Dines Bjgrner

RNl 1] L AR SRR (A {1
o 1] (NN (RSP S [RRRN
111 SRIRIRRIRT SR L5 T

i LU A R
e) [
1SS L L

(N (RN
FEEEEEEre reretd

1l T SURIRAI R FECET RIS
NEREREE T 1 R 1

Software
Engineering 1

Abstraction and Modelling

@ Springer

Texts in Theoretical Computer Science
An EATCS Series

Editors: W. Brauer G.Rozenberg A.Salomaa

On behalf of the European Association
for Theoretical Computer Science (EATCS)

Advisory Board: G. Ausiello M. Broy C.S. Calude
A.Condon D.Harel J.Hartmanis T.Henzinger
J. Hromkovi¢ N.Jones T.Leighton M. Nivat

C. Papadimitriou D. Scott

D.Bjerner

Software
Engineering 1

Abstraction and Modelling

With 38 Figures

@ Springer

Author Series Editors

Prof. Dr. Dines Bjorner Prof. Dr. Wilfried Brauer

Computer Science and Engineering Institut fiir Informatik der TUM
Informatics and Mathematical Modelling Boltzmannstr. 3

Richard Petersens Plads 85748 Garching, Germany

2800 Kgs. Lyngby, Denmark Brauer@informatik.tu-muenchen.de

j il.
bjorner@gmail.com Prof. Dr. Grzegorz Rozenberg

Leiden Institute of Advanced
Computer Science

University of Leiden

Niels Bohrweg 1

2333 CA Leiden, The Netherlands
rozenber@liacs.nl

Prof. Dr. Arto Salomaa
Turku Centre of
Computer Science
Lemminkiisenkatu 14 A
20520 Turku, Finland
asalomaa@utu.fi

Library of Congress Control Number: 2005936099

ACM Computing Classification (1998): D.1,D.2,D.3,F.3,F4,G.2.0,K.6.3,H.1,].1

ISBN-10 3-540-21149-7 Springer Berlin Heidelberg New York
ISBN-13 9-783-540-21149-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof
is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version,
and permission for use must always be obtained from Springer. Violations are liable for prosecution under
the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

@ Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc.in this publication does not imply, even
in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations
and therefore free for general use.

Cover design: KiinkelLopka, Heidelberg

Typesetting: Camera ready by the author

Production: LE-TeX Jelonek,Schmidt & Vackler GbR, Leipzig
Printed on acid-free paper 45/3142/YL-543210

Kari Skallerud Bjgrner

the best thing that ever happened to me

Caminante, son tus huellas Walker, your footseps

el camino, y nada mas; are the road, and nothing more.
caminante, no hay camino, Walker, there is no road,
se hace camino al andar. the road is made by walking.
Al andar se hace el camino, Walking you make the road,
y al volver la vista atrds and turning to look behind
se ve la senda que nunca you see the path you never
se ha de volver a pisar. again will step upon.
Caminante, no hay camino, Walker, there is no road,
sino estelas en la mar. only foam trails on the sea.
Proverbios v cantares, 29 Proverbs and Songs, 29
Campos de Castilla Fields of Castilla
Antonio Machado Page 281 [31], Translated by Willis Barnstone
Page 280 [31] Border of a Dream:

Selected Poems of Antonio Machado

Preface — to Vols. 1-3

This preface covers the three volumes of Software Engineering, of which this
volume is the first.

e Software engineering — art/discipline/craft/science/logic: Soft-
ware engineering is the art [326-328], discipline [194], craft [441], sci-
ence [245], logic [275] and practice [276] of
* synthesizing (i.e., building, constructing) software, i.e., technology,

based on scientific insight, and
* analysing (i.e., studying, investigating) existing software technology
in order to ascertain and discover its possible scientific content.

To succeed in this,

e Software engineering — abstraction and specification: Software
engineering makes use of abstraction and specification.

* Abstraction is used to segment development into manageable parts,
from high-level abstractions in phases, stages and steps to low-level
abstractions, i.e., concretisations.

* Specification records and relates all levels of abstraction.

Volumes 1 and 2 of the three-volume book cover abstraction and specification
in detail.

e Software engineering — the triptych: Software engineering composes

analysis of application domains with synthesis and analysis of requirements

(to new software) into design (i.e., synthesis and analysis) of that software.

Hence software engineering consists of

* domain engineering, which, as these volumes will show you, is a rich
field of many disciplines, etc.,

* requirements engineering, which, as we shall again see, in these
volumes, has many aspects and facets not, usually covered in textbooks,
and

VIII Preface — to Vols. 1-3

* software design, with concerns of software architecture, component
composition and design, and so on.

Volume 3 of the book covers this triptych in detail.

¢ Software engineering — practical concerns: Software engineering,
besides, consists of many practical concerns: Project and product man-
agement; principles, techniques and tools for making sure that groups of
possibly geographically widely located people work effectively together, for
choosing, adapting, monitoring and controlling work according to one of
a variety of development process models; planning, scheduling and allo-
cating development resources (people, materials, monies and time); and
related matters, including cost estimation, legacy systems, legalities, etc.

We shall not be covering these management-oriented facets of software engi-
neering in this book.

Each chapter of this volume and its companion volumes starts with a synopsis.
An example — relevant for this preface — follows:

e Assumptions: You have taken this book into your hands since you are
interested in knowing about, and possibly learning a new approach to
software engineering.

e Aims: The main aim of these volumes is to introduce you to a new way
of looking at software: One that emphasises (I) that software engineering
is part of informatics, and that informatics is a discipline otherwise based
on (i) mathematics, (ii) the computer & computing sciences, (iii) linguis-
tics, (iv) the availability of the hard information technologies (computers
and communication, sensors and actuators) and, last but not least, (v)
applications. Furthermore (IT) that informatics “hinges” on a number of
philosophical issues commonly known under the subtitles — epistemology,
ontology, mereology, etc.

e Objectives: To help you become a truly professional software develop-
ment engineer in the widest sense of that term, such as promulgated by
these volumes.

e Treatment: Nontechnical, discursive.

To develop large-scale software systems is hard. To construct them such that
they (i) solve real problems, (ii) are correct and pleasing and (iii) will serve
well in the acquiring organisation is very hard.

This series of volumes offers techniques that have proven (i) to make the
development of large-scale software systems much less hard than most current
software engineers find it, (ii) to result in higher-quality systems than normally
experienced and (iii) to enable delivery on time.

Thus we emphasise the software engineering attributes aimed at in this
series: Trustworthy and believable methods, higher-quality software products,

Preface — to Vols. 1-3 IX

higher-quality software development projects, and the personal satisfaction of
developers and acquirers, that is, the software engineers and their manage-
ment, respectively the users and their management. We aim at much less, if
any, frustration, and much more fascination and joy!

Reasons for Writing These Volumes

A number of reasons! can be given for why these volumes had to be written:

Formal techniques apply in all phases, stages and steps of software engi-

neering, and in the development of all kinds of software. But there was no

published textbook available that covered software engineering, such as we
shall later characterise that term, from a basis also in formal techniques

(besides other, “non-formal” bases).

Formal development (that is, specification, refinement and verification)

books were more like monographs than they were textbooks, and they cov-

ered their topic from a rather narrow viewpoint: usually just specification
of software, that is, of abstract software designs and their concretisation.

Formal specification, in these volumes, applies not just to software, but

also to their requirements prescription, and, as a new contribution (in any

book or set of lecture notes), also to domain descriptions.

The author of these volumes has long been less than happy with the way

in which current textbooks purport to cover the subject of software engi-

neering.

% “All” current textbooks on software engineering fail? with respect to
very basic issues of programming methodology, in particular with re-
spect to (wrt) formal techniques. If they do, as some indeed do, bring
material on so-called “Formal Methods”, then that material is typi-
cally “tucked away” in a separate chapter (so named). In our mind,
the interplay between informal and formal techniques, that is, between
informal descriptions and formal specifications, informal reasoning and
formal verification, and so on, permeates all of software engineering.
The potential of (using) formal techniques shapes all phases, stages
and steps of development. Classical software engineering topics, such
as software processes, project management, requirements, prototyping,
validation (not to speak of verification), testing, quality assurance &
control, legacy systems, and version control & configuration manage-
ment, these auxiliary, but crucial, concerns of software engineering,
can be handled better, we show, through a judicious blend of informal
and formal techniques. Needless to say, these volumes will redress this
“complaint”.

!Usually, when more than one “excuse” is given for some “mistake”, none apply.
This series of volumes, however, is no mistake.

*With the notable exception of [240].

X Preface — to Vols. 1-3

* All current textbooks, in our mind, fail in not properly taking into
account the issue of the software developer not having a thorough un-
derstanding of the domain in which the software is to be inserted, that
is, the domain from which sprang the desire to have “that new soft-
ware”! As mentioned above, a major new “feature” of our books is the
separation of concerns illustrated in the software development process
— when the developer initially spends much time and effort to under-
stand and document an understanding of the application domain.

* All current textbooks, in our mind, fail in not systematically, i.e.,
methodically, presenting principles, techniques and tools that “carry
through” and “scale up”. By carry through I mean principles, tech-
niques and tools that are shown, by extensive examples, to cover all the
major phases, stages and steps of development. By scaling up I mean
principles, techniques and tools that can be applied to the largest-scale
software development projects.

* Some current textbooks, in our mind, fail the programming, that is, the
design issues completely. There is no assumption on any methodological
approach to the development of software from the point of view of
programming methodology.?

* Other current textbooks, in our mind, fail the stepwise refinement, that
is, the implementation relation development point of view.*

* And yet other current textbooks fail the design point of view.

* Finally all current textbooks fail, we believe, in not properly inte-
grating the above, albeit more theoretical, points of view, with the
points of view of mundane, engineering issues such as (i) development
process models (“waterfall”, “spiral”, “iterative”, “evolutionary”, “ex-
treme programming”, etc.), (ii) quality management, (ii) testing & val-
idation, (iv) legacy systems, (v) software re-engineering, and so on.

5

Shortcomings of These Volumes

The major shortcoming of the current set of three volumes is our all too brief
coverage of correctness issues, that is, of the verification (theorem proving,
model checking) of properties of single and pairs of (development-step-related)
specifications.

3By the programming methodology point of view we mean a view that concerns
itself with such issues as establishing invariants when specifying loops, as securing
proper programming abstractions in terms of routines (procedures, functions), etc.

“By the stepwise refinement point of view we mean the concern that abstractions,
even when informally expressed, are rendered into correct concretisations — when
expressed as code.

5By the design point of view we mean the programming concern for choosing
appropriate algorithms and data structures, for their justification and validation.

Preface — to Vols. 1-3 XI

Elsewhere, and where appropriate in these volumes, we explain why we
have not introduced substantial material on verification.

The reader, seeking this knowledge, is referred to an abundance of texts
(books, and articles in journals and in proceedings), or may have to wait till
we feel competent to write a textbook of sufficient generality on this topic.
Current texts are very much linked to a specific notational system (i.e., spec-
ification language).

Obviously we do not know all there is to know about how to develop all
possible kinds of software, and not all that we know is in these volumes. To
develop software, in general, takes a diverse range of techniques and tools.

Whatever special techniques and tools we cover, we cover them to some
non-trivial depth, but not to the depth that is sufficient for a professional
engineer in the relevant field. For example:

e Development of compilers: We cover quite a lot, but not all that is
necessary for the really professional compiler developer. We cover what
we believe all software engineers ought know. And we cover it in a way
that we find is sorely missing from all compiler textbooks. We refer to
Chaps. 16-20 of Vol. 2.

e Development of operating and distributed systems: We cover only
general principles and techniques of specifying concurrent systems.

e Development of embedded, safety-critical and real-time systems:
Basically the same coverage as for operating and distributed systems de-
velopment: We emphasise that Vol. 2 covers techniques for specifying
embedded, safety-critical and real-time systems. These techniques and
their underlying notations are those of Petri nets [313, 421, 435-437],
message [302-304] and live sequence charts [171, 270, 325], statecharts
[265, 266, 268, 269, 271], temporal logics [205, 360, 361, 400, 429] and the
duration caleuli [537, 538].

Chapter 28 in Vol. 3, Domain-Specific Architectures, will, however, go into
some depth, showing which principles, techniques and tools apply in the de-
velopment of translation systems (interpreters and compilers), information
systems (database management systems), reactive systems (i.e., embedded,
real-time and safety-critical systems), workpiece systems (worksheet systems),
client /server systems, workflow systems, etcetera. Qur treatment in that chap-
ter is novel, and is inspired, strongly, by Michael Jackson’s concept of Problem
Frames [310].

Thus we cover what we believe all software engineers, whatever their spe-
cialty is, should know. And we believe they should know far more than most
textbooks in software engineering offer.

As explained elsewhere, these volumes suggest that education and training
in the specialised fields mentioned above can follow after having studied Vol. 3.

XII Preface — to Vols. 1-3

And much of the textbooks of those specialised fields really, then, ought be
rewritten: be adapted to formal specification, and so on.

Methods of Approach

Our didactics seeks to go to the “roots of the matter”. We see these roots
to be formed from basic understandings of such issues as (i) the linguistics
of “how to describe”, (ii) the near-philosophical issues of “what to describe”,
(iii) the linguistic, i.e., semiotic issues of pragmatics, semantics and syntax,
and (iv) the issues of constructing concise, objective formulations in terms
of mathematics, i.e., of using formal specification languages (and, in turn,
understanding their pragmatics, semantics and syntax — independent of the
pragmatics, semantics and syntax of the application phenomena).

Thus this book begins by exploring the above four issues. In Vol. 2 we
then take up this theme of semiotics (pragmatics, semantics and syntax) in
four separate chapters (Chaps. 6-9 incl.).

Also this is new: Existing textbooks on software engineering completely
avoid any mention of these issues. For a modern, professional software engineer
to graduate from any reputable academic institution without a proper grasp
on these four didactic bases (i-iv) is, to this author, unthinkable! Alas! It is
today the rule rather than the exception: That they do not even see these
issues at all!

A New Look at Software

These volumes will provide the reader with a new way of looking at software
and at the process of developing software. They will provide the reader with an
altogether dramatically different approach to understand and to develop soft-
ware. That “new look” can perhaps best be characterised as follows: Software
is seen as intellectual artifacts, as the product of a rather intellectual process
of thinking (analysing), of describing (of synthesising) and of contemplating
(of reasoning). Software, as a product, has less material, quantitative measures
by which to be grasped (no cheaper, faster, smaller, etc., catchwords) than
it has intellectual, qualitative measures — such as affinity to application do-
main (it is, or is not, the right product), fitness for human use (computer—user
interaction), correctness (the product is, or is not, right), etc.

Grasping abstraction — a major issue of these volumes — affords any
developer a far better chance of getting the right product and the product
right than not grasping abstraction — even when these same people do not
use many of the formal techniques of these volumes. Most practicing software
engineers do not grasp abstraction. Yet software, by its very nature is and must
be abstract: When supporting the automation of what used to be human work

Preface — to Vols. 1-3 XIII

processes, the automating software is not “those human processes”, it is only
a model, an approximation, an abstraction of them.

We wish to perpetrate a view of software development as something that
proceeds in phases, stages and steps of development and for which there are
now available clear techniques of relating these phases, these stages, these
steps to one another. Yet such development is hardly covered in standard
textbooks on software engineering. We wish to perpetrate a view of software
development where the specification of the phases, stages and steps can be
done formally, and where the relations can be formalised and, in cases where
warranted, can even be formally verified. This view has been possible, at least
in the small to medium, for at least 20 years. Yet such development is hardly
covered in standard textbooks on software engineering. We wish to further a
view of software development where the developers create, nurture and deploy
abstractions. Where the programmers at all levels take pride and have fun in
“isolating”, as it were, beautiful abstractions and let them find their way into
programs. In the end these programmers let those abstractions determine
major structures of systems, and beauty: Simplicity and elegance, as felt by
users, arises! Such development is scalable to large systems. It is now possible,
manageable and affordable. It can be taught and it can be learned by most
academically trainable students.

Formal Techniques “Light”

Many practicing programmers abstain from and some academics express reser-
vations about formal reasoning® or just formal specification.”

Our approach is a pragmatic one. We allow for a spectrum from systematic
via rigorous to formal development. By a systematic development we mean
one which specifies some of the steps of development formally. By a rigorous
development we mean one which expresses and formally proves some of the
proof obligations of a systematic development. By a formal development we
mean one which formally proves a significant majority of proof obligations as
well as other lemmas and theorems of a rigorous development.

In order to follow the principles and techniques of these volumes, we advise
going “light”: Start by being systematic. Specify crucial facets — of your
application domain, your requirements and your software designs — formally.
Then program (i.e., code) from therel

It seems, from practice [155], that by far the most significant improvements in
correctness of software development accrues from being systematic. And these

SExample: Proving, in some mathematical logic, some lemma about program
properties.

"Example: Describing, in addition to informally, but concisely, some domain, or
prescribing some requirements, or specifying some software design formally, in some
formal specification language.

XIV Preface — to Vols. 1-3

volumes are primarily, possibly almost exclusively, focused on being system-
atic. Certain kinds of applications warrant higher trust, and it then seems
that being rigorous achieves the next higher step of believability. Finally, a
few customers are willing to accept today’s rather high cost of formal develop-
ment: heart pacemakers, hearing-aid implants, hybrid controllers for nuclear
power plants, driverless metro trains, and the like.

Volume 3, Chap. 32, Sect. 32.2 discusses a rather large number of dogmas,
misconceptions and myths about so-called “formal methods”. Section 1.5.3 of
this volume and Vol. 3, Chap. 3, Sect. 3.1 discuss why methods cannot be
formal, but that some techniques can.

The “Super Programmer”

Many practicing programmers and some academics believe strongly in the
unchecked individualism of the programmer: They are worried that having to
adhere to a number of method principles and formal techniques may squash
the creativity and productivity of “super programmers”. We are not worried.
We have generated well over a 100 MSc thesis candidates. Most work in fewer
than eight software houses in Denmark. All follow, more-or-less, many of the
principles and techniques of these volumes. Most of them are super program-
mers.

The following has been expressed by other academics and most of my
former students and likewise those of my colleagues around the world who
similarly teach and propagate principles and techniques like those of these
volumes. I emphasise it here:

The principles and techniques of these volumes, even when adhered to only
“lightly”, even when hardly followed explicitly, are such that if you have
grasped them, while studying these volumes, they will have changed your
attitude to software engineering. It will never be the same.

We are sure that you will, from then on, enjoy far more doing “super program-
ming”, being a super programmer, and “being clever in many small ways, de-
vising smart tricks to do things better and faster.” We shall not deny a central
role® for being low level clever, for being smart. We will augment whatever
skills you may have in this direction with a number of teachable engineer-
ing principles and techniques. “The successful programmer is both beast and
angel.”

We claim that we can also point to several medium-scale software develop-
ment projects where knowing or being aware of the principles of these volumes
seems to have helped significantly in devising elegant, beautiful products. And
‘Beauty is our Business’ [224].

8The two slanted “quotes” of this paragraph are from an e-mail, Sunday, January
20, 2002, from Prof. Bertrand Meyer [5,375,376], ETH Ziirich, Switzerland, and ISE,
Santa Barbara, California, USA.

Preface — to Vols. 1-3 XV

What Is Software Engineering?

We continue the characterisation of software engineering that we began on
the very first page of this preface.

e Software engineering: To us, in a most general sense, ‘software engi-
neering’, as are all kinds of engineering, is a set of professions which based
on scientific insight construct technologies, or which analyses technologies
to ascertain their scientific content (including value), or, usually, do both.

e “Software Engineer”: Thus the software engineer (but see the follow-
ing for a critique of this term) “walks the bridge” between computer and
computing science, on one side, and software artifacts (software technolo-
gies), on the other side, and constructs — or studies — the latter based
on insight gained from the body of knowledge established in the many
disciplines of computer and computing sciences.

In a more mundane way, software engineering embodies general and specific
principles, techniques and tools (i) for analysing problems amenable to so-
lution or support through computing; (ii) for synthesising such (program,
such as software) solutions; (iii) for doing this analysis and synthesis in large
projects, that is, projects involving more than one developer, and/or projects
for which the resulting software is to be used by other (people) than the devel-
oper(s); and (iv) for managing such projects and products (including planning,
budgeting, monitoring and controlling the projects and the products).

But because we can term a subject software engineering does not necessar-
ily mean that we can speak of “software engineers”. As formulated above, and
this must be understood clearly by all readers of these volumes, software engi-
neering is a body of principles, techniques and tools available to such people as
we may otherwise have wished to label “software engineers”. But for any one
person to be labeled a software engineer without further, more “narrowing”
qualifications seems problematic. It would give the “recipient” of the message
that person is a software engineer the belief that the person in question is
able to professionally tackle the development of well nigh any software. With
Jackson [307] we claim that there are no software engineers! There are com-
piler engineers, there are embedded systems (software) engineers, there are
information (cum database) systems (software) engineers, there are banking
software engineers, and so on, just as we speak of automotive engineers and
of electrical power engineers rather than mechanical or electrical engineers.

Thus the principles, techniques and tools of these volumes apply, we claim,
across a broad spectrum of specialty software engineers. These volumes bring
examples of applications of the principles, techniques and tools across the
broadest possible spectrum. The fact that principles, techniques and tools
are generally useful and can be deployed across a broad field of occupations
and applications only means that the student must also, additionally, study
gpecial texts on the chosen profession, compiler development, development of

XVI Preface — to Vols. 1-3

safety-critical real-time software, database systems, etc., to become a proper
specialty software engineer.

The Author’s Aspirations

So these then were and are my aspirations: To provide you with a differ-
ent, kind of textbook; to bring more than 30 years of exciting programming
methodological studies and controlled experimental practice into the larger
arena of software engineering; to show you what a beautiful world software
development can be when following the didactic cornerstones of linguistics,
philosophy, semiotics and mathematics; and to unload more than 25 years of
evolving lecture notes into a set of three coherent, consistent and relatively
complete volumes.

I have written these volumes because I wanted to understand how to
develop large-scale software systems. When I started, some 25 years
ago, writing lecture notes on this subject, I knew less than I do now.
Meanwhile I have had the great pleasure of having many clever and
eager students follow the practice. I have initiated the large-scale com-
mercial developments of compilers for such unwieldy programming
languages as CHILL [254,255] and Ada [128,129,155], and I have thus
honed and corrected my thinking. Writing about software engineering
while testing out the ideas has been a sobering experience. There are
still many corners of software engineering that I have to write about,
think and experience. Meanwhile, this is what you get!

These volumes thus represent my chef d’ceuvre.

Role of These Volumes in an SE Education Programme

Who are the target readers of these volumes? That question is indirectly
answered in the following.

What roles do we see these volumes serve in the larger context of an
academic software engineering education, one that leads to a Master’s degree
in the subject? Figure 1 shall assist us in answering that question.”

9The labelled boxes of Fig. 1 designate topics that enter into the software en-
gineer’s daily practice, and which are therefore useful topics of learning. In Fig. 1
two-way arrows between boxes indicate that the designated topics can be studied
simultaneously. Directed (one-way) arrows between boxes designate a suitable, pro-
posed precedence relation between the learning of these topics. A “fan in” (multiple
source) arrow shows that a topic may need (i.e., have as prerequisites) the knowledge
of one or more (predecessor) topics. A “fan out” (possibly multiple target) arrow
shows that the arrow source topic is a “must” for one or more successor topics.

Preface — to Vols. 1-3 XVII

Mathematical Recur§|ve Mathematical
Logic (I Function Logic (Il Algebra
gic (1 Theory gic (1)
Imperative SOFTWARE ENGINEERING Functional Logic Parallel
Programming |— Volume 1 ~— Prog i Prog i fe—= P i
{Java) Basic Abstraction Principles (Standard ML) {Prolog) (occam)

l

SOFTWARE ENGINEERING
Volume 2
Ad d ification T

|

SOFTWARE ENGINEERING
Volume 3
From Domains via Requirements to Software

l

SOFTWARE ENGINEERING

A suitable Text on

Fig. 1. Courses based on these volumes: a first setting

We emphasise that we here place these volumes in the context of an academic
Software Engineering MSc education programme — not to be confused with an
academic Computer Science MSc education. The former aims at the produc-
tion of industry programmers: developers of commercial software. The latter
aims at theoreticians, useful in an academic institution of study. Another ex-
planation, wrt. another diagram, would thus have to be given for an equally
likely setting in the context of an academic programme for an MSc degree
in (theoretical) computer science, and yet another one for an undergraduate
course of an academic software engineering BSc education programme.

Prerequisite or “concurrent” courses: We assume that the reader of

these volumes is — or while following a course based on Vol. 1 of these
volumes becomes — familiar with the general topics of imperative, func-
tional, logic, parallel and machine programming. Teaching in these topics
must cover both skill-learning and training wrt. specific languages such as,
for example, SML (Standard ML) [261, 389] for functional programming,
Prolog [295,351] for logic programming, Modula-3 [262,401], Oberon [527)
and Java [10,20,243,348,470,511] for modular (i.e., object-oriented) pro-
gramming, and occam [364] and a machine language for some well-chosen,
“current-technology” hardware (e.g., Intel-like) chip. Their teaching must
also cover — to a basic extent — the knowledge acquisition wrt. the theo-
retical background for these programming styles and languages: recursive
function theory [136,444], logic for logic programming [295, 351], Hoare
Logic for imperative programming [15,16] and process algebras for concur-
rency (CSP [288,289,448,456] and Petri nets [313,421,435-437]). The ma-
chine programming topic [379,501,511] is the only real hardware-oriented,
but not hardware-design-oriented [279,418], course. Codesign [482], that

XVIII Preface — to Vols. 1-3

is, design of combined hardware/software systems (typical, for example,
for embedded systems, see below) is not covered. But one could “add
other boxes”! Included in the above kinds of course, or additional to these,
we expect the reader to have some working knowledge of algorithms and
data structures, i.e., to be familiar with the classical as well as modern
such algorithms and data structures and measures of concrete complex-
ity [7,357,371,495,524].

e Auxiliaries: The reader is assumed to be — or to become, in conjunc-
tion with the software engineering study of which these volumes are part
— comfortable with mathematics — to a Bachelor’s degree level in the
subjects listed. We suggest [534], a delightful “smallish” introduction, and
the substantial introduction to discrete mathematics [213]. We find [213]
to be an excellent textbook for an entirely separate, and major, course on
that topic. One that every software engineer is assumed to take.

Algozl(thms Machine
Data Structures Programming
SOFTWARE ENGINEERING Graph Theory
Volume 1 and
Basic Abstraction Principles Combinatorics
Software SOFTWARE ENGINEERING Caleulus:
Tools Laboratory Volume 2 Differential
Unix/Linux Advanced Specification Techniques Equations
MS Windows
G, Graphics, Scripts l
Web/nternet
Lexical Scanners SOFTWARE ENGINEERING Statistics
Parsers Volume 3 and
Etcelera From Domains via Requil to ility Theory
SOFTWARE ENGINEERING y
- Operations
A suitable Text on
- N Research

Fig. 2. Courses based on these volumes: a second setting

Similarly, but more thought of as part of term projects and other forms
of laboratory (including self-study) work, we expect the reader to be rea-
sonably comfortable with practical, existing platform technologies (the
Software Tools Laboratory box).

e Main course: These volumes are then to serve in a main set of three
courses on software engineering — and before the breadth and depth of the
follow-on courses are attempted. We additionally would advise acquisition
of the two books [236, 238], the first as supplementary, the second to fill
out especially the verification (i.e., the design calculi) parts which are not
developed in these volumes.

Preface — to Vols. 1-3 XIX

e Follow-on courses: Classical software engineering has focused rather
much on the “navel-gazing”, i.e., introspective parts of computing systems:
compilers, database systems, distributed systems, operating systems, real-
time (fault-tolerant and) embedded systems, etc. Ideally such topics should
now be covered on the basis of, and from the point of view of, formal spec-
ification and design calculi. The embedded systems topic (given 1-3 units
of work load) could go as far as including hardware/software codesign [482]
and otherwise rely strongly on other systems engineering issues.

SOFTWARE ENGINEERING
Volume 1
Basic Abstraction Principles

|

SOFTWARE ENGINEERING
Volume 2
Hication T

| I L I 1

Linguistics of SOFTWARE ENGINEERING Operating Database Database
Programming Volume 3 Systems Theory and Management
Languages From Domains via Requirements to Software Development Systems Systems
i I
Semantics of SOFTWARE ENGINEERING Embedded, Safety Distributed Cryptography
Programming A suitable Text on and Real-time Systems and
Languages i il Critical Systems ¥ Secure Systems
Compiler & Systems Application
Interpreter Programming Systems
Development Practicum Practicum

Fig. 3. Courses based on these volumes: a third setting

Additionally we plead that each software engineering student take two
“practica”: A large, project and colloquium/seminar-oriented “systems
programming” and a similar “applications systems” course which exper-
imentally and exploratively researches and develops a non-trivial hard-
ware/software control system, respectively a commercial, industrial, or
other application such as amply hinted at in these volumes!

e A final software engineering course is hinted at: “Software Engineering
Management”. We have quite some material for lectures on this topic. For
the time being we refer to the excellent book by Hans van Vliet [512].

The linguistics of formal languages, including theories of formal semantics, is
crucial knowledge to be possessed by the professional engineer. Two courses
relate to this: the leftmost boxes in rows three and four of Fig. 3. The lin-
guistics course could be based, for example, on David A. Schmidt’s or John
Reynolds’ works. References are [455], respectively [442]. The semantics course
could be based, for example, on any of [183,252,443,454,497, 521].

XX Preface — to Vols. 1-3

Why So Much Material?

These volumes are more-or-less self-contained. We expect these volumes to be
used in university and college courses, and to be studied by readers on their
own. Some universities and some colleges cover material in courses that lie
early in the course curriculum that we also bring here. So it could be assumed,
and left out? No, not quite, since other universities and colleges do not cover
such prerequisite material. Hence these volumes, again and again, must make
these excursions. Since these volumes significantly rely on mathematics —
not anything advanced, not something for which any deep theorems need be
known or used — we need to recapitulate some of this material in Chaps. 3-9.
There we also explain and illustrate the A-calculus.

Since actual life phenomena have to be perceived, whether manifest or
not, that is, have to be conceptualised, we make deep excursions, in Vol. 3’s
Chaps. 3, 5, 6 and 7, into what constitutes a methodology, what are definitions,
what are phenomena and concepts, and what is a description.

Since language is such an important basis for all we do in software en-
gineering, and since we cannot rely on the necessary topics having already
been learned, i.e., being known, we need also to make deep excursions into
the pragmatics, the semantics and the syntax, in toto, the semiotics of lan-
guages, whether formal or informal. Since automata and finite state machines
likewise form an indispensable component of our science and engineering we
need also cover that topic in Vol. 2’s Chap. 11. In covering all these adjunct
ideas we supply their treatment with a twist: We present them from unconven-
tional angles. We expect, thereby, that the reader achieves a different view on
these matters, one that is more relevant to engineering than perhaps science,
more relevant to practice than to theory. In any actual course the lecturer can
therefore, based on local course curricula, leave out some of the “excursion”
material.

How to Use These Volumes in a Course

Together with these volumes it is planned to make available over the Internet:

http://www.imm.dtu.dk/“db/The-SE-Books
a comprehensive set of electronic documents:

e a large variety of suggested course structures (with references to volume
chapters and slides)

group project descriptions — some with solutions

large-scale development examples

URLs to formal methods pages

URLs to formal methods tools

Preface — to Vols. 1-3 XXI

Via the publisher there will, from the day the book is published, be available,
for bona fide lecturers,

o several thousand postscript/pdf lecture slides
e selected exercise solutions
e representative (student) project reports

The slides will cover a large subset of the text of these volumes. By means
of viewing facilities on most computers the lecturer will be able to personally
select those slides that cover suitable lectures.

Brief Guide to the Book

The book is divided into three volumes. Each volume is divided into several
parts. Most parts are composed from several chapters or appendixes.

Most chapters offer exercises. A special set of exercises has been formu-
lated. Their presentation spans almost the entire Vol. 1. These exercises are
introduced in Appendix A.

All volumes have extensive cross-referencing indexes and bibliographic ref-
erences. There is, in Vol. 1, a Glossary, Appendix B. It is intended to cover
all three volumes. The glossary can be read independently of the rest of these
volumes.

Appendix A of Vol. 2 brings our conventions for naming identifications of
types, values, functions, variables, channels, objects and schemes, as well as
parameters over most of these.

Brief Guide to This Volume

This volume has several chapters. The chapters are grouped into parts. Fig-
ure 4 abstracts a precedence relation between chapters. It is one that approx-
imates suggested sequences of studying this volume.

Chapter 1 is considered a prerequisite for the study of any chapter.
Chapters 2—4 may be skipped by readers with some schooling in discrete
mathematics.

e Chapters 5—6 may be skipped by readers with a bit more schooling in
discrete mathematics.

e Chapters 7-9 can only be skipped by readers who have a reasonably firm
grip on the topics mentioned.
Chapters 10-16 form the core of Vol. 1.
If, after Chap. 1, you continue with Chap. 2, then you should study all of
Chaps. 2-9.

e If, after Chap. 1, you continue with Chap. 5, then you should study all of
Chaps. 5-9.

XXII Preface — to Vols. 1-3

1

Introduction

Functions
inRSL

18 ‘

\— z
Numbers
umbe 3
e
© 4
5
Types 6
| Functions.
7]
Lambda 8
Calculus
| algebras °
Logic
19
At
L’ cormic: "
Types in RSL
—*|Functio
Definitions 12
inASL —!Property— and
Model--Oriented 13
Abstraction —
Sete in RSL 14
in RSL 15
Lists in RSL. 16
| Maps in RSL
17
\—*‘ Higher—-Order

\—19

Applicative
i 20

Imperative

Programming ||

21

Programming | — coneurrent

Specification
Programming

22

Fig. 4. Chapter precedence graph

Chaps. 7-9.

It is no harm to study Chap. 22.

Within most chapters many sections can be skipped. Typically those with
larger examples or towards the end of the chapters.
In this way a teacher or a reader can compose a number of suitable courses

and studies.

If, after Chap. 1, you continue with Chap. 7, then you should study all of

You can skip Chaps. 17 and/or 18 before continuing with Chaps. 19-21.
e You can exit your study of this volume after any of Chaps. 16-21.

Preface — to Vols. 1-3 XXIII

Acknowledgments

The author explicitly acknowledges the following colleagues, most of whom I
have worked with, and who over the years have greatly influenced my thoughts
and actions: Cai Kindberg, Jean Paul Jacob, Gerald M. Weinberg, Peter Lu-
cas, Gene Amdahl, John W. Backus, Lotfi Zadeh, (the late) E.F. (Ted) Codd,
Cliff B. Jones, (the late) Hans Beki¢, Heinz Zemanek, Dana Scott, (the late)
Andrei Petrovich Ershov, Hans Langmaack, Andrzej Blikle, Neil D. Jones,
Jgrgen Fischer Nilsson, David Harel, Bo Stig Hansen, Sgren Prehn, Sir Tony
Hoare, Michedl Mac an Airchinnigh, Michael Jackson, Zhou ChaoChen, Chris
George, Jim Woodcock, Kokichi Futatsugi, Joseph A. Goguen, Larry Druffel
and Wolfgang Reisig — listed more-or-less chronologically. I wish in particular
to acknowledge my deepest thanks and gratitude to Sgren Prehn and Chris
George — for more than a quarter century of inspiration.

I also express my gratitude to the members of IFIP Working Groups
WG 2.2 and WG 2.3 (not already mentioned above). The meetings of these
working groups, with their “free for all” topics for discussion sessions and de-
bates, have helped me sharpen and focus on what these volumes are about:
Jean-Raymond Abrial, Jaco W. de Bakker, Manfred Broy, (the late) Ole-
Johan Dahl, (the late) Edsger W. Dijkstra, Leslie Lamport, Zohar Manna,
John McCarthy, Bertrand Meyer, Peter D. Mosses, Ernst-Riidiger Olderog,
Amir Pnueli, John Reynolds, Willem-Paul de Roever and Wlad Turski —
listed alphabetically.

From the writing (and copy-editing) phase of these volumes invaluable
thanks goes to my former students, Christian Krog Madsen (who wrote
Chaps. 12-14 of Vol. 2), Steffen Holmslykke (who wrote Sect. 10.3 of Vol. 2),
Martin Péni¢ka (who basically wrote Sects. 12.3.4, 14.4.1 and 14.4.2 of Vol. 2),
and to Hugh Anderson. Final, dearest and warmest thanks goes to my editors
at Springer. First Ingeborg Mayer, then Ronan Nugent. I also thank the Copy
Editor, Tracey Wilbourn — whose thorough work is deeply appreciated.

1%&\&:@ -

Dines Bjgrner
National University of Singapore, 2004-2005

Contents

Preface VII
Reasons for Writing These Volumes X
Shortcomings of These Volumes.o i, X
Methods of Approach. o XII
A New Look at Software XII
Formal Techniques “Light” o i XIII
The “Super Programmer” i X1V
What Is Software Engineering? oL XV
The Author’s ASpirationsooiiiiiiiiii ... XVI
Role of These Volumes in an SE Education Programme XVI
Why So Much Material? XX
How to Use These Volumes in a Course XX
Brief Guide to the Book i XXI
Guide to This Volume XXI
Acknowledgments XXIII

Part I OPENING

1

Introduction 3
1.1 Setting the Stage 3
1.2 A Software Engineering Triptych 7
1.2.1 Software Versus Systems Development 7
1.2.2 Motivating the Triptych 7
1.2.3 Domain Engineering........... L. 7
1.2.4 Requirements Engineering........................ 9
1.2.5 Software Design 11
1.26 Discussioniiiiiiiiii 12

1.3 Documentationuiuiimn i 13

XXVI

14

1.5

1.6

1.7

1.8
1.9

Contents

1.3.1 Document Kinds........ oLt 14
1.3.2 Phase, Stage and Step Documents 14
1.3.3 Informative Documents 15
1.3.4 Descriptive Documents 17
1.3.5 Analytic Documents.............. ... coiiiia.... 22
Formal Techniques and Formal Tools 25
1.4.1 On Formal Techniques and Languages 25
1.4.2 Formal Techniques in SE Textbooks 26
1.4.3 Some Programming Languages 26
144 Some Formal Specification Languages 27
1.4.5 Insufficiency of Current, Formal Languages......... 29
1.4.6 Other Formal Tools 30
1.4.7 Why Formal Techniques and Formal Tools? 30
Method and Methodology 31
1.5.1 Method 32
1.5.2 Methodology L. 32
1.5.3 Discussionl 32
1.56.4 Meta-methodology 32
The Very Bases of Software........... 33
1.6.1 Didactics and Paradigms......................... 34
1.6.2 Pragmatics, Semantics and Syntax 34
1.6.3 On Specification and Programming Paradigms 38
1.6.4 Descriptions, Prescriptions and Specifications 38
1.6.5 Metalanguages.......... ... i 39
1.6.6 SUMMATY . oottt e e e 39
Aims and Objectives. oo i 40
171 AIMS oo 40
1.7.2 ODbjectivesot e 40
1.7.3 Discussion 41
Bibliographical Notes 41
EXerciSes . .. oo 41

Part II DISCRETE MATHEMATICS

2

Numbers ...t i e et e e 45
2.1 Introduction 45
2.2 Numerals and Numbers 46
2.3 Subsetsof Numbers i, 46
2.3.1 Natural Numbers: Nat 46
232 Imtegers:Int i.ill.. 48
2.3.3 Real Numbers: Real 49
2.3.4 Irrational Numbers............ 50
2.3.5 Algebraic Numbers........... ... i, 50

2.3.6 Transcendental Numbers........... 50

Contents XXVII

2.3.7 Complex and Imaginary Numbers 51
2.4 Type Definitions: Numbers 51
2.5 SUIIMATY oottt et e e e e e 52
2.6 Bibliographical Notes 33
2.7 EXErCiSes - oo 53
s 1] 1 PP 55
3.1 Background 56
3.2 Mathematical Sets........ . ..o i 56
3.3 Special Sets ... 58

3.3.1 Axiom of Extension oo 58

3.3.2 Partitions........... . 58

333 PowerSets o8
3.4 Sorts and Type Definitions: Sets 28

3.41 Set Abstractionsoiiiiiiiiii. 58

3.4.2 Set Type Expressions and Type Definitions......... 59

343 SOrtS e 29
3.5 Setsin ROL ...t e 59
3.6 Bibliographical Notes 60
3.7 ExXercisesioiiii e 60
Cartesians e 63
41 The Issues. ..ottt e 63
4.2 Cartesian-Valued Expressions, 64
4.3 Cartesian Typesttt i e 64
4.4 Cartesian Arity ...t 65
4.5 Cartesian Equality i, 66
4.6 Some Construed Examples 66
4.7 Sorts and Type Definitions: Cartesians 68

4.7.1 Cartesian Abstractions 68

4.7.2 Cartesian Type Expressions and Type Definitions ... 68
48 Cartesiansin RSL. 69
4.9 Bibliographical Notes 69
410 EXOrCiSeS - oottt e 69
Y P S ot e e e 71
5.1 Values and Typeso e 72
5.2 Phenomena and Concept Types 73

5.2.1 Phenomena and Conceptso 73

5.2.2 Entities: Atomic and Composite 73

5.2.3 Attributes and Values 74
5.3 Programming Language Type Concepts 77
5.4 Sorts or Abstract Types.couiiiiiiiii i 80
5.5 Built-in and Concrete Types. ...t ... 81
56 Type Checking........co i 82

XXVIIT Contents
5.6.1 Typed Variables and Expressions 82
5.6.2 TypeErrors........ ..o i 83
5.6.3 Detection of Type Errors 83
5.7 Types as Sets, Types as Lattices 84
5.8 SUMMATY .ottt ittt ittt ettt 84
5.9 ExXErcisesooiiii e 84
6 Functions.............. . i e 87
6.1 General Overviewot 89
6.1.1 Special Remarks o i 89
6.2 Thelssues........ouniuii e e, 90
6.2.1 Background i, 90
6.2.2 Some Concepts of Functions...................... 90
6.3 How Do Functions Come About? 94
6.4 An Aside: On the Concept of Evaluation 96
6.4.1 [E]Valuation, Interpretation and Elaboration 96
6.4.2 Two Evaluation Examples 96
6.4.3 Function Invocation/“Function Call” 98
6.5 Function Algebras 98
6.5.1 Functions 98
6.5.2 Function Types, 98
6.5.3 Higher-Order Function Types..................... 99
6.5.4 Nondeterministic Functions 99
6.5.5 Constant Functions 100
6.5.6 Strict Functions 101
6.5.7 Strict Functions and Strict Function Invocation 101
6.5.8 Operations on Functions 101
6.6 Currying and A-Notationo i, 103
6.6.1 CUITYINg . ..ottt e 103
6.6.2 A-Notation 103
6.6.3 Example of Currying and A-Notation 104
6.7 Relations and Functions........ 104
6.7.1 Predicates 105
6.7.2 Function Evaluation by Relation Search............ 105
6.7.3 Nondeterministic Functions 106
6.8 Type Definitions i 106
6.9 Conclusion 106
6.10 Bibliographical Notes i 107
6.11 EXEOICISES o e it it it et e e 107
7 A X-Caleculus 109
7.1 Informal Introductiono i 110
7.2 A “Pure” A-Calculus Syntax i, 110
7.3 A X-Calculus Pragmaticst 112
74 A “Pure” A-Calculus Semantics ..o . 112

Contents XXIX

7.4.1 Free and Bound Variables 113

7.4.2 Binding and Scope i 113

7.4.3 Collision and Confusion of Variables............... 113

744 Substitution.......... i 114

7.4.5 oa-Conversion and g-Conversion Rules 115

746 A-Conversionoeuueen e inenneineenan 115

7.5 Call-by-Name Versus Call-by-Value 116
7.6 The Church-Rosser Theorems — Informal Version 117
7.7 The RSL A-Notation i, 117
7.7.1 Extending A-Expressions................. 117

7.7.2 The “let ... in ... end” Construct................ 118

78 Fix Points.... ... 119
781 Thelssue i 119

7.8.2 Informal Qutline 119

7.8.3 The Fix Point Operator Y, 120

7.8.4 Fix Point Evaluation 121

7.9 DisCussiono.ioiini e 122
791 General..... ... 122

7.9.2 On Minimal, Maximal and All Fix Points 122

7.93 Emphasis ... 122

7.9.4 Principles, Techniques and Tools 122

7.10 Bibliographical Notes i L. 123
7.10.1 Referenceso 123
7.10.2 Alonzo Church, 1903-1995 123

TA1 EXerCISOS o o et et ettt et e e et e e 123
Algebras. e 127
81 Introduction........o, 127
8.2 Formal Definition of the Algebra Concept 128
8.3 How Do Algebras Come About?.......................... 129
84 Kindsof Algebras i 130
84.1 Concrete Algebras o i, 130

84.2 Abstract Algebras....... i 130

8.4.3 Heterogeneous Algebras........... 131

844 Universal Algebras 132

8.5 Specification Algebras 133
85.1 Syntactic Means of Expressing Algebras 134

8.5.2 An Example Stack Algebra....................... 134

8.5.3 An Example Queue Algebra 135

8.5.4 Towards Semantic Models of “class” Expressions 136

8.6 RSL Syntax for Algebra Specifications 137
8.6.1 “class” Expressions., 137

8.6.2 “scheme” Declarations 138

8.7 Discussion......... ..ot 138
871 General..... 138

XXX Contents

8.7.2 Principles, Techniques and Tools 139

8.8 Bibliographical Notes i 139
8.9 ExXErcCisesooiiiii e 139
9 Mathematical Logic......... i i 141
9.1 The ISSUeS. .. oottt e e e e 142
9.1.1 Language of Boolean Ground Terms............... 142

9.1.2 Language of Propositional Expressions............. 143

9.1.3 Language of Predicate Expressions 143

9.1.4 Boolean-Valued Expressions 144

9.1.5 “chaos” — Undefined Expression Evaluations....... 144

9.1.6 Axiom Systems and Inference Rules 145

9.1.7 Proof Systems i 146

9.1.8 A Note on Two Axiom Systems................... 146

9.1.9 The “f ... then ... else ... end” Connective 147
9.1.10 DisCuSSION .. .ottt e 147

9.2 Proof Theory Versus Model Theory....................... 148
0.2.1 Syntax 148

9.22 Semantics............ ..t 148

9.2.3 Syntax Versus SemanticS............c.oveuneenon.. 149

9.2.4 Formal Logics: Syntax and Semantics.............. 149

9.2.5 Issues Related to Proofs 153

9.2.6 Relating Proof Theory to Model Theory 153

9.2.7 Discussioniiii i e 155

9.3 A Language of Boolean Ground Terms 156
9.3.1 Syntax and Semantics 156

9.3.2 The Connectives: ~, A, V, =, =, £, =c..... 157

9.3.3 Three-Valued Logic 158

9.3.4 Ground Terms and Their Evaluation 161

9.3.5 “Syntactic” Versus “Semantic Semantics” 164

9.3.6 Discussion 165

9.4 Languages of Propositional Logic............ 165
9.4.1 Propositional Expressions, PRO................... 166

042 Examples ... e 167

9.4.3 Proposition Evaluation, Eval. PRO 168

9.44 Two-Valued Propositional Calculi 169

945 Discussioni i 171

9.5 Languages of Predicate Logico oo, 171
9.5.1 Motivation 172

9.5.2 Informal Presentation 172

9.5.3 Examples ... 173

9.5.4 Quantifiers and Quantified Expressions 176

9.5.5 Syntax of Predicate Expressions, PRE 178

9.5.6 A Predicate Calculus i 180

9.5.7 Predicate Expression Evaluation 181

Contents

9.5.8 First-Order and Higher-Order Logics
9.5.9 Validity, Satisfiability and Models
9.5.10 Discussioniiiiiiiii i
9.6 Axiom Systems ...
9.6.1 General........ i
9.6.2 AXIOMS ... e
9.6.3 Axiom System
9.6.4 Consistency and Completeness................
9.6.5 Property-Oriented Specifications
9.6.6 Discussion i,
9.7 SUIMIMATY oottt ittt e
9.8 Bibliographical Notes
9.9 ExXercisesoo.iiiii e

Part TIT SIMPLE RSL

General e e
RSL Versus VDM-SL, Zand B,
What, Syntactically, Constitutes a Specification?.............
Towards an RSL “Standard” i,
RSL T00IS . oot it e
10 Atomic Types and Values in RSL
10.1 Imtroductiono,
10.1.1 Mathematical Versus Enterprise Modelling

10.1.2 The “Primitive” Model Building Blocks........

10.2 The RSL Numbersouiuiiiini i,
10.2.1 Three Types of Numbers.....................

10.2.2 Operations on RSL Numbers

10.3 Enumerated Tokens
10.3.1 Motivation

10.3.2 General Theory,

10.3.3 Operations on Tokens

10.3.4 Enumerated Tokens in Abstract Models........

10.3.5 Modelling Using Enumerated Tokens

10.4 Charactersand Textso iiennnan..
10.4.1 Motivation ...t

10.4.2 The Character and Text Data Types

10.5 Identifiers and General Tokens
10.5.1 Identifiers........... ...,

10.5.2 Operations on General Tokens

10.5.3 General Tokensccoiriinenennnn...

10.6 DiSCUSSION . . o oottt e
106.1 General....... i

10.6.2 Modelling Atomic Entities

XXXII Contents
10.7 EXEICISes ... oottt e e 217
11 Function Definitions in RSL it 221
11.1 The Function Typeot 221
11.1.1 Syntax of Function Types 221
11.1.2 Informal Semantics of = and = 222
11.2 Model-Oriented Explicit Definitions 222
11.3 Model-Oriented Axiomatic Definitions 223
11.4 Model-Oriented pre/post-Condition Definitions 224
11.5 Property-Oriented Axiomatic Definitions 226
11.6 Property-Oriented Algebraic Definitions................... 227
11.7 Summary of RSL Function Definition Styles................ 228
11.8 DISCUSSION . o v et e e e 229
119 EXerCISes . oo vttt e e e e et e 229
12 Property-Oriented and Model-Oriented Abstraction 231
12.1 ADStraction.ie i e 232
12.1.1 Thelssuescoouuiniiii i 232
12.1.2 Abstraction and Specification..................... 233
12.1.3 An Essay on Abstraction......................... 233
12.2 Property-Oriented Abstractions 235
12.2.1 Pragmatics of Property-Oriented Specifications 235
12.2.2 Syntactics of Property-Oriented Specifications 236
12.2.3 Semantics of Property-Oriented Specifications 240
12.2.4 DiSCUSSION . ..ottt e 240
12.3 Model Versus Property Abstractions 241
12.3.1 Representation and Operation Abstraction 241
12.3.2 Property- Versus Model-Oriented Abstractions. 241
12.3.3 Definitions 242
12.3.4 Representation Abstraction Examples 243
12.3.5 Operation Abstraction Examples.................. 246
12.3.6 Discussioniiiii i 248
12.4 Model-Oriented Abstractionscooiviiiiaann.. 250
12.4.1 Ultrashort Overview of the Next, Six Chapters 250
12.4.2 Models and Models 250
12.4.3 Underspecification, 251
12.4.4 Determinism and Nondeterminism 252
12.4.5 Why Loose Specifications? 253
12.4.6 Discussioniiiii it e 253
12.5 Principles, Techniques and Tools 254
12.5.1 Property- Versus Model-Oriented Specification?. 254
12.5.2 Property-Oriented Specification Style.............. 255
12.5.3 Model-Oriented Specification Style 256
12.5.4 TImplicit and Explicit Functions 257

12.5.5 No Confusion, Please! 257

13

14

Contents XXXIII

12.5.6 A Note on Observer Functions 258
12,6 EXEICISESs . ..ottt e e e 260
Sets In RS . ..o e 263
13.1 Sets: The ISSUES . .« oo v vt e e 264
13.2 The Set Data Typeot 265
13.2.1 Set Types: Definitions and Expressions 265
13.2.2 Set Value Expressions 266
13.2.3 Set Binding Patterns and Matching 271
13.2.4 Nondeterminism 272
13.3 Examples of Set-Based Abstractions 273
13.3.1 Representation I 273
13.3.2 FileSystems I i 273
13.3.3 Representation IT i o... 275
13.4 Abstracting and Modelling With Sets 276
13.4.1 Modelling Networks, 276
13.4.2 Modelling Pseudo-hierarchies 277
13.4.3 Modelling a Telephone System 280
13.5 Inductive Set Definitions i 284
13.5.1 Inductive Set Type Definitions.................... 284
13.5.2 Inductive Set Value Definitions 285
13.6 A Comment on Varying Sets........ ..., 287
13.7 Principles, Techniques and Tools 288
13.8 DiISCUSSIOI . . o vttt et e e e 289
13.9 Bibliographical Notes i i 289
13.10 EXEICISes . .o vttt e e e e 289
Cartesians in RSL it 295
14.1 Cartesians: The Issuesc. it 295
14.2 The Cartesian Data Typeo, 296
14.2.1 Cartesian Types and Type Expressions 296
14.2.2 Cartesian Value Expressions...................... 298
14.2.3 Cartesian Operations, I. 299
14.2.4 Cartesian Binding Patterns and Matching 299
14.2.5 Cartesian Operations, IT 300
14.3 Examples of Cartesian Abstractions 300
14.3.1 File Systems IT i, 300
14.3.2 Kuratowski: Pairsas Sets 301
14.4 Abstracting and Modelling with Cartesians 303
14.4.1 Modelling Syntactic Structures 303
14.4.2 Cartesian “let ... in ... end” Bindings 308
14.4.3 Modelling Semantic Structures.................... 308
14.4.4 Cartesians: A First Discussion 312
14.5 Inductive Cartesian Definitions............, 312

14.5.1 Inductive Cartesian Type Definitions 312

XXXIV Contents
14.5.2 Inductive Cartesian Value Definitions.............. 313
14.6 DiscussSiOnottt e 315
14.6.1 General 315
14.6.2 Principles, Techniques and Tools 315
147 EXOrCISeS « ot ot it ittt et e e 316
15 Lists inm ROL ... i e e 321
15.1 TIssues Related to Listso it 322
15.2 The List Data Type ... i 322
1521 List Types ..oviii i 322
15.2.2 List Value Expressions......... 323
15.2.3 List Binding-Patterns and Matching 327
15.2.4 Lists: Determinism and Nondeterminism Revisited .. 328
15.3 Small Examples of List-Based Abstractions 328
15.3.1 Representations...........ccuiiiiiiiiinnnnan.. 328
15.3.2 Stacks and Queues i 329
15.3.3 File Systems ITI. o i i i, 330
15.3.4 Sorting Algorithms 332
154 Abstracting and Modelling with Lists 333
15.4.1 Modelling Books Using Lists 334
15.4.2 Modelling “KeyWord-In-Context, KWIC” 335
15.5 Inductive List Definitions 340
15.5.1 Inductive List Type Definitions 340
15.5.2 Inductive List Value Definitions................... 341
15.6 A Review of List Abstractions and Models 342
15.7 Lists: A Discussion oot 343
15.8 EXOICISES .o oottt e e 343
16 Maps In RSOLttt it e et 349
16.1 Thelssues..ot e e 350
16.2 The Map Data Type.o 350
16.2.1 Map Types: Definitions and Expressions 350
16.2.2 Map Value Expressionso, 351
16.2.3 Map Binding Patterns and Matching 355
16.2.4 Nondeterminism 356
16.3 Examples of Map-Based Abstractions 356
16.3.1 Sorting ...ttt e 356
16.3.2 Equivalence Relations 357
16.4 Abstracting and Modelling with Maps 358
16.4.1 Graphs . ..ottt 358
16.4.2 Structured Tables 360
16.4.3 Hierarchies i 362
16.4.4 Relational File Systems (IV) and Databases 366
16.4.5 Complex Pointer Data Structures 369

16.4.6 Well-formedness of Data Structures 378

Contents XXXV

16.4.7 Discussiono 382

16.5 Inductive Map Definitions oo 383
16.5.1 Inductive Map Type Definitions 383
16.5.2 Inductive Map Value Definitions 384

16.6 A Review of Map Abstractions and Models 386
16.7 Maps: A Discussion.ot 388
16.8 EXEICISEs ... oot 388
17 Higher-Order Functions in RSL............... oiin... 393
17.1 Functions: The Issues 393
17.2 Examples Using Function-Based Abstractions 394
17.2.1 Functionals 394
17.2.2 Discussioncoieiiiiiiiiii i 395

17.3 Abstracting and Modelling With Functions 395
17.3.1 Concepts as Functions, 396
17.3.2 Operator Lifting o ... 399

17.4 Inductive Function Definitions 406
17.4.1 Inductive Function Type Definitions............... 406
17.4.2 Inductive Function Value Definitions 407

17.5 Review of Function Abstractions and Models 407
176 DiSCUSSION . . o oottt e e e et 408
17.7 EXOrCiSes . .o oot i e e e 408

Part IV SPECIFICATION TYPES

18 Types in RSOL ...t 413
181 The Issues. . ..o e 413
18.2 Type Categories.o e 415

18.2.1 Abstract Types: Sorts 415
18.2.2 Concrete Typesooooi ... 415
18.2.3 Discussionc.iiii i e 416
18.3 Enumerated Token Types Revisited 416
18.4 Records: Constructors and Destructors.................... 417
18.4.1 General 417
18.4.2 Variant Record Value Induction Axioms 418
18.4.3 AnExample...... i 419
18.5 Union Type Definitions o it 420
18.6 Short Record Type Definitions 421
18.7 Type Expressions, Revisited 421
18.8 SUBLYDPES . vt 422
18.9 Type Definitions, Revisited 422
18.10 On Recursive Type Definitions 423
18.11 DASCUSSION . o v et it e e e 423

18.11.1 General e 423

XXXVI Contents

18.11.2 Principles, Techniques and Tools 423
18.12 Bibliographical Notes i il 424
18.13 EXerCiSes . oo v vttt ittt e e 424

Part V SPECIFICATION PROGRAMMING

19

20

On Specification Programming................................. 427
On Problems and Exercisest 428
Applicative Specification Programming 429
19.1 Scope and Binding 430
19.1.1 Binding Patterns — An Informal Exposition 430
19.1.2 “let” Construct Scope and Binding [1] 432
19.1.3 Function Definition Scope and Binding [2].......... 432
19.1.4 “case” Construct Scope and Binding [3]............ 433
19.1.5 Comprehensions: Scope and Binding [4] 434
19.1.6 Quantifications: Scope and Binding [5] 435
19.2 Intuitionot e e 435
19.2.1 Simple “let a = Ezin E(a) end”l 435
19.2.2 Recursive “let f(a) = £4(f) in & (fa) end” 436
19.2.3 Predicative “let a:A @ P(a) in £(a) end” 436
19.2.4 Multiple “let a; = &g, in E{a) end”. 436
19.2.5 Literals and Identifiers........................... 437
19.3 Operator/Operand Expressions 438
19.4 Enumerated and Comprehended Expressions............... 438
19.5 Conditional EXpressionsoooieuniiiinenen... 439
19.6 Bindings, Typings, Patterns and Matching 440
19.6.1 The ISSUesot i 441
19.6.2 An Essence of Bindings and Patterns 441
19.6.3 Binding Patterns........ oL 443
19.6.4 Typings it 448
19.6.5 Choice Patterns and Bindings 448
19.6.6 SUMMArY . ..ottt 454
19.7 Review and DisCussionc.ouuiiiiiiiinnnennn. 455
1971 General ...t 455
19.7.2 Principles and Techniques........... 455
19.8 Bibliographical Notes i il 455
19.9 Exercises 456
Imperative Specification Programming 467
20.1 Intuition e 468
20.2 Imperative Combinators: A A-Calculus 468
20.2.1 [0] “variable” Declarations 468
20.2.2 [1] Assignments: “var := expression” 470

20.2.3 [9] State Expressions, 471

20.3

204

20.5

20.6

20.7

20.8

20.9

Contents XXXVII

20.24 [2] “skip”: No-Actlon, 471
20.2.5 [3] Statement Sequencing (;)........ 471
2026 [4] “if ...then ..else..end”, 472
20.2.7 [5-6] “while ... do ... end”, and “do ... until ... end” .. 472
20.2.8 [7] “case..of ...end”l 472
2029 [8 “for...in...do..end”ol 473
Variable References: Pointers 473
20.3.1 A Discourse on Simple References 473
20.3.2 Dynamic Allocation and Referencing 474
20.3.3 Discussion: Semantics First, Then Syntax 479
20.3.4 Discussion: Type Homomorphisms 480
20.3.5 The Notion of State oiiiiiiiin. 480
Function Definitions and Expressions 480
20.4.1 The Unit Type Expression, I..................... 481
20.4.2 TImperative Functions 481
20.4.3 Read/Write Access Descriptions 481
20.4.4 Local Variables il 482
20.4.5 The Unit Type Expression, IT.................... 482
20.4.6 Pure Expressions i, 483
20.4.7 Read-Only Expressionsc...coiioon. 483
20.4.8 Equivalence (=) and Equality (=)................. 484
Translations: Applicative to Imperative 486
20.5.1 Applicative to Imperative Translations............. 486
20.5.2 Recursive to Iterative Translations 487
20.5.3 Applicative to Imperative Schemas 488
20.5.4 Correctness, Principles, Techniques and Tools 495
Styles of Configuration Modelling 495
20.6.1 Applicative Contexts and States 495
20.6.2 Applicative Contexts and Imperative States 499
20.6.3 Imperative Contexts and States................... 502
20.6.4 Summary of Sequential Models 505
Review and Discussiono i, 005
20.7.1 Review ... e 505
20.7.2 Discussioniiiiiiii 506
Bibliographical Notes o i 506
20.8.1 Theory of Computationc..ouvon... 506
20.8.2 A Type Theory for the A-Calculus 506
20.8.3 Source Program Transformation Works 507
20.8.4 Laws of Imperative Programming 507
EXerCiSes . .. oot e 508

XXXVIII Contents

21 Concurrent Specification Programming 511
21.1 Behaviour and Process Abstractions 512
21.1.1 Imtroduction............ ...t iiinan.n. 513
21.1.2 On Process and Other Abstractions 513

21.2 Intuitionot e 514
21.2.1 Tlustrative Rendezvous Scenarios 514

21.2.2 Diagram and Notation Summary.................. 518
21.2.3 On a Trace Semanticsccoveninen. . 518

21.2.4 Some Characterisations: Processes, Etcetera 520
21.2.5 Principle of Process Modelling 521

21.2.6 Informal Examples o o i 522
21.2.7 Some Modelling Comments — An Aside 527
21.2.8 Examples Continued 528
21.2.9 Some System Channel Configurations.............. 529
21.2.10 Concurrency Concepts — A Summary 530

21.3 Communicating Sequential Processes, CSP 532
21.3.1 Preliminaries: Processes and Events 532
21.3.2 Process Combinators, Etcetera.................... 533
21.3.3 Discussioniiiiii e 536

21.4 The RSL/CSP Process Combinators 537
21.4.1 RSL-like Channels i ... 537
21.4.2 RSL Communication Clauses......... 538
21.4.3 RSL ProCessesuuiine it ea e 039
21.4.4 Parallel Process Combinator...................... 541
21.4.5 Nondeterministic External Choice................. 541
21.4.6 Nondeterministic Internal Choice 542
21.4.7 Imterlock Combinator........ 542
21.4.8 SUMIMNATY .« ottt ittt e e et e e e 542
21.4.9 A Noteof Caution 543

21.5 Translation Schemas i 543
21.5.1 Stage I: An Applicative Schema................... 543
21.5.2 Stage II: A Simple Reformulation 544
21.5.3 Stage III: Introducing Parallelism 544
21.5.4 Stage IV: A Simple Reformulation 545
21.5.5 Stage Relations o i, 546
21.5.6 Stage V: An Imperative Reformulation 547
21.5.7 Some Remarks.ot 547

21.6 Parallelism and Concurrency: A Discussion 547
21.6.1 CSPand RSL/CSPttt 547
21.6.2 Modelling Techniques. 548

21.7 Bibliographical Notes 548
21.8 ExXErciSesot e 548

Contents XXXIX

Part VI AND SO ON!

22 Etceteral e 557
22.1 What Have We Covered?t iiiiinennn.. 557
22.2 What Is Next?o ettt 557
22.3 What Is Next-Next?ot e i 558
224 A Caveat. ... oot e 559
22.5 Formal Methods “Lite” 559
22.6 Bibliographical Notes i 560

Part VII APPENDIXES

A Common Exercise Topics 063
A.1 Transportation Netsttt 563

A.2 Container Logistics i 564

A.3 Financial Service Industry 564

A4 Summary References to Exercises 566

B Glossaryo 567
B.1 Categories of Reference Lists 568
Bl GloSSary .. oovo ittt 568

B.1.2 Dictionaryc.iiuiiiiiniiii i 068

B.1.3 Encyclopeedia i 569

B.1.4 Ontologyovouiiii i 569

B.1.5 Taxonomyuiiuiiiiiiiiii i 569

B.1.6 Terminology.......... ... 969

B.1.7 Thesaurusc.oiiiii i 069

B.2 Typography and Spelling o i i 969

B.3 The GloSSes « .ottt e e 570

C Indexes...... ..o e e 649
C.l1 SymbolsIndex ..ot 650
C.1l Operators . ..c.ve it et 650

C.1.2 Constructorsoue ettt 652

C.1.3 Constant Value Titerals............ 653

C.1.4 Combinatorsoeiiinei i, 653

C.1.5 Caleuli ... 654

C.1.6 Abbreviations i i 654

C.2 ConceptsIndex ... i 656

C.3 Characterisations and Definitions Index 680

C4 AuthorsIndex 682

Referenceso e e 687

Part I

OPENING

1

Introduction

The prerequisites for studying this chapter are that you have academic
training in programming, that is, in algorithms and data structures, say
using two or more of the Standard ML, Java and Prolog programming
languages.

