) */ 
/* expression, statement or clause */ 

value /* Examples */ 
(E): 0, 1, if n=0 then 1 else n * f (n- l ) end, 4 
(V):n,f 
(F): A n:Nat • if n=0 then 1 else n * f (n- l ) end 
(A): (A n:Nat • if n=0 then 1 else n * f (n- l ) end)(4) 

We have embedded into RSL the A-notation as a syntactic way of expressing 
functions without naming them. For cases of use where evaluation of RSL text 
does not imply side-effects (i.e., hidden state changes or communication over 
channels, etc.) we can resort to the A-calculus in order to grasp the meaning of 
an embedded A-expression. Otherwise we cannot! We shall later have occasion 
to clarify the above, seemingly cryptic statements. 

7.7.2 The "let ... in ... end" Construct 

A very useful expression construct of RSL is the "let ... in ... end" clause. 
It can be basically explained in terms of the A-Calculus. To do so we say that 
the three expressions: 

(A a:A • E(a))(b) 
let a:A = b in E(a) end 
let a = b in E(a) end 

are, for nonfunctional, or for functional expressions b that are nonrecursive 
(in a) — the same. 

The case where a occurs free in b amounts to a recursive mentioning of a 
in b. We shall deal with these cases in Sect. 7.8. 
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7.8 Fix Points 

Recursive definitions can be intriguing, whether of types, of functions, or of 
other values. Here we shall, from a practical point of view, briefly investigate 
the A-calculus meaning of recursive function definitions. 

Recursive function theory is predominantly focused on fix points. So fix 
points are very important in computer and computing science; and if we get 
these wrong, as software engineers, then we can get "things" terribly wrong. 

7.8.1 The Issue 

An important notion of mathematics and of both specification and program­
ming languages is that of recursion. In mathematics the notion of recursion 
"belongs" to what is sometimes called meta-mathematics, or sometimes re­
cursive function theory. 

In this section we first outline the problem. Then we "massage" a A-
expression in a few stages. We perform both conversion and short-hand substi­
tution, the latter of an expression for a name (the F below). That conversion 
and substitution leads us to a concept of fix points and of a fix point-yielding 
operator (the Y below). Finally, we show an example of a fix point evaluation 
using the fix point identity: YF = F(YF). The identity applies to any func­
tional, i.e., for any higher-order function, but it does not necessarily lead to 
what is called a minimal fix point. 

7.8.2 Informal Outline 

We will now deal with the case in which a occurs free in b in the expression 
E(a) below: 

let a = b in E(a) end 

Assume: 

type 
F 

value 
let f = Ax:X-B(f,x) in E(f) end. 

If by a free f inside B(f,x) we mean the same as the lefthand side f, then the 
two expressions ([1-2]): 

[1] let f:F = Ax:X-B(f,x) in E(f) end, 
[2] (Af:F.E(f))(Ax:X.B(f,x)) 

are not the same. The f inside B(f,x), of the second (Af-E(f))(Ax:X«B(f,x)), is 
not bound by the Af in Af-E(f) as was probably the intention. Let us assume: 
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value 
fact: Nat - • Nat 
fact(n) = if n=0 then 1 else n*fact(n—1) end. 

This example illustrates the issue of recursive function definitions. 

7.8.3 The Fix Point Operator Y 

We now treat the general example systematically: We omit typing the A-
function arguments. 

let f(x) = B(... f ... x ...) in E(f) end 

The next, numbered items refer to the formal, line-by-line derivation which 
follows. (1) Let the f inside the righthand side B(.. .f . . .x. . .) mean the same as 
the lefthand side f (i.e., in f(x)). (2) move x from the lefthand to the beginning 
of the righthand side — this is done by abstracting in x, i.e., by prefixing the 
moved x with a A and suffixing the moved x with a •. (3) Now rename the f 
inside the righthand side (... f ... x ...) into g by lifting the expression (... f ... 
x ...) to a function Ag-(... g ... x ...) which is then applied to f — whereby we 
get the original expression (... f ... x ...). 

1 let f(x) = (... f ... x ...) in f(a) end 
2 let f = Ax-(... f ... x ...) in f(a) end 
3 let f = Ag-Ax-(... g ... x ...)(f) in f(a) end 
4 let f = F(f) in f(a) end where F = Ag-Ax-(... g ... x ...) 
5 let f = YF in f(a) end 
6 The fix point Identity Law: YF = F(YF) 

From 1 to 2: A-abstraction. 
From 2 to 3: A-abstraction + A-application. 
From 3 to 4: Abbreviation. 
From 4 to 5: If / satisfies / = Ff then / is a fix point of F. 
(4) Now observe the expression f = F(f), where F = Ag-Ax»(... g ... x ...). 

Any function f which satisfies the equation f=F(f) is said to be a fix point of 
F. 

(5) The operator Y is an example of a fix point-taking operator. 
Thus one can eliminate named references to a recursively defined function 

by replacing the function name by its fix point. Y produces one such fix point. 
There are many such fix points but we refer to more foundational language 
semantics texts for a proper treatment of this. Any one of [28,183,250-252, 
280,284,319,396,443,454,497,521] will do. We remind the reader that we have 
omitted typing the formal variable of the above A-function expressions. We 
will continue, in this section, to omit such typing. 
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7.8.4 Fix Point Evaluation 

Example 7.3 Fix Point Evaluation: We show an example of evaluation using 
the Y fix point operator and the fix point identity YF = F(Y(F)). 

We leave it to the reader to decipher which of the conversion rules have 
been applied in each step below: a-renaming, /^-reduction (or its inverse, func­
tion abstraction, as for the introduction of g), or fix point identity YF = 
F(Y(F)). 

let f(n) = if n=0 then 1 else n*f(n—1) end in f(3) end 
let f = An-if n=0 then 1 else n*f(n—1) end in f(3) end 
let f = (Ag-An-if n=0 then 1 else n*g(n—1) end)(f) in f(3) end 
let f = F(f) in f(3) end 

where F = (Ag-An-if n=0 then 1 else n*g(n—1) end) 
let f = YF in f(3) end 
(YF)(3) 
(F(YF))(3) 
((Ag-An-if n=0 then 1 else n*g(n-l) end)(YF))(3) 
(An-if n=0 then 1 else n*((YF))(n-l) end)(3) 
(if 3=0 then 1 else 3*(YF)(3-1) end) 
(3*(YF)(2)) 
(3*(F(YF))(2)) 
(3*((Ag-An-if n=0 then 1 else n*g(n-l) end)(YF))(2)) 
(3*(An-if n=0 then 1 else n*(YF)(n-l) end)(2)) 
(3*(if 2=0 then 1 else 2*(YF)(2-1) end)) 
(3*(2*(YF)(1))) 
(3*(2*(F(YF))(1))) 
(3*(2*((Ag-An-if n=0 then 1 else n*g(n-l) end)(YF))(l))) 
(3*(2*((An-if n=0 then 1 else n*(YF)(n-l) end))(l))) 
(3*(2*((if 1=0 then 1 else 1*(YF)(1-1) end)))) 
(3*(2*((1*(YF)(0))))) 
(3*(2*((1*(F(YF))(0))))) 
(3*(2*((l*((Ag-An-if n=0 then 1 else n*g(n-l) end)(YF))(0))))) 
(3*(2*((l*((An-if n=0 then 1 else n*(YF)(n-l) end))(0))))) 
(3*(2*((l*((if 0=0 then 1 else 0*(YF)(0-1) end)))))) 
(3*(2*((1*((1)))))) = 3*2*1*1 = 6 

We have shown yet another example of symbolic function evaluation. This 
time, in contrast to the second example of Example 6.3, we used a mixture of 
a-conversion, /^-reduction and fix point conversion using the fix point identity. 
The fix point operation is an operation of the function algebra. 
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7.9 Discussion 

It is time to conclude this brief overview of the A-calculus. 

7.9.1 General 

We have introduced the essence of the A-calculus. First, A-function expressions 
have a bound variable which binds all free occurrences of that variable within 
its scope (i.e., the body). Second, functions can be modelled by the A-calculus 
with its concepts of free and bound variables, substitution, a-renaming and 
/3-reduction. Finally, that one can define notions of fix points, of a fix point-
taking operator, of a fix point identity and of fix point evaluation. 

7.9.2 On Minimal, Maximal and All Fix Points 

The fix point operator shown above does not necessarily lead to what is called 
a minimal fix point. A minimal fix point of a recursively defined function is the 
smallest set of argument and result pairs such that there are no other argument 
and result values for which the recursive function definition is satisfied. We 
refer to readily available papers and textbooks on semantics or on recursive 
function theory for the story on fix points and why it is important to deal with 
minimal, maximal and all fix points [28,183,250-252,280,284,319,396,443, 
454,497,521]. RSL's recursive definitions yield a set of models corresponding 
to all fix points. 

7.9.3 Emphasis 

As mentioned in Sect. 6.1.1 two different concepts of functions were introduced 
in the last two chapters: a syntactic notion, in the form of A-expressions (in 
this chapter), and a semantic notion, in the form of mathematical functions, 
depictable as function "maps" (in the previous chapter). 

The two are worlds apart: With the former view, the A-calculus view, we 
remain within a set of syntactic forms that are said to model the latter view. 
With the latter view we are postulating entities that no-one has ever seen! 
But entities whose properties can be fully satisfactorily described — so that 
we know that they exist, mathematically! 

7.9.4 Principles, Techniques and Tools 

Principles. A-Abstraction: Every expression can be raised, i.e., abstracted 
into a function of the free variables of the expression such that the function 
for values of these free variables yields the same value as would the expression 
with those values substituted for the free variables. • 

The same is true for clauses like statements, etc. 
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Techniques. A-Conversion: The techniques of A-conversion include those of 
a-renaming, /3-reduction, and fix-point expansion. • 

Tools. The X-calculus is a tool needed to express functions, their definition 
and their application. • 

7.10 Bibliographical Notes 

7.10.1 References 

The A-calculus was introduced in the 1930s by Alonzo Church and his stu­
dents [152,322], in their rather successful attempt to explain the notion of com-
putability: What can be computed? The A-calculus has turned out to be the 
simplest device for explaining programming concepts [222,334,338,391,426] 
and is at the basis of functional programming [51,175,225,261,278,380,433, 
520]. The mathematical foundations of A-calculi were first given by Dana 
Scott, inspired by Christopher Strachey [251,458-462,464,466-468]. Baren-
dregt has covered the A-theory from a scholarly viewpoint [25]- [28]. A good 
textbook is [284]. 

7.10.2 Alonzo Church, 1903-1995 

We refer to an Internet-based biography of Alonzo Church: 

http: / /www-gap.dcs.s t-and.ac.uk/"history/Mathematicians/Church.html 

It is due to J. J. O'Connor and E. F. Robertson, University of St Andrews, 
Scotland: Centre for Interdisciplinary Research in Computational Algebra. 

7.11 Exercises 

We shall pose some applied A-expression exercises. They are put forward to 
help you see that one can model the Boolean truth values and their operations, 
integers and their arithmetic operations as well as lists within the A-calculus. 

We refer to standard references for exercises in general A-conversion using 
the substitution, a-renaming, /3-reduction and the fix point identity conversion 
rules [26,29,284]. 

Exercise 7 .1. X-Expressions for Boolean Truth Values and Connectives. Con­
sider: 

if b then c else a end. 
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Think of c and a in if b then c else a end as a pair, or more generally, as 
a list and b as a selector into that list. If b is true then c is selected. If b is 
false then a is selected. This determines our representation of true and false 
in the A-calculus: 

T,true: Ax.Ay.x 
F,false: Ax.Ay.y 

A-calculus representation of the Boolean connectives are now suggested: 

~: Ax((xF)T) 
A: Ax.Ay.((xy)F) 
V: Ax.Ay.((xT)y) 

1. Writing out T and F in full (i.e., as A-expressions), show apply ~ to F to 
get T, and apply ~ to T to get F. 

2. Writing out T and F in full apply A to all four combinations of T and F 
and get what you expect. 

3. Similarly for V. 

Notice that these representations of the Boolean connectives expect operands 
that reduce to T or F. For operands (i.e., arguments) that do not reduce to 
Booleans these A-calculus connectives define "other" functions! 

Exercise 7.2. X-Expressions for Lists and List Element Selection. Consider 
the list: 

( 0 0 , 0 1 , - A - l ) 

being represented in the A-calculus as follows: 

(0o): Ax.((x0o)^) 
(0o,0i): Ax.((x0o)(0i)) 
(0o,0i,02): Ax.((x0o)(0i,02)) 

(00,01,-..,0n-l): Ax.((x0O)(01,02,...,0n-l)) 

ip is a "dummy" 'end of list' delimiter. It can be any A-expression. 
The idea, in Exercise 7.1 on the page before, to let T and F select into 

a list of length 2 and yield the 1st, respectively the second element, is now 
iterated: 

T: Ax.Ay.x 
FT: Ax.Ay.(y Ax.Ay.x) = Ax.Ay.(y T) 
F2T: Ax.Ay.(y Ax.Ay.(y Ax.Ay.x)) = Ax.Ay.(y FT) 

F i + 1 T: Ax.Ay.(yF*T) 
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Now show that: 

1. ( 0 O , 0 1 v A i - l ) T = 00 
2. ( 0 o , 0 i v A i - i ) F T = 0i 
3. < 0 o , 0 i , - A - i > F n T = 0n_x 

Exercise 7.3. X-Expressions for Integers and Arithmetic Operators. Church 
illustrated the following representation of natural numbers: 

0 = Aa.Ab.b 
1 = Aa.Ab.(ab) 
2 = Aa.Ab.(a(ab)) 

n = Aa.Ab.(a(a( ... (ab)))) 

where the natural number n is represented by the n-fold application of the 
first argument (a) to the second argument (b). 

With the following representation of the arithmetic operators: 

m + n: Ax.Ay((m x)((n x)y)), 
m x n: Ax.(m(n x)), and 
mn : (n m), 

calculate the following: 

1.2+3 
2. 2 x 3 
3. 23 
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Algebras 

• The prerequisite for studying this chapter is that you understand the 
mathematical concepts of sets and of functions as covered in earlier chap­
ters. 

• The aims are to cover the mathematical concepts of algebras such as they 
are used in computing science and software engineering and to cover, even 
in this early chapter, the algebraic specification of what is known, in com­
puting science and software engineering, as abstract data types (ADTs). 

• The objective is to ensure that the reader from as early as possible can 
use and handle this concept of specification algebras, at ease and with 
determination. 

• The treatment is systematic to semiformal. 

It is a main purpose of this chapter to basically just introduce the jargon — 
the language, as it were — of algebras. We do so for the sake of convenience: 
The mathematical concept of algebras equip us with suitable terms. When 
using those terms they help us delineate what we are presenting. 

Characterisation. By an algebra we, loosely, mean a possibly infinite set of 
entities and a usually finite set of operations over these entities. • 

In software engineering algebras play two central mathematical roles. The 
way we structure specifications and programmes (in schemes, classes, mod­
ules, objects) can perhaps best be understood with reference to algebra. 
Steps of development, from abstract specifications to concrete ones, can like­
wise best be understood as some algebra morphisms. 

8.1 Introduction 

Algebras are defined in terms of functions, hence this section follows the previ­
ous section on functions. Algebras capture the very essence of grouping entities 
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together with actions upon, events and behaviours over, and communications 
between these entities. In ordinary programming parlance, "algebras are ob­
jects". We refer to [53,349] as appropriate introductions to modern algebra. 

The concept of algebra is a mathematical concept tha t allows us to abstract 
observations tha t may have their background in topics other than mathemat­
ics. The concept of function can be seen as one such concept, which we, in 
Chap. 6, "related back" to phenomena in some actual world. Our concept of 
functions, as well as the basis of the concept of mathematical logic (Chap. 9) 
can both have their presentation improved by presenting some of their struc­
ture algebraically. The function algebra thus consists of the space of all func­
tions and a few operations such as function abstraction, function application, 
function composition, taking the definition set of a function, taking the range 
set of a function and, last, taking the fix point of a function. 

8.2 Formal Definition of the Algebra Concept 

We shall primarily take an algebraic approach when determining, i.e., when 
deciding upon, the form of, and developing software development descriptions. 
An algebraic system is a set,1 A (finite or infinite), and a set2 , ft, (usually 
finite), of operations: 

A = { a i , a 2 , . . . , a m , . . . } , J? = {wi,a;2,. . . ,w0} 

Set A is the carrier of the algebraic system, and ft is a collection of operations 
defined on A. Each operation oji : ft (oji in J?, i.e., 0Ji of type ft) is a function 
of some arity, say n, taking operands, i.e., argument values in A, and yielding 
a result value in A: 

^ ( a ^ a ^ , . . . , ^ ) = a 

Tha t is, oji is of type An —> A.3 Different functions (in ft) may have different 
arities. Think of arity as a functional, a function tha t applies to functions and 
yields their arity: 

t y p e arity: ft —> N a t , arity(a^) = n 

xWe usually do not say what the elements of this set are, it is just a set! 
2Similarly: Just a set! 
3The expression An —» A is not an expression of RSL. First, we are explaining 

basic mathematical concepts not in RSL but in an informal notation of mathematics 
already assumed understood. Second, if we wish to express in RSL what may seem 
to be a Cartesian of arity n, for a known, fixed n, then we write it out in full: 
Ai x Ai x • • • x An. If n varies, then it is probably not to be modelled, i.e., thought 
of, as a Cartesian, but rather as a list, A*, where A is then the union type of all the 
.Vs . 
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8.3 How Do Algebras Come About? 

Popular software devices, also known as abstract data types, such as stacks, 
queues, tables, graphs, etc., can all be seen as algebras. 

Example 8.1 "Everyday" Algebras: 

1. A Stack Algebra: The stack algebra has, as carrier, the union of the set of 
all stack element values with the set of all stack values, and create empty 
stack, top of stack, push onto stack, pop from stack and is_empty stack as 
operations. 

2. A Queue Algebra: The queue algebra has, as carrier, the union of the set of 
all queue element values with the set of all queue values and, for example, 
create empty queue, enqueue, dequeue, first ("oldest"), last ("youngest"), 
and is_empty queue as operations. 

3. A Directory Algebra: The directory algebra has, as carrier, the union of 
the set of all directory entry values (i.e., of value triples of entry name, 
date and information values) with the set of all directory values and, for 
example, create empty directory, insert entry in directory, directory look­
up, edit directory entry and remove directory entry as operations. 

4. A Directed, Acyclic Graph Algebra: The directed acyclic graph algebra 
has, as carrier, the union of the set of all node labels, the set of all edges, 
and the set of all acyclic graphs of (these) labeled nodes and unlabeled 
edges, and, for example, create empty graph, insert-node in graph, in­
sert-edge in graph, trace edges in graph from node to node, depth-first-
search in graph and breadth_first_ search in graph, as operations. 

5. Patient Medical Record Algebra: The patient medical record algebra has, 
as carrier, all conceivable patient medical records, each consisting of one 
dossier. Each dossier consists of one or more sheets (i.e., records) that are 
of the following kinds: prior medical history, interview records, analysis 
records, diagnostics determination, treatment plans (including prescrip­
tions), observations of effects of treatment, etc. In addition the carrier 
also includes these different kinds of sheets. That is, the carrier is quite 
complex. The patient medical record algebra has, for example, the follow­
ing operations: creation of a new medical record, inserting new information, 
editing previous (i.e., old) information, copying a sheet or a dossier and shred­
ding a dossier. 

Algebras may have finite or infinite carriers, i.e., carriers with finite or infinite 
numbers of elements of possibly different types. 
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8.4 Kinds of Algebras 

There are various kinds of algebras. It is important to understand which 
kinds of algebras are of interest to software engineering and which are not. 
For that purpose we explicate the variety of algebras that you may come 
across. 

8.4.1 Concrete Algebras 

The examples above were all examples of concrete algebras. 

Characterisation. A concrete algebra has sets of known, specific values as 
carrier, and a set of specifically given operations. • 

That is, one knows that one has a concrete algebra when one knows the 
elements of the carrier and when one knows the operators and how to evaluate 
operation invocations. The Boolean algebra of Chap. 9 is an example of a 
concrete, mathematical algebra. Other concrete, mathematical algebras are 
found in Example 8.2. 

Example 8.2 Number Algebras: 

• An Integer Algebra: (Integer,{+,—, *}), an infinite carrier algebra whose 
operations yield all the integers. 

• A Natural Numbers Algebra: (NatNumber,{gcd,lcm}) an infinite carrier 
algebra where gcd, Icm are the greatest common divisor, respectively the 
largest common multiple (viz.: gcd(4,6)=2, lcm(4,6)=12) operations, which 
yield all the natural numbers. 

• A Modulo Natural Number Algebra: (5sm = {0 ,1 ,2 , . . . , m - 1},J? = 
{©, (g)}) is a finite carrier algebra: © and (g> are the addition and multipli­
cation operations modulo m. 

Several other algebras over numbers are possible. • 

As software engineers we shall mostly be developing concrete algebras. As 
computing scientists we shall often have occasion to explain things in terms 
of abstract or universal algebras, to which we now turn. 

8.4.2 Abstract Algebras 

Whereas concrete algebras are known, i.e., effectively constructed, abstract 
algebras are postulated, That is, they are what we shall call (and define as) 
'axiomatised' in Chap. 9. 

Characterisation. An abstract algebra has a sort, i.e., a presently further 
undefined set of entities as carrier, a set of operations, and a set of axioms 
that relate (i.e., constrain) properties of carrier elements and operations. • 
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The algebraic system of an abstract algebra is thus defined by a system of 
postulates, to be known henceforth as axioms — and to be treated in depth 
later. See Sect. 9.6. 

We shall often be using axioms to describe manifest phenomena in an ac­
tual world; and we shall likewise often be using axioms to prescribe software 
devices — which will later be made "concrete", as concrete as such "phenom­
ena" which can exist inside computers can "be". The axiom systems should 
not be seen as actually "being" this or that concrete world, but "only" models 
of it. 

A "concrete" example of an informally postulated abstract algebra may 
be in place: 

Example 8.3 Another Stack Algebra: We present another version of the 
stack algebra of Example 8.1(1). There is a distinguished, unique carrier ele­
ment called the empty stack: empty(). Let s stand for any carrier stack value, 
i.e., stack, and let E = {e, e ' , . . . , e", . . .} stand for carrier stack element val­
ues. The members of E will become the elements of stacks. is_empty(empty()) 
always holds (is always true), whereas is_empty(push(e, s)), for any e and s, 
always fails to hold (is always false). Inquiring as to the top of a stack, s 
— which can be thought of as one onto which one has just pushed the ele­
ment e — yields that e for any stack s: pop(push(e, s')) = e, while popping 
an element from the stack sf (i.e. pop(push(e, s))) yields s. Popping an ele­
ment from, respectively inquiring as to, the top element of an empty() stack 
always yields the chaotic value, of no type, and representing the universally 
undefined element. • 

We shall more explicitly use the concept of abstract algebras whenever we 
"lift" an example like the above by not being concrete about exactly what the 
elements of the stack are. That is, we use it when we define a parameterised 
algebra, that is, abstract, like for function abstraction, in one or more of 
the sub-carriers of the abstract algebra being defined. Thus we introduce the 
concept of heterogeneous algebras. 

8.4.3 Heterogeneous Algebras 

Characterisation. A heterogeneous algebra: 

({A1,A2,...,Am},f)}) 

has its carrier set A be expressible as the union of a set of disjoint sub-carriers 
A{, and associates with every operation UJ in ft a signature: 

signature^) = Ah x Ah x • • • x Ain -> Ain+1 
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Thus the kth operand of UJ is of type Aik, and the result value is of type Ain+1. 

Example 8.4 Stack Algebra: We expand on the stack algebra example, Ex­
ample 8.3. Viewing that stack algebra as a heterogeneous algebra, the stack 
operations are (now) of the following signatures: S is the stack type, and E 
is the type of stack elements: empty: Unit -> 5, is.empty: S -> Bool, push: 
S x E - • 5, top: S -3- E, and pop: S -^ 5. • 

Unit is a literal. It denotes a type of one element. That element is designated 
by the empty parameter grouping: (). We shall later return to a more thorough 
treatment of Unit. 

8.4.4 Universal Algebras 

Characterisation. A universal algebra is a carrier and a set of operations 
with no postulates, i.e., the operations are not further constrained. • 

The Morphism Concept 

When, in software development we transform abstract specifications to more 
concrete ones, then, usually, an algebra morphism is taking place. 

Let there be two algebras: 

(A,n),(A',n') 

A function <fi : A —> A' is said to be a morphism (also called a homomorphism) 
from (A, ft) to (Af, i?') if for any OJ G ft and for any ai , a2, . . . , an in A there 
is a corresponding OJ' G ft', such that: 

M : 0(o; (a i ,a 2 , . . . , a n ) ) = a/(0(ai), 0(a2), • • • > <K«n)) 

We say that the homomorphism relation M respects or preserves correspond­
ing operations in ft and J?r (Fig. 8.1). 

n 

v I 
( ^ ' ) " ; - A ' 

Fig. 8 .1 . Morphism mapping diagram 
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(j)n is the n-fold Cartesian power of 0 : A -»> A1, that is, the map An -t (A')n, 
and is defined by: 

4>n : ( a i , a 2 , . . . , a n ) H> (0(ai), 0 ( a 2 ) , . . . , 0(an)) 

If 0 : A -> A1 is a homomorphism of 17-algebras, then, by definition 0 preserves 
all the operations of 17. 

A special rendition, i.e., manifestation and version, of the morphism con­
cept will be expressed when we cover the model-oriented set, list and map 
data types (of RSL), in terms of their set, list and map comprehension forms. 
We refer to Sects. 13.2.2, 15.2.2 and 16.2.2, respectively. 

Special Kinds of Morphisms 

We classify morphisms according to their properties as functions. If 0 : A —> A' 
is a morphism, then we call 0 an isomorphism if 0 is bijective; an epimorphism 
if (f) is surjective, and a monomorphism if 0 is injective. 

Some further characterisations: The abstract properties of an algebraic 
system are exactly those which are invariant (i.e., which do not change) under 
isomorphism. For epimorphisms, A' is called the homomorphic image of A, and 
we regard (A1', 17') as an abstraction or a model of (A, 17). A monomorphism 
A —> Af is sometimes called an embedding of A into A'. 

We single out morphisms that map algebras onto themselves. We call a 
morphism <f> : A —> Ar that maps (A, 17) into itself an endomorphism. If 
cj) is also bijective, hence an isomorphism, <fi : A —>• A, then we call it an 
automorphism. 

8.5 Specification Algebras 

The mathematical concept of algebras has had a great influence on our way 
of presenting software designs, prescriptions for software, and, in general, any 
kind of documentation related also to software development. The whole con­
cept of object-orientedness is basically an algebraic concept. Giving meaning, 
i.e., semantics, to syntactic constructs by means of presenting morphisms from 
syntactic algebras to semantics algebras is obviously another algebraic con­
cept. 

Thus it is that in programming as well as in specification languages we 
find syntactic means for presenting what amounts to heterogeneous algebras. 
In RSL the syntactic construct for presenting a heterogeneous algebra is called 
a class expression. In an RSL class expression one therefore expects to find 
syntactic means for defining the carriers and the operations of a heteroge­
neous algebra. We now turn to this subject. But we first remind the reader 
of Sect. 1.6.2 in which we first introduced the class concept. We shall not 
formally introduce the pragmatics, semantics and syntax of the RSL class and 
scheme concepts till Vol. 2, Chap. 10. 
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8.5.1 Syntactic Means of Expressing Algebras 

To define the various carriers we define their types, and to define the various 
operations over these carriers we define these as function values. Schemati­
cally: 

class 
type 

A , B , C , D , . . . 
value 

f: A - ^ B 
f(a) = ... 
g : C ^ D 
g(c) = ... 

end 

The above class expression defines carriers A, B, C and D (etcetera), and 
operations f and g (etcetera). 

8.5.2 An Example Stack Algebra 

Example 8.5 Stack Algebra: We bring a third version of the stack algebra 
of Examples 8.1(1) and 8.3. 

Let us define an algebra of simple stacks. E and S are the stack element 
type, respectively the stack types, i.e., are the types of interest. They are 
two disjoint carrier sets. The operations empty and is_empty generate empty 
stacks, i.e., stacks of no elements, respectively tests whether an arbitrary stack 
is empty; push, top and pop are the operations of interest. An empty stack is 
empty. One cannot pop from an empty stack (i.e., generate a remaining stack), 
nor can one observe the top of an empty stack. Observing the top of a stack 
which is the ["most recent"] result of having pushed the element e "onto" a 
["previous"] stack s yields that element e. Generating the stack after a pop 
of a stack which is the ["most recent"] result of having pushed any element e 
"onto" the ["previous"] stack s yields that stack s. 

class 
type 

E, S 
value 

empty: Unit —> S 
is.empty: S —> Bool 
push: E - • S - • S 
top: S -+ E 
pop: S -^ S 



8.5 Specification Algebras 135 

axiom 
is_empty(empty()), 
top (empty ()) = chaos, 
pop (empty ()) = chaos, 
V e,e':E, s:S • 

top(push(e)(s)) = e A 
pop(push(e)(s)) = s 

end 

The above formalisation should, by now, look rather conventional! • 

Informal Explanation of Some RSL Constructs 

Since this is one of the earlier examples of a full-scale use of several hitherto 
unexplained, but nevertheless rather simple RSL constructs, let us explain 
them in anticipation of material of Chap. 9 on Mathematical Logic. The RSL 
keywords class and end delineate the class expression. The class expression, in 
this case, contains three kinds of definitions: type, function value and axiom. 
The type definitions you should be familiar with. The value definitions name 
a number of values. Here, all these values are functions: one 0-ary (miliary), 
one 2-ary (binary, dyadic), and three 1-ary (unary, monadic). These function 
values are given just their type, called their signature (no function definition 
[body]). 

The axiom definitions, that is, the axioms, constrain the function val­
ues to lie within a smaller function space than defined by their signatures. 
We leave deciphering the specific functionality of these axioms to the reader, 
but close by explaining the use of the V "binder". The clause: V e,e':E, s:S • 
Ai, A2, • • •, An, (where the individual A% are the axioms — expressions that 
may or may not contain the quantifier variables e, e', and s) expresses that 
these axioms' variables take values that range over the types E, E, and S, 
respectively. 

8.5.3 An Example Queue Algebra 

Example 8.6 Queue Algebra: We give a formal example of the queue algebra 
of Example 8.1(2). Let us define an algebra of simple queues: E and Q are the 
queue element type, respectively the queue type, i.e., are the types of interest. 
The operations empty and is.empty generate empty queues, i.e., queues of no 
elements, respectively tests whether an arbitrary queue is empty, and enq and 
deq are the operations of interest. The interesting functions are here defined 
in terms of the hidden functions dq and rq. 

hide 
dq,rq in 
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class 
type 

E,Q 
value 

empty: Unit —> Q, is_empty: Q —> Bool 
enq: E - • Q - • Q, deq: Q 4 (Q x E) 
dq: Q -^ E, rq: Q -3- Q 

axiom 
is .empty (empty ()), deq(emptyQ) = chaos, 
dq(empty()) = chaos, rq(empty()) = chaos, 
forall e,e':E, q:Q • 

~is_empty(enq(e)(q)), 
dq(enq(e)(empty())) = e, 
rq(enq(e)(empty())) = empty (), 
dq(enq(e)(enq(e')(q))) = dq(enq(e')(q)), 
rq(enq(e)(enq(e')(q))) = enq(e)(rq(enq(e')(q))), 
deq(enq(e)(q)) = (rq(enq(e)(q)),dq(enq(e)(q))) 

end 

Operation dq is called an auxiliary operation. It finds the first element en­
queued, i.e., the, "oldest", or the most distantly, in time, inserted element. 
Auxiliary operation rq reconstructs the queue less its currently dequeued ele­
ment. • 

Some Notation: hide 

The functions dq and rq are defined as hidden functions. They are not in­
tended to be used outside the class expression inside which they only serve 
as auxiliary functions, that is, auxiliary operations. The marker hide effects 
that it can be syntactically checked that they are not used outside the scope 
of the class definition. Hiding values (or types) enable us to reasonably simply 
characterise, as here, the functions of interest deq and enq. 

8.5.4 Towards Semantic Models of "class" Expressions 

So, a class expression, even the little we have so far introduced about class 
expressions, can be seen to "cluster" the introduction of a number of identi­
fiers, to wit: A, B, C, D, f, g, or E, S, empty, is.empty, push, pop, top, or E, Q, 
empty, is.empty, deq, enq, dq, and rq. But what does it all mean? We return 
now to a thread first begun in Sect. 1.6.2. Namely to informally explain the 
semantics of RSL constructs. The "story" applies, inter alia, here. 

As already outlined, in Sect. 1.6.2, the meaning of a class expression is a 
set of models. Each model in the set maps all identifiers defined in the class 
expression, whether hidden or not, into their meaning. 
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The meanings of the above-mentioned identifiers, for example, E, S, empty, 
is.empty, push, pop, and top, are as follows: Any type identifier is mapped into 
the set of values as constrained by the axioms over these values, and a function 
identifier is mapped into a function value, as constrained by the axioms over 
these function values. Since the axioms do not normally constrain the function 
values to one specific function, but to a (possibly infinite) space of functions 
over suitable input argument value and result value relations, we have that 
the meaning of a class expression is a possibly infinite set of models: one for 
each combination of defined function values, etc. We shall later see a need for 
allowing these models to further map identifiers not (at all) mentioned in the 
class expression into arbitrary values (including set values). 

The meaning of the stack class expression is thus a set of models, with 
each model mapping at least the seven identifiers mentioned in the stack 
class expression into respective meanings: the value type of all elements, of all 
stacks, and specific values for empty, is-empty, push, pop and top functions. 

8.6 RSL Syntax for Algebra Specifications 

8.6.1 "class" Expressions 

We have several times illustrated the RSL syntax for presenting an algebra in 
the form of a class of models: 

class 
type 

... [sorts and type definitions] ... 
value 

... [value, incl. function definitions] ... 
axiom 

... [properties of types and values (functions) ...] 
end 

The meaning of a class expression is a set, possibly empty, possibly singleton, 
possibly infinite, of models in the form of bindings, i.e., associations between 
the type and value identifiers introduced in the class expression and mathe­
matical entities such a numbers, sets, Cartesians and functions. 

We shall only occasionally wrap our type and value definitions and our 
axioms into a class expression, but in a sense we really ought to so so! The 
intended meaning is of course the same. 
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8.6.2 "scheme" Declarations 

The scheme construct of RSL allows us to name classes: 

scheme A = 
class 
type 

... [sorts and type definitions] ... 
value 

... [value, incl. function definitions] ... 
axiom 

... [properties of types and values (functions) ...] 
end 

Identifier A now names the class of all the models denoted by the class ex­
pression. 

8.7 Discussion 

8.7.1 General 

We have made a tour de force of covering, ever so cursorily, some concepts 
of mathematical algebra. The purpose has been twofold. First, to put names 
to a number of algebra concepts, names that have been properly defined, and 
which can be used for later characterising a number of specification (cum pro­
gramming) concepts, principles and techniques. Second, we showed notation 
and elegance of the definitions, something that we, as software engineers, can 
learn from and ought to copy. That is, there are so many ideas of specification 
and of development that can be characterised using these algebraic concepts, 
and knowing this may induce us to further study (especially the universal) al­
gebraic notions. Although such a study is outside the aims of these volumes it 
would reveal the usefulness of the lemmas and theorems of universal algebra. 
We shall endeavour, however, to communicate, wherever relevant, the spirit 
of the underlying algebraic concepts. 

We have finally, in this section on algebra, shown how the software com­
munity has taken the prescribed medicine: The concept of algebra, as a math­
ematical structure of carriers and operations, has found its way into program­
ming and into specification languages. We have shown the initial concepts of 
the RSL class specification construct, syntactically as well as semantically. In 
programming languages this algebra concept is usually manifested in so-called 
object-orientedness. In specification languages this algebra concept is usually 
manifested in so-called module, class or abstract data type constructs. 
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8.7.2 Principles, Techniques and Tools 

Principles. Algebraic Semantics: is that of capturing core notions of a do­
main, or of requirements, or of software designs, by expressing these as alge­
bras. • 

Techniques. Algebra construction consists in expressing (i) the sorts (i.e., 
abstract types) of the carrier by naming them, (ii) the signature of the oper­
ations (functions), and (iii) in providing an appropriate (small) set of axioms 
that relate elements of the carrier and the operations. • 

Tools. Algebra tools include the class and scheme constructs of RSL (and 
of similar, basically model-oriented languages (for example: B [3], event-B [4], 
VDM++ [201-204], and Object-Z [144,199,200])), CASL, the Common Algebraic 
Specification Language [49,395,399], and CafeOBJ [193,232]. 

8.8 Bibliographical Notes 

A classical textbook on algebra is Birkhoff and MacLane's [53]. We owe our 
debt to that book and, for the treatment of this chapter, to Lipson's delightful 
[349]. Universal algebras are covered by Cohn in [157]. Another good algebra 
book is also by Cohn: [158]. 

8.9 Exercises 

J|k Note: The next three assignments are, in a sense, premature. They ask that 
you express something in RSL, of which you have yet to learn the essentials. 
But try anyway! In the present and in the previous chapters there is indeed 
enough material on RSL to build upon. But that material will be reintroduced, 
and then very much more systematically, from Part III on. 

Exercise 8.1. Jfr Suggest a Transportation Net Algebra, 
We refer to Appendix A, Sect. A.l, Transportation Net. 
Suggest short sort (or type) names for Transportation Net entities (nets, 

segments, connections), and signatures for (four) functions that insert [delete] 
a new [an "old"] segment, and that insert [delete] a new [an "old"] connection 
(intersection). Write out axioms, in English, stating properties that must hold 
of any input argument or result value segment, intersection and transportation 
net. "Wrap" the whole thing into a scheme declaration. 
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Exercise 8.2. X Suggest a Container Logistics Algebra. 
We refer to Appendix A, Sect. A.2, Container Logistics. 
Suggest short sort (or type) names for the following Container Logistics 

entities: Container Ship, Container, Quay, Container Storage Area, Bay, Row, 
and Stack, as well as Bay, Row, and Stack Identifiers (Names, Indexes). Sug­
gest signatures for (four) functions that load [unload] Containers onto [from] 
Container Ship Stacks from [to] a Quay, respectively that load [unload] Con­
tainers onto [from] Container Storage Area Stacks from [to] a Quay. (Re­
member to identify Bays, Rows and Stacks of both Container Ships and the 
Container Storage Area.) Write out axioms, in English, stating properties that 
must hold of any input argument or result value amongst the many container 
terminal entities. "Wrap" the whole thing into a scheme declaration. 

Exercise 8.3. X Suggest a Financial Service Industry Algebra. 
We refer to Appendix A, Sect. A.3, Financial Service Industry. 
Suggest short sort (or type) names for the Financial Service Industry, in 

particular Bank entities (Customer, Bank Account, etc.), and signatures for 
(four) functions that open and close accounts, that establish shared accounts, 
that deposit and withdraw funds, and that transfer funds between accounts. 
(Remember to also identify the types of such internal bank "books" that keep 
track of customers account numbers, and of the sharing of accounts.) Write out 
axioms, in English, stating properties that must hold of any input argument 
or result value amongst the many financial service industry entities. "Wrap" 
the whole thing into a scheme declaration. 
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Mathematical Logic 

• The prerequisite for studying this chapter is that you understand the 
mathematical concepts of sets, functions and algebras as covered in earlier 
chapters. 

• The aims are to cover the concepts of Boolean algebra, propositional and 
predicate logic, to cover the concepts of proof theory and model theory 
and to cover the concept of axiom systems and exemplify its application 
in abstract specifications. 

• The objective is to help ensure that the reader becomes reasonably fluent 
in the use of logic as a specification tool and to begin the long road in 
ensuring that the reader will eventually become reasonably versatile in 
logic reasoning. 

• The treatment is semiformal to fully formal. 

Mathematical logic is, without any doubt, the most important mathematical 
sub discipline of software engineering. 

Characterisation. By a mathematical logic we mean a formal language: A 
syntax defining an infinite set of formulas, and a "semantics77 — here in the 
form of a set of axioms concerning these formulas and a set of rules of inference 
over these formulas. • 

Logic is the study of reasoning. Logic was, for a long time, part of philosophy. 
Mathematical logic is the study of the kind of reasoning done by mathemati­
cians, and mathematical logic was, for some time, a stepchild of mathematics.1 

xIt seems, without exaggerating, that many mathematics university departments 
still have a somewhat problematic relationship to mathematical logic. 
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We shall basically be using mathematical logic as undoubtedly the most 
important part of our specification notation. That is, we shall be using all 
the sublanguages of mathematical logic: the sublanguage of Boolean ground 
terms, the sublanguage of propositions and the sublanguage of predicates. 
Therefore it is important that the reader — from the very beginning, that 
is, now! — is at ease with many of the concepts of mathematical logic. This, 
then, is the purpose of this chapter: to teach you those concepts, and to 
teach you how to express yourself, formally, in those sublanguages. 

Correctness of software, and proving properties of their specifications and im­
plementations, are concerns of core importance. So is proving properties of 
domain descriptions, of requirements prescriptions, and of relations between 
them and software designs. The languages (i.e., tools) and techniques of math­
ematical logic are used in securing fulfillment of desired properties. 

We shall be covering, also, some of the proof aspects of mathematical 
logic. But our presentation in this section is from the point of view of math­
ematical logic as an abstract specification language. We will not cover the­
ories of mathematical logic, but refer to many good textbooks, for exam­
ple, [235,259,372,457]. 

9.1 The Issues 

We shall first treat basically nine issues of logics, including three sublan­
guages: (i) a language of Boolean-valued ground terms, (ii) a language of 
Boolean-valued propositional expressions, and (iii) a language of Boolean-
valued predicate expressions. And we shall also cover some diverse issues: (iv) 
Boolean-valued expressions, (v) chaos — undefined expressions, (vi) axiom 
and inference systems, (vii) proof systems, (viii) the axioms of the logic lan­
guages, and the axiom definition facility of RSL, and (ix) the meaning of the 
if ... then ... else ... end clause. 

We first survey these nine issues, then we treat the three languages in more 
detail in Sects. 9.3-9.5. But, before that, we survey the distinction between 
proof-theoretic and model-theoretic logic (Sect. 9.2). That distinction will 
bring out the distinctions between syntax and semantics, between provable 
and true, and between completeness and soundness. 

9.1.1 Language of Boolean Ground Terms 

First, there is the Boolean ground term2 algebra, or simply the Boolean cal­
culus, its syntax, semantics and pragmatics. 

2By a ground term we mean an operator/operand expression with no variables, 
just, as here, the Boolean literals and connectives. 
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We refer to the Boolean ground term algebra by the type name Bool.3 

Syntactically the Boolean algebra is a language of ground terms, having a 
syntax including: Boolean (constant) literals (true and false), a set of connec­
tives: { ~ ? A , V , = > , = , A = } , a set of (syntax) rules for forming ground terms, 
and a set of axioms relating ground terms and connectives, a calculus. 

true, false, ~true, ~ false, true A false, ~true A false, ... 

Semantically we have truth tables for these connectives: the truth values and 
the three-valued logic.4 We explain this semantics by presenting a procedure 
for evaluating (i.e., interpreting) ground terms. 

Speaking on the pragmatics of the Boolean ground term algebra, with this 
(ground term) algebra there is little we can express. But it forms a smallest 
basis, even with just the first two connectives listed above! 

9.1.2 Language of Propositional Expressions 

Next, we present the propositional calculus, its syntax, semantics and prag­
matics. The propositional calculus builds on the language of Boolean ground 
terms. 

There is the syntax of propositional (operator/operand) expressions built 
from Boolean literals, connectives, and variable identifiers, axioms and in­
ference rules. The axioms and inference rules define the calculus part of the 
propositional calculus. Variables are intended, in the semantics, to denote 
truth values. 

true, false, ~true, ~ false, true A false, ~true A false, ... 
a, b, ..., a A true, a A b, ... 

There are the semantics rules (an evaluation procedure) for interpreting propo­
sitional expressions. 

And there is the pragmatics: With the propositional calculus we can ex­
press a few more things than with just Boolean ground terms. 

9.1.3 Language of Predicate Expressions 

Finally, we have the predicate calculus, with its syntax, semantics and prag­
matics. The predicate calculus includes the propositional calculus. 

Thus there is the syntax of predicate (operator/operand) expressions, in­
cluding propositional expressions, extended with constant values of any type, 

3The type name Bool will also refer to the propositional and the predicate 
calculi. 

4As noted later we must, in general, be aware of undefined, e.g., nonterminating, 
expression evaluations. A three-valued logic is to deal with nonterminating expres­
sion evaluation. 
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variables denoting such values, and hence operator/operand expressions also 
over these, as well as quantified expressions (V, 3), and axioms and inference 
rules. 

The axioms and inference rules define the calculus part of the predicate 
calculus. 

true, false, ~true, ~ false, true A false, ~true A false, ... 
a, b, ..., a A true, a A b, ... 
V x:X • true, V x:X • x A ..., 3 x:X • x A ... 

There are the semantics rules for interpreting (evaluating) predicate expres­
sions — leading to truth values (or chaos!). 

And there is the pragmatics: With the predicate calculus we can express 
quite a lot. It is sufficient for a long while! 

9.1.4 Boolean-Valued Expressions 

Syntactically we can thus speak of four categories of expressions: Boolean 
ground terms, propositional expressions, predicate expressions and quantified 
expressions. Figure 9.1 informally indicates that Boolean ground term expres­
sions syntactically are a proper subcategory of propositional expressions; that 
propositional expressions syntactically are a proper subcategory of predicate 
expressions; that quantified expressions syntactically are a proper subcategory 
of predicate expressions; but that quantified expressions syntactically are not 
a proper subcategory of propositional expressions. It also expresses that all 
are Boolean-valued expressions. 

Quantified 
Expressions 

Predicate Expressions 

(r„ Boolean 
Ground 
Terms 

Propositional 
Expressions 

Fig. 9.1. Languages of Boolean-valued expressions 

9.1.5 "chaos" — Undefined Expression Evaluations 

We reintroduce, at this point, the literal chaos, first introduced in Sect. 6.5.6 
(in the subsection named Strict Functions (Page 101)). It pertains to possible 
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evaluations (i.e., of finding the values) of arbitrary expressions — yet to be 
introduced — throughout these volumes. If an expression cannot be evaluated 
(e/0 never evaluates!), then its value is said to be chaos. That is, we can speak 
of never terminating, or undefined evaluations, and we give the name chaos 
to the "value", i.e., the result of such evaluations. 

9.1.6 Axiom Systems and Inference Rules 

Just as we have the calculus of integers, that is, rules for adding, subtracting, 
multiplying and integer-dividing integers, and rules for eliminating certain 
additions, subtractions, multiplications and divisions: 

0 + a = a, 1 x a = a, 0 x a = 0, a/1 = a, 0/a = 0 (where a ^ 0), etc. 

so we have rules, in general called inference rules, for "reducing" or "rewriting" 
syntactic logic expressions into other (usually simpler) such expressions. 

Axioms and inference rules (of some logic) together make up the calculus 
for that logic. A logic is defined by its axioms and inference rules. We shall, 
in subsequent sections introduce, various axiom systems. 

Axioms and Axiom Systems 

An axiom is a predicate expression with free variables. These variables des­
ignate arbitrary predicate expressions. An axiom thus designate an infinity 
of predicates without variables, where all (former free) variables have been 
replaced by propositions. 

A "classical" logic axiom is: 

cj) is the free variable. It reads: Either 0 holds, or 0 does not hold. The axiom 
is called the axiom of the excluded middle, also colloquially referred to as the 
axiom of the excluded miraclel 

The pragmatics of an axiom, of a logic, is that it represents, in some or all 
semantics of that logic, a self-evident truth. An axiom system is a collections 
of one or more axioms. 

Inference Rules 

An inference rule is a pair: a set of predicates with free variables (the premise), 
and an inferred predicate with some of the same free variables (the conclusion). 

The most famous logic inference rule is that of modus ponens: 

P,PD Q 

Q 
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P and Q are the free variables. It reads: If we know that P holds and that 
P D Q holds, then we can infer (conclude) that Q holds. 

The pragmatics of an inference rule, of a logic, is that it represents, in 
some or all semantics of that logic, a self-evident way of reasoning, from one 
set of logic expressions to the next, or to another logic expression. 

9.1.7 Proof Systems 

By a proof system for a logic language we mean: a set of axiom schemes, a set 
of rules of inference, and a set of theorems provable from the axiom schemes 
and rules of inference. The latter can be considered as being axioms. Some 
theorems may be reformulated as "additional" rules of inference:5 

r,<l>\-il> 

The verifier, a person or a mechanised system, has "more to choose from"! 

In our presentation of proof systems, in particular that of RSL, we present 
not only not the entire proof systems, but also not the full details of how to 
carry out full proofs, and certainly not how to do even small proofs using 
available theorem prover or proof assistant software systems. To learn how 
to do real proofs for real developments is a deep study by itself, and we refer 

| to specialised text books on this subject: [181,242,359-361,419,472,533]. | 

Summarising we can say: Proof systems are specially tailored versions of ax­
iom schemes and rules of inferences — augmented by theorems and special 
syntactic conventions on how to present proofs. 

9.1.8 A Note on Two Axiom Systems 

Axioms are self-evident truths, i.e., can be considered laws. But we have to 
keep track of two kinds of notions of axioms and axiom systems: The axioms 
that define proof systems of logic languages, including RSL, and the axioms 
that a user of RSL defines when specifying properties of sorts and functions. 

The two relate as follows: 
The axioms of the proof systems of logic languages, like RSL, are given, a 

priori6, and are not expressed in those same languages. However, the reader 
may get the impression that RSL's proof system is defined in RSL, since the 
axioms look very much like the axiom definition facility of RSL. The axioms 
that are expressed in RSL, using RSL Boolean valued and other expressions, 

sr^H^ r e a c [ s : jf5 a s s u m i n g the set of axioms (etc.) T, tp can be proved from (j>, 
then £ holds (i.e., has [thus] been proved). 

6a priori, relating to or derived by reasoning from self-evident propositions, pre­
supposed by experience, being without examination or analysis, formed or conceived 
beforehand (Merriam-Webster Dictionary [373]). 
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and which rely on RSL's proof system when proving properties of what these 
user-defined axioms express. 

In the next sections (Sects. 9.3-9.5) on the logic languages of Boolean 
ground terms, propositions and predicates, respectively, we shall be speaking 
about the axioms of RSL's proof system. In Sect. 9.6 we shall, in contrast, 
illustrate the use of RSL' axiom definition facility in defining data types like 
Euclid's plane geometry, natural number (Peano's axiom system), simple sets, 
and simple lists (Examples 9.20, 9.21, 9.23 and 9.24, respectively). 

9.1.9 The "if ... then ... else ... end" Connective 

The if... then. . . else. . . end construct "anchors" around a basic understand­
ing of logic. We therefore explain this construct. Let e be: 

if b then e' else e" end 

e is a syntactic construct of, for example, RSL. It allows b to evaluate to a 
value of any type and to chaos (which has no type). The expression e only 
makes sense if b evaluates to false or true: 

if false then e' else e" end = e" 
if true then e' else e" end = e' 
if chaos then e' else e" end = chaos 

If b evaluates to any other value chaos is still the result.7 chaos stands for 
chaotic behaviour of the result of evaluating an expression, including nonter-
mination. 

Nonstrictness of a functional, like the distributed fix, if. . . then. . . else-
. . . end, means that applying the functional to arguments that may evaluate 
to chaos does not necessarily lead to chaos: 

if true then e' else chaos end = e' 
if false then chaos else e" end = e" 

We refer to if . . . then . . . else . . . end as a distributed- or mix-fix connective. 

9.1.10 Discussion 

We are building up our treatment of logics in small, easy steps. In this section 
we have basically identified three languages of logic, a language of Boolean 
ground terms, a language of propositions and a language of predicates. Each 
of these languages will be dealt with in more detail in Sects. 9.3-9.5. But first, 
in Sect. 9.2, we treat a number of issues common to the three languages. 

7But RSL is so designed as to out-rule such, so-called type errors, and therefore 
such expressions, b, will not even be considered correct RSL expressions. 
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9.2 Proof Theory Versus Model Theory 

Above we have made the distinction between the syntax and the semantics 
of a language. In this section we will elucidate this distinction. In this section 
we shall assume a classical two-valued logic. 

9.2.1 Syntax 

What we write is syntax. When we manipulate written text, in some language, 
using certain (for example inference) rules and axioms, and thereby obtain 
other text in the same language, then these rules are basically of syntactic 
nature. 

Example 9.1 Differentiation of Analytic Expressions, I: We take, as an ex­
ample, that of the formal language of analytic expressions where some expres­
sions are shown in the left column below. And we take as rules those which 
define differentiation, shown in the right column below. We observe that the 
rules are recursively defined. 

Analytic Expression 

y 
y 

y 

y 

y 

a 
X 

xn 

f{x)+g{x) 
f(x) x g(x) 

etc. 

Rule of Differentiation 
dy _ 
Bx 
dy _ 
Bx 
dy _ 
Bx 
dy _ 
Bx 
dy _ 
dx 

t -o 
Bx 

ax 
d{f{x)+g{x)) __? d{f{x)) d{g{x)) 

Bx Bx Bx 
»</W*«<»» ^ Sign, x g(x) + ^ ^ x / ( * ) 

etc. 

We observe that the rules of differentiation when applied to any analytic 
expression terminate with the result being an analytic expression. In other 
words, the language plus the rules remain syntactic. We are just "fiddling" 
with symbols. • 

The notions of proofs and theorems (in logic) are syntactic notions. There 
is a large body of theory that deals only with the syntax of any, or some, logic 
language(s). Similarly, there is a large body of theory that deals only with the 
differentiability of analytic expressions, also a syntactic theory. 

Mathematical logic can be pursued, at length and in depth, while remain­
ing at the syntactic level. 

9.2.2 Semantics 

What we mean by the written text, in contrast, is semantics. 
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Example 9.2 Differentiation of Analytic Expressions, II: Why we perform 
differentiation is of no concern to the rules of differentiation as they are being 
applied. The semantics of an analytic expression may express distance covered 
over time. Differentiation wrt. time may therefore be done in order to express 
the velocity. Differentiation wrt. time performed twice may therefore be done 
in order to express the acceleration. • 

Semantics is about truth, about the 'holding' or 'not holding' of a logical 
sentence. Thus the Boolean ground terms false and true denote the semantic 
values falsity and truth, respectively. 

Example 9.3 Meaning of Logical Expressions: A logical expression, 0, may 
mean that it designates the properties of a requirements prescription. Another 
logical expression, ip, may mean that it designates the properties of a software 
specification. The logical expression, ip D 0, may then mean that the software 
specification implements the requirements. • 

9.2.3 Syntax Versus Semantics 

To sum up: When speaking in the syntactic realm of a logic language the 
logic expressions are mere symbols — we are not interested in their meaning. 
We manipulate strings of symbols using the axioms and rules of inference. 
When speaking in the semantic realm of a logic language the logic expressions 
denote values, and these values are obtained through interpretation. There is 
a context which, among others, maps expression symbols (including variable 
identifiers) to their truth values. Different contexts (we say different 'worlds') 
may map the same variable identifier to different truth values. 

9.2.4 Formal Logics: Syntax and Semantics 

This and the next sections (Sect. 9.2.4-9.2.6) are inspired by John Rushby's 
1993 report Rapid Introduction to Mathematical Logic [451]. 

The various logic languages, their syntax and semantics, all manifest for­
mal systems. A formal logic system, syntactically, consists of several parts. 
First, it contains (i) a logic language given by some concrete grammar which 
elucidates constant and function (i.e., operation) literals, for example, false, 
true, chaos, -< (or ~ ) , A,V, and D, variable, function and predicate identi­
fiers, delimiters (like commas: ",", parentheses: "(", ")", etc.), and their com­
bination (say in terms of a set of BNF rules). Second, a formal logic system, 
syntactically, also consists of (ii) an axiom system: a set of axioms, viz.: 

0 V -.0. 
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In other words, the axiom system is a subset of sentences of the language, in 
which variable identifiers ((f)) are metalinguistic: they designate proper sen­
tences (viz.: (P V Q)AR) of the language. Finally, a formal logic system, syn­
tactically, also consists of (hi) a set of rules of inference: a set of pairs of 
antecedents and consequents, viz.: 

The former is a set of sentences, and the latter is a sentence, such that all vari­
able identifiers of these sentences are metalinguistic. They designate proper 
sentences of the language. 

More on the Semantics of Formal Logic Systems 

Semantically, a formal system extends its syntax along two lines. Along one 
line, a context is provided, something which to every symbol of the language 
associates appropriate semantic notions. To literals (false, true, chaos) one 
associates the semantic truth values (ff, t t or falsity, truth), respectively 
the semantic undefined value (_L). _L "propagates" by making any expression 
evaluation in which it occurs denote that value. To variable identifiers one 
associates some proper truth or other value, etcetera. What the "etcetera" 
stands for will be revealed later, suffice it here to hint at operator, function 
and predicate symbols. 

Along the other line, a semantics prescribes an evaluation (an interpreta­
tion) procedure which when applied to a sentence in a context results in a 
value: falsity, truth or _L. 

More on the Syntax of Formal Logic Systems 

There are usually two parts to a formal system: One part, the logical part 
that is shared by all logic languages, and another, the non-logical part. 

The symbols that belong to the logical part are called the logical symbols 
of the system. The connectives are logical symbols: 

-., V, A, D,= 

In the predicate calculi we additionally introduce: 

A? A> •••j/nj V, 3 

where A a r e function symbols, and V and 3 are the universal, respectively the 
existential quantifiers. 

The non-logical symbols are given special interpretations: 

+> - , x> /, <, <, =, >, >, ... 
The connectives are chosen to "mimic" every language use, with some more 
precision, of the terms: 'and' (A), 'or' (V), 'not' (-<), 'equal' (=), and 'imply' 
( D ) . In P D Q P is called the antecedent. Q is called the consequent. 
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On the Meaning of Material Implication, D 

Let us dwell, for a moment, on the issue of the intended (semantic) meaning 
of implication D: 

PDQ 

When we say that a logical expression holds we mean that it evaluates to 
true. 

P D Q reads: If P holds, then Q holds; if P then Q. 

Example 9.4 Informal Uses of Implication, I: Let us illustrate some examples 
of uses of implication. The examples are taken from [451]: 

The deduction "the jaberwocky is a tove; all toves are slithy; there­
fore that jaberwocky is slithy", seems OK even though we have do 
not know what jaberwocky, tove and slithy means. 

What about "The air plane is a Boeing 737; therefore it has two 
engines"? That does not seem OK, even though its conclusion is true. 
It jumps to a conclusion that is not supported by the facts that are 
explicitly mentioned. 

What about: "the car is a Chrysler; therefore it has two engines"? 
We see this as palpable nonsense. We can repair the above "The air 
plane is a Boeing 737; all Boeing planes, except the 747, have two 
engines; therefore that plane has two engines." Now the reasoning is 
sound. And soundness does not depend on whether we understand the 
terms 'Boeing', 'engine', '737', or '747'. 

Following John Rushby8 we show an example, and then analyse possible se­
mantics of the implication connective. 

Example 9.5 Informal Uses of Implication, II: 

Consider the four implications: (1) 2 + 2 = 4 D Paris is the Capital 
of France; (2) 2 + 2 = 4 D London is the Capital of France; (3) 
2 + 2 = 5 D Paris is the Capital of France; and (4) 2 + 2 = 5 D 
London is the Capital of France. 

What truth values can we ascribe to (1-4)? (1) is true because 
both the antecedent and the consequent are true. (2) is false because 
the consequent is false. (3) is what? (4) is what? To answer (3) and 
(4) we turn to the next analysis. 

Rapid Introduction to Mathematical Logic, 1993 Appendix to [451] 
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We continue quoting from [451]: 

Thus if, in P D Q, P does not hold, then we do not (based on what 
we have presented up till now) know whether Q holds, and hence we 
do not know whether P D Q holds. If P holds, but Q does not hold, 
then our intuition dictates that P D Q does not hold. 

So what are we to say about the holdings of P D Q when P does 
not hold? If we say that P D Q does not hold, when P and Q do not 
hold, then P D Q is the same as P A Q. If we say that P D Q holds 
exactly when Q holds, then P D Q is the same as Q. If we say that 
P D Q holds exactly when Q does not hold, then P D Q is the same 
as P = Q. Thus we conclude that P D Q holds when P and Q hold, 
and when P does not hold (irrespective of holding of Q). 

Metalinguistic Variables 

In axioms, such as: 

and in rules of inference, such as: 

the identifiers 0 and ip stand for arbitrary logic sentences. They are metalin­
guistic variables. In any particular use of logic in some specification we may 
have some propositions or some predicates P and Q. 

They can now be substituted in lieu of cj) and ip 

? V --P 

respectively 

P.PPQ 
Q 

Since any Ps and Qs are acceptable we see that axiom and rules of inference 
really are schemes of axioms, respectively schemes of inference. That is, they 
stand for infinities of axioms and infinities of rules of inference. 

Given a metalinguistic variable, say 0, and given some instance of a propo-
sitional or predicate sentence, say P , we may express that P is to take the 
place of cf) in some (designated) axiom scheme or in some (designated) rule of 
inference scheme as follows: 

The form [cf> \-t P] is called a substitution specification clause. Substitution 
specifications may contain several clauses: 

[01 ^ Pi , 02 ^ P2, • • • , 0n H+ Pn] 
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9.2.5 Issues Related to Proofs 

Proofs 

Given a sentence 0. A proof of 0, from a set, J1, of sentences is a finite sequence 
of sentences, 0i, 0 2 , . . . , 0 n , where <fi = <f>i, where 4>n = true, and in which 
each (pi is either an axiom, or a member of r, or follows from earlier <fijS by 
one of the rules of inference. 

We say that 0 is provable from assumptions T, or simply r proves 0: 

Proofs and provability are syntactic notions, i.e., are notions of proof the­
ory. 

Theorems and Formal System Theories 

A theorem is a sentence that is provable without assumptions, that is purely 
from axioms and rules of inferences. We say that a theory of a given formal 
system is the set of all its theorems. 

Theorems and theories are syntactic notions, i.e., are notions of proof 
theory. 

Consistency 

A formal system is consistent if it contains no sentence 0 such that both <j) 
and its negation -«/> are theorems. 

It is a meta-theorem of all the two-valued logics that all sentences are 
provable in an inconsistent formal, two-valued logic system. 

Consistency is a syntactic notion, i.e., is a notion of proof theory. 

Decidability 

A formal logic system is decidable if there is an algorithm which prescribes 
computations that can determine whether or not any given sentence in the 
system is a theorem (or not). 

9.2.6 Relating Proof Theory to Model Theory 

In modelling domains, requirements and software using logic, we are modelling 
some "worlds". So far we have emphasised the syntactic aspects of logic. To 
establish a relationship between the syntactic aspects of the sentences of a 
formal language and some world we must turn to semantics. 

The goal, then, of mathematical logic is to make sure that theorems are 
true in the chosen world, or worlds. We wish to make sure that the theorems 
we can prove will correspond to true statements about a chosen world, or all 
worlds. 
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In terpre ta t ion 

The connection between syntax and semantics is, as always, established 
through an interpretation, X. So we start with a formal logic system, C. An 
interpretation X identifies some chosen world, 17, and associates a t rue or a 
false statements with each sentence of the formal system. Statements are of 
the kind: "the logic expression (f> (about such-and-such) is true in 17", or "the 
logic expression (f> (about such-and-such) is false in 17". 

The interpretation, X, has two parts : A context, an environment, p, which 
to every symbol in £ , associates some value in 17, and a procedure for evalu­
ating any sentence <j) in C. 

E x a m p l e 9.6 The Factorial and The List Reversal Functions: This example 
is inspired by [359]. Let (f> be the sentence: 

3F . ( (F(o) = b) A Var • (p(x) D (F(x) = g(x, F(f(x)))))) 

which, model-theoretically, reads: there exists a mathematical function F such 
tha t (•) the following holds, namely: F(d) = b (where a and b are not known, 
model-theoretically), and A for every (i.e., all) x it is the case (•) tha t if p(x) 
is t rue, then F(x) = g(x,F(f(x))) is t rue (where x,g and / are not known, 
model-theoretically). 

Now there are (at least) two possible interpretations of 0. In the first 
interpretation we establish first the world 17 of natural numbers and operations 
on these, and then the specific context p: 

[ F h+ fact, 
ai-> 1, 
b 4 1, 
f i->> A n.n—1, 
g i->> A m.A n . m + n 
p i->> A m . m > 0 ] 

And we find tha t 0 is t rue for the factorial function, fact. In other words, <fi 
characterises properties of tha t function. 

In the second interpretation we establish first the world 17 of lists and 
operations on these: and then the specific context p: 

[ F \-^ rev, 
a ^ (), 

f ^ t l , 
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And we find that (j) is true for the list reversal function, rev. In other words, 
4> characterises properties of that function. 

We leave it to the reader to find worlds and/or context associations for 
which cf) does not hold. • 

Models 

An interpretation X is a model for a formal system C if it evaluates all its 
axioms to true. 

An interpretation X is a model for a set of sentences r if it (the set) 
additionally evaluates all the sentences in r to true. 

The concept of model is a semantics notion. 

Satisfiability, Entailment: |= and Validity 

A set of sentences r is satisGable if it (the set) has a model. 
A set of sentences r entails a sentence ip 

J > ^ 

if every model of r is also a model of ip, that is: ip evaluates to true in every 
model of r. 

A sentence ip is (universally) valid, and we write |= ip: if it valuates to true 
in all models of its formal system. 

Soundness and Completeness, h Versus |= 

A formal system is sound it T \= ip whenever 7 \- ip. Soundness helps ensure 
that every provable fact is true. A formal system is complete if r \- ip whenever 
7 |= ip. Completeness helps ensure that every true fact is provable. Inconsistent 
systems cannot be sound. The formal systems used in the formal techniques 
for specification and verifying properties of specifications must be consistent, 
but are usually incomplete and not decidable. 

9.2.7 Discussion 

So the syntax (sentences, axioms and rules of inference) determines a proof 
theory. Issues like proofs, theorems, consistency and decidability are proof 
theoretic concepts. And an interpretation determines a model theory. Inter­
pretations tie proof and model theories together. And so do issues like models, 
satisfiability, entailment, validity, soundness and completeness. We remind the 
reader that all of this section (Sect. 9.2) has assumed a classical two-valued 
logic. 
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9.3 A Language of Boolean Ground Terms 

On one hand, we have the semantic notion of an algebra. And on the other 
hand, we have the syntactic notion of Boolean ground terms. The two to­
gether with appropriate syntactic and semantic extensions define a language 
of Boolean ground terms. In this section we will present these notions and 
extensions. 

9.3.1 S y n t a x and S e m a n t i c s 

The Boolean algebra to be put forward in these volumes can be presented as 
if it was an RSL class:9 

class Boolean 
t y p e 

B o o l 
value 

true , false, chaos 
~ : B o o l —> B o o l 
A, V, =>, = , 7̂ , =: B o o l x B o o l - • B o o l 

a x i o m 
V b,b':Bool • 

~ b = if b t h e n false e lse t rue e n d 
b A b' = if b t h e n b' e lse false e n d 
b V b' = if b t h e n t rue e lse b' e n d 
b => br = if b t h e n b' e lse t rue e n d 
b = b' = if (bAb')V(~bA~b') t h e n t rue e lse false e n d 
(b ^ b') = ~ ( b = b') 
(b = b') = (b = b') 

e n d 

We refer to Sect, 9.1.9 for the axioms tha t govern the use of the if ... t h e n 
... e lse . . . e n d clause. Notice tha t we henceforth, for proper RSL, use the 
implication symbol => instead of the usual mathematical logic symbol used 
earlier D. However, they designate the same thing 

We emphasize tha t the above presents only an algebra: its values (by 
their designators t r u e , false, chaos , tha t is a semantic presentation) and its 
operations (by their signatures, and by axioms defining the meaning of the 
operations). And we emphasize tha t we have, in a sense, "misused" RSL. We 
can, of course, not use RSL to explain RSL. We are, above, informally using 
mathematics , but couch it in the style of some RSL-like text . 

9We remind the reader that we cannot define the axioms of the logic sublanguage 
of RSL in RSL. That would lead to a meaningless circularity. Thus the class clause 
shown above (after where this footnote was first referenced), is not to be read as 
RSL, but as an ordinary mathematics text. 
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In the next section we shall informally explain these operations. Later we 
shall introduce a language of Boolean ground terms by presenting the syntactic 
notions of grammar, axioms and rules of inference. 

9.3.2 The Connectives: ~ , A, V, =>, = , ^ , = 

We explain the connectives, semantically, and as if we already allowed their 
operands to attain the undefined value chaos. For the algebra of Boolean 
ground terms we do not need the concept of 'undefined value'. Later we shall 
extend our logic to the language of predicate expressions, which have the 
same connectives as for Boolean ground terms. Below we therefore explain 
the connectives as if they occurred in propositional expressions, i.e., in truth-
valued expressions whose variables were truth-valued. 

Negation, <~ 

The logical connective ~ is called 'negation'. We may read ^ P as 'not P'. The 
law of the excluded middle implies that we cannot have both 'not P' and 'P'; 
exactly one of the propositional expressions is true. Some three-valued logics 
(cf. Cheng and Jones's Logic for Partial Functions (LPF) [150,151,318]) do 
not enjoy the "excluded middle" property. 

Conjunction, A 

The logical connective A is called 'and' and 'conjunction'. The A connective is 
applied not only to express the simultaneous truth of both operands, but also 
to express that if the left operand has truth value falsity, then one need not 
consider (evaluation of) the right operand! This non-commutativity of the A 
connective cuts down on the size of expressions that one may need to write 
down: 

a A b = if a=false then false else b end 

The expression to the left of = above is shorter than the expression to the 
right of =. 

Disjunction, V 

The logical connective V is called 'or', 'logical or', 'inclusive or' and 'disjunc­
tion'. Normally in the English language using 'or' means 'exclusive or' — for 
which latter exactly one of its two arguments are true, the other is false. But 
for PVQ we accept if both are true. So beware! But if the left-hand operand 
is true then we may skip evaluating, i.e., even considering the right-hand 
operand. 
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Equality, = 

Equality, =, is to be seen in contrast to identity, = . In E = Ef the propositional 
expressions E and Ef may contain arbitrary identifiers, i.e., variables, whose 
(in the present situation: truth) values may vary. Evaluation of E = E' thus 
takes place in a context10 where these variables are bound to some values. 
And evaluation of E = E' considers only the "current" context. That is, 
E = E1 may be evaluated several times, say because that expression occurs 
in a function definition body which is evaluated each time the function is 
invoked. The value of E = Ef is determined only by the context relevant for 
the specific invocation. For two different invocations the value of the same 
expression, E = Er, may thus differ! 

Implication, => 

The logical connective => is called 'implication'. In P=>Q the propositional 
expression P is called the hypothesis, the antecedent or the premise, while the 
propositional expression Q (of P=^Q) is called the consequence or conclusion. 

The proposition P=^Q is false only when P is true and (A) Q is false. 
One can 'read' P=^Q in a number of ways: If P then Q, P only if Q, P is a 
sufficient condition for Q, Q is a necessary condition for P, Q if P, Q follows 
from P, Q provided P, Q is a logical consequence of P, or Q whenever P. 

Identity, = 

To explain the identity connective, =, is a bit more complicated than to ex­
plain the equality connective, =. As expressed above, when testing for equality 
of values one evaluates both operand expressions, once, in some current bind­
ing of their free identifiers to values, then tests them for equality. 

For =(e',e") (also written, more naturally, e' = e"), one has to evaluate 
the two operand expressions in all possible bindings of their free identifiers 
to values, and for all bindings the same result must be yielded: Either always 
true or always false for the identity to hold, i.e., be true. If some evaluate 
to chaos, then chaos is the value. If none evaluate to chaos and not all to 
the same (true or false) truth value, then false is the value. 

9.3.3 Three-Valued Logic 

The present section presents a proof-theoretic, i.e., a syntactic view of a three-
valued logic of the emerging language of Boolean ground terms. Syntactically 

10We shall later in this section explain, in more detail, what we mean by the 
term 'context', and we shall then contrast this context concept with the concept of 
'model' introduced already in Sect. 1.7 and discussed more extensively in Sect. 8.5.4. 
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we should now present a set of axioms and, possibly, a set of rules of inference. 
We shall do so, but instead of presenting the rules of inference in the form of 
"something above a bar and something below that bar", we exemplify below 
a tabular representation of these rules of inference. 

The axioms are true and ~ false. But note that the above do not explain 
RSL in terms of RSL, but in terms of informal mathematics. 

V,A, and => Syntactic Truth Tables 
V 

true | 
false 
chaos 

true 

true 
true 
chaos 

false 

true 
false 
chaos 

chaos 

true | 
chaos 
chaos | 

=> 
true 
false 
chaos 

|true | 

true 
|true | 
| chaos | 

|A 

[true 
false 
| chaos 

true 

[[true 
false 
| chaos 

false 1 chaos 

false chaos 
true |true 
chaos | chaos 

false 

false 
false 
chaos 

chaos 

chaos 
false 
chaos 

= Versus = 

Assume e\ and e<i are defined expressions, both with deterministic (i.e., def­
inite) values, without effects, that is, side effects (changes to assignable vari­
ables), and without communication, that is, as we shall first see in Chap. 21 
(this volume), CSP-like input/output communication. Assume further that e\ 
and e2 evaluates to ui, and t>2, respectively. Then the two three-valued logic 
truth tables are: 

= and = Syntactic Truth Tables 

= 
e l 
e2 
chaos 

|el 

true 
false 
chaos 

e2 

false 
true 
chaos 

chaos 

chaos 
chaos 
chaos 

= 1 

e l 
e2 
chaos 

[el 

true 
false 
false 

e2 

false 
true 
false 

chaos 

false 
chaos 
true 

Form of Inference Rule 

From the tabular form we arrive at the standard way of presenting a rule of 
inference 

antecedent (s) 
consequent 

as follows: There is one rule of inference for each entry in each table. The 
antecedent of such a rule of inference is formed by composing three symbols: 
the row index ground term, the "upper left corner" operator, and the column 
index ground term, and in that order. The consequent of the rule of inference 
is now the entry term: 
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false=>chaos 
true 

Above we have shown an example from the third table above, second row, 
third column! 

Truth and Falsity (Syntactic) Designators and Semantic Values 

As the truth tables are presented we may get the syntactic understanding that 
the truth designators are true and false. That is how we syntactically express 
them. Pragmatically we need a way to write down truth values — so we use 
the literals true and false. We distinguish between the syntactic literals — 
which are the ones we write down in our specifications — and the names of 
their meaning (i.e., semantics or interpretation). Some authors, when making 
this distinction, for example use the metalinguistic literals t t , f f and _L. That 
is, the interpretation context (p) associates true with t t , etc. We could then 
use these latter as entries in three tables defining the interpretation context 
meaning of the connectives: 

Interpretation Context: Semantic Truth Tables 

yj 
tt] 
ff 

±] 

tt 

jtt 
tt 

\±_ 

ff 

tt 
ff 
_L 

_L 
_L 
_L 
_L 

AJ 
tt] 
ff 

±] 

tt 

[tt 
ff 

\±_ 

ff 

ff 
ff 
_L 

_L 
_L 
ff 
_L 

|=>||tt|ff|_L | 
| t t | | t t | f f |T] 
[ff llttlttlttl 
[ X ] f l 1-L |_L J 

But we cannot use the interpretation designators in any of the identities ex­
pressed earlier. That is, we cannot use them in the if ... then ... else ... end 
axioms. They are metalinguistic: They are the means of explaining some­
thing. 

Non-commutativity of Boolean Connective 

We refer to a logic of three values, as above, as a three-valued logic. The first 
such, for computing science, was introduced by John McCarthy [367]. For 
VDM, RSL's predecessor, Cliff B. Jones proposed a logic for partial functions 
[150,316,317]. Several forms of three-valued logic exists [131-133,329]. 

Let an expression be: 

(El A E2) V E3 
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where evaluation of E2 for E l=fa l se might not terminate. If E1AE2 yields 
true , evaluation of the expression E3 need not take place. If E1AE2 yields 
false, evaluation of the expression E3 must take place. 

To express the above for commutative, two-valued logics of A and V, we 
need, for example, write: 

if E l t h e n (if E2 t h e n true e lse E3 end) e lse E3 e n d 

9 .3 .4 G r o u n d T e r m s and The ir Eva lua t ion 

Let us first give some examples: 

E x a m p l e 9.7 Ground Terms: Examples of ground terms are: 

true , false, ~ t r u e , ~ false, 
trueAtrue , trueVtrue , true=>true, t r u e = t r u e , t r u e ^ t r u e , t rue = true 
trueAfalse, trueVfalse, true=>false, t rue=fa l se , t rue^fa l se , t rue = false 

( trueA((~true)Vfalse)=^true)=false , ... 

S y n t a x of B o o l e a n G r o u n d T e r m s , B G T 

The Boolean language of ground terms, BGT, is now defined: 

• The Basis Clause: t rue , false and chaos are Boolean ground terms. 
• The Inductive Clause: If b and b' are Boolean ground terms, then so are: 

~ b , bAb', bVb', b=^b', b=b ' , b ^ b ' , b = b ' and (b). 
• The Extremal Clause: Only those terms tha t can be formed from a finite 

number of uses of the above two clauses are Boolean ground terms. 

Since this is only the second time in these volumes tha t we properly introduce 
a language, and since we have yet to cover the material tha t shall later enable 
us to present such a language definition formally, we use the above informal, 
yet very precise style of presentation.1 1 

We can present the above inductive definition in the form of a BNF Gram­
mar: 

11 Our first such structured, yet informal presentation was that of A-expressions 
(Sect. 7.2). 

The basis, inductive and extremal clause presentation represents a classical, math­
ematical way of presenting inductive structures. These are typically infinite sets of 
entities (here they are syntactic entities), which have a structure. The three-clause 
presentation aims at presenting this structure. The structure contains atomic enti­
ties, as for the basis clause, or composite, as here, pairs or triples of entities: operands 
and prefix or infix operators as well as parenthesised structures. The basis clause 
usually lists a finite, or refers to an infinite, number of terms. The logic clause lists 
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(BGT) ::= t rue | false | chaos 
| ~ (BGT) 
| (BGT) A <BGT) 
J (BGT) V (BGT) 
| (BGT) => (BGT) 
I (BGT) = (BGT) 
| (BGT) ^ (BGT) 
J (BGT) = (BGT) 
I ((BGT)) 

The trouble with the above grammar is tha t it is ambiguous. Is the term: 

t rue A false V t rue , 

the same as 

t rue A ( false V t rue ), 

or 

( t rue A false ) V true? 

The inductive definition gave no hint as to the binding priority of the connec­
tives. 

To do so, through a BNF grammar, we introduce an alternative grammar: 

(BGT) ::= (aBGT) | (pBGT) 
(aBGT) ::= t rue | false | chaos 
(pBGT) ::= ( (BGT) ) 

| ( ~ (BGT) ) 
| ( (BGT) V (BGT) ) 
| ( (BGT) A (BGT) ) 
| ( (BGT) =* (BGT) ) 
| ( (BGT) = (BGT) ) 
| ( (BGT) ^ (BGT) ) 
| ( (BGT) = (BGT) ) 

Now it would not be possible to write: 

t rue A false V t rue . 

The above would have to be writ ten either as 

just two. The inductive clause is usually of recursive nature: It assumes the existence 
of some terms and expresses the construction, the existence, of further terms. The 
basis clause secures the existence of initial terms. And the inductive clause adds 
further terms to the language of terms. The extremal clause ensures that unwanted 
terms do not accidentally creep into the language. The adjective 'extremal' expresses 
exclusion! 
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true A ( false V true ), 

or as 

( true A false ) V true. 

By suitably designing a BNF grammar that directly "embodies" operator (bind­
ing) precedence rules, one can achieve an expression form that avoids excessive 
parenthesisation. 

Boolean Ground Term Evaluation, EvaLBGT 

Given any Boolean ground term, we can provide an interpretation. That is, 
we can evaluate it. 

The evaluation rules are: If the ground term is true, its value is t t . If the 
ground term is false, its value is f f. If the ground term is ~b and the value 
of b is t t , then the value of ~b is ff. b value ff leads to ~b result value t t . 
If the ground term is bAb' and the values of b and b' are r and T' — where r 
and T', individually are one of t t or f f — then the value of bAb' is found by 
looking up under the corresponding entry in the A table. The same holds for 
b0b' where 0 is any of V, =>, =, 7 ,̂ or =, for which appropriate tables are 
selected. 

We "pseudo-formalise" this interpretation function. It is a pseudo-formal-
isation since it is not expressed in a proper formal notation. Why not, i.e., 
why not use RSL? The answer is: Because we have yet to introduce all the RSL 
machinery that is needed in a proper formalisation. The pseudo-formalisation 
shall serve to acquaint the reader with the form and possible content of formal 
function definitions. 

The tables are presented as maps (finite size, enumerable functions) from 
truth values to truth values. They are straightforward "mathematical" forms 
of the tables given above. One table was missing: that of negation. We leave 
it to the reader to provide that table. Thus the type of the Boolean ground 
term evaluation procedure, EvaLBGT, is: 

value 
EvaLBGT: BGT -> TBLS - • Bool 

type 
TBLS = uTBLxbTBLxbTBLxbTBLxbTBLxbTBLxbTBL 
uTBL = Bool jff Bool 
bTBL = Bool x Bool ^ Bool 

The six tables above are to be those of negation, conjunction, disjunction, 
implication, equality, none-quality, respectively identity (equivalence). 

value 
Eval_BGT(bgt)(tbls) = 
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let (n,a,o,i,eq,neq,id) = tbls in 
case bgt of 

true —> t t , 
false - • ff, 
chaos —> _L, 
~ t - • let b = Eval_BGT(t)(tbls) in n(b) end, 
t'At" - • 

let b'=EvalJBGT(t')(tbls), b"=Eval_BGT(t")(tbls) 
in a(b',b") end, 

... /* similar for pVp", p'=>p", p'=p", pVp", and */ p'is p" 
end end 

Later we shall see how to express the above pseudo-formalisation of EvaLBGT. 

9.3.5 "Syntactic" Versus "Semantic Semantics" 

Thus there are two ways of looking at most of the languages that we will 
present in these volumes (for the various subsets of RSL, as well as for lan­
guages (or language fragments) separate from RSL). 

One way of looking at a language is semantically — as we have just done. 
Here we explained the meaning of (in this case Boolean ground) terms by 
exhibiting an evaluation procedure which "translated" the syntactic literals 
true and false into t t , respectively ff. And where we did not otherwise 
bother much about telling you what these "new" markers, t t and f f, stood 
for! 

Another way of looking at a language is syntactically — which we did 
earlier, for example on Page 159. Then we basically "rewrote" an operand 
term in the Boolean literals true and false and connectives (~, A, V, =>, =, 
=) into one of these literals. 

In the former semantics the meaning of a term was a mathematical value, 
one that "nobody has ever seen"! In the latter "semantics" the value of a term 
was a term, i.e., a syntactic "thing" that "everybody has seen"! 

The former style of semantics definition will be repeated, again and again 
in these volumes, and will be referred to, especially as we go on to the next 
examples, as the denotational style of semantics definitions. The latter style, 
the syntactic one, will be referred to as a 'rewrite rule' semantics. The A-
calculus, as given earlier (Sect. 7.2) was thus given a syntactical, that is, a 
rewrite rule semantics. 

"Syntactic semantics" is the basis for proofs of properties of formal spec­
ifications, and for proofs of certain relations (including correctness) between 
pairs of formal specifications. We shall return to this subject in due course. 
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9.3.6 Discussion 

We have introduced the "barest" of a language, the language of Boolean 
ground terms, BGT. We have separated our presentation into one of pre­
senting the syntactics of BGT and one of presenting the semantics of BGT. 
And we have just, immediately above, briefly discussed a recurrent theme: 
a proper semantics view of syntax as well as a "syntactic semantics" as are 
most calculi. Finally, wrt. the pragmatics of BGT we said earlier: Using just 
the language of Boolean ground terms, there is not much of interest we can 
express. 

With the next logic language, that of propositions, there also is not much 
of interest we can express. We shall have to wait till we master the syntax 
(and semantics) of some language of predicates, then we can start expressing 
something. 

The reason for this seemingly slow, pedantic unfolding of two, we claim, not 
so "powerful" languages before we present the "real thing" is one of pedagog­
ics and didactics: For some readers the concepts of logics, and in particular its 
three "sublanguages", such as we have presented them, is not familiar. Ad­
ditionally, the distinction between the syntactics of calculi (including proof 
systems) is so different from what they may be familiar with, that a direct, 
an immediate presentation of just a language of predicate calculus is an un­
necessary intellectual challenge as compared to a stepwise unfolding such as 
we have attempted it. 

9.4 Languages of Proposit ional Logic 

By propositional logic we syntactically understand (i) a set of truth values, (ii) 
an infinite set of propositional expressions, with connectives, and truth-valued 
propositional variables, (iii) a set of axioms and (iv) a set of rules of inference. 
The above determines a syntax, i.e., a proof theory of a propositional calculus. 

Semantically we equip the (syntax of the language of) propositional logic 
with (v) a suitable context for determining the value of propositional literals 
and symbols, and (vi) an interpretation function that allows one to calculate 
the truth value of propositional expressions. By a propositional expression 
we thus mean an expression like a Boolean ground term, but where some 
Boolean literals ( t rue, false or chaos) are replaced by propositional vari­
ables. A propositional variable is an identifier which, semantically, is intended 
to stand for a Boolean truth value (which could be chaos). We shall only 
cover propositional logic from the viewpoint of its practical use in formal 
specifications: (i-iv) Making precise the syntax of the expressions, and (v-vi) 
presenting an interpretation procedure for evaluating their values. 
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9.4.1 Proposi t ional Expressions, PRO 

Examples of Proposi t ional Expressions 

Let V be an alphabet of variable identifiers (i.e., variables), and let v, v', . . . , 
v" be examples of such variables. 

value v,v',...,v":Bool 
... t rue , v, vAtrue, ..., (~(vAv')=>(v'=>v")) = false, ... 

The last line above exemplifies some propositional expressions. 

Syntax of Proposi t ional Expressions, PRO 

• Basis Clause I: Any Boolean ground term is a propositional expression. 
• Basis Clause II: There is given an alphabet V of (further un-analysed) 

variable identifiers. If v, v', . . . , v" are in that alphabet, then v, v', . . . , v" 
are propositional expressions. 

• Inductive Clause: If p and p' are propositional expressions, then so are ~p, 
pAp', pVp', p^>p', p=p', p^p' , p=p' and (p). 

• The Extremal Clause: Only such terms which can be formed from a finite 
number of uses of the above two clauses are propositional expressions. 

An example BNF grammar could be: 

(PRO) ::= t rue | false | chaos 
| ~ (PRO) 
| (PRO) A (PRO) 
| (PRO) V (PRO) 
| (PRO) => (PRO) 
| (PRO) = (PRO) 
| (PRO) ^ (PRO) 
| (PRO) = (PRO) 
I ( ( P R O ) ) 
| ( Identifier) 

( Identifier) ::= ... 

We leave it to the reader to complete the BNF definition of ( Identifiers, say 
as strings of alphanumeric characters commencing with lower case alphabetic 
characters, possibly having properly embedded, separating underscores (_). 
The above BNF grammar is ambiguous, as was the BNF grammar for Boolean 
ground terms, cf. Sect. 9.3.4. 

Above we saw an example of an inductive definition. Next we shall see an 
example of a semantics which is presented in the style of a morphism, i.e., a 
homomorphism, such as earlier explained in Sect. 8.4.4. 

The two concepts go hand-in-hand: The inductive definition describes com­
posite structures in terms of postulated structures and operator symbols. A 
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morphism is explained in terms of a function 0 being applied to postulated 
(semantic) structures, i.e., values. The induction definition was here used to 
explain syntax. And homomorphisms will be used to explain the semantics of 
inductively, i.e., recursively, defined syntactic structures. 

9.4.2 Examples 

The below examples relate to corresponding Common Exercise Topics outlined 
in Appendix Chap. A. 

Example 9.8 £ Propositions: Transportation Net: 
We refer to Appendix A, Sect. A.l, Transportation Net. 

Let the following propositions be expressible: 

• a: Segment 17 of Broadway has connectors 34th Street and 35th Street. 
• b: Segment 18 of Broadway has connectors 35th Street and 36th Street. 
• c: Segment 17 of Broadway is connected to Segment 18 of Broadway. 

Given the above abbreviations we can express: 

• a A 6, and a A b => c, 

If a and b holds then these propositions hold, i.e., c holds. • 

Example 9.9 £ Propositions: Container Logistics: 
We refer to Appendix A, Sect. A.2, Container Logistics. 

Let the following propositions be expressible: 

• a: "Quay locations 7-12 are free at container terminal PTP." 
• b: "The HaraId Maersk ship is 6 terminal PTP quay locations long." 
• c: "HaraId Maersk can enter container terminal PTP." 

Given the above abbreviations we can express: 

• a A 6, and a A b => c, 

If a and b holds then these propositions hold, i.e., c holds. • 

Example 9.10 X Propositions: Financial Service Industry: 
We refer to Appendix A, Sect. A.3, Financial Service Industry. 

Let the following propositions be expressible: 

• a: Anderson has account a with a balance of US$1,000. 
• b: Peterson has account n. 
• c: Anderson can transfer US$200 from account a to Peterson account n. 

Given the above abbreviations we can express: 

• a A 6, and a A b => c, 

If a and b holds then these propositions hold, i.e., c holds. • 
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The above examples are, in a sense, continued in Sect. 9.5.3. 

9.4 .3 P r o p o s i t i o n Eva lua t ion , EvaLPRO 

To evaluate a propositional expression we must postulate a context function 

C: 

t y p e 
C = V jjf B o o l 

value 
c:C 

where C maps some, but not necessarily all, variables of any given proposi­
tional expression into a t ru th value. 

The meaning of a propositional expression p, in the type of all propositional 
expressions PRO, is now a (function of type) partial function from contexts 
(i.e., C) to Booleans! To see this, we show how to evaluate, how to find not 
the meaning, but the value of a propositional expression. And then we "lift" 
tha t value, tha t is, we abstract tha t propositional expression with respect to 
contexts, to obtain its meaning! 

So, let some c : C be given, and postulate any propositional expression p. 
The value of any properly embedded Boolean ground term is found by the 
procedure outlined previously. If p is a variable v then the value of p is found 
by applying c to v, i.e., c(v). If p, i.e., v, is not in the definition set of c, the 
result is the undefined value chaos . If p is a prefix expression ~ p ' , then first 
find the value, r , of p', then negate it. If p is an infix expression p 'Op", then 
first find the values, r',T" of p' , respectively p". Then proceed as for ground 
term evaluation. If p is a parenthesised expression (p'), then its value is tha t 
of the value of p'. 

This evaluation procedure will terminate since inductively (i.e., recur­
sively) applied sub-evaluations apply to "smaller" and "smaller" subexpres­
sions, and finally to ground terms and variables. 

The type of the propositional expression evaluation procedure is: 

value 

EvaLPRO: P R O - • TBLS - • C H> B o o l 

The meaning of propositional expressions are therefore semantic functions 
C^»Bool, while the value of a propositional expression is a Boolean. 

value 
EvaLPRO (pro) (tbls)(c) = 

case pro of 
t rue —> t t , 
false - • ff, 
chaos —> _L, 
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~p - • let b = Eval_PRO(p)(tbl) in Eval_BGT(b)(tbls) end, 
P ' o p " ^ 

let b' = Eval_PRO(p')(tbls)(c), b" = Eval_PRO(p")(tbls)(c) 
in Eval_BGT(b' o b")(tbls) end, 

(p) -> Eval_PRO(p)(tbls)(c), 
v -t c(v) 

end 

9.4.4 Two-Valued Propositional Calculi 

Preliminaries 

A propositional expression may evaluate to true for some (combinations of) 
values of its propositional variables, and to false for other (combinations of) 
values. 

A tautology is a propositional expression whose truth value is true for all 
possible values of its propositional variables. A contradiction, or absurdity, is 
a propositional expression which is always false. A propositional expression 
which is neither a tautology nor a contradiction is a contingency. 

Some Proof Concepts 

The material of this section is based on [481]. 
An assertion is a statement. A proposition is an assertion which is claimed 

true. 
An axiom is a true assertion — typically about some mathematical struc­

ture. That is: axioms are a priori true; are not to be proven; cannot be proven; 
are not theorems. 

A theorem is a mathematical assertion which can be shown to be true. A 
proof is an argument which establishes the truth of the theorem. 

A proof of an assertion is a sequence of statements. The sequence of state­
ments (re)presents an argument that the theorem is true. Some proof asser­
tions may be a priori true: Are either axioms or previously proven theorems. 
Other assertions may be hypotheses of the theorem — assumed to be true in 
the argument. Finally, some assertions may be inferred from other assertions 
which occurred earlier in the proof. 

Thus, to construct proofs, we need a means of drawing conclusions, or 
deriving new assertions from old ones. This is done by rules of inference. 
Rules of inference specify conclusions which can be drawn from assertions 
which are known, or can be assumed to be true. 



170 9 Mathematical Logic 

Axioms and a Rule of Inference, I 

The material of this section is based on [451].12 

There are many ways of defining a propositional logic. First there is the 
issue of whether it is to be a two- or a three-valued logic, then there is the issue 
of which axioms and rules of inference to choose. Here we select a two-valued 
logic. Then we select a simple set of axioms and one rule of inference. Let 0, ip 
and p designate metalinguistic variables. Any propositional expression may 
be put in their place. 

The following three axiom schemes are axioms of the chosen propositional 
calculus: 

<f> D W> D p) D ((<l> D i/>) D (<l> D p)) 
(~ (~ (0))) D cf> 

There is a single rule of inference, modus ponens: 

Here we chose D to designate implication. In the next example of a two-valued 
propositional logic we choose => to designate implication. 

We can introduce additional connectives — other than -i (or ~) and D 
(or =>) — through rules of inference. For example, disjunction (V): can be 
presented as: 

0 V %j) (-10) D ip 

(--0) D ^' 0 V ^ 

Axioms and Inference Rules, II 

The material of this section is based on [481]. 
We shall now present another formal proof system allows proofs of propo­

sitional expressions to be fully done by machine. We can do this because there 
is only a finite number of propositional variables in any propositional expres­
sion, and each such variable's value ranges only over true or false, or is not 
defined at all, i.e., results in chaos. 

Here is a set of rules of inference for the propositional expressions of a two-
valued logic. This set and those expressions, form a propositional calculus. 
Let <fi,ip,p, and £ designate metalinguistic variables. 

12 We remind the reader that the axioms given in this and the next subsection are 
axiom schemes of the proof system of the logic language of propositions. They are 
not expressed in RSL. 



9.5 Languages of Predicate Logic 171 

• Substitution of equals for equals: Wherever a propositional expression of 
any interpreted value may occur, any other propositional expression of the 
same value may occur. 

• ~^p Addition 

The form J reads: From $ conclude \P. 

• ®-T^- Simplification 

• 0,0=»̂ > ~̂ ,0.=»V Modus Ponens versus Modus Tollens 

The form -^- reads: From $ and \P conclude £2. 

m ~ri? r ? y ^>r—£ Disjunctive versus Hypothetical Syllogism 

• # $ Conjunction 

# (0^)A(p^),0Vp ( 0 ^ ) A ( P ^ W V ~ € constructive vs. Destructive Dilemma 

The RSL proof system is different from the above since the RSL logic is a three-
valued logic. We refer to the authoritative [238] for not only a listing of the 
full RSL proof system, but also for a treatise on provably correct stepwise RSL 
developments using that proof system. 

9.4.5 Discussion 

We have completed the second step of our unfolding of "the real thing": a 
language of predicates, calculus and interpretation. The structures of our pre­
sentation followed that of our previous presentation of the language of Boolean 
ground terms. The introduction of Boolean-valued identifiers, i.e., of proposi­
tional variables, is what distinguishes, syntactically, the language of Boolean 
ground terms from the language of propositions. Semantically these variables 
lead to a context which is expected to bind these variables to Booleans. We 
kindly ask the reader to compare, line-by-line, the two informally stated eval­
uation definitions: EvaLBGT and EvaLPRO. But in order to make a logic 
language useful in dealing with actual world phenomena, there is also a need 
for allowing variables to designate other than Boolean values. To this we turn 
next. 

9.5 Languages of Predicate Logic 

We now come to the "high point" of applied mathematical logic as far as 
this volume is concerned. With predicate logic expressions of the kind that, 
for example, RSL allows us, we can express quite a lot. That is, predicate 
logic will be be a "work horse" for us. 
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9.5.1 Motivation 

In the propositional logics we cannot13 express the idea that "if x is even 
then x + 1 is odd". To see this, following [451], let us carefully examine this 
statement. There are two independent propositions expressed here: is_even(#) 
and is_odd(succ(#)), where succ(#) yields the successor of x. The statement 
is_even(#)=Ms_odd(succ(#)) is not a proposition. Its two terms are, but x is 
not a propositional variable, that is, one having a truth value. It "obviously" 
has a number value. 

The predicate calculus14 extends propositional logic with individual vari­
ables, which model-theoretically may range over other than Boolean values, 
thus giving us the expressive power (in terms of quantifications) which allows 
us to express the above statement. For example: 

\/x : Int • 0(x) => £{x + 1) 

where O and £ designate the is_odd, respectively the is_even, predicates. 

9.5.2 Informal Presen ta t ion 

By a predicate logic we syntactically, i.e., proof-theoretically, understand (i) a 
set of truth and other non-truth values; (ii) a usually infinite set of predicate 
expressions with (ii.l) connectives, (ii.2) truth-valued propositional variables, 
(ii.3) usually other non-truth-valued quantified or free variables, (ii.4) quanti­
fied expressions; (iii) a set of axiom schemes; and (iv) a set of rules of inference. 

Semantically, i.e., model-theoretically, we understand a predicate calcu­
lus to extend the above with: (v) for every predicate expression, a context, 
c : C, which maps individual variables to values, and (vi) an interpretation 
procedure for determining, given any context and any predicate expression, 
the value of that expression. 

Predicate expressions are thus extensions of propositional expressions: 
Where a propositional expression may occur, it now becomes possible to ex­
press a property by expressing some truth-valued relations between other than 
truth values. 

Example 9.11 Predicate Expressions: Informally, an example is: 

( (e - l<3) => e') => (3 i:Int • i > e * (e" + 3)) 

which we can read: if e—1 less than or equal to 2 implies ef then that implies 
that there exists an integer which is larger than the value of the non-truth 

This example, which intuitively motivates the concept of predicate logics, is 
taken from Ruth E. Davis's [181] via John Rushby's [451]. 

14 Other names for predicate calculus are: first-order logic (FOL), elementary logic 
and quantification theory 
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valued expression e * (e" + 3). The example illustrates a number of new con­
structs that — from now on — may occur in logical, i.e., predicate expressions. 
In the above the new constructs were: 

<, >, 3, - , *, + 

More generally, and in this case schematically, we can list the constructs of a 
predicate calculus: 

[l]p(e,e',...,e") 
[2]f(t,t',...,t") 
[3] Vx:X-E(x) 
[4] 3x:X-E(x) 
[5] 3 ! x:X-E(x) 

which we can read semantically: [1] The formula p(e,e',... ,e") expresses the 
holding, or non-holding of some relation, p, between the values of subex­
pressions e, e', . . . , e". Examples of p above are < and >, as well as many 
user-defined n-ary (n > 1) predicates. [2] The value of expression f(t,t',... ,t") 
is the result of applying the non-truth result valued function, f, to the values 
of subexpressions t, t', . . . , t". Examples of f above are —, * and +, as well 
as many user-defined unary (n = 1) predicates. [3] For all values x of type X 
it is the case that E(x) holds. [4] There exists at least one value x of type X 
for which it is the case that E(x) holds. [5] There exists a single, unique value 
x of type X such that E(x) holds. 

Whether these predicate expressions ([1-5]) hold, i.e., are true or not 
(false or chaos) is not guaranteed just by writing them! 

Forms [3-4-5] illustrated the concepts of binding and typing, x : X: A 
typing is, generally, a clause of either of the forms: 

identifier : type.expression 
identifier_l,identifier_2,...,identifier_n : type_expression 

Typings bind their identifier[_i]s to (arbitrary) values of the type designated 
by the type_expression. 

9.5.3 Examples 

The below examples relate to corresponding Common Exercise Topics outlined 
in Appendix A. They also continue, in a sense, the examples of Sect. 9.4.2. 

Example 9.12 Jf* Predicates: Transportation Net: 
We refer to Appendix A, Sect. A.l, Transportation Net. 
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Assume that from nets, n : iV, we can observe segments, s : 5, and connec­
tions, c : C, and that from segments [respectively connections] we can observe 
connection identifiers [respectively segment identifiers], then we must assume 
that the latter observations fit with the former: That all segments [respec­
tively connections] of the net have unique identifiers, and that any segment 
[respectively connection] identifier observed from a connection [respectively 
segment] is the identifier of a segment [respectively connection] observed in 
the net. 

type 
N, S, C, Si, Ci 

value 
obs_Ss: N - • S-set 
obs_Cs: N - • C-set 
obs_Sis: (N|C) - • Si-set 
obs_Cis: (N|S) - • Ci-set 

axiom 
Vn:N« 

card obs_Ss(n) = card obs_Sis(n) A 
card obs_Cs(n) = card obs_Cis(n) A 
V s:S • s E obs_Ss(n) 

=> obs_Cis(s) C obs_Cis(n) A 
V c:C • c G obs_Cs(n) 

=>* obs_Sis(c) C obs_Sis(n) 

The first axiom clause expresses uniqueness of identifiers: the cardinality 
of segments [respectively connections] and segment [respectively connection] 
identifiers are the same. If you do not like that form, then try this instead: 

type 
N, S, C, Si, Ci 

value 
obs_Ss: N - • S-set 
obs_Cs: N - • C-set 
obs_Si: S - • Si 
obs_Ci: C - • Ci 

axiom 
Vn:N • 

V s,s':S • {s,s'} C e obs_Ss(n) A s^s' 
=> obs_Si(s) ^ obs_Si(s') A 

V c,c':C • {c,c'} C G obs_Cs(n) A c / c ' 
^ obs_Ci(c) / obs-CiCc') 
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Example 9.13 X Predicates: Container Logistics: 
We refer to Appendix A, Sect. A.2, Container Logistics. 

Assume that from container terminals, ct:CT, we can observe (i) the con­
tainer storage area, csa:CSA and (ii) containers, c:C (in the container storage 
area). That from the former we can observe (hi) bays, bay:Bay, (iv) rows, 
row:Row, and (v) stacks, stk:Stk, and that from any of these (bays, rows and 
stacks) one can observe containers. Finally assume that from the latter we 
can observe (vi) containers, c:C: 

type 
CT, C, CSA, BAY, ROW, STK 

value 
obs_Cs: (CT|CSA|BAY|ROW|STK) -> C-set 
obs_CSA: CT - • CSA 
obs_BAYs: (CT|CSA) -> BAY-set 
obs_ROWs: (CT|CSA|BAY) -> ROW-set 
obs_STKs: (CT|CSA|BAY|ROW) - • STK-set 

Now containers observed in the container terminal must be containers of some 
unique stack, of some unique row and of some unique bay of the container 
storage area: 

axiom 
V ct:CT • 

V c:C • c G obs_Cs(ct) => 
let csa = obs_CSA(ct) in 
3!bay:BAY • 

bay G obsJBAYs(csa) A c G obs_Cs(bay) 
=> 3!row:ROW • 

row G obs_ROWs(bay) A c G obs_Cs(row) 
=> 3!stk:STK • 

stk G obs_STKs(row) A c G obs_Cs(stk) 
end 

Example 9.14 X Predicates: Financial Service Industry: 
We refer to Appendix A, Sect. A.3, Financial Service Industry. 

Assume that from a bank, bank:Bank, one can observe (i) the unique iden­
tities, cid:Cid, of all its customers, (ii) the unique identities, aid:Aid, of all their 
accounts, (iii) the collection, accs:Accs, of all these accounts, (iv) the identi­
ties of all the accounts, accAcc, in the collection, accs:Accs, of all accounts, 
(v) the account numbers owned by any one identified customer and (vi) the 
identities of customers possibly sharing any one (identified) account. 
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type 
Bank, Cid, Aid, Aces, Ace 

value 
obs.Cids: Bank -> Cid-set 
obs_Aids: (Bank|Accs|(BankxCid)) -» Aid-set 
obs_Accs: Bank —> Aces 
obs.Cids: Bank x Aid ->> Cid-set 

(vii) If a customer is registered in a bank then we assume that customer to 
have one or more accounts, (viii) If an account is known by the bank then it is 
an account in the collection of accounts, (ix) And if that account is shared by 
one (!) or more customers then they are all known to the bank and as having 
that account. 

axiom 
V bank:Bank • 

V cid: Cid • cid G obs.Cids (bank) => 
obs_Aids(bank,cid) ^ {} A 

V aid: Aid • aid G obs_Aids(bank) => 
aid G obs_Aids(obs_Accs(bank)) A 
V cid',cid":Cid • 

cid' G obs.Cids(bank,aid) => 
cid' G obs_Cids(bank) A aid G obs_Aids(bank,cid') 

9.5.4 Quantifiers and Quantified Expressions 

Syntax 

Quantified expressions, like Vx:X«E(x), 3x:X«E(x) and 3!x:X»E(x), are predicate 
expressions. In general, quantified expressions are of the inductive form: Let 
x be any identifier, let X be any type expression, and let E(x) be any propo-
sitional or predicate expression in which x may (or may not) occur, and if it 
occurs, may occur free or bound. Now Vx:X«E(x), 3x:X»E(x) and 3!x:X«E(x), 
are quantified predicate expressions. The extremal clause follows. 

We refer to the above V, 3 and 3! as quantifiers, to x's as binding variables, 
E(x) as the body of the quantified expression, and to X as the range set 
(designated by a type expression) of the quantification. 

More generally, quantified expressions have the syntactic form: 

quantifier typing_l,typing_2,...,typing_2 • booLexpr 

where simple forms of typings have the syntactic form: 

id_l,id_2,...,id_m: type.expr 
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Free and Bound Variables 

In the A-calculus we define a concept of free and bound variables. Let E(x) be 
an expression which is not of the form Qx:X«E(x), where Q is either of V, 3 or 
3!, and in which there are no further embedded, i.e., proper subexpressions of 
those forms, then any occurrence of x in E(x) is free. Let E(x) be an expression 
which is of the form Qx:X«E(x), where Q is either of V, 3 or 3!, then any 
occurrence of x in E(x) is bound. Let E(x) be an expression which is not of the 
form Qx:X«E(x), where Q is either of V, 3, or 3!, but in which there are some 
further embedded, i.e., proper sub-expressions of those (x binding) forms, then 
any occurrence of x in E(x), which is not within those latter forms, is free, 
whereas, of course, the others are bound. 

Compound Quantified Expressions 

Since in Qx:X»E(x) the expression body may itself be of the form Qy:Y»E'(y), 
we may get multiple bindings: 

... V x:X • V x;:X • 3 y:Y • V z:Z • E(x,x',y,z) 

for which we provide a shorthand: 

... V x,x':X, z:Z, 3 y:Y • E(x,x',y,z) 

Example 9.15 Compound Predicate Expression: For all natural numbers i 
larger than 2 there exist two distinct natural numbers j , k larger than 0 (but 
not necessarily distinct from i) such that i is the product of j and k: 

V i:Nat • i>2 => 3 j,k:Nat • j / k A i = j*k 

Example 9.16 Compound Predicate Expression: For all sets s of integers 
such that if i is in the set then also — i is in the set; it is the case that the sum 
of all integers equals 0. 

type 
S = Int-set 

value 
sum: S -» Int 
sum(s) = 

if s={} then 0 else let i:Int • i £ s in i + sum(s\{i}) end end 
axiom 

V s:S • V i:Int • i G s => - i G s ^ sum(s) = 0 

Here Int-set designate the type all of whose values are sets of integers. • 
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9.5.5 Syntax of Predicate Expressions, PRE 

We present the syntactic quantities of predicate expressions: the symbols, 
the terms, the atomic formulas, the well-formed formulas (wffs), and a BNF 
grammar. That is, we divide the presentation of the language of predicate 
expressions into the presentation of language of terms, upon which we build 
a language of atomic formulas, and from those we build the well-formed for­
mulas, i.e., the predicate expressions. 

The Symbols of a Predicate Calculus 

The symbols of a predicate calculus include a number of elements. There 
are the variables b, bf, . . . , b" and X, X , . . • , X , where we think of the fr's 
being truth valued propositional variables, and the x's being otherwise typed 
variables (integers, etc.). There are the Boolean connectives ~, V, A, etc. There 
are the existential quantifiers 3, 3! and V. For every suitable arity n there are 
sets of predicate function symbols {pni, pn2,..., pUpn }. For every suitable arity 
m there are sets of otherwise typed function symbols {fmi, f m 2 , . . . , / m / m }• 

The idea is that: 

pij(t1:t2,...,ti)J : 1 ,2 , . . . ,^ ; 

and 

/fc/(*i>*2>-">*ife)^ : 1>2> •••>*/; 

are two expression forms. The first is a formula and ostensibly has a truth 
value; that the second is a term and ostensibly has a value of any kind (i.e., 
of any type). Finally the arguments tj,tj, are also terms of any kind (i.e., of 
any type) of value. Note that we now distinguish between terms as the basic 
building blocks of expressions, and formulas as the expressions that have truth 
values. 

The Term Language of a Predicate Calculus 

The term language is defined inductively: 

• Basis Clause: A variable, 6, etc., or x, etc., that is, whether truth valued 
or not, is a term. 

• Inductive Clause: If ti,t2,...,tn
 a r e terms and fn is an n-ary function 

symbol, and if pn is an n-ary predicate symbol then, fn(ti, £2, • • •, tn) and 
Pn(ti,t2,...,tn) are terms. 

• Extremal Clause: Only those expressions that can be formed from a finite 
number of applications of the above clauses are terms. 

The idea is that Boolean literals are miliary predicate function symbols: trueQ 
= true, false() = false and chaosQ = chaos; and that, for example, numerals 
are miliary function symbols: one() = 1, etc. More complex examples are: 
and(6, bf) (= 6A&'), etc.; and ift(equalzero(i), one(), mult(i, fact(sub(i, 1)))) (= 
if i=0 then 1 else ixfact(i-l) end), etc. 
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The Atomic Formula Language of a Predicate Calculus 

The atomic formula language is defined inductively: 

• Basis Clause: Any propositional expression is an atomic formula (and is a 
term). 

• Inductive Clause: If ^1,̂ 2? • • • ?̂ n are terms and pn is an n-ary predicate 
function symbol, then Pnitnh,. • •, tn) is an atomic formula. 15 

• Extremal Clause: Only such terms which can be formed from a finite number 
of uses of the above two clauses are atomic formulas. 

The Well-formed Formulas of a Predicate Calculus 

The wff language is defined inductively: 

• Basis Clause: Atomic formulas are formulas, i.e., predicate expressions. 
• Inductive Clause: If x is a variable ranging over type X, and u,v and £{x) 

are formulas (i.e., predicate expressions), then: ~u is a formula; u/\v, uVv, 
u^v, u = v, u^v, and u=v, are formulas; Vx:X'£(x),3x:X-£(x), and 
3\x:X-£(x) are formulas. 

• Extremal Clause: Only those terms that can be formed from a finite number 
of uses of the above two clauses are formulas, i.e., predicate expressions. 

An Informal BNF Grammar for Predicate Expressions 

We refer to previous BNF grammar examples for Boolean ground terms 
(Sect. 9.3.4) and propositional expressions (Sect. 9.4.1). Instead of building 
on these, we present a new BNF grammar: 

(Fn) ::= (Identifier) /* Fn: non—truth valued functions */ 
(Pn) ::= (Identifier) /* Pn: truth valued predicates */ 
(Term) ::= (Identifier) 

I (Fn) ( (Term-seq) ) 
I (Pn) ( (Term-seq) ) /* true, false, chaos: miliary terms */ 

(Term-seq) ::= /* empty sequence */ 
I (Term) 
I (Term) (Comma—Term—seq) 

(Comma—Term-seq) ::= (Comma—Term) (Term-seq) 
(Comma—Term) ::= , (Term) 
(Atom) ::= (Identifier) /* Boolean valued */ 

I (Pn) ( (Term-seq) ) 
(Wff) ::= (Atom) 

15The truth and the non-truth-value relational operators (to wit: =, / , =, re­
spectively =, ^, =, <, <, >, >, etc.) are examples of j ^ ' s , and hence of atomic 
formulas, as would be any user-defined predicate applied to terms. 
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| ~ (Wff) 
| (Wff) A (Wff) | (Wff) V (Wff) | (Wff) => (Wff) 
| (Wff) = (Wff) I (Wff) ^ (Wff) I (Wff) = (Wff) 
I (Quant) (Identifier) : (Tn) • (Wff) 

(Quant) ::= 3 \ 3 ! | V 

9.5.6 A Predicate Calculus 

In Sect. 9.4.4 we presented a system of axioms and rules of inference for a 
propositional calculus. We now wish to present such a system for a predicate 
calculus. 

Axiom Schemes 

The material of this and the next section is based on [451]. Quoted parts are 
expressed in slanted text font. 

Let (j)[x \-^ t] designate the expression (ft1 which is like (ft except that some 
or all of the free x in (ft have been replaced by the term t — where x does not 
occur free in t. 

One such system for the predicate calculus extends one, or the other of 
the sets of axiom schemes given (earlier) for a propositional calculus with the 
following: 

• Provided that no free occurrence ofx in (ft lie in the scope of any quantifier 
for a free variable appearing in the term t, we have: 

\/x : X • (ft(x) => (ft[x \-> t] 

Expressed semantically: If some formula (ft is true for all x, then it is certain 
true when some particular term t is substituted for x in (ft. 

• And, provided that t is free for x in 0, we have: 

(j)[x \->t] => (3x : X • 4>(x)) 

Expressed semantically: We can conclude that there exists some x satisfy­
ing the formula (ft if some substitution instance of (ft is true. 

Rules of Inference 

The above leads to the following rules of inferences: 

• First: 

ift D (ft(v) 
xftD(Vx:Xm (ft(x))' 
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• and: 

<f>(v) D ip 
(3x : X • cf)(x)) Dip' 

where the variable v is not free in ip. 
• The rule of universal quantification can best be understood semantically 

by considering the simpler case when rtfj is true. Then the rule becomes: 

Vx:Xm (f)(x)) 

which, semantically says, that if (f) is true for some arbitrary v, then it 
must be true for all x. 

• Universal and existential quantification are related: 

3x:Xm <f>(x) = ~ (Va; : * • ~ <f>(x))) 

This definition, as an axiom, can be done if we have already defined equiv­
alence. 

9.5.7 Predicate Expression Evaluation 

As we did for Boolean ground terms (EvaLBGT), and for propositional expres­
sions (EvaLPRO), so we shall now do for predicate expressions: namely provide 
an informal, yet precise description of an evaluation procedure (Eva LP RE). 

Evaluation Contexts 

Semantically we may understand the predicate calculus by constructing mod­
els. There are two parts to any such model: a context, p : 1Z, which maps all 
user-defined symbols in the language of predicate expressions to their mean­
ing in some world J?, and an interpretation function. Thus, in order to find 
the value of a given predicate expression, one must provide a context which 
maps some, all or more of the free variables, v:V (of that predicate expression), 
into values, VAL, of appropriate types; some, all or more of the type names, 
Tn (of the range type [name] expressions of that predicate expression), into 
their respective — finite or even infinite value spaces; some, all or more of 
the predicate function symbols, p (of that predicate expression), into appro­
priate arity predicate functions; and some, all or more of the non-truth result 
value function symbols, f (of that predicate expression), into appropriate arity 
non-truth result value functions: 

type 
Vn, Tn, Pn, Fn, VAL 
U = (Vn-^VAL) 

U (Tn-^VAL-set) 
U (Pn-KVAL* - • Bool)) 
U (Fn-KVAL* -> VAL)) 



182 9 Mathematical Logic 

Recall tha t A->B s tands for the type whose values are functions from A into 
B, tha t ,4-set stands for the type whose values are sets of element values 
of type A and tha t A* s tands for the type whose values are lists of element 
values of type A. The unusual, non-RSL construct (^4—>B)\J(C—>D) stands for 
the type whose values are functions from A into B and functions from C into 
D. 

E x a m p l e 9 .17 Predicate Expression Evaluation Context: Let us review an 
example. See the first formula line below. To evaluate the next expression we 
seem to need a context, c : C, like the one shown further below: 

value 
(a A (v > 7)) =>• V k:K • fact(j) < k 

p: Ax:(Vn|Tn|Pn|Fn) • 
if x G Vn t h e n 

case x o f 
a—>t,v—>-i,j—mi, ... 

e n d 
e lse if x G Tn t h e n 

case x o f K - ^ { - 2 , - l , 0 , l , 2 } , ... e n d 
e lse if x G Pn t h e n 

case x o f 
"larger-than-or-equal" —> A(x ,y) : ( ln tx ln t )»x>y , 
"smaller-than-or-equal" —> A(x ,y) : ( lntx lnt) -x<y, 

e n d 
e lse / * assert: * / x G Fn: 

case x o f 
"factorial" —> An:Int»if n=0 t h e n 1 e lse n*fact(n—1) end , 

e n d 
e n d e n d e n d 

As an example, let (aA(v>7))=>Vk:K»fact(j)<k be the predicate expression to 
be evaluated. Variables a, v and j are free and so is type name K — the latter 
is assumed to be some (finite or infinite) set of integers. For tha t expression 
we need a context preferably like p : 1Z above — where t is some Boolean 
t ru th value, and i and m are some integers. If the values of t, i, m are t rue , 
9 , - 2 then we see tha t the predicate evaluates to t rue . • 

M e a n i n g Versus Values of P r e d i c a t e E x p r e s s i o n s 

The meaning of a predicate expression p, in the type of all predicate expres­
sions PRE, is now a function from context, tha t is, p : 1Z to Booleans! 
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value 
EvaLPRE: PRE - • 11 -^ Bool 

To see this, we show how to evaluate — how to find — not the meaning, but 
the value of a predicate expression. And then we "lift" that value, we abstract 
that predicate expression with respect to contexts! 

Evaluation Procedure, EvaLPRE 

Term Evaluation 

Let p : 1Z be some context, and let t be the term subject to evaluation in 
context p. 

If t is variable v then c is applied to v to find its value. If v is not in the 
definition set of p then the undefined value chaos is yielded. 

If, instead, t is of the form f(t,t',... ,t"), then the values v, v', . . . , v" of 
the terms t, t', . . . , t", respectively, are evaluated; the function f is "looked 
up" in p (i.e., c(f)), and the resulting function ip applied to v, v', . . . , v": 
^(v,v ; . . . ,v/;). If f is not in the definition set of p: then the undefined value 
chaos is yielded. 

Formula Evaluation 

Let e be a formula. 
If e is a propositional expression, that is, if e is of any of the forms: ~e, 

eAe', eVe', e=e', e^e', or e=e', then evaluate as prescribed earlier (EvaLpro). 
If e is of the form p(t,t',... ,t") then the values v,v', . . . , v" of the terms 

t, t', . . . , t", respectively, are evaluated, the predicate function p is "looked 
up" in c (i.e., p(p)), and the resulting function cj) applied to v, v', . . . , v": 
0(v,v'... ,v"). If p is not in the definition set of c, then the undefined value 
chaos is yielded. 

If, instead, e is of either of the forms Vx:X»E(x), 3x:X»E(x) or 3!x:X-E(x), 
i.e., if it is of the general form Q x:X-E(x), then the value, E, of the range set 
X is found from p. If X is not in the definition set of p: then the undefined 
value chaos is yielded, and becomes the value of Q x:X«E(x). 

Otherwise three case distinctions must be made: 

• If Q is V then the possibly infinite conjunction: E ( £ I ) A E ( £ 2 ) A . . . A E ( ^ ) A . . . 

is evaluated. Here the £'s range over all, possibly infinite values of E. 
Note: The A is here constrained to be commutative. 
All E(&) must yield true for V x:X»E(x) to yield true. Any chaos results 
in chaos. Any false with no chaos yields false for V x:X»E(x). 
We can rephrase the above: The value of Vx:X-E(x) is true if E(x) holds 
for all models as implied by x:X. That is, x:X defines a set of models, that 
is, a set of contexts, at least one for each element x in X. Each of these 
models further defines bindings of all other free identifiers in E(x). 
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• If Q is 3 then there must exist a disjunction: 

E(£i)VE(&)V...VE(6)V... 

This disjunction is evaluated. For it to yield true E(£i) must yield true 
with all other E(£j) for all j> l yielding true, false or chaos. 
Or rephrased: 3x:X«E(x) is true if E(x) holds for at least one model in the 
set of models induced by X. 

• If Q is 3! then there must exist exactly one i in some arbitrary disjunction: 

E(£i)VE(&)V...VE(6)V... 

such that E(£i) yields true and all other E(^), for all i>l, yield false or 
chaos! 
Rephrased: 3!x:X-E(x) holds if and only if E(x) holds for exactly one of the 
induced models. 

We shall later present a formal definition of Eva LP RE. 

9.5.8 First-Order and Higher-Order Logics 

If the range set of quantifications permit values that are, or contain, functions, 
then we say that the predicate logic is a higher-order logic. Otherwise it is a 
first-order logic. 

An example may be in order to illustrate the need for higher-order logics: 

type 
P = A - • Bool 

value 

axiom 
Vp:P • ... 

RSL's logic is higher-order. 

9.5.9 Validity, Satisfiability and Models 

We briefly introduce such concepts as validity, satisfiability and models. But 
first we take yet another look at interpretations and their contexts, i.e., their 
possible worlds. 

Contexts and Interpretations 

We have seen that predicate expressions only have values if a suitable context 
is given. In mathematical logic such a context is called an interpretation. Gen­
erally a context, that is, an interpretation, is a mapping of identifiers to math­
ematical values. Predicate symbols pn of arity n can be thought of as being 
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mapped (pn^7r) into possibly infinite sets n of n groupings: (^1,^2, • • • ,vn), 
with the meaning that pn{v\, ^ 2 , . . . , vn) represents truth for all (vi, V2,.. •, vn) 
in 7r, and falsity otherwise. Function symbols fn of arity n can likewise be 
thought of as being mapped ( /n1 -^) into possibly infinite sets, 0 of n + 1 
groupings: (vi, t?2,. •., vn, v) — with the meaning that fn(vi, V2, • . . , vn) has 
value v for respective (t>i,i>2? • • • ?^n?^) in 0? and is otherwise undefined. Non­
function symbols, i.e., variable identifiers, i are mapped (i\->v) into values v 
in some type. 

Example 9.18 Predicate Expression Interpretation: An example may be in 
order. We interpret the predicate ... V i:lnteger, 3 n:Natural • square(i) = n ... 
in two models: 

type 
Integer, Natural 

value 
square: Integer —> Natural 
... V i:Integer, 3 n:Natural • square(i) = n ... 

/* interpretation.!: */ 
[ In tegers ! ...,-2,-1,0,1,2,... }, 
Natural^{ 0,1,2,... }, 
square^{ ...,(-2,4),(-l,l),(0,0),(l,l),(2,4),... }] 

/* interpretation_2: */ 
[Integer^{ . . ,-2,-1,0,1,2,. . . }, 
Natural^{ 0,3,5,7,9,... }, 
square^{ ...,(-2,4),(-l,l),(0,0),(l,l),(2,4),... }] 

The above predicate is true in interpretation.! and false in interpretation_2. • 

Validity and Satisfiability 

Let there be given a possibly infinite set of interpretations. A predicate ex­
pression is said to be valid if it is true for all interpretations. A predicate 
expression is said to be satisfied if it is true for at least one interpretation. 
There is no mechanical procedure by which one can determine the validity or 
satisfiability of predicate expressions. That is, one cannot write a computer 
program which determines validity or satisfiability. A predicate expression is 
said to be contradicted if it is false for all interpretations. 

Models 

Let there be given a set, a, of predicate expressions, and an interpretation 1. 
If every w in a holds in the interpretation t, then 1 is said to be a model of a. 
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Contexts, Interpretations and Models 

We now take up the line on models begun in Sect. 1.6.2 and continued in 
Sect. 8.5.4. We have earlier introduced the following related terms: context 
and interpretation. It is time to sort out any possible differences in our use of 
the terms: model, context and interpretation. 

At the start of this section we equated, within the subject of mathematical 
logic, the two concepts: context and interpretation. We shall henceforth use 
the term context (or later the term environment) — in connection with the 
actual development and presentation of language interpreters — as standing 
for the above use of both the terms context and interpretation. 

And we shall, likewise, use the term interpretation to stand for the function 
of doing what is prescribed by such language interpreters. For matters of 
mathematical logic we shall not use the term context any more. For the term 
model, until we reach Vol. 3, Chap. 4, technical uses of this term will be in 
connection with the meaning of RSL definitions being sets of models: bindings 
between identifiers, in a space of all such, to type values (which themselves 
are set of values), or function values or, as we shall see, later, many other 
kinds of values including variables, channels. In Vol. 3, Chap. 4 we shall then 
discuss the looser, not necessarily technical, but usually more pragmatic use 
of the term model — in the senses of modelling, of creating models. 

9.5.10 Discussion 

We have introduced languages of predicate calculi. We now have several lan­
guages since we can either choose a two-valued or a three-valued logic, and 
since we can choose one or another set of rules of inferences. RSL basically 
has a three-valued logic. We say basically, as we can safely restrict particular 
uses of RSL to a two-valued logic — one that is consistent with a three-valued 
logical interpretation. That is, the chaos will never occur in expressions for 
which the two-valued logic is claimed to be sufficient. Whenever necessary, we 
are thus encouraged to state which logic we require. We remind the reader of 
the distinction between proof-theoretical (i.e., syntactical) presentations of a 
logic, and model-theoretical (i.e., semantical) presentations of the same logic. 

This and the previous two sections have thus provided a basis for our use 
of the RSL predicate calculus as a specification language. Since these volumes 
basically emphasises specification development rather than verification of such 
developments, we refer the reader to specialised textbooks and monographs 
for more comprehensive treatments of verification. Such references are: [181, 
242,359-361,419,472,533]. 

9.6 Axiom Systems 

Axioms are self-evident truths. That is, they are laws or postulates that we 
accept without proof. 
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When mathematics students study mathematical logic they learn about 
proof and model-theoretic properties of families of predicate logics, and 
about what axiom systems are, in general, possible. 

With this section you shall, in contrast, learn the first steps towards 
constructing pleasing and elegant axiom systems for actual-world phenomena 
and — later — for computing. 

In this section we shall illustrate uses of RSL's linguistic facilities for specifying 
properties of sorts and functions over these sorts in terms of axioms. That is, 
in contrast to the previous three sections' treatment of proof systems for logic 
languages, including that embedded in RSL. We shall now be using RSL itself 
to express axioms. 

Some of the examples given now may be said to be presented prematurely 
or to be redundant: Either they rely on arithmetics for which no semantics, 
including no axioms, have been given, or they have already been presented 
before or will be presented more fully later. Be that as it may; our aim is to 
familiarise you with RSL specifications of axioms. We refer to the Sect. 9.1 for 
remarks on the two kinds of axiom systems. Some of the text in this section 
summarises earlier material. 

9.6.1 General 

An axiom system is usually a set of type definitions, a set of function signa­
tures (of observer and generator functions, including predicates), and a set of 
predicate expressions (the axioms themselves). 

Example 9.19 Euclid's Plane Geometry: The following illustrates an axiom 
system. It is informally expressed: [0] Every line is a collection of points. [1] 
There exist at least two points. [2] If p and q are distinct points, then there 
exists one and only one line containing p and q. [3] If £ is a line then there 
exists a point not on £. [4] If £ is a line and p is a point not on £, then there 
exists one and only one line containing p and parallel to L • 

In these expressions we can identify, for example, three kinds of plane geometry 
terms. They are: line, point and parallel. We can also identify the ontologi-
cally determined terms: collection, containing and on; as well as other natural 
language terms. The axioms assume that you understand the ontologic and 
natural terms, but define, as a set of axioms, the plane geometry terms. 

9.6.2 Axioms 

An axiom, for us, is a predicate expression that always holds, that is, which is 
valid. In other words, whatever quantification set is implied by some quantifi­
cation range identifiers (viz. X above) they are constrained to make the axiom 
true. 
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If we, for example write: 

type 
X ,Y 

axiom 
V x:X • V y:Y » x / y 

then the sorts X and Y have at least been constrained to not contain similar 
elements. If instead 

type 
X 

axiom 
V x:X • 3 i:Int • x = i*i 

then the sort X is the type of all square numbers. We could instead define X 
by a subtype definition:16 

type 
X = {| n:Nat • 3 i:Int • n = i*i |} 

To repeat: Axioms are predicate expressions. Predicate expressions are only 
valid for certain interpretations. These interpretations are exactly what the 
axioms are (pragmatically) intended to model. Thus axioms are used to model 
the properties of structures, either abstract, as above, or seemingly manifest, 
such as the Euclidean system of plane geometry. 

