

Texts in Theoretical Computer Science

An EATCS Series

Editors: W. Brauer G. Rozenberg A. Salomaa
On behalf of the European Association

for Theoretical Computer Science (EATCS)

Advisory Board: G. Ausiello M. Broy C.S. Calude
A. Condon D. Harel J. Hartmanis T. Henzinger
J. Hromkovic N. Jones T. Leighton M. Nivat
C. Papadimitriou D. Scott

D. Bj0rner

Software
Engineering 1
Abstraction and Modelling

With 38 Figures

4Q Spri ringer

Author Series Editors

Prof. Dr. Dines Bj0rner
Computer Science and Engineering
Informatics and Mathematical Modelling
Richard Petersens Plads
2800 Kgs. Lyngby, Denmark
bjorner@gmail.com

Prof. Dr. Wilfried Brauer
Institut fiir Informatik der TUM
Boltzmannstr. 3
85748 Garching, Germany
Brauer@informatik.tu-muenchen.de

Prof. Dr. Grzegorz Rozenberg
Leiden Institute of Advanced
Computer Science
University of Leiden
Niels Bohrweg 1
2333 CA Leiden, The Netherlands
rozenber@liacs.nl

Prof. Dr. Arto Salomaa
Turku Centre of
Computer Science
Lemminkaisenkatu 14 A
20520 Turku, Finland
asalomaa@utu.fi

Library of Congress Control Number: 2005936099

ACM Computing Classification (1998): D.l,D.2,D.3,R3,R4,G.2.0,K.6.3,H.l,J.l

ISBN-10 3-540-21149-7 Springer Berlin Heidelberg New York
ISBN-13 9-783-540-21149-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof
is permitted only under the provisions of the German Copyright Law of September 9,1965, in its current version,
and permission for use must always be obtained from Springer. Violations are liable for prosecution under
the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even
in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations
and therefore free for general use.

Cover design: KiinkelLopka, Heidelberg
Typesetting: Camera ready by the author
Production: LE-TeX Jelonek, Schmidt & Vockler GbR, Leipzig
Printed on acid-free paper 45/3142/YL - 5 4 3 2 10

Kari Skallerud Bj0rner

the best thing that ever happened to me

Caminante, son tus huellas
el camino, y nada mas;
caminante, no hay camino,
se hace camino al andar.
Al andar se hace el camino,
y al volver la vista atras
se ve la senda que nunca
se ha de volver a pisar.
Caminante, no hay camino,
sino estelas en la mar.

Walker, your footseps
are the road, and nothing more.

Walker, there is no road,
the road is made by walking.
Walking you make the road,

and turning to look behind
you see the path you never

again will step upon.
Walker, there is no road,

only foam trails on the sea.

Proverbios y cantares, 29
Campos de Castilla
Antonio Machado
Page 280 [31]

Proverbs and Songs, 29
Fields of Castilla

Page 281 [31], Translated by Willis Barnstone
Border of a Dream:

Selected Poems of Antonio Machado

Preface — to Vols. 1-3

This preface covers the three volumes of Software Engineering, of which this
volume is the first.

• Software engineering — art/discipline/craft/science/logic: Soft­
ware engineering is the art [326-328], discipline [194], craft [441], sci­
ence [245], logic [275] and practice [276] of
* synthesizing (i.e., building, constructing) software, i.e., technology,

based on scientific insight, and
* analysing (i.e., studying, investigating) existing software technology

in order to ascertain and discover its possible scientific content.

To succeed in this,

• Software engineering — abstraction and specification: Software
engineering makes use of abstraction and specification.
* Abstraction is used to segment development into manageable parts,

from high-level abstractions in phases, stages and steps to low-level
abstractions, i.e., concretisations.

* Specification records and relates all levels of abstraction.

Volumes 1 and 2 of the three-volume book cover abstraction and specification
in detail.

• Software engineering — the triptych: Software engineering composes
analysis of application domains with synthesis and analysis of requirements
(to new software) into design (i.e., synthesis and analysis) of that software.
Hence software engineering consists of
* domain engineering, which, as these volumes will show you, is a rich

field of many disciplines, etc.,
* requirements engineering, which, as we shall again see, in these

volumes, has many aspects and facets not usually covered in textbooks,
and

VIII Preface — to Vols. 1-3

* software design, with concerns of software architecture, component
composition and design, and so on.

Volume 3 of the book covers this triptych in detail.

• Software engineering — practical concerns: Software engineering,
besides, consists of many practical concerns: Project and product man­
agement; principles, techniques and tools for making sure that groups of
possibly geographically widely located people work effectively together, for
choosing, adapting, monitoring and controlling work according to one of
a variety of development process models; planning, scheduling and allo­
cating development resources (people, materials, monies and time); and
related matters, including cost estimation, legacy systems, legalities, etc.

We shall not be covering these management-oriented facets of software engi­
neering in this book.

• • •

Each chapter of this volume and its companion volumes starts with a synopsis.
An example — relevant for this preface — follows:

• Assumptions: You have taken this book into your hands since you are
interested in knowing about, and possibly learning a new approach to
software engineering.

• Aims: The main aim of these volumes is to introduce you to a new way
of looking at software: One that emphasises (I) that software engineering
is part of informatics, and that informatics is a discipline otherwise based
on (i) mathematics, (ii) the computer & computing sciences, (hi) linguis­
tics, (iv) the availability of the hard information technologies (computers
and communication, sensors and actuators) and, last but not least, (v)
applications. Furthermore (II) that informatics "hinges" on a number of
philosophical issues commonly known under the subtitles — epistemology,
ontology, mereology, etc.

• Objectives: To help you become a truly professional software develop­
ment engineer in the widest sense of that term, such as promulgated by
these volumes.

• Treatment: Nontechnical, discursive.

To develop large-scale software systems is hard. To construct them such that
they (i) solve real problems, (ii) are correct and pleasing and (hi) will serve
well in the acquiring organisation is very hard.

This series of volumes offers techniques that have proven (i) to make the
development of large-scale software systems much less hard than most current
software engineers find it, (ii) to result in higher-quality systems than normally
experienced and (iii) to enable delivery on time.

Thus we emphasise the software engineering attributes aimed at in this
series: Trustworthy and believable methods, higher-quality software products,

Preface — to Vols. 1-3 IX

higher-quality software development projects, and the personal satisfaction of
developers and acquirers, that is, the software engineers and their manage­
ment, respectively the users and their management. We aim at much less, if
any, frustration, and much more fascination and joy!

Reasons for Writ ing These Volumes

A number of reasons1 can be given for why these volumes had to be written:

• Formal techniques apply in all phases, stages and steps of software engi­
neering, and in the development of all kinds of software. But there was no
published textbook available that covered software engineering, such as we
shall later characterise that term, from a basis also in formal techniques
(besides other, "non-formal" bases).

• Formal development (that is, specification, refinement and verification)
books were more like monographs than they were textbooks, and they cov­
ered their topic from a rather narrow viewpoint: usually just specification
of software, that is, of abstract software designs and their concretisation.
Formal specification, in these volumes, applies not just to software, but
also to their requirements prescription, and, as a new contribution (in any
book or set of lecture notes), also to domain descriptions.

• The author of these volumes has long been less than happy with the way
in which current textbooks purport to cover the subject of software engi­
neering.
* "All" current textbooks on software engineering fail2 with respect to

very basic issues of programming methodology, in particular with re­
spect to (wrt) formal techniques. If they do, as some indeed do, bring
material on so-called "Formal Methods", then that material is typi­
cally "tucked away" in a separate chapter (so named). In our mind,
the interplay between informal and formal techniques, that is, between
informal descriptions and formal specifications, informal reasoning and
formal verification, and so on, permeates all of software engineering.
The potential of (using) formal techniques shapes all phases, stages
and steps of development. Classical software engineering topics, such
as software processes, project management, requirements, prototyping,
validation (not to speak of verification), testing, quality assurance &
control, legacy systems, and version control & configuration manage­
ment, these auxiliary, but crucial, concerns of software engineering,
can be handled better, we show, through a judicious blend of informal
and formal techniques. Needless to say, these volumes will redress this
"complaint".

1 Usually, when more than one "excuse" is given for some "mistake", none apply.
This series of volumes, however, is no mistake.

2With the notable exception of [240].

X Preface — to Vols. 1-3

* All current textbooks, in our mind, fail in not properly taking into
account the issue of the software developer not having a thorough un­
derstanding of the domain in which the software is to be inserted, that
is, the domain from which sprang the desire to have "that new soft­
ware" ! As mentioned above, a major new "feature" of our books is the
separation of concerns illustrated in the software development process
— when the developer initially spends much time and effort to under­
stand and document an understanding of the application domain.

* All current textbooks, in our mind, fail in not systematically, i.e.,
methodically, presenting principles, techniques and tools that "carry
through" and "scale up". By carry through I mean principles, tech­
niques and tools that are shown, by extensive examples, to cover all the
major phases, stages and steps of development. By scaling up I mean
principles, techniques and tools that can be applied to the largest-scale
software development projects.

* Some current textbooks, in our mind, fail the programming, that is, the
design issues completely. There is no assumption on any methodological
approach to the development of software from the point of view of
programming methodology.3

* Other current textbooks, in our mind, fail the stepwise refinement, that
is, the implementation relation development point of view.4

* And yet other current textbooks fail the design point of view.5

* Finally all current textbooks fail, we believe, in not properly inte­
grating the above, albeit more theoretical, points of view, with the
points of view of mundane, engineering issues such as (i) development
process models ("waterfall", "spiral", "iterative", "evolutionary", "ex­
treme programming", etc.), (ii) quality management, (ii) testing & val­
idation, (iv) legacy systems, (v) software re-engineering, and so on.

Shortcomings of These Volumes

The major shortcoming of the current set of three volumes is our all too brief
coverage of correctness issues, that is, of the verification (theorem proving,
model checking) of properties of single and pairs of (development-step-related)
specifications.

3By the programming methodology point of view we mean a view that concerns
itself with such issues as establishing invariants when specifying loops, as securing
proper programming abstractions in terms of routines (procedures, functions), etc.

4By the stepwise refinement point of view we mean the concern that abstractions,
even when informally expressed, are rendered into correct concretisations — when
expressed as code.

5By the design point of view we mean the programming concern for choosing
appropriate algorithms and data structures, for their justification and validation.

Preface — to Vols. 1-3 XI

Elsewhere, and where appropriate in these volumes, we explain why we
have not introduced substantial material on verification.

The reader, seeking this knowledge, is referred to an abundance of texts
(books, and articles in journals and in proceedings), or may have to wait till
we feel competent to write a textbook of sufficient generality on this topic.
Current texts are very much linked to a specific notational system (i.e., spec­
ification language).

• • •

Obviously we do not know all there is to know about how to develop all
possible kinds of software, and not all that we know is in these volumes. To
develop software, in general, takes a diverse range of techniques and tools.

Whatever special techniques and tools we cover, we cover them to some
non-trivial depth, but not to the depth that is sufficient for a professional
engineer in the relevant field. For example:

• Development of compilers: We cover quite a lot, but not all that is
necessary for the really professional compiler developer. We cover what
we believe all software engineers ought know. And we cover it in a way
that we find is sorely missing from all compiler textbooks. We refer to
Chaps. 16-20 of Vol. 2.

• Development of operating and distributed systems: We cover only
general principles and techniques of specifying concurrent systems.

• Development of embedded, safety-critical and real-time systems:
Basically the same coverage as for operating and distributed systems de­
velopment: We emphasise that Vol. 2 covers techniques for specifying
embedded, safety-critical and real-time systems. These techniques and
their underlying notations are those of Petri nets [313,421,435-437],
message [302-304] and live sequence charts [171,270,325], statecharts
[265,266,268,269,271], temporal logics [205,360,361,400,429] and the
duration calculi [537,538].

Chapter 28 in Vol. 3, Domain-Specific Architectures, will, however, go into
some depth, showing which principles, techniques and tools apply in the de­
velopment of translation systems (interpreters and compilers), information
systems (database management systems), reactive systems (i.e., embedded,
real-time and safety-critical systems), workpiece systems (worksheet systems),
client/server systems, workflow systems, etcetera. Our treatment in that chap­
ter is novel, and is inspired, strongly, by Michael Jackson's concept of Problem
Frames [310].

Thus we cover what we believe all software engineers, whatever their spe­
cialty is, should know. And we believe they should know far more than most
textbooks in software engineering offer.

As explained elsewhere, these volumes suggest that education and training
in the specialised fields mentioned above can follow after having studied Vol. 3.

XII Preface — to Vols. 1-3

And much of the textbooks of those specialised fields really, then, ought be
rewritten: be adapted to formal specification, and so on.

Methods of Approach

Our didactics seeks to go to the "roots of the matter". We see these roots
to be formed from basic understandings of such issues as (i) the linguistics
of "how to describe", (ii) the near-philosophical issues of "what to describe",
(iii) the linguistic, i.e., semiotic issues of pragmatics, semantics and syntax,
and (iv) the issues of constructing concise, objective formulations in terms
of mathematics, i.e., of using formal specification languages (and, in turn,
understanding their pragmatics, semantics and syntax — independent of the
pragmatics, semantics and syntax of the application phenomena).

Thus this book begins by exploring the above four issues. In Vol. 2 we
then take up this theme of semiotics (pragmatics, semantics and syntax) in
four separate chapters (Chaps. 6-9 inch).

Also this is new: Existing textbooks on software engineering completely
avoid any mention of these issues. For a modern, professional software engineer
to graduate from any reputable academic institution without a proper grasp
on these four didactic bases (i-iv) is, to this author, unthinkable! Alas! It is
today the rule rather than the exception: That they do not even see these
issues at all!

A New Look at Software

These volumes will provide the reader with a new way of looking at software
and at the process of developing software. They will provide the reader with an
altogether dramatically different approach to understand and to develop soft­
ware. That "new look" can perhaps best be characterised as follows: Software
is seen as intellectual artifacts, as the product of a rather intellectual process
of thinking (analysing), of describing (of synthesising) and of contemplating
(of reasoning). Software, as a product, has less material, quantitative measures
by which to be grasped (no cheaper, faster, smaller, etc., catchwords) than
it has intellectual, qualitative measures — such as affinity to application do­
main (it is, or is not, the right product), fitness for human use (computer-user
interaction), correctness (the product is, or is not, right), etc.

Grasping abstraction — a major issue of these volumes — affords any
developer a far better chance of getting the right product and the product
right than not grasping abstraction — even when these same people do not
use many of the formal techniques of these volumes. Most practicing software
engineers do not grasp abstraction. Yet software, by its very nature is and must
be abstract: When supporting the automation of what used to be human work

Preface — to Vols. 1-3 XIII

processes, the automating software is not "those human processes", it is only
a model, an approximation, an abstraction of them.

We wish to perpetrate a view of software development as something that
proceeds in phases, stages and steps of development and for which there are
now available clear techniques of relating these phases, these stages, these
steps to one another. Yet such development is hardly covered in standard
textbooks on software engineering. We wish to perpetrate a view of software
development where the specification of the phases, stages and steps can be
done formally, and where the relations can be formalised and, in cases where
warranted, can even be formally verified. This view has been possible, at least
in the small to medium, for at least 20 years. Yet such development is hardly
covered in standard textbooks on software engineering. We wish to further a
view of software development where the developers create, nurture and deploy
abstractions. Where the programmers at all levels take pride and have fun in
"isolating", as it were, beautiful abstractions and let them find their way into
programs. In the end these programmers let those abstractions determine
major structures of systems, and beauty: Simplicity and elegance, as felt by
users, arises! Such development is scalable to large systems. It is now possible,
manageable and affordable. It can be taught and it can be learned by most
academically trainable students.

Formal Techniques "Light"

Many practicing programmers abstain from and some academics express reser­
vations about formal reasoning6 or just formal specification.7

Our approach is a pragmatic one. We allow for a spectrum from systematic
via rigorous to formal development. By a systematic development we mean
one which specifies some of the steps of development formally. By a rigorous
development we mean one which expresses and formally proves some of the
proof obligations of a systematic development. By a formal development we
mean one which formally proves a significant majority of proof obligations as
well as other lemmas and theorems of a rigorous development.

In order to follow the principles and techniques of these volumes, we advise
going "light": Start by being systematic. Specify crucial facets — of your
application domain, your requirements and your software designs — formally.
Then program (i.e., code) from there!

It seems, from practice [155], that by far the most significant improvements in
correctness of software development accrues from being systematic. And these

6Example: Proving, in some mathematical logic, some lemma about program
properties.

7Example: Describing, in addition to informally, but concisely, some domain, or
prescribing some requirements, or specifying some software design formally, in some
formal specification language.

XIV Preface — to Vols. 1-3

volumes are primarily, possibly almost exclusively, focused on being system­
atic. Certain kinds of applications warrant higher trust, and it then seems
that being rigorous achieves the next higher step of believability. Finally, a
few customers are willing to accept today's rather high cost of formal develop­
ment: heart pacemakers, hearing-aid implants, hybrid controllers for nuclear
power plants, driverless metro trains, and the like.

Volume 3, Chap. 32, Sect. 32.2 discusses a rather large number of dogmas,
misconceptions and myths about so-called "formal methods". Section 1.5.3 of
this volume and Vol. 3, Chap. 3, Sect. 3.1 discuss why methods cannot be
formal, but that some techniques can.

The "Super Programmer"

Many practicing programmers and some academics believe strongly in the
unchecked individualism of the programmer: They are worried that having to
adhere to a number of method principles and formal techniques may squash
the creativity and productivity of "super programmers". We are not worried.
We have generated well over a 100 MSc thesis candidates. Most work in fewer
than eight software houses in Denmark. All follow, more-or-less, many of the
principles and techniques of these volumes. Most of them are super program­
mers.

The following has been expressed by other academics and most of my
former students and likewise those of my colleagues around the world who
similarly teach and propagate principles and techniques like those of these
volumes. I emphasise it here:

The principles and techniques of these volumes, even when adhered to only
"lightly", even when hardly followed explicitly, are such that if you have
grasped them, while studying these volumes, they will have changed your
attitude to software engineering. It will never be the same.

We are sure that you will, from then on, enjoy far more doing "super program­
ming", being a super programmer, and "being clever in many small ways, de­
vising smart tricks to do things better and faster.77 We shall not deny a central
role8 for being low level clever, for being smart. We will augment whatever
skills you may have in this direction with a number of teachable engineer­
ing principles and techniques. "The successful programmer is both beast and
angel."

We claim that we can also point to several medium-scale software develop­
ment projects where knowing or being aware of the principles of these volumes
seems to have helped significantly in devising elegant, beautiful products. And
'Beauty is our Business' [224].

8The two slanted "quotes" of this paragraph are from an e-mail, Sunday, January
20, 2002, from Prof. Bertrand Meyer [5,375,376], ETH Zurich, Switzerland, and ISE,
Santa Barbara, California, USA.

Preface — to Vols. 1-3 XV

W h a t Is Software Engineering?

We continue the characterisation of software engineering that we began on
the very first page of this preface.

• Software engineering: To us, in a most general sense, 'software engi­
neering', as are all kinds of engineering, is a set of professions which based
on scientific insight construct technologies, or which analyses technologies
to ascertain their scientific content (including value), or, usually, do both.

• "Software Engineer": Thus the software engineer (but see the follow­
ing for a critique of this term) "walks the bridge'7 between computer and
computing science, on one side, and software artifacts (software technolo­
gies), on the other side, and constructs — or studies — the latter based
on insight gained from the body of knowledge established in the many
disciplines of computer and computing sciences.

In a more mundane way, software engineering embodies general and specific
principles, techniques and tools (i) for analysing problems amenable to so­
lution or support through computing; (ii) for synthesising such (program,
such as software) solutions; (iii) for doing this analysis and synthesis in large
projects, that is, projects involving more than one developer, and/or projects
for which the resulting software is to be used by other (people) than the devel­
oper (s); and (iv) for managing such projects and products (including planning,
budgeting, monitoring and controlling the projects and the products).

But because we can term a subject software engineering does not necessar­
ily mean that we can speak of "software engineers". As formulated above, and
this must be understood clearly by all readers of these volumes, software engi­
neering is a body of principles, techniques and tools available to such people as
we may otherwise have wished to label "software engineers". But for any one
person to be labeled a software engineer without further, more "narrowing"
qualifications seems problematic. It would give the "recipient" of the message
that person is a software engineer the belief that the person in question is
able to professionally tackle the development of well nigh any software. With
Jackson [307] we claim that there are no software engineers! There are com­
piler engineers, there are embedded systems (software) engineers, there are
information (cum database) systems (software) engineers, there are banking
software engineers, and so on, just as we speak of automotive engineers and
of electrical power engineers rather than mechanical or electrical engineers.

Thus the principles, techniques and tools of these volumes apply, we claim,
across a broad spectrum of specialty software engineers. These volumes bring
examples of applications of the principles, techniques and tools across the
broadest possible spectrum. The fact that principles, techniques and tools
are generally useful and can be deployed across a broad field of occupations
and applications only means that the student must also, additionally, study
special texts on the chosen profession, compiler development, development of

XVI Preface — to Vols. 1-3

safety-critical real-time software, database systems, etc., to become a proper
specialty software engineer.

The Author's Aspirations

So these then were and are my aspirations: To provide you with a differ­
ent kind of textbook; to bring more than 30 years of exciting programming
methodological studies and controlled experimental practice into the larger
arena of software engineering; to show you what a beautiful world software
development can be when following the didactic cornerstones of linguistics,
philosophy, semiotics and mathematics; and to unload more than 25 years of
evolving lecture notes into a set of three coherent, consistent and relatively
complete volumes.

I have written these volumes because I wanted to understand how to
develop large-scale software systems. When I started, some 25 years
ago, writing lecture notes on this subject, I knew less than I do now.
Meanwhile I have had the great pleasure of having many clever and
eager students follow the practice. I have initiated the large-scale com­
mercial developments of compilers for such unwieldy programming
languages as CHILL [254,255] and Ada [128,129,155], and I have thus
honed and corrected my thinking. Writing about software engineering
while testing out the ideas has been a sobering experience. There are
still many corners of software engineering tha t I have to write about ,
think and experience. Meanwhile, this is what you get!

These volumes thus represent my chef d'ceuvre.

Role of These Volumes in an SE Education Programme

Who are the target readers of these volumes? Tha t question is indirectly
answered in the following.

Wha t roles do we see these volumes serve in the larger context of an
academic software engineering education, one tha t leads to a Master 's degree
in the subject? Figure 1 shall assist us in answering tha t question.9

The labelled boxes of Fig. 1 designate topics that enter into the software en­
gineer's daily practice, and which are therefore useful topics of learning. In Fig. 1
two-way arrows between boxes indicate that the designated topics can be studied
simultaneously. Directed (one-way) arrows between boxes designate a suitable, pro­
posed precedence relation between the learning of these topics. A "fan in" (multiple
source) arrow shows that a topic may need (i.e., have as prerequisites) the knowledge
of one or more (predecessor) topics. A "fan out" (possibly multiple target) arrow
shows that the arrow source topic is a "must" for one or more successor topics.

Preface — to Vols. 1-3 XVII

Mathematical
Logic (1)

Imperative
Programming

(Java)

SOFTWARE ENGINEERING
Volume 1

Basic Abstraction Principles

Recursive
Function
Theory

Functional
Programming
(Standard ML)

Mathematical
Logic (II)

i
Logic

Programming
(Prolog)

Algebra

J
Parallel

Programming
(occam)

SOFTWARE ENGINEERING
Volume 2

Advanced Specification Techniques

SOFTWARE ENGINEERING
Volume 3

From Domains via Requirements to Software

SOFTWARE ENGINEERING
A suitable Text on

Software Engineering Management

Fig. 1. Courses based on these volumes: a first setting

We emphasise that we here place these volumes in the context of an academic
Software Engineering MSc education programme — not to be confused with an
academic Computer Science MSc education. The former aims at the produc­
tion of industry programmers: developers of commercial software. The latter
aims at theoreticians, useful in an academic institution of study. Another ex­
planation, wrt. another diagram, would thus have to be given for an equally
likely setting in the context of an academic programme for an MSc degree
in (theoretical) computer science, and yet another one for an undergraduate
course of an academic software engineering BSc education programme.

• Prerequisite or "concurrent" courses: We assume that the reader of
these volumes is — or while following a course based on Vol. 1 of these
volumes becomes — familiar with the general topics of imperative, func­
tional, logic, parallel and machine programming. Teaching in these topics
must cover both skill-learning and training wrt. specific languages such as,
for example, SML (Standard ML) [261,389] for functional programming,
Prolog [295,351] for logic programming, Modula-3 [262,401], Oberon [527]
and Java [10,20,243,348,470,511] for modular (i.e., object-oriented) pro­
gramming, and occam [364] and a machine language for some well-chosen,
"current-technology" hardware (e.g., Intel-like) chip. Their teaching must
also cover — to a basic extent — the knowledge acquisition wrt. the theo­
retical background for these programming styles and languages: recursive
function theory [136,444], logic for logic programming [295,351], Hoare
Logic for imperative programming [15,16] and process algebras for concur­
rency (CSP [288,289,448,456] and Petri nets [313,421,435-437]). The ma­
chine programming topic [379,501,511] is the only real hardware-oriented,
but not hardware-design-oriented [279,418], course. Codesign [482], that

XVIII Preface — to Vols. 1-3

is, design of combined hardware/software systems (typical, for example,
for embedded systems, see below) is not covered. But one could "add
other boxes"! Included in the above kinds of course, or additional to these,
we expect the reader to have some working knowledge of algorithms and
data structures, i.e., to be familiar with the classical as well as modern
such algorithms and data structures and measures of concrete complex­
ity [7,357,371,495,524].
Auxiliaries: The reader is assumed to be — or to become, in conjunc­
tion with the software engineering study of which these volumes are part
— comfortable with mathematics — to a Bachelor's degree level in the
subjects listed. We suggest [534], a delightful "smallish" introduction, and
the substantial introduction to discrete mathematics [213]. We find [213]
to be an excellent textbook for an entirely separate, and major, course on
that topic. One that every software engineer is assumed to take.

Software
Tools Laboratory

Unix/Linux
MS Windows

GUI, Graphics, Scripts
Web/Internet

Lexical Scanners
Parsers
Etcetera

Algorithms
&

Data Structures

1

Machine
Programming

SOFTWARE ENGINEERING
Volume 1

Basic Abstraction Principles

I
SOFTWARE ENGINEERING

Volume 2
Advanced Specification Techniques

I
SOFTWARE ENGINEERING

Volume 3
From Domains via Requirements to Software

[
SOFTWARE ENGINEERING

A suitable Text on
Software Engineering Management

Graph Theory
and

Combinatorics

Calculus:
Differential
Equations

Statistics
and

Probability Theory

Operations
Research

Fig. 2. Courses based on these volumes: a second setting

Similarly, but more thought of as part of term projects and other forms
of laboratory (including self-study) work, we expect the reader to be rea­
sonably comfortable with practical, existing platform technologies (the
Software Tools Laboratory box).
Main course: These volumes are then to serve in a main set of three
courses on software engineering — and before the breadth and depth of the
follow-on courses are attempted. We additionally would advise acquisition
of the two books [236,238], the first as supplementary, the second to fill
out especially the verification (i.e., the design calculi) parts which are not
developed in these volumes.

Preface — to Vols. 1-3 XIX

• Follow-on courses: Classical software engineering has focused rather
much on the "navel-gazing", i.e., introspective parts of computing systems:
compilers, database systems, distributed systems, operating systems, real­
time (fault-tolerant and) embedded systems, etc. Ideally such topics should
now be covered on the basis of, and from the point of view of, formal spec­
ification and design calculi. The embedded systems topic (given 1-3 units
of work load) could go as far as including hardware/software codesign [482]
and otherwise rely strongly on other systems engineering issues.

Linguist ics of

Programming

Languages

Semantics of

Programming

Languages

Compiler &

Interpreter

Development

SOFTWARE ENGINEERING
Volume 1

Basic Abstraction Principles

I
SOFTWARE ENGINEERING

Volume 2

Advanced Specification Techniques

I

I SOFTWARE ENGINEERING
Volume 3

From Domains via Requirements to Software

SOFTWARE ENGINEERING
A suitable Text on

Software Engineering Management

I
Systems

Programming

Practicum

I
Appl icat ion

Systems

Practicum

I
Operating

Systems

Development

I
Embedded, Safety

and Real- t ime

Crit ical Systems

I
Database

Theory and

Systems

I
Distributed

Systems

I
Database

Management

Systems

I
Cryptography

and

Secure Systems

Fig. 3. Courses based on these volumes: a third setting

Additionally we plead that each software engineering student take two
"practica": A large, project and colloquium/seminar-oriented "systems
programming" and a similar "applications systems" course which exper­
imentally and exploratively researches and develops a non-trivial hard­
ware/software control system, respectively a commercial, industrial, or
other application such as amply hinted at in these volumes!

• A final software engineering course is hinted at: "Software Engineering
Management". We have quite some material for lectures on this topic. For
the time being we refer to the excellent book by Hans van Vliet [512].

The linguistics of formal languages, including theories of formal semantics, is
crucial knowledge to be possessed by the professional engineer. Two courses
relate to this: the leftmost boxes in rows three and four of Fig. 3. The lin­
guistics course could be based, for example, on David A. Schmidt's or John
Reynolds' works. References are [455], respectively [442]. The semantics course
could be based, for example, on any of [183,252,443,454,497,521].

XX Preface — to Vols. 1-3

Why So Much Material?

These volumes are more-or-less self-contained. We expect these volumes to be
used in university and college courses, and to be studied by readers on their
own. Some universities and some colleges cover material in courses that lie
early in the course curriculum that we also bring here. So it could be assumed,
and left out? No, not quite, since other universities and colleges do not cover
such prerequisite material. Hence these volumes, again and again, must make
these excursions. Since these volumes significantly rely on mathematics —
not anything advanced, not something for which any deep theorems need be
known or used — we need to recapitulate some of this material in Chaps. 3-9.
There we also explain and illustrate the A-calculus.

Since actual life phenomena have to be perceived, whether manifest or
not, that is, have to be conceptualised, we make deep excursions, in Vol. 3's
Chaps. 3,5,6 and 7, into what constitutes a methodology, what are definitions,
what are phenomena and concepts, and what is a description.

Since language is such an important basis for all we do in software en­
gineering, and since we cannot rely on the necessary topics having already
been learned, i.e., being known, we need also to make deep excursions into
the pragmatics, the semantics and the syntax, in toto, the semiotics of lan­
guages, whether formal or informal. Since automata and finite state machines
likewise form an indispensable component of our science and engineering we
need also cover that topic in Vol. 2's Chap. 11. In covering all these adjunct
ideas we supply their treatment with a twist: We present them from unconven­
tional angles. We expect, thereby, that the reader achieves a different view on
these matters, one that is more relevant to engineering than perhaps science,
more relevant to practice than to theory. In any actual course the lecturer can
therefore, based on local course curricula, leave out some of the "excursion"
material.

How to Use These Volumes in a Course

Together with these volumes it is planned to make available over the Internet:

• http://www.imm.dtu.dk/~db/The-SE-Books

a comprehensive set of electronic documents:

• a large variety of suggested course structures (with references to volume
chapters and slides)

• group project descriptions — some with solutions
• large-scale development examples
• URLs to formal methods pages
• URLs to formal methods tools

Preface — to Vols. 1-3 XXI

Via the publisher there will, from the day the book is published, be available,
for bona fide lecturers,

• several thousand postscript/pdf lecture slides
• selected exercise solutions
• representative (student) project reports

The slides will cover a large subset of the text of these volumes. By means
of viewing facilities on most computers the lecturer will be able to personally
select those slides that cover suitable lectures.

Brief Guide to the Book

The book is divided into three volumes. Each volume is divided into several
parts. Most parts are composed from several chapters or appendixes.

Most chapters offer exercises. A special set of exercises has been formu­
lated. Their presentation spans almost the entire Vol. 1. These exercises are
introduced in Appendix A.

All volumes have extensive cross-referencing indexes and bibliographic ref­
erences. There is, in Vol. 1, a Glossary, Appendix B. It is intended to cover
all three volumes. The glossary can be read independently of the rest of these
volumes.

Appendix A of Vol. 2 brings our conventions for naming identifications of
types, values, functions, variables, channels, objects and schemes, as well as
parameters over most of these.

Brief Guide to This Volume

This volume has several chapters. The chapters are grouped into parts. Fig­
ure 4 abstracts a precedence relation between chapters. It is one that approx­
imates suggested sequences of studying this volume.

• Chapter 1 is considered a prerequisite for the study of any chapter.
• Chapters 2-4 may be skipped by readers with some schooling in discrete

mathematics.
• Chapters 5-6 may be skipped by readers with a bit more schooling in

discrete mathematics.
• Chapters 7-9 can only be skipped by readers who have a reasonably firm

grip on the topics mentioned.
• Chapters 10-16 form the core of Vol. 1.
• If, after Chap. 1, you continue with Chap. 2, then you should study all of

Chaps. 2-9.
• If, after Chap. 1, you continue with Chap. 5, then you should study all of

Chaps. 5-9.

XXII Preface — to Vols. 1-3

Introduction

L

3

3

Property— and

Model—Orientec

Abstraction

u
Applicative

Specification

Programming
Imperative

Specification

Programming

Fig. 4. Chapter precedence graph

• If, after Chap. 1, you continue with Chap. 7, then you should study all of
Chaps. 7-9.

• You can skip Chaps. 17 and/or 18 before continuing with Chaps. 19-21.
• You can exit your study of this volume after any of Chaps. 16-21.
• It is no harm to study Chap. 22.

Within most chapters many sections can be skipped. Typically those with
larger examples or towards the end of the chapters.

In this way a teacher or a reader can compose a number of suitable courses
and studies.

Preface — to Vols. 1-3 XXIII

Acknowledgments

The author explicitly acknowledges the following colleagues, most of whom I
have worked with, and who over the years have greatly influenced my thoughts
and actions: Cai Kindberg, Jean Paul Jacob, Gerald M. Weinberg, Peter Lu­
cas, Gene Amdahl, John W. Backus, Lotfi Zadeh, (the late) E.F. (Ted) Codd,
Cliff B. Jones, (the late) Hans Bekic, Heinz Zemanek, Dana Scott, (the late)
Andrei Petrovich Ershov, Hans Langmaack, Andrzej Blikle, Neil D. Jones,
J0rgen Fischer Nilsson, David Harel, Bo Stig Hansen, S0ren Prehn, Sir Tony
Hoare, Micheal Mac an Airchinnigh, Michael Jackson, Zhou ChaoChen, Chris
George, Jim Woodcock, Kokichi Futatsugi, Joseph A. Goguen, Larry Druffel
and Wolfgang Reisig — listed more-or-less chronologically. I wish in particular
to acknowledge my deepest thanks and gratitude to S0ren Prehn and Chris
George — for more than a quarter century of inspiration.

I also express my gratitude to the members of IFIP Working Groups
WG2.2 and WG2.3 (not already mentioned above). The meetings of these
working groups, with their "free for all" topics for discussion sessions and de­
bates, have helped me sharpen and focus on what these volumes are about:
Jean-Raymond Abrial, Jaco W. de Bakker, Manfred Broy, (the late) Ole-
Johan Dahl, (the late) Edsger W. Dijkstra, Leslie Lamport, Zohar Manna,
John McCarthy, Bertrand Meyer, Peter D. Mosses, Ernst-Riidiger Olderog,
Amir Pnueli, John Reynolds, Willem-Paul de Roever and Wlad Turski —
listed alphabetically.

From the writing (and copy-editing) phase of these volumes invaluable
thanks goes to my former students, Christian Krog Madsen (who wrote
Chaps. 12-14 of Vol. 2), Steffen Holmslykke (who wrote Sect. 10.3 of Vol. 2),
Martin Penicka (who basically wrote Sects. 12.3.4, 14.4.1 and 14.4.2 of Vol. 2),
and to Hugh Anderson. Final, dearest and warmest thanks goes to my editors
at Springer. First Ingeborg Mayer, then Ronan Nugent. I also thank the Copy
Editor, Tracey Wilbourn — whose thorough work is deeply appreciated.

|\«^>e>^

Dines Bj0rner
National University of Singapore, 2004-2005

3

Contents

Preface VII

Reasons for Writing These Volumes IX
Shortcomings of These Volumes X
Methods of Approach XII
A New Look at Software XII
Formal Techniques "Light" XIII
The "Super Programmer" XIV
What Is Software Engineering? XV
The Author's Aspirations XVI
Role of These Volumes in an SE Education Programme XVI
Why So Much Material? XX
How to Use These Volumes in a Course XX
Brief Guide to the Book XXI
Guide to This Volume XXI
Acknowledgments XXIII

Part I OPENING

1 Introduction 3
1.1 Setting the Stage 3
1.2 A Software Engineering Triptych 7

1.2.1 Software Versus Systems Development 7
1.2.2 Motivating the Triptych 7
1.2.3 Domain Engineering 7
1.2.4 Requirements Engineering 9
1.2.5 Software Design 11
1.2.6 Discussion 12

1.3 Documentation 13

XXVI Contents

1.3.1 Document Kinds 14
1.3.2 Phase, Stage and Step Documents 14
1.3.3 Informative Documents 15
1.3.4 Descriptive Documents 17
1.3.5 Analytic Documents 22

1.4 Formal Techniques and Formal Tools 25
1.4.1 On Formal Techniques and Languages 25
1.4.2 Formal Techniques in SE Textbooks 26
1.4.3 Some Programming Languages 26
1.4.4 Some Formal Specification Languages 27
1.4.5 Insufficiency of Current, Formal Languages 29
1.4.6 Other Formal Tools 30
1.4.7 Why Formal Techniques and Formal Tools? 30

1.5 Method and Methodology 31
1.5.1 Method 32
1.5.2 Methodology 32
1.5.3 Discussion 32
1.5.4 Meta-methodology 32

1.6 The Very Bases of Software 33
1.6.1 Didactics and Paradigms 34
1.6.2 Pragmatics, Semantics and Syntax 34
1.6.3 On Specification and Programming Paradigms 38
1.6.4 Descriptions, Prescriptions and Specifications 38
1.6.5 Metalanguages 39
1.6.6 Summary 39

1.7 Aims and Objectives 40
1.7.1 Aims 40
1.7.2 Objectives 40
1.7.3 Discussion 41

1.8 Bibliographical Notes 41
1.9 Exercises 41

Part II DISCRETE MATHEMATICS

2 Numbers 45
2.1 Introduction 45
2.2 Numerals and Numbers 46
2.3 Subsets of Numbers 46

2.3.1 Natural Numbers: Nat 46
2.3.2 Integers: Int 48
2.3.3 Real Numbers: Real 49
2.3.4 Irrational Numbers 50
2.3.5 Algebraic Numbers 50
2.3.6 Transcendental Numbers 50

Contents XXVII

2.3.7 Complex and Imaginary Numbers 51
2.4 Type Definitions: Numbers 51
2.5 Summary 52
2.6 Bibliographical Notes 53
2.7 Exercises 53

3 Sets 55
3.1 Background 56
3.2 Mathematical Sets 56
3.3 Special Sets 58

3.3.1 Axiom of Extension 58
3.3.2 Partitions 58
3.3.3 Power Sets 58

3.4 Sorts and Type Definitions: Sets 58
3.4.1 Set Abstractions 58
3.4.2 Set Type Expressions and Type Definitions 59
3.4.3 Sorts 59

3.5 Sets in RSL 59
3.6 Bibliographical Notes 60
3.7 Exercises 60

4 Cartesians 63
4.1 The Issues 63
4.2 Cartesian-Valued Expressions 64
4.3 Cartesian Types 64
4.4 Cartesian Arity 65
4.5 Cartesian Equality 66
4.6 Some Construed Examples 66
4.7 Sorts and Type Definitions: Cartesians 68

4.7.1 Cartesian Abstractions 68
4.7.2 Cartesian Type Expressions and Type Definitions . . . 68

4.8 Cartesians in RSL 69
4.9 Bibliographical Notes 69
4.10 Exercises 69

5 Types 71
5.1 Values and Types 72
5.2 Phenomena and Concept Types 73

5.2.1 Phenomena and Concepts 73
5.2.2 Entities: Atomic and Composite 73
5.2.3 Attributes and Values 74

5.3 Programming Language Type Concepts 77
5.4 Sorts or Abstract Types 80
5.5 Built-in and Concrete Types 81
5.6 Type Checking 82

XXVIII Contents

5.6.1 Typed Variables and Expressions 82
5.6.2 Type Errors 83
5.6.3 Detection of Type Errors 83

5.7 Types as Sets, Types as Lattices 84
5.8 Summary 84
5.9 Exercises 84

6 Functions 87
6.1 General Overview 89

6.1.1 Special Remarks 89
6.2 The Issues 90

6.2.1 Background 90
6.2.2 Some Concepts of Functions 90

6.3 How Do Functions Come About? 94
6.4 An Aside: On the Concept of Evaluation 96

6.4.1 [E]Valuation, Interpretation and Elaboration 96
6.4.2 Two Evaluation Examples 96
6.4.3 Function Invocation/"Function Call" 98

6.5 Function Algebras 98
6.5.1 Functions 98
6.5.2 Function Types 98
6.5.3 Higher-Order Function Types 99
6.5.4 Nondeterministic Functions 99
6.5.5 Constant Functions 100
6.5.6 Strict Functions 101
6.5.7 Strict Functions and Strict Function Invocation 101
6.5.8 Operations on Functions 101

6.6 Currying and A-Notation 103
6.6.1 Currying 103
6.6.2 A-Notation 103
6.6.3 Example of Currying and A-Notation 104

6.7 Relations and Functions 104
6.7.1 Predicates 105
6.7.2 Function Evaluation by Relation Search 105
6.7.3 Nondeterministic Functions 106

6.8 Type Definitions 106
6.9 Conclusion 106
6.10 Bibliographical Notes 107
6.11 Exercises 107

7 A A-Calculus 109
7.1 Informal Introduction 110
7.2 A "Pure" A-Calculus Syntax 110
7.3 A A-Calculus Pragmatics 112
7.4 A "Pure" A-Calculus Semantics 112

Contents XXIX

7.4.1 Free and Bound Variables 113
7.4.2 Binding and Scope 113
7.4.3 Collision and Confusion of Variables 113
7.4.4 Substitution 114
7.4.5 a-Conversion and /3-Conversion Rules 115
7.4.6 A-Conversion 115

7.5 Call-by-Name Versus Call-by-Value 116
7.6 The Church-Rosser Theorems — Informal Version 117
7.7 The RSL A-Notation 117

7.7.1 Extending A-Expressions 117
7.7.2 The "let ... in ... end" Construct 118

7.8 Fix Points 119
7.8.1 The Issue 119
7.8.2 Informal Outline 119
7.8.3 The Fix Point Operator Y 120
7.8.4 Fix Point Evaluation 121

7.9 Discussion 122
7.9.1 General 122
7.9.2 On Minimal, Maximal and All Fix Points 122
7.9.3 Emphasis 122
7.9.4 Principles, Techniques and Tools 122

7.10 Bibliographical Notes 123
7.10.1 References 123
7.10.2 Alonzo Church, 1903-1995 123

7.11 Exercises 123

8 Algebras 127
8.1 Introduction 127
8.2 Formal Definition of the Algebra Concept 128
8.3 How Do Algebras Come About? 129
8.4 Kinds of Algebras 130

8.4.1 Concrete Algebras 130
8.4.2 Abstract Algebras 130
8.4.3 Heterogeneous Algebras 131
8.4.4 Universal Algebras 132

8.5 Specification Algebras 133
8.5.1 Syntactic Means of Expressing Algebras 134
8.5.2 An Example Stack Algebra 134
8.5.3 An Example Queue Algebra 135
8.5.4 Towards Semantic Models of "class" Expressions 136

8.6 RSL Syntax for Algebra Specifications 137
8.6.1 "class" Expressions 137
8.6.2 "scheme" Declarations 138

8.7 Discussion 138
8.7.1 General 138

XXX Contents

8.7.2 Principles, Techniques and Tools 139
8.8 Bibliographical Notes 139
8.9 Exercises 139

9 Mathemat ica l Logic 141
9.1 The Issues 142

9.1.1 Language of Boolean Ground Terms 142
9.1.2 Language of Propositional Expressions 143
9.1.3 Language of Predicate Expressions 143
9.1.4 Boolean-Valued Expressions 144
9.1.5 "chaos" — Undefined Expression Evaluations 144
9.1.6 Axiom Systems and Inference Rules 145
9.1.7 Proof Systems 146
9.1.8 A Note on Two Axiom Systems 146
9.1.9 The "if ... then ... else ... end" Connective 147
9.1.10 Discussion 147

9.2 Proof Theory Versus Model Theory 148
9.2.1 Syntax 148
9.2.2 Semantics 148
9.2.3 Syntax Versus Semantics 149
9.2.4 Formal Logics: Syntax and Semantics 149
9.2.5 Issues Related to Proofs 153
9.2.6 Relating Proof Theory to Model Theory 153
9.2.7 Discussion 155

9.3 A Language of Boolean Ground Terms 156
9.3.1 Syntax and Semantics 156
9.3.2 The Connectives: ~ , A , V , ^ = , ^ = 157
9.3.3 Three-Valued Logic 158
9.3.4 Ground Terms and Their Evaluation 161
9.3.5 "Syntactic" Versus "Semantic Semantics" 164
9.3.6 Discussion 165

9.4 Languages of Propositional Logic 165
9.4.1 Propositional Expressions, PRO 166
9.4.2 Examples 167
9.4.3 Proposition Evaluation, EvaLPRO 168
9.4.4 Two-Valued Propositional Calculi 169
9.4.5 Discussion 171

9.5 Languages of Predicate Logic 171
9.5.1 Motivation 172
9.5.2 Informal Presentation 172
9.5.3 Examples 173
9.5.4 Quantifiers and Quantified Expressions 176
9.5.5 Syntax of Predicate Expressions, PRE 178
9.5.6 A Predicate Calculus 180
9.5.7 Predicate Expression Evaluation 181

Contents XXXI

9.5.8 First-Order and Higher-Order Logics 184
9.5.9 Validity, Satisfiability and Models 184
9.5.10 Discussion 186

9.6 Axiom Systems 186
9.6.1 General 187
9.6.2 Axioms 187
9.6.3 Axiom System 188
9.6.4 Consistency and Completeness 189
9.6.5 Property-Oriented Specifications 189
9.6.6 Discussion 196

9.7 Summary 196
9.8 Bibliographical Notes 197
9.9 Exercises 197

Part III SIMPLE RSL

General 201
RSL Versus VDM-SL, Z and B 201
What, Syntactically, Constitutes a Specification? 202
Towards an RSL "Standard" 203
RSL Tools 203

10 Atomic Types and Values in RSL 205
10.1 Introduction 205

10.1.1 Mathematical Versus Enterprise Modelling 206
10.1.2 The "Primitive" Model Building Blocks 206

10.2 The RSL Numbers 206
10.2.1 Three Types of Numbers 207
10.2.2 Operations on RSL Numbers 207

10.3 Enumerated Tokens 208
10.3.1 Motivation 208
10.3.2 General Theory 208
10.3.3 Operations on Tokens 209
10.3.4 Enumerated Tokens in Abstract Models 210
10.3.5 Modelling Using Enumerated Tokens 211

10.4 Characters and Texts 212
10.4.1 Motivation 212
10.4.2 The Character and Text Data Types 212

10.5 Identifiers and General Tokens 213
10.5.1 Identifiers 213
10.5.2 Operations on General Tokens 214
10.5.3 General Tokens 215

10.6 Discussion 216
10.6.1 General 216
10.6.2 Modelling Atomic Entities 216

XXXII Contents

10.7 Exercises 217

11 Function Definitions in RSL 221
11.1 The Function Type 221

11.1.1 Syntax of Function Types 221
11.1.2 Informal Semantics of —> and ^> 222

11.2 Model-Oriented Explicit Definitions 222
11.3 Mo del-Oriented Axiomatic Definitions 223
11.4 Model-Oriented pre/post-Condition Definitions 224
11.5 Property-Oriented Axiomatic Definitions 226
11.6 Property-Oriented Algebraic Definitions 227
11.7 Summary of RSL Function Definition Styles 228
11.8 Discussion 229
11.9 Exercises 229

12 Property-Oriented and Model-Oriented Abstraction 231
12.1 Abstraction 232

12.1.1 The Issues 232
12.1.2 Abstraction and Specification 233
12.1.3 An Essay on Abstraction 233

12.2 Property-Oriented Abstractions 235
12.2.1 Pragmatics of Property-Oriented Specifications 235
12.2.2 Syntactics of Property-Oriented Specifications 236
12.2.3 Semantics of Property-Oriented Specifications 240
12.2.4 Discussion 240

12.3 Model Versus Property Abstractions 241
12.3.1 Representation and Operation Abstraction 241
12.3.2 Property- Versus Model-Oriented Abstractions 241
12.3.3 Definitions 242
12.3.4 Representation Abstraction Examples 243
12.3.5 Operation Abstraction Examples 246
12.3.6 Discussion 248

12.4 Model-Oriented Abstractions 250
12.4.1 Ultrashort Overview of the Next Six Chapters 250
12.4.2 Models and Models 250
12.4.3 Underspecification 251
12.4.4 Determinism and Nondeterminism 252
12.4.5 Why Loose Specifications? 253
12.4.6 Discussion 253

12.5 Principles, Techniques and Tools 254
12.5.1 Property- Versus Model-Oriented Specification? 254
12.5.2 Property-Oriented Specification Style 255
12.5.3 Model-Oriented Specification Style 256
12.5.4 Implicit and Explicit Functions 257
12.5.5 No Confusion, Please! 257

Contents XXXIII

12.5.6 A Note on Observer Functions 258
12.6 Exercises 260

13 Sets in RSL 263
13.1 Sets: The Issues 264
13.2 The Set Data Type 265

13.2.1 Set Types: Definitions and Expressions 265
13.2.2 Set Value Expressions 266
13.2.3 Set Binding Patterns and Matching 271
13.2.4 Nondeterminism 272

13.3 Examples of Set-Based Abstractions 273
13.3.1 Representation I 273
13.3.2 File Systems I 273
13.3.3 Representation II 275

13.4 Abstracting and Modelling With Sets 276
13.4.1 Modelling Networks 276
13.4.2 Modelling Pseudo-hierarchies 277
13.4.3 Modelling a Telephone System 280

13.5 Inductive Set Definitions 284
13.5.1 Inductive Set Type Definitions 284
13.5.2 Inductive Set Value Definitions 285

13.6 A Comment on Varying Sets 287
13.7 Principles, Techniques and Tools 288
13.8 Discussion 289
13.9 Bibliographical Notes 289
13.10 Exercises 289

14 Cartesians in RSL 295
14.1 Cartesians: The Issues 295
14.2 The Cartesian Data Type 296

14.2.1 Cartesian Types and Type Expressions 296
14.2.2 Cartesian Value Expressions 298
14.2.3 Cartesian Operations, I 299
14.2.4 Cartesian Binding Patterns and Matching 299
14.2.5 Cartesian Operations, II 300

14.3 Examples of Cartesian Abstractions 300
14.3.1 File Systems II 300
14.3.2 Kuratowski: Pairs as Sets 301

14.4 Abstracting and Modelling with Cartesians 303
14.4.1 Modelling Syntactic Structures 303
14.4.2 Cartesian "let ... in ... end" Bindings 308
14.4.3 Modelling Semantic Structures 308
14.4.4 Cartesians: A First Discussion 312

14.5 Inductive Cartesian Definitions 312
14.5.1 Inductive Cartesian Type Definitions 312

XXXIV Contents

14.5.2 Inductive Cartesian Value Definitions 313
14.6 Discussion 315

14.6.1 General 315
14.6.2 Principles, Techniques and Tools 315

14.7 Exercises 316

15 Lists in RSL 321
15.1 Issues Related to Lists 322
15.2 The List Data Type 322

15.2.1 List Types 322
15.2.2 List Value Expressions 323
15.2.3 List Binding-Patterns and Matching 327
15.2.4 Lists: Determinism and Nondeterminism Revisited . . 328

15.3 Small Examples of List-Based Abstractions 328
15.3.1 Representations 328
15.3.2 Stacks and Queues 329
15.3.3 File Systems III 330
15.3.4 Sorting Algorithms 332

15.4 Abstracting and Modelling with Lists 333
15.4.1 Modelling Books Using Lists 334
15.4.2 Modelling "KeyWord-In-Context, KWIC" 335

15.5 Inductive List Definitions 340
15.5.1 Inductive List Type Definitions 340
15.5.2 Inductive List Value Definitions 341

15.6 A Review of List Abstractions and Models 342
15.7 Lists: A Discussion 343
15.8 Exercises 343

16 Maps in RSL 349
16.1 The Issues 350
16.2 The Map Data Type 350

16.2.1 Map Types: Definitions and Expressions 350
16.2.2 Map Value Expressions 351
16.2.3 Map Binding Patterns and Matching 355
16.2.4 Nondeterminism 356

16.3 Examples of Map-Based Abstractions 356
16.3.1 Sorting 356
16.3.2 Equivalence Relations 357

16.4 Abstracting and Modelling with Maps 358
16.4.1 Graphs 358
16.4.2 Structured Tables 360
16.4.3 Hierarchies 362
16.4.4 Relational File Systems (IV) and Databases 366
16.4.5 Complex Pointer Data Structures 369
16.4.6 Well-formedness of Data Structures 378

Contents XXXV

16.4.7 Discussion 382
16.5 Inductive Map Definitions 383

16.5.1 Inductive Map Type Definitions 383
16.5.2 Inductive Map Value Definitions 384

16.6 A Review of Map Abstractions and Models 386
16.7 Maps: A Discussion 388
16.8 Exercises 388

17 Higher-Order Functions in RSL 393
17.1 Functions: The Issues 393
17.2 Examples Using Function-Based Abstractions 394

17.2.1 Functionals 394
17.2.2 Discussion 395

17.3 Abstracting and Modelling With Functions 395
17.3.1 Concepts as Functions 396
17.3.2 Operator Lifting 399

17.4 Inductive Function Definitions 406
17.4.1 Inductive Function Type Definitions 406
17.4.2 Inductive Function Value Definitions 407

17.5 Review of Function Abstractions and Models 407
17.6 Discussion 408
17.7 Exercises 408

Part IV SPECIFICATION TYPES

18 Types in RSL 413
18.1 The Issues 413
18.2 Type Categories 415

18.2.1 Abstract Types: Sorts 415
18.2.2 Concrete Types 415
18.2.3 Discussion 416

18.3 Enumerated Token Types Revisited 416
18.4 Records: Constructors and Destructors 417

18.4.1 General 417
18.4.2 Variant Record Value Induction Axioms 418
18.4.3 An Example 419

18.5 Union Type Definitions 420
18.6 Short Record Type Definitions 421
18.7 Type Expressions, Revisited 421
18.8 Subtypes 422
18.9 Type Definitions, Revisited 422
18.10 On Recursive Type Definitions 423
18.11 Discussion 423

18.11.1 General 423

XXXVI Contents

18.11.2 Principles, Techniques and Tools 423
18.12 Bibliographical Notes 424
18.13 Exercises 424

Part V SPECIFICATION PROGRAMMING

On Specification Programming 427
On Problems and Exercises 428

19 Applicative Specification Programming 429
19.1 Scope and Binding 430

19.1.1 Binding Patterns — An Informal Exposition 430
19.1.2 "let" Construct Scope and Binding [1] 432
19.1.3 Function Definition Scope and Binding [2] 432
19.1.4 "case" Construct Scope and Binding [3] 433
19.1.5 Comprehensions: Scope and Binding [4] 434
19.1.6 Quantifications: Scope and Binding [5] 435

19.2 Intuition 435
19.2.1 Simple "let a = £d in £h(a) end" 435
19.2.2 Recursive "let f(a) = £d{i) in £6(f,a) end" 436
19.2.3 Predicative "let a:A • V(a) in 5(a) end" 436
19.2.4 Multiple "let a* = £di in £6(a*) end" 436
19.2.5 Literals and Identifiers 437

19.3 Operator/Operand Expressions 438
19.4 Enumerated and Comprehended Expressions 438
19.5 Conditional Expressions 439
19.6 Bindings, Typings, Patterns and Matching 440

19.6.1 The Issues 441
19.6.2 An Essence of Bindings and Patterns 441
19.6.3 Binding Patterns 443
19.6.4 Typings 448
19.6.5 Choice Patterns and Bindings 448
19.6.6 Summary 454

19.7 Review and Discussion 455
19.7.1 General 455
19.7.2 Principles and Techniques 455

19.8 Bibliographical Notes 455
19.9 Exercises 456

20 Imperative Specification Programming 467
20.1 Intuition 468
20.2 Imperative Combinators: A A-Calculus 468

20.2.1 [0] "variable" Declarations 468
20.2.2 [1] Assignments: "var := expression" 470
20.2.3 9 State Expressions 471

Contents XXXVII

20.2.4 [2] "skip": No-Action 471
20.2.5 [3] Statement Sequencing (;) 471
20.2.6 [4] "if ... then ... else ... end" 472
20.2.7 [5-6] "while ... do ... end", and "do ... until ... end" . . 472
20.2.8 [7] "case ... of ... end" 472
20.2.9 [8] "for... in ... do... end" 473

20.3 Variable References: Pointers 473
20.3.1 A Discourse on Simple References 473
20.3.2 Dynamic Allocation and Referencing 474
20.3.3 Discussion: Semantics First, Then Syntax 479
20.3.4 Discussion: Type Homomorphisms 480
20.3.5 The Notion of State 480

20.4 Function Definitions and Expressions 480
20.4.1 The Unit Type Expression, 1 481
20.4.2 Imperative Functions 481
20.4.3 Read/Write Access Descriptions 481
20.4.4 Local Variables 482
20.4.5 The Unit Type Expression, II 482
20.4.6 Pure Expressions 483
20.4.7 Read-Only Expressions 483
20.4.8 Equivalence (=) and Equality (=) 484

20.5 Translations: Applicative to Imperative 486
20.5.1 Applicative to Imperative Translations 486
20.5.2 Recursive to Iterative Translations 487
20.5.3 Applicative to Imperative Schemas 488
20.5.4 Correctness, Principles, Techniques and Tools 495

20.6 Styles of Configuration Modelling 495
20.6.1 Applicative Contexts and States 495
20.6.2 Applicative Contexts and Imperative States 499
20.6.3 Imperative Contexts and States 502
20.6.4 Summary of Sequential Models 505

20.7 Review and Discussion 505
20.7.1 Review 505
20.7.2 Discussion 506

20.8 Bibliographical Notes 506
20.8.1 Theory of Computation 506
20.8.2 A Type Theory for the A-Calculus 506
20.8.3 Source Program Transformation Works 507
20.8.4 Laws of Imperative Programming 507

20.9 Exercises 508

XXXVIII Contents

21 Concurrent Specification Programming 511
21.1 Behaviour and Process Abstractions 512

21.1.1 Introduction 513
21.1.2 On Process and Other Abstractions 513

21.2 Intuition 514
21.2.1 Illustrative Rendezvous Scenarios 514
21.2.2 Diagram and Notation Summary 518
21.2.3 On a Trace Semantics 518
21.2.4 Some Characterisations: Processes, Etcetera 520
21.2.5 Principle of Process Modelling 521
21.2.6 Informal Examples 522
21.2.7 Some Modelling Comments — An Aside 527
21.2.8 Examples Continued 528
21.2.9 Some System Channel Configurations 529
21.2.10 Concurrency Concepts — A Summary 530

21.3 Communicating Sequential Processes, CSP 532
21.3.1 Preliminaries: Processes and Events 532
21.3.2 Process Combinators, Etcetera 533
21.3.3 Discussion 536

21.4 The RSL/CSP Process Combinators 537
21.4.1 RSL-like Channels 537
21.4.2 RSL Communication Clauses 538
21.4.3 RSL Processes 539
21.4.4 Parallel Process Combinator 541
21.4.5 Nondeterministic External Choice 541
21.4.6 Nondeterministic Internal Choice 542
21.4.7 Interlock Combinator 542
21.4.8 Summary 542
21.4.9 A Note of Caution 543

21.5 Translation Schemas 543
21.5.1 Stage I: An Applicative Schema 543
21.5.2 Stage II: A Simple Reformulation 544
21.5.3 Stage III: Introducing Parallelism 544
21.5.4 Stage IV: A Simple Reformulation 545
21.5.5 Stage Relations 546
21.5.6 Stage V: An Imperative Reformulation 547
21.5.7 Some Remarks 547

21.6 Parallelism and Concurrency: A Discussion 547
21.6.1 CSP and RSL/CSP 547
21.6.2 Modelling Techniques 548

21.7 Bibliographical Notes 548
21.8 Exercises 548

Contents XXXIX

Part VI A N D SO ON!

22 Etcetera! 557
22.1 What Have We Covered? 557
22.2 What Is Next? 557
22.3 What Is Next-Next? 558
22.4 A Caveat 559
22.5 Formal Methods "Lite" 559
22.6 Bibliographical Notes 560

Part VII APPENDIXES

A Common Exercise Topics 563
A.l Transportation Nets 563
A.2 Container Logistics 564
A.3 Financial Service Industry 564
A.4 Summary References to Exercises 566

B Glossary 567
B.l Categories of Reference Lists 568

B.l. l Glossary 568
B.l.2 Dictionary 568
B.l.3 Encyclopaedia 569
B.1.4 Ontology 569
B.l.5 Taxonomy 569
B.l.6 Terminology 569
B.l.7 Thesaurus 569

B.2 Typography and Spelling 569
B.3 The Glosses 570

C Indexes 649
C.l Symbols Index 650

C.l.l Operators 650
C.l.2 Constructors 652
C.l.3 Constant Value Literals 653
C.1.4 Combinators 653
C.1.5 Calculi 654
C.l.6 Abbreviations 654

C.2 Concepts Index 656
C.3 Characterisations and Definitions Index 680
C.4 Authors Index 682

References 687

Part I

OPENING

1

Introduction

• The prerequisites for studying this chapter are that you have academic
training in programming, that is, in algorithms and data structures, say
using two or more of the Standard ML, Java and Prolog programming
languages.

• The aims are to set the stage for the entire set of volumes, to introduce
the "triptych" concept of domain engineering, requirements engineering
and software design, to emphasize the importance of documentation and
of descriptions, to preview the concepts of formal techniques, methods
and methodology, and to introduce the concepts of syntax, semantics and
pragmatics.

• The objective is to guide you in the direction of what we think are to be
the important aspects of software engineering; that is, to set, with respect
to the aims and objectives of this book, your "spinal chord" to as close as
possible a "state" as that of their author.

• The treatment is informal and discursive.

This chapter has been written so as to be read, if not in excruciating detail,
then at least such that the reader is hopefully "tuned" to somewhere near
the "wavelength" of the author of this chapter. The present chapter may
thus be read in between the study of most subsequent chapters.

1.1 Setting the Stage

Characterisation. Engineering is the mathematics, the profession, the dis­
cipline, the craft and the art of turning scientific insight and human needs
into technological products. •

The sciences of software engineering are those of computers and computing.

4 1 Introduction

Characterisation. Computer science is the study and knowledge of what
kind of "things" may (or can) exist "inside" computers, that is, data (i.e.,
values and their types) and processes, and hence their functions, events and
communication. •

Characterisation. Computing science is the study and knowledge of how
to construct those "things". •

These volumes will provide material for teaching you some of the core as­
pects of the mathematics, the profession, the discipline, the craft and the art
of software engineering. The engineer walks the bridge between science and
technology, creating technology from scientific results, and analysing technol­
ogy to ascertain whether it possesses scientific values. These volumes will teach
you some of the science of computing, exemplify current software technologies,
and help you to become a professional engineer "walking that bridge"!

Students of these volumes are not expected to have any acquaintance with
the disciplines in the following list of computer science topics: automata, for­
mal languages and computability [296,319], programming language semantics
[183,252,443,454,497,521], type theory [1,241,407], complexity theory [319],
cryptography [363], and others as covered in, for example, [344]. The topics of
the above list, other than the first, will either be introduced in these volumes
or can be studied after having studied the present text.

Students of these volumes are expected to possess some fluency in the
following computing science topics: functional programming [261], logic pro­
gramming [295,351], imperative programming [20,243,290], parallel program­
ming [449], and algorithms and data structures [7,161,326-328].

The keywords art [326-328], discipline [194], craft [441], science [245],
logic [275], and practice [276], are also prefix terms of the titles of semi­
nal textbooks on programming, as referenced. In a sense these references also
serve to indicate our basic approach to programming. But software engineer­
ing goes beyond what has been implied by the above listings of computer and
computing science topics. Software engineering goes beyond the algorithm
and data structure, cum programming language skills. These computer and
computing science skills can and must first be reasonably mastered by the
individual, by the professional, academically educated and trained program­
mer. Software engineering is as much about making groups of two or more
programmers work productively together.1 And software engineering is about
producing software which can be further deployed in the development of larger
computing systems by other developers.

To fulfill these latter aspirations, software engineering must augment the
knowledge of computer and computing sciences with such disciplines as project
and product management. By project management we colloquially mean: How
do project leaders plan (schedule and allocate) development resources, how

1 However, the principles, techniques and tools covered by these volumes are also
required to be used even by the "lone" programmer developing her "own" software.

1.1 Setting the Stage 5

do they monitor and control "progress", and so on? By product management
we colloquially mean: How does a software house determine a, or its, product
strategy and tactics, that is, which projects to undertake, which products to
market, how to price, service and extend them, and so on?

We detail a number of project management issues: (1) choice and planning
of development process, (2) scheduling and allocation of resources, (3) mon­
itoring and control of work progress, (4) monitoring and control of quality:
assurance and assessment, (5) version control and configuration management,
(6) legacy systems, (7) cost estimation, (8) legal issues, etc. There are other
issues, but listing just these shows, up here, early in these volumes, the large
variety of development concerns.

(1) Process (choice and) modelling is a project management issue. How
do the engineers proceed, what does one do first, then after that, etc.? There
is not just one right way of doing things, of proceeding in phases, stages and
steps, rather there are many eligible process models. First, the development
process is determined by the problem frame; second, by the novelty of the
problem; third, by the experience of the programmers and of management;
and so forth.

(2) Planning, scheduling and allocation of resources is another project
management issue. In planning we decide on which things to do. In scheduling
we decide on when to do these things, and in allocation we decide on which
resources (monies, people, machines, etc.) to deploy.

(3) Monitoring and control of work progress extends the list of project
management concerns. Once the project proper starts, after planning, one
needs to regularly and continuously check what has been achieved. And, if
what has been achieved is according to plan, then just continue. But if plans
are not being followed, then control must be asserted by possibly changing
the plan, rescheduling and/or reallocating development resources.

(4) Monitoring and control of quality assurance and assessment further
extends our project management concern list. The web of application do­
main knowledge that goes into a software product, the maze of hundreds of
mostly unrelated requirements that are expected fulfilled from the software
product and the "Babylonic towers" of software design techniques and tools
(languages, etc.) all necessitate careful formulations of what is meant by prod­
uct quality, as well as close scrutiny of the development process, in order to
ascertain whether quality objectives are at risk or are being met.

(5) Version control <fc configuration management: In the development of
software the programmers usually construct several versions, or "generations",
of code. One must monitor and control these generations and versions. This
is called version control. It can be a sizable undertaking when, as is often the
case, there exist hundreds, if not up towards thousands, of such alternative
and complementary versions. Some of these versions may enter into one re­
lease of a product, while other subsets of versions enter into other releases
of related products. Combining such versions into software products is called
configuration management.

6 1 Introduction

(6) Legacy systems: At any time customers (users, acquirers, buyers) of
software operate computing systems composed from often "age-old" parts,
and these have to be maintained: adapted to new hardware and to new soft­
ware, perfected to offer relevant performance, and corrected (by removing
"bugs"). All three maintenance aspects become increasingly problematic as
the original software is either programmed in languages for which there are
no longer adequate, let alone "recent" compilers and related support tools,
or is documented in a style basically unfamiliar to new generations of pro­
grammers, or not documented at all. This kind of software and these kinds of
problems constitute the concept of legacy software.

(7) Cost estimation: Two issues of cost estimation may be relevant: es­
timating the cost of developing new (or maintaining old) software, and es­
timating competitive, profitable prices for software. The problem of cost es­
timation is intertwined with the problems of software development process
models, project and product management, quality assurance, version control
and configuration management, legacy systems, etc.

(8) Legal issues related to software: There are many legal issues related to
software. There are software patents, which establish intellectual, and prop­
erty rights. There is software curriculum accreditation, that is, the approval of
a university or college curriculum in software engineering. And there is soft­
ware house accreditation: the approval (usually, typically by, or through some
ISO-related agency), generally, of a software house as a trustworthy developer
of software. There is software engineer certification: the approval (usually by
some national engineering society) of a person being a bona fide professional.
Finally there is software product certification: the approval (usually by some
international agency, such as Lloyd's Register of Shipping, Bureaux Veritas, Nor­
wegian Veritas, TUV, or others) of a specific software product to meet certain
standards of quality.

• • •

Software engineering is anchored in programming: (1) in the design of software,
(2) before that in constructing the software requirements, (3) and before that
in understanding the application domain.

These volumes spend most of their pages on the development aspects of
software engineering: on principles and techniques for developing proper ap­
plication domain understandings, on principles and techniques for developing
proper software requirements and on principles and techniques for developing
proper software designs. These volumes unfold these principles and techniques
based on the tools of both informal and formal languages for describing do­
mains, prescribing requirements and specifying (designing) software.

1.2 A Software Engineering Triptych 7

1.2 A Software Engineering Triptych

It is a definite new contribution of Vol. 3 tha t it focuses, in a "special way", on
the tr iptych2 of domain engineering, requirements engineering and software
design. Tha t way emphasises tha t domain engineering, "ideally and logically
speaking", precedes requirements engineering, which (and there is nothing
new in this), ideally and logically speaking, precedes software design. The
new contribution is the central role given to domain engineering.

1.2.1 Software Versus S y s t e m s D e v e l o p m e n t

Although these volumes are primarily about the engineering of software, we
cannot avoid getting involved, to a nontrivial degree, in the more general
engineering of computing systems.

Character i sa t ion . By a computing system we mean a combination of hard­
ware and software tha t together implement some requirements. •

Typically a computing system is distributed, over local areas as well as glob­
ally, and thus very typically requires extensive da ta communication hardware
and software. When, in the following, we say 'software' or 'system' we can
usually substi tute the more general term 'computing system'.

1.2.2 M o t i v a t i n g t h e Triptych

We motivate the roles of the three triptych constituents as follows: Before we
can (3) design software we must understand the (2) requirements put to this
software. And before we can prescribe the (2) requirements we must under­
stand the application (1) domain. Wha t is discussed, again and again in these
volumes, is how we interpret the "ideal and logical" precedences mentioned
above. But first we will take a look at the three triptych components, or,
as we shall also refer to them in these volumes, the three phases of software
development.

1.2.3 D o m a i n E n g i n e e r i n g

Character i sa t ion . By domain engineering we mean the engineering of do­
main descriptions. •

2 Triptych: (i) Prom Greek 'triptychos', having three folds, (ii) an ancient Roman
writing tablet with three waxed leaves hinged together, (iii) a picture (as an altar-
piece) or carving in three panels side by side, (iv) something composed or presented
in three parts or sections. Same as trilogy.

8 1 Introduction

Characterisation. By a domain we mean (i) an area of human activity, (ii)
and/or an area of semi- or fully mechanised activity, (iii) and/or an area of
nature that can be described, and parts or all of which that can potentially
be subject to partial or total computerisation. •

Example 1.1 Three Domains: Examples of (respective) domains, related to
the above enumeration (i-iii), are: (i) book-keeping; (ii) the sending of freight
from a harbour of origin, on ships via other harbours, to a destination harbour;
and (iii) the planetary movements, i.e., celestial mechanics [494]. •

We understand a domain when we can describe it in an objective way.

Characterisation. By a domain description we mean an indicatively ex­
pressed description of the properties of the following domain facets: the in-
trinsics (the basic, invariant, and core), the enterprise (business, institution)
processes, the technology supports, the management and organisation, the
rules and regulation, the human behaviour, and possibly of other facets of the
domain. •

Domain descriptions explain the domain as it is. No reference can be made
to any requirements to desired software — that comes later! Furthermore, no
reference can be made to the desired software — that also comes later! So,
a domain description really has nothing to do with information technology
(IT) or software — other than what is already installed and deployed in the
domain, and then only if reference to such existing IT and software is deemed
relevant.

Example 1.2 A Logistics Domain: We are not describing the example do­
main, only informing about it, but in almost descriptional terms: A logistics
domain consists (a) of senders and receivers of freight; (b) of logistics firms
which arrange for senders and receivers to send or, respectively, receive freight;
(c) of hubs (like harbours, railway stations, truck terminals and airport air
cargo centres) where freight may be loaded onto or, respectively, unloaded
from conveyors; (d) of conveyors (such as ships, freight trains, trucks, respec­
tively air planes) that are owned and/or operated by transport companies;
(e) of transport companies (like cargo liners, railway operators, trucking com­
panies, airlines); and (f) of the networks of transport routes (shipping lanes,
railway lines, highways or, respectively, air corridors).

Some further descriptions can be hinted at: A conveyor path3 is a con­
nection between two hubs. A conveyor route is a sequence of one or more
connected paths. Some hubs are of two or more kinds, viz., harbours and
railway stations, air cargo centres and truck terminals, etc. Conveyors travel
their routes according to fixed time tables. A conveyor fee table prescribes
costs of transporting freight, per cubic meter, between hubs. This example is

1.2 A Software Engineering Triptych 9

continued in Example 1.3. Notice that there were no references to either re­
quirements or to possibly desired software (i.e., computing system), let alone
to such a system. •

A domain description, to repeat, describes the domain as it is. Chapter 5 of
Vol. 3 covers principles, techniques and tools for describing any universe of
discourse, whether domain, requirements or software. Part IV (Chaps. 8-16)
of Vol. 3 covers principles, techniques and tools for proper domain description.
Domain knowledge need be acquired, that is, elicited from those who work in
and are affected by the domain.

1.2.4 Requirements Engineering

Characterisation. By requirements engineering we mean the engineering of
requirements prescriptions. •

Requirements arise as a natural consequence of a contractual relation between
a client who procures (who is to acquire) some desired software (i.e., software
to be delivered), and the deliverer or the developer of that software. By re­
quirements we mean a list of one or more putatively expressed statements as
to which properties are expected from the software to be developed. Require­
ments must be acquired, that is, elicited from those who may be affected by
the eventually acquired software.

Example 1.3 Some Logistics Requirements: This example continues Exam­
ple 1.2. We do not exemplify a proper requirements prescription, we just hint
at what it might deal with. A logistics system needs software support for (at
least) the following kinds of activities:

First we exemplify some domain requirements. These are requirements
that solely pertain to the domain, and whose professional terms are domain
terms. Examples are: Software support for handling inquiries, from potential
senders, with logistics firms, as to possible routing of freight, schedules and
costs; software support for handling requests, from actual senders, to logistics
firms, for the dispatch of freight, and hence the issuance of bills of lading
(waybills) and the handling (passing on) of freight to be sent; software support
for logistics firms tracing the whereabouts of freight at hubs or with the owner
transport companies of scheduled conveyors; software support for the hub
management of conveyors in and out of hubs, the unloading and loading of
conveyors, and the receipt of freight from, and delivery of freight to logistics
firms.

Then we exemplify some machine requirements. These are require­
ments that primarily pertain to the machine to be built, that is: the soft-
ware+hardware of the desired computing system, in other words, whose pro­
fessional terms additionally include information technology terms in general.

3Examples of paths: Sea lanes, rail lines, roads, and air corridors.

10 1 Introduction

Examples are: The computing system shall have a mean time between failures
of two years; when the system is "down" it must at most be so for two hours,
and so on.

Finally, we exemplify some interface requirements. These are requirements
that pertain both to the domain and to the machine to be built, to the interface
between the machine and the domain, human users of the domain as well as
(other) natural phenomena and man-made equipment of the domain. Interface
requirements are about the phenomena that are shared between the domain
and the machine. Examples are: senders and receivers shall be able to ascertain
the transport status of their own freight from their own, home PCs based on
standard Internet browsers; the computing system shall display, for logistics
firms, the route networks in some "zoom-able" manners, and so on.

This example is continued in Example 1.4. •

Notice how Example 1.3 introduced three notions of requirements: domain
requirements, interface requirements and machine requirements.

This decomposition represents a pragmatic separation of concerns. Do­
main requirements, to repeat, are requirements that pertain solely to domain
phenomena, i.e., they are requirements whose professional terms are domain
terms. Interface requirements, to repeat, are requirements that pertain both
to the domain and to the machine to be built, to the interface between the
machine and the domain, human users of the domain as well as (other) natural
phenomena and man-made equipment of the domain.That is, to phenomena
shared between the environment and the machine. Machine requirements, to
repeat, are requirements that primarily pertain to the machine to be built,
that is, the software + hardware of the desired computing system. In other
words, the professional terms of machine requirements additionally include
information technology terms in general.

Notice how we, in rough sketching some requirements, relied on domain
terms having been previously described. We did, however, not precisely de­
scribe those terms. But we hinted at how it is the purpose of a domain de­
scription to explicate all such domain specific terms. We likewise relied on
machine (hardware + software technology, that is: IT) terms also having been
precisely specified, elsewhere!

Notice also how we "sneaked" the crucial concepts of domain, interface and
machine requirements into the example! Part V (Chaps. 17-24) of Vol. 3 covers
principles, techniques and tools for the proper prescription of requirements.

A popular view of requirements makes the following distinctions: user re­
quirements, system requirements, and non-functional requirements. How are
we to take these? User requirements form one entire set of requirements: do­
main, interface and machine requirements. So do system requirements. Non­
functional requirements are what we refer to as some interface and most, if
not all machine requirements. How does this work? User requirements do not
need to be complete, they can be, as we shall call them, rough-sketches, al­
though they are typically well-structured and carefully cross-referenced, and

1.2 A Software Engineering Triptych 11

they form input for the development of system requirements. System require­
ments must be consistent and relatively complete: they "improve" upon the
user requirements, and they form input to software design.

1.2.5 Software Design

Software: Code and Documents

Character isa t ion. By software we mean not only the code based on which
computers can act, but also all the documentation that is necessary for the
proper deployment of the code. This includes the business process reengineer-
ing manuals that are necessary for the enterprise (the institution) acquiring
the computing system to function most optimally when using this system, the
installation manuals that are necessary when initially installing the computing
system, the user training and daily use manuals that are needed in prepara­
tory training of future system users as well as in their daily use of the system
as installed, the maintenance manuals that are needed during the daily facil­
ities management of the installed system (for (adaptive) up- or downgrades,
for performance (perfective) enhancements, and for error corrections), and the
disposal manuals that are needed when dismantling the system. Ideally soft­
ware also includes a precise record of the software validation and verification
history: stakeholder responses, verification and tests, including test suites and
the results expected from, and actually recorded during, actual tests using
these test suites. By a test suite we mean a collection of data serving as input
to a test. •

Software Design, I

Character isa t ion. By software design we mean the implementation of (re­
quired) software, not just coding, but its stage and stepwise development and
documentation. •

Phases, Stages and Steps of Development

Characterisation. By software development we mean the combined devel­
opment of domain descriptions, requirements prescriptions, and software de­
signs. •

Software, as well as domain descriptions and requirements prescriptions, is
usually rather complex. Hence these need be developed according to the prin­
ciple of separation of concerns, i.e., of divide and conquer. Therefore we divide
the development phases of domain descriptions, requirements prescriptions
and software design into stages and steps. A first development, one that is
reasonably illustrative of a multistep development, is given in Examples 16.10
to 16.21. Part VI (Chaps. 25-30) of Vol. 3 covers software design.

12 1 Introduction

Software Design, II

Conventionally we think of establishing, in stages of software design, first
the software architecture,4 which in a sense explained, in Chap. 26 of Vol. 3,
implements a "high-level design" of the domain requirements, the interface
requirements and the machine requirements. In the second stage we establish
the program components which in a sense, explained in Chaps. 27 and 28 of
Vol. 3, designs the gross and detailed modular structure of the software. The
final or implementation stage, which usually consists of many steps, includes
platform reuse design in which available software components are examined
for their possible reuse in the implementation, modularisation or objectivisa-
tion, in which a fine grained decomposition of the program organisation into
modules takes place, and finally the coding itself in which final lines of code
are specified. That is, the instructions to the computer as expressed in some
programming languages and in calls to run-time system facilities and (other
platform) components.

In Example 1.4 we give an informally expressed software architecture de­
sign.

Example 1.4 A Logistics System Software Design: This example continues
Examples 1.2 and 1.3. We do not exemplify a proper software design speci­
fication. We just hint at what it might deal with. A logistics computing and
communication system is implemented as follows: Each sender or receiver,
each logistics firm, each transport firm, each hub and each conveyor (of a
transport firm) is implemented as a separate, concurrently operating process
with its own state. None of the processes share global state components, but
instead operate based on synchronised and communicated messages. Freights
are not implemented as objects, i.e., as independent processes. Shared data
is implemented as a separate process whose state represents the shared data
(i.e., a database). •

1.2.6 Discussion

General Issues

This ends our exposition of core concepts of the software development triptych.
In summary we emphasise two sets of relations between the three software
development phases. The three kinds (cum phases) of engineering development
can be summarised as follows: In domain engineering we describe the domain
as it is. In requirements engineering we prescribe the requirements to software
(i.e., a computing system) for the support of activities in the domain as we

4Wherever we say software architecture we could say computing systems archi­
tecture.

1.3 Documentation 13

would like to have them. In (the early stages of) software design we specify
the software such as we have decided it shall be.

The relations between the three kinds of documents arise from respective
development phases. Domain descriptions are indicative [308], as we seriously
believe the domain essentially is. We must make sure to describe all possible
behaviours of the domain, including as we normally expect well-functioning
actors to perform, but to also include erroneous, faulty, less diligent, sloppy,
or even outright criminal behaviours. Requirements prescriptions are puta­
tive [308], as we would mandate the software to behave. A requirements
prescription would naturally focus on well-functioning behaviour and try to
ensure correct behaviour of all actors, whether men or machines. Software
specifications are imperative [308], that is, mandatory.

When a domain description is formalised, the hedge 'may' is lost. And
when a requirements prescription is formalised, the hedge 'must' is likewise
lost. Formal domain descriptions, requirements prescriptions and software (de­
sign) specifications have in common a certain "authoritative air" which the
domain description can never have. A domain description is only an abstrac­
tion, or a model of some reality, but it is not that reality, whereas a require­
ments prescription is intended to be a precise exact model of the software to
be implemented.

The triptych approach to software engineering is central to these volumes.
We shall endeavour to enunciate clear principles, techniques and tools for the
development of domain descriptions, requirements prescriptions and software
specifications. Within domain descriptions we find such concepts as domain
attributes, stakeholders and their perspectives, and domain facets. Within re­
quirements prescriptions we find such concepts as domain requirements, inter­
face requirements, and machine requirements. Independently of these we find
such requirements techniques as domain projection, instantiation, extension
and initialisation. Within software design we find such concepts as software
architecture, program organisation and structure, and modularisation.

1.3 Documentation

This section is a precursor for a later chapter, Chap. 2 of Vol. 3, which in­
cludes many examples and enunciates many documentation principles, tech­
niques and tools. Since documentation is all pervasive and is all important in
software engineering, we shall this early in these volumes "lift the curtain" on
documents enough that we can refer broadly and generally to the document
types in the text that follows between this section and Chap. 2 of Vol. 3 in
which we finally dispose of the subject.

We saw, in the previous section, that software development entails three
major phases, possibly several stages within phases and possibly several steps
within stages. Carrying out each of the steps results in documents. These are

14 1 Introduction

documents on domains descriptions, requirements prescriptions and software
specifications.

There is nothing else5 emanating from steps, stages and phases than docu­
ments, on paper or electronically. So the question is: What kind of documents?
In this section we will briefly overview three kinds of documents that result
from the engineering of the steps, stages and phases. It is important that
the reader keeps the universe of discourse in mind, either the domain, the
requirements, the software, the two first (domain and requirements), the two
last (requirements and software) or all three (an entire development). That is,
the various documents, even the informative ones, all have a specific universe
of discourse in mind. It must first be clearly stated, lest one of the "parties"
to a development contract gets confused from the very start!

1.3.1 Document Kinds

There are basically three kinds of documents that emerge from the develop­
ment process, and which the developer hence should be aiming at. These are:
(1) informative documents, or document parts, such as partners and current
situation, needs and ideas, product concepts and facilities, scope and span de­
lineations, assumptions and dependencies, implicit/derivative goals, synopsis,
design briefs, contracts, logbook; (2) the description documents, or docu­
ment parts, such as rough sketches (records of "brainstorming"), terminolo­
gies, narratives, and formal models; and finally (3) the analytic documents,
or document parts, such as description property verifications, verification of
correctness of development transition (i.e., development step), and validation
of formal and informal descriptions.

We will briefly review these kinds of documents, both as concerns their
pragmatics: why they are necessary, and as concerns their multitude: why
there are so many seemingly different kinds of documents.

1.3.2 Phase, Stage and Step Documents

A development phase results in a comprehensive, definitive set of informative,
descriptive and analytic documents. A development stage results, similarly,
in a comprehensive set of informative, descriptive and analytic documents,
or in a set of relatively complete domain, interface or machine requirements
prescriptions.

The boundaries between a subphase and a stage, and the comprehensive­
ness of either, are not sharp. It serves no purpose here, or for the approaches
advocated in these volumes, to try sharpen such distinctions. The stage and

5Strictly speaking: Understanding also emerges, and so do closer relations be­
tween client (acquirer, customer) and developer (deliverer, provider), etcetera. But,
contractwise, unless, for example, education and training is also part of a project,
documents are the only tangible goods delivered!

1.3 Documentation 15

step concepts are simply pragmatic. One could go on defining sub-steps, etc.,
but we refrain. Let the actual project determine a need for finer granularities!

If a distinction need be made between a phase and a stage, then the com­
prehensive set of stage documents represents one of more than one "stage" of
development within the phase.

A step of development produces only a part of a comprehensive set of
documents, for example: a comprehensive set of informative, descriptive or
analytic documents or document parts, or just, as a substep, one of these
documents, or document parts. More will emerge as we progress deeper into
these volumes.

1.3.3 Informative Documents

Characterisation. By an informative document we mean a document, or a
document part, which informs, it does not necessarily describe a designatable,
manifest phenomena or concept. •

As the name implies, informative documents give information which takes
many forms. Informative documents include those of perceived or already
enunciated needs, product concepts and facilities, scope and span delineations,
assumptions and dependencies, implicit/derivative goals, synopsis, contracts,
design briefs, and so on.

Current Situation Documentation

Need for software development, or for requirements prescription, or for do­
main description usually arise out of a current situation. A current situation
may be that the domain is not well-understood, or that software is required.
Professional software development projects therefore produce an informative
document — two-three pages — which inform of the current situation that
leads to needs.

Needs Documentation

Needs refer to perceived or actual needs for the product being desired, whether
a domain description, a requirements prescription, a software design (i.e.,
specification), or just plainly, as is most often the case, the software itself.
Needs can be expressed in many ways: We must understand the domain; we
must establish requirements; "So ein Ding muss Ich auch haben"6; software
to automate humanly menial, boring processes; software to speed up slow
processes; and so on. Needs must be quantified, if possible.

"I must also have such a 'thing'" (i.e., software).

16 1 Introduction

Product Concepts and Facilities

Product concepts and facilities refer to "brainstorming" or ideas ("dreams").
That is, what the universe of discourse "contains", or is to contain, what aims
and objectives the proposers have for the "product", what roles, in a larger
socioeconomic context, the product is to serve (or fulfill). That is, what are
the strategic or tactical objectives of the developer and/or customers, how it
might complement earlier products, and/or how it might open the way for, or
be, a next-generation product.

Design Briefs

Design briefs refer to documents which state what kind of project is to take
place: for which universe of discourse, specifically (aiming at a very specific
client), or generally (aiming at a largest class of such clients), or something
in-between. Whether the project is an ordinary development, or a research, or
some advanced project encompassing both R&D. Finally it also encompasses
what general deliveries are expected, the time frame, costs, institutions in­
volved, and so on.

Usually a scope and span delineation is part of or strictly adjoins the design
brief. To this we turn next.

Scope and Span Delineations

Scope and span delineations refer to the more specific subjects of the universe
of discourse to be dealt with in the project, that is, the target and modal scope,
for example: railways, or health care, or financial services; respectively new
development (incl. R&D), or maintenance, or other. The target and modal
span, for example, rolling stock monitoring and control, or electronic patient
journals, or stock trading; respectively off-the-shelf commercial, one-of-a-kind,
or other product.

Synopsis

Synopsis refer to a "capsule" (i.e., short overview) characterisation of the
product being desired, whether a domain description, a requirements pre­
scription or a software design. A synopsis is like a movie "trailer". It tells, in
a few words, what the whole thing (domain, requirements or software) is all
about. A synopsis is not a description (a prescription, a specification), "but
almost". It mentions all the most important phenomena of the universe of
discourse, their entities, types, values, actions, events and behaviours. It men­
tions their semantics and syntax, but it does so incompletely. And a synopsis
"links" these phenomena components to their pragmatics, that is what role
they serve, and so on.

Synopses often form an important introductory part of contracts.

1.3 Documentation 17

Contracts

A contract describes parties to the contract, the subject matter and consid­
erations.

Contracts refer to the legal documents that name contractors (the parties:
clients and developers); and that define what is to be developed: If software,
then the contract would normally refer to an already existing requirements
prescription; if requirements, then the contract would normally refer to an
already existing domain description; or if a domain description then the scope
and span delineation would be an important document part. In addition (the
considerations) contracts prescribe the development costs (estimates): If soft­
ware is to be developed, then the estimate should be rather binding. If require­
ments are to be developed, then costs could be based on fixed hourly rates
and some usually negotiable rough time estimates. Precise numbers cannot
be given since much, unforeseeable interaction needs to take place between the
contracting parties. Or if a domain description is to be developed—in which
case the project is basically a joint research effort—then the costs are usually
negotiable, and billed on a, say, monthly basis. A contract would (further con­
siderations) refer to legal conditions. Many other considerations may be part
of a contract document.

Discussion

We have outlined essential informative documents. We emphasise that the
developer (and/or client) may, in the extreme, have to "repeat" such docu­
ments for each phase, stage and, in a few cases, step of development and their
transitions. That is, informative documents may be needed for each and all
of the triptych phases: domains, requirements and software design.

We have chosen the wording documents (and documentation) so as to
indicate that one may view each of the listed informative document types as
designating instantiation of individual, separately "bound" documents. For
the next category of documents, the descriptive ones, we choose a wording that
allow their various types to designate document parts that can be "mingled"
(woven together) into larger documents.

1.3.4 Descriptive Documents

Characterisation. By a descriptive document we mean a document, or a
document part, which describes a manifest phenomenon or a concept. •

The term describe, and hence the terms description, and descriptive, are here
used in a rather specific, narrow sense. A description designates (i.e., is some
text that sets forth, in words) either some physically existing part of nature
(one that centres around physical behaviours usually governed by laws of
physics) or some man-made part of the world (one that centres around human

18 1 Introduction

activities, including their interaction with artifacts) or some combination of
these two classes of worlds.

Thus a description, such as we shall deploy the term, tends to focus on
what might eventually "fit within a computer". It may well be that what we
describe concerning a domain is not computable and cannot be "mimicked"
by a computer. A requirements prescription, however, "cuts down" on its
underlying domain description and makes sure that what is required is also
computable. Hence opinions, emotions, metaphysical, political or such other
similar subjective texts are not here considered descriptions.

It can be seen from the above, and it will reappear, again and again later,
that it is not a simple, straightforward matter to delineate precisely when
something is a description (a prescription, a specification), and what can be
described, that is, what can exist. Chapters 5, 6 and 7 of Vol. 3 focus on
principles and techniques for forming proper descriptions (specifications) and
touch on the philosophical issues of being.

We (thus) consider three kinds of descriptions: domain descriptions, re­
quirements prescriptions, and software designs. We point out that we use three
different terms synonymously: descriptions, prescriptions and designs (speci­
fications). Domain descriptions are about what already exists, "the world as
it is" .7 Michael Jackson [308] refers to domain descriptions as indicative. Re­
quirements prescriptions are about what we expect from software, "the world
as we would like it to be". Michael Jackson [308] refers to requirements pre­
scriptions as putative. Software (design) specifications then outline the design
structure of software, that is, specifications of specific types, values, functions,
events and behaviours. Michael Jackson [308] refers to domain descriptions as
imperative.

Descriptive Document Kinds and Types

We see basically two kinds of description documents: informal and formal. And
we see basically four types of description documents: rough sketches (docu­
ments which record results of "brainstorming"), terminologi.e., narratives and
formal models. One could consider the latter two types (narratives and formal
models) to stand for one type, the type of 'proper description documents', both
informal and formal. We shall stick with the above compartmentalisation.

Rough Sketches

Characterisation. By a rough sketch document we mean a descriptive doc­
ument which is a draft and whose description is incomplete, and/or is not well
structured. •

7Prom an epistemological point of view we may have to say: a world as we
subjectively observe it.

1.3 Documentation 19

When we first, as an initial act of proper development, attempt to develop
something, we then "brainstorm". Recording the ideas that arose during
"brainstorming" results in a rough sketch. We are told either to develop a
domain description or a requirements prescription or a software design. And
we are not quite sure where to begin in the chosen universe of discourse. So
we "doodle", or we rough sketch. A rough sketch is basically an unstructured
nonsystematic effort at describing whatever has to be described (prescribed,
specified).

A rough sketch serves the purpose — in the style of explorative, experi­
mental work — of coming to grips with the concepts that are central to the
universe of discourse, and from there with the derivative concepts. A rough
sketch shall then serve, as it is being developed, i.e., as a means to identify
the core concepts, and their relations. This identification process is of utmost
importance. It is of analytic nature, and is further discussed in Section 1.3.5.
Section 2.5.1 of Vol. 3 presents examples, principles and techniques of rough
sketching.

Terminology

Characterisation. By a terminology document we mean a description doc­
ument which, in a systematic, but not necessarily a complete or exhaustive
manner, lists and briefly explains a number of terms. •

The rough sketch descriptive step together with the concept formation an­
alytic step serves to identify and consolidate the important concepts (i.e.,
abstractions of phenomena, whether in domains, requirements or software).
This identification contains an element of naming these concepts. A list of
all these concept names and their characterisation (description, explanation,
definition) is what call a terminology. We could also call the list a glossary
or a dictionary or even an ontology We refer to Sect. B.l for discussions of
these four and the related terms of encyclopedia and thesaurus.

We consider it to be a very important and indispensable part of every phase
of software development to perform the following four terminology-related
actions: (1) to establish a (phase-oriented) terminology; (2) to use and hence
adhere to such a terminology; (3) to update, i.e., maintain such terminologies
and let changes be reflected back in all the documents where referenced terms
are used; (4) and to make available such terminologies.

Failure to do as advised above usually has dire consequences.
Section 2.5.2 of Vol. 3 will present examples, principles and techniques for

creating a terminology.

Narrative

Characterisation. By a narrative document we mean a description docu­
ment which systematically and reasonably comprehensively, in natural, yet

20 1 Introduction

most likely (application domain-specific) professional language, explains the
entities, functions and behaviours (including events) of a designated universe
of discourse. •

To narrate is to "tell a story". The story (the narration) to be told here is
that of the chosen universe of discourse, be it a domain, or part of a domain,
a requirement, or a software design. The narrative must be such that the
listener (i.e., the reader) as well as, of course, the narrator, can formalise
the story: That is, we put down as a constraint upon the narratives that
they can be given mathematical, i.e., computing science, models or otherwise
be characterised mathematically. It is not a constraint on domain descriptions
that what is described is computable: that it can be "mimicked" (mechanised,
simulated) by a computer. It is indeed a constraint on domain requirements
prescriptions as well as on software design specifications that they constitute
computational models.

This insistence on formalisation can be justified as follows: The domain
requirements must imply something computable. After all, they are about a
computing system. The software design certainly must also imply something
computable.

But why insist on the domain description being formalisable? First, we
must accept that domain requirements, as mentioned in Example 1.3, are
derived from domain descriptions, and we would like the derivation operations
to be formally well understood. Second, we must accept that the original
role, as well as the successful pursuit of this role over the last two and a
half millennia, has been to formalise phenomena of the actual world, first
the physical ones, and now the human-made ones. So why not also attempt
this for domains — essential parts of which cannot be said to be understood
unless we indeed have a formal model. Third, it must be understood that
we shall only attempt to formalise the semantic and the syntactic aspects
of domains, not their pragmatic imports.8 Finally, we must accept that we
today, November 2, 2005, do not quite know how to formalise all aspects of
domains and requirements! That last caveat applies in particular to domain
descriptions and to interface and machine requirements prescriptions.

Thus the task is clear: describe, principally, what can or what ought be for­
malised. The style of the informal narrative follows from this dogma: Present
first text on the classes of entities (i.e., types: abstract type (sorts) and con­
crete types). Then postulate any fixed, i.e., constant, instantiations (i.e., val­
ues), if and when needed. Then postulate all the functions that apply to enti­
ties (i.e., observers, generators, predicates, auxiliaries), and characterise these
functions: Start by stating to which types of entities they apply (the input)
and the type of the resulting, the yielded (the output) entity; then characterise
the functional relationship between inputs and outputs. Similarly identify the

8For a discourse on pragmatics, semantics and syntax we refer to later material
in Sect. 1.6.2 and in Part IV (Chaps. 6-9 inclusive) of Vol. 2.

1.3 Documentation 21

behaviours (i.e., processes); and their interaction (i.e., their shared events,
such as synchronisation and communication).

We are guided in the task of informally describing something when we
follow the above "recipe", the above "narration" dogma — which leads on to
the formalisation itself.

Chapter 2 of Vol. 3 (Sect. 2.5.3) presents examples, principles and tech­
niques for the construction of proper narratives. These principles and tech­
niques emerge from most chapters in Vols. 1 and 2. Specific domain, require­
ments, and software design narration principles and techniques are then cov­
ered in Parts IV-VI, respectively, of Vol. 3.

Formal Model

Characterisation. By a formal document we mean a document which ex­
presses a model (of some universe of discourse) in a formal language. •

A formal model is a model expressed in some mathematical notation or in
some formal language. A mathematical expression permits conventional, al­
beit precise reasoning, such as is normally done in textbooks on mathematics.
A formal language is one with a precise syntax, a precise semantics and a
mathematical logic proof system, that is, a set of proof rules that allow for­
mal reasoning, such as is done in textbooks on mathematical logic but here
with a twist! The informal narrative and a formal model may be intertwined,
textually, such as we often see in mathematics and physics textbooks. The
relation between the informal narrative and its formal model is necessarily in­
formal. That is, is one that can never be proven correct, it must be validated.

Volumes 1 and 2 contain many chapters which present examples, principles
and techniques for the construction of proper formal models. Specific domain,
requirements and software design formalisation principles and techniques are
then covered in Parts IV-VI, respectively, of Vol. 3.

Discussion

The informal rough sketch, the more structured, but still informal narration,
and the formal model, may be manifested in separate documents or may be
combined and intertwined with the analytic documents. Usually the rough
sketch is not documented in a manner suitable for release other than to the
directly involved client and developer staff, and then usually only to the devel­
opment staff. We say that the informal narratives, the terminologies and the
formal models may constitute deliverables. And we normally assume that the
rough sketches remain proprietary documents of the development enterprise.

22 1 Introduction

1.3.5 Analytic Documents

Characterisation. By an analytic document we mean a document whose
subject is a descriptive document. The text of an analytic document analyses
a descriptive document. •

As the term indicates, analytic documents are documents whose content rep­
resents analyses of other documents, here the descriptive documents. We con­
sider four kinds of analytic documents: those that represent (i) formation of
concepts from rough sketches (during brainstorming), (ii) validation of formal
and informal description documents, (hi) description property verifications,
and (iv) verification of the correctness of development transitions (i.e., devel­
opment steps).

There may be other analytic documents. Examples: documents whose con­
tent analyses behavioural aspects of the intended computing system, such as
expected interface response times based on queueing theoretic studies; ex­
pected machine computation times based on complexity theoretic studies;
details of dictionary or database hashing algorithms based on statistical stud­
ies of reference patterns; and so on. Also included may be documents whose
contents analyse pragmatic issues such as, production line flow (congestion),
based on statistical studies, for a project and production planning, monitoring
and control computing system; company cash flow, based on similar studies,
for a financial services or an electronic trading computing system; and so
on. Further kinds of analytic documents can be imagined. We shall, in these
volumes, only cover those just mentioned.

Rough Sketch Analysis and Concept Formation

The most important task in describing a domain, prescribing some require­
ments or specifying some software design is to identify the core concepts
around which the universe of discourse evolves. On one hand are the phe­
nomena in the domain, the facilities that are desired from the software or
the software program constructs (data structures, procedures, etc.). On the
other hand these phenomena, in the actual world, these facilities (to be made
manifest in the required software), or these program code constructs are to be
conceptualised (as for the domain) or are indeed concepts, that is, abstract
ideas, once captured as requirements or in software code.

Thus we see a transition from a concrete, manifest, actual world of usually
tangible phenomena to an abstract, intellectually perceivable, but usually in­
tangible world of concepts. It is this transition, from what is perceivable, via
what is conceivable, to that which is "made into" software, that we need to
record.

We do so for the domain by first brainstorming, that is by sketching rough
domain descriptions and, from those, through analysis, identifying domain
concepts. Then for the requirements by conceiving. In that case by sketching

1.3 Documentation 23

rough requirements "prescriptions" and, from those, through analysis, identi­
fying requirements concepts. And finally we do this for the software by "cast­
ing", that is, by sketching rough software "designs" and, from those, through
analysis, identifying proper software constructs.

Analysis with the aim of forming concepts is an art. Perhaps the hardest
thing to learn is to do it right, or at least to do it in such a way that pleasing,
elegant and "economic" concepts emerge. But reading lots of analysis exam­
ples might help. Chapters 13 and 21 of Vol. 3 therefore present analysis and
concept formation examples, principles and techniques that are found useful
in conducting the analyses hinted at above.

Validation of Descriptions, Prescriptions and Specifications

Characterisation. By a validation document we mean an analytic document
which validates the text of a description document (&c.) with respect to the
stakeholders of the described universe of discourse. •

By &c. we mean: prescription and specification document.
Domain descriptions must be validated, they are, most likely, written by a

small group of primarily developers, aided by a likewise small group of client
staff. But larger, more definitively representative groups of client staff need re­
view domain descriptions in order to concur. The same holds for requirements
prescriptions.

Domain description and requirements prescription validation is necessarily
a process of interaction between client staff and developers, and is necessarily
a process based on informal narrative and terminology descriptions. This kind
of validation is a crucial one: It is necessarily an informal, human process, and
it serves the role of getting the right product. Chapters 14 and 22 of Vol. 3
present validation examples, principles and techniques that are found useful
in conducting the analyses hinted at above.

Verification of Properties of Specifications

Characterisation. By a verification document we mean an analytic docu­
ment which proves, model checks, or tests statements made about the prop­
erties of a description or a prescription or a specification. •

A domain description denotes a theory. The description is only a model of
the domain, not the real domain. Expressed in precise English, and especially
expressed in some formal language, the model designated by a domain de­
scription possesses some properties. The sum total of all these properties is a
theory for the domain. The same is true for requirements prescriptions and
software design specifications.

We can informally reason about such properties when given a consistent
and relatively complete description (or prescription or specification). And we

24 1 Introduction

may record this reasoning formally when we also have a formal description
(formal prescription, formal [design] specification). The usefulness of formal
models is that such theorems may be proven. Proof of such theorems affords
a higher trust in the descriptions.

Example 1.5 Towards a Domain Theory: Assume that we have described a
railway system, its network of lines and stations, its train timetables and the
actual train traffic according to timetables. Let us further assume that the
train timetables, and hence the traffic is modulo 24 hours: repeats itself daily
and is always on time. Now a property that transpires only very indirectly
from the train timetables (and hence the train traffic) could be the following
variant of Kirchhoff's Law: For any station in the network, the number of
trains arriving, over any 24 hour period, at that station, minus the number of
trains ending their journies at that station, plus the number of trains starting
their journey at that station, equals the number of trains departing from that
station, all over the same 24 hour period. •

Informatics models of domains can be made into theories, just as were models
of physical phenomena such as Newton's Theory of Mechanics, Thermody­
namics, etc. Chapter 15 of Vol. 3 presents domain theory examples, principles
and techniques that are useful in establishing domain theories as above.

Correctness of Development Phase, Stage or Step Transition

When we make the transition from the phase of describing a domain to the
phase of prescribing requirements to software for support of activities in that
domain we correctness-relate that transition, from the latter to the former.
When we make the transition from the phase of prescribing requirements
to software to the phase of specifying the required software we correctness-
relate from the latter to the former. These correctness relations, when stated
properly (and so they must be if we are to have trust in the development),
can be informally reasoned about. And, if the descriptions, prescriptions and
(design) specifications are formally expressed and the relations likewise, then
the reasoning may be formally supported: Formal proofs of correctness may
be made.

Phases can be decomposed into stages of development, and transitions
between stages may be correctness-related and argued about. Stages can
similarly be decomposed into steps, and transitions between steps may be
correctness-related and argued about.

Note that we sometimes used the term 'can', and sometimes 'may'. We can
always try reason informally, as do mathematicians. But it is not always pos­
sible today to formally prove properties and transition correctness. Reasons
for this may be of the following: We may have constructed some unwieldy
models that make the proofs too cumbersome. Or computing science, cum
specification language designers, may not yet have researched and developed

1.4 Formal Techniques and Formal Tools 25

appropriate specification language constructs and proof systems. Or we, the
developers, are simply not good enough at stating and proving auxiliary lem­
mas and theorems. Or we are trying to prove a non-theorem, something that
is false.

Discussion

We have surveyed the analytic documents that may arise during software de­
velopment. There are at least four kinds of analytic document parts: con­
cept formation, description (prescription and design specification) valida­
tion, property verification and correctness verification. Some analytic work is
"inspiration-guided", such as concept formation seems to be. Other analytic
work is guided by human interaction, such as validation is. And yet other an­
alytic work is formalisable, such as property and correctness verification can
be.

To give a proper, comprehensive presentation of these three kinds of an­
alytic work is, however, not a goal of these volumes. Instead we refer to spe­
cialised texts and monographs on software verification.

1.4 Formal Techniques and Formal Tools

Reading of this section can be skipped till the reader has read Chaps. 2-9
of the present volume. The section may to some lay readers appear a bit

| esoteric. |

The aim of this early section is to make the reader aware of the fact that
the languages in which one expresses domain descriptions and requirements
prescriptions are not programming languages, but are specification languages.
These specification languages need allow the expression of abstractions, so as
to make easy the expression of essential properties, while allowing freedom of
software design implementations.

1.4.1 On Formal Techniques and Languages

Characterisation. By a formal technique we mean both of the following:
a technique that has a mathematical foundation, and thus can be explained
mathematically, and a technique by which its user expresses descriptions, pre­
scriptions and (design) specifications formally and is able to reason formally
about what is expressed. •

Thus a formal technique implies: Formal specification using subsidiary tech­
niques and the possibility of formal verifications, with their subsidiary tech­
niques. Therefore a formal technique requires a formal specification language.

26 1 Introduction

Character i sa t ion . By a formal specification language we mean all of the
following: a language which has: a formal, mathematical syntax; a formal,
mathematical semantics; and a formal, mathematical logic proof system. •

In Chap. 9 of this volume we explain what is meant by a proof system. In
Vol. 2, Pa r t IV we will explain what is meant by formal syntax and formal
semantics.

Normally, in conventional software engineering, only the last step of de­
velopment uses an almost9 formal language, namely the coding (i.e., the com­
puter programming) language. We shall advocate the use of formal languages
from the very beginning, for all phases, stages and steps of development. In
conventional software engineering many different kinds of informal description,
prescription and (design) specification languages are deployed, some with one
form of diagrammatic constructs, others with other constructs, but all without
a proper syntax, let alone any discernible semantics.

1.4.2 Formal Techniques in S E T e x t b o o k s

The aims and objectives of these volumes hinge crucially on the ideas of for­
mal techniques and formal tools. The purpose of this section is to motivate
this central role of formality. Most, if not all, existing textbooks on software
engineering shy away from propagating these ideas of formalism. If other text­
books on software engineering bring any material on what they call 'formal
methods ' , it is usually in the form of a separate chapter appearing some­
where in the book. In these volumes formal techniques permeate all technical
chapters. Formal techniques are deployable, and are hence to be taught in
connection with all technical aspects of software engineering.

1.4.3 S o m e P r o g r a m m i n g Languages

A language, when seen as the means for expressing an engineering objective,
can be considered a tool. As such, formal languages represent one class of
software engineering tools. As for all crafts, many tools are needed, different
size hammers, different size saws, different size screwdrivers, different size
planners, etc., are needed for carpentry. Tha t is, the artifact to be constructed,
tha t is, its "nature" or its a t t r ibutes (properties), determines exactly which
of many different tools are to be deployed.

We have very many different kinds of programming languages, "past"
and "current"1 0 : functional programming languages such as LISP [370], •
S t a n d a r d ML [261,389], • Miranda [502], and • H a s k e l l [498], to mention
a few; logic programming languages, including • P r o l o g [295,351], and CLPR

'Usually most programming languages still do not possess a proof system.
"Current' programming languages are marked with a bullet: •.

1.4 Formal Techniques and Formal Tools 27

[312]; the imperative1 1 programming languages of F o r t r a n [14], Cobol [12],
Algo l 60 [24], A lgo l 68 [510], P a s c a l [522],• C [321]; object-oriented pro­
gramming languages, such as Simula 67 [54], • C++ [489], Modula 2 and
Modula 3 [262,401,525], • E i f f e l [377,378], Oberon [434,526,528-530], and •
J ava [10,20,243,348,470,511]; and finally the parallel programming languages
of PL / I [13,37], CHILL [145], Ada [128], and • occam [301,364,449].

1.4.4 S o m e Formal Speci f icat ion Languages

We can also expect to have many different kinds of formal specification lan­
guages tha t are model-oriented or property-oriented.

O n M o d e l - O r i e n t e d Speci f icat ion Languages

Some specification languages are model-oriented:12 • VDM-SL [120,121,226,
317], • Z [281,476,477,533], and • B [3].

Character i sa t ion . By a model-oriented specification language we mean one
which expresses whatever it specifies in terms of mathematical constructions
(i.e., models) such as sets, Cartesians, lists, functions, etc. •

O n P r o p e r t y - O r i e n t e d Speci f icat ion Languages

Other specification languages are property-oriented (algebraic semantics)
specification languages:1 3 0BJ3 [233], • CafeOBJ [190,232], and • CASL
[49,397,399].

Character i sa t ion . By a property-oriented specification language we under­
stand one which expresses whatever it specifies in terms of logical properties
of what is specified. •

11 An imperative programming language is one which primarily focuses on
assignable variables, hence assignments, and hence has statements, and usually
therefore statement labels and GOTOs. Statements, in a sense, prescribe: Do this,
then do that — "imperially".

12 A model-oriented specification language allows for the expression of models in
terms of mathematical entities such as sets, Cartesians, lists, maps, functions, etc.
Chaps. 12-16 (of the present volume) will make the first presentations of model-
orientedness.

13A property-oriented specification language allows for the expression of mod­
els in terms of logically expressed algebras. Chapters 9 and 12 will make the first
presentations of algebras and property-orientedness.

28 1 Introduction

On Property-Oriented + Mo del-Oriented Specification Languages

Other specification languages are "mixed" property- and model-oriented spec­
ification languages: • RSL [236,238,239].

In these volumes we mostly use the RAISE Specification Language, RSL.
But, really, nothing prevents a lecturer from using, for example, VDM-SL or Z
instead.

More on Programming Languages

One selects a programming language according to what one wishes to express,
that is, the values one wishes to speak of. Different programming language
categories, as listed above, favour different value spaces.

In functional programming we handle functions, their definition, applica­
tion and composition, because functions (including ordinary operator/operand
expressions) are thought to best capture the problem at hand.

In logic programming we express propositions and predicates, i.e., handle
logical values, because it is thought that one can best express certain com­
puting problems by characterising their properties.

In imperative programming we establish, initialise, update and read states,
i.e., assignable variables, because states and state changes are thought to best
capture the problem to be solved.

In object-oriented programming we establish, initialise, update and read
special clusters of state components called objects, because dividing the prob­
lem up into a set of such objects and solving the problem by expressing the
interaction between objects is thought to best capture the problem at hand.

In parallel programming we establish, initialise and compose processes,
and select among processes in various deterministic or nondeterministic ways.
In addition we express cooperation among processes through their synchro­
nisation and communication because it is thought that one can best express
certain computing problems by their decomposition into cooperating and con­
currently operating processes.

Specification Languages Resumed

The situation is not that simple with formal specification languages. Indeed,
there is the distinction between model-oriented and property-oriented formal
specification languages mentioned above. So one can choose one from either
category depending on what it is one wishes to express, and how.

Purists might choose either the Z (since 1980) or the B (since around
1990) specification language paradigm. Both are based on simple set theo­
retic notions, are utterly elegant and can traditionally handle what one would
consider simple state-oriented sequential problems. Z has been extended in
various ways: to express concurrency, or to express objects beyond its own
basic, elegant modularity concept.

1.4 Formal Techniques and Formal Tools 29

VDM [120,121,226] represents possibly the first full-fledged formal specifi­
cation language concept (since early 1970s), and is still flourishing in the form
of the ISO standardised VDM-SL. The RAISE [236,238] Specification Language
(RSL) was conceived, in the mid-1980s, as a successor to the VDM specification
language, then colloquially known as Met a-IV.

RSL, which we primarily use in these volumes, features both property-
oriented and model-oriented means of expression, has a somewhat sophis­
ticated object-oriented means of compositionality, and borrows from CSP
[288, 289, 448, 456] to offer a means of expressing concurrency. Extensions
to RSL have also been proposed, for example with timing [535], and with
Duration Calculus, that is, temporal logic ideas [274].

1.4.5 Insufficiency of Current, Formal Languages

The story as told above may give you the impression that the formal (pro­
gramming as well as specification) languages offer sufficient expressibility
to handle all situations, but this is not so. Few, if any, professionally sup­
ported programming languages offer means for expressing temporal notions
such as absolute times, relative time (intervals), delays, etc. The same is true
for specification languages. Accordingly we see a bevy of very fascinating
programming languages focusing on expressing synchrony: Es t e r e l [47,48],
Lustre [256] and Signal [248]. We also see specification languages involving
temporal notions: Timed Automata [9], TLA (Temporal Logic of Actions) [331]
and Duration Calculus [537,538]. We also find some which provide for the
expression of state transitions: P e t r i Nets [313,421,435^437], MSCs (Message
Sequence Charts) [302-304] and LSCs (Live Sequence Charts) [171,270,325],
and S ta t echa r t s [265,266,268,269,271]. We shall have more to say about
Petri nets, sequence charts, statecharts and the duration calculi [537,538] in
Vol. 2's Chaps. 12-15.

What does this plethora of programming and specification languages sig­
nify? First, it tells us that we are still in the early days of computing science,
and hence software engineering. Proposals for new and better languages, or
for altogether different language paradigms, are being put forward continually.
It also probably tells us that we should not seek "universal" languages, that
could handle all the "things" that one wishes to express. We shall probably
have to settle for using combinations of different languages when specifying
and when implementing problems.

More generally, it tells us that we shall, in these volumes, be content with
the formal specification languages that are available today, while recognising
their (and our) shortcomings. That is, there are situations in these volumes
where we would like to show a formal specification of a problem, but where
that would entail a longer introduction of a "new" notation, or where we
simply have to give up because no pleasing or adequate or even known such
language can be found!

30 1 Introduction

1.4.6 Other Formal Tools

The most well-known formal tool for software development is a compiler: It
accepts programs in a formal language, the source programming language, it
checks that input programs satisfy a wide variety of static properties, and
if so, it generates an output program in a target coding language, such that
the meaning of the input program is preserved in the meaning of the output
program. To do this properly a compiler embodies a number of instantiations
of theoretical artifacts. These include a finite state machine which processes
(ASCII) character strings into either keyword or identifier tokens, and other
symbols into appropriate delimiter or operator tokens; a push-down stack
machine which processes strings of tokens and creates, while checking, suitable
internal representations of the input program (dictionaries, a parse tree, etc.);
a rewrite system that transforms these internal representations into other,
sometimes claimed optimised representations; and another rewrite system that
finally transforms possibly resulting internal representations into output code.

Other formal tools are possible and exist: type checkers for abstract specifi­
cations; general data or control flow analysers, proof checkers, proof assistants;
model checkers, theorem provers, and program interpreters. These, together
with compilers, are all examples of what we in general call abstract inter­
preters, or partial evaluators. The current understanding of the role and pos­
sibilities of abstract interpretation is far from complete [163,164,215,231,320].

1.4.7 Why Formal Techniques and Formal Tools?

Some Rationale

Engineering, in its classical forms, civil, mechanical, electrical, all deploy cal­
culations in one form or another. They do so in order to determine structural
properties and design parameters, for example, for reinforced concrete or steel
constructions, aircraft wing design, electrical transformer design, and so on.
When we drive over a bridge, fly in an aircraft, or use some electrical appli­
ance, we do so with some confidence that the classical design engineers have
been properly trained in how to, and, when required, can, and indeed do,
perform such calculations.

When we use an ordinary text processing system, yes, even when we send
otherwise "innocent" (read: unimportant) e-mails, then we do not bother
much about the "error-freeness" of that software. But when we fly an air­
craft, or live next to a nuclear power plant, or receive our monthly paycheck
(calculated from a myriad of interdependent tax regulations), or follow in­
structions from a medical doctor, and when we are told that any of these,
the aircraft, the power plant, the paycheck processing and the medical advice,
are monitored and partly or fully controlled by a computer, we may wonder
about the correctness of the relevant software! But are the software engineers

1.5 Method and Methodology 31

comparatively well trained in the many calculi that do indeed exist today for
securing trust in the software, and, if so, are they actually deploying such cal­
culi? The answer is, wrt. current practice, sadly, no! These volumes will teach
you some, but certainly far from enough, such calculi, i.e., formal techniques.

The answer to the rhetorical question of this section, Why formal tech­
niques and formal tools? is therefore: Because we need the highest possible
degree of trust, given today's knowledge, in our software! Since it can be done,
namely, ensuring highest possible degree of trust, it must be done. Not en­
suring so would be tantamount to cheating the customer — also known as
criminal neglect!

Anecdotal cum Analogical Evidence

Until the mid-1700s most ships' captains (and their ships' mates) did not
know how to reckon the longitude14. The chronometer was first fully available
and known by the last quarter of the 1700s. Samuel Pepys15 commented on
the pathetic state of navigation:

It is most plain, from the confusion all these people are in, how to make
good their reckonings, even each man's with itself, and the nonsensical
arguments they would make use of to do it, and the disorder they are in
about it, that it is by God's Almighty Providence and great chance,
and the wideness of the sea, that there are not a great many more
misfortunes, and ill chances in navigation than there are.

We bring that story here for analogical purposes.
We claim that developing software without using formal techniques is like

sailing the high seas without knowing how to compute the current longitude.
We claim that nobody can become a ship's mate, much less a captain, if they
do not know how to compute the longitude.

It is as simple as that, but the problem itself is not simple. It was, perhaps,
more obvious, that the chronometer had indeed solved the longitude problem.
To some it is still not obvious that formal specification and related techniques
(verification, etc.) have brought us a long way towards having solved the
software development problem.

1.5 Method and Methodology

We refer to Vol. 3's Chap. 3 for a more thorough treatment of the concepts of
method, methodology, principles, techniques and tools. Suffice it here to give
a brief account of these terms.

14Those "funny" lines (on a map of the world, or, as here, more appropriately, of
the seas) which stretch between the arctic poles.

15 Prom a trip as a high official of the British Royal Navy, 1683, from England to
Tangier.

32 1 Introduction

1.5.1 Method

Character isa t ion. By a method we understand a set of principles for select­
ing and applying a number of analysis and synthesis (construction) techniques
and tools in order efficiently to construct an efficient artifact, here software
(i.e., a computing system). •

The above will be our guiding characterisation of the concept method. It
will flavour these volumes. We will endeavour to enunciate such principles,
techniques and tools that will guide the software engineer in where to start,
how to proceed and where to end.

In the above characterisation we have also emphasized the things about or
to which the principles, techniques and tools are concerned or apply, select­
ing, applying, analysis, synthesis (construction) and efficiency. Humans select
the principles, techniques and tools. Hence choices of selection form a crucial
aspect of a method. We, humans, or machines, i.e., tools, apply techniques.
Hence modes of application form a crucial aspect of a method, likewise for
analysis and construction. Efficiency, as a concept, applies both to the devel­
opment process and to the developed artifact. We have added efficiency as an
attribute of the concept of a method.

1.5.2 Methodology

Characterisation. By methodology we understand the study of, and the
knowledge about one or more methods. •

These volumes also cover methodology: We will contrast several methods,
including several alternative principles, techniques and tools. No one method
suffices for all software. There are a number of principles, techniques and tools
that can help us. But for any one method there are still principles, techniques
and tools to be identified, studied and tried out.

1.5.3 Discussion

The principles are to be interpreted by humans. The selection and analysis is
to be mostly performed by humans. Some techniques and some tools can be
used by machine, i.e., are formalised. But far from all. Hence it is a misnomer
to refer to a concept of formal methods. It seems appropriate to refer to some
techniques and some tools as being formal. So we conclude: Methods cannot
be formal.

1.5.4 Meta-methodology

In this book, that is, in these volumes we shall highlight certain pieces of
texts. These highlighted texts are concerned with

1.6 The Very Bases of Software 33

• characterisations,
• definitions,
• principles,
• techniques,
• tools, and
• examples

as follows. In the text the following kinds of highlighted texts will stand out.
Please take appropriate note of these texts.

Characterisation. Characterisations are descriptive texts. They are not pre­
cise definitions. •

Definition. Definitions are descriptive texts at the level of mathematical
precision. We present definitions either as shown in the present definition, as
numbered and highlighted paragraphs, or as mathematical texts or as RSL
specifications. •

Principles. Principles are here seen as comprehensive and fundamental laws,
doctrines, assumptions or rules (codes) of conduct underlying the pursuit of
software engineering. It is our principle to enunciate characterisations, defini­
tions, principles, techniques and tools, and to bring many examples. •

Techniques. Techniques are here concerned with the manner in which tech­
nical details are treated by the software engineer. The techniques of presenting
highlighted characterisations, definitions, principles, techniques and tools are
basically those used for descriptive texts. •

Tools. Tools are here seen as intellectual (or even software) devices that
aid in accomplishing a task, that is, are used in performing an operation or
necessary in the practice of the profession of software engineering. The tool
for presenting highlighted characterisations, definitions, principles, techniques
and tools is that of English. •

Example 1.6 The previous five boldface highlighted paragraphs together
exemplified the ideas enunciated in this section. They all ended with the "•"
symbol; and so does does this example. •

1.6 The Very Bases of Software

This section previews the core issues of software engineering. The treatment
here is, perhaps, a bit taxing, that is, it requires careful reading. You may
wish to skip this section and return to read it after having studied, for
example, the first half of this volume!

34 1 Introduction

Before introducing types, functions and relations, algebras, and logic, we must,
however, first cover some even more basic material: What is meant by didactics
and paradigms, and what is meant by semiotics, that is, pragmatics, semantics
and syntax. In other words, this section collects and presents a number of basic
concepts, and as such it is a prelude to Part II of this volume.

1.6.1 Didactics and Paradigms

Life is rather a subject of wonder, than of didactics

Ralph Waldo Emerson 1803-1882

We are guided by paradigms, see Sect. 1.6.3. Good paradigms, we claim, reflect
reasonably clarified didactics.

The Shorter Oxford English Dictionary [350] (OED) defines: didactics hav­
ing the character or manner of a teacher; characterised by giving instructions;
instructive; preceptive; and systematic instruction.

We shall, in these volumes, take the word didactics to mean the basic
ideas of practical or theoretical nature upon which the practice of a field of
human activity is (best, or reasonably) pursued. We claim that our rendi­
tion is commensurate with the OED explanation. There are other didactic and
practical bases for software engineering than just types, functions, algebras
and mathematical logic such as mentioned earlier. Although we shall in later
volumes devote separate chapters to covering these other didactic bases in
detail, we shall, in order that we may be able to refer to the very essence of
these bases (before we reach those chapters), cover the concepts briefly. They
are semiotics and descriptions.

1.6.2 Pragmatics, Semantics and Syntax

Semiotics can, for our purposes, fruitfully be understood as the study and
knowledge of pragmatics, semantics and syntax of language. That is, respec­
tively the use, meaning, and analysis and synthesis of language texts.

Pragmatics

Characterisation. By the pragmatics of a language we mean its use in social
context: Why a particular expression used? What "ultimate" motive lies
(seems to lie) behind an utterance, an expression. •

We have some ulterior motives when specifying: What is it? What are they?
Pragmatics, characterised somewhat convolutely, is that which cannot be for­
malised! Pragmatics is the "real thing". Syntax and semantics enable us to
convey and, it is hoped, to understand, those "real things"!

Software specification languages and, more generally, computing systems
specification languages serve to describe domains, prescribe requirements and

1.6 The Very Bases of Software 35

specify software designs. Thus their pragmatics, as well as the pragmatics of
the individual domain, requirements and software design specifications, are
that they are able to cover that spectrum, and that they, individually, allow
for certain kinds of for example trustworthy and manageable development.
Thus the design of any specification language, such as B, Cafe-OB J, CASL,
RSL, VDM-SL and Z, has taken into account which target applications that
language best caters to. The main specification language of these volumes
is RSL. As we shall see, RSL covers a rather broad spectrum. Two, amongst
several more, important aspects of RSL are that it allows modular, reusable
development and provably correct development.

Semantics

Characterisation. Semantic is about the meaning of what we express syn­
tactically. •

We shall later sharpen this characterisation, but first we express some deeply
felt dogmas. Semantics, in some sense, is what it is all about abstractly! Prag­
matics, in that sense, is what it is about concretely, in a specific social, human
context. If we cannot express the essence abstractly, then we have not under­
stood it. Then we can only have little trust in any software derived from
such an incomplete understanding. Software is, by nature, abstract and is
necessarily conceptual. Therefore it is more important to capture, mentally,
the semantics before we search for a way to express it syntactically. Our best
abstractions are those of mathematics. Mathematics is the science of abstrac­
tion.

So what is the semantics of RSL specifications? To appreciate and under­
stand the choice made for the semantics of RSL, let us consider some very
basic RSL specifications. Usually a specification names "things".

Example 1.7 Semantics of Class Specifications: Our example is just that: It
does not model anything "practical", but illustrates, at a minimum cost of
symbols, what we wish to say about semantics.

[0] scheme EXAMPLE =
[1] class
[2] type
[3] A = Int, B = Nat
[4] value
[5] f : A - > B
[6] axiom
[7] [bijection]
[8] V a:A,a':A • a^a ' => f(a)^f(a')
9 end

36 1 Introduction

Five things are named: (i) A class expression (EXAMPLE, lines [1-8]), (ii-iii)
two types of values, A and B (lines [2-3]), (iv) a function, a value, f (lines [4-5])
that maps As (integers) into Bs (natural numbers), and (v) an axiom bijection
(lines [6-7]) that expresses that f for distinct arguments yields distinct results.

Of the five things named only four designate specific mathematical entities.
The axiom name, always enclosed in brackets, [...], may be put before the
axiom keyword, and is there for a pragmatic reason so that we can refer to
that axiom. Thus axiom names are optional and can be omitted.

Now what semantics does RSL ascribe to the identifiers EXAMPLE, A, B
and f? We start "inside out": A and B stand for the sets of integer, respec­
tively sets of natural number values, and f for any function that satisfies the
axiom. The class definition, EXAMPLE, etc. (lines [0-8]) now stands for a set
of models, where a model provides a mapping from identifiers, such as A, B
and f, into their meanings. All members of the set of models have A and B
stand for the same universes of integers, respectively natural numbers, but
each member of the set has f map into a distinct function from A into B, such
that this set of models exhibits all such functions f in fact infinitely many!
Hence EXAMPLE stands for an infinite set of models.

We summarise: Each type and value thing named by the specifier, e.g.,
you, in a specification, has a meaning. And that meaning may determinis-
tically be a value, or a specific set of (typed) values, as for type names, or
nondeterministically be one or another from amongst a possible infinity of
values, as for the illustrated function name. So, functions can be values. The
set of all values contains the set of all functions. Combining two or more such
meaningful identifiers as here in a class expression, or just as a juxtaposition
of definitions without the class keyword and class name results in a named,
respectively unnamed set of (one or more) models. Axioms may be so con­
straining that there may be no model that satisfies the axioms. Or there may
be a finite number of models, including just one!

Let us "display" the set of models for the class expression (lines [0-8]):

{
[A H. { .. ,-2,-1,0,1,2,..- },
B -> { 0,1,2,... },
f i-> Aa • if a<0 then

3*(2*(—a)) else if a=0 then 0 else 3*(l+2*a) end end,
...],
[A •-> { . . ,-2,-1,0,1,2,. . . },
B -> { 0,1,2,... },
f t-> Aa • if a<0 then

5*(2*(—a)) else if a=0 then 0 else 5*(l+2*a) end end,
...],
[A •-> { . . ,-2,-1,0,1,2,. . . },
B -> { 0,1,2,... },
f i-> Aa • if a<0 then

1.6 The Very Bases of Software 37

7*(2*(—a)) else if a=0 then 0 else 7*(l+2*a) end end,

By Aa:A«E(a) we mean the function which when applied to an argument x in
A yields a value as prescribed by the function body E(x), i.e., where all free
a in E{a) have been replaced hy x. By the ellipses, that is, . . . , we intend to
show that the model may contain parts which map other identifiers into other
mathematical values. •

In the rest of these volumes we shall return, again and again, to semantic
models of the above kind.

Syntax

Characterisation. Syntax is about how we can, in our case, write down
specifications: rules of form, basic forms and their proper compositions. These
rules for formal languages are to be of such a nature that the forms, that is,
the language expressions, can be analysed, and such that, from the analysis,
one can 'construct' (construe) the meaning. •

Syntax is, of course, important, but its importance is secondary to semantics!
We should strive for semantic clarity, then syntactic elegance. If the idea to
be expressed is "muddled", then no matter how beautiful the syntactic forms
may be, humans will not easily understand them!

You have already seen some RSL syntax, for example, the scheme definition
of Example 1.7. Since RSL is aimed at a rather wide spectrum of applications
and at a full spectrum of development, from descriptions of actual domains,
via requirements prescriptions to abstract software designs, the RSL syntax is
rather "rich". That is: has many entities. We shall try unravel these, gently,
as we go along in these volumes, and only introduce the syntax that we need
up to any given point in these volumes.

The syntax of class expressions, as exemplified above, thus appears to be
covered by:

<class_expression> ::=
class

type
< type-definitions >

value
<value_definitions>

axiom
< axiom_definitions >

end

38 1 Introduction

But since there are many more aspects to class expressions than illustrated
so far, the syntax is more complicated than hinted at above.

When explaining a specification language construct we ought systemati­
cally cover its general forms and its static semantics, that is: which constraints
limit the use of for example identifiers, operator symbols, keywords, delim­
iters, etc. and its meaning. We will, however, only give cursory explanations,
leaving details to the RSL Reference Handbook [236].

1.6.3 On Specification and Programming Paradigms

We are guided by paradigms:

(1) Paradigm: thing copied.
(2) Model: pattern, standard, rule, original, mirror;

(3) Prototype: archetype, antetype;
(4) Precedent: lead, representative, epitome

Rogers International Thesaurus [445].

Using paradigms we construct artifacts:

The universe . . . was made exactly conformable
to its Paradigme, or universal Examplar.

(The Shorter Oxford English Dictionary [350].)

These volumes are structured according to a set of specification paradigms.
And these again rest on what we believe are the didactic bases of the practice
and theory of software engineering.

So which are the "most basic" paradigms? Generally, we can say this:
Abstraction is a specification paradigm; so is "favouring, encouraging" non-
determinism in specification. Respective programming styles — functional
(also referred to as applicative), logic, imperative, and parallel program­
ming — represent a programming paradigm. Favouring a specification style
that allows formally verifiable transformations of (more) abstract specifica­
tions into (more) concrete ones, and these finally into 'executable programs
— is a software development paradigm. There are then paradigms within
paradigms: Practicing the functional specification (or the functional pro­
gramming) paradigm may then be according to, for example, the continu­
ation [59, 63, 315, 392, 404, 440, 471, 487, 513, 514] programming paradigm.
Likewise practicing the parallel specification (or the parallel programming)
paradigm may then be according to, for example, the CSP, i.e., the communi­
cating sequential processes, [287,288,448] paradigm, and so on.

1.6.4 Descript ions, Prescriptions and Specifications

We shall, in these volumes, try strictly to use the following terms consistently
and according to the following overlapping classification:

1.6 The Very Bases of Software 39

• Description: As a general term encompassing the below, and as a special
term in connection with textual characterisations of domains.

• Prescription: As a specific term used primarily in connection with require­
ments.

• Specification: As a general term encompassing the above, and as a special
term in connection with textual characterisations of software designs.

• Definition: As a general term encompassing formalisations, also of the
above; and as a special term in connection with certain textual char­
acterisations, namely and specifically, those parts that constitute proper
definitions as distinguished from designations and refutable assertions.

Software Specifications, Requirements Prescriptions and Domain
Descriptions

To direct a computer to perform any computation it must be so instructed.
These instructions form a program. A program is a finite specification of
possibly infinite sets of possibly infinite computations. So, descriptions, pre­
scriptions and specifications form the most essential object of our endeavour:
to develop software. We first explain the idea of specification, then the idea
of prescription, and finally we explain the idea of description.

We specify computations; thus: to design software we specify how the
computations should proceed: the how is an end goal. We prescribe the what,
that is, the requirements that we expect the subsequently designed software
to fulfill. And, before all that we describe the actual world in which these
computations are to occur, that is, the (application) domain.

1.6.5 Metalanguages

We use language, say Ai, to describe or "to talk about" other languages, say
C. One cannot use C to describe C. It leads to nonsense. M is said to be a
metalanguage for C. To describe M we need another metalanguage, or, as we
could call it, a meta-metalanguage M!.

The language, say A4, in which we explain mathematics, i.e., the notation
of mathematics and its meaning, A/", is thus necessarily different from N. We
do not describe M.

1.6.6 Summary

We have briefly introduced the notions of didactics and paradigms; and of
semiotics: pragmatics, semantics and syntax. We have also introduced docu­
ments: informative, descriptive and analytic, as well as (domain) descriptions,
(requirements) prescriptions and (software) specifications. We have finally in­
troduced the notions of metalanguages, and object languages.

We shall later cover these in quite some detail. Suffice it, for now, to say
that the reader now knows that these are basic concepts whose reasonable un­
derstanding is indispensable when pursuing professional software engineering.

40 1 Introduction

1.7 Aims and Objectives

By the 'aims of these volumes' we mean the topics that we will be covering or
dealing with. By the 'objectives of these volumes' we understand that which
we wish to achieve through covering certain material.

1.7.1 Aims

The Main Aims

The main aims are to teach you general software engineering principles, tech­
niques and tools. That is (in Vol. 3): those of domain engineering, of require­
ments engineering and of software design. Among these we additionally single
out and teach principles, techniques and tools of abstraction and modelling
in (Vols. 1-2); of description (in Vol. 3); and of documentation (in Vol. 3).

Some Other Aims

Additional aims are those of providing appropriate mathematical foundations,
(Vol. 1, Part II), of ensuring appropriate understanding of semiotics issues:
pragmatics, semantics and syntax (Vol. 2, Part IV), and of doing all of this
within an appropriate framework of models and definitions (Vol. 3, Chaps. 4
and 6).

An aim, altogether "orthogonal" to the other aims above, is to illustrate
development components of software for the support of large, distributed and
concurrent infrastructure subsystems and systems.

1.7.2 Objectives

The Main Objectives

The main objectives are to help ensure that you become a professional engi­
neer within software, to thus help ensure that the software (cum computing)
systems, in whose development you are involved, become trustworthy systems
of highest attainable quality, and through our emphasis on exemplifying the
development of software (cum computing) systems for infrastructure compo­
nents to help ensure that you, with colleagues, believably can develop highly
sophisticated systems.

Some Other Objectives

Other objectives are to put the broader concerns of software engineering,
such as treated in these volumes, in the context of other, indispensable and
more specialised computing science disciplines such as artificial intelligence
and knowledge-based systems, compiler systems, concurrent, safety-critical

1.9 Exercises 41

and real-time application systems, database management systems, distributed
systems, operating systems, secure, en- and decryptable systems, and so on.
Another objective is to show that formal techniques are applicable, in all
phases, stages and steps of development, and to all kinds of computing sys­
tems.

1.7.3 Discussion

The usual aims and objectives section has been dispensed with, but with a
change: usually the two concepts, aims and objectives, are "lumped" into one
treatment. Here we have separated them, properly.

There is a conceptual triangle: there is the author of these volumes; there
is you, the reader, who studies its contents; and there is the most important
thing: the subject itself: software engineering. Aims are about which software
engineering topics the author wishes to cover, i.e., to teach you. Objectives
are about which effects, with respect to the discipline of software engineering,
the learning of these topics is to have on you. In other words aims are about
'what'; objectives are about 'why'.

1.8 Bibliographical Notes

This book, all three volumes of it, is different from most other textbooks on
software engineering. We shall single out the following major ways in which
this book differs from the following textbooks: [423,430,475,512]. First they
really are short on real development examples: there are hardly any real ex­
amples of specification and design. The present book, all three volumes of it,
hinges crucially on real examples of specification and design. Second, when
they bring a chapter on formal methods, do so in a separate chapter "tucked
away" somewhere, ad hoc. The present book emphasises the use of formal
techniques in all phases, stages and steps of development. Third, they, also
including [240], do not bring any material on domain engineering. It is perhaps
the last thing, domain engineering, in which this book is really new.

One very nice book, [240], does show a lot of formal techniques. Ours
show almost all, if not all, of these techniques, and many, many more, and
puts these techniques in the context of an overall methodology. The book by
Watts Humphrey [298] is a wise book on management. "Hard to beat". The
book by Hans van Vliet [512] is, in our mind, the best overall of the above-
referenced books when it comes to these practical and management issues.

1.9 Exercises

Exercise 1.1. The Sciences: Can you define what we, in these volumes, mean
by computer science, and what we mean by computing science.

42 1 Introduction

Exercise 1.2. Project Management Issues: Can you list some of the more
practical, i.e., project management issues of software engineering.

Exercise 1.3. The Triptych of Software Engineering: Please list the three
main phases of software engineering as put forward in this volume.

Exercise 1.4. Documentation: Can you list the three major classes of doc­
uments (as put forward in this volume) and, within each of the classes, can
you list some of the major document parts.

Exercise 1.5. Formal Techniques and Formal Languages: Please define what
these volumes mean by formal techniques and by formal languages.

Exercise 1.6. Method and Methodology: What does these volumes mean by
(an efficient) method, and by methodology?

Exercise 1.7. The Very Bases: What does this chapter hint at as the meaning
of a specification?

Part II

DISCRETE MATHEMATICS

We cover basic notions of mathematics in a somewhat circuitous way: in-
between treatments of numbers (Chap. 2), sets (Chap. 3), Cartesians (Chap. 4),
functions (Chap. 6), A-calculus (Chap. 7), algebras (Chap. 8) and logics
(Chap. 9), we put a treatment of types (Chap. 5). There is a reason for this. A
reasonable sequence of topics would be numbers, sets, Cartesians, functions,
A-calculus, algebras and logics. Each of these mathematical domains entails
sets of values. We group characterisable subsets of these into types, where
types, naively, are sets of values: types whose values are sets, and types whose
values are Cartesians. The members of sets and the elements of Cartesian
values are just postulated to be of some type.

From types (of values) we can then construct new types: types whose values
are functions, typically from values of Cartesian types to values, etc. And then
we can present algebras as typed sets of entities and operations over these.
Finally, we can introduce mathematical logic — allowing quantifications to
range over specified types. Types thus permeate our treatment of the mathe­
matical universes of numbers, sets, Cartesians, functions, A-calculus, algebras
and logics. Some textbooks on discrete mathematics are [260,420,425,481].

2

Numbers

• The prerequisite for studying this chapter is that you possess at least a
simple level of mathematical maturity.

• The aim is to introduce the simple concepts of numbers.
• The objective is to help ensure that the reader, in the future, handles

the various types of numbers: natural numbers, integers, rationals, reals,
transcendentals, with ease, naturally and correctly.

• The treatment is informal, but systematic.

"God created the integers, all else is the work of man," so said Kronecker,
or so it is believed he said.

2.1 Introduction

Our interest, in these volumes, and hence in modelling some universe of
discourse phenomenon by means of numbers, is not in the deeper number-
theoretic properties,1 but in the simpler, rather more shallow properties: Num­
bers are strictly ordered and reals are densely packed.

There are many kinds of numbers, to wit: natural numbers: 0,1,2, . . . ;
integers: . . . , —2,—1,0,1,2, . . . ; rationals: consisting of both integer (viz.,
ijj) and fractions, | , for all integers i, j where j / 0; irrational numbers;
real, imaginary and complex numbers; and transcendental numbers. Although
we shall have occasion, even for a very large variety of typically man-made
"systems", to use only natural numbers, integers and reals, it may be a good
idea to become familiar with all these other number concepts as well. The
aim is to make sure that you are well aware of those means we have chosen
to make available for our modelling endeavours, and those we have not!

1 Properties such as prime numbers, factorisation, irrationality or transcendental
numbers: Euler's Theorem and Fermat's Little Theorem, Euler's phi-function, de
Polignac's formula, Mersenne primes, Mobius's function, Euclid's algorithm, Pell's
equation, and so on [263].

46 2 Numbers

2.2 Numerals and Numbers

A numeral is a name for a number. No-one (in a s tate of sober mind) has
ever seen a number. Numbers are abstract mathematical quantities. They
are characterised by their properties. For every number tha t exists in the
universe of mathematics , there is exactly one copy: the original. For many
numbers there are simple names, and often there is more than one distinct
simple name for the same number:

7, seven, sieben, sept, syv, ...

For most numbers there are simple or composite names:

14/2, 6+1, 2*4-1, ... ; vii, III, mini. ...

By a digit we understand a simple numeral for a special number: If in radix
(i.e., base) ten, then the digits are the decimal digits, usually written 0, 1, 2,
3, 4, 5, 6, 7, 8 and 9. If in radix two, then the "digits"2 are the binary digits,
usually writ ten 0 and I. If in radix one (!), the "digit" is a marker, or its
absence: i. If we can speak of Roman "digits" they would be: I, V, X, L, C, D
and M.

2.3 Subsets of Numbers

We shall briefly survey such facts about numbers tha t will turn out useful in
specifications, natural numbers and integers, rational numbers and reals. We
also take a brief look at other kinds of numbers: irrational and transcendental
numbers.

2.3.1 N a t u r a l N u m b e r s : N a t

By the natural numbers we understand those tha t are basically characterised
by Peano's Axioms (Example 9.21 on page 190). By N a t we designate the set
of all natural numbers. We write the natural numbers based on the following
B N F 3 grammar:

<NatNum> : : = <DecDig> I <DecDig> <NatNum>
<DecDig> : : = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<DecDig> stand for decimal digits.

2We really should reserve the name digit only for the base numerals in base-10
systems, since 'digitus', in Latin, stands for finger.

3By BNF we mean 'Backus Normal (or Naur) Form'. We assume that the reader is
familiar with the notion of such BNF grammars, including is familiar with the notion
of context-free grammars.

2.3 Subsets of Numbers 47

Example 2.1 Semantics of Decimal Digit Natural Numerals: Let us perform
the following thought experiment: Let 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 "somehow
be" the natural numbers corresponding, left to right, to the decimal digits 0,
1, 2, 3, 4, 5, 6, 7, 8, 9; then

M: <NatNum> - • Num
M(d,n) = 10*M(d) + M(n)
M(d) = case d of 0-^0,1->1,...,9->9 end

informally explicates the meaning of a natural number numeral. •

Notice that M is a morphism (see Sect. 8.4.4 for the concept of morphism).
We explain the notation used in the above example. We owe you an ex­

planation as to how M is able to distinguish between the natural number,
<NatNum> which is just a decimal digit, <DecDig> and one which is the com­
posite form, <DecDig><NatNum>. Later, when we have introduced the appro­
priate "machinery", we can also present the syntax and type definition forms
by means of which RSL, and other specification languages, solve the distin-
guishability problem.

But we can explain the rest: If the number is of the composite form then
M(d,n) is the sum of ten times the value of the first digit and the value of
the rest of the numeral. If the number is just a digit then there are 10 cases
to distinguish. If the digit is the digit 0 then the value is the mathematical
number 0, etc. Had we chosen to write the digits by the character strings
zero, one, two, . . . , nine then the case distinction would have been on these
character strings, but resulting, to the right of the —»'s, in the same boldfaced
number designators.

Example 2.2 Semantics of "Quadruplet" Binary Digit Natural Numerals:
By "quadruplet" binary numerals we mean those strings of one or more special
quadruplets of Os and Is, namely: 0 0 0 0 , 0001, 0010, 0011 1000, 1001.
Then we again have the same right-hand sides:

type
(QuaNum) ::= (QuaNum) (QuaDig) | (QuaDig)

value
M: (NatNum) - • Num
M(d,n) = 10*M(d) + M(n)
M(d) = case d of 0 0 0 0 - > 0 , 000I->1, ..., 1 0 0 0 ^ 8 , IOOI->9 end

Explanation of Some RSL Constructs

In other words, the "case e of p\ —>e[, P2—^2? . . . ,pn—>ef
n end" construct has

a first argument which is an expression e of any value and of any type, and a

48 2 Numbers

second argument which is a sequence of "triples" separated by commas: Pi-te^
for i being 1 for the first triple, right after the of keyword, 2 for the next, etc.
If the value of e can be expressed as the pattern, inclusive, as here, of having
the value of that pattern, then the value of the whole case construct is that of
the value of ej, else we try the next triple. If no triple yields a comparison that
equals, that is, that 'matches', then the value of (the whole case construct)
expression is chaos. We shall have more to say about patterns later.

2.3.2 Integers: Int

Integers derive from natural numbers by including those numbers that are
negations of natural numbers. That is, if i is an integer, and — i = j is its
negation, then i+ j = 0.

Properties

Let a, b and c stand for integers. Some important properties of integers are:

[Associativity and Commutativity of + and *:]
a+(b+c) = (a+b)+c, a+b = b+a
a*(b*a) = (a*b)*c, a*b = b*a

[Distributivity of* over +:]
a*(b+c) = a*b + a*c

[Properties of 0 and 1:]
0+a = a, l*a = a, 0*a = 0

[Properties of —:]
(—a)+a = 0, (—a)*b = —(a*b), (—a)*(—b) = a*b

[Cancellation Laws:]
a+b = a+c => b=c, a^O —> (a*b=a*c => b=c)

[Properties of Order:]
a>0 A b>0 => a*b > 0
V a:Int • a<0 V a=0 V a>0 [Trichotomy]

[Definition of Addition and Multiplication:]
s:Int->lnt, s(i) = i+1 = i'
a+0 = a, a+s(b) = s(a+b) = a+b+1
a*0 = 0, a*s(b) = (a*b)+a

[Integer Division:]
a / b as (q,r) where a = b*q+r A 0<r<b

The RSL Integer Algebra

The RSL integers can be indefinitely large, positive or negative. The usual
operators are defined, as well as some not so usual operators \ and / .

2.3 Subsets of Numbers 49

value
+,- , / ,* ,V Int x Int >̂ Int
<,<,=,7^,>,>: Int x Int - • Bool
- , t: Int - • Int
abs: Int -> {| i:Int • i>0 |}

axiom
V n:Nat • abs —n = n = abs n

The slash, / , and the backslash, \ , operators designate the integer division
and remainder functions:

V i , j : l n t . j ^ 0 ^ i = (i / j) * j + (a \ b)

The t designates the integer exponentiation function. The second argument
must be a natural number. If both arguments are zero then the result is chaos.

2.3.3 Real Numbers: Real

Real numbers, besides the integers, are additionally those that can be written
(i.e., can be represented) as a pair of possibly infinite sequences of digits
separated by, for example, a period. We indicate two extremes, the finitely
writable reals:

dndn-i . . . d\.d1d2 . . . dm_1dm

and the doubly infinitely writable reals:

...d'!dU---d'(.d'l'd'i'...d'l'_ld';1...

for all combinations of digits dk,df
k,, d'^,,, d'l',,, ranging over 0,1, 2,3,4, 5, 6, 7,8

and 9, for k,kf finite, and for — oo < k", k"1 < oo, whatever that means!
Obviously, in RSL we can only write the finitely representable reals.

Rational Numbers

A rational number is a real which can be expressed as the division of two
integers where the denominator is non-zero.:

Rat = {| i/j • i,j:Int A j^O |}

Every integer is a rational number.

Operations on Reals

RSL defines the following operations on real numbers:

50 2 Numbers

value
+,—,/,*: Real x Real >̂ Real
< ,< ,= ,A> ,>: Real x Real -» Bool
- : Real -» Real
abs: Real -^ {| r:Real • r>0 |}
int: Real —> Int
real: Int —> Real

axiom
V n:Nat • abs —n = n = abs n

The int and real functions convert a real to the integer nearest 0, respectively
an integer to a real:

int 2.71 = 2, int -2.71 = - 2 , real 5 = 5.0, and so on

Thus intr is the greatest integer that is smaller than or equal to the absolute
value of the real (r), with the sign being that of the real.

2.3.4 Irrational Numbers

The irrational numbers are all those reals which are not rational.

2.3.5 Algebraic Numbers

The algebraic numbers are all those real or imaginary numbers which are
roots, r, of polynomial equations of the form:

a * xn + b * xn~x H \-c*x + d = 0

where n is any integer and where coefficients a, 6 , . . . , c, d are integers, A/2 is
an algebraic number. A root is any number, r, which makes the value of the
polynomial expression:

a * xr + b * xr~x + \- c* x + d

equal 0. We shall not have any basic need to deal with algebraic numbers. If,
however, we were to develop a software system for calculations over polyno­
mials, then we would abstractly define polynomials as syntactic structures,
and we would define functions that, for example, solve polynomial equations.

2.3.6 Transcendental Numbers

A real number which is not algebraic is called transcendental. Existence of
transcendental numbers was first shown by the French mathematician Joseph
Liouville4 in 1844. Examples of transcendental numbers are e and n. Again,
in these volumes, we shall have no occasion to wish to express transcendental
numbers, but we will provide means for modelling them.

4See, e.g., h t t p : //www. s t e t son . edu/~ef r iedma/per iodic table /html/Lu. html.

2.4 Type Definitions: Numbers 51

2.3.7 Complex and Imaginary Numbers

Complex numbers arise as the solution to certain kinds of polynomial equa­
tions. Such numbers (c) are, in ordinary mathematics, normally written as a
pair of a real (a) and an imaginary (i b) number (where a and b are themselves
reals):

c : a + \b

There is no explicit means for writing complex numbers in RSL, as RAISE was
not intended for such applications where expressing or denoting complex num­
bers arise. If, however, we need to deal with complex number "representation"
and operations, then we model them as pairs:

type
Complex = Real x Real

value
add, sub, mpy, div: Complex x Complex —> Complex

add((al,ibl),(a2,ib2)) = (al+a2,ibl+ib2)
sub((al,ibl),(a2,ib2)) = (a l -a2, ib l - ib2)
mpy((al,ibl),(a2,ib2)) = (al*a2-ibl*ib2,al*ib2+a2*ibl)
div((al,ibl),(a2,ib2)) = ... /* left as exercise */ ...

2.4 Type Definitions: Numbers

So when and where are numbers used when modelling domains, requirements
and software? We model certain (concrete) phenomena and certain (abstract)
concepts by means of numbers when operations on the phenomena and con­
cepts necessarily entail those of for example addition, subtraction, multipli­
cation, and, more rarely, division.

A (concrete) type definition is something which to a type name associates
a type expression. The type expressions introduce in this chapter were:

type
Nat, Int, Real

Let TV, / and R be (arbitrarily selected) type names, then:

type
N = Nat
I = Int
R = Real

52 2 Numbers

are examples of type definitions. N stands for the type, i.e., the class, of
natural number values. / and R for integers and reals.

With a person one can associate a height and a weight. With a country one
can associate a population (i.e., number of citizens) and its decomposition into
females and males. With that same population one can associate the annual
increment or the decrement in population, i.e., deviation. Suggested types are
therefore:

type
Height, Weight = Real
Population, Female, Male = Nat
Deviation = Int

The above just constitutes a very first beginning in which we model 'kinds'
of phenomena and concepts

2.5 Summary

We have introduced the natural number Nat, the integer Int and the real
Real number types. In addition, we have shown how to express their values,
and covered the usual operations on each of these kinds of values. The other
number types mentioned are not directly designatable in RSL.

Integers are usually deployed to model indices into arbitrary arrays of
mathematics and hence in such programming languages which are used for
mathematical calculations over arrays (vectors, matrices, tensors, etc.). Sim­
ilarly natural numbers larger than 0 are usually deployed to model indices
into list data values, including, for example, sequences of sentence structures.
Sometimes, in ordinary programs of ordinary programming languages, integers
and natural numbers are occasionally used as programmer-chosen encodings
of other phenomena than numbers themselves.

Example 2.3 Undesirable Encodings: Typical encodings in "old" program­
ming styles were: 1 for truth and 0 for falsity; the numbers 1,2,3,4 for des­
ignating the suit, s, of a card, in a deck of cards: 1 ~ • , 2 ~ <^,3 ~ ?̂ and
4 ~ A; and the numbers 1 , . . . , 13 for representing, within each suit, the face
value, v, of the card: 1 ~ ace, i = i, 1 < i < 10, 11 ~ knight, 12 ~ queen,
and 13 ~ king. As a result any ordinary (i.e., non-joker) card is encoded as a
number pair (s,v), and such that the joker (card) may be represented as, for
example, (5,14)! •

We leave it to the reader to imagine for which purposes we use reals in abstract
model specifications.

2.7 Exercises 53

2.6 Bibliographical Notes

The classical textbook cum monograph on number theory is that of Hardy
[263].

2.7 Exercises

Exercise 2 .1 . A Radix 0 Numeral Number System. Let natural numerals
be represented by sequences of diamonds, o, such that o designates 0, oo
designates 1, o o o designates 2, etc.

(1) Define a BNF5 grammar for these radix 0 numerals.
(2) Define a function R0R10, and another function R10R0, such that R0R10

converts a radix 0 numeral to a radix 10 numeral, and such that R10R0 con­
verts a radix 10 numeral to a radix 0 numeral. Assume a modulo function
which when applied to numbers m and n, i.e., modulo(ra,n), yields a pair,
(ra', d), of numbers such that 0 < d < n, and m = n x ra' + d.

(3) Define suitable arithmetic operators, addition, multiplication and in­
teger division, that take radix 0 numerals and return radix 0 numerals.

Exercise 2.2. A Radix 8 Numeral Number System (I). Based on the idea
of the informal Example 2.1, devise a grammar for a radix 8 natural number
system, and an informal meaning function that converts radix 8 numerals into
radix 10 numbers.

Exercise 2.3. A Radix 8 Numeral Number System (II). Given a radix 10
number, convert it to a radix 8 numeral. That is: Define, informally, a function
which takes a natural number and yields a radix 8 numeral. Assume a function
modulo which takes two arguments, ra,n, both natural numbers, both larger
than 0, and yields a pair w, r such that w x n + r = ra.

Exercise 2.4. Real Numerals. Suggest a BNF grammar for real numerals, that
is, a pair of sequences of digits separated by a period. Then suggest an informal
function definition which converts a real numeral to a real number.

Exercise 2.5. Imaginary Numbers. We refer to Sect. 2.3.4. Please define the
division of complex numbers (i.e., complex reals).

Throughout this volume we shall use the triplets of 4ks to set off exercises that
pertain to the "running" exercises of transportation nets, container logistics
and financial service industries. The single X after the initial Exercise literal
and exercise number shall signal that the exercise in question belongs to these
running exercises.

5We refer to Page 46 for an example BNF grammar.

54 2 Numbers

Exercise 2.6. X Numbers in the Transportation Net Domain.
We refer to Appendix A, Sect. A.l, Transportation Net.
Reading, carefully, the rough sketch description given in Sect. A.l, try

to identify as many entitites which can be, in a reasonable way, modelled as
numbers. State their type definitions as outlined in Sect. 2.4 on page 51.

Exercise 2.7. X Numbers in the Container Logistics Domain.
We refer to Appendix A, Sect. A.2, Container Logistics.
Reading, carefully, the rough sketch description given in Sect. A.2, try

to identify as many entitites which can be, in a reasonable way, modelled as
numbers. State their type definitions as outlined in Sect. 2.4 on page 51.

Exercise 2.8. X Numbers in the Financial Service Industry Domain.
We refer to Appendix A, Sect. A.3, Financial Service Industry.
Reading, carefully, the rough sketch description given in Sect. A.2, try

to identify as many entitites which can be, in a reasonable way, modelled as
numbers. State their type definitions as outlined in Sect. 2.4 on page 51.

3

Sets

• The prerequisite for studying this chapter is that you are willing to learn
about simple mathematical concepts.

• The aim is to introduce the basic mathematical concepts of simple sets.
• The objective is to help ensure that the reader gets a head start on the

most important of all model-oriented abstractions: sets.
• The treatment is rigorous to formal.

Characterisation. By a set we shall, loosely, understand an unordered col­
lection of distinct elements (i.e., entities), something for which it is meaningful
to speak about (i) an entity being a member of a set (or not) G, (ii) the union
(merging) of two or more sets into a set (of all the elements of the argument
sets) U, (iii) the intersection of two or more sets into a set (of those elements
which are in all argument sets) H, (iv) the complement of one set with respect
to another set \ , (v) whether one set is a subset of another set C and C and
(vi) the cardinality of a (finite) set (i.e., how many members it contains), card
and a few more. •

The concepts of sets and set elements are left undefined. Above we have hinted
at some set forming and other operations over sets and their elements. What
sets "really are" is usually defined in mathematics by establishing what is
called an axiom system1. Axiomatically speaking, sets and their operations are
what a number of axioms of a set theory define them to be! There are several
axiom systems for set theory. They each define a set theory. The different
set theories may therefore not be exactly the same. The perhaps best-known
axiom system for set theory is that put forward by Zermelo/Fraenkel (ZF)
[211,230]2.

xWe shall later, in Chap. 9, define what we mean by axiom system.
2See, for example:

http://plato.stanford.edu/entries/set-theory/ZF.html
http://mathworld.wolfram.com/Zermelo-FraenkelAxioms.html

56 3 Sets

3.1 Background

Set theory is a major branch of mathematics . One can start by explaining
mathematics from a basis of set theory, or from a basis of mathematical logic.
We refer to seminal texts in set theory for a discussion of sets as a foundation
for mathematics [46,211,230,258,273,394,491,500,505]. These texts also put
set theory into a historical context.

3.2 Mathematical Sets

Let e i , e 2 , . . . , e n be arbi trary elements (i.e., mathematical entities). Let us
assume, without loss of generality (of what we shall have to say next) , tha t
they are all distinct and elementary, i.e., atomic. Tha t is, no ei involve func­
tions, or other sets, etc. Then when writing {ei , e 2 , . . . , en} we mean the set,
which we may name s, of n distinct elements e^ for i = 1 . . . n . {} designates
the empty set3 (of no elements). { and } are the set-forming braces.

We take membership, G, of a set, e G s, to be a further unexplained
primitive function, e G s holds, i.e., is t rue , if e is one of the e« for i = 1 . . . n.
Otherwise the expression e G s i s false.

Based on the membership function we can now define4 the s tandard col­
lection of operations over sets. Let e, s, s' designate any element and any two
sets:

s U s' = {e | e G s We G s'}

s f l sf = {e | e G s A e G sf}

s \ sr = {e | e G s A e 0 sr}

s J s' = {e | e G sf A e 0 s}

s C s' = Ve • e G s =^ e G s' A 3e • e G s' A e ^ s

s C s ' = V e * e G s = > e G s /

s = s' = s C s' A s' C s

s ^ sf = -i(s = s')

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

Since this an early exposition of logical formulas, let us "read" these:

• Equation (3.1): The union of two sets, s and s', is the set of elements e
such tha t e is a member of either the set s or the set s', or both.

• Equation (3.2): The intersection of two sets, s and s', is the set of elements
e such tha t e is a member of both the set s and the set s'.

http://planetmath.org/encyclopedia/ZermeloPraenkelAxioms.html
http://www.britannica.com/eb/article?tocld=24035, etc.

3Sometimes the empty set is designated 0 .
definitions 3.1-3.8 are all in the classical style of mathematics.

3.2 Mathematical Sets 57

• Equation (3.3): The difference of set s wrt. set sr is the set of elements e
such that e is a member of s but not of the set s'.

• Equation (3.4): The complement of set s wrt. set sf is the set of elements
e such that e is a member of sf but not of the set s.

• Equation (3.5): s is a proper subset of set s' if all (V) members of s are
also members of s', and such that there exists (3) members of s' which are
not members of s.

• Equation (3.6): s is a subset of set sf if all members of s are also members
of*'.

• Equation (3.7): Two sets are equal if one is a subset of the other, and vice
versa.

• Equation (3.8): Two sets are unequal if they are not equal.

Definitions (3.1)-(3.4) exemplify set comprehension:6

{e | V(e)}

Figure 3.1 illustrates six of the above operations. The black circle to the left
of the upper-leftmost subfigure stands for a set A; the other black circle to
the right stands for another set B. The same is true for the subfigures of the
first two rows.

c
•
A f l B

C ^_fi

Fig. 3.1. Informal illustration of six set operations

Thus the operator symbols of Eqs. (3.1)-(3.8) read as follows: V: or, A: and,
0: not member of, Ve*: for all elements it is the case that, 3e*: there exists
an element such that, -•: not. The first four definitions are by set compre­
hension. The last four definitions use universal and existential quantification.

5When expressing set comprehension in the RSL notation we shall "add" a type
binding: {e | e : T • V[e)}.

58 3 Sets

The symbol | reads: such that. The logic of these equations (i.e., definitions)
is covered in Chap. 9.

In summary: There are two ways of expressing sets: by enumeration: {},
{a}, {a, b}, etc., and by comprehension: {e \ e : T • P(e)}. We did not show
the typing, T, of elements e in Eqs. (3.1)-(3.8). Take, for example, Eq. 3.1:

s U sr = {e\e:T £ sV e£ S1}

That is, we shall later bind elements of sets to specific types, and hence express
that sets are typed sets. But we did show the use of the predicate (P over e).
Later we will explain typing (Chap. 5) and predicates (Chap. 9).

3.3 Special Sets

3.3.1 Axiom of Extension

The axiom of extension states that a set is completely determined by its
elements.

3.3.2 Partitions

Let s be a set, say {01,02^0^,0^,0^,00}. A partition of s is a set of disjoint, i.e.,
nonoverlapping sets, for example, {si,S2,ss} = {{&i}? {^2,^3}, {&4,a5,ae}},
such that the union of these: {ai}U {02, Os}U {04,05,0$}, forms the set s.

3.3.3 Power Sets

Given a set, s, the power set of s, V{s), is the set of all its subsets. Thus,
for o = {en,0,2,0,3}, V{s) is {{}, {ai}, {a2}, {a3}, {o1,a2}, {a i ,a 3 }, {a2,o3},
{ai ,a 2 , a 3 }}.

3.4 Sorts and Type Definitions: Sets

3.4.1 Set Abstractions

So when and where are sets used when modelling domains, requirements and
software? We model certain concrete phenomena and certain abstract concepts
by means of sets when operations on these phenomena and these concepts
necessarily entail those of for example a phenomenon (or a concept) being a
member of a class of such, or a set union of such, or a set intersection of such,
or one phenomenon (or concept) being set included in another, etc.

3.5 Sets in RSL 59

3.4.2 Set Type Expressions and Type Definitions

A (concrete) type definition is something which to a type name associates a
type expression. The set type expression introduced in this chapter was:

B-set

where B is any type (expression). Let B be an already defined type name,
then:

type
A = B-set

is an example of a type definition. A then stands for the type, i.e., the class,
of sets of B elements.

Example 3.1 Sociology: If a neighbourhood, N, of people consists of a set
of people, if a clan (i.e., a family), C, similarly, and if a society (of people),
5, consists of a set of neighbourhoods, then:

type
P
N = P-set
C = P-set
S = N-set

models neighbourhoods, clans, and societies, in terms of the undefined sort of
people, P. m

The above just constitutes a very first beginning in which we model kinds of
phenomena and concepts.

3.4.3 Sorts

By a sort we shall understand a type about whose elements we make no further
statements, that is, we do not, at present, say what they are. In other words,
we leave them further undefined.

3.5 Sets in RSL

In Chap. 13 we shall cover, in excruciating detail, the concept of sets in RSL:
how they are typed, enumerated, comprehended, operated upon, and used in
various abstractions.

60 3 Sets

3.6 Bibliographical Notes

Set theory and logic are classical mathematical disciplines, and are strongly
related. Seminal textbooks in set theory are: [46,211,230,258,273,394,491,
500,505].

3.7 Exercises

Exercise 3.1. Simple Set Enumerations and Operations. (1) List, as set ex­
pressions, i.e., with curly braces and separated by commas, i.e., {_,_,..., _} the
following finite sets: (a) The set of the first 10 Fibonacci numbers, (b) the set
of the first 6 factorial numbers, and (c) the set of the first 6 square numbers.
(2) Then list the set of elements resulting from the intersection set of a and
b, the complement of a wrt. b (i.e., a\b), and the complement of b wrt. to a
(i.e., a/b).

Exercise 3.2. Set Statements. Fill in the texts implied by | j j and |_2j below:

• If an element e is in An(BUC) then it is the same as saying that e is in
|_jj and in
If an element e is in (AnB)UC then it is the same as saying that e is in
\l\ or in |
If an element e is in A\(BC\C) then it is the same as saying that e is in
111 but not in |_2_|.

Notes for the next exercises: Let A be the main type of some domain
(i.e., the Transportation Net, the Container Logistics, or the Financial Service
Industry — such as outlined in Appendix Chap. A). If some major, i.e., an
immediate subentity of entities of type A can be modelled as sets of entities
of type B, then we can also say that we can observe these sets of (type B)
entities:

type
A, B

value
obs_Bs: A ->> B-set

Here obs_Bs is said to be an observer function that applies to entities of type
A and yields sets of entities of type B. We say that we can observe these latter
sets from elements of type A.

3.7 Exercises 61

Exercise 3.3. X Sets in the Transportation Net Domain:
We refer to Appendix A, Sect. A.l, Transportation Net.
Reading, carefully, the rough sketch description given in Sect. A.l, try

identify as many entities which can be, in a reasonable way, modelled as sets.
State their type definitions as outlined in Sect. 3.4 on page 58. Suggest related
observer functions.

Exercise 3.4. X Sets in the Container Logistics Domain.
We refer to Appendix A, Sect. A.2, Container Logistics.
Reading, carefully, the rough sketch description given in Sect. A.2, try

identify as many entities which can be, in a reasonable way, modelled as sets.
State their type definitions as outlined in Sect. 3.4 on page 58. Suggest related
observer functions.

Exercise 3.5. X Sets in the Financial Service Industry Domain.
We refer to Appendix A, Sect. A.3, Financial Service Industry.
Reading, carefully, the rough sketch description given in Sect. A.3, try

identify as many entities which can be, in a reasonable way, modelled as sets.
State their type definitions as outlined in Sect. 3.4 on page 58. Suggest related
observer functions.

4

Cartesians

• The prerequisite for studying this chapter is that you possess at least a
simple level of mathematical maturity.

• The aim is to cover the classical mathematical concept of Cartesians.
• The objective is to make sure that the reader, in the future, will handle

the issues of certain kinds of aggregations, compounds, products, records,
structures, etc., as possible examples of Cartesians.

• The treatment is informal, yet precise.

We have chosen the name Cartesians, for the kind of mathematical struc­
tures unveiled in this chapter, after the French philosopher and mathemati­
cian Rene Descartes. Other, more common, terms are: structures, records,
groupings or aggregations. At the end of the chapter we provide a "borrowed"
biography of Rene Descartes.

Characterisation. By a Cartesian we understand, loosely, a fixed grouping
(i.e., aggregation) of a number of not necessarily distinct entities such that
it is meaningful to speak of (i) the composition of these entities, e ,̂ into a
Cartesian, (e i ,e2, . . . ,e n) , and of (ii) the decomposition of a Cartesian, c,
into its components: let (idi, icfe,..., idn) = c in . . . end, etc. •

4.1 The Issues

Between elements (i.e., members) of a set there is no other relation than their
being distinct members of that set. If one wishes to express a mathematical
entity which has a fixed number of possibly distinct entities such that their
position is fixed, but not ordinal, then it is suggested to model such an entity
as a Cartesian.

64 4 Cartesians

4.2 Cartesian-Valued Expressions

By a Cartesian we understand a finite grouping of two or more values.1 By
a grouping we understand a composite value which can be uniquely decom­
posed:2

t y p e
X , Y , Z

value
x:X, y:Y, z:Z
(x,y,z) / * expresses a Cartesian */
/ * assume k to be a three—component Cartesian: */
let (x,y,z) = k in ...x...y...z... e n d

a x i o m
V x:X,y:Y,z:Z •

let k=(x,y,z) in let (x' ,y ' ,z ')=k in x = x'Ay = y'Az = z' e n d e n d

Thus left and right parentheses are used to delineate a comma-separated list
of two or more elements and to form, i.e., to construct, a Cartesian.

The a x i o m (see Chap. 9) expresses tha t for any Cartesian structure (i.e.,
grouping, composition) of individual values we uniquely get exactly these
values back when decomposing the structure.

While emphasising the semantic idea of compositions, par ts and wholes,
we incidentally also illustrated extensions to the syntax of let . . . in ... e n d
clauses.

4.3 Cartesian Types

To express the type of Cartesian values, say over respective sorts3 X, Y, and
Z, we write the type expression:

X x Y x Z

Tha t is: x is the infix Cartesian type constructor. Giving names, for example
K, to Cartesian types is exemplified below:

xIt does not make sense, we think, to speak of Cartesians of zero elements, or
of just one element. (), as an expression, in RSL, stands for the value of type Unit ,
that is: A type of just one value: (). Let v be of type A, then the type of the value
of the expression (v) is A.

2In the formulas below (i.e., above!) we introduce some first bits of the RSL
notation: By t y p e X we roughly mean a set of entities of the same type, here named
X. By value x:X, y:Y, z:Z we mean the naming of, as here, arbitrary values, x, y, z of
respective types. By axiom V x:X,y:Y,z:Z • P(x,y,z) we mean to express a property
^(x.y.z) that always holds for all the values x, y, z.

3The term sort is used in lieu of the term type when the type is not further
defined.

4.4 Cartesian Arity 65

type
X , Y , Z
K = X x Y x Z

The meaning of X x Y x Z is the (unnamed) type whose values are uniquely
decomposable into exactly three components of respective types X, Y and Z.

Any type expression can be grouped:

XxYxZ, (XxYxZ), (XxY)xZ, Xx(YxZ), etc.

The first two of the parenthesised expressions are not different, XxYxZ and
(XxYxZ) denote the same type spaces. But the last two, repeated below, are
different. That is, the three spaces, Kl , K2 and K3 are distinct:

type
Kl = Xx(YxZ)
K2 = XxYxZ
K3 = (XxY)xZ

axiom
[informally:]

Kl n K2 = {} A Kl n K3 = {} A K2 H K3 = {}
[formally:]

V x:X,y:Y,z:Z • (x,(y,z))^(x,y,z)A(x,y,z)^((x,y),z)A((x,y),z)^(x,(y,z))

Although we have yet to introduce the concept of axioms, we can read the
informal and the formal bits: The three type spaces share no values. For no
combinations of x, y, and z values in respective types (i.e., type spaces) are
the specific combinations, which correspond to the three type spaces Kl , K2
and K3, equal.

4.4 Cartesian Arity

In general, let Di, . . . , D n , (also written as D_l, etc.) stand for type names
(or type expressions), then

D_l x D_2 x ... x D_n
type

C = D_l x D_2 x ... x D_n

stand for the n-ary Cartesians over respective D^s. The arity of a Cartesian
is thus its number of components.

66 4 Cartesians

4.5 Cartesian Equality

We define only one operator on Cartesians. The equality expression:

(a i , a 2 , . . . , a m) = (&i,&2, • • •, K)

holds if and only if m = n and, for all i in the interval [l . .ra]4 we have tha t
di = bi.