The aims are to set the stage for the entire set of volumes, to introduce
the “triptych” concept of domain engineering, requirements engineering
and software design, to emphasize the importance of documentation and
of descriptions, to preview the concepts of formal techniques, methods
and methodology, and to introduce the concepts of syntax, semantics and
pragmatics.

The objective is to guide you in the direction of what we think are to be
the important aspects of software engineering; that is, to set, with respect
to the aims and objectives of this book, your “spinal chord” to as close as
possible a “state” as that of their author.

The treatment is informal and discursive.

This chapter has been written so as to be read, if not in excruciating detail,
then at least such that the reader is hopefully “tuned” to somewhere near
the “wavelength” of the author of this chapter. The present chapter may
thus be read in between the study of most subsequent chapters.

1.1 Setting the Stage

Characterisation. Engineering is the mathematics, the profession, the dis-
cipline, the craft and the art of turning scientific insight and human needs
into technological products. .

The sciences of software engineering are those of computers and computing.

4 1 Introduction

Characterisation. Computer science is the study and knowledge of what
kind of “things” may (or can) exist “inside” computers, that is, data (i.e.,
values and their types) and processes, and hence their functions, events and
communication. .

Characterisation. Computing science is the study and knowledge of how
to construct those “things”. .

These volumes will provide material for teaching you some of the core as-
pects of the mathematics, the profession, the discipline, the craft and the art
of software engineering. The engineer walks the bridge between science and
technology, creating technology from scientific results, and analysing technol-
ogy to ascertain whether it possesses scientific values. These volumes will teach
you some of the science of computing, exemplify current software technologies,
and help you to become a professional engineer “walking that bridge”!

Students of these volumes are not expected to have any acquaintance with
the disciplines in the following list of computer science topics: automata, for-
mal languages and computability [296,319], programming language semantics
[183,252,443,454,497,521], type theory [1,241,407], complexity theory [319],
cryptography [363], and others as covered in, for example, [344]. The topics of
the above list, other than the first, will either be introduced in these volumes
or can be studied after having studied the present text.

Students of these volumes are expected to possess some fluency in the
following computing science topics: functional programming [261], logic pro-
gramming [295,351], imperative programming [20,243,290], parallel program-
ming [449], and algorithms and data structures [7,161,326-328].

The keywords art [326-328], discipline [194], craft [441], science [245],
logic [275], and practice [276], are also prefix terms of the titles of semi-
nal textbooks on programming, as referenced. In a sense these references also
serve to indicate our basic approach to programming. But software engineer-
ing goes beyond what has been implied by the above listings of computer and
computing science topics. Software engineering goes beyond the algorithm
and data structure, cum programming language skills. These computer and
computing science skills can and must first be reasonably mastered by the
individual, by the professional, academically educated and trained program-
mer. Software engineering is as much about making groups of two or more
programmers work productively together.! And software engineering is about
producing software which can be further deployed in the development of larger
computing systems by other developers.

To fulfill these latter aspirations, software engineering must augment the
knowledge of computer and computing sciences with such disciplines as project
and product management. By project management we colloquially mean: How
do project leaders plan (schedule and allocate) development resources, how

"However, the principles, techniques and tools covered by these volumes are also
required to be used even by the “lone” programmer developing her “own” software.

1.1 Setting the Stage 5

do they monitor and control “progress”, and so on? By product management
we colloquially mean: How does a software house determine a, or its, product
strategy and tactics, that is, which projects to undertake, which products to
market, how to price, service and extend them, and so on?

We detail a number of project management issues: (1) choice and planning
of development process, (2) scheduling and allocation of resources, (3) mon-
itoring and control of work progress, (4) monitoring and control of quality:
assurance and assessment, (5) version control and configuration management,
(6) legacy systems, (7) cost estimation, (8) legal issues, etc. There are other
issues, but listing just these shows, up here, early in these volumes, the large
variety of development concerns.

(1) Process (choice and) modelling is a project management issue. How
do the engineers proceed, what does one do first, then after that, etc.? There
is not just one right way of doing things, of proceeding in phases, stages and
steps, rather there are many eligible process models. First, the development
process is determined by the problem frame; second, by the novelty of the
problem; third, by the experience of the programmers and of management;
and so forth.

(2) Planning, scheduling and allocation of resources is another project
management issue. In planning we decide on which things to do. In scheduling
we decide on when to do these things, and in allocation we decide on which
resources (monies, people, machines, etc.) to deploy.

(3) Monitoring and control of work progress extends the list of project
management concerns. Once the project proper starts, after planning, one
needs to regularly and continuously check what has been achieved. And, if
what has been achieved is according to plan, then just continue. But if plans
are not being followed, then control must be asserted by possibly changing
the plan, rescheduling and/or reallocating development resources.

(4) Monitoring and control of quality assurance and assessment further
extends our project management concern list. The web of application do-
main knowledge that goes into a software product, the maze of hundreds of
mostly unrelated requirements that are expected fulfilled from the software
product and the “Babylonic towers” of software design techniques and tools
(languages, etc.) all necessitate careful formulations of what is meant by prod-
uct quality, as well as close scrutiny of the development process, in order to
ascertain whether quality objectives are at risk or are being met.

(5) Version control & configuration management: In the development of
software the programmers usually construct several versions, or “generations”,
of code. One must monitor and control these generations and versions. This
is called version control. It can be a sizable undertaking when, as is often the
case, there exist hundreds, if not up towards thousands, of such alternative
and complementary versions. Some of these versions may enter into one re-
lease of a product, while other subsets of versions enter into other releases
of related products. Combining such versions into software products is called
configuration management.

6 1 Introduction

(6) Legacy systems: At any time customers (users, acquirers, buyers) of
software operate computing systems composed from often “age-old” parts,
and these have to be maintained: adapted to new hardware and to new soft-
ware, perfected to offer relevant performance, and corrected (by removing
“bugs”). All three maintenance aspects become increasingly problematic as
the original software is either programmed in languages for which there are
no longer adequate, let alone “recent” compilers and related support tools,
or is documented in a style basically unfamiliar to new generations of pro-
grammers, or not documented at all. This kind of software and these kinds of
problems constitute the concept of legacy software.

(7) Cost estimation: Two issues of cost estimation may be relevant: es-
timating the cost of developing new (or maintaining old) software, and es-
timating competitive, profitable prices for software. The problem of cost es-
timation is intertwined with the problems of software development process
models, project and product management, quality assurance, version control
and configuration management, legacy systems, etc.

(8) Legal issues related to software: There are many legal issues related to
software. There are software patents, which establish intellectual, and prop-
erty rights. There is software curriculum accreditation, that is, the approval of
a university or college curriculum in software engineering. And there is soft-
ware house accreditation: the approval (usually, typically by, or through some
ISO-related agency), generally, of a software house as a trustworthy developer
of software. There is software engineer certification: the approval (usually by
some national engineering society) of a person being a bona fide professional.
Finally there is software product certification: the approval (usually by some
international agency, such as Lloyd's Register of Shipping, Bureaux Veritas, Nor-
wegian Veritas, TUV, or others) of a specific software product to meet certain
standards of quality.

Software engineering is anchored in programming: (1) in the design of software,
(2) before that in constructing the software requirements, (3) and before that
in understanding the application domain.

These volumes spend most of their pages on the development aspects of
software engineering: on principles and techniques for developing proper ap-
plication domain understandings, on principles and techniques for developing
proper software requirements and on principles and techniques for developing
proper software designs. These volumes unfold these principles and techniques
based on the tools of both informal and formal languages for describing do-
mains, prescribing requirements and specifyving (designing) software.

1.2 A Software Engineering Triptych 7

1.2 A Software Engineering Triptych

It is a definite new contribution of Vol. 3 that it focuses, in a “special way”, on
the triptych? of domain engineering, requirements engineering and software
design. That way emphasises that domain engineering, “ideally and logically
speaking”, precedes requirements engineering, which (and there is nothing
new in this), ideally and logically speaking, precedes software design. The
new contribution is the central role given to domain engineering.

1.2.1 Software Versus Systems Development

Although these volumes are primarily about the engineering of software, we
cannot avoid getting involved, to a nontrivial degree, in the more general
engineering of computing systems.

Characterisation. By a computing system we mean a combination of hard-
ware and software that together implement some requirements. .

Typically a computing system is distributed, over local areas as well as glob-
ally, and thus very typically requires extensive data communication hardware
and software. When, in the following, we say ‘software’ or ‘system’ we can
usually substitute the more general term ‘computing system’.

1.2.2 Motivating the Triptych

We motivate the roles of the three triptych constituents as follows: Before we
can (3) design software we must understand the (2) requirements put to this
software. And before we can prescribe the (2) requirements we must under-
stand the application (1) domain. What is discussed, again and again in these
volumes, is how we interpret the “ideal and logical” precedences mentioned
above. But first we will take a look at the three triptych components, or,
as we shall also refer to them in these volumes, the three phases of software
development.

1.2.3 Domain Engineering

Characterisation. By domain engineering we mean the engineering of do-
main descriptions. .

*Triptych: (i) From Greek ‘triptychos’, having three folds, (ii) an ancient Roman
writing tablet with three waxed leaves hinged together, (iii) a picture (as an altar-
piece) or carving in three panels side by side, (iv) something composed or presented
in three parts or sections. Same as trilogy.

8 1 Introduction

Characterisation. By a domain we mean (i) an area of human activity, (ii)
and/or an area of semi- or fully mechanised activity, (iii) and/or an area of
nature that can be described, and parts or all of which that can potentially
be subject to partial or total computerisation. .

Example 1.1 Three Domains: Examples of (respective) domains, related to
the above enumeration (i-iii), are: (i) book-keeping; (ii) the sending of freight
from a harbour of origin, on ships via other harbours, to a destination harbour;
and (iii) the planetary movements, i.e., celestial mechanics [494]. .

We understand a domain when we can describe it in an objective way.

Characterisation. By a domain description we mean an indicatively ex-
pressed description of the properties of the following domain facets: the in-
trinsics (the basic, invariant, and core), the enterprise (business, institution)
processes, the technology supports, the management and organisation, the
rules and regulation, the human behaviour, and possibly of other facets of the
domain. .

Domain descriptions explain the domain as it is. No reference can be made
to any requirements to desired software — that comes later! Furthermore, no
reference can be made to the desired software — that also comes later! So,
a domain description really has nothing to do with information technology
(IT) or software — other than what is already installed and deployed in the
domain, and then only if reference to such existing IT and software is deemed
relevant.

Example 1.2 A Logistics Domain: We are not describing the example do-
main, only informing about it, but in almost descriptional terms: A logistics
domain consists (a) of senders and receivers of freight; (b) of logistics firms
which arrange for senders and receivers to send or, respectively, receive freight;
(¢) of hubs (like harbours, railway stations, truck terminals and airport air
cargo centres) where freight may be loaded onto or, respectively, unloaded
from conveyors; (d) of conveyors (such as ships, freight trains, trucks, respec-
tively air planes) that are owned and/or operated by transport companies;
(e) of transport companies (like cargo liners, railway operators, trucking com-
panies, airlines); and (f) of the networks of transport routes (shipping lanes,
railway lines, highways or, respectively, air corridors).

Some further descriptions can be hinted at: A conveyor path® is a con-
nection between two hubs. A conveyor route is a sequence of one or more
connected paths. Some hubs are of two or more kinds, viz., harbours and
railway stations, air cargo centres and truck terminals, etc. Conveyors travel
their routes according to fixed time tables. A conveyor fee table prescribes
costs of transporting freight, per cubic meter, between hubs. This example is

1.2 A Software Engineering Triptych 9

continued in Example 1.3. Notice that there were no references to either re-
quirements or to possibly desired software (i.e., computing system), let alone
to such a system. -

A domain description, to repeat, describes the domain as it is. Chapter 5 of
Vol. 3 covers principles, techniques and tools for describing any universe of
discourse, whether domain, requirements or software. Part IV (Chaps. 8-16)
of Vol. 3 covers principles, techniques and tools for proper domain description.
Domain knowledge need be acquired, that is, elicited from those who work in
and are affected by the domain.

1.2.4 Requirements Engineering

Characterisation. By requirements engineering we mean the engineering of
requirements prescriptions. .

Requirements arise as a natural consequence of a contractual relation between
a client who procures (who is to acquire) some desired software (i.e., software
to be delivered), and the deliverer or the developer of that software. By re-
quirements we mean a list of one or more putatively expressed statements as
to which properties are expected from the software to be developed. Require-
ments must be acquired, that is, elicited from those who may be affected by
the eventually acquired software.

Example 1.3 Some Logistics Requirements: This example continues Exam-
ple 1.2. We do not exemplify a proper requirements prescription, we just hint
at what it might deal with. A logistics system needs software support for (at
least) the following kinds of activities:

First we exemplify some domain requirements. These are requirements
that solely pertain to the domain, and whose professional terms are domain
terms. Examples are: Software support for handling inquiries, from potential
senders, with logistics firms, as to possible routing of freight, schedules and
costs; software support for handling requests, from actual senders, to logistics
firms, for the dispatch of freight, and hence the issuance of bills of lading
(waybills) and the handling (passing on) of freight to be sent; software support
for logistics firms tracing the whereabouts of freight at hubs or with the owner
transport companies of scheduled conveyors; software support for the hub
management of conveyors in and out of hubs, the unloading and loading of
conveyors, and the receipt of freight from, and delivery of freight to logistics
firms.

Then we exemplify some machine requirements. These are require-
ments that primarily pertain to the machine to be built, that is: the soft-
ware+hardware of the desired computing system, in other words, whose pro-
fessional terms additionally include information technology terms in general.

3Examples of paths: Sea lanes, rail lines, roads, and air corridors.

10 1 Introduction

Examples are: The computing system shall have a mean time between failures
of two years; when the system is “down” it must at most be so for two hours,
and so on.

Finally, we exemplify some interface requirements. These are requirements
that pertain both to the domain and to the machine to be built, to the interface
between the machine and the domain, human users of the domain as well as
(other) natural phenomena and man-made equipment of the domain. Interface
requirements are about the phenomena that are shared between the domain
and the machine. Examples are: senders and receivers shall be able to ascertain
the transport status of their own freight from their own, home PCs based on
standard Internet browsers; the computing system shall display, for logistics
firms, the route networks in some “zoom-able” manners, and so on.

This example is continued in Example 1.4. .

Notice how Example 1.3 introduced three notions of requirements: domain
requirements, interface requirements and machine requirements.

This decomposition represents a pragmatic separation of concerns. Do-
main requirements, to repeat, are requirements that pertain solely to domain
phenomena, i.e., they are requirements whose professional terms are domain
terms. Interface requirements, to repeat, are requirements that pertain both
to the domain and to the machine to be built, to the interface between the
machine and the domain, human users of the domain as well as (other) natural
phenomena and man-made equipment of the domain.That is, to phenomena
shared between the environment and the machine. Machine requirements, to
repeat, are requirements that primarily pertain to the machine to be built,
that is, the software + hardware of the desired computing system. In other
words, the professional terms of machine requirements additionally include
information technology terms in general.

Notice how we, in rough sketching some requirements, relied on domain
terms having been previously described. We did, however, not precisely de-
scribe those terms. But we hinted at how it is the purpose of a domain de-
scription to explicate all such domain specific terms. We likewise relied on
machine (hardware + software technology, that is: IT) terms also having been
precisely specified, elsewhere!

Notice also how we “sneaked” the crucial concepts of domain, interface and
machine requirements into the example! Part V (Chaps. 17-24) of Vol. 3 covers
principles, techniques and tools for the proper prescription of requirements.

A popular view of requirements makes the following distinctions: user re-
quirements, system requirements, and non-functional requirements. How are
we to take these? User requirements form one entire set of requirements: do-
main, interface and machine requirements. So do system requirements. Non-
functional requirements are what we refer to as some interface and most, if
not all machine requirements. How does this work? User requirements do not
need to be complete, they can be, as we shall call them, rough-sketches, al-
though they are typically well-structured and carefully cross-referenced, and

1.2 A Software Engineering Triptych 11

they form input for the development of system requirements. System require-
ments must be consistent and relatively complete: they “improve” upon the
user requirements, and they form input to software design.

1.2.5 Software Design
Software: Code and Documents

Characterisation. By software we mean not only the code based on which
computers can act, but also all the documentation that is necessary for the
proper deployment of the code. This includes the business process reengineer-
ing manuals that are necessary for the enterprise (the institution) acquiring
the computing system to function most optimally when using this system, the
installation manuals that are necessary when initially installing the computing
system, the user training and daily use manuals that are needed in prepara-
tory training of future system users as well as in their daily use of the system
as installed, the maintenance manuals that are needed during the daily facil-
ities management of the installed system (for (adaptive) up- or downgrades,
for performance (perfective) enhancements, and for error corrections), and the
disposal manuals that are needed when dismantling the system. Ideally soft-
ware also includes a precise record of the software validation and verification
history: stakeholder responses, verification and tests, including test suites and
the results expected from, and actually recorded during, actual tests using
these test suites. By a test suite we mean a collection of data serving as input
to a test. .

Software Design, I

Characterisation. By software design we mean the implementation of (re-
quired) software, not just coding, but its stage and stepwise development and
documentation. .

Phases, Stages and Steps of Development

Characterisation. By software development we mean the combined devel-
opment of domain descriptions, requirements prescriptions, and software de-
signs. .

Software, as well as domain descriptions and requirements prescriptions, is
usually rather complex. Hence these need be developed according to the prin-
ciple of separation of concerns, i.e., of divide and conquer. Therefore we divide
the development phases of domain descriptions, requirements prescriptions
and software design into stages and steps. A first development, one that is
reasonably illustrative of a multistep development, is given in Examples 16.10
to 16.21. Part VI (Chaps. 25-30) of Vol. 3 covers software design.

12 1 Introduction
Software Design, 11

Conventionally we think of establishing, in stages of software design, first
the software architecture,* which in a sense explained, in Chap. 26 of Vol. 3,
implements a “high-level design” of the domain requirements, the interface
requirements and the machine requirements. In the second stage we establish
the program components which in a sense, explained in Chaps. 27 and 28 of
Vol. 3, designs the gross and detailed modular structure of the software. The
final or implementation stage, which usually consists of many steps, includes
platform reuse design in which available software components are examined
for their possible reuse in the implementation, modularisation or objectivisa-
tion, in which a fine grained decomposition of the program organisation into
modules takes place, and finally the coding itself in which final lines of code
are specified. That is, the instructions to the computer as expressed in some
programming languages and in calls to run-time system facilities and (other
platform) components.

In Example 1.4 we give an informally expressed software architecture de-
sign.

Example 1.4 A Logistics System Software Design: This example continues
Examples 1.2 and 1.3. We do not exemplify a proper software design speci-
fication. We just hint at what it might deal with. A logistics computing and
communication system is implemented as follows: Each sender or receiver,
each logistics firm, each transport firm, each hub and each conveyor (of a
transport firm) is implemented as a separate, concurrently operating process
with its own state. None of the processes share global state components, but
instead operate based on synchronised and communicated messages. Freights
are not implemented as objects, i.e., as independent processes. Shared data
is implemented as a separate process whose state represents the shared data
(i.c., a database). .

1.2.6 Discussion
General Issues

This ends our exposition of core concepts of the software development triptych.
In summary we emphasise two sets of relations between the three software
development phases. The three kinds (cum phases) of engineering development
can be summarised as follows: In domain engineering we describe the domain
as it is. In requirements engineering we prescribe the requirements to software
(i.e., a computing system) for the support of activities in the domain as we

“Wherever we say software architecture we could say computing systems archi-
tecture.

1.3 Documentation 13

would like to have them. In (the early stages of) software design we specify
the software such as we have decided it shall be.

The relations between the three kinds of documents arise from respective
development phases. Domain descriptions are indicative [308], as we seriously
believe the domain essentially is. We must make sure to describe all possible
behaviours of the domain, including as we normally expect well-functioning
actors to perform, but to also include erroneous, faulty, less diligent, sloppy,
or even outright criminal behaviours. Requirements prescriptions are puta-
tive [308], as we would mandate the software to behave. A requirements
prescription would naturally focus on well-functioning behaviour and try to
ensure correct behaviour of all actors, whether men or machines. Software
specifications are imperative [308], that is, mandatory.

When a domain description is formalised, the hedge ‘may’ is lost. And
when a requirements prescription is formalised, the hedge ‘must’ is likewise
lost. Formal domain descriptions, requirements prescriptions and software (de-
sign) specifications have in common a certain “authoritative air” which the
domain description can never have. A domain description is only an abstrac-
tion, or a model of some reality, but it is not that reality, whereas a require-
ments prescription is intended to be a precise exact model of the software to
be implemented.

The triptych approach to software engineering is central to these volumes.
We shall endeavour to enunciate clear principles, techniques and tools for the
development of domain descriptions, requirements prescriptions and software
specifications. Within domain descriptions we find such concepts as domain
attributes, stakeholders and their perspectives, and domain facets. Within re-
quirements prescriptions we find such concepts as domain requirements, inter-
face requirements, and machine requirements. Independently of these we find
such requirements techniques as domain projection, instantiation, extension
and initialisation. Within software design we find such concepts as software
architecture, program organisation and structure, and modularisation.

1.3 Documentation

This section is a precursor for a later chapter, Chap. 2 of Vol. 3, which in-
cludes many examples and enunciates many documentation principles, tech-
niques and tools. Since documentation is all pervasive and is all important in
software engineering, we shall this early in these volumes “lift the curtain” on
documents enough that we can refer broadly and generally to the document
types in the text that follows between this section and Chap. 2 of Vol. 3 in
which we finally dispose of the subject.

We saw, in the previous section, that software development entails three
major phases, possibly several stages within phases and possibly several steps
within stages. Carrying out each of the steps results in documents. These are

14 1 Introduction

documents on domains descriptions, requirements prescriptions and software
specifications.

There is nothing else® emanating from steps, stages and phases than docu-
ments, on paper or electronically. So the question is: What kind of documents?
In this section we will briefly overview three kinds of documents that result
from the engineering of the steps, stages and phases. It is important that
the reader keeps the universe of discourse in mind, either the domain, the
requirements, the software, the two first (domain and requirements), the two
last (requirements and software) or all three (an entire development). That is,
the various documents, even the informative ones, all have a specific universe
of discourse in mind. It must first be clearly stated, lest one of the “parties”
to a development contract gets confused from the very start!

1.3.1 Document Kinds

There are basically three kinds of documents that emerge from the develop-
ment process, and which the developer hence should be aiming at. These are:
(1) informative documents, or document parts, such as partners and current
situation, needs and ideas, product concepts and facilities, scope and span de-
lineations, assumptions and dependencies, implicit/derivative goals, synopsis,
design briefs, contracts, logbook; (2) the description documents, or docu-
ment parts, such as rough sketches (records of “brainstorming”), terminolo-
gies, narratives, and formal models; and finally (3) the analytic documents,
or document parts, such as description property verifications, verification of
correctness of development transition (i.e., development step), and validation
of formal and informal descriptions.

We will briefly review these kinds of documents, both as concerns their
pragmatics: why they are necessary, and as concerns their multitude: why
there are so many seemingly different kinds of documents.

1.3.2 Phase, Stage and Step Documents

A development phase results in a comprehensive, definitive set of informative,
descriptive and analytic documents. A development stage results, similarly,
in a comprehensive set of informative, descriptive and analytic documents,
or in a set of relatively complete domain, interface or machine requirements
prescriptions.

The boundaries between a subphase and a stage, and the comprehensive-
ness of either, are not sharp. It serves no purpose here, or for the approaches
advocated in these volumes, to try sharpen such distinctions. The stage and

SStrictly speaking: Understanding also emerges, and so do closer relations be-
tween client (acquirer, customer) and developer (deliverer, provider), etcetera. But,
contractwise, unless, for example, education and training is also part of a project,
documents are the only tangible goods delivered!

1.3 Documentation 15

step concepts are simply pragmatic. One could go on defining sub-steps, etc.,
but we refrain. Let the actual project determine a need for finer granularities!

If a distinction need be made between a phase and a stage, then the com-
prehensive set of stage documents represents one of more than one “stage” of
development within the phase.

A step of development produces only a part of a comprehensive set of
documents, for example: a comprehensive set of informative, descriptive or
analytic documents or document parts, or just, as a substep, one of these
documents, or document parts. More will emerge as we progress deeper into
these volumes.

1.3.3 Informative Documents

Characterisation. By an informative document we mean a document, or a
document, part, which informs, it does not necessarily describe a designatable,
manifest phenomena or concept. .

As the name implies, informative documents give information which takes
many forms. Informative documents include those of perceived or already
enunciated needs, product concepts and facilities, scope and span delineations,
assumptions and dependencies, implicit/derivative goals, synopsis, contracts,
design briefs, and so on.

Current Situation Documentation

Need for software development, or for requirements prescription, or for do-
main description usually arise out of a current situation. A current situation
may be that the domain is not well-understood, or that software is required.
Professional software development projects therefore produce an informative
document, — two—three pages — which inform of the current situation that
leads to needs.

Needs Documentation

Needs refer to perceived or actual needs for the product being desired, whether
a domain description, a requirements prescription, a software design (i.e.,
specification), or just plainly, as is most often the case, the software itself.
Needs can be expressed in many ways: We must understand the domain; we
must establish requirements; “So ein Ding muss Ich auch haben”®; software
to automate humanly menial, boring processes; software to speed up slow
processes; and so on. Needs must be quantified, if possible.

sk

54T must also have such a ‘thing’” (i.e., software).

16 1 Introduction
Product Concepts and Facilities

Product concepts and facilities refer to “brainstorming” or ideas (“dreams”).
That is, what the universe of discourse “contains”, or is to contain, what aims
and objectives the proposers have for the “product”, what roles, in a larger
socioeconomic context, the product is to serve (or fulfill). That is, what are
the strategic or tactical objectives of the developer and/or customers, how it
might complement earlier products, and for how it might open the way for, or
be, a next-generation product.

Design Briefs

Design briefs refer to documents which state what kind of project is to take
place: for which universe of discourse, specifically (aiming at a very specific
client), or generally (aiming at a largest class of such clients), or something
in-between. Whether the project is an ordinary development, or a research, or
some advanced project encompassing both R&D. Finally it also encompasses
what general deliveries are expected, the time frame, costs, institutions in-
volved, and so on.

Usually a scope and span delineation is part of or strictly adjoins the design
brief. To this we turn next.

Scope and Span Delineations

Scope and span delineations refer to the more specific subjects of the universe
of discourse to be dealt with in the project, that is, the target and modal scope,
for example: railways, or health care, or financial services; respectively new
development (incl. R&D), or maintenance, or other. The target and modal
span, for example, rolling stock monitoring and control, or electronic patient
journals, or stock trading; respectively off-the-shelf commercial, one-of-a-kind,
or other product.

Synopsis

Synopsis refer to a “capsule” (i.e., short overview) characterisation of the
product being desired, whether a domain description, a requirements pre-
scription or a software design. A synopsis is like a movie “trailer”. It tells, in
a few words, what the whole thing (domain, requirements or software) is all
about. A synopsis is not a description (a prescription, a specification), “but
almost”. It mentions all the most important phenomena of the universe of
discourse, their entities, types, values, actions, events and behaviours. It men-
tions their semantics and syntax, but it does so incompletely. And a synopsis
“links” these phenomena components to their pragmatics, that is what role
they serve, and so on.
Synopses often form an important introductory part of contracts.

1.3 Documentation 17
Contracts

A contract describes parties to the contract, the subject matter and consid-
erations.

Contracts refer to the legal documents that name contractors (the parties:
clients and developers); and that define what is to be developed: If software,
then the contract would normally refer to an already existing requirements
prescription; if requirements, then the contract would normally refer to an
already existing domain description; or if a domain description then the scope
and span delineation would be an important document part. In addition (the
considerations) contracts prescribe the development costs (estimates): If soft-
ware is to be developed, then the estimate should be rather binding. If require-
ments are to be developed, then costs could be based on fixed hourly rates
and some usually negotiable rough time estimates. Precise numbers cannot
be given since much, unforeseeable interaction needs to take place between the
contracting parties. Or if a domain description is to be developed—in which
case the project is basically a joint research effort—then the costs are usually
negotiable, and billed on a, say, monthly basis. A contract would (further con-
siderations) refer to legal conditions. Many other considerations may be part
of a contract document.

Discussion

We have outlined essential informative documents. We emphasise that the
developer (and/or client) may, in the extreme, have to “repeat” such docu-
ments for each phase, stage and, in a few cases, step of development and their
transitions. That is, informative documents may be needed for each and all
of the triptych phases: domains, requirements and software design.

We have chosen the wording documents (and documentation) so as to
indicate that one may view each of the listed informative document types as
designating instantiation of individual, separately “bound” documents. For
the next category of documents, the descriptive ones, we choose a wording that
allow their various types to designate document parts that can be “mingled”
(woven together) into larger documents.

1.3.4 Descriptive Documents

Characterisation. By a descriptive document we mean a document, or a
document, part, which describes a manifest phenomenon or a concept. .

The term describe, and hence the terms description, and descriptive, are here
used in a rather specific, narrow sense. A description designates (i.e., is some
text that sets forth, in words) either some physically existing part of nature
(one that centres around physical behaviours usually governed by laws of
physics) or some man-made part of the world (one that centres around human

18 1 Introduction

activities, including their interaction with artifacts) or some combination of
these two classes of worlds.

Thus a description, such as we shall deploy the term, tends to focus on
what might eventually “fit within a computer”. It may well be that what we
describe concerning a domain is not computable and cannot be “mimicked”
by a computer. A requirements prescription, however, “cuts down” on its
underlying domain description and makes sure that what is required is also
computable. Hence opinions, emotions, metaphysical, political or such other
similar subjective texts are not here considered descriptions.

It can be seen from the above, and it will reappear, again and again later,
that it is not a simple, straightforward matter to delineate precisely when
something is a description (a prescription, a specification), and what can be
described, that is, what can exist. Chapters 5, 6 and 7 of Vol. 3 focus on
principles and techniques for forming proper descriptions (specifications) and
touch on the philosophical issues of being.

We (thus) consider three kinds of descriptions: domain descriptions, re-
quirements prescriptions, and software designs. We point out that we use three
different terms synonymously: descriptions, prescriptions and designs (speci-
fications). Domain descriptions are about what already exists, “the world as
it is”.” Michael Jackson [308] refers to domain descriptions as indicative. Re-
quirements prescriptions are about what we expect from software, “the world
as we would like it to be”. Michael Jackson [308] refers to requirements pre-
scriptions as putative. Software (design) specifications then outline the design
structure of software, that is, specifications of specific types, values, functions,
events and behaviours. Michael Jackson [308] refers to domain descriptions as
imperative.

Descriptive Document Kinds and Types

We see basically two kinds of description documents: informal and formal. And
we see basically four types of description documents: rough sketches (docu-
ments which record results of “brainstorming”), terminologi.e., narratives and
formal models. One could consider the latter two types (narratives and formal
models) to stand for one type, the type of ‘proper description documents’, both
informal and formal. We shall stick with the above compartmentalisation.

Rough Sketches

Characterisation. By a rough sketch document we mean a descriptive doc-
ument which is a draft and whose description is incomplete, and/or is not well
structured. -

"From an epistemological point of view we may have to say: a world as we
subjectively observe it.

1.3 Documentation 19

When we first, as an initial act of proper development, attempt to develop
something, we then “brainstorm”. Recording the ideas that arose during
“brainstorming” results in a rough sketch. We are told either to develop a
domain description or a requirements prescription or a software design. And
we are not quite sure where to begin in the chosen universe of discourse. So
we “doodle”, or we rough sketch. A rough sketch is basically an unstructured
nonsystematic effort at describing whatever has to be described (prescribed,
specified).

A rough sketch serves the purpose — in the style of explorative, experi-
mental work — of coming to grips with the concepts that are central to the
universe of discourse, and from there with the derivative concepts. A rough
sketch shall then serve, as it is being developed, i.e., as a means to identify
the core concepts, and their relations. This identification process is of utmost
importance. It is of analytic nature, and is further discussed in Section 1.3.5.
Section 2.5.1 of Vol. 3 presents examples, principles and techniques of rough
sketching.

Terminology

Characterisation. By a terminology document we mean a description doc-
ument which, in a systematic, but not necessarily a complete or exhaustive
manner, lists and briefly explains a number of terms. .

The rough sketch descriptive step together with the concept formation an-
alytic step serves to identify and consolidate the important concepts (i.e.,
abstractions of phenomena, whether in domains, requirements or software).
This identification contains an element of naming these concepts. A list of
all these concept names and their characterisation (description, explanation,
definition) is what call a terminology. We could also call the list a glossary
or a dictionary or even an ontology. We refer to Sect. B.1 for discussions of
these four and the related terms of encyclopedia and thesaurus.

We consider it to be a very important and indispensable part of every phase
of software development to perform the following four terminology-related
actions: (1) to establish a (phase-oriented) terminology; (2) to use and hence
adhere to such a terminology; (3) to update, i.e., maintain such terminologies
and let changes be reflected back in all the documents where referenced terms
are used; (4) and to make available such terminologies.

Failure to do as advised above usually has dire consequences.
Section 2.5.2 of Vol. 3 will present examples, principles and techniques for
creating a terminology.

Narrative

Characterisation. By a narrative document we mean a description docu-
ment which systematically and reasonably comprehensively, in natural, yet

20 1 Introduction

most likely (application domain-specific) professional language, explains the
entities, functions and behaviours (including events) of a designated universe
of discourse. .

To narrate is to “tell a story”. The story (the narration) to be told here is
that of the chosen universe of discourse, be it a domain, or part of a domain,
a requirement, or a software design. The narrative must be such that the
listener (i.e., the reader) as well as, of course, the narrator, can formalise
the story: That is, we put down as a constraint upon the narratives that
they can be given mathematical, i.e., computing science, models or otherwise
be characterised mathematically. It is not a constraint on domain descriptions
that what is described is computable: that it can be “mimicked” (mechanised,
simulated) by a computer. It is indeed a constraint on domain requirements
prescriptions as well as on software design specifications that they constitute
computational models.

This insistence on formalisation can be justified as follows: The domain
requirements must imply something computable. After all, they are about a
computing system. The software design certainly must also imply something
computable.

But why insist on the domain description being formalisable? First, we
must accept that domain requirements, as mentioned in Example 1.3, are
derived from domain descriptions, and we would like the derivation operations
to be formally well understood. Second, we must accept that the original
role, as well as the successful pursuit of this role over the last two and a
half millennia, has been to formalise phenomena of the actual world, first
the physical ones, and now the human-made ones. So why not also attempt
this for domaing — essential parts of which cannot be said to be understood
unless we indeed have a formal model. Third, it must be understood that
we shall only attempt to formalise the semantic and the syntactic aspects
of domains, not their pragmatic imports.® Finally, we must accept that we
today, November 2, 2005, do not quite know how to formalise all aspects of
domains and requirements! That last caveat applies in particular to domain
descriptions and to interface and machine requirements prescriptions.

Thus the task is clear: describe, principally, what can or what ought be for-
malised. The style of the informal narrative follows from this dogma: Present
first text on the classes of entities (i.e., types: abstract type (sorts) and con-
crete types). Then postulate any fixed, i.e., constant, instantiations (i.e., val-
ues), if and when needed. Then postulate all the functions that apply to enti-
ties (i.e., observers, generators, predicates, auxiliaries), and characterise these
functions: Start by stating to which types of entities they apply (the input)
and the type of the resulting, the yielded (the output) entity; then characterise
the functional relationship between inputs and outputs. Similarly identify the

8For a discourse on pragmatics, semantics and syntax we refer to later material
in Sect. 1.6.2 and in Part IV (Chaps. 6-9 inclusive) of Vol. 2.

1.3 Documentation 21

behaviours (i.e., processes); and their interaction (i.e., their shared events,
such as synchronisation and communication).

We are guided in the task of informally describing something when we
follow the above “recipe”, the above “narration” dogma — which leads on to
the formalisation itself.

Chapter 2 of Vol. 3 (Sect. 2.5.3) presents examples, principles and tech-
niques for the construction of proper narratives. These principles and tech-
niques emerge from most chapters in Vols. 1 and 2. Specific domain, require-
ments, and software design narration principles and techniques are then cov-
ered in Parts IV-VI, respectively, of Vol. 3.

Formal Model

Characterisation. By a formal document we mean a document which ex-
presses a model (of some universe of discourse) in a formal language. .

A formal model is a model expressed in some mathematical notation or in
some formal language. A mathematical expression permits conventional, al-
beit precise reasoning, such as is normally done in textbooks on mathematics.
A formal language is one with a precise syntax, a precise semantics and a
mathematical logic proof system, that is, a set of proof rules that allow for-
mal reasoning, such as is done in textbooks on mathematical logic but here
with a twist! The informal narrative and a formal model may be intertwined,
textually, such as we often see in mathematics and physics textbooks. The
relation between the informal narrative and its formal model is necessarily in-
formal. That is, is one that can never be proven correct, it must be validated.

Volumes 1 and 2 contain many chapters which present examples, principles
and techniques for the construction of proper formal models. Specific domain,
requirements and software design formalisation principles and techniques are
then covered in Parts IV-VI, respectively, of Vol. 3.

Discussion

The informal rough sketch, the more structured, but still informal narration,
and the formal model, may be manifested in separate documents or may be
combined and intertwined with the analytic documents. Usually the rough
gketch is not documented in a manner suitable for release other than to the
directly involved client and developer staff, and then usually only to the devel-
opment staff. We say that the informal narratives, the terminologies and the
formal models may constitute deliverables. And we normally assume that the
rough sketches remain proprietary documents of the development enterprise.

22 1 Introduction
1.3.5 Analytic Documents

Characterisation. By an analytic document we mean a document whose
subject is a descriptive document. The text of an analytic document analyses
a descriptive document. .

As the term indicates, analytic documents are documents whose content rep-
resents analyses of other documents, here the descriptive documents. We con-
sider four kinds of analytic documents: those that represent (i) formation of
concepts from rough sketches (during brainstorming), (i) validation of formal
and informal description documents, (iii) description property verifications,
and (iv) verification of the correctness of development transitions (i.e., devel-
opment steps).

There may be other analytic documents. Examples: documents whose con-
tent analyses behavioural aspects of the intended computing system, such as
expected interface response times based on queueing theoretic studies; ex-
pected machine computation times based on complexity theoretic studies;
details of dictionary or database hashing algorithms based on statistical stud-
ies of reference patterns; and so on. Also included may be documents whose
contents analyse pragmatic issues such as, production line flow (congestion),
based on statistical studies, for a project and production planning, monitoring
and control computing system; company cash flow, based on similar studies,
for a financial services or an electronic trading computing system; and so
on. Further kinds of analytic documents can be imagined. We shall, in these
volumes, only cover those just mentioned.

Rough Sketch Analysis and Concept Formation

The most important task in describing a domain, prescribing some require-
ments or specifying some software design is to identify the core concepts
around which the universe of discourse evolves. On one hand are the phe-
nomena in the domain, the facilities that are desired from the software or
the software program constructs (data structures, procedures, etc.). On the
other hand these phenomena, in the actual world, these facilities (to be made
manifest in the required software), or these program code constructs are to be
conceptualised (as for the domain) or are indeed concepts, that is, abstract
ideas, once captured as requirements or in software code.

Thus we see a transition from a concrete, manifest, actual world of usually
tangible phenomena to an abstract, intellectually perceivable, but usually in-
tangible world of concepts. It is this transition, from what is perceivable, via
what is conceivable, to that which is “made into” software, that we need to
record.

We do so for the domain by first brainstorming, that is by sketching rough
domain descriptions and, from those, through analysis, identifying domain
concepts. Then for the requirements by conceiving. In that case by sketching

1.3 Documentation 23

rough requirements “prescriptions” and, from those, through analysis, identi-
fying requirements concepts. And finally we do this for the software by “cast-
ing”, that is, by sketching rough software “designs” and, from those, through
analysis, identifying proper software constructs.

Analysis with the aim of forming concepts is an art. Perhaps the hardest
thing to learn is to do it right, or at least to do it in such a way that pleasing,
elegant and “economic” concepts emerge. But reading lots of analysis exam-
ples might help. Chapters 13 and 21 of Vol. 3 therefore present analysis and
concept formation examples, principles and techniques that are found useful
in conducting the analyses hinted at above.

Validation of Descriptions, Prescriptions and Specifications

Characterisation. By a validation document we mean an analytic document
which validates the text of a description document (&c.) with respect to the
stakeholders of the described universe of discourse. .

By &c¢. we mean: prescription and specification document.

Domain descriptions must be validated, they are, most likely, written by a
small group of primarily developers, aided by a likewise small group of client
staff. But larger, more definitively representative groups of client staff need re-
view domain descriptions in order to concur. The same holds for requirements
prescriptions.

Domain description and requirements prescription validation is necessarily
a process of interaction between client staff and developers, and is necessarily
a process based on informal narrative and terminology descriptions. This kind
of validation is a crucial one: It is necessarily an informal, human process, and
it serves the role of getting the right product. Chapters 14 and 22 of Vol. 3
present validation examples, principles and techniques that are found useful
in conducting the analyses hinted at above.

Verification of Properties of Specifications

Characterisation. By a verification document we mean an analytic docu-
ment which proves, model checks, or tests statements made about the prop-
erties of a description or a prescription or a specification. .

A domain description denotes a theory. The description is only a model of
the domain, not the real domain. Expressed in precise English, and especially
expressed in some formal language, the model designated by a domain de-
scription possesses some properties. The sum total of all these properties is a
theory for the domain. The same is true for requirements prescriptions and
software design specifications.

We can informally reason about such properties when given a consistent
and relatively complete description (or prescription or specification). And we

24 1 Introduction

may record this reasoning formally when we also have a formal description
(formal prescription, formal [design] specification). The usefulness of formal
models is that such theorems may be proven. Proof of such theorems affords
a higher trust in the descriptions.

Example 1.5 Towards a Domain Theory: Assume that we have described a
railway system, its network of lines and stations, its train timetables and the
actual train traffic according to timetables. Let us further assume that the
train timetables, and hence the traffic is modulo 24 hours: repeats itself daily
and is always on time. Now a property that transpires only very indirectly
from the train timetables (and hence the train traffic) could be the following
variant of Kirchhoff’s Law: For any station in the network, the number of
trains arriving, over any 24 hour period, at that station, minus the number of
trains ending their journies at that station, plus the number of trains starting
their journey at that station, equals the number of trains departing from that
station, all over the same 24 hour period. .

Informatics models of domains can be made into theories, just as were models
of physical phenomena such as Newton’s Theory of Mechanics, Thermody-
namics, etc. Chapter 15 of Vol. 3 presents domain theory examples, principles
and techniques that are useful in establishing domain theories as above.

Correctness of Development Phase, Stage or Step Transition

When we make the transition from the phase of describing a domain to the
phase of prescribing requirements to software for support of activities in that
domain we correctness-relate that transition, from the latter to the former.
When we make the transition from the phase of prescribing requirements
to software to the phase of specifying the required software we correctness-
relate from the latter to the former. These correctness relations, when stated
properly (and so they must be if we are to have trust in the development),
can be informally reasoned about. And, if the descriptions, prescriptions and
(design) specifications are formally expressed and the relations likewise, then
the reasoning may be formally supported: Formal proofs of correctness may
be made.

Phases can be decomposed into stages of development, and transitions
between stages may be correctness-related and argued about. Stages can
similarly be decomposed into steps, and transitions between steps may be
correctness-related and argued about.

Note that we sometimes used the term ‘can’, and sometimes ‘may’. We can
always try reason informally, as do mathematicians. But it is not always pos-
sible today to formally prove properties and transition correctness. Reasons
for this may be of the following: We may have constructed some unwieldy
models that make the proofs too cumbersome. Or computing science, cum
specification language designers, may not yet have researched and developed

1.4 Formal Techniques and Formal Tools 25

appropriate specification language constructs and proof systems. Or we, the
developers, are simply not good enough at stating and proving auxiliary lem-
mas and theorems. Or we are trying to prove a non-theorem, something that
is false.

Discussion

We have surveyed the analytic documents that may arise during software de-
velopment. There are at least four kinds of analytic document parts: con-
cept formation, description (prescription and design specification) valida-
tion, property verification and correctness verification. Some analytic work is
“inspiration-guided”, such as concept formation seems to be. Other analytic
work is guided by human interaction, such as validation is. And yet other an-
alytic work is formalisable, such as property and correctness verification can
be.

To give a proper, comprehensive presentation of these three kinds of an-
alytic work is, however, not a goal of these volumes. Instead we refer to spe-
cialised texts and monographs on software verification.

1.4 Formal Techniques and Formal Tools

Reading of this section can be skipped till the reader has read Chaps. 2-9
of the present volume. The section may to some lay readers appear a bit
esoteric.

The aim of this early section is to make the reader aware of the fact that
the languages in which one expresses domain descriptions and requirements
prescriptions are not programming languages, but are specification languages.
These specification languages need allow the expression of abstractions, so as
to make easy the expression of essential properties, while allowing freedom of
software design implementations.

1.4.1 On Formal Techniques and Languages

Characterisation. By a formal technique we mean both of the following:
a technique that has a mathematical foundation, and thus can be explained
mathematically, and a technique by which its user expresses descriptions, pre-
scriptions and (design) specifications formally and is able to reason formally
about what is expressed. .

Thus a formal technique implies: Formal specification using subsidiary tech-
niques and the possibility of formal verifications, with their subsidiary tech-
niques. Therefore a formal technique requires a formal specification language.

26 1 Introduction

Characterisation. By a formal specification language we mean all of the
following: a language which has: a formal, mathematical syntax; a formal,
mathematical semantics; and a formal, mathematical logic proof system.

In Chap. 9 of this volume we explain what is meant by a proof system. In
Vol. 2, Part IV we will explain what is meant by formal syntax and formal
semantics.

Normally, in conventional software engineering, only the last step of de-
velopment uses an almost? formal language, namely the coding (i.e., the com-
puter programming) language. We shall advocate the use of formal languages
from the very beginning, for all phases, stages and steps of development. In
conventional software engineering many different kinds of informal description,
prescription and (design) specification languages are deployed, some with one
form of diagrammatic constructs, others with other constructs, but all without
a proper syntax, let alone any discernible semantics.

1.4.2 Formal Techniques in SE Textbooks

The aims and objectives of these volumes hinge crucially on the ideas of for-
mal techniques and formal tools. The purpose of this section is to motivate
this central role of formality. Most, if not all, existing textbooks on software
engineering shy away from propagating these ideas of formalism. If other text-
books on software engineering bring any material on what they call ‘formal
methods’, it is usually in the form of a separate chapter appearing some-
where in the book. In these volumes formal techniques permeate all technical
chapters. Formal techniques are deployable, and are hence to be taught in
connection with all technical aspects of software engineering.

1.4.3 Some Programming Languages

A language, when seen as the means for expressing an engineering objective,
can be considered a tool. As such, formal languages represent one class of
software engineering tools. As for all crafts, many tools are needed, different
size hammers, different size saws, different size screwdrivers, different size
planners, etc., are needed for carpentry. That is, the artifact to be constructed,
that is, its “nature” or its attributes (properties), determines exactly which
of many different, tools are to be deployed.

We have very many different kinds of programming languages, “past”
and “current”!?: functional programming languages such as LISP [370], e
Standard ML [261,389], ¢ Miranda [502], and e Haskell [498], to mention
a few; logic programming languages, including e Prolog [295,351], and CLPR

“Usually most programming languages still do not possess a proof system.
y g g languag
1%¢Current’ programming languages are marked with a bullet: o.

1.4 Formal Techniques and Formal Tools 27

[312]; the imperative!! programming languages of Fortran [14], Cobol [12],
Algol 60 [24], Algol 68 [510], Pascal [522],e C [321]; object-oriented pro-
gramming languages, such as Simula 67 [54], e C++ [489], Modula 2 and
Modula 3 [262,401,525], ¢ Eiffel [377,378], Oberon [434,526,528-530], and e
Java [10,20,243,348,470,511]; and finally the parallel programming languages
of PL/T [13,37], CHILL [145], Ada [128], and e occam [301,364,449].

1.4.4 Some Formal Specification Languages

We can also expect to have many different kinds of formal specification lan-
guages that are model-oriented or property-oriented.

On Model-Oriented Specification Languages

Some specification languages are model-oriented:'? o VDM-SL [120, 121, 226,
317], » Z [281,476,477,533], and e B [3].

Characterisation. By a model-oriented specification language we mean one
which expresses whatever it specifies in terms of mathematical constructions
(i.e., models) such as sets, Cartesians, lists, functions, etc. .

On Property-Oriented Specification Languages

Other specification languages are property-oriented (algebraic semantics)
specification languages:'®> 0BJ3 [233], e CafeOBJ [190,232], and e CASL
[49,397,399].

Characterisation. By a property-oriented specification language we under-
stand one which expresses whatever it specifies in terms of logical properties
of what is specified. .

Y An imperative programming language is one which primarily focuses on
assignable variables, hence assignments, and hence has statements, and usually
therefore statement labels and GOTOs. Statements, in a sense, prescribe: Do this,
then do that — “imperially”.

12 A model-oriented specification language allows for the expression of models in
terms of mathematical entities such as sets, Cartesians, lists, maps, functions, etc.
Chaps. 12-16 (of the present volume) will make the first presentations of model-
orientedness.

13A property-oriented specification language allows for the expression of mod-
els in terms of logically expressed algebras. Chapters 9 and 12 will make the first
presentations of algebras and property-orientedness.

28 1 Introduction
On Property-Oriented 4+ Model-Oriented Specification Languages

Other specification languages are “mixed” property- and model-oriented spec-
ification languages: e RSL [236,238,239].

In these volumes we mostly use the RAISE Specification Language, RSL.
But, really, nothing prevents a lecturer from using, for example, VDM-SL or Z
instead.

More on Programming Languages

One selects a programming language according to what one wishes to express,
that is, the values one wishes to speak of. Different programming language
categories, as listed above, favour different value spaces.

In functional programming we handle functions, their definition, applica-
tion and composition, because functions (including ordinary operator /operand
expressions) are thought to best capture the problem at hand.

In logic programming we express propositions and predicates, i.e., handle
logical values, because it is thought that one can best express certain com-
puting problems by characterising their properties.

In imperative programming we establish, initialise, update and read states,
i.e., assignable variables, because states and state changes are thought to best
capture the problem to be solved.

In object-oriented programming we establish, initialise, update and read
special clusters of state components called objects, because dividing the prob-
lem up into a set of such objects and solving the problem by expressing the
interaction between objects is thought to best capture the problem at hand.

In parallel programming we establish, initialise and compose processes,
and select among processes in various deterministic or nondeterministic ways.
In addition we express cooperation among processes through their synchro-
nisation and communication because it is thought that one can best express
certain computing problems by their decomposition into cooperating and con-
currently operating processes.

Specification Languages Resumed

The situation is not that simple with formal specification languages. Indeed,
there is the distinction between model-oriented and property-oriented formal
specification languages mentioned above. So one can choose one from either
category depending on what it is one wishes to express, and how.

Purists might choose either the Z (since 1980) or the B (since around
1990) specification language paradigm. Both are based on simple set theo-
retic notions, are utterly elegant and can traditionally handle what one would
consider simple state-oriented sequential problems. Z has been extended in
various ways: to express concurrency, or to express objects beyond its own
basic, elegant modularity concept.

1.4 Formal Techniques and Formal Tools 29

VDM [120,121,226] represents possibly the first full-fledged formal specifi-
cation language concept (since early 1970s), and is still flourishing in the form
of the ISO standardised VDM-SL. The RAISE [236,238] Specification Language
(RSL) was conceived, in the mid-1980s, as a successor to the VDM specification
language, then colloquially known as Meta-IV.

RSL, which we primarily use in these volumes, features both property-
oriented and model-oriented means of expression, has a somewhat sophis-
ticated object-oriented means of compositionality, and borrows from CSP
[288, 289, 448, 456] to offer a means of expressing concurrency. Extensions
to RSL have also been proposed, for example with timing [535], and with
Duration Calculus, that is, temporal logic ideas [274].

1.4.5 Insufficiency of Current, Formal Languages

The story as told above may give you the impression that the formal (pro-
gramming as well as specification) languages offer sufficient expressibility
to handle all situations, but this is not so. Few, if any, professionally sup-
ported programming languages offer means for expressing temporal notions
such as absolute times, relative time (intervals), delays, etc. The same is true
for specification languages. Accordingly we see a bevy of very fascinating
programming languages focusing on expressing synchrony: Esterel [47,48],
Lustre [256] and Signal [248]. We also see specification languages involving
temporal notions: Timed Automata [9], TLA (Temporal Logic of Actions) [331]
and Duration Calculus [537,538]. We also find some which provide for the
expression of state transitions: Petri Nets [313,421,435-437], MSCs (Message
Sequence Charts) [302-304] and LSCs (Live Sequence Charts) [171,270,325],
and Statecharts [265,266, 268, 269, 271]. We shall have more to say about
Petri nets, sequence charts, statecharts and the duration calculi [537,538] in
Vol. 2’s Chaps. 12-15.

What does this plethora of programming and specification languages sig-
nify? First, it tells us that we are still in the early days of computing science,
and hence software engineering. Proposals for new and better languages, or
for altogether different language paradigms, are being put forward continually.
It also probably tells us that we should not seek “universal” languages, that
could handle all the “things” that one wishes to express. We shall probably
have to settle for using combinations of different languages when specifying
and when implementing problems.

More generally, it tells us that we shall, in these volumes, be content with
the formal specification languages that are available today, while recognising
their (and our) shortcomings. That is, there are situations in these volumes
where we would like to show a formal specification of a problem, but where
that would entail a longer introduction of a “new” notation, or where we
simply have to give up because no pleasing or adequate or even known such
language can be found!

30 1 Introduction
1.4.6 Other Formal Tools

The most well-known formal tool for software development is a compiler: It
accepts programs in a formal language, the source programming language, it
checks that input programs satisfy a wide variety of static properties, and
if so, it generates an output program in a target coding language, such that
the meaning of the input program is preserved in the meaning of the output
program. To do this properly a compiler embodies a number of instantiations
of theoretical artifacts. These include a finite state machine which processes
(ASCII) character strings into either keyword or identifier tokens, and other
symbols into appropriate delimiter or operator tokens; a push-down stack
machine which processes strings of tokens and creates, while checking, suitable
internal representations of the input program (dictionaries, a parse tree, etc.);
a rewrite system that transforms these internal representations into other,
sometimes claimed optimised representations; and another rewrite system that
finally transforms possibly resulting internal representations into output code.

Other formal tools are possible and exist: type checkers for abstract specifi-
cations; general data or control flow analysers, proof checkers, proof assistants;
model checkers, theorem provers, and program interpreters. These, together
with compilers, are all examples of what we in general call abstract inter-
preters, or partial evaluators. The current understanding of the role and pos-
sibilities of abstract interpretation is far from complete [163,164,215,231,320].

1.4.7 Why Formal Techniques and Formal Tools?
Some Rationale

Engineering, in its classical forms, civil, mechanical, electrical, all deploy cal-
culations in one form or another. They do so in order to determine structural
properties and design parameters, for example, for reinforced concrete or steel
constructions, aircraft wing design, electrical transformer design, and so on.
When we drive over a bridge, fly in an aircraft, or use some electrical appli-
ance, we do so with some confidence that the classical design engineers have
been properly trained in how to, and, when required, can, and indeed do,
perform such calculations.

When we use an ordinary text processing system, yes, even when we send
otherwise “innocent” (read: unimportant) e-mails, then we do not bother
much about the “error-freeness” of that software. But when we fly an air-
craft, or live next to a nuclear power plant, or receive our monthly paycheck
(calculated from a myriad of interdependent tax regulations), or follow in-
structions from a medical doctor, and when we are told that any of these,
the aircraft, the power plant, the paycheck processing and the medical advice,
are monitored and partly or fully controlled by a computer, we may wonder
about the correctness of the relevant software! But are the software engineers

1.5 Method and Methodology 31

comparatively well trained in the many calculi that do indeed exist today for
securing trust in the software, and, if so, are they actually deploying such cal-
culi? The answer is, wrt. current, practice, sadly, no! These volumes will teach
you some, but certainly far from enough, such calculi, i.e., formal techniques.

The answer to the rhetorical question of this section, Why formal tech-
niques and formal tools? is therefore: Because we need the highest possible
degree of trust, given today’s knowledge, in our software! Since it can be done,
namely, ensuring highest possible degree of trust, it must be done. Not en-
suring so would be tantamount to cheating the customer — also known as
criminal neglect!

Anecdotal cum Analogical Evidence

Until the mid-1700s most ships’ captains (and their ships’ mates) did not
know how to reckon the longitude!®. The chronometer was first fully available
and known by the last quarter of the 1700s. Samuel Pepys!® commented on
the pathetic state of navigation:

It is most plain, from the confusion all these people are in, how to make
good their reckonings, even each man’s with itself, and the nonsensical
arguments they would make use of to do it, and the disorder they are in
about it, that it is by God’s Almighty Providence and great chance,
and the wideness of the sea, that there are not a great many more
misfortunes, and ill chances in navigation than there are.

We bring that story here for analogical purposes.

We claim that developing software without using formal techniques is like
sailing the high seas without knowing how to compute the current longitude.
We claim that nobody can become a ship’s mate, much less a captain, if they
do not know how to compute the longitude.

It is as simple as that, but the problem itself is not simple. It was, perhaps,
more obvious, that the chronometer had indeed solved the longitude problem.
To some it is still not obvious that formal specification and related techniques
(verification, etc.) have brought us a long way towards having solved the
software development problem.

1.5 Method and Methodology

We refer to Vol. 3’s Chap. 3 for a more thorough treatment of the concepts of
method, methodology, principles, techniques and tools. Suffice it here to give
a brief account of thege terms.

“Those “funny” lines (on a map of the world, or, as here, more appropriately, of
the seas) which stretch between the arctic poles.

5From a trip as a high official of the British Royal Navy, 1683, from England to
Tangier.

32 1 Introduction
1.5.1 Method

Characterisation. By a method we understand a set of principles for select-
ing and applying a number of analysis and synthesis (construction) techniques
and tools in order efficiently to construct an efficient artifact, here software
(i.e., a computing systerm). .

The above will be our guiding characterisation of the concept method. It
will flavour these volumes. We will endeavour to enunciate such principles,
techniques and tools that will guide the software engineer in where to start,
how to proceed and where to end.

In the above characterisation we have also emphasized the things about or
to which the principles, techniques and tools are concerned or apply, select-
ing, applying, analysis, synthesis (construction) and efficiency. Humans select
the principles, techniques and tools. Hence choices of selection form a crucial
aspect of a method. We, humans, or machines, i.e., tools, apply techniques.
Hence modes of application form a crucial aspect of a method, likewise for
analysis and construction. Efficiency, as a concept, applies both to the devel-
opment process and to the developed artifact. We have added efficiency as an
attribute of the concept of a method.

1.5.2 Methodology

Characterisation. By methodology we understand the study of, and the
knowledge about one or more methods. .

These volumes also cover methodology: We will contrast several methods,
including several alternative principles, techniques and tools. No one method
suffices for all software. There are a number of principles, techniques and tools
that can help us. But for any one method there are still principles, techniques
and tools to be identified, studied and tried out.

1.5.3 Discussion

The principles are to be interpreted by humans. The selection and analysis is
to be mostly performed by humans. Some techniques and some tools can be
used by machine, i.e., are formalised. But far from all. Hence it is a misnomer
to refer to a concept, of formal methods. It seems appropriate to refer to some
techniques and some tools as being formal. So we conclude: Methods cannot
be formal.

1.5.4 Meta-methodology

In this book, that is, in these volumes we shall highlight certain pieces of
texts. These highlighted texts are concerned with

1.6 The Very Bases of Software 33

characterisations,
definitions,
principles,
techniques,

tools, and
examples

as follows. In the text the following kinds of highlighted texts will stand out.
Please take appropriate note of these texts.

Characterisation. Characterisations are descriptive texts. They are not pre-
cise definitions. .

Definition. Definitions are descriptive texts at the level of mathematical
precision. We present definitions either as shown in the present definition, as
numbered and highlighted paragraphs, or as mathematical texts or as RSL
specifications. .

Principles. Principles are here seen as comprehensive and fundamental laws,
doctrines, assumptions or rules (codes) of conduct underlying the pursuit of
software engineering. It is our principle to enunciate characterisations, defini-
tions, principles, techniques and tools, and to bring many examples. .

Techniques. Techniques are here concerned with the manner in which tech-
nical details are treated by the software engineer. The techniques of presenting
highlighted characterisations, definitions, principles, techniques and tools are
basically those used for descriptive texts. .

Tools. Tools are here seen as intellectual (or even software) devices that
aid in accomplishing a task, that is, are used in performing an operation or
necessary in the practice of the profession of software engineering. The tool
for presenting highlighted characterisations, definitions, principles, techniques
and tools is that of English. .

Example 1.6 The previous five boldface highlighted paragraphs together

exemplified the ideas enunciated in this section. They all ended with the “s”
symbol; and so does does this example. .

1.6 The Very Bases of Software

This section previews the core issues of software engineering. The treatment
here is, perhaps, a bit taxing, that is, it requires careful reading. You may
wish to skip this section and return to read it after having studied, for
example, the first half of this volume!

34 1 Introduction

Before introducing types, functions and relations, algebras, and logic, we must,
however, first cover some even more basic material: What is meant by didactics
and paradigms, and what is meant by semiotics, that is, pragmatics, semantics
and syntax. In other words, this section collects and presents a number of basic
concepts, and as such it is a prelude to Part II of this volume.

1.6.1 Didactics and Paradigms

Life is rather a subject of wonder, than of didactics
Ralph Waldo Emerson 1803-1882

We are guided by paradigms, see Sect. 1.6.3. Good paradigms, we claim, reflect
reasonably clarified didactics.

The Shorter Oxford English Dictionary [350] (OED) defines: didactics hav-
ing the character or manner of a teacher; characterised by giving instructions;
instructive; preceptive; and systematic instruction.

We shall, in these volumes, take the word didactics to mean the basic
ideas of practical or theoretical nature upon which the practice of a field of
human activity is (best, or reasonably) pursued. We claim that our rendi-
tion is commensurate with the 0ED explanation. There are other didactic and
practical bases for software engineering than just types, functions, algebras
and mathematical logic such as mentioned earlier. Although we shall in later
volumes devote separate chapters to covering these other didactic bases in
detail, we shall, in order that we may be able to refer to the very essence of
these bases (before we reach those chapters), cover the concepts briefly. They
are semiotics and descriptions.

1.6.2 Pragmatics, Semantics and Syntax

Semiotics can, for our purposes, fruitfully be understood as the study and
knowledge of pragmatics, semantics and syntax of language. That is, respec-
tively the use, meaning, and analysis and synthesis of language texts.

Pragmatics

Characterisation. By the pragmatics of a language we mean its use in social
context: Why a particular expression used? What “ultimate” motive lies
(seems to lie) behind an utterance, an expression. .

We have some ulterior motives when specifying: What is it? What are they?
Pragmatics, characterised somewhat convolutely, is that which cannot be for-
malised! Pragmatics is the “real thing”. Syntax and semantics enable us to
convey and, it is hoped, to understand, those “real things”!

Software specification languages and, more generally, computing systems
specification languages serve to describe domains, prescribe requirements and

1.6 The Very Bases of Software 35

specify software designs. Thus their pragmatics, as well as the pragmatics of
the individual domain, requirements and software design specifications, are
that they are able to cover that spectrum, and that they, individually, allow
for certain kinds of for example trustworthy and manageable development.
Thus the design of any specification language, such as B, Cafe-0BJ, CASL,
RSL, VDM-SL and Z, has taken into account which target applications that
language best caters to. The main specification language of these volumes
is RSL. As we shall see, RSL covers a rather broad spectrum. Two, amongst
several more, important aspects of RSL are that it allows modular, reusable
development and provably correct development.

Semanties

Characterisation. Semantic is about the meaning of what we express syn-
tactically. -

We shall later sharpen this characterisation, but first we express some deeply
felt dogmas. Semantics, in some sense, is what it is all about abstractly! Prag-
matics, in that sense, is what it is about concretely, in a specific social, human
context. If we cannot express the essence abstractly, then we have not under-
stood it. Then we can only have little trust in any software derived from
such an incomplete understanding. Software is, by nature, abstract and is
necessarily conceptual. Therefore it is more important to capture, mentally,
the semantics before we search for a way to express it syntactically. Our best
abstractions are those of mathematics. Mathematics is the science of abstrac-
tion.