9.6.3 Axiom System 

An axiom system, that is, a set of predicate predicate expressions, also con­
tains some type type (including sort) definitions and function signatures. One 
of the quantification range set identifiers — which may be mentioned in one or 
more of the axioms — are sorts, and a purpose of the axioms are to characterise 
those sorts. Usually at least one of identifiers — which may be mentioned in 
one or more of the axioms — is a function name, and a purpose of the axioms 
is to characterise that function. 

Example 9.20 Euclid's Plane Geometry: The Euclidean geometry infor­
mally described in Example 9.19 can be formally axiomatised by first in­
troducing the sorts P and L: 

type 
P,L 

value 

16We shall use subtypes extensively between here and the formal introduction of 
the concept of subtypes, in Sect. 18.8. 
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[0] obs_Ps: L - • P-infset 
parallel: L x L —> Bool 

Observe how the informal axiom in Example 9.19 has been modelled by the 
observer function obs_Ps. It applies to lines and yields possibly infinite sets of 
points. 

Now we can introduce the axioms proper: 

axiom 
[ l ] 3 p , q : P . p ^ q , 
[ 2 ] V p , q : P . p ^ q ^ 

3! 1:L • p e obs_Ps(l) A q e obs_Ps(l), 
[3] V1:L- 3p :P • p £ obs_Ps(l), 
[4] V 1:L • 3 p:P • p g obs_Ps(l) => 

3 l':L • 1^1' A p € obs_Ps(l') A parallel(l,l') 

The concept of being parallel is modelled by the predicate symbol of the same 
name, by its signature and by axiom [4]. • 

Thus (also in RSL) an axiom system is usually represented by (i) a set of sort 
definitions, (ii) a set of observer and generator functions, and (iii) a set of 
quantified expressions, the axioms proper. 

9.6.4 Consistency and Completeness 

A theory is, formally speaking, a set of axioms and a set of theorems derived, 
through proofs,17 from these axioms using the inference rules of the logic in 
which the axioms were stated. Whether the set of inference rules and the set of 
axioms together is sufficient for proving all valid assertions, i.e., whether the 
axiom system is complete with respect to all valid predicates, is undecidable: 
One cannot devise a mechanical procedure which can test an axiom system and 
its inference rules for completeness. Furthermore, whether the set of inference 
rules and the set of axioms together is such that one can prove validity of an 
assertion and its negation, that is, whether the axiom system is inconsistent, 
is undecidable: One cannot devise a mechanical procedure which can test an 
axiom systems and its inference rules for consistency. 

9.6.5 Property-Oriented Specifications 

We give a number of examples of axiom systems. They each characterise one or 
more model(s). We say that they specify this (or these) model(s) in a property-
oriented manner. This is as opposed to presenting the model directly in terms 
of for example such discrete mathematical concepts as sets, Cartesians, lists, 
maps, functions, etc. 

We refer to the paragraphs on 'Some Proof Concepts' in Sect. 9.4.4. 
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Example 9.21 Peano's Axioms: The purpose is to define the algebra of nat­
ural numbers and successor (+1) and equal to zero functions (=0). 

[1] Zero (0) is a natural number. [2] For each natural number n there exists 
exactly one other natural number n + 1. [3] For no natural number n, is n + 1 
equal to zero. [4] For any natural numbers m and n, ifra + l = n + l then 
m = n. [5] For any set N of natural numbers containing zero, if n £ A implies 
n + 1 G A, then A contains every natural number. 

type N 
axiom 

[ i ] 0 e N 
[2] V n:N • 3!n':N • n '=n+ l A n' 6 N 
[3] ~3n :N • n+1 = 0 
[4] V m,n:N • m + l = n + l => m=n 
[5] V A:N-infset • (0 e AAn e A => n+1 G A ) ^ A E N 

[5] is a specialisation of the principle of induction: If p is a property, i.e., p 
is expressible as a predicate function which may hold of (applies to) natural 
numbers n; if p(0) holds; and if, whenever p(n) holds for some natural number 
n, then p(n + 1) also holds, then that implies that all natural numbers satisfy 
p. Formulated, in general, we have: 

axiom 
[6] V p:(N -> Bool) • (V n:N • p(n) => p(n+l)) => V n:N • p(n) 

Another example: 

Example 9.22 Sine <fe Cosine: 
There is given a sort of angles, A, and a sort of rational numbers, R18, 

between —1 and 1. There is also given a pair of functions sin and cos (for sine, 
resp. cosine). Finally there are given the axioms: 

type 
A = Real 
R = {| r:Real- - l < r < l |} 

value 
sin,cos: A -» R 

axiom 
for all a: A • 

— 1 < sin(a),cos(a) < 1, 
sin2 (a) + cos2 (a) = 1 

18In Example 9.22 R is defined as a subtype of reals. We refer to Sect. 18.8 for a 
proper introduction of the concept of subtypes. 



9.6 Axiom Systems 191 

Here we have introduced a variant of the V quantification: The keyword 
forall lets the quantifier bindings which follow it, distribute across the axioms 
now separated by commas. 

Under the assumption of appropriate axioms for the rational numbers, 
their squaring and sum, and the < relation, Figure 9.2 exemplifies one model 
of this axiom. • 

(1,0) 

Fig. 9.2. Definition of the trigonometric sin and cos functions 

Further examples. 
Their formal parts are presented, as were those of the above examples, in 

RSL. It is not RSL, however, in that it has the simple semantics of the predicate 
calculus. To repeat: One cannot explain, i.e., give semantics, to a language by 
using that language itself. One must use a language already defined. 

Example 9.23 Simple Sets: By a simple set we understand an unordered 
finite collection of simple, say in the present example, distinct atomic elements. 
Let the latter belong to sort A. Let the sort of simple sets be designated by 
S. Now simple sets are characterised, as already hinted at above, by being 
collections, by being finite, by having distinct elements, by being unordered 
such collections, and by the following operations: e is taken as a primitive 
and stands for "is the left-hand operand (an atomic element) a member of 
the right-hand operand (the set)." {} is an overloaded function symbol: {} 
either stands for the miliary constant function that yields the empty set (of 
no elements), or {} stands for the unary function that yields the singleton 
set of its operand. ={} stands for the unary isempty-set predicate function 
which tests whether its operand set is empty. U stands for the union operator 
which, when applied to two operand sets, yields the set of all elements of 
these operands, n stands for the intersection operator which, when applied 
to two operand sets, yields the set of elements common to both operands. \ 
stands for the set complement operator which, when applied to two operand 
sets, yields the set of elements of the first operand not in second operand. 
= stands for the equality operator which, when applied to two operand sets, 
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yields truth if they are the same set, otherwise falsity. C stands for the proper 
subset operator which, when applied to two operand sets, yields truth if all 
the elements of the left-hand operand set are in the elements of the right-hand 
operand set and there are elements of the right-hand operand set which are 
not elements of the left-hand operand set. C stands for the subset operator 
which, when applied to two operand sets, yields the truth if all the elements 
of the left-hand operand set are in the elements of the right-hand operand 
set. card stands for the cardinality operator which, when applied to a finite 
operand set, yields its number of elements. The axiom system provides the 
characterisation. 

The membership operation, G, is, to repeat, taken as a primitive. That is, 
is not explained! 

A Sketch Formal Axiom System Defining S = A-set 

Types and Signatures: 

type 
A, S 

value 
G, £: A x S - • Bool 
{}: Unit - • S 
{ } : A ^ S 
u, n, \: s x s -• s 
= ^ , C , C : S x S 4 Bool 
card: S -3- Nat 

Axioms: 

axiom 
forall a:A, s,s':S • 

{a} e S, 
((a G s U s') = (a G s V a G s')), 
((a G s H s') = (a G s A a G s')), 
((a G s \ s') = (a G s A a £ s')), 
s = s' = ( a G s = aG s'), 
s C s' = (a G s => a G s'), 
S C S ' E ( S C S ' A S / S'), 

card({}) = 0, 
a 0 s => card({a} U s) = l+card(s) 

Chapter 13 continues our presentation of sets. It focuses on the way in which 
RSL, the main specification language of these volumes, provides for sets, as 
well as on the choice and use of sets in abstract specifications. 
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Example 9.24 Simple Lists: By a simple list we understand an ordered finite 
collection of, say in the present example, atomic, but not necessarily distinct 
elements. Let the latter belong to sort A. Let the sort of simple lists be desig­
nated by L. Now simple lists are characterised, as already hinted at above, by 
being collections, by being finite, by allowing multiple occurrence of some el­
ements, by being ordered such collections and by the following operations: {), 
= {), hd, tl, " , elems, inds, len and [•].{) is an overloaded function symbol: 
{) either stands for the miliary constant function that yields the empty list (of 
no elements), or () stands for the unary function that yields the singleton list 
of its (only) operand. =() stands for the unary test for empty list predicate 
operator. It applies to a list and yields truth if that list is empty, otherwise 
falsity, hd stands for the head operator which, when applied to an operand 
list, yields the first element of that list, tl stands for the tail operator which, 
when applied to an operand list, yields the list of all but the first element of 
that list, and in the same order as in the operand. ^ stands for the concatena­
tion of two operand lists of which the first must be finite. The result is the list 
whose first list elements are exactly those of the first operand list in the order 
and multiplicity of that list, and whose remaining list elements are exactly 
those of the last operand list in the order and multiplicity of that list, elems 
stands for the elements operator which, as a function, when applied to an 
operand list, yields the set of all the distinct elements of that list, inds stands 
for the indices operator which, as a function, when applied to an operand list, 
yields the set of all the indices into the list. If the list is of length ell then 
inds of that list is the set of all natural numbers from and inclusive 1 to and 
inclusive ell. If the list is empty, the yielded index set is empty, len stands for 
the length of list operator operator which, when applied to a finite operand 
list, yields the length of that list, i.e., the number of not necessarily distinct 
elements of the list, otherwise chaos. •(•) stands for list element selection, i.e., 
for the (distributed fix) list operator which when applied to a "left" operand 
list and a "right" operand index, i.e., a natural number within the index set of 
the list, yields the list element having the index position in the list. The above 
explication was "loose" wrt. the "border" cases of when certain argument lists 
were either infinite or empty, or not of sufficient length — for which cases the 
results amount to chaos. 

The axiom system provides a fuller characterisation. 

A Sketch Formal Axiom System Defining L = A* 

Types and Signatures: 

type 
A, L 

value 
():L 
< . ) : A - > L 
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• =(): L - • Bool 
hd •: L ^ A 
tl •: L -+ L 
• " •: L x L 4 L 
elems •: L —> A-set 
inds •: L —> Nat-se t 
le n-: L -^ Na t 
• [ • ]: L x Na t -+ A 

Axioms: 

axiom 
V a:A,£:L • 

0=0, 
hd{) = chaos 
hd{a)^ = a = ( ( a p ) [ l ] , 
r<> = e = (re 
tl{) = chaos, 
t l ( a )^ = £, 
chaos [i] = chaos, 
V i:Nat • i>0 =* l[i+l] = (tl l)[i] 
elems{) = {}, elems(a)^l = {a} U elems 1 
inds() = {}, inds 1 = {i|i:Nat • l<i<len 1}, i.e., 
inds(apl = {1} U {i+l|i:Nat-i G inds 1} 
len{> = 0, len((a>"l) = 1+len 1, i.e., 
len(n / ) = len 1 + len l', 
V i:Nat • i>len 1 =* (lT)[i] = l'li-len 1] 

In general, lists will be allowed to contain any kinds of elements: Functions, 
integers, Booleans, sets, etc. So, when we say 'simple list' we only mean it 
as an example; as a simple example which does, i.e., should not complicate 
matters. 

Chapter 15 continues our presentation of lists. It focuses on the way in 
which RSL, the main specification language of these volumes, provides for 
lists, as well as on the choice and use of lists in abstract specifications. 

Example 9.25 Syntax of Simple Arithmetic Expressions: The first abstract 
syntax proposal was put forward by John McCarthy in [366]. An analytic 
abstract syntax was given for arithmetic expressions. In an analytic abstract 
syntax we postulate — as sorts — a class of terms. You may consider terms 
as a subset of all the things that can be analysed. We associate a number of 
observer functions with these. 

These examples are drawn from McCarthy [366]. 
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Analytic Syntax 

We define abstractly a small language of arithmetic expressions. We focus on 
constants, variables and infix sum and product terms. 

type 
A, Term 

value 
is_term: A —> Bool 
is.const, is_var, is_sum, is.prod: Term ->* Bool 
s.addend, s_augend, s_mplier, s_mpcand: Term —> Term 

axiom 
V t:Term • 

(is_const(t)A^(is_var(t)Vis^um(t)Vis_prod(t))) A 
(is_var(t)A~(is_const(t)Vis_sum(t)Vis_prod(t))) A 
(is_sum(t)A~(is_const(t)Vis_var(t)Vis_prod(t))) A 
(is_prod(t)A~ (isc_onst(t)Vis_var(t)Vis_sum(t))) A 

V t:A • is_term(t) => 
(is_var(t)Vis_const(t)Vis_sum(t)Vis_prod(t)) A 
(is_sum(t) = is_term(s_addend(t))Ais_term(s_augend(t))) A 
(is_prod(t) = is_term(s_mplier(t))Ais_term(s_mpcand(t))) 

A is a universe of things. Some are terms, some not! The terms are restricted, 
in this example, to constants, variables, two argument sums and two argument 
products. How a constant, a variable, a sum or a product is represented is 
immaterial to the above. 

One could think of the following alternative, external, written representa­
tions of arithmetic expressions: 

a + 6, +ab, (PLUS A B),7axllb. 

The last (7a x 11&) is some form of Godel number representation [180,319,444] 
of arithmetic expressions. 

Synthetic Syntax 

A synthetic abstract syntax further introduces generators of sort values, i.e., 
of terms: 

value 
mk_sum: Term x Term —> Term 
mk_prod: Term x Term —> Term 

axiom 
V u,v:Term • 

is_sum(mk_sum(u,v)) A is_prod(mk_prod(u,v)) A 
s_addend(mk_sum(u,v)) = u A s_augend(mk_sum(u,v)) 
s_mplier(mk_prod(u,v)) = u A s_mpcand(mk_prod(u,v)) 
is_sum(t)=>mk_sum(s_addend(t),s_augend(t)) = t A 
is_prod(t)=^mk_prod(s_mplier(t),s_mpcand(t)) = t 

= v A 
= v A 
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Analytic and synthetic syntaxes are truly abstract. • 

McCarthy's notion of abstract syntax, both the analytic and the synthetic 
aspects, are to be found in most abstraction languages, thus also in RSL. 

9.6.6 Discussion 

We have shown one of the most powerful means of abstraction: namely 
property-oriented abstraction by means of sorts, observer functions (predi­
cates and other value "selection" functions) and generator functions. 

Specific principles of when to choose and of how to express, axiomatic 
property-oriented abstractions are given primarily in Chap. 12. 

9.7 Summary 

We have presented an overview of mathematical logic as a specification, rather 
than as a verification language. There were many parts to our exposition. In 
three stages of development we unravelled first the basis, a Boolean algebra; 
then a propositional logic, and finally a predicate calculus. We write an "alge­
bra" , a "logic", a "calculus", since there are many possible Boolean algebras 
— ours was one of a specific three-valued logic — and hence many propo­
sitional logics and predicate calculi. We also distinguished between algebra, 
logic and calculus: The algebra is just a simple one, the logic is more extensive 
— and hints at a theory (with axioms, rules of inference, and theorems) which 
we did not elaborate on — and the calculus is indeed to become a calculus: 
a set of rules, the inference rules, for calculation, just as the A-calculus had 
rules (a-renaming and /3-reduction). It is the predicate calculus, for very many 
chapters to come, that will serve us in abstraction and in specification. 

In Chap. 8 we explained the notion of an algebra morphism (Sect. 8.4.4) 
Two algebras, one of syntax and one of semantics. In this chapter on logic we 
applied this concept repeatedly: in structuring our presentation of Boolean 
ground terms and their evaluation (Sect. 9.3.4), in structuring our presen­
tation of propositional expressions and their evaluation (Sect. 9.4.3), and 
in structuring our presentation of predicate expressions and their evaluation 
(Sect. 9.5.7). It was perhaps not until the last of the above that we saw the 
full benefits of adhering to an inductive style of presenting the syntax and 
a homomorphic style of presenting the semantics. We claim that deploying 
the morphism idea helps structure our understanding of induction with its 
demand for three clauses: the basis, the inductive, and the (often implicitly 
understood) extremal clauses. In particular the inductive clause makes it eas­
ier for the specifier to decide on what — and how much — to develop, to define 
and present. Morphisms "tell" us how to develop the semantics: first the se­
mantics corresponding to the basis clauses, then to the inductively defined 
syntax. 
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The choice of a three-valued logic is necessitated by our dealing, not with 
executable programs, but with specifications: from those of abstract models of 
the application domain, as it is, via requirements, to abstract software designs. 
That choice, however, complicates the semantics and hence the proof rules. 
So far we have only presented inference rules for a two-valued logic. 

Finally, taking up a line that was begun in the chapter on algebras, in 
Sect. 9.6 we presented a thorough coverage of the predicate calculus with its 
quantified expressions — the practical idea of an axiom system. We applied 
this idea immediately, without going into logic theories of for example unde-
cidability issues of axiom systems, consistency or completeness. We did so in 
order to present actual examples of abstract specifications. With a reasonable, 
albeit specification-oriented, view of logic, we can now proceed to apply the 
concepts of logic discussed in this chapter. 

9.8 Bibliographical Notes 

Classical textbooks on mathematical logic are: 

• Willard van Orman Quine: Mathematical Logic (1951) [509] 
• Alonzo Church: Introduction to Mathematical Logic (1956) [153] 
• Elliott Mendelsohn: Introduction to Mathematical Logic (1964) [372] 
• Patrick Suppes: A First Course in Mathematical Logic (1964) [492] 
• Stephen Kleene: Mathematical Logic (1967) [324] 
• Joseph R. Schoenfield: Mathematical Logic (1967) [457] 
• Herbert B. Enderton: A Mathematical Introduction to Logic (1972) [210] 

There are many others, including: [136,235,259,294,402]. The reader should, 
however, be duly warned. 

On one hand is the mathematical subject of mathematical logic. On the 
other hand is the computing science subject of the same name, but their foci 
are different. To logicians mathematical logic is a study of which kinds of 
logics there are, their expressive power, which issues are decidable, i.e., what 
can be proved. To the software engineer mathematical logic is a tool to be 
used for the expression of abstractions and for the oftentimes long-winded and 
cumbersome proofs of stated, desirable properties. In Sect. 9.2 we discussed 
several of the interface issues between these two viewpoints, and we did so on 
the basis of John Rushby's delightful report [451]. 

9.9 Exercises 

Exercise 9.1. X Predicates over the Transportation Net Domain. We refer 
to Appendix A, Sect. A.l, Transportation Net. 

We also refer to Example 9.12 in which we suggested some types, some 
observer functions, and an axiom covering two constraints. 
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But those constraints were not enough to satisfy suitably well-formed 
transportation nets. 

(i) If from any segment one can observe some connections, then from each 
of these connections one should be able to observe (at least) that segment. 
And: (ii) If from any connection one can observe some segments, then from 
each of these segments one should be able to observe (at least) that connection. 

1. Formulate suitable axioms (i.e., a predicate expressions) expressing these 
two constraints. 

2. Can you think of other constraints? 
3. We wish to insert in a given transportation net a new segment, and assume 

that it is to be connected to existing connections. State the signature of 
a suitable insert_segment function, and state the pre- and post-conditions 
for this function. 

4. We wish to insert in a given transportation net a new connection, and 
assume that it is to be inserted in an existing segment. State the sig­
nature of a suitable insert-connection function, and state the pre- and 
post-conditions for this function. 

Exercise 9.2. X 4 Predicate over the Container Logistics Domain. We refer 
to Appendix A, Sect. A.2, Container Logistics. 

We also refer to Example 9.13 in which we suggested some types, some 
observer functions, and an axiom covering one constraint. 

Assume that associated with every bay of a ship or a container storage 
area there is associated a maximum height for any of the stacks of any of 
its rows of such. Thus assume that the maximum height is an attribute that 
can be observed from any bay, and that the current height of a stack can be 
observed from any stack. 

Express a predicate which applies to any bay: Bay and yields truth if none 
of its stacks are higher than the stated maximum height. 

Exercise 9.3. X A Predicate over the Financial Service Industry Domain. 
We refer to Appendix A, Sect. A.3, Financial Service Industry. 

We also refer to Example 9.14 in which we suggested some types, some 
observer functions, and an axiom covering three constraints (vii, viii, and ix). 

For a transaction concerning a named securities instrument to take place 
at a securities (e.g., a stock) exchange, at a given time, £, its name, i, must be 
given and there must be buy and sell orders, buy-orders^, selLorders^ for that 
securities instrument such that their time interval of consideration embraces 
the given time, t, such that the sum totals of quantities of buy-orders^, i.e., <#,., 
and of selLorderSi, i.e., qSi, equal, and such that their ("lo-hi") price interval 
of consideration all embraces some transaction price, pi. 

Express the above constraints as a pre-condition for a transact function 
whose arguments include the name, i, of the securities instrument, the current 
time, t, and the securities exchange, sec.exchg. 
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Thus assume suitable observer functions such as: (i) observe buy [sell] 
orders for a given, i.e., a named, securities instrument, (ii) observe from a 
buy or a sell order its requested buy, respectively sell quantity, its transaction 
period (time interval), and its "lo-hi" (buy, respectibely sell) price interval. 





Part III 

SIMPLE RSL 

General 

We have covered very basic, and very simple aspects of discrete mathematics 
and functions. We are now ready to "embed" such notions in the main tool 
of these volumes: The RAISE Specification Language, RSL. 

Our first systematic presentation of RSL will basically follow the "pattern" 
set in Part II, except that we will now cover functions, as they can be defined 
in RSL early in the present part, and then again, later! 

For other introductions to the RSL and the RAISE Method we refer to 
[236,238]. 

RSL Versus VDM-SL, Z and B 

There are other specification languages. We shall settle for RSL. We could have 
chosen, instead, VDM-SL, the current author being one of the instigators and 
first researchers into and developers of VDM-SL [120,121,226] (as he is also an 
instigator &c. of RAISE hence RSL). 

Or we could have chosen Z [476,477,533], or B [3,4]. We chose RSL for a 
number of reasons: 

• of the specification languages just mentioned, RSL is closest in some sense, 
to discrete mathematics; 

• like VDM-SL, RSL also expresses the imperative specification style, i.e., with 
assignable variables and statements; 

• RSL, in addition, can handle the expression of concurrency (see Chap. 21) 
— none of VDM-SL, Z, B can do that; 
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• RSL, like algebraic specification languages (CASL [399] and Caf eOBJ [191]), 
allows for introduction of sorts, postulation of observer function, and then 
having axioms determine the "shape" of the sorts and the signature defined 
functions; finally 

• RSL, like Z, B, CafeOBJ and CASL, can structure its specifications in a 
modular fashion (see Vol. 2, Chap. 10). 

It is the "extension" of VDM-SL with sorts and axioms and with CSP-like 
process concepts, which to this author makes RSL preferable to VDM-SL. If 
you have learned and use VDM-SL before you can rather easily "move" on to 

| RSL. | 

B, with its follow-on event-B, has yet to settle, so it would be premature to 
base a text book whose primary aim is not to teach a specific language (but 
to teach abstraction) on B/event-B.1 9 

The modular structuring facilities of Z seems very elegant. The emerging 
such facilities of event-B likewise. Both Z and B seem to emphasize formal 
proofs as mandatory in every step of development — where VDM-SL and RSL 
emphasises specification. All in all it seems to this author that RSL is a best 
choice: Most versatile. 

But we should claim that it is more important to express (model-oriented) 
abstraction, than to pick (on) a specific language. So we suggest lecturers to 
use these volumes, but work out themselves supplementary notes in either of 
the model-oriented specification languages VDM-SL, Z or B. 

What, Syntactically, Constitutes a Specification? 

We shall, in the present volume, take a specification to consist of: 

• one or more type definitions, 
• one or more function value definitions, 
• zero, one or more axioms, 
• zero, one or more variable declarations, and 
• zero, one or more channel declarations. 

For now we shall be content with the first three kinds of specifications. 
Chapter 20 will introduce variables, and Chap. 21 will introduce chan­

nels. 
Volume 2, Sect. 10.2 will slightly change the above view of the syntax of 

a specification, to allow for schemes and classes to contain the type, value 
and axiom parts, while extending RSL with objects. 

19The current author finds that the principles of event-B represents a fascinating 
specification paradigm. 
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Towards an RSL "Standard" 

RSL20 is currently maintained, as a language, by Chris George2 1 . The main 
reference to RSL is [236]: 

T h e R A I S E Spec i f i c a t i on L a n g u a g e . 
Chris George, Peter Haff, Klaus Havelund, Anne Haxthausen, Robert 
Milne, Claus Bendix Nielsen, S0ren Prehn, and Kim Ritter Wagner. 
The BCS Practi t ioner Series. Prentice-Hall, Hemel Hampstead, , 1992. 

Tha t book appears to be out of print. You may be able to buy publisher 
authorised reprints of the book from: 

h t t p : / / s p d - w e b . t e r m a . c o m / P r o j e c t s / R A I S E / f a q . h t m l # c o n t a c t _ i n f o 
att . : Mr. Jan Storbank Pedersen 

It is hoped tha t a slight revision of the text may be available over the Internet. 
The other main reference to RAISE [238]: 

T h e R A I S E M e t h o d . 
Chris George, Anne Haxthausen, Steven Hughes, Robert Milne, S0ren 
Prehn, and Jan Storbank Pedersen. 
The BCS Practi t ioner Series. Prentice-Hall, Hemel Hampstead, UK, 1995. 

is now available over the Internet: 

f t p : / / f t p . i i s t . u n u . e d u / p u b / R A I S E / m e t h o d _ b o o k / 

The RSL of the present three-volume series is a "slight extension" of proper 
RSL. For the variant of RSL which is supported by free tools, see next, is 
described on the following Internet web page: 

w w w . i i s t . u n u . e d u / n e w r h / I I I / 3 / l / d o c s / r s l t c / R S L . c h a n g e s / 

RSL T o o l s 

Information about down loadable RAISE Tools can be obtained from UNU-
IIST: 

h t t p : / / w w w . i i s t . u n u . e d U / n e w r h / I I I / 3 / l / p a g e . h t m l 

The information in this and the next section is dated. It is correct as of "year 
end/year begin" 2004/2005. 

21UNU-IIST, United Nations University, International Institute for Software 
Technology, P.O. Box 3058, Macau SAR, China. E-mail: cwg@iist.unu.edu, URL: 
www.iist.unu.edu 
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This includes information about free, open-source software for various plat­
forms (Linux, Solaris, DOS, Windows). Includes type checking, pretty-printing, 
translation to SML and C++. 

Information about original RAISE Tools can be obtained from Terma, the 
company that markets these tools: 

h t t p : //spd-web .terma. com/Proj ects/RAISE/f aq.html#tool_support 

Likewise information about tool manuals: 

f t p : / / f t p . i i s t . unu. edu/pub/RAISE/tool_manuals/ 
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Atomic Types and Values in RSL 

• The prerequisites for studying this chapter are that you possess famil­
iarity with ordinary programming language type and value concepts and 
specific awareness of the mathematical concept of numbers as covered in 
earlier chapters. 

• The aims are to introduce the concept of atomic types and values, in 
particular to introduce the RSL concepts of enumerated types (and their 
values), and to emphasise the two-faced notion of specific space of RSL 
specification versus arbitrary spaces of modelled identifiers. 

• The objective is to teach the reader to choose appropriate atomic types 
and values as models of simple phenomena and concepts. 

• The treatment is systematic and semiformal. 

\Not every phenomenon can be analysed down to a stone, i.e., an atomic 
thing. But many things can — and for those we present some modelling 
principles, techniques and tools. 

Characterisation. By an atomic value we mean an entity in whose possible 
subparts we have no interest. It may have some proper subparts, or it may 
have none, but all we are interested in is the value itself. • 

Characterisation. By an atomic type we mean a type all of whose values 
are atomic. • 

10.1 Introduction 

We shall discuss why this chapter brings the material that it does, and why 
at this place! 
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10.1.1 Mathematical Versus Enterprise Modelling 

Numbers play an important role in everyday life: In budgeting and account­
ing — i.e., in ordinary reckoning — and in mathematics. Models of physical 
phenomena are classically expressed in terms of, for example, polynomial, dif­
ferential and integral equations. The variables of expressions in these equations 
usually denote numbers. We will not be dealing with traditional, often called 
applied, mathematics as practiced by all engineers, by operations researchers, 
by econometricians, etc. Instead we will be teaching principles, techniques 
and tools. "Our" mathematical specifications will not supplant those of the 
above-mentioned professionals. We — and you, based on what you learn here 
— will be applying "our kind" of mathematical specifications to such actual-
life phenomena for which classical mathematics have shown to be inadequate 
or awkward. 

Although this chapter is about numbers, we shall, in consequence, not be 
basing "our kind" of specifications on numbers, but more on "richer" math­
ematical structures — also not suitably modelled by polynomials, differen­
tials, integrals or other classical mathematical forms of expressions. We shall 
present principles, techniques and tools for the modelling and for providing 
software for general enterprises, not conventionally "modellable" by ordinary 
mathematics. 

10.1.2 The "Primitive" Model Building Blocks 

In this chapter we shall look at the very basic, you may wish to call them 
the "primitive", we call them the atomic elements, by means of which our 
models are built, or upon which they rest. They include numbers: natural 
numbers, integers and reals — and we discuss why only and exactly those. 
The elements also include characters and text strings, and what we could refer 
to as identifiers, or tokens. 

Our main use of numbers in modelling, is in modelling quantities. Just as 
physicists use numbers to quantify weight, speed, etc., so we use numbers to 
quantify similar and other actual-world phenomena. Our main use of charac­
ters, text strings and identifiers is in modelling simple, concrete input/output 
messages, or respectively in modelling identification of phenomena in the uni­
verse of discourse. 

10.2 The RSL Numbers 

We have already covered, in Chap. 2, the mathematical concepts of numbers. 
Suffice it here to summarise. There are many kinds of numbers, to wit: natural 
numbers (Nat: 0,1,2, . . . ) ; integers (Int: . . . , —2,-1,0,1,2, . . . ) rationals: 
consisting of both integers (viz.: i, j) and fractions, 4, for all integers i, j 
where j ^ 0; irrational numbers; real numbers (Real), imaginary and complex 
numbers; and transcendental numbers. 
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10.2.1 Three Types of Numbers 

Without taking into consideration the operations applicable to numbers 
(Sect. 10.2.2), in RSL we consider just the following three subtypes of all the 
numbers: the natural numbers, the integers and the reals. The three categories 
are related as follows: 

Nat C Int C Real 

Natural Numbers: Nat 

The natural numbers are just the whole numbers larger than or equal to zero: 
0 ,1 ,2 , . . . . 

Integers: Int 

The natural numbers are just the whole numbers, positive or negative: 
. . . , - 2 , - 2 , 0 , 1 , 2 , . . . . 

Real Numbers: Real 

The real numbers of RSL are those whose numerals (i.e., names) can be written, 
with or without a minus sign, as a finite sequence of digits before a decimal 
point, ".", followed by a finite sequence of digits after the decimal point: 
-987654321.0123456789! 

10.2.2 Operations on RSL Numbers 

RSL defines the following operations on real numbers: 

value 
+, - , / ,*: Real x Real >̂ Real 
< ,< ,= ,A> ,>: Real x Real -^ Bool 
- : Real -^ Real 
abs: Real -^ {| r:Real • r>0 |} 
int: Real —> Int 
real: Int —> Real 

axiom 
V n:Nat • abs —n = n = abs n 

As for all other types, equivalence (=) and non-equivalence (^) are also de­
fined on numbers. The int and real functions convert a real to the integer 
nearest 0, or respectively an integer to a real: 

int 2.71 = 2, int -2.71 = - 2 , real 5 = 5.0, ... 
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10.3 Enumerated Tokens 

When we wish to speak of typically a finite number of identifiable atomic en­
tities without further describing them, then we turn to the use of enumerated 
tokens. 

10.3.1 Motivation 

We believe that Example 2.3 clearly shows the need for a less encoded mod­
elling of finite, usually "small sets" of atomic values where we do not really 
care what these values are, other than being able to name them individually 
and distinctly. For this we introduce, as was already done for programming 
languages, in, for example, Pascal (by Niklaus Wirth [314,522]), the notion 
of enumerated tokens. 

Example 10.1 Enumerated Tokens, Playing Cards: The 52 card set, that is, 
without the Joker can usually be modelled as: 

type 
Suit = = club | diamond | heart | spade 
Face = = ace | two | three | ... | ten | knight | dame | king 
Card = Suit x Face 

The suits are usually shown as: X- <), *s? and 4*. • 

10.3.2 General Theory 

By an enumerated token we understand an atomic value defined in a particular 
way. Let t and tf be enumerated tokens. Either t = t' (and t = t') or t ^ t' (and 
^ ) . The equality (equivalence) and the inequality (nonequivalence) operations 
are the only ones defined on enumerated tokens.1 

A schematic example is in order: 

type 
Token = = tokeni | token2 | ... | tokenn 

is a variant definition which defines n atomic values: tokeni, toker^, ..., tokenn. 
Thus the definition symbol: = = signals what we shall call a variant con­

structor. The type constructor | thus effectively designates a disjoint type 
union. 

The above variant definition is a shorthand for the following "longhand": 

xIn fact these four operations: =, =, / and ^, are defined on all values. 
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type 
Token 

value 
tokeni: Token, 
token2: Token, 

tokenn: Token 
axiom 

[ disjointness of enumerated tokens ] 
tokeni ^ token2 A ... A tokeni ^ tokenn A 
token2 ^ token3 A ... A token2 ^ tokenn A 

tokenn_i 7̂  tokenn 

Enumerated tokens, i.e., variant definitions, like the above, thus come with or 
"generate", an additional axiom: the induction axiom. 

The role of the induction axiom is to express that the variant definition 
designates a model in which there are only and exactly the three enumerated 
values. 

To express this metalinguistically, that is, not as a part of the variant 
definition, but as one implied, we say: For all predicates p, if p holds for all 
the enumerated values listed, then p holds for all Tokens: 

axiom 
[ enumerated token induction ] 

V p:Token-^Bool • 
p(tokeni) A p(token2) A ... A p(tokenn) => V token:Token • p(token) 

Thus, by taking (one) p as: 

value 
p: Token -» Bool 
p = A t:Token • t=tokeni V t=token2 V ... V t=tokenn 

we see that a Token is either tokeni, or token2, or ..., or tokenn; that is, only 
one of those. 

10.3.3 Operations on Tokens 

Only four operations apply to tokens: equality (=) and inequality (^), equiv­
alence (=) and non-equivalence (^): 

type 
Token = = a | b | ... | c 

value 
=: Token x Token -» Bool 
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^ : Token x Token - • Bool 
=: Token x Token -» Bool 
^ : Token x Token - • Bool 

10.3.4 Enumerated Tokens in Abstract Models 

There is a principle of (possible) application to adhere to, there is a technique 
with which to proceed when having chosen abstraction using enumerated to­
kens, and there is, in RSL, a tool to apply when carrying out the specification, 
that is, when considering, respectively choosing to introduce enumerated to­
kens into an abstract model (i.e., an abstract specification). They (the prin­
ciple, the technique and the tool) are: 

Principles. Enumerated Tokens: If a concrete, physically manifest phe­
nomenon or an abstract concept can be characterised by an attribute that 
can take on (usually only a few) values, where these can all be considered 
atomic, and among which only the equality and equivalence operations apply, 
then choose to model these as enumerated tokens. • 

Techniques. Enumerated Tokens: Identify the one or more attributes of a 
phenomenon (concept); assign distinct names to their value types; determine 
the range of values for each enumerated type; ascribe suitably expressive iden­
tifiers as names for these values and otherwise apply the tool for modelling 
enumerated tokens. • 

Tools. Enumerated Tokens: The RSL language tool for expressing enumer­
ated tokens is the variant definition: 

type 
ET = = et_l | et_2 | ... | en_n 

The RSL tool, besides expressing equality, for handling enumerated tokens is 
the case construct: 

type 
A, B 

value 
obs_ET: A - • ET 
fct, fct_l, fct_2, ..., fct_n: A - • B 
fct(a) = 

case obs_ET(a) of 
et_l -> fct_l(a), et_2 - • fct_2(a), ... , et_n ->- fct_n(a) 

end 
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where fct tests the enumerated token value, say et_i, of an argument a:A, for a 
given attribute (ET), and invokes an appropriate auxiliary function, say fct_i, 
to (further) process the argument. 

The type A and B, the observer function obs_ET and the auxiliary functions 
fct J are assumed.. • 

10.3.5 Modell ing Using Enumera t ed Tokens 

Enumera t ed Tokens and Fini te Sta te Devices 

By a finite state device we understand either a finite state automaton, or a 
finite state machine. In Vol. 2, Chap. 11 we shall introduce the concepts of 
finite state automata and finite state machines. Each state of such devices 
is typically labeled, and labels are drawn from a finite alphabet of symbols. 
These are modelled using the concept of enumerated tokens as introduced in 
this section. 

Example 10.2 Finite State Automata State Labels: We present some infor­
mal examples: 

(1) In an operating system scheduled jobs are either running, queued, wait­
ing for input, idle or other. With each job one can therefore associate its state 
— as labeled by these enumerated tokens. 

type 
Job-Status = = running | queued | waitingjbr input | idle | other 

(2) An automobile may be in either of the following states: parked, standing 
still with motor running, driving forwards, driving backwards, or other. 

type 
Car .Status = = parked | idling | forward | backward | other 

(3) An aircraft may be in either of the following states: waiting for mainte­
nance, being maintained, taxiing to departure gate, being serviced (being fueled, 
loading baggage, boarding passengers, etc.), cleared for take-off, taking off, 
flying, landing, etc. 

type 
Aircraft-Status = = wait_maint | under_maint | taxLdept | 

| under_service | cleared | take.off | flying | landing 
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Enumerated Tokens and Linux Commands 

Example 10.3 Linux Command Names: When specifying the software de­
sign for implementing, or the requirements for prescribing the meaning of 
Linux commands, we need to name them. Some are: cp, emacs, latex, Is, mkdir, 
mv, rm, rmdir, etc. 

type 
Linux_Cmd_Nms = = cp | emacs | latex | Is | mkdir | mv | rm | rmdir | ... 

10.4 Characters and Texts 

Characters and sequences of characters, i.e., texts, form a very concrete type, 
one we shall not be using much in domain descriptions or requirements pre­
scriptions. 

10.4.1 Motivation 

For the ordinary use of computers, input data must be read, stored data 
need be manipulated, and output data must be generated. The input data 
originally, and the output data finally, are in the form of visualisable marks: 
alphabetic characters, numeric digits and special symbols (operator symbols, 
delimiters, etc.). All this is prescribed by computer programs. 

The purpose of abstract specification is not to define executable programs 
but, with respect to software design, to specify classes of these. And with 
respect to domain descriptions and requirements prescriptions, we need not 
prescribe concrete input and output, but can abstract these. 

Therefore, at high levels of abstractions, we need not make use of RSL's 
built-in Character and Text data type. But, at close-to-execution level 
RSL software design specifications, it is useful to have a counterpart to the 
charac ter and charac ter s t r i n g types of ordinary programming languages. 

10.4.2 The Character and Text Data Types 

The RSL Char and Text data types are related to one another, and the 
Text data type is related to the RSL list data type. Meta-linguistically, i.e., 
"outside" RSL, we can explain the two RSL types: 

literals /* This is meta RSL */ 
a , ..., A , ... 

type 
Char ~ {| 'a', V , 'c', ..., V , 'A', 'B', ..., 'z' |} 
Text ~ Char* 
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value 
cl,c2,...,cn:Char 

value expressions 
cl=c2 V cl^c2 V ... V c='a' V c = V V ... 

This is concrete RSL: 

value expression explanations or equivalences: 

"abra" ~ {'a'/h'/p'/a') 
hd "abra" = 'a' 
tl tl tl "cadabra" = "abra" 
len "abracadabra" = 11 

"" * 0 
"abra"^"cadabra" = "abracadabra" 
card inds "abracadabra" = card {1,2,3,4,5,6,7,8,9,10,11} = 11 
card elems "abracadabra" = card{ ,a / /b / /c / /d / / r /} = 5 

We refer to our first presentation of the RSL list data type of Example 9.24. 
Since texts are sequences of characters, texts really are not atomic, but the 
elements are. 

Above we introduced, without prior explanation, the RSL sub-typing con­
struct. If A1 is a type (i.e., a type name), then A is the subtype (i.e., the name 
of the subtype) of A1 whose values all satisfy the postulated predicate P(a): 

type 
A' 
A = {| a:A' . P(a) |} 

value 
P: A' -> Bool 

Thus {| and |} are special forms of set type constructors. 

10.5 Identifiers and General Tokens 

Identifiers are specially identified "atomic" language quantities, i.e., they "are" 
syntax. Tokens are identifiable atomic designations, i.e., they "are" atomic 
semantic quantities. 

10.5.1 Identifiers 

There are two kinds of identifiers: identifiers used in, for example, RSL specifi­
cations (and in programs: variable, label, type and procedure names, etc.), and 
identifiers that we need again and again in order to model certain phenomena 
and certain concepts. This section is about identifiers. 
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RSL Identifiers 

In our specifications we need to identify phenomena: types, values, incl. func­
tions, etc., by naming them. Identifiers in, for example, RSL, serve this role. 
RSL identifiers are any string of alphanumeric characters possibly with prop­
erly in-fixed underscores and/or suffixed primes:2 

a, aa, ala, aJa, ala, abra_ca_dabra, a_l, a , a 

Universe of Discourse Identifiers 

Universe of discourse identifiers arise when we model a domain — or some 
requirements, or some software — in which there is a collection of further 
unspecified names or identifiers. 

Example 10.4 Universe of Discourse Identifiers: Some examples of universe 
of discourse identifiers include names of (i) persons, of (ii) cities, of (iii) prod­
uct parts (i.e., part numbers), of (iv) patient medical journals, etc., as in 
some actual, real-life domain. They can also include names of (v) database 
relations, (vi) relation attributes (i.e., column names) or computing resource 
names: (vii) pointers to records, (viii) disk segments, or other, as for some 
requirements prescription, or for some software design. • 

As far as we are concerned these universe of discourse identifiers need not be 
given a concrete representation, but can be modelled by any sort about whose 
elements we may assume that they are "further unanalysed". In Sect. 10.5.3 
we shall show how to model such universe of discourse identifiers. 

10.5.2 Operations on General Tokens 

Only four operations apply to general tokens: equality (=) and inequality (^), 
equivalence (=) and nonequivalence (^): 

type 
Token 

value 
=: Token x Token - • Bool 
^ : Token x Token - • Bool 
=: Token x Token -» Bool 
^ : Token x Token - • Bool 

2For readers with knowledge of the Z specification language, primes are a kind 
of temporal state operator, hence are not part of identifier names. 
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10.5.3 General Tokens 

By a general token — as distinguished from enumerated tokens (cf. Sect. 10.3) 
— we understand a further unanalysed atomic quantity. Typically we can 
think of a sort name standing for an indefinite set of unique general tokens. 

Principles. Unique Universe of Discourse Identifiers: When an entity, i.e., a 
set of phenomena, manifests itself, or a concept can best be understood, as a 
potentially indefinite set of unique atomic and further unanalysed quantities 
among which there is basically just the equality (and hence also the inequality) 
operation, and for which no particular representation (i.e., concrete name) is 
needed, then choose the model concept of general tokens for the abstract 
specification of these phenomena, respectively this concept. • 

Techniques. Unique Universe of Discourse Identifiers: Once one or more sets 
of phenomena or concepts has been chosen for modelling by means of general 
tokens, then choose appropriate, distinct names as sort names for each of the 
set of phenomena, respectively for each concept. By not stating any axioms 
about these sorts values of distinct such sorts, values of different general token 
sorts are distinct. • 

Tools. Unique Universe of Discourse Identifiers: To model universe of dis­
course identifiers we use the concept of general tokens. To model the dynamic 
issuance of (each time) distinct identifiers we may model as follows: We de­
clare a global variable ids, and an operation get_ld of no arguments. Invocation 
of getJd, i.e., get_ld(), amounts to the generation of an identifier that has so 
far not been issued. 

class = 
type 

[1] Id 
variable 

[2] ids:Id-set := {} 
value 

[3] getJd: Unit —> read ids write ids Id 
[4] get_Id() = 
[5] let id:Id • id ^ ids in 
[6] ids := ids U {id}; 
[7] id end 

end 

The keyword variable and line [2] above declare an assignable variable of 
type sets of identifiers and initialise this variable to the empty set of such. 
The literal Unit before the —> "announces" that the function getJd takes no 
argument.3 The keyword write announces that the function getJd potentially 

3Unit is a type name; () is the only value of type Unit. 
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reads from and is intended to or definitely writes to a variable. The assign­
ment statement prescribes the addition of an, in this case newly generated, 
identifier. 

Elsewhere in the specification — where the above general token definition, 
with its generator operation, getJd, is found — one may now invoke the 
operation: 

... let id = getJdQ in ... id ... end ... 

where the unique identifier id may be used several times: ... id ... . • 

10.6 Discussion 

It is time to review. 

10.6.1 General 

In this chapter we have introduced the atomic values and types of numbers: 
natural (Nat), integers (Int) and reals (Real); of enumerated and general 
tokens; and of characters and texts. 

10.6.2 Modelling Atomic Entities 

It remains to convey an important issue that we find it is better to mention 
here, in a summary, where we hope that issue will not be overlooked: When we 
have to model natural numbers, integers or reals in some universe of discourse, 
then we model them not by their representation, i.e., numerals, but directly 
by their semantic values: Nat, Int and Real, respectively. This parallels our 
similar modelling of Booleans, Bool, not by some representation, but by their 
semantic values. 

We emphasize that there is a distinction to be made between using num­
bers and Booleans, for technical reasons in some specification, and using them 
to abstract phenomena and concepts of some universe of discourse. In the lat­
ter case, instead of describing (or prescribing) representations for each of the 
aforementioned atomic types, the specifier just uses their semantic value types. 

Across many application domains there are many distinct, and even widely 
different kinds (read: types) of atomic entities. How are we to handle them? 
The answer was given above. 

Principles. Atomic Entities: Atomic entities are usually handled as "fur­
ther un-described" quantities, with no other properties associated with them 
than distinct actual world entities being modelled as distinct model values. 
The atomic entity modelling principle finally says: Do not describe specific 
syntactic representations for atomic entities. • 
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The above was a principle. How does it relate to our formal modelling? That is, 
how are we to handle the description and formal modelling of atomic entities? 

Techniques. Atomic Entities: We make the distinction between types and 
values: Classes of atomic entities are usually modelled by further unspecified 
sorts. But when the atomic entities do possess such properties as are suffi­
ciently possessed by numbers or characters or by character strings, then we 
model them so. • 

10.7 Exercises 

Problem 10.1 below is reminiscent of material in J.H. Conway's book On 
Numbers and Games [159].4 

Exercise 10.1. Natural Numbers as Sets. Let the natural number 0 be repre­
sented by the empty set, {}; the natural number 1 by the singleton set whose 
only member is the empty set, {{}}; and so forth: the natural number n, where 
n is larger than 0 is thus represented by a singleton set whose only member 
represents the natural number n — 1. 

1. Now define an appropriate type, N, for natural number sets as outlined 
above and two functions, Nat2N and N2Nat. Nat2N takes a natural number 
and yields its set representation (in N), and N2Nat takes the set represen­
tation of a natural number and yields that natural number. 

2. Then define simple arithmetic operators of addition and multiplication over 
N — resorting and without resorting to the use of general addition and 
multiplication, that is, to addition by other than Is. 

Exercise 10.2. X Atomic Types in the Transportation Net Domain. We refer 
to Appendix A, Sect. A.l, Transportation Net. 

1. Segment and Connection Names: Segments and connections have unique 
names — but we do not bother as to how they may be represented. Suggest 
type, that is, names for these names and explain in one or two words of 
which of the four kinds of atomic types you suggest they should be. 

2. Segment and Net Types: A transportation net has segments being of ei­
ther of a definite number of kinds. (You may think of these kinds as 
representing: public road, toll road, free way, rail line, air corridor or shipping 
lane.) 

(a) Concrete Net Types: Either you decide to model exactly a specific 
variety, such as just suggested above. Then suggest a suitable atomic 
type definition for that case. 

4Seealso [44,45]. 
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(b) Abstract Net Types: Or you decide to model any such variety, say 
several levels of public roads, or of air corridors, etc. Then suggest a 
suitable atomic type for that case. 

(c) Nets of One Type: Now define a predicate that determines whether 
a transportation net has all of its segments of the same kind — for 
either of your two models of the previous two items. 

3. Connection Types: Given that one can observe from a segment its net 
type, it is reasonable to assume that a connection takes on, as its net 
type, the sum total, that is, the set of net types of its connected segments. 
(a) State the signature of an observer function that determines the net 

type of any connection. 
(b) Express an axiom that must be satisfied by any net, namely that the 

net type of any connection is commensurate with the net types of its 
connected segments. 

Exercise 10.3. A Atomic Types in the Container Logistics Domain. 
We refer to Appendix A, Sect. A.2, Container Logistics. 

Assume that container ships and container terminals can handle a diver­
sity of containers: 20' (twenty feet), 40' (forty feet), and refrigerated such 
containers. Thus bays on ship and on shore are designated to contain only 
one specific of these kinds of containers. Suggest a way of modelling this: 

1. atomic types (of an appropriate kind), 
2. observer functions applicable to containers and to bays and yielding their 

container type, and 
3. a predicate that applies to bays and checks that all stacked containers are 

of the appropriate kind. 

Exercise 10.4. X Atomic Types in the Financial Service Industry Domain. 
We refer to Appendix A, Sect. A.3, Financial Service Industry. 

Introduce a notion of credit cards of either one of the following kinds: 
AEX (American Express), DC (Diners Club), MC (Master Card), or VISA. 
From credit cards one can observe customer name, a credit card number, and, 
hidden from view, the number of a credit card account — which is also then 
a demand/deposit account of the designated customer. 

Bank accounts can be of a number of kinds: mortgage (i.e., loan) accounts 
and demand/deposit accounts. In the latter case, the account is then associ­
ated with a set of zero, one or more credit card types and numbers. 

Two or more credit cards can be associated with the same, hence shared 
demand/deposit bank account. 

1. What kind of entities are credit cards: atomic or composite? 
2. What attributes can be associated with a credit card? 
3. Formalise the type of credit cards as a sort, 
4. and define suitable observer functions. 
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5. Augment possibly previously defined types and observer functions related 
to bank accounts to take into consideration the above rough sketch nar­
rative description. In particular extend the bank type to also include all 
the credit cards honoured by that bank. 

6. Express first in words, i.e., in English, then formally in terms of axioms 
over bank types the constraints that must hold between the bank accounts 
of banks and associated credit cards. 
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Funct ion Definitions in RSL 

• The prerequisite for studying this chapter is that you possess know­
ledge about the mathematical concepts of numbers, sets, Cartesians and 
functions as covered in earlier chapters. 

• The aim is to introduce, in preparation for the following chapters, ways 
and means of defining functions. 

• The objective is to start the reader on the road to becoming fluent in 
defining functions as abstractly as is needed, when needed. 

• The treatment is systematic and semiformal. 

To express any observation of phenomena and concepts, any operation on 
or over phenomena and concepts (that may yield "new" such) — in other 
words, in order to express change — we must apply functions. Hence we 

| must define these functions. | 

There are a number of ways of defining functions. They are more or less 
variants of one another. They span a stylistic spectrum from property-oriented 
to model-oriented. This chapter will elucidate five ways of defining functions. 
But first we recap the function type. 

11.1 The Function Type 

Three issues are always relevant when presenting a data type: the means of 
expressing it (the syntax), the meaning of what is expressed (the semantics), 
and why we wrote down these expressions in the first place (the pragmatics). 
We shall cover the first two issues. 

11.1.1 Syntax of Function Types 

Let A, B stand for any types. Let F name the type of all total functions from A 
into B and let G name the type of all partial functions from subsets of A into 
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B. The latter type of functions includes the former type of functions. That is: 
the space of total functions is included in the space of partial functions. 

type A, B 
F = A ->B 
G = A H > B 

value 
f: F, g: G 

"axiom" — i.e., an RSL metalinguistic statement: 
F C G , i.e., (A -> B) C (A ^ B) 

We say that the two clauses, f:F and g:G, represent the signatures (the name 
and type) of the function spaces. 

11.1.2 Informal Semantics of —> and —> 

—y and ^> are infix type operators. Applied to respective types (here the sorts 
A and B) they "construct" the (type) sets of total functions, respectively 
partial functions, from A into B. 

We now cover, briefly, five ways of — five sets of RSL language constructs 
for — defining functions. 

11.2 Model-Oriented Explicit Definitions 

In model-oriented style of function definition we typically define one function 
at a time, in a model-oriented manner, and in terms of A-functions. 

Let £(a) can be any expression of the specification language being used. 
£ (a) is intended to yield a value of type B. 

A model-oriented function definition is, schematically: 

type 
A, B f: A -> B 

value f = Aa:A.£(a), or: 
f: A H> B f(a) = £(a) 
f = Aa:A.£(a) pre V(a) 

The first variant, with / being partial, requires the pre-condition Via). 

Example 11.1 Model-Oriented Explicit Function Definition: We define a 
modulo function: 
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value 
mod: Nat x Nat >̂ Nat 
mod = 

A(m,n):(Nat> Nat) 
if n=0 then chaos else 
if 0<m—n<n then m—n else mod(m—n,n) 
end end 

The explicit function definition: 

type 
A, B 

value 
f: A - • B, f = A a.£(a), etc. 

is an instance of the following axiomatic definition: 

type 
A, B 

value 
f: A - • B, 

axiom 
V a:A • f(a)=£(a) 

11.3 Model-Oriented Axiomatic Definitions 

In this style of function definition we typically define one function at a time, 
in a model-oriented manner, but by a triple of type/ value /axiom clauses: 

type 
A, B, ... 

value 
i A 4 B 
ca:A, cb:B, ..., ca':A, cb':B 

axiom 
•R.(ca,cb), ..., 7?.(ca',cb') 
V a:A, b:B • 

Pi (a) =* Qi(a,b) 
A P2(a) =>• Q2(a,b) 
A ... 

A Vn{a) => Q„(a,b) 
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ca, cb, . . . , ca', cb' are usually constant values. Usually their definition (i.e., 
value identification cum instantiation) is omitted. 7£(ca,cb), ..., 7£(ca',cb') are 
propositions over constants. The predicate expressions 7^(a) and Qi(a,b) are 
usually algorithmically expressed, at least to the extent that they do refer to 
f and some nontrivial operators (and possibly auxiliary functions over A, B, 
etc.). If f is total then one or more of the 7^(a)=>'s are omitted. 

Example 11.2 Two Model-Oriented Axiomatic Definitions: 

• The modulo function: 

value 
mod: Nat x Nat -^ Nat 

axiom 
V m:Nat • mod(m,l) = 0 
V m,n:Nat • n / 0 =>> 

3 q,r:Nat • q*n+r=m A 0<r<n—1 A mod(m,n)=r 

• The square root function: 

value 
sqr: Real >̂ Real 

axiom 
V v:Real • v > 0.0 => 3 r:Real • sqr(v) = r A v*v = r 

The next kind of function definition style differs only by emphasising more 
property-orientedness than the model-orientedness of the present style. The 
difference is a matter for discussion and choice. 

11.4 Model-Oriented pre/post-Condition Definitions 

In this style of function definition we typically define one function at a time, in 
a model-oriented manner, and in terms of a pair of predicates: one characteris­
ing function argument values; the other relations between function arguments 
and corresponding function results. Schematically it syntactically "looks" like: 

type 
A, B 

value 
f: A H>B 
f(a) as b 

pre P(a) 
post Q(a,b) 
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V(a) and Q(a,b) are general (usually universally quantified) predicate expres­
sions over (quantified) variables a and b. Note the keyword as. 

Example 11.3 Model-Oriented Implicit pre/post-Condition Function Defini­
tion: Yet another form of definition of the modulo function is given: 

value 
mod: Na t x Na t -3- Na t 
mod(m,n) as r 

pre n^O 
post 3 q:Nat • q*n+r=m A 0<r<n—1 

The implicit pre/post-condition definition: 

type 
A, B 

value 
f: A 4 B 
f(a) as b pre P(a) post Q(a,b) 

is an instance of either of the following 

type 
A, B 

value 
f: A H>B 

axiom 
V a:A • P(a) => 

3 ! b:B • f(a) = b A 
Q(a,b) 

; axiomatic definitions: 

type 
A, B 

value 
f: A - + B 

axiom 
V a:A • V(a) => 

3 b:B • f(a) = b A 
Q(a,b) 

The only difference between the above two forms is that one (the one with 
unique existential quantification) defines a function deterministically, and the 
other defines it nondeterministically. 

We have not shown that many f(a) as b pre p(a) post q(a,b) definitions. 
However, many will come, including: 

Example 13.5's merge function, Example 13.11's int_Call, int.Hang and 
int.Busy functions, Example 15.6's index function, Example 15.8's sort func­
tion, Example 15.10's A_sort and KWIC functions and Example 16.10's retr_G2 
function. 
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11.5 Property-Oriented Axiomatic Definitions 

In this style of function definition we typically define one function at a time, 
usually in a semi-property-oriented manner, that is, by some modest use of 
model-orientedness, and by a triple of type/value/axiom clauses: 

type 
A, B, ... 

value 
f: A 4 B 

axiom 
V a:A, b:B • 

'Pi (a) =* Qi(a,b) A 
V2 (a) =* e2(a,b) A 
... A 
Pn(a) => Qn (a,b) 

The expressions T(d) and Q(a,b) are not algorithmically expressed. If f is 
total then the 7^(a)=>s are omitted. 

Example 11.4 Two Property-Oriented Axiomatic Function Definitions: 

• Factorial: 

value 
factorial: Nat -» Nat 
n:Nat 

axiom 
n > 1 
factorial(l) = 1, 
factorial (n) = n * factorial (n—1) 

• Fibonacci: 

value 
fibonacci: Nat —t Nat 
n:Nat 

axiom 
n > 1 
fibonacci(O) = 1, fibonacci(l) = 1, 
fibonacci(n) = fibonacci(n—1) + fibonacci(n—2) 
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11.6 Property-Oriented Algebraic Definitions 

Here we are usually just given the built-in RSL atomic types (hence semi), 
the sorts (abstract types) and the signatures (i.e., type) of functions. An 
axiomatic, property-oriented function definition usually defines both several 
functions and several sorts — simultaneously. Schematically it syntactically 
"looks" like: 

type 
A, B, C, D, E, F 

value 
f: A H> B, g: C H> D, ..., h: E -+ F 

axiom 
£pi(f,g,...,h), ..., £Pfc(f,g,...,h) [constants] 
£el£(f,g,--,h) = £e l r(f,g,-,h) [equations] 

£en£(f,g,-,h) = £enr(f,g,...,h) ... 

where ^(f,g,...,h) are general expressions involving — usually, but not shown 
— quantifications of types A, B, C, D, E, and/or F. 

We have shown several axiomatic definitions: Example 8.5 (stacks), Ex­
ample 8.6 (queues), Example 9.23 (simple sets), and Example 9.24 (simple 
lists). 

Example 11.5 A Peano Algebra, A Property-Oriented Data Type Defini­
tion: We continue Example 11.4, but now present the two functions in a fully 
algebraic style. Please refer to the Peano axioms in Example 9.21. They de­
fine Nat, but we now define arbitrary sum and successor and predecessor 
(addition, respectively subtraction, by one): 

value 
z: Nat - • Bool 
s: Nat - • Nat 
p: Nat -^ Nat 
sum: Nat x Nat ->> Nat 
mpy: Nat x Nat - • Nat 
fact: Nat ->> Nat 
fib: Nat - • Nat 

axiom 
V m,n:Nat • 

z(n) = n=0, 
p(s(n)) = n, 
p(0) = chaos, 
sum(0,n) = n, 
~z(m) => sum(m,n)=sum(p(m),s(n)), 
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mpy(0,n) = 0, mpy(m,0) = 0, 
mpy(l,n) = n, mpy(m,l) = m, 
~z(m) => mpy(m,n)=sum(m,mpy(p(m),n)), 
fact(0) = chaos, fact(l) = 1, 
~z(p(n)) => fact(n)=mpy(n,fact(p(n))), 
fib(0) = 1, fib(l) = 1, 
~z(p(n)) =* fib(n)=sum(fib(p(p(n))),fib(p(n))) 

Here equality to 0 is assumed a primitive, i.e., given predicate. 

11.7 Summary of RSL Function Definition Styles 

Without comments we list the variety of function definition styles covered in 
this chapter: 

1. Model-Oriented Explicit Defini­
tions 

type 
A, B 

value 
f: A^ B 
f = Aa:A.£(a) pre /P(a) 

f: A-> B 
f = Aa:A.£(a) 

[ or — which is the same ] 
f(a) = £(a) 

2. Model-Oriented Axiomatic 
nitions 

type 
A, B 

value 
f: A^ B 
ca:A, cb:B, ..., ca':A, cb': 

axiom 
7£(ca,cb), ..., 7£(ca',cb') 
V a:A, b:B • 

Pi (a) => fii(a,b) A 
p2(a) => fi2(a,b) A 
... A 
Vn(a) => Qn(a,b) 

Defi-

B 

3. Model-Oriented pre/post-Condi­
tion Definitions 

type 
A, B 

value 
f: A H > B 

f(a) as b 
pre V(a) 
post Q(a,b) 

4. Property-Oriented Axiomatic 
Definitions 

type 
A, B, ... 

value 
f: A H>B 
ca:A, cb:B, ..., ca':A, cb':B 

axiom 
ft(ca,cb) A 

... A 
ft(ca',cb') A 
V a:A, b:B • 

Pi (a) => Qi(a,b) A 
P2(a) => Q2(a,b) A 
... A 
Pn(a) => Qn (a,b) 
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5. Property-Oriented Algebraic Def- £Pl(f,g,...,h), 
initions ..., 
type £Ph(f,g,.»,h), 

A, B, C, D, E, F [equations] 
value £ei£ fer-W = £elr (f,g,-,h), 

^en£(f,g,-,h) = £enr(f,g,...,h) 
f: A -+ B, g: C H> D, ..., h: E H> F 

axiom 
[ constants ] 

11.8 Discussion 

We have shown five styles of defining functions. It is obvious that there is a 
spectrum of definition styles, from purely algebraic, i.e., property-oriented, to 
purely algorithmic, i.e., model-oriented explicit function definitions. We leave 
it to the reader to choose appropriate combinations of these styles. 

A function definition, in either of the five styles outlined above, may not 
uniquely determine exactly one function, i.e., one mathematical value, but the 
syntax of a function definition may denote a usually infinite set of such math­
ematical values. This under-specification, or this looseness, may be desirable 
or not. 

11.9 Exercises 

X Note: The three exercises of this chapter are best tackled after you have 
studied one or more of Chaps. 13-16 on RSL sets, Cartesians, lists and maps! 

I * •(• •!• 

Exercise 11.1. X Functions in the Transportation Net Domain. We refer to 
Appendix A, Sect. A.l, Transportation Net. 

As an exercise, try express a function over Transportation Nets in some 
or all of the five styles presented in this chapter. 

Hint: Try the following functions: Insert a segment, respectively insert 
a connection in a transportation net. See Exercise 9.1, items 3 and 4. Be 
prepared to define these functions in terms of a number of auxiliary functions, 
including predicates. Describe them loosely, in your own words — rather than 
attempting a full definition as you have yet to learn about suitable abstract 
data types with which to define these functions. 

Exercise 11.2. X Functions in the Container Logistics Domain. We refer to 
Appendix A, Sect. A.2, Container Logistics. 

As an exercise, try express a function over Container Logisticss in some 
or all of the five styles presented in this chapter. 
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Hint: Try the following function: Enter a ship into a container terminal. Be 
prepared to define this function in terms of a number of auxiliary functions, 
including predicates. Describe them loosely, in your own words — rather than 
attempting a full definition as you have yet to learn about suitable abstract 
data types with which to define these functions. 

Exercise 11.3. X Functions in the Financial Service Industry Domain. We 
refer to Appendix A, Sect. A.3, Financial Service Industry. 

As an exercise, try express a function over Financial Service Industrys in 
some or all of the five styles presented in this chapter. 

Hint: Try the following functions: open and close a bank account, deposit 
and withdraw money into, respectively from a demand/deposit account. 

Be prepared to define these functions in terms of a number of auxiliary 
functions, including predicates. Describe them loosely, in your own words — 
rather than attempting a full definition as you have yet to learn about suitable 
abstract data types with which to define these functions. 
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Property-Oriented and Model-Oriented 
Abstraction 

• The prerequisite for studying this chapter is that you are willing to 
pursue and have the ability to grasp abstractions. 

• The aims are to discuss the concept of abstraction and to present princi­
ples and techniques of abstraction, and to review the notion of property-
oriented abstraction, to introduce the concept of model-oriented abstrac­
tion, and to relate these two ideas. 

• The objective is to make the serious reader a professional in the basics 
of abstract modelling. 

• The treatment is from systematic to formal. 

Characterisation. By an abstraction we shall understand a formulation of 
some phenomenon or concept of some universe of discourse such that some 
aspects of the phenomenon or concept are emphasised (i.e., considered im­
portant or relevant) while others are left out of consideration (i.e., considered 
unimportant or irrelevant). • 

Characterisation. By a property-oriented abstraction we shall understand 
an abstraction of some phenomenon or concept of some universe of discourse 
such that the abstraction is primarily or solely expressed in terms of logical 
properties. • 

Characterisation. By a model-oriented abstraction we shall understand an 
abstraction of some phenomenon or concept of some universe of discourse such 
that the abstraction is primarily or solely expressed in terms of mathematical 
entities such as abstract tokens, sets, Cartesians, lists, functions, etc. • 

Abstraction is the act of emphasising certain phenomena and formulating 
certain concepts as being important, while suppressing other phenomena as 
not being important. It is a cornerstone of software engineering. Abstrac­
tion requires ability to reflect and to seek elegance and beauty. While some 
aspects of the pursuit of abstraction can be taught, most are learned by 
osmosis. 
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The present chapter — in a leisurely manner — discusses and formulates 
main abstraction and modelling principles and techniques concerning: abstrac­
tion, property-oriented abstractions (an overview of essentials), model- versus 
property-oriented abstractions, and model-oriented abstractions (an overview 
of essentials). 

In this chapter we only overview: the rest of these volumes will alternate 
between giving examples of either of these two alternative styles of modelling 
as well as of their fusion. 

The present chapter thus begins a road of teaching specification which 
— in view of the next five chapters — could as well be called programming 
in discrete mathematics. This topic is primarily illustrated in the sections 
on examples of x-based abstractions. These sections could as well be named 
examples of x-based programming. They are Sects. 13.3 (x = sets), 14.3 (x = 
Cartesians), 15.3 (x = lists), 16.3 (x = maps), and 17.2 (x = functions [i.e., 
as values]). 

Programming in discrete mathematics, is a way in which we ourselves have 
taught such courses as Algorithms and Data Structures.1 For an early example 
of what such "rewrites" mean, see Example 16.10. 

12.1 Abstraction 

In this section we shall cover such issues as modelling, abstraction and speci­
fication in general, and abstraction in the form of an essay. 

12.1.1 The Issues 

The problems to be cursorily addressed in this section are those of models, 
modelling, abstraction and specification. 

Modelling and Models 

Modelling is the act of creating models, which include discrete mathematical 
structures (sets, Cartesians, lists, maps, etc.), and are logical theories repre­
sented as algebras. That is, any given RSL text denotes a set of models, and 
each model is an algebra, a set of named values and a set of named opera­
tions on these. Modelling is the engineering activity of establishing, analysing 
and using such structures and theories. Our models are established with the 
intention that they "model" "something else" other than just being the math­
ematical structure or theory itself. That "something else" is, in our case, some 

1Thus we have, for example, had students "rewrite" many graph algorithms 
in [161] into VDM-SL (rather than, as here, RSL). 
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part of a reality2, or of a construed such, or of requirements to3, or of actual 
software4. 

Some clarifying observations are in order. We write down models, i.e., we 
specify them. So a model is represented syntactically by a specification. The 
meaning of a specification, its semantics, is the model — actually a set of 
models. The specification establishes, oftentimes, a great number of identifi­
cations between a perceived reality (which inherently is and remains elusive 
and hence informal) and textual parts of the specification — and hence their 
denoted mathematics. The model is not what it models, only a model of it! 

Thus the term model is used in two, closely related senses: The mathe­
matical model denoted by the specification, and that this specification models 
some phenomena. 

12.1.2 Abstraction and Specification 

Abstraction relates to conquering complexity of systems description through 
the judicious use of abstraction, where abstraction, briefly, is the act and 
result of omitting consideration of (what would then be called) details while, 
instead, focusing on (what would therefore be called) important facets. 

That is, some systems may be thought of as being complex. Many would 
say that for example (i) the domain of railway systems is complex; or that (ii) 
the set of diverse requirements for a number of software packages for (subsys­
tems of) the railway domain is complex; or that (iii) actual software systems 
that cover a reasonably diverse span of computing system-supported railway 
operations is complex. And, indeed, some descriptions of any of the above (i-
iii) may actually be very complex. Such complexity may be inherent, that is, 
cannot be avoided. Or it may be unintentionally "put into" the descriptions. 
In the latter case such unintentional complexity could be avoided, we claim, 
by careful use of abstraction. 

On the negative side we often see that descriptions are unnecessarily 
twisted, long, confused, and thus gives the appearance that the subject being 
described is complicated. Many such descriptions confuse issues of syntax, 
semantics and pragmatic nature (hence Sect. 1.6.2). On the positive side, by 
mastering abstraction we can often present the problem in a way that avoids 
unnecessary complexity. 

12.1.3 An Essay on Abstraction 

Conception, my boy, fundamental brain-work, 
is what makes the difference in all art 

D.G. Rossetti: letter to H. Caine 

2— as in domain modelling 
3— as in requirements modelling 
4— as in software design 
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Since this is the first chapter where the concept of abstraction — in connection 
with the modelling of some universe of discourse — is covered, we shall take 
time and space for a brief essay, essentially by C.A.R. Hoare, on what is meant 
by abstraction. 

"Abstraction as a Fundamental Tool" 

In the natural sciences one observes phenomena — and then one abstracts. 
In programming we create universes, but first abstractly. 

The following is from the opening paragraphs of C.A.R. Hoare's: Notes on 
Data Structuring [286]. 

Abstraction is a tool, used by the human mind, and to be applied in the 
process of describing (understanding) complex phenomena. Abstrac­
tion is the most powerful such tool available to the human intellect. 
Science proceeds by simplifying reality. The first step in simplification 
is abstraction. Abstraction (in the context of science) means leaving 
out of account all those empirical data which do not fit the particular, 
conceptual framework within which science at the moment happens to 
be working. Abstraction (in the process of specification) arises from 
a conscious decision to advocate certain desired objects, situations 
and processes as being fundamental; by exposing, in a first, or higher, 
level of description, their similarities and — at that level — ignoring 
possible differences. 

We can rephrase the above: We consider those similarities which govern pre­
diction and control of future events, i.e., 'meaning', as being fundamental and 
the differences as trivial. We have then developed — in the process of spec­
ification — an abstract concept to cover the set of objects and situations in 
question. The first requirement in designing a program is to concentrate on 
relevant features of the situation, and to ignore factors which are believed 
irrelevant. Abstraction thus implies simplification. That is, we reduce, at each 
stage of specification, the amount of information — of concepts and their 
interrelation — which we must hold or manipulate, when considering that 
situation. Abstraction is thus a relation. We choose the level of simplification 
and reduction. Our choice is a crucial one. Consider the modelling of some 
'real world' phenomenon. 

Its concepts have been reduced to our concepts, i.e., summaries of the 
characteristics that several specimen have in common. By denoting 
similarity, our concepts eliminate the bother of enumerating qualities 
and thus better serve to organise the material of knowledge. They are 
thought of as mere abbreviations of the items to which they refer. 
Any use transcending auxiliary, technical summarisation of factual 
data has been eliminated as a last trace of superstition. 



12.2 Property-Oriented Abstractions 235 

The "lawlessness" of programming is exactly this: Our choice of concepts 
becomes the tablets of commandments according to which the final program 
behaves. Their affinity, or to a varying degree lack of any such, to the intended 
problem is of no concern to the computer — and hence, by the mystique it 
exerts on certain programmers, also of no concern to them. 

12.2 Property-Oriented Abstractions 

In Sect. 8.5 (on specification algebras) we introduced the topic of property-
oriented specifications. And in Sect. 9.6, in the subsection titled "Property-
Oriented Specifications" we expanded on this topic. It is not a topic to be 
dispensed with in a few sections. In this section we shall review the idea of 
property-oriented specification. Throughout these volumes we shall repeat­
edly give examples of property-oriented specifications. In the next section we 
shall contrast the concept of property-oriented specification to that of model-
oriented specification. These are two main paradigms of specification. 

In the following we shall cover three facets of property-oriented specifica­
tion. These are: (i) pragmatics: what is it that we wish to emphasise when 
choosing the property-oriented specification paradigm; (ii) syntax: which are 
the textual components of a property-oriented specification; and: (hi) seman­
tics: what is the meaning of a property-oriented specification. 

The concept of pragmatics, in the context of descriptions, means roughly: 
why a linguistic construct was used. The concept of paradigm, in the context 
of descriptions, means roughly: the semantic meanings that are expressible 
using the linguistic means at disposal — observing, in a sense, those that are 
not expressible.5 Thus the two concepts, in the context of descriptions, are 
related. 

12.2.1 Pragmatics of Property-Oriented Specifications 

The adjective 'property-oriented' reveals the pragmatics: We choose a property-
oriented way of specification when we wish to emphasise (logical) properties — 
observing that we are not presenting a specific (say a discrete) mathematical 
model of what we describe. The borderline between property- and model-
oriented specifications is not a sharp one. In a loose sense we can speak of 
"more or less property-oriented", or "more or less model-oriented", or "both 

5Thus we speak of such programming paradigms as the (i) functional, (ii) imper­
ative, (Hi) logic and (iv) parallel programming paradigm. These four programming 
paradigms individually emphasise (i) functions, their definition, composition and 
application; (ii) variables, their declaration, initialisation, update, references (point­
ers) to them (that is, to storage cells), and the manipulations (storage and "chas­
ing" [linking]) of pointers; (hi) truth values, quantification, inference and resolution; 
respectively (iv) processes, their definition, composition ["in parallel", nondetermin-
istic external or internal choice], synchronisation and inter-process communication. 
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property- and model-oriented". There are situations, i.e., phenomena in a 
universe of discourse,6 which "beg" to be described, i.e., "call for" for being 
described, or can most "tellingly" be described, in the property-oriented style, 
others are best described in the model-oriented style, and yet some others in 
a style "mixing" these! 7 It is a purpose of the entirety of these volumes to 
characterise what these situations are. One main way of delineating when and 
where the property-oriented specification style should be considered is along 
the Tr ipTych "divides" of (i) domain: Usually it is a good development choice 
to t ry express a domain description primarily or solely through its properties, 
(ii) Requirements: Usually it is a good development choice to t ry express re­
quirements primarily or solely through its properties, (iii) Software design: 
Usually it is a good development choice to t ry express a software design de­
scription primarily or solely by presenting a model. Thus there really are 
no strict delineations as to when and when not to use the property-oriented 
specification style. And, as we shall often see, there will be many exceptions. 

12.2 .2 Syntac t i c s of P r o p e r t y - O r i e n t e d Speci f icat ions 

It is high t ime to give an example of a pure property-oriented specification. We 
do tha t now, then we comment on the textual structure of a typical property-
oriented specification. The example is tha t of modelling requirements to a 
simple telephone exchange system. First we present an informal description, 
then a formal description. The informal description is here structured so as 
to "fit" the formal description. 

E x a m p l e 12 .1 Property-Oriented Telephone System Specification: The ex­
ample is tha t of a simple telephone exchange system. 

Informal D o c u m e n t a t i o n 

We start the informal description by presenting a synopsis and its immediate 
analysis: 

• Synops i s : The simple telephone exchange system serves to efficiently honour 
requests for conference calls amongst any number of subscribers, whether 
immediately connectable, whereby they become actual, or being queued, i.e., 
deferred (or pending) for later connection. 

6By universe of discourse we mean "that which we wish to describe". Sometimes 
our universe of discourse is the domain, some actual part of an actual world, some­
times it is requirements for some software to support actions in that world, and 
sometimes it is that software, i.e., its design. 

7The use of the specific words: "beg", "call for", "tellingly" will become obvious 
from the following. 
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• Analysis: The concepts of subscribers and calls are central: In this example 
we do not further analyse the concept of subscribers. A call is either an 
actual call, involving two or more subscribers not involved in any other 
actual calls, or a call is a deferred call, i.e., a requested call that is not 
actual, because one or more of the subscribers of the deferred call is already 
involved in actual calls. We shall presently pursue the concepts of requested, 
respectively actual calls, and only indirectly with deferred calls. 

Types and Values — Informal Description 

The structure of the types of interest are first described. We informally de­
scribe first the basis types, then their composition, (i) Subscribers: There is 
a class (S) of further undefined subscribers, (ii) Connections: There is a class 
(C) of connections. A connection involves one subscriber, the 'caller', and any 
number of one or more other subscribers, the 'called', (iii) Exchange: At any 
time an exchange reflects (i.e., is in a state which records) a number of re­
quested connections and a number of actual connections (a) such that no two 
actual connections share any subscribers, (b) such that all actual connections 
are also requested connections, and (c) such that there are no requested calls 
that are not actual and share no subscribers in common with any other ac­
tual connection. (That is: The actual connections are all that can be made 
actual out of the requested connections. This part addresses the efficiency 
issue referred to above.) (iv) Requested connections: The set of all requested 
connections for a given exchange forms a set of connections, (v) Actual con­
nections: The set of all actual connections, for a given exchange, forms a 
subset of its requested connections such that no two actual connections share 
subscribers. 

In this example we shall also be able to refer to the exchange, later to be 
named X, as 'the state' (of the telephone exchange system). We shall later have 
a great deal more to say about the concept of state. 

Types and Values — Formal Description 

type 
S, C, X 

value 
obs_Caller: C - • S 
obs.Called: C -¥ S-set 
obs_Requests: X —> C-set 
obs_Actual: X —> C-set 

subs: C -)> S-set 
subs(c) = obs_Caller(c) U obs_Called(c) 

subs: C-set —> S-set 
subs(cs) = U { subs(c) | c:C • c G cs } 
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The overloaded function name subs stands for two different functions. One 
observes ("extracts") the set of all subscribers said to be engaged in a con­
nection. The other likewise observes the set of all subscribers engaged in any 
set of connections. We shall often find it useful to introduce such auxiliary 
functions. 

axiom 
[ i ] 
[2] 

[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 
[io: 
[n: 

Vc:C, 3s:S» 
s = obs-Caller(c) =>• s $ obs_Called(c), 

V x : X . 
let res = obs_Requests(x), 

acs = obs-Actual(x) in 
acs C res A 
V c,c':C • c ^ c' A {c,c'} C acs =$> 

obs-Caller(c) ^ obs-Caller(c') A 
obs_Called(c) n obs_Called(c') = {} A 

] ~ 3 c:C • c 6 res \ acs • 
] subs(c) fl subs(acs) = {} end 

Let us annotate the above specification. [1] For all connections there exists a 
subscriber such that [2] the subscriber is a caller, but not a called subscriber. 
[3] For all telephone exchanges (i.e., telephone exchange states), [4-5] let us 
observe the requested and the actual connections. [6] The actual ones must also 
be requested connections, and [7] for any two different actual connections, [8] 
their callers must be different, [9] the callers and the ones called cannot share 
subscribers, and [10] there must not be a requested, but not actual connection 
[11] which could be an actual connection. That is all such connections must 
have some subscriber in common with some actual connection. 

The last two lines above express the efficiency criterion mentioned earlier. 
We can express a law that holds about the kind of exchanges that we are 

describing: 

t heo rem 
Vx:X-

obs_Actual(x)={} = obs_Requests(x)={} 

The law expresses that there cannot be a non-empty set of deferred calls if 
there are no actual calls. That is, at least one deferred call can be established 
should a situation arise in which a last actual call is terminated and there is 
at least one deferred call. 

The law is a theorem that can be proved on the basis of the telephone 
exchange system axioms and a proof system for sets. 
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Operations: 

The following operations, involving telephone exchanges, can be performed: 
(i) Request: A caller indicates, to the exchange, the set of one or more other 
subscribers with which a connection (i.e., a call) is requested. If the connection 
can be effected then it is immediately made actual, else it is deferred and (the 
connection) will be made actual once all called subscribers are not engaged in 
any actual call, (ii) Caller_Hang: A caller, engaged in a requested call, whether 
actual or not, can hang up, i.e., terminate, if actual, and then on behalf of all 
called subscribers also, or can cancel the requested (but not yet actual) call, (hi) 
Called_Hang: Any called subscriber engaged in some actual call can leave tha t 
call individually. If tha t called subscriber is the only called subscriber ("left in the 
call"), then the call is terminated, also on behalf of the caller, (iv) is_Busy: Any 
subscriber can inquire as to whether any other subscriber is already engaged in 
an actual call, (v) is_Called: Any subscriber can inquire as to the identities of 
all those (zero, one or more) callers who has requested a call with the inquiring 
subscriber. 

F o r m a l D e s c r i p t i o n 

First the signature: 

value 
newX: U n i t -t X 
request: S x S-set -)> X -)> X 
callerJiang: S -» X -t X 
called_hang: S -> X -3- X 
is.busy: S -> X -> B o o l 
is.called: S -> X - • B o o l 

The generator function newX is an auxiliary function. It is needed only to 
make the axioms cover all states of the telephone exchange system. In a sense 
it generates an empty, tha t is, an initial state. Usually such empty state 
generator functions are "paired" with a similar test for empty state observer 
function. 

Then we get the axioms: 

a x i o m 
V x:X • obs_Requests(x)={} = x=newX() , 
V x:X,s,s':S,ss:S-set • 

~is_busy(s,newXQ) A 
s^ s ' => 

s G ss => is_busy(s)(requests ' ,ss)(x)) A 
s ^ ss => is_busy(s)(request(s',ss)(x)) = is_busy(s)(x), 
... etcetera ... 
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We leave the axiom incomplete. Our job was to illustrate the informal and 
formal parts of a property-oriented specification, not to do it completely. 

12.2.3 Semantics of Property-Oriented Specifications 

Continuing the line set out in Section 1.6.2, Example 1.7, and continued in 
Sects. 6.5 and 6.7, we take as the basic assumption that the meaning of a 
specification, i.e., any expression, is a set of models. Each single model "as­
signs" (ascribes) to any expression identifier a single value, but "looking" just 
at the expression, it itself may stand for any of many values, at most as many 
as there are models of the expression. We shall have much more to say on this 
issue in these volumes. 

12.2.4 Discussion 

General 

In Sects. 8.5 and 9.6 we started our treatment of property-oriented specifica­
tions. This section continues that treatment. In many parts of these volumes 
we shall return to the issue of property-oriented specifications. The property-
oriented specification paradigm is a crucially central specification paradigm. 

Why is the present section so short, when we have just stated the impor­
tance of property-oriented specification? To that we answer: Taken together 
with the material in Sects. 8.5 and 9.6 on property-orientedness, not much 
more methodologically need be said for that concept. And there will be many 
examples of property-oriented specifications when we proceed in this and fol­
lowing chapters. 

Principles, Techniques and Tools 

Principles. Property-Orientedness: In initial phases and stages of develop­
ment choose a (primarily) property-oriented style of specification. Or, put dif­
ferently, when you wish to leave as much implementation freedom as possible 
for subsequent phases, stages and steps of development choose a property-
oriented form of specification. • 

Techniques. Property-Orientedness: Define sorts (rather than concrete types), 
introduce (postulate) observer and generator functions, and relate sort values 
and functions through axioms. Introduce auxiliary functions sparingly, i.e., 
introduce as few as possible, and then only those that reflect a concept in the 
relevant universe of discourse. • 

Tools. Property-Orientedness: Use, for example, the RSL type, value and 
axiom constructs. • 
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12.3 Model Versus Property Abstractions 

Section 12.2 reiterated the basic ideas of property-oriented specifications. Sec­
tion 12.4 and Chaps. 13-17 will cover the basic ideas of model-oriented spec­
ifications. The present section will contrast the two specification paradigms. 

12.3.1 Representation and Operation Abstraction 

Two complementing concepts of representation and operation abstraction will 
be introduced. These two complementing concepts of representation and op­
eration abstraction spring from the algebraic view that a data type is a set of 
values and a set of operations on these. We treat these two abstraction prin­
ciples (representation and operation abstraction) in some isolation from one 
another. This is possible when we are propagating a basically model-theoretic 
approach wherein types and instances of objects are defined and constructed 
separately from the definition of functions involving these objects. The rest 
of this chapter will mostly treat the concept of model-oriented representation 
and the thereby related model-oriented operation abstractions. 

In an algebraic specification this separation between presenting models 
of functions and the values they apply to and result in is not immediately 
obvious since properties of sorts (i.e., the values) and of operations are defined 
together, in an "intertwined" manner. The algebraic approach was — so far 
amply — illustrated earlier in sections: Sects. 8.5, 9.6.5 and 12.2.2. 

12.3.2 Property-Oriented Versus Mo del-Oriented Abstractions 

Characterisation. By a property-oriented abstraction we basically mean a 
specification which focuses on properties, i.e., is expressed logically. • 

Discussion. Among the models satisfying a property-oriented abstraction 
there may be some that involve such mathematical notions as sets, Cartesians, 
sequences, maps and functions. • 

Characterisation. By model-oriented abstraction we basically mean a spec­
ification in terms of such mathematical notions as sets, Cartesians, sequences 
(i.e., lists), maps and functions. • 

Discussion. A logic property may be satisfied by any finite or infinite num­
ber of mathematical set, Cartesian, sequence, map or function constructs, 
including none. These mathematical entities are said to be models of the 
property-oriented specification. • 
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The Issues 

Computers traditionally act by performing specific operations on concrete 
values, i.e., are operationally concrete and model-oriented. Yet to properly 
understand what is going on, or what is to go on, inside the computer, we 
necessarily resort to logic. So there seems to be a dichotomy: How do we rec­
oncile the notions of property- and model-oriented? Computer programs often 
must be detailed to a level (of code) which is no longer humanly understand­
able! So there seems to be a problem: How do we 'refine' from property- to 
model-oriented? So we shall make our first examples of, and show some first 
principles and techniques for presenting property- and related model-oriented 
specifications. 

Further Characterisations 

We present and discuss some informal definitions. 

Characterisation. A property-oriented specification expresses what is being 
described in terms of abstract types (sorts) and logic expressions, including 
axioms. • 

Discussion. Emphasis is on properties, that is, on what, not on how. • 

Characterisation. A model-oriented specification models what is being de­
scribed in terms of mathematical entities such as numbers, sets, Cartesians, 
lists, maps, functions (including predicates) and processes. • 

Discussion. Emphasis, in model-oriented abstraction, is still on properties, 
but it is in terms of how a discrete or continuous mathematical construct 
offers those properties. • 

In model-oriented descriptions we therefore choose first to describe represen­
tation abstraction. In the vernacular, we mean the abstraction of what later 
in the coding of software become data structures. Then we describe oper­
ation abstraction. Later in this section we present both representation and 
operation abstractions in both property-oriented and model-oriented ways. 

12.3.3 Definitions 

Characterisation. By representation abstraction of [typed] values we mean 
a specification which does not hint at a particular data (structure) model, 
that is, which is not implementation-biased. • 

Discussion. The "most abstract" representation abstraction occurs when we 
specify a set of values, i.e., a type, as an abstract type, that is, as a sort. • 
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Characterisation. We say that a specification of a (data or a function) value 
is implementation-biased if it foregoes abstraction in favour of some, however 
rudimentary, notion of realisation. • 

Discussion. This last characterisation suffers from vagueness. First, our dis­
tinction between "data or function" value is not important. But the distinction 
is of pedagogical nature: There really is no distinction. By data values "inside 
the computer" we may think of such things as integers, or vectors of these, or 
records over integers, character strings and Booleans, just to name a few ex­
amples. By function values we correspondingly think of instruction sequences, 
i.e., of code. But since data values can serve as structures being interpreted 
by an interpreter, the data value can be considered to represent a function. 
And vice versa: A function value can be made to represent, say, an infinite 
list of which one at most need inspect, in any invocation, a finite prefix. • 

Characterisation. By operation abstraction of functions, i.e., of function 
values, we mean a specification which does not hint at particular procedural 
(i.e., algorithmic) means of computing function results. • 

12.3.4 Representation Abstraction Examples 

We exemplify the two specification styles: property-oriented and model-
oriented. At the same time we also exemplify the concept of representation 
abstraction. In Sect. 12.3.5 we then exemplify the corresponding concept of 
operation abstraction. 

Example 12.2 Telephone Directory — Types: We focus on the essential 
properties of a telephone directory We see these as that of the "directory 
itself" and the "things we can do with it, i.e., to it". 

• A telephone directory is seen as an abstract document. Let us name the 
class of all such telephone directory documents TelDir. 

• It lists a finite set of subscribers, say by name, let us call their class for S. 
• Each has a finite set of telephone numbers, Tn. 

That's all! 

Property-Oriented Representation 

In property-oriented models, to repeat, we express properties in terms of sorts, 
function signatures and axioms relating type values and functions. Sometimes 
we need define some auxiliary functions. In contrast to classical algebraic spec­
ifications our function types allow concrete type expressions. In the examples 
below these are mostly sets. 
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Example 12.3 Telephone Directory: A Property Model, I: Given a telephone 
directory, td, we can (thus) observe the set of all its subscribers and the set 
of all its numbers. 

Given a subscriber and a telephone directory we can observe the telephone 
numbers of that subscriber. And given a telephone number and a telephone 
directory we can observe the subscribers sharing that number. 

In advance of a more systematic treatment in subsequent (set, list, map) 
sections of this chapter we bring the formalisation below. 

type TelDir, S, Tn 
value 

obs_Ss: TelDir - • S-set 
obs_Tns: TelDir -> Tn-set 
obs_Tns: S - • TelDir -> Tn-set 
obs_Ss: Tn -> TelDir - • S-set 

Annotations: The keyword type "announces" that the identifiers TelDir, S 
and Tn are type names. Since these types are not further explained we refer to 
them as abstract types, or as sorts. (In property-oriented modelling we almost 
exclusively use sorts.) TelDir shall stand for the set of telephone directories, 
S for the set of subscribers and Tn for the set of telephone numbers. 

The keyword value "announces" that the two identifiers obsSs and 
obs-Tns denote specific values in the type denoted by the type expression 
following these names. Since these types are both of the form A^B they 
are both function values. Here they stand for observers that apply to tele­
phone directories and are intended to extract exactly the set (-set) of all 
subscribers, respectively the set of all the telephone numbers which are listed 
in the telephone directory — not necessarily all possible subscribers, respec­
tively telephone numbers. • 

• • • 

We continue this (property-oriented) example later when we cover the concept 
of operation abstraction. 

Model-Oriented Representations 

In model-oriented specifications, to repeat, we focus on mathematical mod­
els of types. Typical mathematical models centre around such mathematical 
entities as numbers, sets, Cartesians, lists (or sequences) maps, and functions. 

Example 12.4 Telephone Directory: A Model-Oriented Model, I: In a tele­
phone directory we normally associate subscriber information (names etc.) 
with one or more, i.e., a set of, telephone numbers. The association can be 
mathematically modelled in a number of ways: 
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type S, Tn 
TelDirO = S ^ Tn-set 
TelDirl = S jff Tn* 
TelDir2 = (S x Tn-set)-set 
TelDir3 = (S x Tn-set)* 
TelDir4 = (S x Tn*)* 

Annotations: We continue modelling the subscriber and telephone number 
types as sorts. But we now give several model-oriented, i.e., concrete type 
proposals for the type of telephone directories. 

TelDirO considers a telephone directory to be a map which to each sub­
scriber associates the finite set of zero or more telephone numbers that that 
subscriber is known by. 

TelDirl considers a telephone directory to be a map which to each sub­
scriber associates the finite list of zero or more telephone numbers that that 
subscriber is known by. 

TelDir2 considers a telephone directory to be a finite set of Cartesian pairs. 
Each (pair) pairs a subscriber with the finite set of zero or more telephone 
numbers that that subscriber is known by. 

TelDir3 considers a telephone directory to be a finite list of Cartesian pairs. 
Each (pair) pairs a subscriber with the finite set of zero or more telephone 
numbers that that subscriber is known by. 

Finally, TelDir4 considers a telephone directory to be a finite list of Carte­
sian pairs. Each (pair) pairs a subscriber with the finite list of zero or more 
telephone numbers that that subscriber is known by. • 

• • • 

Given the choice between models we may raise a number of questions. Which 
of the above many possibilities should we choose? Which one of the above 
"is most abstract"? The answer to both questions is: that depends on the 
operations we wish to define on telephone directories. We will later return to 
this question, albeit in other contexts. 

How is the property-oriented specification of the telephone directory, 
TelDir, related to, for example, the model-oriented specification, TelDirO? 

Example 12.5 Telephone Directory: Property- Versus Model-Orientedness: 
In this example we indicate (by ~) an answer, one amongst many possible, 
by also defining, for the model-oriented, i.e., the concrete, types the abstract, 
postulated observer functions of the property-oriented model. 

type 
TelDirO 

relations: obs_Ss ~ extract_SsO, obs.Tns ~ extract.TnsO 
value 
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extract_SsO: TelDirO - • S-set 
extract_SsO(td) = dom td 

extract_TnsO: TelDirO - • Tn-set 
extract_TnsO(td) = \J rng td 

extract_SsO: Tn -> TelDirO ->- S-set 
extract_SsO(tn)(td) = { s | s:S • s G dom td A tn G td(s) } 

extract_TnsO: S -> TelDirO - • Tn-set 
extract_TnsO(s)(td) = td(s) pre s G dom td 

Annotation: With the model-oriented, i.e., the concrete, type definition of 
TelDir we can therefore define the observer functions, dom td expresses the 
set of definition set elements of the map td, and rng td expresses the set of 
range (i.e., codomain) elements of the map td. The |J operation8 represents 
distributed union, i.e., an operation that applies to a set of sets and yields 
"their" union. • 

The two subexamples, the property-oriented and the model-oriented repre­
sentations of Examples 12.3 and and 12.4 (with Example 12.5 relating them), 
illustrated some basic techniques used in property-oriented, respectively in 
model-oriented specifications: sorts (or abstract types) versus concrete types, 
and observer functions versus explicitly defined (extraction) functions. The 
two parts of the continuation of the telephone directory example given be­
low will further illustrate differences between property- and model-oriented 
specifications. 

12.3.5 Operation Abstraction Examples 

Now we cover operation abstractions relating to the two representation ab­
stractions of Example 12.3 and and 12.4's telephone directory example. In 
the vernacular: Operation abstraction is an abstraction of what later in the 
coding of software become subroutines (procedures, functions). 

Example 12.6 Telephone Directory Operations: Property-Orientedness: We 
define the following operations on telephone directories: 

• empty: Create an initial and empty telephone directory. 
• enter: Add a new subscriber's telephone number(s) to a telephone direc­

tory. 
• is_in: Check whether a (potential) subscriber is in a telephone directory: 

true or false? 

8The prefix (J operation is not a proper operator of the specification language 
RSL, but could easily be. 
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• look_up: Look up a subscriber's telephone number(s). 
• delete: Remove a subscriber from a telephone directory. 

Property-Oriented Specification 

First we show a property-oriented specification — one that expresses proper­
ties in terms of simple predicate and (algebraic) equational axioms. 

type 
S, Tn, TelDir 

value 
empty: —> TelDir, 
is.empty: TelDir —t Bool, 
enter: S x Tn-set x TelDir ^ TelDir 

pre enter(s,tns,td): tns ^ {} A ~is_in(s,td), 
is_in: S x TelDir - • Bool 
look_up: S x TelDir -^ Tn-set 

pre look_up(std): is_in(s,td), 
delete: S x TelDir ^ TelDir 

pre delete(s,td): is_in(s,td) 

axiom 
forall s,s':S, tns:Tn-set, td,td':TelDir • 

is_empty(empty()), 
~is_empty (enter (s ,t ns ,t d)), 
~is_in(s,empty()), 
is_in(s,enter(s,tns,td)), 
s ^ s' => is_in(s,enter(s',tns,td)) = is_in(s,td), 
look_up(s,enter(s,tns,td)) = tns, 
s ^ s' => look_up(s,enter(s',tns,td)) = look_up(s,td). 
delete(enter(s,tns,td)) = td 
s ^ s' => delete(s,enter (s',tns,td)) = delete(s,td). 

Annotations: First we present the signature of the empty, is_empty, enter, isJn, 
look_up and delete values. 

The first, empty, designates a constant (total) function; empty() designates 
the empty telephone directory. The remaining also denote functions. Partial­
ity of these is explained wrt. the pre-conditions that must be satisfied for a 
function application to be defined. The set of telephone numbers entered for 
a subscriber must be non-empty and the subscriber must not already be in 
the telephone directory. In order to look_up or delete the phone numbers of a 
subscriber that subscriber must be in the directory. 

Then we give the axioms further defining the properties of these functions. 
An empty telephone directory is_ indeed empty. A telephone directory into 
which at least some subscriber has been entered is not empty. No subscriber 
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isJn an empty directory. A subscriber which has been entered into a directory 
isJn that directory. Whether a subscriber, s, is in a directory, which is the 
result of having entered another subscriber, s', in a directory td, is the same 
as whether subscriber s is in td, and so on for look.up and delete. • 

• • • 

We refer to empty, enter and delete as generators, and to is_empty, isJn and 
look_up as observers. By means of the empty value and the enter generator 
function we can construct all values in TelDir. Therefore we define axioms 
for each of the observers — sometimes in terms of the generators. The issue 
of whether a set of axioms, as, for example, presented here, is consistent and 
complete, i.e., whether they do not define a thing and its opposite and whether 
it defines all the things we wish to have defined, will not be dealt with here. 
Instead we refer to standard texts on logic [136,153,210,235,259,362,372,457] 
and on Algebraic Semantics [43,208,209,249,297]. 

Mo del-Oriented Specification 

After the initial property-oriented specification we now show a model-oriented 
specification — one that models operations explicitly. 

Example 12.7 Telephone Directory Operations: Model-Orientedness: The 
signatures are as for the property-oriented axiomatic specification of the oper­
ations, except that these now apply to values of the concrete, model-oriented 
type TelDirO, and not to values of the abstract, property-oriented sort TelDir. 

type 
TelDirO 

value 
empty() = [] 
is_empty(td) = td = [ ] 
enter(s,tns,td) = td U ^ t n s ] pre s ^ dom td 

is _in(s,td) = s G d o m td 
look_up(s,td) = td(s) pre s G dom td 
delete(s,td) = td \ {s} pre s £ d o m td 

12.3.6 Discussion 

General 

Previously we treated property-oriented specification in isolation (cf. Sect. 12.2) 
In this section we contrasted property-oriented specifications and model-
oriented specifications. What preliminary conclusions can be drawn? Well, 
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the ones we can draw are rather superficial. As later examples will show, 
those of Examples 12.3 and and 12.4 (even with Example 12.5 relating them), 
respectively Examples 12.6 and 12.7, are too inconclusive. 

But we can say this: A sort (that is, an abstract type) specification, i.e., 
a property-oriented model, sometimes is "unique" in the sense that its types 
and the structure constraining axioms over these can basically only be ex­
pressed in one way given the basic "ingredients" (as here S, Tn and TelDir). 
On the other hand, a model-oriented specification of "the same", now con­
crete, types leaves the developer many choices, cf. TelDirO, TelDirl, TelDir2, 
TelDir3, TelDir4. Somehow it seems easier to say: The abstract type, i.e., the 
sort, definition is the most abstract one, the one that is less biased. 

And then, in the pair of paired examples, Examples 12.3 and 12.4, respec­
tively Examples 12.6 and 12.7, as will indeed be the case in rather many, if 
not most examples, the operation definitions were "longer" for the property-
oriented model than for the model-oriented model. But one should not be lured 
by the usual brevity of functional operation model-oriented specifications. 

The property-oriented axioms both defined the properties of the sorts as 
well as of the operations, and rather explicitly, we think, express the value and 
operation properties. As such, property-oriented axioms serve well in proofs 
of other properties. 

The model-oriented specification separated the specification of types (and 
their values) from the specification of operations. The concrete type defini­
tions imply many properties. These concrete type properties are then found 
axiomatically expressed in one place: namely where the specification language 
defines those concrete types (of sets, Cartesians, lists, maps, etc.). 

The model-oriented operation definitions, although claimed abstract, could 
be claimed to "bury" operation properties in the specific, almost "algorithmic" 
use of specification language constructs, especially the many set, Cartesian, 
list, maps, etc., operators. Yet the brevity of model-oriented operation speci­
fications and, when used properly, their abstractness, often makes developers 
select model-oriented specifications in favour of property-oriented specifica­
tions. 

So, it is too early to "call the game", that is, to say anything definite. 

Specific: "WhaVs the Difference Anyway?" 

In Example 12.3 we illustrated some observer functions (i.e., observers). They 
generally apply to values of property-oriented defined abstract types, i.e., 
sorts, but yield values of model-oriented concrete types (i.e., sets). 

So: "what is the difference anyway? " Very simply: Instead of defining 
the sorts as consisting "exactly" of the model-oriented components as sug­
gested by the observers, we leave the (base, the "interesting") sorts further 
unspecified. Doing so allows us, later, to join additional observers to the base 
sorts. We can keep on doing so, as early as from domain descriptions, through 



250 12 Property-Oriented and Model-Oriented Abstraction 

requirements prescriptions until software design specifications. This ability 
leaves the software designer the greatest degree of "freedom". 

12.4 Model-Oriented Abstractions 

This section serves as a prelude to the next six chapters (Chaps. 13-18). 

12.4.1 Ultrashort Overview of the Next Six Chapters 

In the next six chapters we cover a number of model-oriented representation 
and operation abstraction techniques and tools based on: 

• Sets Chap. 13 • Maps Chap. 16 
• Cartesians Chap. 14 • Functions Chap. 17 
• Lists Chap. 15 • Types Chap. 18 

In doing so we shall extend the RSL type concept of our primary abstract 
specification language RSL. Chapter 18 will summarise the RSL type concept. 
The next six chapter topics will, at the same time, introduce a not inconsid­
erable number of new RSL language constructs. We have chosen this style of 
presenting the specification language: commensurate with the pragmatic need 
for their use in abstraction and modelling — rather than a pedantic style of 
RSL "reference manual" [236]. Later chapters and sections will augment what 
we say in the immediately upcoming six chapters. This is because we have 
decided to tie the introduction of language constructs, whether from RSL or 
other specification languages, to a conceived need for their use. 

12.4.2 Models and Models 

Models of Property-Oriented Specifications 

Section 12.2.3 outlined the semantics of property-oriented specifications. It 
was said, then, that the meaning — of what has been, or is being, written 
down as a property-oriented specification — is a set of models. By that we 
meant: Either the specification that has been or is being written down has 
no interpretation (the set of models is empty), or there is exactly one model, 
or there is a definite or indefinite set of such models. By 'model' we then 
meant, and shall continue to mean, an interpretation in terms of such con­
structive mathematical things as Booleans, numbers, characters, text strings, 
sets, Cartesians, lists, maps and even general functions (in the sense of A-
functions). 
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Models of Mo del-Oriented Specifications 

Property-oriented specifications are expressed as axioms, i.e., logically. So 
property-oriented specifications really give no explicit hint at the models they 
might denote! Model-oriented specifications are expressed "directly": In terms 
of the mathematical things they are supposed to "be": numbers, characters, 
text strings, sets, Cartesians, lists, maps and even general functions (in the 
sense of A-functions). So model-oriented specifications give all possible — i.e., 
rather explicit — hints at the models they are meant to denote, hence the 
name of this type of specification! 

12.4.3 Underspecification 

The Issue 

Characterisation. By an underspecified identifier we mean one which for 
repeated occurrences in a specification text always yield the same value, but 
what the specific value is, is not knowable. • 

Example 12.8 Underspecification (Abstract): The identifier a in: 

value a:A 
... a ... a ... (a = a) ... 

is underspecified. The second line of text ... a ... a ... (a = a) ..., has the same 
value for a in all occurrences, and hence the test for equality always yields 
true. 

An example of an underspecified function is: 

value 
is.prime: Nat —y Bool 
is_prime(n) = n = l V (n>2 A ~ 3 i,j:Nat • i> l A j > l => ixj=n) 
f: Int -> Nat 

axiom 
V i:Int • is_prime(f(i)) 

f is specified, to some degree (its type is given). But it is underspecified. An 
infinity of fs satisfy the axiom, namely all those functions that when applied 
to any integer generate a prime number! The is_prime predicate is uniquely 
specified (i.e., is deterministic). • 

Why Underspecifications? 

The simple answer to the "question" above is: Phenomena of the real world 
(i.e., some domain) are not completely specifiable. If developing a domain 
description into a requirements prescription, and when refining requirements 
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prescriptions into software designs, the software developer, in agreement with 
the client ordering the software, is free (at an appropriate stage) to remove 
underspecification. 

12.4.4 Determinism and Nondeterminism 

Deterministic Expressions 

A piece of specific, say RSL, text may evaluate to one value, or it may evaluate 
to any one of several values. 

Example 12.9 A Deterministic Expression (Abstract): Consider the follow­
ing specification: 

value 
f: Unit - • Nat, f() = 7 

Function f is deterministic: Always, when invoked, f() returns a predictable 
result. When invoked multiple times, at various points in some specification 
text: 

... fo... fo... fo... 

the resulting value is always 7. • 

The evaluation of f in Example 12.9 is that it has exactly one value. 

Nondeterministic Expressions 

Consider, in contrast, a slight modification of Example 12.9: 

Example 12.10 A Non-deterministic Expression (Abstract): Let the speci­
fication now be: 

let n:Nat • 5<n<9 in n end 

The expression is nondeterministic. When invoked multiple times, at various 
points in some specification text: 

... let n:Nat»5<n<9 in n end ... 
let n:Nat«5<n<9 in n end ... 

(let n:Nat«5<n<9 in n end = 
let n:Nat«5<n<9 in n end) ... 

the resulting value is any one of 6, 7 or 8! In the first line above the expression 
value may be 8; in the second line the expression value may be 6; and in 
the third line the expression value may be 7; whereas in the fourth line the 
expression value may be 8. Sometimes the equality between lines three and 
four may yield true, and sometimes false. • 
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The evaluation of f in Example 12.10 is that it has three possible values. 
Which one is selected — for various invocations of f — is not predictable: It 
is nondeterministic. 

12.4.5 Why Loose Specifications? 

Characterisation. By looseness of a specification we mean a specification 
which features elements of under specification or nondeterminism. • 

The question is now clear enough, given Examples 12.8-12.10. An answer 
need be considered. It is not the first, and it will not be the last time, in these 
volumes, that we consider under specification and nondeterminism. 

An answer, one that shall is for the time being, but one that will be elab­
orated upon, again and again, in these volumes, is as follows: In the world 
of specific, real-life, actual domains, "things" are not deterministic. Human 
behaviour is underspecific and nondeterministic, yet we shall have to model 
human behaviour! Behaviour, even of a number of concurrently operating 
production processes, is not predictable: Slight deviations from mechanical 
measurements, even though within tolerances, may cause deviations in pro­
duction processing times. As a result, two or more production machines may 
start and/or end their processing before and/or after one another. Yet our 
production must usually be made robust, and must lead to reasonably pre­
dictable products irrespective of such underspecificity and nondeterminism. 

Any realistic, abstract specification language must therefore, we claim, fa­
cilitate the "free and easy" expression of underspecificity and nondeterminism. 
It is, in general, the underspecificity that leads to multiple models. In the next 
Chaps. 13-17 — where we examine the use of the mathematical structures 
of sets, Cartesians, lists, maps and functions — we shall therefore basically 
assume that the denotation of any expression is a set of models. 

12.4.6 Discussion 

General 

Ordering of Mathematics 

We have briefly listed references to the next six chapters on sets, Cartesians, 
lists, maps, functions and types. We have chosen to present these mathemat­
ical structures in the order listed: sets, which are considered the most basic 
mathematical structure in our context, then Cartesians, then lists, etc. Each 
chapter has one or two main examples. Because of the order in which we in­
troduce the mathematical structures we have tried to have the examples make 
use only of such (mathematical) structures (i.e., types) as have already been 
introduced at the point of the examples. This means that some examples, 
certainly those in the earlier sections, may seem a bit contrived and not very 
abstract. Yet they all model something! 
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The RSL Language Constructs 

In synchrony with the introduction of the mathematical structures (of sets, 
Cartesians, lists, maps, functions and types) we introduce the corresponding 
abstract data types of RSL, or, for that matter, VDM-SL or Z. And we like­
wise introduce a number of other RSL (etc.) language constructs: type union 
(A|B|... |C) and subtypes ({|a:A»wf_A(a)|}), McCarthy Conditionals (case e 
of pl->>el, p2-^e2, .... _-^en end), and thereby the notions of patterns and 
their implied bindings. The chapter on types (Chap. 18) introduces further 
RSL language constructs: variant definitions (A = = B|C|...|D), records with 
constructors and destructors (B = = mk_BRec(u:U,v:V,...,w:W)), and so on. 

12.5 Principles, Techniques and Tools 

Commensurate with Sect. 1.5.1's introduction of methods espousing princi­
ples, techniques and tools the next six chapters as well as the rest of these 
volumes will then enunciate such principles, techniques and tools as they here 
relate property-oriented versus model-oriented specifications. 

For the present chapter we now present its relevant methodological con­
cerns. 

12.5.1 Property-Oriented Versus Mo del-Oriented Specification? 

When Property-Orientation? 

Principles. Property-Oriented Specification: Property-oriented specifica­
tion is chosen in the earliest phases and stages of development. That is, 
when, in a sense, the least is known about what is being described. Typi­
cally, property-oriented specification is chosen for the earliest stage of domain 
description, or the earliest stage of requirements prescription. By presenting 
a property-oriented specification one is telling the reader: This specification 
has made no design choices as to data and operation representation. • 

When Mo del-Orientation? 

Principles. Model-Oriented Specification: Model-oriented specification is 
chosen when commencing design — i.e., in the late phases and stages of de­
velopment. That is, when, in a sense, sufficient is known about what is being 
specified to commit concrete data and operation representation. Typically, 
model-oriented specification is chosen for the later stages of requirements pre­
scription as well as for software design specification. • 
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12.5.2 Property-Oriented Specification Style 

Techniques. Property-Oriented Specifications: The basic specification com­
ponents of a property-oriented specification are those of sorts, i.e., abstract 
types of function signatures of observers and generators and of axioms relating 
values of sorts and operations. 

scheme POS = 
class 

type 
A, B, ..., C, P, Q, ..., R 

value 
obsJP: A - • P, 
obs_Q: B - • Q, 

obs J t : C -> R, 
make_A: P x ... 4 A 
makeJB: Q x ... 4 B 

make_C: R x ... -» C 
axiom 

V a:B, b:B, ..., c:C, p:P, q:Q, ..., r:R 
£i(a,fc,...,c,p,g,...,r) 
£2(a,b,...,c,p,q,...,r) 

£m(a,b,...,c,p,q,...,r) 
end 

In the above conceptualised, i.e., illustrative, generic but not very specific 
schema, named POS (for property-oriented specification), a class has been 
hinted at. 

As types, it only has abstract types, i.e., sorts A, B, ..., C, P, Q, ..., and R. 
It has some observer functions (typically named: obs_T, where T is one of 

the type names). The observer functions apply to sort values and yield values 
of type sorts, or simple sets, Cartesians, lists, etc., but this is not shown. 

It has some generator functions (typically named: make_T, where T is one 
of the sort names). Typically, when only relying on sorts one need define 
initial values for some of these. This is expressed through the use of suitable 
generator functions. (One for each type on initial value.) And one must define 
observer functions which observe whether values of given types are initial. 
This is expressed through the use of suitable observer functions. 

Property-oriented specifications, typically, have some axioms. The sche­
matic expressions £{(a, &,..., c,p, q,..., r) stand for some predicate. There may 
be several such. Here m is hinted at. They need not all involve all of the 
quantified sort values. Some £i(a,b, ...,c,p,q, ...,r) may be simple terms usu-
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ally involving initial values. Some <^(a, 6, ...,c,p, g, ...,r) may be equational: 
£jkt (-) = £jkr (-) o r £jkt ( - ) = £JkT (•••) • 

Blending Specification Styles 

Oftentimes we find it convenient to use both abstract and concrete types, i.e., 
sorts and defined types (sets, Cartesians, lists, maps, etc.) in what is essentially 
still a property-oriented specification. And often we find it convenient to use 
both property-oriented and model-oriented function definitions, that is, only 
partially using axioms. 

12.5.3 Model-Oriented Specification Style 

Techniques. Model-Oriented Specifications: The basic specification com­
ponents of a model-oriented specification are those of defined, i.e., concrete 
types, of function signatures of analytic and synthetic functions, and of their 
definition. 

scheme MOS = 
class 

type 
A = ... 
B = ... 

C = ... 
value 

f: ARGf -+ RES/ 
f(arg/) = B/(argl/) 
g: ARGg -> RESg 

g(argp) =Bg(axgg) 

h: ARG,, -+ RESh 

h(arg/,) = Bh(Biglh) 
end 

In the above conceptualised, i.e., illustrative, generic but not very specific, 
schema, named MOS (for model-oriented specification), a class has been hinted 
at. It has only defined types, i.e., concrete types. (What they are has not been 
shown. If composite, they could be set, Cartesian, list, map, etc., types.) And 
it has a number of function definitions: / , # , . . . , /i. Each is given a signature: 
ARGf -> RES/, etc., where ARG/ and RES/ are type expressions — usually 
involving Cartesians and functions. And each is given a definition: g(arg/J = 
Bg(arg\g), etc. Here arg5 is a list of formal parameter, i.e., argument identifiers, 
and Bg(arg\g) is an RSL expression, that is, a function definition £tody in which 
the argument identifiers occur free. • 
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Blending Specification Styles 

We sometimes find it convenient to both use concrete and abstract types, i.e., 
defined types (sets, Cartesians, lists, maps, etc.) and sorts in what is essentially 
still a model-oriented specification. And we sometimes find it convenient to 
both use model-oriented and property-oriented function definitions. Thus you 
may find both axioms and pre/post-specifications also in a model-oriented 
specification. 

12.5.4 Implicit and Explicit Functions 

Above we have made a distinction between observer and analytic functions, 
and between generator and synthetic functions. 

The distinction is purely academic, that is, it is one of pragmatic conve­
nience: the notion of observer and generator functions is — in our presentation 
— a notion that is related to property-oriented specification(s). Whereas the 
notion of analytic and synthetic functions is a notion that is related to model-
oriented specifications. Pairwise, observer and analytic functions are really 
the same: The former are postulated, and arise out of their signature and the 
axioms, whereas the latter can be explicitly defined. Pairwise, generator and 
synthetic functions are really the same: the former are postulated, and arise 
out of their signature and the axioms, whereas the latter can be explicitly 
defined. 

12.5.5 No Confusion, Please! 

You can't have your cake and eat it too 

You can '£ eat your cake and have it too9 

Principles. Not Confusing Property-Oriented and Model-Oriented Specifica­
tions: As the old proverb expresses: You cannot both define types concretely, 
say: 

type 
B, C, D 
A = B x C x D 

and postulate observer functions: 

value 
obs_B: A - • B, obs_C: A - • C, obs_D: A -> D. 

9Prom Heywood's A Dialogue Conteynyng Prouerbes and Epigrammes, 1562: 
"Wolde ye bothe eate your cake, and haue your cake?". John Keats quoted it as 
Eat your cake and have it" at the beginning of his poem On Fame in 1816. Franklin 
D. Roosevelt borrowed it in that latter form for his State of the Union Address in 
1940. 
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But you have concrete, i.e., composite types (and hence values) and extract 
components values, by explicitly defining functions: 

value 
extr_B: A - • B 
extr_B(a) = let (b,_,_) = a in b end 

Somehow it is like for a man to wear suspenders and a trouser belt: both, 
at the same time. But, we claim, it is actually worse: It is confusing two 
issues: abstract and concrete types, or, which is the same, abstract postu­
lated observer functions, and concrete precisely and deterministically defined 
extraction functions. • 

12.5.6 A Note on Observer Functions 

First Principle: Postulation 

What are observer functions? They are postulated. They cannot be defined; 
they just "exist". 

When we postulate a transportation net, N, and from that we postulate 
that we can observe segments and connections (e.g., street segments and street 
intersections), S and C, then we are claiming that these observer functions 
obs_Ss: N —y S-set and obs_Cs: N —> C-set exist. Certainly, in the domain, 
i.e., in the reality of street nets, we can, with our own eyes perform these 
observations. So, observer functions are not defined: "They just exist". But 
observer functions are bound by constraints. We use axioms to express those 
constraints. 

To say that observer functions are postulated "begs" an answer to the 
question: By what means can I record the observation? That is: if I cannot 
define an observer function then how can I compute its value for a given 
argument? The answer is simple, and it ought be simple: If the thing being 
observed is a phenomenon, i.e., something that is physically manifest, then 
Go look at that thing, and point out ("measure77) its observable parts. If the 
thing being observed is a concept, i.e., something that only exists in our mind 
then Postulate that thing and claim its parts! 

Second Principle: No "Self-reference" 

Take another example: When we postulate a transportation net, N, and from 
that we postulate that we can observe segments and connections (for example, 
street segments and street intersections), S and C, would it not be nice if we 
could also, from segments [connections] observe the connections [segments] to 
which they "attach"? It might be nice, but it would lead to paradoxes, or at 
least, what we would call undesirable infinite recursive descents! 

Let us argue this, but in more generality: Let the following abstract ex­
ample be given: 
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type 
A, B 

value 
obs_Bs: A -» B-set 
obs_A: B -» A 

axiom 
V a:A • V b:B • b G obs_Bs(a) => obs_A(b) = a 

Now what do we mean? It seems we mean that all of a:A is somehow contained 
in every b:B observable in a:A. But then, which are the bs observable in that 
contained a? The situation is untenable. 

So we edict: we cannot allow the predicate: V a:A • V b:B • b G obs_Bs(a) 
=> obs_A(b) = a. If we want as to be contained in bs, then they are not the as 
from which the bs were observed. This resolution is tantamount to allowing, 
in model-oriented terms: 

type 
A = ... x B-set x ... 
B = ... x A x ..., 

with the recursion of as inside bs ending with empty sets of bs. 

Third Principle: Identification 

When observing, or, in general modelling composite entities a need may arise 
for identification of the subentities. This is typically the case in the following 
(and other) situations. 

[1] Set Element Identification 

When what is being observed (i.e., modelled) most immediately is thought of 
as a set: 

type 
A, B 

value 
obs_Bs: A -» B-set 

then in order to distinguish the individual bs (in B) one is served well by 
introducing an identification function obs_Bi, in fact two (just to make sure!): 

type 
A, B, Bi 

value 
obs_Bs: A ->> B-set 
obs_Bis: A —> Bi-set 
obs_Bi: B - • Bi 
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axiom 
Va:A-

card obs_Bs(a) = obs_Bis(a) 
[or, which is the same:] 
V b,b':B • {b,b'}Cobs_Bs(a) A b ^ b ' 

=> obs_Bi(b) ^ obs_Bi(b'). 

In fact, as we shall later see, it often "pays off" in modelling to model A as a 
map from Bi identifier to "the rest of" B: 

type 
B, Bi 
A = Bi ^ B 

value 
extract_Bis: A —> Bi-set 
extract _Bis (a) = dom a 

We shall introduce maps in Chap. 16. 

[2] Fixed Structure Element Identification 

When what is being observed (i.e., modelled) most immediately is thought 
of as a structure of a fixed number of possibly distinct kinds (e.g., types) of 
entities, then model as a Cartesian. The positions in the Cartesian then serve 
to identify the components: 

type 
B, C, ...,D 
A = B x C x ... x D 

value 
a:A 
... let (b,c,...,d) = a in £(a,b,c,...,d) end 

We shall reintroduce Cartesians in Chap. 14. 

[3] Sequence Element Identification 

When what is being observed (i.e., modelled) most immediately is thought of 
as a sequence, then model it as a list, and the indices into elements of the list 
serve to identify. 

We shall introduce lists in Chap. 15. 

12.6 Exercises 

Exercise 12.1. Property-Priented and Model-Oriented Abstraction. Try with 
a closed book, i.e., without referring back to Page 231 or to Sect. 12.3.2 to 
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formulate our definitions of abstraction, property-oriented abstraction and 
model-oriented abstraction. Try formulate in a few words the main difference 
between property-oriented abstraction and model-oriented abstraction . 

Exercise 12.2. More on Abstraction. Try with a closed book, i.e., without 
referring back to Sect. 12.1.3 (the Essay on Abstraction), to formulate the 
basic ideas of abstraction. 

Exercise 12.3. Representation and Operation Abstraction. Try with a closed 
book, i.e., without referring back to Sect. 12.3.3, to formulate the basic model-
oriented ideas of representational and operational abstraction. Contrast this 
with property-oriented abstraction's treatment of representational and oper­
ational abstraction 

Exercise 12.4. X Property-Oriented and Model-Oriented Abstractions in the 
Transportation Net Domain. We refer to Appendix A, Sect. A.l, Transporta­
tion Net. 

Sketch two specifications of nets of segments and connections, and of comb­
ing (merging, adding) two nets into one net, and of projecting (removing, 
subtracting) one net from another: one specification being property-oriented 
(i.e., in terms of sorts, observer functions and axioms), another being model-
oriented (i.e., in terms of Cartesians and sets, and in terms of explicit function 
definitions for merge and project). 

Remember: Do not forget (as one usually does in a property oriented spec­
ification) to express all the things that do not change. 

Sketch: It is early in this volume. So you can only sketch. You still do not 
have at your disposal all the model-oriented types and their operations. But 
try anyway! 

Exercise 12.5. X Property-Oriented and Mo del-Oriented Abstractions in the 
Container Logistics Domain. We refer to Appendix A, Sect. A.2, Container 
Logistics. 

Sketch type specifications of container ships and container storage areas, 
and function definitions of unloading containers from a container ship to a con­
tainer storage area, and of loading containers from a container storage area 
to a container ship: one set of specifications being property-oriented (i.e., in 
terms of sorts, observer functions and axioms), another being model-oriented 
(i.e., in terms of Cartesians and sets, and in terms of explicit function defini­
tions for unload and load). Assume the container unloads to be of one container 
from a tier (or stack) top position on a container ship to a similar position in 
a container storage area — where these positions are identified by bay, row 
and tier (stack) indices. Similarly for loads. 

Remember: Do not forget (as one usually does in a property oriented spec­
ification) to express all the things that do not change! 



262 12 Property-Oriented and Model-Oriented Abstraction 

Sketch: It is early in this volume. So you can only sketch. You still do not 
have at your disposal all the model-oriented types and their operations. But 
try anyway! 

Exercise 12.6. A Property-Oriented and Model-Oriented Abstractions in the 
Financial Service Industry Domain: We refer to Appendix A, Sect. A.3, Fi­
nancial Service Industry. 

Sketch a type specification of banks, and function specifications of opening 
and closing accounts, and of depositing into and withdrawing from accounts: 
one set of specifications being property-oriented (i.e., in terms of sorts, ob­
server functions and axioms), another being model-oriented (i.e., in terms of 
Cartesians and sets, and in terms of explicit function definitions for open, 
close, deposit and withdraw). 

Assume that the main entities of a bank are: a catalogue, clients, that lists 
for each bank client their accounts; another catalogue, sharing, which for each 
account lists the one or more account clients that share the account; and a 
"state" which to each account associates the balance of that account. 

Remember: Do not forget (as one usually does, in a property oriented 
specification) to express all the things that do not change! 

Sketch: It is early in this volume. So you can only sketch. You still do not 
have at your disposal all the model-oriented types and their operations. But 
try anyway! 



13 

Sets in RSL 

• The prerequisite for studying this chapter is that you possess knowledge 
of the mathematical concept of sets as introduced in Chap. 3. 

• The aims are to introduce the RSL abstract data type of sets: the type, the 
values, and enumeration and comprehension forms of expressing sets, to 
introduce the RSL set operations, and thus to illustrate the "power" (i.e., 
expressiveness) of sets by illustrating simple and not so simple examples 
of phenomena and concepts that can be modelled in terms of sets. 

• The objective is to set the reader free to choose sets as models of phe­
nomena and concept entities, when appropriate, and to not choose sets 
when it is not appropriate. 

• The treatment is semiformal and systematic. 

A Band of Musicians A Bevy of Beauties 
A Bunch of Crooks A Crew of Sa i lo r s 
A Flock of Geese A Flee t of Ships 
A Gang of Outlaws A Group of People 
A Herd of Ca t t l e A Mop of Hair 
A Pack of Dogs A Posse of Vig i lan tes 
A Pride of Lions A School of Dolphins 
A Sui te of Bel l s A Swarm of F l i e s 

A Volley of Arrows 

— are all examples of Sets! 

Characterisation. By a set we shall, loosely, understand an unordered col­
lection of distinct elements (i.e., entities) — something for which it is mean­
ingful to speak about (i) an entity being a member of a set (or not) G, (ii) 
the union (merging) of two or more sets into a set (of all the elements of the 
argument sets) U, (hi) the intersection of two or more sets into a set (of those 
elements which are in all argument sets) D, (iv) the complement of one set 
with respect to another set \ , (v) whether one set is a subset of another set C 
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and C, or whether they are equal or not, = , resp. 7^, and (vi) the cardinality 
of a (finite) set (i.e., how many members it "contains") c a r d , etc. • 

We refer to Chap. 3 for a first, reasonably thorough introduction to the math­
ematical concept of sets. In the present section we shall focus on the means 
for defining and using set types and sets in the predominant specification 
language of these volumes: RSL. 

13.1 Sets: The Issues 

The idea to be illustrated in this section is tha t of the use of the discrete 
mathematics concept of sets in abstracting domain, requirements and software 
phenomena and concepts. Sets offer themselves as an abstraction when a 
component, s, can best be characterised as a "variable sized" ("flexible")1 un­
ordered collection2 {a, 6, . . . , c } of otherwise "undistinguished", but distinct 
components — which one can inspect for element membership ( G ) , to which 
one can "add" elements (U), from which one can "subtract" elements ( \ ) , with 
respect to which one can form other "common" ("shared") sets (fl), etc. 

Sets will become proper components in the modelling of "zillions" of other 
problems. But sets as the only model-oriented (i.e., as the only discrete mathe­
matical) "device" to "deploy" in abstraction, is a sign of too extreme frugality! 
Tha t is just our modest opinion. 

We refer to the axiom system given for simple sets in Example 9.23. 
This chapter is, as are Chaps. 13-17, built up as follows: 

• The set da ta type (Sect. 13.2) 
• Examples of set-based abstractions (Sect. 13.3) 
• Abstracting and modelling with sets (Sect. 13.4) 
• Inductive set definitions (Sect. 13.5) 
• A review of set abstractions and models (Sect. 13.7) 

There are many examples because before one can write good specifications 
one must have read and studied many example specifications. While you may 
not need to study all of them now, you can return to some later. The chapter 
ends with a brief discussion. 

xWe refer to Sect. 13.6 for an explanation of what really is meant when we say 
variable-sized or vary. 

2The foundational nature of sets is revealed in our inability to describe a set by 
terms we all understand. Here we "fake" a characterisation by, instead, explaining a 
concept of set by a concept of unordered collection. We could have tried aggregation 
or structure. And we — and you — would have been no wiser! 
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13.2 The Set Data Type 

We have already, in Example 9.23 covered the mathematical notion of simple 
sets by presenting an axiom system for sets. We refer the reader to first recall 
that definition. 

13.2.1 Set Types: Definitions and Expressions 

Let A stand for a type whose possibly infinite number of elements include 
{a i , a 2 , . . . , o n , . . . } . 

Types whose values can be considered finite, respectively finite or infinite, 
sets of A elements can be defined using the suffix -set, respectively the -infset 
type power set3) operators. See Fig. 13.2.1. 

. Types and Values . 

type examples 
A |a,ai ,a2,...,am,...| 
F = A-set {{}, {a}, {ai,a2,...,am}, ...} 
S = A-infset {{}, {a}, {ai,a2,...,am}, ..., {ai,a2,...}} 

Fig. 13.1. Examples 

The type forming operator -set applies suffix to a type expression, say A, and 
forms the type of all finite subsets of A. The type forming operator -infset 
applies suffix to a type expression, say A, and forms the type of all finite as 
well as possibly infinite subsets of A. The -set and -infset type operators are 
akin to the power set operator on sets. Note that -set and -infset apply to 
type expressions, whereas the power set operator (which is not offered in RSL) 
applies to sets. 