4.6 Some Construed Examples

The examples of this section are construed, or made up, to serve as illustra­
tions, however artificial, of uses of Cartesians. They furthermore violate our
edict, our language design decision, tha t Cartesians have at least arity 2, in
tha t we also, in the below examples, claim to deal with Cartesians of arity 0
and l . 5

E x a m p l e 4.1 A Simple Language of Cartesian Numerals: Consider the fol­
lowing encoding of natural numbers in terms of Cartesians. Let token be any
atomic value.

0: token,
1: (token),
2: (token,token),
3: (token,token,token),

n: (token,token,...,token) n times token

Now consider the following "operations" on these Cartesian numerals:

+ : (token,token,...,token) + (token, token,...,token) = (token,token,...,token)
n times token m times token m + n times token

The question is: How do we express this operation? Here is a proposal:

cn l + cn2 =
c a s e (cnl,cn2) of

(token,("lst2")) - • cn2,
(("lst l") , token) -> cn l ,

4In RSL, the specification language mostly used in these volumes, an interval of
integers from j to k is designated by the two period range expression: [j..k].

5Of course, we could just change our design decision wrt. the arity of Cartesians
and allow arities 0 and 1. We would then have to provide a way in which to express
Cartesians of those arities, and could perhaps choose: () and (A), where A is any
type.

4.6 Some Construed Examples 67

(("lstl"),("lst2")) _> (lstl,lst2)
end

where "lsti" stands for any list of tokens, for example, t l , t2 , . . . ,tn.
The proposal works only if you believe it works! That is, you have to agree

with the writer of the above formulas that "lstl" and "1st2" stand for lists
of "token,token,...,token". This form of "text and ellipss" expressions may
work, intuitively, but rarely works in formal practice. That is, one can easily,
or maybe not so easily, come up with examples where the above-suggested
metalinguistic variables (i.e., "lstl" and "lst2") lead to ambiguities.

Along that line: How is one to represent the subtraction, the multiplication
and the integer division operations?

We have brought this example so as to motivate the need for a meta­
language, here RSL, in which to model constructions like those of the present
example. We say metalanguage, since it is being used in order to express
properties about another language — here that of Cartesian numerals. •

Example 4.2 A Simple Language of Cartesian Lists: Consider (and) to be
delimiters of list expressions, that is, (a,b,c) designates the list of elements a,
b and c, and in that order: a being the first list element, b being the second,
and c being the third element. Now consider using just pairs of Cartesians to
designate lists:

(token,token) = {)
((a),token) = (a)
((a),((b),token)) = (a,b)
((a),((b),((c),token))) = (a,b,c)

That is, (token,token) designates the empty list, and ((a),£) designates the
list whose first element is a and whose tail is the Cartesian list L

Does this work? Well, only if the pairs obey, for example, this restricted
syntax:

<CL> ::= (token,token) | (<A> , <CL>)
<A> ::= a | b | c | ...

A is any set (i.e., type) of, for example, atomic (non-Cartesian) values.
With this language of Cartesian lists, how do we express concatenation,

~, of two lists:

(a,b,c) ^ (d,e) = (a,b,c,d,e) ?

Well, let us try:

(token,token)^((a),f) = ((a),£)
((a),fT(token,token) = ((a),£)
((a) , € H (a V) = ((a) , r ((a ') /)) .

68 4 Cartesians

Let us define hd (head) and t l (tail) of lists:

hd () = chaos
hd (a)"tail = a
t l () = chaos
t l (a)"tail = tail

i.e.:
hd (token,token) = chaos
hd ((a),£) = a
t l (token,token) = chaos
t l ((a),^) = L

chaos denotes the undefined value. •

We leave it as an exercise to define the following operations on Cartesian lists:
length of a list, index set (inds) of a list, element set (elems) of a list and
the list indexing operation £(i).

4.7 Sorts and Type Definitions: Cartesians

4.7.1 Cartesian Abstractions

So when and where are Cartesians used when modelling domains, require­
ments and software? We model certain concrete phenomena and certain ab­
stract concepts by means of Cartesians when these are seen as consisting of a
fixed combination of an a priori known number of distinct entities.

4.7.2 Cartesian Type Expressions and Type Definitions

A concrete type definition is something which to a type name associates a
type expression. The Cartesian type expressions introduced in this chapter
were of the form:

B x C x ... x D

where B, C, . . . , D are any types (i.e., any type expressions). Let B, C, D be
already defined type names, then:

type
A = B x C x D

is an example of a type definition. A then stands for the type, i.e., the class,
of Cartesians of (b,c,d) elements, that is: Where b is in B, c is in C and d is
in D, also written b:B, c:C, d:D.

4.10 Exercises 69

Example 4.3 Complex Numbers: Let R be real numbers, and i" likewise,
then

type
R, I = Real
C = R x I

models complex numbers. •

The above just constitutes a very first beginning in which we model kinds of
phenomena and concepts.

4.8 Cartesians in RSL

In Chap. 14 we shall cover, in excruciating detail, the concept of Cartesians
in RSL: how they are typed, enumerated, operated upon, and used in various
abstractions.

4.9 Bibliographical Notes

We refer to an Internet-based biography about Rene Descartes:

www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Descartes.html

It is authored by J. J. O'Connor and E. F. Robertson, of the Univ. of St An­
drews, Centre for Interdisciplinary Research in Computational Algebra. The
book of historical interest to us is Discours de la methode pour bien conduire
sa raison et chercher la verite dans les sciences, with three appendices: La
Dioptrique, Les Meteores, and La Geometrie [185,189].

4.10 Exercises

Exercise 4.1. Simple Cartesians. Is (1,2) = (2,1)? And is (\/T6, (-2)3 , \) =
(4,x/64,6/24)?

Exercise 4.2. Cartesian Sets. Let the sets A,X be {a^b^c}, respectively
{p, q}. List the elements of the sets Ax A,Ax B,B x B, and B x A.

Exercise 4.3. Further Operations on Cartesian Lists. We refer to Exam­
ple 4.2 on page 67.

Define the following operations on Cartesian lists:
(1) length of a list: The number of (zero, one or more) elements that it

contains.

70 4 Cartesians

(2) index set (inds) of a list: The set of indices, from 1 to and including
the length of the list. If the list is empty then the index set is the empty set.

(3) element set (elems) of a list: The set of distinct elements of the list.
If the list is empty then the element set is the empty set.

(4) The list indexing operation £(i). where, if the list is empty then the
operations is undefined, i.e., ends in the result chaos.

I * •(• •!•

Exercise 4.4. X Cartesians in the Transportation Net Domain
We refer to Appendix A, Sect. A.l, Transportation Net.
Reading, carefully, the rough sketch description given in Sect. A.l, try

to identify as many entities which can be, in a reasonable way, modelled as
Cartesians. State their type definitions as outlined in Sect. 4.7 on page 68.

Hint: The directions of traffic along a segment may be modelled in terms
of a set of zero (the segment is closed to traffic), one (it is a one way segment),
or two pairs of distinct segment identifiers.

Find more examples yourself.

Exercise 4.5. X Cartesians in the Container Logistics Domain.
We refer to Appendix A, Sect. A.2, Container Logistics.
Reading, carefully, the rough sketch description given in Sect. A.2, try

to identify as many entities which can be, in a reasonable way, modelled as
Cartesians. State their type definitions as outlined in Sect. 4.7 on page 68.

Hint: A container terminal consists of a quay (or a set of quays), and a
container storage area. [You may wish to also include the harbour basin in
"what a container terminal consists of".]

Find more examples yourself.

Exercise 4.6. X Cartesians in the Financial Service Industry Domain.
We refer to Appendix A, Sect. A.3, Financial Service Industry.
Reading, carefully, the rough sketch description given in Sect. A.3, try

to identify as many entities which can be, in a reasonable way, modelled as
Cartesians. State their type definitions as outlined in Sect. 4.7 on page 68.

Hint: (i) A bank consists of a catalog of customers and (all their) accounts,
(ii) A buy [sell] order consists of a customer identification, a securities instru­
ment identification, a quantity indication (of number of to be bought [sold]),
a time period during which the ordered transaction is expected to be fulfilled,
and a price interval ("lo"-"hi") within which the 'buy' ['sell'] price is expected
to fall.

Find more examples yourself.

5

Types

• The prerequisites for studying this chapter are that you possess knowl­
edge of the type concept of ordinary programming languages as well as
of the mathematical concepts of sets and Cartesians as covered in earlier
chapters.

• The aim is to give a first overview of the type concept that we shall further
develop in subsequent chapters.

• The objective is to help ensure that the reader eventually becomes fluent
in the selection, expression and use of types.

• The treatment is from systematic to semiformal.

The type concept is, perhaps, the greatest contribution computer science has
made to mathematics. The type concept is all pervasive, but it is not quite
the same as the dimension and unit concepts of, for example, physics.

Characterisation. By a type we shall, loosely speaking, understand a named
(i.e., an identified) set of values. •

Types are, simplifying, taken to be sets of values. The values of type sets, i.e.,
their elements, are such as Booleans, numbers, sets, Cartesians, functions, re­
lations, lists and maps where the composite types (sets, Cartesians, functions,
relations, lists and maps) themselves consists of values.

In this section we will briefly introduce the reader to the fundamental
concept of types. The professional software engineer repeatedly thinks in terms
of types. That is, the concept of type and its abstract and concrete mastery
is crucial to professional software engineering.

This section is cursory. The type concept will be identified. Chaps. 2-4
have introduced types, and Chaps. 6-9, as well as Chaps. 10 and 13-16 will
introduce type concepts. The RSL type concept will then be summarized in
Chap. 18. Thereafter it will be used in the rest of these volumes. So, with the
present introductory section we will start a long journey into possibly that
most important concept of software engineering, type theory and practice!

72 5 Types

• • •

The world is full of manifest things (i.e., of phenomena): entities that one can
point to. Some share properties and are "of the same kind", others do not,
and are "of different kinds". The type concept was introduced first, in some
abstract sense, by philosophers, then by mathematicians and, much later, in
programming languages to cope with "sameness", respectively "distinctness".

We assume some basic familiarity with rudimentary aspects of the type
concept of some programming languages. From examples of such a program­
ming language type concept and its analysis, we unfold, below, some very
basic ideas of more abstract type concepts. In this way we can, little by little,
introduce a concept of specification language type concept.

In this section we shall introduce the very basics of the type concept upon
which we shall later be basing further ideas of type. These basics are: sorts (i.e.,
abstract types), concrete types, atomic types, type names, type expressions,
type constructors, and the fact that values and types form complementary
notions.

5.1 Values and Types

How do we motivate the concept of types? We do so as follows: Around us we
see phenomena such as a person being 1 meter, 79 centimeters tall, 67 years
old, and weighing, oh well, too much! We shall, in these volumes, refer to the
'person' phenomenon as an entity The person is an entity describable, i.e.,
characterisable, through, in this example, the three entity attributes just men­
tioned. On first reflection, the attributes represent, i.e., characterise values,
and on second thought, these attributes are types: height, age, and weight.
So an entity has an attribute value which is of an atomic or composite type.

The person attribute value was of, or had composite type, and the compos­
ite type components included the height, age and weight types, which were
atomic types, that is, could not be further decomposed. Some entities have
constant values, others have variable values. A person's birth date is definitely
fixed. A person's gender is (usually) fixed. A person's age changes all the time!

Entities rarely change type. A rather construed example of an entity that
may be considered to change type is the following: Some thing, an entity,
which, "to begin with" may be considered or registered as a wooden chair.
That is, of utility. Then the chair "changes" type to become an antique, ex­
hibited, but not sat in. It is no longer of utility depending on one's viewpoint,
of course. Or it is wrecked and becomes a "heap of wood", and is thence pos­
sibly considered burning material for a stove. That is, again of utility, but of
a different one! Modelling types — including type changes — is often referred
to as data modelling. In other words: types and values go hand-in-hand.

In these volumes we shall have much more to say on the concepts of types,
attributes (a kind of types) and values, as well as on the use of these con-

5.2 Phenomena and Concept Types 73

cepts in (domain) modelling the actual world, in (requirements) modelling
expectations to software and in expressing software implementation models.

5.2 Phenomena and Concept Types

5.2.1 Phenomena and Concepts

Characterisation. By a phenomenon we mean some physically manifest
thing, something that one can point to or measure by means of some physical
instrument. •

Any specific person is such a phenomenon.

Characterisation. By a concept we mean an abstraction, something of our
mind. •

Concepts usually abstract classes of related phenomena.
We bundle, following what was expressed in earlier sections, classes of

like phenomena or like concepts into types. In this section we shall examine
relations between phenomena, concepts and types.

5.2.2 Entities: Atomic and Composite

Characterisation. By an entity we mean a representation of a phenomena
or a concept. •

Characterisation. By a representation (of something) we loosely mean "a
way of talking" about that "something", a way of "writing it down". •

A representation of a phenomenon is not that phenomenon, but it is only our
way of referring to it.

As an aside: A representation of a phenomenon, however represented, as
long as it is not represented "inside" a computing (and communications) sys­
tem, is spoken of as information. Once represented inside a computing (and
communications) system we speak of it as data. Data is formalised represen­
tation of information.

Characterisation. By an atomic entity we mean an entity which does not
itself consist of proper sub-entities. •

A person could be considered an atomic entity in that that person's head,
arms, legs, etc., should not from some point of view be considered entities in
their own right. Perhaps they are considered so by a surgeon, but certainly
not desirably so by any one person: one does not compose, as in mechanical
engineering, a person from one head, one left leg, etc.!

Please note that it is you who decides whether to consider a phenomenon
(or a concept) to be atomic, that is, indivisible or not.

74 5 Types

Characterisation. By a composite entity we mean an entity which can be
said to be independently composed from other proper subentities. •

A motor car can be said to be a composite entity in that it can be said to be
composed from an engine, a transmission system, a left front door, etc., where
each of these subentities are being considered entities in their own right, as
entities, by those who manufacture, that is, assemble them.

5.2.3 Attributes and Values

Characterisation. By an attribute we mean a named property which has
an associated type that for the same named attribute of different entities may
have different or the same values. •

Atomic Entity Attributes and Values

An atomic entity may possess one or more attributes.
A person, which we here consider an atomic entity, has, we decide, amongst

many other attributes, the following ones: name (with some fixed value, say
Dines Bj0rner), (current) height (with some varying value, say 179 centime­
ters), gender (with fixed value, male), etc.

So, the "full value" of an atomic entity may be a composite value!

Composite Entity Attributes and Values

The way in which a composite entity is composed can be said to be an at­
tribute of the composite entity which is different from the composition of the
attributes of the proper subentities.

Example 5.1 Roadnet: Entities and Attributes: A roadnet is composed from
a set of segments and a set of connectors. Segments do not contain connectors,
but ends in, or has exactly two such. A segment is an entity. Connectors do
not contain segments, but connect one or more segments (one if a road is a
cul-de-sac). A connector is an entity. Each segment, we decide, has attributes:
unique segment identity, road name, segment length, segment curvature, seg­
ment cover (tarmac, or other), etc., none of which are separable entities. Each
connector, we decide, has attributes: connector identity, possibly a connec­
tor name, set of identifiers of segments incident (and/or emanating from) the
connector, etc., none of which are (separable) entities. The roadnet has as at­
tribute that of the compositions of its entities (consists of, ends in, connects).
•

Characterisation. Composite Entity Attributes: We make the distinction
between the attributes of component entities of a composite entity and the

5.2 Phenomena and Concept Types 75

attribute of the composite entity: Let composite entity J consist of entities
c\ C2, . . . , cm . Each of the individual Q , for i = 1 . . . ra, have attributes C^,
d2, . . . , Cin. In addition, the composite entity c has attributes C. The latter
attribute outlines how the consist of relation is manifested, i.e., how we decide
it is so. For example: C is: c consists of a sequence of components Cj, or C is:
c consists of a set of components c^, or C is: c consists of a component C£p

next to a component C£q next to . . . next to a component C£r. •

It is this ontology of sequence of, set of, next to, etcetera, which we shall later
capture by means of type operators, that is, operators on types that define
how component types make up overall types

Characterisation. Composite Entity Values: To each attribute we associate
a current value. Let composite entity c consist of entities ci, C2, . . . , cm. Each
of the individual Q , for i = 1 . . . ra, have overall current values vVi , vCi , . . . ,
vCin. In addition, the composite entity c has value vc for attribute C. The
overall current value of c is thus vv, combined, as prescribed by C, with the
overall current subentity values: vCii, vCi2, . . . , vCin . •

Example 5.2 Roadnet Values: We continue Example 5.1 on the preceding
page. A particular roadnet is composed from three segments, as shown in
Fig. 5.1 subfigures [A]-[C]. The composition that two connected segments
meet in a connector is adhered to. Subfigures [A] and [B] show two, respec­
tively three cul-de-sacs.

C1 C4

C1 C2 C3 C4 s i \ /̂ 3

• # # # T c2
s1 s2 s3 c^

Road Net [A] S2

•
c3

Road Net TBI

Fig. 5.1. Representation of three different roadnet values

The overall roadnet values are different by virtue, primarily of their specific
topologies. The three segments could all have the same values, that is, same
length, the same identifications, the same names, etc., as also indicated. But
what you first notice, we claim, when observing Fig. 5.1, is the difference in
the three attribute roadnet values. •

• • •

c2 s3 c3

Road Net [C]

76 5 Types

We have tried, somewhat informally, to outline some ideas of atomic and
composite entities, and of their attributes and values. These ideas need to be
sharpened, i.e., made more precise. That is a main rationale of the present
volume!

Discussion

In ordinary mathematics, some would abstract roadnets in terms of graphs:

GiiS^C.K)1

S stands for a set of segments. For example, {si,S2; £3}- C stands for a set
of connectors. For example, {01,02,03,04}, as in either of subfigures [A] and
[B] of Fig. 5.1 on the preceding page, or {01,02,03} as in subfigure [C] of
Fig. 5.1 on the page before. K stands for the specific connections of segments
to connectors. For example, [sr> {01,02}] as in subfigure [A] of Fig. 5.1 on

the preceding page. The gist of Chaps. 12-18 is that we offer several ways in
which roadnets (i.e., graphs) can be abstractly modelled:

The property-oriented algebraic sort and analytic function presentation:

type
GO, S, C

value
obs _Ss: GO - • S-set

obs_Cs: GO - • C-set
obs_K: GO -+ (C ^ (S T* O)

would for gO being the roadnet of subfigure [A] of Fig. 5.1 on the page before
yield:

obs_Ss(gO) = {sl,s2,s3}
obs_Cs(gO) = {cl,c2,c3,c4}
obs_K(gO) = [C1H^{S1},C2H^{S1,S2},C3H>{S2,S3},C4^{S3}]

The model-oriented set-, Cartesian- and map-oriented specifications:

type
Gl = (C x S x C)-set
G2 = C ^ (S ^ C)

yield the following values of gl and g2 for the same roadnet (subfigure [A] of
Fig. 5.1):

gl: {(Cl,sl,c2),(c2,sl,cl),(c2,s2,c3),(c3,s2,c2),(c3,s3,c4),(c4,s3,c3)}
g2: [cl^[sl^c2],c2h^[sl^cl,s2h^c3],c3^[s2h^c2,s3H^c4],c4h-).[s3^c3]]

xThe expression G: (S,C,K) is not in the style we shall be using in these volumes.

5.3 Programming Language Type Concepts 77

That is, the type definition facility promulgated by this volume replaces the
ordinary way in which mathematicians define mathematical structures. Our
type definition facility ties in with the function definition facility and permits
the definition of very rich and novel mathematical structures with entities and
functions.

5.3 Programming Language Type Concepts

We review some standard concepts of programming languages.

Some Examples

From classical programming languages, such as Algol 60, Pascal, C, C++ and
Java, we know of a type concept similar to the one now summarised.

Example 5.3 Simple Types: The three syntactic constructs after the key­
word var:

[1] var i i n t ege r ,
[2] b Boolean,
[3] c charac te r ;

prescribe that storage for three variables be allocated, one ([1]), i , to have
enough storage space to contain in teger values ranging, for example, between
—2n and +2 n — 1 (for some such n as, for example, 16 or 32 or 64) where n
is the size, in bits, of a storage cell (also called a half-word, a word, or a
double word). Another ([2]), b, to have enough storage space, say one bit, to
contain a Boolean value — either true or false. And a final ([3]), c, to have
enough storage space, say a byte or two bytes, to contain character values such
as the characters "a", "b" , . . . , "z" , and possibly others (such as digits,
symbols and operators: "0" , " 1 " , . . . , "9" , " , " , " ; " , " . " , . . . , "-",
"+", "*", " / " , . . .)•

We observe a number of things that seem relevant for the understanding
of the above examples: (i) the use of the keyword var (or declared variable or
some such variant) to indicate that a variable is declared; (ii) that there seem
to be three declarations; (iii) that each of these declarations has two parts:
a variable name (i , b, respectively c), and a constant ("built-in") type name
(in teger , Boolean, respectively character) ; (iv) that to each variable a
concrete storage representation is (implicitly) prescribed; and (v) that variable
names (most likely uniquely) identify storage space that may contain values
of the prescribed type. •

78 5 Types

E x a m p l e 5.4 Composite Types:

[4] t y p e r =
[5] r e c o r d (i i n t e g e r ,
[6] b Boo lean ,
[7] a a r r a y [1 . . m , 1 . . n] of c h a r) ;
[8] v a r p r ;

As before we observe a variable declaration (line [8]), but now the vari­
able name, p, is associated with a defined type, of name r (rather than, as
previously, a constant, built-in type). The defined type name is shorthand
for, i.e., is defined by, the right-hand side of the ' = ' in line [4] of the exam­
ple, i.e., by lines [5-7]. There we observe tha t the defined type is of t y p e
r e c o r d , i.e., certain compositions of values of other types, and tha t it is to
have three named fields whose corresponding storage location parts are to
contain values of t y p e s i n t e g e r , Boolean and a matr ix of m rows and n
columns of charac ter elements. Included in our examples above is the illus­
trat ion of the variable bounds ([1 . .m, 1. . n]) a r r a y type (actually a matr ix
such as defined). Incidentally, just to provoke some possible confusion (see
Example 5.5) we have chosen field selector names "similar" (with respect to
identifiers), to the previously (correspondingly) introduced variable names.

Concerning p ([8]): It is an entity (a variable) of type r, and p (besides hav­
ing the overall a t t r ibute of being a variable) also has par t a t t r ibutes integer,
Boolean and character. •

E x a m p l e 5.5 Type Checking Expressions and Assignments:

[9] i := i + 1;
[10] b := (i f i > p . i t h e n t r u e e l s e f a l s e e n d) ;
[11] p . i := p . i + i ;
[12] c := p . a [i , p . i] ;

This last example is really extraneous to our main purpose of bringing
and discussing these examples. Tha t purpose was to introduce the type con­
cept as it is found in classical programming languages. Instead the current
example illustrates such imperative programming language concepts as as­
signment, expressions, and record field value selection. The above illustrates
four assignment statements. In line [9] we show a simple assignment: The
i n t e g e r variable i has its value incremented by one. In line [10] we show an­
other assignment, a conditional expression, and a record field value selection:
The Boolean variable b has its value set to t rue if the value of variable i is
larger than the value contained in record p field i , otherwise it is set to false.
And, finally, in line [12] we show an assignment involving a seemingly "tricky"
array element indexing: The value of charac ter variable c is prescribed set to
the value of the charac ter element of the record array field tha t is indexed

5.3 Programming Language Type Concepts 79

along one dimension by the value of the simple integer variable i and along
the other dimension by the value of the record i field. •

D i s c u s s i o n

We observed tha t two kinds of keywords are used in connection with types:
type names and type constructors. Type names are those, like i n t e g e r ,
Boolean and c h a r a c t e r tha t denote types of specific kinds of values, viz.:
integers, Booleans and characters. These keywords stand for built-in or given
types. Type constructore are those, like r e c o r d and a r r a y which, together
with other linguistic markers (delimiters), identifiers and type names, help
construct or form new, defined types. These keywords stand for higher-order
functions. Tha t is, we speak of type names, which are identifiers, either built-in
(as i n t e g e r , Boo lean , c h a r a c t e r) or defined (such as) r , and of composite
type expressions such as r e c o r d (i d l t e l , i d2 t e 2 , . . . , i d n t e n) where
i d j and t e j stand for record field selector identifiers and type expressions,
respectively. Type names are simple type expressions. We also observe, in the
above examples, tha t we pair type definitions, a type name, such as r , with
a type expression, such as r e c o r d (i d l t e l , i d 2 t e 2 , . . . , i d n t e n) .

We say tha t the type name r is being defined concretely: It is given a
model. The model given for r is tha t of records as laid out in storage: selector-
named consecutive fields of proper storage location (and cell) par ts . We shall
soon see tha t not all type names need be given concrete models.

The record type forming type constructor looks something like:

r e c o r d (* * , * * , . . . , * *)

where the first * of the replicated pairs of * * are thought of as places into
which one can insert distinct record field selector identifiers, and where the
second * (of the replicated pairs) are similarly thought of as places into which
one can insert not necessarily distinct type names or, more generally, type
expressions.

The array type forming type constructor looks something like:

a r r a y [* . . * , * . . * , . . . , * . . *] of *

where the first, respectively second * of the replicated pairs of * * are places
where one can insert integer-valued expressions designating lower, respectively
upper, bounds for respective dimensions of the array, and where the last *,
after the keyword of, is a placeholder for a type expression.

Apart from the storage space allocation, with its possible constraints on
layout,2 the above type and value concepts are to be found in well-nigh any

2Such constraints could, for example, be: vector arrays are consecutively laid
out in storage from "higher addresses down"; matrix arrays have first dimension
elements referred to as columns, and second-dimension elements as rows; and are

80 5 Types

abstract specification language, and hence in RSL. We consider the examples
given to be those of concrete data structures, whereas what we shall initially
be modelling (in domain specifications and in requirements prescriptions) are
information structures. We consider data to be computerised representations
of information. That is, in domain specification and requirements prescrip­
tion we abstract from any storage representation. But otherwise we shall have
great use for types, and for typed variable names (even though we shall mostly
be using nonassignable, that is applicative or functional programming, vari­
ables).

5.4 Sorts or Abstract Types

We now turn to type issues, not of programming languages, but of specification
languages. Most specification languages offer built-in types such as integers,
Booleans and characters. Such built-in type names usually stand for atomic
types, that is, for types of values which are atomic, in other words, those for
which it is not meaningful to decompose the value into proper part values.
Some specification languages, typically the primarily model-oriented ones, say
RSL, VDM-SL and Z, offer type constructors not unlike the record and array
constructs, to build composite types from other, already existing or defined
types. We shall in this section only introduce the Cartesian type constructor.

A number of specification languages, archetypically the algebraic ones,
Cafe-OBJ [192,234] and CASL [398], allow the introduction of abstract types
or sorts. Sorts are types for which no model (say, in terms of sets, Cartesians,
functions, etc.) has been explicitly suggested:

type
A, B, C

The sorts A, B and C are named, but no further definition is given.
We have introduced a bit of RSL syntax: The keyword type signals to the

reader that what follows — before other such keywords — are type declara­
tions. The above-illustrated type declarations introduced the names A, B and
C, as names of types. To help you think of the sorts A, B and C, we suggest
that you imagine them as spaces (i.e., sets) of values of type A, B or C.

It may turn out, now or later, in your considerations, that a sort is either
atomic, or it is composite. In the latter case, its values can be analysed into
proper constituent parts (i.e., values) of specific component types.

to be laid out row-orderwise, that is, they are laid out consecutively, first row first,
etc., and again from "higher addresses down".

5.5 Built-in and Concrete Types 81

5.5 Built-in and Concrete Types

The RSL type concept will be introduced in stages. We have already introduced
some parts of the concept above. We will introduce some more now, and then,
throughout the next many chapters, we will introduce even more. For now, we
ask you to simply think of a type as a set, possibly an infinite set, of values,
i.e., of entities of some kind.

We need some syntax to name and to define types:

[0] type
[1] I = Int, B = Bool, C = Char
[2] P, Q,R
[3] K = P x Q x R

Int, Bool and Char are literals. They are built-in names; they come with RSL.
They name, respectively, disjoint sets of integers, Booleans and characters. P,
Q and R are user-defined type names. They denote sorts, i.e., abstract types.
K is a user-defined type name. It denotes a set of Cartesians, i.e., of products,
or "three-groupings", of values of respective sorts. The RSL form:

[4] value
[5] p,p',...,p":P, q,q',.»,q":Q, r,r',...,r":R

designates a set of bindings. The identifiers p,p ' , . . . and p" are all distinct and
designate arbitrary (nondeterministically chosen) values of type P. Similarly,
the identifiers q,q',... and q" are all distinct and designate arbitrary (non­
deterministically chosen) values of type Q, and the identifiers r,r ' , . . . and r"
are all distinct and designate arbitrary (nondeterministically chosen) values
of type R.

The value bindings (in line [10]):

[6] type
[7] A , B
[8] L = A x B x ... x C
[9] value
[10] (a,b,...,c),(a',b',...,c'),(a",b",...,c"), (a'",b'",...,c'"):L

bind the free and distinct names a, a', . . . , a", b, b', . . . , b", c, c', . . . and c" to
arbitrary values of respective types. The types K and L stand for Cartesian
values.3

Let us comment on the bits and pieces of syntax that have been introduced
in lines [0..10]. In this case it is RSL syntax. The keyword type [0,6] expresses
that what follows are type names or type definitions. In [1], the first line
after the keyword type, we show three concrete type definitions; in [2], the

3The use of ellipses, . . . , is metalinguistic: RSL expressions do not allow for the
use of ellipses such as in ordinary mathematics.

82 5 Types

second line, we show three abstract type definitions, that is, sort definitions;
and in [3], the last line, we again show a concrete type definition. The first
three concrete type definitions, [1], merely give other names (namely I, B,
C) to Integer, Boolean, respectively Character types. The concrete type
definition, [3], K = P x Q x R , gives the name K to the Cartesian types P x Q x R .
The infix x symbol is similar to the distributed-Gx record (, , . . . ,) type
constructor. That is, x is a Cartesian type constructor, and similarly for line
[8].

The keyword value, [4,6], expresses that what follows, first [5], are usually
typed names of values: p,p',..-,p", and thus are distinct names which stand for
not necessarily distinct values, all of type P, etc.

The composite bindings, [10], (a, b, ..., c), (a', b', ..., c'), (a", b", ..., c"), ...
and (a'", b'", ..., c'") express that the individual values of (unprimed, single or
multiply primed) a, b, c's are grouped into Cartesian (or product, or grouping,
or record, or structure) values. That is, to repeat: We shall use the terms:
Cartesians, products, groupings, records, and structures synonymously.

5.6 Type Checking

The idea of associating types with identifiers is twofold: to inform the reader
as to the intentional use of the identifiers, while at the same time to allow
a specification language processor, a type checker, to analyse whether incor­
rect uses are made of the typed identifiers. We shall briefly examine the last
proposition.

5.6.1 Typed Variables and Expressions

Let us consider the following program fragment, from Sect. 5.3:

[0] var i in teger := 7,
[1] b Boolean := t r u e ,
[2] c charac ter := cd};

[3] type r =

[4] record (i integer,

[5] b Boolean,

[6] a a r r a y [1 . . 4 , 1 . . 2] of char)

[7] var p r ;

[8] i := i + 1;
[9] b := (if i > p . i then t r u e e l se f a l s e end);
[10] p . i := p . i + i ;

The above expressions and statements seem pretty innocent!

5.6 Type Checking 83

5.6.2 Type Errors

If in line [9] we had written b*7, or if in line [10] we had written if b >
p . a , or if in line [11] we had written p . i := c, then, somehow, we could
argue that something was wrong.

What is wrong?
In line [9] (now with b*7) b is known as a Boolean, and one cannot mul­

tiply with Boolean-valued operands. In line [10] (now with if b > p.a) b is
(still) known as a Boolean, and p . a is known as a character, and one cannot
compare Booleans and characters. In line [11] (now with p . i := c) p . i is
known as an integer-valued variable, and c is known as a character-valued
variable, and one cannot assign characters to integer variables.

Example 5.6 Well-formed Roadnets: We continue the roadnet Exam­
ple 5.1 on page 74 and 5.2 on page 75.

We exemplify two kinds of type constraints for which an appropriate road-
net must be checked.

(1) If, by a roadnet we meant one in which no roads were isolated then the
characterisation of Example 5.1 on page 74 must be sharpened: (lr) The road­
net must be such that from any connector one can reach any other connector
(of the same roadnet). (1") Another way of formulating this is: The roadnet
graph must not deteriorate into two or more isolated subgraphs. Isolation in
the above sense hinges on all roads being two way roads.

(2) If, by a roadnet we meant one in which non-cul-de-sac segments were
either one-way or two-way segments, then the characterisation of Exam­
ple 5.1 on page 74 must be extended to ensure nonisolation: (2') cul-de-sacs
are all two-way segments, and (2") any other segment is either a one-way
segment or a two-way segment. (2'") From any connector one can reach any
other connector (of the same roadnet), only by following the direction of the
connected segments. (That is: A one way segment has a single direction.) •

5.6.3 Detection of Type Errors

Having "annotated" various variables with types we can deduce which op­
erators, indexing and assignments seem correct, and which do not. This is
called type checking. We shall later, much later in these volumes, define, more
properly what is meant by is known to be of type, and how to assess such
knowledge. That is, we shall show how to formalise and possibly automate
certain type checks.

Many computer scientists and software engineers consider the concept of
type to only be related to, i.e., motivated, by type checking. We shall take
a broader view: Type checking is important to catch specification mistakes
early. But abstracting in terms of sorts and concrete types is also considered
important, because it focuses the mind.

84 5 Types

5.7 Types as Sets, Types as Lattices

In this chapter we have treated types as sets of values. This is often a reason­
able way of modelling types, but not always. When a type, D, is expected to
include the space of functions from D into D, then a set-theoretic treatment
does not suffice. It would simply not be able to explain the meaning of the
type equation:

D = D -+D

To solve such equations as D = D -± D one may need to impose, for example,
an ordering amongst the "type set" elements, called the "type domain". We
shall just hint at this type theory here. It is a type theory in the sense of
being able to solve arbitrary type equations. That is, to give proper meaning
to reflexive function types is a hallmark of computer science. Dana Scott
founded type theory in the sense hinted at above [251,458-462,464,466-468].
We refer to [241,282,424,532] for introductions to type theory.

5.8 Summary

This completes our first coverage of the RSL type concept. It is the naming of
basic, primitive, that is, built-in types (Int, Bool, Char), which all stand for
concrete, in this case atomic types. We also covered the definition of abstract
types, that is, sorts, and the definition of concrete, composite types, in this
case Cartesians (record, products, groupings, structures), by means of the
infix type constructor x.

We shall, throughout these volumes, introduce further aspects of the RSL
type concept. Section 6.5.2 enlarges upon the type concept.

5.9 Exercises

Jft Note: The next three exercises, 5.1, 5.2 on the next page and 5.3 on the
facing page share the same three 'Common Exercise Topics'. Hence they are
marked X- See Appendix Sect. A.l, Transportation Net, Sect. A.2, Container
Logistics, and Sect. A.3, Financial Service Industry. We also refer to Sect. 5.2
and to Examples 5.1 on page 74 and 5.2 on page 75. The exercises of this
chapter are in line with the referenced section and examples.

Exercise 5.1. X Atomic Entities of the Transportation Net, Container Lo­
gistics, or Financial Service Industry Domain.

1. Identify (i.e., name) a number of possible atomic entities.
2. For each entity identify (i.e., name) a number of attributes.
3. For each named attribute identify its possible values.

5.9 Exercises 85

Exercise 5.2. X Composite Entities of the Transportation Net, Container
Logistics, or Financial Service Industry Domain. We refer to Exercise 5.1 on
the preceding page (above). The questions below refer to the same physical
phenomenon, either in the Transportation Net, Container Logistics, or Finan­
cial Service Industry domain.

1. Identify (i.e., name) some possible composite entities.
2. For some such (distinct kind of) entity list its component (i.e., sub-)entities.
3. For some composite component (i.e., sub-)entity list its component (i.e.,

subsub-)entities, etcetera.
4. For some composite component entity identify (i.e., name) a number of

composite component attributes.
5. For some such named composite component entity attribute identify its

possible composite component values.

Exercise 5.3. X Type Checking Entity Descriptions of the Transportation
Net, Container Logistics, or Financial Service Industry Domain. We refer to
Exercises 5.1 on the facing page and 5.2. The questions below refer to the same
physical phenomenon, either in the Transportation Net, Container Logistics,
or Financial Service Industry domain.

1. Atomic Entity Attribute Value Constraints. Recall Question 3 on the fac­
ing page of Exercise 5.1. Can you think of some type check that has to be
performed when presented with some possible atomic entity attribute val­
ues? Please list some such. Hint: The constraint on the value of an atomic
entity attribute may to be formulated relative to the values of some other
(atomic or composite) attributes.

2. Composite Entity Attribute Value Constraints. Recall Question 2 of Exer­
cise 5.2. Can you think of some type check that has to be performed when
presented with some possible composite entity attribute values? Please
list some such. Hint: The constraint on the value of a composite entity at­
tribute may to be formulated relative to the values of some other (atomic
or composite) attributes.

6

Functions

• The prerequisite for studying this chapter is that you understand the
notions of sets and Cartesians as covered in earlier chapters.

• The aim is to introduce you to the mathematical concept of functions such
as we understand it in computing science and software engineering.

• The objective is to enable the reader to use and handle that concept of
functions, with ease, in order to achieve one of the most important aspects
of software development, namely abstraction. We shall endeavour to ensure
that the reader learns to think in terms of mathematical functions.

• The treatment is from systematic to semiformal.

The function concept, such as we shall introduce and use it, is a mathematical
concept. It is, next to types, of paramount importance. Nobody has ever seen
a function. Mathematical functions can be "observed" through their being
applied to argument values and yielding result values.

Characterisation. By a function we understand a mathematical entity that
can be applied to an argument (i.e., an entity) and then yields, i.e., results,
in a value "of the function of that argument". •

To speak of spaces (or classes, or types) of functions and relations we need the
type concept, first illustrated in Chap. 5. In Chap. 8 we shall cover the concept
of algebras, but to do so we need the concept of functions. That explains our
sequence: first types, then functions and relations, and then algebras.

Some presentations of the concepts of functions and relations start with
relations, and then bring in functions later. We shall start with functions be­
cause we find introducing functions first, in a software engineering setting,1

more natural, and relations could, in this context, be considered a "mechani­
cal" means of explaining functions. If this reasoning puzzles you, then read on
and return, after having read the present chapter, to reread this paragraph.

xWe will be dealing more, throughout these volumes, with functions than with
relations.

88 6 Functions

Example 6.1 Example of Everyday Functions: We refer to Example 5.1 on
page 74 and 5.2 on page 75 of Sect. 5.2.

Let S, C and V name the types of segments, connectors and vehicles.
Let, accordingly, suitably decorated lower case versions of these type names
stand for segment, connector and vehicle values. Let N name the type of
roadnets. Thus n stands for specific nets. From, or in, a roadnet one can
observe its segments and connectors. Now let any segment, as a composite
entity include the values of zero, one or more vehicles (on that segment).
Similarly for connectors. That is, from a segment and from a connector one
can observe the set of vehicles on that road (respectively in that intersection).
To "observe" is to apply a function to an argument value and obtain a result
value.

type
N, S, C, V, Si, Ci, Vi

value
obs_Ss: N - • S-set
obs_Cs: N - • C-set
obs_Vs: (S|C) - • V-set
obs_Cis: S —> Ci-set
obs_Sis: C —> Si-set

From a segment one can observe the identity of the two connectors it is con­
nected to. From a connector one can observe the set of identities of segments
leading to (and from) that connector.

When driving a vehicle on a segment, to enter that vehicle into a connector
is to perform a function. Likewise when leaving a connector and entering a
segment.

value
enter: S x V x C ^ S x C
enter(s,v,c) as (s',c')
pre: v G obs_Vs(s) A v ^ obs_Vs(c)
post: v 0 obs_Cs(s') A v e obs_Vs(c') A

obs_Cs(s') = obs_Cs(s)\{v} A obs_Vs(c') = obs_Vs(c) U {v}

leave: C x V x S ^ C x S
leave(c,v,s) as (c',s') ...

Entering a vehicle, v, from a segment, s, into a connector, c, results in changing
the segment and connector values into s', cr. The vehicle value is unchanged,
hence not mentioned as a result value. The only difference in the before, s,
and after value, s', of the segment is that the segment no longer "contains"
vehicle v, with the reverse being true for the connector. •

6.1 General Overview 89

The gist of Chaps. 12-18 is to explain the kind of abstractions exemplified
above, while the gist of the present chapter is to introduce you to the basic
notion of functions, f, that is, those things whose value was expressed above
as type f: A —> B.

6.1 General Overview

We shall first place the concept of a function in context and present some in­
tuitive notions of functions: function definitions, maps (i.e., function graphs),
types and attributes. Then we shall "restart" by presenting an attempt at
informally motivating "how functions come about".

Structure of This Chapter

Three indispensable topics occupy this chapter: (1) the function algebra: what
functions "really" are, function space type constructors, function attributes
(nondeterministic, constant, and strictness) and operations (abstraction, ap­
plication, composition, definition, respectively range set); (2) Currying2; and
(3) relations as models of functions.

6.1.1 Special Remarks

Different ways of looking at functions will be introduced:

(a) functions which can be defined syntactically,
(b) functions whose meanings are mathematical functions, and
(c) functions whose syntax and meaning are "one and the same thing".

These three facets (a-c) should emerge from items below. There are (i) func­
tions which (i.a) can be defined syntactically, as textual entities (see function
definitions, Sect. 6.2.2) and (i.b) where these syntactical forms have a seman­
tics, or a meaning, which resembles the functions known from mathematics
(see function maps (graphs), Sect. 6.2.2 on the following page). Furthermore
(ii) there are functions which (ii.a) can, again, be defined syntactically, but
(ii.c) which can be given a "syntactic" meaning by a set of rewriting rules
that "massage" (edit, translate) these syntactic expressions into syntactic ex­
pressions of the same form (Chap. 7).

To repeat: There are two different syntactic function expression forms, and
two different notions of functions: one syntactic, the other mathematical. We
also introduce the mathematical concept of relations. Relations are then used
to explain the abstract concept of functions.

2The term Currying derives from the name of the American mathematician
Haskell B. Curry.

90 6 Functions

6.2 The Issues

We start by placing the notion of functions in both a mathematical context
and a programming language context. We proceed to informally present some
easy-to-understand notions of function definitions, function "maps" (graphs),
function types and attributes of functions, that is, special classes of functions.

6.2.1 Background

In mathematics we use and define functions. The sine and cosine functions of
trigonometry were used and were (as we shall see, axiomatically) defined by
their properties before we, in numerical mathematics, learned to approximate
their computation through suitably defined functions. And in programming
we define and use functions only we may call them by some other names:
procedures, routines, methods, etc. In this section we shall take a first look at
the kind of functions that we shall be dealing with in these volumes the func­
tions that we wish to be abstract counterparts of the procedures or methods
of programming languages; and the functions that we wish to represent the
meaning (the denotations) of described phenomena of some actual world, or
of requirements-prescribed phenomena.

Functions are obviously fundamental to any understanding of computing,
and, we shall argue, to any understanding of the actual world around us!
Functions, in mathematics, are not just abstract notions. They sometimes
need be computed, whether, as in the old days, by hand, through reckoning,
or, as now, by computers, through computation. The function concept that
we focus mostly on in this section ties the above together: The definable as
well as the denoting functions, that is, the mathematical functions. We do
not necessarily focus on those for which we can devise an algorithm for their
computation, but on functions in general.

6.2.2 Some Concepts of Functions

We shall, in turn, treat ideas of function definitions, function "maps" (i.e.,
function graphs), function types and classes of functions.

Function Definitions

Characterisation. By a function definition we shall understand a text, say,
/ (a) = 5(a), which states the name, / , of the function, the name of an
archetypical argument (or argument list), a, a definition symbol, =, and a
body, 5(a), which is usually some clause (expression or statement) in which
the argument, a, is free. •

First some example formal function definitions and some intuition.

6.2 The Issues 91

E x a m p l e 6.2 Two Function Definitions: You are familiar with the factorial
and the Fibonacci functions. These two functions are chosen only as examples.
In RSL we might express these functions as follows:

t y p e v a l u e
N a t l = {| n : N a t • n > l |} fib: N a t l -> N a t l

v a l u e fib(n) =
fact: N a t l -> N a t l c a se n of:

fact(n) = 1 - • l j
i f n = l 2 - • 1,

t h e n 1 _ - • fib(n-2)+fib(n-l)
e lse n*fact(n—1) e n d

e n d

The "underline" (wildcard) symbol stands for the "otherwise" alternative. •

Since the above formulas represent another early occurrence of some formal
RSL text, let us "read" these definitions "aloud":

Natl is the set of natural numbers larger than or equal to 1, i.e., N a t , but
excluding 0. (We say tha t Natl is a proper subtype of N a t .) Both factorial and
Fibonacci, as identifiers, denote functions (as indicated by the right arrow: —>),
and they both take natural numbers as arguments and yield non-zero natural
numbers as results (as indicated by the left and right Nat ls) . The factorial
function definition body expresses tha t if the argument is one then the result
is one, otherwise the result is the value of the product of the argument and the
factorial of an argument which is one smaller than the original argument. The
situation is similar for the Fibonacci function definition. Its body expresses
tha t if the argument is one, then the result is one, otherwise, if the argument
is two, then the result is (also) one, otherwise,3 i.e., for all other larger values of
the argument, the result is the sum of the "two previous Fibonacci numbers"!
Thus the first and the second Fibonacci numbers are both 1.

Now to some RSL syntax: The keyword v a l u e signals, to the reader, tha t
RSL bindings of identifiers to values now follow.4 The names being bound are
here fact and Fib. These names are bound in this case to function values. Thus
we here have two function definitions each consisting of a pair of clauses: the
function signature and the function definition proper. The former consists of
the function name and a function space type expression, usually a type expres­
sion tha t contains (at least) one infix function space type constructor, either
->> or ^>. The latter consists, in the above example, of a triple: (i) a function

3The "otherwise" is designated by the "wildcard" symbol _.
4An abstract t y p e clause: t y p e A, or a concrete t y p e clause: t y p e A = ...

designates a binding of type identifiers to sorts, respectively concrete types (i.e.,
value spaces).

92 6 Functions

name and a possibly empty list of arguments enclosed in parentheses,5 (ii) the
identity symbol = , which separates the function definition header from (iii)
the function definition body, which is always an RSL expression — here both
are simple conditional expressions.

The reason for presenting the above two function definition examples is
now to relate them, still as examples, to an informal concept of function
"maps".

F u n c t i o n "Maps" (Graphs)

Character i sa t ion . By a function "map" we understand, loosely, the set of
pairs, (a,r), of all those function arguments, a, for which the function is
defined and then yields a result value r. •

We use the terms function "map" and function graph interchangeably. We
deliberately use quotation marks around the term map here. Unquoted map
references shall, later, designate a special kind of functions. Tha t is, functions
for which the definition set can be computed. A function definition set is the
set of argument values for which the function is defined.

Figure 6.1 on the next page illustrates two function "maps" .6 They purport
to illustrate how arguments of the definition sets, "under" the functions, map
into, i.e., yield results of the range (range set), or image (image set) of the
functions.

The idea of the function "map" (graph) is to visualise tha t specific elements
of the definition set "map" into specific elements of the range set. Please refer
to the definition of the factorial and the Fibonacci functions (Example 6.2) in
order to see tha t the function "maps" of Fig. 6.1 "correspond to" , i.e., visualise
fragments of these functions.

Later we shall see examples where there are elements of what is claimed to
be the definition set for which the function "map" prescribes no corresponding
range element (Fig. 6.3). We refer to the question symbol ? of the injective,
partial function and the surjective, likewise partial function.

T y p e s of F u n c t i o n Spaces and F u n c t i o n S ignatures

This is the first of two sections on function types. The presentation is informal,
and short. The subsequent (Sect. 6.5.2) is a bit more systematic. Here we

5The parentheses (...) surrounding two or more arguments effectively compose
these into a Cartesian. RSL does not provide for one element Cartesians. Hence a
function invocation expression / (a) could as well be written / a. The parentheses in
/ (a) are merely there for disambiguation should one happen to write fa but mean
/ a (i.e., / (a)) .

6The figure title of Fig. 6.1 lists names of functions in double quotes. As is
common practice, we use double quotes to signal that we do not quite mean what
the quote says! In the case of Fig. 6.1 the pictures only purport to show something:
They are not the functions named, only "pictures" of fragments of them!

6.2 The Issues 93

"The Factorial Function" "The Fibonacci Function"

Definition set Range set Definition set Range set

Fig. 6 .1 . Concrete function "maps" (i.e., graphs)

outline our form of writing down type expressions for functions spaces. Later
we will assume this intuition.

The two function "maps" of Fig. 6.1 both contain three elements: the
function definition sets, the function range sets and the function "map ar­
rows" (the graph arrows, i.e., the "map" set of the function). These three are
summarised in Fig. 6.2.

Definition set Range set

| A _ L i £ J B]

F = A > B

Fig. 6.2. Function Types

The notation BA is sometimes used to designate the function space A-¥B. If
|X| expresses the "cardinality" of the set X then \B\\A\ expresses the "cardi­
nality" of the set BA.7

These three elements naturally form the basis for our linguistic way of
expressing function spaces:

A - • B, t y p e F = A - • B

The type expression A ->> B denotes the space of all total functions from
definition set A into (or onto) range set B. The type definition F = A —> B
"assigns" the identifier F as the type name for tha t space of functions. The
form: F = A —> B is also called the signature of a function, or its function
signature.

7Of course, if either of the cardinalities are infinite, then it really does not make
sense to talk of a cardinality, hence the double quotes.

94 6 Functions

Classes of Functions

Functions whose results are truth values are called predicate functions and
the others just functions (optionally, of nontruth value result types).

Without detailing what the specific functionalities could be, we can "pic­
ture" some other functions (Fig. 6.3). By the definition set of a function we
mean the set, A'CA, of exactly all the arguments for which a function is de­
fined. By the image (or range) of a function we mean the set, B'CB, of exactly
all the result values for defined arguments. A function which is not defined for
all values of its postulated definition set is a partial function. We syntactically
express the space of all total and partial functions from definition set A into
(or onto) range set B by A^»B.

A B A = A' B = B' A B = B'

Injective, Partial Function Bijective, Total Function Surjective, Partial Function

Fig. 6.3. Conceptual function "maps" (i.e., graphs)

A function which maps values of its postulated definition set into some, but not
all elements of its range is an injective function. A function which maps values
of its postulated definition set into all elements of its range is a surjective
function. A function which is surjective and which maps all definition set
elements (i.e., a function which is a total function) into distinct range elements
is a bijective function.

6.3 How Do Functions Come About?

In a few steps of reasoning we shall try motivate how functions come about! In
the next paragraphs we first cover the concepts of (1) names and (2) values,
including constant and variable names; (3) then the concepts of expressions,
of expression evaluation and of free variables. And from that we (4) intro­
duce the concepts of functions and abstracted functions. From this we, very
cursorily, (5) mention the notions of function application, function result and
the substitution of values for free variables. This sequence, from names, via
expressions with free variables, to functions, thus motivates the concept of A
functions — to be more formally introduced in Chap. 7. So here we go!

(1-2) There are names, and names designate values, either constant or
variable: 7, t rue , and "a", respectively i, b and c are examples of constant,

6.3 How Do Functions Come About? 95

respectively variable, names. 8 Some such constant or variable values are val­
ues like numbers, Booleans, characters, records or arrays of these etc. Thus,
7, true, "a" , r(i:7,b:true,c:"a"), and <1,2,3 I5,8,13> are example constant value
expressions. Other such constant or variable values are function values like
addition (of numbers) +, subtraction - , etc., or conjunction (of Booleans) A,
disjunction V, list concatenation ^ , etc. Thus: +, - , A, V, and ^ , respec­
tively, are example function names. When written as shown, as noncharacter
symbols, we call them operator names or operator symbols or just operators,
or, if Boolean, we call them connectives.

(3) There are expressions, and expressions are built up from constant
or variable names and delimiters (such as, for example, (,) , > , < and ,) ,
and such expressions designate values: i+7 , < " a " > ^ < l , 2 , 3 , 5 , 8 , 1 3 > , and
a A t r u e . If all expression names designate constant values, then the expres­
sion designates, i.e., evaluates9 to, a constant value. If one or more names of
an expression designate variable values, such as i in i+7 , or a in a A t r u e ,
or p and q i n < l , p , 3 , q , 8 , 1 3 > , then we say tha t they are free variables in
those expressions.

(4) Expressions, typically with free variables — generally written: £(x, y,
. . . , z), where x, y and z are the free variables of expression £(#, ? / , . . . , z) —
denote10 a function. Tha t is, a function from values (eg. a,/? and 7) tha t can
be associated with x, y, respectively z, to the value of the (constant) expression
where a , f3 and 7 have been substi tuted for x, y, respectively z. We say tha t the
expression has been (function) abstracted and tha t the expression constitutes
the body in the abstracted function. An example is: If a and /? are the values
7 and 9, respectively, and are associated with p and q in < l , p , 3 , q , 8 , 1 3 > ,
then the value of < l , p , 3 , q , 8 , 1 3 > becomes (1 , 7 , 3 , 9 , 8 , 1 3) . n

(5) We express by: \x*\y ... \x*£(x, y,... ,z) "the function of x, y, ..., z
which when applied to arguments a,/3, . - .77? yields the value of£(x,y,...,z)
where a , / ? , . . . , 7 have (first) been substituted for x,y,... ,z in £(x, y,...,z)."
£(x, ? / , . . . , z) is the body of the function expression \x*\y ... Xx»£(x, y,...,z)

We have written in italic those terms which stand for computing science con­
cepts. We have written in t e l e type font those terms which stand for examples.
Having done this in the introductory lines we shall only, in this section, use these
type fonts when introducing new concepts.

9See Sect. 6.4 for an informal explanation of the term evaluate.
10We have used the two terms designate and denote almost interchangeably: We

use designate when an evaluation should lead to what one would normally consider
the value (of the expression). And we use denote when an evaluation should lead,
not to such a value, but to a function from contexts into such values — where the
contexts associate variables to values.

11 Observe our two uses of digits: The syntactic use expressed in the t e l e type
font : 0, 1, 2, . . . , 9, and the semantic use which is expressed in the mathe­
matical font: 0,1, 2 , . . . , 9, and the two uses of 'angles': The < and > in expressions,
and the (. . .) in value forms as if we could "write" values! We cannot, of course, but
use numerals to speak of numbers, etc.

96 6 Functions

Thus functions arise from free variable names of expressions. To summarise
the above: From (1) constant names we abstracted to (2) variables, from there
to (3) expressions over constants and variables, and from there to (4) func­
tions. The latter were seen as abstractions of expressions with free variables.
It is on this basis that, in Chap. 7, we introduce the "pure" A-calculus. Notice
that the Xx in Xx*£(x) makes us say: "the function of' x that when applied to
an argument a yields a value as denoted by £(a)".

6.4 An Aside: On the Concept of Evaluation

We cover, briefly, concepts of evaluation, interpretation and elaboration; ex­
amples of function evaluation (etc.); and the concept of function application
(i.e., invocation).

6.4.1 [E]Valuation, Interpretation and Elaboration

In the previous section we mentioned the term evaluate. The concept of eval­
uation applies to syntactic quantities and can be thought of as a procedure,
or as a metafunction, which is applied to a syntactic construct, and usually
something we call its semantic context, and which then yields a value. That is,
if we wish to find the value of an expression, then we evaluate the expression.
If the expression contains variables, then we need look up, somewhere, namely
in the semantic context, to find the value of these variables. Usually we shall
use the term environment12 in lieu of the term semantic context.

Other words for evaluate (evaluation) are valuate (valuation), interpret
(interpretation), and elaborate (elaboration). Much later in these volumes we
shall distinguish between these three terms. Meanwhile, we refer the reader
to the present volume index.

6.4.2 Two Evaluation Examples

Examples help.

Example 6.3 Function Evaluations: The Fibonacci function as given in Ex­
ample 6.2 can be represented as a set of argument/result value pairs, i.e., as
a relation, as implied by Fig. 6.1:

{(1,1), (2,1), (3,2), (4,3), (5,5), (6,8),. . .}

12Note that we now use the term environment in two senses in these volumes: (i)
as above, for a semantic context in which free variables are associated with values,
and (ii) as the context, in some domain, in which some machine, i.e., some computing
system (hardware + software) is placed and with which that machine interacts.

6.4 An Aside: On the Concept of Evaluation 97

Correspondingly, we can talk of two bases of evaluating the Fibonacci function.
Based on the relational representation above we can very informally sketch
one form of evaluation by:

fib = {(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),...}

evaluate (fib,4) =

evaluate({(l,l),(2,l),(3,2),(4,3),(5,5),(6,8),...},4) =

select the pair (i,j)
whose first element = 4
and yield its second element, here 3

We shall later return to this form of function representation (Sect. 6.7). We
shall call the above form of evaluation a relation search. Based on the function
definition in Sect. 6.2 we can likewise, without much explanation and thus very
informally sketch another form of evaluation. In the present form we replace
invocation text, viz., fib(i), for some (constant) i, with the function definition
body text where the function argument, n, has been replaced by the constant

fib(4) =
case 4 of: 1 - • 1, 2 - • 1, _ - • fib(2) + fib(3) end

fib(2) + fib(3) =
case 2 of: 1 - • 1, 2 - • 1, _ - • fib(O) + fib(l) end +
case 3 of: 1 - • 1, 2 - • 1, _ -+ fib(l) + fib(2) end

1 + fib(l) + fib(2)

1 +
case 1 of: 1 - • 1, 2 - • 1, _ - • fib(-l) + fib(O) end +
case 2 of: 1 - • 1, 2 - • 1, _ - • fib(O) + fib(l) end

1 + 1 + 1

3

We shall later have more to say about this form of combined syntactic rewrit­
ing and simple arithmetic and Boolean test expression calculation. We shall
call this form of evaluation symbolic interpretation.

98 6 Functions

6.4.3 Function Invocation/"Function Call"

We have used the term function application. Above, in the informal function
evaluation examples, we saw what application might imply: some form of
evaluation. The examples show several examples of function applications, or,
as we shall also call them, function invocations, or function calls:

evaluate (relation, argument), or
fib(4),fib(3),fib(2),fib(l),fib(0),fib(-l),fib(-2),...

In Example 6.3, evaluation by relation search is a metainvocation: In other
words, the metalinguistic evaluator function evaluate "simulates" the applica­
tion of the function representation relation to the function argument argument:

vrelation'(vargument')

By function application we understand the mathematical phenomenon of ap­
plying a function, as a mathematical quantity, to an argument of its definition
set, also mathematical quantities. By function invocation, or function call, we
understand the same: namely the first step in simulating or evaluating the
"application of a function". By symbolic function evaluation, we understand
the "sequence of things" that goes on, as shown in the syntactic rewriting and
simple arithmetic and Boolean test expression calculations shown above for
the Fibonacci example (Example 6.3).

6.5 Function Algebras

We can summarise a number of things said earlier in this section on functions.
That is, basically no new material is now presented, but a review of what we
shall need in the future is given. We do so by presenting the notion of functions
as an algebra. As we shall see in Chap. 8, an algebra consists of a set of values
and a set of operations. To this we add a name for the algebra. In this section
we shall treat these three issues in a permuted order: Values, names of algebras
and operations.

6.5.1 Functions

The values of a function algebra is the space of all functions of that algebra.
A function is that "mysterious thing" which when applied to an argument of
its definition set yields a result of its range set. Nobody has ever seen a function
— just as nobody has ever seen a number. Rather, these are mathematical
entities that are characterised by their properties.

6.5.2 Function Types

First, we treat how we write down type expressions that denote function
spaces, then how we express higher-order function types. We syntactically
distinguish between total, —>, and partial, ^>, functions:

6.5 Function Algebras 99

Type expression: Type definition:

A - • B type
A H> B TF = A -> B

PF = A ^ B

These are understood as follows: The type expressions A— B̂ and A^»B are
the composite names (i.e., signatures) of function algebras. The type names
TF and PF are the simple names of function algebras. The fact that we write
f = A ^» B amounts to typing the function f.

Thus —> is an infix type constructor function: It takes two argument types
(i.e., sets of values), A and B, and yields the space of all total functions from
all of the definition set (i.e., type) A to within13 the range set (i.e., within the
type) B. And -3* is an infix type constructor function: It takes two argument
types (i.e., sets of values), A and B, and yields the space of all partial functions
from within the type A to within the range set (i.e., type) B. That is, there are
(possibly different) values in A for which each function in A^»B is not defined.

Above we explained the —> and ^> symbols semantically. Now we explain
them syntactically: —> is an infix operator. Its two operands are to be type
expressions. Likewise for ^>.

6.5.3 Higher-Order Function Types

Types A and/or B may themselves be function types:

type
A = P -> Q
B = U-> V
F = (P - • Q) -> (U -> V) = A -> B

More generally, the type expressions:

A - ^ B - > C = A - ^ (B - > C) ^ (A - > B) - > C

That is, the infix function space type constructor associates to the right.
Above we have used the = and the / operators in a metalinguistic sense: They
look like RSL operators, but they are not. They are here to be understood as
mathematical operators (since in RSL one cannot compare types).

6.5.4 Nondeterministic Functions

Let f and g be functions defined by:

By within A we mean either all of A or a proper subset of A.

100 6 Functions

value
m,n:Nat

f: Nat ^ Nat, f(i) = let j:Nat • j>i in i+j end
... f(7) ... f(9) ... f(13) ...

g: Real —> Nat, g(j) = m
... g(l / i f n=0 then 100000000000000 else n end) ... g (l / (l+n)) ...

where Real and Nat stand for the types of reals, respectively natural num­
bers, then we say that function f is nondeterministic. That is, it delivers an
arbitrary, but some natural number, not necessarily the same for every invo­
cation of f, but "skewed upward". Nondeterministic functions, from type A to
type B are given the partial function signature: A ^> B.

6.5.5 Constant Functions

Function g (defined above) is a constant function. In the above definition of
g, the definition relies on the nondeterministic definition of m; m may take
on any natural number value. But m is defined only once. Thereafter it is a
constant, hence g is a constant function. Constant functions, when invoked,
each yield the same result value irrespective of their argument value(s), if any.
Specifically:

type
A

value
a:A
f: Unit - • A, f() = a

hints at the view that values of arbitrary type can be seen as constant func­
tions:14

value
zero, one, two, ..., nine: Unit —> Nat
zeroQ = 0, oneQ = 1, twoQ = 2, ..., nineQ = 9
tt, ff: Unit - • Bool
tt() = true, ff() = false

14The literal Unit designates the value (). It is used wherever we wish to define
functions of no arguments. Invocation of such argumentless functions, f, is written
f()-

6.5 Function Algebras 101

6.5.6 Strict Functions

Function g (defined above) is a strict function: It depends on whether the ar­
gument is defined, i.e., chaos — value m above could be 0 — or not. Note that
g(chaos) = chaos, chaos is not a real number, hence the function signature
is that of a total function.

RSL functions are all strict. The RSL if .. then .. else .. end operator is
the only RSL operator (i.e., function) which is not strict:

type
A, B, C

value
h : A x B x C 4 D , p : A 4 Bool
h(a,b,c) = if p(a) then b else c end

If the language in which h is expressed is nonstrict, in other words is not
RSL, then the result of a function h invocation depends on whether chaotic
arguments are being evaluated in the body of the function. Argument c may
thus be the totally undefined value (chaos). If the predicate function (p)
invocation (p(a)) prevents, i.e., "circumvents" evaluation of argument c, then
a function invocation f^'.b'.c') may still yield a defined result value. The
above example generalises to any function of one or more arguments, i.e., of
nonzero arity.

6.5.7 Strict Functions and Strict Function Invocation

A strict function is one which, no matter what its function definition body
may prescribe, but when given any chaos valued argument, always yields the
totally undefined value chaos. Programming languages with Call-by-Value
have function (including procedure) invocations that are strict. Strict func­
tion invocation should not be confused with strict functions: Strict function
invocation is a property, typically of programming languages, usually having
the Call-by-Value property, whereas strict functions, typically in specification
languages, usually have the Call-by-Name property. RSL has a Call-by-Value
semantics.

6.5.8 Operations on Functions

So far we can speak of five operations which apply to or result in functions,
three ([1-2-3]) that are "computable", and two ([4-5]) that are not. The com­
putable functions are: ([1]) function abstraction, \x:X»£(#);15 ([2]) function

15By the expression Xx:X»S(x) we denote the function of x which when applied
to arguments of type X yields values of the kind found by evauation of the body
£{x). In Chap. 7 we introduce the A-calculus.

102 6 Functions

application, •(•); and ([3]) function composition, •°». (The symbol • indicates
an argument placeholder.)

They (i.e., [1-3]) are "computable" in the sense that we can define and
evaluate them. This computability still allows for evaluations that do not
terminate. But whereas we can ([4]) speak of the definition set, £>(•), and
([5]) speak of the range set, 7£(»), of functions, we can, in general, given a
function, not compute these sets.

([6]) As we shall see later, we can add a sixth operation on functions: The
fix point taking operation, Y (Sect. 7.8).

We can illustrate the above:

type
F = A -> B, G = B -> C, H = A -> C

value
[1] Aa:A-e
[2] (Aa:A-e)(e')

[3] f°g = Aa:A-g(f(a))
pre KfC Vg

[4] V: F - • A-set, G - • B-set
[5] U: F -> B-set, G - • C-set

A, B and C are arbitrary types, and F, G and H are function spaces.
[1] expresses the abstraction of expression e into an (unnamed) function;

a may, or may not, be free in e. Given that evaluation of e for arguments
replacing all free occurrences of a in e by any applied value yields a value
of type B, the function is of type F. [2] expresses the application of such a
function to an argument, expressed by expression e'. Given that evaluation
of e for arguments replacing all free occurrences of a in e by the value of e'
yields a value of type B, the function result is of type B. [3] f°g expresses
the composition of two functions. Provided the range of the first function, f,
is a subset of the definition set of the second function, g, the result of the
composition is defined, and is of type H. [4] V postulates a function that
applies to (any type of) function and yields its definition set, while [5] 1Z
postulates a function that applies to (any type of) function and yields its
range set.

The problem with [4-5] is that these functions are not "definable", that
is, cannot be computed. It is not possible to decide, i.e., it is not decidable,
given an arbitrary function, say in the form of its definition, which are exactly
all the elements of its definition and range sets. But we can, in mathematics,
speak of the definition set and the range set of a function.

6.6 Currying and A-Notation 103

6.6 Currying and A-Notation

6.6.1 Currying

Sometimes we think of functions as being functions of more than one ar­
gument. We therefore, in function definitions, group these arguments into
Cartesian structures.

Instead of writing:

type
X, Y, Z, R, K = XxYxZ

value
f : X - > Y - > Z - > R

we may write:

f: X x Y x Z - • R, or: f: K - • R

And, instead of expression function application as:

f(a)(b)(c),

for suitable a, b, and c, we may write:

f(a,b,c),

or, if k is some Cartesian structure — like (a,b,c) — we may write:

f(k).

6.6.2 A-Notation

This subsection is a precursor for Chap. 7.
The following are equivalent ways of expressing function definitions in RSL:

type
A, B, C

value
f: A x B ->• C
f(a,b) = £(a,b)

f : A - t B 4 C
f(a)(b) = £(a,b)
f(a) = Ab:B.£(a,b)
f = Aa:A.Ab:B.£ (a,b)

That is: Moving a rightmost argument, y, "across" the definition symbol =,
from a function header g(x)(...)(y), causes it to appear on the righthand side
as a prefix, Ay:Y., to the function definition body £(x y).16

16Recall an arithmetic (calculus) "analogue": p x q — r is the same as p — r/q for

104 6 Functions

6.6.3 Example of Currying and A-Notation

Example 6.4 Curryed and Uncurryed Function Definitions: Let:

type
X , Y , Z
K = X x Y x Z

Next we look at various examples of expressing simple, explicit function defi­
nitions:

[1] let f = Ax:X-Ay:Y-Az:Z.£(x,y,z) in f(a)(b)(c) end
[2] let f (x)(y)(z) = £(x,y,z) in f'(a)(b)(c) end
[3] let g = A(x,y,z):(XxYxZ)-£(x,y,z) in g(a,b,c) end
[4] let g'(x,y,z) = £(x,y,z) in g'(a,b,c) end
[5] let g" = A(x,y,z):K-£(x,y,z) in g"(a,b,c) end
[6] let g'" = Ak:K-£(k) in g'"(abc) end
[7] let g""(k) = £(k) in g""(abc) end
[8] let h = A(x,y):(XxY)-Az:Z-£(x,y,z) in h(a,b)(c) end
[9] let h'(x,y)(z) = £(x,y,z) in h'(a,b)(c) end

The nine functions f, f, g, g', g", g//r, g""7 h and h', are meant to be identical
due to the common function type and common body expression £(x,y,z). But
[a — f3] below, although the same function, is not a function of the same kind
(i.e., type) as [8-9] above:

[a] let h" = Ax:X.A(y,z):(YxZ).E(x,y,z) in h,r(a)(b,c) end
[/?] let h;/,(x)(y,z) = E(x,y,z) in h/,;(a)(b,c) end.

This is so since the two types:

(X x Y) -> Z, and X - ^ (Y x Z)

are different. •

6.7 Relations and Functions

Characterisation. By a relation we shall understand a set of groupings of
the same arity and component types. •

Example 6.5 An Abstract Relation: Let e .̂ for 1 < i < n, then:

[\e^-i1 ? e 2 i 2 j '''-)enin)i 1

J \el21 5 e 2 2 2 i - - - j eri2n)'? I

[(eim i , e2m2, . . . , e n r n J J

6.7 Relations and Functions 105

where each row designates a grouping, and the collection of rows designating
a set could be generically a representation of a relation. •

Typically we may define:

type
D_l, ..., D_n
T = D_l x ... x D_n
R = T-set

Any subset of R is now said to be a relation.

6.7.1 Predicates

We can now explain predicate functions, for example, of signature:

value
p: D_l x ... x D_n -)> Bool

as a finite or a possibly infinite subset, a relation, p_rel, of R:

p_rel:R, e.g., p_rel = {(d_lv..,d_Q)v..,(d'_lv..,d/_n),...}
p(r) = if r G p_rel then true else false end = r G p_rel

The type expressions R-set and R-infset denote the set of finite, respectively
possibly infinite, subsets of R, also known as the power set of R.

6.7.2 Function Evaluation by Relation Search

We can thus explain a function (from, for example, D_l x ... x D_n into D)
as a relation, f_rel, over D_l x ... x D_n x D:

type
F = D_l x ... x D_n x D

value
f_rel:F-infset, e.g.: {(di,..., dn, d),..., (d[,..., d'n, d

1)}

f: D_l x ... x D_n ^ D
f(r) =

if 3 (d_l,...,d_n,d):F-(d_l,...,d_n,d) G LrelAr=(d_l,...,d_n)
then

let (d_l,...,d_n,d):F-(d_l,...,d_n,d) G LrelAr=(d_l,...,d_n)
in d end

else chaos end

106 6 Functions

6.7.3 Nondeterministic Functions

An n-ary nondeterministic function, f, is now a function for which several
groupings in f_rel have the same first n-grouping:

value
is_nondeterministic: F-infset —> Bool
is_nondeterministic(f_rel) =

3 (d_l,...,d_n,d),(d^l,...,d'_n,d'):F •
{(dJL,...,d_n,d),(d'_l,...,d'_n,d')} C Lrel A
(d_l,...,d_n) = (d'_l,...,d'_n) A d^d'

Note that we use the type constructor ^> to express either that the function
space is one of partial functions, or one of nondeterministic functions, or, for
that matter, both! Please also note that the above definitions of predicate
function p, of function f, and of is_nondeterministic are all metalinguistic: they
are not expressed in RSL, but in the informal, yet precise language of ordinary
mathematics.

6.8 Type Definitions

Although covered in detail in Chap. 11 we shall briefly summarise how, in
RSL, one defines function spaces, i.e. function types:

type
A, B
F = A - • B
G = A ^ > B

A and B are any types, mentioned here as sorts. F denotes the space of all
total functions, defined over all of A, into B. G denotes the space of all partial
functions, defined over all or some of A, into B.

6.9 Conclusion

We have introduced the essence of functions: that they map arguments of
their definition set into (i.e., yield) results of their range, and that they can
be expressed (i.e., defined), named, applied and abstracted. We have also
introduced the notion that functions have type — from (type of) definition
set into (type of) range set. Together with the name of the function, this is
called the signature of the function. We have seen that functions are either
total or partial, and that functions can be further attributed as either being
surjective, injective or bijective.

6.11 Exercises 107

6.10 Bibliographical Notes

A classic introduction to recursive function theory, a theory "lurking" behind
our presentation in this chapter, is that of Hartley Rogers [444].

6.11 Exercises

Exercise 6.1. Simple Arithmetic Operations, I. Let there be given just the
simple RSL expression constructs:

value
f: A - > B
f(a) = if Ptest (a) t n e n £con else £a^ end
pre: -p p r e ;

where 'Ptest *s a simple Boolean value expression which tests whether invo­
cation of / should terminate; where £con is the consequence expression, a
simple expression which does not contain a (recursive) reference to / ; where
£ a ^ is the alternative expression, also an expression which does contain a
(hence recursive) reference to / ; and where Ppre is a simple Boolean value
expression which tests whether / should be applied, a pre-condition.

Define

1. arithmetic (natural number) multiplication (i x j) , and
2. arithmetic (natural number) exponentiation (f7)

using just addition and subtraction, or already defined functions. That is: A
is the Cartesian of the Natural Number type, and B is that type.

Exercise 6.2. Simple Arithmetic Operations, II. We refer to Exercise 6.1.
Define

1. integer division (with remainder) (i/j = (d,r))

Where d x i + r = i.

Exercise 6.3. Function Application Evaluation by Relation Search. We refer
to Exercise 6.1 and to the first part of Example 6.3 on page 96.

Compute the sets of argument/result value pairs, i.e., as a relation (as
implied by Fig. 6.1 on page 93) for the two functions:

1. mult for arguments between 0 and 4, and
2. exp for arguments between 0 and 3.

Exercise 6.4. Function Evaluation by Recursive Function Invocation. We re­
fer to Exercise 6.1 and to the last part of Example 6.3 on page 96.

Evaluate mult(3,4) and exp(2,3) in the manner of that part.

108 6 Functions

Exercise 6.5. Higher-order Arithmetic Functions. Define a function, thrice,
which when applied to a 2-argument (i.e., a binary) arithmetic function, / ,
results in a 3 argument (etc.) function, r , which, when applied to three argu­
ments yields the result of applying / to the result of appying / to the first
two arguments and the third argument !

Test your function, thrice, on the mult and exp function of Exercise 6.1.
Show that (r(mult))(4,3,2) = 24, and that (r(exp))(4,3, 2) = 4096.

7

A A-Calculus

• The prerequisite for studying this chapter is that you understand the
concept of functions as covered in Chap. 6.

• The aims are to introduce the concept of A-calculus, to introduce the
concept of fix points of recursively defined functions and to relate the
A-calculus expressions to the notation of RSL, the RAISE Specification
Language.

• The objective is to ensure that the reader can use and handle the RSL
A-notation at ease and for proper abstraction purposes.

• The treatment is formal and systematic.

There is a family of calculi called the A-calculi. A calculus is a set of rules
for calculating "something".1 We shall present two A-calculi: A "pure"A-
calculus, and a A-notation, i.e., an embedding of the (new, less than)
"pure" A-calculus into the RSL notation. That A-calculus, and variants thereof,
have become a de facto standard for modelling computation.

The A-calculus was first proposed by Alonzo Church [152], in the mid-1930s,
as a model for computation.

Characterisation. By a X-calculus we understand a specific language (1) of
syntactic entities called A-expressions, e: Namely (l.i) A-variables x, (l.ii) A-
functions Xx : T-e, and (l.iii) A-applications e/(ea) (or (e/ea), (e/)ea , (e/)(ea),
or e/ea); and (2) of related "semantic" A-conversion (i.e., calculus) rules: (2.i)
a-renaming, (2.ii) /^-reduction, and possibly other rules. •

In this chapter we shall briefly outline some essentials of the A-calculi.

1 You are well familiar, from first grade, with the calculus of ordinary arithmetic:
Adding and subtracting, multiplying and dividing numbers. You are also assumed
to be familiar with the calculi of differentiation and integrals. Later, in Chap. 8, you
will encounter the calculi of the Boolean algebra, propositions and predicates.

110 7 A A-Calculus

Using the background of the previous chapter we systematically, yet very
cursorily present a version of what we shall refer to as the "pure" A-calculus:
its syntax, its semantics and its various forms of (terminating or possibly
nonterminating) conversions. We then enlarge the scope by incorporating the
A-calculus, as a notation, in the main specification language of these volumes,
RSL. As part of that, we introduce the indispensable language construct let
... in ... end, explained in terms of A-function application.2 We end with an
introduction of the notion of recursively defined functions, fix points, a fix
point operator and fix point evaluation of function application.

7.1 Informal Introduct ion

In the A-calculus everything is functions. To express such A-calculus func­
tion values we write A-expressions. The following are the only forms of A-
expressions:

x, \ye, f(a)

where A is a keyword, x and y are referred to as variables (or X-variables), and
e, / and a are arbitrary A-expressions. A-variables are simple identifiers. The
form Xye is referred to as a A-function: It abstracts the A-expression e. Note
that y may or may not occur in e, the function expression body. We "read" the
expression Aye as follows: The function ofx that the expression e designates,
or, in more detail: The X-function expression which when "applied'7 to an
argument X-expression a yields a resulting X-expression that arises from X-
converting expression e substituting all free occurrences of the variable x with
X-expression a. The form / (a) , which we also allow to be written as (fa), (/)a,
and (/)(a), is referred to as a A-application (or a A-combination, or just a
function application).

7.2 A "Pure" A-Calculus Syntax

We briefly introduce the "pure" A-calculus. The pure A-calculus does not
contain general expressions. The A-notation, see later, will. We define the set
of all A-expressions in an informal, yet precise style, one that we shall often
be using.

Definition. A-expression syntax.

• Basis clause: If a; is a variable, then x is a A-expression.
• Inductive clause: If a; is a variable and e, / , a are A-expressions, then so are

Xx*e and f(a).

2This construct has been used in very many functional programming and com­
puter science notations since it was first introduced, it is believed, by Peter Landin
in the early 1960s [333,334,337-339].

7.2 A "Pure" A-Calculus Syntax 111

• Extremal clause: Only forms that are constructed using a finite number of
applications of the above clauses (rules) are A-expressions.

The above is an example of an inductive definition. •

Since this is the the first time, in these volumes, that we properly introduce a
language, and since we have yet to cover the material that shall later enable
us to present such a language definition formally, we use the above informal,
yet very precise style of presentation. This presentation represents a classical,
mathematical way of presenting inductive3 structures, that is, usually infinite
sets of entities (here they are syntactic entities) which have a structure. Here
the structure is that of expressions either being atomic (no structure, really),
as for the basis clause, or pairs of entities, a variable and an expression, or two
expressions (i.e., the structuring is that of those two forms of composition).

The basis clause usually lists a finite or infinite number of terms (in­
stances), here a family of variables. The inductive clause is of recursive nature:
It assumes the existence of some terms and expresses the construction — the
existence — of further terms. The basis clause secures the existence of initial
terms. The inductive clause adds further terms to the language of terms. The
extremal clause ensures that unwanted terms do not accidentally creep into
the language. The adjective extremal expresses exclusion.

We can give a BNF grammar4 for pure A-expressions:

type /* A BNF Syntax: */ value /* Examples */
(L) :
(V) :
(F) :
(A) :

= (V) | (F) | (A) (V): x, y, z, f, a,
= /* variables */ (F): A x • A y • z
= A(V)-(L) (A): (fa)
= ((L)(L)) /* Application */

<A):(fa),r(a), (f)(a), etc.

There are thus three basic kinds of "pure" A-expressions: variables (V), func­
tion definitions (F) and function applications (A).

We relax the BNF syntax to allow for the variant forms of expressing func­
tion application. Which form (f a, (f a), f(a), (f)a, (f)(a) and ((f)(a))) is chosen
depends on the "size" of the respective f and a expressions, i.e., is chosen for
reasons of readability. The syntax relaxation can be justified by extending the
initial BNF syntax rule:

(L) ::= (V) | (F) | (A) | (<L))

3By inductive we mean: inferring (inducing) general conclusions from particular
instances.

4By BNF we mean "Backus-Naur Form". We assume that the reader is familiar
with the notion of such BNF grammars, including is familiar with the notion of
context-free grammars.

112 7 A A-Calculus

Elements of (V) are called variables. Elements of (F) are called X-functions. We
say that the expression (L) in A(V)«(L) has been abstracted, that is, "lifted"
to a function, also called X-abstraction. Expressions (A) are called function
applications.

7.3 A A-Calculus Pragmat ics

We shall not really examine, in detail, the statement that in the A-calculus "all
things are functions". We do, however, emphasize that even variables denote
functions. Arguments to and results of function application are also functions.

Thus, to model ordinary mathematics or calculi, like arithmetic or logic,
we ought to indicate that Boolean truth values and Boolean operations, that
integers and the arithmetic operations, and that conditional expressions, can
indeed be modelled by A-expressions.5 We do so in Exercises 7.1-7.2. We do
this so that you may better accept why we put such an emphasis on the
A-calculus. From working with these exercises the reader may then become
"relatively convinced". For more formal treatments, and "full convictions" we
refer to the literature [26,28,152,284,334,338,465,517].

7.4 A "Pure" A-Calculus Semantics

The idea of the A-calculus is that a function expression, Ax-e, designates that
function which when applied to an argument expression, a, substitutes a for
all free occurrences of x in e.

Example 7.1 X-Expression Evaluation: Let us try, informally, to see some
examples of a substitution process: Wherever we have a function application
of the form (\p*e)(q) we substitute q for all occurrences of p in the body e:

1. (Xxmx)(d) => a
2. (Xx-y)(a) ^y
3. (\x'(xy))(a) => (ay)
4. (Xx*Xy(xy))(Xz»z) =>* Xy((Xz*z)y) => Xyy
5. (\x*\y(yx))(\z*(zy)) => Xy(y{Xz*(zy)))

The first four examples are straightforward, and are okay. The last example,
line 5, is not okay! The problem is that the free y in the argument Xzm(zy),
when substituted for x, becomes bound by the y in Xy(yx). •

The two A-functions, Xumu and Xvv, or, more generally, the two A-functions,
Xu*£(u) and Xv£(v), are conditionally considered the same. By changing

5Showing integers, Booleans and conditionals indicates some of the computa­
tional power we need in order to informally convince most readers that the A-calculus
indeed can handle "what is computable".

7.4 A "Pure" A-Calculus Semantics 113

\y{yx) above to \rm(rx), the free y in the argument \z*(zy) now does not
become bound.

The function application expression (a y) pragmatically assumes that a is
a function, or can at least be made into something of the form Ave.

7.4.1 Free and Bound Variables

To explain, more systematically, this and the problem of turning a free variable
into a bound one, we introduce the notions of (i) free and bound variables,
of (ii) substitution, of (iii) a-renaming and of (iv) (3-reduction — the latter
covering the notion of function application.

Definition. Free and bound variables. Let x, y be variable names and e, / be
A-expressions.

• (V): Variable x is free in x.
• (F): x is free in Xy -e if x ^ y and x is free in e.
• (A): x is free in /(e) if it is free in either / or e (i.e., also in both).

A variable is bound in an expression, if it occurs in the expression, but is not
free. •

7.4.2 Binding and Scope

We also say that free occurrences of a variable x in some expression e become
bound in Ax*e. Thus the formal parameter variable, x in Ax*e, serves as the
binding variable, and the free occurrences of x in e become bound in Ax*e.

The scope of a binding variable is the body of its function expression exclu­
sive of any inner, i.e., properly embedded, function expressions in which that
same binding variable is reintroduced by some ("other") function expression.
Thus the scope of the first x in

Ax-Ay(x Ax*(x y))

extends to the second (left to right), but not the third nor the fourth occur­
rence of x in the A-function expression just above.

7.4.3 Collision and Confusion of Variables

The first occurrence, left to right, of variable x in the expression below is said
to collide with the second (left-to-right) occurrence:

Ax-AyAx-x.

114 7 A A-Calculus

The first occurrence, left to right, of variable y in the expression below is the
binding occurrence. It binds only the second (left to right) occurrence:

(\x*\y(xy))(y) apply f to y yields \y(yy)
y v '

/

However, the third (left to right) occurrence. But when performing the in­
tended substitution of the argument, i.e., the third y for the free x in Ay(xy),
it becomes confused with the second y in Ay(xy). We thus speak of confusion
of variables.

Collisions, as it turns out, create no problems, but may seem "confusing".
Confusion can be avoided by simple renaming:

Ax-AyAx-x renaming last bound variable yields Ax«AyAz*z

7.4.4 Subst i tu t ion

To deal with the confusion of free and bound variables, as illustrated above, we
introduce a proper substitution function. Substitution is a very important and
nontrivial notion. It is needed here in order to understand function application
in the A-calculus, i.e., the meaning of writing f(e). Somehow, intuitively the
idea is that the e replaces all occurrences of the formal parameter of the
function expression f. And if f is the A-expression Ax*e', then e replaces all
free occurrences of the variable x in e'. Problems with collision and confusion of
free and bound variables, however, dictate some caution as to "what replaces
what".

Substitution of an expression N for all free occurrences of x in M will be
expressed by: subst([N/x]M). Depending on the form of the expressions N and
M we get either of the cases shown below:

Definition. Substitution.

• subst([N/x]x) = N
• subst([N/x]a) = a for all variables a^x.
• subst([N/x](P Q)) = (subst([N/x]P) subst([N/x]Q)).
• subst([N/x](Ax-P)) = AyP.
• subst([N/x](AyP)) = Aysubst([N/x]P) if x ^ y and y is not free in N or

x is not free in P.
• subst([N/x](AyP)) =Az-subst([N/z]subst([z/y]P)) if y ^ x and y is free in

N and x is free in P (where z is not free in (N P)).

Substitution is a very important concept of computer science and, as you can
see from the above, not quite a simple one. •

7.4 A "Pure" A-Calculus Semantics 115

7.4.5 a-Conversion and /3-Conversion Rules

The substitution function mandates prior renaming (see last rule above) if a
substitution might collide a free variable with a bound scope. We single this
renaming out, referring to it in the future as a-renaming (or a-conversion).
Furthermore we isolate the real purpose of substitution, namely function ap­
plication, in the /^-reduction (or /3-conversion) rule.

Definition, a-renaming: (Ax»M)=Aysubst([y/x]M).
If x, y are distinct variables then replacing x by y in Ax-M results in

Aysubst([y/x]M). Renaming the formal parameter of a A-function expression
is allowed if no free variables of its body M thereby become bound. •

Definition, /^-reduction: (Ax-M)(N)=subst([N/x]M).
All free occurrences of x in M are replaced by the expression N provided

that no free variables of N thereby become bound in the result. •

7.4.6 A-Conversion

As illustrated in the informal "substitution" examples (Example 7.1), one can
re-apply the conversion rules multiple times. The question, naturally, is: "Will
it, the conversion, end? " To see that there might be a termination problem,
let us look at the following four examples:

Example 7.2 Four X-Conversions:

(a) (\x*(xy)(z)) ->p (zy)
(b) (\x*(xx))(\y(yy)) - ^ (*y(yy))(><y(yy)) -+a

(Xz»(zz))(Xy{yy)) - ^ (Xy(yy))(Xy(yy)) -> a . . . ad infinitum!
(c) (Xxay)(Xu*(uu)Xv(vv))

either: —>p y, or —>p (Xx*y)(Xv(vv)Xv(vv))
either: —>p y, or —>p (Xx*y)(Xv(vv)Xv(vv))
etcetera!

We show example (c) again, graphically laid out for visual grasp!

(Xxmy)(Xum(u u)Xvm(v v))

y (Xx*y)(Xu*(u u)Xv(v v))

y (Xx*y)(Xu*(u u)Xv(v v))

y (Xx*y)(Xu*(u u)Xv(v v))

y :

116 7 A A-Calculus

(d) The last example shows all the (always) terminating conversions of a A-
expression. First the visual picture:

((\x*(x y))(\u*(u v)))(\p»(p q)r)

/ \
((At*-(t* v))y)(\p»(p q)r) ((\x»(x y))(\u»(u v)))(r q)

(y v)((\p*(p q))r) ((\if(u v))y){r q)

(y v)(r q)

Then a more textual, linear layout:

[1] ((Ax-(x y))(Au.(u v)))(Ap-((p q)r)) [5] =* (((Au-(u v)) y))(((r q)))
[2] => ((((Au.(u v)) y)))(Ap.((p q)r))

[3]((Ax.(xy))(Au.(uv)))(((rq)))
[1] ((Ax-(x y))(Au-(u v)))(Ap-((p q)r)) [5] =* (((Au-(u v)) y))(((r q)))
[3] => ((Ax.(x y))(Au.(u v)))(((r q)))

[4](((((yv)))))(Ap.((pq)r))
[2] ((((Au-(u v)) y)))(Ap-((p q)r)) [6] =* ((((y v))))(((r q)))
[4] => (((((y v)))))(Ap.((p q)r))

[5](((Au.(uv))y))(((rq)))
[2] ((((Au-(u v)) y)))(Ap-((p q)r)) [6] => ((((y v))))(((r q)))

We observe that some A-expressions always (Example 7.2(a) and Exam­
ple 7.2(d)[1-6]) reduce to a form that no longer contains any syntactic oc­
currence of a A-function which can be further reduced. Such a form is called
an irreducible X-expression. We also observe, Example 7.2(b), that some A-
expressions cannot be reduced to an irreducible form. Others have their con­
version either terminate, or not terminate, depending on which reducible A-
functions are chosen — as in Example 7.2(c).

7.5 Call-by-Name Versus Call-by-Value

Characterisation. Call-by-name: When a /3-reduction is possible, and when
one always chooses the leftmost, outermost such (i.e., the leftmost with the

7.7 The RSL A-Notation 117

fewest parentheses surrounding it), then we call that sequence of reductions,
that is, the conversion, a call-by-name, or leftmost outermost conversion. •

Character isa t ion. Call-by-value: When a /3-reduction is possible, and when
one always chooses the rightmost, innermost such (i.e., the rightmost with
the largest number of parentheses surrounding it), then we call that sequence
of reductions, that is, the conversion, a call-by-value, or rightmost innermost
conversion. •

Example 7.2(a) and (b) are examples of both leftmost outermost and a right­
most innermost conversion. One leads to an irreducible form, the other never!
In Example 7.2(c) the leftmost outermost conversion leads to an irreducible
form, whereas the rightmost innermost conversion never leads to an irreducible
form.

7.6 The Church-Rosser Theorems — Informal Version

The Church-Rosser Theorems state:

• If a A-expression has an irreducible form, then a leftmost outermost con­
version will find it.

• If two different A-conversions lead to irreducible forms, then they are,
modulo a-renaming, the same.

So: call-by-name reduction is the "safest"! Usually programming languages
provide call-by-value.

7.7 The RSL A-Notation

We like the ability to designate functions without always having to name
them. We also like the ability, also through A-function abstraction, to express
functions, concisely without too much syntactic "machinery", i.e., "syntac­
tic sugar". The simple rules for free and bound variables, for substitution,
for a-renaming and for /^-reduction also apply in the larger context of all
programming, and hence also all specification languages. Therefore, as is
common practice in the computer and computing science literature, we in­
troduce an extended version of A-expressions, here into RSL.

7.7.1 Extending A-Expressions

We now embed A-expressions in our specification language, RSL, by allowing
any RSL value-designating clause (statement or expression) to occur wherever
a A-expression may occur. We type (i.e., we give a type to) the bound variable

118 7 A A-Calculus

argument of A-functions: \x:X»£(x). The type X is not necessarily coincident
with (equal to) the definition set of the function. It is just a conveniently
expressible type expression, usually a type name. The function definition set,
however, falls within the type. Below we show a slight revision of the BNF
Grammar for the "pure" A-syntax.

type /* An Extended BNF Syntax */
(Tn)
(L) :
(V)
<F> :
(A)
(E) :

::= /* Type names */
:= (V) | (F) | (A)
:= /* variables, i.e., identifiers */
:= A(V> : (Tn) • <E)
:= ((E)(E))
:= (L) | ((E)) | etcetera

/* Any ordinary RSL (or other) */
/* expression, statement or clause */

value /* Examples */
(E): 0, 1, if n=0 then 1 else n * f (n- l) end, 4
(V):n,f
(F): A n:Nat • if n=0 then 1 else n * f (n- l) end
(A): (A n:Nat • if n=0 then 1 else n * f (n- l) end)(4)

We have embedded into RSL the A-notation as a syntactic way of expressing
functions without naming them. For cases of use where evaluation of RSL text
does not imply side-effects (i.e., hidden state changes or communication over
channels, etc.) we can resort to the A-calculus in order to grasp the meaning of
an embedded A-expression. Otherwise we cannot! We shall later have occasion
to clarify the above, seemingly cryptic statements.

7.7.2 The "let ... in ... end" Construct

A very useful expression construct of RSL is the "let ... in ... end" clause.
It can be basically explained in terms of the A-Calculus. To do so we say that
the three expressions:

(A a:A • E(a))(b)
let a:A = b in E(a) end
let a = b in E(a) end

are, for nonfunctional, or for functional expressions b that are nonrecursive
(in a) — the same.

The case where a occurs free in b amounts to a recursive mentioning of a
in b. We shall deal with these cases in Sect. 7.8.

7.8 Fix Points 119

7.8 Fix Points

Recursive definitions can be intriguing, whether of types, of functions, or of
other values. Here we shall, from a practical point of view, briefly investigate
the A-calculus meaning of recursive function definitions.

Recursive function theory is predominantly focused on fix points. So fix
points are very important in computer and computing science; and if we get
these wrong, as software engineers, then we can get "things" terribly wrong.

7.8.1 The Issue

An important notion of mathematics and of both specification and program­
ming languages is that of recursion. In mathematics the notion of recursion
"belongs" to what is sometimes called meta-mathematics, or sometimes re­
cursive function theory.

In this section we first outline the problem. Then we "massage" a A-
expression in a few stages. We perform both conversion and short-hand substi­
tution, the latter of an expression for a name (the F below). That conversion
and substitution leads us to a concept of fix points and of a fix point-yielding
operator (the Y below). Finally, we show an example of a fix point evaluation
using the fix point identity: YF = F(YF). The identity applies to any func­
tional, i.e., for any higher-order function, but it does not necessarily lead to
what is called a minimal fix point.

7.8.2 Informal Outline

We will now deal with the case in which a occurs free in b in the expression
E(a) below:

let a = b in E(a) end

Assume:

type
F

value
let f = Ax:X-B(f,x) in E(f) end.

If by a free f inside B(f,x) we mean the same as the lefthand side f, then the
two expressions ([1-2]):

[1] let f:F = Ax:X-B(f,x) in E(f) end,
[2] (Af:F.E(f))(Ax:X.B(f,x))

are not the same. The f inside B(f,x), of the second (Af-E(f))(Ax:X«B(f,x)), is
not bound by the Af in Af-E(f) as was probably the intention. Let us assume:

120 7 A A-Calculus

value
fact: Nat - • Nat
fact(n) = if n=0 then 1 else n*fact(n—1) end.

This example illustrates the issue of recursive function definitions.

7.8.3 The Fix Point Operator Y

We now treat the general example systematically: We omit typing the A-
function arguments.

let f(x) = B(... f ... x ...) in E(f) end

The next, numbered items refer to the formal, line-by-line derivation which
follows. (1) Let the f inside the righthand side B(.. .f . . .x. . .) mean the same as
the lefthand side f (i.e., in f(x)). (2) move x from the lefthand to the beginning
of the righthand side — this is done by abstracting in x, i.e., by prefixing the
moved x with a A and suffixing the moved x with a •. (3) Now rename the f
inside the righthand side (... f ... x ...) into g by lifting the expression (... f ...
x ...) to a function Ag-(... g ... x ...) which is then applied to f — whereby we
get the original expression (... f ... x ...).

1 let f(x) = (... f ... x ...) in f(a) end
2 let f = Ax-(... f ... x ...) in f(a) end
3 let f = Ag-Ax-(... g ... x ...)(f) in f(a) end
4 let f = F(f) in f(a) end where F = Ag-Ax-(... g ... x ...)
5 let f = YF in f(a) end
6 The fix point Identity Law: YF = F(YF)

From 1 to 2: A-abstraction.
From 2 to 3: A-abstraction + A-application.
From 3 to 4: Abbreviation.
From 4 to 5: If / satisfies / = Ff then / is a fix point of F.
(4) Now observe the expression f = F(f), where F = Ag-Ax»(... g ... x ...).

Any function f which satisfies the equation f=F(f) is said to be a fix point of
F.

(5) The operator Y is an example of a fix point-taking operator.
Thus one can eliminate named references to a recursively defined function

by replacing the function name by its fix point. Y produces one such fix point.
There are many such fix points but we refer to more foundational language
semantics texts for a proper treatment of this. Any one of [28,183,250-252,
280,284,319,396,443,454,497,521] will do. We remind the reader that we have
omitted typing the formal variable of the above A-function expressions. We
will continue, in this section, to omit such typing.

7.8 Fix Points 121

7.8.4 Fix Point Evaluation

Example 7.3 Fix Point Evaluation: We show an example of evaluation using
the Y fix point operator and the fix point identity YF = F(Y(F)).

We leave it to the reader to decipher which of the conversion rules have
been applied in each step below: a-renaming, /^-reduction (or its inverse, func­
tion abstraction, as for the introduction of g), or fix point identity YF =
F(Y(F)).

let f(n) = if n=0 then 1 else n*f(n—1) end in f(3) end
let f = An-if n=0 then 1 else n*f(n—1) end in f(3) end
let f = (Ag-An-if n=0 then 1 else n*g(n—1) end)(f) in f(3) end
let f = F(f) in f(3) end

where F = (Ag-An-if n=0 then 1 else n*g(n—1) end)
let f = YF in f(3) end
(YF)(3)
(F(YF))(3)
((Ag-An-if n=0 then 1 else n*g(n-l) end)(YF))(3)
(An-if n=0 then 1 else n*((YF))(n-l) end)(3)
(if 3=0 then 1 else 3*(YF)(3-1) end)
(3*(YF)(2))
(3*(F(YF))(2))
(3*((Ag-An-if n=0 then 1 else n*g(n-l) end)(YF))(2))
(3*(An-if n=0 then 1 else n*(YF)(n-l) end)(2))
(3*(if 2=0 then 1 else 2*(YF)(2-1) end))
(3*(2*(YF)(1)))
(3*(2*(F(YF))(1)))
(3*(2*((Ag-An-if n=0 then 1 else n*g(n-l) end)(YF))(l)))
(3*(2*((An-if n=0 then 1 else n*(YF)(n-l) end))(l)))
(3*(2*((if 1=0 then 1 else 1*(YF)(1-1) end))))
(3*(2*((1*(YF)(0)))))
(3*(2*((1*(F(YF))(0)))))
(3*(2*((l*((Ag-An-if n=0 then 1 else n*g(n-l) end)(YF))(0)))))
(3*(2*((l*((An-if n=0 then 1 else n*(YF)(n-l) end))(0)))))
(3*(2*((l*((if 0=0 then 1 else 0*(YF)(0-1) end))))))
(3*(2*((1*((1)))))) = 3*2*1*1 = 6

We have shown yet another example of symbolic function evaluation. This
time, in contrast to the second example of Example 6.3, we used a mixture of
a-conversion, /^-reduction and fix point conversion using the fix point identity.
The fix point operation is an operation of the function algebra.

122 7 A A-Calculus

7.9 Discussion

It is time to conclude this brief overview of the A-calculus.

7.9.1 General

We have introduced the essence of the A-calculus. First, A-function expressions
have a bound variable which binds all free occurrences of that variable within
its scope (i.e., the body). Second, functions can be modelled by the A-calculus
with its concepts of free and bound variables, substitution, a-renaming and
/3-reduction. Finally, that one can define notions of fix points, of a fix point-
taking operator, of a fix point identity and of fix point evaluation.

7.9.2 On Minimal, Maximal and All Fix Points

The fix point operator shown above does not necessarily lead to what is called
a minimal fix point. A minimal fix point of a recursively defined function is the
smallest set of argument and result pairs such that there are no other argument
and result values for which the recursive function definition is satisfied. We
refer to readily available papers and textbooks on semantics or on recursive
function theory for the story on fix points and why it is important to deal with
minimal, maximal and all fix points [28,183,250-252,280,284,319,396,443,
454,497,521]. RSL's recursive definitions yield a set of models corresponding
to all fix points.

7.9.3 Emphasis

As mentioned in Sect. 6.1.1 two different concepts of functions were introduced
in the last two chapters: a syntactic notion, in the form of A-expressions (in
this chapter), and a semantic notion, in the form of mathematical functions,
depictable as function "maps" (in the previous chapter).

The two are worlds apart: With the former view, the A-calculus view, we
remain within a set of syntactic forms that are said to model the latter view.
With the latter view we are postulating entities that no-one has ever seen!
But entities whose properties can be fully satisfactorily described — so that
we know that they exist, mathematically!

7.9.4 Principles, Techniques and Tools

Principles. A-Abstraction: Every expression can be raised, i.e., abstracted
into a function of the free variables of the expression such that the function
for values of these free variables yields the same value as would the expression
with those values substituted for the free variables. •

The same is true for clauses like statements, etc.

7.11 Exercises 123

Techniques. A-Conversion: The techniques of A-conversion include those of
a-renaming, /3-reduction, and fix-point expansion. •

Tools. The X-calculus is a tool needed to express functions, their definition
and their application. •

7.10 Bibliographical Notes

7.10.1 References

The A-calculus was introduced in the 1930s by Alonzo Church and his stu­
dents [152,322], in their rather successful attempt to explain the notion of com-
putability: What can be computed? The A-calculus has turned out to be the
simplest device for explaining programming concepts [222,334,338,391,426]
and is at the basis of functional programming [51,175,225,261,278,380,433,
520]. The mathematical foundations of A-calculi were first given by Dana
Scott, inspired by Christopher Strachey [251,458-462,464,466-468]. Baren-
dregt has covered the A-theory from a scholarly viewpoint [25]- [28]. A good
textbook is [284].

7.10.2 Alonzo Church, 1903-1995

We refer to an Internet-based biography of Alonzo Church:

http: / /www-gap.dcs.s t-and.ac.uk/"history/Mathematicians/Church.html

It is due to J. J. O'Connor and E. F. Robertson, University of St Andrews,
Scotland: Centre for Interdisciplinary Research in Computational Algebra.

7.11 Exercises

We shall pose some applied A-expression exercises. They are put forward to
help you see that one can model the Boolean truth values and their operations,
integers and their arithmetic operations as well as lists within the A-calculus.

We refer to standard references for exercises in general A-conversion using
the substitution, a-renaming, /3-reduction and the fix point identity conversion
rules [26,29,284].

Exercise 7 .1. X-Expressions for Boolean Truth Values and Connectives. Con­
sider:

if b then c else a end.

124 7 A A-Calculus

Think of c and a in if b then c else a end as a pair, or more generally, as
a list and b as a selector into that list. If b is true then c is selected. If b is
false then a is selected. This determines our representation of true and false
in the A-calculus:

T,true: Ax.Ay.x
F,false: Ax.Ay.y

A-calculus representation of the Boolean connectives are now suggested:

~: Ax((xF)T)
A: Ax.Ay.((xy)F)
V: Ax.Ay.((xT)y)

1. Writing out T and F in full (i.e., as A-expressions), show apply ~ to F to
get T, and apply ~ to T to get F.

2. Writing out T and F in full apply A to all four combinations of T and F
and get what you expect.

3. Similarly for V.

Notice that these representations of the Boolean connectives expect operands
that reduce to T or F. For operands (i.e., arguments) that do not reduce to
Booleans these A-calculus connectives define "other" functions!

Exercise 7.2. X-Expressions for Lists and List Element Selection. Consider
the list:

(0 0 , 0 1 , - A - l)

being represented in the A-calculus as follows:

(0o): Ax.((x0o)^)
(0o,0i): Ax.((x0o)(0i))
(0o,0i,02): Ax.((x0o)(0i,02))

(00,01,-..,0n-l): Ax.((x0O)(01,02,...,0n-l))

ip is a "dummy" 'end of list' delimiter. It can be any A-expression.
The idea, in Exercise 7.1 on the page before, to let T and F select into

a list of length 2 and yield the 1st, respectively the second element, is now
iterated:

T: Ax.Ay.x
FT: Ax.Ay.(y Ax.Ay.x) = Ax.Ay.(y T)
F2T: Ax.Ay.(y Ax.Ay.(y Ax.Ay.x)) = Ax.Ay.(y FT)

F i + 1 T: Ax.Ay.(yF*T)

7.11 Exercises 125

Now show that:

1. (0 O , 0 1 v A i - l) T = 00
2. (0 o , 0 i v A i - i) F T = 0i
3. < 0 o , 0 i , - A - i > F n T = 0n_x

Exercise 7.3. X-Expressions for Integers and Arithmetic Operators. Church
illustrated the following representation of natural numbers:

0 = Aa.Ab.b
1 = Aa.Ab.(ab)
2 = Aa.Ab.(a(ab))

n = Aa.Ab.(a(a(... (ab))))

where the natural number n is represented by the n-fold application of the
first argument (a) to the second argument (b).

With the following representation of the arithmetic operators:

m + n: Ax.Ay((m x)((n x)y)),
m x n: Ax.(m(n x)), and
mn : (n m),

calculate the following:

1.2+3
2. 2 x 3
3. 23

8

Algebras

• The prerequisite for studying this chapter is that you understand the
mathematical concepts of sets and of functions as covered in earlier chap­
ters.

• The aims are to cover the mathematical concepts of algebras such as they
are used in computing science and software engineering and to cover, even
in this early chapter, the algebraic specification of what is known, in com­
puting science and software engineering, as abstract data types (ADTs).

• The objective is to ensure that the reader from as early as possible can
use and handle this concept of specification algebras, at ease and with
determination.

• The treatment is systematic to semiformal.

It is a main purpose of this chapter to basically just introduce the jargon —
the language, as it were — of algebras. We do so for the sake of convenience:
The mathematical concept of algebras equip us with suitable terms. When
using those terms they help us delineate what we are presenting.

Characterisation. By an algebra we, loosely, mean a possibly infinite set of
entities and a usually finite set of operations over these entities. •

In software engineering algebras play two central mathematical roles. The
way we structure specifications and programmes (in schemes, classes, mod­
ules, objects) can perhaps best be understood with reference to algebra.
Steps of development, from abstract specifications to concrete ones, can like­
wise best be understood as some algebra morphisms.

8.1 Introduction

Algebras are defined in terms of functions, hence this section follows the previ­
ous section on functions. Algebras capture the very essence of grouping entities

128 8 Algebras

together with actions upon, events and behaviours over, and communications
between these entities. In ordinary programming parlance, "algebras are ob­
jects". We refer to [53,349] as appropriate introductions to modern algebra.

The concept of algebra is a mathematical concept tha t allows us to abstract
observations tha t may have their background in topics other than mathemat­
ics. The concept of function can be seen as one such concept, which we, in
Chap. 6, "related back" to phenomena in some actual world. Our concept of
functions, as well as the basis of the concept of mathematical logic (Chap. 9)
can both have their presentation improved by presenting some of their struc­
ture algebraically. The function algebra thus consists of the space of all func­
tions and a few operations such as function abstraction, function application,
function composition, taking the definition set of a function, taking the range
set of a function and, last, taking the fix point of a function.

8.2 Formal Definition of the Algebra Concept

We shall primarily take an algebraic approach when determining, i.e., when
deciding upon, the form of, and developing software development descriptions.
An algebraic system is a set,1 A (finite or infinite), and a set2 , ft, (usually
finite), of operations:

A = { a i , a 2 , . . . , a m , . . . } , J? = {wi,a;2,. . . ,w0}

Set A is the carrier of the algebraic system, and ft is a collection of operations
defined on A. Each operation oji : ft (oji in J?, i.e., 0Ji of type ft) is a function
of some arity, say n, taking operands, i.e., argument values in A, and yielding
a result value in A:

^ (a ^ a ^ , . . . , ^) = a

Tha t is, oji is of type An —> A.3 Different functions (in ft) may have different
arities. Think of arity as a functional, a function tha t applies to functions and
yields their arity:

t y p e arity: ft —> N a t , arity(a^) = n

xWe usually do not say what the elements of this set are, it is just a set!
2Similarly: Just a set!
3The expression An —» A is not an expression of RSL. First, we are explaining

basic mathematical concepts not in RSL but in an informal notation of mathematics
already assumed understood. Second, if we wish to express in RSL what may seem
to be a Cartesian of arity n, for a known, fixed n, then we write it out in full:
Ai x Ai x • • • x An. If n varies, then it is probably not to be modelled, i.e., thought
of, as a Cartesian, but rather as a list, A*, where A is then the union type of all the
.Vs .

8.3 How Do Algebras Come About? 129

8.3 How Do Algebras Come About?

Popular software devices, also known as abstract data types, such as stacks,
queues, tables, graphs, etc., can all be seen as algebras.

Example 8.1 "Everyday" Algebras:

1. A Stack Algebra: The stack algebra has, as carrier, the union of the set of
all stack element values with the set of all stack values, and create empty
stack, top of stack, push onto stack, pop from stack and is_empty stack as
operations.

2. A Queue Algebra: The queue algebra has, as carrier, the union of the set of
all queue element values with the set of all queue values and, for example,
create empty queue, enqueue, dequeue, first ("oldest"), last ("youngest"),
and is_empty queue as operations.

3. A Directory Algebra: The directory algebra has, as carrier, the union of
the set of all directory entry values (i.e., of value triples of entry name,
date and information values) with the set of all directory values and, for
example, create empty directory, insert entry in directory, directory look­
up, edit directory entry and remove directory entry as operations.

4. A Directed, Acyclic Graph Algebra: The directed acyclic graph algebra
has, as carrier, the union of the set of all node labels, the set of all edges,
and the set of all acyclic graphs of (these) labeled nodes and unlabeled
edges, and, for example, create empty graph, insert-node in graph, in­
sert-edge in graph, trace edges in graph from node to node, depth-first-
search in graph and breadth_first_ search in graph, as operations.

5. Patient Medical Record Algebra: The patient medical record algebra has,
as carrier, all conceivable patient medical records, each consisting of one
dossier. Each dossier consists of one or more sheets (i.e., records) that are
of the following kinds: prior medical history, interview records, analysis
records, diagnostics determination, treatment plans (including prescrip­
tions), observations of effects of treatment, etc. In addition the carrier
also includes these different kinds of sheets. That is, the carrier is quite
complex. The patient medical record algebra has, for example, the follow­
ing operations: creation of a new medical record, inserting new information,
editing previous (i.e., old) information, copying a sheet or a dossier and shred­
ding a dossier.

Algebras may have finite or infinite carriers, i.e., carriers with finite or infinite
numbers of elements of possibly different types.

130 8 Algebras

8.4 Kinds of Algebras

There are various kinds of algebras. It is important to understand which
kinds of algebras are of interest to software engineering and which are not.
For that purpose we explicate the variety of algebras that you may come
across.

8.4.1 Concrete Algebras

The examples above were all examples of concrete algebras.

Characterisation. A concrete algebra has sets of known, specific values as
carrier, and a set of specifically given operations. •

That is, one knows that one has a concrete algebra when one knows the
elements of the carrier and when one knows the operators and how to evaluate
operation invocations. The Boolean algebra of Chap. 9 is an example of a
concrete, mathematical algebra. Other concrete, mathematical algebras are
found in Example 8.2.

Example 8.2 Number Algebras:

• An Integer Algebra: (Integer,{+,—, *}), an infinite carrier algebra whose
operations yield all the integers.

• A Natural Numbers Algebra: (NatNumber,{gcd,lcm}) an infinite carrier
algebra where gcd, Icm are the greatest common divisor, respectively the
largest common multiple (viz.: gcd(4,6)=2, lcm(4,6)=12) operations, which
yield all the natural numbers.

• A Modulo Natural Number Algebra: (5sm = {0 ,1 ,2 , . . . , m - 1},J? =
{©, (g)}) is a finite carrier algebra: © and (g> are the addition and multipli­
cation operations modulo m.

Several other algebras over numbers are possible. •

As software engineers we shall mostly be developing concrete algebras. As
computing scientists we shall often have occasion to explain things in terms
of abstract or universal algebras, to which we now turn.

8.4.2 Abstract Algebras

Whereas concrete algebras are known, i.e., effectively constructed, abstract
algebras are postulated, That is, they are what we shall call (and define as)
'axiomatised' in Chap. 9.

Characterisation. An abstract algebra has a sort, i.e., a presently further
undefined set of entities as carrier, a set of operations, and a set of axioms
that relate (i.e., constrain) properties of carrier elements and operations. •

8.4 Kinds of Algebras 131

The algebraic system of an abstract algebra is thus defined by a system of
postulates, to be known henceforth as axioms — and to be treated in depth
later. See Sect. 9.6.

We shall often be using axioms to describe manifest phenomena in an ac­
tual world; and we shall likewise often be using axioms to prescribe software
devices — which will later be made "concrete", as concrete as such "phenom­
ena" which can exist inside computers can "be". The axiom systems should
not be seen as actually "being" this or that concrete world, but "only" models
of it.

A "concrete" example of an informally postulated abstract algebra may
be in place:

Example 8.3 Another Stack Algebra: We present another version of the
stack algebra of Example 8.1(1). There is a distinguished, unique carrier ele­
ment called the empty stack: empty(). Let s stand for any carrier stack value,
i.e., stack, and let E = {e, e ' , . . . , e", . . .} stand for carrier stack element val­
ues. The members of E will become the elements of stacks. is_empty(empty())
always holds (is always true), whereas is_empty(push(e, s)), for any e and s,
always fails to hold (is always false). Inquiring as to the top of a stack, s
— which can be thought of as one onto which one has just pushed the ele­
ment e — yields that e for any stack s: pop(push(e, s')) = e, while popping
an element from the stack sf (i.e. pop(push(e, s))) yields s. Popping an ele­
ment from, respectively inquiring as to, the top element of an empty() stack
always yields the chaotic value, of no type, and representing the universally
undefined element. •

We shall more explicitly use the concept of abstract algebras whenever we
"lift" an example like the above by not being concrete about exactly what the
elements of the stack are. That is, we use it when we define a parameterised
algebra, that is, abstract, like for function abstraction, in one or more of
the sub-carriers of the abstract algebra being defined. Thus we introduce the
concept of heterogeneous algebras.

8.4.3 Heterogeneous Algebras

Characterisation. A heterogeneous algebra:

({A1,A2,...,Am},f)})

has its carrier set A be expressible as the union of a set of disjoint sub-carriers
A{, and associates with every operation UJ in ft a signature:

signature^) = Ah x Ah x • • • x Ain -> Ain+1

132 8 Algebras

Thus the kth operand of UJ is of type Aik, and the result value is of type Ain+1.

Example 8.4 Stack Algebra: We expand on the stack algebra example, Ex­
ample 8.3. Viewing that stack algebra as a heterogeneous algebra, the stack
operations are (now) of the following signatures: S is the stack type, and E
is the type of stack elements: empty: Unit -> 5, is.empty: S -> Bool, push:
S x E - • 5, top: S -3- E, and pop: S -^ 5. •

Unit is a literal. It denotes a type of one element. That element is designated
by the empty parameter grouping: (). We shall later return to a more thorough
treatment of Unit.

8.4.4 Universal Algebras

Characterisation. A universal algebra is a carrier and a set of operations
with no postulates, i.e., the operations are not further constrained. •

The Morphism Concept

When, in software development we transform abstract specifications to more
concrete ones, then, usually, an algebra morphism is taking place.

Let there be two algebras:

(A,n),(A',n')

A function <fi : A —> A' is said to be a morphism (also called a homomorphism)
from (A, ft) to (Af, i?') if for any OJ G ft and for any ai , a2, . . . , an in A there
is a corresponding OJ' G ft', such that:

M : 0(o; (a i ,a 2 , . . . , a n)) = a/(0(ai), 0(a2), • • • > <K«n))

We say that the homomorphism relation M respects or preserves correspond­
ing operations in ft and J?r (Fig. 8.1).

n

v I
(^ ') " ; - A '

Fig. 8 .1 . Morphism mapping diagram

8.5 Specification Algebras 133

(j)n is the n-fold Cartesian power of 0 : A -»> A1, that is, the map An -t (A')n,
and is defined by:

4>n : (a i , a 2 , . . . , a n) H> (0(ai), 0 (a 2) , . . . , 0(an))

If 0 : A -> A1 is a homomorphism of 17-algebras, then, by definition 0 preserves
all the operations of 17.

A special rendition, i.e., manifestation and version, of the morphism con­
cept will be expressed when we cover the model-oriented set, list and map
data types (of RSL), in terms of their set, list and map comprehension forms.
We refer to Sects. 13.2.2, 15.2.2 and 16.2.2, respectively.

Special Kinds of Morphisms

We classify morphisms according to their properties as functions. If 0 : A —> A'
is a morphism, then we call 0 an isomorphism if 0 is bijective; an epimorphism
if (f) is surjective, and a monomorphism if 0 is injective.

Some further characterisations: The abstract properties of an algebraic
system are exactly those which are invariant (i.e., which do not change) under
isomorphism. For epimorphisms, A' is called the homomorphic image of A, and
we regard (A1', 17') as an abstraction or a model of (A, 17). A monomorphism
A —> Af is sometimes called an embedding of A into A'.

We single out morphisms that map algebras onto themselves. We call a
morphism <f> : A —> Ar that maps (A, 17) into itself an endomorphism. If
cj) is also bijective, hence an isomorphism, <fi : A —>• A, then we call it an
automorphism.

8.5 Specification Algebras

The mathematical concept of algebras has had a great influence on our way
of presenting software designs, prescriptions for software, and, in general, any
kind of documentation related also to software development. The whole con­
cept of object-orientedness is basically an algebraic concept. Giving meaning,
i.e., semantics, to syntactic constructs by means of presenting morphisms from
syntactic algebras to semantics algebras is obviously another algebraic con­
cept.

Thus it is that in programming as well as in specification languages we
find syntactic means for presenting what amounts to heterogeneous algebras.
In RSL the syntactic construct for presenting a heterogeneous algebra is called
a class expression. In an RSL class expression one therefore expects to find
syntactic means for defining the carriers and the operations of a heteroge­
neous algebra. We now turn to this subject. But we first remind the reader
of Sect. 1.6.2 in which we first introduced the class concept. We shall not
formally introduce the pragmatics, semantics and syntax of the RSL class and
scheme concepts till Vol. 2, Chap. 10.

134 8 Algebras

8.5.1 Syntactic Means of Expressing Algebras

To define the various carriers we define their types, and to define the various
operations over these carriers we define these as function values. Schemati­
cally:

class
type

A , B , C , D , . . .
value

f: A - ^ B
f(a) = ...
g : C ^ D
g(c) = ...

end

The above class expression defines carriers A, B, C and D (etcetera), and
operations f and g (etcetera).

8.5.2 An Example Stack Algebra

Example 8.5 Stack Algebra: We bring a third version of the stack algebra
of Examples 8.1(1) and 8.3.

Let us define an algebra of simple stacks. E and S are the stack element
type, respectively the stack types, i.e., are the types of interest. They are
two disjoint carrier sets. The operations empty and is_empty generate empty
stacks, i.e., stacks of no elements, respectively tests whether an arbitrary stack
is empty; push, top and pop are the operations of interest. An empty stack is
empty. One cannot pop from an empty stack (i.e., generate a remaining stack),
nor can one observe the top of an empty stack. Observing the top of a stack
which is the ["most recent"] result of having pushed the element e "onto" a
["previous"] stack s yields that element e. Generating the stack after a pop
of a stack which is the ["most recent"] result of having pushed any element e
"onto" the ["previous"] stack s yields that stack s.

class
type

E, S
value

empty: Unit —> S
is.empty: S —> Bool
push: E - • S - • S
top: S -+ E
pop: S -^ S

8.5 Specification Algebras 135

axiom
is_empty(empty()),
top (empty ()) = chaos,
pop (empty ()) = chaos,
V e,e':E, s:S •

top(push(e)(s)) = e A
pop(push(e)(s)) = s

end

The above formalisation should, by now, look rather conventional! •

Informal Explanation of Some RSL Constructs

Since this is one of the earlier examples of a full-scale use of several hitherto
unexplained, but nevertheless rather simple RSL constructs, let us explain
them in anticipation of material of Chap. 9 on Mathematical Logic. The RSL
keywords class and end delineate the class expression. The class expression, in
this case, contains three kinds of definitions: type, function value and axiom.
The type definitions you should be familiar with. The value definitions name
a number of values. Here, all these values are functions: one 0-ary (miliary),
one 2-ary (binary, dyadic), and three 1-ary (unary, monadic). These function
values are given just their type, called their signature (no function definition
[body]).

The axiom definitions, that is, the axioms, constrain the function val­
ues to lie within a smaller function space than defined by their signatures.
We leave deciphering the specific functionality of these axioms to the reader,
but close by explaining the use of the V "binder". The clause: V e,e':E, s:S •
Ai, A2, • • •, An, (where the individual A% are the axioms — expressions that
may or may not contain the quantifier variables e, e', and s) expresses that
these axioms' variables take values that range over the types E, E, and S,
respectively.

8.5.3 An Example Queue Algebra

Example 8.6 Queue Algebra: We give a formal example of the queue algebra
of Example 8.1(2). Let us define an algebra of simple queues: E and Q are the
queue element type, respectively the queue type, i.e., are the types of interest.
The operations empty and is.empty generate empty queues, i.e., queues of no
elements, respectively tests whether an arbitrary queue is empty, and enq and
deq are the operations of interest. The interesting functions are here defined
in terms of the hidden functions dq and rq.

hide
dq,rq in

136 8 Algebras

class
type

E,Q
value

empty: Unit —> Q, is_empty: Q —> Bool
enq: E - • Q - • Q, deq: Q 4 (Q x E)
dq: Q -^ E, rq: Q -3- Q

axiom
is .empty (empty ()), deq(emptyQ) = chaos,
dq(empty()) = chaos, rq(empty()) = chaos,
forall e,e':E, q:Q •

~is_empty(enq(e)(q)),
dq(enq(e)(empty())) = e,
rq(enq(e)(empty())) = empty (),
dq(enq(e)(enq(e')(q))) = dq(enq(e')(q)),
rq(enq(e)(enq(e')(q))) = enq(e)(rq(enq(e')(q))),
deq(enq(e)(q)) = (rq(enq(e)(q)),dq(enq(e)(q)))

end

Operation dq is called an auxiliary operation. It finds the first element en­
queued, i.e., the, "oldest", or the most distantly, in time, inserted element.
Auxiliary operation rq reconstructs the queue less its currently dequeued ele­
ment. •

Some Notation: hide

The functions dq and rq are defined as hidden functions. They are not in­
tended to be used outside the class expression inside which they only serve
as auxiliary functions, that is, auxiliary operations. The marker hide effects
that it can be syntactically checked that they are not used outside the scope
of the class definition. Hiding values (or types) enable us to reasonably simply
characterise, as here, the functions of interest deq and enq.

8.5.4 Towards Semantic Models of "class" Expressions

So, a class expression, even the little we have so far introduced about class
expressions, can be seen to "cluster" the introduction of a number of identi­
fiers, to wit: A, B, C, D, f, g, or E, S, empty, is.empty, push, pop, top, or E, Q,
empty, is.empty, deq, enq, dq, and rq. But what does it all mean? We return
now to a thread first begun in Sect. 1.6.2. Namely to informally explain the
semantics of RSL constructs. The "story" applies, inter alia, here.

As already outlined, in Sect. 1.6.2, the meaning of a class expression is a
set of models. Each model in the set maps all identifiers defined in the class
expression, whether hidden or not, into their meaning.

8.6 RSL Syntax for Algebra Specifications 137

The meanings of the above-mentioned identifiers, for example, E, S, empty,
is.empty, push, pop, and top, are as follows: Any type identifier is mapped into
the set of values as constrained by the axioms over these values, and a function
identifier is mapped into a function value, as constrained by the axioms over
these function values. Since the axioms do not normally constrain the function
values to one specific function, but to a (possibly infinite) space of functions
over suitable input argument value and result value relations, we have that
the meaning of a class expression is a possibly infinite set of models: one for
each combination of defined function values, etc. We shall later see a need for
allowing these models to further map identifiers not (at all) mentioned in the
class expression into arbitrary values (including set values).

The meaning of the stack class expression is thus a set of models, with
each model mapping at least the seven identifiers mentioned in the stack
class expression into respective meanings: the value type of all elements, of all
stacks, and specific values for empty, is-empty, push, pop and top functions.

8.6 RSL Syntax for Algebra Specifications

8.6.1 "class" Expressions

We have several times illustrated the RSL syntax for presenting an algebra in
the form of a class of models:

class
type

... [sorts and type definitions] ...
value

... [value, incl. function definitions] ...
axiom

... [properties of types and values (functions) ...]
end

The meaning of a class expression is a set, possibly empty, possibly singleton,
possibly infinite, of models in the form of bindings, i.e., associations between
the type and value identifiers introduced in the class expression and mathe­
matical entities such a numbers, sets, Cartesians and functions.

We shall only occasionally wrap our type and value definitions and our
axioms into a class expression, but in a sense we really ought to so so! The
intended meaning is of course the same.

138 8 Algebras

8.6.2 "scheme" Declarations

The scheme construct of RSL allows us to name classes:

scheme A =
class
type

... [sorts and type definitions] ...
value

... [value, incl. function definitions] ...
axiom

... [properties of types and values (functions) ...]
end

Identifier A now names the class of all the models denoted by the class ex­
pression.

8.7 Discussion

8.7.1 General

We have made a tour de force of covering, ever so cursorily, some concepts
of mathematical algebra. The purpose has been twofold. First, to put names
to a number of algebra concepts, names that have been properly defined, and
which can be used for later characterising a number of specification (cum pro­
gramming) concepts, principles and techniques. Second, we showed notation
and elegance of the definitions, something that we, as software engineers, can
learn from and ought to copy. That is, there are so many ideas of specification
and of development that can be characterised using these algebraic concepts,
and knowing this may induce us to further study (especially the universal) al­
gebraic notions. Although such a study is outside the aims of these volumes it
would reveal the usefulness of the lemmas and theorems of universal algebra.
We shall endeavour, however, to communicate, wherever relevant, the spirit
of the underlying algebraic concepts.

We have finally, in this section on algebra, shown how the software com­
munity has taken the prescribed medicine: The concept of algebra, as a math­
ematical structure of carriers and operations, has found its way into program­
ming and into specification languages. We have shown the initial concepts of
the RSL class specification construct, syntactically as well as semantically. In
programming languages this algebra concept is usually manifested in so-called
object-orientedness. In specification languages this algebra concept is usually
manifested in so-called module, class or abstract data type constructs.

8.9 Exercises 139

8.7.2 Principles, Techniques and Tools

Principles. Algebraic Semantics: is that of capturing core notions of a do­
main, or of requirements, or of software designs, by expressing these as alge­
bras. •

Techniques. Algebra construction consists in expressing (i) the sorts (i.e.,
abstract types) of the carrier by naming them, (ii) the signature of the oper­
ations (functions), and (iii) in providing an appropriate (small) set of axioms
that relate elements of the carrier and the operations. •

Tools. Algebra tools include the class and scheme constructs of RSL (and
of similar, basically model-oriented languages (for example: B [3], event-B [4],
VDM++ [201-204], and Object-Z [144,199,200])), CASL, the Common Algebraic
Specification Language [49,395,399], and CafeOBJ [193,232].

8.8 Bibliographical Notes

A classical textbook on algebra is Birkhoff and MacLane's [53]. We owe our
debt to that book and, for the treatment of this chapter, to Lipson's delightful
[349]. Universal algebras are covered by Cohn in [157]. Another good algebra
book is also by Cohn: [158].

8.9 Exercises

J|k Note: The next three assignments are, in a sense, premature. They ask that
you express something in RSL, of which you have yet to learn the essentials.
But try anyway! In the present and in the previous chapters there is indeed
enough material on RSL to build upon. But that material will be reintroduced,
and then very much more systematically, from Part III on.

Exercise 8.1. Jfr Suggest a Transportation Net Algebra,
We refer to Appendix A, Sect. A.l, Transportation Net.
Suggest short sort (or type) names for Transportation Net entities (nets,

segments, connections), and signatures for (four) functions that insert [delete]
a new [an "old"] segment, and that insert [delete] a new [an "old"] connection
(intersection). Write out axioms, in English, stating properties that must hold
of any input argument or result value segment, intersection and transportation
net. "Wrap" the whole thing into a scheme declaration.

140 8 Algebras

Exercise 8.2. X Suggest a Container Logistics Algebra.
We refer to Appendix A, Sect. A.2, Container Logistics.
Suggest short sort (or type) names for the following Container Logistics

entities: Container Ship, Container, Quay, Container Storage Area, Bay, Row,
and Stack, as well as Bay, Row, and Stack Identifiers (Names, Indexes). Sug­
gest signatures for (four) functions that load [unload] Containers onto [from]
Container Ship Stacks from [to] a Quay, respectively that load [unload] Con­
tainers onto [from] Container Storage Area Stacks from [to] a Quay. (Re­
member to identify Bays, Rows and Stacks of both Container Ships and the
Container Storage Area.) Write out axioms, in English, stating properties that
must hold of any input argument or result value amongst the many container
terminal entities. "Wrap" the whole thing into a scheme declaration.

Exercise 8.3. X Suggest a Financial Service Industry Algebra.
We refer to Appendix A, Sect. A.3, Financial Service Industry.
Suggest short sort (or type) names for the Financial Service Industry, in

particular Bank entities (Customer, Bank Account, etc.), and signatures for
(four) functions that open and close accounts, that establish shared accounts,
that deposit and withdraw funds, and that transfer funds between accounts.
(Remember to also identify the types of such internal bank "books" that keep
track of customers account numbers, and of the sharing of accounts.) Write out
axioms, in English, stating properties that must hold of any input argument
or result value amongst the many financial service industry entities. "Wrap"
the whole thing into a scheme declaration.

9

Mathematical Logic

• The prerequisite for studying this chapter is that you understand the
mathematical concepts of sets, functions and algebras as covered in earlier
chapters.

• The aims are to cover the concepts of Boolean algebra, propositional and
predicate logic, to cover the concepts of proof theory and model theory
and to cover the concept of axiom systems and exemplify its application
in abstract specifications.

• The objective is to help ensure that the reader becomes reasonably fluent
in the use of logic as a specification tool and to begin the long road in
ensuring that the reader will eventually become reasonably versatile in
logic reasoning.

• The treatment is semiformal to fully formal.

Mathematical logic is, without any doubt, the most important mathematical
sub discipline of software engineering.

Characterisation. By a mathematical logic we mean a formal language: A
syntax defining an infinite set of formulas, and a "semantics77 — here in the
form of a set of axioms concerning these formulas and a set of rules of inference
over these formulas. •

Logic is the study of reasoning. Logic was, for a long time, part of philosophy.
Mathematical logic is the study of the kind of reasoning done by mathemati­
cians, and mathematical logic was, for some time, a stepchild of mathematics.1

xIt seems, without exaggerating, that many mathematics university departments
still have a somewhat problematic relationship to mathematical logic.

142 9 Mathematical Logic

We shall basically be using mathematical logic as undoubtedly the most
important part of our specification notation. That is, we shall be using all
the sublanguages of mathematical logic: the sublanguage of Boolean ground
terms, the sublanguage of propositions and the sublanguage of predicates.
Therefore it is important that the reader — from the very beginning, that
is, now! — is at ease with many of the concepts of mathematical logic. This,
then, is the purpose of this chapter: to teach you those concepts, and to
teach you how to express yourself, formally, in those sublanguages.

Correctness of software, and proving properties of their specifications and im­
plementations, are concerns of core importance. So is proving properties of
domain descriptions, of requirements prescriptions, and of relations between
them and software designs. The languages (i.e., tools) and techniques of math­
ematical logic are used in securing fulfillment of desired properties.

We shall be covering, also, some of the proof aspects of mathematical
logic. But our presentation in this section is from the point of view of math­
ematical logic as an abstract specification language. We will not cover the­
ories of mathematical logic, but refer to many good textbooks, for exam­
ple, [235,259,372,457].

9.1 The Issues

We shall first treat basically nine issues of logics, including three sublan­
guages: (i) a language of Boolean-valued ground terms, (ii) a language of
Boolean-valued propositional expressions, and (iii) a language of Boolean-
valued predicate expressions. And we shall also cover some diverse issues: (iv)
Boolean-valued expressions, (v) chaos — undefined expressions, (vi) axiom
and inference systems, (vii) proof systems, (viii) the axioms of the logic lan­
guages, and the axiom definition facility of RSL, and (ix) the meaning of the
if ... then ... else ... end clause.

We first survey these nine issues, then we treat the three languages in more
detail in Sects. 9.3-9.5. But, before that, we survey the distinction between
proof-theoretic and model-theoretic logic (Sect. 9.2). That distinction will
bring out the distinctions between syntax and semantics, between provable
and true, and between completeness and soundness.

9.1.1 Language of Boolean Ground Terms

First, there is the Boolean ground term2 algebra, or simply the Boolean cal­
culus, its syntax, semantics and pragmatics.

2By a ground term we mean an operator/operand expression with no variables,
just, as here, the Boolean literals and connectives.

9.1 The Issues 143

We refer to the Boolean ground term algebra by the type name Bool.3

Syntactically the Boolean algebra is a language of ground terms, having a
syntax including: Boolean (constant) literals (true and false), a set of connec­
tives: { ~ ? A , V , = > , = , A = } , a set of (syntax) rules for forming ground terms,
and a set of axioms relating ground terms and connectives, a calculus.

true, false, ~true, ~ false, true A false, ~true A false, ...

Semantically we have truth tables for these connectives: the truth values and
the three-valued logic.4 We explain this semantics by presenting a procedure
for evaluating (i.e., interpreting) ground terms.

Speaking on the pragmatics of the Boolean ground term algebra, with this
(ground term) algebra there is little we can express. But it forms a smallest
basis, even with just the first two connectives listed above!

9.1.2 Language of Propositional Expressions

Next, we present the propositional calculus, its syntax, semantics and prag­
matics. The propositional calculus builds on the language of Boolean ground
terms.

There is the syntax of propositional (operator/operand) expressions built
from Boolean literals, connectives, and variable identifiers, axioms and in­
ference rules. The axioms and inference rules define the calculus part of the
propositional calculus. Variables are intended, in the semantics, to denote
truth values.

true, false, ~true, ~ false, true A false, ~true A false, ...
a, b, ..., a A true, a A b, ...

There are the semantics rules (an evaluation procedure) for interpreting propo­
sitional expressions.

And there is the pragmatics: With the propositional calculus we can ex­
press a few more things than with just Boolean ground terms.

9.1.3 Language of Predicate Expressions

Finally, we have the predicate calculus, with its syntax, semantics and prag­
matics. The predicate calculus includes the propositional calculus.

Thus there is the syntax of predicate (operator/operand) expressions, in­
cluding propositional expressions, extended with constant values of any type,

3The type name Bool will also refer to the propositional and the predicate
calculi.

4As noted later we must, in general, be aware of undefined, e.g., nonterminating,
expression evaluations. A three-valued logic is to deal with nonterminating expres­
sion evaluation.

144 9 Mathematical Logic

variables denoting such values, and hence operator/operand expressions also
over these, as well as quantified expressions (V, 3), and axioms and inference
rules.

The axioms and inference rules define the calculus part of the predicate
calculus.

true, false, ~true, ~ false, true A false, ~true A false, ...
a, b, ..., a A true, a A b, ...
V x:X • true, V x:X • x A ..., 3 x:X • x A ...

There are the semantics rules for interpreting (evaluating) predicate expres­
sions — leading to truth values (or chaos!).

And there is the pragmatics: With the predicate calculus we can express
quite a lot. It is sufficient for a long while!

9.1.4 Boolean-Valued Expressions

Syntactically we can thus speak of four categories of expressions: Boolean
ground terms, propositional expressions, predicate expressions and quantified
expressions. Figure 9.1 informally indicates that Boolean ground term expres­
sions syntactically are a proper subcategory of propositional expressions; that
propositional expressions syntactically are a proper subcategory of predicate
expressions; that quantified expressions syntactically are a proper subcategory
of predicate expressions; but that quantified expressions syntactically are not
a proper subcategory of propositional expressions. It also expresses that all
are Boolean-valued expressions.

Quantified
Expressions

Predicate Expressions

(r„ Boolean
Ground
Terms

Propositional
Expressions

Fig. 9.1. Languages of Boolean-valued expressions

9.1.5 "chaos" — Undefined Expression Evaluations

We reintroduce, at this point, the literal chaos, first introduced in Sect. 6.5.6
(in the subsection named Strict Functions (Page 101)). It pertains to possible

9.1 The Issues 145

evaluations (i.e., of finding the values) of arbitrary expressions — yet to be
introduced — throughout these volumes. If an expression cannot be evaluated
(e/0 never evaluates!), then its value is said to be chaos. That is, we can speak
of never terminating, or undefined evaluations, and we give the name chaos
to the "value", i.e., the result of such evaluations.

9.1.6 Axiom Systems and Inference Rules

Just as we have the calculus of integers, that is, rules for adding, subtracting,
multiplying and integer-dividing integers, and rules for eliminating certain
additions, subtractions, multiplications and divisions:

0 + a = a, 1 x a = a, 0 x a = 0, a/1 = a, 0/a = 0 (where a ^ 0), etc.

so we have rules, in general called inference rules, for "reducing" or "rewriting"
syntactic logic expressions into other (usually simpler) such expressions.

Axioms and inference rules (of some logic) together make up the calculus
for that logic. A logic is defined by its axioms and inference rules. We shall,
in subsequent sections introduce, various axiom systems.

Axioms and Axiom Systems

An axiom is a predicate expression with free variables. These variables des­
ignate arbitrary predicate expressions. An axiom thus designate an infinity
of predicates without variables, where all (former free) variables have been
replaced by propositions.

A "classical" logic axiom is:

cj) is the free variable. It reads: Either 0 holds, or 0 does not hold. The axiom
is called the axiom of the excluded middle, also colloquially referred to as the
axiom of the excluded miraclel

The pragmatics of an axiom, of a logic, is that it represents, in some or all
semantics of that logic, a self-evident truth. An axiom system is a collections
of one or more axioms.

Inference Rules

An inference rule is a pair: a set of predicates with free variables (the premise),
and an inferred predicate with some of the same free variables (the conclusion).

The most famous logic inference rule is that of modus ponens:

P,PD Q

Q

146 9 Mathematical Logic

P and Q are the free variables. It reads: If we know that P holds and that
P D Q holds, then we can infer (conclude) that Q holds.

The pragmatics of an inference rule, of a logic, is that it represents, in
some or all semantics of that logic, a self-evident way of reasoning, from one
set of logic expressions to the next, or to another logic expression.

9.1.7 Proof Systems

By a proof system for a logic language we mean: a set of axiom schemes, a set
of rules of inference, and a set of theorems provable from the axiom schemes
and rules of inference. The latter can be considered as being axioms. Some
theorems may be reformulated as "additional" rules of inference:5

r,<l>\-il>

The verifier, a person or a mechanised system, has "more to choose from"!

In our presentation of proof systems, in particular that of RSL, we present
not only not the entire proof systems, but also not the full details of how to
carry out full proofs, and certainly not how to do even small proofs using
available theorem prover or proof assistant software systems. To learn how
to do real proofs for real developments is a deep study by itself, and we refer

| to specialised text books on this subject: [181,242,359-361,419,472,533]. |

Summarising we can say: Proof systems are specially tailored versions of ax­
iom schemes and rules of inferences — augmented by theorems and special
syntactic conventions on how to present proofs.

9.1.8 A Note on Two Axiom Systems

Axioms are self-evident truths, i.e., can be considered laws. But we have to
keep track of two kinds of notions of axioms and axiom systems: The axioms
that define proof systems of logic languages, including RSL, and the axioms
that a user of RSL defines when specifying properties of sorts and functions.

The two relate as follows:
The axioms of the proof systems of logic languages, like RSL, are given, a

priori6, and are not expressed in those same languages. However, the reader
may get the impression that RSL's proof system is defined in RSL, since the
axioms look very much like the axiom definition facility of RSL. The axioms
that are expressed in RSL, using RSL Boolean valued and other expressions,

sr^H^ r e a c [s : jf5 a s s u m i n g the set of axioms (etc.) T, tp can be proved from (j>,
then £ holds (i.e., has [thus] been proved).

6a priori, relating to or derived by reasoning from self-evident propositions, pre­
supposed by experience, being without examination or analysis, formed or conceived
beforehand (Merriam-Webster Dictionary [373]).

9.1 The Issues 147

and which rely on RSL's proof system when proving properties of what these
user-defined axioms express.

In the next sections (Sects. 9.3-9.5) on the logic languages of Boolean
ground terms, propositions and predicates, respectively, we shall be speaking
about the axioms of RSL's proof system. In Sect. 9.6 we shall, in contrast,
illustrate the use of RSL' axiom definition facility in defining data types like
Euclid's plane geometry, natural number (Peano's axiom system), simple sets,
and simple lists (Examples 9.20, 9.21, 9.23 and 9.24, respectively).

9.1.9 The "if ... then ... else ... end" Connective

The if... then. . . else. . . end construct "anchors" around a basic understand­
ing of logic. We therefore explain this construct. Let e be:

if b then e' else e" end

e is a syntactic construct of, for example, RSL. It allows b to evaluate to a
value of any type and to chaos (which has no type). The expression e only
makes sense if b evaluates to false or true:

if false then e' else e" end = e"
if true then e' else e" end = e'
if chaos then e' else e" end = chaos

If b evaluates to any other value chaos is still the result.7 chaos stands for
chaotic behaviour of the result of evaluating an expression, including nonter-
mination.

Nonstrictness of a functional, like the distributed fix, if. . . then. . . else-
. . . end, means that applying the functional to arguments that may evaluate
to chaos does not necessarily lead to chaos:

if true then e' else chaos end = e'
if false then chaos else e" end = e"

We refer to if . . . then . . . else . . . end as a distributed- or mix-fix connective.

9.1.10 Discussion

We are building up our treatment of logics in small, easy steps. In this section
we have basically identified three languages of logic, a language of Boolean
ground terms, a language of propositions and a language of predicates. Each
of these languages will be dealt with in more detail in Sects. 9.3-9.5. But first,
in Sect. 9.2, we treat a number of issues common to the three languages.

7But RSL is so designed as to out-rule such, so-called type errors, and therefore
such expressions, b, will not even be considered correct RSL expressions.

148 9 Mathematical Logic

9.2 Proof Theory Versus Model Theory

Above we have made the distinction between the syntax and the semantics
of a language. In this section we will elucidate this distinction. In this section
we shall assume a classical two-valued logic.

9.2.1 Syntax

What we write is syntax. When we manipulate written text, in some language,
using certain (for example inference) rules and axioms, and thereby obtain
other text in the same language, then these rules are basically of syntactic
nature.

Example 9.1 Differentiation of Analytic Expressions, I: We take, as an ex­
ample, that of the formal language of analytic expressions where some expres­
sions are shown in the left column below. And we take as rules those which
define differentiation, shown in the right column below. We observe that the
rules are recursively defined.

Analytic Expression

y
y

y

y

y

a
X

xn

f{x)+g{x)
f(x) x g(x)

etc.

Rule of Differentiation
dy _
Bx
dy _
Bx
dy _
Bx
dy _
Bx
dy _
dx

t -o
Bx

ax
d{f{x)+g{x)) __? d{f{x)) d{g{x))

Bx Bx Bx
»</W*«<»» ^ Sign, x g(x) + ^ ^ x / (*)

etc.

We observe that the rules of differentiation when applied to any analytic
expression terminate with the result being an analytic expression. In other
words, the language plus the rules remain syntactic. We are just "fiddling"
with symbols. •

The notions of proofs and theorems (in logic) are syntactic notions. There
is a large body of theory that deals only with the syntax of any, or some, logic
language(s). Similarly, there is a large body of theory that deals only with the
differentiability of analytic expressions, also a syntactic theory.

Mathematical logic can be pursued, at length and in depth, while remain­
ing at the syntactic level.

9.2.2 Semantics

What we mean by the written text, in contrast, is semantics.

9.2 Proof Theory Versus Model Theory 149

Example 9.2 Differentiation of Analytic Expressions, II: Why we perform
differentiation is of no concern to the rules of differentiation as they are being
applied. The semantics of an analytic expression may express distance covered
over time. Differentiation wrt. time may therefore be done in order to express
the velocity. Differentiation wrt. time performed twice may therefore be done
in order to express the acceleration. •

Semantics is about truth, about the 'holding' or 'not holding' of a logical
sentence. Thus the Boolean ground terms false and true denote the semantic
values falsity and truth, respectively.

Example 9.3 Meaning of Logical Expressions: A logical expression, 0, may
mean that it designates the properties of a requirements prescription. Another
logical expression, ip, may mean that it designates the properties of a software
specification. The logical expression, ip D 0, may then mean that the software
specification implements the requirements. •

9.2.3 Syntax Versus Semantics

To sum up: When speaking in the syntactic realm of a logic language the
logic expressions are mere symbols — we are not interested in their meaning.
We manipulate strings of symbols using the axioms and rules of inference.
When speaking in the semantic realm of a logic language the logic expressions
denote values, and these values are obtained through interpretation. There is
a context which, among others, maps expression symbols (including variable
identifiers) to their truth values. Different contexts (we say different 'worlds')
may map the same variable identifier to different truth values.

9.2.4 Formal Logics: Syntax and Semantics

This and the next sections (Sect. 9.2.4-9.2.6) are inspired by John Rushby's
1993 report Rapid Introduction to Mathematical Logic [451].

The various logic languages, their syntax and semantics, all manifest for­
mal systems. A formal logic system, syntactically, consists of several parts.
First, it contains (i) a logic language given by some concrete grammar which
elucidates constant and function (i.e., operation) literals, for example, false,
true, chaos, -< (or ~) , A,V, and D, variable, function and predicate identi­
fiers, delimiters (like commas: ",", parentheses: "(", ")", etc.), and their com­
bination (say in terms of a set of BNF rules). Second, a formal logic system,
syntactically, also consists of (ii) an axiom system: a set of axioms, viz.:

0 V -.0.

150 9 Mathematical Logic

In other words, the axiom system is a subset of sentences of the language, in
which variable identifiers ((f)) are metalinguistic: they designate proper sen­
tences (viz.: (P V Q)AR) of the language. Finally, a formal logic system, syn­
tactically, also consists of (hi) a set of rules of inference: a set of pairs of
antecedents and consequents, viz.:

The former is a set of sentences, and the latter is a sentence, such that all vari­
able identifiers of these sentences are metalinguistic. They designate proper
sentences of the language.

More on the Semantics of Formal Logic Systems

Semantically, a formal system extends its syntax along two lines. Along one
line, a context is provided, something which to every symbol of the language
associates appropriate semantic notions. To literals (false, true, chaos) one
associates the semantic truth values (ff, t t or falsity, truth), respectively
the semantic undefined value (_L). _L "propagates" by making any expression
evaluation in which it occurs denote that value. To variable identifiers one
associates some proper truth or other value, etcetera. What the "etcetera"
stands for will be revealed later, suffice it here to hint at operator, function
and predicate symbols.

Along the other line, a semantics prescribes an evaluation (an interpreta­
tion) procedure which when applied to a sentence in a context results in a
value: falsity, truth or _L.

More on the Syntax of Formal Logic Systems

There are usually two parts to a formal system: One part, the logical part
that is shared by all logic languages, and another, the non-logical part.

The symbols that belong to the logical part are called the logical symbols
of the system. The connectives are logical symbols:

-., V, A, D,=

In the predicate calculi we additionally introduce:

A? A> •••j/nj V, 3

where A a r e function symbols, and V and 3 are the universal, respectively the
existential quantifiers.

The non-logical symbols are given special interpretations:

+> - , x> /, <, <, =, >, >, ...
The connectives are chosen to "mimic" every language use, with some more
precision, of the terms: 'and' (A), 'or' (V), 'not' (-<), 'equal' (=), and 'imply'
(D) . In P D Q P is called the antecedent. Q is called the consequent.

9.2 Proof Theory Versus Model Theory 151

On the Meaning of Material Implication, D

Let us dwell, for a moment, on the issue of the intended (semantic) meaning
of implication D:

PDQ

When we say that a logical expression holds we mean that it evaluates to
true.

P D Q reads: If P holds, then Q holds; if P then Q.

Example 9.4 Informal Uses of Implication, I: Let us illustrate some examples
of uses of implication. The examples are taken from [451]:

The deduction "the jaberwocky is a tove; all toves are slithy; there­
fore that jaberwocky is slithy", seems OK even though we have do
not know what jaberwocky, tove and slithy means.

What about "The air plane is a Boeing 737; therefore it has two
engines"? That does not seem OK, even though its conclusion is true.
It jumps to a conclusion that is not supported by the facts that are
explicitly mentioned.

What about: "the car is a Chrysler; therefore it has two engines"?
We see this as palpable nonsense. We can repair the above "The air
plane is a Boeing 737; all Boeing planes, except the 747, have two
engines; therefore that plane has two engines." Now the reasoning is
sound. And soundness does not depend on whether we understand the
terms 'Boeing', 'engine', '737', or '747'.

Following John Rushby8 we show an example, and then analyse possible se­
mantics of the implication connective.

Example 9.5 Informal Uses of Implication, II:

Consider the four implications: (1) 2 + 2 = 4 D Paris is the Capital
of France; (2) 2 + 2 = 4 D London is the Capital of France; (3)
2 + 2 = 5 D Paris is the Capital of France; and (4) 2 + 2 = 5 D
London is the Capital of France.

What truth values can we ascribe to (1-4)? (1) is true because
both the antecedent and the consequent are true. (2) is false because
the consequent is false. (3) is what? (4) is what? To answer (3) and
(4) we turn to the next analysis.

Rapid Introduction to Mathematical Logic, 1993 Appendix to [451]

152 9 Mathematical Logic

We continue quoting from [451]:

Thus if, in P D Q, P does not hold, then we do not (based on what
we have presented up till now) know whether Q holds, and hence we
do not know whether P D Q holds. If P holds, but Q does not hold,
then our intuition dictates that P D Q does not hold.

So what are we to say about the holdings of P D Q when P does
not hold? If we say that P D Q does not hold, when P and Q do not
hold, then P D Q is the same as P A Q. If we say that P D Q holds
exactly when Q holds, then P D Q is the same as Q. If we say that
P D Q holds exactly when Q does not hold, then P D Q is the same
as P = Q. Thus we conclude that P D Q holds when P and Q hold,
and when P does not hold (irrespective of holding of Q).

Metalinguistic Variables

In axioms, such as:

and in rules of inference, such as:

the identifiers 0 and ip stand for arbitrary logic sentences. They are metalin­
guistic variables. In any particular use of logic in some specification we may
have some propositions or some predicates P and Q.

They can now be substituted in lieu of cj) and ip

? V --P

respectively

P.PPQ
Q

Since any Ps and Qs are acceptable we see that axiom and rules of inference
really are schemes of axioms, respectively schemes of inference. That is, they
stand for infinities of axioms and infinities of rules of inference.

Given a metalinguistic variable, say 0, and given some instance of a propo-
sitional or predicate sentence, say P , we may express that P is to take the
place of cf) in some (designated) axiom scheme or in some (designated) rule of
inference scheme as follows:

The form [cf> \-t P] is called a substitution specification clause. Substitution
specifications may contain several clauses:

[01 ^ Pi , 02 ^ P2, • • • , 0n H+ Pn]

9.2 Proof Theory Versus Model Theory 153

9.2.5 Issues Related to Proofs

Proofs

Given a sentence 0. A proof of 0, from a set, J1, of sentences is a finite sequence
of sentences, 0i, 0 2 , . . . , 0 n , where <fi = <f>i, where 4>n = true, and in which
each (pi is either an axiom, or a member of r, or follows from earlier <fijS by
one of the rules of inference.

We say that 0 is provable from assumptions T, or simply r proves 0:

Proofs and provability are syntactic notions, i.e., are notions of proof the­
ory.

Theorems and Formal System Theories

A theorem is a sentence that is provable without assumptions, that is purely
from axioms and rules of inferences. We say that a theory of a given formal
system is the set of all its theorems.

Theorems and theories are syntactic notions, i.e., are notions of proof
theory.

Consistency

A formal system is consistent if it contains no sentence 0 such that both <j)
and its negation -«/> are theorems.

It is a meta-theorem of all the two-valued logics that all sentences are
provable in an inconsistent formal, two-valued logic system.

Consistency is a syntactic notion, i.e., is a notion of proof theory.

Decidability

A formal logic system is decidable if there is an algorithm which prescribes
computations that can determine whether or not any given sentence in the
system is a theorem (or not).

9.2.6 Relating Proof Theory to Model Theory

In modelling domains, requirements and software using logic, we are modelling
some "worlds". So far we have emphasised the syntactic aspects of logic. To
establish a relationship between the syntactic aspects of the sentences of a
formal language and some world we must turn to semantics.

The goal, then, of mathematical logic is to make sure that theorems are
true in the chosen world, or worlds. We wish to make sure that the theorems
we can prove will correspond to true statements about a chosen world, or all
worlds.

154 9 Mathematical Logic

In terpre ta t ion

The connection between syntax and semantics is, as always, established
through an interpretation, X. So we start with a formal logic system, C. An
interpretation X identifies some chosen world, 17, and associates a t rue or a
false statements with each sentence of the formal system. Statements are of
the kind: "the logic expression (f> (about such-and-such) is true in 17", or "the
logic expression (f> (about such-and-such) is false in 17".

The interpretation, X, has two parts : A context, an environment, p, which
to every symbol in £ , associates some value in 17, and a procedure for evalu­
ating any sentence <j) in C.

E x a m p l e 9.6 The Factorial and The List Reversal Functions: This example
is inspired by [359]. Let (f> be the sentence:

3F . ((F(o) = b) A Var • (p(x) D (F(x) = g(x, F(f(x))))))

which, model-theoretically, reads: there exists a mathematical function F such
tha t (•) the following holds, namely: F(d) = b (where a and b are not known,
model-theoretically), and A for every (i.e., all) x it is the case (•) tha t if p(x)
is t rue, then F(x) = g(x,F(f(x))) is t rue (where x,g and / are not known,
model-theoretically).

Now there are (at least) two possible interpretations of 0. In the first
interpretation we establish first the world 17 of natural numbers and operations
on these, and then the specific context p:

[F h+ fact,
ai-> 1,
b 4 1,
f i->> A n.n—1,
g i->> A m.A n . m + n
p i->> A m . m > 0]

And we find tha t 0 is t rue for the factorial function, fact. In other words, <fi
characterises properties of tha t function.

In the second interpretation we establish first the world 17 of lists and
operations on these: and then the specific context p:

[F \-^ rev,
a ^ (),

f ^ t l ,

9.2 Proof Theory Versus Model Theory 155

And we find that (j) is true for the list reversal function, rev. In other words,
4> characterises properties of that function.

We leave it to the reader to find worlds and/or context associations for
which cf) does not hold. •

Models

An interpretation X is a model for a formal system C if it evaluates all its
axioms to true.

An interpretation X is a model for a set of sentences r if it (the set)
additionally evaluates all the sentences in r to true.

The concept of model is a semantics notion.

Satisfiability, Entailment: |= and Validity

A set of sentences r is satisGable if it (the set) has a model.
A set of sentences r entails a sentence ip

J > ^

if every model of r is also a model of ip, that is: ip evaluates to true in every
model of r.

A sentence ip is (universally) valid, and we write |= ip: if it valuates to true
in all models of its formal system.

Soundness and Completeness, h Versus |=

A formal system is sound it T \= ip whenever 7 \- ip. Soundness helps ensure
that every provable fact is true. A formal system is complete if r \- ip whenever
7 |= ip. Completeness helps ensure that every true fact is provable. Inconsistent
systems cannot be sound. The formal systems used in the formal techniques
for specification and verifying properties of specifications must be consistent,
but are usually incomplete and not decidable.

9.2.7 Discussion

So the syntax (sentences, axioms and rules of inference) determines a proof
theory. Issues like proofs, theorems, consistency and decidability are proof
theoretic concepts. And an interpretation determines a model theory. Inter­
pretations tie proof and model theories together. And so do issues like models,
satisfiability, entailment, validity, soundness and completeness. We remind the
reader that all of this section (Sect. 9.2) has assumed a classical two-valued
logic.

156 9 Mathematical Logic

9.3 A Language of Boolean Ground Terms

On one hand, we have the semantic notion of an algebra. And on the other
hand, we have the syntactic notion of Boolean ground terms. The two to­
gether with appropriate syntactic and semantic extensions define a language
of Boolean ground terms. In this section we will present these notions and
extensions.

9.3.1 S y n t a x and S e m a n t i c s

The Boolean algebra to be put forward in these volumes can be presented as
if it was an RSL class:9

class Boolean
t y p e

B o o l
value

true , false, chaos
~ : B o o l —> B o o l
A, V, =>, = , 7̂ , =: B o o l x B o o l - • B o o l

a x i o m
V b,b':Bool •

~ b = if b t h e n false e lse t rue e n d
b A b' = if b t h e n b' e lse false e n d
b V b' = if b t h e n t rue e lse b' e n d
b => br = if b t h e n b' e lse t rue e n d
b = b' = if (bAb')V(~bA~b') t h e n t rue e lse false e n d
(b ^ b') = ~ (b = b')
(b = b') = (b = b')

e n d

We refer to Sect, 9.1.9 for the axioms tha t govern the use of the if ... t h e n
... e lse . . . e n d clause. Notice tha t we henceforth, for proper RSL, use the
implication symbol => instead of the usual mathematical logic symbol used
earlier D. However, they designate the same thing

We emphasize tha t the above presents only an algebra: its values (by
their designators t r u e , false, chaos , tha t is a semantic presentation) and its
operations (by their signatures, and by axioms defining the meaning of the
operations). And we emphasize tha t we have, in a sense, "misused" RSL. We
can, of course, not use RSL to explain RSL. We are, above, informally using
mathematics , but couch it in the style of some RSL-like text .

9We remind the reader that we cannot define the axioms of the logic sublanguage
of RSL in RSL. That would lead to a meaningless circularity. Thus the class clause
shown above (after where this footnote was first referenced), is not to be read as
RSL, but as an ordinary mathematics text.

9.3 A Language of Boolean Ground Terms 157

In the next section we shall informally explain these operations. Later we
shall introduce a language of Boolean ground terms by presenting the syntactic
notions of grammar, axioms and rules of inference.

9.3.2 The Connectives: ~ , A, V, =>, = , ^ , =

We explain the connectives, semantically, and as if we already allowed their
operands to attain the undefined value chaos. For the algebra of Boolean
ground terms we do not need the concept of 'undefined value'. Later we shall
extend our logic to the language of predicate expressions, which have the
same connectives as for Boolean ground terms. Below we therefore explain
the connectives as if they occurred in propositional expressions, i.e., in truth-
valued expressions whose variables were truth-valued.

Negation, <~

The logical connective ~ is called 'negation'. We may read ^ P as 'not P'. The
law of the excluded middle implies that we cannot have both 'not P' and 'P';
exactly one of the propositional expressions is true. Some three-valued logics
(cf. Cheng and Jones's Logic for Partial Functions (LPF) [150,151,318]) do
not enjoy the "excluded middle" property.

Conjunction, A

The logical connective A is called 'and' and 'conjunction'. The A connective is
applied not only to express the simultaneous truth of both operands, but also
to express that if the left operand has truth value falsity, then one need not
consider (evaluation of) the right operand! This non-commutativity of the A
connective cuts down on the size of expressions that one may need to write
down:

a A b = if a=false then false else b end

The expression to the left of = above is shorter than the expression to the
right of =.

Disjunction, V

The logical connective V is called 'or', 'logical or', 'inclusive or' and 'disjunc­
tion'. Normally in the English language using 'or' means 'exclusive or' — for
which latter exactly one of its two arguments are true, the other is false. But
for PVQ we accept if both are true. So beware! But if the left-hand operand
is true then we may skip evaluating, i.e., even considering the right-hand
operand.

158 9 Mathematical Logic

Equality, =

Equality, =, is to be seen in contrast to identity, = . In E = Ef the propositional
expressions E and Ef may contain arbitrary identifiers, i.e., variables, whose
(in the present situation: truth) values may vary. Evaluation of E = E' thus
takes place in a context10 where these variables are bound to some values.
And evaluation of E = E' considers only the "current" context. That is,
E = E1 may be evaluated several times, say because that expression occurs
in a function definition body which is evaluated each time the function is
invoked. The value of E = Ef is determined only by the context relevant for
the specific invocation. For two different invocations the value of the same
expression, E = Er, may thus differ!

Implication, =>

The logical connective => is called 'implication'. In P=>Q the propositional
expression P is called the hypothesis, the antecedent or the premise, while the
propositional expression Q (of P=^Q) is called the consequence or conclusion.

The proposition P=^Q is false only when P is true and (A) Q is false.
One can 'read' P=^Q in a number of ways: If P then Q, P only if Q, P is a
sufficient condition for Q, Q is a necessary condition for P, Q if P, Q follows
from P, Q provided P, Q is a logical consequence of P, or Q whenever P.

Identity, =

To explain the identity connective, =, is a bit more complicated than to ex­
plain the equality connective, =. As expressed above, when testing for equality
of values one evaluates both operand expressions, once, in some current bind­
ing of their free identifiers to values, then tests them for equality.

For =(e',e") (also written, more naturally, e' = e"), one has to evaluate
the two operand expressions in all possible bindings of their free identifiers
to values, and for all bindings the same result must be yielded: Either always
true or always false for the identity to hold, i.e., be true. If some evaluate
to chaos, then chaos is the value. If none evaluate to chaos and not all to
the same (true or false) truth value, then false is the value.

9.3.3 Three-Valued Logic

The present section presents a proof-theoretic, i.e., a syntactic view of a three-
valued logic of the emerging language of Boolean ground terms. Syntactically

10We shall later in this section explain, in more detail, what we mean by the
term 'context', and we shall then contrast this context concept with the concept of
'model' introduced already in Sect. 1.7 and discussed more extensively in Sect. 8.5.4.

9.3 A Language of Boolean Ground Terms 159

we should now present a set of axioms and, possibly, a set of rules of inference.
We shall do so, but instead of presenting the rules of inference in the form of
"something above a bar and something below that bar", we exemplify below
a tabular representation of these rules of inference.

The axioms are true and ~ false. But note that the above do not explain
RSL in terms of RSL, but in terms of informal mathematics.

V,A, and => Syntactic Truth Tables
V

true |
false
chaos

true

true
true
chaos

false

true
false
chaos

chaos

true |
chaos
chaos |

=>
true
false
chaos

|true |

true
|true |
| chaos |

|A

[true
false
| chaos

true

[[true
false
| chaos

false 1 chaos

false chaos
true |true
chaos | chaos

false

false
false
chaos

chaos

chaos
false
chaos

= Versus =

Assume e\ and e<i are defined expressions, both with deterministic (i.e., def­
inite) values, without effects, that is, side effects (changes to assignable vari­
ables), and without communication, that is, as we shall first see in Chap. 21
(this volume), CSP-like input/output communication. Assume further that e\
and e2 evaluates to ui, and t>2, respectively. Then the two three-valued logic
truth tables are:

= and = Syntactic Truth Tables

=
e l
e2
chaos

|el

true
false
chaos

e2

false
true
chaos

chaos

chaos
chaos
chaos

= 1

e l
e2
chaos

[el

true
false
false

e2

false
true
false

chaos

false
chaos
true

Form of Inference Rule

From the tabular form we arrive at the standard way of presenting a rule of
inference

antecedent (s)
consequent

as follows: There is one rule of inference for each entry in each table. The
antecedent of such a rule of inference is formed by composing three symbols:
the row index ground term, the "upper left corner" operator, and the column
index ground term, and in that order. The consequent of the rule of inference
is now the entry term:

160 9 Mathematical Logic

false=>chaos
true

Above we have shown an example from the third table above, second row,
third column!

Truth and Falsity (Syntactic) Designators and Semantic Values

As the truth tables are presented we may get the syntactic understanding that
the truth designators are true and false. That is how we syntactically express
them. Pragmatically we need a way to write down truth values — so we use
the literals true and false. We distinguish between the syntactic literals —
which are the ones we write down in our specifications — and the names of
their meaning (i.e., semantics or interpretation). Some authors, when making
this distinction, for example use the metalinguistic literals t t , f f and _L. That
is, the interpretation context (p) associates true with t t , etc. We could then
use these latter as entries in three tables defining the interpretation context
meaning of the connectives:

Interpretation Context: Semantic Truth Tables

yj
tt]
ff

±]

tt

jtt
tt

\±_

ff

tt
ff
_L

_L
_L
_L
_L

AJ
tt]
ff

±]

tt

[tt
ff

\±_

ff

ff
ff
_L

_L
_L
ff
_L

|=>||tt|ff|_L |
| t t | | t t | f f |T]
[ff llttlttlttl
[X] f l 1-L |_L J

But we cannot use the interpretation designators in any of the identities ex­
pressed earlier. That is, we cannot use them in the if ... then ... else ... end
axioms. They are metalinguistic: They are the means of explaining some­
thing.

Non-commutativity of Boolean Connective

We refer to a logic of three values, as above, as a three-valued logic. The first
such, for computing science, was introduced by John McCarthy [367]. For
VDM, RSL's predecessor, Cliff B. Jones proposed a logic for partial functions
[150,316,317]. Several forms of three-valued logic exists [131-133,329].

Let an expression be:

(El A E2) V E3

9.3 A Language of Boolean Ground Terms 161

where evaluation of E2 for E l=fa l se might not terminate. If E1AE2 yields
true , evaluation of the expression E3 need not take place. If E1AE2 yields
false, evaluation of the expression E3 must take place.

To express the above for commutative, two-valued logics of A and V, we
need, for example, write:

if E l t h e n (if E2 t h e n true e lse E3 end) e lse E3 e n d

9 .3 .4 G r o u n d T e r m s and The ir Eva lua t ion

Let us first give some examples:

E x a m p l e 9.7 Ground Terms: Examples of ground terms are:

true , false, ~ t r u e , ~ false,
trueAtrue , trueVtrue , true=>true, t r u e = t r u e , t r u e ^ t r u e , t rue = true
trueAfalse, trueVfalse, true=>false, t rue=fa l se , t rue^fa l se , t rue = false

(trueA((~true)Vfalse)=^true)=false , ...

S y n t a x of B o o l e a n G r o u n d T e r m s , B G T

The Boolean language of ground terms, BGT, is now defined:

• The Basis Clause: t rue , false and chaos are Boolean ground terms.
• The Inductive Clause: If b and b' are Boolean ground terms, then so are:

~ b , bAb', bVb', b=^b', b=b ' , b ^ b ' , b = b ' and (b).
• The Extremal Clause: Only those terms tha t can be formed from a finite

number of uses of the above two clauses are Boolean ground terms.

Since this is only the second time in these volumes tha t we properly introduce
a language, and since we have yet to cover the material tha t shall later enable
us to present such a language definition formally, we use the above informal,
yet very precise style of presentation.1 1

We can present the above inductive definition in the form of a BNF Gram­
mar:

11 Our first such structured, yet informal presentation was that of A-expressions
(Sect. 7.2).

The basis, inductive and extremal clause presentation represents a classical, math­
ematical way of presenting inductive structures. These are typically infinite sets of
entities (here they are syntactic entities), which have a structure. The three-clause
presentation aims at presenting this structure. The structure contains atomic enti­
ties, as for the basis clause, or composite, as here, pairs or triples of entities: operands
and prefix or infix operators as well as parenthesised structures. The basis clause
usually lists a finite, or refers to an infinite, number of terms. The logic clause lists

162 9 Mathematical Logic

(BGT) ::= t rue | false | chaos
| ~ (BGT)
| (BGT) A <BGT)
J (BGT) V (BGT)
| (BGT) => (BGT)
I (BGT) = (BGT)
| (BGT) ^ (BGT)
J (BGT) = (BGT)
I ((BGT))

The trouble with the above grammar is tha t it is ambiguous. Is the term:

t rue A false V t rue ,

the same as

t rue A (false V t rue),

or

(t rue A false) V true?

The inductive definition gave no hint as to the binding priority of the connec­
tives.

To do so, through a BNF grammar, we introduce an alternative grammar:

(BGT) ::= (aBGT) | (pBGT)
(aBGT) ::= t rue | false | chaos
(pBGT) ::= ((BGT))

| (~ (BGT))
| ((BGT) V (BGT))
| ((BGT) A (BGT))
| ((BGT) =* (BGT))
| ((BGT) = (BGT))
| ((BGT) ^ (BGT))
| ((BGT) = (BGT))

Now it would not be possible to write:

t rue A false V t rue .

The above would have to be writ ten either as

just two. The inductive clause is usually of recursive nature: It assumes the existence
of some terms and expresses the construction, the existence, of further terms. The
basis clause secures the existence of initial terms. And the inductive clause adds
further terms to the language of terms. The extremal clause ensures that unwanted
terms do not accidentally creep into the language. The adjective 'extremal' expresses
exclusion!

9.3 A Language of Boolean Ground Terms 163

true A (false V true),

or as

(true A false) V true.

By suitably designing a BNF grammar that directly "embodies" operator (bind­
ing) precedence rules, one can achieve an expression form that avoids excessive
parenthesisation.

Boolean Ground Term Evaluation, EvaLBGT

Given any Boolean ground term, we can provide an interpretation. That is,
we can evaluate it.

The evaluation rules are: If the ground term is true, its value is t t . If the
ground term is false, its value is f f. If the ground term is ~b and the value
of b is t t , then the value of ~b is ff. b value ff leads to ~b result value t t .
If the ground term is bAb' and the values of b and b' are r and T' — where r
and T', individually are one of t t or f f — then the value of bAb' is found by
looking up under the corresponding entry in the A table. The same holds for
b0b' where 0 is any of V, =>, =, 7 ,̂ or =, for which appropriate tables are
selected.

We "pseudo-formalise" this interpretation function. It is a pseudo-formal-
isation since it is not expressed in a proper formal notation. Why not, i.e.,
why not use RSL? The answer is: Because we have yet to introduce all the RSL
machinery that is needed in a proper formalisation. The pseudo-formalisation
shall serve to acquaint the reader with the form and possible content of formal
function definitions.

The tables are presented as maps (finite size, enumerable functions) from
truth values to truth values. They are straightforward "mathematical" forms
of the tables given above. One table was missing: that of negation. We leave
it to the reader to provide that table. Thus the type of the Boolean ground
term evaluation procedure, EvaLBGT, is:

value
EvaLBGT: BGT -> TBLS - • Bool

type
TBLS = uTBLxbTBLxbTBLxbTBLxbTBLxbTBLxbTBL
uTBL = Bool jff Bool
bTBL = Bool x Bool ^ Bool

The six tables above are to be those of negation, conjunction, disjunction,
implication, equality, none-quality, respectively identity (equivalence).

value
Eval_BGT(bgt)(tbls) =

164 9 Mathematical Logic

let (n,a,o,i,eq,neq,id) = tbls in
case bgt of

true —> t t ,
false - • ff,
chaos —> _L,
~ t - • let b = Eval_BGT(t)(tbls) in n(b) end,
t'At" - •

let b'=EvalJBGT(t')(tbls), b"=Eval_BGT(t")(tbls)
in a(b',b") end,

... /* similar for pVp", p'=>p", p'=p", pVp", and */ p'is p"
end end

Later we shall see how to express the above pseudo-formalisation of EvaLBGT.

9.3.5 "Syntactic" Versus "Semantic Semantics"

Thus there are two ways of looking at most of the languages that we will
present in these volumes (for the various subsets of RSL, as well as for lan­
guages (or language fragments) separate from RSL).

One way of looking at a language is semantically — as we have just done.
Here we explained the meaning of (in this case Boolean ground) terms by
exhibiting an evaluation procedure which "translated" the syntactic literals
true and false into t t , respectively ff. And where we did not otherwise
bother much about telling you what these "new" markers, t t and f f, stood
for!

Another way of looking at a language is syntactically — which we did
earlier, for example on Page 159. Then we basically "rewrote" an operand
term in the Boolean literals true and false and connectives (~, A, V, =>, =,
=) into one of these literals.

In the former semantics the meaning of a term was a mathematical value,
one that "nobody has ever seen"! In the latter "semantics" the value of a term
was a term, i.e., a syntactic "thing" that "everybody has seen"!

The former style of semantics definition will be repeated, again and again
in these volumes, and will be referred to, especially as we go on to the next
examples, as the denotational style of semantics definitions. The latter style,
the syntactic one, will be referred to as a 'rewrite rule' semantics. The A-
calculus, as given earlier (Sect. 7.2) was thus given a syntactical, that is, a
rewrite rule semantics.