So what is the semantics of RSL specifications? To appreciate and under-
stand the choice made for the semantics of RSL, let us consider some very
basic RSL specifications. Usually a specification names “things”.

Example 1.7 Semantics of Class Specifications: Our example is just that: It
does not model anything “practical”, but illustrates, at a minimum cost of
symbols, what we wish to say about semantics.

[0] scheme EXAMPLE =
class
type
A = Int, B = Nat
value
A= B
axiom
[bijection]
YV a:Aa"A « aa’ = f(a)#f(a)

end

—
—

w00 =T S U s LoD

36 1 Introduction

two types of values, A and B (lines [2-3]), (iv) a function, a value, f (lines [4-5])
that maps As (integers) into Bs (natural numbers), and (v) an axiom bijection
(lines [6-7]) that expresses that f for distinct arguments yields distinct results.

Of the five things named only four designate specific mathematical entities.
The axiom name, always enclosed in brackets, [...], may be put before the
axiom keyword, and is there for a pragmatic reason so that we can refer to
that axiom. Thus axiom names are optional and can be omitted.

Now what semantics does RSL ascribe to the identifiers EXAMPLE, A, B
and f? We start “inside out”: A and B stand for the sets of integer, respec-
tively sets of natural number values, and f for any function that satisfies the
axiom. The class definition, EXAMPLE, etc. (lines [0-8]) now stands for a set
of models, where a model provides a mapping from identifiers, such as A, B
and f, into their meanings. All members of the set of models have A and B
stand for the same universes of integers, respectively natural numbers, but
each member of the set has f map into a distinct function from A into B, such
that this set of models exhibits all such functions f in fact infinitely many!
Hence EXAMPLE stands for an infinite set of models.

We summarise: Each type and value thing named by the specifier, e.g.,
you, in a specification, has a meaning. And that meaning may determinis-
tically be a value, or a specific set of (typed) values, as for type names, or
nondeterministically be one or another from amongst a possible infinity of
values, as for the illustrated function name. So, functions can be values. The
set of all values contains the set of all functions. Combining two or more such
meaningful identifiers as here in a class expression, or just as a juxtaposition
of definitions without the class keyword and class name results in a named,
respectively unnamed set of (one or more) models. Axioms may be so con-
straining that there may be no model that satisfies the axioms. Or there may
be a finite number of models, including just one!

Let us “display” the set of models for the class expression (lines [0-8]):

{
[A—{..,-2-1,012,..},
B {0,12,..}
f — Aa « if a<0 then
3x(2x(—a)) else if a=0 then 0 else 3x(1+2xa) end end,
o,

[A—{..,-2,-1012,..1},
B~ {0,1.2,.},
f— Aa « if a<0 then
5%(2%(—a)) else if a=0 then 0 else 5%(1+2+a) end end,

[‘A = { "‘1_27_150!1:23"‘ }!
B {012,
f — Aa « if a<0 then

1.6 The Very Bases of Software 37
Tx(2+(—a)) else if a=0 then 0 else Tx(1+2+a) end end,

}

By Aa:AsE(a) we mean the function which when applied to an argument z in
A yields a value as prescribed by the function body E(x), i.e., where all free

a in E(a) have been replaced by z. By the ellipses, that is, ..., we intend to
show that the model may contain parts which map other identifiers into other
mathematical values. .

In the rest of these volumes we shall return, again and again, to semantic
models of the above kind.

Syntax

Characterisation. Syntax is about how we can, in our case, write down
gpecifications: rules of form, basic forms and their proper compositions. These
rules for formal languages are to be of such a nature that the forms, that is,
the language expressions, can be analysed, and such that, from the analysis,
one can ‘construct’ (construe) the meaning. .

Syntax is, of course, important, but its importance is secondary to semantics!
We should strive for semantic clarity, then syntactic elegance. If the idea to
be expressed is “muddled”, then no matter how beautiful the syntactic forms
may be, humans will not easily understand them!

You have already seen some RSL syntax, for example, the scheme definition
of Example 1.7. Since RSL is aimed at a rather wide spectrum of applications
and at a full spectrum of development, from descriptions of actual domains,
via requirements prescriptions to abstract software designs, the RSL syntax is
rather “rich”. That is: has many entities. We shall try unravel these, gently,
as we go along in these volumes, and only introduce the syntax that we need
up to any given point in these volumes.

The syntax of class expressions, as exemplified above, thus appears to be
covered by:

<clags_expression> ::=
class
type
<type_definitions>
value
<value_definitions>
axiom
<axiom_definitions>
end

38 1 Introduction

But since there are many more aspects to class expressions than illustrated
so far, the syntax is more complicated than hinted at above.

When explaining a specification language construct we ought systemati-
cally cover its general forms and its static semantics, that is: which constraints
limit the use of for example identifiers, operator symbols, keywords, delim-
iters, etc. and its meaning. We will, however, only give cursory explanations,
leaving details to the RSL Reference Handbook [236].

1.6.3 On Specification and Programming Paradigms

We are guided by paradigms:

(1) Paradigm: thing copied.

(2) Model: pattern, standard, rule, original, mirror;
(3) Prototype: archetype, antetype;

(4) Precedent: lead, representative, epitome

Roget’s International Thesaurus [445].
Using paradigms we construct artifacts:

The universe ... was made exactly conformable
to its Paradigme, or universal Examplar.

(The Shorter Oxford English Dictionary [350].)

These volumes are structured according to a set of specification paradigms.
And these again rest on what we believe are the didactic bases of the practice
and theory of software engineering.

So which are the “most basic” paradigms? Generally, we can say this:
Abstraction is a specification paradigm; so is “favouring, encouraging” non-
determinism in specification. Respective programming styles — functional
(also referred to as applicative), logic, imperative, and parallel program-
ming — represent a programming paradigm. Favouring a specification style
that allows formally verifiable transformations of (more) abstract specifica-
tions into (more) concrete ones, and these finally into ‘executable programs
— is a software development paradigm. There are then paradigms within
paradigms: Practicing the functional specification (or the functional pro-
gramming) paradigm may then be according to, for example, the continu-
ation [59, 63, 315, 392, 404, 440, 471, 487,513, 514] programming paradigm.
Likewise practicing the parallel specification (or the parallel programming)
paradigm may then be according to, for example, the CSP, i.e., the communi-
cating sequential processes, [287,288, 448] paradigm, and so on.

1.6.4 Descriptions, Prescriptions and Specifications

We shall, in these volumes, try strictly to use the following terms consistently
and according to the following overlapping classification:

1.6 The Very Bases of Software 39

e Description: As a general term encompassing the below, and as a special
term in connection with textual characterisations of domains.

e Prescription: As a specific term used primarily in connection with require-
ments.

e Specification: As a general term encompassing the above, and as a special
term in connection with textual characterisations of software designs.

e Definition: As a general term encompassing formalisations, also of the
above; and as a special term in connection with certain textual char-
acterisations, namely and specifically, those parts that constitute proper
definitions as distinguished from designations and refutable assertions.

Software Specifications, Requirements Prescriptions and Domain
Descriptions

To direct a computer to perform any computation it must be so instructed.
These instructions form a program. A program is a finite specification of
possibly infinite sets of possibly infinite computations. So, descriptions, pre-
scriptions and specifications form the most essential object of our endeavour:
to develop software. We first explain the idea of specification, then the idea
of prescription, and finally we explain the idea of description.

We specify computations; thus: to design software we specify how the
computations should proceed: the how is an end goal. We prescribe the what,
that is, the requirements that we expect the subsequently designed software
to fulfill. And, before all that we describe the actual world in which these
computations are to occur, that is, the (application) domain.

1.6.5 Metalanguages

We use language, say M, to describe or “to talk about” other languages, say
L. One cannot use £ to describe £. It leads to nonsense. M is said to be a
metalanguage for £. To describe M we need another metalanguage, or, as we
could call it, a meta-metalanguage M’.

The language, say M, in which we explain mathematics, i.e., the notation
of mathematics and its meaning, A, is thus necessarily different from A. We
do not describe M.

1.6.6 Summary

We have briefly introduced the notions of didactics and paradigms; and of
semiotics: pragmatics, semantics and syntax. We have also introduced docu-
ments: informative, descriptive and analytic, as well as (domain) descriptions,
(requirements) prescriptions and (software) specifications. We have finally in-
troduced the notions of metalanguages, and object languages.

We shall later cover these in quite some detail. Suffice it, for now, to say
that the reader now knows that these are basic concepts whose reasonable un-
derstanding is indispensable when pursuing professional software engineering.

40 1 Introduction

1.7 Aims and Objectives

By the ‘aims of these volumes’ we mean the topics that we will be covering or
dealing with. By the ‘objectives of these volumes’ we understand that which
we wish to achieve through covering certain material.

1.7.1 Aims
The Main Aims

The main aims are to teach you general software engineering principles, tech-
niques and tools. That is (in Vol. 3): those of domain engineering, of require-
ments engineering and of software design. Among these we additionally single
out and teach principles, techniques and tools of abstraction and modelling
in (Vols. 1-2); of description (in Vol. 3); and of documentation (in Vol. 3).

Some Other Aims

Additional aims are those of providing appropriate mathematical foundations,
(Vol. 1, Part II), of ensuring appropriate understanding of semiotics issues:
pragmatics, semantics and syntax (Vol. 2, Part IV), and of doing all of this
within an appropriate framework of models and definitions (Vol. 3, Chaps. 4
and 6).

An aim, altogether “orthogonal” to the other aims above, is to illustrate
development, components of software for the support of large, distributed and
concurrent infrastructure subsystems and systems.

1.7.2 Objectives
The Main Objectives

The main objectives are to help ensure that you become a professional engi-
neer within software, to thus help ensure that the software (cum computing)
systems, in whose development you are involved, become trustworthy systems
of highest attainable quality, and through our emphasis on exemplifying the
development of software (cum computing) systems for infrastructure compo-
nents to help ensure that you, with colleagues, believably can develop highly
sophisticated systems.

Some Other Objectives

Other objectives are to put the broader concerns of software engineering,
such as treated in these volumes, in the context of other, indispensable and
more specialised computing science disciplines such as artificial intelligence
and knowledge-based systems, compiler systems, concurrent, safety-critical

1.9 Exercises 41

and real-time application systems, database management systems, distributed
systems, operating systems, secure, en- and decryptable systems, and so on.
Another objective is to show that formal techniques are applicable, in all
phases, stages and steps of development, and to all kinds of computing sys-
tems.

1.7.3 Discussion

The usual aims and objectives section has been dispensed with, but with a
change: usually the two concepts, aims and objectives, are “lumped” into one
treatment. Here we have separated them, properly.

There is a conceptual triangle: there is the author of these volumes; there
is you, the reader, who studies its contents; and there is the most important
thing: the subject itself: software engineering. Aims are about which software
engineering topics the author wishes to cover, i.e., to teach you. Objectives
are about which effects, with respect to the discipline of software engineering,
the learning of these topics is to have on you. In other words aims are about
‘what’; objectives are about ‘why’.

1.8 Bibliographical Notes

This book, all three volumes of it, is different from most other textbooks on
software engineering. We shall single out the following major ways in which
this book differs from the following textbooks: [423,430,475,512]. First they
really are short on real development examples: there are hardly any real ex-
amples of specification and design. The present book, all three volumes of it,
hinges crucially on real examples of specification and design. Second, when
they bring a chapter on formal methods, do so in a separate chapter “tucked
away” somewhere, ad hoc. The present book emphasises the use of formal
techniques in all phases, stages and steps of development. Third, they, also
including [240], do not bring any material on domain engineering. It is perhaps
the last thing, domain engineering, in which this book is really new.

One very nice book, [240], does show a lot of formal techniques. Ours
show almost all, if not all, of these techniques, and many, many more, and
puts these techniques in the context of an overall methodology. The book by
Watts Humphrey [298] is a wise book on management. “Hard to beat”. The
book by Hans van Vliet [512] is, in our mind, the best overall of the above-
referenced books when it comes to these practical and management issues.

1.9 Exercises

Exercise 1.1. The Sciences: Can you define what we, in these volumes, mean
by computer science, and what we mean by computing science.

42 1 Introduction

Exercise 1.2. Project Management Issues: Can you list some of the more
practical, i.e., project management issues of software engineering.

Exercise 1.3. The Triptych of Software Engineering: Please list the three
main phases of software engineering as put forward in this volume.

Exercise 1.4. Documentation: Can you list the three major classes of doc-
umments (as put forward in this volume) and, within each of the classes, can
you list some of the major document parts.

Exercise 1.5. Formal Techniques and Formal Languages: Please define what
these volumes mean by formal techniques and by formal languages.

Exercise 1.6. Method and Methodology: What does these volumes mean by
(an efficient) method, and by methodology?

Exercise 1.7. The Very Bases: What does this chapter hint at as the meaning
of a specification?

Part 11

DISCRETE MATHEMATICS

We cover basic notions of mathematics in a somewhat circuitous way: in-
between treatments of numbers (Chap. 2), sets (Chap. 3), Cartesians (Chap. 4),
functions (Chap. 6), A-calculus (Chap. 7), algebras (Chap. 8) and logics
{Chap. 9), we put a treatment of types (Chap. 5). There is a reason for this. A
reasonable sequence of topics would be numbers, sets, Cartesians, functions,
A-calculus, algebras and logics. Each of these mathematical domains entails
sets of values. We group characterisable subsets of these into types, where
types, naively, are sets of values: types whose values are sets, and types whose
values are Cartesians. The members of sets and the elements of Cartesian
values are just postulated to be of some type.

From types (of values) we can then construct new types: types whose values
are functions, typically from values of Cartesian types to values, etc. And then
we can present algebras as typed sets of entities and operations over these.
Finally, we can introduce mathematical logic — allowing quantifications to
range over specified types. Types thus permeate our treatment of the mathe-
matical universes of numbers, sets, Cartesians, functions, A-calculus, algebras
and logics. Some textbooks on discrete mathematics are [260,420,425,481].

2

Numbers

¢ The prerequisite for studying this chapter is that you possess at least a
simple level of mathematical maturity.
The aim is to introduce the simple concepts of numbers.
The objective is to help ensure that the reader, in the future, handles
the various types of numbers: natural numbers, integers, rationals, reals,
transcendentals, with ease, naturally and correctly.

e The treatment is informal, but systematic.

“God created the integers, all else is the work of man,” so said Kronecker,
or g0 it is believed he said.

2.1 Introduction

Our interest, in these volumes, and hence in modelling some universe of
discourse phenomenon by means of numbers, is not in the deeper number-
theoretic properties,! but in the simpler, rather more shallow properties: Num-
bers are strictly ordered and reals are densely packed.

There are many kinds of numbers, to wit: natural numbers: 0,1, 2,
integers: ... —1,0,1,2, ...; rationals: consisting of both integer (viz.,
i,7) and fractlons i for all integers 4,5 where j # 0; irrational numbers;
real, imaginary and complex numbers; and transcendental numbers. Although
we shall have occasion, even for a very large variety of typically man-made
“systems”, to use only natural numbers, integers and reals, it may be a good
idea to become familiar with all these other number concepts as well. The
aim is to make sure that you are well aware of those means we have chosen
to make available for our modelling endeavours, and those we have not!

"Properties such as prime numbers, factorisation, irrationality or transcendental
numbers: Euler’s Theorem and Fermat’s Little Theorem, Euler’s phi-function, de
Polignac’s formula, Mersenne primes, Mdbius’s function, Euclid’s algorithm, Pell’s
equation, and so on [263].

46 2 Numbers

2.2 Numerals and Numbers

A numeral is a name for a number. No-one (in a state of sober mind) has
ever seen a number. Numbers are abstract mathematical quantities. They
are characterised by their properties. For every number that exists in the
universe of mathematics, there is exactly one copy: the original. For many
numbers there are simple names, and often there is more than one distinct
simple name for the same number:

7, seven, sieben, sept, syv,

For most numbers there are simple or composite names:

14/2, 641, 2+4—1, ... ; vii, I, i, ...

By a digit we understand a simple numeral for a special number: If in radix
(i.e., base) ten, then the digits are the decimal digits, usually written 0, 1, 2,
3,4,5,6,7, 8 and 9. If in radix two, then the “digits”? are the binary digits,
usually written O and I. If in radix one (1), the “digit” is a marker, or its
absence: 1. If we can speak of Roman “digits” they would be: I, V, X, L, C, D
and M.

2.3 Subsets of Numbers

We shall briefly survey such facts about numbers that will turn out useful in
specifications, natural numbers and integers, rational numbers and reals. We
also take a brief look at other kinds of numbers: irrational and transcendental
numbers.

2.3.1 Natural Numbers: Nat

By the natural numbers we understand those that are basically characterised
by Peano’s Axioms (Example 9.21 on page 190). By Nat we designate the set
of all natural numbers. We write the natural numbers based on the following
BNF? grammar:

<NatNum> ::= <DecDig> | <DecDig> <NatNum>
<DecDig> ::=0 | 1 | 2| 3[4]|516]17]1819

<DecDig> stand for decimal digits.

*We really should reserve the name digit only for the base numerals in base-10
systems, since ‘digitus’, in Latin, stands for finger.

3By BNF we mean ‘Backus Normal (or Naur) Form’. We assume that the reader is
familiar with the notion of such BNF grammars, including is familiar with the notion
of context-free grammars.

2.3 Subsets of Numbers 47

Example 2.1 Semantics of Decimal Digit Natural Numerals: Let us perform
the following thought experiment: Let 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 “somehow
be” the natural numbers corresponding, left to right, to the decimal digits 0,
1,2,3,4,5,6, 7, 8,9; then

M: <NatNum> — Num
M(d,n) = 10«M(d) + M(n)
M(d) = case d of 0—0,1—1,....9—59 end

informally explicates the meaning of a natural number numeral. .

Notice that M is a morphism (see Sect. 8.4.4 for the concept of morphism).

We explain the notation used in the above example. We owe you an ex-
planation as to how M is able to distinguish between the natural number,
<NatNum> which is just a decimal digit, <DecDig> and one which is the com-
posite form, <DecDig><NatNum>. Later, when we have introduced the appro-
priate “machinery”, we can also present the syntax and type definition forms
by means of which RSL, and other specification languages, solve the distin-
guishability problem.

But we can explain the rest: If the number is of the composite form then
M(d,n) is the sum of ten times the value of the first digit and the value of
the rest of the numeral. If the number is just a digit then there are 10 cases
to distinguish. If the digit is the digit 0 then the value is the mathematical
number 0, etc. Had we chosen to write the digits by the character strings
zero, one, two, ..., nine then the case distinction would have been on these
character strings, but resulting, to the right of the —’s, in the same boldfaced
number designators.

Example 2.2 Semantics of “Quadruplet” Binary Digit Natural Numerals:
By “quadruplet” binary numerals we mean those strings of one or more special
quadruplets of Os and Is, namely: 0000, O00I, 00I0, OO0ll, ..., 1000, 100l.
Then we again have the same right-hand sides:

type
(QuaNum) ::= (QuaNum) {QuaDig) | (QuaDig)
value
M: (NatNum) — Num
M(d,n) = 10xM(d) + M(n)
M(d) = case d of 0000—0, 000I—=1, ..., I000—=8, I00|—9 end

Explanation of Some RSL Constructs

In other words, the “case e of py—e), pa—é), ... ,pp—el, end” construct has
a first argument, which is an expression e of any value and of any type, and a

48 2 Numbers

second argument which is a sequence of “triples” separated by commas: p;—e},
for ¢ being 1 for the first triple, right after the of keyword, 2 for the next, etc.
If the value of e can be expressed as the pattern, inclusive, as here, of having
the value of that pattern, then the value of the whole case construct is that of
the value of ¢}, else we try the next triple. If no triple yields a comparison that
equals, that is, that ‘matches’, then the value of (the whole case construct)
expression is chaos. We shall have more to say about patterns later.

2.3.2 Integers: Int

Integers derive from natural numbers by including those numbers that are
negations of natural numbers. That is, if 7 is an integer, and —i = j is its
negation, then ¢ + 7 = 0.

Properties

Let a,b and ¢ stand for integers. Some important properties of integers are:

[Associativity and Commutativity of + and *:]
a+(b+c) = (a+b)+c, a+b = b+a
ax(bka) = (axb)*c, axb = bxa
[Distributivity of * over +:]
ax(b4c) = axb + axc
[Properties of 0 and 1:]
0+a =a,lxa=a,0xa =0
[Properties of —:]
(—a)+a = 0, (~a)sb = —(axb), (—a)#(~b) = asb
[Cancellation Laws:]
a+b = a+c¢ = b=c, a#0 — (axb=axc = b=c)
[Properties of Order: |
a>0 A b>0= axb >0
V a:Int « a<0 vV a=0 Vv a>0 [Trichotomy]
[Definition of Addition and Multiplication:]
s:Int—1Int, s(i) = i+1 =i’
a+0 = a, a+s(b) = s(a+b) = a+b+1
ax0 = 0, axs(b) = (axb)+a
[Integer Division:]
a / b as (q,r) where a = bxq+r A 0<r<b

The RSL Integer Algebra

The RSL integers can be indefinitely large, positive or negative. The usual
operators are defined, as well as some not so usual operators \ and /.

2.3 Subsets of Numbers 49

value
+,—,/,%,\: Int x Int = Int
<,<,=,#,>,>: Int x Int - Bool
—, 1: Int — Int
abs: Int — {| i:Int + >0 |}
axiom
V¥ n:Nat » abs —n = n = absn

The slash, /, and the backslash, \, operators designate the integer division
and remainder functions:

VijInt « jZ20=>i=({/j)*j+ (a\Db)
The 1 designates the integer exponentiation function. The second argument

must be a natural number. If both arguments are zero then the result is chaos.

2.3.3 Real Numbers: Real

Real numbers, besides the integers, are additionally those that can be written
(i.e., can be represented) as a pair of possibly infinite sequences of digits
separated by, for example, a period. We indicate two extremes, the finitely
writable reals:

dndp—1...dv.didy ... d),_|d,
and the doubly infinitely writable reals:

i it gttt gttt 1 i
cedldly A

© i—1
for all combinations of digits d, d}.., d}. ,d}., ranging over 0,1,2,3,4,5,6,7,8
and 9, for k, k' finite, and for —oo < &, k' < 0o, whatever that means!
Obviously, in RSL we can only write the finitely representable reals.

Rational Numbers

A rational number is a real which can be expressed as the division of two
integers where the denominator is non-zero.:

Rat = {| i/j « i,j;Int A j#0 |}

Every integer is a rational number.

Operations on Reals

RSL defines the following operations on real numbers:

50 2 Numbers

value
+,—,/,#: Real x Real = Real
<,<,=,#,>,>: Real x Real — Bool
—: Real — Real
abs: Real — {| r:Real - r>0 |}
int: Real — Int
real: Int — Real
axiom
¥V n:Nat « abs —n = n = absn

The int and real functions convert a real to the integer nearest 0, respectively
an integer to a real:
int 2.71 = 2, int —2.71 = —2, real 5 = 5.0, and so on

Thus intr is the greatest integer that is smaller than or equal to the absolute
value of the real (r), with the sign being that of the real.

2.3.4 Irrational Numbers

The irrational numbers are all those reals which are not rational.

2.3.5 Algebraic Numbers

The algebraic numbers are all those real or imaginary numbers which are
roots, r, of polynomial equations of the form:

ax2"+bxs™ 1+ texx+d=0

where n is any integer and where coefficients a, b, ..., c,d are integers. v/2 is
an algebraic number. A root is any number, r, which makes the value of the
polynomial expression:

axx" +bsxa" '+ dexaxtd

equal 0. We shall not have any basic need to deal with algebraic numbers. If,
however, we were to develop a software system for calculations over polyno-
mials, then we would abstractly define polynomials as syntactic structures,
and we would define functions that, for example, solve polynomial equations.

2.3.6 Transcendental Numbers

A real number which is not algebraic is called transcendental. Existence of
transcendental numbers was first shown by the French mathematician Joseph
Liouville* in 1844. Examples of transcendental numbers are e and 7. Again,
in these volumes, we shall have no occasion to wish to express transcendental
numbers, but we will provide means for modelling them.

4See, e.g., http: //www.stetson.edu/ "efriedma/periodictable/html/Lu.html.

2.4 Type Definitions: Numbers 51
2.3.7 Complex and Imaginary Numbers

Complex numbers arise as the solution to certain kinds of polynomial equa-
tions. Such numbers (¢) are, in ordinary mathematics, normally written as a
pair of a real (a) and an imaginary (i b) number (where o and b are themselves
reals):

c:a+ib

There is no explicit means for writing complex numbers in RSL, as RAISE was
not intended for such applications where expressing or denoting complex num-
bers arise. If, however, we need to deal with complex number “representation”
and operations, then we model them as pairs:

type
Complex = Real x Real
value
add, sub, mpy, div: Complex x Complex — Complex

add((al,ibl),(a2,ib2)) = (al+a2,ibl+ib2)
sub((al,ibl),(a2,ib2)) = (al—a2,ib1—ib2)
mpy((al,ibl),(a2,ib2)) = (alxa2—iblxib2,alxib2+a2xibl)
div((al,ib1),(a2,ib2)) = ... /* left as exercise */ ...

2.4 Type Definitions: Numbers

So when and where are numbers used when modelling domains, requirements
and software? We model certain (concrete) phenomena and certain (abstract)
concepts by means of numbers when operations on the phenomena and con-
cepts necessarily entail those of for example addition, subtraction, multipli-
cation, and, more rarely, division.

A (concrete) type definition is something which to a type name associates
a type expression. The type expressions introduce in this chapter were:

type
Nat, Int, Real

Let N, I and R be (arbitrarily selected) type names, then:

type
N = Nat
I =Int

R = Real

52 2 Numbers

are examples of type definitions. V stands for the type, i.e., the class, of
natural number values. I and R for integers and reals.

With a person one can associate a height and a weight. With a country one
can associate a population (i.e., number of citizens) and its decomposition into
females and males. With that same population one can associate the annual
increment or the decrement in population, i.e., deviation. Suggested types are
therefore:

type
Height, Weight = Real
Population, Female, Male = Nat
Deviation = Int

The above just constitutes a very first beginning in which we model ‘kinds’
of phenomena and concepts

2.5 Summary

We have introduced the natural number Nat, the integer Int and the real
Real number types. In addition, we have shown how to express their values,
and covered the usual operations on each of these kinds of values. The other
number types mentioned are not directly designatable in RSL.

Integers are usually deployed to model indices into arbitrary arrays of
mathematics and hence in such programming languages which are used for
mathematical calculations over arrays (vectors, matrices, tensors, etc.). Sim-
ilarly natural numbers larger than 0 are usually deployed to model indices
into list data values, including, for example, sequences of sentence structures.
Sometimes, in ordinary programs of ordinary programming languages, integers
and natural numbers are occasionally used as programmer-chosen encodings
of other phenomena than numbers themselves.

Example 2.3 Undesirable Encodings: Typical encodings in “old” program-
ming styles were: 1 for truth and 0 for falsity; the numbers 1,2, 3,4 for des-
ignating the suit, s, of a card, in a deck of cards: 1 ~ &#,2 ~ ¢,3 ~ Q and
4 ~ #; and the numbers 1, ..., 13 for representing, within each suit, the face
value, v, of the card: 1 ~ ace, i =i, 1 < i < 10, 11 ~ knight, 12 ~ queen,
and 13 ~ king. As a result any ordinary (i.e., non-joker) card is encoded as a
number pair (s,v), and such that the joker (card) may be represented as, for
example, (5,14)! .

We leave it to the reader to imagine for which purposes we use reals in abstract
model specifications.

2.7 Exercises 53

2.6 Bibliographical Notes

The classical textbook cum monograph on number theory is that of Hardy
[263].

2.7 Exercises

Exercise 2.1. A Radix 0 Numeral Number System. Let natural numerals
be represented by sequences of diamonds, ¢, such that ¢ designates 0, ¢o
designates 1, ¢ ¢ ¢ designates 2, etc.

(1) Define a BNF® grammar for these radix 0 numerals.

(2) Define a function ROR10, and another function R10R0, such that ROR10
converts a radix 0 numeral to a radix 10 numeral, and such that R10R0 con-
verts a radix 10 numeral to a radix 0 numeral. Assume a modulo function
which when applied to numbers m and n, i.e., modulo(m,n), yields a pair,
(m',d), of numbers such that 0 < d <n,and m=n xm' +d.

(3) Define suitable arithmetic operators, addition, multiplication and in-
teger division, that take radix 0 numerals and return radix 0 numerals.

Exercise 2.2. A Radix 8 Numeral Number System (I). Based on the idea
of the informal Example 2.1, devise a grammar for a radix 8 natural number
system, and an informal meaning function that converts radix 8 numerals into
radix 10 numbers.

Exercise 2.3. A Radix 8 Numeral Number System (II). Given a radix 10
number, convert it to a radix 8 numeral. That is: Define, informally, a function
which takes a natural number and yields a radix 8 numeral. Assume a function
modulo which takes two arguments, m,n, both natural numbers, both larger
than 0, and yields a pair w,r such that w xn +r =m.

Exercise 2.4. Real Numerals. Suggest a BNF grammar for real numerals, that
is, a pair of sequences of digits separated by a period. Then suggest an informal
function definition which converts a real numeral to a real number.

Exercise 2.5. Imaginary Numbers. We refer to Sect. 2.3.4. Please define the
division of complex numbers (i.e., complex reals).

L X

Throughout this volume we shall use the triplets of ds to set off exercises that
pertain to the “running” exercises of transportation nets, container logistics
and financial service industries. The single & after the initial Exercise literal
and exercise number shall signal that the exercise in question belongs to these
running exercises.

SWe refer to Page 46 for an example BNF grammar.

54 2 Numbers

LXX

Exercise 2.6. & Numbers in the Transportation Net Domain.

We refer to Appendix A, Sect. A.1, Transportation Net.

Reading, carefully, the rough sketch description given in Sect. A.1, try
to identify as many entitites which can be, in a reasonable way, modelled as
numbers. State their type definitions as outlined in Sect. 2.4 on page 51.

Exercise 2.7. & Numbers in the Container Logistics Domain.

We refer to Appendix A, Sect. A.2, Container Logistics.

Reading, carefully, the rough sketch description given in Sect. A.2, try
to identify as many entitites which can be, in a reasonable way, modelled as
numbers. State their type definitions as outlined in Sect. 2.4 on page 51.

Exercise 2.8. & Numbers in the Financial Service Industry Domain.

We refer to Appendix A, Sect. A.3, Financial Service Industry.

Reading, carefully, the rough sketch description given in Sect. A.2, try
to identify as many entitites which can be, in a reasonable way, modelled as
numbers. State their type definitions as outlined in Sect. 2.4 on page 51.

Sets

¢ The prerequisite for studying this chapter is that you are willing to learn
about simple mathematical concepts.
The aim is to introduce the basic mathematical concepts of simple sets.
The objective is to help ensure that the reader gets a head start on the
most important of all model-oriented abstractions: sets.

¢ The treatment is rigorous to formal.

Characterisation. By a set we shall, loosely, understand an unordered col-
lection of distinct elements (i.e., entities), something for which it is meaningful
to speak about (i) an entity being a member of a set (or not) €, (ii) the union
(merging) of two or more sets into a set (of all the elements of the argument
sets) U, (iii) the intersection of two or more sets into a set (of those elements
which are in all argument sets) N, (iv) the complement of one set with respect
to another set \, (v) whether one set is a subset of another set C and C and
(vi) the cardinality of a (finite) set (i.e., how many members it contains), card
and a few more. .

The concepts of sets and set elements are left undefined. Above we have hinted
at some set forming and other operations over sets and their elements. What
sets “really are” is usually defined in mathematics by establishing what is
called an axiom system'. Axiomatically speaking, sets and their operations are
what a number of axioms of a set theory define them to be! There are several
axiom systems for set theory. They each define a set theory. The different
set theories may therefore not be exactly the same. The perhaps best-known
axiom system for set theory is that put forward by Zermelo/Fraenkel (ZF)
[211,230]2.

'"We shall later, in Chap. 9, define what we mean by axiom system.
2See, for example:
http://plato.stanford.edu/entries/set-theory /ZF . html
http://mathworld. wolfram.com/Zermelo-Fraenkel Axioms.html

56 3 Sets

3.1 Background

Set theory is a major branch of mathematics. One can start by explaining
mathematics from a basis of set theory, or from a basis of mathematical logic.
We refer to seminal texts in set theory for a discussion of sets as a foundation
for mathematics [46,211,230,258,273,394,491,500,505]. These texts also put
set theory into a historical context.

3.2 Mathematical Sets

Let ey, ea,...,e, be arbitrary elements (i.e., mathematical entities). Let us
assume, without loss of generality (of what we shall have to say next), that
they are all distinct and elementary, i.e., atomic. That is, no e; involve func-
tions, or other sets, etc. Then when writing {ej, ez, ...,e,} we mean the set,
which we may name s, of n distinct elements e; for ¢ = 1...n. {} designates
the empty set® (of no elements). { and } are the set-forming braces.

We take membership, €, of a set, e € s, to be a further unexplained
primitive function. e € s holds, i.e., is true, if e is one of the ¢; fori = 1...n.
Otherwise the expression e € s is false.

Based on the membership function we can now define? the standard col-
lection of operations over sets. Let e, s, s designate any element and any two
sets:

s Us ={elecsvees} (3.1)
sNs={eleesnees} (3.2)
s\ s={eleesnedgs'} (3.3)
s | §={e|lees Neds} (3.4)
5§ C 8§ =Vesecs=>ecs Adeeccs Aeds (3.5)
s C s =Veeeecs=>ecs (3.6)
s = 8 =5CsAsCs (3.7)
s # 8 ==(s=4) (3.8)

Since this an early exposition of logical formulas, let us “read” these:

e Equation (3.1): The union of two sets, s and s, is the set of elements e
such that e is a member of either the set s or the set s', or both.

e Equation (3.2): The intersection of two sets, s and s', is the set of elements
e such that e is a member of both the set s and the set s'.

http://planetmath.org/encyclopedia/ZermeloFraenkel Axioms.html
http://www.britannica.com/eb/article?tocId=24035, etc.
3Sometimes the empty set is designated @.
“Definitions 3.1-3.8 are all in the classical style of mathematics.

3.2 Mathematical Sets 57

e Equation (3.3): The difference of set s wrt. set s is the set of elements e
such that e is a member of s but not of the set s'.

e Equation (3.4): The complement of set s wrt. set s’ is the set of elements
e such that e is a member of s’ but not of the set s.

e Equation (3.5): s is a proper subset of set s’ if all (V) members of s are
also members of s’, and such that there exists (3) members of s’ which are
not members of s.

o Equation (3.6): s is a subset of set s’ if all members of s are also members
of s

e Equation (3.7): Two sets are equal if one is a subset of the other, and vice
versa.

e Equation (3.8): Two sets are unequal if they are not equal.

Definitions (3.1)-(3.4) exemplify set comprehension:®

{e| P(e)}

Figure 3.1 illustrates six of the above operations. The black circle to the left
of the upper-leftmost subfigure stands for a set A; the other black circle to
the right stands for another set B. The same is true for the subfigures of the

first two rows.

A\B

AUB
A/B ANB
' o

0) @9¢

Fig. 3.1. Informal illustration of six set operations

Thus the operator symbols of Egs. (3.1)-(3.8) read as follows: V: or, A: and,
¢: not member of, Vee: for all elements it is the case that, Jes: there exists
an element, such that, —: not. The first four definitions are by set compre-
hension. The last four definitions use universal and existential quantification.

SWhen expressing set comprehension in the RSL notation we shall “add” a type
binding: {e|e: T s P(e)}.

58 3 Sets

The symbol | reads: such that. The logic of these equations (i.e., definitions)
is covered in Chap. 9.

In summary: There are two ways of expressing sets: by enumeration: {},
{a}, {a,b}, etc., and by comprehension: {e | e : T e P(e)}. We did not show
the typing, T, of elements e in Egs. (3.1)—(3.8). Take, for example, Eq. 3.1:

sUs ={e|le:Tesvees'}

That is, we shall later bind elements of sets to specific types, and hence express
that sets are typed sets. But we did show the use of the predicate (P over e).
Later we will explain typing (Chap. 5) and predicates (Chap. 9).

3.3 Special Sets

3.3.1 Axiom of Extension

The axiom of extension states that a set is completely determined by its
elements.

3.3.2 Partitions

Let s be a set, say {a1, as, a3, a4, a5, ag }. A partition of s is a set of disjoint, i.e.,
nonoverlapping sets, for example, {s1, 52,83} = {{a1}, {as, a3}, {a4,a5,a6}},
such that the union of these: {a; }U{as, a3 }U{a4, a5, ag}, forms the set s.

3.3.3 Power Sets

Given a set, s, the power set of s, P(s), is the set of all its subsets. Thus,

for a = {a1,as,as}, P(s) is {{}, {a1}, {az}, {as}, {a1,a2}, {a1, a3}, {as,as},

{al, a2,a3}}.

3.4 Sorts and Type Definitions: Sets

3.4.1 Set Abstractions

So when and where are sets used when modelling domains, requirements and
software? We model certain concrete phenomena and certain abstract concepts
by means of sets when operations on these phenomena and these concepts
necessarily entail those of for example a phenomenon (or a concept) being a
member of a class of such, or a set union of such, or a set intersection of such,
or one phenomenon (or concept) being set included in another, etc.

3.5 Sets in RSL 59
3.4.2 Set Type Expressions and Type Definitions

A (concrete) type definition is something which to a type name associates a
type expression. The set type expression introduced in this chapter was:

B-set

where B is any type (expression). Let B be an already defined type name,
then:

type
A = B-set

is an example of a type definition. A then stands for the type, i.e., the class,
of sets of B elements.

Example 3.1 Sociology: If a neighbourhood, N, of people consists of a set
of people, if a clan (i.c., a family), C, similarly, and if a society (of people)
S, congists of a set of neighbourhoods, then:

type
P
N = P-set
C = P-set
S = N-set

models neighbourhoods, clans, and societies, in terms of the undefined sort of
people, P. .

The above just constitutes a very first beginning in which we model kinds of
phenomena and concepts.

3.4.3 Sorts

By a sort we shall understand a type about whose elements we make no further
statements, that is, we do not, at present, say what they are. In other words,
we leave them further undefined.

3.5 Sets in RSL

In Chap. 13 we shall cover, in excruciating detail, the concept of sets in RSL:
how they are typed, enumerated, comprehended, operated upon, and used in
various abstractions.

60 3 Sets

3.6 Bibliographical Notes

Set theory and logic are classical mathematical disciplines, and are strongly
related. Seminal textbooks in set theory are: [46,211,230,258, 273,394,491,
500,505].

3.7 Exercises

Exercise 3.1. Simple Set Enumerations and Operations. (1) List, as set ex-
pressions, i.e., with curly braces and separated by commas, i.e., {_, _, ..., -} the
following finite sets: (a) The set, of the first 10 Fibonacci numbers, (b) the set
of the first 6 factorial numbers, and (c) the set of the first 6 square numbers.
(2) Then list the set of elements resulting from the intersection set of a and
b, the complement of a wrt. b (i.e., a\b), and the complement of b wrt. to a
(i.e., a/b).

Exercise 3.2. Set Statements. Fill in the texts implied by and below:

e If an element e is in AN(BUC) then it is the same as saying that e is in

and in .

o If an element e is in (ANB)UC then it is the same as saying that e is in

or in ,

o If an element e is in A\(BNC) then it is the same as saying that e is in

but not in .
(X X)

Notes for the next exercises: Let A be the main type of some domain
(i.e., the Transportation Net, the Container Logistics, or the Financial Service
Industry — such as outlined in Appendix Chap. A). If some major, i.e., an
immediate subentity of entities of type A can be modelled as sets of entities
of type B, then we can also say that we can observe these sets of (type B)
entities:

type
A B
value
obs_ Bs: A — B-set

Here obs_Bs is said to be an observer function that applies to entities of type
A and yields sets of entities of type B. We say that we can observe these latter
sets from elements of type A.

L X

3.7 Exercises 61

Exercise 3.3. & Sets in the Transportation Net Domain:

We refer to Appendix A, Sect. A.1, Transportation Net.

Reading, carefully, the rough sketch description given in Sect. A.1, try
identify as many entities which can be, in a reasonable way, modelled as sets.
State their type definitions as outlined in Sect. 3.4 on page 58. Suggest related
observer functions.

Exercise 3.4. & Sets in the Container Logistics Domain.

We refer to Appendix A, Sect. A.2, Container Logistics.

Reading, carefully, the rough sketch description given in Sect. A.2, try
identify as many entities which can be, in a reasonable way, modelled as sets.
State their type definitions as outlined in Sect. 3.4 on page 58. Suggest related
observer functions.

Exercise 3.5. & Sets in the Financial Service Industry Domain.

We refer to Appendix A, Sect. A.3, Financial Service Industry.

Reading, carefully, the rough sketch description given in Sect. A.3, try
identify as many entities which can be, in a reasonable way, modelled as sets.
State their type definitions as outlined in Sect. 3.4 on page 58. Suggest related
observer functions.

4

Cartesians

¢ The prerequisite for studying this chapter is that you possess at least a
simple level of mathematical maturity.
The aim is to cover the classical mathematical concept of Cartesians.
The objective is to make sure that the reader, in the future, will handle
the issues of certain kinds of aggregations, compounds, products, records,
structures, etc., as possible examples of Cartesians.

e The treatment is informal, yet, precise.

We have chosen the name Cartesians, for the kind of mathematical struc-
tures unveiled in this chapter, after the French philosopher and mathemati-
cian René Descartes. Other, more common, terms are: structures, records,
groupings or aggregations. At the end of the chapter we provide a “borrowed”
biography of René Descartes.

Characterisation. By a Cartesian we understand, loosely, a fixed grouping
(i.e., aggregation) of a number of not necessarily distinct entities such that
it is meaningful to speak of (i) the composition of these entities, ¢;, into a
Cartesian, (e1,es,...,¢ey,), and of (ii) the decomposition of a Cartesian, ¢,
into its components: let (idy,ids,...,id,) = cin ... end, etc. .

4.1 The Issues

Between elements (i.e., members) of a set there is no other relation than their
being distinct members of that set. If one wishes to express a mathematical
entity which has a fixed number of possibly distinct entities such that their
position is fixed, but not ordinal, then it is suggested to model such an entity
as a Cartesian.

64 4 Cartesians
4.2 Cartesian-Valued Expressions

By a Cartesian we understand a finite grouping of two or more values.! By

a grouping we understand a composite value which can be uniquely decom-
2

posed:

type

XY, Z
value

xX, y:Y, z:Z

(x,¥,2) /% expresses a Cartesian %/
/* assume k to be a three—component Cartesian: %/
let (x,y,2) = kin ..x...y...z... end
axiom
vV x:Xy:Y,z:Z »
let k=(x,y,2) in let (x',y',z)=k in x = XAy = y'Az = 7' end end

Thus left and right parentheses are used to delineate a comma-separated list
of two or more elements and to form, i.e., to construct, a Cartesian.

The axiom (see Chap. 9) expresses that for any Cartesian structure (i.e.,
grouping, composition) of individual values we uniquely get exactly these
values back when decomposing the structure.

While emphasising the semantic idea of compositions, parts and wholes,
we incidentally also illustrated extensions to the syntax of let ... in ... end
clauses.

4.3 Cartesian Types

To express the type of Cartesian values, say over respective sorts® X, Y, and
7, we write the type expression:

XxY xZ

That is: x is the infix Cartesian type constructor. Giving names, for example
K, to Cartesian types is exemplified below:

Tt does not make sense, we think, to speak of Cartesians of zero elements, or
of just one element. (), as an expression, in RSL, stands for the value of type Unit,
that is: A type of just one value: (). Let v be of type A, then the type of the value
of the expression (v) is A.

’In the formulas below (i.e., above!) we introduce some first bits of the RSL
notation: By type X we roughly mean a set of entities of the same type, here named
X. By value x:X, y:Y, z:Z we mean the naming of, as here, arbitrary values, x, vy, z of
respective types. By axiom V x:X,y:Y,z:Z » P(x,y,z) we mean to express a property
P(x,y.z) that always holds for all the values x, vy, z.

3The term sort is used in lieu of the term type when the type is not further
defined.

4.4 Cartesian Arity 65

type
X, Y, Z
K=XxYx1Z2

The meaning of X x Y x Z is the (unnamed) type whose values are uniquely
decomposable into exactly three components of respective types X, Y and Z.
Any type expression can be grouped:

XXxYXZ, (XxYxZ), (XxY)xZ, Xx(YxZ), etc.

The first two of the parenthesised expressions are not different, X xYxZ and
(XxYxZ) denote the same type spaces. But the last two, repeated below, are
different. That is, the three spaces, K1, K2 and K3 are distinct:

type
K1l = Xx(YxZ)
K2 = XxYxZ
K3 = (XxY)xZ
axiom

[informally:]
KiNK2={} AKINK3={} AK2N K3 ={}
[formally:]

V x:Xoy:Y, 27+ (3,(3:2)) # (%,y,2) A(63,2) A ((,5))M (%:7) 2) # (%, (3:2))

Although we have yet to introduce the concept of axioms, we can read the
informal and the formal bits: The three type spaces share no values. For no
combinations of x, y, and z values in respective types (i.e., type spaces) are
the specific combinations, which correspond to the three type spaces K1, K2
and K3, equal.

4.4 Cartesian Arity

In general, let Dy, ..., D,, (also written as D_1, etc.) stand for type names
(or type expressions), then

D1xD2x..xDmn

type
C=D1xD2x..xDmn

stand for the n-ary Cartesians over respective D;s. The arity of a Cartesian
is thus its number of components.

66 4 Cartesians
4.5 Cartesian Equality

We define only one operator on Cartesians. The equality expression:

(a1,09,...,am) = (b1,b2,...,by)

holds if and only if m = n and, for all i in the interval [1..m]* we have that
a; = bz

4.6 Some Construed Examples

The examples of this section are construed, or made up, to serve as illustra-
tions, however artificial, of uses of Cartesians. They furthermore violate our
edict, our language design decision, that Cartesians have at least arity 2, in
that we also, in the below examples, claim to deal with Cartesians of arity 0
and 1.5

Example 4.1 A Simple Language of Cartesian Numerals: Consider the fol-
lowing encoding of natural numbers in terms of Cartesians. Let token be any
atomic value.

0: token,

1: (token),

2: (token,token),

3: (token,token,token),

n: (token,token,...,token) n times token

Now consider the following “operations” on these Cartesian numerals:

+: (token,token,...,token)+(token,token,....token) = (token,token,...,token)
n times token m times token m+n times token

The question is: How do we express this operation? Here is a proposal:

enl + en2 =
case (cnl,cn2) of
(token,(“lst2”)) — cn2,
((“lst1”),token) — cnl,

“In RSL, the specification language mostly used in these volumes, an interval of
integers from j to k is designated by the two period range expression: [j..k].

50f course, we could just change our design decision wrt. the arity of Cartesians
and allow arities 0 and 1. We would then have to provide a way in which to express
Cartesians of those arities, and could perhaps choose: () and (A), where A is any

type.

4.6 Some Construed Examples 67

((“1st17),(“1s62”)) — (lst1,lst2)
end

where “lsti” stands for any list of tokens, for example, t1,t2,... tn.

The proposal works only if you believe it works! That is, you have to agree
with the writer of the above formulas that “lst1” and “lst2” stand for lists
of “token,token,....token”. This form of “text and ellipss” expressions may
work, intuitively, but rarely works in formal practice. That is, one can easily,
or maybe not so easily, come up with examples where the above-suggested
metalinguistic variables (i.e., “Ist1” and “Ist2”) lead to ambiguities.

Along that line: How is one to represent the subtraction, the multiplication
and the integer division operations?

We have brought this example so as to motivate the need for a meta-
language, here RSL, in which to model constructions like those of the present
example. We say metalanguage, since it is being used in order to express
properties about another language — here that of Cartesian numerals. .

Example 4.2 A Simple Language of Cartesian Lists: Consider { and) to be
delimiters of list expressions, that is, {a,b,c) designates the list of elements a,
b and ¢, and in that order: a being the first list element, b being the second,
and c being the third element. Now consider using just pairs of Cartesians to
designate lists:
(token,token) = ()
((a),token) = (a)
((a) ((b), tokeﬂ) =
((»((b),((c) token))

‘-—/""-.
% o‘

That is, (token,token) designates the empty list, and ((a),#) designates the
list whose first element is a and whose tail is the Cartesian list £.

Does this work? Well, only if the pairs obey, for example, this restricted
syntas:

<CL> := (token,token) | (<A> , <CL>)
<A>:xz=a|b|c]|..
A is any set (i.e., type) of, for example, atomic (non-Cartesian) values.
With this language of Cartesian lists, how do we express concatenation,
=, of two lists:
{a,b,c} - (d'!e) = (a,b,c,d,e) E
Well, let us try:
~: (token,token)”((a),£) = ((a),£)
~: ((a),f)” (token,token) = ((a),£)
7t ((a),0)”((a),€') = ((a),7((2),¢)).-

68 4 Cartesians

Let us define hd (head) and tl (tail) of lists:

hd {) = chaos
hd (a)"tail = a
tl {) = chaos
tl (a) " tail = tail
i.e.:
hd (token,token) = chaos
hd ((a),f) = a
tl (token,token) = chaos
tl ((a),6) = L.

chaos denotes the undefined value. .

We leave it as an exercise to define the following operations on Cartesian lists:
length of a list, index set (inds) of a list, element set (elems) of a list and
the list indexing operation £(%).

4.7 Sorts and Type Definitions: Cartesians

4.7.1 Cartesian Abstractions

So when and where are Cartesians used when modelling domains, require-
ments and software? We model certain concrete phenomena and certain ab-
stract concepts by means of Cartesians when these are seen as consisting of a
fixed combination of an a priori known number of distinct entities.

4.7.2 Cartesian Type Expressions and Type Definitions

A concrete type definition is something which to a type name associates a
type expression. The Cartesian type expressions introduced in this chapter
were of the form:

BxCx..xD

where B, C, ..., D are any types (i.e., any type expressions). Let B, C, D be
already defined type names, then:

type
A=BxCxD

is an example of a type definition. A then stands for the type, i.e., the class,
of Cartesians of (b,c,d) elements, that is: Where b is in B, ¢ is in C and d is
in D, also written b:B, ¢:C, d:D.

4.10 Exercises 69

Example 4.3 Complex Numbers: Let R be real numbers, and I likewise,
then

type
R, I = Real
C=RxI

models complex numbers. .

The above just constitutes a very first beginning in which we model kinds of
phenomena and concepts.

4.8 Cartesians in RSL

In Chap. 14 we shall cover, in excruciating detail, the concept of Cartesians
in RSL: how they are typed, enumerated, operated upon, and used in various
abstractions.

4.9 Bibliographical Notes

We refer to an Internet-based biography about René Descartes:
www-gap.dcs.st-and.ac.uk/ “history/Mathematicians/Descartes.html

Tt is authored by J. J. O’Connor and E. F. Robertson, of the Univ. of St An-
drews, Centre for Interdisciplinary Research in Computational Algebra. The
book of historical interest to us is Discours de la méthode pour bien conduire
sa raison et chercher la vérité dans les sciences, with three appendices: La
Dioptrique, Les Météores, and La Géométrie [185,189].

4.10 Exercises

Exercise 4.1. Simple Cartesians. Is (1,2) = (2,1)? And is (V16, (-2)%,%) =
(4, /64, 6/24)7

Exercise 4.2. Cartesian Sets. Let the sets A, X be {a,b,c}, respectively
{p,q}. List the elements of the sets A x A, A x B,B x B, and B x A.

Exercise 4.3. Further Operations on Cartesian Lists. We refer to Exam-
ple 4.2 on page 67.

Define the following operations on Cartesian lists:

(1) length of a list: The number of (zero, one or more) elements that it
contains.

70 4 Cartesians

(2) index set, (inds) of a list: The set of indices, from 1 to and including
the length of the list. If the list is empty then the index set is the empty set.

(3) element set (elems) of a list: The set of distinct elements of the list.
If the list is empty then the element set is the empty set.

(4) The list indexing operation £(i). where, if the list is empty then the
operations is undefined, i.e., ends in the result chaos.

LLX

Exercise 4.4. & Cartesians in the Transportation Net Domain

We refer to Appendix A, Sect. A.1, Transportation Net.

Reading, carefully, the rough sketch description given in Sect. A.1, try
to identify as many entities which can be, in a reasonable way, modelled as
Cartesians. State their type definitions as outlined in Sect. 4.7 on page 68.

Hint: The directions of traffic along a segment may be modelled in terms
of a set of zero (the segment is closed to traffic), one (it is a one way segment),
or two pairs of distinct segment identifiers.

Find more examples yourself.

Exercise 4.5. & Cartesians in the Container Logistics Domain.

We refer to Appendix A, Sect. A.2, Container Logistics.

Reading, carefully, the rough sketch description given in Sect. A.2, try
to identify as many entities which can be, in a reasonable way, modelled as
Cartesians. State their type definitions as outlined in Sect. 4.7 on page 68.

Hint: A container terminal consists of a quay (or a set of quays), and a
container storage area. [You may wish to also include the harbour basin in
“what a container terminal consists of”.]

Find more examples yourself.

Exercise 4.6. & Cartesians in the Financial Service Industry Domain.

We refer to Appendix A, Sect. A.3, Financial Service Industry.

Reading, carefully, the rough sketch description given in Sect. A.3, try
to identify as many entities which can be, in a reasonable way, modelled as
Cartesians. State their type definitions as outlined in Sect. 4.7 on page 68.

Hint: (i) A bank consists of a catalog of customers and (all their) accounts.
(ii) A buy [sell] order consists of a customer identification, a securities instru-
ment identification, a quantity indication (of number of to be bought [sold]),
a time period during which the ordered transaction is expected to be fulfilled,
and a price interval (“lo”—“hi”) within which the ‘buy’ [‘sell’] price is expected
to fall.

Find more examples yourself.

Types

e The prerequisites for studying this chapter are that you possess knowl-
edge of the type concept of ordinary programming languages as well as
of the mathematical concepts of sets and Cartesians as covered in earlier
chapters.

e The aim is to give a first overview of the type concept that we shall further
develop in subsequent chapters.

e The objective is to help ensure that the reader eventually becomes fluent
in the selection, expression and use of types.

e The treatment is from systematic to semiformal.

The type concept is, perhaps, the greatest contribution computer science has
made to mathematics. The type concept is all pervasive, but it is not quite
the same as the dimension and unit concepts of, for example, physics.

Characterisation. By a type we shall, loosely speaking, understand a named
(i.e., an identified) set of values. .

Types are, simplifying, taken to be sets of values. The values of type sets, i.e.,
their elements, are such as Booleans, numbers, sets, Cartesians, functions, re-
lations, lists and maps where the composite types (sets, Cartesians, functions,
relations, lists and maps) themselves consists of values.

In this section we will briefly introduce the reader to the fundamental
concept of types. The professional software engineer repeatedly thinks in terms
of types. That is, the concept of type and its abstract and concrete mastery
is crucial to professional software engineering.

This section is cursory. The type concept will be identified. Chaps. 24
have introduced types, and Chaps. 6-9, as well as Chaps. 10 and 13-16 will
introduce type concepts. The RSL type concept will then be summarized in
Chap. 18. Thereafter it will be used in the rest of these volumes. So, with the
present introductory section we will start a long journey into possibly that
most important concept of software engineering, type theory and practice!

72 5 Types
[I J

The world is full of manifest things (i.e., of phenomena): entities that one can
point to. Some share properties and are “of the same kind”, others do not,
and are “of different kinds”. The type concept was introduced first, in some
abstract sense, by philosophers, then by mathematicians and, much later, in
programming languages to cope with “sameness”, respectively “distinctness”.

We assume some basic familiarity with rudimentary aspects of the type
concept of some programming languages. From examples of such a program-
ming language type concept and its analysis, we unfold, below, some very
bagic ideas of more abstract type concepts. In this way we can, little by little,
introduce a concept of specification language type concept.

In this section we shall introduce the very basics of the type concept upon
which we shall later be baging further ideas of type. These basics are: sorts (i.e.,
abstract types), concrete types, atomic types, type names, type expressions,
type constructors, and the fact that values and types form complementary
notions.

5.1 Values and Types

How do we motivate the concept of types? We do so as follows: Around us we
see phenomena such as a person being 1 meter, 79 centimeters tall, 67 years
old, and weighing, oh well, too much! We shall, in these volumes, refer to the
‘person’ phenomenon as an entity. The person is an entity describable, i.e.,
characterisable, through, in this example, the three entity attributes just men-
tioned. On first reflection, the attributes represent, i.e., characterise values,
and on second thought, these attributes are types: height, age, and weight.
So an entity has an attribute value which is of an atomic or composite type.

The person attribute value was of, or had composite type, and the compos-
ite type components included the height, age and weight types, which were
atomic types, that is, could not be further decomposed. Some entities have
constant values, others have variable values. A person’s birth date is definitely
fixed. A person’s gender is (usually) fixed. A person’s age changes all the time!

Entities rarely change type. A rather construed example of an entity that
may be considered to change type is the following: Some thing, an entity,
which, “to begin with” may be considered or registered as a wooden chair.
That is, of utility. Then the chair “changes” type to become an antique, ex-
hibited, but not sat in. It is no longer of utility depending on one’s viewpoint,
of course. Or it is wrecked and becomes a “heap of wood”, and is thence pos-
sibly considered burning material for a stove. That is, again of utility, but of
a different one! Modelling types — including type changes — is often referred
to as data modelling. In other words: types and values go hand-in-hand.

In these volumes we shall have much more to say on the concepts of types,
attributes (a kind of types) and values, as well as on the use of these con-

5.2 Phenomena and Concept Types 73

cepts in (domain) modelling the actual world, in (requirements) modelling
expectations to software and in expressing software implementation models.

5.2 Phenomena and Concept Types

5.2.1 Phenomena and Concepts

Characterisation. By a phenomenon we mean some physically manifest
thing, something that one can point to or measure by means of some physical
instrument. .

Any specific person is such a phenomenon.

Characterisation. By a concept we mean an abstraction, something of our
mind. .

Concepts usually abstract classes of related phenomena.

We bundle, following what was expressed in earlier sections, classes of
like phenomena or like concepts into types. In this section we shall examine
relations between phenomena, concepts and types.

5.2.2 Entities: Atomic and Composite

Characterisation. By an entity we mean a representation of a phenomena
or a concept. .

Characterisation. By a representation (of something) we loosely mean “a
way of talking” about that “something”, a way of “writing it down”. .

A representation of a phenomenon is not that phenomenon, but it is only our
way of referring to it.

As an aside: A representation of a phenomenon, however represented, as
long as it is not represented “inside” a computing (and communications) sys-
tem, is spoken of as information. Once represented inside a computing (and
communications) system we speak of it as data. Data is formalised represen-
tation of information.

Characterisation. By an atomic entity we mean an entity which does not
itself consist of proper sub-entities. .

A person could be considered an atomic entity in that that person’s head,
arms, legs, etc., should not from some point of view be considered entities in
their own right. Perhaps they are considered so by a surgeon, but certainly
not desirably so by any one person: one does not compose, as in mechanical
engineering, a person from one head, one left leg, etc.!

Please note that it is you who decides whether to consider a phenomenon
{or a concept) to be atomic, that is, indivisible or not.

74 5 Types

Characterisation. By a composite entity we mean an entity which can be
said to be independently composed from other proper subentities. .

A motor car can be said to be a composite entity in that it can be said to be
composed from an engine, a transmission system, a left front door, etc., where
each of these subentities are being considered entities in their own right, as
entities, by those who manufacture, that is, assemble them.

5.2.3 Attributes and Values

Characterisation. By an attribute we mean a named property which has
an associated type that for the same named attribute of different entities may
have different or the same values. .

Atomic Entity Attributes and Values

An atomic entity may possess one or more attributes.

A person, which we here consider an atomic entity, has, we decide, amongst
many other attributes, the following ones: name (with some fixed value, say
Dines Bjgrner), (current) height (with some varying value, say 179 centime-
ters), gender (with fixed value, male), etc.

So, the “full value” of an atomic entity may be a composite value!

Composite Entity Attributes and Values

The way in which a composite entity is composed can be said to be an at-
tribute of the composite entity which is different from the composition of the
attributes of the proper subentities.

Example 5.1 Roadnet: Entities and Attributes: A roadnet is composed from
a set of segments and a set of connectors. Segments do not contain connectors,
but ends in, or has exactly two such. A segment is an entity. Connectors do
not contain segments, but connect one or more segments (one if a road is a
cul-de-sac). A connector is an entity. Each segment, we decide, has attributes:
unique segment identity, road name, segment length, segment curvature, seg-
ment cover (tarmac, or other), etc., none of which are separable entities. Each
connector, we decide, has attributes: connector identity, possibly a connec-
tor name, set of identifiers of segments incident (and/or emanating from) the
connector, etc., none of which are (separable) entities. The roadnet has as at-
tribute that of the compositions of its entities (consists of, ends in, connects).

Characterisation. Composite Entity Attributes: We make the distinction
between the attributes of component entities of a composite entity and the

5.2 Phenomena and Concept Types 75

attribute of the composite entity: Let composite entity | consist of entities
¢1 ¢, ..., Gy Each of the individual ¢;, for ¢ = 1...m, have attributes C;,,
Ciys -+, Ci,, . In addition, the composite entity ¢ has attributes C. The latter
attribute outlines how the consist of relation is manifested, i.e., how we decide
it is so. For example: C is: ¢ consists of a sequence of components ¢;, or C is:
c consists of a set of components ¢y, or C is: ¢ consists of a component cg,
next to a component ¢, next to ...next to a component ¢y, . .

Tt is this ontology of sequence of, set of, next to, etcetera, which we shall later
capture by means of type operators, that is, operators on types that define
how component types make up overall types

Characterisation. Composite Entity Values: To each attribute we associate
a current value. Let composite entity ¢ consist of entities ¢y, ¢a, ..., ¢y. Each
of the individual ¢;, for ¢ = 1...m, have overall current values v, , v, , -- -,
v¢;, - In addition, the composite entity ¢ has value v, for attribute C. The
overall current value of ¢ is thus v,, combined, as prescribed by C, with the
overall current subentity values: v, , ve,,s - Ve, - .

Example 5.2 Roadnet Values: We continue Example 5.1 on the preceding
page. A particular roadnet is composed from three segments, as shown in
Fig. 5.1 subfigures [A]-[C]. The composition that two connected segments
meet in a connector is adhered to. Subfigures [A] and [B] show two, respec-
tively three cul-de-sacs.

Road Net [A] c2 s3 c3

c3 Road Net [C]
Road Net [B1

Fig. 5.1. Representation of three different roadnet values

The overall roadnet values are different by virtue, primarily of their specific
topologies. The three segments could all have the same values, that is, same
length, the same identifications, the same names, ete., as also indicated. But
what you first notice, we claim, when observing Fig. 5.1, is the difference in
the three attribute roadnet values. .

76 5 Types

We have tried, somewhat informally, to outline some ideas of atomic and
composite entities, and of their attributes and values. These ideas need to be
sharpened, i.e., made more precise. That is a main rationale of the present
volume!

Discussion

In ordinary mathematics, some would abstract roadnets in terms of graphs:
G:(S,C,K)!

S stands for a set of segments. For example, {s1,s2,s3}. C stands for a set

of connectors. For example, {c1, ¢, c3,¢4}, as in either of subfigures [A] and

[B] of Fig. 5.1 on the preceding page, or {c1,c2,¢3} as in subfigure [C] of

Fig. 5.1 on the page before. K stands for the specific connections of segments

to connectors. For example, [st» {c1,c2}] as in subfigure [A] of Fig. 5.1 on
the preceding page. The gist of Chaps. 1218 is that we offer several ways in
which roadnets (i.e., graphs) can be abstractly modelled:

The property-oriented algebraic sort and analytic function presentation:

type
GO, S, C
value
obs _Ss: GO — S-set
obs_Cs: GO — C-set
obsK: GO — (C » (S = C))

would for g0 being the roadnet of subfigure [A] of Fig. 5.1 on the page before
yield:

obs_Ss(g0) = {s1,82,83}
obs_Cs(g0) = {cl,¢2,c3,c4}
obs K(g0) = [cl{s1},c2—{s1,52},c3—{s2,83},c4—{s3}]

The model-oriented set-, Cartesian- and map-oriented specifications:
type

Gl = (C x S x C)-set
G2=C w» (S =» O

yield the following values of gl and g2 for the same roadnet (subfigure [A] of
Fig. 5.1):

gl: {(c1,81,c2),(c2,51,c1),(c2,52,c3),(c3,52,c2),(c3,83,c4),(c4,83,c3) }
g2: [cl=[slc2],c2[s1lcl,s25¢3] ,c3 [822,83 cd] ,cd— [83—c3]]

!The expression G: (S,C,K) is not in the style we shall be using in these volumes.