Example 13.1 A Simple Set Example: Let fact name the factorial function, 
then 

{fact(l),fact(2),fact(3),fact(4),fact(5),fact(6)} 

expresses a simple set of six element, the six "first" factorials! • 

3Other forms of the power set operators are pA, BA (where B refers to Boole, 
the Irish mathematician), or ^A (where exponentiation of 2 is meant to be to the 
power of the cardinality of the set A — which, in turn, is meant to designate the 
number of different subsets of A, namely the number of elements of 2^)-
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A-set and A-infset are set type expressions. F = A-set and S = A-infset are 
set type definitions. One can see, using metalinguistic notation, i.e., mathe­
matical notation4 ("outside" RSL), that: 

[1] Bool-set = Bool-infset, and Nat-set C Nat-infset 

Annotations: A is (assumed to be) a type name, i.e,, stands for a type, that is, 
a set of values — which we do not presently define. The keyword -set when 
applied suffix to a type name denotes the power set operation on a type and 
makes the type expression A-set denote the type, i.e., the set, of all finite 
subsets of the type, i.e., the set, A. A-infset correspondingly stands for the 
(type, i.e., colloquially, the) set of all finite and (possibly) infinite subsets of 
A. (There will only be the possibility of infinite subsets of A if A itself is an 
infinite (type) set.) The type names F and S are then made to name these 
respective sets by the respective type equations. A may be a 'sort', i.e., an 
'abstract type' which has just been named but not given a model in terms of 
something else, as has F and S. These latter are, in contrast, called 'concrete 
types'. The keyword type tells us that the definitions which follow are type 
definitions. 

13.2.2 Set Value Expressions 

There are several forms of set valued expressions: enumerations, comprehen­
sions and operator/operand expressions. 

Set Enumerations 

There follows, in the right half of the above expressions, examples of enumer­
ated set expressions: an empty set, a singleton set, a finite set of m elements. 
The use of ellipses (. . .) is metalinguistic, i.e., not part of our RSL notation. It 
is used only to signal to you, the reader, that we wish to exemplify an arbitrary 
set of m elements. If we were to enumerate a specific set of m (for example, for 
m = seven) elements, then we would have to list all seven elements by their 
names (or some expressions). 

Sets are finite or infinite aggregations, collections, or structures of distinct 
individuals. Sets are considered variable-sized, or flexible in that the number 
of their elements may vary. Curly braces: "{", " } " , and commas: ",", are 
set value forming. A set may contain no (i.e., zero) elements (the empty set 
{}). Another set may contain just one element (singleton sets {a^}, {%•}, . . . , 
{dk}), and so forth. A given (say, finite) set, of course, has a specific cardinality 
(number of elements). But one may form a set from two sets resulting in a 
set with cardinality being the number of distinct elements in the two sets. 
Or one may remove an element from a nonempty set, resulting in a set with 
cardinality one lower. 

4The metalinguistics of formula [1] is that we use the infix equality and the 
proper subset operators (=, resp. C) between type expressions. 
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Let e, el, e2, . . . , en5 be expressions that deterministically or nondeter-
ministically evaluate to not necessarily distinct values (v, vl, v2, . . . , vn) of 
some type A, and let ei, ej be expressions which deterministically or nonde-
terministically evaluate to integer values, say vi, vj, then the following are 
examples of set value expressions: 

[1] {}, {e}, . . , {el,e2,...,en} 
[2] {eL.ej} 

The above expressions, in [1], left to right, denote the single model of the 
empty set of no elements; a set of models of singleton sets of one element values 
(any value will do!), etc.; respectively a set of models of sets of not necessarily 
n distinct element values, since some ei, ej for different i, j may evaluate to 
the same value. The range set expression (of line [2]) denotes a set of models 
each being a (dense) set of integers lying in the range between, and inclusive, 
vi and vj. If vi>vj, then the integer set is empty. For each model the above 
expressions have a specific, determinate value. Notice, hence, our distinction 
between denotations, in terms of models (set of mathematical structures), and 
values, in terms of mathematical entities. 

This is an important distinction — and it is to be kept in "vigilant" mind 
throughout these volumes. 

We call the above, [1-2], explicit enumeration of set values. We call the 
second line example, [2], {ei..ej} an integer range expression. Later (para­
graph Set Comprehension in this section) we shall show an implicit enu­
meration of set values in the form of set comprehension (i.e., comprehended 
set expressions). We use explicit set enumeration expressions when we wish 
to explicate specific, always finite, and usually "small" sets. We use compre­
hended set expressions when we wish to implicitly specify (i.e., 'implicate'), 
possibly infinite, sets characterised by some predicate. 

Set Value Operator/Operand Expressions 

Sets come, in RSL, with the usual operations listed below. G is taken to stand 
for a primitive, i.e., as an inexplicable operation, the set membership opera­
tion. 

5In the rest of these volumes we shall use the following naming convention: 
Identifiers starting with e (and often "suffixed" or indexed (subscripted) by some 
alphanumeric characters) stand for expressions. Identifiers starting with v (and 
often suffixed or indexed (subscripted) by some alphanumeric characters) stand for 
values. Values are definite, in the sense that a value is a specific thing. Expressions 
may be constant expressions, i.e., evaluate, in any context (and state) to one and 
the same value, or expressions may be variable expressions, i.e., evaluate, in different 
contexts (and states) to different values. 
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Set Operation Signatures and Examples 

We explain the formulas and expressions of Fig. 13.2.2. The keyword value 
tells us that the definitions which follow are value definitions. In all of the 
below we assume that the operations, wherever applicable, apply to set val­
ues. The 13 lines that follow are extra- (or meta-) linguistic, i.e., outside 
RSL. They are used here to present RSL set constructs. In particular they are 
meant to express that there are 13 given (i.e., "built-in") set operators: G, 
the membership operator (is an element member of a set, true or false?); 0, 
the non-membership operator (is an element not a member of a set, true or 
false?); U, the infix union operator (when applied to two sets expresses the 
set whose members are in either or both of the two operand sets). 

Signatures an 
value 

G: A x A-infset -> Bool 
£: A x A-infset -t Bool 
U: A-infset x A-infset —• A-infset 
U: (A-infset)-infset —> A-infset 
fl: A-infset x A-infset —• A-infset 
fl: (A-infset)-infset —> A-infset 
\: A-infset x A-infset —> A-infset 
C 
c 
= 
* 

A-infset x A-infset —» Bool 
A-infset x A-infset —» Bool 
A-infset x A-infset —» Bool 
A-infset x A-infset —» Bool 

card: A-infset —> Nat 

d Examples 
examples 

a 6 {a,b,c} 
a g {}, a g {b,c} 
{a,b,c} U {a,b,d,e} = {a,b,c,d,e} 
U{{a},{a,b},{a,d}} = {a,b,d} 
{a,b,c} D {c,d,e} = {c} 
n{{a},{a,b},{a,d}} = {a} 
{a,b,c} \ {c,d} = {a,b} 
{a,b} C {a,b,c} 
{a,b,c} C {a,b,c} 
{a,b,c} = {a,b,c} 
{a,b,c} ^ {a,b} 
card {} = 0, card {a,b,c} = 3 

Fig. 13.2. Set operations 

U, the distributed prefix union operator (when applied to a set of sets expresses 
the set whose members are in some of the sets of the operand set)] fl, the infix 
intersection operator (expresses the set whose members are in both of the two 
operand sets); fl, the distributed prefix intersection operator (when applied 
to a set of sets expresses the set whose members are in all of the sets of the 
operand set); \ , the set complement (or set subtraction) operator (expresses 
the set whose members are those of the first operand set which are not in 
the second operand set); C, the proper subset operator (are the members of 
the first operand set all members of the second operand set, and are there 
members of the second operand set which are not in the first operands set, 
true or false?); C, the subset operator (as for proper subset, but allows 
equality of the two operand set to be true); =, the equal operator (are the 
two operand sets the same, true or false?); / , the not equal operator (are 
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the two operand sets different, t rue or false?); and card, the cardinality 
operator ("counts" the number of elements in the presumed finite operand 
set). U and fl are called overloaded operators. They apply to pairs of sets as 
well as to possibly infinite sets of sets. 

Sets A,B A union B 

A 

B 

Four set-forming 

operation examples 

(the shaded figures) 

Fig. 13.3. Four set-forming operations 

In Fig. 13.3 the text 'union' (respectively 'intersection') stands for the mathe­
matical operator U (respectively fl). 

M a t h e m a t i c a l M e a n i n g of t h e Set Opera tors 

We define the meaning of the set operators. G is a primitive (given, assumed) 
operation: 

value 
s' U s" = { a | a:A • a G s' V a G s" } 
U ss = { a | a:A • 3 s:A-set * s G s s = > a G s } 
s' H s" = { a | a:A • a G s' A a G s" } 
fl ss = { a | a:A • V s:A-set * s G s s = > a G s } 
s' \ s" = { a | a:A • a G s' A a £ s" } 
s' C s" = V a:A • a G s' => a G s" 
s' C s" = s' C s" A 3 a:A • a G sr/ A a £ s' 
s' = s" = V a:A • a G s' = a G s" = sCs r A s'Cs 
s' ^ s , ; = s' n s / ; ^ {} 
card s = 

if s = {} t h e n 0 e lse 
let a:A • a G s in 1 + card (s \ {a}) e n d e n d 
pre s / * is a finite set * / 

card s = chaos / * tests for infinity of s * / 

The above definition is not in RSL. Instead it is in "ordinary" mathematics . It 
relies on logic and set comprehension as already understood. If we claimed it 
was self-referentially defined, i.e., in RSL, then any meaning one would assign 

B\A 
A\B 
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to, for example, the logic connectives and quantification would be OK, and 
one would get a new meaning each time! 

Set Comprehension 

We finish this terse overview of the RSL set data type by illustrating set com­
prehension. To do so we introduce a sort B and the concrete types of predicates 
(P) over A and functions (Q) from A into B. (It is enough that the q:Q func­
tions are partial, but defined (over a:A) whenever (for p:P) p(a) is true.) Now 
the "function" comprehend illustrates the idea of set comprehension: We de­
fine the set of all those q(a) for which a is of type A such that (•) a is in 
(argument) set s and the predicate p(a) holds. 

Concretely we may express: 

Example 13.2 A Simple Set Example: Let fact name the factorial function, 
then 

{fact(i)|i:Nat • i G {1..6}} 

expresses a simple set of six elements, the first six factorials! • 

type 
A, B 
P = A - • Bool 
Q = A ^ B 

value 
comprehend: A-infset x P x Q - } B-infset 
comprehend(s,P,Q) = { Q(a) | a:A • a G s A V(a) } 

The texts Q(a) and P(a) need not be invocations of functions Q, respectively 
V, but can be any B-valued respectively Bool-valued expression over the free 
variable a. P(a) must, additionally, be deterministic in order to evaluate to 
true. 

We use comprehend set expressions when we wish to implicitly specify 
(i.e., 'implicate'), possibly infinite, sets, characterised by some function, q, 
and some predicate, p. 

Set comprehension, as do list and map comprehension (to be introduced in 
forthcoming chapters), expresses a form of 'homomorphic' principle: Functions 
over composite structures being expressed as a(nother) function over the (first) 
function applied to all immediate constituents of the composite structure. We 
refer to Sect. 8.4.4 for a first enunciation of the (homo)morphism concept. 

The general syntactic form of comprehended set expressions is 

{ <value_expr> | <typings> • <bool_expr> } 

where the • <bool_expr> } part is optional. 
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Sets — Determinism and Nondeterminism Revisited 

Since set enumeration and range expressions in general denote sets of models 
of sets; and since set operands of set operator/operand expressions in general 
apply to evaluation within such models, we can expect that the denotation of 
set operator/operand expressions, and of comprehended set expressions like­
wise denote sets of models of sets or such other appropriate values (Booleans, 
natural numbers) as are the result types of the set operators. It is important 
to keep this in mind throughout! 

Example 13.3 Nondeterministic Sets (Abstract): Let expressions ei, e2, and 
e3, denote the set of models: 

{vu,vl2}, {v2l,v22,V23}, and j>3}, 
respectively. Then the set expression {ei, e2,e3} denote the set of models: 

{{vll,V2l,V3}, {vl2,V2l,V3}, {VU,V22,V3}, {vl2,V22,V3}, {vU, V2s, V3}, 

{vl2,V2s,V3}} 
Any one of these, viz., {f i i ; ^23,^3}, is a value of {ei,e2,e3}. • 

Sets — Models, Values and the = Operation 

A specification, all of it, denotes a set of models. The evaluation of a spec­
ification, all of it, takes place in exactly one of these models. Which one is 
chosen, if there is more than one model in the set, we cannot specify. 

Equality, =, of set expressions is true if the chosen model possesses ap­
propriate set element values, otherwise false: 

{el,e2,...,en} = {e,e',...,e"} 

is true if both expressions evaluate, in the chosen model, to sets of the same 
number of values, and such that the sets of these values are the same, otherwise 
false. To express that we wish equality to hold for all models we use the = 
operator: 

{el,e2,...,en} = {e,e',...,e"} 

is true if for all models the set values are equal. 

13.2.3 Set Binding Patterns and Matching 

We shall here consider the RSL construct of set binding patterns and the set 
matching concept. We shall later deal with these concepts in other contexts: 
Sects. 14.4.1, and 14.4.2 for Cartesians, 15.2.3 for lists and 16.2.3 for maps. 

By a 'set let decomposition binding pattern' we understand a construct 
basically of the following form: 
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type 
A, B = A-set 

value 
... let {a} U b = e in ... end ... 
post e = {a} U b A b = e \ {a} 

Here it is (somehow) known that e is a nonempty set. {a} U b is the binding 
pattern. The understanding of let {a} U b = e in ... end is that e is a set 
expression with nonempty value, say v; that the free identifier a is bound to 
an arbitrary member of v; and that the free identifier b then is bound to the 
remainder of v, that is a possibly empty set without a. 

Example 13.4 Set Pattern: We show a very simple example of the use of set 
binding patterns — leaving its "encoding" to the reader: 

value 
sum: Nat-set —> Nat 
sum(ns) = 

ifns={} 
thenO 
else 

let {n} U ns; = ns in 
n + sum(ns/) 

end end 

The general form of a set binding pattern definition is: 

let { binding_pattern } U id = set.expr 
in body_expr end 

Here binding_pattern is a simple expression with only free identifiers, id is 
an identifier, and set.expr is a set-valued expression which evaluates to at 
least one element of a kind that 'matches' the binding_pattern. Which forms 
binding_pattern may take, and what 'matching' means will be dealt with, in 
Sect. 19.6. We shall introduce similar specification language binding pattern 
constructs for Cartesians, lists and maps. 

13.2.4 Nondeterminism 

In the typing construct and in the set decomposition construct: 

let a:A • P(a) in ... end 
let {a} U s = set in ... end 

the selection of the a value is nondeterministic. Nondeterminism is an impor­
tant abstraction mechanism. It expresses that we abstract from the specific 
choice: Any, or almost any, will do! 
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13.3 Examples of Set-Based Abstractions 

This section "matches" Sections 14.3, 15.3, 16.3, and 17.2. They all give small 
examples of set, Cartesian, list, map and function-based specifications. They 
are meant as class room examples. 

13.3.1 Representation I 

Example 13.5 Equivalence Relation cum Partitioning: Let A denote any 
finite set of (simple) values. An equivalence relation over A is a set of disjoint 
sets of A elements which together "span" all of A. Such an equivalence relation 
is also called a partitioning of A. Given an equivalence relation, q, over A, and 
two elements, a and a' of A such that a and a' belong to different elements 
(also called classes) s, and s' of q, merge those two classes into one in q', 
leaving all other classes of q unchanged in q'. 

type 
A 
Q' = (A-set)-set 
Q = {| q:Q' • wLQ(q) |} 

value 
sas:A-set 
wf_Q: Q' - • Bool 
wf_Q(q) = 

U q = sas A 
V s,s':A-set • s / s ' A {s,s'}Cq => s n s'={} 

merge: A x A x Q - ^ Q 
merge (a,a',q) as q' 
pre 3 Sjs'iS^s^s'A {s,s'}CqA a G sA a'isin s' 
post (V s:S-s G qA s n{a,a'}={} => s G q') A 

(V s,s':S-{s,s'}CqA a G sA a'isin s' => 
s U s ' G q') 

assert: 
card q = card q' + 1 V 
3 s,s':S • q n q' = {s,s7} A a G s A a' G s' 

We refer to Examples 15.3 and 16.4. • 

13.3.2 File Systems I 

This is the first in a series of models of what, with an overbearing mind, we 
could call file systems. Other models are presented in Examples 14.2 (Carte­
sians), 15.6 (lists) and 16.8 (maps). 
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Example 13.6 A Set-Oriented File System: A file system consists just of an 
unordered, non-void collection of distinct information. Information is itself an 
unordered, nonempty collection of distinct data. 

A file system user can (i) create a void file system of no information; can (ii) 
insert information not already in the file system; can (iii) inquire whether some 
information is in the file system; can (iv) get the set of all the information 
("informations") that each contain some specific data; can (v) delete some 
given data from given information; can (vi) delete all the information that 
contains some given data; and can (vii) update all that information which 
contain some given data by replacing this data with some other given data. 

type 
D 
I = D-set 
B = I-set 

examples 
d, d', ..., d":D 
i:{}, i':{{d}}, iff:{{dAf}MAff}MtA,%..} 
b:{{{d}},{{d/}},{{d//}},{{d,d/}},{{d,d/},{d,d//},{d/

>d//}}} 

Updating all the information in b that contains d with d' results in: 

b:{{{d'}},{{d"}},{{d'},{d',d"}}} 

value 
void: Unit ->- B 
void() = {} 

insert: I - • B -^ B 
insert(i)(b) = b U {i} pre i ^ b 

is_in: I -> B ->> Bool 
is_in(i)(b) = i G b 

get: D ->> B - • I-set 
get(d)(b) = { i | i : I - i e b A d e i } 

deLspec: D x U B ^ B 
del_spec(d,i)(b) = 

{i'|i':H'isin bAd0 i'}U{i'\{d}|i':M'isin bAd G irAi=i'} 
pre d G i 

deLall: D - • B 4 B 
del_all(d)(b) = 
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{i'|i':I.i'isin bAd0 i}U{i'\{d}|i':I-i'isin bAd G i'} 

update: D x D - ^ B ^ B 
update(od,nd)(b) = 

{i'|i':I-i'isin bAod£ i}U{i'\{od}U{nd}|i':I-i'isin bAd <E i'} 

13.3.3 Representation II 

Example 13.7 Coarsest Partitioning: We refer to an earlier example: Exam­
ple 13.5. Let there be given a sort A of further unspecified elements. Let q be 
a set of sets of A elements. These sets may overlap. A coarsest partitioning p 
is the smallest equivalence relation over A, that is, a set of disjoint sets of A 
elements, such that each of these sets is contained in some set element of q 
and such that all A elements of q are in some set of p. 

type 
A, Q = (A-set)-set, P' = Q 
P = {| p:P' • wf-P(p) |} 

value 
wf_P: A-set - • Bool 
wf_P(p) = V ma,ma': A-set • m a / m a ' A {ma,ma'} C p => ma D ma' = {} 
cp: Q - • P 
cp(q) = 

if 3 ma,ma':A-set • m a / m a ' A ma fl ma' ^{} 
then 

let ma,ma':A-set • m a / m a ' A ma D ma' ^{} 
in cp((q \ {ma,ma'}) U {ma D ma',ma \ ma',ma'\ma} \ {}) 
end 

else q 
end 

The fact that the function cp, defined in Example 13.7, actually "computes" 
the coarsest partitioning, that is, produces a result which satisfies wf_P, tran­
spires from the termination criterion for cp. But whether cp ever reaches a 
value of its input argument that satisfies the termination criterion requires a 
proof. 
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13.4 Abstracting and Modelling With Sets 

This section "matches" Sections 14.4, 15.4, 16.4 and 17.3. They all give larger 
examples of set, Cartesian, list, map and function abstractions and models. 
They are meant as self-study examples. 

The purpose of this section is to introduce techniques and tools for model-
oriented specifications primarily based on sets. Among the set modelling prin­
ciples, techniques and tools are (1) Subtyping: Sometimes a type definition 
defines "too much"; a type constraining (well-formedness, invariant) pred­
icate technique can therefore be applied. (2) pre /post -conditions: function 
abstraction in terms of pre- and post-conditions. (3) "Input/Output/Query" 
functions: Identification of main functions according to their signature. (4) 
Auxiliary functions: Decomposition of function definitions into "smallest" 
units. The principles and techniques reoccur for Cartesians, lists and maps in 
Sect. 14.4, 15.4 and 16.4. 

13.4.1 Modelling Networks 

In Example 16.7 we show models of tree-like hierarchies — such as we saw in, 
for example, feudal, central European states in the past, and such as we see in 
conventionally organised company structures. In the next example we model 
instead the flat "group of persons"-centered and connected networks as seen 
in especially rural Chinese societies, not only of the past [499]. 

Example 13.8 Chinese Societal Nets: 

Narrative of Flat Networks: 

Let c:C stand for a citizen value c being an element in the type C of all such. 
Let g:G stand for any (group) of citizens, respectively the type of all such. Let 
s:S stand for any set of groups, respectively the type of all such. Two otherwise 
distinct groups are related to one another if they share at least one citizen, 
the liaisons. A network n:N is a set of groups such that for every group in the 
network one can always find another group with which it shares liaisons. 

Formalisation of Flat Networks 

Solely using the set data type and the concept of subtypes, we can model the 
above: 

type 
C 
G' = C-set, G = {| g:G' • g^{} |} 
S = G-set 
L' = C-set, L = {| £:V • £^{} |} 
N' = S, N = {| s:S • wf-S(s) |} 
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value 
wfJS: S - • B o o l 
wf_S(s) = V g:G • g G s => 3 g':G • g ' e s A share(g,g') 
share: G x G -» B o o l 
share(g,g') = g ^ g ' A g fl g' / {} 
liaisons: G x G —> L 
liaisons(g,g') = g fl g' pre share(g,g') 

Annotations: L stands for proper liaisons (of at least one liaison). G', L' and N' 
are the "raw" types which are constrained to G, L and N. {| binding:type_expr 
• booLexpr |} is the general form of the subtype expression. For G and L we 
state the constraints "in-line", i.e., as direct par t of the subtype expression. 
For N we state the constraints by referring to a separately defined predicate. 
wf_S(s) expresses — through the auxiliary predicate — tha t s contains at least 
two groups and tha t any such two groups share at least one citizen, liaisons is 
a "truly" auxiliary function in tha t we have yet to "find an active need" for 
this function! 

Narrat ive of H y p e r - n e t w o r k s 

A society, m:M, can be viewed as consisting of two or more (i.e., multiple) 
networks. As before, every network, n:N, in the set m of multiple networks, has 
each of its groups relate to at least one other, different group of tha t network. 
For a society it may or may not be tha t two or more distinct networks have 
respective groups which share emissaries, i.e., citizens, with one another. And, 
for a society it may or may not be tha t two or more distinct networks have 
identical groups, etc.! 

Formal i sa t ion of H y p e r - n e t w o r k s 

t y p e 
M' = N-se t 
M = {| m:N' • card m > 1 |} 

value 

13 .4 .2 M o d e l l i n g Pseudo-h ierarch ie s 

We cannot illustrate anywhere reasonable uses of models based entirely on 
sets. In the next examples we additionally assume the Cartesian da ta type — 
as introduced in Sect. 6.6. 
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Fig. 13.4. An example hyper-graph 

Example 13.9 Graphs: Simple and Hyper: 

Narrative of Simple Graphs 

A graph, g:G, consists of a set of uniquely labelled nodes n:N, and a set of 
unlabelled multi-edges, e:E. A multi-edge is ("thought of", i.e., modelled as) 
a set of one or more (i.e., always as a nonempty set of) nodes: If an edge 
is (modelled as) a singleton set, then the edge is said to "loop" from that 
labelled node only back to itself. If an edge is (modelled as) a set of two or 
more nodes, then the edge is said to "connect" those nodes, including "loops". 
Nodes of edges of a graph must be nodes of the graph. 

Formalisation of Simple Graphs 

type 
N 
E' = N-set 
E = {| ns:E' • ns ^ {} |} 
G' = N-set x E-set 
G = {| (ns,es):G' • U es C ns |} 

Annotations: The E' constraining predicate, ns^{}, expresses that an edge is 
not void. G' expresses that a (potentially ill-formed) graph is modelled as a 
Cartesian pair of nodes and edges. The G; constraining predicate expresses 
that all nodes of edges are nodes of the graph. 

Narrative of Hyper-graphs 

A hyper-graph, h:H, is a graph with vertices and arcs, where simple graphs 
have nodes and edges, respectively. More specifically, vertices, v:V, are simple 
graphs — as defined above — such that no two vertices have nodes in common. 
Arcs, a:A, are sets of one or more nodes, such that all nodes belong to different 
vertices. Figure 13.4 attempts to illustrate a hyper-graph. 
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F o r m a l i s a t i o n of H y p e r - G r a p h s 

t y p e 
V = G 
A = N-se t 
H' = V-se t x A-se t 
H = {| h:H' • wf_H(h) |} 

v a l u e 
wf_H: H' -> B o o l 
wf_H(vs,arcs) = wf_vertices(vs,_) A wf_arcs(vs,arcs) 

Annotations: V: A vertex is a graph, as defined earlier, and can thus be as­
sumed well-formed. A: An arc is a set of nodes. H', H: A hyper-graph has 
its vertices well-formed ("in isolation"), and its arcs well-formed with respect 
also to vertices. (Note the use of the wildcard (_) as a "don't care" argument 
in the invocation (above) and the definition (next) of wLvertices. One could 
instead just have used the vs argument in a more narrowly typed function. 
We have, perhaps arbitrarily, decided to keep the type as chosen, in order to 
signal, through the wildcard (_), tha t the specific constraints apply only to 
par t of the graph!) 

v a l u e 
wLvertices: H' —> B o o l 
wLvertices (vs,_) = 

V v,v':V • {v,v'}Cvs => wf_ns(ns(v),ns(v')) 

wLarcs: H' —> B o o l 
wLarcs(h) = wf_arcs_as(h) A wLlinks(h) 

ns: V -» N-se t , ns(nodes,_) = nodes 
ns: V-se t —> N-se t , 
ns(vs) = U{ns(v)|v:VW G vs} 

Annotations: wLvertices: Vertices are well-formed if their nodes are well-
formed. wLarcs: Arcs are well-formed if they are well-formed wrt. nodes of 
vertices and they link properly, ns is an overloaded auxiliary function: It ap­
plies both to vertices and to sets of vertices. It yields their nodes. 

wLns: N-se t x N-se t -^ B o o l 
wf_ns(ns,nsr) = n s ^ n s ' => ns H ns7 = {} 

wf_arcs_ns: Hr —> B o o l , 
wf_arcs_ns(vs,arcs) = arcs C ns(vs) 

wLlinks: Hr ->* B o o l 
wf_links(vs,arcs) = 
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V n,n':N,v:V • 
{n,n'}CarcsAv G vsA{n,n'}Cnodes(v) => n=n' 

Annotations: wf_ns: Node sets of hyper-graph vertices are well-formed if, when 
they are distinct, they share no nodes in common. wf_arcs_ns: Well-formedness 
of arcs wrt. nodes of vertices holds if arcs mention only nodes of vertices. 
wfJinks: Well-formedness of links expresses that no two distinct nodes of an 
arc belong to the same vertex, or vice versa: Each node of an arc belongs to 
a distinct vertex. • 

The two previous examples illustrated several ideas: (1) Seemingly complex 
concepts can be modelled in simple terms, using sets and Cartesians. (2) 
Social sciences concepts (here of citizen-brokered community networks and 
society-brokered interactions between networks) can be captured abstractly. 
It remains to show a number of "interesting" functions on such networks and 
interactions, that is, to use formalisation to create formal, social sciences the­
ories. (3) Graphs and hyper-graphs are mathematical concepts that relate 
to the social sciences concepts of citizen networks, etc. (4) Well-formedness 
constraints (needed to express appropriate subtypes) can and should be de­
composed into "smallest" parts — with some of these suitably being defined 
in terms of auxiliary functions. 

Some Ancillary Remarks: The formal, social sciences theories sug­
gested above would certainly make use of many such auxiliary concepts. "Jot­
ting" them down, as was liaisons (Example 13.8), is part of the research into 
such a theory: The formaliser's mind "roams in uncharted territory". Some­
times the formulation of such seemingly auxiliary concepts takes on a life of 
its own and become crucial components of an emerging theory. These last 
remarks are true not just for the above example of a possible social sciences 
theory, but for any domain or requirements or software design theory we might 
contemplate! 

The next example will adopt a slightly different style of presentation. 

13.4.3 Modelling a Telephone System 

We give an example which illustrates sets and Cartesians. It differs slightly 
from that of the property-oriented model of a telephone exchange system, 
Example 12.1. In the example below we do not make any distinction between 
callers and called. This simplifies several matters. 

The example is "borrowed" — in edited form — from J.C.P. Woodcock 
and M. Loonies' book Software Engineering Mathematics [534]. 

Example 13.10 Telephone System, I: The presentation is in two parts: The 
present example and Example 13.11. Each part will alternate between narra­
tives and formalisations. 
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Narrative of the State 

There are the notions of: 

• subscribers, s:S; 
• connections, c:C, between two or more subscribers; 
• actual, a:A, and 
• requested, r:R, connections between two or more subscribers; 
• and a telephone exchange system, x:X, with actual and requested connec­

tions such that all actual connections are requested. 

Formalisation of the State 

type 
S 
C = {| ss | ss:S-set • card ss > 2 |} 
R = C-set 
A = C-set 
X = {| (r,a) | (r,a):RxA • a C r A f] a = {} |} 

where f] is the distributed intersection operator. f]a = {} expresses that 
no two connection elements of a share subscribers. That is, no subscriber 
participates in more than one actual call. We may consider x:X to represent 
the state notion of this system. 

An example may be warranted: 

value 
a,b,c,d,e,f,g,h,k:S 
x:X 

axiom 
x = ({{a,b,c},{d,e},{f,g},{g,h,k}},{{a,b,c},{d,e},{g,h,k}}) 

Narrative of Efficient States 

There is a notion of telephone exchange system efficiency, a constraint that 
governs its operation, hence the state, at any one time. The efficiency crite­
rion says that all requested calls that can actually be connected are indeed 
connected: 

Formalisation of Efficient States 

value 
eff_X: X ^ Bool 
eff_X(r,a) = ~ 3 a':A • a C a' A (r,ar) G X 
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Narrative of Subscriber Actions 

Now there is the notion of subscriber actions: making a (possibly multi-party) 
call, terminating (hanging up on) a call and inquiring whether a line is busy. 
Let us model them as if they were the denotation of commands "being exe­
cuted" in a state x:X. 

Formalisation of Action Types 

type 
Cmd = Call | Hang | Busy 
Call' = = mk_Call(p:S,cs:C) 
Call = {| c:Call' • card cs(c) > 1 } 
Hang = = mk_Hang(s:S) 
Busy = = mk_Busy(s:S) 

cs selects the C part of a Call. • 

An Aside on Type Union and Variant Records 

This seems to be one of the first times, in these volumes, that we are u-
sing the two type constructors | and mkJd. | as in A|B and mkJd as in 
mk_ld(r:R,s:S,... ,t:T). (Here A and B are any type expressions and Id, in fact 
mkJd, can be any identifier. R, S, . . . , and T are any type expressions.) So let 
us explain further. (We simplify the case for mk_ld(s_r:R,s_s:S,... ,s_t:T) into 
just mk_A(s_a:A) and mk_B(s_b:B).) 

• The informal, intuitive idea is first that we wish to express the type union 
of two types — and A|B is our means for doing so. 

• Then we may be in the situation that the two types A and B "overlap": 
i.e., have values in common. 

• So we cannot write A|B, but instead we write A' | B', and define A' and 
B' as A' = = mk_A(s_a:A), respectively B' = = mk_B(s_b:B). 

• Now, as we shall later explain, more formally, the two types (A' and B') 
designate disjoint sets. 

• s_r, s_s, . . . , s_t, s_a and s_b are called selector functions. 

In order to be systematic, safeguarding against possible overlapping of types, 
and to otherwise be able to exploit some pattern decomposition features of our 
main specification language (RSL), we extend this disjoint union construction 
to all alternatives of the union construction, as in the example above. We call 
the construction V = = mkA(a:A) | mkA(a:A,b:B) | mkA(b:B,a:A), etc., a record 
variant construction. In Sect. 10.3 we illustrated the use of variant definitions 
in connection with enumerated token definitions. Section 18.4 covers variant 
record types. Section 18.5 covers union types. 
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Example 13.11 Telephone System, II: We continue Example 13.10. 

Narrative: Multi-party Call 

A multi-party call involves a (primary, s) caller and one or more (secondary, 
ss) callees. Enacting such a call makes the desired connection a requested 
connection. If none of the callers are already engaged in an actual connection 
then the call can be actualised. A multi-party call cannot be made by a caller 
who has already requested other calls. 

Formalisation of Multi-party Call 

We define the meaning of making a multi-party call in two ways: By means 
of a pre/post-definition, and explicitly: 

value 
int.Call: Call H> X ^ X 
int_Call(mk_Call(p,cs))(r,) as (r',a') 
pre p 0 |J r 
post r' = r U {{p} U cs} A efT_X(r',a') 

int_Call(mk_Call(p,cs))(r,a) = 
let r' = r U {{p} U cs}, 

a' = a U if ({{p} U cs} fl U a) = {} 
t hen {{p} U cs} else {} end in 

(r',a;) end 
pre p £ |J r 

The above pre/post-definition (of int.Call) illustrates the power of this style 
of definition. No algorithm is specified, instead all the work is expressed by 
appealing to the invariant! 

Narrative: Call Termination 

It takes one person, one subscriber, to terminate a call. 

Formalisation of Call Termination 

value 
int_Hang: Hang - ^ X 4 X 
int_Hang(mk_Hang(p))(r,a) as (r',a') 

pre existS c:C • c G a A p G a 
post r' = r \ {c|c:C • c G r A p G c} A eff_X(r',a') 

int_Hang(mk_Hang(p))(r,a) = 
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let r' = r \ { c | c:C • c G a A p G c } , 
a' = a \ { c | c:C • c G r A p G c j i n 

let a" = a' U { c | c:C • c G r' A c f] a' = {} } in 
(r',a") end end 
pre existS c:C • c G a A p G a 

The two ways of defining the above intJHang function again demonstrate the 
strong abstr actional feature of defining by means of pre/post-conditions. 

Narrative: Subscriber Busy 

A line (that is, a subscriber) is only 'busy' if it (the person) is engaged in an 
actual call. 

Formalisation of Subscriber Busy 

value 
int_Busy: S - • X -^ Bool 
int_Busy(mk_Busy(p))(_,a) as b 

pre true 
post if b then p G |J a else p ^ [j a end 

int_Busy(mk_Busy(p))(_,a) = p G (J a 

Here, perhaps not so surprisingly, we find that the explicit function definition 
is the most straightforward. • 

13.5 Inductive Set Definitions 

We wish to illustrate the use of recursive and, in general, inductive definitions. 
In this chapter for sets. In subsequent chapters for Cartesians, lists and maps. 

13.5.1 Inductive Set Type Definitions 

Is it allowed to specify: 

type 
S = S-set? 

The answer is no. For technical reasons. 
Let us try to understand this answer. 
First let us try imagine what could be a solution to the above type defini­

tion. One proposal is: 
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5= {{}, {{}} , {{},{{}}}, {{},{{}},{{},{{}}}}, ... }, 

where the set elements indicated by the . . . 's are all to be finite or infinite 
sets whose elements are "drawn" from "the aforementioned". Not very useful 
you may say. Let S be the set indicated above. Is it itself a member of S? 
Obviously no. That would lead to the classical paradox: "Is the set of all sets 
an element of that set ?". The cardinality of the class of values of type S of 
the left-hand side must be equal to cardinality of the class of values of type 
S-set of the right-hand side. Obviously they are not. So we reject this kind of 
recursive set type definition. 

So we use this example as a pragmatic reason for not getting involved in 
paradoxes. 

But we may need some kind of inductive set definition. Let us try this 
one: 

type 
E 
S = mS-set 
mS = Es | Ss 
Es = = mkE(e:E) 
Ss = = mkS(s:S) 

Now an example element, s, of S expressed outside the RSL notation would 
be: 

value 
S = U{es|es:Es-set} U U{mss|mss:mS-set-mssC<S} 

Is the above mathematical definition of S allowed? Yes, in mathematics, but 
not in RSL. In mathematics a foundation for RSL can be given in which the 
recursive type definition of mS makes sense. The recursive equation in S is, 
in RSL, any fixpoint of the equartion, i.e., a set, <J, which when replacing S in 
the equation satisfies that equation. The fact that a may be infinite should 
not bother us: We are specifying, not computing. So we conclude: Recursive 
definitions of sets must have built into them a variant, a "boot strap". The 
variant serves to get the generation of proper set values started and serves to 
avoid seemingly meaningless void values. 

We shall introduce the variant record type mS = = mkE(se:E) | mkS(ss:S), 
shown above, in Chap. 18. 

13.5.2 Inductive Set Value Definitions 

We illustrate the use of inductive definitions of set values — mostly in the 
form of set comprehensions. At the end of the below example we also show a 
recursive function definition over sets. 
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Example 13.12 Purely Sort- and Set-Based Model of Networks: A network 
consists of uniquely identified segments and uniquely identified connectors. 
From a segment one can observe the identities of the exactly two connectors 
that the segment is delimited by. And from a connector one can observe the 
set of identities of segments connected to the connector. 

type 
N, S, Si, C, Ci 

value 
obs_Ss: N - • S-set 
obs_Cs: N -> C-set 
obs_Si: S -> Si 
obs_Sis: C -» Si-set 
obs_Ci: C - • Ci 
obs_Cis: S -» Ci-set 

axiom 
V s:S • card obs_Cis(s) = 2 

value 
xtr_Cis: S-set —> Cis-set 
xtr_Cis(ss) = U{obs_Cis(s)|s:S-s G ss} 

xtr.Cis: N - • Ci-set 
xtr_Cis(n) = xtr_Cis(obs_Ss(n)) 

An acyclic route is a set of segments such that any segment of the route 
connects to one or two segments in the route, one if the segment is a first or a 
last of the route and two if it is "in-fixed" between two other segments of the 
route, and such that no in-fixing, but not explicitly represented, connector is 
implied more than at most once. gen_Rs when applied to a net generates the 
possibly infinite set of all routes of a network. To define genRs we need define 
a number of auxiliary functions, inch predicate. 

type 
R' = S-set 
R = {| r:Rr • wfR(r) |} 

value 
genRs: N - • R-set 
genRs(n) = {r|r:R-rCobs_Ss(n)} 

CLdeg: Ci x R' - • Nat 
Ci_deg(ci,r) = card{ s | s:S • s G r A ci G obs_Cis(s)} 

wfR: R' - • Bool 
wfR(r) = 

card r = 1 V 
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3 ci,ci':Ci, s:S • s E r A {ci,ci'} = obs_Cis(s) A 
Ci_deg(ci,r)=l A Ci_deg(ci',r)=2 A w£R(r\{s}) 

13.6 A Comment on Varying Sets 

In the beginning of Sect. 13.1 we made a footnote reference to the present 
section. It concerned the term varying sets. We now make precise what we 
mean by tha t term. 

Wha t we mean is roughly the following, explained in two ways. Let vs be 
an assignable variable. Let its value range over sets. Assignment to vs may 
result in there being, at one time, no elements in the variable value, i.e., the 
set is empty; while at another time an assignment may add or remove any 
number of set elements to the set variable. 

t y p e 
A 

variable 
v_s:A-set := {} 

value 
g: A-set -» U n i t 
g(set) = 

v_s := set; ... 
let a:A • a ^ v_s in v_s 
let a:A • a G v_s in v_s 
v_s := set; ... 
v-s := {}; ... 

The above was an explanation given in terms of an imperative, i.e., an assign­
ment language. 

An explanation given in terms of a functional programming style would, 
for example, run as follows. Let there be given a function definition: 

t y p e 
A, B 

value 
f: A-set - • N a t 
f(set) = 

if se t={} t h e n 0 e l se let a:A • a G set in l+f (se t \{a}) e n d e n d 

The argument set designates a set. For recursive invocations of f the set set 
takes on "varying" values. Initially there may be 5 elements. In successive 

:= v_s U {a}; ... end; ... 
:= v_s \ {a}; ... end; ... 
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invocations there will be 4, 3, 2, 1 and then, finally 0 elements. Incidentally, 
the function f is the same as the cardinality function for finite set arguments. 

13.7 Principles, Techniques and Tools 

Based on this chapter on the set data type, its definition and its many ex­
amples, we shall now enunciate principles, techniques and tools of abstraction 
and modelling. 

Principles. Set Abstraction and Modelling: If and when a model-oriented 
abstraction has been chosen, then set abstraction is chosen if a reasonable 
number of the following characteristics can be identified as properties of the 
phenomena being modelled: (i) the abstract structure of the composite com­
ponents being modelled consists of an unordered collection of not necessarily 
uniquely named, but otherwise distinct, subcomponents (constituent phenom­
ena or concepts)) (ii) whose number is not fixed, i.e., may vary, that is, (hi) 
to which new, distinct subcomponents may be joined; (iv) from which exist­
ing subcomponents may be removed; (v) where one may inquire about "con­
tainment" relations between modelled phenomena (concepts); (vi) where one 
may compose other such phenomena (concepts) from similar such phenomena 
(concepts) (vii) or decompose into "smaller" such phenomena (concepts); and 
(viii) where one may inquire whether the phenomena (concepts) contain a 
given constituent phenomenon (respectively concept). • 

Other model choices may be chosen (viz.: lists, maps), but they will often 
need to be manipulated using set operations. 

Techniques. Set Abstraction and Modelling: We refer to initial paragraphs 
of Sect. 13.4 for a listing of some of the techniques used when abstracting 
using sets. More specifically: A number of set-oriented techniques are offered: 
(ix) Observer functions usually "extract" sets; (x) the various set operations 
apply to appropriate modelling instances: (x.l-.3) Union, intersection and set 
complement apply to models of "all", "shared", respectively "some, except" 
instances of a phenomenon possessed by two or more sets of phenomena, (x.4-
.5) subset, equality and inequality apply to models of "contained", "the same", 
respectively "definitely not the same", instances of a phenomenon possessed 
by two or more sets of phenomena; (x.6) cardinality applies to models of 
"how many" instances of a phenomenon; (xi-xii) set enumeration and set 
comprehension apply to the expression of the construction of an instance of 
an otherwise set modelled phenomenon. These are just some of the more 
"important" techniques. • 

Tools. Set Abstraction and Modelling: If abstraction and modelling using 
the set data type has been chosen, then the tool can either be the RSL, the 
VDM-SL, the Z, or, for example, the B specification language. • 

Please compare the present section to Sections 15.6 (lists) and 16.6 (maps). 
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13.8 Discussion 

We have outlined the set data type. And we have enunciated principles for 
when to deploy set abstraction, to mention some of the techniques that follow 
from such a choice, and to identify some of the set abstraction specification lan­
guage tools available. Sets constitute "the basic workhorse" of model-oriented 
abstraction and modelling. In Chapters 15 and 16 we introduce the list and 
the map data types. We shall then see how sets reappear in the expression 
of the set of all indices, respectively elements of a list, and the definition, 
respectively the range sets of maps. 

13.9 Bibliographical Notes 

We refer to the following seminal works on set theory: [46,211,230,258,273, 
394,491,500,505]. 

13.10 Exercises 

Exercise 13.1. Set Types. This exercise helps to develop your skills in ma­
nipulating sets. It is certainly not one of abstraction. 

1. List the elements of Bool-set and Bool-infset. 
2. List some of the elements of Nat-set, respectively Nat-infset. 

Exercise 13.2. Simple Number Sets, I. This exercise also helps to develop 
your skills in manipulating sets. It is really not one of abstraction. 

You are to formally specify sets, sns:SNS, of sets, ns:NS, of natural numbers 
such that each set, ns, in a set sns contains a dense set of numbers from and 
including 0 to and including one less than the cardinality of that set (ns), and 
such that sns contains all the sets nso, nsi, up to and including nsn_i, where 
n is the cardinality of sns. 

Exercise 13.3. Simple Number Sets, II. This exercise continues that of Ex­
ercises 13.2. You are now to formally define operations: 

1. that join a "next higher number" to a set of sets of numbers, 
2. and that remove a "highest numbered" such set. 

That is, if sns is the set {{0}, {0,1}, {0,1,2}}, 

• then adding a "next higher number" to sns yields the set {{0}, {0,1}, 
{0,1,2}, {0,1,2,3}}, 

• and removing a "highest numbered" such set yields the set {{0}, {0,1}}. 
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Exercise 13.4. More on Networks. We refer to Example 13.8. This exercise 
is intended to open your eyes to rather unconventional applications: basically, 
the one here is taken from the social sciences! 

1. Define functions, citizens, which, for any network, n:N, respectively for any 
society, m:M, yields all its citizens. 

2. Define a function, hermits, which, for any set of groups, s:S, yields all its 
hermits, i.e., citizens whose group includes only themselves and who are 
not liaisons. 

3. Define a function, isolated, which, for any society, m:M, yields all those 
citizens who are citizens belonging to only one network. 

4. Define a function, individualists, which, for any society, m:M, yields the set 
of all those citizens who only belong to one network. 

5. Define a function, emissaries, which, for any society, m:M, yields all those 
citizens who are emissaries. 

6. Define functions, ordinary, which, for any network, n:N, respectively for 
any society, m:M, yield all those citizens who are not liaisons, respectively 
neither liaisons nor emissaries. 

I * •(• •!• 

We advise the exercise solver to wait tackling these next three exercises till 
after having studied the next chapter (on Cartesians). Then you will be better 
equipped to solve the exercises in a meaningful way. 

Exercise 13.5. X Sets in the Transportation Net Domain. We refer to Ap­
pendix A, Sect. A.l, Transportation Net. 

We assume the following properties of transportation nets: they consist 
of sets of Segments6 and sets of Connections. Segments can be modelled as 
Cartesians containing a unique Segment Identifier, a Segment Name, a Seg­
ment Length, the directions in which traffic may flow along the segment, 
modelled, for example as a set of zero, one or two pairs of Connection Identi­
fiers, where these latter are thought of as identifying the Connections at either 
end of the Segment Connections can be modelled as Cartesians containing a 
unique Connection Identifier, a Connection Name, and the Identifiers of Seg­
ments incident upon (and/or emanating from) the Connection. 

1. Define the sorts Segment Identifier, Segment Name, and Connection Iden­
tifier, 

2. Define the concrete types of Nets, Segments and Connections. 
3. Define a predicate function, wf_N, which tests whether a given Net is well-

formed wrt. the following: (i) all Segments of a Net have unique Segment 
Identifiers; (ii) all Connections of a Net have unique Connection Identi­
fiers; and (iii) for each Segment of a Net its Connection Identifiers are 
those of actual Connections of the Net. 

'By using capital letters we indicate a possible type name. 
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4. Define a function, is.Route, which tests whether a given subset of segments 
are sequentially connected. 

5. Define a function, is_Circular_Route, which tests whether a given Route is 
circular. 

6. Define a function, is_l_ine, which tests whether a given Route has all of its 
Segments having the same Segment Name, and tha t it is then non-circular. 

7. Define a function, all_non_Circular_Routes, which generates all non-circular 
Routes of a Net. 

8. Define a function, alLLines, which generates all Lines of a Net. 
9. Define a function, Route-Length, which computes the length of a Route. 

Exerc i se 13 .6 . $ Sets in the Container Logistics Domain. We refer to Ap­
pendix A, Sect. A.2, Container Logistics. 

Assume tha t a Line is a set of Container Ship Terminal Visits, where each 
Container Ship Terminal Visit is a triple of Container Terminal Names: The 
Names of the previous, the present, and the next Container Terminals. Assume 
tha t there is a set, all shipping routes, of Shipping Routes: A Shipping Route 
is a pair: The Name of a Container Ship, and a Line. Assume tha t a Waybill 
is a set of Container Terminal Visits, where each Container Terminal Visit is 
a triple of a "from" Container Terminal Name, a Name of a Container Ship, 
and a "to" Container Terminal Name. Let there further be given a type, Seven 
Seas, of Container Terminal Names. 

1. Define the types of Seven Seas, Line, Container Ship Terminal Visit, All 
Shipping Routes, Shipping Route, Waybill, and Container Terminal Visit. 

2. Define a predicate, wf_Single_l_ine, which tests tha t a Line, i.e., the set of 
Container Ship Terminal Visits, form a simple cyclic sequence: Tha t is, 
tha t one Container Ship Terminal Visit connects to a next, with a last 
connecting back to a first: 

{(n6, n i , n2) , (ni, n2 , n3) , (n2, n3 , n4) , (n3, n4 , n5) , (n4, n^,n6), (n5, n6 , n i )} 

Any Container Terminal can serve as a last, etc. Figure 13.5 shows, at 
top, such a line. 

^ . . . . . . . . A 
• n1 • n2 • n3 • n4 • n5 • n6 

Simple, Single Cyclic Line 

• n1 «n2 • n3 • n4 • n 5 • n6 

Folded, Forward/Backward Cyclic Line 

Fig. 13.5. Two lines 
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3. Define a predicate, wf_Folded_l_ine, which tests that a Line, i.e., the set 
of Container Ship Terminal Visits, form a simple sequence followed by a 
reverse sequence: 

{(n2, ni, n2), (ni, n2, n3), (n2, n3, n4), (n3, n4, n5), 

(n4, n5, n6), (rn$,n6,n!$), (n5, 714, n3), (714, n3, n2)} 

Figure 13.5 on the page before shows, at bottom, such a line. 
4. Given any Waybill value and any All Shipping Routes value, define a 

predicate, wf_Way_Bill, which checks that there is a suitable set of Lines 
that can convey the Container according to a Waybill. 

Exercise 13.7. X Sets in the Financial Service Industry Domain. We refer 
to Appendix A, Sect. A.3, Financial Service Industry. 

From a bank one can observe the amount of cash that the bank possesses. 
From a bank once can observe the names of all the clients of that bank. From 
a bank once can observe the set of all its account numbers. From a bank and 
given a client name one can observe that client's set of one or more bank 
account numbers. From a bank and given an account number one can observe 
which clients (by their client names) share that account number. From a bank 
and given an account number one can observe the balance on the designated 
account. 

1. Define the sorts of entities mentioned above. 
2. Define the signature of the observer functions mentioned above. 

The set of bank account numbers of a bank must be the same whether one 
observes these directly from the bank, or observes them through the set of 
all client names (acct.nos). The set of client names of a bank, must be the 
same whether one observes these directly from the bank, or observing them 
through the set of all account numbers (cILnms). 

3. Please formulate appropriate predicates for the two constraints expressed 
above. 

4. Can you think of other constraints? 

The following simple operations can be performed on a bank: 

5. Open an account: A client opens an account by presenting a client name. 
In return the client obtains a new, fresh, hitherto unused account number. 
The balance is set to 0. The account is not shared with other clients. 

6. Deposit into an account: A client presents an amount of cash to the bank 
to be added to an account whose number is also presented to the bank. The 
amount of cash in the bank is incremented with the presented amount. 

7. Withdraw from an account: A client presents a request to withdraw a 
stated amount of cash from the bank by subtracting it from an account 
whose number is also presented to the bank. The amount of cash in the 
bank is decremented with the requested amount. 
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8. Close an account: A client closes an account by presenting an account 
number (owned by that client). As a result the account is closed. If the 
balance is positive then the closure also amounts to a withdrawal of cash. 
If the account balance is negative then the closure also amounts to a prior 
deposit of cash. 

Please state appropriate pre/post-conditions on the bank for: 

5 the open transaction, 
6 the deposit transaction, 
7 the withdraw transaction and 
8 the close transaction. 

Can you think of an invariant over bank cash and bank account balances? 

9. Please formalise it! 





14 

Car tes ians in RSL 

• The prerequisite for studying this chapter is that you possess knowledge 
of the mathematical and the RSL concepts of sets and Cartesians as covered 
in earlier chapters (Chaps. 3-4 and 13). 

• The aim is to introduce the RSL concept of Cartesians, also known in 
programming languages as records or structures. 

• The objective is to help set the reader free to choose Cartesian abstrac­
tions when appropriate, and to not choose Cartesians when they are not 
appropriate. 

• The treatment is semiformal and systematic. 

Characterisation. By a Cartesian we understand, loosely, a fixed grouping 
(i.e., aggregation) of a number of not necessarily distinct entities such that 
it is meaningful to speak of (i) the composition of these entities, e«, into a 
Cartesian, (ei, e2 , . . . , en), of (ii) the decomposition of a Cartesian, c, into its 
components: let (idi,id2,... ,idn) = c in . . . end, and of (hi) comparisons 
between Cartesians (=,7^). • 

Cogito ergo sum 

Rene Descartes, 1596-1650 

We know of Rene Descartes from our first school days: the division of the plane 
into X and Y (Cartesian) coordinates is attributed to him [186]. And we know 
of Cartesians, such as we shall think of them from programming languages, 
as records, or structures. We refer to Sect. 6.6 for an early introduction to 
Cartesians. 

14.1 Cartesians: The Issues 

The idea illustrated in this chapter is the use of the discrete mathematics 
concept of Cartesians in abstracting domain, requirements and software phe­
nomena and concepts. Cartesians offer themselves as an abstraction when a 
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component k can best be characterised as a fixed composition, i.e., grouping 
of not necessarily distinct components ( a , & , . . . , c ) , and where the order of 
appearance in the grouping is arbitrarily chosen (but then fixed). The section 
will just give a single example — as Cartesians become proper components in 
the modelling of "zillions" of other problems. Tha t is: Cartesians, as such, as 
the only model-oriented (i.e., discrete mathematical) "device" — even when 
used together with sets — to "deploy" in abstraction is a sign of too extreme 
a frugality!1 

This chapter is, as are Chaps. 13-17, built up as follows: 

• The Cartesian da ta type (Sect. 14.2) 
• Examples of Cartesian-based abstractions (Sect. 14.3) 
• Abstracting and modelling with Cartesians (Sect. 14.4) 
• Inductive Cartesian definitions (Sect. 14.5) 
• A review of Cartesian abstractions and models (Sect. 14.6) 

There are many examples because before one can write good specifications 
one must have read and studied many example specifications. While you may 
not need to study all of them now, you can return to some later. The chapter 
ends with a brief discussion. 

14.2 The Cartesian Data Type 

We shall t reat the following as separate issues: types and type expressions, 
value expressions, binding pat terns and matching, and operations on Carte­
sians. 

14.2 .1 Car te s ian T y p e s and T y p e E x p r e s s i o n s 

Cartesian types are products (groupings, aggregations, structures) of two or 
more types, 

type 
A, B, .., C 
A x B x ... x C 
K = A x B x C 
K; = ( A x B x C ) 
K2 = A x B 
K3 = A x B x C 

examples /* all subscripted a, b, cs: values */ 
al,..,aa,..,bl,..,b/3,..,cl,..,C7,... 
(al,bl,..,cl),(ai,bj,..,ck),... 
k: (al,bl,cl),(ai,bj,ck),... 
k': (aOl^clO,(ai',bj',ck'),... 
k2: (ai,bj),.,(ak,M),.. 
k3: (ai,bj,ck),..,(a^,bm,cn),.. 

1But that is, of course, just an opinion. For concrete programming one can come 
a very long way, in fact all the way, as was proven by the programming language 
Lisp [370], in which there are just two data type values: Atoms and pairs, i.e., 
Cartesians, the latter of any of these two values. 
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Let A, B, . . . , C stand for types whose possibly infinite numbers of elements 
include the values {ai, a2 , . . . , aa, . . . }, {bi, &2r • •, bp, . . . }, respectively {ci, 
C2, • • •, c 7 , . . . } . Types whose values can be considered finite groupings of A, 
then B, etc., finally C, elements can be defined using the x (Cartesian product) 
type operators. 

Example 14.1 A Simple Cartesian Example: Let fact name the factorial 
function, then 

(fact(l),fact(2),fact(3),fact(4),fact(5),fact(6)) 

expresses a simple Cartesian of six elements, the first six factorials! • 

The ellipses (.. .) in the type expression A x B x ... x C make it metalinguistic, 
that is, outside ("above" or "about") the language, here RSL, which is being 
explained. Ellipses occurring in our expressions should signal to the reader 
that we are presenting a generic metalinguistic expression. 

Cartesians are thus formed from the use of the x type constructor op­
eration. Hence Cartesian values consist of groupings of a definite number of 
values — where the definite number is at least two. Examples K, K', K2, K3 
are not metalinguistic. K defines, or the type expression A x B x C expresses, 
the type of Cartesian groupings of values of respective type. K' defines, or 
the type expression (A x B x C) expresses, the same as K! That is, paren-
thesization at this "outermost" level "adds nothing new". K3 defines exactly 
the same as does K (and K'). So one cannot distinguish between values of 
these three (identical) types. When this is needed we need to deploy extra 
notational "machinery". 

To see the consequences, let us examine a few type expressions. 
For the sake of reference in the subsequent explanatory text, we have de­

fined (i.e., named) the types (previously only expressed [i.e., as expressions]): 

type 
A, B, C 
GO = A x B x C 
Gl = ( A x B x C ) 
G2 = ( A x B ) x C 
G3 = A x ( B x C ) 

Brackets, "(" and ")" are used in type expressions, as an abbreviation, only 
to "break" the priority of the x operator, and thus to avoid having to define 
auxiliary types: 

type 
G2 = AB x C 
AB = A x B 
G3 = A x BC 



298 14 Cartesians in RSL 

BC = B x C 

To the individually defined types there correspond many examples: 

a, a', a", .., b, b ' , .., b" , c, c', .., c" / * values */ 
gO: (a,b,c), gO': (a',b',c'), .., gO'": (a",b,c') 
g l : (a,b,c), g l ' : (a',b',c'), .., g l ' " : (a",b,c') 
g2: ((a,b),c), g2': ((a' ,b'),c'), .., g2'": «a",b) ,c ' ) 
g3: (a,(b,c)), g3': (a' ,(b',c ')), .., g3" ' : (a",(b,c')) 

We have shown many examples with single, double, triple quotes and indices 
so as to avoid defining, for now, mathematically, the general case. We believe 
these examples exhaust the possible cases. 

14.2 .2 Car te s ian Value E x p r e s s i o n s 

Any identifier may denote a Cartesian. The only "operation" tha t results in 
Cartesian values is tha t of grouping: (a, 6 , . . . , c) where a, &, . . . , and c are any 
expressions denoting any kind of value. This operation has already been amply 
illustrated earlier, but for the sake of systematic t reatment we summarise. 

Cartesian value expressions are expressions whose values are Cartesians. 
Specific Cartesian value formation is achieved, in RSL, through the use of the 
Cartesian value constructors: "(" , "," and " ) " . Let e l , e2, . . . . en be any value 
expressions,2 then the second line of the t y p e clause below, and the first line 
of the value clause: 

t y p e 
A, B, . . , C 
A x B x ... x C 

value 
... (el,e2,...,en) ... 

(the use of ellipses is metalinguistic) are respectively a Cartesian type ex­
pression, and a Cartesian valued expression with (el,e2,...,en) indicating an 
explicit Cartesian enumeration. The type expression denote models and have 
values from these models. Mathematically, i.e., not expressed in the RSL no­
tat ion, and referring only to values of respective types (or sorts) A, B C 
we can define the meaning of A x B x ... x C as: 

2 We remind the reader that in the rest of these volumes we shall use the following 
naming convention: Identifiers starting with e (and often "suffixed" or indexed 
(subscripted) by some alphanumeric characters) stand for expressions. Identifiers 
starting with v (and often suffixed or indexed (subscripted) by some alphanumeric 
characters) stand for values. Values are definite, in the sense that a value is a specific 
thing. Expressions may be constant expressions, i.e., evaluate, in any context (and 
state) to one and the same value, or expressions may be variable expressions, i.e., 
evaluate, in different contexts (and states) to different values. 



14.2 The Cartesian Data Type 299 

{(a*,fy,...,Cfc) \ai:A,bj:B,...,ck:C} 

The A, B,..., C all refer to a same model which associates A with A, etcetera. 
There might be different models for the specification in which the above type 
expression occurs. But a specific, albeit an arbitrary, one is chosen for the 
evaluation of all RSL constructs. 

14.2.3 Cartesian Operations, I 

First we show the decomposition operation. From Cartesian gi values, and 
using the RSL let ... in ... end construct, we decompose into defined A, B, C 
values named by the respective ai, bj, ck, etc., identifiers. 

let (al,bl,cl) = gO", (al',bl',cl') = g l" in .. end 
let ((a2,b2),c2) = g2/; in .. end 
let (a3,(b3,c3)) = g3/; in .. end 

Then we show the composition operation: From respective ai, bj, ck, etc., 
values we compose into defined Cartesian Gi values named by the respective 
gi, etc., identifiers. 

let gO" = (al,bl,cl), g l" = (al',bl',cl') in ... end 
let g2" = ((a2,b2),c2) in ... end 
let g3" = (a3,(b3,c3)) in ... end 

14.2.4 Cartesian Binding Patterns and Matching 

So composition into Cartesians and decomposition (matching and binding) 
with respect to Cartesians are two major operations related to Cartesians. 
The use of the RSL let ... in ... end construct in decompositions thus showed 
the use of binding patterns: 

let (a,b,c) = gl, 
((a,b),c) = g2,^ 
(a,(b,c)) = g3 in ... end 

All three cases show binding patterns to the left of the '= ' symbol. All the 
a's, b's, and c's are identifiers. They are bound to values as a result of the 
decomposition process. We refer to a more systematic treatment of patterns, 
matching, and binding in subsections of Sect. 14.4.1 (Cartesian Patterns and 
Cartesian Patterns, Fitting and Binding) and in Sect. 14.4.2. We have earlier 
(Sect. 13.2.3) covered these concepts for set binding-pattern, and we shall 
later deal with these concepts in additional contexts: Sect. 15.2.3 for lists, 
and Sect. 16.2.3 for maps. 
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14.2.5 Cartesian Operations, II 

In Sect. 14.2.3 we introduced the decomposition of Cartesians, which one may 
consider an operation on Cartesians. The only other operations on Cartesians 
are equality, =, and equivalence, =; they are defined between any typed, non­
function value in RSL. 

type 
A, B, C, ... 
G = A x B x . . . x C 

value 
= , =: G x G 4 Bool 

axiom 
V (a,b,..,c),(a',b',..,c'):G • ((a,b,..,c) = (a',b',..,c')) 

= (a = a') A (b = b') A ... A (c = c') 

The above is true, provided that none of the A, B, . . . , C contain (non-map) 
functional values. That is, they may contain finite or infinite sets, finite or 
infinite lists, finite or infinite maps, and Cartesians over nonfunctional values. 

14.3 Examples of Cartesian Abstractions 

This section "matches" Sections 13.3, 15.3, 16.3, and 17.2. They all give ex­
amples of set, Cartesian, list, map and function-based specifications. They are 
meant as "drill", i.e., class lecture, examples. 

14.3.1 File Systems II 

This is the second in a series of models of what we could call file systems. Other 
models are presented in Examples 13.6 (sets), 15.6 (lists [and Cartesians and 
sets]), and 16.8 (maps [and records]). See also Exercise 16.11. 

Example 14.2 Another File System: A simple file system consists of a set of 
records. A record is a pair of keys (k:K) and sets ({d,d' r .. ,d"}) of data (s:D, 
etc.). No two otherwise distinct records have the same key. 

type 
K, D 
R = K x D-set 
B' = R-set 
B = {| b:B' • wf_B(b) |} 

value 
wf_B: B' - • Bool 
wf_B(b) = V (k,ds),(k',ds'):R • k=k' => ds=ds' 
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A file system user wishes to perform the following operations: (i) Create an 
empty file system, (ii) Inquire whether a file system is empty, (iii) Inquire 
whether a given key is that of a record in the file system, (iv) Insert a new 
record in the file system, such that no record already in the file system has 
the same key as the record to be inserted, (v) Given a key, select the data set 
of the record (if present) with that key. (vi) Given a key, remove the record 
(if present) with that key. 

value 
create: ->> B, create() = {} 
is.empty: B -» Bool, is_empty(b) = b={} 
is_inB: K -> B -> Bool 
is_inB(k)(b) = 3 (k',ds'):R • (k',ds') G b A k=k' 
insert: R ->> B -4 V 
insert(k,ds)(b) = b U {(k,ds)} 

pre ~isJnB(k)(b) 
select: K -> B ^> D-set 
select(k)(b) = let (k',ds):R • k=k' A (k',ds) G b in ds end 

pre is_inB(k)(b) 
remove: K —> B ^> B 
remove (k)(b) = let (k',ds):R • k=k' A (k',ds) G b in b \ {(k',ds)} end 

pre is_inB(k)(b) 

14.3.2 Kuratowski: Pairs as Sets 

Example 14.3 Pairs as Sets: Pairs (ai, a2) of distinct simple entities can be 
represented as sets: {ai, {ai,a2}}. Allow also a^ to be a pair: (a2 i ;a22) then 
its representation is {ai, {ai, {a2 i ; { ^ i , ^ } } } } - That is, we now allow pairs 
to be either pairs of distinct simple elements, or of a first simple element and 
a pair. We still assume, but do not formally specify, distinctness of A elements 
(of simple pairs). 

type 
A 
Pr = A x Q 
P = {| p:P' • wf_P(p){} |} 
Q = A | P 
S' = R-set 
R = A | S 
S = {| s:Sr • wfJS(s) |} 

value 
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wf_P: P' -> A-set -> Bool 
wf_P((a,q))(as) = 

a 0 as A 
case q of 

(_,_) -> wLP(q)({a}Uas), 
_ —> true 

end 

wLS: S' -> Bool 
wf_S(s) = 

card s = 2 A 
case s of 

[1] {a,{a,{b,r}}} ^ wf_S({b,r}), 
[2] {a,{a,b}} -> true, 
[3] _ - > false 

end 

Notice, in wf_P, the sequential use of binding patterns to "detect" whether 
an argument to wf_P is a pair (i.e., a Q value) or not. Wildcards are used in 
order to signal to the reader that the particular values are irrelevant. Sequen­
tially of the case construct evaluation means that the argument to wf_P is 
matched first with a pair, then with "whatever". Notice, similarly, in wf_S, 
the particular (perhaps a bit "tricky") sequential use of binding patterns to 
"detect" whether an s is [2] a simple pair, [1] a possibly well-formed (but 
more composite) pair or [3] not a pair. Given a set representation of pairs, as 
defined above, we can find its pair of ordered elements: 

value 
first: S - • A 
first(s) = let a:A, s':S • s = {a,s'} in a end 
secnd: S —> R 
secnd(s) = let a:A, s':S • s = {a,s'} in s' end 

Given a an arbitrary pairing, as defined above, we can construct its set rep­
resentation. And given a set representation of pairs, as defined above, we can 
reconstruct its ordered pairing of elements: 

value 
P2S: P -+ S 
P2S(p) = 

case p of 
(a,(a,q)) - • {a,{a,Q2R(q)}}, (a,a') - • {a,{a,a'}} 

end 
Q2R: Q -> R 
Q2R(q) = case q of (a,q') —> P2S(a,q'), a —> a end 
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Observe the need for an auxiliary function, Q2R, to handle a "special" case. 
Similarly wrt. S2P: 

S2P: S -+ P 
case p of 

{a,{a,r}} - • (a,R2Q(r)), {a,a'} - • (a,a') end 
R2Q: R -> Q 
R2Q(r) = 

case r of {a,{a,r'}} -» (a,S2P(r')), a -» a end 

Observe the various ways in which we have syntax-formatted, i.e., laid out the 
formula texts, line-wise: Sometimes on one, sometimes spread out over several 
lines. 

Exercise 14.2 generalises the above problem to that of allowing non-distinct 
A elements in simple pairs. • 

14.4 Abstracting and Modelling with Cartesians 

This section "matches" Sections 13.4, 15.4, 16.4, and 17.3. They all give larger 
examples of set, Cartesian, list, map, respectively function abstractions and 
models. They are meant as self-study examples. 

The purpose of this section is to introduce techniques and tools for model-
oriented specifications primarily based on Cartesians. Among the Cartesian 
modelling principles, techniques and tools are: (1) Subtyping: Sometimes a 
type definition defines "too much": a type-constraining (well-formedness, in­
variant) predicate technique can therefore applied. (2) pre /post- conditions: 
Function abstraction in terms of pre- and post-conditions. (3) "Input/-
Output/Query" functions: identification of main functions according to their 
signature. (4) Auxiliary functions: decomposition of function definitions into 
"smallest" units. The principles and techniques reoccur, for sets, lists and 
maps in Sections 13.4, 15.4 and 16.4. 

14.4.1 Modelling Syntactic Structures 

A structure, like a set, a Cartesian grouping, a list or a map, is syntactic 
if its representation, like the above, has a meaning which may be another 
structure, but whose semantic components are (rather) different from the 
syntactic components. We shall give a somewhat "primitive" and "not very 
abstract" example of the syntax and semantics of a simple imperative pro­
gramming language. We say "primitive" and "not very abstract" since we 
can later demonstrate more realistic, as well as "more abstract" programming 
language examples. Thus the examples of this section, since they necessarily 
have to make use only of such structured values as sets and Cartesians, are 
not really exemplifying abstractions, only modelling! 
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Example 14.4 Syntax of a Simple Computer Language, Part I: 

Narrative — Syntactic (Cartesian) Categories 

(i) A computer program, m:M, contains a procedure name pn, a procedure 
statement label, In, and a set of uniquely named procedures, ps, such that 
the procedure name is one of a procedure in the program set, ps, of proce­
dures, (ii) A procedure has a name and otherwise contains a set of uniquely 
labelled statements, such that the labels of goto statements of the procedure 
(see (xi) below) are labels of statements of that procedure, and such that pro­
cedure names and labels of procedure invocation statements (see (xiv) below) 
are those of procedures of the program and their sets of labelled statements, 
(iii) A labelled statement contains a label and a statement, (iv) A label is a 
further un-analysed quantity, (v) A statement is either an assignment, or a 
conditional, or a goto, or a procedure call, or an exit statement, (vi) An assign­
ment contains a variable and an expression. It also designates a continuation, 
i.e., the label of a next statement to be interpreted after interpretation of the 
present assignment statement, (vii) A variable is a further un-analysed quan­
tity, (viii) An expression is a further un-analysed quantity. (See, however, 
Exercise 14.5 for a thorough analysis (cum discussion) of analysed expres­
sions.) (ix) A conditional contains one expression, the test expression, and 
two (continuation) labels, the consequence label and the alternative label, (x) 
A goto statement contains a label, (xi) A procedure call contains a proce­
dure name and a statement label. It also designates a continuation, i.e., the 
label of a next statement to be interpreted after interpretation of the present 
call statement, (xii) An exit statement is a further un-analysed quantity, (xiii) 
The "further un-analysed" procedure name, variable, statement label and exit 
quantities are all distinct sets (i.e., cannot be confused). • 

An Aside—The Union Type Operator: | 

To formalise the type of statements which consist of various, i.e., alternative (|) 
kinds, assignment, conditionals, etc., we introduce here the type constructor 
|. Let A, B, . . . , C stand for arbitrary types. 

type 
A, B, ..., C 
U = A | B | ... | C 

U is defined to be the type whose values are the union of all the values of 
respective types A, B, . . . , C. 

Another Aside — Cartesian Text Types 

By {//text_l,text_2,...,text_n//} we understand the finite type whose elements 
are just the strings of text listed. 
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Example 14.5 Syntax of a Simple Computer Language, Part II: 

Formalisation — Syntactic (Cartesian) Categories 

type 
Pn, Ln, V, E 
M' = (Pn x Ln) x P-set 
M = {| m:M • wf_M(m) |} 
P = Pn x (Ln x S)-set 
S = Asgn | Cond | Goto | Call | Exit 
Asgn = {"asgn"} x (V x E) x Ln 
Cond = {"cond"} x (E x Ln x Ln) 
Goto = {"goto"} x Ln 
Call = {"call"} x (Pn x Ln) x Ln 
Exit = {"exit"} 

Annotations: (xiv) The wf_M subtyping predicate is hinted at in the narrative 
above. It is further narrated (See items (xv-xxix)), as well as also formally 
defined, (xv) The individual statements are "singled" out by the text markers' 
shown. 

Formalisation — Well-formedness (of Cartesians) 

value 
wf_M: M'-^Bool 
wf_M((pn,ln),ps) = 

wf_Call((pn,ln),ln)({ln})(ps) A V p:P • p G ps => wf_P(p)(ps) 

wLCall: (PnxLn) xLn-^Ln-set-)-Pn-set-^Bool 
wf_Call((pn,ln),^)(ls)(ps) = 

I G Is A 3 ! (pn',lss):P • (pn',lss) G ps A pn'=pn =^ ln G labels(lss) 

wf_P: Pnx(LnxS)-set-^P-set-^Bool 
wf_P(_,lss) = 

let Ins = labels (lss) in 
V (ln,s):(LnxS) • (ln,s) G lss => wf_S(s)(lns)(ps) end 

labels: (LnxS)-set—^Ln-set 
labels(lss) = { ln:Ln | ( ln '^^LnxS) • (ln;,s) G lss A ln'=ln } 
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A Detour: The RSL "case" Construct 

Functions that apply to constructs that are values of a type which is a union 
of types usually need "to be able to discriminate between these values on the 
basis solely of their type". The following generic example illustrates the point 
being made: 

type 
A, B 
U = A | (U x U) | (U x U x U) | ... 

value 
f : U 4 B , g : A 4 B , © : B x B 4 B 
f(u) = 

case u of: 
(u',u",u'") - • f(u')©(f(u")© f(u'")) 
(u',u") -+ f(u')©f(u") 
_ —> g(u) end 

The RSL case construct is here used in such a way as to first discriminate 
whether an argument value is a triple, then whether it is a pair, and finally 
the wildcard case, _, whether it is just a simple A value. Ignore the expressions 
to the right of the -Vs. The value of expression u of the infix case of operand 
— whose other operand is the list, from top to bottom, of the patterns — is 
compared, successively to elements of this (text vertical, top-to-bottom) list of 
patterns. When a fit can be made, then the value of the corresponding right-
hand-side expression becomes the value of the case construct in the context 
of the fit. 

The RSL case construct has the general syntax and informal evaluation 
scheme: 

( case.clause ) ::= 
case ( value.expr ) of 

( pattern ) —> { value _expr ), 

( pattern ) —> { value _expr ), 
_ —> ( value _expr ) 

end 

where the wildcard line, _ —> (value.expr), is optional. Evaluating the case 
construct proceeds as follows: First the (value.expr) of the "opening" case 
(value.expr) of line is evaluated. Let its value be v. Then v is attempted to be 
fitted to (pattern). 

Cartesian Patterns 

We explain the concept of Cartesian pattern: A Cartesian pattern is a grouping 
of two or more constants (i.e., literals), identifiers and patterns. (The value 



14.4 Abstracting and Modelling with Cartesians 307 

of v is correspondingly a Cartesian of two or more values.) We shall later 
introduce list, name and record patterns. 

Cartesian Patterns, Fitting and Binding 

We explain the concept of Cartesian fitting: A value fits a literal if it is equal 
to the designated literal value. Any value fits, and is bound to, a pattern 
identifier. The context, alluded to above is enriched by the mapping of the 
pattern identifier to the value. 

If a pattern is a grouping of n elements (constants, identifiers or patterns) 
then v must be a Cartesian of n values. One-by-one a fit must be made between 
components of the pattern and of the value, "left to right". If all can be fitted, 
then a fit has been achieved. Component identifiers of the pattern are bound 
to corresponding component values — thus further enriching the context. We 
shall later introduce list, name and record fittings. 

• • • 

If v can be fitted then the corresponding line's ( value.expr) is evaluated in the 
enriched context, and its value is then the value of the entire case construct 
— whose evaluation is thereby ended. If v cannot be fitted, then the second 
line, ( pattern ) —> ( value.expr), is evaluated. And so forth, until either no fit 
has been made, or the optional, "catch-all" wildcard line, _ —> ( value.expr), 
is encountered. The value of its ( value.expr ), in this situation, becomes the 
value of the case construct. 

Bindings (i.e., contexts) made during individual fit attempts are lost be­
tween attempts and upon termination of evaluation. 

End of the RSL case Construct Detour 

Example 14.6 Syntax of a Simple Computer Language, Part III: We are 
now ready to express statement well-formedness: 

wf_S: S -» Ln-set ->> P-set ->> Bool 
wf_S(s)(lns)(ps) = 

case s of 
("assign",(v,e),£) ->• £ G Ins, 
("cond",(e,ln,ln')) -> {ln,ln'} C Ins, 
("goto",ln) - • In e Ins, 
("call",(pn,ln),^) -> 

wf_Call((pn,ln)^)(ps), 
"ex i t " ->> true 

end 
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Annotations: By syntactic well-formedness we mean that a larger syntactic 
category is constrained to a subtype. Later semantic functions assume syntac­
tic well-formedness, i.e., that syntactic values lie within properly constrained 
subtypes, (xvi) wf_M: A program is well-formed if its intended invocation (i.e., 
call) is well-formed and if all of its defined procedures are well-formed in the 
context of this syntactic set of procedures, (xvii) wf.Call: A call is well-formed 
if its intended invocation names a program defined procedure and, within it, it 
labels a statement, (xviii) wf_P: A procedure is well-formed if all its contained 
statements are wellformed in the context of the procedure statement labels 
and the program set of procedures, (xix) wLAsgn: An assignment statement 
is well-formed if its continuation label is defined, i.e., is in the context of the 
(current) procedure's statement labels. That is, we presently, in this simple 
example, ignore well-formedness of variables and expressions in whatever con­
text! (xix) wf.Cond: A conditional statement is well-formed if the consequence 
and the alternative labels are defined, i.e., in the context of the (current) pro­
cedure's statement labels, (xx) wf.Goto: A goto statement is well-formed if its 
label is in the label set context component, (xxi) wf.Stop: A stop statement 
is always well-formed, (xxii) labels: The set of labels (label names) are yielded 
by this function. • 

14.4.2 Cartesian "let ... in ... end" Bindings 

From Sections 13.2.3 and 14.2.1 onwards we have used set, respectively Carte­
sian patterns in the RSL let ... in ... end constructs. And as from Sect. 14.4.1 
we defined Cartesian patterns. The purpose of this little injected paragraph 
is only to make sure that we are talking about the same linguistic idea intro­
duced for the same pragmatic purpose: to decompose Cartesian values, i.e., to 
fit such to Cartesian patterns, and to bind pattern identifiers to the Cartesian 
value's component values. In later sections we have shall further introduce sim­
ilar pattern constructs, and decomposition (i.e., fitting) and binding concepts 
for lists, maps, and other RSL constructs. 

14.4.3 Modelling Semantic Structures 

Example 14.7 A Mechanical Semantics for the Simple Computer Language: 

Narrative — Semantic Types 

Variables and storage. Variables designate values "in the computer storage". 
To model this fact — and given that we have so far only "officially" learned 
about sets and Cartesians as the only structured values — we model storage 
as a set of variable-value associations. A variable-value association is a pair 
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consisting of a variable and a value. No two otherwise distinct associations of 
a computer storage have the same variable part and different value parts. 

On intuition and concept analysis. We rely on your intuition of what is nor­
mally understood by the anthropomorphic term program execution, namely: 
computer processing of programs. We are about to systematically describe 
the notion of such concepts as processing of programs as data. But first we 
need some intuition and some analysis of the concepts resulting from such 
intuition. 

A piece of good advice is to always start a systematic narration by the 
enunciation of intuitions and their analyses. 

Program Points 

At any point during execution, the computer is interpreting a specific state­
ment of a specific procedure. We can thus model a program point by the pair 
of procedure name and statement label, respectively. 

Termination of the interpretation of most statements occurs with the es­
tablishment of the next program point, which is that of the present procedures' 
name and the designated statement continuation label. Invocation of proce­
dures, i.e., the interpretation of the "called" procedure, when finished, must 
"return" to end the interpretation of the calling statement, which is that of 
continuing with that calling statement's designated continuation statement. 

The effect of statement interpretation is generally to change the computer 
state. But what exactly is this state — which we shall henceforth call a con­
figuration? Well, for one, it must include some variable value associations so 
that we can update variable values as a result of assignment statement inter­
pretation, and find these values during expression evaluation. Then we must 
somehow record the current and next program point. Since invocation of pro­
cedures may be indefinitely "nested", we may expect some sort of stacking 
and un-stacking of program points. 

To express the meaning of a program we therefore introduce the notion of 
a configuration. 

Configurations 

A configuration is a pair consisting of a program pointer stack and a storage. 

Program Pointer Stacks 

The program pointer stack is either void, modelled here as the character string 
"empty", or is a pair whose first element is a program pointer, i.e., a pair 
consisting of a procedure name and a statement label, and whose other element 
is a program pointer stack. 
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Formalisation — Semantic Types 

type 
VAL 
STG' = (V x VAL)-set 
E ={\ stg:STG' • wLSTG(stg) |} 
0 = {"empty"} | ((PnxLn) x 0) 

value 
wLSTG: STG' - • Bool 
wLSTG(stg) = 

V(v^) , (^va l ' ) : (VxVAL) • 
{(v,val),(v',val')} C stg => (v=v' => val=val') 

VAL is the semantic type of values. 

Narrative — Computer Program Interpretation 

Let ((pn,ln),ps) be the program. Computer program interpretation starts with 
a possibly empty storage and a void program pointer stack. Computer program 
interpretation then goes on to stack the pair (pn,ln) on top of the program 
pointer stack. Now the interpreter enters an indefinite sequence of statement 
interpretations. Each statement interpretation starts by identifying the pro­
cedure and statement being interpreted. This is done on the basis of the top 
element of the program pointer stack. Then it interprets this statement. 

If it is an assignment statement then an appropriate expression evaluation 
takes place and storage is updated for the given variable. Then the top pro­
gram point has its label component changed to reflect the continuation. If it is 
a conditional statement an appropriate test expression evaluation takes place 
first. Then the top program point has its label component changed to reflect 
the continuation: If the test expression value yielded is true the consequence 
label is chosen, otherwise the alternative. Etcetera. We leave it to the reader 
to decipher the formalisation that follows! 

Formalisation — Semantic Functions 

value 
int_M: M ^ E 
int_M((pn,ln),ps) = in t_S((pn» /'empty") ({})(ps) 

int_S: 0 - • E -> P-set -)• E 
vaLE: Expr - • E -+ VAL 

Interpreting the program is the same as interpreting a statement with the 
program program point (of the only program pointer stack element) and with 
an empty storage. 
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int_S and vaLE name the operational s tatement interpretation, respectively 
the simple expression evaluation functions. 

intJS(0')(<r)(ps) = 
case 9f of 

empty —> cr, 
((pn,ln),6l) - • 

l e t s = nnd_S(ln)(flnd_P(pn)(ps)) i n 
ca se s of 

("assign",(v,e),.Q - • 
l e t val = val_E(e) (a) i n 
le t a' = update(v,val) (cr) i n 
int_S((pn,£),/9)(cr')(ps) e n d e n d , 

("cond",(e,ln,ln')) - • 
l e t test = val_E(e)(cr) i n 
le t £ = if test t h e n In e lse In' e n d in 
int_S((pn,£),#)(cr)(ps) e n d e n d , 

("goto",ln') -+ 

int_S((pn,ln ,)^)(cr)(ps), 

( " c a l l " , ( p n ' , l n V ) -+ 
Int_S((pn /,ln /),((pn,£),cr))(cr)(ps), 

"exit"->Int_S(6>)(cr)(ps) 
e n d e n d e n d 

Observe how an e x i t prescribes procedure termination. 

v a l u e 
update : V x VAL - • E -> S 
update(v,val)(cr) = 

le t (v',val'):(VxVAL) • v=v'A(v',val') G a i n 
a \ {(v,val')} U {(v,val)} e n d 

find_P: P n ->> P - s e t - • (Ln x S)-set 
find_P(pn)(ps) = 

le t (pn ' , l s s ) : (Pnx(LnxS)-se t ) • (pn',lss) G ps A p n = p n ' i n lss e n d 
a s s e r t : / * predicate true; guaranteed by wf_M */ 

find_S: Ln -+ (LnxS) - se t -> S 
find_S(ln)(lss) = 

le t ( ln ' ,s) : (LnxS)-set • (ln',s) G lss A ln=ln ' i n s e n d 

We remind the reader tha t the above example is not an example of abstraction, 
but only of modelling. In Chap. 20 we shall show what we mean by more proper 
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abstractions of storage, stacks, and contexts (environments), as well as of the 
semantic interpretation functions. 

14.4.4 Cartesians: A First Discussion 

Before going on to distill some of the essence of the above examples wrt. 
Cartesian abstraction and modelling principles, techniques and tools, what 
can we otherwise, so far, conclude from this section of Cartesian abstraction 
and modelling examples? We can conclude that the introduction of Cartesians 
is essentially based on a pragmatic desire to group things in two or more 
components — as somehow belonging together. And that since we wished to 
thus compose one kind, i.e., one type, of values as, say, pairs, to group other 
kinds, i.e., another type, of values as, say, triples, etc., was not far behind! 
Hence we arrived at the need for (i) union types, the case ... of ... end 
construct (known also as the McCarthy conditional), the pattern construct 
and hence the related fitting and binding concepts. 

14.5 Inductive Cartesian Definitions 

14.5.1 Inductive Cartesian Type Definitions 

Suppose we wanted to define: 

type 
C = C x C 

What would that mean? Well, I do not know! Somehow I can not get started 
on enumerating Cartesian elements of C. The problem is, that there is no 
"boot strap". So we introduce a "boot strap", B, and a means of terminating 
the recursion: 

type 
B 
C = BorC x BorC 
BorC = = mkB(sb:B) | mkC(sc:C) 

The alternative bocBorC can be either a b:B or a mkc:mkC(cl,c2). B is as­
sumed not to contain c:BorCs. And now we can suggest the following set of 
type C value: 

C: {(b,b')|b,b':B} U {(c',c")!c',c":BorC • {c',c"}CC} 

We remind the reader that the above definition of C was a definition in math­
ematics, not a definition in RSL. 

That looks fine, so we conclude: 
Recursive definitions of Cartesians must have built into them a variant, 

a "boot strap". The variant serves to get the generation of proper Cartesian 
values started, and serves also to stop an infinite regression. 
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14.5.2 Inductive Cartesian Value Definitions 

Example 14.8 Cartesian and Set-Based Model of Networks: We rephrase 
the solution of Example 13.12. 

We introduce a concept of path. A path is a triple of a connector identifier, 
c^, a segment identifier, Si, and a connector identifier, Ci2, such that the 
two distinct connector identifiers {c^c^}, are the connector identifiers of the 
segment identified by si. 

A route is now a set of paths such that either there is just one path in the 
route, or for more than one path in the route there is an end3 segment, that 
is, a segment one of whose connector identifiers is not is not one of another 
segment in the path, such that the other connector identifier of that end 
segment is one of another segment of the path, and such that the remaining 
path is well-formed. 

type 
P' = Ci x Si x Ci 
P = {| p:P'« 3n:N • wfP(p)(n) |} 

value 
wfP: P' - • N - • Bool 
wfP(cil,si,ci2)(n) = 3 s:S-s G obs_Ss(n)A{cil,ci2}=obs_Cis(s)Asi=obs_Si(s) 

Notice that we must indicate some net in the context of which we can express 
well-formedness of paths. From a net we can generate the set of all paths: 

gen_Ps: N -^ P-set 
gen_Ps(n) = { p | p:P' • wfP(p)(n) } 

Now we can define routes: 

type 
R' = P-set 
R = {| r:R' • wfR(r) |} 

value 
CLdeg: Ci x R' -> Nat 
Ci_deg(ci,r) = cardKci^si^i^Kci^si^i '^P^ci '^i^i") e rAci e{ci',ci"}} 

wfR(r) = 
card r = 1 V 
3 ci,ci':Ci,si:Si • (ci,si,ci') G r A 

Ci_deg(ci,r) = 1 A Ci_deg(ci',r) = 2 A wfR(r\{(ci,si,ci')}) 

The next example illustrates recursive value definition. 
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Example 14.9 Transitive Closure: We introduce a concept of line. That con­
cept of line is an extension of the concept of path. Where a path is just a 
Cartesian encoding of one of the ways through a segment in the form of a 
triple: the segment identifier (say in the middle) and the identities of the from 
and to connectors at respective ends of the segment, a line is a similar Carte­
sian encoding of the transitive closure over paths. Since we arbitrarily decided 
that paths be identified also by their segment identifiers we have to construct 
new unique segment identifiers for lines. 

A line, £, is a triple: (£c„ , 4 m , 4 , ) , of two line connector identifiers (a 
first and a last connector identifier), and a line name. A path, (c^1? s^,c^2j, 
is a line. In (ci15s«,c«2) c^ and Q 2 , respectively, are the first and last con­
nector identifiers, and S{ is the line identifier (or name). If £ and £' are lines: 
(^cfst^njAci) a n d (^a^nk^cist) s u c n that the l a s t connector identifier of £, 
£Ci, is also the first connector identifier of £f then (£Cfst:comp(£nj:£nk):£Clst) 
is a line, comp is a function which composes distinct segment identifiers into 
unique segment identifiers, decomp is the inverse of comp: 

value 
comp: Si x Si -> Si 
decomp: Si -^ Si x Si 

axiom 
V si,si':Si • s i /s i ' =>* decomp(comp(si,si')) = (si,si') 

If, in a network, there is a path (i.e., a line) from the connector identified by 
Cf to the connector identified by Q , and another connector identified by C{ to 
the connector identified by c ,̂ then in the transitive closure (wrt., lines) of 
that network we say that there is a line from connector Cf to connector Cf. 
More generally, if in a network there is a line from the connector identified by 
Cf to the connector identified by c ,̂ and from the other connector identified 
by Ci to the connector identified by ct, then, in the transitive closure (wrt., 
lines) of that network we say that there is a line from the connector identified 
by Cf to the connector identified by ct. Thus the concept of line is almost 
similar to the concept of path. Given a network we can compute its transitive 
closure wrt. lines. 

type 
L = Ci x Si x Ci 

value 
closure: N —> L-set 
closure(n) = 

let ps = gen_Ps(n) in 
let clo = ps U {(cf,comp(sf,st),ct) | 

(cf,sf,ci),(ci/,st,ct):L«{(cf,sf,ci),(ci/,st,ct)}CcloAci=ci/} in 
clo end end 
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We assume that nets are finite, that is, that their numbers of segments and 
connectors are finite. Hence the set do is finite. 
closure expresses its result, do, inductively. Think of solving the re­
cursive equation do = ps U { (cf,comp(sf,st),ct) | (cf.sf.ci^ci'.st.ct):!- • 
{(cf,sfIci),(ci/,st,ct)}Cclo A ci=ci'} iteratively. Initially there is just the con­
tribution of ps to do. In a second iteration the do in the body of the set 
comprehension is ps, so it now contributes to forming lines that span two 
paths. For each iteration, i, lines that span i paths are generated. At some 
iteration, n, where n is at most the number of connections in the network 
(i.e., nodes in a graph), no more lines are contributed to do. The recursive 
equation in do is solved: the smallest set, 7, has been found such that when 
replacing do by 7 in the equation it satisfies that equation. 7 is a fix point 
solution to the equation.4 

• 

14.6 Discussion 

14.6.1 General 

We have outlined the Cartesian data type. And we have tried to (i) enunciate 
principles for when to deploy Cartesian abstraction, to (ii) list some of the 
techniques that follow from such a choice and (iii) to identify some of the 
Cartesian abstraction specification language tools today available. Cartesians 
constitute "another basic workhorse" of model-oriented abstraction and mod­
elling. We shall later see how the record data type extends, and enriches the 
simple concept of Cartesians brought forward in the present chapter. 

14.6.2 Principles, Techniques and Tools 

Principles. Cartesians: If and when a model-oriented abstraction has been 
chosen, then Cartesian abstraction is chosen if the following characteristics 
can be identified as properties of the phenomenon or concept being mod­
elled: (i) The abstract structure of the composite components being modelled 
consists of an ordered collection of not necessarily uniquely named, but other­
wise distinct subcomponents (constituent phenomena or concepts); (ii) whose 
number is fixed, i.e., constant; (iii) where one may thus decompose into con­
stituent such subphenomena, respectively subconcepts; and (iv) where a need 
to express the composition into the overall abstraction occurs naturally. • 

Principles. Cartesians: We mention, at this early stage in these volumes, 
two specific principles of when to choose Cartesians as a basis for abstract 

4Since, in RSL, we must reckon with nondeterminism, that is, many models of 
our specifications, the semantics of RSL is designed to allow all fix points of recursive 
definitions. 



316 14 Cartesians in RSL 

modelling, (v) Semantic configurations are usually compositions of semantic 
concepts referred to as configurations: contexts and states, treated in Vol. 2, 
Chap. 4. Configurations are typically modelled as Cartesians. This was already 
enunciated above, under General Principles. We also refer to Example 14.7 
(specifically 'Configuration'), (vi) Syntactic Structures: Compositions of syn­
tactic concepts are "classically" modelled as Cartesians. This was amply il­
lustrated in Examples 14.4-14.6. We shall often illustrate the deployment of 
the above specific principles. • 

Techniques. Cartesians: We refer to initial paragraphs of Sect. 14.4, for a 
listing of some of the techniques (1-4) used when abstracting using Cartesians. 
More specifically, just a few Cartesian-oriented techniques are offered: (vii) 
observer functions occassionally "extract" groupings (i.e., Cartesians), (viii) 
Otherwise the simple, explicit, parenthesised grouping expressions serve to 
express composition, (ix) and the simple let-style decomposition clauses serve 
to express analysis into components. • 

Tools. Cartesians: If abstraction and modelling using the Cartesian data type 
has been chosen, then the tool can either be the RSL, the VDM-SL, the Z or, 
for example, the B specification language. • 

14.7 Exercises 

Exercise 14.1. Simple Cartesian Types. This exercise helps to develop your 
skills in manipulating Cartesians. It is not one of abstraction. 

1. List the elements of 
(a) Boolx Bool and 
(b) BoolxBoolxBool . 

2. List some of the elements of Nat x Bool 

Exercise 14.2. Set Representations of General Cartesian Pairs. We refer to 
Example 14.3. In that example all A elements we assumed distinct — yet no 
well-formedness predicate was defined for checking that. If two elements of a 
simple pair, (a, a), are identical then the assumed set representation {a, {a, a}} 
"collapses" into {a, {a}}. Now, accepting this, that is, accepting non-distinct 
A elements, redefine the functions P2S and S2P, etcetera. 

Exercise 14.3. Lisp-like Lists. A pair can model a simple list of two ordered 
elements: (a,b) = (a,b). A list of three elements (a,b,c) can be modelled as 
the pair (a, (6,c)), and so forth: (a, 6, c, d) = (a,(b,(c,d))), etc. To complete 
the description of these, as we shall call them, "pair lists", we allow for the 
empty list, (), and the list of just one element, (a). 

1. Formalise the type of "pair lists". 
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2. Define the operations of 
(a) Creating an empty "pair list", 
(b) checking that a "pair list" is empty, 
(c) concatenating simple elements to the front, respectively back of a "pair 

list", 
(d) obtaining the first, respectively the last, (simple elements) of a "pair 

list", 
(e) obtaining the list of all simple elements of a "pair list", but the first, 

respectively the last. 

Exercise 14.4. Binary, Sorted and Balanced Trees. This exercise helps to 
finally develop your skills in manipulating Cartesians — while also introducing 
you to the important computing science notions of binary, sorted and balanced 
trees. It is not one of abstraction. 

A binary tree consists of a root and left and right subtrees. A subtree 
is either a leaf or a binary tree. Roots consists of pairs of integers (the root 
index) and text. A leaf is a root (thus with a leaf index). (Texts are considered 
not to contain integers!) A tree is sorted (or ordered) if the integer of the left 
subtree root is less than the integer of the tree root, and if the integer of the 
right subtree root is larger than the integer of the tree root. 

1. Define the type of binary trees. 
2. Define the type of sorted binary trees. 

The next concepts are defined only for ordered (i.e., sorted) binary trees. 
Let t b e a proper, non-leaf tree and (it, ( i , r ) , r t ) its representation. If it 

is a proper tree, (iit,j,rit), then (i, j) is a branch of £, and {(i,j)} is a path 
of length 1 in t. If i is a leaf, (fc, r ) , then (i, k) is a branch, etc. If p is a path 
of proper tree it, then {(i, j )} U p is a path of t. The empty path is modelled 
by the empty set {}. It is always a path of any tree: from its root to itself! 

3. Define the type of the above sketched trees. 
4. Argue, i.e., reason informally, that if a tree is sorted, then a nonempty path 

contains of a set of integers of cardinality one higher than the number of 
pairs in the path. 

5. Argue also that if the path set contains two or more branches then for 
any branch (i,j) one can find exactly one other branch (j, _), where the 
wildcard "_" stands for some integer. 

6. Argue, finally, that if a tree is sorted, then the cardinality of a path denotes 
its length. 

A binary tree t is balanced if all paths from the root of t to its proper leaves 
differ by at most one. 

7. Define the type of trees sketched above. 
8. Define functions which generate the set of all paths of a tree, which com­

pute the length of a path, the maximum depth of a tree: the length of its 
longest path, and the set of all root indexes of a tree. 
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9. Define predicates which tests whether a binary tree as defined is sorted, 
respectively balanced. 

A binary tree pa th traversal is a visit to the nodes of a tree in one of any six 
ways: pre-order, postorder or in-order; and either left-to-right or right-to-left. 
In a left-to-right traversal of any tree, left subtrees are visited before right 
subtrees of tha t tree. In a pre-order roots of subtrees are visited when first 
encountered. For post-order, they are visited when last encountered. For in-
order, they are visited when encountered after the first traversal of a subtree. 
Encountering means: A traversal of any tree "starts" at the root of tha t tree. 
Then it encounters tha t tree's root first t ime. After having visited, say, the 
left subtree, if any, it reverts to "that root", for the second time, and again 
reverts to it, for the last t ime when it has traversed the other (here the right 
subtree). 

10. Define six functions 
(a) pre-Itr, pre-order, left-to-right 
(b) in-ltr, in-order, left-to-right 
(c) pst-ltr, post-order, left-to-right 
(d) pre-rtl, pre-order, right-to-left 
(e) in-rtl, in-order, right-to-left 
(f) pst-rtl, post-order, right-to-left 

which each yields the text of roots during the respective traversals 

E x e r c i s e 1 4 . 5 . Simple Expression Language. This exercise is not one of ab­
straction, but only of modelling. It is included in order to show you how little 
we need in order to tackle seemingly complex structures. 

We refer to Examples 14.4-14.6 and 14.7. Those examples referred to an 
expression language and its evaluation. This exercise is about tha t expression 
language! 

We narra te 

(a) first the syntax of the simple expression language, 
(b) then the semantic types, 
(c) and finally how expressions can be evaluated. 

(a) Syntactic categories: An expression is either a [i] constant, a [ii] variable, 
a [iii] prefix, an [iv] infix or a [v] suffix expression, [i] A constant is either a 
Boolean or a real number, [ii] A variable is a further un-analysed quantity. 
[iii] A prefix expression is a pair consisting of a [vi] prefix operator and an 
expression, [iv] An infix expression is a triple consisting of two expressions 
and an [vii] infix operator. A [v] suffix expression is a pair consisting of an 
expression and a [viii] suffix operator. Operators are simple text strings. The 
following are [vi] prefix operators: " n e g a t i o n " and "minus" . The following are 
[vii] infix operators: "and", "o r " , " imply" , "add", " s u b t r a c t " , " m u l t i p l y " 
and " d i v i s i o n " . The following is the only [viii] suffix operator: " f a c t o r i a l " . 

1. Define the types of the above-sketched syntactic categories. 
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(b) Semantic types: [ix] The value of an expression is either a Boolean or a 
real, [x] A state is needed to evaluate an expression containing variables. A 
state is here considered to be a set of pairs of variables and their values. No 
two otherwise distinct state pairs have the same first variable component. 

2. Define the types of the above-sketched semantic categories. 

(c) Expression evaluation: To evaluate an expression the evaluator takes two 
arguments: a syntactic and a semantic, i.e., an expression and a state, [i] A 
constant expression has the value of the constant, [ii] A variable expression 
has the value by which it is recorded in the state. If it is not recorded then the 
chaos value is yielded. Pre-, in- and suffix expressions first have their operand 
expression values evaluated, [iii] If the prefix operator of a prefix expression 
is "negation", then the value is the negation of the operand expression value 
— which is assumed to be a Boolean, otherwise chaos is yielded, etc. [iv] The 
value of an infix expression is the conjunction of the operand expression values 
if the infix operator is "and", etc. Operators "and", "or" and "imply" require 
Boolean values, otherwise chaos is yielded, etc. Division by zero yields chaos. 
[v] The value of a suffix expression is the factorial of the operand expression 
value (real) if the suffix operator is " f a c t o r i a l " . 

"Etc." above means: Please add the "missing" narration. 

3. Define the semantic expression evaluation function. 

Observe that evaluation dynamically tests operand values. And observe that 
all functions are strict. 

Exercise 14.6. X Cartesians in the Transportation Net Domain: We refer to 
Appendix A, Sect. A.l, Transportation Net. We also refer to Exercise 13.5. 

Define the Cartesian types of as many phenomena and concepts in the 
Transportation Net domain that you think should be so modelled. 

Exercise 14.7. X Cartesians in the Container Logistics Domain. We refer to 
Appendix A, Sect. A.2, Container Logistics. We also refer to Exercise 13.6. 

Define the Cartesian types of as many phenomena and concepts in the 
Container Logistics domain that you think should be so modelled. 

Exercise 14.8. X Cartesians in the Financial Service Industry Domain. We 
refer to Appendix A, Sect. A.3, Financial Service Industry. We also refer to 
Exercise 13.7. 

Define the Cartesian types of as many phenomena and concepts in the 
Financial Service Industry domain that you think should be so modelled. 





15 

Lists in RSL 

• The prerequisite for studying this chapter is that you possess knowledge 
of the mathematical concepts of sets and Cartesians as introduced in earlier 
chapters. 

• The aims are to introduce the RSL abstract data type of lists: The type, 
the values, and enumeration and comprehension forms of expressing lists, 
and to illustrate the expressiveness of lists by illustrating simple and not 
so simple examples of phenomena and concepts that can be modelled in 
terms of lists. 

• The objective is to set the reader free to choose lists as models of phe­
nomena and concept entities, when appropriate, and to not choose lists 
when doing so is not appropriate. 

• The treatment is semiformal and systematic. 

For so work the honey-bees, 
creatures that by a rule in nature, 

teach the act of order. 

William Shakespeare, 1564-1616 [412] 
King Henry the IV, Part V, Chorus, ii, 163 

The only liberty I mean, 
is a liberty connected with order; 

that not only exists along with order and virtue, 
but which cannot exist at all without them. 

E. Burke, 1729-1797 [412] 
Speech at his arrival at Bristol, 13 Oct. 1774 

Characterisation. List: By a list we shall mean the same as by a sequence, 
or tuple: an ordered, i.e., an indexed (or indexable), grouping of zero, one or 
more — not necessarily distinct entities — all being of a common type, i.e., 
of a type that can be named. Furthermore, for the "thing" to be classified as 
a list it must be meaningful to speak of such list operations as the head, hd, 
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the tail, t l , the distinct elements, elems, the set of all the indices, inds, the 
length, and of selecting an i'th element of a list £(i), of concatenating,"", two 
lists, and of inquiring whether two lists are equal (not equal), = ( / ) • • 

15.1 Issues Related to Lists 

The idea to be illustrated in this section is that of the use of the discrete 
mathematics concept of lists in abstracting domain, requirements and software 
phenomena and concepts. Other terms used in lieu of lists are: sequences or 
tuples. Lists offer themselves as an abstraction when a component q can 
best be characterised as an "ordered set", a "variable-sized" (i.e., "flexible") 
arrangement (a, b,..., c) of possibly "repeated" components. Sets, Cartesians 
and lists, as such, as the only model-oriented (i.e., discrete mathematical) 
"devices" to "deploy" in abstraction, is a sign of some frugality. But it is, in 
most cases, better, we claim, than just sets! As a programming data type lists 
go a long way! 

We refer to the axiom system given for simple lists in Example 9.24 (as 
from Page 193). 

This chapter is, as are Chaps. 13-17, built up as follows: 

The list data type 
Examples of list-based abstractions 
Abstracting and modelling with lists 
Inductive list definitions 
A review of list abstractions and models 

(Sect. 15.2) 
(Sect. 15.3) 
(Sect. 15.4) 
(Sect. 15.5) 
(Sect. 15.6) 

There are many examples because before one can write good specifications 
one must have read and studied many example specifications. While you may 
not need to study all of them now, you can return to some later. The chapter 
ends with a brief discussion. 

15.2 The List Data Type 

We have already, in Chapter 9's Example 9.24 (Pages 193-194) covered the 
mathematical notion of simple lists by presenting an axiom system for lists. 
We urge the reader to first recall that definition. 

15.2.1 List Types 

Let A stand for a type whose possibly infinite number of elements include 
{a i ,a2 , . . . , a n , . . . } . 

Types whose values can be considered finite, respectively finite or infinite 
lists of A elements can be defined using the suffix * and w type operators, 
respectively: 
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t y p e e x a m p l e s 
A {a,al,a2,. . . ,am,.. .} 
F = A* {<>, (a), . . , <al ,a2, . . ,am), ...} 
L = Aw {<), (a), ..., (al ,a2, . . . ,am), ..., (al,a2,.. . ,am,... ), ...} 

We refer to examples above right. They correspond, line for line, to the sort, 
finite list, respectively infinite list type definitions above left. 

The expressions A* and Aw are list type expressions 

E x a m p l e 15.1 A Simple List Example: Let fact name the factorial function, 
then 

( fact(l),fact(2),fact(3),fact(4),fact(5),fact(6) ) 

expresses a simple list of six elements, the first six factorials! • 

15 .2 .2 List Value E x p r e s s i o n s 

Lists are finite or infinite, ordered aggregations of not necessarily distinct 
individuals. Lists are considered variable-sized, or flexible in tha t the number 
of their elements may vary.1 One list may contain 0 elements (the empty list 
{)). Another list may contain just one element (singleton lists (a«), {cij), . . . , 
(a&)). And so forth. A given (say, finite) list, of course, has a specific length. 
But one may form another list from two lists forming a list with cardinality 
the sum of the two lengths. Or one may remove an element from a non-empty 
list forming a list with length one lower. All this while the list value remains 
of some given type. 

List E n u m e r a t i o n s 

Let e, e l , e2, . . . , en2 be expressions tha t deterministically or nondeterministi-
cally evaluate to not necesarily distinct values (v, v l , v2, . . . , vn) of some type 
A, and let ei, ej be expressions which deterministically or nondeterministically 
evaluate to integer values, say vi, vj, then the following are examples of list 
value expressions, in particular list enumerations, respectively a ranged list 
expression: 

xWe refer to Footnote 1 and to Sect. 13.6 for a clarification of what we mean by 
variable-sized, flexible and vary. 

2 We remind the reader that in the rest of these volumes we shall use the following 
naming convention: Identifiers starting with e (and often "suffixed" or indexed 
(subscripted) by some alphanumeric characters) stand for expressions. Identifiers 
starting with v (and often suffixed or indexed (subscripted) by some alphanumeric 
characters) stand for values. Values are definite, in the sense that a value is a specific 
thing. Expressions may be constant expressions, i.e., evaluate, in any context (and 
state) to one and the same value, or expressions may be variable expressions, i.e., 
evaluate, in different contexts (and states) to different values. 
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(), (e), ..., <el,e2,...,en) 
( ei .. ej ) 

The first line, left to right, denotes the single model of the empty list of 
no elements, a set of models of singleton lists of one element values (any 
value will do!), etc., . . . , respectively a set of models of lists, all of n, not 
necessarily distinct, element values. The second line list expression denotes 
a set of models, each being a list of successive integers lying between, and 
inclusive, vi and vj. If vi>vj, then the integer list is empty. 

For each model the above expressions have a specific, value — that may be 
nondeterministic for reasons not immediate from the above, cf. Sect. 12.4.4. 

Syntactically an extended BNF grammar for the explicit list expressions 
follows: 

<exp_list_enum> ::= 
<sim_list_enum> 

| < list _rang > 
<sim_list_enum> ::= 

( <val_expr> , ... , <val_expr> ) 
<list_rang> ::= 

( <val_expr> .. <val_expr> ) 

The list comma-separated list of value expressions may be empty, or just have 
one element — in which case there are no separating commas. 

Please observe the distinction between the {'s and )'s — serving as list 
pointed brackets, i.e., as terminal symbols — and <'s and >'s serving as BNF 
grammar delimiters. 

Later we shall show an implicit enumeration of list values in the form of 
list comprehension (i.e., comprehended list expressions). 

List Value Operator/Operand Expressions 

We first present the list operator/operand expressions semi-formally, only ex­
plaining the operator meanings informally. Then we informally explain these 
meanings operationally. 

Operator Signatures and Informal Meaning: 

In general, a number of operators can be used to inspect properties of list 
values, respectively "construct" list values: 
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value examples /* the a, b, c, d: are values */ 
hd: Aw ^ A hd<al,a2,...,am)=al 
tl: Aw ^ Aw tl(al,a2,...,am)=(a2r..,am) 
len: Aw ^ Na t len(al,a2,...,am)=m 
inds: Aw -^ Nat-infset inds{al,a2,...,am)={l,2,...,m} 
elems: A.10 ->> A-infset elems(al,a2,...,am)={al,a2,...,am} 
.(.): Aw x Na t 4 A (al,a2,...,am)(i)=ai 
~: A* x A M Aw (a,b,c)~(a,b,d) = (a,b,c,a,b,d) 
=: Aw x A M Bool (a,b,c)=(a,b,c) 
7̂ : Aw x A M Bool <a,b,c) ^ <a,b,d> 

We refer to finite lists only examples above right. They correspond, line for 
line, to the operation signatures above left. 

Operational, Informal Definition of List Operations: 

Although we have already introduced lists, axiomatically, in Example 9.24 (as 
from Page 193), we shall now present another "definition", an operational one. 
As such it is basically bound to fail since we wish to deal also with infinite 
lists and we cannot meaningfully speak of the length of an infinite list. Let us 
anyway try — thereby stepping outside the realm, for a moment, of formally 
correct formulations, chaos is yielded for the length of an infinite list. 

Relying on the longish annotation of the RSL set data type (Sect. 13.2.2 on 
page 268) we can now bring a shorter, informal description of the RSL list data 
type. 

The list operators (i-v) hd, tl, len, inds and elems express (i) yielding 
the head element of non-empty lists, (ii) yielding the list of list elements other 
than the head of the argument list (also only of non-empty lists), (hi) the 
length of a finite list, (iv) the index set, from 1 to the length of the list (which 
may be empty in which case the index set is also empty, or may be infinite, in 
which case the result is chaos), and (v) the possibly infinite set of all distinct 
elements of the list, (vi) Indexing with a natural number, i, larger than 0 into a 
list larger than or equal to i yields its i'th element, (vii) "" concatenates its two 
operand lists into one list, first the elements of the first, finite length operand 
list, and then the elements of the second, possibly infinite length operand list, 
and in their respective order, (viii-ix) = and / compares two operand lists for 
equality, element-by-element, respectively for the occurrence of at least one 
deviation! 

We now informally define the meaning of the list operators model-theo­
retically. Not in RSL, but in some "similar" mathematical notation which is 
assumed understood. 

hd (head) and t l (tail) are assumed primitive operations. So is is_finite_list. 

value 
is_finite_list: Aw - • Bool 
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len q = 
case is_finite_list(q) of 

true —> if q = () then 0 else 1 + len tl q end, 
false —> chaos end 

inds q = 
case is_finite_list(q) of 

true ->> { i | i:Nat • 1 < i < len q }, 
false -^ { i | i:Nat • î O } end 

elems q = { q(i) | i:Nat • i G inds q } 

q(0 = 
if i= i 

then if q^() then let a:A,q':Q • q={a)""q' in a end else chaos end 
else q(i—1) end 

fq " iq = 
( if 1 < i < len fq then fq(i) else iq(i — len fq) end 
| i:Nat • if len iq^chaos then i < len fq+len end ) 

pre isJinite_list(fq) 

iq' = iq" = inds iq' = inds iq" A V i:Nat • i G inds iq' => iq'(i) = iq"(i) 
iq' / iq/r = ~(iq' = iq") 

Notice (i) that we have made use of an undefined predicate: is_finite_list which 
applies to both finite and infinite lists; (ii) that len is defined both recursively 
and in terms of t l — for infinite lists that wouldn't work: instead we rely 
on len q = chaos; (iii) that inds is defined in terms of len for finite lists, 
otherwise it is just the non-zero natural numbers; (iv) that elems is defined 
in terms of inds; (v) that "" is defined in terms len; and (vi) that = is defined 
in terms of inds. 

List Comprehension 

List comprehension, in general, usually applies to a list, I, of elements of type, 
say A. Comprehension then results in a list, say, of type B elements. 

These latter elements, q(l(i)), derive from such I elements, l(i), which satisfy 
some predicate, p(l(i)). The order of the resulting elements, q(l(i)) follows the 
natural ordering of indices (i) in the given range expression. 

Example 15.2 A Simple List Example: Let fact name the factorial function, 
then 
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( fact(i) | i in (1..6) ) 

expresses a simple list of six elements, the first six factorials! • 

type 
A, B, P = A - • Bool, Q = A ^ B 

value 
comprehend: Aw x P x Q 4 Bw 

comprehend (1st , ^ ,2 ) = 
{ Q(lst(i)) | i in (L.len 1st) • 7>(lst(i)) ) 

The text V(\st(\)) need not be an invocation of a predication function, but can 
be any Boolean value expression. It must, however, be deterministic in order 
to evaluate to true. The text Q(lst(i)) can similarly be any expression, even 
a nondeterministic one. Nondeterminism gives rise to the list comprehension 
expression denoting several models. We use comprehended list expressions 
when we wish to implicitly specify (i.e., 'implicate'), possibly infinite, lists, 
characterised by some V and some Q. 

List comprehension, as does set and map comprehension, expresses a form 
of 'homomorphic' principle: Functions over composite structures being ex­
pressed as a(nother) function over the (first) function applied to all immediate 
constituents of the composite structure. We refer to Sect. 8.4.4 on page 132 
for a first enunciation of the homomorphism concept. 

The general syntactic form of comprehended list expressions follows: 

<list_comp> ::= 
( <value_expr> | <binding> in <list_expr> • <bool_expr> ) 

where the • <bool_expr> part is optional. Please observe the use of BNF 
delimiters < and > versus the use of list pointed brackets: ( and ). 

15.2.3 List Binding-Patterns and Matching 

We have earlier dealt with the concepts of binding-patterns and matching, 
starting Page 271 for sets, and Page 306 (and Page 308) for Cartesians. 
We shall here consider the construct of list patterns, and the list matching 
and binding concepts. We shall later take these ideas up for maps, starting 
Page 355. 

By a list let decomposition binding-pattern we understand a construct 
basically of the following form (line [4]): 

[1] type 
[2] A, B = A* 
[ 3 ] value 
[4] ... let (a)""b = e in ... end ... 
[5] post e = (a)""b, i.e., a = h d e A b = t l e 
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{a)""b is the binding-pattern. Here it is (somehow) known that e is a non­
empty list of A elements. The understanding of let (a)""b = e in ... end is 
that e is list expression with non-empty value, say v, that the free identifier 
a is bound to the head of v, and that the free identifier b is bound to the 
possibly empty list tail of v. 

We show a very simple example of the use of list patterns — leaving its 
"encoding" to the reader: 

value 
sum: Nat* ->> Nat 
sum(ns) = 

ifns=() 
t henO 
else 

let (n)""ns' = ns in 
n + sum(ns') 

end end 

15.2.4 Lists: Determinism and Nondeterminism Revisited 

The remarks made earlier, for sets, in Sect. 13.2.2, Page 271, apply, inter 
alia, to lists also: Since list enumeration and range expressions, in general 
denote sets of models of lists, and since list operands of list operator/operand 
expressions in general apply to evaluation within such models, we can expect 
that the denotation of list operator/operand expressions, and comprehended 
list expressions likewise denote sets of models of lists or such other appropriate 
values (Booleans, natural numbers) as are the result types of the list operators. 

It is important to keep this in mind throughout! 

15.3 Small Examples of List-Based Abstract ions 

This section "matches" 13.3, Sections 14.3, 16.3, and 17.2. They all give small 
examples of set, Cartesian, list, map and function-based specifications. They 
are meant as "drill", i.e., class lecture examples. 

15.3.1 Representations 

Example 15.3 Simple List Representation of Equivalence Relations: We re­
fer to Example 13.5 on page 273. Let A be a type, and let ns be a set of values 
of type A. A list representation of equivalence relations over set of A elements 
is now to be a list of (element wise disjoint) lists of (thus distinct) A elements. 
The set-oriented equivalence relation {{a, &}, {c, d, e}} thus could have, for 
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example, the following list-oriented representation < < e, <i, c >, < &, a > > . As 
for Example 13.5 on page 273, we now formalise the above. 

type 
A 
P ' = (A*)* 
P = {| p:P' • wf_P(p) |} 

value 
sas:A-set 
wf_P: P ' - • Bool 
wf-P(p) = 

sas = U { elems(p(i)) | i in (1 .. len p) } A 
V i:Nat • {i,i+l}Cinds p => elems p(i) D elems p(i+l) 

merge: A x A x P - ^ P 
merge (a,a',p) = 

{ p(i) | i in (l..len p) • {a,a'} H elems p(i) = {} ) 
"( p(i)^p(j) | i,j in (L.len p) • a G elems p(i) and a' G elems p(j) ) 
pre 3 i,j:Nat • i^j A {i,j}Cinds p A a G elems p(i) and a' G elems p(j) 

We refer to Exercise 15.3 on page 344, and to Example 16.4 on page 357 for 
yet other representations of equivalence relations. • 

15.3.2 Stacks and Queues 

Example 15.4 Stacks: We have already, in Chapter 8's Examples 1 on 
page 129, 8.3 on page 131 and 8.5 on page 134 covered the computing sci­
ence notion of stacks by presenting an algebraic definition of stacks. We urge 
the reader to recall Example 8.5 on page 134. 

On the background of Example 8.3 on page 131 we therefore present: 

type 
E, S = E* 

value 
empty: -> S, empty() = () 
is.empty: S —> Bool, is_empty(s) = s=() 
push: E -> S -> S, push(e)(s) = (e)"s 
top: S ^> E, top(s) = hd s pre: ~is_empty(s) 
pop: S ^> S, pop(s) = t l s pre: ~is_empty(s) 

One observes a "shorter" definition above as compared to Example 8.3 on 
page 131. • 

Example 15.5 Queues: We have already, in Chapter 8's Example 2 on 
page 129 and Example 8.6 on page 135 (for the latter, see Pages 135-136) 
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covered the computing science notion of queues by presenting an algebraic 
definition of queues. We refer the reader to recall that definition. 

On the background of Example 8.6 on page 135 we therefore present: 

type 
E, Q = E* 

value 
empty: -> Q, empty() = {) 

is_empty: Q —> Bool 
is_empty(q) = q=() 

enq: E - ^ Q ^ Q 
enq(e)(q) = q^(e) 

deq: Q ^ Q x E 
deq(s) = (tl q,hd q) pre: ~is_empty(q) 

One observes a "shorter" definition above as compared to Example 8.6. • 

15.3.3 File Systems III 

This is the third in a series of models of what, with an overbearing mind, 
we could call file systems. Other models are presented in Examples 13.6 on 
page 274 (sets), 14.2 on page 300 (Cartesians [and sets]), and 16.8 on page 366 
(maps [and records]). See also Exercise 16.11 on page 390. 

Example 15.6 A Sequential File System: 
A file system is a sequence of uniquely named files. Each file is a sequence 

of records. Each record has three components: A key, a time stamp, and a set 
of data. On time stamps we assume an ordering relation, say 0 , such that if 
0(t, t') then time t is strictly before time tf. No two otherwise distinct records 
of a file where these two records has the same key, has the same time stamp. 
Records occur in the sequence of "older" records "last" in the list, "youngest" 
record at the front. File names, keys and time stamps are further unanalysed 
quantities. 

type 
Fn, K, T, D 
FS' = (Fn x F)*, FS = {| fs:FS' • wLFS(fs) |} 
F' = R*, F = {| b:F'-wf_F(f) |} 
R = K x T x D-set 

value 
0 : T x T 4 Bool 

wf_FS: FS' -> Bool 
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wLFS(fs) = 
V i,j:Nat • {i,j}Cinds fs A i^j => 

let (fn,)=fs(i),(fn',)=fs(j) in fn/fn' end 

wf_F: F' -> Bool 
wf_F(f) = 

V i,j:Nat • {i,j}Cinds f A i<j => 
let (k,t,ds) = f(i), (k',t',ds') = f(j) in 
t= t ' V 0(t , t ' ) A k=k' => 0(t , t ' ) end 

Operations on a file system, such as defined above, include: (i) Creating an 
initially empty file system; (ii) creating an initially empty named file in the file 
system; (iii) adding a record to a named file of the file system; (iv) getting all 
the records, of a named file, and having a given key; (v) deleting the record, 
of a named file, having a given key and a specific insertion time. Etc. We leave 
it to the reader to decipher the formulas below. 

value 
empty: -> FS 
empty() - • () 

crea: Fn x FS 4 FS 
crea(fn)(fs) = ((fn,()))""fs pre fn ^ file_names(fs) 

re.crea: Fn x F x FS -> FS 
re_crea(fn)(f)(fs) = ((fn,f))""fs pre fn 0 file_names(fs) 

file_names(fs) = {fn|i:Nat-i £ index fsAlet (fn',f')=fs(i) in fn'=fn end} 

index: Fn - • FS 4 Na t 
index(fn)(fs) as i 

post 3 j :Na t • j G inds fs A let(fn',)=fs(j) in fn=fn' A i=j end 
pre fn ^ file_name(fs) 

get_file: Fn -^ FS -^ Na t x F 
get_file(fn)(fs) = 

let i:Nat • index(fn)(fs), (fn',f) = fs(i) in (i,f) end 
pre fn ^ file_name(fs) 

add: R x Fn ^ FS ^ FS 
add(r,fn)(fs) = 

let (i,f) = get_file(fn)(fs) in 
{(fn,(r)^f)) ~ ( fs(k) | k in (L.len fs) • k / i ) end 
pre: fn ^ file_name(fs) 
assert: fn=fn' 
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get: K x Fn -+ FS - • R-set 
get(k,fn)(fs) = 

let (i,f) = get_file(fn)(fs) in 
{ f(j) | j in (l..len fs) • let (k'„) = f(j) in k = k' end } end 
pre: fn 0 file_name(fs) 

del: K x T x Fn -> FS 4 FS 
del(k,t,fn)(b) = 

let (i,f) = get_file(fn)(fs) in 
( f(j) | j in (L.len fs) • let (k,,t,,)=f(j) in ~(k=k' A t=t') end ) 
~( fs(k) | k in (L.len fs) • k / i ) end 
pre: fn g file_name(fs) A 3 j:Nat • let (k',t/,)=f(j) in k=k' A t=t' end 

15.3.4 Sorting Algorithms 

This section, on sorting algorithms, as the title reveals, exemplifies the use 
of the model-oriented features of the RSL (and for that matter any similar 
model-oriented specification language [VDM-SL, Z or other]) as a list-oriented 
programming language. 

There are many classical sorting algorithms: exchange sort: bubble, shaker, 
shell, insertion sort (straight and binary), merge sort, partition sort (Quick­
sort), selection sort (straight, heap). These will be the subject of assignments. 
See Exercises 15.6-15.13 (bubble, heap, insertion (straight and binary), merge, 
(straight) selection, shaker, shell and quicksort). 

But first: When is a list sorted? 

Example 15.7 When is a list sorted?: Let us assume an abstract type, A, 
of further unspecified values, between which an ordering relation, 0, holds. 
Now is_sorted holds of a list, with possibly multiple occurrences of identical 
elements, if any adjacent pair of elements are ordered. And is_sorted_wrt holds 
between a pair of such lists, if the first list is ordered, as defined above, and 
if the number of distinct A elements in the two lists are the same for all such 
A elements. 

type 
A, L = A* 

value 
O: A x A 4 Bool 
is_sorted: Q -t Bool 
is_sorted(q) = V i:Nat • {i,i+l}Cinds q => 0(q(i),q(i+l)) 

is_sorted_wrt: QxQ —y Bool 
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is_sorted_wrt(q',q") = 
is_sorted(q') A V a:A • a G elems q' U elems q" => 

card{i|i:Nat • i G inds q'Aa=q'(i)} = 
card{iji:Nat • i G inds q"Aa=q"(i)} 

theorem: 
is_sorted_wrt(q/,q//) => len q'=len q" A elems q'=elems q 

When we have covered the map data type, we can, in Example 16.3 on 
page 356, give another formulation of the is_sorted_wrt predicate. 

Example 15.8 Pre/Post Defined Sorting: Any sorting algorithm, when ap­
plied to an argument q, must yield a result q', such that is_sorted_wrt(q,q'). 

type 
A, Q = A* 

value 
sort: Q ->- Q 
sort(q) as q 

post is_sorted_wrt(q,q') 

15.4 Abstract ing and Modelling with Lists 

This section "matches" Sections 13.4, 14.4, 16.4, and 17.3. They all give larger 
examples of set, Cartesian, list, map and function abstractions and models. 
They are meant as self-study examples. 

The purpose of this section is to introduce techniques and tools for model-
oriented specifications primarily based on lists. Among the list modelling prin­
ciples, techniques and tools are: (1) Subtyping: Sometimes a type definition 
defines "too much": A type constraining (well-formedness, invariant) predi­
cate technique can therefore applied. (2) pre/post conditions: Function ab­
straction in terms of pre and post conditions. (3) "Input/Output/Query" 
functions: Identification of main functions according to their signature. (4) 
Auxiliary functions: Decomposition of function definitions into "smallest" 
units. The principles and techniques re-occur, for sets, Cartesians and maps 
in Sects. 13.4, 14.4 and 16.4. 
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15.4.1 Modelling Books Using Lists 

Example 15.9 Textual Documents: 

A Narrative of Entities 

(i) A textual document consists of some front matter (a title, author, date, 
etc.) and a non-empty sequence of named sections, (ii) We do not define what 
is meant by title, author, date, etc. (hi) A section consists of a display line title 
and a possibly empty sequence of paragraphs and a possibly empty sequence of 
subsections, such that at least one of these two components is non-empty, (iv) 
A subsection consists of a display line title and a possibly empty sequence of 
paragraphs and a possibly empty sequence of subsubsections, such that at least 
one of these two components is non-empty, (v) A subsubsection consists of a 
display line title and a non-empty sequence of paragraphs, (vi) A paragraph 
consists of a non-empty sequence of sentences, (vii) A sentence consists of 
words and punctuation marks put into a further undefined sequence, (vii) A 
display line title consists of a sequence of words. 

Formalisation 

type 
Tit, Aut, Dat, Sen, Wor, PuM 

Doc = Fro x Sec* 
Fro = Tit x Aut x Dat x ... 
Sec = Dis x Par* x Sub* 
Sub = Dis x Par* x SuS* 
SuS = Dis x Par* 
Par = Sen* 
Dis = Wor* 

value 
obsJWseq: Sen -> Wor* 

An Operations Narrative 

(viii) A Dewey Decimal Numeral is a sequence of one or more natural num­
bers (separated by periods — from which we, naturally, abstract), (ix) Any 
section, subsection and subsubsection can be identified by a Dewey Decimal 
Numeral, (x) The Dewey Decimal Numeral of the first section of a document 
is 1, of the second section it is 2, etc. (xi) The Dewey Decimal Numeral of 
the jth subsection of the ith section of a documents is i.j — etc. (xii) The 
Dewey Decimal Numeral of the kth subsubsection of the jth subsection of 
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the ith section of a document is i.j.k — and here our numbering stops, (xiii) 
A document table of contents is a list of pairs of Dewey Decimal Numerals 
and display lines, (xiv) gen.TOC is a function which applied to a document 
produces "its" table of contents. 

Formalisation 

Left as Exercise 15.14. • 

15.4.2 Modelling "KeyWord-In-Context, KWIC" 

We refer to an extensive and, we think, illustrative example in Sect. 15.4.2. 
This example also illustrates some analysis techniques. 

Example 15.10 KWIC: Key Word-In-Context: 
This example subsection has several subparts, and otherwise presents the 
problem in a more pedantic style than were the examples above. First we 
are given a problem formulation. We then, very briefly, analyse this given 
formulation. From the informal formulation and, as a result of the analysis, we 
(informally, yet somehow) systematically 'derive'3 our formal model. Finally 
we discuss our particular model and variants thereof. The purpose of this 
example illustration is then to show some of the aspects of going from a fixed 
problem formulation (given a priori) to models, and the problems posed by 
such oftentimes incomplete (or, but not in this case, inconsistent) informal 
formulations. The problem is taken from [6]. 

The Given Problem: 

We are given the following informal, English language program specification: 

"Consider a Program which generates a KWIC (KeyWord-In-Con­
text) index. 
A title is a list of words which are either significant or non-significant. 
A rotation of a list is a cyclic shift of words in the list, and a significant 
rotation is a rotation in which the first word is significant. 
Given a set of titles and a set of non-significant words, the program 
should produce an alphabetically sorted list of the significant rotations 
of titles" 

An example of input and output is then given: 

Input: 
Titles: 

T H E THREE LITTLE PIGS. 

SNOW W H I T E AND THE SEVEN DWARFS. 
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Non-significant Words: 
T H E , THREE, AND, THE, SEVEN 

Output: 
DWARFS, SNOW W H I T E AND THE SEVEN 

LITTLE PIGS. T H E THREE 

PIGS. T H E THREE LITTLE 

SNOW W H I T E AND THE SEVEN DWARFS. 