"Syntactic semantics" is the basis for proofs of properties of formal spec­
ifications, and for proofs of certain relations (including correctness) between
pairs of formal specifications. We shall return to this subject in due course.

9.4 Languages of Propositional Logic 165

9.3.6 Discussion

We have introduced the "barest" of a language, the language of Boolean
ground terms, BGT. We have separated our presentation into one of pre­
senting the syntactics of BGT and one of presenting the semantics of BGT.
And we have just, immediately above, briefly discussed a recurrent theme:
a proper semantics view of syntax as well as a "syntactic semantics" as are
most calculi. Finally, wrt. the pragmatics of BGT we said earlier: Using just
the language of Boolean ground terms, there is not much of interest we can
express.

With the next logic language, that of propositions, there also is not much
of interest we can express. We shall have to wait till we master the syntax
(and semantics) of some language of predicates, then we can start expressing
something.

The reason for this seemingly slow, pedantic unfolding of two, we claim, not
so "powerful" languages before we present the "real thing" is one of pedagog­
ics and didactics: For some readers the concepts of logics, and in particular its
three "sublanguages", such as we have presented them, is not familiar. Ad­
ditionally, the distinction between the syntactics of calculi (including proof
systems) is so different from what they may be familiar with, that a direct,
an immediate presentation of just a language of predicate calculus is an un­
necessary intellectual challenge as compared to a stepwise unfolding such as
we have attempted it.

9.4 Languages of Proposit ional Logic

By propositional logic we syntactically understand (i) a set of truth values, (ii)
an infinite set of propositional expressions, with connectives, and truth-valued
propositional variables, (iii) a set of axioms and (iv) a set of rules of inference.
The above determines a syntax, i.e., a proof theory of a propositional calculus.

Semantically we equip the (syntax of the language of) propositional logic
with (v) a suitable context for determining the value of propositional literals
and symbols, and (vi) an interpretation function that allows one to calculate
the truth value of propositional expressions. By a propositional expression
we thus mean an expression like a Boolean ground term, but where some
Boolean literals (t rue, false or chaos) are replaced by propositional vari­
ables. A propositional variable is an identifier which, semantically, is intended
to stand for a Boolean truth value (which could be chaos). We shall only
cover propositional logic from the viewpoint of its practical use in formal
specifications: (i-iv) Making precise the syntax of the expressions, and (v-vi)
presenting an interpretation procedure for evaluating their values.

166 9 Mathematical Logic

9.4.1 Proposi t ional Expressions, PRO

Examples of Proposi t ional Expressions

Let V be an alphabet of variable identifiers (i.e., variables), and let v, v', . . . ,
v" be examples of such variables.

value v,v',...,v":Bool
... t rue , v, vAtrue, ..., (~(vAv')=>(v'=>v")) = false, ...

The last line above exemplifies some propositional expressions.

Syntax of Proposi t ional Expressions, PRO

• Basis Clause I: Any Boolean ground term is a propositional expression.
• Basis Clause II: There is given an alphabet V of (further un-analysed)

variable identifiers. If v, v', . . . , v" are in that alphabet, then v, v', . . . , v"
are propositional expressions.

• Inductive Clause: If p and p' are propositional expressions, then so are ~p,
pAp', pVp', p^>p', p=p', p^p' , p=p' and (p).

• The Extremal Clause: Only such terms which can be formed from a finite
number of uses of the above two clauses are propositional expressions.

An example BNF grammar could be:

(PRO) ::= t rue | false | chaos
| ~ (PRO)
| (PRO) A (PRO)
| (PRO) V (PRO)
| (PRO) => (PRO)
| (PRO) = (PRO)
| (PRO) ^ (PRO)
| (PRO) = (PRO)
I ((P R O))
| (Identifier)

(Identifier) ::= ...

We leave it to the reader to complete the BNF definition of (Identifiers, say
as strings of alphanumeric characters commencing with lower case alphabetic
characters, possibly having properly embedded, separating underscores (_).
The above BNF grammar is ambiguous, as was the BNF grammar for Boolean
ground terms, cf. Sect. 9.3.4.

Above we saw an example of an inductive definition. Next we shall see an
example of a semantics which is presented in the style of a morphism, i.e., a
homomorphism, such as earlier explained in Sect. 8.4.4.

The two concepts go hand-in-hand: The inductive definition describes com­
posite structures in terms of postulated structures and operator symbols. A

9.4 Languages of Propositional Logic 167

morphism is explained in terms of a function 0 being applied to postulated
(semantic) structures, i.e., values. The induction definition was here used to
explain syntax. And homomorphisms will be used to explain the semantics of
inductively, i.e., recursively, defined syntactic structures.

9.4.2 Examples

The below examples relate to corresponding Common Exercise Topics outlined
in Appendix Chap. A.

Example 9.8 £ Propositions: Transportation Net:
We refer to Appendix A, Sect. A.l, Transportation Net.

Let the following propositions be expressible:

• a: Segment 17 of Broadway has connectors 34th Street and 35th Street.
• b: Segment 18 of Broadway has connectors 35th Street and 36th Street.
• c: Segment 17 of Broadway is connected to Segment 18 of Broadway.

Given the above abbreviations we can express:

• a A 6, and a A b => c,

If a and b holds then these propositions hold, i.e., c holds. •

Example 9.9 £ Propositions: Container Logistics:
We refer to Appendix A, Sect. A.2, Container Logistics.

Let the following propositions be expressible:

• a: "Quay locations 7-12 are free at container terminal PTP."
• b: "The HaraId Maersk ship is 6 terminal PTP quay locations long."
• c: "HaraId Maersk can enter container terminal PTP."

Given the above abbreviations we can express:

• a A 6, and a A b => c,

If a and b holds then these propositions hold, i.e., c holds. •

Example 9.10 X Propositions: Financial Service Industry:
We refer to Appendix A, Sect. A.3, Financial Service Industry.

Let the following propositions be expressible:

• a: Anderson has account a with a balance of US$1,000.
• b: Peterson has account n.
• c: Anderson can transfer US$200 from account a to Peterson account n.

Given the above abbreviations we can express:

• a A 6, and a A b => c,

If a and b holds then these propositions hold, i.e., c holds. •

168 9 Mathematical Logic

The above examples are, in a sense, continued in Sect. 9.5.3.

9.4 .3 P r o p o s i t i o n Eva lua t ion , EvaLPRO

To evaluate a propositional expression we must postulate a context function

C:

t y p e
C = V jjf B o o l

value
c:C

where C maps some, but not necessarily all, variables of any given proposi­
tional expression into a t ru th value.

The meaning of a propositional expression p, in the type of all propositional
expressions PRO, is now a (function of type) partial function from contexts
(i.e., C) to Booleans! To see this, we show how to evaluate, how to find not
the meaning, but the value of a propositional expression. And then we "lift"
tha t value, tha t is, we abstract tha t propositional expression with respect to
contexts, to obtain its meaning!

So, let some c : C be given, and postulate any propositional expression p.
The value of any properly embedded Boolean ground term is found by the
procedure outlined previously. If p is a variable v then the value of p is found
by applying c to v, i.e., c(v). If p, i.e., v, is not in the definition set of c, the
result is the undefined value chaos . If p is a prefix expression ~ p ' , then first
find the value, r , of p', then negate it. If p is an infix expression p 'Op", then
first find the values, r',T" of p' , respectively p". Then proceed as for ground
term evaluation. If p is a parenthesised expression (p'), then its value is tha t
of the value of p'.

This evaluation procedure will terminate since inductively (i.e., recur­
sively) applied sub-evaluations apply to "smaller" and "smaller" subexpres­
sions, and finally to ground terms and variables.

The type of the propositional expression evaluation procedure is:

value

EvaLPRO: P R O - • TBLS - • C H> B o o l

The meaning of propositional expressions are therefore semantic functions
C^»Bool, while the value of a propositional expression is a Boolean.

value
EvaLPRO (pro) (tbls)(c) =

case pro of
t rue —> t t ,
false - • ff,
chaos —> _L,

9.4 Languages of Propositional Logic 169

~p - • let b = Eval_PRO(p)(tbl) in Eval_BGT(b)(tbls) end,
P ' o p " ^

let b' = Eval_PRO(p')(tbls)(c), b" = Eval_PRO(p")(tbls)(c)
in Eval_BGT(b' o b")(tbls) end,

(p) -> Eval_PRO(p)(tbls)(c),
v -t c(v)

end

9.4.4 Two-Valued Propositional Calculi

Preliminaries

A propositional expression may evaluate to true for some (combinations of)
values of its propositional variables, and to false for other (combinations of)
values.

A tautology is a propositional expression whose truth value is true for all
possible values of its propositional variables. A contradiction, or absurdity, is
a propositional expression which is always false. A propositional expression
which is neither a tautology nor a contradiction is a contingency.

Some Proof Concepts

The material of this section is based on [481].
An assertion is a statement. A proposition is an assertion which is claimed

true.
An axiom is a true assertion — typically about some mathematical struc­

ture. That is: axioms are a priori true; are not to be proven; cannot be proven;
are not theorems.

A theorem is a mathematical assertion which can be shown to be true. A
proof is an argument which establishes the truth of the theorem.

A proof of an assertion is a sequence of statements. The sequence of state­
ments (re)presents an argument that the theorem is true. Some proof asser­
tions may be a priori true: Are either axioms or previously proven theorems.
Other assertions may be hypotheses of the theorem — assumed to be true in
the argument. Finally, some assertions may be inferred from other assertions
which occurred earlier in the proof.

Thus, to construct proofs, we need a means of drawing conclusions, or
deriving new assertions from old ones. This is done by rules of inference.
Rules of inference specify conclusions which can be drawn from assertions
which are known, or can be assumed to be true.

170 9 Mathematical Logic

Axioms and a Rule of Inference, I

The material of this section is based on [451].12

There are many ways of defining a propositional logic. First there is the
issue of whether it is to be a two- or a three-valued logic, then there is the issue
of which axioms and rules of inference to choose. Here we select a two-valued
logic. Then we select a simple set of axioms and one rule of inference. Let 0, ip
and p designate metalinguistic variables. Any propositional expression may
be put in their place.

The following three axiom schemes are axioms of the chosen propositional
calculus:

<f> D W> D p) D ((<l> D i/>) D (<l> D p))
(~ (~ (0))) D cf>

There is a single rule of inference, modus ponens:

Here we chose D to designate implication. In the next example of a two-valued
propositional logic we choose => to designate implication.

We can introduce additional connectives — other than -i (or ~) and D
(or =>) — through rules of inference. For example, disjunction (V): can be
presented as:

0 V %j) (-10) D ip

(--0) D ^' 0 V ^

Axioms and Inference Rules, II

The material of this section is based on [481].
We shall now present another formal proof system allows proofs of propo­

sitional expressions to be fully done by machine. We can do this because there
is only a finite number of propositional variables in any propositional expres­
sion, and each such variable's value ranges only over true or false, or is not
defined at all, i.e., results in chaos.

Here is a set of rules of inference for the propositional expressions of a two-
valued logic. This set and those expressions, form a propositional calculus.
Let <fi,ip,p, and £ designate metalinguistic variables.

12 We remind the reader that the axioms given in this and the next subsection are
axiom schemes of the proof system of the logic language of propositions. They are
not expressed in RSL.

9.5 Languages of Predicate Logic 171

• Substitution of equals for equals: Wherever a propositional expression of
any interpreted value may occur, any other propositional expression of the
same value may occur.

• ~^p Addition

The form J reads: From $ conclude \P.

• ®-T^- Simplification

• 0,0=»̂ > ~̂ ,0.=»V Modus Ponens versus Modus Tollens

The form -^- reads: From $ and \P conclude £2.

m ~ri? r ? y ^>r—£ Disjunctive versus Hypothetical Syllogism

• # $ Conjunction

(0^)A(p^),0Vp (0 ^) A (P ^ W V ~ € constructive vs. Destructive Dilemma

The RSL proof system is different from the above since the RSL logic is a three-
valued logic. We refer to the authoritative [238] for not only a listing of the
full RSL proof system, but also for a treatise on provably correct stepwise RSL
developments using that proof system.

9.4.5 Discussion

We have completed the second step of our unfolding of "the real thing": a
language of predicates, calculus and interpretation. The structures of our pre­
sentation followed that of our previous presentation of the language of Boolean
ground terms. The introduction of Boolean-valued identifiers, i.e., of proposi­
tional variables, is what distinguishes, syntactically, the language of Boolean
ground terms from the language of propositions. Semantically these variables
lead to a context which is expected to bind these variables to Booleans. We
kindly ask the reader to compare, line-by-line, the two informally stated eval­
uation definitions: EvaLBGT and EvaLPRO. But in order to make a logic
language useful in dealing with actual world phenomena, there is also a need
for allowing variables to designate other than Boolean values. To this we turn
next.

9.5 Languages of Predicate Logic

We now come to the "high point" of applied mathematical logic as far as
this volume is concerned. With predicate logic expressions of the kind that,
for example, RSL allows us, we can express quite a lot. That is, predicate
logic will be be a "work horse" for us.

172 9 Mathematical Logic

9.5.1 Motivation

In the propositional logics we cannot13 express the idea that "if x is even
then x + 1 is odd". To see this, following [451], let us carefully examine this
statement. There are two independent propositions expressed here: is_even(#)
and is_odd(succ(#)), where succ(#) yields the successor of x. The statement
is_even(#)=Ms_odd(succ(#)) is not a proposition. Its two terms are, but x is
not a propositional variable, that is, one having a truth value. It "obviously"
has a number value.

The predicate calculus14 extends propositional logic with individual vari­
ables, which model-theoretically may range over other than Boolean values,
thus giving us the expressive power (in terms of quantifications) which allows
us to express the above statement. For example:

\/x : Int • 0(x) => £{x + 1)

where O and £ designate the is_odd, respectively the is_even, predicates.

9.5.2 Informal Presen ta t ion

By a predicate logic we syntactically, i.e., proof-theoretically, understand (i) a
set of truth and other non-truth values; (ii) a usually infinite set of predicate
expressions with (ii.l) connectives, (ii.2) truth-valued propositional variables,
(ii.3) usually other non-truth-valued quantified or free variables, (ii.4) quanti­
fied expressions; (iii) a set of axiom schemes; and (iv) a set of rules of inference.

Semantically, i.e., model-theoretically, we understand a predicate calcu­
lus to extend the above with: (v) for every predicate expression, a context,
c : C, which maps individual variables to values, and (vi) an interpretation
procedure for determining, given any context and any predicate expression,
the value of that expression.

Predicate expressions are thus extensions of propositional expressions:
Where a propositional expression may occur, it now becomes possible to ex­
press a property by expressing some truth-valued relations between other than
truth values.

Example 9.11 Predicate Expressions: Informally, an example is:

((e - l<3) => e') => (3 i:Int • i > e * (e" + 3))

which we can read: if e—1 less than or equal to 2 implies ef then that implies
that there exists an integer which is larger than the value of the non-truth

This example, which intuitively motivates the concept of predicate logics, is
taken from Ruth E. Davis's [181] via John Rushby's [451].

14 Other names for predicate calculus are: first-order logic (FOL), elementary logic
and quantification theory

9.5 Languages of Predicate Logic 173

valued expression e * (e" + 3). The example illustrates a number of new con­
structs that — from now on — may occur in logical, i.e., predicate expressions.
In the above the new constructs were:

<, >, 3, - , *, +

More generally, and in this case schematically, we can list the constructs of a
predicate calculus:

[l]p(e,e',...,e")
[2]f(t,t',...,t")
[3] Vx:X-E(x)
[4] 3x:X-E(x)
[5] 3 ! x:X-E(x)

which we can read semantically: [1] The formula p(e,e',... ,e") expresses the
holding, or non-holding of some relation, p, between the values of subex­
pressions e, e', . . . , e". Examples of p above are < and >, as well as many
user-defined n-ary (n > 1) predicates. [2] The value of expression f(t,t',... ,t")
is the result of applying the non-truth result valued function, f, to the values
of subexpressions t, t', . . . , t". Examples of f above are —, * and +, as well
as many user-defined unary (n = 1) predicates. [3] For all values x of type X
it is the case that E(x) holds. [4] There exists at least one value x of type X
for which it is the case that E(x) holds. [5] There exists a single, unique value
x of type X such that E(x) holds.

Whether these predicate expressions ([1-5]) hold, i.e., are true or not
(false or chaos) is not guaranteed just by writing them!

Forms [3-4-5] illustrated the concepts of binding and typing, x : X: A
typing is, generally, a clause of either of the forms:

identifier : type.expression
identifier_l,identifier_2,...,identifier_n : type_expression

Typings bind their identifier[_i]s to (arbitrary) values of the type designated
by the type_expression.

9.5.3 Examples

The below examples relate to corresponding Common Exercise Topics outlined
in Appendix A. They also continue, in a sense, the examples of Sect. 9.4.2.

Example 9.12 Jf* Predicates: Transportation Net:
We refer to Appendix A, Sect. A.l, Transportation Net.

174 9 Mathematical Logic

Assume that from nets, n : iV, we can observe segments, s : 5, and connec­
tions, c : C, and that from segments [respectively connections] we can observe
connection identifiers [respectively segment identifiers], then we must assume
that the latter observations fit with the former: That all segments [respec­
tively connections] of the net have unique identifiers, and that any segment
[respectively connection] identifier observed from a connection [respectively
segment] is the identifier of a segment [respectively connection] observed in
the net.

type
N, S, C, Si, Ci

value
obs_Ss: N - • S-set
obs_Cs: N - • C-set
obs_Sis: (N|C) - • Si-set
obs_Cis: (N|S) - • Ci-set

axiom
Vn:N«

card obs_Ss(n) = card obs_Sis(n) A
card obs_Cs(n) = card obs_Cis(n) A
V s:S • s E obs_Ss(n)

=> obs_Cis(s) C obs_Cis(n) A
V c:C • c G obs_Cs(n)

=>* obs_Sis(c) C obs_Sis(n)

The first axiom clause expresses uniqueness of identifiers: the cardinality
of segments [respectively connections] and segment [respectively connection]
identifiers are the same. If you do not like that form, then try this instead:

type
N, S, C, Si, Ci

value
obs_Ss: N - • S-set
obs_Cs: N - • C-set
obs_Si: S - • Si
obs_Ci: C - • Ci

axiom
Vn:N •

V s,s':S • {s,s'} C e obs_Ss(n) A s^s'
=> obs_Si(s) ^ obs_Si(s') A

V c,c':C • {c,c'} C G obs_Cs(n) A c / c '
^ obs_Ci(c) / obs-CiCc')

9.5 Languages of Predicate Logic 175

Example 9.13 X Predicates: Container Logistics:
We refer to Appendix A, Sect. A.2, Container Logistics.

Assume that from container terminals, ct:CT, we can observe (i) the con­
tainer storage area, csa:CSA and (ii) containers, c:C (in the container storage
area). That from the former we can observe (hi) bays, bay:Bay, (iv) rows,
row:Row, and (v) stacks, stk:Stk, and that from any of these (bays, rows and
stacks) one can observe containers. Finally assume that from the latter we
can observe (vi) containers, c:C:

type
CT, C, CSA, BAY, ROW, STK

value
obs_Cs: (CT|CSA|BAY|ROW|STK) -> C-set
obs_CSA: CT - • CSA
obs_BAYs: (CT|CSA) -> BAY-set
obs_ROWs: (CT|CSA|BAY) -> ROW-set
obs_STKs: (CT|CSA|BAY|ROW) - • STK-set

Now containers observed in the container terminal must be containers of some
unique stack, of some unique row and of some unique bay of the container
storage area:

axiom
V ct:CT •

V c:C • c G obs_Cs(ct) =>
let csa = obs_CSA(ct) in
3!bay:BAY •

bay G obsJBAYs(csa) A c G obs_Cs(bay)
=> 3!row:ROW •

row G obs_ROWs(bay) A c G obs_Cs(row)
=> 3!stk:STK •

stk G obs_STKs(row) A c G obs_Cs(stk)
end

Example 9.14 X Predicates: Financial Service Industry:
We refer to Appendix A, Sect. A.3, Financial Service Industry.

Assume that from a bank, bank:Bank, one can observe (i) the unique iden­
tities, cid:Cid, of all its customers, (ii) the unique identities, aid:Aid, of all their
accounts, (iii) the collection, accs:Accs, of all these accounts, (iv) the identi­
ties of all the accounts, accAcc, in the collection, accs:Accs, of all accounts,
(v) the account numbers owned by any one identified customer and (vi) the
identities of customers possibly sharing any one (identified) account.

176 9 Mathematical Logic

type
Bank, Cid, Aid, Aces, Ace

value
obs.Cids: Bank -> Cid-set
obs_Aids: (Bank|Accs|(BankxCid)) -» Aid-set
obs_Accs: Bank —> Aces
obs.Cids: Bank x Aid ->> Cid-set

(vii) If a customer is registered in a bank then we assume that customer to
have one or more accounts, (viii) If an account is known by the bank then it is
an account in the collection of accounts, (ix) And if that account is shared by
one (!) or more customers then they are all known to the bank and as having
that account.

axiom
V bank:Bank •

V cid: Cid • cid G obs.Cids (bank) =>
obs_Aids(bank,cid) ^ {} A

V aid: Aid • aid G obs_Aids(bank) =>
aid G obs_Aids(obs_Accs(bank)) A
V cid',cid":Cid •

cid' G obs.Cids(bank,aid) =>
cid' G obs_Cids(bank) A aid G obs_Aids(bank,cid')

9.5.4 Quantifiers and Quantified Expressions

Syntax

Quantified expressions, like Vx:X«E(x), 3x:X«E(x) and 3!x:X»E(x), are predicate
expressions. In general, quantified expressions are of the inductive form: Let
x be any identifier, let X be any type expression, and let E(x) be any propo-
sitional or predicate expression in which x may (or may not) occur, and if it
occurs, may occur free or bound. Now Vx:X«E(x), 3x:X»E(x) and 3!x:X«E(x),
are quantified predicate expressions. The extremal clause follows.

We refer to the above V, 3 and 3! as quantifiers, to x's as binding variables,
E(x) as the body of the quantified expression, and to X as the range set
(designated by a type expression) of the quantification.

More generally, quantified expressions have the syntactic form:

quantifier typing_l,typing_2,...,typing_2 • booLexpr

where simple forms of typings have the syntactic form:

id_l,id_2,...,id_m: type.expr

9.5 Languages of Predicate Logic 177

Free and Bound Variables

In the A-calculus we define a concept of free and bound variables. Let E(x) be
an expression which is not of the form Qx:X«E(x), where Q is either of V, 3 or
3!, and in which there are no further embedded, i.e., proper subexpressions of
those forms, then any occurrence of x in E(x) is free. Let E(x) be an expression
which is of the form Qx:X«E(x), where Q is either of V, 3 or 3!, then any
occurrence of x in E(x) is bound. Let E(x) be an expression which is not of the
form Qx:X«E(x), where Q is either of V, 3, or 3!, but in which there are some
further embedded, i.e., proper sub-expressions of those (x binding) forms, then
any occurrence of x in E(x), which is not within those latter forms, is free,
whereas, of course, the others are bound.

Compound Quantified Expressions

Since in Qx:X»E(x) the expression body may itself be of the form Qy:Y»E'(y),
we may get multiple bindings:

... V x:X • V x;:X • 3 y:Y • V z:Z • E(x,x',y,z)

for which we provide a shorthand:

... V x,x':X, z:Z, 3 y:Y • E(x,x',y,z)

Example 9.15 Compound Predicate Expression: For all natural numbers i
larger than 2 there exist two distinct natural numbers j , k larger than 0 (but
not necessarily distinct from i) such that i is the product of j and k:

V i:Nat • i>2 => 3 j,k:Nat • j / k A i = j*k

Example 9.16 Compound Predicate Expression: For all sets s of integers
such that if i is in the set then also — i is in the set; it is the case that the sum
of all integers equals 0.

type
S = Int-set

value
sum: S -» Int
sum(s) =

if s={} then 0 else let i:Int • i £ s in i + sum(s\{i}) end end
axiom

V s:S • V i:Int • i G s => - i G s ^ sum(s) = 0

Here Int-set designate the type all of whose values are sets of integers. •

178 9 Mathematical Logic

9.5.5 Syntax of Predicate Expressions, PRE

We present the syntactic quantities of predicate expressions: the symbols,
the terms, the atomic formulas, the well-formed formulas (wffs), and a BNF
grammar. That is, we divide the presentation of the language of predicate
expressions into the presentation of language of terms, upon which we build
a language of atomic formulas, and from those we build the well-formed for­
mulas, i.e., the predicate expressions.

The Symbols of a Predicate Calculus

The symbols of a predicate calculus include a number of elements. There
are the variables b, bf, . . . , b" and X, X , . . • , X , where we think of the fr's
being truth valued propositional variables, and the x's being otherwise typed
variables (integers, etc.). There are the Boolean connectives ~, V, A, etc. There
are the existential quantifiers 3, 3! and V. For every suitable arity n there are
sets of predicate function symbols {pni, pn2,..., pUpn }. For every suitable arity
m there are sets of otherwise typed function symbols {fmi, f m 2 , . . . , / m / m }•

The idea is that:

pij(t1:t2,...,ti)J : 1 ,2 , . . . ,^ ;

and

/fc/(*i>*2>-">*ife)^ : 1>2> •••>*/;

are two expression forms. The first is a formula and ostensibly has a truth
value; that the second is a term and ostensibly has a value of any kind (i.e.,
of any type). Finally the arguments tj,tj, are also terms of any kind (i.e., of
any type) of value. Note that we now distinguish between terms as the basic
building blocks of expressions, and formulas as the expressions that have truth
values.

The Term Language of a Predicate Calculus

The term language is defined inductively:

• Basis Clause: A variable, 6, etc., or x, etc., that is, whether truth valued
or not, is a term.

• Inductive Clause: If ti,t2,...,tn
 a r e terms and fn is an n-ary function

symbol, and if pn is an n-ary predicate symbol then, fn(ti, £2, • • •, tn) and
Pn(ti,t2,...,tn) are terms.

• Extremal Clause: Only those expressions that can be formed from a finite
number of applications of the above clauses are terms.

The idea is that Boolean literals are miliary predicate function symbols: trueQ
= true, false() = false and chaosQ = chaos; and that, for example, numerals
are miliary function symbols: one() = 1, etc. More complex examples are:
and(6, bf) (= 6A&'), etc.; and ift(equalzero(i), one(), mult(i, fact(sub(i, 1)))) (=
if i=0 then 1 else ixfact(i-l) end), etc.

9.5 Languages of Predicate Logic 179

The Atomic Formula Language of a Predicate Calculus

The atomic formula language is defined inductively:

• Basis Clause: Any propositional expression is an atomic formula (and is a
term).

• Inductive Clause: If ^1,̂ 2? • • • ?̂ n are terms and pn is an n-ary predicate
function symbol, then Pnitnh,. • •, tn) is an atomic formula. 15

• Extremal Clause: Only such terms which can be formed from a finite number
of uses of the above two clauses are atomic formulas.

The Well-formed Formulas of a Predicate Calculus

The wff language is defined inductively:

• Basis Clause: Atomic formulas are formulas, i.e., predicate expressions.
• Inductive Clause: If x is a variable ranging over type X, and u,v and £{x)

are formulas (i.e., predicate expressions), then: ~u is a formula; u/\v, uVv,
u^v, u = v, u^v, and u=v, are formulas; Vx:X'£(x),3x:X-£(x), and
3\x:X-£(x) are formulas.

• Extremal Clause: Only those terms that can be formed from a finite number
of uses of the above two clauses are formulas, i.e., predicate expressions.

An Informal BNF Grammar for Predicate Expressions

We refer to previous BNF grammar examples for Boolean ground terms
(Sect. 9.3.4) and propositional expressions (Sect. 9.4.1). Instead of building
on these, we present a new BNF grammar:

(Fn) ::= (Identifier) /* Fn: non—truth valued functions */
(Pn) ::= (Identifier) /* Pn: truth valued predicates */
(Term) ::= (Identifier)

I (Fn) ((Term-seq))
I (Pn) ((Term-seq)) /* true, false, chaos: miliary terms */

(Term-seq) ::= /* empty sequence */
I (Term)
I (Term) (Comma—Term—seq)

(Comma—Term-seq) ::= (Comma—Term) (Term-seq)
(Comma—Term) ::= , (Term)
(Atom) ::= (Identifier) /* Boolean valued */

I (Pn) ((Term-seq))
(Wff) ::= (Atom)

15The truth and the non-truth-value relational operators (to wit: =, / , =, re­
spectively =, ^, =, <, <, >, >, etc.) are examples of j ^ ' s , and hence of atomic
formulas, as would be any user-defined predicate applied to terms.

180 9 Mathematical Logic

| ~ (Wff)
| (Wff) A (Wff) | (Wff) V (Wff) | (Wff) => (Wff)
| (Wff) = (Wff) I (Wff) ^ (Wff) I (Wff) = (Wff)
I (Quant) (Identifier) : (Tn) • (Wff)

(Quant) ::= 3 \ 3 ! | V

9.5.6 A Predicate Calculus

In Sect. 9.4.4 we presented a system of axioms and rules of inference for a
propositional calculus. We now wish to present such a system for a predicate
calculus.

Axiom Schemes

The material of this and the next section is based on [451]. Quoted parts are
expressed in slanted text font.

Let (j)[x \-^ t] designate the expression (ft1 which is like (ft except that some
or all of the free x in (ft have been replaced by the term t — where x does not
occur free in t.

One such system for the predicate calculus extends one, or the other of
the sets of axiom schemes given (earlier) for a propositional calculus with the
following:

• Provided that no free occurrence ofx in (ft lie in the scope of any quantifier
for a free variable appearing in the term t, we have:

\/x : X • (ft(x) => (ft[x \-> t]

Expressed semantically: If some formula (ft is true for all x, then it is certain
true when some particular term t is substituted for x in (ft.

• And, provided that t is free for x in 0, we have:

(j)[x \->t] => (3x : X • 4>(x))

Expressed semantically: We can conclude that there exists some x satisfy­
ing the formula (ft if some substitution instance of (ft is true.

Rules of Inference

The above leads to the following rules of inferences:

• First:

ift D (ft(v)
xftD(Vx:Xm (ft(x))'

9.5 Languages of Predicate Logic 181

• and:

<f>(v) D ip
(3x : X • cf)(x)) Dip'

where the variable v is not free in ip.
• The rule of universal quantification can best be understood semantically

by considering the simpler case when rtfj is true. Then the rule becomes:

Vx:Xm (f)(x))

which, semantically says, that if (f) is true for some arbitrary v, then it
must be true for all x.

• Universal and existential quantification are related:

3x:Xm <f>(x) = ~ (Va; : * • ~ <f>(x)))

This definition, as an axiom, can be done if we have already defined equiv­
alence.

9.5.7 Predicate Expression Evaluation

As we did for Boolean ground terms (EvaLBGT), and for propositional expres­
sions (EvaLPRO), so we shall now do for predicate expressions: namely provide
an informal, yet precise description of an evaluation procedure (Eva LP RE).

Evaluation Contexts

Semantically we may understand the predicate calculus by constructing mod­
els. There are two parts to any such model: a context, p : 1Z, which maps all
user-defined symbols in the language of predicate expressions to their mean­
ing in some world J?, and an interpretation function. Thus, in order to find
the value of a given predicate expression, one must provide a context which
maps some, all or more of the free variables, v:V (of that predicate expression),
into values, VAL, of appropriate types; some, all or more of the type names,
Tn (of the range type [name] expressions of that predicate expression), into
their respective — finite or even infinite value spaces; some, all or more of
the predicate function symbols, p (of that predicate expression), into appro­
priate arity predicate functions; and some, all or more of the non-truth result
value function symbols, f (of that predicate expression), into appropriate arity
non-truth result value functions:

type
Vn, Tn, Pn, Fn, VAL
U = (Vn-^VAL)

U (Tn-^VAL-set)
U (Pn-KVAL* - • Bool))
U (Fn-KVAL* -> VAL))

182 9 Mathematical Logic

Recall tha t A->B s tands for the type whose values are functions from A into
B, tha t ,4-set stands for the type whose values are sets of element values
of type A and tha t A* s tands for the type whose values are lists of element
values of type A. The unusual, non-RSL construct (^4—>B)\J(C—>D) stands for
the type whose values are functions from A into B and functions from C into
D.

E x a m p l e 9 .17 Predicate Expression Evaluation Context: Let us review an
example. See the first formula line below. To evaluate the next expression we
seem to need a context, c : C, like the one shown further below:

value
(a A (v > 7)) =>• V k:K • fact(j) < k

p: Ax:(Vn|Tn|Pn|Fn) •
if x G Vn t h e n

case x o f
a—>t,v—>-i,j—mi, ...

e n d
e lse if x G Tn t h e n

case x o f K - ^ { - 2 , - l , 0 , l , 2 } , ... e n d
e lse if x G Pn t h e n

case x o f
"larger-than-or-equal" —> A(x ,y) : (ln tx ln t)»x>y ,
"smaller-than-or-equal" —> A(x ,y) : (lntx lnt) -x<y,

e n d
e lse / * assert: * / x G Fn:

case x o f
"factorial" —> An:Int»if n=0 t h e n 1 e lse n*fact(n—1) end ,

e n d
e n d e n d e n d

As an example, let (aA(v>7))=>Vk:K»fact(j)<k be the predicate expression to
be evaluated. Variables a, v and j are free and so is type name K — the latter
is assumed to be some (finite or infinite) set of integers. For tha t expression
we need a context preferably like p : 1Z above — where t is some Boolean
t ru th value, and i and m are some integers. If the values of t, i, m are t rue ,
9 , - 2 then we see tha t the predicate evaluates to t rue . •

M e a n i n g Versus Values of P r e d i c a t e E x p r e s s i o n s

The meaning of a predicate expression p, in the type of all predicate expres­
sions PRE, is now a function from context, tha t is, p : 1Z to Booleans!

9.5 Languages of Predicate Logic 183

value
EvaLPRE: PRE - • 11 -^ Bool

To see this, we show how to evaluate — how to find — not the meaning, but
the value of a predicate expression. And then we "lift" that value, we abstract
that predicate expression with respect to contexts!

Evaluation Procedure, EvaLPRE

Term Evaluation

Let p : 1Z be some context, and let t be the term subject to evaluation in
context p.

If t is variable v then c is applied to v to find its value. If v is not in the
definition set of p then the undefined value chaos is yielded.

If, instead, t is of the form f(t,t',... ,t"), then the values v, v', . . . , v" of
the terms t, t', . . . , t", respectively, are evaluated; the function f is "looked
up" in p (i.e., c(f)), and the resulting function ip applied to v, v', . . . , v":
^(v,v ; . . . ,v/;). If f is not in the definition set of p: then the undefined value
chaos is yielded.

Formula Evaluation

Let e be a formula.
If e is a propositional expression, that is, if e is of any of the forms: ~e,

eAe', eVe', e=e', e^e', or e=e', then evaluate as prescribed earlier (EvaLpro).
If e is of the form p(t,t',... ,t") then the values v,v', . . . , v" of the terms

t, t', . . . , t", respectively, are evaluated, the predicate function p is "looked
up" in c (i.e., p(p)), and the resulting function cj) applied to v, v', . . . , v":
0(v,v'... ,v"). If p is not in the definition set of c, then the undefined value
chaos is yielded.

If, instead, e is of either of the forms Vx:X»E(x), 3x:X»E(x) or 3!x:X-E(x),
i.e., if it is of the general form Q x:X-E(x), then the value, E, of the range set
X is found from p. If X is not in the definition set of p: then the undefined
value chaos is yielded, and becomes the value of Q x:X«E(x).

Otherwise three case distinctions must be made:

• If Q is V then the possibly infinite conjunction: E (£ I) A E (£ 2) A . . . A E (^) A . . .

is evaluated. Here the £'s range over all, possibly infinite values of E.
Note: The A is here constrained to be commutative.
All E(&) must yield true for V x:X»E(x) to yield true. Any chaos results
in chaos. Any false with no chaos yields false for V x:X»E(x).
We can rephrase the above: The value of Vx:X-E(x) is true if E(x) holds
for all models as implied by x:X. That is, x:X defines a set of models, that
is, a set of contexts, at least one for each element x in X. Each of these
models further defines bindings of all other free identifiers in E(x).

184 9 Mathematical Logic

• If Q is 3 then there must exist a disjunction:

E(£i)VE(&)V...VE(6)V...

This disjunction is evaluated. For it to yield true E(£i) must yield true
with all other E(£j) for all j> l yielding true, false or chaos.
Or rephrased: 3x:X«E(x) is true if E(x) holds for at least one model in the
set of models induced by X.

• If Q is 3! then there must exist exactly one i in some arbitrary disjunction:

E(£i)VE(&)V...VE(6)V...

such that E(£i) yields true and all other E(^), for all i>l, yield false or
chaos!
Rephrased: 3!x:X-E(x) holds if and only if E(x) holds for exactly one of the
induced models.

We shall later present a formal definition of Eva LP RE.

9.5.8 First-Order and Higher-Order Logics

If the range set of quantifications permit values that are, or contain, functions,
then we say that the predicate logic is a higher-order logic. Otherwise it is a
first-order logic.

An example may be in order to illustrate the need for higher-order logics:

type
P = A - • Bool

value

axiom
Vp:P • ...

RSL's logic is higher-order.

9.5.9 Validity, Satisfiability and Models

We briefly introduce such concepts as validity, satisfiability and models. But
first we take yet another look at interpretations and their contexts, i.e., their
possible worlds.

Contexts and Interpretations

We have seen that predicate expressions only have values if a suitable context
is given. In mathematical logic such a context is called an interpretation. Gen­
erally a context, that is, an interpretation, is a mapping of identifiers to math­
ematical values. Predicate symbols pn of arity n can be thought of as being

9.5 Languages of Predicate Logic 185

mapped (pn^7r) into possibly infinite sets n of n groupings: (^1,^2, • • • ,vn),
with the meaning that pn{v\, ^ 2 , . . . , vn) represents truth for all (vi, V2,.. •, vn)
in 7r, and falsity otherwise. Function symbols fn of arity n can likewise be
thought of as being mapped (/n1 -^) into possibly infinite sets, 0 of n + 1
groupings: (vi, t?2,. •., vn, v) — with the meaning that fn(vi, V2, • . . , vn) has
value v for respective (t>i,i>2? • • • ?^n?^) in 0? and is otherwise undefined. Non­
function symbols, i.e., variable identifiers, i are mapped (i\->v) into values v
in some type.

Example 9.18 Predicate Expression Interpretation: An example may be in
order. We interpret the predicate ... V i:lnteger, 3 n:Natural • square(i) = n ...
in two models:

type
Integer, Natural

value
square: Integer —> Natural
... V i:Integer, 3 n:Natural • square(i) = n ...

/* interpretation.!: */
[In tegers ! ...,-2,-1,0,1,2,... },
Natural^{ 0,1,2,... },
square^{ ...,(-2,4),(-l,l),(0,0),(l,l),(2,4),... }]

/* interpretation_2: */
[Integer^{ . . ,-2,-1,0,1,2,. . . },
Natural^{ 0,3,5,7,9,... },
square^{ ...,(-2,4),(-l,l),(0,0),(l,l),(2,4),... }]

The above predicate is true in interpretation.! and false in interpretation_2. •

Validity and Satisfiability

Let there be given a possibly infinite set of interpretations. A predicate ex­
pression is said to be valid if it is true for all interpretations. A predicate
expression is said to be satisfied if it is true for at least one interpretation.
There is no mechanical procedure by which one can determine the validity or
satisfiability of predicate expressions. That is, one cannot write a computer
program which determines validity or satisfiability. A predicate expression is
said to be contradicted if it is false for all interpretations.

Models

Let there be given a set, a, of predicate expressions, and an interpretation 1.
If every w in a holds in the interpretation t, then 1 is said to be a model of a.

186 9 Mathematical Logic

Contexts, Interpretations and Models

We now take up the line on models begun in Sect. 1.6.2 and continued in
Sect. 8.5.4. We have earlier introduced the following related terms: context
and interpretation. It is time to sort out any possible differences in our use of
the terms: model, context and interpretation.

At the start of this section we equated, within the subject of mathematical
logic, the two concepts: context and interpretation. We shall henceforth use
the term context (or later the term environment) — in connection with the
actual development and presentation of language interpreters — as standing
for the above use of both the terms context and interpretation.

And we shall, likewise, use the term interpretation to stand for the function
of doing what is prescribed by such language interpreters. For matters of
mathematical logic we shall not use the term context any more. For the term
model, until we reach Vol. 3, Chap. 4, technical uses of this term will be in
connection with the meaning of RSL definitions being sets of models: bindings
between identifiers, in a space of all such, to type values (which themselves
are set of values), or function values or, as we shall see, later, many other
kinds of values including variables, channels. In Vol. 3, Chap. 4 we shall then
discuss the looser, not necessarily technical, but usually more pragmatic use
of the term model — in the senses of modelling, of creating models.

9.5.10 Discussion

We have introduced languages of predicate calculi. We now have several lan­
guages since we can either choose a two-valued or a three-valued logic, and
since we can choose one or another set of rules of inferences. RSL basically
has a three-valued logic. We say basically, as we can safely restrict particular
uses of RSL to a two-valued logic — one that is consistent with a three-valued
logical interpretation. That is, the chaos will never occur in expressions for
which the two-valued logic is claimed to be sufficient. Whenever necessary, we
are thus encouraged to state which logic we require. We remind the reader of
the distinction between proof-theoretical (i.e., syntactical) presentations of a
logic, and model-theoretical (i.e., semantical) presentations of the same logic.

This and the previous two sections have thus provided a basis for our use
of the RSL predicate calculus as a specification language. Since these volumes
basically emphasises specification development rather than verification of such
developments, we refer the reader to specialised textbooks and monographs
for more comprehensive treatments of verification. Such references are: [181,
242,359-361,419,472,533].

9.6 Axiom Systems

Axioms are self-evident truths. That is, they are laws or postulates that we
accept without proof.

9.6 Axiom Systems 187

When mathematics students study mathematical logic they learn about
proof and model-theoretic properties of families of predicate logics, and
about what axiom systems are, in general, possible.

With this section you shall, in contrast, learn the first steps towards
constructing pleasing and elegant axiom systems for actual-world phenomena
and — later — for computing.

In this section we shall illustrate uses of RSL's linguistic facilities for specifying
properties of sorts and functions over these sorts in terms of axioms. That is,
in contrast to the previous three sections' treatment of proof systems for logic
languages, including that embedded in RSL. We shall now be using RSL itself
to express axioms.

Some of the examples given now may be said to be presented prematurely
or to be redundant: Either they rely on arithmetics for which no semantics,
including no axioms, have been given, or they have already been presented
before or will be presented more fully later. Be that as it may; our aim is to
familiarise you with RSL specifications of axioms. We refer to the Sect. 9.1 for
remarks on the two kinds of axiom systems. Some of the text in this section
summarises earlier material.

9.6.1 General

An axiom system is usually a set of type definitions, a set of function signa­
tures (of observer and generator functions, including predicates), and a set of
predicate expressions (the axioms themselves).

Example 9.19 Euclid's Plane Geometry: The following illustrates an axiom
system. It is informally expressed: [0] Every line is a collection of points. [1]
There exist at least two points. [2] If p and q are distinct points, then there
exists one and only one line containing p and q. [3] If £ is a line then there
exists a point not on £. [4] If £ is a line and p is a point not on £, then there
exists one and only one line containing p and parallel to L •

In these expressions we can identify, for example, three kinds of plane geometry
terms. They are: line, point and parallel. We can also identify the ontologi-
cally determined terms: collection, containing and on; as well as other natural
language terms. The axioms assume that you understand the ontologic and
natural terms, but define, as a set of axioms, the plane geometry terms.

9.6.2 Axioms

An axiom, for us, is a predicate expression that always holds, that is, which is
valid. In other words, whatever quantification set is implied by some quantifi­
cation range identifiers (viz. X above) they are constrained to make the axiom
true.

188 9 Mathematical Logic

If we, for example write:

type
X ,Y

axiom
V x:X • V y:Y » x / y

then the sorts X and Y have at least been constrained to not contain similar
elements. If instead

type
X

axiom
V x:X • 3 i:Int • x = i*i

then the sort X is the type of all square numbers. We could instead define X
by a subtype definition:16

type
X = {| n:Nat • 3 i:Int • n = i*i |}

To repeat: Axioms are predicate expressions. Predicate expressions are only
valid for certain interpretations. These interpretations are exactly what the
axioms are (pragmatically) intended to model. Thus axioms are used to model
the properties of structures, either abstract, as above, or seemingly manifest,
such as the Euclidean system of plane geometry.

9.6.3 Axiom System

An axiom system, that is, a set of predicate predicate expressions, also con­
tains some type type (including sort) definitions and function signatures. One
of the quantification range set identifiers — which may be mentioned in one or
more of the axioms — are sorts, and a purpose of the axioms are to characterise
those sorts. Usually at least one of identifiers — which may be mentioned in
one or more of the axioms — is a function name, and a purpose of the axioms
is to characterise that function.

Example 9.20 Euclid's Plane Geometry: The Euclidean geometry infor­
mally described in Example 9.19 can be formally axiomatised by first in­
troducing the sorts P and L:

type
P,L

value

16We shall use subtypes extensively between here and the formal introduction of
the concept of subtypes, in Sect. 18.8.

9.6 Axiom Systems 189

[0] obs_Ps: L - • P-infset
parallel: L x L —> Bool

Observe how the informal axiom in Example 9.19 has been modelled by the
observer function obs_Ps. It applies to lines and yields possibly infinite sets of
points.

Now we can introduce the axioms proper:

axiom
[l] 3 p , q : P . p ^ q ,
[2] V p , q : P . p ^ q ^

3! 1:L • p e obs_Ps(l) A q e obs_Ps(l),
[3] V1:L- 3p :P • p £ obs_Ps(l),
[4] V 1:L • 3 p:P • p g obs_Ps(l) =>

3 l':L • 1^1' A p € obs_Ps(l') A parallel(l,l')

The concept of being parallel is modelled by the predicate symbol of the same
name, by its signature and by axiom [4]. •

Thus (also in RSL) an axiom system is usually represented by (i) a set of sort
definitions, (ii) a set of observer and generator functions, and (iii) a set of
quantified expressions, the axioms proper.

9.6.4 Consistency and Completeness

A theory is, formally speaking, a set of axioms and a set of theorems derived,
through proofs,17 from these axioms using the inference rules of the logic in
which the axioms were stated. Whether the set of inference rules and the set of
axioms together is sufficient for proving all valid assertions, i.e., whether the
axiom system is complete with respect to all valid predicates, is undecidable:
One cannot devise a mechanical procedure which can test an axiom system and
its inference rules for completeness. Furthermore, whether the set of inference
rules and the set of axioms together is such that one can prove validity of an
assertion and its negation, that is, whether the axiom system is inconsistent,
is undecidable: One cannot devise a mechanical procedure which can test an
axiom systems and its inference rules for consistency.

9.6.5 Property-Oriented Specifications

We give a number of examples of axiom systems. They each characterise one or
more model(s). We say that they specify this (or these) model(s) in a property-
oriented manner. This is as opposed to presenting the model directly in terms
of for example such discrete mathematical concepts as sets, Cartesians, lists,
maps, functions, etc.

We refer to the paragraphs on 'Some Proof Concepts' in Sect. 9.4.4.

190 9 Mathematical Logic

Example 9.21 Peano's Axioms: The purpose is to define the algebra of nat­
ural numbers and successor (+1) and equal to zero functions (=0).

[1] Zero (0) is a natural number. [2] For each natural number n there exists
exactly one other natural number n + 1. [3] For no natural number n, is n + 1
equal to zero. [4] For any natural numbers m and n, ifra + l = n + l then
m = n. [5] For any set N of natural numbers containing zero, if n £ A implies
n + 1 G A, then A contains every natural number.

type N
axiom

[i] 0 e N
[2] V n:N • 3!n':N • n '=n+ l A n' 6 N
[3] ~3n :N • n+1 = 0
[4] V m,n:N • m + l = n + l => m=n
[5] V A:N-infset • (0 e AAn e A => n+1 G A) ^ A E N

[5] is a specialisation of the principle of induction: If p is a property, i.e., p
is expressible as a predicate function which may hold of (applies to) natural
numbers n; if p(0) holds; and if, whenever p(n) holds for some natural number
n, then p(n + 1) also holds, then that implies that all natural numbers satisfy
p. Formulated, in general, we have:

axiom
[6] V p:(N -> Bool) • (V n:N • p(n) => p(n+l)) => V n:N • p(n)

Another example:

Example 9.22 Sine <fe Cosine:
There is given a sort of angles, A, and a sort of rational numbers, R18,

between —1 and 1. There is also given a pair of functions sin and cos (for sine,
resp. cosine). Finally there are given the axioms:

type
A = Real
R = {| r:Real- - l < r < l |}

value
sin,cos: A -» R

axiom
for all a: A •

— 1 < sin(a),cos(a) < 1,
sin2 (a) + cos2 (a) = 1

18In Example 9.22 R is defined as a subtype of reals. We refer to Sect. 18.8 for a
proper introduction of the concept of subtypes.

9.6 Axiom Systems 191

Here we have introduced a variant of the V quantification: The keyword
forall lets the quantifier bindings which follow it, distribute across the axioms
now separated by commas.

Under the assumption of appropriate axioms for the rational numbers,
their squaring and sum, and the < relation, Figure 9.2 exemplifies one model
of this axiom. •

(1,0)

Fig. 9.2. Definition of the trigonometric sin and cos functions

Further examples.
Their formal parts are presented, as were those of the above examples, in

RSL. It is not RSL, however, in that it has the simple semantics of the predicate
calculus. To repeat: One cannot explain, i.e., give semantics, to a language by
using that language itself. One must use a language already defined.

Example 9.23 Simple Sets: By a simple set we understand an unordered
finite collection of simple, say in the present example, distinct atomic elements.
Let the latter belong to sort A. Let the sort of simple sets be designated by
S. Now simple sets are characterised, as already hinted at above, by being
collections, by being finite, by having distinct elements, by being unordered
such collections, and by the following operations: e is taken as a primitive
and stands for "is the left-hand operand (an atomic element) a member of
the right-hand operand (the set)." {} is an overloaded function symbol: {}
either stands for the miliary constant function that yields the empty set (of
no elements), or {} stands for the unary function that yields the singleton
set of its operand. ={} stands for the unary isempty-set predicate function
which tests whether its operand set is empty. U stands for the union operator
which, when applied to two operand sets, yields the set of all elements of
these operands, n stands for the intersection operator which, when applied
to two operand sets, yields the set of elements common to both operands. \
stands for the set complement operator which, when applied to two operand
sets, yields the set of elements of the first operand not in second operand.
= stands for the equality operator which, when applied to two operand sets,

192 9 Mathematical Logic

yields truth if they are the same set, otherwise falsity. C stands for the proper
subset operator which, when applied to two operand sets, yields truth if all
the elements of the left-hand operand set are in the elements of the right-hand
operand set and there are elements of the right-hand operand set which are
not elements of the left-hand operand set. C stands for the subset operator
which, when applied to two operand sets, yields the truth if all the elements
of the left-hand operand set are in the elements of the right-hand operand
set. card stands for the cardinality operator which, when applied to a finite
operand set, yields its number of elements. The axiom system provides the
characterisation.

The membership operation, G, is, to repeat, taken as a primitive. That is,
is not explained!

A Sketch Formal Axiom System Defining S = A-set

Types and Signatures:

type
A, S

value
G, £: A x S - • Bool
{}: Unit - • S
{ } : A ^ S
u, n, \: s x s -• s
= ^ , C , C : S x S 4 Bool
card: S -3- Nat

Axioms:

axiom
forall a:A, s,s':S •

{a} e S,
((a G s U s') = (a G s V a G s')),
((a G s H s') = (a G s A a G s')),
((a G s \ s') = (a G s A a £ s')),
s = s' = (a G s = aG s'),
s C s' = (a G s => a G s'),
S C S ' E (S C S ' A S / S'),

card({}) = 0,
a 0 s => card({a} U s) = l+card(s)

Chapter 13 continues our presentation of sets. It focuses on the way in which
RSL, the main specification language of these volumes, provides for sets, as
well as on the choice and use of sets in abstract specifications.

9.6 Axiom Systems 193

Example 9.24 Simple Lists: By a simple list we understand an ordered finite
collection of, say in the present example, atomic, but not necessarily distinct
elements. Let the latter belong to sort A. Let the sort of simple lists be desig­
nated by L. Now simple lists are characterised, as already hinted at above, by
being collections, by being finite, by allowing multiple occurrence of some el­
ements, by being ordered such collections and by the following operations: {),
= {), hd, tl, " , elems, inds, len and [•].{) is an overloaded function symbol:
{) either stands for the miliary constant function that yields the empty list (of
no elements), or () stands for the unary function that yields the singleton list
of its (only) operand. =() stands for the unary test for empty list predicate
operator. It applies to a list and yields truth if that list is empty, otherwise
falsity, hd stands for the head operator which, when applied to an operand
list, yields the first element of that list, tl stands for the tail operator which,
when applied to an operand list, yields the list of all but the first element of
that list, and in the same order as in the operand. ^ stands for the concatena­
tion of two operand lists of which the first must be finite. The result is the list
whose first list elements are exactly those of the first operand list in the order
and multiplicity of that list, and whose remaining list elements are exactly
those of the last operand list in the order and multiplicity of that list, elems
stands for the elements operator which, as a function, when applied to an
operand list, yields the set of all the distinct elements of that list, inds stands
for the indices operator which, as a function, when applied to an operand list,
yields the set of all the indices into the list. If the list is of length ell then
inds of that list is the set of all natural numbers from and inclusive 1 to and
inclusive ell. If the list is empty, the yielded index set is empty, len stands for
the length of list operator operator which, when applied to a finite operand
list, yields the length of that list, i.e., the number of not necessarily distinct
elements of the list, otherwise chaos. •(•) stands for list element selection, i.e.,
for the (distributed fix) list operator which when applied to a "left" operand
list and a "right" operand index, i.e., a natural number within the index set of
the list, yields the list element having the index position in the list. The above
explication was "loose" wrt. the "border" cases of when certain argument lists
were either infinite or empty, or not of sufficient length — for which cases the
results amount to chaos.

The axiom system provides a fuller characterisation.

A Sketch Formal Axiom System Defining L = A*

Types and Signatures:

type
A, L

value
():L
< .) : A - > L

194 9 Mathematical Logic

• =(): L - • Bool
hd •: L ^ A
tl •: L -+ L
• " •: L x L 4 L
elems •: L —> A-set
inds •: L —> Nat-se t
le n-: L -^ Na t
• [•]: L x Na t -+ A

Axioms:

axiom
V a:A,£:L •

0=0,
hd{) = chaos
hd{a)^ = a = ((a p) [l] ,
r<> = e = (re
tl{) = chaos,
t l (a)^ = £,
chaos [i] = chaos,
V i:Nat • i>0 =* l[i+l] = (tl l)[i]
elems{) = {}, elems(a)^l = {a} U elems 1
inds() = {}, inds 1 = {i|i:Nat • l<i<len 1}, i.e.,
inds(apl = {1} U {i+l|i:Nat-i G inds 1}
len{> = 0, len((a>"l) = 1+len 1, i.e.,
len(n /) = len 1 + len l',
V i:Nat • i>len 1 =* (lT)[i] = l'li-len 1]

In general, lists will be allowed to contain any kinds of elements: Functions,
integers, Booleans, sets, etc. So, when we say 'simple list' we only mean it
as an example; as a simple example which does, i.e., should not complicate
matters.

Chapter 15 continues our presentation of lists. It focuses on the way in
which RSL, the main specification language of these volumes, provides for
lists, as well as on the choice and use of lists in abstract specifications.

Example 9.25 Syntax of Simple Arithmetic Expressions: The first abstract
syntax proposal was put forward by John McCarthy in [366]. An analytic
abstract syntax was given for arithmetic expressions. In an analytic abstract
syntax we postulate — as sorts — a class of terms. You may consider terms
as a subset of all the things that can be analysed. We associate a number of
observer functions with these.

These examples are drawn from McCarthy [366].

9.6 Axiom Systems 195

Analytic Syntax

We define abstractly a small language of arithmetic expressions. We focus on
constants, variables and infix sum and product terms.

type
A, Term

value
is_term: A —> Bool
is.const, is_var, is_sum, is.prod: Term ->* Bool
s.addend, s_augend, s_mplier, s_mpcand: Term —> Term

axiom
V t:Term •

(is_const(t)A^(is_var(t)Vis^um(t)Vis_prod(t))) A
(is_var(t)A~(is_const(t)Vis_sum(t)Vis_prod(t))) A
(is_sum(t)A~(is_const(t)Vis_var(t)Vis_prod(t))) A
(is_prod(t)A~ (isc_onst(t)Vis_var(t)Vis_sum(t))) A

V t:A • is_term(t) =>
(is_var(t)Vis_const(t)Vis_sum(t)Vis_prod(t)) A
(is_sum(t) = is_term(s_addend(t))Ais_term(s_augend(t))) A
(is_prod(t) = is_term(s_mplier(t))Ais_term(s_mpcand(t)))

A is a universe of things. Some are terms, some not! The terms are restricted,
in this example, to constants, variables, two argument sums and two argument
products. How a constant, a variable, a sum or a product is represented is
immaterial to the above.

One could think of the following alternative, external, written representa­
tions of arithmetic expressions:

a + 6, +ab, (PLUS A B),7axllb.

The last (7a x 11&) is some form of Godel number representation [180,319,444]
of arithmetic expressions.

Synthetic Syntax

A synthetic abstract syntax further introduces generators of sort values, i.e.,
of terms:

value
mk_sum: Term x Term —> Term
mk_prod: Term x Term —> Term

axiom
V u,v:Term •

is_sum(mk_sum(u,v)) A is_prod(mk_prod(u,v)) A
s_addend(mk_sum(u,v)) = u A s_augend(mk_sum(u,v))
s_mplier(mk_prod(u,v)) = u A s_mpcand(mk_prod(u,v))
is_sum(t)=>mk_sum(s_addend(t),s_augend(t)) = t A
is_prod(t)=^mk_prod(s_mplier(t),s_mpcand(t)) = t

= v A
= v A

196 9 Mathematical Logic

Analytic and synthetic syntaxes are truly abstract. •

McCarthy's notion of abstract syntax, both the analytic and the synthetic
aspects, are to be found in most abstraction languages, thus also in RSL.

9.6.6 Discussion

We have shown one of the most powerful means of abstraction: namely
property-oriented abstraction by means of sorts, observer functions (predi­
cates and other value "selection" functions) and generator functions.

Specific principles of when to choose and of how to express, axiomatic
property-oriented abstractions are given primarily in Chap. 12.

9.7 Summary

We have presented an overview of mathematical logic as a specification, rather
than as a verification language. There were many parts to our exposition. In
three stages of development we unravelled first the basis, a Boolean algebra;
then a propositional logic, and finally a predicate calculus. We write an "alge­
bra" , a "logic", a "calculus", since there are many possible Boolean algebras
— ours was one of a specific three-valued logic — and hence many propo­
sitional logics and predicate calculi. We also distinguished between algebra,
logic and calculus: The algebra is just a simple one, the logic is more extensive
— and hints at a theory (with axioms, rules of inference, and theorems) which
we did not elaborate on — and the calculus is indeed to become a calculus:
a set of rules, the inference rules, for calculation, just as the A-calculus had
rules (a-renaming and /3-reduction). It is the predicate calculus, for very many
chapters to come, that will serve us in abstraction and in specification.

In Chap. 8 we explained the notion of an algebra morphism (Sect. 8.4.4)
Two algebras, one of syntax and one of semantics. In this chapter on logic we
applied this concept repeatedly: in structuring our presentation of Boolean
ground terms and their evaluation (Sect. 9.3.4), in structuring our presen­
tation of propositional expressions and their evaluation (Sect. 9.4.3), and
in structuring our presentation of predicate expressions and their evaluation
(Sect. 9.5.7). It was perhaps not until the last of the above that we saw the
full benefits of adhering to an inductive style of presenting the syntax and
a homomorphic style of presenting the semantics. We claim that deploying
the morphism idea helps structure our understanding of induction with its
demand for three clauses: the basis, the inductive, and the (often implicitly
understood) extremal clauses. In particular the inductive clause makes it eas­
ier for the specifier to decide on what — and how much — to develop, to define
and present. Morphisms "tell" us how to develop the semantics: first the se­
mantics corresponding to the basis clauses, then to the inductively defined
syntax.

9.9 Exercises 197

The choice of a three-valued logic is necessitated by our dealing, not with
executable programs, but with specifications: from those of abstract models of
the application domain, as it is, via requirements, to abstract software designs.
That choice, however, complicates the semantics and hence the proof rules.
So far we have only presented inference rules for a two-valued logic.

Finally, taking up a line that was begun in the chapter on algebras, in
Sect. 9.6 we presented a thorough coverage of the predicate calculus with its
quantified expressions — the practical idea of an axiom system. We applied
this idea immediately, without going into logic theories of for example unde-
cidability issues of axiom systems, consistency or completeness. We did so in
order to present actual examples of abstract specifications. With a reasonable,
albeit specification-oriented, view of logic, we can now proceed to apply the
concepts of logic discussed in this chapter.

9.8 Bibliographical Notes

Classical textbooks on mathematical logic are:

• Willard van Orman Quine: Mathematical Logic (1951) [509]
• Alonzo Church: Introduction to Mathematical Logic (1956) [153]
• Elliott Mendelsohn: Introduction to Mathematical Logic (1964) [372]
• Patrick Suppes: A First Course in Mathematical Logic (1964) [492]
• Stephen Kleene: Mathematical Logic (1967) [324]
• Joseph R. Schoenfield: Mathematical Logic (1967) [457]
• Herbert B. Enderton: A Mathematical Introduction to Logic (1972) [210]

There are many others, including: [136,235,259,294,402]. The reader should,
however, be duly warned.

On one hand is the mathematical subject of mathematical logic. On the
other hand is the computing science subject of the same name, but their foci
are different. To logicians mathematical logic is a study of which kinds of
logics there are, their expressive power, which issues are decidable, i.e., what
can be proved. To the software engineer mathematical logic is a tool to be
used for the expression of abstractions and for the oftentimes long-winded and
cumbersome proofs of stated, desirable properties. In Sect. 9.2 we discussed
several of the interface issues between these two viewpoints, and we did so on
the basis of John Rushby's delightful report [451].

9.9 Exercises

Exercise 9.1. X Predicates over the Transportation Net Domain. We refer
to Appendix A, Sect. A.l, Transportation Net.

We also refer to Example 9.12 in which we suggested some types, some
observer functions, and an axiom covering two constraints.

198 9 Mathematical Logic

But those constraints were not enough to satisfy suitably well-formed
transportation nets.

(i) If from any segment one can observe some connections, then from each
of these connections one should be able to observe (at least) that segment.
And: (ii) If from any connection one can observe some segments, then from
each of these segments one should be able to observe (at least) that connection.

1. Formulate suitable axioms (i.e., a predicate expressions) expressing these
two constraints.

2. Can you think of other constraints?
3. We wish to insert in a given transportation net a new segment, and assume

that it is to be connected to existing connections. State the signature of
a suitable insert_segment function, and state the pre- and post-conditions
for this function.

4. We wish to insert in a given transportation net a new connection, and
assume that it is to be inserted in an existing segment. State the sig­
nature of a suitable insert-connection function, and state the pre- and
post-conditions for this function.

Exercise 9.2. X 4 Predicate over the Container Logistics Domain. We refer
to Appendix A, Sect. A.2, Container Logistics.

We also refer to Example 9.13 in which we suggested some types, some
observer functions, and an axiom covering one constraint.

Assume that associated with every bay of a ship or a container storage
area there is associated a maximum height for any of the stacks of any of
its rows of such. Thus assume that the maximum height is an attribute that
can be observed from any bay, and that the current height of a stack can be
observed from any stack.

Express a predicate which applies to any bay: Bay and yields truth if none
of its stacks are higher than the stated maximum height.

Exercise 9.3. X A Predicate over the Financial Service Industry Domain.
We refer to Appendix A, Sect. A.3, Financial Service Industry.

We also refer to Example 9.14 in which we suggested some types, some
observer functions, and an axiom covering three constraints (vii, viii, and ix).

For a transaction concerning a named securities instrument to take place
at a securities (e.g., a stock) exchange, at a given time, £, its name, i, must be
given and there must be buy and sell orders, buy-orders^, selLorders^ for that
securities instrument such that their time interval of consideration embraces
the given time, t, such that the sum totals of quantities of buy-orders^, i.e., <#,.,
and of selLorderSi, i.e., qSi, equal, and such that their ("lo-hi") price interval
of consideration all embraces some transaction price, pi.

Express the above constraints as a pre-condition for a transact function
whose arguments include the name, i, of the securities instrument, the current
time, t, and the securities exchange, sec.exchg.

9.9 Exercises 199

Thus assume suitable observer functions such as: (i) observe buy [sell]
orders for a given, i.e., a named, securities instrument, (ii) observe from a
buy or a sell order its requested buy, respectively sell quantity, its transaction
period (time interval), and its "lo-hi" (buy, respectibely sell) price interval.

Part III

SIMPLE RSL

General

We have covered very basic, and very simple aspects of discrete mathematics
and functions. We are now ready to "embed" such notions in the main tool
of these volumes: The RAISE Specification Language, RSL.

Our first systematic presentation of RSL will basically follow the "pattern"
set in Part II, except that we will now cover functions, as they can be defined
in RSL early in the present part, and then again, later!

For other introductions to the RSL and the RAISE Method we refer to
[236,238].

RSL Versus VDM-SL, Z and B

There are other specification languages. We shall settle for RSL. We could have
chosen, instead, VDM-SL, the current author being one of the instigators and
first researchers into and developers of VDM-SL [120,121,226] (as he is also an
instigator &c. of RAISE hence RSL).

Or we could have chosen Z [476,477,533], or B [3,4]. We chose RSL for a
number of reasons:

• of the specification languages just mentioned, RSL is closest in some sense,
to discrete mathematics;

• like VDM-SL, RSL also expresses the imperative specification style, i.e., with
assignable variables and statements;

• RSL, in addition, can handle the expression of concurrency (see Chap. 21)
— none of VDM-SL, Z, B can do that;

202

• RSL, like algebraic specification languages (CASL [399] and Caf eOBJ [191]),
allows for introduction of sorts, postulation of observer function, and then
having axioms determine the "shape" of the sorts and the signature defined
functions; finally

• RSL, like Z, B, CafeOBJ and CASL, can structure its specifications in a
modular fashion (see Vol. 2, Chap. 10).

It is the "extension" of VDM-SL with sorts and axioms and with CSP-like
process concepts, which to this author makes RSL preferable to VDM-SL. If
you have learned and use VDM-SL before you can rather easily "move" on to

| RSL. |

B, with its follow-on event-B, has yet to settle, so it would be premature to
base a text book whose primary aim is not to teach a specific language (but
to teach abstraction) on B/event-B.1 9

The modular structuring facilities of Z seems very elegant. The emerging
such facilities of event-B likewise. Both Z and B seem to emphasize formal
proofs as mandatory in every step of development — where VDM-SL and RSL
emphasises specification. All in all it seems to this author that RSL is a best
choice: Most versatile.

But we should claim that it is more important to express (model-oriented)
abstraction, than to pick (on) a specific language. So we suggest lecturers to
use these volumes, but work out themselves supplementary notes in either of
the model-oriented specification languages VDM-SL, Z or B.

What, Syntactically, Constitutes a Specification?

We shall, in the present volume, take a specification to consist of:

• one or more type definitions,
• one or more function value definitions,
• zero, one or more axioms,
• zero, one or more variable declarations, and
• zero, one or more channel declarations.

For now we shall be content with the first three kinds of specifications.
Chapter 20 will introduce variables, and Chap. 21 will introduce chan­

nels.
Volume 2, Sect. 10.2 will slightly change the above view of the syntax of

a specification, to allow for schemes and classes to contain the type, value
and axiom parts, while extending RSL with objects.

19The current author finds that the principles of event-B represents a fascinating
specification paradigm.

203

Towards an RSL "Standard"

RSL20 is currently maintained, as a language, by Chris George2 1 . The main
reference to RSL is [236]:

T h e R A I S E Spec i f i c a t i on L a n g u a g e .
Chris George, Peter Haff, Klaus Havelund, Anne Haxthausen, Robert
Milne, Claus Bendix Nielsen, S0ren Prehn, and Kim Ritter Wagner.
The BCS Practi t ioner Series. Prentice-Hall, Hemel Hampstead, , 1992.

Tha t book appears to be out of print. You may be able to buy publisher
authorised reprints of the book from:

h t t p : / / s p d - w e b . t e r m a . c o m / P r o j e c t s / R A I S E / f a q . h t m l # c o n t a c t _ i n f o
att . : Mr. Jan Storbank Pedersen

It is hoped tha t a slight revision of the text may be available over the Internet.
The other main reference to RAISE [238]:

T h e R A I S E M e t h o d .
Chris George, Anne Haxthausen, Steven Hughes, Robert Milne, S0ren
Prehn, and Jan Storbank Pedersen.
The BCS Practi t ioner Series. Prentice-Hall, Hemel Hampstead, UK, 1995.

is now available over the Internet:

f t p : / / f t p . i i s t . u n u . e d u / p u b / R A I S E / m e t h o d _ b o o k /

The RSL of the present three-volume series is a "slight extension" of proper
RSL. For the variant of RSL which is supported by free tools, see next, is
described on the following Internet web page:

w w w . i i s t . u n u . e d u / n e w r h / I I I / 3 / l / d o c s / r s l t c / R S L . c h a n g e s /

RSL T o o l s

Information about down loadable RAISE Tools can be obtained from UNU-
IIST:

h t t p : / / w w w . i i s t . u n u . e d U / n e w r h / I I I / 3 / l / p a g e . h t m l

The information in this and the next section is dated. It is correct as of "year
end/year begin" 2004/2005.

21UNU-IIST, United Nations University, International Institute for Software
Technology, P.O. Box 3058, Macau SAR, China. E-mail: cwg@iist.unu.edu, URL:
www.iist.unu.edu

204

This includes information about free, open-source software for various plat­
forms (Linux, Solaris, DOS, Windows). Includes type checking, pretty-printing,
translation to SML and C++.

Information about original RAISE Tools can be obtained from Terma, the
company that markets these tools:

h t t p : //spd-web .terma. com/Proj ects/RAISE/f aq.html#tool_support

Likewise information about tool manuals:

f t p : / / f t p . i i s t . unu. edu/pub/RAISE/tool_manuals/

10

Atomic Types and Values in RSL

• The prerequisites for studying this chapter are that you possess famil­
iarity with ordinary programming language type and value concepts and
specific awareness of the mathematical concept of numbers as covered in
earlier chapters.

• The aims are to introduce the concept of atomic types and values, in
particular to introduce the RSL concepts of enumerated types (and their
values), and to emphasise the two-faced notion of specific space of RSL
specification versus arbitrary spaces of modelled identifiers.

• The objective is to teach the reader to choose appropriate atomic types
and values as models of simple phenomena and concepts.

• The treatment is systematic and semiformal.

\Not every phenomenon can be analysed down to a stone, i.e., an atomic
thing. But many things can — and for those we present some modelling
principles, techniques and tools.

Characterisation. By an atomic value we mean an entity in whose possible
subparts we have no interest. It may have some proper subparts, or it may
have none, but all we are interested in is the value itself. •

Characterisation. By an atomic type we mean a type all of whose values
are atomic. •

10.1 Introduction

We shall discuss why this chapter brings the material that it does, and why
at this place!

206 10 Atomic Types and Values in RSL

10.1.1 Mathematical Versus Enterprise Modelling

Numbers play an important role in everyday life: In budgeting and account­
ing — i.e., in ordinary reckoning — and in mathematics. Models of physical
phenomena are classically expressed in terms of, for example, polynomial, dif­
ferential and integral equations. The variables of expressions in these equations
usually denote numbers. We will not be dealing with traditional, often called
applied, mathematics as practiced by all engineers, by operations researchers,
by econometricians, etc. Instead we will be teaching principles, techniques
and tools. "Our" mathematical specifications will not supplant those of the
above-mentioned professionals. We — and you, based on what you learn here
— will be applying "our kind" of mathematical specifications to such actual-
life phenomena for which classical mathematics have shown to be inadequate
or awkward.

Although this chapter is about numbers, we shall, in consequence, not be
basing "our kind" of specifications on numbers, but more on "richer" math­
ematical structures — also not suitably modelled by polynomials, differen­
tials, integrals or other classical mathematical forms of expressions. We shall
present principles, techniques and tools for the modelling and for providing
software for general enterprises, not conventionally "modellable" by ordinary
mathematics.

10.1.2 The "Primitive" Model Building Blocks

In this chapter we shall look at the very basic, you may wish to call them
the "primitive", we call them the atomic elements, by means of which our
models are built, or upon which they rest. They include numbers: natural
numbers, integers and reals — and we discuss why only and exactly those.
The elements also include characters and text strings, and what we could refer
to as identifiers, or tokens.

Our main use of numbers in modelling, is in modelling quantities. Just as
physicists use numbers to quantify weight, speed, etc., so we use numbers to
quantify similar and other actual-world phenomena. Our main use of charac­
ters, text strings and identifiers is in modelling simple, concrete input/output
messages, or respectively in modelling identification of phenomena in the uni­
verse of discourse.

10.2 The RSL Numbers

We have already covered, in Chap. 2, the mathematical concepts of numbers.
Suffice it here to summarise. There are many kinds of numbers, to wit: natural
numbers (Nat: 0,1,2, . . .) ; integers (Int: . . . , —2,-1,0,1,2, . . .) rationals:
consisting of both integers (viz.: i, j) and fractions, 4, for all integers i, j
where j ^ 0; irrational numbers; real numbers (Real), imaginary and complex
numbers; and transcendental numbers.

10.2 The RSL Numbers 207

10.2.1 Three Types of Numbers

Without taking into consideration the operations applicable to numbers
(Sect. 10.2.2), in RSL we consider just the following three subtypes of all the
numbers: the natural numbers, the integers and the reals. The three categories
are related as follows:

Nat C Int C Real

Natural Numbers: Nat

The natural numbers are just the whole numbers larger than or equal to zero:
0 ,1 ,2 ,

Integers: Int

The natural numbers are just the whole numbers, positive or negative:
. . . , - 2 , - 2 , 0 , 1 , 2 ,

Real Numbers: Real

The real numbers of RSL are those whose numerals (i.e., names) can be written,
with or without a minus sign, as a finite sequence of digits before a decimal
point, ".", followed by a finite sequence of digits after the decimal point:
-987654321.0123456789!

10.2.2 Operations on RSL Numbers

RSL defines the following operations on real numbers:

value
+, - , / ,*: Real x Real >̂ Real
< ,< ,= ,A> ,>: Real x Real -^ Bool
- : Real -^ Real
abs: Real -^ {| r:Real • r>0 |}
int: Real —> Int
real: Int —> Real

axiom
V n:Nat • abs —n = n = abs n

As for all other types, equivalence (=) and non-equivalence (^) are also de­
fined on numbers. The int and real functions convert a real to the integer
nearest 0, or respectively an integer to a real:

int 2.71 = 2, int -2.71 = - 2 , real 5 = 5.0, ...

208 10 Atomic Types and Values in RSL

10.3 Enumerated Tokens

When we wish to speak of typically a finite number of identifiable atomic en­
tities without further describing them, then we turn to the use of enumerated
tokens.

10.3.1 Motivation

We believe that Example 2.3 clearly shows the need for a less encoded mod­
elling of finite, usually "small sets" of atomic values where we do not really
care what these values are, other than being able to name them individually
and distinctly. For this we introduce, as was already done for programming
languages, in, for example, Pascal (by Niklaus Wirth [314,522]), the notion
of enumerated tokens.

Example 10.1 Enumerated Tokens, Playing Cards: The 52 card set, that is,
without the Joker can usually be modelled as:

type
Suit = = club | diamond | heart | spade
Face = = ace | two | three | ... | ten | knight | dame | king
Card = Suit x Face

The suits are usually shown as: X- <), *s? and 4*. •

10.3.2 General Theory

By an enumerated token we understand an atomic value defined in a particular
way. Let t and tf be enumerated tokens. Either t = t' (and t = t') or t ^ t' (and
^) . The equality (equivalence) and the inequality (nonequivalence) operations
are the only ones defined on enumerated tokens.1

A schematic example is in order:

type
Token = = tokeni | token2 | ... | tokenn

is a variant definition which defines n atomic values: tokeni, toker^, ..., tokenn.
Thus the definition symbol: = = signals what we shall call a variant con­

structor. The type constructor | thus effectively designates a disjoint type
union.

The above variant definition is a shorthand for the following "longhand":

xIn fact these four operations: =, =, / and ^, are defined on all values.

10.3 Enumerated Tokens 209

type
Token

value
tokeni: Token,
token2: Token,

tokenn: Token
axiom

[disjointness of enumerated tokens]
tokeni ^ token2 A ... A tokeni ^ tokenn A
token2 ^ token3 A ... A token2 ^ tokenn A

tokenn_i 7̂ tokenn

Enumerated tokens, i.e., variant definitions, like the above, thus come with or
"generate", an additional axiom: the induction axiom.

The role of the induction axiom is to express that the variant definition
designates a model in which there are only and exactly the three enumerated
values.

To express this metalinguistically, that is, not as a part of the variant
definition, but as one implied, we say: For all predicates p, if p holds for all
the enumerated values listed, then p holds for all Tokens:

axiom
[enumerated token induction]

V p:Token-^Bool •
p(tokeni) A p(token2) A ... A p(tokenn) => V token:Token • p(token)

Thus, by taking (one) p as:

value
p: Token -» Bool
p = A t:Token • t=tokeni V t=token2 V ... V t=tokenn

we see that a Token is either tokeni, or token2, or ..., or tokenn; that is, only
one of those.

10.3.3 Operations on Tokens

Only four operations apply to tokens: equality (=) and inequality (^), equiv­
alence (=) and non-equivalence (^):

type
Token = = a | b | ... | c

value
=: Token x Token -» Bool

210 10 Atomic Types and Values in RSL

^ : Token x Token - • Bool
=: Token x Token -» Bool
^ : Token x Token - • Bool

10.3.4 Enumerated Tokens in Abstract Models

There is a principle of (possible) application to adhere to, there is a technique
with which to proceed when having chosen abstraction using enumerated to­
kens, and there is, in RSL, a tool to apply when carrying out the specification,
that is, when considering, respectively choosing to introduce enumerated to­
kens into an abstract model (i.e., an abstract specification). They (the prin­
ciple, the technique and the tool) are:

Principles. Enumerated Tokens: If a concrete, physically manifest phe­
nomenon or an abstract concept can be characterised by an attribute that
can take on (usually only a few) values, where these can all be considered
atomic, and among which only the equality and equivalence operations apply,
then choose to model these as enumerated tokens. •

Techniques. Enumerated Tokens: Identify the one or more attributes of a
phenomenon (concept); assign distinct names to their value types; determine
the range of values for each enumerated type; ascribe suitably expressive iden­
tifiers as names for these values and otherwise apply the tool for modelling
enumerated tokens. •

Tools. Enumerated Tokens: The RSL language tool for expressing enumer­
ated tokens is the variant definition:

type
ET = = et_l | et_2 | ... | en_n

The RSL tool, besides expressing equality, for handling enumerated tokens is
the case construct:

type
A, B

value
obs_ET: A - • ET
fct, fct_l, fct_2, ..., fct_n: A - • B
fct(a) =

case obs_ET(a) of
et_l -> fct_l(a), et_2 - • fct_2(a), ... , et_n ->- fct_n(a)

end

10.3 Enumerated Tokens 211

where fct tests the enumerated token value, say et_i, of an argument a:A, for a
given attribute (ET), and invokes an appropriate auxiliary function, say fct_i,
to (further) process the argument.

The type A and B, the observer function obs_ET and the auxiliary functions
fct J are assumed.. •

10.3.5 Modell ing Using Enumera t ed Tokens

Enumera t ed Tokens and Fini te Sta te Devices

By a finite state device we understand either a finite state automaton, or a
finite state machine. In Vol. 2, Chap. 11 we shall introduce the concepts of
finite state automata and finite state machines. Each state of such devices
is typically labeled, and labels are drawn from a finite alphabet of symbols.
These are modelled using the concept of enumerated tokens as introduced in
this section.

Example 10.2 Finite State Automata State Labels: We present some infor­
mal examples:

(1) In an operating system scheduled jobs are either running, queued, wait­
ing for input, idle or other. With each job one can therefore associate its state
— as labeled by these enumerated tokens.

type
Job-Status = = running | queued | waitingjbr input | idle | other

(2) An automobile may be in either of the following states: parked, standing
still with motor running, driving forwards, driving backwards, or other.

type
Car .Status = = parked | idling | forward | backward | other

(3) An aircraft may be in either of the following states: waiting for mainte­
nance, being maintained, taxiing to departure gate, being serviced (being fueled,
loading baggage, boarding passengers, etc.), cleared for take-off, taking off,
flying, landing, etc.

type
Aircraft-Status = = wait_maint | under_maint | taxLdept |

| under_service | cleared | take.off | flying | landing

212 10 Atomic Types and Values in RSL

Enumerated Tokens and Linux Commands

Example 10.3 Linux Command Names: When specifying the software de­
sign for implementing, or the requirements for prescribing the meaning of
Linux commands, we need to name them. Some are: cp, emacs, latex, Is, mkdir,
mv, rm, rmdir, etc.

type
Linux_Cmd_Nms = = cp | emacs | latex | Is | mkdir | mv | rm | rmdir | ...

10.4 Characters and Texts

Characters and sequences of characters, i.e., texts, form a very concrete type,
one we shall not be using much in domain descriptions or requirements pre­
scriptions.

10.4.1 Motivation

For the ordinary use of computers, input data must be read, stored data
need be manipulated, and output data must be generated. The input data
originally, and the output data finally, are in the form of visualisable marks:
alphabetic characters, numeric digits and special symbols (operator symbols,
delimiters, etc.). All this is prescribed by computer programs.

The purpose of abstract specification is not to define executable programs
but, with respect to software design, to specify classes of these. And with
respect to domain descriptions and requirements prescriptions, we need not
prescribe concrete input and output, but can abstract these.

Therefore, at high levels of abstractions, we need not make use of RSL's
built-in Character and Text data type. But, at close-to-execution level
RSL software design specifications, it is useful to have a counterpart to the
charac ter and charac ter s t r i n g types of ordinary programming languages.

10.4.2 The Character and Text Data Types

The RSL Char and Text data types are related to one another, and the
Text data type is related to the RSL list data type. Meta-linguistically, i.e.,
"outside" RSL, we can explain the two RSL types:

literals /* This is meta RSL */
a , ..., A , ...

type
Char ~ {| 'a', V , 'c', ..., V , 'A', 'B', ..., 'z' |}
Text ~ Char*

10.5 Identifiers and General Tokens 213

value
cl,c2,...,cn:Char

value expressions
cl=c2 V cl^c2 V ... V c='a' V c = V V ...

This is concrete RSL:

value expression explanations or equivalences:

"abra" ~ {'a'/h'/p'/a')
hd "abra" = 'a'
tl tl tl "cadabra" = "abra"
len "abracadabra" = 11

"" * 0
"abra"^"cadabra" = "abracadabra"
card inds "abracadabra" = card {1,2,3,4,5,6,7,8,9,10,11} = 11
card elems "abracadabra" = card{ ,a / /b / /c / /d / / r /} = 5

We refer to our first presentation of the RSL list data type of Example 9.24.
Since texts are sequences of characters, texts really are not atomic, but the
elements are.

Above we introduced, without prior explanation, the RSL sub-typing con­
struct. If A1 is a type (i.e., a type name), then A is the subtype (i.e., the name
of the subtype) of A1 whose values all satisfy the postulated predicate P(a):

type
A'
A = {| a:A' . P(a) |}

value
P: A' -> Bool

Thus {| and |} are special forms of set type constructors.

10.5 Identifiers and General Tokens

Identifiers are specially identified "atomic" language quantities, i.e., they "are"
syntax. Tokens are identifiable atomic designations, i.e., they "are" atomic
semantic quantities.

10.5.1 Identifiers

There are two kinds of identifiers: identifiers used in, for example, RSL specifi­
cations (and in programs: variable, label, type and procedure names, etc.), and
identifiers that we need again and again in order to model certain phenomena
and certain concepts. This section is about identifiers.

214 10 Atomic Types and Values in RSL

RSL Identifiers

In our specifications we need to identify phenomena: types, values, incl. func­
tions, etc., by naming them. Identifiers in, for example, RSL, serve this role.
RSL identifiers are any string of alphanumeric characters possibly with prop­
erly in-fixed underscores and/or suffixed primes:2

a, aa, ala, aJa, ala, abra_ca_dabra, a_l, a , a

Universe of Discourse Identifiers

Universe of discourse identifiers arise when we model a domain — or some
requirements, or some software — in which there is a collection of further
unspecified names or identifiers.

Example 10.4 Universe of Discourse Identifiers: Some examples of universe
of discourse identifiers include names of (i) persons, of (ii) cities, of (iii) prod­
uct parts (i.e., part numbers), of (iv) patient medical journals, etc., as in
some actual, real-life domain. They can also include names of (v) database
relations, (vi) relation attributes (i.e., column names) or computing resource
names: (vii) pointers to records, (viii) disk segments, or other, as for some
requirements prescription, or for some software design. •

As far as we are concerned these universe of discourse identifiers need not be
given a concrete representation, but can be modelled by any sort about whose
elements we may assume that they are "further unanalysed". In Sect. 10.5.3
we shall show how to model such universe of discourse identifiers.

10.5.2 Operations on General Tokens

Only four operations apply to general tokens: equality (=) and inequality (^),
equivalence (=) and nonequivalence (^):

type
Token

value
=: Token x Token - • Bool
^ : Token x Token - • Bool
=: Token x Token -» Bool
^ : Token x Token - • Bool

2For readers with knowledge of the Z specification language, primes are a kind
of temporal state operator, hence are not part of identifier names.

10.5 Identifiers and General Tokens 215

10.5.3 General Tokens

By a general token — as distinguished from enumerated tokens (cf. Sect. 10.3)
— we understand a further unanalysed atomic quantity. Typically we can
think of a sort name standing for an indefinite set of unique general tokens.

Principles. Unique Universe of Discourse Identifiers: When an entity, i.e., a
set of phenomena, manifests itself, or a concept can best be understood, as a
potentially indefinite set of unique atomic and further unanalysed quantities
among which there is basically just the equality (and hence also the inequality)
operation, and for which no particular representation (i.e., concrete name) is
needed, then choose the model concept of general tokens for the abstract
specification of these phenomena, respectively this concept. •

Techniques. Unique Universe of Discourse Identifiers: Once one or more sets
of phenomena or concepts has been chosen for modelling by means of general
tokens, then choose appropriate, distinct names as sort names for each of the
set of phenomena, respectively for each concept. By not stating any axioms
about these sorts values of distinct such sorts, values of different general token
sorts are distinct. •

Tools. Unique Universe of Discourse Identifiers: To model universe of dis­
course identifiers we use the concept of general tokens. To model the dynamic
issuance of (each time) distinct identifiers we may model as follows: We de­
clare a global variable ids, and an operation get_ld of no arguments. Invocation
of getJd, i.e., get_ld(), amounts to the generation of an identifier that has so
far not been issued.

class =
type

[1] Id
variable

[2] ids:Id-set := {}
value

[3] getJd: Unit —> read ids write ids Id
[4] get_Id() =
[5] let id:Id • id ^ ids in
[6] ids := ids U {id};
[7] id end

end

The keyword variable and line [2] above declare an assignable variable of
type sets of identifiers and initialise this variable to the empty set of such.
The literal Unit before the —> "announces" that the function getJd takes no
argument.3 The keyword write announces that the function getJd potentially

3Unit is a type name; () is the only value of type Unit.

216 10 Atomic Types and Values in RSL

reads from and is intended to or definitely writes to a variable. The assign­
ment statement prescribes the addition of an, in this case newly generated,
identifier.

Elsewhere in the specification — where the above general token definition,
with its generator operation, getJd, is found — one may now invoke the
operation:

... let id = getJdQ in ... id ... end ...

where the unique identifier id may be used several times: ... id •

10.6 Discussion

It is time to review.

10.6.1 General

In this chapter we have introduced the atomic values and types of numbers:
natural (Nat), integers (Int) and reals (Real); of enumerated and general
tokens; and of characters and texts.

10.6.2 Modelling Atomic Entities

It remains to convey an important issue that we find it is better to mention
here, in a summary, where we hope that issue will not be overlooked: When we
have to model natural numbers, integers or reals in some universe of discourse,
then we model them not by their representation, i.e., numerals, but directly
by their semantic values: Nat, Int and Real, respectively. This parallels our
similar modelling of Booleans, Bool, not by some representation, but by their
semantic values.

We emphasize that there is a distinction to be made between using num­
bers and Booleans, for technical reasons in some specification, and using them
to abstract phenomena and concepts of some universe of discourse. In the lat­
ter case, instead of describing (or prescribing) representations for each of the
aforementioned atomic types, the specifier just uses their semantic value types.

Across many application domains there are many distinct, and even widely
different kinds (read: types) of atomic entities. How are we to handle them?
The answer was given above.

Principles. Atomic Entities: Atomic entities are usually handled as "fur­
ther un-described" quantities, with no other properties associated with them
than distinct actual world entities being modelled as distinct model values.
The atomic entity modelling principle finally says: Do not describe specific
syntactic representations for atomic entities. •

10.7 Exercises 217

The above was a principle. How does it relate to our formal modelling? That is,
how are we to handle the description and formal modelling of atomic entities?

Techniques. Atomic Entities: We make the distinction between types and
values: Classes of atomic entities are usually modelled by further unspecified
sorts. But when the atomic entities do possess such properties as are suffi­
ciently possessed by numbers or characters or by character strings, then we
model them so. •

10.7 Exercises

Problem 10.1 below is reminiscent of material in J.H. Conway's book On
Numbers and Games [159].4

Exercise 10.1. Natural Numbers as Sets. Let the natural number 0 be repre­
sented by the empty set, {}; the natural number 1 by the singleton set whose
only member is the empty set, {{}}; and so forth: the natural number n, where
n is larger than 0 is thus represented by a singleton set whose only member
represents the natural number n — 1.

1. Now define an appropriate type, N, for natural number sets as outlined
above and two functions, Nat2N and N2Nat. Nat2N takes a natural number
and yields its set representation (in N), and N2Nat takes the set represen­
tation of a natural number and yields that natural number.

2. Then define simple arithmetic operators of addition and multiplication over
N — resorting and without resorting to the use of general addition and
multiplication, that is, to addition by other than Is.

Exercise 10.2. X Atomic Types in the Transportation Net Domain. We refer
to Appendix A, Sect. A.l, Transportation Net.

1. Segment and Connection Names: Segments and connections have unique
names — but we do not bother as to how they may be represented. Suggest
type, that is, names for these names and explain in one or two words of
which of the four kinds of atomic types you suggest they should be.

2. Segment and Net Types: A transportation net has segments being of ei­
ther of a definite number of kinds. (You may think of these kinds as
representing: public road, toll road, free way, rail line, air corridor or shipping
lane.)

(a) Concrete Net Types: Either you decide to model exactly a specific
variety, such as just suggested above. Then suggest a suitable atomic
type definition for that case.

4Seealso [44,45].

218 10 Atomic Types and Values in RSL

(b) Abstract Net Types: Or you decide to model any such variety, say
several levels of public roads, or of air corridors, etc. Then suggest a
suitable atomic type for that case.

(c) Nets of One Type: Now define a predicate that determines whether
a transportation net has all of its segments of the same kind — for
either of your two models of the previous two items.

3. Connection Types: Given that one can observe from a segment its net
type, it is reasonable to assume that a connection takes on, as its net
type, the sum total, that is, the set of net types of its connected segments.
(a) State the signature of an observer function that determines the net

type of any connection.
(b) Express an axiom that must be satisfied by any net, namely that the

net type of any connection is commensurate with the net types of its
connected segments.

Exercise 10.3. A Atomic Types in the Container Logistics Domain.
We refer to Appendix A, Sect. A.2, Container Logistics.

Assume that container ships and container terminals can handle a diver­
sity of containers: 20' (twenty feet), 40' (forty feet), and refrigerated such
containers. Thus bays on ship and on shore are designated to contain only
one specific of these kinds of containers. Suggest a way of modelling this:

1. atomic types (of an appropriate kind),
2. observer functions applicable to containers and to bays and yielding their

container type, and
3. a predicate that applies to bays and checks that all stacked containers are

of the appropriate kind.

Exercise 10.4. X Atomic Types in the Financial Service Industry Domain.
We refer to Appendix A, Sect. A.3, Financial Service Industry.

Introduce a notion of credit cards of either one of the following kinds:
AEX (American Express), DC (Diners Club), MC (Master Card), or VISA.
From credit cards one can observe customer name, a credit card number, and,
hidden from view, the number of a credit card account — which is also then
a demand/deposit account of the designated customer.

Bank accounts can be of a number of kinds: mortgage (i.e., loan) accounts
and demand/deposit accounts. In the latter case, the account is then associ­
ated with a set of zero, one or more credit card types and numbers.

Two or more credit cards can be associated with the same, hence shared
demand/deposit bank account.

1. What kind of entities are credit cards: atomic or composite?
2. What attributes can be associated with a credit card?
3. Formalise the type of credit cards as a sort,
4. and define suitable observer functions.

10.7 Exercises 219

5. Augment possibly previously defined types and observer functions related
to bank accounts to take into consideration the above rough sketch nar­
rative description. In particular extend the bank type to also include all
the credit cards honoured by that bank.

6. Express first in words, i.e., in English, then formally in terms of axioms
over bank types the constraints that must hold between the bank accounts
of banks and associated credit cards.

11

Funct ion Definitions in RSL

• The prerequisite for studying this chapter is that you possess know­
ledge about the mathematical concepts of numbers, sets, Cartesians and
functions as covered in earlier chapters.

• The aim is to introduce, in preparation for the following chapters, ways
and means of defining functions.

• The objective is to start the reader on the road to becoming fluent in
defining functions as abstractly as is needed, when needed.

• The treatment is systematic and semiformal.

To express any observation of phenomena and concepts, any operation on
or over phenomena and concepts (that may yield "new" such) — in other
words, in order to express change — we must apply functions. Hence we

| must define these functions. |

There are a number of ways of defining functions. They are more or less
variants of one another. They span a stylistic spectrum from property-oriented
to model-oriented. This chapter will elucidate five ways of defining functions.
But first we recap the function type.

11.1 The Function Type

Three issues are always relevant when presenting a data type: the means of
expressing it (the syntax), the meaning of what is expressed (the semantics),
and why we wrote down these expressions in the first place (the pragmatics).
We shall cover the first two issues.

11.1.1 Syntax of Function Types

Let A, B stand for any types. Let F name the type of all total functions from A
into B and let G name the type of all partial functions from subsets of A into

222 11 Function Definitions in RSL

B. The latter type of functions includes the former type of functions. That is:
the space of total functions is included in the space of partial functions.

type A, B
F = A ->B
G = A H > B

value
f: F, g: G

"axiom" — i.e., an RSL metalinguistic statement:
F C G , i.e., (A -> B) C (A ^ B)

We say that the two clauses, f:F and g:G, represent the signatures (the name
and type) of the function spaces.

11.1.2 Informal Semantics of —> and —>

—y and ^> are infix type operators. Applied to respective types (here the sorts
A and B) they "construct" the (type) sets of total functions, respectively
partial functions, from A into B.

We now cover, briefly, five ways of — five sets of RSL language constructs
for — defining functions.

11.2 Model-Oriented Explicit Definitions

In model-oriented style of function definition we typically define one function
at a time, in a model-oriented manner, and in terms of A-functions.

Let £(a) can be any expression of the specification language being used.
£ (a) is intended to yield a value of type B.

A model-oriented function definition is, schematically:

type
A, B f: A -> B

value f = Aa:A.£(a), or:
f: A H> B f(a) = £(a)
f = Aa:A.£(a) pre V(a)

The first variant, with / being partial, requires the pre-condition Via).

Example 11.1 Model-Oriented Explicit Function Definition: We define a
modulo function:

11.3 Model-Oriented Axiomatic Definitions 223

value
mod: Nat x Nat >̂ Nat
mod =

A(m,n):(Nat> Nat)
if n=0 then chaos else
if 0<m—n<n then m—n else mod(m—n,n)
end end

The explicit function definition:

type
A, B

value
f: A - • B, f = A a.£(a), etc.

is an instance of the following axiomatic definition:

type
A, B

value
f: A - • B,

axiom
V a:A • f(a)=£(a)

11.3 Model-Oriented Axiomatic Definitions

In this style of function definition we typically define one function at a time,
in a model-oriented manner, but by a triple of type/ value /axiom clauses:

type
A, B, ...

value
i A 4 B
ca:A, cb:B, ..., ca':A, cb':B

axiom
•R.(ca,cb), ..., 7?.(ca',cb')
V a:A, b:B •

Pi (a) =* Qi(a,b)
A P2(a) =>• Q2(a,b)
A ...

A Vn{a) => Q„(a,b)

224 11 Function Definitions in RSL

ca, cb, . . . , ca', cb' are usually constant values. Usually their definition (i.e.,
value identification cum instantiation) is omitted. 7£(ca,cb), ..., 7£(ca',cb') are
propositions over constants. The predicate expressions 7^(a) and Qi(a,b) are
usually algorithmically expressed, at least to the extent that they do refer to
f and some nontrivial operators (and possibly auxiliary functions over A, B,
etc.). If f is total then one or more of the 7^(a)=>'s are omitted.

Example 11.2 Two Model-Oriented Axiomatic Definitions:

• The modulo function:

value
mod: Nat x Nat -^ Nat

axiom
V m:Nat • mod(m,l) = 0
V m,n:Nat • n / 0 =>>

3 q,r:Nat • q*n+r=m A 0<r<n—1 A mod(m,n)=r

• The square root function:

value
sqr: Real >̂ Real

axiom
V v:Real • v > 0.0 => 3 r:Real • sqr(v) = r A v*v = r

The next kind of function definition style differs only by emphasising more
property-orientedness than the model-orientedness of the present style. The
difference is a matter for discussion and choice.

11.4 Model-Oriented pre/post-Condition Definitions

In this style of function definition we typically define one function at a time, in
a model-oriented manner, and in terms of a pair of predicates: one characteris­
ing function argument values; the other relations between function arguments
and corresponding function results. Schematically it syntactically "looks" like:

type
A, B

value
f: A H>B
f(a) as b

pre P(a)
post Q(a,b)

11.4 Mo del-Oriented pre/post-Condition Definitions 225

V(a) and Q(a,b) are general (usually universally quantified) predicate expres­
sions over (quantified) variables a and b. Note the keyword as.

Example 11.3 Model-Oriented Implicit pre/post-Condition Function Defini­
tion: Yet another form of definition of the modulo function is given:

value
mod: Na t x Na t -3- Na t
mod(m,n) as r

pre n^O
post 3 q:Nat • q*n+r=m A 0<r<n—1

The implicit pre/post-condition definition:

type
A, B

value
f: A 4 B
f(a) as b pre P(a) post Q(a,b)

is an instance of either of the following

type
A, B

value
f: A H>B

axiom
V a:A • P(a) =>

3 ! b:B • f(a) = b A
Q(a,b)

; axiomatic definitions:

type
A, B

value
f: A - + B

axiom
V a:A • V(a) =>

3 b:B • f(a) = b A
Q(a,b)

The only difference between the above two forms is that one (the one with
unique existential quantification) defines a function deterministically, and the
other defines it nondeterministically.

We have not shown that many f(a) as b pre p(a) post q(a,b) definitions.
However, many will come, including:

Example 13.5's merge function, Example 13.11's int_Call, int.Hang and
int.Busy functions, Example 15.6's index function, Example 15.8's sort func­
tion, Example 15.10's A_sort and KWIC functions and Example 16.10's retr_G2
function.

226 11 Function Definitions in RSL

11.5 Property-Oriented Axiomatic Definitions

In this style of function definition we typically define one function at a time,
usually in a semi-property-oriented manner, that is, by some modest use of
model-orientedness, and by a triple of type/value/axiom clauses:

type
A, B, ...

value
f: A 4 B

axiom
V a:A, b:B •

'Pi (a) =* Qi(a,b) A
V2 (a) =* e2(a,b) A
... A
Pn(a) => Qn (a,b)

The expressions T(d) and Q(a,b) are not algorithmically expressed. If f is
total then the 7^(a)=>s are omitted.

Example 11.4 Two Property-Oriented Axiomatic Function Definitions:

• Factorial:

value
factorial: Nat -» Nat
n:Nat

axiom
n > 1
factorial(l) = 1,
factorial (n) = n * factorial (n—1)

• Fibonacci:

value
fibonacci: Nat —t Nat
n:Nat

axiom
n > 1
fibonacci(O) = 1, fibonacci(l) = 1,
fibonacci(n) = fibonacci(n—1) + fibonacci(n—2)

11.6 Property-Oriented Algebraic Definitions 227

11.6 Property-Oriented Algebraic Definitions

Here we are usually just given the built-in RSL atomic types (hence semi),
the sorts (abstract types) and the signatures (i.e., type) of functions. An
axiomatic, property-oriented function definition usually defines both several
functions and several sorts — simultaneously. Schematically it syntactically
"looks" like:

type
A, B, C, D, E, F

value
f: A H> B, g: C H> D, ..., h: E -+ F

axiom
£pi(f,g,...,h), ..., £Pfc(f,g,...,h) [constants]
£el£(f,g,--,h) = £e l r(f,g,-,h) [equations]

£en£(f,g,-,h) = £enr(f,g,...,h) ...

where ^(f,g,...,h) are general expressions involving — usually, but not shown
— quantifications of types A, B, C, D, E, and/or F.

We have shown several axiomatic definitions: Example 8.5 (stacks), Ex­
ample 8.6 (queues), Example 9.23 (simple sets), and Example 9.24 (simple
lists).

Example 11.5 A Peano Algebra, A Property-Oriented Data Type Defini­
tion: We continue Example 11.4, but now present the two functions in a fully
algebraic style. Please refer to the Peano axioms in Example 9.21. They de­
fine Nat, but we now define arbitrary sum and successor and predecessor
(addition, respectively subtraction, by one):

value
z: Nat - • Bool
s: Nat - • Nat
p: Nat -^ Nat
sum: Nat x Nat ->> Nat
mpy: Nat x Nat - • Nat
fact: Nat ->> Nat
fib: Nat - • Nat

axiom
V m,n:Nat •

z(n) = n=0,
p(s(n)) = n,
p(0) = chaos,
sum(0,n) = n,
~z(m) => sum(m,n)=sum(p(m),s(n)),

228 11 Function Definitions in RSL

mpy(0,n) = 0, mpy(m,0) = 0,
mpy(l,n) = n, mpy(m,l) = m,
~z(m) => mpy(m,n)=sum(m,mpy(p(m),n)),
fact(0) = chaos, fact(l) = 1,
~z(p(n)) => fact(n)=mpy(n,fact(p(n))),
fib(0) = 1, fib(l) = 1,
~z(p(n)) =* fib(n)=sum(fib(p(p(n))),fib(p(n)))

Here equality to 0 is assumed a primitive, i.e., given predicate.

11.7 Summary of RSL Function Definition Styles

Without comments we list the variety of function definition styles covered in
this chapter:

1. Model-Oriented Explicit Defini­
tions

type
A, B

value
f: A^ B
f = Aa:A.£(a) pre /P(a)

f: A-> B
f = Aa:A.£(a)

[or — which is the same]
f(a) = £(a)

2. Model-Oriented Axiomatic
nitions

type
A, B

value
f: A^ B
ca:A, cb:B, ..., ca':A, cb':

axiom
7£(ca,cb), ..., 7£(ca',cb')
V a:A, b:B •

Pi (a) => fii(a,b) A
p2(a) => fi2(a,b) A
... A
Vn(a) => Qn(a,b)

Defi-

B

3. Model-Oriented pre/post-Condi­
tion Definitions

type
A, B

value
f: A H > B

f(a) as b
pre V(a)
post Q(a,b)

4. Property-Oriented Axiomatic
Definitions

type
A, B, ...

value
f: A H>B
ca:A, cb:B, ..., ca':A, cb':B

axiom
ft(ca,cb) A

... A
ft(ca',cb') A
V a:A, b:B •

Pi (a) => Qi(a,b) A
P2(a) => Q2(a,b) A
... A
Pn(a) => Qn (a,b)

11.9 Exercises 229

5. Property-Oriented Algebraic Def- £Pl(f,g,...,h),
initions ...,
type £Ph(f,g,.»,h),

A, B, C, D, E, F [equations]
value £ei£ fer-W = £elr (f,g,-,h),

^en£(f,g,-,h) = £enr(f,g,...,h)
f: A -+ B, g: C H> D, ..., h: E H> F

axiom
[constants]

11.8 Discussion

We have shown five styles of defining functions. It is obvious that there is a
spectrum of definition styles, from purely algebraic, i.e., property-oriented, to
purely algorithmic, i.e., model-oriented explicit function definitions. We leave
it to the reader to choose appropriate combinations of these styles.

A function definition, in either of the five styles outlined above, may not
uniquely determine exactly one function, i.e., one mathematical value, but the
syntax of a function definition may denote a usually infinite set of such math­
ematical values. This under-specification, or this looseness, may be desirable
or not.

11.9 Exercises

X Note: The three exercises of this chapter are best tackled after you have
studied one or more of Chaps. 13-16 on RSL sets, Cartesians, lists and maps!

I * •(• •!•

Exercise 11.1. X Functions in the Transportation Net Domain. We refer to
Appendix A, Sect. A.l, Transportation Net.

As an exercise, try express a function over Transportation Nets in some
or all of the five styles presented in this chapter.

Hint: Try the following functions: Insert a segment, respectively insert
a connection in a transportation net. See Exercise 9.1, items 3 and 4. Be
prepared to define these functions in terms of a number of auxiliary functions,
including predicates. Describe them loosely, in your own words — rather than
attempting a full definition as you have yet to learn about suitable abstract
data types with which to define these functions.

Exercise 11.2. X Functions in the Container Logistics Domain. We refer to
Appendix A, Sect. A.2, Container Logistics.

As an exercise, try express a function over Container Logisticss in some
or all of the five styles presented in this chapter.

230 11 Function Definitions in RSL

Hint: Try the following function: Enter a ship into a container terminal. Be
prepared to define this function in terms of a number of auxiliary functions,
including predicates. Describe them loosely, in your own words — rather than
attempting a full definition as you have yet to learn about suitable abstract
data types with which to define these functions.

Exercise 11.3. X Functions in the Financial Service Industry Domain. We
refer to Appendix A, Sect. A.3, Financial Service Industry.

As an exercise, try express a function over Financial Service Industrys in
some or all of the five styles presented in this chapter.

Hint: Try the following functions: open and close a bank account, deposit
and withdraw money into, respectively from a demand/deposit account.

Be prepared to define these functions in terms of a number of auxiliary
functions, including predicates. Describe them loosely, in your own words —
rather than attempting a full definition as you have yet to learn about suitable
abstract data types with which to define these functions.

12

Property-Oriented and Model-Oriented
Abstraction

• The prerequisite for studying this chapter is that you are willing to
pursue and have the ability to grasp abstractions.

• The aims are to discuss the concept of abstraction and to present princi­
ples and techniques of abstraction, and to review the notion of property-
oriented abstraction, to introduce the concept of model-oriented abstrac­
tion, and to relate these two ideas.

• The objective is to make the serious reader a professional in the basics
of abstract modelling.

• The treatment is from systematic to formal.

Characterisation. By an abstraction we shall understand a formulation of
some phenomenon or concept of some universe of discourse such that some
aspects of the phenomenon or concept are emphasised (i.e., considered im­
portant or relevant) while others are left out of consideration (i.e., considered
unimportant or irrelevant). •

Characterisation. By a property-oriented abstraction we shall understand
an abstraction of some phenomenon or concept of some universe of discourse
such that the abstraction is primarily or solely expressed in terms of logical
properties. •

Characterisation. By a model-oriented abstraction we shall understand an
abstraction of some phenomenon or concept of some universe of discourse such
that the abstraction is primarily or solely expressed in terms of mathematical
entities such as abstract tokens, sets, Cartesians, lists, functions, etc. •

Abstraction is the act of emphasising certain phenomena and formulating
certain concepts as being important, while suppressing other phenomena as
not being important. It is a cornerstone of software engineering. Abstrac­
tion requires ability to reflect and to seek elegance and beauty. While some
aspects of the pursuit of abstraction can be taught, most are learned by
osmosis.

232 12 Property-Oriented and Model-Oriented Abstraction

The present chapter — in a leisurely manner — discusses and formulates
main abstraction and modelling principles and techniques concerning: abstrac­
tion, property-oriented abstractions (an overview of essentials), model- versus
property-oriented abstractions, and model-oriented abstractions (an overview
of essentials).

In this chapter we only overview: the rest of these volumes will alternate
between giving examples of either of these two alternative styles of modelling
as well as of their fusion.

The present chapter thus begins a road of teaching specification which
— in view of the next five chapters — could as well be called programming
in discrete mathematics. This topic is primarily illustrated in the sections
on examples of x-based abstractions. These sections could as well be named
examples of x-based programming. They are Sects. 13.3 (x = sets), 14.3 (x =
Cartesians), 15.3 (x = lists), 16.3 (x = maps), and 17.2 (x = functions [i.e.,
as values]).

Programming in discrete mathematics, is a way in which we ourselves have
taught such courses as Algorithms and Data Structures.1 For an early example
of what such "rewrites" mean, see Example 16.10.

12.1 Abstraction

In this section we shall cover such issues as modelling, abstraction and speci­
fication in general, and abstraction in the form of an essay.

12.1.1 The Issues

The problems to be cursorily addressed in this section are those of models,
modelling, abstraction and specification.

Modelling and Models

Modelling is the act of creating models, which include discrete mathematical
structures (sets, Cartesians, lists, maps, etc.), and are logical theories repre­
sented as algebras. That is, any given RSL text denotes a set of models, and
each model is an algebra, a set of named values and a set of named opera­
tions on these. Modelling is the engineering activity of establishing, analysing
and using such structures and theories. Our models are established with the
intention that they "model" "something else" other than just being the math­
ematical structure or theory itself. That "something else" is, in our case, some

1Thus we have, for example, had students "rewrite" many graph algorithms
in [161] into VDM-SL (rather than, as here, RSL).

12.1 Abstraction 233

part of a reality2, or of a construed such, or of requirements to3, or of actual
software4.

Some clarifying observations are in order. We write down models, i.e., we
specify them. So a model is represented syntactically by a specification. The
meaning of a specification, its semantics, is the model — actually a set of
models. The specification establishes, oftentimes, a great number of identifi­
cations between a perceived reality (which inherently is and remains elusive
and hence informal) and textual parts of the specification — and hence their
denoted mathematics. The model is not what it models, only a model of it!

Thus the term model is used in two, closely related senses: The mathe­
matical model denoted by the specification, and that this specification models
some phenomena.

12.1.2 Abstraction and Specification

Abstraction relates to conquering complexity of systems description through
the judicious use of abstraction, where abstraction, briefly, is the act and
result of omitting consideration of (what would then be called) details while,
instead, focusing on (what would therefore be called) important facets.

That is, some systems may be thought of as being complex. Many would
say that for example (i) the domain of railway systems is complex; or that (ii)
the set of diverse requirements for a number of software packages for (subsys­
tems of) the railway domain is complex; or that (iii) actual software systems
that cover a reasonably diverse span of computing system-supported railway
operations is complex. And, indeed, some descriptions of any of the above (i-
iii) may actually be very complex. Such complexity may be inherent, that is,
cannot be avoided. Or it may be unintentionally "put into" the descriptions.
In the latter case such unintentional complexity could be avoided, we claim,
by careful use of abstraction.

On the negative side we often see that descriptions are unnecessarily
twisted, long, confused, and thus gives the appearance that the subject being
described is complicated. Many such descriptions confuse issues of syntax,
semantics and pragmatic nature (hence Sect. 1.6.2). On the positive side, by
mastering abstraction we can often present the problem in a way that avoids
unnecessary complexity.

12.1.3 An Essay on Abstraction

Conception, my boy, fundamental brain-work,
is what makes the difference in all art

D.G. Rossetti: letter to H. Caine

2— as in domain modelling
3— as in requirements modelling
4— as in software design

234 12 Property-Oriented and Model-Oriented Abstraction

Since this is the first chapter where the concept of abstraction — in connection
with the modelling of some universe of discourse — is covered, we shall take
time and space for a brief essay, essentially by C.A.R. Hoare, on what is meant
by abstraction.

"Abstraction as a Fundamental Tool"

In the natural sciences one observes phenomena — and then one abstracts.
In programming we create universes, but first abstractly.

The following is from the opening paragraphs of C.A.R. Hoare's: Notes on
Data Structuring [286].

Abstraction is a tool, used by the human mind, and to be applied in the
process of describing (understanding) complex phenomena. Abstrac­
tion is the most powerful such tool available to the human intellect.
Science proceeds by simplifying reality. The first step in simplification
is abstraction. Abstraction (in the context of science) means leaving
out of account all those empirical data which do not fit the particular,
conceptual framework within which science at the moment happens to
be working. Abstraction (in the process of specification) arises from
a conscious decision to advocate certain desired objects, situations
and processes as being fundamental; by exposing, in a first, or higher,
level of description, their similarities and — at that level — ignoring
possible differences.

We can rephrase the above: We consider those similarities which govern pre­
diction and control of future events, i.e., 'meaning', as being fundamental and
the differences as trivial. We have then developed — in the process of spec­
ification — an abstract concept to cover the set of objects and situations in
question. The first requirement in designing a program is to concentrate on
relevant features of the situation, and to ignore factors which are believed
irrelevant. Abstraction thus implies simplification. That is, we reduce, at each
stage of specification, the amount of information — of concepts and their
interrelation — which we must hold or manipulate, when considering that
situation. Abstraction is thus a relation. We choose the level of simplification
and reduction. Our choice is a crucial one. Consider the modelling of some
'real world' phenomenon.

Its concepts have been reduced to our concepts, i.e., summaries of the
characteristics that several specimen have in common. By denoting
similarity, our concepts eliminate the bother of enumerating qualities
and thus better serve to organise the material of knowledge. They are
thought of as mere abbreviations of the items to which they refer.
Any use transcending auxiliary, technical summarisation of factual
data has been eliminated as a last trace of superstition.

12.2 Property-Oriented Abstractions 235

The "lawlessness" of programming is exactly this: Our choice of concepts
becomes the tablets of commandments according to which the final program
behaves. Their affinity, or to a varying degree lack of any such, to the intended
problem is of no concern to the computer — and hence, by the mystique it
exerts on certain programmers, also of no concern to them.

12.2 Property-Oriented Abstractions

In Sect. 8.5 (on specification algebras) we introduced the topic of property-
oriented specifications. And in Sect. 9.6, in the subsection titled "Property-
Oriented Specifications" we expanded on this topic. It is not a topic to be
dispensed with in a few sections. In this section we shall review the idea of
property-oriented specification. Throughout these volumes we shall repeat­
edly give examples of property-oriented specifications. In the next section we
shall contrast the concept of property-oriented specification to that of model-
oriented specification. These are two main paradigms of specification.

In the following we shall cover three facets of property-oriented specifica­
tion. These are: (i) pragmatics: what is it that we wish to emphasise when
choosing the property-oriented specification paradigm; (ii) syntax: which are
the textual components of a property-oriented specification; and: (hi) seman­
tics: what is the meaning of a property-oriented specification.

The concept of pragmatics, in the context of descriptions, means roughly:
why a linguistic construct was used. The concept of paradigm, in the context
of descriptions, means roughly: the semantic meanings that are expressible
using the linguistic means at disposal — observing, in a sense, those that are
not expressible.5 Thus the two concepts, in the context of descriptions, are
related.

12.2.1 Pragmatics of Property-Oriented Specifications

The adjective 'property-oriented' reveals the pragmatics: We choose a property-
oriented way of specification when we wish to emphasise (logical) properties —
observing that we are not presenting a specific (say a discrete) mathematical
model of what we describe. The borderline between property- and model-
oriented specifications is not a sharp one. In a loose sense we can speak of
"more or less property-oriented", or "more or less model-oriented", or "both

5Thus we speak of such programming paradigms as the (i) functional, (ii) imper­
ative, (Hi) logic and (iv) parallel programming paradigm. These four programming
paradigms individually emphasise (i) functions, their definition, composition and
application; (ii) variables, their declaration, initialisation, update, references (point­
ers) to them (that is, to storage cells), and the manipulations (storage and "chas­
ing" [linking]) of pointers; (hi) truth values, quantification, inference and resolution;
respectively (iv) processes, their definition, composition ["in parallel", nondetermin-
istic external or internal choice], synchronisation and inter-process communication.

236 12 Property-Oriented and Model-Oriented Abstraction

property- and model-oriented". There are situations, i.e., phenomena in a
universe of discourse,6 which "beg" to be described, i.e., "call for" for being
described, or can most "tellingly" be described, in the property-oriented style,
others are best described in the model-oriented style, and yet some others in
a style "mixing" these! 7 It is a purpose of the entirety of these volumes to
characterise what these situations are. One main way of delineating when and
where the property-oriented specification style should be considered is along
the Tr ipTych "divides" of (i) domain: Usually it is a good development choice
to t ry express a domain description primarily or solely through its properties,
(ii) Requirements: Usually it is a good development choice to t ry express re­
quirements primarily or solely through its properties, (iii) Software design:
Usually it is a good development choice to t ry express a software design de­
scription primarily or solely by presenting a model. Thus there really are
no strict delineations as to when and when not to use the property-oriented
specification style. And, as we shall often see, there will be many exceptions.

12.2 .2 Syntac t i c s of P r o p e r t y - O r i e n t e d Speci f icat ions

It is high t ime to give an example of a pure property-oriented specification. We
do tha t now, then we comment on the textual structure of a typical property-
oriented specification. The example is tha t of modelling requirements to a
simple telephone exchange system. First we present an informal description,
then a formal description. The informal description is here structured so as
to "fit" the formal description.

E x a m p l e 12 .1 Property-Oriented Telephone System Specification: The ex­
ample is tha t of a simple telephone exchange system.

Informal D o c u m e n t a t i o n

We start the informal description by presenting a synopsis and its immediate
analysis:

• Synops i s : The simple telephone exchange system serves to efficiently honour
requests for conference calls amongst any number of subscribers, whether
immediately connectable, whereby they become actual, or being queued, i.e.,
deferred (or pending) for later connection.

6By universe of discourse we mean "that which we wish to describe". Sometimes
our universe of discourse is the domain, some actual part of an actual world, some­
times it is requirements for some software to support actions in that world, and
sometimes it is that software, i.e., its design.

7The use of the specific words: "beg", "call for", "tellingly" will become obvious
from the following.

12.2 Property-Oriented Abstractions 237

• Analysis: The concepts of subscribers and calls are central: In this example
we do not further analyse the concept of subscribers. A call is either an
actual call, involving two or more subscribers not involved in any other
actual calls, or a call is a deferred call, i.e., a requested call that is not
actual, because one or more of the subscribers of the deferred call is already
involved in actual calls. We shall presently pursue the concepts of requested,
respectively actual calls, and only indirectly with deferred calls.

Types and Values — Informal Description

The structure of the types of interest are first described. We informally de­
scribe first the basis types, then their composition, (i) Subscribers: There is
a class (S) of further undefined subscribers, (ii) Connections: There is a class
(C) of connections. A connection involves one subscriber, the 'caller', and any
number of one or more other subscribers, the 'called', (iii) Exchange: At any
time an exchange reflects (i.e., is in a state which records) a number of re­
quested connections and a number of actual connections (a) such that no two
actual connections share any subscribers, (b) such that all actual connections
are also requested connections, and (c) such that there are no requested calls
that are not actual and share no subscribers in common with any other ac­
tual connection. (That is: The actual connections are all that can be made
actual out of the requested connections. This part addresses the efficiency
issue referred to above.) (iv) Requested connections: The set of all requested
connections for a given exchange forms a set of connections, (v) Actual con­
nections: The set of all actual connections, for a given exchange, forms a
subset of its requested connections such that no two actual connections share
subscribers.

In this example we shall also be able to refer to the exchange, later to be
named X, as 'the state' (of the telephone exchange system). We shall later have
a great deal more to say about the concept of state.

Types and Values — Formal Description

type
S, C, X

value
obs_Caller: C - • S
obs.Called: C -¥ S-set
obs_Requests: X —> C-set
obs_Actual: X —> C-set

subs: C -)> S-set
subs(c) = obs_Caller(c) U obs_Called(c)

subs: C-set —> S-set
subs(cs) = U { subs(c) | c:C • c G cs }

238 12 Property-Oriented and Model-Oriented Abstraction

The overloaded function name subs stands for two different functions. One
observes ("extracts") the set of all subscribers said to be engaged in a con­
nection. The other likewise observes the set of all subscribers engaged in any
set of connections. We shall often find it useful to introduce such auxiliary
functions.

axiom
[i]
[2]

[3]
[4]
[5]
[6]
[7]
[8]
[9]
[io:
[n:

Vc:C, 3s:S»
s = obs-Caller(c) =>• s $ obs_Called(c),

V x : X .
let res = obs_Requests(x),

acs = obs-Actual(x) in
acs C res A
V c,c':C • c ^ c' A {c,c'} C acs =$>

obs-Caller(c) ^ obs-Caller(c') A
obs_Called(c) n obs_Called(c') = {} A

] ~ 3 c:C • c 6 res \ acs •
] subs(c) fl subs(acs) = {} end

Let us annotate the above specification. [1] For all connections there exists a
subscriber such that [2] the subscriber is a caller, but not a called subscriber.
[3] For all telephone exchanges (i.e., telephone exchange states), [4-5] let us
observe the requested and the actual connections. [6] The actual ones must also
be requested connections, and [7] for any two different actual connections, [8]
their callers must be different, [9] the callers and the ones called cannot share
subscribers, and [10] there must not be a requested, but not actual connection
[11] which could be an actual connection. That is all such connections must
have some subscriber in common with some actual connection.

The last two lines above express the efficiency criterion mentioned earlier.
We can express a law that holds about the kind of exchanges that we are

describing:

t heo rem
Vx:X-

obs_Actual(x)={} = obs_Requests(x)={}

The law expresses that there cannot be a non-empty set of deferred calls if
there are no actual calls. That is, at least one deferred call can be established
should a situation arise in which a last actual call is terminated and there is
at least one deferred call.

The law is a theorem that can be proved on the basis of the telephone
exchange system axioms and a proof system for sets.

12.2 Property-Oriented Abstractions 239

Operations:

The following operations, involving telephone exchanges, can be performed:
(i) Request: A caller indicates, to the exchange, the set of one or more other
subscribers with which a connection (i.e., a call) is requested. If the connection
can be effected then it is immediately made actual, else it is deferred and (the
connection) will be made actual once all called subscribers are not engaged in
any actual call, (ii) Caller_Hang: A caller, engaged in a requested call, whether
actual or not, can hang up, i.e., terminate, if actual, and then on behalf of all
called subscribers also, or can cancel the requested (but not yet actual) call, (hi)
Called_Hang: Any called subscriber engaged in some actual call can leave tha t
call individually. If tha t called subscriber is the only called subscriber ("left in the
call"), then the call is terminated, also on behalf of the caller, (iv) is_Busy: Any
subscriber can inquire as to whether any other subscriber is already engaged in
an actual call, (v) is_Called: Any subscriber can inquire as to the identities of
all those (zero, one or more) callers who has requested a call with the inquiring
subscriber.

F o r m a l D e s c r i p t i o n

First the signature:

value
newX: U n i t -t X
request: S x S-set -)> X -)> X
callerJiang: S -» X -t X
called_hang: S -> X -3- X
is.busy: S -> X -> B o o l
is.called: S -> X - • B o o l

The generator function newX is an auxiliary function. It is needed only to
make the axioms cover all states of the telephone exchange system. In a sense
it generates an empty, tha t is, an initial state. Usually such empty state
generator functions are "paired" with a similar test for empty state observer
function.

Then we get the axioms:

a x i o m
V x:X • obs_Requests(x)={} = x=newX() ,
V x:X,s,s':S,ss:S-set •

~is_busy(s,newXQ) A
s^ s ' =>

s G ss => is_busy(s)(requests ' ,ss)(x)) A
s ^ ss => is_busy(s)(request(s',ss)(x)) = is_busy(s)(x),
... etcetera ...

240 12 Property-Oriented and Model-Oriented Abstraction

We leave the axiom incomplete. Our job was to illustrate the informal and
formal parts of a property-oriented specification, not to do it completely.

12.2.3 Semantics of Property-Oriented Specifications

Continuing the line set out in Section 1.6.2, Example 1.7, and continued in
Sects. 6.5 and 6.7, we take as the basic assumption that the meaning of a
specification, i.e., any expression, is a set of models. Each single model "as­
signs" (ascribes) to any expression identifier a single value, but "looking" just
at the expression, it itself may stand for any of many values, at most as many
as there are models of the expression. We shall have much more to say on this
issue in these volumes.

12.2.4 Discussion

General

In Sects. 8.5 and 9.6 we started our treatment of property-oriented specifica­
tions. This section continues that treatment. In many parts of these volumes
we shall return to the issue of property-oriented specifications. The property-
oriented specification paradigm is a crucially central specification paradigm.

Why is the present section so short, when we have just stated the impor­
tance of property-oriented specification? To that we answer: Taken together
with the material in Sects. 8.5 and 9.6 on property-orientedness, not much
more methodologically need be said for that concept. And there will be many
examples of property-oriented specifications when we proceed in this and fol­
lowing chapters.

Principles, Techniques and Tools

Principles. Property-Orientedness: In initial phases and stages of develop­
ment choose a (primarily) property-oriented style of specification. Or, put dif­
ferently, when you wish to leave as much implementation freedom as possible
for subsequent phases, stages and steps of development choose a property-
oriented form of specification. •

Techniques. Property-Orientedness: Define sorts (rather than concrete types),
introduce (postulate) observer and generator functions, and relate sort values
and functions through axioms. Introduce auxiliary functions sparingly, i.e.,
introduce as few as possible, and then only those that reflect a concept in the
relevant universe of discourse. •

Tools. Property-Orientedness: Use, for example, the RSL type, value and
axiom constructs. •

12.3 Model Versus Property Abstractions 241

12.3 Model Versus Property Abstractions

Section 12.2 reiterated the basic ideas of property-oriented specifications. Sec­
tion 12.4 and Chaps. 13-17 will cover the basic ideas of model-oriented spec­
ifications. The present section will contrast the two specification paradigms.

12.3.1 Representation and Operation Abstraction

Two complementing concepts of representation and operation abstraction will
be introduced. These two complementing concepts of representation and op­
eration abstraction spring from the algebraic view that a data type is a set of
values and a set of operations on these. We treat these two abstraction prin­
ciples (representation and operation abstraction) in some isolation from one
another. This is possible when we are propagating a basically model-theoretic
approach wherein types and instances of objects are defined and constructed
separately from the definition of functions involving these objects. The rest
of this chapter will mostly treat the concept of model-oriented representation
and the thereby related model-oriented operation abstractions.

In an algebraic specification this separation between presenting models
of functions and the values they apply to and result in is not immediately
obvious since properties of sorts (i.e., the values) and of operations are defined
together, in an "intertwined" manner. The algebraic approach was — so far
amply — illustrated earlier in sections: Sects. 8.5, 9.6.5 and 12.2.2.

12.3.2 Property-Oriented Versus Mo del-Oriented Abstractions

Characterisation. By a property-oriented abstraction we basically mean a
specification which focuses on properties, i.e., is expressed logically. •

Discussion. Among the models satisfying a property-oriented abstraction
there may be some that involve such mathematical notions as sets, Cartesians,
sequences, maps and functions. •

Characterisation. By model-oriented abstraction we basically mean a spec­
ification in terms of such mathematical notions as sets, Cartesians, sequences
(i.e., lists), maps and functions. •

Discussion. A logic property may be satisfied by any finite or infinite num­
ber of mathematical set, Cartesian, sequence, map or function constructs,
including none. These mathematical entities are said to be models of the
property-oriented specification. •

242 12 Property-Oriented and Model-Oriented Abstraction

The Issues

Computers traditionally act by performing specific operations on concrete
values, i.e., are operationally concrete and model-oriented. Yet to properly
understand what is going on, or what is to go on, inside the computer, we
necessarily resort to logic. So there seems to be a dichotomy: How do we rec­
oncile the notions of property- and model-oriented? Computer programs often
must be detailed to a level (of code) which is no longer humanly understand­
able! So there seems to be a problem: How do we 'refine' from property- to
model-oriented? So we shall make our first examples of, and show some first
principles and techniques for presenting property- and related model-oriented
specifications.

Further Characterisations

We present and discuss some informal definitions.

Characterisation. A property-oriented specification expresses what is being
described in terms of abstract types (sorts) and logic expressions, including
axioms. •

Discussion. Emphasis is on properties, that is, on what, not on how. •

Characterisation. A model-oriented specification models what is being de­
scribed in terms of mathematical entities such as numbers, sets, Cartesians,
lists, maps, functions (including predicates) and processes. •

Discussion. Emphasis, in model-oriented abstraction, is still on properties,
but it is in terms of how a discrete or continuous mathematical construct
offers those properties. •

In model-oriented descriptions we therefore choose first to describe represen­
tation abstraction. In the vernacular, we mean the abstraction of what later
in the coding of software become data structures. Then we describe oper­
ation abstraction. Later in this section we present both representation and
operation abstractions in both property-oriented and model-oriented ways.

12.3.3 Definitions

Characterisation. By representation abstraction of [typed] values we mean
a specification which does not hint at a particular data (structure) model,
that is, which is not implementation-biased. •

Discussion. The "most abstract" representation abstraction occurs when we
specify a set of values, i.e., a type, as an abstract type, that is, as a sort. •

12.3 Model Versus Property Abstractions 243

Characterisation. We say that a specification of a (data or a function) value
is implementation-biased if it foregoes abstraction in favour of some, however
rudimentary, notion of realisation. •

Discussion. This last characterisation suffers from vagueness. First, our dis­
tinction between "data or function" value is not important. But the distinction
is of pedagogical nature: There really is no distinction. By data values "inside
the computer" we may think of such things as integers, or vectors of these, or
records over integers, character strings and Booleans, just to name a few ex­
amples. By function values we correspondingly think of instruction sequences,
i.e., of code. But since data values can serve as structures being interpreted
by an interpreter, the data value can be considered to represent a function.
And vice versa: A function value can be made to represent, say, an infinite
list of which one at most need inspect, in any invocation, a finite prefix. •

Characterisation. By operation abstraction of functions, i.e., of function
values, we mean a specification which does not hint at particular procedural
(i.e., algorithmic) means of computing function results. •

12.3.4 Representation Abstraction Examples

We exemplify the two specification styles: property-oriented and model-
oriented. At the same time we also exemplify the concept of representation
abstraction. In Sect. 12.3.5 we then exemplify the corresponding concept of
operation abstraction.

Example 12.2 Telephone Directory — Types: We focus on the essential
properties of a telephone directory We see these as that of the "directory
itself" and the "things we can do with it, i.e., to it".

• A telephone directory is seen as an abstract document. Let us name the
class of all such telephone directory documents TelDir.

• It lists a finite set of subscribers, say by name, let us call their class for S.
• Each has a finite set of telephone numbers, Tn.

That's all!

Property-Oriented Representation

In property-oriented models, to repeat, we express properties in terms of sorts,
function signatures and axioms relating type values and functions. Sometimes
we need define some auxiliary functions. In contrast to classical algebraic spec­
ifications our function types allow concrete type expressions. In the examples
below these are mostly sets.

244 12 Property-Oriented and Model-Oriented Abstraction

Example 12.3 Telephone Directory: A Property Model, I: Given a telephone
directory, td, we can (thus) observe the set of all its subscribers and the set
of all its numbers.

Given a subscriber and a telephone directory we can observe the telephone
numbers of that subscriber. And given a telephone number and a telephone
directory we can observe the subscribers sharing that number.

In advance of a more systematic treatment in subsequent (set, list, map)
sections of this chapter we bring the formalisation below.

type TelDir, S, Tn
value

obs_Ss: TelDir - • S-set
obs_Tns: TelDir -> Tn-set
obs_Tns: S - • TelDir -> Tn-set
obs_Ss: Tn -> TelDir - • S-set

Annotations: The keyword type "announces" that the identifiers TelDir, S
and Tn are type names. Since these types are not further explained we refer to
them as abstract types, or as sorts. (In property-oriented modelling we almost
exclusively use sorts.) TelDir shall stand for the set of telephone directories,
S for the set of subscribers and Tn for the set of telephone numbers.

The keyword value "announces" that the two identifiers obsSs and
obs-Tns denote specific values in the type denoted by the type expression
following these names. Since these types are both of the form A^B they
are both function values. Here they stand for observers that apply to tele­
phone directories and are intended to extract exactly the set (-set) of all
subscribers, respectively the set of all the telephone numbers which are listed
in the telephone directory — not necessarily all possible subscribers, respec­
tively telephone numbers. •

• • •

We continue this (property-oriented) example later when we cover the concept
of operation abstraction.

Model-Oriented Representations

In model-oriented specifications, to repeat, we focus on mathematical mod­
els of types. Typical mathematical models centre around such mathematical
entities as numbers, sets, Cartesians, lists (or sequences) maps, and functions.

Example 12.4 Telephone Directory: A Model-Oriented Model, I: In a tele­
phone directory we normally associate subscriber information (names etc.)
with one or more, i.e., a set of, telephone numbers. The association can be
mathematically modelled in a number of ways:

12.3 Model Versus Property Abstractions 245

type S, Tn
TelDirO = S ^ Tn-set
TelDirl = S jff Tn*
TelDir2 = (S x Tn-set)-set
TelDir3 = (S x Tn-set)*
TelDir4 = (S x Tn*)*

Annotations: We continue modelling the subscriber and telephone number
types as sorts. But we now give several model-oriented, i.e., concrete type
proposals for the type of telephone directories.

TelDirO considers a telephone directory to be a map which to each sub­
scriber associates the finite set of zero or more telephone numbers that that
subscriber is known by.

TelDirl considers a telephone directory to be a map which to each sub­
scriber associates the finite list of zero or more telephone numbers that that
subscriber is known by.

TelDir2 considers a telephone directory to be a finite set of Cartesian pairs.
Each (pair) pairs a subscriber with the finite set of zero or more telephone
numbers that that subscriber is known by.

TelDir3 considers a telephone directory to be a finite list of Cartesian pairs.
Each (pair) pairs a subscriber with the finite set of zero or more telephone
numbers that that subscriber is known by.

Finally, TelDir4 considers a telephone directory to be a finite list of Carte­
sian pairs. Each (pair) pairs a subscriber with the finite list of zero or more
telephone numbers that that subscriber is known by. •

• • •

Given the choice between models we may raise a number of questions. Which
of the above many possibilities should we choose? Which one of the above
"is most abstract"? The answer to both questions is: that depends on the
operations we wish to define on telephone directories. We will later return to
this question, albeit in other contexts.

How is the property-oriented specification of the telephone directory,
TelDir, related to, for example, the model-oriented specification, TelDirO?

Example 12.5 Telephone Directory: Property- Versus Model-Orientedness:
In this example we indicate (by ~) an answer, one amongst many possible,
by also defining, for the model-oriented, i.e., the concrete, types the abstract,
postulated observer functions of the property-oriented model.

type
TelDirO

relations: obs_Ss ~ extract_SsO, obs.Tns ~ extract.TnsO
value

246 12 Property-Oriented and Model-Oriented Abstraction

extract_SsO: TelDirO - • S-set
extract_SsO(td) = dom td

extract_TnsO: TelDirO - • Tn-set
extract_TnsO(td) = \J rng td

extract_SsO: Tn -> TelDirO ->- S-set
extract_SsO(tn)(td) = { s | s:S • s G dom td A tn G td(s) }

extract_TnsO: S -> TelDirO - • Tn-set
extract_TnsO(s)(td) = td(s) pre s G dom td

Annotation: With the model-oriented, i.e., the concrete, type definition of
TelDir we can therefore define the observer functions, dom td expresses the
set of definition set elements of the map td, and rng td expresses the set of
range (i.e., codomain) elements of the map td. The |J operation8 represents
distributed union, i.e., an operation that applies to a set of sets and yields
"their" union. •

The two subexamples, the property-oriented and the model-oriented repre­
sentations of Examples 12.3 and and 12.4 (with Example 12.5 relating them),
illustrated some basic techniques used in property-oriented, respectively in
model-oriented specifications: sorts (or abstract types) versus concrete types,
and observer functions versus explicitly defined (extraction) functions. The
two parts of the continuation of the telephone directory example given be­
low will further illustrate differences between property- and model-oriented
specifications.

12.3.5 Operation Abstraction Examples

Now we cover operation abstractions relating to the two representation ab­
stractions of Example 12.3 and and 12.4's telephone directory example. In
the vernacular: Operation abstraction is an abstraction of what later in the
coding of software become subroutines (procedures, functions).

Example 12.6 Telephone Directory Operations: Property-Orientedness: We
define the following operations on telephone directories:

• empty: Create an initial and empty telephone directory.
• enter: Add a new subscriber's telephone number(s) to a telephone direc­

tory.
• is_in: Check whether a (potential) subscriber is in a telephone directory:

true or false?

8The prefix (J operation is not a proper operator of the specification language
RSL, but could easily be.

12.3 Model Versus Property Abstractions 247

• look_up: Look up a subscriber's telephone number(s).
• delete: Remove a subscriber from a telephone directory.

Property-Oriented Specification

First we show a property-oriented specification — one that expresses proper­
ties in terms of simple predicate and (algebraic) equational axioms.

type
S, Tn, TelDir

value
empty: —> TelDir,
is.empty: TelDir —t Bool,
enter: S x Tn-set x TelDir ^ TelDir

pre enter(s,tns,td): tns ^ {} A ~is_in(s,td),
is_in: S x TelDir - • Bool
look_up: S x TelDir -^ Tn-set

pre look_up(std): is_in(s,td),
delete: S x TelDir ^ TelDir

pre delete(s,td): is_in(s,td)

axiom
forall s,s':S, tns:Tn-set, td,td':TelDir •

is_empty(empty()),
~is_empty (enter (s ,t ns ,t d)),
~is_in(s,empty()),
is_in(s,enter(s,tns,td)),
s ^ s' => is_in(s,enter(s',tns,td)) = is_in(s,td),
look_up(s,enter(s,tns,td)) = tns,
s ^ s' => look_up(s,enter(s',tns,td)) = look_up(s,td).
delete(enter(s,tns,td)) = td
s ^ s' => delete(s,enter (s',tns,td)) = delete(s,td).

Annotations: First we present the signature of the empty, is_empty, enter, isJn,
look_up and delete values.

The first, empty, designates a constant (total) function; empty() designates
the empty telephone directory. The remaining also denote functions. Partial­
ity of these is explained wrt. the pre-conditions that must be satisfied for a
function application to be defined. The set of telephone numbers entered for
a subscriber must be non-empty and the subscriber must not already be in
the telephone directory. In order to look_up or delete the phone numbers of a
subscriber that subscriber must be in the directory.

Then we give the axioms further defining the properties of these functions.
An empty telephone directory is_ indeed empty. A telephone directory into
which at least some subscriber has been entered is not empty. No subscriber

248 12 Property-Oriented and Model-Oriented Abstraction

isJn an empty directory. A subscriber which has been entered into a directory
isJn that directory. Whether a subscriber, s, is in a directory, which is the
result of having entered another subscriber, s', in a directory td, is the same
as whether subscriber s is in td, and so on for look.up and delete. •

• • •

We refer to empty, enter and delete as generators, and to is_empty, isJn and
look_up as observers. By means of the empty value and the enter generator
function we can construct all values in TelDir. Therefore we define axioms
for each of the observers — sometimes in terms of the generators. The issue
of whether a set of axioms, as, for example, presented here, is consistent and
complete, i.e., whether they do not define a thing and its opposite and whether
it defines all the things we wish to have defined, will not be dealt with here.
Instead we refer to standard texts on logic [136,153,210,235,259,362,372,457]
and on Algebraic Semantics [43,208,209,249,297].

Mo del-Oriented Specification

After the initial property-oriented specification we now show a model-oriented
specification — one that models operations explicitly.

Example 12.7 Telephone Directory Operations: Model-Orientedness: The
signatures are as for the property-oriented axiomatic specification of the oper­
ations, except that these now apply to values of the concrete, model-oriented
type TelDirO, and not to values of the abstract, property-oriented sort TelDir.

type
TelDirO

value
empty() = []
is_empty(td) = td = []
enter(s,tns,td) = td U ^ t n s] pre s ^ dom td

is _in(s,td) = s G d o m td
look_up(s,td) = td(s) pre s G dom td
delete(s,td) = td \ {s} pre s £ d o m td

12.3.6 Discussion

General

Previously we treated property-oriented specification in isolation (cf. Sect. 12.2)
In this section we contrasted property-oriented specifications and model-
oriented specifications. What preliminary conclusions can be drawn? Well,

12.3 Model Versus Property Abstractions 249

the ones we can draw are rather superficial. As later examples will show,
those of Examples 12.3 and and 12.4 (even with Example 12.5 relating them),
respectively Examples 12.6 and 12.7, are too inconclusive.

But we can say this: A sort (that is, an abstract type) specification, i.e.,
a property-oriented model, sometimes is "unique" in the sense that its types
and the structure constraining axioms over these can basically only be ex­
pressed in one way given the basic "ingredients" (as here S, Tn and TelDir).
On the other hand, a model-oriented specification of "the same", now con­
crete, types leaves the developer many choices, cf. TelDirO, TelDirl, TelDir2,
TelDir3, TelDir4. Somehow it seems easier to say: The abstract type, i.e., the
sort, definition is the most abstract one, the one that is less biased.

And then, in the pair of paired examples, Examples 12.3 and 12.4, respec­
tively Examples 12.6 and 12.7, as will indeed be the case in rather many, if
not most examples, the operation definitions were "longer" for the property-
oriented model than for the model-oriented model. But one should not be lured
by the usual brevity of functional operation model-oriented specifications.

The property-oriented axioms both defined the properties of the sorts as
well as of the operations, and rather explicitly, we think, express the value and
operation properties. As such, property-oriented axioms serve well in proofs
of other properties.

The model-oriented specification separated the specification of types (and
their values) from the specification of operations. The concrete type defini­
tions imply many properties. These concrete type properties are then found
axiomatically expressed in one place: namely where the specification language
defines those concrete types (of sets, Cartesians, lists, maps, etc.).

The model-oriented operation definitions, although claimed abstract, could
be claimed to "bury" operation properties in the specific, almost "algorithmic"
use of specification language constructs, especially the many set, Cartesian,
list, maps, etc., operators. Yet the brevity of model-oriented operation speci­
fications and, when used properly, their abstractness, often makes developers
select model-oriented specifications in favour of property-oriented specifica­
tions.

So, it is too early to "call the game", that is, to say anything definite.

Specific: "WhaVs the Difference Anyway?"

In Example 12.3 we illustrated some observer functions (i.e., observers). They
generally apply to values of property-oriented defined abstract types, i.e.,
sorts, but yield values of model-oriented concrete types (i.e., sets).

So: "what is the difference anyway? " Very simply: Instead of defining
the sorts as consisting "exactly" of the model-oriented components as sug­
gested by the observers, we leave the (base, the "interesting") sorts further
unspecified. Doing so allows us, later, to join additional observers to the base
sorts. We can keep on doing so, as early as from domain descriptions, through

250 12 Property-Oriented and Model-Oriented Abstraction

requirements prescriptions until software design specifications. This ability
leaves the software designer the greatest degree of "freedom".

12.4 Model-Oriented Abstractions

This section serves as a prelude to the next six chapters (Chaps. 13-18).

12.4.1 Ultrashort Overview of the Next Six Chapters

In the next six chapters we cover a number of model-oriented representation
and operation abstraction techniques and tools based on:

• Sets Chap. 13 • Maps Chap. 16
• Cartesians Chap. 14 • Functions Chap. 17
• Lists Chap. 15 • Types Chap. 18

In doing so we shall extend the RSL type concept of our primary abstract
specification language RSL. Chapter 18 will summarise the RSL type concept.
The next six chapter topics will, at the same time, introduce a not inconsid­
erable number of new RSL language constructs. We have chosen this style of
presenting the specification language: commensurate with the pragmatic need
for their use in abstraction and modelling — rather than a pedantic style of
RSL "reference manual" [236]. Later chapters and sections will augment what
we say in the immediately upcoming six chapters. This is because we have
decided to tie the introduction of language constructs, whether from RSL or
other specification languages, to a conceived need for their use.

12.4.2 Models and Models

Models of Property-Oriented Specifications

Section 12.2.3 outlined the semantics of property-oriented specifications. It
was said, then, that the meaning — of what has been, or is being, written
down as a property-oriented specification — is a set of models. By that we
meant: Either the specification that has been or is being written down has
no interpretation (the set of models is empty), or there is exactly one model,
or there is a definite or indefinite set of such models. By 'model' we then
meant, and shall continue to mean, an interpretation in terms of such con­
structive mathematical things as Booleans, numbers, characters, text strings,
sets, Cartesians, lists, maps and even general functions (in the sense of A-
functions).

12.4 Model-Oriented Abstractions 251

Models of Mo del-Oriented Specifications

Property-oriented specifications are expressed as axioms, i.e., logically. So
property-oriented specifications really give no explicit hint at the models they
might denote! Model-oriented specifications are expressed "directly": In terms
of the mathematical things they are supposed to "be": numbers, characters,
text strings, sets, Cartesians, lists, maps and even general functions (in the
sense of A-functions). So model-oriented specifications give all possible — i.e.,
rather explicit — hints at the models they are meant to denote, hence the
name of this type of specification!

12.4.3 Underspecification

The Issue

Characterisation. By an underspecified identifier we mean one which for
repeated occurrences in a specification text always yield the same value, but
what the specific value is, is not knowable. •

Example 12.8 Underspecification (Abstract): The identifier a in:

value a:A
... a ... a ... (a = a) ...

is underspecified. The second line of text ... a ... a ... (a = a) ..., has the same
value for a in all occurrences, and hence the test for equality always yields
true.

An example of an underspecified function is:

value
is.prime: Nat —y Bool
is_prime(n) = n = l V (n>2 A ~ 3 i,j:Nat • i> l A j > l => ixj=n)
f: Int -> Nat

axiom
V i:Int • is_prime(f(i))

f is specified, to some degree (its type is given). But it is underspecified. An
infinity of fs satisfy the axiom, namely all those functions that when applied
to any integer generate a prime number! The is_prime predicate is uniquely
specified (i.e., is deterministic). •

Why Underspecifications?

The simple answer to the "question" above is: Phenomena of the real world
(i.e., some domain) are not completely specifiable. If developing a domain
description into a requirements prescription, and when refining requirements

252 12 Property-Oriented and Model-Oriented Abstraction

prescriptions into software designs, the software developer, in agreement with
the client ordering the software, is free (at an appropriate stage) to remove
underspecification.

12.4.4 Determinism and Nondeterminism

Deterministic Expressions

A piece of specific, say RSL, text may evaluate to one value, or it may evaluate
to any one of several values.

Example 12.9 A Deterministic Expression (Abstract): Consider the follow­
ing specification:

value
f: Unit - • Nat, f() = 7

Function f is deterministic: Always, when invoked, f() returns a predictable
result. When invoked multiple times, at various points in some specification
text:

... fo... fo... fo...

the resulting value is always 7. •

The evaluation of f in Example 12.9 is that it has exactly one value.

Nondeterministic Expressions

Consider, in contrast, a slight modification of Example 12.9:

Example 12.10 A Non-deterministic Expression (Abstract): Let the speci­
fication now be:

let n:Nat • 5<n<9 in n end

The expression is nondeterministic. When invoked multiple times, at various
points in some specification text:

... let n:Nat»5<n<9 in n end ...
let n:Nat«5<n<9 in n end ...

(let n:Nat«5<n<9 in n end =
let n:Nat«5<n<9 in n end) ...

the resulting value is any one of 6, 7 or 8! In the first line above the expression
value may be 8; in the second line the expression value may be 6; and in
the third line the expression value may be 7; whereas in the fourth line the
expression value may be 8. Sometimes the equality between lines three and
four may yield true, and sometimes false. •

12.4 Model-Oriented Abstractions 253

The evaluation of f in Example 12.10 is that it has three possible values.
Which one is selected — for various invocations of f — is not predictable: It
is nondeterministic.

12.4.5 Why Loose Specifications?

Characterisation. By looseness of a specification we mean a specification
which features elements of under specification or nondeterminism. •

The question is now clear enough, given Examples 12.8-12.10. An answer
need be considered. It is not the first, and it will not be the last time, in these
volumes, that we consider under specification and nondeterminism.

An answer, one that shall is for the time being, but one that will be elab­
orated upon, again and again, in these volumes, is as follows: In the world
of specific, real-life, actual domains, "things" are not deterministic. Human
behaviour is underspecific and nondeterministic, yet we shall have to model
human behaviour! Behaviour, even of a number of concurrently operating
production processes, is not predictable: Slight deviations from mechanical
measurements, even though within tolerances, may cause deviations in pro­
duction processing times. As a result, two or more production machines may
start and/or end their processing before and/or after one another. Yet our
production must usually be made robust, and must lead to reasonably pre­
dictable products irrespective of such underspecificity and nondeterminism.

Any realistic, abstract specification language must therefore, we claim, fa­
cilitate the "free and easy" expression of underspecificity and nondeterminism.
It is, in general, the underspecificity that leads to multiple models. In the next
Chaps. 13-17 — where we examine the use of the mathematical structures
of sets, Cartesians, lists, maps and functions — we shall therefore basically
assume that the denotation of any expression is a set of models.

12.4.6 Discussion

General

Ordering of Mathematics

We have briefly listed references to the next six chapters on sets, Cartesians,
lists, maps, functions and types. We have chosen to present these mathemat­
ical structures in the order listed: sets, which are considered the most basic
mathematical structure in our context, then Cartesians, then lists, etc. Each
chapter has one or two main examples. Because of the order in which we in­
troduce the mathematical structures we have tried to have the examples make
use only of such (mathematical) structures (i.e., types) as have already been
introduced at the point of the examples. This means that some examples,
certainly those in the earlier sections, may seem a bit contrived and not very
abstract. Yet they all model something!

254 12 Property-Oriented and Model-Oriented Abstraction

The RSL Language Constructs

In synchrony with the introduction of the mathematical structures (of sets,
Cartesians, lists, maps, functions and types) we introduce the corresponding
abstract data types of RSL, or, for that matter, VDM-SL or Z. And we like­
wise introduce a number of other RSL (etc.) language constructs: type union
(A|B|... |C) and subtypes ({|a:A»wf_A(a)|}), McCarthy Conditionals (case e
of pl->>el, p2-^e2, _-^en end), and thereby the notions of patterns and
their implied bindings. The chapter on types (Chap. 18) introduces further
RSL language constructs: variant definitions (A = = B|C|...|D), records with
constructors and destructors (B = = mk_BRec(u:U,v:V,...,w:W)), and so on.

12.5 Principles, Techniques and Tools

Commensurate with Sect. 1.5.1's introduction of methods espousing princi­
ples, techniques and tools the next six chapters as well as the rest of these
volumes will then enunciate such principles, techniques and tools as they here
relate property-oriented versus model-oriented specifications.

For the present chapter we now present its relevant methodological con­
cerns.

12.5.1 Property-Oriented Versus Mo del-Oriented Specification?

When Property-Orientation?

Principles. Property-Oriented Specification: Property-oriented specifica­
tion is chosen in the earliest phases and stages of development. That is,
when, in a sense, the least is known about what is being described. Typi­
cally, property-oriented specification is chosen for the earliest stage of domain
description, or the earliest stage of requirements prescription. By presenting
a property-oriented specification one is telling the reader: This specification
has made no design choices as to data and operation representation. •

When Mo del-Orientation?

Principles. Model-Oriented Specification: Model-oriented specification is
chosen when commencing design — i.e., in the late phases and stages of de­
velopment. That is, when, in a sense, sufficient is known about what is being
specified to commit concrete data and operation representation. Typically,
model-oriented specification is chosen for the later stages of requirements pre­
scription as well as for software design specification. •

12.5 Principles, Techniques and Tools 255

12.5.2 Property-Oriented Specification Style

Techniques. Property-Oriented Specifications: The basic specification com­
ponents of a property-oriented specification are those of sorts, i.e., abstract
types of function signatures of observers and generators and of axioms relating
values of sorts and operations.

scheme POS =
class

type
A, B, ..., C, P, Q, ..., R

value
obsJP: A - • P,
obs_Q: B - • Q,

obs J t : C -> R,
make_A: P x ... 4 A
makeJB: Q x ... 4 B

make_C: R x ... -» C
axiom

V a:B, b:B, ..., c:C, p:P, q:Q, ..., r:R
£i(a,fc,...,c,p,g,...,r)
£2(a,b,...,c,p,q,...,r)

£m(a,b,...,c,p,q,...,r)
end

In the above conceptualised, i.e., illustrative, generic but not very specific
schema, named POS (for property-oriented specification), a class has been
hinted at.

As types, it only has abstract types, i.e., sorts A, B, ..., C, P, Q, ..., and R.
It has some observer functions (typically named: obs_T, where T is one of

the type names). The observer functions apply to sort values and yield values
of type sorts, or simple sets, Cartesians, lists, etc., but this is not shown.

It has some generator functions (typically named: make_T, where T is one
of the sort names). Typically, when only relying on sorts one need define
initial values for some of these. This is expressed through the use of suitable
generator functions. (One for each type on initial value.) And one must define
observer functions which observe whether values of given types are initial.
This is expressed through the use of suitable observer functions.

Property-oriented specifications, typically, have some axioms. The sche­
matic expressions £{(a, &,..., c,p, q,..., r) stand for some predicate. There may
be several such. Here m is hinted at. They need not all involve all of the
quantified sort values. Some £i(a,b, ...,c,p,q, ...,r) may be simple terms usu-

256 12 Property-Oriented and Model-Oriented Abstraction

ally involving initial values. Some <^(a, 6, ...,c,p, g, ...,r) may be equational:
£jkt (-) = £jkr (-) o r £jkt (-) = £JkT (•••) •

Blending Specification Styles

Oftentimes we find it convenient to use both abstract and concrete types, i.e.,
sorts and defined types (sets, Cartesians, lists, maps, etc.) in what is essentially
still a property-oriented specification. And often we find it convenient to use
both property-oriented and model-oriented function definitions, that is, only
partially using axioms.

12.5.3 Model-Oriented Specification Style

Techniques. Model-Oriented Specifications: The basic specification com­
ponents of a model-oriented specification are those of defined, i.e., concrete
types, of function signatures of analytic and synthetic functions, and of their
definition.

scheme MOS =
class

type
A = ...
B = ...

C = ...
value

f: ARGf -+ RES/
f(arg/) = B/(argl/)
g: ARGg -> RESg

g(argp) =Bg(axgg)

h: ARG,, -+ RESh

h(arg/,) = Bh(Biglh)
end

In the above conceptualised, i.e., illustrative, generic but not very specific,
schema, named MOS (for model-oriented specification), a class has been hinted
at. It has only defined types, i.e., concrete types. (What they are has not been
shown. If composite, they could be set, Cartesian, list, map, etc., types.) And
it has a number of function definitions: / , # , . . . , /i. Each is given a signature:
ARGf -> RES/, etc., where ARG/ and RES/ are type expressions — usually
involving Cartesians and functions. And each is given a definition: g(arg/J =
Bg(arg\g), etc. Here arg5 is a list of formal parameter, i.e., argument identifiers,
and Bg(arg\g) is an RSL expression, that is, a function definition £tody in which
the argument identifiers occur free. •

12.5 Principles, Techniques and Tools 257

Blending Specification Styles

We sometimes find it convenient to both use concrete and abstract types, i.e.,
defined types (sets, Cartesians, lists, maps, etc.) and sorts in what is essentially
still a model-oriented specification. And we sometimes find it convenient to
both use model-oriented and property-oriented function definitions. Thus you
may find both axioms and pre/post-specifications also in a model-oriented
specification.

12.5.4 Implicit and Explicit Functions

Above we have made a distinction between observer and analytic functions,
and between generator and synthetic functions.

The distinction is purely academic, that is, it is one of pragmatic conve­
nience: the notion of observer and generator functions is — in our presentation
— a notion that is related to property-oriented specification(s). Whereas the
notion of analytic and synthetic functions is a notion that is related to model-
oriented specifications. Pairwise, observer and analytic functions are really
the same: The former are postulated, and arise out of their signature and the
axioms, whereas the latter can be explicitly defined. Pairwise, generator and
synthetic functions are really the same: the former are postulated, and arise
out of their signature and the axioms, whereas the latter can be explicitly
defined.

12.5.5 No Confusion, Please!

You can't have your cake and eat it too

You can '£ eat your cake and have it too9

Principles. Not Confusing Property-Oriented and Model-Oriented Specifica­
tions: As the old proverb expresses: You cannot both define types concretely,
say:

type
B, C, D
A = B x C x D

and postulate observer functions:

value
obs_B: A - • B, obs_C: A - • C, obs_D: A -> D.

9Prom Heywood's A Dialogue Conteynyng Prouerbes and Epigrammes, 1562:
"Wolde ye bothe eate your cake, and haue your cake?". John Keats quoted it as
Eat your cake and have it" at the beginning of his poem On Fame in 1816. Franklin
D. Roosevelt borrowed it in that latter form for his State of the Union Address in
1940.

258 12 Property-Oriented and Model-Oriented Abstraction

But you have concrete, i.e., composite types (and hence values) and extract
components values, by explicitly defining functions:

value
extr_B: A - • B
extr_B(a) = let (b,_,_) = a in b end

Somehow it is like for a man to wear suspenders and a trouser belt: both,
at the same time. But, we claim, it is actually worse: It is confusing two
issues: abstract and concrete types, or, which is the same, abstract postu­
lated observer functions, and concrete precisely and deterministically defined
extraction functions. •

12.5.6 A Note on Observer Functions

First Principle: Postulation

What are observer functions? They are postulated. They cannot be defined;
they just "exist".

When we postulate a transportation net, N, and from that we postulate
that we can observe segments and connections (e.g., street segments and street
intersections), S and C, then we are claiming that these observer functions
obs_Ss: N —y S-set and obs_Cs: N —> C-set exist. Certainly, in the domain,
i.e., in the reality of street nets, we can, with our own eyes perform these
observations. So, observer functions are not defined: "They just exist". But
observer functions are bound by constraints. We use axioms to express those
constraints.

To say that observer functions are postulated "begs" an answer to the
question: By what means can I record the observation? That is: if I cannot
define an observer function then how can I compute its value for a given
argument? The answer is simple, and it ought be simple: If the thing being
observed is a phenomenon, i.e., something that is physically manifest, then
Go look at that thing, and point out ("measure77) its observable parts. If the
thing being observed is a concept, i.e., something that only exists in our mind
then Postulate that thing and claim its parts!

Second Principle: No "Self-reference"

Take another example: When we postulate a transportation net, N, and from
that we postulate that we can observe segments and connections (for example,
street segments and street intersections), S and C, would it not be nice if we
could also, from segments [connections] observe the connections [segments] to
which they "attach"? It might be nice, but it would lead to paradoxes, or at
least, what we would call undesirable infinite recursive descents!

Let us argue this, but in more generality: Let the following abstract ex­
ample be given:

12.5 Principles, Techniques and Tools 259

type
A, B

value
obs_Bs: A -» B-set
obs_A: B -» A

axiom
V a:A • V b:B • b G obs_Bs(a) => obs_A(b) = a

Now what do we mean? It seems we mean that all of a:A is somehow contained
in every b:B observable in a:A. But then, which are the bs observable in that
contained a? The situation is untenable.

So we edict: we cannot allow the predicate: V a:A • V b:B • b G obs_Bs(a)
=> obs_A(b) = a. If we want as to be contained in bs, then they are not the as
from which the bs were observed. This resolution is tantamount to allowing,
in model-oriented terms:

type
A = ... x B-set x ...
B = ... x A x ...,

with the recursion of as inside bs ending with empty sets of bs.

Third Principle: Identification

When observing, or, in general modelling composite entities a need may arise
for identification of the subentities. This is typically the case in the following
(and other) situations.

[1] Set Element Identification

When what is being observed (i.e., modelled) most immediately is thought of
as a set:

type
A, B

value
obs_Bs: A -» B-set

then in order to distinguish the individual bs (in B) one is served well by
introducing an identification function obs_Bi, in fact two (just to make sure!):

type
A, B, Bi

value
obs_Bs: A ->> B-set
obs_Bis: A —> Bi-set
obs_Bi: B - • Bi

260 12 Property-Oriented and Model-Oriented Abstraction

axiom
Va:A-

card obs_Bs(a) = obs_Bis(a)
[or, which is the same:]
V b,b':B • {b,b'}Cobs_Bs(a) A b ^ b '

=> obs_Bi(b) ^ obs_Bi(b').

In fact, as we shall later see, it often "pays off" in modelling to model A as a
map from Bi identifier to "the rest of" B:

type
B, Bi
A = Bi ^ B

value
extract_Bis: A —> Bi-set
extract _Bis (a) = dom a

We shall introduce maps in Chap. 16.

[2] Fixed Structure Element Identification

When what is being observed (i.e., modelled) most immediately is thought
of as a structure of a fixed number of possibly distinct kinds (e.g., types) of
entities, then model as a Cartesian. The positions in the Cartesian then serve
to identify the components:

type
B, C, ...,D
A = B x C x ... x D

value
a:A
... let (b,c,...,d) = a in £(a,b,c,...,d) end

We shall reintroduce Cartesians in Chap. 14.

[3] Sequence Element Identification

When what is being observed (i.e., modelled) most immediately is thought of
as a sequence, then model it as a list, and the indices into elements of the list
serve to identify.

We shall introduce lists in Chap. 15.

12.6 Exercises

Exercise 12.1. Property-Priented and Model-Oriented Abstraction. Try with
a closed book, i.e., without referring back to Page 231 or to Sect. 12.3.2 to

12.6 Exercises 261

formulate our definitions of abstraction, property-oriented abstraction and
model-oriented abstraction. Try formulate in a few words the main difference
between property-oriented abstraction and model-oriented abstraction .

Exercise 12.2. More on Abstraction. Try with a closed book, i.e., without
referring back to Sect. 12.1.3 (the Essay on Abstraction), to formulate the
basic ideas of abstraction.

Exercise 12.3. Representation and Operation Abstraction. Try with a closed
book, i.e., without referring back to Sect. 12.3.3, to formulate the basic model-
oriented ideas of representational and operational abstraction. Contrast this
with property-oriented abstraction's treatment of representational and oper­
ational abstraction

Exercise 12.4. X Property-Oriented and Model-Oriented Abstractions in the
Transportation Net Domain. We refer to Appendix A, Sect. A.l, Transporta­
tion Net.

Sketch two specifications of nets of segments and connections, and of comb­
ing (merging, adding) two nets into one net, and of projecting (removing,
subtracting) one net from another: one specification being property-oriented
(i.e., in terms of sorts, observer functions and axioms), another being model-
oriented (i.e., in terms of Cartesians and sets, and in terms of explicit function
definitions for merge and project).

Remember: Do not forget (as one usually does in a property oriented spec­
ification) to express all the things that do not change.

Sketch: It is early in this volume. So you can only sketch. You still do not
have at your disposal all the model-oriented types and their operations. But
try anyway!

Exercise 12.5. X Property-Oriented and Mo del-Oriented Abstractions in the
Container Logistics Domain. We refer to Appendix A, Sect. A.2, Container
Logistics.

Sketch type specifications of container ships and container storage areas,
and function definitions of unloading containers from a container ship to a con­
tainer storage area, and of loading containers from a container storage area
to a container ship: one set of specifications being property-oriented (i.e., in
terms of sorts, observer functions and axioms), another being model-oriented
(i.e., in terms of Cartesians and sets, and in terms of explicit function defini­
tions for unload and load). Assume the container unloads to be of one container
from a tier (or stack) top position on a container ship to a similar position in
a container storage area — where these positions are identified by bay, row
and tier (stack) indices. Similarly for loads.

Remember: Do not forget (as one usually does in a property oriented spec­
ification) to express all the things that do not change!

262 12 Property-Oriented and Model-Oriented Abstraction

Sketch: It is early in this volume. So you can only sketch. You still do not
have at your disposal all the model-oriented types and their operations. But
try anyway!

Exercise 12.6. A Property-Oriented and Model-Oriented Abstractions in the
Financial Service Industry Domain: We refer to Appendix A, Sect. A.3, Fi­
nancial Service Industry.

Sketch a type specification of banks, and function specifications of opening
and closing accounts, and of depositing into and withdrawing from accounts:
one set of specifications being property-oriented (i.e., in terms of sorts, ob­
server functions and axioms), another being model-oriented (i.e., in terms of
Cartesians and sets, and in terms of explicit function definitions for open,
close, deposit and withdraw).

Assume that the main entities of a bank are: a catalogue, clients, that lists
for each bank client their accounts; another catalogue, sharing, which for each
account lists the one or more account clients that share the account; and a
"state" which to each account associates the balance of that account.

Remember: Do not forget (as one usually does, in a property oriented
specification) to express all the things that do not change!

Sketch: It is early in this volume. So you can only sketch. You still do not
have at your disposal all the model-oriented types and their operations. But
try anyway!

13

Sets in RSL

• The prerequisite for studying this chapter is that you possess knowledge
of the mathematical concept of sets as introduced in Chap. 3.

• The aims are to introduce the RSL abstract data type of sets: the type, the
values, and enumeration and comprehension forms of expressing sets, to
introduce the RSL set operations, and thus to illustrate the "power" (i.e.,
expressiveness) of sets by illustrating simple and not so simple examples
of phenomena and concepts that can be modelled in terms of sets.

• The objective is to set the reader free to choose sets as models of phe­
nomena and concept entities, when appropriate, and to not choose sets
when it is not appropriate.

• The treatment is semiformal and systematic.

A Band of Musicians A Bevy of Beauties
A Bunch of Crooks A Crew of Sa i lo r s
A Flock of Geese A Flee t of Ships
A Gang of Outlaws A Group of People
A Herd of Ca t t l e A Mop of Hair
A Pack of Dogs A Posse of Vig i lan tes
A Pride of Lions A School of Dolphins
A Sui te of Bel l s A Swarm of F l i e s

A Volley of Arrows

— are all examples of Sets!

Characterisation. By a set we shall, loosely, understand an unordered col­
lection of distinct elements (i.e., entities) — something for which it is mean­
ingful to speak about (i) an entity being a member of a set (or not) G, (ii)
the union (merging) of two or more sets into a set (of all the elements of the
argument sets) U, (hi) the intersection of two or more sets into a set (of those
elements which are in all argument sets) D, (iv) the complement of one set
with respect to another set \ , (v) whether one set is a subset of another set C

264 13 Sets in RSL

and C, or whether they are equal or not, = , resp. 7^, and (vi) the cardinality
of a (finite) set (i.e., how many members it "contains") c a r d , etc. •

We refer to Chap. 3 for a first, reasonably thorough introduction to the math­
ematical concept of sets. In the present section we shall focus on the means
for defining and using set types and sets in the predominant specification
language of these volumes: RSL.

13.1 Sets: The Issues

The idea to be illustrated in this section is tha t of the use of the discrete
mathematics concept of sets in abstracting domain, requirements and software
phenomena and concepts. Sets offer themselves as an abstraction when a
component, s, can best be characterised as a "variable sized" ("flexible")1 un­
ordered collection2 {a, 6, . . . , c } of otherwise "undistinguished", but distinct
components — which one can inspect for element membership (G) , to which
one can "add" elements (U), from which one can "subtract" elements (\) , with
respect to which one can form other "common" ("shared") sets (fl), etc.

Sets will become proper components in the modelling of "zillions" of other
problems. But sets as the only model-oriented (i.e., as the only discrete mathe­
matical) "device" to "deploy" in abstraction, is a sign of too extreme frugality!
Tha t is just our modest opinion.

We refer to the axiom system given for simple sets in Example 9.23.
This chapter is, as are Chaps. 13-17, built up as follows:

• The set da ta type (Sect. 13.2)
• Examples of set-based abstractions (Sect. 13.3)
• Abstracting and modelling with sets (Sect. 13.4)
• Inductive set definitions (Sect. 13.5)
• A review of set abstractions and models (Sect. 13.7)

There are many examples because before one can write good specifications
one must have read and studied many example specifications. While you may
not need to study all of them now, you can return to some later. The chapter
ends with a brief discussion.

xWe refer to Sect. 13.6 for an explanation of what really is meant when we say
variable-sized or vary.

2The foundational nature of sets is revealed in our inability to describe a set by
terms we all understand. Here we "fake" a characterisation by, instead, explaining a
concept of set by a concept of unordered collection. We could have tried aggregation
or structure. And we — and you — would have been no wiser!

13.2 The Set Data Type 265

13.2 The Set Data Type

We have already, in Example 9.23 covered the mathematical notion of simple
sets by presenting an axiom system for sets. We refer the reader to first recall
that definition.

13.2.1 Set Types: Definitions and Expressions

Let A stand for a type whose possibly infinite number of elements include
{a i , a 2 , . . . , o n , . . . } .

Types whose values can be considered finite, respectively finite or infinite,
sets of A elements can be defined using the suffix -set, respectively the -infset
type power set3) operators. See Fig. 13.2.1.

. Types and Values .

type examples
A |a,ai ,a2,...,am,...|
F = A-set {{}, {a}, {ai,a2,...,am}, ...}
S = A-infset {{}, {a}, {ai,a2,...,am}, ..., {ai,a2,...}}

Fig. 13.1. Examples

The type forming operator -set applies suffix to a type expression, say A, and
forms the type of all finite subsets of A. The type forming operator -infset
applies suffix to a type expression, say A, and forms the type of all finite as
well as possibly infinite subsets of A. The -set and -infset type operators are
akin to the power set operator on sets. Note that -set and -infset apply to
type expressions, whereas the power set operator (which is not offered in RSL)
applies to sets.

Example 13.1 A Simple Set Example: Let fact name the factorial function,
then

{fact(l),fact(2),fact(3),fact(4),fact(5),fact(6)}

expresses a simple set of six element, the six "first" factorials! •

3Other forms of the power set operators are pA, BA (where B refers to Boole,
the Irish mathematician), or ^A (where exponentiation of 2 is meant to be to the
power of the cardinality of the set A — which, in turn, is meant to designate the
number of different subsets of A, namely the number of elements of 2^)-

266 13 Sets in RSL

A-set and A-infset are set type expressions. F = A-set and S = A-infset are
set type definitions. One can see, using metalinguistic notation, i.e., mathe­
matical notation4 ("outside" RSL), that:

[1] Bool-set = Bool-infset, and Nat-set C Nat-infset

Annotations: A is (assumed to be) a type name, i.e,, stands for a type, that is,
a set of values — which we do not presently define. The keyword -set when
applied suffix to a type name denotes the power set operation on a type and
makes the type expression A-set denote the type, i.e., the set, of all finite
subsets of the type, i.e., the set, A. A-infset correspondingly stands for the
(type, i.e., colloquially, the) set of all finite and (possibly) infinite subsets of
A. (There will only be the possibility of infinite subsets of A if A itself is an
infinite (type) set.) The type names F and S are then made to name these
respective sets by the respective type equations. A may be a 'sort', i.e., an
'abstract type' which has just been named but not given a model in terms of
something else, as has F and S. These latter are, in contrast, called 'concrete
types'. The keyword type tells us that the definitions which follow are type
definitions.

13.2.2 Set Value Expressions

There are several forms of set valued expressions: enumerations, comprehen­
sions and operator/operand expressions.

Set Enumerations

There follows, in the right half of the above expressions, examples of enumer­
ated set expressions: an empty set, a singleton set, a finite set of m elements.
The use of ellipses (. . .) is metalinguistic, i.e., not part of our RSL notation. It
is used only to signal to you, the reader, that we wish to exemplify an arbitrary
set of m elements. If we were to enumerate a specific set of m (for example, for
m = seven) elements, then we would have to list all seven elements by their
names (or some expressions).

Sets are finite or infinite aggregations, collections, or structures of distinct
individuals. Sets are considered variable-sized, or flexible in that the number
of their elements may vary. Curly braces: "{", " } " , and commas: ",", are
set value forming. A set may contain no (i.e., zero) elements (the empty set
{}). Another set may contain just one element (singleton sets {a^}, {%•}, . . . ,
{dk}), and so forth. A given (say, finite) set, of course, has a specific cardinality
(number of elements). But one may form a set from two sets resulting in a
set with cardinality being the number of distinct elements in the two sets.
Or one may remove an element from a nonempty set, resulting in a set with
cardinality one lower.

4The metalinguistics of formula [1] is that we use the infix equality and the
proper subset operators (=, resp. C) between type expressions.