5.3 Programming Language Type Concepts 77

That is, the type definition facility promulgated by this volume replaces the
ordinary way in which mathematicians define mathematical structures. Our
type definition facility ties in with the function definition facility and permits
the definition of very rich and novel mathematical structures with entities and
functions.

5.3 Programming Language Type Concepts

We review some standard concepts of programming languages.

Some Examples

From classical programming languages, such as Algol 60, Pascal, C, C++ and
Java, we know of a type concept similar to the one now summarised.

Example 5.3 Simple Types: The three syntactic constructs after the key-
word var:

[1] var i integer,
[2] b Boolean,
[3] c character;

prescribe that storage for three variables be allocated, one ([1]), i, to have
enough storage space to contain integer values ranging, for example, between
—2™ and +2" — 1 (for some such n as, for example, 16 or 32 or 64) where n
is the size, in bits, of a storage cell (also called a half-word, a word, or a
double word). Another ([2]), b, to have enough storage space, say one bit, to
contain a Boolean value — either true or false. And a final ([3]), ¢, to have
enough storage space, say a byte or two bytes, to contain character values such

as the characters "a", "b", ..., "z", and possibly others (such as digits,
symbols and operators: non s nyn y s ngn , n s n , e s ey nu
"..+", PI*II, ||/||,) i

We observe a number of things that seem relevant for the understanding
of the above examples: (i) the use of the keyword var (or declared variable or
some such variant) to indicate that a variable is declared; (ii) that there seem
to be three declarations; (iii) that each of these declarations has two parts:
a variable name (i, b, respectively c), and a constant (“built-in”) type name
(integer, Boolean, respectively character); (iv) that to each variable a
concrete storage representation is (implicitly) prescribed; and (v) that variable
names (most likely uniquely) identify storage space that may contain values
of the prescribed type. -

78 5 Types

Example 5.4 Composite Types:

[4] typer =

[5] record (i integer,

[6] b Boolean,

[7] a array[1l..m,1..n] of char);

[8] var p r;

As before we observe a variable declaration (line [8]), but now the vari-
able name, p, is associated with a defined type, of name r (rather than, as
previously, a constant, built-in type). The defined type name is shorthand
for, i.e., is defined by, the right-hand side of the ‘=’ in line [4] of the exam-
ple, i.e., by lines [5-7]. There we observe that the defined type is of type
record, i.e., certain compositions of values of other types, and that it is to
have three named fields whose corresponding storage location parts are to
contain values of types integer, Boolean and a matrix of m rows and n
columns of character elements. Included in our examples above is the illus-
tration of the variable bounds ([1..m,1..n]) array type (actually a matrix
such as defined). Incidentally, just to provoke some possible confusion (see
Example 5.5) we have chosen field selector names “similar” (with respect to
identifiers), to the previously (correspondingly) introduced variable names.

Concerning p ([8]): It is an entity (a variable) of type r, and p (besides hav-
ing the overall attribute of being a variable) also has part attributes integer,
Boolean and character. "

Example 5.5 Type Checking Expressions and Assignments:

[9]l i:=14+ 1;

[10] b (if 1 > p.i then true else false end);
[11] p.i := p.i + i;

[12] ¢ := p.ali,p.i];

This last example is really extraneous to our main purpose of bringing
and discussing these examples. That purpose was to introduce the type con-
cept as it is found in classical programming languages. Instead the current
example illustrates such imperative programming language concepts as as-
signment, expressions, and record field value selection. The above illustrates
four assignment statements. In line [9] we show a simple assignment: The
integer variable i has its value incremented by one. In line [10] we show an-
other assignment, a conditional expression, and a record field value selection:
The Boolean variable b has its value set to true if the value of variable 1 is
larger than the value contained in record p field i, otherwise it is set to false.
And, finally, in line [12] we show an assignment involving a seemingly “tricky”
array element indexing: The value of character variable c is prescribed set to
the value of the character element of the record array field that is indexed

5.3 Programming Language Type Concepts 79

along one dimension by the value of the simple integer variable i and along
the other dimension by the value of the record i field. .

Discussion

We observed that two kinds of keywords are used in connection with types:
type names and type constructors. Type names are those, like integer,
Boolean and character that denote types of specific kinds of values, viz.:
integers, Booleans and characters. These keywords stand for built-in or given
types. Type constructore are those, like record and array which, together
with other linguistic markers (delimiters), identifiers and type names, help
construct or form new, defined types. These keywords stand for higher-order
functions. That is, we speak of type names, which are identifiers, either built-in
(as integer, Boolean, character) or defined (such as) r, and of composite
type expressions such as record(idl tel, id2 te2, ..., idn ten) where
idj and tej stand for record field selector identifiers and type expressions,
respectively. Type names are simple type expressions. We also observe, in the
above examples, that we pair type definitions, a type name, such as r, with
a type expression, such as record(idl tel, id2 te2, ..., idn ten).

We say that the type name r is being defined concretely: It is given a
model. The model given for r is that of records as laid out in storage: selector-
named consecutive flelds of proper storage location (and cell) parts. We shall
soon see that not all type names need be given concrete models.

The record type forming type constructor looks something like:

record(k *,% *,...,% *)

where the first * of the replicated pairs of * * are thought of as places into
which one can insert distinct record field selector identifiers, and where the
second * (of the replicated pairs) are similarly thought of as places into which
one can insert not necessarily distinct type names or, more generally, type
expressions.

The array type forming type constructor looks something like:

array[*. .x %, . %, ... ,x. .x] of =

where the first, respectively second * of the replicated pairs of * * are places
where one can insert integer-valued expressions designating lower, respectively
upper, bounds for respective dimensions of the array, and where the last *,
after the keyword of, is a placeholder for a type expression.

Apart from the storage space allocation, with its possible constraints on
layout,? the above type and value concepts are to be found in well-nigh any

2Such constraints could, for example, be: vector arrays are consecutively laid
out in storage from “higher addresses down”; matrix arrays have first dimension
elements referred to as columns, and second-dimension elements as rows; and are

80 5 Types

abstract specification language, and hence in RSL. We consider the examples
given to be those of concrete data structures, whereas what we shall initially
be modelling (in domain specifications and in requirements prescriptions) are
information structures. We consider data to be computerised representations
of information. That is, in domain specification and requirements prescrip-
tion we abstract from any storage representation. But otherwise we shall have
great use for types, and for typed variable names (even though we shall mostly
be using nonassignable, that is applicative or functional programming, vari-
ables).

5.4 Sorts or Abstract Types

We now turn to type issues, not of programming languages, but of specification
languages. Most specification languages offer built-in types such as integers,
Booleans and characters. Such built-in type names usually stand for atomic
types, that is, for types of values which are atomic, in other words, those for
which it is not meaningful to decompose the value into proper part values.
Some specification languages, typically the primarily model-oriented ones, say
RSL, VDM-SL and Z, offer type constructors not unlike the record and array
constructs, to build composite types from other, already existing or defined
types. We shall in this section only introduce the Cartesian type constructor.

A number of specification languages, archetypically the algebraic ones,
Cafe-0BJ [192,234] and CASL [398], allow the introduction of abstract types
or sorts. Sorts are types for which no model (say, in terms of sets, Cartesians,
functions, etc.) has been explicitly suggested:

type
A B, C

The sorts A, B and C are named, but no further definition is given.

We have introduced a bit of RSL syntax: The keyword type signals to the
reader that what follows — before other such keywords — are type declara-
tions. The above-illustrated type declarations introduced the names A, B and
C, as names of types. To help you think of the sorts A, B and C, we suggest
that you imagine them as spaces (i.e., sets) of values of type A, B or C.

It may turn out, now or later, in your considerations, that a sort is either
atomic, or it is composite. In the latter case, its values can be analysed into
proper constituent parts (i.e., values) of specific component types.

to be laid out row-orderwise, that is, they are laid out consecutively, first row first,
etc., and again from “higher addresses down”.

5.5 Built-in and Concrete Types 81

5.5 Built-in and Concrete Types

The RSL type concept, will be introduced in stages. We have already introduced
some parts of the concept above. We will introduce some more now, and then,
throughout the next many chapters, we will introduce even more. For now, we
ask you to simply think of a type as a set, possibly an infinite set, of values,
i.e., of entities of some kind.

We need some syntax to name and to define types:

[0] type
[1] I=1Int,B = Bool, C= Char
[2] P,Q,R
[3]

Int, Bool and Char are literals. They are built-in names; they come with RSL.
They name, respectively, disjoint sets of integers, Booleans and characters. P,
Q and R are user-defined type names. They denote sorts, i.e., abstract types.
K is a user-defined type name. It denotes a set of Cartesians, i.e., of products,
or “three-groupings”, of values of respective sorts. The RSL form:

[4] value
[5] p,p,-p"P, a,q.,q":Q, r,r,.. "R

designates a set of bindings. The identifiers p,p’,... and p” are all distinct and
designate arbitrary (nondeterministically chosen) values of type P. Similarly,
the identifiers q,q’,... and ¢" are all distinct and designate arbitrary (non-
deterministically chosen) values of type Q, and the identifiers rx’,... and ¢
are all distinct and designate arbitrary (nondeterministically chosen) values
of type R.

The value bindings (in line [10]):

[6] type

[7] A B

[8] L=AxBx..xC

[9] value

[10] (a,b,...,c),(a"b',....c"),(a"b",....c"), ..., (@b, ...,c'"):L

bind the free and distinct names a, a’, ...,a",b,b’, ..., b", ¢, ¢/, ... and ¢" to
arbitrary values of respective types. The types K and L stand for Cartesian
values.?

Let us comment on the bits and pieces of syntax that have been introduced
in lines [0..10]. In this case it is RSL syntax. The keyword type [0,6] expresses
that what follows are type names or type definitions. In [1], the first line
after the keyword type, we show three concrete type definitions; in [2], the

3The use of ellipses, ..., is metalinguistic: RSL expressions do not allow for the
use of ellipses such as in ordinary mathematics.

82 5 Types

second line, we show three abstract type definitions, that is, sort definitions;
and in [3], the last line, we again show a concrete type definition. The first
three concrete type definitions, [1], merely give other names (namely I, B,
C) to Integer, Boolean, respectively Character types. The concrete type
definition, [3], K=PxQxR, gives the name K to the Cartesian types PxQxR.
The infix x symbol is similar to the distributed-fix record (, ,...,) type
constructor. That is, x is a Cartesian type constructor, and similarly for line
8]

The keyword value, [4,6], expresses that what follows, first [5], are usually
typed names of values: p,p’,...,p", and thus are distinct names which stand for
not necessarily distinct values, all of type P, etc.

The composite bindings, [10], (a, b, ..., ¢), (a’, b', ..., ¢), (a", b", ..., ¢"), ...
and (a', b", ..., ¢"") express that the individual values of (unprimed, single or
multiply primed) a, b, ¢’s are grouped into Cartesian (or product, or grouping,
or record, or structure) values. That is, to repeat: We shall use the terms:
Cartesians, products, groupings, records, and structures synonymously.

5.6 Type Checking

The idea of associating types with identifiers is twofold: to inform the reader
as to the intentional use of the identifiers, while at the same time to allow
a specification language processor, a type checker, to analyse whether incor-
rect uses are made of the typed identifiers. We shall briefly examine the last
proposition.

5.6.1 Typed Variables and Expressions

Let us consider the following program fragment, from Sect. 5.3:

(o] var i integer :=7,
[1] b Boolean = true,
[2] ¢ character := ‘d’;

[3] type r =

[4] record (i integer,
[5] b Boolean,
[6] a array[1..4,1..2] of char)

[7] var p r;

[8] i=1+ 1;
[9] b := (if i > p.i then true else false end);
[10] p.i :=p.i + i;

The above expressions and statements seem pretty innocent!

5.6 Type Checking 83
5.6.2 Type Errors

If in line [9] we had written b*7, or if in line [10] we had written if b >
p-a, or if in line [11] we had written p.i := ¢, then, somehow, we could
argue that something was wrong.

What is wrong?

In line [9] (now with b*7) b is known as a Boolean, and one cannot mul-
tiply with Boolean-valued operands. In line [10] (now with if b > p.a) bis
(still) known as a Boolean, and p.a is known as a character, and one cannot
compare Booleans and characters. In line [11] (now with p.i := ¢) p.iis
known as an integer-valued variable, and c is known as a character-valued
variable, and one cannot assign characters to integer variables.

Example 5.6 Well-formed Roadnets: We continue the roadnet Exam-
ple 5.1 on page 74 and 5.2 on page 75.

We exemplify two kinds of type constraints for which an appropriate road-
net must be checked.

(1) If, by a roadnet we meant one in which no roads were isolated then the
characterisation of Example 5.1 on page 74 must be sharpened: (1) The road-
net must be such that from any connector one can reach any other connector
(of the same roadnet). (1) Another way of formulating this is: The roadnet
graph must not deteriorate into two or more isolated subgraphs. Isolation in
the above sense hinges on all roads being two way roads.

(2) If, by a roadnet we meant one in which non-cul-de-sac segments were
either one-way or two-way segments, then the characterisation of Exam-
ple 5.1 on page 74 must be extended to ensure nonisolation: (2') cul-de-sacs
are all two-way segments, and (2"”) any other segment is either a one-way
segment or a two-way segment. (2"') From any connector one can reach any
other connector (of the same roadnet), only by following the direction of the
connected segments. (That is: A one way segment has a single direction.) «

5.6.3 Detection of Type Errors

Having “annotated” various variables with types we can deduce which op-
erators, indexing and assignments seem correct, and which do not. This is
called type checking. We shall later, much later in these volumes, define, more
properly what is meant by is known to be of type, and how to assess such
knowledge. That is, we shall show how to formalise and possibly automate
certain type checks.

Many computer scientists and software engineers consider the concept of
type to only be related to, i.e., motivated, by type checking. We shall take
a broader view: Type checking is important to catch specification mistakes
early. But abstracting in terms of sorts and concrete types is also considered
important, because it focuses the mind.

84 5 Types
5.7 Types as Sets, Types as Lattices

In this chapter we have treated types as sets of values. This is often a reason-
able way of modelling types, but not always. When a type, D, is expected to
include the space of functions from D into D, then a set-theoretic treatment
does not suffice. It would simply not be able to explain the meaning of the
type equation:

D=D—->D

To solve such equations as D = D — D one may need to impose, for example,
an ordering amongst the “type set” elements, called the “type domain”. We
ghall just hint at this type theory here. It is a type theory in the sense of
being able to solve arbitrary type equations. That is, to give proper meaning
to reflexive function types is a hallmark of computer science. Dana Scott
founded type theory in the sense hinted at above [251,458-462,464,466-468].
We refer to [241,282,424,532] for introductions to type theory.

5.8 Summary

This completes our first coverage of the RSL type concept. It is the naming of
basic, primitive, that is, built-in types (Int, Bool, Char), which all stand for
concrete, in this case atomic types. We also covered the definition of abstract
types, that is, sorts, and the definition of concrete, composite types, in this
case Cartesians (record, products, groupings, structures), by means of the
infix type constructor X.

We shall, throughout these volumes, introduce further aspects of the RSL
type concept. Section 6.5.2 enlarges upon the type concept.

5.9 Exercises

& Note: The next three exercises, 5.1, 5.2 on the next page and 5.3 on the
facing page share the same three ‘Common Exercise Topics’. Hence they are
marked &. See Appendix Sect. A.1, Transportation Net, Sect. A.2, Container
Logistics, and Sect. A.3, Financial Service Industry. We also refer to Sect. 5.2
and to Examples 5.1 on page 74 and 5.2 on page 75. The exercises of this
chapter are in line with the referenced section and examples.

Exercise 5.1. & Atomic Entities of the Transportation Net, Container Lo-
gistics, or Financial Service Industry Domain.

1. Identify (i.e., name) a number of possible atomic entities.
2. For each entity identify (i.e., name) a number of attributes.
3. For each named attribute identify its possible values.

5.9 Exercises 85

Exercise 5.2. & Composite Entities of the Transportation Net, Container
Logistics, or Financial Service Industry Domain. We refer to Exercise 5.1 on
the preceding page (above). The questions below refer to the same physical
phenomenon, either in the Transportation Net, Container Logistics, or Finan-
cial Service Industry domain.

1

. Identify (i.e., name) some possible composite entities.
2.
3.

For some such (distinct kind of) entity list its component (i.e., sub-)entities.
For some composite component (i.e., sub-)entity list its component (i.e.,
subsub-)entities, etcetera.

. For some composite component entity identify (i.e., name) a number of

composite component attributes.

. For some such named composite component entity attribute identify its

possible composite component, values.

Exercise 5.3. & Type Checking Entity Descriptions of the Transportation
Net, Container Logistics, or Financial Service Industry Domain. We refer to
Exercises 5.1 on the facing page and 5.2. The questions below refer to the same
physical phenomenon, either in the Transportation Net, Container Logistics,
or Financial Service Industry domain.

1.

Atomic Entity Attribute Value Constraints. Recall Question 3 on the fac-
ing page of Exercise 5.1. Can you think of some type check that has to be
performed when presented with some possible atomic entity attribute val-
ues? Please list some such. Hint: The constraint on the value of an atomic
entity attribute may to be formulated relative to the values of some other
(atomic or composite) attributes.

. Composite Entity Attribute Value Constraints. Recall Question 2 of Exer-

cise 5.2. Can you think of some type check that has to be performed when
presented with some possible composite entity attribute values? Please
list some such. Hint: The constraint on the value of a composite entity at-
tribute may to be formulated relative to the values of some other (atomic
or composite) attributes.

6

Functions

e The prerequisite for studying this chapter is that you understand the
notions of sets and Cartesians as covered in earlier chapters.

e The aim is to introduce you to the mathematical concept of functions such
as we understand it in computing science and software engineering.

e The objective is to enable the reader to use and handle that concept of
functions, with ease, in order to achieve one of the most important aspects
of software development, namely abstraction. We shall endeavour to ensure
that the reader learns to think in terms of mathematical functions.

e The treatment is from systematic to semiformal.

The function concept, such as we shall introduce and use it, is a mathematical
concept. It is, next to types, of paramount importance. Nobody has ever seen
a function. Mathematical functions can be “observed” through their being
applied to argument values and yielding result values.

Characterisation. By a function we understand a mathematical entity that
can be applied to an argument (i.e., an entity) and then yields, i.e., results,
in a value “of the function of that argument”. .

To speak of spaces (or classes, or types) of functions and relations we need the
type concept, first illustrated in Chap. 5. In Chap. 8 we shall cover the concept
of algebras, but to do so we need the concept of functions. That explains our
sequence: first types, then functions and relations, and then algebras.

Some presentations of the concepts of functions and relations start with
relations, and then bring in functions later. We shall start with functions be-
cause we find introducing functions first, in a software engineering setting,!
more natural, and relations could, in this context, be considered a “mechani-
cal” means of explaining functions. If this reasoning puzzles you, then read on
and return, after having read the present chapter, to reread this paragraph.

We will be dealing more, throughout these volumes, with functions than with
relations.

88 6 Functions

Example 6.1 Example of Everyday Functions: We refer to Example 5.1 on
page 74 and 5.2 on page 75 of Sect. 5.2.

Let S, C and V name the types of segments, connectors and vehicles.
Let, accordingly, suitably decorated lower case versions of these type names
stand for segment, connector and vehicle values. Let N name the type of
roadnets. Thus n stands for specific nets. From, or in, a roadnet one can
observe its segments and connectors. Now let any segment, as a composite
entity include the values of zero, one or more vehicles (on that segment).
Similarly for connectors. That is, from a segment and from a connector one
can observe the set, of vehicles on that road (respectively in that intersection).
To “observe” is to apply a function to an argument value and obtain a result
value.

type
N, S, C, V, Si, Ci, Vi
value
obs_Ss: N — S-set
obs_Cs: N — C-set
obs_Vs: (S|C) — V-set
obs_Cis: S — Ci-set
obs_Sis: C — Si-set

From a segment one can observe the identity of the two connectors it is con-
nected to. From a connector one can observe the set of identities of segments
leading to (and from) that connector.

When driving a vehicle on a segment, to enter that vehicle into a connector
is to perform a function. Likewise when leaving a connector and entering a
segment.

value
enter: S x Vx C 58 x C
enter(s,v,c) as (s',¢')
pre: v € obs_Vs(s) A v € obs_Vs(c)
post: v & obs_Cs(s') A v € obs_Vs(c') A
obs_Cs(s') = obs_Cs(s)\{v} A obs_Vs(c') = obs_Vs(c) U {v}

leave: C x VxS 3 Cx8$
leave(c,v,s) as (') ...

Entering a vehicle, v, from a segment, s, into a connector, ¢, results in changing
the segment and connector values into §', ¢’. The vehicle value is unchanged,
hence not mentioned as a result value. The only difference in the before, s,
and after value, s', of the segment is that the segment no longer “contains”
vehicle v, with the reverse being true for the connector. .

6.1 General Overview 89

The gist of Chaps. 12-18 is to explain the kind of abstractions exemplified
above, while the gist of the present chapter is to introduce you to the basic
notion of functions, f, that is, those things whose value was expressed above
as type f: A —» B.

6.1 General Overview

We shall first place the concept of a function in context and present some in-
tuitive notions of functions: function definitions, maps (i.e., function graphs),
types and attributes. Then we shall “restart” by presenting an attempt at
informally motivating “how functions come about”.

Structure of This Chapter

Three indispensable topics occupy this chapter: (1) the function algebra: what
functions “really” are, function space type constructors, function attributes
(nondeterministic, constant, and strictness) and operations (abstraction, ap-
plication, composition, definition, respectively range set); (2) Currying?; and
(3) relations as models of functions.

6.1.1 Special Remarks

Different ways of looking at functions will be introduced:

(a) functions which can be defined syntactically,
(b) functions whose meanings are mathematical functions, and
(c) functions whose syntax and meaning are “one and the same thing”.

These three facets (a—c) should emerge from items below. There are (i) func-
tions which (i.a) can be defined syntactically, as textual entities (see function
definitions, Sect. 6.2.2) and (i.b) where these syntactical forms have a seman-
tics, or a meaning, which resembles the functions known from mathematics
(see function maps (graphs), Sect. 6.2.2 on the following page). Furthermore
(ii) there are functions which (ii.a) can, again, be defined syntactically, but
(ii.c) which can be given a “syntactic” meaning by a set of rewriting rules
that “massage” (edit, translate) these syntactic expressions into syntactic ex-
pressions of the same form (Chap. 7).

To repeat: There are two different syntactic function expression forms, and
two different notions of functions: one syntactic, the other mathematical. We
also introduce the mathematical concept of relations. Relations are then used
to explain the abstract concept of functions.

®The term Currying derives from the name of the American mathematician
Haskell B. Curry.

90 6 Functions

6.2 The Issues

We start by placing the notion of functions in both a mathematical context
and a programming language context. We proceed to informally present some
easy-to-understand notions of function definitions, function “maps” (graphs),
function types and attributes of functions, that is, special classes of functions.

6.2.1 Background

In mathematics we use and define functions. The sine and cosine functions of
trigonometry were used and were (as we shall see, axiomatically) defined by
their properties before we, in numerical mathematics, learned to approximate
their computation through suitably defined functions. And in programming
we define and use functions only we may call them by some other names:
procedures, routines, methods, etc. In this section we shall take a first look at
the kind of functions that we shall be dealing with in these volumes the func-
tions that we wish to be abstract counterparts of the procedures or methods
of programming languages; and the functions that we wish to represent the
meaning (the denotations) of described phenomena of some actual world, or
of requirements-prescribed phenomena.

Functions are obviously fundamental to any understanding of computing,
and, we shall argue, to any understanding of the actual world around us!
Functions, in mathematics, are not just abstract notions. They sometimes
need be computed, whether, as in the old days, by hand, through reckoning,
or, as now, by computers, through computation. The function concept that
we focus mostly on in this section ties the above together: The definable as
well as the denoting functions, that is, the mathematical functions. We do
not necessarily focus on those for which we can devise an algorithm for their
computation, but on functions in general.

6.2.2 Some Concepts of Functions

We shall, in turn, treat ideas of function definitions, function “maps” (i.e.,
function graphs), function types and classes of functions.

Function Definitions

Characterisation. By a function definition we shall understand a text, say,
f(a) = &(a), which states the name, f, of the function, the name of an

archetypical argument (or argument list), a, a definition symbol, =, and a
body, £(a), which is usually some clause (expression or statement) in which
the argument, a, is free. .

First some example formal function definitions and some intuition.

6.2 The Issues 91

Example 6.2 Two Function Definitions: You are familiar with the factorial
and the Fibonacci functions. These two functions are chosen only as examples.
In RSL we might express these functions as follows:

type value
Natl = {| n:Nat - n>1 |} fib: Natl — Natl
value fib(n) =
fact: Natl — Natl case n of:
fact(n) = 11,
if n=1 21,
then 1 _ — fib(n—2)+fib(n—1)
else nxfact(n—1) end
end

The “underline” (wildcard) symbol stands for the “otherwise” alternative. «

Since the above formulas represent another early occurrence of some formal
RSL text, let us “read” these definitions “aloud”:

Natl is the set of natural numbers larger than or equal to 1, i.e., Nat, but
excluding 0. (We say that Natl is a proper subtype of Nat.) Both factorial and
Fibonacei, as identifiers, denote functions (as indicated by the right arrow: —),
and they both take natural numbers as arguments and yield non-zero natural
numbers as results (as indicated by the left and right Natls). The factorial
function definition body expresses that if the argument is one then the result
is one, otherwise the result is the value of the product of the argument and the
factorial of an argument which is one smaller than the original argument. The
situation is similar for the Fibonacci function definition. Its body expresses
that if the argument is one, then the result is one, otherwise, if the argument
is two, then the result is (also) one, otherwise,? i.e., for all other larger values of
the argument, the result is the sum of the “two previous Fibonacci numbers”!
Thus the first and the second Fibonacci numbers are both 1.

Now to some RSL syntax: The keyword value signals, to the reader, that
RSL bindings of identifiers to values now follow.* The names being bound are
here fact and Fib. These names are bound in this case to function values. Thus
we here have two function definitions each consisting of a pair of clauses: the
function signature and the function definition proper. The former consists of
the function name and a function space type expression, usually a type expres-
sion that contains (at least) one infix function space type constructor, either
— or . The latter consists, in the above example, of a triple: (i) a function

3The “otherwise” is designated by the “wildcard” symbol _.

4An abstract type clause: type A, or a councrete type clause: type A = ...
designates a binding of type identifiers to sorts, respectively concrete types (i.e.,
value spaces).

92 6 Functions

name and a possibly empty list of arguments enclosed in parentheses,” (ii) the
identity symbol =, which separates the function definition header from (iii)
the function definition body, which is always an RSL expression — here both
are simple conditional expregsions.

The reason for presenting the above two function definition examples is
now to relate them, still as examples, to an informal concept of function
‘lmapsﬂ.

Function “Maps” (Graphs)

Characterisation. By a function “map” we understand, loosely, the set of
pairs, (a,r), of all those function arguments, a, for which the function is
defined and then yields a result value r. .

We use the terms function “map” and function graph interchangeably. We
deliberately use quotation marks around the term map here. Unquoted map
references shall, later, designate a special kind of functions. That is, functions
for which the definition set can be computed. A function definition set is the
set of argument values for which the function is defined.

Figure 6.1 on the next page illustrates two function “maps”.® They purport
to illustrate how arguments of the definition sets, “under” the functions, map
into, i.e., yvield results of the range (range set), or image (image set) of the
functions.

The idea of the function “map” (graph) is to visualise that specific elements
of the definition set “map” into specific elements of the range set. Please refer
to the definition of the factorial and the Fibonacci functions (Example 6.2) in
order to see that the function “maps” of Fig. 6.1 “correspond t0”, i.e., visualise
fragments of these functions.

Later we shall see examples where there are elements of what is claimed to
be the definition set for which the function “map” prescribes no corresponding
range element (Fig. 6.3). We refer to the question symbol ? of the injective,
partial function and the surjective, likewise partial function.

Types of Function Spaces and Function Signatures

This is the first of two sections on function types. The presentation is informal,
and short. The subsequent (Sect. 6.5.2) is a bit more systematic. Here we

SThe parentheses (...) surrounding two or more arguments effectively compose
these into a Cartesian. RSL does not provide for one element Cartesians. Hence a
function invocation expression f(a) could as well be written f a. The parentheses in
f(a) are merely there for disambiguation should one happen to write fa but mean
fa(ie, f(a)).

5The figure title of Fig. 6.1 lists names of functions in double quotes. As is
common practice, we use double quotes to signal that we do not quite mean what
the quote says! In the case of Fig. 6.1 the pictures only purport to show something:
They are not the functions named, only “pictures” of fragments of them!

6.2 The Issues 93

"The Factorial Function" "The Fibonacci Function"

--- Definition set Range set " --- Definition set Range set-——.-"

Fig. 6.1. Concrete function “maps” (i.e., graphs)

outline our form of writing down type expressions for functions spaces. Later
we will assume this intuition.

The two function “maps” of Fig. 6.1 both contain three elements: the
function definition sets, the function range sets and the function “map ar-
rows” (the graph arrows, i.e., the “map” set of the function). These three are
summarised in Fig. 6.2.

Definition set Range set

Fig. 6.2. Function Types

The notation B4 is sometimes used to designate the function space A—B. If
|X| expresses the “cardinality” of the set X then |B|/4l expresses the “cardi-
nality” of the set BA.7

These three elements naturally form the basis for our linguistic way of
expressing function spaces:

A—>B, typeF=A—>B

The type expression A — B denotes the space of all total functions from
definition set A into (or onto) range set B. The type definition F = A — B
“assigns” the identifier F as the type name for that space of functions. The
form: F = A — B is also called the signature of a function, or its function
signature.

TOf course, if either of the cardinalities are infinite, then it really does not make
sense to talk of a cardinality, hence the double quotes.

94 6 Functions
Classes of Functions

Functions whose results are truth values are called predicate functions and
the others just functions (optionally, of nontruth value result types).

Without detailing what the specific functionalities could be, we can “pic-
ture” some other functions (Fig. 6.3). By the definition set of a function we
mean the set, A'CA, of exactly all the arguments for which a function is de-
fined. By the image (or range) of a function we mean the set, B'CB, of exactly
all the result values for defined arguments. A function which is not defined for
all values of its postulated definition set is a partial function. We syntactically
express the space of all total and partial functions from definition set A into
(or onto) range set B by A=B.

Injective, Partial Function Bijective, Total Function Surjective, Partial Function

Fig. 6.3. Conceptual function “maps” (i.e., graphs)

A function which maps values of its postulated definition set, into some, but not
all elements of its range is an injective function. A function which maps values
of its postulated definition set into all elements of its range is a surjective
function. A function which is surjective and which maps all definition set
elements (i.e., a function which is a total function) into distinct range elements
is a bijective function.

6.3 How Do Functions Come About?

In a few steps of reasoning we shall try motivate how functions come about! In
the next paragraphs we first cover the concepts of (1) names and (2) values,
including constant and variable names; (3) then the concepts of expressions,
of expression evaluation and of free variables. And from that we (4) intro-
duce the concepts of functions and abstracted functions. From this we, very
cursorily, (5) mention the notions of function application, function result and
the substitution of values for free variables. This sequence, from names, via
expressions with free variables, to functions, thus motivates the concept of A
functions — to be more formally introduced in Chap. 7. So here we go!
(1-2) There are names, and names designate values, either constant or
variable: 7, true, and "a", respectively i, b and ¢ are examples of constant,

6.3 How Do Functions Come About? 95

respectively variable, names. 8 Some such constant or variable values are val-
ues like numbers, Booleans, characters, records or arrays of these etc. Thus,
7, true, "a", r(i:7,b:true,c:"a"), and <1,2,3,5,8,13> are example constant value
expressions. Other such constant or variable values are function values like
addition (of numbers) +, subtraction -, etc., or conjunction (of Booleans) A,
disjunction V, list concatenation ~, etc. Thus: +, -, A, V, and 7, respec-
tively, are example function names. When written as shown, as noncharacter
symbols, we call them operator names or operator symbols or just operators,
or, if Boolean, we call them connectives.

(3) There are expressions, and expressions are built up from constant
or variable names and delimiters (such as, for example, (,), >, < and ,),
and such expressions designate values: i+7, <"a">"«1,2,3,5,8,13>, and
aAtrue. If all expression names designate constant values, then the expres-
sion designates, i.e., evaluates® to, a constant value. If one or more names of
an expression designate variable values, such as i in i+7, or a in a A true,
or p and q in <1,p,3,9,8,13>, then we say that they are free variables in
those expressions.

(4) Expressions, typically with free variables — generally written: £(z, v,

.., 2), where z,y and z are the free variables of expression & (z,y,...,2) —
denotel? a function. That is, a function from values (eg. «, 3 and) that can
be agsociated with x, y, respectively z, to the value of the (constant) expression
where «, 8 and ~ have been substituted for z, y, respectively z. We say that the
expression has been (function) abstracted and that the expression constitutes
the body in the abstracted function. An example is: If & and 5 are the values
7 and 9, respectively, and are associated with p and q in <1,p,3,q9,8,13>,
then the value of <1,p,3,q,8,13> becomes (1,7,3,9,8,13).11

(5) We express by: AzsAys ... A\z+€(z,y,...,2) “the function of z,y, ..., z
which when applied to arguments o, 3, . . ., 7y, yields the value of £ (x,y, ..., 2)
where ., 3, .. ., v have (first) been substituted for z,y, ...,z inE(z,y,...,2).”
E(z,y,-..,z)isthe body of the function expression Az*Aye ... Ax+&(2,y,. .., 2)

®We have written in italic those terms which stand for computing science con-
cepts. We have written in teletype font those terms which stand for examples.
Having done this in the introductory lines we shall only, in this section, use these
type fonts when introducing new concepts.

9See Sect. 6.4 for an informal explanation of the term evaluate.

We have used the two terms designate and denote almost interchangeably: We
use designate when an evaluation should lead to what one would normally consider
the value (of the expression). And we use denote when an evaluation should lead,
not to such a value, but to a function from contexts into such values — where the
contexts associate variables to values.

1 Observe our two uses of digits: The syntactic use expressed in the teletype
font: 0, 1, 2, ..., 9, and the semantic use which is expressed in the mathe-
matical font: 0,1,2,...,9, and the two uses of ‘angles’: The < and > in expressions,
and the {...) in value forms as if we could “write” values! We cannot, of course, but
use numerals to speak of numbers, etc.

96 6 Functions

Thus functions arise from free variable names of expressions. To summarise
the above: From (1) constant names we abstracted to (2) variables, from there
to (3) expressions over constants and variables, and from there to (4) func-
tions. The latter were seen as abstractions of expressions with free variables.
It is on this bagis that, in Chap. 7, we introduce the “pure” A-calculus. Notice
that the Az in Az-€(x) makes us say: “the function of x that when applied to
an argument a yields a value as denoted by £(a)”.

6.4 An Aside: On the Concept of Evaluation

We cover, briefly, concepts of evaluation, interpretation and elaboration; ex-
amples of function evaluation (etc.); and the concept of function application
(i.e., invocation).

6.4.1 [E]Valuation, Interpretation and Elaboration

In the previous section we mentioned the term evaluate. The concept of eval-
uation applies to syntactic quantities and can be thought of as a procedure,
or as a metafunction, which is applied to a syntactic construct, and usually
something we call its semantic context, and which then yields a value. That is,
if we wish to find the value of an expression, then we evaluate the expression.
If the expression contaings variables, then we need look up, somewhere, namely
in the semantic context, to find the value of these variables. Usually we shall
use the term environment'? in lieu of the term semantic context.

Other words for evaluate (evaluation) are valuate (valuation), interpret
(interpretation), and elaborate (elaboration). Much later in these volumes we
shall distinguish between these three terms. Meanwhile, we refer the reader
to the present volume index.

6.4.2 Two Evaluation Examples

Examples help.

Example 6.3 Function Evaluations: The Fibonacci function as given in Ex-
ample 6.2 can be represented as a set of argument/result value pairs, i.e., as
a relation, as implied by Fig. 6.1:

{(1,1),(2,1),(3,2),(4,3),(5,5), (6,8),.. .}

2Note that we now use the term environment in two senses in these volumes: (i)
as above, for a semantic context in which free variables are associated with values,
and (i) as the context, in some domain, in which some machine, i.e., some computing
system (hardware + software) is placed and with which that machine interacts.

6.4 An Aside: On the Concept of Evaluation 97

Correspondingly, we can talk of two bases of evaluating the Fibonacci function.
Based on the relational representation above we can very informally sketch
one form of evaluation by:

fib = {(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),...}
evaluate(fib,4) =
evaluate({(1,1),(2,1),(3,2),(4,3),(5,5),(6.8),...},4) =

select the pair (i,j)
whose first element = 4
and yield its second element, here 3

We shall later return to this form of function representation (Sect. 6.7). We
shall call the above form of evaluation a relation search. Based on the function
definition in Sect. 6.2 we can likewise, without much explanation and thus very
informally sketch another form of evaluation. In the present form we replace
invocation text, viz., fib(i), for some (constant) i, with the function definition
body text where the function argument, n, has been replaced by the constant
it

fib(4) =
casedof: 1 — 1,2 —» 1, _ — fib(2) + fib(3) end
fib(2) + fib(3) =
case20f: 1 = 1,2 —» 1, _ — fib(0) + fib(1) end +
case3of: 1 + 1,2 — 1, — fib(1) + fib(2) end
1 + fib(1) + fib(2)
1,
case lof: 1 = 1,2 =5 1, _ — fib(—1) + fib(0) end +
case20f: 1 = 1,2 - 1, _ — fib(0) + fib(1) end
1+14+1

3

We shall later have more to say about this form of combined syntactic rewrit-
ing and simple arithmetic and Boolean test expression calculation. We shall
call this form of evaluation symbolic interpretation.

98 6 Functions

6.4.3 Function Invocation/“Function Call”

We have used the term function application. Above, in the informal function
evaluation examples, we saw what application might imply: some form of
evaluation. The examples show several examples of function applications, or,
as we shall also call them, function invocations, or function calls:

evaluate(relation,argument), or
fib(4),fib(3),fib(2),fib(1) fib(0),fib(—1) fib(-2),...

In Example 6.3, evaluation by relation search is a metainvocation: In other
words, the metalinguistic evaluator function evaluate “simulates” the applica-
tion of the function representation relation to the function argument argument:

‘relation’(‘argument’)

By function application we understand the mathematical phenomenon of ap-
plying a function, as a mathematical quantity, to an argument of its definition
set, also mathematical quantities. By function invocation, or function call, we
understand the same: namely the first step in simulating or evaluating the
“application of a function”. By symbolic function evaluation, we understand
the “sequence of things” that goes on, as shown in the syntactic rewriting and
simple arithmetic and Boolean test expression calculations shown above for
the Fibonacci example (Example 6.3).

6.5 Function Algebras

We can summarise a number of things said earlier in this section on functions.
That is, basically no new material is now presented, but a review of what we
shall need in the future is given. We do so by presenting the notion of functions
as an algebra. As we shall see in Chap. &, an algebra consists of a set of values
and a set of operations. To this we add a name for the algebra. In this section
we shall treat these three issues in a permuted order: Values, names of algebras
and operations.

6.5.1 Functions

The values of a function algebra is the space of all functions of that algebra.
A function is that “mysterious thing” which when applied to an argument of
its definition set yields a result of its range set. Nobody has ever seen a function
— just as nobody has ever seen a number. Rather, these are mathematical
entities that are characterised by their properties.

6.5.2 Function Types

First, we treat how we write down type expressions that denote function
spaces, then how we express higher-order function types. We syntactically
distinguish between total, —, and partial, =, functions:

6.5 Function Algebras 99

Type expression: Type definition:

A—B type
ASB TF=A - B
PF=A 3B

These are understood as follows: The type expressions A=B and ASB are
the composite names (i.e., signatures) of function algebras. The type names
TF and PF are the simple names of function algebras. The fact that we write
f = A 5 B amounts to typing the function f.

Thus — is an infix type constructor function: It takes two argument types
(i.e., sets of values), A and B, and yields the space of all total functions from
all of the definition set (i.e., type) A to within'? the range set (i.e., within the
type) B. And = is an infix type constructor function: It takes two argument
types (i.e., sets of values), A and B, and yields the space of all partial functions
from within the type A to within the range set (i.e., type) B. That is, there are
(possibly different) values in A for which each function in ASB is not defined.

Above we explained the — and = symbols semantically. Now we explain
them syntactically: — is an infix operator. Its two operands are to be type
expressions. Likewise for =.

6.5.3 Higher-Order Function Types

Types A and/or B may themselves be function types:

type
A=P->Q
B=U->YV

F=P->Q—->U->V)=A->B
More generally, the type expressions:

A-B->C=A-B->C#A—->B) —~>C

That is, the infix function space type constructor associates to the right.
Above we have used the = and the # operators in a metalinguistic sense: They
look like RSL operators, but they are not. They are here to be understood as
mathematical operators (since in RSL one cannot compare types).

6.5.4 Nondeterministic Functions

Let f and g be functions defined by:

3By within A we mean either all of A or a proper subset of A.

100 6 Functions

value
m,n:Nat

f: Nat = Nat, f(i) = let j:Nat » j>i in i+j end
- £(7) .. £(9) .. £(13) ...

g: Real — Nat, g(j) = m
... g(1/if n=0 then 100000000000000 else n end) ... g(1/(14n)) ...

where Real and Nat stand for the types of reals, respectively natural num-
bers, then we say that function f is nondeterministic. That is, it delivers an
arbitrary, but some natural number, not necessarily the same for every invo-
cation of f, but “skewed upward”. Nondeterministic functions, from type A to
type B are given the partial function signature: A = B.

6.5.5 Constant Functions

Function g (defined above) is a constant function. In the above definition of
g, the definition relies on the nondeterministic definition of m; m may take
on any natural number value. But m is defined only once. Thereafter it is a
constant, hence g is a constant function. Constant functions, when invoked,
each yield the same result value irrespective of their argument value(s), if any.
Specifically:

type
A
value
a:A
f: Unit —» A, f() = a

hints at the view that values of arbitrary type can be seen as constant func-
tions:'#

value
zero, one, two, ..., nine: Unit — Nat
zero{) = 0, one() = 1, two() = 2, ..., nine() = 9
tt, fI: Unit — Bool
tt() = true, ff() = false

"“The literal Unit designates the value (). It is used wherever we wish to define
functions of no arguments. Invocation of such argumentless functions, f, is written

().

6.5 Function Algebras 101
6.5.6 Strict Functions

Function g (defined above) is a strict function: Tt depends on whether the ar-
gument is defined, i.e., chaos — value m above could be 0 — or not. Note that
g(chaos) = chaos. chaos is not a real number, hence the function signature
is that of a total function.

RSL functions are all strict. The RSL if .. then .. else .. end operator is
the only RSL operator (i.e., function) which is not strict:

type
A B C

value
h: A x Bx C— D, p: A - Bool
h{a,b,c) = if p(a) then b else ¢ end

If the language in which h is expressed is nonstrict, in other words is not
RSL, then the result of a function h invocation depends on whether chaotic
arguments are being evaluated in the body of the function. Argument ¢ may
thus be the totally undefined value (chaos). If the predicate function (p)
invocation (p(a)) prevents, i.e., “circumvents” evaluation of argument ¢, then
a function invocation f(a’,b’,c’) may still yield a defined result value. The
above example generalises to any function of one or more arguments, i.e., of
nonzero arity.

6.5.7 Strict Functions and Strict Function Invocation

A strict function is one which, no matter what its function definition body
may prescribe, but when given any chaos valued argument, always yields the
totally undefined value chaos. Programming languages with Call-by-Value
have function (including procedure) invocations that are strict. Strict func-
tion invocation should not be confused with strict functions: Strict function
invocation is a property, typically of programming languages, usually having
the Call-by-Value property, whereas strict functions, typically in specification
languages, usually have the Call-by-Name property. RSL has a Call-by-Value
semantics.

6.5.8 Operations on Functions

So far we can speak of five operations which apply to or result in functions,
three ([1-2-3]) that are “computable”, and two ([4-5]) that are not. The com-
putable functions are: ([1]) function abstraction, Az: X+£(z);'® ([2]) function

5By the expression Ax:X+£(x) we denote the function of # which when applied
to arguments of type X yields values of the kind found by evauation of the body
E(z). In Chap. 7 we introduce the A-calculus.

102 6 Functions

application, (e); and ([3]) function composition, ¢°e. (The symbol » indicates
an argument placeholder.)

They (i.e., [1-3]) are “computable” in the sense that we can define and
evaluate them. This computability still allows for evaluations that do not
terminate. But whereas we can ([4]) speak of the definition set, D(s), and
([5]) speak of the range set, R(e), of functions, we can, in general, given a
function, not compute these sets.

([6]) As we shall see later, we can add a sixth operation on functions: The
fix point taking operation, Y (Sect. 7.8).

We can illustrate the above:

type
F=A—-B,G=B—-C,H=A->C

value

[1] Aa:Aee

[2] (Ma:Aee)(e)

[3] f°g = Aa:Aeg({(a))
pre Rf C Dg

[4] D: F — A-set, G — B-set
[5] R: F — B-set, G — C-set

A, B and C are arbitrary types, and F, G and H are function spaces.

[1] expresses the abstraction of expression e into an (unnamed) function;
a may, or may not, be free in e. Given that evaluation of e for arguments
replacing all free occurrences of a in e by any applied value yields a value
of type B, the function is of type F. [2] expresses the application of such a
function to an argument, expressed by expression €. Given that evaluation
of e for arguments replacing all free occurrences of a in e by the value of €
yields a value of type B, the function result is of type B. [3] f°g expresses
the composition of two functions. Provided the range of the first function, f,
is a subset of the definition set of the second function, g, the result of the
composition is defined, and is of type H. [4] D postulates a function that
applies to (any type of) function and yields its definition set, while [5] R
postulates a function that applies to (any type of) function and yields its
range set.

The problem with [4-5] is that these functions are not “definable”, that
is, cannot be computed. Tt is not possible to decide, i.e., it is not decidable,
given an arbitrary function, say in the form of its definition, which are exactly
all the elements of its definition and range sets. But we can, in mathematics,
speak of the definition set and the range set of a function.

6.6 Currying and A-Notation 103
6.6 Currying and A-Notation

6.6.1 Currying

Sometimes we think of functions as being functions of more than one ar-
gument. We therefore, in function definitions, group these arguments into
Cartesian structures.

Instead of writing:

type
X, Y,Z, R, K = XXxYXZ

value
tX—-Y—>7Z-—>R

we may write:
EXXxYXxZ—=R,onf: K= R
And, instead of expression function application as:
f(a)(b)(c),
for suitable a, b, and ¢, we may write:
f(a,b,c),
or, if k is some Cartesian structure — like (a,b,c) — we may write:
(k).

6.6.2 A-Notation

This subsection is a precursor for Chap. 7.
The following are equivalent ways of expressing function definitions in RSL:

type
A B, C
value
tAxB—C

f(a,b) = £(a,b)

tA-B—>C
f(a)(b) = £(a,b)

f(a) = Ab:B.£(a,b)

f = da:A.A\b:B.£(a,b)

That is: Moving a rightmost argument, y, “across” the definition symbol =,
from a function header g(x)(...)(y), causes it to appear on the righthand side
as a prefix, A\y:Y., to the function definition body £(x...,y).18

%Recall an arithmetic (calculus) “analogue”: p x ¢ = r is the same as p = r/q for

qg#0.

104 6 Functions

6.6.3 Example of Currying and A-Notation

Example 6.4 Curryed and Uncurryed Function Definitions: Let:

type
XY, Z
K=XxYx2Z

Next we look at various examples of expressing simple, explicit function defi-
nitions:

let f = Ax:XeAy:Y=Az:Z-E(x,y,2) in f(a)(b)(c) end
let £(x)(y)(2) = £(x7) In (a)(b)(c) end

let g = A(x,y,2):(XxYxZ)-£(x,y,2) in g(a,b,c) end
let g'(x,y,2) = £(x,y,7) in g'(a,b,c) end

let g = A(x,y,2):K+£(x,y,2) in g’(a,b,c) end

let ¢"" = Ak:K+£(k) in g"(abc) end

let ¢g""(k) = £(k) in g""(abc) end

let h = A(x,y):(XxY)eAz:Z:E(x,y,2) in h(a,b)(c) end
let h'(x,y)(2) = £(x,y,2) in h'(a,b)(c) end

O 00 =1 O O = O I =

The nine functions f, f', g, g/, g”, g, g, h and h’, are meant to be identical
due to the common function type and common body expression £(x.y,z). But
[— 8] below, although the same function, is not a function of the same kind
(i.e., type) as [8-9] above:

[a] let h" = Ax:XeA(y,2):(Y xZ)+E(x,y,z) in h"(a)(b,c) end
[3] let h"'(x)(y,z) = E(x,y,z) in h"'(a)(b,c) end.

This is so since the two types:
(XxY)—=2Z, and X— (Y x Z)
are different. .

6.7 Relations and Functions

Characterisation. By a relation we shall understand a set of groupings of
the same arity and component types. .

Example 6.5 An Abstract Relation: Let e;; for 1 <i <n, then:

(61115 €255 o035 Enyy),
(6121} €29,5 +--1 €ng,)s

(elml ? esz ER eﬂmﬂ)

6.7 Relations and Functions 105

where each row designates a grouping, and the collection of rows designating
a set could be generically a representation of a relation. .

Typically we may define:

type
D1, ..,Dn
T=D1x..xDmn
R = T-set

Any subset of R is now said to be a relation.

6.7.1 Predicates

We can now explain predicate functions, for example, of signature:

value
p: D1 x ... x D.n = Bool

as a finite or a possibly infinite subset, a relation, p_rel, of R:
prel:R, e.g., prel = {(d_1,....dn),...,(d"_1,...,d"n),...}
p(r) = if r € prel then true else false end =r € p_rel

The type expressions R-set and R-infset denote the set of finite, respectively
possibly infinite, subsets of R, also known as the power set of R.

6.7.2 Function Evaluation by Relation Search

We can thus explain a function (from, for example, D_1 x ... x D_n into D)
as a relation, f_rel, over D_1 x ... x D_n x D:

type
F=D1x..xDnxD
value

frel:F-infset, e.g.: {(dy,...,d,d),...,(d1,...,d,,,d)}

:D1x..xDn3D

f(r)
if 3 (d-1,...,dn,d):F+(d-1,...dnd) € frelAr=(d_1,...,dn)
then
let (d_1,...,d-n,d):Fe(d_1,....d.n,d) € fxrelAr=(d_1,...,dn)
in d end

else chaos end

106 6 Functions
6.7.3 Nondeterministic Functions

An n-ary nondeterministic function, f, is now a function for which several
groupings in f_rel have the same first n-grouping:

value
is_nondeterministic: F-infset — Bool
is_nondeterministic(f_rel) =
3 (d-1,...,dn,d),(d'1,....d' n,d"):F «
{(d1,...,dn,d),(d"1,..,d nd)} C frel A
(d1,...dn) = (d'1,...,d" n) A d£d’

Note that we use the type constructor = to express either that the function
space is one of partial functions, or one of nondeterministic functions, or, for
that matter, both! Please also note that the above definitions of predicate
function p, of function f, and of is_nondeterministic are all metalinguistic: they
are not expressed in RSL, but in the informal, yet precise language of ordinary
mathematics.

6.8 Type Definitions

Although covered in detail in Chap. 11 we shall briefly summarise how, in
RSL, one defines function spaces, i.e. function types:

type
A'B
F=A->B
G=A3B

A and B are any types, mentioned here as sorts. F' denotes the space of all
total functions, defined over all of A4, into B. G denotes the space of all partial
functions, defined over all or some of A, into B.

6.9 Conclusion

We have introduced the essence of functions: that they map arguments of
their definition set into (i.e., yield) results of their range, and that they can
be expressed (i.e., defined), named, applied and abstracted. We have also
introduced the notion that functions have type — from (type of) definition
set into (type of) range set. Together with the name of the function, this is
called the signature of the function. We have seen that functions are either
total or partial, and that functions can be further attributed as either being
surjective, injective or bijective.

6.11 Exercises 107

6.10 Bibliographical Notes

A classic introduction to recursive function theory, a theory “lurking” behind
our presentation in this chapter, is that of Hartley Rogers [444].

6.11 Exercises

Exercise 6.1. Simple Arithmetic Operations, I. Let there be given just the
simple RSL expression constructs:

value
tA—>B
f(a) = if Piegt(a) then Econ else &£,y end
pre: Ppre;

where Piegt is a simple Boolean value expression which tests whether invo-
cation of f should terminate; where Econ is the consequence expression, a
simple expression which does not contain a (recursive) reference to f; where
&1t 1s the alternative expression, also an expression which does contain a
(hence recursive) reference to f; and where Ppre is a simple Boolean value
expression which tests whether f should be applied, a pre-condition.

Define

1. arithmetic (natural number) multiplication (i x j), and
2. arithmetic (natural number) exponentiation (¢7)

using just addition and subtraction, or already defined functions. That is: A
is the Cartesian of the Natural Number type, and B is that type.

Exercise 6.2. Simple Arithmetic Operations, II. We refer to Exercise 6.1.
Define

1. integer division (with remainder) (i/j = (d,r))
Where d x i+ 7 =1i.

Exercise 6.3. Function Application Evaluation by Relation Search. We refer
to Exercise 6.1 and to the first part of Example 6.3 on page 96.

Compute the sets of argument/result value pairs, i.e., as a relation (as
implied by Fig. 6.1 on page 93) for the two functions:

1. mult for arguments between 0 and 4, and
2. exp for arguments between 0 and 3.

Exercise 6.4. Function Evaluation by Recursive Function Invocation. We re-
fer to Exercise 6.1 and to the last part of Example 6.3 on page 96.
Evaluate mult(3,4) and exp(2,3) in the manner of that part.

108 6 Functions

Exercise 6.5. Higher-order Arithmetic Functions. Define a function, thrice,
which when applied to a 2-argument (i.e., a binary) arithmetic function, f,
results in a 3 argument (etc.) function, 7, which, when applied to three argu-
ments yields the result of applying f to the result of appying f to the first
two arguments and the third argument !

Test your function, thrice, on the mult and exp function of Exercise 6.1.
Show that (7(mult))(4,3,2) = 24, and that (7(exp))(4, 3, 2) = 4096.

7

A A-Calculus

e The prerequisite for studying this chapter is that you understand the
concept of functions as covered in Chap. 6.

e The aims are to introduce the concept of A-calculus, to introduce the
concept of fix points of recursively defined functions and to relate the
A-calculus expressions to the notation of RSL, the RAISE Specification
Language.

e The objective is to ensure that the reader can use and handle the RSL
A-notation at ease and for proper abstraction purposes.

e The treatment is formal and systematic.

There is a family of calculi called the A-calculi. A calculus is a set of rules
for calculating “something”.! We shall present two A-calculi: A “pure” -
calculus, and a A-notation, i.e., an embedding of the (new, less than)
“pure” A-calculus into the RSL notation. That A-calculus, and variants thereof,
have become a de facto standard for modelling computation.

The A-calculus was first proposed by Alonzo Church [152], in the mid-1930s,
as a model for computation.

Characterisation. By a A-calculus we understand a specific language (1) of
syntactic entities called A-expressions, e: Namely (1.i) A-variables z, (1.ii) A-
functions Az : T'»e, and (1.iii) A-applications es(e,) (or (ese,), (ef)eq, (er)(€a),
or esey); and (2) of related “semantic” A-conversion (i.e., calculus) rules: (2.1)
a-renaming, (2.ii) B-reduction, and possibly other rules. .

In this chapter we shall briefly outline some essentials of the A-calculi.

"You are well familiar, from first grade, with the calculus of ordinary arithmetic:
Adding and subtracting, multiplying and dividing numbers. You are also assumed
to be familiar with the calculi of differentiation and integrals. Later, in Chap. 8, you
will encounter the calculi of the Boolean algebra, propositions and predicates.

110 7 A X-Calculus

Using the background of the previous chapter we systematically, yet very
cursorily present a version of what we shall refer to as the “pure” A-calculus:
its syntax, its semantics and its various forms of (terminating or possibly
nonterminating) conversions. We then enlarge the scope by incorporating the
A-calculus, as a notation, in the main specification language of these volumes,
RSL. As part of that, we introduce the indispensable language construct let

.. in ... end, explained in terms of A-function application.? We end with an
introduction of the notion of recursively defined functions, fix points, a fix
point operator and fix point evaluation of function application.

7.1 Informal Introduction

In the A-calculus everything is functions. To express such A-calculus func-
tion values we write A-expressions. The following are the only forms of A-
expressions:

x’ Ay.e7 f(a)

where \ is a keyword, z and y are referred to as variables (or A-variables), and
e, f and a are arbitrary A-expressions. A-variables are simple identifiers. The
form Ayee is referred to as a A-function: It abstracts the A-expression e. Note
that y may or may not occur in e, the function expression body. We “read” the
expression Ay=e as follows: The function of x that the expression e designates,
or, in more detail: The A-function expression which when “applied” to an
argument A-expression o yields a resulting A-expression that arises from A-
converting expression e substituting all free occurrences of the variable x with
A-expression a. The form f(a), which we also allow to be written as (fa), (f)a,
and (f)(a), is referred to as a A-application (or a A-combination, or just a
function application).

7.2 A “Pure” A-Calculus Syntax

We briefly introduce the “pure” A-calculus. The pure A-calculus does not
contain general expressions. The A-notation, see later, will. We define the set
of all A-expressions in an informal, yet precise style, one that we shall often
be using.

Definition. A-expression syntax.

e Basis clause: If z is a variable, then z is a A-expression.
e Inductive clause: If z is a variable and e, f, a are A-expressions, then so are

Azee and f(a).

2This construct has been used in very many functional programming and com-
puter science notations since it was first introduced, it is believed, by Peter Landin
in the early 1960s [333, 334, 337-339].

7.2 A “Pure” A-Calculus Syntax 111

e Extremal clause: Only forms that are constructed using a finite number of
applications of the above clauses (rules) are A-expressions.

The above is an example of an inductive definition. .

Since this is the the first time, in these volumes, that we properly introduce a
language, and since we have yet to cover the material that shall later enable
us to present such a language definition formally, we use the above informal,
yet very precise style of presentation. This presentation represents a clagsical,
mathematical way of presenting inductive® structures, that is, usually infinite
sets of entities (here they are syntactic entities) which have a structure. Here
the structure is that of expressions either being atomic (no structure, really),
as for the basis clause, or pairs of entities, a variable and an expression, or two
expressions (i.e., the structuring is that of those two forms of composition).

The basis clause usually lists a finite or infinite number of terms (in-
stances), here a family of variables. The inductive clause is of recursive nature:
Tt agsumes the existence of some terms and expresses the construction — the
existence — of further terms. The basis clause secures the existence of initial
terms. The inductive clause adds further terms to the language of terms. The
extremal clause ensures that unwanted terms do not accidentally creep into
the language. The adjective extremal expresses exclusion.

We can give a BNF grammar? for pure \-expressions:

type /+* A BNF Syntax: x/ value /* Examples %/
(L) == (V) | (F) | (A) (V):x, v, 21, a,
(V) u= /* variables */ (FY: Ax e Aye*z
(F) == A(V) « (L) (A): (fa)
(A) == (L)L) /* Application x/

{A): (f a), f(a), (f)(a), etc.

There are thus three basic kinds of “pure” A-expressions: variables (V), func-
tion definitions (F) and function applications (A).

We relax the BNF syntax to allow for the variant forms of expressing func-
tion application. Which form (f a, (f a), f(a), (f)a, (f)(a) and ((f){(a))) is chosen
depends on the “size” of the respective f and a expressions, i.e., is chosen for
reasons of readability. The syntax relaxation can be justified by extending the
initial BNF syntax rule:

(L) == (V) [{F) [(A) [(1))

3By inductive we mean: inferring (inducing) general conclusions from particular
instances.

4By BNF we mean “Backus—Naur Form”. We assume that the reader is familiar
with the notion of such BNF grammars, including is familiar with the notion of
context-free grammars.

112 7 A X-Calculus

Elements of (V) are called variables. Elements of (F) are called A-functions. We
say that the expression (L) in A{V)+(L) has been abstracted, that is, “lifted”
to a function, also called A-abstraction. Expressions {A) are called function
applications.

7.3 A A-Calculus Pragmatics

We shall not really examine, in detail, the statement that in the A-calculus “all
things are functions”. We do, however, emphasize that even variables denote
functions. Arguments to and results of function application are also functions.

Thus, to model ordinary mathematics or calculi, like arithmetic or logic,
we ought to indicate that Boolean truth values and Boolean operations, that
integers and the arithmetic operations, and that conditional expressions, can
indeed be modelled by A-expressions.” We do so in Exercises 7.1-7.2. We do
this so that you may better accept why we put such an emphasis on the
A-calculus. From working with these exercises the reader may then become
“relatively convinced”. For more formal treatments, and “full convictions” we
refer to the literature [26,28,152,284,334,338,465,517].

7.4 A “Pure” A-Calculus Semantics

The idea of the A-calculus is that a function expression, Axee, designates that
function which when applied to an argument expression, a, substitutes a for
all free occurrences of x in e.

Example 7.1 \-Expression Evaluation: Let us try, informally, to see some
examples of a substitution process: Wherever we have a function application
of the form (Apee)(g) we substitute g for all occurrences of p in the body e:

1. (Az=z)(a) = a

2. Azey)(a) =y

3. (Az+(zy))(a) = (ay)

4. (Aze dys(zy))(Azez) = Ays({Az*2)y) = Ayey

5. (Azedys(yz))(Aze(2y)) = Ays(y(Az+(2y)))
The first four examples are straightforward, and are okay. The last example,
line 5, is not okay! The problem is that the free y in the argument Az-(zy),
when substituted for z, becomes bound by the y in Ays(yx). .

The two A-functions, Ausu and Avsv, or, more generally, the two A-functions,
AuE(u) and Awe&(v), are conditionally considered the same. By changing

SShowing integers, Booleans and conditionals indicates some of the computa-
tional power we need in order to informally convince most readers that the A-calculus
indeed can handle “what is computable”.

7.4 A “Pure” A-Calculus Semantics 113

Ays(yz) above to Are(rz), the free y in the argument Aze(zy) now does not
become bound.

The function application expression (a y) pragmatically assumes that a is
a function, or can at least be made into something of the form Avee.

7.4.1 Free and Bound Variables

To explain, more systematically, this and the problem of turning a free variable
into a bound one, we introduce the notions of (i) free and bound variables,
of (ii) substitution, of (iii) a-renaming and of (iv) S-reduction — the latter
covering the notion of function application.

Definition. Free and bound variables. Let z,y be variable names and e, f be
A-expressions.

e (V): Variable z is free in z.
e (F):zisfreein Ay e if z # y and z is free in e.
o (A): zisfreein f(e) if it is free in either f or e (i.e., also in both).

A variable is bound in an expression, if it occurs in the expression, but is not
free. .

7.4.2 Binding and Scope

We also say that free occurrences of a variable x in some expression e become
bound in Ax+e. Thus the formal parameter variable, x in Axee, serves as the
binding variable, and the free occurrences of x in e become bound in Ax-e.

The scope of a binding variable is the body of its function expression exclu-
sive of any inner, i.e., properly embedded, function expressions in which that
same binding variable is reintroduced by some (“other”) function expression.
Thus the scope of the first x in

AxeAy=(x Axs(x y))

extends to the second (left to right), but not the third nor the fourth occur-
rence of x in the A-function expression just above.

7.4.3 Collision and Confusion of Variables

The first occurrence, left to right, of variable x in the expression below is said
to collide with the second (left-to-right) occurrence:

AX Ay AxeX.

114 7 A X-Calculus

The first occurrence, left to right, of variable y in the expression below is the
binding occurrence. It binds only the second (left to right) occurrence:

(AzeAye(zy))(y) apply f toy yields Ay«(yy)
|
f

However, the third (left to right) occurrence. But when performing the in-
tended substitution of the argurment, i.e., the third y for the free x in Ays(xy),
it becomes confused with the second y in Aye(xy). We thus speak of confusion
of variables.

Collisions, as it turns out, create no problems, but may seem “confusing”.
Confusion can be avoided by simple renaming:

AxeAy=Ax-x renaming last bound variable yields AxsAyeAzez

7.4.4 Substitution

To deal with the confusion of free and bound variables, as illustrated above, we
introduce a proper substitution function. Substitution is a very important and
nontrivial notion. Tt is needed here in order to understand function application
in the A-calculus, i.e., the meaning of writing f(e). Somehow, intuitively the
idea is that the e replaces all occurrences of the formal parameter of the
function expression f. And if f is the A-expression Axee’, then e replaces all
free occurrences of the variable x in e'. Problems with collision and confusion of
free and bound variables, however, dictate some caution as to “what replaces
what”.

Substitution of an expression N for all free occurrences of x in M will be
expressed by: subst([N/x]M). Depending on the form of the expressions N and
M we get either of the cases shown below:

Definition. Substitution.

subst([N/x]x) = N

subst([N/x]a) = a for all variables ax.

subst([N/x](P Q)) = (subst([N/x]P) subst{[N/x]Q)).

subst([N/x](Ax=P)) = Ay-P.

subst([N/x](Ay=P)) = Ay-subst([N/x]P) if x # y and y is not free in N or
x is not free in P.

o subst([N/x](Ay-P)) =Az-subst([N/z]subst([z/y]P)) if y # x and y is free in
N and x is free in P (where z is not free in (N P)).