W H I T E AND THE SEVEN DWARFS. SNOW 

Discussion of Informal Problem Formulation: 

We now analyse the problem statement. The point of our analysis is to isolate 
concepts, discover incompletenesses and/or inconsistencies, etc. 

(1) The informal problem formulator already isolated some concepts; these 
appear (by our choice) italicised in the text. Other concepts potentially 
useful in, or for, our further work are: list, word, cyclic shift, first, set, and 
alphabetically sorted. 

(2) Some concepts are problem-oriented: title, words, significant, and non­
significant. Other concepts are more abstract, explication-oriented: list, 
rotation, (equal to) cyclic shift, first, set, and [alphabetically] sorted. (Our 
modelling will basically centre around, or express, but not necessarily all 
of, these concepts.) 

(3) The descriptive paragraph does not deal with punctuation marks; period 
(".") is not isolated as a concept, but it occurs, as a marker, in the rota­
tions. Also: Words are not further explained. We take these to consist of 
letters. And we assume some given alphabetical order of, or among, both 
upper and lower case letters. Blanks appear, but nothing is said about 
their relation to the ordering of titles. 

(4) Nothing is said about duplicate occurrences in the input or output. The 
input title "XXX XXX" might thus give rise to, e.g., two output rotations! 

(5) Finally nothing is said about the concrete input and output presentation: 
Carriage returns, new lines; respectively single or multiple column print­
ing, and display and the ordering within multiple columns: whether by 
row or by column. Etc. 

Program Assumptions: In order to proceed into a modelling step we make the 
following assumptions: 

(6) We ignore punctuation marks — but keep the title termination period as 
a "wrap-around-marker", one that designates where a title ends. 

(7) We assume 'alphabetic sorting' (see the o function below) to apply to all 
of the text of a title. 

(8) We omit multiple (duplicate) occurrences of [rotated] titles in the output, 
that is: we list (generate) only one copy. 
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Model Decisions: Our modelling will be based on the following decisions: 

(9) We assume a type of further unidentified characters from which we define 
titles (which do not include blanks) and strings (which includes blanks); 
we assume a character ordering relation from which we define title and 
string ordering relations. 

(10) We do not abstract away blanks — since blanks (and, in general, punc­
tuation marks) are needed to delineate words. 

(11) We abstract, as suggested by the informal formulation, both the pre­
sentation of input and output. (This issue will be a pressing one the 'closer' 
we get to a realization — and should, we seriously believe, be specified, 
in detail, before implementation is properly begun.) 

Some Auxiliary Functions: 

type 
Char 

value 
o: Char x Char ->• Bool 
o(cl,c2) = true /* if cl is before c2 else */ false 

type 
Word = Char* 
Title = Word* 
String = (Word |{blank})* 

axiom 
blank g Char 

value 
o: Title x Title -> Bool 
o(tl,t2) = o(ctts(tl),ctts(t2)) 

ctts: Title -> String 
ctts(t) = tl c ((blanket(i) | i in (l..len t » 

c: String* —> String 
c(sl) = if sl=() then si else hd si "" c(tl si) end 

o: String x String —> Bool 
o(sl,s2) = 

if s l=() A s2=() then true else 
if s l=() V o(hd sl,hd s2) then true else 
if s2=() V o(hd s2,hd si) then false else 
o(tl sl,tl s2) end end end 
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Since we ignore punctuation marks, including end-of-title marker, such marks 
will not be modelled either. 

The major model decision is that of giving a model, in particular one in 
the style that these volumes advances. 

Model: 

The presentation of the model will follow, in sequence, the way in which it 
was derived. That is: we decide, in a first, successful, attempt to model first 
some of the individual concepts outlined or italicised above. Then we bring 
all aspects together in the specification of the input/output types and the 
one, major program function (that is: the specification of the program itself). 
Finally we specify the auxiliary functions introduced by the major program 
specification. 

In this example the modelling of the auxiliary concepts turned out to be 
of direct use in the subsequent [main] model. 

Auxiliary Notions: "A rotation of a list is a cyclic shift of the words in the list": 

value 
Rotations: Title -> Title-set 
Rotations (t) = 

{ rot(t,i) | i:Nat • i G inds t } 

rot: Title x Nat ->• Title 
rot(t,i) = 

{ t ( j ) | j in ( l . . l ent )r{ t (k) |k in( l . . i - l ) ) 

We need select a "first word": 

value 
First: Title -^ Word 
First(t) = hd t pre t / () 

We need identify "is significant" (wrt. a set of non-significant words): 

value 
Is-significant: Title x Word-set => Bool 
Is_significant(t,ws) = First(t) $. ws 

We choose to model "alphabetical sort", rather than "is alphabetically sorted" 
— leaving the latter as a variant exercise: 

value 
A_sort: Title-set -^ Title* 
A_sort(ts) as ql 

pre true 
post elems ql = ts A len ql = card elems ql A aO(ql) 
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The post condition ensures that all (rotated) titles in the set, and only such, 
appear in the title output list; and that there are no duplicates. 

value 
aO: Title* - • Bool 
aO(ql) = V i,j:Nat • {i,j} C inds ql A i<j => o(ql(i),ql(j)) 

Types: "Given a set of titles and a set of non-significant words": 

type 
Input = Title-set x Word-set 

"the program should produce a . . . list . . . of titles": 

type 
Output = Title* 

The Main Function: is expressed as: "Produce an alphabetically sorted list of 
the significant rotations of titles": 

value 
KWIC: Input - • Output 

Again we choose to express the definition of KWIC in terms of a pair of 
p r e / p o s t conditions: 

value 
KWIC(i) as o 
pre t rue 
post Significant_Rots(i,o) A aO(o) A No_Duplicates(o) 

Auxiliary Functions: We need some auxiliary functions: 

value 
Significant_Rots,All_Rots,Only_Rots: 

Input x Output —> Bool 

Significant_Rots(i,o) = All_Rots(i,o) A Only_Rots(i,o) 

All_Rots((ts,ns),o) = 
V t:Title • t G ts A V t':Title • 

t' G Rotations(t) A Significant (t',ns) => t' G elems o 
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Only_Rots((ts,ns),o) = 
V t':Title • t' G elems o A 3!t:Title • 

t' G ts A t' G Rotations(t') A Is_Significant(t',ns) 

No_Duplicates: Title* - • Bool 
No_Duplicates(o) = card elems tl = len tl 

The All-Rots predicate checks that the output contains all significant rotations 
implied by input. The Only-Rots predicate checks that the output does not 
contain other such rotations: Observe that although we defined it, we never 
actually found a need for deploying the A-Sort function. Such "things" happen 
when modelling bottom-up, configurationally ! • 

15.5 Inductive List Definitions 

15.5.1 Inductive List Type Definitions 

Suppose we wanted to define: 

type 
L = L*. 

What would that mean ? Here is an attempt: 

value 

The cardinality of the class of values of type L of the left-hand side must be 
equal to the cardinality of the class of values of type L of the right-hand side. 
Obviously it is not. So we reject this kind of recursive set type definition. 

Following the lines of earlier recursive type definitions we reformulate the 
above problematic type equation into: 

type 
B 
L = BoL* 
BoL = mB | mL 
mB = = mkB(sb:B) 
mL = = mkL(sl:L) 

and would correspondingly get, in some : 

value 
C = {(£Ul2,.Jn)\ 

It e {mkB(b)|b:B} U {mkL{{£x,ly,...,.£z))\£x,£y,...,£z € £}} 
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That looks fine, so we conclude: 
Recursive definitions of lists must have built into them a variant, a "boot 

strap". The variant serves to get the "generation" of proper list values started, 
and serves to avoid seemingly meaningless "empty" values. 

15.5.2 Inductive List Value Definitions 

Example 15.11 List, Cartesian and Set-Based Model of Networks: We 
rephrase the solution of Example 14.8. That example was itself a rephras­
ing of Example 13.12 

We model routes as finite sequences of paths. 

type 
R' = (Ci x Si x Ci)* 
R = {| r:Rr • wfR(r) |} 

value 
wfR: R' -^ Bool 
wfR(r) = 

len r>0 A 
V i:Nat • {i,i+l} G inds r =>* 

let (ci,si,ci/)=r(i),(ci",si/,ci///)=r(i+l) in ci'=ci" end A 
let (cl ,_,_)=r(l),(_,_,cin)=r(len r) in c l / c n end 

First some auxiliary functions: 

CLdeg: Ci x R' - • Nat 
Ci_deg(ci,r) = 

card{i|i:Nat-i £ inds rAlet (ci',_,ci")=r(i) in ci £{ci',ci"} end} 

xtr.Cis: R' -» Ci-set 
xtr_Cis(r) = {ci|(ci^_,ci'0:P,ci:Ci-(ci^_,ci")e elems rAci e{ci',ci"}} 

value 
fst_Ci: R' -> Ci 
fst_Ci((ci,_,_)""r) = ci 

lst_Ci: R' -+ Ci 
lst_Ci(r"(_,_,ci)) = ci 

no_mps_Ci: R —> Bool 
no_mps_Ci(r) = V ci:Ci-ci G xtr_Cis(r) => Ci_deg(ci,r)<2 

The set of all acyclic routes is defined by: 
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gen_Rs: N - • R-se t 
gen_Rs(n) = 

let ps = gen_Ps(n) in 
let ars = 

{ ( p ) | p : P . P G p s } 
U{rV|r,r / :R*{r,r /}CarsAlst_Ci(r)=fst_Ci(r /)Ano_mps_Ci(rV)} in 

ars e n d end. 

15.6 A Review of List Abstractions and Models 

Princ ip le s . Lists: When a model-oriented abstraction has been chosen, then 
list abstraction may be chosen if a reasonable number of the following char­
acteristics can be identified as properties of the phenomena or concepts be­
ing modelled: (i) The abstract s tructure of the composite components being 
modelled consists of an ordered collection of not necessarily distinct subcom­
ponents (constituent phenomena or concepts), (ii) whose number is not fixed, 
i.e., may vary, i.e., (iii) to which new, distinct subcomponents may be joined 
— typically at either end of lists; (iv) from which existing subcomponents may 
be removed — typically at either end of lists; and (v) where one may compose 
other such phenomena or concepts from similar such phenomena, respectively 
concepts. • 

Pr inc ip le s . Lists: We mention, at this early stage in these volumes, two spe­
cific principles of when to choose lists as a basis for abstract modelling, (vi) 
Semantics of Imperative Languages: As illustrated in Examples 14.4-14.6 and 
Example 14.7, the semantics of an imperative4 program is expressed as a se­
quence of state transitions, with this sequence being afforded by the iterated 
interpretation of statements, (vii) Syntactic Structures: The sequence of inter­
pretation of statements mentioned above is then facilitated by the modelling 
of central structures of imperative programs as lists of s tatements.5 Tha t is, 
the former "specific principle" is more conceptual. Its modelling consequences 
are to be found in the structuring of the function definitions which express 
the semantics.6 

We shall later have opportunity to illustrate the deployment of the above 
specific principles. • 

4An imperative program is a syntactic structure the elaboration of whose compo­
nents, i.e., statements, causes changes to a state. Each pair of conjoined statements, 
so-to-speak, express: First do this, then do that! Truly an imperative. C++ and Java 
are examples of imperative programming languages. 

5Although that was not done in Examples 14.4-14.6 and Example 14.7. 
6And that indeed was done in Example 14.7: Sequential iteration. 
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Techniques. Lists: We refer to initial paragraphs of Sect. 15.4 for a listing 
(1-4) of some of the techniques used when abstracting using sets. 

More specifically: A number of list-oriented techniques are offered: (viii) 
Observer functions sometimes "extract" lists; (ix) the various list operations 
apply to appropriate modelling instances: (x.l) Concatenation applies to mod­
els of "all", "shared", respectively "some, except" instances of a phenomenon 
(a concept) possessed by two or more sets of phenomena (respectively con­
cepts), (x.2-4) head, tail and indexing apply to models of "the first" instance, 
"the remaining" instances, respectively "some specific" instance, of a phe­
nomenon (concept) possessed, (x.5) length applies to models of "how many" 
instances of a phenomenon (concept), (x.6-7) with elements and indices be­
ing mere technical operations; (xi-xii) list enumeration and list comprehension 
apply to the expression of the construction of an instance of an otherwise list 
modelled phenomenon (or concept). 

These are just some of the more "important" techniques. • 

Tools. Lists: If abstraction and modelling using the list data type has been 
chosen, then the tool can either be the RSL, the VDM-SL, the Z, or, for example, 
the B specification language. • 

Please compare the present section to those of Sections 13.7 (sets) and 16.6 
(maps). 

15.7 Lists: A Discussion 

We have outlined the list data type. And we have tried to (i) enunciate princi­
ples for when to deploy list abstraction, to (ii) mention some of the techniques 
that follow from such a choice, and to (iii) identify some of the list abstrac­
tion specification language tools today available. Lists constitute "another 
basic workhorse" of model-oriented abstraction and modelling. 

15.8 Exercises 

Exercise 15.1. Simple List Types. This exercise is intended to help develop 
your basic skills in manipulating lists. It is certainly not one of abstraction. 

List the elements of A* and Aw. 
List some of the elements of Nat*, respectively Nat^. 

Exercise 15.2. List Representation of Sets. The present problem intends to 
exercise your skills in manipulating sets and lists — and to put the ideas of 
refinement and abstraction functions into your repertoire of software develop­
ment techniques. 

Given the type definition L = A-set where A is some trivial sort. 
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Suggest a representation of finite sets as finite lists; express a well-
formedness predicate on such "set" lists; and define, as proper functions, the 
set operators, U, Pi, \ , C, c , and card, on the "set" list representations; and 
argue, informally, that your functions maintain the "set" list well-formedness 
predicate. 

Exercise 15.3. List Representation of Equivalence Relations. We refer to Ex­
amples 13.5 on page 273 and 15.3. Let a list representation of an equiva­
lence relation be that of a a pair: A list of indices into the pair-list (being 
described presently), and a list of pairs. Each pair contains a distinct ele­
ment of the type being partitioned, and an index to an arbitrary next (or 
the same) pair. The indices designate circular, disjoint lists. The equivalence 
relation {{a, &}, {c, d, e}} may thus be represented as the pair (< 1,5 > , < 
(d, 4), (a, 5), (e, 1), (c, 3), (6,2) >). (i) Formalise this type, (ii) express, for­
mally, well-formedness of such pair-list representations, and (iii) define the 
list-oriented merge operation. We also remind the reader of Example 16.4. 

Exercise 15.4. List Representation of Stacks. The present problem further 
intends to exercise your skills in manipulating sets and lists, and in under­
standing stacks — and to put the ideas of refinement and abstraction functions 
into your repertoire of software development techniques. 

Define an abstract data type 'stack' with the "usual" operations, but al­
lowing only for a maximum size stack. 

Exercise 15.5. List Representation of Queues. The present problem intends 
to exercise your skills in manipulating sets and lists and in understanding 
queues — and to put the ideas of refinement and abstraction functions into 
your repertoire of software development techniques. 

Define an abstract data type 'queue' with the "usual" operations, but 
allowing only for a maximum size queue. 

Exercise 15.6. Bubble Sort. Find, in some textbook, a description, in some 
language, whether natural or a programming language, of the bubble sort 
algorithm, and reformulate that algorithm in RSL. 

Exercise 15.7. Heap Sort. Find, in some textbook, a description, in some 
language, whether natural or a programming language, of the heap sort algo­
rithm, and reformulate that algorithm in RSL. 

Exercise 15.8. Insertion Sort. Find, in some textbook, a description, in some 
language, whether natural or a programming language, of the insertion sort 
algorithm, and reformulate that algorithm in RSL. 

Exercise 15.9. Merge Sort. Find, in some textbook, a description, in some 
language, whether natural or a programming language, of the merge sort 
algorithm, and reformulate that algorithm in RSL. 
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Exercise 15.10. Selection Sort. Find, in some textbook, a description, in 
some language, whether natural or a programming language, of the selection 
sort algorithm, and reformulate that algorithm in RSL. 

Exercise 15.11. Shaker Sort. Find, in some textbook, a description, in some 
language, whether natural or a programming language, of the shaker sort 
algorithm, and reformulate that algorithm in RSL. 

Exercise 15.12. Shell Sort. Find, in some textbook, a description, in some 
language, whether natural or a programming language, of the shell sort algo­
rithm, and reformulate that algorithm in RSL. 

Exercise 15.13. Quicksort. Find, in some textbook, a description, in some 
language, whether natural or a programming language, of the quicksort algo­
rithm, and reformulate that algorithm in RSL. 

Exercise 15.14. Formalisaton of Books. We refer to Example 15.9. Please 
formalise the notion of books, table of contents and a function which generates 
tables of contents from books. Please sketch how one might be able to provide 
page numbering? 

Exercise 15.15. X Lists in the Transportation Net Domain. We refer to Ap­
pendix A, Sect. A.l, Transportation Net. 

Further Reference: The description which follows is a rewording of the de­
scription given in Exercise 13.5 on page 290. Should you find, when reading 
the below description, that some information necessary to solve the problem 
is missing, then please consult Exercises 13.5 and 14.6. 

Let us assume that transportation net segments are modelled by Carte­
sians "containing" (i) the unique segment identifier, (ii) the set of the two or 
one connection identifiers (or names) of the connections between which the 
segment "spans", (iii) the "route" name [road name for road nets, etc.], (iv) 
the segment length, and (v) possibly some more attributes [albeit all "lumped" 
into one component]. Let us similarly assume that connections (connectors) 
are likewise modelled by Cartesians "containing" (1) the unique connection 
identifier, (2) a set of unique segment identifiers (of those segments incident 
upon (i.e., emanating from) the connection, and (3) possibly some more at­
tributes [albeit all "lumped" into one component]. 

Now model a concept of a path as a sequence of zero, one or more segments 
such that adjacent segments in the sequence (i.e., in the list) share connection 
identifiers. 

Finally model a transportation net as a pair of sets of segments and sets 
of connections. 

1. Define the types of nets, segments, connections, and paths. 
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2. Define a well-formedness predicate which tests whether a net is well-
formed. 

3. Define a well-formedness predicate which tests whether a segment is well-
formed wrt. a net. 

4. Define a well-formedness predicate which tests whether a connection is 
well-formed wrt. a net. 

5. Define a well-formedness predicate which tests whether a path is well-
formed wrt. a net. 

6. Define a predicate which tests whether a path is a cyclic path. 
7. Define a function which given a well-formed net generates all finite length 

non-cyclic (and well-formed) paths of the net. 
8. Define a function which given two distinct connection identifiers finds the 

set of all (well-formed) paths between them. 
9. Define a function which given two distinct connection identifiers finds the 

set of (one or more) shortest (well-formed) paths between them. 

Exercise 15.16. X Lists in the Container Logistics Domain. We refer to Ap­
pendix A, Sect. A.2, Container Logistics. 

Further Reference: The description which follows is a rewording of the de­
scription given in Exercise 13.6 on page 291. Should you find, when reading 
the below description, that some information necessary to solve the problem 
is missing, then please consult Exercises 13.6 and 14.7. 

Let us assume three kinds of lists: (1) 'Container routes', (2) 'actual sailing 
plans', and (3) 'container way-bills', and two kinds of sets: A set, (4) 'lines', 
of 'actual sailing plans', and a set, (5) 'seven-seas', of names of (all known) 
container terminals. 

(1) A 'container route' is merely a "cyclic sequence" of names of container 
terminals. (A 'container route' stands for a number of 'actual sailing plans'.) 
An adjacent pair of (container terminal) names in a sequence expresses that 
some container ship sails non-stop between the named container terminals. A 
"cyclic sequence" (of container terminal names) is a sequence where the pair 
of the last and the first container terminal name expresses that some container 
ship sails non-stop between the named container terminals. 

(2) An 'actual sailing plan' is a sequence of 'records of (past, present, or 
future) visits of a container ship to container terminals'. A 'record of a visit to 
a container terminal' can be thought of as a Cartesian. It may typically contain 
the following information: (i) a container terminal name, (ii) [relative] arrival 
time, (iii) [relative] departure time, and (iv) frequency of visits [the related 
concepts of 'relative' and 'frequency' are presently left further unexplained]. 

(3) A 'container way-bill' is a sequence of 'records of (past, present, or 
future) visits of a container to container terminals': Exactly and only those 
container terminals where the container is loaded and unloaded (including 
transferred between container ships), via respective container storage areas. 
The 'records of visits of a container to container terminals' also inform about 
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arrival and departure times at terminals, and the names of the container ships 
on which the container is to be conveyed. 

1. Define the concrete types of 'container route', 'actual sailing plan', 'con­
tainer way-bill', 'lines', and 'seven-seas'. 

2. Define a predicate, wf_CR, which tests that a 'container route' value is 
well-formed wrt. a 'seven-seas' value. 

3. Define a predicate, wf_ASP, which tests that an 'actual sailing plan' value 
is well-formed wrt. a 'container route' value. 

4. Define a predicate, wf_ASP, which tests that an 'actual sailing plan' value 
is well-formed wrt. a 'lines' value. 

5. Define a function, gen.Routes, which applies to any well-formed 'lines' 
value and generates the set of all routes. A 'route' is defined as a sequence 
of 'container terminal names' such that any adjacent pair of names in the 
sequence is visited by some container ship, i.e., are on an 'actual sailing 
plan' — hence in an 'actual sailing plan' of the 'lines' argument. 

6. Define a predicate, wf_WB, which tests that a 'way-bill' value is well-
formed wrt. a 'lines' value. 

7. Define a function, gen_WBs, which, given a pair of 'container terminal 
names' and a 'lines' argument, generates the (possibly empty) set of 'way­
bills". 

8. Consider Bays to be lists of Rows, Rows to be lists of Stacks, and Container 
Stacks to be lists of Containers. Now redefine appropriate load and unload 
functions. 

Exercise 15.17. X Lists in the Financial Service Industry Domain. We refer 
to Appendix A, Sect. A.3, Financial Service Industry.We also refer to above 
Exercises 15.15 and 15.16. 

You are to formulate yourself some narrative and formalisations of phe­
nomena and concepts of the Financial Service Industry domain for which lists 
may come in as a suitable abstraction. Please also consult Exercises 13.7 and 
14.8. 
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Maps in RSL 

• The prerequisite for studying this chapter is that you possess knowledge 
of the mathematical concepts of sets, Cartesians and lists as introduced in 
earlier chapters. 

• The aims are to introduce the RSL abstract data type of maps: the map 
type expression, the map value expressions, enumeration and comprehen­
sion forms of expressing maps, and operations over maps, as well as to 
illustrate the expressiveness of maps by illustrating simple and not so sim­
ple examples of phenomena and concepts that can be modelled in terms 
of maps. 

• The objective is to set the reader free to choose maps as models of phe­
nomena and concept entities, when appropriate, and to not choose maps 
when doing so is not appropriate. 

• The treatment is from systematic to semiformal. 

Characterisation. By a map we shall intuitively understand a somehow 
enumerable set of pairs1 of distinct argument result values, such that it is 
meaningful to speak of operations involving maps such as applying a map 
to an argument, ra(a), merging two otherwise distinct maps, U, overriding 
one map by another, f, restricting one map by the definition set of another, \ , 
restricting one map to the definition set of another, / , inspecting the definition 
set of a map, dom, inspecting the range set of a map, rng, composing two 
suitable maps, °, and comparing two maps for equality (inequality), = ( / ) . • 

Map me no maps, sir, my head is a map, a map of the whole world. 

H. Fielding, 1707-1754, Rape upon Rape 

xBy the hedge "somehow" we mean that it is possible to either explicitly list the 
pairs, or to characterise the set of pairs through some suitable predicate. 



350 16 Maps in RSL 

16.1 The Issues 

The idea to be illustrated in this section is the use of the discrete mathematics 
concept of maps in abstracting domain, requirements and software phenomena 
and concepts. Other terms used in lieu of maps are relations or (enumerable 
definition set) functions. Maps offer themselves as an abstraction when a 
component can best be characterised as a set of uniquely identified (other) 
components. The section gives a few more examples. 

Maps are a major "workhorse" in model-oriented abstraction. 

This chapter is, as are Chaps. 13-17, built up as follows: 

The map data type 
Examples of map-based abstractions 
Abstracting and modelling with maps 
Inductive map definitions 
A review of map abstractions and models 

(Sect. 16.2) 
(Sect. 16.3) 
(Sect. 16.4) 
(Sect. 16.5) 
(Sect. 16.6) 

There are many examples because before one can write good specifications 
one must have read and studied many example specifications. While you may 
not need to study all of them now, you can return to some later. The chapter 
ends with a brief discussion. 

16.2 The Map Data Type 

Chapter 6 covered the subject of mathematical functions. Maps are special 
kinds of functions. Normally, for general functions, one cannot compute their 
definition sets (i.e., the set of values for which the function is defined), and 
hence not their image (or range) sets. Maps are distinguished by exactly being 
functions having the property that their definition set, and hence their range 
sets, can be computed. In domain descriptions we need not compute all such 
definition sets, but we need be able to express a predicate that delineates the 
definition set. Since this is so, the map data type comes further "equipped" 
with a number of other operations on maps. 

The map data type has the following facets: (i) The map type (syntactically 
the map values, semantically the map type expressions and the map type 
definitions); (ii) the map values (a semantic concept); and (iii) the map value 
expressions (the syntactic counterpart of the semantic map value concept). 

16.2.1 Map Types: Definitions and Expressions 

Types whose values are total or partial functions, or are maps, can be defined 
using the type operators —> and ^>, respectively -^. On total and partial 
functions only a few operations are provided for (in RSL): (i) the function 
abstraction (A), (ii) the function application ("•(•)") and (iii) the function 
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composition (°) operations. In contrast, although maps are also functions, they 
are definition set enumerable functions on which a larger number of operations 
can (therefore) be defined. That is: One can enumerate the definition set. They 
can be defined exactly because the definition set, the arguments for which the 
function, i.e., the map, is defined, is computable. 

Let A and B stand for arbitrary types whose possibly infinite number 
of element values include al, a2, . . . , am, . . . , respectively bl, b2, . . . , bn, 

Types whose values can be considered finite or infinite, definition set 
enumerable maps from A elements to B elements, can be defined using the 
infix jft type constructor: 

type A, B 
M = A ^ B 

The expression A ^ B is a map type expression. 
Let us illustrate elements of some map type ([1]): In the expressions below 

([2]) the possibly decorated a's and the b's denote single values. 

[1] A ^ B 
[2] [], [ai->b], ..., [alh^bl,a2H^b2,...,a3^b3], 

The expression [] designate the empty map. The expression [ai-^b] stands 
for the singleton map that maps a into b. The expression [ali-^bl, a2i— b̂2, 
..., a3i->>b3] stands for the map which (possibly nondeterministically) maps 
respective, distinct ai into corresponding (not necessarily distinct) bi. 

Example 16.1 A Simple Map Example: Let fact name the factorial function, 
then 

[l^fact(l),2^fact(2),3H^fact(3),4h^fact(4),5H^fact(5),6H^fact(6)] 

expresses a simple map of six element, the natural numbers one to six, map­
ping into their respective factorials. • 

16.2.2 Map Value Expressions 

For sets and lists there were three kinds of explicit set-forming, respectively 
list-forming, expressions: enumerative, ranged expressions and comprehended 
expressions. For maps there are only enumerative and comprehended map 
expressions. 

Map Enumerations 

Let ae, ael, ae2, . . . , aen, be expressions that denote not necessarily distinct 
values of type A, and let be, bel, be2, . . . , ben be expressions that denote 
not necessarily distinct values of type B. Then the following are examples of 
explicit map value expressions, in particular enumerative map expressions: 
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[], [aei-^be], ..., [aeli->>bel,ae2i->>be2,...,aeni->>ben] 

The formula line above, left to right, denotes the single model of the empty 
map of no elements, a set of models of singleton maps of one element definition 
sets, etc., respectively a set of models of maps, all of n map pairs vai into 
vbi. For each model the above expressions have a specific, value, which may 
be nondeterministic for reasons not immediately clear from the above, cf. 
Sect. 12.4.4. Or it may be nondeterministic for reasons covered next. 

D e t e r m i n i s t i c and N o n d e t e r m i n i s t i c M a p Values 

If two or more aei, aej expressions evaluate to the same A value, then the 
map is said to be nondeterministic, otherwise it is said to be deterministic. 
A deterministic map, like a deterministic function, yields unique results for 
definition set, i.e., argument values. A nondeterministic map, like a nondeter­
ministic function, nondeterministically yields some result value for some or all 
definition set argument values. 

Let a, a', . . . , a", b, b', . • •, b" stand for distinct type A and type B values, 
respectively, then: 

[ a ^ b , a V - ^ . . . , a V ^ b " ] 

stands for a deterministic map, while 

[aM>b,ai->>b',...,ai->>b"] 

stands for the nondeterministic map which, when applied to a, either yields 
b, or b' , or . . . , b" , nondeterministically. The idea of a nondeterministic map 
is not to be confused with a map expression tha t denotes a set of models. 

M a p O p e r a t o r / O p e r a n d E x p r e s s i o n s 

First we present the map opera tor /operand expressions semiformally: pre­
senting the formal signature of the map operations and giving, informally, a 
metalinguistic2 example for each operation. Instead we pretend to give some­
thing tha t you may informally take to be a kind of axioms. 

Map Operation Signatures and Examples 

There are eleven map value related operations: •(•), d o m , rng, f, U, \ , / , = , 
^ , = and °. 

2This example is metalinguistic because we cannot give the semantics of RSL in 
RSL, and because we use ellipses ( . . . )• 
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value 

• ( • ): M - • A -^ B, m(ai) = bi 
dom: M —> A-infset [ domain of map ] 

d o m [ali->>bl,a2!->>b2,...,ani->>bn] = {al,a2,. . . ,an} 
rng: M —> B-infset [range of map] 

rng [alM>bl,a2h-»b2,...,ani->>bn] = {bl,b2,. . . ,bn} 
f: M x M - } M [override extension] 

[ a ^ b , a V - ^ b ' , a " ^ b " ] f [aV-^b",aV^b'] = [ a ^ b , a V - > b " , a " ^ b ' ] 
U: M x M -^ M [merge U] 

[ a ^ b , a ' ^ b ' , a " ^ b " ] U [ a ' " ^ b ' " ] = [ a ^ b , a ' ^ b ' , a " ^ b " , a ' " ^ b ' " ] 
\ : M x A-infset -» M [restriction by] 

[ a ^ b , a V ^ a " H > b " ] \ { a } = [aV->b',a''i->b"] 
/ : M x A-infset ->> M [restriction to] 

[ a ^ b , a ' ^ b ' , a " ^ b " ] / { a ' , a " } = [ a ' ^ b ' , a " ^ b " ] 
= , ^ : M x M -^ B o o l 
°: (A 7^ B) x (B ^ C) ->> (A ^ C) [composition] 

[a^b,aV-^b ' ] ° [bH>c,bW,b"H>c"] = [a^c ,aV-K/] 

Meaning of Map Operators 

The first line above, • ( • ) , expresses tha t functions and maps can be applied to 
arguments. The prefix operators d o m and rng denote "taking" the definition 
set values (i.e., the domain3) of a map (the a values for which the map is 
defined), respectively the range of a map (the corresponding b values for 
which the map is defined). The infix operators f, U, and / , when applied to 
two operands, denote the map which is like an override of the first operand 
map by all or some "pairings" of the second operand map, the merge of two 
such maps, the map which is a restriction of the first operand map to the 
elements tha t are not in the second operand set, respectively the map which 
is a restriction of the first operand map to the elements of the second operand 
set. The infix operators = and 7 ,̂ when applied to two maps, compare these 
for equality, respectively inequality. 

To explain composition (°) of two maps, mostly in terms of map compre­
hension, we introduce two map domains, M and N, such tha t the range of 
m:M operand maps fall within the domain of n:N operand maps. 

We explain, operationally, some of the map operations. We assume tha t 
d o m and •(•) are primitive operations. 

value 
rng m = { m(a) | a:A • a G d o m m } 

3Note that the term 'domain' is used here in a sense which is different from that 
of 'domain' used in the context of domain engineering, requirements engineering and 
software design. Observe further the danger of misinterpreting the term 'application' 
in 'application domain' as that of applying some function or map! 
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ml f m2 = 
[ a ^ b | a:A,b:B • 

a G dom ml \ dom m2 A b=ml(a) V a G dom m2 A b=m2(a) ] 

ml U m2 = [ a ^ b | a:A,b:B • 
a G dom ml A b=ml(a) V a G dom m2 A b=m2(a) ] 

m \ s = [ ai-^m(a) | a:A • a G dom m \ s ] 
m / s = [ ai-^m(a) | a:A • a G dom m D s ] 

ml = m2 = 
dom ml = dom m2 A V a: A • a G dom ml => ml (a) = m2(a) 

ml / m2 = ~(ml = m2) 

m°n = 
[ ai->>c | a:A,c:C • a G dom m A c = n(m(a)) ] 
pre rng m C dom n 

Map Comprehension 

Just as for sets and lists, we can either explicitly enumerate finite maps, or 
we can implicitly comprehend possibly infinite maps. 

Example 16.2 A Simple Map Example: Let fact name the factorial function, 
then 

[ i ^ fact(i) | i:Nat • i G {1..6} ] 

expresses a simple map of six element, the natural numbers 1 to 6, mapping 
into their respective factorials. • 

Let A, B, C and D denote arbitrary types, and let J7(a) and Q(b) stand for 
arbitrary expressions that applies to A, respectively B, values, and evaluate to 
C, respectively D values. That is, T and Q may be viewed as functions from 
A into C, and B into D. Finally let V(a) stand for a predicate expression over 
A. Then: 

type 
A, B, C, D 
M = A ^ B 
jr :F = A H> C 
G:G = B ^ D 
V:Y = A - • Bool 
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value 
comprehend: M x F x G x P - ) > ( C jff D) 
comprehend (m,JF; Q J>) = 

[ J7(a) i-+ 5(m(a)) | a:A • a G dom m A V(a) ] 

is a schematic example of a map comprehension expression. It maps, for those 
a in the domain of a given map m which satisfy a given predicate V, ^ (a) 
into £/(m(a)). The resulting map may be nondeterministic or deterministic 
independent of whether the argument is deterministic or not. It all depends 
on some or all of the arguments m, J7, Q and V. 

The text V(a) need not be an invocation of a predicate function, but can 
be any Boolean-valued expression. It must, however, be deterministic in order 
to evaluate to true. 

We use comprehended map expressions when we wish to implicitly specify 
(i.e., implicate) possibly infinite maps characterised by some functions T and 
Q and some predicate, V. 

Map comprehension, as do set and list comprehension, expresses a form of 
homomorphic principle: Functions over composite structures being expressed 
as a(nother) function over the (first) function applied to all immediate con­
stituents of the composite structure. We refer to Sect. 8.4.4 for a first enunci­
ation of the '(homo)morphism' concept. 

The general syntactic form of comprehended map expressions follow: 

<map_comp> ::= 
[ <value_expr> \-+ <value_expr> | <typings> • <bool_expr>] 

where the • <bool_expr> part is optional. 

16.2.3 Map Binding Patterns and Matching 

Earlier we dealt with the concepts of binding pattern, matching and binding, 
Sect. 13.2.3, for sets, Sects. 14.4.1-14.4.2, for Cartesians, and Sect. 15.2.3 for 
lists. We shall here consider the construct of map binding patterns and the 
map matching and binding concepts. 

By a map let decomposition binding pattern we understand a construct 
basically of the following form, line 4 below: 

type 
A, B, C = A ^ B 

value 
... let [ai-^b] U c = e in ... end ... 
post e = [ai-^b] U c, i.e.: c = e \ {a} A b = c(a) 

Here it is somehow known that e is a nonempty map. The understanding of 
let [ai-^b] U c = e in ... end is that e is map expression with nonempty 
value, say v, that the free identifier a is bound to an arbitrary member of the 
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definition set of v, that the free identifier b is bound to v(a), and that the free 
identifier c then is bound to the remainder of v, that is, a (possibly empty) 
map without [ai-^b]. 

We show a very simple example of the use of set patterns — leaving its 
decoding to the reader 

value 
sum: (Nat ^ Nat) ->> Nat 
sum(m) = 

i fm=[] 
thenO 
else 

let [ai-^b] U m' = m in 
a + b + sum(m' ) 

end end 

16.2.4 Nondeterminism 

In the map decomposition construct: 

let [ai-^b] U m = map in ... end 

the selection of the definition set value a is nondeterministic. Nondeterminism 
is an important abstraction mechanism. It expresses that we abstract from 
the specific choice: Any, or almost any, will do! 

16.3 Examples of Map-Based Abstractions 

This section "matches" Sections 13.3, 14.3, 15.3, and 17.2. They all give small 
examples of set, Cartesian, list, map and function-based specifications. They 
are meant as class lecture examples. 

16.3.1 Sorting 

Example 16.3 When Is One List Sorted wrt. Another?: First we introduce 
the notion of bijective index maps. A bijective index map is a map from 
natural numbers into natural numbers, such that the definition and the range 
sets of these maps are identical, and such that the definition set is the dense 
set of natural numbers from 1 into the number of elements in the dense sets 
(when they are nonempty). The idea is that the index map-elements "mimic" 
indices of a list. 
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t y p e 
A, Q = A* 
M' = N a t jff N a t 
M = {| m:M r • bijection(m) |} 

value 
bijection: M' -^ B o o l 
bijection(m) = 

d o m m = rng m = { L . c a r d d o m m} 

is_sorted_wrt: Q x Q —> B o o l 
is_sorted_wrt(q,q /) = 

l en q = l en q A is_sorted(q) A 
3 m:M • d o m m = inds q A 

V i:Nat • i G d o m m => q(i) = q'(m(i)) 

16 .3 .2 Equiva lence R e l a t i o n s 

E x a m p l e 16 .4 Simple Map Representation of Equivalence Relations: We re­
fer to Examples 13.5 and 15.3. 

We shall outline a map representation of equivalence relations. Let A be 
the type on subsets of which we may wish to record some equivalence relation. 
Let M be any bijective map from A to A. Let the map [d \-> c, b i-» a, e \-> 
d , a H & , c ^ e ] represent the equivalence relation {{a, &}, {c, d, e}} over the 
set {a, 6,c, d, e} . It can thus be shown tha t any bijective map records an 
equivalence relation over its definition set (which, obviously, equals its range 
set. The function retr_Q takes a bijective map and retrieves a set representation 
of an equivalence relation. 

t y p e 
M' = A jff A, M = {| m:M' • d o m m = rng m |} 

value 
re t r .Q: M - • Q 
retr_Q(m) = {get_eq(a,m) | a:A • a G d o m m} 

c o m m e n t : 
different a's tha t get the same equivalence class 
have these classes reduced to one in the result 

get_eq: A x M ^> A-se t 
get_eq(a,m) = 

let ns = {a}U{b | b:A • 3 c:A«c G ns A b = m ( a ) } in ns e n d 
pre a G d o m m 

merge: A x A x M ^> M 
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merge (a,b,m) = 
[ c i-» m(c) | c: A • c G dom m A c 0 {a,b} ] U [ a \-> b , m(b) i-» m(a) ] 
pre a^b A {a,b}Cdom m A a 0 get_eq(b,m) 

16.4 Abstract ing and Modelling with Maps 

This section "matches" Sections 13.4, 14.4, 15.4, and 17.3. They all give larger 
examples of set, Cartesian, list and function abstractions and models, which 
are meant as self-study examples. 

The purpose of this section is to introduce techniques and tools for model-
oriented specifications primarily based on maps. Among the map modelling 
principles, techniques and tools are (1) subtyping: Sometimes a type defi­
nition defines "too much". A type constraining (well-formedness, invariant) 
predicate technique can therefore applied. (2) pre /post-conditions: function 
abstraction in terms of pre- and post-conditions. (3) "Input/Output/Query" 
functions: Identification of main functions according to their signature. (4) 
Auxiliary functions: Decomposition of function definitions into "smallest" 
units. The principles and techniques reoccur, for sets, Cartesians and lists 
in Sections 13.4, 14.4 and 15.4. 

We present five kinds of examples: graphs, structured tables, hierarchies, 
relational databases and pointer-based data structures. 

16.4.1 Graphs 

We show an example graph (Fig. 16.1). 

P©J 
0 

Fig. 16.1. An example directed graph 
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Example 16.5 Graphs: A directed graph consists of nodes and arcs. An arc 
always "connects" two nodes. "Connection" is a function, here a map, from 
nodes to sets of nodes. Thus, if, in a directed graph with nodes a, b and c, 
directed arcs connect a to b and c, b to itself only, and c to a and itself, then: 

[a \-> {&, c}, b \-> {&}, c \-> {a, c}] 

is a model of the graph of Fig. 16.1. 
Let nodes of graphs be distinctly labelled. Let labels belong to type A, 

then a concrete, yet representationally abstract type of graphs, G, is: 

type 
G' = A jjf A-set 

What if a node a of a graph g has no arcs (directed edges) emanating from 
it — how is it modelled in g:G? Then we could choose it to not appear in 
the definition set of g, but it will appear in one or more range elements — 
namely for those nodes from which arcs are incident upon a. But what if a 
node s is isolated in g, i.e., has no arcs leading into it (in-degree 0) and no arcs 
leading out from it (out-degree 0); how is it to be modelled in g? The answer 
is: It cannot if we choose the modelling principle of the previous sentence, 
that is, positive, nonzero in-degree nodes of out-degree 0 appear only in range 
elements of g. Therefore we sharpen our modelling. Out-degree 0 nodes a in 
g map into empty sets. Thus all nodes in range elements of g must also be in 
the definition set of g: 

G = {| g | g:G' • |J rng g C dom g |} 

We have now modelled the type of all directed graphs. Here it is assumed 
that no two or more directed edges emanate (from) and are incident upon 
(pairwise) the same nodes. 

We now wish to operationally abstract a number of functions on graphs. 
To find all the nodes reachable through one or more steps from a given node 
a in a given graph g, we define a function Nodes. A "step" from a is any node 
b connected to a by an edge directed from a to b. Two steps from a is any 
node c connected by a directed edge from any node b which is reachable in 
one step from a. 

Here we give an inductive function definition: 

Nodes: A x G ->> A-set 
Nodes(a,g) = 

let nodes = g(a) U { a' | a':A • 3 a":A • a" G nodes A a' G g(a") } 
in nodes end 

To find out whether a graph is acyclic, i.e., whether any node can be reached 
in one or more steps from itself, we define a function is Acyclic. The function is 
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to be a predicate which yields truth if no such node exists, falsity otherwise. 
We use Nodes in the definition of isAcyclic. We do so since a graph is cyclic if 
some node a is in the set of nodes Nodes(a,g) reachable from a: 

isAcyclic: G —> Bool 
isAcyclic(g) = V a:A • a G dom g => a 0 Nodes(a,g) 

The function Nodes produces the set of nodes reachable from a node a, in 
a graph g whether or not this graph is acyclic, i.e., independent of possible 
cycles from a, in the direction of arrows, to g. • 

16.4.2 Structured Tables 

A table is like a relation. It consists of a finite number of zero, one or more 
entries. Each entry consists of one or more, but a finite number of fields. 
Each field contains a value. Let a table have entries of say n fields (positions 
1 through n), where n is larger than 1. In: 

type 
A, 
B 
B 
B 
B 
B 

C 
= A-set 
= ... 
= A* 
= A 
= C 

x A x ... 

nt C 
7* A 

If type B is one of the alternatives, or, more generally (than hinted at above), 
some discrete type4 otherwise involving type A, then we say that B is com­
mensurate with A. Let entry field values in, for example, field (position) i be 
of a type commensurate with the type of entry field values of field (position) 
j , where i^j. Then we may say that one entry field value refers to (or im­
plies) one or more other entries. If values contained in one entry implies other 
entries, then we say that the table is structured. 

Examples follow. 

Example 16.6 Bill of Materials: 

Narrative — Types 

A simple bill of materials is a table. Each entry in this table has two parts: 
a part-number,5 p, in the type Pn of part numbers, and a possibly empty 

4A discrete type "contains" no functions. 
5Part numbers are not necessarily numbers, but rather general (spare) part iden­

tification "numbers". 
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set of part numbers. If the set is empty the part number p is said to be an 
elementary, i.e., a noncomposite part (consisting only of itself!). If the set is 
nonempty, i.e., {pi,P2, • • • ,Pn} (for ^ > 1)? then p is said to be composite 
— consisting of the immediate, or constituent parts pi,P2, • • •, and pn. Such 
constituent parts must all be recorded in the simple bill of materials. Con­
stituent parts of p, or constituent parts of constituent parts of p, etc., cannot 
themselves consist of part p. That is, no part can be recursively constructed. 
We abstract the type of simple bill of materials by a map from part numbers 
to sets of part numbers. 

Formalisation — Types 

type 
BOM_0' = Pn j$ Pn-set 
BOM_0 = {| bom | bom:BOM_0' • inv_BOM_0(bom) |} 

We have now given an abstract model of a simple bill of materials type. For 
the sake of illustration we express a "typical" bom: 

bom : [ p i ^ {pa,Pb,--,Pc}, 

P2 *-> {pd,Pb,.-.,Pf},.-. 

Pa H> {}, 

Pb •"• {PxiPy}:---

Px "-• {}, 

Py •"• {}] 

Narrative — Invariant 

Well-formedness amounts to all constituent parts are recorded, and none is 
recursively defined. 

Formalisation — Invariant 

value 
inv_BOM_0(bom) = 

(1) V pns:Pn-set • pns G rng bom => pns C dom bom A 
(2) V p:P • p G dom bom => p ^ sub_Pns(p,bom) 

sub_Pns: Pn x BOM_0 -^ Pn-set 
sub_Pns(p,bom) = 

(3) { sp | sp:Pn • depends_on(p,sp,bom) } 
(4) pre p G dom bom 

depends.on: Pn x Pn x BOM_0 ^> Bool 
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depends_on(pn,sp,bom) = 
(5) sp E dom bom(pn) V 
(6) 3 p:Pn • (p E dom bom(pn) A depends_on(p,sp,bom)) 
(7) pre pn E dom bom 

Annotations: We say that a definition set part number represents a defining 
occurrence and that a range set of part numbers represent using occurrences 
of these. (1) If a set of part numbers is used in the table, then they are all 
defined by the table. (2) If a part number is defined in the table, then it is not 
used (i.e., defined) recursively. (3) Subsidiary part numbers of a part number 
p are those that can depend on p in the table. (4) p must be in the table. (5) 
For a part number sp to depend on a part number pn, either sp must be in 
the immediately used set of part numbers bom(pn), (6) or there must exist a 
part number p that is in the using set of part numbers bom(pn) and such that 
p depends on sp. (7) The "depends on" part number must be in the table. • 

Observe that the above definitions of sub.Pns and depends_on represents an­
other way of expressing acyclicity of a graph using Nodes and isAcyclic. It is 
obvious that the bill_of.materials type is tantamount to a model of graphs! 

Other examples of structured tables are compiler dictionaries, operating 
system directories, and so on. We shall have occasion to see many forms of 
structured tables in the rest of these volumes. 

16.4.3 Hierarchies 

Hierarchy: 
A body of things ranked in grades, orders, or classes, 

one above another 

The Shorter Oxford English Dictionary [350] (1643) 

There seems to be an obsession, predominantly, it seems, amongst intellec­
tually weak people, politicians and managers especially, to view the world 
hierarchically — usually with themselves at the top. Most of us tend, since 
the time of Aristotle (384-322 BC) it seems, to organise our world of doc­
uments hierarchically, so much so that now most computing filing systems 
offer basically hierarchically structured means of access called directories. We 
shall next study a variety of "abstract, generic" hierarchical structures. Their 
essence is their treelike nature, with roots and branches. 

Concrete phenomena whose structure resembles such trees or similar to 
hierarchies include books — with the book itself as the root, its various chap­
ters as immediate subtrees, their sections as subtrees of chapter subtrees, 
etcetera. This can continue down to a usually definite depth, achieved at plain 
texts within subsubsections, or within possible paragraphs, subparagraphs, 
and even within their maximum depth enumerations (as in these volumes). 
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Plain text forms tree leaves. We normally explain a leaf to be a possibly 
annotated (as for the text) empty tree. 

Another example is the organisational structure — here represented in 
terms of the staff — of an enterprise: a bureaucracy, a company or a hos­
pital. At the top, "at the root", there is the top executive, then follows line 
management, usually layered in several levels, i.e., hierarchically, then "floor" 
management with their charge, the "workers", as the leaves, "at the bottom"! 
The above text represented a par t analysis of the abstract concept of hierarchy. 
The analysis was carried out on, i.e., wrt. concrete, "manifestable" phenom­
ena. We are therefore ready to begin a more systematic, but now abstract , 
t reatment . 

E x a m p l e 16 .7 Hierarchies: 

Narrative — Hierarchies 

A hierarchy has a root and otherwise consists of zero, one or more distinctly 
labelled subhierarchies. A root is a further unanalysed quantity. A subhierarchy 
is a hierarchy. A subhierarchy label is a further unanalysed — albeit, most 
likely, different kind of quantity. 

Formalisation — Hierarchy: 

t y p e 
A, B 
AH = = cR(sa:A,sh:mH)6 

mH = = cH(sm:(B ^ AH)) 
value 

a,a',...,a":A, b,b',...,b":B, h,h',...,h":mH 
e x a m p l e s 

h i : cR(a,cH([])) 
h 2 : c R ( a , c H ( [ b / ^ h , , . . . , b , , ^ h / , ] ) ) 
h3 :cR(a , cH( [b ' ^cR(a / , cH( [ ] ) ) , . . . , b "^cR(a / , , cH( [b^h , . . . , b ' , , ^h ' / / ] ) ) ] ) ) 

A n n o t a t i o n s , (i) A s tand for the further unanalysed root type, (ii) B stand 
for the further unanalysed branch type, (iii) AH stand for the defined type of 
Cartesian pairs of A and mH entities, (iv) mH stand for the defined type of 
maps from B entities to AH entities. 

Observat ions . Nothing was said about the following possibilities: (iv) Can 
two or more (immediate) subhierarchies of a given hierarchy have identical 
roots? (v) Can any two branches along a path, i.e., a sequence of "connected" 
branches, have identical labels? (vi) What , exactly do we mean by immediate 

6The explanation, here, of "==" variant record definitions, ahead of their proper, 
formal introduction, was first briefly explained in Sect. 13.4.3. Sects. 18.4 and 18.5 
will further deal with record and union types. We will here give a brief "recap". 
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subhierarchy of a hierarchy? (vii) And what, exactly do we mean by paths? To 
this we turn next. 

Narrative — Paths 

Let there be given a hierarchy. A label, £i, (from the root of the hierarchy to 
the root of a possibly empty subhierarchy, said to be labelled by £\) is a path. 
A path is, in general, a sequence, (^1,^2,••• , ^ , ^ + 1 , • • • An), of one or more 
labels, ij, such that each £j is the label of a subhierarchy for all j , and such 
that if (£1, £2,..., £i) is a path of the hierarchy, and ^+i is a label of the root 
of a subhierarchy labelled by ^ , then (£1: £2,..., £i,£i+i) is also a path of the 
given hierarchy. 

Formalisation — Paths 

type 
P = B* 

value 
gen_Ps: AH ->> P-set 
gen_Ps(cR(a,m)) = 

case m of 

cH([]H{<», 
cH(m)-^U{(b)"p|b:B,p:P-b G dom mA(p=()Vp G gen_Ps(m(b)))} 

end 

Annotations. Paths are sequences of labels. If a hierarchy is empty, then 
it contains just the empty path; else a path consists of a prefix and a suffix 
whose first label (the prefix) is any label of a subhierarchy and any path 
(including no path, i.e., the empty path) of that subhierarchy. The possibility 
of "any path" allows for paths not necessarily ending up at leaves of the given 
hierarchy. U expresses the distributed set union. 

Narrative — Path Operations 

Given a hierarchy and a path, we wish to ascertain whether the latter is a 
path of the former. If so we wish to "access" the subhierarchy designated by 
the path. And we may wish to delete the designated hierarchy, or we may 
wish to replace it by another subhierarchy. 

Formalisation — Path Operations 

value 
wf_P_in_H: P x A H ^ Bool 
wf_P_in_H(p,h) = p G gen_Ps(h) 

Access: P x AH ^> AH 
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Access(p,cR(a,cH(m))) = 
if p=() t hen cR(a,cH(m)) else Access(tl p,m(hd p)) end 
pre wf_PJn_H(p,cR/a,cH(m)) 

value 
Delete: P x AH ^ AH 
Delete(p,cR(a,cH(m))) = 

ifP=0 
thencR(a,cH([])) 
else 

let cH(m') = m(hd p) in 
let mh = cH([b'hW(b')|b':B-b' G dom m'AbVhd p] 

U[hd pi-+Delete(tl p,m'(hd p))]) in 
cR(a,mh) end end 

end 
pre wf_PJn_H(p,cR(a,cH(m))) 

value 
Replace: P x A H x A H ^ A H 
Replace(p,cR(a,cH(m)),sh) = 

ifP=o 
then cR(a,sh) 
else 

let cH(m') = m(hd p) in 
let mh = cH([b'i-+ m'(b')|b':B.b' G dom m'AbVhd p] 

U[hd pi-)-Replace(tl pjm^hd p),sh)]) in 
cR(a,mh) end end 

end 
pre wf_PJn_H(p,cR(a,cH(m))) 

Annotations. The empty path deletes only the hierarchical part, by voiding 
it, not the A component of its root. A proper subhierarchy is selected. All 
the proper sub-subhierarchies that are not selected by the prefix label of the 
path are left unchanged. Only the sub-subhierarchy selected by the prefix 
label of the path is changed. The delete operation proceeds as from the sub-
subhierarchy and wrt. the suffix path. 

The replace operation follows the structure of the delete operation. • 

Notice how a recursively defined data structure (i.e., type) results in recur­
sively defined operations. Notice also that we could probably find a generic 
function Generic that traverses the hierarchy as do both Delete and Replace, 
but which is given different arguments for effecting deletes, respectively re-
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placements. To define this function is left as a standard exercise for parame-
terised higher-order functional programming. 

16.4.4 Relat ional File Systems (IV) and Databases 

This is the fourth in a series of models of what we could call file systems. Other 
models are presented in Examples 13.6 (sets), 14.2 (Cartesians and sets), and 
15.6 (lists, Cartesians and sets). See also Exercise 16.11. 

The next two examples resemble each other. The first, Example 16.8, pur­
ports to be that of a simple, "classical" file system. While the second, Ex­
ample 16.9, purports to be that of a simple, "classical" relational database 
system. Observe their rather similar types. Observe also the use of record 
type definitions of VALues. Record type definitions were first informally in­
troduced in Sect. 13.4.3, and will be formally covered in Sect. 18.4. And finally 
observe the use of subtype definition, of FILE. Subtype definitions were already 
introduced informally in Sect. 13.7, and will be formally covered in Sect. 18.8. 

Example 16.8 A File System: A file system consists of a set of uniquely 
named files. Each file consists of a set of uniquely "keyed" records. All records 
of a given file have the same number of "correspondingly" typed and uniquely 
named field values. 

type 
Fn, An, Key 
FS = Fn - • FILE 
FILE' = Key ^ REC 
FILE = {| file:FILE' • wLFILE(file) |} 
REC = An ^ VAL 
VAL = Integer | Boolean | Textstring 
Integer = = mkJnteger(i:Int)7 

Boolean = = mk_Boolean(b:Bool) 
Textstring = = mk_Textstring(s:Text) 
Kind = = integer | Boolean | string 

Notice the use of the variant record way of defining types. In Fig. 16.2 we 
contrast two ways of defining union of types. To the left the union (|) of types 
B, C, ... and D is discriminated, that is, one can distinguish the types. To the 
right one cannot. 

The latter (to the right), in effect, makes the types B, C D identical. 
The former (to the left) makes them distinct by virtue of distinct constructor 
names: mk_/3, mk_7 mk_£. These names are allowed to be, or to contain, 
the same type name as appears on the left-hand side of the corresponding 
type definition. We shall say no more on constructor types for the moment. 

7Again we use the variant type construction. See footnote 6. 
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Fig. 16.2. Discriminate and indiscriminate union, |, of types. 

D 

De 

X, Y 
A = B | C | ... | D 
B = = mk_/3(x:X,y:Y) 
C = = mk_7(f:X,y:Y) 

D = = mk^(x:X,g:Y) 

type 
X , Y 
A = B | C 
B = X x Y 
C = X x Y 

D = X x Y 

Any two records of the same file must have values of the same type for the 
same attribute name. This type constraint (i.e., subtype condition) is defined 
below: 

value 
wLFILE: FILE7 - • Bool 
wLFILE(file) = 

V r,r':REC • 
dom r = d o m r;AV a:An«a G dom r=type_of(r(a))=type_of(r'(a)) 

type_of: VAL -> Kind 
type_of(v) = 

case v of 
mkJnteger(ij) —> integer, 
mk_Boolean(tf) —> Boolean, 
mk_Textstring(cs) —> string 

end 

We leave as an exercise (Exercise 16.11) to formally specify a number of 
operations on the above file system. • 

Example 16.9 Relational Database System: A relational database system, 
sys:SYS, has two components: a schema, sch:SCH, defining the type of all 
database relations; and the database, rdb:RDB. 

The relational database, rdb:RDB, can be characterised as follows: rdb:RDB 
consists of a number of uniquely identified, r:R, relations, rel:REL, where a 
relation rel:REL consists of a set of identically attributed tuples, tpl:TPL Each 
tuple, tpl:TPL, has a distinct number of differently named attributes, a:A, and, 
for each attribute, there is its value, v:VAL 

Values are either integers, reals or character strings. Thus values are of 
types i n t ege r , r ea lno , s t r i ng , respectively. Given a value we can deduce 
its type. The relational schema, sch:SCH, defines the types of relation at-
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tributes, and can be characterised as follows: For each relation, named r:R, 
there is defined the type for each of the attributes. 

type 
R, A 
SYS' = SCH x RDB, SYS = {| sys:SYS' • wLSYS(sys) |} 
SCH = R ^ TplTyp 
TplTyp = A ^ Typ 
Typ = = integer | realno | text 
RDB = R ^ REL 
REL' = TPL-set, REL = {| rel:REL' • wLREL(rel) |} 
TPL = A ^ VAL 
VAL = = mk_int(i:Int) 

| mk_real(r:Real) 
I mk_txt(txt:Text) 

We model values as a type of three disjoint types, disjointness afforded by 
the use of the distinctly named type record constructors mk_int, mk_real, and 
mk_txt. For disjointness of record types, see Sect. 18.4 (specifically the para­
graph on Records: Constructors and Destructors). 

value 
typ: VAL -^ Typ 
typ(v) = 

case v of 
mkint(i) —> integer, 
mkreal(r) —> realno, 
mktxt(txt) —> text 

end 

wLSYS: SYS' -> Bool 
wf_SYS(sch,rdb) = 

wLRDB(rdb) A dom rdb C dom sch 
V r:R • r G dom rdb => wf_TPLs(sch(r),rdb(r)) 

wLRDB: RDB' -+ Bool 
wLRDB(rdb) = V r:R • r G dom rdb =̂> wf_REL(rdb(r)) 

wLREL: REL -^ Bool 
wLREL(rel) = 

V t,t':TPL • {t,t'}Crel ^ dom t = dom t ' A 
V a:A • s G dom t => typ(t(a))=typ(t'(a)) 

wLTPLs: TplTyp x REL ->> Bool 
wf_TPLs(tt,rel) = 
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rel={} V 
let t:TPL • t G rel => V a:A • a G dom t => tt(a)=typ(t(a)) end 
assert: 

V t:TPL • t e rel => tt(a)=typ(t(a)) 

16.4.5 Complex Pointer Data Structures 

Complex, usually implementation-oriented, data structures, such as we are 
used to in imperative programming languages like PL/I , Pasca l , C++, etce­
tera, and data structures like linked lists, graphs and trees were implemented 
using references, pointers, links, addresses (all are synonymous names), or 
concepts having similar connotations. They were all justified by the impera­
tive programming language notion of storage, with storage being understood 
as having locations which contained values, with references, pointers, links, 
addresses, etc., being allowed as Gist class values. 

The next examples illustrates the point being made above. 

Example 16.10 Pointer-Based Data Structures: Development: 
This is a metaexample! After the text below we present Examples 16.11-

16.20, which substitute for this example! 
Next we show a number of related examples. They illustrate, besides ex­

tensive use of map abstractions (as well as models using sets, Cartesians and 
lists), such development concepts as reiGcation, retrieve functions, (or abstrac­
tion functions) and injection relations. The examples also illustrate the need 
for defining appropriate well-formedness predicates. These will be illustrated 
in Examples 16.22-16.30. 

Our first in a long series of 10 examples (Examples 16.11-16.20) is informal. 
It exemplifies the representation of a graph in terms of what are known as 
adjacency lists. 

Example 16.11 Pointer Data Structure Graphs — ReiGcation: Figure 16.3 
diagrams a "classical" way of representing graphs. The emphasis is on the 
adjacency chain model of graphs. 

Transforming, as it were, the "abstract" graph picture in the left part of 
Fig. 16.3, into the "concrete" data structure in the right part of Fig. 16.3, 
is referred to as reification. ReiGcation is a major technique for developing 
abstract specifications into concrete designs. Other terms are data structure 
transformation and concretisation. 

The triplet and doublet boxes designate some form of record values. 
The arrows designate storage addresses (i.e., pointers). The Sentinel part of 
Fig. 16.3 on the next page represents a declared, named variable. 
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Ul Sentinel: S 

r[ 

G: "Abstract" Graph NC: Node Chain ACS: Adjacency Chains 

Fig. 16.3. Abstract and concrete graphs 

We consider the node chain and adjacency chain par ts of Fig. 16.3 to 
reflect the "layout" of typically dynamically allocated storage, i.e., unnamed 
storage.8 

In the following we shall slowly introduce a series of models of graphs, 
which will lead to the above model in such a way as to facilitate reasoning 
about its correctness. • 

We now embark on a list of development steps. Eventually we will reach a 
formalisation of the adjacency list representation just exemplified informally. 
We start by representing each node and its adjacency list as a pair: a node 
and its immediate, i.e., adjacent successors. 

E x a m p l e 16 .12 Map/Set Graphs: First we recall, as GO (next), a simple 
model of graphs. The range sets of nodes are called the adjacency sets. 

t y p e 
N 
GO = N jff N-se t 

value 
a,b,c,d,e : N 

By dynamically allocated storage is understood a storage some of whose lo­
cations (i.e., storage cells) are set aside for storing values. Such "setting aside" is 
typically the result of program clauses that explicitly prescribe the creation of such 
cells. Typically such a clause may have the syntactical form: a l l oca t e with type 
t — which as an expression yields a pointer value. (The terms a l l o c a t e , with 
and type are keywords. The identifier t is (assumed to be) a type name.) Graph 
data structures, as here, with an unknown number of nodes and edges, are typical 
candidates for dynamically allocated storage representations. 
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gO:GO 
axiom 

[ all nodes are distinct ] 
card{a,b,c,d,e}=5 

[ graph is a constant ] 
gO=[a^{b},b^{c,d},c^{c,d,e},d^{a},e^{}] 

The cardinality predicate expresses that nodes a,b,c,d,e are distinct. The 
g0=... predicate expresses that gO is bound to a specific gO value, not, as 
in gO:GO, to an arbitrary GO value. 

We also show, above, the particular value of gO for the graph shown in the 
left-hand side of Fig. 16.3. We omit expression of well-formedness. • 

Instead of modelling immediate successors as a set, we now represent them as 
lists. 

Example 16.13 Map/List Graphs: We recast model GO into Gl, in which 
adjacency sets have become adjacency chains. 

type 
N 
GO = N ^ N-set 
Gl = N ^ N* 

value 
a,b,c,d,e : N 
gl : Gl 

axiom 
[ V nodes are distinct ] 

card{a,b,c,d,e}=5 
[ graph is a constant ] 

gl=[ah-^(b),bi-)'(c,d),c^{c,d,e),d^(a),e i-+()] 

value 
wf_Gl: Gl -> Bool 
retr_G0: Gl 4 GO 
retr_G0(gl) = [ni-)*elems(gl(nl))|n:N»n £ d o m g l ] 

Again we omit expression of well-formedness. retr_G0 is a function which re­
trieves well-formed GO values from well-formed Gl values. • 

In the next step, instead of modelling the set of all pairs of nodes and adjacency 
lists as a map from nodes to lists, we model it as a list of pairs. 
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Example 16.14 Embedded List Graphs: We recast model Gl into G2, in 
which the node map has become a node chain. 

type 
N 
Gl = N ^ N* 
G2 = (N x N*)* 

value 
a,b,c,d,e : N 
g2 : G2 

axiom 
[ V nodes are distinct ] 

card{a,b,c,d,e}=5 
[ graph is a constant ] 

g2 = 
( a i->> (b), b \-> (c,d), c i-» (c,d,e), d \-> (a), e 4 ( ) ) 

value 
wf_G2: G2 -> Bool 
retr_G0: G2 4 Gl 
retr_Gl(g2) = 

{ let (n,nl)=gl(i) in 
(n,(nl(j) | j :Na t • l< j< len nl )) end 
| i:Nat • l< i< len g2) 

retr_Gl is a function which retrieves well-formed Gl values from well-formed 
GO values. • 

In the next step, as an illustration, we represent the list of pairs of nodes and 
node lists, as a map, now from natural number encodings of (source) nodes 
(i.e., their names), into a pair: the node and a map from natural number 
encodings of (adjacent, i.e., target) nodes into their node (names). 

Example 16.15 Cartesian/Index Map Graphs: We now observe that lists, in 
general, can be thought of as functions from their indices into their elements. 
Hence we recast model G2 into G3, in which the node and adjacency chains 
(which were modelled as lists) have become index maps. 

type 
N 
G2 = (N x N*)* 
G3 = Na t ^ (N x (Nat ^ N)) 

value 
a,b,c,d,e : N 
g3 : G3 
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axiom 
[ all nodes are distinct ] 

card{a,b,c,d,e}=5 
[ graph is a constant ] 

g3 = 
[ l ^ ( a , [ l ^ b ] ) , 
2 !-»• (b,[lM>c,2i-^d]), 
3 i->- (c,[l(->c,2i->-d,3i->e]), 
4h+(d, [ l ->a]) , 
5->(e,[]) ] 

value 
wf_G3: G3 -> Bool 
inj_G3: G2 -> G3 
inj_G3(g2) = 

[ i i—>• let (n,nl) = g2(i) in (n,[j \-> nl(j) | j :Na t • j G inds nl ]) end 
| i:Nat • i G inds g2 ] 

retr_G2: G3 H> G2 
retr_G2(g3) as g2 

pre wf_G3(g2) 
post g3 = inj_G3(g2) 

assert: 
V g2:G2 • retr_G2(inj_G3(g2))=g2 A 
V g3:G3 • inj_G3(retr_G2(g3))=g3 A 
retr_G2°inj_G3 = Ax.x = inj_G3°retr_G2 

inj_G3 is a function which injects well-formed G2 values into well-formed G3 
values. retr_G2 is a function which retrieves well-formed G2 values from well-
formed G3 values. The composition of the two functions, retr_G2 and inj_G3, 
(in any order) yields the identity function. • 

Instead of relying on list indices and on the ordering of natural numbers we 
introduce pointers as we know them from classical storage models. 

Example 16.16 Cartesian/Pointer/Map/List Graphs: We now "equate" the 
indices with locations of storage, or would like to do so. But doing so directly, 
without any precaution, might give us problems such as: (i) first, the indices 
of the various adjacency chain "storage parts" (may) coincide, i.e., designate 
"overlapping" adjacency storages, (ii) Second, they also "overlap" with the 
node chain "storage part". By overlap we mean that a designated value (may) 
partly or fully "occupy" the same storage locations, (iii) Third, the indices 
always started with index 1, and we must, in general, be prepared to model ar­
bitrary storage allocations. Hence we introduce a notion of anonymous storage 
addresses, i.e., pointers. 
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We first reify the node chain map. Index pointers "carry" with them an 
ordering. Anonymous pointers are assumed not to have an ordering. Hence 
we need two things: to indicate which is a first node of a node chain, and to 
indicate, for each node in a node chain, which is "the next" node. A sentinel, 
OP, component of G4 designates a possible first node. A next node pointer, 
OP, component of each node designates a possible next node. 

type 
N, P 
G4 = OP x (P ^ (OP x N x N*)) 
OP = null | P 

value 
a,b,c,d,e : N 
Pa,P&,Pc,Pd,Pe : P 
g4 : G4 

axiom 
card{pa,p&,pc,prf,pe}=5, 
g4=(Pa, 

[Pa *-> (p&,a,(b)), 
P&H>(pc,b,(c,d)), 
Pc^(Pd,c,(c,d,e)), 
Pd |-KPe,d,(a», 
Pe |-Knull,e,(»,]) 

The combination of sentinel and next node pointers must designate a linear 
chain. We leave, in Example 16.26 the expression of well-formedness. Note 
how null pointers terminate a node chain. • 

We augment the model to include proper records: For source nodes these 
structures record the next node by a pointer, the name of the source node 
and a pointer to the first, if any, successor node. Successor nodes are also 
represented as records. They record the name of the successor node and a 
pointer the another adjacent node. Storage now contains a sentinel pointer 
to a possibly first, arbitrarily chosen node, otherwise maps pointer to source 
node records. 

Example 16.17 Cartesian/Pointer/Embedded Map Graphs: Next we reify 
the adjacency chains (which were modelled as lists). Each node of a node 
chain contains ("sentinels", as a verb) a possible link to a first edge. Next 
edge links analogous to next node pointers. Each edge chain is to remain a 
proper part of a node chain node element. 

type 
N , P , L 
G5 = OP x (P ^ NR) 
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NR = OP x N x (OL x (L ^ ER)) 
ER = N x OL 
OP = null | P 
OL = nil | L 

value 
Pa,P&,Pc,Pd,Pe : P 
P, P P J P P J P P • T 
^oa i^Cb i^db i^Cc t^dc i^ec i^-cbd * ^ 

g 5 : G 5 

axiom 
[ V pointers are distinct ] 

card{pa,p&,pc,pd,pe}=5 
[ links of each adjacency list are distinct ] 

card{4 b ,£db }=2, card{4 c /dc ,4 c }=3 
[ graph = a constant ] 

g5 = 
( Pa, 

[ Pa *-> (p& ,a,(4 a , [4 a^(a,nil)])) , 
P& *-> (Pc ,b , (4 b , [ 4 b ^ (cAJA b ^ (d ,n i l ) ] ) ) , 
Pc ^ ( p d , c , ( 4 c , [ 4 c ^ ( c , 4 J , ^ c ^ ( d , 4 J , 4 c ^ ( e , n i l ) ] ) ) , 
Pd H> (pe ,d,(4d ,[4dh^(a,nil)])), 
pe H-> (null,e,(nil,[])) ] ) 

The stepwise development continues in the next examples. 

Example 16.18 Cartesian/Pointer/Distinct Map Graphs: We now partly 
factor adjacency chains out from node chain node elements into a separate 
adjacency chains "storage", i.e., one shared by all adjacency chains. 

type 
N,P, 
G6 = 
NR = 
ER = 
OP = 
OL = 

value 

L 
OP 

= OP 
: P X 
= null 
= nil | 

x (P 
x N 
OL 

1 p 

L 

Pa,P6,Pc,P(i,Pe : 
^ba "r-Ch ">^db i^cc ?*-d, 

i* NR) 
x OL 

P 
p P 

c icad • 

x (L 

: L 

77^ ER) 

g 6 : G 6 
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axiom 
[ V pointers are distinct ] 

card{pa,p&,pc,pd,pe}=5 
[ V links are distinct ] 

C a r d | t f r a i^-Cb r^dh i^-Cc r-dc :^ec ^(idi= ' 
[ graph g6 = a constant ] 

g6 = 
( P a , 
[Po ^ ( p 6 , a , 4 J , 
P&^(Pc,b,4J, 
Pc^(Pd,C,£cJ, 
Pd^(Pe ,d ,4J , 
pe^(null,e,nil)]. 

[4 a ^(a ,n i l ) , 

^bh^(d,nil), 

4*e-K<McJ, 
4cH>(e,nil), 
4 d ^ (a ,n i l ) ] ) 

Example 16.19 Record/Pointer/'Shared Map Graphs: We next "fold" the 
two "storages" into one: merging the node chain storage with the common 
adjacency chains storage. Thus we no longer distinguish between node pointers 
and edge links; all are pointers. 

type 
N, P 
G7 = OP x (P ^ (NR|ER)) 
NR = = mkNR(p:OP,n:N,ol:OL) 
ER = = mkER(p:P,ol:OL) 
OP = = null | mkP(p:P) 
OL = = nil | mkL(p:P) 

value 
Pa,Pa,Pa,Pa,Pa,P&a ,P&a ,P&a ,P&a ,P&a ,P&a ,P&a : P 
f : G7 

axiom 
[ V pointers are distinct ] 

Card{p a ,P&,Pc ,Pd ,Pe iPba ,Pcb ,Pdb ,Pcc ,Pdc ,Pec ,Pad } = 12 
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[ graph = a constant ] 
g7 = ( Pa, 

[ p a ^ mkNR(mkP(p&),a,mkL(p&J), 
p& H> mkNR(mkP(pc),b,mkL(pcJ), 
pc !-• mkNR(mkP(pd),c,mkL(pcJ), 
pd H> mkNR(mkP(pe),d,mkL(p0d))J 

pe i-» mkNR(null,e,nil), 
p&a i-» mkER(a,nil), 
pCb \-> mkER(c,mkL(pdJ), 
pdb \-> mkER(d,nil), 
pCc •-• mkER(c,mkL(peJ), 
pdc i-» mkER(d,mkL(peJ), 
Pec i-» mkER(e,nil), 
pad \-> mkER(a,nil) ] ) 

And finally we are satisfied! 

Example 16.20 Cartesian/Pointer/Shared Map Graphs: Finally we remove 
the record constructors from node and edge elements, and from next node 
addresses and next edge addresses. 

type 
N, P 
G8 = OP x (P ^ (NR|ER)) 
NR = OP x N x OL 
ER = P x OL 
OP = null | P 
OL = nil | P 

value 
Pa ,Pa ,Pa ,Pa ,Pa ,P& a ,P6 a ; P& a ,P& a ,P& a ,P& a ,P& a : P 

g8 : G8 
axiom 

[ V pointers are distinct ] 
card{p a ,p&,pc,Pd,Pe ,P&a ,Pcb ,P<4 ,Pcc ,Pdc ,Pec ,Pad }=12 

[ graph = a constant ] 
g8 = 

(Po, 
[Pa'-KP&AP&J* 

P&^(Pc,b,pcJ, 
Pc^(Pd,C,pcJ, 
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Pd |-KPe,d,PaJ, 
pe i-» (null, e, nil), 
p&ah-Ka,nil), 
PcbH^(c,pdJ, 
pdbH>(d,nil), 
Pc c ^(c ,p e J , 
Pdc

|-Kd,peJ, 
Pec^(e,nil), 
padH^(a,nil)]) 

Discussion 

Examples 16.11-16.20 illustrated the conversion of (GO) general maps and 
sets, in steps of relocation, (Gl) into general maps and lists; (G2) these into 
lists of lists; (G3) these "back" into index maps, index pointers and lists; (G4) 
these into anonymous pointer maps, Cartesians and lists; (G5,G6,G7) these 
into anonymous pointer maps and Cartesians — of varying degrees of "gen­
erality" while, in G7, illustrating records ("tagged storage values"); and (G8) 
finally illustrated a basically "untagged" storage model. The relocations of 
this example were supported by retrieve functions, or, as they are also called, 
abstraction functions, as well as injection functions. Usually these are not 
functions, but injection relations: To an abstract value there usually corre­
spond several, "equally valid" concrete, i.e., reified, values. 

We refer to the discussion found at the end of the next examples. 

16.4.6 Well-formedness of Data Structures 

Example 16.21 Pointer-Based Data Structures: Well-formedness: 
This is a metaexample. After the text below we present Examples 16.22-

16.30. 
We shall present well-formedness for all steps of development in the form 

of a sequence of examples. In initial steps expressing the well-formedness cri­
teria is relatively simple and easy. For the pointer- and link-based realisations 
the expression of well-formedness is not so straightforward. The reason for 
this is immediate: Pointers (etc.) designate paths through the concrete data 
structure, and these paths may merge or "loop", whereas, for this case, the 
node chain next pointers and the adjacency chain next pointers must form 
lists. To express that logically and precisely, informally and formally, without 
resorting to "graph vertex marking" algorithms, is not that easy. • 
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Example 16.22 Well-formed GO Graphs: See Example 16.12 for an example 
value. All range node names must be in the definition set of the map. 

type 
N 
GO = N ^ N-set 

value 
wf_G0: GO -> Bool 
wLGO(gO) = U rng gO C dom gO 

Example 16.23 Well-formed Gl Graphs: See Example 16.13 for an example 
value. All elements of range lists (i.e., the adjacency chains) must be in the 
definition set (i.e., the node chain) of the map. 

type 
N 
Gl = N yd N* 

value 
wf_Gl: Gl -> Bool 
wLGl(gl) = U{elems(gl(n))|n:N-n G dom g l jCdom gl 

Example 16.24 Well-formed G2 Graphs: See Example 16.14 for an example 
value. All adjacency chain (list) elements must be in the set of elements formed 
by the first element of all pairs (i.e., the node chain). 

type 
N 
G2 = (N x N*)* 

value 
wf_G2: G2 -> Bool 
wf_G2(g2) = 

U{elems(nl)|(„nl):(NxN*)-(n,nl)G g3} 
C U{n|(n,nl):(NxN*).(n,nl)G g3} 

Example 16.25 Well-formed G3 Graphs: See Example 16.15 for an example 
value. All node chain index maps and all adjacency chain index maps (if 
nonempty) must have dense definition sets starting with 1. All range elements 
of adjacency chain maps must be in the set of elements formed by the first 
elements of all range elements of the node chain map. 
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type 
N 
G3 = Nat ^ (N x (Nat ^ N)) 

value 
wf_G3: G3 -> Bool 
wf_G3(g3) = 

dom g3 = {L.card dom g3}A 
V (n,m):(N x (Nat ^N)) . (n ,m)e rng g3 

=> dom m = {L.card dom m} 

Example 16.26 Well-formed G4 Graphs: See Example 16.16 for an example 
value. The node chain designated by the sentinel and the next node pointers 
must be linear and include exactly all range elements. The set of all node 
names contained in the adjacency chains of the third component of each node 
chain element must be in the set of node names formed by the second node 
chain element. 

type 
N, P 
G4 = OP x (P ^ (OP x N x N*)) 
OP = null | P 

value 
wf_G4: G4 -> Bool 
wf_G4(s,m) = ... see Exercise 16.1 ... 

Example 16.27 Well-formed G5 Graphs: See Example 16.17 for an example 
value. The node chain designated by the sentinel and the next node pointers 
must be linear and include exactly all range elements. The set of all node 
names contained in the adjacency chain map edge elements of the third com­
ponent of each node chain element must be in the set of node names formed 
by the second node chain element. 

type 
N, P ,L 
G5 = OP x (P ^ NR) 
NR = OP x N x (OL x (L ^ ER)) 
ER = N x OL 
OP = null | P 
OL = nil I L 
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value 
wf_G5: G5 - • Bool 
wf_G5(s,m) = ... see Exercise 16.1 ... 

Example 16.28 Well-formed G6 Graphs: See Example 16.18 for an example 
value. 

type 
N, P ,L 
G6 = OP x (P rf NR) x (L J* ER) 
NR = OP x N x OL 
ER = P x OL 
OP = null | P 
OL = nil | P 

value 
wf_G6: G6 -> Bool 
wf_G6(s,nm,am) = ... see Exercise 16.1 ... 

Example 16.29 Well-formed G7 Graphs: See Example 16.19 for an example 
value. 

type 
N, P 
G7 = OP x (P ^ (NR|ER)) 
NR = = mkNR(p:OP,n:N,ol:OL) 
ER = = mkER(p:P,ol:OL) 
OP = = null | mkP(p:P) 
OL = = nil | mkL(p:P) 

value 
wf_G7: G7 -+ Bool 
wf_G7(s,m) = ... see Exercise 16.1 ... 

Example 16.30 Well-formed G8 Graphs: See Example 16.20 for an example 
value. 

type 
N, P 
G8 = OP x (P ^ (NR|ER)) 
NR = OP x N x OL 
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ER = P x OL 
OP = null | P 
OL = nil | P 

value 
wf_G8: G8 -> Bool 
wf_G8(s,m) = ... see Exercise 16.1 ... 

Discussion 

As for the "prerequisite" examples (Examples 16.11-16.20), the present exam­
ples (Examples 16.22-16.30) illustrated many facets of development: The need 
for and techniques of expressing constraints (i.e., invariants, well-formedness) 
over data structures; stepwise development; and explorative (nearly the same, 
here, as experimental) development. The last concept, explorative develop­
ment, may warrant a few comments. It is sometimes not so easy, i.e., relatively 
quick or obvious, to find a most suitable next step or stage of development. 
Exploring and experimenting with different ways of development and its ex­
pression, and doing this also formally, is, oftentimes, a good way of "discov­
ery". Thus we explore different reifications, while experimenting with their 
expression. 

There is a final, important observation to make. We have not shown any 
of the operations that may otherwise use or change the node and adjacency 
chain data structure. In particular the latter are of interest — to really justify 
our heavy investment, in this long example (and its predecessor examples): 
Adding nodes to a graph means adding node records and preparing for an 
adjacency list, and adding edges to a graph means adding edge records, while 
maintaining the invariance of the data structure "between" the "additions" of 
nodes and edges; similarly for removing nodes and edges nodes. It is thus we 
see that well-formedness criteria are also constraints, or, better, are invariants 
of the respective data structures. 

16.4.7 Discussion 

Let us now distill some of the essence of the above examples wrt. map ab­
straction and modelling principles, techniques and tools. More will follow in 
Sect. 16.6. Maps form a major model-oriented tool for abstraction and mod­
elling. "Classical" discrete mathematics structures, as well as "classical" algo­
rithmic data structures, often find their most immediate abstraction in terms 
of maps. We typically model "fragments" of dynamically allocated storage as 
explicit maps from addresses (pointer, links) to values. Usually conventional, 
imperative programming languages "hide" the storage structures: Addresses 
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are not always allowed as values, i.e., they are not always "first-class values"9. 
Here we open up for, and delineate — cum identify — specific, relevant parts 
of the storage that one needs to consider for a specific data structure (cf. 
Examples 16.12-16.30). In a later step of implementation we can then merge 
this fragment with other such fragments, and merge all these together with 
storage for explicitly declared and named variables. Operations — and we 
have not seen so many in the examples referred to above — which change a 
data structure must be seen to preserve defined well-formedness criteria, i.e., 
invariants over these. 

16.5 Inductive Map Definitions 

16.5.1 Inductive Map Type Definitions 

Let 

type 
M = M ^ M. 

A naive model, M, of M could be 

^:{[],[[M]],[[H[[M]]],[[[H[]H[]], . . .} 

From a pragmatic viewpoint the definition M = M ^ M is quite meaningless. 
For an equation of the above kind to make mathematical sense it must be the 
case that the cardinality of the class of values of type M of the left-hand side 
must be equal to the cardinality of the class of values of type M of the right-
hand side. Obviously this is not the case. So we reject this kind of recursive 
type definition. 

Some possibly desirable variants are: 

type 
A, B 
Ma = A ^ Ma 
Mab = A ^ (B|Mab) 

The above are just hypothetical structures. 
To avoid problems we formulate these instead as: 

type 
A, B 
M = A ^ Ma 
Ma = = mkM(sm:M) 

9By a 'first-class value' we mean one which, in the context of ordinary, imperative 
programming languages, is allowed to serve as a value in any context: as one that can 
be assigned to a variable, as a constant, as a parameter to a procedure invocation, 
etcetera. 
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respectively: 

type 
A, B 
M = A jff Mab 
Mab = = mkB(sb:B) | mkM(sm:M) 

Now RSL guarantees sensible models of these concrete type definitions. 

16.5.2 Inductive Map Value Definitions 

Example 16.31 Map-, List-, Cartesian- and Set-Based Model of Networks: 
We rephrase the solution of Example 15.11. That example was itself a rephras­
ing of Example 14.8, which, in turn, was a rephrasing of Example 13.12. 

We now present a rather concrete model of networks: 

type 
Si, Ci, Sn, Cn, S_Misc, C_Misc 
Len = Real 
S = Sn x Len x S_Misc 
C = Cn x C_Misc 
N' = Ss x Cs x G 
N = {| n:N' • wfN(n) |} 
Ss = Si T* S 
Cs = Ci rf C 
G' = Ci ^ (Si T* Ci) 
G = { |g :G' .wfG(g) |} 

The model separates networks into three parts: One part that defines seg­
ments. Think of this part as a relation, Segments, in a relational database. 
Each tuple has a unique key, si:Si, and otherwise contains the segment name, 
the segment length and some additional segment attributes. Another part that 
defines connections. Think of this part as a relation, Connectors, in a relational 
database. Each tuple has a unique key, ci:Ci, and otherwise contains the con­
nector name and some additional connector attributes. A third part, the graph 
part, defines how connectors (identified by their unique connector identifiers) 
connect to other connectors via segments (identified by their unique connec­
tor and segment identifiers). The well-formedness of these graphs is left as an 
exercise. We refer to Example 16.5. 

Given a graph we can, as illustrated in Example 14.9, express its closure 
with respect to lines. 

type 
G' = Ci T* (Si T* Ci) 
G = { |g :G' .wfG(g) |} 
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value 
closure: G —> G 
closure(g) = 

let clo = 
[ ci \-t [si i-» ci' 

| si:Si,ci':Ci • 
A (si G dom g(ci)Aci'=(g(ci))(si))V 

(3 si',si":Si,ci":Ci • 
si' G dom clo(ci)Aci''=(clo(ci))(si')Asi'' G dom (clo (ci")) A 
ci/=(clo(ci/'))(si")Asi=comp(si',si//)) ] 

| ci:Ci • ci G dom g ] in 
clo end 

The well-formedness of networks is defined by: 

value 
wfN: N -^ Bool 
wfN(ss,cs,g) = 

dom cs = dom g A 
dom ss = U{dom(g(ci))|ci:Ci*ci G dom g} A 
dom g = U{rng(g(ci))|ci:Ci-ci G dom g} A 
wfG(g) 

Line by line: all connectors identified in the graph are defined as connectors; 
all segments identified in the graph are defined as segments; and no isolated 
connectors. 

For every edge (that is, a segment identified by si) from connector identified 
by ci to connector identified by ci' there is also an edge in the reverse direction 
(from (g(ci))(si) to ci) with the same segment identifier. And there are only 
such edges. 

wfG: G -> Bool 
wfG(g) = 

V ci:Ci • ci G dom g => 
V si:Si • si G dom g(ci) => 

let ci' = (g(ci))(si) in 
si G dom((g(ci))(si)) A ci=(g(ci'))(si) end 

The last line of wfG expresses that an edge in the graph goes both ways: If 
from Ci one can reach Sj (namely Sj G dom g(ci)), and from Sj, one can reach 
Ck (namely (g(ci))(sj) = c^), then, vice versa, one can, in g from Ck reach the 
same Sj and, from it, C{. 

We can convert the above graphs to those of Example 16.4.1. 

type 
Gs' = Ci nt Ci-set 
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Gs = {| gs:Gs' • dom gs = U rng gs |} 

value 
conv: G -» Gs 
conv(g) = 

[cii-^lci'lci'iCijSiiSi^si G dom g(ci)Aci'=(g(ci))(si)}|ci:Ci-ci G dom g] 

Now the Nodes function of Example 16.4.1 — slightly reformulated: 

Nodes: Ci x G - • Ci-set 
Nodes(ci,g) = 

let gs=conv(g) in 
let nodes=gs(ci) U{ci'|ci':Ci»3 ci":Ci«ci" G nodesAci' G gs(ci")} in 
nodes end end, 

can be re-expressed as: 

value 
Nodes: Ci x G - • Ci-set 
Nodes(ci,g) = let gs = conv(closure(g)) in gs(ci) end. 

16.6 A Review of Map Abstractions and Models 

We have already, at various points above, discussed a number of abstraction 
and modelling principles, techniques and tools, notably in the discussion parts 
of Examples 16.12-16.30, and the separate discussion section immediately 
following Example 16.30. 

Principles. If and when a model-oriented abstraction has been chosen, then 
map abstraction may be chosen if a reasonable number of the following char­
acteristics can be identified as properties of the phenomena or concepts be­
ing modelled: (i) the abstract structure of the composite components being 
modelled is an enumerable function, i.e., consists of an unordered collection 
of uniquely named, but not necessarily distinct subcomponents (constituent 
phenomena or concepts), (ii) whose number is not fixed, i.e., may vary, (iii) 
to which new, distinctly identified subcomponents may be joined; (iv) from 
which existing subcomponents may be removed — again based on given identi­
fications; and (v) where one may compose other such phenomena from similar 
such phenomena. • 

Principles. A number of "standard" uses of the map type in abstraction and 
modelling can be identified: (vi) The concepts of configurations, i.e., contexts 
and states, such as conceptualised from actual phenomena in some domains, 
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are usually modelled, individually, as maps. 1 0 (vii) The concepts of da ta struc­
tures such as graphs, tables, hierarchies, file systems, databases, etc., as amply 
shown in Sect. 16.4, have as their basic model those of maps. • 

P r i n c i p l e s . Type Invariance: We have, in this section on maps seen a system­
atic use of well-formedness predicates on types. Reference can be made to Ex­
ample 16.7 (wf_P_in_H), Example 16.8 (wf_FILE), and Example 16.9 (wf.FILE, 
wf_RDB, wLTPLs, and wf_REL). A choice has, in most cases, to be made 
between simplicity (including ease of understanding) of type expressions, and 
simplicity (including ease of understanding) of well-formedness predicates. We 
shall have occasion, throughout these volumes, to invoke this principle, again 
and again. • 

P r i n c i p l e s . Types Versus Values: We have seen in several examples the need 
for recording types of values, and the need, therefore, for defining type ob­
servation functions. This leads us to the enunciation of a principle: For sys­
tems of da ta collections, files, databases and, as we shall see later, other such 
aggregations, it is prudent to introduce a type definition (schema) facility, 
as illustrated in Example 16.9. Following this principle implies also defining 
related type observation cum type extraction functions; and, as mentioned 
above, also implies descriptions of well-formedness predicates involving these 
functions. • 

P r i n c i p l e s . Pointer-Based Data Structures: In Examples 16.16-16.20 we 
have seen the use of maps to model specific properties of storages: namely 
the concept of pointers (links, addresses). Here the association to values, in 
the map ranges, are from identifiers tha t s tand for such pointers (links, ad­
dresses). Whereas the identifiers of phenomena-related context and state maps 
usually "mimic" phenomena, i.e., "user" names, in the domain, pointers are 
pure concepts, pure abstractions. • 

T e c h n i q u e s . We refer to initial paragraphs of Sect. 16.4 for a listing (1-4) of 
some of the techniques used when abstracting using maps. More specifically, 

10Both concepts: contexts and states, associate varying numbers of identifiers to 
more or less static constants, respectively (temporally, i.e., dynamically) varying 
values. In a much later chapter (Vol. 2, Chap. 4), we shall treat the concept of 
configurations, contexts and states in detail. For now suffice it to say that some 
universe of discourse, i.e., some domain, usually exhibits a state notion: something 
that may consist of either a fixed or a varying number of components, each of 
which possesses one or more attributes whose values change. Such domains usually 
also exhibit a context notion: something that may consist of either a fixed or a 
varying number of components, each of which possesses one or more attributes 
whose value — for all intents and purposes do not change. Of course: in actual 
system phenomena there is a spectrum from contexts to states. But our point here 
is: We model association of identifiers to values by means of maps. 
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a number of map-oriented techniques are offered. The various map opera­
tions apply to appropriate modelling instances: (viii-xii) map union, override, 
composition and the two map restriction operations apply to models of "all", 
"new", "new", respectively "some, except" (twice) instances of a phenomenon 
possessed by two or more sets of phenomena, (xiii) application applies to the 
modelling of selection (choice), (xiv-xv) with definition set (i.e., domain) and 
range (rng) set being more technical operations; (xvi-xvii) map enumeration 
and map comprehension apply to the expression of the construction of an 
instance of an otherwise list modelled phenomenon. 

These are just some of the more important techniques. • 

Tools. If abstraction and modelling using the map data type has been chosen, 
then the tool can either be the RSL, the VDM-SL, the Z, or, for example, the B 
specification language. • 

Please compare the present section to Sects. 13.7 (sets) and 15.6 (lists). 

16.7 Maps: A Discussion 

We have outlined the map data type. And we have enunciated principles for 
when to deploy map abstraction, mentioned some of the techniques that follow 
from such a choice, and identified some of the list abstraction specification 
language tools today available. Maps constitute the main workhorse of model-
oriented abstraction and modelling. 

16.8 Exercises 

Exercise 16.1. Well-formedness of Graph Models. We refer to Examples 16.26-
16.30. Complete the definition of the wf_Gi for i=4,5,6,7,8. 

• • • 

In the next exercises we refer to labels. Labels are further unspecified com­
parable quantities. By comparable mean that they can be tested for "being 
the same", i.e., for equality. In Exercises 16.2-16.9 we ask you to not for­
malise your definitions, but simply to express them in a concise (i.e., short 
and precise) manner and in English. 

Exercise 16.2. Finite Root-Labelled Trees. Please define in English a con­
cept of finite trees for which all roots are labelled — and such that no two 
'immediate', but otherwise 'distinct' subtrees of a tree have 'identically la­
belled' roots but branches are unlabelled. Suggest yourself what we might 
mean by 'immediate', 'distinct', and 'identical labels'. 

Exercise 16.10 item 1 takes up where the present exercise leaves off: namely 
asking you to formalise the problem solution. 
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• • • 

Figure 16.4 illustrates the kind of labelled trees referred to in Exercises 16.2-
16.4. 

Unlabelled Root Labelled Branch Labelled Root and Branch 
Trees Trees Trees Labelled Trees 

Fig. 16.4. Unlabelled and labelled trees 

Exerc i se 16 .3 . Finite Branch-Labelled Trees. Please define in English a con­
cept of finite trees for which all branches (the things tha t connect a root of a 
tree with the roots of its immediate subtrees) are labelled — and such tha t 
no two branches incident upon immediate subtrees of a tree are identically 
labelled. Exercise 16.10 item 2 takes up where the present exercise leaves off: 
namely asking you to formalise the problem solution. 

E x e r c i s e 16 .4 . Finite Root- and Branch-Labelled Trees. 
Please define in English a concept of finite trees for which all roots and all 

branches, tha t is, the things tha t connect a root of a tree with the roots of 
its immediate subtrees are labelled — and such tha t all roots of the subtrees 
of any tree have distinct labels, and such tha t no two branches emanating 
from a root (to the root of a subtree) are identically labelled.11 Do you need 
to maintain distinctness of root labels of the subtrees of a root and branch 
labelled tree? Explain your answer. 

Exercise 3 item 1 takes up where the present exercise leaves off: namely 
asking you to formalise the problem solution. 

Exerc i se 16 .5 . Distinctly Labelled Trees. The problem formulation is as for 
Exercise 16.4, only now it is required tha t no two root labels are the same 
and tha t no two branch labels are the same and tha t root and branch labels 
also differ. 

Exercise 4 item 1 takes up where the present exercise leaves off: namely 
asking you to formalise the problem solution. 

11 Please observe that this last part of the sentence, namely "and such that no two 
branches emanating from a root (to the root of a subtree) are identically labelled" is 
meant to express exactly the same as the sentence "and such that no two branches 
incident upon immediate subtrees of a tree are 'identically labelled'". The latter 
was used in the previous exercise formulation (i.e., in Exercise 16.3). 



390 16 Maps in RSL 

Exercise 16.6. Forest of Trees. Based on Exercises 16.2-16.5 define in En­
glish a concept of forest as consisting of a finite number of trees, unlabelled, or 
labelled one way or another, but such that no two labels of any two somehow 
labelled trees are identical. Does Fig. 16.4 "portray" such a forest? Explain 
your answer. 

Exercise 16.10 item 5 takes up where the present exercise leaves off: namely 
asking you to formalise the problem. 

Exercise 16.7. Finite Node-Labelled Graphs. Please define in English a con­
cept of oriented graphs for which all nodes are distinctly labelled. 

Exercise 16.10 item 6 takes up where the present exercise leaves off: namely 
asking you to formalise the problem solution. 

Exercise 16.8. Finite Edge-Labelled Graphs. Please define in English a con­
cept of oriented graphs for which all edges between any given pair of (in this 
exercise, unlabelled) nodes are distinctly labelled. 

Exercise 16.10 item 7 takes up where the present exercise leaves off: namely 
asking you to formalise the problem solution. 

Exercise 16.9. Finite Node- and Edge-Labelled Graphs. Please define in En­
glish a concept of oriented graphs for which all nodes are distinctly labelled, 
and for which all edges between any given pair of (in this exercise, now la­
belled) nodes are distinctly labelled. 

Exercise 16.10 item 8 takes up where the present exercise leaves off: Namely 
asking you to formalise the problem solution. 

• • • 

We now turn to the reformulation of above exercise problems 16.2-16.9 into 
exercise problem 16.10 items 1-8. We now ask for formal map-based solutions 
to the same questions! 

Exercise 16.10. Tree and Graph Structures. We refer to Exercises 16.2-16.9. 
In the present exercise you are to formally define the concrete types and 
possibly applicable well-formedness predicates for: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

Finite Root-Labelled Trees 
Finite Branch-Labelled Trees 
Finite Root- and Branch-Labelled Trees 
Distinctly Labelled Trees 
Forest of Trees 
Finite Node-Labelled Graphs 
Finite Edge-Labelled Graphs 
Finite Node- and Edge-Labelled Graphs 

cf. Exercise 16.2 
cf. Exercise 16.3 
cf. Exercise 16.4 
cf. Exercise 16.5 
cf. Exercise 16.6 
cf. Exercise 16.7 
cf. Exercise 16.8 
cf. Exercise 16.9 

Exercise 16.11. File System Operations. You are referred to Example 16.8. 
Please read it carefully. 
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• For the file system defined in Example 16.8 you are to first define a notion 
of initial record values. 
* 0 is the initial field value of type in teger . 
* false is the initial field value of type Boolean. 
* "" is the initial field value of type s t r i ng . 
* Any key is an initial key. 
An initial record is any record that maps a number of field names in An 
into only initial field values. 

• Specify formally initial records. 
• Then formally specify the following operations: 

1. Create empty file system: Create an initially empty file system, i.e., a 
file system of no files. 

2. Create initial file: For any file system create a file of a given, unused 
file name associated to a file of just one given initial record. 

3. Write a record to a file of a file system: Given a file system, given a file 
name of a file of that system, and given a record which if joined to the 
named file will leave it well-formed. Writing this record to the named 
file will join it to the file and assign it an unused key which, besides 
the updated file system, is (hence also) yielded. 

4. Read a record of a file of a file system: Given a file system, given a 
file name of a file of that system, and given a key of that file, yield 
an unchanged file system and the record of the named file having the 
given key. 

5. Delete a record of a file of a file system: Given a file system, given a 
file name of a file of that system, and given a key of that file, yield 
a changed file system in which only the designated record has been 
deleted. One cannot delete an initial record. (Note there may be many 
initial records, one of which will necessarily have the initial key.) 

6. Delete a file of a file system: Obvious, is it not? 

Exercise 16.12. £ Maps in the Transportation Net Domain. We refer to 
Appendix A, Sect. A.l, Transportation Net. We also refer to Exercises 13.5, 
14.6 and 15.15. 

You are to formulate yourself some narrative and formalisations of phe­
nomena and concepts of the Transportation Net domain for which maps may 
come in as a suitable abstraction. 

Exercise 16.13. X Maps in the Container Logistics Domain. We refer to 
Appendix A, Sect. A.2, Container Logistics. We also refer to Exercises 13.6, 
14.7 and 15.16. 

You are to formulate yourself some narrative and formalisations of phe­
nomena and concepts of the Container Logistics domain for which maps may 
come in as a suitable abstraction. 
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Exercise 16.14. £ Maps in the Financial Service Industries Domain. We 
refer to Appendix A, Sect. A.3, Financial Service Industry. We also refer to 
Exercises 13.7, 14.8 and 15.17. 

You are to formulate yourself some narrative and formalisations of phe­
nomena and concepts of the Financial Service Industry domain for which 
maps may come in as a suitable abstraction. 
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Higher-Order Funct ions in RSL 

• The prerequisite for studying this chapter is that you are, by now, rea­
sonably fluent in the definition and use of functions such as introduced in 
earlier chapters. 

• The aims are to introduce the use of higher-order functions in function 
definitions, or, put differently, to introduce the concept of functional data 
abstractions, i.e., modelling phenomena and concepts as higher-order func­
tions. 

• The objective is to ensure that the reader has a firm foundation in the 
area of function abstractions. 

• The treatment is semiformal and systematic. 

It is my function 
to make sure that the function 

is functioning 

Mr. NN, Manager of Hotel Functions1 

We refer to Chap. 6 for a first, reasonably thorough introduction to the math­
ematical concept of functions, and to Chap. 11 for the function concept such 
as it is provided for in RSL. In the present section we shall focus on the means 
for defining and using function types and functions in the predominant spec­
ification language of these volumes, RSL. 

17.1 Functions: The Issues 

The idea to be illustrated in this section is the use of the discrete mathe­
matics concept of functions in abstracting domain, requirements and software 
phenomena and concepts. We can hardly express anything without using func­
tions. We often abstract a concept as a function, and we define this function 

XA play on three different meanings of the term 'function' is intended: job, event, 
and "that it works". 
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in terms of other functions (which are then defined separately). The former, 
abstraction of concepts as functions, has been illustrated repeatedly up till 
now, and much more is to come. The latter, defining abstracted functions 
in terms of other functions, will be illustrated in this chapter and in Vol. 2, 
Chap. 3, Sect. 3.3.3 on denotational semantics. 

This chapter is built up, as are Chaps. 13-16, and relies on material about: 

• The function data type (Sect. 11.1) 
• Means of function definition (Sects. 11.2-11.6) 

and otherwise complements Chap. 11 with new material: 

• Examples of function-based abstractions (Sect. 17.2) 
• Abstracting and modelling with functions (Sect. 17.3) 
• Inductive function definitions (Sect. 17.4) 
• A review of function abstractions and models (Sect. 17.5) 

There are many examples because before one can write good specifications 
one must have read and studied many example specifications. So you may not 
need to study all of them now, but can, perhaps, return to some later. 

The chapter ends with a brief discussion. 

17.2 Examples Using Function-Based Abstractions 

This section "matches" Sects. 13.3, 14.3, 15.3, and 16.3. They all give small 
examples of set, Cartesian, list, map and function-based specifications. They 
are meant as class lecture examples. 

A function-based abstraction is a specification which uses or deploys func­
tions as entities. In the vernacular, functions as data. In "practice" a com­
mon technique is here to pass functions / as arguments to other functions g. 
The body of the latter, g, may then apply the argument function / to some 
other values. Different invocations of g may then be given different arguments: 
/ , / ' , / " , . . . , resulting, usually, in different results. 

17.2.1 Functionals 

A first-order functional (FOF) is here defined to be a function which takes 
functions as arguments and yields non-function values as results. A higher-
order functional (HOF) is here defined to be a function which takes functions 
as arguments and yields function values as results. Two conceptual examples 
are in order: 

Example 17.1 First-Order Functionals: 
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type 
FOF = Int -> Nat 

value 
square: FOF, square(i) = i*i 
cube: FOF, cube(i) = square(i)*i 
quad: FOF, quad(i) = first .order _f(i) (square0 square) 
first_order _f: Int -> FOF - • Nat 
first-order _f(i)(f) = f(i) 

assert: 
first_order_f(3) (square) = 9 
first-order _f(3) (cube) = 27 
first_order_f(3)(quad) = 81 

Note the use of the function composition operation °. 

Example 17.2 Higher-Order Functionals: 

type 
HOF = FOF - • FOF 

value 
double: HOF, double(f) = f°f 
triple: HOF, triple(f) = f°f°f 
penta: FOF, penta(i) = double°triple 

assert: 
penta(f)(i) = first jorder_f(i)(f0f°f0f°f) 

17.2.2 Discussion 

Examples 17.1 and 17.2 were just "academic", conceptual, in that they illus­
trate a "coding" technique. We shall later have occasion to illustrate the use 
of functionals. 

17.3 Abstracting and Modelling With Functions 

This section "matches" Sects. 13.4,14.4,15.4 and 16.4, all give larger examples 
of set, Cartesian, list and map abstractions and models. They are meant as 
self-study examples. 
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17.3.1 Concepts as Functions 

In Sect. 17.1 we said: We often abstract a concept as a function, and we define 
this function in terms of other functions (which are then defined separately). 
We will now exemplify this claim. 

Example 17.3 A Simple Programming Language: 
The programming language to be illustrated is an imperative language. 

The imperative programming concepts are those of binding and storage; that 
is, of definable (named constants) and assignable variables (having names 
denoting locations and having a storage which map locations to values), i.e., 
an assignment. Linguistically — speaking, for the remainder of the present 
paragraph, about syntax — and in order to talk about bindings and variables, 
we postulate a small programming language. Its programs are simple blocks. 
A program is a block. Blocks consist of variable declarations and a finite 
sequence of simple statements. Statements are either blocks or are simple 
assignment statements. A declaration introduces a variable by a name. An 
assignment statement has two parts: a "left-hand side" variable and a "right-
hand side" expression. Expressions are either just variables, or . . . , i.e., we 
do not further detail the syntax of other kinds of expressions. We illustrate 
the syntactic modelling of the programming language concepts of binding and 
allocation, and of programs, block, assignments, variables and expressions as 
mathematical function. 

Syntactic Types 

type 
V 
P = = mk_P(b:B) 
B = = mkJBlk(vs:V-set,sl:S*) 
S = A | B 
A = = mk_Asg(lhs:V,rhs:E) 
E = = mk_Var(v:V) | ... 

We remind the reader about union types and variant records — used above in 
the definitions of S, respectively of P, B, A and E — as first briefly explained 
in Sect. 13.4.3. 

Programs have been made variant records in order to be able, later, to 
write a semantic function which accept P|B type arguments. Sections 18.4 
and 18.5 covers record and union types. 

Blocks form a scope for binding variables to locations. 

Semantic Types: 

The semantic types are: 
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type 
L, VAL 
ENV = V ^ L 
STG = L ^ VAL 

The meaning, i.e., semantics, of programs, blocks, (assignment) statements, 
variables and expressions is: Variables designate locations. Expressions desig­
nate values. Given a storage a location designates a variable. An assignment 
statement designates that the location of the left-hand side variable be associ­
ated with the value of the right-hand side expression. A sequence of assignment 
statements designates a change of storage resulting from obeying the designa­
tions of the individual assignment statements of the list in the order listed. A 
block designates a change of storage as designated by its statement list except 
that the storage being changed and the changed storage have the same loca­
tions. Thus the new, fresh locations designated by the variable declarations 
of a block are only valid "within the scope of that block". More operationally, 
i.e., explaining the semantics operationally, rather than through designations, 
we speak of a locus of program points: Each statement designates a program 
point. Execution, by an interpreter (i.e., a machine), according to the pre­
scriptions of a program, starts by entering a block and continues by ordered 
elaboration, first of variable declarations, then of the statement list. Upon 
block entry the first program point is that of the variable declarations. They 
are elaborated, their elaboration leads to the allocation of fresh, new loca­
tions, one distinct for each variable. An environment, i.e., a context, say, a 
table, is set up. It associates with each block variable (v) its location (I). A 
storage, i.e., a state (no-), is similarly set up: To each freshly allocated location 
it associates some initial, default value (?). Then the storage (a) of the sur­
rounding block is "added", conjoined to that (alloc(ls)[]) of the local block (to 
become n<j), and the environment of the local block (bind(vs,ls)[]) inherits that 
of the surrounding block (p), but overrides variable names of the surrounding 
block, if redefined in the local block (to become np). The initial, "outermost" 
block is elaborated in a predefined environment (p0), and in a corresponding 
predefined storage (<J0). Now we are ready to show the semantic elaboration 
functions. 

Semantic Elaboration Functions 

Main semantic function signatures: 

value 
M: (P|S) -+ ENV -• STG -• STG 
I: S* -> ENV -> STG -• STG 
Val: E -> ENV -> STG -> VAL 

Main semantic function definitions: 
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M(mk_P(mk_B(vs,sl)))p0<70 = I(mk_B(vs,sl))p0c70 

M(mk_A(v,e))pa = a f [p(v)i->Val(e)p<7] 

M(mk_B(vs,sl))y9o- = 
le t Is = ob ta in (ca rd vs)(a) i n 
le t n(7 = (7U alloc(ls)[], np = p f bind(vs,ls)[] i n 
(I(sl)(np)(na) \ Is) e n d e n d 

I(sl)pcr = if si = {) t h e n a e lse I ( t l s l ) (p)(M(hd si)pa) e n d 

Val(mk_Var(v))pcr = cr(p(v)) 

Auxiliary semantic functions: 

v a l u e 
obtain: N a t —> E —> L-se t 
obtain(n)(cr) = 

le t ls:L-set • Is fl d o m a = {} Acard l s=n in Is e n d 

alloc: L-set -> STG -> STG 
alloc (Is) a = 

if Is = {} t h e n a e lse 
le t 1:L • 1 € Is i n alloc(ls \ {1})(a U [1 •-• ?]) e n d e n d 

bind: V-se t x L-set -+ ENV -> ENV 
bind(vs,ls)p = 

if vs = {} t h e n p e lse 
le t v:V,l:L • v G vs A 1 G Is i n 
bind(vs \ {v},ls \ {l})(p U [v h+ 1]) e n d e n d 

Denotations as Higher-Order Functions 

Now we can conclude: 

• The semantic functions, M, I and Val are of higher-order. Tha t is, they 
are functions from values of syntactic types into functions over values of 
semantic types: 

t y p e 
M: (P|S) -> ENV -> STG -> STG 
I: S* -> ENV -> STG -> STG 
Val: E -> ENV -> STG -> VAL 

• Programs are functions from [initial] environments — which are themselves 
a kind of functions — state (i.e., storage) to state changing functions. 
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• So are statements and statement lists. Thus syntactic programs and syn­
tactic statements denote higher-order functions, and these are defined in 
terms of other functions. 

• Expressions denote functions from environments to functions from storages 
— which, lest we should forget to say it, are themselves a kind of functions 
(i.e., maps) — to values. Thus syntactic expressions denote such functions. 

• Thus a simple variable name denotes a function from environment to a 
function from storages to values! 

These denoted functions can be determined at compile time. They are then 
applied to appropriate environments and storages at run time to yield desig­
nated values and storages. 

17.3.2 Operator Lifting 

The notion of operator lifting should, finally, bring home the idea of modelling 
concepts in terms of higher-order functions. 

By an operator we understand a function, typically from B into C: 

type 
B, C 
0 : B ^ C 

By lifting an operator we mean that of abstracting its functionality into, for 
example: 

type 
A 
L: A - • B -+ C 

We saw in Example 17.3 how we could view the meaning of programming con­
structs at various levels of abstraction: Given an environment (A), statements 
denoted storage (B) to storage (C) changing functions (B —> C), which could 
then be lifted into: A -» B -)> C. 

Examples of Operator Lifting 

We give two examples: lifting classical Boolean connectives, and lifting com­
positions of defined maps. The first is brief, and illustrates the idea. The other 
is long, and illustrates an important specification programming technique. 

Example 17.4 Time-Lifted Boolean Functions: The RSL connectives A,V, 
and operators +, *, etcetera, can be overloaded. That is: they have an already 
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defined meaning on Booleans, respectively integers (reals, natural numbers), 
but can be given meaning wrt. to other types. 

Let variables u, v, w denote functions from time into Booleans: 

type 
B = T - • Bool 

value 
u,v,w:B 

Now we extend the meaning of the Boolean connectives to range over argu­
ments of type B as follows: 

value 
~: B -> B, (~(u)) = -A t:T.(u(t)) 
A : B x B 4 B , u A v = A t:T.(u(t)Av(t)) 
V : B x B 4 B , U V V E A t:T.(u(t)Vv(t)) 
= ^ : B x B - ^ B , u^v = X t:T.(u(t)=^v(t)) 
= : B x B ^ B , u = v = A t:T.(u(t)=v(t)) 

Here the two leftmost uses (to the left of =) of the connectives, respectively 
operators, designate the lifted functionals, whereas the rightmost usage (to 
the right of =) designates the "old" operations. • 

Example 17.5 Table-Lifted PartsExplosion Functions: We refer to Exam­
ple 16.6. 

Narrative and Analysis: Types 

Instead of recording just the part identification numbers of constituent parts 
of composite parts, as was done in Example 16.6, we wish to record, in any bill 
of materials, bom, also the number of occurrences of these constituent parts 
in any such composite part. Informally you may think of a bom concretely 
as a table with two columns, where each entry is a row. The first part of an 
entry contains the part number. The second part of an entry contains either 
nothing, if the described part is elementary (as are P4,Pb,Pe), or it consists 
of a two-column subtable with n entries, i.e., rows if there are n distinct 
constituent parts. Each row in this subtable has two elements. These record 
the part number of constituent parts, and the number of occurrences of that 
part in the composite part (Fig. 17.1). 

We abstract the class of the tables shown in Fig. 17.1 in the form of 
maps from part numbers to part information (second column item), with 
part information either being a map from (constituent part) part numbers to 
(natural) numbers (of occurrences of constituent parts in the corresponding 
composite part), or being an empty such map in the case the column one item 
is elementary. Thus: 
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Part Number 

P i 

P2 

P3 

P4 

P5 

Pe 

Part Information 

P i i 

P i 2 

P U 

P*l 

P22 

P2m 

Pa 

Pb 

n i x 

m 2 

wi„ 

n 2 l 

n22 

n2rn 

n a 

n& 

Fig. 17.1. Part number table 

[pi ^ [pu H^m17pi2 h ^ n i 2 , . . . , p i n H>mJ , 

P2 •"• [P2i |-^n2 l ,P22 ^ ^ 2 2 , . - . , P 2 m ^™2m] , 
Ps ^ [pa ^na,pb \->nb], 

PA *-> [],P5 ^ [],Pe ^ [], •••] 

is the mathematical designation of the above table. We justify this choice of 
abstraction by recalling that each part is described only (or exactly) once, 
and that so is the case for constituent parts. 

Formalisation: Types 

type 
BOM = Pn ^ TBL 
TBL = Pn j£ Nat 

The above names and defines the concrete type of this kind of more informa­
tive bill of materials. Again we need a well-formedness criterion. In fact, we 
see that: 

inv_BOM: BOM - • Bool 
inv_BOM(bom) = inv_BOM_0(abs_BOM_0(bom)) 

abs_BOM_0: BOM - • BOM_0 
abs_BOM_0(bom) = 

[ p i-)> dom bom(p) | p:Pn • pn G dom bom ] 
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BOM_0 was defined in Example 16.6; inv_BOM_0, likewise. 
The argument to inv_B0M is a "retrofit construction" (retrieval, abstrac­

tion) of a BOM_0 object from a BOM object! That is, well-formedness of BOM 
objects is independent of the "occurrence number" information! The retrieve 
function abs_BOM_0 considers the type BOM to be a concretisation of the 
BOM_0 type. 

Narrative: Operations 

We next turn to illustrating a rather complicated function on this new kind of 
bill of materials. The idea of this function, which we shall call Parts_Explosion, 
is, for a given part number, p, and a bom in which it is recorded, to yield 
a table which lists all the elementary parts it contains, together with their 
(sum-)total number of occurrences. We first illustrate the problem. Let the 
below forest (of trees) record parts relevant to some parts "explosion" (say 
fromp) (Fig. 17.2). 

P PI PI P3 • • • Pk 

/T\ /T\ / \ I I 
P I : » 1 P 2 : n 2 • • - P f c : n f c P2 : rn2P3 : m3 • • -Pk : mk P3 : l3 " " " Pk : lk 

Fig. 17.2. An example part number table 

In words: part p consists of m parts p±, n<i parts £>2, • • •, ^k parts p^. The 
constituent part p\ consists, in turn, of rri2 parts P2, ^ 3 of ps, . . . , rrtk of 
Pk, etc. Thus for one part p we find, by (what we here consider to be a self-
explanatory) tree-substitution, an unfolded tree of parts and their number of 
nrrnrrpnrps (Fio\ 17 3 on tVip farina- na.peeV 

In this example it is assumed that all other parts, e.g. ps,pk are elementary. 
From the tree we see that p consists of n\ x m^ x Is + n\ x m^ + n>2 x Is copies 
of part p3, and m x m^ x lk + n\ x rrik + ri2 x lk + rik copies of part pk- (Since 
parts are not recursively defined it is always possible to perform this suggested 
tree-substitution.) Our result table will then, illustratively, look like the table 
sVinwn i n Ficc 17 4 

We abstract these result tables in the form of tables (tbl:TBL). The prob­
lem now is to define the Parts_Explosion function: 

value 
Parts_Explosion: Pn x BOM - • TBL 

From the above "tree" drawing we observe two things: first that the parts 
explosion applied at the root (p) of the (entire) tree, for n = 1, is the same 
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P 

Pi : n i P2 : n 2 

P3 : h Pk ' h 

Fig. 17.3. Expanded part number tree 

Entries computed as follows: 
np3 = m x 7B2 x /3 + m x m3 + n2 x /3 

npk = ni x m2 x /fc + m x m*. + 712 x lk + nfc 

Fig. 17.4. Result table 

(kind of) parts explosion which is to be applied at respective subtree roots (pi) 
for n = U{. Then, in order to construct the tree, and therefore any subtree, 
all we need is its root label, p, respectively pi. In fact we (decide to) never 
construct this tree (or subtrees). 

The algorithmic idea of our putative Parts-Explosion function definition is 
now the following: We define Parts_Explosion in terms of an auxiliary function 
(Exp, for Explosion) which in the general case, while computing the table 
for some part, "sweeps", left-to-right, across the subtrees, accumulating a 
partial result table, tbl. The subtrees to be swept across are fully recorded 
in a subtable. For part p this subtable is bom(p). In general we refer to it as 
trees. We refer now to Fig. 17.5. The sweep now consists of arbitrarily selecting 
subtable trees. At some stage of the sweep, or explosion, some such subtrees 
have all been inspected, and their contribution, tbl, to the final result has been 
computed. 

At this stage we select subtree with root p, i.e., we select part p for explo­
sion. The result of combining the explosion of p with the hitherto accumulated 
partial result, tbl, we call tbl7. This new result, tbl', is then used as input in 
the remaining explosion of remaining subtrees. These are trees with subtree 
p removed, i.e., trees \{p}. Once there are no more subtrees to be exploded, 
the accumulated and forwarded partial result becomes the final result. 

p 
PS 

Pk 

np3 

npk 
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tbl tbl' 

hitherto trees\{p}=next 

trees 

now 

Fig. 17.5. A parts "explosion" computation state 

We note that the hitherto accumulated partial result, tbl, is merged with 
the result of the explosion of p, with this merge taking place while p is being 
exploded. We could instead compute the explosion of p fully, and then merge. 

The Explosion function thus requires the following four arguments: (i) trees, 
i.e., a description, obtained (previously) from bom, of the subtrees to be "ex­
ploded" (now and next); (ii) a multiplier, n, which denotes the count of the 
part being exploded; (iii) the partial result, tbl; and (iv), as a global variable 
(constant), the entire bill of material: bom. Since the latter is used only for 
reference, and not changed, we choose the following type clause for Explosion: 

value 
Exp: ( P n ^ N a t ) x Na t x TBL (BOM -> TBL) 

Parts_Explosion(p,bom) = Exp(bom(p),l,[])(bom) pre: p G dom bom 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 

Exp(trs,n,tbl)(bom) = 
iftrs = [] 

t hen tbl 
else 

let p:Pn G d o m trs in 
let tbl' = 

if bom(p) = [] 
t hen 

if p £ dom tbl 
t hen tbl f [ p mrt(p) + n*trs(p) ] 

else tbl U [ p L^ n + t ^ ) ] e n d 
else 

Exp(bom(p),n*trs(p),tbl)(bom) end in 
Exp(trs \ {p},n,tbl7)(bom) end end end 
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Annotation: 
If the part to be exploded is the empty part, i.e., has been all "exploded", 

then the so-far accumulated result table, is yielded, (2.). 
Otherwise, (3.), a subpart, p, is selected (4.) for explosion. If it itself is ele­

mentary (6.), then its contribution to the so-far accumulated (partial) result is 
computed and merged (9-10.) with that result. Otherwise (11.) the contribu­
tion of the explosion, of the subpart p: is merged with the so far accumulated 
result. The so-far plus now accumulated (partial) result (tblr) is then used 
(13.) when exploding the remaining subparts. 

Discussion 

Could we have defined Parts_Explosion by means of a pre/post pair of condi­
tions? We believe not as descriptively! Let us analyse why we give this answer, 
but first what the answer says. 

First our negative answer says that sometimes, as we believe it to be in this 
case, functions are more tellingly defined explicitly (and hence prescriptively) 
than descriptively (axiomatically, or by means of a pre/post pair). When 
so is (indeed) the case, we see that the borderline between prescriptive and 
descriptive somehow crumbles. We might have believed that prescriptive def­
initions, by being more algorithmic, were also less transparent, i.e., harder to 
read and understand, than were descriptive definitions. We might, as a corol­
lary, also have believed that one could always define functions descriptively 
as easily as defining the same functions prescriptively. 

Now why might these claims be true? Could it be that our problem is itself 
an operationally concrete one, rather than an abstract one? In descriptive 
definitions we express properties, rather than explicit, computed results. 

In the case of the Parts.Explosion function this seems so: The problem is 
operational. We are indeed asked to compute a functional result and not to 
maintain or express a property. 

Narrative: Lifted Functions 

Next we show a way of simplifying the above Parts-Explosion and Expr function 
definitions by definining so-called 'lifted' functions. In reference to our remark 
above: The present Parts_Explosion and Expr function definitions may not seem 
very abstract, the parts, parts_of_Pn and parts_of_TBL function definitions next 
could be claimed to be more abstract! 

Formalisation: Lifted Functions 

value 
+: TBL x TBL - • TBL 
t + t' = [p>fc(p,t)+c(p,t')|p:Pn-p e dom t U dom t '] 

*: Nat x TBL - • TBL 
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n * t' = [pfn*t(p)|p:Pn»p G dom t ] 

c: Pn x TBL - • Nat 
c(p,t) = if p G dom t then t(p) else 0 end 

parts: Pn x BOM -4 TBL 
part(p,bom) = parts _ofJPn(p,bom) \ {p} 

pre p G dom bom 

value 
parts_of_Pn: Pn x BOM ->• TBL 
part s_of_Pn(p,bom) = 

let t = bom(p) in 
if t = [] then [ p»i 1 ] else parts _of_TBL(bom(p),bom) end end 

pre p G dom bom 

parts_of_TBL: TBL x BOM - • TBL 
parts_of_TBL(t,bom) = 

i f t = [] then [] 
else 

let p:Pn • p G dom t in 
t(p) * parts_ofJPn(p,bom) + parts_of_TBL(t \ {p},bom) 

end end 
pre dom t C dom bom 

17.4 Inductive Function Definitions 

17.4.1 Inductive Function Type Definitions 

In the A-calculus everything is a function. Thus it is natural to think of D of 
the type: 

type 
D = D - • D 

as modelling A-functions. In RSL this is not possible. The RAISE specifica­
tion language design decision was made to cope with looseness, nondetermin-
ism, concurrency, and several other desirable language properties. Therefore it 
would have made a number of RSL language constructs and their use somewhat 
awkward if definitions like D = D —> D should also be possible. It prevents 
users of RSL from defining certain kinds of common programming language 
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constructs — such as procedures that take procedures as arguments, sets of 
mutually recursive procedure definitions, etc. That restriction was deemed 
acceptable by the language designers. RAISE was and is to be used more for 
application-oriented domains than for sophisticated programming or specifi­
cation language constructs. Solution to the recursive type definition, D = D 
- • D, was first provided by Dana Scott [251,458-462,464,466-468]. 

17.4.2 Inductive Function Value Definitions 

Chapters 12-16 abound with recursive function definitions; Chap. 11 out­
lined various styles of function definitions, induing recursive definitions; and 
Chap. 7 dealt with the meaning of recursive function definitions. 

17.5 Review of Function Abstractions and Models 

Principles. Functions as Denotations: The most overriding principle is that 
of ''always looking for the function being denoted by some syntactic struc­
ture", m 

The above principle was illustrated in Example 17.3. 

Principles. If and when a model-oriented abstraction has been chosen, then 
function abstraction may be chosen if a reasonable number of the following 
characteristics can be identified as properties of the phenomena being mod­
elled: 

(i) The abstract structure of the composite components being modelled 
as an ordinarily definable function, i.e., one whose range elements can be 
functionally based on definition set elements; 

(ii) whose number is not otherwise easily enumerable; 
(iii) and a common operation is that of determining functional relation­

ships. 
The basic principle for choosing among the many styles of function defini­

tion, outlined in Chap. 11, is simple: 
(iv) Choose property-oriented (axiomatic, algebraic and possibly implicit 

pre/post) styles "early" in development, that is, for the domain description 
and requirements definition phase. And choose the model-oriented, explicit 
function definition style for the later stages of requirements definition and the 
software design phase. 

(v) In addition, judicious use of carefully developed lifted functions can 
significantly help express suitable abstractions. • 

Techniques. Functions: We have shown, in Chap. 11, a number of func­
tion definition styles. They reflect a spectrum from axiomatic and algebraic, 
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via pre/post implicit, to explicit, algorithm-like, definitions of functions. The 
techniques that go with the property-oriented styles are those of property-
oriented abstractions, and those of the model-oriented styles are those, ob­
viously, of model-oriented abstractions. Make sure, however, only to tackle 
such algorithm-like definitions which reflect complexity, i.e., algorithm effi­
ciency concerns during the latter software design stages and steps. Seriously 
consider using function lifting when defining functions over complex, typically 
recursive data structures. • 

Tools. Functions: If abstraction and modelling using the function data type 
has been chosen, then the tool can either be the RSL, the VDM-SL, the Z, or, 
for example, the B specification language. • 

17.6 Discussion 

Functions are, obviously, the main means of defining any dynamics, any opera­
tions, manipulations, etc., of manifest (domain) as well as conceptual (domain, 
requirements and software) concepts. This is not surprising to the ordinary 
programmer, who is used to defining procedures, routines, subroutines, meth­
ods, etc. What is additional here are the concepts of functions as values, and 
hence as parameters (i.e., arguments), and function lifting. 

These volumes will only have succeeded they teach its readers to think of 
domain phenomena and concepts, and of requirements and software concepts 
as functions. We shall have many opportunities in the rest of these volumes 
to propagate the principle of thinking denotationally, that is, of syntactic 
structures denoting mathematical functions. 

17.7 Exercises 

Exercise 17.1. A Subroutine Library. A subroutine library is a simple set of 
uniquely named functions. Each function, besides its name, has a pair of type 
lists: one designating arity and types of subroutine arguments, the other the 
arity and types of subroutine results. Finally, each such function signature 
is associated with a function, typically from states and argument values to 
states and result values. Assume, for simplicity, all argument and all result 
values to be of simple scale type, say reals, integers, Booleans and text strings 
of characters. Functions, when applied, are applied in the current state, and 
functions when elaborated may change that current state. 

1. Define the type of subroutine libraries, considering also possible well-
formedness (i.e., subtypes). 
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Postulate, i.e., assume, the existence of the functional subroutine values. Now 
define the following operations on subroutine libraries: 

2. Insert a new subroutine (please consider well-formedness). 
3. Inquire as to the signature of a named subroutine. 
4. Apply a list of argument values to a named subroutine — checking first 

that the type of the argument values matches the type given in the sig­
nature for that function. 

5. Delete a subroutine. 

Above it was (perhaps) assumed that no one function name could be de­
fined with more than one signature. Now allow a function name to be 'over­
loaded', that is: The same function name may have two or more signatures 
but they must differ in the arity and/or type of the arguments. 

6. Restate, if needed, your answer to part 1 above. 
7. Refine, if needed, your answers to 2-5 above. 





Part IV 

SPECIFICATION TYPES 

The previous chapters have now covered sufficient material on types for 
us to summarise (Chap. 18). Although type theory may, by 2005, be the 
grandest contribution computer science has made to mathematics, we shall 
refrain from covering the theoretically more exciting aspects of type theory. 
Instead we refer to a few books: [1,282,424,443,532]. Dana Scott provided 
the basic research that cast classical A-calculus in a proper mathematical 
(i.e., type theoretic) setting, and thereby provided a basis for a mathematical 
understanding of types: [251,458-462,464,466-468]. 





18 

Types in RSL 

• The prerequisite for studying this chapter is that you have read the 
previous many chapters and that you desire a summary, comprehensive 
treatment of the RSL type system. 

• The aims are to summarise and complete the coverage of the type con­
structs, that is, expressions and definitions of RSL, to introduce the type 
concepts of record constructors and destructors, union types, variant types, 
short record type definitions, and subtypes and to illustrate the versatility 
of the RSL type system on "actual computing world" examples. 

• The objective is to help ensure that the reader is put firmly on the road 
to being a professional in perhaps the most crucial area of specification 
engineering, namely defining and using types. 