13.2 The Set Data Type 267

Let e, el, e2, . . . , en5 be expressions that deterministically or nondeter-
ministically evaluate to not necessarily distinct values (v, vl, v2, . . . , vn) of
some type A, and let ei, ej be expressions which deterministically or nonde-
terministically evaluate to integer values, say vi, vj, then the following are
examples of set value expressions:

[1] {}, {e}, . . , {el,e2,...,en}
[2] {eL.ej}

The above expressions, in [1], left to right, denote the single model of the
empty set of no elements; a set of models of singleton sets of one element values
(any value will do!), etc.; respectively a set of models of sets of not necessarily
n distinct element values, since some ei, ej for different i, j may evaluate to
the same value. The range set expression (of line [2]) denotes a set of models
each being a (dense) set of integers lying in the range between, and inclusive,
vi and vj. If vi>vj, then the integer set is empty. For each model the above
expressions have a specific, determinate value. Notice, hence, our distinction
between denotations, in terms of models (set of mathematical structures), and
values, in terms of mathematical entities.

This is an important distinction — and it is to be kept in "vigilant" mind
throughout these volumes.

We call the above, [1-2], explicit enumeration of set values. We call the
second line example, [2], {ei..ej} an integer range expression. Later (para­
graph Set Comprehension in this section) we shall show an implicit enu­
meration of set values in the form of set comprehension (i.e., comprehended
set expressions). We use explicit set enumeration expressions when we wish
to explicate specific, always finite, and usually "small" sets. We use compre­
hended set expressions when we wish to implicitly specify (i.e., 'implicate'),
possibly infinite, sets characterised by some predicate.

Set Value Operator/Operand Expressions

Sets come, in RSL, with the usual operations listed below. G is taken to stand
for a primitive, i.e., as an inexplicable operation, the set membership opera­
tion.

5In the rest of these volumes we shall use the following naming convention:
Identifiers starting with e (and often "suffixed" or indexed (subscripted) by some
alphanumeric characters) stand for expressions. Identifiers starting with v (and
often suffixed or indexed (subscripted) by some alphanumeric characters) stand for
values. Values are definite, in the sense that a value is a specific thing. Expressions
may be constant expressions, i.e., evaluate, in any context (and state) to one and
the same value, or expressions may be variable expressions, i.e., evaluate, in different
contexts (and states) to different values.

268 13 Sets in RSL

Set Operation Signatures and Examples

We explain the formulas and expressions of Fig. 13.2.2. The keyword value
tells us that the definitions which follow are value definitions. In all of the
below we assume that the operations, wherever applicable, apply to set val­
ues. The 13 lines that follow are extra- (or meta-) linguistic, i.e., outside
RSL. They are used here to present RSL set constructs. In particular they are
meant to express that there are 13 given (i.e., "built-in") set operators: G,
the membership operator (is an element member of a set, true or false?); 0,
the non-membership operator (is an element not a member of a set, true or
false?); U, the infix union operator (when applied to two sets expresses the
set whose members are in either or both of the two operand sets).

Signatures an
value

G: A x A-infset -> Bool
£: A x A-infset -t Bool
U: A-infset x A-infset —• A-infset
U: (A-infset)-infset —> A-infset
fl: A-infset x A-infset —• A-infset
fl: (A-infset)-infset —> A-infset
\: A-infset x A-infset —> A-infset
C
c
=
*

A-infset x A-infset —» Bool
A-infset x A-infset —» Bool
A-infset x A-infset —» Bool
A-infset x A-infset —» Bool

card: A-infset —> Nat

d Examples
examples

a 6 {a,b,c}
a g {}, a g {b,c}
{a,b,c} U {a,b,d,e} = {a,b,c,d,e}
U{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} D {c,d,e} = {c}
n{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} C {a,b,c}
{a,b,c} C {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} ^ {a,b}
card {} = 0, card {a,b,c} = 3

Fig. 13.2. Set operations

U, the distributed prefix union operator (when applied to a set of sets expresses
the set whose members are in some of the sets of the operand set)] fl, the infix
intersection operator (expresses the set whose members are in both of the two
operand sets); fl, the distributed prefix intersection operator (when applied
to a set of sets expresses the set whose members are in all of the sets of the
operand set); \ , the set complement (or set subtraction) operator (expresses
the set whose members are those of the first operand set which are not in
the second operand set); C, the proper subset operator (are the members of
the first operand set all members of the second operand set, and are there
members of the second operand set which are not in the first operands set,
true or false?); C, the subset operator (as for proper subset, but allows
equality of the two operand set to be true); =, the equal operator (are the
two operand sets the same, true or false?); / , the not equal operator (are

13.2 The Set Data Type 269

the two operand sets different, t rue or false?); and card, the cardinality
operator ("counts" the number of elements in the presumed finite operand
set). U and fl are called overloaded operators. They apply to pairs of sets as
well as to possibly infinite sets of sets.

Sets A,B A union B

A

B

Four set-forming

operation examples

(the shaded figures)

Fig. 13.3. Four set-forming operations

In Fig. 13.3 the text 'union' (respectively 'intersection') stands for the mathe­
matical operator U (respectively fl).

M a t h e m a t i c a l M e a n i n g of t h e Set Opera tors

We define the meaning of the set operators. G is a primitive (given, assumed)
operation:

value
s' U s" = { a | a:A • a G s' V a G s" }
U ss = { a | a:A • 3 s:A-set * s G s s = > a G s }
s' H s" = { a | a:A • a G s' A a G s" }
fl ss = { a | a:A • V s:A-set * s G s s = > a G s }
s' \ s" = { a | a:A • a G s' A a £ s" }
s' C s" = V a:A • a G s' => a G s"
s' C s" = s' C s" A 3 a:A • a G sr/ A a £ s'
s' = s" = V a:A • a G s' = a G s" = sCs r A s'Cs
s' ^ s , ; = s' n s / ; ^ {}
card s =

if s = {} t h e n 0 e lse
let a:A • a G s in 1 + card (s \ {a}) e n d e n d
pre s / * is a finite set * /

card s = chaos / * tests for infinity of s * /

The above definition is not in RSL. Instead it is in "ordinary" mathematics . It
relies on logic and set comprehension as already understood. If we claimed it
was self-referentially defined, i.e., in RSL, then any meaning one would assign

B\A
A\B

270 13 Sets in RSL

to, for example, the logic connectives and quantification would be OK, and
one would get a new meaning each time!

Set Comprehension

We finish this terse overview of the RSL set data type by illustrating set com­
prehension. To do so we introduce a sort B and the concrete types of predicates
(P) over A and functions (Q) from A into B. (It is enough that the q:Q func­
tions are partial, but defined (over a:A) whenever (for p:P) p(a) is true.) Now
the "function" comprehend illustrates the idea of set comprehension: We de­
fine the set of all those q(a) for which a is of type A such that (•) a is in
(argument) set s and the predicate p(a) holds.

Concretely we may express:

Example 13.2 A Simple Set Example: Let fact name the factorial function,
then

{fact(i)|i:Nat • i G {1..6}}

expresses a simple set of six elements, the first six factorials! •

type
A, B
P = A - • Bool
Q = A ^ B

value
comprehend: A-infset x P x Q - } B-infset
comprehend(s,P,Q) = { Q(a) | a:A • a G s A V(a) }

The texts Q(a) and P(a) need not be invocations of functions Q, respectively
V, but can be any B-valued respectively Bool-valued expression over the free
variable a. P(a) must, additionally, be deterministic in order to evaluate to
true.

We use comprehend set expressions when we wish to implicitly specify
(i.e., 'implicate'), possibly infinite, sets, characterised by some function, q,
and some predicate, p.

Set comprehension, as do list and map comprehension (to be introduced in
forthcoming chapters), expresses a form of 'homomorphic' principle: Functions
over composite structures being expressed as a(nother) function over the (first)
function applied to all immediate constituents of the composite structure. We
refer to Sect. 8.4.4 for a first enunciation of the (homo)morphism concept.

The general syntactic form of comprehended set expressions is

{ <value_expr> | <typings> • <bool_expr> }

where the • <bool_expr> } part is optional.

13.2 The Set Data Type 271

Sets — Determinism and Nondeterminism Revisited

Since set enumeration and range expressions in general denote sets of models
of sets; and since set operands of set operator/operand expressions in general
apply to evaluation within such models, we can expect that the denotation of
set operator/operand expressions, and of comprehended set expressions like­
wise denote sets of models of sets or such other appropriate values (Booleans,
natural numbers) as are the result types of the set operators. It is important
to keep this in mind throughout!

Example 13.3 Nondeterministic Sets (Abstract): Let expressions ei, e2, and
e3, denote the set of models:

{vu,vl2}, {v2l,v22,V23}, and j>3},
respectively. Then the set expression {ei, e2,e3} denote the set of models:

{{vll,V2l,V3}, {vl2,V2l,V3}, {VU,V22,V3}, {vl2,V22,V3}, {vU, V2s, V3},

{vl2,V2s,V3}}
Any one of these, viz., {f i i ; ^23,^3}, is a value of {ei,e2,e3}. •

Sets — Models, Values and the = Operation

A specification, all of it, denotes a set of models. The evaluation of a spec­
ification, all of it, takes place in exactly one of these models. Which one is
chosen, if there is more than one model in the set, we cannot specify.

Equality, =, of set expressions is true if the chosen model possesses ap­
propriate set element values, otherwise false:

{el,e2,...,en} = {e,e',...,e"}

is true if both expressions evaluate, in the chosen model, to sets of the same
number of values, and such that the sets of these values are the same, otherwise
false. To express that we wish equality to hold for all models we use the =
operator:

{el,e2,...,en} = {e,e',...,e"}

is true if for all models the set values are equal.

13.2.3 Set Binding Patterns and Matching

We shall here consider the RSL construct of set binding patterns and the set
matching concept. We shall later deal with these concepts in other contexts:
Sects. 14.4.1, and 14.4.2 for Cartesians, 15.2.3 for lists and 16.2.3 for maps.

By a 'set let decomposition binding pattern' we understand a construct
basically of the following form:

272 13 Sets in RSL

type
A, B = A-set

value
... let {a} U b = e in ... end ...
post e = {a} U b A b = e \ {a}

Here it is (somehow) known that e is a nonempty set. {a} U b is the binding
pattern. The understanding of let {a} U b = e in ... end is that e is a set
expression with nonempty value, say v; that the free identifier a is bound to
an arbitrary member of v; and that the free identifier b then is bound to the
remainder of v, that is a possibly empty set without a.

Example 13.4 Set Pattern: We show a very simple example of the use of set
binding patterns — leaving its "encoding" to the reader:

value
sum: Nat-set —> Nat
sum(ns) =

ifns={}
thenO
else

let {n} U ns; = ns in
n + sum(ns/)

end end

The general form of a set binding pattern definition is:

let { binding_pattern } U id = set.expr
in body_expr end

Here binding_pattern is a simple expression with only free identifiers, id is
an identifier, and set.expr is a set-valued expression which evaluates to at
least one element of a kind that 'matches' the binding_pattern. Which forms
binding_pattern may take, and what 'matching' means will be dealt with, in
Sect. 19.6. We shall introduce similar specification language binding pattern
constructs for Cartesians, lists and maps.

13.2.4 Nondeterminism

In the typing construct and in the set decomposition construct:

let a:A • P(a) in ... end
let {a} U s = set in ... end

the selection of the a value is nondeterministic. Nondeterminism is an impor­
tant abstraction mechanism. It expresses that we abstract from the specific
choice: Any, or almost any, will do!

13.3 Examples of Set-Based Abstractions 273

13.3 Examples of Set-Based Abstractions

This section "matches" Sections 14.3, 15.3, 16.3, and 17.2. They all give small
examples of set, Cartesian, list, map and function-based specifications. They
are meant as class room examples.

13.3.1 Representation I

Example 13.5 Equivalence Relation cum Partitioning: Let A denote any
finite set of (simple) values. An equivalence relation over A is a set of disjoint
sets of A elements which together "span" all of A. Such an equivalence relation
is also called a partitioning of A. Given an equivalence relation, q, over A, and
two elements, a and a' of A such that a and a' belong to different elements
(also called classes) s, and s' of q, merge those two classes into one in q',
leaving all other classes of q unchanged in q'.

type
A
Q' = (A-set)-set
Q = {| q:Q' • wLQ(q) |}

value
sas:A-set
wf_Q: Q' - • Bool
wf_Q(q) =

U q = sas A
V s,s':A-set • s / s ' A {s,s'}Cq => s n s'={}

merge: A x A x Q - ^ Q
merge (a,a',q) as q'
pre 3 Sjs'iS^s^s'A {s,s'}CqA a G sA a'isin s'
post (V s:S-s G qA s n{a,a'}={} => s G q') A

(V s,s':S-{s,s'}CqA a G sA a'isin s' =>
s U s ' G q')

assert:
card q = card q' + 1 V
3 s,s':S • q n q' = {s,s7} A a G s A a' G s'

We refer to Examples 15.3 and 16.4. •

13.3.2 File Systems I

This is the first in a series of models of what, with an overbearing mind, we
could call file systems. Other models are presented in Examples 14.2 (Carte­
sians), 15.6 (lists) and 16.8 (maps).

274 13 Sets in RSL

Example 13.6 A Set-Oriented File System: A file system consists just of an
unordered, non-void collection of distinct information. Information is itself an
unordered, nonempty collection of distinct data.

A file system user can (i) create a void file system of no information; can (ii)
insert information not already in the file system; can (iii) inquire whether some
information is in the file system; can (iv) get the set of all the information
("informations") that each contain some specific data; can (v) delete some
given data from given information; can (vi) delete all the information that
contains some given data; and can (vii) update all that information which
contain some given data by replacing this data with some other given data.

type
D
I = D-set
B = I-set

examples
d, d', ..., d":D
i:{}, i':{{d}}, iff:{{dAf}MAff}MtA,%..}
b:{{{d}},{{d/}},{{d//}},{{d,d/}},{{d,d/},{d,d//},{d/

>d//}}}

Updating all the information in b that contains d with d' results in:

b:{{{d'}},{{d"}},{{d'},{d',d"}}}

value
void: Unit ->- B
void() = {}

insert: I - • B -^ B
insert(i)(b) = b U {i} pre i ^ b

is_in: I -> B ->> Bool
is_in(i)(b) = i G b

get: D ->> B - • I-set
get(d)(b) = { i | i : I - i e b A d e i }

deLspec: D x U B ^ B
del_spec(d,i)(b) =

{i'|i':H'isin bAd0 i'}U{i'\{d}|i':M'isin bAd G irAi=i'}
pre d G i

deLall: D - • B 4 B
del_all(d)(b) =

13.3 Examples of Set-Based Abstractions 275

{i'|i':I.i'isin bAd0 i}U{i'\{d}|i':I-i'isin bAd G i'}

update: D x D - ^ B ^ B
update(od,nd)(b) =

{i'|i':I-i'isin bAod£ i}U{i'\{od}U{nd}|i':I-i'isin bAd <E i'}

13.3.3 Representation II

Example 13.7 Coarsest Partitioning: We refer to an earlier example: Exam­
ple 13.5. Let there be given a sort A of further unspecified elements. Let q be
a set of sets of A elements. These sets may overlap. A coarsest partitioning p
is the smallest equivalence relation over A, that is, a set of disjoint sets of A
elements, such that each of these sets is contained in some set element of q
and such that all A elements of q are in some set of p.

type
A, Q = (A-set)-set, P' = Q
P = {| p:P' • wf-P(p) |}

value
wf_P: A-set - • Bool
wf_P(p) = V ma,ma': A-set • m a / m a ' A {ma,ma'} C p => ma D ma' = {}
cp: Q - • P
cp(q) =

if 3 ma,ma':A-set • m a / m a ' A ma fl ma' ^{}
then

let ma,ma':A-set • m a / m a ' A ma D ma' ^{}
in cp((q \ {ma,ma'}) U {ma D ma',ma \ ma',ma'\ma} \ {})
end

else q
end

The fact that the function cp, defined in Example 13.7, actually "computes"
the coarsest partitioning, that is, produces a result which satisfies wf_P, tran­
spires from the termination criterion for cp. But whether cp ever reaches a
value of its input argument that satisfies the termination criterion requires a
proof.

276 13 Sets in RSL

13.4 Abstracting and Modelling With Sets

This section "matches" Sections 14.4, 15.4, 16.4 and 17.3. They all give larger
examples of set, Cartesian, list, map and function abstractions and models.
They are meant as self-study examples.

The purpose of this section is to introduce techniques and tools for model-
oriented specifications primarily based on sets. Among the set modelling prin­
ciples, techniques and tools are (1) Subtyping: Sometimes a type definition
defines "too much"; a type constraining (well-formedness, invariant) pred­
icate technique can therefore be applied. (2) pre /post -conditions: function
abstraction in terms of pre- and post-conditions. (3) "Input/Output/Query"
functions: Identification of main functions according to their signature. (4)
Auxiliary functions: Decomposition of function definitions into "smallest"
units. The principles and techniques reoccur for Cartesians, lists and maps in
Sect. 14.4, 15.4 and 16.4.

13.4.1 Modelling Networks

In Example 16.7 we show models of tree-like hierarchies — such as we saw in,
for example, feudal, central European states in the past, and such as we see in
conventionally organised company structures. In the next example we model
instead the flat "group of persons"-centered and connected networks as seen
in especially rural Chinese societies, not only of the past [499].

Example 13.8 Chinese Societal Nets:

Narrative of Flat Networks:

Let c:C stand for a citizen value c being an element in the type C of all such.
Let g:G stand for any (group) of citizens, respectively the type of all such. Let
s:S stand for any set of groups, respectively the type of all such. Two otherwise
distinct groups are related to one another if they share at least one citizen,
the liaisons. A network n:N is a set of groups such that for every group in the
network one can always find another group with which it shares liaisons.

Formalisation of Flat Networks

Solely using the set data type and the concept of subtypes, we can model the
above:

type
C
G' = C-set, G = {| g:G' • g^{} |}
S = G-set
L' = C-set, L = {| £:V • £^{} |}
N' = S, N = {| s:S • wf-S(s) |}

13.4 Abstracting and Modelling With Sets 277

value
wfJS: S - • B o o l
wf_S(s) = V g:G • g G s => 3 g':G • g ' e s A share(g,g')
share: G x G -» B o o l
share(g,g') = g ^ g ' A g fl g' / {}
liaisons: G x G —> L
liaisons(g,g') = g fl g' pre share(g,g')

Annotations: L stands for proper liaisons (of at least one liaison). G', L' and N'
are the "raw" types which are constrained to G, L and N. {| binding:type_expr
• booLexpr |} is the general form of the subtype expression. For G and L we
state the constraints "in-line", i.e., as direct par t of the subtype expression.
For N we state the constraints by referring to a separately defined predicate.
wf_S(s) expresses — through the auxiliary predicate — tha t s contains at least
two groups and tha t any such two groups share at least one citizen, liaisons is
a "truly" auxiliary function in tha t we have yet to "find an active need" for
this function!

Narrat ive of H y p e r - n e t w o r k s

A society, m:M, can be viewed as consisting of two or more (i.e., multiple)
networks. As before, every network, n:N, in the set m of multiple networks, has
each of its groups relate to at least one other, different group of tha t network.
For a society it may or may not be tha t two or more distinct networks have
respective groups which share emissaries, i.e., citizens, with one another. And,
for a society it may or may not be tha t two or more distinct networks have
identical groups, etc.!

Formal i sa t ion of H y p e r - n e t w o r k s

t y p e
M' = N-se t
M = {| m:N' • card m > 1 |}

value

13 .4 .2 M o d e l l i n g Pseudo-h ierarch ie s

We cannot illustrate anywhere reasonable uses of models based entirely on
sets. In the next examples we additionally assume the Cartesian da ta type —
as introduced in Sect. 6.6.

278 13 Sets in RSL

\y
ib

id
edge _>

\arc /

L_
node

(A

_J A Hyper Graph

Fig. 13.4. An example hyper-graph

Example 13.9 Graphs: Simple and Hyper:

Narrative of Simple Graphs

A graph, g:G, consists of a set of uniquely labelled nodes n:N, and a set of
unlabelled multi-edges, e:E. A multi-edge is ("thought of", i.e., modelled as)
a set of one or more (i.e., always as a nonempty set of) nodes: If an edge
is (modelled as) a singleton set, then the edge is said to "loop" from that
labelled node only back to itself. If an edge is (modelled as) a set of two or
more nodes, then the edge is said to "connect" those nodes, including "loops".
Nodes of edges of a graph must be nodes of the graph.

Formalisation of Simple Graphs

type
N
E' = N-set
E = {| ns:E' • ns ^ {} |}
G' = N-set x E-set
G = {| (ns,es):G' • U es C ns |}

Annotations: The E' constraining predicate, ns^{}, expresses that an edge is
not void. G' expresses that a (potentially ill-formed) graph is modelled as a
Cartesian pair of nodes and edges. The G; constraining predicate expresses
that all nodes of edges are nodes of the graph.

Narrative of Hyper-graphs

A hyper-graph, h:H, is a graph with vertices and arcs, where simple graphs
have nodes and edges, respectively. More specifically, vertices, v:V, are simple
graphs — as defined above — such that no two vertices have nodes in common.
Arcs, a:A, are sets of one or more nodes, such that all nodes belong to different
vertices. Figure 13.4 attempts to illustrate a hyper-graph.

13.4 Abstracting and Modelling With Sets 279

F o r m a l i s a t i o n of H y p e r - G r a p h s

t y p e
V = G
A = N-se t
H' = V-se t x A-se t
H = {| h:H' • wf_H(h) |}

v a l u e
wf_H: H' -> B o o l
wf_H(vs,arcs) = wf_vertices(vs,_) A wf_arcs(vs,arcs)

Annotations: V: A vertex is a graph, as defined earlier, and can thus be as­
sumed well-formed. A: An arc is a set of nodes. H', H: A hyper-graph has
its vertices well-formed ("in isolation"), and its arcs well-formed with respect
also to vertices. (Note the use of the wildcard (_) as a "don't care" argument
in the invocation (above) and the definition (next) of wLvertices. One could
instead just have used the vs argument in a more narrowly typed function.
We have, perhaps arbitrarily, decided to keep the type as chosen, in order to
signal, through the wildcard (_), tha t the specific constraints apply only to
par t of the graph!)

v a l u e
wLvertices: H' —> B o o l
wLvertices (vs,_) =

V v,v':V • {v,v'}Cvs => wf_ns(ns(v),ns(v'))

wLarcs: H' —> B o o l
wLarcs(h) = wf_arcs_as(h) A wLlinks(h)

ns: V -» N-se t , ns(nodes,_) = nodes
ns: V-se t —> N-se t ,
ns(vs) = U{ns(v)|v:VW G vs}

Annotations: wLvertices: Vertices are well-formed if their nodes are well-
formed. wLarcs: Arcs are well-formed if they are well-formed wrt. nodes of
vertices and they link properly, ns is an overloaded auxiliary function: It ap­
plies both to vertices and to sets of vertices. It yields their nodes.

wLns: N-se t x N-se t -^ B o o l
wf_ns(ns,nsr) = n s ^ n s ' => ns H ns7 = {}

wf_arcs_ns: Hr —> B o o l ,
wf_arcs_ns(vs,arcs) = arcs C ns(vs)

wLlinks: Hr ->* B o o l
wf_links(vs,arcs) =

280 13 Sets in RSL

V n,n':N,v:V •
{n,n'}CarcsAv G vsA{n,n'}Cnodes(v) => n=n'

Annotations: wf_ns: Node sets of hyper-graph vertices are well-formed if, when
they are distinct, they share no nodes in common. wf_arcs_ns: Well-formedness
of arcs wrt. nodes of vertices holds if arcs mention only nodes of vertices.
wfJinks: Well-formedness of links expresses that no two distinct nodes of an
arc belong to the same vertex, or vice versa: Each node of an arc belongs to
a distinct vertex. •

The two previous examples illustrated several ideas: (1) Seemingly complex
concepts can be modelled in simple terms, using sets and Cartesians. (2)
Social sciences concepts (here of citizen-brokered community networks and
society-brokered interactions between networks) can be captured abstractly.
It remains to show a number of "interesting" functions on such networks and
interactions, that is, to use formalisation to create formal, social sciences the­
ories. (3) Graphs and hyper-graphs are mathematical concepts that relate
to the social sciences concepts of citizen networks, etc. (4) Well-formedness
constraints (needed to express appropriate subtypes) can and should be de­
composed into "smallest" parts — with some of these suitably being defined
in terms of auxiliary functions.

Some Ancillary Remarks: The formal, social sciences theories sug­
gested above would certainly make use of many such auxiliary concepts. "Jot­
ting" them down, as was liaisons (Example 13.8), is part of the research into
such a theory: The formaliser's mind "roams in uncharted territory". Some­
times the formulation of such seemingly auxiliary concepts takes on a life of
its own and become crucial components of an emerging theory. These last
remarks are true not just for the above example of a possible social sciences
theory, but for any domain or requirements or software design theory we might
contemplate!

The next example will adopt a slightly different style of presentation.

13.4.3 Modelling a Telephone System

We give an example which illustrates sets and Cartesians. It differs slightly
from that of the property-oriented model of a telephone exchange system,
Example 12.1. In the example below we do not make any distinction between
callers and called. This simplifies several matters.

The example is "borrowed" — in edited form — from J.C.P. Woodcock
and M. Loonies' book Software Engineering Mathematics [534].

Example 13.10 Telephone System, I: The presentation is in two parts: The
present example and Example 13.11. Each part will alternate between narra­
tives and formalisations.

13.4 Abstracting and Modelling With Sets 281

Narrative of the State

There are the notions of:

• subscribers, s:S;
• connections, c:C, between two or more subscribers;
• actual, a:A, and
• requested, r:R, connections between two or more subscribers;
• and a telephone exchange system, x:X, with actual and requested connec­

tions such that all actual connections are requested.

Formalisation of the State

type
S
C = {| ss | ss:S-set • card ss > 2 |}
R = C-set
A = C-set
X = {| (r,a) | (r,a):RxA • a C r A f] a = {} |}

where f] is the distributed intersection operator. f]a = {} expresses that
no two connection elements of a share subscribers. That is, no subscriber
participates in more than one actual call. We may consider x:X to represent
the state notion of this system.

An example may be warranted:

value
a,b,c,d,e,f,g,h,k:S
x:X

axiom
x = ({{a,b,c},{d,e},{f,g},{g,h,k}},{{a,b,c},{d,e},{g,h,k}})

Narrative of Efficient States

There is a notion of telephone exchange system efficiency, a constraint that
governs its operation, hence the state, at any one time. The efficiency crite­
rion says that all requested calls that can actually be connected are indeed
connected:

Formalisation of Efficient States

value
eff_X: X ^ Bool
eff_X(r,a) = ~ 3 a':A • a C a' A (r,ar) G X

282 13 Sets in RSL

Narrative of Subscriber Actions

Now there is the notion of subscriber actions: making a (possibly multi-party)
call, terminating (hanging up on) a call and inquiring whether a line is busy.
Let us model them as if they were the denotation of commands "being exe­
cuted" in a state x:X.

Formalisation of Action Types

type
Cmd = Call | Hang | Busy
Call' = = mk_Call(p:S,cs:C)
Call = {| c:Call' • card cs(c) > 1 }
Hang = = mk_Hang(s:S)
Busy = = mk_Busy(s:S)

cs selects the C part of a Call. •

An Aside on Type Union and Variant Records

This seems to be one of the first times, in these volumes, that we are u-
sing the two type constructors | and mkJd. | as in A|B and mkJd as in
mk_ld(r:R,s:S,... ,t:T). (Here A and B are any type expressions and Id, in fact
mkJd, can be any identifier. R, S, . . . , and T are any type expressions.) So let
us explain further. (We simplify the case for mk_ld(s_r:R,s_s:S,... ,s_t:T) into
just mk_A(s_a:A) and mk_B(s_b:B).)

• The informal, intuitive idea is first that we wish to express the type union
of two types — and A|B is our means for doing so.

• Then we may be in the situation that the two types A and B "overlap":
i.e., have values in common.

• So we cannot write A|B, but instead we write A' | B', and define A' and
B' as A' = = mk_A(s_a:A), respectively B' = = mk_B(s_b:B).

• Now, as we shall later explain, more formally, the two types (A' and B')
designate disjoint sets.

• s_r, s_s, . . . , s_t, s_a and s_b are called selector functions.

In order to be systematic, safeguarding against possible overlapping of types,
and to otherwise be able to exploit some pattern decomposition features of our
main specification language (RSL), we extend this disjoint union construction
to all alternatives of the union construction, as in the example above. We call
the construction V = = mkA(a:A) | mkA(a:A,b:B) | mkA(b:B,a:A), etc., a record
variant construction. In Sect. 10.3 we illustrated the use of variant definitions
in connection with enumerated token definitions. Section 18.4 covers variant
record types. Section 18.5 covers union types.

13.4 Abstracting and Modelling With Sets 283

Example 13.11 Telephone System, II: We continue Example 13.10.

Narrative: Multi-party Call

A multi-party call involves a (primary, s) caller and one or more (secondary,
ss) callees. Enacting such a call makes the desired connection a requested
connection. If none of the callers are already engaged in an actual connection
then the call can be actualised. A multi-party call cannot be made by a caller
who has already requested other calls.

Formalisation of Multi-party Call

We define the meaning of making a multi-party call in two ways: By means
of a pre/post-definition, and explicitly:

value
int.Call: Call H> X ^ X
int_Call(mk_Call(p,cs))(r,) as (r',a')
pre p 0 |J r
post r' = r U {{p} U cs} A efT_X(r',a')

int_Call(mk_Call(p,cs))(r,a) =
let r' = r U {{p} U cs},

a' = a U if ({{p} U cs} fl U a) = {}
t hen {{p} U cs} else {} end in

(r',a;) end
pre p £ |J r

The above pre/post-definition (of int.Call) illustrates the power of this style
of definition. No algorithm is specified, instead all the work is expressed by
appealing to the invariant!

Narrative: Call Termination

It takes one person, one subscriber, to terminate a call.

Formalisation of Call Termination

value
int_Hang: Hang - ^ X 4 X
int_Hang(mk_Hang(p))(r,a) as (r',a')

pre existS c:C • c G a A p G a
post r' = r \ {c|c:C • c G r A p G c} A eff_X(r',a')

int_Hang(mk_Hang(p))(r,a) =

284 13 Sets in RSL

let r' = r \ { c | c:C • c G a A p G c } ,
a' = a \ { c | c:C • c G r A p G c j i n

let a" = a' U { c | c:C • c G r' A c f] a' = {} } in
(r',a") end end
pre existS c:C • c G a A p G a

The two ways of defining the above intJHang function again demonstrate the
strong abstr actional feature of defining by means of pre/post-conditions.

Narrative: Subscriber Busy

A line (that is, a subscriber) is only 'busy' if it (the person) is engaged in an
actual call.

Formalisation of Subscriber Busy

value
int_Busy: S - • X -^ Bool
int_Busy(mk_Busy(p))(_,a) as b

pre true
post if b then p G |J a else p ^ [j a end

int_Busy(mk_Busy(p))(_,a) = p G (J a

Here, perhaps not so surprisingly, we find that the explicit function definition
is the most straightforward. •

13.5 Inductive Set Definitions

We wish to illustrate the use of recursive and, in general, inductive definitions.
In this chapter for sets. In subsequent chapters for Cartesians, lists and maps.

13.5.1 Inductive Set Type Definitions

Is it allowed to specify:

type
S = S-set?

The answer is no. For technical reasons.
Let us try to understand this answer.
First let us try imagine what could be a solution to the above type defini­

tion. One proposal is:

13.5 Inductive Set Definitions 285

5= {{}, {{}} , {{},{{}}}, {{},{{}},{{},{{}}}}, ... },

where the set elements indicated by the . . . 's are all to be finite or infinite
sets whose elements are "drawn" from "the aforementioned". Not very useful
you may say. Let S be the set indicated above. Is it itself a member of S?
Obviously no. That would lead to the classical paradox: "Is the set of all sets
an element of that set ?". The cardinality of the class of values of type S of
the left-hand side must be equal to cardinality of the class of values of type
S-set of the right-hand side. Obviously they are not. So we reject this kind of
recursive set type definition.

So we use this example as a pragmatic reason for not getting involved in
paradoxes.

But we may need some kind of inductive set definition. Let us try this
one:

type
E
S = mS-set
mS = Es | Ss
Es = = mkE(e:E)
Ss = = mkS(s:S)

Now an example element, s, of S expressed outside the RSL notation would
be:

value
S = U{es|es:Es-set} U U{mss|mss:mS-set-mssC<S}

Is the above mathematical definition of S allowed? Yes, in mathematics, but
not in RSL. In mathematics a foundation for RSL can be given in which the
recursive type definition of mS makes sense. The recursive equation in S is,
in RSL, any fixpoint of the equartion, i.e., a set, <J, which when replacing S in
the equation satisfies that equation. The fact that a may be infinite should
not bother us: We are specifying, not computing. So we conclude: Recursive
definitions of sets must have built into them a variant, a "boot strap". The
variant serves to get the generation of proper set values started and serves to
avoid seemingly meaningless void values.

We shall introduce the variant record type mS = = mkE(se:E) | mkS(ss:S),
shown above, in Chap. 18.

13.5.2 Inductive Set Value Definitions

We illustrate the use of inductive definitions of set values — mostly in the
form of set comprehensions. At the end of the below example we also show a
recursive function definition over sets.

286 13 Sets in RSL

Example 13.12 Purely Sort- and Set-Based Model of Networks: A network
consists of uniquely identified segments and uniquely identified connectors.
From a segment one can observe the identities of the exactly two connectors
that the segment is delimited by. And from a connector one can observe the
set of identities of segments connected to the connector.

type
N, S, Si, C, Ci

value
obs_Ss: N - • S-set
obs_Cs: N -> C-set
obs_Si: S -> Si
obs_Sis: C -» Si-set
obs_Ci: C - • Ci
obs_Cis: S -» Ci-set

axiom
V s:S • card obs_Cis(s) = 2

value
xtr_Cis: S-set —> Cis-set
xtr_Cis(ss) = U{obs_Cis(s)|s:S-s G ss}

xtr.Cis: N - • Ci-set
xtr_Cis(n) = xtr_Cis(obs_Ss(n))

An acyclic route is a set of segments such that any segment of the route
connects to one or two segments in the route, one if the segment is a first or a
last of the route and two if it is "in-fixed" between two other segments of the
route, and such that no in-fixing, but not explicitly represented, connector is
implied more than at most once. gen_Rs when applied to a net generates the
possibly infinite set of all routes of a network. To define genRs we need define
a number of auxiliary functions, inch predicate.

type
R' = S-set
R = {| r:Rr • wfR(r) |}

value
genRs: N - • R-set
genRs(n) = {r|r:R-rCobs_Ss(n)}

CLdeg: Ci x R' - • Nat
Ci_deg(ci,r) = card{ s | s:S • s G r A ci G obs_Cis(s)}

wfR: R' - • Bool
wfR(r) =

card r = 1 V

13.6 A Comment on Varying Sets 287

3 ci,ci':Ci, s:S • s E r A {ci,ci'} = obs_Cis(s) A
Ci_deg(ci,r)=l A Ci_deg(ci',r)=2 A w£R(r\{s})

13.6 A Comment on Varying Sets

In the beginning of Sect. 13.1 we made a footnote reference to the present
section. It concerned the term varying sets. We now make precise what we
mean by tha t term.

Wha t we mean is roughly the following, explained in two ways. Let vs be
an assignable variable. Let its value range over sets. Assignment to vs may
result in there being, at one time, no elements in the variable value, i.e., the
set is empty; while at another time an assignment may add or remove any
number of set elements to the set variable.

t y p e
A

variable
v_s:A-set := {}

value
g: A-set -» U n i t
g(set) =

v_s := set; ...
let a:A • a ^ v_s in v_s
let a:A • a G v_s in v_s
v_s := set; ...
v-s := {}; ...

The above was an explanation given in terms of an imperative, i.e., an assign­
ment language.

An explanation given in terms of a functional programming style would,
for example, run as follows. Let there be given a function definition:

t y p e
A, B

value
f: A-set - • N a t
f(set) =

if se t={} t h e n 0 e l se let a:A • a G set in l+f (se t \{a}) e n d e n d

The argument set designates a set. For recursive invocations of f the set set
takes on "varying" values. Initially there may be 5 elements. In successive

:= v_s U {a}; ... end; ...
:= v_s \ {a}; ... end; ...

288 13 Sets in RSL

invocations there will be 4, 3, 2, 1 and then, finally 0 elements. Incidentally,
the function f is the same as the cardinality function for finite set arguments.

13.7 Principles, Techniques and Tools

Based on this chapter on the set data type, its definition and its many ex­
amples, we shall now enunciate principles, techniques and tools of abstraction
and modelling.

Principles. Set Abstraction and Modelling: If and when a model-oriented
abstraction has been chosen, then set abstraction is chosen if a reasonable
number of the following characteristics can be identified as properties of the
phenomena being modelled: (i) the abstract structure of the composite com­
ponents being modelled consists of an unordered collection of not necessarily
uniquely named, but otherwise distinct, subcomponents (constituent phenom­
ena or concepts)) (ii) whose number is not fixed, i.e., may vary, that is, (hi)
to which new, distinct subcomponents may be joined; (iv) from which exist­
ing subcomponents may be removed; (v) where one may inquire about "con­
tainment" relations between modelled phenomena (concepts); (vi) where one
may compose other such phenomena (concepts) from similar such phenomena
(concepts) (vii) or decompose into "smaller" such phenomena (concepts); and
(viii) where one may inquire whether the phenomena (concepts) contain a
given constituent phenomenon (respectively concept). •

Other model choices may be chosen (viz.: lists, maps), but they will often
need to be manipulated using set operations.

Techniques. Set Abstraction and Modelling: We refer to initial paragraphs
of Sect. 13.4 for a listing of some of the techniques used when abstracting
using sets. More specifically: A number of set-oriented techniques are offered:
(ix) Observer functions usually "extract" sets; (x) the various set operations
apply to appropriate modelling instances: (x.l-.3) Union, intersection and set
complement apply to models of "all", "shared", respectively "some, except"
instances of a phenomenon possessed by two or more sets of phenomena, (x.4-
.5) subset, equality and inequality apply to models of "contained", "the same",
respectively "definitely not the same", instances of a phenomenon possessed
by two or more sets of phenomena; (x.6) cardinality applies to models of
"how many" instances of a phenomenon; (xi-xii) set enumeration and set
comprehension apply to the expression of the construction of an instance of
an otherwise set modelled phenomenon. These are just some of the more
"important" techniques. •

Tools. Set Abstraction and Modelling: If abstraction and modelling using
the set data type has been chosen, then the tool can either be the RSL, the
VDM-SL, the Z, or, for example, the B specification language. •

Please compare the present section to Sections 15.6 (lists) and 16.6 (maps).

13.10 Exercises 289

13.8 Discussion

We have outlined the set data type. And we have enunciated principles for
when to deploy set abstraction, to mention some of the techniques that follow
from such a choice, and to identify some of the set abstraction specification lan­
guage tools available. Sets constitute "the basic workhorse" of model-oriented
abstraction and modelling. In Chapters 15 and 16 we introduce the list and
the map data types. We shall then see how sets reappear in the expression
of the set of all indices, respectively elements of a list, and the definition,
respectively the range sets of maps.

13.9 Bibliographical Notes

We refer to the following seminal works on set theory: [46,211,230,258,273,
394,491,500,505].

13.10 Exercises

Exercise 13.1. Set Types. This exercise helps to develop your skills in ma­
nipulating sets. It is certainly not one of abstraction.

1. List the elements of Bool-set and Bool-infset.
2. List some of the elements of Nat-set, respectively Nat-infset.

Exercise 13.2. Simple Number Sets, I. This exercise also helps to develop
your skills in manipulating sets. It is really not one of abstraction.

You are to formally specify sets, sns:SNS, of sets, ns:NS, of natural numbers
such that each set, ns, in a set sns contains a dense set of numbers from and
including 0 to and including one less than the cardinality of that set (ns), and
such that sns contains all the sets nso, nsi, up to and including nsn_i, where
n is the cardinality of sns.

Exercise 13.3. Simple Number Sets, II. This exercise continues that of Ex­
ercises 13.2. You are now to formally define operations:

1. that join a "next higher number" to a set of sets of numbers,
2. and that remove a "highest numbered" such set.

That is, if sns is the set {{0}, {0,1}, {0,1,2}},

• then adding a "next higher number" to sns yields the set {{0}, {0,1},
{0,1,2}, {0,1,2,3}},

• and removing a "highest numbered" such set yields the set {{0}, {0,1}}.

290 13 Sets in RSL

Exercise 13.4. More on Networks. We refer to Example 13.8. This exercise
is intended to open your eyes to rather unconventional applications: basically,
the one here is taken from the social sciences!

1. Define functions, citizens, which, for any network, n:N, respectively for any
society, m:M, yields all its citizens.

2. Define a function, hermits, which, for any set of groups, s:S, yields all its
hermits, i.e., citizens whose group includes only themselves and who are
not liaisons.

3. Define a function, isolated, which, for any society, m:M, yields all those
citizens who are citizens belonging to only one network.

4. Define a function, individualists, which, for any society, m:M, yields the set
of all those citizens who only belong to one network.

5. Define a function, emissaries, which, for any society, m:M, yields all those
citizens who are emissaries.

6. Define functions, ordinary, which, for any network, n:N, respectively for
any society, m:M, yield all those citizens who are not liaisons, respectively
neither liaisons nor emissaries.

I * •(• •!•

We advise the exercise solver to wait tackling these next three exercises till
after having studied the next chapter (on Cartesians). Then you will be better
equipped to solve the exercises in a meaningful way.

Exercise 13.5. X Sets in the Transportation Net Domain. We refer to Ap­
pendix A, Sect. A.l, Transportation Net.

We assume the following properties of transportation nets: they consist
of sets of Segments6 and sets of Connections. Segments can be modelled as
Cartesians containing a unique Segment Identifier, a Segment Name, a Seg­
ment Length, the directions in which traffic may flow along the segment,
modelled, for example as a set of zero, one or two pairs of Connection Identi­
fiers, where these latter are thought of as identifying the Connections at either
end of the Segment Connections can be modelled as Cartesians containing a
unique Connection Identifier, a Connection Name, and the Identifiers of Seg­
ments incident upon (and/or emanating from) the Connection.

1. Define the sorts Segment Identifier, Segment Name, and Connection Iden­
tifier,

2. Define the concrete types of Nets, Segments and Connections.
3. Define a predicate function, wf_N, which tests whether a given Net is well-

formed wrt. the following: (i) all Segments of a Net have unique Segment
Identifiers; (ii) all Connections of a Net have unique Connection Identi­
fiers; and (iii) for each Segment of a Net its Connection Identifiers are
those of actual Connections of the Net.

'By using capital letters we indicate a possible type name.

13.10 Exercises 291

4. Define a function, is.Route, which tests whether a given subset of segments
are sequentially connected.

5. Define a function, is_Circular_Route, which tests whether a given Route is
circular.

6. Define a function, is_l_ine, which tests whether a given Route has all of its
Segments having the same Segment Name, and tha t it is then non-circular.

7. Define a function, all_non_Circular_Routes, which generates all non-circular
Routes of a Net.

8. Define a function, alLLines, which generates all Lines of a Net.
9. Define a function, Route-Length, which computes the length of a Route.

Exerc i se 13 .6 . $ Sets in the Container Logistics Domain. We refer to Ap­
pendix A, Sect. A.2, Container Logistics.

Assume tha t a Line is a set of Container Ship Terminal Visits, where each
Container Ship Terminal Visit is a triple of Container Terminal Names: The
Names of the previous, the present, and the next Container Terminals. Assume
tha t there is a set, all shipping routes, of Shipping Routes: A Shipping Route
is a pair: The Name of a Container Ship, and a Line. Assume tha t a Waybill
is a set of Container Terminal Visits, where each Container Terminal Visit is
a triple of a "from" Container Terminal Name, a Name of a Container Ship,
and a "to" Container Terminal Name. Let there further be given a type, Seven
Seas, of Container Terminal Names.

1. Define the types of Seven Seas, Line, Container Ship Terminal Visit, All
Shipping Routes, Shipping Route, Waybill, and Container Terminal Visit.

2. Define a predicate, wf_Single_l_ine, which tests tha t a Line, i.e., the set of
Container Ship Terminal Visits, form a simple cyclic sequence: Tha t is,
tha t one Container Ship Terminal Visit connects to a next, with a last
connecting back to a first:

{(n6, n i , n2) , (ni, n2 , n3) , (n2, n3 , n4) , (n3, n4 , n5) , (n4, n^,n6), (n5, n6 , n i)}

Any Container Terminal can serve as a last, etc. Figure 13.5 shows, at
top, such a line.

^ A
• n1 • n2 • n3 • n4 • n5 • n6

Simple, Single Cyclic Line

• n1 «n2 • n3 • n4 • n 5 • n6

Folded, Forward/Backward Cyclic Line

Fig. 13.5. Two lines

292 13 Sets in RSL

3. Define a predicate, wf_Folded_l_ine, which tests that a Line, i.e., the set
of Container Ship Terminal Visits, form a simple sequence followed by a
reverse sequence:

{(n2, ni, n2), (ni, n2, n3), (n2, n3, n4), (n3, n4, n5),

(n4, n5, n6), (rn$,n6,n!$), (n5, 714, n3), (714, n3, n2)}

Figure 13.5 on the page before shows, at bottom, such a line.
4. Given any Waybill value and any All Shipping Routes value, define a

predicate, wf_Way_Bill, which checks that there is a suitable set of Lines
that can convey the Container according to a Waybill.

Exercise 13.7. X Sets in the Financial Service Industry Domain. We refer
to Appendix A, Sect. A.3, Financial Service Industry.

From a bank one can observe the amount of cash that the bank possesses.
From a bank once can observe the names of all the clients of that bank. From
a bank once can observe the set of all its account numbers. From a bank and
given a client name one can observe that client's set of one or more bank
account numbers. From a bank and given an account number one can observe
which clients (by their client names) share that account number. From a bank
and given an account number one can observe the balance on the designated
account.

1. Define the sorts of entities mentioned above.
2. Define the signature of the observer functions mentioned above.

The set of bank account numbers of a bank must be the same whether one
observes these directly from the bank, or observes them through the set of
all client names (acct.nos). The set of client names of a bank, must be the
same whether one observes these directly from the bank, or observing them
through the set of all account numbers (cILnms).

3. Please formulate appropriate predicates for the two constraints expressed
above.

4. Can you think of other constraints?

The following simple operations can be performed on a bank:

5. Open an account: A client opens an account by presenting a client name.
In return the client obtains a new, fresh, hitherto unused account number.
The balance is set to 0. The account is not shared with other clients.

6. Deposit into an account: A client presents an amount of cash to the bank
to be added to an account whose number is also presented to the bank. The
amount of cash in the bank is incremented with the presented amount.

7. Withdraw from an account: A client presents a request to withdraw a
stated amount of cash from the bank by subtracting it from an account
whose number is also presented to the bank. The amount of cash in the
bank is decremented with the requested amount.

13.10 Exercises 293

8. Close an account: A client closes an account by presenting an account
number (owned by that client). As a result the account is closed. If the
balance is positive then the closure also amounts to a withdrawal of cash.
If the account balance is negative then the closure also amounts to a prior
deposit of cash.

Please state appropriate pre/post-conditions on the bank for:

5 the open transaction,
6 the deposit transaction,
7 the withdraw transaction and
8 the close transaction.

Can you think of an invariant over bank cash and bank account balances?

9. Please formalise it!

14

Car tes ians in RSL

• The prerequisite for studying this chapter is that you possess knowledge
of the mathematical and the RSL concepts of sets and Cartesians as covered
in earlier chapters (Chaps. 3-4 and 13).

• The aim is to introduce the RSL concept of Cartesians, also known in
programming languages as records or structures.

• The objective is to help set the reader free to choose Cartesian abstrac­
tions when appropriate, and to not choose Cartesians when they are not
appropriate.

• The treatment is semiformal and systematic.

Characterisation. By a Cartesian we understand, loosely, a fixed grouping
(i.e., aggregation) of a number of not necessarily distinct entities such that
it is meaningful to speak of (i) the composition of these entities, e«, into a
Cartesian, (ei, e2 , . . . , en), of (ii) the decomposition of a Cartesian, c, into its
components: let (idi,id2,... ,idn) = c in . . . end, and of (hi) comparisons
between Cartesians (=,7^). •

Cogito ergo sum

Rene Descartes, 1596-1650

We know of Rene Descartes from our first school days: the division of the plane
into X and Y (Cartesian) coordinates is attributed to him [186]. And we know
of Cartesians, such as we shall think of them from programming languages,
as records, or structures. We refer to Sect. 6.6 for an early introduction to
Cartesians.

14.1 Cartesians: The Issues

The idea illustrated in this chapter is the use of the discrete mathematics
concept of Cartesians in abstracting domain, requirements and software phe­
nomena and concepts. Cartesians offer themselves as an abstraction when a

296 14 Cartesians in RSL

component k can best be characterised as a fixed composition, i.e., grouping
of not necessarily distinct components (a , & , . . . , c) , and where the order of
appearance in the grouping is arbitrarily chosen (but then fixed). The section
will just give a single example — as Cartesians become proper components in
the modelling of "zillions" of other problems. Tha t is: Cartesians, as such, as
the only model-oriented (i.e., discrete mathematical) "device" — even when
used together with sets — to "deploy" in abstraction is a sign of too extreme
a frugality!1

This chapter is, as are Chaps. 13-17, built up as follows:

• The Cartesian da ta type (Sect. 14.2)
• Examples of Cartesian-based abstractions (Sect. 14.3)
• Abstracting and modelling with Cartesians (Sect. 14.4)
• Inductive Cartesian definitions (Sect. 14.5)
• A review of Cartesian abstractions and models (Sect. 14.6)

There are many examples because before one can write good specifications
one must have read and studied many example specifications. While you may
not need to study all of them now, you can return to some later. The chapter
ends with a brief discussion.

14.2 The Cartesian Data Type

We shall t reat the following as separate issues: types and type expressions,
value expressions, binding pat terns and matching, and operations on Carte­
sians.

14.2 .1 Car te s ian T y p e s and T y p e E x p r e s s i o n s

Cartesian types are products (groupings, aggregations, structures) of two or
more types,

type
A, B, .., C
A x B x ... x C
K = A x B x C
K; = (A x B x C)
K2 = A x B
K3 = A x B x C

examples /* all subscripted a, b, cs: values */
al,..,aa,..,bl,..,b/3,..,cl,..,C7,...
(al,bl,..,cl),(ai,bj,..,ck),...
k: (al,bl,cl),(ai,bj,ck),...
k': (aOl^clO,(ai',bj',ck'),...
k2: (ai,bj),.,(ak,M),..
k3: (ai,bj,ck),..,(a^,bm,cn),..

1But that is, of course, just an opinion. For concrete programming one can come
a very long way, in fact all the way, as was proven by the programming language
Lisp [370], in which there are just two data type values: Atoms and pairs, i.e.,
Cartesians, the latter of any of these two values.

14.2 The Cartesian Data Type 297

Let A, B, . . . , C stand for types whose possibly infinite numbers of elements
include the values {ai, a2 , . . . , aa, . . . }, {bi, &2r • •, bp, . . . }, respectively {ci,
C2, • • •, c 7 , . . . } . Types whose values can be considered finite groupings of A,
then B, etc., finally C, elements can be defined using the x (Cartesian product)
type operators.

Example 14.1 A Simple Cartesian Example: Let fact name the factorial
function, then

(fact(l),fact(2),fact(3),fact(4),fact(5),fact(6))

expresses a simple Cartesian of six elements, the first six factorials! •

The ellipses (.. .) in the type expression A x B x ... x C make it metalinguistic,
that is, outside ("above" or "about") the language, here RSL, which is being
explained. Ellipses occurring in our expressions should signal to the reader
that we are presenting a generic metalinguistic expression.

Cartesians are thus formed from the use of the x type constructor op­
eration. Hence Cartesian values consist of groupings of a definite number of
values — where the definite number is at least two. Examples K, K', K2, K3
are not metalinguistic. K defines, or the type expression A x B x C expresses,
the type of Cartesian groupings of values of respective type. K' defines, or
the type expression (A x B x C) expresses, the same as K! That is, paren-
thesization at this "outermost" level "adds nothing new". K3 defines exactly
the same as does K (and K'). So one cannot distinguish between values of
these three (identical) types. When this is needed we need to deploy extra
notational "machinery".

To see the consequences, let us examine a few type expressions.
For the sake of reference in the subsequent explanatory text, we have de­

fined (i.e., named) the types (previously only expressed [i.e., as expressions]):

type
A, B, C
GO = A x B x C
Gl = (A x B x C)
G2 = (A x B) x C
G3 = A x (B x C)

Brackets, "(" and ")" are used in type expressions, as an abbreviation, only
to "break" the priority of the x operator, and thus to avoid having to define
auxiliary types:

type
G2 = AB x C
AB = A x B
G3 = A x BC

298 14 Cartesians in RSL

BC = B x C

To the individually defined types there correspond many examples:

a, a', a", .., b, b ' , .., b" , c, c', .., c" / * values */
gO: (a,b,c), gO': (a',b',c'), .., gO'": (a",b,c')
g l : (a,b,c), g l ' : (a',b',c'), .., g l ' " : (a",b,c')
g2: ((a,b),c), g2': ((a' ,b'),c'), .., g2'": «a",b) ,c ')
g3: (a,(b,c)), g3': (a' ,(b',c ')), .., g3" ' : (a",(b,c'))

We have shown many examples with single, double, triple quotes and indices
so as to avoid defining, for now, mathematically, the general case. We believe
these examples exhaust the possible cases.

14.2 .2 Car te s ian Value E x p r e s s i o n s

Any identifier may denote a Cartesian. The only "operation" tha t results in
Cartesian values is tha t of grouping: (a, 6 , . . . , c) where a, &, . . . , and c are any
expressions denoting any kind of value. This operation has already been amply
illustrated earlier, but for the sake of systematic t reatment we summarise.

Cartesian value expressions are expressions whose values are Cartesians.
Specific Cartesian value formation is achieved, in RSL, through the use of the
Cartesian value constructors: "(" , "," and ") " . Let e l , e2, en be any value
expressions,2 then the second line of the t y p e clause below, and the first line
of the value clause:

t y p e
A, B, . . , C
A x B x ... x C

value
... (el,e2,...,en) ...

(the use of ellipses is metalinguistic) are respectively a Cartesian type ex­
pression, and a Cartesian valued expression with (el,e2,...,en) indicating an
explicit Cartesian enumeration. The type expression denote models and have
values from these models. Mathematically, i.e., not expressed in the RSL no­
tat ion, and referring only to values of respective types (or sorts) A, B C
we can define the meaning of A x B x ... x C as:

2 We remind the reader that in the rest of these volumes we shall use the following
naming convention: Identifiers starting with e (and often "suffixed" or indexed
(subscripted) by some alphanumeric characters) stand for expressions. Identifiers
starting with v (and often suffixed or indexed (subscripted) by some alphanumeric
characters) stand for values. Values are definite, in the sense that a value is a specific
thing. Expressions may be constant expressions, i.e., evaluate, in any context (and
state) to one and the same value, or expressions may be variable expressions, i.e.,
evaluate, in different contexts (and states) to different values.

14.2 The Cartesian Data Type 299

{(a*,fy,...,Cfc) \ai:A,bj:B,...,ck:C}

The A, B,..., C all refer to a same model which associates A with A, etcetera.
There might be different models for the specification in which the above type
expression occurs. But a specific, albeit an arbitrary, one is chosen for the
evaluation of all RSL constructs.

14.2.3 Cartesian Operations, I

First we show the decomposition operation. From Cartesian gi values, and
using the RSL let ... in ... end construct, we decompose into defined A, B, C
values named by the respective ai, bj, ck, etc., identifiers.

let (al,bl,cl) = gO", (al',bl',cl') = g l" in .. end
let ((a2,b2),c2) = g2/; in .. end
let (a3,(b3,c3)) = g3/; in .. end

Then we show the composition operation: From respective ai, bj, ck, etc.,
values we compose into defined Cartesian Gi values named by the respective
gi, etc., identifiers.

let gO" = (al,bl,cl), g l" = (al',bl',cl') in ... end
let g2" = ((a2,b2),c2) in ... end
let g3" = (a3,(b3,c3)) in ... end

14.2.4 Cartesian Binding Patterns and Matching

So composition into Cartesians and decomposition (matching and binding)
with respect to Cartesians are two major operations related to Cartesians.
The use of the RSL let ... in ... end construct in decompositions thus showed
the use of binding patterns:

let (a,b,c) = gl,
((a,b),c) = g2,^
(a,(b,c)) = g3 in ... end

All three cases show binding patterns to the left of the '= ' symbol. All the
a's, b's, and c's are identifiers. They are bound to values as a result of the
decomposition process. We refer to a more systematic treatment of patterns,
matching, and binding in subsections of Sect. 14.4.1 (Cartesian Patterns and
Cartesian Patterns, Fitting and Binding) and in Sect. 14.4.2. We have earlier
(Sect. 13.2.3) covered these concepts for set binding-pattern, and we shall
later deal with these concepts in additional contexts: Sect. 15.2.3 for lists,
and Sect. 16.2.3 for maps.

300 14 Cartesians in RSL

14.2.5 Cartesian Operations, II

In Sect. 14.2.3 we introduced the decomposition of Cartesians, which one may
consider an operation on Cartesians. The only other operations on Cartesians
are equality, =, and equivalence, =; they are defined between any typed, non­
function value in RSL.

type
A, B, C, ...
G = A x B x . . . x C

value
= , =: G x G 4 Bool

axiom
V (a,b,..,c),(a',b',..,c'):G • ((a,b,..,c) = (a',b',..,c'))

= (a = a') A (b = b') A ... A (c = c')

The above is true, provided that none of the A, B, . . . , C contain (non-map)
functional values. That is, they may contain finite or infinite sets, finite or
infinite lists, finite or infinite maps, and Cartesians over nonfunctional values.

14.3 Examples of Cartesian Abstractions

This section "matches" Sections 13.3, 15.3, 16.3, and 17.2. They all give ex­
amples of set, Cartesian, list, map and function-based specifications. They are
meant as "drill", i.e., class lecture, examples.

14.3.1 File Systems II

This is the second in a series of models of what we could call file systems. Other
models are presented in Examples 13.6 (sets), 15.6 (lists [and Cartesians and
sets]), and 16.8 (maps [and records]). See also Exercise 16.11.

Example 14.2 Another File System: A simple file system consists of a set of
records. A record is a pair of keys (k:K) and sets ({d,d' r .. ,d"}) of data (s:D,
etc.). No two otherwise distinct records have the same key.

type
K, D
R = K x D-set
B' = R-set
B = {| b:B' • wf_B(b) |}

value
wf_B: B' - • Bool
wf_B(b) = V (k,ds),(k',ds'):R • k=k' => ds=ds'

14.3 Examples of Cartesian Abstractions 301

A file system user wishes to perform the following operations: (i) Create an
empty file system, (ii) Inquire whether a file system is empty, (iii) Inquire
whether a given key is that of a record in the file system, (iv) Insert a new
record in the file system, such that no record already in the file system has
the same key as the record to be inserted, (v) Given a key, select the data set
of the record (if present) with that key. (vi) Given a key, remove the record
(if present) with that key.

value
create: ->> B, create() = {}
is.empty: B -» Bool, is_empty(b) = b={}
is_inB: K -> B -> Bool
is_inB(k)(b) = 3 (k',ds'):R • (k',ds') G b A k=k'
insert: R ->> B -4 V
insert(k,ds)(b) = b U {(k,ds)}

pre ~isJnB(k)(b)
select: K -> B ^> D-set
select(k)(b) = let (k',ds):R • k=k' A (k',ds) G b in ds end

pre is_inB(k)(b)
remove: K —> B ^> B
remove (k)(b) = let (k',ds):R • k=k' A (k',ds) G b in b \ {(k',ds)} end

pre is_inB(k)(b)

14.3.2 Kuratowski: Pairs as Sets

Example 14.3 Pairs as Sets: Pairs (ai, a2) of distinct simple entities can be
represented as sets: {ai, {ai,a2}}. Allow also a^ to be a pair: (a2 i ;a22) then
its representation is {ai, {ai, {a2 i ; { ^ i , ^ } } } } - That is, we now allow pairs
to be either pairs of distinct simple elements, or of a first simple element and
a pair. We still assume, but do not formally specify, distinctness of A elements
(of simple pairs).

type
A
Pr = A x Q
P = {| p:P' • wf_P(p){} |}
Q = A | P
S' = R-set
R = A | S
S = {| s:Sr • wfJS(s) |}

value

302 14 Cartesians in RSL

wf_P: P' -> A-set -> Bool
wf_P((a,q))(as) =

a 0 as A
case q of

(_,_) -> wLP(q)({a}Uas),
_ —> true

end

wLS: S' -> Bool
wf_S(s) =

card s = 2 A
case s of

[1] {a,{a,{b,r}}} ^ wf_S({b,r}),
[2] {a,{a,b}} -> true,
[3] _ - > false

end

Notice, in wf_P, the sequential use of binding patterns to "detect" whether
an argument to wf_P is a pair (i.e., a Q value) or not. Wildcards are used in
order to signal to the reader that the particular values are irrelevant. Sequen­
tially of the case construct evaluation means that the argument to wf_P is
matched first with a pair, then with "whatever". Notice, similarly, in wf_S,
the particular (perhaps a bit "tricky") sequential use of binding patterns to
"detect" whether an s is [2] a simple pair, [1] a possibly well-formed (but
more composite) pair or [3] not a pair. Given a set representation of pairs, as
defined above, we can find its pair of ordered elements:

value
first: S - • A
first(s) = let a:A, s':S • s = {a,s'} in a end
secnd: S —> R
secnd(s) = let a:A, s':S • s = {a,s'} in s' end

Given a an arbitrary pairing, as defined above, we can construct its set rep­
resentation. And given a set representation of pairs, as defined above, we can
reconstruct its ordered pairing of elements:

value
P2S: P -+ S
P2S(p) =

case p of
(a,(a,q)) - • {a,{a,Q2R(q)}}, (a,a') - • {a,{a,a'}}

end
Q2R: Q -> R
Q2R(q) = case q of (a,q') —> P2S(a,q'), a —> a end

14.4 Abstracting and Modelling with Cartesians 303

Observe the need for an auxiliary function, Q2R, to handle a "special" case.
Similarly wrt. S2P:

S2P: S -+ P
case p of

{a,{a,r}} - • (a,R2Q(r)), {a,a'} - • (a,a') end
R2Q: R -> Q
R2Q(r) =

case r of {a,{a,r'}} -» (a,S2P(r')), a -» a end

Observe the various ways in which we have syntax-formatted, i.e., laid out the
formula texts, line-wise: Sometimes on one, sometimes spread out over several
lines.

Exercise 14.2 generalises the above problem to that of allowing non-distinct
A elements in simple pairs. •

14.4 Abstracting and Modelling with Cartesians

This section "matches" Sections 13.4, 15.4, 16.4, and 17.3. They all give larger
examples of set, Cartesian, list, map, respectively function abstractions and
models. They are meant as self-study examples.

The purpose of this section is to introduce techniques and tools for model-
oriented specifications primarily based on Cartesians. Among the Cartesian
modelling principles, techniques and tools are: (1) Subtyping: Sometimes a
type definition defines "too much": a type-constraining (well-formedness, in­
variant) predicate technique can therefore applied. (2) pre /post- conditions:
Function abstraction in terms of pre- and post-conditions. (3) "Input/-
Output/Query" functions: identification of main functions according to their
signature. (4) Auxiliary functions: decomposition of function definitions into
"smallest" units. The principles and techniques reoccur, for sets, lists and
maps in Sections 13.4, 15.4 and 16.4.

14.4.1 Modelling Syntactic Structures

A structure, like a set, a Cartesian grouping, a list or a map, is syntactic
if its representation, like the above, has a meaning which may be another
structure, but whose semantic components are (rather) different from the
syntactic components. We shall give a somewhat "primitive" and "not very
abstract" example of the syntax and semantics of a simple imperative pro­
gramming language. We say "primitive" and "not very abstract" since we
can later demonstrate more realistic, as well as "more abstract" programming
language examples. Thus the examples of this section, since they necessarily
have to make use only of such structured values as sets and Cartesians, are
not really exemplifying abstractions, only modelling!

304 14 Cartesians in RSL

Example 14.4 Syntax of a Simple Computer Language, Part I:

Narrative — Syntactic (Cartesian) Categories

(i) A computer program, m:M, contains a procedure name pn, a procedure
statement label, In, and a set of uniquely named procedures, ps, such that
the procedure name is one of a procedure in the program set, ps, of proce­
dures, (ii) A procedure has a name and otherwise contains a set of uniquely
labelled statements, such that the labels of goto statements of the procedure
(see (xi) below) are labels of statements of that procedure, and such that pro­
cedure names and labels of procedure invocation statements (see (xiv) below)
are those of procedures of the program and their sets of labelled statements,
(iii) A labelled statement contains a label and a statement, (iv) A label is a
further un-analysed quantity, (v) A statement is either an assignment, or a
conditional, or a goto, or a procedure call, or an exit statement, (vi) An assign­
ment contains a variable and an expression. It also designates a continuation,
i.e., the label of a next statement to be interpreted after interpretation of the
present assignment statement, (vii) A variable is a further un-analysed quan­
tity, (viii) An expression is a further un-analysed quantity. (See, however,
Exercise 14.5 for a thorough analysis (cum discussion) of analysed expres­
sions.) (ix) A conditional contains one expression, the test expression, and
two (continuation) labels, the consequence label and the alternative label, (x)
A goto statement contains a label, (xi) A procedure call contains a proce­
dure name and a statement label. It also designates a continuation, i.e., the
label of a next statement to be interpreted after interpretation of the present
call statement, (xii) An exit statement is a further un-analysed quantity, (xiii)
The "further un-analysed" procedure name, variable, statement label and exit
quantities are all distinct sets (i.e., cannot be confused). •

An Aside—The Union Type Operator: |

To formalise the type of statements which consist of various, i.e., alternative (|)
kinds, assignment, conditionals, etc., we introduce here the type constructor
|. Let A, B, . . . , C stand for arbitrary types.

type
A, B, ..., C
U = A | B | ... | C

U is defined to be the type whose values are the union of all the values of
respective types A, B, . . . , C.

Another Aside — Cartesian Text Types

By {//text_l,text_2,...,text_n//} we understand the finite type whose elements
are just the strings of text listed.

14.4 Abstracting and Modelling with Cartesians 305

Example 14.5 Syntax of a Simple Computer Language, Part II:

Formalisation — Syntactic (Cartesian) Categories

type
Pn, Ln, V, E
M' = (Pn x Ln) x P-set
M = {| m:M • wf_M(m) |}
P = Pn x (Ln x S)-set
S = Asgn | Cond | Goto | Call | Exit
Asgn = {"asgn"} x (V x E) x Ln
Cond = {"cond"} x (E x Ln x Ln)
Goto = {"goto"} x Ln
Call = {"call"} x (Pn x Ln) x Ln
Exit = {"exit"}

Annotations: (xiv) The wf_M subtyping predicate is hinted at in the narrative
above. It is further narrated (See items (xv-xxix)), as well as also formally
defined, (xv) The individual statements are "singled" out by the text markers'
shown.

Formalisation — Well-formedness (of Cartesians)

value
wf_M: M'-^Bool
wf_M((pn,ln),ps) =

wf_Call((pn,ln),ln)({ln})(ps) A V p:P • p G ps => wf_P(p)(ps)

wLCall: (PnxLn) xLn-^Ln-set-)-Pn-set-^Bool
wf_Call((pn,ln),^)(ls)(ps) =

I G Is A 3 ! (pn',lss):P • (pn',lss) G ps A pn'=pn =^ ln G labels(lss)

wf_P: Pnx(LnxS)-set-^P-set-^Bool
wf_P(_,lss) =

let Ins = labels (lss) in
V (ln,s):(LnxS) • (ln,s) G lss => wf_S(s)(lns)(ps) end

labels: (LnxS)-set—^Ln-set
labels(lss) = { ln:Ln | (ln '^^LnxS) • (ln;,s) G lss A ln'=ln }

306 14 Cartesians in RSL

A Detour: The RSL "case" Construct

Functions that apply to constructs that are values of a type which is a union
of types usually need "to be able to discriminate between these values on the
basis solely of their type". The following generic example illustrates the point
being made:

type
A, B
U = A | (U x U) | (U x U x U) | ...

value
f : U 4 B , g : A 4 B , © : B x B 4 B
f(u) =

case u of:
(u',u",u'") - • f(u')©(f(u")© f(u'"))
(u',u") -+ f(u')©f(u")
_ —> g(u) end

The RSL case construct is here used in such a way as to first discriminate
whether an argument value is a triple, then whether it is a pair, and finally
the wildcard case, _, whether it is just a simple A value. Ignore the expressions
to the right of the -Vs. The value of expression u of the infix case of operand
— whose other operand is the list, from top to bottom, of the patterns — is
compared, successively to elements of this (text vertical, top-to-bottom) list of
patterns. When a fit can be made, then the value of the corresponding right-
hand-side expression becomes the value of the case construct in the context
of the fit.

The RSL case construct has the general syntax and informal evaluation
scheme:

(case.clause) ::=
case (value.expr) of

(pattern) —> { value _expr),

(pattern) —> { value _expr),
_ —> (value _expr)

end

where the wildcard line, _ —> (value.expr), is optional. Evaluating the case
construct proceeds as follows: First the (value.expr) of the "opening" case
(value.expr) of line is evaluated. Let its value be v. Then v is attempted to be
fitted to (pattern).

Cartesian Patterns

We explain the concept of Cartesian pattern: A Cartesian pattern is a grouping
of two or more constants (i.e., literals), identifiers and patterns. (The value

14.4 Abstracting and Modelling with Cartesians 307

of v is correspondingly a Cartesian of two or more values.) We shall later
introduce list, name and record patterns.

Cartesian Patterns, Fitting and Binding

We explain the concept of Cartesian fitting: A value fits a literal if it is equal
to the designated literal value. Any value fits, and is bound to, a pattern
identifier. The context, alluded to above is enriched by the mapping of the
pattern identifier to the value.

If a pattern is a grouping of n elements (constants, identifiers or patterns)
then v must be a Cartesian of n values. One-by-one a fit must be made between
components of the pattern and of the value, "left to right". If all can be fitted,
then a fit has been achieved. Component identifiers of the pattern are bound
to corresponding component values — thus further enriching the context. We
shall later introduce list, name and record fittings.

• • •

If v can be fitted then the corresponding line's (value.expr) is evaluated in the
enriched context, and its value is then the value of the entire case construct
— whose evaluation is thereby ended. If v cannot be fitted, then the second
line, (pattern) —> (value.expr), is evaluated. And so forth, until either no fit
has been made, or the optional, "catch-all" wildcard line, _ —> (value.expr),
is encountered. The value of its (value.expr), in this situation, becomes the
value of the case construct.

Bindings (i.e., contexts) made during individual fit attempts are lost be­
tween attempts and upon termination of evaluation.

End of the RSL case Construct Detour

Example 14.6 Syntax of a Simple Computer Language, Part III: We are
now ready to express statement well-formedness:

wf_S: S -» Ln-set ->> P-set ->> Bool
wf_S(s)(lns)(ps) =

case s of
("assign",(v,e),£) ->• £ G Ins,
("cond",(e,ln,ln')) -> {ln,ln'} C Ins,
("goto",ln) - • In e Ins,
("call",(pn,ln),^) ->

wf_Call((pn,ln)^)(ps),
"ex i t " ->> true

end

308 14 Cartesians in RSL

Annotations: By syntactic well-formedness we mean that a larger syntactic
category is constrained to a subtype. Later semantic functions assume syntac­
tic well-formedness, i.e., that syntactic values lie within properly constrained
subtypes, (xvi) wf_M: A program is well-formed if its intended invocation (i.e.,
call) is well-formed and if all of its defined procedures are well-formed in the
context of this syntactic set of procedures, (xvii) wf.Call: A call is well-formed
if its intended invocation names a program defined procedure and, within it, it
labels a statement, (xviii) wf_P: A procedure is well-formed if all its contained
statements are wellformed in the context of the procedure statement labels
and the program set of procedures, (xix) wLAsgn: An assignment statement
is well-formed if its continuation label is defined, i.e., is in the context of the
(current) procedure's statement labels. That is, we presently, in this simple
example, ignore well-formedness of variables and expressions in whatever con­
text! (xix) wf.Cond: A conditional statement is well-formed if the consequence
and the alternative labels are defined, i.e., in the context of the (current) pro­
cedure's statement labels, (xx) wf.Goto: A goto statement is well-formed if its
label is in the label set context component, (xxi) wf.Stop: A stop statement
is always well-formed, (xxii) labels: The set of labels (label names) are yielded
by this function. •

14.4.2 Cartesian "let ... in ... end" Bindings

From Sections 13.2.3 and 14.2.1 onwards we have used set, respectively Carte­
sian patterns in the RSL let ... in ... end constructs. And as from Sect. 14.4.1
we defined Cartesian patterns. The purpose of this little injected paragraph
is only to make sure that we are talking about the same linguistic idea intro­
duced for the same pragmatic purpose: to decompose Cartesian values, i.e., to
fit such to Cartesian patterns, and to bind pattern identifiers to the Cartesian
value's component values. In later sections we have shall further introduce sim­
ilar pattern constructs, and decomposition (i.e., fitting) and binding concepts
for lists, maps, and other RSL constructs.

14.4.3 Modelling Semantic Structures

Example 14.7 A Mechanical Semantics for the Simple Computer Language:

Narrative — Semantic Types

Variables and storage. Variables designate values "in the computer storage".
To model this fact — and given that we have so far only "officially" learned
about sets and Cartesians as the only structured values — we model storage
as a set of variable-value associations. A variable-value association is a pair

14.4 Abstracting and Modelling with Cartesians 309

consisting of a variable and a value. No two otherwise distinct associations of
a computer storage have the same variable part and different value parts.

On intuition and concept analysis. We rely on your intuition of what is nor­
mally understood by the anthropomorphic term program execution, namely:
computer processing of programs. We are about to systematically describe
the notion of such concepts as processing of programs as data. But first we
need some intuition and some analysis of the concepts resulting from such
intuition.

A piece of good advice is to always start a systematic narration by the
enunciation of intuitions and their analyses.

Program Points

At any point during execution, the computer is interpreting a specific state­
ment of a specific procedure. We can thus model a program point by the pair
of procedure name and statement label, respectively.

Termination of the interpretation of most statements occurs with the es­
tablishment of the next program point, which is that of the present procedures'
name and the designated statement continuation label. Invocation of proce­
dures, i.e., the interpretation of the "called" procedure, when finished, must
"return" to end the interpretation of the calling statement, which is that of
continuing with that calling statement's designated continuation statement.

The effect of statement interpretation is generally to change the computer
state. But what exactly is this state — which we shall henceforth call a con­
figuration? Well, for one, it must include some variable value associations so
that we can update variable values as a result of assignment statement inter­
pretation, and find these values during expression evaluation. Then we must
somehow record the current and next program point. Since invocation of pro­
cedures may be indefinitely "nested", we may expect some sort of stacking
and un-stacking of program points.

To express the meaning of a program we therefore introduce the notion of
a configuration.

Configurations

A configuration is a pair consisting of a program pointer stack and a storage.

Program Pointer Stacks

The program pointer stack is either void, modelled here as the character string
"empty", or is a pair whose first element is a program pointer, i.e., a pair
consisting of a procedure name and a statement label, and whose other element
is a program pointer stack.

310 14 Cartesians in RSL

Formalisation — Semantic Types

type
VAL
STG' = (V x VAL)-set
E ={\ stg:STG' • wLSTG(stg) |}
0 = {"empty"} | ((PnxLn) x 0)

value
wLSTG: STG' - • Bool
wLSTG(stg) =

V(v^) , (^va l ') : (VxVAL) •
{(v,val),(v',val')} C stg => (v=v' => val=val')

VAL is the semantic type of values.

Narrative — Computer Program Interpretation

Let ((pn,ln),ps) be the program. Computer program interpretation starts with
a possibly empty storage and a void program pointer stack. Computer program
interpretation then goes on to stack the pair (pn,ln) on top of the program
pointer stack. Now the interpreter enters an indefinite sequence of statement
interpretations. Each statement interpretation starts by identifying the pro­
cedure and statement being interpreted. This is done on the basis of the top
element of the program pointer stack. Then it interprets this statement.

If it is an assignment statement then an appropriate expression evaluation
takes place and storage is updated for the given variable. Then the top pro­
gram point has its label component changed to reflect the continuation. If it is
a conditional statement an appropriate test expression evaluation takes place
first. Then the top program point has its label component changed to reflect
the continuation: If the test expression value yielded is true the consequence
label is chosen, otherwise the alternative. Etcetera. We leave it to the reader
to decipher the formalisation that follows!

Formalisation — Semantic Functions

value
int_M: M ^ E
int_M((pn,ln),ps) = in t_S((pn» /'empty") ({})(ps)

int_S: 0 - • E -> P-set -)• E
vaLE: Expr - • E -+ VAL

Interpreting the program is the same as interpreting a statement with the
program program point (of the only program pointer stack element) and with
an empty storage.

14.4 Abstracting and Modelling with Cartesians 311

int_S and vaLE name the operational s tatement interpretation, respectively
the simple expression evaluation functions.

intJS(0')(<r)(ps) =
case 9f of

empty —> cr,
((pn,ln),6l) - •

l e t s = nnd_S(ln)(flnd_P(pn)(ps)) i n
ca se s of

("assign",(v,e),.Q - •
l e t val = val_E(e) (a) i n
le t a' = update(v,val) (cr) i n
int_S((pn,£),/9)(cr')(ps) e n d e n d ,

("cond",(e,ln,ln')) - •
l e t test = val_E(e)(cr) i n
le t £ = if test t h e n In e lse In' e n d in
int_S((pn,£),#)(cr)(ps) e n d e n d ,

("goto",ln') -+

int_S((pn,ln ,)^)(cr)(ps),

(" c a l l " , (p n ' , l n V) -+
Int_S((pn /,ln /),((pn,£),cr))(cr)(ps),

"exit"->Int_S(6>)(cr)(ps)
e n d e n d e n d

Observe how an e x i t prescribes procedure termination.

v a l u e
update : V x VAL - • E -> S
update(v,val)(cr) =

le t (v',val'):(VxVAL) • v=v'A(v',val') G a i n
a \ {(v,val')} U {(v,val)} e n d

find_P: P n ->> P - s e t - • (Ln x S)-set
find_P(pn)(ps) =

le t (pn ' , l s s) : (Pnx(LnxS)-se t) • (pn',lss) G ps A p n = p n ' i n lss e n d
a s s e r t : / * predicate true; guaranteed by wf_M */

find_S: Ln -+ (LnxS) - se t -> S
find_S(ln)(lss) =

le t (ln ' ,s) : (LnxS)-set • (ln',s) G lss A ln=ln ' i n s e n d

We remind the reader tha t the above example is not an example of abstraction,
but only of modelling. In Chap. 20 we shall show what we mean by more proper

312 14 Cartesians in RSL

abstractions of storage, stacks, and contexts (environments), as well as of the
semantic interpretation functions.

14.4.4 Cartesians: A First Discussion

Before going on to distill some of the essence of the above examples wrt.
Cartesian abstraction and modelling principles, techniques and tools, what
can we otherwise, so far, conclude from this section of Cartesian abstraction
and modelling examples? We can conclude that the introduction of Cartesians
is essentially based on a pragmatic desire to group things in two or more
components — as somehow belonging together. And that since we wished to
thus compose one kind, i.e., one type, of values as, say, pairs, to group other
kinds, i.e., another type, of values as, say, triples, etc., was not far behind!
Hence we arrived at the need for (i) union types, the case ... of ... end
construct (known also as the McCarthy conditional), the pattern construct
and hence the related fitting and binding concepts.

14.5 Inductive Cartesian Definitions

14.5.1 Inductive Cartesian Type Definitions

Suppose we wanted to define:

type
C = C x C

What would that mean? Well, I do not know! Somehow I can not get started
on enumerating Cartesian elements of C. The problem is, that there is no
"boot strap". So we introduce a "boot strap", B, and a means of terminating
the recursion:

type
B
C = BorC x BorC
BorC = = mkB(sb:B) | mkC(sc:C)

The alternative bocBorC can be either a b:B or a mkc:mkC(cl,c2). B is as­
sumed not to contain c:BorCs. And now we can suggest the following set of
type C value:

C: {(b,b')|b,b':B} U {(c',c")!c',c":BorC • {c',c"}CC}

We remind the reader that the above definition of C was a definition in math­
ematics, not a definition in RSL.

That looks fine, so we conclude:
Recursive definitions of Cartesians must have built into them a variant,

a "boot strap". The variant serves to get the generation of proper Cartesian
values started, and serves also to stop an infinite regression.

14.5 Inductive Cartesian Definitions 313

14.5.2 Inductive Cartesian Value Definitions

Example 14.8 Cartesian and Set-Based Model of Networks: We rephrase
the solution of Example 13.12.

We introduce a concept of path. A path is a triple of a connector identifier,
c^, a segment identifier, Si, and a connector identifier, Ci2, such that the
two distinct connector identifiers {c^c^}, are the connector identifiers of the
segment identified by si.

A route is now a set of paths such that either there is just one path in the
route, or for more than one path in the route there is an end3 segment, that
is, a segment one of whose connector identifiers is not is not one of another
segment in the path, such that the other connector identifier of that end
segment is one of another segment of the path, and such that the remaining
path is well-formed.

type
P' = Ci x Si x Ci
P = {| p:P'« 3n:N • wfP(p)(n) |}

value
wfP: P' - • N - • Bool
wfP(cil,si,ci2)(n) = 3 s:S-s G obs_Ss(n)A{cil,ci2}=obs_Cis(s)Asi=obs_Si(s)

Notice that we must indicate some net in the context of which we can express
well-formedness of paths. From a net we can generate the set of all paths:

gen_Ps: N -^ P-set
gen_Ps(n) = { p | p:P' • wfP(p)(n) }

Now we can define routes:

type
R' = P-set
R = {| r:R' • wfR(r) |}

value
CLdeg: Ci x R' -> Nat
Ci_deg(ci,r) = cardKci^si^i^Kci^si^i '^P^ci '^i^i") e rAci e{ci',ci"}}

wfR(r) =
card r = 1 V
3 ci,ci':Ci,si:Si • (ci,si,ci') G r A

Ci_deg(ci,r) = 1 A Ci_deg(ci',r) = 2 A wfR(r\{(ci,si,ci')})

The next example illustrates recursive value definition.

314 14 Cartesians in RSL

Example 14.9 Transitive Closure: We introduce a concept of line. That con­
cept of line is an extension of the concept of path. Where a path is just a
Cartesian encoding of one of the ways through a segment in the form of a
triple: the segment identifier (say in the middle) and the identities of the from
and to connectors at respective ends of the segment, a line is a similar Carte­
sian encoding of the transitive closure over paths. Since we arbitrarily decided
that paths be identified also by their segment identifiers we have to construct
new unique segment identifiers for lines.

A line, £, is a triple: (£c„ , 4 m , 4 ,) , of two line connector identifiers (a
first and a last connector identifier), and a line name. A path, (c^1? s^,c^2j,
is a line. In (ci15s«,c«2) c^ and Q 2 , respectively, are the first and last con­
nector identifiers, and S{ is the line identifier (or name). If £ and £' are lines:
(^cfst^njAci) a n d (^a^nk^cist) s u c n that the l a s t connector identifier of £,
£Ci, is also the first connector identifier of £f then (£Cfst:comp(£nj:£nk):£Clst)
is a line, comp is a function which composes distinct segment identifiers into
unique segment identifiers, decomp is the inverse of comp:

value
comp: Si x Si -> Si
decomp: Si -^ Si x Si

axiom
V si,si':Si • s i /s i ' =>* decomp(comp(si,si')) = (si,si')

If, in a network, there is a path (i.e., a line) from the connector identified by
Cf to the connector identified by Q , and another connector identified by C{ to
the connector identified by c ,̂ then in the transitive closure (wrt., lines) of
that network we say that there is a line from connector Cf to connector Cf.
More generally, if in a network there is a line from the connector identified by
Cf to the connector identified by c ,̂ and from the other connector identified
by Ci to the connector identified by ct, then, in the transitive closure (wrt.,
lines) of that network we say that there is a line from the connector identified
by Cf to the connector identified by ct. Thus the concept of line is almost
similar to the concept of path. Given a network we can compute its transitive
closure wrt. lines.

type
L = Ci x Si x Ci

value
closure: N —> L-set
closure(n) =

let ps = gen_Ps(n) in
let clo = ps U {(cf,comp(sf,st),ct) |

(cf,sf,ci),(ci/,st,ct):L«{(cf,sf,ci),(ci/,st,ct)}CcloAci=ci/} in
clo end end

14.6 Discussion 315

We assume that nets are finite, that is, that their numbers of segments and
connectors are finite. Hence the set do is finite.
closure expresses its result, do, inductively. Think of solving the re­
cursive equation do = ps U { (cf,comp(sf,st),ct) | (cf.sf.ci^ci'.st.ct):!- •
{(cf,sfIci),(ci/,st,ct)}Cclo A ci=ci'} iteratively. Initially there is just the con­
tribution of ps to do. In a second iteration the do in the body of the set
comprehension is ps, so it now contributes to forming lines that span two
paths. For each iteration, i, lines that span i paths are generated. At some
iteration, n, where n is at most the number of connections in the network
(i.e., nodes in a graph), no more lines are contributed to do. The recursive
equation in do is solved: the smallest set, 7, has been found such that when
replacing do by 7 in the equation it satisfies that equation. 7 is a fix point
solution to the equation.4

•

14.6 Discussion

14.6.1 General

We have outlined the Cartesian data type. And we have tried to (i) enunciate
principles for when to deploy Cartesian abstraction, to (ii) list some of the
techniques that follow from such a choice and (iii) to identify some of the
Cartesian abstraction specification language tools today available. Cartesians
constitute "another basic workhorse" of model-oriented abstraction and mod­
elling. We shall later see how the record data type extends, and enriches the
simple concept of Cartesians brought forward in the present chapter.

14.6.2 Principles, Techniques and Tools

Principles. Cartesians: If and when a model-oriented abstraction has been
chosen, then Cartesian abstraction is chosen if the following characteristics
can be identified as properties of the phenomenon or concept being mod­
elled: (i) The abstract structure of the composite components being modelled
consists of an ordered collection of not necessarily uniquely named, but other­
wise distinct subcomponents (constituent phenomena or concepts); (ii) whose
number is fixed, i.e., constant; (iii) where one may thus decompose into con­
stituent such subphenomena, respectively subconcepts; and (iv) where a need
to express the composition into the overall abstraction occurs naturally. •

Principles. Cartesians: We mention, at this early stage in these volumes,
two specific principles of when to choose Cartesians as a basis for abstract

4Since, in RSL, we must reckon with nondeterminism, that is, many models of
our specifications, the semantics of RSL is designed to allow all fix points of recursive
definitions.

316 14 Cartesians in RSL

modelling, (v) Semantic configurations are usually compositions of semantic
concepts referred to as configurations: contexts and states, treated in Vol. 2,
Chap. 4. Configurations are typically modelled as Cartesians. This was already
enunciated above, under General Principles. We also refer to Example 14.7
(specifically 'Configuration'), (vi) Syntactic Structures: Compositions of syn­
tactic concepts are "classically" modelled as Cartesians. This was amply il­
lustrated in Examples 14.4-14.6. We shall often illustrate the deployment of
the above specific principles. •

Techniques. Cartesians: We refer to initial paragraphs of Sect. 14.4, for a
listing of some of the techniques (1-4) used when abstracting using Cartesians.
More specifically, just a few Cartesian-oriented techniques are offered: (vii)
observer functions occassionally "extract" groupings (i.e., Cartesians), (viii)
Otherwise the simple, explicit, parenthesised grouping expressions serve to
express composition, (ix) and the simple let-style decomposition clauses serve
to express analysis into components. •

Tools. Cartesians: If abstraction and modelling using the Cartesian data type
has been chosen, then the tool can either be the RSL, the VDM-SL, the Z or,
for example, the B specification language. •

14.7 Exercises

Exercise 14.1. Simple Cartesian Types. This exercise helps to develop your
skills in manipulating Cartesians. It is not one of abstraction.

1. List the elements of
(a) Boolx Bool and
(b) BoolxBoolxBool .

2. List some of the elements of Nat x Bool

Exercise 14.2. Set Representations of General Cartesian Pairs. We refer to
Example 14.3. In that example all A elements we assumed distinct — yet no
well-formedness predicate was defined for checking that. If two elements of a
simple pair, (a, a), are identical then the assumed set representation {a, {a, a}}
"collapses" into {a, {a}}. Now, accepting this, that is, accepting non-distinct
A elements, redefine the functions P2S and S2P, etcetera.

Exercise 14.3. Lisp-like Lists. A pair can model a simple list of two ordered
elements: (a,b) = (a,b). A list of three elements (a,b,c) can be modelled as
the pair (a, (6,c)), and so forth: (a, 6, c, d) = (a,(b,(c,d))), etc. To complete
the description of these, as we shall call them, "pair lists", we allow for the
empty list, (), and the list of just one element, (a).

1. Formalise the type of "pair lists".

14.7 Exercises 317

2. Define the operations of
(a) Creating an empty "pair list",
(b) checking that a "pair list" is empty,
(c) concatenating simple elements to the front, respectively back of a "pair

list",
(d) obtaining the first, respectively the last, (simple elements) of a "pair

list",
(e) obtaining the list of all simple elements of a "pair list", but the first,

respectively the last.

Exercise 14.4. Binary, Sorted and Balanced Trees. This exercise helps to
finally develop your skills in manipulating Cartesians — while also introducing
you to the important computing science notions of binary, sorted and balanced
trees. It is not one of abstraction.

A binary tree consists of a root and left and right subtrees. A subtree
is either a leaf or a binary tree. Roots consists of pairs of integers (the root
index) and text. A leaf is a root (thus with a leaf index). (Texts are considered
not to contain integers!) A tree is sorted (or ordered) if the integer of the left
subtree root is less than the integer of the tree root, and if the integer of the
right subtree root is larger than the integer of the tree root.

1. Define the type of binary trees.
2. Define the type of sorted binary trees.

The next concepts are defined only for ordered (i.e., sorted) binary trees.
Let t b e a proper, non-leaf tree and (it, (i , r) , r t) its representation. If it

is a proper tree, (iit,j,rit), then (i, j) is a branch of £, and {(i,j)} is a path
of length 1 in t. If i is a leaf, (fc, r) , then (i, k) is a branch, etc. If p is a path
of proper tree it, then {(i, j)} U p is a path of t. The empty path is modelled
by the empty set {}. It is always a path of any tree: from its root to itself!

3. Define the type of the above sketched trees.
4. Argue, i.e., reason informally, that if a tree is sorted, then a nonempty path

contains of a set of integers of cardinality one higher than the number of
pairs in the path.

5. Argue also that if the path set contains two or more branches then for
any branch (i,j) one can find exactly one other branch (j, _), where the
wildcard "_" stands for some integer.

6. Argue, finally, that if a tree is sorted, then the cardinality of a path denotes
its length.

A binary tree t is balanced if all paths from the root of t to its proper leaves
differ by at most one.

7. Define the type of trees sketched above.
8. Define functions which generate the set of all paths of a tree, which com­

pute the length of a path, the maximum depth of a tree: the length of its
longest path, and the set of all root indexes of a tree.

318 14 Cartesians in RSL

9. Define predicates which tests whether a binary tree as defined is sorted,
respectively balanced.

A binary tree pa th traversal is a visit to the nodes of a tree in one of any six
ways: pre-order, postorder or in-order; and either left-to-right or right-to-left.
In a left-to-right traversal of any tree, left subtrees are visited before right
subtrees of tha t tree. In a pre-order roots of subtrees are visited when first
encountered. For post-order, they are visited when last encountered. For in-
order, they are visited when encountered after the first traversal of a subtree.
Encountering means: A traversal of any tree "starts" at the root of tha t tree.
Then it encounters tha t tree's root first t ime. After having visited, say, the
left subtree, if any, it reverts to "that root", for the second time, and again
reverts to it, for the last t ime when it has traversed the other (here the right
subtree).

10. Define six functions
(a) pre-Itr, pre-order, left-to-right
(b) in-ltr, in-order, left-to-right
(c) pst-ltr, post-order, left-to-right
(d) pre-rtl, pre-order, right-to-left
(e) in-rtl, in-order, right-to-left
(f) pst-rtl, post-order, right-to-left

which each yields the text of roots during the respective traversals

E x e r c i s e 1 4 . 5 . Simple Expression Language. This exercise is not one of ab­
straction, but only of modelling. It is included in order to show you how little
we need in order to tackle seemingly complex structures.

We refer to Examples 14.4-14.6 and 14.7. Those examples referred to an
expression language and its evaluation. This exercise is about tha t expression
language!

We narra te

(a) first the syntax of the simple expression language,
(b) then the semantic types,
(c) and finally how expressions can be evaluated.

(a) Syntactic categories: An expression is either a [i] constant, a [ii] variable,
a [iii] prefix, an [iv] infix or a [v] suffix expression, [i] A constant is either a
Boolean or a real number, [ii] A variable is a further un-analysed quantity.
[iii] A prefix expression is a pair consisting of a [vi] prefix operator and an
expression, [iv] An infix expression is a triple consisting of two expressions
and an [vii] infix operator. A [v] suffix expression is a pair consisting of an
expression and a [viii] suffix operator. Operators are simple text strings. The
following are [vi] prefix operators: " n e g a t i o n " and "minus" . The following are
[vii] infix operators: "and", "o r " , " imply" , "add", " s u b t r a c t " , " m u l t i p l y "
and " d i v i s i o n " . The following is the only [viii] suffix operator: " f a c t o r i a l " .

1. Define the types of the above-sketched syntactic categories.

14.7 Exercises 319

(b) Semantic types: [ix] The value of an expression is either a Boolean or a
real, [x] A state is needed to evaluate an expression containing variables. A
state is here considered to be a set of pairs of variables and their values. No
two otherwise distinct state pairs have the same first variable component.

2. Define the types of the above-sketched semantic categories.

(c) Expression evaluation: To evaluate an expression the evaluator takes two
arguments: a syntactic and a semantic, i.e., an expression and a state, [i] A
constant expression has the value of the constant, [ii] A variable expression
has the value by which it is recorded in the state. If it is not recorded then the
chaos value is yielded. Pre-, in- and suffix expressions first have their operand
expression values evaluated, [iii] If the prefix operator of a prefix expression
is "negation", then the value is the negation of the operand expression value
— which is assumed to be a Boolean, otherwise chaos is yielded, etc. [iv] The
value of an infix expression is the conjunction of the operand expression values
if the infix operator is "and", etc. Operators "and", "or" and "imply" require
Boolean values, otherwise chaos is yielded, etc. Division by zero yields chaos.
[v] The value of a suffix expression is the factorial of the operand expression
value (real) if the suffix operator is " f a c t o r i a l " .

"Etc." above means: Please add the "missing" narration.

3. Define the semantic expression evaluation function.

Observe that evaluation dynamically tests operand values. And observe that
all functions are strict.

Exercise 14.6. X Cartesians in the Transportation Net Domain: We refer to
Appendix A, Sect. A.l, Transportation Net. We also refer to Exercise 13.5.

Define the Cartesian types of as many phenomena and concepts in the
Transportation Net domain that you think should be so modelled.

Exercise 14.7. X Cartesians in the Container Logistics Domain. We refer to
Appendix A, Sect. A.2, Container Logistics. We also refer to Exercise 13.6.

Define the Cartesian types of as many phenomena and concepts in the
Container Logistics domain that you think should be so modelled.

Exercise 14.8. X Cartesians in the Financial Service Industry Domain. We
refer to Appendix A, Sect. A.3, Financial Service Industry. We also refer to
Exercise 13.7.

Define the Cartesian types of as many phenomena and concepts in the
Financial Service Industry domain that you think should be so modelled.

15

Lists in RSL

• The prerequisite for studying this chapter is that you possess knowledge
of the mathematical concepts of sets and Cartesians as introduced in earlier
chapters.

• The aims are to introduce the RSL abstract data type of lists: The type,
the values, and enumeration and comprehension forms of expressing lists,
and to illustrate the expressiveness of lists by illustrating simple and not
so simple examples of phenomena and concepts that can be modelled in
terms of lists.

• The objective is to set the reader free to choose lists as models of phe­
nomena and concept entities, when appropriate, and to not choose lists
when doing so is not appropriate.

• The treatment is semiformal and systematic.

For so work the honey-bees,
creatures that by a rule in nature,

teach the act of order.

William Shakespeare, 1564-1616 [412]
King Henry the IV, Part V, Chorus, ii, 163

The only liberty I mean,
is a liberty connected with order;

that not only exists along with order and virtue,
but which cannot exist at all without them.

E. Burke, 1729-1797 [412]
Speech at his arrival at Bristol, 13 Oct. 1774

Characterisation. List: By a list we shall mean the same as by a sequence,
or tuple: an ordered, i.e., an indexed (or indexable), grouping of zero, one or
more — not necessarily distinct entities — all being of a common type, i.e.,
of a type that can be named. Furthermore, for the "thing" to be classified as
a list it must be meaningful to speak of such list operations as the head, hd,

322 15 Lists in RSL

the tail, t l , the distinct elements, elems, the set of all the indices, inds, the
length, and of selecting an i'th element of a list £(i), of concatenating,"", two
lists, and of inquiring whether two lists are equal (not equal), = (/) • •

15.1 Issues Related to Lists

The idea to be illustrated in this section is that of the use of the discrete
mathematics concept of lists in abstracting domain, requirements and software
phenomena and concepts. Other terms used in lieu of lists are: sequences or
tuples. Lists offer themselves as an abstraction when a component q can
best be characterised as an "ordered set", a "variable-sized" (i.e., "flexible")
arrangement (a, b,..., c) of possibly "repeated" components. Sets, Cartesians
and lists, as such, as the only model-oriented (i.e., discrete mathematical)
"devices" to "deploy" in abstraction, is a sign of some frugality. But it is, in
most cases, better, we claim, than just sets! As a programming data type lists
go a long way!

We refer to the axiom system given for simple lists in Example 9.24 (as
from Page 193).

This chapter is, as are Chaps. 13-17, built up as follows:

The list data type
Examples of list-based abstractions
Abstracting and modelling with lists
Inductive list definitions
A review of list abstractions and models

(Sect. 15.2)
(Sect. 15.3)
(Sect. 15.4)
(Sect. 15.5)
(Sect. 15.6)

There are many examples because before one can write good specifications
one must have read and studied many example specifications. While you may
not need to study all of them now, you can return to some later. The chapter
ends with a brief discussion.

15.2 The List Data Type

We have already, in Chapter 9's Example 9.24 (Pages 193-194) covered the
mathematical notion of simple lists by presenting an axiom system for lists.
We urge the reader to first recall that definition.

15.2.1 List Types

Let A stand for a type whose possibly infinite number of elements include
{a i ,a2 , . . . , a n , . . . } .

Types whose values can be considered finite, respectively finite or infinite
lists of A elements can be defined using the suffix * and w type operators,
respectively:

15.2 The List Data Type 323

t y p e e x a m p l e s
A {a,al,a2,. . . ,am,.. .}
F = A* {<>, (a), . . , <al ,a2, . . ,am), ...}
L = Aw {<), (a), ..., (al ,a2, . . . ,am), ..., (al,a2,.. . ,am,...), ...}

We refer to examples above right. They correspond, line for line, to the sort,
finite list, respectively infinite list type definitions above left.

The expressions A* and Aw are list type expressions

E x a m p l e 15.1 A Simple List Example: Let fact name the factorial function,
then

(fact(l),fact(2),fact(3),fact(4),fact(5),fact(6))

expresses a simple list of six elements, the first six factorials! •

15 .2 .2 List Value E x p r e s s i o n s

Lists are finite or infinite, ordered aggregations of not necessarily distinct
individuals. Lists are considered variable-sized, or flexible in tha t the number
of their elements may vary.1 One list may contain 0 elements (the empty list
{)). Another list may contain just one element (singleton lists (a«), {cij), . . . ,
(a&)). And so forth. A given (say, finite) list, of course, has a specific length.
But one may form another list from two lists forming a list with cardinality
the sum of the two lengths. Or one may remove an element from a non-empty
list forming a list with length one lower. All this while the list value remains
of some given type.

List E n u m e r a t i o n s

Let e, e l , e2, . . . , en2 be expressions tha t deterministically or nondeterministi-
cally evaluate to not necesarily distinct values (v, v l , v2, . . . , vn) of some type
A, and let ei, ej be expressions which deterministically or nondeterministically
evaluate to integer values, say vi, vj, then the following are examples of list
value expressions, in particular list enumerations, respectively a ranged list
expression:

xWe refer to Footnote 1 and to Sect. 13.6 for a clarification of what we mean by
variable-sized, flexible and vary.

2 We remind the reader that in the rest of these volumes we shall use the following
naming convention: Identifiers starting with e (and often "suffixed" or indexed
(subscripted) by some alphanumeric characters) stand for expressions. Identifiers
starting with v (and often suffixed or indexed (subscripted) by some alphanumeric
characters) stand for values. Values are definite, in the sense that a value is a specific
thing. Expressions may be constant expressions, i.e., evaluate, in any context (and
state) to one and the same value, or expressions may be variable expressions, i.e.,
evaluate, in different contexts (and states) to different values.

324 15 Lists in RSL

(), (e), ..., <el,e2,...,en)
(ei .. ej)

The first line, left to right, denotes the single model of the empty list of
no elements, a set of models of singleton lists of one element values (any
value will do!), etc., . . . , respectively a set of models of lists, all of n, not
necessarily distinct, element values. The second line list expression denotes
a set of models, each being a list of successive integers lying between, and
inclusive, vi and vj. If vi>vj, then the integer list is empty.

For each model the above expressions have a specific, value — that may be
nondeterministic for reasons not immediate from the above, cf. Sect. 12.4.4.

Syntactically an extended BNF grammar for the explicit list expressions
follows:

<exp_list_enum> ::=
<sim_list_enum>

| < list _rang >
<sim_list_enum> ::=

(<val_expr> , ... , <val_expr>)
<list_rang> ::=

(<val_expr> .. <val_expr>)

The list comma-separated list of value expressions may be empty, or just have
one element — in which case there are no separating commas.

Please observe the distinction between the {'s and)'s — serving as list
pointed brackets, i.e., as terminal symbols — and <'s and >'s serving as BNF
grammar delimiters.

Later we shall show an implicit enumeration of list values in the form of
list comprehension (i.e., comprehended list expressions).

List Value Operator/Operand Expressions

We first present the list operator/operand expressions semi-formally, only ex­
plaining the operator meanings informally. Then we informally explain these
meanings operationally.

Operator Signatures and Informal Meaning:

In general, a number of operators can be used to inspect properties of list
values, respectively "construct" list values:

15.2 The List Data Type 325

value examples /* the a, b, c, d: are values */
hd: Aw ^ A hd<al,a2,...,am)=al
tl: Aw ^ Aw tl(al,a2,...,am)=(a2r..,am)
len: Aw ^ Na t len(al,a2,...,am)=m
inds: Aw -^ Nat-infset inds{al,a2,...,am)={l,2,...,m}
elems: A.10 ->> A-infset elems(al,a2,...,am)={al,a2,...,am}
.(.): Aw x Na t 4 A (al,a2,...,am)(i)=ai
~: A* x A M Aw (a,b,c)~(a,b,d) = (a,b,c,a,b,d)
=: Aw x A M Bool (a,b,c)=(a,b,c)
7̂ : Aw x A M Bool <a,b,c) ^ <a,b,d>

We refer to finite lists only examples above right. They correspond, line for
line, to the operation signatures above left.

Operational, Informal Definition of List Operations:

Although we have already introduced lists, axiomatically, in Example 9.24 (as
from Page 193), we shall now present another "definition", an operational one.
As such it is basically bound to fail since we wish to deal also with infinite
lists and we cannot meaningfully speak of the length of an infinite list. Let us
anyway try — thereby stepping outside the realm, for a moment, of formally
correct formulations, chaos is yielded for the length of an infinite list.

Relying on the longish annotation of the RSL set data type (Sect. 13.2.2 on
page 268) we can now bring a shorter, informal description of the RSL list data
type.

The list operators (i-v) hd, tl, len, inds and elems express (i) yielding
the head element of non-empty lists, (ii) yielding the list of list elements other
than the head of the argument list (also only of non-empty lists), (hi) the
length of a finite list, (iv) the index set, from 1 to the length of the list (which
may be empty in which case the index set is also empty, or may be infinite, in
which case the result is chaos), and (v) the possibly infinite set of all distinct
elements of the list, (vi) Indexing with a natural number, i, larger than 0 into a
list larger than or equal to i yields its i'th element, (vii) "" concatenates its two
operand lists into one list, first the elements of the first, finite length operand
list, and then the elements of the second, possibly infinite length operand list,
and in their respective order, (viii-ix) = and / compares two operand lists for
equality, element-by-element, respectively for the occurrence of at least one
deviation!

We now informally define the meaning of the list operators model-theo­
retically. Not in RSL, but in some "similar" mathematical notation which is
assumed understood.

hd (head) and t l (tail) are assumed primitive operations. So is is_finite_list.

value
is_finite_list: Aw - • Bool

326 15 Lists in RSL

len q =
case is_finite_list(q) of

true —> if q = () then 0 else 1 + len tl q end,
false —> chaos end

inds q =
case is_finite_list(q) of

true ->> { i | i:Nat • 1 < i < len q },
false -^ { i | i:Nat • î O } end

elems q = { q(i) | i:Nat • i G inds q }

q(0 =
if i= i

then if q^() then let a:A,q':Q • q={a)""q' in a end else chaos end
else q(i—1) end

fq " iq =
(if 1 < i < len fq then fq(i) else iq(i — len fq) end
| i:Nat • if len iq^chaos then i < len fq+len end)

pre isJinite_list(fq)

iq' = iq" = inds iq' = inds iq" A V i:Nat • i G inds iq' => iq'(i) = iq"(i)
iq' / iq/r = ~(iq' = iq")

Notice (i) that we have made use of an undefined predicate: is_finite_list which
applies to both finite and infinite lists; (ii) that len is defined both recursively
and in terms of t l — for infinite lists that wouldn't work: instead we rely
on len q = chaos; (iii) that inds is defined in terms of len for finite lists,
otherwise it is just the non-zero natural numbers; (iv) that elems is defined
in terms of inds; (v) that "" is defined in terms len; and (vi) that = is defined
in terms of inds.

List Comprehension

List comprehension, in general, usually applies to a list, I, of elements of type,
say A. Comprehension then results in a list, say, of type B elements.

These latter elements, q(l(i)), derive from such I elements, l(i), which satisfy
some predicate, p(l(i)). The order of the resulting elements, q(l(i)) follows the
natural ordering of indices (i) in the given range expression.

Example 15.2 A Simple List Example: Let fact name the factorial function,
then

15.2 The List Data Type 327

(fact(i) | i in (1..6))

expresses a simple list of six elements, the first six factorials! •

type
A, B, P = A - • Bool, Q = A ^ B

value
comprehend: Aw x P x Q 4 Bw

comprehend (1st , ^ ,2) =
{ Q(lst(i)) | i in (L.len 1st) • 7>(lst(i)))

The text V(\st(\)) need not be an invocation of a predication function, but can
be any Boolean value expression. It must, however, be deterministic in order
to evaluate to true. The text Q(lst(i)) can similarly be any expression, even
a nondeterministic one. Nondeterminism gives rise to the list comprehension
expression denoting several models. We use comprehended list expressions
when we wish to implicitly specify (i.e., 'implicate'), possibly infinite, lists,
characterised by some V and some Q.

List comprehension, as does set and map comprehension, expresses a form
of 'homomorphic' principle: Functions over composite structures being ex­
pressed as a(nother) function over the (first) function applied to all immediate
constituents of the composite structure. We refer to Sect. 8.4.4 on page 132
for a first enunciation of the homomorphism concept.

The general syntactic form of comprehended list expressions follows:

<list_comp> ::=
(<value_expr> | <binding> in <list_expr> • <bool_expr>)

where the • <bool_expr> part is optional. Please observe the use of BNF
delimiters < and > versus the use of list pointed brackets: (and).

15.2.3 List Binding-Patterns and Matching

We have earlier dealt with the concepts of binding-patterns and matching,
starting Page 271 for sets, and Page 306 (and Page 308) for Cartesians.
We shall here consider the construct of list patterns, and the list matching
and binding concepts. We shall later take these ideas up for maps, starting
Page 355.

By a list let decomposition binding-pattern we understand a construct
basically of the following form (line [4]):

[1] type
[2] A, B = A*
[3] value
[4] ... let (a)""b = e in ... end ...
[5] post e = (a)""b, i.e., a = h d e A b = t l e

328 15 Lists in RSL

{a)""b is the binding-pattern. Here it is (somehow) known that e is a non­
empty list of A elements. The understanding of let (a)""b = e in ... end is
that e is list expression with non-empty value, say v, that the free identifier
a is bound to the head of v, and that the free identifier b is bound to the
possibly empty list tail of v.

We show a very simple example of the use of list patterns — leaving its
"encoding" to the reader:

value
sum: Nat* ->> Nat
sum(ns) =

ifns=()
t henO
else

let (n)""ns' = ns in
n + sum(ns')

end end

15.2.4 Lists: Determinism and Nondeterminism Revisited

The remarks made earlier, for sets, in Sect. 13.2.2, Page 271, apply, inter
alia, to lists also: Since list enumeration and range expressions, in general
denote sets of models of lists, and since list operands of list operator/operand
expressions in general apply to evaluation within such models, we can expect
that the denotation of list operator/operand expressions, and comprehended
list expressions likewise denote sets of models of lists or such other appropriate
values (Booleans, natural numbers) as are the result types of the list operators.

It is important to keep this in mind throughout!

15.3 Small Examples of List-Based Abstract ions

This section "matches" 13.3, Sections 14.3, 16.3, and 17.2. They all give small
examples of set, Cartesian, list, map and function-based specifications. They
are meant as "drill", i.e., class lecture examples.

15.3.1 Representations

Example 15.3 Simple List Representation of Equivalence Relations: We re­
fer to Example 13.5 on page 273. Let A be a type, and let ns be a set of values
of type A. A list representation of equivalence relations over set of A elements
is now to be a list of (element wise disjoint) lists of (thus distinct) A elements.
The set-oriented equivalence relation {{a, &}, {c, d, e}} thus could have, for

15.3 Small Examples of List-Based Abstractions 329

example, the following list-oriented representation < < e, <i, c >, < &, a > > . As
for Example 13.5 on page 273, we now formalise the above.

type
A
P ' = (A*)*
P = {| p:P' • wf_P(p) |}

value
sas:A-set
wf_P: P ' - • Bool
wf-P(p) =

sas = U { elems(p(i)) | i in (1 .. len p) } A
V i:Nat • {i,i+l}Cinds p => elems p(i) D elems p(i+l)

merge: A x A x P - ^ P
merge (a,a',p) =

{ p(i) | i in (l..len p) • {a,a'} H elems p(i) = {})
"(p(i)^p(j) | i,j in (L.len p) • a G elems p(i) and a' G elems p(j))
pre 3 i,j:Nat • i^j A {i,j}Cinds p A a G elems p(i) and a' G elems p(j)

We refer to Exercise 15.3 on page 344, and to Example 16.4 on page 357 for
yet other representations of equivalence relations. •

15.3.2 Stacks and Queues

Example 15.4 Stacks: We have already, in Chapter 8's Examples 1 on
page 129, 8.3 on page 131 and 8.5 on page 134 covered the computing sci­
ence notion of stacks by presenting an algebraic definition of stacks. We urge
the reader to recall Example 8.5 on page 134.

On the background of Example 8.3 on page 131 we therefore present:

type
E, S = E*

value
empty: -> S, empty() = ()
is.empty: S —> Bool, is_empty(s) = s=()
push: E -> S -> S, push(e)(s) = (e)"s
top: S ^> E, top(s) = hd s pre: ~is_empty(s)
pop: S ^> S, pop(s) = t l s pre: ~is_empty(s)

One observes a "shorter" definition above as compared to Example 8.3 on
page 131. •

Example 15.5 Queues: We have already, in Chapter 8's Example 2 on
page 129 and Example 8.6 on page 135 (for the latter, see Pages 135-136)

330 15 Lists in RSL

covered the computing science notion of queues by presenting an algebraic
definition of queues. We refer the reader to recall that definition.

On the background of Example 8.6 on page 135 we therefore present:

type
E, Q = E*

value
empty: -> Q, empty() = {)

is_empty: Q —> Bool
is_empty(q) = q=()

enq: E - ^ Q ^ Q
enq(e)(q) = q^(e)

deq: Q ^ Q x E
deq(s) = (tl q,hd q) pre: ~is_empty(q)

One observes a "shorter" definition above as compared to Example 8.6. •

15.3.3 File Systems III

This is the third in a series of models of what, with an overbearing mind,
we could call file systems. Other models are presented in Examples 13.6 on
page 274 (sets), 14.2 on page 300 (Cartesians [and sets]), and 16.8 on page 366
(maps [and records]). See also Exercise 16.11 on page 390.

Example 15.6 A Sequential File System:
A file system is a sequence of uniquely named files. Each file is a sequence

of records. Each record has three components: A key, a time stamp, and a set
of data. On time stamps we assume an ordering relation, say 0 , such that if
0(t, t') then time t is strictly before time tf. No two otherwise distinct records
of a file where these two records has the same key, has the same time stamp.
Records occur in the sequence of "older" records "last" in the list, "youngest"
record at the front. File names, keys and time stamps are further unanalysed
quantities.

type
Fn, K, T, D
FS' = (Fn x F)*, FS = {| fs:FS' • wLFS(fs) |}
F' = R*, F = {| b:F'-wf_F(f) |}
R = K x T x D-set

value
0 : T x T 4 Bool

wf_FS: FS' -> Bool

15.3 Small Examples of List-Based Abstractions 331

wLFS(fs) =
V i,j:Nat • {i,j}Cinds fs A i^j =>

let (fn,)=fs(i),(fn',)=fs(j) in fn/fn' end

wf_F: F' -> Bool
wf_F(f) =

V i,j:Nat • {i,j}Cinds f A i<j =>
let (k,t,ds) = f(i), (k',t',ds') = f(j) in
t= t ' V 0(t , t ') A k=k' => 0(t , t ') end

Operations on a file system, such as defined above, include: (i) Creating an
initially empty file system; (ii) creating an initially empty named file in the file
system; (iii) adding a record to a named file of the file system; (iv) getting all
the records, of a named file, and having a given key; (v) deleting the record,
of a named file, having a given key and a specific insertion time. Etc. We leave
it to the reader to decipher the formulas below.

value
empty: -> FS
empty() - • ()

crea: Fn x FS 4 FS
crea(fn)(fs) = ((fn,()))""fs pre fn ^ file_names(fs)

re.crea: Fn x F x FS -> FS
re_crea(fn)(f)(fs) = ((fn,f))""fs pre fn 0 file_names(fs)

file_names(fs) = {fn|i:Nat-i £ index fsAlet (fn',f')=fs(i) in fn'=fn end}

index: Fn - • FS 4 Na t
index(fn)(fs) as i

post 3 j :Na t • j G inds fs A let(fn',)=fs(j) in fn=fn' A i=j end
pre fn ^ file_name(fs)

get_file: Fn -^ FS -^ Na t x F
get_file(fn)(fs) =

let i:Nat • index(fn)(fs), (fn',f) = fs(i) in (i,f) end
pre fn ^ file_name(fs)

add: R x Fn ^ FS ^ FS
add(r,fn)(fs) =

let (i,f) = get_file(fn)(fs) in
{(fn,(r)^f)) ~ (fs(k) | k in (L.len fs) • k / i) end
pre: fn ^ file_name(fs)
assert: fn=fn'

332 15 Lists in RSL

get: K x Fn -+ FS - • R-set
get(k,fn)(fs) =

let (i,f) = get_file(fn)(fs) in
{ f(j) | j in (l..len fs) • let (k'„) = f(j) in k = k' end } end
pre: fn 0 file_name(fs)

del: K x T x Fn -> FS 4 FS
del(k,t,fn)(b) =

let (i,f) = get_file(fn)(fs) in
(f(j) | j in (L.len fs) • let (k,,t,,)=f(j) in ~(k=k' A t=t') end)
~(fs(k) | k in (L.len fs) • k / i) end
pre: fn g file_name(fs) A 3 j:Nat • let (k',t/,)=f(j) in k=k' A t=t' end

15.3.4 Sorting Algorithms

This section, on sorting algorithms, as the title reveals, exemplifies the use
of the model-oriented features of the RSL (and for that matter any similar
model-oriented specification language [VDM-SL, Z or other]) as a list-oriented
programming language.

There are many classical sorting algorithms: exchange sort: bubble, shaker,
shell, insertion sort (straight and binary), merge sort, partition sort (Quick­
sort), selection sort (straight, heap). These will be the subject of assignments.
See Exercises 15.6-15.13 (bubble, heap, insertion (straight and binary), merge,
(straight) selection, shaker, shell and quicksort).

But first: When is a list sorted?

Example 15.7 When is a list sorted?: Let us assume an abstract type, A,
of further unspecified values, between which an ordering relation, 0, holds.
Now is_sorted holds of a list, with possibly multiple occurrences of identical
elements, if any adjacent pair of elements are ordered. And is_sorted_wrt holds
between a pair of such lists, if the first list is ordered, as defined above, and
if the number of distinct A elements in the two lists are the same for all such
A elements.

type
A, L = A*

value
O: A x A 4 Bool
is_sorted: Q -t Bool
is_sorted(q) = V i:Nat • {i,i+l}Cinds q => 0(q(i),q(i+l))

is_sorted_wrt: QxQ —y Bool

15.4 Abstracting and Modelling with Lists 333

is_sorted_wrt(q',q") =
is_sorted(q') A V a:A • a G elems q' U elems q" =>

card{i|i:Nat • i G inds q'Aa=q'(i)} =
card{iji:Nat • i G inds q"Aa=q"(i)}

theorem:
is_sorted_wrt(q/,q//) => len q'=len q" A elems q'=elems q

When we have covered the map data type, we can, in Example 16.3 on
page 356, give another formulation of the is_sorted_wrt predicate.

Example 15.8 Pre/Post Defined Sorting: Any sorting algorithm, when ap­
plied to an argument q, must yield a result q', such that is_sorted_wrt(q,q').

type
A, Q = A*

value
sort: Q ->- Q
sort(q) as q

post is_sorted_wrt(q,q')

15.4 Abstract ing and Modelling with Lists

This section "matches" Sections 13.4, 14.4, 16.4, and 17.3. They all give larger
examples of set, Cartesian, list, map and function abstractions and models.
They are meant as self-study examples.

The purpose of this section is to introduce techniques and tools for model-
oriented specifications primarily based on lists. Among the list modelling prin­
ciples, techniques and tools are: (1) Subtyping: Sometimes a type definition
defines "too much": A type constraining (well-formedness, invariant) predi­
cate technique can therefore applied. (2) pre/post conditions: Function ab­
straction in terms of pre and post conditions. (3) "Input/Output/Query"
functions: Identification of main functions according to their signature. (4)
Auxiliary functions: Decomposition of function definitions into "smallest"
units. The principles and techniques re-occur, for sets, Cartesians and maps
in Sects. 13.4, 14.4 and 16.4.

334 15 Lists in RSL

15.4.1 Modelling Books Using Lists

Example 15.9 Textual Documents:

A Narrative of Entities

(i) A textual document consists of some front matter (a title, author, date,
etc.) and a non-empty sequence of named sections, (ii) We do not define what
is meant by title, author, date, etc. (hi) A section consists of a display line title
and a possibly empty sequence of paragraphs and a possibly empty sequence of
subsections, such that at least one of these two components is non-empty, (iv)
A subsection consists of a display line title and a possibly empty sequence of
paragraphs and a possibly empty sequence of subsubsections, such that at least
one of these two components is non-empty, (v) A subsubsection consists of a
display line title and a non-empty sequence of paragraphs, (vi) A paragraph
consists of a non-empty sequence of sentences, (vii) A sentence consists of
words and punctuation marks put into a further undefined sequence, (vii) A
display line title consists of a sequence of words.

Formalisation

type
Tit, Aut, Dat, Sen, Wor, PuM

Doc = Fro x Sec*
Fro = Tit x Aut x Dat x ...
Sec = Dis x Par* x Sub*
Sub = Dis x Par* x SuS*
SuS = Dis x Par*
Par = Sen*
Dis = Wor*

value
obsJWseq: Sen -> Wor*

An Operations Narrative

(viii) A Dewey Decimal Numeral is a sequence of one or more natural num­
bers (separated by periods — from which we, naturally, abstract), (ix) Any
section, subsection and subsubsection can be identified by a Dewey Decimal
Numeral, (x) The Dewey Decimal Numeral of the first section of a document
is 1, of the second section it is 2, etc. (xi) The Dewey Decimal Numeral of
the jth subsection of the ith section of a documents is i.j — etc. (xii) The
Dewey Decimal Numeral of the kth subsubsection of the jth subsection of

15.4 Abstracting and Modelling with Lists 335

the ith section of a document is i.j.k — and here our numbering stops, (xiii)
A document table of contents is a list of pairs of Dewey Decimal Numerals
and display lines, (xiv) gen.TOC is a function which applied to a document
produces "its" table of contents.

Formalisation

Left as Exercise 15.14. •

15.4.2 Modelling "KeyWord-In-Context, KWIC"

We refer to an extensive and, we think, illustrative example in Sect. 15.4.2.
This example also illustrates some analysis techniques.

Example 15.10 KWIC: Key Word-In-Context:
This example subsection has several subparts, and otherwise presents the
problem in a more pedantic style than were the examples above. First we
are given a problem formulation. We then, very briefly, analyse this given
formulation. From the informal formulation and, as a result of the analysis, we
(informally, yet somehow) systematically 'derive'3 our formal model. Finally
we discuss our particular model and variants thereof. The purpose of this
example illustration is then to show some of the aspects of going from a fixed
problem formulation (given a priori) to models, and the problems posed by
such oftentimes incomplete (or, but not in this case, inconsistent) informal
formulations. The problem is taken from [6].

The Given Problem:

We are given the following informal, English language program specification:

"Consider a Program which generates a KWIC (KeyWord-In-Con­
text) index.
A title is a list of words which are either significant or non-significant.
A rotation of a list is a cyclic shift of words in the list, and a significant
rotation is a rotation in which the first word is significant.
Given a set of titles and a set of non-significant words, the program
should produce an alphabetically sorted list of the significant rotations
of titles"

An example of input and output is then given:

Input:
Titles:

T H E THREE LITTLE PIGS.

SNOW W H I T E AND THE SEVEN DWARFS.

336 15 Lists in RSL

Non-significant Words:
T H E , THREE, AND, THE, SEVEN

Output:
DWARFS, SNOW W H I T E AND THE SEVEN

LITTLE PIGS. T H E THREE

PIGS. T H E THREE LITTLE

SNOW W H I T E AND THE SEVEN DWARFS.

W H I T E AND THE SEVEN DWARFS. SNOW

Discussion of Informal Problem Formulation:

We now analyse the problem statement. The point of our analysis is to isolate
concepts, discover incompletenesses and/or inconsistencies, etc.

(1) The informal problem formulator already isolated some concepts; these
appear (by our choice) italicised in the text. Other concepts potentially
useful in, or for, our further work are: list, word, cyclic shift, first, set, and
alphabetically sorted.

(2) Some concepts are problem-oriented: title, words, significant, and non­
significant. Other concepts are more abstract, explication-oriented: list,
rotation, (equal to) cyclic shift, first, set, and [alphabetically] sorted. (Our
modelling will basically centre around, or express, but not necessarily all
of, these concepts.)

(3) The descriptive paragraph does not deal with punctuation marks; period
(".") is not isolated as a concept, but it occurs, as a marker, in the rota­
tions. Also: Words are not further explained. We take these to consist of
letters. And we assume some given alphabetical order of, or among, both
upper and lower case letters. Blanks appear, but nothing is said about
their relation to the ordering of titles.

(4) Nothing is said about duplicate occurrences in the input or output. The
input title "XXX XXX" might thus give rise to, e.g., two output rotations!

(5) Finally nothing is said about the concrete input and output presentation:
Carriage returns, new lines; respectively single or multiple column print­
ing, and display and the ordering within multiple columns: whether by
row or by column. Etc.

Program Assumptions: In order to proceed into a modelling step we make the
following assumptions:

(6) We ignore punctuation marks — but keep the title termination period as
a "wrap-around-marker", one that designates where a title ends.

(7) We assume 'alphabetic sorting' (see the o function below) to apply to all
of the text of a title.

(8) We omit multiple (duplicate) occurrences of [rotated] titles in the output,
that is: we list (generate) only one copy.

15.4 Abstracting and Modelling with Lists 337

Model Decisions: Our modelling will be based on the following decisions:

(9) We assume a type of further unidentified characters from which we define
titles (which do not include blanks) and strings (which includes blanks);
we assume a character ordering relation from which we define title and
string ordering relations.

(10) We do not abstract away blanks — since blanks (and, in general, punc­
tuation marks) are needed to delineate words.

(11) We abstract, as suggested by the informal formulation, both the pre­
sentation of input and output. (This issue will be a pressing one the 'closer'
we get to a realization — and should, we seriously believe, be specified,
in detail, before implementation is properly begun.)

Some Auxiliary Functions:

type
Char

value
o: Char x Char ->• Bool
o(cl,c2) = true /* if cl is before c2 else */ false

type
Word = Char*
Title = Word*
String = (Word |{blank})*

axiom
blank g Char

value
o: Title x Title -> Bool
o(tl,t2) = o(ctts(tl),ctts(t2))

ctts: Title -> String
ctts(t) = tl c ((blanket(i) | i in (l..len t »

c: String* —> String
c(sl) = if sl=() then si else hd si "" c(tl si) end

o: String x String —> Bool
o(sl,s2) =

if s l=() A s2=() then true else
if s l=() V o(hd sl,hd s2) then true else
if s2=() V o(hd s2,hd si) then false else
o(tl sl,tl s2) end end end

338 15 Lists in RSL

Since we ignore punctuation marks, including end-of-title marker, such marks
will not be modelled either.

The major model decision is that of giving a model, in particular one in
the style that these volumes advances.

Model:

The presentation of the model will follow, in sequence, the way in which it
was derived. That is: we decide, in a first, successful, attempt to model first
some of the individual concepts outlined or italicised above. Then we bring
all aspects together in the specification of the input/output types and the
one, major program function (that is: the specification of the program itself).
Finally we specify the auxiliary functions introduced by the major program
specification.

In this example the modelling of the auxiliary concepts turned out to be
of direct use in the subsequent [main] model.

Auxiliary Notions: "A rotation of a list is a cyclic shift of the words in the list":

value
Rotations: Title -> Title-set
Rotations (t) =

{ rot(t,i) | i:Nat • i G inds t }

rot: Title x Nat ->• Title
rot(t,i) =

{ t (j) | j in (l . . l ent)r{ t (k) |k in(l . . i - l))

We need select a "first word":

value
First: Title -^ Word
First(t) = hd t pre t / ()

We need identify "is significant" (wrt. a set of non-significant words):

value
Is-significant: Title x Word-set => Bool
Is_significant(t,ws) = First(t) $. ws

We choose to model "alphabetical sort", rather than "is alphabetically sorted"
— leaving the latter as a variant exercise:

value
A_sort: Title-set -^ Title*
A_sort(ts) as ql

pre true
post elems ql = ts A len ql = card elems ql A aO(ql)

15.4 Abstracting and Modelling with Lists 339

The post condition ensures that all (rotated) titles in the set, and only such,
appear in the title output list; and that there are no duplicates.

value
aO: Title* - • Bool
aO(ql) = V i,j:Nat • {i,j} C inds ql A i<j => o(ql(i),ql(j))

Types: "Given a set of titles and a set of non-significant words":

type
Input = Title-set x Word-set

"the program should produce a . . . list . . . of titles":

type
Output = Title*

The Main Function: is expressed as: "Produce an alphabetically sorted list of
the significant rotations of titles":

value
KWIC: Input - • Output

Again we choose to express the definition of KWIC in terms of a pair of
p r e / p o s t conditions:

value
KWIC(i) as o
pre t rue
post Significant_Rots(i,o) A aO(o) A No_Duplicates(o)

Auxiliary Functions: We need some auxiliary functions:

value
Significant_Rots,All_Rots,Only_Rots:

Input x Output —> Bool

Significant_Rots(i,o) = All_Rots(i,o) A Only_Rots(i,o)

All_Rots((ts,ns),o) =
V t:Title • t G ts A V t':Title •

t' G Rotations(t) A Significant (t',ns) => t' G elems o

340 15 Lists in RSL

Only_Rots((ts,ns),o) =
V t':Title • t' G elems o A 3!t:Title •

t' G ts A t' G Rotations(t') A Is_Significant(t',ns)

No_Duplicates: Title* - • Bool
No_Duplicates(o) = card elems tl = len tl

The All-Rots predicate checks that the output contains all significant rotations
implied by input. The Only-Rots predicate checks that the output does not
contain other such rotations: Observe that although we defined it, we never
actually found a need for deploying the A-Sort function. Such "things" happen
when modelling bottom-up, configurationally ! •

15.5 Inductive List Definitions

15.5.1 Inductive List Type Definitions

Suppose we wanted to define:

type
L = L*.

What would that mean ? Here is an attempt:

value

The cardinality of the class of values of type L of the left-hand side must be
equal to the cardinality of the class of values of type L of the right-hand side.
Obviously it is not. So we reject this kind of recursive set type definition.

Following the lines of earlier recursive type definitions we reformulate the
above problematic type equation into:

type
B
L = BoL*
BoL = mB | mL
mB = = mkB(sb:B)
mL = = mkL(sl:L)

and would correspondingly get, in some :

value
C = {(£Ul2,.Jn)\

It e {mkB(b)|b:B} U {mkL{{£x,ly,...,.£z))\£x,£y,...,£z € £}}

15.5 Inductive List Definitions 341

That looks fine, so we conclude:
Recursive definitions of lists must have built into them a variant, a "boot

strap". The variant serves to get the "generation" of proper list values started,
and serves to avoid seemingly meaningless "empty" values.

15.5.2 Inductive List Value Definitions

Example 15.11 List, Cartesian and Set-Based Model of Networks: We
rephrase the solution of Example 14.8. That example was itself a rephras­
ing of Example 13.12

We model routes as finite sequences of paths.

type
R' = (Ci x Si x Ci)*
R = {| r:Rr • wfR(r) |}

value
wfR: R' -^ Bool
wfR(r) =

len r>0 A
V i:Nat • {i,i+l} G inds r =>*

let (ci,si,ci/)=r(i),(ci",si/,ci///)=r(i+l) in ci'=ci" end A
let (cl ,_,_)=r(l),(_,_,cin)=r(len r) in c l / c n end

First some auxiliary functions:

CLdeg: Ci x R' - • Nat
Ci_deg(ci,r) =

card{i|i:Nat-i £ inds rAlet (ci',_,ci")=r(i) in ci £{ci',ci"} end}

xtr.Cis: R' -» Ci-set
xtr_Cis(r) = {ci|(ci^_,ci'0:P,ci:Ci-(ci^_,ci")e elems rAci e{ci',ci"}}

value
fst_Ci: R' -> Ci
fst_Ci((ci,_,_)""r) = ci

lst_Ci: R' -+ Ci
lst_Ci(r"(_,_,ci)) = ci

no_mps_Ci: R —> Bool
no_mps_Ci(r) = V ci:Ci-ci G xtr_Cis(r) => Ci_deg(ci,r)<2

The set of all acyclic routes is defined by:

342 15 Lists in RSL

gen_Rs: N - • R-se t
gen_Rs(n) =

let ps = gen_Ps(n) in
let ars =

{ (p) | p : P . P G p s }
U{rV|r,r / :R*{r,r /}CarsAlst_Ci(r)=fst_Ci(r /)Ano_mps_Ci(rV)} in

ars e n d end.

15.6 A Review of List Abstractions and Models

Princ ip le s . Lists: When a model-oriented abstraction has been chosen, then
list abstraction may be chosen if a reasonable number of the following char­
acteristics can be identified as properties of the phenomena or concepts be­
ing modelled: (i) The abstract s tructure of the composite components being
modelled consists of an ordered collection of not necessarily distinct subcom­
ponents (constituent phenomena or concepts), (ii) whose number is not fixed,
i.e., may vary, i.e., (iii) to which new, distinct subcomponents may be joined
— typically at either end of lists; (iv) from which existing subcomponents may
be removed — typically at either end of lists; and (v) where one may compose
other such phenomena or concepts from similar such phenomena, respectively
concepts. •

Pr inc ip le s . Lists: We mention, at this early stage in these volumes, two spe­
cific principles of when to choose lists as a basis for abstract modelling, (vi)
Semantics of Imperative Languages: As illustrated in Examples 14.4-14.6 and
Example 14.7, the semantics of an imperative4 program is expressed as a se­
quence of state transitions, with this sequence being afforded by the iterated
interpretation of statements, (vii) Syntactic Structures: The sequence of inter­
pretation of statements mentioned above is then facilitated by the modelling
of central structures of imperative programs as lists of s tatements.5 Tha t is,
the former "specific principle" is more conceptual. Its modelling consequences
are to be found in the structuring of the function definitions which express
the semantics.6

We shall later have opportunity to illustrate the deployment of the above
specific principles. •

4An imperative program is a syntactic structure the elaboration of whose compo­
nents, i.e., statements, causes changes to a state. Each pair of conjoined statements,
so-to-speak, express: First do this, then do that! Truly an imperative. C++ and Java
are examples of imperative programming languages.

5Although that was not done in Examples 14.4-14.6 and Example 14.7.
6And that indeed was done in Example 14.7: Sequential iteration.

15.8 Exercises 343

Techniques. Lists: We refer to initial paragraphs of Sect. 15.4 for a listing
(1-4) of some of the techniques used when abstracting using sets.

More specifically: A number of list-oriented techniques are offered: (viii)
Observer functions sometimes "extract" lists; (ix) the various list operations
apply to appropriate modelling instances: (x.l) Concatenation applies to mod­
els of "all", "shared", respectively "some, except" instances of a phenomenon
(a concept) possessed by two or more sets of phenomena (respectively con­
cepts), (x.2-4) head, tail and indexing apply to models of "the first" instance,
"the remaining" instances, respectively "some specific" instance, of a phe­
nomenon (concept) possessed, (x.5) length applies to models of "how many"
instances of a phenomenon (concept), (x.6-7) with elements and indices be­
ing mere technical operations; (xi-xii) list enumeration and list comprehension
apply to the expression of the construction of an instance of an otherwise list
modelled phenomenon (or concept).

These are just some of the more "important" techniques. •

Tools. Lists: If abstraction and modelling using the list data type has been
chosen, then the tool can either be the RSL, the VDM-SL, the Z, or, for example,
the B specification language. •

Please compare the present section to those of Sections 13.7 (sets) and 16.6
(maps).

15.7 Lists: A Discussion

We have outlined the list data type. And we have tried to (i) enunciate princi­
ples for when to deploy list abstraction, to (ii) mention some of the techniques
that follow from such a choice, and to (iii) identify some of the list abstrac­
tion specification language tools today available. Lists constitute "another
basic workhorse" of model-oriented abstraction and modelling.

15.8 Exercises

Exercise 15.1. Simple List Types. This exercise is intended to help develop
your basic skills in manipulating lists. It is certainly not one of abstraction.

List the elements of A* and Aw.
List some of the elements of Nat*, respectively Nat^.

Exercise 15.2. List Representation of Sets. The present problem intends to
exercise your skills in manipulating sets and lists — and to put the ideas of
refinement and abstraction functions into your repertoire of software develop­
ment techniques.

Given the type definition L = A-set where A is some trivial sort.

344 15 Lists in RSL

Suggest a representation of finite sets as finite lists; express a well-
formedness predicate on such "set" lists; and define, as proper functions, the
set operators, U, Pi, \ , C, c , and card, on the "set" list representations; and
argue, informally, that your functions maintain the "set" list well-formedness
predicate.

Exercise 15.3. List Representation of Equivalence Relations. We refer to Ex­
amples 13.5 on page 273 and 15.3. Let a list representation of an equiva­
lence relation be that of a a pair: A list of indices into the pair-list (being
described presently), and a list of pairs. Each pair contains a distinct ele­
ment of the type being partitioned, and an index to an arbitrary next (or
the same) pair. The indices designate circular, disjoint lists. The equivalence
relation {{a, &}, {c, d, e}} may thus be represented as the pair (< 1,5 > , <
(d, 4), (a, 5), (e, 1), (c, 3), (6,2) >). (i) Formalise this type, (ii) express, for­
mally, well-formedness of such pair-list representations, and (iii) define the
list-oriented merge operation. We also remind the reader of Example 16.4.

Exercise 15.4. List Representation of Stacks. The present problem further
intends to exercise your skills in manipulating sets and lists, and in under­
standing stacks — and to put the ideas of refinement and abstraction functions
into your repertoire of software development techniques.

Define an abstract data type 'stack' with the "usual" operations, but al­
lowing only for a maximum size stack.

Exercise 15.5. List Representation of Queues. The present problem intends
to exercise your skills in manipulating sets and lists and in understanding
queues — and to put the ideas of refinement and abstraction functions into
your repertoire of software development techniques.

Define an abstract data type 'queue' with the "usual" operations, but
allowing only for a maximum size queue.

Exercise 15.6. Bubble Sort. Find, in some textbook, a description, in some
language, whether natural or a programming language, of the bubble sort
algorithm, and reformulate that algorithm in RSL.

Exercise 15.7. Heap Sort. Find, in some textbook, a description, in some
language, whether natural or a programming language, of the heap sort algo­
rithm, and reformulate that algorithm in RSL.

Exercise 15.8. Insertion Sort. Find, in some textbook, a description, in some
language, whether natural or a programming language, of the insertion sort
algorithm, and reformulate that algorithm in RSL.

Exercise 15.9. Merge Sort. Find, in some textbook, a description, in some
language, whether natural or a programming language, of the merge sort
algorithm, and reformulate that algorithm in RSL.

15.8 Exercises 345

Exercise 15.10. Selection Sort. Find, in some textbook, a description, in
some language, whether natural or a programming language, of the selection
sort algorithm, and reformulate that algorithm in RSL.

Exercise 15.11. Shaker Sort. Find, in some textbook, a description, in some
language, whether natural or a programming language, of the shaker sort
algorithm, and reformulate that algorithm in RSL.

Exercise 15.12. Shell Sort. Find, in some textbook, a description, in some
language, whether natural or a programming language, of the shell sort algo­
rithm, and reformulate that algorithm in RSL.

Exercise 15.13. Quicksort. Find, in some textbook, a description, in some
language, whether natural or a programming language, of the quicksort algo­
rithm, and reformulate that algorithm in RSL.

Exercise 15.14. Formalisaton of Books. We refer to Example 15.9. Please
formalise the notion of books, table of contents and a function which generates
tables of contents from books. Please sketch how one might be able to provide
page numbering?

Exercise 15.15. X Lists in the Transportation Net Domain. We refer to Ap­
pendix A, Sect. A.l, Transportation Net.

Further Reference: The description which follows is a rewording of the de­
scription given in Exercise 13.5 on page 290. Should you find, when reading
the below description, that some information necessary to solve the problem
is missing, then please consult Exercises 13.5 and 14.6.

Let us assume that transportation net segments are modelled by Carte­
sians "containing" (i) the unique segment identifier, (ii) the set of the two or
one connection identifiers (or names) of the connections between which the
segment "spans", (iii) the "route" name [road name for road nets, etc.], (iv)
the segment length, and (v) possibly some more attributes [albeit all "lumped"
into one component]. Let us similarly assume that connections (connectors)
are likewise modelled by Cartesians "containing" (1) the unique connection
identifier, (2) a set of unique segment identifiers (of those segments incident
upon (i.e., emanating from) the connection, and (3) possibly some more at­
tributes [albeit all "lumped" into one component].

Now model a concept of a path as a sequence of zero, one or more segments
such that adjacent segments in the sequence (i.e., in the list) share connection
identifiers.

Finally model a transportation net as a pair of sets of segments and sets
of connections.

1. Define the types of nets, segments, connections, and paths.

346 15 Lists in RSL

2. Define a well-formedness predicate which tests whether a net is well-
formed.

3. Define a well-formedness predicate which tests whether a segment is well-
formed wrt. a net.

4. Define a well-formedness predicate which tests whether a connection is
well-formed wrt. a net.

5. Define a well-formedness predicate which tests whether a path is well-
formed wrt. a net.

6. Define a predicate which tests whether a path is a cyclic path.
7. Define a function which given a well-formed net generates all finite length

non-cyclic (and well-formed) paths of the net.
8. Define a function which given two distinct connection identifiers finds the

set of all (well-formed) paths between them.
9. Define a function which given two distinct connection identifiers finds the

set of (one or more) shortest (well-formed) paths between them.

Exercise 15.16. X Lists in the Container Logistics Domain. We refer to Ap­
pendix A, Sect. A.2, Container Logistics.

Further Reference: The description which follows is a rewording of the de­
scription given in Exercise 13.6 on page 291. Should you find, when reading
the below description, that some information necessary to solve the problem
is missing, then please consult Exercises 13.6 and 14.7.

Let us assume three kinds of lists: (1) 'Container routes', (2) 'actual sailing
plans', and (3) 'container way-bills', and two kinds of sets: A set, (4) 'lines',
of 'actual sailing plans', and a set, (5) 'seven-seas', of names of (all known)
container terminals.

(1) A 'container route' is merely a "cyclic sequence" of names of container
terminals. (A 'container route' stands for a number of 'actual sailing plans'.)
An adjacent pair of (container terminal) names in a sequence expresses that
some container ship sails non-stop between the named container terminals. A
"cyclic sequence" (of container terminal names) is a sequence where the pair
of the last and the first container terminal name expresses that some container
ship sails non-stop between the named container terminals.

(2) An 'actual sailing plan' is a sequence of 'records of (past, present, or
future) visits of a container ship to container terminals'. A 'record of a visit to
a container terminal' can be thought of as a Cartesian. It may typically contain
the following information: (i) a container terminal name, (ii) [relative] arrival
time, (iii) [relative] departure time, and (iv) frequency of visits [the related
concepts of 'relative' and 'frequency' are presently left further unexplained].

(3) A 'container way-bill' is a sequence of 'records of (past, present, or
future) visits of a container to container terminals': Exactly and only those
container terminals where the container is loaded and unloaded (including
transferred between container ships), via respective container storage areas.
The 'records of visits of a container to container terminals' also inform about

15.8 Exercises 347

arrival and departure times at terminals, and the names of the container ships
on which the container is to be conveyed.

1. Define the concrete types of 'container route', 'actual sailing plan', 'con­
tainer way-bill', 'lines', and 'seven-seas'.

2. Define a predicate, wf_CR, which tests that a 'container route' value is
well-formed wrt. a 'seven-seas' value.

3. Define a predicate, wf_ASP, which tests that an 'actual sailing plan' value
is well-formed wrt. a 'container route' value.

4. Define a predicate, wf_ASP, which tests that an 'actual sailing plan' value
is well-formed wrt. a 'lines' value.

5. Define a function, gen.Routes, which applies to any well-formed 'lines'
value and generates the set of all routes. A 'route' is defined as a sequence
of 'container terminal names' such that any adjacent pair of names in the
sequence is visited by some container ship, i.e., are on an 'actual sailing
plan' — hence in an 'actual sailing plan' of the 'lines' argument.

6. Define a predicate, wf_WB, which tests that a 'way-bill' value is well-
formed wrt. a 'lines' value.

7. Define a function, gen_WBs, which, given a pair of 'container terminal
names' and a 'lines' argument, generates the (possibly empty) set of 'way­
bills".

8. Consider Bays to be lists of Rows, Rows to be lists of Stacks, and Container
Stacks to be lists of Containers. Now redefine appropriate load and unload
functions.

Exercise 15.17. X Lists in the Financial Service Industry Domain. We refer
to Appendix A, Sect. A.3, Financial Service Industry.We also refer to above
Exercises 15.15 and 15.16.

You are to formulate yourself some narrative and formalisations of phe­
nomena and concepts of the Financial Service Industry domain for which lists
may come in as a suitable abstraction. Please also consult Exercises 13.7 and
14.8.

16

Maps in RSL

• The prerequisite for studying this chapter is that you possess knowledge
of the mathematical concepts of sets, Cartesians and lists as introduced in
earlier chapters.

• The aims are to introduce the RSL abstract data type of maps: the map
type expression, the map value expressions, enumeration and comprehen­
sion forms of expressing maps, and operations over maps, as well as to
illustrate the expressiveness of maps by illustrating simple and not so sim­
ple examples of phenomena and concepts that can be modelled in terms
of maps.

• The objective is to set the reader free to choose maps as models of phe­
nomena and concept entities, when appropriate, and to not choose maps
when doing so is not appropriate.

• The treatment is from systematic to semiformal.

Characterisation. By a map we shall intuitively understand a somehow
enumerable set of pairs1 of distinct argument result values, such that it is
meaningful to speak of operations involving maps such as applying a map
to an argument, ra(a), merging two otherwise distinct maps, U, overriding
one map by another, f, restricting one map by the definition set of another, \ ,
restricting one map to the definition set of another, / , inspecting the definition
set of a map, dom, inspecting the range set of a map, rng, composing two
suitable maps, °, and comparing two maps for equality (inequality), = (/) . •

Map me no maps, sir, my head is a map, a map of the whole world.

H. Fielding, 1707-1754, Rape upon Rape

xBy the hedge "somehow" we mean that it is possible to either explicitly list the
pairs, or to characterise the set of pairs through some suitable predicate.

350 16 Maps in RSL

16.1 The Issues

The idea to be illustrated in this section is the use of the discrete mathematics
concept of maps in abstracting domain, requirements and software phenomena
and concepts. Other terms used in lieu of maps are relations or (enumerable
definition set) functions. Maps offer themselves as an abstraction when a
component can best be characterised as a set of uniquely identified (other)
components. The section gives a few more examples.

Maps are a major "workhorse" in model-oriented abstraction.

This chapter is, as are Chaps. 13-17, built up as follows:

The map data type
Examples of map-based abstractions
Abstracting and modelling with maps
Inductive map definitions
A review of map abstractions and models

(Sect. 16.2)
(Sect. 16.3)
(Sect. 16.4)
(Sect. 16.5)
(Sect. 16.6)

There are many examples because before one can write good specifications
one must have read and studied many example specifications. While you may
not need to study all of them now, you can return to some later. The chapter
ends with a brief discussion.

16.2 The Map Data Type

Chapter 6 covered the subject of mathematical functions. Maps are special
kinds of functions. Normally, for general functions, one cannot compute their
definition sets (i.e., the set of values for which the function is defined), and
hence not their image (or range) sets. Maps are distinguished by exactly being
functions having the property that their definition set, and hence their range
sets, can be computed. In domain descriptions we need not compute all such
definition sets, but we need be able to express a predicate that delineates the
definition set. Since this is so, the map data type comes further "equipped"
with a number of other operations on maps.

The map data type has the following facets: (i) The map type (syntactically
the map values, semantically the map type expressions and the map type
definitions); (ii) the map values (a semantic concept); and (iii) the map value
expressions (the syntactic counterpart of the semantic map value concept).

16.2.1 Map Types: Definitions and Expressions

Types whose values are total or partial functions, or are maps, can be defined
using the type operators —> and ^>, respectively -^. On total and partial
functions only a few operations are provided for (in RSL): (i) the function
abstraction (A), (ii) the function application ("•(•)") and (iii) the function

16.2 The Map Data Type 351

composition (°) operations. In contrast, although maps are also functions, they
are definition set enumerable functions on which a larger number of operations
can (therefore) be defined. That is: One can enumerate the definition set. They
can be defined exactly because the definition set, the arguments for which the
function, i.e., the map, is defined, is computable.

Let A and B stand for arbitrary types whose possibly infinite number
of element values include al, a2, . . . , am, . . . , respectively bl, b2, . . . , bn,

Types whose values can be considered finite or infinite, definition set
enumerable maps from A elements to B elements, can be defined using the
infix jft type constructor:

type A, B
M = A ^ B

The expression A ^ B is a map type expression.
Let us illustrate elements of some map type ([1]): In the expressions below

([2]) the possibly decorated a's and the b's denote single values.

[1] A ^ B
[2] [], [ai->b], ..., [alh^bl,a2H^b2,...,a3^b3],

The expression [] designate the empty map. The expression [ai-^b] stands
for the singleton map that maps a into b. The expression [ali-^bl, a2i— b̂2,
..., a3i->>b3] stands for the map which (possibly nondeterministically) maps
respective, distinct ai into corresponding (not necessarily distinct) bi.

Example 16.1 A Simple Map Example: Let fact name the factorial function,
then

[l^fact(l),2^fact(2),3H^fact(3),4h^fact(4),5H^fact(5),6H^fact(6)]

expresses a simple map of six element, the natural numbers one to six, map­
ping into their respective factorials. •

16.2.2 Map Value Expressions

For sets and lists there were three kinds of explicit set-forming, respectively
list-forming, expressions: enumerative, ranged expressions and comprehended
expressions. For maps there are only enumerative and comprehended map
expressions.

Map Enumerations

Let ae, ael, ae2, . . . , aen, be expressions that denote not necessarily distinct
values of type A, and let be, bel, be2, . . . , ben be expressions that denote
not necessarily distinct values of type B. Then the following are examples of
explicit map value expressions, in particular enumerative map expressions:

352 16 Maps in RSL

[], [aei-^be], ..., [aeli->>bel,ae2i->>be2,...,aeni->>ben]

The formula line above, left to right, denotes the single model of the empty
map of no elements, a set of models of singleton maps of one element definition
sets, etc., respectively a set of models of maps, all of n map pairs vai into
vbi. For each model the above expressions have a specific, value, which may
be nondeterministic for reasons not immediately clear from the above, cf.
Sect. 12.4.4. Or it may be nondeterministic for reasons covered next.

D e t e r m i n i s t i c and N o n d e t e r m i n i s t i c M a p Values

If two or more aei, aej expressions evaluate to the same A value, then the
map is said to be nondeterministic, otherwise it is said to be deterministic.
A deterministic map, like a deterministic function, yields unique results for
definition set, i.e., argument values. A nondeterministic map, like a nondeter­
ministic function, nondeterministically yields some result value for some or all
definition set argument values.

Let a, a', . . . , a", b, b', . • •, b" stand for distinct type A and type B values,
respectively, then:

[a ^ b , a V - ^ . . . , a V ^ b "]

stands for a deterministic map, while

[aM>b,ai->>b',...,ai->>b"]

stands for the nondeterministic map which, when applied to a, either yields
b, or b' , or . . . , b" , nondeterministically. The idea of a nondeterministic map
is not to be confused with a map expression tha t denotes a set of models.

M a p O p e r a t o r / O p e r a n d E x p r e s s i o n s

First we present the map opera tor /operand expressions semiformally: pre­
senting the formal signature of the map operations and giving, informally, a
metalinguistic2 example for each operation. Instead we pretend to give some­
thing tha t you may informally take to be a kind of axioms.

Map Operation Signatures and Examples

There are eleven map value related operations: •(•), d o m , rng, f, U, \ , / , = ,
^ , = and °.

2This example is metalinguistic because we cannot give the semantics of RSL in
RSL, and because we use ellipses (. . .)•

16.2 The Map Data Type 353

value

• (•): M - • A -^ B, m(ai) = bi
dom: M —> A-infset [domain of map]

d o m [ali->>bl,a2!->>b2,...,ani->>bn] = {al,a2,. . . ,an}
rng: M —> B-infset [range of map]

rng [alM>bl,a2h-»b2,...,ani->>bn] = {bl,b2,. . . ,bn}
f: M x M - } M [override extension]

[a ^ b , a V - ^ b ' , a " ^ b "] f [aV-^b",aV^b'] = [a ^ b , a V - > b " , a " ^ b ']
U: M x M -^ M [merge U]

[a ^ b , a ' ^ b ' , a " ^ b "] U [a ' " ^ b ' "] = [a ^ b , a ' ^ b ' , a " ^ b " , a ' " ^ b ' "]
\ : M x A-infset -» M [restriction by]

[a ^ b , a V ^ a " H > b "] \ { a } = [aV->b',a''i->b"]
/ : M x A-infset ->> M [restriction to]

[a ^ b , a ' ^ b ' , a " ^ b "] / { a ' , a " } = [a ' ^ b ' , a " ^ b "]
= , ^ : M x M -^ B o o l
°: (A 7^ B) x (B ^ C) ->> (A ^ C) [composition]

[a^b,aV-^b '] ° [bH>c,bW,b"H>c"] = [a^c ,aV-K/]

Meaning of Map Operators

The first line above, • (•) , expresses tha t functions and maps can be applied to
arguments. The prefix operators d o m and rng denote "taking" the definition
set values (i.e., the domain3) of a map (the a values for which the map is
defined), respectively the range of a map (the corresponding b values for
which the map is defined). The infix operators f, U, and / , when applied to
two operands, denote the map which is like an override of the first operand
map by all or some "pairings" of the second operand map, the merge of two
such maps, the map which is a restriction of the first operand map to the
elements tha t are not in the second operand set, respectively the map which
is a restriction of the first operand map to the elements of the second operand
set. The infix operators = and 7 ,̂ when applied to two maps, compare these
for equality, respectively inequality.

To explain composition (°) of two maps, mostly in terms of map compre­
hension, we introduce two map domains, M and N, such tha t the range of
m:M operand maps fall within the domain of n:N operand maps.

We explain, operationally, some of the map operations. We assume tha t
d o m and •(•) are primitive operations.

value
rng m = { m(a) | a:A • a G d o m m }

3Note that the term 'domain' is used here in a sense which is different from that
of 'domain' used in the context of domain engineering, requirements engineering and
software design. Observe further the danger of misinterpreting the term 'application'
in 'application domain' as that of applying some function or map!

354 16 Maps in RSL

ml f m2 =
[a ^ b | a:A,b:B •

a G dom ml \ dom m2 A b=ml(a) V a G dom m2 A b=m2(a)]

ml U m2 = [a ^ b | a:A,b:B •
a G dom ml A b=ml(a) V a G dom m2 A b=m2(a)]

m \ s = [ai-^m(a) | a:A • a G dom m \ s]
m / s = [ai-^m(a) | a:A • a G dom m D s]

ml = m2 =
dom ml = dom m2 A V a: A • a G dom ml => ml (a) = m2(a)

ml / m2 = ~(ml = m2)

m°n =
[ai->>c | a:A,c:C • a G dom m A c = n(m(a))]
pre rng m C dom n

Map Comprehension

Just as for sets and lists, we can either explicitly enumerate finite maps, or
we can implicitly comprehend possibly infinite maps.

Example 16.2 A Simple Map Example: Let fact name the factorial function,
then

[i ^ fact(i) | i:Nat • i G {1..6}]

expresses a simple map of six element, the natural numbers 1 to 6, mapping
into their respective factorials. •

Let A, B, C and D denote arbitrary types, and let J7(a) and Q(b) stand for
arbitrary expressions that applies to A, respectively B, values, and evaluate to
C, respectively D values. That is, T and Q may be viewed as functions from
A into C, and B into D. Finally let V(a) stand for a predicate expression over
A. Then:

type
A, B, C, D
M = A ^ B
jr :F = A H> C
G:G = B ^ D
V:Y = A - • Bool

16.2 The Map Data Type 355

value
comprehend: M x F x G x P -) > (C jff D)
comprehend (m,JF; Q J>) =

[J7(a) i-+ 5(m(a)) | a:A • a G dom m A V(a)]

is a schematic example of a map comprehension expression. It maps, for those
a in the domain of a given map m which satisfy a given predicate V, ^ (a)
into £/(m(a)). The resulting map may be nondeterministic or deterministic
independent of whether the argument is deterministic or not. It all depends
on some or all of the arguments m, J7, Q and V.

The text V(a) need not be an invocation of a predicate function, but can
be any Boolean-valued expression. It must, however, be deterministic in order
to evaluate to true.

We use comprehended map expressions when we wish to implicitly specify
(i.e., implicate) possibly infinite maps characterised by some functions T and
Q and some predicate, V.

Map comprehension, as do set and list comprehension, expresses a form of
homomorphic principle: Functions over composite structures being expressed
as a(nother) function over the (first) function applied to all immediate con­
stituents of the composite structure. We refer to Sect. 8.4.4 for a first enunci­
ation of the '(homo)morphism' concept.

The general syntactic form of comprehended map expressions follow:

<map_comp> ::=
[<value_expr> \-+ <value_expr> | <typings> • <bool_expr>]

where the • <bool_expr> part is optional.

16.2.3 Map Binding Patterns and Matching

Earlier we dealt with the concepts of binding pattern, matching and binding,
Sect. 13.2.3, for sets, Sects. 14.4.1-14.4.2, for Cartesians, and Sect. 15.2.3 for
lists. We shall here consider the construct of map binding patterns and the
map matching and binding concepts.

By a map let decomposition binding pattern we understand a construct
basically of the following form, line 4 below:

type
A, B, C = A ^ B

value
... let [ai-^b] U c = e in ... end ...
post e = [ai-^b] U c, i.e.: c = e \ {a} A b = c(a)

Here it is somehow known that e is a nonempty map. The understanding of
let [ai-^b] U c = e in ... end is that e is map expression with nonempty
value, say v, that the free identifier a is bound to an arbitrary member of the

356 16 Maps in RSL

definition set of v, that the free identifier b is bound to v(a), and that the free
identifier c then is bound to the remainder of v, that is, a (possibly empty)
map without [ai-^b].

We show a very simple example of the use of set patterns — leaving its
decoding to the reader

value
sum: (Nat ^ Nat) ->> Nat
sum(m) =

i fm=[]
thenO
else

let [ai-^b] U m' = m in
a + b + sum(m')

end end

16.2.4 Nondeterminism

In the map decomposition construct:

let [ai-^b] U m = map in ... end

the selection of the definition set value a is nondeterministic. Nondeterminism
is an important abstraction mechanism. It expresses that we abstract from
the specific choice: Any, or almost any, will do!

16.3 Examples of Map-Based Abstractions

This section "matches" Sections 13.3, 14.3, 15.3, and 17.2. They all give small
examples of set, Cartesian, list, map and function-based specifications. They
are meant as class lecture examples.

16.3.1 Sorting

Example 16.3 When Is One List Sorted wrt. Another?: First we introduce
the notion of bijective index maps. A bijective index map is a map from
natural numbers into natural numbers, such that the definition and the range
sets of these maps are identical, and such that the definition set is the dense
set of natural numbers from 1 into the number of elements in the dense sets
(when they are nonempty). The idea is that the index map-elements "mimic"
indices of a list.

16.3 Examples of Map-Based Abstractions 357

t y p e
A, Q = A*
M' = N a t jff N a t
M = {| m:M r • bijection(m) |}

value
bijection: M' -^ B o o l
bijection(m) =

d o m m = rng m = { L . c a r d d o m m}

is_sorted_wrt: Q x Q —> B o o l
is_sorted_wrt(q,q /) =

l en q = l en q A is_sorted(q) A
3 m:M • d o m m = inds q A

V i:Nat • i G d o m m => q(i) = q'(m(i))

16 .3 .2 Equiva lence R e l a t i o n s

E x a m p l e 16 .4 Simple Map Representation of Equivalence Relations: We re­
fer to Examples 13.5 and 15.3.

We shall outline a map representation of equivalence relations. Let A be
the type on subsets of which we may wish to record some equivalence relation.
Let M be any bijective map from A to A. Let the map [d \-> c, b i-» a, e \->
d , a H & , c ^ e] represent the equivalence relation {{a, &}, {c, d, e}} over the
set {a, 6,c, d, e} . It can thus be shown tha t any bijective map records an
equivalence relation over its definition set (which, obviously, equals its range
set. The function retr_Q takes a bijective map and retrieves a set representation
of an equivalence relation.

t y p e
M' = A jff A, M = {| m:M' • d o m m = rng m |}

value
re t r .Q: M - • Q
retr_Q(m) = {get_eq(a,m) | a:A • a G d o m m}

c o m m e n t :
different a's tha t get the same equivalence class
have these classes reduced to one in the result

get_eq: A x M ^> A-se t
get_eq(a,m) =

let ns = {a}U{b | b:A • 3 c:A«c G ns A b = m (a) } in ns e n d
pre a G d o m m

merge: A x A x M ^> M

358 16 Maps in RSL

merge (a,b,m) =
[c i-» m(c) | c: A • c G dom m A c 0 {a,b}] U [a \-> b , m(b) i-» m(a)]
pre a^b A {a,b}Cdom m A a 0 get_eq(b,m)

16.4 Abstract ing and Modelling with Maps

This section "matches" Sections 13.4, 14.4, 15.4, and 17.3. They all give larger
examples of set, Cartesian, list and function abstractions and models, which
are meant as self-study examples.

The purpose of this section is to introduce techniques and tools for model-
oriented specifications primarily based on maps. Among the map modelling
principles, techniques and tools are (1) subtyping: Sometimes a type defi­
nition defines "too much". A type constraining (well-formedness, invariant)
predicate technique can therefore applied. (2) pre /post-conditions: function
abstraction in terms of pre- and post-conditions. (3) "Input/Output/Query"
functions: Identification of main functions according to their signature. (4)
Auxiliary functions: Decomposition of function definitions into "smallest"
units. The principles and techniques reoccur, for sets, Cartesians and lists
in Sections 13.4, 14.4 and 15.4.

We present five kinds of examples: graphs, structured tables, hierarchies,
relational databases and pointer-based data structures.

16.4.1 Graphs

We show an example graph (Fig. 16.1).

P©J
0

Fig. 16.1. An example directed graph

16.4 Abstracting and Modelling with Maps 359

Example 16.5 Graphs: A directed graph consists of nodes and arcs. An arc
always "connects" two nodes. "Connection" is a function, here a map, from
nodes to sets of nodes. Thus, if, in a directed graph with nodes a, b and c,
directed arcs connect a to b and c, b to itself only, and c to a and itself, then:

[a \-> {&, c}, b \-> {&}, c \-> {a, c}]

is a model of the graph of Fig. 16.1.
Let nodes of graphs be distinctly labelled. Let labels belong to type A,

then a concrete, yet representationally abstract type of graphs, G, is:

type
G' = A jjf A-set

What if a node a of a graph g has no arcs (directed edges) emanating from
it — how is it modelled in g:G? Then we could choose it to not appear in
the definition set of g, but it will appear in one or more range elements —
namely for those nodes from which arcs are incident upon a. But what if a
node s is isolated in g, i.e., has no arcs leading into it (in-degree 0) and no arcs
leading out from it (out-degree 0); how is it to be modelled in g? The answer
is: It cannot if we choose the modelling principle of the previous sentence,
that is, positive, nonzero in-degree nodes of out-degree 0 appear only in range
elements of g. Therefore we sharpen our modelling. Out-degree 0 nodes a in
g map into empty sets. Thus all nodes in range elements of g must also be in
the definition set of g:

G = {| g | g:G' • |J rng g C dom g |}

We have now modelled the type of all directed graphs. Here it is assumed
that no two or more directed edges emanate (from) and are incident upon
(pairwise) the same nodes.

We now wish to operationally abstract a number of functions on graphs.
To find all the nodes reachable through one or more steps from a given node
a in a given graph g, we define a function Nodes. A "step" from a is any node
b connected to a by an edge directed from a to b. Two steps from a is any
node c connected by a directed edge from any node b which is reachable in
one step from a.

Here we give an inductive function definition:

Nodes: A x G ->> A-set
Nodes(a,g) =

let nodes = g(a) U { a' | a':A • 3 a":A • a" G nodes A a' G g(a") }
in nodes end

To find out whether a graph is acyclic, i.e., whether any node can be reached
in one or more steps from itself, we define a function is Acyclic. The function is

360 16 Maps in RSL

to be a predicate which yields truth if no such node exists, falsity otherwise.
We use Nodes in the definition of isAcyclic. We do so since a graph is cyclic if
some node a is in the set of nodes Nodes(a,g) reachable from a:

isAcyclic: G —> Bool
isAcyclic(g) = V a:A • a G dom g => a 0 Nodes(a,g)

The function Nodes produces the set of nodes reachable from a node a, in
a graph g whether or not this graph is acyclic, i.e., independent of possible
cycles from a, in the direction of arrows, to g. •

16.4.2 Structured Tables

A table is like a relation. It consists of a finite number of zero, one or more
entries. Each entry consists of one or more, but a finite number of fields.
Each field contains a value. Let a table have entries of say n fields (positions
1 through n), where n is larger than 1. In:

type
A,
B
B
B
B
B

C
= A-set
= ...
= A*
= A
= C

x A x ...

nt C
7* A

If type B is one of the alternatives, or, more generally (than hinted at above),
some discrete type4 otherwise involving type A, then we say that B is com­
mensurate with A. Let entry field values in, for example, field (position) i be
of a type commensurate with the type of entry field values of field (position)
j , where i^j. Then we may say that one entry field value refers to (or im­
plies) one or more other entries. If values contained in one entry implies other
entries, then we say that the table is structured.

Examples follow.

Example 16.6 Bill of Materials:

Narrative — Types

A simple bill of materials is a table. Each entry in this table has two parts:
a part-number,5 p, in the type Pn of part numbers, and a possibly empty

4A discrete type "contains" no functions.
5Part numbers are not necessarily numbers, but rather general (spare) part iden­

tification "numbers".

16.4 Abstracting and Modelling with Maps 361

set of part numbers. If the set is empty the part number p is said to be an
elementary, i.e., a noncomposite part (consisting only of itself!). If the set is
nonempty, i.e., {pi,P2, • • • ,Pn} (for ^ > 1)? then p is said to be composite
— consisting of the immediate, or constituent parts pi,P2, • • •, and pn. Such
constituent parts must all be recorded in the simple bill of materials. Con­
stituent parts of p, or constituent parts of constituent parts of p, etc., cannot
themselves consist of part p. That is, no part can be recursively constructed.
We abstract the type of simple bill of materials by a map from part numbers
to sets of part numbers.

Formalisation — Types

type
BOM_0' = Pn j$ Pn-set
BOM_0 = {| bom | bom:BOM_0' • inv_BOM_0(bom) |}

We have now given an abstract model of a simple bill of materials type. For
the sake of illustration we express a "typical" bom:

bom : [p i ^ {pa,Pb,--,Pc},

P2 *-> {pd,Pb,.-.,Pf},.-.

Pa H> {},

Pb •"• {PxiPy}:---

Px "-• {},

Py •"• {}]

Narrative — Invariant

Well-formedness amounts to all constituent parts are recorded, and none is
recursively defined.

Formalisation — Invariant

value
inv_BOM_0(bom) =

(1) V pns:Pn-set • pns G rng bom => pns C dom bom A
(2) V p:P • p G dom bom => p ^ sub_Pns(p,bom)

sub_Pns: Pn x BOM_0 -^ Pn-set
sub_Pns(p,bom) =

(3) { sp | sp:Pn • depends_on(p,sp,bom) }
(4) pre p G dom bom

depends.on: Pn x Pn x BOM_0 ^> Bool

362 16 Maps in RSL

depends_on(pn,sp,bom) =
(5) sp E dom bom(pn) V
(6) 3 p:Pn • (p E dom bom(pn) A depends_on(p,sp,bom))
(7) pre pn E dom bom

Annotations: We say that a definition set part number represents a defining
occurrence and that a range set of part numbers represent using occurrences
of these. (1) If a set of part numbers is used in the table, then they are all
defined by the table. (2) If a part number is defined in the table, then it is not
used (i.e., defined) recursively. (3) Subsidiary part numbers of a part number
p are those that can depend on p in the table. (4) p must be in the table. (5)
For a part number sp to depend on a part number pn, either sp must be in
the immediately used set of part numbers bom(pn), (6) or there must exist a
part number p that is in the using set of part numbers bom(pn) and such that
p depends on sp. (7) The "depends on" part number must be in the table. •

Observe that the above definitions of sub.Pns and depends_on represents an­
other way of expressing acyclicity of a graph using Nodes and isAcyclic. It is
obvious that the bill_of.materials type is tantamount to a model of graphs!

Other examples of structured tables are compiler dictionaries, operating
system directories, and so on. We shall have occasion to see many forms of
structured tables in the rest of these volumes.

16.4.3 Hierarchies

Hierarchy:
A body of things ranked in grades, orders, or classes,

one above another

The Shorter Oxford English Dictionary [350] (1643)

There seems to be an obsession, predominantly, it seems, amongst intellec­
tually weak people, politicians and managers especially, to view the world
hierarchically — usually with themselves at the top. Most of us tend, since
the time of Aristotle (384-322 BC) it seems, to organise our world of doc­
uments hierarchically, so much so that now most computing filing systems
offer basically hierarchically structured means of access called directories. We
shall next study a variety of "abstract, generic" hierarchical structures. Their
essence is their treelike nature, with roots and branches.

Concrete phenomena whose structure resembles such trees or similar to
hierarchies include books — with the book itself as the root, its various chap­
ters as immediate subtrees, their sections as subtrees of chapter subtrees,
etcetera. This can continue down to a usually definite depth, achieved at plain
texts within subsubsections, or within possible paragraphs, subparagraphs,
and even within their maximum depth enumerations (as in these volumes).

16.4 Abstracting and Modelling with Maps 363

Plain text forms tree leaves. We normally explain a leaf to be a possibly
annotated (as for the text) empty tree.

Another example is the organisational structure — here represented in
terms of the staff — of an enterprise: a bureaucracy, a company or a hos­
pital. At the top, "at the root", there is the top executive, then follows line
management, usually layered in several levels, i.e., hierarchically, then "floor"
management with their charge, the "workers", as the leaves, "at the bottom"!
The above text represented a par t analysis of the abstract concept of hierarchy.
The analysis was carried out on, i.e., wrt. concrete, "manifestable" phenom­
ena. We are therefore ready to begin a more systematic, but now abstract ,
t reatment .

E x a m p l e 16 .7 Hierarchies:

Narrative — Hierarchies

A hierarchy has a root and otherwise consists of zero, one or more distinctly
labelled subhierarchies. A root is a further unanalysed quantity. A subhierarchy
is a hierarchy. A subhierarchy label is a further unanalysed — albeit, most
likely, different kind of quantity.

Formalisation — Hierarchy:

t y p e
A, B
AH = = cR(sa:A,sh:mH)6

mH = = cH(sm:(B ^ AH))
value

a,a',...,a":A, b,b',...,b":B, h,h',...,h":mH
e x a m p l e s

h i : cR(a,cH([]))
h 2 : c R (a , c H ([b / ^ h , , . . . , b , , ^ h / ,]))
h3 :cR(a , cH([b ' ^cR(a / , cH([])) , . . . , b "^cR(a / , , cH([b^h , . . . , b ' , , ^h ' / /]))]))

A n n o t a t i o n s , (i) A s tand for the further unanalysed root type, (ii) B stand
for the further unanalysed branch type, (iii) AH stand for the defined type of
Cartesian pairs of A and mH entities, (iv) mH stand for the defined type of
maps from B entities to AH entities.

Observat ions . Nothing was said about the following possibilities: (iv) Can
two or more (immediate) subhierarchies of a given hierarchy have identical
roots? (v) Can any two branches along a path, i.e., a sequence of "connected"
branches, have identical labels? (vi) What , exactly do we mean by immediate

6The explanation, here, of "==" variant record definitions, ahead of their proper,
formal introduction, was first briefly explained in Sect. 13.4.3. Sects. 18.4 and 18.5
will further deal with record and union types. We will here give a brief "recap".

364 16 Maps in RSL

subhierarchy of a hierarchy? (vii) And what, exactly do we mean by paths? To
this we turn next.

Narrative — Paths

Let there be given a hierarchy. A label, £i, (from the root of the hierarchy to
the root of a possibly empty subhierarchy, said to be labelled by £\) is a path.
A path is, in general, a sequence, (^1,^2,••• , ^ , ^ + 1 , • • • An), of one or more
labels, ij, such that each £j is the label of a subhierarchy for all j , and such
that if (£1, £2,..., £i) is a path of the hierarchy, and ^+i is a label of the root
of a subhierarchy labelled by ^ , then (£1: £2,..., £i,£i+i) is also a path of the
given hierarchy.

Formalisation — Paths

type
P = B*

value
gen_Ps: AH ->> P-set
gen_Ps(cR(a,m)) =

case m of

cH([]H{<»,
cH(m)-^U{(b)"p|b:B,p:P-b G dom mA(p=()Vp G gen_Ps(m(b)))}

end

Annotations. Paths are sequences of labels. If a hierarchy is empty, then
it contains just the empty path; else a path consists of a prefix and a suffix
whose first label (the prefix) is any label of a subhierarchy and any path
(including no path, i.e., the empty path) of that subhierarchy. The possibility
of "any path" allows for paths not necessarily ending up at leaves of the given
hierarchy. U expresses the distributed set union.