Substitution is a very important concept of computer science and, as you can
see from the above, not quite a simple one. .

7.4 A “Pure” A-Calculus Semantics 115

7.4.5 a-Conversion and §G-Conversion Rules

The substitution function mandates prior renaming (see last rule above) if a
substitution might collide a free variable with a bound scope. We single this
renaming out, referring to it in the future as a-renaming (or a-conversion).
Furthermore we isolate the real purpose of substitution, namely function ap-
plication, in the S-reduction (or f-conversion) rule.

Definition. a-renaming: (Ax=M)=\y=subst([y/x]M).

If x, y are distinct variables then replacing x by y in Ax*M results in
Ay-subst([y/x]M). Renaming the formal parameter of a A-function expression
is allowed if no free variables of its body M thereby become bound. .

Definition. S-reduction: (Ax*M)(N)=subst([N/x]M).
All free occurrences of x in M are replaced by the expression N provided
that no free variables of N thereby become bound in the result. .

7.4.6 A-Conversion

Asg illustrated in the informal “substitution” examples (Example 7.1), one can
re-apply the conversion rules multiple times. The question, naturally, is: “Will
it, the conversion, end?” To see that there might be a termination problem,
let us look at the following four examples:

Example 7.2 Four A-Conversions:

(a) (Az+(zy)(2)) =5 (2y)
(b) (Aze(22))(Ay+(yy)) =5 (ye(yy)) Ay=(yy)) —a
(Aze(22))(Mye(yy)) =5 (Ay=(y9))(Ay*(yy)) 2o ... ad infinitum!
(c) (Azoy)(Aus(uu)Ave(vv))
either: =g y, or =5 (Azey)(Avs(ve)Avs(ve))
either: =g y, or =5 (Azey)(Avs(vv)Av(vv))
etcetera!

We show example (c¢) again, graphically laid out for visual grasp!

(Azey)(Aue(u u)Ave(v v))

/
Azy

¥ W Aus(u u)vs(v v))

]

¥ (Azsy)(Aus(u w)Avs(v v))

/

¥ (Azey)(Aus(u w)Avs(v v))

P

y

116 7 A X-Calculus

(d) The last example shows all the (always) terminating conversions of a A-
expression. First the visual picture:

((Az=(z y))(Aus(u v)))(Ap=(p ¢)r)

/ N

(s v))y) (Ap+(p q)r) ((Az=(z v))(Aus(u v)))(r q)

N

(y v)(Ap=(p 9)r) (Qus(u v)y)(r q)

\/

(y v)(r @)

Then a more textual, linear layout:

[1] ((Axe(x y))Aus(u v))Qpe((p @)r)) [5] = (((Aus(u v)) y))(((r a)))
[2] = ((Aus(u v)) ¥)))(Ap=((p a)r))
[3] ((oxe(x y))(Aue(u v)))(((r 9)))

[1] ((oxe(x y))(Aus(u v)))(Ap=((p @)r)) [5] = (((Aus(uv)) y))(((r a)))
[3] = (e (x ¥))(Aus(u v)))(((r a)))
[4] ((((Cy vINN(Ap=((p q)r))

[2] ((((Au=(u v)) ¥)))(Ap=((p a)r)) [6]1 = ((((y ¥I((ra)))
[4] = ((((y I (Ae=((p a)r))
[5] (((Au=(u v)) ¥))(((r q)))

[2] ((((Au=(u v)) ¥)))(Ap=((p a)r)) [6] = ((((y ¥I((ra)))

We observe that some A-expressions always (Example 7.2(a) and Exam-
ple 7.2(d)[1-6]) reduce to a form that no longer contains any syntactic oc-
currence of a A-function which can be further reduced. Such a form is called
an irreducible A-expression. We also observe, Example 7.2(b), that some A-
expressions cannot be reduced to an irreducible form. Others have their con-
version either terminate, or not terminate, depending on which reducible A-
functions are chosen — as in Example 7.2(c).

7.5 Call-by-Name Versus Call-by-Value

Characterisation. Call-by-name: When a g-reduction is possible, and when
one always chooses the leftmost, outermost such (i.e., the leftmost with the

7.7 The RSL A-Notation 117

fewest parentheses surrounding it), then we call that sequence of reductions,
that is, the conversion, a call-by-name, or leftmost outermost conversion. =

Characterisation. Call-by-value: When a f-reduction is possible, and when
one always chooses the rightmost, innermost such (i.e., the rightmost with
the largest number of parentheses surrounding it), then we call that sequence
of reductions, that is, the conversion, a call-by-value, or rightmost innermost
conversion. .

Example 7.2(a) and (b) are examples of both leftmost outermost and a right-
most innermost conversion. One leads to an irreducible form, the other never!
In Example 7.2(c) the leftmost outermost conversion leads to an irreducible
form, whereas the rightmost innermost conversion never leads to an irreducible
form.

7.6 The Church—Rosser Theorems — Informal Version

The Church—Rosser Theorems state:

o If a A-expression has an irreducible form, then a leftmost outermost con-
version will find it.

e If two different A-conversions lead to irreducible forms, then they are,
modulo a-renaming, the same.

So: call-by-name reduction is the “safest”! Usually programming languages
provide call-by-value.

7.7 The RSL A-Notation

We like the ability to designate functions without always having to name
them. We also like the ability, also through A-function abstraction, to express
functions, concisely without too much syntactic “machinery”, i.e., “syntac-
tic sugar”. The simple rules for free and bound variables, for substitution,
for a-renaming and for S-reduction also apply in the larger context of all
programming, and hence also all specification languages. Therefore, as is
common practice in the computer and computing science literature, we in-
troduce an extended version of A-expressions, here into RSL.

7.7.1 Extending A-Expressions

We now embed A-expressions in our specification language, RSL, by allowing
any RSL value-designating clause (statement or expression) to occur wherever
a A-expression may occur. We type (i.e., we give a type to) the bound variable

118 7 A A-Calculus

argument, of A-functions: Az: X +E(x). The type X is not necessarily coincident
with (equal to) the definition set of the function. It is just a conveniently
expressible type expression, usually a type name. The function definition set,
however, falls within the type. Below we show a slight revision of the BNF
Grammar for the “pure” A-syntax.

type /x An Extended BNF Syntax */
(Tn) = /* Type names */

(L) ()| (F) | (A)

(V) = /[« variables, i.e., identifiers =/
(F) u=XV):(In) - (E)

(A) == ((EXE))

(E) == (L) | ((E}) | etcetera

/* Any ordinary RSL (or other) =/
/* expression, statement or clause %/
value /* Examples */
(E): 0, 1 if n=0 then 1 else n * f(n—1) end, 4
(V):n
(F):)\ n: Nat + if n=0 then 1 else n * f(n—1) end
(A): (A n:Nat « if n=0 then 1 else n * f(n—1) end)(4)

We have embedded into RSL the A-notation as a syntactic way of expressing
functions without naming them. For cases of use where evaluation of RSL text
does not imply side-effects (i.e., hidden state changes or communication over
channels, etc.) we can resort to the A-calculus in order to grasp the meaning of
an embedded A-expression. Otherwise we cannot! We shall later have occasion
to clarify the above, seemingly cryptic statements.

7.7.2 The “let ... in ... end” Construct

A very useful expression construct of RSL is the “let ... in ... end” clause.
It can be basically explained in terms of the A-Calculus. To do so we say that
the three expressions:

(A a:A - E(a))(b)
let a:A = b in E(a) end
let a =D in E(a) end

are, for nonfunctional, or for functional expressions b that are nonrecursive
(in a) — the same.

The case where a occurs free in b amounts to a recursive mentioning of a
in b. We shall deal with these cases in Sect. 7.8.

7.8 Fix Points 119

7.8 Fix Points

Recursive definitions can be intriguing, whether of types, of functions, or of
other values. Here we shall, from a practical point of view, briefly investigate
the A-calculus meaning of recursive function definitions.

Recursive function theory is predominantly focused on fix points. So fix
points are very important in computer and computing science; and if we get
these wrong, as software engineers, then we can get “things” terribly wrong.

7.8.1 The Issue

An important notion of mathematics and of both specification and program-
ming languages is that of recursion. In mathematics the notion of recursion
“belongs” to what is sometimes called meta-mathematics, or sometimes re-
cursive function theory.

In this section we first outline the problem. Then we “massage” a A-
expression in a few stages. We perform both conversion and short-hand substi-
tution, the latter of an expression for a name (the F below). That conversion
and substitution leads us to a concept of fix points and of a fix point-yielding
operator (the Y below). Finally, we show an example of a fix point evaluation
using the fix point identity: YF = F(YF). The identity applies to any func-
tional, i.e., for any higher-order function, but it does not necessarily lead to
what is called a minimal fix point.

7.8.2 Informal QOutline

We will now deal with the case in which a occurs free in b in the expression
E(a) below:

let a =D in E(a) end
Assume:

type
F

value

let f = Ax:X+B(fx) in E(f) end.
If by a free f inside B(f x) we mean the same as the lefthand side f, then the
two expressions ([1-2]):

[1] let f:F = Mx:X-B(f,x) in E(f) end,

[2] (AMf:F-E(f)) (A X-B(f,x))

are not the same. The f inside B(f,x), of the second (AfE(f))(Ax:X«B(fx)), is
not bound by the Af in AfE(f) as was probably the intention. Let us assume:

120 7 A A-Calculus

value
fact: Nat — Nat
fact(n) = if n=0 then 1 else nxfact(n—1) end.

This example illustrates the issue of recursive function definitions.

7.8.3 The Fix Point Operator Y

We now treat the general example systematically: We omit typing the A-
function arguments.

let f(x) = B(... f ... x...) in E(f) end

The next, numbered items refer to the formal, line-by-line derivation which
follows. (1) Let the f inside the righthand side B(... f ... x ...) mean the same as
the lefthand side f (i.e., in f(x)). (2) move x from the lefthand to the beginning
of the righthand side — this is done by abstracting in x, i.e., by prefixing the
moved x with a A and suffixing the moved x with a . (3) Now rename the f
inside the righthand side (... f ... x ...) into g by lifting the expression (... f

X ...) to a function Ags(... g ... x ...) which is then applied to f — whereby we
get the original expression (... f ... x ...).

let f = YF in f(a) end
The fix point Identity Law: YF = F(YF)

1 letf(x)=(..f..x..)in{(a) end

2 letf=Xc(..f...x) in f(a) end

3 letf=)\g-/\x-(g ... x...)(f) in f(a) end

4 let f = F(f) in f(a) end ——— where F = AgeAxs(... g ... x ...)
5]

6

From 1 to 2: A-abstraction.

From 2 to 3: A-abstraction + A-application.

From 3 to 4: Abbreviation.

From 4 to 5: If f satisfies f = F f then f is a fix point of F.

(4) Now observe the expression f = F(f), where F = Agedxe(... g ... x ...).
Any function f which satisfies the equation f=F(f) is said to be a fix point of
F.

(5) The operator Y is an example of a fix point-taking operator.

Thus one can eliminate named references to a recursively defined function
by replacing the function name by its fix point. Y produces one such fix point.
There are many such fix points but we refer to more foundational language
semantics texts for a proper treatment of this. Any one of 28,183, 250-252,
280,284,319,396,443,454,497,521] will do. We remind the reader that we have
omitted typing the formal variable of the above A-function expressions. We
will continue, in this section, to omit such typing.

7.8 Fix Points 121

7.8.4 Fix Point Evaluation

Example 7.3 Fix Point Evaluation: We show an example of evaluation using
the Y fix point operator and the fix point identity YF = F(Y(F)).

We leave it to the reader to decipher which of the conversion rules have
been applied in each step below: a-renaming, F-reduction (or its inverse, func-
tion abstraction, as for the introduction of g), or fix point identity YF =
F(Y(F)).

let f(n) = if n=0 then 1 else nxf(n—1) end in f(3) end
let f = An+if n=0 then 1 else n*f(n—1) end in {(3) end
let f = (AgeAn«if n=0 then 1 else nxg(n—1) end)(f) in {(3) end
let f = F(f) in f(3) end

where F = (AgsAn+if n=0 then 1 else nxg(n—1) end)
let f = YF in f(3) end
(YF)(3)
(F(YF))(3)
((AgeAnif n=0 then 1 else nxg(n—1) end)(YF))(3)
{An-if n=0 then 1 else nx((YF))(n—1) end)(3)
(if 3=0 then 1 else 3+(YF)(3—1) end)
(3+(YF)(2))
(3x(F(YF))(2))
(3%((AgeAn+if n=0 then 1 else nxg(n—1) end)(YF))(2))
(3%(An+if n=0 then 1 else nx(YF)(n—1) end)(2))
(3%(if 2=0 then 1 else 2+(YF)(2—1) end))
(3+(2+(YF)(1)))
(3+(2+(F(YF))(1)))
(3%(2%((AgeAn-if n=0 then 1 else nxg(n—1) end)(YF))(1)))
(3%(2%((Aneif n=0 then 1 else n*(YF)(n—1) end))(1)))
(3%(2%((if 1=0 then 1 else 1x(YF)(1—1) end))))
(3x(2+((1+(YF)(0)))))
(3+(2+((1x(F(YF))(0)))))
(3x(2%((1#((Ag*Aneif n=0 then 1 else nxg(n—1) end)(YF))(0)))))
(3%(2#((1%((An=if n=0 then 1 else nx(YF)(n—1) end))(0)))))
(3%(2%((1%((if 0=0 then 1 else 0x(YF)(0—1) end))))))
(3%(2%((1x((1)))))) = 3*2%1x1 = 6

We have shown yet another example of symbolic function evaluation. This
time, in contrast to the second example of Example 6.3, we used a mixture of
a-conversion, -reduction and fix point conversion using the fix point identity.
The fix point operation is an operation of the function algebra.

122 7 A X-Calculus

7.9 Discussion

It is time to conclude this brief overview of the A-calculus.

7.9.1 General

We have introduced the essence of the A-calculus. First, A-function expressions
have a bound variable which binds all free occurrences of that variable within
its scope (i.e., the body). Second, functions can be modelled by the A-calculus
with its concepts of free and bound variables, substitution, a-renaming and
B-reduction. Finally, that one can define notions of fix points, of a fix point-
taking operator, of a fix point identity and of fix point evaluation.

7.9.2 On Minimal, Maximal and All Fix Points

The fix point operator shown above does not necessarily lead to what is called
a minimal fix point. A minimal fix point of a recursively defined function is the
smallest set of argument and result pairs such that there are no other argument
and result values for which the recursive function definition is satisfied. We
refer to readily available papers and textbooks on semantics or on recursive
function theory for the story on fix points and why it is important to deal with
minimal, maximal and all fix points [28,183, 250-252, 280, 284, 319, 396, 443,
454,497,521]. RSL’s recursive definitions yield a set of models corresponding
to all fix points.

7.9.3 Emphasis

As mentioned in Sect. 6.1.1 two different concepts of functions were introduced
in the last two chapters: a syntactic notion, in the form of A-expressions (in
this chapter), and a semantic notion, in the form of mathematical functions,
depictable as function “maps” (in the previous chapter).

The two are worlds apart: With the former view, the A-calculus view, we
remain within a set of syntactic forms that are said to model the latter view.
With the latter view we are postulating entities that no-one has ever seen!
But entities whose properties can be fully satisfactorily described — so that
we know that they exist, mathematically!

7.9.4 Principles, Techniques and Tools

Principles. A-Abstraction: Every expression can be raised, i.e., abstracted
into a function of the free variables of the expression such that the function
for values of these free variables yields the same value as would the expression
with those values substituted for the free variables. .

The same is true for clauses like statements, etc.

7.11 Exercises 123

Techniques. A-Conversion: The techniques of A-conversion include those of
a-renaming, A-reduction, and fix-point expansion. .

Tools. The A-calculus is a tool needed to express functions, their definition
and their application. .

7.10 Bibliographical Notes

7.10.1 References

The A-calculus was introduced in the 1930s by Alonzo Church and his stu-
dents [152,322], in their rather successful attempt to explain the notion of com-
putability: What can be computed? The A-calculus has turned out to be the
simplest device for explaining programming concepts [222, 334, 338, 391, 426)
and is at the basis of functional programming [51,175, 225,261,278, 380, 433,
520]. The mathematical foundations of A-calculi were first given by Dana
Scott, inspired by Christopher Strachey [251,458-462, 464, 466-468]. Baren-
dregt has covered the A-theory from a scholarly viewpoint [25]- [28]. A good
textbook is [284].

7.10.2 Alonzo Church, 1903—-1995

We refer to an Internet-based biography of Alonzo Church:
http://www-gap.dcs.st-and.ac.uk/ history/Mathematicians/Church.html

It is due to J. J. O’Connor and E. F. Robertson, University of St Andrews,
Scotland: Centre for Interdisciplinary Research in Computational Algebra.

7.11 Exercises

We shall pose some applied A-expression exercises. They are put forward to
help you see that one can model the Boolean truth values and their operations,
integers and their arithmetic operations as well as lists within the A-calculus.

We refer to standard references for exercises in general A-conversion using
the substitution, a-renaming, S-reduction and the fix point identity conversion
rules [26,29,284].

Exercise 7.1. A-Expressions for Boolean Truth Values and Connectives. Con-
sider:

if b then ¢ else a end.

124 7 A X-Calculus

Think of ¢ and a in if b then ¢ else a end as a pair, or more generally, as
a list and b as a selector into that list. If b is true then c is selected. If b is
false then a is selected. This determines our representation of true and false
in the A-calculus:

T,true: Ax.Ay.x
F false: Ax.Ay.y

A-calculus representation of the Boolean connectives are now suggested:

~: Ax((xI")T)
A dx Ay ((xy)F)
Vi Ax Ay ((xT)y)

1. Writing out T and F in full (i.e., as A-expressions), show apply ~ to F to
get T, and apply ~ to T to get F.

2. Writing out T and F in full apply A to all four combinations of T and F
and get what you expect.

3. Similarly for V.

Notice that these representations of the Boolean connectives expect operands
that reduce to T or F. For operands (i.e., arguments) that do not reduce to
Booleans these A-calculus connectives define “other” functions!

Exercise 7.2. A-Expressions for Lists and List Element Selection. Consider
the list:

(¢07¢1:-":¢n—1>

being represented in the A-calculus as follows:

(fo): Ax.((x0)ep)
(G091} Ax.((x¢o){¢1))
(Go,¢1,02): Ax.((xdo)(d1,92))

(<-ﬁo;¢1;---;¢n—1>2 AX.((x¢0) {1,025 ,Pn—1))

¥ is a “dummy” ‘end of list’ delimiter. It can be any A-expression.

The idea, in Exercise 7.1 on the page before, to let T and F select into
a list of length 2 and yield the 1st, respectively the second element, is now
iterated:

T: Ax.Ay.x
FT: AxAy.(y Ax.Ayx) = AxAy(y T)
F2T: AxAy.(y AxAy.(y Ax.Av.x)) = AxAy.(y FT)

FHLIT: AxAy.(y FT)

7.11 Exercises 125

Now show that:

1. (¢07¢17"'7¢n—1>T = ¢0
2. (¢0:¢17"'7¢n—1>FT = ¢)1
3. (¢07¢17"'7¢n—1>FnT = ¢n—1

Exercise 7.3. A\-Expressions for Integers and Arithmetic Operators. Church
illustrated the following representation of natural numbers:

0 = Aa.Ab.b

1 = Aa.Ab.(ab)

2 = JXa.Ab.(a(ab))

n = Aa.Ab.(a(a(... (ab))))

where the natural number n is represented by the n-fold application of the
first argument (a) to the second argument (b).
With the following representation of the arithmetic operators:

m + n: Ax.Ay((m x)((n x)y)),
m x n: Ax.(m(n x)), and
m”: (n m),

calculate the following:

1. 243
2.2x%x3
3.9°

8

Algebras

¢ The prerequisite for studying this chapter is that you understand the
mathematical concepts of sets and of functions as covered in earlier chap-
ters.

e The aims are to cover the mathematical concepts of algebras such as they
are used in computing science and software engineering and to cover, even
in this early chapter, the algebraic specification of what is known, in com-
puting science and software engineering, as abstract data types (ADTs).

e The objective is to ensure that the reader from as early as possible can
use and handle this concept of specification algebras, at ease and with
determination.

e The treatment is systematic to semiformal.

It is a main purpose of this chapter to basically just introduce the jargon —
the language, as it were — of algebras. We do so for the sake of convenience:
The mathematical concept of algebras equip us with suitable terms. When
using those terms they help us delineate what we are presenting.

Characterisation. By an algebra we, loosely, mean a possibly infinite set of
entities and a usually finite set of operations over these entities. .

In software engineering algebras play two central mathematical roles. The
way we structure specifications and programmes (in schemes, classes, mod-
ules, objects) can perhaps best be understood with reference to algebra.
Steps of development, from abstract specifications to concrete ones, can like-
wise best be understood as some algebra morphisms.

8.1 Introduction

Algebras are defined in terms of functions, hence this section follows the previ-
ous section on functions. Algebras capture the very essence of grouping entities

128 8 Algebras

together with actions upon, events and behaviours over, and communications
between these entities. In ordinary programming parlance, “algebras are ob-
jects”. We refer to [53,349] as appropriate introductions to modern algebra.

The concept of algebra is a mathematical concept that allows us to abstract
observations that may have their background in topics other than mathemat-
ics. The concept of function can be seen as one such concept, which we, in
Chap. 6, “related back” to phenomena in some actual world. Our concept of
functions, as well as the basis of the concept of mathematical logic (Chap. 9)
can both have their presentation improved by presenting some of their struc-
ture algebraically. The function algebra thus consists of the space of all func-
tions and a few operations such as function abstraction, function application,
function composition, taking the definition set of a function, taking the range
set of a function and, last, taking the fix point of a function.

8.2 Formal Definition of the Algebra Concept

We shall primarily take an algebraic approach when determining, i.e., when
deciding upon, the form of, and developing software development descriptions.
An algebraic system is a set,! A (finite or infinite), and a set?, 2, (usually
finite), of operations:

(4,2)

A=Aa1,a02, ..., am, ...}, 2 = {wi,wa, ..., wo }

Set A is the carrier of the algebraic system, and {2 is a collection of operations
defined on A. Each operation w; : 2 (w; in {2, i.e., w; of type {2) is a function
of some arity, say n, taking operands, i.e., argument values in A, and yielding
a result value in A:

w(aiuaiw“':ain) =a

That is, w; is of type A” — A.? Different functions (in {2) may have different
arities. Think of arity as a functional, a function that applies to functions and
yields their arity:

type arity: 2 — Nat, arity(w;) =n

1%We usually do not say what the elements of this set are, it is just a set!

2Similarly: Just a set!

3The expression A™ — A is not an expression of RSL. First, we are explaining
basic mathematical concepts not in RSL but in an informal notation of mathematics
already assumed understood. Second, if we wish to express in RSL what may seem
to be a Cartesian of arity n, for a known, fixed n, then we write it out in full:
A1 x Ay x--- X A,. If n varies, then it is probably not to be modelled, i.e., thought
of, as a Cartesian, but rather as a list, A*, where A is then the union type of all the
A,”S.

8.3 How Do Algebras Come About? 129

8.3 How Do Algebras Come About?

Popular software devices, also known as abstract data types, such as stacks,
queues, tables, graphs, etc., can all be seen as algebras.

Example 8.1 “Everyvday” Algebras:

1. A Stack Algebra: The stack algebra has, as carrier, the union of the set of
all stack element values with the set of all stack values, and create empty
stack, top of stack, push onto stack, pop from stack and is_empty stack as
operations.

2. A Queue Algebra: The queue algebra has, as carrier, the union of the set of
all queue element values with the set of all queue values and, for example,
create empty queue, enqueue, dequeue, first (“oldest”), last (“youngest”),
and is_empty queue as operations.

3. A Directory Algebra: The directory algebra has, as carrier, the union of
the set of all directory entry values (i.e., of value triples of entry name,
date and information values) with the set of all directory values and, for
example, create empty directory, insert entry in directory, directory look-
up, edit directory entry and remove directory entry as operations.

4. A Directed, Acyclic Graph Algebra: The directed acyclic graph algebra
has, as carrier, the union of the set of all node labels, the set of all edges,
and the set of all acyclic graphs of (these) labeled nodes and unlabeled
edges, and, for example, create empty graph, insert_node in graph, in-
sert_edge in graph, trace edges in graph from node to node, depth first_
search in graph and breadth first_ search in graph, as operations.

5. Patient Medical Record Algebra: The patient medical record algebra has,
as carrier, all conceivable patient medical records, each consisting of one
dossier. Each dossier consists of one or more sheets (i.e., records) that are
of the following kinds: prior medical history, interview records, analysis
records, diagnostics determination, treatment plans (including prescrip-
tions), observations of effects of treatment, etc. In addition the carrier
also includes these different kinds of sheets. That is, the carrier is quite
complex. The patient medical record algebra has, for example, the follow-
ing operations: creation of a new medical record, inserting new information,
editing previous (i.e., old) information, copying a sheet or a dossier and shred-
ding a dossier.

Algebras may have finite or infinite carriers, i.e., carriers with finite or infinite
numbers of elements of possibly different types.

130 8 Algebras

8.4 Kinds of Algebras

There are various kinds of algebras. It is important to understand which
kinds of algebras are of interest to software engineering and which are not.
For that purpose we explicate the variety of algebras that you may come
ACross.

8.4.1 Concrete Algebras

The examples above were all examples of concrete algebras.

Characterisation. A concrete algebra has sets of known, specific values as
carrier, and a set of specifically given operations. .

That is, one knows that one has a concrete algebra when one knows the
elements of the carrier and when one knows the operators and how to evaluate
operation invocations. The Boolean algebra of Chap. 9 is an example of a
concrete, mathematical algebra. Other concrete, mathematical algebras are
found in Example 8.2.

Example 8.2 Number Algebras:

s An Integer Algebra: (Integer,{+, —,*}), an infinite carrier algebra whose
operations yield all the integers.

e A Natural Numbers Algebra: (NatNumber,{gcd,lcm}) an infinite carrier
algebra where ged, lcm are the greatest common divisor, respectively the
largest common multiple (viz.: ged(4,6)=2, lcm(4,6)=12) operations, which
vield all the natural numbers.

o A Modulo Natural Number Algebra: (S, = {0,1,2,..., m —1},2 =
{©,®}) is a finite carrier algebra: & and ® are the addition and multipli-
cation operations modulo m.

Several other algebras over numbers are possible. .

As software engineers we shall mostly be developing concrete algebras. As
computing scientists we shall often have occasion to explain things in terms
of abstract or universal algebras, to which we now turn.

8.4.2 Abstract Algebras

Whereas concrete algebras are known, i.e., effectively constructed, abstract
algebras are postulated, That is, they are what we shall call (and define as)
‘axiomatised’ in Chap. 9.

Characterisation. An abstract algebra has a sort, i.e., a presently further
undefined set of entities as carrier, a set of operations, and a set of axioms
that relate (i.e., constrain) properties of carrier elements and operations. =

8.4 Kinds of Algebras 131

The algebraic system of an abstract algebra is thus defined by a system of
postulates, to be known henceforth as axioms — and to be treated in depth
later. See Sect. 9.6.

We shall often be using axioms to describe manifest phenomena in an ac-
tual world; and we shall likewise often be using axioms to prescribe software
devices — which will later be made “concrete”, as concrete as such “phenom-
ena” which can exist inside computers can “be”. The axiom systems should
not be seen as actually “being” this or that concrete world, but “only” models
of it.

A “concrete” example of an informally postulated abstract algebra may
be in place:

Example 8.3 Another Stack Algebra: We present another version of the
stack algebra of Example 8.1(1). There is a distinguished, unique carrier ele-
ment called the empty stack: empty(). Let s stand for any carrier stack value,
i.e., stack, and let E = {e,€e,...,e", ...} stand for carrier stack element val-
ues. The members of E will become the elements of stacks. is.empty(empty())
always holds (is always true), whereas is_empty(push(e, s)), for any e and s,
always fails to hold (is always false). Inquiring as to the top of a stack, s
— which can be thought of as one onto which one has just pushed the ele-
ment ¢ — yields that e for any stack s: pop(push(e, s')) = e, while popping
an element from the stack s’ (i.e. pop(push(e, s))) yields s. Popping an ele-
ment from, respectively inquiring as to, the top element of an empty() stack
always yields the chaotic value, of no type, and representing the universally
undefined element. "

We shall more explicitly use the concept of abstract algebras whenever we
“lift” an example like the above by not being concrete about exactly what the
elements of the stack are. That is, we use it when we define a parameterised
algebra, that is, abstract, like for function abstraction, in one or more of
the sub-carriers of the abstract algebra being defined. Thus we introduce the
concept of heterogeneous algebras.

8.4.3 Heterogeneous Algebras
Characterisation. A heterogeneous algebra:
({A1, Aa,.. ., ARY, 2]

has its carrier set A be expressible as the union of a set of disjoint sub-carriers
A;, and associates with every operation w in {2 a signature:

signature(w) = A;; X Ajy X -+ x A;, = A

int1

132 8 Algebras

Thus the kth operand of w is of type A;, , and the result value is of type 4;, .
Example 8.4 Stack Algebra: We expand on the stack algebra example, Ex-
ample 8.3. Viewing that stack algebra as a heterogeneous algebra, the stack
operations are (now) of the following signatures: S is the stack type, and E
is the type of stack elements: empty: Unit — S, is.empty: S — Bool, push:
Sx E— S, top: S =3 E, and pop: S = S. .

Unit is a literal. It denotes a type of one element. That element is designated
by the empty parameter grouping: (). We shall later return to a more thorough
treatment of Unit.

8.4.4 Universal Algebras
Characterisation. A universal algebra is a carrier and a set of operations
with no postulates, i.e., the operations are not further constrained. .
The Morphism Concept

When, in software development we transform abstract specifications to more
concrete ones, then, usually, an algebra morphism is taking place.
Let there be two algebras:

(4,2),(4,)
A function ¢ : A — A’ is said to be a morphism (also called a homomorphism)

from (A, 2) to (A', ') if for any w € 2 and for any a1, as, ..., a, in A there
is a corresponding w' € 2, such that:

M : d(w(ar,az, ..., an)) = &' ($(ar), ¢(az), - - -, an))

We say that the homomorphism relation M respects or preserves correspond-
ing operations in 2 and ' (Fig. 8.1).

A" A
n
n
(A7) A’

Fig. 8.1. Morphism mapping diagram

8.5 Specification Algebras 133

¢" is the n-fold Cartesian power of ¢ : A — A’, that is, the map A™ — (A",
and is defined by:

¢n : (a17a27-- -:an) = (¢(a1):¢(a2)7' 7¢(an))

If¢: A - A'isahomomorphism of £2-algebras, then, by definition ¢ preserves
all the operations of (2.

A special rendition, i.e., manifestation and version, of the morphism con-
cept will be expressed when we cover the model-oriented set, list and map
data types (of RSL), in terms of their set, list and map comprehension forms.
We refer to Sects. 13.2.2, 15.2.2 and 16.2.2, respectively.

Special Kinds of Morphisms

We classify morphisms according to their properties as functions. If ¢ : 4 — A’
is a morphism, then we call ¢ an isomorphism if ¢ is bijective; an epimorphism
if ¢ is surjective, and a monomorphism if ¢ is injective.

Some further characterisations: The abstract properties of an algebraic
system are exactly those which are invariant (i.e., which do not change) under
isomorphism. For epimorphisms, A’ is called the homomorphic image of A, and
we regard (A, £2') as an abstraction or a model of (A, 2). A monomorphism
A — A’ is sometimes called an embedding of A into A’.

We single out morphisms that map algebras onto themselves. We call a
morphism ¢ : 4 — A’ that maps (4, 2) into itself an endomorphism. If
¢ is also bijective, hence an isomorphism, ¢ : A — A, then we call it an
automorphism.

8.5 Specification Algebras

The mathematical concept of algebras has had a great influence on our way
of presenting software designs, prescriptions for software, and, in general, any
kind of documentation related also to software development. The whole con-
cept of object-orientedness is basically an algebraic concept. Giving meaning,
i.e., semantics, to syntactic constructs by means of presenting morphisms from
syntactic algebras to semantics algebras is obviously another algebraic con-
cept.

Thus it is that in programming as well as in specification languages we
find syntactic means for presenting what amounts to heterogeneous algebras.
In RSL the syntactic construct for presenting a heterogeneous algebra is called
a class expression. In an RSL class expression one therefore expects to find
syntactic means for defining the carriers and the operations of a heteroge-
neous algebra. We now turn to this subject. But we first remind the reader
of Sect. 1.6.2 in which we first introduced the class concept. We shall not
formally introduce the pragmatics, semantics and syntax of the RSL class and
scheme concepts till Vol. 2, Chap. 10.

134 8 Algebras
8.5.1 Syntactic Means of Expressing Algebras

To define the various carriers we define their types, and to define the various
operations over these carriers we define these as function values. Schemati-
cally:

class
type
A B,C,D, ..
value
tA—B
f(a) = ..
g:C—=D
gle) = ...
end

The above class expression defines carriers A, B, C and D (etcetera), and
operations f and g (etcetera).

8.5.2 An Example Stack Algebra

Example 8.5 Stack Algebra: We bring a third version of the stack algebra
of Examples 8.1(1) and 8.3.

Let us define an algebra of simple stacks. E and S are the stack element
type, respectively the stack types, i.e., are the types of interest. They are
two disjoint carrier sets. The operations empty and is_empty generate empty
stacks, i.e., stacks of no elements, respectively tests whether an arbitrary stack
is empty; push, top and pop are the operations of interest. An empty stack is
empty. One cannot pop from an empty stack (i.e., generate a remaining stack),
nor can one observe the top of an empty stack. Observing the top of a stack
which is the [“most recent”] result of having pushed the element e “onto” a
[“previous”] stack s yields that element e. Generating the stack after a pop
of a stack which is the [“most recent”] result of having pushed any element e
“onto” the [“previous”] stack s yields that stack s.

class

type
E, S

value
empty: Unit — S
is_.empty: S — Bool
push: E—5 S —= S
top: S = E
pop: S = S

8.5 Specification Algebras 135

axiom
is_empty(empty()),
top(empty()) = chaos,
pop(empty()) = chaos,
Y e,e":E, s:S »
top(push(e)(s)) = e A
pop(push(e)(s)) = s

end

The above formalisation should, by now, look rather conventional! .

Informal Explanation of Some RSL Constructs

Since this is one of the earlier examples of a full-scale use of several hitherto
unexplained, but nevertheless rather simple RSL constructs, let us explain
them in anticipation of material of Chap. 9 on Mathematical Logic. The RSL
keywords class and end delineate the class expression. The class expression, in
this case, contains three kinds of definitions: type, function value and axiom.
The type definitions you should be familiar with. The value definitions name
a number of values. Here, all these values are functions: one 0-ary (nullary),
one 2-ary (binary, dyadic), and three 1-ary (unary, monadic). These function
values are given just their type, called their signature (no function definition
[body]).

The axiom definitions, that is, the axioms, constrain the function val-
ues to lie within a smaller function space than defined by their signatures.
We leave deciphering the specific functionality of these axioms to the reader,
but close by explaining the use of the V “binder”. The clause: V e,e:E, s:S «
A1, Ao, ... Ay, (where the individual A; are the axioms — expressions that
may or may not contain the quantifier variables e, €', and s) expresses that
these axioms’ variables take values that range over the types E, E, and S,
respectively.

8.5.3 An Example Queue Algebra

Example 8.6 Queue Algebra: We give a formal example of the queue algebra
of Example 8.1(2). Let us define an algebra of simple queues: E and Q are the
queue element type, respectively the queue type, i.e., are the types of interest.
The operations empty and is_.empty generate empty queues, i.e., queues of no
elements, respectively tests whether an arbitrary queue is empty, and enq and
deq are the operations of interest. The interesting functions are here defined
in terms of the hidden functions dq and rq.

hide
dg,rq in

136 8 Algebras

class
type
E, Q
value
empty: Unit — Q, is_empty: Q — Bool
eng: E— Q — Q,deq: Q = (Q x E)
d: Q S E, rq: Q > Q
axiom
is_empty(empty()), deq(empty()) = chaos,
dq(empty()) = chaos, rq(empty()) = chaos,
forall e,e”:E, q:Q *
~is_empty(enq(e)(q
)

—_—
—

dq(eng(e)(empty())) = e,
rq(enqg(e)(empty())) = empty(),
dqg(enqg(e)(enq(e’)(q))) = dq(enq(e’)(q)),

rq(enq(e)(enq(e’)(q))) = enq(e)(rq(enq(e’)(q))),
. deq(enq(e)(q)) = (rq(enq(e)(q)),dq(enqg(e)(q)))
en

Operation dq is called an auxiliary operation. It finds the first element en-
queued, i.e., the, “oldest”, or the most distantly, in time, inserted element.
Auxiliary operation rq reconstructs the queue less its currently dequeued ele-
ment. "

Some Notation: hide

The functions dq and rq are defined as hidden functions. They are not in-
tended to be used outside the class expression inside which they only serve
as auxiliary functions, that is, auxiliary operations. The marker hide effects
that it can be syntactically checked that they are not used outside the scope
of the class definition. Hiding values (or types) enable us to reasonably simply
characterise, as here, the functions of interest deq and enq.

8.5.4 Towards Semantic Models of “class” Expressions

So, a class expression, even the little we have so far introduced about class
expressions, can be seen to “cluster” the introduction of a number of identi-
fiers, to wit: A, B, C, D, f, g, or E, S, empty, is_.empty, push, pop, top, or E, Q,
empty, is_empty, deq, enq, dq, and rq. But what does it all mean? We return
now to a thread first begun in Sect. 1.6.2. Namely to informally explain the
semantics of RSL constructs. The “story” applies, inter alia, here.

As already outlined, in Sect. 1.6.2, the meaning of a class expression is a
set of models. Each model in the set maps all identifiers defined in the class
expression, whether hidden or not, into their meaning.

8.6 RSL Syntax for Algebra Specifications 137

The meanings of the above-mentioned identifiers, for example, E, S, empty,
is_empty, push, pop, and top, are as follows: Any type identifier is mapped into
the set of values as constrained by the axioms over these values, and a function
identifier is mapped into a function value, as constrained by the axioms over
these function values. Since the axioms do not normally constrain the function
values to one specific function, but to a (possibly infinite) space of functions
over suitable input argument value and result value relations, we have that
the meaning of a class expression is a possibly infinite set of models: one for
each combination of defined function values, etc. We shall later see a need for
allowing these models to further map identifiers not (at all) mentioned in the
class expression into arbitrary values (including set values).

The meaning of the stack class expression is thus a set of models, with
each model mapping at least the seven identifiers mentioned in the stack
class expression into respective meanings: the value type of all elements, of all
stacks, and specific values for empty, is-empty, push, pop and top functions.

8.6 RSL Syntax for Algebra Specifications

8.6.1 *class” Expressions

We have several times illustrated the RSL syntax for presenting an algebra in
the form of a class of models:

class
type
.. [sorts and type definitions] ...
value
.. [value, incl. function definitions] ...
axiom
... [properties of types and values (functions) ...]
end

The meaning of a class expression is a set, possibly empty, possibly singleton,
possibly infinite, of models in the form of bindings, i.e., associations between
the type and value identifiers introduced in the class expression and mathe-
matical entities such a numbers, sets, Cartesians and functions.

We shall only occasionally wrap our type and value definitions and our
axioms into a class expression, but in a sense we really ought to so so! The
intended meaning is of course the same.

138 8 Algebras
8.6.2 “scheme” Declarations

The scheme construct of RSL allows us to name classes:

scheme A =
class
type
.. [sorts and type definitions] ...
value
.. [value, incl. function definitions] ...
axiom
... [properties of types and values (functions) ...]
end

Identifier A now names the class of all the models denoted by the class ex-
pression.

8.7 Discussion

8.7.1 General

We have made a tour de force of covering, ever so cursorily, some concepts
of mathematical algebra. The purpose has been twofold. First, to put names
to a number of algebra concepts, names that have been properly defined, and
which can be used for later characterising a number of specification (cum pro-
gramming) concepts, principles and techniques. Second, we showed notation
and elegance of the definitions, something that we, as software engineers, can
learn from and ought to copy. That is, there are so many ideas of specification
and of development that can be characterised using these algebraic concepts,
and knowing this may induce us to further study (especially the universal) al-
gebraic notions. Although such a study is outside the aims of these volumes it
would reveal the usefulness of the lemmas and theorems of universal algebra.
We shall endeavour, however, to communicate, wherever relevant, the spirit
of the underlying algebraic concepts.

We have finally, in this section on algebra, shown how the software com-
munity has taken the prescribed medicine: The concept of algebra, as a math-
ematical structure of carriers and operations, has found its way into program-
ming and into specification languages. We have shown the initial concepts of
the RSL class specification construct, syntactically as well as semantically. In
programming languages this algebra concept is usually manifested in so-called
object-orientedness. In specification languages this algebra concept is usually
manifested in so-called module, class or abstract data type constructs.

8.9 Exercises 139
8.7.2 Principles, Techniques and Tools

Principles. Algebraic Semantics: is that of capturing core notions of a do-
main, or of requirements, or of software designs, by expressing these as alge-
bras. .

Techniques. Algebra construction consists in expressing (i) the sorts (i.e.,
abstract types) of the carrier by naming them, (i) the signature of the oper-
ations (functions), and (iii) in providing an appropriate (small) set of axioms
that relate elements of the carrier and the operations. .

Tools. Algebra tools include the class and scheme constructs of RSL (and
of similar, basically model-oriented languages (for example: B [3], event-B [4],
VDM++ [201-204], and Object-Z [144,199,200])), CASL, the Common Algebraic
Specification Language [49,395,399], and Cafe0BJ [193,232]. .

8.8 Bibliographical Notes

A classical textbook on algebra is Birkhoff and MacLane’s [53]. We owe our
debt to that book and, for the treatment of this chapter, to Lipson’s delightful
[349]. Universal algebras are covered by Cohn in [157]. Another good algebra
book is also by Cohn: [158].

8.9 Exercises

& Note: The next three assignments are, in a sense, premature. They ask that
you express something in RSL, of which you have yet to learn the essentials.
But try anyway! In the present and in the previous chapters there is indeed
enough material on RSL to build upon. But that material will be reintroduced,
and then very much more systematically, from Part III on.

L X

Exercise 8.1. & Suggest a Transportation Net Algebra,

We refer to Appendix A, Sect. A.1, Transportation Net.

Suggest short sort (or type) names for Transportation Net entities (nets,
segments, connections), and signatures for (four) functions that insert [delete]
anew [an “old”] segment, and that insert [delete] a new [an “old”] connection
(intersection). Write out axioms, in English, stating properties that must hold
of any input argument or result value segment, intersection and transportation
net. “Wrap” the whole thing into a scheme declaration.

140 8 Algebras

Exercise 8.2. & Suggest a Container Logistics Algebra.

We refer to Appendix A, Sect. A.2, Container Logistics.

Suggest short sort (or type) names for the following Container Logistics
entities: Container Ship, Container, Quay, Container Storage Area, Bay, Row,
and Stack, as well as Bay, Row, and Stack Identifiers (Names, Indexes). Sug-
gest signatures for (four) functions that load [unload] Containers onto [from]
Container Ship Stacks from [to] a Quay, respectively that load [unload] Con-
tainers onto [from] Container Storage Area Stacks from [to] a Quay. (Re-
member to identify Bays, Rows and Stacks of both Container Ships and the
Container Storage Area.) Write out axioms, in English, stating properties that
must hold of any input argument or result value amongst the many container
terminal entities. “Wrap” the whole thing into a scheme declaration.

Exercise 8.3. & Suggest a Financial Service Industry Algebra.

We refer to Appendix A, Sect. A.3, Financial Service Industry.

Suggest short sort (or type) names for the Financial Service Industry, in
particular Bank entities (Customer, Bank Account, etc.), and signatures for
(four) functions that open and close accounts, that establish shared accounts,
that deposit and withdraw funds, and that transfer funds between accounts.
(Remember to also identify the types of such internal bank “books” that keep
track of customers account numbers, and of the sharing of accounts.) Write out
axioms, in English, stating properties that must hold of any input argument
or result value amongst the many financial service industry entities. “Wrap”
the whole thing into a scheme declaration.

9

Mathematical Logic

e The prerequisite for studying this chapter is that you understand the
mathematical concepts of sets, functions and algebras as covered in earlier
chapters.

e The aims are to cover the concepts of Boolean algebra, propositional and
predicate logic, to cover the concepts of proof theory and model theory
and to cover the concept of axiom systems and exemplify its application
in abstract specifications.

e The objective is to help ensure that the reader becomes reasonably fluent
in the use of logic as a specification tool and to begin the long road in
ensuring that the reader will eventually become reasonably versatile in
logic reasoning.

e The treatment is semiformal to fully formal.

Mathematical logic is, without any doubt, the most important mathematical
subdiscipline of software engineering.

Characterisation. By a mathematical logic we mean a formal language: A

syntax defining an infinite set of formulas, and a “semantics” — here in the
form of a set of axioms concerning these formulas and a set of rules of inference
over these formulas. .

Logic is the study of reasoning. Logic was, for a long time, part of philosophy.
Mathematical logic is the study of the kind of reasoning done by mathemati-
cians, and mathematical logic was, for some time, a stepchild of mathematics.!

Tt seems, without exaggerating, that many mathematics university departments
still have a somewhat problematic relationship to mathematical logic.

142 9 Mathematical Logic

We shall basically be using mathematical logic as undoubtedly the most
important part of our specification notation. That is, we shall be using all
the sublanguages of mathematical logic: the sublanguage of Boolean ground
terms, the sublanguage of propositions and the sublanguage of predicates.
Therefore it is important that the reader — from the very beginning, that
is, now! — is at ease with many of the concepts of mathematical logic. This,
then, is the purpose of this chapter: to teach you those concepts, and to
teach you how to express yourself, formally, in those sublanguages.

Correctness of software, and proving properties of their specifications and im-
plementations, are concerns of core importance. So is proving properties of
domain descriptions, of requirements prescriptions, and of relations between
them and software designs. The languages (i.e., tools) and techniques of math-
ematical logic are used in securing fulfillment of desired properties.

We shall be covering, also, some of the proof aspects of mathematical
logic. But our presentation in this section is from the point of view of math-
ematical logic as an abstract specification language. We will not cover the-
ories of mathematical logic, but refer to many good textbooks, for exam-
ple, [235,259,372,457].

9.1 The Issues

We shall first treat basically nine issues of logics, including three sublan-
guages: (i) a language of Boolean-valued ground terms, (ii) a language of
Boolean-valued propositional expressions, and (iii) a language of Boolean-
valued predicate expressions. And we shall also cover some diverse issues: (iv)
Boolean-valued expressions, (v) chaos — undefined expressions, (vi) axiom
and inference systems, (vii) proof systems, (viii) the axioms of the logic lan-
guages, and the axiom definition facility of RSL, and (ix) the meaning of the
if ... then ... else ... end clause.

We first survey these nine issues, then we treat the three languages in more
detail in Sects. 9.3-9.5. But, before that, we survey the distinction between
proof-theoretic and model-theoretic logic (Sect. 9.2). That distinction will
bring out the distinctions between syntax and semantics, between provable
and true, and between completeness and soundness.

9.1.1 Language of Boolean Ground Terms

First, there is the Boolean ground term?® algebra, or simply the Boolean cal-

culus, its syntax, semantics and pragmatics.

*By a ground term we mean an operator/operand expression with no variables,
just, as here, the Boolean literals and connectives.

9.1 The Issues 143

We refer to the Boolean ground term algebra by the type name Bool.?

Syntactically the Boolean algebra is a language of ground terms, having a
syntax including: Boolean (constant) literals (true and false), a set of connec-
tives: {~,A,V,=,=,%#,=}, aset of (syntax) rules for forming ground terms,
and a set of axioms relating ground terms and connectives, a calculus.

true, false, ~true, ~false, true A false, ~true A false, ...

Semantically we have truth tables for these connectives: the truth values and
the three-valued logic.* We explain this semantics by presenting a procedure
for evaluating (i.e., interpreting) ground terms.

Speaking on the pragmatics of the Boolean ground term algebra, with this
(ground term) algebra there is little we can express. But it forms a smallest
basis, even with just the first two connectives listed above!

9.1.2 Language of Propositional Expressions

Next, we present the propositional calculus, its syntax, semantics and prag-
matics. The propositional calculus builds on the language of Boolean ground
terms.

There is the syntax of propositional (operator/operand) expressions built
from Boolean literals, connectives, and variable identifiers, axioms and in-
ference rules. The axioms and inference rules define the calculus part of the
propositional calculus. Variables are intended, in the semantics, to denote
truth values.

true, false, ~true, ~false, true A false, ~true A false, ...
a, b, ..,aAtrue,a A Db, ...

There are the semantics rules (an evaluation procedure) for interpreting propo-
sitional expressions.

And there is the pragmatics: With the propositional calculus we can ex-
press a few more things than with just Boolean ground terms.

9.1.3 Language of Predicate Expressions

Finally, we have the predicate calculus, with its syntax, semantics and prag-
matics. The predicate calculus includes the propositional calculus.

Thus there is the syntax of predicate (operator/operand) expressions, in-
cluding propositional expressions, extended with constant values of any type,

3The type name Bool will also refer to the propositional and the predicate
calculi.

4As noted later we must, in general, be aware of undefined, e.g., nonterminating,
expression evaluations. A three-valued logic is to deal with nonterminating expres-
sion evaluation.

144 9 Mathematical Logic

variables denoting such values, and hence operator/operand expressions also
over these, as well as quantified expressions (V,3), and axioms and inference
rules.

The axioms and inference rules define the calculus part of the predicate
calculus.

true, false, ~true, ~false, true A false, ~true A false, ...
a, b, ..,aAtrue,a Ab, ...
VxXetrue, VxxXex A .., IxXxA ...

There are the semantics rules for interpreting (evaluating) predicate expres-
sions — leading to truth values (or chaos!).

And there is the pragmatics: With the predicate calculus we can express
quite a lot. It is sufficient for a long while!

9.1.4 Boolean-Valued Expressions

Syntactically we can thus speak of four categories of expressions: Boolean
ground terms, propositional expressions, predicate expressions and quantified
expressions. Figure 9.1 informally indicates that Boolean ground term expres-
sions syntactically are a proper subcategory of propositional expressions; that
propositional expressions syntactically are a proper subcategory of predicate
expressions; that quantified expressions syntactically are a proper subcategory
of predicate expressions; but that quantified expressions syntactically are not
a proper subcategory of propositional expressions. It also expresses that all
are Boolean-valued expressions.

Quantified
Expressions |

Predicate Expressions

Boolean
Ground
\ Terms

Propositional
Expressions

Fig. 9.1. Languages of Boolean-valued expressions

9.1.5 “chaos” — Undefined Expression Evaluations

We reintroduce, at this point, the literal chaos, first introduced in Sect. 6.5.6
(in the subsection named Strict Functions (Page 101)). It pertains to possible

9.1 The Issues 145

evaluations (i.e., of finding the values) of arbitrary expressions — yet to be
introduced — throughout these volumes. If an expression cannot be evaluated
(e/0 never evaluates!), then its value is said to be chaos. That is, we can speak
of never terminating, or undefined evaluations, and we give the name chaos
to the “value”, i.e., the result of such evaluations.

9.1.6 Axiom Systems and Inference Rules

Just as we have the calculus of integers, that is, rules for adding, subtracting,
multiplying and integer-dividing integers, and rules for eliminating certain
additions, subtractions, multiplications and divisions:

0+a=a, 1xa=a, 0xa=0, a/l =a, 0/a =0 (where a # 0), etc.

so we have rules, in general called inference rules, for “reducing” or “rewriting”
syntactic logic expressions into other (usually simpler) such expressions.

Axioms and inference rules (of some logic) together make up the calculus
for that logic. A logic is defined by its axioms and inference rules. We shall,
in subsequent sections introduce, various axiom systems.

Axioms and Axiom Systems

An axiom is a predicate expression with free variables. These variables des-
ignate arbitrary predicate expressions. An axiom thus designate an infinity
of predicates without variables, where all (former free) variables have been
replaced by propositions.

A “classical” logic axiom is:

oV o

¢ is the free variable. It reads: Either ¢ holds, or ¢ does not hold. The axiom
is called the axiom of the excluded middle, also colloquially referred to as the
axiom of the excluded miracle!

The pragmatics of an axiom, of a logic, is that it represents, in some or all
semantics of that logic, a self-evident truth. An axiom system is a collections
of one or more axioms.

Inference Rules

An inference rule is a pair: a set of predicates with free variables (the premise),
and an inferred predicate with some of the same free variables (the conclusion).
The most famous logic inference rule is that of modus ponens:

P,PD @
Q

146 9 Mathematical Logic

P and (@) are the free variables. It reads: If we know that P holds and that
P > @ holds, then we can infer (conclude) that) holds.

The pragmatics of an inference rule, of a logic, is that it represents, in
some or all semantics of that logic, a self-evident way of reasoning, from one
set of logic expressions to the next, or to another logic expression.

9.1.7 Proof Systems

By a proof system for a logic language we mean: a set of axiom schemes, a set
of rules of inference, and a set of theorems provable from the axiom schemes
and rules of inference. The latter can be considered as being axioms. Some
theorems may be reformulated as “additional” rules of inference:®

Loty
3

The verifier, a person or a mechanised system, has

“more to choose from”!

In our presentation of proof systems, in particular that of RSL, we present
not only not the entire proof systems, but also not the full details of how to
carry out full proofs, and certainly not how to do even small proofs using
available theorem prover or proof assistant software systems. To learn how
to do real proofs for real developments is a deep study by itself, and we refer
to specialised text books on this subject: [181,242,359-361,419,472,533].

Summarising we can say: Proof systems are specially tailored versions of ax-
iom schemes and rules of inferences — augmented by theorems and special
syntactic conventions on how to present proofs.

9.1.8 A Note on Two Axiom Systems

Axioms are self-evident truths, i.e., can be considered laws. But we have to
keep track of two kinds of notions of axioms and axiom systems: The axioms
that define proof systems of logic languages, including RSL, and the axioms
that a user of RSL defines when specifying properties of sorts and functions.

The two relate as follows:

The axioms of the proof systems of logic languages, like RSL, are given, a
priori®, and are not expressed in those same languages. However, the reader
may get the impression that RSL’s proof system is defined in RSL, since the
axioms look very much like the axiom definition facility of RSL. The axioms
that are expressed in RSL, using RSL Boolean valued and other expressions,

SL8EY poads: If, assuming the set of axioms (etc.) I, 1 can be proved from ¢,
then £ holds (i.e., has [thus] been proved).

83 priori, relating to or derived by reasoning from self-evident propositions, pre-
supposed by experience, being without examination or analysis, formed or conceived
beforehand (Merriam—Webster Dictionary [373]).

9.1 The Issues 147

and which rely on RSL’s proof system when proving properties of what these
user-defined axioms express.

In the next sections (Sects. 9.3-9.5) on the logic languages of Boolean
ground terms, propositions and predicates, respectively, we shall be speaking
about the axioms of RSL’s proof system. In Sect. 9.6 we shall, in contrast,
illustrate the use of RSL’ axiom definition facility in defining data types like
Euclid’s plane geometry, natural number (Peano’s axiom system), simple sets,
and simple lists (Examples 9.20, 9.21, 9.23 and 9.24, respectively).

9.1.9 The “if ... then ... else ... end” Connective

The if... then.. . else.. . end construct “anchors” around a basic understand-
ing of logic. We therefore explain this construct. Let e be:

if b then € else €' end

e is a syntactic construct of, for example, RSL. It allows b to evaluate to a
value of any type and to chaos (which has no type). The expression e only
makes sense if b evaluates to false or true:

if false then € else ¢’ end = €’

if true then € else ¢” end = ¢
if chaos then €' else €’ end = chaos

If b evaluates to any other value chaos is still the result.” chaos stands for
chaotic behaviour of the result of evaluating an expression, including nonter-
mination.

Nonstrictness of a functional, like the distributed fix, if...then...else-
...end, means that applying the functional to arguments that may evaluate
to chaos does not necessarily lead to chaos:

if true then €’ else chaos end = ¢
if false then chaos else ¢’ end = €'

We refer to if .. .then ...else ... end as a distributed- or mix-fix connective.

9.1.10 Discussion

We are building up our treatment of logics in small, easy steps. In this section
we have basically identified three languages of logic, a language of Boolean
ground terms, a language of propositions and a language of predicates. Each
of these languages will be dealt with in more detail in Sects. 9.3-9.5. But first,
in Sect. 9.2, we treat a number of issues common to the three languages.

"But RSL is so designed as to out-rule such, so-called type errors, and therefore
such expressions, b, will not even be considered correct RSL expressions.

148 9 Mathematical Logic

9.2 Proof Theory Versus Model Theory

Above we have made the distinction between the syntax and the semantics
of a language. In this section we will elucidate this distinction. In this section
we shall assume a classical two-valued logic.

9.2.1 Syntax

What we write is syntax. When we manipulate written text, in some language,
using certain (for example inference) rules and axioms, and thereby obtain
other text in the same language, then these rules are basically of syntactic
nature.

Example 9.1 Differentiation of Analytic Expressions, I: We take, as an ex-
ample, that of the formal language of analytic expressions where some expres-
sions are shown in the left column below. And we take as rules those which
define differentiation, shown in the right column below. We observe that the
rules are recursively defined.

[Analytic Expression] Rule of Differentiation |
] da

Y a5t = = ~ 0

y: T 77 = i3 ~ 1

Y ;r:“%;i: 3:;“ ~opox gl

v O L]
T € 1‘ 1!

y: flz) xg(@)|z = o XQ() Ael2)) f(x)

ete. ete.

We observe that the rules of differentiation when applied to any analytic
expression terminate with the result being an analytic expression. In other
words, the language plus the rules remain syntactic. We are just “fiddling”
with symbols. "

The notions of proofs and theorems (in logic) are syntactic notions. There
is a large body of theory that deals only with the syntax of any, or some, logic
language(s). Similarly, there is a large body of theory that deals only with the
differentiability of analytic expressions, also a syntactic theory.

Mathematical logic can be pursued, at length and in depth, while remain-
ing at the syntactic level.

9.2.2 Semantics

What we mean by the written text, in contrast, is semantics.

9.2 Proof Theory Versus Model Theory 149

Example 9.2 Differentiation of Analytic Expressions, II: Why we perform
differentiation is of no concern to the rules of differentiation as they are being
applied. The semantics of an analytic expression may express distance covered
over time. Differentiation wrt. time may therefore be done in order to express
the velocity. Differentiation wrt. time performed twice may therefore be done
in order to express the acceleration. .

Semantics is about truth, about the ‘holding’ or ‘not holding’ of a logical
sentence. Thus the Boolean ground terms false and true denote the semantic
values falsity and truth, respectively.

Example 9.3 Meaning of Logical Expressions: A logical expression, ¢, may
mean that it designates the properties of a requirements prescription. Another
logical expression, ¥, may mean that it designates the properties of a software
specification. The logical expression, 1 D ¢, may then mean that the software
specification implements the requirements. .

9.2.3 Syntax Versus Semantics

To sum up: When speaking in the syntactic realm of a logic language the
logic expressions are mere symbols — we are not interested in their meaning.
We manipulate strings of symbols using the axioms and rules of inference.
When speaking in the semantic realm of a logic language the logic expressions
denote values, and these values are obtained through interpretation. There is
a context which, among others, maps expression symbols (including variable
identifiers) to their truth values. Different contexts (we say different ‘worlds’)
may map the same variable identifier to different truth values.

9.2.4 Formal Logics: Syntax and Semantics

This and the next sections (Sect. 9.2.4-9.2.6) are inspired by John Rushby’s
1993 report Rapid Introduction to Mathematical Logic [451].

The various logic languages, their syntax and semantics, all manifest for-
mal systems. A formal logic system, syntactically, consists of several parts.
First, it contains (i) a logic language given by some concrete grammar which
elucidates constant and function (i.e., operation) literals, for example, false,
true, chaos, — (or ~), A,V, and D, variable, function and predicate identi-
fiers, delimiters (like commas: “,”, parentheses: “(”, “)”, etc.), and their com-
bination (say in terms of a set of BNF rules). Second, a formal logic system,
syntactically, also consists of (i) an axiom system: a set of axioms, viz.:

OV g

150 9 Mathematical Logic

In other words, the axiom system is a subset of sentences of the language, in
which variable identifiers (¢) are metalinguistic: they designate proper sen-
tences (viz.: (PV Q)AR) of the language. Finally, a formal logic system, syn-
tactically, also consists of (iii) a set of rules of inference: a set of pairs of
antecedents and consequents, viz.:

%02

¥

The former is a set of sentences, and the latter is a sentence, such that all vari-
able identifiers of these sentences are metalinguistic. They designate proper
sentences of the language.

More on the Semantics of Formal Logic Systems

Semantically, a formal system extends its syntax along two lines. Along one
line, a context is provided, something which to every symbol of the language
associates appropriate semantic notions. To literals (false, true, chaos) one
associates the semantic truth values (££f, tt or falsity, truth), respectively
the semantic undefined value (). 1 “propagates” by making any expression
evaluation in which it occurs denote that value. To variable identifiers one
associates some proper truth or other value, etcetera. What the “etcetera”
stands for will be revealed later, suffice it here to hint at operator, function
and predicate symbols.

Along the other line, a semantics prescribes an evaluation (an interpreta-
tion) procedure which when applied to a sentence in a context results in a
value: falsity, truth or L.

More on the Syntax of Formal Logic Systems

There are usually two parts to a formal system: One part, the logical part
that is shared by all logic languages, and another, the non-logical part.

The symbols that belong to the logical part are called the logical symbols
of the system. The connectives are logical symbols:

-V, A D=

In the predicate calculi we additionally introduce:

f17 f27 "'afnu vu |

where f; are function symbols, and V and 3 are the universal, respectively the
existential quantifiers.
The non-logical symbols are given special interpretations:

+7 - X, /7 <7 S? = >7 Z:

The connectives are chosen to “mimic” every language use, with some more
precision, of the terms: ‘and’ (A), ‘or’ (V), ‘not’ (=), ‘equal’ (=), and ‘imply’
(2). In P D @ P is called the antecedent. (} is called the consequent.

9.2 Proof Theory Versus Model Theory 151
On the Meaning of Material Implication, D

Let us dwell, for a moment, on the issue of the intended (semantic) meaning
of implication D:

PoQ

When we say that a logical expression holds we mean that it evaluates to
true.
P D @ reads: If P holds, then @ holds; if P then Q.

Example 9.4 Informal Uses of Implication, I: Let us illustrate some examples
of uses of implication. The examples are taken from [451]:

The deduction “the jaberwocky is a tove; all toves are slithy; there-
fore that jaberwocky is slithy”, scems OK even though we have do
not know what jaberwocky, tove and slithy means.

What about “The air plane is a Boeing 737; therefore it has two
engines”? That does not seem OK, even though its conclusion is true.
It jumps to a conclusion that is not supported by the facts that are
explicitly mentioned.

What about: “the car is a Chrysler; therefore it has two engines”?
We see this as palpable nonsense. We can repair the above “The air
plane is a Boeing 737; all Boeing planes, except the 747, have two
engines; therefore that plane has two engines.” Now the reasoning is
sound. And soundness does not depend on whether we understand the
terms ‘Boeing’, ‘engine’, ‘737", or ‘747’.

Following John Rushby® we show an example, and then analyse possible se-
mantics of the implication connective.

Example 9.5 Informal Uses of Implication, II:

Consider the four implications: (1) 242 = 4 O Paris is the Capital
of France; (2) 2+ 2 = 4 O London is the Capital of France; (3)
2+ 2 = 5 D Paris is the Capital of France; and (4) 2+2 =5 D
London is the Capital of France.

What truth values can we ascribe to (1-4)? (1) is true because
both the antecedent and the consequent are true. (2) is false because
the consequent is false. (3) is what? (4) is what? To answer (3) and
(4) we turn to the next analysis.

8 Rapid Introduction to Mathematical Logic, 1993 Appendix to [451]

152 9 Mathematical Logic

We continue quoting from [451):

Thus if, in P D @, P does not hold, then we do not (based on what
we have presented up till now) know whether) holds, and hence we
do not know whether P > () holds. If P holds, but @ does not hold,
then our intuition dictates that P O @ does not hold.

So what are we to say about the holdings of P D ¢ when P does
not hold? If we say that P D @ does not hold, when P and @ do not
hold, then P O @ is the same as P A Q. If we say that P D @ holds
exactly when @ holds, then P O @ is the same as Q). If we say that
P D @ holds exactly when @ does not hold, then P O @ is the same
as P = . Thus we conclude that P D @ holds when P and @ hold,
and when P does not hold (irrespective of holding of Q).