• The treatment is from systematic to semiformal. 

The Republican form of Government is the highest form of 
government; but because of this it requires the highest 

type of human nature — a type nowhere at present existing. 

Herbert Spencer 1820-1903 Essays (1891) VOL. HI, P . 4 7 8 ? The Americans 

"Back-of-the-envelope" sketching of types, for well-nigh any universe of dis­
course, can be considered like the house architect's similar sketches of an 
opera building, a private villa or a community centre. The ease with which 
it is done, and done so that the result is pleasing, has utility, and is fit for 
purpose, is the hallmark of a great software engineer, or respectively of a 
great architect. 

We refer to Chap. 5 for a first introduction to the concept of types. 

18.1 The Issues 

The above quotation expresses one of the issues of types we shall have to deal 
with: Existence! (i) We often designate manifest things, (ii) But we express 
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collections of these by expressing types, (iii) Our type expressions are not 
these collections, only abstractions thereof! 

We will briefly discuss the importance of statements (i—iii) above, (i) When 
modelling domains we designate, we point to real, actual occurrences of things: 
(a) Mister Goldsmith, (b) Missus Goldsmith's rus ty Raleigh b icycle , 
and (c) Mister and Missus Goldsmith's two ponies 'The S p i r i t ' and 
'The F l i g h t ' . (ii) But we abstract them as values of type (A) Person, (B) 
Bicycle and (C) Animal (or Horse), (iii) The values by which we speak of the 
actual Mister Goldsmith, the manifest things, these values are only abstrac­
tions of the real things, (iv) And there is even the problem of some definitions 
not having any, however abstract, mathematical models. By that we mean: 
Some type expressions, some type definitions, make no sense, viz.: the set of 
all winged horses, from poetic, daily parlance; and the 'collection', as a type, 
of all functions from functions into functions. 

Issues other than mere concrete or abstract existence are: (v) Choice be­
tween abstract and concrete types: sorts versus model-oriented types (i.e., ab­
stract versus concrete types), (vi) Choice of model-oriented representational 
abstraction: set, Cartesian, list, map and function types; and finite or infinite 
sets, lists and maps, (vii) Choice between simplicity of "nearest, closest" type 
versus complexity of defining "exactly fitting" subtype. 

Again we comment briefly on items (v-vii). (v) We normally choose ab­
stract types in earlier parts of development, thereby being abstract and leaving 
room for addition of axiomatically characterised observer and generator func­
tions. We often find that later stages of development — first requirements, 
then software design — bring about the desire to introduce further properties 
of types than first needed, (vi) Once "the road to using" model-oriented spec­
ifications has been entered, the developer will derive much benefit from using 
map and function types. They often capture essential properties and are sim­
ple to grasp, hence reasonably abstract. Set types are seldom seen, but using 
sets in handling definition sets and ranges of maps, and in handling index sets 
and elements of lists is an efficient means of expressing properties abstractly 
— in an expressive, reasonably understandable style, (vii) Choice between 
simplicity of "nearest, closest" type versus complexity of defining "exactly fit­
ting" subtype: When choosing a model-oriented, i.e., concrete type, we may 
choose, just for the sake of argument, to represent a type of binary trees as hi­
erarchical maps, each with exactly two definition set elements (i.e., hierarchies 
as dealt with in Example 16.7), rather than as a recursively defined Cartesian 
type (as posed in Exercise 14.4). These and related issues will be further dealt 
with in this chapter, and in the remaining parts of these volumes. 
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18.2 Type Categories 

There are (semantically speaking) different kinds of types. For each of these 
kinds there are (syntactically speaking, different) forms of expressions and 
definitions. There are abstractly and concretely defined types. 

18.2 .1 A b s t r a c t T y p e s : Sorts 

The developers have available any abstract base type, i.e., sort, they choose 
to start with! The previous chapters and their examples made liberal use of 
sorts. Sorts are usually type abstractions of oftentimes rather complex values. 
Wha t these value (i.e., component) types are is then revealed through the in­
troduction, by the developer, of observer (and generator) functions. Initially, 
i.e., when start ing out a long line of phases1 , stages2 and steps3 of develop­
ment, in other words, when initially choosing sorts, the specifier is relieved of 
having to find a "most suited" model-oriented type. 

18.2 .2 C o n c r e t e T y p e s 

In par ts of domain descriptions, in requirements prescriptions, and certainly 
in software design stages and steps of development, one must eventually and 
increasingly tu rn to models based on model-oriented, i.e., concrete types. 

The concrete types are those whose elements may be (i) Booleans (Bool ) , 
(ii) integers (Int), (iii) natural numbers (Nat ) , (iv) reals (Real) , (v) char­
acters (Char) , (vi) texts (Text) , (vii) sets, (A-[inf]set) , (viii) Cartesians 
( A x B x . . . xC) , (ix) lists (A*, Aw) , (x) maps (A jff B) (xi) or are total and /o r 
partial functions (A->-B, A^»B). 

(xii) Finally we have the types whose elements are either of two or more 
of Booleans, or integers, or numbers, or sets, or Cartesians, or functions: 

t y p e 
U = D | E | ... | F 

tha t is, tha t are union types. In this section we shall, more systematically, 
explain the union type, and many additional type concepts. 

1 Phases: domain, requirements and software design. 
2Stages: major "re-specifications", for the purposes of enriching (detailing) a 

specification. Stages "turn" BIG LIES, successively into Smaller Lies, finally into 
truth! That is, the big lies are gross simplifications of what is being specified, and 
the smaller lies add actual properties needed in order to approach reality. 

3Steps: minor refinements or transformations of specifications within stages. 
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18.2.3 Discussion 

With types a number of questions arise: Are there other types than the ones 
introduced so far? (xiv) How do we express and define types, including union 
types? (xv) Given a value, what means do we have for determining its type? 
(xvi) For any concrete type expression or any concrete type definition can we 
expect it always to denote something sensible, something we had in mind? 
These and other issues are the topics of the next sections. 

Indeed, there are some types, in addition to union types, that we would 
like to either reintroduce or to enlarge our previous coverage of, and/or to 
more properly introduce: the enumerated token types (Chap. 10) and record 
types (Sect. 13.4.3 and Exercise 16.8). They are respective cases of the more 
general concepts of variant record definitions. Next we explain these three 
kinds of type expressions and definitions: Variant type definitions, union type 
expressions and short record type definitions. The latter two are related to 
variant types. 

18.3 Enumerated Token Types Revisited 

By an enumerated token type, also referred to as a constructed constant names 
type, we understand a type defined as follows: 

type 
A = = al | a2 | ... | an. 

where the distinct identifiers al, a2, . . . , an are not defined elsewhere in the 
specification at hand. The definition of A, using the special variant type con­
structor = = , as well as the union type constructor |, is short for the following 
sort and value definitions, and the axioms: 

type 
A 

value 
al:A, a2:A, ..., an:A 

axiom 
[ disjointness: A values ] 

[ informal: V i,j:Nat • 0 < i,j < n ] 
i ^ j => ai ^ aj 

Example 18.1 Enumerated Types: Operators, Playing Cards and the Com­
pass: The enumerated — constant values — type can thus be used to define 
such things as a known set of operators of a programming language, cf. our 
earlier use of text strings, in Examples 14.4 to 14.7: 
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type 
MOp = = minus | factorial | abs | not | ... 
DOp = = add | sub | mpy | div | mod | and | or | imply 

the known set of playing card suit and face values: 

type 
Suit = = club | diamond | heart | spade 
Face = = ace | two | ... | ten | knight | queen | king 

or the "compass corners" of the world: 

type 
Corner = = east | west | north | south 

Two kinds of axioms are needed in order to ensure a consistent meaning of 
constant constructors: disjointness of enumerated values (see axiom above) 
and an induction axiom: 

type 
A = = a l | a2 | ... | an 

axiom 
[ induction ] 
Vp:(A->Bool) • 

(p(al) A p(a2) A ... A p(an)) => V a:A • p(a) 

The purpose of the induction axiom is to express that A only contains the 
explicitly enumerated values. 

18.4 Records: Constructors and Destructors 

Records are like Cartesians, only a little bit different! 

18.4.1 General 

Examples 14.4 to 14.7 illustrated the use of Cartesians and union types in 
denning a type of language constructs. 

In general we can use the variant type definition to define composite, or 
as they will be called here, record types. 

type 
A, B, ..., C 
K = = kl(sa:A) | k2(sa:A,sb:B) | kn(sa:A,sb:B,sc:C) | ... 
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(where we think of A, B, . . . , C as sorts). The identifiers kl, k2, . . . , kn 
stand for distinct record constructor functions (record constructors or just 
constructors). The identifiers sa, sb, . . . , sc (that are the same in the various 
alternatives, but could be a mix of some being the same and the rest, ob­
viously, being distinct), denote and are distinct (possibly overloaded) record 
destructor functions. We also refer to these as just record field selectors, record 
destructors or just destructors. 

Constructors and destructors can be used to compose, respectively decom­
pose record values. To express the idea of the constructor (composition) and 
destructor (decomposition) functions, we present the full definitions (of which 
the above is an abbreviation): 

type 
A, B, ..., C, K 

value 
kl: A->K, k2: AxB-^K, kn: AxBxC-^K, ... 
sa: K-^A, sb: K-^B, sc: K-^C, ... 

axiom 
[ disjointness of K values ] 
V av:A, bv:B, ..., cv:C • 

kl(av) ^ k2(av,bv) A kl(av) ^ k3(av,bv,cv) A 
... A av = sa(kl(av)) = sa(k2(av,bv)) = sa(k3(av,bv,cv)) A 
... A bv = sb(k2(av,bv)) = sb(k3(av,bv,cv)) A 
... A cv = sc(k3(av,bv,cv)) ... 

18.4.2 Variant Record Value Induct ion Axioms 

Non-recursive Record Type Definitions 

We have exemplified axioms governing the disjointness of values defined by 
a variant definition. But an induction axiom is needed in order to remove 
"junk", that is, undesirable, unintended, values from the defined types. For 
the (simple) record type definition (below) we need: 

axiom 
type 

A, B, . . , C 
K = = kl(sa:A)|k2(sa:A,sb:B)|kn(sa:A,sb:B,sc:C) 

value 
kl: A->K, k2: A x B ^ K , kn: A x B x C ^ K 

axiom 
[ induction ] 

V p:K-^Bool, av:A, 
(p(kl(av)) A p(k2(av,bv)) A p(k3(av,bv,cv)) => V k:K • p(k)) 

=> (V k:K • p(k)) 
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Recursive Record Type Definitions 

For recursively defined record types, disjointness and induction axioms, for 
example, become: 

type 
A 
R = = empty | rec(sa:A,sr:R) 

axiom 
[ disjointness: R values ] 

V av:A, rv:R • empty ^ rec(av,rv) A 
sa(rec(av,rv))=av A sr(rec(av,rv))=rv 

[ induction, no junk ] 
V p:R—^Bool • p(empty) A (V av:A, rv:R • p(rv) => p(rec(av,rv))) 

=> V rv:R • p(rv) 

18.4.3 An Example 

One of the standard uses of the union and variant record type definition ca­
pability is that of defining syntactic structures such as found in programming 
languages. Another is that of defining different kinds of data structure values. 
We exemplify the former. 

Example 18.2 Cartesian vs. Record Variant Types: We give an example of 
the use of record types. The example really only rephrases parts of Exam­
ples 14.4 to 14.7. We show, for comparison, the Cartesian and record type 
models of the syntax (cf. Example 14.5): 

type 
Pn, Ln, V, E 
M' = (Pn x Ln) x P-set 
M = {| m:M • wf_M(m) |} 
P = Pn x (Ln x S)-set 
S = Asgn | Cond | Goto | Call | Stop 
Asgn = {"asgn"} x (V x E) x Ln 
Cond = {"cond"} x (E x Ln x Ln) 
Goto = {"goto"} x Ln 
Call = {"call"} x (Pn x Ln) x Ln 
Stop = {"stop"} 

type 
Pn, Ln, V, E 
M' = (Pn x Ln) x P-set 
M = {| m:M • wf_M(m) |} 
P = Pn x (Ln x S)-set 
S = = Asgn(ve:V,e:E,l:Ln) 

| Cond (e:E,cl:Ln,al:Ln) 
I Goto(l:Ln) 
I Call(pn:Pn,cl:Ln,rl:Ln) 
| stop 

We compare the control structures of the two well-formedness functions (cf. 
Example 14.6): 
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wfJS(s)(lns)(ps) = 
cases s of 

Asgn((v,e)/) - • £e Ins, 
Cond(e,ln,ln') - • {m,ln'} C Ins, 
Goto(ln) -> In e Ins, 
Call(pn,ln/) - • 

wf_Call((pn,ln),£)(ps), 
stop -t t rue 

end 

18.5 Union Type Definitions 

The union type concept was introduced in Sect. 13.4.3 in Example 13.10's 
subsection on An Aside on Type Union and Variant Records) and illustrated 
in that example's definition of Cmd's, subsection on Formalisation of Action 
Types. Another explanation of the union type was also given in Sect. 14.4.l's 
subsection An Aside: The Union Type Operator, |. Other union type def­
initions were given in Example 14.3's definitions of Q, R and S, in Exam­
ple 14.7's definition of 0 (subsection Formalisation — Semantic Types), in 
Example 16.8's definition of VAL, in Examples 16.17's and 16.18's definitions 
of OP and OL, and in Example 17.3's definition of S4. 

In general, the 'shorthand': 

type 
A = B | ... | C 

where B and C are identifiers, is, theoretically, intended to mean: 

type 
A = = A_from_B(A_to_B:B) | ... | A_from_C(A_to_C:C) 

The shorthand implicitly defines a set of constructors (from A_from_B to 
A_from_C) and destructors (from A_to_B to A_to_C). If you think their names 
too cumbersome, then you are free to use the full definitional facility offered 
by the record variant definition. Constructors are sometimes called injector 
functions. Destructors are correspondingly called projector functions. 

Thus, if you define: 

4We present all these references so that you may go back and recapitulate the 
uses of record type definitions. Doing so, "going back", the reader will, we strongly 
believe, more easily grasp the ideas. 

wf_S(s)(lns)(ps) = 
cases s of 

("assign",(v,e),^) -+ ..., 
("cond",(e,ln,ln')) - • .», 
("goto",ln) - • . . , 
("call" ,(pn,ln)$ -+ 

ii . ii stop —> ..., 
end 
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type 
A = B | C | ... 
B = = mk_beta(sel_b:B) 
C = = mk_gamma(sel_c:C) 

then you avoid: 

type 
A = = A_from_B(A_to_B:B) | A_from_C(A_to_C:C) | ... 

mk.beta and seLb "replaces" A_from_B, respectively A_to_B; etcetera. 

18.6 Short Record Type Definitions 

Defining: 

type 
B, ..., C 
A = = mk_alpha(sel_beta:B,...,sel_gamma:C) 

can be abbreviated by the short record type definition: 

type 
B, ..., C 
A :: sel_beta:B ... sel_gamma:C 

18.7 Type Expressions, Revisited 

A schematic syntax for the syntactic category of all type expressions can now 
be summarised: 

type 
[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 

Bool, 
Int, 
Nat , 
Real, 
Char, 
Text, 
A-set, 
A-infset 
A x B x ... x C, 

[10' 
[11 : 

[12 : 

[ 13' 
[14: 

[15 : 

[16 : 

[17 : 

[18 : 

A*, 
A", 
A jft B, 
A - » B , 
A ^ B , 
(A), 
A | B | ... 
mk_id(sel 
sel_a:A ... 

| C , 
_a:A,...,sel_b 
sel_b:B. 

:B), 

where A, B, . . . , C can be any of the expressions [1-16]. 
The meaning of these type expressions has been explained earlier. 
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18.8 Subtypes 

Thus there is one type expression in addition to those ([1-18]) summarised in 
Sect. 18.7. It is the subtype expression. The type expression: 

{| b:B • V(b) |} 

usually occurs in connection with type definitions: 

type 
A = {| b:B • V(b) |} 

and is a subtype expression. It defines A to be the type of those b in a usually 
"larger"5 type B, but for which the predicate V(b) holds. 

The general form of subtype expressions is: 

{| <binding> : <type_expression> • <Boolean_valued_expression> |} 

The structure of the binding must 'match' the structure of the values of type 
type.expression. 

18.9 Type Definitions, Revisited 

Throughout we have exemplified type definitions. It is time to summarise. We 
now present a set [1-5] of example forms of type definitions. So, what follows 
is not an RSL set of type definitions as one would find them in an RSL type 
clause, but 'concrete' such type equations. The Type_names are the left-hand 
side of the type equations. The =, = = or :: are the type "equation" symbols. 
And the rest, to the right, or after the equation symbols, are concrete examples 
of the kind of type expressions that are special to 'union type', 'record type' 
and 'subtype' types. 

[ 1 ] Type_name = 
Type.expr /* without | s or subtypes */ 

[2] Type_name = 
Type_expr_l | Type_expr_2 | ... | Type_expr_n 

[3] Type_name = = 
mk_id_l(s_al:Type_name_al,...,s_ai:Type_name_ai) | 

mk_id_n(s_zl:Type_namejzl,...,s_zk:Type_name_zk) 
[4] Type_name :: sel_a:Type_name_a ... sel_z:Type_name_z 
[5] Type_name = {| v:Type_name' • V(v) |} 

5Type X is said to be a type "larger" than type Y if all values of type Y are also 
values of type X, and there are values of type X which are not of type Y. In other 
words Y is a subtype of X. 
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where a form of [2-3] is provided by the combination: 

Type_name = A | B | ... | Z 
A = = mk_id_l(s_al:A_l,...,s_ai:A_i) 
B = = mkid_2(s_bl:B_l,...,s_bj:B_j) 

Z = = mkid_n(s_zl:Z_l,...,s_zk:ZA) 

The meaning of type definitions has been explained in all the previous chapters 
where new types were introduced. 

18.10 On Recursive Type Definitions 

We refer to Sects. 13.5.1, 14.5.1, 15.5.1, 16.5.1 and 17.4.1 for discussions on 
the issue of defining types recursively. Dana Scott provided the basic research 
that now serves as the theoretical setting for our understanding of types: 
[251,458-462,464,466^468]. 

18.11 Discussion 

18.11.1 General 

We have reviewed and extended the concept of types. Chapters 13-16 for­
mally introduced the set, Cartesian, list and map types, while also informally 
making use of union, enumerated and record types. These latter have now 
been formally introduced. 

18.11.2 Principles, Techniques and Tools 

A picture is worth a thousand words. 
And a type system is worth a zillion pictures. 

Anonymous 

Principles. Four fundamental ideas of types are those (i) of abstract classi­
fication, of (ii) distinguishing between syntactic and semantics types, of (iii) 
sketching type structures as a first development activity and of (iv) abstract 
data structure designs. 

By forcing distinctness of types, by introducing subtypes and by being able 
to formulate well-formalness constraints over types, one is able to establish 
a type system, i.e., a set of types. By judicious use of abstraction, that is, 
through the use of both abstract and concrete types, sketching a type sys­
tem is something that can be done rather quickly by the reasonably trained 
developer. 

Methodologically the main principles are (1) to design types for all seman­
tic entities of interest first and (2) to initially choose sorts. • 
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Discussion. Very many software engineers draw diagrams which picture an 
instantiation of a value of a given type, usually a composite one. Defining 
a system of types is a way to draw zillions of pictures. The shortcomings 
of drawing instantiations of values is that one usually has to draw families 
of diagrams. It then becomes hard to discuss whether to choose one kind of 
type rather than another kind. We find that defining type systems enable us 
to conduct far more mature and concise discussions concerning alternative 
choices of types. The techniques and tools for constructing types allow the 
developer to rapidly sketch a type system. Should discussions with colleagues 
lead to a desire for another type structure then even sweeping changes can be 
effected rapidly. • 

Techniques. Two contrasting approaches to the design of type systems ex­
ist. They are the property-oriented and the model-oriented. In the former 
approach one postulates sorts, then the function signatures of usually primi­
tive or simple operations over these sorts, and finally axioms that relate the 
values of the sorts and the operations. In the model-oriented approach one 
designs concrete, albeit abstract model-oriented types. Functions are fully de­
fined and their definition helps the developer to test the usefulness of a type 
abstraction. • 

Tools. The RSL type definition constructs, including definition of sorts and 
concrete types, subtypes and well-formedness constraints, that is, predicates, 
over types, form the basic tools. • 

18.12 Bibliographical Notes 

In the interlude, Part IV, just before this chapter, we mentioned these books: 
[1,282,424,443,532]. They, in various ways, cover types in programming lan­
guages, both the practical ones that you apply when programming, as well as 
the mathematical meanings of these types, that is, the theoretical ones you 
normally do not have to bother about. I, myself, find [1,424,443] particularly 
useful. As remarked just above (Sect. 18.10) Dana Scott provided the basic 
research that now serves as the theoretical setting for our understanding of 
types: [251,458-462,464,466-468]. 

18.13 Exercises 

Exercise 18.1. X A Summary Type System for Transportation Nets. We 
refer to Appendix A, Sect. A.l, Transportation Net. We also refer to Exer­
cises 13.5 14.6, 15.15 and 16.12. 

Summarise your work, so far, on abstract and concrete types for Trans­
portation Nets by presenting a suitable sort-, map-, list-, Cartesian- and set-
based type system for Transportation Nets. 
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Indicate appropriate subtypes, variant types, and well-formedness predi­
cates. If defined earlier, then refer to these latter predicates. 

Exercise 18.2. X A Summary Type System for for Container Logistics. We 
refer to Appendix A, Sect. A.2, Container Logistics. We also refer to Exer­
cises 13.6 14.7, 15.16 and 16.13. 

Summarise your work, so far, on abstract and concrete types for Container 
Logistics by presenting a suitable sort-, map-, list-, Cartesian- and set-based 
type system for Container Logistics. 

Indicate appropriate subtypes, variant types, and well-formedness predi­
cates. If defined earlier, then refer to these latter predicates. 

Exercise 18.3. X 4 Summary Type System for Financial Industries. We re­
fer to Appendix A, Sect. A.3, Financial Service Industry. We also refer to 
Exercises 13.6 14.7, 15.16 and 16.13. 

Summarise your work, so far, on abstract and concrete types for Financial 
Service Industries by presenting a suitable sort-, map-, list-, Cartesian- and 
set-based type system for Financial Service Industries. 

Indicate appropriate subtypes, variant types, and well-formedness predi­
cates. If defined earlier, then refer to these latter predicates. 





Part V 

SPECIFICATION PROGRAMMING 

On Specification Programming 

Characterisation. By specification programming we understand a style of 
specification (resp. programming) which "borders" on programming (resp. 
specification). • 

Specification programming is neither very abstract nor algorithmic. 
In this part, i.e., in Chaps. 19-21, we illustrate a spectrum of specification 

programming which spans from applicative (Chap. 19), i.e., functional, via 
imperative (Chap. 20), i.e., with assignable variables and statements, to par­
allel specification programming (Chap. 21), i.e., with processes and process 
synchronisation and inter-communication. 

Thus we shall review, in Chap. 19, much of the RSL language constructs 
already covered (while adding a few). We shall, in Chap. 20, introduce the im­
perative constructs of RSL: assignable variable declarations, assignment state­
ments, iterative and loop statements, etc. Finally, in Chap. 21, we shall in­
troduce the parallel constructs of RSL: processes, process input expressions 
and output statements, channels, and the parallel, nondeterministic inter­
nal (choice), and nondeterministic external (choice) composition of processes. 
In this respect, the RSL, which the reader has been introduced to so far, is 
extended with basic constructs of Hoare's calculus for expressing Communi­
cating Sequential Processes, CSP [288,448,456]. 
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On Problems and Exercises 

Most problem formulations of Part V ask for solutions that contain both a 
property-oriented solution and a model-oriented solution along the lines of 
the next three chapters. 

Exercises 19.1, 20.1, and 21.9 form one set of related exercises. So do 
Exercises 19.2, 20.2, and 21.10. And so do Exercises 19.3, 20.3, and 21.11. 
They all illustrate programming more than abstract modelling. They are all 
intended to develop your skills in large-scale specification programming. In 
contrast, Exercises 21.2, 21.3, 21.4, 21.5, 21.6, 21.7, and 21.8, call for reason­
ably abstract RSL/CSP modelling of producer/consumer buffers, client/server 
and UNIX pipes. These latter exercises are intended to develop your skills in 
small-scale elegance when modelling these latter kinds of computing systems 
concepts. 
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Applicative Specification Programming 

• The prerequisites for studying this chapter are that you have understood 
most, if not all, of what has been covered in previous chapters. 

• The aims are to summarise the applicative features of RSL already given, 
to introduce additional applicative features of RSL, to bring a detailed 
model of bindings, their types, patterns and matchings (Sect. 19.6), and 
to illustrate more comprehensive uses of the applicative subset of RSL, thus 
exemplifying additional modelling ideas. 

• The objective is to make the reader fluent in applicative specification 
programming. 

• The treatment is systematic. 

In this chapter we shall summarise the applicative constructs of the speci­
fication notation (RSL). The term 'applicative' (as prefix to 'programming') 
derives from 'function application'. The main distinguishing property of ap­
plicative programming is that of defining, applying and composing functions. 
Therefore the term 'functional' is often used in lieu of the term 'applicative', 
hence functional programming [51,175,225,261,278,380,389,433,498,502,520]. 

The main distinguishing property of all expressions, be they arithmetic, 
Boolean, set, Cartesian, list, or map expression is their operator/operand 
structure, and hence that they involve function applications. 

Characterisation. By applicative programming we shall understand pro­
gramming with functions, that is, programming where functions are first-class 
citizens, where function application is a core notion, and where there are no 
concept of storage, that is, assignable variables, nor of concurrency. • 

Discussion. We resort to characterising applicative programming also by 
what it is not: it is not programing with assignments, hence there is no notion 
of statements. Also it is not programing with processes, hence there is no 
notion of concurrency. • 
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Characterisation. By function programming we mean the same as applica­
tive programming. • 

Characterisation. By applicative specification programming we shall un­
derstand an abstract, property-oriented form of applicative programming, one 
in which we deploy abstract types and so on. • 

19.1 Scope and Binding 

In order to model phenomena, i.e., to express concepts, and their proper­
ties and/or computations involving these, it is often wise to introduce iden­
tifiers that then designate these phenomena cum concepts. These identifiers 
are thus associated with values (over which properties and/or computations 
are expressed). These identifiers have a certain text over which they are sup­
posed to be used, i.e., over which they are valid. We call this the scope of 
the identifier. Some such identifiers designate constants, i.e., values which are 
expressed and do not change. These are the identifiers we think of in appli­
cation specification (programming). Other such identifiers designate possibly 
changing values, i.e., the identifiers name declared (storable) variables whose 
value may be reassigned (reexpressed). We shall deal with this kind of vari­
able in Chap. 20. The constant (even though they are also called "variable") 
identifiers are given value once. We say they are bound. This section is about 
such identifiers, their scope and binding. As for a number of technicalities of 
binding we refer to Sect. 19.6, on the topics of bindings, typings, patterns and 
matching. 

We find that there are basically five kinds of situations in which identifiers 
are being defined, and thus for which the notions of scope and binding become 
relevant. They are: 

1. let definitions 
2. function definitions 
3. case constructs 
4. comprehended expressions 
5. quantified expressions 

In Sects. 19.1.2-19.1.6 we refer, in brackets, to the above numerals. 
We now treat the binding and scope issues as they arise in the above forms. 

Our treatment will be 'esoteric'. That is: It assumes that you are already 
familiar with our earlier coverage of these forms. Thus we summarise. 

19.1.1 Binding Patterns — An Informal Exposition 

Characterisation. By a binding pattern we mean a structure of usually 
free and always distinct identifiers or "wildcards" (_), that are bound to, i.e., 
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equated with, a similarly structured value such that one can establish a one-
to-one relationship between the identifiers and components of the value. • 

In earlier chapters on sets, Cartesians, lists and maps we presented binding 
patterns like: 

let {a} U s = set in ... end 
let (a,b,...,c) = cart in ... end 
let (a)*£ = list in ... end and let £^(a) = list in ... end 
let [ai-^b] U m = map in ... end 

Here the patterns are: 

{a} U s, (a,b,...,c), (a)^£, ^ ( a ) , [ai-^b] U m 

We assume that set, cart, list and map are of the right size: That is, that 
set, list, and map are nonempty, and cart has the right number of immediate 
components, commensurate with the Cartesian binding pattern (a,b,...,c). 

We now extend the above forms with wildcards _: 

let {a,_} U s = set in ... end 
let (a,_,...,c) = cart in ... end 
let (a,_,b)"^ = list in ... end 
let [ai->*b,_] U m = map in ... end 

These forms only make sense if set has at least two elements, list has at least 
three elements, and map at least two "pairings". If such is the case then the 
idea is that s is any set, derived from the set set by removing any two elements; 
that £ is the list derived from the list list by removing the first three elements, 
and that m is any map derived from the map map by removing arbitrary 
pairings. 

In the following we shall assume that a wildcard is treated as if it was a 
free identifier! That is, our expositions will not take wildcards into specific 
consideration, but just assume that they may be used, i.e., that they may 
occur in the generic presentations of bindings given. 

To summarise, and to generalise: to patterns, which are structures of usu­
ally free identifiers we now add the possibility of also having wildcards, bound 
identifiers and constants appearing in patterns. The bound identifiers are, 
naturally, bound to something, namely a value, i.e., a(nother) constant.1 A 
binding, as treated in this chapter, is now the pairing of a pattern and a value. 
The value presents itself in a number of ways: (i) through the evaluation of an 
expression with which the pattern is paired (with the pairing operator being 
an equality symbol, =) — as in the let constructs; (ii) through an argument 

1That latter binding is provided by the context of the text in which the pat­
tern occurs — with such a context usually being provided for by the evaluation 
configuration's context, i.e., environment component. 
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value provided in a function invocation and then paired with the formal pa­
rameter list of the function definition; (iii) through the typed quantification 
as in comprehensions and predicate expressions; (iv) or through the case e of 
construct where, alternatively, one after the other, of the case selection clauses, 
the pattern left-hand side of these are paired to the value of expression e of 
the case e of header. All this will now be treated in some detail. 

19.1.2 "let" Construct Scope and Binding [1] 

The let construct is also treated in Sect. 19.2. So we only present a simplest, 
albeit schematic example: 

let pattern = £(...) in £>(id_l,id_2,...,id_n) end 

Let A be a metalinguistic "observer" function which extracts all identifiers 
from a pattern. Then, for the above pattern, we have: 

zi(pattern) = {id_l,id_2,...,id_n} 

The free identifiers {id_l,id_2,...,id_n} of binding_pattern are introduced by the 
left-hand (of =) construct, binding_pattern. They are bound to the values 
that satisfy the defining equation binding_pattern = X>(id_l,id_2,...,id_n). And 
their scope is the body expression, 2?(id_l,id_2,...,id_n)I of the clause above. 
The defining equation may give rise to a finite (including zero) or an infinite 
number of models in which these free identifiers are bound to values that 
satisfy the equation. 

Example 19.1 Simple "let" Bindings: We present a simple — rather con­
strued — example, to be studied by the reader: 

type 
A = Bool x (Int x Real x (Text x Char)) 

value 
f: A - • (Int | Text) 
f(a) = let (b,(i,r,(t,c))) = a in if b then i + int r else t^(c) end end 

(Here A(b, (i, r, (t, c))) = {b, i, r, t, c}.) 

For further examples of let definition bindings we refer to Sects. 7.7.2, 13.2.3, 
14.2.3-14.2.4, 15.2.3, and 16.2.3. 

19.1.3 Function Definition Scope and Binding [2] 

We refer to Chap. 11 for an earlier presentation of this material. The form 
of function definitions for which it is meaningful to talk about introduction, 
binding and scope of identifiers are: 
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value 
f: A - + B 
f (pattern) = £ (a_l,...,a_m) 
pre: 7?(a_l,...,a_m) 

where: 
{a_l,...,a_m} = Zi(arg_pattern) 
{r_l,...,r_n} = zi(res_pattern) 

By argument-pattern we mean a pattern with one or more free identifiers. 
These are the identifiers we shall be referring to. result_pattern is a pattern 
with free identifiers only. The form argument-pattern in the function defini­
tion header f(argument_pattern) introduces the identifiers. The signature f: A 
—> B generally binds these free identifiers to types. The specific binding of 
the free identifiers of the argument-patterns occurs whenever the function f is 
invoked: f(argument). The scope of f and the free identifiers is the rest of the 
function definition, the body and the pre condition: £(id_l,id_2,...,id_n) pre: 
-P(id_l,id_2,...,id_n). 

Example 19.2 Simple Function Definition Bindings: Again a somewhat con­
strued example, to be studied by the reader: 

type 
A = Bool x Real 
B = Int x Na t 
C = Real x Real 

value 
f: A - • (B | C) 
f(b,r) = if b t hen (int r,abs(r—int r)) else (—abs r,abs r) end 

f(b,r) as (ir,nr) 
post ir = if b t hen int r else —abs r end A 

nr = if b t hen abs(r—int r) else abs r end 

For further examples of function definition bindings we refer to Chap. 11. 

19.1.4 "case" Cons t ruc t Scope and Binding [3] 

We only treat the scope and binding of the case construct now. For other 
facets of the case construct see Sect. 19.5. The case construct schematically 
appears as: 

case expr of 
choice_pattern_l —> expr_l, 

f(arg_pattern) as res.pattern 
pre: P(a_l,...,a_m) 
post: P(a_l,...,a_m,r_l,...,r_n) 
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choice_pattern_2 ->> expr_2, 

choice_pattern_a_or_wild_card —> expr_Q 
end 

where choice_pattern_i and choice_pattern_n_or_wild_card are patterns usually 
with one or more free identifiers. The free identifiers (not shown, but implied, 
above) are introduced in the choice_pattern_i clauses immediately to the left 
of the -t s. They are bound to values as per the matching afforded between 
the cases expr of expression value part and the pattern. And their scope is 
the exprJ immediately to the right of the corresponding —>. 

Example 19.3 Case Bindings: Next in the line of our construed examples 
we bring the following, to be studied by the reader: 

type 
A = = mkB(s_i:Int) | mkC(s_i:Int,s_j:Int) | mkD(s_i:Int,s_j:Int,s_k:Int) 

value 
f: A - • (Int | Na t | Real) 
f(a) = 

case a of 
mkB(iv) —> iv, 
mkC(ivjv) —> if iv>0 then —iv else jv end 
mkD(iv,jv,kv) - • if kv^O then iv/kv else iv/(kv+0.000001) end 

end 

For further examples of case construct bindings we refer to Sect. 14.4.1. 

19.1.5 Comprehensions: Scope and Binding [4] 

There are three forms of comprehended expressions: 

{ E(a) | a:A . P(a) }, 
{ E(i) | i in indexJist • P(i) ), 
[ D(a) i-+ R(a) | a:A • P(a) ]. 

The identifiers a, i and a (lines 1, 2 and 3, respectively, above) are named and 
typed (i.e., generally bound) in respective clause parts: a:A, i in indexJist and 
a:A. They are being specifically bound to specific values by the optional part 
P(a). And their scope is E(a), E(i), respectively D(a)-» R(a). We leave it to 

the reader to "retell the story" above, but based on appropriate patterns and 
their free identifiers. For specific examples of comprehension bindings we refer 
to Sects. 13.2.2, 15.2.2 and 16.2.2. 
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19.1.6 Quantifications: Scope and Binding [5] 

There are three forms of quantified expressions: 

V a:A • P(a), 3 a:A • P(a), 3 ! a:A • P(a) 

We refer to Chap. 9, Sect. 9.5.4. 
The identifier a is introduced and typed in the a:A part of the quantified 

expressions. And the scope of the defined identifier a is the remaining text: 
P(a). We leave it to the reader to "retell the story" above, but based on 
appropriate patterns and their free identifiers. 

For specific examples of quantified expressions we refer to Sects. 9.5.4-
9.5.7. 

19.2 Intuition 

First, it is important to note that we have already given quite a lot of examples 
of uses of the let ... in ... end clause. Second, it is important to state that 
in this entire section we are not going to present any further examples of 
applicative specifications. 

We have already seen that operator/operand expressions can express quite 
complex values. And, as we shall see, expressions can indeed express all the 
values we ever wish to express, through the use of fix points. The last three 
sentences were brought in in order that we may justify, from an untraditional 
angle, our focus on expressions, that is, functions, as a full-blown specification 
cum programming language. 

19.2.1 Simple "let a = Ed in £b(a) end" 

We continue this attempt at justification. To decompose the expression of 
values we introduce the: 

let a = Sd in £&(a) end 

clause. It is an expanded form of: 

(Aa.£6(a))(£d) 

that is, of defining a function, Aa.£&(a), and of applying that function to an 
argument, £&. The scope of a is £&(a). 

An intuition about the expression: let a = Ed in £&(a) end is that it defines 
the variable a, to not really be a variable in the sense of attaining a varying 
value, but that it defines a to attain a constant value throughout the scope 
£&(a). That intuition makes the clause let a = Ed in into a so-called single 
assignment. This two step approach of first binding a constant value to a, and 
then using this value, i.e., a, in a context — in which other such bindings and 
uses take place — allows for a "divide and conquer" principle of expressing 
values. 
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19.2.2 Recursive "let f(a) = £d(f) in £b(f,a) end" 

We saw, in Sect. 7.8, how a recursive definition, as of f in: 

let f(a) = E(f) in B(f,a) end 
/* which is the same as */ 
let f = Aa:A • E(f) in B(f,a) end 

amounts to: 

let f = YF in B(f,a) end 
F = Ag-Aa-(E(g)) 
The Fix Point Identity Law: YF = F(YF) 

This explains and thus allows the use of recursive definitions. 

19.2.3 Predicative "let a:A • V(a) in £(a) end" 

The typing construct: 

let a:A • V(a) in B(a) end 

expresses, in colloquial terms, the selection of an a value of type A which 
satisfies a predicate V(a) for evaluation in the body 23(a). 

19.2.4 Multiple "let a; = Sdi in Sb(an) end" 

In general, we allow for multiple, mixed and compound binding pattern defi­
nitions: 

let a:A • Pi (a), b:B • P2(a,b), ..., c:C • Pn(a,b,...,c), 
p_a = Ei(a,b,...,c), 
p_b = E2(a,b,...,c,p_a), 

p_c = En(a,b,...,c,p_a,p_b,...,) in 
B(a,b,...,c,p_a,p_b,...,p_c) end 

where p_a, p_b, ... p_c are binding patterns of free identifiers (and possible 
wildcards), and where the order of the defining clauses above is important. 

The above is shorthand for: 

let a:A • Pi (a) in let b:B • P2(a,b) in ..., let c:C • Pn(a,b,...,c) in 
let p_a = Ei(a,b,...,c) in 

let p_b = E2(a,b,...,c,p_a) in 

let p_c = En(a,b,...,c,p_a,p_b,...) in 
B(a,b,...,c,p_a,p_b,...,p_c) 

end end ... end end end ... end 
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This rewriting explains the scope of the defined names. 
Now, what is the meaning of all this? We have not imposed, so far, any re­

strictions on the forms of the defining expressions. (That is, those on the right-
hand side of the equations and in the typing predicates.) The answer, without 
going into renewed detail, is simple: The meaning of a compound set of multi­
ple and mixed let bindings, i.e., excluding the body B(a,b,...,cIp_a,p_b,...,p_c), 
is the set of all models that contain bindings of all free identifiers a,b,...,c, and 
all free identifiers in the binding patterns p_a,p_b,...,p_c, to such values that 
make the equations and predicates hold. 

Please do not bother about how these equations (etc.) are 'solved'. Just 
focus on the properties they define. We are specifying, not algorithmically 
programming! Please note that we can thus not use the above multiple let 
clauses to define two or more functions that are mutually recursive. That is, 

value 
f: A ->B 
f(a) = 

let f 1 = A x:X • £(f2,a,x), 
f2 = A y:Y • £(fl,a,y) in 

let x = ..., y = ... in 
... fl(x) ... f2(y) ... end end 

is not an acceptable definition. 
But we can define any set of mutually recursive functions as proper value 

definitions of a class definition. Such function definitions — momentarily dis­
regarding any possible name clashes (i.e., two or more in different class defini­
tions having the same name) — can be considered defined at the "outermost" 
level of of definitions, declarations, etc., of a full specification. 

19.2.5 Literals and Identifiers 

Literals 

The simplest kind of expression is the literals, that is, names of constants: 
numerals, Booleans, characters, etc. 

0, 1, 2, ..., - 1 , - 2 , ... 
0.0, 1.41, 2.71, 3.15, ... 
true, false 
a , D , ..., z , ..., abc , ... 

Identifiers 

An almost equally simple kind of expressions are the identifiers which, for 
example through their occurrence in function argument/value bindings, in 
let clause bindings and in case choice bindings, are bound to values: 
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a, b, ..., id, name, ... 

Some identifiers may designate enumerated type values. 

19.3 Operator/Operand Expressions 

The operator or connective/operand expressions of RSL are the prefix, infix 
and suffix expressions: 

(Expr) ::= 
(Prefix_Op) (Expr) 

| (Expr) (Infix_Op) (Expr) 
I (Expr) (Suffix_Op) 

(Prefix_Op) ::= 
— | ~ | U | fl | card | len | inds | elems | hd | tl | dom | rng 

(Infix_Op) ::= 
= | ^ | = | + | - | * | t | / | < | < | > | > | A | V | = * 
| e | ^ | u | n | \ | c | c | D | D r i t l ° 

(Suffix_Op) ::= ! 

Expression values are expected to be of types commensurate with the opera­
tors. 

The prefix unary operators or connectives are: arithmetic (negation), 
Boolean (negation), set (distributed union and intersection, cardinality), list 
(length, indices, elements, head, tail), map (definition set, map range set). 
The infix binary operators or connectives are: general equality, inequality 
and equivalence; arithmetic (addition, subtraction, multiplication, division, 
exponentiation), Boolean (conjunction, disjunction, implication), set (element 
membership or non-membership, union, intersection, complement, proper sub­
set, subset, superset, proper superset), list (concatenation), map (union, over­
ride, restriction) and function (composition). The (only) suffix unary operator 
is: arithmetic (factorial). Infix expressions are evaluated left to right. 

19.4 Enumerated and Comprehended Expressions 

We continue our RSL "Reference Manual-like" survey of RSL's applicative lan­
guage features. For expressing sets, Cartesians, lists and maps explicitly there 
are the enumerated and comprehended forms: 

{a_l,a_2,...,a_n}, {E(a)|a:A-P(a)} 
(a_l,a_2,...,a_n), (E(ids)|b_p in lst_ex«P(ids)) where: ids = zi(b_p) 
[a_li-^b_l, ..., a_nh-^b_n], [D(a)i-+R(a)|a:A: P(a) ] 

That is, the identifiers, ids, occurring in E(ids), are the free identifiers of the 
binding pattern b_p, and lst_ex is a list expression. 
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19.5 Conditional Expressions 

The conditional expressions are: 

if b_expr then c_expr else a_expr end 

if b_expr then c_expr end = /* same as: */ 
if b_expr then c_expr else skip end 

case expr of 
choice_pattern_l —> expr_l, 
choice_pattern_2 —> expr_2, 

choice_pattern_a_or_wild_card —> expr_n 
end 

where choice_patter_n_or_wild_card is either a choice_pattern or a wild_card (_). 
For the situation where the choice_patterns do not or at least not significantly-

contain free identifiers we could say that the construct: 

case expr of 
choice_pattern_l —> expr_l, 
choice_pattern_2 —> expr_2, 

choice_pattern_a_or_wild_card —> expr_n 
end 

is not a conditional, but a selection expression. Thus there are basically two 
different situations in which we make use of the case construct: For selection 
purposes, or for "multi-way", i.e., more than two, conditional decisions. 

Example 19.4 Conditional versus Selection "case"s: We leave it to the 
reader to study, i.e., to "decipher" the below example — it serves no practical 
purpose, but illustrates the idea of a conditional use of the case construct: 

type 
A = Int | (Int x Int) | (Int x Int x Int) 

value 
f: A - • Bool 
f(a) = 

case a of 
7 —> true, (7,_) —> true, (7,_,_) —> true, _ —> false 

end 

The next example shall then, likewise, illustrate the idea of selection: 



440 19 Applicative Specification Programming 

A = Int | (Int x Int) | (Int x Int x Int) 
value 

f: A - • Real 
f(a) = 

case a of 
(7j) -»• j /3 , (7j,k) -»• j*k/5, _ -»• a/7 

end 

Repeated if ... t hen ... else ... ends can be written: 

i fb 
then c 
else 

ifb7 

then c; 

else 
ifb" 

then c" 
end end end 

But can be abbreviated: 

if b then c 
elsif b' then c! 
elsif b"thenc" 
end 

using the elsif construct. 

19.6 Bindings, Typings, Patterns and Matching 

Pattern: ...; matrix, a mould; a figure in wood or metal 
from which a mould is made for casting; ... 

(1598) The Shorter Oxford English Dictionary 
On Historial Principles [350] 

This section can be skipped, but is written so as to be readable in and by 
itself. Hence it repeats some of the material in earlier sections of this chapter, 
albeit in a more general form. 



19.6 Bindings, Typings, Patterns and Matching 441 

19.6.1 The Issues 

Earlier we dealt with the concepts of bindings, typings, patterns and matching 
(Sect. 13.2.3 (sets), Sects. 14.4.1-14.4.2 (Cartesians), Sect. 15.2.3 (lists), and 
Sect. 16.2.3 (maps)). We shall here summarise these and additionally consider 
the construct of record patterns. 

The two main issues are: first, that we need to express the choice of named 
values of desired types, and for that we use the concepts of binding and typing; 
Second, we need to express the decomposition of composite values into named 
subcomponents, and for that we use the concepts of patterns and matching. 

Syntactic Issues of Convenience 

The concepts of binding, typing, pattern and matching, are not abstraction 
concepts, they are merely technicality concepts of linguistic convenience of 
expressibility. 

Also, we shall not strictly follow RSL's formal syntax. Instead, we shall 
generalise the syntax for expressing bindings and patterns, thereby coercing 
the two to more or less coincide! First, however, we treat a notion of binding 
forms, then the matchings necessary for these bindings to work as intended, 
and finally the notion of typing. 

19.6.2 An Essence of Bindings and Patterns 

The three concepts, bindings, typings and patterns, are closely related. 

Bindings 

In a typical binding, for example, 

let (a,(b,c)) = v in £(a,b,c,v) end 

the clause let (a,(b,c)) = v is the binding. It defines the free variables a, b 
and c of the pattern to value components of v which had better match the 
left-hand side pattern (a,(b,c)). 

Patterns 

In a typical use of patterns: 

case v of 
(a,(b,true)) - • £;(a,b), 
(a,(b,c)) - • £j(a,b,c), 
(a,b) - • £*(a,b), 

_ - • £v(v) 
end 
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each of the clauses (a,(b,true)), (a,(b,c)), (a,b) and_ , are choice patterns. The 
full forms, for example, (a,(b,true)) ->> <^(a,b), are bindings as now outlined. 

If the value expression v designates a pair whose second element is a pair 
— whose second element is the truth value true — then a and b are defined 
to be bound to the respective first element values in the evaluation of <^(a,b). 

If the value expression v designates a pair whose second element is a pair 
— whose second element is any value other than the truth value true — then 
a, b and c are defined to be bound to the respective first and second element 
values in the evaluation of £j(a,b,c). 

If the value expression v designates a pair whose second element is a not a 
pair, then a and b are defined to be bound to the respective first and second 
element values in the evaluation of £&(a,b). 

Otherwise Sv{y) is evaluated. 
The previous four paragraphs explained aspects of a matching between 

patterns and values. Note that sequential evaluation of the case clause: "From 
top to bottom, left to right" permits proper selection of patterns and bindings. 

Bindings and Patterns: Apparent Differences 

Binding patterns, as explained in terms of the let clause, thus contain a re­
stricted form of pattern: We do not allow value literals (i.e., names of con­
stants), but we do allow "wildcards77: _. All free binding pattern identifiers are 
distinct. 

Choice patterns, as explained in terms of the case clause, allow their pat­
terns to contain value literals, both free and bound identifiers, and wildcards, 
_. Distinct usages of binding and choice patterns are: Binding patterns are also 
used, besides in let clauses, in quantified typings, see below. Choice patterns 
are also used, besides in case clauses, in function parameter clauses, see be­
low. An example of the use of patterns in function parameter clauses is given 
in Example 11.2. 

Binding and Typing 

We first introduced the concept of binding and typing in Sect. 9.3: V b,b':Bool, 
where b and b' were bound to some value in Bool, and where V b,b':Bool rep­
resented a typing. Further examples were given in Sect. 9.5.2: [3] V x:X«E(x), 
[4] 3 x:X«E(x), [5] 3 ! x:X»E(x). They represent three schematic typings. 
We briefly and informally introduced the concepts of typing and binding on 
Sect. 9.5.2. 

• • • 

In the following we shall treat the subject of bindings, typings, patterns and 
matching more systematically. 
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19.6.3 Binding Patterns 

By a binding we shall understand an association of identifiers with values. 
Binding is thus a semantic concept. It is denoted by such syntactic concepts 
as patterns, let and case ... of clauses. 

Review of Earlier Material 

Sections 13.2.3 (sets), 14.2.4 (Cartesians), 15.2.3 (lists), and 16.2.3 (maps) 
have introduced the following schematic bindings: 

[1] let {a_l,a_2,...,a_n} Us = Vset in ... end 
pre: card Vset > n 
assert: card Vset = n => s={} 

[2] let (a_l,a_2,...,a_n) = product in ... end 
pre: product — a Cartesian having exactly n components 

[3] let (a_l,a_2,...,a_m)^ = Vlist in ... end 
pre: len list > m 
assert: len Vlist = m => £=() 

[4] let [a_li->-b_l,a_2i->-b_2,...,a_ni-)'b_n] U m = Vmap in ... end 
pre: card dom Vmap > n 
assert: card dom Vmap = n => m=[] 

In all of the above, the left-hand side identifiers indeed do designate free, 
distinct identifiers, not arbitrary expressions. The "mystical" Ve refers, rather 
informally, to the value of the expression e. 

These identifiers are being bound to values by the definitions which the four 
clauses prescribe. In the set decomposition, [1], the nondeterministic naming 
of n arbitrary components and the remaining set is defined. In the Cartesian 
decomposition, [2], the deterministic naming of the n specific components is 
defined. In the list decomposition, [3], the deterministic naming of the n first 
list elements and the remaining list is defined. In the map decomposition, [4], 
the nondeterministic naming of n arbitrary definition set elements and their 
map associated range elements and the remaining map is defined. 

Only the Cartesian and the list bindings are part of the "official" RSL 
syntax. The others are useful and expressive, but will not be accepted by the 
RAISE tool set. 

The schematic examples above can be pseudo formalised. First, we repeat 
the above schematic bindings: 

[1] let {a_l,a_2,...,a_n} U s = set in ... end 
[2] let (a_l,a_2,...,a_n) = pro in ... end 
[3] let (a_l,a_2,...,a_m)^ni?= list in ... end 
[4] let [a_li->>b_l,a_2i->'b_2,...,a_n!->'b_n] U m = map in ... end 
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If the set, product, list and map (expression) values are as shown below: 

[1] set = {v_l,v_2,...,v_n} U sv 
[2] pro = (v_l,v_2,...,v_n) 
[3] list = (v_l,v_2,...,v_m)^rf 
[4] map = [v_li-^w_l,v_2i->'W_2I...,v_ni-^w_n] U mv 

then the bindings, the associations of the free left-hand side identifiers to 
element values, are as further shown: 

[1] setp = [a-l\->v-l,a-2^v-2,...,a-n\-tv-n,s\-tsv] 
[2] prop = [a-l\-tv-l,a-2\-tv-2,...,a-n\-tv-n] 
[3] listp = [a-l\-tv-l,a-2^v-2,...,a-m\-)'V-m,n£\-)'v£] 
[4] mapp = [a-l\->v-l,a-2^v-2...„b-n\-tw-n] 

U [ b-l\-^w-l,b-2\-^w-2,...,b-n\-^w-n,m\-^mv] 

The above thus motivates the use of the term 'binding': The p suffix-named 
maps represent bindings of identifiers to values. 

We have, for reason of pedagogics, used three type fonts above: The roman 
formulas represent ordinary, albeit schematised (...)? RSL text. The sans serif 
formulas represent schematic value definitions, using RSL to explain RSL. The 
italic formulas represent semantic values implied by the ordinary RSL text, 
again using RSL to explain RSL. 

Record Binding Patterns 

One form of binding remains to be introduced, one that uses the record binding 
pattern: 

[5] let mk_A(b,c,...,d) = v in £(b,c,...,d) end 

Here we assume that the value designated by the expression v is of the type 
designated by mk_A. Assume, for example: 

type 
A = = mk_A(/?:B,7:C,...,<5:D) 

The binding let mkJ\(b,c,...,d) = v is only syntactically correct if v:A. The 
effect of the binding is the association: 

[5] recp = [b\->P(v),o->'y(v),...,di->5(v)] 
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General Forms of Binding Patterns 

In all of the above schematic RSL examples we have only illustrated rather 
simple patterns. Usually composite syntactic structures whose immediate el­
ements were free identifiers. 

In a series of examples we will now go through a number of micro-steps. To­
gether they illustrate a version of a specification language type, value, binding 
and pattern system — one very close to, but not exactly that of the predom­
inant specification language of these volumes. Each micro-step "settles" one 
item of a development and its documentation. 

Example 19.5 Informal Description of Binding Patterns: We now generalise 
patterns, whether binding patterns or choice patterns, to have immediate 
elements themselves be respective forms of patterns. 

In narrative, i.e., in informal, but concise text we describe binding patterns 
as follows: An identifier is a binding pattern. A set enumeration of a finite set 
of one or more distinct binding patterns preceded, or usually followed, by 
an optional simple identifier is a binding pattern. A Cartesian grouping of a 
finite, non-empty list of distinct binding patterns is a binding pattern. A non­
empty, finite list of alternatively either finite, non-empty lists of one or more 
distinct binding patterns and simple identifiers is a binding pattern. A map 
enumeration of a finite set of one or more distinct pairs of binding patterns 
preceded, or usually followed, by an optional simple identifier is a binding 
pattern. A record expression consisting of an already defined constructor name 
and a list of one or more binding patterns, is a binding pattern. A "wildcard" 
(_) is a binding pattern. All free identifiers of a binding pattern must be 
distinct. • 

Example 19.6 Formal Description of Binding Patterns: The above narrative 
can be formalised. We intersperse some schematic examples. 

type 
Id 
B' = Bid | Bse | BCa | Bli | Bma | Bre | Wil 
B = {| b:B' • wf_B(b) |} 
Bid = = mk_nm(id:Id) 

Ex.: a 
Bse = = mk_se(se:B-set,on:Onm) 

Ex.: {b_l,b_2,b_3} 
Ex.: {b_i,b_j,b_k} U s 

Onm = nil | Bid 

BCa = = mk_Ca(ca:B*) 
Ex.: (b_l,(b_21,b_22),(b_31,b_32,b_33,b_34)) 

Bli = = mk_li(tu:B*,on:Onm) 
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Ex.: ( b _ l , b _ 2 ) ^ 
Bma = = mk_ma(ma:(B ^ B ) , o n : O n m ) 

Ex.: [b_l l^b_12,b_21h^b22,b_31^b_32] 
Ex.: [b_ i l^b_ i2 ,b_ j l^b j2 ,b_k lh^bA2] U m 

Bre = = mk_re(sn:Sn,ca:B*) 
Ex.: mk_X(b_l,b_2,b_3) 
Ex.: mk_Y(b_l) 

Wil = = wildcard 

E x a m p l e 19 .7 Formalisation of Well-formedness Constraints: Just looking 
at binding pat terns , the only constraint to be formalised is the distinctness of 
identifiers. Since pat terns may be recursively nested, and since the identifier 
distinctness criterion applies across all levels of recursive embedding, we need, 
after some reflection (i.e., analysis), to define a function which both checks 
embedded pat terns for identifier distinctness, and which also yields, besides 
the t ru th or falsity of identifier distinctness, the set of embedded identifiers. 

There are three comments to make with respect to the specification given 
next: (1) It exemplifies the use of choice pat terns in two forms: as function pa­
rameters (see the many definitions of the wf B function) and in the ca se clause 
(see the definition of the wfBS function). (2) The definition does not work! 
Well, of course it works, but one cannot define the semantics of a language in 
itself, and this is what we seemingly t ry to do! So, if you believe it works, it 
works. And, if you think it does not work, then it does not work! It is as simple 
as that!2 (3) Jus t to define distinctness of all possibly and arbitrarily embed­
ded identifiers takes 37 lines of specification. Please consider the triviality of 
expressing: All occurrence of identifiers in a binding pattern must be distinct, 
and yet it takes more than 30 lines to define this. Hardly convincing — till 
you consider programming it in Java! Many seemingly innocent requirements 
tu rn out to become rather cumbersome to formalise, and sometimes, in fact, 
usually — but not always — harder to program. On the other hand, once 
formally specified, as here, "coding up" the S t a n d a r d ML, J a v a , C++, C# 
or other programming language code becomes rather straightforward. 

value 
wf_B: B' - • B o o l 
wf_B(b) = let (ids,tf) = wfB(b) i n tf e n d 

2Try the following definition: An x is a y, and: A y is an x. If you thought 1 
is a choice for y, then it is also a choice (solution) for x. But so would any entity 
(mathematical or otherwise) be! Defining a language by using the same language 
leads to the above forms of circularities. 
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wfB: B' - • Id-set x Bool 
w£B(mk_nm(id)) = ({id},true) 
w£B(mk_se(se,mk_am(id))) = 

let (ids,tf) = wfS(se) in (ids U {id},tf A id£ ids) end 
w£B(mk_se(se,nil)) = let (ids,tf) = wfS(se) in (ids,tf) end 

wfS: B-set -» Id-set x Bool 
wfS(se) = w£L((b | b:B' • b e se» 

w£L: B'* - • Id-set x Bool 
wfL(bl) = 

let ts = (wfB(bl(i))|i in inds bl), 
tr = V i:Nat • {i,i+l} e inds ts 

=> let (idsi,tf)=ts(i), (idsj,_)=ts(i+l) in 
idsi D idsj={} A tf end, 

ns = U{let (ids,_)=ts(i) in ids end|i:Nat»i G inds ts} in 
(ns,tr) end 

w£B(mk_Ca(bl)) = w£L(bl) 
wfB(mk_li(bl)) = wfL(bl) 
wfB(mk_ma(bm,ni)) = 

let wfm = (card dom bm = card rng bm), 
(ids,tr) = wfL«bm(d)|d:B'-d e dom bm)), 
(ids',tr') = w£L((bm(d)|d:Br.d e dom bm)), 
(ids",tr") = 

case ni of 
mk_nm(id) - • ({id},id^ ids U ids') 
nil —> ({},true) end in 

(ids U ids' U ids", 
wf A tr A trr A ids n ids' = {} A tr") end 

wfB(mk_re(,bl)) = wfL(bl) 

Comment 

Since one cannot define the semantics of a language in itself, that is, by writ­
ing down some formulas that one thinks works, we have to resort to first 
understanding an informal explanation, or one expressed in another, already 
properly defined specification language (usually discrete mathematics). Once 
we have understood that other description, we can then use that understand­
ing, to exemplify — as do the definitions of the above functions — uses of 
bindings and binding and choice patterns. 
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More to Come 

We have yet to define the syntactic correctness of the binding clause: the 
left-hand side binding pattern and the right-hand side expression. And we 
have also to define the creation of a binding as exemplified in the schematics 
examples given earlier. We will leave that to Sect. 19.6.5. 

19.6.4 Typings 

The "formal" story on typings will here be given rather briefly. There are 
basically two forms of typings: In let clauses, and in quantified (predicate) 
expressions. Specifically: 

let (a,(b,c)):(Ax(BxC)) • P(a,b,c) in £(a,b,c) end 
V (a,(b,c)):(Ax(BxC)) • ^i(a,b,c) =* P2(a,b,c) 

Generally: 

let Car_bin_pat : Car_typ_exp • Pre.exp in ... end 
V Car_bin_pat : Car_typ_exp • Pre.exp => Pre.exp 

Thus we allow only simple binding patterns involving at most Cartesian types, 
or, as shown next, just simple typings: 

let a: A • Pi (a) ^ P2(a) in £(a) end 
Va:A - P i (a) => P2(a) 

In all the typings the implication may be omitted: 

let a:A • V(a) in £(a) end 
V a:A • V(a) 

19.6.5 Choice Patterns and Bindings 

In this section we will present a simplified version of RSL's type/value match­
ing concept: We will not take into account any notion of subtypes. 

Example 19.8 Choice Patterns and Bindings: Binding and Value Syntaxes: 
To arrive at choice patterns we generalise binding patterns as follows: Wher­
ever an identifier may occur (as in binding patterns) we allow values to occur. 
A binding is now a pair: Either a binding pattern or a choice pattern, and a 
value. A formal syntax for choice patterns and bindings is given next. 
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type 
Id, Wild 
Bind' = C x VAL 
Bind = {| (c,v):Bind' • wf_Bind(c,v) |} 

C = Cid | Cse | CCa | Cli | Cma | Cre | VAL | Wil 
C = {| c:C • wf_C(c) |} 
Cid = = mk_ccn(id:Id) 
Cse = = mk_ccs(se:C-set,oc:OC) 
OC = nil | Cid 
CCa = = mk_ccc(ca:C*) 
Cli==mk_ccl(li:C*,oc:OC) 
Cma = = mk_ccm(ma:(C ^C),oc:OC) 
Cre = = mk_ccr(sn:Sn,ca:C*) 
Wil = = wildcard 

VAL = AtV | SeV | CaV | LiV | MaV | ReV 
AtoV = Intg | Boolean | Character | String 
Intg :: Int, Boolean :: Bool 
Character :: Char, String :: Text 
SeV :: VAL-set 
CaV :: VAL* 
LiV :: VAL* 
MaV :: VAL ^ VAL 
ReV :: sn:Sn cl:VAL* 

Comments 

Well-formedness of choice patterns is as for binding patterns: Distinctness of 
all identifiers, and, in addition, well-formedness of values. Well-formedness 
of bindings amounts to well-formedness of patterns, well-formedness of values 
and structural compatibility between the left-hand side pattern and the right-
hand side value. • 

Example 19.9 Choice Patterns and Bindings: Type Syntax: To define well-
formedness of values we define first a notion of value type. Based on that we 
then define well-formedness of values. But first, atomic values are well-formed. 
All values of a set value must be of the same value type. All values of a list 
value must be of the same value type. All values of the definition set of a map 
value set must be of the same value type. All values of the range set of a map 
value set must be of the same value type. All value components of a record 
value must be well-formed. 

type 
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Typ = Aty | Sty | Cty | Lty | Mty | Rty 
Aty = = integer | boolean | character | string 
Sty :: Typ 
Cty :: Typ* 
Lty :: Typ 
Mty :: d:Typ r:Typ 
Rty :: s:Sn lt:Typ* 

Example 19.10 Choice Patterns and Bindings: Value Type Extraction: 
xty extracts the type of a non-void value: 

value 
xty: VAL H> Typ 
xty(v) = 

case v of 
mk_Intg(_) —> integer, 
mk_Boolean(_) —> boolean, 
mk_Character(_) —> character, 
mk_String(_) —> string 
mk_SeV(vs) - • 

case vs of {}—^chaos v U vs'—>*mk_Sty(xty(v)) end 
mk_CaV(vl) - • mk_Cty((xty(vl(i))|i in inds vl)) 
mk_LiV(vl) -> 

case vl of ()—>-chaos,v ^ vl'—>-mk_Lty(xty(v)) end 
mk_MaV(vm) -^ 

case vm of 
[]-)-chaos,[d^r] U vm'-»mk_Mty(xty(d),xty(r)) 

end 
end 

Example 19.11 Choice Patterns and Bindings: Formalisation of Well-
Formedness: 

value 
wLBind: Bind' - • Bool 
wf_Bind(c,v) = wf_C(c) A wf_VAL(v) A wfBind(c,v) 
wf_C: C —> Bool /* similar to wf_B */ 

wLVAL: VAL -> Bool 
wf_VAL(v) = 

case v of 
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mk_SeV(vs) -> V v',v":VAL • {v',v"} C vs 
=> wLVAL(v') A wf_VAL(v") A xty(v') = xty(v") 

mk_Ca(vl) - • V i:Nat • i e indx vl => wf_VAL(vl(i)) 
mk_LiV(vl) - • V i,i':Nat • {i,i'}Cinds vl 

=> wf.VAL(vl(i)) A xty(vl(i)) = xty(vl(i')) 
mk_MaV(vm) -> V v,v':VAL- {v,v'} C vs 

^ wLVAL(v') A wf_VAL(vm(v/)) 
A xty(d)=xty(d') A xty(vm(d))=xty(vm(d')) 

_ —y t rue 
end 

wfBind: Bind' x VAL -> Bool 

w£Bind(mk_ccn(id),v) = t rue , 
w£Bind( wildcard, v) = t rue 

w£Bind(mk_ccs(cs,_),mk_SeV(vs)) = 
card cs < card vs A 
let cl = mklist(cs), vl = mklist(vs) in 
3 im:IM «dom im = inds cl A rng im C inds vl 

=> V i:Nat • i e inds cl => wfBind(cl(i),bl(bi(i))) end 

mklist: (VAL|C)-set ->- (VAL|C)* 
mklist(vs) = 

if vs={} then () else let {v} U vs' in vs in (v)"mklist(vs') end end 

Since we are allowed to have different binding patterns for distinctly (to be 
nondeterministically) selected set value elements we introduce a technicality: 
Make the sets into lists and postulate a bijective index map. The idea is 
that if the binding is well-formed, then there exist such choice pattern and set 
element value lists and a bijection between choice/values that are well-formed. 

type 
IM' = Na t - m - Na t 
IM = {|im:IMr. wLIM(im) |} 

value 
wf_IM: IM' - • Bool 
wfJM(im) = 

dom im={l..card dom im} A 
card rng im = card dom im 

wfBind(mk_ccc(cl),mk_CaV(vl)) = 
len cl = len vl A 
V i:Nat • i e inds cl 

=> wfBind(cl(i),vl(i)) 
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wfBind(mk_ccl(cl,J,mk_LiV(vl)) = 
len cl = len vl A 
V i:Nat • i e inds cl 

=> wfBind(cl(i),vl(i)) 

w£Bind(mk_ccm(cm,_),mk_MaV(vm)) = 
card dom cm < card dom vm A 
3 vm',vm":MaV • 

vm = vm7 U vm" A 
card dom cm = card dom vm' => 

wf_recursive_descent(cm,vm') 

wf_recursive_descent: (C j ^ C) x MaV ->> Bool 
wf_recursive_descent(cm,vm) 

3 c:C,v:VAL • c G dom cm A v G dom vm 
=> w£Bind(c,v) A w£Bind(cm(c),vm(v)) A 

wf_recursive_descent(cm \ {c},vm \ {v}) 
pre card dom cm = card dom vm 

w£Bind(mk_ccr(sn,cl),mk_ReV(sn/,vl)) = 
sn = sn' A len cl = len vl A 
V i:Nat • i G indx cl => 

wffiind(cl(i),vl(i)) 

Example 19.12 Choice Patterns and Binding: Formalisation of Binding: 
Any value can be bound to a choice pattern identifier. A wildcard binds 

nothing. All bindings depend on their a priori well-formedness. This is es­
pecially relevant for set and map bindings. Their nondeterministic nature is 
reflected in the definition, below, of their binding, in much the same way 
as for their well-formedness. A binding syntactically is a pair of a syntactic 
pattern and a semantic value, while semantically it is a semantic denotation, 
here modelled, obviously, as a map from syntactic identifiers to values. Note 
how the Bind function "worms" its way into embedded identifiers, finding 
their associated value, bringing out the resulting binding, while summing up 
(union-ing) all contributions ("at outer levels"). 

type 
BIN = Id j * VAL 

value 
Bind: C x VAL -> BIN 
Bind(mk_ccn(id),v) = [idi-^v] 
Bind(wildcard,v) = [] 
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Bind(mk_ccs(cs,on),mk_SeV(vs)) = 
let cl = mklist(cs), vl = mklist(vs), 

im:IM • dom im=inds cl A rng imCinds vl 
=> V i:Nat • i e inds cl 

=> w£Bind(cl(i),bl(bi(i))) in 
U { Bind(cl(i),vl(i)) | i in inds cl } 
U case on of 

n i l - > [ ] , 
mk_nm(id)—)-[idi-)'{vl(i)|i:Nat«i G inds vl \ rng im}] end end 

Bind(mk_ccc(cl),mk_CaV(vl)) = U { Bind(cl(i),vl(i)) | i in inds cl } 

Bind(mk_ccl(cl,on),mk_LiV(vl)) = 
U { Bind(cl(i),vl(i)) | i:Nat • i e inds cl } 
U case on of 

nil - • [], mk_nm(id) ->- [idi-+(vl(i)|len cl<i<len vl) ] end 

Bind(mk_ccm(cm,on),mkJVIaV(vm)) = 
let (/),vm') = recursive_bind(cm,vm) in 
case on of nil —> [], mk_nm(id) —> [idi-^vm'] end 
U p end 

recursive_bind: (C ^ C) x MaV - • BIN x MaV 
recursive_bind(cm,vm) = 

if cm = [] t hen ([],vm) else 
let c:C,v:VAL • c G dom cm A v G d o m vm 

=> w£Bind(c,v) A w£Bind(cm(c),vm(v)) in 
let cv/9 = Bind(c,v), 

(restp,vmf) = recursive_bind(cm \ {c},vm \ {v}) in 
(cv/> U rest/9,vm') 
end end end 

Bind(mk_ccr(_,cl),mk_ReV(_,vl)) = U { Bind(cl(i),vl(i)) | i in inds cl } 

Some Observations 

In the examples above, you may have observed that we defined Bind in terms 
of a set of equations: 

Bind(mk_ccn(id),v) = [idi-^v] 
Bind(wildcard,v) = [] 
Bind(mk_ccs(cs,on),mk_SeV(vs)) = ... 
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Bind(mk_ccc(cl),mk_CaV(vl)) = ... 
Bind(mk_ccl(cl,on),mk_LiV(vl)) = ... 
Bind(mk_ccm(cm,on),mk_MaV(vm)) = ... 
Bind(mk_ccr(_,cl),mk_ReV(_,vl)) = ... 

You may then have observed that we have not specified, in the definition of 
Bind, what happens if a pair of arguments to that function does not "fit" the 
patterns actually dealt with. What about the others? Well, first of all, the 
pre-condition for invocation of Bind(c,v) is that wfBind(c,v) holds. That takes 
care of all the others. Second, we could define Bind by the case construct — 
obviously also using choice patterns: 

Bind(c,v) = 
case (c,v) of 

(mk_ccn(id),v) —> [idi-Kv], 
(wildcard,v) —>•[], 
(mk_ccs(cs,on),mk_SeV(vs)) —>>..., 
(mk_ccc(cl),mk_CaV(vl)) - • ..., 
(mk_ccl(cl,on),mk_LiV(vl)) -> ..., 
(mk_ccm(cm,on),mk_MaV(vm)) ->> ..., 
(mk_ccr(_,cl),mk_ReV(_,vl)) - • ..., 
_ —> chaos end 

making it clear what happens! The latest definition also shows that the two 
styles are interchangeable. 

19.6.6 Summary 

This section, especially the formalisations of pattern, value and binding well-
formedness, the formal concepts of values, their types and type extraction (ob­
servation) functions, and the final definition of the binding function, amounted 
to a rather large section. On one hand, we introduced the RSL concepts of pat­
terns and bindings so that we could make free and good use of them in our 
abstractions, while, on the other hand, we described the structure (syntax) 
and meaning (semantics) of these specification linguistic notions. That gave 
rise to a lengthy section, but then it gave us a chance to illustrate how we 
describe and formalise a classic language problem. 

We remind the reader that our "story", in this section, on types is a 
simplified version of RSL's type concept: We did not include the concept of 
subtypes in our model. 



19.8 Bibliographical Notes 455 

19.7 Review and Discussion 

19.7.1 General 

We have briefly reviewed what we could consider the expression sublanguage 
of RSL. We use the term 'expression sublanguage' to signal that, in RSL, there 
is really no difference between what we normally consider to be purely value-
returning expressions and purely state-changing (simply side-effect-causing) 
statements. In fact, we illustrated a clause, skip, which designates the (void) 
Unit value of no side-effect. 

19.7.2 Principles and Techniques 

This section presents principles that spring from Sect. 19.6. 
Modelling of types and values and their relations were illustrated in Ex­

ample 16.8 and discussed in Sect. 19.6.5. We developed a concrete syntax 
for values, which are expected to be of the defined types, functions for ex­
tracting, from a value, "its" type, functions for expressing whether a value is 
well-formed ("in and by itself") and functions for expressing whether a value 
is well-formed wrt. a given type. 

As a modelling principle related to maps, we mentioned the concepts of 
configurations as consisting of contexts and states. In the present section con­
texts arose again as the concept "constructed" to maintain bindings: associa­
tions of identifiers to values. Hence we can enunciate two principles: 

Principles. Typed Values: When modelling values consider their type. If 
values are typed (we say strongly typed), then make sure that there is a 
homomorphism between values and types, that a function can be defined 
which determines the type of any value, and that a well-formedness predicate 
can be expressed which examines whether a value is of a given type. • 

Principles. Binding Contexts: When a phenomenon is analysed into having 
a — contextually speaking — constant identity in the form of a name and 
value, in fact, when several such phenomena are so analysed, then — for 
each suitable class of such phenomena — model these facts by establishing a 
context, modelled as a map from phenomena and attribute names to values. 

A phenomenon is said to be contextually a constant, when, within a certain 
— temporally "long" — period of observation, or, say, within a spatially 
"long" description (or prescription) — the phenomenon stands in the same, 
fixed relation between name and value. • 

19.8 Bibliographical Notes 

Applicative specification programming is a form of functional programming. 
Current functional programming languages are constrained to have their pro-
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grams be subject to interpretation or compilation and execution by machines. 
The RSL applicative programming subset is not so constrained. 

Leading functional programming languages are Standard ML [389] and 
Haskell [498]. Exciting textbooks on functional programming are [50,51,261, 
474]. 

19.9 Exercises 

The function definitions of the exercises of this section are all to be expressed 
in the functional, i.e., applicative style. 

Exercises 19.1, 19.2 and 19.3 are followed-up by Exercises 20.1, 20.2 and 
20.3 and 21.5, 21.6 and 21.7, respectively. 

Exercises 19.4, 19.5 and 19.6 continue our line of exercises anchored in 
Appendix Chap. A. 

• • • 

Exercise 19.1. The Grocery Store, I. You are to complete the answers to 
the referenced exercises by providing a formal model of entities and functions. 
Thus you must formalise a notion of grocery store. 

Hints: Follow, in your initial modelling the following narrative, slavishly: 

1. A grocery store consists of a store, a warehouse, a catalogue and a check­
out. 

2. The store consists of a set of one or more uniquely named shelf racks (i.e., 
set of shelves). 

3. Each shelf rack (i.e., each set of shelves) consists of a set of one or more 
uniquely named (shelf) segments. 

4. A shelf contains zero, one or more items of merchandise of the same type. 
5. From segment identifiers one can observe the type of merchandise (to be) 

displayed on the identified segment. 
6. From an item of merchandise one can observe its sales price. 
7. A warehouse consists of one or more uniquely merchandise-typed bins. 
8. Each bin consists of one or more items of merchandise of the type of the 

bin. 
9. A catalogue records for every merchandise type the following informa­

tion: Sale price, purchase price, gross (number of items when ordering), 
recommended minimum amount of items on shelf that triggers replenish­
ment, set of names of wholesalers from which this type of item can be 
ordered and on which shelf racks and segments items of this type shall be 
displayed. 

10. A checkout (register) can be modelled just by the cash (i.e., monies) it 
contains. 

11. A client can be modelled by a shopping cart (which may be empty), a 
purse (of monies) and a bag (which may be empty). 
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12. Carts and bags can be modelled by the number of items that they contain 
of respective types. 

13. A wholesaler can be modelled by the number of items the wholesaler stores 
in the inventory, per type, and a cash register. 

You are then to model the visit of a client to the grocery store as a sequence 
of one or more selects, followed by a checkout. Please define the syntactic type 
of visits, that is, a script which for every type of merchandise lists the quantity 
to be selected. (That script is either prepared beforehand, by noting it on a 
scrap of paper or in the mind, or "entries" in the script occur as the result of 
seeing merchandise on the shelf.) Define the semantics of a fixed visit script. 
For a client to select merchandise from a store shelf segment is only meaningful 
if that shelf segment contains at least one item of merchandise. An out-of-stock 
item is treated as "skipping" that script entry. 

Hints: We suggest you try to structure the visit function as follows: The 
client with the visit script goes around, i.e., visits, the entire grocery store: 
First (i) selecting one or more items of merchandise, as per the script, from 
shelf segments, and then (ii) checking out. The result is a changed grocery 
store (less merchandise on the shelves, more money in the cash register), and 
a client (with en empty cart, a full bag and some less money!). For the client 
to select (i.e., transfer from shelf segments to the shopping cart) items of 
merchandise, listed in the script by item and quantity, that client must first 
identify a shelf rack and segment carrying that type of merchandise. The 
selection is nondeterministic since there may be more than one shelf segment 
carrying a certain type of merchandise. Selections proceed one by one: The 
client selects a next type of item from the script to identify in the store, selects 
the amount stated, or less if there is not enough, and decreases the segment 
quantity listed in the script by the amount selected. If all have been selected, 
then the item is stricken from the script. If none can be selected the item is 
also stricken. 

Next you are to model the replenishment of store shelf segments from the 
warehouse, and warehouse shelf segments from wholesalers. Guess yourself 
how such replenishments could take place, and hence be modelled! See, how­
ever, the hint below. 

A grocery store can then be modelled by a sequence of one or more visits, 
henceforth referred to as shopping, alternating with replenishment actions. You 
can model shopping as a strict sequence with the assumption that there is 
only one checkout counter, and that clients are thus served sequentially. The 
obvious possibility that clients may concurrently be selecting from shelves 
is abstracted, and the possibility that more than one client simultaneously 
attempts to and/or could possibly succeed in selecting merchandise from the 
same shelf segment is ruled out. Specify the syntactic type of client shopping 
and define the semantics of such a sequence of visits. Make sure that the 
grocery store staff keeps shelf segments replenished. 
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If you believe that the above description is incomplete, please state so, and 
provide the completing text. 

Hint: To model the nondeterminism of either doing something, a little 
bit, or doing something more of the same, cf. replenishment, we suggest the 
following schema: 

value 
transition: X —> X 
transition (x) = 

if stop_condition_met(x) 
then x 
else let x' = one_step_transform(x) in x' [\ transition (x') end 

end 

The value of expression a \\ b is either a or b — the choice is left internally 
nondeterministic (i.e, left open). 

The present exercise is to be solved in the imperative style in Exercise 20.1, 
and in the concurrent style in Exercise 21.9. 

Exercise 19.2. The Anarchic Factory, I. Please read the problem formulation 
texts of the above referenced exercises carefully. You are to model the anarchic 
factory. A suggestion that might be worth following is to define a state which 
consists of four components: (i) a set of uniquely identified production cells, 
(ii) a set of uniquely identified fork trucks, (iii) a parts inventory and (iv) a 
product warehouse. 

Also define plan scripts, i.e., the truck logistics (one per truck) and the 
production cell schedules (one per cell). Collect all scripts into the production 
plan. 

Follow, in your initial modelling, the following narrative, slavishly: 

Hints on Modelling Factory Configurations 

1. A factory consists of an inventory, a set of uniquely identified trucks, a 
set of uniquely identified production cells and a warehouse. 

2. An inventory consists of parts. 
3. A production cell consists of an in-tray, an "agent capable of performing 

an operation" and an out-tray. 
4. In-trays and out-trays contain parts. The out-trays contain only parts of 

one kind, i.e., with all having the same part number. 
5. An "agent capable of performing an operation" exhibits two things: the 

signature of the operation, and the operation itself. 
6. The signature of an operation lists, for each incoming part number, how 

many of that part it takes to perform the operation, and the part number 
of the resulting part. 

7. The operation is a function over parts, and into a part, of its signature. 
8. By parts we may understand the following model, something that for an 

actual part lists its quantity, i.e., number of occurrences in parts. 
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9. We may model a truck as the parts it is carrying to either a named cell or 
to the warehouse, that is: It maps (some) cell identifiers into parts, and/or 
a warehouse enumerated token likewise into parts. 

10. The in-tray of a cell should only contain parts commensurate with the 
signature of its operation. 

11. Similarly for the out-tray. 

Hints on Modelling the Production Plans 

1. A production plan consists of a cell production schedule and a truck sched­
ule. 

2. A cell schedule lists, for some cells, the quantity of parts to be produced 
by that cell. 

3. A truck schedule has two things: which parts to convey to which produc­
tion cells, and which parts to convey between which cells, or between cells 
and the warehouse. 

Hints on Modelling Factory Behaviours 

1. A factory transition, from one to a next, possibly changed, state can be 
expressed as follows: 

2. A factory has either fulfilled its plan or not. 
3. If not fulfilled, then 

(a) Either (i) there are some trucks and cells which, according to the plan, 
yet have work to do, or (ii) there are just some trucks, or (hi) just some 
cells, which, according to the plan, yet have work to do; 

(b) or (iv) there are some trucks, or (v) just some cells, which, according 
to the plan, yet have work to do, or (vi) there are no "live" trucks or 
cells. 

4. Due to "programming" notation limitations, one could formulate the fac­
tory behaviour as just done above: Either/or (i), or (ii), or . . . or (vi)! 

5. For each of the three kinds (i, ii=iv, iii=v) of "liveness" we then define 
separate transition functions. 

6. Each of the possibly alternatively expressed transitions (i-v) continues 
into another factory behaviour. 

7. Thus the factory evolves, either toward dead-lock or to fulfilling its plan! 

Hints on Modelling Truck Behaviours 

1. Either a truck is loading, from the inventory or from cells, 
2. or it is unloading, onto cells or the warehouse. 
3. The truck behaviour expresses this choice internal nondeterministically. 

We warn you: there are many subsidiary functions to deal with. Define at 
least the major ones and one of the "minor" ones. 

Hints on Modelling Cell Behaviours 
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1. For every valid operation of a production cell its production schedule is 
reduced by one, its in-tray has that many fewer parts which are needed 
to perform the operation and its out-tray has one more resulting part. 

2. An operation is valid if its production schedule is not exhausted and if 
there are the necessary input parts for its operation. The production cell 
of a valid operation is said to be 'live'. 

3. In any step, i.e., transition, of the factory, zero, one or more live production 
cells may be selected for (valid) operations. 

The present exercise is to be solved in the imperative style in Exercise 20.2 
and in the concurrent style in Exercise 21.10. 

Exercise 19.3. The Document System, I. 
This exercise is formulated in several iterations. Narrative descriptions of 

the universe of discourse alternate with problem statements. 

1. Iteration I: 

(a) The document handling system consists of: 
i. A finite set of one or more uniquely identified places (cum institu­

tions, public administration offices, enterprises, businesses, etc.), 
ii. and a finite set of uniquely identified citizens. 

(b) From places one can observe the following three kinds of entities: 
i. Either a non-activated, or an activated directory, 

ii. a set of one or more uniquely identified staff members 
hi. and a set of uniquely identified locations. 

(c) There are the two notions of 
i. documents, and 

ii. dossiers; 
hi. the latter are (i.e., contain) sets of zero, one or more documents. 

(d) A directory can be thought of as a hierarchy that maps directory 
names onto sets of documents and/or dossiers and subdirectories. 

(e) Documents as well as dossiers are uniquely identified. 
(f) Given a location, one can observe whether it contains documents and 

or dossiers. 
(g) From a document one can observe its unique identification, 
(h) From a dossier one can observe its unique identification. 

2. Please formalise the concepts of system, places, directories, etc. 

(a) A document is either a master document, or a copy of a document, or 
it is a version of a copy. 

(b) From a document one can observe whether its most recent status is 
that of a master, a copy or a version. 

(c) From a copy or a version one can observe the document from which 
it was copied, respectively on the basis of which it was edited. 

(d) By a document event we mean the location and time of its creation, 
copying, or editing. 
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(e) From a document one can observe the ("historic", most recent) iden­
tity of the location of its creation, copying or editing, whichever is the 
most recent event. 

(f) From a document one can observe the ("historic", most recent) iden­
tity of the person who created, copied, or edited the document, 
whichever is the most recent event. 

(g) From a document one can observe the ("historic") time its creation, 
copying or editing, whichever is the most recent event. 

3. Please formalise documents as sorts with observers. 

(a) Thus one can trace the ("historic") sequence of documents, and their 
location and time of document event, from a present document, back 
through all previous documents to its ancestor master document. 

4. Please formalise the document history function. 
5. Iteration II: 

We observe, in the descriptions given so far, a few loose ends. So we 
continue. 
To the above narratives join: 
(a) A document or a dossier, i.e., also any document in a dossier, is 

i. either residing in a directory, and then in at most one, 
ii. or it is "on loan" to, or with some, i.e., possessed by a, person 

(possibly via other persons), 
hi. or it is residing in a location, in (or at) which a person has put it. 

The above description is applicable also to documents and dossiers 
which have so far not been associated with a directory. 

(b) From a document or a dossier, i.e., also from any document in a 
dossier, one can observe whether it belongs to, and if so then where 
in, a directory by place identification and directory path name. 

(c) Documents or dossiers absent from a directory may be so indicated, 
and the indication may either say that its whereabouts are unknown, 
or that it is with some person or at some location in some place, or 
with a citizen. 

6. Please formalise the revised directories and person, location and document 
and dossier observers. 

7. Iteration III: 
We need to define some notions: 
• Descendant: 

* A version, d!, of a document, d, is a descendant of d. 
* A copy, <i;, of a document, d, is a descendant of d. 
* If a document d! is a descendant of a document d, and document 

d" is a descendant of d', then d" is a descendant of d. 
• Ancestor: 

* A version, d!, of a document, d, has d as its ancestor. 
* A copy, <i;, of a document, d, has d as its ancestor. 
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• If a document d is an ancestor of a document d', and document d' 
is an ancestor of d", then d is an ancestor of d". 

• "Belong" to: If one from a document can observe a place identification, 
Pi, and a directory path, 7rPi, then that document is said to belong to 
the directory at pi and in the position designated by the directory path 
7Tpi. 

Now to some more narrative: 

(a) a document and all its descendants, if any of these belong to a direc­
tory, at some directory position (by place identifier and path name), 
then all such documents "belong" to that same directory position — 
whether actually present or absent. 

(b) How that is handled, in the domain, is sketched now: 
i. If a master (including any of its versions) is made to "belong" 

to a directory position, before any copies have been made, then 
all such copies (and versions) will inherit knowledge about that 
directory position. 

ii. If a copy (including any of its versions) is made to "belong" to a 
directory position, before any copies have been made, then all such 
copies (and versions) will inherit knowledge about that directory 
position. 

hi. Thus it is entirely possible for a copy to "belong" to a directory 
position, without its ancestors doing so. 

iv. And it is entirely possible for two different copies — deriving 
from some common, i.e. "shared" ancestor document — to "be­
long" to different directory positions — provided their common, 
i.e. "shared" ancestor document did not "belong" to a directory 
position. 

(c) One might think of other rules governing the relationship between, on 
one hand, documents and dossiers, and, on the other hand, directories: 

i. Either no rules whatsoever: Documents and dossiers can "belong" 
anywhere without restrictions, or: 

ii. Ancestors to some copy may belong to some position in a directory 
in one place, while the copy of its descendants may belong to 
another position the same directory or some other directory in 
another place. 

8. Please formalise well-formedness constraints. 
9. Document, dossier and directory operations: 

(a) Staff and clients create documents, which they then possess. 
(b) Staff create dossiers, initially empty, which they then possess. 
(c) Staff may copy and edit documents they possess (and that they then 

continue to possess). 
(d) Clients may pass own, created, i.e., possessed documents onto place 

staff, as master documents. The client no longer possesses the passed 
document, but the place staff person does. 
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(e) Whether clients have "copied" such or other documents is of no con­
cern to the present document system. 

(f) Staff may insert documents in dossiers. They must possess both the 
document and the dossier. 

(g) Staff may insert documents and dossiers in directories. They must 
initially possess the document or the dossier. After the insert they no 
longer possess the document or the dossier. 

(h) Staff may "borrow" (i.e., "remove", albeit thought of to be "temporar­
ily") documents or dossiers from directories. After the borrow the staff 
person possesses the borrowed document or dossier, 

(i) Staff may put documents or dossiers (they possess) "away" in loca­
tions, after which they no longer possess the document or dossier. 

(j) Same or other staff may take possession of documents and dossiers 
from locations. 

(k) Staff may send (possessed) documents and dossiers from "their" place 
to staff at other places. Possession changes from one person to another 
person. 

(1) Staff may send such (possessed) documents and dossiers (i.e., "on 
loan" from other places) to yet other staff at yet other places. 

(m) Staff may return (possessed) documents and dossiers sent from other 
places back to staff persons at places of origin or from where they were 
received (i.e., "last sent /last received"). 

(n) Documents and dossiers may be shredded. 
(o) Staff may send (possessed) documents (not dossiers) to clients, at 

which point these documents cease to exist within the system of places. 
(And they can never be returned from clients!) 

10. Please formalise the command syntax and the command interpretation func­
tions. 

Exercise 19.4. An Applicative Domain Model of Transportation Nets. We 
refer to Appendix A, Sect. A.l, Transportation Net. 

We summarise a narrative of Transportation Nets: Transportation nets 
consists of a set of uniquely identified segments, a set of uniquely identi­
fied connections (or connectors). For each segment (represented by its unique 
identifier) there are one or two (direction) triplets which describe, besides the 
segment identifier, the identifiers of the two connections the identified segment 
is connected to: One if a one-way segment, two if a two-way segment. (We may 
call this part the structure part of a transportation net.) Segments have two 
kinds of attributes: static and dynamic. The static attributes include segment 
names, segment length, and other. The dynamic attributes include whether 
the segment is open or closed in one or the other direction, or both. Connec­
tions have two kinds of attributes: static and dynamic. The static attributes 
include connection name. The dynamic attributes include what we could call 
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the state of the semaphore: for each identifier of a segment incident upon the 
connection there is associated a possibly empty set of identifiers of segments 
emanating from that connection. 

1. Formalise a concrete type system and indicate well-formedness constraints 
for the transportation nets described above. 

Over the lifetime of a transportation net it gets built up: from an "empty net" 
(no segments and no connections, and hence no structure), segments and con­
nections are added and removed, and the states of segments and connections 
change. We will treat these changes as the result of performing certain oper­
ations on a net. Each of these operations will be represented by a command. 
The interpretation of the command then brings about the change. 

2. Define the syntax and semantics of the command which initialises a trans­
portation net. 

3. Define the syntax and semantics of the command which adds a segment to 
a transportation net. State appropriate conditions that must be satisfied 
before successful interpretaion of this command. 
To add a segment three possibilities exist: One adds a segment whose 
connector identifiers are connector identifiers of the net, so one has to 
state the segment and two connector identifiers. Or one adds a segment 
one of whose connector identifiers is a connector identifier of the net, so one 
has to state the segment, a connector identifier and a connector. Or one 
adds a segment whose connector identifiers are not connector identifiers 
of the net, so one has to state the segment and two connectors. 

4. Define the syntax and semantics of the command which removes a seg­
ment to a transportation net. State appropriate conditions that must be 
satisfied before successful interpretaion of this command. 

5. The lifetime of a net can thus be represented by a sequence of commands 
as described above. Formalise such a sequence and express appropriate 
well-formedness conditions on such sequences. 

Exercise 19.5. An Applicative Domain Model of Container Logistics. We 
refer to Appendix A, Sect. A.2, Container Logistics. 

We summarise a narrative of Container Logistics: There is given five sets 
of phenomena: A set of uniquely named container terminals, a set of uniquely 
named container ships, a set of uniquely identified containers, a set of uniquely 
named shipping routes, and a set of uniquely named trucks. A container ter­
minal consists of a quay where zero, one or more container ships may be 
docked, and of a container pool (a storage area) where zero, one or more con­
tainers may be temporarily stored. Container ships and container terminal 
pools consist of one or more uniquely named bays, each bay consists of one or 
more uniquely named rows, and a row consists of one or more uniquely named 
(container) stacks. A container stack consists of zero, one or more containers. 
A container consists of a container box, with or without freight, and, if with 
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freight, then the container box also carries a waybill. A waybill consists of 
the unique container identifier, its own unique waybill identifier, and a list of 
sailings. Each sailing is a triple: The name of a container ship and the pair of 
names of container terminals served by the named ship and from, respectively 
to which the container identified by the waybill is to be transported. The list 
of sailings must be well-formed: If two or more sailings, then the "to" terminal 
named in a "non-last" entry of the list must be the same as the "from" termi­
nal named in the next entry of that list. A shipping route is a pair: The name 
of a container ship and a route. The route is a list of two or more trips. A trip 
is just the name of a container terminal. A route is subject to well-formedness: 
If ti are names of container terminals, then (tl,t2,...,tn—l,tn,tn—l,...,t2,tl) is 
a well-formed route of n container terminal visits, on an outward journey, and 
n—1 container terminal visits, on a return journey. Trucks carry at most one 
container: either from an outside to a container terminal pool area, or to a 
container ship, or from a container ship or a container terminal pool area to 
an outside. 

1. Define a concrete type system for the above container logistics system 
components. 

2. Indicate appropriate well-formedness predicates. 

At some stage, i.e, in some state of the container logistics system, a number 
of container ships are plying the waters between container terminals according 
to their shipping route, and a "remaining" number of container ships are 
docked in container terminals — also according to their shipping route. While 
in container terminals containers — so designated by their waybills — are 
being moved between container ships and container terminal pools: either 
unloaded or loaded. 

Define the syntax and semantics of the following six movement commands: 

3. Move a container from a ship to the pool. The locations on the ship and 
in the pool are identified by bay/row/stack/cell identifiers. 

4. Move a container from a container terminal pool to a ship. The locations 
on the ship and in the pool are identified by bay/row/stack/cell identifiers. 

5. Move a container from a truck to a ship. The location on the ship is 
identified by bay/row/stack/cell identifiers. 

6. Move a container from a truck to a container terminal pool. The location 
of the pool area is identified by bay/row/stack/cell identifiers. 

7. Move a container from a ship to a truck. The location on the ship is 
identified by bay/row/stack/cell identifiers. 

8. Move a container from a container terminal pool to a truck. The location in 
the container terminal pool is identified by bay/row/stack/cell identifiers. 

and of the following three ship movement commands: 

9. A ship at sea requests permission to enter and dock at a container termi­
nal. The request can either be fulfilled in which case the ship is informed 
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of its quay location, or the request can not be fulfilled in which case the 
ship is so informed. 

10. A ship which has been granted a request for permission to enter and dock 
at a container terminal enters and docks at the informed location. 

11. A ship leaves its quay location and the container terminal. 

Quay locations are sequences of adjacent quay positions. (The quay consists 
of a non-zero number of quay positions. Each container ship, when docking, 
takes up a fixed number of quay positions. 

Exercise 19.6. An Applicative Domain Model of Financial Service Indus­
tries. We refer to Appendix A, Sect. A.3, Financial Service Industry. 

We assume a bank to be represented by the following three applicatively 
expressed components: (i) a client catalogue which to every client of the bank 
lists two things: (i.l) some administrative information about the client (name, 
address, etc.) and (i.2) the one or more account numbers that this client has 
with the bank; (ii) an account catalogue which for every account of the bank 
lists two things: (ii.l) some computational information about the account: 
(ii.l.a) whether it is a demand/depost account or a mortgage, or some other 
form of account, (ii.l.b) what the present interest3 and yield4 rates are for 
this account, etc. and (ii.2) which one or more clients (share) this account; 
and (iii) the accounts which for every account number associate an account 
balance, that is, a number which if it is positive indicates how much money 
the client(s) has in this account and which if it is negative indicates how much 
money the clients owe the bank. 

1. Define the command syntax for the following ten transactions: 
(a) open and 
(b) close an account, 
(c) deposit into, 
(d) withdraw from, 
(e) accrue yield, and 
(f) pay interests on a deposit/demand account, partially or fully 
(g) repay (including paying interests and fees) on, and 
(h) increase a mortgage (i.e., a loan) account; 
(i) transferring funds between two accounts; and 
(j) obtain statement of transactions since last obtaining such a statement. 

2. Define the meaning of some of these commands, for example commands 
numbered a, c, g, i and j . 

3The interest rate is for the interest charged if the account balance is negative, 
as it would normally be for a mortgage or a loan account. 

4The yield rate is for the yield paid to the customer when the account balance 
is positive. 
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Imperative Specification Programming 

• The prerequisites for studying this chapter are that you have understood 
most, if not all, of what has been covered in previous chapters and that you 
are interested in bridging previously given applicatively specified models 
to today's programming languages such as Java or C#. 

• The aims are to introduce the imperative constructs of RSL: assignable 
variables, assignments, statements (as opposed to expressions) such as 
while loops, etc., to illustrate definitions of the semantics of imperative 
programming languages in a spectrum from applicative, to mixed applica­
tive/imperative, to imperative models, and to otherwise show how one can 
convert applicative models into imperative models. 

• The objective is to enable the reader to become fluent in imperative 
modelling. 

• The treatment is reasonably formal. 

Classically, machine languages and the early so-called higher-level program­
ming languages were all imperative programming languages. We refer to the 
languages known through assembler and autocoder programming, and to 
such programming languages as FORTRAN [14], COBOL [12], Algol 60 [22,24], 
Pascal [314,523,524] or C [321]. In this section we shall briefly review the im­
perative constructs of the RSL specification language, and we shall exemplify 
how one can define their semantics. 

Characterisation. By imperative programing we shall understand program­
ming in which a central notion is that of assignable variables. These are vari­
ables for which there is an associated notion of storage and of storage locations. 
The contents of these locations, that is, the values of the variable, may, and 
usually do change as a result of interpretation of imperative programs. • 

Characterisation. By imperative specification programming we shall un­
derstand an abstract, preferably property-oriented form of imperative pro­
gramming, one in which we deploy abstract types — and so on. • 
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20.1 Intuit ion 

Imperative, colloquially speaking, means: "Do this, then do that", as an impe­
rial command! In order to "first do something, then something else," some re­
membrance of "where were we, where are we?" need be recorded. The "record­
ing device" is called a state. The state of a computation is a summary of all 
of the past computation. To "carry" or "contain" the state we use assignable 
variables. Variables are state components, also called locations, whose con­
tents, the value, is remembered. 

20.2 Imperat ive Combinators: A A-Calculus 

As in ordinary imperative programming languages, the RAISE Specification 
Language allows: 0, typed, possibly initialised variable declarations, "state­
ments" (all statements are expressions in RSL; 1, assignment; 2, skip; 3, se­
quences; 4-7, conditionals; 5, 6, 8, iterations; and 9, expressions containing 
state variable references. 

0. variable v:Type := expression 
1. v := expr 
2. skip 
3. stm_l;stm_2;...;stm_n 
4. if expr then stm_c else stm_a end 
5. while expr do stm end 
6. do stmt until expr end 
7. case e of: p_l—>>S_l(p_l),...,p_n—>-S_n(p_n) end 
8. for b in list.expr • P(b) do S(b) end 
9. v 

where pJ is a choice pattern, typically of the forms id, or (bl,...,bn), where 
id are identifiers and bj are choice patterns. These numbered expressions are 
covered in the sections that follow. 

The A-formulas shown below are not to be read as RSL specifications, but 
as explanatory notes in a small subset of a mathematical notation basically 
borrowed from Chap. 7 and from the map notation taken from Chap. 16. The 
semantics of RSL is a bit more complicated than these simple A-formulas. They 
are therefore presented more to familiarise you with the A-calculus as a tool 
for sketching meanings than to give a fully satisfactory semantics of RSL. 

20.2.1 [0] "variable" Declarations 

Among new expressions we have variables: 9. v. They look like, but are not 
the same as, the applicative variables, which designate values. The imperative 
variables designate locations — with these latter designating values. 
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The state of the meaning of an imperative RSL specification is built from 
the variables declared in tha t specification. Every declaration: 

• 0. variable v:Type := expression; 

which is allocated, tha t is, which is interpreted designates a state component. 
Here tha t s tate component is of t y p e Type and is initialised to the value of 
the expression. 

To simplify, we can explain declaration and initialisation, as designated 
above, by the sequence of pseudo-RSL and of A-notation expressions now being 
unfolded: 

First, we have the variable declaration and initialisation: 

ppt 
variable v := e; 

ppt ' 

which occurs in some text . Tha t text is being interpreted by an interpreter.1 

The interpreter proceeds from program (text) point ppt to program point 
ppt'2. At each program point the interpreter maintains a s tate (a : E).3 It 
maps locations to values. 

t y p e E = LOC ^ VAL 

Thus, at program point ppt the interpreter interprets the variable decla­
ration and initialisation in a state: 

let a:E • P(cr) i n 

e n d 

The interpreter now "obeys" the prescription of the declaration and initial­
isation clause by (1) finding a "fresh", hitherto unused location, loc, by (2) 
obtaining the value val of e, and (3) by updat ing the state accordingly: 

(1) let loc:LOC • loc ^ d o m cr, 
(2) val = V(e)(cr) i n 
(3) let a' = a U [ loc ^ val ] i n 

e n d e n d 

1For statements the interpreter function is named X while for expressions it is 
named V. 

2When now telling the story through the mind of an interpreter our explanation 
becomes operational. From the operational behaviour of the interpreter we shall 
"lift" to the meaning of program texts as functions. 

3We presently use the term 'state'. We could, as well, in this example, have used 
the term 'storage'. 
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where val is the value of the initialisation expression e eValuated4 in the input 
state a; and where a1 : U is now the state at program point ppt'. Declaration 
and initialisation, "lifting" the explanation, can thus be considered to be the 
function: 

\(i:E • a U [ loc i-> V(e)(a) ] 

What happened to v? The answer is: It became par t of an environment, a 
semantic component maintained by the interpreter: 

t y p e 
LOC, VAL 
/>:ENV = V # LOC 
a:STG = LOC # VAL 

value 

X: RSL_Text H> ENV 4 STATE ^ STATE 

X[variable v := e; tx.t](p)(a) = 
let loc:LOC • loc 0 d o m cr, 

val = V(e)(/o)((j) i n 
let a' = a U [ loc H-̂  val ] i n 
I [ t x t ] ( / ? t [ v ^ l o c ] ) ^ ' ) 
e n d e n d 

Hence we can conclude tha t variable declaration (and initialisation) denotes 
functions from state to state, actually from configurations of environments and 
storages to such configurations, since also the environment got "updated". In 
the following we shall, however, maintain the simplistic view of state-to-state 
transforming functions as being the denotation of the imperative statements 
of RSL. 

On the background of the above detailed explication, we can now speed up 
our story on the "sketch" A-notation semantics of RSL's imperative features. 
In tha t story we will omit references to environments. 

20 .2 .2 [1] A s s i g n m e n t s : "var : = express ion" 

The RSL state (value) can be changed only through an assignment action: 

• 1. v := expr 

where the variable v is given the value of the expression. 

4We show a rather free-wheeling use type fonts: V refer to the name, V, of the 
semantics valuation function presented later [9]. Similar for the use of the X name 
elow and b[3]. 
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Xa:U • a f [ loc \-> val ] 
where : 

loc G d o m a A loc = location of v A val = V(e)(cr) 

20 .2 .3 [9] S t a t e E x p r e s s i o n s 

There is a new type of clause, the impure variable expression: 

• 9. v 

On the left-hand side of an assignment statement it designates a storage lo­
cation. As an expression, and as proper part of expressions, it designates the 
content at (or of) a storage location.5 

V: RSL_Text H> ENV H> STATE ^ VAL 
V(v)(cr) = <j(l) where : 1 = £ocation(v) 

20 .2 .4 [2] "skip": N o - A c t i o n 

There is a no state change action: 

• 2. skip. 

It denotes the state-to-state changing identity function: 

X(skip) = Xa:U • a 

20.2 .5 [3] S t a t e m e n t S e q u e n c i n g (;) 

If stmJ (for i = l n) is a statement, then: 

• 3. stm_l;stm_2;...;stm_n 

designates a conventional statement list. 

X(s_l;s_2) = Xa:E • X(s_2)(2(s_l)(cr)) 

5Elsewhere in these volumes we sometimes prefix expression occurrences of im­
perative variable names by the contents-taking operator: c . Thus imperative v's 
always designate locations, and c v the value stored at those locations — making 
the above explanation a bit less convolute! 
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20.2.6 [4] "if ... t hen ... else ... end" 

The classical: 

• 4. if expr t hen stm_c else stm_a end 

is evaluated as you would expect. Reflexively: 

X(if e t h e n c_s else a_s end) = 
Xa:U • 

let b = V(e)(a) in 
if b t h e n Z(C_S)<J; else X(a_s)a' 
end end 

20.2.7 [5-6] "while ... do ... end" , and "do ... unti l ... end" 

There are two more conditional statements, also referred to as iteration state­
ments: 

• 5. while expr do stm end 

and 

• 6. do stmt unti l expr end. 

The last two statements can be explained as the fix points of 

while e do s end = 
if e t hen (s;while e do s end) else skip end 

do s unti l e end = 
(s;while e do s end) 

20.2.8 [7] "case ... of ... end" 

Let e be an expression which evaluates to some value, v, and let p_i be choice 
patterns which introduce some structures of identifiers. Statements S_i(p_i) 
contains (some, but not necessarily all of) the (free) identifiers of pJ. Evalu­
ation of: 

• 7. case e of: p_l—>-s_l(p_l) p_n—>>s_n(p_n) end 

then proceeds by matching the structure of the value v against the elements of 
the binding-list (p_l p_n) until a first is found which matches the structure 
of v. If such a first, i, in order 1 to n, is found, then s_i(p_i) is interpreted in 
the context of the new bindings provided by the matching of p_i to v. If none 
is found and p_n is not the wildcard (_) then chaos ensues, otherwise s_n(p_n) 
is interpreted. 
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20.2.9 [8] "for... in ... do. . . end" 

Let b be a pattern which introduces some structure of identifiers, and 
let list.expr be a list-valued expression whose evaluation yields a list, say 
(el en). The statement s(b) contains (some, but not necessarily all of) the 
(free) identifiers of b. Evaluation of: 

• 8. for b in list.expr • p(b) do s(b) end 

then proceeds by processing each element ei of the list (el en) in order from 
el to en. If evaluation of the predicate p(b) in the context of the definitions 
obtained by matching ei against the binding b deterministically yields t rue , 
then s(b) is evaluated in this same context, otherwise it is skipped. 

20.3 Variable References: Pointers 

In Sect. 20.2 we covered the imperative language constructs of the specifica­
tion language RSL such as we shall be using them. The RSL constructs are 
quite familiar, and at the core of all imperative programming languages. The 
difference is that in RSL we allow for any value of any of the definable abstract 
or concrete types to be stored — except references to variable locations. In 
this section we shall be discussing and exemplifying other imperative language 
constructs — such as you will find in some programming languages. Please 
observe that the constructs that we shall now be discussing are not part of 
RSL. 

20.3.1 A Discourse on Simple References 

We have modelled assignable variables in terms of a storage, above referred to 
by a Greek letter sigma (<J). The storage maps locations into values. Among 
values, in many programming languages, but not in the RSL specification lan­
guage, one can have locations as "storable" values. Locations are thus con­
sidered "first class citizens", thus reflecting a view that there may be entities 
which are not storable values. In those same programming languages that 
were implied above, procedures may not be treated as storable values. We 
shall look at models for such programming languages. 

Let a programming language allow variables that store values of type 
"reference to variables of type A": 

d e l v : ref A 

Now, for this to make sense we must either allow dynamic, "on-the-fly" al­
location of locations (whose contents are of type A): 

del v : ref A := alloc e 
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where the expression e is of type A. Or we must allow assignment of the 
location of declared variables of type A to such reference variables: 

del a : A; 
del v : ref A := ref a; 

or both. Usually both situations hold in order to make "things" hang to­
gether.6 

Instead of using the syntactic form ref a to designate, not the contents of 
the variable a, but its location, one could turn things around: Let a designate 
the location, and c a the contents. 

20 .3 .2 D y n a m i c A l l o c a t i o n and R e f e r e n c i n g 

We now present a model of typed references: integer, Boolean and record 
locations designate integer, Boolean, respectively record values. Record values 
consist of two or more uniquely identified values. Locations are values. 

E x a m p l e 20 .1 A Simple Model of Dynamic Records: 
We model a "toy" imperative programming language in which one may 

declare variables of type integer, Boolean, record or reference, and in which 
one may dynamically allocate (and possibly also free, i.e., deallocate) unnamed 
variables of type record. Storage is thus a collection of uniquely located values. 
Any two distinctly located values, tha t is, any two storage cells, are "disjoint", 
they do not overlap — in whatever sense this term: 'overlap' may have in your 
mind! 7 . Integer, Boolean and record type variables contain, when properly 
initialised, values of respective types: Integer values (i.e., integers), Boolean 
values and record values. A variable of type reference is to contain a reference 
(only) to a dynamically allocated record or the nil (void, null) reference. A 
value of type reference is either a reference to a dynamically allocated record 
or is nil. Record values are sets (fields) of uniquely, and statically identified 
simple values. Thus we do not allow record values embedded in record values. 
A simple value is either an integer, a Boolean or a possibly nil reference value. 

If we can designate one kind of value assignment, as of dynamically allocated 
locations, then why not from statically, i.e., textually, implied allocations as for 
variable declarations? Symmetry seems to be a good language design principle as 
it enables consistency of expression and adheres to a principle of every denotable 
value being storable. 

7In our mind overlap refers to the possibility that one may think of storage as a 
list of consecutively indexed storage cells where one might think of Boolean valued 
storage cells occupying one bit, of integer valued storage cells occupying 32 bits, 
of location valued storage cells occupying 16 bits, and of record values occupying 
several such storage cells. Overlap now means that an index to a separately declared, 
say integer variable "shares" bits with another, now, say a location valued variable. 
Such overlaps are possible due to the way in which most computers address storage 
cells to begin at a byte (i.e., an eight bit) boundary. 
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nil 

LEGEND 

declared 
named 

variable • 
dynamically allocated 
unnamed, but 
located storage record 

A sentinel variable named: pv 

Four dynamically allocated records: ra, rb, re, rd 

Five pointers/links: Ipv, la, lb, Ic, Id 

Fig. 20.1. An example dynamically allocated data structure 

Intuition 

Figure 20.1 illustrates a fragment of a storage in which one reference variable, 
named pv, has been declared, and there have been four (dynamic) allocations 
of records ra, rb, re and rd. Each of the records has three fields, i.e., all records 
seem to be of the same type, and otherwise they each contain two fields of 
type reference to records of the record type shown. 

ra, rb, re and rd are not identifiers declared in a program text. They are 
just names we introduced in order to speak about the problem. There are no 
program text names for dynamically allocated variables. They are "reachable" 
only through chains of references, where such a chain (of one or more indirect 
references) is anchored in a program text declared and thus identified reference 
variable. 

Formalisation — Storage, Locations and Values 

Locations may only designate, i.e., refer, point or link, to "whole" variables, 
whether explicitly declared or dynamically allocated. For reasons of abstrac­
tion we mark locations as either being integer locations, Boolean locations, 
reference locations or record locations. Similar, obviously, for values, where 
a reference value can be either a whole location or nil. Record locations are 
atomic and do not further identify the structure of the possibly referenced 
record values. This is a gross simplification, which makes our example shorter, 
but it does not make it less relevant. 

type 
Nm, Tn, 1LOC 
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STG' = LOC ^ VAL 

LOC = SLOC | RLOC 
SLOC = = mkintl(i:lLOC) | mkbooll(b:lLOC) 
RLOC = = mkrecl(lloc:lLOC) 

VAL = SVAL | RVAL 
SVAL = = mkintv(i:Int) | mkboolv(b:Bool) | LOCV 
LVAL = = nil | RLOC 
RVAL = = mkrecv(rval:(Nm^SVAL)) 

Location and Value Types 

With locations and with values we can thus associate their type. And we will 
do so systematically, while also defining a function that observes the type of 
locations and values. 

type 
lTyp = STyp | record 
STyp = = integer | boolean 

Typ = lTyp | RTyp 
RTyp = = mkrect(rt:(Rn ^ lTyp)) 

value 
ltyp: (VAL|LOC) - • lTyp 
ltyp(mkintv(_)) = integer 
ltyp(mkintl(_)) = integer 
ltyp(mkboolv(_)) = boolean 
ltyp(mkbooll(_)) = boolean 
ltyp (nil) = record 
ltyp(mkrecv(_)) = record 
ltyp(mkrecl(_)) = record 

typ: VAL - • Typ 
typ(v) = 

case v of 
mkrecv(rv) 

—> mkrect([ri-)'ltyp(rv(r))|r:RnT G d o m r v ] ) , 
_ -t ltyp(v) end 
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Storage Invariant 

Now we are ready to define an invariant on storages: Location and value 
types must match, and all values that contain or are references are references 
to allocated records. 

type 
STG = {| stg:STG' • wfSTG(stg) |} 

value 
wfSTG: STG' -> STG 
wfSTG(stg) = 

V loc:LOC • loc G dom stg => ltyp(loc) = ltyp(stg(loc)) A 
V val: VAL • val G rng stg => 

case val of 
mkrecv(rval) —> 

V v:VAL • v G rng rval => 
case v of mkrecl(_) —> v G dom stg, _ —> true end, 

mkrecl(_) -^ val G dom stg, _ -» true 
end 

Semantic Operations 

The following primitive, i.e., basic operations on storages can now be defined: 
allocation of suitably typed storage location, extension of storage, reading 
storage values, and overriding (overwriting) of such. 

value 
get_LOC: Typ -> STG -> LOC 
get_LOC(t)(a) = 

let l:LOC • Ig dom a A ltyp(^)=t in I end 

extend_STG: LOC x VAL -+ STG -+ STG 
extend_STG(£,v)(a) = a U [#->v] 

get_VAL: LOC -> STG - • VAL 
get_VAL(^)(<j) = a(£) 

override_STG: LOC x VAL -> STG - • STG 
override_STG(£,v)(cr) = a f [fl->v] 
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T h e Syntac t i c Forms 

Seven syntactic forms are necessary to suitably exploit the semantic machin­
ery, now tha t the storage model is part ly established: (i) declaration of named 
scalar and record variables of any type, (ii) allocation of unnamed record 
storage cells of simple type, (iii) reading whole, included record values, from 
storage, (iv) obtaining reference values, (v) selecting field values of a record 
value and (vi) assigning values to declared simple variables, including assign­
ing to fields of record variables. 

Del :: v:Vn val:VAL 
Alo :: v:Vn rv:RVAL 
Rea :: Vn 
Sel :: v:Vn rn:Rn 
Asg :: v:Vn f:Fld ex:Exp 
Fid = = null | mkRn(rn:Rn) 
Exp = = Rea | Sel | Loc 
Loc :: v:Vn 

S e m a n t i c s 

The rest should now be trivial. Environments, ENV, keep track of locations 
of declared, named variables. 

t y p e 

ENV = Vn T* LOC 

value 
dab-Del : Del -> STG -> STG x ENV x LOC 
elab_Dcl(mkDcl(v,val))(p)(cr) = 

let loc = get_LOC(ltyp(val)) in 
(extend_STG(loc,val)(<j),[vi-)'loc],loc) e n d 

int_Alo: Alo - • STG - • STG 
int_Alo(mkAlo(v,mkRVAL(rval)))(p)(cr) = 

let loc = get_LOC(record) in 
overrideJ3TG(p(v) ,loc) (extend_STG(loc,val) (a)) e n d 
pre v G d o m p A ltyp(cr(/}(v)))=record 

evaLRea: Rea -> ENV -> STG - • VAL 
eval_Rea(mkRea(v))(p)(<j) = get_VAL(yo(v))(cr) 

pre: v G d o m p(v) A p(v) E d o m a 

evaLSel: Sel ^ ENV -> STG -»- VAL 
eval_Sel(mkSel(v,r))(p)(cr) = (get_VAL(y9(v))(cr))(r) 

pre: r G d o m a(p(v)) 
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int_Asg: Asg - • ENV -> STG -> STG 
int_Asg(v,f,e)(/9)(a) = 

let loc=p(v), 
old=a(p(v)), 
new = evaLExp(e)(p){cr) in 

case f of 
mkRn(rn) ->> extendJ3TG(loc,oldf[rni-mew])(<7), 
null -» extend_STG(loc,new)(a) end 

end 
pre: v G dom p(y) A p(v) G dom cr A f^null => rn G dom old 

evaLExp: Exp - • ENV - • STG - • VAL 
evaLExp(e) (p)(cr) = 

case e of: 
mkRea(v) -^ eval_Rea(mkRea(v))(/})(cr), 
mkSel(v,r) ^ eval_Sel(mkSel(v,r))(yr>)(cr), 
mkLoc(v) —>- p(v), ... 

end 
pre v G dom p ... 

Discussion I — The Example 

We have illustrated a rather simple language. It illustrates basic notions of dy­
namically allocated storage, references to such storage, assignments to record 
fields and pointer "chasing": pointers being assigned to declared variables, se­
lected as expression values, and assigned to fields of declared or dynamically 
allocated records. 

We have assumed a rather loose typing discipline, much too loose for our 
liking. But then we chose this looseness only in order to avoid having to 
show even more text, informal as well as formal: static and/or dynamic type 
checking. We shall have an opportunity later to also illustrate such facets. 

20.3.3 Discussion: Semantics First, Then Syntax 

Example 20.1 significantly illustrated the following important development 
principle: 

Principles. First Semantics Then Syntax: When investigating a phenomenon 
in a domain, when prescribing requirements, or when designing a software 
device, analyse and construct first the semantic algebras (entities, and oper­
ations), then design the syntax "to go with" the semantics. • 
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20.3.4 Discussion: Type Homomorphisms 

Example 20.1 significantly illustrated another important development princi­
ple: 

Principles. Type, Value and Location Homomorphisms: When modelling 
types, values and locations (of some storage) it is prudent to ensure that 
there exists one or more appropriate homomorphisms between the three sets 
of entities: types, values and locations. • 

The above principle may appear a bit cryptic. Especially since we have not 
at all been sufficiently precise about what we mean by the type, the value 
and the location algebras. Please refer to the definitions of the LOC, the VAL 
and the Type types in Example 20.1. They define the entities of respective 
algebras. Please refer to the definition of the ltyp function. It represents a 
homomorphism between the entities of the LOC and VAL, on one hand, and 
Typ on the other hand. 

The type and value part of the homomorphism principle was already il­
lustrated in Example 19.10 and Example 19.11. 

20.3.5 The Notion of State 

We speak of the storage model of assignable variables as a state model. The 
use of the term state is one of pragmatics. Its use shall signal to the reader 
that the 'state' component value changes value "quite often, rapidly". That 
is, 'state' is a temporal notion. The thing that makes it change value, i.e., 
that makes the state change, is, of course, the assignments prescribed by 
statements. So, storage, as a notion connected to prescriptions of programs of 
an imperative programming language, is a state notion. 

20.4 Function Definitions and Expressions 

We continue the line of explaining the RSL imperative constructs, which we 
left at the end of Sect. 20.2. A number of issues need be resolved: Is there 
really a difference between RSL statements and RSL expressions? The answer 
is: No there is no fundamental difference (but see below). What is the 'value', 
then, of a statement? The answer is: It is designated by (), and is of type Unit 
(again, see below). But there is a slight difference between RSL statements and 
RSL expressions. We may distinguish between pure and impure expressions, 
including read-only expressions. Finally, what is the signature (i.e., the type) 
of functions which access variables? The answer is: It involves specifying to 
which variables we need (have) read access, and to which we need have write 
access. We now deal with these issues, in a slightly different order. 
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20.4.1 The Unit Type Expression, I 

In our signatures, in Example 20.1 (Sect. 20.3.2), for functions that applied 
to or yielded values of type storage (STG) we explicitly listed the type STG. 
Now what are we to do when the state, with the use of declared RSL variables, 
in a sense becomes "hidden"? We refer to that state by using Unit. 

The literal Unit is a type literal. It designates that there is a value of type 
Unit. We (arbitrarily) designate this value by (). The type literal Unit is 
used in function signatures. So, let us see how and why. 

20.4.2 Imperative Functions 

We define three functions which all access a globally declared variable: 

variable k:Nat := 0; 
value 

step: Unit —> write k Unit 
step() = k := 7 

incr: Unit —> read k write k Nat 
incrQ = step();k 

get: Unit —> read k Nat 
get() = k 

The signature of step defines that step applies to a value of type Unit (the 
first occurrence of Unit) and that it writes onto the variable k. The signature 
also defines that step only prescribes a side effect on the state (the second 
occurrence of Unit). By default, the write access descriptor allows for reading 
(but not yielding to "an outside") the value of the variable. The signature of 
incr defines that incr applies to a value of type Unit and that it writes onto 
and reads from and yields a value that depends on the value of the variable 
k. The signature of incr defines that incr applies to a value of type Unit and 
that it reads from the variable k, and yields a value that depends on the value 
of the variable k. 

20.4.3 Read/Write Access Descriptions 

The clauses: 

write u_l, u_2, ..., u_m 
read v_l, v_2, ..., v_n 

are called access descriptions. They are part of potentially side effect prescrib­
ing total and partial function signatures: 
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value 
tf: typ_ex_a —> acc_des_l,...,acc_des_n typ_ex_r 

pf: typ_ex_a ^ acc_des_l,...,acc_des_n typ_ex_r 

20 .4 .4 Local Variables 

Variables are either declared globally or they are declared local to an expres­
sion: 

local variable-declaration in expression e n d 

For example, 

value 
fact: N a t -^ N a t 
fact(n) = 

local variable k:Nat := n, variable r:Nat := 1 in 
whi l e k^O do r := r * k ; k := k — 1 e n d 
r e n d 

Observe tha t the signature of the factorial function does not refer to the local 
state. 

20.4 .5 T h e U n i t T y p e E x p r e s s i o n , II 

When we say informally tha t a clause of the specification language RSL is a 
statement, we mean tha t it is of type U n i t . Tha t is, it "delivers" the value () 
of type U n i t . We review the RSL clauses tha t may be of type Un i t : 8 

0. variable v:Type := expr 
1. v := expr 
2. skip 
3. stm_l;stm_2;...;stm_n 
4. if expr t h e n stm_c e l se stm_a e n d 
5. whi l e expr do stm_w e n d 
6. do stmt_u unt i l expr e n d 
7. case e of: p_l—>>s_l(p_l),...,p_n—>>s_n(p_n) e n d 
8. for b in list.expr • P(b) do s(b) e n d 

8They will be of type Unit only if in formulas 0-8 we can assume that clauses 
stm_l stm_n, stm_c, stm_a, stm_w, stmt_u, s_l(p_l) s_n(p_n), and s(b) are all 
statements, i.e., of type Unit , and that the clause expr is an expression yielding a 
proper (i.e., a non-Unit) value. 
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Clauses 0-2 are of type U n i t . Clauses stm_w, stm_u, and s(b) must be of type 
U n i t for clauses 5 , 6 , and 8 to be well-formed. They are then of type U n i t . 
For all i in the range l. .n—1, stmJ, of clause 3, must be of type U n i t for tha t 
clause to be well-formed. If stm_n of clause 3 is of type A then clause 4 is of 
type A. (That includes type Un i t . ) If clauses stm_c and stm_a (of clause 4) 
are of a type different from U n i t , then they must both be of the same type 
B.9 If clauses stm_n, stm_c, stm_a and s_i(p_i) (above) are of type U n i t , then 
clauses 3 and 4 are of type U n i t . If clauses s_i(p_i) (of clause 4) are of a type 
different from U n i t , then they must all have the same maximal1 0 type, say 
A, which is then the type of clause 7. 

20 .4 .6 P u r e E x p r e s s i o n s 

An expression which does not prescribe access to assignable variables11 is 
called a pure expression. For specifications expressed in RSL to "hang to­
gether" , a number of RSL expression forms permit only pure expressions. These 
are P(a) in the let clause forms shown below, and expr, in variable initialisa­
tions, see below. Further, all identifiers of argument.pattern and result.patterns 
must be free in the forms also shown below: 

let a:A • P(a) in ... e n d 
variable v:A := expr 
binding_pattern / * any such */ 
f (argument .pat tern) as result .pa t tern 

To the above add some forms we have yet to meet: actual array parame­
ters, comprehended access and those in which there must also only be pure 
expressions. 

20 .4 .7 R e a d - O n l y E x p r e s s i o n s 

An expression which prescribes access to assignable variables12 but which 
does not imply side effects13 is called a read-only expression. For specifications 
expressed in RSL to "hang together", a number of RSL expression forms permit 
only pure or read-only expressions. The cases for pure expressions (only) was 

9We omit in this part of the book treatment of the possibility that the types of 
stm_c and stm_a are different, say, both being different subtypes of type B, or one 
being of type B and another being a subtype of B. In those cases the type of clause 
4 is B, known as the maximal type of the two types of stm_c and stm_a. 

10The concept of maximal type is mentioned in Footnote 9. 
11— and which does not prescribe reading from (or writing to) channels, as we 

shall see in Chap. 21. 
12— or which is allowed to prescribe reading from channels, as we shall see in 

Chap. 21. 
13Thus the expression is not allowed to prescribe writing to channels. 
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mentioned above. So we mention (below) the cases where both pure and (or) 
read-only expressions may be used, but not side effect prescribing expressions. 
These are P(a), e_l, e_2 e_n, 11(a), d_i, r_i, d(a) and r(a) in: 

choice-pattern 
V a:A • P(a), 3 a:A • P(a), 3! a:A • P(a), 
{e_l..e_n}, {e_l,e_2,...,e_n}, {e(a)|a:A • P(a)} 
(e(a)|b in 11(a)) 
[d_l^r_l,d_2h^r_2,...,d_n^r_n],[d(a)^r(a)|a:A^P(a)] 
• P(a) 

where identifiers in the choice_pattern may be bound to assignable variables. 
In addition, expressions occurring in axioms, and pre-, post-conditions are 
to be pure or read-only expressions. 

Note that side effects are allowed in list element formations e(a), since 
their construction is ordered. (They are allowed since we have not explic­
itly mentioned them!) Such an ordering is not expressible for sets and maps. 
Similarly, Cartesian expressions also are not restricted to read-only, but can 
contain side effect prescribing expressions, although we do not advise this for 
abstract specifications. 

Quantification over States ( • ) 

So far, axioms have been illustrated only in connection with applicative 
specifications, i.e., pure expressions. What happens when we wish to access 
assignable variables in an axiom? The answer is: Then we must express that 
when the axiom is true it is true for all states. This can be achieved by quanti­
fying over all states as expressed by the • quantifier. The state quantification 
expression • P(a) allows P(a) to be read-only. The entire expression • P(a) 
is pure since it quantifies over all possible states. The truth value of • P(a) 
is true if P(a) holds for all possible values of all declared variables, otherwise 
it is false. Previous uses of axioms: 

axiom P(a) 

now amount to: 

axiom • P(a). 

20.4.8 Equivalence (= ) and Equality (= ) 

Two operators that look alike need be clearly understood: =, equivalence, and 
=, equality. 
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Equivalence (= ) 

The equivalence expression consisting of two read-only expressions: 

expr_l = expr_2 

is evaluated in all states. If it holds in all states, then the value of expr_l=expr_2 
is true, otherwise it is false. 

If the expressions expr_l and expr_2 prescribe side effects, then they must 
have the same side effect on variables and return the same value in order to 
hold. If one of the expressions yields chaos, then they must both yield chaos 
for the equivalence to hold. The equivalence expression itself, as a whole, never 
yields chaos. 

If, as we shall see later, one expression prescribes nondeterminism, then 
they must both prescribe exactly the same nondeterminism for the equivalence 
to hold. 

Conditional Equivalence 

We can constrain axioms: 

axiom expr_l = expr_2 pre P(a) 

for example as used in: 

variable ctr:Nat := 0 
value 

deer: Unit >̂ write ctr Nat 
decrQ = ctr := ctr — 1 ; ctr pre ctr > 0 

have expr_l=expr_2 pre P(a) being equivalent to 

(P(a) = true) => (expr_l = expr_2) 

Equality (= ) 

If two expressions, expr_l, expr_2, do not access assignable variables, i.e., have 
no side effects, do not evaluate to chaos and are both deterministic, then = 
and = mean the same. If not, then = and = do not mean the same. 

The equality expr_l = expr_2 is an expression of type Boolean. If one or 
both expressions evaluate to chaos, chaos is yielded. Otherwise the values 
yielded by evaluation of the above, left to right, are compared and either true 
or false is yielded. Side effects may occur, and they will then result, i.e., be 
effected, but they are not part of the comparison. 
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20.5 Translations: Applicative to Imperative 

In this section we treat three simple topics: (i) the translation of some forms of 
simple applicative function definitions into likewise simple imperative function 
definitions together with the simple declaration of variables; (ii) the trans­
lation of some forms of simple applicative recursive function definitions into 
likewise simple imperative function definitions together with the simple decla­
ration of a variable; and (hi) specialising the two former translation schemes — 
the translation of not-quite-so-simple forms of applicative recursive function 
definitions into slightly less simple imperative function definitions together 
with the declaration of suitable variables. 