Narrative — Path Operations

Given a hierarchy and a path, we wish to ascertain whether the latter is a
path of the former. If so we wish to "access" the subhierarchy designated by
the path. And we may wish to delete the designated hierarchy, or we may
wish to replace it by another subhierarchy.

Formalisation — Path Operations

value
wf_P_in_H: P x A H ^ Bool
wf_P_in_H(p,h) = p G gen_Ps(h)

Access: P x AH ^> AH

16.4 Abstracting and Modelling with Maps 365

Access(p,cR(a,cH(m))) =
if p=() t hen cR(a,cH(m)) else Access(tl p,m(hd p)) end
pre wf_PJn_H(p,cR/a,cH(m))

value
Delete: P x AH ^ AH
Delete(p,cR(a,cH(m))) =

ifP=0
thencR(a,cH([]))
else

let cH(m') = m(hd p) in
let mh = cH([b'hW(b')|b':B-b' G dom m'AbVhd p]

U[hd pi-+Delete(tl p,m'(hd p))]) in
cR(a,mh) end end

end
pre wf_PJn_H(p,cR(a,cH(m)))

value
Replace: P x A H x A H ^ A H
Replace(p,cR(a,cH(m)),sh) =

ifP=o
then cR(a,sh)
else

let cH(m') = m(hd p) in
let mh = cH([b'i-+ m'(b')|b':B.b' G dom m'AbVhd p]

U[hd pi-)-Replace(tl pjm^hd p),sh)]) in
cR(a,mh) end end

end
pre wf_PJn_H(p,cR(a,cH(m)))

Annotations. The empty path deletes only the hierarchical part, by voiding
it, not the A component of its root. A proper subhierarchy is selected. All
the proper sub-subhierarchies that are not selected by the prefix label of the
path are left unchanged. Only the sub-subhierarchy selected by the prefix
label of the path is changed. The delete operation proceeds as from the sub-
subhierarchy and wrt. the suffix path.

The replace operation follows the structure of the delete operation. •

Notice how a recursively defined data structure (i.e., type) results in recur­
sively defined operations. Notice also that we could probably find a generic
function Generic that traverses the hierarchy as do both Delete and Replace,
but which is given different arguments for effecting deletes, respectively re-

366 16 Maps in RSL

placements. To define this function is left as a standard exercise for parame-
terised higher-order functional programming.

16.4.4 Relat ional File Systems (IV) and Databases

This is the fourth in a series of models of what we could call file systems. Other
models are presented in Examples 13.6 (sets), 14.2 (Cartesians and sets), and
15.6 (lists, Cartesians and sets). See also Exercise 16.11.

The next two examples resemble each other. The first, Example 16.8, pur­
ports to be that of a simple, "classical" file system. While the second, Ex­
ample 16.9, purports to be that of a simple, "classical" relational database
system. Observe their rather similar types. Observe also the use of record
type definitions of VALues. Record type definitions were first informally in­
troduced in Sect. 13.4.3, and will be formally covered in Sect. 18.4. And finally
observe the use of subtype definition, of FILE. Subtype definitions were already
introduced informally in Sect. 13.7, and will be formally covered in Sect. 18.8.

Example 16.8 A File System: A file system consists of a set of uniquely
named files. Each file consists of a set of uniquely "keyed" records. All records
of a given file have the same number of "correspondingly" typed and uniquely
named field values.

type
Fn, An, Key
FS = Fn - • FILE
FILE' = Key ^ REC
FILE = {| file:FILE' • wLFILE(file) |}
REC = An ^ VAL
VAL = Integer | Boolean | Textstring
Integer = = mkJnteger(i:Int)7

Boolean = = mk_Boolean(b:Bool)
Textstring = = mk_Textstring(s:Text)
Kind = = integer | Boolean | string

Notice the use of the variant record way of defining types. In Fig. 16.2 we
contrast two ways of defining union of types. To the left the union (|) of types
B, C, ... and D is discriminated, that is, one can distinguish the types. To the
right one cannot.

The latter (to the right), in effect, makes the types B, C D identical.
The former (to the left) makes them distinct by virtue of distinct constructor
names: mk_/3, mk_7 mk_£. These names are allowed to be, or to contain,
the same type name as appears on the left-hand side of the corresponding
type definition. We shall say no more on constructor types for the moment.

7Again we use the variant type construction. See footnote 6.

16.4 Abstracting and Modelling with Maps 367

Fig. 16.2. Discriminate and indiscriminate union, |, of types.

D

De

X, Y
A = B | C | ... | D
B = = mk_/3(x:X,y:Y)
C = = mk_7(f:X,y:Y)

D = = mk^(x:X,g:Y)

type
X , Y
A = B | C
B = X x Y
C = X x Y

D = X x Y

Any two records of the same file must have values of the same type for the
same attribute name. This type constraint (i.e., subtype condition) is defined
below:

value
wLFILE: FILE7 - • Bool
wLFILE(file) =

V r,r':REC •
dom r = d o m r;AV a:An«a G dom r=type_of(r(a))=type_of(r'(a))

type_of: VAL -> Kind
type_of(v) =

case v of
mkJnteger(ij) —> integer,
mk_Boolean(tf) —> Boolean,
mk_Textstring(cs) —> string

end

We leave as an exercise (Exercise 16.11) to formally specify a number of
operations on the above file system. •

Example 16.9 Relational Database System: A relational database system,
sys:SYS, has two components: a schema, sch:SCH, defining the type of all
database relations; and the database, rdb:RDB.

The relational database, rdb:RDB, can be characterised as follows: rdb:RDB
consists of a number of uniquely identified, r:R, relations, rel:REL, where a
relation rel:REL consists of a set of identically attributed tuples, tpl:TPL Each
tuple, tpl:TPL, has a distinct number of differently named attributes, a:A, and,
for each attribute, there is its value, v:VAL

Values are either integers, reals or character strings. Thus values are of
types i n t ege r , r ea lno , s t r i ng , respectively. Given a value we can deduce
its type. The relational schema, sch:SCH, defines the types of relation at-

368 16 Maps in RSL

tributes, and can be characterised as follows: For each relation, named r:R,
there is defined the type for each of the attributes.

type
R, A
SYS' = SCH x RDB, SYS = {| sys:SYS' • wLSYS(sys) |}
SCH = R ^ TplTyp
TplTyp = A ^ Typ
Typ = = integer | realno | text
RDB = R ^ REL
REL' = TPL-set, REL = {| rel:REL' • wLREL(rel) |}
TPL = A ^ VAL
VAL = = mk_int(i:Int)

| mk_real(r:Real)
I mk_txt(txt:Text)

We model values as a type of three disjoint types, disjointness afforded by
the use of the distinctly named type record constructors mk_int, mk_real, and
mk_txt. For disjointness of record types, see Sect. 18.4 (specifically the para­
graph on Records: Constructors and Destructors).

value
typ: VAL -^ Typ
typ(v) =

case v of
mkint(i) —> integer,
mkreal(r) —> realno,
mktxt(txt) —> text

end

wLSYS: SYS' -> Bool
wf_SYS(sch,rdb) =

wLRDB(rdb) A dom rdb C dom sch
V r:R • r G dom rdb => wf_TPLs(sch(r),rdb(r))

wLRDB: RDB' -+ Bool
wLRDB(rdb) = V r:R • r G dom rdb =̂> wf_REL(rdb(r))

wLREL: REL -^ Bool
wLREL(rel) =

V t,t':TPL • {t,t'}Crel ^ dom t = dom t ' A
V a:A • s G dom t => typ(t(a))=typ(t'(a))

wLTPLs: TplTyp x REL ->> Bool
wf_TPLs(tt,rel) =

16.4 Abstracting and Modelling with Maps 369

rel={} V
let t:TPL • t G rel => V a:A • a G dom t => tt(a)=typ(t(a)) end
assert:

V t:TPL • t e rel => tt(a)=typ(t(a))

16.4.5 Complex Pointer Data Structures

Complex, usually implementation-oriented, data structures, such as we are
used to in imperative programming languages like PL/I , Pasca l , C++, etce­
tera, and data structures like linked lists, graphs and trees were implemented
using references, pointers, links, addresses (all are synonymous names), or
concepts having similar connotations. They were all justified by the impera­
tive programming language notion of storage, with storage being understood
as having locations which contained values, with references, pointers, links,
addresses, etc., being allowed as Gist class values.

The next examples illustrates the point being made above.

Example 16.10 Pointer-Based Data Structures: Development:
This is a metaexample! After the text below we present Examples 16.11-

16.20, which substitute for this example!
Next we show a number of related examples. They illustrate, besides ex­

tensive use of map abstractions (as well as models using sets, Cartesians and
lists), such development concepts as reiGcation, retrieve functions, (or abstrac­
tion functions) and injection relations. The examples also illustrate the need
for defining appropriate well-formedness predicates. These will be illustrated
in Examples 16.22-16.30.

Our first in a long series of 10 examples (Examples 16.11-16.20) is informal.
It exemplifies the representation of a graph in terms of what are known as
adjacency lists.

Example 16.11 Pointer Data Structure Graphs — ReiGcation: Figure 16.3
diagrams a "classical" way of representing graphs. The emphasis is on the
adjacency chain model of graphs.

Transforming, as it were, the "abstract" graph picture in the left part of
Fig. 16.3, into the "concrete" data structure in the right part of Fig. 16.3,
is referred to as reification. ReiGcation is a major technique for developing
abstract specifications into concrete designs. Other terms are data structure
transformation and concretisation.

The triplet and doublet boxes designate some form of record values.
The arrows designate storage addresses (i.e., pointers). The Sentinel part of
Fig. 16.3 on the next page represents a declared, named variable.

370 16 Maps in RSL

Ul Sentinel: S

r[

G: "Abstract" Graph NC: Node Chain ACS: Adjacency Chains

Fig. 16.3. Abstract and concrete graphs

We consider the node chain and adjacency chain par ts of Fig. 16.3 to
reflect the "layout" of typically dynamically allocated storage, i.e., unnamed
storage.8

In the following we shall slowly introduce a series of models of graphs,
which will lead to the above model in such a way as to facilitate reasoning
about its correctness. •

We now embark on a list of development steps. Eventually we will reach a
formalisation of the adjacency list representation just exemplified informally.
We start by representing each node and its adjacency list as a pair: a node
and its immediate, i.e., adjacent successors.

E x a m p l e 16 .12 Map/Set Graphs: First we recall, as GO (next), a simple
model of graphs. The range sets of nodes are called the adjacency sets.

t y p e
N
GO = N jff N-se t

value
a,b,c,d,e : N

By dynamically allocated storage is understood a storage some of whose lo­
cations (i.e., storage cells) are set aside for storing values. Such "setting aside" is
typically the result of program clauses that explicitly prescribe the creation of such
cells. Typically such a clause may have the syntactical form: a l l oca t e with type
t — which as an expression yields a pointer value. (The terms a l l o c a t e , with
and type are keywords. The identifier t is (assumed to be) a type name.) Graph
data structures, as here, with an unknown number of nodes and edges, are typical
candidates for dynamically allocated storage representations.

16.4 Abstracting and Modelling with Maps 371

gO:GO
axiom

[all nodes are distinct]
card{a,b,c,d,e}=5

[graph is a constant]
gO=[a^{b},b^{c,d},c^{c,d,e},d^{a},e^{}]

The cardinality predicate expresses that nodes a,b,c,d,e are distinct. The
g0=... predicate expresses that gO is bound to a specific gO value, not, as
in gO:GO, to an arbitrary GO value.

We also show, above, the particular value of gO for the graph shown in the
left-hand side of Fig. 16.3. We omit expression of well-formedness. •

Instead of modelling immediate successors as a set, we now represent them as
lists.

Example 16.13 Map/List Graphs: We recast model GO into Gl, in which
adjacency sets have become adjacency chains.

type
N
GO = N ^ N-set
Gl = N ^ N*

value
a,b,c,d,e : N
gl : Gl

axiom
[V nodes are distinct]

card{a,b,c,d,e}=5
[graph is a constant]

gl=[ah-^(b),bi-)'(c,d),c^{c,d,e),d^(a),e i-+()]

value
wf_Gl: Gl -> Bool
retr_G0: Gl 4 GO
retr_G0(gl) = [ni-)*elems(gl(nl))|n:N»n £ d o m g l]

Again we omit expression of well-formedness. retr_G0 is a function which re­
trieves well-formed GO values from well-formed Gl values. •

In the next step, instead of modelling the set of all pairs of nodes and adjacency
lists as a map from nodes to lists, we model it as a list of pairs.

372 16 Maps in RSL

Example 16.14 Embedded List Graphs: We recast model Gl into G2, in
which the node map has become a node chain.

type
N
Gl = N ^ N*
G2 = (N x N*)*

value
a,b,c,d,e : N
g2 : G2

axiom
[V nodes are distinct]

card{a,b,c,d,e}=5
[graph is a constant]

g2 =
(a i->> (b), b \-> (c,d), c i-» (c,d,e), d \-> (a), e 4 ())

value
wf_G2: G2 -> Bool
retr_G0: G2 4 Gl
retr_Gl(g2) =

{ let (n,nl)=gl(i) in
(n,(nl(j) | j :Na t • l< j< len nl)) end
| i:Nat • l< i< len g2)

retr_Gl is a function which retrieves well-formed Gl values from well-formed
GO values. •

In the next step, as an illustration, we represent the list of pairs of nodes and
node lists, as a map, now from natural number encodings of (source) nodes
(i.e., their names), into a pair: the node and a map from natural number
encodings of (adjacent, i.e., target) nodes into their node (names).

Example 16.15 Cartesian/Index Map Graphs: We now observe that lists, in
general, can be thought of as functions from their indices into their elements.
Hence we recast model G2 into G3, in which the node and adjacency chains
(which were modelled as lists) have become index maps.

type
N
G2 = (N x N*)*
G3 = Na t ^ (N x (Nat ^ N))

value
a,b,c,d,e : N
g3 : G3

16.4 Abstracting and Modelling with Maps 373

axiom
[all nodes are distinct]

card{a,b,c,d,e}=5
[graph is a constant]

g3 =
[l ^ (a , [l ^ b]) ,
2 !-»• (b,[lM>c,2i-^d]),
3 i->- (c,[l(->c,2i->-d,3i->e]),
4h+(d, [l ->a]) ,
5->(e,[])]

value
wf_G3: G3 -> Bool
inj_G3: G2 -> G3
inj_G3(g2) =

[i i—>• let (n,nl) = g2(i) in (n,[j \-> nl(j) | j :Na t • j G inds nl]) end
| i:Nat • i G inds g2]

retr_G2: G3 H> G2
retr_G2(g3) as g2

pre wf_G3(g2)
post g3 = inj_G3(g2)

assert:
V g2:G2 • retr_G2(inj_G3(g2))=g2 A
V g3:G3 • inj_G3(retr_G2(g3))=g3 A
retr_G2°inj_G3 = Ax.x = inj_G3°retr_G2

inj_G3 is a function which injects well-formed G2 values into well-formed G3
values. retr_G2 is a function which retrieves well-formed G2 values from well-
formed G3 values. The composition of the two functions, retr_G2 and inj_G3,
(in any order) yields the identity function. •

Instead of relying on list indices and on the ordering of natural numbers we
introduce pointers as we know them from classical storage models.

Example 16.16 Cartesian/Pointer/Map/List Graphs: We now "equate" the
indices with locations of storage, or would like to do so. But doing so directly,
without any precaution, might give us problems such as: (i) first, the indices
of the various adjacency chain "storage parts" (may) coincide, i.e., designate
"overlapping" adjacency storages, (ii) Second, they also "overlap" with the
node chain "storage part". By overlap we mean that a designated value (may)
partly or fully "occupy" the same storage locations, (iii) Third, the indices
always started with index 1, and we must, in general, be prepared to model ar­
bitrary storage allocations. Hence we introduce a notion of anonymous storage
addresses, i.e., pointers.

374 16 Maps in RSL

We first reify the node chain map. Index pointers "carry" with them an
ordering. Anonymous pointers are assumed not to have an ordering. Hence
we need two things: to indicate which is a first node of a node chain, and to
indicate, for each node in a node chain, which is "the next" node. A sentinel,
OP, component of G4 designates a possible first node. A next node pointer,
OP, component of each node designates a possible next node.

type
N, P
G4 = OP x (P ^ (OP x N x N*))
OP = null | P

value
a,b,c,d,e : N
Pa,P&,Pc,Pd,Pe : P
g4 : G4

axiom
card{pa,p&,pc,prf,pe}=5,
g4=(Pa,

[Pa *-> (p&,a,(b)),
P&H>(pc,b,(c,d)),
Pc^(Pd,c,(c,d,e)),
Pd |-KPe,d,(a»,
Pe |-Knull,e,(»,])

The combination of sentinel and next node pointers must designate a linear
chain. We leave, in Example 16.26 the expression of well-formedness. Note
how null pointers terminate a node chain. •

We augment the model to include proper records: For source nodes these
structures record the next node by a pointer, the name of the source node
and a pointer to the first, if any, successor node. Successor nodes are also
represented as records. They record the name of the successor node and a
pointer the another adjacent node. Storage now contains a sentinel pointer
to a possibly first, arbitrarily chosen node, otherwise maps pointer to source
node records.

Example 16.17 Cartesian/Pointer/Embedded Map Graphs: Next we reify
the adjacency chains (which were modelled as lists). Each node of a node
chain contains ("sentinels", as a verb) a possible link to a first edge. Next
edge links analogous to next node pointers. Each edge chain is to remain a
proper part of a node chain node element.

type
N , P , L
G5 = OP x (P ^ NR)

16.4 Abstracting and Modelling with Maps 375

NR = OP x N x (OL x (L ^ ER))
ER = N x OL
OP = null | P
OL = nil | L

value
Pa,P&,Pc,Pd,Pe : P
P, P P J P P J P P • T
^oa i^Cb i^db i^Cc t^dc i^ec i^-cbd * ^

g 5 : G 5

axiom
[V pointers are distinct]

card{pa,p&,pc,pd,pe}=5
[links of each adjacency list are distinct]

card{4 b ,£db }=2, card{4 c /dc ,4 c }=3
[graph = a constant]

g5 =
(Pa,

[Pa *-> (p& ,a,(4 a , [4 a^(a,nil)])) ,
P& *-> (Pc ,b , (4 b , [4 b ^ (cAJA b ^ (d ,n i l)])) ,
Pc ^ (p d , c , (4 c , [4 c ^ (c , 4 J , ^ c ^ (d , 4 J , 4 c ^ (e , n i l)])) ,
Pd H> (pe ,d,(4d ,[4dh^(a,nil)])),
pe H-> (null,e,(nil,[]))])

The stepwise development continues in the next examples.

Example 16.18 Cartesian/Pointer/Distinct Map Graphs: We now partly
factor adjacency chains out from node chain node elements into a separate
adjacency chains "storage", i.e., one shared by all adjacency chains.

type
N,P,
G6 =
NR =
ER =
OP =
OL =

value

L
OP

= OP
: P X
= null
= nil |

x (P
x N
OL

1 p

L

Pa,P6,Pc,P(i,Pe :
^ba "r-Ch ">^db i^cc ?*-d,

i* NR)
x OL

P
p P

c icad •

x (L

: L

77^ ER)

g 6 : G 6

376 16 Maps in RSL

axiom
[V pointers are distinct]

card{pa,p&,pc,pd,pe}=5
[V links are distinct]

C a r d | t f r a i^-Cb r^dh i^-Cc r-dc :^ec ^(idi= '
[graph g6 = a constant]

g6 =
(P a ,
[Po ^ (p 6 , a , 4 J ,
P&^(Pc,b,4J,
Pc^(Pd,C,£cJ,
Pd^(Pe ,d ,4J ,
pe^(null,e,nil)].

[4 a ^(a ,n i l) ,

^bh^(d,nil),

4*e-K<McJ,
4cH>(e,nil),
4 d ^ (a ,n i l)])

Example 16.19 Record/Pointer/'Shared Map Graphs: We next "fold" the
two "storages" into one: merging the node chain storage with the common
adjacency chains storage. Thus we no longer distinguish between node pointers
and edge links; all are pointers.

type
N, P
G7 = OP x (P ^ (NR|ER))
NR = = mkNR(p:OP,n:N,ol:OL)
ER = = mkER(p:P,ol:OL)
OP = = null | mkP(p:P)
OL = = nil | mkL(p:P)

value
Pa,Pa,Pa,Pa,Pa,P&a ,P&a ,P&a ,P&a ,P&a ,P&a ,P&a : P
f : G7

axiom
[V pointers are distinct]

Card{p a ,P&,Pc ,Pd ,Pe iPba ,Pcb ,Pdb ,Pcc ,Pdc ,Pec ,Pad } = 12

16.4 Abstracting and Modelling with Maps 377

[graph = a constant]
g7 = (Pa,

[p a ^ mkNR(mkP(p&),a,mkL(p&J),
p& H> mkNR(mkP(pc),b,mkL(pcJ),
pc !-• mkNR(mkP(pd),c,mkL(pcJ),
pd H> mkNR(mkP(pe),d,mkL(p0d))J

pe i-» mkNR(null,e,nil),
p&a i-» mkER(a,nil),
pCb \-> mkER(c,mkL(pdJ),
pdb \-> mkER(d,nil),
pCc •-• mkER(c,mkL(peJ),
pdc i-» mkER(d,mkL(peJ),
Pec i-» mkER(e,nil),
pad \-> mkER(a,nil)])

And finally we are satisfied!

Example 16.20 Cartesian/Pointer/Shared Map Graphs: Finally we remove
the record constructors from node and edge elements, and from next node
addresses and next edge addresses.

type
N, P
G8 = OP x (P ^ (NR|ER))
NR = OP x N x OL
ER = P x OL
OP = null | P
OL = nil | P

value
Pa ,Pa ,Pa ,Pa ,Pa ,P& a ,P6 a ; P& a ,P& a ,P& a ,P& a ,P& a : P

g8 : G8
axiom

[V pointers are distinct]
card{p a ,p&,pc,Pd,Pe ,P&a ,Pcb ,P<4 ,Pcc ,Pdc ,Pec ,Pad }=12

[graph = a constant]
g8 =

(Po,
[Pa'-KP&AP&J*

P&^(Pc,b,pcJ,
Pc^(Pd,C,pcJ,

378 16 Maps in RSL

Pd |-KPe,d,PaJ,
pe i-» (null, e, nil),
p&ah-Ka,nil),
PcbH^(c,pdJ,
pdbH>(d,nil),
Pc c ^(c ,p e J ,
Pdc

|-Kd,peJ,
Pec^(e,nil),
padH^(a,nil)])

Discussion

Examples 16.11-16.20 illustrated the conversion of (GO) general maps and
sets, in steps of relocation, (Gl) into general maps and lists; (G2) these into
lists of lists; (G3) these "back" into index maps, index pointers and lists; (G4)
these into anonymous pointer maps, Cartesians and lists; (G5,G6,G7) these
into anonymous pointer maps and Cartesians — of varying degrees of "gen­
erality" while, in G7, illustrating records ("tagged storage values"); and (G8)
finally illustrated a basically "untagged" storage model. The relocations of
this example were supported by retrieve functions, or, as they are also called,
abstraction functions, as well as injection functions. Usually these are not
functions, but injection relations: To an abstract value there usually corre­
spond several, "equally valid" concrete, i.e., reified, values.

We refer to the discussion found at the end of the next examples.

16.4.6 Well-formedness of Data Structures

Example 16.21 Pointer-Based Data Structures: Well-formedness:
This is a metaexample. After the text below we present Examples 16.22-

16.30.
We shall present well-formedness for all steps of development in the form

of a sequence of examples. In initial steps expressing the well-formedness cri­
teria is relatively simple and easy. For the pointer- and link-based realisations
the expression of well-formedness is not so straightforward. The reason for
this is immediate: Pointers (etc.) designate paths through the concrete data
structure, and these paths may merge or "loop", whereas, for this case, the
node chain next pointers and the adjacency chain next pointers must form
lists. To express that logically and precisely, informally and formally, without
resorting to "graph vertex marking" algorithms, is not that easy. •

16.4 Abstracting and Modelling with Maps 379

Example 16.22 Well-formed GO Graphs: See Example 16.12 for an example
value. All range node names must be in the definition set of the map.

type
N
GO = N ^ N-set

value
wf_G0: GO -> Bool
wLGO(gO) = U rng gO C dom gO

Example 16.23 Well-formed Gl Graphs: See Example 16.13 for an example
value. All elements of range lists (i.e., the adjacency chains) must be in the
definition set (i.e., the node chain) of the map.

type
N
Gl = N yd N*

value
wf_Gl: Gl -> Bool
wLGl(gl) = U{elems(gl(n))|n:N-n G dom g l jCdom gl

Example 16.24 Well-formed G2 Graphs: See Example 16.14 for an example
value. All adjacency chain (list) elements must be in the set of elements formed
by the first element of all pairs (i.e., the node chain).

type
N
G2 = (N x N*)*

value
wf_G2: G2 -> Bool
wf_G2(g2) =

U{elems(nl)|(„nl):(NxN*)-(n,nl)G g3}
C U{n|(n,nl):(NxN*).(n,nl)G g3}

Example 16.25 Well-formed G3 Graphs: See Example 16.15 for an example
value. All node chain index maps and all adjacency chain index maps (if
nonempty) must have dense definition sets starting with 1. All range elements
of adjacency chain maps must be in the set of elements formed by the first
elements of all range elements of the node chain map.

380 16 Maps in RSL

type
N
G3 = Nat ^ (N x (Nat ^ N))

value
wf_G3: G3 -> Bool
wf_G3(g3) =

dom g3 = {L.card dom g3}A
V (n,m):(N x (Nat ^N)) . (n ,m)e rng g3

=> dom m = {L.card dom m}

Example 16.26 Well-formed G4 Graphs: See Example 16.16 for an example
value. The node chain designated by the sentinel and the next node pointers
must be linear and include exactly all range elements. The set of all node
names contained in the adjacency chains of the third component of each node
chain element must be in the set of node names formed by the second node
chain element.

type
N, P
G4 = OP x (P ^ (OP x N x N*))
OP = null | P

value
wf_G4: G4 -> Bool
wf_G4(s,m) = ... see Exercise 16.1 ...

Example 16.27 Well-formed G5 Graphs: See Example 16.17 for an example
value. The node chain designated by the sentinel and the next node pointers
must be linear and include exactly all range elements. The set of all node
names contained in the adjacency chain map edge elements of the third com­
ponent of each node chain element must be in the set of node names formed
by the second node chain element.

type
N, P ,L
G5 = OP x (P ^ NR)
NR = OP x N x (OL x (L ^ ER))
ER = N x OL
OP = null | P
OL = nil I L

16.4 Abstracting and Modelling with Maps 381

value
wf_G5: G5 - • Bool
wf_G5(s,m) = ... see Exercise 16.1 ...

Example 16.28 Well-formed G6 Graphs: See Example 16.18 for an example
value.

type
N, P ,L
G6 = OP x (P rf NR) x (L J* ER)
NR = OP x N x OL
ER = P x OL
OP = null | P
OL = nil | P

value
wf_G6: G6 -> Bool
wf_G6(s,nm,am) = ... see Exercise 16.1 ...

Example 16.29 Well-formed G7 Graphs: See Example 16.19 for an example
value.

type
N, P
G7 = OP x (P ^ (NR|ER))
NR = = mkNR(p:OP,n:N,ol:OL)
ER = = mkER(p:P,ol:OL)
OP = = null | mkP(p:P)
OL = = nil | mkL(p:P)

value
wf_G7: G7 -+ Bool
wf_G7(s,m) = ... see Exercise 16.1 ...

Example 16.30 Well-formed G8 Graphs: See Example 16.20 for an example
value.

type
N, P
G8 = OP x (P ^ (NR|ER))
NR = OP x N x OL

382 16 Maps in RSL

ER = P x OL
OP = null | P
OL = nil | P

value
wf_G8: G8 -> Bool
wf_G8(s,m) = ... see Exercise 16.1 ...

Discussion

As for the "prerequisite" examples (Examples 16.11-16.20), the present exam­
ples (Examples 16.22-16.30) illustrated many facets of development: The need
for and techniques of expressing constraints (i.e., invariants, well-formedness)
over data structures; stepwise development; and explorative (nearly the same,
here, as experimental) development. The last concept, explorative develop­
ment, may warrant a few comments. It is sometimes not so easy, i.e., relatively
quick or obvious, to find a most suitable next step or stage of development.
Exploring and experimenting with different ways of development and its ex­
pression, and doing this also formally, is, oftentimes, a good way of "discov­
ery". Thus we explore different reifications, while experimenting with their
expression.

There is a final, important observation to make. We have not shown any
of the operations that may otherwise use or change the node and adjacency
chain data structure. In particular the latter are of interest — to really justify
our heavy investment, in this long example (and its predecessor examples):
Adding nodes to a graph means adding node records and preparing for an
adjacency list, and adding edges to a graph means adding edge records, while
maintaining the invariance of the data structure "between" the "additions" of
nodes and edges; similarly for removing nodes and edges nodes. It is thus we
see that well-formedness criteria are also constraints, or, better, are invariants
of the respective data structures.

16.4.7 Discussion

Let us now distill some of the essence of the above examples wrt. map ab­
straction and modelling principles, techniques and tools. More will follow in
Sect. 16.6. Maps form a major model-oriented tool for abstraction and mod­
elling. "Classical" discrete mathematics structures, as well as "classical" algo­
rithmic data structures, often find their most immediate abstraction in terms
of maps. We typically model "fragments" of dynamically allocated storage as
explicit maps from addresses (pointer, links) to values. Usually conventional,
imperative programming languages "hide" the storage structures: Addresses

16.5 Inductive Map Definitions 383

are not always allowed as values, i.e., they are not always "first-class values"9.
Here we open up for, and delineate — cum identify — specific, relevant parts
of the storage that one needs to consider for a specific data structure (cf.
Examples 16.12-16.30). In a later step of implementation we can then merge
this fragment with other such fragments, and merge all these together with
storage for explicitly declared and named variables. Operations — and we
have not seen so many in the examples referred to above — which change a
data structure must be seen to preserve defined well-formedness criteria, i.e.,
invariants over these.

16.5 Inductive Map Definitions

16.5.1 Inductive Map Type Definitions

Let

type
M = M ^ M.

A naive model, M, of M could be

^:{[],[[M]],[[H[[M]]],[[[H[]H[]], . . .}

From a pragmatic viewpoint the definition M = M ^ M is quite meaningless.
For an equation of the above kind to make mathematical sense it must be the
case that the cardinality of the class of values of type M of the left-hand side
must be equal to the cardinality of the class of values of type M of the right-
hand side. Obviously this is not the case. So we reject this kind of recursive
type definition.

Some possibly desirable variants are:

type
A, B
Ma = A ^ Ma
Mab = A ^ (B|Mab)

The above are just hypothetical structures.
To avoid problems we formulate these instead as:

type
A, B
M = A ^ Ma
Ma = = mkM(sm:M)

9By a 'first-class value' we mean one which, in the context of ordinary, imperative
programming languages, is allowed to serve as a value in any context: as one that can
be assigned to a variable, as a constant, as a parameter to a procedure invocation,
etcetera.

384 16 Maps in RSL

respectively:

type
A, B
M = A jff Mab
Mab = = mkB(sb:B) | mkM(sm:M)

Now RSL guarantees sensible models of these concrete type definitions.

16.5.2 Inductive Map Value Definitions

Example 16.31 Map-, List-, Cartesian- and Set-Based Model of Networks:
We rephrase the solution of Example 15.11. That example was itself a rephras­
ing of Example 14.8, which, in turn, was a rephrasing of Example 13.12.

We now present a rather concrete model of networks:

type
Si, Ci, Sn, Cn, S_Misc, C_Misc
Len = Real
S = Sn x Len x S_Misc
C = Cn x C_Misc
N' = Ss x Cs x G
N = {| n:N' • wfN(n) |}
Ss = Si T* S
Cs = Ci rf C
G' = Ci ^ (Si T* Ci)
G = { |g :G' .wfG(g) |}

The model separates networks into three parts: One part that defines seg­
ments. Think of this part as a relation, Segments, in a relational database.
Each tuple has a unique key, si:Si, and otherwise contains the segment name,
the segment length and some additional segment attributes. Another part that
defines connections. Think of this part as a relation, Connectors, in a relational
database. Each tuple has a unique key, ci:Ci, and otherwise contains the con­
nector name and some additional connector attributes. A third part, the graph
part, defines how connectors (identified by their unique connector identifiers)
connect to other connectors via segments (identified by their unique connec­
tor and segment identifiers). The well-formedness of these graphs is left as an
exercise. We refer to Example 16.5.

Given a graph we can, as illustrated in Example 14.9, express its closure
with respect to lines.

type
G' = Ci T* (Si T* Ci)
G = { |g :G' .wfG(g) |}

16.5 Inductive Map Definitions 385

value
closure: G —> G
closure(g) =

let clo =
[ci \-t [si i-» ci'

| si:Si,ci':Ci •
A (si G dom g(ci)Aci'=(g(ci))(si))V

(3 si',si":Si,ci":Ci •
si' G dom clo(ci)Aci''=(clo(ci))(si')Asi'' G dom (clo (ci")) A
ci/=(clo(ci/'))(si")Asi=comp(si',si//))]

| ci:Ci • ci G dom g] in
clo end

The well-formedness of networks is defined by:

value
wfN: N -^ Bool
wfN(ss,cs,g) =

dom cs = dom g A
dom ss = U{dom(g(ci))|ci:Ci*ci G dom g} A
dom g = U{rng(g(ci))|ci:Ci-ci G dom g} A
wfG(g)

Line by line: all connectors identified in the graph are defined as connectors;
all segments identified in the graph are defined as segments; and no isolated
connectors.

For every edge (that is, a segment identified by si) from connector identified
by ci to connector identified by ci' there is also an edge in the reverse direction
(from (g(ci))(si) to ci) with the same segment identifier. And there are only
such edges.

wfG: G -> Bool
wfG(g) =

V ci:Ci • ci G dom g =>
V si:Si • si G dom g(ci) =>

let ci' = (g(ci))(si) in
si G dom((g(ci))(si)) A ci=(g(ci'))(si) end

The last line of wfG expresses that an edge in the graph goes both ways: If
from Ci one can reach Sj (namely Sj G dom g(ci)), and from Sj, one can reach
Ck (namely (g(ci))(sj) = c^), then, vice versa, one can, in g from Ck reach the
same Sj and, from it, C{.

We can convert the above graphs to those of Example 16.4.1.

type
Gs' = Ci nt Ci-set

386 16 Maps in RSL

Gs = {| gs:Gs' • dom gs = U rng gs |}

value
conv: G -» Gs
conv(g) =

[cii-^lci'lci'iCijSiiSi^si G dom g(ci)Aci'=(g(ci))(si)}|ci:Ci-ci G dom g]

Now the Nodes function of Example 16.4.1 — slightly reformulated:

Nodes: Ci x G - • Ci-set
Nodes(ci,g) =

let gs=conv(g) in
let nodes=gs(ci) U{ci'|ci':Ci»3 ci":Ci«ci" G nodesAci' G gs(ci")} in
nodes end end,

can be re-expressed as:

value
Nodes: Ci x G - • Ci-set
Nodes(ci,g) = let gs = conv(closure(g)) in gs(ci) end.

16.6 A Review of Map Abstractions and Models

We have already, at various points above, discussed a number of abstraction
and modelling principles, techniques and tools, notably in the discussion parts
of Examples 16.12-16.30, and the separate discussion section immediately
following Example 16.30.

Principles. If and when a model-oriented abstraction has been chosen, then
map abstraction may be chosen if a reasonable number of the following char­
acteristics can be identified as properties of the phenomena or concepts be­
ing modelled: (i) the abstract structure of the composite components being
modelled is an enumerable function, i.e., consists of an unordered collection
of uniquely named, but not necessarily distinct subcomponents (constituent
phenomena or concepts), (ii) whose number is not fixed, i.e., may vary, (iii)
to which new, distinctly identified subcomponents may be joined; (iv) from
which existing subcomponents may be removed — again based on given identi­
fications; and (v) where one may compose other such phenomena from similar
such phenomena. •

Principles. A number of "standard" uses of the map type in abstraction and
modelling can be identified: (vi) The concepts of configurations, i.e., contexts
and states, such as conceptualised from actual phenomena in some domains,

16.6 A Review of Map Abstractions and Models 387

are usually modelled, individually, as maps. 1 0 (vii) The concepts of da ta struc­
tures such as graphs, tables, hierarchies, file systems, databases, etc., as amply
shown in Sect. 16.4, have as their basic model those of maps. •

P r i n c i p l e s . Type Invariance: We have, in this section on maps seen a system­
atic use of well-formedness predicates on types. Reference can be made to Ex­
ample 16.7 (wf_P_in_H), Example 16.8 (wf_FILE), and Example 16.9 (wf.FILE,
wf_RDB, wLTPLs, and wf_REL). A choice has, in most cases, to be made
between simplicity (including ease of understanding) of type expressions, and
simplicity (including ease of understanding) of well-formedness predicates. We
shall have occasion, throughout these volumes, to invoke this principle, again
and again. •

P r i n c i p l e s . Types Versus Values: We have seen in several examples the need
for recording types of values, and the need, therefore, for defining type ob­
servation functions. This leads us to the enunciation of a principle: For sys­
tems of da ta collections, files, databases and, as we shall see later, other such
aggregations, it is prudent to introduce a type definition (schema) facility,
as illustrated in Example 16.9. Following this principle implies also defining
related type observation cum type extraction functions; and, as mentioned
above, also implies descriptions of well-formedness predicates involving these
functions. •

P r i n c i p l e s . Pointer-Based Data Structures: In Examples 16.16-16.20 we
have seen the use of maps to model specific properties of storages: namely
the concept of pointers (links, addresses). Here the association to values, in
the map ranges, are from identifiers tha t s tand for such pointers (links, ad­
dresses). Whereas the identifiers of phenomena-related context and state maps
usually "mimic" phenomena, i.e., "user" names, in the domain, pointers are
pure concepts, pure abstractions. •

T e c h n i q u e s . We refer to initial paragraphs of Sect. 16.4 for a listing (1-4) of
some of the techniques used when abstracting using maps. More specifically,

10Both concepts: contexts and states, associate varying numbers of identifiers to
more or less static constants, respectively (temporally, i.e., dynamically) varying
values. In a much later chapter (Vol. 2, Chap. 4), we shall treat the concept of
configurations, contexts and states in detail. For now suffice it to say that some
universe of discourse, i.e., some domain, usually exhibits a state notion: something
that may consist of either a fixed or a varying number of components, each of
which possesses one or more attributes whose values change. Such domains usually
also exhibit a context notion: something that may consist of either a fixed or a
varying number of components, each of which possesses one or more attributes
whose value — for all intents and purposes do not change. Of course: in actual
system phenomena there is a spectrum from contexts to states. But our point here
is: We model association of identifiers to values by means of maps.

388 16 Maps in RSL

a number of map-oriented techniques are offered. The various map opera­
tions apply to appropriate modelling instances: (viii-xii) map union, override,
composition and the two map restriction operations apply to models of "all",
"new", "new", respectively "some, except" (twice) instances of a phenomenon
possessed by two or more sets of phenomena, (xiii) application applies to the
modelling of selection (choice), (xiv-xv) with definition set (i.e., domain) and
range (rng) set being more technical operations; (xvi-xvii) map enumeration
and map comprehension apply to the expression of the construction of an
instance of an otherwise list modelled phenomenon.

These are just some of the more important techniques. •

Tools. If abstraction and modelling using the map data type has been chosen,
then the tool can either be the RSL, the VDM-SL, the Z, or, for example, the B
specification language. •

Please compare the present section to Sects. 13.7 (sets) and 15.6 (lists).

16.7 Maps: A Discussion

We have outlined the map data type. And we have enunciated principles for
when to deploy map abstraction, mentioned some of the techniques that follow
from such a choice, and identified some of the list abstraction specification
language tools today available. Maps constitute the main workhorse of model-
oriented abstraction and modelling.

16.8 Exercises

Exercise 16.1. Well-formedness of Graph Models. We refer to Examples 16.26-
16.30. Complete the definition of the wf_Gi for i=4,5,6,7,8.

• • •

In the next exercises we refer to labels. Labels are further unspecified com­
parable quantities. By comparable mean that they can be tested for "being
the same", i.e., for equality. In Exercises 16.2-16.9 we ask you to not for­
malise your definitions, but simply to express them in a concise (i.e., short
and precise) manner and in English.

Exercise 16.2. Finite Root-Labelled Trees. Please define in English a con­
cept of finite trees for which all roots are labelled — and such that no two
'immediate', but otherwise 'distinct' subtrees of a tree have 'identically la­
belled' roots but branches are unlabelled. Suggest yourself what we might
mean by 'immediate', 'distinct', and 'identical labels'.

Exercise 16.10 item 1 takes up where the present exercise leaves off: namely
asking you to formalise the problem solution.

16.8 Exercises 389

• • •

Figure 16.4 illustrates the kind of labelled trees referred to in Exercises 16.2-
16.4.

Unlabelled Root Labelled Branch Labelled Root and Branch
Trees Trees Trees Labelled Trees

Fig. 16.4. Unlabelled and labelled trees

Exerc i se 16 .3 . Finite Branch-Labelled Trees. Please define in English a con­
cept of finite trees for which all branches (the things tha t connect a root of a
tree with the roots of its immediate subtrees) are labelled — and such tha t
no two branches incident upon immediate subtrees of a tree are identically
labelled. Exercise 16.10 item 2 takes up where the present exercise leaves off:
namely asking you to formalise the problem solution.

E x e r c i s e 16 .4 . Finite Root- and Branch-Labelled Trees.
Please define in English a concept of finite trees for which all roots and all

branches, tha t is, the things tha t connect a root of a tree with the roots of
its immediate subtrees are labelled — and such tha t all roots of the subtrees
of any tree have distinct labels, and such tha t no two branches emanating
from a root (to the root of a subtree) are identically labelled.11 Do you need
to maintain distinctness of root labels of the subtrees of a root and branch
labelled tree? Explain your answer.

Exercise 3 item 1 takes up where the present exercise leaves off: namely
asking you to formalise the problem solution.

Exerc i se 16 .5 . Distinctly Labelled Trees. The problem formulation is as for
Exercise 16.4, only now it is required tha t no two root labels are the same
and tha t no two branch labels are the same and tha t root and branch labels
also differ.

Exercise 4 item 1 takes up where the present exercise leaves off: namely
asking you to formalise the problem solution.

11 Please observe that this last part of the sentence, namely "and such that no two
branches emanating from a root (to the root of a subtree) are identically labelled" is
meant to express exactly the same as the sentence "and such that no two branches
incident upon immediate subtrees of a tree are 'identically labelled'". The latter
was used in the previous exercise formulation (i.e., in Exercise 16.3).

390 16 Maps in RSL

Exercise 16.6. Forest of Trees. Based on Exercises 16.2-16.5 define in En­
glish a concept of forest as consisting of a finite number of trees, unlabelled, or
labelled one way or another, but such that no two labels of any two somehow
labelled trees are identical. Does Fig. 16.4 "portray" such a forest? Explain
your answer.

Exercise 16.10 item 5 takes up where the present exercise leaves off: namely
asking you to formalise the problem.

Exercise 16.7. Finite Node-Labelled Graphs. Please define in English a con­
cept of oriented graphs for which all nodes are distinctly labelled.

Exercise 16.10 item 6 takes up where the present exercise leaves off: namely
asking you to formalise the problem solution.

Exercise 16.8. Finite Edge-Labelled Graphs. Please define in English a con­
cept of oriented graphs for which all edges between any given pair of (in this
exercise, unlabelled) nodes are distinctly labelled.

Exercise 16.10 item 7 takes up where the present exercise leaves off: namely
asking you to formalise the problem solution.

Exercise 16.9. Finite Node- and Edge-Labelled Graphs. Please define in En­
glish a concept of oriented graphs for which all nodes are distinctly labelled,
and for which all edges between any given pair of (in this exercise, now la­
belled) nodes are distinctly labelled.

Exercise 16.10 item 8 takes up where the present exercise leaves off: Namely
asking you to formalise the problem solution.

• • •

We now turn to the reformulation of above exercise problems 16.2-16.9 into
exercise problem 16.10 items 1-8. We now ask for formal map-based solutions
to the same questions!

Exercise 16.10. Tree and Graph Structures. We refer to Exercises 16.2-16.9.
In the present exercise you are to formally define the concrete types and
possibly applicable well-formedness predicates for:

1.
2.
3.
4.
5.
6.
7.
8.

Finite Root-Labelled Trees
Finite Branch-Labelled Trees
Finite Root- and Branch-Labelled Trees
Distinctly Labelled Trees
Forest of Trees
Finite Node-Labelled Graphs
Finite Edge-Labelled Graphs
Finite Node- and Edge-Labelled Graphs

cf. Exercise 16.2
cf. Exercise 16.3
cf. Exercise 16.4
cf. Exercise 16.5
cf. Exercise 16.6
cf. Exercise 16.7
cf. Exercise 16.8
cf. Exercise 16.9

Exercise 16.11. File System Operations. You are referred to Example 16.8.
Please read it carefully.

16.8 Exercises 391

• For the file system defined in Example 16.8 you are to first define a notion
of initial record values.
* 0 is the initial field value of type in teger .
* false is the initial field value of type Boolean.
* "" is the initial field value of type s t r i ng .
* Any key is an initial key.
An initial record is any record that maps a number of field names in An
into only initial field values.

• Specify formally initial records.
• Then formally specify the following operations:

1. Create empty file system: Create an initially empty file system, i.e., a
file system of no files.

2. Create initial file: For any file system create a file of a given, unused
file name associated to a file of just one given initial record.

3. Write a record to a file of a file system: Given a file system, given a file
name of a file of that system, and given a record which if joined to the
named file will leave it well-formed. Writing this record to the named
file will join it to the file and assign it an unused key which, besides
the updated file system, is (hence also) yielded.

4. Read a record of a file of a file system: Given a file system, given a
file name of a file of that system, and given a key of that file, yield
an unchanged file system and the record of the named file having the
given key.

5. Delete a record of a file of a file system: Given a file system, given a
file name of a file of that system, and given a key of that file, yield
a changed file system in which only the designated record has been
deleted. One cannot delete an initial record. (Note there may be many
initial records, one of which will necessarily have the initial key.)

6. Delete a file of a file system: Obvious, is it not?

Exercise 16.12. £ Maps in the Transportation Net Domain. We refer to
Appendix A, Sect. A.l, Transportation Net. We also refer to Exercises 13.5,
14.6 and 15.15.

You are to formulate yourself some narrative and formalisations of phe­
nomena and concepts of the Transportation Net domain for which maps may
come in as a suitable abstraction.

Exercise 16.13. X Maps in the Container Logistics Domain. We refer to
Appendix A, Sect. A.2, Container Logistics. We also refer to Exercises 13.6,
14.7 and 15.16.

You are to formulate yourself some narrative and formalisations of phe­
nomena and concepts of the Container Logistics domain for which maps may
come in as a suitable abstraction.

392 16 Maps in RSL

Exercise 16.14. £ Maps in the Financial Service Industries Domain. We
refer to Appendix A, Sect. A.3, Financial Service Industry. We also refer to
Exercises 13.7, 14.8 and 15.17.

You are to formulate yourself some narrative and formalisations of phe­
nomena and concepts of the Financial Service Industry domain for which
maps may come in as a suitable abstraction.

17

Higher-Order Funct ions in RSL

• The prerequisite for studying this chapter is that you are, by now, rea­
sonably fluent in the definition and use of functions such as introduced in
earlier chapters.

• The aims are to introduce the use of higher-order functions in function
definitions, or, put differently, to introduce the concept of functional data
abstractions, i.e., modelling phenomena and concepts as higher-order func­
tions.

• The objective is to ensure that the reader has a firm foundation in the
area of function abstractions.

• The treatment is semiformal and systematic.

It is my function
to make sure that the function

is functioning

Mr. NN, Manager of Hotel Functions1

We refer to Chap. 6 for a first, reasonably thorough introduction to the math­
ematical concept of functions, and to Chap. 11 for the function concept such
as it is provided for in RSL. In the present section we shall focus on the means
for defining and using function types and functions in the predominant spec­
ification language of these volumes, RSL.

17.1 Functions: The Issues

The idea to be illustrated in this section is the use of the discrete mathe­
matics concept of functions in abstracting domain, requirements and software
phenomena and concepts. We can hardly express anything without using func­
tions. We often abstract a concept as a function, and we define this function

XA play on three different meanings of the term 'function' is intended: job, event,
and "that it works".

394 17 Higher-Order Functions in RSL

in terms of other functions (which are then defined separately). The former,
abstraction of concepts as functions, has been illustrated repeatedly up till
now, and much more is to come. The latter, defining abstracted functions
in terms of other functions, will be illustrated in this chapter and in Vol. 2,
Chap. 3, Sect. 3.3.3 on denotational semantics.

This chapter is built up, as are Chaps. 13-16, and relies on material about:

• The function data type (Sect. 11.1)
• Means of function definition (Sects. 11.2-11.6)

and otherwise complements Chap. 11 with new material:

• Examples of function-based abstractions (Sect. 17.2)
• Abstracting and modelling with functions (Sect. 17.3)
• Inductive function definitions (Sect. 17.4)
• A review of function abstractions and models (Sect. 17.5)

There are many examples because before one can write good specifications
one must have read and studied many example specifications. So you may not
need to study all of them now, but can, perhaps, return to some later.

The chapter ends with a brief discussion.

17.2 Examples Using Function-Based Abstractions

This section "matches" Sects. 13.3, 14.3, 15.3, and 16.3. They all give small
examples of set, Cartesian, list, map and function-based specifications. They
are meant as class lecture examples.

A function-based abstraction is a specification which uses or deploys func­
tions as entities. In the vernacular, functions as data. In "practice" a com­
mon technique is here to pass functions / as arguments to other functions g.
The body of the latter, g, may then apply the argument function / to some
other values. Different invocations of g may then be given different arguments:
/ , / ' , / " , . . . , resulting, usually, in different results.

17.2.1 Functionals

A first-order functional (FOF) is here defined to be a function which takes
functions as arguments and yields non-function values as results. A higher-
order functional (HOF) is here defined to be a function which takes functions
as arguments and yields function values as results. Two conceptual examples
are in order:

Example 17.1 First-Order Functionals:

17.3 Abstracting and Modelling With Functions 395

type
FOF = Int -> Nat

value
square: FOF, square(i) = i*i
cube: FOF, cube(i) = square(i)*i
quad: FOF, quad(i) = first .order _f(i) (square0 square)
first_order _f: Int -> FOF - • Nat
first-order _f(i)(f) = f(i)

assert:
first_order_f(3) (square) = 9
first-order _f(3) (cube) = 27
first_order_f(3)(quad) = 81

Note the use of the function composition operation °.

Example 17.2 Higher-Order Functionals:

type
HOF = FOF - • FOF

value
double: HOF, double(f) = f°f
triple: HOF, triple(f) = f°f°f
penta: FOF, penta(i) = double°triple

assert:
penta(f)(i) = first jorder_f(i)(f0f°f0f°f)

17.2.2 Discussion

Examples 17.1 and 17.2 were just "academic", conceptual, in that they illus­
trate a "coding" technique. We shall later have occasion to illustrate the use
of functionals.

17.3 Abstracting and Modelling With Functions

This section "matches" Sects. 13.4,14.4,15.4 and 16.4, all give larger examples
of set, Cartesian, list and map abstractions and models. They are meant as
self-study examples.

396 17 Higher-Order Functions in RSL

17.3.1 Concepts as Functions

In Sect. 17.1 we said: We often abstract a concept as a function, and we define
this function in terms of other functions (which are then defined separately).
We will now exemplify this claim.

Example 17.3 A Simple Programming Language:
The programming language to be illustrated is an imperative language.

The imperative programming concepts are those of binding and storage; that
is, of definable (named constants) and assignable variables (having names
denoting locations and having a storage which map locations to values), i.e.,
an assignment. Linguistically — speaking, for the remainder of the present
paragraph, about syntax — and in order to talk about bindings and variables,
we postulate a small programming language. Its programs are simple blocks.
A program is a block. Blocks consist of variable declarations and a finite
sequence of simple statements. Statements are either blocks or are simple
assignment statements. A declaration introduces a variable by a name. An
assignment statement has two parts: a "left-hand side" variable and a "right-
hand side" expression. Expressions are either just variables, or . . . , i.e., we
do not further detail the syntax of other kinds of expressions. We illustrate
the syntactic modelling of the programming language concepts of binding and
allocation, and of programs, block, assignments, variables and expressions as
mathematical function.

Syntactic Types

type
V
P = = mk_P(b:B)
B = = mkJBlk(vs:V-set,sl:S*)
S = A | B
A = = mk_Asg(lhs:V,rhs:E)
E = = mk_Var(v:V) | ...

We remind the reader about union types and variant records — used above in
the definitions of S, respectively of P, B, A and E — as first briefly explained
in Sect. 13.4.3.

Programs have been made variant records in order to be able, later, to
write a semantic function which accept P|B type arguments. Sections 18.4
and 18.5 covers record and union types.

Blocks form a scope for binding variables to locations.

Semantic Types:

The semantic types are:

17.3 Abstracting and Modelling With Functions 397

type
L, VAL
ENV = V ^ L
STG = L ^ VAL

The meaning, i.e., semantics, of programs, blocks, (assignment) statements,
variables and expressions is: Variables designate locations. Expressions desig­
nate values. Given a storage a location designates a variable. An assignment
statement designates that the location of the left-hand side variable be associ­
ated with the value of the right-hand side expression. A sequence of assignment
statements designates a change of storage resulting from obeying the designa­
tions of the individual assignment statements of the list in the order listed. A
block designates a change of storage as designated by its statement list except
that the storage being changed and the changed storage have the same loca­
tions. Thus the new, fresh locations designated by the variable declarations
of a block are only valid "within the scope of that block". More operationally,
i.e., explaining the semantics operationally, rather than through designations,
we speak of a locus of program points: Each statement designates a program
point. Execution, by an interpreter (i.e., a machine), according to the pre­
scriptions of a program, starts by entering a block and continues by ordered
elaboration, first of variable declarations, then of the statement list. Upon
block entry the first program point is that of the variable declarations. They
are elaborated, their elaboration leads to the allocation of fresh, new loca­
tions, one distinct for each variable. An environment, i.e., a context, say, a
table, is set up. It associates with each block variable (v) its location (I). A
storage, i.e., a state (no-), is similarly set up: To each freshly allocated location
it associates some initial, default value (?). Then the storage (a) of the sur­
rounding block is "added", conjoined to that (alloc(ls)[]) of the local block (to
become n<j), and the environment of the local block (bind(vs,ls)[]) inherits that
of the surrounding block (p), but overrides variable names of the surrounding
block, if redefined in the local block (to become np). The initial, "outermost"
block is elaborated in a predefined environment (p0), and in a corresponding
predefined storage (<J0). Now we are ready to show the semantic elaboration
functions.

Semantic Elaboration Functions

Main semantic function signatures:

value
M: (P|S) -+ ENV -• STG -• STG
I: S* -> ENV -> STG -• STG
Val: E -> ENV -> STG -> VAL

Main semantic function definitions:

398 17 Higher-Order Functions in RSL

M(mk_P(mk_B(vs,sl)))p0<70 = I(mk_B(vs,sl))p0c70

M(mk_A(v,e))pa = a f [p(v)i->Val(e)p<7]

M(mk_B(vs,sl))y9o- =
le t Is = ob ta in (ca rd vs)(a) i n
le t n(7 = (7U alloc(ls)[], np = p f bind(vs,ls)[] i n
(I(sl)(np)(na) \ Is) e n d e n d

I(sl)pcr = if si = {) t h e n a e lse I (t l s l) (p)(M(hd si)pa) e n d

Val(mk_Var(v))pcr = cr(p(v))

Auxiliary semantic functions:

v a l u e
obtain: N a t —> E —> L-se t
obtain(n)(cr) =

le t ls:L-set • Is fl d o m a = {} Acard l s=n in Is e n d

alloc: L-set -> STG -> STG
alloc (Is) a =

if Is = {} t h e n a e lse
le t 1:L • 1 € Is i n alloc(ls \ {1})(a U [1 •-• ?]) e n d e n d

bind: V-se t x L-set -+ ENV -> ENV
bind(vs,ls)p =

if vs = {} t h e n p e lse
le t v:V,l:L • v G vs A 1 G Is i n
bind(vs \ {v},ls \ {l})(p U [v h+ 1]) e n d e n d

Denotations as Higher-Order Functions

Now we can conclude:

• The semantic functions, M, I and Val are of higher-order. Tha t is, they
are functions from values of syntactic types into functions over values of
semantic types:

t y p e
M: (P|S) -> ENV -> STG -> STG
I: S* -> ENV -> STG -> STG
Val: E -> ENV -> STG -> VAL

• Programs are functions from [initial] environments — which are themselves
a kind of functions — state (i.e., storage) to state changing functions.

17.3 Abstracting and Modelling With Functions 399

• So are statements and statement lists. Thus syntactic programs and syn­
tactic statements denote higher-order functions, and these are defined in
terms of other functions.

• Expressions denote functions from environments to functions from storages
— which, lest we should forget to say it, are themselves a kind of functions
(i.e., maps) — to values. Thus syntactic expressions denote such functions.

• Thus a simple variable name denotes a function from environment to a
function from storages to values!

These denoted functions can be determined at compile time. They are then
applied to appropriate environments and storages at run time to yield desig­
nated values and storages.

17.3.2 Operator Lifting

The notion of operator lifting should, finally, bring home the idea of modelling
concepts in terms of higher-order functions.

By an operator we understand a function, typically from B into C:

type
B, C
0 : B ^ C

By lifting an operator we mean that of abstracting its functionality into, for
example:

type
A
L: A - • B -+ C

We saw in Example 17.3 how we could view the meaning of programming con­
structs at various levels of abstraction: Given an environment (A), statements
denoted storage (B) to storage (C) changing functions (B —> C), which could
then be lifted into: A -» B -)> C.

Examples of Operator Lifting

We give two examples: lifting classical Boolean connectives, and lifting com­
positions of defined maps. The first is brief, and illustrates the idea. The other
is long, and illustrates an important specification programming technique.

Example 17.4 Time-Lifted Boolean Functions: The RSL connectives A,V,
and operators +, *, etcetera, can be overloaded. That is: they have an already

400 17 Higher-Order Functions in RSL

defined meaning on Booleans, respectively integers (reals, natural numbers),
but can be given meaning wrt. to other types.

Let variables u, v, w denote functions from time into Booleans:

type
B = T - • Bool

value
u,v,w:B

Now we extend the meaning of the Boolean connectives to range over argu­
ments of type B as follows:

value
~: B -> B, (~(u)) = -A t:T.(u(t))
A : B x B 4 B , u A v = A t:T.(u(t)Av(t))
V : B x B 4 B , U V V E A t:T.(u(t)Vv(t))
= ^ : B x B - ^ B , u^v = X t:T.(u(t)=^v(t))
= : B x B ^ B , u = v = A t:T.(u(t)=v(t))

Here the two leftmost uses (to the left of =) of the connectives, respectively
operators, designate the lifted functionals, whereas the rightmost usage (to
the right of =) designates the "old" operations. •

Example 17.5 Table-Lifted PartsExplosion Functions: We refer to Exam­
ple 16.6.

Narrative and Analysis: Types

Instead of recording just the part identification numbers of constituent parts
of composite parts, as was done in Example 16.6, we wish to record, in any bill
of materials, bom, also the number of occurrences of these constituent parts
in any such composite part. Informally you may think of a bom concretely
as a table with two columns, where each entry is a row. The first part of an
entry contains the part number. The second part of an entry contains either
nothing, if the described part is elementary (as are P4,Pb,Pe), or it consists
of a two-column subtable with n entries, i.e., rows if there are n distinct
constituent parts. Each row in this subtable has two elements. These record
the part number of constituent parts, and the number of occurrences of that
part in the composite part (Fig. 17.1).

We abstract the class of the tables shown in Fig. 17.1 in the form of
maps from part numbers to part information (second column item), with
part information either being a map from (constituent part) part numbers to
(natural) numbers (of occurrences of constituent parts in the corresponding
composite part), or being an empty such map in the case the column one item
is elementary. Thus:

17.3 Abstracting and Modelling With Functions 401

Part Number

P i

P2

P3

P4

P5

Pe

Part Information

P i i

P i 2

P U

P*l

P22

P2m

Pa

Pb

n i x

m 2

wi„

n 2 l

n22

n2rn

n a

n&

Fig. 17.1. Part number table

[pi ^ [pu H^m17pi2 h ^ n i 2 , . . . , p i n H>mJ ,

P2 •"• [P2i |-^n2 l ,P22 ^ ^ 2 2 , . - . , P 2 m ^™2m] ,
Ps ^ [pa ^na,pb \->nb],

PA *-> [],P5 ^ [],Pe ^ [], •••]

is the mathematical designation of the above table. We justify this choice of
abstraction by recalling that each part is described only (or exactly) once,
and that so is the case for constituent parts.

Formalisation: Types

type
BOM = Pn ^ TBL
TBL = Pn j£ Nat

The above names and defines the concrete type of this kind of more informa­
tive bill of materials. Again we need a well-formedness criterion. In fact, we
see that:

inv_BOM: BOM - • Bool
inv_BOM(bom) = inv_BOM_0(abs_BOM_0(bom))

abs_BOM_0: BOM - • BOM_0
abs_BOM_0(bom) =

[p i-)> dom bom(p) | p:Pn • pn G dom bom]

402 17 Higher-Order Functions in RSL

BOM_0 was defined in Example 16.6; inv_BOM_0, likewise.
The argument to inv_B0M is a "retrofit construction" (retrieval, abstrac­

tion) of a BOM_0 object from a BOM object! That is, well-formedness of BOM
objects is independent of the "occurrence number" information! The retrieve
function abs_BOM_0 considers the type BOM to be a concretisation of the
BOM_0 type.

Narrative: Operations

We next turn to illustrating a rather complicated function on this new kind of
bill of materials. The idea of this function, which we shall call Parts_Explosion,
is, for a given part number, p, and a bom in which it is recorded, to yield
a table which lists all the elementary parts it contains, together with their
(sum-)total number of occurrences. We first illustrate the problem. Let the
below forest (of trees) record parts relevant to some parts "explosion" (say
fromp) (Fig. 17.2).

P PI PI P3 • • • Pk

/T\ /T\ / \ I I
P I : » 1 P 2 : n 2 • • - P f c : n f c P2 : rn2P3 : m3 • • -Pk : mk P3 : l3 " " " Pk : lk

Fig. 17.2. An example part number table

In words: part p consists of m parts p±, n<i parts £>2, • • •, ^k parts p^. The
constituent part p\ consists, in turn, of rri2 parts P2, ^ 3 of ps, . . . , rrtk of
Pk, etc. Thus for one part p we find, by (what we here consider to be a self-
explanatory) tree-substitution, an unfolded tree of parts and their number of
nrrnrrpnrps (Fio\ 17 3 on tVip farina- na.peeV

In this example it is assumed that all other parts, e.g. ps,pk are elementary.
From the tree we see that p consists of n\ x m^ x Is + n\ x m^ + n>2 x Is copies
of part p3, and m x m^ x lk + n\ x rrik + ri2 x lk + rik copies of part pk- (Since
parts are not recursively defined it is always possible to perform this suggested
tree-substitution.) Our result table will then, illustratively, look like the table
sVinwn i n Ficc 17 4

We abstract these result tables in the form of tables (tbl:TBL). The prob­
lem now is to define the Parts_Explosion function:

value
Parts_Explosion: Pn x BOM - • TBL

From the above "tree" drawing we observe two things: first that the parts
explosion applied at the root (p) of the (entire) tree, for n = 1, is the same

17.3 Abstracting and Modelling With Functions 403

P

Pi : n i P2 : n 2

P3 : h Pk ' h

Fig. 17.3. Expanded part number tree

Entries computed as follows:
np3 = m x 7B2 x /3 + m x m3 + n2 x /3

npk = ni x m2 x /fc + m x m*. + 712 x lk + nfc

Fig. 17.4. Result table

(kind of) parts explosion which is to be applied at respective subtree roots (pi)
for n = U{. Then, in order to construct the tree, and therefore any subtree,
all we need is its root label, p, respectively pi. In fact we (decide to) never
construct this tree (or subtrees).

The algorithmic idea of our putative Parts-Explosion function definition is
now the following: We define Parts_Explosion in terms of an auxiliary function
(Exp, for Explosion) which in the general case, while computing the table
for some part, "sweeps", left-to-right, across the subtrees, accumulating a
partial result table, tbl. The subtrees to be swept across are fully recorded
in a subtable. For part p this subtable is bom(p). In general we refer to it as
trees. We refer now to Fig. 17.5. The sweep now consists of arbitrarily selecting
subtable trees. At some stage of the sweep, or explosion, some such subtrees
have all been inspected, and their contribution, tbl, to the final result has been
computed.

At this stage we select subtree with root p, i.e., we select part p for explo­
sion. The result of combining the explosion of p with the hitherto accumulated
partial result, tbl, we call tbl7. This new result, tbl', is then used as input in
the remaining explosion of remaining subtrees. These are trees with subtree
p removed, i.e., trees \{p}. Once there are no more subtrees to be exploded,
the accumulated and forwarded partial result becomes the final result.

p
PS

Pk

np3

npk

404 17 Higher-Order Functions in RSL

tbl tbl'

hitherto trees\{p}=next

trees

now

Fig. 17.5. A parts "explosion" computation state

We note that the hitherto accumulated partial result, tbl, is merged with
the result of the explosion of p, with this merge taking place while p is being
exploded. We could instead compute the explosion of p fully, and then merge.

The Explosion function thus requires the following four arguments: (i) trees,
i.e., a description, obtained (previously) from bom, of the subtrees to be "ex­
ploded" (now and next); (ii) a multiplier, n, which denotes the count of the
part being exploded; (iii) the partial result, tbl; and (iv), as a global variable
(constant), the entire bill of material: bom. Since the latter is used only for
reference, and not changed, we choose the following type clause for Explosion:

value
Exp: (P n ^ N a t) x Na t x TBL (BOM -> TBL)

Parts_Explosion(p,bom) = Exp(bom(p),l,[])(bom) pre: p G dom bom

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

Exp(trs,n,tbl)(bom) =
iftrs = []

t hen tbl
else

let p:Pn G d o m trs in
let tbl' =

if bom(p) = []
t hen

if p £ dom tbl
t hen tbl f [p mrt(p) + n*trs(p)]

else tbl U [p L^ n + t ^)] e n d
else

Exp(bom(p),n*trs(p),tbl)(bom) end in
Exp(trs \ {p},n,tbl7)(bom) end end end

17.3 Abstracting and Modelling With Functions 405

Annotation:
If the part to be exploded is the empty part, i.e., has been all "exploded",

then the so-far accumulated result table, is yielded, (2.).
Otherwise, (3.), a subpart, p, is selected (4.) for explosion. If it itself is ele­

mentary (6.), then its contribution to the so-far accumulated (partial) result is
computed and merged (9-10.) with that result. Otherwise (11.) the contribu­
tion of the explosion, of the subpart p: is merged with the so far accumulated
result. The so-far plus now accumulated (partial) result (tblr) is then used
(13.) when exploding the remaining subparts.

Discussion

Could we have defined Parts_Explosion by means of a pre/post pair of condi­
tions? We believe not as descriptively! Let us analyse why we give this answer,
but first what the answer says.

First our negative answer says that sometimes, as we believe it to be in this
case, functions are more tellingly defined explicitly (and hence prescriptively)
than descriptively (axiomatically, or by means of a pre/post pair). When
so is (indeed) the case, we see that the borderline between prescriptive and
descriptive somehow crumbles. We might have believed that prescriptive def­
initions, by being more algorithmic, were also less transparent, i.e., harder to
read and understand, than were descriptive definitions. We might, as a corol­
lary, also have believed that one could always define functions descriptively
as easily as defining the same functions prescriptively.

Now why might these claims be true? Could it be that our problem is itself
an operationally concrete one, rather than an abstract one? In descriptive
definitions we express properties, rather than explicit, computed results.

In the case of the Parts.Explosion function this seems so: The problem is
operational. We are indeed asked to compute a functional result and not to
maintain or express a property.

Narrative: Lifted Functions

Next we show a way of simplifying the above Parts-Explosion and Expr function
definitions by definining so-called 'lifted' functions. In reference to our remark
above: The present Parts_Explosion and Expr function definitions may not seem
very abstract, the parts, parts_of_Pn and parts_of_TBL function definitions next
could be claimed to be more abstract!

Formalisation: Lifted Functions

value
+: TBL x TBL - • TBL
t + t' = [p>fc(p,t)+c(p,t')|p:Pn-p e dom t U dom t ']

*: Nat x TBL - • TBL

406 17 Higher-Order Functions in RSL

n * t' = [pfn*t(p)|p:Pn»p G dom t]

c: Pn x TBL - • Nat
c(p,t) = if p G dom t then t(p) else 0 end

parts: Pn x BOM -4 TBL
part(p,bom) = parts _ofJPn(p,bom) \ {p}

pre p G dom bom

value
parts_of_Pn: Pn x BOM ->• TBL
part s_of_Pn(p,bom) =

let t = bom(p) in
if t = [] then [p»i 1] else parts _of_TBL(bom(p),bom) end end

pre p G dom bom

parts_of_TBL: TBL x BOM - • TBL
parts_of_TBL(t,bom) =

i f t = [] then []
else

let p:Pn • p G dom t in
t(p) * parts_ofJPn(p,bom) + parts_of_TBL(t \ {p},bom)

end end
pre dom t C dom bom

17.4 Inductive Function Definitions

17.4.1 Inductive Function Type Definitions

In the A-calculus everything is a function. Thus it is natural to think of D of
the type:

type
D = D - • D

as modelling A-functions. In RSL this is not possible. The RAISE specifica­
tion language design decision was made to cope with looseness, nondetermin-
ism, concurrency, and several other desirable language properties. Therefore it
would have made a number of RSL language constructs and their use somewhat
awkward if definitions like D = D —> D should also be possible. It prevents
users of RSL from defining certain kinds of common programming language

17.5 Review of Function Abstractions and Models 407

constructs — such as procedures that take procedures as arguments, sets of
mutually recursive procedure definitions, etc. That restriction was deemed
acceptable by the language designers. RAISE was and is to be used more for
application-oriented domains than for sophisticated programming or specifi­
cation language constructs. Solution to the recursive type definition, D = D
- • D, was first provided by Dana Scott [251,458-462,464,466-468].

17.4.2 Inductive Function Value Definitions

Chapters 12-16 abound with recursive function definitions; Chap. 11 out­
lined various styles of function definitions, induing recursive definitions; and
Chap. 7 dealt with the meaning of recursive function definitions.

17.5 Review of Function Abstractions and Models

Principles. Functions as Denotations: The most overriding principle is that
of ''always looking for the function being denoted by some syntactic struc­
ture", m

The above principle was illustrated in Example 17.3.

Principles. If and when a model-oriented abstraction has been chosen, then
function abstraction may be chosen if a reasonable number of the following
characteristics can be identified as properties of the phenomena being mod­
elled:

(i) The abstract structure of the composite components being modelled
as an ordinarily definable function, i.e., one whose range elements can be
functionally based on definition set elements;

(ii) whose number is not otherwise easily enumerable;
(iii) and a common operation is that of determining functional relation­

ships.
The basic principle for choosing among the many styles of function defini­

tion, outlined in Chap. 11, is simple:
(iv) Choose property-oriented (axiomatic, algebraic and possibly implicit

pre/post) styles "early" in development, that is, for the domain description
and requirements definition phase. And choose the model-oriented, explicit
function definition style for the later stages of requirements definition and the
software design phase.

(v) In addition, judicious use of carefully developed lifted functions can
significantly help express suitable abstractions. •

Techniques. Functions: We have shown, in Chap. 11, a number of func­
tion definition styles. They reflect a spectrum from axiomatic and algebraic,

408 17 Higher-Order Functions in RSL

via pre/post implicit, to explicit, algorithm-like, definitions of functions. The
techniques that go with the property-oriented styles are those of property-
oriented abstractions, and those of the model-oriented styles are those, ob­
viously, of model-oriented abstractions. Make sure, however, only to tackle
such algorithm-like definitions which reflect complexity, i.e., algorithm effi­
ciency concerns during the latter software design stages and steps. Seriously
consider using function lifting when defining functions over complex, typically
recursive data structures. •

Tools. Functions: If abstraction and modelling using the function data type
has been chosen, then the tool can either be the RSL, the VDM-SL, the Z, or,
for example, the B specification language. •

17.6 Discussion

Functions are, obviously, the main means of defining any dynamics, any opera­
tions, manipulations, etc., of manifest (domain) as well as conceptual (domain,
requirements and software) concepts. This is not surprising to the ordinary
programmer, who is used to defining procedures, routines, subroutines, meth­
ods, etc. What is additional here are the concepts of functions as values, and
hence as parameters (i.e., arguments), and function lifting.

These volumes will only have succeeded they teach its readers to think of
domain phenomena and concepts, and of requirements and software concepts
as functions. We shall have many opportunities in the rest of these volumes
to propagate the principle of thinking denotationally, that is, of syntactic
structures denoting mathematical functions.

17.7 Exercises

Exercise 17.1. A Subroutine Library. A subroutine library is a simple set of
uniquely named functions. Each function, besides its name, has a pair of type
lists: one designating arity and types of subroutine arguments, the other the
arity and types of subroutine results. Finally, each such function signature
is associated with a function, typically from states and argument values to
states and result values. Assume, for simplicity, all argument and all result
values to be of simple scale type, say reals, integers, Booleans and text strings
of characters. Functions, when applied, are applied in the current state, and
functions when elaborated may change that current state.

1. Define the type of subroutine libraries, considering also possible well-
formedness (i.e., subtypes).

17.7 Exercises 409

Postulate, i.e., assume, the existence of the functional subroutine values. Now
define the following operations on subroutine libraries:

2. Insert a new subroutine (please consider well-formedness).
3. Inquire as to the signature of a named subroutine.
4. Apply a list of argument values to a named subroutine — checking first

that the type of the argument values matches the type given in the sig­
nature for that function.

5. Delete a subroutine.

Above it was (perhaps) assumed that no one function name could be de­
fined with more than one signature. Now allow a function name to be 'over­
loaded', that is: The same function name may have two or more signatures
but they must differ in the arity and/or type of the arguments.

6. Restate, if needed, your answer to part 1 above.
7. Refine, if needed, your answers to 2-5 above.

Part IV

SPECIFICATION TYPES

The previous chapters have now covered sufficient material on types for
us to summarise (Chap. 18). Although type theory may, by 2005, be the
grandest contribution computer science has made to mathematics, we shall
refrain from covering the theoretically more exciting aspects of type theory.
Instead we refer to a few books: [1,282,424,443,532]. Dana Scott provided
the basic research that cast classical A-calculus in a proper mathematical
(i.e., type theoretic) setting, and thereby provided a basis for a mathematical
understanding of types: [251,458-462,464,466-468].

18

Types in RSL

• The prerequisite for studying this chapter is that you have read the
previous many chapters and that you desire a summary, comprehensive
treatment of the RSL type system.

• The aims are to summarise and complete the coverage of the type con­
structs, that is, expressions and definitions of RSL, to introduce the type
concepts of record constructors and destructors, union types, variant types,
short record type definitions, and subtypes and to illustrate the versatility
of the RSL type system on "actual computing world" examples.

• The objective is to help ensure that the reader is put firmly on the road
to being a professional in perhaps the most crucial area of specification
engineering, namely defining and using types.

• The treatment is from systematic to semiformal.

The Republican form of Government is the highest form of
government; but because of this it requires the highest

type of human nature — a type nowhere at present existing.

Herbert Spencer 1820-1903 Essays (1891) VOL. HI, P . 4 7 8 ? The Americans

"Back-of-the-envelope" sketching of types, for well-nigh any universe of dis­
course, can be considered like the house architect's similar sketches of an
opera building, a private villa or a community centre. The ease with which
it is done, and done so that the result is pleasing, has utility, and is fit for
purpose, is the hallmark of a great software engineer, or respectively of a
great architect.

We refer to Chap. 5 for a first introduction to the concept of types.

18.1 The Issues

The above quotation expresses one of the issues of types we shall have to deal
with: Existence! (i) We often designate manifest things, (ii) But we express

414 18 Types in RSL

collections of these by expressing types, (iii) Our type expressions are not
these collections, only abstractions thereof!

We will briefly discuss the importance of statements (i—iii) above, (i) When
modelling domains we designate, we point to real, actual occurrences of things:
(a) Mister Goldsmith, (b) Missus Goldsmith's rus ty Raleigh b icycle ,
and (c) Mister and Missus Goldsmith's two ponies 'The S p i r i t ' and
'The F l i g h t ' . (ii) But we abstract them as values of type (A) Person, (B)
Bicycle and (C) Animal (or Horse), (iii) The values by which we speak of the
actual Mister Goldsmith, the manifest things, these values are only abstrac­
tions of the real things, (iv) And there is even the problem of some definitions
not having any, however abstract, mathematical models. By that we mean:
Some type expressions, some type definitions, make no sense, viz.: the set of
all winged horses, from poetic, daily parlance; and the 'collection', as a type,
of all functions from functions into functions.

Issues other than mere concrete or abstract existence are: (v) Choice be­
tween abstract and concrete types: sorts versus model-oriented types (i.e., ab­
stract versus concrete types), (vi) Choice of model-oriented representational
abstraction: set, Cartesian, list, map and function types; and finite or infinite
sets, lists and maps, (vii) Choice between simplicity of "nearest, closest" type
versus complexity of defining "exactly fitting" subtype.

Again we comment briefly on items (v-vii). (v) We normally choose ab­
stract types in earlier parts of development, thereby being abstract and leaving
room for addition of axiomatically characterised observer and generator func­
tions. We often find that later stages of development — first requirements,
then software design — bring about the desire to introduce further properties
of types than first needed, (vi) Once "the road to using" model-oriented spec­
ifications has been entered, the developer will derive much benefit from using
map and function types. They often capture essential properties and are sim­
ple to grasp, hence reasonably abstract. Set types are seldom seen, but using
sets in handling definition sets and ranges of maps, and in handling index sets
and elements of lists is an efficient means of expressing properties abstractly
— in an expressive, reasonably understandable style, (vii) Choice between
simplicity of "nearest, closest" type versus complexity of defining "exactly fit­
ting" subtype: When choosing a model-oriented, i.e., concrete type, we may
choose, just for the sake of argument, to represent a type of binary trees as hi­
erarchical maps, each with exactly two definition set elements (i.e., hierarchies
as dealt with in Example 16.7), rather than as a recursively defined Cartesian
type (as posed in Exercise 14.4). These and related issues will be further dealt
with in this chapter, and in the remaining parts of these volumes.

18.2 Type Categories 415

18.2 Type Categories

There are (semantically speaking) different kinds of types. For each of these
kinds there are (syntactically speaking, different) forms of expressions and
definitions. There are abstractly and concretely defined types.

18.2 .1 A b s t r a c t T y p e s : Sorts

The developers have available any abstract base type, i.e., sort, they choose
to start with! The previous chapters and their examples made liberal use of
sorts. Sorts are usually type abstractions of oftentimes rather complex values.
Wha t these value (i.e., component) types are is then revealed through the in­
troduction, by the developer, of observer (and generator) functions. Initially,
i.e., when start ing out a long line of phases1 , stages2 and steps3 of develop­
ment, in other words, when initially choosing sorts, the specifier is relieved of
having to find a "most suited" model-oriented type.

18.2 .2 C o n c r e t e T y p e s

In par ts of domain descriptions, in requirements prescriptions, and certainly
in software design stages and steps of development, one must eventually and
increasingly tu rn to models based on model-oriented, i.e., concrete types.

The concrete types are those whose elements may be (i) Booleans (Bool) ,
(ii) integers (Int), (iii) natural numbers (Nat) , (iv) reals (Real) , (v) char­
acters (Char) , (vi) texts (Text) , (vii) sets, (A-[inf]set) , (viii) Cartesians
(A x B x . . . xC) , (ix) lists (A*, Aw) , (x) maps (A jff B) (xi) or are total and /o r
partial functions (A->-B, A^»B).

(xii) Finally we have the types whose elements are either of two or more
of Booleans, or integers, or numbers, or sets, or Cartesians, or functions:

t y p e
U = D | E | ... | F

tha t is, tha t are union types. In this section we shall, more systematically,
explain the union type, and many additional type concepts.

1 Phases: domain, requirements and software design.
2Stages: major "re-specifications", for the purposes of enriching (detailing) a

specification. Stages "turn" BIG LIES, successively into Smaller Lies, finally into
truth! That is, the big lies are gross simplifications of what is being specified, and
the smaller lies add actual properties needed in order to approach reality.

3Steps: minor refinements or transformations of specifications within stages.

416 18 Types in RSL

18.2.3 Discussion

With types a number of questions arise: Are there other types than the ones
introduced so far? (xiv) How do we express and define types, including union
types? (xv) Given a value, what means do we have for determining its type?
(xvi) For any concrete type expression or any concrete type definition can we
expect it always to denote something sensible, something we had in mind?
These and other issues are the topics of the next sections.

Indeed, there are some types, in addition to union types, that we would
like to either reintroduce or to enlarge our previous coverage of, and/or to
more properly introduce: the enumerated token types (Chap. 10) and record
types (Sect. 13.4.3 and Exercise 16.8). They are respective cases of the more
general concepts of variant record definitions. Next we explain these three
kinds of type expressions and definitions: Variant type definitions, union type
expressions and short record type definitions. The latter two are related to
variant types.

18.3 Enumerated Token Types Revisited

By an enumerated token type, also referred to as a constructed constant names
type, we understand a type defined as follows:

type
A = = al | a2 | ... | an.

where the distinct identifiers al, a2, . . . , an are not defined elsewhere in the
specification at hand. The definition of A, using the special variant type con­
structor = = , as well as the union type constructor |, is short for the following
sort and value definitions, and the axioms:

type
A

value
al:A, a2:A, ..., an:A

axiom
[disjointness: A values]

[informal: V i,j:Nat • 0 < i,j < n]
i ^ j => ai ^ aj

Example 18.1 Enumerated Types: Operators, Playing Cards and the Com­
pass: The enumerated — constant values — type can thus be used to define
such things as a known set of operators of a programming language, cf. our
earlier use of text strings, in Examples 14.4 to 14.7:

18.4 Records: Constructors and Destructors 417

type
MOp = = minus | factorial | abs | not | ...
DOp = = add | sub | mpy | div | mod | and | or | imply

the known set of playing card suit and face values:

type
Suit = = club | diamond | heart | spade
Face = = ace | two | ... | ten | knight | queen | king

or the "compass corners" of the world:

type
Corner = = east | west | north | south

Two kinds of axioms are needed in order to ensure a consistent meaning of
constant constructors: disjointness of enumerated values (see axiom above)
and an induction axiom:

type
A = = a l | a2 | ... | an

axiom
[induction]
Vp:(A->Bool) •

(p(al) A p(a2) A ... A p(an)) => V a:A • p(a)

The purpose of the induction axiom is to express that A only contains the
explicitly enumerated values.

18.4 Records: Constructors and Destructors

Records are like Cartesians, only a little bit different!

18.4.1 General

Examples 14.4 to 14.7 illustrated the use of Cartesians and union types in
denning a type of language constructs.

In general we can use the variant type definition to define composite, or
as they will be called here, record types.

type
A, B, ..., C
K = = kl(sa:A) | k2(sa:A,sb:B) | kn(sa:A,sb:B,sc:C) | ...

418 18 Types in RSL

(where we think of A, B, . . . , C as sorts). The identifiers kl, k2, . . . , kn
stand for distinct record constructor functions (record constructors or just
constructors). The identifiers sa, sb, . . . , sc (that are the same in the various
alternatives, but could be a mix of some being the same and the rest, ob­
viously, being distinct), denote and are distinct (possibly overloaded) record
destructor functions. We also refer to these as just record field selectors, record
destructors or just destructors.

Constructors and destructors can be used to compose, respectively decom­
pose record values. To express the idea of the constructor (composition) and
destructor (decomposition) functions, we present the full definitions (of which
the above is an abbreviation):

type
A, B, ..., C, K

value
kl: A->K, k2: AxB-^K, kn: AxBxC-^K, ...
sa: K-^A, sb: K-^B, sc: K-^C, ...

axiom
[disjointness of K values]
V av:A, bv:B, ..., cv:C •

kl(av) ^ k2(av,bv) A kl(av) ^ k3(av,bv,cv) A
... A av = sa(kl(av)) = sa(k2(av,bv)) = sa(k3(av,bv,cv)) A
... A bv = sb(k2(av,bv)) = sb(k3(av,bv,cv)) A
... A cv = sc(k3(av,bv,cv)) ...

18.4.2 Variant Record Value Induct ion Axioms

Non-recursive Record Type Definitions

We have exemplified axioms governing the disjointness of values defined by
a variant definition. But an induction axiom is needed in order to remove
"junk", that is, undesirable, unintended, values from the defined types. For
the (simple) record type definition (below) we need:

axiom
type

A, B, . . , C
K = = kl(sa:A)|k2(sa:A,sb:B)|kn(sa:A,sb:B,sc:C)

value
kl: A->K, k2: A x B ^ K , kn: A x B x C ^ K

axiom
[induction]

V p:K-^Bool, av:A,
(p(kl(av)) A p(k2(av,bv)) A p(k3(av,bv,cv)) => V k:K • p(k))

=> (V k:K • p(k))

18.4 Records: Constructors and Destructors 419

Recursive Record Type Definitions

For recursively defined record types, disjointness and induction axioms, for
example, become:

type
A
R = = empty | rec(sa:A,sr:R)

axiom
[disjointness: R values]

V av:A, rv:R • empty ^ rec(av,rv) A
sa(rec(av,rv))=av A sr(rec(av,rv))=rv

[induction, no junk]
V p:R—^Bool • p(empty) A (V av:A, rv:R • p(rv) => p(rec(av,rv)))

=> V rv:R • p(rv)

18.4.3 An Example

One of the standard uses of the union and variant record type definition ca­
pability is that of defining syntactic structures such as found in programming
languages. Another is that of defining different kinds of data structure values.
We exemplify the former.

Example 18.2 Cartesian vs. Record Variant Types: We give an example of
the use of record types. The example really only rephrases parts of Exam­
ples 14.4 to 14.7. We show, for comparison, the Cartesian and record type
models of the syntax (cf. Example 14.5):

type
Pn, Ln, V, E
M' = (Pn x Ln) x P-set
M = {| m:M • wf_M(m) |}
P = Pn x (Ln x S)-set
S = Asgn | Cond | Goto | Call | Stop
Asgn = {"asgn"} x (V x E) x Ln
Cond = {"cond"} x (E x Ln x Ln)
Goto = {"goto"} x Ln
Call = {"call"} x (Pn x Ln) x Ln
Stop = {"stop"}

type
Pn, Ln, V, E
M' = (Pn x Ln) x P-set
M = {| m:M • wf_M(m) |}
P = Pn x (Ln x S)-set
S = = Asgn(ve:V,e:E,l:Ln)

| Cond (e:E,cl:Ln,al:Ln)
I Goto(l:Ln)
I Call(pn:Pn,cl:Ln,rl:Ln)
| stop

We compare the control structures of the two well-formedness functions (cf.
Example 14.6):

420 18 Types in RSL

wfJS(s)(lns)(ps) =
cases s of

Asgn((v,e)/) - • £e Ins,
Cond(e,ln,ln') - • {m,ln'} C Ins,
Goto(ln) -> In e Ins,
Call(pn,ln/) - •

wf_Call((pn,ln),£)(ps),
stop -t t rue

end

18.5 Union Type Definitions

The union type concept was introduced in Sect. 13.4.3 in Example 13.10's
subsection on An Aside on Type Union and Variant Records) and illustrated
in that example's definition of Cmd's, subsection on Formalisation of Action
Types. Another explanation of the union type was also given in Sect. 14.4.l's
subsection An Aside: The Union Type Operator, |. Other union type def­
initions were given in Example 14.3's definitions of Q, R and S, in Exam­
ple 14.7's definition of 0 (subsection Formalisation — Semantic Types), in
Example 16.8's definition of VAL, in Examples 16.17's and 16.18's definitions
of OP and OL, and in Example 17.3's definition of S4.

In general, the 'shorthand':

type
A = B | ... | C

where B and C are identifiers, is, theoretically, intended to mean:

type
A = = A_from_B(A_to_B:B) | ... | A_from_C(A_to_C:C)

The shorthand implicitly defines a set of constructors (from A_from_B to
A_from_C) and destructors (from A_to_B to A_to_C). If you think their names
too cumbersome, then you are free to use the full definitional facility offered
by the record variant definition. Constructors are sometimes called injector
functions. Destructors are correspondingly called projector functions.

Thus, if you define:

4We present all these references so that you may go back and recapitulate the
uses of record type definitions. Doing so, "going back", the reader will, we strongly
believe, more easily grasp the ideas.

wf_S(s)(lns)(ps) =
cases s of

("assign",(v,e),^) -+ ...,
("cond",(e,ln,ln')) - • .»,
("goto",ln) - • . . ,
("call" ,(pn,ln)$ -+

ii . ii stop —> ...,
end

18.7 Type Expressions, Revisited 421

type
A = B | C | ...
B = = mk_beta(sel_b:B)
C = = mk_gamma(sel_c:C)

then you avoid:

type
A = = A_from_B(A_to_B:B) | A_from_C(A_to_C:C) | ...

mk.beta and seLb "replaces" A_from_B, respectively A_to_B; etcetera.

18.6 Short Record Type Definitions

Defining:

type
B, ..., C
A = = mk_alpha(sel_beta:B,...,sel_gamma:C)

can be abbreviated by the short record type definition:

type
B, ..., C
A :: sel_beta:B ... sel_gamma:C

18.7 Type Expressions, Revisited

A schematic syntax for the syntactic category of all type expressions can now
be summarised:

type
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

Bool,
Int,
Nat ,
Real,
Char,
Text,
A-set,
A-infset
A x B x ... x C,

[10'
[11 :

[12 :

[13'
[14:

[15 :

[16 :

[17 :

[18 :

A*,
A",
A jft B,
A - » B ,
A ^ B ,
(A),
A | B | ...
mk_id(sel
sel_a:A ...

| C ,
_a:A,...,sel_b
sel_b:B.

:B),

where A, B, . . . , C can be any of the expressions [1-16].
The meaning of these type expressions has been explained earlier.

422 18 Types in RSL

18.8 Subtypes

Thus there is one type expression in addition to those ([1-18]) summarised in
Sect. 18.7. It is the subtype expression. The type expression:

{| b:B • V(b) |}

usually occurs in connection with type definitions:

type
A = {| b:B • V(b) |}

and is a subtype expression. It defines A to be the type of those b in a usually
"larger"5 type B, but for which the predicate V(b) holds.

The general form of subtype expressions is:

{| <binding> : <type_expression> • <Boolean_valued_expression> |}

The structure of the binding must 'match' the structure of the values of type
type.expression.

18.9 Type Definitions, Revisited

Throughout we have exemplified type definitions. It is time to summarise. We
now present a set [1-5] of example forms of type definitions. So, what follows
is not an RSL set of type definitions as one would find them in an RSL type
clause, but 'concrete' such type equations. The Type_names are the left-hand
side of the type equations. The =, = = or :: are the type "equation" symbols.
And the rest, to the right, or after the equation symbols, are concrete examples
of the kind of type expressions that are special to 'union type', 'record type'
and 'subtype' types.

[1] Type_name =
Type.expr /* without | s or subtypes */

[2] Type_name =
Type_expr_l | Type_expr_2 | ... | Type_expr_n

[3] Type_name = =
mk_id_l(s_al:Type_name_al,...,s_ai:Type_name_ai) |

mk_id_n(s_zl:Type_namejzl,...,s_zk:Type_name_zk)
[4] Type_name :: sel_a:Type_name_a ... sel_z:Type_name_z
[5] Type_name = {| v:Type_name' • V(v) |}

5Type X is said to be a type "larger" than type Y if all values of type Y are also
values of type X, and there are values of type X which are not of type Y. In other
words Y is a subtype of X.

18.11 Discussion 423

where a form of [2-3] is provided by the combination:

Type_name = A | B | ... | Z
A = = mk_id_l(s_al:A_l,...,s_ai:A_i)
B = = mkid_2(s_bl:B_l,...,s_bj:B_j)

Z = = mkid_n(s_zl:Z_l,...,s_zk:ZA)

The meaning of type definitions has been explained in all the previous chapters
where new types were introduced.

18.10 On Recursive Type Definitions

We refer to Sects. 13.5.1, 14.5.1, 15.5.1, 16.5.1 and 17.4.1 for discussions on
the issue of defining types recursively. Dana Scott provided the basic research
that now serves as the theoretical setting for our understanding of types:
[251,458-462,464,466^468].

18.11 Discussion

18.11.1 General

We have reviewed and extended the concept of types. Chapters 13-16 for­
mally introduced the set, Cartesian, list and map types, while also informally
making use of union, enumerated and record types. These latter have now
been formally introduced.

18.11.2 Principles, Techniques and Tools

A picture is worth a thousand words.
And a type system is worth a zillion pictures.

Anonymous

Principles. Four fundamental ideas of types are those (i) of abstract classi­
fication, of (ii) distinguishing between syntactic and semantics types, of (iii)
sketching type structures as a first development activity and of (iv) abstract
data structure designs.

By forcing distinctness of types, by introducing subtypes and by being able
to formulate well-formalness constraints over types, one is able to establish
a type system, i.e., a set of types. By judicious use of abstraction, that is,
through the use of both abstract and concrete types, sketching a type sys­
tem is something that can be done rather quickly by the reasonably trained
developer.

Methodologically the main principles are (1) to design types for all seman­
tic entities of interest first and (2) to initially choose sorts. •

424 18 Types in RSL

Discussion. Very many software engineers draw diagrams which picture an
instantiation of a value of a given type, usually a composite one. Defining
a system of types is a way to draw zillions of pictures. The shortcomings
of drawing instantiations of values is that one usually has to draw families
of diagrams. It then becomes hard to discuss whether to choose one kind of
type rather than another kind. We find that defining type systems enable us
to conduct far more mature and concise discussions concerning alternative
choices of types. The techniques and tools for constructing types allow the
developer to rapidly sketch a type system. Should discussions with colleagues
lead to a desire for another type structure then even sweeping changes can be
effected rapidly. •

Techniques. Two contrasting approaches to the design of type systems ex­
ist. They are the property-oriented and the model-oriented. In the former
approach one postulates sorts, then the function signatures of usually primi­
tive or simple operations over these sorts, and finally axioms that relate the
values of the sorts and the operations. In the model-oriented approach one
designs concrete, albeit abstract model-oriented types. Functions are fully de­
fined and their definition helps the developer to test the usefulness of a type
abstraction. •

Tools. The RSL type definition constructs, including definition of sorts and
concrete types, subtypes and well-formedness constraints, that is, predicates,
over types, form the basic tools. •

18.12 Bibliographical Notes

In the interlude, Part IV, just before this chapter, we mentioned these books:
[1,282,424,443,532]. They, in various ways, cover types in programming lan­
guages, both the practical ones that you apply when programming, as well as
the mathematical meanings of these types, that is, the theoretical ones you
normally do not have to bother about. I, myself, find [1,424,443] particularly
useful. As remarked just above (Sect. 18.10) Dana Scott provided the basic
research that now serves as the theoretical setting for our understanding of
types: [251,458-462,464,466-468].

18.13 Exercises

Exercise 18.1. X A Summary Type System for Transportation Nets. We
refer to Appendix A, Sect. A.l, Transportation Net. We also refer to Exer­
cises 13.5 14.6, 15.15 and 16.12.

Summarise your work, so far, on abstract and concrete types for Trans­
portation Nets by presenting a suitable sort-, map-, list-, Cartesian- and set-
based type system for Transportation Nets.

18.13 Exercises 425

Indicate appropriate subtypes, variant types, and well-formedness predi­
cates. If defined earlier, then refer to these latter predicates.

Exercise 18.2. X A Summary Type System for for Container Logistics. We
refer to Appendix A, Sect. A.2, Container Logistics. We also refer to Exer­
cises 13.6 14.7, 15.16 and 16.13.

Summarise your work, so far, on abstract and concrete types for Container
Logistics by presenting a suitable sort-, map-, list-, Cartesian- and set-based
type system for Container Logistics.

Indicate appropriate subtypes, variant types, and well-formedness predi­
cates. If defined earlier, then refer to these latter predicates.

Exercise 18.3. X 4 Summary Type System for Financial Industries. We re­
fer to Appendix A, Sect. A.3, Financial Service Industry. We also refer to
Exercises 13.6 14.7, 15.16 and 16.13.

Summarise your work, so far, on abstract and concrete types for Financial
Service Industries by presenting a suitable sort-, map-, list-, Cartesian- and
set-based type system for Financial Service Industries.

Indicate appropriate subtypes, variant types, and well-formedness predi­
cates. If defined earlier, then refer to these latter predicates.

Part V

SPECIFICATION PROGRAMMING

On Specification Programming

Characterisation. By specification programming we understand a style of
specification (resp. programming) which "borders" on programming (resp.
specification). •

Specification programming is neither very abstract nor algorithmic.
In this part, i.e., in Chaps. 19-21, we illustrate a spectrum of specification

programming which spans from applicative (Chap. 19), i.e., functional, via
imperative (Chap. 20), i.e., with assignable variables and statements, to par­
allel specification programming (Chap. 21), i.e., with processes and process
synchronisation and inter-communication.

Thus we shall review, in Chap. 19, much of the RSL language constructs
already covered (while adding a few). We shall, in Chap. 20, introduce the im­
perative constructs of RSL: assignable variable declarations, assignment state­
ments, iterative and loop statements, etc. Finally, in Chap. 21, we shall in­
troduce the parallel constructs of RSL: processes, process input expressions
and output statements, channels, and the parallel, nondeterministic inter­
nal (choice), and nondeterministic external (choice) composition of processes.
In this respect, the RSL, which the reader has been introduced to so far, is
extended with basic constructs of Hoare's calculus for expressing Communi­
cating Sequential Processes, CSP [288,448,456].

428

On Problems and Exercises

Most problem formulations of Part V ask for solutions that contain both a
property-oriented solution and a model-oriented solution along the lines of
the next three chapters.

Exercises 19.1, 20.1, and 21.9 form one set of related exercises. So do
Exercises 19.2, 20.2, and 21.10. And so do Exercises 19.3, 20.3, and 21.11.
They all illustrate programming more than abstract modelling. They are all
intended to develop your skills in large-scale specification programming. In
contrast, Exercises 21.2, 21.3, 21.4, 21.5, 21.6, 21.7, and 21.8, call for reason­
ably abstract RSL/CSP modelling of producer/consumer buffers, client/server
and UNIX pipes. These latter exercises are intended to develop your skills in
small-scale elegance when modelling these latter kinds of computing systems
concepts.

19

Applicative Specification Programming

• The prerequisites for studying this chapter are that you have understood
most, if not all, of what has been covered in previous chapters.

• The aims are to summarise the applicative features of RSL already given,
to introduce additional applicative features of RSL, to bring a detailed
model of bindings, their types, patterns and matchings (Sect. 19.6), and
to illustrate more comprehensive uses of the applicative subset of RSL, thus
exemplifying additional modelling ideas.

• The objective is to make the reader fluent in applicative specification
programming.

• The treatment is systematic.

In this chapter we shall summarise the applicative constructs of the speci­
fication notation (RSL). The term 'applicative' (as prefix to 'programming')
derives from 'function application'. The main distinguishing property of ap­
plicative programming is that of defining, applying and composing functions.
Therefore the term 'functional' is often used in lieu of the term 'applicative',
hence functional programming [51,175,225,261,278,380,389,433,498,502,520].

The main distinguishing property of all expressions, be they arithmetic,
Boolean, set, Cartesian, list, or map expression is their operator/operand
structure, and hence that they involve function applications.

Characterisation. By applicative programming we shall understand pro­
gramming with functions, that is, programming where functions are first-class
citizens, where function application is a core notion, and where there are no
concept of storage, that is, assignable variables, nor of concurrency. •

Discussion. We resort to characterising applicative programming also by
what it is not: it is not programing with assignments, hence there is no notion
of statements. Also it is not programing with processes, hence there is no
notion of concurrency. •

430 19 Applicative Specification Programming

Characterisation. By function programming we mean the same as applica­
tive programming. •

Characterisation. By applicative specification programming we shall un­
derstand an abstract, property-oriented form of applicative programming, one
in which we deploy abstract types and so on. •

19.1 Scope and Binding

In order to model phenomena, i.e., to express concepts, and their proper­
ties and/or computations involving these, it is often wise to introduce iden­
tifiers that then designate these phenomena cum concepts. These identifiers
are thus associated with values (over which properties and/or computations
are expressed). These identifiers have a certain text over which they are sup­
posed to be used, i.e., over which they are valid. We call this the scope of
the identifier. Some such identifiers designate constants, i.e., values which are
expressed and do not change. These are the identifiers we think of in appli­
cation specification (programming). Other such identifiers designate possibly
changing values, i.e., the identifiers name declared (storable) variables whose
value may be reassigned (reexpressed). We shall deal with this kind of vari­
able in Chap. 20. The constant (even though they are also called "variable")
identifiers are given value once. We say they are bound. This section is about
such identifiers, their scope and binding. As for a number of technicalities of
binding we refer to Sect. 19.6, on the topics of bindings, typings, patterns and
matching.

We find that there are basically five kinds of situations in which identifiers
are being defined, and thus for which the notions of scope and binding become
relevant. They are:

1. let definitions
2. function definitions
3. case constructs
4. comprehended expressions
5. quantified expressions

In Sects. 19.1.2-19.1.6 we refer, in brackets, to the above numerals.
We now treat the binding and scope issues as they arise in the above forms.

Our treatment will be 'esoteric'. That is: It assumes that you are already
familiar with our earlier coverage of these forms. Thus we summarise.

19.1.1 Binding Patterns — An Informal Exposition

Characterisation. By a binding pattern we mean a structure of usually
free and always distinct identifiers or "wildcards" (_), that are bound to, i.e.,

19.1 Scope and Binding 431

equated with, a similarly structured value such that one can establish a one-
to-one relationship between the identifiers and components of the value. •

In earlier chapters on sets, Cartesians, lists and maps we presented binding
patterns like:

let {a} U s = set in ... end
let (a,b,...,c) = cart in ... end
let (a)*£ = list in ... end and let £^(a) = list in ... end
let [ai-^b] U m = map in ... end

Here the patterns are:

{a} U s, (a,b,...,c), (a)^£, ^ (a) , [ai-^b] U m

We assume that set, cart, list and map are of the right size: That is, that
set, list, and map are nonempty, and cart has the right number of immediate
components, commensurate with the Cartesian binding pattern (a,b,...,c).

We now extend the above forms with wildcards _:

let {a,_} U s = set in ... end
let (a,_,...,c) = cart in ... end
let (a,_,b)"^ = list in ... end
let [ai->*b,_] U m = map in ... end

These forms only make sense if set has at least two elements, list has at least
three elements, and map at least two "pairings". If such is the case then the
idea is that s is any set, derived from the set set by removing any two elements;
that £ is the list derived from the list list by removing the first three elements,
and that m is any map derived from the map map by removing arbitrary
pairings.

In the following we shall assume that a wildcard is treated as if it was a
free identifier! That is, our expositions will not take wildcards into specific
consideration, but just assume that they may be used, i.e., that they may
occur in the generic presentations of bindings given.

To summarise, and to generalise: to patterns, which are structures of usu­
ally free identifiers we now add the possibility of also having wildcards, bound
identifiers and constants appearing in patterns. The bound identifiers are,
naturally, bound to something, namely a value, i.e., a(nother) constant.1 A
binding, as treated in this chapter, is now the pairing of a pattern and a value.
The value presents itself in a number of ways: (i) through the evaluation of an
expression with which the pattern is paired (with the pairing operator being
an equality symbol, =) — as in the let constructs; (ii) through an argument

1That latter binding is provided by the context of the text in which the pat­
tern occurs — with such a context usually being provided for by the evaluation
configuration's context, i.e., environment component.

432 19 Applicative Specification Programming

value provided in a function invocation and then paired with the formal pa­
rameter list of the function definition; (iii) through the typed quantification
as in comprehensions and predicate expressions; (iv) or through the case e of
construct where, alternatively, one after the other, of the case selection clauses,
the pattern left-hand side of these are paired to the value of expression e of
the case e of header. All this will now be treated in some detail.

19.1.2 "let" Construct Scope and Binding [1]

The let construct is also treated in Sect. 19.2. So we only present a simplest,
albeit schematic example:

let pattern = £(...) in £>(id_l,id_2,...,id_n) end

Let A be a metalinguistic "observer" function which extracts all identifiers
from a pattern. Then, for the above pattern, we have:

zi(pattern) = {id_l,id_2,...,id_n}

The free identifiers {id_l,id_2,...,id_n} of binding_pattern are introduced by the
left-hand (of =) construct, binding_pattern. They are bound to the values
that satisfy the defining equation binding_pattern = X>(id_l,id_2,...,id_n). And
their scope is the body expression, 2?(id_l,id_2,...,id_n)I of the clause above.
The defining equation may give rise to a finite (including zero) or an infinite
number of models in which these free identifiers are bound to values that
satisfy the equation.

Example 19.1 Simple "let" Bindings: We present a simple — rather con­
strued — example, to be studied by the reader:

type
A = Bool x (Int x Real x (Text x Char))

value
f: A - • (Int | Text)
f(a) = let (b,(i,r,(t,c))) = a in if b then i + int r else t^(c) end end

(Here A(b, (i, r, (t, c))) = {b, i, r, t, c}.)

For further examples of let definition bindings we refer to Sects. 7.7.2, 13.2.3,
14.2.3-14.2.4, 15.2.3, and 16.2.3.

19.1.3 Function Definition Scope and Binding [2]

We refer to Chap. 11 for an earlier presentation of this material. The form
of function definitions for which it is meaningful to talk about introduction,
binding and scope of identifiers are:

19.1 Scope and Binding 433

value
f: A - + B
f (pattern) = £ (a_l,...,a_m)
pre: 7?(a_l,...,a_m)

where:
{a_l,...,a_m} = Zi(arg_pattern)
{r_l,...,r_n} = zi(res_pattern)

By argument-pattern we mean a pattern with one or more free identifiers.
These are the identifiers we shall be referring to. result_pattern is a pattern
with free identifiers only. The form argument-pattern in the function defini­
tion header f(argument_pattern) introduces the identifiers. The signature f: A
—> B generally binds these free identifiers to types. The specific binding of
the free identifiers of the argument-patterns occurs whenever the function f is
invoked: f(argument). The scope of f and the free identifiers is the rest of the
function definition, the body and the pre condition: £(id_l,id_2,...,id_n) pre:
-P(id_l,id_2,...,id_n).

Example 19.2 Simple Function Definition Bindings: Again a somewhat con­
strued example, to be studied by the reader:

type
A = Bool x Real
B = Int x Na t
C = Real x Real

value
f: A - • (B | C)
f(b,r) = if b t hen (int r,abs(r—int r)) else (—abs r,abs r) end

f(b,r) as (ir,nr)
post ir = if b t hen int r else —abs r end A

nr = if b t hen abs(r—int r) else abs r end

For further examples of function definition bindings we refer to Chap. 11.

19.1.4 "case" Cons t ruc t Scope and Binding [3]

We only treat the scope and binding of the case construct now. For other
facets of the case construct see Sect. 19.5. The case construct schematically
appears as:

case expr of
choice_pattern_l —> expr_l,

f(arg_pattern) as res.pattern
pre: P(a_l,...,a_m)
post: P(a_l,...,a_m,r_l,...,r_n)

434 19 Applicative Specification Programming

choice_pattern_2 ->> expr_2,

choice_pattern_a_or_wild_card —> expr_Q
end

where choice_pattern_i and choice_pattern_n_or_wild_card are patterns usually
with one or more free identifiers. The free identifiers (not shown, but implied,
above) are introduced in the choice_pattern_i clauses immediately to the left
of the -t s. They are bound to values as per the matching afforded between
the cases expr of expression value part and the pattern. And their scope is
the exprJ immediately to the right of the corresponding —>.

Example 19.3 Case Bindings: Next in the line of our construed examples
we bring the following, to be studied by the reader:

type
A = = mkB(s_i:Int) | mkC(s_i:Int,s_j:Int) | mkD(s_i:Int,s_j:Int,s_k:Int)

value
f: A - • (Int | Na t | Real)
f(a) =

case a of
mkB(iv) —> iv,
mkC(ivjv) —> if iv>0 then —iv else jv end
mkD(iv,jv,kv) - • if kv^O then iv/kv else iv/(kv+0.000001) end

end

For further examples of case construct bindings we refer to Sect. 14.4.1.

19.1.5 Comprehensions: Scope and Binding [4]

There are three forms of comprehended expressions:

{ E(a) | a:A . P(a) },
{ E(i) | i in indexJist • P(i)),
[D(a) i-+ R(a) | a:A • P(a)].

The identifiers a, i and a (lines 1, 2 and 3, respectively, above) are named and
typed (i.e., generally bound) in respective clause parts: a:A, i in indexJist and
a:A. They are being specifically bound to specific values by the optional part
P(a). And their scope is E(a), E(i), respectively D(a)-» R(a). We leave it to

the reader to "retell the story" above, but based on appropriate patterns and
their free identifiers. For specific examples of comprehension bindings we refer
to Sects. 13.2.2, 15.2.2 and 16.2.2.

19.2 Intuition 435

19.1.6 Quantifications: Scope and Binding [5]

There are three forms of quantified expressions:

V a:A • P(a), 3 a:A • P(a), 3 ! a:A • P(a)

We refer to Chap. 9, Sect. 9.5.4.
The identifier a is introduced and typed in the a:A part of the quantified

expressions. And the scope of the defined identifier a is the remaining text:
P(a). We leave it to the reader to "retell the story" above, but based on
appropriate patterns and their free identifiers.

For specific examples of quantified expressions we refer to Sects. 9.5.4-
9.5.7.

19.2 Intuition

First, it is important to note that we have already given quite a lot of examples
of uses of the let ... in ... end clause. Second, it is important to state that
in this entire section we are not going to present any further examples of
applicative specifications.

We have already seen that operator/operand expressions can express quite
complex values. And, as we shall see, expressions can indeed express all the
values we ever wish to express, through the use of fix points. The last three
sentences were brought in in order that we may justify, from an untraditional
angle, our focus on expressions, that is, functions, as a full-blown specification
cum programming language.

19.2.1 Simple "let a = Ed in £b(a) end"

We continue this attempt at justification. To decompose the expression of
values we introduce the:

let a = Sd in £&(a) end

clause. It is an expanded form of:

(Aa.£6(a))(£d)

that is, of defining a function, Aa.£&(a), and of applying that function to an
argument, £&. The scope of a is £&(a).

An intuition about the expression: let a = Ed in £&(a) end is that it defines
the variable a, to not really be a variable in the sense of attaining a varying
value, but that it defines a to attain a constant value throughout the scope
£&(a). That intuition makes the clause let a = Ed in into a so-called single
assignment. This two step approach of first binding a constant value to a, and
then using this value, i.e., a, in a context — in which other such bindings and
uses take place — allows for a "divide and conquer" principle of expressing
values.

436 19 Applicative Specification Programming

19.2.2 Recursive "let f(a) = £d(f) in £b(f,a) end"

We saw, in Sect. 7.8, how a recursive definition, as of f in:

let f(a) = E(f) in B(f,a) end
/* which is the same as */
let f = Aa:A • E(f) in B(f,a) end

amounts to:

let f = YF in B(f,a) end
F = Ag-Aa-(E(g))
The Fix Point Identity Law: YF = F(YF)

This explains and thus allows the use of recursive definitions.

19.2.3 Predicative "let a:A • V(a) in £(a) end"

The typing construct:

let a:A • V(a) in B(a) end

expresses, in colloquial terms, the selection of an a value of type A which
satisfies a predicate V(a) for evaluation in the body 23(a).

19.2.4 Multiple "let a; = Sdi in Sb(an) end"

In general, we allow for multiple, mixed and compound binding pattern defi­
nitions:

let a:A • Pi (a), b:B • P2(a,b), ..., c:C • Pn(a,b,...,c),
p_a = Ei(a,b,...,c),
p_b = E2(a,b,...,c,p_a),

p_c = En(a,b,...,c,p_a,p_b,...,) in
B(a,b,...,c,p_a,p_b,...,p_c) end

where p_a, p_b, ... p_c are binding patterns of free identifiers (and possible
wildcards), and where the order of the defining clauses above is important.

The above is shorthand for:

let a:A • Pi (a) in let b:B • P2(a,b) in ..., let c:C • Pn(a,b,...,c) in
let p_a = Ei(a,b,...,c) in

let p_b = E2(a,b,...,c,p_a) in

let p_c = En(a,b,...,c,p_a,p_b,...) in
B(a,b,...,c,p_a,p_b,...,p_c)

end end ... end end end ... end

19.2 Intuition 437

This rewriting explains the scope of the defined names.
Now, what is the meaning of all this? We have not imposed, so far, any re­

strictions on the forms of the defining expressions. (That is, those on the right-
hand side of the equations and in the typing predicates.) The answer, without
going into renewed detail, is simple: The meaning of a compound set of multi­
ple and mixed let bindings, i.e., excluding the body B(a,b,...,cIp_a,p_b,...,p_c),
is the set of all models that contain bindings of all free identifiers a,b,...,c, and
all free identifiers in the binding patterns p_a,p_b,...,p_c, to such values that
make the equations and predicates hold.

Please do not bother about how these equations (etc.) are 'solved'. Just
focus on the properties they define. We are specifying, not algorithmically
programming! Please note that we can thus not use the above multiple let
clauses to define two or more functions that are mutually recursive. That is,

value
f: A ->B
f(a) =

let f 1 = A x:X • £(f2,a,x),
f2 = A y:Y • £(fl,a,y) in

let x = ..., y = ... in
... fl(x) ... f2(y) ... end end

is not an acceptable definition.
But we can define any set of mutually recursive functions as proper value

definitions of a class definition. Such function definitions — momentarily dis­
regarding any possible name clashes (i.e., two or more in different class defini­
tions having the same name) — can be considered defined at the "outermost"
level of of definitions, declarations, etc., of a full specification.

19.2.5 Literals and Identifiers

Literals

The simplest kind of expression is the literals, that is, names of constants:
numerals, Booleans, characters, etc.

0, 1, 2, ..., - 1 , - 2 , ...
0.0, 1.41, 2.71, 3.15, ...
true, false
a , D , ..., z , ..., abc , ...

Identifiers

An almost equally simple kind of expressions are the identifiers which, for
example through their occurrence in function argument/value bindings, in
let clause bindings and in case choice bindings, are bound to values:

438 19 Applicative Specification Programming

a, b, ..., id, name, ...

Some identifiers may designate enumerated type values.

19.3 Operator/Operand Expressions

The operator or connective/operand expressions of RSL are the prefix, infix
and suffix expressions:

(Expr) ::=
(Prefix_Op) (Expr)

| (Expr) (Infix_Op) (Expr)
I (Expr) (Suffix_Op)

(Prefix_Op) ::=
— | ~ | U | fl | card | len | inds | elems | hd | tl | dom | rng

(Infix_Op) ::=
= | ^ | = | + | - | * | t | / | < | < | > | > | A | V | = *
| e | ^ | u | n | \ | c | c | D | D r i t l °

(Suffix_Op) ::= !

Expression values are expected to be of types commensurate with the opera­
tors.

The prefix unary operators or connectives are: arithmetic (negation),
Boolean (negation), set (distributed union and intersection, cardinality), list
(length, indices, elements, head, tail), map (definition set, map range set).
The infix binary operators or connectives are: general equality, inequality
and equivalence; arithmetic (addition, subtraction, multiplication, division,
exponentiation), Boolean (conjunction, disjunction, implication), set (element
membership or non-membership, union, intersection, complement, proper sub­
set, subset, superset, proper superset), list (concatenation), map (union, over­
ride, restriction) and function (composition). The (only) suffix unary operator
is: arithmetic (factorial). Infix expressions are evaluated left to right.

19.4 Enumerated and Comprehended Expressions

We continue our RSL "Reference Manual-like" survey of RSL's applicative lan­
guage features. For expressing sets, Cartesians, lists and maps explicitly there
are the enumerated and comprehended forms:

{a_l,a_2,...,a_n}, {E(a)|a:A-P(a)}
(a_l,a_2,...,a_n), (E(ids)|b_p in lst_ex«P(ids)) where: ids = zi(b_p)
[a_li-^b_l, ..., a_nh-^b_n], [D(a)i-+R(a)|a:A: P(a)]

That is, the identifiers, ids, occurring in E(ids), are the free identifiers of the
binding pattern b_p, and lst_ex is a list expression.

19.5 Conditional Expressions 439

19.5 Conditional Expressions

The conditional expressions are:

if b_expr then c_expr else a_expr end

if b_expr then c_expr end = /* same as: */
if b_expr then c_expr else skip end

case expr of
choice_pattern_l —> expr_l,
choice_pattern_2 —> expr_2,

choice_pattern_a_or_wild_card —> expr_n
end

where choice_patter_n_or_wild_card is either a choice_pattern or a wild_card (_).
For the situation where the choice_patterns do not or at least not significantly-

contain free identifiers we could say that the construct:

case expr of
choice_pattern_l —> expr_l,
choice_pattern_2 —> expr_2,

choice_pattern_a_or_wild_card —> expr_n
end

is not a conditional, but a selection expression. Thus there are basically two
different situations in which we make use of the case construct: For selection
purposes, or for "multi-way", i.e., more than two, conditional decisions.

Example 19.4 Conditional versus Selection "case"s: We leave it to the
reader to study, i.e., to "decipher" the below example — it serves no practical
purpose, but illustrates the idea of a conditional use of the case construct:

type
A = Int | (Int x Int) | (Int x Int x Int)

value
f: A - • Bool
f(a) =

case a of
7 —> true, (7,_) —> true, (7,_,_) —> true, _ —> false

end

The next example shall then, likewise, illustrate the idea of selection:

440 19 Applicative Specification Programming

A = Int | (Int x Int) | (Int x Int x Int)
value

f: A - • Real
f(a) =

case a of
(7j) -»• j /3 , (7j,k) -»• j*k/5, _ -»• a/7

end

Repeated if ... t hen ... else ... ends can be written:

i fb
then c
else

ifb7

then c;

else
ifb"

then c"
end end end

But can be abbreviated:

if b then c
elsif b' then c!
elsif b"thenc"
end

using the elsif construct.

19.6 Bindings, Typings, Patterns and Matching

Pattern: ...; matrix, a mould; a figure in wood or metal
from which a mould is made for casting; ...

(1598) The Shorter Oxford English Dictionary
On Historial Principles [350]

This section can be skipped, but is written so as to be readable in and by
itself. Hence it repeats some of the material in earlier sections of this chapter,
albeit in a more general form.

19.6 Bindings, Typings, Patterns and Matching 441

19.6.1 The Issues

Earlier we dealt with the concepts of bindings, typings, patterns and matching
(Sect. 13.2.3 (sets), Sects. 14.4.1-14.4.2 (Cartesians), Sect. 15.2.3 (lists), and
Sect. 16.2.3 (maps)). We shall here summarise these and additionally consider
the construct of record patterns.

The two main issues are: first, that we need to express the choice of named
values of desired types, and for that we use the concepts of binding and typing;
Second, we need to express the decomposition of composite values into named
subcomponents, and for that we use the concepts of patterns and matching.

Syntactic Issues of Convenience

The concepts of binding, typing, pattern and matching, are not abstraction
concepts, they are merely technicality concepts of linguistic convenience of
expressibility.

Also, we shall not strictly follow RSL's formal syntax. Instead, we shall
generalise the syntax for expressing bindings and patterns, thereby coercing
the two to more or less coincide! First, however, we treat a notion of binding
forms, then the matchings necessary for these bindings to work as intended,
and finally the notion of typing.

19.6.2 An Essence of Bindings and Patterns

The three concepts, bindings, typings and patterns, are closely related.

Bindings

In a typical binding, for example,

let (a,(b,c)) = v in £(a,b,c,v) end

the clause let (a,(b,c)) = v is the binding. It defines the free variables a, b
and c of the pattern to value components of v which had better match the
left-hand side pattern (a,(b,c)).

Patterns

In a typical use of patterns:

case v of
(a,(b,true)) - • £;(a,b),
(a,(b,c)) - • £j(a,b,c),
(a,b) - • £*(a,b),

_ - • £v(v)
end

442 19 Applicative Specification Programming

each of the clauses (a,(b,true)), (a,(b,c)), (a,b) and_ , are choice patterns. The
full forms, for example, (a,(b,true)) ->> <^(a,b), are bindings as now outlined.

If the value expression v designates a pair whose second element is a pair
— whose second element is the truth value true — then a and b are defined
to be bound to the respective first element values in the evaluation of <^(a,b).

If the value expression v designates a pair whose second element is a pair
— whose second element is any value other than the truth value true — then
a, b and c are defined to be bound to the respective first and second element
values in the evaluation of £j(a,b,c).

If the value expression v designates a pair whose second element is a not a
pair, then a and b are defined to be bound to the respective first and second
element values in the evaluation of £&(a,b).

Otherwise Sv{y) is evaluated.
The previous four paragraphs explained aspects of a matching between

patterns and values. Note that sequential evaluation of the case clause: "From
top to bottom, left to right" permits proper selection of patterns and bindings.

Bindings and Patterns: Apparent Differences

Binding patterns, as explained in terms of the let clause, thus contain a re­
stricted form of pattern: We do not allow value literals (i.e., names of con­
stants), but we do allow "wildcards77: _. All free binding pattern identifiers are
distinct.

Choice patterns, as explained in terms of the case clause, allow their pat­
terns to contain value literals, both free and bound identifiers, and wildcards,
_. Distinct usages of binding and choice patterns are: Binding patterns are also
used, besides in let clauses, in quantified typings, see below. Choice patterns
are also used, besides in case clauses, in function parameter clauses, see be­
low. An example of the use of patterns in function parameter clauses is given
in Example 11.2.

Binding and Typing

We first introduced the concept of binding and typing in Sect. 9.3: V b,b':Bool,
where b and b' were bound to some value in Bool, and where V b,b':Bool rep­
resented a typing. Further examples were given in Sect. 9.5.2: [3] V x:X«E(x),
[4] 3 x:X«E(x), [5] 3 ! x:X»E(x). They represent three schematic typings.
We briefly and informally introduced the concepts of typing and binding on
Sect. 9.5.2.

• • •

In the following we shall treat the subject of bindings, typings, patterns and
matching more systematically.

19.6 Bindings, Typings, Patterns and Matching 443

19.6.3 Binding Patterns

By a binding we shall understand an association of identifiers with values.
Binding is thus a semantic concept. It is denoted by such syntactic concepts
as patterns, let and case ... of clauses.

Review of Earlier Material

Sections 13.2.3 (sets), 14.2.4 (Cartesians), 15.2.3 (lists), and 16.2.3 (maps)
have introduced the following schematic bindings:

[1] let {a_l,a_2,...,a_n} Us = Vset in ... end
pre: card Vset > n
assert: card Vset = n => s={}

[2] let (a_l,a_2,...,a_n) = product in ... end
pre: product — a Cartesian having exactly n components

[3] let (a_l,a_2,...,a_m)^ = Vlist in ... end
pre: len list > m
assert: len Vlist = m => £=()

[4] let [a_li->-b_l,a_2i->-b_2,...,a_ni-)'b_n] U m = Vmap in ... end
pre: card dom Vmap > n
assert: card dom Vmap = n => m=[]

In all of the above, the left-hand side identifiers indeed do designate free,
distinct identifiers, not arbitrary expressions. The "mystical" Ve refers, rather
informally, to the value of the expression e.

These identifiers are being bound to values by the definitions which the four
clauses prescribe. In the set decomposition, [1], the nondeterministic naming
of n arbitrary components and the remaining set is defined. In the Cartesian
decomposition, [2], the deterministic naming of the n specific components is
defined. In the list decomposition, [3], the deterministic naming of the n first
list elements and the remaining list is defined. In the map decomposition, [4],
the nondeterministic naming of n arbitrary definition set elements and their
map associated range elements and the remaining map is defined.

Only the Cartesian and the list bindings are part of the "official" RSL
syntax. The others are useful and expressive, but will not be accepted by the
RAISE tool set.

The schematic examples above can be pseudo formalised. First, we repeat
the above schematic bindings:

[1] let {a_l,a_2,...,a_n} U s = set in ... end
[2] let (a_l,a_2,...,a_n) = pro in ... end
[3] let (a_l,a_2,...,a_m)^ni?= list in ... end
[4] let [a_li->>b_l,a_2i->'b_2,...,a_n!->'b_n] U m = map in ... end

444 19 Applicative Specification Programming

If the set, product, list and map (expression) values are as shown below:

[1] set = {v_l,v_2,...,v_n} U sv
[2] pro = (v_l,v_2,...,v_n)
[3] list = (v_l,v_2,...,v_m)^rf
[4] map = [v_li-^w_l,v_2i->'W_2I...,v_ni-^w_n] U mv

then the bindings, the associations of the free left-hand side identifiers to
element values, are as further shown:

[1] setp = [a-l\->v-l,a-2^v-2,...,a-n\-tv-n,s\-tsv]
[2] prop = [a-l\-tv-l,a-2\-tv-2,...,a-n\-tv-n]
[3] listp = [a-l\-tv-l,a-2^v-2,...,a-m\-)'V-m,n£\-)'v£]
[4] mapp = [a-l\->v-l,a-2^v-2...„b-n\-tw-n]

U [b-l\-^w-l,b-2\-^w-2,...,b-n\-^w-n,m\-^mv]

The above thus motivates the use of the term 'binding': The p suffix-named
maps represent bindings of identifiers to values.

We have, for reason of pedagogics, used three type fonts above: The roman
formulas represent ordinary, albeit schematised (...)? RSL text. The sans serif
formulas represent schematic value definitions, using RSL to explain RSL. The
italic formulas represent semantic values implied by the ordinary RSL text,
again using RSL to explain RSL.

Record Binding Patterns

One form of binding remains to be introduced, one that uses the record binding
pattern:

[5] let mk_A(b,c,...,d) = v in £(b,c,...,d) end

Here we assume that the value designated by the expression v is of the type
designated by mk_A. Assume, for example:

type
A = = mk_A(/?:B,7:C,...,<5:D)

The binding let mkJ\(b,c,...,d) = v is only syntactically correct if v:A. The
effect of the binding is the association:

[5] recp = [b\->P(v),o->'y(v),...,di->5(v)]

19.6 Bindings, Typings, Patterns and Matching 445

General Forms of Binding Patterns

In all of the above schematic RSL examples we have only illustrated rather
simple patterns. Usually composite syntactic structures whose immediate el­
ements were free identifiers.

In a series of examples we will now go through a number of micro-steps. To­
gether they illustrate a version of a specification language type, value, binding
and pattern system — one very close to, but not exactly that of the predom­
inant specification language of these volumes. Each micro-step "settles" one
item of a development and its documentation.

Example 19.5 Informal Description of Binding Patterns: We now generalise
patterns, whether binding patterns or choice patterns, to have immediate
elements themselves be respective forms of patterns.

In narrative, i.e., in informal, but concise text we describe binding patterns
as follows: An identifier is a binding pattern. A set enumeration of a finite set
of one or more distinct binding patterns preceded, or usually followed, by
an optional simple identifier is a binding pattern. A Cartesian grouping of a
finite, non-empty list of distinct binding patterns is a binding pattern. A non­
empty, finite list of alternatively either finite, non-empty lists of one or more
distinct binding patterns and simple identifiers is a binding pattern. A map
enumeration of a finite set of one or more distinct pairs of binding patterns
preceded, or usually followed, by an optional simple identifier is a binding
pattern. A record expression consisting of an already defined constructor name
and a list of one or more binding patterns, is a binding pattern. A "wildcard"
(_) is a binding pattern. All free identifiers of a binding pattern must be
distinct. •

Example 19.6 Formal Description of Binding Patterns: The above narrative
can be formalised. We intersperse some schematic examples.

type
Id
B' = Bid | Bse | BCa | Bli | Bma | Bre | Wil
B = {| b:B' • wf_B(b) |}
Bid = = mk_nm(id:Id)

Ex.: a
Bse = = mk_se(se:B-set,on:Onm)

Ex.: {b_l,b_2,b_3}
Ex.: {b_i,b_j,b_k} U s

Onm = nil | Bid

BCa = = mk_Ca(ca:B*)
Ex.: (b_l,(b_21,b_22),(b_31,b_32,b_33,b_34))

Bli = = mk_li(tu:B*,on:Onm)

446 19 Applicative Specification Programming

Ex.: (b _ l , b _ 2) ^
Bma = = mk_ma(ma:(B ^ B) , o n : O n m)

Ex.: [b_l l^b_12,b_21h^b22,b_31^b_32]
Ex.: [b_ i l^b_ i2 ,b_ j l^b j2 ,b_k lh^bA2] U m

Bre = = mk_re(sn:Sn,ca:B*)
Ex.: mk_X(b_l,b_2,b_3)
Ex.: mk_Y(b_l)

Wil = = wildcard

E x a m p l e 19 .7 Formalisation of Well-formedness Constraints: Just looking
at binding pat terns , the only constraint to be formalised is the distinctness of
identifiers. Since pat terns may be recursively nested, and since the identifier
distinctness criterion applies across all levels of recursive embedding, we need,
after some reflection (i.e., analysis), to define a function which both checks
embedded pat terns for identifier distinctness, and which also yields, besides
the t ru th or falsity of identifier distinctness, the set of embedded identifiers.

There are three comments to make with respect to the specification given
next: (1) It exemplifies the use of choice pat terns in two forms: as function pa­
rameters (see the many definitions of the wf B function) and in the ca se clause
(see the definition of the wfBS function). (2) The definition does not work!
Well, of course it works, but one cannot define the semantics of a language in
itself, and this is what we seemingly t ry to do! So, if you believe it works, it
works. And, if you think it does not work, then it does not work! It is as simple
as that!2 (3) Jus t to define distinctness of all possibly and arbitrarily embed­
ded identifiers takes 37 lines of specification. Please consider the triviality of
expressing: All occurrence of identifiers in a binding pattern must be distinct,
and yet it takes more than 30 lines to define this. Hardly convincing — till
you consider programming it in Java! Many seemingly innocent requirements
tu rn out to become rather cumbersome to formalise, and sometimes, in fact,
usually — but not always — harder to program. On the other hand, once
formally specified, as here, "coding up" the S t a n d a r d ML, J a v a , C++, C#
or other programming language code becomes rather straightforward.

value
wf_B: B' - • B o o l
wf_B(b) = let (ids,tf) = wfB(b) i n tf e n d

2Try the following definition: An x is a y, and: A y is an x. If you thought 1
is a choice for y, then it is also a choice (solution) for x. But so would any entity
(mathematical or otherwise) be! Defining a language by using the same language
leads to the above forms of circularities.

19.6 Bindings, Typings, Patterns and Matching 447

wfB: B' - • Id-set x Bool
w£B(mk_nm(id)) = ({id},true)
w£B(mk_se(se,mk_am(id))) =

let (ids,tf) = wfS(se) in (ids U {id},tf A id£ ids) end
w£B(mk_se(se,nil)) = let (ids,tf) = wfS(se) in (ids,tf) end

wfS: B-set -» Id-set x Bool
wfS(se) = w£L((b | b:B' • b e se»

w£L: B'* - • Id-set x Bool
wfL(bl) =

let ts = (wfB(bl(i))|i in inds bl),
tr = V i:Nat • {i,i+l} e inds ts

=> let (idsi,tf)=ts(i), (idsj,_)=ts(i+l) in
idsi D idsj={} A tf end,

ns = U{let (ids,_)=ts(i) in ids end|i:Nat»i G inds ts} in
(ns,tr) end

w£B(mk_Ca(bl)) = w£L(bl)
wfB(mk_li(bl)) = wfL(bl)
wfB(mk_ma(bm,ni)) =

let wfm = (card dom bm = card rng bm),
(ids,tr) = wfL«bm(d)|d:B'-d e dom bm)),
(ids',tr') = w£L((bm(d)|d:Br.d e dom bm)),
(ids",tr") =

case ni of
mk_nm(id) - • ({id},id^ ids U ids')
nil —> ({},true) end in

(ids U ids' U ids",
wf A tr A trr A ids n ids' = {} A tr") end

wfB(mk_re(,bl)) = wfL(bl)

Comment

Since one cannot define the semantics of a language in itself, that is, by writ­
ing down some formulas that one thinks works, we have to resort to first
understanding an informal explanation, or one expressed in another, already
properly defined specification language (usually discrete mathematics). Once
we have understood that other description, we can then use that understand­
ing, to exemplify — as do the definitions of the above functions — uses of
bindings and binding and choice patterns.

448 19 Applicative Specification Programming

More to Come

We have yet to define the syntactic correctness of the binding clause: the
left-hand side binding pattern and the right-hand side expression. And we
have also to define the creation of a binding as exemplified in the schematics
examples given earlier. We will leave that to Sect. 19.6.5.

19.6.4 Typings

The "formal" story on typings will here be given rather briefly. There are
basically two forms of typings: In let clauses, and in quantified (predicate)
expressions. Specifically:

let (a,(b,c)):(Ax(BxC)) • P(a,b,c) in £(a,b,c) end
V (a,(b,c)):(Ax(BxC)) • ^i(a,b,c) =* P2(a,b,c)

Generally:

let Car_bin_pat : Car_typ_exp • Pre.exp in ... end
V Car_bin_pat : Car_typ_exp • Pre.exp => Pre.exp

Thus we allow only simple binding patterns involving at most Cartesian types,
or, as shown next, just simple typings:

let a: A • Pi (a) ^ P2(a) in £(a) end
Va:A - P i (a) => P2(a)

In all the typings the implication may be omitted:

let a:A • V(a) in £(a) end
V a:A • V(a)

19.6.5 Choice Patterns and Bindings

In this section we will present a simplified version of RSL's type/value match­
ing concept: We will not take into account any notion of subtypes.

Example 19.8 Choice Patterns and Bindings: Binding and Value Syntaxes:
To arrive at choice patterns we generalise binding patterns as follows: Wher­
ever an identifier may occur (as in binding patterns) we allow values to occur.
A binding is now a pair: Either a binding pattern or a choice pattern, and a
value. A formal syntax for choice patterns and bindings is given next.

19.6 Bindings, Typings, Patterns and Matching 449

type
Id, Wild
Bind' = C x VAL
Bind = {| (c,v):Bind' • wf_Bind(c,v) |}

C = Cid | Cse | CCa | Cli | Cma | Cre | VAL | Wil
C = {| c:C • wf_C(c) |}
Cid = = mk_ccn(id:Id)
Cse = = mk_ccs(se:C-set,oc:OC)
OC = nil | Cid
CCa = = mk_ccc(ca:C*)
Cli==mk_ccl(li:C*,oc:OC)
Cma = = mk_ccm(ma:(C ^C),oc:OC)
Cre = = mk_ccr(sn:Sn,ca:C*)
Wil = = wildcard

VAL = AtV | SeV | CaV | LiV | MaV | ReV
AtoV = Intg | Boolean | Character | String
Intg :: Int, Boolean :: Bool
Character :: Char, String :: Text
SeV :: VAL-set
CaV :: VAL*
LiV :: VAL*
MaV :: VAL ^ VAL
ReV :: sn:Sn cl:VAL*

Comments

Well-formedness of choice patterns is as for binding patterns: Distinctness of
all identifiers, and, in addition, well-formedness of values. Well-formedness
of bindings amounts to well-formedness of patterns, well-formedness of values
and structural compatibility between the left-hand side pattern and the right-
hand side value. •

Example 19.9 Choice Patterns and Bindings: Type Syntax: To define well-
formedness of values we define first a notion of value type. Based on that we
then define well-formedness of values. But first, atomic values are well-formed.
All values of a set value must be of the same value type. All values of a list
value must be of the same value type. All values of the definition set of a map
value set must be of the same value type. All values of the range set of a map
value set must be of the same value type. All value components of a record
value must be well-formed.

type

450 19 Applicative Specification Programming

Typ = Aty | Sty | Cty | Lty | Mty | Rty
Aty = = integer | boolean | character | string
Sty :: Typ
Cty :: Typ*
Lty :: Typ
Mty :: d:Typ r:Typ
Rty :: s:Sn lt:Typ*

Example 19.10 Choice Patterns and Bindings: Value Type Extraction:
xty extracts the type of a non-void value:

value
xty: VAL H> Typ
xty(v) =

case v of
mk_Intg(_) —> integer,
mk_Boolean(_) —> boolean,
mk_Character(_) —> character,
mk_String(_) —> string
mk_SeV(vs) - •

case vs of {}—^chaos v U vs'—>*mk_Sty(xty(v)) end
mk_CaV(vl) - • mk_Cty((xty(vl(i))|i in inds vl))
mk_LiV(vl) ->

case vl of ()—>-chaos,v ^ vl'—>-mk_Lty(xty(v)) end
mk_MaV(vm) -^

case vm of
[]-)-chaos,[d^r] U vm'-»mk_Mty(xty(d),xty(r))

end
end

Example 19.11 Choice Patterns and Bindings: Formalisation of Well-
Formedness:

value
wLBind: Bind' - • Bool
wf_Bind(c,v) = wf_C(c) A wf_VAL(v) A wfBind(c,v)
wf_C: C —> Bool /* similar to wf_B */

wLVAL: VAL -> Bool
wf_VAL(v) =

case v of

19.6 Bindings, Typings, Patterns and Matching 451

mk_SeV(vs) -> V v',v":VAL • {v',v"} C vs
=> wLVAL(v') A wf_VAL(v") A xty(v') = xty(v")

mk_Ca(vl) - • V i:Nat • i e indx vl => wf_VAL(vl(i))
mk_LiV(vl) - • V i,i':Nat • {i,i'}Cinds vl

=> wf.VAL(vl(i)) A xty(vl(i)) = xty(vl(i'))
mk_MaV(vm) -> V v,v':VAL- {v,v'} C vs

^ wLVAL(v') A wf_VAL(vm(v/))
A xty(d)=xty(d') A xty(vm(d))=xty(vm(d'))

_ —y t rue
end

wfBind: Bind' x VAL -> Bool

w£Bind(mk_ccn(id),v) = t rue ,
w£Bind(wildcard, v) = t rue

w£Bind(mk_ccs(cs,_),mk_SeV(vs)) =
card cs < card vs A
let cl = mklist(cs), vl = mklist(vs) in
3 im:IM «dom im = inds cl A rng im C inds vl

=> V i:Nat • i e inds cl => wfBind(cl(i),bl(bi(i))) end

mklist: (VAL|C)-set ->- (VAL|C)*
mklist(vs) =

if vs={} then () else let {v} U vs' in vs in (v)"mklist(vs') end end

Since we are allowed to have different binding patterns for distinctly (to be
nondeterministically) selected set value elements we introduce a technicality:
Make the sets into lists and postulate a bijective index map. The idea is
that if the binding is well-formed, then there exist such choice pattern and set
element value lists and a bijection between choice/values that are well-formed.

type
IM' = Na t - m - Na t
IM = {|im:IMr. wLIM(im) |}

value
wf_IM: IM' - • Bool
wfJM(im) =

dom im={l..card dom im} A
card rng im = card dom im

wfBind(mk_ccc(cl),mk_CaV(vl)) =
len cl = len vl A
V i:Nat • i e inds cl

=> wfBind(cl(i),vl(i))

452 19 Applicative Specification Programming

wfBind(mk_ccl(cl,J,mk_LiV(vl)) =
len cl = len vl A
V i:Nat • i e inds cl

=> wfBind(cl(i),vl(i))

w£Bind(mk_ccm(cm,_),mk_MaV(vm)) =
card dom cm < card dom vm A
3 vm',vm":MaV •

vm = vm7 U vm" A
card dom cm = card dom vm' =>

wf_recursive_descent(cm,vm')

wf_recursive_descent: (C j ^ C) x MaV ->> Bool
wf_recursive_descent(cm,vm)

3 c:C,v:VAL • c G dom cm A v G dom vm
=> w£Bind(c,v) A w£Bind(cm(c),vm(v)) A

wf_recursive_descent(cm \ {c},vm \ {v})
pre card dom cm = card dom vm

w£Bind(mk_ccr(sn,cl),mk_ReV(sn/,vl)) =
sn = sn' A len cl = len vl A
V i:Nat • i G indx cl =>

wffiind(cl(i),vl(i))

Example 19.12 Choice Patterns and Binding: Formalisation of Binding:
Any value can be bound to a choice pattern identifier. A wildcard binds

nothing. All bindings depend on their a priori well-formedness. This is es­
pecially relevant for set and map bindings. Their nondeterministic nature is
reflected in the definition, below, of their binding, in much the same way
as for their well-formedness. A binding syntactically is a pair of a syntactic
pattern and a semantic value, while semantically it is a semantic denotation,
here modelled, obviously, as a map from syntactic identifiers to values. Note
how the Bind function "worms" its way into embedded identifiers, finding
their associated value, bringing out the resulting binding, while summing up
(union-ing) all contributions ("at outer levels").

type
BIN = Id j * VAL

value
Bind: C x VAL -> BIN
Bind(mk_ccn(id),v) = [idi-^v]
Bind(wildcard,v) = []

19.6 Bindings, Typings, Patterns and Matching 453

Bind(mk_ccs(cs,on),mk_SeV(vs)) =
let cl = mklist(cs), vl = mklist(vs),

im:IM • dom im=inds cl A rng imCinds vl
=> V i:Nat • i e inds cl

=> w£Bind(cl(i),bl(bi(i))) in
U { Bind(cl(i),vl(i)) | i in inds cl }
U case on of

n i l - > [] ,
mk_nm(id)—)-[idi-)'{vl(i)|i:Nat«i G inds vl \ rng im}] end end

Bind(mk_ccc(cl),mk_CaV(vl)) = U { Bind(cl(i),vl(i)) | i in inds cl }

Bind(mk_ccl(cl,on),mk_LiV(vl)) =
U { Bind(cl(i),vl(i)) | i:Nat • i e inds cl }
U case on of

nil - • [], mk_nm(id) ->- [idi-+(vl(i)|len cl<i<len vl)] end

Bind(mk_ccm(cm,on),mkJVIaV(vm)) =
let (/),vm') = recursive_bind(cm,vm) in
case on of nil —> [], mk_nm(id) —> [idi-^vm'] end
U p end

recursive_bind: (C ^ C) x MaV - • BIN x MaV
recursive_bind(cm,vm) =

if cm = [] t hen ([],vm) else
let c:C,v:VAL • c G dom cm A v G d o m vm

=> w£Bind(c,v) A w£Bind(cm(c),vm(v)) in
let cv/9 = Bind(c,v),

(restp,vmf) = recursive_bind(cm \ {c},vm \ {v}) in
(cv/> U rest/9,vm')
end end end

Bind(mk_ccr(_,cl),mk_ReV(_,vl)) = U { Bind(cl(i),vl(i)) | i in inds cl }

Some Observations

In the examples above, you may have observed that we defined Bind in terms
of a set of equations:

Bind(mk_ccn(id),v) = [idi-^v]
Bind(wildcard,v) = []
Bind(mk_ccs(cs,on),mk_SeV(vs)) = ...

454 19 Applicative Specification Programming

Bind(mk_ccc(cl),mk_CaV(vl)) = ...
Bind(mk_ccl(cl,on),mk_LiV(vl)) = ...
Bind(mk_ccm(cm,on),mk_MaV(vm)) = ...
Bind(mk_ccr(_,cl),mk_ReV(_,vl)) = ...

You may then have observed that we have not specified, in the definition of
Bind, what happens if a pair of arguments to that function does not "fit" the
patterns actually dealt with. What about the others? Well, first of all, the
pre-condition for invocation of Bind(c,v) is that wfBind(c,v) holds. That takes
care of all the others. Second, we could define Bind by the case construct —
obviously also using choice patterns:

Bind(c,v) =
case (c,v) of

(mk_ccn(id),v) —> [idi-Kv],
(wildcard,v) —>•[],
(mk_ccs(cs,on),mk_SeV(vs)) —>>...,
(mk_ccc(cl),mk_CaV(vl)) - • ...,
(mk_ccl(cl,on),mk_LiV(vl)) -> ...,
(mk_ccm(cm,on),mk_MaV(vm)) ->> ...,
(mk_ccr(_,cl),mk_ReV(_,vl)) - • ...,
_ —> chaos end

making it clear what happens! The latest definition also shows that the two
styles are interchangeable.

19.6.6 Summary

This section, especially the formalisations of pattern, value and binding well-
formedness, the formal concepts of values, their types and type extraction (ob­
servation) functions, and the final definition of the binding function, amounted
to a rather large section. On one hand, we introduced the RSL concepts of pat­
terns and bindings so that we could make free and good use of them in our
abstractions, while, on the other hand, we described the structure (syntax)
and meaning (semantics) of these specification linguistic notions. That gave
rise to a lengthy section, but then it gave us a chance to illustrate how we
describe and formalise a classic language problem.

We remind the reader that our "story", in this section, on types is a
simplified version of RSL's type concept: We did not include the concept of
subtypes in our model.

19.8 Bibliographical Notes 455

19.7 Review and Discussion

19.7.1 General

We have briefly reviewed what we could consider the expression sublanguage
of RSL. We use the term 'expression sublanguage' to signal that, in RSL, there
is really no difference between what we normally consider to be purely value-
returning expressions and purely state-changing (simply side-effect-causing)
statements. In fact, we illustrated a clause, skip, which designates the (void)
Unit value of no side-effect.

19.7.2 Principles and Techniques

This section presents principles that spring from Sect. 19.6.
Modelling of types and values and their relations were illustrated in Ex­

ample 16.8 and discussed in Sect. 19.6.5. We developed a concrete syntax
for values, which are expected to be of the defined types, functions for ex­
tracting, from a value, "its" type, functions for expressing whether a value is
well-formed ("in and by itself") and functions for expressing whether a value
is well-formed wrt. a given type.

As a modelling principle related to maps, we mentioned the concepts of
configurations as consisting of contexts and states. In the present section con­
texts arose again as the concept "constructed" to maintain bindings: associa­
tions of identifiers to values. Hence we can enunciate two principles:

Principles. Typed Values: When modelling values consider their type. If
values are typed (we say strongly typed), then make sure that there is a
homomorphism between values and types, that a function can be defined
which determines the type of any value, and that a well-formedness predicate
can be expressed which examines whether a value is of a given type. •

Principles. Binding Contexts: When a phenomenon is analysed into having
a — contextually speaking — constant identity in the form of a name and
value, in fact, when several such phenomena are so analysed, then — for
each suitable class of such phenomena — model these facts by establishing a
context, modelled as a map from phenomena and attribute names to values.

A phenomenon is said to be contextually a constant, when, within a certain
— temporally "long" — period of observation, or, say, within a spatially
"long" description (or prescription) — the phenomenon stands in the same,
fixed relation between name and value. •

19.8 Bibliographical Notes

Applicative specification programming is a form of functional programming.
Current functional programming languages are constrained to have their pro-

456 19 Applicative Specification Programming

grams be subject to interpretation or compilation and execution by machines.
The RSL applicative programming subset is not so constrained.

Leading functional programming languages are Standard ML [389] and
Haskell [498]. Exciting textbooks on functional programming are [50,51,261,
474].

19.9 Exercises

The function definitions of the exercises of this section are all to be expressed
in the functional, i.e., applicative style.

Exercises 19.1, 19.2 and 19.3 are followed-up by Exercises 20.1, 20.2 and
20.3 and 21.5, 21.6 and 21.7, respectively.

Exercises 19.4, 19.5 and 19.6 continue our line of exercises anchored in
Appendix Chap. A.

• • •

Exercise 19.1. The Grocery Store, I. You are to complete the answers to
the referenced exercises by providing a formal model of entities and functions.
Thus you must formalise a notion of grocery store.

Hints: Follow, in your initial modelling the following narrative, slavishly:

1. A grocery store consists of a store, a warehouse, a catalogue and a check­
out.

2. The store consists of a set of one or more uniquely named shelf racks (i.e.,
set of shelves).

3. Each shelf rack (i.e., each set of shelves) consists of a set of one or more
uniquely named (shelf) segments.

4. A shelf contains zero, one or more items of merchandise of the same type.
5. From segment identifiers one can observe the type of merchandise (to be)

displayed on the identified segment.
6. From an item of merchandise one can observe its sales price.
7. A warehouse consists of one or more uniquely merchandise-typed bins.
8. Each bin consists of one or more items of merchandise of the type of the

bin.
9. A catalogue records for every merchandise type the following informa­

tion: Sale price, purchase price, gross (number of items when ordering),
recommended minimum amount of items on shelf that triggers replenish­
ment, set of names of wholesalers from which this type of item can be
ordered and on which shelf racks and segments items of this type shall be
displayed.

10. A checkout (register) can be modelled just by the cash (i.e., monies) it
contains.

11. A client can be modelled by a shopping cart (which may be empty), a
purse (of monies) and a bag (which may be empty).

19.9 Exercises 457

12. Carts and bags can be modelled by the number of items that they contain
of respective types.

13. A wholesaler can be modelled by the number of items the wholesaler stores
in the inventory, per type, and a cash register.

You are then to model the visit of a client to the grocery store as a sequence
of one or more selects, followed by a checkout. Please define the syntactic type
of visits, that is, a script which for every type of merchandise lists the quantity
to be selected. (That script is either prepared beforehand, by noting it on a
scrap of paper or in the mind, or "entries" in the script occur as the result of
seeing merchandise on the shelf.) Define the semantics of a fixed visit script.
For a client to select merchandise from a store shelf segment is only meaningful
if that shelf segment contains at least one item of merchandise. An out-of-stock
item is treated as "skipping" that script entry.

Hints: We suggest you try to structure the visit function as follows: The
client with the visit script goes around, i.e., visits, the entire grocery store:
First (i) selecting one or more items of merchandise, as per the script, from
shelf segments, and then (ii) checking out. The result is a changed grocery
store (less merchandise on the shelves, more money in the cash register), and
a client (with en empty cart, a full bag and some less money!). For the client
to select (i.e., transfer from shelf segments to the shopping cart) items of
merchandise, listed in the script by item and quantity, that client must first
identify a shelf rack and segment carrying that type of merchandise. The
selection is nondeterministic since there may be more than one shelf segment
carrying a certain type of merchandise. Selections proceed one by one: The
client selects a next type of item from the script to identify in the store, selects
the amount stated, or less if there is not enough, and decreases the segment
quantity listed in the script by the amount selected. If all have been selected,
then the item is stricken from the script. If none can be selected the item is
also stricken.

Next you are to model the replenishment of store shelf segments from the
warehouse, and warehouse shelf segments from wholesalers. Guess yourself
how such replenishments could take place, and hence be modelled! See, how­
ever, the hint below.

A grocery store can then be modelled by a sequence of one or more visits,
henceforth referred to as shopping, alternating with replenishment actions. You
can model shopping as a strict sequence with the assumption that there is
only one checkout counter, and that clients are thus served sequentially. The
obvious possibility that clients may concurrently be selecting from shelves
is abstracted, and the possibility that more than one client simultaneously
attempts to and/or could possibly succeed in selecting merchandise from the
same shelf segment is ruled out. Specify the syntactic type of client shopping
and define the semantics of such a sequence of visits. Make sure that the
grocery store staff keeps shelf segments replenished.

458 19 Applicative Specification Programming

If you believe that the above description is incomplete, please state so, and
provide the completing text.

Hint: To model the nondeterminism of either doing something, a little
bit, or doing something more of the same, cf. replenishment, we suggest the
following schema:

value
transition: X —> X
transition (x) =

if stop_condition_met(x)
then x
else let x' = one_step_transform(x) in x' [\ transition (x') end

end

The value of expression a \\ b is either a or b — the choice is left internally
nondeterministic (i.e, left open).

The present exercise is to be solved in the imperative style in Exercise 20.1,
and in the concurrent style in Exercise 21.9.

Exercise 19.2. The Anarchic Factory, I. Please read the problem formulation
texts of the above referenced exercises carefully. You are to model the anarchic
factory. A suggestion that might be worth following is to define a state which
consists of four components: (i) a set of uniquely identified production cells,
(ii) a set of uniquely identified fork trucks, (iii) a parts inventory and (iv) a
product warehouse.

Also define plan scripts, i.e., the truck logistics (one per truck) and the
production cell schedules (one per cell). Collect all scripts into the production
plan.

Follow, in your initial modelling, the following narrative, slavishly:

Hints on Modelling Factory Configurations

1. A factory consists of an inventory, a set of uniquely identified trucks, a
set of uniquely identified production cells and a warehouse.

2. An inventory consists of parts.
3. A production cell consists of an in-tray, an "agent capable of performing

an operation" and an out-tray.
4. In-trays and out-trays contain parts. The out-trays contain only parts of

one kind, i.e., with all having the same part number.
5. An "agent capable of performing an operation" exhibits two things: the

signature of the operation, and the operation itself.
6. The signature of an operation lists, for each incoming part number, how

many of that part it takes to perform the operation, and the part number
of the resulting part.

7. The operation is a function over parts, and into a part, of its signature.
8. By parts we may understand the following model, something that for an

actual part lists its quantity, i.e., number of occurrences in parts.

19.9 Exercises 459

9. We may model a truck as the parts it is carrying to either a named cell or
to the warehouse, that is: It maps (some) cell identifiers into parts, and/or
a warehouse enumerated token likewise into parts.

10. The in-tray of a cell should only contain parts commensurate with the
signature of its operation.

11. Similarly for the out-tray.

Hints on Modelling the Production Plans

1. A production plan consists of a cell production schedule and a truck sched­
ule.

2. A cell schedule lists, for some cells, the quantity of parts to be produced
by that cell.

3. A truck schedule has two things: which parts to convey to which produc­
tion cells, and which parts to convey between which cells, or between cells
and the warehouse.

Hints on Modelling Factory Behaviours

1. A factory transition, from one to a next, possibly changed, state can be
expressed as follows:

2. A factory has either fulfilled its plan or not.
3. If not fulfilled, then

(a) Either (i) there are some trucks and cells which, according to the plan,
yet have work to do, or (ii) there are just some trucks, or (hi) just some
cells, which, according to the plan, yet have work to do;

(b) or (iv) there are some trucks, or (v) just some cells, which, according
to the plan, yet have work to do, or (vi) there are no "live" trucks or
cells.

4. Due to "programming" notation limitations, one could formulate the fac­
tory behaviour as just done above: Either/or (i), or (ii), or . . . or (vi)!

5. For each of the three kinds (i, ii=iv, iii=v) of "liveness" we then define
separate transition functions.

6. Each of the possibly alternatively expressed transitions (i-v) continues
into another factory behaviour.

7. Thus the factory evolves, either toward dead-lock or to fulfilling its plan!

Hints on Modelling Truck Behaviours

1. Either a truck is loading, from the inventory or from cells,
2. or it is unloading, onto cells or the warehouse.
3. The truck behaviour expresses this choice internal nondeterministically.

We warn you: there are many subsidiary functions to deal with. Define at
least the major ones and one of the "minor" ones.

Hints on Modelling Cell Behaviours

460 19 Applicative Specification Programming

1. For every valid operation of a production cell its production schedule is
reduced by one, its in-tray has that many fewer parts which are needed
to perform the operation and its out-tray has one more resulting part.

2. An operation is valid if its production schedule is not exhausted and if
there are the necessary input parts for its operation. The production cell
of a valid operation is said to be 'live'.

3. In any step, i.e., transition, of the factory, zero, one or more live production
cells may be selected for (valid) operations.

The present exercise is to be solved in the imperative style in Exercise 20.2
and in the concurrent style in Exercise 21.10.

Exercise 19.3. The Document System, I.
This exercise is formulated in several iterations. Narrative descriptions of

the universe of discourse alternate with problem statements.

1. Iteration I:

(a) The document handling system consists of:
i. A finite set of one or more uniquely identified places (cum institu­

tions, public administration offices, enterprises, businesses, etc.),
ii. and a finite set of uniquely identified citizens.

(b) From places one can observe the following three kinds of entities:
i. Either a non-activated, or an activated directory,

ii. a set of one or more uniquely identified staff members
hi. and a set of uniquely identified locations.

(c) There are the two notions of
i. documents, and

ii. dossiers;
hi. the latter are (i.e., contain) sets of zero, one or more documents.

(d) A directory can be thought of as a hierarchy that maps directory
names onto sets of documents and/or dossiers and subdirectories.

(e) Documents as well as dossiers are uniquely identified.
(f) Given a location, one can observe whether it contains documents and

or dossiers.
(g) From a document one can observe its unique identification,
(h) From a dossier one can observe its unique identification.

2. Please formalise the concepts of system, places, directories, etc.

(a) A document is either a master document, or a copy of a document, or
it is a version of a copy.

(b) From a document one can observe whether its most recent status is
that of a master, a copy or a version.

(c) From a copy or a version one can observe the document from which
it was copied, respectively on the basis of which it was edited.

(d) By a document event we mean the location and time of its creation,
copying, or editing.

19.9 Exercises 461

(e) From a document one can observe the ("historic", most recent) iden­
tity of the location of its creation, copying or editing, whichever is the
most recent event.

(f) From a document one can observe the ("historic", most recent) iden­
tity of the person who created, copied, or edited the document,
whichever is the most recent event.

(g) From a document one can observe the ("historic") time its creation,
copying or editing, whichever is the most recent event.

3. Please formalise documents as sorts with observers.

(a) Thus one can trace the ("historic") sequence of documents, and their
location and time of document event, from a present document, back
through all previous documents to its ancestor master document.

4. Please formalise the document history function.
5. Iteration II:

We observe, in the descriptions given so far, a few loose ends. So we
continue.
To the above narratives join:
(a) A document or a dossier, i.e., also any document in a dossier, is

i. either residing in a directory, and then in at most one,
ii. or it is "on loan" to, or with some, i.e., possessed by a, person

(possibly via other persons),
hi. or it is residing in a location, in (or at) which a person has put it.

The above description is applicable also to documents and dossiers
which have so far not been associated with a directory.

(b) From a document or a dossier, i.e., also from any document in a
dossier, one can observe whether it belongs to, and if so then where
in, a directory by place identification and directory path name.

(c) Documents or dossiers absent from a directory may be so indicated,
and the indication may either say that its whereabouts are unknown,
or that it is with some person or at some location in some place, or
with a citizen.

6. Please formalise the revised directories and person, location and document
and dossier observers.

7. Iteration III:
We need to define some notions:
• Descendant:

* A version, d!, of a document, d, is a descendant of d.
* A copy, <i;, of a document, d, is a descendant of d.
* If a document d! is a descendant of a document d, and document

d" is a descendant of d', then d" is a descendant of d.
• Ancestor:

* A version, d!, of a document, d, has d as its ancestor.
* A copy, <i;, of a document, d, has d as its ancestor.

462 19 Applicative Specification Programming

• If a document d is an ancestor of a document d', and document d'
is an ancestor of d", then d is an ancestor of d".

• "Belong" to: If one from a document can observe a place identification,
Pi, and a directory path, 7rPi, then that document is said to belong to
the directory at pi and in the position designated by the directory path
7Tpi.

Now to some more narrative:

(a) a document and all its descendants, if any of these belong to a direc­
tory, at some directory position (by place identifier and path name),
then all such documents "belong" to that same directory position —
whether actually present or absent.

(b) How that is handled, in the domain, is sketched now:
i. If a master (including any of its versions) is made to "belong"

to a directory position, before any copies have been made, then
all such copies (and versions) will inherit knowledge about that
directory position.

ii. If a copy (including any of its versions) is made to "belong" to a
directory position, before any copies have been made, then all such
copies (and versions) will inherit knowledge about that directory
position.

hi. Thus it is entirely possible for a copy to "belong" to a directory
position, without its ancestors doing so.

iv. And it is entirely possible for two different copies — deriving
from some common, i.e. "shared" ancestor document — to "be­
long" to different directory positions — provided their common,
i.e. "shared" ancestor document did not "belong" to a directory
position.

(c) One might think of other rules governing the relationship between, on
one hand, documents and dossiers, and, on the other hand, directories:

i. Either no rules whatsoever: Documents and dossiers can "belong"
anywhere without restrictions, or:

ii. Ancestors to some copy may belong to some position in a directory
in one place, while the copy of its descendants may belong to
another position the same directory or some other directory in
another place.

8. Please formalise well-formedness constraints.
9. Document, dossier and directory operations:

(a) Staff and clients create documents, which they then possess.
(b) Staff create dossiers, initially empty, which they then possess.
(c) Staff may copy and edit documents they possess (and that they then

continue to possess).
(d) Clients may pass own, created, i.e., possessed documents onto place

staff, as master documents. The client no longer possesses the passed
document, but the place staff person does.

19.9 Exercises 463

(e) Whether clients have "copied" such or other documents is of no con­
cern to the present document system.

(f) Staff may insert documents in dossiers. They must possess both the
document and the dossier.

(g) Staff may insert documents and dossiers in directories. They must
initially possess the document or the dossier. After the insert they no
longer possess the document or the dossier.

(h) Staff may "borrow" (i.e., "remove", albeit thought of to be "temporar­
ily") documents or dossiers from directories. After the borrow the staff
person possesses the borrowed document or dossier,

(i) Staff may put documents or dossiers (they possess) "away" in loca­
tions, after which they no longer possess the document or dossier.

(j) Same or other staff may take possession of documents and dossiers
from locations.

(k) Staff may send (possessed) documents and dossiers from "their" place
to staff at other places. Possession changes from one person to another
person.

(1) Staff may send such (possessed) documents and dossiers (i.e., "on
loan" from other places) to yet other staff at yet other places.

(m) Staff may return (possessed) documents and dossiers sent from other
places back to staff persons at places of origin or from where they were
received (i.e., "last sent /last received").

(n) Documents and dossiers may be shredded.
(o) Staff may send (possessed) documents (not dossiers) to clients, at

which point these documents cease to exist within the system of places.
(And they can never be returned from clients!)

10. Please formalise the command syntax and the command interpretation func­
tions.

Exercise 19.4. An Applicative Domain Model of Transportation Nets. We
refer to Appendix A, Sect. A.l, Transportation Net.

We summarise a narrative of Transportation Nets: Transportation nets
consists of a set of uniquely identified segments, a set of uniquely identi­
fied connections (or connectors). For each segment (represented by its unique
identifier) there are one or two (direction) triplets which describe, besides the
segment identifier, the identifiers of the two connections the identified segment
is connected to: One if a one-way segment, two if a two-way segment. (We may
call this part the structure part of a transportation net.) Segments have two
kinds of attributes: static and dynamic. The static attributes include segment
names, segment length, and other. The dynamic attributes include whether
the segment is open or closed in one or the other direction, or both. Connec­
tions have two kinds of attributes: static and dynamic. The static attributes
include connection name. The dynamic attributes include what we could call

464 19 Applicative Specification Programming

the state of the semaphore: for each identifier of a segment incident upon the
connection there is associated a possibly empty set of identifiers of segments
emanating from that connection.

1. Formalise a concrete type system and indicate well-formedness constraints
for the transportation nets described above.

Over the lifetime of a transportation net it gets built up: from an "empty net"
(no segments and no connections, and hence no structure), segments and con­
nections are added and removed, and the states of segments and connections
change. We will treat these changes as the result of performing certain oper­
ations on a net. Each of these operations will be represented by a command.
The interpretation of the command then brings about the change.

2. Define the syntax and semantics of the command which initialises a trans­
portation net.

3. Define the syntax and semantics of the command which adds a segment to
a transportation net. State appropriate conditions that must be satisfied
before successful interpretaion of this command.
To add a segment three possibilities exist: One adds a segment whose
connector identifiers are connector identifiers of the net, so one has to
state the segment and two connector identifiers. Or one adds a segment
one of whose connector identifiers is a connector identifier of the net, so one
has to state the segment, a connector identifier and a connector. Or one
adds a segment whose connector identifiers are not connector identifiers
of the net, so one has to state the segment and two connectors.

4. Define the syntax and semantics of the command which removes a seg­
ment to a transportation net. State appropriate conditions that must be
satisfied before successful interpretaion of this command.

5. The lifetime of a net can thus be represented by a sequence of commands
as described above. Formalise such a sequence and express appropriate
well-formedness conditions on such sequences.

Exercise 19.5. An Applicative Domain Model of Container Logistics. We
refer to Appendix A, Sect. A.2, Container Logistics.

We summarise a narrative of Container Logistics: There is given five sets
of phenomena: A set of uniquely named container terminals, a set of uniquely
named container ships, a set of uniquely identified containers, a set of uniquely
named shipping routes, and a set of uniquely named trucks. A container ter­
minal consists of a quay where zero, one or more container ships may be
docked, and of a container pool (a storage area) where zero, one or more con­
tainers may be temporarily stored. Container ships and container terminal
pools consist of one or more uniquely named bays, each bay consists of one or
more uniquely named rows, and a row consists of one or more uniquely named
(container) stacks. A container stack consists of zero, one or more containers.
A container consists of a container box, with or without freight, and, if with

19.9 Exercises 465

freight, then the container box also carries a waybill. A waybill consists of
the unique container identifier, its own unique waybill identifier, and a list of
sailings. Each sailing is a triple: The name of a container ship and the pair of
names of container terminals served by the named ship and from, respectively
to which the container identified by the waybill is to be transported. The list
of sailings must be well-formed: If two or more sailings, then the "to" terminal
named in a "non-last" entry of the list must be the same as the "from" termi­
nal named in the next entry of that list. A shipping route is a pair: The name
of a container ship and a route. The route is a list of two or more trips. A trip
is just the name of a container terminal. A route is subject to well-formedness:
If ti are names of container terminals, then (tl,t2,...,tn—l,tn,tn—l,...,t2,tl) is
a well-formed route of n container terminal visits, on an outward journey, and
n—1 container terminal visits, on a return journey. Trucks carry at most one
container: either from an outside to a container terminal pool area, or to a
container ship, or from a container ship or a container terminal pool area to
an outside.

1. Define a concrete type system for the above container logistics system
components.

2. Indicate appropriate well-formedness predicates.

At some stage, i.e, in some state of the container logistics system, a number
of container ships are plying the waters between container terminals according
to their shipping route, and a "remaining" number of container ships are
docked in container terminals — also according to their shipping route. While
in container terminals containers — so designated by their waybills — are
being moved between container ships and container terminal pools: either
unloaded or loaded.

Define the syntax and semantics of the following six movement commands:

3. Move a container from a ship to the pool. The locations on the ship and
in the pool are identified by bay/row/stack/cell identifiers.

4. Move a container from a container terminal pool to a ship. The locations
on the ship and in the pool are identified by bay/row/stack/cell identifiers.

5. Move a container from a truck to a ship. The location on the ship is
identified by bay/row/stack/cell identifiers.

6. Move a container from a truck to a container terminal pool. The location
of the pool area is identified by bay/row/stack/cell identifiers.

7. Move a container from a ship to a truck. The location on the ship is
identified by bay/row/stack/cell identifiers.

8. Move a container from a container terminal pool to a truck. The location in
the container terminal pool is identified by bay/row/stack/cell identifiers.

and of the following three ship movement commands:

9. A ship at sea requests permission to enter and dock at a container termi­
nal. The request can either be fulfilled in which case the ship is informed

466 19 Applicative Specification Programming

of its quay location, or the request can not be fulfilled in which case the
ship is so informed.

10. A ship which has been granted a request for permission to enter and dock
at a container terminal enters and docks at the informed location.

11. A ship leaves its quay location and the container terminal.

Quay locations are sequences of adjacent quay positions. (The quay consists
of a non-zero number of quay positions. Each container ship, when docking,
takes up a fixed number of quay positions.

Exercise 19.6. An Applicative Domain Model of Financial Service Indus­
tries. We refer to Appendix A, Sect. A.3, Financial Service Industry.

We assume a bank to be represented by the following three applicatively
expressed components: (i) a client catalogue which to every client of the bank
lists two things: (i.l) some administrative information about the client (name,
address, etc.) and (i.2) the one or more account numbers that this client has
with the bank; (ii) an account catalogue which for every account of the bank
lists two things: (ii.l) some computational information about the account:
(ii.l.a) whether it is a demand/depost account or a mortgage, or some other
form of account, (ii.l.b) what the present interest3 and yield4 rates are for
this account, etc. and (ii.2) which one or more clients (share) this account;
and (iii) the accounts which for every account number associate an account
balance, that is, a number which if it is positive indicates how much money
the client(s) has in this account and which if it is negative indicates how much
money the clients owe the bank.

1. Define the command syntax for the following ten transactions:
(a) open and
(b) close an account,
(c) deposit into,
(d) withdraw from,
(e) accrue yield, and
(f) pay interests on a deposit/demand account, partially or fully
(g) repay (including paying interests and fees) on, and
(h) increase a mortgage (i.e., a loan) account;
(i) transferring funds between two accounts; and
(j) obtain statement of transactions since last obtaining such a statement.

2. Define the meaning of some of these commands, for example commands
numbered a, c, g, i and j .

3The interest rate is for the interest charged if the account balance is negative,
as it would normally be for a mortgage or a loan account.

4The yield rate is for the yield paid to the customer when the account balance
is positive.

20

Imperative Specification Programming

• The prerequisites for studying this chapter are that you have understood
most, if not all, of what has been covered in previous chapters and that you
are interested in bridging previously given applicatively specified models
to today's programming languages such as Java or C#.

• The aims are to introduce the imperative constructs of RSL: assignable
variables, assignments, statements (as opposed to expressions) such as
while loops, etc., to illustrate definitions of the semantics of imperative
programming languages in a spectrum from applicative, to mixed applica­
tive/imperative, to imperative models, and to otherwise show how one can
convert applicative models into imperative models.

• The objective is to enable the reader to become fluent in imperative
modelling.

• The treatment is reasonably formal.

Classically, machine languages and the early so-called higher-level program­
ming languages were all imperative programming languages. We refer to the
languages known through assembler and autocoder programming, and to
such programming languages as FORTRAN [14], COBOL [12], Algol 60 [22,24],
Pascal [314,523,524] or C [321]. In this section we shall briefly review the im­
perative constructs of the RSL specification language, and we shall exemplify
how one can define their semantics.

Characterisation. By imperative programing we shall understand program­
ming in which a central notion is that of assignable variables. These are vari­
ables for which there is an associated notion of storage and of storage locations.
The contents of these locations, that is, the values of the variable, may, and
usually do change as a result of interpretation of imperative programs. •

Characterisation. By imperative specification programming we shall un­
derstand an abstract, preferably property-oriented form of imperative pro­
gramming, one in which we deploy abstract types — and so on. •

468 20 Imperative Specification Programming

20.1 Intuit ion

Imperative, colloquially speaking, means: "Do this, then do that", as an impe­
rial command! In order to "first do something, then something else," some re­
membrance of "where were we, where are we?" need be recorded. The "record­
ing device" is called a state. The state of a computation is a summary of all
of the past computation. To "carry" or "contain" the state we use assignable
variables. Variables are state components, also called locations, whose con­
tents, the value, is remembered.

20.2 Imperat ive Combinators: A A-Calculus

As in ordinary imperative programming languages, the RAISE Specification
Language allows: 0, typed, possibly initialised variable declarations, "state­
ments" (all statements are expressions in RSL; 1, assignment; 2, skip; 3, se­
quences; 4-7, conditionals; 5, 6, 8, iterations; and 9, expressions containing
state variable references.

0. variable v:Type := expression
1. v := expr
2. skip
3. stm_l;stm_2;...;stm_n
4. if expr then stm_c else stm_a end
5. while expr do stm end
6. do stmt until expr end
7. case e of: p_l—>>S_l(p_l),...,p_n—>-S_n(p_n) end
8. for b in list.expr • P(b) do S(b) end
9. v

where pJ is a choice pattern, typically of the forms id, or (bl,...,bn), where
id are identifiers and bj are choice patterns. These numbered expressions are
covered in the sections that follow.

The A-formulas shown below are not to be read as RSL specifications, but
as explanatory notes in a small subset of a mathematical notation basically
borrowed from Chap. 7 and from the map notation taken from Chap. 16. The
semantics of RSL is a bit more complicated than these simple A-formulas. They
are therefore presented more to familiarise you with the A-calculus as a tool
for sketching meanings than to give a fully satisfactory semantics of RSL.

20.2.1 [0] "variable" Declarations

Among new expressions we have variables: 9. v. They look like, but are not
the same as, the applicative variables, which designate values. The imperative
variables designate locations — with these latter designating values.

20.2 Imperative Combinators: A A-Calculus 469

The state of the meaning of an imperative RSL specification is built from
the variables declared in tha t specification. Every declaration:

• 0. variable v:Type := expression;

which is allocated, tha t is, which is interpreted designates a state component.
Here tha t s tate component is of t y p e Type and is initialised to the value of
the expression.