Metalinguistic Variables

In axioms, such as:

¢V ¢
and in rules of inference, such as:

P9 DY
¥
the identifiers ¢ and ¢ stand for arbitrary logic sentences. They are metalin-
guistic variables. In any particular use of logic in some specification we may
have some propositions or some predicates P and Q).
They can now be substituted in lieu of ¢ and v

Pv P

respectively
PPDOQ
Q

Since any Ps and (Js are acceptable we see that axiom and rules of inference
really are schemes of axioms, respectively schemes of inference. That is, they
stand for infinities of axioms and infinities of rules of inference.

Given a metalinguistic variable, say ¢, and given some instance of a propo-
sitional or predicate sentence, say P, we may express that P is to take the
place of ¢ in some (designated) axiom scheme or in some (designated) rule of
inference scheme as follows:

[¢ = P]

The form [¢ — P] is called a substitution specification clause. Substitution
specifications may contain several clauses:

[¢1'_>P17¢2'_>P27"'7¢HHPTL]

9.2 Proof Theory Versus Model Theory 153
9.2.5 Issues Related to Proofs
Proofs

Given a sentence ¢. A proof of ¢, from a set, I, of sentences is a finite sequence
of sentences, ¢1,¢2, ..., ¢,, where ¢ = ¢, where ¢, = true, and in which
each ¢; is either an axiom, or a member of I, or follows from earlier ¢;s by
one of the rules of inference.

We say that ¢ is provable from assumptions I', or simply I' proves ¢:
I'k¢

Proofs and provability are syntactic notions, i.e., are notions of proof the-
ory.

Theorems and Formal System Theories

A theorem is a sentence that is provable without assumptions, that is purely
from axioms and rules of inferences. We say that a theory of a given formal
gystem is the set of all its theorems.

Theorems and theories are syntactic notions, i.e., are notions of proof
theory.

Consistency

A formal system is consistent if it contains no sentence ¢ such that both ¢
and its negation —¢ are theorems.

It is a meta-theorem of all the two-valued logics that all sentences are
provable in an inconsistent formal, two-valued logic system.

Consistency is a syntactic notion, i.e., is a notion of proof theory.

Decidability

A formal logic system is decidable if there is an algorithm which prescribes
computations that can determine whether or not any given sentence in the
system is a theorem (or not).

9.2.6 Relating Proof Theory to Model Theory

In modelling domains, requirements and software using logic, we are modelling
some “worlds”. So far we have emphasised the syntactic aspects of logic. To
establish a relationship between the syntactic aspects of the sentences of a
formal language and some world we must turn to semantics.

The goal, then, of mathematical logic is to make sure that theorems are
true in the chosen world, or worlds. We wish to make sure that the theorems
we can prove will correspond to true statements about a chosen world, or all
worlds.

154 9 Mathematical Logic
Interpretation

The connection between syntax and semantics is, as always, established
through an interpretation, Z. So we start with a formal logic system, £. An
interpretation 7 identifies some chosen world, {2, and associates a true or a
false statements with each sentence of the formal system. Statements are of
the kind: “the logic expression ¢ (about such-and-such) is true in 2”7, or “the
logic expression ¢ (about such-and-such) is false in £2”.

The interpretation, Z, has two parts: A context, an environment, p, which
to every symbol in £, associates some value in {2, and a procedure for evalu-
ating any sentence ¢ in L.

Example 9.6 The Factorial and The List Reversal Functions: This example
is inspired by [359]. Let ¢ be the sentence:

F e ((F(a) = b) AVz e (p(z) D (F(x) = g(x, F(f(2))))))

which, model-theoretically, reads: there exists a mathematical function F' such
that (e) the following holds, namely: F(a) = b {where a and b are not known,
model-theoretically), and A for every (i.e., all) z it is the case () that if p(z)
is true, then F(z) = g(x, F(f(x))) is true (where x,g and f are not known,
model-theoretically).

Now there are (at least) two possible interpretations of ¢. In the first
interpretation we establish first the world {2 of natural numbers and operations
on these, and then the specific context p:

[F — fact,
a1,
b1,
f— Ann-—1,
g — A m.A nm+n
p—= Amm>0]

And we find that ¢ is true for the factorial function, fact. In other words, ¢
characterises properties of that function.

In the second interpretation we establish first the world (2 of lists and
operations on these: and then the specific context p:

[F = rev,
ar (),
b= (),
f— tl,
g =)\flkfgflﬁ(hd El)
b MLLA()]

9.2 Proof Theory Versus Model Theory 155

And we find that ¢ is true for the list reversal function, rev. In other words,
¢ characterises properties of that function.

We leave it to the reader to find worlds and/or context associations for
which ¢ does not hold. .

Models

An interpretation Z is a model for a formal system L if it evaluates all its
axioms to true.

An interpretation Z is a model for a set of sentences I' if it (the set)
additionally evaluates all the sentences in " to true.

The concept of model is a semantics notion.

Satisfiability, Entailment: = and Validity

A set of sentences I' is satisfiable if it (the set) has a model.
A set, of sentences I' entails a sentence 1

Ik y

if every model of I' is also a model of ¥, that is: ¢ evaluates to true in every
model of I

A sentence 1 is (universally) valid, and we write |= 1, if it valuates to true
in all models of its formal system.

Soundness and Completeness, - Versus =

A formal system is sound if I' |= 4 whenever v I ¢. Soundness helps ensure
that every provable fact is true. A formal system is complete if I' - 1) whenever
~ k= 1. Completeness helps ensure that every true fact is provable. Inconsistent
systems cannot be sound. The formal systems used in the formal techniques
for specification and verifying properties of specifications must be consistent,
but are usually incomplete and not decidable.

9.2.7 Discussion

So the syntax (sentences, axioms and rules of inference) determines a proof
theory. Issues like proofs, theorems, congistency and decidability are proof
theoretic concepts. And an interpretation determines a model theory. Inter-
pretations tie proof and model theories together. And so do issues like models,
satisfiability, entailment, validity, soundness and completeness. We remind the
reader that all of this section (Sect. 9.2) has assumed a classical two-valued
logic.

156 9 Mathematical Logic

9.3 A Language of Boolean Ground Terms

On one hand, we have the semantic notion of an algebra. And on the other
hand, we have the syntactic notion of Boolean ground terms. The two to-
gether with appropriate syntactic and semantic extensions define a language
of Boolean ground terms. In this section we will present these notions and
extensions.

9.3.1 Syntax and Semantics

The Boolean algebra to be put forward in these volumes can be presented as
if it was an RSL class:?

class Boolean
type
Bool
value
true, false, chaos
~: Bool — Bool
A, V, =, =, #, =: Bool x Bool — Bool
axiom
Y b,b":Bool -
~b = if b then false else true end

b A b’ =ifb then b else false end
b Vv b’ = if b then true else b’ end
b =b' =if b then b’ else true end

b = b’ = if (bAb')V(~bA~b') then true else false end
(b # 1) = ~(b = b)
(b=1b') = (b=1)

end

We refer to Sect, 9.1.9 for the axioms that govern the use of the if ... then
. else ... end clause. Notice that we henceforth, for proper RSL, use the
implication symbol = instead of the usual mathematical logic symbol used
earlier D. However, they designate the same thing
We emphasize that the above presents only an algebra: its values (by
their designators true, false, chaos, that is a semantic presentation) and its
operations (by their signatures, and by axioms defining the meaning of the
operations). And we emphasize that we have, in a sense, “misused” RSL. We
can, of course, not use RSL to explain RSL. We are, above, informally using
mathematics, but couch it in the style of some RSL-like text.

“We remind the reader that we cannot define the axioms of the logic sublanguage
of RSL in RSL. That would lead to a meaningless circularity. Thus the class clause
shown above (after where this footnote was first referenced), is not to be read as
RSL, but as an ordinary mathematics text.

9.3 A Language of Boolean Ground Terms 157

In the next section we shall informally explain these operations. Later we
shall introduce a language of Boolean ground terms by presenting the syntactic
notions of grammar, axioms and rules of inference.

9.3.2 The Connectives: ~, A, V, =, =, #, =

We explain the connectives, semantically, and as if we already allowed their
operands to attain the undefined value chaos. For the algebra of Boolean
ground terms we do not need the concept of ‘undefined value’. Later we shall
extend our logic to the language of predicate expressions, which have the
same connectives as for Boolean ground terms. Below we therefore explain
the connectives as if they occurred in propositional expressions, i.e., in truth-
valued expressions whose variables were truth-valued.

Negation, ~

The logical connective ~ is called ‘negation’. We may read ~P as ‘not P’. The
law of the excluded middle implies that we cannot have both ‘not P’ and ‘P’;
exactly one of the propositional expressions is true. Some three-valued logics
(cf. Cheng and Jones’s Logic for Partial Functions (LPF) [150,151,318]) do
not enjoy the “excluded middle” property.

Conjunction, A

The logical connective A is called ‘and’ and ‘conjunction’. The A connective is
applied not only to express the simultaneous truth of both operands, but also
to express that if the left operand has truth value falsity, then one need not
consider (evaluation of) the right operand! This non-commutativity of the A
connective cuts down on the size of expressions that one may need to write
down:

a A b = if a=false then false else b end

The expression to the left of = above is shorter than the expression to the
right of =.

Disjunction, V

The logical connective V is called ‘or’, ‘logical or’, ‘inclusive or’ and ‘disjunc-
tion’. Normally in the English language using ‘or’ means ‘exclusive or’ — for
which latter exactly one of its two arguments are true, the other is false. But
for PvQ we accept if both are true. So beware! But if the left-hand operand
is true then we may skip evaluating, i.e., even considering the right-hand
operand.

158 9 Mathematical Logic
Equality, =

Equality, =, is to be seen in contrast to identity, =. In E = E' the propositional
expressions F and E' may contain arbitrary identifiers, i.e., variables, whose
(in the present situation: truth) values may vary. Evaluation of E = F’ thus
takes place in a context!® where these variables are bound to some values.
And evaluation of E = E’ considers only the “current” context. That is,
E = E' may be evaluated several times, say because that expression occurs
in a function definition body which is evaluated each time the function is
invoked. The value of E = F’ is determined only by the context relevant for
the specific invocation. For two different invocations the value of the same
expression, £ = E', may thus differ!

Implication, =

The logical connective = is called ‘implication’. In P=-Q the propositional
expression P is called the hypothesis, the antecedent or the premise, while the
propositional expression Q (of P=-Q) is called the consequence or conclusion.

The proposition P=Q is false only when P is true and (A) Q is false.
One can ‘read’ P=-Q in a number of ways: If P then Q, P only if Q, P is a
sufficient condition for @, Q is a necessary condition for P, Q if P, Q follows
from P, Q provided P, Q is a logical consequence of P, or @ whenever P.

Identity, =

To explain the identity connective, =, is a bit more complicated than to ex-
plain the equality connective, =. As expressed above, when testing for equality
of values one evaluates both operand expressions, once, in some current, bind-
ing of their free identifiers to values, then tests them for equality.

For =(¢’,e") (also written, more naturally, ¢’ = e"”), one has to evaluate
the two operand expressions in all possible bindings of their free identifiers
to values, and for all bindings the same result must be yielded: Either always
true or always false for the identity to hold, i.e., be true. If some evaluate
to chaos, then chaos is the value. If none evaluate to chaos and not all to
the same (true or false) truth value, then false is the value.

9.3.3 Three-Valued Logic

The present section presents a proof-theoretic, i.e., a syntactic view of a three-
valued logic of the emerging language of Boolean ground terms. Syntactically

10We shall later in this section explain, in more detail, what we mean by the
term ‘context’, and we shall then contrast this context concept with the concept of
‘model’ introduced already in Sect. 1.7 and discussed more extensively in Sect. 8.5.4.

9.3 A Language of Boolean Ground Terms 159

we should now present a set of axioms and, possibly, a set of rules of inference.
We shall do so, but instead of presenting the rules of inference in the form of
“something above a bar and something below that bar”, we exemplify below
a tabular representation of these rules of inference.

The axioms are true and ~false. But note that the above do not explain
RSL in terms of RSL, but in terms of informal mathematics.

V, A, and = Syntactic Truth Tables

|V ||true |false |chaos| |/\ ||true |false |chaos|

true [[true [true [true true |true |[false |[chaos

false ([true |false |chaos false |(|false |false |false

chaos||chaos|chaos|chaos chaos||chaos|chaos|chaos
|:> ”true |false |chaos|

true |[true [false |chaos
false [[true [true |true
chaos||chaos|chaos|chaos

= Versus =

Assume e; and e are defined expressions, both with deterministic (i.e., def-
inite) values, without effects, that is, side effects (changes to assignable vari-
ables), and without communication, that is, as we shall first see in Chap. 21
(this volume), CSP-like input/output communication. Assume further that e;
and ez evaluates to vy, and vg, respectively. Then the two three-valued logic
truth tables are:

= and = Syntactic Truth Tables

|E ”el |e2 |chaos| |: ||e1 |e2 |chaos|
el true |false|false el true [false |chaos
e2 false|true [chaos e2 false [true |chaos
chaos||false|false|true chaos||chaos|chaos|chaos

Form of Inference Rule

From the tabular form we arrive at the standard way of presenting a rule of
inference

antecedent(s)
consequent

as follows: There is one rule of inference for each entry in each table. The
antecedent of such a rule of inference is formed by composing three symbols:
the row index ground term, the “upper left corner” operator, and the column
index ground term, and in that order. The consequent of the rule of inference
is now the entry term:

160 9 Mathematical Logic

false=-chaos
true

Above we have shown an example from the third table above, second row,
third column!

Truth and Falsity (Syntactic) Designators and Semantic Values

As the truth tables are presented we may get the syntactic understanding that
the truth designators are true and false. That is how we syntactically express
them. Pragmatically we need a way to write down truth values — so we use
the literals true and false. We distinguish between the syntactic literals —
which are the ones we write down in our specifications — and the names of
their meaning (i.e., semantics or interpretation). Some authors, when making
this distinction, for example use the metalinguistic literals tt, £f and L. That
is, the interpretation context (p) associates true with tt, etc. We could then
use these latter as entries in three tables defining the interpretation context
meaning of the connectives:

Interpretation Context: Semantic Truth Tables

2 e N T
tt|ltt|tt|L tt|tt|ff|L
£f|[tt|[fE| L £f||ff|fE|fE
TC((T L[]T
= et[e£|L
tt||ltt|ff|L
ff|tt|tt|tt
T

But we cannot use the interpretation designators in any of the identities ex-
pressed earlier. That is, we cannot use them in the if ... then ... else ... end
axioms. They are metalinguistic: They are the means of explaining some-
thing.

Non-commutativity of Boolean Connective

We refer to a logic of three values, as above, as a three-valued logic. The first
such, for computing science, was introduced by John McCarthy [367]. For
VDM, RSL’s predecessor, Cliff B. Jones proposed a logic for partial functions
[150,316,317]. Several forms of three-valued logic exists [131-133, 329].

Let an expression be:

(E1 A E2) vV E3

9.3 A Language of Boolean Ground Terms 161

where evaluation of E2 for El=false might not terminate. If EIAE2 yields
true, evaluation of the expression E3 need not take place. If E1IAE2 yields
false, evaluation of the expression E3 must take place.

To express the above for commutative, two-valued logics of A and Vv, we
need, for example, write:

if E1 then (if E2 then true else E3 end) else E3 end

9.3.4 Ground Terms and Their Evaluation

Let us first give some examples:

Example 9.7 Ground Terms: Examples of ground terms are:

true, false, ~true, ~false,
trueAtrue, trueVtrue, true=-true, true=true, true#true, true = true
trueAfalse, trueVfalse, true=-false, true=false, true#false, true = false

(trueA((~true)Vfalse)=true)=false, ...

Syntax of Boolean Ground Terms, BGT

The Boolean language of ground terms, BGT, is now defined:

The Basis Clause: true, false and chaos are Boolean ground terms.
The Inductive Clause: If b and b’ are Boolean ground terms, then so are:
~b, bAb', bvb', b=>b', b=b’, b#£b’, b=b’ and (b).

e The Extremal Clause: Only those terms that can be formed from a finite
number of uses of the above two clauses are Boolean ground terms.

Since this is only the second time in these volumes that we properly introduce
a language, and since we have yet to cover the material that shall later enable
us to present such a language definition formally, we use the above informal,
yet very precise style of presentation.!!

We can present, the above inductive definition in the form of a BNF Gram-
mar:

Y Our first such structured, yet informal presentation was that of A-expressions
(Sect. 7.2).

The basis, inductive and extremal clause presentation represents a classical, math-
ematical way of presenting inductive structures. These are typically infinite sets of
entities (here they are syntactic entities), which have a structure. The three-clause
presentation aims at presenting this structure. The structure contains atomic enti-
ties, as for the basis clause, or composite, as here, pairs or triples of entities: operands
and prefix or infix operators as well as parenthesised structures. The basis clause
usually lists a finite, or refers to an infinite, number of terms. The logic clause lists

162 9 Mathematical Logic

(BGT) ::= true | false | chaos
| ~ (BGT)
| (BGT) A (BGT)
| (BGT) v (BGT)
| (BGT) = (BGT)
| (BGT) = (BGT)
| (BGT) # (BGT)
| (BGT) = (BGT)
| ((BGT))

The trouble with the above grammar is that it is ambiguous. Is the term:

true A false V true,

the same as

true A (false V true),

or

(true A false) V true?

The inductive definition gave no hint as to the binding priority of the connec-
tives.
To do so, through a BNF grammar, we introduce an alternative grammar:

(BGT) ::= (aBGT) | {pBGT)
(aBGT) ::= true | false | chaos
(pBGT) == ((BGT))

| (~(BGT))

| ((BGT) v (BGT))
| ({BGT) A (BGT))
| ({BGT) = (BGT))
| ({BGT) = (BGT))
| ({BGT) # (BGT))
| ((BGT) = (BGT))

Now it would not be possible to write:

true A false V true.

The above would have to be written either as

just two. The inductive clause is usually of recursive nature: It assumes the existence
of some terms and expresses the construction, the existence, of further terms. The
basis clause secures the existence of initial terms. And the inductive clause adds
further terms to the language of terms. The extremal clause ensures that unwanted
terms do not accidentally creep into the language. The adjective ‘extremal’ expresses
exclusion!

9.3 A Language of Boolean Ground Terms 163
true A (false V true),

or as

(true A false) V true.

By suitably designing a BNF grammar that directly “embodies” operator (bind-
ing) precedence rules, one can achieve an expression form that avoids excessive
parenthesisation.

Boolean Ground Term Evaluation, Eval BGT

Given any Boolean ground term, we can provide an interpretation. That is,
we can evaluate it.

The evaluation rules are: If the ground term is true, its value is tt. If the
ground term is false, its value is ££. If the ground term is ~b and the value
of b is tt, then the value of ~b is £. b value £f leads to ~b result value tt.
If the ground term is bAb’ and the values of b and b’ are 7 and 7/ — where 7
and 7', individually are one of tt or £f — then the value of bAb’ is found by
looking up under the corresponding entry in the A table. The same holds for
bob’ where ® is any of V, =, =, #, or =, for which appropriate tables are
selected.

We “pseudo-formalise” this interpretation function. It is a pseudo-formal-
isation since it is not expressed in a proper formal notation. Why not, i.e.,
why not use RSL? The answer is: Because we have yet to introduce all the RSL
machinery that is needed in a proper formalisation. The pseudo-formalisation
shall serve to acquaint the reader with the form and possible content of formal
function definitions.

The tables are presented as maps (finite size, enumerable functions) from
truth values to truth values. They are straightforward “mathematical” forms
of the tables given above. One table was missing: that of negation. We leave
it to the reader to provide that table. Thus the type of the Boolean ground
term evaluation procedure, Eval BGT, is:

value
Eval BGT: BGT — TBLS — Bool
type
TBLS = uTBLxbTBLxbTBLXxbTBLxbTBLxbTBLxbTBL
uTBL = Bool # Bool
bTBL = Bool x Bool 7 Bool

The six tables above are to be those of negation, conjunction, disjunction,
implication, equality, none-quality, respectively identity (equivalence).

value

Eval_ BGT (bgt)(tbls) =

164 9 Mathematical Logic

let (n,a,0,i,eq,neq,id) = thls in
case bgt of
true — tt,
false — £f,
chaos — 1,
~t = let b = Eval BGT(t)(tbls) in n(b) end,
t'At" —
let b’=FEval BGT(t')(tbls), b”"=Eval BGT(t")(tbls)
in a(b’,b"”) end,
... /* similar for p’vp”, p'=p”, p'=p", p'#p", and %/ p'is p”
end end

Later we shall see how to express the above pseudo-formalisation of Eval BGT.

9.3.5 “Syntactic” Versus “Semantic Semantics”

Thus there are two ways of looking at most of the languages that we will
present in these volumes (for the various subsets of RSL, as well as for lan-
guages (or language fragments) separate from RSL).

One way of looking at a language is semantically — as we have just done.
Here we explained the meaning of (in this case Boolean ground) terms by
exhibiting an evaluation procedure which “translated” the syntactic literals
true and false into tt, respectively £f. And where we did not otherwise
bother much about telling you what these “new” markers, tt and £f, stood
for!

Another way of looking at a language is syntactically — which we did
earlier, for example on Page 159. Then we basically “rewrote” an operand
term in the Boolean literals true and false and connectives (~, A, V, =, =,
=) into one of these literals.

In the former semantics the meaning of a term was a mathematical value,
one that “nobody has ever seen”! In the latter “semantics” the value of a term
was a term, i.e., a syntactic “thing” that “everybody has seen”!

The former style of semantics definition will be repeated, again and again
in these volumes, and will be referred to, especially as we go on to the next
examples, as the denotational style of semantics definitions. The latter style,
the syntactic one, will be referred to as a ‘rewrite rule’ semantics. The A-
calculus, as given earlier (Sect. 7.2) was thus given a syntactical, that is, a
rewrite rule semantics.

“Syntactic semantics” is the basis for proofs of properties of formal spec-
ifications, and for proofs of certain relations (including correctness) between
pairs of formal specifications. We shall return to this subject in due course.

9.4 Languages of Propositional Logic 165
9.3.6 Discussion

We have introduced the “barest” of a language, the language of Boolean
ground terms, BGT. We have separated our presentation into one of pre-
senting the syntactics of BGT and one of presenting the semantics of BGT.
And we have just, immediately above, briefly discussed a recurrent theme:
a proper semantics view of syntax as well as a “syntactic semantics” as are
most calculi. Finally, wrt. the pragmatics of BGT we said earlier: Using just
the language of Boolean ground terms, there is not much of interest we can
express.

With the next logic language, that of propositions, there also is not much
of interest we can express. We shall have to wait till we master the syntax
(and semantics) of some language of predicates, then we can start expressing
something.

The reason for this seemingly slow, pedantic unfolding of two, we claim, not
so “powerful” languages before we present the “real thing” is one of pedagog-
ics and didactics: For some readers the concepts of logics, and in particular its
three “sublanguages”, such as we have presented them, is not familiar. Ad-
ditionally, the distinction between the syntactics of calculi (including proof
systems) is so different from what they may be familiar with, that a direct,
an immediate presentation of just a language of predicate calculus is an un-
necessary intellectual challenge as compared to a stepwise unfolding such as
we have attempted it.

9.4 Languages of Propositional Logic

By propositional logic we syntactically understand (i) a set of truth values, (ii)
an infinite set of propositional expressions, with connectives, and truth-valued
propositional variables, (iii) a set of axioms and (iv) a set of rules of inference.
The above determines a syntax, i.e., a proof theory of a propositional calculus.

Semantically we equip the (syntax of the language of) propositional logic
with (v) a suitable context for determining the value of propositional literals
and symbols, and (vi) an interpretation function that allows one to calculate
the truth value of propositional expressions. By a propositional expression
we thus mean an expression like a Boolean ground term, but where some
Boolean literals (true, false or chaos) are replaced by propositional vari-
ables. A propositional variable is an identifier which, semantically, is intended
to stand for a Boolean truth value (which could be chaos). We shall only
cover propositional logic from the viewpoint of its practical use in formal
specifications: (i-iv) Making precise the syntax of the expressions, and (v—vi)
presenting an interpretation procedure for evaluating their values.

166 9 Mathematical Logic
9.4.1 Propositional Expressions, PRO
Examples of Propositional Expressions

Let V be an alphabet of variable identifiers (i.e., variables), and let v, v/, ...,
" be examples of such variables.

value v,v',...,v":Bool
.. true, v, vAtrue, .., (~(vAV)=(v'=v")) = false,

The last line above exemplifies some propositional expressions.

Syntax of Propositional Expressions, PRO

Basis Clause I: Any Boolean ground term is a propositional expression.
Basis Clause Il: There is given an alphabet V of (further un-analysed)
variable identifiers. If v, v', ..., v" are in that alphabet, then v, v/, ..., v"
are propositional expressions.

e Inductive Clause: If p and p' are propositional expressions, then so are ~p,
PAP', PVP', p=p’, p=p', p#p’, p=p’ and (p).

e The Extremal Clause: Only such terms which can be formed from a finite
number of uses of the above two clauses are propositional expressions.

An example BNF grammar could be:

(PRO) := true | false | chaos

| ~ (PRO)
| (PRO) A {PRO)

| (PRO) v {PRO)

| (PRO) = (PRO)
| (PRO) = (PRO)
| (PRO) # (PRO)
| (PRO) = (PRO)
| ((PRO})

| (Identifier)

(Identifier) ::= ...

We leave it to the reader to complete the BNF definition of (ldentifier)s, say
as strings of alphanumeric characters commencing with lower case alphabetic
characters, possibly having properly embedded, separating underscores ().
The above BNF grammar is ambiguous, as was the BNF grammar for Boolean
ground terms, cf. Sect. 9.3.4.

Above we saw an example of an inductive definition. Next we shall see an
example of a semantics which is presented in the style of a morphism, i.e., a
homomorphism, such as earlier explained in Sect. 8.4.4.

The two concepts go hand-in-hand: The inductive definition describes com-
posite structures in terms of postulated structures and operator symbols. A

9.4 Languages of Propositional Logic 167

morphism is explained in terms of a function ¢ being applied to postulated
(semantic) structures, i.e., values. The induction definition was here used to
explain syntax. And homomorphisms will be used to explain the semantics of
inductively, i.e., recursively, defined syntactic structures.

9.4.2 Examples

The below examples relate to corresponding Common Exercise Topics outlined
in Appendix Chap. A.

Example 9.8 & Propositions: Transportation Net:
We refer to Appendix A, Sect. A.1, Transportation Net.
Let the following propositions be expressible:

e a: Scgment 17 of Broadway has connectors 34th Street and 35th Street.
o b: Segment 18 of Broadway has connectors 35th Street and 36th Street.
o ¢: Segment 17 of Broadway is connected to Segment 18 of Broadway.

Given the above abbreviations we can express:
e aA b andaAb= ¢

If @ and b holds then these propositions hold, i.e., ¢ holds. .

Example 9.9 & Propositions: Container Logistics:
We refer to Appendix A, Sect. A.2, Container Logistics.
Let the following propositions be expressible:

e a: “Quay locations T-12 are free at container terminal PTP.”
b: “The Harald Maersk ship is 6 terminal PTP quay locations long.”
e ¢: “Harald Maersk can enter container terminal PTP.”

Given the above abbreviations we can express:
o aA bandaAd= ¢

If @ and b holds then these propositions hold, i.e., ¢ holds. "

Example 9.10 & Propositions: Financial Service Industry:
We refer to Appendix A, Sect. A.3, Financial Service Industry.
Let the following propositions be expressible:

e a: Anderson has account o with a balance of US $ 1,000.
e b: Peterson has account 7.
e ¢: Anderson can transfer US $ 200 from account a to Peterson account 7.

Given the above abbreviations we can express:
o aA bandaAb= ¢

If @ and b holds then these propositions hold, i.e., ¢ holds. .

168 9 Mathematical Logic

The above examples are, in a sense, continued in Sect. 9.5.3.

9.4.3 Proposition Evaluation, Eval_PRO

To evaluate a propositional expression we must postulate a context function

C:

type
C =V #» Bool
value

c:C

where C maps some, but not necessarily all, variables of any given proposi-
tional expression into a truth value.

The meaning of a propositional expression p, in the type of all propositional
expressions PRO, is now a (function of type) partial function from contexts
(i.e., C) to Booleans! To see this, we show how to evaluate, how to find not
the meaning, but the value of a propositional expression. And then we “lift”
that value, that is, we abstract that propositional expression with respect to
contexts, to obtain its meaning!

So, let some ¢ : C be given, and postulate any propositional expression p.
The value of any properly embedded Boolean ground term is found by the
procedure outlined previously. If p is a variable v then the value of p is found
by applying ¢ to v, i.e., ¢(v). If p, i.e., v, is not in the definition set of ¢, the
result is the undefined value chaos. If p is a prefix expression ~p’, then first
find the value, 7, of p’, then negate it. If p is an infix expression p’®p”, then
first find the values, 7, 7" of p', respectively p”. Then proceed as for ground
term evaluation. If p is a parenthesised expression (p'), then its value is that
of the value of p’.

This evaluation procedure will terminate since inductively (i.e., recur-
sively) applied sub-evaluations apply to “smaller” and “smaller” subexpres-
sions, and finally to ground terms and variables.

The type of the propositional expression evaluation procedure is:

value
Eval. PRO: PRO — TBLS — C = Bool

The meaning of propositional expressions are therefore semantic functions
CS5Bool, while the value of a propositional expression is a Boolean.

value
Eval PRO(pro)(tbls)(c) =
case pro of
true — tt,
false — ff,
chaos — 1,

9.4 Languages of Propositional Logic 169

~p = let b = Eval PRO(p)(tbl) in Eval BGT(b)(tbls) end,
1:)/ o p// -
let b’ = Eval PRO(p")(tbls)(c), b” = Eval_ PRO(p")(tbls)(c)
in Eval BGT(b' o b")(tbls) end,
(p) = Eval PRO(p)(tbls)(c),
v = ¢(v)
end

9.4.4 Two-Valued Propositional Calculi
Preliminaries

A propositional expression may evaluate to true for some (combinations of)
values of its propositional variables, and to false for other (combinations of)
values.

A tautology is a propositional expression whose truth value is true for all
possible values of its propositional variables. A contradiction, or absurdity, is
a propositional expression which is always false. A propositional expression
which is neither a tautology nor a contradiction is a contingency.

Some Proof Concepts

The material of this section is based on [481].

An assertion is a statement. A proposition is an assertion which is claimed
true.

An axiom is a true assertion — typically about some mathematical struc-
ture. That is: axioms are a priori true; are not to be proven; cannot be proven;
are not theorems.

A theorem is a mathematical assertion which can be shown to be true. A
proof is an argument which establishes the truth of the theorem.

A proof of an assertion is a sequence of statements. The sequence of state-
ments (re)presents an argument that the theorem is true. Some proof asser-
tions may be a priori true: Are either axioms or previously proven theorems.
Other agsertions may be hypotheses of the theorem — assumed to be true in
the argument. Finally, some assertions may be inferred from other assertions
which occurred earlier in the proof.

Thus, to construct proofs, we need a means of drawing conclusions, or
deriving new assertions from old ones. This is done by rules of inference.
Rules of inference specify conclusions which can be drawn from assertions
which are known, or can be assumed to be true.

170 9 Mathematical Logic
Axioms and a Rule of Inference, I

The material of this section is based on [451].12

There are many ways of defining a propositional logic. First there is the
issue of whether it is to be a two- or a three-valued logic, then there is the issue
of which axioms and rules of inference to choose. Here we select a two-valued
logic. Then we select a simple set of axioms and one rule of inference. Let ¢, %
and p designate metalinguistic variables. Any propositional expression may
be put in their place.

The following three axiom schemes are axioms of the chosen propositional
calculus:

¢D (Do)
D> Dp)D((¢D¥)D(¢Dp)
(~(~ (@) D¢

There is a single rule of inference, modus ponens:

%02

”
Here we chose D to designate implication. In the next example of a two-valued
propositional logic we choose = to designate implication.
We can introduce additional connectives — other than — (or ~) and D
(or =) — through rules of inference. For example, disjunction (V): can be
presented as:

PV Y (=¢) D¢
(—¢) Dy’ VY

Axioms and Inference Rules, IT

The material of this section is based on [481].

We shall now present another formal proof system allows proofs of propo-
sitional expressions to be fully done by machine. We can do this because there
is only a finite number of propositional variables in any propositional expres-
sion, and each such variable’s value ranges only over true or false, or is not
defined at all, i.e., results in chaos.

Here is a set of rules of inference for the propositional expressions of a two-
valued logic. This set and those expressions, form a propositional calculus.
Let ¢,v, p, and ¢ designate metalinguistic variables.

12%We remind the reader that the axioms given in this and the next subsection are
axiom schemes of the proof system of the logic language of propositions. They are
not expressed in RSL.

9.5 Languages of Predicate Logic 171

e Substitution of equals for equals: Wherever a propositional expression of
any interpreted value may occur, any other propositional expression of the
same value may occur.

o 2 Addition

The form £ reads: From & conclude .

. % Simplification
° ﬁ?ﬁ, ﬂL’N‘;ﬁiA Modus Ponens versus Modus Tollens

The form % reads: From @ and ¥ conclude {2.

° ~¢,$V¢7 ¢:>$:’;/;):>p Disjunctive versus Hypothetical Syllogism

. % Conjunction

(@=9)N(p=£),0Vp (d=¥)A(p=>£),

CA%3 ’ ~GVrep
The RSL proof system is different from the above since the RSL logic is a three-
valued logic. We refer to the authoritative [238] for not only a listing of the
full RSL proof system, but also for a treatise on provably correct stepwise RSL
developments using that proof system.

~N . . .
. A3 Constructive vs. Destructive Dilemma

9.4.5 Discussion

We have completed the second step of our unfolding of “the real thing”: a
language of predicates, calculus and interpretation. The structures of our pre-
sentation followed that of our previous presentation of the language of Boolean
ground terms. The introduction of Boolean-valued identifiers, i.e., of proposi-
tional variables, is what distinguishes, syntactically, the language of Boolean
ground terms from the language of propositions. Semantically these variables
lead to a context which is expected to bind these variables to Booleans. We
kindly ask the reader to compare, line-by-line, the two informally stated eval-
uation definitions: Eval BGT and Eval_.PRO. But in order to make a logic
language useful in dealing with actual world phenomena, there is also a need
for allowing variables to designate other than Boolean values. To this we turn
next.

9.5 Languages of Predicate Logic

We now come to the “high point” of applied mathematical logic as far as
this volume is concerned. With predicate logic expressions of the kind that,
for example, RSL allows us, we can express quite a lot. That is, predicate
logic will be be a “work horse” for us.

172 9 Mathematical Logic
9.5.1 Motivation

In the propositional logics we cannot'® express the idea that “if « is even
then x + 1 is odd”. To see this, following [451], let us carefully examine this
statement. There are two independent propositions expressed here: is_even(z)
and is_odd(succ(z)), where succ(xz) yields the successor of z. The statement
is_even(z)=is-odd(succ(z)) is not a proposition. Its two terms are, but z is
not a propositional variable, that is, one having a truth value. It “obviously”
has a number value.

The predicate calculus™ extends propositional logic with individual vari-
ables, which model-theoretically may range over other than Boolean values,
thus giving us the expressive power (in terms of quantifications) which allows
us to express the above statement. For example:

Vz:Inte O(z) = E(x+1)

where O and £ designate the is_odd, respectively the is_even, predicates.

9.5.2 Informal Presentation

By a predicate logic we syntactically, i.e., proof-theoretically, understand (i) a
set of truth and other non-truth values; (i) a usually infinite set of predicate
expressions with (ii.1) connectives, (ii.2) truth-valued propositional variables,
(ii.3) usually other non-truth-valued quantified or free variables, (ii.4) quanti-
fied expressions; (iii) a set of axiom schemes; and (iv) a set of rules of inference.

Semantically, i.e., model-theoretically, we understand a predicate calcu-
lus to extend the above with: (v) for every predicate expression, a context,
¢ : C, which maps individual variables to values, and (vi) an interpretation
procedure for determining, given any context and any predicate expression,
the value of that expression.

Predicate expressions are thus extensions of propositional expressions:
Where a propositional expression may occur, it now becomes possible to ex-
press a property by expressing some truth-valued relations between other than
truth values.

Example 9.11 Predicate Expressions: Informally, an example is:
(e-=1<3) =€) = FiInt « i > e x (" + 3))

which we can read: if e—1 less than or equal to 2 implies ' then that implies
that there exists an integer which is larger than the value of the non-truth

13This example, which intuitively motivates the concept of predicate logics, is
taken from Ruth E. Davis’s [181] via John Rushby’s [451].

Other names for predicate calculus are: first-order logic (FOL), elementary logic
and quantification theory.

9.5 Languages of Predicate Logic 173

valued expression e * (¢ + 3). The example illustrates a number of new con-
structs that — from now on — may occur in logical, i.e., predicate expressions.
In the above the new constructs were:

S?>:3: = &5 Ar

More generally, and in this case schematically. we can list the constructs of a
predicate calculus:

which we can read semantically: [1] The formula p(e,e’,...,e") expresses the
holding, or non-holding of some relation, p, between the values of subex-
pressions e, ¢, ..., e’. Examples of p above are < and >, as well as many
user-defined n-ary (n > 1) predicates. [2] The value of expression f(t.t',... t")
is the result of applying the non-truth result valued function, f, to the values
of subexpressions t, t', ..., t". Examples of f above are —, * and +, as well
as many user-defined unary (n = 1) predicates. [3] For all values x of type X
it is the case that E(x) holds. [4] There exists at least one value x of type X
for which it is the case that E(x) holds. [5] There exists a single, unique value
x of type X such that E(x) holds.

Whether these predicate expressions ([1-5]) hold, i.e., are true or not
(false or chaos) is not guaranteed just by writing them!

Forms [3-4-5] illustrated the concepts of binding and typing, z : X: A
typing is, generally, a clause of either of the forms:

identifier : type_expression
identifier_1,identifier_2,...,identifier_n : type_expression

Typings bind their identifier[_i]s to (arbitrary) values of the type designated
by the type_expression.

9.5.3 Examples

The below examples relate to corresponding Common Exercise Topics outlined
in Appendix A. They also continue, in a sense, the examples of Sect. 9.4.2.

Example 9.12 & Predicates: Transportation Net:
We refer to Appendix A, Sect. A.1, Transportation Net.

174 9 Mathematical Logic

Assume that from nets, n : N, we can observe segments, s : S, and connec-
tions, ¢ : €, and that from segments [respectively connections] we can observe
connection identifiers [respectively segment identifiers), then we must assume
that the latter observations fit with the former: That all segments [respec-
tively connections| of the net have unique identifiers, and that any segment
[respectively connection] identifier observed from a connection [respectively
segment] is the identifier of a segment [respectively connection]| observed in
the net.

type
N, S, C, S, Ci
value
obs_Ss: N — S-set
obs_Cs: N — C-set
obs_Sis: (N|C) — Si-set
obs_Cis: (N|S) —+ Ci-set
axiom
Y n:N
card obs_Ss(n) = card obs_Sis(n) A
card obs_Cs(n) = card obs_Cis(n) A
¥ s:S « s € obs_Ss(n)
= obs_Cis(s) C obs_Cis(n) A
Y ¢:C « ¢ € obs_Cs(n)
= obs_Sis(c) C obs_Sis(n)

The first axiom clause expresses uniqueness of identifiers: the cardinality
of segments [respectively connections] and segment [respectively connection]
identifiers are the same. If you do not like that form, then try this instead:

type
N, 8, C, 8i, Ci
value
obs Ss: N — S-set
obs_Cs: N — C-set
obs_Si: S — Si
obs_Ci: C — Ci
axiom
¥ m:N .
V 5,8":S » {5,5'} C € obs.Ss(n) A s#£s’
= 0bs_Si(s) # obs_Si(s') A
¥ c,c'iC « {c,c'} C € obs_Cs(n) A e
= obs_Ci(c) # obs_Ci(c¢')

9.5 Languages of Predicate Logic 175

Example 9.13 & Predicates: Container Logistics:
We refer to Appendix A, Sect. A.2, Container Logistics.

Assume that from container terminals, ct:CT, we can observe (i) the con-
tainer storage area, csa:CSA and (ii) containers, c:C (in the container storage
area). That from the former we can observe (iii) bays, bay:Bay, (iv) rows,
row:Row, and (v) stacks, stk:Stk, and that from any of these (bays, rows and
stacks) one can observe containers. Finally assume that from the latter we
can observe (vi) containers, c:C:

type
CT, C, CSA, BAY, ROW, STK

value
obs_Cs: (CT|CSA|BAY|ROW|STK) — C-set
obs_CSA: CT — CSA
obs BAYs: (CT|CSA) — BAY-set
obs ROWs: (CT|CSA|BAY) -+ ROW-set
obs STKs: (CT|CSA|BAY|ROW) — STK-set

Now containers observed in the container terminal must be containers of some
unique stack, of some unique row and of some unique bay of the container
storage area:

axiom
Y ct:CT -
Y ¢:C » ¢ € obs_Cs(ct) =
let ¢sa = obs_CSA(ct) in
A'bay:BAY -
bay € obs_.BAYs(csa) A ¢ € obs_Cs(bay)
= dlrow:ROW -
row € obs . ROWs(bay) A ¢ € obs_Cs(row)
= Jlstk:STK -
stk € obs_STKs(row) A ¢ € obs_Cs(stk)
end

Example 9.14 & Predicates: Financial Service Industry:
We refer to Appendix A, Sect. A.3, Financial Service Industry.

Assume that from a bank, bank:Bank, one can observe (i) the unique iden-
tities, cid:Cid, of all its customers, (i) the unique identities, aid:Aid, of all their
accounts, (iii) the collection, accs:Aces, of all these accounts, (iv) the identi-
ties of all the accounts, acc:Acc, in the collection, aces:Accs, of all accounts,
(v) the account numbers owned by any one identified customer and (vi) the
identities of customers possibly sharing any one (identified) account.

176 9 Mathematical Logic

type
Bank, Cid, Aid, Accs, Acc
value
obs_Cids: Bank — Cid-set
obs_Aids: (Bank|Accs|(BankxCid)) — Aid-set
obs_Accs: Bank — Accs
obs_Cids: Bank x Aid — Cid-set

(vil) If a customer is registered in a bank then we assume that customer to
have one or more accounts. (viii) If an account is known by the bank then it is
an account in the collection of accounts. (ix) And if that account is shared by
one (1) or more customers then they are all known to the bank and as having
that account.

axiom
Y bank:Bank «

¥ cid:Cid « cid € obs_Cids(bank) =
obs_Aids(bank,cid) # {} A

¥ aid:Aid « aid € obs_Aids(bank) =
aid € obs_Aids(obs_Accs(bank)) A
Y cid’,cid":Cid -

cid' € obs_Cids(bank,aid) =
cid’ € obs_Cids(bank) A aid € obs_Aids(bank,cid’)

9.5.4 Quantifiers and Quantified Expressions
Syntax

Quantified expressions, like ¥x:X<E(x), Ix:X+E(x) and 3!x:X<E(x), are predicate
expressions. In general, quantified expressions are of the inductive form: Let
x be any identifier, let X be any type expression, and let E(x) be any propo-
sitional or predicate expression in which x may (or may not) occur, and if it
occurs, may occur free or bound. Now Vx:X«E(x), Ix:X+E(x) and Ilx:X+E(x),
are quantified predicate expressions. The extremal clause follows.

We refer to the above V,3 and 3! as quantifiers, to x’s as binding variables,
E(x) as the body of the quantified expression, and to X as the range set
(designated by a type expression) of the quantification.

More generally, quantified expressions have the syntactic form:

quantifier typing_1,typing_2,...,typing-2 ¢ bool_expr
where simple forms of typings have the syntactic form:

id_1,id_2,...,id_m: type_expr

9.5 Languages of Predicate Logic 177
Free and Bound Variables

In the A-calculus we define a concept of free and bound variables. Let E(x) be
an expression which is not of the form Qx:X<E(x), where Q is either of V, 3 or
3!, and in which there are no further embedded, i.e., proper subexpressions of
those forms, then any occurrence of x in E(x) is free. Let E(x) be an expression
which is of the form Qx:X<E(x), where Q is either of ¥V, 3 or 3!, then any
occurrence of x in E(x) is bound. Let E(x) be an expression which is not of the
form Qx:X+E(x), where @Q is either of ¥, 3, or 3!, but in which there are some
further embedded, i.e., proper sub-expressions of those (x binding) forms, then
any occurrence of x in E(x), which is not within those latter forms, is free,
whereas, of course, the others are bound.

Compound Quantified Expressions

Since in @x:X*E(x) the expression body may itself be of the form Qy:Y+-E'(y),
we may get multiple bindings:

W VXX e VXX e IyiY oV z:Z » E(xX,3,2)
for which we provide a shorthand:

LV x XX, z2Z, 3y Y » B(xx'y,z)

Example 9.15 Compound Predicate Expression: For all natural numbers ¢
larger than 2 there exist two distinct natural numbers j, k larger than 0 (but
not necessarily distinct from i) such that i is the product of j and %:

VY i:Nat » i>2 = 3 jk:Nat « j£k A1 = jk

Example 9.16 Compound Predicate Expression: For all sets s of integers
such that if 7 is in the set then also —i is in the set; it is the case that the sum
of all integers equals 0.

type

S = Int-set
value

sum: S — Int

sum(s) =

if s={} then 0 else let i:Int + i € s in i + sum(s\{i}) end end

axiom

VeS+ViInteices= —i€s=sum(s) =0

Here Int-set designate the type all of whose values are sets of integers. .

178 9 Mathematical Logic

9.5.5 Syntax of Predicate Expressions, PRE

We present the syntactic quantities of predicate expressions: the symbols,
the terms, the atomic formulas, the well-formed formulas (wffs), and a BNF
grammar. That is, we divide the presentation of the language of predicate
expressions into the presentation of language of terms, upon which we build
a language of atomic formulas, and from those we build the well-formed for-
mulas, i.e., the predicate expressions.

The Symbols of a Predicate Calculus

The symbols of a predicate calculus include a number of elements. There
are the variables b, V', ..., v and =, ', ..., 2/, where we think of the b’s
being truth valued propositional variables, and the z’s being otherwise typed
variables (integers, etc.). There are the Boolean connectives ~, V, A, etc. There
are the existential quantifiers 3, 3! and V. For every suitable arity n there are
sets of predicate function symbols {pn,, Py, - - - Pn,, }- For every suitable arity
m there are sets of otherwise typed function symbols {fm,, fms,- -, fm,,, }-
The idea is that:

pz’j(tl,tz,...,tj),j : 1,2,...,ip;
and
sz(tl17tl27'-'7t;c)7£:1727--’=if§

are two expression forms. The first is a formula and ostensibly has a truth
value; that the second is a term and ostensibly has a value of any kind (i.e.,
of any type). Finally the arguments ¢;, t;, are also terms of any kind (i.e., of
any type) of value. Note that we now distinguish between terms as the basic
building blocks of expressions, and formulas as the expressions that have truth
values.

The Term Language of a Predicate Calculus

The term language is defined inductively:

e Basis Clause: A variable, b, etc., or z, etc., that is, whether truth valued
or not, is a term.

e Inductive Clause: If t1,ts,...,t, are terms and f, is an n-ary function
symbol, and if p,, is an n-ary predicate symbol then, f,(t1,%s,...,¢,) and
Pnlti,ta, ..., t,) are terms.

e Extremal Clause: Only those expressions that can be formed from a finite
number of applications of the above clauses are terms.

The idea is that Boolean literals are nullary predicate function symbols: true()
= true, false() = false and chaos() = chaos; and that, for example, numerals
are nullary function symbols: one() = 1, etc. More complex examples are:
and(b, b') (= bAY'), etc.; and ift(equalzero(i), one(), mult(i, fact(sub(i, 1)))) (=
if i=0 then 1 else ixfact(i-1) end), etc.

9.5 Languages of Predicate Logic 179

The Atomic Formula Language of a Predicate Calculus

The atomic formula language is defined inductively:

Basis Clause: Any propositional expression is an atomic formula (and is a

term).
Inductive Clause: If #1,t5,...,t, are terms and p, is an n-ary predicate
function symbol, then py(t;,%s,...,%,;) is an atomic formula. 13

Extremal Clause: Only such terms which can be formed from a finite number
of uses of the above two clauses are atomic formulas.

The Well-formed Formulas of a Predicate Calculus

The wif language is defined inductively:

Basis Clause: Atomic formulas are formulas, i.e., predicate expressions.
Inductive Clause: If z is a variable ranging over type X, and u,v and &(x)
are formulas (i.e., predicate expressions), then: ~u is a formula; uAv, uVo,
u=v, 4 = v, u#v, and u=v, are formulas; Vz: X -£(x),32:X-E(x), and
Alz:X-E(x) are formulas.

Extremal Clause: Only those terms that can be formed from a finite number
of uses of the above two clauses are formulas, i.e., predicate expressions.

An Informal BNF Grammar for Predicate Expressions

We refer to previous BNF grammar examples for Boolean ground terms
(Sect. 9.3.4) and propositional expressions (Sect. 9.4.1). Instead of building
on these, we present a new BNF grammar:

(Fn) ::= (Identifier) /* Fn: non—truth valued functions */
(Pn) = (Identifier) /#* Pn: truth valued predicates =/
(Term) ::= (Identifier)

| (Fn) ((Term—seq))

| {Pn) ((Term—seq)) /* true, false, chaos: nullary terms =/
{Term—seq) == /* empty sequence x/

| {Term)

| {Term) (Comma—Term—seq)
{Comma—Term—seq) ::= (Comma—Term) {Term—seq)
{Comma—Term) ::= , (Term)
(Atom) = {(Identifier) /% Boolean valued %/

| {Pn) ((Term—seq))

(Wit) ::= (Atom)
"5The truth and the non-truth-value relational operators (to wit: =, #, =, re-
spectively =, #, =, <, <, >, >, etc.) are examples of p»,’s, and hence of atomic

formulas, as would be any user-defined predicate applied to terms.

180 9 Mathematical Logic

| ~ (W)
| (W) A (WIT) | (WH) v (WH) | (W) = (WiT)
| (Wif) = (Wif) | (WH) # (WH) | (W) = (
| {Quant) (Identifier) : (Tn) (Wff)
(Quant) ==3 |31V

9.5.6 A Predicate Calculus

In Sect. 9.4.4 we presented a system of axioms and rules of inference for a
propositional calculus. We now wish to present such a system for a predicate
calculus.

Axiom Schemes

The material of this and the next section is based on [451]. Quoted parts are
expressed in slanted text font.

Let @[z — t] designate the expression ¢’ which is like ¢ except that some
or all of the free x in ¢ have been replaced by the term ¢ — where z does not
occur free in t.

One such system for the predicate calculus extends one, or the other of
the sets of axiom schemes given (earlier) for a propositional calculus with the
following;:

e Provided that no free occurrence of z in ¢ lie in the scope of any quantifier
for a free variable appearing in the term t, we have:

Vo : X e p(x) = @z — 1]

Expressed semantically: If some formula ¢ is true for all x, then it is certain
true when some particular term t is substituted for x in ¢.
e And, provided that t is free for x in ¢, we have:

Pl =t = (Fz: X e (x))

Expressed semantically: We can conclude that there exists some x satisfy-
ing the formula ¢ if some substitution instance of ¢ is true.

Rules of Inference

The above leads to the following rules of inferences:
e First:

¢ D ¢(v)
YD (Vo : X o ¢(x))’

9.5 Languages of Predicate Logic 181

e and:
¢(v) O ¢
Gz : X o ¢(z)) Do’
where the variable v is not free in .

o The rule of universal quantification can best be understood semantically
by considering the simpler case when v is true. Then the rule becomes:

p(v)
Vz: X e ¢(x))
which, semantically says, that if ¢ is true for some arbitrary v, then it

must be true for all z.
e Universal and existential quantification are related:

Jz: X eg(x) =~ (Vr: Xe~g(x)))

This definition, as an axiom, can be done if we have already defined equiv-
alence.

9.5.7 Predicate Expression Evaluation

As we did for Boolean ground terms (Eval BGT), and for propositional expres-
sions (Eval_PRO), so we shall now do for predicate expressions: namely provide
an informal, yet precise description of an evaluation procedure (Eval_PRE).

Evaluation Contexts

Semantically we may understand the predicate calculus by constructing mod-
els. There are two parts to any such model: a context, p : R, which maps all
user-defined symbols in the language of predicate expressions to their mean-
ing in some world {2, and an interpretation function. Thus, in order to find
the value of a given predicate expression, one must provide a context which
maps some, all or more of the free variables, v:V (of that predicate expression),
into values, VAL, of appropriate types; some, all or more of the type names,
Tn (of the range type [name] expressions of that predicate expression), into
their respective — finite or even infinite value spaces; some, all or more of
the predicate function symbols, p (of that predicate expression), into appro-
priate arity predicate functions; and some, all or more of the non-truth result
value function symbols, f (of that predicate expression), into appropriate arity
non-truth result value functions:

type
Vn, Tn, Pn, Fn, VAL
R = (Vn—VAL)
U (Tn—VAL-set)
U (Pn—(VAL* — Bool))
U (Fn—(VAL* — VAL))

182 9 Mathematical Logic

Recall that A— B stands for the type whose values are functions from A into
B, that A-set stands for the type whose values are sets of element values
of type A and that 4* stands for the type whose values are lists of element
values of type A. The unusual, non-RSL construct (A—B)U(C'— D) stands for
the type whose values are functions from A into B and functions from C into
D.

Example 9.17 Predicate Expression Evaluation Context: Let us review an
example. See the first formula line below. To evaluate the next expression we
seem to need a context, ¢ : C, like the one shown further below:

value

(aA(v>T7) = VkK - fact(j) <k

p: Ax:(Vn|Tn|Pn|Fn) -
if x € Vn then
case x of
a—t,v—i,j—m, ...
end
else if x € Tn then
case x of K—{-2,—-1,0,1,2}, ... end
else if x € Pn then
case x of
“larger-than-or-equal” — A(x,y):(IntxInt)sx>y,
“smaller-than-or-equal” — A(x,y):(Int xInt)sx<y,

end
else /x assert: x/ x € Fn:
case x of
“factorial” — An:Inteif n=0 then 1 else nxfact(n—1) end,

end
end end end

As an example, let (aA(v>7))=Vk:Kefact(j)<k be the predicate expression to
be evaluated. Variables a, v and j are free and so is type name K — the latter
is agsumed to be some (finite or infinite) set of integers. For that expression
we need a context preferably like p : R above — where t is some Boolean
truth value, and i and m are some integers. If the values of t, i, m are true,
9, —2 then we see that the predicate evaluates to true. =

Meaning Versus Values of Predicate Expressions

The meaning of a predicate expression p, in the type of all predicate expres-
sions PRE, is now a function from context, that is, p : R to Booleans!

9.5 Languages of Predicate Logic 183

value
Eval. PRE: PRE — R = Bool

To see this, we show how to evaluate — how to find — not the meaning, but
the value of a predicate expression. And then we “lift” that value, we abstract
that predicate expression with respect to contexts!

Evaluation Procedure, Eval_PRE
Term Evaluotion

Let p : R be some context, and let t be the term subject to evaluation in
context p.

If t is variable v then c¢ is applied to v to find its value. If v is not in the
definition set of p then the undefined value chaos is yielded.

If, instead, t is of the form f(t,t',... t"), then the values v, v/, ..., v" of
the terms t, t', ..., t", respectively, are evaluated; the function f is “looked
up” in p (i-e., c¢(f)), and the resulting function ¢ applied to v, v/, ..., v':

v . V"), If f is not in the definition set of p, then the undefined value
chaos is yielded.

Formula Evaluation

Let e be a formula.

If e is a propositional expression, that is, if e is of any of the forms: ~e,
ene’, eVe', e=e!, e#e/, or e=e’, then evaluate as prescribed earlier (Eval_pro).

If e is of the form p(t.t',... t") then the values v, v/, ..., v'' of the terms
t, t', t", respectively, are evaluated, the predicate function p is “looked
up” in ¢ (1 e., p(p)), and the resulting function ¢ applied to v, v/, ..., v':
p(vv'. .. V"), If p is not in the definition set of ¢, then the undefined value
chaos is ylelded.

If, instead, e is of either of the forms Vx:XeE(x), Ix:X+E{x) or Ix:X+E(x),
i.e., if it is of the general form Q x:XE(x), then the value, =, of the range set
X is found from p. If X is not in the definition set of p, then the undefined
value chaos is yielded, and becomes the value of @ x:X<E(x).

Otherwise three case distinctions must be made:

e If Q is V then the possibly infinite conjunction: E{(&;)AE(&)A...AE(&)A
is evaluated. Here the £’s range over all, possibly infinite values of =.
Note: The A is here constrained to be commutative.

All E(&;) must yield true for V x:X<E(x) to yield true. Any chaos results
in chaos. Any false with no chaos yields false for V x:X-E(x).

We can rephrase the above: The value of ¥x:X<E(x) is true if E(x) holds
for all models as implied by x:X. That is, x:X defines a set of models, that
is, a set of contexts, at least one for each element x in X. Each of these
models further defines bindings of all other free identifiers in E(x).

184 9 Mathematical Logic

e If Q is J then there must exist a disjunction:
E(&)VE(&)V..VE(&)V...

This disjunction is evaluated. For it to yield true E(£;) must yield true
with all other E(¢;) for all j>1 yielding true, false or chaos.
Or rephrased: Ix:X+E(x) is true if E(x) holds for at least one model in the
set of models induced by X.

e If Qis A! then there must exist exactly one i in some arbitrary disjunction:

E(&)VE(&)V...VE(E)V...

such that E(&;) yields true and all other E(¢;), for all i>1, yield false or
chaos!

Rephrased: 3!x:X-E(x) holds if and only if E(x) holds for exactly one of the
induced models.

We shall later present a formal definition of Eval_PRE.

9.5.8 First-Order and Higher-Order Logics

If the range set of quantifications permit values that are, or contain, functions,
then we say that the predicate logic is a higher-order logic. Otherwise it is a
first-order logic.

An example may be in order to illustrate the need for higher-order logics:

type
P=A = Bool
value

axiom

VpP-..

RSL’s logic is higher-order.

9.5.9 Validity, Satisfiability and Models

We briefly introduce such concepts as validity, satisfiability and models. But
first we take yet another look at interpretations and their contexts, i.e., their
possible worlds.

Contexts and Interpretations

We have seen that predicate expressions only have values if a suitable context
is given. In mathematical logic such a context is called an interpretation. Gen-
erally a context, that is, an interpretation, is a mapping of identifiers to math-
ematical values. Predicate symbols p, of arity n can be thought of as being

9.5 Languages of Predicate Logic 185

mapped (p,—7) into possibly infinite sets 7 of n groupings: (vi,v2,...,Vs),
with the meaning that p,(v1,vs, ..., v,) represents truth for all (vy, v, ..., v,)
in 7, and falsity otherwise. Function symbols f,, of arity n can likewise be
thought of as being mapped (f,—>¢) into possibly infinite sets, ¢ of n + 1
groupings: (v1,vs,...,0,,v) — with the meaning that f,(vy,va,...,v,) has
value v for respective (v1,vs,...,v,,v) in ¢, and is otherwise undefined. Non-
function symbols, i.e., variable identifiers, ¢ are mapped (i—w) into values v
in some type.

Example 9.18 Predicate Expression Interpretation: An example may be in
order. We interpret the predicate ... ¥ i:Integer, 3 n:Natural = square(i) = n ...
in two models:

type
Integer, Natural
value
square: Integer — Natural
... ¥ i:Integer, 3 n:Natural » square(i) = n ...

/* interpretation_1: %/
[Integer—{ ...,—2,—1,0,1,2,... },
Natural—{ 0,1,2,... },
square—{ ...,(—2,4),(—1,1),(0,0),(1,1),(2,4),... }]

/* interpretation_2: x/
[Integer—{ ...,—2,—1,0,1,2,... },
Natural—{ 0,3,5,7,9.... },
squares{ -..,(~2,4),(~1,1),(0,0),(1,1),(2.4),... }]

The above predicate is true in interpretation_1 and false in interpretation 2. «

Validity and Satisfiability

Let there be given a possibly infinite set of interpretations. A predicate ex-
pression is said to be valid if it is true for all interpretations. A predicate
expression is said to be satisfied if it is true for at least one interpretation.
There is no mechanical procedure by which one can determine the validity or
satisfiability of predicate expressions. That is, one cannot write a computer
program which determines validity or satisfiability. A predicate expression is
said to be contradicted if it is false for all interpretations.

Models

Let there be given a set, a, of predicate expressions, and an interpretation «.
If every w in « holds in the interpretation ¢, then ¢ is said to be a model of a.

186 9 Mathematical Logic

Contexts, Interpretations and Models

We now take up the line on models begun in Sect. 1.6.2 and continued in
Sect. 8.5.4. We have earlier introduced the following related terms: context
and interpretation. It is time to sort out any possible differences in our use of
the terms: model, context and interpretation.

At the start of this section we equated, within the subject of mathematical
logic, the two concepts: context and interpretation. We shall henceforth use
the term context (or later the term environment) — in connection with the
actual development and presentation of language interpreters — as standing
for the above use of both the terms context and interpretation.

And we shall, likewise, use the term interpretation to stand for the function
of doing what is prescribed by such language interpreters. For matters of
mathematical logic we shall not use the term context any more. For the term
model, until we reach Vol. 3, Chap. 4, technical uses of this term will be in
connection with the meaning of RSL definitions being sets of models: bindings
between identifiers, in a space of all such, to type values (which themselves
are set of values), or function values or, as we shall see, later, many other
kinds of values including variables, channels. In Vol. 3, Chap. 4 we shall then
discuss the looser, not necessarily technical, but usually more pragmatic use
of the term model — in the senses of modelling, of creating models.

9.5.10 Discussion

We have introduced languages of predicate calculi. We now have several lan-
guages since we can either choose a two-valued or a three-valued logic, and
since we can choose one or another set of rules of inferences. RSL basically
has a three-valued logic. We say basically, as we can safely restrict particular
uses of RSL to a two-valued logic — one that is consistent with a three-valued
logical interpretation. That is, the chaos will never occur in expressions for
which the two-valued logic is claimed to be sufficient. Whenever necessary, we
are thus encouraged to state which logic we require. We remind the reader of
the distinction between proof-theoretical (i.e., syntactical) presentations of a
logic, and model-theoretical (i.e., semantical) presentations of the same logic.

This and the previous two sections have thus provided a basis for our use
of the RSL predicate calculus as a specification language. Since these volumes
basically emphasises specification development rather than verification of such
developments, we refer the reader to specialised textbooks and monographs
for more comprehensive treatments of verification. Such references are: [181,
242,359-361,419,472, 533].

9.6 Axiom Systems

Axioms are self-evident truths. That is, they are laws or postulates that we
accept without proof.

9.6 Axiom Systems 187

When mathematics students study mathematical logic they learn about
proof and model-theoretic properties of families of predicate logics, and
about what axiom systems are, in general, possible.

With this section you shall, in contrast, learn the first steps towards
constructing pleasing and elegant axiom systems for actual-world phenomena
and — later — for computing.

In this section we shall illustrate uses of RSL’s linguistic facilities for specifying
properties of sorts and functions over these sorts in terms of axioms. That is,
in contrast to the previous three sections’ treatment of proof systems for logic
languages, including that embedded in RSL. We shall now be using RSL itself
to express axioms.

Some of the examples given now may be said to be presented prematurely
or to be redundant: Either they rely on arithmetics for which no semantics,
including no axioms, have been given, or they have already been presented
before or will be presented more fully later. Be that as it may; our aim is to
familiarise you with RSL specifications of axioms. We refer to the Sect. 9.1 for
remarks on the two kinds of axiom systems. Some of the text in this section
summarises earlier material.

9.6.1 General

An axiom system is usually a set of type definitions, a set of function signa-
tures (of observer and generator functions, including predicates), and a set of
predicate expressions (the axioms themselves).

Example 9.19 Euclid’s Plane Geometry: The following illustrates an axiom
system. It is informally expressed: [0] Every line is a collection of points. [1]
There exist at least two points. [2] If p and g are distinct points, then there
exists one and only one line containing p and q. [3] If £ is a line then there
exists a point not on £. [4] If £ is a line and p is a point not on £, then there
exists one and only one line containing p and parallel to £. .

In these expressions we can identify, for example, three kinds of plane geometry
terms. They are: line, point and parallel. We can also identify the ontologi-
cally determined terms: collection, containing and on; as well as other natural
language terms. The axioms assume that you understand the ontologic and
natural terms, but define, as a set of axioms, the plane geometry terms.

9.6.2 Axioms

An axiom, for us, is a predicate expression that always holds, that is, which is
valid. In other words, whatever quantification set is implied by some quantifi-
cation range identifiers (viz. X above) they are constrained to make the axiom
true.

188 9 Mathematical Logic
If we, for example write:

type
XY
axiom

VxXVyYex#y

then the sorts X and Y have at least been constrained to not contain similar
elements. If instead

type
X
axiom
Vx:X o JicInt » x = ixi

then the sort X is the type of all square numbers. We could instead define X
by a subtype definition:'%

type
X ={|n:Nat « Ji:Int - n = ixi |}

To repeat: Axioms are predicate expressions. Predicate expressions are only
valid for certain interpretations. These interpretations are exactly what the
axioms are (pragmatically) intended to model. Thus axioms are used to model
the properties of structures, either abstract, as above, or seemingly manifest,
such as the Euclidean system of plane geometry.