20.5.1 Applicative to Imperative Translations 

Consider the following kind of function definition, i.e., function schema: 

type 
A, B, E 

value 
ia: A - • E -> E x B 
fa(a)(<r) = let b = ga(a)(<r), a' = ha(a)(cr) in (cr',b) end 

g a : A - • E -+ B, ... 

ha: A - • E - • E 
ha(a)(cr) = ... a1 

Let us, by fiat, claim that E represents "our" state space, i.e., a type of states. 
Then we say that f is a state-changing function that yields a result, while h 
is just a state-changing function. 

Let us instead consider: 

type 
A, B 

variable 
8:E := ... 

value 
£L\ A —> read, write s B 
ft(a) = let b = gt(a) in s := ht(a); b end 

gL: A —> read s B 

ht: A —̂  write s Unit 
h,(a) = ... s := a' 
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We ask the reader to accept the claim tha t the two functions, fa and ft, com­
pute the same type B results1 4 for corresponding pairs of fa s tate arguments, 
cr, and initialisations of the global variable s. 

Now, what can we learn from this example? We claim tha t we can conclude 
tha t given a suitable form of function definitions fa, one may be able to find 
an imperative function fL tha t computes the "same results ' for corresponding 
pairs of s tate arguments and variable initialisations. 

20 .5 .2 Recurs ive t o I terat ive Trans lat ions 

Let us consider the following simple example of an applicative, recursive func­
tion definition: 

t y p e 
A, B 

value 

fa: A H > B 

fa(a) = if p a (a) t h e n ga(a) e lse f a (h a (a) ) e n d 

p a : A —> B o o l 
gc*: A - • B 
ha: A - • A 

fa is partial since the predicate pa may yield false for all relevant a's. 
One may think of first invoking fa with the value initiaLa. Function fa 

could be "imperialised" into likewise partial fL: 

variable 
v:A := initiaLa ; 

value 
iL: U n i t ^> read, wr i t e v B 
f,() = if p t(v) t h e n g,(v) e lse (v := h t(v); ft()) e n d 

pL: A —> read v B o o l 
gL: A —> read v B 
hL: A -> read v A 

or even: 

value 
{L: U n i t ^> read, wr i t e v B 
f,() = whi l e ~ p t ( v ) d o v := h,(v) end; g,(v) 

14By the "same result" we loosely mean that the values observed from any invoca­
tion of the two functions with corresponding arguments, respectively initialisations, 
are the same. What is not compared, and what, in a sense, is not comparable, is the 
"side effect" left on the global state by the imperative function invocation vis-a-vis 
the fact that there is not such a side effect when invoking the applicative functions. 
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We again ask the reader to accept the claim that the two functions, fa and 
ft, computes the same results for corresponding pairs of fa arguments and 
initialisations of the global variable v. 

What can we learn from this example? 
We can conclude that, given a suitable form of recursive function defini­

tions fa, one may be able to find an imperative function fL that computes the 
same results for corresponding pairs of arguments and variable initialisations. 

20.5.3 Applicative to Imperative Schemas 

This section is based on the work of Burstall and Darlington: [174]. Later work 
appears in [34]. The gist of this section is that a number of recursive, applica­
tive (i.e., functional) programs (cum specifications), can be transformed into 
nonrecursive, imperative (and iterative) programs (cum specifications). 

We follow [174] closely. For each of a number of applicative, recursive 
schemas is given one, two or three nonrecursive, imperative schemas, together 
with some conditions, one for each imperative schema, that must be fulfilled 
of the abstract, functional operators of the applicative, recursive schema for 
it to be transformable into the given imperative schema. 

We start, as does [174], with an example. 

type 
A 

value 
reverse: A* —> A* 
reverse (al) = 

if al=() 
then <) 
else reverse 

end 

variable 
alv:A* := al; 
result:A* 

value 

;(tl al)" (hd al) 

reverse: A* —> Unit 
reverse(alv) = 

if alv = () 
then 

result :=() 
else 

result:=(hd alv)^{); 
alv:=tl alv ; 
while alv ^ {) do 

result:={hd alv)^result; 
alv:=tl alv 

end 
result :=()^result 

end 

The applicative version of reverse (list) is easy to understand, whereas the 
imperative version is contorted, i.e., difficult to understand. Hence it is difficult 
to see that the two do essentially the same job. 
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Schemas 

We now show a number of schemas: Triples of (i) an abstract, schematic ap­
plicative and recursive program, (ii) an abstract, schematic imperative (non-
recursive) program, and (hi) a set of one or more equations that the abstract 
functional operators of (i) must satisfy, when one tries to apply it to a con­
crete applicative and recursive program in order to transform it to a concrete, 
imperative (and nonrecursive, but usually iterative) program. 

. Schema 1 . 

• Recursion Schema: 

f(x) = if a then b else h(d,f(e)) end 

. Transformation 1.1 \ 

• Iterative Schema 1.1: 

if a 
then 

result := b 
else 

result := d ; x := e ; 
while ~a do 

result := h(result,d) ; x := e 
end 
result := h(result,b) 

end 

• Equation and Condition: 

h(h(a,/?),7) = h(a,h(/?,7)) 
x does not occur free in h 

Example: Factorial Function 
The factorial function: 

fact(n) = if n=0 then 1 else n * fact(n—1) end 

is an instance of Schema 1.1. With 

a = (n=0), b = l , d =n, e=n—1, h=* 

we get: 

fact(n) = 
if n=0 
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then 
result 

else 
result 
while 

:= 1 

:= n ; n := n-
n^O do 

result := result * 
n := 

end ; 
result 

end 

= n - 1 

:= result * 1 

- i ; 

n ; 

Transformation 1.11 

• Iterative Schema: 

result := b ; 
while ~a do 

result := h(d,result) ; x := e 
end 

Equation and Conditions: 

h(a,h(/?,7)) = h(^,h(a,7)) 
x does not occur free in h or b 

Fvamplp- Factorial Function 
The factorial function: 

fact(n) = if n=0 then 1 else n * fact(n-

is an instance of Schema l.II. We get: 

result := 1 
while n^O do 

result := n * result ; n := n — 1 
end 

-1) end 

Transformation 1.111 

Iterative Schema: 

result := b ; xsave := x ; 
x := "unique x such t h a t a" ; 
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while ~x do 
x := " inverse of e/;(x) ; result := h(d,result) 

end 

• Conditions: 

There is a unique x such that a is true exists and the inverse of 
e exists, x does not occur free in b or h. 

Schema 2 

• Recursion Schema: 

f(xl,x2) = if a then b else h(d,f(el,e2)) end 

. Transformation 

• Iterative Schema: 

result := b ; 
while ~a do 

result := h(d,result) ; xsave := el ; x2 := e2 ; xl := xsave 
end 

• Equation and Conditions: 

h(a,h(/?,7)) = h(/?,h(a,7)) 
xl does not occur free in h or b 
x2 does not occur free in h or b 

Example: Set Union 
The concrete set union function: 

type 
E 

value 
set.union: E-set x E-set —> E-set 
set_union(sl,s2) = 

i f s l = { } 
then s2 
else 

result := choose(sl) U. set_union(sl \ . choose(sl),s2) 
end 

choose: E-set —> E 
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given two identical sets, s and s', selects 

the same e:E in s and s': choose(s) = choose(s') 

U. : E x E-set -+ E-set 

\ . : E-set x E - • E-set 
is an instance of Schema 2. We get: 

result := s2 ; 
while s l^{} do 

result := choose (si) U. result ; 
si := si \ . choose(sl) 

end 

Schema 3 

• Recursion Schema: 

f(x) = if a then b else h(f(dl),f(d2)) end 

Transformation 3.1 

• Iterative Schema: 

result := b ; xsave := x ; x := unique x such that a ; 
while ~a do 

x := " inverse of dl"(x) ; result := h(result,result) 
end 

• Equation and Conditions: 

dl = d2 

x does not occur free in h or b. There is a unique x such that a 
exists and such that the inverse of dl exists. 

Transformation 3.11 

• Iterative Schema: 

yl := b ; y2 := b ; result := b ; 
while ~a do 

result := h(yl,y2) ; yl := y2 ; y2 := result ; x := d 
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end 

• Equations: 

h(a,h(/?,7)) = h(/?,h(a,7)) 
dl = d2 with every occurrence of x replaced by d2 

. Example: Fibonacci Function .11 
The Fibonacci function: 

fib(n) = if n=0Vn=l then 1 else fib(n-l) + fib(n-2) end 

is an example of Schema 3.II. We get: 

yl := 1 ; y2 := 1 ; result := 1 ; 
while ~(n=0Vn=l) do 

result := yl + y2 ; yl := y2 ; y2 := result ; x := n — 1 
end 

Transformation 3.111 

• Iterative Schema: 

result := b ; 
while ~a do 

result := h(result,result) ; x := dl 
end 

• Equation and Condition: 

dl = d2 
x does not occur free in h or b 

Schema 4 

• Recursion Schema: 

f(x) = if a then b else h(f(d)) end 

. Transformation 4.1 

• Iterative Schema: 
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while ~a do x := d end ; result b 

• Equations: 

h = A x-x 

Transformation 4.11 

• Iterative Schema: 

result := b ; xsave := x ; x := "unique x such t h a t a" ; 
while x 7̂  xsave do 

x := " inverse of d"(x) ; result := h(result) 
end 

• Conditions: 

x does not occur free in h or b. There is a unique x such that a 
exists and such that the inverse of d exists. 

Schema 5 

• Recursion Schema: 

f(x,y) = if a then b else h(f(dl,d2)) end 

Transformation 

• Iterative Schema: 

while ~a do 
xsave := dl ; y := d2 ; x := xsave 

end 
result := b 

• Equations: 

h = A x-x 

We do not illustrate examples of uses of all schemas, but refer the reader to 
works by Cooper [160], Strong [488], and Burstall and Darlington [142,173, 
174]. 
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20.5.4 Correctness, Principles, Techniques and Tools 

Characterisation. By correctness of transformation we mean that the im­
perative function's result value is identical to the applicative function appli­
cation value. • 

This is not proved for the individual schema above. We refer to [142,160,173, 
174,488] for examples of such proofs. 

Principles. Translations from Applicative Function Definitions into Imper­
ative Function Definitions: Usually we start with sorts, observer and selector 
function signatures and axioms over these. That is, we begin purely axiomat-
ically. Then we "transform" into applicative, typically recursive function defi­
nitions. After that we transform to imperative definitions, including iterative 
ones. • 

20.6 Styles of Configuration Modelling 

In the model-oriented style of abstraction there are a number of styles of spec­
ifying contexts and states using the sequential style in up to four variations, 
of which we illustrate three: 

• both applicative contexts and states, Example 20.2 
• combinations of applicative contexts and imperative states, Example 20.3 
• and both imperative contexts and states, Example 20.4 

We shall now examine these modelling styles. The examination will be wrt. a 
fragment, basically imperative programming language, very much in the style 
of the imperative parts of RSL. 

20.6.1 Applicative Contexts and States 

We now formalise the context and state concepts of the RSL-like language 
introduced above. We start with a model that is expressed in the applicative 
(i.e., functional) style. 

Example 20.2 An Applicative Context and State Style Model: 

Syntactic and Semantic Types 

As usual, we start by defining the syntactic and semantic types. In this exam­
ple we start with the syntactic types — since the readers and the designers 
are normally expected to be rather familiar with conventional programming 
languages we bring the semantic types second. Normally it is advisable to first 
design the semantic types. 
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Syntactic Types 

type 
0. VarDef = V x Expr 
1. Stmt = = Asg(v:V,e:Expr) 
2. 
3. 
4. 
5. 
6. 
7. 

donothing 
Lst(sl:Stmt*) 
Cnd(e:Expr,ts:Stmt,fs:Stmt) 
Whi(e:Expr,s:Stmt) 
Rep (s: S t mt, e: Expr) 
Cas(e:Expr,cl:(Bind x Stmt)*) 
For(b:Bind,le:Expr,pe:Expr,s:Stmt) 

Semantic Types: 

p:ENV = (Id rt VAL) U (V ^ LOC) 
a:£ = LOC T* Val 
Val = VAL | Val* 
VAL = Int | Bool | ... | Q 

The Identifiers (mentioned in the environment) are those of formal function 
parameters and let and case expression and statement bindings. The Variables 
(mentioned in the environment) are those of declared variable names. ENV is 
the context; £ is the state. 

We separate out as auxiliary function definitions those of gl_: obtain (get) 
a free location, i.e., a location of storage not yet in use; AEnv: extend (over­
ride) the environment — seen as a form of "allocate"; AStg: allocate storage 
(space and initialize); and gV: obtain (get) value from storage location. These 
auxiliary functions will be redefined as we move from applicative to impera­
tive style specifications. And one new auxiliary function will be added later. 
Comparing these auxiliary function definitions reveals a lot about the essence 
of the individual styles. 

Auxiliary Functions 

value 
gL: £ -> LOC 
gL(cr) = let l:LOC • 1 0 dom a in 1 end 

AEnv: ENV - • ENV - • ENV 
AEnv(env)/9 = p f env 

AStg: £ -> E 4 E 
AStg(stg)cr = a U stg 
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gV: V -> ENV -+ E -+ VAL 
gV{v)pa = <r(p(v)) 

Simple Interpretation Functions 

V: VarDef - • ENV ^ E ^ E x ENV 
E: Expr -> ENV -+ E -+ Val 
I: Stmt - • ENV 4 T ^> E 

V(v,e)pcr = 
let 1 = gL(a), val = E(e)pcr in 
(AStg([l^val])<r,AEnv([v^\])p) end 

E: almost as defined above, but without dynamic tests! 
E(v)pa = gV(v)pcr, ..., etc. 

I(Asg(v,e))/oo- = a f [p(v) ^ E(e)/&a] 

I(donothing)/9a = a 

Composite Interpretation Functions 

I(Lst(sl))p<r = if sl=() then a else (I(tl sl)p)(I(hd si) a) end 

I(Cnd(e,c,a))pcr = if E(e)/)cr then l(s)pa else I(a)pcr end 

I(Whi(e,s))/9cr = if E(e)pcr then (I(Whi(e,s))/?)(I(c)/9cr) else skip end 

I(Rep(s,e))pCT = (I(Whi(e,s))p)(I(s)H 

Context-Creating Interpretation Functions 

I(Cas(e,cl))y9cr = let v = E(e)pa in M(v,c\)pa end 

M: Val x Case* ^ ENV ^ E 4 E 
M(v,cl)/*7 = 

if cl=() then chaos else 
let (b,s) = hd cl in let (t,env) = B(b,v) in 
if t then I(s)(AEnv(env)/9)cr else M(v,tl c\)pa end 
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end end end 

I(For(b,le,pe,s))/)cr = let vl = E(\e)pa in S(b,vl,pe,s)pcr end 

S: Bind x VAL* x Expr x Stmt -^ ENV -3- E H> E 
S(b,vl,pe,s)pcr = 

if vl={) then a else 
let (_,env) = B(b,hd vl) in 
if E(pe) (AEnv(env) p)cr 

then S(b,tl vl,pe,s)(/o)(I(s)(AEnv(env)/o)cr) 
else S(b,tl vl,pe,s)pcr end 

end end 

We comment on the applicative context and state model, p : ENV models the 
context, a : E models the state. The computation intervals of variables are 
"indefinite": from the point at which a variable is allocated till "the end of 
time" or when and if a free variable action could or would occur, whichever 
comes first. At any textual point there is a pair (p,cr) "at work": It is the 
configuration at that point. The fact that there may be a number of invoca­
tions of the interpretation functions E, I, M and S extant, i.e., "alive" — as 
seen from the point of view of the machine which performs the interpretation 
according to the interpretation function definitions — relates to a notion of 
meta-metastate of the interpreter machine, not to the notion of context and 
state of the "thing" (here a language fragment) being modelled. • 

Summary, Applicative Contexts and States 

We have shown that the concepts of context and state can be suitably sepa­
rated and treated as separable parts of a specification, but that they relate. 
That is, when a variable location has been obtained and is being state allo­
cated, then its binding to a variable name in a context (i.e., an environment) 
is expressed "at the same time"! We have also shown that obtaining a vari­
able value is expressed as the "double application" of a state to the result of 
applying a context to a name. 

We have further illustrated that the context concept is syntactic: For any 
point of a specification in some (formal) language, and for any system, there 
is a statically knowable number of names (identifiers) being defined by (or 
therein). Furthermore, the state concept is temporal: For any point of a spec­
ification in some (formal) language, and for any system, the state value is 
only knowable at run time, i.e., when exercising the system (prescribed by 
the specification). 

Characterisation. By an applicative context we understand a concept of 
context which has been modelled in the functional style. • 
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Characterisation. By an applicative state we understand a concept of state 
which has been modelled in the functional style. • 

Techniques. Applicative Contexts: Usually we model an applicative context 
as a simple Cartesian product (i.e., grouping) of a fixed number of context 
components, when their number is a priori fixed and known, or as a simple 
set or list of context components or a map of context component names to 
(context or possibly state) component associations — when the number of 
components is definite and knowable, but where contexts and components 
may change, thereby bringing change in the "size" of context. • 

The Cartesian context components may themselves be lists, sets or maps. 

Techniques. Applicative States: Usually we model an applicative state ei­
ther as a simple Cartesian product (i.e., grouping) of a fixed number of state 
components — when their number is a priori fixed and known — or as a 
simple set or list of state components or a map of state components to (state) 
component associations — when the number of components is indefinite and 
otherwise depends on the designated (the prescribed) behaviours (of specifi­
cation interpretations or of systems). • 

The Cartesian state components may themselves be lists, sets or maps. 

Techniques. Applicative Contexts vs. State Function Arguments: When 
defining functions that apply to contexts and states — besides other argu­
ments — these latter are listed as first the formal parameters, then the context 
and finally the state. • 

20.6.2 Applicative Contexts and Imperative States 

We continue now with a combined applicative and imperative model of the 
state concept of the RSL-like language. 

Example 20.3 An Applicative Context and Imperative State Style Model: 
We continue with the same syntactic types as were defined earlier (cf. 

Example 20.2). While the binding of variable names and binding identifiers 
remain "stable" over the interpretation of syntactically well-defined specifi­
cation texts, the storage will (usually) change for every statement being in­
terpreted within that text. We therefore introduce a storage variable stg, of 
type L, our first metastate component, and change the gl_, AStg, gV, V, E, 
I, M and S function definitions accordingly. Note that the metastate is the 
aggregation of specification declared variables and their values. In this case 
the metastate reflects (colloquially: "is the same as") the state of the modelled 
language fragment. 
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Metastate and Auxiliary Functions 

variable 
s tg : i7 :=[ ] ; 

value 
gL: Unit -» read stg LOC 
gL() = let l:LOC • 1 £ dom stg in 1 end 

AEnv: ENV - • ENV -> ENV 
AEnv(env)/) = p f env /* Unchanged ! */ 

AStg: E —> read stg write stg Unit 
AStg(<j) = stg := stg U a 

gV: V - • ENV ^ read stg VAL 
gV(v)p = stg(p(v)) 

Simple Interpretation Functions 

V: VarDef - • ENV -^ read stg write stg ENV 
E: Expr - • ENV -^ read stg write stg Val 
I: Stmt ->> ENV -3- read stg write stg Unit 

V(v,e)p = 
let 1 = gLQ, val = E(e)p in 
AStg([lH>val]); AEnv([vH4])/> end 

E(v)p() = gV(v)p 

I(Asg(v,e))/9 = stg := stg f [p(v) \-> E(e)p] 
I(donothing)/9 = skip 

Composite Interpretation Functions 

I(Lst(sl))/9 = if sl=() then skip else I(hd sl)p;I(tl si)/? end 

I(Cnd(e,c,a))p = if E(e)/> then 1(c)p else 1(a)/) end 

I(Whi(e,s))/9 = while E(e)p do l(s)p end 

I(Rep(s,e))/> = I(s)/>;I(Whi(e,s))/> 
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Context-Creating Interpretation Functions 

I(Cas(e,cl))/9 = let v = E(e)p in M(v,cl)p end 

M: Val x Case* -^ ENV -3- read stg write stg Unit 
M(v,cl)/? = 

if cl=() then chaos else 
let (b,s) = hd cl in let (t,env) = B(b,v) in 
if t then I(s)(AEnv(env)/o) else M(v,tl c\)p end 
end end end 

I(For(b,le,pe,s))y9 = let vl = E(\e)p in S(b,vl,pe,s)/> end 

S: Bind x VAL* x Expr x Stmt ^ ENV -3- read stg write stg Unit 
S(b,vl,pe,s)p = 

if vl={) then skip else 
let (,env) = B(b,hd vl) in 
if E(pe) (AEnv(env)p) 

then (I(s)(AEnv(env)p);S(b,tl vl,pe,s)p) 
else S(b,tl vl,pe,s)p end 

end end 

We comment on the applicative context and imperative state model. As before, 
p : ENV models the context. Now stg : E models the state, and is itself a state 
component of the model, i.e., is the metastate. And, as before, (/9:ENV,stg:ZT) 
models configurations. 

Notice, by inspecting, line by line, and pairwise, the interpretation func­
tions (V, E, I, M, S), the way in which arguments "disappear" (being replaced 
by reference to a global metastate) and the way in which the interpretation 
functions (typically the composite) are structured wrt. their composite syn­
tactical arguments. The above remarks apply equally well to the next — the 
imperative context and state style — model. • 

Summary, Applicative Contexts and Imperative States 

We have continued our demonstration of applicative contexts, but have mod­
elled states imperatively. The model state component is now being represented 
by a specification metastate component. Now the explicit state parameter of 
applicative state models has disappeared, being replaced by references to a 
global metastate component. In an imperative state model it is less obvious, 
where in a specification state, changes are prescribed, but the number of in­
terpretation and auxiliary function arguments is usually smaller, and often 
significantly so! It is still obvious where, in a specification context, changes 
are prescribed and where no changes are prescribed. 
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Characterisation. By an imperative state we mean a concept of state which 
has been modelled in the imperative style. • 

Techniques. Imperative States: In abstract specifications, it really is a mat­
ter of style as to when to model a state imperatively: you must weigh the 
number of arguments (more for applicative, fewer for imperative), and the 
number and style of interpretation and auxiliary function definitions. Usually, 
however, the choice of state modelling moves from applicative to imperative 
as we reify (develop) our specification into more concrete, more executable 
designs. • 

20.6.3 Imperative Contexts and States 

We finish our sequence of three context/state model styles with an imperative 
model of the RSL-like language. 

Example 20.4 An Imperative Context and State Style Model: 
We continue with the same syntactic types as were defined earlier (cf. 

Example 20.2). Environments obey a stack-property: Whenever a binding is 
processed, a "new" environment is created. Its computation interval is that 
piece of text to which it is applied (by the interpreter). "Surrounding" text 
interpretation takes place in an "old" environment. We therefore decide to 
also introduce a variable env_stk, of type ENV*, to change the gV, AEnv, V, 
E, I, M and S functions accordingly, and to introduce a new auxiliary function: 
FEnv: Free Environment. As AEnv now "stacks" (pushes onto the environment 
stack) a new environment, FEnv "un-stacks" (pops) that environment. 

The metastate now models the configuration concept of the language frag­
ment whose semantics is being (operationally) specified. 

Metastate 

variable 
env_stk:ENV* := ([]); 
s tg : i7 :=[ ] ; 

Auxiliary Functions 

value 
gL: Unit -» read stg LOC 
gL() = let l:LOC • 1 ^ dom stg in 1 end /* Unchanged */ 

AEnv: ENV —> read env_stk write env_stk Unit 
AEnv(env) = env_stk := (hd env_stk f env)"env_stk 
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FEnv: Unit —> read env_stk write env_stk Unit 
FEnvQ = env_stk := tl env_stk /* New! */ 

AStg: E -t read stg write stg Unit 
AStg(cr) = stg := stg U a /* Unchanged */ 

gV: V -)> read stg,env_stk VAL 
gV(v) = stg((hd env_stk)(v)) 

Simple Interpretation Functions 

V: VarDef —• read,write env_stk,stg Unit 
E: Expr —> read,write env_stk,stg Val 
I: Stmt —> read,write env_stk,stg Unit 

V(v,e) = let 1 = gL(), val = E(e) in AStg([l^val]); AEnv([vi->l]) end 

E(v) = gV(v) 

I(Asg(v,e)) = stg := stg f [(hd env_stk)(v) i->- E(e) ] 

I(donothing) = skip 

Composite Interpretation Functions 

I(Lst(sl)) = if sl=<> then skip else I(hd sl);I(tl si) end 

I(Cnd(e,c,a)) = if E(e) then 1(c) else 1(a) end 

I(Whi(e,s)) = while E(e) do I(s) end 

I(Rep(s,e)) = I(s);I(Whi(e,s)) 

Context-Creating Interpretation Functions 

I(Cas(e,cl)) = let v = E(e) in M(v,cl) end 

M: Val x Case* ^> read,write env_stk,stg Unit 
M(v,cl) = 
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if cl=() t hen chaos else 
let (b,s) = hd cl in let (t,env) = B(b,v) in 
i f t 

t hen (AEnv(env);I(s);FEnv()) 
else M(v,tl cl) end 

end end end 

I(For(b,le,pe,s)) = let vl = E(le) in S(b,vl,pe,s) end 

S: Bind x VAL* x Expr x Stmt ^> read,wri te env_stk,stg Unit 
S(b,vl,pe,s) = 

if vl=() t hen skip else 
let (,env) = B(b,hd vl) in 
AEnv(env); 
ifE(pe) 

t hen (I(s);FEnv();S(b,tl vl,pe,s)) 
else (FEnv();S(b,tl vl,pe,s)) 

end end end 

We comment on the imperative context and state model. Now the top of 
the environment stack, hd env_stk:ENV, models the context, stg : E still 
models the state, and thus remains a state component of the model. And, 
as before, (hd env_stk:ENV,stg:i7) models configurations. The metastate, 
env_stk:ENV*,stg:i7, is just that. Notice the explicit stacking and un-stacking 
of environments. The specification text between a "closest" such pair of allo­
cate and free environment actions (AEnv, respectively FEnv) models the scope 
of a binding, that is, its context. • 

Summary, Impera t ive Contexts and States 

We have seen how the block-structured concepts of specification of text names 
to their designations (incl. denotations) is modelled imperatively, and as 
stacks, that is, reflecting the block structure, i.e., the nested or embedded 
or scope-limited redefinitional nature of such concepts. And we have seen how 
the beginning and ending of a context, i.e., of a scope of the defined names, 
lead to matching pairs of stacking and un-stacking of contexts. Now it may 
be less obvious as to where, in a specification, a context is defined, used and 
"ends" — unless one is careful in finding suitable "expressional" ways of des­
ignating the pairs of stackings and un-stackings. 

Character isa t ion. By an imperative context we understand a concept of 
context modelled in the imperative style. • 
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Techniques. Imperative Contexts (I): We usually model contexts impera­
tively as we develop our abstract specifications (where the contexts usually 
were applicatively modelled) into more concrete specifications, that is, as we 
move closer to, or develop actual software designs. • 

Techniques. Imperative Block-Structured Contexts (II): Contexts may be 
recursively defined, as are the bindings of names to their designations in 
specification (hence also programming) languages. In such cases imperative 
contexts are usually modelled as stacks of context models. • 

Techniques. Imperative Block-Structured Contexts (III): To help the reader 
to more easily observe that a block-structured context concept "is at play" 
in an imperative definition, we advise that suitable auxiliary stack (allocate) 
and un-stack (free) functions be defined and deployed. • 

20.6.4 Summary of Sequential Models 

The three models shown so far have all had 'sequentially' in common: The 
applicative style 'sequentially' is illustrated by let a = b in c end and more 
generally, by the 'call-by-value', 'inside-out' and 'left-to-right' evaluation of 
expressions The imperative style 'sequentiality' is illustrated by 'left-to-right' 
interpretation of RSL: statement lists, structured statements and assignment 
statements. 

20.7 Review and Discussion 

20.7.1 Review 

We introduced the imperative language constructs of RSL. We sketched their 
mathematical meaning — in terms of state-to-state changing functions — in 
some form of A-notation. We then discussed notions of location values: Val­
ues that are references to storage cells keeping other values; and we showed, 
in an extensive example, how to model a "toy" programming language hav­
ing reference values. We then showed how to relate certain simple forms of 
applicative function definitions to similarly simple imperative function def­
initions. Finally, we modelled another simple "toy" programming language, 
which exhibits scope of identifiers, in three different styles: applicatively, im­
peratively and a "mix" of both. These last three models, in a slightly different 
order, also exemplified the notion, and thus reinforced our understanding, of 
contexts (environments) and states (storages). 
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20.7.2 Discussion 

Which is a "better" style of programming: functional, as in Standard ML 
(SML), or imperative, as in Fortran? We believe that it does not make sense 
to try to answer this question by nominating either of the two styles as a 
"winner". It may seem, on first study, that functional programming is so much 
more "clean", elegant, expressive, and as versatile as imperative programming. 
But then the laws of imperative programming are as beautiful as are those of 
functional programming, to wit: [290,449]. 

What separates the two styles of programming wrt. actual languages is 
not that one is functional, and the other is imperative, but that one offers 
data types that are more suitable for one kind of problem, and that the other 
offers other data types that are more suitable for other kinds of problems. 
Thus — as an example — Standard ML (SML) offers language constructs to 
go with its special offering of data types that have proven to be very useful 
in specifying computations over structured values: trees, records, etc. On the 
other hand For t ran is still considered, by some, to be most appropriate for 
scientific computations involving arrays (vectors, matrices, etc.) of floating­
point data. The moral: We need many different kinds of programming, as well 
as specification languages. 

20.8 Bibliographical Notes 

There are four main sets of references to be made at this point. 

20.8.1 Theory of Computation 

First there are the references to the work of John McCarthy, [365-368]: 

• Recursive Functions of Symbolic Expressions and Their Computation by 
Machines. Communications of the ACM 3(4): 184-195, 1960 [365]. 

• Towards a Mathematical Science of Computation. In CM. Popplewell, 
editor, IFIP World Congress Proceedings, pp. 21-28, 1962 [366]. 

• A Basis for a Mathematical Theory of Computation. In Computer Pro­
gramming and Formal Systems. North-Holland, Amsterdam, 1963 [367]. 

• A Formal Description of a Subset of ALGOL, in Formal Language Descrip­
tion Languages, IFIP TC-2 Work. Conf., Baden. Ed. T.B. Steel. North-
Holland, Amsterdam, 1966 [368]. 

20.8.2 A Type Theory for the A-Calculus 

Then there are the references to the works of Christopher Strachey and Dana 
Scott [463,469]. We only mention two: 
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• D.S. Scott and C. Strachey. Towards a Mathematical Semantics for Com­
puter Languages. In Computers and Automata, Vol. 21 of Microwave Re­
search Inst. Symposia, pp. 19-46, 1971. 

• D.S. Scott. Outline of a Mathematical Theory of Computation. In Proc. 
4th Ann. Princeton Conf. on Inf. Sci. and Sys., p. 169, 1970. 

20.8.3 Source Program Transformation Works 

There are basically two schools of thought to refer to here, the Burstall-
Darlington school, which we have followed [142,173,174]: 

• J. Darlington and R. M. Burstall. A System Which Automatically Im­
proves Programs. Acta Informatica, 6:41-60, 1976 [174]. 

• R. M. Burstall and J. Darlington. A Transformation System for Developing 
Recursive Programs. Journal of ACM, 24(l):44-67, 1977 [142]. 

• J. Darlington. A Synthesis of Several Sorting Algorithms. Acta Informat-
ica, 11:1-30, 1978 [173]. 

and the Munich CIP project as covered in [35]: 

• F.L. Bauer: Program Development by Stepwise Transformations — The 
Project CIP. Appendix: Programming Languages Under Educational and 
Under Professional Aspects, pp. 237-272. 

• F.L. Bauer, M. Broy, H. Partsch, P. Pepper, H. Wossner: Systematics of 
Transformation Rules, pp. 273-289. 

• H. Wossner, P. Pepper, H. Partsch, F.L. Bauer: Special Transformation 
Techniques, pp. 290-321. 

• P. Pepper: A Study on Transformational Semantics, pp. 322-405. 
• F.L. Bauer: Detailization and Lazy Evaluation, Infinite Objects and Pointer 

Representation, pp. 406-420. 
• H. Partsch, M. Broy: Examples for Change of Types and Object Struc­

tures, pp. 421-463. 

20.8.4 Laws of Imperative Programming 

Finally there is a reference to work by Hoare et al. on laws of imperative 
programming [290]: 

• C.A.R. Hoare, I.J. Hayes, J.F. He, C.C. Morgan, A.W. Roscoe, J.W. 
Sanders, I.H. S0rensen, J.M. Spivey, and B. Sufrin. Laws of Programming. 
Communications of the ,4CM 30(8) :672-686, 770, 1987. 

We find these references to have formed an important basis for and a summary 
of many of the facets covered in the present chapter. 
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20.9 Exercises 

We give only a few exercises, but they are a bit on the large side. We trust that 
lecturers using this text can make up simple exercises requiring imperative 
solutions. The function definitions of the exercises of this chapter are basically 
to be expressed in the imperative style. 

Exercises 20.1, 20.2 and 20.3 are preceded by Exercises 19.1, 19.2 and 19.3, 
respectively. They are continued in Exercises 21.5, 21.6 and 21.7, respectively. 

• • • 

Exercise 20.1. The Grocery Store, II. You are basically asked to repeat Ex­
ercise 19.1, but now on the basis of an imperative state. We suggest that 
any configuration component that is either changed (as a state component), 
or is often referred to (as a context component), be made into a variable 
component. Thus, a suggestion is to maintain the following variables: (i) The 
warehouse, (ii) the store, (iii) a set, clients, of uniquely identified clients — 
embodying, in principle, only their purse, i.e., some monies — (iv) with their 
shopping carts and (v) their bags, and (vi) the check-out counter, which essen­
tially contains the cash register, the wholesaler inventories and their wholesaler 
cash registers. Now, redefine the functions that were given as solutions to Ex­
ercise 19.1, but now in the imperative style. 

In the applicative definition style all state component values were argu­
ments to many, and results of many defined functions. In the present, imper­
ative style definition these state component values need to be given an initial 
value to be assigned to respective variables. 

If you believe that the above description is incomplete, please state why, 
and provide the completing text. 

The present exercise is to be solved in the concurrent style in Exercise 21.9. 

Exercise 20.2. The Anarchic Factory, II. We refer to Exercise 19.2; please 
read the problem formulation texts of those exercises carefully. 

Now, in this version of a formalisation of the factory model you are to con­
vert the configuration (context and state) components into state variables. A 
suggestion is to maintain the following state components in terms of variables: 
(i) the inventory, (iii) the trucks, which is a set of uniquely identified trucks, 
(ii) the cells, which is also a set of uniquely identified production cells, and 
(iv) the product warehouse. The rest is as in Exercise 19.2, formalise the non-
deterministic single state transition function and the function that iterates 
over a(n entire) production plan, etc. 

The present exercise is to be solved in the concurrent style in Exer­
cise 21.10. 

Exercise 20.3. The Document System, II. Please read the problem formula­
tion texts of Exercise 19.3 carefully. 

1. In this exercise make the system components: 
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(a) the set of all place directories a single global variable, 
(b) the set of all place persons a single global variable, 
(c) the set of all citizens a single global variable, 
(d) the set of all document identifiers in use a single global variable, and 
(e) the set of all dossier identifiers in use a single global variable. 

2. Define all variable types clearly. 
3. Now redefine the syntax of commands, replacing explicit mentioning of 

persons, documents, dossiers and locations by their identifiers. 
4. And redefine, in the imperative style, all semantic interpretation functions. 

The present exercise is to be solved in the concurrent style in Exer­
cise 21.11. 

Exercise 20.4. X An Imperative Domain Model of Transportation Nets. We 
refer to Appendix A, Sect. A.l, Transportation Net. 

We refer to Exercise 19.4. Please read the problem formulation of that 
exercise carefully. 

You are basically asked to repeat Exercise 19.4, but now on the basis of 
an imperative state. We suggest that any configuration component that is 
either changed (as a state component), or is often referred to (as a context 
component), be made into a variable component. Thus, a suggestion is to 
maintain the following variables: (i) the static segments, (ii) the dynamic 
segments, (hi) the static connectors, (iv) the dynamic connectors, and (v) the 
graph of the network (i.e., the structure part of the net). Based on these five 
variables redefine the operations mentioned in items 3-5 of Exercise 19.4. 

Exercise 20.5. X An Imperative Domain Model of Container Logistics. We 
refer to Appendix A, Sect. A.2, Container Logistics. 

We refer to Exercise 19.5. Please read the problem formulation of that 
exercise carefully. 

You are basically asked to repeat Exercise 19.5, but now on the basis of 
an imperative state. We suggest that any configuration component that is 
either changed (as a state component), or is often referred to (as a context 
component), be made into a variable component. Thus, a suggestion is to 
maintain the following gloabal state variables: ships, the container storage 
area of a specific container terminal, and the quay of that terminal. Based 
on these three variables redefine the operations mentioned in items 3-11 of 
Exercise 19.5. 

Exercise 20.6. X An Imperative Domain Model of Financial Service Indus­
tries. We refer to Appendix A, Sect. A.3, Financial Service Industry. 

We refer to Exercise 19.6. Please read the problem formulation of that 
exercises carefully. 

You are basically asked to repeat Exercise 19.6, but now on the basis of 
an imperative state. We suggest that any configuration component that is 
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either changed (as a state component), or is often referred to (as a context 
component), be made into a variable component. Thus, a suggestion is to 
maintain the following variables: client catalogue, account catalogue and ac­
counts. Based on these three global state variables redefine the operations 
mentioned in items 1-2 of Exercise 19.6. 



21 

Concurrent Specification Programming 

• The prerequisites for studying this chapter are that you have understood 
most, if not all, of what has been covered in previous chapters and you are 
interested in modelling concurrent behaviours. 

• The aims are to motivate and introduce both simple CSP and the RAISE 
version of CSP, RSL/CSP, and to show a number of principles and techniques 
for modelling concurrent behaviours using RSL. 

• The objective is to set the reader firmly on the road to modelling con­
current systems such as distributed systems, client/server systems, etc. 

• The treatment is semiformal. 

In this chapter we introduce a notation for expressing parallelism (also called 
concurrency): First we present a pure notation, a formal language, CSP: Com­
municating Sequential Processes [288,289,448,456]. Then we present this no­
tation's embedding in RSL. 

Characterisation. By concurrent programming we shall understand pro­
gramming with processes as a central notion: where processes are combined 
(in parallel) to form concurrent processes, where synchronous or asynchronous 
interaction between processes can be specified, and so on. • 

Characterisation. By parallel programming we mean the same as concur­
rent programming. • 

Characterisation. By concurrent specification programming we shall un­
derstand an abstract, property-oriented form of concurrent programming, one 
in which (relative or absolute) progress of processes is left unspecified, where 
choice between actions of proceses can be left unspecified (i.e., nondetermin-
istic), and in which we deploy abstract types, and so on. • 

In Vol. 2, Chaps. 12-14 we shall introduce three sets of predominantly 
graphical notations: Petri Nets [313,421,435^437], Message Sequence Charts 
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[302-304] and Live Sequence Charts [171,270,325], and Statecharts [265,266, 
268,269,271]. 

In this chapter we bring in a number of principles and techniques for mod­
elling concurrent behaviours and the interaction between behaviours. We do 
so in a number of steps: First, in Sect. 21.1, we informally examine some basic 
notions of behaviours. Then, in Sect. 21.2, on a per intuition basis, we present 
some behaviour scenarios and show their possible formalisation using RSL's 
CSP sublanguage. But this sublanguage is not formally introduced. Follow­
ing that, in Sect. 21.3, we present the "bare bones" of CSP. After all these 
preliminaries we introduce, more systematically, the RSL/CSP sublanguage in 
Sect. 21.4, and, in Sect. 21.5, we suggest a calculus for transforming applica­
tive, respectively imperative, RSL specifications into RSL/CSP specifications. 
In Vol. 2, Chap. 15 we cover extensions to the RSL/CSP sublanguage. These 
allow us to deal with "real time" and with time durations. Throughout we 
present many examples. 

21.1 Behaviour and Process Abstractions 

Characterisation. Behaviour is defined in Merriam-Webster's Collegiate 
Dictionary [373]: (i) the manner of conducting oneself, (ii) anything that an 
organism does involving action and response to stimulation, (Hi) the response 
of an individual, group, or species to its environment, (iv) the way in which 
someone behaves, an instance of such behavior, (v) the way in which something 
functions or operates. • 

By behaviour we shall understand the organism to be anything spanning from 
a human, via any phenomena in "Mother Nature", to an interpreter or a 
machine or a computer. 

Characterisation. Merriam-Webster [373] defines process as (i) a natural 
phenomenon marked by gradual changes that lead toward a particular result, 
(ii) a natural continuing activity or function, (Hi) a series of actions or oper­
ations conducing to an end, or more particularly (iv) a continuous operation 
or treatment especially in manufacture. • 

We shall, more or less, take the two terms, 'behaviour' and 'process', as be­
ing synonymous. The only difference is a pragmatic one: When we use the 
term 'behaviour' we refer to an as yet unanalysed, hence not yet formalised, 
but otherwise precisely described understanding of some actual-world phe­
nomenon. And when we refer to the term 'process' we refer to an analysed, 
precisely narrated and/or formalised specification of a behaviour, typically as 
we expect it to be more or less implemented by computer. 
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21.1.1 Introduction 

Entities are the "things" we can point to: bank accounts, trains, timetables, 
people, rail nets, etc.. Entities can be subject to actions: queries concerning 
(i.e., observations of) their state, i.e., predicates and functions (viz.: account 
balance, train speed, journey duration, etc.); and also operations that possibly 
alter their states, i.e., generator functions (viz.: deposit, accelerate, resched­
ule, etc.). 

Any particular entity can be seen from the point of view of the sequences 
of actions that apply to it (viz.: open account, alternation of one or more 
deposits into or one or more withdrawals from the account, ended by a close 
account). Such a sequence of actions may, for certain actions in the sequence, 
involve two or more entities for which other action sequences are defined 
(viz.: transfer between accounts, running train according to timetable sched­
ule, etc.). We therefore see that action sequences may interact. In this section 
we shall investigate means for describing interaction sequences, or as they are 
also called, behaviours or processes. That is, we shall otherwise — with the 
above caveat in mind — in general, treat the two terms behaviour and process 
synonymously. 

There are many examples in this chapter. You may wish to "scan" the 
section to get an immediate, informal grasp of the ideas discussed in it. The 
various forms of text between the examples — section, paragraph and other 
headers, definitions, comments, principles, techniques and other text — should 
reasonably directly inform you! 

21.1.2 On Process and Other Abstractions 

In abstraction and in modelling we have at our disposal a number of ab­
straction styles. These are either property-oriented (cf. Sect. 12.2) or model-
oriented (cf. Sect. 12.4). Within the former we usually speak of algebraic or 
axiomatic (cf. Sects. 8.5, respectively 9.6) abstractions. Axiomatically and 
algebraically expressed models differ less materially than do denotationally 
and computationally expressed models. Within the latter we can distinguish 
between denotation abstraction (cf. Vol. 2, Sect. 3.2) and computation ab­
straction (cf. Vol. 2, Sect. 3.3). 

In this section we shall introduce yet another form of abstraction and mod­
elling: it is operational (as are computation models). Do not confuse operation 
abstraction with operational abstraction. In operation abstraction we abstract 
individual (usually basic, i.e., primitive) operations (i.e., functions and predi­
cates) over abstracted entities. In operational abstraction we focus upon, but 
do not necessarily detail, specific sequences of operations of a system. 

Denotation abstraction (Vol. 2, Chap. 3, Sect. 3.3.3) was first introduced 
around 1970 in order to model the meaning of computer programs, typically 
of imperative languages. The denotation of a computer program is then seen 
as some mathematical function. Denotation abstraction can, however, also be 
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applied to other than computing concepts. We shall elsewhere in these volumes 
illustrate the denotation abstraction of facets of banks, aspects of railways, 
etc. 

Computation abstraction (Vol. 2, Chap. 3, Sect. 3.3.3) was likewise first 
introduced around 1964 in order to model abstract executions of computer 
programs. The term computation abstraction emphasises the concept com­
putation. In the actual world we may not think of some phenomena as com­
putations, but rather as sequences of actions. In this case we prefer to use 
the term operational abstraction when modelling the sequence aspect of these 
sequences of actions. 

When seemingly independent, concurrently operating phenomena (i.e., 
processes) occasionally interact, and when we wish to model both the con­
currency and the interaction, then we apply process abstraction. So process 
abstraction is a more general form of operational abstraction. Several tools 
and techniques are offered for the modelling of processes: 

• The CSP-oriented techniques and tools where a system of processes is de­
fined in terms of abstract, textual programs (Sects. 21.2-21.4). Seminal 
references to CSP are [288,289,448,456]. 

• The Petri net-oriented techniques and tools, where a system of processes 
is defined in terms of a diagrammatic net of places, transitions and tokens 
(Vol. 2, Chap. 12 and [313,421,435-437]). 

• The statechart-oriented techniques and tools, where a system of processes 
is defined in terms of a diagrammatic net of iteratively embedded groupings 
of boxes of state machines with transitions between states and or boxes 
(Vol. 2, Chap. 14 and [265,266,268,269,271]). 

• The live sequence chart-oriented techniques and tools by means of which 
statecharts are "glued" together and external protocols are imposed on 
otherwise "freely" occurring ("external") events (Vol. 2, Chap. 13 and 
[171,270,325]). 

In this chapter we shall exclusively illustrate some process concepts using the 
CSP-approach — couched, however, in the RSL/CSP subset. 

21.2 Intuition 

We shall discuss the behaviour (i.e., the process) concepts of this chapter. 

21.2.1 Illustrative Rendezvous Scenarios 

In this section we shall attempt to motivate and illustrate the notion of pro­
cesses as partially independent, but interacting phenomena. In doing so we 
shall be introducing both informal, graphic and formal, textual notation. The 
formal (in this case some variant of CSP) notation will not (yet) be formally 
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introduced — only by way of annotated examples. There will be many exam­
ples. We start by relating some scenarios. 

Example 21.1 Four Rendezvous Scenarios: We present a number of scenar­
ios. Their purpose is to let us introduce a number of process concepts and, 
informally, notation to go with these. 

(1) One sender, one receiver. Two persons, P and Q, walk in opposite 
directions down a street, towards each other. One person, say P, carries a 
letter for the other person, Q. Some previous agreement, i.e., a protocol, has 
been established between the two persons that an exchange of a letter is to 
take place.1 They walk, most likely, at different and, in any case, unpredictable 
speeds. The speeds may vary, and they may be zero. The letter deliverer and 
the letter receiver are willing to hand over, resp. to receive, i.e., to 'relay', the 
letter at any point. As they are walking, the two persons are not performing 
any activities other than walking and being willing to 'relay'. And as they 
meet — i.e., as they rendezvous — the delivering person "hands over" the 
letter which is simultaneously received by the receiving person. After they 
have relayed the letter they both walk on in their respective directions. 

If either P or Q refuses to walk, then the combined process fails, i.e., 
deadlocks. 

ru c 

f~Q^ 

IJ^J 
,—-

ii^Y 
\ly 
!r^> 
\ly 

if7> 
\[y 

'—1̂ —1 

D 

•—i^—i 

D 
• 
• 
• 

D 
.—>— 

N 

1 r~p\ cp ^ M ^ cq &) 

1 : 4 Mailbox 

2 j 3 

nl iv LJ j LJ 

0 

o 
> 

• 
• 
• 

o 

.—-

^ l ' i 
Udi 

^ 
Udi 

fT 
l«J.i 

Fig. 21.1. Four schematic "rendezvous" classes 

xThe compositional aspects of each of the four kinds of "rendezvous" classes 
of the diagrams of Fig. 21.1 and of the four corresponding formal specifications 
"embody" this "agreement". 
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Variants on the scenario above could be: 
(2) Any sender, one receiver. The letter sender may be any one of a 

number of willing persons, Pi, P2, . . . , P m , but the letter, and then at most 
one, is receivable only by a specific person Q, say standing still on the street. 
We consider Pi, P2, . . . , P m and Q as being processes. The various Pi are 
walking, each at their own speed, as was P in the previous scenario, but now 
in any direction, up or down, the street, and hence meeting Q sooner or later 
— with the first one so meeting delivering the letter. 

If either Q refuses, or all P« refuse to walk, then the combined process fails, 
i.e., deadlocks. 

(3) One sender, any receiver. The letter sender, P, is thought of as a 
fixed person, say standing still on the street, but the letter may be received 
by the "first" of a number of willing recipients, Qi, Q2, . . . , Qn- We consider, 
i.e., we abstract P, Qi, Q2, . . . , and Qn as being processes. The various Q̂  are 
walking, each at their own speed, as was Q in the previous scenario, but now 
in any direction, up or down, the street, and hence meeting P sooner or later 
— with the first one so meeting receiving the letter. 

If either P refuses, or all Q̂  refuse to walk, then the combined process fails, 
i.e., the combined process fails, or deadlocks. 

(4) Send/receive via a mailbox. Letters are posted in an at most one 
letter capacity mailbox, M, by a sender, or any number of senders, and re­
trieved from that mailbox by a receiver, or any number of receivers. We con­
sider Pi, P2, . . . , P m Qi, Q2, . . . , Qn and M as being processes. 

If no Pi puts a letter in the mailbox, then any Qj attempting to fetch the 
letter deadlocks. 

• • • 

Cyclic versions of the initial scenario and the three subsequent variations 
described above are illustrated in Fig. 21.1's respective four cases: 1-4. By 
a cyclic version we mean one in which we model the repeated behaviour: 
Scenarios (1-4) are repeated indefinitely. Thus scenario (1) could be rephrased: 
The same person P, after having delivered the letter to person Q, starts all over 
again, possibly after some other activities which we do not detail, i.e., from 
which we abstract, walking down the same street with a new letter for person 
Q, where that person again is ready, possibly after some other activities which 
we do not detail, i.e., from which we abstract, to receive a letter and indicates 
this willingness by again walking down that street! Similar rewordings can be 
made for scenarios 2-4. 

We will explain the graphics of Fig. 21.1. For simplicity and generality we 
have shown all processes as rounded-edge boxes with arrows. 

The thick line of the rounded-edge boxes is intended to designate a cyclic 
sequence of actions including the event-causing actions. The arrows are in­
tended to show direction of execution (black) or communication (white). (We 
either place the arrows on or next to the action list or channel; and we either 
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show these arrows for all instances or summarise them meaningfully, the lat­
ter as in case 3.) The horizontal bars "touching" ("overlapping") two or more 
boxes are intended to show synchronisation and communication rendezvous. 
The tiny rectangles (Q) along the rendezvous of parts 2 and 3 are intended to 
show nondeterministic choice as to from which of the (2) P's (3, Q's) Q (resp. 
P) will accept input. In part 4 the mailbox process M alternates between 
being ready to receive a letter from P and delivering that letter to Q. The 
four "box and arrow" diagrams of Fig. 21.1 correspond to the four sets of ab­
stract process (i.e., function) definitions of the below Schematic "Rendezvous" 
Specifications 1-2-3 and Schematic "Rendezvous" Specification 4. 

Schematic "Rendezvous" Specifications 1—2—3 

type Info 
channel c,cp,cq:Info 
value 

P: Unit - • out c Unit 
P() = let i = write_letter() in c ! i end ; P() 

Q: Unit —> in c Unit 

QQ = let i = c ? in readJetter(i) end ; Q() 

write_letter: Unit —> Info, read-letter: Info —> Unit 

SI: Unit - • Unit, Sl() = P() || Q() 
S2: Nat Unit -> Unit, S2(m) = || { PQ | x:{l..m} } || QQ 
S3: Nat Unit - • Unit, S3(n) = P() || (|| { Q() | x:{l..n} }) 
Process Si is the parallel composition (||) of processes P and Q. Process 

S2 is the parallel composition of process Q with the parallel, distributed com­
position of processes P, one for each index set l..m. Process S3 is the parallel 
composition of process P with the parallel, distributed composition of pro­
cesses Q, one for each index set l..n. 

Info is the type of the information contained in the letter, c is what is 
known as a channel between P and Q in parts 1-3. Channels allow pairs 
of processes to share events; cp and cq are the channels between P and M, 
respectively between M and Q. P writes a letter, hands it over on channel c 
to Q — as prescribed by the output [!] / input [?] pair (c ! i,c ?). 

This is true in all parts 1-3. In part 1 it is simply so: Two processes (P 
and Q) share channel c, and thus share events. In part 2 many (m) processes 
P share the same channel c with one process Q. Q will not know which of the 
m P processes sent the letter to Q. In part 3 many (n) processes Q share same 
channel c with one process P. P will not know which of the n Q processes 
received the letter. All P and Q processes are cyclic: P produces letters, and 
Q consumes letters. They both cycle for each production, resp. consumption. 
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S c h e m a t i c " R e n d e z v o u s " Speci f icat ion 4 

S4: U n i t -> U n i t , S4() = P'() || M() || Q'() 

P': U n i t - • out cp U n i t 
P'() = let i = write_letter() in cp ! i e n d ; P'() 

M: U n i t —> in cp out cq U n i t 
M() = let i = cp ? in cq ! i e n d ; M() 

Q': U n i t —> in cq U n i t 
Q'Q = let i = cq ? in read-letter(i) e n d ; Q'() 

Process P' now sends (i.e., drops) the letter to (i.e., in) mailbox M. The relation 
between P' and M is as between P and Q in part 1. Process q now receives 
(i.e., fetches) the letter from mailbox M. The relation between M and Q' is 
as between P and Q in par t 1. Process M is a one-item buffer, it alternates 
between receiving and sending. It recycles for each pair of receive-sends. • 

21 .2 .2 D i a g r a m and N o t a t i o n S u m m a r y 

Example 21.1 thus served as more than just an example: It also, in a serious 
yet informal, manner introduced core concepts of CSP and hence RSL/CSP. 
As such, the reader is very strongly advised to study tha t example carefully. 

So we have introduced the concepts of processes and their "rendezvous" 
output (!) and input (?) synchronisation and communication. We have sketched 
informal ways of picturing process structures (cf. Fig. 21.1); and we have in­
formally shown formal notations (Figs. 21.1 and 21.1). Before going on to 
a more systematic, formal introduction of a (so-called "pure") notation for 
[T]CSP [288,448,456] and the corresponding CSP-like notation for the pro­
cess concepts of RSL [236,238], in Sects. 21.3 and 21.4, we will further review, 
illustrate and thus motivate the CSP process concepts. 

21 .2 .3 O n a Trace S e m a n t i c s 

In this section we provide a very rough sketch of a possible semantics of a 
CSP-like language. For authoritat ive, and certainly more proper, accounts of 
such semantics we refer to [288,448,456]. 

Actions change the da ta as well as the control s ta te 2 and are thought 
of as taking place instantaneously, i.e., with no observable time duration. 

2By a data state we understand "something" that records and remembers the 
values of various usually named data items, like a storage. By a control state we 
understand the interpreter's awareness of the point in a program cum specification 
text which is being interpreted by the interpreter. 
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Processes, from one viewpoint, can be said to be sequences of actions. Events 
are phenomena that also take place instantaneously, but which, in and by 
themselves, do not change the data state, but (usually) cause actions to take 
place, i.e., be "triggered", thereby changing the control state. Processes, from 
another viewpoint, can be said to be sequences of events and — if causing 
actions — then possibly also sequences of actions. A process can exchange 
information with another process through what we shall call synchronised 
events (Fig. 21.2). Systems may consist of many processes synchronising on 
events and exchanging (communicating) information during such synchronised 
'rendezvous'. 

:Q 

action aPj 

event aPj+1 

action aPj+2 

action aPm 

e( i ) 
aQk action 

aQk+1 event 

aQk+2 action 

aQn action 

Processes P and Q Rendezvous 

to cause Event e(i) after respective 

execution of Actions aPj, resp. aQk 

Fig. 21.2. Stylised "rendezvous" situation 

The behaviour of systems can, for example, be the set of sequences (traces) 
of externally observable events, or can, more generally, be the set of traces of 
both externally and internally observable events. 

For the conceptual example of Fig. 21.2 the system is that of the parallel 
(||) combination of processes P and Q: P||Q. The external behaviour is: {(e(i))}. 
The internal behaviour — expressed, as above, in some metalinguistic notation 
— is: 

{{( aPl , . . . , aPj ) x ( aQl, . . . , aQk )} 
~<{aPj+l ,e( i) , aQk+1 }>~ 
{( aPj+2, . . . , aPm ) tx ( aQk+2, . . . , aQn )}}. 

The expression means: any interleaved and/or concurrent string (ex) of P and 
Q actions from 1 up to j , respectively k, then the composite action/event, 
{aPj+l,e(i),aQk+l}, and then any interleaved and/or concurrent string (ix) 
of P and Q actions from j+2 up to m, respectively k+2 up to n. The external 
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behaviour is the internal behaviour "minus" all the actions (being projected 
"away"). 

Example 21.2 Some Trace Semantics: Let there be given the following three 
processes composed into one overall process: 

type 
M 

channel 
pq: M, qr: M 

value 
S: Unit - • Unit 
P: Unit —> out pq Unit 
Q: Unit —> in pq, out qr Unit 
R: Unit —> in qr Unit 

S() = P() || Q() || R() 

P() = al ; pq!m ; a2 ; PQ 
QQ = bl ; let m = pq? in qr!m end ; b2; Q() 
R() = cl ; qr ? ; c2 ; R() 

Traces observed of P, Q and R are: 

V: (al;pq!m;a2;al;pq!m;a2;al;pq!m;a2;al;...) 
Q: (bl;pq?;qr!m;b2;bl;pq?;qr!m;b2;bl;pq?;qr!m;b2;bl;...) 
1Z: (cl;qr?;c2;cl;qr?;c2;cl;qr?;c2;cl;...) 

Traces potentially observable of S are: 

S: {(al;bl;cl;{pq!m||pq?};a2;{qr!m||qr?};b2;{pq!m||pq?};c2;...), 
(al;bl;cl;{pq!m||pq?};{qr!m||qr?};a2;b2;{pq!m||pq?};c2;...), 
(al;bl;{pq!m||pq?};cl;{qr!mjjqr?};a2;c2;b2;{pq!m||pq?};...>, 

21.2.4 Some Characterisations: Processes , Etcetera 

One way of expressing the meaning of a process expression, that is, an expres­
sion which contains communication primitives such as output (c!e) and input 
(c?), is to express it as a set of traces of observable (output/input) events. 

Characterisation. By a process we (semantically) mean a trace. • 

Characterisation. By a process definition we syntactically mean a function 
definition, and semantically a set of traces. • 
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Character isa t ion. By concurrent processes we mean a set of two or more 
processes. • 

It makes little sense to speak of one concurrent process. But we can talk 
of one process, namely a sequential occurrence of some actions. 

Character isa t ion. By the global process environment we mean the sur­
roundings with which the process may interact, i.e., share in events, but ex­
cluding other defined and channel-connected processes. • 

Characterisation. By a process environment we mean the set of other pro­
cesses and the global surroundings from which the process may receive input 
and (or) to which it may deliver output, that is, with which the process may 
interact, i.e., share in events. • 

Characterisation. By an event we mean a process event, the occurrence of 
an input (from the environment, including another process) or an output (to 
the environment, including another process) or both. The latter designates an 
internal event. • 

We shall later distinguish between internal (or local) and external (global) 
events, and hence between observable and nonobservable events. 

Character isa t ion. By an externally observable process trace, or just an ex­
terna] trace, we mean a sequence of process events. • 

In addition to events one could, as was mentioned earlier, include as part 
of traces the occurrence of certain non-input/non-output actions. We shall 
refrain from doing so. 

21.2.5 Principle of Process Modelling 

So when do we choose to introduce processes into our models? The answer is 
not that straightforward. We can indeed model processes without introducing 
the explicit process (channel, output, input) notation so far informally illus­
trated, for example, by nondeterministically defined transition functions over 
configurations that contain set- or map-oriented values whose elements model 
the control state of individual processes. 

Principles. Process Modelling: We choose to model, in terms of processes 
and events, phenomena in the real world, i.e., "in some application domain", 
or in computing, when we wish to emphasise concurrently interacting compo­
nents, that is, how they synchronise and communicate. • 
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Components = Processes 

The concept of component3 is perhaps the one that we will rather assume for 
granted. However: 

Characterisation. By a component we shall loosely understand a structured 
set of [variable or constant] (i) values [modelling certain nouns], (ii) predicates, 
[observer] functions and [generator] operations over these [modelling certain 
verbs], (hi) and events that stand for willingness to "communicate", i.e., to 
accept and/or present values to other components, including that of an "out­
side" [external] world. • 

In this sense a component becomes synonymous with what we shall now call 
a process. The concept of 'object', as in object-oriented programming [1] and 
[376-378], is sometimes used where we here use the term component — or 
"our" notion of 'component' is (then) a set of such objects (object modules). 
We shall, in Vol. 2, Chap. 10, elaborate more on object-oriented specification 
and the relationship between our concept of component (i.e., process or process 
definition) and that of the more commonly accepted use of objects and object-
orient edness. Meanwhile, let us consider some component examples. 

21.2.6 Informal Examples 

Example 21.3 Atomic Component — A Bank Account: When we informally 
speak of the phenomena that can be observed in connection with a bank 
account, we may first bring up such things as: (i) The balance (or cash, a 
noun), the credit limit (noun), the interest rate (noun), the yield (noun); and 
(ii) the opening (verb) of, the deposit (verb) into, the withdrawal (verb) from 
and the closing (verb) of an account. Then we may identify (iii) the events 
that trigger the opening, deposit, withdrawal and closing actions. We may 
thus consider a bank account — with this structure of (i) values, (ii) actions 
(predicates, functions, operations), and (iii) ability to respond to external 
events (to open, to deposit, etc.) — to be a component, i.e., a process. • 

Components are either atomic or composite. In the latter case we can — often 
more or less arbitrarily — show a decomposition of a component into two or 
more subcomponents. 

Example 21.4 Composite Component — A Bank: Likewise, continuing the 
above example, we can speak of a bank as consisting of any number of bank 
accounts, i.e., as a composite component of proper constituent bank account 
components. Other proper constituent components are: the customers (who 
own the accounts), the bank tellers (whether humans or machines) who ser­
vices the accounts as instructed by customers, etc. • 

3We shall later, in Vol. 3, Chaps. 26-27, present a more general concept of com­
ponent. 
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In the above we have stressed the "internals" of the atomic components. When 
considering the composite components we may wish to emphasise the inter­
action between components. 
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Fig. 21.3. A fifth schematic "rendezvous" class 

Example 21.5 One-Way Composite Component Interaction: We illustrate 
a simple one-way client-to-account deposit. A customer may instruct a bank 
teller to deposit monies handed over from the customer to the bank teller into 
an appropriate account, and we see an interaction between three "atomic" 
components: the client(s), the bank teller(s) and the account(s). 

This scenario is very much like part 4 in Fig. 21.1, see also Fig. 21.3. 
Figure 21.3 shows a set of distinct client processes. A client may have one 
or more accounts and clients may share accounts. For each distinct account 
there is an account process. The bank (i.e., the bank teller) is a process. It 
is at any one time willing to input a cash-to-account (a,d) request from any 
client (c). There are as many channels into (out from) the bank process as 
there are distinct clients (resp. accounts). 

Using formal notation we can expand on the informal picture of Fig. 21.3. 

type 
Cash, Cash, Cidx, Aidx 

channel 
{ cb[c]:(AidxxCash) | c:Cidx } 
{ ba[a]:Cash | a:Aidx } 

value 
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S5: Unit - • Unit 
S5() = Clients() || B() || Accounts() 

Clients: Unit —> out { cb[c] | c:Cidx } Unit 
Clients() = || { C(c) | c:Cidx } 

C: c:Cidx —> out cp[c] Unit 
C(c) = let (a,d):(AidxxCash) = ... in cb[c] ! (a,d) end ; C(c) 

type 
A_Bals = Aindex ^ Cash 

value 
abals: A_Bals 

Accounts: Unit -» in { ba[a] | a:AIndex } Unit 
AccountsQ = || { A(a,abals(a)) | a:AIndex } 

A: a:Aindex x Balance —> in ba[a] Unit 
A(a,d) = let d' = ba[a] ? in A(a,d+d') end 

B: Unit -)> in { cb[c] | c:Cidx } out { ba[a] | a:Aidx } Unit 
B() = D {let (a,d) = cb[c] ? in ba[a] ! d end | c:Cidx} ; B() 

We comment on the deposit example. With respect to the use of notation 
above, there are Cindex client-to-bank channels, and Aindex bank-to-account 
channels. The banking system (S5) consists of a number of concurrent pro­
cesses: Cindex clients, Aindex accounts and one bank. From each client process 
there is one output channel, and into each account process there is one in­
put channel. Each client and each account process cycles around depositing, 
respectively cashing monies. The bank process is nondeterministically willing 
(D) to engage in a rendezvous with any client process, and passes any such 
input onto the appropriate account. 

Generally speaking, we illustrated a banking system of many clients and 
many accounts. We only modelled the deposit behaviour from the client via 
the bank teller to the account. We did not model any reverse behaviour, for 
example, informing the client as to the new balance of the account. So the 
two bundles of channels were both one-way channels. We shall later show an 
example with two-way channels. • 

Example 21.6 Multiple, Diverse Component Interaction: We illustrate com­
posite component interaction. At regular intervals, as instructed by some ser­
vice scripts associated with several distinct kinds of accounts, transfers of 
monies may take place between these. For example, a regular repayment of a 
loan may involve the following components, operations and interactions: An 
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appropriate repayment amount, p, is communicated from client k to the bank's 
script servicing component se (3).4 Based on the loan debt and its interest 
rate (d.ir) (4), and this repayment (p), a distribution of annuity (a), fee (f) 
and interest (i) is calculated.5 The loan repayment sum total, p, is subtracted 
from the balance, b, of the demand/deposit account, dd_a, of the client (5). 
A loan service fee, f, is added to the (loan service) fee account, f_a, of the 
bank (7). The interest on the balance of the loan since the last repayment is 
added to the interest account, La, of the bank (8), and the difference, a, (the 
effective repayment), between the repayment, p, and the sum of the fee and 
the interest is subtracted from the principal, p, of the mortgage account, m_a, 
of the client (6). 

In process modelling the above we are stressing the communications. As 
we shall see, the above can be formally modelled as below. 

Client: k 

Client 
Accounts 

Bank Service: se 

d 

\ ' 

r 8 

V ) 

sys() = k() II se() II dd_a() II m_a() II f_a() II i_a() 

Fig. 21.4. A loan repayment scenario 

Bank 
Accounts 

Demand 
Deposit 
dd_a 

Mortgage 
m_a 

Fee: f_a 

Interest: i_a 

4For references (3-8) we refer to Fig. 21.4. 
5See line four of the body of the definition of the se process below. 
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type 
Monies,Deposit,Loan, 
Interest_Income,FeeJncome = Int, 
Interest = Rat 

channel 
cp,cd,cddp,cm,cf,ci:Monies, cmi:Interest 

value 
sys: Unit —> Unit, 
sys() = se() || k() || dd_a(b) || m_a(p) || f_a(f) || i_a(i) 

k: Unit —> out cp,cd Unit 

(let p:Nat • /* p is some repayment, 1 */ in cp ! p end 

n 
let d:Nat • /* d is some deposit, 2 */ in cd ! d end) 

;k() 

se: Unit —> in cd,cp,cmi out cddp,cm,cf,ci Unit 
se() = 

((let d = cd ? in cddp ! d end) /* 1,2 */ 

D 
(let (p,(ir,f)) = (cp ?,cmi ?) in /* 3,4 */ 
let (a,f,iv) = o(p/,ir) in 
(cddp ! (—p) || cm ! a || cf ! f || ci ! iv) end end)) /* 5,6,7,8 */ 

;se() 

dd_a: Deposit -» in cddp Unit 
dd_a(b) = dd_a(b + cddp ?) /* 2,5 */ 

m_a: Interest x Loan —> out cmi in cm Unit 
m_a(ir,^) = cmi ! (ir,^) ; m_a(ir,^— cm ?) /* 4;6 */ 

La: FeeJncome —> in cf Unit 
f_a(f) = f_a(f + cf ?) /* 7 */ 

i_a: Interest Income —> in ci Unit 
i_a(i) = i_a(i + ci ?) /* 8 */ 

The formulas above express: 

• The composite component, a bank, consists of: 
• a customer, k, connected to the bank (service), se, via channels cd, cp 
• that customer's demand/deposit account, dd_a, connected to the bank 

(service) via channels cdb, cddp 
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• that customer's mortgage account, m_a, connected to the bank (service) 
via channel cm 

• a bank fees income account, f_a, connected to the bank (service) via 
channel cf 

• a bank interest income account, La, connected to the bank (service) 
via channel ci 

• The customer demand/deposit account is willing, at any time, to nonde-
terministically engage in communication with the service: either accepting 
(?) a deposit or loan repayment (2 or 5), or delivering (!) information about 
the loan balance and interest rate (4). 

• We model this "externally inflicted" behaviour by (what is called) the 
external nondeterministic choice, | ] 6 , operation. 

• The service component, in a nondeterministic external choice, [], either 
accepts a customer deposit (cd?) or a mortgage payment (cp?). 

• The deposit is communicated (cddpld) to the demand/deposit account 
component. 

• The fee, interest and annuity payments are communicated in parallel (||) 
to each of the respective accounts: bank fees income (cf !f), bank interest 
income (ci!i) and client mortgage (cm!a) account components. 

• The customer is unpredictable, may issue either a deposit or a repayment 
interaction with the bank. 

• We model this "self-inflicted" behaviour by (what is called) the internal 
nondeterministic choice, |~|7, operation. 

Characterisation. By a nondeterministic external choice we mean a non-
deterministic decision which is effected, not by actions prescribed by the text 
in which the [] operator occurs, but by actions in other processes. That is, 
speaking operationally, the process honouring the \\ operation does so by 
"listening" to the environment. • 

Characterisation. By nondeterministic internal choice we mean a nondeter­
ministic decision that is implied by the text in which the \\ operator occurs. 
Speaking operationally, the decision is taken locally by the process itself, not 
as the result of any event in its surroundings. • 

21.2.7 Some Modelling Comments — An Aside 

Examples 21.5 and 21.6 illustrated one-way communication, from clients via 
the bank to accounts. Example 21.5 illustrated bank "multiplexing" between 

6See the definition of what is meant by nondeterministic external choice right 
after this example. 

7See the definition of what is meant by nondeterministic internal choice right 
after this example. 
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several (m) clients and several (n) accounts. Example 21.6 illustrated a bank 
with just one client and one pair of client demand/deposit and mortgage 
accounts. Needless to say, a more realistic banking system would combine the 
above. Also, we have here chosen to model each account as a process. It is 
reasonable to model each client as a separate process, in that the collection 
of all clients can be seen as a set of independently and concurrently operating 
components. To model the large set of all accounts as a similarly large set of 
seemingly independent and concurrent processes can perhaps be considered a 
"trick": It makes, we believe, the banking system operation more transparent. 
In the next — and final — example of this introductory section we augment 
the first example with an account balance response being sent back from the 
account via the bank to the client. 

21.2.8 Examples Continued 
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Fig. 21.5. Two-way component interaction 

Example 21.7 Two-Way Component Interaction: The present example 
"contains" that of the one-way component interaction of Example 21.5. Each 
of the client, bank and account process definitions are to be augmented as 
shown in Fig. 21.5 and in the formulas that follow (cf. Fig. 21.3 and the 
formulas in Example 21.5). 
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type 
Cash, Balance, CIndex, AIndex 
CtoB = AIndex x Cash, 
BtoC = Balance, 
BtoA = Cindex x Cash, 
AtoB = Cindex x Balance 

channel 
cb[l..m] CtoB|BtoC, ba[l..n] BtoA|AtoB 

value 
S6: Unit - • Unit 
S6() = 

|| { C(c) | c:CIndex } || B() || 
|| { A(a,b,r) | a:AIndex, b:Balance, r:Response • ... } 

C: c:CIndex -» out cp[c] Unit 
C(c) = 

let (a,d):(AIndexxCash) = ... in 
cb[c] ! (d,a) end let r = cb[c] ? in C(c) end 

B: Unit —> in,out {cb[c]|c:CIndex} in,out {ba[a]|a:AIndex} Unit 
B() = 0 {let (d,a) = cb[c] ? in ba[a] ! (c,d) end | c:Cindex} Q 

Q {let (c,b) = ba[a] ? in bc[c] ! b end | a:Aindex} ; B() 

A: a:Aindex x Balance -> in,out ba[a] Unit 
A(a,b) = let (c,m) = ba[a] ? in ba[a] ! (m+b) ; A(a,m+b) end 

We explain the formulas above. Both the C and the A definitions specify pairs 
of communications: deposit output followed by a response input, respectively 
a deposit input followed by a balance response output. Since many client de­
posits may occur while account deposit registrations take place, client identity 
is passed on to the account, which "returns" this identity to the bank — thus 
removing a need for the bank to keep track of client-to-account associations. 
The bank is thus willing, at any moment, to engage in any deposit and in any 
response communication from clients, respectively accounts. This is expressed 
using the nondeterministic external choice combinator \\. • 

21.2.9 Some System Channel Configurations 

We have seen, so far, a number of configurations of channels and processes. 
Figure 21.6 attempts to diagram a few generic configurations of processes and 
channels. There may be channels between P, Q, Pj and Qi processes and other 
(non-P, etc., and non-Q, etc.) processes, but they are not shown. We shall 
comment on each of these configurations: 
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[A] An event (a synchronisation and communication) between P and some 
Qi prevents any other such event for the duration of the P — Qi event. 
Any other Qj process (for j ^ i) may engage in other events with other 
processes, or own actions during the P — Qi event. 

[B] An event (a synchronisation and communication) between P and Qi pre­
vents any other Qj from engaging in an event with P for the duration of 
the P — Qi event. Any other Qj process (for j ^ i) may engage in other 
events with other non-P processes, or own actions during the P—Qi event. 

[C] An event (a synchronisation and communication) between some Pj and 
some Qi prevents any other such P& — Qi event for the duration of the 
Pj — Qi event. Any other P& and Qt processes (for k ^ j and j ^ i) may 
engage in other events with other non-P and non-Q processes, or own 
actions during the Pj — Qi event. 

[D] An event (a synchronisation and communication) between some Pj and 
some Qi prevents any other Pj — Qj* event for the duration of the Pj-Qi 
event, but does not prevent a Pi — Qk event for £ ^ i and k ^ j . Etcetera. 
Please analyse other possible process engagements yourself! 

[E] Etcetera. Please analyse the diagram yourself! 

We leave it as an exercise to provide schemas for each of the five cases ([A-E]) 
above (see Exercise 21.1). 

21.2.10 Concurrency Concepts — A Summary 

Characterisation. Events are atomic and instantaneous; they "occur". E-
vents are basic (primitive) elements of processes. Processes are, from a certain 
level of abstraction, composed from events. Events are used to mark impor­
tant points in the (temporal or partially ordered) history of a system (i.e., a 
process). Typically events may stand for a process having reached a certain 
control (and data) state (a summary of past actions), or for some undefined 
(or undefinable) environment spontaneously wishing to interact, that is, syn­
chronise and communicate with some process. • 

Characterisation. A sequential process is an ordered (i.e., sequential) set of 
operations (i.e., actions) on a data state. (Many processes will be cyclic.) Some 
actions may simply change a data state. Others may cause the synchronisation 
between two processes and the communication, i.e., transfer of values from one 
process to the other. In any case, the control state changes. • 

Characterisation. Blocked Process: When a process is unable to progress, 
i.e., to commence a next action, then it is said to be blocked. A process 
description prescribes the conditions under which events may occur, and thus 
the conditions under which they may be blocked. • 
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Fig. 21.6. Some system channel configurations 

Characterisation. A parallel process is a usually unordered (i.e., not pre­
dictable) set of sequential process operations (i.e., actions) on own or shared 
data states. • 

Characterisation. Action: Events usually "trigger" actions, that is, opera­
tions upon the data state of a process. As we shall later see, events may stand 
for output from one process and the corresponding input to another process, 
that is, for synchronisation and exchange of information between processes. • 

Characterisation. Channel: Synchronisation of (e.g., two) and communica­
tion between processes "takes place" over (i.e., on) channels. Channels allow 
processes connected to the channels to share events. • 

Characterisation. Behaviour: Sets of observable sequences of events and/or 
actions of a process or a set of processes. Observations are usually made on 
"what goes on" on a channel (between processes). The sets may be finite or 
infinite. • 
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Characterisation. A trace is a single sequence of events and/or actions of 
a postulated or actual process. A trace is either of finite or infinite length. A 
behaviour is a set of traces. A process usually denotes a behaviour. • 

Characterisation. Environment: Channels may be connected, at one end, 
to a process, but at the other end may be left "dangling". Such channels 
help define aspects of an environment: something "external" to or "outside" 
the collection of processes of main concern. Thus defined processes can share 
events with an environment: they can react to events from or "deliver" events 
to the environment. • 

21.3 Communicat ing Sequential Processes, CSP 

In the previous section we have provided intuitive examples of concurrent 
specifications expressed in RSL/CSP. In those examples (of that notation) can 
be found a lot of syntactic details, that may clutter the presentation. In the 
present section we shall therefore show the CSP notation, a "purest" form of 
Communicating Sequential Processes, in order to show the utter elegance of 
the underlying concepts and their accompanying notation. 

This section thus goes back to the origins of CSP by presenting a "cleanest", 
simplest view of an essence of CSP. The "language" of CSP to be presented 
here is to processes what the A-calculus is to functions.8 We shall only cover 
its language constructs and explain their meaning informally. We shall not 
delve into issues of mathematical models for the semantics of the CSP variant 
covered here. Instead we refer to [288,448,456]. 

First we bring some preliminaries on processes and events. Then, in eleven 
"easy pieces", we cover the major process combinators (->>, [], |~|, ? [input], ! 
[output] and ||) as well as some basic and compound process expressions, and 
a few laws. 

21.3.1 Preliminaries: Processes and Events 

By V, V,..., V", Q , . . . we mean processes. Not process descriptions, but pro­
cesses "themselves". By Pn, Pn', . . . , Pn", Qn, . . .we mean process names 
(process names are process expressions). By Pe, Pe', . . . , Pe", Qe, . . . we mean 
process expressions, in general. 

Thus: 

Pn = Pe 

8An even more "frugal" and foundational language for experimenting with pro­
cess notions is that of ccs [388,453]. 
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gives the name Pn to the process expression (or description) Pe. Pn may occur 
(hence recursively) in Pe. However, we shall deliberately "confuse" processes 
with their names or prescribing expressions whenever the examples are simple. 
By a, a', . . . . a", b, . . . we mean events. 

Events are presently considered atomic. Later we shall structure events 
over (sets of) sets of values (and channels). 

21.3.2 Process Combinators, Etcetera 

stop: A Basic Process 

• stop: 

The process stop is unable to perform (issue, generate, participate in) any 
events. 

Prefix 

• a-> P 

is a process which is ready to engage in the event a. If the event a occurs the 
process will then behave as P.9 

Definitions 

• Pn = Pe 

Pn is an identifier (a name), and the expression, Pe, defines the process of 
that name to behave as the process expression Pe prescribes. That expression 
may contain the name Pn (as well as much else). 

• Example: 

Q = e - • Q 

Q is the process whose behaviour is the singleton set of the infinite trace 
of the same event e. 

[]: External Nondeterministic Choice 

• P Q Q 

Operationally you may think of any one trace of P [] Q being either P or Q. 
Which one is "selected" is nondeterministically determined by the environ­
ment of P \] Q. The process P [] Q is available to engage in the events of 
either P or Q. 

'In RSL semicolon, ";"> is used where CSP uses —>-. 
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• Example: 

P = requestA —> performX \\ requestB —> performY 

P is the process which is willing to engage in either event requestA or 
requestB. If event requestA is chosen then P behaves like performX. 

The environment offers the events requestA and requestB. 

|~|: Internal Nondeterministic Choice 

We write: 

• P[\ Q 

to denote the internal nondeterministic choice between processes P and Q. The 
environment has no influence over which of the two alternatives is chosen; but 
one is chosen "at random". 

• Example: 

P = reqA - • (actAl fl actA2) [] reqB - • (actBl \\ actB2) 

Process P engages either in the behaviours actAl \] actA2 or actBl \] 
actB2 depending on the external nondeterministic ([]) choices reqA and 
reqB. The process actAl \] actA2 behaves either like actAl or actA2 — 
chosen nondeterministically by an internal choice. The situation is similar 
for process actBl \\ actB2. 

CSP Law (I) 

a -+ (P [1 Q) = (a -+ P) fl (a -+ Q) 

Compound Events 

Sets of related events can be compounded. In CSP we can write: 

0 e:{a.l,a.2,a.3} • e - • P = a.l - • P Q a.2 -+ P 0 a.3 -+ P7 
0 i:{l,2,3} • a.i -> P = (a.l -»- P) 0 (a.2 -> P) 0 (a.3 -> P) 

In RSL [236] we "move" the typing (e : {a.l, a.2, a.3}) out of the expression 
part and into a channel declaration clause: 

type 
C = = a.l | a.2 | a.3 

channel 
c:C 

value 
... c!e ; P ... /* or */ let v = c? in P(v) end 
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Input and Output 

External choice, in CSP, corresponds to input, internal choice to output: 

c ? k:K - • P(k) = Q k:K • c.k -+ P(k) 
d ! k:K -> Q(k) = 0 k:K • d.k -> P(k) 

The order of listing is immaterial. For the above example we have chosen non-
deterministic external choice [] as the connective. It means: whichever other 
process or processes that are willing to engage in communication on channels 
c, cl, c2, . . . , en, will nondeterministically determine which of the alternatives 
is chosen. If none are willing, at a certain moment, then the above-described 
process is (temporarily) blocked. If exactly one is willing, say a process Q on 
channel ci, then the corresponding alternative is (deterministically) chosen. If 
two or more other processes on channels c, cj, . . . , ck are willing to commu­
nicate then one of them is nondeterministically chosen and together with the 
corresponding alternative performs the interaction. 

Had we instead chosen nondeterministic internal choice, \], then one of the 
alternatives would have been chosen (at random) and communication would 
occur only when and if another, external process is, or becomes willing to 
synchronise and communicate. 

In RSL input and output can be "mixed": 

channel 
c:C, c':C, cl:Cl, c2:C2, ..., cn:Cn 

value 
/* either nondeterministic input */ 

let u = cl? in P(u) end \\ let v = c2? in Q(v) end 0 ... 
/* or nondeterministic output */ 

cl!el ; P ' 0 c2!e2 ; P" 0 ». 
/* or both (mixed) */ 

cl!el ; P ' 0 let u = c? in P(u) end Q c2!e2 ; P" 0 ... 

||: Parallel Composition 

• P\\Q 

denotes the parallel composition of processes P and Q. Colloquially, i.e., speak­
ing 'operationally', process P\\ Q describes a process as consisting of two other 
processes that "run in parallel" while cooperating on shared events. 

Shared Events 

Process expressions P and Q will often contain expressions listing the same, 
that is, "shared" events. Shared events are events of the same alphabetic 
name: 
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• a P: alphabet of P , etc. 

If: 

a P fi a Q = {a,b,c} 

then processes P and Q share events a, b, c and are thus willing to engage in 
these simultaneously. 

x - > P || x -> Q = x - > (P||Q) 

If aP does not contain event z and if aQ does not contain event y then: 

y -+ P || z -+ Q = (y - • (P| |(z^Q))) Q (z ^ ((y^P)| |Q)) 

CSP Law (II) 

if 
P = Q e:A • e -> P(e) 
Q = 0 e:B • e -^ Q(e) 

then 
P || Q = 

D e : A \ a Q . e ^ ( P ( e ) | | Q ) 

D 
D e:B \ a P • e -+ (P||Q(e)) 
D 
0 e : A H B - e ^ (P(e)||Q(e)) 

end 

• • • 

We bring a summary of this section in Fig. 21.7. 

21.3.3 Discussion 

We encourage the study of concurrency as a whole subject, say in the form 
of a full semester course. The topic was covered only partially in the present 
chapter. For concurrency seen from the perspective of CSP, we refer to three 
eminent texts: [288,448,456]. 
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Simple 
event 
Input/-
output 
Process 

stop 
Prefix 

External 
choice 
Internal 
choice 
Parallel 
composi­
tion 
Process 
definition 

Shared 
event 

Events occur, have no time-duration, cause actions, change 
the control state 
As events, but include actions: output, respectively input, 
latter changes the data state 
P, Q are process expressions that designate sequences of one 
or more actions and events 
The no-effect action 
e—>P is a process expression: event e followed by process P, 
where e may be c! expr or c?var. P is a process expression 
P[|Q is a process expression: P, Q are process expressions 

P|~|Q is a process expression: P, Q are process expressions 

P, Q are process expressions. The designated processes pro­
ceed in parallel 

Pn is a process identifier, P a process expression; (a) an ar­
gument (a may be free in P), and where a process identifier 
in P is a process expression 
Upon event e the above process makes the transition to P||Q, 
e is shared between P and Q. 

e 

c! expr, 
c? var 

P , Q , • • • 

stop 
e->-P 

PDQ 

PRQ 

PIIQ 

Pn(a)=P 

(e->P) 
ll(e^Q) 

Fig. 21.7. Summary of CSP concepts and notation 

21.4 The RSL/CSP Process Combinators 

In Sect. 21.3 we formally introduced the concept of CSP-like processes. In 
Sect. 21.2 we intuitively motivated and informally used a notation which is 
derived from CSP and has been adopted for RSL. In this section we will briefly, 
but systematically review this notation, the RSL/CSP "sublanguage", which is 
RSL-like. That is, this language is not exactly a subset of RSL. We have taken 
some liberties wrt. arrays of channels and how we name channels in function 
(i.e., process) type clauses. We shall elsewhere show that our deviation can 
be explained in terms of RSL. In the following we shall cover this RSL-like 
notation, syntactical construct by construct. 

21.4.1 RSL-like Channels 

Channels are the means for synchronising processes and communicating val­
ues (i.e., messages). Channels lead from a "surrounding" outside (the envi­
ronment) to defined processes, or lead to such a surrounding from defined 
processes, or channels are placed between, i.e., "infixed" defined processes, or 
combinations of the above. We may speak of single channels or of an indexed 
set of channels. The latter are intended wherever our system of processes 
involves similarly indexed sets of like processes. Channels must, in RSL, be 
declared: 
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type 
C /* C can designate any type */ 
Cindex /* Cindex designates a finite set */ 

channel 
cl,c2,...,cn:C /* n > l */ 
{ c[i]:C | LCIndex} 

Channels ci can communicate values of type C. c is like an array of channels. 
c[i] for i ranging over the finite set of enumerations Cindex is otherwise like 
any channel ci. 

21.4.2 RSL Communication Clauses 

Systems are either composed from a fixed set of processes or from a com­
bination of one or more fixed and one or more sets of indexed processes. 
Correspondingly, we speak of fixed, constant named output/input communi­
cations, respectively of varying, indexed output/input communications. We 
presently treat the former kind of communications. 

Simple Input/Output Clauses 

We assume that c designates a declared channel. There are basically two 
communication clauses. First, input expressions: 

c ? 
let v = c ? in E(v) end 

The first clause above designates a value expression and expresses willingness 
to input a value from channel c. The second clause above also designates a 
value expression, with the embedded value expression c? value being bound 
to variable v. 

The output clause: 

c ! expr 

designates an output statement, that is, an expression, and expresses an of­
fer of the value of expression expr for communication on channel c. As an 
expression it has the Unit type value (). 

Sometimes an input (c?) is from an undefined process of a (globally) sur­
rounding environment, and sometimes an output (c ! expr) is to an undefined 
process of a (globally) surrounding environment. And sometimes — in a set of 
processes — there are groups of (two or more) processes which define "match­
ing" output/inputs — one or more of c ! e and one or more of c ?. 

We refer to examples already given in Figs. 21.5 and 21.7. 
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21.4.3 RSL Processes 

Simple Process Definitions 

We assume that both the two clauses S(a) and S(...) are statement clauses, 
i.e., of type Unit. We likewise assume that all channels C{. and c0k are being 
properly declared (elsewhere). 

value 
P: A —> in c_il,c_i2,...,c_im /* m > 0 */ 

out c_ol,c_o2,...,c_on /* n > 0 */ 
Unit 

P(a) = S(a) 

Q: Unit —> in c_il,c_i2,...,c_im /* m > 0 */ 
out c_ol,c_o2,...,c_on /* n > 0 */ 
Unit 

QO = 5(...) 

Process P takes [optional] input arguments in A, is willing to, i.e., may, receive 
input over channels cJ l , . . . , c_im, and is willing to, i.e., may, output over 
channels c_ol, . . . , corn. Process P's signature ends with Unit to designate 
that no explicit value is returned, i.e., that the P process either recurses (i.e., 
"loops") indefinitely or "ends" with the interpretation of a clause of type 
Unit. Process Q takes no input and delivers no output, but is otherwise as is 
P. 

Instead of input channels c_il, c_i27... ,c_im and output c_ol, c_o2,... ,c_om, 
one could write any in either or both places. This expresses that process P is 
willing to engage in communication on any channel. 

The function, i.e., the process definition 

value 
R: Unit - • any B 
R() = ... ? ... ! ... b 

designates a process which may engage in input/output over any channel, and 
which yields a value of type B. 

Processes and Their Definitions 

Please note the distinction between a process definition or a process expres­
sion, on one hand, and a process, on the other hand. The former are pieces 
of text, syntactic "things". The latter is a semantic phenomenon, invisible to 
the human eye! Processes communicate, not process expressions or process 
definitions. They prescribe communications. 
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Process Invocations 

Processes get started whenever a process invocation takes place. Invocations 
of processes are prescribed as follows: 

P(a), Q() 

The argument a can be thought of as a state. The process, as described by the 
named process definition, is started whenever a process invocation expression 
is elaborated. A recursive invocation, P(a;), then means that a state has been 
updated. 

Example 21.8 A Buffer Process Definition: 

type 
V 

channel 
in_ch,out_ch:V 

value 
Buffer: V* —> in in_ch out out_ch Unit 
Buffer(q) = 

let v = in_ch? in Buffer (q~(v)) end 

D 
out_ch!hd q; Buffer(tl q) 

The Buffer process is willing, at any time, to receive input values — which it 
then appends to its queue buffer before resuming being a Buffer process with 
that new queue state — or to output the head, i.e., the oldest member of the 
queue before resuming being a Buffer process with a new, "shorter" queue. • 

Array Channel Process Definitions 

Let the intention be that CI-index and C J-index designate finite, enumerable 
token sets. 

type 
A_idx, B_idx 

channel 
{ c_in[c] | c:A_idx }, { c_out[c] | c:B_idx } 

value 
P: a:A_idx x b:B_idx ->> 

in c_m[a] out c_out[b] Unit 
P(i,j) = 

... let v = c_in[i] ? in 
... c_out[j] ! e ... end ... 
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The above process signature is nonstandard RSL. Note the binding of the 
channel array indices from the left of the —> to the right. 

In Vol. 2, Chap. 10 we will show that the above is a shorthand for a more 
elaborate set of RSL scheme (and hence class) and object definitions and 
declarations. 

value 
Q: Unit —> in {c_in[c]|c:CA_index} out {c_out[c]|c:CB_index} Unit 

Q0 = 
0 { let v = c_in[c'] ? in 

[1 { c_out[c"] ! v | c":CB_index } end | c':CA_index } 

Q prescribes the external nondeterministic input of a value v from any of a 
number of channels c_in[c'], followed by the internal nondeterministic output 
of that value to one of a number of channels c_out[c"]. 

21.4.4 Parallel Process Combinator 

Typically a system of concurrently operating components can be expressed as 
the parallel composition of component processes. 

Let P_i designate expressions. 

P_l || P_2 || ... || P_n 

The above expresses the parallel composition of n processes. Evaluation of 
each individual P_i in P_l||P_2||...||P_n proceeds in parallel. Figures 21.1, 21.1, 
21.5, 21.6, and 21.7 illustrated systems (SI, S2, S3, S5, S5, sys and S6) of 
processes. 

21.4.5 Nondeterministic External Choice 

Let P_i designate expressions. Then: 

P.1 D P-2 D .- D P-n 

expresses the parallel nondeterministic external choice between n processes. 
Let, for example (omitting type clauses), 

Pl() = let v = c ? in El(v) end 
P2() = let v = c ? in E2(v) end 
Q0 = (c ! e) 
R() = (Pl() D P2()) || Q() 

The value of expression e is communicated to either the first or the second 
of the \\ argument processes and hence is evaluated either under El or under 
E2. Which one is chosen (left, PI, or right P2), is not shown explicitly, but 
one is chosen. Wrt. (Pl() Q P2()) we say that Q() is a surrounding process, 
and vice versa. (Pl() 0 P2Q) is willing to engage in communication with its 
surrounding, and Q() likewise. 
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21.4.6 Nondeterministic Internal Choice 

Let P_i designate expressions all of which are of the same type. Then 

P.1 fl P-2 fl - fl P-n 

expresses the parallel nondeterministic internal choice between n processes. 
Either P_l, or P_2, or, . . . , or P_n is chosen — only the choice is internal 
nondeterministic, i.e., not dependent on any possibly surrounding processes. 

Example 21.9 A "Rolling a Dice" Process Definition: To express the arbi­
trary selection among a finite set of enumerated possibilities we make use of 
nondeterministic internal choice 

type 
Dice = one | two | three | four | five | six 

value 
P: Unit - • Dice 
P() = one fl two fl three \] four \\ five \\ six 

Invocation of P() "randomly" yields a face of a dice. • 

21.4.7 Interlock Combinator 

Sometimes it is necessary to force two concurrent processes to prioritise their 
mutual communication — over other such. For that RSL offers the interlock 
combinator: 

pe_l \\ pe_2. 

The above interlock composition is evaluated as follows: The two expressions 
are evaluated concurrently. If one of them comes to an end before the other, 
evaluation continues with that other. However, during the concurrent evalua­
tion, any communication external to pe_l|}pe_2 is prevented. Thus pe_l|}pe_2 
expresses that the two processes are forced to communicate only with one 
another, until one of them terminates. 

21.4.8 Summary 

We provide a check list summary of RSL/CSP clauses: 

• Channel: channel c:C 
• Input: c ? and let v = c ? in Pe end 
• Output: c ! r 
• Process expressions: Pe_l ; Pe_2 ; ... ; Pe_n 
• Parallelism: Pe_l II Pe_2 II ... II Pe_n 
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• External nondeterminism: Pe_l [] Pe_2 0 ••• D P e-n 

• Internal nondeterminism: Pe_l [\ Pe_2 \\ ... \\ Pe_n 
• Interlocking: Pe_l {} Pe_2 
• Process definition: Pn: A —>• in c_i out c_j Unit 

Pn(a) = Pe 

21.4.9 A Note of Caution 

We remind the reader that the present book's function signatures, when it 
comes to such functions which define processes using channels (etc.), go be­
yond "standard" (i.e., tool-supported) RSL, in allowing a kind of "dependent" 
types: 

type 
X_Idx, Y_Idx, M, A, ... 

channel 
{c[x,y]:M | x:X Jdx,y:Y_Idx } 

value 
f: x:X_Idx x A -> in { c[x,y] | y:Y_Idx } ... 

In the function f signature x is being bound "to the left" of —> and is being 
"used" "to the right" of ->>, in delimiting the channels from which to input. 

21.5 Translation Schemas 

In Sect. 20.5 we gave a brief treatment of translations from applicative (i.e., 
functional) to imperative specifications. In the present section we shall do 
likewise for translations from applicative and, or via, imperative specifications 
to parallel process-oriented specifications. 

In a few "stages" we shall be "massaging" some formulas into other for­
mulas. Then we shall examine the validity of this "massaging". 

21.5.1 Stage I: An Applicative Schema 

Let us consider the following schema: 

type 
A, B 

value 
f: A-> 
g: A-> 
h: A -> 

Unit 
A 
Unit 

f(a) = ( let a' = g(a) in f(a') end \\ h(a) ; f(a) 
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Annotation. We explain, as far as we can, the above abstract program spec­
ification schema: f can be considered a "main" function, f is initially invoked 
with some argument, say a. f nondeterministically, internal choice, selects be­
tween either expressing the clause to the left of the \\ operator, or to the right. 
In the former case f is ("tail" recursively) invoked with an "updated" version 
of a, now named a'. Or f chooses the "simpler" right clause, first expressing 
the Unit value clause h(a), and then proceeding by (also in this case), a tail 
recursive invocation of f with the "original" argument a. And so on. 

21.5.2 Stage II: A Simple Reformulation 

The above schema defines the behaviour of f as a nondeterministic internal 
choice behaviour between two processes: let a' = g(a) in f(a') end and h(a) ; 
f(a). Let us call them g' and h': 

type 
A, B 

value 
f: A -> Unit 
g: A - • A 
g',h,h': A -> Unit 

f(a) EE g'(a) [1 h'(a) 
g'(a) = let a' = g(a) in f(a') end 
h'(a) = h(a) ; f(a) 

Let us examine the above: It seems that f is a main process. It seems that 
a is like a state variable, being used and updated (by g'), or just used and 
"passed on", by h'. In other words, the two processes G and H both require 
access to the shared state, but the two processes' g, respectively h, "actions" 
cannot proceed in parallel. Observe that f is not recursive, but g' and h' are. 

21.5.3 Stage III: Introducing Parallelism 

What about the following idea: "Split out", i.e., decompose, f into two three 
parallel processes F, G and H. In this case F "maintains" the global state a, 
and G and H reread, respectively rewrite that global state: 

type 
A, B 

channel 
fg:A, fh:A 

value 
S: A -> Unit 
F: A - • out fg,fh Unit 
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G: Unit - • in fg Unit 
H: Unit -> in £h Unit 
g: A - • A 
h: A -> Unit 

S(a) = F(a) || G() || H() 
F(a) = fg!a \\ £h!a 
G() = let a = fg ? in let a! = g(a) in F(a') end end 
H() = let a = £h ? in h(a) ; F(a) end 

Annotation. Let us explain the above abstract program specification schema: 
A system process, S, has been introduced. S expresses the parallel composition 
of three processes: F, G and H. F communicates with both G and H. That 
is, they both communicate with F. They do so over separate channels: fg, 
respectively fh. F nondeterministically (internal choice) expresses either G() 
or H(). G "mimics" the left clause of the body of definition f of stage I, i.e., 
g' of stage II. H "mimics" the right clause of the body of definition f of stage 
I, h' of stage II. Observe that F is not recursive, but G and H are. 

21.5.4 Stage IV: A Simple Reformulation 

Instead of using the "tail" recursive invocations of F from both G and H, 
"passing" on appropriate arguments to the F process, we communicate, over a 
(new) channel, a possibly updated value of the argument (a'). Since H need not 
communicate any new A value, we let it, for sake of "symmetry", communicate 
a "tick", indicating, for whatever it is worth, completion. 

A variant of F, G and H could thus be: 

type 
Tick = = tick 

channel 
fg:A, fh:A, gf:A, hf:Tick 

value 
F: A -» out fg,fh in gf,hf Unit 
G: Unit —> in fg out gf Unit 
H: Unit -> in fh out hf Unit 

F(a) = 
(fg!a ; let a' = gf ? in F(a') end) 

n 
(fh!a ; let t = hf ? in F(a) end) 

GQ = let a = fg ? in let a! = g(a) in gf!a' end end ; G() 
H() = let a = fh ? in ghltick ; h(a) end ; H() 
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Annotation. First, there really was no need for separate, directed channels 
between F and G, and G and F, etcetera. One channel would have sufficed. 
We then explain, as far as we can, the above abstract program specification 
schema. All we have done, in and at this stage, is to augment the definition 
with two new channels and let F take care of its own continuation — in the 
form of its explicit "tail" recursion. At the same time we had to keep both 
G and H going, so they continue to have their "tail" recursions. Now we see 
some stylistic differences between the two models of stage III and stage IV: 
In stage III neither F, G nor H were recursive. But, as F invoked either G or 
H, these in return invoked F. In stage IV all processes are recursive. 

21.5.5 Stage Relations 

Now we have to stop and consider! Is the above "development", from stage I 
via stage II and stage III to stage IV, correct? And, what, after all, do we mean 
by correctness? 

It is clear that the four stages of formulas do not exhibit the same functions, 
and, where they do "share" some function names, that the function signatures 
are not the same. So, from that point of view, the four stages do not "compute 
the same thing". But they are comparable. We claim that the sequence of state 
updates of the four models are the same — and ask the reader's acceptance 
of that! 

To "prove" that claim will take us too far off our software engineering specifi­
cation and design "track", and into the specifics of programming methodology. 
But we can hint at one approach of obtaining some assurance that the stages 
do relate. That is by rewriting later stages into forms akin to earlier stages. 
We leave that, however, to another time and place. Thus we ask the reader 
to carefully check what's going on, within and between the above four stages. 
RSL, as it stands today, does have a powerful proof system, but not powerful 
enough to handle these kinds of development stages. 

In general, since we are, in this case, "transgressing" from applicative to 
imperative RSL, and from either of these to concurrent, i.e., parallel RSL, we are 
in fact trying to integrate various formal notations. The subject of integrating 
such formal notations is as of summer 2005 a subject that is being very much 
studied and researched. Many integrations are being proposed. We have shown 
those with which applicative RSL, i.e., the core of RSL, has been integrated 
from the inception of RSL, in the late 1980s. 

In Vol. 2 we shall illustrate further, more recent integrations. They include 
integration of (i) RSL with ER10 (cum UML Class) Diagrams, Chap. 10; of (ii) 
RSL with P e t r i Nets, Chap. 12 [313,421,435-437]; of (hi) RSL with Live 
Sequence Charts, Chap. 13 [171,270,325]; of (iv) RSL with S ta t echa r t s , 
Chap. 14 [265,266,268,269,271]; and of (v) RSL with Duration Calculus, 
Chap. 15 [537,538]. Then we shall revert to the problem of assuring "same­
ness" . 

10ER: entity relationship [148,149]. 
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21.5.6 Stage V: An Imperative Reformulation 

In Sect. 20.5.2 we saw that an applicative function could be "imperialised". 
So we now do with F: 

variable 
a:A 

value 
F: Unit —> read,write a out fg,fh in gf,hf Unit 
F() = 

(fgla ; a := gf ? ; F()) 

n 
(fh!<7 ; let t = hf ? in F() end) 

We can even turn tail recursion into an imperative loop: 

variable 
a:A 

value 
F: Unit —> read,write a out fg,£h in gf,hf Unit 

while true do 
(fg!a ; a := gf ? ) 

n 
(fh!a ; let t = hf ? in skip end) 

end 

21.5.7 Some Remarks 

This ends our informal, yet systematic, sequence of stages of "comparable" and 
"believably correct" developments. The idea of this section has been to give 
you some hints as how to turn applicative and recursive function definitions 
into imperative process definitions. 

21.6 Parallelism and Concurrency: A Discussion 

21.6.1 CSP and RSL/CSP 

This chapter, on parallel specification programming, has focused on CSP, and 
for good reasons. CSP provides an elegant way of expressing concurrency. Fur­
thermore, CSP blends well with RSL. 

Learning RSL/CSP will enable the reader to quickly adapt to, i.e., learn and 
use, "pure" CSP. "Pure" CSP — with its tool support for model checking [447], 
a means of proving that certain CSP satisfy expected properties — is very 
useful as a separate tool for investigating specific specifications of (specific) 
concurrent system proposals. 
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21.6.2 Modelling Techniques 

In Sects. 21.2 and 21.5 we gave many examples of modelling techniques. In 
the next volumes of this book, i.e., in Vols. 2 and 3, we shall have ample 
opportunity to bring more examples — and from the current and the future 
ones there will be enough examples to draw from when you are confronted 
with a concurrent systems modelling problem. 

21.7 Bibliographical Notes 

We have repeatedly given the following references: [288,448] and [456].The 
originator of CSP is C.A.R. Hoare. His first published paper on CSP was [287]. 
His book, [288], has been carefully edited by Jim Davies [179]. It is now avail­
able electronically [289] and is the definitive reference on CSP. Bill Roscoe's 
book [448] covers the same ground, and more: It has twice as many pages 
and provides more industry-oriented examples. It also introduces the reader 
to technology support for CSP. Steve Schneider's book [456] is perhaps a bit 
more of a textbook where Hoare's was a monograph and Roscoe's is somewhat 
in between. Schneider's book additionally extends CSP into Timed CSP (TCSP). 
A final reference is [229]. It is to the Internet Web (home) page of Formal Sys­
tems (Europe) whose toolset FDR2 provides a model-checker and other CSP 
tools. Through subpages access is provided to documents on the CSP syntax 
of 'programs' (cum specifications) that can be accepted by the FDR2 tool. 

21.8 Exercises 

The function definitions of the exercises of this chapter are basically to be 
expressed in the parallel programming style. 

Exercises 21.9, 21.10 and 21.11 are preceded by Exercises 19.1, 19.2 and 
19.3, and Exercises 20.1, 20.2 and 20.3, respectively. 

• • • 

Exercise 21.1. System Channel Configurations. Please review Sect. 21.2.9, 
and suggest formal specifications of P, P«, Q, and Qj function definition 
schema and channel structures to cater to each of the five ([A-E]) system 
channel configurations. 

Hint: You are to assume that the functions P, Pi, Q and Qj do not interact, 
i.e., engage in events, with other processes. 

Exercise 21.2. Single Producer-/Consumer-Bounded Repository. There are 
given three behaviours: a producer, a repository, and a consumer. The pro­
ducer (occasionally) produces entities and delivers them to the repository. The 
repository accepts producer-manufactured entities and, upon request, hands 
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them on to the consumer. The consumer consumes entities by (occasionally) 
requesting these from the repository. The repository delivers entities in the 
order in which they were received. The repository can keep at most b entities. 

Define types of entities and of entity requests (from consumers), two (or 
three) channels and the four behaviours: producer, repository, consumer and 
their aggregation into a system behaviour. 

Exercise 21.3. Multiple Producer-/Consumer-Bounded Repository. We refer 
to Exercise 21.2. All you need, for this exercise, is to read the formulation of 
that exercise. 

There are given m + n + 1 behaviours: m producers, pi, a repository, and 
n consumers, Cj. Any producer may deposit an entity with the repository, 
and any consumer may request an entity from the repository. The repository 
marks every received entity with a unique identity of its producer. The entities 
delivered to consumers are marked with this identity. The repository otherwise 
delivers the marked entities in the order of their receipt. 

Define types of entities and of entity requests (from consumers), the m 
channels between producers and the repository, the either n or 2n channels 
between the repository and the consumers, and the four behaviours: producer, 
repository, consumer and their combined system. 

Exercise 21.4. Shared Storage. A number of computation processes share a 
common storage. We see this common storage to record, for distinct locations, 
a value. We see the computation processes performing the following operations 
on the shared storage: (i) requesting allocation of new storage locations, (ii) 
storing (initial) values in these, (hi) updating with, i.e., changing existing values 
to, new given values at identified, i.e., given, locations; (iv) requesting the value 
at a given (i.e., identified) location, (v) and requesting the deallocation, i.e., 
the freeing or removal, of an identified location. We finally allow processes to 
(vi) pass on locations to one another — according to some further unspecified 
protocol. 

Define the type of storages, i.e., of locations and values and their combina­
tion into storages. Define the type of channels between computation processes 
and between these and the storage process — the latter is thus thought of as 
the only process which "keeps", i.e., maintains, the storage. Finally, define the 
two kinds of behaviours: computation processes which occasionally perform 
one of the actions (i-vi), and the storage behaviour. 

Exercise 21.5. Synchronous Multiple-Client/Single-Server System. A client 
is a behaviour which, at its own volition, generates requests to a server to 
perform some — amongst a finite number of — identified actions (on a server 
state). The client, in addition to providing a name, i.e., an identifier, of the 
action to be performed, may, or may not — depending on the (arity of the) 
identified action — also provide some input arguments, i.e., a (finite) sequence 
of (zero, one or more) values to the identified action. That is, actions are 
possibly state-changing and definitely value-returning functions. The server is 
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then, after successful or failed action, to return a result (of having performed, 
or failed to perform such an action) to the client. Failure occurs whenever 
a client provides an unknown action name, or a wrong number of argument 
values. The result, "good" or "bad", shall be accepted by the client. That 
client, after having issued the request, has (patiently) waited for a result. 

A server, on the other hand, is a behaviour which, prompted by the client, 
performs identified actions with possible arguments and on its, i.e., the server 
state. Thus the server is to maintain a catalogue of functions. The catalogue 
records the unique names of the functions, their finite arities (0 or more) 
and "the function itself", that is, the denotation of the function identifier. 
Typically such a function denotation is of type: total function from arguments 
and state to possibly changed states and results. We leave argument and result 
values further unspecified. 

Define the types of server function catalogues and states, and of client-to-
server and server-to-client messages. Also define the (generic) client and the 
server behaviours as well as that of the combined system: m clients and one 
server. 

Exercise 21.6. Asynchronous Multiple-Client/Single-Server System. We re­
fer to Exercise 21.5. You need not have solved that exercise, but you need to 
have read its problem formulation before you now read on. 

The only difference between the problem of the present exercise and that of 
the referenced exercise is that the client does not "patiently" await completion 
of server actions, but may proceed to other behaviours. Sooner or later it 
is, however, expected that the client requests the result from a previously 
requested action. To enable this — and the interleaving of other requesting 
clients, and even that any client may, at different times, request actions the 
return of whose results is pending — we assume that the clients provide 
unique identification of their action requests. These unique action request 
identifications are then presented by the client when finally requesting the 
results. 

Define the types of server function catalogues and states, and of client-
to-server and server-to-client messages. Also define the system, the (generic) 
client and the server behaviours. 

Exercise 21.7. Synchronous Multiple-Client /Multiple-Server System: We re­
fer to Exercise 21.5. You need not have solved that exercise, but you need to 
have read its problem formulation before you now read on. 

The only difference between the problem of the present exercise and that 
of the referenced exercise is that there are now many servers, i.e., more than 
one. Any server is ready to accept any action request, and all servers serve 
the same actions. 

Define the types of server function catalogues and states, and of client-
to-server and server-to-client messages. Also define the system, the client and 
the server behaviours. 
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Exercise 21.8. A UNIX Pipe. A UNIX pipeline is a sequence of processes, 
TTi, one for each command, cmdJ, of a sequence of UNIX commands: 

cmd_l(argl_l) | cmd_2(argl_2) | ... | cmd_n(argl_n) 

Each command cmdJ (is a name which) denotes a function, /$, and each ar­
gument list arglJ is a list of values, vli. Each argument argl_i[j] for j in {l..len 
arglJ} is a list of characters. (Here lenarglJ may be 0.) Each function fi pro­
cess 7Ti, for all i, produces, little by little, a result, r^, which is a sequence of 
characters. Functions / i , for i > 2, however, all accept one more input ar­
gument, namely the one produced by / i _ i ( { r i _ i ) ^ . ) . Correspondingly each 
"next" (in the pipe line) function fi+i process 7r«+i, for i < lenarglJ, may 
consume that output, provided it is ready to do so. Thus, as soon as the 
function process 7̂  has produced some such partial result it "outputs" it to 
a pipe-buffer (i.e., a process) pl+1 for 1 < i <lenarglJ (Fig. 21.8). It is from 
this buffer that function process 7r^+i may or will (eventually) request it. 

-c r̂— 
function pipe-buffer function 
process i i to i+1 process i+1 

Fig. 21.8. A fragment system: some pipe processes 

Define the three kinds of processes: the system, the function.process and the 
pipe.buffer, their channels, and the type of commands, arguments, states and 
function catalogues (cf. Exercise 21.5). The system process accepts a pipe 
specification and for each command-argument list item the system process 
starts a function process, and for each pair of adjacent such a pipe-buffer 
process. Let an external input channel receive the piped command lists, and 
an output channel deliver the result, little by little, of the "last" function 
process. 

Figure 21.9 illustrates which processes receive which inputs. 

arglJ argl_2 argl_n 

Fig. 21.9. Some pipe processes and their arguments 
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Exercise 21.9. The Grocery Store, III. We continue Exercises 19.1 and 20.1. 
Whereas these exercises suggested serial (in effect, "single-process") behaviour 
of a grocery store, we shall now suggest a behaviour in which several clients 
may simultaneously select merchandise. We suggest, however, that no two or 
more clients can access a shelf segment simultaneously; at most one can access 
a shelf segment. Similarly for checkout: There is just one staff and one cash 
register. Once you have a parallel process solution to the current problem you 
can easily lift these (and other) restrictions. 

Thus the nine state components suggested in Exercise 20.1 are now to 
be thought o f a s a s e t o f 3 x & + ra + n + l + l + 2 x w processes: (1) k 
client, (2) k shopping cart, (3) k bag, (4) m store shelf segments, (5) n inventory 
shelf segments (one for each type of merchandise, where ra > n), (6) one cash 
register, (7) one catalog, (8) w wholesaler inventory and (9) w wholesaler cash 
register processes. 

The initialisation prescribed for the nine global state components are now 
distributed over respective processes (Fig 21.10). 

We consider, finally, as a new kind of process, (10) the staff as a single 
process: This is a small, friendly country store. The staff process did not find 
its way into a state component in the imperative model. It was, however, 
the actor which performed the checkout and the replenishments actions. That 
checkout/replenishment actor had no "state", i.e., no "memory". 

Now a shopping script is a prescription for the behaviour of a client — 
whose state components, thus, are basically those of the script and the purse. 

The somewhat elaborate nondeterminism expected from solutions to Exer­
cises 19.1 and 20.1 is now to be expressed by the parallel process combinators 
||, 0, and |~|, as well as by the output/input combinators ! and ?. 

Please define all relevant types, all relevant channels (and their types) and 
all relevant behaviours, that is, in addition to those mentioned above, also the 
"overall" system process. Assume an appropriate initialisation of store and 
inventory shelves. 

If you believe that the above description is incomplete, please state so, and 
provide the completing text. 

Exercise 21.10. The Anarchic Factory, III. We continue Exercises 19.2 and 
20.2. Please read the problem formulation texts of the above referenced exer­
cises carefully. 

The six state components suggested in Exercise 20.2 are now to be thought 
of as a set of four kinds of processes: ra fork trucks, each with their own 
schedule, n production cells, each with their own schedule, one parts inventory, 
and one products warehouse. That is, the schedules are folded into the state of 
the fork truck and production cell agents. The remarks concerning initialising 
the individual processes appropriately as outlined in Fig. 21.10 also apply to 
this exercise. 

Please define all relevant types, all relevant channels (and their types) 
and all relevant behaviours, that is, in addition to those mentioned above, 
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To give you an idea what is meant by "the global state components being distributed 
over respective processes" consider the following: A composite state component, for 
a system of n "actors" , maps a finite set of n unique actor identifiers to actor states: 

value 
n:Nat 

type 
Uid a x i o m |Uid|=n / * cardinality of Uid is n * / 
AE 
Actors = Uid j& AS 

va lue 
actors:Actors 

va r iab le 
agents:Actors := actors 

The agents variable is not really needed to understand the concept of distributing a 
composite state over n process states. It is only brought in here to show the transition 
from applicative via imperative to parallel specification programming. 
For each "actor" we now establish a process and "distribute" the actor states over 
these n processes: 

value 
system() = || { actor(uid)(actors(uid)) | uid:Uid } 

The actors(uid) argument to the actor function, i.e., process, definition represents 
one, the uid, component of the state. The actor function will usually "locally update" 
this state: 

value 
actor: Uid - • AS - • U n i t 
actor(uid)(acr) = ... le t acr' = ... i n actor(uid)(acr/) e n d 

Fig. 21.10. Single global state to multiple process state distribution 

also the "overall" system process. Assume an appropriate initialisation of the 
inventory. 

If you believe that the above description is incomplete, please state why, 
and provide the completing text. 

Exercise 21.11. The Document System, III. We continue Exercises 19.3 and 
20.3. Please read the problem formulation texts of those exercises carefully. 

1. In this exercise make the system components: 
(a) the set of all d place directories into d parallel processes 
(b) the set of all m persons into m parallel processes, where m is the sum 

of all persons in all places 
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(c) the set of all c citizens into c parallel processes 
(d) the set of all document identifiers in use into a process 
(e) the set of all dossier identifiers in use into a process 
(f) time into a process. 

2. Define all appropriate channels. 
3. Define all process types clearly. 
4. Now redefine the syntax of commands, replacing explicit mentioning of 

persons, documents, dossiers and locations by their process identifiers. 
5. Redefine all semantic interpretation functions as auxiliary functions within 

the generic person process. 

I * •(• •!• 

Exercise 21.12. £ A Concurrent Domain Model of Transportation Nets. We 
refer to Appendix A, Sect. A.l, Transportation Net. 

We refer to Exercises 19.4 and 20.4. Please read the problem formulation 
of those exercises carefully. 

In Exercise 20.4 we suggested five state variables: (i) the static segments, 
(ii) the dynamic segments, (hi) the static connectors, (iv) the dynamic con­
nectors, and (v) the graph of the network (i.e., the structure part of the net). 
In the present exercise we suggest to represent each of these as a process. And 
we ask you to reformulate solutions to question 4 of Exercise 19.4. 

Exercise 21.13. X 4 Concurrent Domain Model of Container Logistics. We 
refer to Appendix A, Sect. A.2, Container Logistics. 

We refer to Exercises 19.5 and 20.5. Please read the problem formulation 
of those exercises carefully. 

In Exercises we suggested the declaration of three global state variables: (i) 
ships, (ii) the container storage area of a specific container terminal, and (iii) 
the quay of that terminal. In the present exercise we suggest to represent each 
of these as a process. Based on these three processes redefine the operations 
mentioned in items 3-11 of Exercise 19.5. 

Exercise 21.14. £ A Concurrent Domain Model of Financial Service Indus­
tries. We refer to Appendix A, Sect. A.3, Financial Service Industry. 

We refer to Exercises 19.6 and 20.6. Please read the problem formulation 
of those exercises carefully. 

In Exercise 20.6 we suggested the declaration of three global state vari­
ables: client catalogue, account catalogue and accounts. In the present exercise 
we suggest to represent each of these as a process. Based on these three pro­
cesses redefine the operations mentioned in items 1-2 of Exercise 19.6. 
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AND SO ON! 
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Etcetera! 

22.1 W h a t Have We Covered? 

We claim that we have, in the present volume, covered the following core 
aspects of software engineering: 

• Chaps. 2-9: a minimum necessary background in discrete mathematics: 
numbers, sets, Cartesians, types, functions, A-calculus, algebras and logics 

• Chaps. 10-18: basic principles and techniques of abstraction and mod­
elling as expressible in RSL: atomic types and values, function definitions, 
property- and model-oriented abstractions, sets, Cartesians, lists, maps, 
higher-order functions and types 

• Chaps. 19-21 specification programming: applicative, imperative and 
concurrent specification programming 

The main objective of Vol. 1 has been to give the reader a firm foundation in 
abstraction and modelling. 

22.2 W h a t Is Next? 

In the next volume of this three-volume book we shall cover further essential 
aspects of software engineering: 

• Specification facets: Volume 2, Chaps. 2-5 — hierarchies and composi­
tions, denotations and computations, configurations: contexts and states, 
and time, space and time/space 

• Semiotics: Volume 2, Chaps. 6-9 — pragmatics, semantics, syntax, and 
semiotics 

• Advanced specification techniques: Volume 2, Chaps. 10-15 — mod­
ularisation, automata and machines, Petri nets, message sequence charts 
and live sequence charts, statecharts, and the quantitative models of time 
(duration calculus). Chaps. 12-14 represent a major contribution by Chris­
tian Krog Madsen. 
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• Language definitions: Volume 2, Chaps. 16-19 — a simple applicative 
language, SAL, a simple imperative language, SIL, a simple modular im­
perative language, SMIL, and a simple parallel language, SPIL 

The main objective of Vol. 2 is to make the reader a professional in the area 
of formal specification, as concerns both classical software devices as well as 
devices that possess temporal and concurrent properties. 

22.3 What Is Next-Next? 

In the third volume of this three-volume book we shall then "wind up" the 
specification and programming methodological aspects of software engineering 
by covering the essential spectrum of development phases from: 

• domain engineering via 
• requirements engineering to 
• software Design. 

More specifically we cover the following stages of these phases: 

• Domain engineering: Volume 3, Chaps. 8-16 — an overview of domain 
engineering, domain stakeholders, domain attributes, domain facets, do­
main acquisition, domain analysis and concept formation, domain verifica­
tion and validation, towards domain theories, and the domain engineering 
process model 

• Requirements engineering: Volume 3, Chaps. 17-24 — overview of 
requirements engineering, requirements stakeholders, requirements facets, 
requirements acquisition, requirements analysis and concept formation, 
requirements verification and validation, requirements satisfiability and 
feasibility, and the requirements engineering process model 

• Software design: Volume 3, Chaps. 25-30 — hardware/software code-
sign, software architecture design, a case study in component design, 
domain-specific architectures, coding (etc.), and the triptych computing 
systems design process model 

To properly set the stage for study of the above major phases of software 
development we first bring in some preliminary material: 

• The paperwork: Volume 3, Chap. 2 — documents 
• The conceptual framework: Volume 3, Chaps. 3-4 — methods and 

methodology, and models and modelling 
• Descriptions: theory and practice: Volume 3, Chaps. 5-7 — phenom­

ena and concepts, on defining and on definitions, and Jackson's description 
principles 

A final technical chapter closes the specification and programming method­
ological aspects of software engineering by covering: 
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• The triptych development process model — Volume 3, Chap. 31 

The main objective of Vol. 3 is to make the reader a professional in the com­
plete and full range of software development: from domains via requirements 
to software. 

22.4 A Caveat 

As pointed out, the reader must not forget that these volumes provide only 
one, albeit a major, facet of what is needed in "real" development: 

• Problem frame specialties. These first three volumes do cover many 
facets of such software applications as is usually classified by the terms: (i) 
administrative data processing; (ii) enterprise resource planning (ERP); 
(iii) compilers and interpreters; (iv) distributed (client/server, etc.) sys­
tems, (v) production planning, monitoring and control systems; (vi) data­
base management systems; (vii) embedded real-time safety-critical sys­
tems, and the like. But to become a real professional in any one of these 
areas requires more than these volumes can give you. So you are well ad­
vised to study special texts on such things as (a) formal semantics and com­
piler techniques, (b) data communication, cryptography and distributed 
systems, (c) database systems, (d) real-time embedded software, etc. 

• Management: Issues not covered by these volumees are: engineering 
management, configuration management (version monitoring and control), 
people management (capability maturity model, risk management, quality 
management), project planning (monitoring and control, project graphs, 
resource allocation and scheduling etc.), development cost management, 
contracts and contract management, market analysis, product cost esti­
mates, consultancy and instantiation costs, marketing and sales, mainte­
nance and service, business plans, financial matters, ISO 9000, ISO 9001 
and ISO 9000-3, IEEE and ACM standards, software tool standards, etc. 
We entertain some hope that a volume could be produced, one whose ob­
jective would be to show that formal techniques fit "hand-in-glove" with 
many current management concepts, while, in cases, warranting some new 
looks! 

22.5 Formal Methods "Lite" 

In Vol. 3, Chap. 32, Sect. 32.2 we bring an analysis of the issues of "myths 
and commandments" of formal methods. 

Suffice it for this volume to state that we do not believe in formal methods, 
but we use formal methods whenever the development of a piece of software 
is done by more than one person, or whenever that software eventually will 
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be used by any person other than the one who developed it, i.e., "always". 
But let us also state that we use formal methods "lite": We, ourselves, em­
phasise formal specification, in all phases, in reasonably "connected" stages 
and steps. But we seldom prove any properties: We assert that the develop­
ments we record do satisfy correctness criteria; but we "leave the details" to 
others. We do so on the experienced background that formal specification in 
carefully monitored and controlled phases, stages and steps — recording suit­
able abstraction (retrieve) functions, all appropriate invariants, etc. — seems 
to capture the proverbial "99.99%" of "believed" bugs. For those customers 
who need more formal assurance we know which kinds of developments we 
can provably relate, which kinds of properties we can formally verify — but 
in these volumes we cover only the proverbial "99.99%". 

22.6 Bibliographical Notes 

These volumes are the fruits of many years of my own work also. That work 
is recorded in the following documents: [37,55-114,116-121,123-130,228,257, 
352,431,490] 
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APPENDIXES 





A 

Common Exercise Topics 

In this appendix we bring some initial formulations of some problem domains 
for which a number of exercises, marked £ , will then be posed in subsequent 
chapters of this volume. References are given below. 

A.l Transportation Nets 

By a transportation net we understand a composition of road nets (of various 
kinds: public roads, toll roads [viz.: toll booth or electronically road priced], 
free ways, etc.), rail nets, nets of air traffic corridors, and nets of shipping lanes. 
Common, we claim, to all these nets are their composition from segments 
(street or road segments, rail lines between stations, air corridors, etc.), and 
connections (street intersections, railway stations, airports and harbours). 

So nets, segments and connections (or intersections) are important con­
cepts. They abstract phenomena such as mentioned above (roads, lines, and 
lanes, respectively street corners, train stations, airports and harbours). 

Segments may be decomposed into blocks, i.e., a segment being a sequence 
of blocks. And blocks (hence segments), as well as connections, may contain 
zero, one or more conveyours (cars, trains [usually at most one], air crafts or 
ships). Conveyors may move — so that traffic can be abstracted as a function 
from time to positions of conveyors (in, or within, blocks and connections). 

Issues of allocation, scheduling and control of traffic can then be ap­
proached. 

Exercises related to this topic are: 2.6, 3.3, 4.4, 5.1, 5.2, 5.3, 8.1, 9.1, 10.2, 
11.1, 12.4, 13.5, 14.6, 15.15, 16.12, 18.1, 19.4, 20.4 and 21.12. 

Examples 9.8 and 9.12 also relate to this exercise topic. 
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A.2 Container Logistics 

A container terminal is a special kind of harbour — at the "borderline" be­
tween ocean and land. Roughly a container terminal consists of a harbour 
basin, shielded from the ocean, on one side, by jetties, and otherwise border­
ing to one or more (land located) quays. Finally, also on land, each container 
terminal has a container storage area. 

A container terminal is so organised as to serve in the loading and un­
loading of containers onto, respectively from container ships. Before loading, 
and after unloading containers, these are usually kept, on shore, i.e., on land, 
in the container storage area. Containers on container ships and in container 
storage areas are kept in stacks — and we can talk about container ships 
and container storage areas being organised into 'bays' of 'rows' of stacks of 
containers. 

Quays are where container ships are positioned when being loaded and un­
loaded. Ship/shore cranes parked at locations (with up to several such per ship 
position) perform this loading and unloading, from, respectively onto termi­
nal trucks or container trucks. The former move containers between container 
ships and container storage areas and deposit and fetch their containers in, 
respectively from container storage area stacks by means of container storage 
area cranes. In other words: A Quay consists of a sequence of quay locations, 
with any subsequence of locations designating a quay position. 

Container ships may contain more containers than destined for the con­
tainer terminal they may currently be visiting. And container storage area 
stacks may contain containers destined for further container ship transport to 
usually several, "next", container terminals. 

Container ships as well as containers have sailing routes, respectively way­
bills, where both the former and the latter imply a sequence of container 
terminals, to be visited, respectively at which to be transferred (unloaded 
from one container ship and loaded onto another container ship via temporary 
storage in the container storage area of the transfer container terminal). 

Exercises related to this topic are: 2.7, 3.4, 4.5 5.1, 5.2, 5.3, 8.2, 9.2, 10.3, 
11.2, 12.5, 13.6, 14.7, 15.16, 16.13, 18.2, 19.5, 20.5, and 21.13. 

Examples 9.9 and 9.13 also relate to this exercise topic. 

A.3 Financial Service Indust ry 

A, or the, financial service industry (of a country, of a region, or of the 
world) consists of banks, insurance companies, securities instrument brokers 
and (stock) exchanges, as well as of portfolio management and other financial 
market operators. 

In banks customers can open and close accounts, deposit and withdraw 
funds, establish and terminate loans, borrow ("against") and pay back loans, 
etc. A customer may have several deposit and/or loan (and/or other) accounts. 
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Several customers may share accounts. Funds may be transferred between 
accounts in same or different banks. 

Customers may request (order) the buying or selling of securities instru­
ments through a broker (to be transacted at a securities instrument (eg., 
stock) exchange. A 'buy' ['sell'] request names a securities instrument, states 
time interval of request being valid (i.e., during which it should, if possible, 
be effected), states price interval ("lo, hi") within which transaction should, if 
possible, be effected (with "hi" ["lo"], for 'buy' ['sell'] orders, designating an 
absolute limit, while the "lo" ['hi'] being an "OK, you may effect transaction" 
limit). The lacing of a buy or sell order results in the exercise of a unique order 
code (to be retained by the customer and broker). At a securities instrument 
(eg., stock) exchange several buy and sell orders may have associated (over­
lapping) time and price intervals such that transaction can be concluded (by 
traders). If an order cannot be effected it is withdrawn. Customers may direct 
funds from or to bank accounts (and is so stated in placed orders). A set of 
buy and sell orders naming the same securities instrument may constitute the 
basis for a transaction. The sum of the sell quantities must "be close" or equal 
to the sum of buy quantities; the time of the transaction must be within the 
time intervals stated in all these orders; and the transacted price must within 
the price intervals stated in all these orders. Which transactions are eventually 
concluded is not a computable decision. It is ("highly") nondeterministic — 
to some even chaotic. 