To simplify, we can explain declaration and initialisation, as designated
above, by the sequence of pseudo-RSL and of A-notation expressions now being
unfolded:

First, we have the variable declaration and initialisation:

ppt
variable v := e;

ppt '

which occurs in some text . Tha t text is being interpreted by an interpreter.1

The interpreter proceeds from program (text) point ppt to program point
ppt'2. At each program point the interpreter maintains a s tate (a : E).3 It
maps locations to values.

t y p e E = LOC ^ VAL

Thus, at program point ppt the interpreter interprets the variable decla­
ration and initialisation in a state:

let a:E • P(cr) i n

e n d

The interpreter now "obeys" the prescription of the declaration and initial­
isation clause by (1) finding a "fresh", hitherto unused location, loc, by (2)
obtaining the value val of e, and (3) by updat ing the state accordingly:

(1) let loc:LOC • loc ^ d o m cr,
(2) val = V(e)(cr) i n
(3) let a' = a U [loc ^ val] i n

e n d e n d

1For statements the interpreter function is named X while for expressions it is
named V.

2When now telling the story through the mind of an interpreter our explanation
becomes operational. From the operational behaviour of the interpreter we shall
"lift" to the meaning of program texts as functions.

3We presently use the term 'state'. We could, as well, in this example, have used
the term 'storage'.

470 20 Imperative Specification Programming

where val is the value of the initialisation expression e eValuated4 in the input
state a; and where a1 : U is now the state at program point ppt'. Declaration
and initialisation, "lifting" the explanation, can thus be considered to be the
function:

\(i:E • a U [loc i-> V(e)(a)]

What happened to v? The answer is: It became par t of an environment, a
semantic component maintained by the interpreter:

t y p e
LOC, VAL
/>:ENV = V # LOC
a:STG = LOC # VAL

value

X: RSL_Text H> ENV 4 STATE ^ STATE

X[variable v := e; tx.t](p)(a) =
let loc:LOC • loc 0 d o m cr,

val = V(e)(/o)((j) i n
let a' = a U [loc H-̂ val] i n
I [t x t] (/ ? t [v ^ l o c]) ^ ')
e n d e n d

Hence we can conclude tha t variable declaration (and initialisation) denotes
functions from state to state, actually from configurations of environments and
storages to such configurations, since also the environment got "updated". In
the following we shall, however, maintain the simplistic view of state-to-state
transforming functions as being the denotation of the imperative statements
of RSL.

On the background of the above detailed explication, we can now speed up
our story on the "sketch" A-notation semantics of RSL's imperative features.
In tha t story we will omit references to environments.

20 .2 .2 [1] A s s i g n m e n t s : "var : = express ion"

The RSL state (value) can be changed only through an assignment action:

• 1. v := expr

where the variable v is given the value of the expression.

4We show a rather free-wheeling use type fonts: V refer to the name, V, of the
semantics valuation function presented later [9]. Similar for the use of the X name
elow and b[3].

20.2 Imperative Combinators: A A-Calculus 471

Xa:U • a f [loc \-> val]
where :

loc G d o m a A loc = location of v A val = V(e)(cr)

20 .2 .3 [9] S t a t e E x p r e s s i o n s

There is a new type of clause, the impure variable expression:

• 9. v

On the left-hand side of an assignment statement it designates a storage lo­
cation. As an expression, and as proper part of expressions, it designates the
content at (or of) a storage location.5

V: RSL_Text H> ENV H> STATE ^ VAL
V(v)(cr) = <j(l) where : 1 = £ocation(v)

20 .2 .4 [2] "skip": N o - A c t i o n

There is a no state change action:

• 2. skip.

It denotes the state-to-state changing identity function:

X(skip) = Xa:U • a

20.2 .5 [3] S t a t e m e n t S e q u e n c i n g (;)

If stmJ (for i = l n) is a statement, then:

• 3. stm_l;stm_2;...;stm_n

designates a conventional statement list.

X(s_l;s_2) = Xa:E • X(s_2)(2(s_l)(cr))

5Elsewhere in these volumes we sometimes prefix expression occurrences of im­
perative variable names by the contents-taking operator: c . Thus imperative v's
always designate locations, and c v the value stored at those locations — making
the above explanation a bit less convolute!

472 20 Imperative Specification Programming

20.2.6 [4] "if ... t hen ... else ... end"

The classical:

• 4. if expr t hen stm_c else stm_a end

is evaluated as you would expect. Reflexively:

X(if e t h e n c_s else a_s end) =
Xa:U •

let b = V(e)(a) in
if b t h e n Z(C_S)<J; else X(a_s)a'
end end

20.2.7 [5-6] "while ... do ... end" , and "do ... unti l ... end"

There are two more conditional statements, also referred to as iteration state­
ments:

• 5. while expr do stm end

and

• 6. do stmt unti l expr end.

The last two statements can be explained as the fix points of

while e do s end =
if e t hen (s;while e do s end) else skip end

do s unti l e end =
(s;while e do s end)

20.2.8 [7] "case ... of ... end"

Let e be an expression which evaluates to some value, v, and let p_i be choice
patterns which introduce some structures of identifiers. Statements S_i(p_i)
contains (some, but not necessarily all of) the (free) identifiers of pJ. Evalu­
ation of:

• 7. case e of: p_l—>-s_l(p_l) p_n—>>s_n(p_n) end

then proceeds by matching the structure of the value v against the elements of
the binding-list (p_l p_n) until a first is found which matches the structure
of v. If such a first, i, in order 1 to n, is found, then s_i(p_i) is interpreted in
the context of the new bindings provided by the matching of p_i to v. If none
is found and p_n is not the wildcard (_) then chaos ensues, otherwise s_n(p_n)
is interpreted.

20.3 Variable References: Pointers 473

20.2.9 [8] "for... in ... do. . . end"

Let b be a pattern which introduces some structure of identifiers, and
let list.expr be a list-valued expression whose evaluation yields a list, say
(el en). The statement s(b) contains (some, but not necessarily all of) the
(free) identifiers of b. Evaluation of:

• 8. for b in list.expr • p(b) do s(b) end

then proceeds by processing each element ei of the list (el en) in order from
el to en. If evaluation of the predicate p(b) in the context of the definitions
obtained by matching ei against the binding b deterministically yields t rue ,
then s(b) is evaluated in this same context, otherwise it is skipped.

20.3 Variable References: Pointers

In Sect. 20.2 we covered the imperative language constructs of the specifica­
tion language RSL such as we shall be using them. The RSL constructs are
quite familiar, and at the core of all imperative programming languages. The
difference is that in RSL we allow for any value of any of the definable abstract
or concrete types to be stored — except references to variable locations. In
this section we shall be discussing and exemplifying other imperative language
constructs — such as you will find in some programming languages. Please
observe that the constructs that we shall now be discussing are not part of
RSL.

20.3.1 A Discourse on Simple References

We have modelled assignable variables in terms of a storage, above referred to
by a Greek letter sigma (<J). The storage maps locations into values. Among
values, in many programming languages, but not in the RSL specification lan­
guage, one can have locations as "storable" values. Locations are thus con­
sidered "first class citizens", thus reflecting a view that there may be entities
which are not storable values. In those same programming languages that
were implied above, procedures may not be treated as storable values. We
shall look at models for such programming languages.

Let a programming language allow variables that store values of type
"reference to variables of type A":

d e l v : ref A

Now, for this to make sense we must either allow dynamic, "on-the-fly" al­
location of locations (whose contents are of type A):

del v : ref A := alloc e

474 20 Imperative Specification Programming

where the expression e is of type A. Or we must allow assignment of the
location of declared variables of type A to such reference variables:

del a : A;
del v : ref A := ref a;

or both. Usually both situations hold in order to make "things" hang to­
gether.6

Instead of using the syntactic form ref a to designate, not the contents of
the variable a, but its location, one could turn things around: Let a designate
the location, and c a the contents.

20 .3 .2 D y n a m i c A l l o c a t i o n and R e f e r e n c i n g

We now present a model of typed references: integer, Boolean and record
locations designate integer, Boolean, respectively record values. Record values
consist of two or more uniquely identified values. Locations are values.

E x a m p l e 20 .1 A Simple Model of Dynamic Records:
We model a "toy" imperative programming language in which one may

declare variables of type integer, Boolean, record or reference, and in which
one may dynamically allocate (and possibly also free, i.e., deallocate) unnamed
variables of type record. Storage is thus a collection of uniquely located values.
Any two distinctly located values, tha t is, any two storage cells, are "disjoint",
they do not overlap — in whatever sense this term: 'overlap' may have in your
mind! 7 . Integer, Boolean and record type variables contain, when properly
initialised, values of respective types: Integer values (i.e., integers), Boolean
values and record values. A variable of type reference is to contain a reference
(only) to a dynamically allocated record or the nil (void, null) reference. A
value of type reference is either a reference to a dynamically allocated record
or is nil. Record values are sets (fields) of uniquely, and statically identified
simple values. Thus we do not allow record values embedded in record values.
A simple value is either an integer, a Boolean or a possibly nil reference value.

If we can designate one kind of value assignment, as of dynamically allocated
locations, then why not from statically, i.e., textually, implied allocations as for
variable declarations? Symmetry seems to be a good language design principle as
it enables consistency of expression and adheres to a principle of every denotable
value being storable.

7In our mind overlap refers to the possibility that one may think of storage as a
list of consecutively indexed storage cells where one might think of Boolean valued
storage cells occupying one bit, of integer valued storage cells occupying 32 bits,
of location valued storage cells occupying 16 bits, and of record values occupying
several such storage cells. Overlap now means that an index to a separately declared,
say integer variable "shares" bits with another, now, say a location valued variable.
Such overlaps are possible due to the way in which most computers address storage
cells to begin at a byte (i.e., an eight bit) boundary.

20.3 Variable References: Pointers 475

Ipv

ra

a

nil

i w

i la

rb

b

i Ic

i lb

re

c

\ld

i / c

rd

d

nil

LEGEND

declared
named

variable •
dynamically allocated
unnamed, but
located storage record

A sentinel variable named: pv

Four dynamically allocated records: ra, rb, re, rd

Five pointers/links: Ipv, la, lb, Ic, Id

Fig. 20.1. An example dynamically allocated data structure

Intuition

Figure 20.1 illustrates a fragment of a storage in which one reference variable,
named pv, has been declared, and there have been four (dynamic) allocations
of records ra, rb, re and rd. Each of the records has three fields, i.e., all records
seem to be of the same type, and otherwise they each contain two fields of
type reference to records of the record type shown.

ra, rb, re and rd are not identifiers declared in a program text. They are
just names we introduced in order to speak about the problem. There are no
program text names for dynamically allocated variables. They are "reachable"
only through chains of references, where such a chain (of one or more indirect
references) is anchored in a program text declared and thus identified reference
variable.

Formalisation — Storage, Locations and Values

Locations may only designate, i.e., refer, point or link, to "whole" variables,
whether explicitly declared or dynamically allocated. For reasons of abstrac­
tion we mark locations as either being integer locations, Boolean locations,
reference locations or record locations. Similar, obviously, for values, where
a reference value can be either a whole location or nil. Record locations are
atomic and do not further identify the structure of the possibly referenced
record values. This is a gross simplification, which makes our example shorter,
but it does not make it less relevant.

type
Nm, Tn, 1LOC

476 20 Imperative Specification Programming

STG' = LOC ^ VAL

LOC = SLOC | RLOC
SLOC = = mkintl(i:lLOC) | mkbooll(b:lLOC)
RLOC = = mkrecl(lloc:lLOC)

VAL = SVAL | RVAL
SVAL = = mkintv(i:Int) | mkboolv(b:Bool) | LOCV
LVAL = = nil | RLOC
RVAL = = mkrecv(rval:(Nm^SVAL))

Location and Value Types

With locations and with values we can thus associate their type. And we will
do so systematically, while also defining a function that observes the type of
locations and values.

type
lTyp = STyp | record
STyp = = integer | boolean

Typ = lTyp | RTyp
RTyp = = mkrect(rt:(Rn ^ lTyp))

value
ltyp: (VAL|LOC) - • lTyp
ltyp(mkintv(_)) = integer
ltyp(mkintl(_)) = integer
ltyp(mkboolv(_)) = boolean
ltyp(mkbooll(_)) = boolean
ltyp (nil) = record
ltyp(mkrecv(_)) = record
ltyp(mkrecl(_)) = record

typ: VAL - • Typ
typ(v) =

case v of
mkrecv(rv)

—> mkrect([ri-)'ltyp(rv(r))|r:RnT G d o m r v]) ,
_ -t ltyp(v) end

20.3 Variable References: Pointers 477

Storage Invariant

Now we are ready to define an invariant on storages: Location and value
types must match, and all values that contain or are references are references
to allocated records.

type
STG = {| stg:STG' • wfSTG(stg) |}

value
wfSTG: STG' -> STG
wfSTG(stg) =

V loc:LOC • loc G dom stg => ltyp(loc) = ltyp(stg(loc)) A
V val: VAL • val G rng stg =>

case val of
mkrecv(rval) —>

V v:VAL • v G rng rval =>
case v of mkrecl(_) —> v G dom stg, _ —> true end,

mkrecl(_) -^ val G dom stg, _ -» true
end

Semantic Operations

The following primitive, i.e., basic operations on storages can now be defined:
allocation of suitably typed storage location, extension of storage, reading
storage values, and overriding (overwriting) of such.

value
get_LOC: Typ -> STG -> LOC
get_LOC(t)(a) =

let l:LOC • Ig dom a A ltyp(^)=t in I end

extend_STG: LOC x VAL -+ STG -+ STG
extend_STG(£,v)(a) = a U [#->v]

get_VAL: LOC -> STG - • VAL
get_VAL(^)(<j) = a(£)

override_STG: LOC x VAL -> STG - • STG
override_STG(£,v)(cr) = a f [fl->v]

478 20 Imperative Specification Programming

T h e Syntac t i c Forms

Seven syntactic forms are necessary to suitably exploit the semantic machin­
ery, now tha t the storage model is part ly established: (i) declaration of named
scalar and record variables of any type, (ii) allocation of unnamed record
storage cells of simple type, (iii) reading whole, included record values, from
storage, (iv) obtaining reference values, (v) selecting field values of a record
value and (vi) assigning values to declared simple variables, including assign­
ing to fields of record variables.

Del :: v:Vn val:VAL
Alo :: v:Vn rv:RVAL
Rea :: Vn
Sel :: v:Vn rn:Rn
Asg :: v:Vn f:Fld ex:Exp
Fid = = null | mkRn(rn:Rn)
Exp = = Rea | Sel | Loc
Loc :: v:Vn

S e m a n t i c s

The rest should now be trivial. Environments, ENV, keep track of locations
of declared, named variables.

t y p e

ENV = Vn T* LOC

value
dab-Del : Del -> STG -> STG x ENV x LOC
elab_Dcl(mkDcl(v,val))(p)(cr) =

let loc = get_LOC(ltyp(val)) in
(extend_STG(loc,val)(<j),[vi-)'loc],loc) e n d

int_Alo: Alo - • STG - • STG
int_Alo(mkAlo(v,mkRVAL(rval)))(p)(cr) =

let loc = get_LOC(record) in
overrideJ3TG(p(v) ,loc) (extend_STG(loc,val) (a)) e n d
pre v G d o m p A ltyp(cr(/}(v)))=record

evaLRea: Rea -> ENV -> STG - • VAL
eval_Rea(mkRea(v))(p)(<j) = get_VAL(yo(v))(cr)

pre: v G d o m p(v) A p(v) E d o m a

evaLSel: Sel ^ ENV -> STG -»- VAL
eval_Sel(mkSel(v,r))(p)(cr) = (get_VAL(y9(v))(cr))(r)

pre: r G d o m a(p(v))

20.3 Variable References: Pointers 479

int_Asg: Asg - • ENV -> STG -> STG
int_Asg(v,f,e)(/9)(a) =

let loc=p(v),
old=a(p(v)),
new = evaLExp(e)(p){cr) in

case f of
mkRn(rn) ->> extendJ3TG(loc,oldf[rni-mew])(<7),
null -» extend_STG(loc,new)(a) end

end
pre: v G dom p(y) A p(v) G dom cr A f^null => rn G dom old

evaLExp: Exp - • ENV - • STG - • VAL
evaLExp(e) (p)(cr) =

case e of:
mkRea(v) -^ eval_Rea(mkRea(v))(/})(cr),
mkSel(v,r) ^ eval_Sel(mkSel(v,r))(yr>)(cr),
mkLoc(v) —>- p(v), ...

end
pre v G dom p ...

Discussion I — The Example

We have illustrated a rather simple language. It illustrates basic notions of dy­
namically allocated storage, references to such storage, assignments to record
fields and pointer "chasing": pointers being assigned to declared variables, se­
lected as expression values, and assigned to fields of declared or dynamically
allocated records.

We have assumed a rather loose typing discipline, much too loose for our
liking. But then we chose this looseness only in order to avoid having to
show even more text, informal as well as formal: static and/or dynamic type
checking. We shall have an opportunity later to also illustrate such facets.

20.3.3 Discussion: Semantics First, Then Syntax

Example 20.1 significantly illustrated the following important development
principle:

Principles. First Semantics Then Syntax: When investigating a phenomenon
in a domain, when prescribing requirements, or when designing a software
device, analyse and construct first the semantic algebras (entities, and oper­
ations), then design the syntax "to go with" the semantics. •

480 20 Imperative Specification Programming

20.3.4 Discussion: Type Homomorphisms

Example 20.1 significantly illustrated another important development princi­
ple:

Principles. Type, Value and Location Homomorphisms: When modelling
types, values and locations (of some storage) it is prudent to ensure that
there exists one or more appropriate homomorphisms between the three sets
of entities: types, values and locations. •

The above principle may appear a bit cryptic. Especially since we have not
at all been sufficiently precise about what we mean by the type, the value
and the location algebras. Please refer to the definitions of the LOC, the VAL
and the Type types in Example 20.1. They define the entities of respective
algebras. Please refer to the definition of the ltyp function. It represents a
homomorphism between the entities of the LOC and VAL, on one hand, and
Typ on the other hand.

The type and value part of the homomorphism principle was already il­
lustrated in Example 19.10 and Example 19.11.

20.3.5 The Notion of State

We speak of the storage model of assignable variables as a state model. The
use of the term state is one of pragmatics. Its use shall signal to the reader
that the 'state' component value changes value "quite often, rapidly". That
is, 'state' is a temporal notion. The thing that makes it change value, i.e.,
that makes the state change, is, of course, the assignments prescribed by
statements. So, storage, as a notion connected to prescriptions of programs of
an imperative programming language, is a state notion.

20.4 Function Definitions and Expressions

We continue the line of explaining the RSL imperative constructs, which we
left at the end of Sect. 20.2. A number of issues need be resolved: Is there
really a difference between RSL statements and RSL expressions? The answer
is: No there is no fundamental difference (but see below). What is the 'value',
then, of a statement? The answer is: It is designated by (), and is of type Unit
(again, see below). But there is a slight difference between RSL statements and
RSL expressions. We may distinguish between pure and impure expressions,
including read-only expressions. Finally, what is the signature (i.e., the type)
of functions which access variables? The answer is: It involves specifying to
which variables we need (have) read access, and to which we need have write
access. We now deal with these issues, in a slightly different order.

20.4 Function Definitions and Expressions 481

20.4.1 The Unit Type Expression, I

In our signatures, in Example 20.1 (Sect. 20.3.2), for functions that applied
to or yielded values of type storage (STG) we explicitly listed the type STG.
Now what are we to do when the state, with the use of declared RSL variables,
in a sense becomes "hidden"? We refer to that state by using Unit.

The literal Unit is a type literal. It designates that there is a value of type
Unit. We (arbitrarily) designate this value by (). The type literal Unit is
used in function signatures. So, let us see how and why.

20.4.2 Imperative Functions

We define three functions which all access a globally declared variable:

variable k:Nat := 0;
value

step: Unit —> write k Unit
step() = k := 7

incr: Unit —> read k write k Nat
incrQ = step();k

get: Unit —> read k Nat
get() = k

The signature of step defines that step applies to a value of type Unit (the
first occurrence of Unit) and that it writes onto the variable k. The signature
also defines that step only prescribes a side effect on the state (the second
occurrence of Unit). By default, the write access descriptor allows for reading
(but not yielding to "an outside") the value of the variable. The signature of
incr defines that incr applies to a value of type Unit and that it writes onto
and reads from and yields a value that depends on the value of the variable
k. The signature of incr defines that incr applies to a value of type Unit and
that it reads from the variable k, and yields a value that depends on the value
of the variable k.

20.4.3 Read/Write Access Descriptions

The clauses:

write u_l, u_2, ..., u_m
read v_l, v_2, ..., v_n

are called access descriptions. They are part of potentially side effect prescrib­
ing total and partial function signatures:

482 20 Imperative Specification Programming

value
tf: typ_ex_a —> acc_des_l,...,acc_des_n typ_ex_r

pf: typ_ex_a ^ acc_des_l,...,acc_des_n typ_ex_r

20 .4 .4 Local Variables

Variables are either declared globally or they are declared local to an expres­
sion:

local variable-declaration in expression e n d

For example,

value
fact: N a t -^ N a t
fact(n) =

local variable k:Nat := n, variable r:Nat := 1 in
whi l e k^O do r := r * k ; k := k — 1 e n d
r e n d

Observe tha t the signature of the factorial function does not refer to the local
state.

20.4 .5 T h e U n i t T y p e E x p r e s s i o n , II

When we say informally tha t a clause of the specification language RSL is a
statement, we mean tha t it is of type U n i t . Tha t is, it "delivers" the value ()
of type U n i t . We review the RSL clauses tha t may be of type Un i t : 8

0. variable v:Type := expr
1. v := expr
2. skip
3. stm_l;stm_2;...;stm_n
4. if expr t h e n stm_c e l se stm_a e n d
5. whi l e expr do stm_w e n d
6. do stmt_u unt i l expr e n d
7. case e of: p_l—>>s_l(p_l),...,p_n—>>s_n(p_n) e n d
8. for b in list.expr • P(b) do s(b) e n d

8They will be of type Unit only if in formulas 0-8 we can assume that clauses
stm_l stm_n, stm_c, stm_a, stm_w, stmt_u, s_l(p_l) s_n(p_n), and s(b) are all
statements, i.e., of type Unit , and that the clause expr is an expression yielding a
proper (i.e., a non-Unit) value.

20.4 Function Definitions and Expressions 483

Clauses 0-2 are of type U n i t . Clauses stm_w, stm_u, and s(b) must be of type
U n i t for clauses 5 , 6 , and 8 to be well-formed. They are then of type U n i t .
For all i in the range l. .n—1, stmJ, of clause 3, must be of type U n i t for tha t
clause to be well-formed. If stm_n of clause 3 is of type A then clause 4 is of
type A. (That includes type Un i t .) If clauses stm_c and stm_a (of clause 4)
are of a type different from U n i t , then they must both be of the same type
B.9 If clauses stm_n, stm_c, stm_a and s_i(p_i) (above) are of type U n i t , then
clauses 3 and 4 are of type U n i t . If clauses s_i(p_i) (of clause 4) are of a type
different from U n i t , then they must all have the same maximal1 0 type, say
A, which is then the type of clause 7.

20 .4 .6 P u r e E x p r e s s i o n s

An expression which does not prescribe access to assignable variables11 is
called a pure expression. For specifications expressed in RSL to "hang to­
gether" , a number of RSL expression forms permit only pure expressions. These
are P(a) in the let clause forms shown below, and expr, in variable initialisa­
tions, see below. Further, all identifiers of argument.pattern and result.patterns
must be free in the forms also shown below:

let a:A • P(a) in ... e n d
variable v:A := expr
binding_pattern / * any such */
f (argument .pat tern) as result .pa t tern

To the above add some forms we have yet to meet: actual array parame­
ters, comprehended access and those in which there must also only be pure
expressions.

20 .4 .7 R e a d - O n l y E x p r e s s i o n s

An expression which prescribes access to assignable variables12 but which
does not imply side effects13 is called a read-only expression. For specifications
expressed in RSL to "hang together", a number of RSL expression forms permit
only pure or read-only expressions. The cases for pure expressions (only) was

9We omit in this part of the book treatment of the possibility that the types of
stm_c and stm_a are different, say, both being different subtypes of type B, or one
being of type B and another being a subtype of B. In those cases the type of clause
4 is B, known as the maximal type of the two types of stm_c and stm_a.

10The concept of maximal type is mentioned in Footnote 9.
11— and which does not prescribe reading from (or writing to) channels, as we

shall see in Chap. 21.
12— or which is allowed to prescribe reading from channels, as we shall see in

Chap. 21.
13Thus the expression is not allowed to prescribe writing to channels.

484 20 Imperative Specification Programming

mentioned above. So we mention (below) the cases where both pure and (or)
read-only expressions may be used, but not side effect prescribing expressions.
These are P(a), e_l, e_2 e_n, 11(a), d_i, r_i, d(a) and r(a) in:

choice-pattern
V a:A • P(a), 3 a:A • P(a), 3! a:A • P(a),
{e_l..e_n}, {e_l,e_2,...,e_n}, {e(a)|a:A • P(a)}
(e(a)|b in 11(a))
[d_l^r_l,d_2h^r_2,...,d_n^r_n],[d(a)^r(a)|a:A^P(a)]
• P(a)

where identifiers in the choice_pattern may be bound to assignable variables.
In addition, expressions occurring in axioms, and pre-, post-conditions are
to be pure or read-only expressions.

Note that side effects are allowed in list element formations e(a), since
their construction is ordered. (They are allowed since we have not explic­
itly mentioned them!) Such an ordering is not expressible for sets and maps.
Similarly, Cartesian expressions also are not restricted to read-only, but can
contain side effect prescribing expressions, although we do not advise this for
abstract specifications.

Quantification over States (•)

So far, axioms have been illustrated only in connection with applicative
specifications, i.e., pure expressions. What happens when we wish to access
assignable variables in an axiom? The answer is: Then we must express that
when the axiom is true it is true for all states. This can be achieved by quanti­
fying over all states as expressed by the • quantifier. The state quantification
expression • P(a) allows P(a) to be read-only. The entire expression • P(a)
is pure since it quantifies over all possible states. The truth value of • P(a)
is true if P(a) holds for all possible values of all declared variables, otherwise
it is false. Previous uses of axioms:

axiom P(a)

now amount to:

axiom • P(a).

20.4.8 Equivalence (=) and Equality (=)

Two operators that look alike need be clearly understood: =, equivalence, and
=, equality.

20.4 Function Definitions and Expressions 485

Equivalence (=)

The equivalence expression consisting of two read-only expressions:

expr_l = expr_2

is evaluated in all states. If it holds in all states, then the value of expr_l=expr_2
is true, otherwise it is false.

If the expressions expr_l and expr_2 prescribe side effects, then they must
have the same side effect on variables and return the same value in order to
hold. If one of the expressions yields chaos, then they must both yield chaos
for the equivalence to hold. The equivalence expression itself, as a whole, never
yields chaos.

If, as we shall see later, one expression prescribes nondeterminism, then
they must both prescribe exactly the same nondeterminism for the equivalence
to hold.

Conditional Equivalence

We can constrain axioms:

axiom expr_l = expr_2 pre P(a)

for example as used in:

variable ctr:Nat := 0
value

deer: Unit >̂ write ctr Nat
decrQ = ctr := ctr — 1 ; ctr pre ctr > 0

have expr_l=expr_2 pre P(a) being equivalent to

(P(a) = true) => (expr_l = expr_2)

Equality (=)

If two expressions, expr_l, expr_2, do not access assignable variables, i.e., have
no side effects, do not evaluate to chaos and are both deterministic, then =
and = mean the same. If not, then = and = do not mean the same.

The equality expr_l = expr_2 is an expression of type Boolean. If one or
both expressions evaluate to chaos, chaos is yielded. Otherwise the values
yielded by evaluation of the above, left to right, are compared and either true
or false is yielded. Side effects may occur, and they will then result, i.e., be
effected, but they are not part of the comparison.

486 20 Imperative Specification Programming

20.5 Translations: Applicative to Imperative

In this section we treat three simple topics: (i) the translation of some forms of
simple applicative function definitions into likewise simple imperative function
definitions together with the simple declaration of variables; (ii) the trans­
lation of some forms of simple applicative recursive function definitions into
likewise simple imperative function definitions together with the simple decla­
ration of a variable; and (hi) specialising the two former translation schemes —
the translation of not-quite-so-simple forms of applicative recursive function
definitions into slightly less simple imperative function definitions together
with the declaration of suitable variables.

20.5.1 Applicative to Imperative Translations

Consider the following kind of function definition, i.e., function schema:

type
A, B, E

value
ia: A - • E -> E x B
fa(a)(<r) = let b = ga(a)(<r), a' = ha(a)(cr) in (cr',b) end

g a : A - • E -+ B, ...

ha: A - • E - • E
ha(a)(cr) = ... a1

Let us, by fiat, claim that E represents "our" state space, i.e., a type of states.
Then we say that f is a state-changing function that yields a result, while h
is just a state-changing function.

Let us instead consider:

type
A, B

variable
8:E := ...

value
£L\ A —> read, write s B
ft(a) = let b = gt(a) in s := ht(a); b end

gL: A —> read s B

ht: A —̂ write s Unit
h,(a) = ... s := a'

20.5 Translations: Applicative to Imperative 487

We ask the reader to accept the claim tha t the two functions, fa and ft, com­
pute the same type B results1 4 for corresponding pairs of fa s tate arguments,
cr, and initialisations of the global variable s.

Now, what can we learn from this example? We claim tha t we can conclude
tha t given a suitable form of function definitions fa, one may be able to find
an imperative function fL tha t computes the "same results ' for corresponding
pairs of s tate arguments and variable initialisations.

20 .5 .2 Recurs ive t o I terat ive Trans lat ions

Let us consider the following simple example of an applicative, recursive func­
tion definition:

t y p e
A, B

value

fa: A H > B

fa(a) = if p a (a) t h e n ga(a) e lse f a (h a (a)) e n d

p a : A —> B o o l
gc*: A - • B
ha: A - • A

fa is partial since the predicate pa may yield false for all relevant a's.
One may think of first invoking fa with the value initiaLa. Function fa

could be "imperialised" into likewise partial fL:

variable
v:A := initiaLa ;

value
iL: U n i t ^> read, wr i t e v B
f,() = if p t(v) t h e n g,(v) e lse (v := h t(v); ft()) e n d

pL: A —> read v B o o l
gL: A —> read v B
hL: A -> read v A

or even:

value
{L: U n i t ^> read, wr i t e v B
f,() = whi l e ~ p t (v) d o v := h,(v) end; g,(v)

14By the "same result" we loosely mean that the values observed from any invoca­
tion of the two functions with corresponding arguments, respectively initialisations,
are the same. What is not compared, and what, in a sense, is not comparable, is the
"side effect" left on the global state by the imperative function invocation vis-a-vis
the fact that there is not such a side effect when invoking the applicative functions.

488 20 Imperative Specification Programming

We again ask the reader to accept the claim that the two functions, fa and
ft, computes the same results for corresponding pairs of fa arguments and
initialisations of the global variable v.

What can we learn from this example?
We can conclude that, given a suitable form of recursive function defini­

tions fa, one may be able to find an imperative function fL that computes the
same results for corresponding pairs of arguments and variable initialisations.

20.5.3 Applicative to Imperative Schemas

This section is based on the work of Burstall and Darlington: [174]. Later work
appears in [34]. The gist of this section is that a number of recursive, applica­
tive (i.e., functional) programs (cum specifications), can be transformed into
nonrecursive, imperative (and iterative) programs (cum specifications).

We follow [174] closely. For each of a number of applicative, recursive
schemas is given one, two or three nonrecursive, imperative schemas, together
with some conditions, one for each imperative schema, that must be fulfilled
of the abstract, functional operators of the applicative, recursive schema for
it to be transformable into the given imperative schema.

We start, as does [174], with an example.

type
A

value
reverse: A* —> A*
reverse (al) =

if al=()
then <)
else reverse

end

variable
alv:A* := al;
result:A*

value

;(tl al)" (hd al)

reverse: A* —> Unit
reverse(alv) =

if alv = ()
then

result :=()
else

result:=(hd alv)^{);
alv:=tl alv ;
while alv ^ {) do

result:={hd alv)^result;
alv:=tl alv

end
result :=()^result

end

The applicative version of reverse (list) is easy to understand, whereas the
imperative version is contorted, i.e., difficult to understand. Hence it is difficult
to see that the two do essentially the same job.

20.5 Translations: Applicative to Imperative 489

Schemas

We now show a number of schemas: Triples of (i) an abstract, schematic ap­
plicative and recursive program, (ii) an abstract, schematic imperative (non-
recursive) program, and (hi) a set of one or more equations that the abstract
functional operators of (i) must satisfy, when one tries to apply it to a con­
crete applicative and recursive program in order to transform it to a concrete,
imperative (and nonrecursive, but usually iterative) program.

. Schema 1 .

• Recursion Schema:

f(x) = if a then b else h(d,f(e)) end

. Transformation 1.1 \

• Iterative Schema 1.1:

if a
then

result := b
else

result := d ; x := e ;
while ~a do

result := h(result,d) ; x := e
end
result := h(result,b)

end

• Equation and Condition:

h(h(a,/?),7) = h(a,h(/?,7))
x does not occur free in h

Example: Factorial Function
The factorial function:

fact(n) = if n=0 then 1 else n * fact(n—1) end

is an instance of Schema 1.1. With

a = (n=0), b = l , d =n, e=n—1, h=*

we get:

fact(n) =
if n=0

490 20 Imperative Specification Programming

then
result

else
result
while

:= 1

:= n ; n := n-
n^O do

result := result *
n :=

end ;
result

end

= n - 1

:= result * 1

- i ;

n ;

Transformation 1.11

• Iterative Schema:

result := b ;
while ~a do

result := h(d,result) ; x := e
end

Equation and Conditions:

h(a,h(/?,7)) = h(^,h(a,7))
x does not occur free in h or b

Fvamplp- Factorial Function
The factorial function:

fact(n) = if n=0 then 1 else n * fact(n-

is an instance of Schema l.II. We get:

result := 1
while n^O do

result := n * result ; n := n — 1
end

-1) end

Transformation 1.111

Iterative Schema:

result := b ; xsave := x ;
x := "unique x such t h a t a" ;

20.5 Translations: Applicative to Imperative 491

while ~x do
x := " inverse of e/;(x) ; result := h(d,result)

end

• Conditions:

There is a unique x such that a is true exists and the inverse of
e exists, x does not occur free in b or h.

Schema 2

• Recursion Schema:

f(xl,x2) = if a then b else h(d,f(el,e2)) end

. Transformation

• Iterative Schema:

result := b ;
while ~a do

result := h(d,result) ; xsave := el ; x2 := e2 ; xl := xsave
end

• Equation and Conditions:

h(a,h(/?,7)) = h(/?,h(a,7))
xl does not occur free in h or b
x2 does not occur free in h or b

Example: Set Union
The concrete set union function:

type
E

value
set.union: E-set x E-set —> E-set
set_union(sl,s2) =

i f s l = { }
then s2
else

result := choose(sl) U. set_union(sl \ . choose(sl),s2)
end

choose: E-set —> E

492 20 Imperative Specification Programming

given two identical sets, s and s', selects

the same e:E in s and s': choose(s) = choose(s')

U. : E x E-set -+ E-set

\ . : E-set x E - • E-set
is an instance of Schema 2. We get:

result := s2 ;
while s l^{} do

result := choose (si) U. result ;
si := si \ . choose(sl)

end

Schema 3

• Recursion Schema:

f(x) = if a then b else h(f(dl),f(d2)) end

Transformation 3.1

• Iterative Schema:

result := b ; xsave := x ; x := unique x such that a ;
while ~a do

x := " inverse of dl"(x) ; result := h(result,result)
end

• Equation and Conditions:

dl = d2

x does not occur free in h or b. There is a unique x such that a
exists and such that the inverse of dl exists.

Transformation 3.11

• Iterative Schema:

yl := b ; y2 := b ; result := b ;
while ~a do

result := h(yl,y2) ; yl := y2 ; y2 := result ; x := d

20.5 Translations: Applicative to Imperative 493

end

• Equations:

h(a,h(/?,7)) = h(/?,h(a,7))
dl = d2 with every occurrence of x replaced by d2

. Example: Fibonacci Function .11
The Fibonacci function:

fib(n) = if n=0Vn=l then 1 else fib(n-l) + fib(n-2) end

is an example of Schema 3.II. We get:

yl := 1 ; y2 := 1 ; result := 1 ;
while ~(n=0Vn=l) do

result := yl + y2 ; yl := y2 ; y2 := result ; x := n — 1
end

Transformation 3.111

• Iterative Schema:

result := b ;
while ~a do

result := h(result,result) ; x := dl
end

• Equation and Condition:

dl = d2
x does not occur free in h or b

Schema 4

• Recursion Schema:

f(x) = if a then b else h(f(d)) end

. Transformation 4.1

• Iterative Schema:

494 20 Imperative Specification Programming

while ~a do x := d end ; result b

• Equations:

h = A x-x

Transformation 4.11

• Iterative Schema:

result := b ; xsave := x ; x := "unique x such t h a t a" ;
while x 7̂ xsave do

x := " inverse of d"(x) ; result := h(result)
end

• Conditions:

x does not occur free in h or b. There is a unique x such that a
exists and such that the inverse of d exists.

Schema 5

• Recursion Schema:

f(x,y) = if a then b else h(f(dl,d2)) end

Transformation

• Iterative Schema:

while ~a do
xsave := dl ; y := d2 ; x := xsave

end
result := b

• Equations:

h = A x-x

We do not illustrate examples of uses of all schemas, but refer the reader to
works by Cooper [160], Strong [488], and Burstall and Darlington [142,173,
174].

20.6 Styles of Configuration Modelling 495

20.5.4 Correctness, Principles, Techniques and Tools

Characterisation. By correctness of transformation we mean that the im­
perative function's result value is identical to the applicative function appli­
cation value. •

This is not proved for the individual schema above. We refer to [142,160,173,
174,488] for examples of such proofs.

Principles. Translations from Applicative Function Definitions into Imper­
ative Function Definitions: Usually we start with sorts, observer and selector
function signatures and axioms over these. That is, we begin purely axiomat-
ically. Then we "transform" into applicative, typically recursive function defi­
nitions. After that we transform to imperative definitions, including iterative
ones. •

20.6 Styles of Configuration Modelling

In the model-oriented style of abstraction there are a number of styles of spec­
ifying contexts and states using the sequential style in up to four variations,
of which we illustrate three:

• both applicative contexts and states, Example 20.2
• combinations of applicative contexts and imperative states, Example 20.3
• and both imperative contexts and states, Example 20.4

We shall now examine these modelling styles. The examination will be wrt. a
fragment, basically imperative programming language, very much in the style
of the imperative parts of RSL.

20.6.1 Applicative Contexts and States

We now formalise the context and state concepts of the RSL-like language
introduced above. We start with a model that is expressed in the applicative
(i.e., functional) style.

Example 20.2 An Applicative Context and State Style Model:

Syntactic and Semantic Types

As usual, we start by defining the syntactic and semantic types. In this exam­
ple we start with the syntactic types — since the readers and the designers
are normally expected to be rather familiar with conventional programming
languages we bring the semantic types second. Normally it is advisable to first
design the semantic types.

496 20 Imperative Specification Programming

Syntactic Types

type
0. VarDef = V x Expr
1. Stmt = = Asg(v:V,e:Expr)
2.
3.
4.
5.
6.
7.

donothing
Lst(sl:Stmt*)
Cnd(e:Expr,ts:Stmt,fs:Stmt)
Whi(e:Expr,s:Stmt)
Rep (s: S t mt, e: Expr)
Cas(e:Expr,cl:(Bind x Stmt)*)
For(b:Bind,le:Expr,pe:Expr,s:Stmt)

Semantic Types:

p:ENV = (Id rt VAL) U (V ^ LOC)
a:£ = LOC T* Val
Val = VAL | Val*
VAL = Int | Bool | ... | Q

The Identifiers (mentioned in the environment) are those of formal function
parameters and let and case expression and statement bindings. The Variables
(mentioned in the environment) are those of declared variable names. ENV is
the context; £ is the state.

We separate out as auxiliary function definitions those of gl_: obtain (get)
a free location, i.e., a location of storage not yet in use; AEnv: extend (over­
ride) the environment — seen as a form of "allocate"; AStg: allocate storage
(space and initialize); and gV: obtain (get) value from storage location. These
auxiliary functions will be redefined as we move from applicative to impera­
tive style specifications. And one new auxiliary function will be added later.
Comparing these auxiliary function definitions reveals a lot about the essence
of the individual styles.

Auxiliary Functions

value
gL: £ -> LOC
gL(cr) = let l:LOC • 1 0 dom a in 1 end

AEnv: ENV - • ENV - • ENV
AEnv(env)/9 = p f env

AStg: £ -> E 4 E
AStg(stg)cr = a U stg

20.6 Styles of Configuration Modelling 497

gV: V -> ENV -+ E -+ VAL
gV{v)pa = <r(p(v))

Simple Interpretation Functions

V: VarDef - • ENV ^ E ^ E x ENV
E: Expr -> ENV -+ E -+ Val
I: Stmt - • ENV 4 T ^> E

V(v,e)pcr =
let 1 = gL(a), val = E(e)pcr in
(AStg([l^val])<r,AEnv([v^\])p) end

E: almost as defined above, but without dynamic tests!
E(v)pa = gV(v)pcr, ..., etc.

I(Asg(v,e))/oo- = a f [p(v) ^ E(e)/&a]

I(donothing)/9a = a

Composite Interpretation Functions

I(Lst(sl))p<r = if sl=() then a else (I(tl sl)p)(I(hd si) a) end

I(Cnd(e,c,a))pcr = if E(e)/)cr then l(s)pa else I(a)pcr end

I(Whi(e,s))/9cr = if E(e)pcr then (I(Whi(e,s))/?)(I(c)/9cr) else skip end

I(Rep(s,e))pCT = (I(Whi(e,s))p)(I(s)H

Context-Creating Interpretation Functions

I(Cas(e,cl))y9cr = let v = E(e)pa in M(v,c\)pa end

M: Val x Case* ^ ENV ^ E 4 E
M(v,cl)/*7 =

if cl=() then chaos else
let (b,s) = hd cl in let (t,env) = B(b,v) in
if t then I(s)(AEnv(env)/9)cr else M(v,tl c\)pa end

498 20 Imperative Specification Programming

end end end

I(For(b,le,pe,s))/)cr = let vl = E(\e)pa in S(b,vl,pe,s)pcr end

S: Bind x VAL* x Expr x Stmt -^ ENV -3- E H> E
S(b,vl,pe,s)pcr =

if vl={) then a else
let (_,env) = B(b,hd vl) in
if E(pe) (AEnv(env) p)cr

then S(b,tl vl,pe,s)(/o)(I(s)(AEnv(env)/o)cr)
else S(b,tl vl,pe,s)pcr end

end end

We comment on the applicative context and state model, p : ENV models the
context, a : E models the state. The computation intervals of variables are
"indefinite": from the point at which a variable is allocated till "the end of
time" or when and if a free variable action could or would occur, whichever
comes first. At any textual point there is a pair (p,cr) "at work": It is the
configuration at that point. The fact that there may be a number of invoca­
tions of the interpretation functions E, I, M and S extant, i.e., "alive" — as
seen from the point of view of the machine which performs the interpretation
according to the interpretation function definitions — relates to a notion of
meta-metastate of the interpreter machine, not to the notion of context and
state of the "thing" (here a language fragment) being modelled. •

Summary, Applicative Contexts and States

We have shown that the concepts of context and state can be suitably sepa­
rated and treated as separable parts of a specification, but that they relate.
That is, when a variable location has been obtained and is being state allo­
cated, then its binding to a variable name in a context (i.e., an environment)
is expressed "at the same time"! We have also shown that obtaining a vari­
able value is expressed as the "double application" of a state to the result of
applying a context to a name.

We have further illustrated that the context concept is syntactic: For any
point of a specification in some (formal) language, and for any system, there
is a statically knowable number of names (identifiers) being defined by (or
therein). Furthermore, the state concept is temporal: For any point of a spec­
ification in some (formal) language, and for any system, the state value is
only knowable at run time, i.e., when exercising the system (prescribed by
the specification).

Characterisation. By an applicative context we understand a concept of
context which has been modelled in the functional style. •

20.6 Styles of Configuration Modelling 499

Characterisation. By an applicative state we understand a concept of state
which has been modelled in the functional style. •

Techniques. Applicative Contexts: Usually we model an applicative context
as a simple Cartesian product (i.e., grouping) of a fixed number of context
components, when their number is a priori fixed and known, or as a simple
set or list of context components or a map of context component names to
(context or possibly state) component associations — when the number of
components is definite and knowable, but where contexts and components
may change, thereby bringing change in the "size" of context. •

The Cartesian context components may themselves be lists, sets or maps.

Techniques. Applicative States: Usually we model an applicative state ei­
ther as a simple Cartesian product (i.e., grouping) of a fixed number of state
components — when their number is a priori fixed and known — or as a
simple set or list of state components or a map of state components to (state)
component associations — when the number of components is indefinite and
otherwise depends on the designated (the prescribed) behaviours (of specifi­
cation interpretations or of systems). •

The Cartesian state components may themselves be lists, sets or maps.

Techniques. Applicative Contexts vs. State Function Arguments: When
defining functions that apply to contexts and states — besides other argu­
ments — these latter are listed as first the formal parameters, then the context
and finally the state. •

20.6.2 Applicative Contexts and Imperative States

We continue now with a combined applicative and imperative model of the
state concept of the RSL-like language.

Example 20.3 An Applicative Context and Imperative State Style Model:
We continue with the same syntactic types as were defined earlier (cf.

Example 20.2). While the binding of variable names and binding identifiers
remain "stable" over the interpretation of syntactically well-defined specifi­
cation texts, the storage will (usually) change for every statement being in­
terpreted within that text. We therefore introduce a storage variable stg, of
type L, our first metastate component, and change the gl_, AStg, gV, V, E,
I, M and S function definitions accordingly. Note that the metastate is the
aggregation of specification declared variables and their values. In this case
the metastate reflects (colloquially: "is the same as") the state of the modelled
language fragment.

500 20 Imperative Specification Programming

Metastate and Auxiliary Functions

variable
s tg : i7 :=[] ;

value
gL: Unit -» read stg LOC
gL() = let l:LOC • 1 £ dom stg in 1 end

AEnv: ENV - • ENV -> ENV
AEnv(env)/) = p f env /* Unchanged ! */

AStg: E —> read stg write stg Unit
AStg(<j) = stg := stg U a

gV: V - • ENV ^ read stg VAL
gV(v)p = stg(p(v))

Simple Interpretation Functions

V: VarDef - • ENV -^ read stg write stg ENV
E: Expr - • ENV -^ read stg write stg Val
I: Stmt ->> ENV -3- read stg write stg Unit

V(v,e)p =
let 1 = gLQ, val = E(e)p in
AStg([lH>val]); AEnv([vH4])/> end

E(v)p() = gV(v)p

I(Asg(v,e))/9 = stg := stg f [p(v) \-> E(e)p]
I(donothing)/9 = skip

Composite Interpretation Functions

I(Lst(sl))/9 = if sl=() then skip else I(hd sl)p;I(tl si)/? end

I(Cnd(e,c,a))p = if E(e)/> then 1(c)p else 1(a)/) end

I(Whi(e,s))/9 = while E(e)p do l(s)p end

I(Rep(s,e))/> = I(s)/>;I(Whi(e,s))/>

20.6 Styles of Configuration Modelling 501

Context-Creating Interpretation Functions

I(Cas(e,cl))/9 = let v = E(e)p in M(v,cl)p end

M: Val x Case* -^ ENV -3- read stg write stg Unit
M(v,cl)/? =

if cl=() then chaos else
let (b,s) = hd cl in let (t,env) = B(b,v) in
if t then I(s)(AEnv(env)/o) else M(v,tl c\)p end
end end end

I(For(b,le,pe,s))y9 = let vl = E(\e)p in S(b,vl,pe,s)/> end

S: Bind x VAL* x Expr x Stmt ^ ENV -3- read stg write stg Unit
S(b,vl,pe,s)p =

if vl={) then skip else
let (,env) = B(b,hd vl) in
if E(pe) (AEnv(env)p)

then (I(s)(AEnv(env)p);S(b,tl vl,pe,s)p)
else S(b,tl vl,pe,s)p end

end end

We comment on the applicative context and imperative state model. As before,
p : ENV models the context. Now stg : E models the state, and is itself a state
component of the model, i.e., is the metastate. And, as before, (/9:ENV,stg:ZT)
models configurations.

Notice, by inspecting, line by line, and pairwise, the interpretation func­
tions (V, E, I, M, S), the way in which arguments "disappear" (being replaced
by reference to a global metastate) and the way in which the interpretation
functions (typically the composite) are structured wrt. their composite syn­
tactical arguments. The above remarks apply equally well to the next — the
imperative context and state style — model. •

Summary, Applicative Contexts and Imperative States

We have continued our demonstration of applicative contexts, but have mod­
elled states imperatively. The model state component is now being represented
by a specification metastate component. Now the explicit state parameter of
applicative state models has disappeared, being replaced by references to a
global metastate component. In an imperative state model it is less obvious,
where in a specification state, changes are prescribed, but the number of in­
terpretation and auxiliary function arguments is usually smaller, and often
significantly so! It is still obvious where, in a specification context, changes
are prescribed and where no changes are prescribed.

502 20 Imperative Specification Programming

Characterisation. By an imperative state we mean a concept of state which
has been modelled in the imperative style. •

Techniques. Imperative States: In abstract specifications, it really is a mat­
ter of style as to when to model a state imperatively: you must weigh the
number of arguments (more for applicative, fewer for imperative), and the
number and style of interpretation and auxiliary function definitions. Usually,
however, the choice of state modelling moves from applicative to imperative
as we reify (develop) our specification into more concrete, more executable
designs. •

20.6.3 Imperative Contexts and States

We finish our sequence of three context/state model styles with an imperative
model of the RSL-like language.

Example 20.4 An Imperative Context and State Style Model:
We continue with the same syntactic types as were defined earlier (cf.

Example 20.2). Environments obey a stack-property: Whenever a binding is
processed, a "new" environment is created. Its computation interval is that
piece of text to which it is applied (by the interpreter). "Surrounding" text
interpretation takes place in an "old" environment. We therefore decide to
also introduce a variable env_stk, of type ENV*, to change the gV, AEnv, V,
E, I, M and S functions accordingly, and to introduce a new auxiliary function:
FEnv: Free Environment. As AEnv now "stacks" (pushes onto the environment
stack) a new environment, FEnv "un-stacks" (pops) that environment.

The metastate now models the configuration concept of the language frag­
ment whose semantics is being (operationally) specified.

Metastate

variable
env_stk:ENV* := ([]);
s tg : i7 :=[] ;

Auxiliary Functions

value
gL: Unit -» read stg LOC
gL() = let l:LOC • 1 ^ dom stg in 1 end /* Unchanged */

AEnv: ENV —> read env_stk write env_stk Unit
AEnv(env) = env_stk := (hd env_stk f env)"env_stk

20.6 Styles of Configuration Modelling 503

FEnv: Unit —> read env_stk write env_stk Unit
FEnvQ = env_stk := tl env_stk /* New! */

AStg: E -t read stg write stg Unit
AStg(cr) = stg := stg U a /* Unchanged */

gV: V -)> read stg,env_stk VAL
gV(v) = stg((hd env_stk)(v))

Simple Interpretation Functions

V: VarDef —• read,write env_stk,stg Unit
E: Expr —> read,write env_stk,stg Val
I: Stmt —> read,write env_stk,stg Unit

V(v,e) = let 1 = gL(), val = E(e) in AStg([l^val]); AEnv([vi->l]) end

E(v) = gV(v)

I(Asg(v,e)) = stg := stg f [(hd env_stk)(v) i->- E(e)]

I(donothing) = skip

Composite Interpretation Functions

I(Lst(sl)) = if sl=<> then skip else I(hd sl);I(tl si) end

I(Cnd(e,c,a)) = if E(e) then 1(c) else 1(a) end

I(Whi(e,s)) = while E(e) do I(s) end

I(Rep(s,e)) = I(s);I(Whi(e,s))

Context-Creating Interpretation Functions

I(Cas(e,cl)) = let v = E(e) in M(v,cl) end

M: Val x Case* ^> read,write env_stk,stg Unit
M(v,cl) =

504 20 Imperative Specification Programming

if cl=() t hen chaos else
let (b,s) = hd cl in let (t,env) = B(b,v) in
i f t

t hen (AEnv(env);I(s);FEnv())
else M(v,tl cl) end

end end end

I(For(b,le,pe,s)) = let vl = E(le) in S(b,vl,pe,s) end

S: Bind x VAL* x Expr x Stmt ^> read,wri te env_stk,stg Unit
S(b,vl,pe,s) =

if vl=() t hen skip else
let (,env) = B(b,hd vl) in
AEnv(env);
ifE(pe)

t hen (I(s);FEnv();S(b,tl vl,pe,s))
else (FEnv();S(b,tl vl,pe,s))

end end end

We comment on the imperative context and state model. Now the top of
the environment stack, hd env_stk:ENV, models the context, stg : E still
models the state, and thus remains a state component of the model. And,
as before, (hd env_stk:ENV,stg:i7) models configurations. The metastate,
env_stk:ENV*,stg:i7, is just that. Notice the explicit stacking and un-stacking
of environments. The specification text between a "closest" such pair of allo­
cate and free environment actions (AEnv, respectively FEnv) models the scope
of a binding, that is, its context. •

Summary, Impera t ive Contexts and States

We have seen how the block-structured concepts of specification of text names
to their designations (incl. denotations) is modelled imperatively, and as
stacks, that is, reflecting the block structure, i.e., the nested or embedded
or scope-limited redefinitional nature of such concepts. And we have seen how
the beginning and ending of a context, i.e., of a scope of the defined names,
lead to matching pairs of stacking and un-stacking of contexts. Now it may
be less obvious as to where, in a specification, a context is defined, used and
"ends" — unless one is careful in finding suitable "expressional" ways of des­
ignating the pairs of stackings and un-stackings.

Character isa t ion. By an imperative context we understand a concept of
context modelled in the imperative style. •

20.7 Review and Discussion 505

Techniques. Imperative Contexts (I): We usually model contexts impera­
tively as we develop our abstract specifications (where the contexts usually
were applicatively modelled) into more concrete specifications, that is, as we
move closer to, or develop actual software designs. •

Techniques. Imperative Block-Structured Contexts (II): Contexts may be
recursively defined, as are the bindings of names to their designations in
specification (hence also programming) languages. In such cases imperative
contexts are usually modelled as stacks of context models. •

Techniques. Imperative Block-Structured Contexts (III): To help the reader
to more easily observe that a block-structured context concept "is at play"
in an imperative definition, we advise that suitable auxiliary stack (allocate)
and un-stack (free) functions be defined and deployed. •

20.6.4 Summary of Sequential Models

The three models shown so far have all had 'sequentially' in common: The
applicative style 'sequentially' is illustrated by let a = b in c end and more
generally, by the 'call-by-value', 'inside-out' and 'left-to-right' evaluation of
expressions The imperative style 'sequentiality' is illustrated by 'left-to-right'
interpretation of RSL: statement lists, structured statements and assignment
statements.

20.7 Review and Discussion

20.7.1 Review

We introduced the imperative language constructs of RSL. We sketched their
mathematical meaning — in terms of state-to-state changing functions — in
some form of A-notation. We then discussed notions of location values: Val­
ues that are references to storage cells keeping other values; and we showed,
in an extensive example, how to model a "toy" programming language hav­
ing reference values. We then showed how to relate certain simple forms of
applicative function definitions to similarly simple imperative function def­
initions. Finally, we modelled another simple "toy" programming language,
which exhibits scope of identifiers, in three different styles: applicatively, im­
peratively and a "mix" of both. These last three models, in a slightly different
order, also exemplified the notion, and thus reinforced our understanding, of
contexts (environments) and states (storages).

506 20 Imperative Specification Programming

20.7.2 Discussion

Which is a "better" style of programming: functional, as in Standard ML
(SML), or imperative, as in Fortran? We believe that it does not make sense
to try to answer this question by nominating either of the two styles as a
"winner". It may seem, on first study, that functional programming is so much
more "clean", elegant, expressive, and as versatile as imperative programming.
But then the laws of imperative programming are as beautiful as are those of
functional programming, to wit: [290,449].

What separates the two styles of programming wrt. actual languages is
not that one is functional, and the other is imperative, but that one offers
data types that are more suitable for one kind of problem, and that the other
offers other data types that are more suitable for other kinds of problems.
Thus — as an example — Standard ML (SML) offers language constructs to
go with its special offering of data types that have proven to be very useful
in specifying computations over structured values: trees, records, etc. On the
other hand For t ran is still considered, by some, to be most appropriate for
scientific computations involving arrays (vectors, matrices, etc.) of floating­
point data. The moral: We need many different kinds of programming, as well
as specification languages.

20.8 Bibliographical Notes

There are four main sets of references to be made at this point.

20.8.1 Theory of Computation

First there are the references to the work of John McCarthy, [365-368]:

• Recursive Functions of Symbolic Expressions and Their Computation by
Machines. Communications of the ACM 3(4): 184-195, 1960 [365].

• Towards a Mathematical Science of Computation. In CM. Popplewell,
editor, IFIP World Congress Proceedings, pp. 21-28, 1962 [366].

• A Basis for a Mathematical Theory of Computation. In Computer Pro­
gramming and Formal Systems. North-Holland, Amsterdam, 1963 [367].

• A Formal Description of a Subset of ALGOL, in Formal Language Descrip­
tion Languages, IFIP TC-2 Work. Conf., Baden. Ed. T.B. Steel. North-
Holland, Amsterdam, 1966 [368].

20.8.2 A Type Theory for the A-Calculus

Then there are the references to the works of Christopher Strachey and Dana
Scott [463,469]. We only mention two:

20.8 Bibliographical Notes 507

• D.S. Scott and C. Strachey. Towards a Mathematical Semantics for Com­
puter Languages. In Computers and Automata, Vol. 21 of Microwave Re­
search Inst. Symposia, pp. 19-46, 1971.

• D.S. Scott. Outline of a Mathematical Theory of Computation. In Proc.
4th Ann. Princeton Conf. on Inf. Sci. and Sys., p. 169, 1970.

20.8.3 Source Program Transformation Works

There are basically two schools of thought to refer to here, the Burstall-
Darlington school, which we have followed [142,173,174]:

• J. Darlington and R. M. Burstall. A System Which Automatically Im­
proves Programs. Acta Informatica, 6:41-60, 1976 [174].

• R. M. Burstall and J. Darlington. A Transformation System for Developing
Recursive Programs. Journal of ACM, 24(l):44-67, 1977 [142].

• J. Darlington. A Synthesis of Several Sorting Algorithms. Acta Informat-
ica, 11:1-30, 1978 [173].

and the Munich CIP project as covered in [35]:

• F.L. Bauer: Program Development by Stepwise Transformations — The
Project CIP. Appendix: Programming Languages Under Educational and
Under Professional Aspects, pp. 237-272.

• F.L. Bauer, M. Broy, H. Partsch, P. Pepper, H. Wossner: Systematics of
Transformation Rules, pp. 273-289.

• H. Wossner, P. Pepper, H. Partsch, F.L. Bauer: Special Transformation
Techniques, pp. 290-321.

• P. Pepper: A Study on Transformational Semantics, pp. 322-405.
• F.L. Bauer: Detailization and Lazy Evaluation, Infinite Objects and Pointer

Representation, pp. 406-420.
• H. Partsch, M. Broy: Examples for Change of Types and Object Struc­

tures, pp. 421-463.

20.8.4 Laws of Imperative Programming

Finally there is a reference to work by Hoare et al. on laws of imperative
programming [290]:

• C.A.R. Hoare, I.J. Hayes, J.F. He, C.C. Morgan, A.W. Roscoe, J.W.
Sanders, I.H. S0rensen, J.M. Spivey, and B. Sufrin. Laws of Programming.
Communications of the ,4CM 30(8) :672-686, 770, 1987.

We find these references to have formed an important basis for and a summary
of many of the facets covered in the present chapter.

508 20 Imperative Specification Programming

20.9 Exercises

We give only a few exercises, but they are a bit on the large side. We trust that
lecturers using this text can make up simple exercises requiring imperative
solutions. The function definitions of the exercises of this chapter are basically
to be expressed in the imperative style.

Exercises 20.1, 20.2 and 20.3 are preceded by Exercises 19.1, 19.2 and 19.3,
respectively. They are continued in Exercises 21.5, 21.6 and 21.7, respectively.

• • •

Exercise 20.1. The Grocery Store, II. You are basically asked to repeat Ex­
ercise 19.1, but now on the basis of an imperative state. We suggest that
any configuration component that is either changed (as a state component),
or is often referred to (as a context component), be made into a variable
component. Thus, a suggestion is to maintain the following variables: (i) The
warehouse, (ii) the store, (iii) a set, clients, of uniquely identified clients —
embodying, in principle, only their purse, i.e., some monies — (iv) with their
shopping carts and (v) their bags, and (vi) the check-out counter, which essen­
tially contains the cash register, the wholesaler inventories and their wholesaler
cash registers. Now, redefine the functions that were given as solutions to Ex­
ercise 19.1, but now in the imperative style.

In the applicative definition style all state component values were argu­
ments to many, and results of many defined functions. In the present, imper­
ative style definition these state component values need to be given an initial
value to be assigned to respective variables.

If you believe that the above description is incomplete, please state why,
and provide the completing text.

The present exercise is to be solved in the concurrent style in Exercise 21.9.

Exercise 20.2. The Anarchic Factory, II. We refer to Exercise 19.2; please
read the problem formulation texts of those exercises carefully.

Now, in this version of a formalisation of the factory model you are to con­
vert the configuration (context and state) components into state variables. A
suggestion is to maintain the following state components in terms of variables:
(i) the inventory, (iii) the trucks, which is a set of uniquely identified trucks,
(ii) the cells, which is also a set of uniquely identified production cells, and
(iv) the product warehouse. The rest is as in Exercise 19.2, formalise the non-
deterministic single state transition function and the function that iterates
over a(n entire) production plan, etc.

The present exercise is to be solved in the concurrent style in Exer­
cise 21.10.

Exercise 20.3. The Document System, II. Please read the problem formula­
tion texts of Exercise 19.3 carefully.

1. In this exercise make the system components:

20.9 Exercises 509

(a) the set of all place directories a single global variable,
(b) the set of all place persons a single global variable,
(c) the set of all citizens a single global variable,
(d) the set of all document identifiers in use a single global variable, and
(e) the set of all dossier identifiers in use a single global variable.

2. Define all variable types clearly.
3. Now redefine the syntax of commands, replacing explicit mentioning of

persons, documents, dossiers and locations by their identifiers.
4. And redefine, in the imperative style, all semantic interpretation functions.

The present exercise is to be solved in the concurrent style in Exer­
cise 21.11.

Exercise 20.4. X An Imperative Domain Model of Transportation Nets. We
refer to Appendix A, Sect. A.l, Transportation Net.

We refer to Exercise 19.4. Please read the problem formulation of that
exercise carefully.

You are basically asked to repeat Exercise 19.4, but now on the basis of
an imperative state. We suggest that any configuration component that is
either changed (as a state component), or is often referred to (as a context
component), be made into a variable component. Thus, a suggestion is to
maintain the following variables: (i) the static segments, (ii) the dynamic
segments, (hi) the static connectors, (iv) the dynamic connectors, and (v) the
graph of the network (i.e., the structure part of the net). Based on these five
variables redefine the operations mentioned in items 3-5 of Exercise 19.4.

Exercise 20.5. X An Imperative Domain Model of Container Logistics. We
refer to Appendix A, Sect. A.2, Container Logistics.

We refer to Exercise 19.5. Please read the problem formulation of that
exercise carefully.

You are basically asked to repeat Exercise 19.5, but now on the basis of
an imperative state. We suggest that any configuration component that is
either changed (as a state component), or is often referred to (as a context
component), be made into a variable component. Thus, a suggestion is to
maintain the following gloabal state variables: ships, the container storage
area of a specific container terminal, and the quay of that terminal. Based
on these three variables redefine the operations mentioned in items 3-11 of
Exercise 19.5.

Exercise 20.6. X An Imperative Domain Model of Financial Service Indus­
tries. We refer to Appendix A, Sect. A.3, Financial Service Industry.

We refer to Exercise 19.6. Please read the problem formulation of that
exercises carefully.

You are basically asked to repeat Exercise 19.6, but now on the basis of
an imperative state. We suggest that any configuration component that is

510 20 Imperative Specification Programming

either changed (as a state component), or is often referred to (as a context
component), be made into a variable component. Thus, a suggestion is to
maintain the following variables: client catalogue, account catalogue and ac­
counts. Based on these three global state variables redefine the operations
mentioned in items 1-2 of Exercise 19.6.

21

Concurrent Specification Programming

• The prerequisites for studying this chapter are that you have understood
most, if not all, of what has been covered in previous chapters and you are
interested in modelling concurrent behaviours.

• The aims are to motivate and introduce both simple CSP and the RAISE
version of CSP, RSL/CSP, and to show a number of principles and techniques
for modelling concurrent behaviours using RSL.

• The objective is to set the reader firmly on the road to modelling con­
current systems such as distributed systems, client/server systems, etc.

• The treatment is semiformal.

In this chapter we introduce a notation for expressing parallelism (also called
concurrency): First we present a pure notation, a formal language, CSP: Com­
municating Sequential Processes [288,289,448,456]. Then we present this no­
tation's embedding in RSL.

Characterisation. By concurrent programming we shall understand pro­
gramming with processes as a central notion: where processes are combined
(in parallel) to form concurrent processes, where synchronous or asynchronous
interaction between processes can be specified, and so on. •

Characterisation. By parallel programming we mean the same as concur­
rent programming. •

Characterisation. By concurrent specification programming we shall un­
derstand an abstract, property-oriented form of concurrent programming, one
in which (relative or absolute) progress of processes is left unspecified, where
choice between actions of proceses can be left unspecified (i.e., nondetermin-
istic), and in which we deploy abstract types, and so on. •

In Vol. 2, Chaps. 12-14 we shall introduce three sets of predominantly
graphical notations: Petri Nets [313,421,435^437], Message Sequence Charts

512 21 Concurrent Specification Programming

[302-304] and Live Sequence Charts [171,270,325], and Statecharts [265,266,
268,269,271].

In this chapter we bring in a number of principles and techniques for mod­
elling concurrent behaviours and the interaction between behaviours. We do
so in a number of steps: First, in Sect. 21.1, we informally examine some basic
notions of behaviours. Then, in Sect. 21.2, on a per intuition basis, we present
some behaviour scenarios and show their possible formalisation using RSL's
CSP sublanguage. But this sublanguage is not formally introduced. Follow­
ing that, in Sect. 21.3, we present the "bare bones" of CSP. After all these
preliminaries we introduce, more systematically, the RSL/CSP sublanguage in
Sect. 21.4, and, in Sect. 21.5, we suggest a calculus for transforming applica­
tive, respectively imperative, RSL specifications into RSL/CSP specifications.
In Vol. 2, Chap. 15 we cover extensions to the RSL/CSP sublanguage. These
allow us to deal with "real time" and with time durations. Throughout we
present many examples.

21.1 Behaviour and Process Abstractions

Characterisation. Behaviour is defined in Merriam-Webster's Collegiate
Dictionary [373]: (i) the manner of conducting oneself, (ii) anything that an
organism does involving action and response to stimulation, (Hi) the response
of an individual, group, or species to its environment, (iv) the way in which
someone behaves, an instance of such behavior, (v) the way in which something
functions or operates. •

By behaviour we shall understand the organism to be anything spanning from
a human, via any phenomena in "Mother Nature", to an interpreter or a
machine or a computer.

Characterisation. Merriam-Webster [373] defines process as (i) a natural
phenomenon marked by gradual changes that lead toward a particular result,
(ii) a natural continuing activity or function, (Hi) a series of actions or oper­
ations conducing to an end, or more particularly (iv) a continuous operation
or treatment especially in manufacture. •

We shall, more or less, take the two terms, 'behaviour' and 'process', as be­
ing synonymous. The only difference is a pragmatic one: When we use the
term 'behaviour' we refer to an as yet unanalysed, hence not yet formalised,
but otherwise precisely described understanding of some actual-world phe­
nomenon. And when we refer to the term 'process' we refer to an analysed,
precisely narrated and/or formalised specification of a behaviour, typically as
we expect it to be more or less implemented by computer.

21.1 Behaviour and Process Abstractions 513

21.1.1 Introduction

Entities are the "things" we can point to: bank accounts, trains, timetables,
people, rail nets, etc.. Entities can be subject to actions: queries concerning
(i.e., observations of) their state, i.e., predicates and functions (viz.: account
balance, train speed, journey duration, etc.); and also operations that possibly
alter their states, i.e., generator functions (viz.: deposit, accelerate, resched­
ule, etc.).

Any particular entity can be seen from the point of view of the sequences
of actions that apply to it (viz.: open account, alternation of one or more
deposits into or one or more withdrawals from the account, ended by a close
account). Such a sequence of actions may, for certain actions in the sequence,
involve two or more entities for which other action sequences are defined
(viz.: transfer between accounts, running train according to timetable sched­
ule, etc.). We therefore see that action sequences may interact. In this section
we shall investigate means for describing interaction sequences, or as they are
also called, behaviours or processes. That is, we shall otherwise — with the
above caveat in mind — in general, treat the two terms behaviour and process
synonymously.

There are many examples in this chapter. You may wish to "scan" the
section to get an immediate, informal grasp of the ideas discussed in it. The
various forms of text between the examples — section, paragraph and other
headers, definitions, comments, principles, techniques and other text — should
reasonably directly inform you!

21.1.2 On Process and Other Abstractions

In abstraction and in modelling we have at our disposal a number of ab­
straction styles. These are either property-oriented (cf. Sect. 12.2) or model-
oriented (cf. Sect. 12.4). Within the former we usually speak of algebraic or
axiomatic (cf. Sects. 8.5, respectively 9.6) abstractions. Axiomatically and
algebraically expressed models differ less materially than do denotationally
and computationally expressed models. Within the latter we can distinguish
between denotation abstraction (cf. Vol. 2, Sect. 3.2) and computation ab­
straction (cf. Vol. 2, Sect. 3.3).

In this section we shall introduce yet another form of abstraction and mod­
elling: it is operational (as are computation models). Do not confuse operation
abstraction with operational abstraction. In operation abstraction we abstract
individual (usually basic, i.e., primitive) operations (i.e., functions and predi­
cates) over abstracted entities. In operational abstraction we focus upon, but
do not necessarily detail, specific sequences of operations of a system.

Denotation abstraction (Vol. 2, Chap. 3, Sect. 3.3.3) was first introduced
around 1970 in order to model the meaning of computer programs, typically
of imperative languages. The denotation of a computer program is then seen
as some mathematical function. Denotation abstraction can, however, also be

514 21 Concurrent Specification Programming

applied to other than computing concepts. We shall elsewhere in these volumes
illustrate the denotation abstraction of facets of banks, aspects of railways,
etc.

Computation abstraction (Vol. 2, Chap. 3, Sect. 3.3.3) was likewise first
introduced around 1964 in order to model abstract executions of computer
programs. The term computation abstraction emphasises the concept com­
putation. In the actual world we may not think of some phenomena as com­
putations, but rather as sequences of actions. In this case we prefer to use
the term operational abstraction when modelling the sequence aspect of these
sequences of actions.

When seemingly independent, concurrently operating phenomena (i.e.,
processes) occasionally interact, and when we wish to model both the con­
currency and the interaction, then we apply process abstraction. So process
abstraction is a more general form of operational abstraction. Several tools
and techniques are offered for the modelling of processes:

• The CSP-oriented techniques and tools where a system of processes is de­
fined in terms of abstract, textual programs (Sects. 21.2-21.4). Seminal
references to CSP are [288,289,448,456].

• The Petri net-oriented techniques and tools, where a system of processes
is defined in terms of a diagrammatic net of places, transitions and tokens
(Vol. 2, Chap. 12 and [313,421,435-437]).

• The statechart-oriented techniques and tools, where a system of processes
is defined in terms of a diagrammatic net of iteratively embedded groupings
of boxes of state machines with transitions between states and or boxes
(Vol. 2, Chap. 14 and [265,266,268,269,271]).

• The live sequence chart-oriented techniques and tools by means of which
statecharts are "glued" together and external protocols are imposed on
otherwise "freely" occurring ("external") events (Vol. 2, Chap. 13 and
[171,270,325]).

In this chapter we shall exclusively illustrate some process concepts using the
CSP-approach — couched, however, in the RSL/CSP subset.

21.2 Intuition

We shall discuss the behaviour (i.e., the process) concepts of this chapter.

21.2.1 Illustrative Rendezvous Scenarios

In this section we shall attempt to motivate and illustrate the notion of pro­
cesses as partially independent, but interacting phenomena. In doing so we
shall be introducing both informal, graphic and formal, textual notation. The
formal (in this case some variant of CSP) notation will not (yet) be formally

21.2 Intuition 515

introduced — only by way of annotated examples. There will be many exam­
ples. We start by relating some scenarios.

Example 21.1 Four Rendezvous Scenarios: We present a number of scenar­
ios. Their purpose is to let us introduce a number of process concepts and,
informally, notation to go with these.

(1) One sender, one receiver. Two persons, P and Q, walk in opposite
directions down a street, towards each other. One person, say P, carries a
letter for the other person, Q. Some previous agreement, i.e., a protocol, has
been established between the two persons that an exchange of a letter is to
take place.1 They walk, most likely, at different and, in any case, unpredictable
speeds. The speeds may vary, and they may be zero. The letter deliverer and
the letter receiver are willing to hand over, resp. to receive, i.e., to 'relay', the
letter at any point. As they are walking, the two persons are not performing
any activities other than walking and being willing to 'relay'. And as they
meet — i.e., as they rendezvous — the delivering person "hands over" the
letter which is simultaneously received by the receiving person. After they
have relayed the letter they both walk on in their respective directions.

If either P or Q refuses to walk, then the combined process fails, i.e.,
deadlocks.

ru c

f~Q^

IJ^J
,—-

ii^Y
\ly
!r^>
\ly

if7>
\[y

'—1̂ —1

D

•—i^—i

D
•
•
•

D
.—>—

N

1 r~p\ cp ^ M ^ cq &)

1 : 4 Mailbox

2 j 3

nl iv LJ j LJ

0

o
>

•
•
•

o

.—-

^ l ' i
Udi

^
Udi

fT
l«J.i

Fig. 21.1. Four schematic "rendezvous" classes

xThe compositional aspects of each of the four kinds of "rendezvous" classes
of the diagrams of Fig. 21.1 and of the four corresponding formal specifications
"embody" this "agreement".

516 21 Concurrent Specification Programming

Variants on the scenario above could be:
(2) Any sender, one receiver. The letter sender may be any one of a

number of willing persons, Pi, P2, . . . , P m , but the letter, and then at most
one, is receivable only by a specific person Q, say standing still on the street.
We consider Pi, P2, . . . , P m and Q as being processes. The various Pi are
walking, each at their own speed, as was P in the previous scenario, but now
in any direction, up or down, the street, and hence meeting Q sooner or later
— with the first one so meeting delivering the letter.

If either Q refuses, or all P« refuse to walk, then the combined process fails,
i.e., deadlocks.

(3) One sender, any receiver. The letter sender, P, is thought of as a
fixed person, say standing still on the street, but the letter may be received
by the "first" of a number of willing recipients, Qi, Q2, . . . , Qn- We consider,
i.e., we abstract P, Qi, Q2, . . . , and Qn as being processes. The various Q̂ are
walking, each at their own speed, as was Q in the previous scenario, but now
in any direction, up or down, the street, and hence meeting P sooner or later
— with the first one so meeting receiving the letter.

If either P refuses, or all Q̂ refuse to walk, then the combined process fails,
i.e., the combined process fails, or deadlocks.

(4) Send/receive via a mailbox. Letters are posted in an at most one
letter capacity mailbox, M, by a sender, or any number of senders, and re­
trieved from that mailbox by a receiver, or any number of receivers. We con­
sider Pi, P2, . . . , P m Qi, Q2, . . . , Qn and M as being processes.

If no Pi puts a letter in the mailbox, then any Qj attempting to fetch the
letter deadlocks.

• • •

Cyclic versions of the initial scenario and the three subsequent variations
described above are illustrated in Fig. 21.1's respective four cases: 1-4. By
a cyclic version we mean one in which we model the repeated behaviour:
Scenarios (1-4) are repeated indefinitely. Thus scenario (1) could be rephrased:
The same person P, after having delivered the letter to person Q, starts all over
again, possibly after some other activities which we do not detail, i.e., from
which we abstract, walking down the same street with a new letter for person
Q, where that person again is ready, possibly after some other activities which
we do not detail, i.e., from which we abstract, to receive a letter and indicates
this willingness by again walking down that street! Similar rewordings can be
made for scenarios 2-4.

We will explain the graphics of Fig. 21.1. For simplicity and generality we
have shown all processes as rounded-edge boxes with arrows.

The thick line of the rounded-edge boxes is intended to designate a cyclic
sequence of actions including the event-causing actions. The arrows are in­
tended to show direction of execution (black) or communication (white). (We
either place the arrows on or next to the action list or channel; and we either

21.2 Intuition 517

show these arrows for all instances or summarise them meaningfully, the lat­
ter as in case 3.) The horizontal bars "touching" ("overlapping") two or more
boxes are intended to show synchronisation and communication rendezvous.
The tiny rectangles (Q) along the rendezvous of parts 2 and 3 are intended to
show nondeterministic choice as to from which of the (2) P's (3, Q's) Q (resp.
P) will accept input. In part 4 the mailbox process M alternates between
being ready to receive a letter from P and delivering that letter to Q. The
four "box and arrow" diagrams of Fig. 21.1 correspond to the four sets of ab­
stract process (i.e., function) definitions of the below Schematic "Rendezvous"
Specifications 1-2-3 and Schematic "Rendezvous" Specification 4.

Schematic "Rendezvous" Specifications 1—2—3

type Info
channel c,cp,cq:Info
value

P: Unit - • out c Unit
P() = let i = write_letter() in c ! i end ; P()

Q: Unit —> in c Unit

QQ = let i = c ? in readJetter(i) end ; Q()

write_letter: Unit —> Info, read-letter: Info —> Unit

SI: Unit - • Unit, Sl() = P() || Q()
S2: Nat Unit -> Unit, S2(m) = || { PQ | x:{l..m} } || QQ
S3: Nat Unit - • Unit, S3(n) = P() || (|| { Q() | x:{l..n} })
Process Si is the parallel composition (||) of processes P and Q. Process

S2 is the parallel composition of process Q with the parallel, distributed com­
position of processes P, one for each index set l..m. Process S3 is the parallel
composition of process P with the parallel, distributed composition of pro­
cesses Q, one for each index set l..n.

Info is the type of the information contained in the letter, c is what is
known as a channel between P and Q in parts 1-3. Channels allow pairs
of processes to share events; cp and cq are the channels between P and M,
respectively between M and Q. P writes a letter, hands it over on channel c
to Q — as prescribed by the output [!] / input [?] pair (c ! i,c ?).

This is true in all parts 1-3. In part 1 it is simply so: Two processes (P
and Q) share channel c, and thus share events. In part 2 many (m) processes
P share the same channel c with one process Q. Q will not know which of the
m P processes sent the letter to Q. In part 3 many (n) processes Q share same
channel c with one process P. P will not know which of the n Q processes
received the letter. All P and Q processes are cyclic: P produces letters, and
Q consumes letters. They both cycle for each production, resp. consumption.

518 21 Concurrent Specification Programming

S c h e m a t i c " R e n d e z v o u s " Speci f icat ion 4

S4: U n i t -> U n i t , S4() = P'() || M() || Q'()

P': U n i t - • out cp U n i t
P'() = let i = write_letter() in cp ! i e n d ; P'()

M: U n i t —> in cp out cq U n i t
M() = let i = cp ? in cq ! i e n d ; M()

Q': U n i t —> in cq U n i t
Q'Q = let i = cq ? in read-letter(i) e n d ; Q'()

Process P' now sends (i.e., drops) the letter to (i.e., in) mailbox M. The relation
between P' and M is as between P and Q in part 1. Process q now receives
(i.e., fetches) the letter from mailbox M. The relation between M and Q' is
as between P and Q in par t 1. Process M is a one-item buffer, it alternates
between receiving and sending. It recycles for each pair of receive-sends. •

21 .2 .2 D i a g r a m and N o t a t i o n S u m m a r y

Example 21.1 thus served as more than just an example: It also, in a serious
yet informal, manner introduced core concepts of CSP and hence RSL/CSP.
As such, the reader is very strongly advised to study tha t example carefully.

So we have introduced the concepts of processes and their "rendezvous"
output (!) and input (?) synchronisation and communication. We have sketched
informal ways of picturing process structures (cf. Fig. 21.1); and we have in­
formally shown formal notations (Figs. 21.1 and 21.1). Before going on to
a more systematic, formal introduction of a (so-called "pure") notation for
[T]CSP [288,448,456] and the corresponding CSP-like notation for the pro­
cess concepts of RSL [236,238], in Sects. 21.3 and 21.4, we will further review,
illustrate and thus motivate the CSP process concepts.

21 .2 .3 O n a Trace S e m a n t i c s

In this section we provide a very rough sketch of a possible semantics of a
CSP-like language. For authoritat ive, and certainly more proper, accounts of
such semantics we refer to [288,448,456].

Actions change the da ta as well as the control s ta te 2 and are thought
of as taking place instantaneously, i.e., with no observable time duration.

2By a data state we understand "something" that records and remembers the
values of various usually named data items, like a storage. By a control state we
understand the interpreter's awareness of the point in a program cum specification
text which is being interpreted by the interpreter.

21.2 Intuition 519

Processes, from one viewpoint, can be said to be sequences of actions. Events
are phenomena that also take place instantaneously, but which, in and by
themselves, do not change the data state, but (usually) cause actions to take
place, i.e., be "triggered", thereby changing the control state. Processes, from
another viewpoint, can be said to be sequences of events and — if causing
actions — then possibly also sequences of actions. A process can exchange
information with another process through what we shall call synchronised
events (Fig. 21.2). Systems may consist of many processes synchronising on
events and exchanging (communicating) information during such synchronised
'rendezvous'.

:Q

action aPj

event aPj+1

action aPj+2

action aPm

e(i)
aQk action

aQk+1 event

aQk+2 action

aQn action

Processes P and Q Rendezvous

to cause Event e(i) after respective

execution of Actions aPj, resp. aQk

Fig. 21.2. Stylised "rendezvous" situation

The behaviour of systems can, for example, be the set of sequences (traces)
of externally observable events, or can, more generally, be the set of traces of
both externally and internally observable events.

For the conceptual example of Fig. 21.2 the system is that of the parallel
(||) combination of processes P and Q: P||Q. The external behaviour is: {(e(i))}.
The internal behaviour — expressed, as above, in some metalinguistic notation
— is:

{{(aPl , . . . , aPj) x (aQl, . . . , aQk)}
~<{aPj+l ,e(i) , aQk+1 }>~
{(aPj+2, . . . , aPm) tx (aQk+2, . . . , aQn)}}.

The expression means: any interleaved and/or concurrent string (ex) of P and
Q actions from 1 up to j , respectively k, then the composite action/event,
{aPj+l,e(i),aQk+l}, and then any interleaved and/or concurrent string (ix)
of P and Q actions from j+2 up to m, respectively k+2 up to n. The external

520 21 Concurrent Specification Programming

behaviour is the internal behaviour "minus" all the actions (being projected
"away").

Example 21.2 Some Trace Semantics: Let there be given the following three
processes composed into one overall process:

type
M

channel
pq: M, qr: M

value
S: Unit - • Unit
P: Unit —> out pq Unit
Q: Unit —> in pq, out qr Unit
R: Unit —> in qr Unit

S() = P() || Q() || R()

P() = al ; pq!m ; a2 ; PQ
QQ = bl ; let m = pq? in qr!m end ; b2; Q()
R() = cl ; qr ? ; c2 ; R()

Traces observed of P, Q and R are:

V: (al;pq!m;a2;al;pq!m;a2;al;pq!m;a2;al;...)
Q: (bl;pq?;qr!m;b2;bl;pq?;qr!m;b2;bl;pq?;qr!m;b2;bl;...)
1Z: (cl;qr?;c2;cl;qr?;c2;cl;qr?;c2;cl;...)

Traces potentially observable of S are:

S: {(al;bl;cl;{pq!m||pq?};a2;{qr!m||qr?};b2;{pq!m||pq?};c2;...),
(al;bl;cl;{pq!m||pq?};{qr!m||qr?};a2;b2;{pq!m||pq?};c2;...),
(al;bl;{pq!m||pq?};cl;{qr!mjjqr?};a2;c2;b2;{pq!m||pq?};...>,

21.2.4 Some Characterisations: Processes , Etcetera

One way of expressing the meaning of a process expression, that is, an expres­
sion which contains communication primitives such as output (c!e) and input
(c?), is to express it as a set of traces of observable (output/input) events.

Characterisation. By a process we (semantically) mean a trace. •

Characterisation. By a process definition we syntactically mean a function
definition, and semantically a set of traces. •

21.2 Intuition 521

Character isa t ion. By concurrent processes we mean a set of two or more
processes. •

It makes little sense to speak of one concurrent process. But we can talk
of one process, namely a sequential occurrence of some actions.

Character isa t ion. By the global process environment we mean the sur­
roundings with which the process may interact, i.e., share in events, but ex­
cluding other defined and channel-connected processes. •

Characterisation. By a process environment we mean the set of other pro­
cesses and the global surroundings from which the process may receive input
and (or) to which it may deliver output, that is, with which the process may
interact, i.e., share in events. •

Characterisation. By an event we mean a process event, the occurrence of
an input (from the environment, including another process) or an output (to
the environment, including another process) or both. The latter designates an
internal event. •

We shall later distinguish between internal (or local) and external (global)
events, and hence between observable and nonobservable events.

Character isa t ion. By an externally observable process trace, or just an ex­
terna] trace, we mean a sequence of process events. •

In addition to events one could, as was mentioned earlier, include as part
of traces the occurrence of certain non-input/non-output actions. We shall
refrain from doing so.

21.2.5 Principle of Process Modelling

So when do we choose to introduce processes into our models? The answer is
not that straightforward. We can indeed model processes without introducing
the explicit process (channel, output, input) notation so far informally illus­
trated, for example, by nondeterministically defined transition functions over
configurations that contain set- or map-oriented values whose elements model
the control state of individual processes.

Principles. Process Modelling: We choose to model, in terms of processes
and events, phenomena in the real world, i.e., "in some application domain",
or in computing, when we wish to emphasise concurrently interacting compo­
nents, that is, how they synchronise and communicate. •

522 21 Concurrent Specification Programming

Components = Processes

The concept of component3 is perhaps the one that we will rather assume for
granted. However:

Characterisation. By a component we shall loosely understand a structured
set of [variable or constant] (i) values [modelling certain nouns], (ii) predicates,
[observer] functions and [generator] operations over these [modelling certain
verbs], (hi) and events that stand for willingness to "communicate", i.e., to
accept and/or present values to other components, including that of an "out­
side" [external] world. •

In this sense a component becomes synonymous with what we shall now call
a process. The concept of 'object', as in object-oriented programming [1] and
[376-378], is sometimes used where we here use the term component — or
"our" notion of 'component' is (then) a set of such objects (object modules).
We shall, in Vol. 2, Chap. 10, elaborate more on object-oriented specification
and the relationship between our concept of component (i.e., process or process
definition) and that of the more commonly accepted use of objects and object-
orient edness. Meanwhile, let us consider some component examples.

21.2.6 Informal Examples

Example 21.3 Atomic Component — A Bank Account: When we informally
speak of the phenomena that can be observed in connection with a bank
account, we may first bring up such things as: (i) The balance (or cash, a
noun), the credit limit (noun), the interest rate (noun), the yield (noun); and
(ii) the opening (verb) of, the deposit (verb) into, the withdrawal (verb) from
and the closing (verb) of an account. Then we may identify (iii) the events
that trigger the opening, deposit, withdrawal and closing actions. We may
thus consider a bank account — with this structure of (i) values, (ii) actions
(predicates, functions, operations), and (iii) ability to respond to external
events (to open, to deposit, etc.) — to be a component, i.e., a process. •

Components are either atomic or composite. In the latter case we can — often
more or less arbitrarily — show a decomposition of a component into two or
more subcomponents.

Example 21.4 Composite Component — A Bank: Likewise, continuing the
above example, we can speak of a bank as consisting of any number of bank
accounts, i.e., as a composite component of proper constituent bank account
components. Other proper constituent components are: the customers (who
own the accounts), the bank tellers (whether humans or machines) who ser­
vices the accounts as instructed by customers, etc. •

3We shall later, in Vol. 3, Chaps. 26-27, present a more general concept of com­
ponent.

21.2 Intuition 523

In the above we have stressed the "internals" of the atomic components. When
considering the composite components we may wish to emphasise the inter­
action between components.

Clients Accounts

1

\)

V)
•
•
•

hJ

>

c
b

[1
..m

]

I

: >
i •

•

>

''

o

V 0 N

Bank

r

0:0

|
/

m

B

^
w

0

1

0:0
1 1

L

\
J ,.;

n

> :

_j •
• i

• i

> :

i
b

a[
1.

.n
]

> :

C \'

•
•
•

T 2
v J

T 1

m, respectively n,
nondeterministic
external choices

Fig. 21.3. A fifth schematic "rendezvous" class

Example 21.5 One-Way Composite Component Interaction: We illustrate
a simple one-way client-to-account deposit. A customer may instruct a bank
teller to deposit monies handed over from the customer to the bank teller into
an appropriate account, and we see an interaction between three "atomic"
components: the client(s), the bank teller(s) and the account(s).

This scenario is very much like part 4 in Fig. 21.1, see also Fig. 21.3.
Figure 21.3 shows a set of distinct client processes. A client may have one
or more accounts and clients may share accounts. For each distinct account
there is an account process. The bank (i.e., the bank teller) is a process. It
is at any one time willing to input a cash-to-account (a,d) request from any
client (c). There are as many channels into (out from) the bank process as
there are distinct clients (resp. accounts).

Using formal notation we can expand on the informal picture of Fig. 21.3.

type
Cash, Cash, Cidx, Aidx

channel
{ cb[c]:(AidxxCash) | c:Cidx }
{ ba[a]:Cash | a:Aidx }

value

524 21 Concurrent Specification Programming

S5: Unit - • Unit
S5() = Clients() || B() || Accounts()

Clients: Unit —> out { cb[c] | c:Cidx } Unit
Clients() = || { C(c) | c:Cidx }

C: c:Cidx —> out cp[c] Unit
C(c) = let (a,d):(AidxxCash) = ... in cb[c] ! (a,d) end ; C(c)

type
A_Bals = Aindex ^ Cash

value
abals: A_Bals

Accounts: Unit -» in { ba[a] | a:AIndex } Unit
AccountsQ = || { A(a,abals(a)) | a:AIndex }

A: a:Aindex x Balance —> in ba[a] Unit
A(a,d) = let d' = ba[a] ? in A(a,d+d') end

B: Unit -)> in { cb[c] | c:Cidx } out { ba[a] | a:Aidx } Unit
B() = D {let (a,d) = cb[c] ? in ba[a] ! d end | c:Cidx} ; B()

We comment on the deposit example. With respect to the use of notation
above, there are Cindex client-to-bank channels, and Aindex bank-to-account
channels. The banking system (S5) consists of a number of concurrent pro­
cesses: Cindex clients, Aindex accounts and one bank. From each client process
there is one output channel, and into each account process there is one in­
put channel. Each client and each account process cycles around depositing,
respectively cashing monies. The bank process is nondeterministically willing
(D) to engage in a rendezvous with any client process, and passes any such
input onto the appropriate account.

Generally speaking, we illustrated a banking system of many clients and
many accounts. We only modelled the deposit behaviour from the client via
the bank teller to the account. We did not model any reverse behaviour, for
example, informing the client as to the new balance of the account. So the
two bundles of channels were both one-way channels. We shall later show an
example with two-way channels. •

Example 21.6 Multiple, Diverse Component Interaction: We illustrate com­
posite component interaction. At regular intervals, as instructed by some ser­
vice scripts associated with several distinct kinds of accounts, transfers of
monies may take place between these. For example, a regular repayment of a
loan may involve the following components, operations and interactions: An

21.2 Intuition 525

appropriate repayment amount, p, is communicated from client k to the bank's
script servicing component se (3).4 Based on the loan debt and its interest
rate (d.ir) (4), and this repayment (p), a distribution of annuity (a), fee (f)
and interest (i) is calculated.5 The loan repayment sum total, p, is subtracted
from the balance, b, of the demand/deposit account, dd_a, of the client (5).
A loan service fee, f, is added to the (loan service) fee account, f_a, of the
bank (7). The interest on the balance of the loan since the last repayment is
added to the interest account, La, of the bank (8), and the difference, a, (the
effective repayment), between the repayment, p, and the sum of the fee and
the interest is subtracted from the principal, p, of the mortgage account, m_a,
of the client (6).

In process modelling the above we are stressing the communications. As
we shall see, the above can be formally modelled as below.

Client: k

Client
Accounts

Bank Service: se

d

\ '

r 8

V)

sys() = k() II se() II dd_a() II m_a() II f_a() II i_a()

Fig. 21.4. A loan repayment scenario

Bank
Accounts

Demand
Deposit
dd_a

Mortgage
m_a

Fee: f_a

Interest: i_a

4For references (3-8) we refer to Fig. 21.4.
5See line four of the body of the definition of the se process below.

526 21 Concurrent Specification Programming

type
Monies,Deposit,Loan,
Interest_Income,FeeJncome = Int,
Interest = Rat

channel
cp,cd,cddp,cm,cf,ci:Monies, cmi:Interest

value
sys: Unit —> Unit,
sys() = se() || k() || dd_a(b) || m_a(p) || f_a(f) || i_a(i)

k: Unit —> out cp,cd Unit

(let p:Nat • /* p is some repayment, 1 */ in cp ! p end

n
let d:Nat • /* d is some deposit, 2 */ in cd ! d end)

;k()

se: Unit —> in cd,cp,cmi out cddp,cm,cf,ci Unit
se() =

((let d = cd ? in cddp ! d end) /* 1,2 */

D
(let (p,(ir,f)) = (cp ?,cmi ?) in /* 3,4 */
let (a,f,iv) = o(p/,ir) in
(cddp ! (—p) || cm ! a || cf ! f || ci ! iv) end end)) /* 5,6,7,8 */

;se()

dd_a: Deposit -» in cddp Unit
dd_a(b) = dd_a(b + cddp ?) /* 2,5 */

m_a: Interest x Loan —> out cmi in cm Unit
m_a(ir,^) = cmi ! (ir,^) ; m_a(ir,^— cm ?) /* 4;6 */

La: FeeJncome —> in cf Unit
f_a(f) = f_a(f + cf ?) /* 7 */

i_a: Interest Income —> in ci Unit
i_a(i) = i_a(i + ci ?) /* 8 */

The formulas above express:

• The composite component, a bank, consists of:
• a customer, k, connected to the bank (service), se, via channels cd, cp
• that customer's demand/deposit account, dd_a, connected to the bank

(service) via channels cdb, cddp

21.2 Intuition 527

• that customer's mortgage account, m_a, connected to the bank (service)
via channel cm

• a bank fees income account, f_a, connected to the bank (service) via
channel cf

• a bank interest income account, La, connected to the bank (service)
via channel ci

• The customer demand/deposit account is willing, at any time, to nonde-
terministically engage in communication with the service: either accepting
(?) a deposit or loan repayment (2 or 5), or delivering (!) information about
the loan balance and interest rate (4).

• We model this "externally inflicted" behaviour by (what is called) the
external nondeterministic choice, |] 6 , operation.

• The service component, in a nondeterministic external choice, [], either
accepts a customer deposit (cd?) or a mortgage payment (cp?).

• The deposit is communicated (cddpld) to the demand/deposit account
component.

• The fee, interest and annuity payments are communicated in parallel (||)
to each of the respective accounts: bank fees income (cf !f), bank interest
income (ci!i) and client mortgage (cm!a) account components.

• The customer is unpredictable, may issue either a deposit or a repayment
interaction with the bank.

• We model this "self-inflicted" behaviour by (what is called) the internal
nondeterministic choice, |~|7, operation.

Characterisation. By a nondeterministic external choice we mean a non-
deterministic decision which is effected, not by actions prescribed by the text
in which the [] operator occurs, but by actions in other processes. That is,
speaking operationally, the process honouring the \\ operation does so by
"listening" to the environment. •

Characterisation. By nondeterministic internal choice we mean a nondeter­
ministic decision that is implied by the text in which the \\ operator occurs.
Speaking operationally, the decision is taken locally by the process itself, not
as the result of any event in its surroundings. •

21.2.7 Some Modelling Comments — An Aside

Examples 21.5 and 21.6 illustrated one-way communication, from clients via
the bank to accounts. Example 21.5 illustrated bank "multiplexing" between

6See the definition of what is meant by nondeterministic external choice right
after this example.

7See the definition of what is meant by nondeterministic internal choice right
after this example.

528 21 Concurrent Specification Programming

several (m) clients and several (n) accounts. Example 21.6 illustrated a bank
with just one client and one pair of client demand/deposit and mortgage
accounts. Needless to say, a more realistic banking system would combine the
above. Also, we have here chosen to model each account as a process. It is
reasonable to model each client as a separate process, in that the collection
of all clients can be seen as a set of independently and concurrently operating
components. To model the large set of all accounts as a similarly large set of
seemingly independent and concurrent processes can perhaps be considered a
"trick": It makes, we believe, the banking system operation more transparent.
In the next — and final — example of this introductory section we augment
the first example with an account balance response being sent back from the
account via the bank to the client.

21.2.8 Examples Continued

> >
cp[1..m] c q [1 . . n] ^ = =

JLJTI

These "channels"

are really bundles

as illustrated below:

^XJ^].

cp[j] cq[k] t^

r=cp[j]? <J>
j Cp[j]

(a,m)=cp[j]?

cq[k]!(a,m,j)

I;
cp[j]!r

O,0=cq[k]?

Ak

C q [k] _ l _ cq[k]!0,r)

Account

Fig. 21.5. Two-way component interaction

Example 21.7 Two-Way Component Interaction: The present example
"contains" that of the one-way component interaction of Example 21.5. Each
of the client, bank and account process definitions are to be augmented as
shown in Fig. 21.5 and in the formulas that follow (cf. Fig. 21.3 and the
formulas in Example 21.5).

21.2 Intuition 529

type
Cash, Balance, CIndex, AIndex
CtoB = AIndex x Cash,
BtoC = Balance,
BtoA = Cindex x Cash,
AtoB = Cindex x Balance

channel
cb[l..m] CtoB|BtoC, ba[l..n] BtoA|AtoB

value
S6: Unit - • Unit
S6() =

|| { C(c) | c:CIndex } || B() ||
|| { A(a,b,r) | a:AIndex, b:Balance, r:Response • ... }

C: c:CIndex -» out cp[c] Unit
C(c) =

let (a,d):(AIndexxCash) = ... in
cb[c] ! (d,a) end let r = cb[c] ? in C(c) end

B: Unit —> in,out {cb[c]|c:CIndex} in,out {ba[a]|a:AIndex} Unit
B() = 0 {let (d,a) = cb[c] ? in ba[a] ! (c,d) end | c:Cindex} Q

Q {let (c,b) = ba[a] ? in bc[c] ! b end | a:Aindex} ; B()

A: a:Aindex x Balance -> in,out ba[a] Unit
A(a,b) = let (c,m) = ba[a] ? in ba[a] ! (m+b) ; A(a,m+b) end

We explain the formulas above. Both the C and the A definitions specify pairs
of communications: deposit output followed by a response input, respectively
a deposit input followed by a balance response output. Since many client de­
posits may occur while account deposit registrations take place, client identity
is passed on to the account, which "returns" this identity to the bank — thus
removing a need for the bank to keep track of client-to-account associations.
The bank is thus willing, at any moment, to engage in any deposit and in any
response communication from clients, respectively accounts. This is expressed
using the nondeterministic external choice combinator \\. •

21.2.9 Some System Channel Configurations

We have seen, so far, a number of configurations of channels and processes.
Figure 21.6 attempts to diagram a few generic configurations of processes and
channels. There may be channels between P, Q, Pj and Qi processes and other
(non-P, etc., and non-Q, etc.) processes, but they are not shown. We shall
comment on each of these configurations:

530 21 Concurrent Specification Programming

[A] An event (a synchronisation and communication) between P and some
Qi prevents any other such event for the duration of the P — Qi event.
Any other Qj process (for j ^ i) may engage in other events with other
processes, or own actions during the P — Qi event.

[B] An event (a synchronisation and communication) between P and Qi pre­
vents any other Qj from engaging in an event with P for the duration of
the P — Qi event. Any other Qj process (for j ^ i) may engage in other
events with other non-P processes, or own actions during the P—Qi event.

[C] An event (a synchronisation and communication) between some Pj and
some Qi prevents any other such P& — Qi event for the duration of the
Pj — Qi event. Any other P& and Qt processes (for k ^ j and j ^ i) may
engage in other events with other non-P and non-Q processes, or own
actions during the Pj — Qi event.

[D] An event (a synchronisation and communication) between some Pj and
some Qi prevents any other Pj — Qj* event for the duration of the Pj-Qi
event, but does not prevent a Pi — Qk event for £ ^ i and k ^ j . Etcetera.
Please analyse other possible process engagements yourself!

[E] Etcetera. Please analyse the diagram yourself!

We leave it as an exercise to provide schemas for each of the five cases ([A-E])
above (see Exercise 21.1).

21.2.10 Concurrency Concepts — A Summary

Characterisation. Events are atomic and instantaneous; they "occur". E-
vents are basic (primitive) elements of processes. Processes are, from a certain
level of abstraction, composed from events. Events are used to mark impor­
tant points in the (temporal or partially ordered) history of a system (i.e., a
process). Typically events may stand for a process having reached a certain
control (and data) state (a summary of past actions), or for some undefined
(or undefinable) environment spontaneously wishing to interact, that is, syn­
chronise and communicate with some process. •

Characterisation. A sequential process is an ordered (i.e., sequential) set of
operations (i.e., actions) on a data state. (Many processes will be cyclic.) Some
actions may simply change a data state. Others may cause the synchronisation
between two processes and the communication, i.e., transfer of values from one
process to the other. In any case, the control state changes. •

Characterisation. Blocked Process: When a process is unable to progress,
i.e., to commence a next action, then it is said to be blocked. A process
description prescribes the conditions under which events may occur, and thus
the conditions under which they may be blocked. •

21.2 Intuition 531

[A] [B] _

f N

p -«- C

Q1

Q2

• •

Qn

P

d c2
I

• • •

Q1

rQ2]

Qn

LEGEND

[A] Common Channel

[B] Individual Channels

[C] Common Channel

[D] Individual Channels

[E] Single Client - Multiple

Server Channels

Only some channel names

have been shown

P1

s ,

P2

s ,

• • •

Pm

[C]

c

f \
Qn

• • •

^QT

I — >

^oT
, ,

t—^

PI

P2

[D]

• •
•

Pm

*" L J

•

cmr

•

l

1

C?lj

(,

Qn

•

•

Q2

^ '
r "i

T Q I
L j

[E] _
P1

t >

P2

c11

•
t \

Pm

Qn

cmn *

•
r-^—^

Q2

f \

Q1

Fig. 21.6. Some system channel configurations

Characterisation. A parallel process is a usually unordered (i.e., not pre­
dictable) set of sequential process operations (i.e., actions) on own or shared
data states. •

Characterisation. Action: Events usually "trigger" actions, that is, opera­
tions upon the data state of a process. As we shall later see, events may stand
for output from one process and the corresponding input to another process,
that is, for synchronisation and exchange of information between processes. •

Characterisation. Channel: Synchronisation of (e.g., two) and communica­
tion between processes "takes place" over (i.e., on) channels. Channels allow
processes connected to the channels to share events. •

Characterisation. Behaviour: Sets of observable sequences of events and/or
actions of a process or a set of processes. Observations are usually made on
"what goes on" on a channel (between processes). The sets may be finite or
infinite. •

532 21 Concurrent Specification Programming

Characterisation. A trace is a single sequence of events and/or actions of
a postulated or actual process. A trace is either of finite or infinite length. A
behaviour is a set of traces. A process usually denotes a behaviour. •

Characterisation. Environment: Channels may be connected, at one end,
to a process, but at the other end may be left "dangling". Such channels
help define aspects of an environment: something "external" to or "outside"
the collection of processes of main concern. Thus defined processes can share
events with an environment: they can react to events from or "deliver" events
to the environment. •

21.3 Communicat ing Sequential Processes, CSP

In the previous section we have provided intuitive examples of concurrent
specifications expressed in RSL/CSP. In those examples (of that notation) can
be found a lot of syntactic details, that may clutter the presentation. In the
present section we shall therefore show the CSP notation, a "purest" form of
Communicating Sequential Processes, in order to show the utter elegance of
the underlying concepts and their accompanying notation.

This section thus goes back to the origins of CSP by presenting a "cleanest",
simplest view of an essence of CSP. The "language" of CSP to be presented
here is to processes what the A-calculus is to functions.8 We shall only cover
its language constructs and explain their meaning informally. We shall not
delve into issues of mathematical models for the semantics of the CSP variant
covered here. Instead we refer to [288,448,456].

First we bring some preliminaries on processes and events. Then, in eleven
"easy pieces", we cover the major process combinators (->>, [], |~|, ? [input], !
[output] and ||) as well as some basic and compound process expressions, and
a few laws.

21.3.1 Preliminaries: Processes and Events

By V, V,..., V", Q , . . . we mean processes. Not process descriptions, but pro­
cesses "themselves". By Pn, Pn', . . . , Pn", Qn, . . .we mean process names
(process names are process expressions). By Pe, Pe', . . . , Pe", Qe, . . . we mean
process expressions, in general.

Thus:

Pn = Pe

8An even more "frugal" and foundational language for experimenting with pro­
cess notions is that of ccs [388,453].

21.3 Communicating Sequential Processes, CSP 533

gives the name Pn to the process expression (or description) Pe. Pn may occur
(hence recursively) in Pe. However, we shall deliberately "confuse" processes
with their names or prescribing expressions whenever the examples are simple.
By a, a', a", b, . . . we mean events.

Events are presently considered atomic. Later we shall structure events
over (sets of) sets of values (and channels).

21.3.2 Process Combinators, Etcetera

stop: A Basic Process

• stop:

The process stop is unable to perform (issue, generate, participate in) any
events.

Prefix

• a-> P

is a process which is ready to engage in the event a. If the event a occurs the
process will then behave as P.9

Definitions

• Pn = Pe

Pn is an identifier (a name), and the expression, Pe, defines the process of
that name to behave as the process expression Pe prescribes. That expression
may contain the name Pn (as well as much else).

• Example:

Q = e - • Q

Q is the process whose behaviour is the singleton set of the infinite trace
of the same event e.

[]: External Nondeterministic Choice

• P Q Q

Operationally you may think of any one trace of P [] Q being either P or Q.
Which one is "selected" is nondeterministically determined by the environ­
ment of P \] Q. The process P [] Q is available to engage in the events of
either P or Q.

'In RSL semicolon, ";"> is used where CSP uses —>-.

534 21 Concurrent Specification Programming

• Example:

P = requestA —> performX \\ requestB —> performY

P is the process which is willing to engage in either event requestA or
requestB. If event requestA is chosen then P behaves like performX.

The environment offers the events requestA and requestB.

|~|: Internal Nondeterministic Choice

We write:

• P[\ Q

to denote the internal nondeterministic choice between processes P and Q. The
environment has no influence over which of the two alternatives is chosen; but
one is chosen "at random".

• Example:

P = reqA - • (actAl fl actA2) [] reqB - • (actBl \\ actB2)

Process P engages either in the behaviours actAl \] actA2 or actBl \]
actB2 depending on the external nondeterministic ([]) choices reqA and
reqB. The process actAl \] actA2 behaves either like actAl or actA2 —
chosen nondeterministically by an internal choice. The situation is similar
for process actBl \\ actB2.

CSP Law (I)

a -+ (P [1 Q) = (a -+ P) fl (a -+ Q)

Compound Events

Sets of related events can be compounded. In CSP we can write:

0 e:{a.l,a.2,a.3} • e - • P = a.l - • P Q a.2 -+ P 0 a.3 -+ P7
0 i:{l,2,3} • a.i -> P = (a.l -»- P) 0 (a.2 -> P) 0 (a.3 -> P)

In RSL [236] we "move" the typing (e : {a.l, a.2, a.3}) out of the expression
part and into a channel declaration clause:

type
C = = a.l | a.2 | a.3

channel
c:C

value
... c!e ; P ... /* or */ let v = c? in P(v) end

21.3 Communicating Sequential Processes, CSP 535

Input and Output

External choice, in CSP, corresponds to input, internal choice to output:

c ? k:K - • P(k) = Q k:K • c.k -+ P(k)
d ! k:K -> Q(k) = 0 k:K • d.k -> P(k)

The order of listing is immaterial. For the above example we have chosen non-
deterministic external choice [] as the connective. It means: whichever other
process or processes that are willing to engage in communication on channels
c, cl, c2, . . . , en, will nondeterministically determine which of the alternatives
is chosen. If none are willing, at a certain moment, then the above-described
process is (temporarily) blocked. If exactly one is willing, say a process Q on
channel ci, then the corresponding alternative is (deterministically) chosen. If
two or more other processes on channels c, cj, . . . , ck are willing to commu­
nicate then one of them is nondeterministically chosen and together with the
corresponding alternative performs the interaction.

Had we instead chosen nondeterministic internal choice, \], then one of the
alternatives would have been chosen (at random) and communication would
occur only when and if another, external process is, or becomes willing to
synchronise and communicate.

In RSL input and output can be "mixed":

channel
c:C, c':C, cl:Cl, c2:C2, ..., cn:Cn

value
/* either nondeterministic input */

let u = cl? in P(u) end \\ let v = c2? in Q(v) end 0 ...
/* or nondeterministic output */

cl!el ; P ' 0 c2!e2 ; P" 0 ».
/* or both (mixed) */

cl!el ; P ' 0 let u = c? in P(u) end Q c2!e2 ; P" 0 ...

||: Parallel Composition

• P\\Q

denotes the parallel composition of processes P and Q. Colloquially, i.e., speak­
ing 'operationally', process P\\ Q describes a process as consisting of two other
processes that "run in parallel" while cooperating on shared events.

Shared Events

Process expressions P and Q will often contain expressions listing the same,
that is, "shared" events. Shared events are events of the same alphabetic
name:

536 21 Concurrent Specification Programming

• a P: alphabet of P , etc.

If:

a P fi a Q = {a,b,c}

then processes P and Q share events a, b, c and are thus willing to engage in
these simultaneously.

x - > P || x -> Q = x - > (P||Q)

If aP does not contain event z and if aQ does not contain event y then:

y -+ P || z -+ Q = (y - • (P| |(z^Q))) Q (z ^ ((y^P)| |Q))

CSP Law (II)

if
P = Q e:A • e -> P(e)
Q = 0 e:B • e -^ Q(e)

then
P || Q =

D e : A \ a Q . e ^ (P (e) | | Q)

D
D e:B \ a P • e -+ (P||Q(e))
D
0 e : A H B - e ^ (P(e)||Q(e))

end

• • •

We bring a summary of this section in Fig. 21.7.

21.3.3 Discussion

We encourage the study of concurrency as a whole subject, say in the form
of a full semester course. The topic was covered only partially in the present
chapter. For concurrency seen from the perspective of CSP, we refer to three
eminent texts: [288,448,456].

21.4 The RSL/CSP Process Combinators 537

Simple
event
Input/-
output
Process

stop
Prefix

External
choice
Internal
choice
Parallel
composi­
tion
Process
definition

Shared
event

Events occur, have no time-duration, cause actions, change
the control state
As events, but include actions: output, respectively input,
latter changes the data state
P, Q are process expressions that designate sequences of one
or more actions and events
The no-effect action
e—>P is a process expression: event e followed by process P,
where e may be c! expr or c?var. P is a process expression
P[|Q is a process expression: P, Q are process expressions

P|~|Q is a process expression: P, Q are process expressions

P, Q are process expressions. The designated processes pro­
ceed in parallel

Pn is a process identifier, P a process expression; (a) an ar­
gument (a may be free in P), and where a process identifier
in P is a process expression
Upon event e the above process makes the transition to P||Q,
e is shared between P and Q.

e

c! expr,
c? var

P , Q , • • •

stop
e->-P

PDQ

PRQ

PIIQ

Pn(a)=P

(e->P)
ll(e^Q)

Fig. 21.7. Summary of CSP concepts and notation

21.4 The RSL/CSP Process Combinators

In Sect. 21.3 we formally introduced the concept of CSP-like processes. In
Sect. 21.2 we intuitively motivated and informally used a notation which is
derived from CSP and has been adopted for RSL. In this section we will briefly,
but systematically review this notation, the RSL/CSP "sublanguage", which is
RSL-like. That is, this language is not exactly a subset of RSL. We have taken
some liberties wrt. arrays of channels and how we name channels in function
(i.e., process) type clauses. We shall elsewhere show that our deviation can
be explained in terms of RSL. In the following we shall cover this RSL-like
notation, syntactical construct by construct.

21.4.1 RSL-like Channels

Channels are the means for synchronising processes and communicating val­
ues (i.e., messages). Channels lead from a "surrounding" outside (the envi­
ronment) to defined processes, or lead to such a surrounding from defined
processes, or channels are placed between, i.e., "infixed" defined processes, or
combinations of the above. We may speak of single channels or of an indexed
set of channels. The latter are intended wherever our system of processes
involves similarly indexed sets of like processes. Channels must, in RSL, be
declared:

538 21 Concurrent Specification Programming

type
C /* C can designate any type */
Cindex /* Cindex designates a finite set */

channel
cl,c2,...,cn:C /* n > l */
{ c[i]:C | LCIndex}

Channels ci can communicate values of type C. c is like an array of channels.
c[i] for i ranging over the finite set of enumerations Cindex is otherwise like
any channel ci.

21.4.2 RSL Communication Clauses

Systems are either composed from a fixed set of processes or from a com­
bination of one or more fixed and one or more sets of indexed processes.
Correspondingly, we speak of fixed, constant named output/input communi­
cations, respectively of varying, indexed output/input communications. We
presently treat the former kind of communications.

Simple Input/Output Clauses

We assume that c designates a declared channel. There are basically two
communication clauses. First, input expressions:

c ?
let v = c ? in E(v) end

The first clause above designates a value expression and expresses willingness
to input a value from channel c. The second clause above also designates a
value expression, with the embedded value expression c? value being bound
to variable v.

The output clause:

c ! expr

designates an output statement, that is, an expression, and expresses an of­
fer of the value of expression expr for communication on channel c. As an
expression it has the Unit type value ().

Sometimes an input (c?) is from an undefined process of a (globally) sur­
rounding environment, and sometimes an output (c ! expr) is to an undefined
process of a (globally) surrounding environment. And sometimes — in a set of
processes — there are groups of (two or more) processes which define "match­
ing" output/inputs — one or more of c ! e and one or more of c ?.

We refer to examples already given in Figs. 21.5 and 21.7.

21.4 The RSL/CSP Process Combinators 539

21.4.3 RSL Processes

Simple Process Definitions

We assume that both the two clauses S(a) and S(...) are statement clauses,
i.e., of type Unit. We likewise assume that all channels C{. and c0k are being
properly declared (elsewhere).

value
P: A —> in c_il,c_i2,...,c_im /* m > 0 */

out c_ol,c_o2,...,c_on /* n > 0 */
Unit

P(a) = S(a)

Q: Unit —> in c_il,c_i2,...,c_im /* m > 0 */
out c_ol,c_o2,...,c_on /* n > 0 */
Unit

QO = 5(...)

Process P takes [optional] input arguments in A, is willing to, i.e., may, receive
input over channels cJ l , . . . , c_im, and is willing to, i.e., may, output over
channels c_ol, . . . , corn. Process P's signature ends with Unit to designate
that no explicit value is returned, i.e., that the P process either recurses (i.e.,
"loops") indefinitely or "ends" with the interpretation of a clause of type
Unit. Process Q takes no input and delivers no output, but is otherwise as is
P.

Instead of input channels c_il, c_i27... ,c_im and output c_ol, c_o2,... ,c_om,
one could write any in either or both places. This expresses that process P is
willing to engage in communication on any channel.

The function, i.e., the process definition

value
R: Unit - • any B
R() = ... ? ... ! ... b

designates a process which may engage in input/output over any channel, and
which yields a value of type B.

Processes and Their Definitions

Please note the distinction between a process definition or a process expres­
sion, on one hand, and a process, on the other hand. The former are pieces
of text, syntactic "things". The latter is a semantic phenomenon, invisible to
the human eye! Processes communicate, not process expressions or process
definitions. They prescribe communications.

540 21 Concurrent Specification Programming

Process Invocations

Processes get started whenever a process invocation takes place. Invocations
of processes are prescribed as follows:

P(a), Q()

The argument a can be thought of as a state. The process, as described by the
named process definition, is started whenever a process invocation expression
is elaborated. A recursive invocation, P(a;), then means that a state has been
updated.

Example 21.8 A Buffer Process Definition:

type
V

channel
in_ch,out_ch:V

value
Buffer: V* —> in in_ch out out_ch Unit
Buffer(q) =

let v = in_ch? in Buffer (q~(v)) end

D
out_ch!hd q; Buffer(tl q)

The Buffer process is willing, at any time, to receive input values — which it
then appends to its queue buffer before resuming being a Buffer process with
that new queue state — or to output the head, i.e., the oldest member of the
queue before resuming being a Buffer process with a new, "shorter" queue. •

Array Channel Process Definitions

Let the intention be that CI-index and C J-index designate finite, enumerable
token sets.

type
A_idx, B_idx

channel
{ c_in[c] | c:A_idx }, { c_out[c] | c:B_idx }

value
P: a:A_idx x b:B_idx ->>

in c_m[a] out c_out[b] Unit
P(i,j) =

... let v = c_in[i] ? in
... c_out[j] ! e ... end ...

21.4 The RSL/CSP Process Combinators 541

The above process signature is nonstandard RSL. Note the binding of the
channel array indices from the left of the —> to the right.

In Vol. 2, Chap. 10 we will show that the above is a shorthand for a more
elaborate set of RSL scheme (and hence class) and object definitions and
declarations.

value
Q: Unit —> in {c_in[c]|c:CA_index} out {c_out[c]|c:CB_index} Unit

Q0 =
0 { let v = c_in[c'] ? in

[1 { c_out[c"] ! v | c":CB_index } end | c':CA_index }

Q prescribes the external nondeterministic input of a value v from any of a
number of channels c_in[c'], followed by the internal nondeterministic output
of that value to one of a number of channels c_out[c"].

21.4.4 Parallel Process Combinator

Typically a system of concurrently operating components can be expressed as
the parallel composition of component processes.

Let P_i designate expressions.

P_l || P_2 || ... || P_n

The above expresses the parallel composition of n processes. Evaluation of
each individual P_i in P_l||P_2||...||P_n proceeds in parallel. Figures 21.1, 21.1,
21.5, 21.6, and 21.7 illustrated systems (SI, S2, S3, S5, S5, sys and S6) of
processes.

21.4.5 Nondeterministic External Choice

Let P_i designate expressions. Then:

P.1 D P-2 D .- D P-n

expresses the parallel nondeterministic external choice between n processes.
Let, for example (omitting type clauses),

Pl() = let v = c ? in El(v) end
P2() = let v = c ? in E2(v) end
Q0 = (c ! e)
R() = (Pl() D P2()) || Q()

The value of expression e is communicated to either the first or the second
of the \\ argument processes and hence is evaluated either under El or under
E2. Which one is chosen (left, PI, or right P2), is not shown explicitly, but
one is chosen. Wrt. (Pl() Q P2()) we say that Q() is a surrounding process,
and vice versa. (Pl() 0 P2Q) is willing to engage in communication with its
surrounding, and Q() likewise.

542 21 Concurrent Specification Programming

21.4.6 Nondeterministic Internal Choice

Let P_i designate expressions all of which are of the same type. Then

P.1 fl P-2 fl - fl P-n

expresses the parallel nondeterministic internal choice between n processes.
Either P_l, or P_2, or, . . . , or P_n is chosen — only the choice is internal
nondeterministic, i.e., not dependent on any possibly surrounding processes.

Example 21.9 A "Rolling a Dice" Process Definition: To express the arbi­
trary selection among a finite set of enumerated possibilities we make use of
nondeterministic internal choice

type
Dice = one | two | three | four | five | six

value
P: Unit - • Dice
P() = one fl two fl three \] four \\ five \\ six

Invocation of P() "randomly" yields a face of a dice. •

21.4.7 Interlock Combinator

Sometimes it is necessary to force two concurrent processes to prioritise their
mutual communication — over other such. For that RSL offers the interlock
combinator:

pe_l \\ pe_2.

The above interlock composition is evaluated as follows: The two expressions
are evaluated concurrently. If one of them comes to an end before the other,
evaluation continues with that other. However, during the concurrent evalua­
tion, any communication external to pe_l|}pe_2 is prevented. Thus pe_l|}pe_2
expresses that the two processes are forced to communicate only with one
another, until one of them terminates.

21.4.8 Summary

We provide a check list summary of RSL/CSP clauses:

• Channel: channel c:C
• Input: c ? and let v = c ? in Pe end
• Output: c ! r
• Process expressions: Pe_l ; Pe_2 ; ... ; Pe_n
• Parallelism: Pe_l II Pe_2 II ... II Pe_n

21.5 Translation Schemas 543

• External nondeterminism: Pe_l [] Pe_2 0 ••• D P e-n

• Internal nondeterminism: Pe_l [\ Pe_2 \\ ... \\ Pe_n
• Interlocking: Pe_l {} Pe_2
• Process definition: Pn: A —>• in c_i out c_j Unit

Pn(a) = Pe

21.4.9 A Note of Caution

We remind the reader that the present book's function signatures, when it
comes to such functions which define processes using channels (etc.), go be­
yond "standard" (i.e., tool-supported) RSL, in allowing a kind of "dependent"
types:

type
X_Idx, Y_Idx, M, A, ...

channel
{c[x,y]:M | x:X Jdx,y:Y_Idx }

value
f: x:X_Idx x A -> in { c[x,y] | y:Y_Idx } ...

In the function f signature x is being bound "to the left" of —> and is being
"used" "to the right" of ->>, in delimiting the channels from which to input.

21.5 Translation Schemas

In Sect. 20.5 we gave a brief treatment of translations from applicative (i.e.,
functional) to imperative specifications. In the present section we shall do
likewise for translations from applicative and, or via, imperative specifications
to parallel process-oriented specifications.

In a few "stages" we shall be "massaging" some formulas into other for­
mulas. Then we shall examine the validity of this "massaging".

21.5.1 Stage I: An Applicative Schema

Let us consider the following schema:

type
A, B

value
f: A->
g: A->
h: A ->

Unit
A
Unit

f(a) = (let a' = g(a) in f(a') end \\ h(a) ; f(a)

544 21 Concurrent Specification Programming

Annotation. We explain, as far as we can, the above abstract program spec­
ification schema: f can be considered a "main" function, f is initially invoked
with some argument, say a. f nondeterministically, internal choice, selects be­
tween either expressing the clause to the left of the \\ operator, or to the right.
In the former case f is ("tail" recursively) invoked with an "updated" version
of a, now named a'. Or f chooses the "simpler" right clause, first expressing
the Unit value clause h(a), and then proceeding by (also in this case), a tail
recursive invocation of f with the "original" argument a. And so on.

21.5.2 Stage II: A Simple Reformulation

The above schema defines the behaviour of f as a nondeterministic internal
choice behaviour between two processes: let a' = g(a) in f(a') end and h(a) ;
f(a). Let us call them g' and h':

type
A, B

value
f: A -> Unit
g: A - • A
g',h,h': A -> Unit

f(a) EE g'(a) [1 h'(a)
g'(a) = let a' = g(a) in f(a') end
h'(a) = h(a) ; f(a)

Let us examine the above: It seems that f is a main process. It seems that
a is like a state variable, being used and updated (by g'), or just used and
"passed on", by h'. In other words, the two processes G and H both require
access to the shared state, but the two processes' g, respectively h, "actions"
cannot proceed in parallel. Observe that f is not recursive, but g' and h' are.

21.5.3 Stage III: Introducing Parallelism

What about the following idea: "Split out", i.e., decompose, f into two three
parallel processes F, G and H. In this case F "maintains" the global state a,
and G and H reread, respectively rewrite that global state:

type
A, B

channel
fg:A, fh:A

value
S: A -> Unit
F: A - • out fg,fh Unit

21.5 Translation Schemas 545

G: Unit - • in fg Unit
H: Unit -> in £h Unit
g: A - • A
h: A -> Unit

S(a) = F(a) || G() || H()
F(a) = fg!a \\ £h!a
G() = let a = fg ? in let a! = g(a) in F(a') end end
H() = let a = £h ? in h(a) ; F(a) end

Annotation. Let us explain the above abstract program specification schema:
A system process, S, has been introduced. S expresses the parallel composition
of three processes: F, G and H. F communicates with both G and H. That
is, they both communicate with F. They do so over separate channels: fg,
respectively fh. F nondeterministically (internal choice) expresses either G()
or H(). G "mimics" the left clause of the body of definition f of stage I, i.e.,
g' of stage II. H "mimics" the right clause of the body of definition f of stage
I, h' of stage II. Observe that F is not recursive, but G and H are.

21.5.4 Stage IV: A Simple Reformulation

Instead of using the "tail" recursive invocations of F from both G and H,
"passing" on appropriate arguments to the F process, we communicate, over a
(new) channel, a possibly updated value of the argument (a'). Since H need not
communicate any new A value, we let it, for sake of "symmetry", communicate
a "tick", indicating, for whatever it is worth, completion.

A variant of F, G and H could thus be:

type
Tick = = tick

channel
fg:A, fh:A, gf:A, hf:Tick

value
F: A -» out fg,fh in gf,hf Unit
G: Unit —> in fg out gf Unit
H: Unit -> in fh out hf Unit

F(a) =
(fg!a ; let a' = gf ? in F(a') end)

n
(fh!a ; let t = hf ? in F(a) end)

GQ = let a = fg ? in let a! = g(a) in gf!a' end end ; G()
H() = let a = fh ? in ghltick ; h(a) end ; H()

546 21 Concurrent Specification Programming

Annotation. First, there really was no need for separate, directed channels
between F and G, and G and F, etcetera. One channel would have sufficed.
We then explain, as far as we can, the above abstract program specification
schema. All we have done, in and at this stage, is to augment the definition
with two new channels and let F take care of its own continuation — in the
form of its explicit "tail" recursion. At the same time we had to keep both
G and H going, so they continue to have their "tail" recursions. Now we see
some stylistic differences between the two models of stage III and stage IV:
In stage III neither F, G nor H were recursive. But, as F invoked either G or
H, these in return invoked F. In stage IV all processes are recursive.

21.5.5 Stage Relations

Now we have to stop and consider! Is the above "development", from stage I
via stage II and stage III to stage IV, correct? And, what, after all, do we mean
by correctness?

It is clear that the four stages of formulas do not exhibit the same functions,
and, where they do "share" some function names, that the function signatures
are not the same. So, from that point of view, the four stages do not "compute
the same thing". But they are comparable. We claim that the sequence of state
updates of the four models are the same — and ask the reader's acceptance
of that!

To "prove" that claim will take us too far off our software engineering specifi­
cation and design "track", and into the specifics of programming methodology.
But we can hint at one approach of obtaining some assurance that the stages
do relate. That is by rewriting later stages into forms akin to earlier stages.
We leave that, however, to another time and place. Thus we ask the reader
to carefully check what's going on, within and between the above four stages.
RSL, as it stands today, does have a powerful proof system, but not powerful
enough to handle these kinds of development stages.

In general, since we are, in this case, "transgressing" from applicative to
imperative RSL, and from either of these to concurrent, i.e., parallel RSL, we are
in fact trying to integrate various formal notations. The subject of integrating
such formal notations is as of summer 2005 a subject that is being very much
studied and researched. Many integrations are being proposed. We have shown
those with which applicative RSL, i.e., the core of RSL, has been integrated
from the inception of RSL, in the late 1980s.

In Vol. 2 we shall illustrate further, more recent integrations. They include
integration of (i) RSL with ER10 (cum UML Class) Diagrams, Chap. 10; of (ii)
RSL with P e t r i Nets, Chap. 12 [313,421,435-437]; of (hi) RSL with Live
Sequence Charts, Chap. 13 [171,270,325]; of (iv) RSL with S ta t echa r t s ,
Chap. 14 [265,266,268,269,271]; and of (v) RSL with Duration Calculus,
Chap. 15 [537,538]. Then we shall revert to the problem of assuring "same­
ness" .

10ER: entity relationship [148,149].

21.6 Parallelism and Concurrency: A Discussion 547

21.5.6 Stage V: An Imperative Reformulation

In Sect. 20.5.2 we saw that an applicative function could be "imperialised".
So we now do with F:

variable
a:A

value
F: Unit —> read,write a out fg,fh in gf,hf Unit
F() =

(fgla ; a := gf ? ; F())

n
(fh!<7 ; let t = hf ? in F() end)

We can even turn tail recursion into an imperative loop:

variable
a:A

value
F: Unit —> read,write a out fg,£h in gf,hf Unit

while true do
(fg!a ; a := gf ?)

n
(fh!a ; let t = hf ? in skip end)

end

21.5.7 Some Remarks

This ends our informal, yet systematic, sequence of stages of "comparable" and
"believably correct" developments. The idea of this section has been to give
you some hints as how to turn applicative and recursive function definitions
into imperative process definitions.

21.6 Parallelism and Concurrency: A Discussion

21.6.1 CSP and RSL/CSP

This chapter, on parallel specification programming, has focused on CSP, and
for good reasons. CSP provides an elegant way of expressing concurrency. Fur­
thermore, CSP blends well with RSL.

Learning RSL/CSP will enable the reader to quickly adapt to, i.e., learn and
use, "pure" CSP. "Pure" CSP — with its tool support for model checking [447],
a means of proving that certain CSP satisfy expected properties — is very
useful as a separate tool for investigating specific specifications of (specific)
concurrent system proposals.

548 21 Concurrent Specification Programming

21.6.2 Modelling Techniques

In Sects. 21.2 and 21.5 we gave many examples of modelling techniques. In
the next volumes of this book, i.e., in Vols. 2 and 3, we shall have ample
opportunity to bring more examples — and from the current and the future
ones there will be enough examples to draw from when you are confronted
with a concurrent systems modelling problem.

21.7 Bibliographical Notes

We have repeatedly given the following references: [288,448] and [456].The
originator of CSP is C.A.R. Hoare. His first published paper on CSP was [287].
His book, [288], has been carefully edited by Jim Davies [179]. It is now avail­
able electronically [289] and is the definitive reference on CSP. Bill Roscoe's
book [448] covers the same ground, and more: It has twice as many pages
and provides more industry-oriented examples. It also introduces the reader
to technology support for CSP. Steve Schneider's book [456] is perhaps a bit
more of a textbook where Hoare's was a monograph and Roscoe's is somewhat
in between. Schneider's book additionally extends CSP into Timed CSP (TCSP).
A final reference is [229]. It is to the Internet Web (home) page of Formal Sys­
tems (Europe) whose toolset FDR2 provides a model-checker and other CSP
tools. Through subpages access is provided to documents on the CSP syntax
of 'programs' (cum specifications) that can be accepted by the FDR2 tool.

21.8 Exercises

The function definitions of the exercises of this chapter are basically to be
expressed in the parallel programming style.

Exercises 21.9, 21.10 and 21.11 are preceded by Exercises 19.1, 19.2 and
19.3, and Exercises 20.1, 20.2 and 20.3, respectively.

• • •

Exercise 21.1. System Channel Configurations. Please review Sect. 21.2.9,
and suggest formal specifications of P, P«, Q, and Qj function definition
schema and channel structures to cater to each of the five ([A-E]) system
channel configurations.

Hint: You are to assume that the functions P, Pi, Q and Qj do not interact,
i.e., engage in events, with other processes.

Exercise 21.2. Single Producer-/Consumer-Bounded Repository. There are
given three behaviours: a producer, a repository, and a consumer. The pro­
ducer (occasionally) produces entities and delivers them to the repository. The
repository accepts producer-manufactured entities and, upon request, hands

21.8 Exercises 549

them on to the consumer. The consumer consumes entities by (occasionally)
requesting these from the repository. The repository delivers entities in the
order in which they were received. The repository can keep at most b entities.

Define types of entities and of entity requests (from consumers), two (or
three) channels and the four behaviours: producer, repository, consumer and
their aggregation into a system behaviour.

Exercise 21.3. Multiple Producer-/Consumer-Bounded Repository. We refer
to Exercise 21.2. All you need, for this exercise, is to read the formulation of
that exercise.

There are given m + n + 1 behaviours: m producers, pi, a repository, and
n consumers, Cj. Any producer may deposit an entity with the repository,
and any consumer may request an entity from the repository. The repository
marks every received entity with a unique identity of its producer. The entities
delivered to consumers are marked with this identity. The repository otherwise
delivers the marked entities in the order of their receipt.

Define types of entities and of entity requests (from consumers), the m
channels between producers and the repository, the either n or 2n channels
between the repository and the consumers, and the four behaviours: producer,
repository, consumer and their combined system.

Exercise 21.4. Shared Storage. A number of computation processes share a
common storage. We see this common storage to record, for distinct locations,
a value. We see the computation processes performing the following operations
on the shared storage: (i) requesting allocation of new storage locations, (ii)
storing (initial) values in these, (hi) updating with, i.e., changing existing values
to, new given values at identified, i.e., given, locations; (iv) requesting the value
at a given (i.e., identified) location, (v) and requesting the deallocation, i.e.,
the freeing or removal, of an identified location. We finally allow processes to
(vi) pass on locations to one another — according to some further unspecified
protocol.

Define the type of storages, i.e., of locations and values and their combina­
tion into storages. Define the type of channels between computation processes
and between these and the storage process — the latter is thus thought of as
the only process which "keeps", i.e., maintains, the storage. Finally, define the
two kinds of behaviours: computation processes which occasionally perform
one of the actions (i-vi), and the storage behaviour.

Exercise 21.5. Synchronous Multiple-Client/Single-Server System. A client
is a behaviour which, at its own volition, generates requests to a server to
perform some — amongst a finite number of — identified actions (on a server
state). The client, in addition to providing a name, i.e., an identifier, of the
action to be performed, may, or may not — depending on the (arity of the)
identified action — also provide some input arguments, i.e., a (finite) sequence
of (zero, one or more) values to the identified action. That is, actions are
possibly state-changing and definitely value-returning functions. The server is

550 21 Concurrent Specification Programming

then, after successful or failed action, to return a result (of having performed,
or failed to perform such an action) to the client. Failure occurs whenever
a client provides an unknown action name, or a wrong number of argument
values. The result, "good" or "bad", shall be accepted by the client. That
client, after having issued the request, has (patiently) waited for a result.

A server, on the other hand, is a behaviour which, prompted by the client,
performs identified actions with possible arguments and on its, i.e., the server
state. Thus the server is to maintain a catalogue of functions. The catalogue
records the unique names of the functions, their finite arities (0 or more)
and "the function itself", that is, the denotation of the function identifier.
Typically such a function denotation is of type: total function from arguments
and state to possibly changed states and results. We leave argument and result
values further unspecified.

Define the types of server function catalogues and states, and of client-to-
server and server-to-client messages. Also define the (generic) client and the
server behaviours as well as that of the combined system: m clients and one
server.

Exercise 21.6. Asynchronous Multiple-Client/Single-Server System. We re­
fer to Exercise 21.5. You need not have solved that exercise, but you need to
have read its problem formulation before you now read on.

The only difference between the problem of the present exercise and that of
the referenced exercise is that the client does not "patiently" await completion
of server actions, but may proceed to other behaviours. Sooner or later it
is, however, expected that the client requests the result from a previously
requested action. To enable this — and the interleaving of other requesting
clients, and even that any client may, at different times, request actions the
return of whose results is pending — we assume that the clients provide
unique identification of their action requests. These unique action request
identifications are then presented by the client when finally requesting the
results.

Define the types of server function catalogues and states, and of client-
to-server and server-to-client messages. Also define the system, the (generic)
client and the server behaviours.

Exercise 21.7. Synchronous Multiple-Client /Multiple-Server System: We re­
fer to Exercise 21.5. You need not have solved that exercise, but you need to
have read its problem formulation before you now read on.

The only difference between the problem of the present exercise and that
of the referenced exercise is that there are now many servers, i.e., more than
one. Any server is ready to accept any action request, and all servers serve
the same actions.

Define the types of server function catalogues and states, and of client-
to-server and server-to-client messages. Also define the system, the client and
the server behaviours.

21.8 Exercises 551

Exercise 21.8. A UNIX Pipe. A UNIX pipeline is a sequence of processes,
TTi, one for each command, cmdJ, of a sequence of UNIX commands:

cmd_l(argl_l) | cmd_2(argl_2) | ... | cmd_n(argl_n)

Each command cmdJ (is a name which) denotes a function, /$, and each ar­
gument list arglJ is a list of values, vli. Each argument argl_i[j] for j in {l..len
arglJ} is a list of characters. (Here lenarglJ may be 0.) Each function fi pro­
cess 7Ti, for all i, produces, little by little, a result, r^, which is a sequence of
characters. Functions / i , for i > 2, however, all accept one more input ar­
gument, namely the one produced by / i _ i ({ r i _ i) ^ .) . Correspondingly each
"next" (in the pipe line) function fi+i process 7r«+i, for i < lenarglJ, may
consume that output, provided it is ready to do so. Thus, as soon as the
function process 7̂ has produced some such partial result it "outputs" it to
a pipe-buffer (i.e., a process) pl+1 for 1 < i <lenarglJ (Fig. 21.8). It is from
this buffer that function process 7r^+i may or will (eventually) request it.

-c r̂—
function pipe-buffer function
process i i to i+1 process i+1

Fig. 21.8. A fragment system: some pipe processes

Define the three kinds of processes: the system, the function.process and the
pipe.buffer, their channels, and the type of commands, arguments, states and
function catalogues (cf. Exercise 21.5). The system process accepts a pipe
specification and for each command-argument list item the system process
starts a function process, and for each pair of adjacent such a pipe-buffer
process. Let an external input channel receive the piped command lists, and
an output channel deliver the result, little by little, of the "last" function
process.

Figure 21.9 illustrates which processes receive which inputs.

arglJ argl_2 argl_n

Fig. 21.9. Some pipe processes and their arguments

552 21 Concurrent Specification Programming

Exercise 21.9. The Grocery Store, III. We continue Exercises 19.1 and 20.1.
Whereas these exercises suggested serial (in effect, "single-process") behaviour
of a grocery store, we shall now suggest a behaviour in which several clients
may simultaneously select merchandise. We suggest, however, that no two or
more clients can access a shelf segment simultaneously; at most one can access
a shelf segment. Similarly for checkout: There is just one staff and one cash
register. Once you have a parallel process solution to the current problem you
can easily lift these (and other) restrictions.

Thus the nine state components suggested in Exercise 20.1 are now to
be thought o f a s a s e t o f 3 x & + ra + n + l + l + 2 x w processes: (1) k
client, (2) k shopping cart, (3) k bag, (4) m store shelf segments, (5) n inventory
shelf segments (one for each type of merchandise, where ra > n), (6) one cash
register, (7) one catalog, (8) w wholesaler inventory and (9) w wholesaler cash
register processes.

The initialisation prescribed for the nine global state components are now
distributed over respective processes (Fig 21.10).

We consider, finally, as a new kind of process, (10) the staff as a single
process: This is a small, friendly country store. The staff process did not find
its way into a state component in the imperative model. It was, however,
the actor which performed the checkout and the replenishments actions. That
checkout/replenishment actor had no "state", i.e., no "memory".

Now a shopping script is a prescription for the behaviour of a client —
whose state components, thus, are basically those of the script and the purse.

The somewhat elaborate nondeterminism expected from solutions to Exer­
cises 19.1 and 20.1 is now to be expressed by the parallel process combinators
||, 0, and |~|, as well as by the output/input combinators ! and ?.

Please define all relevant types, all relevant channels (and their types) and
all relevant behaviours, that is, in addition to those mentioned above, also the
"overall" system process. Assume an appropriate initialisation of store and
inventory shelves.

If you believe that the above description is incomplete, please state so, and
provide the completing text.

Exercise 21.10. The Anarchic Factory, III. We continue Exercises 19.2 and
20.2. Please read the problem formulation texts of the above referenced exer­
cises carefully.

The six state components suggested in Exercise 20.2 are now to be thought
of as a set of four kinds of processes: ra fork trucks, each with their own
schedule, n production cells, each with their own schedule, one parts inventory,
and one products warehouse. That is, the schedules are folded into the state of
the fork truck and production cell agents. The remarks concerning initialising
the individual processes appropriately as outlined in Fig. 21.10 also apply to
this exercise.

Please define all relevant types, all relevant channels (and their types)
and all relevant behaviours, that is, in addition to those mentioned above,

21.8 Exercises 553

To give you an idea what is meant by "the global state components being distributed
over respective processes" consider the following: A composite state component, for
a system of n "actors" , maps a finite set of n unique actor identifiers to actor states:

value
n:Nat

type
Uid a x i o m |Uid|=n / * cardinality of Uid is n * /
AE
Actors = Uid j& AS

va lue
actors:Actors

va r iab le
agents:Actors := actors

The agents variable is not really needed to understand the concept of distributing a
composite state over n process states. It is only brought in here to show the transition
from applicative via imperative to parallel specification programming.
For each "actor" we now establish a process and "distribute" the actor states over
these n processes:

value
system() = || { actor(uid)(actors(uid)) | uid:Uid }

The actors(uid) argument to the actor function, i.e., process, definition represents
one, the uid, component of the state. The actor function will usually "locally update"
this state:

value
actor: Uid - • AS - • U n i t
actor(uid)(acr) = ... le t acr' = ... i n actor(uid)(acr/) e n d

Fig. 21.10. Single global state to multiple process state distribution

also the "overall" system process. Assume an appropriate initialisation of the
inventory.

If you believe that the above description is incomplete, please state why,
and provide the completing text.

Exercise 21.11. The Document System, III. We continue Exercises 19.3 and
20.3. Please read the problem formulation texts of those exercises carefully.

1. In this exercise make the system components:
(a) the set of all d place directories into d parallel processes
(b) the set of all m persons into m parallel processes, where m is the sum

of all persons in all places

554 21 Concurrent Specification Programming

(c) the set of all c citizens into c parallel processes
(d) the set of all document identifiers in use into a process
(e) the set of all dossier identifiers in use into a process
(f) time into a process.

2. Define all appropriate channels.
3. Define all process types clearly.
4. Now redefine the syntax of commands, replacing explicit mentioning of

persons, documents, dossiers and locations by their process identifiers.
5. Redefine all semantic interpretation functions as auxiliary functions within

the generic person process.

I * •(• •!•

Exercise 21.12. £ A Concurrent Domain Model of Transportation Nets. We
refer to Appendix A, Sect. A.l, Transportation Net.

We refer to Exercises 19.4 and 20.4. Please read the problem formulation
of those exercises carefully.

In Exercise 20.4 we suggested five state variables: (i) the static segments,
(ii) the dynamic segments, (hi) the static connectors, (iv) the dynamic con­
nectors, and (v) the graph of the network (i.e., the structure part of the net).
In the present exercise we suggest to represent each of these as a process. And
we ask you to reformulate solutions to question 4 of Exercise 19.4.

Exercise 21.13. X 4 Concurrent Domain Model of Container Logistics. We
refer to Appendix A, Sect. A.2, Container Logistics.

We refer to Exercises 19.5 and 20.5. Please read the problem formulation
of those exercises carefully.

In Exercises we suggested the declaration of three global state variables: (i)
ships, (ii) the container storage area of a specific container terminal, and (iii)
the quay of that terminal. In the present exercise we suggest to represent each
of these as a process. Based on these three processes redefine the operations
mentioned in items 3-11 of Exercise 19.5.

Exercise 21.14. £ A Concurrent Domain Model of Financial Service Indus­
tries. We refer to Appendix A, Sect. A.3, Financial Service Industry.

We refer to Exercises 19.6 and 20.6. Please read the problem formulation
of those exercises carefully.

In Exercise 20.6 we suggested the declaration of three global state vari­
ables: client catalogue, account catalogue and accounts. In the present exercise
we suggest to represent each of these as a process. Based on these three pro­
cesses redefine the operations mentioned in items 1-2 of Exercise 19.6.

Part VI

AND SO ON!

22

Etcetera!

22.1 W h a t Have We Covered?

We claim that we have, in the present volume, covered the following core
aspects of software engineering:

• Chaps. 2-9: a minimum necessary background in discrete mathematics:
numbers, sets, Cartesians, types, functions, A-calculus, algebras and logics

• Chaps. 10-18: basic principles and techniques of abstraction and mod­
elling as expressible in RSL: atomic types and values, function definitions,
property- and model-oriented abstractions, sets, Cartesians, lists, maps,
higher-order functions and types

• Chaps. 19-21 specification programming: applicative, imperative and
concurrent specification programming

The main objective of Vol. 1 has been to give the reader a firm foundation in
abstraction and modelling.

22.2 W h a t Is Next?

In the next volume of this three-volume book we shall cover further essential
aspects of software engineering:

• Specification facets: Volume 2, Chaps. 2-5 — hierarchies and composi­
tions, denotations and computations, configurations: contexts and states,
and time, space and time/space

• Semiotics: Volume 2, Chaps. 6-9 — pragmatics, semantics, syntax, and
semiotics

• Advanced specification techniques: Volume 2, Chaps. 10-15 — mod­
ularisation, automata and machines, Petri nets, message sequence charts
and live sequence charts, statecharts, and the quantitative models of time
(duration calculus). Chaps. 12-14 represent a major contribution by Chris­
tian Krog Madsen.

558 22 Etcetera!

• Language definitions: Volume 2, Chaps. 16-19 — a simple applicative
language, SAL, a simple imperative language, SIL, a simple modular im­
perative language, SMIL, and a simple parallel language, SPIL

The main objective of Vol. 2 is to make the reader a professional in the area
of formal specification, as concerns both classical software devices as well as
devices that possess temporal and concurrent properties.

22.3 What Is Next-Next?

In the third volume of this three-volume book we shall then "wind up" the
specification and programming methodological aspects of software engineering
by covering the essential spectrum of development phases from:

• domain engineering via
• requirements engineering to
• software Design.

More specifically we cover the following stages of these phases:

• Domain engineering: Volume 3, Chaps. 8-16 — an overview of domain
engineering, domain stakeholders, domain attributes, domain facets, do­
main acquisition, domain analysis and concept formation, domain verifica­
tion and validation, towards domain theories, and the domain engineering
process model

• Requirements engineering: Volume 3, Chaps. 17-24 — overview of
requirements engineering, requirements stakeholders, requirements facets,
requirements acquisition, requirements analysis and concept formation,
requirements verification and validation, requirements satisfiability and
feasibility, and the requirements engineering process model

• Software design: Volume 3, Chaps. 25-30 — hardware/software code-
sign, software architecture design, a case study in component design,
domain-specific architectures, coding (etc.), and the triptych computing
systems design process model

To properly set the stage for study of the above major phases of software
development we first bring in some preliminary material:

• The paperwork: Volume 3, Chap. 2 — documents
• The conceptual framework: Volume 3, Chaps. 3-4 — methods and

methodology, and models and modelling
• Descriptions: theory and practice: Volume 3, Chaps. 5-7 — phenom­

ena and concepts, on defining and on definitions, and Jackson's description
principles

A final technical chapter closes the specification and programming method­
ological aspects of software engineering by covering:

22.5 Formal Methods "Lite" 559

• The triptych development process model — Volume 3, Chap. 31

The main objective of Vol. 3 is to make the reader a professional in the com­
plete and full range of software development: from domains via requirements
to software.

22.4 A Caveat

As pointed out, the reader must not forget that these volumes provide only
one, albeit a major, facet of what is needed in "real" development:

• Problem frame specialties. These first three volumes do cover many
facets of such software applications as is usually classified by the terms: (i)
administrative data processing; (ii) enterprise resource planning (ERP);
(iii) compilers and interpreters; (iv) distributed (client/server, etc.) sys­
tems, (v) production planning, monitoring and control systems; (vi) data­
base management systems; (vii) embedded real-time safety-critical sys­
tems, and the like. But to become a real professional in any one of these
areas requires more than these volumes can give you. So you are well ad­
vised to study special texts on such things as (a) formal semantics and com­
piler techniques, (b) data communication, cryptography and distributed
systems, (c) database systems, (d) real-time embedded software, etc.

• Management: Issues not covered by these volumees are: engineering
management, configuration management (version monitoring and control),
people management (capability maturity model, risk management, quality
management), project planning (monitoring and control, project graphs,
resource allocation and scheduling etc.), development cost management,
contracts and contract management, market analysis, product cost esti­
mates, consultancy and instantiation costs, marketing and sales, mainte­
nance and service, business plans, financial matters, ISO 9000, ISO 9001
and ISO 9000-3, IEEE and ACM standards, software tool standards, etc.
We entertain some hope that a volume could be produced, one whose ob­
jective would be to show that formal techniques fit "hand-in-glove" with
many current management concepts, while, in cases, warranting some new
looks!

22.5 Formal Methods "Lite"

In Vol. 3, Chap. 32, Sect. 32.2 we bring an analysis of the issues of "myths
and commandments" of formal methods.

Suffice it for this volume to state that we do not believe in formal methods,
but we use formal methods whenever the development of a piece of software
is done by more than one person, or whenever that software eventually will

560 22 Etcetera!

be used by any person other than the one who developed it, i.e., "always".
But let us also state that we use formal methods "lite": We, ourselves, em­
phasise formal specification, in all phases, in reasonably "connected" stages
and steps. But we seldom prove any properties: We assert that the develop­
ments we record do satisfy correctness criteria; but we "leave the details" to
others. We do so on the experienced background that formal specification in
carefully monitored and controlled phases, stages and steps — recording suit­
able abstraction (retrieve) functions, all appropriate invariants, etc. — seems
to capture the proverbial "99.99%" of "believed" bugs. For those customers
who need more formal assurance we know which kinds of developments we
can provably relate, which kinds of properties we can formally verify — but
in these volumes we cover only the proverbial "99.99%".

22.6 Bibliographical Notes

These volumes are the fruits of many years of my own work also. That work
is recorded in the following documents: [37,55-114,116-121,123-130,228,257,
352,431,490]

Part VII

APPENDIXES

A

Common Exercise Topics

In this appendix we bring some initial formulations of some problem domains
for which a number of exercises, marked £ , will then be posed in subsequent
chapters of this volume. References are given below.

A.l Transportation Nets

By a transportation net we understand a composition of road nets (of various
kinds: public roads, toll roads [viz.: toll booth or electronically road priced],
free ways, etc.), rail nets, nets of air traffic corridors, and nets of shipping lanes.
Common, we claim, to all these nets are their composition from segments
(street or road segments, rail lines between stations, air corridors, etc.), and
connections (street intersections, railway stations, airports and harbours).

So nets, segments and connections (or intersections) are important con­
cepts. They abstract phenomena such as mentioned above (roads, lines, and
lanes, respectively street corners, train stations, airports and harbours).

Segments may be decomposed into blocks, i.e., a segment being a sequence
of blocks. And blocks (hence segments), as well as connections, may contain
zero, one or more conveyours (cars, trains [usually at most one], air crafts or
ships). Conveyors may move — so that traffic can be abstracted as a function
from time to positions of conveyors (in, or within, blocks and connections).

Issues of allocation, scheduling and control of traffic can then be ap­
proached.

Exercises related to this topic are: 2.6, 3.3, 4.4, 5.1, 5.2, 5.3, 8.1, 9.1, 10.2,
11.1, 12.4, 13.5, 14.6, 15.15, 16.12, 18.1, 19.4, 20.4 and 21.12.

Examples 9.8 and 9.12 also relate to this exercise topic.

564 A Common Exercise Topics

A.2 Container Logistics

A container terminal is a special kind of harbour — at the "borderline" be­
tween ocean and land. Roughly a container terminal consists of a harbour
basin, shielded from the ocean, on one side, by jetties, and otherwise border­
ing to one or more (land located) quays. Finally, also on land, each container
terminal has a container storage area.

A container terminal is so organised as to serve in the loading and un­
loading of containers onto, respectively from container ships. Before loading,
and after unloading containers, these are usually kept, on shore, i.e., on land,
in the container storage area. Containers on container ships and in container
storage areas are kept in stacks — and we can talk about container ships
and container storage areas being organised into 'bays' of 'rows' of stacks of
containers.

Quays are where container ships are positioned when being loaded and un­
loaded. Ship/shore cranes parked at locations (with up to several such per ship
position) perform this loading and unloading, from, respectively onto termi­
nal trucks or container trucks. The former move containers between container
ships and container storage areas and deposit and fetch their containers in,
respectively from container storage area stacks by means of container storage
area cranes. In other words: A Quay consists of a sequence of quay locations,
with any subsequence of locations designating a quay position.

Container ships may contain more containers than destined for the con­
tainer terminal they may currently be visiting. And container storage area
stacks may contain containers destined for further container ship transport to
usually several, "next", container terminals.

Container ships as well as containers have sailing routes, respectively way­
bills, where both the former and the latter imply a sequence of container
terminals, to be visited, respectively at which to be transferred (unloaded
from one container ship and loaded onto another container ship via temporary
storage in the container storage area of the transfer container terminal).

Exercises related to this topic are: 2.7, 3.4, 4.5 5.1, 5.2, 5.3, 8.2, 9.2, 10.3,
11.2, 12.5, 13.6, 14.7, 15.16, 16.13, 18.2, 19.5, 20.5, and 21.13.

Examples 9.9 and 9.13 also relate to this exercise topic.

A.3 Financial Service Indust ry

A, or the, financial service industry (of a country, of a region, or of the
world) consists of banks, insurance companies, securities instrument brokers
and (stock) exchanges, as well as of portfolio management and other financial
market operators.

In banks customers can open and close accounts, deposit and withdraw
funds, establish and terminate loans, borrow ("against") and pay back loans,
etc. A customer may have several deposit and/or loan (and/or other) accounts.

A.3 Financial Service Industry 565

Several customers may share accounts. Funds may be transferred between
accounts in same or different banks.

Customers may request (order) the buying or selling of securities instru­
ments through a broker (to be transacted at a securities instrument (eg.,
stock) exchange. A 'buy' ['sell'] request names a securities instrument, states
time interval of request being valid (i.e., during which it should, if possible,
be effected), states price interval ("lo, hi") within which transaction should, if
possible, be effected (with "hi" ["lo"], for 'buy' ['sell'] orders, designating an
absolute limit, while the "lo" ['hi'] being an "OK, you may effect transaction"
limit). The lacing of a buy or sell order results in the exercise of a unique order
code (to be retained by the customer and broker). At a securities instrument
(eg., stock) exchange several buy and sell orders may have associated (over­
lapping) time and price intervals such that transaction can be concluded (by
traders). If an order cannot be effected it is withdrawn. Customers may direct
funds from or to bank accounts (and is so stated in placed orders). A set of
buy and sell orders naming the same securities instrument may constitute the
basis for a transaction. The sum of the sell quantities must "be close" or equal
to the sum of buy quantities; the time of the transaction must be within the
time intervals stated in all these orders; and the transacted price must within
the price intervals stated in all these orders. Which transactions are eventually
concluded is not a computable decision. It is ("highly") nondeterministic —
to some even chaotic.

In the set of exercises related to this topic we forgo any consideration of
other than banks, brokers and exchanges (incl. traders).

Exercises related to this topic are: 2.8, 3.5, 4.6, 5.1, 5.2, 5.3, 8.3, 9.3, 10.4,
11.3, 12.6, 13.7, 14.8, 15.17, 16.14, 18.3, 19.6, 20.6, and 21.14.

Examples 9.10 and 9.14 also relate to this exercise topic.

566 A Common Exercise Topics

A.4 Summary References to Exercises

Topic J

Numbers
Sets (I)
Cartesians (I)
Types (I)
Algebras
Logic
Atomicity J
Functions
Abstraction
Sets (II)
Cartesians (II)
Lists
Maps
Types
Applicativeness
Imperativeness
Concurrency

Transportation Nets

2.6
3.3
4.4

Container Logistics

2.7
3.4
4.5

Finance Industry |

2.8
3.5
4.6

5.1, 5.2 and 5.3 for all three topics |
8.1
9.1
10.2
11.1
12.4
13.5
14.6

15.15
16.12
18.1
19.4
20.4

21.12

8.2
9.2
10.3
11.2
12.5
13.6
14.7

15.16
16.13
18.2
19.5
20.5
21.13

8.3
9.3
10.4
11.3
12.6
13.7
14.8

15.17
16.14
18.3
19.6
20.6

21.14

B

Glossary

There is no prerequisite for studying this chapter.
The aims are to put the concept of a glossary in the context of like notions
of dictionaries, ontologies, taxonomies, terminologies and thesauri and to
explain important computer science, computing science and software en­
gineering terms.
The objective is to make the reader professional in the use of terms.
The treatment is systematic.

G
H
I .

A 570
B 576
C 578
D 587 J
E 593 K
F 595

599 M 610 S 632
600 N 615 T 640

0 616 U 645
P 618 V 646

W 647
Z 648

602
.608
608 Q 626

L 608 R 626

For parts of 17 of the 788 entries we have quoted from [373]. There are 19
such uses of [350] and four of [227] in this appendix.

In any software development project it is important:

• to define the terms before their first use,
• to maintain, including adjust, update and extend, such a glossary of term |

definitions, and
• to adhere to the definitions.

A list of terms specific to the overlapping areas of informatics, the computer
and computing sciences and to software engineering is presented. Each term is
described: delineated, characterised, in cases defined, and examples are some­
times illustrated. The list is simply alphabetically sorted. No attempt has
been made to construct a thesaurus, a taxonomy or an ontology.

568 B Glossary

The terms, and especially their descriptions, may not coincide or subsume,
or be subsumed by descriptions given in standard glossaries or textbooks of
the field. Thus this terminology represents a personal, yet sufficiently honed
newest glossary.

This appendix is very personal, yet, we believe, both scientifically and tech­
nically, "correct". The gloss, the selection of entries (which terms to include,
which to exclude), and their characterisation, in some cases definition, is our
choice. The gloss thus reflects our view of the field of software engineering.
One may rightfully claim, we believe, that from this gloss there emerges the
contours of an ontology for, or of, software engineering.

B. l Categories of Reference Lists
On Glossaries, Dictionaries, Encyclopaedia, Ontologies,
Taxonomies, Terminologies and Thesauri

An important function of glossaries, dictionaries, etc., is to make sure that
terms that may seem esoteric do not remain so.

Esoteric: designed for or understood by the specially initiated alone,
of or relating to knowledge that is restricted to a small group,

limited to a small circle

Merriam-Webster's Collegiate Dictionary [373]

B . l . l Glossary

According to [350] a gloss is "a word inserted between the lines or in the
margin as an explanatory rendering of a word in the text; hence a similar
rendering in a glossary or dictionary. Also, a comment, explanation, interpre­
tation." Furthermore according to [350] a glossary is therefore "a collection of
glosses, a list with explanations of abstruse, antiquated, dialictical, or technical
terms; a partial dictionary." [137] provides a Glossary of Z Notation.

B. l .2 Dictionary

According to [350] a dictionary is "a book dealing with the words of a lan­
guage, so as to set forth their orthography, pronunciation, signification, and
use, their synonyms, derivation, history, or at least some of these; the words
are arranged in some stated order, now, usually, alphabetical; a word book,
vocabulary, lexicon. And, by extension: A book on information or reference,
on any subject or branch of knowledge, the items of which are arranged al­
phabetically." Standard dictionaries are [350,373,412].

B.2 Typography and Spelling 569

B.1.3 Encyclopaedia

According to [350], an encyclopaedia is "a circle of learning, a general course of
instruction. A work containing information on all branches of knowledge, usu­
ally arranged alphabetically (1644). A work containing exhaustive information
on some one art or branch of knowledge, arranged systematically." [207] is,
perhaps, the most "famous" encyclopaedia.

B.1.4 Ontology

By ontology is meant [350]: "the science or study of being; that department of
metaphysics which relates to the being or essence of things, or to being in the
abstract." By an ontology we shall mean a document which, in a systematic
arrangement explains, in a logical manner, a number of abstract concepts.

B.1.5 Taxonomy

By taxonomy is meant [350]: "classification, especially in relation to its general
laws or principles; that department of science, or of a particular science or
subject, which consists in or relates to classification."

B.1.6 Terminology

By a term is here meant [350]: "a word or phrase used in a definite or precise
sense in some particular subject, as a science or art; a technical expression."
More widely: "Any word or group of words expressing a notion or concep­
tion, or denoting an object of thought." By terminology is meant [350]: "the
doctrine or scientific study of terms; the system of terms belonging to a sci­
ence or subject; technical terms collectively; nomenclature." [341] provides a
terminology of Dependable Computing and Fault Tolerance: Concepts and
Terminology.

B.1.7 Thesaurus

By thesaurus is, in general, meant [350]: "a 'treasury' or 'storehouse' of knowl­
edge, as a dictionary, encyclopaedia or the like. (1736)" The thesaurus [445]
has set a unique standard for and "the" meaning, now, of the term 'thesaurus'.

B.2 Typography and Spelling

Some comments are in order:

• A term definition consists of two or three parts.

570 B Glossary

* The first part consists of a natural (the index) number, the term being
defined and a colon (:). The term subpart is the defi.niend.um.

* The second part is the term definition body, the definiens.
* Optional third parts — in parentheses — expand on the definiens,

contrast it to other terms, or other.
• The definiendum is a one, two or three word boldfaced term.
• The definiens consists of free text which may contain uses of (other, or the

same) defined terms.
• Terms written in sans serif Italicized font stand for defined terms.
• Definiens (second part) text ending with [373] (or [350]) represents quotes.
• For reasons of cross-referencing we have spelled the terms a,/3 and A as

Alpha (alpha), Beta (beta) and Lambda (lambda).
• And we have rewritten the technical terms a-renaming, /3-reduction and

A-calculus, conversion and expression (etc.) into Alpha-renaming, Beta-
reduction and Lambda-expression, etc., while keeping the hyphens.

B.3 The Glosses

A

1. Abstract: Something which focuses on essential properties. Abstract is
a relation: something is abstract with respect to something else (which
possesses — what is considered — inessential properties).

2. Abstract algebra: An abstract algebra is an algebra whose carrier ele­
ments and whose functions are defined by postulates (axioms, laws) which
specify general properties, rather than values, of functions. (Abstract al­
gebras are also referred to as postulational, or axiomatic algebras. The
axiomatic approach to the study of algebras forms the cornerstone of so-
called modern algebra [349].)

3. Abstract data type: An abstract data type is a set of values for which
no external world or computer (i.e., data) representation is being defined,
together with a set of abstractly defined functions over these data values.

4. Abstraction: 'The art of abstracting. The act of separating in thought;
a mere idea; something visionary.'

5. Abstraction function: An abstraction function is a function which ap­
plies to values of a concrete type and yields values of — what is said to be
a corresponding — abstract type. (Same as retrieve function.)

6. Abstract syntax: An abstract syntax is a set of rules, often in the form
of an axiom system, or in the form of a set of sort definitions, which de­
fines a set of structures without prescribing a precise external world, or a
computer (i.e., data) representation of those structures.

7. Abstract type: An abstract type is the same as an abstract data type,
except that no functions over the data values have been specified.

B.3 The Glosses 571

8. Accessibility: We say that a resource is accessible by another resource,
if that other resource can make use of the former resource. (Accessibility
is a dependability requirement. Usually accessibility is considered a ma­
chine property. As such, accessibility is (to be) expressed in a machine
requirements document.)

9. Acceptor: An acceptor is a device, like a finite state automaton of a push­
down automaton, which, when given (i.e., presented with) character strings
(or, in general, finite structures), purported to belong to a language, can
recognise, i.e., can decide, whether these character strings belong to that
language.

10. Acquirer: The legal entity, a person, an institution or a firm which or­
ders some development to take place. (Synonymous terms are client and
customer.)

11. Acquisition: The common term means purchase. Here we mean the col­
lection of knowledge (about a domain, about some requirements, or about
some software). This collection takes place in an interaction between the
developers and representatives of the client (users, etc.). (A synonym term
is elicitation.)

12. Action: By an action we shall understand something who potentially
changes a state.

13. Activation stack: See the Comment field of the function activation entry.
14. Active: By active is understood a phenomenon which, over time, changes

value, and does so either by itself, autonomously, or also because it is
"instructed" (i.e., is "bid" (see biddable), or "programmed" (see pro­
grammable) to do so). (Contrast to inert and reactive.)

15. Actor: By an actor we shall understand someone which carries out an
action. (A synonymous term for actor is agent.)

16. Actual argument: When a function is invoked it is usually applied to a
list of values, the actual arguments. (See also formal parameter.)

17. Actuator: By an actuator we shall understand an electronic, a mechani­
cal, or an electromechanical device which carries out an action that influ­
ences some physical value. (Usually actuators, together with sensors, are
placed in reactive systems, and are linked to controllers. Cf. sensor.)

18. Acyclic: Acyclicity is normally thought of as a property of graphs. (Hence
see next entry: acyclic graph.)

19. Acyclic graph: An acyclic graph is usually thought of as a directed graph
in which there is no nonempty path, in the direction of the arrows, from
any node to itself. (Often acyclic graphs are called directed acyclic graphs,
DAGs. An undirected graph which is acyclic is a tree.)

20. Adaptive: By adaptive we mean some thing that can adapt or arrange
itself to a changing context, a changing environment.

21. Adaptive maintenance: By adaptive maintenance we mean an update,
as here, of software, to fit (to adapt) to a changing environment. (Adaptive
maintenance is required when new input/output media are attached to the
existing software, or when a new, underlying database management system

572 B Glossary

is to be used (instead of an older such), etc. We also refer to corrective
maintenance, perfective maintenance, and preventive maintenance.)

22. Address: An address is the same as a link, a pointer or a reference:
Something which refers to, i.e., designates something (typically something
else). (By an address we shall here, in a narrow sense, understand the
location, the place, or position in some storage at which some data is
stored or kept.)

23. Ad hoc polymorphism: See Comment field of polymorphic.
24. Agent: By an agent we mean the same as an actor — a human or a

machine (i.e., robot). (The two terms actor and agent are here considered
to be synonymous.)

25. AI: Abbreviation for artificial intelligence. (We shall refrain from positing
(including risking) a definition of the term AI. Instead we refer to John
McCarthy's home page [369].)

26. Algebra: An algebra is here taken to just mean: A set of values, A, the
carrier of the algebra, and a set of functions, $, on these values such that
the result values are within the set of values: $ = A* -» A. (We make the
distinction between universal algebras, abstract algebras and concrete alge­
bras. See also heterogeneous algebras, partial algebras and total algebras.)

27. Algebraic semantics: By an algebraic semantics we understand a se­
mantics which denotes one, or a (finite or infinite) set of zero, one or more
algebras. (Usually an algebraic semantics is expressed in terms of (i) sort
definitions, (ii) function signatures and (iii) axioms.)

28. Algebraic systems: An algebraic system is an algebra. (We use the term
system as an entity with two clearly separable parts: the carrier of the
algebra and the functions of the algebra. We distinguish between concrete
algebras, abstract algebras and universal algebras — here listed in order of
increasing abstraction.)

29. Algebraic type: An algebraic type is here considered the same as a sort.
(That is, algebraic types are specified as are algebraic systems.)

30. Algol: Algol stands for Algorithmic Language. (Algol 60 designed in the
period 1958-1960 [24]. It became a reference standard for future language
designs (Algol W [531], Algol 68 [510], Pascal [292,314,522] and others.)

31. Algorithm: The notion of an algorithm is so important that we will
give a number of not necessarily complementary definitions, and will then
discuss these.
• By an algorithm we shall understand a precise prescription for carrying

out an orderly, finite set of operations on a set of data in order to calcu­
late (compute) a result. (This is a version of the classical definition. It
is compatible with computability in the sense of Turing machines and
Lambda-calculus. Other terms for algorithm are: effective procedure,
and abstract program.)

• Let there be given a possibly infinite set of states, S, let there be
given a possibly infinite set of initial states, / , where / C S, and
let there be given a next state function / : S —> S. (C, where C =

B.3 The Glosses 573

(Q,I,f) is an initialised, deterministic transition system.) A sequence
so, s i , . . . , Si-i,Si,..., sm such that f(si-i) = Si is a computation. An
algorithm, A, is a C with final states O, i.e.: 4̂ = (Q,I, / , 0) , where
O C 5, such that each computation ends with a state sm in O. (This
is basically Don Knuth's definition [326]. In that definition a state
is a collection of identified data, i.e., a formalised representation of
information, i.e., of computable data. Thus Knuth's definition is still
Turing and Lamb da-calculus "compatible".)

• There is given the same definition as just above with the generalisation
that a state is any association of variables to phenomena, whether
the latter are representable "inside" the computer or not. (This is
basically Yuri Gurevitch's definition of an algorithm [253,438,439]. As
such this definition goes beyond Turing machine and Lambda-calculus
"compatibility". That is, captures more!)

32. Algorithmic: Adjective form of algorithm.
33. Allocate: To apportion for a specific purpose or to particular persons or

things, to distribute tasks among human and automated components. (We
shall here use the term generally for the allocation of resources (see also
resource allocation), specifically for storage to assignable variables. In the
general sense, allocation, as the name implies, has some spatial qualities
about it: allocation to spatial positions. In the special sense we can indeed
talk of storage space.)

34. Alphabet: A finite collection of script symbols called the letters of the
alphabet.

35. Alpha-renaming: By alpha-renaming (a-renaming) we mean the sub­
stitution of a binding identifier, with another, the "new", identifier, in
some Lambda-expression (statement or clause), such that all free occur­
rences of that binding identifier in that expression (statement or clause)
are replaced by the new identifier, and such that that new identifier is not
already bound in that expression (statement or clause). (Alpha-renaming
is a concept of the Lambda-calculus.)

36. Ambiguous: A sentence is ambiguous if it is open to more than one
interpretation, i.e., has more than one model and these models are not
isomorphic.

37. Analogic: Equivalency or likeness of relations. Resemblance of relations
or attributes as a ground of reasoning. Also: Presumptive reasoning based
on the assumption that if things have some similar attributes, their other
attributes will be similar [350].

38. Analogue: A representative in another class or group [350]. (Used in
these volumes in the sense above, not in the sense of electrical engineering
or control theory.)

39. Analysis: The resolution of anything complex into simple elements. A de­
termination of proper components. The tracing of things to their sources;
the discovery of general principles underlying concrete phenomena [350].
(In conventional mathematics analysis pertains to continuous phenomena,

574 B Glossary

e.g. differential and integral calculi. Our analysis is more related to hy­
brid systems of both discrete and continuous phenomena, or often to just
discrete ones.)

40. Analytic: Of, or pertaining to, or in accordance with analysis.
41. Analytic grammar: A grammar, i.e., a syntax whose designated sen­

tences (in general: Structures) can be subject to analysis, i.e., where the
syntactic composition can be revealed through analysis.

42. Anomaly: Deviation from the normal.
43. Anthropomorphic: Attributing a human personality to anything imper­

sonal or irrational [350]. (See anthropomorphism. It seems to be a "disease"
of programmers to attribute their programs with human properties: "The
program does so-and-so; and after that, it then goes on to do such-and-
such," etcetera. Programs, to recall, are, as are any description is, a mere
syntactic, i.e., static text. As such they certainly can "do nothing". But
they may prescribe that certain actions are effected by machine — when
a machine interprets ("executes") the program text!)

44. Anthropomorphism: Ascription of a human form and attributes to the
Deity, or of a human attribute or personality to anything impersonal or
irrational [350]. (See anthropomorphic.)

45. Application: By an application we shall understand either of two rather
different things: (i) the application of a function to an argument, and (ii)
the use of software for some specific purpose (i.e., the application). (See
next entry for variant (ii).)

46. Application domain: An area of activity which some software is to
support (or supports) or partially or fully automate (resp. automates).
(We normally omit the prefix 'application' and just use the term domain.)

47. Applicative: The term applicative is used in connection with applicative
programming. It is hence understood as programming where applying
functions to arguments is a main form of expression, and hence desig­
nates function application as a main form of operation. (Thus the terms
applicative and functional are here used synonymously.)

48. Applicative programming: See the term applicative just above. (Thus
the terms applicative programming and functional programming are here
used synonymously.)