9.6.3 Axiom System

An axiom system, that is, a set of predicate predicate expressions, also con-
tains some type type (including sort) definitions and function signatures. One
of the quantification range set identifiers — which may be mentioned in one or
more of the axioms — are sorts, and a purpose of the axioms are to characterise
those sorts. Usually at least one of identifiers — which may be mentioned in
one or more of the axioms — is a function name, and a purpose of the axioms
is to characterise that function.

Example 9.20 Euclid’s Plane Geometry: The Euclidean geometry infor-
mally described in Example 9.19 can be formally axiomatised by first in-
troducing the sorts P and L:

type
P, L

value

15We shall use subtypes extensively between here and the formal introduction of
the concept of subtypes, in Sect. 18.8.

9.6 Axiom Systems 189

[0] obs_Ps: L — P-infset
parallel: L x L - Bool

Observe how the informal axiom in Example 9.19 has been modelled by the
observer function obs_Ps. It applies to lines and yields possibly infinite sets of
points.

Now we can introduce the axioms proper:

axiom
[1] 3 p,a:P = p # q,
[2]Vp,qP+p#q=
J'1:L « p € obs_Ps(l) A q € obs_Ps(l),
[3] VIL « 3 p:P » p & obs_Ps(l),
[4]VIL + 3 p:P « p & obs Ps(l) =
J 1L « 1#1' A p € obs_Ps(l") A parallel(l,l)

The concept of being parallel is modelled by the predicate symbol of the same
name, by its signature and by axiom [4]. .

Thus (also in RSL) an axiom system is usually represented by (i) a set of sort
definitions, (ii) a set of observer and generator functions, and (iii) a set of
quantified expressions, the axioms proper.

9.6.4 Consistency and Completeness

A theory is, formally speaking, a set of axioms and a set of theorems derived,
through proofs,!” from these axioms using the inference rules of the logic in
which the axioms were stated. Whether the set of inference rules and the set of
axioms together is sufficient for proving all valid assertions, i.e., whether the
axiom system is complete with respect to all valid predicates, is undecidable:
One cannot devise a mechanical procedure which can test an axiom system and
its inference rules for completeness. Furthermore, whether the set of inference
rules and the set of axioms together is such that one can prove validity of an
assertion and its negation, that is, whether the axiom system is inconsistent,
is undecidable: One cannot devise a mechanical procedure which can test an
axiom systems and its inference rules for consistency.

9.6.5 Property-Oriented Specifications

We give a number of examples of axiom systems. They each characterise one or
more model(s). We say that they specify this (or these) model(s) in a property-
oriented manner. This is as opposed to presenting the model directly in terms
of for example such discrete mathematical concepts as sets, Cartesians, lists,
maps, functions, etc.

"We refer to the paragraphs on ‘Some Proof Concepts’ in Sect. 9.4.4.

190 9 Mathematical Logic

Example 9.21 Peano’s Axioms: The purpose is to define the algebra of nat-
ural numbers and successor (+1) and equal to zero functions (=0).

[1] Zero (0) is a natural number. [2] For each natural number n there exists
exactly one other natural number n + 1. [3] For no natural number n, isn+1
equal to zero. [4] For any natural numbers m and n, if m +1 = n + 1 then
m = n. [5] For any set N of natural numbers containing zero, if n € A implies
n+ 1€ A, then A contains every natural number.

type N
axiom
[1]0eN
[2]Vn:N«3n:Nen'=n+1 An' €N
[3] ~3n:N-n+1=0
[4] ¥ mu:N » m+1=n+1 = m=n
[6]V A:N-infset « (0 € AAn € A =>n+leA)=>A=N

[5] is a specialisation of the principle of induction: If p is a property, i.e., p
is expressible as a predicate function which may hold of (applies to) natural
numbers n; if p(0) holds; and if, whenever p(n) holds for some natural number
n, then p(n + 1) also holds, then that implies that all natural numbers satisfy
p. Formulated, in general, we have:

axiom

[6]V p:(N — Bool) « (V :N « p(n) = p(n+1)) = V u:N « p(n)

Another example:

Example 9.22 Sine & Cosine:

There is given a sort of angles, A, and a sort of rational numbers, R'®,
between —1 and 1. There is also given a pair of functions sin and cos (for sine,
resp. cosine). Finally there are given the axioms:

type

A = Real

R = {| r:Real » —1<r<1 |}
value

sin,cos: A — R
axiom

forall a:A «
—1 < sin(a),cos(a) < 1,
sin?(a) + cos?(a) = 1

18Tn Example 9.22 R is defined as a subtype of reals. We refer to Sect. 18.8 for a
proper introduction of the concept of subtypes.

9.6 Axiom Systems 191

Here we have introduced a variant of the V quantification: The keyword
forall lets the quantifier bindings which follow it, distribute across the axioms
now separated by commas.

Under the assumption of appropriate axioms for the rational numbers,
their squaring and sum, and the < relation, Figure 9.2 exemplifies one model
of this axiom. .

)

Fig. 9.2. Definition of the trigonometric sin and cos functions

Further examples.

Their formal parts are presented, as were those of the above examples, in
RSL. It is not RSL, however, in that it has the simple semantics of the predicate
calculus. To repeat: One cannot explain, i.e., give semantics, to a language by
using that language itself. One must use a language already defined.

Example 9.23 Simple Sets: By a simple set we understand an unordered
finite collection of simple, say in the present example, distinct atomic elements.
Let the latter belong to sort A. Let the sort of simple sets be designated by
S. Now simple sets are characterised, as already hinted at above, by being
collections, by being finite, by having distinct elements, by being unordered
such collections, and by the following operations: € is taken as a primitive
and stands for “is the left-hand operand (an atomic element) a member of
the right-hand operand (the set).” {} is an overloaded function symbol: {}
either stands for the nullary constant function that yields the empty set (of
no elements), or {} stands for the unary function that yields the singleton
set of its operand. ={} stands for the unary isempty-set predicate function
which tests whether its operand set is empty. U stands for the union operator
which, when applied to two operand sets, yields the set of all elements of
these operands. N stands for the intersection operator which, when applied
to two operand sets, yields the set of elements common to both operands. \
stands for the set complement operator which, when applied to two operand
sets, vields the set of elements of the first operand not in second operand.
= stands for the equality operator which, when applied to two operand sets,

192 9 Mathematical Logic

yields truth if they are the same set, otherwise falsity. C stands for the proper
subset operator which, when applied to two operand sets, yields truth if all
the elements of the left-hand operand set are in the elements of the right-hand
operand set and there are elements of the right-hand operand set which are
not elements of the left-hand operand set. C stands for the subset operator
which, when applied to two operand sets, yields the truth if all the clements
of the left-hand operand set are in the elements of the right-hand operand
set. card stands for the cardinality operator which, when applied to a finite
operand set, yields its number of elements. The axiom system provides the
characterisation.

The membership operation, €, is, to repeat, taken as a primitive. That is,
is not explained!

A Sketch Formal Aziom System Defining S = A-set
Tvpes and Signatures:

type
A, 8
value
€, % A xS — Bool
{}: Unit — S
{}+A =S
U, M, \:Sx8—=>8
=, # C,C:S xS — Bool
card: S = Nat

Axioms:

axiom
forall a:A, s,8":S -

{a} €8,
(aesUs)=(aesVaces)),
(aesns)=(aesnacs),
(aes\s)=(aesnags)),
s=s'=(aes=acy),
sCs=(aes=>aces),
sCs=(Cs' As#s),

card({}) = 0,

a ¢ s = card({a} Us) = Ll+card(s)

Chapter 13 continues our presentation of sets. It focuses on the way in which
RSL, the main specification language of these volumes, provides for sets, as
well as on the choice and use of sets in abstract specifications.

9.6 Axiom Systems 193

Example 9.24 Simple Lists: By a simple list we understand an ordered finite
collection of, say in the present example, atomiec, but not necessarily distinct
elements. Let the latter belong to sort A. Let the sort of simple lists be desig-
nated by L. Now simple lists are characterised, as already hinted at above, by
being collections, by being finite, by allowing multiple occurrence of some el-
ements, by being ordered such collections and by the following operations: ()
=(), hd, t1, ", elems, inds, len and [-]. {) is an overloaded function symbol:
{) either stands for the nullary constant function that yields the empty list (of
no elements), or {} stands for the unary function that yields the singleton list
of its (only) operand. ={) stands for the unary test for empty list predicate
operator. It applies to a list and yields truth if that list is empty, otherwise
falsity. hd stands for the head operator which, when applied to an operand
list, yields the first element of that list. t1 stands for the tail operator which,
when applied to an operand list, yields the list of all but the first element of
that list, and in the same order as in the operand. ~ stands for the concatena-
tion of two operand lists of which the first must be finite. The result is the list
whose first list elements are exactly those of the first operand list in the order
and multiplicity of that list, and whose remaining list elements are exactly
those of the last operand list in the order and multiplicity of that list. elems
stands for the elements operator which, as a function, when applied to an
operand list, yields the set of all the distinct elements of that list. inds stands
for the indices operator which, as a function, when applied to an operand list,
yields the set of all the indices into the list. If the list is of length ell then
inds of that list is the set of all natural numbers from and inclusive 1 to and
inclusive ell. If the list is empty, the yielded index set is empty. len stands for
the length of list operator operator which, when applied to a finite operand
list, yields the length of that list, i.e., the number of not necessarily distinct
elements of the list, otherwise chaos. -(-) stands for list element selection, i.e.,
for the (distributed fix) list operator which when applied to a “left” operand
list and a “right” operand index, i.e., a natural number within the index set of
the list, yields the list element having the index position in the list. The above
explication was “loose” wrt. the “border” cases of when certain argument lists
were either infinite or empty, or not of sufficient length — for which cases the
results amount to chaos.
The axiom system provides a fuller characterisation.

A Sketch Formal Aziom System Defining L = A*
Types and Signatures:

type
AL
value
(): TJ
(s AL

194 9 Mathematical Logic

» =(): L = Bool
hd- L3 A
tl-L3L

+ TewLxL—=L
elems +: L — A-set
inds «: L. — Nat-set
le ne: L = Nat

+[+]:L x Nat 5 A

Axioms:

axiom

VoaA L e
0 €L,
0=0,
hd() = chaos
hd{a) f =a = ((a) £)[1],
C=e=("¢
tl{} = chaos,
tl{a) £ = £,
chaos [i] = chaos,
¥V i:Nat « i>0 = 1[i+1] = (t1 I)[i]
elems{) = {}, elems(a) 1 = {a} U elems |
inds(} = {}, inds 1 = {i|i:Nat * 1<i<len 1}, i.e.,
inds(a)”1 = {1} U {i+1|i:Nat+i € inds 1}
len(} = 0, len({(a)"1) = 1+len |, i.e.,
len(]’“l'} =lenl +lenl’,
¥ i:Nat » i>len 1= (I'1)[i] = I'[li-len 1]

In general, lists will be allowed to contain any kinds of elements: Functions,
integers, Booleans, sets, etc. So, when we say ‘simple list” we only mean it
as an example; as a simple example which does, i.e., should not complicate
matters.

Chapter 15 continues our presentation of lists. It focuses on the way in
which RSL, the main specification language of these volumes, provides for
lists, as well ag on the choice and use of lists in abstract specifications.

Example 9.25 Syntax of Simple Arithmetic Expressions: The first abstract
syntax proposal was put forward by John McCarthy in [366]. An analytic
abstract syntax was given for arithmetic expressions. In an analytic abstract
syntax we postulate — as sorts — a class of terms. You may consider terms
as a subset of all the things that can be analysed. We associate a number of
observer functions with these.

These examples are drawn from McCarthy [366].

9.6 Axiom Systems 195

Analytic Syntaz

We define abstractly a small language of arithmetic expressions. We focus on
constants, variables and infix sum and product terms.

type
A, Term
value
is_term: A — Bool
is_congt, i8_var, is_sum, is_prod: Term — Bool

s_addend, s_augend, s_mplier, s_mpcand: Term — Term
axiom

¥ t:Term
(is_const(t)A~(is_var(t)Vis_sum(t)Vis_prod(t)}) A
(is—var(t)A~(is_const(t)Vis_sum(t)Vis_prod(t))) A
(is_sum(t) A~(is_const(t)Vis_var(t)Vis_prod(t))) A
(is_prod(t)A~ (isc_onst(t)Vis_var(t)Vis_sum(t))) A

WV t:A e is_term(t) =
(is_var(t)Vis_const(t)Vis_sum(t)Vis_prod(t)) A
(isssum(t) = is_term(s_addend(t))Ais_term(s_augend(t))) A
(is_prod(t) = is_-term(s_mplier(t))Ais_term(s-mpcand(t)))

A is a universe of things. Some are terms, some not! The terms are restricted,
in this example, to constants, variables, two argument sums and two argument
products. How a constant, a variable, a sum or a product is represented is
immaterial to the above.

One could think of the following alternative, external, written representa-
tions of arithmetic expressions:

a+b,+ab,(PLUS A B), 7% x 11°.

The last (7% x 11°) is some form of Gédel number representation [180,319,444]
of arithmetic expressions.

Synthetic Syntax

A gynthetic abstract syntax further introduces generators of sort values, i.e.,
of terms:

value
mk_sum: Term x Term — Term
mk_prod: Term x Term — Term
axiom
¥V u,v:Term «
is_sum(mk_sum(u,v)) A is_prod(mk_prod(u,v)) A
s-addend(mk_sum(u,v)) = u A s_augend(mk sum(u,v)) = v A
s-.mplier(mk_prod(u,v)) = u A s_mpcand(mk_prod(u,v)) = v A
is_sum(t)=mk_sum(s_addend(t),s_augend(t)) =t A
is_prod(t)=>mk_prod(s_mplier(t),s_mpcand(t)) = t

196 9 Mathematical Logic
Analytic and synthetic syntaxes are truly abstract.]

McCarthy’s notion of abstract syntax, both the analytic and the synthetic
aspects, are to be found in most abstraction languages, thus also in RSL.

9.6.6 Discussion

We have shown one of the most powerful means of abstraction: namely
property-oriented abstraction by means of sorts, observer functions (predi-
cates and other value “selection” functions) and generator functions.
Specific principles of when to choose and of how to express, axiomatic
property-oriented abstractions are given primarily in Chap. 12.

9.7 Summary

We have presented an overview of mathematical logic as a specification, rather
than as a verification language. There were many parts to our exposition. In
three stages of development we unravelled first the basis, a Boolean algebra;
then a propositional logic, and finally a predicate calculus. We write an “alge-
bra”, a “logic”, a “calculus”, since there are many possible Boolean algebras
— ours was one of a specific three-valued logic — and hence many propo-
sitional logics and predicate calculi. We also distinguished between algebra,
logic and calculus: The algebra is just a simple one, the logic is more extensive
— and hints at a theory (with axioms, rules of inference, and theorems) which
we did not elaborate on — and the calculus is indeed to become a calculus:
a set of rules, the inference rules, for calculation, just as the A-calculus had
rules (a-renaming and B-reduction). It is the predicate calculus, for very many
chapters to come, that will serve us in abstraction and in specification.

In Chap. 8 we explained the notion of an algebra morphism (Sect. 8.4.4)
Two algebras, one of syntax and one of semantics. In this chapter on logic we
applied this concept repeatedly: in structuring our presentation of Boolean
ground terms and their evaluation (Sect. 9.3.4), in structuring our presen-
tation of propositional expressions and their evaluation (Sect. 9.4.3), and
in structuring our presentation of predicate expressions and their evaluation
(Sect. 9.5.7). It was perhaps not until the last of the above that we saw the
full benefits of adhering to an inductive style of presenting the syntax and
a homomorphic style of presenting the semantics. We claim that deploying
the morphism idea helps structure our understanding of induction with its
demand for three clauses: the basis, the inductive, and the (often implicitly
understood) extremal clauses. In particular the inductive clause makes it eas-
ier for the specifier to decide on what — and how much — to develop, to define
and present. Morphisms “tell” us how to develop the semantics: first the se-
mantics corresponding to the basis clauses, then to the inductively defined
syntax.

9.9 Exercises 197

The choice of a three-valued logic is necessitated by our dealing, not with
executable programs, but with specifications: from those of abstract models of
the application domain, as it is, via requirements, to abstract software designs.
That choice, however, complicates the semantics and hence the proof rules.
So far we have only presented inference rules for a two-valued logic.

Finally, taking up a line that was begun in the chapter on algebras, in
Sect. 9.6 we presented a thorough coverage of the predicate calculus with its
quantified expressions — the practical idea of an axiom system. We applied
this idea immediately, without going into logic theories of for example unde-
cidability issues of axiom systems, consistency or completeness. We did so in
order to present actual examples of abstract specifications. With a reasonable,
albeit specification-oriented, view of logic, we can now proceed to apply the
concepts of logic discussed in this chapter.

9.8 Bibliographical Notes

Classical textbooks on mathematical logic are:

Willard van Orman Quine: Mathematical Logic (1951) [509]

Alonzo Church: Introduction to Mathematical Logic (1956) [153]

Elliott Mendelsohn: Introduction to Mathematical Logic (1964) [372]
Patrick Suppes: A First Course in Mathematical Logic (1964) [492]
Stephen Kleene: Mathematical Logic (1967) [324]

Joseph R. Schoenfield: Mathematical Logic (1967) [457]

Herbert B. Enderton: A Mathematical Introduction to Logic (1972) [210]

There are many others, including: [136,235,259,294,402]. The reader should,
however, be duly warned.

On one hand is the mathematical subject of mathematical logic. On the
other hand is the computing science subject of the same name, but their foci
are different. To logicians mathematical logic is a study of which kinds of
logics there are, their expressive power, which issues are decidable, i.e., what
can be proved. To the software engineer mathematical logic is a tool to be
used for the expression of abstractions and for the oftentimes long-winded and
cumbersome proofs of stated, desirable properties. In Sect. 9.2 we discussed
several of the interface issues between these two viewpoints, and we did so on
the basis of John Rushby’s delightful report [451].

9.9 Exercises

Exercise 9.1. & Predicates over the Transportation Net Domain. We refer
to Appendix A, Sect. A.1, Transportation Net.

We also refer to Example 9.12 in which we suggested some types, some
observer functions, and an axiom covering two constraints.

198 9 Mathematical Logic

But those constraints were not enough to satisfy suitably well-formed
transportation nets.

(i) If from any segment one can observe some connections, then from each
of these connections one should be able to observe (at least) that segment.
And: (ii) If from any connection one can observe some segments, then from
each of these segments one should be able to observe (at least) that connection.

1. Formulate suitable axioms (i.e., a predicate expressions) expressing these
two constraints.

2. Can you think of other constraints?

3. We wish to insert in a given transportation net a new segment, and assume
that it is to be connected to existing connections. State the signature of
a suitable insert_segment function, and state the pre- and post-conditions
for this function.

4. We wish to insert in a given transportation net a new connection, and
assume that it is to be inserted in an existing segment. State the sig-
nature of a suitable insert_connection function, and state the pre- and
post-conditions for this function.

Exercise 9.2. & A Predicate over the Container Logistics Domain. We refer
to Appendix A, Sect. A.2, Container Logistics.

We also refer to Example 9.13 in which we suggested some types, some
observer functions, and an axiom covering one constraint.

Assume that associated with every bay of a ship or a container storage
area there is associated a maximum height for any of the stacks of any of
its rows of such. Thus assume that the maximum height is an attribute that
can be observed from any bay, and that the current height of a stack can be
observed from any stack.

Express a predicate which applies to any bay:Bay and yields truth if none
of its stacks are higher than the stated maximum height.

Exercise 9.3. & A Predicate over the Financial Service Industry Domain.
We refer to Appendix A, Sect. A.3, Financial Service Industry.

We also refer to Example 9.14 in which we suggested some types, some
observer functions, and an axiom covering three constraints (vii, viii, and ix).

For a transaction concerning a named securities instrument to take place
at a securities (e.g., a stock) exchange, at a given time, ¢, its name, ¢, must be
given and there must be buy and sell orders, buy_orders;, sell_orders; for that
securities instrument such that their time interval of consideration embraces
the given time, ¢, such that the sum totals of quantities of buy_orders;, i.e., gp,,
and of sell_orders;, i.e., gs,, equal, and such that their (“lo-hi”) price interval
of consideration all embraces some transaction price, p;.

Express the above constraints as a pre-condition for a transact function
whose arguments include the name, 4, of the securities instrument, the current
time, ¢, and the securities exchange, sec_exchg.

9.9 Exercises 199

Thus assume suitable observer functions such as: (i) observe buy [sell]
orders for a given, i.e., a named, securities instrument, (ii) observe from a
buy or a sell order its requested buy, respectively sell quantity, its transaction
period (time interval), and its “lo-hi” (buy, respectibely sell) price interval.

Part III

SIMPLE RSL

General

We have covered very basic, and very simple aspects of discrete mathematics
and functions. We are now ready to “embed” such notions in the main tool
of these volumes: The RAISE Specification Language, RSL.

Our first systematic presentation of RSL will basically follow the “pattern”
set in Part IT, except that we will now cover functions, as they can be defined
in RSL early in the present part, and then again, later!

For other introductions to the RSL and the RAISE Method we refer to
[236,238].

RSL Versus VDM-SL, Z and B

There are other specification languages. We shall settle for RSL. We could have
chosen, instead, VDM-SL, the current author being one of the instigators and
first researchers into and developers of VDM-SL [120,121,226] (as he is also an
instigator &¢. of RAISE hence RSL).

Or we could have chosen Z [476,477,533], or B [3,4]. We chose RSL for a
number of reasons:

e of the specification languages just mentioned, RSL is closest in some sense,
to discrete mathematics;

e like VDM-SL, RSL also expresses the imperative specification style, i.e., with
assignable variables and statements;

e RSL, in addition, can handle the expression of concurrency (see Chap. 21)
— none of VDM-SL, Z, B can do that;

202

e RSL, like algebraic specification languages (CASL [399] and Cafe0BJ [191]),
allows for introduction of sorts, postulation of observer function, and then
having axioms determine the “shape” of the sorts and the signature defined
functions; finally

e RSL, like Z, B, CafeOBJ and CASL, can structure its specifications in a
modular fashion (see Vol. 2, Chap. 10).

It is the “extension” of VDM-SL with sorts and axioms and with CSP-like
process concepts, which to this author makes RSL preferable to VDM-SL. If
you have learned and use VDM-SL before you can rather easily “move” on to
RSL.

B, with its follow-on event-B, has yet to settle, so it would be premature to
base a text book whose primary aim is not to teach a specific language (but
to teach abstraction) on B/event-B.1?

The modular structuring facilities of Z seems very elegant. The emerging
such facilities of event-B likewise. Both Z and B seem to emphasize formal
proofs as mandatory in every step of development — where VDM-SL and RSL
emphasises specification. All in all it seems to this author that RSL is a best
choice: Most versatile.

But we should claim that it is more important to express (model-oriented)
abstraction, than to pick (on) a specific language. So we suggest lecturers to
use these volumes, but work out themselves supplementary notes in either of
the model-oriented specification languages VDM-SL, Z or B.

What, Syntactically, Constitutes a Specification?

We shall, in the present volume, take a specification to consist of:

one or more type definitions,

one or more function value definitions,

ZE€ro, one or more axioms,

zero, one or more variable declarations, and
zero, one or more channel declarations.

For now we shall be content with the first three kinds of specifications.
Chapter 20 will introduce variables, and Chap. 21 will introduce chan-
nels.
Volume 2, Sect. 10.2 will slightly change the above view of the syntax of
a specification, to allow for schemes and classes to contain the type, value
and axiom parts, while extending RSL with objects.

1The current author finds that the principles of event-B represents a fascinating
specification paradigm.

203

Towards an RSL “Standard”

RSL? is currently maintained, as a language, by Chris George?!. The main
reference to RSL is [236):

The RAISE Specification Language.

Chris George, Peter Haff, Klaus Havelund, Anne Haxthausen, Robert
Milne, Claus Bendix Nielsen, Seren Prehn, and Kim Ritter Wagner.

The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, , 1992.

That book appears to be out of print. You may be able to buy publisher
authorised reprints of the book from:

http://spd-web.terma.com/Projects/RAISE/faq.html#contact_info
att.: Mr. Jan Storbank Pedersen

It is hoped that a slight revision of the text may be available over the Internet.
The other main reference to RAISE [238]:

The RAISE Method.

Chris George, Anne Haxthausen, Steven Hughes, Robert Milne, Sgren
Prehn, and Jan Storbank Pedersen.

The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, UK, 1995.

is now available over the Internet:
ftp://ftp.iist.unu.edu/pub/RAISE/method book/

The RSL of the present three-volume series is a “slight extension” of proper
RSL. For the variant of RSL which is supported by free tools, see next, is
described on the following Internet web page:

www.iist.unu.edu/newrh/III/3/1/docs/rsltc/RSL.changes/

RSL Tools

Information about down loadable RAISE Tools can be obtained from UNU-
IIST:

http://www.iist.unu.edu/newrh/III/3/1/page.html

20The information in this and the next section is dated. Tt is correct as of “year
end/year begin” 2004/2005.

HUNU-IIST, United Nations University, International Institute for Software
Technology, P.O. Box 3058, Macau SAR, China. E-mail: cwg@iist.unu.edu, URL:
www.iist.unu.edu

204

This includes information about free, open-source software for various plat-
forms (Linux, Solaris, DOS, Windows). Includes type checking, pretty-printing,

translation to SML and C+-+.
Information about original RAISE Tools can be obtained from Terma, the

company that markets these tools:

http://spd-web.terma.com/Projects/RAISE/faq.html#tool support
Likewise information about tool manuals:

ftp://ftp.iist.unu.edu/pub/RAISE/tool manuals/

10

Atomic Types and Values in RSL

e The prerequisites for studying this chapter are that you possess famil-
iarity with ordinary programming language type and value concepts and
specific awareness of the mathematical concept of numbers as covered in
earlier chapters.

e The aims are to introduce the concept of atomic types and values, in
particular to introduce the RSL concepts of enumerated types (and their
values), and to emphasise the two-faced notion of specific space of RSL
specification versus arbitrary spaces of modelled identifiers.

e The objective is to teach the reader to choose appropriate atomic types
and values as models of simple phenomena and concepts.

e The treatment is systematic and semiformal.

Not every phenomenon can be analysed down to a stone, i.e., an atomic
thing. But many things can — and for those we present some modelling
principles, techniques and tools.

Characterisation. By an atomic value we mean an entity in whose possible
subparts we have no interest. It may have some proper subparts, or it may
have none, but all we are interested in is the value itself. .

Characterisation. By an atomic type we mean a type all of whose values
are atomic. .

10.1 Introduction

We shall discuss why this chapter brings the material that it does, and why
at this place!

206 10 Atomic Types and Values in RSL

10.1.1 Mathematical Versus Enterprise Modelling

Numbers play an important role in everyday life: In budgeting and account-
ing — i.e., in ordinary reckoning — and in mathematics. Models of physical
phenomena are classically expressed in terms of, for example, polynomial, dif-
ferential and integral equations. The variables of expressions in these equations
usually denote numbers. We will not be dealing with traditional, often called
applied, mathematics as practiced by all engineers, by operations researchers,
by econometricians, etc. Instead we will be teaching principles, techniques
and tools. “Our” mathematical specifications will not supplant those of the
above-mentioned professionals. We — and you, based on what you learn here
— will be applying “our kind” of mathematical specifications to such actual-
life phenomena for which classical mathematics have shown to be inadequate
or awkward.

Although this chapter is about numbers, we shall, in consequence, not be
basing “our kind” of specifications on numbers, but more on “richer” math-
ematical structures — also not suitably modelled by polynomials, differen-
tials, integrals or other classical mathematical forms of expressions. We shall
present principles, techniques and tools for the modelling and for providing
software for general enterprises, not conventionally “modellable” by ordinary
mathematics.

10.1.2 The “Primitive” Model Building Blocks

In this chapter we shall look at the very basic, you may wish to call them
the “primitive”, we call them the atomic elements, by means of which our
models are built, or upon which they rest. They include numbers: natural
numbers, integers and reals — and we discuss why only and exactly those.
The elements also include characters and text strings, and what we could refer
to as identifiers, or tokens.

Our main use of numbers in modelling, is in modelling quantities. Just as
physicists use numbers to quantify weight, speed, etc., so we use numbers to
quantify similar and other actual-world phenomena. Qur main use of charac-
ters, text strings and identifiers is in modelling simple, concrete input/output
messages, or respectively in modelling identification of phenomena in the uni-
verse of discourse.

10.2 The RSL Numbers

We have already covered, in Chap. 2, the mathematical concepts of numbers.
Suffice it here to summarise. There are many kinds of numbers, to wit: natural
numbers (Nat: 0,1,2, ...); integers (Int: ..., —2,—1,0,1,2, ...) rationals:
consisting of both integers (viz.: i,j) and fractions, %., for all integers 4, j
where j # 0; irrational numbers; real numbers (Real), imaginary and complex
numbers; and transcendental numbers.

10.2 The RSL Numbers 207
10.2.1 Three Types of Numbers

Without taking into consideration the operations applicable to numbers
(Sect. 10.2.2), in RSL we consider just the following three subtypes of all the
numbers: the natural numbers, the integers and the reals. The three categories
are related as follows:

Nat C Int C Real

Natural Numbers: Nat

The natural numbers are just the whole numbers larger than or equal to zero:
0,1,2,....

Integers: Int

The natural numbers are just the whole numbers, positive or negative:
.,—2,-2,0,1,2,....

Real Numbers: Real

The real numbers of RSL are those whose numerals (i.e., names) can be written,
with or without a minus sign, as a finite sequence of digits before a decimal
point, “.”, followed by a finite sequence of digits after the decimal point:
—987654321.0123456789!

10.2.2 Operations on RSL Numbers

RSL defines the following operations on real numbers:

value
+,—,/,*: Real x Real = Real
<,<,=,#,>,>: Real x Real — Bool
—: Real — Real
abs: Real — {| r:Real - r>0 |}
int: Real — Int
real: Int — Real
axiom
¥ n:Nat « abs —n = n —absn

As for all other types, equivalence (=) and non-equivalence (#) are also de-
fined on numbers. The int and real functions convert a real to the integer
nearest 0, or respectively an integer to a real:

int 2.71 = 2, int —2.71 = —2,real 5 = 5.0, ...

208 10 Atomic Types and Values in RSL

10.3 Enumerated Tokens

When we wish to speak of typically a finite number of identifiable atomic en-
tities without further describing them, then we turn to the use of enumerated
tokens.

10.3.1 Motivation

We believe that Example 2.3 clearly shows the need for a less encoded mod-
elling of finite, usually “small sets” of atomic values where we do not really
care what these values are, other than being able to name them individually
and distinctly. For this we introduce, as was already done for programming
languages, in, for example, Pascal (by Niklaus Wirth [314,522)]), the notion
of enumerated tokens.

Example 10.1 Enumerated Tokens, Playing Cards: The 52 card set, that is,
without the Joker can usually be modelled as:

type
Suit == club | diamond | heart | spade
Face == ace | two | three | ... | ten | knight | dame | king

Card = Suit x Face

The suits are usually shown as: &, {,? and &. .

10.3.2 General Theory

By an enumerated token we understand an atomic value defined in a particular
way. Let ¢ and ¢’ be enumerated tokens. Either ¢t = ¢ (andt =¢') or t # ¢’ (and
#). The equality (equivalence) and the inequality (nonequivalence) operations
are the only ones defined on enumerated tokens.!

A schematic example is in order:

type
Token == token; | token, | ... | token,

is a variant definition which defines n atomic values: tokeny, tokens, ..., token,,.
Thus the definition symbol: == signals what we shall call a variant con-
structor. The type constructor | thus effectively designates a disjoint type
union.
The above variant definition is a shorthand for the following “longhand”:

In fact these four operations: =, =, # and #, are defined on all values.

10.3 Enumerated Tokens 209

type
Token

value
token; :Token,
tokens:Token,

token,,:Token
axiom
[disjointness of enumerated tokens |
token; # tokens A ... A token; # token,, A
tokeny # tokens A ... A tokens # token,, A

token,_1 # token,

Enumerated tokens, i.e., variant definitions, like the above, thus come with or
“generate”, an additional axiom: the induction axiom.

The role of the induction axiom is to express that the variant definition
designates a model in which there are only and exactly the three enumerated
values.

To express this metalinguistically, that is, not as a part of the variant
definition, but as one implied, we say: For all predicates p, if p holds for all
the enumerated values listed, then p holds for all Tokens:

axiom
[enumerated token induction]
V p:Token—Bool -
p(token;) A p(tokens) A ... A p(token,) = V token:Token » p(token)

Thus, by taking (one) p as:

value
p: Token — Bool
p = A t:Token « t=token; V t=tokens V ... V t=token,

we see that a Token is either tokenq, or tokens, or ..., or token,,; that is, only
one of those.

10.3.3 Operations on Tokens

Ouly four operations apply to tokens: equality (=) and inequality (#£), equiv-
alence (=) and non-equivalence (#):

type

Token ==a|b]|..]|c
value

=: Token x Token — Bool

210 10 Atomic Types and Values in RSL

#: Token x Token — Bool
=: Token x Token — Bool
#: Token x Token — Bool

10.3.4 Enumerated Tokens in Abstract Models

There is a principle of (possible) application to adhere to, there is a technique
with which to proceed when having chosen abstraction using enumerated to-
kens, and there is, in RSL, a tool to apply when carrying out the specification,
that is, when considering, respectively choosing to introduce enumerated to-
kens into an abstract model (i.e., an abstract specification). They (the prin-
ciple, the technique and the tool) are:

Principles. Enumerated Tokens: If a concrete, physically manifest phe-
nomenon or an abstract concept can be characterised by an attribute that
can take on (usually only a few) values, where these can all be considered
atomic, and among which only the equality and equivalence operations apply,
then choose to model these as enumerated tokens. .

Techniques. Enumerated Tokens: Identify the one or more attributes of a
phenomenon (concept); assign distinct names to their value types; determine
the range of values for each enumerated type; ascribe suitably expressive iden-
tifiers as names for these values and otherwise apply the tool for modelling
enumerated tokens. .

Tools. Enumerated Tokens: The RSL language tool for expressing enumer-
ated tokens is the variant definition:

type
ET ==et1l|et2]..|enn

The RSL tool, besides expressing equality, for handling enumerated tokens is
the case construct:

type
AB
value
obs.ET: A —» ET
fet, fet1, fet 2, ..., fectn: A — B
fet(a) =
case obs ET(a) of
et_1 — fet_1(a), et-2 — fet2(a), ... , et.n — fet_n(a)
end

10.3 Enumerated Tokens 211

where fct tests the enumerated token value, say et_i, of an argument a:A, for a
given attribute (ET), and invokes an appropriate auxiliary function, say fct,
to (further) process the argument.

The type A and B, the observer function obs_ET and the auxiliary functions

fct_i are assumed.. .

10.3.5 Modelling Using Enumerated Tokens
Enumerated Tokens and Finite State Devices

By a finite state device we understand either a finite state automaton, or a
finite state machine. In Vol. 2, Chap. 11 we shall introduce the concepts of
finite state automata and finite state machines. Each state of such devices
is typically labeled, and labels are drawn from a finite alphabet of symbols.
These are modelled using the concept of enumerated tokens as introduced in
this section.

Example 10.2 Finite State Automata State Labels: We present some infor-
mal examples:

(1) Tn an operating system scheduled jobs are either running, queued, wait-
ing for input, idle or other. With each job one can therefore associate its state
— as labeled by these enumerated tokens.

type
Job_Status == running | queued | waiting_for_input | idle | other

(2) An automobile may be in either of the following states: parked, standing
still with motor running, driving forwards, driving backwards, or other.

type
Car_Status == parked | idling | forward | backward | other

(3) An aircraft may be in either of the following states: waiting for mainte-
nance, being maintained, taxiing to departure gate, being serviced (being fueled,
loading baggage, boarding passengers, etc.), cleared for take-off, taking off,
flying, landing, etc.
type

Aircraft_Status == wait_maint | under_maint | taxi_dept |

| under _service | cleared | take_off | flying | landing

212 10 Atomic Types and Values in RSL

Enumerated Tokens and Linux Commands

Example 10.3 Linux Command Names: When specifying the software de-
sign for implementing, or the requirements for prescribing the meaning of
Linux commands, we need to name them. Some are: cp, emacs, latex, Is, mkdir,
mv, rm, rmdir, etc.

type
Linux Cmd Nms == c¢p

emacs | latex | Is | mkdir | mv

rm | rmdir | ...

10.4 Characters and Texts

Characters and sequences of characters, i.e., texts, form a very concrete type,
one we shall not be using much in domain descriptions or requirements pre-
scriptions.

10.4.1 Motivation

For the ordinary use of computers, input data must be read, stored data
need be manipulated, and output data must be generated. The input data
originally, and the output data finally, are in the form of visualisable marks:
alphabetic characters, numeric digits and special symbols (operator symbols,
delimiters, etc.). All this is prescribed by computer programs.

The purpose of abstract specification is not to define executable programs
but, with respect to software design, to specify classes of these. And with
respect to domain descriptions and requirements prescriptions, we need not
prescribe concrete input and output, but can abstract these.

Therefore, at high levels of abstractions, we need not make use of RSL’s
built-in Character and Text data type. But, at close-to-execution level
RSL software design specifications, it is useful to have a counterpart to the
character and character string types of ordinary programming languages.

10.4.2 The Character and Text Data Types

The RSL Char and Text data types are related to one another, and the
Text data type is related to the RSL list data type. Meta-linguistically, i.e.,
“outside” RSL, we can explain the two RSL types:

literals /+ This is meta RSL */
af L

type
Char ~ {| 'a', v, 'c, ..., "2, ‘A", 'B', ..., 2" |}
Text ~ Char*

10.5 Identifiers and General Tokens 213

value
cl,c2,....cn:Char
value expressions
cl=c2Vcl#£c2V ..Ve=a" Ve="p' v ...

This is concrete RSL:

value expression explanations or equivalences:

1 1 f_ti ittt
abra” ~ ('a',’b’,'r','a’)
" " i
hd "abra” = 'a
n n n 1
tl tl t1 "cadabra” = "abra

len "abracadabra” = 11
nt

~

" At " " n
abra cadabra = "abracadabra

card inds "“abracadabra” = card {1,2,3,4,5,6,7,8,9,10,11} = 11
card elems "abracadabra” = card{’a’,'v',/c','d','r'} = 5

We refer to our first presentation of the RSL list data type of Example 9.24.
Since texts are sequences of characters, texts really are not atomic, but the
elements are.

Above we introduced, without prior explanation, the RSL sub-typing con-
struct. If A’ is a type (i.e., a type name), then A is the subtype (i.e., the name
of the subtype) of A’ whose values all satisfy the postulated predicate P(a):

type

Al

A={ a:A’ « P(a) |}
value

P: A’ 5 Bool

Thus {| and |} are special forms of set type constructors.

10.5 Identifiers and General Tokens

Identifiers are specially identified “atomic” language quantities, i.e., they “are”
syntax. Tokens are identifiable atomic designations, i.e., they “are” atomic
semantic quantities.

10.5.1 Identifiers

There are two kinds of identifiers: identifiers used in, for example, RSL specifi-
cations (and in programs: variable, label, type and procedure names, etc.), and
identifiers that we need again and again in order to model certain phenomena
and certain concepts. This section is about identifiers.

214 10 Atomic Types and Values in RSL
RSL Identifiers

In our specifications we need to identify phenomena: types, values, incl. func-
tions, etc., by naming them. Identifiers in, for example, RSL, serve this role.
RSL identifiers are any string of alphanumeric characters possibly with prop-
erly in-fixed underscores and/or suffixed primes:?

1] 1
a, aa, ala, ala, ala, abra_ca_dabra, a_1, a’, a

Universe of Discourse Identifiers

Universe of discourse identifiers arise when we model a domain — or some
requirements, or some software — in which there is a collection of further
unspecified names or identifiers.

Example 10.4 Universe of Discourse Identifiers: Some examples of universe
of discourse identifiers include names of (i) persons, of (ii) cities, of (iii) prod-
uct parts (i.e., part numbers), of (iv) patient medical journals, etc., as in
some actual, real-life domain. They can also include names of (v) database
relations, (vi) relation attributes (i.e., column names) or computing resource
names: (vii) pointers to records, (viii) disk segments, or other, as for some
requirements prescription, or for some software design. .

As far ag we are concerned these universe of discourse identifiers need not be
given a concrete representation, but can be modelled by any sort about whose
elements we may assume that they are “further unanalysed”. In Sect. 10.5.3
we shall show how to model such universe of discourse identifiers.

10.5.2 Operations on General Tokens

Only four operations apply to general tokens: equality (=) and inequality (#),
equivalence (=) and nonequivalence (Z):

=: Token x Token — Bool
#: Token x Token — Bool
=: Token x Token — Bool
#: Token x Token — Bool

2For readers with knowledge of the Z specification language, primes are a kind
of temporal state operator, hence are not part of identifier names.

10.5 Identifiers and General Tokens 215
10.5.3 General Tokens

By a general token — as distinguished from enumerated tokens (cf. Sect. 10.3)
— we understand a further unanalysed atomic quantity. Typically we can
think of a sort name standing for an indefinite set of unique general tokens.

Principles. Unique Universe of Discourse Identifiers: When an entity, i.e., a
set of phenomena, manifests itself, or a concept can best be understood, as a
potentially indefinite set of unique atomic and further unanalysed quantities
among which there is basically just the equality (and hence also the inequality)
operation, and for which no particular representation (i.e., concrete name) is
needed, then choose the model concept of general tokens for the abstract
specification of these phenomena, respectively this concept. .

Techniques. Unique Universe of Discourse Identifiers: Once one or more sets
of phenomena or concepts has been chosen for modelling by means of general
tokens, then choose appropriate, distinct names as sort names for each of the
set of phenomena, respectively for each concept. By not stating any axioms
about these sorts values of distinct such sorts, values of different general token
sorts are distinct. .

Tools. Unique Universe of Discourse Identifiers: To model universe of dis-
course identifiers we use the concept of general tokens. To model the dynamic
issuance of (each time) distinct identifiers we may model as follows: We de-
clare a global variable ids, and an operation get_ld of no arguments. Invocation
of getld, i.e., get_Id(), amounts to the generation of an identifier that has so
far not been issued.

class =
type
[1] Id
variable
[2] ids:Id-set := {}
value
[3] getId: Unit — read ids write ids Id
[4] getId() =
[5] let id:Id « id ¢ ids in
[6] ids := ids U {id};
[7] id end
end

The keyword variable and line [2] above declare an assignable variable of
type sets of identifiers and initialise this variable to the empty set of such.
The literal Unit before the — “announces” that the function get_Id takes no
argument.® The keyword write announces that the function get_Id potentially

3Unit is a type name; () is the only value of type Unit.

216 10 Atomic Types and Values in RSL

reads from and is intended to or definitely writes to a variable. The assign-
ment statement, prescribes the addition of an, in this case newly generated,
identifier.

Elsewhere in the specification — where the above general token definition,
with its generator operation, get_ld, is found — one may now invoke the
operation:

.. letid = getId() in ... id ... end ...

where the unique identifier id may be used several times: ... id

10.6 Discussion

It is time to review.

10.6.1 General

In this chapter we have introduced the atomic values and types of numbers:
natural (Nat), integers (Int) and reals (Real); of enumerated and general
tokens; and of characters and texts.

10.6.2 Modelling Atomic Entities

It remains to convey an important issue that we find it is better to mention
here, in a summary, where we hope that issue will not be overlooked: When we
have to model natural numbers, integers or reals in some universe of discourse,
then we model them not by their representation, i.e., numerals, but directly
by their semantic values: Nat, Int and Real, respectively. This parallels our
similar modelling of Booleans, Bool, not by some representation, but by their
semantic values.

We emphasize that there is a distinction to be made between using num-
bers and Booleans, for technical reasons in some specification, and using them
to abstract phenomena and concepts of some universe of discourse. In the lat-
ter case, instead of describing (or prescribing) representations for each of the
aforementioned atomic types, the specifier just uses their semantic value types.

Across many application domains there are many distinct, and even widely
different kinds (read: types) of atomic entities. How are we to handle them?
The answer was given above.

Principles. Atomic Entities: Atomic entities are usually handled as “fur-
ther un-described” quantities, with no other properties associated with them
than distinct actual world entities being modelled as distinct model values.
The atomic entity modelling principle finally says: Do not describe specific
syntactic representations for atomic entities. .

10.7 Exercises 217

The above was a principle. How does it relate to our formal modelling? That is,
how are we to handle the description and formal modelling of atomic entities?

Techniques. Atomic Entities: We make the distinction between types and
values: Classes of atomic entities are usually modelled by further unspecified
sorts. But when the atomic entities do possess such properties as are suffi-
ciently possessed by numbers or characters or by character strings, then we
model them so.]

10.7 Exercises

Problem 10.1 below is reminiscent of material in J.H. Conway’s book On
Numbers and Games [159].%

Exercise 10.1. Natural Numbers as Sets. Let the natural number 0 be repre-
sented by the empty set, {}; the natural number 1 by the singleton set whose
only member is the empty set, {{}}; and so forth: the natural number n, where
n is larger than 0 is thus represented by a singleton set whose only member
represents the natural number n — 1.

1. Now define an appropriate type, N, for natural number sets as outlined
above and two functions, Nat2N and N2Nat. Nat2N takes a natural number
and yields its set representation (in N), and N2Nat takes the set represen-
tation of a natural number and yields that natural number.

2. Then define simple arithmetic operators of addition and multiplication over
N — resorting and without resorting to the use of general addition and
multiplication, that is, to addition by other than 1s.

LX)

Exercise 10.2. & Atomic Types in the Transportation Net Domain. We refer
to Appendix A, Sect. A.1, Transportation Net.

1. Segment and Connection Names: Segments and connections have unique
names — but we do not bother as to how they may be represented. Suggest
type, that is, names for these names and explain in one or two words of
which of the four kinds of atomic types you suggest they should be.

2. Segment and Net Types: A transportation net has segments being of ei-
ther of a definite number of kinds. (You may think of these kinds as
representing: public road, toll road, free way, rail line, air corridor or shipping
lane.)

(a) Concrete Net Types: Either you decide to model exactly a specific
variety, such as just suggested above. Then suggest a suitable atomic
type definition for that case.

“See also [44,45].

218 10 Atomic Types and Values in RSL

(b) Abstract Net Types: Or you decide to model any such variety, say
several levels of public roads, or of air corridors, etc. Then suggest a
suitable atomic type for that case.

(¢c) Nets of One Type: Now define a predicate that determines whether
a transportation net has all of its segments of the same kind — for
either of your two models of the previous two items.

3. Connection Types: Given that one can observe from a segment its net
type, it is reasonable to assume that a connection takes on, as its net
type, the sum total, that is, the set of net types of its connected segments.

(a) State the signature of an observer function that determines the net
type of any connection.

(b) Express an axiom that must be satisfied by any net, namely that the
net type of any connection is commensurate with the net types of its
connected segments.

Exercise 10.3. & Atomic Types in the Container Logistics Domain.
We refer to Appendix A, Sect. A.2, Container Logistics.

Agsume that container ships and container terminals can handle a diver-
sity of containers: 20’ (twenty feet), 40’ (forty feet), and refrigerated such
containers. Thus bays on ship and on shore are designated to contain only
one specific of these kinds of containers. Suggest a way of modelling this:

1. atomic types (of an appropriate kind),

2. observer functions applicable to containers and to bays and yielding their
container type, and

3. a predicate that applies to bays and checks that all stacked containers are
of the appropriate kind.

Exercise 10.4. & Atomic Types in the Financial Service Industry Domain,
We refer to Appendix A, Sect. A.3, Financial Service Industry.

Introduce a notion of credit cards of either one of the following kinds:
AEX (American Express), DC (Diners Club), MC (Master Card), or VISA.
From credit cards one can observe customer name, a credit card number, and,
hidden from view, the number of a credit card account — which is also then
a demand /deposit account of the designated customer.

Bank accounts can be of a number of kinds: mortgage (i.e., loan) accounts
and demand/deposit accounts. In the latter case, the account is then associ-
ated with a set of zero, one or more credit card types and numbers.

Two or more credit cards can be associated with the same, hence shared
demand/deposit bank account.

1. What kind of entities are credit cards: atomic or composite?
2. What attributes can be associated with a credit card?

3. Formalise the type of credit cards as a sort,

4. and define suitable observer functions.

10.7 Exercises 219

5. Augment possibly previously defined types and observer functions related
to bank accounts to take into consideration the above rough sketch nar-
rative description. In particular extend the bank type to also include all
the credit cards honoured by that bank.

6. Express first in words, i.e., in English, then formally in terms of axioms
over bank types the constraints that must hold between the bank accounts
of banks and associated credit cards.

11

Function Definitions in RSL

e The prerequisite for studying this chapter is that you possess know-
ledge about the mathematical concepts of numbers, sets, Cartesians and
functions as covered in earlier chapters.

e The aim is to introduce, in preparation for the following chapters, ways
and means of defining functions.

e The objective is to start the reader on the road to becoming fluent in
defining functions as abstractly as is needed, when needed.

e The treatment is systematic and semiformal.

To express any observation of phenomena and concepts, any operation on
or over phenomena and concepts (that may yield “new” such) — in other
words, in order to express change — we must apply functions. Hence we
must define these functions.

There are a number of ways of defining functions. They are more or less
variants of one another. They span a stylistic spectrum from property-oriented
to model-oriented. This chapter will elucidate five ways of defining functions.
But first we recap the function type.

11.1 The Function Type

Three issues are always relevant when presenting a data type: the means of
expressing it (the syntax), the meaning of what is expressed (the semantics),
and why we wrote down these expressions in the first place (the pragmatics).
We shall cover the first two issues.

11.1.1 Syntax of Function Types

Let A, B stand for any types. Let F name the type of all total functions from A
into B and let G name the type of all partial functions from subsets of A into

222 11 Function Definitions in RSL

B. The latter type of functions includes the former type of functions. That is:
the space of total functions is included in the space of partial functions.

type A, B
F=A—-B
G=A35B

value
F, g G

"axiom” — i.e., an RSL metalinguistic statement:
FCG,ie, (A—B)C(ASB)

We say that the two clauses, f:F and g:G, represent the signatures (the name
and type) of the function spaces.

11.1.2 Informal Semantics of — and =

— and = are infix type operators. Applied to respective types (here the sorts
A and B) they “construct” the (type) sets of total functions, respectively
partial functions, from A into B.

We now cover, briefly, five ways of — five sets of RSL language constructs
for — defining functions.

11.2 Model-Oriented Explicit Definitions

In model-oriented style of function definition we typically define one function
at a time, in a model-oriented manner, and in terms of A-functions.

Let £(a) can be any expression of the specification language being used.
&(a) is intended to yield a value of type B.

A model-oriented function definition is, schematically:

type
AB f:A—->B

value f = Aa:A.£(a), or:
:AS3B f(a) = £(a)

= da:A.£(a) pre P(a)
The first variant, with f being partial, requires the pre-condition P(a).

Example 11.1 Model-Oriented Explicit Function Definition: We define a
modulo function:

11.3 Model-Oriented Axiomatic Definitions

value
mod: Nat x Nat = Nat
mod =
A(m,n):(Nat> Nat)
if n=0 then chaos else
if 0<m—n<n then m—n else mod{m—n,n)
end end

The explicit function definition:

type
A B
value
f: A= B, = Xaé&(a), etc.

is an instance of the following axiomatic definition:
type

A B
value

f: A = B,

axiom

YV a:A « f(a)=E£(a)

11.3 Model-Oriented Axiomatic Definitions

223

In this style of function definition we typically define one function at a time,
in a model-oriented manner, but by a triple of type/value/axiom clauses:

type

A B, ..
value

tASB

ca:A, cb:B, ..., ca”:A, cb':B
axiom

R(ca,cb), ..., R(ca',cb’)

Y a:A, b:B

Pl(a) = Ql(a,b)

A Pg(a) = Qg(a,b)
A ...
A Pn(a) = Qn(a,b)

224 11 Function Definitions in RSL

ca, cb, ..., ca, cb’ are usually constant values. Usually their definition (i.e.,
value identification cum instantiation) is omitted. R(ca,cb), ..., R(ca’,cb’) are
propositions over constants. The predicate expressions P;(a) and Q;{a,b) are
usually algorithmically expressed, at least to the extent that they do refer to
f and some nontrivial operators (and possibly auxiliary functions over A, B,
etc.). If f is total then one or more of the P;(a)="s are omitted.

Example 11.2 Two Model-Oriented Axiomatic Definitions:

¢ The modulo function:

value
mod: Nat x Nat = Nat
axiom
¥ m:Nat « mod(m,1) =0
¥ m,n:Nat « n£0 =
3 q,r:Nat » gxn+r=m A 0<r<n—1 A mod(m,n)=r

e The square root function:

value
sqr: Real = Real
axiom
Y v:Real « v > 0.0 = 3r:Real e sqr(v) =t A vkv =1

The next kind of function definition style differs only by emphasising more
property-orientedness than the model-orientedness of the present style. The
difference is a matter for discussion and choice.

11.4 Model-Oriented pre/post-Condition Definitions

In this style of function definition we typically define one function at a time, in
a model-oriented manner, and in terms of a pair of predicates: one characteris-
ing function argument values; the other relations between function arguments
and corresponding function results. Schematically it syntactically “looks” like:

type
A, B
value
f£ASB
f(a) as b
pre P(a)
post Q(a,b)

11.4 Model-Oriented pre/post-Condition Definitions 225

P(a) and Q(a,b) are general (usually universally quantified) predicate expres-
sions over (quantified) variables a and b. Note the keyword as.

Example 11.3 Model-Oriented Implicit pre/post-Condition Function Defini-
tion: Yet another form of definition of the modulo function is given:

value
mod: Nat x Nat = Nat
mod(m,n) as r
pre n#0
post 3 g:Nat » gxn+r=m A 0<r<n—1

The implicit pre/post-condition definition:

type
AB
value
fASB
{(a) as b pre P(a) post Q(a,b)

is an instance of either of the following axiomatic definitions:

type type
AB A, B
value value
ASB :ASB
axiom axiom
VaA«Pla) = VaA « Pla) =
A!b:Befla) =b A Ib:Bfla) =b A
Q(a,b) A(a,b)

The only difference between the above two forms is that one (the one with
unique existential quantification) defines a function deterministically, and the
other defines it nondeterministically.

We have not shown that many f(a) as b pre p(a) post q(a,b) definitions.
However, many will come, including:

Example 13.5’s merge function, Example 13.11’s int_Call, int_Hang and
int_Busy functions, Example 15.6’s index function, Example 15.8’s sort func-
tion, Example 15.10’s A_sort and KWIC functions and Example 16.10’s retr_G2
function.

226 11 Function Definitions in RSL

11.5 Property-Oriented Axiomatic Definitions

In this style of function definition we typically define one function at a time,
usually in a semi-property-oriented manner, that is, by some modest use of
model-orientedness, and by a triple of type/value/axiom clauses:

type

A B, ...
value

£ASB
axiom

Y a:A, bB-

Pi(a) = Qi(ab) A
Pa(a) = Qa(ab) A
A
Pn(a) = On(a,b)

The expressions P(a) and Q(a,b) are not algorithmically expressed. If f is
total then the P;(a)=s are omitted.

Example 11.4 Two Property-Oriented Axiomatic Function Definitions:

e Factorial:

value
factorial: Nat — Nat
n:Nat
axiom
n>1
factorial(1) = 1,
factorial(n) = n * factorial(n—1)

e Fibonacci:

value
fibonacci: Nat — Nat
n:Nat
axiom
n>1
fibonacci(0) = 1, fibonacci(1) = 1,
fibonacci(n) = fibonacei(n—1) + fibonacci(n—2)

11.6 Property-Oriented Algebraic Definitions 227
11.6 Property-Oriented Algebraic Definitions

Here we are usually just given the built-in RSL atomic types (hence semi),
the sorts (abstract types) and the signatures (i.e., type) of functions. An
axiomatic, property-oriented function definition usually defines both several
functions and several sorts — simultaneously. Schematically it syntactically
“looks” like:

type
AB,C,D,E, F
value
fAS3BgC3D,.,:ESF
axiom

Ep (£8,..50), ., Ep (£,8,...,h1) [constants]
Ee,, (£:8,--.h) = e, (£g,....h) [equations]

Eer, (E.gpsh) = Ec, (Egonnnsh) .

where &;(f,g,...,h) are general expressions involving — usually, but not shown
— quantifications of types A, B, C, D, E, and/or F.

We have shown several axiomatic definitions: Example 8.5 (stacks), Ex-
ample 8.6 (queues), Example 9.23 (simple sets), and Example 9.24 (simple
lists).

Example 11.5 A Peano Algebra, A Property-Oriented Data Type Defini-
tion: We continue Example 11.4, but now present the two functions in a fully
algebraic style. Please refer to the Peano axioms in Example 9.21. They de-
fine Nat, but we now define arbitrary sum and successor and predecessor
(addition, respectively subtraction, by one):

value
z: Nat — Bool
s: Nat — Nat
p: Nat = Nat
sum: Nat x Nat — Nat
mpy: Nat x Nat — Nat
fact: Nat — Nat
fib: Nat — Nat

axiom
¥ m,n:Nat «
z(n) = n=0,

p(s(n)) = n,

p(0) = chaos,

sum(0,n) = n,

~7z(m) = sum(m,n)=sum(p(m),s(n)),

228 11 Function Definitions in RSL

mpy(0,n) = 0, mpy(m,0) = 0,

mpy(L,n) = n, mpy(m,1) = m,

~z(m) = mpy(m,n)=sum(m,mpy(p(m),n))
fact(0) = chaos, fact(1) = 1,

~2(p(n)) = fact(n)=mpy (n,fact(p(n))),
fib(0) = 1, fib(1) = 1,

~z(p(n)) = fib(n)=sum(fib(p(p(n))).fib(p(n)))

Here equality to 0 is assumed a primitive, i.e., given predicate. .

11.7 Summary of RSL Function Definition Styles

Without comments we list the variety of function definition styles covered in
this chapter:

1. Model-Oriented Explicit Defini- 3. Model-Oriented pre/post-Condi-

tions tion Definitions
type type
A B A B
value value
£tASB £ASB
f = Xa:A.£(a) pre .P(a) f(a) as b
pre P(a)
f£tA—>B post Q(a,b)
f= da:A.E(a)

[or — which is the same]

. Property-Oriented

Axiomatic

f(a) — g(a) Deﬁnitions
type
2. Model-Oriented Axiomatic Defi- A, B, ...
nitions value
£FASB
type
YITA, B cazA, cb:B, ..., ca”:A, cb":B
value axiom
LASB R{ca,cb) A
ca:A, c¢b:B, ..., ca”:A, cb":B e A o
axiom R{ca',ch’) A
YV a:A b:B e

R(ca,cb), ..., R(ca’,cb’)

P (a) = 9 (a,b) A
Pa(a) = Qa(ab) A
A

Pn(a) = Qn(a,b)

11.9 Exercises 229

5. Property-Oriented Algebraic Def- &y (£.g,...,h),

initions e

type gllk (fvga"'ah)’
A,B,C,D,E, F [equations]

value gelﬂ (f7g77h) = ge1r (f7g7'--7h):
£fASB gC3D,..,.:E3F e

axiom gen,Z (fg,-...h) = &, (£,g,-,h)
[constants |

11.8 Discussion

We have shown five styles of defining functions. It is obvious that there is a
spectrum of definition styles, from purely algebraic, i.e., property-oriented, to
purely algorithmic, i.e., model-oriented explicit function definitions. We leave
it to the reader to choose appropriate combinations of these styles.

A function definition, in either of the five styles outlined above, may not
uniquely determine exactly one function, i.e., one mathematical value, but the
syntax of a function definition may denote a usually infinite set of such math-
ematical values. This under-specification, or this looseness, may be desirable
or not.

11.9 Exercises

& Note: The three exercises of this chapter are best tackled after you have
studied one or more of Chaps. 13—-16 on RSL sets, Cartesians, lists and maps!

dd

Exercise 11.1. & Functions in the Transportation Net Domain. We refer to
Appendix A, Sect. A.1, Transportation Net.

As an exercise, try express a function over Transportation Nets in some
or all of the five styles presented in this chapter.

Hint: Try the following functions: Insert a segment, respectively insert
a connection in a transportation net. See Exercise 9.1, items 3 and 4. Be
prepared to define these functions in terms of a number of auxiliary functions,
including predicates. Describe them loosely, in your own words — rather than
attempting a full definition as you have yet to learn about suitable abstract
data types with which to define these functions.

Exercise 11.2. & Functions in the Container Logistics Domain. We refer to
Appendix A, Sect. A.2, Container Logistics.

As an exercise, try express a function over Container Logisticss in some
or all of the five styles presented in this chapter.

230 11 Function Definitions in RSL

Hint: Try the following function: Enter a ship into a container terminal. Be
prepared to define this function in terms of a number of auxiliary functions,
including predicates. Describe them loosely, in your own words — rather than
attempting a full definition as you have yet to learn about suitable abstract
data types with which to define these functions.

Exercise 11.3. & Functions in the Financial Service Industry Domain. We
refer to Appendix A, Sect. A.3, Financial Service Industry.

As an exercise, try express a function over Financial Service Industrys in
some or all of the five styles presented in this chapter.

Hint: Try the following functions: open and close a bank account, deposit
and withdraw money into, respectively from a demand/deposit account.

Be prepared to define these functions in terms of a number of auxiliary
functions, including predicates. Describe them loosely, in your own words —
rather than attempting a full definition as you have yet to learn about suitable
abstract data types with which to define these functions.

12

Property-Oriented and Model-Oriented
Abstraction

e The prerequisite for studying this chapter is that you are willing to
pursue and have the ability to grasp abstractions.

e The aims are to discuss the concept of abstraction and to present princi-
ples and techniques of abstraction, and to review the notion of property-
oriented abstraction, to introduce the concept of model-oriented abstrac-
tion, and to relate these two ideas.

e The objective is to make the serious reader a professional in the basics
of abstract modelling.

e The treatment is from systematic to formal.

Characterisation. By an abstraction we shall understand a formulation of
some phenomenon or concept of some universe of discourse such that some
aspects of the phenomenon or concept are emphasised (i.e., considered im-
portant or relevant) while others are left out of consideration (i.e., considered
unimportant or irrelevant). .

Characterisation. By a property-oriented abstraction we shall understand
an abstraction of some phenomenon or concept of some universe of discourse
such that the abstraction is primarily or solely expressed in terms of logical
properties. .

Characterisation. By a model-oriented abstraction we shall understand an
abstraction of some phenomenon or concept of some universe of discourse such
that the abstraction is primarily or solely expressed in terms of mathematical
entities such as abstract tokens, sets, Cartesians, lists, functions, etc. .

Abstraction is the act of emphasising certain phenomena and formulating
certain concepts as being important, while suppressing other phenomena as
not being important. It is a cornerstone of software engineering. Abstrac-
tion requires ability to reflect and to seek elegance and beauty. While some
aspects of the pursuit of abstraction can be taught, most are learned by
0SImosis.

232 12 Property-Oriented and Model-Oriented Abstraction

The present chapter — in a leisurely manner — discusses and formulates
main abstraction and modelling principles and techniques concerning: abstrac-
tion, property-oriented abstractions (an overview of essentials), model- versus
property-oriented abstractions, and model-oriented abstractions (an overview
of essentials).

In this chapter we only overview: the rest of these volumes will alternate
between giving examples of either of these two alternative styles of modelling
as well as of their fusion.

The present chapter thus begins a road of teaching specification which
— in view of the next five chapters — could as well be called programming
in discrete mathematics. This topic is primarily illustrated in the sections
on examples of y-based abstractions. These sections could as well be named
examples of y-based programming. They are Sects. 13.3 (x = sets), 14.3 (x =
Cartesians), 15.3 (x = lists), 16.3 (x = maps), and 17.2 {x = functions [i.e.,
as values]).

Programming in discrete mathematics, is a way in which we ourselves have
taught such courses as Algorithms and Data Structures.! For an early example
of what such “rewrites” mean, see Example 16.10.

12.1 Abstraction

In this section we shall cover such issues as modelling, abstraction and speci-
fication in general, and abstraction in the form of an essay.

12.1.1 The Issues

The problems to be cursorily addressed in this section are those of models,
modelling, abstraction and specification.

Modelling and Models

Modelling is the act of creating models, which include discrete mathematical
structures (sets, Cartesians, lists, maps, etc.), and are logical theories repre-
sented as algebras. That is, any given RSL text denotes a set of models, and
each model is an algebra, a set of named values and a set of named opera-
tions on these. Modelling is the engineering activity of establishing, analysing
and using such structures and theories. Our models are established with the
intention that they “model” “something else” other than just being the math-
ematical structure or theory itself. That “something else” is, in our case, some

'Thus we have, for example, had students “rewrite” many graph algorithms
in [161] into VDM-SL (rather than, as here, RSL).