In the set of exercises related to this topic we forgo any consideration of 
other than banks, brokers and exchanges (incl. traders). 

Exercises related to this topic are: 2.8, 3.5, 4.6, 5.1, 5.2, 5.3, 8.3, 9.3, 10.4, 
11.3, 12.6, 13.7, 14.8, 15.17, 16.14, 18.3, 19.6, 20.6, and 21.14. 

Examples 9.10 and 9.14 also relate to this exercise topic. 
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A.4 Summary References to Exercises 

Topic J 

Numbers 
Sets (I) 
Cartesians (I) 
Types (I) 
Algebras 
Logic 
Atomicity J 
Functions 
Abstraction 
Sets (II) 
Cartesians (II) 
Lists 
Maps 
Types 
Applicativeness 
Imperativeness 
Concurrency 

Transportation Nets 

2.6 
3.3 
4.4 

Container Logistics 

2.7 
3.4 
4.5 

Finance Industry | 

2.8 
3.5 
4.6 

5.1, 5.2 and 5.3 for all three topics | 
8.1 
9.1 
10.2 
11.1 
12.4 
13.5 
14.6 

15.15 
16.12 
18.1 
19.4 
20.4 

21.12 

8.2 
9.2 
10.3 
11.2 
12.5 
13.6 
14.7 

15.16 
16.13 
18.2 
19.5 
20.5 
21.13 

8.3 
9.3 
10.4 
11.3 
12.6 
13.7 
14.8 

15.17 
16.14 
18.3 
19.6 
20.6 

21.14 



B 

Glossary 

There is no prerequisite for studying this chapter. 
The aims are to put the concept of a glossary in the context of like notions 
of dictionaries, ontologies, taxonomies, terminologies and thesauri and to 
explain important computer science, computing science and software en­
gineering terms. 
The objective is to make the reader professional in the use of terms. 
The treatment is systematic. 

G 
H 
I . 

A 570 
B 576 
C 578 
D 587 J 
E 593 K 
F 595 

599 M 610 S 632 
600 N 615 T 640 

0 616 U 645 
P 618 V 646 

W 647 
Z 648 

602 
.608 
608 Q 626 

L 608 R 626 

For parts of 17 of the 788 entries we have quoted from [373]. There are 19 
such uses of [350] and four of [227] in this appendix. 

In any software development project it is important: 

• to define the terms before their first use, 
• to maintain, including adjust, update and extend, such a glossary of term | 

definitions, and 
• to adhere to the definitions. 

A list of terms specific to the overlapping areas of informatics, the computer 
and computing sciences and to software engineering is presented. Each term is 
described: delineated, characterised, in cases defined, and examples are some­
times illustrated. The list is simply alphabetically sorted. No attempt has 
been made to construct a thesaurus, a taxonomy or an ontology. 
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The terms, and especially their descriptions, may not coincide or subsume, 
or be subsumed by descriptions given in standard glossaries or textbooks of 
the field. Thus this terminology represents a personal, yet sufficiently honed 
newest glossary. 

This appendix is very personal, yet, we believe, both scientifically and tech­
nically, "correct". The gloss, the selection of entries (which terms to include, 
which to exclude), and their characterisation, in some cases definition, is our 
choice. The gloss thus reflects our view of the field of software engineering. 
One may rightfully claim, we believe, that from this gloss there emerges the 
contours of an ontology for, or of, software engineering. 

B. l Categories of Reference Lists 
On Glossaries, Dictionaries, Encyclopaedia, Ontologies, 
Taxonomies, Terminologies and Thesauri 

An important function of glossaries, dictionaries, etc., is to make sure that 
terms that may seem esoteric do not remain so. 

Esoteric: designed for or understood by the specially initiated alone, 
of or relating to knowledge that is restricted to a small group, 

limited to a small circle 

Merriam-Webster's Collegiate Dictionary [373] 

B . l . l Glossary 

According to [350] a gloss is "a word inserted between the lines or in the 
margin as an explanatory rendering of a word in the text; hence a similar 
rendering in a glossary or dictionary. Also, a comment, explanation, interpre­
tation." Furthermore according to [350] a glossary is therefore "a collection of 
glosses, a list with explanations of abstruse, antiquated, dialictical, or technical 
terms; a partial dictionary." [137] provides a Glossary of Z Notation. 

B. l .2 Dictionary 

According to [350] a dictionary is "a book dealing with the words of a lan­
guage, so as to set forth their orthography, pronunciation, signification, and 
use, their synonyms, derivation, history, or at least some of these; the words 
are arranged in some stated order, now, usually, alphabetical; a word book, 
vocabulary, lexicon. And, by extension: A book on information or reference, 
on any subject or branch of knowledge, the items of which are arranged al­
phabetically." Standard dictionaries are [350,373,412]. 
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B.1.3 Encyclopaedia 

According to [350], an encyclopaedia is "a circle of learning, a general course of 
instruction. A work containing information on all branches of knowledge, usu­
ally arranged alphabetically (1644). A work containing exhaustive information 
on some one art or branch of knowledge, arranged systematically." [207] is, 
perhaps, the most "famous" encyclopaedia. 

B.1.4 Ontology 

By ontology is meant [350]: "the science or study of being; that department of 
metaphysics which relates to the being or essence of things, or to being in the 
abstract." By an ontology we shall mean a document which, in a systematic 
arrangement explains, in a logical manner, a number of abstract concepts. 

B.1.5 Taxonomy 

By taxonomy is meant [350]: "classification, especially in relation to its general 
laws or principles; that department of science, or of a particular science or 
subject, which consists in or relates to classification." 

B.1.6 Terminology 

By a term is here meant [350]: "a word or phrase used in a definite or precise 
sense in some particular subject, as a science or art; a technical expression." 
More widely: "Any word or group of words expressing a notion or concep­
tion, or denoting an object of thought." By terminology is meant [350]: "the 
doctrine or scientific study of terms; the system of terms belonging to a sci­
ence or subject; technical terms collectively; nomenclature." [341] provides a 
terminology of Dependable Computing and Fault Tolerance: Concepts and 
Terminology. 

B.1.7 Thesaurus 

By thesaurus is, in general, meant [350]: "a 'treasury' or 'storehouse' of knowl­
edge, as a dictionary, encyclopaedia or the like. (1736)" The thesaurus [445] 
has set a unique standard for and "the" meaning, now, of the term 'thesaurus'. 

B.2 Typography and Spelling 

Some comments are in order: 

• A term definition consists of two or three parts. 
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* The first part consists of a natural (the index) number, the term being 
defined and a colon (:). The term subpart is the defi.niend.um. 

* The second part is the term definition body, the definiens. 
* Optional third parts — in parentheses — expand on the definiens, 

contrast it to other terms, or other. 
• The definiendum is a one, two or three word boldfaced term. 
• The definiens consists of free text which may contain uses of (other, or the 

same) defined terms. 
• Terms written in sans serif Italicized font stand for defined terms. 
• Definiens (second part) text ending with [373] (or [350]) represents quotes. 
• For reasons of cross-referencing we have spelled the terms a,/3 and A as 

Alpha (alpha), Beta (beta) and Lambda (lambda). 
• And we have rewritten the technical terms a-renaming, /3-reduction and 

A-calculus, conversion and expression (etc.) into Alpha-renaming, Beta-
reduction and Lambda-expression, etc., while keeping the hyphens. 

B.3 The Glosses 

A 

1. Abstract: Something which focuses on essential properties. Abstract is 
a relation: something is abstract with respect to something else (which 
possesses — what is considered — inessential properties). 

2. Abstract algebra: An abstract algebra is an algebra whose carrier ele­
ments and whose functions are defined by postulates (axioms, laws) which 
specify general properties, rather than values, of functions. (Abstract al­
gebras are also referred to as postulational, or axiomatic algebras. The 
axiomatic approach to the study of algebras forms the cornerstone of so-
called modern algebra [349].) 

3. Abstract data type: An abstract data type is a set of values for which 
no external world or computer (i.e., data) representation is being defined, 
together with a set of abstractly defined functions over these data values. 

4. Abstraction: 'The art of abstracting. The act of separating in thought; 
a mere idea; something visionary.' 

5. Abstraction function: An abstraction function is a function which ap­
plies to values of a concrete type and yields values of — what is said to be 
a corresponding — abstract type. (Same as retrieve function.) 

6. Abstract syntax: An abstract syntax is a set of rules, often in the form 
of an axiom system, or in the form of a set of sort definitions, which de­
fines a set of structures without prescribing a precise external world, or a 
computer (i.e., data) representation of those structures. 

7. Abstract type: An abstract type is the same as an abstract data type, 
except that no functions over the data values have been specified. 
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8. Accessibility: We say that a resource is accessible by another resource, 
if that other resource can make use of the former resource. (Accessibility 
is a dependability requirement. Usually accessibility is considered a ma­
chine property. As such, accessibility is (to be) expressed in a machine 
requirements document.) 

9. Acceptor: An acceptor is a device, like a finite state automaton of a push­
down automaton, which, when given (i.e., presented with) character strings 
(or, in general, finite structures), purported to belong to a language, can 
recognise, i.e., can decide, whether these character strings belong to that 
language. 

10. Acquirer: The legal entity, a person, an institution or a firm which or­
ders some development to take place. (Synonymous terms are client and 
customer.) 

11. Acquisition: The common term means purchase. Here we mean the col­
lection of knowledge (about a domain, about some requirements, or about 
some software). This collection takes place in an interaction between the 
developers and representatives of the client (users, etc.). (A synonym term 
is elicitation.) 

12. Action: By an action we shall understand something who potentially 
changes a state. 

13. Activation stack: See the Comment field of the function activation entry. 
14. Active: By active is understood a phenomenon which, over time, changes 

value, and does so either by itself, autonomously, or also because it is 
"instructed" (i.e., is "bid" (see biddable), or "programmed" (see pro­
grammable) to do so). (Contrast to inert and reactive.) 

15. Actor: By an actor we shall understand someone which carries out an 
action. (A synonymous term for actor is agent.) 

16. Actual argument: When a function is invoked it is usually applied to a 
list of values, the actual arguments. (See also formal parameter.) 

17. Actuator: By an actuator we shall understand an electronic, a mechani­
cal, or an electromechanical device which carries out an action that influ­
ences some physical value. (Usually actuators, together with sensors, are 
placed in reactive systems, and are linked to controllers. Cf. sensor.) 

18. Acyclic: Acyclicity is normally thought of as a property of graphs. (Hence 
see next entry: acyclic graph.) 

19. Acyclic graph: An acyclic graph is usually thought of as a directed graph 
in which there is no nonempty path, in the direction of the arrows, from 
any node to itself. (Often acyclic graphs are called directed acyclic graphs, 
DAGs. An undirected graph which is acyclic is a tree.) 

20. Adaptive: By adaptive we mean some thing that can adapt or arrange 
itself to a changing context, a changing environment. 

21. Adaptive maintenance: By adaptive maintenance we mean an update, 
as here, of software, to fit (to adapt) to a changing environment. (Adaptive 
maintenance is required when new input/output media are attached to the 
existing software, or when a new, underlying database management system 
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is to be used (instead of an older such), etc. We also refer to corrective 
maintenance, perfective maintenance, and preventive maintenance.) 

22. Address: An address is the same as a link, a pointer or a reference: 
Something which refers to, i.e., designates something (typically something 
else). (By an address we shall here, in a narrow sense, understand the 
location, the place, or position in some storage at which some data is 
stored or kept.) 

23. Ad hoc polymorphism: See Comment field of polymorphic. 
24. Agent: By an agent we mean the same as an actor — a human or a 

machine (i.e., robot). (The two terms actor and agent are here considered 
to be synonymous.) 

25. AI: Abbreviation for artificial intelligence. (We shall refrain from positing 
(including risking) a definition of the term AI. Instead we refer to John 
McCarthy's home page [369].) 

26. Algebra: An algebra is here taken to just mean: A set of values, A, the 
carrier of the algebra, and a set of functions, $, on these values such that 
the result values are within the set of values: $ = A* -» A. (We make the 
distinction between universal algebras, abstract algebras and concrete alge­
bras. See also heterogeneous algebras, partial algebras and total algebras.) 

27. Algebraic semantics: By an algebraic semantics we understand a se­
mantics which denotes one, or a (finite or infinite) set of zero, one or more 
algebras. (Usually an algebraic semantics is expressed in terms of (i) sort 
definitions, (ii) function signatures and (iii) axioms.) 

28. Algebraic systems: An algebraic system is an algebra. (We use the term 
system as an entity with two clearly separable parts: the carrier of the 
algebra and the functions of the algebra. We distinguish between concrete 
algebras, abstract algebras and universal algebras — here listed in order of 
increasing abstraction.) 

29. Algebraic type: An algebraic type is here considered the same as a sort. 
(That is, algebraic types are specified as are algebraic systems.) 

30. Algol: Algol stands for Algorithmic Language. (Algol 60 designed in the 
period 1958-1960 [24]. It became a reference standard for future language 
designs (Algol W [531], Algol 68 [510], Pascal [292,314,522] and others.) 

31. Algorithm: The notion of an algorithm is so important that we will 
give a number of not necessarily complementary definitions, and will then 
discuss these. 
• By an algorithm we shall understand a precise prescription for carrying 

out an orderly, finite set of operations on a set of data in order to calcu­
late (compute) a result. (This is a version of the classical definition. It 
is compatible with computability in the sense of Turing machines and 
Lambda-calculus. Other terms for algorithm are: effective procedure, 
and abstract program.) 

• Let there be given a possibly infinite set of states, S, let there be 
given a possibly infinite set of initial states, / , where / C S, and 
let there be given a next state function / : S —> S. (C, where C = 
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(Q,I,f) is an initialised, deterministic transition system.) A sequence 
so, s i , . . . , Si-i,Si,..., sm such that f(si-i) = Si is a computation. An 
algorithm, A, is a C with final states O, i.e.: 4̂ = (Q,I, / , 0 ) , where 
O C 5, such that each computation ends with a state sm in O. (This 
is basically Don Knuth's definition [326]. In that definition a state 
is a collection of identified data, i.e., a formalised representation of 
information, i.e., of computable data. Thus Knuth's definition is still 
Turing and Lamb da-calculus "compatible".) 

• There is given the same definition as just above with the generalisation 
that a state is any association of variables to phenomena, whether 
the latter are representable "inside" the computer or not. (This is 
basically Yuri Gurevitch's definition of an algorithm [253,438,439]. As 
such this definition goes beyond Turing machine and Lambda-calculus 
"compatibility". That is, captures more!) 

32. Algorithmic: Adjective form of algorithm. 
33. Allocate: To apportion for a specific purpose or to particular persons or 

things, to distribute tasks among human and automated components. (We 
shall here use the term generally for the allocation of resources (see also 
resource allocation), specifically for storage to assignable variables. In the 
general sense, allocation, as the name implies, has some spatial qualities 
about it: allocation to spatial positions. In the special sense we can indeed 
talk of storage space.) 

34. Alphabet: A finite collection of script symbols called the letters of the 
alphabet. 

35. Alpha-renaming: By alpha-renaming (a-renaming) we mean the sub­
stitution of a binding identifier, with another, the "new", identifier, in 
some Lambda-expression (statement or clause), such that all free occur­
rences of that binding identifier in that expression (statement or clause) 
are replaced by the new identifier, and such that that new identifier is not 
already bound in that expression (statement or clause). (Alpha-renaming 
is a concept of the Lambda-calculus.) 

36. Ambiguous: A sentence is ambiguous if it is open to more than one 
interpretation, i.e., has more than one model and these models are not 
isomorphic. 

37. Analogic: Equivalency or likeness of relations. Resemblance of relations 
or attributes as a ground of reasoning. Also: Presumptive reasoning based 
on the assumption that if things have some similar attributes, their other 
attributes will be similar [350]. 

38. Analogue: A representative in another class or group [350]. (Used in 
these volumes in the sense above, not in the sense of electrical engineering 
or control theory.) 

39. Analysis: The resolution of anything complex into simple elements. A de­
termination of proper components. The tracing of things to their sources; 
the discovery of general principles underlying concrete phenomena [350]. 
(In conventional mathematics analysis pertains to continuous phenomena, 
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e.g. differential and integral calculi. Our analysis is more related to hy­
brid systems of both discrete and continuous phenomena, or often to just 
discrete ones.) 

40. Analytic: Of, or pertaining to, or in accordance with analysis. 
41. Analytic grammar: A grammar, i.e., a syntax whose designated sen­

tences (in general: Structures) can be subject to analysis, i.e., where the 
syntactic composition can be revealed through analysis. 

42. Anomaly: Deviation from the normal. 
43. Anthropomorphic: Attributing a human personality to anything imper­

sonal or irrational [350]. (See anthropomorphism. It seems to be a "disease" 
of programmers to attribute their programs with human properties: "The 
program does so-and-so; and after that, it then goes on to do such-and-
such," etcetera. Programs, to recall, are, as are any description is, a mere 
syntactic, i.e., static text. As such they certainly can "do nothing". But 
they may prescribe that certain actions are effected by machine — when 
a machine interprets ("executes") the program text!) 

44. Anthropomorphism: Ascription of a human form and attributes to the 
Deity, or of a human attribute or personality to anything impersonal or 
irrational [350]. (See anthropomorphic.) 

45. Application: By an application we shall understand either of two rather 
different things: (i) the application of a function to an argument, and (ii) 
the use of software for some specific purpose (i.e., the application). (See 
next entry for variant (ii).) 

46. Application domain: An area of activity which some software is to 
support (or supports) or partially or fully automate (resp. automates). 
(We normally omit the prefix 'application' and just use the term domain.) 

47. Applicative: The term applicative is used in connection with applicative 
programming. It is hence understood as programming where applying 
functions to arguments is a main form of expression, and hence desig­
nates function application as a main form of operation. (Thus the terms 
applicative and functional are here used synonymously.) 

48. Applicative programming: See the term applicative just above. (Thus 
the terms applicative programming and functional programming are here 
used synonymously.) 

49. Applicative programming language: Same as functional programming 
language. 

50. Arc: Same as an edge. (Used normally in connection with graphs.) 
51. Architecture: The structure and content of software as perceived by 

their users and in the context of the application domain. (The term ar­
chitecture is here used in a rather narrow sense when compared with the 
more common use in civil engineering.) 

52. Argument: A value provided (possibly as part of an argument list) when 
invoking a function. 

53. Arity: By the arity of a function (i.e., an operation) we understand the 
number (0, 1, or more) of arguments that the function applies to. (Usually 
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a function applies to an argument list, and the arity is therefore the length 
of this list.) 

54. Arrow: A directed edge. (Branches are arrows.) 
55. Artefact: An artificial product [350]. (Anything designed or constructed 

by humans or machines, which is made by humans.) 
56. Artifact: Same term as artefact. 
57. Artificial intelligence: See Al. 
58. Assertion: By an assertion we mean the act of stating positively usually 

in anticipation of denial or objection. (In the context of specifications 
and programs an assertion is usually in the form of a pair of predicates 
"attached" to the specification text, to the program text, and expressing 
properties that are believed to hold before any interpretation of the text; 
that is, "a before" and "an after", or, as we shall also call it: a pre- and 
a post-condition.) 

59. Assignable variable: By an assignable variable we understand an entity 
of a program text which denotes a storage location whose associated value 
can be changed by an assignment. (Usually, in the context of specifications 
and programs, assignable variables are declared.) 

60. Assignment: By an assignment we mean an update to, a change of a 
storage location. (Usually, in the context of specifications and programs, 
assignments are prescribed by assignment statements.) 

61. Associative: Property of a binary operator o: If for all values a, b and c, 
(a o b) o c = a o (b o c), then o is said to be an associative operator. 
(Addition (+) and multiplication (*) of natural numbers are associative 
operators.) 

62. Asynchronous: Not synchronous. (In the context of computing we say 
that two or more processes — some of which may represent the world 
external to the computing device — are asynchronous if occurrences of 
the events of these processes are not (a priori) coordinated.) 

63. Atomic: In the context of software engineering atomic means: A phe­
nomenon (a concept, an entity, a value) which consists of no proper sub­
parts, i.e., no proper subphenomena, subconcepts, subentities or subvalues 
other than itself. (When we consider a phenomenon, a concept, an entity, 
a value, to be atomic, then it is often a matter of choice, with the choice 
reflecting a level of abstraction.) 

64. Attribute: We use the term attribute only in connection with values of 
composite type. An attribute is now whether a composite value possesses 
a certain property, or what value it has for a certain component part. 
(An example is that of database (e.g., SQL) relations (i.e., tabular data 
structures): Columns of a table (i.e., a relation) are usually labelled with a 
name designating the attribute (type) for values of that column. Another 
example is that, say, of a Cartesian: A = BxCxD.A can be said to have the 
attributes B, C, and D. Yet other examples are M = A -^ B, S = A-set and 
L = A*. M is said to have attributes A and B. S is said to have attribute A. 
L is said to have attribute A. In general we make the distinction between 
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an entity consisting of subentities (being decomposable into proper parts, 
cf. subentity), and the entities having attributes. A person, like me, has a 
height attribute, but my height cannot be "composed away from me"!) 

65. Attribute grammar: A grammar, usually expressed as a BNF grammar, 
where, to each rule, and to each nonterminal, of the left-hand side or of 
the right-hand side of the rule, there is associated one or more (attribute) 
assignable variables together with a set of single assignments to some of 
these variables — such that the assignment expression variables are those 
of the attribute variables of the rule. 

66. Automaton: An automaton is a device with states, inputs, some states 
designated as final states, and with a next state transition function which 
to every state and input designates a next state. (There may be a finite, 
or there may be an infinite number of states. The next state transition 
function may be deterministic or nondeterministic.) 

67. Automorphism: An isomorphism that maps an algebra into itself is an 
automorphism. (We refer to Sect. 8.4.4. See also endomorphism, epimor-
phism, homomorphism, monomorphism.) 

68. Autonomous: A phenomenon (a concept, an entity) is said to be au­
tonomous if it changes value at its own discretion or without influence 
from an environment. (Rephrasing the above we get: (i) A phenomenon is 
said to be of, or possess, the autonomous active dynamic attribute if it 
changes value only on its own volition — that is, it cannot also change 
value as a result of external stimuli; (ii) or when its actions cannot be 
controlled in any way: That is, they are a "law onto themselves and their 
surroundings". We speak of such phenomena as being dynamic. Other 
dynamic active phenomena may be active or reactive.) 

69. Availability: We say that a resource is available for use by other re­
sources, if within a reasonable time interval these other resources can 
make use of the former resource. (Availability is a dependability require­
ment. Usually availability is considered a machine property. As such avail­
ability is (to be) expressed in a machine requirements document.) 

70. Axiom: An established rule or principle or a self-evident truth. 
71. Axiomatic specification: A specification presented, i.e., given, in terms 

of a set of axioms. (Usually an axiomatic specification also includes defi­
nitions of sorts and function signatures.) 

72. Axiom system: Same as axiomatic specification. 

B 

73. B: B stands for Bourbaki, pseudonym for a group of mostly French math­
ematicians which began meeting in the 1930s, aiming to write a thor­
ough unified set-theoretic account of all mathematics. They had tremen­
dous influence on the way mathematics has been done since. (The found­
ing of the Bourbaki group is described in Andre Weil's autobiography, 
titled something like "memoir of an apprenticeship" (orig. Souvenirs 
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D'apprentissage). There is a usable book on Bourbaki by J. Fang. Liliane 
Beaulieu has a book forthcoming, which you can sample in "A Parisian 
Cafe and Ten Proto-Bourbaki Meetings 1934-1935" in the Mathematical 
Intelligencer 15 no. 1 (1993) 27-35. From h t tp : / /www.faqs .o rg / faqs / -
sci -math-faq/bourbaki / (2004). Founding members were: Henri Car-
tan, Claude Chevalley, Jean Coulomb, Jean Delsarte, Jean Dieudonne, 
Charles Ehresmann, Rene de Possel, Szolem Mandelbrojt, Andre Weil. 
From: h t tp : / /www.bourbaki .ens . f r / (2004). B also stands for a model-
oriented specification language [3].) 

74. Behaviour: By behaviour we shall understand the way in which some­
thing functions or operates. (In the context of domain engineering be­
haviour is a concept associated with phenomena, in particular manifest 
entitles. And then behaviour is that which can be observed about the value 
of the entity and its Interaction with an environment.) 

75. Beta-reduction: By Beta-reduction we understand the substitution 
whereby all free occurrences of a designated variable in a Lambda-expression 
are replaced by Lambda-expression (in which some Alpha-renamings may 
have to be made first). 

76. Biddable: A phenomenon is biddable if it can be advised (through a 
"contractual arrangement") on which actions are expected of it in vari­
ous states. (A biddable phenomenon does not have to take these actions, 
but then the "contractual arrangement" need no longer be honoured by 
other phenomena (other [subjdomains) with which it interacts (i.e., shares 
phenomena).) 

77. Bijection: See bijective function. 
78. Bijective function: A total surjective function which maps all values of its 

postulated definition set into all distinct values of its postulated rangeset 
is called bijective. (See also injective function and surjective function.) 

79. Binding: By binding we mean a pairing of, usually, an identifier, a name, 
with some resource. (In the context of software engineering we find such 
bindings as: (i) of an assignable variable to a storage location, (ii) of a 
procedure name to a procedure denotation, etc.) 

80. Block: By a block we shall here understand a textual entity, one that is 
suitably delineated. (In the context of software engineering a block is nor­
mally some partial specification which locally introduces some (applicative, 
i.e., expression) constant definitions (i.e., let .. in .. end), or some 
(imperative, i.e., statement) local variable declarations (i.e., begin del 
.. ; .. end).) 

81. Block-structured programming language: A programming language 
is said to be block-structured if it permits such program constructs (incl. 
procedures) whose semantics amount to the creation of a local identifier 
scope, and where such can be nested, zero, one or more within another. 

82. BNF: Abbreviation for Backus-Naur Form (Grammar). (See BNF Gram­
mar.) 
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83. BNF grammar: By BNF Grammar we mean a concrete, linear textual 
representation of a grammar, i.e., a syntax, one that designates a set of 
strings. (A BNF Grammar usually is represented in the form of a set of 
rules. Each rule has a nonterminal left-hand-side symbol and a finite set 
of zero, one or more alternative right-hand-side strings of terminal and 
nonterminal symbols.) 

84. Boolean: By Boolean we mean a data type of logical values (true and 
false), and a set of connectives: ~, A, V, and =>. (Boolean derives from 
the name of the mathematician George Boole.) 

85. Boolean connective: By a Boolean connective we mean either of the 
Boolean operators: A, V, => (or D), ~ (or -«). 

86. Bound: The concept of being bound is associated with (i) identifiers (i.e., 
names) and expressions, and (ii) with names (i.e., identifiers) and resources. 
An identifier is said to be either free or bound in an expression based on 
certain rules being satisfied or not. If an identifier is bound in an expression 
then bound occurrences of that identifier are bound to the same resource. 
If a name is bound to some resource then all bound occurrences of that 
name denote that resource. (Cf. free.) 

87. B P R : See business process reengineering 
88. Branch: Almost the same as an edge, except that branches are directed, 

i.e., are (like) arrows. (Used usually in connection with trees.) 
89. Brief: By a brief is understood a document, or a part of a document which 

informs about a phase , or a stage , or a step of development. (A brief thus 
contains information.) 

90. Business process: By a business process we shall understand a behaviour 
of an enterprise, a business, an institution, a factory. (Thus a business 
process reflects the ways in which a business conducts its affairs, and 
is a facet of the domain. Other facets of an enterprise are those of its 
intrinsics, management and organisation (a facet closely related, of course, 
to business processes), support technology, rules and regulations, and human 
behaviour.) 

91. Business process engineering: By business process engineering we shall 
understand the design, the determination, of business processes. (In doing 
business process engineering one is basically designing, i.e., prescribing 
entirely new business processes.) 

92. Business process reengineering: By business process reengineering we 
shall understand the redesign, the change, of business processes. (In do­
ing business process reengineering one is basically carrying out change 
management.) 

C 

93. Calculate: Given an expression and an applicable rule of a calculus, to 
change the former expression into a resulting expression. (Same as com­
pute.) 
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94. Calculation: A sequence of steps which, from an initial expression, fol­
lowing rules of a calculus, calculates another, perhaps the same, expression. 
(Same as computation.) 

95. Calculus: A method of computation or calculation in a special notation. 
(From mathematics we know the differential and the integral calculi, and 
also the Laplace calculus. From metamathematics we have learned of the 
A-calculus. From logic we know of the Boolean (propositional) calculus.) 

96. Capture: The term capture is used in connection with domain knowledge 
(i.e., domain capture) and with requirements acquisition. It shall indicate 
the act of acquiring, of obtaining, of writing down, domain knowledge, 
respectively requirements. 

97. Carrier: By a carrier is understood a, or the set of entities of an algebra 
— the former in the case of a heterogeneous algebra. 

98. Cartesian: By a Cartesian is understood an ordered product, a fixed 
grouping, a fixed composition, of entities. (Cartesian derives from the 
name of the French mathematician Rene Descartes.) 

99. C.C.I.T.T: Abbreviation for Comite Consultative Internationale de Tele-
graphie et Telephonie. (CCITT is an alternative form of reference.) 

100. Change management: Same as business process reengineering. 
101. Channel: By a channel is understood a means of interaction, i.e., of com­

munication and possibly of synchronisation between behaviours. (In the 
context of computing we can think of channels as being either input, or 
output, or both input and output channels.) 

102. Chaos: By chaos we understand the totally undefined behaviour: Any­
thing may happen! (In the context of computing chaos may, for example, 
be the designation for the never-ending, the never-terminating process.) 

103. CHI: Abbreviation for Computer Human Interface. (Same as HCI.) 
104. CHILL: Abbreviation for CCITT's High Level Language. (See [145,254].) 
105. Class: By a class we mean either of two things: a class clause, as in RSL, 

or a set of entities defined by some specification, typically a predicate. 
106. Clause: By a clause is meant an expression, designating a value, or a state­

ment, designating a state change, or a sentential form, which designates 
both a value and a state change. (When we use the term clause we mean 
it mostly in the latter sense of both designating a value and a side effect.) 

107. Client: By a client we mean any of three things: (i) The legal body (a 
person or a company) which orders the development of some software, 
or (ii) a process or a behaviour which interacts with another process or 
behaviour (i.e., the server), in order to have that server perform some 
actions on behalf of the client, or (iii) a user of some software (i.e., com­
puting system). (We shall normally use the term customer in the first or 
in the second sense (i, ii).) 

108. Closure: By a closure is usually meant some transitive closure of a rela­
tion 9E: If oM) and b^tc then alStc, and so forth. To this we shall add another 
meaning, used in connection with implementation of (for example) proce­
dures: Denotationally a procedure, when invoked, in some calling environ-
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ment, is to be interpreted in the defining environment. Hence a procedure 
closure is a pair: The procedure text and the defining environment. 

109. Code: By code we mean a program which is expressed in the machine 
language of a computer. 

110. Coding: By coding we shall here, simply, mean the act of programming 
in a machine, i.e., in a computer-close language. (Thus we do not, except 
where explicitly so mentioned, mean the encoding of one string of char­
acters into another, say for communication over a possibly faulty commu­
nication channel (usually with the decoding of the encoded string "back" 
into the original, or a similar string).) 

111. Cohesion: Cohesion expresses a measure of "closeness", of "dependency", 
of "sticking together" among a set of entities. (In the context of software 
engineering cohesion is, as it is here, a term used to express a dependency 
relation between modules of a specification or a program. Two modules 
have a higher cohesion the larger the number of cross-references (to types 
and values, including, in particular functions) there are among them.) 

112. Collision: Collision, as used here, means that two (or more) occurrences 
of the same identifier, of which at least one is free, and which at some 
stage occurred in different text parts, are brought together, say by func­
tion application (i.e., macro-expansion) and thereby become bound. (Col­
lision is a concept introduced in the Lamb da-calculus, see Vol. 1, Chap. 7, 
Sect. 7.7.4.3. Collision is an undesirable effect. See also confusion.) 

113. Communication: A process by which information is exchanged between 
individuals (behaviours, processes) through a common system of symbols, 
signs, or protocols. 

114. Commutative: Property of a binary operator o: If for all values a and b, 
a o b = b o a, then o is said to be a commutative operator. (Addition (+) 
and multiplication (*) of natural numbers are commutative operators.) 

115. Compilation: By a compilation we shall mean the conversion, the trans­
lation, of one formal text to another, usually a high-level program text to 
a low-level machine code text. 

116. Compiler: By a compiler we understand a device (usually a software 
package) which given sentences (i.e., source programs) in one language, 
generates sentences (i.e., target programs) in another language. (Usually 
the source and the target languages are related as follows: The source 
language is normally a so-called "higher-order" language, like Java, and 
the target language is normally a "lower (abstraction) level" language, like 
Java Byte Code (or a computer machine language) for which an interpreter 
is readily available.) 

117. Compiler dictionary: By a compiler dictionary we shall understand a 
composite data structure (with a varying number of entries) and a fixed 
number of operations. The data structure values reflect properties of a 
program text being compiled. These properties could be: types of some 
program text variable, type structure of some program text type name, 
program point of definition of some (goto) label, etc. The possibly hierar-
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chical, i.e., recursively nested, structure of the compiler dictionary further 
reflects a similarly hierarchical structure of the program text being com­
piled. The operations include those that insert, update, and search for 
entries in the compiler dictionary. 

118. Compile time: By compile time we understand that time interval dur­
ing which a source program is being compiled and during which certain 
analyses, and hence decisions, can be made about, and actions taken with 
respect to the source program (to be, i.e., being, compiled) — such as type 
checking, name scope checking, etc. (Contrast to run time.) 

119. Compiling algorithm: By a compiling algorithm we shall understand a 
specification which, for every rule in a syntax (of a source programming 
language), prescribes which target programming language data structure 
to generate. (We refer to Vol. 2, Chap. 16 (Sects. 16.8-16.10) for "our 
story" on compiling algorithms.) 

120. Complete: We say that a proof system is complete if all true sentences 
are provable. 

121. Completeness: Noun form of the complete adjective. 
122. Component: By a component we shall here understand a set of type 

definitions and component local variable declarations, i.e., a component 
local state, this together with a (usually complete) set of modules, such 
that these modules together implement a set of concepts and facilities, 
i.e., functions, that are judged to relate to one another. 

123. Component design: By a component design we shall understand the 
design of (one or more) components. (We shall refer to Vol. 3, Chaps. 28-
29 for "our story" on component design.) 

124. Composite: We say that a phenomenon, a concept, is composite when it 
is possible, and meaningful, to consider that phenomenon or concept as 
analysable into two or more subphenomena or subconcepts. 

125. Composition: By composition we mean the way in which a phenomenon, 
a concept, is "put together" (i.e., composed) into a composite phenomenon, 
resp. concept. 

126. Compositional: We say that two or more phenomena or concepts are 
compositional if it is meaningful to compose these phenomena and/or 
concepts. (Typically a denotational semantics is expressed compositionally: 
By composing the semantics of sentence parts into the semantics of the 
composition of the sentence parts.) 

127. Compositional documentation: By compositional documentation we 
mean a development, or a presentation (of that development), of, as here, 
some description (prescription or specification), in which some notion of 
"smallest", i.e., atomic phenomena and concepts are developed (resp. pre­
sented) first, then their compositions, etc., until some notion of full, com­
plete development (etc.) has been achieved. (See also composition, compo­
sitional and hierarchical documentation.) 

128. Comprehension: By comprehension we shall here mean set, list or map 
comprehension, that is, the expression, of a set, a list, respectively a map, 
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by a predicate over the elements of the set, list or pairings of the map, 
that belong to the set, list, respectively the map. 

129. Computation: See calculation. 
130. Computational linguistics: The study and knowledge of the syntax and 

semantics of language based on notions of computer science and comput­
ing science. (Thus computational linguistics emphasises those aspects of 
language whose analysis (recognition), or synthesis (generation), can be 
mechanised.) 

131. Computational data+control requirements: By a computational da­
ta + control requirements we mean a requirements which express how the 
dynamics of computations or data (may) warrant interaction between the 
machine and its environment, hence is an interface requirements facet. 
(See also shared data Initialisation requirements, shared data refreshment re­
quirements, man-machine dialogue requirements, man-machine physiological 
requirements, and machine-machine dialogue requirements.) 

132. Computational semantics: By a computational semantics we mean a 
specification of the semantics of a language which emphasises run-time 
computations, i.e., state-to-next-state transitions, as effected when fol­
lowing the prescriptions of programs. (Terms similar in meaning to com­
putational semantics are operational semantics and structural operational 
semantics.) 

133. Compute: Given an expression and an applicable rule of a calculus, to 
change the former expression into a resulting expression. (Same as calcu­
late.) 

134. Computer Science: The study and knowledge of the phenomena that 
can exist inside computers. 

135. Computing Science: The study and knowledge of how to construct 
those phenomena that can exist inside computers. 

136. Computing system: A combination of hardware and software that to­
gether make meaningful computations possible. 

137. Concept: An abstract or generic idea generalised from phenomena or 
concepts. (A working definition of a concept has it comprising two com­
ponents: The extension and the Intension. A word of warning: Whenever 
we describe something claimed to be a "real instance", i.e., a physical 
phenomenon, then even the description becomes that of a concept, not of 
"that real thing"!) 

138. Concept formation: The forming, the enunciation, the analysis, and 
definition of concepts (on the basis, as here, of analysis of the universe of 
discourse (be it a domain or some requirements)). (Domain and require­
ments concept formation(s) is treated in Vol. 3, Chaps. 13 (Domain Anal­
ysis and Concept Formation) and 21 (Requirements Analysis and Concept 
Formation).) 

139. Concrete: By concrete we understand a phenomenon or, even, a concept, 
whose explication, as far as is possible, considers all that can be observed 
about the phenomenon, respectively the concept. (We shall, however, use 
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the term concrete more loosely: To characterise that something, being 
specified, is "more concrete" (possessing more properties) than something 
else, which has been specified, and which is thus considered "more ab­
stract" (possessing fewer properties [considered more relevant]).) 

140. Concrete algebra: A concrete algebra is an algebra whose carrier is some 
known set of mathematical elements and whose functions are known, i.e., 
well-defined. That is, the models of both the carrier and all the functions 
are pre-established. (Concrete algebras are the level of the empirical (ac­
tual) world of mathematics and its applications, where one deals with 
specific sets of elements (integers, Booleans, reals, etc.), and where opera­
tions on these sets that are defined by rules or algorithms or combinations. 
In general one "knows" a concrete algebra when one knows what the ele­
ments of the carrier A are and how to evaluate the functions fa : $ over 
A [349].) 

141. Concrete syntax: A concrete syntax is a syntax which prescribes actual, 
computer representable data structures. (Typically a BNF Grammar is a 
concrete syntax.) 

142. Concrete type : A concrete type is a type which prescribes actual, com­
puter representable data structures. (Typically the type definitions of pro­
gramming languages designate concrete types.) 

143. Concurrency: By concurrency we mean the simultaneous existence of 
two or more behaviours, i.e., two or more processes. (That is, a phenomenon 
is said to exhibit concurrency when one can analyse the phenomenon into 
two or more concurrent phenomena.) 

144. Concurrent: Two (or more) events can be said to occur concurrently, 
i.e., be concurrent, when one cannot meaningfully describe any one of 
these events to ("always") "occur" before any other of these events. (Thus 
concurrent systems are systems of two or more processes (behaviours) 
where the simultaneous happening of "things" (i.e., events) is deemed 
beneficial, or useful, or, at least, to take place!) 

145. Configuration: By a configuration we shall here understand the com­
position of two or more semantic values. (Usually we shall decompose a 
configuration into parts such that each part enjoys a temporal relation­
ship with respect to the other parts: being "more dynamic", being "more 
static", etc. More specifically, we shall typically model the semantics of 
imperative programming languages in terms of semantic functions over 
configurations composed from environments and storages.) 

146. Conformance: Conformance is a relation between two documents (A 
and B). B is said to conform to A, if everything A specifies is satisfied by 
B. (Conformance is thus, here, taken to be the same as correctness, i.e., 
congruence. Usually conformance is used in standardisation documents: 
Any system claiming to follow this standard must show conformance to 

147. Confusion: Confusion, as used here, means that two (or more) occur­
rences of the same identifier, bound to possibly different values, may be 
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confused in that it is difficult from a smaller context of the text in which 
they occur to discern, to decide, which meanings, which values, the vari­
ous occurrences are bound to. (Confusion is a concept introduced in the 
Lamb da-calculus, see Vol. 1, Chap. 7, Sect. 7.7.4.3. Confusion is an OK, 
albeit annoying, effect! See also collision.) 

148. Congruence: An algebra, A, is said to be congruent with another algebra, 
B, if, for every operation, OB, and suitable set of arguments, b\, 62, • • •, 
bn, to that operation, in B, there corresponds an operation, OA, and a 
suitable set of arguments, a\, 0,2, . . . , an, in A such that OA(O<I, 0,2, . . . ,an) 
= OB(bi, 62? • • • ? bn). (Compare this definition to that of conformance. The 
difference is one between a precise, mathematical meaning of congruence, 
as contrasted to an informal meaning of conformance.) 

149. Conjunction: Being combined, being conjoined, composed. (We shall 
mostly think of conjunction as the (meaning of the) logical connective 
"and": A.) 

150. Connection: Connection is a topological notion, and, as such, is also an 
ontological concept related to "parts and wholes", where parts may be, 
or may not be connected, i.e., "so close" to one another, that there can 
be no other parts "inserted in between". 

151. Connector: We shall here, by a connector, mean a hardware, or some 
software device that "connects" two like devices, hardware+hardware, or 
software+software. (Typically, in software engineering, when "connect­
ing" two independently developed components, one deploys a connector 
in order to connect them.) 

152. Connective: By a connective is here meant one of the Boolean "opera­
tors": "and" A, "or" V, "imply" =>, and "negation" ~. 

153. Consistent: A set of axioms is said to be consistent if, by means of these, 
and some deduction rules, one cannot prove a property and its negation. 

154. Consistency: Being consistent (throughout). 
155. Constraint: By a constraint we shall here, in a somewhat narrow sense, 

understand a property that must be satisfied by certain values of a given 
type. (That is: The type may define more values than are to be satisfied 
by the constraint. We also use the terms data invariant, or well-formedness. 
The term constraint has taken on a larger meaning than propagated in 
this book. We refer to constraint programming, constraint satisfaction 
problems, etc. For a seminal text book we refer to [18]. In constraint 
programming a constraint, as expressed in a problem model, and hence in 
a constraint program, is a relation on a sequence of values of (a sequence 
of) variables of that program. 
As you see, the difference, in the two meanings of 'constraint', really, is 
minor.) 

156. Constructor: By a constructor we mean either of two, albeit related, 
things, a type constructor, or a value constructor. By a type construc­
tor we mean an operator on types which when applied to types, say A, 
constructs another type, say B. By a value constructor we mean a some-
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times distributed fix operator which when applied to one or more values 
constructs a value of a different type. (Examples of type constructors 
are -set , x , *, w, ^ , ->>, ^> (sets, Cartesians, finite lists, finite and infi­
nite lists, maps, total functions, partial functions), and mk_B. Examples of 
value constructors are: {•,«,...,•}, (•,•,...,•), (•,•,...,•), [ • i—>•-,•<—>-•, ,•!—>•• ] and 
mk_B(v, . . . ,•), etc., (sets, Cartesians, lists, maps, and variant records).) 

157. Context: There are two related meanings: (i) the parts of a discourse that 
surround some text and (ii) the interrelated conditions in which something 
is understood. (The former meaning emphasises syntactical properties, 
i.e., speaks of a syntactic context; the latter, we claim, semantical proper­
ties (i.e., semantic context). We shall often, by a syntactic context speak 
of the scope of an identifier: the text (parts) over which the identifier is 
defined, i.e., is bound. And by a semantic context we then speak of the 
environment in which an identifier is bound to its semantic meaning. As 
such semantic contexts go, hand-in-hand, in configurations, with states.) 

158. Context-Free: By context-free we mean that something is defined free of 
any considerations of the context in which that "something" (otherwise) 
occurs. (We shall use the context-free concept extensively: context-free 
grammar and context-free syntax, etc. The type definition rules of RSL have 
a context-free interpretation.) 

159. Context-Free language: By a context-free language we mean a language 
which can be generated by a context-free syntax. (See generator.) 

160. Context-Free Grammar: See context-free syntax. 
161. Context-Free Syntax: By a context-free syntax we shall understand a 

type system consisting of type definitions in which right-hand-side occur­
rences of defined type names can be freely substituted for any of a variety 
of their definitions. (Typically a BNF grammar specifies a context-free 
syntax.) 

162. Context-Sensitive Grammar: See context-sensitive syntax. 
163. Context-Sensitive Syntax: By a context-sensitive syntax we may un­

derstand a type system consisting of ordinary type definitions in which 
right-hand-side occurrences of defined type names cannot be freely substi­
tuted for any of a variety of their definitions, but may only be substituted 
provided these right-hand-side type names (i.e., nonterminals) occur in 
specified contexts (of other type names or literals). (Usually a context-
sensitive syntax can be specified by a set of rules where both left-hand 
and right-hand sides are composite type expressions. The left-hand-side 
composite expression then specifies the contexts in which the right-hand 
side may be substituted.) 

164. Continuation: By a continuation we shall, rather technically, understand 
a state-to-state transformation function, specifically one that is the deno­
tation of a program point, that is, of any computation as from that program 
point (i.e., label) onwards — until program termination. 

165. Continuous: Of a mathematical curve, i.e., function: 'Having the prop­
erty that the absolute value of the numerical difference between the value 
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at a given point and the value at any point in a neighborhood of the given 
point can be made as close to zero as desired by choosing the neighborhood 
small enough' [373]. 

166. Contract: A legally binding agreement between two or more parties — 
hence a document describing the conditions of the contract. (To us, in 
software development, a contract specifies what is to be developed (a 
domain description, a requirements prescription, or a software design), how 
it might, or must be developed, criteria for acceptance of what has been 
developed, delivery dates for the developed items, who the "parties" to 
the contract are: the client and the developer, etc.) 

167. Control: To control has two meanings: to check, test or verify by evidence 
or experiments, and to exercise restraining or directing influence over, to 
regulate. (We shall mostly mean the second form. And we shall often use 
the term 'control' in conjunction with the term 'monitoring'.) 

168. Controller: By a controller we here mean a computing system, which 
interfaces with some physical environment, a reactive system, i.e., a plant, 
and which, by temporally sensing (i.e., sampling) characteristic values of 
that plant, and by similarly regularly activating actuators in the plant, 
can make the plant behave according to desired prescriptions. (We stress 
the reactive system nature of the plant to be controlled. See also sensor.) 

169. Conversion: By conversion we shall here, in a rather limiting sense, with 
a base in the Lambda-calculus, understand either an Alpha-renaming or a 
Beta-reduction of some Lambda-expression. (We refer to Chap. 7.) 

170. Correct: See next entry: correctness. 
171. Correctness: Correctness is a relation between two specifications A and 

B: B is correct with respect to A if every property of what is specified in 
A is a property of B. (Compare to conformance and congruence.) 

172. Corrective maintenance: By corrective maintenance we understand a 
change, predicated by a specification A, to a specification, B', resulting in 
a specification, B", such that B" satisfies more properties of A than does 
Bf. (That is: Specification B' is in error in that it is not correct with respect 
to A. But B" is an improvement over B'. Hopefully B" is then correct 
wrt. A. We also refer to adaptive maintenance, perfective maintenance, and 
preventive maintenance.) 

173. CSP: Abbreviation for Communicating Sequential Processes. (See [288, 
448] and Chap. 21. Also, but not in this book, a term that covers constraint 
satisfaction problem (or programming).) 

174. Curry: Name of American mathematician: Haskell B. Curry. Also a verb: 
to Curry — see Currying. 

175. Curried: A function invocation, commonly written f(a\, a2,..., an), is said 
to be Curried when instead written: /(ai)(a2)...(an). (The act of rewriting 
a function invocation into Curried form is called Currying.) 

176. Currying: A function signature, normally written, f: AxBx...xC—>D can 
be Curried into being written f: A— B̂—>...— Ĉ— D̂. The act of doing so is 
called Currying. 



B.3 The Glosses 587 

177. Customer: By a customer we mean either of three things: (i) the client, 
a person, or a company, which orders the development of some software, 
or (ii) a client process or a behaviour which interacts with another process 
or behaviour (i.e., the server), in order to have that server perform some 
actions on behalf of the client, or (iii) a user of some software (i.e., com­
puting system). (We shall normally use the term customer in the third 
sense (iii).) 

V 

178. DAG: Abbreviation for directed (i.e., oriented) acyclic graph. 
179. Dangling reference: A reference is usually a "pointer", a "link" to some 

resource. A dangling reference is a reference where that resource has been 
lost, i.e., has been removed. (Usually the reference is a location and the 
location has been "freed", i.e., deallocated.) 

180. Data: Data is formalised representation of information. (In our context 
information is what we may know, informally, and even express, in words, 
or informal text or diagrams, etc. Data is correspondingly the internal 
computer, including database representation of such information.) 

181. Database: By a database we shall generally understand a large collection 
of data. More specifically we shall, by a database, imply that the data 
are organised according to certain data structuring and data query and 
update principles. (Classically, three forms of (data structured) databases 
can be identified: The hierarchical, the network, and the relational database 
forms. We refer to [176,177] for seminal coverage, and to [62,65,124,125] 
for formalisation, of these database forms.) 

182. Database schema: By a database schema we understand a type definition 
of the structure of the data kept in a database. 

183. Data abstraction: Data abstraction takes place when we abstract from 
the particular formal representation of data. 

184. Data invariant: By a data invariant is understood some property that 
is expected to hold for all instances of the data. (We use the term 'data' 
colloquially, and really should say type invariance, or variable content in-
variance. Then 'instances' can be equated with values. See also constraint.) 

185. Data refinement: Data refinement is a relation. It holds between a pair 
of data if one can be said to be a "more concrete" implementation of the 
other. (The whole point of data abstraction, in earlier phases, stages and 
steps of development, is that we can later concretise, i.e., data refine.) 

186. Data reification: Same as data refinement. (To reify is to render some­
thing abstract as a material or concrete thing.) 

187. Data structure: By a data structure we shall normally understand a 
composition of data values, for example, in the "believed" form of a linked 
list, a tree, a graph or the like. (As in contrast to an information structure, 
a data structure (by our using the term data) is bound to some computer 
representation.) 
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188. Data transformation: Same as data refinement and, hence, data reifica-
tion. 

189. Data type: By a data type is understood a set of values and a set of 
functions over these values — whether abstract or concrete. 

190. DC: DC stands for Duration Calculus. (The duration calculi are specific 
temporal logics over continuous time intervals [537,538]) 

191. Decidable: A formal logic system is decidable if there is an algorithm 
which prescribes computations that can determine whether any given sen­
tence in the system is a theorem. 

192. Declaration: A declaration prescribes the allocation of a resource of the 
kind declared: (i) A variable, i.e., a location in some storage; (ii) a channel 
between active processes; (hi) an object, i.e., a process possessing a local 
state; etc. 

193. Decomposition: By a decomposition is meant the presentation of the 
parts of a composite "thing". 

194. Deduce: To perform a deduction, see next. (Cf. infer.) 
195. Deduction: A form of reasoning where a conclusion about particulars fol­

lows from general premises. (Thus deduction goes from the general (case) 
to the specific (case). See contrast to induction: inferring from specific 
cases to general cases.) 

196. Deduction rule: A rule for performing deductions. 
197. Definiendum: The left-hand side of a definition, that which is to be 

defined. 
198. Definiens: The right-hand side of a definition, that which is defining 

"something". 
199. Definite: Something which has specified limits. (Watch out for the four 

terms: finite, infinite, definite and indefinite.) 
200. Definition: A definition defines something, makes it conceptually "mani­

fest" . A definition consists of two parts: a definiendum, normally considered 
the left-hand part of a definition, and a definiens, normally considered the 
right-hand part (the body) of a definition. 

201. Definition set: By a definition set we mean, given a function, the set of 
values for which the function is defined, i.e., for which, when it is applied 
to a member of the definition set yields a proper value. (Cf., range set.) 

202. Delimiter: A delimiter delimits something: marks the start, and/or end 
of that thing. (A delimiter thus is a syntactic notion.) 

203. Denotation: A direct specific meaning as distinct from an implied or 
associated idea [373]. (By a denotation we shall, in our context, associate 
the idea of mathematical functions: That is, of the denotational semantics 
standing for functions.) 

204. Denotational: Being a denotation. 
205. Denotational semantics: By a denotational semantics we mean a se­

mantics which to atomic syntactical notions associate simple mathematical 
structures (usually functions, or sets of traces, or algebras), and which to 
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composite syntactical notions prescribe a semantics which is the functional 
composition of the denotational semantics of the composition parts. 

206. Denote: Designates a mathematical meaning according to the principles 
of denotational semantics. (Sometimes we use the looser term designate.) 

207. Dependability: Dependability is defined as the property of a machine 
such that reliance can justifiably be placed on the service it delivers [432]. 
(See definition of the related terms: error, failure, fault and machine ser­
vice.) 

208. Dependability requirements: By requirements concerning dependabil­
ity we mean any such requirements which deal with either accessibility 
requirements, or availability requirements, or integrity requirements, or re­
liability requirements, or robustness requirements, or safety requirements, 
or security requirements, or robustness requirements. 

209. Describe: To describe something is to create, in the mind of the reader, 
a model of that something. The thing, to be describable, must be either 
a physically manifest phenomenon, or a concept derived from such phe­
nomena. Furthermore, to be describable it must be possible to create, to 
formulate a mathematical, i.e., a formal description of that something. 
(This delineation of description is narrow. It is too narrow for, for exam­
ple, philosophical or literary, or historical, or psychological discourse. But 
it is probably too wide for a software engineering, or a computing science 
discourse. See also description.) 

210. Description: By a description is, in our context, meant some text which 
designates something, i.e., for which, eventually, a mathematical model 
can be established. (We readily accept that our characterisation of the 
term 'description' is narrow. That is: We take as a guiding principle, as 
a dogma, that an informal text, a rough sketch, a narrative, is not a de­
scription unless one can eventually demonstrate a mathematical model 
that somehow relates to, i.e., "models" that informal text. To further 
paraphrase our concern about "describability", we now state that a de­
scription is a description of the entities, functions, events and behaviours 
of a further designated universe of discourse: That is, a description of 
a domain, a prescription of requirements, or a specification of a software 
design.) 

211. Design: By a design we mean the specification of a concrete artefact, some­
thing that can either be physically manifested, like a chair, or conceptually 
demonstrated, like a software program. 

212. Designate: To designate is to present a reference to, to point out, some­
thing. (See also denote and designation.) 

213. Designation: The relation between a syntactic marker and the semantic 
thing signified. (See also denote and designate.) 

214. Destructor: By a destructor we shall here understand a function which 
applies to a composite value and yields a further specified part (i.e., a 
subpart) of that value. (Examples of destructors in RSL are the list index-
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ing function, and the selector functions of a variant record. They do not 
destroy anything, however.) 

215. Deterministic: In a narrow sense we shall say that a behaviour, a process, 
a set of actions, is deterministic if the outcome of the behaviour, etc., can 
be predicted: Is always the same given the same "starting conditions", i.e., 
the same initial configuration (from which the behaviour, etc., proceeds). 
(See also nondeterministic.) 

216. Developer: The person, or the company, which constructs an artefact, 
as here, a domain description, or a requirements prescription, or a software 
design. 

217. Development: The set of actions that are carried out in order to con­
struct an artefact. 

218. Diagram: A usually two-dimensional drawing, a figure. (Sometimes a 
diagram is annotated with informal and formal text.) 

219. Dialogue: A "conversation" between two agents (men or machines). (We 
thus speak of man-machine dialogues as carried out over CHIs (HCIs).) 

220. Didactics: Systematic instruction based on a clear conceptualisation of 
the bases, of the foundations, upon which what is being instructed rests. 
(One may speak of the didactics of a field of knowledge, such as, for exam­
ple, software engineering. We believe that the present three volume book 
represents such a clearly conceptualised didactics, i.e., a foundationally 
consistent and complete basis.) 

221. Directed graph: A directed graph is a graph all of whose edges are 
directed, i.e., are arrows. 

222. Directory: A collection of directions. (We shall here take the more limited 
view of a directory as being a list of names of, i.e., references to resources.) 

223. Discharge: We use the term discharge in a very narrow sense, namely 
that of discharging a proof obligation, i.e., by carrying out a proof. 

224. Discrete: As opposed to continuous: consisting of distinct or unconnected 
elements [373]. 

225. Disjunction: Being separated, being disjoined, decomposed. (We shall 
mostly think of disjunction as the (meaning of the) logical connective 
"or": V.) 

226. Document: By a document is meant any text, whether informal or for­
mal, whether informative, descriptive (or prescriptive) or analytic. (De­
scriptive documents may be rough sketches, terminologies, narratives, or 
formal. Informative documents are not descriptive. Analytic documents 
"describe" relations between documents, verification and validation, or de­
scribe properties of a document.) 

227. Documentation requirements: By documentation requirements we 
mean requirements which state which kinds of documents shall make up 
the deliverable, what these documents shall contain and how they express 
what they contain. 

228. Domain: Same as application domain; hence see that term for a charac­
terisation. (The term domain is the preferred term.) 



B.3 The Glosses 591 

229. Domain acquisition: The act of acquiring, of gathering, domain knowl­
edge, and of analysing and recording this knowledge. 

230. Domain analysis: The act of analysing recorded domain knowledge in 
search of (common) properties of phenomena, or relating what may be 
considered separate phenomena. 

231. Domain capture: The act of gathering domain knowledge, of collecting 
it — usually from domain stakeholders. 

232. Domain description: A textual, informal or formal document which 
describes the domain. (Usually a domain description is a set of documents 
with many parts recording many facets of the domain: The intrinsics, 
business processes, support technology, management and organisation, rules 
and regulations, and the human behaviours.) 

233. Domain description unit: By a domain description unit we understand 
a short, "one- or two-liner", possibly rough-sketch description of some prop­
erty of a domain phenomenon, i.e., some property of an entity, some prop­
erty of a function, of an event, or some property of a behaviour. (Usually 
domain description units are the smallest textual, sentential fragments 
elicited from domain stakeholders.) 

234. Domain determination: Domain determination is a domain require­
ments facet. It is an operation performed on a domain description cum 
requirements prescription. Any nondeterminism expressed by either of these 
specifications which is not desirable for some required software design 
must be made deterministic (by this requirements engineer performed op­
eration). (Other domain requirements facets are: domain projection, domain 
instantiation, domain extension and domain fitting. ) 

235. Domain development: By domain development we shall understand 
the development of a domain description. (All aspects are included in de­
velopment: domain acquisition, domain analysis, domain modelling, domain 
validation and domain verification.) 

236. Domain engineer: A domain engineer is a software engineer who per­
forms domain engineering. (Other forms of software engineers are: require­
ments engineers and software designers (cum programmers).) 

237. Domain engineering: The engineering of the development of a domain 
description, from identification of domain stakeholders, via domain acqui­
sition, domain analysis and domain description to domain validation and 
domain verification. 

238. Domain extension: Domain extension is a domain requirements facet. 
It is an operation performed on a domain description cum requirements 
prescription. It effectively extends a domain description by entities, func­
tions, events and/or behaviours conceptually possible, but not necessarily 
humanly feasible in the domain. (Other domain requirements facets are: 
domain projection, domain determination, domain instantiation and domain 
fitting.) 

239. Domain facet: By a domain facet we understand one amongst a finite 
set of generic ways of analysing a domain: A view of the domain, such 



592 B Glossary 

that the different facets cover conceptually different views, and such that 
these views together cover the domain. (We consider here the following 
domain facets: business process, intrinsics, support technology, management 
and organisation, rules and regulations, and human behaviour.) 

240. Domain fitting: Domain fitting is a domain requirements facet. It is 
an operation performed on a domain description cum requirements pre­
scription. It effectively combines one domain description (cum domain re­
quirements) with another [domain description, respectively domain require­
ments]. (Other domain requirements facets are: domain projection, domain 
determination, domain instantiation and domain extension.) 

241. Domain initialisation: Domain initialisation is an interface require­
ments facet. It is an operation performed on a requirements prescrip­
tion. For an explanation see shared data initialisation (its 'equivalent'). 
(Other interface requirements facets are: shared data refreshment, computa­
tional data-hcontrol, man-machine dialogue, man-machine physiological and 
machine-machine dialogue requirements.) 

242. Domain instantiation: Domain instantiation is a domain requirements 
facet. It is an operation performed on a domain description (cum require­
ments prescription). Where, in a domain description certain entities and 
functions are left undefined, domain instantiation means that these en­
tities or functions are now instantiated into constant values. (Other re­
quirements facets are: domain projection, domain determination, domain 
extension and domain fitting.) 

243. Domain knowledge: By domain knowledge we mean that which a par­
ticular group of people, all basically engaged in the "same kind of activ­
ities" , know about that domain of activity, and what they believe that 
other people know and believe about the same domain. (We shall, in our 
context, strictly limit ourselves to "knowledge", staying short of "beliefs", 
and we shall similarly strictly limit ourselves to assume just one "actual" 
world, not any number of "possible" worlds. More specifically, we shall 
strictly limit our treatment of domain knowledge to stay clear of the (al­
beit very exciting) area of reasoning about knowledge and belief between 
people (and agents) [223,285].) 

244. Domain projection: Domain projection is a domain requirements facet. 
It is an operation performed on a domain description cum requirements 
prescription. The operation basically "removes" from a description defini­
tions of those entities (including their type definitions), functions, events 
and behaviours that are not to be considered in the requirements. (The 
removed phenomena and concepts are thus projected "away". Other do­
main requirements facets are: domain determination, domain instantiation, 
domain extension and domain fitting.) 

245. Domain validation: By domain validation we rather mean: 'validation 
of a domain description', and by that we mean the informal assurance 
that a description purported to cover the entities, functions, events and 
behaviours of a further designated domain indeed does cover that domain 
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in a reasonably representative manner. (Domain validation is, necessarily, 
an informal activity: It basically involves a guided reading of a domain 
description (being validated) by stakeholders of the domain, and ends in 
an evaluation report written by these domain stakeholder readers.) 

246. Domain verification: By domain verification we mean verification of 
claimed properties of a domain description, and by that we mean the 
formal assurance that a description indeed does possess those claimed 
properties. (The usual principles, techniques and tools of verification apply 
here.) 

247. Domain requirements: By domain requirements we understand such 
requirements — save those of business process reengineering — which can 
be expressed solely by using professional terms of the domain. (Domain re­
quirements constitute one requirements facet. Others requirements facets 
are: business process reengineering, interface requirements and machine re­
quirements.) 

248. Domain requirements facet: By domain requirements facets we under­
stand such domain requirements that basically arise from either of the 
following operations on domain descriptions (cum requirements prescrip­
tions): domain projection, domain determination, domain extension, domain 
instantiation and domain fitting. 

249. Dynamic: An entity is said to be dynamic if its value changes over time, 
i.e., it is subjected, somehow, to actions. (We distinguish three kinds of 
dynamic entities: inert, active and reactive. This is in contrast to static.) 

250. Dynamic typing: Enforcement of type checking at run time. (A language 
is said to be dynamically typed if it is not statically typed.) 

£ 

251. Edge: A line, a connection, between two nodes of a graph or a tree. (Other 
terms for the same idea are: arc and branch.) 

252. Elaborate: See next: elaboration. 
253. Elaboration: The three terms elaboration, evaluation and interpretation 

essentially cover the same idea: that of obtaining the meaning of a syn­
tactical item in some configuration, or as a function from configurations to 
values. Given that configuration typically consists of static environments 
and dynamic states (or storages), we use the term elaboration in the more 
narrow sense of designating, or yielding functions from syntactical items 
to functions from configurations to pairs of states and values. 

254. Elicitation: To elicit, to extract. (See also: acquisition. We consider elici-
tation to be part of acquisition. Acquisition is more than elicitation. Elic­
itation, to us, is primarily the act of extracting information, i.e., knowl­
edge. Acquisition is that plus more: Namely the preparation of what and 
how to elicit and the postprocessing of that which has been elicited — in 
preparation of proper analysis. Elicitation applies both to domain and to 
requirements elicitation.) 
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255. Embedded: Being an integral part of something else. (When something is 
embedded in something else, then that something else is said to surround 
the embedded thing.) 

256. Embedded system: A system which is an integral part of a larger system. 
(We shall use the term embedded system primarily in the context of the 
larger, 'surrounding' system being reactive and/or hard real time.) 

257. Endomorphism: A homomorphism that maps an algebra into itself is an 
endomorphism. (We refer to Sect. 8.4.4 on page 132. See also automor­
phism, epimorphism, isomorphism, monomorphism.) 

258. Engineer: An engineer is a person who "walks the bridge" between sci­
ence and technology: (i) Constructing, i.e., designing, technology based 
on scientific insight, and (ii) analysing technology for its possible scien­
tific content. 

259. Engineering: Engineering is the design of technology based on scientific 
insight, and the analysis of technology for its possible scientific content. 
(In the context of this glossary we single out three forms of engineering: 
domain engineering, requirements engineering and software design; together 
we call them software engineering. The technology constructed by the do­
main engineer is a domain description. The technology constructed by the 
requirements engineer is a requirements prescription. The technology con­
structed by the software designer is software.) 

260. Enrichment: The addition of a property to something already existing. 
(We shall use the term enrich in connection with a collection (i.e., a RSL 
scheme or a RSL class) — of definitions, declaration and axioms — being 
'extended with' further such definitions, declaration and axioms.) 

261. Entity: By an entity we shall loosely understand something fixed, immo­
bile, static — although that thing may move, but after it has moved it is 
essentially the same thing, an entity. (We shall take the narrow view of 
an entity, being in contrast to a function, and an event, and a behaviour; 
that entities "roughly correspond" to what we shall think of as values, i.e., 
as information or data. We shall further allow entities to be either atomic 
or composite, i.e., in the latter case having decomposable subentities (cf. 
subentity). Finally entities may have nondecomposable attributes.) 

262. Enumerable: By enumerable we mean that a set of elements satisfies a 
proposition, i.e., can be logically characterised. 

263. Enumeration: To list, one after another. (We shall use the term enu­
meration in connection with the syntactic expression of a "small", i.e., 
definite, number of elements of a(n enumerated) set, list or map.) 

264. Environment: A context, that is, in our case (i.e., usage), the ("more 
static") part of a configuration in which some syntactic entity is elaborated, 
evaluated, or interpreted. (In our "metacontext", i.e., that of software 
engineering, environments, when deployed in the elaboration (etc.) of, 
typically, specifications or programs, record, i.e., list, associate, identifiers 
of the specification or program text with their meaning.) 
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265. Epimorphism: If a homomorphism 0 is a surjective function then 0 is an 
epimorphism. (We refer to Sect. 8.4.4 on page 132. See also automorphism, 
endomorphism, isomorphism, monomorphism.) 

266. Epistemology: The study of knowledge. (Contrast, please, to ontology.) 
267. Error: An error is an action that produces an incorrect result. An error is 

that part of a machine state which is "liable to lead to subsequent failure". 
An error affecting the machine service is an indication that a failure occurs 
or has occurred [432]. (An error is caused by a fault.) 

268. Evaluate: See next: evaluation. 
269. Evaluation: The three terms elaboration, evaluation and interpretation 

essentially cover the same idea: that of obtaining the meaning of a syn­
tactical item in some configuration, or as a function from configurations to 
values. Given that configuration typically consists of static environments 
and dynamic states (or storages), we use the term evaluation in the more 
narrow sense of designating, or yielding functions from syntactical items 
to functions from configurations to values. 

270. Event: Something that occurs instantaneously. (We shall, in our context, 
take events as being manifested by certain state changes, and by certain 
interactions between behaviours or processes. The occurrence of events may 
"trigger" actions. How the triggering, i.e., the invocation of functions are 
brought about is usually left implied, or unspecified.) 

271. Expression: An expression, in our context (i.e., that of software engi­
neering), is a syntactical entity which, through evaluation, designates a 
value. 

272. Extension: We shall here take extension to be the same as enrichment. 
(The extension of a concept is all the individuals falling under the concept 
[405].) 

273. Extensional: Concerned with objective reality [373]. (Please observe a 
shift here: We do not understand the term extensional as 'relating to, or 
marked by extension in the above sense, but in contrast to intensional.) 

T 

274. Facet: By a facet we understand one amongst a finite set of generic ways 
of analysing and presenting a domain, a requirements or a software design: 
a view of the universe of discourse, such that the different facets cover 
conceptually different views, and such that these views together cover 
that universe of discourse. (Examples of domain facets are intrinsics, busi­
ness processes, support technology, management and organisation, rules and 
regulations and human behaviour. Examples of requirements facets are 
business process reengineering, domain requirements, interface requirements 
and machine requirements. Examples of software design facets are software 
architecture, component design, module design, etc.) 

275. Failure: A fault may result in a failure. A machine failure occurs when 
the delivered machine service deviates from fulfilling the machine function, 
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the latter being what the machine is aimed at [432]. (A failure is thus 
something relative to a specification, and is due to a fault. Failures are 
concerned with such things as accessibility, availability, reliability, safety 
and security.) 

276. Fault: The adjudged (i.e., the 'so judged') or hypothesised cause of an 
error [432]. (An error is caused by a fault, i.e., faults cause errors. A 
software fault is the consequence of a human error in the development of 
that software.) 

277. Finite: Of a fixed number less than infinity, or of a fixed structure that 
does not "flow" into perpetuity as would any information structure that 
just goes on and on. (Watch out for the four terms: finite, infinite, definite 
and indefinite.) 

278. Finite state automaton: By a finite state automaton we understand an 
automaton whose state set is finite. (We shall usually consider only what 
is known as Moore automata: that is, automata which have some final 
states.) 

279. Finite state machine: By a finite state machine we understand an ex­
tended finite state automaton. The extension amounts simply to the fol­
lowing: Every transition (caused by an input, in a state, to another state) 
also yields an output. (We shall thus consider only what is known as Mealy 
machines. The output is intended to designate some action, or some signal, 
to be considered by an environment of the machine.) 

280. Finite state transducer: By a finite state transducer we simply mean 
the same as a finite state machine. (The machine in question is said to 
transduce, to "translate" any sequence of inputs to some corresponding 
sequence of outputs.) 

281. First-order: We say that a predicate logic is first order when quanti­
fied variables are not allowed to range over functions. (If they range over 
functions we call the logic a higher-order logic [406,419]. Similar remarks 
can be made for general first-order functions, respectively higher-order 
functions.) 

282. Fix point: The fix point of a function, F, is any value, / , for which 
Ff = f. A function may have any number of fixed points from none (e.g., 
Fx = x + 1) to infinitely many (e.g., Fx = x). The fixed point combinator, 
written as either "fix" or "Y" will return the fixed point of a function. 
(The fix point identity is YF = F(YF).) 

283. Flowchart: A diagram (a chart), for example of circles (input, output), 
annotated (square) boxes, annotated diamonds and infixed arrows, that 
shows step by step flow through an algorithm. 

284. Formal: By formal we shall, in our context (i.e., that of software engi­
neering), mean a language, a system, an argument (a way of reasoning), a 
program or a specification whose syntax and semantics is based on (rules 
of) mathematics (including mathematical logic). 

285. Formal definition: Same as formal description, formal prescription or for­
mal specification. 
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286. Formal development: Same as the standard meaning of the composi­
tion of formal and development. (We usually speak of a spectrum of devel­
opment modes: systematic development, rigorous development, and formal 
development. Formal software development, to us, is at the "formalistic" 
extreme of the three modes of development: Complete formal specifica­
tions are always constructed, for all (phases and) stages of development; 
all proof obligations are expressed; and all are discharged (i.e., proved to 
hold).) 

287. Formal description: A formal description of something. (Usually we use 
the term formal description only in connection with formalisation of do­
mains.) 

288. Formalisation: The act of making a formal specification of something 
elsewhere informally specified; or the document which results therefrom. 

289. Formal method: By a formal method we mean a method whose tech­
niques and tools1 are formally based. (It is common to hear that some 
notation is claimed to be that of a formal method — where it then turns 
out that few, if any, of the building blocks of that notation have any for­
mal foundation. This is especially true of many diagrammatic notations. 
UML is a case in point — much is presently being done to formalise subsets 
of UML [408].) 

290. Formal parameter: By a formal parameter we mean an identification 
(say a naming and a typing), in a function definition's function signature, 
of an argument of the function, a place-holder for actual arguments. 

291. Formal prescription: Same as formal definition or formal specification. 
(Usually we use the term formal prescription only in connection with 
formalisation of requirements.) 

292. Formal specification: A formalisation of something. (Same as formal def­
inition, formal description or formal prescription. Usually we use the term 
formal specification only in connection with formalisation of software de­
signs.) 

293. Free: The concept of being free is associated with (i) identifiers (i.e., 
names) and expressions, and (ii) with names (i.e., identifiers) and resources. 
An identifier is said to be either bound or free in an expression based on 
certain rules being satisfied or not. If an identifier is free in an expression 
then nothing is said about what free occurrences of that identifier are 
bound to. (Cf. bound.) 

294. Freeing: The removal of storage locations, or of stack activations. 
295. Frontier: The concept of frontier is here associated with trees. Visualise 

that tree as represented as a flat diagram with no crosses (i.e., intersecting) 
branches. A frontier of a tree is a reading of the leaves (cf. leaf) of the tree 

1 Tools include specification and programming languages as such, as well as all 
the software tools relating to these languages (editors, syntax checkers, theorem 
provers, proof assistants, model checkers, specification and program (flow) analysers, 
interpreters, compilers, etc.). 
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in one of the two possible directions, say left to right or right to left. (See 
tree traversal.) 

296. FUNARG: A specification or a programming language is said to enjoy, 
i.e. possess, the FUNARG property if values of function invocations may be 
functions defined locally to the invoked function. (LISP has the FUNARG 
property. So does SAL, a simple applicative language defined in Vol. 2, 
Chap. 15.) 

297. Full algebra: A full algebra is a total algebra. 
298. Function: By a function we understand something which when applied to 

a value, called an argument, yields a value called a result. (Functions can 
be modelled as sets of (argument, result) pair — in which case applying 
a function to an argument amounts to "searching" for an appropriate 
pair. If several such pairs have the same argument (value), the function 
is said to be nondeterministic. If a function is applied to an argument for 
which there is no appropriate pair, then the function is said to be partial; 
otherwise it is a total function.) 

299. Function activation: When, in an operational, i.e., computational ("me­
chanical") sense, a function is being applied, then some resources have to 
be set aside in order to carry out, to handle, the application. This is 
what we shall call a function activation. (Typically a function activation, 
for conventional block-structured languages (like C#, Java, Standard ML 
[261,277,470]), is implemented by means (also) of a stack-like data struc­
ture: Function invocation then implies the stacking (pushing) of a stack 
activation on that stack, i.e., the activation stack (a circular reference!). 
Elaboration of the function definition body means that intermediate val­
ues are pushed and popped from the topmost activation element, etc., 
and that completion of the function application means that the top stack 
activation is popped.) 

300. Functional: A function whose arguments are allowed themselves to be 
functions is called a functional. (The fix point (finding) function is a func­
tional.) 

301. Functional programming: By functional programming we mean the 
same as applicative programming: In its barest rendition functional pro­
gramming involves just three things: definition of functions, functions 
as ordinary values, and function application (i.e., function invocation). 
(Most current functional programming languages (Haskell , Miranda, 
Standard ML) go well beyond just providing the three basic building 
blocks of functional programming [389,498,502].) 

302. Functional programming language: By a functional programming 
language we mean a programming language whose principal values are 
functions and whose principal operations on these values are their creation 
(i.e., definition), their application (i.e., invocation) and their composition. 
(Functional programming languages of interest today, 2005, are (alphabet­
ically listed): CAML [146,147,162,346,518], Haskell [498], Miranda [502], 
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Scheme [2,206,247] and SML (Standard ML) [261,389]. LISP 1.5 was a 
first functional programming language [370].) 

303. Function application: The act of applying a function to an argument 
is called a function application. (See 'comment' field of function activation 
just above.) 

304. Function definition: A function definition, as does any definition, con­
sists of a definiens and a definiendum. The definiens is a function signature, 
and the definiendum is a clause, typically an expression. (Cf. Lambda-
functions.) 

305. Function invocation: Same as function application. (See parenthesized 
remark of entry 299 (function activation).) 

306. Function signature: By a function signature we mean a text which 
presents the name of the function, the types of its argument values and 
the type(s) of its result value(s). 

G 

307. Garbage: By garbage we shall here understand those (computing) re­
sources which can no longer be referenced. (Usually we restrict our 
'garbage' concern to that of storage locations that can no longer be ac­
cessed because there are no references to them.) 

308. Garbage collector: To speak of garbage collection we must first intro­
duce the notions of allocatable storage, i.e., storage — what shall be known 
as free, i.e., unallocated — locations (including those that can be consid­
ered garbage). By a garbage collector we shall here understand a device, 
a software program or a hardware mechanism which "returns" to a set of 
free locations that can subsequently be made available for allocation. 

309. Generate: By generate we shall understand that which can be associated 
both with a grammar and with an automaton: namely a language, i.e., a 
set of strings. Either accepted as input to a finite state automaton, or 
denoted by a grammar. (Acceptance by an automaton means that the 
automaton is started in an initial state and upon completion of reading 
the input is in a final state. Generation by a grammar means the recursive 
(i.e., repeated) substitution of nonterminals of a grammar rule left-hand 
side with the left-hand sides of the rules whose right-hand side is the 
substituted nonterminal.) 

310. Generator: A generator is a concept: It can be thought of as a device, 
i.e., a software program or a machine mechanism, which outputs typically 
sequences of structures — typically symbols. (A BNF Grammar can thus 
be said to generate the (usually infinite) set of strings, i.e., of sentence of 
the designated language. A finite state machine can likewise be said to be 
a generator: Upon being presented with any input string it generates an 
output string (a transduction).) 

311. Generator function: To speak of a generator function we need first 
introduce the concept of a sort "of interest". A generator function is a 
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function which when applied to arguments of some kind, i.e., types, yields 
a value of the type of the sort "of interest". (Typically the sort "of interest" 
can be thought of as the state (a stack, a queue, etc.).) 

312. Generic programming: See entry 514 (polymorphic). 
313. Glossary: See Sect. B.l.l . 
314. Grammar: See syntax, in general, or regular syntax, context-free syntax, 

context-sensitive syntax and BNF in specific. 
315. Grand state: "Grand state" is a colloquial term. It is meant to have the 

same meaning as configuration. (The colloquialism is used in the context 
of, for example, praising a software engineer as "being one who really 
knows how to design the grand state for some universe of discourse" being 
specified.) 

316. Graph: By a graph we shall here mean the term as usually used in the 
discrete mathematics discipline of graph theory: as a (usually, but not 
necessarily finite) set of nodes (vertexes), some of which may be connected 
by (one or more) arcs (edges, lines). (A graph edge defines a path of length 
one. If there is a path from one node to another, and from that other node 
to yet a third node, then the graph, by transitivity, defines a path from 
the first to the third node, etc. A graph can be either an acyclic graph 
(no path "cycles back") or a cyclic graph, a directed graph (edges are 
one-directional arrows) or an undirected graph [41,42,272,409].) 

317. Ground term: A ground term is either an identifier or a value literal. 
(The identifier is then assumed to be bound to a value. The value literal 
typically is an alphanumeric string designating, for example, an integer, 
a real, a truth value, a character, etc.) 

318. Grouping: By grouping we mean the ordered, finite collection, into a 
Cartesian, of mathematical structures (i.e., values). 

n 
319. Hard real time: By hard real time we mean a real time property where 

the exact, i.e., absolute timing, or time interval, is of essence. (Thus, if 
a system is said to enjoy, or must possess, a certain real time property, 
for example, (i) the system must emit a certain signal on the 11th of 
December 2005 at 17:20:30 hours2, or (ii) that a response signal must be 
issued after an interval of exactly 1234 days, 5 hours, 6 minutes, and 7 
seconds plus/minus 8 microseconds (from when an initiating signal was 
received), then it is hard real time. Cf. soft real time.) 

320. Hardware: By hardware is meant the physical embodiment of a com­
puter: its electronics, its boards, the racks, cables, button, lamps, etc. 

321. HCI: Abbreviation for human computer interface. (Same as CHI, and 
same as man-machine interface.) 

2That time is when the current author hopes to celebrate the exact hour of his 
anniversary of 40 years of marriage to Kari Skallerud! 
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322. Heap: By a heap is here meant an unordered, finite collection, i.e., a set, 
of storage locations, such that each of these locations can be said to be 
allocated (for some purpose), and such that a freeing, i.e., deallocation, of 
these locations usually does not follow the inverse order of their allocation. 
(Thus a heap works in contrast to an activation stack — complementary, 
so to speak! Typically a garbage collector is involved in helping to secure 
locations on the heap available for allocation.) 

323. Heterogeneous algebra: A heterogeneous algebra is an algebra whose 
carrier A is an indexed set of carriers: A\, A<i,..., Am, and whose func­
tions, <f>in : <&, or arity n, are of type: A^ xA{2 x • • • xAin —> Aj where i^, 
for all k G { 1 , . . . , n}, are in the set {1 ,2 , . . . , m}. 

324. Hiding: Hiding is a concept related to modules. In fact, it is a main pur­
pose of syntactically providing the module mechanism. You have, some­
what mechanistically, to imagine a group of (developers of) modules. One 
module mentions (i.e., uses), say, functions defined in other modules. But 
those other modules, besides, in order to define those "exported" func­
tions, define auxiliary functions (types, etc.) that "reveal" details of im­
plementation which it is not necessary to divulge. (One may wish, later, 
in "the life of that module", to change those implementation decisions.) 
Hence, by syntactic means, such as, for example, export, import and hide 
clauses, the developer requests the module compiling system to statically 
(or otherwise) secure that other modules cannot "inspect" those auxiliary 
functions, types, etc. (We refer to [413-417]. Parnas must be credited, 
among others, for having skillfully propagated the hiding concept.) 

325. Hierarchy: By a hierarchy we understand a conceptual decomposition of 
resources into what can be "pictured" as a tree-like structure (and where 
the emphasis is on the root of the structure). 

326. Hierarchical: By something being hierarchical we mean that that some­
thing forms a hierarchy. (See also compositional.) 

327. Hierarchical documentation: By hierarchical documentation we mean 
a development, or a presentation (of that development), of, as here, some 
description (prescription or specification), in which a notion of "largest", 
overall, phenomena and concepts are developed (resp. presented) first, 
then their decompositions into component phenomena and concepts, etc., 
until some notion of atomic, i.e., "smallest" development (etc.) has been 
achieved. (See also hierarchy (just above) and compositional documenta­
tion.) 

328. Higher-order: A functional or a value whose definition set or range set 
values are functions. (See, in contrast, first-order.) 

329. Homeomorphism: A function that is a one-to-one mapping between 
sets such that both the function and its inverse are continuous. (Not to 
be confused with homomorphism.) 

330. Homomorphism: A function, (j> : A —> A', from values of the carrier 
A of one algebra (A, Q) to values of the carrier A' of another algebra 
(A', i?') is said to be a homomorphism (same as a morphism) from (A, i?) 
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to (A', Q1), if for any u : Q and for any ai : A, there is a corresponding 
OJ' : Q' such that: cf)(oj(ai,a2, ...,an)) = a/(0(ai), ^ (G^) , ..., (j)(an)). (We 
refer to Sect. 8.4.4. See also automorphism, endomorphism, epimorphism, 
isomorphism and monomorphism.) 

331. Homomorphic principle: The homomorphic principle advises the soft­
ware engineer to formulate function definitions such that they express a 
homomorphism. (It is a basic tenet of a denotational semantics definition 
that it is expressed as a homomorphism.) 

332. Human behaviour: By human behaviour we shall here understand the 
way a human follows the enterprise rules and regulations as well as in­
teracts with a machine: dutifully honouring specified (machine dialogue) 
protocols, or negligently so, or sloppily not quite so, or even criminally not 
so! (Human behaviour is a facet of the domain (of the enterprise). We shall 
thus model human behaviour also in terms of it failing to react properly, 
i.e., humans as nondeterministic agentsl Other facets of an enterprise are 
those of its intrinsics, business processes, support technology, management 
and organisation, and rules and regulations.) 

333. Hybrid: Something heterogeneous, something (as a computing device) 
that has two different types of components (software, respectively hard­
ware, the latter including, besides the digital computer, also controllers 
(sensors, actuators)) performing essentially the same function by cooper­
ating on computing "that same" function. (Typically we speak of, i.e., 
deploy hybridicity when monitoring and controlling reactive systems — 
but then hybridicity additionally, to us, means a combination in which 
the controller handles analog matters of continuity, and the software plus 
computer handles discrete matters. Finally, for a conventional analogue 
controller there is usually but one "decision mode". With the software-
directed computing system there is now the possibility of multiple discrete 
+ continuous controller "regimes".) 

334. Hypothesis: An assumption made for the sake of argument. 

1 

335. Icon: A pictorial representation, an image, a sign whose form (shape, etc.) 
suggests its meaning. (A graphic symbol on a computer display screen 
which suggests the purpose of an available function or value which desig­
nates that entity.) 

336. Iconic: Adjective form of icon. 
337. Identification: The pointing out of a relation, an association, between an 

identifier and that "thing", that phenomenon, it designates, i.e., it stands 
for or identifies. 

338. Identifier: A name. (Usually represented by a string of alphanumeric 
characters, sometimes with properly infixed "-"s or "_"s.) 

339. Imperative: Expressive of a command [373]. (We take imperative to 
more specifically be a reflection of do this, then do that. That is, of the 
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use of a state-based programming approach, i.e., of the use of an imperative 
programming language. See also indicative, optative, and putative.) 

340. Imperative programming: Programming, imperatively, "with" refer­
ences to storage locations and the updates of those, i.e., of states. (Im­
perative programming seems to be the classical, first way of programming 
digital computers.) 

341. Imperative programming language: A programming language which, 
significantly, offers language constructs for the creation and manipulation 
of variables, i.e., storages and their locations. (Typical imperative pro­
gramming languages were, in "ye olde days", For t ran , Cobol, Algol 
60, PL/I , Pasca l , C, etc. [12-14,24,24,321]. Today programming lan­
guages like C++, Java, C#, etc. [277,470,489] additionally offer module 
cum object "features".) 

342. Implementation: By an implementation we understand a computer pro­
gram that is made suitable for compilation or interpretation by a machine. 
(See next entry: implementation relation.) 

343. Implementation relation: By an implementation relation we understand 
a logical relation of correctness between a software design specification and 
an implementation (i.e., a computer program made suitable for compilation 
or interpretation by a machine). 

344. Incarnation: A particular instance of a value, usually a state. (We shall 
here use the term incarnation to designate any one activation on an ac­
tivation stack — where such an incarnation, i.e., activation, represents a 
program block or function (or procedure, or subroutine) invocation.) 

345. Incomplete: We say that a proof system is incomplete if not all true 
sentences are provable. 

346. Incompleteness: Noun form of the incomplete adjective. 
347. Inconsistent: A set of axioms is said to be inconsistent if, by means of 

these, and some deduction rules, one can prove a property and its negation. 
348. Indefinite: Not definite, i.e., of a fixed number or a specific property, 

but it is not known, at the point of uttering the term 'indefinite', what 
that number or property is. (Watch out for the four terms: finite, infinite, 
definite and indefinite.) 

349. Indicative: Stating an objective fact. (See also imperative, optative and 
putative.) 

350. Induce: The use of induction. (To conclude a general property from spe­
cial cases.) 

351. Induction: Inference of a general property from particular instances. (On 
the basis of several, "similar" cases one may infer a general, say, principle 
or property. In contrast to deduction: from general (e.g., from laws) to 
specific instances.) 

352. Inductive: The use of induction. 
353. In extension: A concept of logic. In extension is a correlative word that 

indicates the reference of a term or concept. (When we speak of functions 
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in extension, we shall therefore mean it in the sense of presenting "all 
details", the "inner workings" of that function. Contrast to in intension.) 

354. Inert: A dynamic phenomenon is said to be inert if it cannot change 
value of its own volition, i.e., by itself, but only through the interaction 
between that phenomenon and a change-instigating environment. An inert 
phenomenon only changes value as the result of external stimuli. These 
stimuli prescribe exactly which new value they are to change to. (Contrast 
to active and reactive.) 

355. Infer: Common term for deduce or induce. 
356. Inference rule: Same as deduction rule. 
357. Infinite: As you would think of it: not finite! (Watch out for the four 

terms: finite, infinite, definite and indefinite.) 
358. Informal: Not formal! (We normally, by an informal specification mean 

one which may be precise (i.e., unambiguous, and even concise), but which, 
for example is expressed in natural, yet (domain specific) professional 
language — i.e., a language which does not have a precise semantics let 
alone a formal proof system. The UML notation is an example of an informal 
language [408].) 

359. Informatics: The confluence of (i) applications, (ii) computer science, (iii) 
computing science [i.e., the art [326-328] (1968-1973), craft [441] (1981), 
discipline [194] (1976), logic [275] (1984), practice [276] (1993-2004), and 
science [245] (1981) of programming], (iv) software engineering and (v) 
mathematics. 

360. Information: The communication or reception of knowledge. (By infor­
mation we thus mean something which, in contrast to data, informs us. No 
computer representation is, let alone any efficiency criteria are, assumed. 
Data as such does, i.e., bit patterns do, not 'inform' us.) 

361. Information structure: By an information structure we shall normally 
understand a composition of more "formally" represented (i.e., structured) 
information, for example, in the "believed" form of table, a tree, a graph, 
etc. (In contrast to data structure, an information structure does not nec­
essarily have a computer representation, let alone an "efficient" such.) 

362. Informative documentation: By informative documentation we un­
derstand texts which inform, but which do not (essentially) describe that 
which a development is to develop. (Informative documentation is bal­
anced by descriptive and analytic documentation to make up the full doc­
umentation of a development.) 

363. Infrastructure: According to the World Bank: 'Infrastructure* is an um­
brella term for many activities referred to as 'social overhead capitaF by 
some development economists, and encompasses activities that share tech­
nical and economic features (such as economies of scale and spillovers from 
users to nonusers). We shall use the term as follows: Infrastructures are 
concerned with supporting other systems or activities. Computing sys­
tems for infrastructures are thus likely to be distributed and concerned in 
particular with supporting communication of information, control, people 
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and materials. Issues of (for example) openness, timeliness, security, lack 
of corruption, and resilience are often important. (Winston Churchill is 
quoted to have said, during a debate in the House of Commons, in 1946: 
. . . The young Labourite speaker that we have just listened to, clearly 
wishes to impress upon his constituency the fact that he has gone to Eton 
and Oxford since he now uses such fashionable terms as 'infra-structures''.) 

364. Inheritance: The act of inheriting' a 'property. (The term inheritance, in 
software engineering, is deployed in connection with a relationship between 
two pieces (i.e., modules) of specification and/or program texts A and B. 
B may be said to inherit some type, or variable, or value definitions from 

365. In intension: A concept of logic: In intension is a correlative word that 
indicates the internal content of a term or concept that constitutes its for­
mal definition. (When we speak of functions in intension, we shall therefore 
mean it in the sense of presenting only the "input/output" relation of the 
function. Contrast to in extension.) 

366. Injection: A mathematical function, / , that is a one-to-one mapping from 
definition set A to range set B. (That is, if for some a in A,f(a) yields 
a b, then for all a : A all b : B are yielded and there is a unique a for 
each b, or, which is the same, there is an inverse function, / _ 1 , such that 
f~1(f(a)) = a for all a : A. See also bijection and surjection.) 

367. Injective function: A function which maps values of its postulated defini­
tion set into some, but not all, of its postulated range set is called injective. 
(See also bijective function and surjective function .) 

368. In-order: A special order of tree traversal in which visits are made to 
nodes of trees and subtrees as follows: First the tree root is visited and 
"marked" as having been in-order visited. Then for each subtree a subtree 
in-order traversal is made, in the order left to right (or right to left). When 
a tree, whose number of subtrees is zero, is in-order traversed, then just 
that tree's root is visited (and that tree has then been in-order traversed) 
and (the leaf) is "marked" as having been visited. After each subtree visit 
the root (of the tree of which the subtree is a subtree) is revisited, i.e., 
again "marked" as having been in-order visited. (Cf. Fig. B.4: a left to 
right in-order traversal of that tree yields the following sequence of "mark­
ings": AQCQALXLFLAKUKJKZMZKA. Cf. also Fig. B.l on the following 
page). 

369. Input: By input we mean the communication of information (data) from 
an outside, an environment, to a phenomenon "within" our universe of 
discourse. (More colloquially, and more generally: Input can be thought 
of as value(s) transferred over channel(s) to, or between processes. Cf. 
output. In a narrow sense we talk of input to an automaton (i.e., a finite 
state automaton or a pushdown automaton) and a machine (here in the 
sense of, for example, a finite state machine (or a pushdown machine)).) 

370. Input alphabet: The set of symbols input to an automaton or a machine 
in the sense of, for example, a finite state machine or a pushdown machine. 
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Fig. B. l . A left-to-right in-order tree traversal 

371. Instance: An individual, a thing, an entity. (We shall usually think of an 
'instance' as a value.) 

372. Instantiation: 'To represent (an abstraction) by a concrete instance' 
[373]. (We shall sometimes be using the term 'instantiation' in lieu of 
a function invocation on an activation stack.) 

373. Installation manual: A document which describes how a computing sys­
tem is to be installed. (A special case of 'installation' is the downloading 
of software onto a computing system. See also training manual and user 
manual.) 

374. Intangible: Not tangible. 
375. Integrity: By a machine having integrity we mean that that machine 

remains unimpaired, i.e., has no faults, errors and failures, and remains so 
even in the situations where the environment of the machine has faults, 
errors and failures. (Integrity is a dependability requirement.) 

376. Intension: Intension indicates the internal content of a term. (See also 
in intension. The intension of a concept is the collection of the properties 
possessed jointly by all conceivable individuals falling under the concept 
[405]. The intension determines the extension [405].) 

377. Intensional: Adjective form of intension. 
378. Interact: The term interact here addresses the phenomenon of one be­

haviour acting in unison, simultaneously, concurrently, with another be­
haviour, including one behaviour influencing another behaviour. (See also 
interaction.) 

379. Interaction: Two-way reciprocal action. 
380. Interface: Boundary between two disjoint sets of communicating phe­

nomena or concepts. (We shall think of the systems as behaviours or pro­
cesses, the boundary as being channels, and the communications as inputs 
and outputs.) 

381. Interface requirements: By interface requirements we understand the 
expression of expectations as to which software-software, or software-
hardware interface places (i.e., channels), inputs and outputs (including 
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the semiotics of these input/outputs) there shall be in some contemplated 
computing system. (Interface requirements can often, usefully, be classified 
in terms of shared data initialisation requirements, shared data refreshment 
requirements, computational data-hcontrol requirements, man-machine dia­
logue requirements, man-machine physiological requirements and machine-
machine dialogue requirements. Interface requirements constitute one re­
quirements facet. Other requirements facets are: business process reengi-
neering, domain requirements and machine requirements.) 

382. Interface requirements facet: See interface requirements for a list 
of facets: shared data initialisation, shared data refreshment, computa­
tional data-hcontrol, man-machine dialogue, man-machine physiological and 
machine-machine dialogue requirements. 

383. Interpret: See next: interpretation. 
384. In te rpre ta t ion : The three terms elaboration, evaluation and interpreta­

tion essentially cover the same idea: that of obtaining the meaning of a syn­
tactical item in some configuration, or as a function from configurations to 
values. Given that configuration typically consists of static environments 
and dynamic states (or storages), we use the term interpretation in the 
more narrow sense of designating, or yielding functions from syntactical 
items to functions from configurations to states. 

385. Interpreter: An interpreter is an agent, a machine, which performs in­
terpretations. 

386. Intrinsics: By the intrinsics of a domain we shall understand those phe­
nomena and concepts of a domain which are basic to any of the other 
facets, with such a domain intrinsics initially covering at least one specific, 
hence named, stakeholder view. (Intrinsics is thus one of several domain 
facets. Others include: business processes, support technology, management 
and organisation, rules and regulations, and human behaviour.) 

387. Invariant: By an invariant we mean a property that holds of a phe­
nomenon or a concept, both before and after any action involving that 
phenomenon or a concept. (A case in point is usually an information or a 
data structure: Assume an action, say a repeated one (e.g., a while loop). 
We say that the action (i.e., the while loop) preserves an invariant, i.e., 
usually a proposition, if the proposition holds true of the state before and 
the state after any interpretation of the while loop. Invariance is here seen 
separate from the well-formedness of an information or a data structure. We 
refer to the explication of well-formedness^ 

388. Inverse function: See injection. 
389. Invocation: See function invocation. 
390. Isomorphic: One to one. (See isomorphism.) 
391. Isomorphism: If a homomorphism 0 is a bijective function then 0 is 

an isomorphism. (See also automorphism, endomorphism, epimorphism and 
monomorphism.) 



608 B Glossary 

J 

392. J : The J operator (J for Jump) was introduced (before 1965) by Peter 
Landin as a functional used to explain the creation and use of program 
closures, and these again are used to model the denotation of labels. (We 
refer to [172,334-336,340]. Cf. www.dcs.qmw.ac.uk/~peterl/danvy/.) 

K 

393. Keyword: A significant word from a title or document. (See KWIC.) 
394. Knowledge: What is, or what can be known. The body of truth, infor­

mation, and principles acquired by mankind [373]. (See epistemology and 
ontology. A priori knowledge: Knowledge that is independent of all partic­
ular experiences. A posteriori knowledge: Knowledge, which derives from 
experience alone.) 

395. Knowledge engineering: The representation and modelling of knowl­
edge. (The construction of ontological and epistemological knowledge and 
its manipulation. Involves such subdisciplines as modal logics (promise 
and commitment, knowledge and belief), speech act theories, agent theo­
ries, etc. Knowledge engineering usually is concerned with the knowledge 
that one agent may have about another agent.) 

396. KWIC: Abbreviation for key word-in-context (A classical software appli­
cation. Cf. Example 15.10.) 

C 

397. Label: Same as named program point. 
398. Lambda-application: Within the confines of the Lambda-calculus, Lamb­

da-application is the same as function application. (Subject, however, to 
simple term-rewriting using (say just) Alpha-renaming and Beta-reduction.) 

399. Lambda-calculus: A calculus for expressing and "manipulating" func­
tions. The Lamb da-calculus (A-calculus) is a de facto "standard" for "what 
is computable". See Lambda-expressions. As a calculus it prescribes a lan­
guage, the language of Lambda-expressions, a set of conversion rules — 
these apply to Lambda-expressions and result in Lambda-expressions. They 
"mimic" function definition and function application. The seminal texts on 
the Lambda-calculi are [26,27,29,153]. 

400. Lambda-combination: See Lambda-application. 
401. Lambda-expression: The language of the "pure" (i.e., simple, but 

fully powerful) Lambda-calculus has three kinds of Lambda-expressions: 
Lambda-variables, Lambda-functions and Lambda-applications. 

402. Lambda-function: By a Lambda-function we understand a Lambda-
expression of the form Xx*e, where # is a binding variable and e is a 
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Lambda-expression. (It is usually the case that e contains free occurrences 
of x — these being bound by the binding variable in Xx»e.) 

403. Lamb da-variable: The x in the Lambda-function expression Xx*e: both 
the formal parameter, the first x you see in Xx»e, and all the free occur­
rences of x in the block (i.e., body) expression e. 

404. Language: By a language we shall understand a possibly infinite set 
of sentences which follow some syntax, express some semantics and are 
uttered, or written down, due to some pragmatics. 

405. Law: A law is a rule of conduct prescribed as binding or enforced by a 
controlling authority. (We shall take the term law in the specific sense 
of law of Nature (cf., Ampere's Law, Boyle's Law, the conservation laws 
(of mass-energy, electric charge, linear and angular momentum), Newton's 
Laws, Ohm's Law, etc.), and laws of Mathematics (cf. "law of the excluded 
middle" (as in logic: a proposition must either be true, or false, not both, 
and not none)).) 

406. Leaf: A leaf is a node in a tree for which there are no subtrees of that 
node. (Thus a leaf is a concept of trees. Cf. Fig. B.4 on page 644.) 

407. Lemma: An auxiliary proposition used in the demonstration of another 
proposition. (Instead of proposition we could use the term theorem.) 

408. Lexical analysis: The analysis of a sentence into its constituent words. 
(Sentences also are usually "decorated" with such signs as for example 
punctuation marks ( , . : ; ) , delimiters (( ) [ ], etc.), and other symbols (? 
!, etc.). Lexical analysis therefore is a process which serves to recognise 
which character sequences are words and which are not (i.e., which are 
delimiters, etc.).) 

409. Lexicographic: The principles and practices of establishing, maintaining 
and using a dictionary. (We shall, in software engineering, mostly be using 
the term 'lexicographic' in connection with compilers and, more rarely, 
database schemas — although, as the definition implies, it is of relevance 
in any context where a computing system builds, maintains and uses a 
dictionary.) 

410. Lexicographical order: The order, i.e., sequence, in which entries of 
a dictionary appear. (More specifically, the lexicographical ordering of 
entries in a compiler dictionary is, for a block-structured programming lan­
guage, determined by the nesting structure of blocks. The dictionary itself, 
generally "mimics" the nesting structure of the language.) 

411. Link: A link is the same as a pointer, an address or a reference: something 
which refers to, i.e., designates something (typically something else). 

412. Lifted function: A lifted function, say of type A —> B —> C, has been 
created from a function of type B —> C by 'lifting' it, i.e., by abstracting 
it in a variable, say a of type A. (Assume Xb : B • £{b) to be a function of 
type B -+ C. NowAa :A-\b:B-£(b) is a lifted version of Xb : B-£(b). An 
example is and: A&i, 62 : Bool • b\ A 62, Boolean conjunction. We lift and 
to be a function, AT, over time: Xt : T - b\(t) A 62(t), where the variables 
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^i,^2 typically could be (e.g., assignable) variables whose values change 
over time.) 

413. Linguistics: The study and knowledge of the syntax, semantics and prag­
matics of language(s). 

414. List: A list is an ordered sequence of zero, one or more not necessarily 
distinct entities. 

415. Literal: A term whose use in software engineering, i.e., programming, 
shall mean: an identifier which denotes a constant, or is a keyword. (Usu­
ally that identifier is emphasised. Examples of RSL literals are: Bool, 
true, false, chaos, if, then, else, end, let, in, and the numerals 
0,1,2., ...,1234.5678, etc.) 

416. Live Sequence Chart: The Live Sequence Chart language is a special 
graphic notation for expressing communication between and coordination 
and timing of processes. (See [171,270,325].) 

417. Location: By a location is meant an area of storage. 
418. Logic: The principles and criteria of validity of inference and deduction, 

that is, the mathematics of the formal principles of reasoning. (We refer 
to Vol. 1, Chap. 9 for our survey treatment of mathematical logic.) 

419. Logic programming: Logic programming is programming based on an 
interpreter which either performs deductions or inductions, or both. (In 
logic programming the chief values are those of the Booleans, and the chief 
forms of expressions are those of propositions and predicates.) 

420. Logic programming language: By a logic programming language is 
meant a language which allows one to express, to prescribe, logic program­
ming. (The classical logic programming language is Prolog [295,351].) 

421. Loose specification: By a loose specification is understood a specifi­
cation which either underspecifies a problem, or specifies this problem 
nondeterministically. 

M 

422. Machine: By the machine we understand the hardware plus software that 
implements some requirements, i.e., a computing system. (This definition 
follows that of M.A. Jackson [308].) 

423. Machine-Machine dialogue requirements:By machine-machine dia­
logue requirements we understand the syntax (incl. sequential structure), 
and semantics (i.e., meaning) of the communications (i.e., messages) trans­
ferred in either direction over the automated interface between machines 
(including supporting technologies). (See also computational data-(-control 
requirements, shared data initialisation requirements, shared data refresh­
ment requirements, man-machine dialogue requirements, and man-machine 
physiological requirements.) 

424. Machine requirements: By machine requirements we understand re­
quirements put specifically to, i.e., expected specifically from, the ma­
chine. (We normally analyse machine requirements into performance re-
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quirements, dependability requirements, maintenance requirements, platform 
requirements and documentation requirements.) 

425. Machine service: The service delivered by a machine is its behaviour as 
it is perceptible by its user(s), where a user is a human, another machine, 
or a(nother) system which interacts with it [432]. 

426. Macro: Macros have the same syntax as procedures, that is, a pair of a 
signature (i.e., a macro name followed by a formal argument list of dis­
tinct identifiers (i.e., the formal parameters)) and a macro body, a text. 
Syntactically we can distinguish between macro definitions and macro 
invocations. Semantically, invocations, in some text, of the macro name 
and an actual argument list are then to be thought of as an expansion 
of that part of the text with the macro (definition) body and such that 
formal parameters are replaced (macro substitution) by actual arguments. 
Semantically a macro is different from a procedure in that a macro expan­
sion takes place in a context, i.e., an environment, where free identifiers 
of the macro body are replaced by their value as defined at the place of 
the occurrence of the macro invocation. Whereas, for a procedure, the 
free identifiers of a procedure body are bound to their value at the point 
where the procedure was defined. (Thus the difference between a macro 
and a procedure is the difference between evaluation in a calling, versus in 
a defining environment.) 

427. Macro substitution: See under macros. 
428. Maintenance: By maintenance we shall here, for software, mean change 

to software, i.e., its various documents, due to needs for (i) adapting that 
software to new platforms, (ii) correcting that software due to observed 
software errors, (iii) improving certain performance properties of the ma­
chine of which the software is part, or (iv) avoiding potential problems 
with that machine. (We refer to subcategories of maintenance: adaptive 
maintenance, corrective maintenance, perfective maintenance and preventive 
maintenance.) 

429. Maintenance requirements: By maintenance requirements we under­
stand requirements which express expectations on how the machine being 
desired (i.e., required) is expected to be maintained. (We also refer to 
adaptive maintenance, corrective maintenance, perfective maintenance and 
preventive maintenance.) 

430. Management and organisation: By management and organisation we 
mean those facets of a domain which are representative of relations be­
tween the various management levels of an enterprise, and between these 
and non-management staff, i.e., "blue-collar" workers. (As such, manage­
ment and organisation is about formulating strategical, tactical and oper­
ational goals for the enterprise, of communicating and "translating" these 
goals into action to be done by management and staff, in general, and 
to "backstop" when "things do not 'work out '", i.e., handling complaints 
from "above" and "below". Other facets of an enterprise are those of its 
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intrinsics, business processes, support technology, rules and regulations and 
human behaviour.) 

431. Man-machine dialogue: By man-machinedialogues we understand ac­
tual instantiations of user interactions with machines, and machine in­
teractions with users: what input the users provide, what output the 
machine initiates, the interdependencies of these inputs/outputs, their 
temporal and spatial constraints, including response times, input/output 
media (locations), etc. ( 

432. Man-machine dialogue requirements: By man-machine dialogue re­
quirements we understand those interface requirements which express ex­
pectations on, i.e., mandates the protocol according to which users are 
to interact with the machine, and the machine with the users. (See 
man-machine dialogue. For other interface requirements see computational 
data-hcontrol requirements, shared data initialisation requirements, shared 
data refreshment requirements, man-machine physiological requirements and 
machine-machine dialogue requirements.)) 

433. Man-machine physiological requirements: By man-machine physi­
ological requirements we understand those interface requirements which 
express expectations on, i.e., mandates, the form and appearance of ways 
in which the man-machine dialogue utilises such physiological devices as vi­
sual display screens, keyboards, "mouses" (and other tactile instruments), 
audio microphones and loudspeakers, television cameras, etc. (See also 
computational data-hcontrol requirements, shared data initialisation require­
ments, shared data refreshment requirements, man-machine dialogue require­
ments and machine-machine dialogue requirements.) 

434. Map: A map is like a function, but is here thought of as an enumerable 
set of pairs of argument /result values. (Thus the definition set of a map is 
usually decidable, i.e., whether an entity is a member of a definition set 
of a map or not can usually be decided.) 

435. Mechanical semantics: By a mechanical semantics we understand the 
same as an operational semantics (which is again basically the same as a 
computational semantics), i.e., a semantics of a language specified using 
concrete constructs (like stacks, program pointers, etc.), and otherwise as 
defined in operational semantics and computational semantics. 

436. Mereology: The theory of parthood relations: of the relations of part to 
whole and the relations of part to part within a whole. (Mereology is often 
considered a branch of ontology. Leading investigators of mereology were 
Franz Brentano, Edmund Husserl, Stanislaw Lesniewski [355,383,473,479, 
480,493] and Leonard and Goodman [345].) 

437. Meta-IV: Met a-IV stands for the fourth metalanguage (for programing 
language definition conceived at the IBM Vienna Laboratory in the 1960s 
and 1970s). (Meta-IV is pronounced meta-four.) 

438. Metalanguage: By a metalanguage is understood a language which is 
used to explain another language, either its syntax, or its semantics, or its 
pragmatics, or two or all of these! (One cannot explain any language using 
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itself. That would lead to any interpretation of what is explained being 
a valid solution, in other words: Nonsense. RSL thus cannot be used to 
explain RSL. Typically formal specification languages are metalanguages: 
being used to explain, for example, the semantics of ordinary programming 
languages.) 

439. Metalinguistic: We say that a language is used in a metalinguistic man­
ner when it is being deployed to explain some other language. (And we 
also say that when we examine a language, like we could, for example, 
examine RSL, and when we use a subset of RSL to make that analysis, 
then that subset of RSL is used metalinguistically (wrt. all of RSL).) 

440. Metaphysics: We quote from: http://mally.stanford.edu/: "Whereas 
physics is the attempt to discover the laws that govern fundamental con­
crete objects, metaphysics is the attempt to discover the laws that system­
atize the fundamental abstract objects presupposed by physical science, 
such as natural numbers, real numbers, functions, sets and properties, 
physically possible objects and events, to name just a few. The goal of 
metaphysics, therefore, is to develop a formal ontology, i.e., a formally 
precise systematization of these abstract objects. Such a theory will be 
compatible with the world view of natural science if the abstract objects 
postulated by the theory are conceived as patterns of the natural world." 
(Metaphysics may, to other scientists and philosophers, mean more or 
other, but for software engineering the characterisation just given suf­
fices.) 

441. Method: By a method we shall here understand a set of principles for 
selecting and using a number of techniques and tools in order to construct 
some artefact. (This is our leading definition — one that sets out our 
methodological quest: to identify, enumerate and explain the principles, 
the techniques and, in cases, the tools — notably where the latter are 
specification and programming languages. (Yes, languages are tools.)) 

442. Methodology: By methodology we understand the study and knowledge 
of methods, one, but usually two or more. (In some dialects of English, 
methodology is confused with method.) 

443. Mixed computation: By a mixed computation we understand the same 
as by a partial evaluation. (The term mixed computation was used notably 
by Andrei Petrovich Ershov [214-221], in my mind the "father" of Russian 
computing science.) 

444. Modal logic: A modal is an expression (like "necessarily" or "possibly") 
that is used to qualify the truth of a judgment. Modal logic is, strictly 
speaking, the study of the deductive behavior of the expressions "it is 
necessary that" and "it is possible that". (The term "modal logic" may be 
used more broadly for a family of related systems. These include logics for 
belief, for tense and other temporal expressions, for the deontic (moral) 
expressions such as "it is obligatory that", "it is permitted that" and 
many others. An understanding of modal logic is particularly valuable 
in the formal analysis of philosophical argument, where expressions from 
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the modal family are both common and confusing. Modal logic also has 
important applications in computer science [536].) 

445. Model: A model is the mathematical meaning of a description (of a do­
main), or a prescription (of requirements), or a specification (of software), 
i.e., is the meaning of a specification of some universe of discourse. (The 
meaning can be understood either as a mathematical function, as for a 
denotational semantics meaning, or an algebra as for an algebraic semantics 
or a denotational semantics meaning, etc. The essence is that the model is 
some mathematical structure.) 

446. Model-oriented: A specification (description, prescription) is said to be 
model-oriented if the specification (etc.) denotes a model. (Contrast to 
property-oriented.) 

447. Model-oriented type: A type is said to be model-oriented if its specifi­
cation designates a model. (Contrast to property-oriented type.) 

448. Modularisation: The act of structuring a text using modules. 
449. Module: By a module we shall understand a clearly delineated text which 

denotes either a single complex quantity, as does, usually, an object, or a 
possibly empty, possibly infinite set of models of objects. (The RSL module 
concept is manifested in the use of one or more of the RSL class (class ... 
end), object (object identifier class ... end, etc.), and scheme (scheme 
identifier class ... end), etc., constructs. We refer to [54,169,170] and 
to [413,414] for original, early papers on modules.) 

450. Module design: By module design we shall understand the design of 
(one or more) modules. 

451. Monitor: Syntactically a monitor is "a programming language construct 
which encapsulates variables, access procedures and initialisation code 
within an abstract data type. The monitor's variable may only be accessed 
via its access procedures and only one process may be actively accessing 
the monitor at any one time. The access procedures are critical sections." 
Semantically "a monitor may have a queue of processes which are waiting 
to access it" [227]. 

452. Monomorphism: If a homomorphism <fi is an injective function then 0 is 
an isomorphism. (See also automorphism, endomorphism, epimorphism, and 
monomorphism.) 

453. Monotonic: A function, / : A —> B, is monotonic, if for all a, a1 in the 
definition set A of / , and some ordering relations, E, on a and B, we have 
that if a E a1 then f(a) E f(af). 

454. Mood: A conscious state of mind, as here, of a specification. (We can 
thus express an indicative mood, an optative mood, a putative mood or 
an imperative mood. Our use of these various forms of moods is due to 
Michael Jackson [308].) 

455. Morphism: Same as homomorphism. 
456. Morphology: (i) A study and description of word formation (as inflec­

tion, derivation, and compounding) in language; (ii) the system of word-
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forming elements and processes in a language; (iii) a study of structure or 
form [373]. 

457. Multi-dimensional: A composite (i.e., a nonatomic) entity is a multi­
dimensional entity if some relations between properly contained (i.e., con­
stituent) subentities (cf. subentity) can only be described by both forward 
and backward references, and/or with recursive references. (This is in con­
trast to one-dimensional entities.) 

458. Multimedia: The use of various forms of input/output media in the man-
machine interface: Text, two-dimensional graphics, voice (audio), video, 
and tactile instruments (like "mouse"). 

M 

459. Name: A name is syntactically (generally an expression, but usually it 
is) a simple alphanumeric identifier. Semantically a name denotes (i.e., 
designates) "something". Pragmatically a name is used to uniquely iden­
tify that "something". (Shakespeare: Romeo: "What's in a name?" Juliet 
to Romeo: "That which we call a rose by any other name would smell as 
sweet.") 

460. Naming: The action of allocating a unique name to a value. 
461. Narrative: By a narrative we shall understand a document text which, in 

precise, unambiguous language, introduces and describes (prescribes, spec­
ifies) all relevant properties of entities, functions, events and behaviours, 
of a set of phenomena and concepts, in such a way that two or more 
readers will basically obtain the same idea as to what is being described 
(prescribed, specified). (More commonly: Something that is narrated, a 
story.) 

462. Natural language: By a natural language we shall understand a lan­
guage like Arabic, Chinese, English, French, Russian, Spanish, etc. — one 
that is spoken today, 2005, by people, has a body of literature, etc. (In 
contrast to natural languages we have (i) professional languages, like the 
languages of medical doctors, or lawyers, or skilled craftsmen like car­
penters, etc.; and we have (ii) formal languages like software specification 
languages, programming languages, and the languages of first-order pred­
icate logics, etc.) 

463. Network: By a network we shall understand the same as a directed, but 
not necessarily acyclic graph. (Our only use of it here is in connection with 
network databases.) 

464. Node: A point in some graph or tree. 
465. Nondeterminate: Same as nondeterministic. 
466. Nondeterministic: A property of a specification: May, on purpose, i.e., 

deliberately have more than one meaning. (A specification which is am­
biguous also has more than one meaning, but its ambiguity is of overriding 
concern: It is not 'nondeterministic' (and certainly not 'deterministic'!).) 
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467. Nondeterminism: A nondeterministic specification models nondetermin-
ism. 

468. Nonstrict: Nonstrictness is a property associated with functions. A func­
tion is nonstrict, in certain or all arguments, if, for undefined values of 
these it may still yield a defined value. (See also strict functions.) 

469. Nonterminal: The concept of a nonterminal (together with the concept 
of a terminal) is a concept associated with the rule of grammars. (See that 
term: rule of grammar for a full explanation.) 

470. Notation: By a notation we shall usually understand a reasonably pre­
cisely delineated language. (Some notations are textual, as are program­
ming notations or specification languages; some are diagrammatic, as are, 
for example, Petri nets, statecharts, live sequence charts, etc.) 

471. Noun: Something, a name, that refers to an entity, a quality, a state, an 
action, or a concept. Something that may serve as the subject of a verb. 
(But beware: In English many nouns can be "verbed", and many verbs 
can be "nouned"!) 

O 

472. Object: An instance of the data structure and behaviour defined by the 
object's class. Each object has its own values for the instance variables of 
its class and can respond to the functions defined by its class. (Various 
specification languages, object Z [144,199,200], RSL, etc., each have their 
own, further refined, meaning for the term 'object', and so do object-
oriented programming language (viz., C++ [489], Java [10,20,243,348,470, 
511], C# [277,381,382,422] and so on).) 

473. Object-oriented: We say that a program is object-oriented if its main 
structure is determined by a modularisation into a class, that is, a cluster of 
types, variables and procedures, each such set acting as a separate abstract 
data type. Similarly we say that a programming language is object-oriented 
if it specifically offers language constructs to express the appropriate mod­
ularisation. (Object-orientedness became a mantra of the 1990s: Every­
thing had to be object-oriented. And many programming problems are 
indeed well served by being structured around some object-oriented no­
tion. The first object-oriented programming language was Simula 67 [54].) 

474. Observer: By an observer we mean basically the same as an observer 
function. 

475. Observer function: An observer function is a function which when "ap­
plied" to an entity (a phenomenon or a concept) yields subentities or at­
tributes of that entity (without "destroying" that entity). (Thus we do 
not make a distinction between functions that observe subentities (cf. 
subentity) and functions that observe attributes. You may wish to make 
distinctions between the two kinds of observer function. You can do so 
by some simple naming convention: assign names the prefix obs_ when 
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you mean to observe subentities, and attr_ when you mean to observe 
attributes. Vol. 3 Chap. 5 introduces these concepts.) 

476. One-dimensional: A composite entity is a one-dimensional entity if all 
relations between properly contained (i.e., constituent) subentities can be 
described by either no references to other subentities, or only by backward 
or only by forward references. (This is in contrast to multi-dimensional 
entities. Thus arrays of arbitrary order (vectors, matrices, tensors) are 
usually one-dimensional.) 

477. Ontology: In philosophy: A systematic account of Existence. To us: An 
explicit formal specification of how to represent the phenomena, concepts 
and other entities that are assumed to exist in some area of interest (some 
universe of discourse) and the relationships that hold among them. (Fur­
ther clarification: An ontology is a catalogue of concepts and their rela­
tionships — including properties as relationships to other concepts. See 
Sect. B.1.4.) 

478. Operation: By an operation we shall mean a function, or an action (i.e., 
the effect of function invocation). (The context determines which of these 
two strongly related meanings are being referred to.) 

479. Operational: We say that a specification (a description, a prescription), 
say of a function, is operational if what it explains is explained in terms of 
how that thing, how that phenomenon, or concept, operates (rather than 
by what it achieves). (Usually operational definitions are model oriented 
(in contrast to property oriented).) 

480. Operational abstraction: Although a definition (a specification, a de­
scription, or a prescription) may be said, or claimed, to be operational, it 
may still provide abstraction in that the model-oriented concepts of the 
definition are not themselves directly representable or performable by hu­
mans or computers. (This is in contrast to denotational abstractions or 
algebraic (or axiomatic) abstractions.) 

481. Operational semantics: A definition of a language semantics that is 
operational. (See also structural operational semantics.) 

482. Operation reification: To speak of operation reification one must first 
be able to refer to an abstract, usually property-oriented, specification of 
the operation. Then, by operation reification we mean a specification which 
indicates how the operation might be (possibly efficiently) implemented. 
(Cf. data reification and operation transformation.) 

483. Operation transformation: To speak of operation reification one must 
first be able to refer to an abstract, usually property-oriented, specification 
of the operation. Then, by operation transformation we mean a specification 
which is, somehow, calculated from the abstract specification. (Three nice 
books on such calculi are: [21,50,390].) 

484. Optative: Expressive of wish or desire. (See also imperative, indicative, 
and putative.) 

485. Organisation: By organisation we shall here, in a narrow sense, only 
mean the administrative or functional structure of an enterprise, a pub-
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lie or private administration, or of a set of services, as for example in a 
consumer/retailer/wholesaler/producer/distributor market, or in a finan­
cial services industry, etc. 

486. Organisation and management: The composite term organisation and 
management applies in connection with organisations as outlined just 
above. The term then emphasises the relations between the organisation 
and its management. (For more, see management and organisation.) 

487. Output: By output we mean the communication of information (data) to 
an outside, an environment, from a phenomenon "within" our universe of 
discourse. (More colloquially, and more generally: output can be thought 
of as value(s) transferred over channels) from, or between, processes. Cf. 
input. In a narrow sense we talk of output from a machine (e.g., a finite 
state machine or a pushdown machine).) 

488. Output alphabet: The set of symbols output from a machine in the 
sense of, for example, a finite state machine or a pushdown machine. 

489. Overloaded: The concept of 'overloaded' is a concept related to function 
symbols, i.e., function names. A function name is said to be overloaded 
if there exists two or more distinct signatures for that function name. 
(Typically overloaded function symbols are '+ ' , which applies, possibly, 
in some notation, to addition of integers, addition of reals, etc., and '= ' , 
which applies, possibly, in some notation, to comparison of any pair of 
values of the same type.) 

V 

490. Paradigm: A philosophical and theoretical framework of a scientific 
school or discipline within which theories, laws and generalizations and 
the experiments performed in support of them are formulated; a philo­
sophical or theoretical framework of any kind. (Software engineering is 
full of paradigms: Object-orientedness is one.) 

491. Paradox: A statement that is seemingly contradictory or opposed to 
common sense and yet is perhaps true. An apparently sound argument 
leading to a contradiction. (Some famous examples are Russell's Paradox3 

and the Liar Paradox.4 Most paradoxes stem from some kind of self-
reference.) 

492. Parallel programming language: A programming language whose ma­
jor kinds of concepts are processes, process composition [putting processes 
in parallel and nondeterministic {internal or external} choice of process 
elaboration], and synchronisation and communication between processes. 
(A main example of a practical parallel programming language is occam 
[301], and of a specificational 'programming' language is CSP [288,448,456]. 

3If R is the set of all sets which do not contain themselves, does R contain itself? 
If it does then it doesn't and vice versa. 

4 "This sentence is false" or "I am lying". 
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Most recent imperative programming languages (Java, C# , etc.) provide for 
programming constructs (e.g., threads) that somehow mimic parallel pro­
gramming.) 

493. Parameter: Same as formal parameter. 
494. Parametric polymorphism: See the parenthesised part of the polymor­

phic entry. 
495. Parameterised: We say that a definition, of a class (or of a function) is 

parameterised if an instantiation of an object of the class (respectively an 
invocation of the function) allows an actual argument to be substituted (cf. 
substitution) into the class definition (function body) for every occurrence 
of the [formal] parameter. 

496. Parser: A parser is an algorithm, say embodied as a software program, 
which accepts text strings, and, if the text string is generated by a suitable 
grammar, then it will yield a parse tree of that string. (See generator.) 

497. Parse tree: To speak of a parse tree we assume the presence of a string 
of terminals and nonterminals, and of a grammar. A parse tree is a tree 
such that each subtree (of a root and its immediate descendants, whether 
terminals or nonterminals) corresponds to a rule of the grammar, and hence 
such that the frontier of the tree is the given string. 

498. Parsing: The act of attempting to construct a parse tree from a grammar 
and a text string. 

499. Part: To speak of parts we must be able to speak of "parts and wholes". 
That is: We assume some mereology, i.e., a theory of parthood relations: 
of the relations of part to whole and the relations of part to part within 
a whole. 

500. Partial algebra: A partial algebra is an algebra whose functions are not 
defined for all combinations of arguments over the carrier. 

501. Partial evaluation: To speak of partial evaluation we must first speak 
of evaluation. Normally evaluation is a process, as well as the result of 
that process, whereby an expression in some language is evaluated in some 
context which binds every free identifier of the expression to some value. A 
partial evaluation is an evaluation in whose context not all free identifiers 
are bound to (hence, defined) values. The result of a partial evaluation 
is therefore a symbolic evaluation, one in which the resulting value is 
expressed in terms of actual values and the undefined free identifiers. (We 
refer to [115,320].) 

502. Path: The concept of paths is usually associated with graphs and trees 
(i.e., networks). A path is then a sequence of one or more graph edges or 
tree branches such that two consecutive edges (branches) share a node of 
the graph (or [root] of a tree). (We shall also use the term route synony­
mously with paths.) 

503. Pattern: We shall take a pattern, p, (as in RSL) to mean an expres­
sion with identifiers, a, and constants, k, as follows. Basis clauses: Any 
identifier a is a pattern, and any constant, fc, is a pattern. Induc­
tive clause: If pi,p2,... ,pm are patterns, then so are (pi,P2, • • • ,Pm), 
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< P l , P 2 , . . . , P m > , {PuP2,'-.,Pm},\Pdi *~> Pr^Pd^Pr^ • •• ,Pdm • " • P r J , 
and so are: (p)^a, a^(p), {p} U a, and [p^ 4 p r i ] U o . (The idea is that a 
pattern, p, is "held up against" a value, v, "of the same kind" and then 
we attempt to "match" the pattern, p, with the value, v, and if a match­
ing can be made, then the free identifiers of p are bound to respective 
component values of v.) 

504. Perfective maintenance: By perfective maintenance we mean an up­
date, as here, of software, to achieve a more desirable use of resources: 
time, storage space, equipment. (We also refer to adaptive maintenance, 
corrective maintenance and preventive maintenance.) 

505. Performance: By performance we, here, in the context of computing, 
mean quantitative figures for the use of computing resources: time, storage 
space, equipment. 

506. Performance requirements: By performance requirements we mean 
requirements which express performance properties (desiderata). 

507. Petri net: The Petri net language is a special graphic notation for ex­
pressing concurrency of actions, and simultaneity of events, of processes. 
(See [313,421,435-437].) 

508. Phase: By a phase we shall here, in the context of software development, 
understand either the domain development phase, the requirements devel­
opment phase, or the software design phase. 

509. Phenomenon: By a phenomenon we shall mean a physically manifest 
"thing". (Something that can be sensed by humans (seen, heard, touched, 
smelled or tasted), or can be measured by physical apparatus: Electric­
ity (voltage, current, etc.), mechanics (length, time and hence velocity, 
acceleration, etc.), chemistry, etc.) 

510. Phenomenology: Phenomenology is the study of structures of conscious­
ness as experienced from the first-person point of view [536]. 

511. Platform: By a platform, we shall, in the context of computing, un­
derstand a machine: Some computer (i.e., hardware) equipment and some 
software systems. (Typical examples of platforms are: Microsoft Windows 
running on an IBM ThinkPad Ser ies T model, or Trusted So la r i s op­
erating system with an Oracle Database 10g running on a Sun F i re E25K 
Server .) 

512. Platform requirements: By platform requirements we mean require­
ments which express platform properties (desiderata). (There can be sev­
eral platform requirements: One set for the platform on which software 
shall be developed. Another set for the platform(s) on which software 
shall be utilised. A third set for the platform on which software shall be 
demonstrated. And a fourth set for the platform on which software shall 
be maintained. These platforms need not always be the same.) 

513. Pointer: A pointer is the same as an address, a link, or a reference: some­
thing which refers to, i.e., designates something (typically something else). 

514. Polymorphic: Polymorphy is a concept associated with functions and 
the type of the values to which the function applies. If, as for the length 
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of a list function, len, that function applies to lists of elements of any type, 
then we say the length function is polymorphic. So, in general, the ability 
to appear in many forms; the quality or state of being able to assume 
different forms. From Wikipedia, the Free Enclycopedia [519]: 

In computer science, polymorphism is the idea of allowing the 
same code to be used with different types, resulting in more gen­
eral and abstract implementations. The concept of polymorphism 
applies to functions as well as types: A function that can evalu­
ate to and be applied to values of different types is known as a 
polymorphic function. A data type that contains elements of an 
unspecified type is known as a polymorphic data type. There are 
two fundamentally different kinds of polymorphism: If the range 
of actual types that can be used is finite and the combinations 
must be specified individually prior to use, it is called ad hoc 
polymorphism. If all code is written without mention of any spe­
cific type and thus can be used transparently with any number 
of new types, it is called parametric polymorphism. Programming 
using the latter kind is called generic programming, particularly in 
the object-oriented community. However, in many statically typed 
functional programming languages the notion of parametric poly­
morphism is so deeply ingrained that most programmers simply 
take it for granted. 

515. Portability: Portability is a concept associated with software, more 
specifically with the programs (or data). Software is (or files, including 
data base records, are) said to be portable if it (they), with ease, can be 
"ported" to, i.e., made to "run" on, a new platform and/or compile with 
a different compiler, respectively different database management system. 