49. Applicative programming language: Same as functional programming
language.

50. Arc: Same as an edge. (Used normally in connection with graphs.)
51. Architecture: The structure and content of software as perceived by

their users and in the context of the application domain. (The term ar­
chitecture is here used in a rather narrow sense when compared with the
more common use in civil engineering.)

52. Argument: A value provided (possibly as part of an argument list) when
invoking a function.

53. Arity: By the arity of a function (i.e., an operation) we understand the
number (0, 1, or more) of arguments that the function applies to. (Usually

B.3 The Glosses 575

a function applies to an argument list, and the arity is therefore the length
of this list.)

54. Arrow: A directed edge. (Branches are arrows.)
55. Artefact: An artificial product [350]. (Anything designed or constructed

by humans or machines, which is made by humans.)
56. Artifact: Same term as artefact.
57. Artificial intelligence: See Al.
58. Assertion: By an assertion we mean the act of stating positively usually

in anticipation of denial or objection. (In the context of specifications
and programs an assertion is usually in the form of a pair of predicates
"attached" to the specification text, to the program text, and expressing
properties that are believed to hold before any interpretation of the text;
that is, "a before" and "an after", or, as we shall also call it: a pre- and
a post-condition.)

59. Assignable variable: By an assignable variable we understand an entity
of a program text which denotes a storage location whose associated value
can be changed by an assignment. (Usually, in the context of specifications
and programs, assignable variables are declared.)

60. Assignment: By an assignment we mean an update to, a change of a
storage location. (Usually, in the context of specifications and programs,
assignments are prescribed by assignment statements.)

61. Associative: Property of a binary operator o: If for all values a, b and c,
(a o b) o c = a o (b o c), then o is said to be an associative operator.
(Addition (+) and multiplication (*) of natural numbers are associative
operators.)

62. Asynchronous: Not synchronous. (In the context of computing we say
that two or more processes — some of which may represent the world
external to the computing device — are asynchronous if occurrences of
the events of these processes are not (a priori) coordinated.)

63. Atomic: In the context of software engineering atomic means: A phe­
nomenon (a concept, an entity, a value) which consists of no proper sub­
parts, i.e., no proper subphenomena, subconcepts, subentities or subvalues
other than itself. (When we consider a phenomenon, a concept, an entity,
a value, to be atomic, then it is often a matter of choice, with the choice
reflecting a level of abstraction.)

64. Attribute: We use the term attribute only in connection with values of
composite type. An attribute is now whether a composite value possesses
a certain property, or what value it has for a certain component part.
(An example is that of database (e.g., SQL) relations (i.e., tabular data
structures): Columns of a table (i.e., a relation) are usually labelled with a
name designating the attribute (type) for values of that column. Another
example is that, say, of a Cartesian: A = BxCxD.A can be said to have the
attributes B, C, and D. Yet other examples are M = A -^ B, S = A-set and
L = A*. M is said to have attributes A and B. S is said to have attribute A.
L is said to have attribute A. In general we make the distinction between

576 B Glossary

an entity consisting of subentities (being decomposable into proper parts,
cf. subentity), and the entities having attributes. A person, like me, has a
height attribute, but my height cannot be "composed away from me"!)

65. Attribute grammar: A grammar, usually expressed as a BNF grammar,
where, to each rule, and to each nonterminal, of the left-hand side or of
the right-hand side of the rule, there is associated one or more (attribute)
assignable variables together with a set of single assignments to some of
these variables — such that the assignment expression variables are those
of the attribute variables of the rule.

66. Automaton: An automaton is a device with states, inputs, some states
designated as final states, and with a next state transition function which
to every state and input designates a next state. (There may be a finite,
or there may be an infinite number of states. The next state transition
function may be deterministic or nondeterministic.)

67. Automorphism: An isomorphism that maps an algebra into itself is an
automorphism. (We refer to Sect. 8.4.4. See also endomorphism, epimor-
phism, homomorphism, monomorphism.)

68. Autonomous: A phenomenon (a concept, an entity) is said to be au­
tonomous if it changes value at its own discretion or without influence
from an environment. (Rephrasing the above we get: (i) A phenomenon is
said to be of, or possess, the autonomous active dynamic attribute if it
changes value only on its own volition — that is, it cannot also change
value as a result of external stimuli; (ii) or when its actions cannot be
controlled in any way: That is, they are a "law onto themselves and their
surroundings". We speak of such phenomena as being dynamic. Other
dynamic active phenomena may be active or reactive.)

69. Availability: We say that a resource is available for use by other re­
sources, if within a reasonable time interval these other resources can
make use of the former resource. (Availability is a dependability require­
ment. Usually availability is considered a machine property. As such avail­
ability is (to be) expressed in a machine requirements document.)

70. Axiom: An established rule or principle or a self-evident truth.
71. Axiomatic specification: A specification presented, i.e., given, in terms

of a set of axioms. (Usually an axiomatic specification also includes defi­
nitions of sorts and function signatures.)

72. Axiom system: Same as axiomatic specification.

B

73. B: B stands for Bourbaki, pseudonym for a group of mostly French math­
ematicians which began meeting in the 1930s, aiming to write a thor­
ough unified set-theoretic account of all mathematics. They had tremen­
dous influence on the way mathematics has been done since. (The found­
ing of the Bourbaki group is described in Andre Weil's autobiography,
titled something like "memoir of an apprenticeship" (orig. Souvenirs

B.3 The Glosses 577

D'apprentissage). There is a usable book on Bourbaki by J. Fang. Liliane
Beaulieu has a book forthcoming, which you can sample in "A Parisian
Cafe and Ten Proto-Bourbaki Meetings 1934-1935" in the Mathematical
Intelligencer 15 no. 1 (1993) 27-35. From h t tp : / /www.faqs .o rg / faqs / -
sci -math-faq/bourbaki / (2004). Founding members were: Henri Car-
tan, Claude Chevalley, Jean Coulomb, Jean Delsarte, Jean Dieudonne,
Charles Ehresmann, Rene de Possel, Szolem Mandelbrojt, Andre Weil.
From: h t tp : / /www.bourbaki .ens . f r / (2004). B also stands for a model-
oriented specification language [3].)

74. Behaviour: By behaviour we shall understand the way in which some­
thing functions or operates. (In the context of domain engineering be­
haviour is a concept associated with phenomena, in particular manifest
entitles. And then behaviour is that which can be observed about the value
of the entity and its Interaction with an environment.)

75. Beta-reduction: By Beta-reduction we understand the substitution
whereby all free occurrences of a designated variable in a Lambda-expression
are replaced by Lambda-expression (in which some Alpha-renamings may
have to be made first).

76. Biddable: A phenomenon is biddable if it can be advised (through a
"contractual arrangement") on which actions are expected of it in vari­
ous states. (A biddable phenomenon does not have to take these actions,
but then the "contractual arrangement" need no longer be honoured by
other phenomena (other [subjdomains) with which it interacts (i.e., shares
phenomena).)

77. Bijection: See bijective function.
78. Bijective function: A total surjective function which maps all values of its

postulated definition set into all distinct values of its postulated rangeset
is called bijective. (See also injective function and surjective function.)

79. Binding: By binding we mean a pairing of, usually, an identifier, a name,
with some resource. (In the context of software engineering we find such
bindings as: (i) of an assignable variable to a storage location, (ii) of a
procedure name to a procedure denotation, etc.)

80. Block: By a block we shall here understand a textual entity, one that is
suitably delineated. (In the context of software engineering a block is nor­
mally some partial specification which locally introduces some (applicative,
i.e., expression) constant definitions (i.e., let .. in .. end), or some
(imperative, i.e., statement) local variable declarations (i.e., begin del
.. ; .. end).)

81. Block-structured programming language: A programming language
is said to be block-structured if it permits such program constructs (incl.
procedures) whose semantics amount to the creation of a local identifier
scope, and where such can be nested, zero, one or more within another.

82. BNF: Abbreviation for Backus-Naur Form (Grammar). (See BNF Gram­
mar.)

578 B Glossary

83. BNF grammar: By BNF Grammar we mean a concrete, linear textual
representation of a grammar, i.e., a syntax, one that designates a set of
strings. (A BNF Grammar usually is represented in the form of a set of
rules. Each rule has a nonterminal left-hand-side symbol and a finite set
of zero, one or more alternative right-hand-side strings of terminal and
nonterminal symbols.)

84. Boolean: By Boolean we mean a data type of logical values (true and
false), and a set of connectives: ~, A, V, and =>. (Boolean derives from
the name of the mathematician George Boole.)

85. Boolean connective: By a Boolean connective we mean either of the
Boolean operators: A, V, => (or D), ~ (or -«).

86. Bound: The concept of being bound is associated with (i) identifiers (i.e.,
names) and expressions, and (ii) with names (i.e., identifiers) and resources.
An identifier is said to be either free or bound in an expression based on
certain rules being satisfied or not. If an identifier is bound in an expression
then bound occurrences of that identifier are bound to the same resource.
If a name is bound to some resource then all bound occurrences of that
name denote that resource. (Cf. free.)

87. B P R : See business process reengineering
88. Branch: Almost the same as an edge, except that branches are directed,

i.e., are (like) arrows. (Used usually in connection with trees.)
89. Brief: By a brief is understood a document, or a part of a document which

informs about a phase , or a stage , or a step of development. (A brief thus
contains information.)

90. Business process: By a business process we shall understand a behaviour
of an enterprise, a business, an institution, a factory. (Thus a business
process reflects the ways in which a business conducts its affairs, and
is a facet of the domain. Other facets of an enterprise are those of its
intrinsics, management and organisation (a facet closely related, of course,
to business processes), support technology, rules and regulations, and human
behaviour.)

91. Business process engineering: By business process engineering we shall
understand the design, the determination, of business processes. (In doing
business process engineering one is basically designing, i.e., prescribing
entirely new business processes.)

92. Business process reengineering: By business process reengineering we
shall understand the redesign, the change, of business processes. (In do­
ing business process reengineering one is basically carrying out change
management.)

C

93. Calculate: Given an expression and an applicable rule of a calculus, to
change the former expression into a resulting expression. (Same as com­
pute.)

B.3 The Glosses 579

94. Calculation: A sequence of steps which, from an initial expression, fol­
lowing rules of a calculus, calculates another, perhaps the same, expression.
(Same as computation.)

95. Calculus: A method of computation or calculation in a special notation.
(From mathematics we know the differential and the integral calculi, and
also the Laplace calculus. From metamathematics we have learned of the
A-calculus. From logic we know of the Boolean (propositional) calculus.)

96. Capture: The term capture is used in connection with domain knowledge
(i.e., domain capture) and with requirements acquisition. It shall indicate
the act of acquiring, of obtaining, of writing down, domain knowledge,
respectively requirements.

97. Carrier: By a carrier is understood a, or the set of entities of an algebra
— the former in the case of a heterogeneous algebra.

98. Cartesian: By a Cartesian is understood an ordered product, a fixed
grouping, a fixed composition, of entities. (Cartesian derives from the
name of the French mathematician Rene Descartes.)

99. C.C.I.T.T: Abbreviation for Comite Consultative Internationale de Tele-
graphie et Telephonie. (CCITT is an alternative form of reference.)

100. Change management: Same as business process reengineering.
101. Channel: By a channel is understood a means of interaction, i.e., of com­

munication and possibly of synchronisation between behaviours. (In the
context of computing we can think of channels as being either input, or
output, or both input and output channels.)

102. Chaos: By chaos we understand the totally undefined behaviour: Any­
thing may happen! (In the context of computing chaos may, for example,
be the designation for the never-ending, the never-terminating process.)

103. CHI: Abbreviation for Computer Human Interface. (Same as HCI.)
104. CHILL: Abbreviation for CCITT's High Level Language. (See [145,254].)
105. Class: By a class we mean either of two things: a class clause, as in RSL,

or a set of entities defined by some specification, typically a predicate.
106. Clause: By a clause is meant an expression, designating a value, or a state­

ment, designating a state change, or a sentential form, which designates
both a value and a state change. (When we use the term clause we mean
it mostly in the latter sense of both designating a value and a side effect.)

107. Client: By a client we mean any of three things: (i) The legal body (a
person or a company) which orders the development of some software,
or (ii) a process or a behaviour which interacts with another process or
behaviour (i.e., the server), in order to have that server perform some
actions on behalf of the client, or (iii) a user of some software (i.e., com­
puting system). (We shall normally use the term customer in the first or
in the second sense (i, ii).)

108. Closure: By a closure is usually meant some transitive closure of a rela­
tion 9E: If oM) and b^tc then alStc, and so forth. To this we shall add another
meaning, used in connection with implementation of (for example) proce­
dures: Denotationally a procedure, when invoked, in some calling environ-

580 B Glossary

ment, is to be interpreted in the defining environment. Hence a procedure
closure is a pair: The procedure text and the defining environment.

109. Code: By code we mean a program which is expressed in the machine
language of a computer.

110. Coding: By coding we shall here, simply, mean the act of programming
in a machine, i.e., in a computer-close language. (Thus we do not, except
where explicitly so mentioned, mean the encoding of one string of char­
acters into another, say for communication over a possibly faulty commu­
nication channel (usually with the decoding of the encoded string "back"
into the original, or a similar string).)

111. Cohesion: Cohesion expresses a measure of "closeness", of "dependency",
of "sticking together" among a set of entities. (In the context of software
engineering cohesion is, as it is here, a term used to express a dependency
relation between modules of a specification or a program. Two modules
have a higher cohesion the larger the number of cross-references (to types
and values, including, in particular functions) there are among them.)

112. Collision: Collision, as used here, means that two (or more) occurrences
of the same identifier, of which at least one is free, and which at some
stage occurred in different text parts, are brought together, say by func­
tion application (i.e., macro-expansion) and thereby become bound. (Col­
lision is a concept introduced in the Lamb da-calculus, see Vol. 1, Chap. 7,
Sect. 7.7.4.3. Collision is an undesirable effect. See also confusion.)

113. Communication: A process by which information is exchanged between
individuals (behaviours, processes) through a common system of symbols,
signs, or protocols.

114. Commutative: Property of a binary operator o: If for all values a and b,
a o b = b o a, then o is said to be a commutative operator. (Addition (+)
and multiplication (*) of natural numbers are commutative operators.)

115. Compilation: By a compilation we shall mean the conversion, the trans­
lation, of one formal text to another, usually a high-level program text to
a low-level machine code text.

116. Compiler: By a compiler we understand a device (usually a software
package) which given sentences (i.e., source programs) in one language,
generates sentences (i.e., target programs) in another language. (Usually
the source and the target languages are related as follows: The source
language is normally a so-called "higher-order" language, like Java, and
the target language is normally a "lower (abstraction) level" language, like
Java Byte Code (or a computer machine language) for which an interpreter
is readily available.)

117. Compiler dictionary: By a compiler dictionary we shall understand a
composite data structure (with a varying number of entries) and a fixed
number of operations. The data structure values reflect properties of a
program text being compiled. These properties could be: types of some
program text variable, type structure of some program text type name,
program point of definition of some (goto) label, etc. The possibly hierar-

B.3 The Glosses 581

chical, i.e., recursively nested, structure of the compiler dictionary further
reflects a similarly hierarchical structure of the program text being com­
piled. The operations include those that insert, update, and search for
entries in the compiler dictionary.

118. Compile time: By compile time we understand that time interval dur­
ing which a source program is being compiled and during which certain
analyses, and hence decisions, can be made about, and actions taken with
respect to the source program (to be, i.e., being, compiled) — such as type
checking, name scope checking, etc. (Contrast to run time.)

119. Compiling algorithm: By a compiling algorithm we shall understand a
specification which, for every rule in a syntax (of a source programming
language), prescribes which target programming language data structure
to generate. (We refer to Vol. 2, Chap. 16 (Sects. 16.8-16.10) for "our
story" on compiling algorithms.)

120. Complete: We say that a proof system is complete if all true sentences
are provable.

121. Completeness: Noun form of the complete adjective.
122. Component: By a component we shall here understand a set of type

definitions and component local variable declarations, i.e., a component
local state, this together with a (usually complete) set of modules, such
that these modules together implement a set of concepts and facilities,
i.e., functions, that are judged to relate to one another.

123. Component design: By a component design we shall understand the
design of (one or more) components. (We shall refer to Vol. 3, Chaps. 28-
29 for "our story" on component design.)

124. Composite: We say that a phenomenon, a concept, is composite when it
is possible, and meaningful, to consider that phenomenon or concept as
analysable into two or more subphenomena or subconcepts.

125. Composition: By composition we mean the way in which a phenomenon,
a concept, is "put together" (i.e., composed) into a composite phenomenon,
resp. concept.

126. Compositional: We say that two or more phenomena or concepts are
compositional if it is meaningful to compose these phenomena and/or
concepts. (Typically a denotational semantics is expressed compositionally:
By composing the semantics of sentence parts into the semantics of the
composition of the sentence parts.)

127. Compositional documentation: By compositional documentation we
mean a development, or a presentation (of that development), of, as here,
some description (prescription or specification), in which some notion of
"smallest", i.e., atomic phenomena and concepts are developed (resp. pre­
sented) first, then their compositions, etc., until some notion of full, com­
plete development (etc.) has been achieved. (See also composition, compo­
sitional and hierarchical documentation.)

128. Comprehension: By comprehension we shall here mean set, list or map
comprehension, that is, the expression, of a set, a list, respectively a map,

582 B Glossary

by a predicate over the elements of the set, list or pairings of the map,
that belong to the set, list, respectively the map.

129. Computation: See calculation.
130. Computational linguistics: The study and knowledge of the syntax and

semantics of language based on notions of computer science and comput­
ing science. (Thus computational linguistics emphasises those aspects of
language whose analysis (recognition), or synthesis (generation), can be
mechanised.)

131. Computational data+control requirements: By a computational da­
ta + control requirements we mean a requirements which express how the
dynamics of computations or data (may) warrant interaction between the
machine and its environment, hence is an interface requirements facet.
(See also shared data Initialisation requirements, shared data refreshment re­
quirements, man-machine dialogue requirements, man-machine physiological
requirements, and machine-machine dialogue requirements.)

132. Computational semantics: By a computational semantics we mean a
specification of the semantics of a language which emphasises run-time
computations, i.e., state-to-next-state transitions, as effected when fol­
lowing the prescriptions of programs. (Terms similar in meaning to com­
putational semantics are operational semantics and structural operational
semantics.)

133. Compute: Given an expression and an applicable rule of a calculus, to
change the former expression into a resulting expression. (Same as calcu­
late.)

134. Computer Science: The study and knowledge of the phenomena that
can exist inside computers.

135. Computing Science: The study and knowledge of how to construct
those phenomena that can exist inside computers.

136. Computing system: A combination of hardware and software that to­
gether make meaningful computations possible.

137. Concept: An abstract or generic idea generalised from phenomena or
concepts. (A working definition of a concept has it comprising two com­
ponents: The extension and the Intension. A word of warning: Whenever
we describe something claimed to be a "real instance", i.e., a physical
phenomenon, then even the description becomes that of a concept, not of
"that real thing"!)

138. Concept formation: The forming, the enunciation, the analysis, and
definition of concepts (on the basis, as here, of analysis of the universe of
discourse (be it a domain or some requirements)). (Domain and require­
ments concept formation(s) is treated in Vol. 3, Chaps. 13 (Domain Anal­
ysis and Concept Formation) and 21 (Requirements Analysis and Concept
Formation).)

139. Concrete: By concrete we understand a phenomenon or, even, a concept,
whose explication, as far as is possible, considers all that can be observed
about the phenomenon, respectively the concept. (We shall, however, use

B.3 The Glosses 583

the term concrete more loosely: To characterise that something, being
specified, is "more concrete" (possessing more properties) than something
else, which has been specified, and which is thus considered "more ab­
stract" (possessing fewer properties [considered more relevant]).)

140. Concrete algebra: A concrete algebra is an algebra whose carrier is some
known set of mathematical elements and whose functions are known, i.e.,
well-defined. That is, the models of both the carrier and all the functions
are pre-established. (Concrete algebras are the level of the empirical (ac­
tual) world of mathematics and its applications, where one deals with
specific sets of elements (integers, Booleans, reals, etc.), and where opera­
tions on these sets that are defined by rules or algorithms or combinations.
In general one "knows" a concrete algebra when one knows what the ele­
ments of the carrier A are and how to evaluate the functions fa : $ over
A [349].)

141. Concrete syntax: A concrete syntax is a syntax which prescribes actual,
computer representable data structures. (Typically a BNF Grammar is a
concrete syntax.)

142. Concrete type : A concrete type is a type which prescribes actual, com­
puter representable data structures. (Typically the type definitions of pro­
gramming languages designate concrete types.)

143. Concurrency: By concurrency we mean the simultaneous existence of
two or more behaviours, i.e., two or more processes. (That is, a phenomenon
is said to exhibit concurrency when one can analyse the phenomenon into
two or more concurrent phenomena.)

144. Concurrent: Two (or more) events can be said to occur concurrently,
i.e., be concurrent, when one cannot meaningfully describe any one of
these events to ("always") "occur" before any other of these events. (Thus
concurrent systems are systems of two or more processes (behaviours)
where the simultaneous happening of "things" (i.e., events) is deemed
beneficial, or useful, or, at least, to take place!)

145. Configuration: By a configuration we shall here understand the com­
position of two or more semantic values. (Usually we shall decompose a
configuration into parts such that each part enjoys a temporal relation­
ship with respect to the other parts: being "more dynamic", being "more
static", etc. More specifically, we shall typically model the semantics of
imperative programming languages in terms of semantic functions over
configurations composed from environments and storages.)

146. Conformance: Conformance is a relation between two documents (A
and B). B is said to conform to A, if everything A specifies is satisfied by
B. (Conformance is thus, here, taken to be the same as correctness, i.e.,
congruence. Usually conformance is used in standardisation documents:
Any system claiming to follow this standard must show conformance to

147. Confusion: Confusion, as used here, means that two (or more) occur­
rences of the same identifier, bound to possibly different values, may be

584 B Glossary

confused in that it is difficult from a smaller context of the text in which
they occur to discern, to decide, which meanings, which values, the vari­
ous occurrences are bound to. (Confusion is a concept introduced in the
Lamb da-calculus, see Vol. 1, Chap. 7, Sect. 7.7.4.3. Confusion is an OK,
albeit annoying, effect! See also collision.)

148. Congruence: An algebra, A, is said to be congruent with another algebra,
B, if, for every operation, OB, and suitable set of arguments, b\, 62, • • •,
bn, to that operation, in B, there corresponds an operation, OA, and a
suitable set of arguments, a\, 0,2, . . . , an, in A such that OA(O<I, 0,2, . . . ,an)
= OB(bi, 62? • • • ? bn). (Compare this definition to that of conformance. The
difference is one between a precise, mathematical meaning of congruence,
as contrasted to an informal meaning of conformance.)

149. Conjunction: Being combined, being conjoined, composed. (We shall
mostly think of conjunction as the (meaning of the) logical connective
"and": A.)

150. Connection: Connection is a topological notion, and, as such, is also an
ontological concept related to "parts and wholes", where parts may be,
or may not be connected, i.e., "so close" to one another, that there can
be no other parts "inserted in between".

151. Connector: We shall here, by a connector, mean a hardware, or some
software device that "connects" two like devices, hardware+hardware, or
software+software. (Typically, in software engineering, when "connect­
ing" two independently developed components, one deploys a connector
in order to connect them.)

152. Connective: By a connective is here meant one of the Boolean "opera­
tors": "and" A, "or" V, "imply" =>, and "negation" ~.

153. Consistent: A set of axioms is said to be consistent if, by means of these,
and some deduction rules, one cannot prove a property and its negation.

154. Consistency: Being consistent (throughout).
155. Constraint: By a constraint we shall here, in a somewhat narrow sense,

understand a property that must be satisfied by certain values of a given
type. (That is: The type may define more values than are to be satisfied
by the constraint. We also use the terms data invariant, or well-formedness.
The term constraint has taken on a larger meaning than propagated in
this book. We refer to constraint programming, constraint satisfaction
problems, etc. For a seminal text book we refer to [18]. In constraint
programming a constraint, as expressed in a problem model, and hence in
a constraint program, is a relation on a sequence of values of (a sequence
of) variables of that program.
As you see, the difference, in the two meanings of 'constraint', really, is
minor.)

156. Constructor: By a constructor we mean either of two, albeit related,
things, a type constructor, or a value constructor. By a type construc­
tor we mean an operator on types which when applied to types, say A,
constructs another type, say B. By a value constructor we mean a some-

B.3 The Glosses 585

times distributed fix operator which when applied to one or more values
constructs a value of a different type. (Examples of type constructors
are -set , x , *, w, ^ , ->>, ^> (sets, Cartesians, finite lists, finite and infi­
nite lists, maps, total functions, partial functions), and mk_B. Examples of
value constructors are: {•,«,...,•}, (•,•,...,•), (•,•,...,•), [• i—>•-,•<—>-•, ,•!—>••] and
mk_B(v, . . . ,•), etc., (sets, Cartesians, lists, maps, and variant records).)

157. Context: There are two related meanings: (i) the parts of a discourse that
surround some text and (ii) the interrelated conditions in which something
is understood. (The former meaning emphasises syntactical properties,
i.e., speaks of a syntactic context; the latter, we claim, semantical proper­
ties (i.e., semantic context). We shall often, by a syntactic context speak
of the scope of an identifier: the text (parts) over which the identifier is
defined, i.e., is bound. And by a semantic context we then speak of the
environment in which an identifier is bound to its semantic meaning. As
such semantic contexts go, hand-in-hand, in configurations, with states.)

158. Context-Free: By context-free we mean that something is defined free of
any considerations of the context in which that "something" (otherwise)
occurs. (We shall use the context-free concept extensively: context-free
grammar and context-free syntax, etc. The type definition rules of RSL have
a context-free interpretation.)

159. Context-Free language: By a context-free language we mean a language
which can be generated by a context-free syntax. (See generator.)

160. Context-Free Grammar: See context-free syntax.
161. Context-Free Syntax: By a context-free syntax we shall understand a

type system consisting of type definitions in which right-hand-side occur­
rences of defined type names can be freely substituted for any of a variety
of their definitions. (Typically a BNF grammar specifies a context-free
syntax.)

162. Context-Sensitive Grammar: See context-sensitive syntax.
163. Context-Sensitive Syntax: By a context-sensitive syntax we may un­

derstand a type system consisting of ordinary type definitions in which
right-hand-side occurrences of defined type names cannot be freely substi­
tuted for any of a variety of their definitions, but may only be substituted
provided these right-hand-side type names (i.e., nonterminals) occur in
specified contexts (of other type names or literals). (Usually a context-
sensitive syntax can be specified by a set of rules where both left-hand
and right-hand sides are composite type expressions. The left-hand-side
composite expression then specifies the contexts in which the right-hand
side may be substituted.)

164. Continuation: By a continuation we shall, rather technically, understand
a state-to-state transformation function, specifically one that is the deno­
tation of a program point, that is, of any computation as from that program
point (i.e., label) onwards — until program termination.

165. Continuous: Of a mathematical curve, i.e., function: 'Having the prop­
erty that the absolute value of the numerical difference between the value

586 B Glossary

at a given point and the value at any point in a neighborhood of the given
point can be made as close to zero as desired by choosing the neighborhood
small enough' [373].

166. Contract: A legally binding agreement between two or more parties —
hence a document describing the conditions of the contract. (To us, in
software development, a contract specifies what is to be developed (a
domain description, a requirements prescription, or a software design), how
it might, or must be developed, criteria for acceptance of what has been
developed, delivery dates for the developed items, who the "parties" to
the contract are: the client and the developer, etc.)

167. Control: To control has two meanings: to check, test or verify by evidence
or experiments, and to exercise restraining or directing influence over, to
regulate. (We shall mostly mean the second form. And we shall often use
the term 'control' in conjunction with the term 'monitoring'.)

168. Controller: By a controller we here mean a computing system, which
interfaces with some physical environment, a reactive system, i.e., a plant,
and which, by temporally sensing (i.e., sampling) characteristic values of
that plant, and by similarly regularly activating actuators in the plant,
can make the plant behave according to desired prescriptions. (We stress
the reactive system nature of the plant to be controlled. See also sensor.)

169. Conversion: By conversion we shall here, in a rather limiting sense, with
a base in the Lambda-calculus, understand either an Alpha-renaming or a
Beta-reduction of some Lambda-expression. (We refer to Chap. 7.)

170. Correct: See next entry: correctness.
171. Correctness: Correctness is a relation between two specifications A and

B: B is correct with respect to A if every property of what is specified in
A is a property of B. (Compare to conformance and congruence.)

172. Corrective maintenance: By corrective maintenance we understand a
change, predicated by a specification A, to a specification, B', resulting in
a specification, B", such that B" satisfies more properties of A than does
Bf. (That is: Specification B' is in error in that it is not correct with respect
to A. But B" is an improvement over B'. Hopefully B" is then correct
wrt. A. We also refer to adaptive maintenance, perfective maintenance, and
preventive maintenance.)

173. CSP: Abbreviation for Communicating Sequential Processes. (See [288,
448] and Chap. 21. Also, but not in this book, a term that covers constraint
satisfaction problem (or programming).)

174. Curry: Name of American mathematician: Haskell B. Curry. Also a verb:
to Curry — see Currying.

175. Curried: A function invocation, commonly written f(a\, a2,..., an), is said
to be Curried when instead written: /(ai)(a2)...(an). (The act of rewriting
a function invocation into Curried form is called Currying.)

176. Currying: A function signature, normally written, f: AxBx...xC—>D can
be Curried into being written f: A— B̂—>...— Ĉ— D̂. The act of doing so is
called Currying.

B.3 The Glosses 587

177. Customer: By a customer we mean either of three things: (i) the client,
a person, or a company, which orders the development of some software,
or (ii) a client process or a behaviour which interacts with another process
or behaviour (i.e., the server), in order to have that server perform some
actions on behalf of the client, or (iii) a user of some software (i.e., com­
puting system). (We shall normally use the term customer in the third
sense (iii).)

V

178. DAG: Abbreviation for directed (i.e., oriented) acyclic graph.
179. Dangling reference: A reference is usually a "pointer", a "link" to some

resource. A dangling reference is a reference where that resource has been
lost, i.e., has been removed. (Usually the reference is a location and the
location has been "freed", i.e., deallocated.)

180. Data: Data is formalised representation of information. (In our context
information is what we may know, informally, and even express, in words,
or informal text or diagrams, etc. Data is correspondingly the internal
computer, including database representation of such information.)

181. Database: By a database we shall generally understand a large collection
of data. More specifically we shall, by a database, imply that the data
are organised according to certain data structuring and data query and
update principles. (Classically, three forms of (data structured) databases
can be identified: The hierarchical, the network, and the relational database
forms. We refer to [176,177] for seminal coverage, and to [62,65,124,125]
for formalisation, of these database forms.)

182. Database schema: By a database schema we understand a type definition
of the structure of the data kept in a database.

183. Data abstraction: Data abstraction takes place when we abstract from
the particular formal representation of data.

184. Data invariant: By a data invariant is understood some property that
is expected to hold for all instances of the data. (We use the term 'data'
colloquially, and really should say type invariance, or variable content in-
variance. Then 'instances' can be equated with values. See also constraint.)

185. Data refinement: Data refinement is a relation. It holds between a pair
of data if one can be said to be a "more concrete" implementation of the
other. (The whole point of data abstraction, in earlier phases, stages and
steps of development, is that we can later concretise, i.e., data refine.)

186. Data reification: Same as data refinement. (To reify is to render some­
thing abstract as a material or concrete thing.)

187. Data structure: By a data structure we shall normally understand a
composition of data values, for example, in the "believed" form of a linked
list, a tree, a graph or the like. (As in contrast to an information structure,
a data structure (by our using the term data) is bound to some computer
representation.)

588 B Glossary

188. Data transformation: Same as data refinement and, hence, data reifica-
tion.

189. Data type: By a data type is understood a set of values and a set of
functions over these values — whether abstract or concrete.

190. DC: DC stands for Duration Calculus. (The duration calculi are specific
temporal logics over continuous time intervals [537,538])

191. Decidable: A formal logic system is decidable if there is an algorithm
which prescribes computations that can determine whether any given sen­
tence in the system is a theorem.

192. Declaration: A declaration prescribes the allocation of a resource of the
kind declared: (i) A variable, i.e., a location in some storage; (ii) a channel
between active processes; (hi) an object, i.e., a process possessing a local
state; etc.

193. Decomposition: By a decomposition is meant the presentation of the
parts of a composite "thing".

194. Deduce: To perform a deduction, see next. (Cf. infer.)
195. Deduction: A form of reasoning where a conclusion about particulars fol­

lows from general premises. (Thus deduction goes from the general (case)
to the specific (case). See contrast to induction: inferring from specific
cases to general cases.)

196. Deduction rule: A rule for performing deductions.
197. Definiendum: The left-hand side of a definition, that which is to be

defined.
198. Definiens: The right-hand side of a definition, that which is defining

"something".
199. Definite: Something which has specified limits. (Watch out for the four

terms: finite, infinite, definite and indefinite.)
200. Definition: A definition defines something, makes it conceptually "mani­

fest" . A definition consists of two parts: a definiendum, normally considered
the left-hand part of a definition, and a definiens, normally considered the
right-hand part (the body) of a definition.

201. Definition set: By a definition set we mean, given a function, the set of
values for which the function is defined, i.e., for which, when it is applied
to a member of the definition set yields a proper value. (Cf., range set.)

202. Delimiter: A delimiter delimits something: marks the start, and/or end
of that thing. (A delimiter thus is a syntactic notion.)

203. Denotation: A direct specific meaning as distinct from an implied or
associated idea [373]. (By a denotation we shall, in our context, associate
the idea of mathematical functions: That is, of the denotational semantics
standing for functions.)

204. Denotational: Being a denotation.
205. Denotational semantics: By a denotational semantics we mean a se­

mantics which to atomic syntactical notions associate simple mathematical
structures (usually functions, or sets of traces, or algebras), and which to

B.3 The Glosses 589

composite syntactical notions prescribe a semantics which is the functional
composition of the denotational semantics of the composition parts.

206. Denote: Designates a mathematical meaning according to the principles
of denotational semantics. (Sometimes we use the looser term designate.)

207. Dependability: Dependability is defined as the property of a machine
such that reliance can justifiably be placed on the service it delivers [432].
(See definition of the related terms: error, failure, fault and machine ser­
vice.)

208. Dependability requirements: By requirements concerning dependabil­
ity we mean any such requirements which deal with either accessibility
requirements, or availability requirements, or integrity requirements, or re­
liability requirements, or robustness requirements, or safety requirements,
or security requirements, or robustness requirements.

209. Describe: To describe something is to create, in the mind of the reader,
a model of that something. The thing, to be describable, must be either
a physically manifest phenomenon, or a concept derived from such phe­
nomena. Furthermore, to be describable it must be possible to create, to
formulate a mathematical, i.e., a formal description of that something.
(This delineation of description is narrow. It is too narrow for, for exam­
ple, philosophical or literary, or historical, or psychological discourse. But
it is probably too wide for a software engineering, or a computing science
discourse. See also description.)

210. Description: By a description is, in our context, meant some text which
designates something, i.e., for which, eventually, a mathematical model
can be established. (We readily accept that our characterisation of the
term 'description' is narrow. That is: We take as a guiding principle, as
a dogma, that an informal text, a rough sketch, a narrative, is not a de­
scription unless one can eventually demonstrate a mathematical model
that somehow relates to, i.e., "models" that informal text. To further
paraphrase our concern about "describability", we now state that a de­
scription is a description of the entities, functions, events and behaviours
of a further designated universe of discourse: That is, a description of
a domain, a prescription of requirements, or a specification of a software
design.)

211. Design: By a design we mean the specification of a concrete artefact, some­
thing that can either be physically manifested, like a chair, or conceptually
demonstrated, like a software program.

212. Designate: To designate is to present a reference to, to point out, some­
thing. (See also denote and designation.)

213. Designation: The relation between a syntactic marker and the semantic
thing signified. (See also denote and designate.)

214. Destructor: By a destructor we shall here understand a function which
applies to a composite value and yields a further specified part (i.e., a
subpart) of that value. (Examples of destructors in RSL are the list index-

590 B Glossary

ing function, and the selector functions of a variant record. They do not
destroy anything, however.)

215. Deterministic: In a narrow sense we shall say that a behaviour, a process,
a set of actions, is deterministic if the outcome of the behaviour, etc., can
be predicted: Is always the same given the same "starting conditions", i.e.,
the same initial configuration (from which the behaviour, etc., proceeds).
(See also nondeterministic.)

216. Developer: The person, or the company, which constructs an artefact,
as here, a domain description, or a requirements prescription, or a software
design.

217. Development: The set of actions that are carried out in order to con­
struct an artefact.

218. Diagram: A usually two-dimensional drawing, a figure. (Sometimes a
diagram is annotated with informal and formal text.)

219. Dialogue: A "conversation" between two agents (men or machines). (We
thus speak of man-machine dialogues as carried out over CHIs (HCIs).)

220. Didactics: Systematic instruction based on a clear conceptualisation of
the bases, of the foundations, upon which what is being instructed rests.
(One may speak of the didactics of a field of knowledge, such as, for exam­
ple, software engineering. We believe that the present three volume book
represents such a clearly conceptualised didactics, i.e., a foundationally
consistent and complete basis.)

221. Directed graph: A directed graph is a graph all of whose edges are
directed, i.e., are arrows.

222. Directory: A collection of directions. (We shall here take the more limited
view of a directory as being a list of names of, i.e., references to resources.)

223. Discharge: We use the term discharge in a very narrow sense, namely
that of discharging a proof obligation, i.e., by carrying out a proof.

224. Discrete: As opposed to continuous: consisting of distinct or unconnected
elements [373].

225. Disjunction: Being separated, being disjoined, decomposed. (We shall
mostly think of disjunction as the (meaning of the) logical connective
"or": V.)

226. Document: By a document is meant any text, whether informal or for­
mal, whether informative, descriptive (or prescriptive) or analytic. (De­
scriptive documents may be rough sketches, terminologies, narratives, or
formal. Informative documents are not descriptive. Analytic documents
"describe" relations between documents, verification and validation, or de­
scribe properties of a document.)

227. Documentation requirements: By documentation requirements we
mean requirements which state which kinds of documents shall make up
the deliverable, what these documents shall contain and how they express
what they contain.

228. Domain: Same as application domain; hence see that term for a charac­
terisation. (The term domain is the preferred term.)

B.3 The Glosses 591

229. Domain acquisition: The act of acquiring, of gathering, domain knowl­
edge, and of analysing and recording this knowledge.

230. Domain analysis: The act of analysing recorded domain knowledge in
search of (common) properties of phenomena, or relating what may be
considered separate phenomena.

231. Domain capture: The act of gathering domain knowledge, of collecting
it — usually from domain stakeholders.

232. Domain description: A textual, informal or formal document which
describes the domain. (Usually a domain description is a set of documents
with many parts recording many facets of the domain: The intrinsics,
business processes, support technology, management and organisation, rules
and regulations, and the human behaviours.)

233. Domain description unit: By a domain description unit we understand
a short, "one- or two-liner", possibly rough-sketch description of some prop­
erty of a domain phenomenon, i.e., some property of an entity, some prop­
erty of a function, of an event, or some property of a behaviour. (Usually
domain description units are the smallest textual, sentential fragments
elicited from domain stakeholders.)

234. Domain determination: Domain determination is a domain require­
ments facet. It is an operation performed on a domain description cum
requirements prescription. Any nondeterminism expressed by either of these
specifications which is not desirable for some required software design
must be made deterministic (by this requirements engineer performed op­
eration). (Other domain requirements facets are: domain projection, domain
instantiation, domain extension and domain fitting.)

235. Domain development: By domain development we shall understand
the development of a domain description. (All aspects are included in de­
velopment: domain acquisition, domain analysis, domain modelling, domain
validation and domain verification.)

236. Domain engineer: A domain engineer is a software engineer who per­
forms domain engineering. (Other forms of software engineers are: require­
ments engineers and software designers (cum programmers).)

237. Domain engineering: The engineering of the development of a domain
description, from identification of domain stakeholders, via domain acqui­
sition, domain analysis and domain description to domain validation and
domain verification.

238. Domain extension: Domain extension is a domain requirements facet.
It is an operation performed on a domain description cum requirements
prescription. It effectively extends a domain description by entities, func­
tions, events and/or behaviours conceptually possible, but not necessarily
humanly feasible in the domain. (Other domain requirements facets are:
domain projection, domain determination, domain instantiation and domain
fitting.)

239. Domain facet: By a domain facet we understand one amongst a finite
set of generic ways of analysing a domain: A view of the domain, such

592 B Glossary

that the different facets cover conceptually different views, and such that
these views together cover the domain. (We consider here the following
domain facets: business process, intrinsics, support technology, management
and organisation, rules and regulations, and human behaviour.)

240. Domain fitting: Domain fitting is a domain requirements facet. It is
an operation performed on a domain description cum requirements pre­
scription. It effectively combines one domain description (cum domain re­
quirements) with another [domain description, respectively domain require­
ments]. (Other domain requirements facets are: domain projection, domain
determination, domain instantiation and domain extension.)

241. Domain initialisation: Domain initialisation is an interface require­
ments facet. It is an operation performed on a requirements prescrip­
tion. For an explanation see shared data initialisation (its 'equivalent').
(Other interface requirements facets are: shared data refreshment, computa­
tional data-hcontrol, man-machine dialogue, man-machine physiological and
machine-machine dialogue requirements.)

242. Domain instantiation: Domain instantiation is a domain requirements
facet. It is an operation performed on a domain description (cum require­
ments prescription). Where, in a domain description certain entities and
functions are left undefined, domain instantiation means that these en­
tities or functions are now instantiated into constant values. (Other re­
quirements facets are: domain projection, domain determination, domain
extension and domain fitting.)

243. Domain knowledge: By domain knowledge we mean that which a par­
ticular group of people, all basically engaged in the "same kind of activ­
ities" , know about that domain of activity, and what they believe that
other people know and believe about the same domain. (We shall, in our
context, strictly limit ourselves to "knowledge", staying short of "beliefs",
and we shall similarly strictly limit ourselves to assume just one "actual"
world, not any number of "possible" worlds. More specifically, we shall
strictly limit our treatment of domain knowledge to stay clear of the (al­
beit very exciting) area of reasoning about knowledge and belief between
people (and agents) [223,285].)

244. Domain projection: Domain projection is a domain requirements facet.
It is an operation performed on a domain description cum requirements
prescription. The operation basically "removes" from a description defini­
tions of those entities (including their type definitions), functions, events
and behaviours that are not to be considered in the requirements. (The
removed phenomena and concepts are thus projected "away". Other do­
main requirements facets are: domain determination, domain instantiation,
domain extension and domain fitting.)

245. Domain validation: By domain validation we rather mean: 'validation
of a domain description', and by that we mean the informal assurance
that a description purported to cover the entities, functions, events and
behaviours of a further designated domain indeed does cover that domain

B.3 The Glosses 593

in a reasonably representative manner. (Domain validation is, necessarily,
an informal activity: It basically involves a guided reading of a domain
description (being validated) by stakeholders of the domain, and ends in
an evaluation report written by these domain stakeholder readers.)

246. Domain verification: By domain verification we mean verification of
claimed properties of a domain description, and by that we mean the
formal assurance that a description indeed does possess those claimed
properties. (The usual principles, techniques and tools of verification apply
here.)

247. Domain requirements: By domain requirements we understand such
requirements — save those of business process reengineering — which can
be expressed solely by using professional terms of the domain. (Domain re­
quirements constitute one requirements facet. Others requirements facets
are: business process reengineering, interface requirements and machine re­
quirements.)

248. Domain requirements facet: By domain requirements facets we under­
stand such domain requirements that basically arise from either of the
following operations on domain descriptions (cum requirements prescrip­
tions): domain projection, domain determination, domain extension, domain
instantiation and domain fitting.

249. Dynamic: An entity is said to be dynamic if its value changes over time,
i.e., it is subjected, somehow, to actions. (We distinguish three kinds of
dynamic entities: inert, active and reactive. This is in contrast to static.)

250. Dynamic typing: Enforcement of type checking at run time. (A language
is said to be dynamically typed if it is not statically typed.)

£

251. Edge: A line, a connection, between two nodes of a graph or a tree. (Other
terms for the same idea are: arc and branch.)

252. Elaborate: See next: elaboration.
253. Elaboration: The three terms elaboration, evaluation and interpretation

essentially cover the same idea: that of obtaining the meaning of a syn­
tactical item in some configuration, or as a function from configurations to
values. Given that configuration typically consists of static environments
and dynamic states (or storages), we use the term elaboration in the more
narrow sense of designating, or yielding functions from syntactical items
to functions from configurations to pairs of states and values.

254. Elicitation: To elicit, to extract. (See also: acquisition. We consider elici-
tation to be part of acquisition. Acquisition is more than elicitation. Elic­
itation, to us, is primarily the act of extracting information, i.e., knowl­
edge. Acquisition is that plus more: Namely the preparation of what and
how to elicit and the postprocessing of that which has been elicited — in
preparation of proper analysis. Elicitation applies both to domain and to
requirements elicitation.)

594 B Glossary

255. Embedded: Being an integral part of something else. (When something is
embedded in something else, then that something else is said to surround
the embedded thing.)

256. Embedded system: A system which is an integral part of a larger system.
(We shall use the term embedded system primarily in the context of the
larger, 'surrounding' system being reactive and/or hard real time.)

257. Endomorphism: A homomorphism that maps an algebra into itself is an
endomorphism. (We refer to Sect. 8.4.4 on page 132. See also automor­
phism, epimorphism, isomorphism, monomorphism.)

258. Engineer: An engineer is a person who "walks the bridge" between sci­
ence and technology: (i) Constructing, i.e., designing, technology based
on scientific insight, and (ii) analysing technology for its possible scien­
tific content.

259. Engineering: Engineering is the design of technology based on scientific
insight, and the analysis of technology for its possible scientific content.
(In the context of this glossary we single out three forms of engineering:
domain engineering, requirements engineering and software design; together
we call them software engineering. The technology constructed by the do­
main engineer is a domain description. The technology constructed by the
requirements engineer is a requirements prescription. The technology con­
structed by the software designer is software.)

260. Enrichment: The addition of a property to something already existing.
(We shall use the term enrich in connection with a collection (i.e., a RSL
scheme or a RSL class) — of definitions, declaration and axioms — being
'extended with' further such definitions, declaration and axioms.)

261. Entity: By an entity we shall loosely understand something fixed, immo­
bile, static — although that thing may move, but after it has moved it is
essentially the same thing, an entity. (We shall take the narrow view of
an entity, being in contrast to a function, and an event, and a behaviour;
that entities "roughly correspond" to what we shall think of as values, i.e.,
as information or data. We shall further allow entities to be either atomic
or composite, i.e., in the latter case having decomposable subentities (cf.
subentity). Finally entities may have nondecomposable attributes.)

262. Enumerable: By enumerable we mean that a set of elements satisfies a
proposition, i.e., can be logically characterised.

263. Enumeration: To list, one after another. (We shall use the term enu­
meration in connection with the syntactic expression of a "small", i.e.,
definite, number of elements of a(n enumerated) set, list or map.)

264. Environment: A context, that is, in our case (i.e., usage), the ("more
static") part of a configuration in which some syntactic entity is elaborated,
evaluated, or interpreted. (In our "metacontext", i.e., that of software
engineering, environments, when deployed in the elaboration (etc.) of,
typically, specifications or programs, record, i.e., list, associate, identifiers
of the specification or program text with their meaning.)

B.3 The Glosses 595

265. Epimorphism: If a homomorphism 0 is a surjective function then 0 is an
epimorphism. (We refer to Sect. 8.4.4 on page 132. See also automorphism,
endomorphism, isomorphism, monomorphism.)

266. Epistemology: The study of knowledge. (Contrast, please, to ontology.)
267. Error: An error is an action that produces an incorrect result. An error is

that part of a machine state which is "liable to lead to subsequent failure".
An error affecting the machine service is an indication that a failure occurs
or has occurred [432]. (An error is caused by a fault.)

268. Evaluate: See next: evaluation.
269. Evaluation: The three terms elaboration, evaluation and interpretation

essentially cover the same idea: that of obtaining the meaning of a syn­
tactical item in some configuration, or as a function from configurations to
values. Given that configuration typically consists of static environments
and dynamic states (or storages), we use the term evaluation in the more
narrow sense of designating, or yielding functions from syntactical items
to functions from configurations to values.

270. Event: Something that occurs instantaneously. (We shall, in our context,
take events as being manifested by certain state changes, and by certain
interactions between behaviours or processes. The occurrence of events may
"trigger" actions. How the triggering, i.e., the invocation of functions are
brought about is usually left implied, or unspecified.)

271. Expression: An expression, in our context (i.e., that of software engi­
neering), is a syntactical entity which, through evaluation, designates a
value.

272. Extension: We shall here take extension to be the same as enrichment.
(The extension of a concept is all the individuals falling under the concept
[405].)

273. Extensional: Concerned with objective reality [373]. (Please observe a
shift here: We do not understand the term extensional as 'relating to, or
marked by extension in the above sense, but in contrast to intensional.)

T

274. Facet: By a facet we understand one amongst a finite set of generic ways
of analysing and presenting a domain, a requirements or a software design:
a view of the universe of discourse, such that the different facets cover
conceptually different views, and such that these views together cover
that universe of discourse. (Examples of domain facets are intrinsics, busi­
ness processes, support technology, management and organisation, rules and
regulations and human behaviour. Examples of requirements facets are
business process reengineering, domain requirements, interface requirements
and machine requirements. Examples of software design facets are software
architecture, component design, module design, etc.)

275. Failure: A fault may result in a failure. A machine failure occurs when
the delivered machine service deviates from fulfilling the machine function,

596 B Glossary

the latter being what the machine is aimed at [432]. (A failure is thus
something relative to a specification, and is due to a fault. Failures are
concerned with such things as accessibility, availability, reliability, safety
and security.)

276. Fault: The adjudged (i.e., the 'so judged') or hypothesised cause of an
error [432]. (An error is caused by a fault, i.e., faults cause errors. A
software fault is the consequence of a human error in the development of
that software.)

277. Finite: Of a fixed number less than infinity, or of a fixed structure that
does not "flow" into perpetuity as would any information structure that
just goes on and on. (Watch out for the four terms: finite, infinite, definite
and indefinite.)

278. Finite state automaton: By a finite state automaton we understand an
automaton whose state set is finite. (We shall usually consider only what
is known as Moore automata: that is, automata which have some final
states.)

279. Finite state machine: By a finite state machine we understand an ex­
tended finite state automaton. The extension amounts simply to the fol­
lowing: Every transition (caused by an input, in a state, to another state)
also yields an output. (We shall thus consider only what is known as Mealy
machines. The output is intended to designate some action, or some signal,
to be considered by an environment of the machine.)

280. Finite state transducer: By a finite state transducer we simply mean
the same as a finite state machine. (The machine in question is said to
transduce, to "translate" any sequence of inputs to some corresponding
sequence of outputs.)

281. First-order: We say that a predicate logic is first order when quanti­
fied variables are not allowed to range over functions. (If they range over
functions we call the logic a higher-order logic [406,419]. Similar remarks
can be made for general first-order functions, respectively higher-order
functions.)

282. Fix point: The fix point of a function, F, is any value, / , for which
Ff = f. A function may have any number of fixed points from none (e.g.,
Fx = x + 1) to infinitely many (e.g., Fx = x). The fixed point combinator,
written as either "fix" or "Y" will return the fixed point of a function.
(The fix point identity is YF = F(YF).)

283. Flowchart: A diagram (a chart), for example of circles (input, output),
annotated (square) boxes, annotated diamonds and infixed arrows, that
shows step by step flow through an algorithm.

284. Formal: By formal we shall, in our context (i.e., that of software engi­
neering), mean a language, a system, an argument (a way of reasoning), a
program or a specification whose syntax and semantics is based on (rules
of) mathematics (including mathematical logic).

285. Formal definition: Same as formal description, formal prescription or for­
mal specification.

B.3 The Glosses 597

286. Formal development: Same as the standard meaning of the composi­
tion of formal and development. (We usually speak of a spectrum of devel­
opment modes: systematic development, rigorous development, and formal
development. Formal software development, to us, is at the "formalistic"
extreme of the three modes of development: Complete formal specifica­
tions are always constructed, for all (phases and) stages of development;
all proof obligations are expressed; and all are discharged (i.e., proved to
hold).)

287. Formal description: A formal description of something. (Usually we use
the term formal description only in connection with formalisation of do­
mains.)

288. Formalisation: The act of making a formal specification of something
elsewhere informally specified; or the document which results therefrom.

289. Formal method: By a formal method we mean a method whose tech­
niques and tools1 are formally based. (It is common to hear that some
notation is claimed to be that of a formal method — where it then turns
out that few, if any, of the building blocks of that notation have any for­
mal foundation. This is especially true of many diagrammatic notations.
UML is a case in point — much is presently being done to formalise subsets
of UML [408].)

290. Formal parameter: By a formal parameter we mean an identification
(say a naming and a typing), in a function definition's function signature,
of an argument of the function, a place-holder for actual arguments.

291. Formal prescription: Same as formal definition or formal specification.
(Usually we use the term formal prescription only in connection with
formalisation of requirements.)

292. Formal specification: A formalisation of something. (Same as formal def­
inition, formal description or formal prescription. Usually we use the term
formal specification only in connection with formalisation of software de­
signs.)

293. Free: The concept of being free is associated with (i) identifiers (i.e.,
names) and expressions, and (ii) with names (i.e., identifiers) and resources.
An identifier is said to be either bound or free in an expression based on
certain rules being satisfied or not. If an identifier is free in an expression
then nothing is said about what free occurrences of that identifier are
bound to. (Cf. bound.)

294. Freeing: The removal of storage locations, or of stack activations.
295. Frontier: The concept of frontier is here associated with trees. Visualise

that tree as represented as a flat diagram with no crosses (i.e., intersecting)
branches. A frontier of a tree is a reading of the leaves (cf. leaf) of the tree

1 Tools include specification and programming languages as such, as well as all
the software tools relating to these languages (editors, syntax checkers, theorem
provers, proof assistants, model checkers, specification and program (flow) analysers,
interpreters, compilers, etc.).

598 B Glossary

in one of the two possible directions, say left to right or right to left. (See
tree traversal.)

296. FUNARG: A specification or a programming language is said to enjoy,
i.e. possess, the FUNARG property if values of function invocations may be
functions defined locally to the invoked function. (LISP has the FUNARG
property. So does SAL, a simple applicative language defined in Vol. 2,
Chap. 15.)

297. Full algebra: A full algebra is a total algebra.
298. Function: By a function we understand something which when applied to

a value, called an argument, yields a value called a result. (Functions can
be modelled as sets of (argument, result) pair — in which case applying
a function to an argument amounts to "searching" for an appropriate
pair. If several such pairs have the same argument (value), the function
is said to be nondeterministic. If a function is applied to an argument for
which there is no appropriate pair, then the function is said to be partial;
otherwise it is a total function.)

299. Function activation: When, in an operational, i.e., computational ("me­
chanical") sense, a function is being applied, then some resources have to
be set aside in order to carry out, to handle, the application. This is
what we shall call a function activation. (Typically a function activation,
for conventional block-structured languages (like C#, Java, Standard ML
[261,277,470]), is implemented by means (also) of a stack-like data struc­
ture: Function invocation then implies the stacking (pushing) of a stack
activation on that stack, i.e., the activation stack (a circular reference!).
Elaboration of the function definition body means that intermediate val­
ues are pushed and popped from the topmost activation element, etc.,
and that completion of the function application means that the top stack
activation is popped.)

300. Functional: A function whose arguments are allowed themselves to be
functions is called a functional. (The fix point (finding) function is a func­
tional.)

301. Functional programming: By functional programming we mean the
same as applicative programming: In its barest rendition functional pro­
gramming involves just three things: definition of functions, functions
as ordinary values, and function application (i.e., function invocation).
(Most current functional programming languages (Haskell , Miranda,
Standard ML) go well beyond just providing the three basic building
blocks of functional programming [389,498,502].)

302. Functional programming language: By a functional programming
language we mean a programming language whose principal values are
functions and whose principal operations on these values are their creation
(i.e., definition), their application (i.e., invocation) and their composition.
(Functional programming languages of interest today, 2005, are (alphabet­
ically listed): CAML [146,147,162,346,518], Haskell [498], Miranda [502],

B.3 The Glosses 599

Scheme [2,206,247] and SML (Standard ML) [261,389]. LISP 1.5 was a
first functional programming language [370].)

303. Function application: The act of applying a function to an argument
is called a function application. (See 'comment' field of function activation
just above.)

304. Function definition: A function definition, as does any definition, con­
sists of a definiens and a definiendum. The definiens is a function signature,
and the definiendum is a clause, typically an expression. (Cf. Lambda-
functions.)

305. Function invocation: Same as function application. (See parenthesized
remark of entry 299 (function activation).)

306. Function signature: By a function signature we mean a text which
presents the name of the function, the types of its argument values and
the type(s) of its result value(s).

G

307. Garbage: By garbage we shall here understand those (computing) re­
sources which can no longer be referenced. (Usually we restrict our
'garbage' concern to that of storage locations that can no longer be ac­
cessed because there are no references to them.)

308. Garbage collector: To speak of garbage collection we must first intro­
duce the notions of allocatable storage, i.e., storage — what shall be known
as free, i.e., unallocated — locations (including those that can be consid­
ered garbage). By a garbage collector we shall here understand a device,
a software program or a hardware mechanism which "returns" to a set of
free locations that can subsequently be made available for allocation.

309. Generate: By generate we shall understand that which can be associated
both with a grammar and with an automaton: namely a language, i.e., a
set of strings. Either accepted as input to a finite state automaton, or
denoted by a grammar. (Acceptance by an automaton means that the
automaton is started in an initial state and upon completion of reading
the input is in a final state. Generation by a grammar means the recursive
(i.e., repeated) substitution of nonterminals of a grammar rule left-hand
side with the left-hand sides of the rules whose right-hand side is the
substituted nonterminal.)

310. Generator: A generator is a concept: It can be thought of as a device,
i.e., a software program or a machine mechanism, which outputs typically
sequences of structures — typically symbols. (A BNF Grammar can thus
be said to generate the (usually infinite) set of strings, i.e., of sentence of
the designated language. A finite state machine can likewise be said to be
a generator: Upon being presented with any input string it generates an
output string (a transduction).)

311. Generator function: To speak of a generator function we need first
introduce the concept of a sort "of interest". A generator function is a

600 B Glossary

function which when applied to arguments of some kind, i.e., types, yields
a value of the type of the sort "of interest". (Typically the sort "of interest"
can be thought of as the state (a stack, a queue, etc.).)

312. Generic programming: See entry 514 (polymorphic).
313. Glossary: See Sect. B.l.l .
314. Grammar: See syntax, in general, or regular syntax, context-free syntax,

context-sensitive syntax and BNF in specific.
315. Grand state: "Grand state" is a colloquial term. It is meant to have the

same meaning as configuration. (The colloquialism is used in the context
of, for example, praising a software engineer as "being one who really
knows how to design the grand state for some universe of discourse" being
specified.)

316. Graph: By a graph we shall here mean the term as usually used in the
discrete mathematics discipline of graph theory: as a (usually, but not
necessarily finite) set of nodes (vertexes), some of which may be connected
by (one or more) arcs (edges, lines). (A graph edge defines a path of length
one. If there is a path from one node to another, and from that other node
to yet a third node, then the graph, by transitivity, defines a path from
the first to the third node, etc. A graph can be either an acyclic graph
(no path "cycles back") or a cyclic graph, a directed graph (edges are
one-directional arrows) or an undirected graph [41,42,272,409].)

317. Ground term: A ground term is either an identifier or a value literal.
(The identifier is then assumed to be bound to a value. The value literal
typically is an alphanumeric string designating, for example, an integer,
a real, a truth value, a character, etc.)

318. Grouping: By grouping we mean the ordered, finite collection, into a
Cartesian, of mathematical structures (i.e., values).

n
319. Hard real time: By hard real time we mean a real time property where

the exact, i.e., absolute timing, or time interval, is of essence. (Thus, if
a system is said to enjoy, or must possess, a certain real time property,
for example, (i) the system must emit a certain signal on the 11th of
December 2005 at 17:20:30 hours2, or (ii) that a response signal must be
issued after an interval of exactly 1234 days, 5 hours, 6 minutes, and 7
seconds plus/minus 8 microseconds (from when an initiating signal was
received), then it is hard real time. Cf. soft real time.)

320. Hardware: By hardware is meant the physical embodiment of a com­
puter: its electronics, its boards, the racks, cables, button, lamps, etc.

321. HCI: Abbreviation for human computer interface. (Same as CHI, and
same as man-machine interface.)

2That time is when the current author hopes to celebrate the exact hour of his
anniversary of 40 years of marriage to Kari Skallerud!

B.3 The Glosses 601

322. Heap: By a heap is here meant an unordered, finite collection, i.e., a set,
of storage locations, such that each of these locations can be said to be
allocated (for some purpose), and such that a freeing, i.e., deallocation, of
these locations usually does not follow the inverse order of their allocation.
(Thus a heap works in contrast to an activation stack — complementary,
so to speak! Typically a garbage collector is involved in helping to secure
locations on the heap available for allocation.)

323. Heterogeneous algebra: A heterogeneous algebra is an algebra whose
carrier A is an indexed set of carriers: A\, A<i,..., Am, and whose func­
tions, <f>in : <&, or arity n, are of type: A^ xA{2 x • • • xAin —> Aj where i^,
for all k G { 1 , . . . , n}, are in the set {1 ,2 , . . . , m}.

324. Hiding: Hiding is a concept related to modules. In fact, it is a main pur­
pose of syntactically providing the module mechanism. You have, some­
what mechanistically, to imagine a group of (developers of) modules. One
module mentions (i.e., uses), say, functions defined in other modules. But
those other modules, besides, in order to define those "exported" func­
tions, define auxiliary functions (types, etc.) that "reveal" details of im­
plementation which it is not necessary to divulge. (One may wish, later,
in "the life of that module", to change those implementation decisions.)
Hence, by syntactic means, such as, for example, export, import and hide
clauses, the developer requests the module compiling system to statically
(or otherwise) secure that other modules cannot "inspect" those auxiliary
functions, types, etc. (We refer to [413-417]. Parnas must be credited,
among others, for having skillfully propagated the hiding concept.)

325. Hierarchy: By a hierarchy we understand a conceptual decomposition of
resources into what can be "pictured" as a tree-like structure (and where
the emphasis is on the root of the structure).

326. Hierarchical: By something being hierarchical we mean that that some­
thing forms a hierarchy. (See also compositional.)

327. Hierarchical documentation: By hierarchical documentation we mean
a development, or a presentation (of that development), of, as here, some
description (prescription or specification), in which a notion of "largest",
overall, phenomena and concepts are developed (resp. presented) first,
then their decompositions into component phenomena and concepts, etc.,
until some notion of atomic, i.e., "smallest" development (etc.) has been
achieved. (See also hierarchy (just above) and compositional documenta­
tion.)

328. Higher-order: A functional or a value whose definition set or range set
values are functions. (See, in contrast, first-order.)

329. Homeomorphism: A function that is a one-to-one mapping between
sets such that both the function and its inverse are continuous. (Not to
be confused with homomorphism.)

330. Homomorphism: A function, (j> : A —> A', from values of the carrier
A of one algebra (A, Q) to values of the carrier A' of another algebra
(A', i?') is said to be a homomorphism (same as a morphism) from (A, i?)

602 B Glossary

to (A', Q1), if for any u : Q and for any ai : A, there is a corresponding
OJ' : Q' such that: cf)(oj(ai,a2, ...,an)) = a/(0(ai), ^ (G^) , ..., (j)(an)). (We
refer to Sect. 8.4.4. See also automorphism, endomorphism, epimorphism,
isomorphism and monomorphism.)

331. Homomorphic principle: The homomorphic principle advises the soft­
ware engineer to formulate function definitions such that they express a
homomorphism. (It is a basic tenet of a denotational semantics definition
that it is expressed as a homomorphism.)

332. Human behaviour: By human behaviour we shall here understand the
way a human follows the enterprise rules and regulations as well as in­
teracts with a machine: dutifully honouring specified (machine dialogue)
protocols, or negligently so, or sloppily not quite so, or even criminally not
so! (Human behaviour is a facet of the domain (of the enterprise). We shall
thus model human behaviour also in terms of it failing to react properly,
i.e., humans as nondeterministic agentsl Other facets of an enterprise are
those of its intrinsics, business processes, support technology, management
and organisation, and rules and regulations.)

333. Hybrid: Something heterogeneous, something (as a computing device)
that has two different types of components (software, respectively hard­
ware, the latter including, besides the digital computer, also controllers
(sensors, actuators)) performing essentially the same function by cooper­
ating on computing "that same" function. (Typically we speak of, i.e.,
deploy hybridicity when monitoring and controlling reactive systems —
but then hybridicity additionally, to us, means a combination in which
the controller handles analog matters of continuity, and the software plus
computer handles discrete matters. Finally, for a conventional analogue
controller there is usually but one "decision mode". With the software-
directed computing system there is now the possibility of multiple discrete
+ continuous controller "regimes".)

334. Hypothesis: An assumption made for the sake of argument.

1

335. Icon: A pictorial representation, an image, a sign whose form (shape, etc.)
suggests its meaning. (A graphic symbol on a computer display screen
which suggests the purpose of an available function or value which desig­
nates that entity.)

336. Iconic: Adjective form of icon.
337. Identification: The pointing out of a relation, an association, between an

identifier and that "thing", that phenomenon, it designates, i.e., it stands
for or identifies.

338. Identifier: A name. (Usually represented by a string of alphanumeric
characters, sometimes with properly infixed "-"s or "_"s.)

339. Imperative: Expressive of a command [373]. (We take imperative to
more specifically be a reflection of do this, then do that. That is, of the

B.3 The Glosses 603

use of a state-based programming approach, i.e., of the use of an imperative
programming language. See also indicative, optative, and putative.)

340. Imperative programming: Programming, imperatively, "with" refer­
ences to storage locations and the updates of those, i.e., of states. (Im­
perative programming seems to be the classical, first way of programming
digital computers.)

341. Imperative programming language: A programming language which,
significantly, offers language constructs for the creation and manipulation
of variables, i.e., storages and their locations. (Typical imperative pro­
gramming languages were, in "ye olde days", For t ran , Cobol, Algol
60, PL/I , Pasca l , C, etc. [12-14,24,24,321]. Today programming lan­
guages like C++, Java, C#, etc. [277,470,489] additionally offer module
cum object "features".)

342. Implementation: By an implementation we understand a computer pro­
gram that is made suitable for compilation or interpretation by a machine.
(See next entry: implementation relation.)

343. Implementation relation: By an implementation relation we understand
a logical relation of correctness between a software design specification and
an implementation (i.e., a computer program made suitable for compilation
or interpretation by a machine).

344. Incarnation: A particular instance of a value, usually a state. (We shall
here use the term incarnation to designate any one activation on an ac­
tivation stack — where such an incarnation, i.e., activation, represents a
program block or function (or procedure, or subroutine) invocation.)

345. Incomplete: We say that a proof system is incomplete if not all true
sentences are provable.

346. Incompleteness: Noun form of the incomplete adjective.
347. Inconsistent: A set of axioms is said to be inconsistent if, by means of

these, and some deduction rules, one can prove a property and its negation.
348. Indefinite: Not definite, i.e., of a fixed number or a specific property,

but it is not known, at the point of uttering the term 'indefinite', what
that number or property is. (Watch out for the four terms: finite, infinite,
definite and indefinite.)

349. Indicative: Stating an objective fact. (See also imperative, optative and
putative.)

350. Induce: The use of induction. (To conclude a general property from spe­
cial cases.)

351. Induction: Inference of a general property from particular instances. (On
the basis of several, "similar" cases one may infer a general, say, principle
or property. In contrast to deduction: from general (e.g., from laws) to
specific instances.)

352. Inductive: The use of induction.
353. In extension: A concept of logic. In extension is a correlative word that

indicates the reference of a term or concept. (When we speak of functions

604 B Glossary

in extension, we shall therefore mean it in the sense of presenting "all
details", the "inner workings" of that function. Contrast to in intension.)

354. Inert: A dynamic phenomenon is said to be inert if it cannot change
value of its own volition, i.e., by itself, but only through the interaction
between that phenomenon and a change-instigating environment. An inert
phenomenon only changes value as the result of external stimuli. These
stimuli prescribe exactly which new value they are to change to. (Contrast
to active and reactive.)

355. Infer: Common term for deduce or induce.
356. Inference rule: Same as deduction rule.
357. Infinite: As you would think of it: not finite! (Watch out for the four

terms: finite, infinite, definite and indefinite.)
358. Informal: Not formal! (We normally, by an informal specification mean

one which may be precise (i.e., unambiguous, and even concise), but which,
for example is expressed in natural, yet (domain specific) professional
language — i.e., a language which does not have a precise semantics let
alone a formal proof system. The UML notation is an example of an informal
language [408].)

359. Informatics: The confluence of (i) applications, (ii) computer science, (iii)
computing science [i.e., the art [326-328] (1968-1973), craft [441] (1981),
discipline [194] (1976), logic [275] (1984), practice [276] (1993-2004), and
science [245] (1981) of programming], (iv) software engineering and (v)
mathematics.

360. Information: The communication or reception of knowledge. (By infor­
mation we thus mean something which, in contrast to data, informs us. No
computer representation is, let alone any efficiency criteria are, assumed.
Data as such does, i.e., bit patterns do, not 'inform' us.)

361. Information structure: By an information structure we shall normally
understand a composition of more "formally" represented (i.e., structured)
information, for example, in the "believed" form of table, a tree, a graph,
etc. (In contrast to data structure, an information structure does not nec­
essarily have a computer representation, let alone an "efficient" such.)

362. Informative documentation: By informative documentation we un­
derstand texts which inform, but which do not (essentially) describe that
which a development is to develop. (Informative documentation is bal­
anced by descriptive and analytic documentation to make up the full doc­
umentation of a development.)

363. Infrastructure: According to the World Bank: 'Infrastructure* is an um­
brella term for many activities referred to as 'social overhead capitaF by
some development economists, and encompasses activities that share tech­
nical and economic features (such as economies of scale and spillovers from
users to nonusers). We shall use the term as follows: Infrastructures are
concerned with supporting other systems or activities. Computing sys­
tems for infrastructures are thus likely to be distributed and concerned in
particular with supporting communication of information, control, people

B.3 The Glosses 605

and materials. Issues of (for example) openness, timeliness, security, lack
of corruption, and resilience are often important. (Winston Churchill is
quoted to have said, during a debate in the House of Commons, in 1946:
. . . The young Labourite speaker that we have just listened to, clearly
wishes to impress upon his constituency the fact that he has gone to Eton
and Oxford since he now uses such fashionable terms as 'infra-structures''.)

364. Inheritance: The act of inheriting' a 'property. (The term inheritance, in
software engineering, is deployed in connection with a relationship between
two pieces (i.e., modules) of specification and/or program texts A and B.
B may be said to inherit some type, or variable, or value definitions from

365. In intension: A concept of logic: In intension is a correlative word that
indicates the internal content of a term or concept that constitutes its for­
mal definition. (When we speak of functions in intension, we shall therefore
mean it in the sense of presenting only the "input/output" relation of the
function. Contrast to in extension.)

366. Injection: A mathematical function, / , that is a one-to-one mapping from
definition set A to range set B. (That is, if for some a in A,f(a) yields
a b, then for all a : A all b : B are yielded and there is a unique a for
each b, or, which is the same, there is an inverse function, / _ 1 , such that
f~1(f(a)) = a for all a : A. See also bijection and surjection.)

367. Injective function: A function which maps values of its postulated defini­
tion set into some, but not all, of its postulated range set is called injective.
(See also bijective function and surjective function .)

368. In-order: A special order of tree traversal in which visits are made to
nodes of trees and subtrees as follows: First the tree root is visited and
"marked" as having been in-order visited. Then for each subtree a subtree
in-order traversal is made, in the order left to right (or right to left). When
a tree, whose number of subtrees is zero, is in-order traversed, then just
that tree's root is visited (and that tree has then been in-order traversed)
and (the leaf) is "marked" as having been visited. After each subtree visit
the root (of the tree of which the subtree is a subtree) is revisited, i.e.,
again "marked" as having been in-order visited. (Cf. Fig. B.4: a left to
right in-order traversal of that tree yields the following sequence of "mark­
ings": AQCQALXLFLAKUKJKZMZKA. Cf. also Fig. B.l on the following
page).

369. Input: By input we mean the communication of information (data) from
an outside, an environment, to a phenomenon "within" our universe of
discourse. (More colloquially, and more generally: Input can be thought
of as value(s) transferred over channel(s) to, or between processes. Cf.
output. In a narrow sense we talk of input to an automaton (i.e., a finite
state automaton or a pushdown automaton) and a machine (here in the
sense of, for example, a finite state machine (or a pushdown machine)).)

370. Input alphabet: The set of symbols input to an automaton or a machine
in the sense of, for example, a finite state machine or a pushdown machine.

606 B Glossary

Fig. B. l . A left-to-right in-order tree traversal

371. Instance: An individual, a thing, an entity. (We shall usually think of an
'instance' as a value.)

372. Instantiation: 'To represent (an abstraction) by a concrete instance'
[373]. (We shall sometimes be using the term 'instantiation' in lieu of
a function invocation on an activation stack.)

373. Installation manual: A document which describes how a computing sys­
tem is to be installed. (A special case of 'installation' is the downloading
of software onto a computing system. See also training manual and user
manual.)

374. Intangible: Not tangible.
375. Integrity: By a machine having integrity we mean that that machine

remains unimpaired, i.e., has no faults, errors and failures, and remains so
even in the situations where the environment of the machine has faults,
errors and failures. (Integrity is a dependability requirement.)

376. Intension: Intension indicates the internal content of a term. (See also
in intension. The intension of a concept is the collection of the properties
possessed jointly by all conceivable individuals falling under the concept
[405]. The intension determines the extension [405].)

377. Intensional: Adjective form of intension.
378. Interact: The term interact here addresses the phenomenon of one be­

haviour acting in unison, simultaneously, concurrently, with another be­
haviour, including one behaviour influencing another behaviour. (See also
interaction.)

379. Interaction: Two-way reciprocal action.
380. Interface: Boundary between two disjoint sets of communicating phe­

nomena or concepts. (We shall think of the systems as behaviours or pro­
cesses, the boundary as being channels, and the communications as inputs
and outputs.)

381. Interface requirements: By interface requirements we understand the
expression of expectations as to which software-software, or software-
hardware interface places (i.e., channels), inputs and outputs (including

B.3 The Glosses 607

the semiotics of these input/outputs) there shall be in some contemplated
computing system. (Interface requirements can often, usefully, be classified
in terms of shared data initialisation requirements, shared data refreshment
requirements, computational data-hcontrol requirements, man-machine dia­
logue requirements, man-machine physiological requirements and machine-
machine dialogue requirements. Interface requirements constitute one re­
quirements facet. Other requirements facets are: business process reengi-
neering, domain requirements and machine requirements.)

382. Interface requirements facet: See interface requirements for a list
of facets: shared data initialisation, shared data refreshment, computa­
tional data-hcontrol, man-machine dialogue, man-machine physiological and
machine-machine dialogue requirements.

383. Interpret: See next: interpretation.
384. In te rpre ta t ion : The three terms elaboration, evaluation and interpreta­

tion essentially cover the same idea: that of obtaining the meaning of a syn­
tactical item in some configuration, or as a function from configurations to
values. Given that configuration typically consists of static environments
and dynamic states (or storages), we use the term interpretation in the
more narrow sense of designating, or yielding functions from syntactical
items to functions from configurations to states.

385. Interpreter: An interpreter is an agent, a machine, which performs in­
terpretations.

386. Intrinsics: By the intrinsics of a domain we shall understand those phe­
nomena and concepts of a domain which are basic to any of the other
facets, with such a domain intrinsics initially covering at least one specific,
hence named, stakeholder view. (Intrinsics is thus one of several domain
facets. Others include: business processes, support technology, management
and organisation, rules and regulations, and human behaviour.)

387. Invariant: By an invariant we mean a property that holds of a phe­
nomenon or a concept, both before and after any action involving that
phenomenon or a concept. (A case in point is usually an information or a
data structure: Assume an action, say a repeated one (e.g., a while loop).
We say that the action (i.e., the while loop) preserves an invariant, i.e.,
usually a proposition, if the proposition holds true of the state before and
the state after any interpretation of the while loop. Invariance is here seen
separate from the well-formedness of an information or a data structure. We
refer to the explication of well-formedness^

388. Inverse function: See injection.
389. Invocation: See function invocation.
390. Isomorphic: One to one. (See isomorphism.)
391. Isomorphism: If a homomorphism 0 is a bijective function then 0 is

an isomorphism. (See also automorphism, endomorphism, epimorphism and
monomorphism.)

608 B Glossary

J

392. J : The J operator (J for Jump) was introduced (before 1965) by Peter
Landin as a functional used to explain the creation and use of program
closures, and these again are used to model the denotation of labels. (We
refer to [172,334-336,340]. Cf. www.dcs.qmw.ac.uk/~peterl/danvy/.)

K

393. Keyword: A significant word from a title or document. (See KWIC.)
394. Knowledge: What is, or what can be known. The body of truth, infor­

mation, and principles acquired by mankind [373]. (See epistemology and
ontology. A priori knowledge: Knowledge that is independent of all partic­
ular experiences. A posteriori knowledge: Knowledge, which derives from
experience alone.)

395. Knowledge engineering: The representation and modelling of knowl­
edge. (The construction of ontological and epistemological knowledge and
its manipulation. Involves such subdisciplines as modal logics (promise
and commitment, knowledge and belief), speech act theories, agent theo­
ries, etc. Knowledge engineering usually is concerned with the knowledge
that one agent may have about another agent.)

396. KWIC: Abbreviation for key word-in-context (A classical software appli­
cation. Cf. Example 15.10.)

C

397. Label: Same as named program point.
398. Lambda-application: Within the confines of the Lambda-calculus, Lamb­

da-application is the same as function application. (Subject, however, to
simple term-rewriting using (say just) Alpha-renaming and Beta-reduction.)

399. Lambda-calculus: A calculus for expressing and "manipulating" func­
tions. The Lamb da-calculus (A-calculus) is a de facto "standard" for "what
is computable". See Lambda-expressions. As a calculus it prescribes a lan­
guage, the language of Lambda-expressions, a set of conversion rules —
these apply to Lambda-expressions and result in Lambda-expressions. They
"mimic" function definition and function application. The seminal texts on
the Lambda-calculi are [26,27,29,153].

400. Lambda-combination: See Lambda-application.
401. Lambda-expression: The language of the "pure" (i.e., simple, but

fully powerful) Lambda-calculus has three kinds of Lambda-expressions:
Lambda-variables, Lambda-functions and Lambda-applications.

402. Lambda-function: By a Lambda-function we understand a Lambda-
expression of the form Xx*e, where # is a binding variable and e is a

B.3 The Glosses 609

Lambda-expression. (It is usually the case that e contains free occurrences
of x — these being bound by the binding variable in Xx»e.)

403. Lamb da-variable: The x in the Lambda-function expression Xx*e: both
the formal parameter, the first x you see in Xx»e, and all the free occur­
rences of x in the block (i.e., body) expression e.

404. Language: By a language we shall understand a possibly infinite set
of sentences which follow some syntax, express some semantics and are
uttered, or written down, due to some pragmatics.

405. Law: A law is a rule of conduct prescribed as binding or enforced by a
controlling authority. (We shall take the term law in the specific sense
of law of Nature (cf., Ampere's Law, Boyle's Law, the conservation laws
(of mass-energy, electric charge, linear and angular momentum), Newton's
Laws, Ohm's Law, etc.), and laws of Mathematics (cf. "law of the excluded
middle" (as in logic: a proposition must either be true, or false, not both,
and not none)).)

406. Leaf: A leaf is a node in a tree for which there are no subtrees of that
node. (Thus a leaf is a concept of trees. Cf. Fig. B.4 on page 644.)

407. Lemma: An auxiliary proposition used in the demonstration of another
proposition. (Instead of proposition we could use the term theorem.)

408. Lexical analysis: The analysis of a sentence into its constituent words.
(Sentences also are usually "decorated" with such signs as for example
punctuation marks (, . : ;) , delimiters (() [], etc.), and other symbols (?
!, etc.). Lexical analysis therefore is a process which serves to recognise
which character sequences are words and which are not (i.e., which are
delimiters, etc.).)

409. Lexicographic: The principles and practices of establishing, maintaining
and using a dictionary. (We shall, in software engineering, mostly be using
the term 'lexicographic' in connection with compilers and, more rarely,
database schemas — although, as the definition implies, it is of relevance
in any context where a computing system builds, maintains and uses a
dictionary.)

410. Lexicographical order: The order, i.e., sequence, in which entries of
a dictionary appear. (More specifically, the lexicographical ordering of
entries in a compiler dictionary is, for a block-structured programming lan­
guage, determined by the nesting structure of blocks. The dictionary itself,
generally "mimics" the nesting structure of the language.)

411. Link: A link is the same as a pointer, an address or a reference: something
which refers to, i.e., designates something (typically something else).

412. Lifted function: A lifted function, say of type A —> B —> C, has been
created from a function of type B —> C by 'lifting' it, i.e., by abstracting
it in a variable, say a of type A. (Assume Xb : B • £{b) to be a function of
type B -+ C. NowAa :A-\b:B-£(b) is a lifted version of Xb : B-£(b). An
example is and: A&i, 62 : Bool • b\ A 62, Boolean conjunction. We lift and
to be a function, AT, over time: Xt : T - b\(t) A 62(t), where the variables

610 B Glossary

^i,^2 typically could be (e.g., assignable) variables whose values change
over time.)

413. Linguistics: The study and knowledge of the syntax, semantics and prag­
matics of language(s).

414. List: A list is an ordered sequence of zero, one or more not necessarily
distinct entities.

415. Literal: A term whose use in software engineering, i.e., programming,
shall mean: an identifier which denotes a constant, or is a keyword. (Usu­
ally that identifier is emphasised. Examples of RSL literals are: Bool,
true, false, chaos, if, then, else, end, let, in, and the numerals
0,1,2., ...,1234.5678, etc.)

416. Live Sequence Chart: The Live Sequence Chart language is a special
graphic notation for expressing communication between and coordination
and timing of processes. (See [171,270,325].)

417. Location: By a location is meant an area of storage.
418. Logic: The principles and criteria of validity of inference and deduction,

that is, the mathematics of the formal principles of reasoning. (We refer
to Vol. 1, Chap. 9 for our survey treatment of mathematical logic.)

419. Logic programming: Logic programming is programming based on an
interpreter which either performs deductions or inductions, or both. (In
logic programming the chief values are those of the Booleans, and the chief
forms of expressions are those of propositions and predicates.)

420. Logic programming language: By a logic programming language is
meant a language which allows one to express, to prescribe, logic program­
ming. (The classical logic programming language is Prolog [295,351].)

421. Loose specification: By a loose specification is understood a specifi­
cation which either underspecifies a problem, or specifies this problem
nondeterministically.

M

422. Machine: By the machine we understand the hardware plus software that
implements some requirements, i.e., a computing system. (This definition
follows that of M.A. Jackson [308].)

423. Machine-Machine dialogue requirements:By machine-machine dia­
logue requirements we understand the syntax (incl. sequential structure),
and semantics (i.e., meaning) of the communications (i.e., messages) trans­
ferred in either direction over the automated interface between machines
(including supporting technologies). (See also computational data-(-control
requirements, shared data initialisation requirements, shared data refresh­
ment requirements, man-machine dialogue requirements, and man-machine
physiological requirements.)

424. Machine requirements: By machine requirements we understand re­
quirements put specifically to, i.e., expected specifically from, the ma­
chine. (We normally analyse machine requirements into performance re-

B.3 The Glosses 611

quirements, dependability requirements, maintenance requirements, platform
requirements and documentation requirements.)

425. Machine service: The service delivered by a machine is its behaviour as
it is perceptible by its user(s), where a user is a human, another machine,
or a(nother) system which interacts with it [432].

426. Macro: Macros have the same syntax as procedures, that is, a pair of a
signature (i.e., a macro name followed by a formal argument list of dis­
tinct identifiers (i.e., the formal parameters)) and a macro body, a text.
Syntactically we can distinguish between macro definitions and macro
invocations. Semantically, invocations, in some text, of the macro name
and an actual argument list are then to be thought of as an expansion
of that part of the text with the macro (definition) body and such that
formal parameters are replaced (macro substitution) by actual arguments.
Semantically a macro is different from a procedure in that a macro expan­
sion takes place in a context, i.e., an environment, where free identifiers
of the macro body are replaced by their value as defined at the place of
the occurrence of the macro invocation. Whereas, for a procedure, the
free identifiers of a procedure body are bound to their value at the point
where the procedure was defined. (Thus the difference between a macro
and a procedure is the difference between evaluation in a calling, versus in
a defining environment.)

427. Macro substitution: See under macros.
428. Maintenance: By maintenance we shall here, for software, mean change

to software, i.e., its various documents, due to needs for (i) adapting that
software to new platforms, (ii) correcting that software due to observed
software errors, (iii) improving certain performance properties of the ma­
chine of which the software is part, or (iv) avoiding potential problems
with that machine. (We refer to subcategories of maintenance: adaptive
maintenance, corrective maintenance, perfective maintenance and preventive
maintenance.)

429. Maintenance requirements: By maintenance requirements we under­
stand requirements which express expectations on how the machine being
desired (i.e., required) is expected to be maintained. (We also refer to
adaptive maintenance, corrective maintenance, perfective maintenance and
preventive maintenance.)

430. Management and organisation: By management and organisation we
mean those facets of a domain which are representative of relations be­
tween the various management levels of an enterprise, and between these
and non-management staff, i.e., "blue-collar" workers. (As such, manage­
ment and organisation is about formulating strategical, tactical and oper­
ational goals for the enterprise, of communicating and "translating" these
goals into action to be done by management and staff, in general, and
to "backstop" when "things do not 'work out '", i.e., handling complaints
from "above" and "below". Other facets of an enterprise are those of its

612 B Glossary

intrinsics, business processes, support technology, rules and regulations and
human behaviour.)

431. Man-machine dialogue: By man-machinedialogues we understand ac­
tual instantiations of user interactions with machines, and machine in­
teractions with users: what input the users provide, what output the
machine initiates, the interdependencies of these inputs/outputs, their
temporal and spatial constraints, including response times, input/output
media (locations), etc. (

432. Man-machine dialogue requirements: By man-machine dialogue re­
quirements we understand those interface requirements which express ex­
pectations on, i.e., mandates the protocol according to which users are
to interact with the machine, and the machine with the users. (See
man-machine dialogue. For other interface requirements see computational
data-hcontrol requirements, shared data initialisation requirements, shared
data refreshment requirements, man-machine physiological requirements and
machine-machine dialogue requirements.))

433. Man-machine physiological requirements: By man-machine physi­
ological requirements we understand those interface requirements which
express expectations on, i.e., mandates, the form and appearance of ways
in which the man-machine dialogue utilises such physiological devices as vi­
sual display screens, keyboards, "mouses" (and other tactile instruments),
audio microphones and loudspeakers, television cameras, etc. (See also
computational data-hcontrol requirements, shared data initialisation require­
ments, shared data refreshment requirements, man-machine dialogue require­
ments and machine-machine dialogue requirements.)

434. Map: A map is like a function, but is here thought of as an enumerable
set of pairs of argument /result values. (Thus the definition set of a map is
usually decidable, i.e., whether an entity is a member of a definition set
of a map or not can usually be decided.)

435. Mechanical semantics: By a mechanical semantics we understand the
same as an operational semantics (which is again basically the same as a
computational semantics), i.e., a semantics of a language specified using
concrete constructs (like stacks, program pointers, etc.), and otherwise as
defined in operational semantics and computational semantics.

436. Mereology: The theory of parthood relations: of the relations of part to
whole and the relations of part to part within a whole. (Mereology is often
considered a branch of ontology. Leading investigators of mereology were
Franz Brentano, Edmund Husserl, Stanislaw Lesniewski [355,383,473,479,
480,493] and Leonard and Goodman [345].)

437. Meta-IV: Met a-IV stands for the fourth metalanguage (for programing
language definition conceived at the IBM Vienna Laboratory in the 1960s
and 1970s). (Meta-IV is pronounced meta-four.)

438. Metalanguage: By a metalanguage is understood a language which is
used to explain another language, either its syntax, or its semantics, or its
pragmatics, or two or all of these! (One cannot explain any language using

B.3 The Glosses 613

itself. That would lead to any interpretation of what is explained being
a valid solution, in other words: Nonsense. RSL thus cannot be used to
explain RSL. Typically formal specification languages are metalanguages:
being used to explain, for example, the semantics of ordinary programming
languages.)

439. Metalinguistic: We say that a language is used in a metalinguistic man­
ner when it is being deployed to explain some other language. (And we
also say that when we examine a language, like we could, for example,
examine RSL, and when we use a subset of RSL to make that analysis,
then that subset of RSL is used metalinguistically (wrt. all of RSL).)

440. Metaphysics: We quote from: http://mally.stanford.edu/: "Whereas
physics is the attempt to discover the laws that govern fundamental con­
crete objects, metaphysics is the attempt to discover the laws that system­
atize the fundamental abstract objects presupposed by physical science,
such as natural numbers, real numbers, functions, sets and properties,
physically possible objects and events, to name just a few. The goal of
metaphysics, therefore, is to develop a formal ontology, i.e., a formally
precise systematization of these abstract objects. Such a theory will be
compatible with the world view of natural science if the abstract objects
postulated by the theory are conceived as patterns of the natural world."
(Metaphysics may, to other scientists and philosophers, mean more or
other, but for software engineering the characterisation just given suf­
fices.)

441. Method: By a method we shall here understand a set of principles for
selecting and using a number of techniques and tools in order to construct
some artefact. (This is our leading definition — one that sets out our
methodological quest: to identify, enumerate and explain the principles,
the techniques and, in cases, the tools — notably where the latter are
specification and programming languages. (Yes, languages are tools.))

442. Methodology: By methodology we understand the study and knowledge
of methods, one, but usually two or more. (In some dialects of English,
methodology is confused with method.)

443. Mixed computation: By a mixed computation we understand the same
as by a partial evaluation. (The term mixed computation was used notably
by Andrei Petrovich Ershov [214-221], in my mind the "father" of Russian
computing science.)

444. Modal logic: A modal is an expression (like "necessarily" or "possibly")
that is used to qualify the truth of a judgment. Modal logic is, strictly
speaking, the study of the deductive behavior of the expressions "it is
necessary that" and "it is possible that". (The term "modal logic" may be
used more broadly for a family of related systems. These include logics for
belief, for tense and other temporal expressions, for the deontic (moral)
expressions such as "it is obligatory that", "it is permitted that" and
many others. An understanding of modal logic is particularly valuable
in the formal analysis of philosophical argument, where expressions from

614 B Glossary

the modal family are both common and confusing. Modal logic also has
important applications in computer science [536].)

445. Model: A model is the mathematical meaning of a description (of a do­
main), or a prescription (of requirements), or a specification (of software),
i.e., is the meaning of a specification of some universe of discourse. (The
meaning can be understood either as a mathematical function, as for a
denotational semantics meaning, or an algebra as for an algebraic semantics
or a denotational semantics meaning, etc. The essence is that the model is
some mathematical structure.)

446. Model-oriented: A specification (description, prescription) is said to be
model-oriented if the specification (etc.) denotes a model. (Contrast to
property-oriented.)

447. Model-oriented type: A type is said to be model-oriented if its specifi­
cation designates a model. (Contrast to property-oriented type.)

448. Modularisation: The act of structuring a text using modules.
449. Module: By a module we shall understand a clearly delineated text which

denotes either a single complex quantity, as does, usually, an object, or a
possibly empty, possibly infinite set of models of objects. (The RSL module
concept is manifested in the use of one or more of the RSL class (class ...
end), object (object identifier class ... end, etc.), and scheme (scheme
identifier class ... end), etc., constructs. We refer to [54,169,170] and
to [413,414] for original, early papers on modules.)

450. Module design: By module design we shall understand the design of
(one or more) modules.

451. Monitor: Syntactically a monitor is "a programming language construct
which encapsulates variables, access procedures and initialisation code
within an abstract data type. The monitor's variable may only be accessed
via its access procedures and only one process may be actively accessing
the monitor at any one time. The access procedures are critical sections."
Semantically "a monitor may have a queue of processes which are waiting
to access it" [227].

452. Monomorphism: If a homomorphism <fi is an injective function then 0 is
an isomorphism. (See also automorphism, endomorphism, epimorphism, and
monomorphism.)

453. Monotonic: A function, / : A —> B, is monotonic, if for all a, a1 in the
definition set A of / , and some ordering relations, E, on a and B, we have
that if a E a1 then f(a) E f(af).

454. Mood: A conscious state of mind, as here, of a specification. (We can
thus express an indicative mood, an optative mood, a putative mood or
an imperative mood. Our use of these various forms of moods is due to
Michael Jackson [308].)

455. Morphism: Same as homomorphism.
456. Morphology: (i) A study and description of word formation (as inflec­

tion, derivation, and compounding) in language; (ii) the system of word-

B.3 The Glosses 615

forming elements and processes in a language; (iii) a study of structure or
form [373].

457. Multi-dimensional: A composite (i.e., a nonatomic) entity is a multi­
dimensional entity if some relations between properly contained (i.e., con­
stituent) subentities (cf. subentity) can only be described by both forward
and backward references, and/or with recursive references. (This is in con­
trast to one-dimensional entities.)

458. Multimedia: The use of various forms of input/output media in the man-
machine interface: Text, two-dimensional graphics, voice (audio), video,
and tactile instruments (like "mouse").

M

459. Name: A name is syntactically (generally an expression, but usually it
is) a simple alphanumeric identifier. Semantically a name denotes (i.e.,
designates) "something". Pragmatically a name is used to uniquely iden­
tify that "something". (Shakespeare: Romeo: "What's in a name?" Juliet
to Romeo: "That which we call a rose by any other name would smell as
sweet.")

460. Naming: The action of allocating a unique name to a value.
461. Narrative: By a narrative we shall understand a document text which, in

precise, unambiguous language, introduces and describes (prescribes, spec­
ifies) all relevant properties of entities, functions, events and behaviours,
of a set of phenomena and concepts, in such a way that two or more
readers will basically obtain the same idea as to what is being described
(prescribed, specified). (More commonly: Something that is narrated, a
story.)

462. Natural language: By a natural language we shall understand a lan­
guage like Arabic, Chinese, English, French, Russian, Spanish, etc. — one
that is spoken today, 2005, by people, has a body of literature, etc. (In
contrast to natural languages we have (i) professional languages, like the
languages of medical doctors, or lawyers, or skilled craftsmen like car­
penters, etc.; and we have (ii) formal languages like software specification
languages, programming languages, and the languages of first-order pred­
icate logics, etc.)

463. Network: By a network we shall understand the same as a directed, but
not necessarily acyclic graph. (Our only use of it here is in connection with
network databases.)

464. Node: A point in some graph or tree.
465. Nondeterminate: Same as nondeterministic.
466. Nondeterministic: A property of a specification: May, on purpose, i.e.,

deliberately have more than one meaning. (A specification which is am­
biguous also has more than one meaning, but its ambiguity is of overriding
concern: It is not 'nondeterministic' (and certainly not 'deterministic'!).)

616 B Glossary

467. Nondeterminism: A nondeterministic specification models nondetermin-
ism.

468. Nonstrict: Nonstrictness is a property associated with functions. A func­
tion is nonstrict, in certain or all arguments, if, for undefined values of
these it may still yield a defined value. (See also strict functions.)

469. Nonterminal: The concept of a nonterminal (together with the concept
of a terminal) is a concept associated with the rule of grammars. (See that
term: rule of grammar for a full explanation.)

470. Notation: By a notation we shall usually understand a reasonably pre­
cisely delineated language. (Some notations are textual, as are program­
ming notations or specification languages; some are diagrammatic, as are,
for example, Petri nets, statecharts, live sequence charts, etc.)

471. Noun: Something, a name, that refers to an entity, a quality, a state, an
action, or a concept. Something that may serve as the subject of a verb.
(But beware: In English many nouns can be "verbed", and many verbs
can be "nouned"!)

O

472. Object: An instance of the data structure and behaviour defined by the
object's class. Each object has its own values for the instance variables of
its class and can respond to the functions defined by its class. (Various
specification languages, object Z [144,199,200], RSL, etc., each have their
own, further refined, meaning for the term 'object', and so do object-
oriented programming language (viz., C++ [489], Java [10,20,243,348,470,
511], C# [277,381,382,422] and so on).)

473. Object-oriented: We say that a program is object-oriented if its main
structure is determined by a modularisation into a class, that is, a cluster of
types, variables and procedures, each such set acting as a separate abstract
data type. Similarly we say that a programming language is object-oriented
if it specifically offers language constructs to express the appropriate mod­
ularisation. (Object-orientedness became a mantra of the 1990s: Every­
thing had to be object-oriented. And many programming problems are
indeed well served by being structured around some object-oriented no­
tion. The first object-oriented programming language was Simula 67 [54].)

474. Observer: By an observer we mean basically the same as an observer
function.

475. Observer function: An observer function is a function which when "ap­
plied" to an entity (a phenomenon or a concept) yields subentities or at­
tributes of that entity (without "destroying" that entity). (Thus we do
not make a distinction between functions that observe subentities (cf.
subentity) and functions that observe attributes. You may wish to make
distinctions between the two kinds of observer function. You can do so
by some simple naming convention: assign names the prefix obs_ when

B.3 The Glosses 617

you mean to observe subentities, and attr_ when you mean to observe
attributes. Vol. 3 Chap. 5 introduces these concepts.)

476. One-dimensional: A composite entity is a one-dimensional entity if all
relations between properly contained (i.e., constituent) subentities can be
described by either no references to other subentities, or only by backward
or only by forward references. (This is in contrast to multi-dimensional
entities. Thus arrays of arbitrary order (vectors, matrices, tensors) are
usually one-dimensional.)

477. Ontology: In philosophy: A systematic account of Existence. To us: An
explicit formal specification of how to represent the phenomena, concepts
and other entities that are assumed to exist in some area of interest (some
universe of discourse) and the relationships that hold among them. (Fur­
ther clarification: An ontology is a catalogue of concepts and their rela­
tionships — including properties as relationships to other concepts. See
Sect. B.1.4.)

478. Operation: By an operation we shall mean a function, or an action (i.e.,
the effect of function invocation). (The context determines which of these
two strongly related meanings are being referred to.)

479. Operational: We say that a specification (a description, a prescription),
say of a function, is operational if what it explains is explained in terms of
how that thing, how that phenomenon, or concept, operates (rather than
by what it achieves). (Usually operational definitions are model oriented
(in contrast to property oriented).)

480. Operational abstraction: Although a definition (a specification, a de­
scription, or a prescription) may be said, or claimed, to be operational, it
may still provide abstraction in that the model-oriented concepts of the
definition are not themselves directly representable or performable by hu­
mans or computers. (This is in contrast to denotational abstractions or
algebraic (or axiomatic) abstractions.)

481. Operational semantics: A definition of a language semantics that is
operational. (See also structural operational semantics.)

482. Operation reification: To speak of operation reification one must first
be able to refer to an abstract, usually property-oriented, specification of
the operation. Then, by operation reification we mean a specification which
indicates how the operation might be (possibly efficiently) implemented.
(Cf. data reification and operation transformation.)

483. Operation transformation: To speak of operation reification one must
first be able to refer to an abstract, usually property-oriented, specification
of the operation. Then, by operation transformation we mean a specification
which is, somehow, calculated from the abstract specification. (Three nice
books on such calculi are: [21,50,390].)

484. Optative: Expressive of wish or desire. (See also imperative, indicative,
and putative.)

485. Organisation: By organisation we shall here, in a narrow sense, only
mean the administrative or functional structure of an enterprise, a pub-

618 B Glossary

lie or private administration, or of a set of services, as for example in a
consumer/retailer/wholesaler/producer/distributor market, or in a finan­
cial services industry, etc.

486. Organisation and management: The composite term organisation and
management applies in connection with organisations as outlined just
above. The term then emphasises the relations between the organisation
and its management. (For more, see management and organisation.)

487. Output: By output we mean the communication of information (data) to
an outside, an environment, from a phenomenon "within" our universe of
discourse. (More colloquially, and more generally: output can be thought
of as value(s) transferred over channels) from, or between, processes. Cf.
input. In a narrow sense we talk of output from a machine (e.g., a finite
state machine or a pushdown machine).)

488. Output alphabet: The set of symbols output from a machine in the
sense of, for example, a finite state machine or a pushdown machine.

489. Overloaded: The concept of 'overloaded' is a concept related to function
symbols, i.e., function names. A function name is said to be overloaded
if there exists two or more distinct signatures for that function name.
(Typically overloaded function symbols are '+ ' , which applies, possibly,
in some notation, to addition of integers, addition of reals, etc., and '= ' ,
which applies, possibly, in some notation, to comparison of any pair of
values of the same type.)

V

490. Paradigm: A philosophical and theoretical framework of a scientific
school or discipline within which theories, laws and generalizations and
the experiments performed in support of them are formulated; a philo­
sophical or theoretical framework of any kind. (Software engineering is
full of paradigms: Object-orientedness is one.)

491. Paradox: A statement that is seemingly contradictory or opposed to
common sense and yet is perhaps true. An apparently sound argument
leading to a contradiction. (Some famous examples are Russell's Paradox3

and the Liar Paradox.4 Most paradoxes stem from some kind of self-
reference.)

492. Parallel programming language: A programming language whose ma­
jor kinds of concepts are processes, process composition [putting processes
in parallel and nondeterministic {internal or external} choice of process
elaboration], and synchronisation and communication between processes.
(A main example of a practical parallel programming language is occam
[301], and of a specificational 'programming' language is CSP [288,448,456].

3If R is the set of all sets which do not contain themselves, does R contain itself?
If it does then it doesn't and vice versa.

4 "This sentence is false" or "I am lying".

B.3 The Glosses 619

Most recent imperative programming languages (Java, C# , etc.) provide for
programming constructs (e.g., threads) that somehow mimic parallel pro­
gramming.)

493. Parameter: Same as formal parameter.
494. Parametric polymorphism: See the parenthesised part of the polymor­

phic entry.
495. Parameterised: We say that a definition, of a class (or of a function) is

parameterised if an instantiation of an object of the class (respectively an
invocation of the function) allows an actual argument to be substituted (cf.
substitution) into the class definition (function body) for every occurrence
of the [formal] parameter.

496. Parser: A parser is an algorithm, say embodied as a software program,
which accepts text strings, and, if the text string is generated by a suitable
grammar, then it will yield a parse tree of that string. (See generator.)

497. Parse tree: To speak of a parse tree we assume the presence of a string
of terminals and nonterminals, and of a grammar. A parse tree is a tree
such that each subtree (of a root and its immediate descendants, whether
terminals or nonterminals) corresponds to a rule of the grammar, and hence
such that the frontier of the tree is the given string.

498. Parsing: The act of attempting to construct a parse tree from a grammar
and a text string.

499. Part: To speak of parts we must be able to speak of "parts and wholes".
That is: We assume some mereology, i.e., a theory of parthood relations:
of the relations of part to whole and the relations of part to part within
a whole.

500. Partial algebra: A partial algebra is an algebra whose functions are not
defined for all combinations of arguments over the carrier.

501. Partial evaluation: To speak of partial evaluation we must first speak
of evaluation. Normally evaluation is a process, as well as the result of
that process, whereby an expression in some language is evaluated in some
context which binds every free identifier of the expression to some value. A
partial evaluation is an evaluation in whose context not all free identifiers
are bound to (hence, defined) values. The result of a partial evaluation
is therefore a symbolic evaluation, one in which the resulting value is
expressed in terms of actual values and the undefined free identifiers. (We
refer to [115,320].)

502. Path: The concept of paths is usually associated with graphs and trees
(i.e., networks). A path is then a sequence of one or more graph edges or
tree branches such that two consecutive edges (branches) share a node of
the graph (or [root] of a tree). (We shall also use the term route synony­
mously with paths.)

503. Pattern: We shall take a pattern, p, (as in RSL) to mean an expres­
sion with identifiers, a, and constants, k, as follows. Basis clauses: Any
identifier a is a pattern, and any constant, fc, is a pattern. Induc­
tive clause: If pi,p2,... ,pm are patterns, then so are (pi,P2, • • • ,Pm),

620 B Glossary

< P l , P 2 , . . . , P m > , {PuP2,'-.,Pm},\Pdi *~> Pr^Pd^Pr^ • •• ,Pdm • " • P r J ,
and so are: (p)^a, a^(p), {p} U a, and [p^ 4 p r i] U o . (The idea is that a
pattern, p, is "held up against" a value, v, "of the same kind" and then
we attempt to "match" the pattern, p, with the value, v, and if a match­
ing can be made, then the free identifiers of p are bound to respective
component values of v.)

504. Perfective maintenance: By perfective maintenance we mean an up­
date, as here, of software, to achieve a more desirable use of resources:
time, storage space, equipment. (We also refer to adaptive maintenance,
corrective maintenance and preventive maintenance.)

505. Performance: By performance we, here, in the context of computing,
mean quantitative figures for the use of computing resources: time, storage
space, equipment.

506. Performance requirements: By performance requirements we mean
requirements which express performance properties (desiderata).

507. Petri net: The Petri net language is a special graphic notation for ex­
pressing concurrency of actions, and simultaneity of events, of processes.
(See [313,421,435-437].)

508. Phase: By a phase we shall here, in the context of software development,
understand either the domain development phase, the requirements devel­
opment phase, or the software design phase.

509. Phenomenon: By a phenomenon we shall mean a physically manifest
"thing". (Something that can be sensed by humans (seen, heard, touched,
smelled or tasted), or can be measured by physical apparatus: Electric­
ity (voltage, current, etc.), mechanics (length, time and hence velocity,
acceleration, etc.), chemistry, etc.)

510. Phenomenology: Phenomenology is the study of structures of conscious­
ness as experienced from the first-person point of view [536].

511. Platform: By a platform, we shall, in the context of computing, un­
derstand a machine: Some computer (i.e., hardware) equipment and some
software systems. (Typical examples of platforms are: Microsoft Windows
running on an IBM ThinkPad Ser ies T model, or Trusted So la r i s op­
erating system with an Oracle Database 10g running on a Sun F i re E25K
Server .)

512. Platform requirements: By platform requirements we mean require­
ments which express platform properties (desiderata). (There can be sev­
eral platform requirements: One set for the platform on which software
shall be developed. Another set for the platform(s) on which software
shall be utilised. A third set for the platform on which software shall be
demonstrated. And a fourth set for the platform on which software shall
be maintained. These platforms need not always be the same.)

513. Pointer: A pointer is the same as an address, a link, or a reference: some­
thing which refers to, i.e., designates something (typically something else).

514. Polymorphic: Polymorphy is a concept associated with functions and
the type of the values to which the function applies. If, as for the length

B.3 The Glosses 621

of a list function, len, that function applies to lists of elements of any type,
then we say the length function is polymorphic. So, in general, the ability
to appear in many forms; the quality or state of being able to assume
different forms. From Wikipedia, the Free Enclycopedia [519]:

In computer science, polymorphism is the idea of allowing the
same code to be used with different types, resulting in more gen­
eral and abstract implementations. The concept of polymorphism
applies to functions as well as types: A function that can evalu­
ate to and be applied to values of different types is known as a
polymorphic function. A data type that contains elements of an
unspecified type is known as a polymorphic data type. There are
two fundamentally different kinds of polymorphism: If the range
of actual types that can be used is finite and the combinations
must be specified individually prior to use, it is called ad hoc
polymorphism. If all code is written without mention of any spe­
cific type and thus can be used transparently with any number
of new types, it is called parametric polymorphism. Programming
using the latter kind is called generic programming, particularly in
the object-oriented community. However, in many statically typed
functional programming languages the notion of parametric poly­
morphism is so deeply ingrained that most programmers simply
take it for granted.

515. Portability: Portability is a concept associated with software, more
specifically with the programs (or data). Software is (or files, including
data base records, are) said to be portable if it (they), with ease, can be
"ported" to, i.e., made to "run" on, a new platform and/or compile with
a different compiler, respectively different database management system.

516. Post-condition: The concept of post-condition is associated with func­
tion application. The post-condition of a function / is a predicate p0f

which expresses the relation between argument a and result r values that
the function / defines. If a represent argument values, r corresponding
result values and / the function, then f(a) — r can be expressed by the
post-condition predicate p0f, namely, for all applicable a and r the pred­
icate p0f expresses the truth of p0 /(a, r). (See also pre-condition.)

517. Postfix: The concept of postfix is basically a syntactic one, and is asso­
ciated with operator /operand expressions. It is one about the displayed
position of a unary (i.e., a monadic) operator with respect to its operand
(expression). An expression is said to be in postfix form if a monadic
operator is shown, is displayed, after the expression to which it applies.
(Typically the factorial operator, say !, is shown after its operand expres­
sion, viz. 7!.)

518. Post-order: A special order of tree traversal in which visits are made to
nodes of trees and subtrees as follows: First, for each subtree, a subtree
post-order traversal is made, in the order left to right (or right to left).
When a tree, whose number of subtrees is zero, is post-order traversed,

622 B Glossary

then just that tree's root is visited (and that tree has then been post-order
traversed) and (the leaf) is "marked" as having been post-order visited.
After each subtree visit the root of the tree of which the subtree is a
subtree is revisited and now it is "marked" as having been visited. (Cf.
Fig. B.4 on page 644: A left to right post-order traversal of that tree yields

Fig. B.2. A left to right post-order tree traversal

the following sequence of "markings": CQXFLUJMZKA; cf. also Fig. B.2).
519. Pragmat ics : Pragmatics is the (i) study and (ii) practice of the factors

that govern our choice of language in social interaction and the effects
of our choice on others. (We use the term pragmatics in connection with
the use of language, as complemented by the semantics and syntax of
language.)

520. Pre-condit ion: The concept of pre-condition is associated with function
application where the function being applied is a partial function. That
is: for some arguments of its definition set the function yields chaos,
that is, does not terminate. The pre-consition of the function is then a
predicate which expresses those values of the arguments for which the
function application terminates, that is, yields a result value. (See weakest
pre-condition.)

521. Predica te : A predicate is a truth-valued expression involving terms over
arbitrary values, well-formed formula relating terms and with Boolean
connectives and quantifiers.

522. Predica te logic: A predicate logic is a language of predicates (given by
some formal syntax) and a proof system.

523. Pre-order : A special order of tree traversal in which visits are made to
nodes of trees and subtrees as follows: First to the root of the tree with
that root now being "marked" as having been pre-order visited. Then for
each subtree a subtree pre-order traversal is made, in the order left to
right (or right to left). When a tree, whose number of subtrees is zero, is
pre-order traversed, then just that tree's root is visited (and that tree has
then been pre-order traversed) and the leaf is then "marked" as having

B.3 The Glosses 623

been pre-order visited. (Cf. Fig. B.4 on page 644: A right-to-left pre-

Fig. B.3. A right-to-left pre-order tree traversal

order traversal of that tree yields the following sequence of "markings":
AKZMJULFXQC. Cf. also Fig. B.3).

524. Presentation: By presentation we mean the syntactic documentation of
the results of some development.

525. Prescription: A prescription is a specification which prescribes some­
thing designatable, i.e., which states what shall be achieved. (Usually the
term 'prescription' is used only in connection with requirements prescrip­
tions.)

526. Preventive maintenance: By preventive maintenance — of a machine
— we mean that a set of special tests are performed on that machine
in order to ascertain whether the machine needs adaptive maintenance,
and/or corrective maintenance, and/or perfective maintenance. (If so, then
an update, as here, of software, has to be made in order to achieve suitable
integrity or robustness of the machine.)

527. Principle: An accepted or professed rule of action or conduct, . . . , a
fundamental doctrine, right rules of conduct, . . . [484]. (The concept of
principle, as we bring it forth, relates strongly to that of method. The
concept of principle is "fluid". Usually, by a method, some people under­
stand an orderliness. Our definition puts the orderliness as part of overall
principles. Also, one usually expects analysis and construction to be effi­
cient and to result in efficient artifacts. Also this we relegate to be implied
by some principles, techniques and tools.)

528. Procedure: By a procedure we mean the same as a function. (Same as
routine or subroutine.)

529. Process: By a process we understand a sequence of actions and events.
The events designate interaction with some environment of the process.

530. Program: A program, in some programming language, is a formal text
which can be subject to interpretation by a computer. (Sometimes we use

624 B Glossary

the term code instead of program, namely when the program is expressed
in the machine language of a computer.)

531. Programmable: An active dynamic phenomenon has the programmable
(active dynamic) attribute if its actions (hence state changes) over a future
time interval can be accurately prescribed. (Cf. autonomous and biddable.)

532. Programmer: A person who does software design.
533. Program point: By a program point we shall here understand any point

in a program text (whether of an applicative programming language (i.e.,
functional programming language), an imperative programming language,
or a logic programming language) between any two textually neighbouring
tokens. (The idea of a program point is the following: Assume an interpreter
of programs of the designated kind. Such an interpreter, at any step of its
interpretation process, can be thought of as interpreting a special token, or
a sequence of neighbouring tokens, in both cases: "between two program
points".)

534. Program organisation: By program organisation we loosely mean how
a program (i.e., its text) is structured into, for example, modules (eg.,
classes), procedures, etc.

535. Programming: The act of constructing programs. From [227]:
1: The art of debugging a blank sheet of paper (or, in these days
of on-line editing, the art of debugging an empty file). 2: A pas­
time similar to banging one's head against a wall, but with fewer
opportunities for reward. 3: The most fun you can have with your
clothes on (although clothes are not mandatory).

536. Programming language: A language for expressing programs, i.e., a
language with a precise syntax, a semantics and some textbooks which
provides remnants of the pragmatics that was originally intended for that
programming language. (See next entry: programming language type.)

537. Programming language type: With a programming language one can
associate a type. Typically the name of that type intends to reveal the
type of a main paradigm, or a main data type of the language. (Examples
are: functional programming language (major data type is functions, major
operations are definition of functions, application of functions and com­
position of functions), logic programming language (major kinds of expres­
sions are ground terms in a Boolean algebra, propositions and predicates),
imperative programming language (major kinds of language constructs are
declaration of assignable variables, and assignment to variables, and a
more or less indispensable kind of data type is references [locations, ad­
dresses, pointers]), and parallel programming language.)

538. Projection: By projection we shall here, in a somewhat narrow sense,
mean a technique that applies to domain descriptions and yields require­
ments prescriptions. Basically projection "reduces" a domain description
by "removing" (or, but rarely, hiding) entities, functions, events and be­
haviours from the domain description. (If the domain description is an
informal one, say in English, it may have expressed that certain enti-

B.3 The Glosses 625

ties, functions, events and behaviours might be in (some instantiations
of) the domain. If not "projected away" the similar, i.e., informal require­
ments prescription will express that these entities, functions, events and
behaviours shall be in the domain and hence will be in the environment
of the machine being requirements prescribed.)

539. Proof: A proof of a theorem, 0, from a set, r, of sentences of some formal
propositions! or predicate language, £, is a finite sequence of sentences, fa,
fa, ...,<f>n, where cf> = fa, where cf)n = true, and in which each fa is either
an axiom of C, or a member of r, or follows from earlier 4>j 's by an inference
rule of C.

540. Proof obligation: A clause of a program may only be (dynamically) well-
defined if the values of clause parts lie in certain ranges (viz. no division by
zero). We say that such clauses raise proof obligations, i.e., an obligation
to prove a property. (Classically it may not be statically (i.e., compile
time) checkable that certain expression values lie within certain subtypes.
Discharging a proof may help ensure such constraints.)

541. Proof rule: Same as inference rule or axiom.
542. Proof system: A consistent and (relative) complete set of proof rules.
543. Property: A quality belonging and especially peculiar to an individual

or thing; an attribute common to all members of a class. (Hence: "Not a
property owned by someone, but a property possessed by something".)

544. Property-oriented: A specification (description, prescription) is said to
be property-oriented if the specification (etc.) expresses attributes. (Con­
trast to model oriented.)

545. Proposition: An expression in language which has a truth value.
546. Protocol: A set of formal rules describing how to exchange messages, be­

tween a human user and a machine, or, more classically, across a network.
(Low-level protocols define the electrical and physical standards to be ob­
served, bit and byte ordering, and the transmission and error detection
and correction of the bit stream. High-level protocols deal with the data
formatting, including the syntax of messages, the terminal-to-computer
dialogue, character sets, sequencing of messages, etc.)

547. Pure functional programming language: A functional programming
language is said to be pure if none of its constructs designates side-effects.

548. Pushdown stack: A pushdown stack is a simple stack. (Usually a simple
stack has just the following operations: push an element onto the stack,
pop the top element from the stack, and observe the top element of the
stack.)

549. Pushdown automaton: A pushdown automaton is an automaton with
the addition of a pushdown stack such that (i) the pushdown automaton
input is provided both from an environment external to the pushdown
automaton and from the top of the pushdown stack, (ii) the pushdown
automaton output is provided to the pushdown stack by being pushed onto
the top of that stack, and (iii) such that the pushdown automaton may

626 B Glossary

direct an element to be popped from the pushdown stack. (The pushdown
automaton still has the notion of the final states of the automaton.)

550. Pushdown machine: A pushdown (stack) machine is like a pushdown au­
tomaton with the addition that now the pushdown machine also provides
output to the environment of the pushdown machine.

551. Putative: Commonly accepted or supposed, that is, assumed to exist or
to have existed. (See also imperative, indicative and optative.)

Q

552. Quality: Specific and essential character. (Quality is an attribute, a prop­
erty, a characteristic (something has character).)

553. Quantification: The operation of quantifying. (See quantifier. The x (the
y) is quantifying expression VxiX-P(x) (respectively 3y:Y-Q(y)).)

554. Quantifier: A marker that quantifies. It is a prefixed operator that binds
the variables in a logical formula by specifying their possible range of
values. (Colloquially we speak of the universal and the existential quan­
tifiers, V, respectively 3. Typically a quantified expression is then of either
of the forms \tx:X-P(x) and 3y:Y-Q(y). They 'read': For all quantities x
of type X it is the case that the predicate P(x) holds; respectively: There
exists a quantity y of type Y such that the predicate Q(y) holds.)

555. Quantity: An indefinite value. (See the quantifier entry: The quantities
in P(x) (respectively Q(y)) are of type X (respectively Y). y is indefinite
in that it is one of the quantities of Y, but which one is not said.)

556. Query: A request for information, generally as a formal request to a
database.

557. Query language: A formal language for expressing queries (cf. query).
(The most well-known query language, today, 2005, is SQL [178].)

558. Queue: A queue is an abstract data type with a queue data structure
and, typically, the following operations: enqueue (insert into one end of
the queue), dequeue (remove from the other end of the queue). Axioms
then determine specific queue properties. (See Example 8.6.)

n
559. Radix: In a positional representation of numbers, that integer by which

the significance of one digit place must be multiplied to give the signifi­
cance of the next higher digit place. (Conventional decimal numbers are
radix ten, binary numbers are radix two.)

560. RAISE: RAISE stands for Rigorous Approach to Industrial Software
Engineering. (RAISE refers to a method, The RAISE Method [238], a spec­
ification language, RSL [236], and "comes" with a set of tools. For more
on RSL we refer to Part III of this volume.)

561. Range: The concept of range is here used in connection with functions.
Same as range set. See next entry.

B.3 The Glosses 627

562. Range set: Given a function, its range set is that set of values which is
yielded when the function is applied to each member of its definition set.

563. Reactive: A phenomenon is said to be reactive if the phenomenon per­
forms actions in response to external stimuli. Thus three properties must
be satisfied for a system to be of reactive dynamic attribute: (i) An inter­
face must be definable in terms of (ii) provision of input stimuli and (iii)
observation of (state) reaction. (Contrast to inert and active.)

564. Reactive system: A system whose main phenomena are chiefly reactive.
(See the reactive entry just above.)

565. Real time: We say that a phenomenon is real time if its behaviour some­
how must guarantee a response to an external event within a given time.
(Cf. hard real time and soft real time.)

566. Reasoning: Reasoning is the ability to infer, i.e., to make deductions or
inductions. (Automated reasoning is concerned with the building and use
of computing systems that automate this process. The overall goal is to
mechanise different forms of reasoning.)

567. Recogniser: A recogniser is an algorithm which can decide whether a
string can be generated by a given grammar of a language. (Typically a
recogniser can be abstractly formulated as a finite state automaton for a
regular language, and as a pushdown automaton for a context-free language.)

568. Recognition rule: A recognition rule is a text which describes some
phenomenon, that is, a possibly singleton class of such (i.e., their embodied
concept, i.e., type), such that it is uniquely decidable, by a human, whether
a phenomenon satisfies the rule or not, i.e., is a member of the class, or
not. (The recognition rule concept used here is due to Michael A. Jackson
[308].)

569. Recursion: Recursion is a concept associated both with the function def­
initions and with data type definitions. A function definition [a data type]
is said to possess recursion if it is defined in terms of itself. (Cf. with the
slightly different concept of recursive.)

570. Recursive: Recursive is a concept associated with functions. A function
is said to be recursive if, in the course of the evaluation of an invocation
of the function, that function is repeatedly invoked. (Cf. with the slightly
different concept of recursion.)

571. Reengineering: By reengineering we shall, in a narrow sense, only con­
sider the reengineering of business processes. Thus, to us, reengineering
is the same as business process reengineering. (Reengineering is also used
in the wider sense of a major change to some already existing engineering
artefact.)

572. Reference: A reference is the same as an address, a link, or a pointer:
something which refers to, i.e., designates something (typically something
else).

573. Referential transparency: A concept which is associated with certain
kinds of programming or specification language constructs, namely those

628 B Glossary

whose interpretation does not entail side effects. (A pure functional pro­
gramming language is said to be referentially transparent.)

574. Refinement: Refinement is a relation between two specifications: One
specification, D, is said to be a refinement of another specification, 5,
if all the properties that can be observed of S can be observed in D.
Usually this is expressed as D E S. (Set-theoretically it works the other
way around: in D D 5, D allows behaviours not accounted for in S.)

575. Refutable assertion: A refutable assertion is an assertion that might
be refuted (i.e., convincingly shown to be false). (Einstein's theory of
relativity, in a sense, refuted Newton's laws of mechanics. Both theories
amount to assertions.)

576. Refutation: A refutation is a statement that (convincingly) refutes an
assertion. (Lakatos [330] drew a distinction between refutation (evidence
that counts against a theory) and rejection (deciding that the original
theory has to be replaced by another theory). We can still use Newton's
theory provided we stay within certain boundaries, within which that
theory is much easier to handle than Einstein's theory.)

577. Regular expression: To introduce the notion of regular expression we
assume an alphabet, A, say finite. Basis clause: For any a in the alphabet, a
is a regular expression. Inductive clause: If r and r' are regular expressions,
then so are rr', (r), r | r', and r*. (The denotation, £(r) , of a regular
expression r is defined as follows: (i) If r is of the form a, for a in the
alphabet A, then C(a) = {a}; (ii) if r is of the form rr' then C(rr') =
{s | s : C(r),s'C(rf) : s = s'^s"}; (hi) or if r is of the form (r') then
C((rf)) = {s | s : C(r')}; (iv) or if r is of the form r \ r' then C(r \
r') = {s | s e C(r) V sf G £(r ')} ; (v) or if r is of the form r* then
£(r*) = {s\s =<> Vs G C(r) V s ' e C(rr) V sf e C{rrr) V . . .} where < >
is the empty string, idempotent under concatenation.)

578. Regular grammar: See regular syntax.
579. Regular language: By a regular language we understand a language

which is the denotation of a regular expression. (Some simple forms of
grammars, that is, regular syntaxes, also generate regular languages.)

580. Regular syntax: A regular syntax is a syntax which denotes (i.e., which
generates) a regular language.

581. Reification: The result of a reify action. (See also data reification, opera­
tion reification and refinement.)

582. Reify: To regard (something abstract) as a material or concrete thing.
(Our use of the term is more operational: To take an abstract thing and
turn it into a less abstract, more concrete thing.)

583. Relation: By a relation we usually understand either a mathematical
entity or an information structure consisting of a set of (relation) tuples
(like rows in a table). The mathematical entity, a relation, can be thought
of, also, as a possibly infinite set of n-groupings (i.e., Cartesians of the
same arity), such that if (a, b, • • •, c, d, • • •, e, /) is such an n-tuple, then we
may say that (a, b, • • •, c) (a relation argument) relates to (d, • • •, e, /) (a

B.3 The Glosses 629

relation result). Thus functions are special kinds of relations, namely where
every argument relates to exactly one result. (Relations, as information
structures, are well-known in relational databases.)

584. Relational database: A database whose data types are (i) atomic values,
(ii) tuples of these, and relations seen as sets of tuples. (The relational
database model is due to E.F. Codd [156].)

585. Reliability: A system being reliable — in the context of a machine being
dependable — means some measure of continuous correct service, that is:
Measure of time to failure. (Cf. dependability [being dependable].) (Reli­
ability is a dependability requirement. Usually reliability is considered a
machine property. As such, accessibility is (to be) expressed in a machine
requirements document.)

586. Renaming: By renaming we mean Alpha-renaming. (Renaming, in this
sense, is a concept of the Lambda-calculus.)

587. Rendezvous: Rendezvous is a concept related to parallel processes. It
stands for a way of synchronising a number, usually two, of processes.
(In CSP the pairing of output (!) / input (?) clauses designating the same
channel provides a language construct for rendezvous.)

588. Representation abstraction: By representation abstraction of [typed]
values we mean a specification which does not hint at a particular data
(structure) model, that is, which is not implementation biased. (Usually a
representation abstraction (of data) is either property oriented or is model
oriented. In the latter case it is then expressed, typically, in terms of
mathematical entities such as sets, Cartesians, lists, maps and functions.)

589. Requirements: A condition or capability needed by a user to solve a
problem or achieve an objective [299].

590. Requirements acquisition: The gathering and enunciation of require­
ments. (Requirements acquisition comprises the activities of preparation,
requirements elicitation (i.e. requirements capture) and preliminary require­
ments evaluation (i.e., requirements vetting).)

591. Requirements analysis: By requirements analysis we understand a
reading of requirements acquisition (rough) prescription units, (i) with
the aim of forming concepts from these requirements prescription units,
(ii) as well as with the aim of discovering inconsistencies, conflicts and in­
completenesses within these requirements prescription units, and (iii) with
the aim of evaluating whether a requirements can be objectively shown to
hold, and if so what kinds of tests (etc.) ought be devised.

592. Requirements capture: By requirements capture we mean the act of
eliciting, of obtaining, of extracting, requirements from stakeholders. (For
practical purposes requirements capture is synonymous with requirements
elicitation.)

593. Requirements definition: Proper definitional part of a requirements pre­
scription.

594. Requirements development: By requirements development we shall
understand the development of a requirements prescription. (All aspects are

630 B Glossary

included in development: requirements acquisition, requirements analysis,
requirements modelling, requirements validation and requirements verifi­
cation.)

595. Requirements elicitation: By requirements elicitation we mean the ac­
tual extraction of requirements from stakeholders.

596. Requirements engineer: A requirements engineer is a software engineer
who performs requirements engineering. (Other forms of software engineers
are domain engineers and software designers (cum programmer).)

597. Requirements engineering: The engineering of the development of a
requirements prescription, from identification of requirements stakeholders,
via requirements acquisition, requirements analysis, and requirements pre­
scription to requirements validation and requirements verification.

598. Requirements facet: A requirements facet is a view of the requirements
— "seen from a domain description" — such as domain projection, domain
determination, domain instantiation, domain extension, domain fitting or do­
main initialisation.

599. Requirements prescription: By a requirements prescription we mean
just that: the prescription of some requirements. (Sometimes, by require­
ments prescription, we mean a relatively complete and consistent specifi­
cation of all requirements, and sometimes just a requirements prescription
unit.)

600. Requirements prescription unit: By a requirements prescription unit
we understand a short, "one or two liner", possibly rough sketch, pre­
scription of some property of a domain requirements, an interface require­
ments, or a machine requirements. (Usually prescription prescription units
are the smallest textual, sentential fragments elicited from requirements
stakeholders.)

601. Requirements specification: Same as requirements prescription — the
preferred term.

602. Requirements validation: By requirements validation we rather mean
the validation of a requirements prescription.

603. Resource: From Old French ressourse relief, resource, from resourdre
to relieve, literally, to rise again, from Latin resurgere . . . an ability to
meet and handle a situation [373] (being resourceful). (In computing we
deal with computing resources such as storage, time and further comput­
ing equipment. Many computing applications handle enterprise resources
such as enterprise staff, production equipment, building or land space,
production time, etc.)

604. Resource allocation: The allocation of resources.
605. Resource scheduling: The scheduling of resources.
606. Retrieval: Used here in two senses: The general (typically database-

oriented) sense of 'the retrieval [the fetching] of data (of obtaining infor­
mation) from a repository of such'. And the special sense of 'the retrieval
of an abstraction from a concretisation', i.e., abstracting a concept from a

B.3 The Glosses 631

phenomenon (or another, more operational concept). (See the next entry
for the latter meaning.)

607. Retrieve function: By a retrieve function we shall understand a function
that applies to values of some type, the "more concrete, operational" type,
and yields values of some type claimed to be more abstract. (Same as
abstraction function.)

608. Rewrite: The replacement of some text or structure by some other text,
respectively structure. (See rewrite rule.)

609. Rewrite rule: A rewrite rule is a directed equation: lhs = rhs. The left-
and right-hand sides are patterns. If some text can be decomposed into
three parts, i.e., text0 = texti^textz^texts, where texti and/or texts may
be empty texts, and where text^ = lhs, then an application of the rewrite
rule lhs = rhs to texto yields texti^rhs^texts. (The equation lhs = rhs
is said to be directed in that this rule does not prescribe that a subtext
equal to rhs is to be rewritten into lhs.)

610. Rewrite system: Rewrite systems are sets of rewrite rules used to com­
pute, by repeatedly replacing subterms of a given formula with equal
terms, until the simplest form possible is obtained [184]. (Rewrite sys­
tems form a both theoretically and practically interesting subject. They
abound in instrumenting theorem proving, and the interpretation of no­
tably algebraic semantics specification languages, cf. Caf eOBJ [191,193] and
Maude [140,154,374].)

611. Rigorous: Favoring rigor, i.e., being precise.
612. Rigorous development: Same as the composed meaning of the two

terms rigorous and development. (We usually speak of a spectrum of de­
velopment modes: systematic development, rigorous development and for­
mal development. Rigorous software development, to us, "falls" somewhere
between the two other modes of development: (Always) complete formal
specifications are constructed, for all (phases and) stages of development;
some, but usually not all proof obligations are expressed; and usually only
a few are discharged (i.e., proved to hold).)

613. Robustness: A system is robust — in the context of a machine being
dependable — if it retains all its dependability attributes (i.e., properties)
after failure and after maintenance. (Robustness is (thus) a dependability
requirement.)

614. Root: A root is a node of a tree which is not a subtree of a larger,
embedding (embedded) tree.

615. Rough sketch: By a rough sketch — in the context of descriptive software
development documentation — we shall understand a document text which
describes something which is not yet consistent and complete, and/or
which may still be too concrete, and/or overlapping, and/or repetitive
in its descriptions, and/or with which the describer has yet to be fully
satisfied.

616. Route: Same as path.
617. Routine: Same as procedure.

632 B Glossary

618. RSL: RSL stands for the RAISE [238] Specification Language [236]. (For
more on RSL we refer to Part III.)

619. Rule: A regulating principle. (We use the concept of rules in several
different contexts: rewrite rule, rule of grammar and rules and regulations.)

620. Rule of grammar: A grammar is made up of one or more rules. A
rule has a (left-hand-side) definiendum and a (right-hand-side) definiens.
The definiendum is usually a single identifier. The definiens is usually a
possibly empty string of identifiers. These identifiers are either terminals or
nonterminals. A definiendum identifier is a nonterminal. In a grammar all
nonterminals have a defining rule. Those identifiers which do not appear
as a definiendum of a rule are thence considered terminals.

621. Rules and regulations: By rules and regulations we mean guidelines
that are intended to be adhered to by the enterprise staff and enterprise
customers (i.e., users, clients) in conducting their "business", i.e., their
actions within, and with, the enterprise. (Other facets of an enterprise are
those of its intrinsics, business processes, support technology, management
and organisation and human behaviour.)

622. Run time: The time (or time interval) during which a software program
is subject to interpretation by a computer. (The term run time is usually
deployed in order to distinguish between that concept and the concept of
compile time.)

S

623. Safety: By safety — in the context of a machine being dependable —
we mean some measure of continuous delivery of service of either correct
service, or incorrect service after benign failure, that is, measure of time to
catastrophic failure. (Safety is a dependability requirement. Usually safety
is considered a machine property. As such safety is (to be) expressed in a
machine requirements document.)

624. Safety critical: A system whose failure may cause injury or death to
human beings, or serious loss of property, or serious disruption of services
or production, is said to be safety critical.

625. Satisfiable: A predicate is said to be satisfied if it is true for at least one
interpretation. (In this context think of an interpretation as a binding of
all free variables of the predicate expression to values. Cf. valid.)

626. Schedule: A schedule is a syntactic composite concept. A schedule is a
prescription for (usually where and) when some resources are to be present,
i.e., information about being spatially and temporally available. (As such
a schedule usually also includes some allocation information.)

627. Scheduling: The act of providing, of constructing, a schedule.
628. Schema: A structured framework or plan. (We shall also use the term

'schema' in connection with, i.e., as a rewrite rule and some axioms that
apply to, for example, applicative program texts and rewrite into imper­
ative program texts, cf. Sect. 20.5.3.)

B.3 The Glosses 633

629. Scheme: See schema.
630. Scope: We shall use the term scope in two sufficiently different senses:

(1) In programming the scope of an identifier is the region of a program
text within which it represents a certain thing. This usually extends from
the place where it is declared to the end of the smallest enclosing block
(begin/end or procedure/function body). An inner block may contain a
redeclaration of the same identifier, in which case the scope of the outer
declaration does not include (is shadowed, occluded, blocked off or ob­
structed by) the scope of the inner. (2) We also use the term scope in the
context of the degree to which a project scope and span extends: Scope
being the "larger, wider" delineation of what a project "is all about", span
being the "narrower", more precise extent.

631. Scope check: Usually a function performed by a compiler concerning the
definition (declaration) and places of use of identifiers of program texts.
(Thus the use of scope is that of the first (1) sense of item 630.)

632. Script: By a domain script we shall understand the structured, almost,
if not outright, formally expressed, wording of a rule or a regulation (cf.
rules and regulations) that has legally binding power, that is, which may
be contested in a court of law.

633. Secure: To properly define the concept of secure, we first assume the
concept of an authorised user. Now, a system is said to be secure if an
un-authorised user, when supposedly making use of that system, (i) is
not able to find out what the system does, (ii) is not able to find out
how it does 'whatever' it does do, and (iii), after some such "use", does
not know whether he/she knows! (The above characterisation represents
an unattainable proposition. As a characterisation it is acceptable. But it
does not hint at ways and means of implementing secure systems. Once
such a system is believed implemented the characterisation can, however
be used as a guide in devising tests that may reveal to which extent the
system indeed is secure. Secure systems usually deploy some forms of
authorisation and encryption mechanisms in guarding access to system
functions.)

634. Security: When we say that a system exhibits security we mean that
it is secure. (Security is a dependability requirement. Usually security is
considered a machine property. As such security is (to be) expressed in a
machine requirements document.)

635. Selector: By a selector (a selector function) we understand a function
which is applicable to values of a certain, defined, composed type, and
which yields a proper component of that value. The function itself is de­
fined by the type definition.

636. Semantics: Semantics is the study and knowledge [incl. specification] of
meaning in language [165]. (We make the distinction between the prag­
matics, the semantics and the syntax of languages. Leading textbooks on
semantics of programming languages are [183,252,443,454,497,521].)

634 B Glossary

637. Semantic function: A semantics function is a function which when ap­
plied to syntactic values yields their semantic values.

638. Semantic type: By a semantic type we mean a type that defines semantic
values.

639. Semiotics: Semiotics, as used by us, is the study and knowledge of prag­
matics, semantics and syntax of language(s).

640. Sensor: A sensor can be thought of as a piece of technology (an electronic,
a mechanical or an electromechanical device) that senses, i.e., measures,
a physical value. (A sensor is in contrast to an actuator.)

641. Sentence: (i) A word, clause, or phrase or a group of clauses or phrases
forming a syntactic unit which expresses an assertion, a question, a com­
mand, a wish, an exclamation, or the performance of an action, that in
writing usually begins with a capital letter and concludes with appropriate
end punctuation, and that in speaking is distinguished by characteristic
patterns of stress, pitch and pauses; (ii) a mathematical or logical state­
ment (as an equation or a proposition) in words or symbols [373].

642. Sequential: Arranged in a sequence, following a linear order, one after
another.

643. Sequential process: A process is sequential if all its observable actions
can be, or are, ordered in sequence.

644. Server: By a server we mean a process or a behaviour which interacts
with another process or behaviour (i.e., a client) in order for the server to
perform some actions on behalf of the client.

645. Set: We understand a set as a mathematical entity, something that is
not mathematically defined, but is a concept that is taken for granted.
(Thus by a set we understand the same as a collection, an aggregation, of
distinct entities. Membership (of an entity) of a set is also a mathematical
concept which is likewise taken for granted, i.e., undefined.)

646. Set theoretic: We say that something is set theoretically understood or
explained if its understanding or explanation is based on sets.

647. Shared data: See shared phenomenon.
648. Shared data initialisation: By shared data initialisation we understand

an operation that (initially) creates a data structure that reflects, i.e., mod­
els, some shared phenomenon in the machine. (See also shared data refresh­
ment.)

649. Shared data in i t i a l i sa t ion requ i rements : Requirements for shared data
initialisation. (See also computational data-{-control requirements, shared
data refreshment requirements, man-machine dialogue requirements, man-
machine physiological requirements, and machine-machine dialogue require­
ments.)

650. Shared data refreshment: By shared data refreshment we understand
a machine operation which, at prescribed intervals, or in response to pre­
scribed events updates an (originally initialised) shared data structure.
(See also shared data initialisation.)

B.3 The Glosses 635

651. Shared data re f reshment requ i rements : Requirements for shared data
refreshment. (See also computational data-(-control requirements, shared
data initialisation requirements, man-machine dialogue requirements, man-
machine physiological requirements, and machine-machine dialogue require­
ments.)

652. Shared information: See shared phenomenon.
653. Shared phenomenon: A shared phenomenon is a phenomenon which is

present in some domain (say in the form of facts, knowledge or information)
and which is also represented in the machine (say in the form of data).
(See also shared data and shared information.)

654. Side effect: A language construct that designates the modification of the
state of a system is said to be a side-effect-producing construct. (Typical
side effect constructs are assignment, input and output. A programming
language "without side effects" is said to be a pure functional programming
language.)

655. Sign: Same as symbol.
656. Signature: See function signature.
657. Simulation: The imitation of the functioning of one system or process

by means of the functioning of another. (Attempting to predict aspects of
the behaviour of some system by creating an approximate (mathematical)
model of it. This can be done by physical modelling, by writing a special-
purpose computer program or using a more general simulation package,
probably still aimed at a particular kind of simulation [227].)

658. Soft real time: By soft real time we mean a real time property where the
exact, i.e., absolute timing, or time interval, is only of loose, approximate
essence. (Cf., hard real time.)

659. Software: By software we understand not only the code that when "sub­
mitted" to a computer enables desired computations to take place, but
also all the documentation that went into its development (i.e., its do­
main description, requirements specification, its complete software design
(all stages and steps of refinement and transformation), the installation
manual, training manual, and the user manual).

660. Software component: Same as component.
661. Software architecture: By a software architecture we mean a first kind

of specification of software — after requirements — one which indicates
how the software is to handle the given requirements in terms of software
components and their interconnection — though without detailing (i.e.,
designing) these software components.

662. Software design: By software design we shall understand the determi­
nation of which components, which modules and which algorithms shall
implement the requirements — together with all the documents that usu­
ally make up properly documented software. (Software design entails pro­
gramming, but programming is a "narrower" field of activity than soft­
ware design in that programming usually excludes many documentation
aspects.)

636 B Glossary

663. Software design specification: The specification of a software design.
664. Software development: To us, software development includes all three

phases of software development: domain development, requirements devel­
opment and software design.

665. Software development project: A software development project is a
planning, research and development project whose aim is to construct
software.

666. Software engineer: A software engineer is an engineer who performs
one or more of the functions of software engineering. (These functions
include domain engineering, requirements engineering and software design
(incl. programming).)

667. Software engineering: The confluence of the science, logic, discipline,
craft and art of domain engineering, requirements engineering and software
design.

668. Sort: A sort is a collection, a structure, of, at present, further unspecified
entities. (That is, same as an algebraic type. When we say "at present,
further unspecified", we mean that the (values of the) sort may be subject
to constraining axioms. When we say "a structure", we mean that "this
set" is not necessarily a set in the simple sense of mathematics, but may
be a collection whose members satisfy certain interrelations, for example,
some partially ordered set, some neighbourhood set or other.)

669. Sort definition: The definition of & sort. (Usually a sort definition consists
of the (introduction of) a type name, some (typically observer function and
generator function) signatures, and some axioms relating sort values and
functions.)

670. Source program: By a source program we mean a program (text) in some
programming language. (The term source is used in contrast to target: the
result of compiling a source text for some target machine.)

671. Span: Span is here used, in contrast to scope, more specifically in the
context of the degree to which a project scope and span extend: Scope
being the "larger, wider" delineation of what a project "is all about", span
being the "narrower", more precise extent.

672. Specification: We use the term 'specification" to cover the concepts of
domain descriptions, requirements prescriptions and software designs. More
specifically a specification is a definition, usually consisting of many defi­
nitions.

673. Specification language: By a specification language we understand a
formal language capable of expressing formal specifications. (We refer to
such formal specification languages as: ASM [439], B & eventB [3,4,143],
CASL [49,395,399], CafeOBJ [191,193], RSL [236,237], VDM-SL [120,226]
andZ [281,476,477,533].)

674. Stack: A stack is an abstract data type with a stack data structure and,
typically, the following operations: push (onto the top of the stack), pop
(remove from the top of the stack). Axioms then determine specific stack
properties. (See Example 8.5.)

B.3 The Glosses 637

675. Stack activation: Generally: The topmost element of a stack. Specifi­
cally, when a stack is used to record the local states of blocks of a block-
structured programming language's blocks or procedure bodies (they are
also blocks), then each stack element, i.e., each stack activation, records
such a local state and — what is known as static and dynamic — point­
ers chain such activations together which correspond to the lexicographic
scope of the program, respectively the calling invocation of the blocks.
(We refer to Vol. 2, Chap. 16, Sect. 16.6.1 for a thorough treatment of
stack activations.)

676. Stage: (i) By a development stage we shall understand a set of develop­
ment activities which either starts from nothing and results in a complete
phase documentation, or which starts from a complete phase documen­
tation of kind stage, and results in a complete phase documentation of
another stage kind, (ii) By a development stage we shall understand a
set of development activities such that some (one or more) activities have
created new, externally conceivable (i.e., observable) properties of what
is being described, whereas some (zero, one or more) other activities have
refined previous properties. (Typical development stages are: domain in-
trinsics, domain support technologies, domain management and organisation,
domain rules and regulations, etc., and domain requirements, interface re­
quirements, and machine requirements, etc.)

677. Stakeholder: By a domain (requirements, software design)5 stakeholder
we shall understand a person, or a group of persons, "united" somehow in
their common interest in, or dependency on the domain (requirements,
software design); or an institution, an enterprise, or a group of such,
(again) characterised (and, again, loosely) by their common interest in,
or dependency on the domain (requirements, software design). (The three
stakeholder groups usually overlap.)

678. Stakeholder perspective: By a stakeholder perspective we shall under­
stand the, or an, understanding of the universe of discourse shared by the
specifically identified stakeholder group — a view that may differ from
one stakeholder group to another stakeholder group of the same universe
of discourse.

679. State: By a state we shall, in the context of computer programs, under­
stand a summary of past computations, and, in the context of domains, a
suitably selected set of dynamic entities.

680. Statechart: The Statechart language is a special graphic notation for
expressing communication between and coordination and timing of pro­
cesses. (See [265,266,268,269,271].)

681. Statement: We shall take the rather narrow view that a statement is a
programming language construct which denotes a state-to-state function.
(Pure expressions are then programming language constructs which de-

5These three areas of concern form three universes of discourse.

638 B Glossary

note state-to-value functions (i.e., with no side effect), whereas "impure"
expressions, also called clauses, denote state-to-state-and-value functions.)

682. Static: An entity is static if it is not subject to actions that change its
value. (In contrast to dynamic.)

683. Static semantics: The concept of static semantics is one that applies to
syntactic entities, typically programs or specifications of programming lan­
guages, respectively specification languages. The static semantics of such
a language is now a predicate that applies to programs (respectively speci­
fications) and yields true if the program (specification) is syntactically well
formed according to the static semantics criteria, typically that certain re­
lations are satisfied between dispersed parts of the program (specification)
texts.

684. Static typing: Enforcement of type checking at compile time. (A pro­
gramming language (or a specification language) is said to be statically
typed if its programs (resp. specifications) can be statically type checked.)

685. Step: By a development step we shall understand a refinement of a do­
main description (or a requirements prescription, or a software design
specification) module, from a more abstract to a more concrete descrip­
tion.

686. Stepwise development: By a stepwise development we shall understand
a development that undergoes phases, stages or steps of development, i.e.,
can be characterised by pairs of two adjoining phase steps, a last phase
step and a (first) next phase step, or two adjoining stage steps.

687. Stepwise refinement: By a stepwise refinement we understand a pair of
adjoining development steps where the transition from one step to the next
step is characterised by a refinement. (Refinement is thus always stepwise
refinement.)

688. Store: Same as store; see next.
689. Storage: By storage we shall understand a function from locations to

values. (Thus we emphasise the mathematical character of storage rather
than any technological character (such as disk storage, etc.).)

690. Strict function: A strict function is a function which yields chaos (i.e.,
is undefined) if any of the function arguments are undefined (i.e., chaos).
(In RSL the logical connectives are not strict. All other functions, built-in
or defined, are strict.)

691. Strongest post-condition: See weakest pre-condition.
692. Structure: The term 'structure' is understood rather loosely. Normally

we shall understand a structure as a mathematical structure, such as an
algebra, or a predicate logic, or a Lambda-calculus, or some defined abstrac­
tion (a scheme or a class). (Set theory is a (mathematical) structure. So
are RSL's Cartesian, list and map data types.)

693. Structural operational semantics: By a structural operational seman­
tics we understand an operational semantics which is expressed in terms
of a number of transition rules. (See [428].)

B.3 The Glosses 639

694. Subentity: A subentity is a proper part of a (thus) non-atomic entity.
(Do not confuse a subentity of an entity with an attribute of that entity
(or of that subentity).)

695. Substitution: By substitution we mean the replacement of a token (viz.:
an identifier) by a structure, usually a text. (The most common form of
substitution is that of Beta-reduction (in the Lambda-Calculus). Substitu­
tion is a "simpler" form of rewriting.)

696. Subroutine: Same as routine.
697. Subtype: To speak of a subtype we must first be able to speak of a type,

i.e., colloquially, a (suitably structured) set of values. A subtype of a type
is then a (suitably structured) and proper subset of the values of the
type. (Usually we shall, in RSL, think of a predicate, p, that applies to all
members of the type, T, and singles out a proper subset whose elements
satisfy the predicate: {a | a : T • p(a)}.)

698. Support technology: By a support technology we understand a facet
of a domain, one which reflects its (current) dependency on mechanical,
electro-mechanical, electronic and other technologies (i.e., tools) in order
to carry out its business processes. (Other facets of an enterprise are those
of its intrinsics, business processes, management and organisation, rules and
regulations and human behaviour.)

699. Surjection: A surjective function represents surjection. (See also bijection
and injection.)

700. Surjective function: A function which maps values of its postulated
definition set into all of its postulated range set is called surjective. (See
also bijective function and injective function.)

701. Symbol: Something that stands for or suggests something else, that is,
an arbitrary or conventional sign used in writing.

702. Synchronisation: By synchronisation we understand the act of ensuring
synchronism between occurrence of designated events in two or more pro­
cesses. (Usually synchronisation between occurrence of designated events
in two or more processes entails the exchange of information, i.e., data,
between these processes, i.e., communication.)

703. Synchronism: A chronological arrangement of events.
704. Synchronous: Happening, existing, or arising at precisely the same time

indicating synchronism.
705. Synopsis: By a synopsis we shall understand a composition of informative

documentation and rough-sketch description of some project.
706. Syntax: By syntax we mean (i) the ways in which words are arranged

to show meaning (cf. semantics) within and between sentences, and (ii)
rules for forming textuseisyntactically correct sentences. (See also regular
syntax, context-free syntax, context-sensitive syntax and BNF for specifics.)

707. Synthesis: The construction of an artefact.
708. Synthetic: Result of synthesis: not analytic.
709. System: A regularly interacting or interdependent group of phenomena

or concepts forming a whole, that is, a group of devices or artificial objects

640 B Glossary

or an organization forming a network especially for producing something
or serving a common purpose. (This book will have its own characterisa­
tion of the concept of a system (commensurate, however, with the above
encircling characterisation); cf. Vol. 2, Sect. 9.5's treatment of system.)

710. Systematic development: Systematic development of software is for­
mal development "lite"! (We usually speak of a spectrum of development
modes: systematic development, rigorous development, and formal develop­
ment. Systems software development, to us, is at the "informal" extreme
of the three modes of development: formal specifications are constructed,
but maybe not for all stages of development; and usually no proof obliga­
tions are expressed, let alone proved. The three volumes of this series of
textbooks in software engineering can thus be said to expound primarily
the systematic approach.)

711. Systems engineering: By systems engineering we shall here understand
computing systems engineering: The confluence of developing hardware
and software solutions to requirements.

T

712. Table: By a table we understand an information structure which can be
thought of as an ordered list of rows, each row consisting of an ordered
list of entries, each consisting of some information. (When thought of as
a data structure, a table is normally thought of as either a matrix or a
relation.)

713. Tangibility: Noun of tangible.
714. Tangible: Physically manifest. That is, can be humanly sensed: heard,

seen, smelled, tasted, or touched, or physically measured by a physical ap­
paratus: length (meter, m), mass (kilogram, kg), time (second, s), electric
current (Ampere, A), thermodynamic temperature (Kelvin, K), amount
of substance (mole, mol), luminous intensity (candela, cd).

715. Target program: The concept of target program stems from the fact
that programs of ordinary programming languages need to be translated
into some intermediary language or final machine, i.e., computer hardware,
language, before their designated computations (i.e., interpretations) can
take place. By a target program we understand such an intermediary
or final program. (Besides the final target languages made up from the
repertoire of computer hardware instructions and computer (bit, byte,
half-word, word, double-word and variable field) data formats, special in­
termediary languages have been devised: P-code [198] (into which Pascal
programs can be translated) [11,138,292,314,522-524], A-code [197] (into
which Ada programs can be translated) [128,516], etc.)

716. Taxonomy: See Sect. B.1.5.
717. Technique: A procedure, an approach, to accomplish something.
718. Technology: We shall in these volumes be using the term technology to

stand for the results of applying scientific and engineering insight. This,

B.3 The Glosses 641

we think, is more in line with current usage of the term IT, information
technology.

719. Temporal: Of or relating to time, including sequence of time, or to time
intervals (i.e., durations).

720. Temporal logic: A(ny) logic over temporal phenomena. (We refer to
Vol. 2, Chap. 15 for our survey treatment of some temporal logics.)

721. Term: From [350]: A word or phrase used in a definite or precise sense in
some particular subject, as a science or art; a technical expression. More
widely: any word or group of words expressing a notion or conception,
or denoting an object of thought. (Thus, in RSL, a term is a clause, an
expression, a statement, which has a value (statements have the Unit
value).)

722. Terminal: By a terminal we shall mean a terminal symbol which (in
contrast to a nonterminal symbol) designates something specific.

723. Termination: The concept of termination is associated with that of an
algorithm. We say that an algorithm, when subject to interpretation (col­
loquially: 'execution'), may, or may not terminate. That is, may halt, or
may "go on forever, forever looping". (Whether an algorithm terminates
is undecidable.)

724. Terminology: By terminology is meant ([350]): The doctrine or scientific
study of terms; the system of terms belonging to a science or subject;
technical terms collectively; nomenclature.

725. Term rewriting: Same as rewriting.
726. Test: A test is a means to conduct testing. (Typically such a test is a

set of data values provided to a program (or a specification) as values
for its free variables. Testing then evaluates the program (resp., interprets
(symbolically) the specification) to obtain a result (value) which is then
compared with what is (believed to be) the, or a, correct result. See Vol. 3,
Sects. 14.3.2, 22.3.2 and 29.5.3 for treatments of the concept of test.)

727. Testing: Testing is a systematic effort to refute a claim of correctness of
one (e.g., a concrete) specification (for example a program) with respect
to another (the abstract) specification. (See Vol. 3, Sects. 14.3.2, 22.3.2,
and 29.5.3 for treatments of the concept of testing.)

728. Theorem: A theorem is a sentence that is provable without assumptions,
that is "purely" from axioms and inference rules.

729. Theorem prover: A mechanical, i.e., a computerised means for theorem
proving. (Well-known theorem provers are: PVS [410,411] and HOL/Isa-
b e l l e [406].)

730. Theorem proving: The act of proving theorems.
731. Theory: A formal theory is a formal language, a set of axioms and infer­

ence rules for sentences in this language, and is a set of theorems proved
about sentences of this language using the axioms and inference rules. A
mathematical theory leaves out the strict formality (i.e., the proof system)
requirements and relies on mathematical proofs that have stood the social
test of having been scrutinised by mathematicians.

642 B Glossary

732. Thesaurus: See Sect. B.1.7.
733. Three-valued logic: Standard logics are two value: true and false.

A three-valued logic is a logic for which the Boolean connectives ac­
cept a third value, usually referred to as the undefined, or chaotic (non-
termination of operand expression evaluation). (There can be, and are,
many three-valued logics. RSL has one set of definitions of the outcome
of Boolean ground term evaluation with chaos operands. LPF is a logic
for partial functions sugggested as a logic for VDM [32,150]. John Mc­
Carthy [367] first broached the topic of three-valued logics in computing.)

734. Time: Time is often a notion that is taken for granted. But one may do
well, or better, in trying to understand time as some point set that satisfies
certain axioms. Time and space are also often related (via [other] physi­
cally manifest "things"). Again their interrelationship needs to be made
precise. (In comparative concurrency semantics one usually distinguishes
between linear time and branching time semantic equivalences [504]. We
refer to our treatment of time and space in Vol. 2 Chap. 5, to Johan
van Benthem's book The Logic of Time [503], and to Wayne D. Blizard's
paper A Formal Theory of Objects, Space and Time [134].)

735. Token: Something given or shown as an identity. (When, in RSL, we define
a sort with no "constraining" axioms, we basically mean to define a set of
tokens; cf. Sect. 10.5.)

736. Tool: An instrument or apparatus used in performing an operation. (The
tools most relevant to us, in software engineering, are the specification and
programming languages as well as the software packages that aid us in the
development of (other) software.)

737. Topology: (i) A branch of mathematics concerned with those properties
of geometric configurations (as point sets) which are unaltered by elastic
deformations (as a stretching or a twisting) that are homeomorphisms; (ii)
the set of all open subsets of a topological space (i.e., being or involving
properties unaltered under a homeomorphism [continuity and connected­
ness are topological properties]) [373].

738. Total algebra: A total algebra is an algebra all of whose functions are
total over the carrier.

739. Trace: The concept of trace is linked to the concept of a behaviour. Trace
is then defined as a sequence of actions and events. ()

740. Training manual: A document which can serve as a basis for a (possibly
self-study) course in how to use a computing system. (See also installation
manual and user manual.)

741. Transaction: General: A communicative action or activity involving two
agents that reciprocally influence each other. (Special: The term transac­
tion has come to be used, in computing, notably in connection with the
use of database management systems (DBMS, or similar multiuser sys­
tems): A transaction is then a unit of interaction with a DBMS (etc.). To
further qualify as being a transaction, it must be handled, by the DBMS
(etc.), in a coherent and reliable way independent of other transactions.)

B.3 The Glosses 643

742. Transduce: To convert (a physical signal, or a message) into another
form.

743. Transducer: A device that is actuated by power from one system and
supplies power usually in another form to a second system. (Finite state
machines and pushdown stack machines are considered transducers.)

744. Transformation: The operation of changing one configuration or ex­
pression into another in accordance with a precise rule. (We consider the
results of substitution, of translation and of rewriting to be transformations
of what the substitution, the translation and the rewriting was applied to.)

745. Transition: Passage from one state, stage, subject or place to another;
a movement, development, or evolution from one form, stage or style to
another [373].

746. Transition rule: A rule, of such a form that it can specify how any of a
well-defined class of states of a machine may make transitions to another
state, possibly nondeterministically to any one of a well-defined number of
other states. (The seminal 1981 report A Structural Approach to Oper­
ational Semantics, by Gordon D. Plotkin [427], set a de facto standard
for formulating transition rules (exploring their theoretical properties and
uses).)

747. Translate: See translation.
748. Translation: An act, process or instance of translating, i.e., of rendering

from one language into another.
749. Translator: Same as a compiler.
750. Tree: An acyclic un-directed graph. Thus a tree (i) has a root, which is a

node, and (ii) zero, one or more, possibly (branch or edge) labelled sub­
trees. Trees or subtrees with no further subtrees have their roots being
equated with leaves. Nodes may be labelled. (This characterisation al­
lows for trees with no labels, with only labelled nodes, with only labelled
branches, with labelled nodes and branches, or with only some nodes and
some branches being labelled. The characterisation usually is interpreted
as only allowing finite trees, but one could dispense of the "finite appli­
cability" of the above (i-ii) clauses, to allow infinite trees. The branch
concept, akin to the edge concept, amounts, however, to a directed edge,
i.e., an arrow. We refer specifically to parse trees. See also a "redefinition"
of trees as found just below, under tree traversal, including Fig. B.4.)

751. Tree traversal: A way of visiting (all) the nodes of a tree. Redefine the
notion of a tree as just given above: Now a tree is a root node and an
ordered set (i.e., like a list) of zero, one or more subtrees; each subtree
is a tree. Roots are labelled. Hence subtrees are labelled. A tree with an
empty set of subtrees is called a leaf. Their roots are the leaves. A tree
traversal is now a way of visiting, in some order, as indicated by the order
of subtrees, (all) the nodes: the root, the branch nodes and leaves, of a
tree. (See the tree of Fig. B.4 on the next page. It will be referred to in
entries in-order, post-order and pre-order.)

644 B Glossary

Fig. B.4. A labelled, ordered tree

752. Triptych: An ancient Roman writing tablet with three waxed leaves
hinged together; a picture (as an altarpiece) or carving in three panels side
by side [373]. (The trilogy of the phases of software development, domain
engineering, requirements engineering and software design as promulgated
by this trilogy of volumes!)

753. Tuple: A grouping of values. (Like 2-tuplets, quintuplets, etc. Used ex­
tensively, at least in the early days, in the field of relational databases —
where a tuple was like a row in a relation (i.e., table).)

754. Turing machine: A hypothetical machine defined in 1935-1936 by Alan
Turing and used for computability theory proofs. It can be understood as
consisting of a finite state machine and an infinitely long "tape" with sym­
bols (chosen from some finite set) written at regular intervals. A pointer
marks the current position and the machine is in one of states. At each
step the machine reads the symbol at the current position on the tape.
For each combination of current state and symbol read, the finite state
machine specifies the new state and either a symbol to write to the tape
or a direction to move the pointer (left or right) or to halt [227]. (Turing
machines are equivalent, in computational power, to the Lambda-calculus.)

755. Type: Generally a certain kind of set of values. (See algebraic type, model-
oriented type, programming language type and sort.)

756. Type check: The concept of type check arises from the concepts of func­
tion signatures and function arguments. If arguments are not of the ap­
propriate type then a type check yields an error result. (By appropriate
static typing of declarations of variables of a programming language or a
specification language one can perform static type checking (i.e., at compile
time).)

757. Type constructor: A type constructor is an operation that applies to
types and yields a type. (The type constructors of RSL include the power
set constructors: -set and -infset, the Cartesian constructor: x, the list
constructors: * and w, the map constructor: -^ , the total and partial
function space constructors: —> and ^>, the union type constructor: |, and
others.)

B.3 The Glosses 645

758. Type definition: A type definition semantically associates a type name
with a type. Syntactically, as, for example, in RSL, a type definition is
either a sort definition or is a definition whose right-hand side is a type
expression.

759. Type expression: A type expression semantically denotes a type. Syntac­
tically, as, for example, in RSL, a type expression is an expression involving
type names and type constructors, and, rarely, terminals.

760. Type name: A type name is usually just a simple identifier.
761. Typing: By typing we mean the association of types with variables. (Usu­

ally such an association is afforded by pairing a variable identifier with a
type name in the variable declaration. See also dynamic typing and static
typing.)

U

762. UML: Universal Modelling Language. A hodgepodge of notations for ex­
pressing requirements and designs of computing systems. (Vol. 2, Chaps. 10,
and 12-14 outlines our attempt to "UML"-ize formal techniques.)

763. Universal algebra: A universal algebra is an abstract algebra where we
leave the postulates (axioms, laws) unspecified. (The universal level of
abstract, the viewpoint of universal algebras, represents for us [349], the
high water mark of abstraction in the treatment of algebraic systems.)

764. Underspecify: By an underspecified expression, typically an identifier,
we mean one which for repeated occurrences in a specification text always
yields the same value, but what the specific value is, is not knowable. (Cf.
nondeterministic or loose specification.)

765. Undecidable: A formal logic system is undecidable if there is no algo­
rithm which prescribes computations that can determine whether any given
sentence in the system is a theorem.

766. Universe of discourse: That which is being talked about; that which
is being discussed; that which is the subject of our concern. (The four
most prevalent universes of discourse of this book, this series of volumes
on software engineering, are: software development methodology, domains,
requirements and software design.)

767. Update: By an update we shall understand a change of value of a variable,
including also the parts, or all, of a database.

768. Update problem: By the update problem we shall understand that data
stored in a database usually reflect some state of a domain, but that
changes in the external state of that domain are not always properly,
including timely, reflected in the database.

769. User: By a user we shall understand a person who uses a computing
system, or a machine (i.e., another computing system) which interfaces
with the former. (Not to be confused with client or stakeholder.)

770. User-friendly: A "lofty" term that is often used in the following context:
"A computing system, a machine, a software package, is required to be

646 B Glossary

user-friendly" — without the requestor further prescribing the meaning of
that term. Our definition of the term user-friendly is as follows: A machine
(software + hardware) is said to be user-friendly (i-ii) if the shared phe­
nomena of the application domain (and machine) are each implemented in
a transparent, one-to-one manner, and such that no IT jargon, but com­
mon application domain terminology is used in their (i.l) accessing, (i.2)
invocation (by a human user), and (i.3) display (by the machine); i.e., (ii)
if the interface requirements have all been carefully expressed (commen­
surate, in further detailed ways: ..., with the user psyche) and correctly
implemented; and (hi) if the machine otherwise satisfies a number of per­
formance and dependability requirements that are commensurate, in further
detailed ways: ..., with the user psyche.

771. User manual: A document which a regular user of a computing system
refers to when in doubt concerning the use of some features of that system.
(See also installation manual and training manual.)

V

772. Valid: A predicate is said to be valid if it is true for all interpretations. (In
this context think of an interpretation as a binding of all free variables of
the predicate expression to values; cf. satisfiable.)

773. Validation: (Let, in the following universe of discourse stand consistently
for either domain, requirements or software design.) By universe of dis­
course validation we understand the assurance, with universe of discourse
stakeholders, that the specifications produced as a result of universe of dis­
course acquisition, universe of discourse analysis and concept formation,
and universe of discourse domain modelling are commensurate with how
the stakeholder views the universe of discourse. (Domain and requirements
validation is treated in Vol. 3, Chaps. 14 and 22.)

774. Valuation: Same as evaluation.
775. Value: From (assumed) Vulgar Latin valuta, from feminine of valutus,

past participle of Latin valere to be worth, be strong [373]. (Commensu­
rate with that definition, value, to us, in the context of programming (i.e.,
of software engineering), is whatever mathematically founded abstraction
can be captured by our type and axiom systems. (Hence numbers, truth
values, tokens, sets, Cartesians, lists, maps, functions, etc., of, or over,
these.))

776. Variable: (i) From Latin variabilis, from variare to vary; (ii) able or apt
to vary; (iii) subject to variation or changes [373]. (Commensurate with
that definition, a variable, to us, in the context of programming (i.e.,
of software engineering), is a placeholder, for example, a storage location
whose contents may change. A variable, further, to us, has a name, the
variable's identifier, by which it can be referred.)

777. VDM: VDM stands for the Vienna Development Method [120,121]. (VDM-SL
(SL for Specification Language) was the first formal specification language

B.3 The Glosses 647

to have an international standard: VDM-SL, ISO/IEC 13817-1: 1996.
The author of this book coined the name VDM in 1974 while working with
Hans Bekic, Cliff B. Jones, Wolfgang Henhapl and Peter Lucas, on what
became the VDM description of PL/1. The IBM Vienna Laboratory, in
Austria, had, in the 1960s, researched and developed semantics descrip­
tions [38-40,354] of PL/I, a programming language of that time. "JAN"
(John A.N.) Lee [342] is believed to have coined the name VDL [343,353]
for the notation (the Vienna Definition Language) used in those semantics
definitions. So the letter M follows, lexicographically, the letter L, hence
VDM.)

778. VDM-SL: VDM-SL stands for the VDM Specification Language. (See entry
VDM above. Between 1974 and the late 1980s VDM-SL was referred to by
the acronym Met a-IV: the fourth metalanguage (for language definition)
conceived at the IBM Vienna Laboratory during the 1960s and 1970s.)

779. Verb: A word that characteristically is the grammatical centre of a sen­
tence and expresses an act, occurrence or mode of being that in various
languages is inflected for agreement with the subject, for tense, for voice,
for mood, or for aspect, and that typically has rather full descriptive mean­
ing and characterizing quality but is sometimes nearly devoid of these es­
pecially when used as an auxiliary or linking verb [373]. (We shall often
find, in modelling, that we model verbs as functions (incl. predicates).)

780. Verification: By verification we mean the process of determining whether
or not a specification (a description, a prescription) fulfills a stated prop­
erty. (That stated property could (i) either be a property of the specifi­
cation itself, or (ii) that the specification relates, somehow, i.e., is correct
with respect to some other specification.)

781. Verify: Same, for all practical purposes, as verification.
782. Vertex: Same as an edge.

W

783. Waterfall diagram: By a waterfall diagram is understood a two-dimen­
sional diagram with a number of boxes placed, say, on a diagonal, from a
top left corner of the diagram to a lower right corner, such that the indi­
vidual boxes are sufficiently spaced apart, i.e., do not overlap, and such
that arrows (i.e., "the water") infix adjacent boxes along a perceived di­
agonal line. (The idea is then that a preceding box, from which an arrow
emanates, designates a software development activity that must, some­
how, be concluded before activity can start on the software development
activity designated by the box upon which the infix arrow is incident.)

784. Weakest pre-condition: The condition that characterizes the set of all
initial states, such that activation will certainly result in a properly ter­
minating happening leaving the system in a final state satisfying a given
post-condition, is called "the weakest pre-condition corresponding to that
post-condition". (We call it "weakest", because the weaker a condition,

648 B Glossary

the more states satisfy it and we aim here at characterising all possible
starting states that are certain to lead to a desired final state.)

785. Well-formedness: By well-formedness we mean a concept related to
the way in which Information or data structure definitions may be given.
Usually these are given in terms of type definitions. And sometimes it
is not possible, due to the context-free nature of type definitions. (Well-
formedness is here seen separate from the invariant over an information or
a data structure. We refer to the explication of invariantl)

786. Wildcard: A special symbol that stands for one or more characters.
(Many operating systems and applications support wildcards for iden­
tifying files and directories. This enables you to select multiple files with
a single specification. Typical wildcard designators are * (asterisk) and _
(underscore).)

787. Word: A speech sound or series of speech sounds or a character or series
of juxtaposed characters that symbolizes and communicates a meaning
without being divisible into smaller units capable of independent use [373].

Z

788. Z: Z stands for Zermelo (Frankel), a set theoretician. (Z also stands for a
model-oriented specification language [281,476,478,533].)

c
Indexes

• The prerequisite for studying this chapter is that you need to look up
where a term has been defined or is used.

• The aim is to illustrate the breadth and depth, the variety and multitude
of terms used in these volumes.

• The objective is to satisfy your needs.
• The treatment is systematic.

Appendix B contains an extensive glossary.

• Symbols Index 650
Some abbreviations are found here.

• Concepts Index 656

Some abbreviations are also found here.
• Characterisations and Definitions Index 680

Characterised and defined terms here are usually spelled with cap­
ital letters.

• Author Index 682

Authors whose works have influenced the contents of this volume
are listed here. Citations are usually to books by these authors.

650 C Indexes

C.l Symbols Index

Symbol, Greek: Mark, token, ticket, watchword, outward sign, covenant.

Symbol, Meaning: Something that stands for, represents, or denotes
something else; a material object representing, or taken to represent,

something immaterial or abstract (1590);
a written character or mark used to represent something; a letter, figure,

or sign conventionally standing for some object, process, etc. (1620)

The SHORTER OXFORD ENGLISH DICTIONARY
On Historical Principles [350]

An attempt has been made to structure the symbols index. You may have to
look in more than one place to find a cross-reference to the first appearances
of the symbol, literal or abbreviation that you are looking for.