12.1 Abstraction 233

part of a reality?, or of a construed such, or of requirements to?, or of actual
software?.

Some clarifying observations are in order. We write down models, i.e., we
specify them. So a model is represented syntactically by a specification. The
meaning of a specification, its semantics, is the model — actually a set of
models. The specification establishes, oftentimes, a great number of identifi-
cations between a perceived reality (which inherently is and remains elusive
and hence informal) and textual parts of the specification — and hence their
denoted mathematics. The model is not what it models, only a model of it!

Thus the term model is used in two, closely related senses: The mathe-
matical model denoted by the specification, and that this specification models

some phenomena.

12.1.2 Abstraction and Specification

Abstraction relates to conquering complexity of systems description through
the judicious use of abstraction, where abstraction, briefly, is the act and
result of omitting consideration of (what would then be called) details while,
instead, focusing on (what would therefore be called) important facets.

That is, some systems may be thought of as being complex. Many would
say that for example (i) the domain of railway systems is complex; or that (ii)
the set of diverse requirements for a number of software packages for (subsys-
tems of) the railway domain is complex; or that (iil) actual software systems
that cover a reasonably diverse span of computing system-supported railway
operations is complex. And, indeed, some descriptions of any of the above (i—
iii) may actually be very complex. Such complexity may be inherent, that is,
cannot be avoided. Or it may be unintentionally “put into” the descriptions.
In the latter case such unintentional complexity could be avoided, we claim,
by careful use of abstraction.

On the negative side we often see that descriptions are unnecessarily
twisted, long, confused, and thus gives the appearance that the subject being
described is complicated. Many such descriptions confuse issues of syntax,
semantics and pragmatic nature (hence Sect. 1.6.2). On the positive side, by
mastering abstraction we can often present the problem in a way that avoids
unnecessary complexity.

12.1.3 An Essay on Abstraction

Conception, my boy, fundamental brain-work,
is what makes the difference in all art

D.G. Rossetti: letter to H. Caine
2 as in domain modelling

3 as in requirements modelling
4 as in software design

234 12 Property-Oriented and Model-Oriented Abstraction

Since this is the first chapter where the concept of abstraction — in connection
with the modelling of some universe of discourse — is covered, we shall take
time and space for a brief essay, essentially by C.A.R. Hoare, on what is meant
by abstraction.

“Abstraction as a Fundamental Tool”

In the natural sciences one observes phenomena — and then one abstracts.
In programming we create universes, but first abstractly.

The following is from the opening paragraphs of C.A.R. Hoare’s: Notes on
Data Structuring [286].

Abstraction is a tool, used by the human mind, and to be applied in the
process of describing (understanding) complex phenomena. Abstrac-
tion is the most powerful such tool available to the human intellect.
Science proceeds by simplifying reality. The first step in simplification
is abstraction. Abstraction (in the context of science) means leaving
out of account all those empirical data which do not fit the particular,
conceptual framework within which science at the moment happens to
be working. Abstraction (in the process of specification) arises from
a conscious decision to advocate certain desired objects, situations
and processes as being fundamental; by exposing, in a first, or higher,
level of description, their similarities and — at that level — ignoring
possible differences.

We can rephrase the above: We consider those similarities which govern pre-
diction and control of future events, i.e., ‘meaning’, as being fundamental and
the differences as trivial. We have then developed — in the process of spec-
ification — an abstract concept to cover the set of objects and situations in
question. The first requirement in designing a program is to concentrate on
relevant features of the situation, and to ignore factors which are believed
irrelevant. Abstraction thus implies simplification. That is, we reduce, at each
stage of specification, the amount of information — of concepts and their
interrelation — which we must hold or manipulate, when considering that
situation. Abstraction is thus a relation. We choose the level of simplification
and reduction. Our choice is a crucial one. Consider the modelling of some
‘real world’” phenomenon.

Its concepts have been reduced to our concepts, i.e., summaries of the
characteristics that several specimen have in common. By denoting
similarity, our concepts eliminate the bother of enumerating qualities
and thus better serve to organise the material of knowledge. They are
thought of as mere abbreviations of the items to which they refer.
Any use transcending auxiliary, technical summarisation of factual
data has been eliminated as a last trace of superstition.

12.2 Property-Oriented Abstractions 235

The “lawlessness” of programming is exactly this: Our choice of concepts
becomes the tablets of commandments according to which the final program
behaves. Their affinity, or to a varying degree lack of any such, to the intended
problem is of no concern to the computer — and hence, by the mystique it
exerts on certain programmers, also of no concern to them.

12.2 Property-Oriented Abstractions

In Sect. 8.5 (on specification algebras) we introduced the topic of property-
oriented specifications. And in Sect. 9.6, in the subsection titled “Property-
Oriented Specifications” we expanded on this topic. It is not a topic to be
dispensed with in a few sections. In this section we shall review the idea of
property-oriented specification. Throughout these volumes we shall repeat-
edly give examples of property-oriented specifications. In the next section we
shall contrast the concept of property-oriented specification to that of model-
oriented specification. These are two main paradigms of specification.

In the following we shall cover three facets of property-oriented specifica-
tion. These are: (i) pragmatics: what is it that we wish to emphasise when
choosing the property-oriented specification paradigm; (ii) syntax: which are
the textual components of a property-oriented specification; and: (iii) seman-
tics: what is the meaning of a property-oriented specification.

The concept of pragmatics, in the context of descriptions, means roughly:
why a linguistic construct was used. The concept of paradigm, in the context
of descriptions, means roughly: the semantic meanings that are expressible
using the linguistic means at disposal — observing, in a sense, those that are
not expressible.® Thus the two concepts, in the context of descriptions, are
related.

12.2.1 Pragmatics of Property-Oriented Specifications

The adjective ‘property-oriented’ reveals the pragmatics: We choose a property-
oriented way of specification when we wish to emphasise (logical) properties —
observing that we are not presenting a specific (say a discrete) mathematical
model of what we describe. The borderline between property- and model-
oriented specifications is not a sharp one. In a loose sense we can speak of
“more or less property-oriented”, or “more or less model-oriented”, or “both

5Thus we speak of such programming paradigms as the (i) functional, (i) imper-
ative, (iii) logic and (iv) parallel programming paradigm. These four programming
paradigms individually emphasise (i) functions, their definition, composition and
application; (ii) variables, their declaration, initialisation, update, references (point-
ers) to them (that is, to storage cells), and the manipulations (storage and “chas-
ing” [linking]) of pointers; (iii) truth values, quantification, inference and resolution;
respectively (iv) processes, their definition, composition [“in parallel”, nondetermin-
istic external or internal choice], synchronisation and inter-process communication.

236 12 Property-Oriented and Model-Oriented Abstraction

property- and model-oriented”. There are situations, i.e., phenomena in a
universe of discourse,® which “beg” to be described, i.e., “call for” for being
described, or can most “tellingly” be described, in the property-oriented style,
others are best described in the model-oriented style, and yet some others in
a style “mixing” these!” It is a purpose of the entirety of these volumes to
characterise what these situations are. One main way of delineating when and
where the property-oriented specification style should be considered is along
the TripTych “divides” of (i) domain: Usually it is a good development choice
to try express a domain description primarily or solely through its properties.
(ii) Requirements: Usually it is a good development choice to try express re-
quirements primarily or solely through its properties. (iii) Software design:
Usually it is a good development choice to try express a software design de-
scription primarily or solely by presenting a model. Thus there really are
no strict delineations as to when and when not to use the property-oriented
specification style. And, as we shall often see, there will be many exceptions.

12.2.2 Syntactics of Property-Oriented Specifications

It is high time to give an example of a pure property-oriented specification. We
do that now, then we comment on the textual structure of a typical property-
oriented specification. The example is that of modelling requirements to a
simple telephone exchange system. First we present an informal description,
then a formal description. The informal description is here structured so as
to “fit” the formal description.

Example 12.1 Property-Oriented Telephone System Specification: The ex-
ample is that of a simple telephone exchange system.

Informal Documentation

We start the informal description by presenting a synopsis and its immediate
analysis:

e Synopsis: The simple telephone exchange system serves to efficiently honour
requests for conference calls amongst any number of subscribers, whether
immediately connectable, whereby they become actual, or being queued, i.e.,
deferred (or pending) for later connection.

5By universe of discourse we mean “that which we wish to describe”. Sometimes
our universe of discourse is the domain, some actual part of an actual world, some-
times it is requirements for some software to support actions in that world, and
sometimes it is that software, i.e., its design.

"The use of the specific words: “beg”, “call for”, “tellingly” will become obvious
from the following.

12.2 Property-Oriented Abstractions 237

e Analysis: The concepts of subscribers and calls are central: In this example
we do not further analyse the concept of subscribers. A call is cither an
actual call, involving two or more subscribers not involved in any other
actual calls, or a call is a deferred call, i.e., a requested call that is not
actual, because one or more of the subscribers of the deferred call is already
involved in actual calls. We shall presently pursue the concepts of requested,
respectively actual calls, and only indirectly with deferred calls.

Types and Values — Informal Description

The structure of the types of interest are first described. We informally de-
scribe first the basis types, then their composition. (i) Subscribers: There is
a class (S) of further undefined subscribers. (ii) Connections: There is a class
(C) of connections. A connection involves one subscriber, the ‘caller’, and any
number of one or more other subscribers, the ‘called’. (iii) Exchange: At any
time an exchange reflects (i.e., is in a state which records) a number of re-
quested connections and a number of actual connections (a) such that no two
actual connections share any subseribers, (b) such that all actual connections
are also requested connections, and (¢) such that there are no requested calls
that are not actual and share no subscribers in common with any other ac-
tual connection. (That is: The actual connections are all that can be made
actual out of the requested connections. This part addresses the efficiency
issue referred to above.) (iv) Requested connections: The set of all requested
connections for a given exchange forms a set of connections. (v) Actual con-
nections: The set of all actual connections, for a given exchange, forms a
subset of its requested connections such that no two actual connections share
subscribers.

In this example we shall also be able to refer to the exchange, later to be
named X, as ‘the state’ (of the telephone exchange system). We shall later have
a great deal more to say about the concept of state.

Types and Values — Formal Description

type
5,C, X

value
obs_Caller: C — S
obs_Called: C — S-set
obs_Requests: X — C-set
obs_Actual: X — C-set

subs: C — S-set
subs(c) = obs_Caller(c) U obs_Called(c)

subs: C-set — S-set
subs(cs) = U { subs(c) [c:C-c € cs }

238 12 Property-Oriented and Model-Oriented Abstraction

The overloaded function name subs stands for two different functions. One
observes (“extracts”) the set of all subseribers said to be engaged in a con-
nection. The other likewise observes the set of all subscribers engaged in any
set. of connections. We shall often find it useful to introduce such auxiliary

functions.

axiom
[1] Vc:C,3s:S -
[2] s = obs_Caller(c) = s ¢ obs_Called(c),

[3] VxX -
[4] let rcs = obs_Requests(x),

[3] acs = obs_Actual(x) in

[6] acs CresA

[7] ¥ed:Crc#cd Afec) Cacs=

[8] obs_Caller(c) # obs_Caller(c’) A

[9] obs_Called(c) N obs_Called(c¢') = {} A
[10] ~3cCecercs) acse

[11] subs(c) N subs(acs) = {} end

Let us annotate the above specification. [1] For all connections there exists a
subscriber such that [2] the subscriber is a caller, but not a called subscriber.
[3] For all telephone exchanges (i.e., telephone exchange states), [4-5] let us
observe the requested and the actual connections. [6] The actual ones must also
be requested connections, and [7] for any two different actual connections, [8]
their callers must be different, [9] the callers and the ones called cannot share
subscribers, and [10] there must not be a requested, but not actual connection
[11] which could be an actual connection. That is all such connections must
have some subscriber in common with some actual connection.

The last two lines above express the efficiency criterion mentioned earlier.

We can express a law that holds about the kind of exchanges that we are
describing;:

theorem
Vx:X -
obs_Actual(x)={} = obs_Requests(x)={}

The law expresses that there cannot be a non-empty set of deferred calls if
there are no actual calls. That is, at least one deferred call can be established
should a situation arise in which a last actual call is terminated and there is
at least one deferred call.

The law is a theorem that can be proved on the basis of the telephone
exchange system axioms and a proof system for sets.

12.2 Property-Oriented Abstractions 239

Operations:

The following operations, involving telephone exchanges, can be performed:
(i) Request: A caller indicates, to the exchange, the set of one or more other
subscribers with which a connection (i.e., a call) is requested. If the connection
can be effected then it is immediately made actual, else it is deferred and (the
connection) will be made actual once all called subscribers are not engaged in
any actual call. (i) Caller Hang: A caller, engaged in a requested call, whether
actual or not, can hang up, i.c., terminate, if actual, and then on behalf of all
called subscribers also, or can cancel the requested (but not yet actual) call. (iii)
Called_Hang: Any called subscriber engaged in some actual call can leave that
call individually. If that called subscriber is the only called subscriber (“left in the
call”), then the call is terminated, also on behalf of the caller. (iv) is_Busy: Any
subscriber can inquire as to whether any other subscriber is already engaged in
an actual call. (v) is_Called: Any subscriber can inquire as to the identities of
all those (zero, one or more) callers who has requested a call with the inquiring
subscriber.

Formal Description

First the signature:

value
newX: Unit — X
request: S x S-set - X — X
caller_hang: S - X 5 X
called_hang: S - X 5 X
is_busy: S -+ X — Bool
is_called: S - X — Bool

The generator function newX is an auxiliary function. It is needed only to
make the axioms cover all states of the telephone exchange system. In a sense
it generates an empty, that is, an initial state. Usually such empty state
generator functions are “paired” with a similar test for empty state observer
function.

Then we get the axioms:

axiom
Y x:X » obs_Requests(x)={} = x=newX(),
Y x:X,5,8":5,55:S-set «
~is_busy(s,newX()) A
s#s’ =
8 € ss = is_busy(s)(request(s’,ss)(x)) A
s & ss = is_busy(s)(request(s’,ss)(x)) = is_busy(s)(x),
... eteetera ...

240 12 Property-Oriented and Model-Oriented Abstraction

We leave the axiom incomplete. Our job was to illustrate the informal and
formal parts of a property-oriented specification, not, to do it completely.

12.2.3 Semantics of Property-Oriented Specifications

Continuing the line set out in Section 1.6.2, Example 1.7, and continued in
Sects. 6.5 and 6.7, we take as the basic assumption that the meaning of a
specification, i.e., any expression, is a set of models. Each single model “as-
signs” (ascribes) to any expression identifier a single value, but “looking” just
at the expression, it itself may stand for any of many values, at most as many
as there are models of the expression. We shall have much more to say on this
issue in these volumes.

12.2.4 Discussion
General

In Sects. 8.5 and 9.6 we started our treatment of property-oriented specifica-
tions. This section continues that treatment. In many parts of these volumes
we shall return to the issue of property-oriented specifications. The property-
oriented specification paradigm is a crucially central specification paradigm.

Why is the present section so short, when we have just stated the impor-
tance of property-oriented specification? To that we answer: Taken together
with the material in Sects. 8.5 and 9.6 on property-orientedness, not much
more methodologically need be said for that concept. And there will be many
examples of property-oriented specifications when we proceed in this and fol-
lowing chapters.

Principles, Techniques and Tools

Principles. Property-Orientedness: In initial phases and stages of develop-
ment choose a (primarily) property-oriented style of specification. Or, put dif-
ferently, when you wish to leave as much implementation freedom as possible
for subsequent phases, stages and steps of development choose a property-
oriented form of specification. .

Techniques. Property-Orientedness: Define sorts (rather than concrete types),
introduce (postulate) observer and generator functions, and relate sort values
and functions through axioms. Introduce auxiliary functions sparingly, i.e.,
introduce as few as possible, and then only those that reflect a concept in the
relevant universe of discourse. .

Tools. Property-Orientedness: Use, for example, the RSL type, value and
axiom constructs.]

12.3 Model Versus Property Abstractions 241

12.3 Model Versus Property Abstractions

Section 12.2 reiterated the basic ideas of property-oriented specifications. Sec-
tion 12.4 and Chaps. 13-17 will cover the basic ideas of model-oriented spec-
ifications. The present section will contrast the two specification paradigms.

12.3.1 Representation and Operation Abstraction

Two complementing concepts of representation and operation abstraction will
be introduced. These two complementing concepts of representation and op-
eration abstraction spring from the algebraic view that a data type is a set of
values and a set of operations on these. We treat these two abstraction prin-
ciples (representation and operation abstraction) in some isolation from one
another. This is possible when we are propagating a basically model-theoretic
approach wherein types and instances of objects are defined and constructed
separately from the definition of functions involving these objects. The rest
of this chapter will mostly treat the concept of model-oriented representation
and the thereby related model-oriented operation abstractions.

In an algebraic specification this separation between presenting models
of functions and the values they apply to and result in is not immediately
obvious since properties of sorts (i.e., the values) and of operations are defined
together, in an “intertwined” manner. The algebraic approach was — so far
amply — illustrated earlier in sections: Sects. 8.5, 9.6.5 and 12.2.2.

12.3.2 Property-Oriented Versus Model-Oriented Abstractions

Characterisation. By a property-oriented abstraction we basically mean a
specification which focuses on properties, i.e., is expressed logically. .

Discussion. Among the models satisfying a property-oriented abstraction
there may be some that involve such mathematical notions as sets, Cartesians,
sequences, maps and functions. .

Characterisation. By model-oriented abstraction we basically mean a spec-
ification in terms of such mathematical notions as sets, Cartesians, sequences
(i.e., lists), maps and functions. .

Discussion. A logic property may be satisfied by any finite or infinite num-
ber of mathematical set, Cartesian, sequence, map or function constructs,
including none. These mathematical entities are said to be models of the
property-oriented specification. .

242 12 Property-Oriented and Model-Oriented Abstraction
The Issues

Computers traditionally act by performing specific operations on concrete
values, i.e., are operationally concrete and model-oriented. Yet to properly
understand what is going on, or what is to go on, inside the computer, we
necessarily resort to logic. So there seems to be a dichotomy: How do we rec-
oncile the notions of property- and model-oriented? Computer programs often
must be detailed to a level (of code) which is no longer humanly understand-
able! So there seems to be a problem: How do we ‘refine’ from property- to
model-oriented? So we shall make our first examples of, and show some first
principles and techniques for presenting property- and related model-oriented
specifications.

Further Characterisations

We present and discuss some informal definitions.

Characterisation. A property-oriented specification expresses what is being
described in terms of abstract types (sorts) and logic expressions, including
axioms. .

Discussion. Emphasis is on properties, that is, on what, not on how. .

Characterisation. A model-oriented specification models what is being de-
scribed in terms of mathematical entities such as numbers, sets, Cartesians,
lists, maps, functions (including predicates) and processes. .

Discussion. Emphasis, in model-oriented abstraction, is still on properties,
but it is in terms of how a discrete or continuous mathematical construct
offers those properties. .

In model-oriented descriptions we therefore choose first to describe represen-
tation abstraction. In the vernacular, we mean the abstraction of what later
in the coding of software become data structures. Then we describe oper-
ation abstraction. Later in this section we present both representation and
operation abstractions in both property-oriented and model-oriented ways.

12.3.3 Definitions

Characterisation. By representation abstraction of [typed] values we mean
a specification which does not hint at a particular data (structure) model,
that is, which is not implementation-biased. .

Discussion. The “most abstract” representation abstraction occurs when we
specify a set of values, i.e., a type, as an abstract type, that is, as a sort. =

12.3 Model Versus Property Abstractions 243

Characterisation. We say that a specification of a (data or a function) value
is implementation-biased if it foregoes abstraction in favour of some, however
rudimentary, notion of realisation. .

Discussion. This last characterisation suffers from vagueness. First, our dis-
tinction between “data or function” value is not important. But the distinction
is of pedagogical nature: There really is no distinction. By data values “inside
the computer” we may think of such things as integers, or vectors of these, or
records over integers, character strings and Booleans, just to name a few ex-
amples. By function values we correspondingly think of instruction sequences,
i.e., of code. But since data values can serve as structures being interpreted
by an interpreter, the data value can be considered to represent a function.
And vice versa: A function value can be made to represent, say, an infinite
list of which one at most need inspect, in any invocation, a finite prefix. .

Characterisation. By operation abstraction of functious, i.e., of function
values, we mean a specification which does not hint at particular procedural
(i.e., algorithmic) means of computing function results. .

12.3.4 Representation Abstraction Examples

We exemplify the two specification styles: property-oriented and model-
oriented. At the same time we also exemplify the concept of representation
abstraction. In Sect. 12.3.5 we then exemplify the corresponding concept of
operation abstraction.

Example 12.2 Telephone Directory Types: We focus on the essential
properties of a telephone directory. We see these as that of the “directory
itself” and the “things we can do with it, i.e., to it”.

s A telephone directory is seen as an abstract document. Let us name the
class of all such telephone directory documents TelDir.

e It lists a finite set of subscribers, say by name, let us call their class for S.

o Each has a finite set of telephone numbers, Tn.

That’s all! .

Property-Oriented Representation

In property-oriented models, to repeat, we express properties in terms of sorts,
function signatures and axioms relating type values and functions. Sometimes
we need define some auxiliary functions. In contrast to classical algebraic spec-
ifications our function types allow concrete type expressions. In the examples
below these are mostly sets.

244 12 Property-Oriented and Model-Oriented Abstraction

Example 12.3 Telephone Directory: A Property Model, I: Given a telephone
directory, td, we can (thus) observe the set of all its subscribers and the set
of all its numbers.

Given a subscriber and a telephone directory we can observe the telephone
numbers of that subscriber. And given a telephone number and a telephone
directory we can observe the subscribers sharing that number.

In advance of a more systematic treatment in subsequent (set, list, map)
sections of this chapter we bring the formalisation below.

type TelDir, 5, Tn

value
obs_Ss: TelDir — S-set
obs_Tns: TelDir — Tn-set
obs_Tns: S — TelDir — Tn-set
obs_Ss: Tn — TelDir — S-set

Annotations: The keyword type “announces” that the identifiers TelDir, S
and Tn are type names. Since these types are not further explained we refer to
them as abstract types, or as sorts. (In property-oriented modelling we almost
exclusively use sorts.) TelDir shall stand for the set of telephone directories,
S for the set of subscribers and Tn for the set of telephone numbers.

The keyword value “announces” that the two identifiers obs.Ss and
obs_Tns denote specific values in the type denoted by the type expression
following these names. Since these types are both of the form A—B they
are both function values. Here they stand for observers that apply to tele-
phone directories and are intended to extract exactly the set (-set) of all
subscribers, respectively the set of all the telephone numbers which are listed
in the telephone directory — not necessarily all possible subscribers, respec-
tively telephone numbers. .

We continue this (property-oriented) example later when we cover the concept
of operation abstraction.

Model-Oriented Representations

In model-oriented specifications, to repeat, we focus on mathematical mod-
els of types. Typical mathematical models centre around such mathematical
entities as numbers, sets, Cartesians, lists (or sequences) maps, and functions.

Example 12.4 Telephone Directory: A Model-Oriented Model, I: In a tele-
phone directory we normally associate subscriber information (names etc.)
with one or more, i.e., a set of, telephone numbers. The association can be
mathematically modelled in a number of ways:

12.3 Model Versus Property Abstractions 245

type S, Tn
TelDir) = S 7 Tn-set
TelDirl = S & Tn*
TelDir2 = (S x Tn-set)-set
TelDir3 = (S x Tn-set)*
TelDird = (S x Tn*)*

Annotations: We continue modelling the subscriber and telephone number
types as sorts. But we now give several model-oriented, i.e., concrete type
proposals for the type of telephone directories.

TelDir(considers a telephone directory to be a map which to each sub-
scriber associates the finite set of zero or more telephone numbers that that
subscriber is known by.

TelDirl considers a telephone directory to be a map which to each sub-
scriber associates the finite list of zero or more telephone numbers that that
subscriber is known by.

TelDir2 considers a telephone directory to be a finite set of Cartesian pairs.
Each (pair) pairs a subscriber with the finite set of zero or more telephone
numbers that that subscriber is known by.

TelDir3 considers a telephone directory to be a finite list of Cartesian pairs.
Each (pair) pairs a subscriber with the finite set of zero or more telephone
numbers that that subscriber is known by.

Finally, TelDir4 considers a telephone directory to be a finite list of Carte-
sian pairs. Each (pair) pairs a subscriber with the finite list of zero or more
telephone numbers that that subscriber is known by. .

Given the choice between models we may raise a number of questions. Which
of the above many possibilities should we choose? Which one of the above
“is most abstract”? The answer to both questions is: that depends on the
operations we wish to define on telephone directories. We will later return to
this question, albeit in other contexts.

How is the property-oriented specification of the telephone directory,
TelDir, related to, for example, the model-oriented specification, TelDirQ?

Example 12.5 Telephone Directory: Property- Versus Model-Orientedness:
In this example we indicate (by ~) an answer, one amongst many possible,
by also defining, for the model-oriented, i.e., the concrete, types the abstract,
postulated observer functions of the property-oriented model.

type

TelDir0
relations: obs_Ss ~ extract_Ss0, obs_Tns ~ extract_Tns0
value

246 12 Property-Oriented and Model-Oriented Abstraction

extract_Ss0: TelDir0) — S-set
extract_SsO(td) = dom td

extract_Tns(: TelDirQ) — Tn-set
extract_Tns0(td) = |J rng td

extract_Ss0: Tn — TelDir() — S-set
extract_SsO(tn)(td) = { s | s:5S » s € dom td A tn € td(s) }

extract_Tns0: S — TelDir0 — Tn-set
extract_Tns0(s)(td) = td(s) pre s € dom td

Annotation: With the model-oriented, i.e., the concrete, type definition of
TelDir we can therefore define the observer functions. dom td expresses the
set of definition set elements of the map td, and rng td expresses the set of
range (i-e., codomain) elements of the map td. The |J operation® represents
distributed union, i.e., an operation that applies to a set of sets and yields
“their” union. .

The two subexamples, the property-oriented and the model-oriented repre-
sentations of Examples 12.3 and and 12.4 (with Example 12.5 relating them),
illustrated some basic techniques used in property-oriented, respectively in
model-oriented specifications: sorts (or abstract types) versus concrete types,
and observer functions versus explicitly defined (extraction) functions. The
two parts of the continuation of the telephone directory example given be-
low will further illustrate differences between property- and model-oriented
specifications.

12.3.5 Operation Abstraction Examples

Now we cover operation abstractions relating to the two representation ab-
stractions of Example 12.3 and and 12.4’s telephone directory example. In
the vernacular: Operation abstraction is an abstraction of what later in the
coding of software become subroutines (procedures, functions).

Example 12.6 Telephone Directory Operations: Property-Orientedness: We
define the following operations on telephone directories:

empty: Create an initial and empty telephone directory.
enter: Add a new subscriber’s telephone number(s) to a telephone direc-
tory.

e is.in: Check whether a (potential) subscriber is in a telephone directory:
true or false?

8The prefix | operation is not a proper operator of the specification language
RSL, but could easily be.

12.3 Model Versus Property Abstractions 247

» look_up: Look up a subscriber’s telephone number(s).
® delete: Remove a subscriber from a telephone directory.

Property-Oriented Specification

First we show a property-oriented specification — one that expresses proper-
ties in terms of simple predicate and (algebraic) equational axioms.

type
S, Tn, TelDir
value
empty: — TelDir,
is.empty: TelDir — Bool,
enter: S x Tn-set x TelDir = TelDir
pre enter(s,tns,td): tns # {} A ~is_in(s,td),
is_in: S x TelDir - Bool
look up: S x TelDir = Tn-set
pre look_up(std): is_in(s,td),
delete: S x TelDir = TelDir
pre delete(s,td): is_in(s,td)
axiom
forall s,s":S, tns:Tn-set, td,td:TelDir e
is_empty (empty()),
~is_empty(enter(s,tns,td)),
~isin(s,empty()),
is_in(s,enter(s,tns,td)),
s # §' = is_in(s,enter(s',tns,td)) = is_in(s,td),
look up(s,enter(s,tns,td)) = tns,
s # 8' = look_up(s,enter(s’,tns,td)) = look up(s,td).
delete(enter(s,tns,td)) = td
s # s' = delete(s,enter(s',tns,td)) = delete(s,td).

Annotations: First we present the signature of the empty, is_empty, enter, is_in,
look_up and delete values.

The first, empty, designates a constant (total) function; empty() designates
the empty telephone directory. The remaining also denote functions. Partial-
ity of these is explained wrt. the pre-conditions that must be satisfied for a
function application to be defined. The set of telephone numbers entered for
a subscriber must be non-empty and the subscriber must not already be in
the telephone directory. In order to look_up or delete the phone numbers of a
subscriber that subscriber must be in the directory.

Then we give the axioms further defining the properties of these functions.
An empty telephone directory is_ indeed empty. A telephone directory into
which at least some subscriber has been entered is not empty. No subscriber

248 12 Property-Oriented and Model-Oriented Abstraction

is-in an empty directory. A subscriber which has been entered into a directory
is_in that directory. Whether a subscriber, s, is in a directory, which is the
result of having entered another subscriber, s’, in a directory td, is the same
as whether subscriber s is in td, and so on for look_up and delete. .

We refer to empty, enter and delete as generators, and to is_.empty, is_in and
look_up as observers. By means of the empty value and the enter generator
function we can construct all values in TelDir. Therefore we define axioms
for each of the observers — sometimes in terms of the generators. The issue
of whether a set of axioms, as, for example, presented here, is consistent and
complete, i.e., whether they do not define a thing and its opposite and whether
it defines all the things we wish to have defined, will not be dealt with here.
Instead we refer to standard texts on logic [136,153,210,235,259,362,372,457]
and on Algebraic Semantics [43,208,209, 249, 297].

Model-Oriented Specification

After the initial property-oriented specification we now show a model-oriented
specification — one that models operations explicitly.

Example 12.7 Telephone Directory Operations: Model-Orientedness: The
signatures are as for the property-oriented axiomatic specification of the oper-
ations, except that these now apply to values of the concrete, model-oriented
type TelDirQ, and not to values of the abstract, property-oriented sort TelDir.

type
TelDir0
value
empty() =[]
is_empty(td) = td = []
enter(s,tns,;td) = td U [eitns] pre s € dom td
is _in(s,td) = s € dom td
look_up(s,td) = td(s) pre s € dom td
delete(s,td) = td \ {s} pres € dom td

12.3.6 Discussion
General

Previously we treated property-oriented specification in isolation (cf. Sect. 12.2).
In this section we contrasted property-oriented specifications and model-
oriented specifications. What preliminary conclusions can be drawn? Well,

12.3 Model Versus Property Abstractions 249

the ones we can draw are rather superficial. As later examples will show,
those of Examples 12.3 and and 12.4 (even with Example 12.5 relating them),
respectively Examples 12.6 and 12.7, are too inconclusive.

But we can say this: A sort (that is, an abstract type) specification, i.e.,
a property-oriented model, sometimes is “unique” in the sense that its types
and the structure constraining axioms over these can basically only be ex-
pressed in one way given the basic “ingredients” (as here S, Tn and TelDir).
On the other hand, a model-oriented specification of “the same”, now con-
crete, types leaves the developer many choices, cf. TelDirQ, TelDirl, TelDir2,
TelDir3, TelDir4. Somehow it seems easier to say: The abstract type, i.e., the
sort, definition is the most abstract one, the one that is less biased.

And then, in the pair of paired examples, Examples 12.3 and 12.4, respec-
tively Examples 12.6 and 12.7, as will indeed be the case in rather many, if
not most examples, the operation definitions were “longer” for the property-
oriented model than for the model-oriented model. But one should not be lured
by the usual brevity of functional operation model-oriented specifications.

The property-oriented axioms both defined the properties of the sorts as
well as of the operations, and rather explicitly, we think, express the value and
operation properties. As such, property-oriented axioms serve well in proofs
of other properties.

The model-oriented specification separated the specification of types (and
their values) from the specification of operations. The concrete type defini-
tions imply many properties. These concrete type properties are then found
axiomatically expressed in one place: namely where the specification language
defines those concrete types (of sets, Cartesians, lists, maps, etc.).

The model-oriented operation definitions, although claimed abstract, could
be claimed to “bury” operation properties in the specific, almost “algorithmic”
use of specification language constructs, especially the many set, Cartesian,
list, maps, etc., operators. Yet the brevity of model-oriented operation speci-
fications and, when used properly, their abstractness, often makes developers
select, model-oriented specifications in favour of property-oriented specifica-
tions.

So, it is too early to “call the game”, that is, to say anything definite.

Specific: “What’s the Difference Anyway?”

In Example 12.3 we illustrated some observer functions (i.e., observers). They
generally apply to values of property-oriented defined abstract types, i.e.,
sorts, but yield values of model-oriented concrete types (i.e., sets).

So: “what is the difference anyway? ” Very simply: Instead of defining
the sorts as consisting “exactly” of the model-oriented components as sug-
gested by the observers, we leave the (base, the “interesting”) sorts further
unspecified. Doing so allows us, later, to join additional observers to the base
sorts. We can keep on doing so, as early as from domain descriptions, through

250 12 Property-Oriented and Model-Oriented Abstraction

requirements prescriptions until software design specifications. This ability
leaves the software designer the greatest degree of “freedom”.

12.4 Model-Oriented Abstractions

This section serves as a prelude to the next six chapters (Chaps. 13-18).

12.4.1 Ultrashort Overview of the Next Six Chapters

In the next six chapters we cover a number of model-oriented representation
and operation abstraction techniques and tools based on:

s Sets Chap. 13 e Maps Chap. 16
e Cartesians Chap. 14 e Functions Chap. 17
e Lists Chap. 15 s Types Chap. 18

In doing so we shall extend the RSL type concept of our primary abstract
specification language RSL. Chapter 18 will summarise the RSL type concept.
The next six chapter topics will, at the same time, introduce a not inconsid-
erable number of new RSL language constructs. We have chosen this style of
presenting the specification language: commensurate with the pragmatic need
for their use in abstraction and modelling — rather than a pedantic style of
RSL “reference manual” [236]. Later chapters and sections will augment what
we say in the immediately upcoming six chapters. This is because we have
decided to tie the introduction of language constructs, whether from RSL or
other specification languages, to a conceived need for their use.

12.4.2 Models and Models
Models of Property-Oriented Specifications

Section 12.2.3 outlined the semantics of property-oriented specifications. It
was said, then, that the meaning — of what has been, or is being, written
down as a property-oriented specification — is a set of models. By that we
meant: Either the specification that has been or is being written down has
no interpretation (the set of models is empty), or there is exactly one model,
or there is a definite or indefinite set of such models. By ‘model’ we then
meant, and shall continue to mean, an interpretation in terms of such con-
structive mathematical things as Booleans, numbers, characters, text strings,
sets, Cartesians, lists, maps and even general functions (in the sense of A-
functions).

12.4 Model-Oriented Abstractions 251
Models of Model-Oriented Specifications

Property-oriented specifications are expressed as axioms, i.e., logically. So
property-oriented specifications really give no explicit hint at the models they
might denote! Model-oriented specifications are expressed “directly”: In terms
of the mathematical things they are supposed to “be”: numbers, characters,
text strings, sets, Cartesians, lists, maps and even general functions (in the
sense of A-functions). So model-oriented specifications give all possible — i.e.,
rather explicit — hints at the models they are meant to denote, hence the
name of this type of specification!

12.4.3 Underspecification
The Issue

Characterisation. By an underspecified identifier we mean one which for
repeated occurrences in a specification text always yield the same value, but
what the specific value is, is not knowable. .

Example 12.8 Underspecification (Abstract): The identifier a in:

value a:A
. a..a..(a=a) ..

is underspecified. The second line of text ... a ... a ... (a = a) ..., has the same
value for a in all occurrences, and hence the test for equality always yields
true.

An example of an underspecified function is:

value
is_prime: Nat — Bool
is_prime(n) = n=1V (n>2 A ~3ij:Nat = i>1 A j>1 = ixj=n)
f: Int —+ Nat

axiom

Y i:Int « is_prime(f(i))

f is specified, to some degree (its type is given). But it is underspecified. An
infinity of fs satisfy the axiom, namely all those functions that when applied
to any integer generate a prime number! The is_prime predicate is uniquely
specified (i.e., is deterministic). .

Why Underspecifications?

The simple answer to the “question” above is: Phenomena of the real world

(i.e., some domain) are not completely specifiable. If developing a domain
description into a requirements prescription, and when refining requirements

252 12 Property-Oriented and Model-Oriented Abstraction

prescriptions into software designs, the software developer, in agreement with
the client ordering the software, is free (at an appropriate stage) to remove
underspecification.

12.4.4 Determinism and Nondeterminism
Deterministic Expressions

A piece of specific, say RSL, text may evaluate to one value, or it may evaluate
to any one of several values.

Example 12.9 A Deterministic Expression (Abstract): Consider the follow-
ing specification:
value

f: Unit — Nat, f() = 7

Function f is deterministic: Always, when invoked, f() returns a predictable
result. When invoked multiple times, at various points in some specification
text:

o £ o £ L)

the resulting value is always 7. .

The evaluation of f in Example 12.9 is that it has exactly one value.

Nondeterministic Expressions

Consider, in contrast, a slight modification of Example 12.9:

Example 12.10 A Non-deterministic Expression (Abstract): Let the speci-
fication now be:

let n:Nat » 5<n<9 in n end

The expression is nondeterministic. When invoked multiple times, at various
points in some specification text:

... let n:Nat-5<n<9 in n end ...
let n:Nat*5<n<9 in n end ...
(let n:Nat+b<n<9 in n end =
let n:Nat+5<n<9 in n end) ...

the resulting value is any one of 6, 7 or 8! In the first line above the expression
value may be 8; in the second line the expression value may be 6; and in
the third line the expression value may be 7; whereas in the fourth line the
expression value may be 8. Sometimes the equality between lines three and
four may yield true, and sometimes false. .

12.4 Model-Oriented Abstractions 253

The evaluation of f in Example 12.10 is that it has three possible values.
Which one is selected — for various invocations of f — is not predictable: It
is nondeterministic.

12.4.5 Why Loose Specifications?

Characterisation. By looseness of a specification we mean a specification
which features elements of underspecification or nondeterminism. .

The question is now clear enough, given Examples 12.8-12.10. An answer
need be considered. It is not the first, and it will not be the last time, in these
volumes, that we consider underspecification and nondeterminism.

An answer, one that shall is for the time being, but one that will be elab-
orated upon, again and again, in these volumes, is as follows: In the world
of specific, real-life, actual domains, “things” are not deterministic. Human
behaviour is underspecific and nondeterministic, yet we shall have to model
human behaviour! Behaviour, even of a number of concurrently operating
production processes, is not predictable: Slight deviations from mechanical
measurements, even though within tolerances, may cause deviations in pro-
duction processing times. As a result, two or more production machines may
start and/or end their processing before and/or after one another. Yet our
production must usually be made robust, and must lead to reasonably pre-
dictable products irrespective of such underspecificity and nondeterminism.

Any realistic, abstract specification language must therefore, we claim, fa-
cilitate the “free and easy” expression of underspecificity and nondeterminism.
It is, in general, the underspecificity that leads to multiple models. In the next
Chaps. 13-17 — where we examine the use of the mathematical structures
of sets, Cartesians, lists, maps and functions — we shall therefore basically
assume that the denotation of any expression is a set of models.

12.4.6 Discussion
General
Ordering of Mathematics

We have briefly listed references to the next six chapters on sets, Cartesians,
lists, maps, functions and types. We have chosen to present these mathemat-
ical structures in the order listed: sets, which are considered the most basic
mathematical structure in our context, then Cartesians, then lists, etc. Each
chapter has one or two main examples. Because of the order in which we in-
troduce the mathematical structures we have tried to have the examples make
use only of such (mathematical) structures (i.e., types) as have already been
introduced at the point of the examples. This means that some examples,
certainly those in the earlier sections, may seem a bit contrived and not very
abstract. Yet they all model something!

254 12 Property-Oriented and Model-Oriented Abstraction
The RSL Language Constructs

In synchrony with the introduction of the mathematical structures (of sets,
Cartesians, lists, maps, functions and types) we introduce the corresponding
abstract data types of RSL, or, for that matter, VDM-SL or Z. And we like-
wise introduce a number of other RSL (etc.) language constructs: type union
(A|B|...|C) and subtypes ({|a:Aswf_A(a)|}), McCarthy Conditionals (case e
of pl—el, p2—¢€2, ..., _—en end), and thereby the notions of patterns and
their implied bindings. The chapter on types (Chap. 18) introduces further
RSL language constructs: variant definitions (A == B|C|...|D), records with
constructors and destructors (B == mk_BRec(u:U,v:V,... w:W)), and so on.

12.5 Principles, Techniques and Tools

Commensurate with Sect. 1.5.1’s introduction of methods espousing princi-
ples, techniques and tools the next six chapters as well as the rest of these
volumes will then enunciate such principles, techniques and tools as they here
relate property-oriented versus model-oriented specifications.

For the present chapter we now present its relevant methodological con-
cerns.

12.5.1 Property-Oriented Versus Model-Oriented Specification?
When Property-Orientation?

Principles. Property-Oriented Specification: Property-oriented specifica-
tion is chosen in the earliest phases and stages of development. That is,
when, in a sense, the least is known about what is being described. Typi-
cally, property-oriented specification is chosen for the earliest stage of domain
description, or the earliest stage of requirements prescription. By presenting
a property-oriented specification one is telling the reader: This specification
has made no design choices as to data and operation representation. .

‘When Model-Orientation?

Principles. Model-Oriented Specification: Model-oriented specification is
chosen when commencing design — i.e., in the late phases and stages of de-
velopment. That is, when, in a sense, sufficient is known about what is being
specified to commit concrete data and operation representation. Typically,
model-oriented specification is chosen for the later stages of requirements pre-
scription as well as for software design specification. .

12.5 Principles, Techniques and Tools 255
12.5.2 Property-Oriented Specification Style

Techniques. Property-Oriented Specifications: The basic specification com-
ponents of a property-oriented specification are those of sorts, i.e., abstract
types of function signatures of observers and generators and of axioms relating
values of sorts and operations.

scheme POS =
class
type
AB,..,C,PQ, .. R
value
obs P: A -5 P,
obs_Q: B — Q,

obsR: C —» R,
make A: P x ... 5> A
make B: Q x ... = B

make C: R x ... = C
axiom
Y a:B, b:B, ..., ¢:C, p:P, ¢:Q, ..., n:R
Ei(a,b, ..y, D, @y ooy T)
Ea(a, by ey P Gy ooy 1)

gm(a7 b7 ety c7p’ q7 ""r)
end

In the above conceptualised, i.e., illustrative, generic but not very specific
schema, named POS (for property-oriented specification), a class has been
hinted at.

As types, it only has abstract types, i.e., sorts A, B, ..., C, P, Q, ..., and R.

It has some observer functions (typically named: obs_T, where T is one of
the type names). The observer functions apply to sort values and yield values
of type sorts, or simple sets, Cartesians, lists, etc., but this is not shown.

It has some generator functions (typically named: make_T, where T is one
of the sort names). Typically, when only relying on sorts one need define
initial values for some of these. This is expressed through the use of suitable
generator functions. (One for each type on initial value.) And one must define
observer functions which observe whether values of given types are initial.
This is expressed through the use of suitable observer functions.

Property-oriented specifications, typically, have some axioms. The sche-
matic expressions &£;(a,b, ..., ¢, p, q, ...,r) stand for some predicate. There may
be several such. Here m is hinted at. They need not all involve all of the
quantified sort values. Some &;(a, b, ...,¢,p, ¢, ...,7) may be simple terms usu-

256 12 Property-Oriented and Model-Oriented Abstraction

ally involving initial values. Some &;{(a,b,...,c,p,4q,...,r) may be equational:
gjké () = g]'kr () or gjkl () = gjkr () . n

Blending Specification Styles

Oftentimes we find it convenient to use both abstract and concrete types, i.e.,
sorts and defined types (sets, Cartesians, lists, maps, etc.) in what is essentially
still a property-oriented specification. And often we find it convenient to use
both property-oriented and model-oriented function definitions, that is, only
partially using axioms.

12.5.3 Model-Oriented Specification Style

Techniques. Model-Oriented Specifications: The basic specification com-
ponents of a model-oriented specification are those of defined, i.e., concrete
types, of function signatures of analytic and synthetic functions, and of their
definition.

scheme MOS =
class
type
A=_.
B=..

C=..

value
f: ARG; — RES;
f(argy) = By (argly)
g: ARG, — RES,
glargy) = By(argy)

h: ARGh - RESh

h(argy) = Bp(argly)
end

In the above conceptualised, i.e., illustrative, generic but not very specific,
schema, named MOS (for model-oriented specification), a class has been hinted
at. It has only defined types, i.e., concrete types. (What they are has not been
shown. If composite, they could be set, Cartesian, list, map, etc., types.) And
it has a number of function definitions: f,g,...,h. Each is given a signature:
ARG; — RESy, etc., where ARG, and RES; are type expressions — usually
involving Cartesians and functions. And each is given a definition: g(argy) =
Bg(argly), etc. Here arg, is a list of formal parameter, i.e., argument identifiers.
and B, (argl,) is an RSL expression, that is, a function definition Body in which
the argument identifiers occur free. .

12.5 Principles, Techniques and Tools 257
Blending Specification Styles

We sometimes find it convenient to both use concrete and abstract types, i.e.,
defined types (sets, Cartesians, lists, maps, etc.) and sorts in what is essentially
still a model-oriented specification. And we sometimes find it convenient to
both use model-oriented and property-oriented function definitions. Thus you
may find both axioms and pre/post-specifications also in a model-oriented
specification.

12.5.4 Implicit and Explicit Functions

Above we have made a distinction between observer and analytic functions,
and between generator and synthetic functions.

The distinction is purely academic, that is, it is one of pragmatic conve-
nience: the notion of observer and generator functions is — in our presentation
— a notion that is related to property-oriented specification(s). Whereas the
notion of analytic and synthetic functions is a notion that is related to model-
oriented specifications. Pairwise, observer and analytic functions are really
the same: The former are postulated, and arise out of their signature and the
axioms, whereas the latter can be explicitly defined. Pairwise, generator and
synthetic functions are really the same: the former are postulated, and arise
out of their signature and the axioms, whereas the latter can be explicitly
defined.

12.5.5 No Confusion, Please!

You can’t have your cake and eat it too
You can’t eat your cake and have it too®

Principles. Not Confusing Property-Oriented and Model-Oriented Specifica-
tions: As the old proverb expresses: You cannot both define types concretely,
say:

type
B,C,D
A=BxCxD

and postulate observer functions:

value
obs B: A — B, obs_.C: A — C, obs.D: A —» D.

“From Heywood’s A Dialogue Conteynyng Prouerbes and Epigrammes, 1562:
“Wolde ye bothe eate your cake, and haue your cake?”. John Keats quoted it as
Eat your cake and have it” at the beginning of his poem On Fame in 1816. Franklin
D. Roosevelt borrowed it in that latter form for his State of the Union Address in
1940.

258 12 Property-Oriented and Model-Oriented Abstraction

But you have concrete, i.e., composite types (and hence values) and extract
components values, by explicitly defining functions:

value
extr B: A - B
extr B(a) =let (b, ,) =ainb end

Somehow it is like for a man to wear suspenders and a trouser belt: both,
at the same time. But, we claim, it is actually worse: It is confusing two
issues: abstract and concrete types, or, which is the same, abstract postu-
lated observer functions, and concrete precisely and deterministically defined
extraction functions. .

12.5.6 A Note on Observer Functions
First Principle: Postulation

What are observer functions? They are postulated. They cannot be defined;
they just “exist”.

When we postulate a transportation net, N, and from that we postulate
that we can observe segments and connections (e.g., street segments and street
intersections), S and C, then we are claiming that these observer functions
obs Ss: N — S-set and obs_.Cs: N — C-set exist. Certainly, in the domain,
i.e., in the reality of street nets, we can, with our own eyes perform these
observations. So, observer functions are not defined: “They just exist”. But
observer functions are bound by constraints. We use axioms to express those
constraints.

To say that observer functions are postulated “begs” an answer to the
question: By what means can I record the observation? That is: if I cannot
define an observer function then how can I compute its value for a given
argument? The answer is simple, and it ought be simple: If the thing being
observed is a phenomenon, i.e., something that is physically manifest, then
Go look at that thing, and point out (“measure”) its observable parts. If the
thing being observed is a concept, i.e., something that only exists in our mind
then Postulate that thing and claim its parts!

Second Principle: No “Self-reference”

Take another example: When we postulate a transportation net, N, and from
that we postulate that we can observe segments and connections (for example,
street segments and street intersections), S and C, would it not be nice if we
could also, from segments [connections] observe the connections [segments] to
which they “attach”? It might be nice, but it would lead to paradoxes, or at
least, what we would call undesirable infinite recursive descents!

Let us argue this, but in more generality: Let the following abstract ex-
ample be given:

12.5 Principles, Techniques and Tools 259

type
A B
value
obs_Bs: A — B-set
obs_,A: B — A
axiom

VaA«VbBeb € obsBs(a) = obs_A(b) = a

Now what do we mean? It seems we mean that all of a:A is somehow contained
in every b:B observable in a:A. But then, which are the bs observable in that
contained a? The situation is untenable.

So we edict: we cannot allow the predicate: V a:A « V b:B « b € obs_Bs(a)
= obs_A(b) = a. If we want as to be contained in bs, then they are not the as
from which the bs were observed. This resolution is tantamount to allowing,
in model-oriented terms:

type
A= .. x B-set x ...
B=..xAx .,

with the recursion of as inside bs ending with empty sets of bs.

Third Principle: Identification

When observing, or, in general modelling composite entities a need may arise
for identification of the subentities. This is typically the case in the following
(and other) situations.

[1] Set Element Identification

When what is being observed (i.e., modelled) most immediately is thought of
as a set:

type
A B
value

obs_Bs: A — B-set

then in order to distinguish the individual bs (in B) one is served well by
introducing an identification function obs_Bi, in fact two (just to make sure!):

type
A, B, Bi

value
obs_Bs: A — B-set
obs_Bis: A — Bi-set
obs_Bi: B — Bi

260 12 Property-Oriented and Model-Oriented Abstraction

axiom
YV a:A .
card obs Bs(a) = obs_Bis(a)
[or, which is the same:]
V b,b":B « {b,b'}Cobs Bs(a) A b#b’
= obs_Bi(b) # obs Bi(b’).

In fact, as we shall later see, it often “pays off” in modelling to model A as a
map from Bi identifier to “the rest of” B:

type

B, Bi

A=Bi - B
value

extract_Bis: A — Bi-set
extract_Bis(a) = dom a

We shall introduce maps in Chap. 16.

[2] Fized Structure Element Identification

When what is being observed (i.e., modelled) most immediately is thought
of as a structure of a fixed number of possibly distinct kinds (e.g., types) of
entities, then model as a Cartesian. The positions in the Cartesian then serve
to identify the components:

.. let (byc,....d) = ain £(a,b,c,...,d) end
We shall reintroduce Cartesians in Chap. 14.
[8] Sequence Element Identification

When what is being observed (i.e., modelled) most immediately is thought of
as a sequence, then model it as a list, and the indices into elements of the list
serve to identify.

We shall introduce lists in Chap. 15.

12.6 Exercises

Exercise 12.1. Property-Priented and Model-Oriented Abstraction. Try with
a closed book, i.e., without referring back to Page 231 or to Sect. 12.3.2 to

12.6 Exercises 261

formulate our definitions of abstraction, property-oriented abstraction and
model-oriented abstraction. Try formulate in a few words the main difference
between property-oriented abstraction and model-oriented abstraction .

Exercise 12.2. More on Abstraction. Try with a closed book, i.e., without
referring back to Sect. 12.1.3 (the Essay on Abstraction), to formulate the
basic ideas of abstraction.

Exercise 12.3. Representation and Operation Abstraction. Try with a closed
book, i.e., without referring back to Sect. 12.3.3, to formulate the basic model-
oriented ideas of representational and operational abstraction. Contrast this
with property-oriented abstraction’s treatment of representational and oper-
ational abstraction

L X

Exercise 12.4. & Property-Oriented and Model-Oriented Abstractions in the
Transportation Net Domain. We refer to Appendix A, Sect. A.1, Transporta-
tion Net.

Sketch two specifications of nets of segments and connections, and of comb-
ing (merging, adding) two nets into one net, and of projecting (removing,
subtracting) one net from another: one specification being property-oriented
(i.e., in terms of sorts, observer functions and axioms), another being model-
oriented (i.e., in terms of Cartesians and sets, and in terms of explicit function
definitions for merge and project).

Remember: Do not forget (as one usually does in a property oriented spec-
ification) to express all the things that do not change.

Sketch: It is early in this volume. So you can only sketch. You still do not
have at your disposal all the model-oriented types and their operations. But
try anyway!

Exercise 12.5. & Property-Oriented and Model-Oriented Abstractions in the
Container Logistics Domain. We refer to Appendix A, Sect. A.2, Container
Logistics.

Sketch type specifications of container ships and container storage areas,
and function definitions of unloading containers from a container ship to a con-
tainer storage area, and of loading containers from a container storage area
to a container ship: one set of specifications being property-oriented (i.e., in
terms of sorts, observer functions and axioms), another being model-oriented
(i.e., in terms of Cartesians and sets, and in terms of explicit function defini-
tions for unload and load). Assume the container unloads to be of one container
from a tier (or stack) top position on a container ship to a similar position in
a container storage area — where these positions are identified by bay, row
and tier (stack) indices. Similarly for loads.

Remember: Do not forget (as one usually does in a property oriented spec-
ification) to express all the things that do not change!

262 12 Property-Oriented and Model-Oriented Abstraction

Sketch: It is early in this volume. So you can only sketch. You still do not
have at your disposal all the model-oriented types and their operations. But
try anyway!

Exercise 12.6. & Property-Oriented and Model-Oriented Abstractions in the
Financial Service Industry Domain: We refer to Appendix A, Sect. A.3, Fi-
nancial Service Industry.

Sketch a type specification of banks, and function specifications of opening
and closing accounts, and of depositing into and withdrawing from accounts:
one set of specifications being property-oriented (i.e., in terms of sorts, ob-
server functions and axioms), another being model-oriented (i.e., in terms of
Cartesians and sets, and in terms of explicit function definitions for open,
close, deposit and withdraw).

Assume that the main entities of a bank are: a catalogue, clients, that lists
for each bank client their accounts; another catalogue, sharing, which for each
account lists the one or more account clients that share the account; and a
“state” which to each account associates the balance of that account.

Remember: Do not forget (as one usually does, in a property oriented
specification) to express all the things that do not change!

Sketch: It is early in this volume. So you can only sketch. You still do not
have at your disposal all the model-oriented types and their operations. But
try anyway!

13

Sets in RSL

e The prerequisite for studying this chapter is that you possess knowledge
of the mathematical concept of sets as introduced in Chap. 3.

e The aims are to introduce the RSL abstract data type of sets: the type, the
values, and enumeration and comprehension forms of expressing sets, to
introduce the RSL set operations, and thus to illustrate the “power” (i.e.,
expressiveness) of sets by illustrating simple and not so simple examples
of phenomena and concepts that can be modelled in terms of sets.

e The objective is to set the reader free to choose sets as models of phe-
nomena and concept entities, when appropriate, and to not choose sets
when it is not appropriate.

e The treatment is semiformal and systematic.

A Band of Musicians A Bevy of Beauties
A Bunch of Crooks A Crew of Sailors
A Flock of Geese A Fleet of Ships
A Gang of Outlaws A Group of People
A Herd of Cattle A Mop of Hair
A Pack of Dogs A Posse of Vigilantes
A Pride of Lions A School of Dolphins
A Suite of Bells A Swarm of Flies

A Volley of Arrows
— are all examples of Sets!

Characterisation. By a set we shall, loosely, understand an unordered col-
lection of distinct elements (i.e., entities) — something for which it is mean-
ingful to speak about (i) an entity being a member of a set (or not) €, (ii)
the union (merging) of two or more sets into a set (of all the elements of the
argument sets) U, (iii) the intersection of two or more sets into a set (of those
elements which are in all argument sets) N, (iv) the complement of one set
with respect to another set \, (v) whether one set is a subset of another set C

264 13 Sets in RSL

and C, or whether they are equal or not, =, resp. #, and (vi) the cardinality
of a (finite) set (i.e., how many members it “contains”) card, etc. .

We refer to Chap. 3 for a first, reasonably thorough introduction to the math-
ematical concept of sets. In the present section we shall focus on the means
for defining and using set types and sets in the predominant specification
language of these volumes: RSL.

13.1 Sets: The Issues

The idea to be illustrated in this section is that of the use of the discrete
mathematics concept of sets in abstracting domain, requirements and software
phenomena and concepts. Sets offer themselves as an abstraction when a
component, s, can best be characterised as a “variable sized” (“flexible”)! un-
ordered collection? {a,b,...,c} of otherwise “undistinguished”, but distinct
components — which one can inspect for element membership (€), to which
one can “add” elements (U), from which one can “subtract” elements (\), with
respect to which one can form other “common” (“shared”) sets (N), etc.

Sets will become proper components in the modelling of “zillions” of other
problems. But sets as the only model-oriented (i.e., as the only discrete mathe-
matical) “device” to “deploy” in abstraction, is a sign of too extreme frugality!
That is just our modest opinion.

We refer to the axiom system given for simple sets in Example 9.23.

This chapter is, as are Chaps. 13-17, built up as follows:

e The set data type (Sect. 13.2)
¢ Examples of set-based abstractions (Sect. 13.3)
¢ Abstracting and modelling with sets (Sect. 13.4)
e Inductive set definitions (Sect. 13.5)
e A review of set abstractions and models (Sect. 13.7)

There are many examples because before one can write good specifications
one must have read and studied many example specifications. While you may
not need to study all of them now, you can return to some later. The chapter
ends with a brief discussion.

'"We refer to Sect. 13.6 for an explanation of what really is meant when we say
variable-sized or vary.

*The foundational nature of sets is revealed in our inability to describe a set by
terms we all understand. Here we “fake” a characterisation by, instead, explaining a
concept of set by a concept of unordered collection. We could have tried aggregation
or structure. And we — and you — would have been no wiser!

13.2 The Set Data Type 265

13.2 The Set Data Type

We have already, in Example 9.23 covered the mathematical notion of simple
sets by presenting an axiom system for sets. We refer the reader to first recall
that definition.

13.2.1 Set Types: Definitions and Expressions

Let A stand for a type whose possibly infinite number of elements include
{al, azy...,0p, .- }

Types whose values can be considered finite, respectively finite or infinite,
sets of A elements can be defined using the suffix -set, respectively the -infset
type power set3) operators. See Fig. 13.2.1.

Types and Values

type examples
A {2,81,82,...;,8m .. }
F = A-set {3 {a}. {av2,8m), 3

S = Acinfset {{}, {a}, {av.a2,am}, ., {a1,82,..}}

Fig. 13.1. Examples

The type forming operator -set. applies suffix to a type expression, say A, and
forms the type of all finite subsets of A. The type forming operator -infset
applies suffix to a type expression, say 4, and forms the type of all finite as
well as possibly infinite subsets of A. The -set and -infset type operators are
akin to the power set operator on sets. Note that -set and -infset apply to
type expressions, whereas the power set operator (which is not offered in RSL)
applies to sets.

Example 13.1 A Simple Set Example: Let fact name the factorial function,
then

{fact(1),fact(2).fact(3) fact(4) fact(5),fact(6) }

expresses a simple set of six clement, the six “first” factorials! .

30ther forms of the power set operators are pA, BA (where B refers to Boole,
the Trish mathematician), or 9 A (where exponentiation of 2 is meant to be to the
power of the cardinality of the set A — which, in turn, is meant to designate the
number of different subsets of A, namely the number of elements of 5 A).

266 13 Sets in RSL

A-set and A-infset are set type expressions. F = A-set and S = A-infset are
set type definitions. One can see, using metalinguistic notation, i.e., mathe-
matical notation* (“outside” RSL), that:

[1] Bool-set = Bool-infset, and Nat-set C Nat-infset

Annotations: A is (assumed to be) a type name, i.e,, stands for a type, that is,
a set of values — which we do not presently define. The keyword -set when
applied suflix to a type name denotes the power set operation on a type and
makes the type expression A-set denote the type, i.e., the set, of all finite
subsets of the type, i.e., the set, A. A-infset correspondingly stands for the
(type, i.e., colloquially, the) set of all finite and (possibly) infinite subsets of
A. (There will only be the possibility of infinite subsets of A if A itself is an
infinite (type) set.) The type names F and S are then made to name these
respective sets by the respective type equations. A may be a ‘sort’, i.e., an
‘abstract type’ which has just been named but not given a model in terms of
something else, as has F and S. These latter are, in contrast, called ‘concrete
types’. The keyword type tells us that the definitions which follow are type
definitions.

13.2.2 Set Value Expressions

There are several forms of set valued expressions: enumerations, comprehen-
sions and operator/operand expressions.

Set Enumerations

There follows, in the right half of the above expressions, examples of enumer-
ated set expressions: an empty set, a singleton set, a finite set of m elements.
The use of ellipses (. ..) is metalinguistic, i.e., not part of our RSL notation. It
is used only to signal to you, the reader, that we wish to exemplify an arbitrary
set of m elements. If we were to enumerate a specific set of m (for example, for
m = seven) elements, then we would have to list all seven elements by their
names (or some expressions).

Sets are finite or infinite aggregations, collections, or structures of distinct
individuals. Sets are considered variable-sized, or flexible in that the number
of their elements may vary. Curly braces: “{”, “}”, and commas: “, are
set value forming. A set may contain no (i.e., zero) elements (the empty set
{}). Another set may contain just one element (singleton sets {a;}, {a;}, ...,
{ar}), and so forth. A given (say, finite) set, of course, has a specific cardinality
(number of elements). But one may form a set from two sets resulting in a
set with cardinality being the number of distinct elements in the two sets.
Or one may remove an element from a nonempty set, resulting in a set with
cardinality one lower.

“The metalinguistics of formula [1] is that we use the infix equality and the
proper subset operators (=, resp. C) between type expressions.

13.2 The Set Data Type 267

Let e, el, €2, ..., en® be expressions that deterministically or nondeter-
ministically evaluate to not necessarily distinct values (v, v1, v2, ..., vn) of
some type A, and let ei, ¢ be expressions which deterministically or nonde-
terministically evaluate to integer values, say vi, vj, then the following are
examples of set value expressions:

[1] {}, {e}, ..., {el,e2,....en}
[2] {ei..ej}

The above expressions, in [1], left to right, denote the single model of the
empty set of no elements; a set of models of singleton sets of one element values
(any value will do!), etc.; respectively a set of models of sets of not necessarily
n distinct element values, since some ei, g for different i,] may evaluate to
the same value. The range set expression (of line [2]) denotes a set of models
each being a (dense) set of integers lying in the range between, and inclusive,
vi and vj. If vi>vj, then the integer set is empty. For each model the above
expressions have a specific, determinate value. Notice, hence, our distinction
between denotations, in terms of models (set of mathematical structures), and
values, in terms of mathematical entities.

This is an important distinction — and it is to be kept in “vigilant” mind
throughout these volumes.

We call the above, [1-2], explicit enumeration of set values. We call the
second line example, [2], {ei..ej} an integer range expression. Later (para-
graph Set Comprehension in this section) we shall show an implicit enu-
meration of set values in the form of set comprehension (i.e., comprehended
set expressions). We use explicit set enumeration expressions when we wish
to explicate specific, always finite, and usually “small” sets. We use compre-
hended set expressions when we wish to implicitly specify (i.e., ‘implicate’),
possibly infinite, sets characterised by some predicate.

Set Value Operator/Operand Expressions

Sets come, in RSL, with the usual operations listed below. € is taken to stand
for a primitive, i.e., as an inexplicable operation, the set membership opera-
tion.

*In the rest of these volumes we shall use the following naming convention:
Identifiers starting with e (and often “suffixed” or indexed (subscripted) by some
alphanumeric characters) stand for expressions. Identifiers starting with v (and
often suffixed or indexed (subscripted) by some alphanumeric characters) stand for
values. Values are definite, in the sense that a value is a specific thing. Expressions
may be constant expressions, i.e., evaluate, in any context (and state) to one and
the same value, or expressions may be variable expressions, i.e., evaluate, in different
contexts (and states) to different values.

268 13 Sets in RSL

Set Operation Signatures and Ezamples

We explain the formulas and expressions of Fig. 13.2.2. The keyword value
tells us that the definitions which follow are value definitions. In all of the
below we assume that the operations, wherever applicable, apply to set val-
ues. The 13 lines that follow are extra- (or meta-) linguistic, i.e., outside
RSL. They are used here to present RSL set constructs. In particular they are
meant to express that there are 13 given (i.e., “built-in”) set operators: €,
the membership operator (is an element member of a set, true or false?); &,
the non-membership operator (is an element not a member of a set, true or
false?); U, the infix union operator (when applied to two sets expresses the
set whose members are in either or both of the t