516. Post-condition: The concept of post-condition is associated with func­
tion application. The post-condition of a function / is a predicate p0f 

which expresses the relation between argument a and result r values that 
the function / defines. If a represent argument values, r corresponding 
result values and / the function, then f(a) — r can be expressed by the 
post-condition predicate p0f, namely, for all applicable a and r the pred­
icate p0f expresses the truth of p0 /(a, r). (See also pre-condition.) 

517. Postfix: The concept of postfix is basically a syntactic one, and is asso­
ciated with operator /operand expressions. It is one about the displayed 
position of a unary (i.e., a monadic) operator with respect to its operand 
(expression). An expression is said to be in postfix form if a monadic 
operator is shown, is displayed, after the expression to which it applies. 
(Typically the factorial operator, say !, is shown after its operand expres­
sion, viz. 7!.) 

518. Post-order: A special order of tree traversal in which visits are made to 
nodes of trees and subtrees as follows: First, for each subtree, a subtree 
post-order traversal is made, in the order left to right (or right to left). 
When a tree, whose number of subtrees is zero, is post-order traversed, 
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then just that tree's root is visited (and that tree has then been post-order 
traversed) and (the leaf) is "marked" as having been post-order visited. 
After each subtree visit the root of the tree of which the subtree is a 
subtree is revisited and now it is "marked" as having been visited. (Cf. 
Fig. B.4 on page 644: A left to right post-order traversal of that tree yields 

Fig. B.2. A left to right post-order tree traversal 

the following sequence of "markings": CQXFLUJMZKA; cf. also Fig. B.2). 
519. Pragmat ics : Pragmatics is the (i) study and (ii) practice of the factors 

that govern our choice of language in social interaction and the effects 
of our choice on others. (We use the term pragmatics in connection with 
the use of language, as complemented by the semantics and syntax of 
language.) 

520. Pre-condit ion: The concept of pre-condition is associated with function 
application where the function being applied is a partial function. That 
is: for some arguments of its definition set the function yields chaos, 
that is, does not terminate. The pre-consition of the function is then a 
predicate which expresses those values of the arguments for which the 
function application terminates, that is, yields a result value. (See weakest 
pre-condition.) 

521. Predica te : A predicate is a truth-valued expression involving terms over 
arbitrary values, well-formed formula relating terms and with Boolean 
connectives and quantifiers. 

522. Predica te logic: A predicate logic is a language of predicates (given by 
some formal syntax) and a proof system. 

523. Pre-order : A special order of tree traversal in which visits are made to 
nodes of trees and subtrees as follows: First to the root of the tree with 
that root now being "marked" as having been pre-order visited. Then for 
each subtree a subtree pre-order traversal is made, in the order left to 
right (or right to left). When a tree, whose number of subtrees is zero, is 
pre-order traversed, then just that tree's root is visited (and that tree has 
then been pre-order traversed) and the leaf is then "marked" as having 
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been pre-order visited. (Cf. Fig. B.4 on page 644: A right-to-left pre-

Fig. B.3. A right-to-left pre-order tree traversal 

order traversal of that tree yields the following sequence of "markings": 
AKZMJULFXQC. Cf. also Fig. B.3). 

524. Presentation: By presentation we mean the syntactic documentation of 
the results of some development. 

525. Prescription: A prescription is a specification which prescribes some­
thing designatable, i.e., which states what shall be achieved. (Usually the 
term 'prescription' is used only in connection with requirements prescrip­
tions.) 

526. Preventive maintenance: By preventive maintenance — of a machine 
— we mean that a set of special tests are performed on that machine 
in order to ascertain whether the machine needs adaptive maintenance, 
and/or corrective maintenance, and/or perfective maintenance. (If so, then 
an update, as here, of software, has to be made in order to achieve suitable 
integrity or robustness of the machine.) 

527. Principle: An accepted or professed rule of action or conduct, . . . , a 
fundamental doctrine, right rules of conduct, . . . [484]. (The concept of 
principle, as we bring it forth, relates strongly to that of method. The 
concept of principle is "fluid". Usually, by a method, some people under­
stand an orderliness. Our definition puts the orderliness as part of overall 
principles. Also, one usually expects analysis and construction to be effi­
cient and to result in efficient artifacts. Also this we relegate to be implied 
by some principles, techniques and tools.) 

528. Procedure: By a procedure we mean the same as a function. (Same as 
routine or subroutine.) 

529. Process: By a process we understand a sequence of actions and events. 
The events designate interaction with some environment of the process. 

530. Program: A program, in some programming language, is a formal text 
which can be subject to interpretation by a computer. (Sometimes we use 
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the term code instead of program, namely when the program is expressed 
in the machine language of a computer.) 

531. Programmable: An active dynamic phenomenon has the programmable 
(active dynamic) attribute if its actions (hence state changes) over a future 
time interval can be accurately prescribed. (Cf. autonomous and biddable.) 

532. Programmer: A person who does software design. 
533. Program point: By a program point we shall here understand any point 

in a program text (whether of an applicative programming language (i.e., 
functional programming language), an imperative programming language, 
or a logic programming language) between any two textually neighbouring 
tokens. (The idea of a program point is the following: Assume an interpreter 
of programs of the designated kind. Such an interpreter, at any step of its 
interpretation process, can be thought of as interpreting a special token, or 
a sequence of neighbouring tokens, in both cases: "between two program 
points".) 

534. Program organisation: By program organisation we loosely mean how 
a program (i.e., its text) is structured into, for example, modules (eg., 
classes), procedures, etc. 

535. Programming: The act of constructing programs. From [227]: 
1: The art of debugging a blank sheet of paper (or, in these days 
of on-line editing, the art of debugging an empty file). 2: A pas­
time similar to banging one's head against a wall, but with fewer 
opportunities for reward. 3: The most fun you can have with your 
clothes on (although clothes are not mandatory). 

536. Programming language: A language for expressing programs, i.e., a 
language with a precise syntax, a semantics and some textbooks which 
provides remnants of the pragmatics that was originally intended for that 
programming language. (See next entry: programming language type.) 

537. Programming language type: With a programming language one can 
associate a type. Typically the name of that type intends to reveal the 
type of a main paradigm, or a main data type of the language. (Examples 
are: functional programming language (major data type is functions, major 
operations are definition of functions, application of functions and com­
position of functions), logic programming language (major kinds of expres­
sions are ground terms in a Boolean algebra, propositions and predicates), 
imperative programming language (major kinds of language constructs are 
declaration of assignable variables, and assignment to variables, and a 
more or less indispensable kind of data type is references [locations, ad­
dresses, pointers]), and parallel programming language.) 

538. Projection: By projection we shall here, in a somewhat narrow sense, 
mean a technique that applies to domain descriptions and yields require­
ments prescriptions. Basically projection "reduces" a domain description 
by "removing" (or, but rarely, hiding) entities, functions, events and be­
haviours from the domain description. (If the domain description is an 
informal one, say in English, it may have expressed that certain enti-
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ties, functions, events and behaviours might be in (some instantiations 
of) the domain. If not "projected away" the similar, i.e., informal require­
ments prescription will express that these entities, functions, events and 
behaviours shall be in the domain and hence will be in the environment 
of the machine being requirements prescribed.) 

539. Proof: A proof of a theorem, 0, from a set, r, of sentences of some formal 
propositions! or predicate language, £, is a finite sequence of sentences, fa, 
fa, ...,<f>n, where cf> = fa, where cf)n = true, and in which each fa is either 
an axiom of C, or a member of r, or follows from earlier 4>j 's by an inference 
rule of C. 

540. Proof obligation: A clause of a program may only be (dynamically) well-
defined if the values of clause parts lie in certain ranges (viz. no division by 
zero). We say that such clauses raise proof obligations, i.e., an obligation 
to prove a property. (Classically it may not be statically (i.e., compile 
time) checkable that certain expression values lie within certain subtypes. 
Discharging a proof may help ensure such constraints.) 

541. Proof rule: Same as inference rule or axiom. 
542. Proof system: A consistent and (relative) complete set of proof rules. 
543. Property: A quality belonging and especially peculiar to an individual 

or thing; an attribute common to all members of a class. (Hence: "Not a 
property owned by someone, but a property possessed by something".) 

544. Property-oriented: A specification (description, prescription) is said to 
be property-oriented if the specification (etc.) expresses attributes. (Con­
trast to model oriented.) 

545. Proposition: An expression in language which has a truth value. 
546. Protocol: A set of formal rules describing how to exchange messages, be­

tween a human user and a machine, or, more classically, across a network. 
(Low-level protocols define the electrical and physical standards to be ob­
served, bit and byte ordering, and the transmission and error detection 
and correction of the bit stream. High-level protocols deal with the data 
formatting, including the syntax of messages, the terminal-to-computer 
dialogue, character sets, sequencing of messages, etc.) 

547. Pure functional programming language: A functional programming 
language is said to be pure if none of its constructs designates side-effects. 

548. Pushdown stack: A pushdown stack is a simple stack. (Usually a simple 
stack has just the following operations: push an element onto the stack, 
pop the top element from the stack, and observe the top element of the 
stack.) 

549. Pushdown automaton: A pushdown automaton is an automaton with 
the addition of a pushdown stack such that (i) the pushdown automaton 
input is provided both from an environment external to the pushdown 
automaton and from the top of the pushdown stack, (ii) the pushdown 
automaton output is provided to the pushdown stack by being pushed onto 
the top of that stack, and (iii) such that the pushdown automaton may 
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direct an element to be popped from the pushdown stack. (The pushdown 
automaton still has the notion of the final states of the automaton.) 

550. Pushdown machine: A pushdown (stack) machine is like a pushdown au­
tomaton with the addition that now the pushdown machine also provides 
output to the environment of the pushdown machine. 

551. Putative: Commonly accepted or supposed, that is, assumed to exist or 
to have existed. (See also imperative, indicative and optative.) 

Q 

552. Quality: Specific and essential character. (Quality is an attribute, a prop­
erty, a characteristic (something has character).) 

553. Quantification: The operation of quantifying. (See quantifier. The x (the 
y) is quantifying expression VxiX-P(x) (respectively 3y:Y-Q(y)).) 

554. Quantifier: A marker that quantifies. It is a prefixed operator that binds 
the variables in a logical formula by specifying their possible range of 
values. (Colloquially we speak of the universal and the existential quan­
tifiers, V, respectively 3. Typically a quantified expression is then of either 
of the forms \tx:X-P(x) and 3y:Y-Q(y). They 'read': For all quantities x 
of type X it is the case that the predicate P(x) holds; respectively: There 
exists a quantity y of type Y such that the predicate Q(y) holds.) 

555. Quantity: An indefinite value. (See the quantifier entry: The quantities 
in P(x) (respectively Q(y)) are of type X (respectively Y). y is indefinite 
in that it is one of the quantities of Y, but which one is not said.) 

556. Query: A request for information, generally as a formal request to a 
database. 

557. Query language: A formal language for expressing queries (cf. query). 
(The most well-known query language, today, 2005, is SQL [178].) 

558. Queue: A queue is an abstract data type with a queue data structure 
and, typically, the following operations: enqueue (insert into one end of 
the queue), dequeue (remove from the other end of the queue). Axioms 
then determine specific queue properties. (See Example 8.6.) 

n 
559. Radix: In a positional representation of numbers, that integer by which 

the significance of one digit place must be multiplied to give the signifi­
cance of the next higher digit place. (Conventional decimal numbers are 
radix ten, binary numbers are radix two.) 

560. RAISE: RAISE stands for Rigorous Approach to Industrial Software 
Engineering. (RAISE refers to a method, The RAISE Method [238], a spec­
ification language, RSL [236], and "comes" with a set of tools. For more 
on RSL we refer to Part III of this volume.) 

561. Range: The concept of range is here used in connection with functions. 
Same as range set. See next entry. 
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562. Range set: Given a function, its range set is that set of values which is 
yielded when the function is applied to each member of its definition set. 

563. Reactive: A phenomenon is said to be reactive if the phenomenon per­
forms actions in response to external stimuli. Thus three properties must 
be satisfied for a system to be of reactive dynamic attribute: (i) An inter­
face must be definable in terms of (ii) provision of input stimuli and (iii) 
observation of (state) reaction. (Contrast to inert and active.) 

564. Reactive system: A system whose main phenomena are chiefly reactive. 
(See the reactive entry just above.) 

565. Real time: We say that a phenomenon is real time if its behaviour some­
how must guarantee a response to an external event within a given time. 
(Cf. hard real time and soft real time.) 

566. Reasoning: Reasoning is the ability to infer, i.e., to make deductions or 
inductions. (Automated reasoning is concerned with the building and use 
of computing systems that automate this process. The overall goal is to 
mechanise different forms of reasoning.) 

567. Recogniser: A recogniser is an algorithm which can decide whether a 
string can be generated by a given grammar of a language. (Typically a 
recogniser can be abstractly formulated as a finite state automaton for a 
regular language, and as a pushdown automaton for a context-free language.) 

568. Recognition rule: A recognition rule is a text which describes some 
phenomenon, that is, a possibly singleton class of such (i.e., their embodied 
concept, i.e., type), such that it is uniquely decidable, by a human, whether 
a phenomenon satisfies the rule or not, i.e., is a member of the class, or 
not. (The recognition rule concept used here is due to Michael A. Jackson 
[308].) 

569. Recursion: Recursion is a concept associated both with the function def­
initions and with data type definitions. A function definition [a data type] 
is said to possess recursion if it is defined in terms of itself. (Cf. with the 
slightly different concept of recursive.) 

570. Recursive: Recursive is a concept associated with functions. A function 
is said to be recursive if, in the course of the evaluation of an invocation 
of the function, that function is repeatedly invoked. (Cf. with the slightly 
different concept of recursion.) 

571. Reengineering: By reengineering we shall, in a narrow sense, only con­
sider the reengineering of business processes. Thus, to us, reengineering 
is the same as business process reengineering. (Reengineering is also used 
in the wider sense of a major change to some already existing engineering 
artefact.) 

572. Reference: A reference is the same as an address, a link, or a pointer: 
something which refers to, i.e., designates something (typically something 
else). 

573. Referential transparency: A concept which is associated with certain 
kinds of programming or specification language constructs, namely those 
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whose interpretation does not entail side effects. (A pure functional pro­
gramming language is said to be referentially transparent.) 

574. Refinement: Refinement is a relation between two specifications: One 
specification, D, is said to be a refinement of another specification, 5, 
if all the properties that can be observed of S can be observed in D. 
Usually this is expressed as D E S. (Set-theoretically it works the other 
way around: in D D 5, D allows behaviours not accounted for in S.) 

575. Refutable assertion: A refutable assertion is an assertion that might 
be refuted (i.e., convincingly shown to be false). (Einstein's theory of 
relativity, in a sense, refuted Newton's laws of mechanics. Both theories 
amount to assertions.) 

576. Refutation: A refutation is a statement that (convincingly) refutes an 
assertion. (Lakatos [330] drew a distinction between refutation (evidence 
that counts against a theory) and rejection (deciding that the original 
theory has to be replaced by another theory). We can still use Newton's 
theory provided we stay within certain boundaries, within which that 
theory is much easier to handle than Einstein's theory.) 

577. Regular expression: To introduce the notion of regular expression we 
assume an alphabet, A, say finite. Basis clause: For any a in the alphabet, a 
is a regular expression. Inductive clause: If r and r' are regular expressions, 
then so are rr', (r), r | r', and r*. (The denotation, £(r) , of a regular 
expression r is defined as follows: (i) If r is of the form a, for a in the 
alphabet A, then C(a) = {a}; (ii) if r is of the form rr' then C(rr') = 
{s | s : C(r),s'C(rf) : s = s'^s"}; (hi) or if r is of the form (r') then 
C((rf)) = {s | s : C(r')}; (iv) or if r is of the form r \ r' then C(r \ 
r') = {s | s e C(r) V sf G £(r ' )} ; (v) or if r is of the form r* then 
£(r*) = {s\s =<> Vs G C(r) V s ' e C(rr) V sf e C{rrr) V . . .} where < > 
is the empty string, idempotent under concatenation.) 

578. Regular grammar: See regular syntax. 
579. Regular language: By a regular language we understand a language 

which is the denotation of a regular expression. (Some simple forms of 
grammars, that is, regular syntaxes, also generate regular languages.) 

580. Regular syntax: A regular syntax is a syntax which denotes (i.e., which 
generates) a regular language. 

581. Reification: The result of a reify action. (See also data reification, opera­
tion reification and refinement.) 

582. Reify: To regard (something abstract) as a material or concrete thing. 
(Our use of the term is more operational: To take an abstract thing and 
turn it into a less abstract, more concrete thing.) 

583. Relation: By a relation we usually understand either a mathematical 
entity or an information structure consisting of a set of (relation) tuples 
(like rows in a table). The mathematical entity, a relation, can be thought 
of, also, as a possibly infinite set of n-groupings (i.e., Cartesians of the 
same arity), such that if (a, b, • • •, c, d, • • •, e, / ) is such an n-tuple, then we 
may say that (a, b, • • •, c) (a relation argument) relates to (d, • • •, e, / ) (a 
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relation result). Thus functions are special kinds of relations, namely where 
every argument relates to exactly one result. (Relations, as information 
structures, are well-known in relational databases.) 

584. Relational database: A database whose data types are (i) atomic values, 
(ii) tuples of these, and relations seen as sets of tuples. (The relational 
database model is due to E.F. Codd [156].) 

585. Reliability: A system being reliable — in the context of a machine being 
dependable — means some measure of continuous correct service, that is: 
Measure of time to failure. (Cf. dependability [being dependable].) (Reli­
ability is a dependability requirement. Usually reliability is considered a 
machine property. As such, accessibility is (to be) expressed in a machine 
requirements document.) 

586. Renaming: By renaming we mean Alpha-renaming. (Renaming, in this 
sense, is a concept of the Lambda-calculus.) 

587. Rendezvous: Rendezvous is a concept related to parallel processes. It 
stands for a way of synchronising a number, usually two, of processes. 
(In CSP the pairing of output (!) / input (?) clauses designating the same 
channel provides a language construct for rendezvous.) 

588. Representation abstraction: By representation abstraction of [typed] 
values we mean a specification which does not hint at a particular data 
(structure) model, that is, which is not implementation biased. (Usually a 
representation abstraction (of data) is either property oriented or is model 
oriented. In the latter case it is then expressed, typically, in terms of 
mathematical entities such as sets, Cartesians, lists, maps and functions.) 

589. Requirements: A condition or capability needed by a user to solve a 
problem or achieve an objective [299]. 

590. Requirements acquisition: The gathering and enunciation of require­
ments. (Requirements acquisition comprises the activities of preparation, 
requirements elicitation (i.e. requirements capture) and preliminary require­
ments evaluation (i.e., requirements vetting).) 

591. Requirements analysis: By requirements analysis we understand a 
reading of requirements acquisition (rough) prescription units, (i) with 
the aim of forming concepts from these requirements prescription units, 
(ii) as well as with the aim of discovering inconsistencies, conflicts and in­
completenesses within these requirements prescription units, and (iii) with 
the aim of evaluating whether a requirements can be objectively shown to 
hold, and if so what kinds of tests (etc.) ought be devised. 

592. Requirements capture: By requirements capture we mean the act of 
eliciting, of obtaining, of extracting, requirements from stakeholders. (For 
practical purposes requirements capture is synonymous with requirements 
elicitation.) 

593. Requirements definition: Proper definitional part of a requirements pre­
scription. 

594. Requirements development: By requirements development we shall 
understand the development of a requirements prescription. (All aspects are 
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included in development: requirements acquisition, requirements analysis, 
requirements modelling, requirements validation and requirements verifi­
cation.) 

595. Requirements elicitation: By requirements elicitation we mean the ac­
tual extraction of requirements from stakeholders. 

596. Requirements engineer: A requirements engineer is a software engineer 
who performs requirements engineering. (Other forms of software engineers 
are domain engineers and software designers (cum programmer).) 

597. Requirements engineering: The engineering of the development of a 
requirements prescription, from identification of requirements stakeholders, 
via requirements acquisition, requirements analysis, and requirements pre­
scription to requirements validation and requirements verification. 

598. Requirements facet: A requirements facet is a view of the requirements 
— "seen from a domain description" — such as domain projection, domain 
determination, domain instantiation, domain extension, domain fitting or do­
main initialisation. 

599. Requirements prescription: By a requirements prescription we mean 
just that: the prescription of some requirements. (Sometimes, by require­
ments prescription, we mean a relatively complete and consistent specifi­
cation of all requirements, and sometimes just a requirements prescription 
unit.) 

600. Requirements prescription unit: By a requirements prescription unit 
we understand a short, "one or two liner", possibly rough sketch, pre­
scription of some property of a domain requirements, an interface require­
ments, or a machine requirements. (Usually prescription prescription units 
are the smallest textual, sentential fragments elicited from requirements 
stakeholders.) 

601. Requirements specification: Same as requirements prescription — the 
preferred term. 

602. Requirements validation: By requirements validation we rather mean 
the validation of a requirements prescription. 

603. Resource: From Old French ressourse relief, resource, from resourdre 
to relieve, literally, to rise again, from Latin resurgere . . . an ability to 
meet and handle a situation [373] (being resourceful). (In computing we 
deal with computing resources such as storage, time and further comput­
ing equipment. Many computing applications handle enterprise resources 
such as enterprise staff, production equipment, building or land space, 
production time, etc.) 

604. Resource allocation: The allocation of resources. 
605. Resource scheduling: The scheduling of resources. 
606. Retrieval: Used here in two senses: The general (typically database-

oriented) sense of 'the retrieval [the fetching] of data (of obtaining infor­
mation) from a repository of such'. And the special sense of 'the retrieval 
of an abstraction from a concretisation', i.e., abstracting a concept from a 
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phenomenon (or another, more operational concept). (See the next entry 
for the latter meaning.) 

607. Retrieve function: By a retrieve function we shall understand a function 
that applies to values of some type, the "more concrete, operational" type, 
and yields values of some type claimed to be more abstract. (Same as 
abstraction function.) 

608. Rewrite: The replacement of some text or structure by some other text, 
respectively structure. (See rewrite rule.) 

609. Rewrite rule: A rewrite rule is a directed equation: lhs = rhs. The left-
and right-hand sides are patterns. If some text can be decomposed into 
three parts, i.e., text0 = texti^textz^texts, where texti and/or texts may 
be empty texts, and where text^ = lhs, then an application of the rewrite 
rule lhs = rhs to texto yields texti^rhs^texts. (The equation lhs = rhs 
is said to be directed in that this rule does not prescribe that a subtext 
equal to rhs is to be rewritten into lhs.) 

610. Rewrite system: Rewrite systems are sets of rewrite rules used to com­
pute, by repeatedly replacing subterms of a given formula with equal 
terms, until the simplest form possible is obtained [184]. (Rewrite sys­
tems form a both theoretically and practically interesting subject. They 
abound in instrumenting theorem proving, and the interpretation of no­
tably algebraic semantics specification languages, cf. Caf eOBJ [191,193] and 
Maude [140,154,374].) 

611. Rigorous: Favoring rigor, i.e., being precise. 
612. Rigorous development: Same as the composed meaning of the two 

terms rigorous and development. (We usually speak of a spectrum of de­
velopment modes: systematic development, rigorous development and for­
mal development. Rigorous software development, to us, "falls" somewhere 
between the two other modes of development: (Always) complete formal 
specifications are constructed, for all (phases and) stages of development; 
some, but usually not all proof obligations are expressed; and usually only 
a few are discharged (i.e., proved to hold).) 

613. Robustness: A system is robust — in the context of a machine being 
dependable — if it retains all its dependability attributes (i.e., properties) 
after failure and after maintenance. (Robustness is (thus) a dependability 
requirement.) 

614. Root: A root is a node of a tree which is not a subtree of a larger, 
embedding (embedded) tree. 

615. Rough sketch: By a rough sketch — in the context of descriptive software 
development documentation — we shall understand a document text which 
describes something which is not yet consistent and complete, and/or 
which may still be too concrete, and/or overlapping, and/or repetitive 
in its descriptions, and/or with which the describer has yet to be fully 
satisfied. 

616. Route: Same as path. 
617. Routine: Same as procedure. 
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618. RSL: RSL stands for the RAISE [238] Specification Language [236]. (For 
more on RSL we refer to Part III.) 

619. Rule: A regulating principle. (We use the concept of rules in several 
different contexts: rewrite rule, rule of grammar and rules and regulations.) 

620. Rule of grammar: A grammar is made up of one or more rules. A 
rule has a (left-hand-side) definiendum and a (right-hand-side) definiens. 
The definiendum is usually a single identifier. The definiens is usually a 
possibly empty string of identifiers. These identifiers are either terminals or 
nonterminals. A definiendum identifier is a nonterminal. In a grammar all 
nonterminals have a defining rule. Those identifiers which do not appear 
as a definiendum of a rule are thence considered terminals. 

621. Rules and regulations: By rules and regulations we mean guidelines 
that are intended to be adhered to by the enterprise staff and enterprise 
customers (i.e., users, clients) in conducting their "business", i.e., their 
actions within, and with, the enterprise. (Other facets of an enterprise are 
those of its intrinsics, business processes, support technology, management 
and organisation and human behaviour.) 

622. Run time: The time (or time interval) during which a software program 
is subject to interpretation by a computer. (The term run time is usually 
deployed in order to distinguish between that concept and the concept of 
compile time.) 

S 

623. Safety: By safety — in the context of a machine being dependable — 
we mean some measure of continuous delivery of service of either correct 
service, or incorrect service after benign failure, that is, measure of time to 
catastrophic failure. (Safety is a dependability requirement. Usually safety 
is considered a machine property. As such safety is (to be) expressed in a 
machine requirements document.) 

624. Safety critical: A system whose failure may cause injury or death to 
human beings, or serious loss of property, or serious disruption of services 
or production, is said to be safety critical. 

625. Satisfiable: A predicate is said to be satisfied if it is true for at least one 
interpretation. (In this context think of an interpretation as a binding of 
all free variables of the predicate expression to values. Cf. valid.) 

626. Schedule: A schedule is a syntactic composite concept. A schedule is a 
prescription for (usually where and) when some resources are to be present, 
i.e., information about being spatially and temporally available. (As such 
a schedule usually also includes some allocation information.) 

627. Scheduling: The act of providing, of constructing, a schedule. 
628. Schema: A structured framework or plan. (We shall also use the term 

'schema' in connection with, i.e., as a rewrite rule and some axioms that 
apply to, for example, applicative program texts and rewrite into imper­
ative program texts, cf. Sect. 20.5.3.) 
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629. Scheme: See schema. 
630. Scope: We shall use the term scope in two sufficiently different senses: 

(1) In programming the scope of an identifier is the region of a program 
text within which it represents a certain thing. This usually extends from 
the place where it is declared to the end of the smallest enclosing block 
(begin/end or procedure/function body). An inner block may contain a 
redeclaration of the same identifier, in which case the scope of the outer 
declaration does not include (is shadowed, occluded, blocked off or ob­
structed by) the scope of the inner. (2) We also use the term scope in the 
context of the degree to which a project scope and span extends: Scope 
being the "larger, wider" delineation of what a project "is all about", span 
being the "narrower", more precise extent. 

631. Scope check: Usually a function performed by a compiler concerning the 
definition (declaration) and places of use of identifiers of program texts. 
(Thus the use of scope is that of the first (1) sense of item 630.) 

632. Script: By a domain script we shall understand the structured, almost, 
if not outright, formally expressed, wording of a rule or a regulation (cf. 
rules and regulations) that has legally binding power, that is, which may 
be contested in a court of law. 

633. Secure: To properly define the concept of secure, we first assume the 
concept of an authorised user. Now, a system is said to be secure if an 
un-authorised user, when supposedly making use of that system, (i) is 
not able to find out what the system does, (ii) is not able to find out 
how it does 'whatever' it does do, and (iii), after some such "use", does 
not know whether he/she knows! (The above characterisation represents 
an unattainable proposition. As a characterisation it is acceptable. But it 
does not hint at ways and means of implementing secure systems. Once 
such a system is believed implemented the characterisation can, however 
be used as a guide in devising tests that may reveal to which extent the 
system indeed is secure. Secure systems usually deploy some forms of 
authorisation and encryption mechanisms in guarding access to system 
functions.) 

634. Security: When we say that a system exhibits security we mean that 
it is secure. (Security is a dependability requirement. Usually security is 
considered a machine property. As such security is (to be) expressed in a 
machine requirements document.) 

635. Selector: By a selector (a selector function) we understand a function 
which is applicable to values of a certain, defined, composed type, and 
which yields a proper component of that value. The function itself is de­
fined by the type definition. 

636. Semantics: Semantics is the study and knowledge [incl. specification] of 
meaning in language [165]. (We make the distinction between the prag­
matics, the semantics and the syntax of languages. Leading textbooks on 
semantics of programming languages are [183,252,443,454,497,521].) 
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637. Semantic function: A semantics function is a function which when ap­
plied to syntactic values yields their semantic values. 

638. Semantic type: By a semantic type we mean a type that defines semantic 
values. 

639. Semiotics: Semiotics, as used by us, is the study and knowledge of prag­
matics, semantics and syntax of language(s). 

640. Sensor: A sensor can be thought of as a piece of technology (an electronic, 
a mechanical or an electromechanical device) that senses, i.e., measures, 
a physical value. (A sensor is in contrast to an actuator.) 

641. Sentence: (i) A word, clause, or phrase or a group of clauses or phrases 
forming a syntactic unit which expresses an assertion, a question, a com­
mand, a wish, an exclamation, or the performance of an action, that in 
writing usually begins with a capital letter and concludes with appropriate 
end punctuation, and that in speaking is distinguished by characteristic 
patterns of stress, pitch and pauses; (ii) a mathematical or logical state­
ment (as an equation or a proposition) in words or symbols [373]. 

642. Sequential: Arranged in a sequence, following a linear order, one after 
another. 

643. Sequential process: A process is sequential if all its observable actions 
can be, or are, ordered in sequence. 

644. Server: By a server we mean a process or a behaviour which interacts 
with another process or behaviour (i.e., a client) in order for the server to 
perform some actions on behalf of the client. 

645. Set: We understand a set as a mathematical entity, something that is 
not mathematically defined, but is a concept that is taken for granted. 
(Thus by a set we understand the same as a collection, an aggregation, of 
distinct entities. Membership (of an entity) of a set is also a mathematical 
concept which is likewise taken for granted, i.e., undefined.) 

646. Set theoretic: We say that something is set theoretically understood or 
explained if its understanding or explanation is based on sets. 

647. Shared data: See shared phenomenon. 
648. Shared data initialisation: By shared data initialisation we understand 

an operation that (initially) creates a data structure that reflects, i.e., mod­
els, some shared phenomenon in the machine. (See also shared data refresh­
ment.) 

649. Shared data in i t i a l i sa t ion requ i rements : Requirements for shared data 
initialisation. (See also computational data-{-control requirements, shared 
data refreshment requirements, man-machine dialogue requirements, man-
machine physiological requirements, and machine-machine dialogue require­
ments.) 

650. Shared data refreshment: By shared data refreshment we understand 
a machine operation which, at prescribed intervals, or in response to pre­
scribed events updates an (originally initialised) shared data structure. 
(See also shared data initialisation.) 
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651. Shared data re f reshment requ i rements : Requirements for shared data 
refreshment. (See also computational data-(-control requirements, shared 
data initialisation requirements, man-machine dialogue requirements, man-
machine physiological requirements, and machine-machine dialogue require­
ments.) 

652. Shared information: See shared phenomenon. 
653. Shared phenomenon: A shared phenomenon is a phenomenon which is 

present in some domain (say in the form of facts, knowledge or information) 
and which is also represented in the machine (say in the form of data). 
(See also shared data and shared information.) 

654. Side effect: A language construct that designates the modification of the 
state of a system is said to be a side-effect-producing construct. (Typical 
side effect constructs are assignment, input and output. A programming 
language "without side effects" is said to be a pure functional programming 
language.) 

655. Sign: Same as symbol. 
656. Signature: See function signature. 
657. Simulation: The imitation of the functioning of one system or process 

by means of the functioning of another. (Attempting to predict aspects of 
the behaviour of some system by creating an approximate (mathematical) 
model of it. This can be done by physical modelling, by writing a special-
purpose computer program or using a more general simulation package, 
probably still aimed at a particular kind of simulation [227].) 

658. Soft real time: By soft real time we mean a real time property where the 
exact, i.e., absolute timing, or time interval, is only of loose, approximate 
essence. (Cf., hard real time.) 

659. Software: By software we understand not only the code that when "sub­
mitted" to a computer enables desired computations to take place, but 
also all the documentation that went into its development (i.e., its do­
main description, requirements specification, its complete software design 
(all stages and steps of refinement and transformation), the installation 
manual, training manual, and the user manual). 

660. Software component: Same as component. 
661. Software architecture: By a software architecture we mean a first kind 

of specification of software — after requirements — one which indicates 
how the software is to handle the given requirements in terms of software 
components and their interconnection — though without detailing (i.e., 
designing) these software components. 

662. Software design: By software design we shall understand the determi­
nation of which components, which modules and which algorithms shall 
implement the requirements — together with all the documents that usu­
ally make up properly documented software. (Software design entails pro­
gramming, but programming is a "narrower" field of activity than soft­
ware design in that programming usually excludes many documentation 
aspects.) 
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663. Software design specification: The specification of a software design. 
664. Software development: To us, software development includes all three 

phases of software development: domain development, requirements devel­
opment and software design. 

665. Software development project: A software development project is a 
planning, research and development project whose aim is to construct 
software. 

666. Software engineer: A software engineer is an engineer who performs 
one or more of the functions of software engineering. (These functions 
include domain engineering, requirements engineering and software design 
(incl. programming).) 

667. Software engineering: The confluence of the science, logic, discipline, 
craft and art of domain engineering, requirements engineering and software 
design. 

668. Sort: A sort is a collection, a structure, of, at present, further unspecified 
entities. (That is, same as an algebraic type. When we say "at present, 
further unspecified", we mean that the (values of the) sort may be subject 
to constraining axioms. When we say "a structure", we mean that "this 
set" is not necessarily a set in the simple sense of mathematics, but may 
be a collection whose members satisfy certain interrelations, for example, 
some partially ordered set, some neighbourhood set or other.) 

669. Sort definition: The definition of & sort. (Usually a sort definition consists 
of the (introduction of) a type name, some (typically observer function and 
generator function) signatures, and some axioms relating sort values and 
functions.) 

670. Source program: By a source program we mean a program (text) in some 
programming language. (The term source is used in contrast to target: the 
result of compiling a source text for some target machine.) 

671. Span: Span is here used, in contrast to scope, more specifically in the 
context of the degree to which a project scope and span extend: Scope 
being the "larger, wider" delineation of what a project "is all about", span 
being the "narrower", more precise extent. 

672. Specification: We use the term 'specification" to cover the concepts of 
domain descriptions, requirements prescriptions and software designs. More 
specifically a specification is a definition, usually consisting of many defi­
nitions. 

673. Specification language: By a specification language we understand a 
formal language capable of expressing formal specifications. (We refer to 
such formal specification languages as: ASM [439], B & eventB [3,4,143], 
CASL [49,395,399], CafeOBJ [191,193], RSL [236,237], VDM-SL [120,226] 
andZ [281,476,477,533].) 

674. Stack: A stack is an abstract data type with a stack data structure and, 
typically, the following operations: push (onto the top of the stack), pop 
(remove from the top of the stack). Axioms then determine specific stack 
properties. (See Example 8.5.) 
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675. Stack activation: Generally: The topmost element of a stack. Specifi­
cally, when a stack is used to record the local states of blocks of a block-
structured programming language's blocks or procedure bodies (they are 
also blocks), then each stack element, i.e., each stack activation, records 
such a local state and — what is known as static and dynamic — point­
ers chain such activations together which correspond to the lexicographic 
scope of the program, respectively the calling invocation of the blocks. 
(We refer to Vol. 2, Chap. 16, Sect. 16.6.1 for a thorough treatment of 
stack activations.) 

676. Stage: (i) By a development stage we shall understand a set of develop­
ment activities which either starts from nothing and results in a complete 
phase documentation, or which starts from a complete phase documen­
tation of kind stage, and results in a complete phase documentation of 
another stage kind, (ii) By a development stage we shall understand a 
set of development activities such that some (one or more) activities have 
created new, externally conceivable (i.e., observable) properties of what 
is being described, whereas some (zero, one or more) other activities have 
refined previous properties. (Typical development stages are: domain in-
trinsics, domain support technologies, domain management and organisation, 
domain rules and regulations, etc., and domain requirements, interface re­
quirements, and machine requirements, etc.) 

677. Stakeholder: By a domain (requirements, software design)5 stakeholder 
we shall understand a person, or a group of persons, "united" somehow in 
their common interest in, or dependency on the domain (requirements, 
software design); or an institution, an enterprise, or a group of such, 
(again) characterised (and, again, loosely) by their common interest in, 
or dependency on the domain (requirements, software design). (The three 
stakeholder groups usually overlap.) 

678. Stakeholder perspective: By a stakeholder perspective we shall under­
stand the, or an, understanding of the universe of discourse shared by the 
specifically identified stakeholder group — a view that may differ from 
one stakeholder group to another stakeholder group of the same universe 
of discourse. 

679. State: By a state we shall, in the context of computer programs, under­
stand a summary of past computations, and, in the context of domains, a 
suitably selected set of dynamic entities. 

680. Statechart: The Statechart language is a special graphic notation for 
expressing communication between and coordination and timing of pro­
cesses. (See [265,266,268,269,271].) 

681. Statement: We shall take the rather narrow view that a statement is a 
programming language construct which denotes a state-to-state function. 
(Pure expressions are then programming language constructs which de-

5These three areas of concern form three universes of discourse. 
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note state-to-value functions (i.e., with no side effect), whereas "impure" 
expressions, also called clauses, denote state-to-state-and-value functions.) 

682. Static: An entity is static if it is not subject to actions that change its 
value. (In contrast to dynamic.) 

683. Static semantics: The concept of static semantics is one that applies to 
syntactic entities, typically programs or specifications of programming lan­
guages, respectively specification languages. The static semantics of such 
a language is now a predicate that applies to programs (respectively speci­
fications) and yields true if the program (specification) is syntactically well 
formed according to the static semantics criteria, typically that certain re­
lations are satisfied between dispersed parts of the program (specification) 
texts. 

684. Static typing: Enforcement of type checking at compile time. (A pro­
gramming language (or a specification language) is said to be statically 
typed if its programs (resp. specifications) can be statically type checked.) 

685. Step: By a development step we shall understand a refinement of a do­
main description (or a requirements prescription, or a software design 
specification) module, from a more abstract to a more concrete descrip­
tion. 

686. Stepwise development: By a stepwise development we shall understand 
a development that undergoes phases, stages or steps of development, i.e., 
can be characterised by pairs of two adjoining phase steps, a last phase 
step and a (first) next phase step, or two adjoining stage steps. 

687. Stepwise refinement: By a stepwise refinement we understand a pair of 
adjoining development steps where the transition from one step to the next 
step is characterised by a refinement. (Refinement is thus always stepwise 
refinement.) 

688. Store: Same as store; see next. 
689. Storage: By storage we shall understand a function from locations to 

values. (Thus we emphasise the mathematical character of storage rather 
than any technological character (such as disk storage, etc.).) 

690. Strict function: A strict function is a function which yields chaos (i.e., 
is undefined) if any of the function arguments are undefined (i.e., chaos). 
(In RSL the logical connectives are not strict. All other functions, built-in 
or defined, are strict.) 

691. Strongest post-condition: See weakest pre-condition. 
692. Structure: The term 'structure' is understood rather loosely. Normally 

we shall understand a structure as a mathematical structure, such as an 
algebra, or a predicate logic, or a Lambda-calculus, or some defined abstrac­
tion (a scheme or a class). (Set theory is a (mathematical) structure. So 
are RSL's Cartesian, list and map data types.) 

693. Structural operational semantics: By a structural operational seman­
tics we understand an operational semantics which is expressed in terms 
of a number of transition rules. (See [428].) 
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694. Subentity: A subentity is a proper part of a (thus) non-atomic entity. 
(Do not confuse a subentity of an entity with an attribute of that entity 
(or of that subentity).) 

695. Substitution: By substitution we mean the replacement of a token (viz.: 
an identifier) by a structure, usually a text. (The most common form of 
substitution is that of Beta-reduction (in the Lambda-Calculus). Substitu­
tion is a "simpler" form of rewriting.) 

696. Subroutine: Same as routine. 
697. Subtype: To speak of a subtype we must first be able to speak of a type, 

i.e., colloquially, a (suitably structured) set of values. A subtype of a type 
is then a (suitably structured) and proper subset of the values of the 
type. (Usually we shall, in RSL, think of a predicate, p, that applies to all 
members of the type, T, and singles out a proper subset whose elements 
satisfy the predicate: {a | a : T • p(a)}.) 

698. Support technology: By a support technology we understand a facet 
of a domain, one which reflects its (current) dependency on mechanical, 
electro-mechanical, electronic and other technologies (i.e., tools) in order 
to carry out its business processes. (Other facets of an enterprise are those 
of its intrinsics, business processes, management and organisation, rules and 
regulations and human behaviour.) 

699. Surjection: A surjective function represents surjection. (See also bijection 
and injection.) 

700. Surjective function: A function which maps values of its postulated 
definition set into all of its postulated range set is called surjective. (See 
also bijective function and injective function.) 

701. Symbol: Something that stands for or suggests something else, that is, 
an arbitrary or conventional sign used in writing. 

702. Synchronisation: By synchronisation we understand the act of ensuring 
synchronism between occurrence of designated events in two or more pro­
cesses. (Usually synchronisation between occurrence of designated events 
in two or more processes entails the exchange of information, i.e., data, 
between these processes, i.e., communication.) 

703. Synchronism: A chronological arrangement of events. 
704. Synchronous: Happening, existing, or arising at precisely the same time 

indicating synchronism. 
705. Synopsis: By a synopsis we shall understand a composition of informative 

documentation and rough-sketch description of some project. 
706. Syntax: By syntax we mean (i) the ways in which words are arranged 

to show meaning (cf. semantics) within and between sentences, and (ii) 
rules for forming textuseisyntactically correct sentences. (See also regular 
syntax, context-free syntax, context-sensitive syntax and BNF for specifics.) 

707. Synthesis: The construction of an artefact. 
708. Synthetic: Result of synthesis: not analytic. 
709. System: A regularly interacting or interdependent group of phenomena 

or concepts forming a whole, that is, a group of devices or artificial objects 
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or an organization forming a network especially for producing something 
or serving a common purpose. (This book will have its own characterisa­
tion of the concept of a system (commensurate, however, with the above 
encircling characterisation); cf. Vol. 2, Sect. 9.5's treatment of system.) 

710. Systematic development: Systematic development of software is for­
mal development "lite"! (We usually speak of a spectrum of development 
modes: systematic development, rigorous development, and formal develop­
ment. Systems software development, to us, is at the "informal" extreme 
of the three modes of development: formal specifications are constructed, 
but maybe not for all stages of development; and usually no proof obliga­
tions are expressed, let alone proved. The three volumes of this series of 
textbooks in software engineering can thus be said to expound primarily 
the systematic approach.) 

711. Systems engineering: By systems engineering we shall here understand 
computing systems engineering: The confluence of developing hardware 
and software solutions to requirements. 

T 

712. Table: By a table we understand an information structure which can be 
thought of as an ordered list of rows, each row consisting of an ordered 
list of entries, each consisting of some information. (When thought of as 
a data structure, a table is normally thought of as either a matrix or a 
relation.) 

713. Tangibility: Noun of tangible. 
714. Tangible: Physically manifest. That is, can be humanly sensed: heard, 

seen, smelled, tasted, or touched, or physically measured by a physical ap­
paratus: length (meter, m), mass (kilogram, kg), time (second, s), electric 
current (Ampere, A), thermodynamic temperature (Kelvin, K), amount 
of substance (mole, mol), luminous intensity (candela, cd). 

715. Target program: The concept of target program stems from the fact 
that programs of ordinary programming languages need to be translated 
into some intermediary language or final machine, i.e., computer hardware, 
language, before their designated computations (i.e., interpretations) can 
take place. By a target program we understand such an intermediary 
or final program. (Besides the final target languages made up from the 
repertoire of computer hardware instructions and computer (bit, byte, 
half-word, word, double-word and variable field) data formats, special in­
termediary languages have been devised: P-code [198] (into which Pascal 
programs can be translated) [11,138,292,314,522-524], A-code [197] (into 
which Ada programs can be translated) [128,516], etc.) 

716. Taxonomy: See Sect. B.1.5. 
717. Technique: A procedure, an approach, to accomplish something. 
718. Technology: We shall in these volumes be using the term technology to 

stand for the results of applying scientific and engineering insight. This, 
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we think, is more in line with current usage of the term IT, information 
technology. 

719. Temporal: Of or relating to time, including sequence of time, or to time 
intervals (i.e., durations). 

720. Temporal logic: A(ny) logic over temporal phenomena. (We refer to 
Vol. 2, Chap. 15 for our survey treatment of some temporal logics.) 

721. Term: From [350]: A word or phrase used in a definite or precise sense in 
some particular subject, as a science or art; a technical expression. More 
widely: any word or group of words expressing a notion or conception, 
or denoting an object of thought. (Thus, in RSL, a term is a clause, an 
expression, a statement, which has a value (statements have the Unit 
value).) 

722. Terminal: By a terminal we shall mean a terminal symbol which (in 
contrast to a nonterminal symbol) designates something specific. 

723. Termination: The concept of termination is associated with that of an 
algorithm. We say that an algorithm, when subject to interpretation (col­
loquially: 'execution'), may, or may not terminate. That is, may halt, or 
may "go on forever, forever looping". (Whether an algorithm terminates 
is undecidable.) 

724. Terminology: By terminology is meant ( [350]): The doctrine or scientific 
study of terms; the system of terms belonging to a science or subject; 
technical terms collectively; nomenclature. 

725. Term rewriting: Same as rewriting. 
726. Test: A test is a means to conduct testing. (Typically such a test is a 

set of data values provided to a program (or a specification) as values 
for its free variables. Testing then evaluates the program (resp., interprets 
(symbolically) the specification) to obtain a result (value) which is then 
compared with what is (believed to be) the, or a, correct result. See Vol. 3, 
Sects. 14.3.2, 22.3.2 and 29.5.3 for treatments of the concept of test.) 

727. Testing: Testing is a systematic effort to refute a claim of correctness of 
one (e.g., a concrete) specification (for example a program) with respect 
to another (the abstract) specification. (See Vol. 3, Sects. 14.3.2, 22.3.2, 
and 29.5.3 for treatments of the concept of testing.) 

728. Theorem: A theorem is a sentence that is provable without assumptions, 
that is "purely" from axioms and inference rules. 

729. Theorem prover: A mechanical, i.e., a computerised means for theorem 
proving. (Well-known theorem provers are: PVS [410,411] and HOL/Isa-
b e l l e [406].) 

730. Theorem proving: The act of proving theorems. 
731. Theory: A formal theory is a formal language, a set of axioms and infer­

ence rules for sentences in this language, and is a set of theorems proved 
about sentences of this language using the axioms and inference rules. A 
mathematical theory leaves out the strict formality (i.e., the proof system) 
requirements and relies on mathematical proofs that have stood the social 
test of having been scrutinised by mathematicians. 
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732. Thesaurus: See Sect. B.1.7. 
733. Three-valued logic: Standard logics are two value: true and false. 

A three-valued logic is a logic for which the Boolean connectives ac­
cept a third value, usually referred to as the undefined, or chaotic (non-
termination of operand expression evaluation). (There can be, and are, 
many three-valued logics. RSL has one set of definitions of the outcome 
of Boolean ground term evaluation with chaos operands. LPF is a logic 
for partial functions sugggested as a logic for VDM [32,150]. John Mc­
Carthy [367] first broached the topic of three-valued logics in computing.) 

734. Time: Time is often a notion that is taken for granted. But one may do 
well, or better, in trying to understand time as some point set that satisfies 
certain axioms. Time and space are also often related (via [other] physi­
cally manifest "things"). Again their interrelationship needs to be made 
precise. (In comparative concurrency semantics one usually distinguishes 
between linear time and branching time semantic equivalences [504]. We 
refer to our treatment of time and space in Vol. 2 Chap. 5, to Johan 
van Benthem's book The Logic of Time [503], and to Wayne D. Blizard's 
paper A Formal Theory of Objects, Space and Time [134].) 

735. Token: Something given or shown as an identity. (When, in RSL, we define 
a sort with no "constraining" axioms, we basically mean to define a set of 
tokens; cf. Sect. 10.5.) 

736. Tool: An instrument or apparatus used in performing an operation. (The 
tools most relevant to us, in software engineering, are the specification and 
programming languages as well as the software packages that aid us in the 
development of (other) software.) 

737. Topology: (i) A branch of mathematics concerned with those properties 
of geometric configurations (as point sets) which are unaltered by elastic 
deformations (as a stretching or a twisting) that are homeomorphisms; (ii) 
the set of all open subsets of a topological space (i.e., being or involving 
properties unaltered under a homeomorphism [continuity and connected­
ness are topological properties]) [373]. 

738. Total algebra: A total algebra is an algebra all of whose functions are 
total over the carrier. 

739. Trace: The concept of trace is linked to the concept of a behaviour. Trace 
is then defined as a sequence of actions and events. () 

740. Training manual: A document which can serve as a basis for a (possibly 
self-study) course in how to use a computing system. (See also installation 
manual and user manual.) 

741. Transaction: General: A communicative action or activity involving two 
agents that reciprocally influence each other. (Special: The term transac­
tion has come to be used, in computing, notably in connection with the 
use of database management systems (DBMS, or similar multiuser sys­
tems): A transaction is then a unit of interaction with a DBMS (etc.). To 
further qualify as being a transaction, it must be handled, by the DBMS 
(etc.), in a coherent and reliable way independent of other transactions.) 
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742. Transduce: To convert (a physical signal, or a message) into another 
form. 

743. Transducer: A device that is actuated by power from one system and 
supplies power usually in another form to a second system. (Finite state 
machines and pushdown stack machines are considered transducers.) 

744. Transformation: The operation of changing one configuration or ex­
pression into another in accordance with a precise rule. (We consider the 
results of substitution, of translation and of rewriting to be transformations 
of what the substitution, the translation and the rewriting was applied to.) 

745. Transition: Passage from one state, stage, subject or place to another; 
a movement, development, or evolution from one form, stage or style to 
another [373]. 

746. Transition rule: A rule, of such a form that it can specify how any of a 
well-defined class of states of a machine may make transitions to another 
state, possibly nondeterministically to any one of a well-defined number of 
other states. (The seminal 1981 report A Structural Approach to Oper­
ational Semantics, by Gordon D. Plotkin [427], set a de facto standard 
for formulating transition rules (exploring their theoretical properties and 
uses).) 

747. Translate: See translation. 
748. Translation: An act, process or instance of translating, i.e., of rendering 

from one language into another. 
749. Translator: Same as a compiler. 
750. Tree: An acyclic un-directed graph. Thus a tree (i) has a root, which is a 

node, and (ii) zero, one or more, possibly (branch or edge) labelled sub­
trees. Trees or subtrees with no further subtrees have their roots being 
equated with leaves. Nodes may be labelled. (This characterisation al­
lows for trees with no labels, with only labelled nodes, with only labelled 
branches, with labelled nodes and branches, or with only some nodes and 
some branches being labelled. The characterisation usually is interpreted 
as only allowing finite trees, but one could dispense of the "finite appli­
cability" of the above (i-ii) clauses, to allow infinite trees. The branch 
concept, akin to the edge concept, amounts, however, to a directed edge, 
i.e., an arrow. We refer specifically to parse trees. See also a "redefinition" 
of trees as found just below, under tree traversal, including Fig. B.4.) 

751. Tree traversal: A way of visiting (all) the nodes of a tree. Redefine the 
notion of a tree as just given above: Now a tree is a root node and an 
ordered set (i.e., like a list) of zero, one or more subtrees; each subtree 
is a tree. Roots are labelled. Hence subtrees are labelled. A tree with an 
empty set of subtrees is called a leaf. Their roots are the leaves. A tree 
traversal is now a way of visiting, in some order, as indicated by the order 
of subtrees, (all) the nodes: the root, the branch nodes and leaves, of a 
tree. (See the tree of Fig. B.4 on the next page. It will be referred to in 
entries in-order, post-order and pre-order.) 
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Fig. B.4. A labelled, ordered tree 

752. Triptych: An ancient Roman writing tablet with three waxed leaves 
hinged together; a picture (as an altarpiece) or carving in three panels side 
by side [373]. (The trilogy of the phases of software development, domain 
engineering, requirements engineering and software design as promulgated 
by this trilogy of volumes!) 

753. Tuple: A grouping of values. (Like 2-tuplets, quintuplets, etc. Used ex­
tensively, at least in the early days, in the field of relational databases — 
where a tuple was like a row in a relation (i.e., table).) 

754. Turing machine: A hypothetical machine defined in 1935-1936 by Alan 
Turing and used for computability theory proofs. It can be understood as 
consisting of a finite state machine and an infinitely long "tape" with sym­
bols (chosen from some finite set) written at regular intervals. A pointer 
marks the current position and the machine is in one of states. At each 
step the machine reads the symbol at the current position on the tape. 
For each combination of current state and symbol read, the finite state 
machine specifies the new state and either a symbol to write to the tape 
or a direction to move the pointer (left or right) or to halt [227]. (Turing 
machines are equivalent, in computational power, to the Lambda-calculus.) 

755. Type: Generally a certain kind of set of values. (See algebraic type, model-
oriented type, programming language type and sort.) 

756. Type check: The concept of type check arises from the concepts of func­
tion signatures and function arguments. If arguments are not of the ap­
propriate type then a type check yields an error result. (By appropriate 
static typing of declarations of variables of a programming language or a 
specification language one can perform static type checking (i.e., at compile 
time).) 

757. Type constructor: A type constructor is an operation that applies to 
types and yields a type. (The type constructors of RSL include the power 
set constructors: -set and -infset, the Cartesian constructor: x, the list 
constructors: * and w, the map constructor: -^ , the total and partial 
function space constructors: —> and ^>, the union type constructor: |, and 
others.) 
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758. Type definition: A type definition semantically associates a type name 
with a type. Syntactically, as, for example, in RSL, a type definition is 
either a sort definition or is a definition whose right-hand side is a type 
expression. 

759. Type expression: A type expression semantically denotes a type. Syntac­
tically, as, for example, in RSL, a type expression is an expression involving 
type names and type constructors, and, rarely, terminals. 

760. Type name: A type name is usually just a simple identifier. 
761. Typing: By typing we mean the association of types with variables. (Usu­

ally such an association is afforded by pairing a variable identifier with a 
type name in the variable declaration. See also dynamic typing and static 
typing.) 

U 

762. UML: Universal Modelling Language. A hodgepodge of notations for ex­
pressing requirements and designs of computing systems. (Vol. 2, Chaps. 10, 
and 12-14 outlines our attempt to "UML"-ize formal techniques.) 

763. Universal algebra: A universal algebra is an abstract algebra where we 
leave the postulates (axioms, laws) unspecified. (The universal level of 
abstract, the viewpoint of universal algebras, represents for us [349], the 
high water mark of abstraction in the treatment of algebraic systems.) 

764. Underspecify: By an underspecified expression, typically an identifier, 
we mean one which for repeated occurrences in a specification text always 
yields the same value, but what the specific value is, is not knowable. (Cf. 
nondeterministic or loose specification.) 

765. Undecidable: A formal logic system is undecidable if there is no algo­
rithm which prescribes computations that can determine whether any given 
sentence in the system is a theorem. 

766. Universe of discourse: That which is being talked about; that which 
is being discussed; that which is the subject of our concern. (The four 
most prevalent universes of discourse of this book, this series of volumes 
on software engineering, are: software development methodology, domains, 
requirements and software design.) 

767. Update: By an update we shall understand a change of value of a variable, 
including also the parts, or all, of a database. 

768. Update problem: By the update problem we shall understand that data 
stored in a database usually reflect some state of a domain, but that 
changes in the external state of that domain are not always properly, 
including timely, reflected in the database. 

769. User: By a user we shall understand a person who uses a computing 
system, or a machine (i.e., another computing system) which interfaces 
with the former. (Not to be confused with client or stakeholder.) 

770. User-friendly: A "lofty" term that is often used in the following context: 
"A computing system, a machine, a software package, is required to be 
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user-friendly" — without the requestor further prescribing the meaning of 
that term. Our definition of the term user-friendly is as follows: A machine 
(software + hardware) is said to be user-friendly (i-ii) if the shared phe­
nomena of the application domain (and machine) are each implemented in 
a transparent, one-to-one manner, and such that no IT jargon, but com­
mon application domain terminology is used in their (i.l) accessing, (i.2) 
invocation (by a human user), and (i.3) display (by the machine); i.e., (ii) 
if the interface requirements have all been carefully expressed (commen­
surate, in further detailed ways: ..., with the user psyche) and correctly 
implemented; and (hi) if the machine otherwise satisfies a number of per­
formance and dependability requirements that are commensurate, in further 
detailed ways: ..., with the user psyche. 

771. User manual: A document which a regular user of a computing system 
refers to when in doubt concerning the use of some features of that system. 
(See also installation manual and training manual.) 

V 

772. Valid: A predicate is said to be valid if it is true for all interpretations. (In 
this context think of an interpretation as a binding of all free variables of 
the predicate expression to values; cf. satisfiable.) 

773. Validation: (Let, in the following universe of discourse stand consistently 
for either domain, requirements or software design.) By universe of dis­
course validation we understand the assurance, with universe of discourse 
stakeholders, that the specifications produced as a result of universe of dis­
course acquisition, universe of discourse analysis and concept formation, 
and universe of discourse domain modelling are commensurate with how 
the stakeholder views the universe of discourse. (Domain and requirements 
validation is treated in Vol. 3, Chaps. 14 and 22.) 

774. Valuation: Same as evaluation. 
775. Value: From (assumed) Vulgar Latin valuta, from feminine of valutus, 

past participle of Latin valere to be worth, be strong [373]. (Commensu­
rate with that definition, value, to us, in the context of programming (i.e., 
of software engineering), is whatever mathematically founded abstraction 
can be captured by our type and axiom systems. (Hence numbers, truth 
values, tokens, sets, Cartesians, lists, maps, functions, etc., of, or over, 
these.)) 

776. Variable: (i) From Latin variabilis, from variare to vary; (ii) able or apt 
to vary; (iii) subject to variation or changes [373]. (Commensurate with 
that definition, a variable, to us, in the context of programming (i.e., 
of software engineering), is a placeholder, for example, a storage location 
whose contents may change. A variable, further, to us, has a name, the 
variable's identifier, by which it can be referred.) 

777. VDM: VDM stands for the Vienna Development Method [120,121]. (VDM-SL 
(SL for Specification Language) was the first formal specification language 



B.3 The Glosses 647 

to have an international standard: VDM-SL, ISO/IEC 13817-1: 1996. 
The author of this book coined the name VDM in 1974 while working with 
Hans Bekic, Cliff B. Jones, Wolfgang Henhapl and Peter Lucas, on what 
became the VDM description of PL/1. The IBM Vienna Laboratory, in 
Austria, had, in the 1960s, researched and developed semantics descrip­
tions [38-40,354] of PL/I, a programming language of that time. "JAN" 
(John A.N.) Lee [342] is believed to have coined the name VDL [343,353] 
for the notation (the Vienna Definition Language) used in those semantics 
definitions. So the letter M follows, lexicographically, the letter L, hence 
VDM.) 

778. VDM-SL: VDM-SL stands for the VDM Specification Language. (See entry 
VDM above. Between 1974 and the late 1980s VDM-SL was referred to by 
the acronym Met a-IV: the fourth metalanguage (for language definition) 
conceived at the IBM Vienna Laboratory during the 1960s and 1970s.) 

779. Verb: A word that characteristically is the grammatical centre of a sen­
tence and expresses an act, occurrence or mode of being that in various 
languages is inflected for agreement with the subject, for tense, for voice, 
for mood, or for aspect, and that typically has rather full descriptive mean­
ing and characterizing quality but is sometimes nearly devoid of these es­
pecially when used as an auxiliary or linking verb [373]. (We shall often 
find, in modelling, that we model verbs as functions (incl. predicates).) 

780. Verification: By verification we mean the process of determining whether 
or not a specification (a description, a prescription) fulfills a stated prop­
erty. (That stated property could (i) either be a property of the specifi­
cation itself, or (ii) that the specification relates, somehow, i.e., is correct 
with respect to some other specification.) 

781. Verify: Same, for all practical purposes, as verification. 
782. Vertex: Same as an edge. 

W 

783. Waterfall diagram: By a waterfall diagram is understood a two-dimen­
sional diagram with a number of boxes placed, say, on a diagonal, from a 
top left corner of the diagram to a lower right corner, such that the indi­
vidual boxes are sufficiently spaced apart, i.e., do not overlap, and such 
that arrows (i.e., "the water") infix adjacent boxes along a perceived di­
agonal line. (The idea is then that a preceding box, from which an arrow 
emanates, designates a software development activity that must, some­
how, be concluded before activity can start on the software development 
activity designated by the box upon which the infix arrow is incident.) 

784. Weakest pre-condition: The condition that characterizes the set of all 
initial states, such that activation will certainly result in a properly ter­
minating happening leaving the system in a final state satisfying a given 
post-condition, is called "the weakest pre-condition corresponding to that 
post-condition". (We call it "weakest", because the weaker a condition, 
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the more states satisfy it and we aim here at characterising all possible 
starting states that are certain to lead to a desired final state.) 

785. Well-formedness: By well-formedness we mean a concept related to 
the way in which Information or data structure definitions may be given. 
Usually these are given in terms of type definitions. And sometimes it 
is not possible, due to the context-free nature of type definitions. (Well-
formedness is here seen separate from the invariant over an information or 
a data structure. We refer to the explication of invariantl) 

786. Wildcard: A special symbol that stands for one or more characters. 
(Many operating systems and applications support wildcards for iden­
tifying files and directories. This enables you to select multiple files with 
a single specification. Typical wildcard designators are * (asterisk) and _ 
(underscore).) 

787. Word: A speech sound or series of speech sounds or a character or series 
of juxtaposed characters that symbolizes and communicates a meaning 
without being divisible into smaller units capable of independent use [373]. 

Z 

788. Z: Z stands for Zermelo (Frankel), a set theoretician. (Z also stands for a 
model-oriented specification language [281,476,478,533].) 



c 
Indexes 

• The prerequisite for studying this chapter is that you need to look up 
where a term has been defined or is used. 

• The aim is to illustrate the breadth and depth, the variety and multitude 
of terms used in these volumes. 

• The objective is to satisfy your needs. 
• The treatment is systematic. 

Appendix B contains an extensive glossary. 

• Symbols Index 650 
Some abbreviations are found here. 

• Concepts Index 656 

Some abbreviations are also found here. 
• Characterisations and Definitions Index 680 

Characterised and defined terms here are usually spelled with cap­
ital letters. 

• Author Index 682 

Authors whose works have influenced the contents of this volume 
are listed here. Citations are usually to books by these authors. 
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C.l Symbols Index 

Symbol, Greek: Mark, token, ticket, watchword, outward sign, covenant. 

Symbol, Meaning: Something that stands for, represents, or denotes 
something else; a material object representing, or taken to represent, 

something immaterial or abstract (1590); 
a written character or mark used to represent something; a letter, figure, 

or sign conventionally standing for some object, process, etc. (1620) 

The SHORTER OXFORD ENGLISH DICTIONARY 
On Historical Principles [350] 

An attempt has been made to structure the symbols index. You may have to 
look in more than one place to find a cross-reference to the first appearances 
of the symbol, literal or abbreviation that you are looking for. 

• Operators 650 
* Literal Operators 650 
* Relational Operators 650 
* Arithmetic Operators 651 
* Boolean Connectives 651 
* Set Operators &c. 651 
* Cartesian Composition 651 
* List Operators &c. 652 
* Map Operators &c. 652 
* Process Combinators 652 
* Comprehension 652 

• Constructors 652 
* Atomic Types 652 

C. l . l Operators 

Literal Operators 

abs absolute number (positive), 207 
card set cardinality, 55, 56, 192, 264, 

269 
dom map definition set (domain), 

349, 352, 353 
elems list elements, 68, 70, 193, 322, 

324, 325 
hd list head, 68, 193, 322, 324, 325 
inds list indices, 68, 70, 193, 322, 324, 

325 
int make integer from real, 50, 207 

* Composite Types 652 
* Function Constructs 653 
* Deconstructors 653 

• Constant Value Literals 653 
• Combinators 653 

* Statement Combinators 653 
* Clause Combinators 653 
* Specification Combinators 654 

• Calculi 654 
* The A Calculus 654 
* The Predicate Calculi 654 

• Abbreviations 654 

len list length, 68, 69, 193, 322, 324, 
325 

real make real from integer, 50, 207 
rng map range, 349, 352, 353 
tl list tail, 68, 193, 322, 324, 325 
Y fix point operator, 119-121 

a alpha renaming, 113, 115 
aP process alphabet, 536 
/? beta reduction, 113, 115 
BA function space, 93 

Relational Operators 

< less than, numbers, 207 
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< less than or equal, numbers, 207 
= equality, 485 

Boolean connective, 143 
Cartesians, 300 
enumerated tokens, 208, 209 
general tokens, 214 
lists, 322, 324, 325 
maps, 352, 349, 353 
numbers, 207 
sets, 55, 56, 192, 264, 268, 269 

= equivalence, 484 
enumerated tokens, 208, 209 
general tokens, 214 
numbers, 207 

={} is_ empty, set operator, 192 
7 ,̂ in-equality, non-equivalence 

Boolean connective, 143 
Cartesians, 300 
enumerated tokens, 208, 209 
general tokens, 214 
lists, 322, 324, 325 
maps, 349, 352, 353 
numbers, 207 
sets, 55, 56, 264, 268, 269 

> greater than or equal to 
numbers, 207 

> greater than 
numbers, 207 

C proper subset, 55, 56, 192, 264, 268 
C subset, 55, 56, 192, 264, 268 

Arithmetic Operators 

* multiplication, numbers, 207 
+ addition, numbers, 207 
- subtraction, numbers, 207 
/ division, numbers, 207 

Boolean Connectives 

~ Boolean connective (not, negation), 
57, 143, 157 

V Boolean connective (disjunction, in­
clusive or logical or), 57,143, 
157 

A Boolean connective (conjunction, 
logical and), 57, 143, 157 

=> Boolean connective (implication), 
143, 158 

= Boolean connective (equality), 143, 
485 

= Boolean connective (identical), 143 

Set Operators &c. 

card set cardinality, 55, 56, 192, 264, 
269 

G set membership, 55, 56, 264, 268, 
269 

^ not member of, 57 
H set intersection, 55, 56, 192, 264, 

268 
U set union, 55, 56,192, 264, 268 (map 

union, 349, 352, 353) 
/ set difference, 55, 56, 264, 268 
\ set complement (restriction by), 55, 

56, 192, 264, 268 (also see 
map) 

C proper subset, 55, 56, 192, 264, 268 
C subset, 55, 56, 192, 264, 268 

{} empty set, 56, (overloaded function 
symbol) 191 

{ open set brace, 56, 266 
} close set brace, 56, 266 
{•} singleton set function, 192 
{o, o , . . . , o} set enumeration, 58, 265, 

266 
{o | o : o • o} set comprehension, 57, 

58, 270 
| in: set comprehension, 58, 270 
.. set range, 267 

Cartesian Composition 

(o, o , . . . , o) Cartesian composition, 
63, 64, 295, 297, 298 
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List Operators &c. 

elems list elements, 68, 70, 193, 322, 
324, 325 

hd list head, 68, 193, 322, 324, 325 
inds list indices, 68, 70, 193, 322, 324, 

325 
len list length, 68, 69, 193, 322, 324, 

325 
tl list tail, 68, 193, 322, 324, 325 

" list concatenation, 67,193, 322, 324, 
325 

£(i) list element selection, 68, 70, 193, 
322, 324 

{) empty list (overloaded function 
symbol, singleton list func­
tion), 193 

(o, ... , o) list enumeration, 323, 324 
(o|o in o«o) list comprehension, 327 

Map Operators &c. 

dom map definition set (domain), 
349, 352, 353 

rng map range, 349, 352, 353 

U map union, 349, 352, 353 (set union, 
55, 56, 192, 264, 268) 

f map override, 349, 352, 353 
° map composition, 349, 352, 353 
•(•) map application, 349, 353 
\ map restriction by, 349, 352, 353 

(also see set) 
o(o) map application, 352 
/ map restriction to, 349, 352, 353 

(also see set) 

] map value constructor, 351 
[ map value constructor, 351 
i-)- map value constructor, 351 

[oi-)-o, ..., oi-^o] map enumeration, 
352 

[ o i->> o I o • o ] map comprehension, 
354 

[oi-)-o] map value constructor, 351 

Process Combinators 

; process sequencing, 468, 471, 533 
—> process combinator (sequencing), 

533 
! output to channel, 517, 535, 538 
? input from channel, 517, 535, 538 
\] nondeterministic external choice, 

527, 533 
\\ nondeterministic internal choice, 

527, 534 
|| parallel combinator (composition), 

517, 535 

Comprehension 

| part of comprehension expression 
list: ( o | o in o • o ), 327 
map: [ 0 4 0 | o « o ], 354 
set: {o I o : o • o}, 270 

C.1.2 Constructors 

Atomic Types 

Bool Boolean type, 81, 143 
Char Chracter type, 81, 212 
Int integer type, 48, 81, 206 
Nat natural number type, 46, 206, 

207 
Real real number type, 49, 206, 207 
Text text type, 212 

Composite Types 

-infset infinite power set type con­
structor, 105, 265 

-set finite power set type constructor, 
105, 265 

x Cartesian type constructor, 64, 82, 
296 

* finite list type constructor, 322 
w infinite and finite list type construc­

tor, 322 
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Statement Combinators 

rff map type constructor, 351 t t denoted truth value (true), 16,150 
-»total function type constructor, 91, Unit value of (), 64, 100, 132, 480, 

93, 94, 98, 99, 222 482 
^> partial function type constructor, 

91 94 98 99 222 -̂  denoted undefined value (chaos), 
mk_o type constructor, 282 m

 1 5 0 ' 1 6 0 

:: record (variant) type constructor, 0 Unit value, 132 
4 2 1 - wildcard, 302, 4420 

= = variant type constructor (disjoint, 11 e m P t y maP> 3 5 1 

variant types), 208, 416 
| type union constructor, 208, 282, C.1.4 Combinators 

366, 416 
set comprehension, 270 

|} subtype right delimiter, 91, 188, s = imperative variable assignment, 
2 1 3 468, 470 

{| subtype left delimiter, 91, 188, 213 . statement sequencing, 468, 471 

Function Constructs Clause Combinators 

° function composition, 395 c a s e ... of ... end McCarthy condi-
£{a) body of function definition, 90 t i o n a l> 47> 91> 306> 312> 434> 
f(a) as result pre ... post . . . pre/post ^39, 468, 472 

function definition, 225 d o 

as pre/post specified function, 225 i n : d o — u n t i l - e n d > 468> 4 7 2 

f(a) = £{a) explicit function defini- i n : f o r - i n - d o — e n d > 4 6 8 

tion, 90, 432, 433 i n : w h i l e - d o - e n d > 4 6 8 

= function definition symbol, 90 e l s e i n : i f — t h e n •• e l s e — e n d > 91> 
in: f{a) = £{a) explicit function ^ 4 ' ' 4 3 9 ' 4 ^ 8 

definition, 91, 222 elsif in: if ... then ... elseif ... end, 
440 

end 
Deconstructors i n : c l a s s _ e n d 4 7 1 3 5 3 1 2 

in: if... then .. else ... end, 91, 
let (o,o o) = o in o end 147,439,468,471 

in: Cartesian decomposition, j n . c a g e _ o f _ e n d g i 4 3 9 

63,295 4 6 8 

in: for ... in ... do ... end, 468 
C.l .3 Constant Value Literals in: if... then .. else ... end, 91, 

147, 468 
chaos undefined value, 68, 101, 142, in: let ... = ... in ... end, 118, 

147, 168, 183 431 
false Boolean value, 143 in: while ... do ... end, 468 
ff denoted truth value (false), 150, in: do ... until ... end, 468 

160 for ... in ... do ... end iteration, 468, 
true Boolean value, 143 472 
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if ... t h e n .. e lse ... end , 91 , 147, 
439, 468, 471 

in 
in: for ... in ... d o ... end , 468 
in: let ... = ... in ... end , 118 
in: let ... in ... end , 431 

let ... • ... in ... end , 436 
let ... in ... end , 118, 431, 432, 435, 

436 
of in: case ... o f ... end , 47, 91 , 312, 

439, 468 
p o s t function post-condition, 225 
pre function pre-condition, 222, 225 
skip do nothing, 439, 468, 471 
t h e n in: if ... t h e n ... e lse ... end , 

91, 147, 439, 468 
unti l in: do ... unt i l ... end , 468 
whi le . . . do ... e n d conditional loop, 

468, 472 

Speci f icat ion C o m b i n a t o r s 

a x i o m definition, 135, 223, 225, 226 
channel channel declaration, 517 
class definition: c lass . . . end , 133, 

135,136 
hide schema operator, 136 
t y p e definition, 80, 135 
value definition, 91, 135 
variable imperative variable declara­

tion, 468 

C.1.5 Calcul i 

A T h e A Calcu lus , 1 0 9 - 1 2 5 

A-calculus, pure, 110-112 
abstraction, 112 
combination, 110 
conversion, 115 
expression, 110 
function, 112 
irreducible expression, 116 
notation, 117 
termination, 115 
variable, 110, 112 

T h e P r e d i c a t e Calcul i 

• quantification over states, 484 
V universal quantifier, 57, 173, 183, 

435 
3! unique existential quantifier, 173,, 

184 435 
3 existential quantifier, 57, 173, 184, 

435 
forall distributed V axiom quantifica­

tion, 191 

C.1.6 A b b r e v i a t i o n s 

Roman lettered abbreviations desig­
nate concepts, teletype lettered ab­
breviations designate languages. 

BNF Backus-Naur Form, 46, 111 

C++, 27, 616 
C#, 616 
C, 27 
CLPR Constraint Logic Programming, 

27 
Cobo l , 27 
CSP Communicating Sequential Pro­

cesses, 532-536 

DC Duration Calculus, XI, 29, 547, 588 

E i f f e l , 2 7 

F O F First-Order Functional, 394 
FOL First-Order Logic, 172 
F o r t r a n Formula Translator, 27 

HOF Higher-Order Functional, 394 

Java , XVII, 27, 616 

KWIC Keyword in Context, 335 

LSC Live Sequence Chart , XI, 29, 512, 
514, 546, 610 
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Modula 2, Modula 3, 27 
MSC Message Sequence Chart, XI, 29, 

512 

Oberon, 27 

Pascal, 27 
Prolog Programming Logic, 26 

RAISE Rigorous Approach to Indus­
trial Software Engineering, 
29 

RSL RAISE Specification Language, 29 

TLA Temporal Logic of Actions, 29 

Z, 648 
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C.2 Concepts Index 

Conceive: To grasp with the mind. 

Conception: The act of conceiving, apprehension, imagination. 

Concept: The product of the faculty of conception, 
an idea of a class of objects, a general notion. 

The SHORTER OXFORD ENGLISH DICTIONARY 
On Historical Principles [350] 

The terms: a concept, an idea, a notion, an apprehension and an imagination 
are treated as similar terms. The concept index also lists common abbrevia­
tions. 

abstract 
algebra, 130 
data structure design, 423 
data type, 129 
data type-oriented specification 

language, 138 
interpretation, 30 
interpreter, 30 
syntax, 194-196 
syntax, analytic, 194 
syntax, synthetic, 195 
type, 80, 81, 255, 415 

definition, 82 
abstraction, 234-235 

algebra, 133 
behaviour, 512-514 
Cartesian, 295-316 
essay on, 233-235 
function, 369, 378, 402 
list, 321-343 
map, 349-388 
model-oriented, 241-260 
operation, 241, 243, 513 
operational, 513 
process, 512-514 
property-oriented, 235-250 
representation, 241, 242 
sequence, 321-343 
set, 263-289 
tuple, 321-343 

absurdity, 169 

accreditation of software 
curriculum, 6 
house, 6 

acquisition 
of domain knowledge, 9 
of requirements, 9 
of software, 9 

action, 519, 531 
Ada, 27 
addition, inference rule, 171 
address, 369 
algebra, 98, 128 

abstract, 130 
abstraction, 133 
Boolean, 143 
concrete, 130, 583 
function, 98 

name, 99 
heterogeneous, 131 
invariance, 133 
model, 133 
morphism, 132 
name, 98 
of functions, 128 
of graphs, 129 
of queues, 129 
of stacks, 129 
of table, 129 
postulated, 130 
propositional, 165 
universal, 132, 645 
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algebraic 
number, 50 
system, 128 

Algol 
60, 27 
68, 27 

allocation 
dynamic storage, 370 
of resources, 5 
of storage, 382 

alphabet, 166 
analytic 

abstract syntax, 194 
document, 14, 22 
function, 256-257 

and, logical conjunction, 157 
antecedent 

P in P D Q, 150 
implication, 158 

application 
A:e / (e 0 ) , 109 
A, 110 
domain, 39 
domain understanding, 6 
function, 98, 110 

applicative, 495 
programming, 429-455 

apply a function to an argument, 87 
architecture 

computing systems, 12 
of software, 12 

argument, 92 
list, 92 
to, or of a function, 87 
value, 128 

arity 
Cartesian, 65 
function, 101 
of function, 128 
of function, met a operator, 128 

art, 3 
assertion, 169 
assessment of quality, 5 
assign to a variable, 468 
assignment, 396 

expression, 396 
statement, 396 
to variable, 470 

associativity 
of + and *, 48 
of function space type construc­

tors, 99 
assumptions, 153 
assumptions and dependencies 

informative document, 14, 15 
atomic 

attribute, 72 
formula, 179 

basis clause, 179 
extremal clause, 179 
inductive clause, 179 
predicate expressions, 179 

term structure, 111, 161 
type, 72, 205 
value, 205 

attribute 
atomic, 72 
of an entity, 72 

automorphism of algebras, 133 
auxiliary 

function, 136, 238, 239, 276, 277, 
303, 333, 358 

operation, 136 
axiom, 131, 145, 187, 255 

Cartesians, 65 
definition, 135 
excluded middle, 145 
excluded miracle, 145 
induction, 209 
of extension, 58 
quantifier (forall), 191 
quantifier binder (V), 135 
system, 145 

defined using RSL, 146 
for RSL's Proof System, 146 

axiomatised 
algebraic system, 131 
sorts, 188 

base of number system, 46 
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basis clause, 111, 161, 178 
A-expression ground terms, 110 
atomic formula, 179 
Boolean ground terms, 161 
predicate expressions, 179 
propositional expressions, 166 
well-formed formulas, 179 

behaviour, 519, 531 
abstraction, 512-514 
chaotic, 147 

bijective, 133 
function, 94 

binary 
digit, 46 
function, 135 

binding, 81, 173, 272, 312, 328, 355, 
396, 442 

axiom quantifier (V), 135 
Cartesian, 299, 307, 308 
list, 327 
map, 355 
multiple quantifier, 177 
of identifiers, 430-435 
pattern, 430 

Cartesian, 299 
list, 327 
map, 355 
set, 271 

variable, 113, 176 
block, 396 

binding, 396 
process, 530 
scope, 396 

BNF 
Backus-Naur Form, 46, 111 
grammar, 46, 178, 179 

body 
of a function definition £(a), 90 
of a function expression, 95, 110 
of expression, 432 
of function definition, 92 
quantified expression, 176, 177 

Bool Boolean type, 143 
Boolean 

algebra, 143 

calculus, 142 
connective, 143 
ground term 

algebra, 142 
evaluation, 163 

literals, 143 
value expression, 144 

ground terms, 144 
predicate, 144 
propositional, 144 
quantified, 144 

bound, 113 
identifier, 432 
variable, 113, 430 

quantified expression, 177 
branch, of tree, 362 
brief, design document, 14-16 
built-in name, literal, 81 
business process reengineering 

manual, 11 

C++, 27, 616 
C#, 616 
C, 27 
calculate, 165 
calculus, 31 

A, 109 
Boolean, 142 
predicate, 143 
predicates, 172 
propositional, 143, 165, 170 

call 
by name, 101, 117 
by value, 101, 117 
of function, 98 

cardinality 
of function space, 93 
of type, 93 
set operator card, 192 

carrier of algebraic system, 128 
Cartesian, 63 

abstraction, 295-316 
arity, 65 
binding, 299, 307, 308 

pattern, 299 
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composition, 63, 295, 299 
constructor (o, o , . . . , o), 64 
data type, 296-300 
decomposition, 63, 295, 299, 308 
fitting, 307, 308 
grouping, 64, 82 
matching, 299 
modelling technique, 303 
operations = , ^ , 300 
pattern, 299, 307 

binding, 299 
product, 82 
record, 82 
structure, 63, 82 
type, 81 

constructor x, 64, 82 
type expression, 298 
value 

constructors (,), 298 
expression, 298 

case 
discrimination, 312 
McCarthy conditional, 47 

cell of storage, 370 
certification of software 

engineer, 6 
product, 6 

channel, 531 
channel, 517 

chaos, 472 
chaotic behaviour, 147 
Character type, 212 
characterisation, 33 
CHILL, 27 
choice nondeterministic, 272, 356 

external, 527 
internal, 527 

class, 255 
expression, 133, 136 
oriented specification language, 

138 
classification, 423 
clause 

basis, 111, 161, 178 
atomic formula, 179 

Boolean ground terms, 161 
predicate expressions, 179 
propositional expressions, 166 
well-formed formulas, 179 

extremal, 111, 162, 178 
atomic formula, 179 
Boolean ground terms, 161 
predicate expressions, 179 
propositional expressions, 166 

inductive, 111, 162, 178 
atomic formula, 179 
Boolean ground terms, 161 
predicate expressions, 179 
propositional expressions, 166 

client, 9 
CLPR, 27 
Cobol,27 
code, software, 11 
coding 

software, 11 
step, 12 

combination A, 110 
combinator 

imperative, 468 
parallel, ||, 517 
process, 532-547 

RSL, 537-543 
process, CSP, 532-536 

command, 468 
communication 

data, 7 
protocol, 515 

commutativity of + and *, 48 
compiler, 30 
complement 

set operator \ , 57, 191 
complete, 189 
completeness, 155, 189 
complex number, 45, 51, 206 
component, 522 

of software, 12 
program, 12 

composite 
name, 99 

of number, 46 
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type, 72 
composition 

Cartesian, 299 
of Cartesian, 63, 295 
parallel, ||, 517 
record value, 418 

comprehension 
list, 434 
map, 434 
of set, 57, 270 
set, 58, 434 

computable, 20 
domain requirements, 20 

computational model, 20 
computer science, 4, 582 
computing 

distributed, global, 7 
distributed, local, 7 
science, 4, 582 
system, 9, 10 
systems 

architecture, 12 
engineering, 7 

concatenate, list operator ^, 193 
concatenation of lists "", 324 
concept 

document, 14 
entity, 72 
of algebra, 128 
of product, 16 
of product, document, 15 
type, 72 
value, 72 

conclusion 
Q in P D Q, 150 
implication, 158 
inference rule, 145 

concrete 
algebra, 130, 583 
type, 415 

definition, 51, 59, 68, 81 
concretisation, data structure, 369 
concurrency, 511, 514-548 
concurrent 

process, 521 

processes, 521 
programming, 514-548 

condition, P in P D Q, 150 
conditional 

McCarthy, 312 
configuration, 309, 498 

computation state, 309 
context, 316, 498 
environment, 498 
management, 5 
semantic, 316 
state, 316, 498 
storage, 309, 498 

confusion 
of variables, 114 

conjunction 
inference rule, 171 
logical and, 157 

conjunction A, 57 
connective 

Boolean, 143 
logical, 150 

consequence, implication, 158 
consequent, Q in P D Q: 150 
consistency, 153, 189 
consistent, 153, 189 
constant 

function, 100 
name type, 416 
names, token type, 416 
value, 72, 94 

constraint, 382 
over data structure, 382 
over type, 382 

constructed constant, 416 
constructive dilemma, inference rule, 

171 
constructor, 418 

:: type, short record, 421 
constructor record, 418 
content, 468 
context 

configuration, 316 
cum environment, 397 

of configuration, 498 
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function, 168 
interpretation, 165, 172 
or: interpretation, 184 
semantic, 96, 149 

context-free 
grammar, 585 
syntax, 585 

context-sensitive 
grammar, 585 
syntax, 585 

contingency, 169 
contract, 9, 17 

document, 14, 15 
contractual relation, 9 
contradicted predicate, 185 
contradiction, 169 
control 

flow analyser, 30 
state, 518 
version, 5 

convention, naming, 267, 298, 323 
conversion, A, 109 
conversion, A, 115 
cost estimation, 6 
craft, 3 
CSP, 532-536 

combinator process, 532-536 
process combinator, 532-536 
programming, 514-547 

curriculum accreditation, 6 

data 
communication, 7 
flow analyser, 30 
modelling, 72 
state, 518 
structure 

abstract, design, 423 
concretisation, 369 
constraint, 382 
invariant, 382 
transformation, 369 
well-formedness, 382 

type 
abstract, 129 

Cartesian, 296-300 
function, 221-222 
graph, 129 
list, 322-328 
map, 350-356 
queue, 129 
sequence, 322-328 
set, 265-271 
stack, 129 
table, 129 
tuple, 322-328 

DC 
duration calculus, XI, 29, 546, 

588 
deadlock, 515, 516 
decidability, 189 
decidable, 153 
decimal digit, 46 
declaration 

of variable, 468 
variable, 396 

decomposition 
Cartesian, 299, 308 
of Cartesian, 63, 295 
record value, 418 

defining equation, 432 
definition, 33 

axiom, 135 
type, 135 
value, 135 
inductive, 178 
of a function f(a) = 8(a), 90 
of function, 256 
of type, 416 
recursive, 178 
set of a function, 92-94 
type, 93 

abstract, 82 
concrete, 81 
set, 266 
sort, 82 

type, concrete, 51, 59, 68 
variant, 208 

delineation 
of scope, 16 
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of scope document, 14, 15 
of span, 16 
of span document, 14, 15 

deliverable document, 21 
denotation, 90, 267 
describe, 17 
description, 17, 39, 589 

application domain, 39 
formal model, 14 
informal, 237 
narrative, 14 
of domain, 6-8 
rough sketch, 10 
rough sketch document, 14 
terminology document, 14 
validation, 14 

descriptive, 17 
document, 17 

design 
abstract data structure, 423 
brief, document, 14-16 
calculus, 31 
of software, 6, 7, 11, 39 

designate, 94, 589 
designation, 589 
destructive dilemma, inference rule, 

171 
destructor record, 418 
developer of software, 9 
development 

calculus, 31 
experimental, 382 
explorative, 382 
formal, XIII 
phase, 11, 415 fn 
rigorous, XIII 
software, 636 
stage, 11, 382, 415 fn 
step, 11, 382, 415 fe 
step, verification, 14 
systematic, XIII 

device software, 129 
dictionary, 19 
didactics, 34 
difference, set operator / , 57 

digit, 46 
binary, 46 
decimal, 46 

dilemma, inference rule 
constructive, 171 
destructive, 171 

directory, of files, 362 
discipline, 3 
discrimination type, 306 
disjoint types, type constructor = = , 

208 
disjunction, 57 
disjunction V, 157 
disjunctive syllogism, inference rule, 

171 
disposal manual, 11 
distinct type constructor mk_o, 282 
distributed 

global computing systems, 7 
local computing systems, 7 

distributed fix, 147 
distributivity of * over +, 48 
divide and conquer, 11 
document, 19, 590 

analytic, 14, 22 
concepts and facilities, 14 
contract, 14 
deliverable, 21 
description, informal, 237 
descriptive, 17 
design brief, 14 
formal, 21 
ideas, 14 
informative, 14, 15 

synopsis, 236 
informative, assumptions and de­

pendencies, 14, 15 
informative, implicit/derivative 

goals, 14, 15 
logbook, 14 
needs, 14 
of rough sketching, 18-19 
proprietary, 21 
rough sketch, 18 
scope and span delineation, 14 
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synopsis, 14 
terminology, 19 
validation, 23 
verification, 23 

documentation of software, 11 
dogma, narration, 21 
domain, 8, 39 

description, 6-8 
phase, 11 
stage, 11 
step, 11 

engineering, 7-9 
identifier, 213 
requirements, 9, 10, 12, 20 
understanding, 6 

dyadic function, 135 
dynamic storage allocation, 370, 382 

Ei f fe l , 27 
elaborate, 96 
elaboration, 96 
elementary logic, 172 
elements of list, elems, 324 
elements of list, elems, 193 
elicitation 

of domain knowledge, 9 
of requirements, 9 

embedding, 133 
empty 

list (()), 193 
set {}, 191 
set ({}), 56 
tree (leaf), 363 

endomorphism of algebras, 133 
engineer, 4 
engineering, 3 

of computing systems, 7 
of domain understanding, 7 
of requirements, 7, 9 
software, 4, 636 

entailment, 155 
entity 

attribute, 72 
concept, 72 
type, 72 

value, 72 
enumerated type, 416 
enumeration 

list expression, 323 
map expression, 351 
set expression, 267 

environment, 532 
cum context, 397 
of configuration, 498 
process, 521, 537 

epimorphism of algebras, 133 
equality, 484 

of Cartesians =, 300 
of lists =, 324 
of maps =, 352 
of sets =, 57 
operation (=), 485 
set operator =, 191 

equation, defining, 432 
equivalence, 484 

operator (=), 485 
estimation cost, 6 
evaluate, 95, 96, 163 
evaluation, 96 

Boolean ground terms, 163 
by relation search, 97, 98, 105 
by symbolic interpretation, 97, 

98, 121 
fix point, 119 
function, 98 
logic expressions, 150 
nontermination, 143 
predicate expressions, 144, 181 
procedure 

Boolean ground terms, 143, 
163 

predicate expressions, 144, 181 
propositional expressions, 143 

propositional expressions, 143 
evaluator, partial, 30 
event, 519, 530 

process, 521 
example, 33 
excluded 

middle axiom, 145 
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miracle axiom, 145 
exclusive or, 157 
existential 

quantification 3, 57, 184 
quantifier 3, 150 

experimental development, 382 
explicit 

Cartesian enumeration, 298 
list enumeration, 323 
map enumeration, 351 
set enumeration, 267 

explorative development, 382 
expression, 95 

A, 109 
A, 110 
assignment, 396 
body, 432 
Boolean value, 144 

ground terms, 144 
predicate, 144 
propositional, 144 
quantified, 144 

class, 133, 136 
identifier, 267, 298, 323 
input, 538 
integer range, 267 
list type, 323 
list value, 323 
literal, 437 
map value enumeration, 351 
output, 538 
predicate, 172 
propositional, 157, 165, 166 
pure, 483 
quantified, 176 
read-only, 483 
set 

comprehension, 270 
value, 267 

type, 323, 416 
set, 266 

extension axiom, 58 
external 

nondeterministic choice, 527 
trace process, 521 

extremal clause, 111, 162, 178 
atomic formula, 179 
Boolean ground terms, 161 
predicate expressions, 179 
propositional expressions, 166 

facilities 
document, 14 
of product, 16 
of product, document, 15 

factorial function, 91 
falsity, designated by false, 149 
Fibonacci function, 91 
file system 

Cartesian-based, 300 
list-based, 330 
map-based, 366 
set-based, 273 

finite state machine, 30 
first class value, 369 
first-order 

functional, 394 
logic, 172, 184 

fitting, 312 
Cartesian, 307, 308 

fix point, 120 
evaluation, 119, 121 
identity, 120, 121 

YF = F(YF), 119 
minimal, 119 
operator, 120 
operator Y, 102, 120-121 

flow analyser, 30 
FOF, first-order functional, 394 
FOL, first-order logic, 172 
formal 

(logical) reasoning, 21 
development, XIII 
document, 21 
language, 21 
method, 32 
model, 21 
model, description, 14 
proof system, 170 
specification language, 26, 27 
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system, 170 
technique, 25 
variable, 113 

formula, 178 
atomic predicate expressions, 179 

Fortran, 27 
free 

argument name in function defi­
nition body, 90 

variable, 95, 113 
quantified expression, 177 

function, 87, 95 
A : Xx:T • e, 109 
A, 112 
"map", 92 
"map", 92 
"map" set, 93 
abstraction, 369 
algebra, 98 

name, 99 
application, 98, 110, 112 
argument, 92 
arity, 101 
auxiliary, 136, 238, 239 
bijective, 94 
binary, 135 
call, 98 
constant, 100 
context, 168 
data type, 221-222 
definition, 91, 256 

body, 92 
header, 92 

definition / (a) = £ (a), 90 
definition body £(a), 90 
definition set, 93, 94 
dyadic, 135 
evaluation, 98 

by relation search, 97, 98, 105 
by symbolic interpretation, 97, 

98, 121 
expression body, 95, 110 
factorial, 91 
Fibonacci, 91 
graph, 89, 92 

hiding, 136 
image, 92, 94 
imperative, 481 
injective, 92, 94 
interpretation, 165 
invocation, 98 

strictness, 101 
lifting, 405 
monadic, 135 
name, 92 
nondeterministic, 100, 106 
observer, 60 
of analysing, 256-257 
of generating, 255 
of interest, 136 
of observing, 255, 258-260 
of synthesis (construction), 256-

257 
overloaded symbol {}, 191 
overloaded symbol ({)), 193 
partial, 92, 94, 98 
range, 92, 94 
range set, 93 
recursive, 120 
retrieve, 369 
signature, 91, 93, 135, 222, 255, 

256, 276, 303, 333, 358 
space, 93 

type constructor ^>, 99 
type constructor ->>, 99 

space cardinality, 93 
strict, 101 
strictness, 101 
surjective, 92, 94 
total, 93, 94, 98 
type, 93 
type cardinality, 93 
unary, 135 

functional 
first-order, 394 
higher-order, 394 
programming, 28, 429-455 

language, 26 

generator function, 255, 415 
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global 
distributed computing systems, 7 
process environment, 521 

glossary, 19 
grammar, 600 

BNF, 46, 111, 179 
context-free, 585 
context-sensitive, 585 

graph 
algebra, 129 
data type, 129 
of a function, 89 

ground term 
Boolean, 142 
Boolean value expression, 144 

ground terms, 143, 161 
grouping, 64 

Cartesian, 82 

hardware and software of computing 
systems, 7 

head 
list operator, hd, 193 
of list hd, 324 

header function definition, 92 
heterogeneous algebra, 131 
hidden function, 136 
hierarchical 

directory, 362 
structure, 362 

hierarchy, 362 
higher-order 

functional, 394 
logic, 184 

HOF, higher-order functional, 394 
homomorphism, 132 

preserves operations, 132 
principle, 355 
respects operations, 132 

hypothesis, 169 
implication, 158 

hypothetical syllogism 
inference rule, 171 

ideas document, 14 

identification of subentities, 259 
identifier, 213 

RSL, 213 
binding, 430-435 
domain, 213 
name of expression, 267, 298, 323 
name of value, 267, 298, 323 
scope, 430-435 
type, 93 
universe of discourse, 213 

identity 
fix point 

YF = F(YF), 119 
function, 373 

image 
of a function, 94 
set of a function, 92 

imaginary number, 45, 51, 206 
imperative, 13, 18, 468, 495, 602 

combinator, 468 
function, 481 
programming, 28, 467-506 

language, 27, 396, 467 
implementation 

of software, 12 
stage, 12 

implication =>, 158 
implicit/derivative goals informative 

document, 15 
implicit/derivative goals, informative 

document, 14 
implies =>, 158 
inclusive or V, 157 
incomplete, 189 
incompleteness, 189 
inconsistency, 189 
inconsistent, 189 
index of list element £(i), 324 
indicative, 13, 18, 603 
indices 

list operator inds, 193 
of list inds, 324 

induction 
axiom, 209 
definition, 359 
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principle, 190 
inductive, 111 

clause, 111, 162, 178 
A-expression ground terms, 

110 
atomic formula, 179 
Boolean ground terms, 161 
predicate expressions, 179 
propositional expressions, 166 

definition, 178 
inequality 

of Cartesians ^ , 300 
of sets ^ , 57 

infer, 169 
inference rule, 145, 169 

addition, 171 
conjunction, 171 
constructive dilemma, 171 
destructive dilemma, 171 
disjunctive syllogism, 171 
hypothetical syllogism, 171 
modus ponens, 171 
modus tollens, 171 
simplification, 171 
substitution, 171 

inference system, propositional ex­
pressions, 165 

infix type constructor 
Cartesian x, 82 
partial functions ^>, 99 
total functions ->>, 99 

informal description, 237 
informatics, 604 
informative document, 14, 15 

assumptions and dependencies, 
14, 15 

concepts and facilities, 14 
contract, 14, 17 
current situation, 15 
design brief, 14, 16 
implicit/derivative goals, 14, 15 
logbook, 14 
needs, 15 
needs and ideas, 14 

product concepts and facilities, 
16 

scope and span, 14, 16 
synopsis, 14, 16, 236 

initial term, 111, 162 
injection 

function, 373, 378 
relation, 369, 378 

injective, 133 
function, 92, 94 

injector 
= constructor, 420 
function, 420 

input expression, 538 
installation manual, 11 
integer 

number, 45, 48, 206 
range expression, 267 

intellectual right, 6 
interest, function of, 136 
interesting 

operation, 134, 135 
types, 134, 135 

interface requirements, 10, 12 
interlock, process composition, 542 
internal nondeterministic choice, 527 
interpret, 96 
interpretation, 96, 163 

abstract, 30 
being a model, 185 
context, 165 
function, 165 
logic expressions, 150 
logic statement, 155 
or: context, 184 
procedure, 172 

interpreter, 30 
abstract, 30 

intersection 
of sets H, 56 
set operator n, 191 

intuition 
concurrency, 514-532 
constant, 435-437 
event, 514-532 
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functionality, 435-437 
parallelism, 514-532 
process, 514-532 
reference, 468 
sequentially, 468 
single assignment, 435-437 
state, 468 
variable, 468 
variable-freeness, 435-437 

invariant, 382 
algebras, 133 
of data structure, 382 
over type, 382 
predicate, 276, 303, 333, 358 

invocation 
function, 98 
strict function, 101 

irrational number, 45, 50, 206 
irreducible A-expression, 116 
is_ empty, set, set operator = {}, 191 
isomorphism of algebras, 133 

Java, XVII, 27, 616 
junk, 418 

KWIC, 335 
keyword, RSL, 135 
keyword-in-context, KWIC, 335 

language 
Boolean ground terms, 143, 161 
formal, 21 

specification, 27 
formal specification, 26 
ground terms (Boolean algebra), 

161 
imperative, 467 
machine, 467 
of A-expressions, 111 
predicate expressions, 178 
programming, 467 
propositional expressions, 166 

leaf 
empty tree, 363 
tree, 363 

legacy system, 6 
legal issues related to software, 6 
length 

list operator len, 193 
of list len, 324 

level, of a tree, 363 
lifted function, 405 
link, 369 

= pointer, 374 
list 

abstraction, 321-343 
binding, 327 

pattern, 327 
comprehension, 434 
data type, 322-328 
empty (()), 193 
expression enumeration, 323 
matching, 327 
modelling technique, 333 
operator 

concatenate " ,193 
elements elems, 193 
head hd, 193 
indices inds, 193 
length len, 193 
select element .(.), 193 
tail tl, 193 

pattern, 327 
ranged expression, 323 
type expression, 323 

literal 
Unit, 132 
Boolean literals true, false, 143 
built-in name, 81 
expression, 437 

local distributed computing systems, 
7 

location, 369, 370, 468 
of storage, 373 
of variable, 396 
reference, 473-479 
storage, 396 
value, 468 

log book document, 14 
logic 
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elementary, 172 
expression 

evaluation, 150 
interpretation, 150 

first-order, 172, 184 
higher-order, 184 
predicate, 172 
programming, 28 

language, 26 
three-valued, 143, 160 

logical 
connective, 150 
symbol, 150 

logical or V, 157 
loose specification, 253 
LSC, Live Sequence Chart, XI, 29, 

512, 514, 546, 610 

machine, 9, 10 
language, 467 
requirements, 9, 10, 12 

maintenance manual, 11 
management 

configuration, 5 
product, 5 
project, 4 

manual 
business process reengineering, 

11 
disposal, 11 
installation, 11 
maintenance, 11 
training, 11 
user, 11 

map 
abstraction, 349-388 
binding, 355 

pattern, 355 
comprehension, 434 
data type, 350-356 
matching, 355 
modelling technique, 358 
nondeterministic value, 352 
of function, 92 
pattern, 355 

set of a function, 93 
type expression, 351 
value, enumeration expression, 

351 
matching 

Cartesian, 299 
list, 327 
map, 355 
set, 271 

mathematical 
notation, 21 
reasoning, 21 

mathematical logic, 141 
mathematics, 3 
maximal type, 483 
McCarthy conditional, 47, 312 
meaning 

Boolean ground terms, 156-159 
predicate expressions, 182 
propositional expressions, 168 

membership of set, 56 
metalinguistic, 297 
method, 32 

formal, 32 
methodology, 32 
minimal fix point, 119 
model, 267 

algebra, 133 
checker, 30 
computational, 20 
formal, 21 
formal description, 14 
interpretation of predicate set, 

185 
semantics, 136 
sequential, 495 
set of models as meaning of defi­

nitions, 36, 183 
theoretic, 241 

model-oriented 
abstraction, 241-260 
specification, 256 

language, 27 
modelling 

data, 72 
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technique 
Cartesian, 303 
list, 333 
maps, 358 
set, 276 

Modula 2, Modula 3, 27 
modularisation of software, 12 
module 

of software, 12 
oriented specification language, 

138 
modus 

ponens, 170 
inference rule, 171 

tollens, inference rule, 171 
monadic function, 135 
monitoring of project, 5 
monomorphism of algebras, 133 
morphism, 132 
MSC, Message Sequence Chart, XI, 

29, 512 
multiple binding, quantifier, 177 

name, 94 
composite, 99 

of number, 46 
of algebra, 98 
of function, 92 
of function algebra, 99 
of number, 46 
simple, 99 

of number, 46 
type, 81, 93 

named variable, 369 
names 

token type, 416 
type, 416 

naming convention, 267, 298, 323 
narrate, 20 
narration, 20 

dogma, 21 
narrative, 20, 445 

description, 14 
narrator, 20 
natural 

number, 45, 206 
number Nat , 46 

needs, 15 
document, 14 
documentation, 15 

negation, 57, 157 
non-functional requirements, 10 
non-membership ^, 57 
nondeterminism, 272, 356 
nondeterministic 

choice, 272, 356 
choice internal, 527 
choice, external, 527 
choice, internal, 527 
function, 100, 106 
map value, 352 

nonstrictness functional, 147 
nonterminating evaluation, 143 
not -i, 57 
notation 

A, 117 
mathematical, 21 

number, 46 
algebraic, 50 
complex, 45, 51, 206 
imaginary, 45, 51, 206 
integer, 45, 48, 206 
irrational, 45, 50, 206 
name, 46 
natural, 45, 206 
natural Nat , 46 
rational, 45, 49, 206 
real, 45, 49, 206 
transcendental, 45, 50, 206 

numeral, 46 

Oberon, 27 
object module, 12 
object-oriented 

programming, 28 
programming language, 27, 138 

objectivisation, 12 
observer function, 60, 189, 255, 258-

260, 415 
occam, 27 
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ontology, 19 
operation 

abstraction, 241, 243, 513 
auxiliary, 136 
of interest, 134, 135 

operational abstraction, 513 
operator symbol, 57 
optative, 617 
optimised code, 30 
or V, 157 
organisation structure, 363 
output expression, 538 
overloaded 

function symbol {}, 191 
function symbol (()), 193 

paradigm, 34, 38, 235 
parallel 

composition, ||, 517 
process, 531 
programming, 28, 514-548 

language, 27 
parallelism, 511, 514-548 
parameter variable, 113 
parameterised algebra, 131 
partial 

evaluator, 30 
function, 92, 94, 98 

partition of set, 58 
Pascal, 27 
patent for software, 6 
pattern, 48, 312 

binding 
Cartesian, 299 
list, 327 
map, 355 
set, 271 

Cartesian, 299, 307 
list, 327 
map, 355 

Petri net, XI, XVII, 29, 511, 514, 546, 
620 

phase 
development, 11 
domain description, 11 

of development, 415 fn 
requirements prescription, 11 
software design, 11 
software development, 7 

PL/I, 27 
planning of project, 5 
pointer, 369, 373 
possible world, 149 
post-condition function definition, 

276, 303, 333, 358 
postulated 

algebra, 130 
functions, 258 

power set, 58, 105 
type constructor (-set), 105 

pragmatics, 20, 34, 235, 622 
pre-condition function definition, 276, 

303, 333, 358 
predicate 

Boolean value expression, 144 
calculus, 143, 172 
contradicted, 185 
expression, 172 

meaning, 182 
quantified, 176 
value, 183 

expressions, 143 
function, 94 

signature, 105 
logic, 172 

proof system, 146 
satisfiability, 185 
satisfied, 185 
type 

invariant, 276, 303, 333, 358 
well-formedness, 276, 303, 333, 

358 
valid, 185 
validity, 185 

premise 
implication, 158 
rule of inference, 145 

prescription, 39 
of requirements, 6, 9 
software requirements, 39 
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preserve operations, 132 
primitive operation, 267 
principle, 32, 33 

induction, 190 
of: divide and conquer, 11 
of: separation of concerns, 11 

process, 519, 520 
abstraction, 512-514 
block, 530 
combinator, 532-547 

RSL, 537-543 
combinator, CSP, 532-536 
concurrency, 521 
deadlock, 515, 516 
definition, 520 
environment, 521, 537 

global, 521 
event, 521 
interlock, composition, 542 
model, 5 
parallel, 531 
programming, 514-548 
sequential, 530 
trace, 521 

procurement of software, 9 
product 

Cartesian, 82 
concept, document, 15 
concepts, 16 
facilities, 16 
facilities document, 15 
management, 5 

profession, 3 
program 

component, 12 
interpreter, 30 

programming 
applicative style, 429-455 
concurrent style, 514-548 
functional, 28 
functional style, 429-455 
imperative, 28 
imperative style, 467-506 
language, 467 

functional, 26 

imperative, 27, 396 
logic, 26 
object-orientedness, 138 
parallel, 27 

language, object-oriented, 27 
logic, 28 
object-oriented, 28 
parallel, 28 
parallel style, 514-548 
process style, 514-548 
specification, 427 

project 
management, 4 
monitoring, 5 
planning, 5 

projector 
= destructor, 420 
function, 420 

Prolog, 26 
proof, 153, 169 

assistant, 30 
checker, 30 
system, 170 

for RSL, 146 
for a logical language, 146 
for predicate logic, 146 
for propositional logic, 146 

proper subset C, 57 
set operator, 192 

property 
of software, 9 
right, 6 
verification, description, 14 

property-oriented 
abstraction, 235-250 
specification, 189, 255-256 

language, 27 
proposition, 169 
propositional 

algebra, 165 
Boolean value expression, 144 
calculus, 143, 165, 170 
expression, 143, 157, 165, 166 

meaning, 168 
value, 168 
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logic proof system, 146 
variable, 165 

proprietary document, 21 
protocol of communication, 515 
provability, 153 
pure 

A-calculus, 110-112 
expression, 483 

push-down stack machine, 30 
putative, 13, 18 

quality 
assessment, 5 
assurance, 5 
control, 5 

quantification 
existential 3, 57, 184 
over states • , 484 
theory, 172 
unique existential 3!, 184 
universal V, 57, 183 

quantified 
Boolean value expression, 144 
expression, 176 

body, 176 
predicate expression, 176 

quantifier, 176 
binder (V), 135 
existential 3, 150 
universal V, 150 

queue 
algebra, 129 
data type, 129 

radix of number system, 46 
RAISE, 29 
range 

expression, integer, 267 
of a function, 94 
set, 176 
set of a function, 92, 93 

ranged 
expression list, 323 
list expression, 323 

rational number, 45, 49, 206 

read-only expression, 483 
real number, 45, 49, 206 
reasoning 

formal (logical), 21 
mathematical, 21 

record 
:: type constructor, short, 421 
Cartesian, 82 
constructor, 418 
destructor, 418 
type, 416, 417 
value, 369 

composition, 418 
decomposition, 418 

recursion, 119 
recursive 

definition, 178 
function 

definition, 120 
evaluation, 121 

reduction /?, 109, 113, 115 
reengineering business processes, 

manual, 11 
reference, 369 

to state location, 473-479 
to variable, 473-479 

refutable 
assertion, 628 

reification, 369, 378 
reified value, 378 
reify, 374 
relation, 96, 104 

injection, 369 
search, function evaluation, 97, 

98, 105 
truth value, 172 

reliability, 629 
renaming a, 109, 113, 115 
rendezvous, 514, 519 

protocol, 515 
representation abstraction, 241 
requirements 

domain, 9, 10 
engineering, 7, 9-11 
from the domain, 12 
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interface, 10 
machine, 9, 10 
non-functional, 10 
of the interface, 12 
of the machine, 12 
prescription, 6, 9 

phase, 11 
stage, 11 
step, 11 

system, 10 
to software, 6, 39 
user, 10 

resource 
allocation, 5 
scheduling, 5 

respect operations, 132 
result 

of a function application, 87 
value, 128 

retrieve function, 369, 373, 378, 402 
reuse of platforms, 12 
rewrite 

rule, 164 
system, 30 

rewriting, 164 
rigorous development, XIII 
root, of tree, 362 
rough sketch, 14 

description, 10 
description, document, 14 
document, 18-19 

RSL, 201-427 
identifier, 213 
process combinator, 537-543 

RSL, 29 
rule, inference, 145, 169 

addition, 171 
conclusion, 145 
conjunction, 171 
constructive dilemma, 171 
destructive dilemma, 171 
disjunctive syllogism, 171 
hypothetical syllogism, 171 
modus ponens, 171 
modus tollens, 171 

premise, 145 
simplification, 171 
substitution, 171 

satisfiability, 155 
predicate, 185 

satisfied predicate, 185 
scheduling of resources, 5 
scheme, 255 
science 

computer, 4, 582 
computing, 4, 582 

scope, 113, 396 
delineation, 16 
delineation document, 14, 15 
of identifier, 432 
of identifiers, 430-435 

select list element operator .(.), 193 
selection of list element £(i), 324 
self-reference, 258 
semantic 

configuration, 316 
context, 96 
type, 396 

semantics, 20, 35 
as set of models, 36, 183 
binary/decimal numerals, 47 
Boolean ground terms, 143, 163 
model, 136 
numerals, 47 
predicate expressions, 144, 181 
propositional expressions, 143, 

168 
trace, 518 

semiotics, 34, 634 
sentinel, 369, 374 

as verb, 374 
separation of concerns, 11 
sequence, 322 

= list, 321 
abstraction, 321-343 
data type, 322-328 

sequential 
model, 495 
process, 530 
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sequentiality, 505 
set 

abstraction, 263-289 
binding pattern, 271 
brace, close: }, 56 
brace, open: {, 56 
complement operator \ , 57 
comprehension, 57, 58, 270, 434 

such that |, 58 
data type, 265-271 
difference operator / , 57 
empty {}, 191 
enumeration, explicit, 267 
equality = , 5 7 
inequality ^ , 57 
intersection D, 56 
matching, 271 
modelling technique, 276 
operator 

cardinality card, 192 
complement \ , 191 
equality = ,191 
intersection n, 191 
is_ empty, set = {}, 191 
proper subset C, 192 
subset C, 192 
union U, 191 

partition, 58 
range, 176 
subset C, 57 
type 

definition, 266 
expression, 266 

union U, 56 
value expression, 267 

side effect on state, 481 
signature, 276, 303, 333, 358 

function, 91 
of a function, 222 
of function, 93, 135, 255, 256 
of operator, meta operator, 131 
predicate function, 105 

simple name, 99 
of number, 46 

simplification, inference rule, 171 

Simula 67, 27 
singleton 

list function (()), 193 
set function {•}, 191 

skip, a no state change action, 471 
software, 11 

(design) specification, 6 
acquisition, 9 
and hardware of computing sys­

tems, 7 
architecture, 12 
code, 11 
component, 12 
curriculum accreditation, 6 
design, 6, 7, 11-12, 39 

phase, 11 
stage, 11, 12 
step, 11 

developer, 9 
development, 636 

phase, 7 
device, 129 
documentation, 11 
engineer certification, 6 
engineering, 4, 636 
house accreditation, 6 
implementation, 12 
legalities, 6 
modularisation, 12 
module, 12 
object, 12 
patent, 6 
procurement, 9 
product certification, 6 
property, 9 
requirements, 6, 39 
to be delivered, 9 

sort, 80, 81, 255, 415, 636 
abstract type, 59 
axiomatised, 188 
type definition, 82 

soundness, 155 
source programming language, 30 
space, as in function space, 93 
span 
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delineation, 16 
delineation document, 14, 15 

specification, 39 
formal language, 27 
language 

abstract data type, 138 
classes, 138 
formal, 26 
model-oriented, 27 
modules, 138 
property-oriented, 27 

loose, 253 
model-oriented, 256 
of software (design), 6 
programming, 427 
property-oriented, 189, 255-256 
software design, 39 
underspecification, 251 
what is a specification syntacti­

cally, 202 
stack 

algebra, 129 
data type, 129 

stage 
domain description, 11 
of computing systems architec­

ture, 12 
of development, 11, 382, 415 fn 
of implementation, 12 
of program component, 12 
of software design, 12 
requirements prescription, 11 
software design, 11 

state, 468, 480 
configuration, 316 
cum storage, 397 

of configuration, 498 
location reference, 473-479 
of a system, 237 
of control, 518 
of data, 518 
quantification • , 484 
side effect, 481 

Statechart, XI, 29, 512, 514, 546, 637 
statement, 396 

step 
domain description, 11 
of coding, 12 
of development, 11, 382, 415 fn 
of platform reuse design, 12 
requirements prescription, 11 
software design, 11 

stepwise development, 382 
storage, 369, 396 

address, 373 
allocation, 382 
cell, 370 
cum state, 397 
dynamically allocated, 370 
location, 369, 373, 396 
of configuration, 498 
value, 369 

strict 
function, 101 

invocation, 101 
function (definition), 101 

strictness functional, 147 
strongly typed value, 455 
structure 

Cartesian, 82 
hierarchical, 362 
organisation, 363 
syntactic, 316 

subentity identification, 259 
subset 

proper C, 57 
proper subset or equal set C, 57 
set operator C, 192 

substitution, 112-115 
inference rule, 171 

subtype, 91, 277 
{|...|}, 188 
constructor delimiter 

left {|, 213 
right |} , 213 

expression, 422 
subtyping, 276, 303, 333, 358 
surjective, 133 

function, 92, 94 
syllogism 



disjunctive, inference rule, 171 
hypothetical, inference rule, 171 

symbol 
logical, 150 
operator, 57 

symbolic interpretation, function 
evaluation, 97, 98, 121 

synchronise, 519 
synopsis, 16, 236 

document, 14 
documentation, 15 

syntactic 
semantics, 164 
structure, 316 

syntax, 20, 37, 639 
abstract, 194-196 
context-free, 585 
context-sensitive, 585 
of specifications, 202 

synthetic 
abstract syntax, 195 
function, 256-257 

system 
algebra, 128 
axioms, 145 

defined using RSL, 146 
for RSL's Proof System, 146 

legacy, 6 
of files, 273, 300, 330, 366 
of processes, 519 
requirements, 10 
state, 237 

systematic development, XIII 

table 
algebra, 129 
data type, 129 

tail 
list operator tl, 193 
of list tl , 324 

target coding language, 30 
tautology, 169 
technique, 32, 33 

Cartesian modelling, 303 
formal, 25 
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list modelling, 333 
map modelling, 358 
set modelling, 276 

term, 178 
atomic structure, 111, 161 
initial, 111, 162 
rewriting, 164 

termination A, 115 
terminology, 19 

document, 19 
document, description, 14 

test suite, 11 
Text text type, 212 
theorem, 153, 169 

prover, 30 
theory, 153, 189 

quantification, 172 
three-valued logic, 143, 160 
TLA, 29 
token, 30 

constant names type, 416 
enumerated type, 416 
names type, 416 

tool, 32, 33 
total function, 93, 94, 98 
totally undefined value chaos, 101 
trace, 519, 531 

process, external, 521 
semantics, 518 

training manual, 11 
transcendental number, 45, 50, 206 
transformation of data structures, 369 
tree, 362 

empty, 363 
leaf, 363 
level, 363 

triptych, 7 
truth 

designated by true, 149 
value, 94 
valued 

relation, 172 
variable, 157 

tuple, 322 
= list, 321 



678 C Indexes 

abstraction, 321-343 
data type, 322-328 

type 
Bool (Boolean), 143 
Unit, 481, 482 
"cardinality", 93 
abstract, 80, 81, 255 

definition, 82 
abstract, sort, 415 
as sort, i.e., abstract type, 59 
atomic, 72, 205 
Cartesian, 81, 298 
checker, 30 
composite, 72 
concept, 72 
concrete, 415 

definition, 81 
constraint, 382 
constructor 

*: finite lists, 322 
w: also infinite lists, 322 
:: short record, 421 
| union type, 416 
= = variant values, 416 
^>: also partial functions, 222 
->•: total functions, 222 
x: Cartesians, 297 
-infset: also infinite sets, 265 
-set: finite sets, 265 
x H>), 99 
Cartesian x, 64, 82 
disjoint types = = , 208 
function ->>, 99 
infix, 99 
maps 7^, 351 
partial function (-^), 99 
power set (-infset), 105 
union |, 208, 282 

constructor mk_o, 282 
definition, 93, 135, 416 

set, 266 
definition, concrete, 51, 59, 68 
discrimination, 306 
exponential, 93 
expression, 323, 416 

Cartesian, 298 
map, 351 
set, 266 

function, 93 
identifier, 93 
invariant, 382 
maximal, 483 
name, 81, 93 
of interest, 134, 135 
of record, 416 
record, 417 
semantic, 396 
sort definition, 82 
subtype, 276, 303, 333, 358 
subtype ({|...|}), 188 
subtype constructor 

left delimiter {|, 213 
right delimiter |} , 213 

subtype expression, 277, 422 
union, 312, 415 
variant record definition, 416 
well-formedness, 382 

typed 
function, 99 
value, strongly, 455 

typing, 99, 173, 442 

unary function, 135 
undecidability, 189 
undefined value chaos, 168 
undefined value chaos, 101, 183 
underspecification, 251 
union 

of sets, 56 
set operator U, 191 
type, 312, 415 

constructor |, 282 
type constructor |, 208 

unique existential quantification 3!, 
184 

Unit, 481, 482 
literal, 132 
value (), 132 

universal 
algebra, 132, 645 
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quantification V, 57, 183 
quantifier V, 150 

universe of discourse, 9, 236 
identifier, 213 

user 
manual, 11 
requirements, 10 

valid predicate, 185 
validation, 21 

document, 23 
of description document, 14 

validity, 155 
predicate, 185 

valuate, 96 
valuation, 96 
value, 94, 267 

a propositional expression, 168 
argument, 128 
at location, 468 
atomic, 205 
being first class, 369 
Boolean ground terms, 163 
Cartesian, 298 
concept, 72 
constant, 72, 94 
constructors, Cartesian (,), 298 
definition, 135 
expression, 144, 298 

Cartesian, 298 
quantified, 144 

identifier, 267, 298, 323 
in storage, 369 
list expression, 323 
map, nondeterministic, 352 
nondeterministic map, 352 
of a function application, 87 
of entity, 72 
predicate expression, 144, 183 
propositional expression, 144 
record, 369 
result, 128 
type, strong, 455 
undefined chaos, 168 
undefined chaos, 101, 183 

variable, 72, 94 
variable, 110, 396 

A, 109 
A, 110, 112 
assignable, 468 
assignment, 470 
binding, 113, 176, 430 
bound,113 

quantified expression, 177 
confusion, 114 
declaration, 396, 468 
formal, 113 
free, 95, 113 

quantified expression, 177 
location of, 396 
name, 369 
parameter, 113 
propositional, 165 
reference, 473-479 
truth-valued, 157 
value, 72, 94 

variant 
definition, 208 
type constructor = = , 208 
type definition, 416 

VDM, 29 
verification 

document, 23 
of description property, 14 
of development step, 14 

version control, 5 

well-formed formulas, 179 
well-formedness 

of data structure, 382 
of type, 382 
predicate, 276, 303, 333, 358 

wildcard, 302, 442, 472 
world, possible, 149 

yield, 92 
upon function application, 87 

Z, 648 
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C.3 Characterisations and Definitions Index 

Definition: The setting of bounds, limitation. 
The action of determining a question at issue, of defining. 

A precise statement of the essential nature of a thing. 
A declaration of the signification of a word or phrase. 

The SHORTER OXFORD ENGLISH DICTIONARY 
On Historical Principles [350] 

We shall list both characterisations and definitions. The latter are usually 
more formally expressed than the former. 

^renaming, 115 
/3-reduction, 115 
A-calculus, 109 
A-expression syntax, 110 

Abstract Algebra, 130 
Abstraction, 231 
Action, 531 
Algebra, 127 
Analytic Document, 22 
Applicative Context, 498 
Applicative Programming, 429 
Applicative Specification Program­

ming, 430 
Applicative State, 499 
Atomic Entity, 73 
Atomic Type, 205 
Atomic Value, 205 
Attribute, 74 

Behaviour, 512, 531 
Binding Pattern, 430 
Blocked Process, 530 

Call-by-name, 116 
Call-by-value, 117 
Cartesian, 63, 295 
Channel, 531 
Component, 522 
Composite Entity, 74 
Composite Entity Attributes, 74 
Composite Entity Values, 75 
Computer science, 3 
Computing science, 4 

Computing System, 7 
Concept, 73 
Concrete Algebra, 130 
Concurrent Processes, 521 
Concurrent Programming, 511 
Concurrent Specification Program­

ming, 511 
Correctness of Transformation, 495 

Definitions, 33 
Descriptive Document, 17 
Domain, 8 

- Domain Description, 8 
Domain Engineering, 7 

Engineering, 3 
Entity, 73 
Environment, 532 
Event, 521, 530 
Externally Observable Trace, 521 

Formal Document, 21 
Formal Specification Language, 26 
Formal Technique, 25 
Free and bound variables, 113 
Function, 87 
Function "Map", 92 
Function Definition, 90 
Functional Programming, 430 

Global Surrounding Process Environ­
ment, 521 

Heterogeneous Algebra, 131 
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Imperative Context, 504 
Imperative Programming, 467 
Imperative Specification Program­

ming, 467 
Imperative State, 502 
Implementation Bias, 243 
Informative Document, 15 

List, 321 
Loose Specification, 253 
Looseness, 253 

Map, 349 
Mathematical Logic, 141 
Method, 32 
Methodology, 32 
Model-Oriented Abstraction, 231, 241 
Model-Oriented Specification, 242 
Model-oriented Specification Lan­

guage, 27 

Narrative Document, 19 
Nondeterministic External Choice, 

527 
Nondeterministic Internal Choice, 

527 

Operational Abstraction, 243 

Parallel Process, 530 
Parallel Programming, 511 
Phenomenon, 73 
Pragmatics, 34 
Principles, 33 
Process, 512, 520 
Process Definition, 520 
Process Environment, 521 
Property-Oriented Abstraction, 231, 

241 
Property-Oriented Specification, 242 
Property-Oriented Specification Lan­

guage, 27 

Relation, 104 
Representation, 73 
Representation Abstraction, 242 

Requirements Engineering, 9 
Rough Sketch Document, 18 

Semantics, 35 
Sequential Process, 530 
Set, 55, 263 
Software, 11 
Software Design, 11 
Software Development, 11 
Specification Programming, 427 
Substitution, 114 
Syntax, 37 

Techniques, 33 
Terminology Document, 19 
Trace, 531 
Type, 71 

Underspecification, 251 
Universal Algebra, 132 

Validation Document, 23 
Verification Document, 23 
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C.4 Authors Index 

Author: The person who originates or gives existence to anything; 
an inventor, constructor, or founder. 

He who gives rise to an action, event, circumstance, or state of things. 

One who sets forth written statements; 
the writer or composer of a treatise or book. 

The SHORTER OXFORD ENGLISH DICTIONARY 
On Historical Principles [350] 

The authors listed here (many with [references] to (usually) their main books) 
are (co)authors of publications cited on the referenced page(s). Not all refer­
enced publications have their authors listed here — but a very high proportion 
have been listed here! 

Abadi, Martin [1], 4, 411, 424, 522 
Abrial, Jean-Raymond [3], XIV, 27, 

335, 577 
Aho, Alfred [8], XVIII, 4 
Apt, Krzysztof R. [17-19], XVII 
Aristotle 384-322 BC [30], 362 
Arnold, Ken [20], XVII, 27, 616 

Backus, John W. [22-24], 27, 467 
Bar Hillel [230], 60 
Barendregt, Henk P. [26], 112, 120, 

122, 123 
Barnstone, Willis [31], VI 
Bauer, Friedrich Ludwig [34], 507 
Bekic, Hans [36,37], 27, 647 
Bergstra, Jan A. [43], 248 
Berlekamp, Elwyn R. [44,45], 217 
Bernays, Paul [46], 60 
Berry, Gerard, 29 
Bird, R.S. [51], 429 
Birkhoff, Garret [52,53], 128, 139 
Birtwistle, G.M. [54], 27 
Blikle, Andrzej Jacek [131], 160 
Boole, George, 578 
Boolos, G. [136], 197, 248 
Broy, Manfred [139], 507 
Burke, Edmund [141,358], 321 
Burstall, Rod M., 488, 494, 507 

Cardelli, Luca [1], 4, 411, 424, 522 

Church, Alonso [152,153], 109, 123, 
197, 248 

Clemmensen, Geert Bagge, XIII, XVI 
Codd, Edgar Frank [156], 629 
Cohn, Paul Moritz [157,158], 139 
Conway, John Horton [44,45,159], 217 
Coper, David Charles, 494 
Cousot, Patrick, 30 
Cousot, Radia, 30 
Curry, Haskel B. [166,167], 586 

Dahl, Ole-Johan [54], 27, 614, 616 
Damm, Werner, XI, 29, 512, 514, 546, 

610 
Darlington, J. [142,173,175], 429, 488, 

494, 507 
Davies, Jim [179,533], 548, 648 
Davis, Martin [180], 195 
Davis, Ruth E. [181], 172 
de Bakker, Jaco W. [182,183], XX, 4, 

120, 122, 633 
Descartes, Rene [185-189], 295, 579 
Dijkstra, Edsger Wybe [194-196,224], 

VII, XIV, 4 
Duke, Roger, 616 

Ehrig, Hartmut [208], 248 
Enderton, Herbert B. [210,211], 55, 

60, 197, 248 
Ershov, Andrei Petrovich, 30, 613 
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Evans, Arthur [222], 123 

Fei Xiao Tong [499], 276 
Field, Anthony J. [225], 429 
Fitzgerald, John [226], 27, 29 
Fraenkel, Adolf Abraham Halevi 

[230], 55, 60 
Futamura Yashiko, 30 
Futatsugi Kokichi [232,234], 27, 80, 

139 

Gallier, Jean H. [235], 142, 197, 248 
George, Chris W. [236,238], XIX, 28, 

29, 38, 171, 203, 250, 518, 
534 

Ghezzi, Carlo [240], 41 
Girard, Jean-Yves [241], 4, 84 
Goguen, Joseph A., 27 
Gorm Larsen, Peter [226], 27, 29 
Gosling, James [20,243], XVII, 4, 27, 

616 
Gries, David [224,244-246], VII, 4 
Guessarian, Irene [249], 248 
Gunther, Carl [250,252], XX, 4, 120, 

122, 633 
Guy, R.K. [44,45], 217 
Godel, Kurt, 195 

Haff, Peter L. [236,254], XVI, 27, 38, 
203, 250, 518, 534 

Halmos, Paul R. [258], 60 
Hamilton, A.G. [259], 142, 197, 248 
Hansen, Michael Reichhardt [261, 

537], XI, XVII, 4, 26, 29, 
123, 429, 546, 588 

Hardy, George H. [263], 45 
Harel, David [264,267,270], XI, 29, 

512, 514, 546, 610, 637 
Harper, Robert, XVII 
Hausdorff, Felix [273], 60 
Havelund, Klaus [236, 238], 28, 38, 

203, 250, 518, 534 
Haxthausen, Anne Elisabeth [236, 

238], 28, 29, 38, 171, 203, 
250, 518, 534 

Hayes, Ian, 507 
Heering, Jan [43], 248 
Hehner, Eric C.R. [275,276], VII, 4 
Hejlsberg, Anders, 616 
Hennessy, John L., XVIII 
Hennessy, Matthew [280], 120, 122 
Hindley, J.R. [283,284], 84, 112, 120, 

122, 123, 411, 424 
Hoare, Sir Tony [288,291,446,450], 

XVII, 4, 27, 29, 38, 234, 506, 
507, 511, 514, 518, 532, 548 

Hodges, Wilfried [294], 197 
Hopcroft, John E. [8,296], XVIII, 4 
Hughes, Stephen [238], XIX, 28, 29, 
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