• Operators 650
* Literal Operators 650
* Relational Operators 650
* Arithmetic Operators 651
* Boolean Connectives 651
* Set Operators &c. 651
* Cartesian Composition 651
* List Operators &c. 652
* Map Operators &c. 652
* Process Combinators 652
* Comprehension 652

• Constructors 652
* Atomic Types 652

C. l . l Operators

Literal Operators

abs absolute number (positive), 207
card set cardinality, 55, 56, 192, 264,

269
dom map definition set (domain),

349, 352, 353
elems list elements, 68, 70, 193, 322,

324, 325
hd list head, 68, 193, 322, 324, 325
inds list indices, 68, 70, 193, 322, 324,

325
int make integer from real, 50, 207

* Composite Types 652
* Function Constructs 653
* Deconstructors 653

• Constant Value Literals 653
• Combinators 653

* Statement Combinators 653
* Clause Combinators 653
* Specification Combinators 654

• Calculi 654
* The A Calculus 654
* The Predicate Calculi 654

• Abbreviations 654

len list length, 68, 69, 193, 322, 324,
325

real make real from integer, 50, 207
rng map range, 349, 352, 353
tl list tail, 68, 193, 322, 324, 325
Y fix point operator, 119-121

a alpha renaming, 113, 115
aP process alphabet, 536
/? beta reduction, 113, 115
BA function space, 93

Relational Operators

< less than, numbers, 207

C.l Symbols Index 651

< less than or equal, numbers, 207
= equality, 485

Boolean connective, 143
Cartesians, 300
enumerated tokens, 208, 209
general tokens, 214
lists, 322, 324, 325
maps, 352, 349, 353
numbers, 207
sets, 55, 56, 192, 264, 268, 269

= equivalence, 484
enumerated tokens, 208, 209
general tokens, 214
numbers, 207

={} is_ empty, set operator, 192
7 ,̂ in-equality, non-equivalence

Boolean connective, 143
Cartesians, 300
enumerated tokens, 208, 209
general tokens, 214
lists, 322, 324, 325
maps, 349, 352, 353
numbers, 207
sets, 55, 56, 264, 268, 269

> greater than or equal to
numbers, 207

> greater than
numbers, 207

C proper subset, 55, 56, 192, 264, 268
C subset, 55, 56, 192, 264, 268

Arithmetic Operators

* multiplication, numbers, 207
+ addition, numbers, 207
- subtraction, numbers, 207
/ division, numbers, 207

Boolean Connectives

~ Boolean connective (not, negation),
57, 143, 157

V Boolean connective (disjunction, in­
clusive or logical or), 57,143,
157

A Boolean connective (conjunction,
logical and), 57, 143, 157

=> Boolean connective (implication),
143, 158

= Boolean connective (equality), 143,
485

= Boolean connective (identical), 143

Set Operators &c.

card set cardinality, 55, 56, 192, 264,
269

G set membership, 55, 56, 264, 268,
269

^ not member of, 57
H set intersection, 55, 56, 192, 264,

268
U set union, 55, 56,192, 264, 268 (map

union, 349, 352, 353)
/ set difference, 55, 56, 264, 268
\ set complement (restriction by), 55,

56, 192, 264, 268 (also see
map)

C proper subset, 55, 56, 192, 264, 268
C subset, 55, 56, 192, 264, 268

{} empty set, 56, (overloaded function
symbol) 191

{ open set brace, 56, 266
} close set brace, 56, 266
{•} singleton set function, 192
{o, o , . . . , o} set enumeration, 58, 265,

266
{o | o : o • o} set comprehension, 57,

58, 270
| in: set comprehension, 58, 270
.. set range, 267

Cartesian Composition

(o, o , . . . , o) Cartesian composition,
63, 64, 295, 297, 298

652 C Indexes

List Operators &c.

elems list elements, 68, 70, 193, 322,
324, 325

hd list head, 68, 193, 322, 324, 325
inds list indices, 68, 70, 193, 322, 324,

325
len list length, 68, 69, 193, 322, 324,

325
tl list tail, 68, 193, 322, 324, 325

" list concatenation, 67,193, 322, 324,
325

£(i) list element selection, 68, 70, 193,
322, 324

{) empty list (overloaded function
symbol, singleton list func­
tion), 193

(o, ... , o) list enumeration, 323, 324
(o|o in o«o) list comprehension, 327

Map Operators &c.

dom map definition set (domain),
349, 352, 353

rng map range, 349, 352, 353

U map union, 349, 352, 353 (set union,
55, 56, 192, 264, 268)

f map override, 349, 352, 353
° map composition, 349, 352, 353
•(•) map application, 349, 353
\ map restriction by, 349, 352, 353

(also see set)
o(o) map application, 352
/ map restriction to, 349, 352, 353

(also see set)

] map value constructor, 351
[map value constructor, 351
i-)- map value constructor, 351

[oi-)-o, ..., oi-^o] map enumeration,
352

[o i->> o I o • o] map comprehension,
354

[oi-)-o] map value constructor, 351

Process Combinators

; process sequencing, 468, 471, 533
—> process combinator (sequencing),

533
! output to channel, 517, 535, 538
? input from channel, 517, 535, 538
\] nondeterministic external choice,

527, 533
\\ nondeterministic internal choice,

527, 534
|| parallel combinator (composition),

517, 535

Comprehension

| part of comprehension expression
list: (o | o in o • o), 327
map: [0 4 0 | o « o], 354
set: {o I o : o • o}, 270

C.1.2 Constructors

Atomic Types

Bool Boolean type, 81, 143
Char Chracter type, 81, 212
Int integer type, 48, 81, 206
Nat natural number type, 46, 206,

207
Real real number type, 49, 206, 207
Text text type, 212

Composite Types

-infset infinite power set type con­
structor, 105, 265

-set finite power set type constructor,
105, 265

x Cartesian type constructor, 64, 82,
296

* finite list type constructor, 322
w infinite and finite list type construc­

tor, 322

C.l Symbols Index 653

Statement Combinators

rff map type constructor, 351 t t denoted truth value (true), 16,150
-»total function type constructor, 91, Unit value of (), 64, 100, 132, 480,

93, 94, 98, 99, 222 482
^> partial function type constructor,

91 94 98 99 222 -̂ denoted undefined value (chaos),
mk_o type constructor, 282 m

 1 5 0 ' 1 6 0

:: record (variant) type constructor, 0 Unit value, 132
4 2 1 - wildcard, 302, 4420

= = variant type constructor (disjoint, 11 e m P t y maP> 3 5 1

variant types), 208, 416
| type union constructor, 208, 282, C.1.4 Combinators

366, 416
set comprehension, 270

|} subtype right delimiter, 91, 188, s = imperative variable assignment,
2 1 3 468, 470

{| subtype left delimiter, 91, 188, 213 . statement sequencing, 468, 471

Function Constructs Clause Combinators

° function composition, 395 c a s e ... of ... end McCarthy condi-
£{a) body of function definition, 90 t i o n a l> 47> 91> 306> 312> 434>
f(a) as result pre ... post . . . pre/post ^39, 468, 472

function definition, 225 d o

as pre/post specified function, 225 i n : d o — u n t i l - e n d > 468> 4 7 2

f(a) = £{a) explicit function defini- i n : f o r - i n - d o — e n d > 4 6 8

tion, 90, 432, 433 i n : w h i l e - d o - e n d > 4 6 8

= function definition symbol, 90 e l s e i n : i f — t h e n •• e l s e — e n d > 91>
in: f{a) = £{a) explicit function ^ 4 ' ' 4 3 9 ' 4 ^ 8

definition, 91, 222 elsif in: if ... then ... elseif ... end,
440

end
Deconstructors i n : c l a s s _ e n d 4 7 1 3 5 3 1 2

in: if... then .. else ... end, 91,
let (o,o o) = o in o end 147,439,468,471

in: Cartesian decomposition, j n . c a g e _ o f _ e n d g i 4 3 9

63,295 4 6 8

in: for ... in ... do ... end, 468
C.l .3 Constant Value Literals in: if... then .. else ... end, 91,

147, 468
chaos undefined value, 68, 101, 142, in: let ... = ... in ... end, 118,

147, 168, 183 431
false Boolean value, 143 in: while ... do ... end, 468
ff denoted truth value (false), 150, in: do ... until ... end, 468

160 for ... in ... do ... end iteration, 468,
true Boolean value, 143 472

654 C Indexes

if ... t h e n .. e lse ... end , 91 , 147,
439, 468, 471

in
in: for ... in ... d o ... end , 468
in: let ... = ... in ... end , 118
in: let ... in ... end , 431

let ... • ... in ... end , 436
let ... in ... end , 118, 431, 432, 435,

436
of in: case ... o f ... end , 47, 91 , 312,

439, 468
p o s t function post-condition, 225
pre function pre-condition, 222, 225
skip do nothing, 439, 468, 471
t h e n in: if ... t h e n ... e lse ... end ,

91, 147, 439, 468
unti l in: do ... unt i l ... end , 468
whi le . . . do ... e n d conditional loop,

468, 472

Speci f icat ion C o m b i n a t o r s

a x i o m definition, 135, 223, 225, 226
channel channel declaration, 517
class definition: c lass . . . end , 133,

135,136
hide schema operator, 136
t y p e definition, 80, 135
value definition, 91, 135
variable imperative variable declara­

tion, 468

C.1.5 Calcul i

A T h e A Calcu lus , 1 0 9 - 1 2 5

A-calculus, pure, 110-112
abstraction, 112
combination, 110
conversion, 115
expression, 110
function, 112
irreducible expression, 116
notation, 117
termination, 115
variable, 110, 112

T h e P r e d i c a t e Calcul i

• quantification over states, 484
V universal quantifier, 57, 173, 183,

435
3! unique existential quantifier, 173,,

184 435
3 existential quantifier, 57, 173, 184,

435
forall distributed V axiom quantifica­

tion, 191

C.1.6 A b b r e v i a t i o n s

Roman lettered abbreviations desig­
nate concepts, teletype lettered ab­
breviations designate languages.

BNF Backus-Naur Form, 46, 111

C++, 27, 616
C#, 616
C, 27
CLPR Constraint Logic Programming,

27
Cobo l , 27
CSP Communicating Sequential Pro­

cesses, 532-536

DC Duration Calculus, XI, 29, 547, 588

E i f f e l , 2 7

F O F First-Order Functional, 394
FOL First-Order Logic, 172
F o r t r a n Formula Translator, 27

HOF Higher-Order Functional, 394

Java , XVII, 27, 616

KWIC Keyword in Context, 335

LSC Live Sequence Chart , XI, 29, 512,
514, 546, 610

C.l Symbols Index 655

Modula 2, Modula 3, 27
MSC Message Sequence Chart, XI, 29,

512

Oberon, 27

Pascal, 27
Prolog Programming Logic, 26

RAISE Rigorous Approach to Indus­
trial Software Engineering,
29

RSL RAISE Specification Language, 29

TLA Temporal Logic of Actions, 29

Z, 648

656 C Indexes

C.2 Concepts Index

Conceive: To grasp with the mind.

Conception: The act of conceiving, apprehension, imagination.

Concept: The product of the faculty of conception,
an idea of a class of objects, a general notion.

The SHORTER OXFORD ENGLISH DICTIONARY
On Historical Principles [350]

The terms: a concept, an idea, a notion, an apprehension and an imagination
are treated as similar terms. The concept index also lists common abbrevia­
tions.

abstract
algebra, 130
data structure design, 423
data type, 129
data type-oriented specification

language, 138
interpretation, 30
interpreter, 30
syntax, 194-196
syntax, analytic, 194
syntax, synthetic, 195
type, 80, 81, 255, 415

definition, 82
abstraction, 234-235

algebra, 133
behaviour, 512-514
Cartesian, 295-316
essay on, 233-235
function, 369, 378, 402
list, 321-343
map, 349-388
model-oriented, 241-260
operation, 241, 243, 513
operational, 513
process, 512-514
property-oriented, 235-250
representation, 241, 242
sequence, 321-343
set, 263-289
tuple, 321-343

absurdity, 169

accreditation of software
curriculum, 6
house, 6

acquisition
of domain knowledge, 9
of requirements, 9
of software, 9

action, 519, 531
Ada, 27
addition, inference rule, 171
address, 369
algebra, 98, 128

abstract, 130
abstraction, 133
Boolean, 143
concrete, 130, 583
function, 98

name, 99
heterogeneous, 131
invariance, 133
model, 133
morphism, 132
name, 98
of functions, 128
of graphs, 129
of queues, 129
of stacks, 129
of table, 129
postulated, 130
propositional, 165
universal, 132, 645

C.2 Concepts Index 657

algebraic
number, 50
system, 128

Algol
60, 27
68, 27

allocation
dynamic storage, 370
of resources, 5
of storage, 382

alphabet, 166
analytic

abstract syntax, 194
document, 14, 22
function, 256-257

and, logical conjunction, 157
antecedent

P in P D Q, 150
implication, 158

application
A:e / (e 0) , 109
A, 110
domain, 39
domain understanding, 6
function, 98, 110

applicative, 495
programming, 429-455

apply a function to an argument, 87
architecture

computing systems, 12
of software, 12

argument, 92
list, 92
to, or of a function, 87
value, 128

arity
Cartesian, 65
function, 101
of function, 128
of function, met a operator, 128

art, 3
assertion, 169
assessment of quality, 5
assign to a variable, 468
assignment, 396

expression, 396
statement, 396
to variable, 470

associativity
of + and *, 48
of function space type construc­

tors, 99
assumptions, 153
assumptions and dependencies

informative document, 14, 15
atomic

attribute, 72
formula, 179

basis clause, 179
extremal clause, 179
inductive clause, 179
predicate expressions, 179

term structure, 111, 161
type, 72, 205
value, 205

attribute
atomic, 72
of an entity, 72

automorphism of algebras, 133
auxiliary

function, 136, 238, 239, 276, 277,
303, 333, 358

operation, 136
axiom, 131, 145, 187, 255

Cartesians, 65
definition, 135
excluded middle, 145
excluded miracle, 145
induction, 209
of extension, 58
quantifier (forall), 191
quantifier binder (V), 135
system, 145

defined using RSL, 146
for RSL's Proof System, 146

axiomatised
algebraic system, 131
sorts, 188

base of number system, 46

658 C Indexes

basis clause, 111, 161, 178
A-expression ground terms, 110
atomic formula, 179
Boolean ground terms, 161
predicate expressions, 179
propositional expressions, 166
well-formed formulas, 179

behaviour, 519, 531
abstraction, 512-514
chaotic, 147

bijective, 133
function, 94

binary
digit, 46
function, 135

binding, 81, 173, 272, 312, 328, 355,
396, 442

axiom quantifier (V), 135
Cartesian, 299, 307, 308
list, 327
map, 355
multiple quantifier, 177
of identifiers, 430-435
pattern, 430

Cartesian, 299
list, 327
map, 355
set, 271

variable, 113, 176
block, 396

binding, 396
process, 530
scope, 396

BNF
Backus-Naur Form, 46, 111
grammar, 46, 178, 179

body
of a function definition £(a), 90
of a function expression, 95, 110
of expression, 432
of function definition, 92
quantified expression, 176, 177

Bool Boolean type, 143
Boolean

algebra, 143

calculus, 142
connective, 143
ground term

algebra, 142
evaluation, 163

literals, 143
value expression, 144

ground terms, 144
predicate, 144
propositional, 144
quantified, 144

bound, 113
identifier, 432
variable, 113, 430

quantified expression, 177
branch, of tree, 362
brief, design document, 14-16
built-in name, literal, 81
business process reengineering

manual, 11

C++, 27, 616
C#, 616
C, 27
calculate, 165
calculus, 31

A, 109
Boolean, 142
predicate, 143
predicates, 172
propositional, 143, 165, 170

call
by name, 101, 117
by value, 101, 117
of function, 98

cardinality
of function space, 93
of type, 93
set operator card, 192

carrier of algebraic system, 128
Cartesian, 63

abstraction, 295-316
arity, 65
binding, 299, 307, 308

pattern, 299

C.2 Concepts Index 659

composition, 63, 295, 299
constructor (o, o , . . . , o), 64
data type, 296-300
decomposition, 63, 295, 299, 308
fitting, 307, 308
grouping, 64, 82
matching, 299
modelling technique, 303
operations = , ^ , 300
pattern, 299, 307

binding, 299
product, 82
record, 82
structure, 63, 82
type, 81

constructor x, 64, 82
type expression, 298
value

constructors (,), 298
expression, 298

case
discrimination, 312
McCarthy conditional, 47

cell of storage, 370
certification of software

engineer, 6
product, 6

channel, 531
channel, 517

chaos, 472
chaotic behaviour, 147
Character type, 212
characterisation, 33
CHILL, 27
choice nondeterministic, 272, 356

external, 527
internal, 527

class, 255
expression, 133, 136
oriented specification language,

138
classification, 423
clause

basis, 111, 161, 178
atomic formula, 179

Boolean ground terms, 161
predicate expressions, 179
propositional expressions, 166
well-formed formulas, 179

extremal, 111, 162, 178
atomic formula, 179
Boolean ground terms, 161
predicate expressions, 179
propositional expressions, 166

inductive, 111, 162, 178
atomic formula, 179
Boolean ground terms, 161
predicate expressions, 179
propositional expressions, 166

client, 9
CLPR, 27
Cobol,27
code, software, 11
coding

software, 11
step, 12

combination A, 110
combinator

imperative, 468
parallel, ||, 517
process, 532-547

RSL, 537-543
process, CSP, 532-536

command, 468
communication

data, 7
protocol, 515

commutativity of + and *, 48
compiler, 30
complement

set operator \ , 57, 191
complete, 189
completeness, 155, 189
complex number, 45, 51, 206
component, 522

of software, 12
program, 12

composite
name, 99

of number, 46

660 C Indexes

type, 72
composition

Cartesian, 299
of Cartesian, 63, 295
parallel, ||, 517
record value, 418

comprehension
list, 434
map, 434
of set, 57, 270
set, 58, 434

computable, 20
domain requirements, 20

computational model, 20
computer science, 4, 582
computing

distributed, global, 7
distributed, local, 7
science, 4, 582
system, 9, 10
systems

architecture, 12
engineering, 7

concatenate, list operator ^, 193
concatenation of lists "", 324
concept

document, 14
entity, 72
of algebra, 128
of product, 16
of product, document, 15
type, 72
value, 72

conclusion
Q in P D Q, 150
implication, 158
inference rule, 145

concrete
algebra, 130, 583
type, 415

definition, 51, 59, 68, 81
concretisation, data structure, 369
concurrency, 511, 514-548
concurrent

process, 521

processes, 521
programming, 514-548

condition, P in P D Q, 150
conditional

McCarthy, 312
configuration, 309, 498

computation state, 309
context, 316, 498
environment, 498
management, 5
semantic, 316
state, 316, 498
storage, 309, 498

confusion
of variables, 114

conjunction
inference rule, 171
logical and, 157

conjunction A, 57
connective

Boolean, 143
logical, 150

consequence, implication, 158
consequent, Q in P D Q: 150
consistency, 153, 189
consistent, 153, 189
constant

function, 100
name type, 416
names, token type, 416
value, 72, 94

constraint, 382
over data structure, 382
over type, 382

constructed constant, 416
constructive dilemma, inference rule,

171
constructor, 418

:: type, short record, 421
constructor record, 418
content, 468
context

configuration, 316
cum environment, 397

of configuration, 498

C.2 Concepts Index 661

function, 168
interpretation, 165, 172
or: interpretation, 184
semantic, 96, 149

context-free
grammar, 585
syntax, 585

context-sensitive
grammar, 585
syntax, 585

contingency, 169
contract, 9, 17

document, 14, 15
contractual relation, 9
contradicted predicate, 185
contradiction, 169
control

flow analyser, 30
state, 518
version, 5

convention, naming, 267, 298, 323
conversion, A, 109
conversion, A, 115
cost estimation, 6
craft, 3
CSP, 532-536

combinator process, 532-536
process combinator, 532-536
programming, 514-547

curriculum accreditation, 6

data
communication, 7
flow analyser, 30
modelling, 72
state, 518
structure

abstract, design, 423
concretisation, 369
constraint, 382
invariant, 382
transformation, 369
well-formedness, 382

type
abstract, 129

Cartesian, 296-300
function, 221-222
graph, 129
list, 322-328
map, 350-356
queue, 129
sequence, 322-328
set, 265-271
stack, 129
table, 129
tuple, 322-328

DC
duration calculus, XI, 29, 546,

588
deadlock, 515, 516
decidability, 189
decidable, 153
decimal digit, 46
declaration

of variable, 468
variable, 396

decomposition
Cartesian, 299, 308
of Cartesian, 63, 295
record value, 418

defining equation, 432
definition, 33

axiom, 135
type, 135
value, 135
inductive, 178
of a function f(a) = 8(a), 90
of function, 256
of type, 416
recursive, 178
set of a function, 92-94
type, 93

abstract, 82
concrete, 81
set, 266
sort, 82

type, concrete, 51, 59, 68
variant, 208

delineation
of scope, 16

662 C Indexes

of scope document, 14, 15
of span, 16
of span document, 14, 15

deliverable document, 21
denotation, 90, 267
describe, 17
description, 17, 39, 589

application domain, 39
formal model, 14
informal, 237
narrative, 14
of domain, 6-8
rough sketch, 10
rough sketch document, 14
terminology document, 14
validation, 14

descriptive, 17
document, 17

design
abstract data structure, 423
brief, document, 14-16
calculus, 31
of software, 6, 7, 11, 39

designate, 94, 589
designation, 589
destructive dilemma, inference rule,

171
destructor record, 418
developer of software, 9
development

calculus, 31
experimental, 382
explorative, 382
formal, XIII
phase, 11, 415 fn
rigorous, XIII
software, 636
stage, 11, 382, 415 fn
step, 11, 382, 415 fe
step, verification, 14
systematic, XIII

device software, 129
dictionary, 19
didactics, 34
difference, set operator / , 57

digit, 46
binary, 46
decimal, 46

dilemma, inference rule
constructive, 171
destructive, 171

directory, of files, 362
discipline, 3
discrimination type, 306
disjoint types, type constructor = = ,

208
disjunction, 57
disjunction V, 157
disjunctive syllogism, inference rule,

171
disposal manual, 11
distinct type constructor mk_o, 282
distributed

global computing systems, 7
local computing systems, 7

distributed fix, 147
distributivity of * over +, 48
divide and conquer, 11
document, 19, 590

analytic, 14, 22
concepts and facilities, 14
contract, 14
deliverable, 21
description, informal, 237
descriptive, 17
design brief, 14
formal, 21
ideas, 14
informative, 14, 15

synopsis, 236
informative, assumptions and de­

pendencies, 14, 15
informative, implicit/derivative

goals, 14, 15
logbook, 14
needs, 14
of rough sketching, 18-19
proprietary, 21
rough sketch, 18
scope and span delineation, 14

C.2 Concepts Index 663

synopsis, 14
terminology, 19
validation, 23
verification, 23

documentation of software, 11
dogma, narration, 21
domain, 8, 39

description, 6-8
phase, 11
stage, 11
step, 11

engineering, 7-9
identifier, 213
requirements, 9, 10, 12, 20
understanding, 6

dyadic function, 135
dynamic storage allocation, 370, 382

Ei f fe l , 27
elaborate, 96
elaboration, 96
elementary logic, 172
elements of list, elems, 324
elements of list, elems, 193
elicitation

of domain knowledge, 9
of requirements, 9

embedding, 133
empty

list (()), 193
set {}, 191
set ({}), 56
tree (leaf), 363

endomorphism of algebras, 133
engineer, 4
engineering, 3

of computing systems, 7
of domain understanding, 7
of requirements, 7, 9
software, 4, 636

entailment, 155
entity

attribute, 72
concept, 72
type, 72

value, 72
enumerated type, 416
enumeration

list expression, 323
map expression, 351
set expression, 267

environment, 532
cum context, 397
of configuration, 498
process, 521, 537

epimorphism of algebras, 133
equality, 484

of Cartesians =, 300
of lists =, 324
of maps =, 352
of sets =, 57
operation (=), 485
set operator =, 191

equation, defining, 432
equivalence, 484

operator (=), 485
estimation cost, 6
evaluate, 95, 96, 163
evaluation, 96

Boolean ground terms, 163
by relation search, 97, 98, 105
by symbolic interpretation, 97,

98, 121
fix point, 119
function, 98
logic expressions, 150
nontermination, 143
predicate expressions, 144, 181
procedure

Boolean ground terms, 143,
163

predicate expressions, 144, 181
propositional expressions, 143

propositional expressions, 143
evaluator, partial, 30
event, 519, 530

process, 521
example, 33
excluded

middle axiom, 145

664 C Indexes

miracle axiom, 145
exclusive or, 157
existential

quantification 3, 57, 184
quantifier 3, 150

experimental development, 382
explicit

Cartesian enumeration, 298
list enumeration, 323
map enumeration, 351
set enumeration, 267

explorative development, 382
expression, 95

A, 109
A, 110
assignment, 396
body, 432
Boolean value, 144

ground terms, 144
predicate, 144
propositional, 144
quantified, 144

class, 133, 136
identifier, 267, 298, 323
input, 538
integer range, 267
list type, 323
list value, 323
literal, 437
map value enumeration, 351
output, 538
predicate, 172
propositional, 157, 165, 166
pure, 483
quantified, 176
read-only, 483
set

comprehension, 270
value, 267

type, 323, 416
set, 266

extension axiom, 58
external

nondeterministic choice, 527
trace process, 521

extremal clause, 111, 162, 178
atomic formula, 179
Boolean ground terms, 161
predicate expressions, 179
propositional expressions, 166

facilities
document, 14
of product, 16
of product, document, 15

factorial function, 91
falsity, designated by false, 149
Fibonacci function, 91
file system

Cartesian-based, 300
list-based, 330
map-based, 366
set-based, 273

finite state machine, 30
first class value, 369
first-order

functional, 394
logic, 172, 184

fitting, 312
Cartesian, 307, 308

fix point, 120
evaluation, 119, 121
identity, 120, 121

YF = F(YF), 119
minimal, 119
operator, 120
operator Y, 102, 120-121

flow analyser, 30
FOF, first-order functional, 394
FOL, first-order logic, 172
formal

(logical) reasoning, 21
development, XIII
document, 21
language, 21
method, 32
model, 21
model, description, 14
proof system, 170
specification language, 26, 27

C.2 Concepts Index 665

system, 170
technique, 25
variable, 113

formula, 178
atomic predicate expressions, 179

Fortran, 27
free

argument name in function defi­
nition body, 90

variable, 95, 113
quantified expression, 177

function, 87, 95
A : Xx:T • e, 109
A, 112
"map", 92
"map", 92
"map" set, 93
abstraction, 369
algebra, 98

name, 99
application, 98, 110, 112
argument, 92
arity, 101
auxiliary, 136, 238, 239
bijective, 94
binary, 135
call, 98
constant, 100
context, 168
data type, 221-222
definition, 91, 256

body, 92
header, 92

definition / (a) = £ (a), 90
definition body £(a), 90
definition set, 93, 94
dyadic, 135
evaluation, 98

by relation search, 97, 98, 105
by symbolic interpretation, 97,

98, 121
expression body, 95, 110
factorial, 91
Fibonacci, 91
graph, 89, 92

hiding, 136
image, 92, 94
imperative, 481
injective, 92, 94
interpretation, 165
invocation, 98

strictness, 101
lifting, 405
monadic, 135
name, 92
nondeterministic, 100, 106
observer, 60
of analysing, 256-257
of generating, 255
of interest, 136
of observing, 255, 258-260
of synthesis (construction), 256-

257
overloaded symbol {}, 191
overloaded symbol ({)), 193
partial, 92, 94, 98
range, 92, 94
range set, 93
recursive, 120
retrieve, 369
signature, 91, 93, 135, 222, 255,

256, 276, 303, 333, 358
space, 93

type constructor ^>, 99
type constructor ->>, 99

space cardinality, 93
strict, 101
strictness, 101
surjective, 92, 94
total, 93, 94, 98
type, 93
type cardinality, 93
unary, 135

functional
first-order, 394
higher-order, 394
programming, 28, 429-455

language, 26

generator function, 255, 415

666 C Indexes

global
distributed computing systems, 7
process environment, 521

glossary, 19
grammar, 600

BNF, 46, 111, 179
context-free, 585
context-sensitive, 585

graph
algebra, 129
data type, 129
of a function, 89

ground term
Boolean, 142
Boolean value expression, 144

ground terms, 143, 161
grouping, 64

Cartesian, 82

hardware and software of computing
systems, 7

head
list operator, hd, 193
of list hd, 324

header function definition, 92
heterogeneous algebra, 131
hidden function, 136
hierarchical

directory, 362
structure, 362

hierarchy, 362
higher-order

functional, 394
logic, 184

HOF, higher-order functional, 394
homomorphism, 132

preserves operations, 132
principle, 355
respects operations, 132

hypothesis, 169
implication, 158

hypothetical syllogism
inference rule, 171

ideas document, 14

identification of subentities, 259
identifier, 213

RSL, 213
binding, 430-435
domain, 213
name of expression, 267, 298, 323
name of value, 267, 298, 323
scope, 430-435
type, 93
universe of discourse, 213

identity
fix point

YF = F(YF), 119
function, 373

image
of a function, 94
set of a function, 92

imaginary number, 45, 51, 206
imperative, 13, 18, 468, 495, 602

combinator, 468
function, 481
programming, 28, 467-506

language, 27, 396, 467
implementation

of software, 12
stage, 12

implication =>, 158
implicit/derivative goals informative

document, 15
implicit/derivative goals, informative

document, 14
implies =>, 158
inclusive or V, 157
incomplete, 189
incompleteness, 189
inconsistency, 189
inconsistent, 189
index of list element £(i), 324
indicative, 13, 18, 603
indices

list operator inds, 193
of list inds, 324

induction
axiom, 209
definition, 359

C.2 Concepts Index 667

principle, 190
inductive, 111

clause, 111, 162, 178
A-expression ground terms,

110
atomic formula, 179
Boolean ground terms, 161
predicate expressions, 179
propositional expressions, 166

definition, 178
inequality

of Cartesians ^ , 300
of sets ^ , 57

infer, 169
inference rule, 145, 169

addition, 171
conjunction, 171
constructive dilemma, 171
destructive dilemma, 171
disjunctive syllogism, 171
hypothetical syllogism, 171
modus ponens, 171
modus tollens, 171
simplification, 171
substitution, 171

inference system, propositional ex­
pressions, 165

infix type constructor
Cartesian x, 82
partial functions ^>, 99
total functions ->>, 99

informal description, 237
informatics, 604
informative document, 14, 15

assumptions and dependencies,
14, 15

concepts and facilities, 14
contract, 14, 17
current situation, 15
design brief, 14, 16
implicit/derivative goals, 14, 15
logbook, 14
needs, 15
needs and ideas, 14

product concepts and facilities,
16

scope and span, 14, 16
synopsis, 14, 16, 236

initial term, 111, 162
injection

function, 373, 378
relation, 369, 378

injective, 133
function, 92, 94

injector
= constructor, 420
function, 420

input expression, 538
installation manual, 11
integer

number, 45, 48, 206
range expression, 267

intellectual right, 6
interest, function of, 136
interesting

operation, 134, 135
types, 134, 135

interface requirements, 10, 12
interlock, process composition, 542
internal nondeterministic choice, 527
interpret, 96
interpretation, 96, 163

abstract, 30
being a model, 185
context, 165
function, 165
logic expressions, 150
logic statement, 155
or: context, 184
procedure, 172

interpreter, 30
abstract, 30

intersection
of sets H, 56
set operator n, 191

intuition
concurrency, 514-532
constant, 435-437
event, 514-532

668 C Indexes

functionality, 435-437
parallelism, 514-532
process, 514-532
reference, 468
sequentially, 468
single assignment, 435-437
state, 468
variable, 468
variable-freeness, 435-437

invariant, 382
algebras, 133
of data structure, 382
over type, 382
predicate, 276, 303, 333, 358

invocation
function, 98
strict function, 101

irrational number, 45, 50, 206
irreducible A-expression, 116
is_ empty, set, set operator = {}, 191
isomorphism of algebras, 133

Java, XVII, 27, 616
junk, 418

KWIC, 335
keyword, RSL, 135
keyword-in-context, KWIC, 335

language
Boolean ground terms, 143, 161
formal, 21

specification, 27
formal specification, 26
ground terms (Boolean algebra),

161
imperative, 467
machine, 467
of A-expressions, 111
predicate expressions, 178
programming, 467
propositional expressions, 166

leaf
empty tree, 363
tree, 363

legacy system, 6
legal issues related to software, 6
length

list operator len, 193
of list len, 324

level, of a tree, 363
lifted function, 405
link, 369

= pointer, 374
list

abstraction, 321-343
binding, 327

pattern, 327
comprehension, 434
data type, 322-328
empty (()), 193
expression enumeration, 323
matching, 327
modelling technique, 333
operator

concatenate " ,193
elements elems, 193
head hd, 193
indices inds, 193
length len, 193
select element .(.), 193
tail tl, 193

pattern, 327
ranged expression, 323
type expression, 323

literal
Unit, 132
Boolean literals true, false, 143
built-in name, 81
expression, 437

local distributed computing systems,
7

location, 369, 370, 468
of storage, 373
of variable, 396
reference, 473-479
storage, 396
value, 468

log book document, 14
logic

C.2 Concepts Index 669

elementary, 172
expression

evaluation, 150
interpretation, 150

first-order, 172, 184
higher-order, 184
predicate, 172
programming, 28

language, 26
three-valued, 143, 160

logical
connective, 150
symbol, 150

logical or V, 157
loose specification, 253
LSC, Live Sequence Chart, XI, 29,

512, 514, 546, 610

machine, 9, 10
language, 467
requirements, 9, 10, 12

maintenance manual, 11
management

configuration, 5
product, 5
project, 4

manual
business process reengineering,

11
disposal, 11
installation, 11
maintenance, 11
training, 11
user, 11

map
abstraction, 349-388
binding, 355

pattern, 355
comprehension, 434
data type, 350-356
matching, 355
modelling technique, 358
nondeterministic value, 352
of function, 92
pattern, 355

set of a function, 93
type expression, 351
value, enumeration expression,

351
matching

Cartesian, 299
list, 327
map, 355
set, 271

mathematical
notation, 21
reasoning, 21

mathematical logic, 141
mathematics, 3
maximal type, 483
McCarthy conditional, 47, 312
meaning

Boolean ground terms, 156-159
predicate expressions, 182
propositional expressions, 168

membership of set, 56
metalinguistic, 297
method, 32

formal, 32
methodology, 32
minimal fix point, 119
model, 267

algebra, 133
checker, 30
computational, 20
formal, 21
formal description, 14
interpretation of predicate set,

185
semantics, 136
sequential, 495
set of models as meaning of defi­

nitions, 36, 183
theoretic, 241

model-oriented
abstraction, 241-260
specification, 256

language, 27
modelling

data, 72

670 C Indexes

technique
Cartesian, 303
list, 333
maps, 358
set, 276

Modula 2, Modula 3, 27
modularisation of software, 12
module

of software, 12
oriented specification language,

138
modus

ponens, 170
inference rule, 171

tollens, inference rule, 171
monadic function, 135
monitoring of project, 5
monomorphism of algebras, 133
morphism, 132
MSC, Message Sequence Chart, XI,

29, 512
multiple binding, quantifier, 177

name, 94
composite, 99

of number, 46
of algebra, 98
of function, 92
of function algebra, 99
of number, 46
simple, 99

of number, 46
type, 81, 93

named variable, 369
names

token type, 416
type, 416

naming convention, 267, 298, 323
narrate, 20
narration, 20

dogma, 21
narrative, 20, 445

description, 14
narrator, 20
natural

number, 45, 206
number Nat , 46

needs, 15
document, 14
documentation, 15

negation, 57, 157
non-functional requirements, 10
non-membership ^, 57
nondeterminism, 272, 356
nondeterministic

choice, 272, 356
choice internal, 527
choice, external, 527
choice, internal, 527
function, 100, 106
map value, 352

nonstrictness functional, 147
nonterminating evaluation, 143
not -i, 57
notation

A, 117
mathematical, 21

number, 46
algebraic, 50
complex, 45, 51, 206
imaginary, 45, 51, 206
integer, 45, 48, 206
irrational, 45, 50, 206
name, 46
natural, 45, 206
natural Nat , 46
rational, 45, 49, 206
real, 45, 49, 206
transcendental, 45, 50, 206

numeral, 46

Oberon, 27
object module, 12
object-oriented

programming, 28
programming language, 27, 138

objectivisation, 12
observer function, 60, 189, 255, 258-

260, 415
occam, 27

C.2 Concepts Index 671

ontology, 19
operation

abstraction, 241, 243, 513
auxiliary, 136
of interest, 134, 135

operational abstraction, 513
operator symbol, 57
optative, 617
optimised code, 30
or V, 157
organisation structure, 363
output expression, 538
overloaded

function symbol {}, 191
function symbol (()), 193

paradigm, 34, 38, 235
parallel

composition, ||, 517
process, 531
programming, 28, 514-548

language, 27
parallelism, 511, 514-548
parameter variable, 113
parameterised algebra, 131
partial

evaluator, 30
function, 92, 94, 98

partition of set, 58
Pascal, 27
patent for software, 6
pattern, 48, 312

binding
Cartesian, 299
list, 327
map, 355
set, 271

Cartesian, 299, 307
list, 327
map, 355

Petri net, XI, XVII, 29, 511, 514, 546,
620

phase
development, 11
domain description, 11

of development, 415 fn
requirements prescription, 11
software design, 11
software development, 7

PL/I, 27
planning of project, 5
pointer, 369, 373
possible world, 149
post-condition function definition,

276, 303, 333, 358
postulated

algebra, 130
functions, 258

power set, 58, 105
type constructor (-set), 105

pragmatics, 20, 34, 235, 622
pre-condition function definition, 276,

303, 333, 358
predicate

Boolean value expression, 144
calculus, 143, 172
contradicted, 185
expression, 172

meaning, 182
quantified, 176
value, 183

expressions, 143
function, 94

signature, 105
logic, 172

proof system, 146
satisfiability, 185
satisfied, 185
type

invariant, 276, 303, 333, 358
well-formedness, 276, 303, 333,

358
valid, 185
validity, 185

premise
implication, 158
rule of inference, 145

prescription, 39
of requirements, 6, 9
software requirements, 39

672 C Indexes

preserve operations, 132
primitive operation, 267
principle, 32, 33

induction, 190
of: divide and conquer, 11
of: separation of concerns, 11

process, 519, 520
abstraction, 512-514
block, 530
combinator, 532-547

RSL, 537-543
combinator, CSP, 532-536
concurrency, 521
deadlock, 515, 516
definition, 520
environment, 521, 537

global, 521
event, 521
interlock, composition, 542
model, 5
parallel, 531
programming, 514-548
sequential, 530
trace, 521

procurement of software, 9
product

Cartesian, 82
concept, document, 15
concepts, 16
facilities, 16
facilities document, 15
management, 5

profession, 3
program

component, 12
interpreter, 30

programming
applicative style, 429-455
concurrent style, 514-548
functional, 28
functional style, 429-455
imperative, 28
imperative style, 467-506
language, 467

functional, 26

imperative, 27, 396
logic, 26
object-orientedness, 138
parallel, 27

language, object-oriented, 27
logic, 28
object-oriented, 28
parallel, 28
parallel style, 514-548
process style, 514-548
specification, 427

project
management, 4
monitoring, 5
planning, 5

projector
= destructor, 420
function, 420

Prolog, 26
proof, 153, 169

assistant, 30
checker, 30
system, 170

for RSL, 146
for a logical language, 146
for predicate logic, 146
for propositional logic, 146

proper subset C, 57
set operator, 192

property
of software, 9
right, 6
verification, description, 14

property-oriented
abstraction, 235-250
specification, 189, 255-256

language, 27
proposition, 169
propositional

algebra, 165
Boolean value expression, 144
calculus, 143, 165, 170
expression, 143, 157, 165, 166

meaning, 168
value, 168

C.2 Concepts Index 673

logic proof system, 146
variable, 165

proprietary document, 21
protocol of communication, 515
provability, 153
pure

A-calculus, 110-112
expression, 483

push-down stack machine, 30
putative, 13, 18

quality
assessment, 5
assurance, 5
control, 5

quantification
existential 3, 57, 184
over states • , 484
theory, 172
unique existential 3!, 184
universal V, 57, 183

quantified
Boolean value expression, 144
expression, 176

body, 176
predicate expression, 176

quantifier, 176
binder (V), 135
existential 3, 150
universal V, 150

queue
algebra, 129
data type, 129

radix of number system, 46
RAISE, 29
range

expression, integer, 267
of a function, 94
set, 176
set of a function, 92, 93

ranged
expression list, 323
list expression, 323

rational number, 45, 49, 206

read-only expression, 483
real number, 45, 49, 206
reasoning

formal (logical), 21
mathematical, 21

record
:: type constructor, short, 421
Cartesian, 82
constructor, 418
destructor, 418
type, 416, 417
value, 369

composition, 418
decomposition, 418

recursion, 119
recursive

definition, 178
function

definition, 120
evaluation, 121

reduction /?, 109, 113, 115
reengineering business processes,

manual, 11
reference, 369

to state location, 473-479
to variable, 473-479

refutable
assertion, 628

reification, 369, 378
reified value, 378
reify, 374
relation, 96, 104

injection, 369
search, function evaluation, 97,

98, 105
truth value, 172

reliability, 629
renaming a, 109, 113, 115
rendezvous, 514, 519

protocol, 515
representation abstraction, 241
requirements

domain, 9, 10
engineering, 7, 9-11
from the domain, 12

674 C Indexes

interface, 10
machine, 9, 10
non-functional, 10
of the interface, 12
of the machine, 12
prescription, 6, 9

phase, 11
stage, 11
step, 11

system, 10
to software, 6, 39
user, 10

resource
allocation, 5
scheduling, 5

respect operations, 132
result

of a function application, 87
value, 128

retrieve function, 369, 373, 378, 402
reuse of platforms, 12
rewrite

rule, 164
system, 30

rewriting, 164
rigorous development, XIII
root, of tree, 362
rough sketch, 14

description, 10
description, document, 14
document, 18-19

RSL, 201-427
identifier, 213
process combinator, 537-543

RSL, 29
rule, inference, 145, 169

addition, 171
conclusion, 145
conjunction, 171
constructive dilemma, 171
destructive dilemma, 171
disjunctive syllogism, 171
hypothetical syllogism, 171
modus ponens, 171
modus tollens, 171

premise, 145
simplification, 171
substitution, 171

satisfiability, 155
predicate, 185

satisfied predicate, 185
scheduling of resources, 5
scheme, 255
science

computer, 4, 582
computing, 4, 582

scope, 113, 396
delineation, 16
delineation document, 14, 15
of identifier, 432
of identifiers, 430-435

select list element operator .(.), 193
selection of list element £(i), 324
self-reference, 258
semantic

configuration, 316
context, 96
type, 396

semantics, 20, 35
as set of models, 36, 183
binary/decimal numerals, 47
Boolean ground terms, 143, 163
model, 136
numerals, 47
predicate expressions, 144, 181
propositional expressions, 143,

168
trace, 518

semiotics, 34, 634
sentinel, 369, 374

as verb, 374
separation of concerns, 11
sequence, 322

= list, 321
abstraction, 321-343
data type, 322-328

sequential
model, 495
process, 530

C.2 Concepts Index 675

sequentiality, 505
set

abstraction, 263-289
binding pattern, 271
brace, close: }, 56
brace, open: {, 56
complement operator \ , 57
comprehension, 57, 58, 270, 434

such that |, 58
data type, 265-271
difference operator / , 57
empty {}, 191
enumeration, explicit, 267
equality = , 5 7
inequality ^ , 57
intersection D, 56
matching, 271
modelling technique, 276
operator

cardinality card, 192
complement \ , 191
equality = ,191
intersection n, 191
is_ empty, set = {}, 191
proper subset C, 192
subset C, 192
union U, 191

partition, 58
range, 176
subset C, 57
type

definition, 266
expression, 266

union U, 56
value expression, 267

side effect on state, 481
signature, 276, 303, 333, 358

function, 91
of a function, 222
of function, 93, 135, 255, 256
of operator, meta operator, 131
predicate function, 105

simple name, 99
of number, 46

simplification, inference rule, 171

Simula 67, 27
singleton

list function (()), 193
set function {•}, 191

skip, a no state change action, 471
software, 11

(design) specification, 6
acquisition, 9
and hardware of computing sys­

tems, 7
architecture, 12
code, 11
component, 12
curriculum accreditation, 6
design, 6, 7, 11-12, 39

phase, 11
stage, 11, 12
step, 11

developer, 9
development, 636

phase, 7
device, 129
documentation, 11
engineer certification, 6
engineering, 4, 636
house accreditation, 6
implementation, 12
legalities, 6
modularisation, 12
module, 12
object, 12
patent, 6
procurement, 9
product certification, 6
property, 9
requirements, 6, 39
to be delivered, 9

sort, 80, 81, 255, 415, 636
abstract type, 59
axiomatised, 188
type definition, 82

soundness, 155
source programming language, 30
space, as in function space, 93
span

676 C Indexes

delineation, 16
delineation document, 14, 15

specification, 39
formal language, 27
language

abstract data type, 138
classes, 138
formal, 26
model-oriented, 27
modules, 138
property-oriented, 27

loose, 253
model-oriented, 256
of software (design), 6
programming, 427
property-oriented, 189, 255-256
software design, 39
underspecification, 251
what is a specification syntacti­

cally, 202
stack

algebra, 129
data type, 129

stage
domain description, 11
of computing systems architec­

ture, 12
of development, 11, 382, 415 fn
of implementation, 12
of program component, 12
of software design, 12
requirements prescription, 11
software design, 11

state, 468, 480
configuration, 316
cum storage, 397

of configuration, 498
location reference, 473-479
of a system, 237
of control, 518
of data, 518
quantification • , 484
side effect, 481

Statechart, XI, 29, 512, 514, 546, 637
statement, 396

step
domain description, 11
of coding, 12
of development, 11, 382, 415 fn
of platform reuse design, 12
requirements prescription, 11
software design, 11

stepwise development, 382
storage, 369, 396

address, 373
allocation, 382
cell, 370
cum state, 397
dynamically allocated, 370
location, 369, 373, 396
of configuration, 498
value, 369

strict
function, 101

invocation, 101
function (definition), 101

strictness functional, 147
strongly typed value, 455
structure

Cartesian, 82
hierarchical, 362
organisation, 363
syntactic, 316

subentity identification, 259
subset

proper C, 57
proper subset or equal set C, 57
set operator C, 192

substitution, 112-115
inference rule, 171

subtype, 91, 277
{|...|}, 188
constructor delimiter

left {|, 213
right |} , 213

expression, 422
subtyping, 276, 303, 333, 358
surjective, 133

function, 92, 94
syllogism

disjunctive, inference rule, 171
hypothetical, inference rule, 171

symbol
logical, 150
operator, 57

symbolic interpretation, function
evaluation, 97, 98, 121

synchronise, 519
synopsis, 16, 236

document, 14
documentation, 15

syntactic
semantics, 164
structure, 316

syntax, 20, 37, 639
abstract, 194-196
context-free, 585
context-sensitive, 585
of specifications, 202

synthetic
abstract syntax, 195
function, 256-257

system
algebra, 128
axioms, 145

defined using RSL, 146
for RSL's Proof System, 146

legacy, 6
of files, 273, 300, 330, 366
of processes, 519
requirements, 10
state, 237

systematic development, XIII

table
algebra, 129
data type, 129

tail
list operator tl, 193
of list tl , 324

target coding language, 30
tautology, 169
technique, 32, 33

Cartesian modelling, 303
formal, 25

C.2 Concepts Index 677

list modelling, 333
map modelling, 358
set modelling, 276

term, 178
atomic structure, 111, 161
initial, 111, 162
rewriting, 164

termination A, 115
terminology, 19

document, 19
document, description, 14

test suite, 11
Text text type, 212
theorem, 153, 169

prover, 30
theory, 153, 189

quantification, 172
three-valued logic, 143, 160
TLA, 29
token, 30

constant names type, 416
enumerated type, 416
names type, 416

tool, 32, 33
total function, 93, 94, 98
totally undefined value chaos, 101
trace, 519, 531

process, external, 521
semantics, 518

training manual, 11
transcendental number, 45, 50, 206
transformation of data structures, 369
tree, 362

empty, 363
leaf, 363
level, 363

triptych, 7
truth

designated by true, 149
value, 94
valued

relation, 172
variable, 157

tuple, 322
= list, 321

678 C Indexes

abstraction, 321-343
data type, 322-328

type
Bool (Boolean), 143
Unit, 481, 482
"cardinality", 93
abstract, 80, 81, 255

definition, 82
abstract, sort, 415
as sort, i.e., abstract type, 59
atomic, 72, 205
Cartesian, 81, 298
checker, 30
composite, 72
concept, 72
concrete, 415

definition, 81
constraint, 382
constructor

*: finite lists, 322
w: also infinite lists, 322
:: short record, 421
| union type, 416
= = variant values, 416
^>: also partial functions, 222
->•: total functions, 222
x: Cartesians, 297
-infset: also infinite sets, 265
-set: finite sets, 265
x H>), 99
Cartesian x, 64, 82
disjoint types = = , 208
function ->>, 99
infix, 99
maps 7^, 351
partial function (-^), 99
power set (-infset), 105
union |, 208, 282

constructor mk_o, 282
definition, 93, 135, 416

set, 266
definition, concrete, 51, 59, 68
discrimination, 306
exponential, 93
expression, 323, 416

Cartesian, 298
map, 351
set, 266

function, 93
identifier, 93
invariant, 382
maximal, 483
name, 81, 93
of interest, 134, 135
of record, 416
record, 417
semantic, 396
sort definition, 82
subtype, 276, 303, 333, 358
subtype ({|...|}), 188
subtype constructor

left delimiter {|, 213
right delimiter |} , 213

subtype expression, 277, 422
union, 312, 415
variant record definition, 416
well-formedness, 382

typed
function, 99
value, strongly, 455

typing, 99, 173, 442

unary function, 135
undecidability, 189
undefined value chaos, 168
undefined value chaos, 101, 183
underspecification, 251
union

of sets, 56
set operator U, 191
type, 312, 415

constructor |, 282
type constructor |, 208

unique existential quantification 3!,
184

Unit, 481, 482
literal, 132
value (), 132

universal
algebra, 132, 645

C.2 Concepts Index 679

quantification V, 57, 183
quantifier V, 150

universe of discourse, 9, 236
identifier, 213

user
manual, 11
requirements, 10

valid predicate, 185
validation, 21

document, 23
of description document, 14

validity, 155
predicate, 185

valuate, 96
valuation, 96
value, 94, 267

a propositional expression, 168
argument, 128
at location, 468
atomic, 205
being first class, 369
Boolean ground terms, 163
Cartesian, 298
concept, 72
constant, 72, 94
constructors, Cartesian (,), 298
definition, 135
expression, 144, 298

Cartesian, 298
quantified, 144

identifier, 267, 298, 323
in storage, 369
list expression, 323
map, nondeterministic, 352
nondeterministic map, 352
of a function application, 87
of entity, 72
predicate expression, 144, 183
propositional expression, 144
record, 369
result, 128
type, strong, 455
undefined chaos, 168
undefined chaos, 101, 183

variable, 72, 94
variable, 110, 396

A, 109
A, 110, 112
assignable, 468
assignment, 470
binding, 113, 176, 430
bound,113

quantified expression, 177
confusion, 114
declaration, 396, 468
formal, 113
free, 95, 113

quantified expression, 177
location of, 396
name, 369
parameter, 113
propositional, 165
reference, 473-479
truth-valued, 157
value, 72, 94

variant
definition, 208
type constructor = = , 208
type definition, 416

VDM, 29
verification

document, 23
of description property, 14
of development step, 14

version control, 5

well-formed formulas, 179
well-formedness

of data structure, 382
of type, 382
predicate, 276, 303, 333, 358

wildcard, 302, 442, 472
world, possible, 149

yield, 92
upon function application, 87

Z, 648

680 C Indexes

C.3 Characterisations and Definitions Index

Definition: The setting of bounds, limitation.
The action of determining a question at issue, of defining.

A precise statement of the essential nature of a thing.
A declaration of the signification of a word or phrase.

The SHORTER OXFORD ENGLISH DICTIONARY
On Historical Principles [350]

We shall list both characterisations and definitions. The latter are usually
more formally expressed than the former.

^renaming, 115
/3-reduction, 115
A-calculus, 109
A-expression syntax, 110

Abstract Algebra, 130
Abstraction, 231
Action, 531
Algebra, 127
Analytic Document, 22
Applicative Context, 498
Applicative Programming, 429
Applicative Specification Program­

ming, 430
Applicative State, 499
Atomic Entity, 73
Atomic Type, 205
Atomic Value, 205
Attribute, 74

Behaviour, 512, 531
Binding Pattern, 430
Blocked Process, 530

Call-by-name, 116
Call-by-value, 117
Cartesian, 63, 295
Channel, 531
Component, 522
Composite Entity, 74
Composite Entity Attributes, 74
Composite Entity Values, 75
Computer science, 3
Computing science, 4

Computing System, 7
Concept, 73
Concrete Algebra, 130
Concurrent Processes, 521
Concurrent Programming, 511
Concurrent Specification Program­

ming, 511
Correctness of Transformation, 495

Definitions, 33
Descriptive Document, 17
Domain, 8

- Domain Description, 8
Domain Engineering, 7

Engineering, 3
Entity, 73
Environment, 532
Event, 521, 530
Externally Observable Trace, 521

Formal Document, 21
Formal Specification Language, 26
Formal Technique, 25
Free and bound variables, 113
Function, 87
Function "Map", 92
Function Definition, 90
Functional Programming, 430

Global Surrounding Process Environ­
ment, 521

Heterogeneous Algebra, 131

C.3 Characterisations and Definitions Index 681

Imperative Context, 504
Imperative Programming, 467
Imperative Specification Program­

ming, 467
Imperative State, 502
Implementation Bias, 243
Informative Document, 15

List, 321
Loose Specification, 253
Looseness, 253

Map, 349
Mathematical Logic, 141
Method, 32
Methodology, 32
Model-Oriented Abstraction, 231, 241
Model-Oriented Specification, 242
Model-oriented Specification Lan­

guage, 27

Narrative Document, 19
Nondeterministic External Choice,

527
Nondeterministic Internal Choice,

527

Operational Abstraction, 243

Parallel Process, 530
Parallel Programming, 511
Phenomenon, 73
Pragmatics, 34
Principles, 33
Process, 512, 520
Process Definition, 520
Process Environment, 521
Property-Oriented Abstraction, 231,

241
Property-Oriented Specification, 242
Property-Oriented Specification Lan­

guage, 27

Relation, 104
Representation, 73
Representation Abstraction, 242

Requirements Engineering, 9
Rough Sketch Document, 18

Semantics, 35
Sequential Process, 530
Set, 55, 263
Software, 11
Software Design, 11
Software Development, 11
Specification Programming, 427
Substitution, 114
Syntax, 37

Techniques, 33
Terminology Document, 19
Trace, 531
Type, 71

Underspecification, 251
Universal Algebra, 132

Validation Document, 23
Verification Document, 23

682 C Indexes

C.4 Authors Index

Author: The person who originates or gives existence to anything;
an inventor, constructor, or founder.

He who gives rise to an action, event, circumstance, or state of things.

One who sets forth written statements;
the writer or composer of a treatise or book.

The SHORTER OXFORD ENGLISH DICTIONARY
On Historical Principles [350]

The authors listed here (many with [references] to (usually) their main books)
are (co)authors of publications cited on the referenced page(s). Not all refer­
enced publications have their authors listed here — but a very high proportion
have been listed here!

Abadi, Martin [1], 4, 411, 424, 522
Abrial, Jean-Raymond [3], XIV, 27,

335, 577
Aho, Alfred [8], XVIII, 4
Apt, Krzysztof R. [17-19], XVII
Aristotle 384-322 BC [30], 362
Arnold, Ken [20], XVII, 27, 616

Backus, John W. [22-24], 27, 467
Bar Hillel [230], 60
Barendregt, Henk P. [26], 112, 120,

122, 123
Barnstone, Willis [31], VI
Bauer, Friedrich Ludwig [34], 507
Bekic, Hans [36,37], 27, 647
Bergstra, Jan A. [43], 248
Berlekamp, Elwyn R. [44,45], 217
Bernays, Paul [46], 60
Berry, Gerard, 29
Bird, R.S. [51], 429
Birkhoff, Garret [52,53], 128, 139
Birtwistle, G.M. [54], 27
Blikle, Andrzej Jacek [131], 160
Boole, George, 578
Boolos, G. [136], 197, 248
Broy, Manfred [139], 507
Burke, Edmund [141,358], 321
Burstall, Rod M., 488, 494, 507

Cardelli, Luca [1], 4, 411, 424, 522

Church, Alonso [152,153], 109, 123,
197, 248

Clemmensen, Geert Bagge, XIII, XVI
Codd, Edgar Frank [156], 629
Cohn, Paul Moritz [157,158], 139
Conway, John Horton [44,45,159], 217
Coper, David Charles, 494
Cousot, Patrick, 30
Cousot, Radia, 30
Curry, Haskel B. [166,167], 586

Dahl, Ole-Johan [54], 27, 614, 616
Damm, Werner, XI, 29, 512, 514, 546,

610
Darlington, J. [142,173,175], 429, 488,

494, 507
Davies, Jim [179,533], 548, 648
Davis, Martin [180], 195
Davis, Ruth E. [181], 172
de Bakker, Jaco W. [182,183], XX, 4,

120, 122, 633
Descartes, Rene [185-189], 295, 579
Dijkstra, Edsger Wybe [194-196,224],

VII, XIV, 4
Duke, Roger, 616

Ehrig, Hartmut [208], 248
Enderton, Herbert B. [210,211], 55,

60, 197, 248
Ershov, Andrei Petrovich, 30, 613

C.4 Authors Index 683

Evans, Arthur [222], 123

Fei Xiao Tong [499], 276
Field, Anthony J. [225], 429
Fitzgerald, John [226], 27, 29
Fraenkel, Adolf Abraham Halevi

[230], 55, 60
Futamura Yashiko, 30
Futatsugi Kokichi [232,234], 27, 80,

139

Gallier, Jean H. [235], 142, 197, 248
George, Chris W. [236,238], XIX, 28,

29, 38, 171, 203, 250, 518,
534

Ghezzi, Carlo [240], 41
Girard, Jean-Yves [241], 4, 84
Goguen, Joseph A., 27
Gorm Larsen, Peter [226], 27, 29
Gosling, James [20,243], XVII, 4, 27,

616
Gries, David [224,244-246], VII, 4
Guessarian, Irene [249], 248
Gunther, Carl [250,252], XX, 4, 120,

122, 633
Guy, R.K. [44,45], 217
Godel, Kurt, 195

Haff, Peter L. [236,254], XVI, 27, 38,
203, 250, 518, 534

Halmos, Paul R. [258], 60
Hamilton, A.G. [259], 142, 197, 248
Hansen, Michael Reichhardt [261,

537], XI, XVII, 4, 26, 29,
123, 429, 546, 588

Hardy, George H. [263], 45
Harel, David [264,267,270], XI, 29,

512, 514, 546, 610, 637
Harper, Robert, XVII
Hausdorff, Felix [273], 60
Havelund, Klaus [236, 238], 28, 38,

203, 250, 518, 534
Haxthausen, Anne Elisabeth [236,

238], 28, 29, 38, 171, 203,
250, 518, 534

Hayes, Ian, 507
Heering, Jan [43], 248
Hehner, Eric C.R. [275,276], VII, 4
Hejlsberg, Anders, 616
Hennessy, John L., XVIII
Hennessy, Matthew [280], 120, 122
Hindley, J.R. [283,284], 84, 112, 120,

122, 123, 411, 424
Hoare, Sir Tony [288,291,446,450],

XVII, 4, 27, 29, 38, 234, 506,
507, 511, 514, 518, 532, 548

Hodges, Wilfried [294], 197
Hopcroft, John E. [8,296], XVIII, 4
Hughes, Stephen [238], XIX, 28, 29,

171, 518
Humphrey, Watts [298], 41
Hung, Dang Van, 28

Jackson, Michael A. [305,306,308-
311], XI, XV, 13, 18, 627

Jaffar, Joxan, 27
Janowski, Tomasz, 28
Jazayeri, Mehdi [240], 41
Jeffrey, Richard C. [136], 248
Jensen, Kurt [313], XI, XVII, 29, 511,

514, 546, 620
Jones, Clifford Bryn [57,121,316,317],

27, 29, 38, 160, 646, 647
Jones, Neil D. [319,320], 4, 30, 120,

122, 195
Jouannaud, Jean-Pierre, 27

Kernighan, Brian [321], 27, 467
Kleene, Stephen C. [323], 123, 197
Klint, Paul, 248
Knuth, Donald E. [326-328], VII, 4
Kronecker, Leopold, 45

Lakatos, Imre (orig.: Imre Lipschitz)
[330], 628

Lamport, Leslie [332], 29
Landin, Peter, 112, 123, 608
Lee, John A.N. (JAN), 647
Leshniewski, Stanislaw [473], 612
Levi, Shem-Tov [347], 60
Lindholm, Tom [348], XVII, 27, 616

684 C Indexes

Liouville, Joseph [356], 50
Lipson, John D. [349], 128, 139
Lloyd, John W., XVII, 4, 26
Lucas, Peter, 27, 647
Lynch, Nancy [357], XVIII

Mac Lane, Saunders [53], 128, 139
Machado, Antonio [31], VI
Mahr, Bernd [208], 248
Mandrioli, Dino [240], 41
Manna, Zohar [359-362], 154, 248
Mao, WenBo [363], 4
Martin-Lof, Peer [407], 4
May, David, XVII, 27
McAllister, David F. [481], 169, 170
McCarthy, John, 26, 47,160,194, 254,

312, 506, 642
Melhorn, Kurt [371], XVIII
Mendelson, Elliott [372], 142,197, 248
Meyer, Bertrand [376-378], XIV, 27,

522
Milne, Robert [236,238,385], XIX, 28,

29, 38, 171, 203, 250, 518,
534

Milner, Robin [386-389], XVII, 26,
429

Moore, Richard, 28
Morgan, C. Carroll [390], 507
Morris, F. Lockwood [392,393], 38
Morris, James H. [391], 123
Moschovakis, Yiannis N. [394], 60
Mosses, Peter D. [396], 27, 120, 122,

139

Naur, Peter [24], 467
Nelson, Greg [401], 27
Nerode, Anil [402], 197
Nielsen, Claux Bendix [236], XIX, 28,

38, 203, 250, 518, 534
Nilsson, J0rgen Fischer, 38
Nygaard, Kristen [54], 27, 614, 616

Oest, Ole N., XIII, XVI

Parnas, David Lorge [415], 601, 614
Partsch, Helmuth, 507

Patterson, David A., XVIII
Pepper, Peter, 507
Petri, Carl Adam [421], XI, XVII, 29,

511, 514, 546, 620
Pfleeger, Shari [423], 41
Pierce, Benjamin C. [424], 84, 411,

424
Plotkin, Gordon D., 123, 643
Prehn, S0ren [236,238], XIX, 28, 29,

38, 171, 203, 250, 518, 534
Pressmann, Roger S. [430], 41

Quine, Willard Van Orman [506-508],
197

Ravn, Anders Peter, 29
Reade, Chris [433], 429
Reiser, Martin [434], 27
Reisig, Wolfgang [435-437], XI, XVII,

29, 511, 514, 546, 620
Reynolds, John C. [441-443], VII,

XX, 4, 38,120,122,411,424,
633

Rischel, Hans [261], XVII, 4, 26, 123,
429

Ritchie, Dennis [321], 27, 467
Rogers, Hartley R. [444], XVII, 107,

195
Roscoe, A. William [448], XVII, 4, 27,

29, 38, 506, 507, 511, 514,
518, 532, 548

Rushby, John [451,452], 149,151,170,
172, 180, 197

Schmidt, David A. [454,455], XX, 4,
120, 122, 633

Schneider, Steve [456], XVII, 29, 511,
514, 518, 532, 548

Schoenfeld, Joseph R. [457], 142, 197,
248

Scott, Dana, 84, 112, 120, 122, 123,
407, 411, 423, 424, 506

Sestoft, Peter [320,470], XVII, 27, 30,
616

Shakespeare, William, 321

Sommerville, Ian [475], 41
Spivey, M. [477], 27, 507, 648
Stanat, David F. [481], 169, 170
Storbank Pedersen, Jan [238], XIX,

28, 29, 171, 518
Strachey, Christopher [385,469,485-

487], 38, 123, 506
Strong, H. Ray, Jr., 494
Stroustrup, Bjarne [489], 27, 616
Suppes, Patrick [491], 60, 197

Tarjan, Robert E., XVIII
Tennent, Robert D. [496,497], XX, 4,

120, 122, 633
Thompson, Stephen, 26, 429
Tofte, Mads [389], XVII, 26, 429
Tourlakis, George [500], 60
Turing, Alan Mathison [293,300,384,

403], 572, 644
Turner, David A. [175], 26, 429

Ullman, Jeffrey D. [8,296], XVIII, 4

van Leeuwen, Jan [344], 4
van Vliet, Hans [512], 41
van Wijngaarden, Ad, 27

Wadsworth, Christopher P. [513], 38
Wagner, Kim Ritter [236], XIX, 28,

38, 203, 250, 518, 534
Waldinger, Richard P. [362], 248
Walk, Kurt, 647
Wand, Mitchell [515], 38
Wegner, Peter [517], 112
Winskel, Glenn [521], XX, 4, 120, 122,

633
Wirth, Niklaus [314, 523-525, 530],

XVII, XVIII, 27, 208, 467
Woodcock, James C.P. [533, 534],

XVIII, 27, 280, 648
Wossner, Hans, 507

Yellin, Frank [243,348], XVII, 27, 616

Zermelo, Ernst Friedrich Ferdinand,
55, 648

Zhou Chaochen [537], XI, 29, 546, 588

References

1. M. Abadi, L. Cardelli: A Theory of Objects (Springer, New York, USA 1996)
2. H. Abelson, G.J. Sussman, J. Sussman: Structure and Interpretation of Com­

puter Programs (MIT Press, USA 1996)
3. J.-R. Abrial: The B Book: Assigning Programs to Meanings (Cambridge Uni­

versity Press, UK 1996)
4. J.-R. Abrial, L. Mussat. Event B Reference Manual (Editor: Thierry Lecomte),

June 2001. Report of EU 1ST Project Matisse IST-1999-11435.
5. J.-R. Abrial, S.A. Schuman, B. Meyer: Specification Language. In: On the

Construction of Programs: An Advanced Course, ed by R.M. McKeag, A.M.
Macnaghten (Cambridge University Press, 1980) pp 343-410

6. J.-R. Abrial, I.H. S0rensen: KWIC-index generation. In: Program Specification:
Proceedings of a Workshop, vol 134 of Lecture Notes in Computer Science, ed
by J. Staunstrup (Springer, 1981) pp 88-95

7. A. Aho, J. Hopcroft, J. Ullman: The Design of Computer Algorithms (Addison-
Wesley, USA 1974)

8. A.V. Aho, R. Sethi, J.D. Ullman: Compilers: Principles, Techniques, and Tools
(Addison-Wesley, USA 1977, 1986)

9. R. Alur, D.L. Dill: A Theory of Timed Automata. Theoretical Computer Sci­
ence 126, 2 (1994) pp 183-235

10. Edited by J. Alves-Foss: Formal Syntax and Semantics of Java (Springer, 1998)
11. D. Andrews, W. Henhapl: Pascal. In: [121] (Prentice Hall, 1982) pp 175-252
12. ANSI X3.23-1974: The COBOL Programming Language. Technical Report,

American National Standards Institute, Standards on Computers and Infor­
mation Processing (1974)

13. ANSI X3.53-1976: The PL/I Programming Language. Technical Report, Amer­
ican National Standards Institute, Standards on Computers and Information
Processing (1976)

14. ANSI X3.9-1966: The FORTRAN Programming Language. Technical Report,
American National Standards Institute, Standards on Computers and Infor­
mation Processing (1966)

15. K. Apt: Ten Years of Roarers Logic: A Survey — Part I. ACM Trans, on Prog.
Lang, and Systems 3 (1981) pp 431-483

16. K. Apt: Ten Years of Roarers Logic: A Survey — Part II: Nondeterminism.
Theoretical Computer Science 28 (1984) pp 83-110

688 References

17. K.R. Apt: From Logic Programming to Prolog (Prentice Hall, 1997)
18. K.R. Apt: Principles of Constraint Programming (Cambridge University Press,

August 2003)
19. K.R. Apt, E.-R. Olderog: Verification of Sequential and Concurrent Programs

(Springer, 1997)
20. K. Arnold, J. Gosling, D. Holmes: The Java Programming Language (Addison-

Wesley, US 1996)
21. R.-J. Back, J. von Wright: Refinement Calculus: A Systematic Introduction

(Springer, Heidelberg, 1998)
22. J.W. Backus: The Syntax and Semantics of the proposed International Alge­

braic Language of the Zurich ACM-GAMM Conference. In: ICIP Proceedings,
Paris 1959 (Butterworth's, London, 1960) pp 125-132

23. J.W. Backus: Can Programming Be Liberated from the von Neumann Style?
A Functional Style and Its Algebra of Programs. Communications of the ACM
21, 8 (1978) pp 613-641

24. J.W. Backus, P. Naur: Revised Report on the Algorithmic Language ALGOL
60. Communications of the ACM 6, 1 (1963) pp 1-1

25. H.P. Barendregt: The Type Free Lambda Calculus. In: [33] (North-Holland,
Amsterdam, 1977) pp 1091-1132

26. H.P. Barendregt: The Lambda Caculus — Its Syntax and Semantics (North-
Holland, Amsterdam, 1981)

27. H.P. Barendregt: Introduction to Lambda Calculus. Niew Archief Voor Wis-
kunde 4 (1984) pp 337-372

28. H.P. Barendregt: Functional Programming and Lambda Calculus. In: [344] —
vol.B., ed by J. Leeuwen (North-Holland, Amsterdam, 1990) pp 321-363

29. H.P. Barendregt: The Lambda Calculus, no 103 of Studies in Logic and the
Foundations of Mathematics, revised edn (North-Holland, Amsterdam 1991)

30. Edited by J. Barnes: The Complete Works of Aristotle; I and II (Princeton
University Press, NJ, USA 1984)

31. W. Barnstone: Border of a Dream: Selected Poems of Antonio Machado (Cop­
per Canyon Press, WA, USA 2003)

32. H. Barringer, J. Cheng, C.B. Jones: A logic covering undefinedness in program
proofs. Acta Informatica 21 (1984) pp 251-269

33. Edited by J. Barwise: Handbook of Mathematical Logic (North-Holland, Ams­
terdam, 1977)

34. F. Bauer, H. Wossner: Algorithmic Language and Program Development
(Springer, 1982)

35. F.L. Bauer, M. Broy, editors. Program Construction, International Summer
School, July 26-August 6, 1978, Marktoberdorf, Germany, volume 69 of Lecture
Notes in Computer Science. Springer, 1979.

36. H. Bekic: Programming Languages and Their Definition. In: Lecture Notes in
Computer Science, Vol. 177, ed by C.B. Jones (Springer, 1984)

37. H. Bekic, D. Bj0rner, W. Henhapl, C.B. Jones, P. Lucas: A Formal Definition
of a PL/I Subset. Technical Report 25.139, Vienna, Austria (1974)

38. H. Bekic, P. Lucas, K. Walk, et al.: Formal Definition of PL/I, ULD Version
I. Technical Report, IBM Laboratory, Vienna (1966)

39. H. Bekic, P. Lucas, K. Walk, et al.: Formal Definition of PL/I, ULD Version
II. Technical Report, IBM Laboratory, Vienna (1968)

40. H. Bekic, P. Lucas, K. Walk, et al.: Formal Definition of PL/I, ULD Version
III. IBM Laboratory, Vienna, 1969.

References 689

41. C. Berge: Theorie des Graphes et ses Applications (Dunod, Paris, 1958)
42. C. Berge: Graphs, vol 6 of Mathematical Library, second revised edition of part

1 of the 1973 english version edn (North-Holland, 1985)
43. J. Bergstra, J. Heering, P. Klint: Algebraic Specification (Addison-Wesley,

ACM Press, 1989)
44. E. Berlekamp, J. Conway, R. Guy: Winning Ways for Your Mathematical

Plays, vol. 1 (Academic Press, 1982)
45. E. Berlekamp, J. Conway, R. Guy: Winning Ways for Your Mathematical

Plays, vol. 2 (Academic Press, 1982)
46. P. Bernays: Axiomatic Set Theory (Dover, NY, USA 1991)
47. G. Berry. Proof, Language and Interaction: Essays in Honour of Robin Milner,

chapter The Foundations of Esterel. MIT Press, 1998.
48. G. Berry, G. Gonthier: The Esterel Synchronous Programming Language: De­

sign, Semantics, Implementation. Science of Computer Programming 19, 2
(1992) pp 87-152

49. M. Bidoit, P.D. Mosses: CASL User Manual (Springer, 2004)
50. R. Bird, O. de Moor: Algebra of Programming (Prentice Hall, September 1996)
51. R.S. Bird, P. Wadler: Introduction to Functional Programming (Prentice Hall,

1988)
52. G. Birkhoff: Lattice Theory, 3 edn (American Mathematical Society, Provi­

dence, RI 1967)
53. G. Birkhoff, S. MacLane: A Survey of Modern Algebra (Macmillan, 1956)
54. G. Birtwistle, O.-J.Dahl, B. Myhrhaug, K. Nygaard: SIMULA begin (Stu­

dent litteratur, Sweden, 1974)
55. D. Bj0rner: Programming Languages: Formal Development of Interpreters and

Compilers. In: International Computing Symposium 77 (North-Holland, Ams­
terdam, 1977) pp 1-21

56. D. Bj0rner: Programming Languages: Linguistics and Semantics. In: Interna­
tional Computing Symposium 77 (North-Holland, Amsterdam, 1977) pp 511-
536

57. D. Bj0rner: Programming in the Meta-Language: A Tutorial. In: The Vienna
Development Method: The Meta-Language, [120], ed by D. Bj0rner, C.B. Jones
(Springer, 1978) pp 24-217

58. D. Bj0rner: Software Abstraction Principles: Tutorial Examples of an Op­
erating System Command Language Specification and a PL/I-like On-
Condition Language Definition. In: The Vienna Development Method: The
Meta-Language, [120], ed by D. Bj0rner, C.B. Jones (Springer, 1978) pp 337-
374

59. D. Bj0rner: The Systematic Development of a Compiling Algorithm. In: Le
Point sur la Compilation, ed by Amirchahy, Neel (INRIA, Paris, 1979) pp
45-88

60. D. Bj0rner: The Vienna Development Method: Software Abstraction and Pro­
gram Synthesis. In: Mathematical Studies of Information Processing, vol 75 of
LNCS (Springer, 1979)

61. Edited by D. Bj0rner: Abstract Software Specifications, vol 86 of LNCS
(Springer, 1980)

62. D. Bj0rner: Application of Formal Models. In: Data Bases (INFOTECH Pro­
ceedings, 1980)

690 References

63. D. Bj0rner: Experiments in Block-Structured GOTO-Modelling: Exits vs. Con­
tinuations. In: Abstract Software Specification, [61], vol 86 of LNCS, ed by D.
Bj0rner (Springer, 1980) pp 216-247

64. D. Bj0rner: Formal Description of Programming Concepts: a Software Engi­
neering Viewpoint. In: MFCS'80, Lecture Notes Vol 88 (Springer, 1980) pp
1-21

65. D. Bj0rner: Formalization of Data Base Models. In: Abstract Software Specifi­
cation, [61], vol 86 of LNCS, ed by D. Bj0rner (Springer, 1980) pp 144-215

66. D. Bj0rner: The VDM Principles of Software Specification and Program Design.
In: TC2 Work. Confi on Formalisation of Programming Concepts, Peniscola,
Spain (Springer, LNCS Vol. 107 1981) pp 44-74

67. D. Bj0rner: Realization of Database Management Systems. In: See [121] (Pren­
tice Hall, 1982) pp 443-456

68. D. Bj0rner: Rigorous Development of Interpreters and Compilers. In: See [121]
(Prentice Hall, 1982) pp 271-320

69. D. Bj0rner: Stepwise Transformation of Software Architectures. In: See [121]
(Prentice Hall, 1982) pp 353-378

70. D. Bj0rner: Software Architectures and Programming Systems Design. Vols.
I-VI. Techn. Univ. of Denmark (1983-1987)

71. D. Bj0rner: Project Graphs and Meta-Programs: Towards a Theory of Software
Development. In: Proc. Capri '86 Conf. on Innovative Software Factories and
Ada, Lecture Notes on Computer Science, ed by N. Habermann, U. Montanari
(Springer, 1986)

72. D. Bj0rner: Software Development Graphs — A Unifying Concept for Software
Development? In: Vol. 241 of Lecture Notes in Computer Science: Founda­
tions of Software Technology and Theoretical Computer Science, ed by K. Nori
(Springer, 1986) pp 1-9

73. D. Bj0rner: Software Engineering and Programming: Past-Present-Future.
IPSJ: Inform. Proc. Soc. of Japan 8, 4 (1986) pp 265-270

74. D. Bj0rner: On the Use of Formal Methods in Software Development. In:
Proc. of 9th International Conf. on Software Engineering, Monterey, California
(1987) pp 17-29

75. D. Bj0rner: The Stepwise Development of Software Development Graphs:
Meta-Programming VDM Developments. In: See [122], vol 252 of LNCS
(Springer, Heidelberg, 1987) pp 77-96

76. D. Bj0rner: Facets of Software Development: Computer Science & Program­
ming, Engineering & Management. J. of Comput. Sci. h Techn. 4, 3 (1989) pp
193-203

77. D. Bj0rner: Specification and Transformation: Methodology Aspects of the
Vienna Development Method. In: TAPSOFT'89, vol 352 of Lecture Notes in
Computer Science (Springer, Heidelberg, 1989) pp 1-35

78. D. Bj0rner: Formal Software Development: Requirements for a CASE. In: Eu­
ropean Symposium on Software Development Environment and CASE Tech­
nology, Konigswinter, FRG, June 17-21 (Springer, Heidelberg, 1991)

79. D. Bj0rner: Formal Specification Is an Experimental Science (in English). In:
Intl. Conf. on Perspectives of System Informatics (1991)

80. D. Bj0rner: Formal Specification Is an Experimental Science (in Russian). Pro-
grammirovanie 6 (1991) pp 24-43

References 691

81. D. Bj0rner: Towards a Meaning of 'M' in VDM. In: Formal Description of Pro­
gramming Concepts, ed by E. Neuhold, M. Paul (Springer, Heidelberg, 1991)
pp 137-258

82. D. Bj0rner: Prom Research to Practice: Self-reliance of the Developing World
Through Software Technology: Usage, Education & Training, Development &
Research, pp 65-71. In: Information Processing '92, IFIP World Congress '92,
Madrid, ed by J. van Leeuwen (IFIP Transaction A-12: Algorithms, Software,
Architecture, North-Holland 1992)

83. D. Bj0rner: Trustworthy Computing Systems: The ProCoS Experience. In:
14'th ICSE: Intl. Conf. on Software Eng., Melbourne, Australia (ACM Press,
1992) pp 15-34

84. D. Bj0rner. Formal Models of Robots: Geometry & Kinematics, chapter 3,
pages 37-58. Eds.: W. Roscoe and J. Woodcock, A Classical Mind, Festschrift
for C.A.R. Hoare. Prentice Hall, January 1994.

85. D. Bj0rner: Prospects for a Viable Software Industry — Enterprise Models, De­
sign Calculi, and Reusable Modules. In: First ACM Japan Chapter Conference
(World Scientific, Singapore 1994)

86. D. Bj0rner: Software Systems Engineering — From Domain Analysis to Re­
quirements Capture: An Air Traffic Control Example. In: 2nd Asia-Pacific Soft­
ware Engineering Conference (APSEC '95) (IEEE Computer Society, 1995)

87. D. Bj0rner: From Domain Engineering via Requirements to Software. Formal
Specification and Design Calculi. In: SOFSEM'97, vol 1338 of Lecture Notes
in Computer Science (Springer, 1997) pp 219-248

88. D. Bj0rner: Challenges in Domain Modelling — Algebraic or Otherwise. Re­
search, Department of Information Technology, Technical University of Den­
mark, Denmark (1998)

89. D. Bj0rner: Domains as Prerequisites for Requirements and Software &c. In:
RTSE'97: Requirements Targeted Software and Systems Engineering, vol 1526
of Lecture Notes in Computer Science, ed by M. Broy, B. Rumpe (Springer,
Heidelberg 1998) pp 1-41

90. D. Bj0rner: Formal Methods in the 21st Century — An Assessment of Today,
Predictions for The Future — Panel position presented at the ICSE'98, Kyoto,
Japan. Technical Report, Department of Information Technology, Technical
University of Denmark (1998)

91. D. Bj0rner: Issues in International Cooperative Research — Why Not Asian,
African or Latin American 'Esprits'? Research, Department of Information
Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
(1998)

92. D. Bj0rner: A Triptych Software Development Paradigm: Domain, Require­
ments and Software. Towards a Model Development of a Decision Support
System for Sustainable Development. In: Festschrift to Hans Langmaack: Cor­
rect Systems Design: Recent Insight and Advances, vol 1710 of Lecture Notes in
Computer Science, ed by E.-R. Olderog, B. Steffen (Springer, 1999) pp 29-60

93. D. Bj0rner: Challenge 2000: some aspects of: "How to Create a Software In­
dustry". In: Proceedings of CSIC'99, Ed.: R. Jalili (1999)

94. D. Bj0rner: Where Do Software Architectures Come from? Systematic Devel­
opment from Domains and Requirements. A Re-assessment of Software Engi­
neering? South African Journal of Computer Science 22 (1999) pp 3-13

692 References

95. D. Bj0rner: Domain Engineering, A Software Engineering Discipline in Need
of Research. In: SOFSEM'2000: Theory and Practice of Informatics, vol 1963
of Lecture Notes in Computer Science (Springer) pp 1-17

96. D. Bj0rner: Domain Modelling: Resource Management Strategics, Tactics &
Operations, Decision Support and Algorithmic Software. In: Millennial Per­
spectives in Computer Science, ed by J. Davies, B. Roscoe, J. Woodcock (Pal-
grave, UK 2000) pp 23-40

97. D. Bj0rner: Formal Software Techniques in Railway Systems. In: 9th IFAC
Symposium on Control in Transportation Systems, ed by E. Schnieder (DVI
2000) pp 1-12

98. D. Bj0rner: Informatics: A Truly Interdisciplinary Science — Computing Sci­
ence and Mathematics. In: 9th Intl. Colloquium on Numerical Analysis and
Computer Science with Applications, ed by D. Bainov (Academic Publications,
Bulgaria 2000)

99. D. Bj0rner: Informatics: A Truly Interdisciplinary Science — Prospects for an
Emerging World. In: Information Technology and Communication — at the
Dawn of the New Millennium, ed by S. Balasubramanian (AIT Press, 2000)
pp 71-84

100. D. Bj0rner: Pinnacles of Software Engineering: 25 Years of Formal Methods.
Annals of Software Engineering 10 (2000) pp 11-66

101. D. Bj0rner: Informatics Models of Infrastructure Domains. In: Computer Sci­
ence and Information Technologies (Institute for Informatics and Automation
Problems, Yerevan, Armenia 2001) pp 13-73

102. D. Bj0rner: On Formal Techniques in Protocol Engineering: Example Chal­
lenges. In: Formal Techniques for Networks and Distributed Systems (Eds.:
Myungchul Kim, Byoungmoon Chin, Sungwon Kang and Danhyung Lee)
(Kluwer, 2001) pp 395-420

103. D. Bj0rner: Some Thoughts on Teaching Software Engineering - Central Roles
of Semantics. In: Liber Amicorum: Professor Jaco de Bakker (Stichting Cen­
trum voor Wiskunde en Informatica, Amsterdam, The Netherlands 2002) pp
27-45

104. D. Bj0rner: Domain Engineering: A "Radical Innovation" for Systems and
Software Engineering? In: Verification: Theory and Practice, vol 2772 of Lecture
Notes in Computer Science (Springer, Heidelberg 2003)

105. D. Bj0rner: Dynamics of Railway Nets: On an Interface Between Automatic
Control and Software Engineering. In: CTS2003: 10th IFAC Symposium on
Control in Transportation Systems (Elsevier Science, Oxford, UK 2003)

106. D. Bj0rner: Logics of Formal Software Specification Languages — The Possible
Worlds cum Domain Problem. In: Fourth Pan-Hellenic Symposium on Logic,
ed by L. Kirousis (Univ. of Thessaloniki, 2003)

107. D. Bj0rner: New Results and Trends in Formal Techniques for the Devel­
opment of Software for Transportation Systems. In: FORMS 2003: Sympo­
sium on Formal Methods for Railway Operation and Control Systems (Institut
fur Verkehrssicherheit und Automatisierungstechnik, Techn. Univ. of Braun­
schweig, Germany, 2003)

108. D. Bj0rner. 'What Is a Method?" — An Essay on Some Aspects of Software
Engineering, chapter 9, pages 175-203. Monographs in Computer Science.
IFIP: International Federation for Information Processing. Springer, NY, USA,
2003. Programming Methodology: Recent Work by Members of IFIP Working
Group 2.3. Eds.: Annabelle Mclver and Carroll Morgan.

References 693

109. D. Bj0rner: What Is an Infrastructure? In: Formal Methods at the Crossroads.
From Panacea to Foundational Support (Springer, Heidelberg, Germany 2003)

110. D. Bj0rner: Towards "Posit & Prove" Design Calculi for Requirements Engi­
neering and Software Design. In: From Object- Orientation to Formal Methods
- Essays in Memory of Ole-Johan Dahl, Lecture Notes in Computer Science,
Vol. 2635 (Springer, 2004)

111. D. Bj0rner: Domain Engineering: "Upstream" from Requirements Engineering
and Software Design. US ONR + Univ. of Genoa Workshop, Santa Margherita
Ligure (June 2000)

112. D. Bj0rner, J.R. Cuellar: Software Engineering Education: Roles of Formal
Specification and Design Calculi. Annals of Software Engineering 6 (1998) pp
365-410

113. D. Bj0rner, Y.L. Dong, S. Prehn: Domain Analyses: A Case Study of Station
Management. In: KICS'94: Kunming International CASE Symposium, Yunnan
Province, China (1994)

114. D. Bj0rner, L. Druffel: Industrial Experience in Using Formal Methods. In:
Intl. Conf. on Software Engineering (IEEE Computer Society Press, 1990) pp
264-266

115. Edited by D. Bj0rner, A. Ershov, N. Jones: Partial Evaluation and Mixed Com­
putation. Proceedings of the IFIP TC2 Workshop, Gammel Avernces, Denmark,
October 1987 (North-Holland, 1988)

116. D. Bj0rner, C. George, S. Prehn. Scheduling and Rescheduling of Trains, chap­
ter 8, pages 157-184. Industrial Strength Formal Methods in Practice, Eds.:
Michael G. Hinchey and Jonathan P. Bowen. FACIT, Springer, London, Eng­
land, 1999.

117. D. Bj0rner, C.W. George, A.E. Haxthausen et al.: "UML"-ising Formal Tech­
niques. In: INT 2004: Third International Workshop on Integration of Specifi­
cation Techniques for Applications in Engineering, vol 3147 of Lecture Notes
in Computer Science (Springer, 2004, ETAPS, Barcelona, Spain) pp 423-450

118. D. Bj0rner, C.W. George, S. Prehn: Computing Systems for Railways — A Role
for Domain Engineering. Relations to Requirements Engineering and Software
for Control Applications. In: Integrated Design and Process Technology. Edi­
tors: Bernd Kraemer and John C. Petterson (Society for Design and Process
Science, Texas, USA 2002)

119. D. Bj0rner, A.E. Haxthausen, K. Havelund: Formal, Model-Oriented Software
Development Methods: From VDM to ProCoS, and from RAISE to LaCoS.
Future Generation Computer Systems (North-Holland, 1992)

120. Edited by D. Bj0rner, C. Jones: The Vienna Development Method: The Meta-
Language, vol 61 of LNCS (Springer, 1978)

121. Edited by D. Bj0rner, C. Jones: Formal Specification and Software Development
(Prentice Hall, 1982)

122. D. Bj0rner, C. Jones, M.M. an Airchinnigh, E. Neuhold, editors. VDM -
A Formal Method at Work. Proc. VDM-Europe Symposium 1987, Brussels,
Belgium, Springer, Lecture Notes in Computer Science, Vol. 252, 1987.

123. D. Bj0rner, S. Koussobe, R. Noussi, G. Satchok: Michael Jackson's Problem
Frames: Towards Methodological Principles of Selecting and Applying For­
mal Software Development Techniques and Tools. In: ICFEM'91: Intl. Conf.
on 'Formal Engineering Methods", Hiroshima, Japan, ed by L. ShaoQi, M.
Hinchley (IEEE Computer Society Press, CA, USA 1997) pp 263-271

694 References

124. D. Bj0rner, H.H. L0vengreen: Formal Semantics of Data Bases. In: 8th InVl.
Very Large Data Base Conf. (VLDB Found. 1982)

125. D. Bj0rner, H.H. L0vengreen: Formalization of Data Models. In: Formal Spec­
ification and Software Development, [121] (Prentice Hall, 1982) pp 379-442

126. D. Bj0rner, M. Nielsen: Meta Programs and Project Graphs. In: ETW: Esprit
Technical Week (Elsevier, 1985) pp 479-491

127. D. Bj0rner, J. Nilsson: Algorithmic & Knowledge Based Methods — Do They
"Unify"? — with Some Programme Remarks for UNU/IIST. In: International
Conference on Fifth Generation Computer Systems: FGCS'92 (ICOT, 1992)
pp (Separate folder, "191-198")

128. Edited by D. Bj0rner, O. Oest: Towards a Formal Description of Ada, vol 98
of LNCS (Springer, 1980)

129. D. Bj0rner, O.N. Oest: The DDC Ada Compiler Development Project. In:
Towards a Formal Description of Ada, [128], vol 98 of LNCS, ed by D. Bj0rner,
O.N. Oest (Springer, 1980) pp 1-19

130. D. Bj0rner, S. Prehn: Software Engineering Aspects of VDM. In: Theory and
Practice of Software Technology, ed by D. Ferrari (North-Holland, Amsterdam,
1983)

131. A. Blikle: MetaSoft Primer; Towards a Metalanguage for Applied Denotational
Semantics, vol 288 of Lecture Notes in Computer Science (Springer, 1987)

132. A. Blikle: A Guided Tour of the Mathematics of MetaSoft. Information Pro­
cessing Letters 29 (1988) pp 81-86

133. A. Blikle: Three-valued predicates for software specification and validation.
In: [135] (1988) pp 243-266

134. W.D. Blizard: A Formal Theory of Objects, Space and Time. The Journal of
Symbolic Logic 55, 1 (1990) pp 74-89

135. R. Bloomfield, L. Marshall, R. Jones, editors. VDM - The Way Ahead. Proc.
2nd VDM-Europe Symposium 1988, Dublin, Ireland, Springer, Lecture Notes
in Computer Science, Vol. 328, September 1988.

136. G.S. Boolos, R.C. Jeffrey: Computability and Logic (Cambridge University
Press, September 29, 1989)

137. J.P. Bowen: Glossary of Z Notation. Information and Software Technology 37,
5-6 (1995) pp 333-334

138. British Standards Institution: Specification for Computer Programming Lan­
guage Pascal. Technical Report BS6192, BSI (1982)

139. M. Broy, K. St0len: Specification and Development of Interactive Systems —
Focus on Streams, Interfaces and Refinement (Springer, NY, USA and Heidel­
berg, Germany 2001)

140. R. Bruni, J. Meseguer: Generalized Rewrite Theories. In: Automata, Languages
and Programming. 30th International Colloquium, ICALP 2003, Eindhoven,
The Netherlands, June 30-July 4, 2003. Proceedings, vol 2719 of Lecture Notes
in Computer Science, ed by J .CM. Baeten, J.K.Lenstra, J.Parrow, G.J. Woeg-
inger (Springer, 2003) pp 252-266

141. E. Burke: Reflections on the Revolution in France, Ed. Conor Cruise O'Brien
(Hammondsworth, 1790 (1968))

142. R.M. Burstall, J. Darlington: A Transformation System for Developing Recur­
sive Programs. Journal of ACM 24, 1 (1977) pp 44-67

143. D. Cansell, D. Mery: Logical Foundations of the B Method. Computing and
Informatics 22, 1-2 (2003)

References 695

144. D. Carrington, D.J. Duke, R. Duke et al.: Object-Z: An Object-Oriented Ex­
tension to Z. In: Formal Description Techniques, II (FORTE,89), ed by S.
Vuong (Elsevier — (North-Holland), 1990) pp 281-296

145. C.C.I.T.T.: The Specification of CHILL. Technical Report Recommenda­
tion Z200, International Telegraph and Telephone Consultative Committee,
Geneva, Switzerland (1980)

146. E. Chailloux, P. Manoury, B. Pagano: Developing Applications With Objective
Caml (Project Cristal, INRIA, France 2004)

147. E. Chailloux, P. Manoury, B. Pagano: Developpement a1'applications avec Ob­
jective Caml (Editions O'Reilly, Paris, France 2000)

148. P.P. Chen: The Entity-Relationship Model — Toward a Unified View of Data.
ACM Trans. Database Syst 1, 1 (1976) pp 9-36

149. P.P. Chen, editor. Entity-Relationship Approach to Systems Analysis and De­
sign. Proc. 1st International Conference on the Entity-Relationship Approach.
North-Holland, 1980.

150. J. Cheng: A Logic for Partial Functions. PhD Thesis, Department of Computer
Science, University of Manchester (1986)

151. J. Cheng, C. Jones: On the usability of logics which handle partial functions. In:
Proceedings of the Third Refinement Workshop, ed by C. Morgan, J. Woodcock
(Springer, 1990)

152. A. Church: The Calculi of Lambda-Conversion, vol 6 of Annals of Mathematical
Studies (Princeton University Press, USA 1941)

153. A. Church: Introduction to Mathematical Logic (Princeton University Press,
USA 1956)

154. M. Clavel, F. Duran, S. Eker et al: The Maude 2.0 System. In: Rewriting Tech­
niques and Applications (RTA 2003), no 2706 of Lecture Notes in Computer
Science, ed by Robert Nieuwenhuis (Springer, 2003) pp 76-87

155. G. Clemmensen, O. Oest: Formal Specification and Development of an Ada
Compiler - A VDM Case Study. In: Proc. 7th International Conf. on Software
Engineering, 26.-29. March 1984, Orlando, Florida (IEEE Press, 1984) pp
430-440

156. E.F. Codd: A Relational Model For Large Shared Databank. Communications
of the ACM 13, 6 (1970) pp 377-387

157. P. Cohn: Universal Algebra, rev. edn ((Harper and Row) D. Reidel, Boston
(1965) 1981)

158. P. Cohn: Classical Algebra (Wiley, 2001)
159. J. Conway: On Numbers and Games (Academic Press, 1976)
160. D. Cooper: The Equivalence of Certain Computations. Computer Journal 9

(1966) pp 45-52
161. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: Introduction to Algorithms,

2nd edn (McGraw-Hill and MIT Press, 2001)
162. G. Cousineau, M. Mauny: The Functional Approach to Programming (Cam­

bridge University Press, UK 1998)
163. P. Cousot: Abstract Interpretation. ACM Computing Surveys 28, 2 (1996) pp

324-328
164. P. Cousot, R. Cousot: Abstract Interpretation: A Unified Lattice Model for

Static Analysis of Programs by Construction or Approximation of Fixpoints.
In: 4th POPL: Principles of Programming and Languages (ACM Press, 1977)
pp 238-252

696 References

165. D. Crystal: The Cambridge Encyclopedia of Language (Cambridge University
Press, 1987, 1988)

166. H.B. Curry, R. Feys: Combinatory Logic I (North-Holland, Amsterdam, 1968)
167. H.B. Curry, J.R. Hindley, J.P. Seldin: Combinatory Logic II (North-Holland,

Amsterdam, 1972)
168. O.-J. Dahl, E.W. Dijkstra, C.A.R. Hoare: Structured Programming (Academic

Press, 1972)
169. O.-J. Dahl, C.A.R. Hoare: Hierarchical Program Structures. In: [168] (Aca­

demic Press, 1972) pp 197-220
170. O.-J. Dahl, K. Nygaard: SIMULA - An ALGOL-based Simulation Language.

Communications of the ACM 9, 9 (1966) pp 671-678
171. W. Damm, D. Harel: LSCs: Breathing Life into Message Sequence Charts.

Formal Methods in System Design 19 (2001) pp 45-80
172. O. Danvy: A Rational Deconstruction of Landin's SECD Machine. Research

RS 03-33, BRICS: Basic Research in Computer Science, University of Arhus,
Denmark (2003)

173. J. Darlington: A Synthesis of Several Sorting Algorithms. Acta Informatica 11
(1978) pp 1-30

174. J. Darlington, R.M. Burstall: A System Which Automatically Improves Pro­
grams. Acta Informatica 6 (1976) pp 41-60

175. J. Darlington, P. Henderson, D. Turner: Functional Programming and Its Ap­
plications (Cambridge Univ. Press, 1982)

176. C. Date: An Introduction to Database Systems, I (Addison-Wesley, 1981)
177. C. Date: An Introduction to Database Systems, II (Addison-Wesley, 1983)
178. C. Date, H. Darwen: A Guide to the SQL Standard (Addison-Wesley Profes­

sional, November 8, 1996)
179. J. Davies. Announcement: Electronic version of Communicating Sequential

Processes (CSP). Published electronically: http://www.usingcsp.com/, 2004.
Announcing revised edition of [288].

180. M. Davis: Computability and Undecidability (McGraw-Hill, 1958)
181. R.E. Davis: Truth, Deduction, and Computation (Computer Science Press, New

York, USA 1989)
182. J. de Bakker: Mathematical Theory of Programming Correctness (Prentice Hall,

1980)
183. J. de Bakker: Control Flow Semantics (MIT Press, USA, 1995)
184. N. Dershowitz, J.-P. Jouannaud: Rewrite Systems. In: Handbook of Theoretical

Computer Science, Volume B: Formal Models and Semantics, ed by J. van
Leeuwen (Elsevier, 1990) pp 243-320

185. R. Descartes: Discours de la methode pour bien conduire sa raison et chercher
la verite dans les sciences, with three appendices: La Dioptrique, Les Met cores,
and La Geometrie (Leyden, The Netherlands 1637)

186. R. Descartes: La Geometrie (France, 1637)
187. R. Descartes: Discourse on Method and Related Writings (from: Discourse on

the Method of Rightly Conducting the Reason, and Seeking Truth in the Sci­
ences) (France and Penguin Classics, 1637, respectively February 28, 2000)

188. R. Descartes: Discourse on Method and Related Writings (Penguin Classics,
2000)

189. R. Descartes: Discourse on Method, Optics, Geometry, and Meteorology (Hack-
ett Publishing Co, Cambridge, USA 2001)

References 697

190. R. Diaconescu, K. Futatsugi: Logical Semantics of CafeOBJ. Research Report
IS-RR-96-0024S, JAIST, Japan (1996)

191. R. Diaconescu, K. Futatsugi: CafeOBJ Report: The Language, Proof Tech­
niques, and Methodologies for Object-Oriented Algebraic Specification (World
Scientific, Singapore, 1998)

192. R. Diaconescu, K. Futatsugi, S. Iida: CafeOBJ Jewels. In: CAFE: An
Industrial-Strength Algebraic Formal Method (Elsevier, 2000) pp 33-60

193. R. Diaconescu, K. Futatsugi, K. Ogata: CafeOBJ: Logical Foundations and
Methodology. Computing and Informatics 22, 1-2 (2003)

194. E. Dijkstra: A Discipline of Programming (Prentice Hall, 1976)
195. E. Dijkstra, W. Feijen: A Method of Programming (Addison-Wesley, 1988)
196. E. Dijkstra, C. Scholten: Predicate Calculus and Program Semantics (Springer,

1990)
197. O. Dommergaard: The Design of a Virtual Machine for Ada. In: [61] (Springer,

1980) pp 463-605
198. O. Dommergaard, S. Bodilsen: A Formal Definition of P-Code. Technical Re­

port, Dept. of Comp. Sci., Techn. Univ. of Denmark (1980)
199. D.J. Duke, R. Duke: Towards a Semantics for Object-Z. In: VDM and Z - For­

mal Methods in Software Development, vol 428 of Lecture Notes in Computer
Science, ed by D. Bj0rner, C.A.R. Hoare, H. Langmaack (Springer, 1990) pp
244-261

200. R. Duke, P. King, G.A. Rose, G. Smith: The Object-Z Specification Language.
In: Technology of Object-Oriented Languages and Systems: TOOLS 5, ed by
T. Korson et al. (Prentice Hall, 1991) pp 465-483

201. E.H. Diirr, L. Dusink: Role of VDM(++) in the Development of a Real-Time
Tracking and Tracing System. In: FMEy9S: Industrial-Strength Formal Meth­
ods, ed by J. Woodcock, P. Larsen (Springer, 1993) pp 64-72

202. E.H. Diirr, S. Goldsack. Formal Methods and Object Technology, chapter 6
Concurrency and Real-Time in VDM++, pages 86-112. Springer (Eds. S.J.
Goldsack and S.J.H. Kent), London, 1996.

203. E.H. Diirr, J. van Katwijk: V D M + + - A Formal Specification Language for
Object-Oriented Designs. In: Technology of Object-oriented Languages and Sys­
tems, ed by B.M. Heeg, B. Magnusson (Prentice Hall, 1992) pp 63-78

204. E.H. Diirr, W. Lourens, J. van Katwijk: The Use of the Formal Specifica­
tion Language V D M + + for Data Acquisition Systems. In: New Computing
Techniques in Physics Research II, ed by D. Perret-Gallix (World Scientific,
Singapore 1992) pp 47-52

205. B. Dutertre: Complete Proof System for First-Order Interval Temporal Logic.
In: Proceedings of the 10th Annual IEEE Symposium on Logic in Computer
Science (IEEE CS, 1995) pp 36-43

206. R.K. Dybvig: The Scheme Programming Language (MIT Press, Cambridge,
USA 2003)

207. Encyclopaedia Brittanica. Encyclopaedia Brittanica. Merriam-
Webster/Brittanica: Access over the Web: http://www.eb.com: 180/, 1999.

208. H. Ehrig, B. Mahr: Fundamentals of Algebraic Specification 1, Equations and
Initial Semantics (EATCS Monographs on Theoretical Computer Science, vol.
6, Springer, 1985)

209. H. Ehrig, B. Mahr: Fundamentals of Algebraic Specification 2, Module Specifica­
tions and Constraints (EATCS Monographs on Theoretical Computer Science,
vol. 21, Springer, 1990)

698 References

210. H.B. Enderton: A Mathematical Introduction to Logic (Academic Press, New
York, 1974)

211. H.B. Enderton: Elements of Set Theory (Elsevier, Amsterdam, The Nether­
lands 23 May 1977)

212. E. Engeler: Symposium on Semantics of Algorithmic Languages, vol 188 of
Lecture Notes in Mathematics (Springer, 1971)

213. S.S. Epp: Discrete Matematics with Applications, third edn (Thomson,
Brooks/Cole, California, USA 2004)

214. A. Ershov: On the Essence of Translation. Computer Software and System
Programming 3, 5 (1977) pp 332-346

215. A. Ershov: On the Partial Computation Principle. Information Processing Let­
ters 6, 2 (1977) pp 38-41

216. A. Ershov: Mixed Computation: Potential Applications and Problems for Study.
Theoretical Computer Science 18 (1982) pp 41-67

217. A. Ershov: On Futamura Projections. BIT (Japan) 12, 14 (1982) pp 4-5
218. A. Ershov: On Mixed Computation: Informal Account of the Strict and Poly-

variant Computational Schemes. In: Control Flow and Data Flow: Concepts
of Distributed Programming. NATO ASI Series F: Computer and System Sci­
ences, vol. 14, ed by M. Broy (Springer, 1985) pp 107-120

219. A. Ershov, D. Bj0rner, Y. Futamura et al., editors. Special Issue: Selected
Papers from the Workshop on Partial Evaluation and Mixed Computation,
1987 (New Generation Computing, vol. 6, nos. 2,3). Ohmsha and Springer,
1988.

220. A. Ershov, V. Grushetsky: An Implementation-Oriented Method for Describing
Algorithmic Languages. In: Information Processing 77, Toronto, Canada, ed
by B. Gilchrist (North-Holland, 1977) pp 117-122

221. A. Ershov, V. Itkin: Correctness of Mixed Computation in Algol-like Pro­
grams. In: Mathematical Foundations of Computer Science, Tatranskd Lom-
nica, Czechoslovakia. (Lecture Notes in Computer Science, vol. 53), ed by J.
Gruska (Springer, 1977) pp 59-77

222. A. Evans Jr.: The Lamb da-Calculus and Its Relation to Programming Lan­
guages. Unpubl. Notes, MIT (1972)

223. R. Fagin, J.Y. Halpern, Y. Moses, M.Y. Vardi: Reasoning About Knowledge
(MIT Press 1996)

224. W. Feijen, A. van Gasteren, D. Gries, J. Misra, editors. Beauty Is Our Busi­
ness, Texts and Monographs in Computer Science, New York, NY, USA, 1990.
Springer. A Birthday Salute to Edsger W. Dijkstra.

225. A. Field, P. Harrison: Functional Programming (Addison-Wesley, 1988)
226. J.S. Fitzgerald, P.G. Larsen: Developing Software Using VDM-SL (Cambridge

University Press, UK 1997)
227. FOLDOC: The free online dictionary of computing. Electronically, on the Web:

http:/ /wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?ISWIM, 2004.
228. P. Folkjaer, D. Bj0rner: A Formal Model of a Generalised CSP-like Language.

In: Proc. IFIP>80, ed by S. Lavington (North-Holland, Amsterdam, 1980) pp
95-99

229. Formal Systems Europe. Home of the FDR2. Published on the Internet:
http://www.fsel.com/, 2003.

230. A. Fraenkel, Y. Bar-Hillel, A. Levy: Foundations of Set Theory, 2nd revised
edn (Elsevier Science, Amsterdam, The Netherlands 1973)

References 699

231. Y. Futamura: Partial Evaluation of Computation Process - An Approach to a
Compiler-Compiler. Systems, Computers, Controls 2, 5 (1971) pp 45-50

232. K. Futatsugi, R. Diaconescu: CafeOBJ Report — The Language, Proof Tech­
niques, and Methodologies for Object-Oriented Algebraic Specification (World
Scientific, Singapore 1998)

233. K. Futatsugi, J. Goguen, J.-P. Jouannaud, J. Meseguer: Principles of OBJ-2.
In: 12th Ann. Symp. on Principles of Programming (ACM, 1985) pp 52-66

234. K. Futatsugi, A. Nakagawa, T. Tamai, editors. CAFE: An Industrial-Strength
Algebraic Formal Method, Proceedings from an April 1998 Symposium, Nu-
mazu, Japan, Elsevier 2000

235. J. Gallier: Logic for Computer Science: Foundations of Automatic Theorem
Proving (Harper and Row, NY, USA, 1986)

236. C.W. George, P. Haff, K. Havelund et al: The RAISE Specification Language
(Prentice Hall, UK 1992)

237. C.W. George, A.E. Haxthausen: The Logic of the RAISE Specification Lan­
guage. Computing and Informatics 22, 1-2 (2003)

238. C.W. George, A.E. Haxthausen, S. Hughes et al: The RAISE Method (Prentice
Hall, UK 1995)

239. C.W. George, H.D. Van, T. Janowski, R. Moore: Case Studies Using the RAISE
Method (Springer, London 2002)

240. C. Ghezzi, M. Jazayeri, D. Mandrioli: Fundamentals of Software Engineering
(Prentice Hall, 2002)

241. J.-Y. Girard, Y. Lafont, P. Taylor: Proofs and Types, vol 7, Cambridge Tracts
in Theoretical Computer Science edn (Cambridge Univ. Press, UK 1989)

242. Edited by M.J.C. Gordon, T.F. Melham: Introduction to HOL: A Theorem
Proving Environment for Higher-Order Logic (Cambridge University Press,
UK 1993)

243. J. Gosling, F. Yellin: The Java Language Specification (ACM Press, 1996)
244. D. Gries: Compiler Construction for Digital Computers (Wiley, NY, 1971)
245. D. Gries: The Science of Programming (Springer, 1981)
246. D. Gries, F.B. Schneider: A Logical Approach to Discrete Math (Springer, 1993)
247. O. Grillmeyer: Exploring Computer Science with Scheme (Springer, New York,

USA 1998)
248. P.L. Guernic, M.L. Borgne, T. Gauthier, C.L. Maire: Programming Real Time

Applications with Signal. In: Another Look at Real Time Programming, vol
Special Issue of Proceedings of the IEEE (1991)

249. I. Guessarian: Algebraic Semantics (Springer, 1981)
250. C. Gunter, J. Mitchell: Theoretical Aspects of Object-Oriented Programming

(MIT Press, USA, 1994)
251. C. Gunter, D. Scott: Semantic Domains. In: [344] — v°l- B.: ed by J. Leeuwen

(North-Holland, Amsterdam, 1990) pp 633-674
252. C. Gunther: Semantics of Programming Languages (MIT Press, USA, 1992)
253. Y. Gurevich: Sequential Abstract State Machines Capture Sequential Algo­

rithms. ACM Transactions on Computational Logic 1, 1 (2000) pp 77-111
254. Edited by P. Haff: The Formal Definition of CHILL (ITU (Intl. Telecom.

Union), Geneva, Switzerland 1981)
255. P. Haff, A. Olsen: Use of VDM Within CCITT. In: [122] (Springer, 1987) pp

324-330

700 References

256. N. Halbwachs, P. Caspi, Pilaud: The Synchronous Dataflow Programming Lan­
guage Lustre. In: Another Look at Real Time Programming, vol Special Issue
of Proceedings of the IEEE (1991)

257. P. Hall, D. Bj0rner, Z. Mikolajuk: Decision Support Systems for Sustainable
Development: Experience and Potential — a Position Paper. Administrative
Report 80, UNU/IIST, Macau (1996)

258. P.R. Halmos: Naive Set Theory (Springer, Heidelberg, 1998)
259. A. Hamilton: Logic for Mathematicians (Cambridge University Press, 1978,

revised ed.: 1988)
260. A. Hamilton: Numbers, Sets and Axioms: the Apparatus of Mathematics (Cam­

bridge University Press, 1982)
261. M.R. Hansen, H. Rischel: Functional Programming in Standard ML (Addison-

Wesley, 1997)
262. S. Harbinson: Modula 3 (Prentice Hall, USA 1992)
263. G. Hardy: A Course of Pure Mathematics (Cambridge University Press, Eng­

land, 1908, 1943-4, 1949)
264. D. Harel: Algorithmics —The Spirit of Computing (Addison-Wesley, 1987)
265. D. Harel: Statecharts: A Visual Formalism for Complex Systems. Science of

Computer Programming 8, 3 (1987) pp 231-274
266. D. Harel: On Visual Formalisms. Communications of the ACM 33, 5 (1988)
267. D. Harel: The Science of Computing — Exploring the Nature and Power of

Algorithms (Addison-Wesley, April 1989)
268. D. Harel, E. Gery: Executable Object Modeling with Statecharts. IEEE Com­

puter 30, 7 (1997) pp 31-42
269. D. Harel, H. Lachover, A. Naamad et al: STATEMATE: A Working Environ­

ment for the Development of Complex Reactive Systems. Software Engineering
16, 4 (1990) pp 403-414

270. D. Harel, R. Marelly: Come, Let's Play - Scenario-Based Programming Using
LSCs and the Play-Engine (Springer, 2003)

271. D. Harel, A. Naamad: The STATEMATE Semantics of Statecharts. ACM
Transactions on Software Engineering and Methodology (TOSEM) 5, 4 (1996)
pp 293-333

272. F. Harrary: Graph Theory (Addison-Wesley, 1972)
273. F. Hausdorff: Set Theory (Oxford University Press, UK 1991)
274. A.E. Haxthausen, X. Yong: Linking DC together with TRSL. In: Proceedings

of 2nd International Conference on Integrated Formal Methods (IFM 2000),
Schloss Dagstuhl, Germany, November 2000, no 1945 of Lecture Notes in Com­
puter Science (Springer, 2000) pp 25-44

275. E. Hehner: The Logic of Programming (Prentice Hall, 1984)
276. E. Hehner: A Practical Theory of Programming, 2nd edn (Springer, 1993)
277. A. Hejlsberg, S. Wiltamuth, P. Golde: The C# Programming Language

(Addison-Wesley, USA 2003)
278. P. Henderson: Functional Programming: Application and Implementation

(Prentice Hall, 1980)
279. J.L. Hennessy, D.A. Patterson: Computer Architecture: a Quantitative Ap­

proach (Morgan Kaufmann, 1995)
280. M. Hennessy: Algebraic Theory of Processes (MIT Press, Cambridge, USA,

1988)
281. M.C. Henson, S. Reeves, J.P. Bowen: Z Logic and Its Consequences. Computing

and Informatics 22, 1-2 (2003)

References 701

282. J.R. Hindley: Basic Simple Type Theory (Cambridge University Press, October
2002)

283. J.R. Hindley, B. Lercher, J.P. Seldin: Introduction to Combinatory Logic (Cam­
bridge University Press, 1972)

284. J.R. Hindley, J.P. Seldin: Introduction to Combinators and X-Calculus, vol 1
of London Mathematical Society, Student Texts (Cambridge University Press,
1986)

285. J. Hintikka: Knowledge and Belief: An Introduction to the Logic of the Two
Notions (Cornell University Press, NY, USA 1962)

286. C.A.R. Hoare: Notes on Data Structuring. In: [168] (1972) pp 83-174
287. C.A.R. Hoare: Communicating Sequential Processes. Communications of the

ACM 21, 8 (1978)
288. C.A.R. Hoare: Communicating Sequential Processes (Prentice Hall, 1985)
289. C.A.R. Hoare. Communicating Sequential Processes. Published electronically:

http://www.usingcsp.com/cspbook.pdf, 2004. Second edition of [288]. See
also http://www.usingcsp.com/.

290. C.A.R. Hoare, et al.: Laws of Programming. Communications of the ACM 30,
8 (1987) pp 672-686, 770

291. C.A.R. Hoare, J.F. He: Unifying Theories of Programming (Prentice Hall,
1997)

292. C.A.R. Hoare, N. Wirth: An Axiomatic Definition of the Programming Lan­
guage PASCAL. Acta Informatica 2 (1973) pp 335-355

293. A. Hodges: Alan Turing: the Enigma (Random House, London, UK 1992)
294. W. Hodges: Logic (Penguin Books, 1977)
295. C.J. Hogger: Essentials of Logic Programming (Clarendon Press, 1990)
296. J. Hopcroft, J. Ullman: Introduction to Automata Theory, Languages and Com­

putation (Addison-Wesley, 1979)
297. I. Horebeek, J. Lewi: Algebraic Specifications in Software Engineering. An In­

troduction (Springer, New York, NY, 1989)
298. W. Humphrey: Managing the Software Process (Addison-Wesley, 1989)
299. IEEE CS. IEEE Standard Glossary of Software Engineering Terminology, 1990.

IEEE Std.610.12.
300. D.C. Ince: The Collected Works of A.M. Turing: Mechanical Intelligence

(North-Holland, Amsterdam, The Netherlands 1992)
301. Inmos Ltd.: specification of instruction set & Specification of floating point

unit instructions. In: Transputer Instruction Set - A Compiler writer's guide
(Prentice Hall, UK 1988) pp 127-161

302. ITU-T. CCITT Recommendation Z.120: Message Sequence Chart (MSC),
1992.

303. ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 1996.
304. ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 1999.
305. M.A. Jackson: Principles of Program Design (Academic Press, 1969)
306. M.A. Jackson: System Design (Prentice Hall, 1985)
307. M.A. Jackson: Problems, methods and specialisation. Software Engineering

Journal 9, 6 (1994) pp 249-255
308. M.A. Jackson: Software Requirements & Specifications: a lexicon of practice,

principles and prejudices (Addison-Wesley, UK 1995)
309. M.A. Jackson: Software Hakubutsushi: sekai to kikai no kijutsu (Software Re­

quirements & Specifications: a lexicon of practice, principles and prejudices)
(Toppan Company, Japan 1997)

702 References

310. M.A. Jackson: Problem Frames — Analyzing and Structuring Software Devel­
opment Problems (Addison-Wesley, UK 2001)

311. M.A. Jackson, G. Twaddle: Business Process Implementation — Building
Workflow Systems (Addison-Wesley, 1997)

312. J. Jaffar, S. Michaylov: Methodology and Implementation of a CLP System.
Technical Report, IBM Research, Yorktown (1987)

313. K. Jensen: Coloured Petri Nets, vol 1: Basic Concepts (234 pages + xii), Vol.
2: Analysis Methods (174 pages + x), Vol. 3: Practical Use (265 pages + xi)
of EATCS Monographs in Theoretical Computer Science (Springer, Heidelberg
1985, revised and corrected second version: 1997)

314. K. Jensen, N. Wirth: Pascal User Manual and Report, vol 18 of LNCS
(Springer, 1976)

315. C.B. Jones: Denotational Semantics of GOTO: an Exit Formulation and Its
Relation to Continuations. In: [120] (Springer, 1978) pp 278-304

316. C.B. Jones: Systematic Software Development Using VDM (Prentice Hall,
1986)

317. C.B. Jones: Systematic Software Development Using VDM, 2nd edn (Prentice
Hall, 1990)

318. C.B. Jones, K. Middelburg: A Typed Logic of Partial Functions Reconstructed
Classically. Acta Informatica 31, 5 (1994) pp 399-430

319. N.D. Jones: Computability and Complexity — From a Programming Point of
View (MIT Press, USA, 1996)

320. N.D. Jones, C. Gomard, P. Sestoft: Partial Evaluation and Automatic Program
Generation (Prentice Hall, 1993)

321. B. Kernighan, D. Ritchie: C Programming Language, 2nd edn (Prentice Hall,
1989)

322. S.C. Kleene: Lambda-definability and recursiveness. Duke Math. J. 2 (1936) pp
340-53

323. S.C. Kleene: Introduction to Meta-mathematics (Van Nostrand, New York and
Toronto, 1952)

324. S.C. Kleene: Mathematical Logic (Dover Publications, 2002)
325. J. Klose, H. Wittke: An Automata Based Interpretation of Live Sequence

Charts. In: TACAS 2001, ed by T. Margaria, W. Yi (Springer, 2001) pp 512-
527

326. D. Knuth: The Art of Computer Programming, Vol. 1: Fundamental Algorithms
(Addison-Wesley, USA, 1968)

327. D. Knuth: The Art of Computer Programming, Vol. 2.: Seminumerical Algo­
rithms (Addison-Wesley, USA, 1969)

328. D. Knuth: The Art of Computer Programming, Vol. 3: Searching & Sorting
(Addison-Wesley, USA, 1973)

329. B. Konikowska, A. Tarlecki, A. Blikle: A Three-alued Logic for Software Spec­
ification and Validation. In: [135] (1988) pp 218-242

330. I. Lakatos: Proofs and Refutations: The Logic of Mathematical Discovery (Eds.:
J. Worrall and E.G. Zahar) (Cambridge University Press, UK 1976)

331. L. Lamport: The Temporal Logic of Actions. ACM Transactions on Program­
ming Languages and Systems 16, 3 (1994) pp 872-923

332. L. Lamport: Specifying Systems (Addison-Wesley, USA 2002)
333. P. Landin: The Mechanical Evaluation of Expressions. Computer Journal 6, 4

(1964) pp 308-320

References 703

334. P. Landin: A Correspondence Between ALGOL 60 and Church's Lambda-
Notation (in 2 parts). Communications of the ACM 8, 2-3 (1965) pp 89-101
and 158-165

335. P. Landin: A Generalization of Jumps and Labels. Technical Report, Univac
Sys. Prgr. Res. Grp., NY (1965)

336. P. Landin: Getting Rid of Labels. Technical Report, Univac Sys. Prgr. Res.
Grp., NY (1965)

337. P. Landin: A Formal Description of ALGOL 60. In: [483] (1966) pp 266-294
338. P. Landin: A Lambda Calculus Approach. In: Advances in Programming and

Non-numeric Computations, ed by L. Fox (Pergamon Press, 1966) pp 97-141
339. P. Landin: The Next 700 Programming Languages. Communications of the

ACM 9, 3 (1966) pp 157-166
340. P. Landin. Histories of discoveries of continuations: belles-lettres with equivocal

tenses, 1997. In O. Danvy, editor, ACM SIGPLAN Workshop on Continuations,
Number NS-96-13 in BRICS Notes Series, 1997.

341. J. Laprie: Dependable computing and fault-tolerance: concepts and terminol­
ogy. In: 15th. Int. Symp. on Fault-Tolerant Computing (IEEE, 1985)

342. J. Lee: Computer Semantics (Van Nostrand Reinhold, 1972)
343. J. Lee, W. Delmore: The Vienna Definition Language, A Generalization of

Instruction Definitions. In: ACM SIGPLAN Symp. on Programming Language
Definitions, San Francisco (1969)

344. Edited by J. van Leeuwen: Handbook of Theoretical Computer Science, Volumes
A and B (Elsevier, 1990)

345. H. Leonard, N. Goodman: The Calculus of Individuals and Its Uses. Journal
of Symbolic Logic 5 (1940) pp 45-55

346. X. Leroy, P. Weis: Manuel de Reference du langage Caml (InterEditions, Paris,
France 1993)

347. S. Levi, A. Agrawala: Real-Time System Design (McGraw-Hill, NY, USA 1990)
348. T. Lindholm, F. Yellin: The Java Virtual Machine Specification (ACM Press

Books, 1996)
349. J. Lipson: Elements of Algebra and Algebraic Computing (Addison-Wesley,

USA 1981)
350. W. Little, H. Fowler, J. Coulson, C. Onions: The Shorter Oxford English Dic­

tionary on Historical Principles (Clarendon Press, UK, 1987)
351. J. Lloyd: Foundation of Logic Programming (Springer, 1984)
352. H.H. L0vengreen, D. Bj0rner: On a Formal Model of the Tasking Concepts in

Ada. In: ACM SIGPLAN Ada Symp. (1980)
353. P. Lucas: Formal Semantics of Programming Languages: VDL. IBM Journal

of Devt. and Res. 25, 5 (1981) pp 549-561
354. P. Lucas, K. Walk: On the Formal Description of PL/I. Annual Review Auto­

matic Programming Part 3 6, 3 (1969)
355. E. Luschei: The Logical Systems of Lesniewski (North-Holland, Amsterdam,

The Netherlands 1962)
356. J. Liitzen: Joseph Liouville 1809-1882: Master of Pure and Applied Mathe­

matics, vol 15 of Studies in the History of Mathematics and Physical Sciences
(Springer, New York - Berlin 1990)

357. N. Lynch: Distributed Algorithms (Morgan Kaufmann Publishers, 1996)
358. C. MacPherson: Burke (Oxford University Press, 1980)
359. Z. Manna: Mathematical Theory of Computation (McGraw-Hill, 1974)

704 References

360. Z. Manna, A. Pnueli: The Temporal Logic of Reactive Systems: Specifications
(Addison-Wesley, 1991)

361. Z. Manna, A. Pnueli: The Temporal Logic of Reactive Systems: Safety
(Addison-Wesley, 1995)

362. Z. Manna, R. Waldinger: The Logical Basis for Computer Programming,
Vols. 1-2 (Addison-Wesley, 1985-90)

363. W. Mao: Modern Cryptography: Theory and Practice (Pearson Professional
Education, Prentice Hall, 2003)

364. D. May: occam (Prentice Hall, UK 1982)
365. J. McCarthy: Recursive Functions of Symbolic Expressions and Their Com­

putation by Machines, Part I. Communications of the ACM 3, 4 (1960) pp
184-195

366. J. McCarthy: Towards a Mathematical Science of Computation. In: IFIP World
Congress Proceedings, ed by C. Popplewell (1962) pp 21-28

367. J. McCarthy: A Basis for a Mathematical Theory of Computation. In: Com­
puter Programming and Formal Systems (North-Holland, Amsterdam, 1963)

368. J. McCarthy: A Formal Description of a Subset of ALGOL. In: [483] (1966)
369. J. McCarthy. Artificial Intellingence. Electronically, on the Web: h t t p : / / -

www-formal.Stanford.edu/jmc/, 2004.
370. J. McCarthy, et al.: LISP 1.5, Programmer's Manual (The MIT Press, USA

1962)
371. K. Mehlhorn: Data Structures and Algorithms: 3 vols.: 1: Multi-dimensional

Searching and Computational Geometry, 2: Graph Algorithms and NP-
Completeness, 3: Sorting and Searching (Springer, 1984)

372. E. Mendelsohn: Introduction to Mathematical Logic, 4th edn (Lewis Publishers,
International Thomson Publishing, June 1, 1997)

373. Merriam-Webster. Online Dictionary: http://www.m-w.com/home.htm, 2004.
Merriam-Webster, USA.

374. J. Meseguer: Software Specification and Verification in Rewriting Logic. NATO
Advanced Study Institute (2003)

375. B. Meyer: On Formalism in Specifications. IEEE Software 2, 1 (1985) pp 6-26
376. B. Meyer: Object-oriented Software Construction (Prentice Hall, 1988)
377. B. Meyer: Eiffel: The Language, second revised edn (Prentice Hall, USA 1992)
378. B. Meyer: Object-oriented Software Construction, second revised edn (Prentice

Hall, USA 1997)
379. J. Meyer, T. Downing, A. Shulmann: Java Virtual Machine (O'Reilly h Asso­

ciates, 1997)
380. G. Michaelson: Introduction to Functional Programming Through Lambda-

Calculus (Addison-Wesley, 1989)
381. Microsoft Corporation: MCAD/MCSD Self-Paced Training Kit: Developing

Web Applications with Microsoft Visual Basic .NET and Microsoft Visual C#
.NET (Microsoft Corporation, Redmond, WA, USA 2002)

382. Microsoft Corporation: MCAD/MCSD Self-Paced Training Kit: Developing
Windows-Based Applications with Microsoft Visual Basic .NET and Microsoft
Visual C# .NET (Microsoft Corporation, Redmond, WA, USA 2002)

383. D. Mieville, D. Vernant: Stanislaw Lesniewski aujourd'hui Grenoble, October
8-10, 1992 (Neuchatel, 1996)

384. P. Millican, A. Clark: The Legacy of Alan Turing: Machines and Thought (Ox­
ford University Press, UK 1999)

References 705

385. R. Milne, C. Strachey: A Theory of Programming Language Semantics (Chap­
man and Hall, London, Halsted Press/Wiley, NY 1976)

386. R. Milner: Calculus of Communication Systems, vol 94 of Lecture Notes in
Computer Science (Springer, 1980)

387. R. Milner: Communication and Concurrency (Prentice Hall, 1989)
388. R. Milner: Communicating and Mobile Systems: The ^-Calculus (Cambridge

University Press, 1999)
389. R. Milner, M. Tofte, R. Harper: The Definition of Standard ML (MIT Press,

USA and UK, 1990)
390. C.C. Morgan: Programming from Specifications (Prentice Hall, UK 1990)
391. J. Morris: Lamb da-Calculus Models of Programming Languages. PhD Thesis,

Lab. for Computer Science, Mass. Inst, of Techn., Cambridge, USA, TR-57
(1968)

392. L. Morris: The Next 700 Programming Language Descriptions. Unpubl. ms.,
Univ. of Essex, Comp. Ctr. (1970)

393. L. Morris: Advice on Structuring Compilers and Proving Them Correct. In:
Principles of Programming Languages, SIGPLAN/SIGACT Symposium, ACM
Conference Record/Proceedings (1973) pp 144-152

394. Y.N. Moschovakis: Notes on Set Theory (Springer, Heidelberg, 1994)
395. T. Mossakowski, A.E. Haxthausen, D. Sanella, A. Tarlecki: CASL — The Com­

mon Algebraic Specification Language: Semantics and Proof Theory. Comput­
ing and Informatics 22, 1-2 (2003)

396. P.D. Mosses: Action Semantics (Cambridge University Press, 1992)
397. P.D. Mosses: CoFI: The Common Framework Initiative for Algebraic Specifi­

cation. Bull. EATCS 59 (1996) pp 127-132
398. P.D. Mosses: CASL for CafeOBJ users. In: CAFE: An Industrial-Strength Al­

gebraic Formal Method (Elsevier, 2000) pp 121-144
399. Edited by P.D. Mosses: CASL Reference Manual, vol 2960 of LNCS (Springer,

Heidelberg 2004)
400. B.C. Moszkowski: Executing Temporal Logic Programs (Cambridge University

Press, UK 1986)
401. Edited by G. Nelson: Systems Programming in Modula 3 (Prentice Hall, USA

1991)
402. A. Nerode, R. Shore: Logic for Applications (Springer, 1997)
403. D.E. Newton: Alan Turing (Xlibris Corporation, 2003)
404. J.F. Nilsson: Formal Vienna Development Method Models of PROLOG. In:

Implementations of PROLOG, ed by J. Campbell (Ellis Horwood Series: Ar­
tificial Intelligence, 1984) pp 281-308

405. J.F. Nilsson. Some Foundational Issues in Ontological Engineering, October
30 - Novewmber 1 2002. Lecture slides for a PhD Course in Representation
Formalisms for Ontologies, Techn. Univ. of Denmark.

406. T. Nipkow, L.C. Paulson, M. Wenzel: Isabelle/HOL, A Proof Assistant for
Higher-Order Logic, vol 2283 of LNCS (Springer, Heidelberg, Germany, 2002)

407. B. Nordstrom, K. Petersson, J.M. Smith: Programming in Martin-Lof's Type
Theory An Introduction, vol 7 of International Series of Monographs on Com­
puter Science (Clarendon Press, Oxford University Press, UK 1990) p 232

408. Object Management Group: OMG Unified Modelling Language Specification,
version 1.5 edn (OMG/UML, http://www .omg.org/uml/ 2003)

409. O. Ore: Graphs and Their Uses (The Mathematical Association of America,
1963)

706 References

410. S. Owre, N. Shankar, J.M. Rushby, D.W.J. St ringer-Calvert. PVS Language
Reference. Computer Science Laboratory, SRI International, CA, 1999.

411. S. Owre, N. Shankar, J.M. Rushby, D.W.J. St ringer-Calvert. PVS System
Guide. Computer Science Laboratory, SRI International, Menlo Park, CA,
Sept. 1999.

412. Oxford University Press: The Oxford Dictionary of Quotations (Oxford Uni­
versity Press, UK 1974)

413. D.L. Parnas: On the criteria to be used in Decomposing Systems into Modules.
Communications of the ACM 15, 12 (1972) pp 1053-1058

414. D.L. Parnas: A technique for Software Module Specification with Examples.
Communications of the ACM 14, 5 (1972)

415. D.L. Parnas: Software Fundamentals: Collected Papers, Eds.: David M. Weiss
and Daniel M. Hoffmann (Addison-Wesley, 2001)

416. D.L. Parnas, P.C. Clements: A Rational Design Process: How and Why to Fake
it. IEEE Trans. Software Engineering 12, 2 (1986) pp 251-257

417. D.L. Parnas, P.C. Clements, D.M. Weiss: Enhancing reusability with infor­
mation hiding. In: Tutorial: Software Reusability (Ed.: Peter Freeman) (IEEE
Press, 1986) pp 83-90

418. D.A. Patterson, J.L. Hennessy: Computer Organization and Design (Morgan
Kaufmann, 1998)

419. L. Paulson: Isabelle: The Next 700 Theorem Provers. In: Logic in Computer
Science, ed by P. Oddifreddi (Academic Press, 1990) pp 361-386

420. R. Penner: Discrete Mathematics, Proof Techniques and Mathematical Struc­
tures (World Scientific, Singapore 1999)

421. CA. Petri: Kommunikation mit Automaten (Bonn: Institut fur Instrumentelle
Mathematik, Schriften des IIM Nr. 2, 1962)

422. C. Petzold: Programming Windows with C# (Core Reference) (Microsoft Cor­
poration, Redmond, WA, USA 2001)

423. S.L. Pfleeger: Software Engineering, Theory and Practice, 2nd edn (Prentice
Hall, 2001)

424. B. Pierce: Types and Programming Languages (MIT Press, 2002)
425. M. Piff: Discrete Mathematics, An Introduction for Software Engineers (Cam­

bridge University Press, UK 1991)
426. G.D. Plotkin: Call-by-Name, Call-by-Value and the Lambda Calculus. Theo­

retical Computer Science 1 (1975) pp 125-159
427. G.D. Plotkin: A Structural Approach to Operational Semantics. Technical Re­

port, Comp. Sci. Dept., Aarhus Univ., Denmark; DAIMI-FN-19 (1981)
428. G.D. Plotkin: A Structural Approach Operational Semantics. Journal of Logic

and Algebraic Programming 60-61 (2004) pp 17-139
429. A. Pnueli: The Temporal Logic of Programs. In: Proceedings of the 18th IEEE

Symposium on Foundations of Computer Science (IEEE CS, 1977) pp 46-57
430. R.S. Pressman: Software Engineering, A Practitioner's Approach, 5th edn

(McGraw-Hill, 1981-2001)
431. M. Penicka, A.K. Strupchanska, D. Bj0rner: Train Maintenance Routing. In:

FORMS 2003: Symposium on Formal Methods for Railway Operation and Con­
trol Systems (L'Harmattan Hongrie, 2003)

432. B. Randell: On Failures and Faults. In: FME 2003: Formal Methods, vol 2805
of Lecture Notes in Computer Science (Springer, 2003) pp 18-39

433. C. Reade: Elements of Functional Programming (Addison-Wesley, 1989)

References 707

434. M. Reiser: The 0BER0N System, User Guide and Programmer's Manual
(Addison-Wesley, 1991)

435. W. Reisig: Petri Nets: An Introduction, vol 4 of EATCS Monographs in The­
oretical Computer Science (Springer, 1985)

436. W. Reisig: A Primer in Petri Net Design (Springer, 1992)
437. W. Reisig: Elements of Distributed Algorithms: Modelling and Analysis with

Petri Nets (Springer, 1998)
438. W. Reisig: On Gurevich's Theorem for Sequential Algorithms. Acta Informatica

(2003)
439. W. Reisig: The Expressive Power of Abstract-State Machines. Computing and

Informatics 22, 1-2 (2003)
440. J.C. Reynolds: On the Relation Between Direct and Continuation Semantics.

In: International Colloquium on Automata, Languages and Programming, Eu­
ropean Association for Theoretical Computer Science (Springer, 1974) pp 157-
168

441. J.C. Reynolds: The Craft of Programming (Prentice Hall, 1981)
442. J.C. Reynolds: Theories of Programming Languages (Cambridge University

Press, UK 1998)
443. J.C. Reynolds: The Semantics of Programming Languages (Cambridge Univer­

sity Press, UK 1999)
444. H.R. Rogers: Theory of Recursive Functions and Effective Computability

(McGraw-Hill, 1967)
445. P. Roget: Rogers Thesaurus (Collins, London and Glasgow, 1974)
446. Edited by A.W. Roscoe: A Classical Mind: Essays in Honour of C.A.R. Hoare

(Prentice Hall, 1994)
447. A.W. Roscoe. Model Checking CSP, pages 353-378. Prentice Hall, 1994
448. A.W. Roscoe: Theory and Practice of Concurrency (Prentice Hall, 1997)
449. A.W. Roscoe, C.A.R. Hoare: Laws of occam Programming. Theoretical Com­

puter Science 60 (1988) pp 177-229
450. Edited by A.W. Roscoe, J.C.P. Woodcock: A Millennium Perspective on In­

formatics (Palgrave, 2001)
451. J. Rushby: Formal Methods and the Certification of Critical Systems. Technical

Report SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo
Park, CA., USA (1993)

452. J. Rushby: Formal Methods and Their Role in the Certification of Critical
Systems. Technical Report SRI-CSL-95-1, Computer Science Laboratory, SRI
International, Menlo Park, CA (1995)

453. D. Sangiorgio, D. Walker: The ^-Calculus (Cambridge University Press, 2001)
454. D.A. Schmidt: Denotational Semantics: a Methodology for Language Develop­

ment (Allyn & Bacon, 1986)
455. D.A. Schmidt: The Structure of Typed Programming Languages (MIT Press,

1994)
456. S. Schneider: Concurrent and Real-Time Systems — The CSP Approach (Wi­

ley, UK 2000)
457. J.R. Schoenfeld: Mathematical Logic (A.K. Peters, 2001)
458. D. Scott: The Lattice of Flow Diagrams. In: [212] (1970) pp 311-366
459. D. Scott: Outline of a Mathematical Theory of Computation. In: Proc. J^th

Ann. Princeton Conf. on Inf. Sci. and Sys. (1970) p 169

708 References

460. D. Scott: Continuous Lattices. In: Toposes, Algebraic Geometry and Logic, ed
by F. Lawvere (Springer, Lecture Notes in Mathematics, Vol. 274 1972) pp
97-136

461. D. Scott: Data Types as Lattices. Unpublished Lecture Notes, Amsterdam
(1972)

462. D. Scott: Lattice Theory, Data Types and Semantics. In: Symp. Formal Se­
mantics, pp 67-106, ed by R. Rustin (Prentice Hall, 1972)

463. D. Scott: Mathematical Concepts in Programming Language Semantics. In:
Proc. AFIPS, Spring Joint Computer Conference, 40 (1972) pp 225-234

464. D. Scott: Lattice-Theoretic Models for Various Type Free Calculi. In: Proc. 4th
Intl. Congr. for Logic Methodology and the Philosophy of Science, Bucharest
(North-Holland, Amsterdam, 1973) pp 157-187

465. D. Scott: A-Calculus and Computer Science Theory. In: Lecture Notes in Com­
puter Science, Vol. 37, ed by C. Bohm (Springer, 1975)

466. D. Scott: Data Types as Lattices. SI AM Journal on Computer Science 5, 3
(1976) pp 522-587

467. D. Scott: Domains for Denotational Semantics. In: International Colloquium on
Automata, Languages and Programming, European Association for Theoretical
Computer Science (Springer, 1982) pp 577-613

468. D. Scott: Some Ordered Sets in Computer Science. In: Ordered Sets, ed by I.
Rival (Reidel Publ., 1982) pp 677-718

469. D. Scott, C. Strachey: Towards a Mathematical Semantics for Computer Lan­
guages. In: Computers and Automata, vol 21 of Microwave Research Inst. Sym­
posia (1971) pp 19-46

470. P. Sestoft: Java Precisely (MIT Press, 2002)
471. R. Sethi, A. Tang: Constructing Call-by-Value Continuation Semantics. Jour­

nal of the ACM 27 (1980) pp 580-597
472. N. Shankar: Metamathematics, Machines and G'odeVs Proof (Cambridge Uni­

versity Press, UK 1994)
473. P.M. Simons. LesniewskVs Logic and Its Relation to Classical and Free Logics.

In: Foundations of Logic and Linguistics: Problems and Their Solutions, Georg
Dorn and P. Weingartner (Eds.). Plenum Press, NY, 1985.

474. S. Sokolowski: Applicative Higher-Order Programming: the Standard ML Per­
spective (Chapman and Hall, 1991)

475. I. Sommerville: Software Engineering, 6th edn (Addison-Wesley, 1982-2001)
476. J.M. Spivey: Understanding Z: A Specification Language and Its Formal Se­

mantics, vol 3 of Cambridge Tracts in Theoretical Computer Science (Cam­
bridge University Press, 1988)

477. J.M. Spivey: The Z Notation: A Reference Manual (Prentice Hall, UK 1989)
478. J.M. Spivey: The Z Notation: A Reference Manual, 2nd edn (Prentice Hall,

1992)
479. Edited by J.T.J. Srzednicki, Z. Stachniak: LesniewskVs lecture notes in logic

(Dordrecht, 1988)
480. J.T.J. Srzednicki, Z. Stachniak: Lesniewski's systems protothetic (Dordrecht,

1998)
481. D.F. Stanat, D.F. McAllister: Discrete Mathematics for Computer Science

(Prentice Hall, 1977)
482. Edited by J. Staunstrup, W. Wolff: Hardware/Software Co-design: Principles

and Practice (Kluwer Academic Press, The Netherlands 1997)

References 709

483. Edited by T.B. Steel: Formal Language Description Languages, IFIP TC-2
Work. Conf., Baden (North-Holland, Amsterdam, 1966)

484. Edited by J. Stein: The Random House American Everyday Dictionary (Ran­
dom House, NY, USA 1949, 1961)

485. C. Strachey: Fundamental Concepts in Programming Languages. Unpubl. Lec­
ture Notes, NATO Summer School, Copenhagen, 1967, and Programming Re­
search Group, Oxford Univ. (1968)

486. C. Strachey: The Varieties of Programming Languages. Techn. Monograph 10,
Programming Research Group, Oxford Univ. (1973)

487. C. Strachey: Continuations: A Mathematical Semantics which can deal with
Full Jumps. Techn. Monograph, Programming Research Group, Oxford Univ.
(1974)

488. H. Strong: Translating Recursion Equations into Flow Charts. In: Proceedings
2nd Annual ACM Symposium on Theory of Computig (SToC) (1970) pp 184-
197

489. B. Stroustrup: C+ + Programming Language (Addison-Wesley, 1986)
490. A.K. Strupchanska, M. Penicka, D. Bj0rner: Railway Staff Rostering. In:

FORMS 2003: Symposium on Formal Methods for Railway Operation and Con­
trol Systems (L'Harmattan Hongrie, 2003)

491. P.R. Suppes: Axiomatic Set Theory (Dover, NY, USA 7 May 1973)
492. P.R. Suppes, S. Hill: A First Course in Mathematical Logic (Dover, July 1,

2002)
493. Edited by S.J. Surma, J.T. Srzednicki, D.I. Barnett, V.F. Rickey: Stanislaw

Lesniewski: Collected Works (2 Vols.) (Dordrecht, Boston - New York 1988)
494. V.G. Szebehely: Adventures in Celestial Mechanics. A First Course in the The­

ory of Orbits (University of Texas Press, USA 1993)
495. R. Tarjan: Data Structures and Network Algorithms (SIAM: Soc. for Ind. &

Appl. Math., 1983)
496. R. Tennent: Principles of Programming Languages (Prentice Hall, 1981)
497. R. Tennent: The Semantics of Programming Languages (Prentice Hall, 1997)
498. S. Thompson: Haskell: The Craft of Functional Programming, 2nd edn

(Addison-Wesley, 1999)
499. F.X. Tong: From the Soil — The Foundations of Chinese Society: XiangTu

ZhongGuo (University of California Press, USA (1947) 1992)
500. G. Tourlakis: Lectures in Logic and Set Theory: Volume 2, Set Theory (Cam­

bridge University Press, UK 2003)
501. W.A. Triebel: The 80386, 80486, and Pentium Microprocessors (Prentice Hall,

1998)
502. D. Turner: Miranda: A Non-strict Functional Language with Polymorphic

Types. In: Functional Programming Languages and Computer Architectures,
no 201 of Lecture Notes in Computer Science, ed by J. Jouannaud (Springer,
Heidelberg, Germany, 1985)

503. J. van Benthem: The Logic of Time, vol 156 of Synthese Library: Studies in
Epistemology, Logic, Methhodology, and Philosophy of Science (Editor: Jaakko
Hintika), 2nd edn (Kluwer Academic, The Netherlands 1991)

504. R. van Glabbeek, P. Weijland. Branching Time and Abstraction in Bisim-
ulation Semantics. Electronically, on the Web: h t t p : / / t h e o r y . S t a n f o r d . -
edu/~rvg/abs t rac t ion /abs t rac t ion .h tml , Centrum voor Wiskunde en In-
formatica, Postbus 94079, 1090 GB Amsterdam, The Netherlands, January
1996.

710 References

505. W. van Orman Quine: Set Theory and Its Logic (Harvard University Press,
USA 1969)

506. W. van Orman Quine: From a Logical Point of View (Harvard Univ. Press,
USA 1980)

507. W. van Orman Quine: Word and Object (MIT Press, USA 1960)
508. W. van Orman Quine: Pursuit of Truth, paperback edn (Harvard Univ. Press,

USA 1992)
509. W. van Orman Quine: Mathematical Logic (Harvard University Press, 1979)
510. A. van Wijngaarden: Report on the Algorithmic Language ALGOL 68. Acta

Informatica 5 (1975) pp 1-236
511. B. Venners: Inside the Java 2.0 Virtual Machine (Enterprise Computing)

(McGraw-Hill, 1999)
512. H. van Vliet: Software Engineering: Principles and Practice (Wiley, UK 2000)
513. C. Wadsworth: Semantics and Pragmatics of the Lamb da-Calculus. PhD The­

sis, Programming Research Group, Oxford Univ., (1971)
514. M. Wand: Continuation-Based Program Transformation Strategies. Journal of

the ACM 27 (1980) pp 164-180
515. M. Wand: Induction, Recursion and Programming (North-Holland, Amster­

dam, 1980)
516. D. Watt, B. Wichmann, W. Findlay: Ada: Language and Methodology (Prentice

Hall, 1986)
517. P. Wegner: Programming Languages, Information Structures, and Machine Or­

ganization (McGraw-Hill, 1968)
518. P. Weis, X. Leroy: Le langage Caml (Dunod, Paris, France 1999)
519. Wikipedia: Polymorphism. In: Internet (Published: http://en.wikipedia.org/-

wiki/Polymorphism_(computer.science), 2005)
520. A. Wikstrom: Functional Programming Using Standard ML (Prentice Hall,

1984)
521. G. Winskel: The Formal Semantics of Programming Languages (The MIT

Press, USA, 1993)
522. N. Wirth: The Programming Language PASCAL. Acta Informatica 1, 1 (1971)

pp 35-63
523. N. Wirth: Systematic Programming (Prentice Hall, 1973)
524. N. Wirth: Algorithms + Data Structures = Programs (Prentice Hall, 1976)
525. N. Wirth: Programming in Modula-2 (Springer, Heidelberg, 1982)
526. N. Wirth: From Modula to Oberon. Software — Practice and Experience 18

(1988) pp 661-670
527. N. Wirth: The Programming Language Oberon. Software — Practice and Ex­

perience 18 (1988) pp 671-690
528. N. Wirth: The Programming Language Oberon. Software — Practice and Ex­

perience 18 (1988) pp 671-690
529. N. Wirth, J. Gutknecht: The Oberon System. Software — Practice and Expe­

rience 19, 9 (1989) pp 857-893
530. N. Wirth, J. Gutknecht: The Oberon Project (Addison-Wesley, 1992)
531. N. Wirth, C.A.R. Hoare: A Contribution to the Development of ALGOL. Com­

munications of the ACM 9, 6 (1966) pp 413-432
532. D.A. Wolfram: The Clausal Theory of Types (Cambridge University Press,

March 1993)
533. J.C.P. Woodcock, J. Davies: Using Z: Specification, Proof and Refinement

(Prentice Hall, 1996)

References 711

534. J.C.P. Woodcock, M. Loomes: Software Engineering Mathematics (Pitman,
London, 1988)

535. Y. Xia, C.W. George: An Operational Semantics for Timed RAISE. In: FM'99
— Formal Methods, ed by J.M. Wing, J. Woodcock, J. Davies (Springer, 1999)
pp 1008-1027

536. E.N. Zalta: Logic. In: The Stanford Encyclopedia of Philosophy (Published:
http://plato.stanford.edu/, Winter 2003)

537. C.C. Zhou, M.R. Hansen: Duration Calculus: A Formal Approach to Real-Time
Systems (Springer, 2004)

538. C.C. Zhou, C.A.R. Hoare, A.P. Ravn: A Calculus of Durations. Information
Proc. Letters 40, 5 (1992)

Monographs in Theoretical Computer Science • An EATCS Series

K. Jensen
Coloured Petri Nets
Basic Concepts, Analysis Methods
and Practical Use, Vol. 1
2nd ed.

K. Jensen
Coloured Petri Nets
Basic Concepts, Analysis Methods
and Practical Use, Vol. 2

K. Jensen
Coloured Petri Nets
Basic Concepts, Analysis Methods
and Practical Use, Vol. 3

A.NaitAbdallah
The Logic of Partial Information

Z.Fulop,H.Vogler
Syntax-Directed Semantics
Formal Models Based
on Tree Transducers

A. de Luca, S. Varricchio
Finiteness and Regularity
in Semigroups and Formal Languages

E. Best, R. Devillers, M. Koutny
Petri Net Algebra

S. P. Demri, E. S. Orlowska
Incomplete Information:
Structure, Inference, Complexity

J. CM. Baeten, C.A. Middelburg
Process Algebra with Timing

L. A. Hemaspaandra, L. Torenvliet
Theory of Semi-Feasible Algorithms

E. Fink, D.Wood
Restricted-Orientation Convexity

Zhou Chaochen, M. R. Hansen
Duration Calculus
A Formal Approach to Real-Time
Systems

M. Grofie-Rhode
Semantic Integration
of Heterogeneous Software
Specifications

Texts in Theoretical Computer Science • An EATCS Series

M. Garzon
Models of Massive Parallelism
Analysis of Cellular Automata
and Neural Networks

J. Hromkovic
Communication Complexity
and Parallel Computing

A. Leitsch
The Resolution Calculus

A. Salomaa
Public-Key Cryptography
2nd ed.

K. Sikkel
Parsing Schemata
A Framework for Specification
and Analysis of Parsing Algorithms

H.Vollmer
Introduction to Circuit Complexity
A Uniform Approach

W. Fokkink
Introduction to Process Algebra

K. Weihrauch
Computable Analysis
An Introduction

}. Hromkovic
Algorithmics for Hard Problems
Introduction to Combinatorial
Optimization, Randomization,
Approximation, and Heuristics
2nded.

S.Jukna
Extremal Combinatorics
With Applications
in Computer Science

P. Clote, E. Kranakis
Boolean Functions
and Computation Models

L. A. Hemaspaandra, M. Ogihara
The Complexity Theory Companion

C. S. Calude
Information and Randomness.
An Algorithmic Perspective
2nd ed.

J. Hromkovic
Theoretical Computer Science
Introduction to Automata,
Computability, Complexity,
Algorithmics, Randomization,
Communication and Cryptography

K. Schneider
Verification of Reactive Systems
Formal Methods and Algorithms

S. Ronchi Delia Rocca, L. Paolini
The Parametric Lambda Calculus
A Metamodel for Computation

Y.Bertot,P.Casteran
Interactive Theorem Proving
and Program Development
Coq'Art: The Calculus
of Inductive Constructions

L. Libkin
Elements of Finite Model Theory

M. Hutter
Universal Artificial Intelligence
Sequential Decisions
Based on Algorithmic Probability

G. Paun, G. Rozenberg, A. Salomaa
DNA Computing
New Computing Paradigms
2nd corr. printing

W.Kluge
Abstract Computing Machines
A Lambda Calculus Perspective

J. Hromkovic
Dissemination of Information
in Communication Networks
Broadcasting, Gossiping, Leader
Election, and Fault Tolerance

D.BJ0rner
Software Engineering 1
Abstraction and Modelling

	SOFTWARE ENGINEERING 1: ABSTRACTION AND MODELLING
	Springerlink
	Title Page
	Copyright Page
	Dedication
	Preface — to Vols. 1-3
	Reasons for Writing These Volumes
	Shortcomings of These Volumes
	Methods of Approach
	A New Look at Software
	Formal Techniques "Light"
	The "Super Programmer"
	What Is Software Engineering?
	The Author's Aspirations
	Role of These Volumes in an SE Education Programme
	Why So Much Material?
	How to Use These Volumes in a Course
	Brief Guide to the Book
	Brief Guide to This Volume
	Acknowledgments

	Contents
	Part I: Opening
	Chapter 1. Introduction
	1.1 Setting the Stage
	1.2 A Software Engineering Triptych
	1.2.1 Software Versus Systems Development
	1.2.2 Motivating the Triptych
	1.2.3 Domain Engineering
	1.2.4 Requirements Engineering
	1.2.5 Software Design
	1.2.6 Discussion

	1.3 Documentation
	1.3.1 Document Kinds
	1.3.2 Phase, Stage and Step Documents
	1.3.3 Informative Documents
	1.3.4 Descriptive Documents
	1.3.5 Analytic Documents

	1.4 Formal Techniques and Formal Tools
	1.4.1 On Formal Techniques and Languages
	1.4.2 Formal Techniques in SE Textbooks
	1.4.3 Some Programming Languages
	1.4.4 Some Formal Specification Languages
	1.4.5 Insufficiency of Current, Formal Languages
	1.4.6 Other Formal Tools
	1.4.7 Why Formal Techniques and Formal Tools?

	1.5 Method and Methodology
	1.5.1 Method
	1.5.2 Methodology
	1.5.3 Discussion
	1.5.4 Meta-methodology

	1.6 The Very Bases of Software
	1.6.1 Didactics and Paradigms
	1.6.2 Pragmatics, Semantics and Syntax
	1.6.3 On Specification and Programming Paradigms
	1.6.4 Descriptions, Prescriptions and Specifications
	1.6.5 Metalanguages
	1.6.6 Summary

	1.7 Aims and Objectives
	1.7.1 Aims
	1.7.2 Objectives
	1.7.3 Discussion

	1.8 Bibliographical Notes
	1.9 Exercises

	Part II: Discrete Mathematics
	Chapter 2. Numbers
	2.1 Introduction
	2.2 Numerals and Numbers
	2.3 Subsets of Numbers
	2.3.1 Natural Numbers: Nat
	2.3.2 Integers: Int
	2.3.3 Real Numbers: Real
	2.3.4 Irrational Numbers
	2.3.5 Algebraic Numbers
	2.3.6 Transcendental Numbers
	2.3.7 Complex and Imaginary Numbers

	2.4 Type Definitions: Numbers
	2.5 Summary
	2.6 Bibliographical Notes
	2.7 Exercises

	Chapter 3. Sets
	3.1 Background
	3.2 Mathematical Sets
	3.3 Special Sets
	3.3.1 Axiom of Extension
	3.3.2 Partitions
	3.3.3 Power Sets

	3.4 Sorts and Type Definitions: Sets
	3.4.1 Set Abstractions
	3.4.2 Set Type Expressions and Type Definitions
	3.4.3 Sorts

	3.5 Sets in RSL
	3.6 Bibliographical Notes
	3.7 Exercises

	Chapter 4. Cartesians
	4.1 The Issues
	4.2 Cartesian-Valued Expressions
	4.3 Cartesian Types
	4.4 Cartesian Arity
	4.5 Cartesian Equality
	4.6 Some Construed Examples
	4.7 Sorts and Type Definitions: Cartesians
	4.7.1 Cartesian Abstractions
	4.7.2 Cartesian Type Expressions and Type Definitions

	4.8 Cartesians in RSL
	4.9 Bibliographical Notes
	4.10 Exercises

	Chapter 5. Types
	5.1 Values and Types
	5.2 Phenomena and Concept Types
	5.2.1 Phenomena and Concepts
	5.2.2 Entities: Atomic and Composite
	5.2.3 Attributes and Values

	5.3 Programming Language Type Concepts
	5.4 Sorts or Abstract Types
	5.5 Built-in and Concrete Types
	5.6 Type Checking
	5.6.1 Typed Variables and Expressions
	5.6.2 Type Errors
	5.6.3 Detection of Type Errors

	5.7 Types as Sets, Types as Lattices
	5.8 Summary
	5.9 Exercises

	Chapter 6. Functions
	6.1 General Overview
	6.1.1 Special Remarks

	6.2 The Issues
	6.2.1 Background
	6.2.2 Some Concepts of Functions

	6.3 How Do Functions Come About?
	6.4 An Aside: On the Concept of Evaluation
	6.4.1 [E]Valuation, Interpretation and Elaboration
	6.4.2 Two Evaluation Examples
	6.4.3 Function Invocation/"Function Call"

	6.5 Function Algebras
	6.5.1 Functions
	6.5.2 Function Types
	6.5.3 Higher-Order Function Types
	6.5.4 Nondeterministic Functions
	6.5.5 Constant Functions
	6.5.6 Strict Functions
	6.5.7 Strict Functions and Strict Function Invocation
	6.5.8 Operations on Functions

	6.6 Currying and λ-Notation
	6.6.1 Currying
	6.6.2 λ-Notation
	6.6.3 Example of Currying and λ-Notation

	6.7 Relations and Functions
	6.7.1 Predicates
	6.7.2 Function Evaluation by Relation Search
	6.7.3 Nondeterministic Functions

	6.8 Type Definitions
	6.9 Conclusion
	6.10 Bibliographical Notes
	6.11 Exercises

	Chapter 7. A λ-Calculus
	7.1 Informal Introduction
	7.2 A "Pure" λ-Calculus Syntax
	7.3 A λ-Calculus Pragmatics
	7.4 A "Pure" λ-Calculus Semantics
	7.4.1 Free and Bound Variables
	7.4.2 Binding and Scope
	7.4.3 Collision and Confusion of Variables
	7.4.4 Substitution
	7.4.5 α-Conversion and β-Conversion Rules
	7.4.6 λ-Conversion

	7.5 Call-by-Name Versus Call-by-Value
	7.6 The Church–Rosser Theorems — Informal Version
	7.7 The RSL λ-Notation
	7.7.1 Extending λ-Expressions
	7.7.2 The "let ... in ... end" Construct

	7.8 Fix Points
	7.8.1 The Issue
	7.8.2 Informal Outline
	7.8.3 The Fix Point Operator Y
	7.8.4 Fix Point Evaluation

	7.9 Discussion
	7.9.1 General
	7.9.2 On Minimal, Maximal and All Fix Points
	7.9.3 Emphasis
	7.9.4 Principles, Techniques and Tools

	7.10 Bibliographical Notes
	7.10.1 References
	7.10.2 Alonzo Church, 1903-1995

	7.11 Exercises

	Chapter 8. Algebras
	8.1 Introduction
	8.2 Formal Definition of the Algebra Concept
	8.3 How Do Algebras Come About?
	8.4 Kinds of Algebras
	8.4.1 Concrete Algebras
	8.4.2 Abstract Algebras
	8.4.3 Heterogeneous Algebras
	8.4.4 Universal Algebras

	8.5 Specification Algebras
	8.5.1 Syntactic Means of Expressing Algebras
	8.5.2 An Example Stack Algebra
	8.5.3 An Example Queue Algebra
	8.5.4 Towards Semantic Models of "class" Expressions

	8.6 RSL Syntax for Algebra Specifications
	8.6.1 "class" Expressions
	8.6.2 "scheme" Declarations

	8.7 Discussion
	8.7.1 General
	8.7.2 Principles, Techniques and Tools

	8.8 Bibliographical Notes
	8.9 Exercises

	Chapter 9. Mathematical Logic
	9.1 The Issues
	9.1.1 Language of Boolean Ground Terms
	9.1.2 Language of Propositional Expressions
	9.1.3 Language of Predicate Expressions
	9.1.4 Boolean-Valued Expressions
	9.1.5 "chaos" — Undefined Expression Evaluations
	9.1.6 Axiom Systems and Inference Rules
	9.1.7 Proof Systems
	9.1.8 A Note on Two Axiom Systems
	9.1.9 The "if ... then ... else ... end" Connective
	9.1.10 Discussion

	9.2 Proof Theory Versus Model Theory
	9.2.1 Syntax
	9.2.2 Semantics
	9.2.3 Syntax Versus Semantics
	9.2.4 Formal Logics: Syntax and Semantics
	9.2.5 Issues Related to Proofs
	9.2.6 Relating Proof Theory to Model Theory
	9.2.7 Discussion

	9.3 A Language of Boolean Ground Terms
	9.3.1 Syntax and Semantics
	9.3.2 The Connectives: ~ , ˄, ˅, ⇒, = , ≠ , ≡
	9.3.3 Three-Valued Logic
	9.3.4 Ground Terms and Their Evaluation
	9.3.5 "Syntactic" Versus "Semantic Semantics"
	9.3.6 Discussion

	9.4 Languages of Propositional Logic
	9.4.1 Propositional Expressions, PRO
	9.4.2 Examples
	9.4.3 Proposition Evaluation, Eval_PRO
	9.4.4 Two-Valued Propositional Calculi
	9.4.5 Discussion

	9.5 Languages of Predicate Logic
	9.5.1 Motivation
	9.5.2 Informal Presentation
	9.5.3 Examples
	9.5.4 Quantifiers and Quantified Expressions
	9.5.5 Syntax of Predicate Expressions, PRE
	9.5.6 A Predicate Calculus
	9.5.7 Predicate Expression Evaluation
	9.5.8 First-Order and Higher-Order Logics
	9.5.9 Validity, Satisfiability and Models
	9.5.10 Discussion

	9.6 Axiom Systems
	9.6.1 General
	9.6.2 Axioms
	9.6.3 Axiom System
	9.6.4 Consistency and Completeness
	9.6.5 Property-Oriented Specifications
	9.6.6 Discussion

	9.7 Summary
	9.8 Bibliographical Notes
	9.9 Exercises

	Part III: Simple RSL
	Introduction
	General
	RSL Versus VDM-SL, Z and B
	What, Syntactically, Constitutes a Specification?
	Towards an RSL "Standard"
	RSL Tools

	Chapter 10. Atomic Types and Values in RSL
	10.1 Introduction
	10.1.1 Mathematical Versus Enterprise Modelling
	10.1.2 The "Primitive" Model Building Blocks

	10.2 The RSL Numbers
	10.2.1 Three Types of Numbers
	10.2.2 Operations on RSL Numbers

	10.3 Enumerated Tokens
	10.3.1 Motivation
	10.3.2 General Theory
	10.3.3 Operations on Tokens
	10.3.4 Enumerated Tokens in Abstract Models
	10.3.5 Modelling Using Enumerated Tokens

	10.4 Characters and Texts
	10.4.1 Motivation
	10.4.2 The Character and Text Data Types

	10.5 Identifiers and General Tokens
	10.5.1 Identifiers
	10.5.2 Operations on General Tokens
	10.5.3 General Tokens

	10.6 Discussion
	10.6.1 General
	10.6.2 Modelling Atomic Entities

	10.7 Exercises

	Chapter 11. Function Definitions in RSL
	11.1 The Function Type
	11.1.1 Syntax of Function Types
	11.1.2 Informal Semantics of → and →̃

	11.2 Model-Oriented Explicit Definitions
	11.3 Model-Oriented Axiomatic Definitions
	11.4 Model-Oriented pre/post-Condition Definitions
	11.5 Property-Oriented Axiomatic Definitions
	11.6 Property-Oriented Algebraic Definitions
	11.7 Summary of RSL Function Definition Styles
	11.8 Discussion
	11.9 Exercises

	Chapter 12. Property-Oriented and Model-Oriented Abstraction
	12.1 Abstraction
	12.1.1 The Issues
	12.1.2 Abstraction and Specification
	12.1.3 An Essay on Abstraction

	12.2 Property-Oriented Abstractions
	12.2.1 Pragmatics of Property-Oriented Specifications
	12.2.2 Syntactics of Property-Oriented Specifications
	12.2.3 Semantics of Property-Oriented Specifications
	12.2.4 Discussion

	12.3 Model Versus Property Abstractions
	12.3.1 Representation and Operation Abstraction
	12.3.2 Property-Oriented Versus Model-Oriented Abstractions
	12.3.3 Definitions
	12.3.4 Representation Abstraction Examples
	12.3.5 Operation Abstraction Examples
	12.3.6 Discussion

	12.4 Model-Oriented Abstractions
	12.4.1 Ultrashort Overview of the Next Six Chapters
	12.4.2 Models and Models
	12.4.3 Underspecification
	12.4.4 Determinism and Nondeterminism
	12.4.5 Why Loose Specifications?
	12.4.6 Discussion

	12.5 Principles, Techniques and Tools
	12.5.1 Property-Oriented Versus Model-Oriented Specification?
	12.5.2 Property-Oriented Specification Style
	12.5.3 Model-Oriented Specification Style
	12.5.4 Implicit and Explicit Functions
	12.5.5 No Confusion, Please!
	12.5.6 A Note on Observer Functions

	12.6 Exercises

	Chapter 13. Sets in RSL
	13.1 Sets: The Issues
	13.2 The Set Data Type
	13.2.1 Set Types: Definitions and Expressions
	13.2.2 Set Value Expressions
	13.2.3 Set Binding Patterns and Matching
	13.2.4 Nondeterminism

	13.3 Examples of Set-Based Abstractions
	13.3.1 Representation I
	13.3.2 File Systems I
	13.3.3 Representation II

	13.4 Abstracting and Modelling With Sets
	13.4.1 Modelling Networks
	13.4.2 Modelling Pseudo-hierarchies
	13.4.3 Modelling a Telephone System

	13.5 Inductive Set Definitions
	13.5.1 Inductive Set Type Definitions
	13.5.2 Inductive Set Value Definitions

	13.6 A Comment on Varying Sets
	13.7 Principles, Techniques and Tools
	13.8 Discussion
	13.9 Bibliographical Notes
	13.10 Exercises

	Chapter 14. Cartesians in RSL
	14.1 Cartesians: The Issues
	14.2 The Cartesian Data Type
	14.2.1 Cartesian Types and Type Expressions
	14.2.2 Cartesian Value Expressions
	14.2.3 Cartesian Operations, I
	14.2.4 Cartesian Binding Patterns and Matching
	14.2.5 Cartesian Operations, II

	14.3 Examples of Cartesian Abstractions
	14.3.1 File Systems II
	14.3.2 Kuratowski: Pairs as Sets

	14.4 Abstracting and Modelling with Cartesians
	14.4.1 Modelling Syntactic Structures
	14.4.2 Cartesian "let ... in ... end" Bindings
	14.4.3 Modelling Semantic Structures
	14.4.4 Cartesians: A First Discussion

	14.5 Inductive Cartesian Definitions
	14.5.1 Inductive Cartesian Type Definitions
	14.5.2 Inductive Cartesian Value Definitions

	14.6 Discussion
	14.6.1 General
	14.6.2 Principles, Techniques and Tools

	14.7 Exercises

	Chapter 15. Lists in RSL
	15.1 Issues Related to Lists
	15.2 The List Data Type
	15.2.1 List Types
	15.2.2 List Value Expressions
	15.2.3 List Binding-Patterns and Matching
	15.2.4 Lists: Determinism and Nondeterminism Revisited

	15.3 Small Examples of List-Based Abstractions
	15.3.1 Representations
	15.3.2 Stacks and Queues
	15.3.3 File Systems III
	15.3.4 Sorting Algorithms

	15.4 Abstracting and Modelling with Lists
	15.4.1 Modelling Books Using Lists
	15.4.2 Modelling "KeyWord-In-Context, KWIC"

	15.5 Inductive List Definitions
	15.5.1 Inductive List Type Definitions
	15.5.2 Inductive List Value Definitions

	15.6 A Review of List Abstractions and Models
	15.7 Lists: A Discussion
	15.8 Exercises

	Chapter 16. Maps in RSL
	16.1 The Issues
	16.2 The Map Data Type
	16.2.1 Map Types: Definitions and Expressions
	16.2.2 Map Value Expressions
	16.2.3 Map Binding Patterns and Matching
	16.2.4 Nondeterminism

	16.3 Examples of Map-Based Abstractions
	16.3.1 Sorting
	16.3.2 Equivalence Relations

	16.4 Abstracting and Modelling with Maps
	16.4.1 Graphs
	16.4.2 Structured Tables
	16.4.3 Hierarchies
	16.4.4 Relational File Systems (IV) and Databases
	16.4.5 Complex Pointer Data Structures
	16.4.6 Well-formedness of Data Structures
	16.4.7 Discussion

	16.5 Inductive Map Definitions
	16.5.1 Inductive Map Type Definitions
	16.5.2 Inductive Map Value Definitions

	16.6 A Review of Map Abstractions and Models
	16.7 Maps: A Discussion
	16.8 Exercises

	Chapter 17. Higher-Order Functions in RSL
	17.1 Functions: The Issues
	17.2 Examples Using Function-Based Abstractions
	17.2.1 Functionals
	17.2.2 Discussion

	17.3 Abstracting and Modelling With Functions
	17.3.1 Concepts as Functions
	17.3.2 Operator Lifting

	17.4 Inductive Function Definitions
	17.4.1 Inductive Function Type Definitions
	17.4.2 Inductive Function Value Definitions

	17.5 Review of Function Abstractions and Models
	17.6 Discussion
	17.7 Exercises

	Part IV: Specification Types
	Chapter 18. Types in RSL
	18.1 The Issues
	18.2 Type Categories
	18.2.1 Abstract Types: Sorts
	18.2.2 Concrete Types
	18.2.3 Discussion

	18.3 Enumerated Token Types Revisited
	18.4 Records: Constructors and Destructors
	18.4.1 General
	18.4.2 Variant Record Value Induction Axioms
	18.4.3 An Example

	18.5 Union Type Definitions
	18.6 Short Record Type Definitions
	18.7 Type Expressions, Revisited
	18.8 Subtypes
	18.9 Type Definitions, Revisited
	18.10 On Recursive Type Definitions
	18.11 Discussion
	18.11.1 General
	18.11.2 Principles, Techniques and Tools

	18.12 Bibliographical Notes
	18.13 Exercises

	Part V: Specification Programming
	Introduction
	On Specification Programming
	On Problems and Exercises

	Chapter 19. Applicative Specification Programming
	19.1 Scope and Binding
	19.1.1 Binding Patterns — An Informal Exposition
	19.1.2 "let" Construct Scope and Binding [1]
	19.1.3 Function Definition Scope and Binding [2]
	19.1.4 "case" Construct Scope and Binding [3]
	19.1.5 Comprehensions: Scope and Binding [4]
	19.1.6 Quantifications: Scope and Binding [5]

	19.2 Intuition
	19.2.1 Simple "let a = ℇ d in ℇ b (a) end"
	19.2.2 Recursive "let f(a) = ℇ d (f) in ℇ b (f,a) end"
	19.2.3 Predicative "let a:A • P(a) in ℇ(a) end"
	19.2.4 Multiple "let a i = ℇ d i in ℇ b (a i) end"
	19.2.5 Literals and Identifiers

	19.3 Operator/Operand Expressions
	19.4 Enumerated and Comprehended Expressions
	19.5 Conditional Expressions
	19.6 Bindings, Typings, Patterns and Matching
	19.6.1 The Issues
	19.6.2 An Essence of Bindings and Patterns
	19.6.3 Binding Patterns
	19.6.4 Typings
	19.6.5 Choice Patterns and Bindings
	19.6.6 Summary

	19.7 Review and Discussion
	19.7.1 General
	19.7.2 Principles and Techniques

	19.8 Bibliographical Notes
	19.9 Exercises

	Chapter 20. Imperative Specification Programming
	20.1 Intuition
	20.2 Imperative Combinators: A λ-Calculus
	20.2.1 [0] "variable" Declarations
	20.2.2 [1] Assignments : "var := expression"
	20.2.3 [9] State Expressions
	20.2.4 [2] "skip": No-Action
	20.2.5 [3] Statement Sequencing (;)
	20.2.6 [4] "if ... then ... else ... end"
	20.2.7 [5-6] "while ... do ... end", and "do ... until ... end"
	20.2.8 [7] "case ... of ... end"
	20.2.9 [8] "for... in ... do... end"

	20.3 Variable References: Pointers
	20.3.1 A Discourse on Simple References
	20.3.2 Dynamic Allocation and Referencing
	20.3.3 Discussion: Semantics First, Then Syntax
	20.3.4 Discussion: Type Homomorphisms
	20.3.5 The Notion of State

	20.4 Function Definitions and Expressions
	20.4.1 The Unit Type Expression, I
	20.4.2 Imperative Functions
	20.4.3 Read/Write Access Descriptions
	20.4.4 Local Variables
	20.4.5 The Unit Type Expression, II
	20.4.6 Pure Expressions
	20.4.7 Read-Only Expressions
	20.4.8 Equivalence (≡) and Equality (=)

	20.5 Translations: Applicative to Imperative
	20.5.1 Applicative to Imperative Translations
	20.5.2 Recursive to Iterative Translations
	20.5.3 Applicative to Imperative Schemas
	20.5.4 Correctness, Principles, Techniques and Tools

	20.6 Styles of Configuration Modelling
	20.6.1 Applicative Contexts and States
	20.6.2 Applicative Contexts and Imperative States
	20.6.3 Imperative Contexts and States
	20.6.4 Summary of Sequential Models

	20.7 Review and Discussion
	20.7.1 Review
	20.7.2 Discussion

	20.8 Bibliographical Notes
	20.8.1 Theory of Computation
	20.8.2 A Type Theory for the λ-Calculus
	20.8.3 Source Program Transformation Works
	20.8.4 Laws of Imperative Programming

	20.9 Exercises

	Chapter 21. Concurrent Specification Programming
	21.1 Behaviour and Process Abstractions
	21.1.1 Introduction
	21.1.2 On Process and Other Abstractions

	21.2 Intuition
	21.2.1 Illustrative Rendezvous Scenarios
	21.2.2 Diagram and Notation Summary
	21.2.3 On a Trace Semantics
	21.2.4 Some Characterisations: Processes, Etcetera
	21.2.5 Principle of Process Modelling
	21.2.6 Informal Examples
	21.2.7 Some Modelling Comments — An Aside
	21.2.8 Examples Continued
	21.2.9 Some System Channel Configurations
	21.2.10 Concurrency Concepts — A Summary

	21.3 Communicating Sequential Processes, CSP
	21.3.1 Preliminaries: Processes and Events
	21.3.2 Process Combinators, Etcetera
	21.3.3 Discussion

	21.4 The RSL/CSP Process Combinators
	21.4.1 RSL-like Channels
	21.4.2 RSL Communication Clauses
	21.4.3 RSL Processes
	21.4.4 Parallel Process Combinator
	21.4.5 Nondeterministic External Choice
	21.4.6 Nondeterministic Internal Choice
	21.4.7 Interlock Combinator
	21.4.8 Summary
	21.4.9 A Note of Caution

	21.5 Translation Schemas
	21.5.1 Stage I: An Applicative Schema
	21.5.2 Stage II: A Simple Reformulation
	21.5.3 Stage III: Introducing Parallelism
	21.5.4 Stage IV: A Simple Reformulation
	21.5.5 Stage Relations
	21.5.6 Stage V: An Imperative Reformulation
	21.5.7 Some Remarks

	21.6 Parallelism and Concurrency: A Discussion
	21.6.1 CSP and RSL/CSP
	21.6.2 Modelling Techniques

	21.7 Bibliographical Notes
	21.8 Exercises

	Part VI: And So On!
	Chapter 22. Etcetera!
	22.1 What Have We Covered?
	22.2 What Is Next?
	22.3 What Is Next-Next?
	22.4 A Caveat
	22.5 Formal Methods "Lite"
	22.6 Bibliographical Notes

	Part VII: Appendixes
	Appendix A. Common Exercise Topics
	A.1 Transportation Nets
	A.2 Container Logistics
	A.3 Financial Service Industry
	A.4 Summary References to Exercises

	Appendix B. Glossary
	B.1 Categories of Reference Lists
	B.1.1 Glossary
	B.1.2 Dictionary
	B.1.3 Encyclopaedia
	B.1.4 Ontology
	B.1.5 Taxonomy
	B.1.6 Terminology
	B.1.7 Thesaurus

	B.2 Typography and Spelling
	B.3 The Glosses
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Appendix C. Indexes
	C.1 Symbols Index
	C.1.1 Operators
	C.1.2 Constructors
	C.1.3 Constant Value Literals
	C.1.4 Combinators
	C.1.5 Calculi
	C.1.6 Abbreviations

	C.2 Concepts Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	C.3 Characterisations and Definitions Index
	C.4 Authors Index

	References
	Monographs in Theoretical Computer Science • An EATCS Series
	Texts in Theoretical Computer Science • An EATCS Series

